Commit 0121b0c771f929bb5298554b70843ab46280c298

Authored by Linus Torvalds

Merge branch 'sched-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kerne…

…l/git/tip/linux-2.6-tip

* 'sched-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
  sched: set_cpus_allowed_ptr(): Don't use rq->migration_thread after unlock
  sched: Fix proc_sched_set_task()

Showing 2 changed files Inline Diff

1 /* 1 /*
2 * kernel/sched.c 2 * kernel/sched.c
3 * 3 *
4 * Kernel scheduler and related syscalls 4 * Kernel scheduler and related syscalls
5 * 5 *
6 * Copyright (C) 1991-2002 Linus Torvalds 6 * Copyright (C) 1991-2002 Linus Torvalds
7 * 7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe 9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff 10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli 11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with 13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices 14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions 15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas. 17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin 18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas. 20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements 21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams 22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz 26 * Thomas Gleixner, Mike Kravetz
27 */ 27 */
28 28
29 #include <linux/mm.h> 29 #include <linux/mm.h>
30 #include <linux/module.h> 30 #include <linux/module.h>
31 #include <linux/nmi.h> 31 #include <linux/nmi.h>
32 #include <linux/init.h> 32 #include <linux/init.h>
33 #include <linux/uaccess.h> 33 #include <linux/uaccess.h>
34 #include <linux/highmem.h> 34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h> 35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h> 36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h> 37 #include <linux/interrupt.h>
38 #include <linux/capability.h> 38 #include <linux/capability.h>
39 #include <linux/completion.h> 39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h> 40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h> 41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h> 42 #include <linux/perf_event.h>
43 #include <linux/security.h> 43 #include <linux/security.h>
44 #include <linux/notifier.h> 44 #include <linux/notifier.h>
45 #include <linux/profile.h> 45 #include <linux/profile.h>
46 #include <linux/freezer.h> 46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h> 47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h> 48 #include <linux/blkdev.h>
49 #include <linux/delay.h> 49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h> 50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h> 51 #include <linux/smp.h>
52 #include <linux/threads.h> 52 #include <linux/threads.h>
53 #include <linux/timer.h> 53 #include <linux/timer.h>
54 #include <linux/rcupdate.h> 54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h> 55 #include <linux/cpu.h>
56 #include <linux/cpuset.h> 56 #include <linux/cpuset.h>
57 #include <linux/percpu.h> 57 #include <linux/percpu.h>
58 #include <linux/kthread.h> 58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h> 59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h> 60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h> 61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h> 62 #include <linux/syscalls.h>
63 #include <linux/times.h> 63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h> 64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h> 65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h> 66 #include <linux/delayacct.h>
67 #include <linux/unistd.h> 67 #include <linux/unistd.h>
68 #include <linux/pagemap.h> 68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h> 69 #include <linux/hrtimer.h>
70 #include <linux/tick.h> 70 #include <linux/tick.h>
71 #include <linux/debugfs.h> 71 #include <linux/debugfs.h>
72 #include <linux/ctype.h> 72 #include <linux/ctype.h>
73 #include <linux/ftrace.h> 73 #include <linux/ftrace.h>
74 74
75 #include <asm/tlb.h> 75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h> 76 #include <asm/irq_regs.h>
77 77
78 #include "sched_cpupri.h" 78 #include "sched_cpupri.h"
79 79
80 #define CREATE_TRACE_POINTS 80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h> 81 #include <trace/events/sched.h>
82 82
83 /* 83 /*
84 * Convert user-nice values [ -20 ... 0 ... 19 ] 84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], 85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back. 86 * and back.
87 */ 87 */
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20) 88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20) 89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio) 90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91 91
92 /* 92 /*
93 * 'User priority' is the nice value converted to something we 93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters, 94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range. 95 * it's a [ 0 ... 39 ] range.
96 */ 96 */
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO) 97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio) 98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO)) 99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100 100
101 /* 101 /*
102 * Helpers for converting nanosecond timing to jiffy resolution 102 * Helpers for converting nanosecond timing to jiffy resolution
103 */ 103 */
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) 104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105 105
106 #define NICE_0_LOAD SCHED_LOAD_SCALE 106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT 107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
108 108
109 /* 109 /*
110 * These are the 'tuning knobs' of the scheduler: 110 * These are the 'tuning knobs' of the scheduler:
111 * 111 *
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks). 112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire. 113 * Timeslices get refilled after they expire.
114 */ 114 */
115 #define DEF_TIMESLICE (100 * HZ / 1000) 115 #define DEF_TIMESLICE (100 * HZ / 1000)
116 116
117 /* 117 /*
118 * single value that denotes runtime == period, ie unlimited time. 118 * single value that denotes runtime == period, ie unlimited time.
119 */ 119 */
120 #define RUNTIME_INF ((u64)~0ULL) 120 #define RUNTIME_INF ((u64)~0ULL)
121 121
122 static inline int rt_policy(int policy) 122 static inline int rt_policy(int policy)
123 { 123 {
124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR)) 124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 return 1; 125 return 1;
126 return 0; 126 return 0;
127 } 127 }
128 128
129 static inline int task_has_rt_policy(struct task_struct *p) 129 static inline int task_has_rt_policy(struct task_struct *p)
130 { 130 {
131 return rt_policy(p->policy); 131 return rt_policy(p->policy);
132 } 132 }
133 133
134 /* 134 /*
135 * This is the priority-queue data structure of the RT scheduling class: 135 * This is the priority-queue data structure of the RT scheduling class:
136 */ 136 */
137 struct rt_prio_array { 137 struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO]; 139 struct list_head queue[MAX_RT_PRIO];
140 }; 140 };
141 141
142 struct rt_bandwidth { 142 struct rt_bandwidth {
143 /* nests inside the rq lock: */ 143 /* nests inside the rq lock: */
144 raw_spinlock_t rt_runtime_lock; 144 raw_spinlock_t rt_runtime_lock;
145 ktime_t rt_period; 145 ktime_t rt_period;
146 u64 rt_runtime; 146 u64 rt_runtime;
147 struct hrtimer rt_period_timer; 147 struct hrtimer rt_period_timer;
148 }; 148 };
149 149
150 static struct rt_bandwidth def_rt_bandwidth; 150 static struct rt_bandwidth def_rt_bandwidth;
151 151
152 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); 152 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153 153
154 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) 154 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155 { 155 {
156 struct rt_bandwidth *rt_b = 156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer); 157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now; 158 ktime_t now;
159 int overrun; 159 int overrun;
160 int idle = 0; 160 int idle = 0;
161 161
162 for (;;) { 162 for (;;) {
163 now = hrtimer_cb_get_time(timer); 163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period); 164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165 165
166 if (!overrun) 166 if (!overrun)
167 break; 167 break;
168 168
169 idle = do_sched_rt_period_timer(rt_b, overrun); 169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 } 170 }
171 171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173 } 173 }
174 174
175 static 175 static
176 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) 176 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177 { 177 {
178 rt_b->rt_period = ns_to_ktime(period); 178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime; 179 rt_b->rt_runtime = runtime;
180 180
181 raw_spin_lock_init(&rt_b->rt_runtime_lock); 181 raw_spin_lock_init(&rt_b->rt_runtime_lock);
182 182
183 hrtimer_init(&rt_b->rt_period_timer, 183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer; 185 rt_b->rt_period_timer.function = sched_rt_period_timer;
186 } 186 }
187 187
188 static inline int rt_bandwidth_enabled(void) 188 static inline int rt_bandwidth_enabled(void)
189 { 189 {
190 return sysctl_sched_rt_runtime >= 0; 190 return sysctl_sched_rt_runtime >= 0;
191 } 191 }
192 192
193 static void start_rt_bandwidth(struct rt_bandwidth *rt_b) 193 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194 { 194 {
195 ktime_t now; 195 ktime_t now;
196 196
197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) 197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 return; 198 return;
199 199
200 if (hrtimer_active(&rt_b->rt_period_timer)) 200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return; 201 return;
202 202
203 raw_spin_lock(&rt_b->rt_runtime_lock); 203 raw_spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) { 204 for (;;) {
205 unsigned long delta; 205 unsigned long delta;
206 ktime_t soft, hard; 206 ktime_t soft, hard;
207 207
208 if (hrtimer_active(&rt_b->rt_period_timer)) 208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break; 209 break;
210 210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer); 211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period); 212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213 213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer); 214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer); 215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft)); 216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta, 217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218 HRTIMER_MODE_ABS_PINNED, 0); 218 HRTIMER_MODE_ABS_PINNED, 0);
219 } 219 }
220 raw_spin_unlock(&rt_b->rt_runtime_lock); 220 raw_spin_unlock(&rt_b->rt_runtime_lock);
221 } 221 }
222 222
223 #ifdef CONFIG_RT_GROUP_SCHED 223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) 224 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225 { 225 {
226 hrtimer_cancel(&rt_b->rt_period_timer); 226 hrtimer_cancel(&rt_b->rt_period_timer);
227 } 227 }
228 #endif 228 #endif
229 229
230 /* 230 /*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains, 231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains. 232 * detach_destroy_domains and partition_sched_domains.
233 */ 233 */
234 static DEFINE_MUTEX(sched_domains_mutex); 234 static DEFINE_MUTEX(sched_domains_mutex);
235 235
236 #ifdef CONFIG_CGROUP_SCHED 236 #ifdef CONFIG_CGROUP_SCHED
237 237
238 #include <linux/cgroup.h> 238 #include <linux/cgroup.h>
239 239
240 struct cfs_rq; 240 struct cfs_rq;
241 241
242 static LIST_HEAD(task_groups); 242 static LIST_HEAD(task_groups);
243 243
244 /* task group related information */ 244 /* task group related information */
245 struct task_group { 245 struct task_group {
246 struct cgroup_subsys_state css; 246 struct cgroup_subsys_state css;
247 247
248 #ifdef CONFIG_FAIR_GROUP_SCHED 248 #ifdef CONFIG_FAIR_GROUP_SCHED
249 /* schedulable entities of this group on each cpu */ 249 /* schedulable entities of this group on each cpu */
250 struct sched_entity **se; 250 struct sched_entity **se;
251 /* runqueue "owned" by this group on each cpu */ 251 /* runqueue "owned" by this group on each cpu */
252 struct cfs_rq **cfs_rq; 252 struct cfs_rq **cfs_rq;
253 unsigned long shares; 253 unsigned long shares;
254 #endif 254 #endif
255 255
256 #ifdef CONFIG_RT_GROUP_SCHED 256 #ifdef CONFIG_RT_GROUP_SCHED
257 struct sched_rt_entity **rt_se; 257 struct sched_rt_entity **rt_se;
258 struct rt_rq **rt_rq; 258 struct rt_rq **rt_rq;
259 259
260 struct rt_bandwidth rt_bandwidth; 260 struct rt_bandwidth rt_bandwidth;
261 #endif 261 #endif
262 262
263 struct rcu_head rcu; 263 struct rcu_head rcu;
264 struct list_head list; 264 struct list_head list;
265 265
266 struct task_group *parent; 266 struct task_group *parent;
267 struct list_head siblings; 267 struct list_head siblings;
268 struct list_head children; 268 struct list_head children;
269 }; 269 };
270 270
271 #define root_task_group init_task_group 271 #define root_task_group init_task_group
272 272
273 /* task_group_lock serializes add/remove of task groups and also changes to 273 /* task_group_lock serializes add/remove of task groups and also changes to
274 * a task group's cpu shares. 274 * a task group's cpu shares.
275 */ 275 */
276 static DEFINE_SPINLOCK(task_group_lock); 276 static DEFINE_SPINLOCK(task_group_lock);
277 277
278 #ifdef CONFIG_FAIR_GROUP_SCHED 278 #ifdef CONFIG_FAIR_GROUP_SCHED
279 279
280 #ifdef CONFIG_SMP 280 #ifdef CONFIG_SMP
281 static int root_task_group_empty(void) 281 static int root_task_group_empty(void)
282 { 282 {
283 return list_empty(&root_task_group.children); 283 return list_empty(&root_task_group.children);
284 } 284 }
285 #endif 285 #endif
286 286
287 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD 287 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
288 288
289 /* 289 /*
290 * A weight of 0 or 1 can cause arithmetics problems. 290 * A weight of 0 or 1 can cause arithmetics problems.
291 * A weight of a cfs_rq is the sum of weights of which entities 291 * A weight of a cfs_rq is the sum of weights of which entities
292 * are queued on this cfs_rq, so a weight of a entity should not be 292 * are queued on this cfs_rq, so a weight of a entity should not be
293 * too large, so as the shares value of a task group. 293 * too large, so as the shares value of a task group.
294 * (The default weight is 1024 - so there's no practical 294 * (The default weight is 1024 - so there's no practical
295 * limitation from this.) 295 * limitation from this.)
296 */ 296 */
297 #define MIN_SHARES 2 297 #define MIN_SHARES 2
298 #define MAX_SHARES (1UL << 18) 298 #define MAX_SHARES (1UL << 18)
299 299
300 static int init_task_group_load = INIT_TASK_GROUP_LOAD; 300 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
301 #endif 301 #endif
302 302
303 /* Default task group. 303 /* Default task group.
304 * Every task in system belong to this group at bootup. 304 * Every task in system belong to this group at bootup.
305 */ 305 */
306 struct task_group init_task_group; 306 struct task_group init_task_group;
307 307
308 /* return group to which a task belongs */ 308 /* return group to which a task belongs */
309 static inline struct task_group *task_group(struct task_struct *p) 309 static inline struct task_group *task_group(struct task_struct *p)
310 { 310 {
311 struct task_group *tg; 311 struct task_group *tg;
312 312
313 #ifdef CONFIG_CGROUP_SCHED 313 #ifdef CONFIG_CGROUP_SCHED
314 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id), 314 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
315 struct task_group, css); 315 struct task_group, css);
316 #else 316 #else
317 tg = &init_task_group; 317 tg = &init_task_group;
318 #endif 318 #endif
319 return tg; 319 return tg;
320 } 320 }
321 321
322 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 322 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
323 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 323 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
324 { 324 {
325 #ifdef CONFIG_FAIR_GROUP_SCHED 325 #ifdef CONFIG_FAIR_GROUP_SCHED
326 p->se.cfs_rq = task_group(p)->cfs_rq[cpu]; 326 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
327 p->se.parent = task_group(p)->se[cpu]; 327 p->se.parent = task_group(p)->se[cpu];
328 #endif 328 #endif
329 329
330 #ifdef CONFIG_RT_GROUP_SCHED 330 #ifdef CONFIG_RT_GROUP_SCHED
331 p->rt.rt_rq = task_group(p)->rt_rq[cpu]; 331 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
332 p->rt.parent = task_group(p)->rt_se[cpu]; 332 p->rt.parent = task_group(p)->rt_se[cpu];
333 #endif 333 #endif
334 } 334 }
335 335
336 #else 336 #else
337 337
338 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 338 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
339 static inline struct task_group *task_group(struct task_struct *p) 339 static inline struct task_group *task_group(struct task_struct *p)
340 { 340 {
341 return NULL; 341 return NULL;
342 } 342 }
343 343
344 #endif /* CONFIG_CGROUP_SCHED */ 344 #endif /* CONFIG_CGROUP_SCHED */
345 345
346 /* CFS-related fields in a runqueue */ 346 /* CFS-related fields in a runqueue */
347 struct cfs_rq { 347 struct cfs_rq {
348 struct load_weight load; 348 struct load_weight load;
349 unsigned long nr_running; 349 unsigned long nr_running;
350 350
351 u64 exec_clock; 351 u64 exec_clock;
352 u64 min_vruntime; 352 u64 min_vruntime;
353 353
354 struct rb_root tasks_timeline; 354 struct rb_root tasks_timeline;
355 struct rb_node *rb_leftmost; 355 struct rb_node *rb_leftmost;
356 356
357 struct list_head tasks; 357 struct list_head tasks;
358 struct list_head *balance_iterator; 358 struct list_head *balance_iterator;
359 359
360 /* 360 /*
361 * 'curr' points to currently running entity on this cfs_rq. 361 * 'curr' points to currently running entity on this cfs_rq.
362 * It is set to NULL otherwise (i.e when none are currently running). 362 * It is set to NULL otherwise (i.e when none are currently running).
363 */ 363 */
364 struct sched_entity *curr, *next, *last; 364 struct sched_entity *curr, *next, *last;
365 365
366 unsigned int nr_spread_over; 366 unsigned int nr_spread_over;
367 367
368 #ifdef CONFIG_FAIR_GROUP_SCHED 368 #ifdef CONFIG_FAIR_GROUP_SCHED
369 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */ 369 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
370 370
371 /* 371 /*
372 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 372 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
373 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 373 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
374 * (like users, containers etc.) 374 * (like users, containers etc.)
375 * 375 *
376 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This 376 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
377 * list is used during load balance. 377 * list is used during load balance.
378 */ 378 */
379 struct list_head leaf_cfs_rq_list; 379 struct list_head leaf_cfs_rq_list;
380 struct task_group *tg; /* group that "owns" this runqueue */ 380 struct task_group *tg; /* group that "owns" this runqueue */
381 381
382 #ifdef CONFIG_SMP 382 #ifdef CONFIG_SMP
383 /* 383 /*
384 * the part of load.weight contributed by tasks 384 * the part of load.weight contributed by tasks
385 */ 385 */
386 unsigned long task_weight; 386 unsigned long task_weight;
387 387
388 /* 388 /*
389 * h_load = weight * f(tg) 389 * h_load = weight * f(tg)
390 * 390 *
391 * Where f(tg) is the recursive weight fraction assigned to 391 * Where f(tg) is the recursive weight fraction assigned to
392 * this group. 392 * this group.
