Commit 0049af73bb4b74d1407db59caefc5fe057ee434a
1 parent
e2d57e6019
Exists in
smarc-imx_3.14.28_1.0.0_ga
and in
1 other branch
blk-throttle: reorganize throtl_service_queue passed around as argument
throtl_service_queue will be the building block of hierarchy support and will form a tree. This patch updates its usages as arguments to reduce confusion. * When a service queue is used as the parent role - the host of the rbtree - use @parent_sq instead of @sq. * For functions taking both @tg and @parent_sq, reorder them so that the order is (@tg, @parent_sq) not the other way around. This makes the code follow the usual convention of specifying the primary target of the operation as the first argument. This patch doesn't make any functional differences. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Vivek Goyal <vgoyal@redhat.com>
Showing 1 changed file with 51 additions and 49 deletions Inline Diff
block/blk-throttle.c
1 | /* | 1 | /* |
2 | * Interface for controlling IO bandwidth on a request queue | 2 | * Interface for controlling IO bandwidth on a request queue |
3 | * | 3 | * |
4 | * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com> | 4 | * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com> |
5 | */ | 5 | */ |
6 | 6 | ||
7 | #include <linux/module.h> | 7 | #include <linux/module.h> |
8 | #include <linux/slab.h> | 8 | #include <linux/slab.h> |
9 | #include <linux/blkdev.h> | 9 | #include <linux/blkdev.h> |
10 | #include <linux/bio.h> | 10 | #include <linux/bio.h> |
11 | #include <linux/blktrace_api.h> | 11 | #include <linux/blktrace_api.h> |
12 | #include "blk-cgroup.h" | 12 | #include "blk-cgroup.h" |
13 | #include "blk.h" | 13 | #include "blk.h" |
14 | 14 | ||
15 | /* Max dispatch from a group in 1 round */ | 15 | /* Max dispatch from a group in 1 round */ |
16 | static int throtl_grp_quantum = 8; | 16 | static int throtl_grp_quantum = 8; |
17 | 17 | ||
18 | /* Total max dispatch from all groups in one round */ | 18 | /* Total max dispatch from all groups in one round */ |
19 | static int throtl_quantum = 32; | 19 | static int throtl_quantum = 32; |
20 | 20 | ||
21 | /* Throttling is performed over 100ms slice and after that slice is renewed */ | 21 | /* Throttling is performed over 100ms slice and after that slice is renewed */ |
22 | static unsigned long throtl_slice = HZ/10; /* 100 ms */ | 22 | static unsigned long throtl_slice = HZ/10; /* 100 ms */ |
23 | 23 | ||
24 | static struct blkcg_policy blkcg_policy_throtl; | 24 | static struct blkcg_policy blkcg_policy_throtl; |
25 | 25 | ||
26 | /* A workqueue to queue throttle related work */ | 26 | /* A workqueue to queue throttle related work */ |
27 | static struct workqueue_struct *kthrotld_workqueue; | 27 | static struct workqueue_struct *kthrotld_workqueue; |
28 | 28 | ||
29 | struct throtl_service_queue { | 29 | struct throtl_service_queue { |
30 | struct rb_root pending_tree; /* RB tree of active tgs */ | 30 | struct rb_root pending_tree; /* RB tree of active tgs */ |
31 | struct rb_node *first_pending; /* first node in the tree */ | 31 | struct rb_node *first_pending; /* first node in the tree */ |
32 | unsigned int nr_pending; /* # queued in the tree */ | 32 | unsigned int nr_pending; /* # queued in the tree */ |
33 | unsigned long first_pending_disptime; /* disptime of the first tg */ | 33 | unsigned long first_pending_disptime; /* disptime of the first tg */ |
34 | }; | 34 | }; |
35 | 35 | ||
36 | #define THROTL_SERVICE_QUEUE_INITIALIZER \ | 36 | #define THROTL_SERVICE_QUEUE_INITIALIZER \ |
37 | (struct throtl_service_queue){ .pending_tree = RB_ROOT } | 37 | (struct throtl_service_queue){ .pending_tree = RB_ROOT } |
38 | 38 | ||
39 | enum tg_state_flags { | 39 | enum tg_state_flags { |
40 | THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */ | 40 | THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */ |
41 | }; | 41 | }; |
42 | 42 | ||
43 | #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node) | 43 | #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node) |
44 | 44 | ||
45 | /* Per-cpu group stats */ | 45 | /* Per-cpu group stats */ |
46 | struct tg_stats_cpu { | 46 | struct tg_stats_cpu { |
47 | /* total bytes transferred */ | 47 | /* total bytes transferred */ |
48 | struct blkg_rwstat service_bytes; | 48 | struct blkg_rwstat service_bytes; |
49 | /* total IOs serviced, post merge */ | 49 | /* total IOs serviced, post merge */ |
50 | struct blkg_rwstat serviced; | 50 | struct blkg_rwstat serviced; |
51 | }; | 51 | }; |
52 | 52 | ||
53 | struct throtl_grp { | 53 | struct throtl_grp { |
54 | /* must be the first member */ | 54 | /* must be the first member */ |
55 | struct blkg_policy_data pd; | 55 | struct blkg_policy_data pd; |
56 | 56 | ||
57 | /* active throtl group service_queue member */ | 57 | /* active throtl group service_queue member */ |
58 | struct rb_node rb_node; | 58 | struct rb_node rb_node; |
59 | 59 | ||
60 | /* throtl_data this group belongs to */ | 60 | /* throtl_data this group belongs to */ |
61 | struct throtl_data *td; | 61 | struct throtl_data *td; |
62 | 62 | ||
63 | /* | 63 | /* |
64 | * Dispatch time in jiffies. This is the estimated time when group | 64 | * Dispatch time in jiffies. This is the estimated time when group |
65 | * will unthrottle and is ready to dispatch more bio. It is used as | 65 | * will unthrottle and is ready to dispatch more bio. It is used as |
66 | * key to sort active groups in service tree. | 66 | * key to sort active groups in service tree. |
67 | */ | 67 | */ |
68 | unsigned long disptime; | 68 | unsigned long disptime; |
69 | 69 | ||
70 | unsigned int flags; | 70 | unsigned int flags; |
71 | 71 | ||
72 | /* Two lists for READ and WRITE */ | 72 | /* Two lists for READ and WRITE */ |
73 | struct bio_list bio_lists[2]; | 73 | struct bio_list bio_lists[2]; |
74 | 74 | ||
75 | /* Number of queued bios on READ and WRITE lists */ | 75 | /* Number of queued bios on READ and WRITE lists */ |
76 | unsigned int nr_queued[2]; | 76 | unsigned int nr_queued[2]; |
77 | 77 | ||
78 | /* bytes per second rate limits */ | 78 | /* bytes per second rate limits */ |
79 | uint64_t bps[2]; | 79 | uint64_t bps[2]; |
80 | 80 | ||
81 | /* IOPS limits */ | 81 | /* IOPS limits */ |
82 | unsigned int iops[2]; | 82 | unsigned int iops[2]; |
83 | 83 | ||
84 | /* Number of bytes disptached in current slice */ | 84 | /* Number of bytes disptached in current slice */ |
85 | uint64_t bytes_disp[2]; | 85 | uint64_t bytes_disp[2]; |
86 | /* Number of bio's dispatched in current slice */ | 86 | /* Number of bio's dispatched in current slice */ |
87 | unsigned int io_disp[2]; | 87 | unsigned int io_disp[2]; |
88 | 88 | ||
89 | /* When did we start a new slice */ | 89 | /* When did we start a new slice */ |
90 | unsigned long slice_start[2]; | 90 | unsigned long slice_start[2]; |
91 | unsigned long slice_end[2]; | 91 | unsigned long slice_end[2]; |
92 | 92 | ||
93 | /* Per cpu stats pointer */ | 93 | /* Per cpu stats pointer */ |
94 | struct tg_stats_cpu __percpu *stats_cpu; | 94 | struct tg_stats_cpu __percpu *stats_cpu; |
95 | 95 | ||
96 | /* List of tgs waiting for per cpu stats memory to be allocated */ | 96 | /* List of tgs waiting for per cpu stats memory to be allocated */ |
97 | struct list_head stats_alloc_node; | 97 | struct list_head stats_alloc_node; |
98 | }; | 98 | }; |
99 | 99 | ||
100 | struct throtl_data | 100 | struct throtl_data |
101 | { | 101 | { |
102 | /* service tree for active throtl groups */ | 102 | /* service tree for active throtl groups */ |
103 | struct throtl_service_queue service_queue; | 103 | struct throtl_service_queue service_queue; |
104 | 104 | ||
105 | struct request_queue *queue; | 105 | struct request_queue *queue; |
106 | 106 | ||
107 | /* Total Number of queued bios on READ and WRITE lists */ | 107 | /* Total Number of queued bios on READ and WRITE lists */ |
108 | unsigned int nr_queued[2]; | 108 | unsigned int nr_queued[2]; |
109 | 109 | ||
110 | /* | 110 | /* |
111 | * number of total undestroyed groups | 111 | * number of total undestroyed groups |
112 | */ | 112 | */ |
113 | unsigned int nr_undestroyed_grps; | 113 | unsigned int nr_undestroyed_grps; |
114 | 114 | ||
115 | /* Work for dispatching throttled bios */ | 115 | /* Work for dispatching throttled bios */ |
116 | struct delayed_work dispatch_work; | 116 | struct delayed_work dispatch_work; |
117 | }; | 117 | }; |
118 | 118 | ||
119 | /* list and work item to allocate percpu group stats */ | 119 | /* list and work item to allocate percpu group stats */ |
120 | static DEFINE_SPINLOCK(tg_stats_alloc_lock); | 120 | static DEFINE_SPINLOCK(tg_stats_alloc_lock); |
121 | static LIST_HEAD(tg_stats_alloc_list); | 121 | static LIST_HEAD(tg_stats_alloc_list); |
122 | 122 | ||
123 | static void tg_stats_alloc_fn(struct work_struct *); | 123 | static void tg_stats_alloc_fn(struct work_struct *); |
124 | static DECLARE_DELAYED_WORK(tg_stats_alloc_work, tg_stats_alloc_fn); | 124 | static DECLARE_DELAYED_WORK(tg_stats_alloc_work, tg_stats_alloc_fn); |
125 | 125 | ||
126 | static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd) | 126 | static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd) |
127 | { | 127 | { |
128 | return pd ? container_of(pd, struct throtl_grp, pd) : NULL; | 128 | return pd ? container_of(pd, struct throtl_grp, pd) : NULL; |
129 | } | 129 | } |
130 | 130 | ||
131 | static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg) | 131 | static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg) |
132 | { | 132 | { |
133 | return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl)); | 133 | return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl)); |