393 */ 393 */
394 unsigned long h_load; 394 unsigned long h_load;
395 395
396 /* 396 /*
397 * this cpu's part of tg->shares 397 * this cpu's part of tg->shares
398 */ 398 */
399 unsigned long shares; 399 unsigned long shares;
400 400
401 /* 401 /*
402 * load.weight at the time we set shares 402 * load.weight at the time we set shares
403 */ 403 */
404 unsigned long rq_weight; 404 unsigned long rq_weight;
405 #endif 405 #endif
406 #endif 406 #endif
407 }; 407 };
408 408
409 /* Real-Time classes' related field in a runqueue: */ 409 /* Real-Time classes' related field in a runqueue: */
410 struct rt_rq { 410 struct rt_rq {
411 struct rt_prio_array active; 411 struct rt_prio_array active;
412 unsigned long rt_nr_running; 412 unsigned long rt_nr_running;
413 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 413 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
414 struct { 414 struct {
415 int curr; /* highest queued rt task prio */ 415 int curr; /* highest queued rt task prio */
416 #ifdef CONFIG_SMP 416 #ifdef CONFIG_SMP
417 int next; /* next highest */ 417 int next; /* next highest */
418 #endif 418 #endif
419 } highest_prio; 419 } highest_prio;
420 #endif 420 #endif
421 #ifdef CONFIG_SMP 421 #ifdef CONFIG_SMP
422 unsigned long rt_nr_migratory; 422 unsigned long rt_nr_migratory;
423 unsigned long rt_nr_total; 423 unsigned long rt_nr_total;
424 int overloaded; 424 int overloaded;
425 struct plist_head pushable_tasks; 425 struct plist_head pushable_tasks;
426 #endif 426 #endif
427 int rt_throttled; 427 int rt_throttled;
428 u64 rt_time; 428 u64 rt_time;
429 u64 rt_runtime; 429 u64 rt_runtime;
430 /* Nests inside the rq lock: */ 430 /* Nests inside the rq lock: */
431 raw_spinlock_t rt_runtime_lock; 431 raw_spinlock_t rt_runtime_lock;
432 432
433 #ifdef CONFIG_RT_GROUP_SCHED 433 #ifdef CONFIG_RT_GROUP_SCHED
434 unsigned long rt_nr_boosted; 434 unsigned long rt_nr_boosted;
435 435
436 struct rq *rq; 436 struct rq *rq;
437 struct list_head leaf_rt_rq_list; 437 struct list_head leaf_rt_rq_list;
438 struct task_group *tg; 438 struct task_group *tg;
439 #endif 439 #endif
440 }; 440 };
441 441
442 #ifdef CONFIG_SMP 442 #ifdef CONFIG_SMP
443 443
444 /* 444 /*
445 * We add the notion of a root-domain which will be used to define per-domain 445 * We add the notion of a root-domain which will be used to define per-domain
446 * variables. Each exclusive cpuset essentially defines an island domain by 446 * variables. Each exclusive cpuset essentially defines an island domain by
447 * fully partitioning the member cpus from any other cpuset. Whenever a new 447 * fully partitioning the member cpus from any other cpuset. Whenever a new
448 * exclusive cpuset is created, we also create and attach a new root-domain 448 * exclusive cpuset is created, we also create and attach a new root-domain
449 * object. 449 * object.
450 * 450 *
451 */ 451 */
452 struct root_domain { 452 struct root_domain {
453 atomic_t refcount; 453 atomic_t refcount;
454 cpumask_var_t span; 454 cpumask_var_t span;
455 cpumask_var_t online; 455 cpumask_var_t online;
456 456
457 /* 457 /*
458 * The "RT overload" flag: it gets set if a CPU has more than 458 * The "RT overload" flag: it gets set if a CPU has more than
459 * one runnable RT task. 459 * one runnable RT task.
460 */ 460 */
461 cpumask_var_t rto_mask; 461 cpumask_var_t rto_mask;
462 atomic_t rto_count; 462 atomic_t rto_count;
463 #ifdef CONFIG_SMP 463 #ifdef CONFIG_SMP
464 struct cpupri cpupri; 464 struct cpupri cpupri;
465 #endif 465 #endif
466 }; 466 };
467 467
468 /* 468 /*
469 * By default the system creates a single root-domain with all cpus as 469 * By default the system creates a single root-domain with all cpus as
470 * members (mimicking the global state we have today). 470 * members (mimicking the global state we have today).
471 */ 471 */
472 static struct root_domain def_root_domain; 472 static struct root_domain def_root_domain;
473 473
474 #endif 474 #endif
475 475
476 /* 476 /*
477 * This is the main, per-CPU runqueue data structure. 477 * This is the main, per-CPU runqueue data structure.
478 * 478 *
479 * Locking rule: those places that want to lock multiple runqueues 479 * Locking rule: those places that want to lock multiple runqueues
480 * (such as the load balancing or the thread migration code), lock 480 * (such as the load balancing or the thread migration code), lock
481 * acquire operations must be ordered by ascending &runqueue. 481 * acquire operations must be ordered by ascending &runqueue.
482 */ 482 */
483 struct rq { 483 struct rq {
484 /* runqueue lock: */ 484 /* runqueue lock: */
485 raw_spinlock_t lock; 485 raw_spinlock_t lock;
486 486
487 /* 487 /*
488 * nr_running and cpu_load should be in the same cacheline because 488 * nr_running and cpu_load should be in the same cacheline because
489 * remote CPUs use both these fields when doing load calculation. 489 * remote CPUs use both these fields when doing load calculation.
490 */ 490 */
491 unsigned long nr_running; 491 unsigned long nr_running;
492 #define CPU_LOAD_IDX_MAX 5 492 #define CPU_LOAD_IDX_MAX 5
493 unsigned long cpu_load[CPU_LOAD_IDX_MAX]; 493 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
494 #ifdef CONFIG_NO_HZ 494 #ifdef CONFIG_NO_HZ
495 unsigned char in_nohz_recently; 495 unsigned char in_nohz_recently;
496 #endif 496 #endif
497 /* capture load from *all* tasks on this cpu: */ 497 /* capture load from *all* tasks on this cpu: */
498 struct load_weight load; 498 struct load_weight load;
499 unsigned long nr_load_updates; 499 unsigned long nr_load_updates;
500 u64 nr_switches; 500 u64 nr_switches;
501 501
502 struct cfs_rq cfs; 502 struct cfs_rq cfs;
503 struct rt_rq rt; 503 struct rt_rq rt;
504 504
505 #ifdef CONFIG_FAIR_GROUP_SCHED 505 #ifdef CONFIG_FAIR_GROUP_SCHED
506 /* list of leaf cfs_rq on this cpu: */ 506 /* list of leaf cfs_rq on this cpu: */
507 struct list_head leaf_cfs_rq_list; 507 struct list_head leaf_cfs_rq_list;
508 #endif 508 #endif
509 #ifdef CONFIG_RT_GROUP_SCHED 509 #ifdef CONFIG_RT_GROUP_SCHED
510 struct list_head leaf_rt_rq_list; 510 struct list_head leaf_rt_rq_list;
511 #endif 511 #endif
512 512
513 /* 513 /*
514 * This is part of a global counter where only the total sum 514 * This is part of a global counter where only the total sum
515 * over all CPUs matters. A task can increase this counter on 515 * over all CPUs matters. A task can increase this counter on
516 * one CPU and if it got migrated afterwards it may decrease 516 * one CPU and if it got migrated afterwards it may decrease
517 * it on another CPU. Always updated under the runqueue lock: 517 * it on another CPU. Always updated under the runqueue lock:
518 */ 518 */
519 unsigned long nr_uninterruptible; 519 unsigned long nr_uninterruptible;
520 520
521 struct task_struct *curr, *idle; 521 struct task_struct *curr, *idle;
522 unsigned long next_balance; 522 unsigned long next_balance;
523 struct mm_struct *prev_mm; 523 struct mm_struct *prev_mm;
524 524
525 u64 clock; 525 u64 clock;
526 526
527 atomic_t nr_iowait; 527 atomic_t nr_iowait;
528 528
529 #ifdef CONFIG_SMP 529 #ifdef CONFIG_SMP
530 struct root_domain *rd; 530 struct root_domain *rd;
531 struct sched_domain *sd; 531 struct sched_domain *sd;
532 532
533 unsigned char idle_at_tick; 533 unsigned char idle_at_tick;
534 /* For active balancing */ 534 /* For active balancing */
535 int post_schedule; 535 int post_schedule;
536 int active_balance; 536 int active_balance;
537 int push_cpu; 537 int push_cpu;
538 /* cpu of this runqueue: */ 538 /* cpu of this runqueue: */
539 int cpu; 539 int cpu;
540 int online; 540 int online;
541 541
542 unsigned long avg_load_per_task; 542 unsigned long avg_load_per_task;
543 543
544 struct task_struct *migration_thread; 544 struct task_struct *migration_thread;
545 struct list_head migration_queue; 545 struct list_head migration_queue;
546 546
547 u64 rt_avg; 547 u64 rt_avg;
548 u64 age_stamp; 548 u64 age_stamp;
549 u64 idle_stamp; 549 u64 idle_stamp;
550 u64 avg_idle; 550 u64 avg_idle;
551 #endif 551 #endif
552 552
553 /* calc_load related fields */ 553 /* calc_load related fields */
554 unsigned long calc_load_update; 554 unsigned long calc_load_update;
555 long calc_load_active; 555 long calc_load_active;
556 556
557 #ifdef CONFIG_SCHED_HRTICK 557 #ifdef CONFIG_SCHED_HRTICK
558 #ifdef CONFIG_SMP 558 #ifdef CONFIG_SMP
559 int hrtick_csd_pending; 559 int hrtick_csd_pending;
560 struct call_single_data hrtick_csd; 560 struct call_single_data hrtick_csd;
561 #endif 561 #endif
562 struct hrtimer hrtick_timer; 562 struct hrtimer hrtick_timer;
563 #endif 563 #endif
564 564
565 #ifdef CONFIG_SCHEDSTATS 565 #ifdef CONFIG_SCHEDSTATS
566 /* latency stats */ 566 /* latency stats */
567 struct sched_info rq_sched_info; 567 struct sched_info rq_sched_info;
568 unsigned long long rq_cpu_time; 568 unsigned long long rq_cpu_time;
569 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ 569 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
570 570
571 /* sys_sched_yield() stats */ 571 /* sys_sched_yield() stats */
572 unsigned int yld_count; 572 unsigned int yld_count;
573 573
574 /* schedule() stats */ 574 /* schedule() stats */
575 unsigned int sched_switch; 575 unsigned int sched_switch;
576 unsigned int sched_count; 576 unsigned int sched_count;
577 unsigned int sched_goidle; 577 unsigned int sched_goidle;
578 578
579 /* try_to_wake_up() stats */ 579 /* try_to_wake_up() stats */
580 unsigned int ttwu_count; 580 unsigned int ttwu_count;
581 unsigned int ttwu_local; 581 unsigned int ttwu_local;
582 582
583 /* BKL stats */ 583 /* BKL stats */
584 unsigned int bkl_count; 584 unsigned int bkl_count;
585 #endif 585 #endif
586 }; 586 };
587 587
588 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 588 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
589 589
590 static inline 590 static inline
591 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 591 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
592 { 592 {
593 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 593 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
594 } 594 }
595 595
596 static inline int cpu_of(struct rq *rq) 596 static inline int cpu_of(struct rq *rq)
597 { 597 {
598 #ifdef CONFIG_SMP 598 #ifdef CONFIG_SMP
599 return rq->cpu; 599 return rq->cpu;
600 #else 600 #else
601 return 0; 601 return 0;
602 #endif 602 #endif
603 } 603 }
604 604
605 #define rcu_dereference_check_sched_domain(p) \ 605 #define rcu_dereference_check_sched_domain(p) \
606 rcu_dereference_check((p), \ 606 rcu_dereference_check((p), \
607 rcu_read_lock_sched_held() || \ 607 rcu_read_lock_sched_held() || \
608 lockdep_is_held(&sched_domains_mutex)) 608 lockdep_is_held(&sched_domains_mutex))
609 609
610 /* 610 /*
611 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 611 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
612 * See detach_destroy_domains: synchronize_sched for details. 612 * See detach_destroy_domains: synchronize_sched for details.
613 * 613 *
614 * The domain tree of any CPU may only be accessed from within 614 * The domain tree of any CPU may only be accessed from within
615 * preempt-disabled sections. 615 * preempt-disabled sections.
616 */ 616 */
617 #define for_each_domain(cpu, __sd) \ 617 #define for_each_domain(cpu, __sd) \
618 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent) 618 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
619 619
620 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 620 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
621 #define this_rq() (&__get_cpu_var(runqueues)) 621 #define this_rq() (&__get_cpu_var(runqueues))
622 #define task_rq(p) cpu_rq(task_cpu(p)) 622 #define task_rq(p) cpu_rq(task_cpu(p))
623 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 623 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
624 #define raw_rq() (&__raw_get_cpu_var(runqueues)) 624 #define raw_rq() (&__raw_get_cpu_var(runqueues))
625 625
626 inline void update_rq_clock(struct rq *rq) 626 inline void update_rq_clock(struct rq *rq)
627 { 627 {
628 rq->clock = sched_clock_cpu(cpu_of(rq)); 628 rq->clock = sched_clock_cpu(cpu_of(rq));
629 } 629 }
630 630
631 /* 631 /*
632 * Tunables that become constants when CONFIG_SCHED_DEBUG is off: 632 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
633 */ 633 */
634 #ifdef CONFIG_SCHED_DEBUG 634 #ifdef CONFIG_SCHED_DEBUG
635 # define const_debug __read_mostly 635 # define const_debug __read_mostly
636 #else 636 #else
637 # define const_debug static const 637 # define const_debug static const
638 #endif 638 #endif
639 639
640 /** 640 /**
641 * runqueue_is_locked 641 * runqueue_is_locked
642 * @cpu: the processor in question. 642 * @cpu: the processor in question.
643 * 643 *
644 * Returns true if the current cpu runqueue is locked. 644 * Returns true if the current cpu runqueue is locked.
645 * This interface allows printk to be called with the runqueue lock 645 * This interface allows printk to be called with the runqueue lock
646 * held and know whether or not it is OK to wake up the klogd. 646 * held and know whether or not it is OK to wake up the klogd.
647 */ 647 */
648 int runqueue_is_locked(int cpu) 648 int runqueue_is_locked(int cpu)
649 { 649 {
650 return raw_spin_is_locked(&cpu_rq(cpu)->lock); 650 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
651 } 651 }
652 652
653 /* 653 /*
654 * Debugging: various feature bits 654 * Debugging: various feature bits
655 */ 655 */
656 656
657 #define SCHED_FEAT(name, enabled) \ 657 #define SCHED_FEAT(name, enabled) \
658 __SCHED_FEAT_##name , 658 __SCHED_FEAT_##name ,
659 659
660 enum { 660 enum {
661 #include "sched_features.h" 661 #include "sched_features.h"
662 }; 662 };
663 663
664 #undef SCHED_FEAT 664 #undef SCHED_FEAT
665 665
666 #define SCHED_FEAT(name, enabled) \ 666 #define SCHED_FEAT(name, enabled) \
667 (1UL << __SCHED_FEAT_##name) * enabled | 667 (1UL << __SCHED_FEAT_##name) * enabled |
668 668
669 const_debug unsigned int sysctl_sched_features = 669 const_debug unsigned int sysctl_sched_features =
670 #include "sched_features.h" 670 #include "sched_features.h"
671 0; 671 0;
672 672
673 #undef SCHED_FEAT 673 #undef SCHED_FEAT
674 674
675 #ifdef CONFIG_SCHED_DEBUG 675 #ifdef CONFIG_SCHED_DEBUG
676 #define SCHED_FEAT(name, enabled) \ 676 #define SCHED_FEAT(name, enabled) \
677 #name , 677 #name ,
678 678
679 static __read_mostly char *sched_feat_names[] = { 679 static __read_mostly char *sched_feat_names[] = {
680 #include "sched_features.h" 680 #include "sched_features.h"
681 NULL 681 NULL
682 }; 682 };
683 683
684 #undef SCHED_FEAT 684 #undef SCHED_FEAT
685 685
686 static int sched_feat_show(struct seq_file *m, void *v) 686 static int sched_feat_show(struct seq_file *m, void *v)
687 { 687 {
688 int i; 688 int i;
689 689
690 for (i = 0; sched_feat_names[i]; i++) { 690 for (i = 0; sched_feat_names[i]; i++) {
691 if (!(sysctl_sched_features & (1UL << i))) 691 if (!(sysctl_sched_features & (1UL << i)))
692 seq_puts(m, "NO_"); 692 seq_puts(m, "NO_");
693 seq_printf(m, "%s ", sched_feat_names[i]); 693 seq_printf(m, "%s ", sched_feat_names[i]);
694 } 694 }
695 seq_puts(m, "\n"); 695 seq_puts(m, "\n");
696 696
697 return 0; 697 return 0;
698 } 698 }
699 699
700 static ssize_t 700 static ssize_t
701 sched_feat_write(struct file *filp, const char __user *ubuf, 701 sched_feat_write(struct file *filp, const char __user *ubuf,
702 size_t cnt, loff_t *ppos) 702 size_t cnt, loff_t *ppos)
703 { 703 {
704 char buf[64]; 704 char buf[64];
705 char *cmp = buf; 705 char *cmp = buf;
706 int neg = 0; 706 int neg = 0;
707 int i; 707 int i;
708 708
709 if (cnt > 63) 709 if (cnt > 63)
710 cnt = 63; 710 cnt = 63;
711 711
712 if (copy_from_user(&buf, ubuf, cnt)) 712 if (copy_from_user(&buf, ubuf, cnt))
713 return -EFAULT; 713 return -EFAULT;
714 714
715 buf[cnt] = 0; 715 buf[cnt] = 0;
716 716
717 if (strncmp(buf, "NO_", 3) == 0) { 717 if (strncmp(buf, "NO_", 3) == 0) {
718 neg = 1; 718 neg = 1;
719 cmp += 3; 719 cmp += 3;
720 } 720 }
721 721
722 for (i = 0; sched_feat_names[i]; i++) { 722 for (i = 0; sched_feat_names[i]; i++) {
723 int len = strlen(sched_feat_names[i]); 723 int len = strlen(sched_feat_names[i]);
724 724
725 if (strncmp(cmp, sched_feat_names[i], len) == 0) { 725 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
726 if (neg) 726 if (neg)
727 sysctl_sched_features &= ~(1UL << i); 727 sysctl_sched_features &= ~(1UL << i);
728 else 728 else
729 sysctl_sched_features |= (1UL << i); 729 sysctl_sched_features |= (1UL << i);
730 break; 730 break;
731 } 731 }
732 } 732 }
733 733
734 if (!sched_feat_names[i]) 734 if (!sched_feat_names[i])
735 return -EINVAL; 735 return -EINVAL;
736 736
737 *ppos += cnt; 737 *ppos += cnt;
738 738
739 return cnt; 739 return cnt;
740 } 740 }
741 741
742 static int sched_feat_open(struct inode *inode, struct file *filp) 742 static int sched_feat_open(struct inode *inode, struct file *filp)
743 { 743 {
744 return single_open(filp, sched_feat_show, NULL); 744 return single_open(filp, sched_feat_show, NULL);
745 } 745 }
746 746
747 static const struct file_operations sched_feat_fops = { 747 static const struct file_operations sched_feat_fops = {
748 .open = sched_feat_open, 748 .open = sched_feat_open,
749 .write = sched_feat_write, 749 .write = sched_feat_write,
750 .read = seq_read, 750 .read = seq_read,
751 .llseek = seq_lseek, 751 .llseek = seq_lseek,
752 .release = single_release, 752 .release = single_release,
753 }; 753 };
754 754
755 static __init int sched_init_debug(void) 755 static __init int sched_init_debug(void)
756 { 756 {
757 debugfs_create_file("sched_features", 0644, NULL, NULL, 757 debugfs_create_file("sched_features", 0644, NULL, NULL,
758 &sched_feat_fops); 758 &sched_feat_fops);
759 759
760 return 0; 760 return 0;
761 } 761 }
762 late_initcall(sched_init_debug); 762 late_initcall(sched_init_debug);
763 763
764 #endif 764 #endif
765 765
766 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 766 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
767 767
768 /* 768 /*
769 * Number of tasks to iterate in a single balance run. 769 * Number of tasks to iterate in a single balance run.
770 * Limited because this is done with IRQs disabled. 770 * Limited because this is done with IRQs disabled.
771 */ 771 */
772 const_debug unsigned int sysctl_sched_nr_migrate = 32; 772 const_debug unsigned int sysctl_sched_nr_migrate = 32;
773 773
774 /* 774 /*
775 * ratelimit for updating the group shares. 775 * ratelimit for updating the group shares.
776 * default: 0.25ms 776 * default: 0.25ms
777 */ 777 */
778 unsigned int sysctl_sched_shares_ratelimit = 250000; 778 unsigned int sysctl_sched_shares_ratelimit = 250000;
779 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000; 779 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
780 780
781 /* 781 /*
782 * Inject some fuzzyness into changing the per-cpu group shares 782 * Inject some fuzzyness into changing the per-cpu group shares
783 * this avoids remote rq-locks at the expense of fairness. 783 * this avoids remote rq-locks at the expense of fairness.
784 * default: 4 784 * default: 4
785 */ 785 */
786 unsigned int sysctl_sched_shares_thresh = 4; 786 unsigned int sysctl_sched_shares_thresh = 4;
787 787
788 /* 788 /*
789 * period over which we average the RT time consumption, measured 789 * period over which we average the RT time consumption, measured
790 * in ms. 790 * in ms.
791 * 791 *
792 * default: 1s 792 * default: 1s
793 */ 793 */
794 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 794 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
795 795
796 /* 796 /*
797 * period over which we measure -rt task cpu usage in us. 797 * period over which we measure -rt task cpu usage in us.
798 * default: 1s 798 * default: 1s
799 */ 799 */
800 unsigned int sysctl_sched_rt_period = 1000000; 800 unsigned int sysctl_sched_rt_period = 1000000;
801 801
802 static __read_mostly int scheduler_running; 802 static __read_mostly int scheduler_running;
803 803
804 /* 804 /*
805 * part of the period that we allow rt tasks to run in us. 805 * part of the period that we allow rt tasks to run in us.
806 * default: 0.95s 806 * default: 0.95s
807 */ 807 */
808 int sysctl_sched_rt_runtime = 950000; 808 int sysctl_sched_rt_runtime = 950000;
809 809
810 static inline u64 global_rt_period(void) 810 static inline u64 global_rt_period(void)
811 { 811 {
812 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 812 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
813 } 813 }
814 814
815 static inline u64 global_rt_runtime(void) 815 static inline u64 global_rt_runtime(void)
816 { 816 {
817 if (sysctl_sched_rt_runtime < 0) 817 if (sysctl_sched_rt_runtime < 0)
818 return RUNTIME_INF; 818 return RUNTIME_INF;
819 819
820 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 820 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
821 } 821 }
822 822
823 #ifndef prepare_arch_switch 823 #ifndef prepare_arch_switch
824 # define prepare_arch_switch(next) do { } while (0) 824 # define prepare_arch_switch(next) do { } while (0)
825 #endif 825 #endif
826 #ifndef finish_arch_switch 826 #ifndef finish_arch_switch
827 # define finish_arch_switch(prev) do { } while (0) 827 # define finish_arch_switch(prev) do { } while (0)
828 #endif 828 #endif
829 829
830 static inline int task_current(struct rq *rq, struct task_struct *p) 830 static inline int task_current(struct rq *rq, struct task_struct *p)
831 { 831 {
832 return rq->curr == p; 832 return rq->curr == p;
833 } 833 }
834 834
835 #ifndef __ARCH_WANT_UNLOCKED_CTXSW 835 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
836 static inline int task_running(struct rq *rq, struct task_struct *p) 836 static inline int task_running(struct rq *rq, struct task_struct *p)
837 { 837 {
838 return task_current(rq, p); 838 return task_current(rq, p);
839 } 839 }
840 840
841 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) 841 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
842 { 842 {
843 } 843 }
844 844
845 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) 845 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
846 { 846 {
847 #ifdef CONFIG_DEBUG_SPINLOCK 847 #ifdef CONFIG_DEBUG_SPINLOCK
848 /* this is a valid case when another task releases the spinlock */ 848 /* this is a valid case when another task releases the spinlock */
849 rq->lock.owner = current; 849 rq->lock.owner = current;
850 #endif 850 #endif
851 /* 851 /*
852 * If we are tracking spinlock dependencies then we have to 852 * If we are tracking spinlock dependencies then we have to
853 * fix up the runqueue lock - which gets 'carried over' from 853 * fix up the runqueue lock - which gets 'carried over' from
854 * prev into current: 854 * prev into current:
855 */ 855 */
856 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 856 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
857 857
858 raw_spin_unlock_irq(&rq->lock); 858 raw_spin_unlock_irq(&rq->lock);
859 } 859 }
860 860
861 #else /* __ARCH_WANT_UNLOCKED_CTXSW */ 861 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
862 static inline int task_running(struct rq *rq, struct task_struct *p) 862 static inline int task_running(struct rq *rq, struct task_struct *p)
863 { 863 {
864 #ifdef CONFIG_SMP 864 #ifdef CONFIG_SMP
865 return p->oncpu; 865 return p->oncpu;
866 #else 866 #else
867 return task_current(rq, p); 867 return task_current(rq, p);
868 #endif 868 #endif
869 } 869 }
870 870
871 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) 871 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
872 { 872 {
873 #ifdef CONFIG_SMP 873 #ifdef CONFIG_SMP
874 /* 874 /*
875 * We can optimise this out completely for !SMP, because the 875 * We can optimise this out completely for !SMP, because the
876 * SMP rebalancing from interrupt is the only thing that cares 876 * SMP rebalancing from interrupt is the only thing that cares
877 * here. 877 * here.
878 */ 878 */
879 next->oncpu = 1; 879 next->oncpu = 1;
880 #endif 880 #endif
881 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 881 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
882 raw_spin_unlock_irq(&rq->lock); 882 raw_spin_unlock_irq(&rq->lock);
883 #else 883 #else
884 raw_spin_unlock(&rq->lock); 884 raw_spin_unlock(&rq->lock);
885 #endif 885 #endif
886 } 886 }
887 887
888 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) 888 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
889 { 889 {
890 #ifdef CONFIG_SMP 890 #ifdef CONFIG_SMP
891 /* 891 /*
892 * After ->oncpu is cleared, the task can be moved to a different CPU. 892 * After ->oncpu is cleared, the task can be moved to a different CPU.
893 * We must ensure this doesn't happen until the switch is completely 893 * We must ensure this doesn't happen until the switch is completely
894 * finished. 894 * finished.
895 */ 895 */
896 smp_wmb(); 896 smp_wmb();
897 prev->oncpu = 0; 897 prev->oncpu = 0;
898 #endif 898 #endif
899 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW 899 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
900 local_irq_enable(); 900 local_irq_enable();
901 #endif 901 #endif
902 } 902 }
903 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ 903 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
904 904
905 /* 905 /*
906 * Check whether the task is waking, we use this to synchronize against 906 * Check whether the task is waking, we use this to synchronize against
907 * ttwu() so that task_cpu() reports a stable number. 907 * ttwu() so that task_cpu() reports a stable number.
908 * 908 *
909 * We need to make an exception for PF_STARTING tasks because the fork 909 * We need to make an exception for PF_STARTING tasks because the fork
910 * path might require task_rq_lock() to work, eg. it can call 910 * path might require task_rq_lock() to work, eg. it can call
911 * set_cpus_allowed_ptr() from the cpuset clone_ns code. 911 * set_cpus_allowed_ptr() from the cpuset clone_ns code.
912 */ 912 */
913 static inline int task_is_waking(struct task_struct *p) 913 static inline int task_is_waking(struct task_struct *p)
914 { 914 {
915 return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING)); 915 return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING));
916 } 916 }
917 917
918 /* 918 /*
919 * __task_rq_lock - lock the runqueue a given task resides on. 919 * __task_rq_lock - lock the runqueue a given task resides on.
920 * Must be called interrupts disabled. 920 * Must be called interrupts disabled.
921 */ 921 */
922 static inline struct rq *__task_rq_lock(struct task_struct *p) 922 static inline struct rq *__task_rq_lock(struct task_struct *p)
923 __acquires(rq->lock) 923 __acquires(rq->lock)
924 { 924 {
925 struct rq *rq; 925 struct rq *rq;
926 926
927 for (;;) { 927 for (;;) {
928 while (task_is_waking(p)) 928 while (task_is_waking(p))
929 cpu_relax(); 929 cpu_relax();
930 rq = task_rq(p); 930 rq = task_rq(p);
931 raw_spin_lock(&rq->lock); 931 raw_spin_lock(&rq->lock);
932 if (likely(rq == task_rq(p) && !task_is_waking(p))) 932 if (likely(rq == task_rq(p) && !task_is_waking(p)))
933 return rq; 933 return rq;
934 raw_spin_unlock(&rq->lock); 934 raw_spin_unlock(&rq->lock);
935 } 935 }
936 } 936 }
937 937
938 /* 938 /*
939 * task_rq_lock - lock the runqueue a given task resides on and disable 939 * task_rq_lock - lock the runqueue a given task resides on and disable
940 * interrupts. Note the ordering: we can safely lookup the task_rq without 940 * interrupts. Note the ordering: we can safely lookup the task_rq without
941 * explicitly disabling preemption. 941 * explicitly disabling preemption.
942 */ 942 */
943 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) 943 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
944 __acquires(rq->lock) 944 __acquires(rq->lock)
945 { 945 {
946 struct rq *rq; 946 struct rq *rq;
947 947
948 for (;;) { 948 for (;;) {
949 while (task_is_waking(p)) 949 while (task_is_waking(p))
950 cpu_relax(); 950 cpu_relax();
951 local_irq_save(*flags); 951 local_irq_save(*flags);
952 rq = task_rq(p); 952 rq = task_rq(p);
953 raw_spin_lock(&rq->lock); 953 raw_spin_lock(&rq->lock);
954 if (likely(rq == task_rq(p) && !task_is_waking(p))) 954 if (likely(rq == task_rq(p) && !task_is_waking(p)))
955 return rq; 955 return rq;
956 raw_spin_unlock_irqrestore(&rq->lock, *flags); 956 raw_spin_unlock_irqrestore(&rq->lock, *flags);
957 } 957 }
958 } 958 }
959 959
960 void task_rq_unlock_wait(struct task_struct *p) 960 void task_rq_unlock_wait(struct task_struct *p)
961 { 961 {
962 struct rq *rq = task_rq(p); 962 struct rq *rq = task_rq(p);
963 963
964 smp_mb(); /* spin-unlock-wait is not a full memory barrier */ 964 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
965 raw_spin_unlock_wait(&rq->lock); 965 raw_spin_unlock_wait(&rq->lock);
966 } 966 }
967 967
968 static void __task_rq_unlock(struct rq *rq) 968 static void __task_rq_unlock(struct rq *rq)
969 __releases(rq->lock) 969 __releases(rq->lock)
970 { 970 {
971 raw_spin_unlock(&rq->lock); 971 raw_spin_unlock(&rq->lock);
972 } 972 }
973 973
974 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags) 974 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
975 __releases(rq->lock) 975 __releases(rq->lock)
976 { 976 {
977 raw_spin_unlock_irqrestore(&rq->lock, *flags); 977 raw_spin_unlock_irqrestore(&rq->lock, *flags);
978 } 978 }
979 979
980 /* 980 /*
981 * this_rq_lock - lock this runqueue and disable interrupts. 981 * this_rq_lock - lock this runqueue and disable interrupts.
982 */ 982 */
983 static struct rq *this_rq_lock(void) 983 static struct rq *this_rq_lock(void)
984 __acquires(rq->lock) 984 __acquires(rq->lock)
985 { 985 {
986 struct rq *rq; 986 struct rq *rq;
987 987
988 local_irq_disable(); 988 local_irq_disable();
989 rq = this_rq(); 989 rq = this_rq();
990 raw_spin_lock(&rq->lock); 990 raw_spin_lock(&rq->lock);
991 991
992 return rq; 992 return rq;
993 } 993 }
994 994
995 #ifdef CONFIG_SCHED_HRTICK 995 #ifdef CONFIG_SCHED_HRTICK
996 /* 996 /*
997 * Use HR-timers to deliver accurate preemption points. 997 * Use HR-timers to deliver accurate preemption points.
998 * 998 *
999 * Its all a bit involved since we cannot program an hrt while holding the 999 * Its all a bit involved since we cannot program an hrt while holding the
1000 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a 1000 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1001 * reschedule event. 1001 * reschedule event.
1002 * 1002 *
1003 * When we get rescheduled we reprogram the hrtick_timer outside of the 1003 * When we get rescheduled we reprogram the hrtick_timer outside of the
1004 * rq->lock. 1004 * rq->lock.
1005 */ 1005 */
1006 1006
1007 /* 1007 /*
1008 * Use hrtick when: 1008 * Use hrtick when:
1009 * - enabled by features 1009 * - enabled by features
1010 * - hrtimer is actually high res 1010 * - hrtimer is actually high res
1011 */ 1011 */
1012 static inline int hrtick_enabled(struct rq *rq) 1012 static inline int hrtick_enabled(struct rq *rq)
1013 { 1013 {
1014 if (!sched_feat(HRTICK)) 1014 if (!sched_feat(HRTICK))
1015 return 0; 1015 return 0;
1016 if (!cpu_active(cpu_of(rq))) 1016 if (!cpu_active(cpu_of(rq)))
1017 return 0; 1017 return 0;
1018 return hrtimer_is_hres_active(&rq->hrtick_timer); 1018 return hrtimer_is_hres_active(&rq->hrtick_timer);
1019 } 1019 }
1020 1020
1021 static void hrtick_clear(struct rq *rq) 1021 static void hrtick_clear(struct rq *rq)
1022 { 1022 {
1023 if (hrtimer_active(&rq->hrtick_timer)) 1023 if (hrtimer_active(&rq->hrtick_timer))
1024 hrtimer_cancel(&rq->hrtick_timer); 1024 hrtimer_cancel(&rq->hrtick_timer);
1025 } 1025 }
1026 1026
1027 /* 1027 /*
1028 * High-resolution timer tick. 1028 * High-resolution timer tick.
1029 * Runs from hardirq context with interrupts disabled. 1029 * Runs from hardirq context with interrupts disabled.