134 | } | 134 | } |
135 | 135 | ||
136 | static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg) | 136 | static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg) |
137 | { | 137 | { |
138 | return pd_to_blkg(&tg->pd); | 138 | return pd_to_blkg(&tg->pd); |
139 | } | 139 | } |
140 | 140 | ||
141 | static inline struct throtl_grp *td_root_tg(struct throtl_data *td) | 141 | static inline struct throtl_grp *td_root_tg(struct throtl_data *td) |
142 | { | 142 | { |
143 | return blkg_to_tg(td->queue->root_blkg); | 143 | return blkg_to_tg(td->queue->root_blkg); |
144 | } | 144 | } |
145 | 145 | ||
146 | #define throtl_log_tg(tg, fmt, args...) do { \ | 146 | #define throtl_log_tg(tg, fmt, args...) do { \ |
147 | char __pbuf[128]; \ | 147 | char __pbuf[128]; \ |
148 | \ | 148 | \ |
149 | blkg_path(tg_to_blkg(tg), __pbuf, sizeof(__pbuf)); \ | 149 | blkg_path(tg_to_blkg(tg), __pbuf, sizeof(__pbuf)); \ |
150 | blk_add_trace_msg((tg)->td->queue, "throtl %s " fmt, __pbuf, ##args); \ | 150 | blk_add_trace_msg((tg)->td->queue, "throtl %s " fmt, __pbuf, ##args); \ |
151 | } while (0) | 151 | } while (0) |
152 | 152 | ||
153 | #define throtl_log(td, fmt, args...) \ | 153 | #define throtl_log(td, fmt, args...) \ |
154 | blk_add_trace_msg((td)->queue, "throtl " fmt, ##args) | 154 | blk_add_trace_msg((td)->queue, "throtl " fmt, ##args) |
155 | 155 | ||
156 | /* | 156 | /* |
157 | * Worker for allocating per cpu stat for tgs. This is scheduled on the | 157 | * Worker for allocating per cpu stat for tgs. This is scheduled on the |
158 | * system_wq once there are some groups on the alloc_list waiting for | 158 | * system_wq once there are some groups on the alloc_list waiting for |
159 | * allocation. | 159 | * allocation. |
160 | */ | 160 | */ |
161 | static void tg_stats_alloc_fn(struct work_struct *work) | 161 | static void tg_stats_alloc_fn(struct work_struct *work) |
162 | { | 162 | { |
163 | static struct tg_stats_cpu *stats_cpu; /* this fn is non-reentrant */ | 163 | static struct tg_stats_cpu *stats_cpu; /* this fn is non-reentrant */ |
164 | struct delayed_work *dwork = to_delayed_work(work); | 164 | struct delayed_work *dwork = to_delayed_work(work); |
165 | bool empty = false; | 165 | bool empty = false; |
166 | 166 | ||
167 | alloc_stats: | 167 | alloc_stats: |
168 | if (!stats_cpu) { | 168 | if (!stats_cpu) { |
169 | stats_cpu = alloc_percpu(struct tg_stats_cpu); | 169 | stats_cpu = alloc_percpu(struct tg_stats_cpu); |
170 | if (!stats_cpu) { | 170 | if (!stats_cpu) { |
171 | /* allocation failed, try again after some time */ | 171 | /* allocation failed, try again after some time */ |
172 | schedule_delayed_work(dwork, msecs_to_jiffies(10)); | 172 | schedule_delayed_work(dwork, msecs_to_jiffies(10)); |
173 | return; | 173 | return; |
174 | } | 174 | } |
175 | } | 175 | } |
176 | 176 | ||
177 | spin_lock_irq(&tg_stats_alloc_lock); | 177 | spin_lock_irq(&tg_stats_alloc_lock); |
178 | 178 | ||
179 | if (!list_empty(&tg_stats_alloc_list)) { | 179 | if (!list_empty(&tg_stats_alloc_list)) { |
180 | struct throtl_grp *tg = list_first_entry(&tg_stats_alloc_list, | 180 | struct throtl_grp *tg = list_first_entry(&tg_stats_alloc_list, |
181 | struct throtl_grp, | 181 | struct throtl_grp, |
182 | stats_alloc_node); | 182 | stats_alloc_node); |
183 | swap(tg->stats_cpu, stats_cpu); | 183 | swap(tg->stats_cpu, stats_cpu); |
184 | list_del_init(&tg->stats_alloc_node); | 184 | list_del_init(&tg->stats_alloc_node); |
185 | } | 185 | } |
186 | 186 | ||
187 | empty = list_empty(&tg_stats_alloc_list); | 187 | empty = list_empty(&tg_stats_alloc_list); |
188 | spin_unlock_irq(&tg_stats_alloc_lock); | 188 | spin_unlock_irq(&tg_stats_alloc_lock); |
189 | if (!empty) | 189 | if (!empty) |
190 | goto alloc_stats; | 190 | goto alloc_stats; |
191 | } | 191 | } |
192 | 192 | ||
193 | static void throtl_pd_init(struct blkcg_gq *blkg) | 193 | static void throtl_pd_init(struct blkcg_gq *blkg) |
194 | { | 194 | { |
195 | struct throtl_grp *tg = blkg_to_tg(blkg); | 195 | struct throtl_grp *tg = blkg_to_tg(blkg); |
196 | unsigned long flags; | 196 | unsigned long flags; |
197 | 197 | ||
198 | RB_CLEAR_NODE(&tg->rb_node); | 198 | RB_CLEAR_NODE(&tg->rb_node); |
199 | tg->td = blkg->q->td; | 199 | tg->td = blkg->q->td; |
200 | bio_list_init(&tg->bio_lists[0]); | 200 | bio_list_init(&tg->bio_lists[0]); |
201 | bio_list_init(&tg->bio_lists[1]); | 201 | bio_list_init(&tg->bio_lists[1]); |
202 | 202 | ||
203 | tg->bps[READ] = -1; | 203 | tg->bps[READ] = -1; |
204 | tg->bps[WRITE] = -1; | 204 | tg->bps[WRITE] = -1; |
205 | tg->iops[READ] = -1; | 205 | tg->iops[READ] = -1; |
206 | tg->iops[WRITE] = -1; | 206 | tg->iops[WRITE] = -1; |
207 | 207 | ||
208 | /* | 208 | /* |
209 | * Ugh... We need to perform per-cpu allocation for tg->stats_cpu | 209 | * Ugh... We need to perform per-cpu allocation for tg->stats_cpu |
210 | * but percpu allocator can't be called from IO path. Queue tg on | 210 | * but percpu allocator can't be called from IO path. Queue tg on |
211 | * tg_stats_alloc_list and allocate from work item. | 211 | * tg_stats_alloc_list and allocate from work item. |
212 | */ | 212 | */ |
213 | spin_lock_irqsave(&tg_stats_alloc_lock, flags); | 213 | spin_lock_irqsave(&tg_stats_alloc_lock, flags); |
214 | list_add(&tg->stats_alloc_node, &tg_stats_alloc_list); | 214 | list_add(&tg->stats_alloc_node, &tg_stats_alloc_list); |
215 | schedule_delayed_work(&tg_stats_alloc_work, 0); | 215 | schedule_delayed_work(&tg_stats_alloc_work, 0); |
216 | spin_unlock_irqrestore(&tg_stats_alloc_lock, flags); | 216 | spin_unlock_irqrestore(&tg_stats_alloc_lock, flags); |
217 | } | 217 | } |
218 | 218 | ||
219 | static void throtl_pd_exit(struct blkcg_gq *blkg) | 219 | static void throtl_pd_exit(struct blkcg_gq *blkg) |
220 | { | 220 | { |
221 | struct throtl_grp *tg = blkg_to_tg(blkg); | 221 | struct throtl_grp *tg = blkg_to_tg(blkg); |
222 | unsigned long flags; | 222 | unsigned long flags; |
223 | 223 | ||
224 | spin_lock_irqsave(&tg_stats_alloc_lock, flags); | 224 | spin_lock_irqsave(&tg_stats_alloc_lock, flags); |
225 | list_del_init(&tg->stats_alloc_node); | 225 | list_del_init(&tg->stats_alloc_node); |
226 | spin_unlock_irqrestore(&tg_stats_alloc_lock, flags); | 226 | spin_unlock_irqrestore(&tg_stats_alloc_lock, flags); |
227 | 227 | ||
228 | free_percpu(tg->stats_cpu); | 228 | free_percpu(tg->stats_cpu); |
229 | } | 229 | } |
230 | 230 | ||
231 | static void throtl_pd_reset_stats(struct blkcg_gq *blkg) | 231 | static void throtl_pd_reset_stats(struct blkcg_gq *blkg) |
232 | { | 232 | { |
233 | struct throtl_grp *tg = blkg_to_tg(blkg); | 233 | struct throtl_grp *tg = blkg_to_tg(blkg); |
234 | int cpu; | 234 | int cpu; |
235 | 235 | ||
236 | if (tg->stats_cpu == NULL) | 236 | if (tg->stats_cpu == NULL) |
237 | return; | 237 | return; |
238 | 238 | ||
239 | for_each_possible_cpu(cpu) { | 239 | for_each_possible_cpu(cpu) { |
240 | struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu); | 240 | struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu); |
241 | 241 | ||
242 | blkg_rwstat_reset(&sc->service_bytes); | 242 | blkg_rwstat_reset(&sc->service_bytes); |
243 | blkg_rwstat_reset(&sc->serviced); | 243 | blkg_rwstat_reset(&sc->serviced); |
244 | } | 244 | } |
245 | } | 245 | } |
246 | 246 | ||
247 | static struct throtl_grp *throtl_lookup_tg(struct throtl_data *td, | 247 | static struct throtl_grp *throtl_lookup_tg(struct throtl_data *td, |
248 | struct blkcg *blkcg) | 248 | struct blkcg *blkcg) |
249 | { | 249 | { |
250 | /* | 250 | /* |
251 | * This is the common case when there are no blkcgs. Avoid lookup | 251 | * This is the common case when there are no blkcgs. Avoid lookup |
252 | * in this case | 252 | * in this case |
253 | */ | 253 | */ |
254 | if (blkcg == &blkcg_root) | 254 | if (blkcg == &blkcg_root) |
255 | return td_root_tg(td); | 255 | return td_root_tg(td); |
256 | 256 | ||
257 | return blkg_to_tg(blkg_lookup(blkcg, td->queue)); | 257 | return blkg_to_tg(blkg_lookup(blkcg, td->queue)); |
258 | } | 258 | } |
259 | 259 | ||
260 | static struct throtl_grp *throtl_lookup_create_tg(struct throtl_data *td, | 260 | static struct throtl_grp *throtl_lookup_create_tg(struct throtl_data *td, |
261 | struct blkcg *blkcg) | 261 | struct blkcg *blkcg) |
262 | { | 262 | { |
263 | struct request_queue *q = td->queue; | 263 | struct request_queue *q = td->queue; |
264 | struct throtl_grp *tg = NULL; | 264 | struct throtl_grp *tg = NULL; |
265 | 265 | ||
266 | /* | 266 | /* |
267 | * This is the common case when there are no blkcgs. Avoid lookup | 267 | * This is the common case when there are no blkcgs. Avoid lookup |
268 | * in this case | 268 | * in this case |
269 | */ | 269 | */ |
270 | if (blkcg == &blkcg_root) { | 270 | if (blkcg == &blkcg_root) { |
271 | tg = td_root_tg(td); | 271 | tg = td_root_tg(td); |
272 | } else { | 272 | } else { |
273 | struct blkcg_gq *blkg; | 273 | struct blkcg_gq *blkg; |
274 | 274 | ||
275 | blkg = blkg_lookup_create(blkcg, q); | 275 | blkg = blkg_lookup_create(blkcg, q); |
276 | 276 | ||
277 | /* if %NULL and @q is alive, fall back to root_tg */ | 277 | /* if %NULL and @q is alive, fall back to root_tg */ |
278 | if (!IS_ERR(blkg)) | 278 | if (!IS_ERR(blkg)) |
279 | tg = blkg_to_tg(blkg); | 279 | tg = blkg_to_tg(blkg); |
280 | else if (!blk_queue_dying(q)) | 280 | else if (!blk_queue_dying(q)) |
281 | tg = td_root_tg(td); | 281 | tg = td_root_tg(td); |
282 | } | 282 | } |
283 | 283 | ||
284 | return tg; | 284 | return tg; |
285 | } | 285 | } |
286 | 286 | ||