1030 */ 1030 */
1031 static enum hrtimer_restart hrtick(struct hrtimer *timer) 1031 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1032 { 1032 {
1033 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 1033 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1034 1034
1035 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 1035 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1036 1036
1037 raw_spin_lock(&rq->lock); 1037 raw_spin_lock(&rq->lock);
1038 update_rq_clock(rq); 1038 update_rq_clock(rq);
1039 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 1039 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1040 raw_spin_unlock(&rq->lock); 1040 raw_spin_unlock(&rq->lock);
1041 1041
1042 return HRTIMER_NORESTART; 1042 return HRTIMER_NORESTART;
1043 } 1043 }
1044 1044
1045 #ifdef CONFIG_SMP 1045 #ifdef CONFIG_SMP
1046 /* 1046 /*
1047 * called from hardirq (IPI) context 1047 * called from hardirq (IPI) context
1048 */ 1048 */
1049 static void __hrtick_start(void *arg) 1049 static void __hrtick_start(void *arg)
1050 { 1050 {
1051 struct rq *rq = arg; 1051 struct rq *rq = arg;
1052 1052
1053 raw_spin_lock(&rq->lock); 1053 raw_spin_lock(&rq->lock);
1054 hrtimer_restart(&rq->hrtick_timer); 1054 hrtimer_restart(&rq->hrtick_timer);
1055 rq->hrtick_csd_pending = 0; 1055 rq->hrtick_csd_pending = 0;
1056 raw_spin_unlock(&rq->lock); 1056 raw_spin_unlock(&rq->lock);
1057 } 1057 }
1058 1058
1059 /* 1059 /*
1060 * Called to set the hrtick timer state. 1060 * Called to set the hrtick timer state.
1061 * 1061 *
1062 * called with rq->lock held and irqs disabled 1062 * called with rq->lock held and irqs disabled
1063 */ 1063 */
1064 static void hrtick_start(struct rq *rq, u64 delay) 1064 static void hrtick_start(struct rq *rq, u64 delay)
1065 { 1065 {
1066 struct hrtimer *timer = &rq->hrtick_timer; 1066 struct hrtimer *timer = &rq->hrtick_timer;
1067 ktime_t time = ktime_add_ns(timer->base->get_time(), delay); 1067 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1068 1068
1069 hrtimer_set_expires(timer, time); 1069 hrtimer_set_expires(timer, time);
1070 1070
1071 if (rq == this_rq()) { 1071 if (rq == this_rq()) {
1072 hrtimer_restart(timer); 1072 hrtimer_restart(timer);
1073 } else if (!rq->hrtick_csd_pending) { 1073 } else if (!rq->hrtick_csd_pending) {
1074 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0); 1074 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1075 rq->hrtick_csd_pending = 1; 1075 rq->hrtick_csd_pending = 1;
1076 } 1076 }
1077 } 1077 }
1078 1078
1079 static int 1079 static int
1080 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) 1080 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1081 { 1081 {
1082 int cpu = (int)(long)hcpu; 1082 int cpu = (int)(long)hcpu;
1083 1083
1084 switch (action) { 1084 switch (action) {
1085 case CPU_UP_CANCELED: 1085 case CPU_UP_CANCELED:
1086 case CPU_UP_CANCELED_FROZEN: 1086 case CPU_UP_CANCELED_FROZEN:
1087 case CPU_DOWN_PREPARE: 1087 case CPU_DOWN_PREPARE:
1088 case CPU_DOWN_PREPARE_FROZEN: 1088 case CPU_DOWN_PREPARE_FROZEN:
1089 case CPU_DEAD: 1089 case CPU_DEAD:
1090 case CPU_DEAD_FROZEN: 1090 case CPU_DEAD_FROZEN:
1091 hrtick_clear(cpu_rq(cpu)); 1091 hrtick_clear(cpu_rq(cpu));
1092 return NOTIFY_OK; 1092 return NOTIFY_OK;
1093 } 1093 }
1094 1094
1095 return NOTIFY_DONE; 1095 return NOTIFY_DONE;
1096 } 1096 }
1097 1097
1098 static __init void init_hrtick(void) 1098 static __init void init_hrtick(void)
1099 { 1099 {
1100 hotcpu_notifier(hotplug_hrtick, 0); 1100 hotcpu_notifier(hotplug_hrtick, 0);
1101 } 1101 }
1102 #else 1102 #else
1103 /* 1103 /*
1104 * Called to set the hrtick timer state. 1104 * Called to set the hrtick timer state.
1105 * 1105 *
1106 * called with rq->lock held and irqs disabled 1106 * called with rq->lock held and irqs disabled
1107 */ 1107 */
1108 static void hrtick_start(struct rq *rq, u64 delay) 1108 static void hrtick_start(struct rq *rq, u64 delay)
1109 { 1109 {
1110 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, 1110 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1111 HRTIMER_MODE_REL_PINNED, 0); 1111 HRTIMER_MODE_REL_PINNED, 0);
1112 } 1112 }
1113 1113
1114 static inline void init_hrtick(void) 1114 static inline void init_hrtick(void)
1115 { 1115 {
1116 } 1116 }
1117 #endif /* CONFIG_SMP */ 1117 #endif /* CONFIG_SMP */
1118 1118
1119 static void init_rq_hrtick(struct rq *rq) 1119 static void init_rq_hrtick(struct rq *rq)
1120 { 1120 {
1121 #ifdef CONFIG_SMP 1121 #ifdef CONFIG_SMP
1122 rq->hrtick_csd_pending = 0; 1122 rq->hrtick_csd_pending = 0;
1123 1123
1124 rq->hrtick_csd.flags = 0; 1124 rq->hrtick_csd.flags = 0;
1125 rq->hrtick_csd.func = __hrtick_start; 1125 rq->hrtick_csd.func = __hrtick_start;
1126 rq->hrtick_csd.info = rq; 1126 rq->hrtick_csd.info = rq;
1127 #endif 1127 #endif
1128 1128
1129 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1129 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1130 rq->hrtick_timer.function = hrtick; 1130 rq->hrtick_timer.function = hrtick;
1131 } 1131 }
1132 #else /* CONFIG_SCHED_HRTICK */ 1132 #else /* CONFIG_SCHED_HRTICK */
1133 static inline void hrtick_clear(struct rq *rq) 1133 static inline void hrtick_clear(struct rq *rq)
1134 { 1134 {
1135 } 1135 }
1136 1136
1137 static inline void init_rq_hrtick(struct rq *rq) 1137 static inline void init_rq_hrtick(struct rq *rq)
1138 { 1138 {
1139 } 1139 }
1140 1140
1141 static inline void init_hrtick(void) 1141 static inline void init_hrtick(void)
1142 { 1142 {
1143 } 1143 }
1144 #endif /* CONFIG_SCHED_HRTICK */ 1144 #endif /* CONFIG_SCHED_HRTICK */
1145 1145
1146 /* 1146 /*
1147 * resched_task - mark a task 'to be rescheduled now'. 1147 * resched_task - mark a task 'to be rescheduled now'.
1148 * 1148 *
1149 * On UP this means the setting of the need_resched flag, on SMP it 1149 * On UP this means the setting of the need_resched flag, on SMP it
1150 * might also involve a cross-CPU call to trigger the scheduler on 1150 * might also involve a cross-CPU call to trigger the scheduler on
1151 * the target CPU. 1151 * the target CPU.
1152 */ 1152 */
1153 #ifdef CONFIG_SMP 1153 #ifdef CONFIG_SMP
1154 1154
1155 #ifndef tsk_is_polling 1155 #ifndef tsk_is_polling
1156 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG) 1156 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1157 #endif 1157 #endif
1158 1158
1159 static void resched_task(struct task_struct *p) 1159 static void resched_task(struct task_struct *p)
1160 { 1160 {
1161 int cpu; 1161 int cpu;
1162 1162
1163 assert_raw_spin_locked(&task_rq(p)->lock); 1163 assert_raw_spin_locked(&task_rq(p)->lock);
1164 1164
1165 if (test_tsk_need_resched(p)) 1165 if (test_tsk_need_resched(p))
1166 return; 1166 return;
1167 1167
1168 set_tsk_need_resched(p); 1168 set_tsk_need_resched(p);
1169 1169
1170 cpu = task_cpu(p); 1170 cpu = task_cpu(p);
1171 if (cpu == smp_processor_id()) 1171 if (cpu == smp_processor_id())
1172 return; 1172 return;
1173 1173
1174 /* NEED_RESCHED must be visible before we test polling */ 1174 /* NEED_RESCHED must be visible before we test polling */
1175 smp_mb(); 1175 smp_mb();
1176 if (!tsk_is_polling(p)) 1176 if (!tsk_is_polling(p))
1177 smp_send_reschedule(cpu); 1177 smp_send_reschedule(cpu);
1178 } 1178 }
1179 1179
1180 static void resched_cpu(int cpu) 1180 static void resched_cpu(int cpu)
1181 { 1181 {
1182 struct rq *rq = cpu_rq(cpu); 1182 struct rq *rq = cpu_rq(cpu);
1183 unsigned long flags; 1183 unsigned long flags;
1184 1184
1185 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 1185 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1186 return; 1186 return;
1187 resched_task(cpu_curr(cpu)); 1187 resched_task(cpu_curr(cpu));
1188 raw_spin_unlock_irqrestore(&rq->lock, flags); 1188 raw_spin_unlock_irqrestore(&rq->lock, flags);
1189 } 1189 }
1190 1190
1191 #ifdef CONFIG_NO_HZ 1191 #ifdef CONFIG_NO_HZ
1192 /* 1192 /*
1193 * When add_timer_on() enqueues a timer into the timer wheel of an 1193 * When add_timer_on() enqueues a timer into the timer wheel of an
1194 * idle CPU then this timer might expire before the next timer event 1194 * idle CPU then this timer might expire before the next timer event
1195 * which is scheduled to wake up that CPU. In case of a completely 1195 * which is scheduled to wake up that CPU. In case of a completely
1196 * idle system the next event might even be infinite time into the 1196 * idle system the next event might even be infinite time into the
1197 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1197 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1198 * leaves the inner idle loop so the newly added timer is taken into 1198 * leaves the inner idle loop so the newly added timer is taken into
1199 * account when the CPU goes back to idle and evaluates the timer 1199 * account when the CPU goes back to idle and evaluates the timer
1200 * wheel for the next timer event. 1200 * wheel for the next timer event.
1201 */ 1201 */
1202 void wake_up_idle_cpu(int cpu) 1202 void wake_up_idle_cpu(int cpu)
1203 { 1203 {
1204 struct rq *rq = cpu_rq(cpu); 1204 struct rq *rq = cpu_rq(cpu);
1205 1205
1206 if (cpu == smp_processor_id()) 1206 if (cpu == smp_processor_id())
1207 return; 1207 return;
1208 1208
1209 /* 1209 /*
1210 * This is safe, as this function is called with the timer 1210 * This is safe, as this function is called with the timer
1211 * wheel base lock of (cpu) held. When the CPU is on the way 1211 * wheel base lock of (cpu) held. When the CPU is on the way
1212 * to idle and has not yet set rq->curr to idle then it will 1212 * to idle and has not yet set rq->curr to idle then it will
1213 * be serialized on the timer wheel base lock and take the new 1213 * be serialized on the timer wheel base lock and take the new
1214 * timer into account automatically. 1214 * timer into account automatically.
1215 */ 1215 */
1216 if (rq->curr != rq->idle) 1216 if (rq->curr != rq->idle)
1217 return; 1217 return;
1218 1218
1219 /* 1219 /*
1220 * We can set TIF_RESCHED on the idle task of the other CPU 1220 * We can set TIF_RESCHED on the idle task of the other CPU
1221 * lockless. The worst case is that the other CPU runs the 1221 * lockless. The worst case is that the other CPU runs the
1222 * idle task through an additional NOOP schedule() 1222 * idle task through an additional NOOP schedule()
1223 */ 1223 */
1224 set_tsk_need_resched(rq->idle); 1224 set_tsk_need_resched(rq->idle);
1225 1225
1226 /* NEED_RESCHED must be visible before we test polling */ 1226 /* NEED_RESCHED must be visible before we test polling */
1227 smp_mb(); 1227 smp_mb();
1228 if (!tsk_is_polling(rq->idle)) 1228 if (!tsk_is_polling(rq->idle))
1229 smp_send_reschedule(cpu); 1229 smp_send_reschedule(cpu);
1230 } 1230 }
1231 #endif /* CONFIG_NO_HZ */ 1231 #endif /* CONFIG_NO_HZ */
1232 1232
1233 static u64 sched_avg_period(void) 1233 static u64 sched_avg_period(void)
1234 { 1234 {
1235 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2; 1235 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1236 } 1236 }
1237 1237
1238 static void sched_avg_update(struct rq *rq) 1238 static void sched_avg_update(struct rq *rq)
1239 { 1239 {
1240 s64 period = sched_avg_period(); 1240 s64 period = sched_avg_period();
1241 1241
1242 while ((s64)(rq->clock - rq->age_stamp) > period) { 1242 while ((s64)(rq->clock - rq->age_stamp) > period) {
1243 rq->age_stamp += period; 1243 rq->age_stamp += period;
1244 rq->rt_avg /= 2; 1244 rq->rt_avg /= 2;
1245 } 1245 }
1246 } 1246 }
1247 1247
1248 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta) 1248 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1249 { 1249 {
1250 rq->rt_avg += rt_delta; 1250 rq->rt_avg += rt_delta;
1251 sched_avg_update(rq); 1251 sched_avg_update(rq);
1252 } 1252 }
1253 1253
1254 #else /* !CONFIG_SMP */ 1254 #else /* !CONFIG_SMP */
1255 static void resched_task(struct task_struct *p) 1255 static void resched_task(struct task_struct *p)
1256 { 1256 {
1257 assert_raw_spin_locked(&task_rq(p)->lock); 1257 assert_raw_spin_locked(&task_rq(p)->lock);
1258 set_tsk_need_resched(p); 1258 set_tsk_need_resched(p);
1259 } 1259 }
1260 1260
1261 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta) 1261 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1262 { 1262 {
1263 } 1263 }
1264 #endif /* CONFIG_SMP */ 1264 #endif /* CONFIG_SMP */
1265 1265
1266 #if BITS_PER_LONG == 32 1266 #if BITS_PER_LONG == 32
1267 # define WMULT_CONST (~0UL) 1267 # define WMULT_CONST (~0UL)
1268 #else 1268 #else
1269 # define WMULT_CONST (1UL << 32) 1269 # define WMULT_CONST (1UL << 32)
1270 #endif 1270 #endif
1271 1271
1272 #define WMULT_SHIFT 32 1272 #define WMULT_SHIFT 32
1273 1273
1274 /* 1274 /*
1275 * Shift right and round: 1275 * Shift right and round:
1276 */ 1276 */
1277 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y)) 1277 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1278 1278
1279 /* 1279 /*
1280 * delta *= weight / lw 1280 * delta *= weight / lw
1281 */ 1281 */
1282 static unsigned long 1282 static unsigned long
1283 calc_delta_mine(unsigned long delta_exec, unsigned long weight, 1283 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1284 struct load_weight *lw) 1284 struct load_weight *lw)
1285 { 1285 {
1286 u64 tmp; 1286 u64 tmp;
1287 1287
1288 if (!lw->inv_weight) { 1288 if (!lw->inv_weight) {
1289 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST)) 1289 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1290 lw->inv_weight = 1; 1290 lw->inv_weight = 1;
1291 else 1291 else
1292 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2) 1292 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1293 / (lw->weight+1); 1293 / (lw->weight+1);
1294 } 1294 }
1295 1295
1296 tmp = (u64)delta_exec * weight; 1296 tmp = (u64)delta_exec * weight;
1297 /* 1297 /*
1298 * Check whether we'd overflow the 64-bit multiplication: 1298 * Check whether we'd overflow the 64-bit multiplication:
1299 */ 1299 */
1300 if (unlikely(tmp > WMULT_CONST)) 1300 if (unlikely(tmp > WMULT_CONST))
1301 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight, 1301 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1302 WMULT_SHIFT/2); 1302 WMULT_SHIFT/2);
1303 else 1303 else
1304 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT); 1304 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1305 1305
1306 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX); 1306 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1307 } 1307 }
1308 1308
1309 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 1309 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1310 { 1310 {
1311 lw->weight += inc; 1311 lw->weight += inc;
1312 lw->inv_weight = 0; 1312 lw->inv_weight = 0;
1313 } 1313 }
1314 1314
1315 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 1315 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1316 { 1316 {
1317 lw->weight -= dec; 1317 lw->weight -= dec;
1318 lw->inv_weight = 0; 1318 lw->inv_weight = 0;
1319 } 1319 }
1320 1320
1321 /* 1321 /*
1322 * To aid in avoiding the subversion of "niceness" due to uneven distribution 1322 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1323 * of tasks with abnormal "nice" values across CPUs the contribution that 1323 * of tasks with abnormal "nice" values across CPUs the contribution that
1324 * each task makes to its run queue's load is weighted according to its 1324 * each task makes to its run queue's load is weighted according to its
1325 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 1325 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1326 * scaled version of the new time slice allocation that they receive on time 1326 * scaled version of the new time slice allocation that they receive on time
1327 * slice expiry etc. 1327 * slice expiry etc.
1328 */ 1328 */
1329 1329
1330 #define WEIGHT_IDLEPRIO 3 1330 #define WEIGHT_IDLEPRIO 3
1331 #define WMULT_IDLEPRIO 1431655765 1331 #define WMULT_IDLEPRIO 1431655765
1332 1332
1333 /* 1333 /*
1334 * Nice levels are multiplicative, with a gentle 10% change for every 1334 * Nice levels are multiplicative, with a gentle 10% change for every
1335 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 1335 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1336 * nice 1, it will get ~10% less CPU time than another CPU-bound task 1336 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1337 * that remained on nice 0. 1337 * that remained on nice 0.
1338 * 1338 *
1339 * The "10% effect" is relative and cumulative: from _any_ nice level, 1339 * The "10% effect" is relative and cumulative: from _any_ nice level,
1340 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 1340 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1341 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 1341 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1342 * If a task goes up by ~10% and another task goes down by ~10% then 1342 * If a task goes up by ~10% and another task goes down by ~10% then
1343 * the relative distance between them is ~25%.) 1343 * the relative distance between them is ~25%.)
1344 */ 1344 */
1345 static const int prio_to_weight[40] = { 1345 static const int prio_to_weight[40] = {
1346 /* -20 */ 88761, 71755, 56483, 46273, 36291, 1346 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1347 /* -15 */ 29154, 23254, 18705, 14949, 11916, 1347 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1348 /* -10 */ 9548, 7620, 6100, 4904, 3906, 1348 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1349 /* -5 */ 3121, 2501, 1991, 1586, 1277, 1349 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1350 /* 0 */ 1024, 820, 655, 526, 423, 1350 /* 0 */ 1024, 820, 655, 526, 423,
1351 /* 5 */ 335, 272, 215, 172, 137, 1351 /* 5 */ 335, 272, 215, 172, 137,
1352 /* 10 */ 110, 87, 70, 56, 45, 1352 /* 10 */ 110, 87, 70, 56, 45,
1353 /* 15 */ 36, 29, 23, 18, 15, 1353 /* 15 */ 36, 29, 23, 18, 15,
1354 }; 1354 };
1355 1355
1356 /* 1356 /*
1357 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. 1357 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1358 * 1358 *
1359 * In cases where the weight does not change often, we can use the 1359 * In cases where the weight does not change often, we can use the
1360 * precalculated inverse to speed up arithmetics by turning divisions 1360 * precalculated inverse to speed up arithmetics by turning divisions
1361 * into multiplications: 1361 * into multiplications:
1362 */ 1362 */
1363 static const u32 prio_to_wmult[40] = { 1363 static const u32 prio_to_wmult[40] = {
1364 /* -20 */ 48388, 59856, 76040, 92818, 118348, 1364 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1365 /* -15 */ 147320, 184698, 229616, 287308, 360437, 1365 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1366 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 1366 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1367 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 1367 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1368 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 1368 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1369 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 1369 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1370 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 1370 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1371 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 1371 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1372 }; 1372 };
1373 1373
1374 /* Time spent by the tasks of the cpu accounting group executing in ... */ 1374 /* Time spent by the tasks of the cpu accounting group executing in ... */
1375 enum cpuacct_stat_index { 1375 enum cpuacct_stat_index {
1376 CPUACCT_STAT_USER, /* ... user mode */ 1376 CPUACCT_STAT_USER, /* ... user mode */
1377 CPUACCT_STAT_SYSTEM, /* ... kernel mode */ 1377 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1378 1378
1379 CPUACCT_STAT_NSTATS, 1379 CPUACCT_STAT_NSTATS,
1380 }; 1380 };
1381 1381
1382 #ifdef CONFIG_CGROUP_CPUACCT 1382 #ifdef CONFIG_CGROUP_CPUACCT
1383 static void cpuacct_charge(struct task_struct *tsk, u64 cputime); 1383 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1384 static void cpuacct_update_stats(struct task_struct *tsk, 1384 static void cpuacct_update_stats(struct task_struct *tsk,
1385 enum cpuacct_stat_index idx, cputime_t val); 1385 enum cpuacct_stat_index idx, cputime_t val);
1386 #else 1386 #else
1387 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {} 1387 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1388 static inline void cpuacct_update_stats(struct task_struct *tsk, 1388 static inline void cpuacct_update_stats(struct task_struct *tsk,
1389 enum cpuacct_stat_index idx, cputime_t val) {} 1389 enum cpuacct_stat_index idx, cputime_t val) {}
1390 #endif 1390 #endif
1391 1391
1392 static inline void inc_cpu_load(struct rq *rq, unsigned long load) 1392 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1393 { 1393 {
1394 update_load_add(&rq->load, load); 1394 update_load_add(&rq->load, load);
1395 } 1395 }
1396 1396
1397 static inline void dec_cpu_load(struct rq *rq, unsigned long load) 1397 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1398 { 1398 {
1399 update_load_sub(&rq->load, load); 1399 update_load_sub(&rq->load, load);
1400 } 1400 }
1401 1401
1402 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED) 1402 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1403 typedef int (*tg_visitor)(struct task_group *, void *); 1403 typedef int (*tg_visitor)(struct task_group *, void *);
1404 1404
1405 /* 1405 /*
1406 * Iterate the full tree, calling @down when first entering a node and @up when 1406 * Iterate the full tree, calling @down when first entering a node and @up when
1407 * leaving it for the final time. 1407 * leaving it for the final time.
1408 */ 1408 */
1409 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 1409 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1410 { 1410 {
1411 struct task_group *parent, *child; 1411 struct task_group *parent, *child;
1412 int ret; 1412 int ret;
1413 1413
1414 rcu_read_lock(); 1414 rcu_read_lock();
1415 parent = &root_task_group; 1415 parent = &root_task_group;
1416 down: 1416 down:
1417 ret = (*down)(parent, data); 1417 ret = (*down)(parent, data);
1418 if (ret) 1418 if (ret)
1419 goto out_unlock; 1419 goto out_unlock;
1420 list_for_each_entry_rcu(child, &parent->children, siblings) { 1420 list_for_each_entry_rcu(child, &parent->children, siblings) {
1421 parent = child; 1421 parent = child;
1422 goto down; 1422 goto down;
1423 1423
1424 up: 1424 up:
1425 continue; 1425 continue;
1426 } 1426 }
1427 ret = (*up)(parent, data); 1427 ret = (*up)(parent, data);
1428 if (ret) 1428 if (ret)
1429 goto out_unlock; 1429 goto out_unlock;
1430 1430
1431 child = parent; 1431 child = parent;
1432 parent = parent->parent; 1432 parent = parent->parent;
1433 if (parent) 1433 if (parent)
1434 goto up; 1434 goto up;
1435 out_unlock: 1435 out_unlock:
1436 rcu_read_unlock(); 1436 rcu_read_unlock();
1437 1437
1438 return ret; 1438 return ret;
1439 } 1439 }
1440 1440
1441 static int tg_nop(struct task_group *tg, void *data) 1441 static int tg_nop(struct task_group *tg, void *data)
1442 { 1442 {
1443 return 0; 1443 return 0;
1444 } 1444 }
1445 #endif 1445 #endif
1446 1446
1447 #ifdef CONFIG_SMP 1447 #ifdef CONFIG_SMP
1448 /* Used instead of source_load when we know the type == 0 */ 1448 /* Used instead of source_load when we know the type == 0 */
1449 static unsigned long weighted_cpuload(const int cpu) 1449 static unsigned long weighted_cpuload(const int cpu)
1450 { 1450 {
1451 return cpu_rq(cpu)->load.weight; 1451 return cpu_rq(cpu)->load.weight;
1452 } 1452 }
1453 1453
1454 /* 1454 /*
1455 * Return a low guess at the load of a migration-source cpu weighted 1455 * Return a low guess at the load of a migration-source cpu weighted
1456 * according to the scheduling class and "nice" value. 1456 * according to the scheduling class and "nice" value.
1457 * 1457 *
1458 * We want to under-estimate the load of migration sources, to 1458 * We want to under-estimate the load of migration sources, to
1459 * balance conservatively. 1459 * balance conservatively.
1460 */ 1460 */
1461 static unsigned long source_load(int cpu, int type) 1461 static unsigned long source_load(int cpu, int type)
1462 { 1462 {
1463 struct rq *rq = cpu_rq(cpu); 1463 struct rq *rq = cpu_rq(cpu);
1464 unsigned long total = weighted_cpuload(cpu); 1464 unsigned long total = weighted_cpuload(cpu);
1465 1465
1466 if (type == 0 || !sched_feat(LB_BIAS)) 1466 if (type == 0 || !sched_feat(LB_BIAS))
1467 return total; 1467 return total;
1468 1468
1469 return min(rq->cpu_load[type-1], total); 1469 return min(rq->cpu_load[type-1], total);
1470 } 1470 }
1471 1471
1472 /* 1472 /*
1473 * Return a high guess at the load of a migration-target cpu weighted 1473 * Return a high guess at the load of a migration-target cpu weighted
1474 * according to the scheduling class and "nice" value. 1474 * according to the scheduling class and "nice" value.
1475 */ 1475 */
1476 static unsigned long target_load(int cpu, int type) 1476 static unsigned long target_load(int cpu, int type)
1477 { 1477 {
1478 struct rq *rq = cpu_rq(cpu); 1478 struct rq *rq = cpu_rq(cpu);
1479 unsigned long total = weighted_cpuload(cpu); 1479 unsigned long total = weighted_cpuload(cpu);
1480 1480
1481 if (type == 0 || !sched_feat(LB_BIAS)) 1481 if (type == 0 || !sched_feat(LB_BIAS))
1482 return total; 1482 return total;
1483 1483
1484 return max(rq->cpu_load[type-1], total); 1484 return max(rq->cpu_load[type-1], total);
1485 } 1485 }
1486 1486
1487 static struct sched_group *group_of(int cpu) 1487 static struct sched_group *group_of(int cpu)
1488 { 1488 {
1489 struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd); 1489 struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
1490 1490
1491 if (!sd) 1491 if (!sd)
1492 return NULL; 1492 return NULL;
1493 1493
1494 return sd->groups; 1494 return sd->groups;
1495 } 1495 }
1496 1496
1497 static unsigned long power_of(int cpu) 1497 static unsigned long power_of(int cpu)
1498 { 1498 {
1499 struct sched_group *group = group_of(cpu); 1499 struct sched_group *group = group_of(cpu);
1500 1500
1501 if (!group) 1501 if (!group)
1502 return SCHED_LOAD_SCALE; 1502 return SCHED_LOAD_SCALE;
1503 1503
1504 return group->cpu_power; 1504 return group->cpu_power;
1505 } 1505 }
1506 1506
1507 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd); 1507 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1508 1508
1509 static unsigned long cpu_avg_load_per_task(int cpu) 1509 static unsigned long cpu_avg_load_per_task(int cpu)
1510 { 1510 {
1511 struct rq *rq = cpu_rq(cpu); 1511 struct rq *rq = cpu_rq(cpu);
1512 unsigned long nr_running = ACCESS_ONCE(rq->nr_running); 1512 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1513 1513
1514 if (nr_running) 1514 if (nr_running)
1515 rq->avg_load_per_task = rq->load.weight / nr_running; 1515 rq->avg_load_per_task = rq->load.weight / nr_running;
1516 else 1516 else
1517 rq->avg_load_per_task = 0; 1517 rq->avg_load_per_task = 0;
1518 1518
1519 return rq->avg_load_per_task; 1519 return rq->avg_load_per_task;
1520 } 1520 }
1521 1521
1522 #ifdef CONFIG_FAIR_GROUP_SCHED 1522 #ifdef CONFIG_FAIR_GROUP_SCHED
1523 1523
1524 static __read_mostly unsigned long __percpu *update_shares_data; 1524 static __read_mostly unsigned long __percpu *update_shares_data;
1525 1525
1526 static void __set_se_shares(struct sched_entity *se, unsigned long shares); 1526 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1527 1527
1528 /* 1528 /*
1529 * Calculate and set the cpu's group shares. 1529 * Calculate and set the cpu's group shares.
1530 */ 1530 */
1531 static void update_group_shares_cpu(struct task_group *tg, int cpu, 1531 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1532 unsigned long sd_shares, 1532 unsigned long sd_shares,
1533 unsigned long sd_rq_weight, 1533 unsigned long sd_rq_weight,
1534 unsigned long *usd_rq_weight) 1534 unsigned long *usd_rq_weight)
1535 { 1535 {
1536 unsigned long shares, rq_weight; 1536 unsigned long shares, rq_weight;
1537 int boost = 0; 1537 int boost = 0;
1538 1538
1539 rq_weight = usd_rq_weight[cpu]; 1539 rq_weight = usd_rq_weight[cpu];
1540 if (!rq_weight) { 1540 if (!rq_weight) {
1541 boost = 1; 1541 boost = 1;
1542 rq_weight = NICE_0_LOAD; 1542 rq_weight = NICE_0_LOAD;
1543 } 1543 }
1544 1544
1545 /* 1545 /*
1546 * \Sum_j shares_j * rq_weight_i 1546 * \Sum_j shares_j * rq_weight_i
1547 * shares_i = ----------------------------- 1547 * shares_i = -----------------------------
1548 * \Sum_j rq_weight_j 1548 * \Sum_j rq_weight_j
1549 */ 1549 */
1550 shares = (sd_shares * rq_weight) / sd_rq_weight; 1550 shares = (sd_shares * rq_weight) / sd_rq_weight;
1551 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES); 1551 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1552 1552
1553 if (abs(shares - tg->se[cpu]->load.weight) > 1553 if (abs(shares - tg->se[cpu]->load.weight) >
1554 sysctl_sched_shares_thresh) { 1554 sysctl_sched_shares_thresh) {
1555 struct rq *rq = cpu_rq(cpu); 1555 struct rq *rq = cpu_rq(cpu);
1556 unsigned long flags; 1556 unsigned long flags;
1557 1557
1558 raw_spin_lock_irqsave(&rq->lock, flags); 1558 raw_spin_lock_irqsave(&rq->lock, flags);
1559 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight; 1559 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1560 tg->cfs_rq[cpu]->shares = boost ? 0 : shares; 1560 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1561 __set_se_shares(tg->se[cpu], shares); 1561 __set_se_shares(tg->se[cpu], shares);
1562 raw_spin_unlock_irqrestore(&rq->lock, flags); 1562 raw_spin_unlock_irqrestore(&rq->lock, flags);
1563 } 1563 }
1564 } 1564 }
1565 1565
1566 /* 1566 /*
1567 * Re-compute the task group their per cpu shares over the given domain. 1567 * Re-compute the task group their per cpu shares over the given domain.
1568 * This needs to be done in a bottom-up fashion because the rq weight of a 1568 * This needs to be done in a bottom-up fashion because the rq weight of a
1569 * parent group depends on the shares of its child groups. 1569 * parent group depends on the shares of its child groups.
1570 */ 1570 */
1571 static int tg_shares_up(struct task_group *tg, void *data) 1571 static int tg_shares_up(struct task_group *tg, void *data)
1572 { 1572 {
1573 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0; 1573 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1574 unsigned long *usd_rq_weight; 1574 unsigned long *usd_rq_weight;
1575 struct sched_domain *sd = data; 1575 struct sched_domain *sd = data;
1576 unsigned long flags; 1576 unsigned long flags;
1577 int i; 1577 int i;
1578 1578
1579 if (!tg->se[0]) 1579 if (!tg->se[0])
1580 return 0; 1580 return 0;
1581 1581
1582 local_irq_save(flags); 1582 local_irq_save(flags);
1583 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id()); 1583 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1584 1584
1585 for_each_cpu(i, sched_domain_span(sd)) { 1585 for_each_cpu(i, sched_domain_span(sd)) {
1586 weight = tg->cfs_rq[i]->load.weight; 1586 weight = tg->cfs_rq[i]->load.weight;
1587 usd_rq_weight[i] = weight; 1587 usd_rq_weight[i] = weight;
1588 1588
1589 rq_weight += weight; 1589 rq_weight += weight;
1590 /* 1590 /*
1591 * If there are currently no tasks on the cpu pretend there 1591 * If there are currently no tasks on the cpu pretend there
1592 * is one of average load so that when a new task gets to 1592 * is one of average load so that when a new task gets to
1593 * run here it will not get delayed by group starvation. 1593 * run here it will not get delayed by group starvation.
1594 */ 1594 */
1595 if (!weight) 1595 if (!weight)
1596 weight = NICE_0_LOAD; 1596 weight = NICE_0_LOAD;
1597 1597
1598 sum_weight += weight; 1598 sum_weight += weight;
1599 shares += tg->cfs_rq[i]->shares; 1599 shares += tg->cfs_rq[i]->shares;
1600 } 1600 }
1601 1601
1602 if (!rq_weight) 1602 if (!rq_weight)
1603 rq_weight = sum_weight; 1603 rq_weight = sum_weight;
1604 1604
1605 if ((!shares && rq_weight) || shares > tg->shares) 1605 if ((!shares && rq_weight) || shares > tg->shares)
1606 shares = tg->shares; 1606 shares = tg->shares;
1607 1607
1608 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE)) 1608 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1609 shares = tg->shares; 1609 shares = tg->shares;
1610 1610
1611 for_each_cpu(i, sched_domain_span(sd)) 1611 for_each_cpu(i, sched_domain_span(sd))
1612 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight); 1612 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1613 1613
1614 local_irq_restore(flags); 1614 local_irq_restore(flags);
1615 1615
1616 return 0; 1616 return 0;
1617 } 1617 }
1618 1618
1619 /* 1619 /*
1620 * Compute the cpu's hierarchical load factor for each task group. 1620 * Compute the cpu's hierarchical load factor for each task group.
1621 * This needs to be done in a top-down fashion because the load of a child 1621 * This needs to be done in a top-down fashion because the load of a child
1622 * group is a fraction of its parents load. 1622 * group is a fraction of its parents load.