287 | static struct throtl_grp *throtl_rb_first(struct throtl_service_queue *sq) | 287 | static struct throtl_grp * |
288 | throtl_rb_first(struct throtl_service_queue *parent_sq) | ||
288 | { | 289 | { |
289 | /* Service tree is empty */ | 290 | /* Service tree is empty */ |
290 | if (!sq->nr_pending) | 291 | if (!parent_sq->nr_pending) |
291 | return NULL; | 292 | return NULL; |
292 | 293 | ||
293 | if (!sq->first_pending) | 294 | if (!parent_sq->first_pending) |
294 | sq->first_pending = rb_first(&sq->pending_tree); | 295 | parent_sq->first_pending = rb_first(&parent_sq->pending_tree); |
295 | 296 | ||
296 | if (sq->first_pending) | 297 | if (parent_sq->first_pending) |
297 | return rb_entry_tg(sq->first_pending); | 298 | return rb_entry_tg(parent_sq->first_pending); |
298 | 299 | ||
299 | return NULL; | 300 | return NULL; |
300 | } | 301 | } |
301 | 302 | ||
302 | static void rb_erase_init(struct rb_node *n, struct rb_root *root) | 303 | static void rb_erase_init(struct rb_node *n, struct rb_root *root) |
303 | { | 304 | { |
304 | rb_erase(n, root); | 305 | rb_erase(n, root); |
305 | RB_CLEAR_NODE(n); | 306 | RB_CLEAR_NODE(n); |
306 | } | 307 | } |
307 | 308 | ||
308 | static void throtl_rb_erase(struct rb_node *n, struct throtl_service_queue *sq) | 309 | static void throtl_rb_erase(struct rb_node *n, |
310 | struct throtl_service_queue *parent_sq) | ||
309 | { | 311 | { |
310 | if (sq->first_pending == n) | 312 | if (parent_sq->first_pending == n) |
311 | sq->first_pending = NULL; | 313 | parent_sq->first_pending = NULL; |
312 | rb_erase_init(n, &sq->pending_tree); | 314 | rb_erase_init(n, &parent_sq->pending_tree); |
313 | --sq->nr_pending; | 315 | --parent_sq->nr_pending; |
314 | } | 316 | } |
315 | 317 | ||
316 | static void update_min_dispatch_time(struct throtl_service_queue *sq) | 318 | static void update_min_dispatch_time(struct throtl_service_queue *parent_sq) |
317 | { | 319 | { |
318 | struct throtl_grp *tg; | 320 | struct throtl_grp *tg; |
319 | 321 | ||
320 | tg = throtl_rb_first(sq); | 322 | tg = throtl_rb_first(parent_sq); |
321 | if (!tg) | 323 | if (!tg) |
322 | return; | 324 | return; |
323 | 325 | ||
324 | sq->first_pending_disptime = tg->disptime; | 326 | parent_sq->first_pending_disptime = tg->disptime; |
325 | } | 327 | } |
326 | 328 | ||
327 | static void tg_service_queue_add(struct throtl_service_queue *sq, | 329 | static void tg_service_queue_add(struct throtl_grp *tg, |
328 | struct throtl_grp *tg) | 330 | struct throtl_service_queue *parent_sq) |
329 | { | 331 | { |
330 | struct rb_node **node = &sq->pending_tree.rb_node; | 332 | struct rb_node **node = &parent_sq->pending_tree.rb_node; |
331 | struct rb_node *parent = NULL; | 333 | struct rb_node *parent = NULL; |
332 | struct throtl_grp *__tg; | 334 | struct throtl_grp *__tg; |
333 | unsigned long key = tg->disptime; | 335 | unsigned long key = tg->disptime; |
334 | int left = 1; | 336 | int left = 1; |
335 | 337 | ||
336 | while (*node != NULL) { | 338 | while (*node != NULL) { |
337 | parent = *node; | 339 | parent = *node; |
338 | __tg = rb_entry_tg(parent); | 340 | __tg = rb_entry_tg(parent); |
339 | 341 | ||
340 | if (time_before(key, __tg->disptime)) | 342 | if (time_before(key, __tg->disptime)) |
341 | node = &parent->rb_left; | 343 | node = &parent->rb_left; |
342 | else { | 344 | else { |
343 | node = &parent->rb_right; | 345 | node = &parent->rb_right; |
344 | left = 0; | 346 | left = 0; |
345 | } | 347 | } |
346 | } | 348 | } |
347 | 349 | ||
348 | if (left) | 350 | if (left) |
349 | sq->first_pending = &tg->rb_node; | 351 | parent_sq->first_pending = &tg->rb_node; |
350 | 352 | ||
351 | rb_link_node(&tg->rb_node, parent, node); | 353 | rb_link_node(&tg->rb_node, parent, node); |
352 | rb_insert_color(&tg->rb_node, &sq->pending_tree); | 354 | rb_insert_color(&tg->rb_node, &parent_sq->pending_tree); |
353 | } | 355 | } |
354 | 356 | ||
355 | static void __throtl_enqueue_tg(struct throtl_service_queue *sq, | 357 | static void __throtl_enqueue_tg(struct throtl_grp *tg, |
356 | struct throtl_grp *tg) | 358 | struct throtl_service_queue *parent_sq) |
357 | { | 359 | { |
358 | tg_service_queue_add(sq, tg); | 360 | tg_service_queue_add(tg, parent_sq); |
359 | tg->flags |= THROTL_TG_PENDING; | 361 | tg->flags |= THROTL_TG_PENDING; |
360 | sq->nr_pending++; | 362 | parent_sq->nr_pending++; |
361 | } | 363 | } |
362 | 364 | ||
363 | static void throtl_enqueue_tg(struct throtl_service_queue *sq, | 365 | static void throtl_enqueue_tg(struct throtl_grp *tg, |
364 | struct throtl_grp *tg) | 366 | struct throtl_service_queue *parent_sq) |
365 | { | 367 | { |
366 | if (!(tg->flags & THROTL_TG_PENDING)) | 368 | if (!(tg->flags & THROTL_TG_PENDING)) |
367 | __throtl_enqueue_tg(sq, tg); | 369 | __throtl_enqueue_tg(tg, parent_sq); |
368 | } | 370 | } |
369 | 371 | ||
370 | static void __throtl_dequeue_tg(struct throtl_service_queue *sq, | 372 | static void __throtl_dequeue_tg(struct throtl_grp *tg, |
371 | struct throtl_grp *tg) | 373 | struct throtl_service_queue *parent_sq) |
372 | { | 374 | { |
373 | throtl_rb_erase(&tg->rb_node, sq); | 375 | throtl_rb_erase(&tg->rb_node, parent_sq); |
374 | tg->flags &= ~THROTL_TG_PENDING; | 376 | tg->flags &= ~THROTL_TG_PENDING; |
375 | } | 377 | } |
376 | 378 | ||
377 | static void throtl_dequeue_tg(struct throtl_service_queue *sq, | 379 | static void throtl_dequeue_tg(struct throtl_grp *tg, |
378 | struct throtl_grp *tg) | 380 | struct throtl_service_queue *parent_sq) |
379 | { | 381 | { |
380 | if (tg->flags & THROTL_TG_PENDING) | 382 | if (tg->flags & THROTL_TG_PENDING) |
381 | __throtl_dequeue_tg(sq, tg); | 383 | __throtl_dequeue_tg(tg, parent_sq); |
382 | } | 384 | } |
383 | 385 | ||
384 | /* Call with queue lock held */ | 386 | /* Call with queue lock held */ |
385 | static void throtl_schedule_delayed_work(struct throtl_data *td, | 387 | static void throtl_schedule_delayed_work(struct throtl_data *td, |
386 | unsigned long delay) | 388 | unsigned long delay) |
387 | { | 389 | { |
388 | struct delayed_work *dwork = &td->dispatch_work; | 390 | struct delayed_work *dwork = &td->dispatch_work; |
389 | 391 | ||
390 | mod_delayed_work(kthrotld_workqueue, dwork, delay); | 392 | mod_delayed_work(kthrotld_workqueue, dwork, delay); |
391 | throtl_log(td, "schedule work. delay=%lu jiffies=%lu", delay, jiffies); | 393 | throtl_log(td, "schedule work. delay=%lu jiffies=%lu", delay, jiffies); |
392 | } | 394 | } |
393 | 395 | ||
394 | static void throtl_schedule_next_dispatch(struct throtl_data *td) | 396 | static void throtl_schedule_next_dispatch(struct throtl_data *td) |
395 | { | 397 | { |
396 | struct throtl_service_queue *sq = &td->service_queue; | 398 | struct throtl_service_queue *sq = &td->service_queue; |
397 | 399 | ||
398 | /* any pending children left? */ | 400 | /* any pending children left? */ |
399 | if (!sq->nr_pending) | 401 | if (!sq->nr_pending) |
400 | return; | 402 | return; |
401 | 403 | ||
402 | update_min_dispatch_time(sq); | 404 | update_min_dispatch_time(sq); |
403 | 405 | ||
404 | if (time_before_eq(sq->first_pending_disptime, jiffies)) | 406 | if (time_before_eq(sq->first_pending_disptime, jiffies)) |
405 | throtl_schedule_delayed_work(td, 0); | 407 | throtl_schedule_delayed_work(td, 0); |
406 | else | 408 | else |
407 | throtl_schedule_delayed_work(td, sq->first_pending_disptime - jiffies); | 409 | throtl_schedule_delayed_work(td, sq->first_pending_disptime - jiffies); |
408 | } | 410 | } |
409 | 411 | ||
410 | static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw) | 412 | static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw) |
411 | { | 413 | { |
412 | tg->bytes_disp[rw] = 0; | 414 | tg->bytes_disp[rw] = 0; |
413 | tg->io_disp[rw] = 0; | 415 | tg->io_disp[rw] = 0; |
414 | tg->slice_start[rw] = jiffies; | 416 | tg->slice_start[rw] = jiffies; |
415 | tg->slice_end[rw] = jiffies + throtl_slice; | 417 | tg->slice_end[rw] = jiffies + throtl_slice; |
416 | throtl_log_tg(tg, "[%c] new slice start=%lu end=%lu jiffies=%lu", | 418 | throtl_log_tg(tg, "[%c] new slice start=%lu end=%lu jiffies=%lu", |
417 | rw == READ ? 'R' : 'W', tg->slice_start[rw], | 419 | rw == READ ? 'R' : 'W', tg->slice_start[rw], |
418 | tg->slice_end[rw], jiffies); | 420 | tg->slice_end[rw], jiffies); |
419 | } | 421 | } |
420 | 422 | ||
421 | static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw, | 423 | static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw, |
422 | unsigned long jiffy_end) | 424 | unsigned long jiffy_end) |
423 | { | 425 | { |
424 | tg->slice_end[rw] = roundup(jiffy_end, throtl_slice); | 426 | tg->slice_end[rw] = roundup(jiffy_end, throtl_slice); |
425 | } | 427 | } |
426 | 428 | ||
427 | static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw, | 429 | static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw, |
428 | unsigned long jiffy_end) | 430 | unsigned long jiffy_end) |
429 | { | 431 | { |
430 | tg->slice_end[rw] = roundup(jiffy_end, throtl_slice); | 432 | tg->slice_end[rw] = roundup(jiffy_end, throtl_slice); |
431 | throtl_log_tg(tg, "[%c] extend slice start=%lu end=%lu jiffies=%lu", | 433 | throtl_log_tg(tg, "[%c] extend slice start=%lu end=%lu jiffies=%lu", |
432 | rw == READ ? 'R' : 'W', tg->slice_start[rw], | 434 | rw == READ ? 'R' : 'W', tg->slice_start[rw], |
433 | tg->slice_end[rw], jiffies); | 435 | tg->slice_end[rw], jiffies); |
434 | } | 436 | } |
435 | 437 | ||
436 | /* Determine if previously allocated or extended slice is complete or not */ | 438 | /* Determine if previously allocated or extended slice is complete or not */ |
437 | static bool throtl_slice_used(struct throtl_grp *tg, bool rw) | 439 | static bool throtl_slice_used(struct throtl_grp *tg, bool rw) |