1623 */ 1623 */
1624 static int tg_load_down(struct task_group *tg, void *data) 1624 static int tg_load_down(struct task_group *tg, void *data)
1625 { 1625 {
1626 unsigned long load; 1626 unsigned long load;
1627 long cpu = (long)data; 1627 long cpu = (long)data;
1628 1628
1629 if (!tg->parent) { 1629 if (!tg->parent) {
1630 load = cpu_rq(cpu)->load.weight; 1630 load = cpu_rq(cpu)->load.weight;
1631 } else { 1631 } else {
1632 load = tg->parent->cfs_rq[cpu]->h_load; 1632 load = tg->parent->cfs_rq[cpu]->h_load;
1633 load *= tg->cfs_rq[cpu]->shares; 1633 load *= tg->cfs_rq[cpu]->shares;
1634 load /= tg->parent->cfs_rq[cpu]->load.weight + 1; 1634 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1635 } 1635 }
1636 1636
1637 tg->cfs_rq[cpu]->h_load = load; 1637 tg->cfs_rq[cpu]->h_load = load;
1638 1638
1639 return 0; 1639 return 0;
1640 } 1640 }
1641 1641
1642 static void update_shares(struct sched_domain *sd) 1642 static void update_shares(struct sched_domain *sd)
1643 { 1643 {
1644 s64 elapsed; 1644 s64 elapsed;
1645 u64 now; 1645 u64 now;
1646 1646
1647 if (root_task_group_empty()) 1647 if (root_task_group_empty())
1648 return; 1648 return;
1649 1649
1650 now = cpu_clock(raw_smp_processor_id()); 1650 now = cpu_clock(raw_smp_processor_id());
1651 elapsed = now - sd->last_update; 1651 elapsed = now - sd->last_update;
1652 1652
1653 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) { 1653 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1654 sd->last_update = now; 1654 sd->last_update = now;
1655 walk_tg_tree(tg_nop, tg_shares_up, sd); 1655 walk_tg_tree(tg_nop, tg_shares_up, sd);
1656 } 1656 }
1657 } 1657 }
1658 1658
1659 static void update_h_load(long cpu) 1659 static void update_h_load(long cpu)
1660 { 1660 {
1661 if (root_task_group_empty()) 1661 if (root_task_group_empty())
1662 return; 1662 return;
1663 1663
1664 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu); 1664 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1665 } 1665 }
1666 1666
1667 #else 1667 #else
1668 1668
1669 static inline void update_shares(struct sched_domain *sd) 1669 static inline void update_shares(struct sched_domain *sd)
1670 { 1670 {
1671 } 1671 }
1672 1672
1673 #endif 1673 #endif
1674 1674
1675 #ifdef CONFIG_PREEMPT 1675 #ifdef CONFIG_PREEMPT
1676 1676
1677 static void double_rq_lock(struct rq *rq1, struct rq *rq2); 1677 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1678 1678
1679 /* 1679 /*
1680 * fair double_lock_balance: Safely acquires both rq->locks in a fair 1680 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1681 * way at the expense of forcing extra atomic operations in all 1681 * way at the expense of forcing extra atomic operations in all
1682 * invocations. This assures that the double_lock is acquired using the 1682 * invocations. This assures that the double_lock is acquired using the
1683 * same underlying policy as the spinlock_t on this architecture, which 1683 * same underlying policy as the spinlock_t on this architecture, which
1684 * reduces latency compared to the unfair variant below. However, it 1684 * reduces latency compared to the unfair variant below. However, it
1685 * also adds more overhead and therefore may reduce throughput. 1685 * also adds more overhead and therefore may reduce throughput.
1686 */ 1686 */
1687 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 1687 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1688 __releases(this_rq->lock) 1688 __releases(this_rq->lock)
1689 __acquires(busiest->lock) 1689 __acquires(busiest->lock)
1690 __acquires(this_rq->lock) 1690 __acquires(this_rq->lock)
1691 { 1691 {
1692 raw_spin_unlock(&this_rq->lock); 1692 raw_spin_unlock(&this_rq->lock);
1693 double_rq_lock(this_rq, busiest); 1693 double_rq_lock(this_rq, busiest);
1694 1694
1695 return 1; 1695 return 1;
1696 } 1696 }
1697 1697
1698 #else 1698 #else
1699 /* 1699 /*
1700 * Unfair double_lock_balance: Optimizes throughput at the expense of 1700 * Unfair double_lock_balance: Optimizes throughput at the expense of
1701 * latency by eliminating extra atomic operations when the locks are 1701 * latency by eliminating extra atomic operations when the locks are
1702 * already in proper order on entry. This favors lower cpu-ids and will 1702 * already in proper order on entry. This favors lower cpu-ids and will
1703 * grant the double lock to lower cpus over higher ids under contention, 1703 * grant the double lock to lower cpus over higher ids under contention,
1704 * regardless of entry order into the function. 1704 * regardless of entry order into the function.
1705 */ 1705 */
1706 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 1706 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1707 __releases(this_rq->lock) 1707 __releases(this_rq->lock)
1708 __acquires(busiest->lock) 1708 __acquires(busiest->lock)
1709 __acquires(this_rq->lock) 1709 __acquires(this_rq->lock)
1710 { 1710 {
1711 int ret = 0; 1711 int ret = 0;
1712 1712
1713 if (unlikely(!raw_spin_trylock(&busiest->lock))) { 1713 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1714 if (busiest < this_rq) { 1714 if (busiest < this_rq) {
1715 raw_spin_unlock(&this_rq->lock); 1715 raw_spin_unlock(&this_rq->lock);
1716 raw_spin_lock(&busiest->lock); 1716 raw_spin_lock(&busiest->lock);
1717 raw_spin_lock_nested(&this_rq->lock, 1717 raw_spin_lock_nested(&this_rq->lock,
1718 SINGLE_DEPTH_NESTING); 1718 SINGLE_DEPTH_NESTING);
1719 ret = 1; 1719 ret = 1;
1720 } else 1720 } else
1721 raw_spin_lock_nested(&busiest->lock, 1721 raw_spin_lock_nested(&busiest->lock,
1722 SINGLE_DEPTH_NESTING); 1722 SINGLE_DEPTH_NESTING);
1723 } 1723 }
1724 return ret; 1724 return ret;
1725 } 1725 }
1726 1726
1727 #endif /* CONFIG_PREEMPT */ 1727 #endif /* CONFIG_PREEMPT */
1728 1728
1729 /* 1729 /*
1730 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 1730 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1731 */ 1731 */
1732 static int double_lock_balance(struct rq *this_rq, struct rq *busiest) 1732 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1733 { 1733 {
1734 if (unlikely(!irqs_disabled())) { 1734 if (unlikely(!irqs_disabled())) {
1735 /* printk() doesn't work good under rq->lock */ 1735 /* printk() doesn't work good under rq->lock */
1736 raw_spin_unlock(&this_rq->lock); 1736 raw_spin_unlock(&this_rq->lock);
1737 BUG_ON(1); 1737 BUG_ON(1);
1738 } 1738 }
1739 1739
1740 return _double_lock_balance(this_rq, busiest); 1740 return _double_lock_balance(this_rq, busiest);
1741 } 1741 }
1742 1742
1743 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 1743 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1744 __releases(busiest->lock) 1744 __releases(busiest->lock)
1745 { 1745 {
1746 raw_spin_unlock(&busiest->lock); 1746 raw_spin_unlock(&busiest->lock);
1747 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); 1747 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1748 } 1748 }
1749 1749
1750 /* 1750 /*
1751 * double_rq_lock - safely lock two runqueues 1751 * double_rq_lock - safely lock two runqueues
1752 * 1752 *
1753 * Note this does not disable interrupts like task_rq_lock, 1753 * Note this does not disable interrupts like task_rq_lock,
1754 * you need to do so manually before calling. 1754 * you need to do so manually before calling.
1755 */ 1755 */
1756 static void double_rq_lock(struct rq *rq1, struct rq *rq2) 1756 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1757 __acquires(rq1->lock) 1757 __acquires(rq1->lock)
1758 __acquires(rq2->lock) 1758 __acquires(rq2->lock)
1759 { 1759 {
1760 BUG_ON(!irqs_disabled()); 1760 BUG_ON(!irqs_disabled());
1761 if (rq1 == rq2) { 1761 if (rq1 == rq2) {
1762 raw_spin_lock(&rq1->lock); 1762 raw_spin_lock(&rq1->lock);
1763 __acquire(rq2->lock); /* Fake it out ;) */ 1763 __acquire(rq2->lock); /* Fake it out ;) */
1764 } else { 1764 } else {
1765 if (rq1 < rq2) { 1765 if (rq1 < rq2) {
1766 raw_spin_lock(&rq1->lock); 1766 raw_spin_lock(&rq1->lock);
1767 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); 1767 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1768 } else { 1768 } else {
1769 raw_spin_lock(&rq2->lock); 1769 raw_spin_lock(&rq2->lock);
1770 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); 1770 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1771 } 1771 }
1772 } 1772 }
1773 update_rq_clock(rq1); 1773 update_rq_clock(rq1);
1774 update_rq_clock(rq2); 1774 update_rq_clock(rq2);
1775 } 1775 }
1776 1776
1777 /* 1777 /*
1778 * double_rq_unlock - safely unlock two runqueues 1778 * double_rq_unlock - safely unlock two runqueues
1779 * 1779 *
1780 * Note this does not restore interrupts like task_rq_unlock, 1780 * Note this does not restore interrupts like task_rq_unlock,
1781 * you need to do so manually after calling. 1781 * you need to do so manually after calling.
1782 */ 1782 */
1783 static void double_rq_unlock(struct rq *rq1, struct rq *rq2) 1783 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1784 __releases(rq1->lock) 1784 __releases(rq1->lock)
1785 __releases(rq2->lock) 1785 __releases(rq2->lock)
1786 { 1786 {
1787 raw_spin_unlock(&rq1->lock); 1787 raw_spin_unlock(&rq1->lock);
1788 if (rq1 != rq2) 1788 if (rq1 != rq2)
1789 raw_spin_unlock(&rq2->lock); 1789 raw_spin_unlock(&rq2->lock);
1790 else 1790 else
1791 __release(rq2->lock); 1791 __release(rq2->lock);
1792 } 1792 }
1793 1793
1794 #endif 1794 #endif
1795 1795
1796 #ifdef CONFIG_FAIR_GROUP_SCHED 1796 #ifdef CONFIG_FAIR_GROUP_SCHED
1797 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares) 1797 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1798 { 1798 {
1799 #ifdef CONFIG_SMP 1799 #ifdef CONFIG_SMP
1800 cfs_rq->shares = shares; 1800 cfs_rq->shares = shares;
1801 #endif 1801 #endif
1802 } 1802 }
1803 #endif 1803 #endif
1804 1804
1805 static void calc_load_account_active(struct rq *this_rq); 1805 static void calc_load_account_active(struct rq *this_rq);
1806 static void update_sysctl(void); 1806 static void update_sysctl(void);
1807 static int get_update_sysctl_factor(void); 1807 static int get_update_sysctl_factor(void);
1808 1808
1809 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 1809 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1810 { 1810 {
1811 set_task_rq(p, cpu); 1811 set_task_rq(p, cpu);
1812 #ifdef CONFIG_SMP 1812 #ifdef CONFIG_SMP
1813 /* 1813 /*
1814 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 1814 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1815 * successfuly executed on another CPU. We must ensure that updates of 1815 * successfuly executed on another CPU. We must ensure that updates of
1816 * per-task data have been completed by this moment. 1816 * per-task data have been completed by this moment.
1817 */ 1817 */
1818 smp_wmb(); 1818 smp_wmb();
1819 task_thread_info(p)->cpu = cpu; 1819 task_thread_info(p)->cpu = cpu;
1820 #endif 1820 #endif
1821 } 1821 }
1822 1822
1823 static const struct sched_class rt_sched_class; 1823 static const struct sched_class rt_sched_class;
1824 1824
1825 #define sched_class_highest (&rt_sched_class) 1825 #define sched_class_highest (&rt_sched_class)
1826 #define for_each_class(class) \ 1826 #define for_each_class(class) \
1827 for (class = sched_class_highest; class; class = class->next) 1827 for (class = sched_class_highest; class; class = class->next)
1828 1828
1829 #include "sched_stats.h" 1829 #include "sched_stats.h"
1830 1830
1831 static void inc_nr_running(struct rq *rq) 1831 static void inc_nr_running(struct rq *rq)
1832 { 1832 {
1833 rq->nr_running++; 1833 rq->nr_running++;
1834 } 1834 }
1835 1835
1836 static void dec_nr_running(struct rq *rq) 1836 static void dec_nr_running(struct rq *rq)
1837 { 1837 {
1838 rq->nr_running--; 1838 rq->nr_running--;
1839 } 1839 }
1840 1840
1841 static void set_load_weight(struct task_struct *p) 1841 static void set_load_weight(struct task_struct *p)
1842 { 1842 {
1843 if (task_has_rt_policy(p)) { 1843 if (task_has_rt_policy(p)) {
1844 p->se.load.weight = prio_to_weight[0] * 2; 1844 p->se.load.weight = prio_to_weight[0] * 2;
1845 p->se.load.inv_weight = prio_to_wmult[0] >> 1; 1845 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1846 return; 1846 return;
1847 } 1847 }
1848 1848
1849 /* 1849 /*
1850 * SCHED_IDLE tasks get minimal weight: 1850 * SCHED_IDLE tasks get minimal weight:
1851 */ 1851 */
1852 if (p->policy == SCHED_IDLE) { 1852 if (p->policy == SCHED_IDLE) {
1853 p->se.load.weight = WEIGHT_IDLEPRIO; 1853 p->se.load.weight = WEIGHT_IDLEPRIO;
1854 p->se.load.inv_weight = WMULT_IDLEPRIO; 1854 p->se.load.inv_weight = WMULT_IDLEPRIO;
1855 return; 1855 return;
1856 } 1856 }
1857 1857
1858 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO]; 1858 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1859 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO]; 1859 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1860 } 1860 }
1861 1861
1862 static void update_avg(u64 *avg, u64 sample) 1862 static void update_avg(u64 *avg, u64 sample)
1863 { 1863 {
1864 s64 diff = sample - *avg; 1864 s64 diff = sample - *avg;
1865 *avg += diff >> 3; 1865 *avg += diff >> 3;
1866 } 1866 }
1867 1867
1868 static void 1868 static void
1869 enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head) 1869 enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
1870 { 1870 {
1871 if (wakeup) 1871 if (wakeup)
1872 p->se.start_runtime = p->se.sum_exec_runtime; 1872 p->se.start_runtime = p->se.sum_exec_runtime;
1873 1873
1874 sched_info_queued(p); 1874 sched_info_queued(p);
1875 p->sched_class->enqueue_task(rq, p, wakeup, head); 1875 p->sched_class->enqueue_task(rq, p, wakeup, head);
1876 p->se.on_rq = 1; 1876 p->se.on_rq = 1;
1877 } 1877 }
1878 1878
1879 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep) 1879 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1880 { 1880 {
1881 if (sleep) { 1881 if (sleep) {
1882 if (p->se.last_wakeup) { 1882 if (p->se.last_wakeup) {
1883 update_avg(&p->se.avg_overlap, 1883 update_avg(&p->se.avg_overlap,
1884 p->se.sum_exec_runtime - p->se.last_wakeup); 1884 p->se.sum_exec_runtime - p->se.last_wakeup);
1885 p->se.last_wakeup = 0; 1885 p->se.last_wakeup = 0;
1886 } else { 1886 } else {
1887 update_avg(&p->se.avg_wakeup, 1887 update_avg(&p->se.avg_wakeup,
1888 sysctl_sched_wakeup_granularity); 1888 sysctl_sched_wakeup_granularity);
1889 } 1889 }
1890 } 1890 }
1891 1891
1892 sched_info_dequeued(p); 1892 sched_info_dequeued(p);
1893 p->sched_class->dequeue_task(rq, p, sleep); 1893 p->sched_class->dequeue_task(rq, p, sleep);
1894 p->se.on_rq = 0; 1894 p->se.on_rq = 0;
1895 } 1895 }
1896 1896
1897 /* 1897 /*
1898 * activate_task - move a task to the runqueue. 1898 * activate_task - move a task to the runqueue.
1899 */ 1899 */
1900 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup) 1900 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1901 { 1901 {
1902 if (task_contributes_to_load(p)) 1902 if (task_contributes_to_load(p))
1903 rq->nr_uninterruptible--; 1903 rq->nr_uninterruptible--;
1904 1904
1905 enqueue_task(rq, p, wakeup, false); 1905 enqueue_task(rq, p, wakeup, false);
1906 inc_nr_running(rq); 1906 inc_nr_running(rq);
1907 } 1907 }
1908 1908
1909 /* 1909 /*
1910 * deactivate_task - remove a task from the runqueue. 1910 * deactivate_task - remove a task from the runqueue.
1911 */ 1911 */
1912 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep) 1912 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1913 { 1913 {
1914 if (task_contributes_to_load(p)) 1914 if (task_contributes_to_load(p))
1915 rq->nr_uninterruptible++; 1915 rq->nr_uninterruptible++;
1916 1916
1917 dequeue_task(rq, p, sleep); 1917 dequeue_task(rq, p, sleep);
1918 dec_nr_running(rq); 1918 dec_nr_running(rq);
1919 } 1919 }
1920 1920
1921 #include "sched_idletask.c" 1921 #include "sched_idletask.c"
1922 #include "sched_fair.c" 1922 #include "sched_fair.c"
1923 #include "sched_rt.c" 1923 #include "sched_rt.c"
1924 #ifdef CONFIG_SCHED_DEBUG 1924 #ifdef CONFIG_SCHED_DEBUG
1925 # include "sched_debug.c" 1925 # include "sched_debug.c"
1926 #endif 1926 #endif
1927 1927
1928 /* 1928 /*
1929 * __normal_prio - return the priority that is based on the static prio 1929 * __normal_prio - return the priority that is based on the static prio
1930 */ 1930 */
1931 static inline int __normal_prio(struct task_struct *p) 1931 static inline int __normal_prio(struct task_struct *p)
1932 { 1932 {
1933 return p->static_prio; 1933 return p->static_prio;
1934 } 1934 }
1935 1935
1936 /* 1936 /*
1937 * Calculate the expected normal priority: i.e. priority 1937 * Calculate the expected normal priority: i.e. priority
1938 * without taking RT-inheritance into account. Might be 1938 * without taking RT-inheritance into account. Might be
1939 * boosted by interactivity modifiers. Changes upon fork, 1939 * boosted by interactivity modifiers. Changes upon fork,
1940 * setprio syscalls, and whenever the interactivity 1940 * setprio syscalls, and whenever the interactivity
1941 * estimator recalculates. 1941 * estimator recalculates.
1942 */ 1942 */
1943 static inline int normal_prio(struct task_struct *p) 1943 static inline int normal_prio(struct task_struct *p)
1944 { 1944 {
1945 int prio; 1945 int prio;
1946 1946
1947 if (task_has_rt_policy(p)) 1947 if (task_has_rt_policy(p))
1948 prio = MAX_RT_PRIO-1 - p->rt_priority; 1948 prio = MAX_RT_PRIO-1 - p->rt_priority;
1949 else 1949 else
1950 prio = __normal_prio(p); 1950 prio = __normal_prio(p);
1951 return prio; 1951 return prio;
1952 } 1952 }
1953 1953
1954 /* 1954 /*
1955 * Calculate the current priority, i.e. the priority 1955 * Calculate the current priority, i.e. the priority
1956 * taken into account by the scheduler. This value might 1956 * taken into account by the scheduler. This value might
1957 * be boosted by RT tasks, or might be boosted by 1957 * be boosted by RT tasks, or might be boosted by
1958 * interactivity modifiers. Will be RT if the task got 1958 * interactivity modifiers. Will be RT if the task got
1959 * RT-boosted. If not then it returns p->normal_prio. 1959 * RT-boosted. If not then it returns p->normal_prio.
1960 */ 1960 */
1961 static int effective_prio(struct task_struct *p) 1961 static int effective_prio(struct task_struct *p)
1962 { 1962 {
1963 p->normal_prio = normal_prio(p); 1963 p->normal_prio = normal_prio(p);
1964 /* 1964 /*
1965 * If we are RT tasks or we were boosted to RT priority, 1965 * If we are RT tasks or we were boosted to RT priority,
1966 * keep the priority unchanged. Otherwise, update priority 1966 * keep the priority unchanged. Otherwise, update priority
1967 * to the normal priority: 1967 * to the normal priority:
1968 */ 1968 */
1969 if (!rt_prio(p->prio)) 1969 if (!rt_prio(p->prio))
1970 return p->normal_prio; 1970 return p->normal_prio;
1971 return p->prio; 1971 return p->prio;
1972 } 1972 }
1973 1973
1974 /** 1974 /**
1975 * task_curr - is this task currently executing on a CPU? 1975 * task_curr - is this task currently executing on a CPU?
1976 * @p: the task in question. 1976 * @p: the task in question.
1977 */ 1977 */
1978 inline int task_curr(const struct task_struct *p) 1978 inline int task_curr(const struct task_struct *p)
1979 { 1979 {
1980 return cpu_curr(task_cpu(p)) == p; 1980 return cpu_curr(task_cpu(p)) == p;
1981 } 1981 }
1982 1982
1983 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 1983 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1984 const struct sched_class *prev_class, 1984 const struct sched_class *prev_class,
1985 int oldprio, int running) 1985 int oldprio, int running)
1986 { 1986 {
1987 if (prev_class != p->sched_class) { 1987 if (prev_class != p->sched_class) {
1988 if (prev_class->switched_from) 1988 if (prev_class->switched_from)
1989 prev_class->switched_from(rq, p, running); 1989 prev_class->switched_from(rq, p, running);
1990 p->sched_class->switched_to(rq, p, running); 1990 p->sched_class->switched_to(rq, p, running);
1991 } else 1991 } else
1992 p->sched_class->prio_changed(rq, p, oldprio, running); 1992 p->sched_class->prio_changed(rq, p, oldprio, running);
1993 } 1993 }
1994 1994
1995 #ifdef CONFIG_SMP 1995 #ifdef CONFIG_SMP
1996 /* 1996 /*
1997 * Is this task likely cache-hot: 1997 * Is this task likely cache-hot:
1998 */ 1998 */
1999 static int 1999 static int
2000 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) 2000 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2001 { 2001 {
2002 s64 delta; 2002 s64 delta;
2003 2003
2004 if (p->sched_class != &fair_sched_class) 2004 if (p->sched_class != &fair_sched_class)
2005 return 0; 2005 return 0;
2006 2006
2007 /* 2007 /*
2008 * Buddy candidates are cache hot: 2008 * Buddy candidates are cache hot:
2009 */ 2009 */
2010 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running && 2010 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2011 (&p->se == cfs_rq_of(&p->se)->next || 2011 (&p->se == cfs_rq_of(&p->se)->next ||
2012 &p->se == cfs_rq_of(&p->se)->last)) 2012 &p->se == cfs_rq_of(&p->se)->last))
2013 return 1; 2013 return 1;
2014 2014
2015 if (sysctl_sched_migration_cost == -1) 2015 if (sysctl_sched_migration_cost == -1)
2016 return 1; 2016 return 1;
2017 if (sysctl_sched_migration_cost == 0) 2017 if (sysctl_sched_migration_cost == 0)
2018 return 0; 2018 return 0;
2019 2019
2020 delta = now - p->se.exec_start; 2020 delta = now - p->se.exec_start;
2021 2021
2022 return delta < (s64)sysctl_sched_migration_cost; 2022 return delta < (s64)sysctl_sched_migration_cost;
2023 } 2023 }
2024 2024
2025 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 2025 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2026 { 2026 {
2027 #ifdef CONFIG_SCHED_DEBUG 2027 #ifdef CONFIG_SCHED_DEBUG
2028 /* 2028 /*
2029 * We should never call set_task_cpu() on a blocked task, 2029 * We should never call set_task_cpu() on a blocked task,
2030 * ttwu() will sort out the placement. 2030 * ttwu() will sort out the placement.
2031 */ 2031 */
2032 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 2032 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2033 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE)); 2033 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2034 #endif 2034 #endif
2035 2035
2036 trace_sched_migrate_task(p, new_cpu); 2036 trace_sched_migrate_task(p, new_cpu);
2037 2037
2038 if (task_cpu(p) != new_cpu) { 2038 if (task_cpu(p) != new_cpu) {
2039 p->se.nr_migrations++; 2039 p->se.nr_migrations++;
2040 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0); 2040 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2041 } 2041 }
2042 2042
2043 __set_task_cpu(p, new_cpu); 2043 __set_task_cpu(p, new_cpu);
2044 } 2044 }
2045 2045
2046 struct migration_req { 2046 struct migration_req {
2047 struct list_head list; 2047 struct list_head list;
2048 2048
2049 struct task_struct *task; 2049 struct task_struct *task;
2050 int dest_cpu; 2050 int dest_cpu;
2051 2051
2052 struct completion done; 2052 struct completion done;
2053 }; 2053 };
2054 2054
2055 /* 2055 /*
2056 * The task's runqueue lock must be held. 2056 * The task's runqueue lock must be held.
2057 * Returns true if you have to wait for migration thread. 2057 * Returns true if you have to wait for migration thread.
2058 */ 2058 */
2059 static int 2059 static int
2060 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req) 2060 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2061 { 2061 {
2062 struct rq *rq = task_rq(p); 2062 struct rq *rq = task_rq(p);
2063 2063
2064 /* 2064 /*
2065 * If the task is not on a runqueue (and not running), then 2065 * If the task is not on a runqueue (and not running), then
2066 * the next wake-up will properly place the task. 2066 * the next wake-up will properly place the task.
2067 */ 2067 */
2068 if (!p->se.on_rq && !task_running(rq, p)) 2068 if (!p->se.on_rq && !task_running(rq, p))
2069 return 0; 2069 return 0;
2070 2070
2071 init_completion(&req->done); 2071 init_completion(&req->done);
2072 req->task = p; 2072 req->task = p;
2073 req->dest_cpu = dest_cpu; 2073 req->dest_cpu = dest_cpu;
2074 list_add(&req->list, &rq->migration_queue); 2074 list_add(&req->list, &rq->migration_queue);
2075 2075
2076 return 1; 2076 return 1;
2077 } 2077 }
2078 2078
2079 /* 2079 /*
2080 * wait_task_context_switch - wait for a thread to complete at least one 2080 * wait_task_context_switch - wait for a thread to complete at least one
2081 * context switch. 2081 * context switch.
2082 * 2082 *
2083 * @p must not be current. 2083 * @p must not be current.
2084 */ 2084 */
2085 void wait_task_context_switch(struct task_struct *p) 2085 void wait_task_context_switch(struct task_struct *p)
2086 { 2086 {
2087 unsigned long nvcsw, nivcsw, flags; 2087 unsigned long nvcsw, nivcsw, flags;
2088 int running; 2088 int running;
2089 struct rq *rq; 2089 struct rq *rq;
2090 2090
2091 nvcsw = p->nvcsw; 2091 nvcsw = p->nvcsw;
2092 nivcsw = p->nivcsw; 2092 nivcsw = p->nivcsw;
2093 for (;;) { 2093 for (;;) {
2094 /* 2094 /*
2095 * The runqueue is assigned before the actual context 2095 * The runqueue is assigned before the actual context
2096 * switch. We need to take the runqueue lock. 2096 * switch. We need to take the runqueue lock.
2097 * 2097 *
2098 * We could check initially without the lock but it is 2098 * We could check initially without the lock but it is
2099 * very likely that we need to take the lock in every 2099 * very likely that we need to take the lock in every
2100 * iteration. 2100 * iteration.
2101 */ 2101 */
2102 rq = task_rq_lock(p, &flags); 2102 rq = task_rq_lock(p, &flags);
2103 running = task_running(rq, p); 2103 running = task_running(rq, p);
2104 task_rq_unlock(rq, &flags); 2104 task_rq_unlock(rq, &flags);
2105 2105
2106 if (likely(!running)) 2106 if (likely(!running))
2107 break; 2107 break;
2108 /* 2108 /*
2109 * The switch count is incremented before the actual 2109 * The switch count is incremented before the actual
2110 * context switch. We thus wait for two switches to be 2110 * context switch. We thus wait for two switches to be
2111 * sure at least one completed. 2111 * sure at least one completed.
2112 */ 2112 */
2113 if ((p->nvcsw - nvcsw) > 1) 2113 if ((p->nvcsw - nvcsw) > 1)
2114 break; 2114 break;
2115 if ((p->nivcsw - nivcsw) > 1) 2115 if ((p->nivcsw - nivcsw) > 1)
2116 break; 2116 break;
2117 2117
2118 cpu_relax(); 2118 cpu_relax();
2119 } 2119 }
2120 } 2120 }
2121 2121
2122 /* 2122 /*
2123 * wait_task_inactive - wait for a thread to unschedule. 2123 * wait_task_inactive - wait for a thread to unschedule.
2124 * 2124 *
2125 * If @match_state is nonzero, it's the @p->state value just checked and 2125 * If @match_state is nonzero, it's the @p->state value just checked and
2126 * not expected to change. If it changes, i.e. @p might have woken up, 2126 * not expected to change. If it changes, i.e. @p might have woken up,
2127 * then return zero. When we succeed in waiting for @p to be off its CPU, 2127 * then return zero. When we succeed in waiting for @p to be off its CPU,
2128 * we return a positive number (its total switch count). If a second call 2128 * we return a positive number (its total switch count). If a second call
2129 * a short while later returns the same number, the caller can be sure that 2129 * a short while later returns the same number, the caller can be sure that
2130 * @p has remained unscheduled the whole time. 2130 * @p has remained unscheduled the whole time.
2131 * 2131 *
2132 * The caller must ensure that the task *will* unschedule sometime soon, 2132 * The caller must ensure that the task *will* unschedule sometime soon,
2133 * else this function might spin for a *long* time. This function can't 2133 * else this function might spin for a *long* time. This function can't
2134 * be called with interrupts off, or it may introduce deadlock with 2134 * be called with interrupts off, or it may introduce deadlock with
2135 * smp_call_function() if an IPI is sent by the same process we are 2135 * smp_call_function() if an IPI is sent by the same process we are
2136 * waiting to become inactive. 2136 * waiting to become inactive.
2137 */ 2137 */
2138 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 2138 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2139 { 2139 {
2140 unsigned long flags; 2140 unsigned long flags;
2141 int running, on_rq; 2141 int running, on_rq;
2142 unsigned long ncsw; 2142 unsigned long ncsw;
2143 struct rq *rq; 2143 struct rq *rq;
2144 2144
2145 for (;;) { 2145 for (;;) {
2146 /* 2146 /*
2147 * We do the initial early heuristics without holding 2147 * We do the initial early heuristics without holding
2148 * any task-queue locks at all. We'll only try to get 2148 * any task-queue locks at all. We'll only try to get
2149 * the runqueue lock when things look like they will 2149 * the runqueue lock when things look like they will
2150 * work out! 2150 * work out!
2151 */ 2151 */
2152 rq = task_rq(p); 2152 rq = task_rq(p);
2153 2153
2154 /* 2154 /*
2155 * If the task is actively running on another CPU 2155 * If the task is actively running on another CPU
2156 * still, just relax and busy-wait without holding 2156 * still, just relax and busy-wait without holding
2157 * any locks. 2157 * any locks.
2158 * 2158 *
2159 * NOTE! Since we don't hold any locks, it's not 2159 * NOTE! Since we don't hold any locks, it's not
2160 * even sure that "rq" stays as the right runqueue! 2160 * even sure that "rq" stays as the right runqueue!
2161 * But we don't care, since "task_running()" will 2161 * But we don't care, since "task_running()" will
2162 * return false if the runqueue has changed and p 2162 * return false if the runqueue has changed and p
2163 * is actually now running somewhere else! 2163 * is actually now running somewhere else!
2164 */ 2164 */
2165 while (task_running(rq, p)) { 2165 while (task_running(rq, p)) {
2166 if (match_state && unlikely(p->state != match_state)) 2166 if (match_state && unlikely(p->state != match_state))
2167 return 0; 2167 return 0;
2168 cpu_relax(); 2168 cpu_relax();
2169 } 2169 }
2170 2170
2171 /* 2171 /*
2172 * Ok, time to look more closely! We need the rq 2172 * Ok, time to look more closely! We need the rq
2173 * lock now, to be *sure*. If we're wrong, we'll 2173 * lock now, to be *sure*. If we're wrong, we'll
2174 * just go back and repeat. 2174 * just go back and repeat.
2175 */ 2175 */
2176 rq = task_rq_lock(p, &flags); 2176 rq = task_rq_lock(p, &flags);
2177 trace_sched_wait_task(rq, p); 2177 trace_sched_wait_task(rq, p);
2178 running = task_running(rq, p); 2178 running = task_running(rq, p);
2179 on_rq = p->se.on_rq; 2179 on_rq = p->se.on_rq;
2180 ncsw = 0; 2180 ncsw = 0;
2181 if (!match_state || p->state == match_state) 2181 if (!match_state || p->state == match_state)
2182 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 2182 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2183 task_rq_unlock(rq, &flags); 2183 task_rq_unlock(rq, &flags);
2184 2184
2185 /* 2185 /*
2186 * If it changed from the expected state, bail out now. 2186 * If it changed from the expected state, bail out now.
2187 */ 2187 */
2188 if (unlikely(!ncsw)) 2188 if (unlikely(!ncsw))
2189 break; 2189 break;
2190 2190
2191 /* 2191 /*
2192 * Was it really running after all now that we 2192 * Was it really running after all now that we
2193 * checked with the proper locks actually held? 2193 * checked with the proper locks actually held?
2194 * 2194 *
2195 * Oops. Go back and try again.. 2195 * Oops. Go back and try again..
2196 */ 2196 */
2197 if (unlikely(running)) { 2197 if (unlikely(running)) {
2198 cpu_relax(); 2198 cpu_relax();
2199 continue; 2199 continue;
2200 } 2200 }
2201 2201
2202 /* 2202 /*
2203 * It's not enough that it's not actively running, 2203 * It's not enough that it's not actively running,
2204 * it must be off the runqueue _entirely_, and not 2204 * it must be off the runqueue _entirely_, and not
2205 * preempted! 2205 * preempted!
2206 * 2206 *
2207 * So if it was still runnable (but just not actively 2207 * So if it was still runnable (but just not actively
2208 * running right now), it's preempted, and we should 2208 * running right now), it's preempted, and we should
2209 * yield - it could be a while. 2209 * yield - it could be a while.
2210 */ 2210 */
2211 if (unlikely(on_rq)) { 2211 if (unlikely(on_rq)) {
2212 schedule_timeout_uninterruptible(1); 2212 schedule_timeout_uninterruptible(1);
2213 continue; 2213 continue;
2214 } 2214 }
2215 2215
2216 /* 2216 /*
2217 * Ahh, all good. It wasn't running, and it wasn't 2217 * Ahh, all good. It wasn't running, and it wasn't
2218 * runnable, which means that it will never become 2218 * runnable, which means that it will never become
2219 * running in the future either. We're all done! 2219 * running in the future either. We're all done!
2220 */ 2220 */
2221 break; 2221 break;
2222 } 2222 }
2223 2223
2224 return ncsw; 2224 return ncsw;
2225 } 2225 }
2226 2226
2227 /*** 2227 /***
2228 * kick_process - kick a running thread to enter/exit the kernel 2228 * kick_process - kick a running thread to enter/exit the kernel
2229 * @p: the to-be-kicked thread 2229 * @p: the to-be-kicked thread
2230 * 2230 *
2231 * Cause a process which is running on another CPU to enter 2231 * Cause a process which is running on another CPU to enter
2232 * kernel-mode, without any delay. (to get signals handled.) 2232 * kernel-mode, without any delay. (to get signals handled.)
2233 * 2233 *
2234 * NOTE: this function doesnt have to take the runqueue lock, 2234 * NOTE: this function doesnt have to take the runqueue lock,
2235 * because all it wants to ensure is that the remote task enters 2235 * because all it wants to ensure is that the remote task enters
2236 * the kernel. If the IPI races and the task has been migrated 2236 * the kernel. If the IPI races and the task has been migrated
2237 * to another CPU then no harm is done and the purpose has been 2237 * to another CPU then no harm is done and the purpose has been
2238 * achieved as well. 2238 * achieved as well.