438 | { | 440 | { |
439 | if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw])) | 441 | if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw])) |
440 | return 0; | 442 | return 0; |
441 | 443 | ||
442 | return 1; | 444 | return 1; |
443 | } | 445 | } |
444 | 446 | ||
445 | /* Trim the used slices and adjust slice start accordingly */ | 447 | /* Trim the used slices and adjust slice start accordingly */ |
446 | static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw) | 448 | static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw) |
447 | { | 449 | { |
448 | unsigned long nr_slices, time_elapsed, io_trim; | 450 | unsigned long nr_slices, time_elapsed, io_trim; |
449 | u64 bytes_trim, tmp; | 451 | u64 bytes_trim, tmp; |
450 | 452 | ||
451 | BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw])); | 453 | BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw])); |
452 | 454 | ||
453 | /* | 455 | /* |
454 | * If bps are unlimited (-1), then time slice don't get | 456 | * If bps are unlimited (-1), then time slice don't get |
455 | * renewed. Don't try to trim the slice if slice is used. A new | 457 | * renewed. Don't try to trim the slice if slice is used. A new |
456 | * slice will start when appropriate. | 458 | * slice will start when appropriate. |
457 | */ | 459 | */ |
458 | if (throtl_slice_used(tg, rw)) | 460 | if (throtl_slice_used(tg, rw)) |
459 | return; | 461 | return; |
460 | 462 | ||
461 | /* | 463 | /* |
462 | * A bio has been dispatched. Also adjust slice_end. It might happen | 464 | * A bio has been dispatched. Also adjust slice_end. It might happen |
463 | * that initially cgroup limit was very low resulting in high | 465 | * that initially cgroup limit was very low resulting in high |
464 | * slice_end, but later limit was bumped up and bio was dispached | 466 | * slice_end, but later limit was bumped up and bio was dispached |
465 | * sooner, then we need to reduce slice_end. A high bogus slice_end | 467 | * sooner, then we need to reduce slice_end. A high bogus slice_end |
466 | * is bad because it does not allow new slice to start. | 468 | * is bad because it does not allow new slice to start. |
467 | */ | 469 | */ |
468 | 470 | ||
469 | throtl_set_slice_end(tg, rw, jiffies + throtl_slice); | 471 | throtl_set_slice_end(tg, rw, jiffies + throtl_slice); |
470 | 472 | ||
471 | time_elapsed = jiffies - tg->slice_start[rw]; | 473 | time_elapsed = jiffies - tg->slice_start[rw]; |
472 | 474 | ||
473 | nr_slices = time_elapsed / throtl_slice; | 475 | nr_slices = time_elapsed / throtl_slice; |
474 | 476 | ||
475 | if (!nr_slices) | 477 | if (!nr_slices) |
476 | return; | 478 | return; |
477 | tmp = tg->bps[rw] * throtl_slice * nr_slices; | 479 | tmp = tg->bps[rw] * throtl_slice * nr_slices; |
478 | do_div(tmp, HZ); | 480 | do_div(tmp, HZ); |
479 | bytes_trim = tmp; | 481 | bytes_trim = tmp; |
480 | 482 | ||
481 | io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ; | 483 | io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ; |
482 | 484 | ||
483 | if (!bytes_trim && !io_trim) | 485 | if (!bytes_trim && !io_trim) |
484 | return; | 486 | return; |
485 | 487 | ||
486 | if (tg->bytes_disp[rw] >= bytes_trim) | 488 | if (tg->bytes_disp[rw] >= bytes_trim) |
487 | tg->bytes_disp[rw] -= bytes_trim; | 489 | tg->bytes_disp[rw] -= bytes_trim; |
488 | else | 490 | else |
489 | tg->bytes_disp[rw] = 0; | 491 | tg->bytes_disp[rw] = 0; |
490 | 492 | ||
491 | if (tg->io_disp[rw] >= io_trim) | 493 | if (tg->io_disp[rw] >= io_trim) |
492 | tg->io_disp[rw] -= io_trim; | 494 | tg->io_disp[rw] -= io_trim; |
493 | else | 495 | else |
494 | tg->io_disp[rw] = 0; | 496 | tg->io_disp[rw] = 0; |
495 | 497 | ||
496 | tg->slice_start[rw] += nr_slices * throtl_slice; | 498 | tg->slice_start[rw] += nr_slices * throtl_slice; |
497 | 499 | ||
498 | throtl_log_tg(tg, "[%c] trim slice nr=%lu bytes=%llu io=%lu" | 500 | throtl_log_tg(tg, "[%c] trim slice nr=%lu bytes=%llu io=%lu" |
499 | " start=%lu end=%lu jiffies=%lu", | 501 | " start=%lu end=%lu jiffies=%lu", |
500 | rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim, | 502 | rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim, |
501 | tg->slice_start[rw], tg->slice_end[rw], jiffies); | 503 | tg->slice_start[rw], tg->slice_end[rw], jiffies); |
502 | } | 504 | } |
503 | 505 | ||
504 | static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio, | 506 | static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio, |
505 | unsigned long *wait) | 507 | unsigned long *wait) |
506 | { | 508 | { |
507 | bool rw = bio_data_dir(bio); | 509 | bool rw = bio_data_dir(bio); |
508 | unsigned int io_allowed; | 510 | unsigned int io_allowed; |
509 | unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; | 511 | unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; |
510 | u64 tmp; | 512 | u64 tmp; |
511 | 513 | ||
512 | jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; | 514 | jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; |
513 | 515 | ||
514 | /* Slice has just started. Consider one slice interval */ | 516 | /* Slice has just started. Consider one slice interval */ |
515 | if (!jiffy_elapsed) | 517 | if (!jiffy_elapsed) |
516 | jiffy_elapsed_rnd = throtl_slice; | 518 | jiffy_elapsed_rnd = throtl_slice; |
517 | 519 | ||
518 | jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice); | 520 | jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice); |
519 | 521 | ||
520 | /* | 522 | /* |
521 | * jiffy_elapsed_rnd should not be a big value as minimum iops can be | 523 | * jiffy_elapsed_rnd should not be a big value as minimum iops can be |
522 | * 1 then at max jiffy elapsed should be equivalent of 1 second as we | 524 | * 1 then at max jiffy elapsed should be equivalent of 1 second as we |
523 | * will allow dispatch after 1 second and after that slice should | 525 | * will allow dispatch after 1 second and after that slice should |
524 | * have been trimmed. | 526 | * have been trimmed. |
525 | */ | 527 | */ |
526 | 528 | ||
527 | tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd; | 529 | tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd; |
528 | do_div(tmp, HZ); | 530 | do_div(tmp, HZ); |
529 | 531 | ||
530 | if (tmp > UINT_MAX) | 532 | if (tmp > UINT_MAX) |
531 | io_allowed = UINT_MAX; | 533 | io_allowed = UINT_MAX; |
532 | else | 534 | else |
533 | io_allowed = tmp; | 535 | io_allowed = tmp; |
534 | 536 | ||
535 | if (tg->io_disp[rw] + 1 <= io_allowed) { | 537 | if (tg->io_disp[rw] + 1 <= io_allowed) { |
536 | if (wait) | 538 | if (wait) |
537 | *wait = 0; | 539 | *wait = 0; |
538 | return 1; | 540 | return 1; |
539 | } | 541 | } |
540 | 542 | ||
541 | /* Calc approx time to dispatch */ | 543 | /* Calc approx time to dispatch */ |
542 | jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1; | 544 | jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1; |
543 | 545 | ||
544 | if (jiffy_wait > jiffy_elapsed) | 546 | if (jiffy_wait > jiffy_elapsed) |
545 | jiffy_wait = jiffy_wait - jiffy_elapsed; | 547 | jiffy_wait = jiffy_wait - jiffy_elapsed; |
546 | else | 548 | else |
547 | jiffy_wait = 1; | 549 | jiffy_wait = 1; |
548 | 550 | ||
549 | if (wait) | 551 | if (wait) |
550 | *wait = jiffy_wait; | 552 | *wait = jiffy_wait; |
551 | return 0; | 553 | return 0; |
552 | } | 554 | } |
553 | 555 | ||
554 | static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio, | 556 | static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio, |
555 | unsigned long *wait) | 557 | unsigned long *wait) |
556 | { | 558 | { |
557 | bool rw = bio_data_dir(bio); | 559 | bool rw = bio_data_dir(bio); |
558 | u64 bytes_allowed, extra_bytes, tmp; | 560 | u64 bytes_allowed, extra_bytes, tmp; |
559 | unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; | 561 | unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; |
560 | 562 | ||
561 | jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; | 563 | jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; |
562 | 564 | ||
563 | /* Slice has just started. Consider one slice interval */ | 565 | /* Slice has just started. Consider one slice interval */ |
564 | if (!jiffy_elapsed) | 566 | if (!jiffy_elapsed) |
565 | jiffy_elapsed_rnd = throtl_slice; | 567 | jiffy_elapsed_rnd = throtl_slice; |
566 | 568 | ||
567 | jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice); | 569 | jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice); |
568 | 570 | ||
569 | tmp = tg->bps[rw] * jiffy_elapsed_rnd; | 571 | tmp = tg->bps[rw] * jiffy_elapsed_rnd; |
570 | do_div(tmp, HZ); | 572 | do_div(tmp, HZ); |
571 | bytes_allowed = tmp; | 573 | bytes_allowed = tmp; |
572 | 574 | ||
573 | if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) { | 575 | if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) { |
574 | if (wait) | 576 | if (wait) |
575 | *wait = 0; | 577 | *wait = 0; |
576 | return 1; | 578 | return 1; |
577 | } | 579 | } |
578 | 580 | ||
579 | /* Calc approx time to dispatch */ | 581 | /* Calc approx time to dispatch */ |
580 | extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed; | 582 | extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed; |
581 | jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]); | 583 | jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]); |
582 | 584 | ||
583 | if (!jiffy_wait) | 585 | if (!jiffy_wait) |
584 | jiffy_wait = 1; | 586 | jiffy_wait = 1; |
585 | 587 | ||
586 | /* | 588 | /* |
587 | * This wait time is without taking into consideration the rounding | 589 | * This wait time is without taking into consideration the rounding |
588 | * up we did. Add that time also. | 590 | * up we did. Add that time also. |
589 | */ | 591 | */ |
590 | jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed); | 592 | jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed); |
591 | if (wait) | 593 | if (wait) |
592 | *wait = jiffy_wait; | 594 | *wait = jiffy_wait; |
593 | return 0; | 595 | return 0; |
594 | } | 596 | } |
595 | 597 | ||
596 | static bool tg_no_rule_group(struct throtl_grp *tg, bool rw) { | 598 | static bool tg_no_rule_group(struct throtl_grp *tg, bool rw) { |
597 | if (tg->bps[rw] == -1 && tg->iops[rw] == -1) | 599 | if (tg->bps[rw] == -1 && tg->iops[rw] == -1) |
598 | return 1; | 600 | return 1; |
599 | return 0; | 601 | return 0; |
600 | } | 602 | } |
601 | 603 | ||
602 | /* | 604 | /* |
603 | * Returns whether one can dispatch a bio or not. Also returns approx number | 605 | * Returns whether one can dispatch a bio or not. Also returns approx number |
604 | * of jiffies to wait before this bio is with-in IO rate and can be dispatched | 606 | * of jiffies to wait before this bio is with-in IO rate and can be dispatched |
605 | */ | 607 | */ |
606 | static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio, | 608 | static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio, |
607 | unsigned long *wait) | 609 | unsigned long *wait) |
608 | { | 610 | { |
609 | bool rw = bio_data_dir(bio); | 611 | bool rw = bio_data_dir(bio); |
610 | unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0; | 612 | unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0; |
611 | 613 | ||
612 | /* | 614 | /* |
613 | * Currently whole state machine of group depends on first bio | 615 | * Currently whole state machine of group depends on first bio |
614 | * queued in the group bio list. So one should not be calling | 616 | * queued in the group bio list. So one should not be calling |
615 | * this function with a different bio if there are other bios | 617 | * this function with a different bio if there are other bios |
616 | * queued. | 618 | * queued. |
617 | */ | 619 | */ |
618 | BUG_ON(tg->nr_queued[rw] && bio != bio_list_peek(&tg->bio_lists[rw])); | 620 | BUG_ON(tg->nr_queued[rw] && bio != bio_list_peek(&tg->bio_lists[rw])); |
619 | 621 | ||
620 | /* If tg->bps = -1, then BW is unlimited */ | 622 | /* If tg->bps = -1, then BW is unlimited */ |
621 | if (tg->bps[rw] == -1 && tg->iops[rw] == -1) { | 623 | if (tg->bps[rw] == -1 && tg->iops[rw] == -1) { |
622 | if (wait) | 624 | if (wait) |
623 | *wait = 0; | 625 | *wait = 0; |
624 | return 1; | 626 | return 1; |
625 | } | 627 | } |
626 | 628 | ||
627 | /* | 629 | /* |
628 | * If previous slice expired, start a new one otherwise renew/extend | 630 | * If previous slice expired, start a new one otherwise renew/extend |
629 | * existing slice to make sure it is at least throtl_slice interval | 631 | * existing slice to make sure it is at least throtl_slice interval |
630 | * long since now. | 632 | * long since now. |
631 | */ | 633 | */ |
632 | if (throtl_slice_used(tg, rw)) | 634 | if (throtl_slice_used(tg, rw)) |
633 | throtl_start_new_slice(tg, rw); | 635 | throtl_start_new_slice(tg, rw); |
634 | else { | 636 | else { |
635 | if (time_before(tg->slice_end[rw], jiffies + throtl_slice)) | 637 | if (time_before(tg->slice_end[rw], jiffies + throtl_slice)) |
636 | throtl_extend_slice(tg, rw, jiffies + throtl_slice); | 638 | throtl_extend_slice(tg, rw, jiffies + throtl_slice); |
637 | } | 639 | } |
638 | 640 | ||
639 | if (tg_with_in_bps_limit(tg, bio, &bps_wait) && | 641 | if (tg_with_in_bps_limit(tg, bio, &bps_wait) && |
640 | tg_with_in_iops_limit(tg, bio, &iops_wait)) { | 642 | tg_with_in_iops_limit(tg, bio, &iops_wait)) { |
641 | if (wait) | 643 | if (wait) |
642 | *wait = 0; | 644 | *wait = 0; |
643 | return 1; | 645 | return 1; |
644 | } | 646 | } |
645 | 647 | ||
646 | max_wait = max(bps_wait, iops_wait); | 648 | max_wait = max(bps_wait, iops_wait); |
647 | 649 | ||
648 | if (wait) | 650 | if (wait) |
649 | *wait = max_wait; | 651 | *wait = max_wait; |
650 | 652 | ||
651 | if (time_before(tg->slice_end[rw], jiffies + max_wait)) | 653 | if (time_before(tg->slice_end[rw], jiffies + max_wait)) |
652 | throtl_extend_slice(tg, rw, jiffies + max_wait); | 654 | throtl_extend_slice(tg, rw, jiffies + max_wait); |
653 | 655 | ||
654 | return 0; | 656 | return 0; |
655 | } | 657 | } |
656 | 658 | ||
657 | static void throtl_update_dispatch_stats(struct blkcg_gq *blkg, u64 bytes, | 659 | static void throtl_update_dispatch_stats(struct blkcg_gq *blkg, u64 bytes, |
658 | int rw) | 660 | int rw) |
659 | { | 661 | { |
660 | struct throtl_grp *tg = blkg_to_tg(blkg); | 662 | struct throtl_grp *tg = blkg_to_tg(blkg); |
661 | struct tg_stats_cpu *stats_cpu; | 663 | struct tg_stats_cpu *stats_cpu; |
662 | unsigned long flags; | 664 | unsigned long flags; |
663 | 665 | ||
664 | /* If per cpu stats are not allocated yet, don't do any accounting. */ | 666 | /* If per cpu stats are not allocated yet, don't do any accounting. */ |
665 | if (tg->stats_cpu == NULL) | 667 | if (tg->stats_cpu == NULL) |
666 | return; | 668 | return; |
667 | 669 | ||
668 | /* | 670 | /* |
669 | * Disabling interrupts to provide mutual exclusion between two | 671 | * Disabling interrupts to provide mutual exclusion between two |
670 | * writes on same cpu. It probably is not needed for 64bit. Not | 672 | * writes on same cpu. It probably is not needed for 64bit. Not |
671 | * optimizing that case yet. | 673 | * optimizing that case yet. |
672 | */ | 674 | */ |
673 | local_irq_save(flags); | 675 | local_irq_save(flags); |
674 | 676 | ||
675 | stats_cpu = this_cpu_ptr(tg->stats_cpu); | 677 | stats_cpu = this_cpu_ptr(tg->stats_cpu); |
676 | 678 | ||
677 | blkg_rwstat_add(&stats_cpu->serviced, rw, 1); | 679 | blkg_rwstat_add(&stats_cpu->serviced, rw, 1); |
678 | blkg_rwstat_add(&stats_cpu->service_bytes, rw, bytes); | 680 | blkg_rwstat_add(&stats_cpu->service_bytes, rw, bytes); |
679 | 681 | ||
680 | local_irq_restore(flags); | 682 | local_irq_restore(flags); |
681 | } | 683 | } |
682 | 684 | ||
683 | static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio) | 685 | static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio) |
684 | { | 686 | { |
685 | bool rw = bio_data_dir(bio); | 687 | bool rw = bio_data_dir(bio); |
686 | 688 | ||
687 | /* Charge the bio to the group */ | 689 | /* Charge the bio to the group */ |
688 | tg->bytes_disp[rw] += bio->bi_size; | 690 | tg->bytes_disp[rw] += bio->bi_size; |
689 | tg->io_disp[rw]++; | 691 | tg->io_disp[rw]++; |
690 | 692 | ||
691 | throtl_update_dispatch_stats(tg_to_blkg(tg), bio->bi_size, bio->bi_rw); | 693 | throtl_update_dispatch_stats(tg_to_blkg(tg), bio->bi_size, bio->bi_rw); |
692 | } | 694 | } |
693 | 695 | ||
694 | static void throtl_add_bio_tg(struct throtl_service_queue *sq, | 696 | static void throtl_add_bio_tg(struct bio *bio, struct throtl_grp *tg, |
695 | struct throtl_grp *tg, struct bio *bio) | 697 | struct throtl_service_queue *parent_sq) |
696 | { | 698 | { |
697 | bool rw = bio_data_dir(bio); | 699 | bool rw = bio_data_dir(bio); |
698 | 700 | ||
699 | bio_list_add(&tg->bio_lists[rw], bio); | 701 | bio_list_add(&tg->bio_lists[rw], bio); |
700 | /* Take a bio reference on tg */ | 702 | /* Take a bio reference on tg */ |
701 | blkg_get(tg_to_blkg(tg)); | 703 | blkg_get(tg_to_blkg(tg)); |
702 | tg->nr_queued[rw]++; | 704 | tg->nr_queued[rw]++; |
703 | tg->td->nr_queued[rw]++; | 705 | tg->td->nr_queued[rw]++; |
704 | throtl_enqueue_tg(sq, tg); | 706 | throtl_enqueue_tg(tg, parent_sq); |
705 | } | 707 | } |
706 | 708 | ||
707 | static void tg_update_disptime(struct throtl_service_queue *sq, | 709 | static void tg_update_disptime(struct throtl_grp *tg, |
708 | struct throtl_grp *tg) | 710 | struct throtl_service_queue *parent_sq) |
709 | { | 711 | { |
710 | unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime; | 712 | unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime; |
711 | struct bio *bio; | 713 | struct bio *bio; |
712 | 714 | ||
713 | if ((bio = bio_list_peek(&tg->bio_lists[READ]))) | 715 | if ((bio = bio_list_peek(&tg->bio_lists[READ]))) |
714 | tg_may_dispatch(tg, bio, &read_wait); | 716 | tg_may_dispatch(tg, bio, &read_wait); |
715 | 717 | ||
716 | if ((bio = bio_list_peek(&tg->bio_lists[WRITE]))) | 718 | if ((bio = bio_list_peek(&tg->bio_lists[WRITE]))) |
717 | tg_may_dispatch(tg, bio, &write_wait); | 719 | tg_may_dispatch(tg, bio, &write_wait); |
718 | 720 | ||
719 | min_wait = min(read_wait, write_wait); | 721 | min_wait = min(read_wait, write_wait); |
720 | disptime = jiffies + min_wait; | 722 | disptime = jiffies + min_wait; |
721 | 723 | ||
722 | /* Update dispatch time */ | 724 | /* Update dispatch time */ |
723 | throtl_dequeue_tg(sq, tg); | 725 | throtl_dequeue_tg(tg, parent_sq); |
724 | tg->disptime = disptime; | 726 | tg->disptime = disptime; |
725 | throtl_enqueue_tg(sq, tg); | 727 | throtl_enqueue_tg(tg, parent_sq); |
726 | } | 728 | } |
727 | 729 | ||
728 | static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw, | 730 | static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw, |
729 | struct bio_list *bl) | 731 | struct bio_list *bl) |
730 | { | 732 | { |
731 | struct bio *bio; | 733 | struct bio *bio; |
732 | 734 | ||
733 | bio = bio_list_pop(&tg->bio_lists[rw]); | 735 | bio = bio_list_pop(&tg->bio_lists[rw]); |
734 | tg->nr_queued[rw]--; | 736 | tg->nr_queued[rw]--; |
735 | /* Drop bio reference on blkg */ | 737 | /* Drop bio reference on blkg */ |
736 | blkg_put(tg_to_blkg(tg)); | 738 | blkg_put(tg_to_blkg(tg)); |
737 | 739 | ||
738 | BUG_ON(tg->td->nr_queued[rw] <= 0); | 740 | BUG_ON(tg->td->nr_queued[rw] <= 0); |
739 | tg->td->nr_queued[rw]--; | 741 | tg->td->nr_queued[rw]--; |
740 | 742 | ||
741 | throtl_charge_bio(tg, bio); | 743 | throtl_charge_bio(tg, bio); |
742 | bio_list_add(bl, bio); | 744 | bio_list_add(bl, bio); |
743 | bio->bi_rw |= REQ_THROTTLED; | 745 | bio->bi_rw |= REQ_THROTTLED; |
744 | 746 | ||
745 | throtl_trim_slice(tg, rw); | 747 | throtl_trim_slice(tg, rw); |
746 | } | 748 | } |
747 | 749 | ||
748 | static int throtl_dispatch_tg(struct throtl_grp *tg, struct bio_list *bl) | 750 | static int throtl_dispatch_tg(struct throtl_grp *tg, struct bio_list *bl) |
749 | { | 751 | { |
750 | unsigned int nr_reads = 0, nr_writes = 0; | 752 | unsigned int nr_reads = 0, nr_writes = 0; |
751 | unsigned int max_nr_reads = throtl_grp_quantum*3/4; | 753 | unsigned int max_nr_reads = throtl_grp_quantum*3/4; |
752 | unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads; | 754 | unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads; |
753 | struct bio *bio; | 755 | struct bio *bio; |
754 | 756 | ||
755 | /* Try to dispatch 75% READS and 25% WRITES */ | 757 | /* Try to dispatch 75% READS and 25% WRITES */ |
756 | 758 | ||
757 | while ((bio = bio_list_peek(&tg->bio_lists[READ])) && | 759 | while ((bio = bio_list_peek(&tg->bio_lists[READ])) && |
758 | tg_may_dispatch(tg, bio, NULL)) { | 760 | tg_may_dispatch(tg, bio, NULL)) { |
759 | 761 | ||
760 | tg_dispatch_one_bio(tg, bio_data_dir(bio), bl); | 762 | tg_dispatch_one_bio(tg, bio_data_dir(bio), bl); |
761 | nr_reads++; | 763 | nr_reads++; |
762 | 764 | ||
763 | if (nr_reads >= max_nr_reads) | 765 | if (nr_reads >= max_nr_reads) |
764 | break; | 766 | break; |
765 | } | 767 | } |
766 | 768 | ||
767 | while ((bio = bio_list_peek(&tg->bio_lists[WRITE])) && | 769 | while ((bio = bio_list_peek(&tg->bio_lists[WRITE])) && |
768 | tg_may_dispatch(tg, bio, NULL)) { | 770 | tg_may_dispatch(tg, bio, NULL)) { |
769 | 771 | ||
770 | tg_dispatch_one_bio(tg, bio_data_dir(bio), bl); | 772 | tg_dispatch_one_bio(tg, bio_data_dir(bio), bl); |
771 | nr_writes++; | 773 | nr_writes++; |
772 | 774 | ||
773 | if (nr_writes >= max_nr_writes) | 775 | if (nr_writes >= max_nr_writes) |
774 | break; | 776 | break; |
775 | } | 777 | } |
776 | 778 | ||
777 | return nr_reads + nr_writes; | 779 | return nr_reads + nr_writes; |
778 | } | 780 | } |
779 | 781 | ||
780 | static int throtl_select_dispatch(struct throtl_service_queue *sq, | 782 | static int throtl_select_dispatch(struct throtl_service_queue *parent_sq, |
781 | struct bio_list *bl) | 783 | struct bio_list *bl) |
782 | { | 784 | { |
783 | unsigned int nr_disp = 0; | 785 | unsigned int nr_disp = 0; |
784 | struct throtl_grp *tg; | 786 | struct throtl_grp *tg; |
785 | 787 | ||
786 | while (1) { | 788 | while (1) { |
787 | tg = throtl_rb_first(sq); | 789 | tg = throtl_rb_first(parent_sq); |
788 | 790 | ||
789 | if (!tg) | 791 | if (!tg) |
790 | break; | 792 | break; |
791 | 793 | ||
792 | if (time_before(jiffies, tg->disptime)) | 794 | if (time_before(jiffies, tg->disptime)) |
793 | break; | 795 | break; |
794 | 796 | ||
795 | throtl_dequeue_tg(sq, tg); | 797 | throtl_dequeue_tg(tg, parent_sq); |
796 | 798 | ||
797 | nr_disp += throtl_dispatch_tg(tg, bl); | 799 | nr_disp += throtl_dispatch_tg(tg, bl); |
798 | 800 | ||
799 | if (tg->nr_queued[0] || tg->nr_queued[1]) | 801 | if (tg->nr_queued[0] || tg->nr_queued[1]) |
800 | tg_update_disptime(sq, tg); | 802 | tg_update_disptime(tg, parent_sq); |
801 | 803 | ||
802 | if (nr_disp >= throtl_quantum) | 804 | if (nr_disp >= throtl_quantum) |
803 | break; | 805 | break; |
804 | } | 806 | } |
805 | 807 | ||
806 | return nr_disp; | 808 | return nr_disp; |
807 | } | 809 | } |
808 | 810 | ||
809 | /* work function to dispatch throttled bios */ | 811 | /* work function to dispatch throttled bios */ |
810 | void blk_throtl_dispatch_work_fn(struct work_struct *work) | 812 | void blk_throtl_dispatch_work_fn(struct work_struct *work) |
811 | { | 813 | { |
812 | struct throtl_data *td = container_of(to_delayed_work(work), | 814 | struct throtl_data *td = container_of(to_delayed_work(work), |
813 | struct throtl_data, dispatch_work); | 815 | struct throtl_data, dispatch_work); |
814 | struct request_queue *q = td->queue; | 816 | struct request_queue *q = td->queue; |
815 | unsigned int nr_disp = 0; | 817 | unsigned int nr_disp = 0; |
816 | struct bio_list bio_list_on_stack; | 818 | struct bio_list bio_list_on_stack; |
817 | struct bio *bio; | 819 | struct bio *bio; |
818 | struct blk_plug plug; | 820 | struct blk_plug plug; |
819 | 821 | ||
820 | spin_lock_irq(q->queue_lock); | 822 | spin_lock_irq(q->queue_lock); |
821 | 823 | ||
822 | bio_list_init(&bio_list_on_stack); | 824 | bio_list_init(&bio_list_on_stack); |
823 | 825 | ||
824 | throtl_log(td, "dispatch nr_queued=%u read=%u write=%u", | 826 | throtl_log(td, "dispatch nr_queued=%u read=%u write=%u", |
825 | td->nr_queued[READ] + td->nr_queued[WRITE], | 827 | td->nr_queued[READ] + td->nr_queued[WRITE], |
826 | td->nr_queued[READ], td->nr_queued[WRITE]); | 828 | td->nr_queued[READ], td->nr_queued[WRITE]); |
827 | 829 | ||
828 | nr_disp = throtl_select_dispatch(&td->service_queue, &bio_list_on_stack); | 830 | nr_disp = throtl_select_dispatch(&td->service_queue, &bio_list_on_stack); |
829 | 831 | ||
830 | if (nr_disp) | 832 | if (nr_disp) |
831 | throtl_log(td, "bios disp=%u", nr_disp); | 833 | throtl_log(td, "bios disp=%u", nr_disp); |
832 | 834 | ||
833 | throtl_schedule_next_dispatch(td); | 835 | throtl_schedule_next_dispatch(td); |
834 | 836 | ||
835 | spin_unlock_irq(q->queue_lock); | 837 | spin_unlock_irq(q->queue_lock); |
836 | 838 | ||
837 | /* | 839 | /* |
838 | * If we dispatched some requests, unplug the queue to make sure | 840 | * If we dispatched some requests, unplug the queue to make sure |
839 | * immediate dispatch | 841 | * immediate dispatch |
840 | */ | 842 | */ |
841 | if (nr_disp) { | 843 | if (nr_disp) { |
842 | blk_start_plug(&plug); | 844 | blk_start_plug(&plug); |
843 | while((bio = bio_list_pop(&bio_list_on_stack))) | 845 | while((bio = bio_list_pop(&bio_list_on_stack))) |
844 | generic_make_request(bio); | 846 | generic_make_request(bio); |
845 | blk_finish_plug(&plug); | 847 | blk_finish_plug(&plug); |
846 | } | 848 | } |
847 | } | 849 | } |
848 | 850 | ||
849 | static u64 tg_prfill_cpu_rwstat(struct seq_file *sf, | 851 | static u64 tg_prfill_cpu_rwstat(struct seq_file *sf, |
850 | struct blkg_policy_data *pd, int off) | 852 | struct blkg_policy_data *pd, int off) |
851 | { | 853 | { |
852 | struct throtl_grp *tg = pd_to_tg(pd); | 854 | struct throtl_grp *tg = pd_to_tg(pd); |
853 | struct blkg_rwstat rwstat = { }, tmp; | 855 | struct blkg_rwstat rwstat = { }, tmp; |
854 | int i, cpu; | 856 | int i, cpu; |
855 | 857 | ||
856 | for_each_possible_cpu(cpu) { | 858 | for_each_possible_cpu(cpu) { |
857 | struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu); | 859 | struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu); |
858 | 860 | ||
859 | tmp = blkg_rwstat_read((void *)sc + off); | 861 | tmp = blkg_rwstat_read((void *)sc + off); |
860 | for (i = 0; i < BLKG_RWSTAT_NR; i++) | 862 | for (i = 0; i < BLKG_RWSTAT_NR; i++) |
861 | rwstat.cnt[i] += tmp.cnt[i]; | 863 | rwstat.cnt[i] += tmp.cnt[i]; |
862 | } | 864 | } |
863 | 865 | ||
864 | return __blkg_prfill_rwstat(sf, pd, &rwstat); | 866 | return __blkg_prfill_rwstat(sf, pd, &rwstat); |
865 | } | 867 | } |
866 | 868 | ||
867 | static int tg_print_cpu_rwstat(struct cgroup *cgrp, struct cftype *cft, | 869 | static int tg_print_cpu_rwstat(struct cgroup *cgrp, struct cftype *cft, |
868 | struct seq_file *sf) | 870 | struct seq_file *sf) |
869 | { | 871 | { |
870 | struct blkcg *blkcg = cgroup_to_blkcg(cgrp); | 872 | struct blkcg *blkcg = cgroup_to_blkcg(cgrp); |
871 | 873 | ||
872 | blkcg_print_blkgs(sf, blkcg, tg_prfill_cpu_rwstat, &blkcg_policy_throtl, | 874 | blkcg_print_blkgs(sf, blkcg, tg_prfill_cpu_rwstat, &blkcg_policy_throtl, |
873 | cft->private, true); | 875 | cft->private, true); |
874 | return 0; | 876 | return 0; |
875 | } | 877 | } |
876 | 878 | ||
877 | static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd, | 879 | static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd, |
878 | int off) | 880 | int off) |
879 | { | 881 | { |
880 | struct throtl_grp *tg = pd_to_tg(pd); | 882 | struct throtl_grp *tg = pd_to_tg(pd); |
881 | u64 v = *(u64 *)((void *)tg + off); | 883 | u64 v = *(u64 *)((void *)tg + off); |
882 | 884 | ||
883 | if (v == -1) | 885 | if (v == -1) |
884 | return 0; | 886 | return 0; |
885 | return __blkg_prfill_u64(sf, pd, v); | 887 | return __blkg_prfill_u64(sf, pd, v); |
886 | } | 888 | } |
887 | 889 | ||
888 | static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd, | 890 | static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd, |
889 | int off) | 891 | int off) |
890 | { | 892 | { |
891 | struct throtl_grp *tg = pd_to_tg(pd); | 893 | struct throtl_grp *tg = pd_to_tg(pd); |
892 | unsigned int v = *(unsigned int *)((void *)tg + off); | 894 | unsigned int v = *(unsigned int *)((void *)tg + off); |
893 | 895 | ||
894 | if (v == -1) | 896 | if (v == -1) |
895 | return 0; | 897 | return 0; |
896 | return __blkg_prfill_u64(sf, pd, v); | 898 | return __blkg_prfill_u64(sf, pd, v); |
897 | } | 899 | } |
898 | 900 | ||
899 | static int tg_print_conf_u64(struct cgroup *cgrp, struct cftype *cft, | 901 | static int tg_print_conf_u64(struct cgroup *cgrp, struct cftype *cft, |
900 | struct seq_file *sf) | 902 | struct seq_file *sf) |
901 | { | 903 | { |
902 | blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp), tg_prfill_conf_u64, | 904 | blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp), tg_prfill_conf_u64, |
903 | &blkcg_policy_throtl, cft->private, false); | 905 | &blkcg_policy_throtl, cft->private, false); |
904 | return 0; | 906 | return 0; |
905 | } | 907 | } |
906 | 908 | ||
907 | static int tg_print_conf_uint(struct cgroup *cgrp, struct cftype *cft, | 909 | static int tg_print_conf_uint(struct cgroup *cgrp, struct cftype *cft, |
908 | struct seq_file *sf) | 910 | struct seq_file *sf) |
909 | { | 911 | { |
910 | blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp), tg_prfill_conf_uint, | 912 | blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp), tg_prfill_conf_uint, |
911 | &blkcg_policy_throtl, cft->private, false); | 913 | &blkcg_policy_throtl, cft->private, false); |
912 | return 0; | 914 | return 0; |
913 | } | 915 | } |
914 | 916 | ||
915 | static int tg_set_conf(struct cgroup *cgrp, struct cftype *cft, const char *buf, | 917 | static int tg_set_conf(struct cgroup *cgrp, struct cftype *cft, const char *buf, |
916 | bool is_u64) | 918 | bool is_u64) |
917 | { | 919 | { |
918 | struct blkcg *blkcg = cgroup_to_blkcg(cgrp); | 920 | struct blkcg *blkcg = cgroup_to_blkcg(cgrp); |
919 | struct blkg_conf_ctx ctx; | 921 | struct blkg_conf_ctx ctx; |
920 | struct throtl_grp *tg; | 922 | struct throtl_grp *tg; |
921 | struct throtl_data *td; | 923 | struct throtl_data *td; |
922 | int ret; | 924 | int ret; |
923 | 925 | ||
924 | ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx); | 926 | ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx); |
925 | if (ret) | 927 | if (ret) |
926 | return ret; | 928 | return ret; |
927 | 929 | ||
928 | tg = blkg_to_tg(ctx.blkg); | 930 | tg = blkg_to_tg(ctx.blkg); |
929 | td = ctx.blkg->q->td; | 931 | td = ctx.blkg->q->td; |
930 | 932 | ||
931 | if (!ctx.v) | 933 | if (!ctx.v) |
932 | ctx.v = -1; | 934 | ctx.v = -1; |
933 | 935 | ||
934 | if (is_u64) | 936 | if (is_u64) |
935 | *(u64 *)((void *)tg + cft->private) = ctx.v; | 937 | *(u64 *)((void *)tg + cft->private) = ctx.v; |
936 | else | 938 | else |
937 | *(unsigned int *)((void *)tg + cft->private) = ctx.v; | 939 | *(unsigned int *)((void *)tg + cft->private) = ctx.v; |
938 | 940 | ||
939 | throtl_log_tg(tg, "limit change rbps=%llu wbps=%llu riops=%u wiops=%u", | 941 | throtl_log_tg(tg, "limit change rbps=%llu wbps=%llu riops=%u wiops=%u", |
940 | tg->bps[READ], tg->bps[WRITE], | 942 | tg->bps[READ], tg->bps[WRITE], |
941 | tg->iops[READ], tg->iops[WRITE]); | 943 | tg->iops[READ], tg->iops[WRITE]); |
942 | 944 | ||
943 | /* | 945 | /* |
944 | * We're already holding queue_lock and know @tg is valid. Let's | 946 | * We're already holding queue_lock and know @tg is valid. Let's |
945 | * apply the new config directly. | 947 | * apply the new config directly. |
946 | * | 948 | * |
947 | * Restart the slices for both READ and WRITES. It might happen | 949 | * Restart the slices for both READ and WRITES. It might happen |
948 | * that a group's limit are dropped suddenly and we don't want to | 950 | * that a group's limit are dropped suddenly and we don't want to |
949 | * account recently dispatched IO with new low rate. | 951 | * account recently dispatched IO with new low rate. |
950 | */ | 952 | */ |
951 | throtl_start_new_slice(tg, 0); | 953 | throtl_start_new_slice(tg, 0); |
952 | throtl_start_new_slice(tg, 1); | 954 | throtl_start_new_slice(tg, 1); |
953 | 955 | ||
954 | if (tg->flags & THROTL_TG_PENDING) { | 956 | if (tg->flags & THROTL_TG_PENDING) { |
955 | tg_update_disptime(&td->service_queue, tg); | 957 | tg_update_disptime(tg, &td->service_queue); |
956 | throtl_schedule_next_dispatch(td); | 958 | throtl_schedule_next_dispatch(td); |
957 | } | 959 | } |
958 | 960 | ||
959 | blkg_conf_finish(&ctx); | 961 | blkg_conf_finish(&ctx); |
960 | return 0; | 962 | return 0; |
961 | } | 963 | } |
962 | 964 | ||
963 | static int tg_set_conf_u64(struct cgroup *cgrp, struct cftype *cft, | 965 | static int tg_set_conf_u64(struct cgroup *cgrp, struct cftype *cft, |
964 | const char *buf) | 966 | const char *buf) |
965 | { | 967 | { |
966 | return tg_set_conf(cgrp, cft, buf, true); | 968 | return tg_set_conf(cgrp, cft, buf, true); |
967 | } | 969 | } |
968 | 970 | ||
969 | static int tg_set_conf_uint(struct cgroup *cgrp, struct cftype *cft, | 971 | static int tg_set_conf_uint(struct cgroup *cgrp, struct cftype *cft, |
970 | const char *buf) | 972 | const char *buf) |
971 | { | 973 | { |
972 | return tg_set_conf(cgrp, cft, buf, false); | 974 | return tg_set_conf(cgrp, cft, buf, false); |
973 | } | 975 | } |
974 | 976 | ||
975 | static struct cftype throtl_files[] = { | 977 | static struct cftype throtl_files[] = { |
976 | { | 978 | { |
977 | .name = "throttle.read_bps_device", | 979 | .name = "throttle.read_bps_device", |
978 | .private = offsetof(struct throtl_grp, bps[READ]), | 980 | .private = offsetof(struct throtl_grp, bps[READ]), |
979 | .read_seq_string = tg_print_conf_u64, | 981 | .read_seq_string = tg_print_conf_u64, |
980 | .write_string = tg_set_conf_u64, | 982 | .write_string = tg_set_conf_u64, |
981 | .max_write_len = 256, | 983 | .max_write_len = 256, |
982 | }, | 984 | }, |
983 | { | 985 | { |
984 | .name = "throttle.write_bps_device", | 986 | .name = "throttle.write_bps_device", |
985 | .private = offsetof(struct throtl_grp, bps[WRITE]), | 987 | .private = offsetof(struct throtl_grp, bps[WRITE]), |
986 | .read_seq_string = tg_print_conf_u64, | 988 | .read_seq_string = tg_print_conf_u64, |
987 | .write_string = tg_set_conf_u64, | 989 | .write_string = tg_set_conf_u64, |
988 | .max_write_len = 256, | 990 | .max_write_len = 256, |
989 | }, | 991 | }, |
990 | { | 992 | { |
991 | .name = "throttle.read_iops_device", | 993 | .name = "throttle.read_iops_device", |
992 | .private = offsetof(struct throtl_grp, iops[READ]), | 994 | .private = offsetof(struct throtl_grp, iops[READ]), |
993 | .read_seq_string = tg_print_conf_uint, | 995 | .read_seq_string = tg_print_conf_uint, |
994 | .write_string = tg_set_conf_uint, | 996 | .write_string = tg_set_conf_uint, |
995 | .max_write_len = 256, | 997 | .max_write_len = 256, |
996 | }, | 998 | }, |
997 | { | 999 | { |
998 | .name = "throttle.write_iops_device", | 1000 | .name = "throttle.write_iops_device", |
999 | .private = offsetof(struct throtl_grp, iops[WRITE]), | 1001 | .private = offsetof(struct throtl_grp, iops[WRITE]), |
1000 | .read_seq_string = tg_print_conf_uint, | 1002 | .read_seq_string = tg_print_conf_uint, |
1001 | .write_string = tg_set_conf_uint, | 1003 | .write_string = tg_set_conf_uint, |
1002 | .max_write_len = 256, | 1004 | .max_write_len = 256, |
1003 | }, | 1005 | }, |
1004 | { | 1006 | { |
1005 | .name = "throttle.io_service_bytes", | 1007 | .name = "throttle.io_service_bytes", |
1006 | .private = offsetof(struct tg_stats_cpu, service_bytes), | 1008 | .private = offsetof(struct tg_stats_cpu, service_bytes), |
1007 | .read_seq_string = tg_print_cpu_rwstat, | 1009 | .read_seq_string = tg_print_cpu_rwstat, |
1008 | }, | 1010 | }, |
1009 | { | 1011 | { |
1010 | .name = "throttle.io_serviced", | 1012 | .name = "throttle.io_serviced", |
1011 | .private = offsetof(struct tg_stats_cpu, serviced), | 1013 | .private = offsetof(struct tg_stats_cpu, serviced), |
1012 | .read_seq_string = tg_print_cpu_rwstat, | 1014 | .read_seq_string = tg_print_cpu_rwstat, |
1013 | }, | 1015 | }, |
1014 | { } /* terminate */ | 1016 | { } /* terminate */ |
1015 | }; | 1017 | }; |
1016 | 1018 | ||
1017 | static void throtl_shutdown_wq(struct request_queue *q) | 1019 | static void throtl_shutdown_wq(struct request_queue *q) |
1018 | { | 1020 | { |
1019 | struct throtl_data *td = q->td; | 1021 | struct throtl_data *td = q->td; |
1020 | 1022 | ||
1021 | cancel_delayed_work_sync(&td->dispatch_work); | 1023 | cancel_delayed_work_sync(&td->dispatch_work); |
1022 | } | 1024 | } |
1023 | 1025 | ||
1024 | static struct blkcg_policy blkcg_policy_throtl = { | 1026 | static struct blkcg_policy blkcg_policy_throtl = { |
1025 | .pd_size = sizeof(struct throtl_grp), | 1027 | .pd_size = sizeof(struct throtl_grp), |
1026 | .cftypes = throtl_files, | 1028 | .cftypes = throtl_files, |
1027 | 1029 | ||
1028 | .pd_init_fn = throtl_pd_init, | 1030 | .pd_init_fn = throtl_pd_init, |
1029 | .pd_exit_fn = throtl_pd_exit, | 1031 | .pd_exit_fn = throtl_pd_exit, |
1030 | .pd_reset_stats_fn = throtl_pd_reset_stats, | 1032 | .pd_reset_stats_fn = throtl_pd_reset_stats, |
1031 | }; | 1033 | }; |
1032 | 1034 | ||
1033 | bool blk_throtl_bio(struct request_queue *q, struct bio *bio) | 1035 | bool blk_throtl_bio(struct request_queue *q, struct bio *bio) |
1034 | { | 1036 | { |
1035 | struct throtl_data *td = q->td; | 1037 | struct throtl_data *td = q->td; |
1036 | struct throtl_grp *tg; | 1038 | struct throtl_grp *tg; |
1037 | bool rw = bio_data_dir(bio), update_disptime = true; | 1039 | bool rw = bio_data_dir(bio), update_disptime = true; |
1038 | struct blkcg *blkcg; | 1040 | struct blkcg *blkcg; |
1039 | bool throttled = false; | 1041 | bool throttled = false; |
1040 | 1042 | ||
1041 | if (bio->bi_rw & REQ_THROTTLED) { | 1043 | if (bio->bi_rw & REQ_THROTTLED) { |
1042 | bio->bi_rw &= ~REQ_THROTTLED; | 1044 | bio->bi_rw &= ~REQ_THROTTLED; |
1043 | goto out; | 1045 | goto out; |
1044 | } | 1046 | } |
1045 | 1047 | ||
1046 | /* | 1048 | /* |
1047 | * A throtl_grp pointer retrieved under rcu can be used to access | 1049 | * A throtl_grp pointer retrieved under rcu can be used to access |
1048 | * basic fields like stats and io rates. If a group has no rules, | 1050 | * basic fields like stats and io rates. If a group has no rules, |
1049 | * just update the dispatch stats in lockless manner and return. | 1051 | * just update the dispatch stats in lockless manner and return. |
1050 | */ | 1052 | */ |
1051 | rcu_read_lock(); | 1053 | rcu_read_lock(); |
1052 | blkcg = bio_blkcg(bio); | 1054 | blkcg = bio_blkcg(bio); |
1053 | tg = throtl_lookup_tg(td, blkcg); | 1055 | tg = throtl_lookup_tg(td, blkcg); |
1054 | if (tg) { | 1056 | if (tg) { |
1055 | if (tg_no_rule_group(tg, rw)) { | 1057 | if (tg_no_rule_group(tg, rw)) { |
1056 | throtl_update_dispatch_stats(tg_to_blkg(tg), | 1058 | throtl_update_dispatch_stats(tg_to_blkg(tg), |
1057 | bio->bi_size, bio->bi_rw); | 1059 | bio->bi_size, bio->bi_rw); |
1058 | goto out_unlock_rcu; | 1060 | goto out_unlock_rcu; |
1059 | } | 1061 | } |
1060 | } | 1062 | } |
1061 | 1063 | ||
1062 | /* | 1064 | /* |
1063 | * Either group has not been allocated yet or it is not an unlimited | 1065 | * Either group has not been allocated yet or it is not an unlimited |
1064 | * IO group | 1066 | * IO group |
1065 | */ | 1067 | */ |
1066 | spin_lock_irq(q->queue_lock); | 1068 | spin_lock_irq(q->queue_lock); |
1067 | tg = throtl_lookup_create_tg(td, blkcg); | 1069 | tg = throtl_lookup_create_tg(td, blkcg); |
1068 | if (unlikely(!tg)) | 1070 | if (unlikely(!tg)) |
1069 | goto out_unlock; | 1071 | goto out_unlock; |
1070 | 1072 | ||
1071 | if (tg->nr_queued[rw]) { | 1073 | if (tg->nr_queued[rw]) { |
1072 | /* | 1074 | /* |
1073 | * There is already another bio queued in same dir. No | 1075 | * There is already another bio queued in same dir. No |
1074 | * need to update dispatch time. | 1076 | * need to update dispatch time. |
1075 | */ | 1077 | */ |
1076 | update_disptime = false; | 1078 | update_disptime = false; |
1077 | goto queue_bio; | 1079 | goto queue_bio; |
1078 | 1080 | ||
1079 | } | 1081 | } |
1080 | 1082 | ||
1081 | /* Bio is with-in rate limit of group */ | 1083 | /* Bio is with-in rate limit of group */ |
1082 | if (tg_may_dispatch(tg, bio, NULL)) { | 1084 | if (tg_may_dispatch(tg, bio, NULL)) { |
1083 | throtl_charge_bio(tg, bio); | 1085 | throtl_charge_bio(tg, bio); |
1084 | 1086 | ||
1085 | /* | 1087 | /* |
1086 | * We need to trim slice even when bios are not being queued | 1088 | * We need to trim slice even when bios are not being queued |
1087 | * otherwise it might happen that a bio is not queued for | 1089 | * otherwise it might happen that a bio is not queued for |
1088 | * a long time and slice keeps on extending and trim is not | 1090 | * a long time and slice keeps on extending and trim is not |
1089 | * called for a long time. Now if limits are reduced suddenly | 1091 | * called for a long time. Now if limits are reduced suddenly |
1090 | * we take into account all the IO dispatched so far at new | 1092 | * we take into account all the IO dispatched so far at new |
1091 | * low rate and * newly queued IO gets a really long dispatch | 1093 | * low rate and * newly queued IO gets a really long dispatch |
1092 | * time. | 1094 | * time. |
1093 | * | 1095 | * |
1094 | * So keep on trimming slice even if bio is not queued. | 1096 | * So keep on trimming slice even if bio is not queued. |
1095 | */ | 1097 | */ |
1096 | throtl_trim_slice(tg, rw); | 1098 | throtl_trim_slice(tg, rw); |
1097 | goto out_unlock; | 1099 | goto out_unlock; |
1098 | } | 1100 | } |
1099 | 1101 | ||
1100 | queue_bio: | 1102 | queue_bio: |
1101 | throtl_log_tg(tg, "[%c] bio. bdisp=%llu sz=%u bps=%llu" | 1103 | throtl_log_tg(tg, "[%c] bio. bdisp=%llu sz=%u bps=%llu" |
1102 | " iodisp=%u iops=%u queued=%d/%d", | 1104 | " iodisp=%u iops=%u queued=%d/%d", |
1103 | rw == READ ? 'R' : 'W', | 1105 | rw == READ ? 'R' : 'W', |
1104 | tg->bytes_disp[rw], bio->bi_size, tg->bps[rw], | 1106 | tg->bytes_disp[rw], bio->bi_size, tg->bps[rw], |
1105 | tg->io_disp[rw], tg->iops[rw], | 1107 | tg->io_disp[rw], tg->iops[rw], |
1106 | tg->nr_queued[READ], tg->nr_queued[WRITE]); | 1108 | tg->nr_queued[READ], tg->nr_queued[WRITE]); |
1107 | 1109 | ||
1108 | bio_associate_current(bio); | 1110 | bio_associate_current(bio); |
1109 | throtl_add_bio_tg(&q->td->service_queue, tg, bio); | 1111 | throtl_add_bio_tg(bio, tg, &q->td->service_queue); |
1110 | throttled = true; | 1112 | throttled = true; |
1111 | 1113 | ||
1112 | if (update_disptime) { | 1114 | if (update_disptime) { |
1113 | tg_update_disptime(&td->service_queue, tg); | 1115 | tg_update_disptime(tg, &td->service_queue); |
1114 | throtl_schedule_next_dispatch(td); | 1116 | throtl_schedule_next_dispatch(td); |
1115 | } | 1117 | } |
1116 | 1118 | ||
1117 | out_unlock: | 1119 | out_unlock: |
1118 | spin_unlock_irq(q->queue_lock); | 1120 | spin_unlock_irq(q->queue_lock); |
1119 | out_unlock_rcu: | 1121 | out_unlock_rcu: |
1120 | rcu_read_unlock(); | 1122 | rcu_read_unlock(); |
1121 | out: | 1123 | out: |
1122 | return throttled; | 1124 | return throttled; |
1123 | } | 1125 | } |
1124 | 1126 | ||
1125 | /** | 1127 | /** |
1126 | * blk_throtl_drain - drain throttled bios | 1128 | * blk_throtl_drain - drain throttled bios |
1127 | * @q: request_queue to drain throttled bios for | 1129 | * @q: request_queue to drain throttled bios for |
1128 | * | 1130 | * |
1129 | * Dispatch all currently throttled bios on @q through ->make_request_fn(). | 1131 | * Dispatch all currently throttled bios on @q through ->make_request_fn(). |
1130 | */ | 1132 | */ |
1131 | void blk_throtl_drain(struct request_queue *q) | 1133 | void blk_throtl_drain(struct request_queue *q) |
1132 | __releases(q->queue_lock) __acquires(q->queue_lock) | 1134 | __releases(q->queue_lock) __acquires(q->queue_lock) |
1133 | { | 1135 | { |
1134 | struct throtl_data *td = q->td; | 1136 | struct throtl_data *td = q->td; |
1135 | struct throtl_service_queue *sq = &td->service_queue; | 1137 | struct throtl_service_queue *parent_sq = &td->service_queue; |
1136 | struct throtl_grp *tg; | 1138 | struct throtl_grp *tg; |
1137 | struct bio_list bl; | 1139 | struct bio_list bl; |
1138 | struct bio *bio; | 1140 | struct bio *bio; |
1139 | 1141 | ||
1140 | queue_lockdep_assert_held(q); | 1142 | queue_lockdep_assert_held(q); |
1141 | 1143 | ||
1142 | bio_list_init(&bl); | 1144 | bio_list_init(&bl); |
1143 | 1145 | ||
1144 | while ((tg = throtl_rb_first(sq))) { | 1146 | while ((tg = throtl_rb_first(parent_sq))) { |
1145 | throtl_dequeue_tg(sq, tg); | 1147 | throtl_dequeue_tg(tg, parent_sq); |
1146 | 1148 | ||
1147 | while ((bio = bio_list_peek(&tg->bio_lists[READ]))) | 1149 | while ((bio = bio_list_peek(&tg->bio_lists[READ]))) |
1148 | tg_dispatch_one_bio(tg, bio_data_dir(bio), &bl); | 1150 | tg_dispatch_one_bio(tg, bio_data_dir(bio), &bl); |
1149 | while ((bio = bio_list_peek(&tg->bio_lists[WRITE]))) | 1151 | while ((bio = bio_list_peek(&tg->bio_lists[WRITE]))) |
1150 | tg_dispatch_one_bio(tg, bio_data_dir(bio), &bl); | 1152 | tg_dispatch_one_bio(tg, bio_data_dir(bio), &bl); |
1151 | } | 1153 | } |
1152 | spin_unlock_irq(q->queue_lock); | 1154 | spin_unlock_irq(q->queue_lock); |
1153 | 1155 | ||
1154 | while ((bio = bio_list_pop(&bl))) | 1156 | while ((bio = bio_list_pop(&bl))) |
1155 | generic_make_request(bio); | 1157 | generic_make_request(bio); |
1156 | 1158 | ||
1157 | spin_lock_irq(q->queue_lock); | 1159 | spin_lock_irq(q->queue_lock); |
1158 | } | 1160 | } |
1159 | 1161 | ||
1160 | int blk_throtl_init(struct request_queue *q) | 1162 | int blk_throtl_init(struct request_queue *q) |
1161 | { | 1163 | { |
1162 | struct throtl_data *td; | 1164 | struct throtl_data *td; |
1163 | int ret; | 1165 | int ret; |
1164 | 1166 | ||
1165 | td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node); | 1167 | td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node); |
1166 | if (!td) | 1168 | if (!td) |
1167 | return -ENOMEM; | 1169 | return -ENOMEM; |
1168 | 1170 | ||
1169 | td->service_queue = THROTL_SERVICE_QUEUE_INITIALIZER; | 1171 | td->service_queue = THROTL_SERVICE_QUEUE_INITIALIZER; |
1170 | INIT_DELAYED_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn); | 1172 | INIT_DELAYED_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn); |
1171 | 1173 | ||
1172 | q->td = td; | 1174 | q->td = td; |
1173 | td->queue = q; | 1175 | td->queue = q; |
1174 | 1176 | ||
1175 | /* activate policy */ | 1177 | /* activate policy */ |
1176 | ret = blkcg_activate_policy(q, &blkcg_policy_throtl); | 1178 | ret = blkcg_activate_policy(q, &blkcg_policy_throtl); |
1177 | if (ret) | 1179 | if (ret) |
1178 | kfree(td); | 1180 | kfree(td); |
1179 | return ret; | 1181 | return ret; |
1180 | } | 1182 | } |
1181 | 1183 | ||
1182 | void blk_throtl_exit(struct request_queue *q) | 1184 | void blk_throtl_exit(struct request_queue *q) |
1183 | { | 1185 | { |
1184 | BUG_ON(!q->td); | 1186 | BUG_ON(!q->td); |
1185 | throtl_shutdown_wq(q); | 1187 | throtl_shutdown_wq(q); |
1186 | blkcg_deactivate_policy(q, &blkcg_policy_throtl); | 1188 | blkcg_deactivate_policy(q, &blkcg_policy_throtl); |
1187 | kfree(q->td); | 1189 | kfree(q->td); |
1188 | } | 1190 | } |
1189 | 1191 | ||
1190 | static int __init throtl_init(void) | 1192 | static int __init throtl_init(void) |
1191 | { | 1193 | { |
1192 | kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0); | 1194 | kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0); |
1193 | if (!kthrotld_workqueue) | 1195 | if (!kthrotld_workqueue) |
1194 | panic("Failed to create kthrotld\n"); | 1196 | panic("Failed to create kthrotld\n"); |
1195 | 1197 | ||
1196 | return blkcg_policy_register(&blkcg_policy_throtl); | 1198 | return blkcg_policy_register(&blkcg_policy_throtl); |
1197 | } | 1199 | } |
1198 | 1200 | ||
1199 | module_init(throtl_init); | 1201 | module_init(throtl_init); |
1200 | 1202 |