2239 */ 2239 */
2240 void kick_process(struct task_struct *p) 2240 void kick_process(struct task_struct *p)
2241 { 2241 {
2242 int cpu; 2242 int cpu;
2243 2243
2244 preempt_disable(); 2244 preempt_disable();
2245 cpu = task_cpu(p); 2245 cpu = task_cpu(p);
2246 if ((cpu != smp_processor_id()) && task_curr(p)) 2246 if ((cpu != smp_processor_id()) && task_curr(p))
2247 smp_send_reschedule(cpu); 2247 smp_send_reschedule(cpu);
2248 preempt_enable(); 2248 preempt_enable();
2249 } 2249 }
2250 EXPORT_SYMBOL_GPL(kick_process); 2250 EXPORT_SYMBOL_GPL(kick_process);
2251 #endif /* CONFIG_SMP */ 2251 #endif /* CONFIG_SMP */
2252 2252
2253 /** 2253 /**
2254 * task_oncpu_function_call - call a function on the cpu on which a task runs 2254 * task_oncpu_function_call - call a function on the cpu on which a task runs
2255 * @p: the task to evaluate 2255 * @p: the task to evaluate
2256 * @func: the function to be called 2256 * @func: the function to be called
2257 * @info: the function call argument 2257 * @info: the function call argument
2258 * 2258 *
2259 * Calls the function @func when the task is currently running. This might 2259 * Calls the function @func when the task is currently running. This might
2260 * be on the current CPU, which just calls the function directly 2260 * be on the current CPU, which just calls the function directly
2261 */ 2261 */
2262 void task_oncpu_function_call(struct task_struct *p, 2262 void task_oncpu_function_call(struct task_struct *p,
2263 void (*func) (void *info), void *info) 2263 void (*func) (void *info), void *info)
2264 { 2264 {
2265 int cpu; 2265 int cpu;
2266 2266
2267 preempt_disable(); 2267 preempt_disable();
2268 cpu = task_cpu(p); 2268 cpu = task_cpu(p);
2269 if (task_curr(p)) 2269 if (task_curr(p))
2270 smp_call_function_single(cpu, func, info, 1); 2270 smp_call_function_single(cpu, func, info, 1);
2271 preempt_enable(); 2271 preempt_enable();
2272 } 2272 }
2273 2273
2274 #ifdef CONFIG_SMP 2274 #ifdef CONFIG_SMP
2275 static int select_fallback_rq(int cpu, struct task_struct *p) 2275 static int select_fallback_rq(int cpu, struct task_struct *p)
2276 { 2276 {
2277 int dest_cpu; 2277 int dest_cpu;
2278 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu)); 2278 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2279 2279
2280 /* Look for allowed, online CPU in same node. */ 2280 /* Look for allowed, online CPU in same node. */
2281 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask) 2281 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2282 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) 2282 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2283 return dest_cpu; 2283 return dest_cpu;
2284 2284
2285 /* Any allowed, online CPU? */ 2285 /* Any allowed, online CPU? */
2286 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask); 2286 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2287 if (dest_cpu < nr_cpu_ids) 2287 if (dest_cpu < nr_cpu_ids)
2288 return dest_cpu; 2288 return dest_cpu;
2289 2289
2290 /* No more Mr. Nice Guy. */ 2290 /* No more Mr. Nice Guy. */
2291 if (dest_cpu >= nr_cpu_ids) { 2291 if (dest_cpu >= nr_cpu_ids) {
2292 rcu_read_lock(); 2292 rcu_read_lock();
2293 cpuset_cpus_allowed_locked(p, &p->cpus_allowed); 2293 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
2294 rcu_read_unlock(); 2294 rcu_read_unlock();
2295 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed); 2295 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
2296 2296
2297 /* 2297 /*
2298 * Don't tell them about moving exiting tasks or 2298 * Don't tell them about moving exiting tasks or
2299 * kernel threads (both mm NULL), since they never 2299 * kernel threads (both mm NULL), since they never
2300 * leave kernel. 2300 * leave kernel.
2301 */ 2301 */
2302 if (p->mm && printk_ratelimit()) { 2302 if (p->mm && printk_ratelimit()) {
2303 printk(KERN_INFO "process %d (%s) no " 2303 printk(KERN_INFO "process %d (%s) no "
2304 "longer affine to cpu%d\n", 2304 "longer affine to cpu%d\n",
2305 task_pid_nr(p), p->comm, cpu); 2305 task_pid_nr(p), p->comm, cpu);
2306 } 2306 }
2307 } 2307 }
2308 2308
2309 return dest_cpu; 2309 return dest_cpu;
2310 } 2310 }
2311 2311
2312 /* 2312 /*
2313 * Gets called from 3 sites (exec, fork, wakeup), since it is called without 2313 * Gets called from 3 sites (exec, fork, wakeup), since it is called without
2314 * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done 2314 * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done
2315 * by: 2315 * by:
2316 * 2316 *
2317 * exec: is unstable, retry loop 2317 * exec: is unstable, retry loop
2318 * fork & wake-up: serialize ->cpus_allowed against TASK_WAKING 2318 * fork & wake-up: serialize ->cpus_allowed against TASK_WAKING
2319 */ 2319 */
2320 static inline 2320 static inline
2321 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags) 2321 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2322 { 2322 {
2323 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags); 2323 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2324 2324
2325 /* 2325 /*
2326 * In order not to call set_task_cpu() on a blocking task we need 2326 * In order not to call set_task_cpu() on a blocking task we need
2327 * to rely on ttwu() to place the task on a valid ->cpus_allowed 2327 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2328 * cpu. 2328 * cpu.
2329 * 2329 *
2330 * Since this is common to all placement strategies, this lives here. 2330 * Since this is common to all placement strategies, this lives here.
2331 * 2331 *
2332 * [ this allows ->select_task() to simply return task_cpu(p) and 2332 * [ this allows ->select_task() to simply return task_cpu(p) and
2333 * not worry about this generic constraint ] 2333 * not worry about this generic constraint ]
2334 */ 2334 */
2335 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) || 2335 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2336 !cpu_online(cpu))) 2336 !cpu_online(cpu)))
2337 cpu = select_fallback_rq(task_cpu(p), p); 2337 cpu = select_fallback_rq(task_cpu(p), p);
2338 2338
2339 return cpu; 2339 return cpu;
2340 } 2340 }
2341 #endif 2341 #endif
2342 2342
2343 /*** 2343 /***
2344 * try_to_wake_up - wake up a thread 2344 * try_to_wake_up - wake up a thread
2345 * @p: the to-be-woken-up thread 2345 * @p: the to-be-woken-up thread
2346 * @state: the mask of task states that can be woken 2346 * @state: the mask of task states that can be woken
2347 * @sync: do a synchronous wakeup? 2347 * @sync: do a synchronous wakeup?
2348 * 2348 *
2349 * Put it on the run-queue if it's not already there. The "current" 2349 * Put it on the run-queue if it's not already there. The "current"
2350 * thread is always on the run-queue (except when the actual 2350 * thread is always on the run-queue (except when the actual
2351 * re-schedule is in progress), and as such you're allowed to do 2351 * re-schedule is in progress), and as such you're allowed to do
2352 * the simpler "current->state = TASK_RUNNING" to mark yourself 2352 * the simpler "current->state = TASK_RUNNING" to mark yourself
2353 * runnable without the overhead of this. 2353 * runnable without the overhead of this.
2354 * 2354 *
2355 * returns failure only if the task is already active. 2355 * returns failure only if the task is already active.
2356 */ 2356 */
2357 static int try_to_wake_up(struct task_struct *p, unsigned int state, 2357 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2358 int wake_flags) 2358 int wake_flags)
2359 { 2359 {
2360 int cpu, orig_cpu, this_cpu, success = 0; 2360 int cpu, orig_cpu, this_cpu, success = 0;
2361 unsigned long flags; 2361 unsigned long flags;
2362 struct rq *rq; 2362 struct rq *rq;
2363 2363
2364 if (!sched_feat(SYNC_WAKEUPS)) 2364 if (!sched_feat(SYNC_WAKEUPS))
2365 wake_flags &= ~WF_SYNC; 2365 wake_flags &= ~WF_SYNC;
2366 2366
2367 this_cpu = get_cpu(); 2367 this_cpu = get_cpu();
2368 2368
2369 smp_wmb(); 2369 smp_wmb();
2370 rq = task_rq_lock(p, &flags); 2370 rq = task_rq_lock(p, &flags);
2371 update_rq_clock(rq); 2371 update_rq_clock(rq);
2372 if (!(p->state & state)) 2372 if (!(p->state & state))
2373 goto out; 2373 goto out;
2374 2374
2375 if (p->se.on_rq) 2375 if (p->se.on_rq)
2376 goto out_running; 2376 goto out_running;
2377 2377
2378 cpu = task_cpu(p); 2378 cpu = task_cpu(p);
2379 orig_cpu = cpu; 2379 orig_cpu = cpu;
2380 2380
2381 #ifdef CONFIG_SMP 2381 #ifdef CONFIG_SMP
2382 if (unlikely(task_running(rq, p))) 2382 if (unlikely(task_running(rq, p)))
2383 goto out_activate; 2383 goto out_activate;
2384 2384
2385 /* 2385 /*
2386 * In order to handle concurrent wakeups and release the rq->lock 2386 * In order to handle concurrent wakeups and release the rq->lock
2387 * we put the task in TASK_WAKING state. 2387 * we put the task in TASK_WAKING state.
2388 * 2388 *
2389 * First fix up the nr_uninterruptible count: 2389 * First fix up the nr_uninterruptible count:
2390 */ 2390 */
2391 if (task_contributes_to_load(p)) 2391 if (task_contributes_to_load(p))
2392 rq->nr_uninterruptible--; 2392 rq->nr_uninterruptible--;
2393 p->state = TASK_WAKING; 2393 p->state = TASK_WAKING;
2394 2394
2395 if (p->sched_class->task_waking) 2395 if (p->sched_class->task_waking)
2396 p->sched_class->task_waking(rq, p); 2396 p->sched_class->task_waking(rq, p);
2397 2397
2398 __task_rq_unlock(rq); 2398 __task_rq_unlock(rq);
2399 2399
2400 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags); 2400 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2401 if (cpu != orig_cpu) { 2401 if (cpu != orig_cpu) {
2402 /* 2402 /*
2403 * Since we migrate the task without holding any rq->lock, 2403 * Since we migrate the task without holding any rq->lock,
2404 * we need to be careful with task_rq_lock(), since that 2404 * we need to be careful with task_rq_lock(), since that
2405 * might end up locking an invalid rq. 2405 * might end up locking an invalid rq.
2406 */ 2406 */
2407 set_task_cpu(p, cpu); 2407 set_task_cpu(p, cpu);
2408 } 2408 }
2409 2409
2410 rq = cpu_rq(cpu); 2410 rq = cpu_rq(cpu);
2411 raw_spin_lock(&rq->lock); 2411 raw_spin_lock(&rq->lock);
2412 update_rq_clock(rq); 2412 update_rq_clock(rq);
2413 2413
2414 /* 2414 /*
2415 * We migrated the task without holding either rq->lock, however 2415 * We migrated the task without holding either rq->lock, however
2416 * since the task is not on the task list itself, nobody else 2416 * since the task is not on the task list itself, nobody else
2417 * will try and migrate the task, hence the rq should match the 2417 * will try and migrate the task, hence the rq should match the
2418 * cpu we just moved it to. 2418 * cpu we just moved it to.
2419 */ 2419 */
2420 WARN_ON(task_cpu(p) != cpu); 2420 WARN_ON(task_cpu(p) != cpu);
2421 WARN_ON(p->state != TASK_WAKING); 2421 WARN_ON(p->state != TASK_WAKING);
2422 2422
2423 #ifdef CONFIG_SCHEDSTATS 2423 #ifdef CONFIG_SCHEDSTATS
2424 schedstat_inc(rq, ttwu_count); 2424 schedstat_inc(rq, ttwu_count);
2425 if (cpu == this_cpu) 2425 if (cpu == this_cpu)
2426 schedstat_inc(rq, ttwu_local); 2426 schedstat_inc(rq, ttwu_local);
2427 else { 2427 else {
2428 struct sched_domain *sd; 2428 struct sched_domain *sd;
2429 for_each_domain(this_cpu, sd) { 2429 for_each_domain(this_cpu, sd) {
2430 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 2430 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2431 schedstat_inc(sd, ttwu_wake_remote); 2431 schedstat_inc(sd, ttwu_wake_remote);
2432 break; 2432 break;
2433 } 2433 }
2434 } 2434 }
2435 } 2435 }
2436 #endif /* CONFIG_SCHEDSTATS */ 2436 #endif /* CONFIG_SCHEDSTATS */
2437 2437
2438 out_activate: 2438 out_activate:
2439 #endif /* CONFIG_SMP */ 2439 #endif /* CONFIG_SMP */
2440 schedstat_inc(p, se.nr_wakeups); 2440 schedstat_inc(p, se.nr_wakeups);
2441 if (wake_flags & WF_SYNC) 2441 if (wake_flags & WF_SYNC)
2442 schedstat_inc(p, se.nr_wakeups_sync); 2442 schedstat_inc(p, se.nr_wakeups_sync);
2443 if (orig_cpu != cpu) 2443 if (orig_cpu != cpu)
2444 schedstat_inc(p, se.nr_wakeups_migrate); 2444 schedstat_inc(p, se.nr_wakeups_migrate);
2445 if (cpu == this_cpu) 2445 if (cpu == this_cpu)
2446 schedstat_inc(p, se.nr_wakeups_local); 2446 schedstat_inc(p, se.nr_wakeups_local);
2447 else 2447 else
2448 schedstat_inc(p, se.nr_wakeups_remote); 2448 schedstat_inc(p, se.nr_wakeups_remote);
2449 activate_task(rq, p, 1); 2449 activate_task(rq, p, 1);
2450 success = 1; 2450 success = 1;
2451 2451
2452 /* 2452 /*
2453 * Only attribute actual wakeups done by this task. 2453 * Only attribute actual wakeups done by this task.
2454 */ 2454 */
2455 if (!in_interrupt()) { 2455 if (!in_interrupt()) {
2456 struct sched_entity *se = &current->se; 2456 struct sched_entity *se = &current->se;
2457 u64 sample = se->sum_exec_runtime; 2457 u64 sample = se->sum_exec_runtime;
2458 2458
2459 if (se->last_wakeup) 2459 if (se->last_wakeup)
2460 sample -= se->last_wakeup; 2460 sample -= se->last_wakeup;
2461 else 2461 else
2462 sample -= se->start_runtime; 2462 sample -= se->start_runtime;
2463 update_avg(&se->avg_wakeup, sample); 2463 update_avg(&se->avg_wakeup, sample);
2464 2464
2465 se->last_wakeup = se->sum_exec_runtime; 2465 se->last_wakeup = se->sum_exec_runtime;
2466 } 2466 }
2467 2467
2468 out_running: 2468 out_running:
2469 trace_sched_wakeup(rq, p, success); 2469 trace_sched_wakeup(rq, p, success);
2470 check_preempt_curr(rq, p, wake_flags); 2470 check_preempt_curr(rq, p, wake_flags);
2471 2471
2472 p->state = TASK_RUNNING; 2472 p->state = TASK_RUNNING;
2473 #ifdef CONFIG_SMP 2473 #ifdef CONFIG_SMP
2474 if (p->sched_class->task_woken) 2474 if (p->sched_class->task_woken)
2475 p->sched_class->task_woken(rq, p); 2475 p->sched_class->task_woken(rq, p);
2476 2476
2477 if (unlikely(rq->idle_stamp)) { 2477 if (unlikely(rq->idle_stamp)) {
2478 u64 delta = rq->clock - rq->idle_stamp; 2478 u64 delta = rq->clock - rq->idle_stamp;
2479 u64 max = 2*sysctl_sched_migration_cost; 2479 u64 max = 2*sysctl_sched_migration_cost;
2480 2480
2481 if (delta > max) 2481 if (delta > max)
2482 rq->avg_idle = max; 2482 rq->avg_idle = max;
2483 else 2483 else
2484 update_avg(&rq->avg_idle, delta); 2484 update_avg(&rq->avg_idle, delta);
2485 rq->idle_stamp = 0; 2485 rq->idle_stamp = 0;
2486 } 2486 }
2487 #endif 2487 #endif
2488 out: 2488 out:
2489 task_rq_unlock(rq, &flags); 2489 task_rq_unlock(rq, &flags);
2490 put_cpu(); 2490 put_cpu();
2491 2491
2492 return success; 2492 return success;
2493 } 2493 }
2494 2494
2495 /** 2495 /**
2496 * wake_up_process - Wake up a specific process 2496 * wake_up_process - Wake up a specific process
2497 * @p: The process to be woken up. 2497 * @p: The process to be woken up.
2498 * 2498 *
2499 * Attempt to wake up the nominated process and move it to the set of runnable 2499 * Attempt to wake up the nominated process and move it to the set of runnable
2500 * processes. Returns 1 if the process was woken up, 0 if it was already 2500 * processes. Returns 1 if the process was woken up, 0 if it was already
2501 * running. 2501 * running.
2502 * 2502 *
2503 * It may be assumed that this function implies a write memory barrier before 2503 * It may be assumed that this function implies a write memory barrier before
2504 * changing the task state if and only if any tasks are woken up. 2504 * changing the task state if and only if any tasks are woken up.
2505 */ 2505 */
2506 int wake_up_process(struct task_struct *p) 2506 int wake_up_process(struct task_struct *p)
2507 { 2507 {
2508 return try_to_wake_up(p, TASK_ALL, 0); 2508 return try_to_wake_up(p, TASK_ALL, 0);
2509 } 2509 }
2510 EXPORT_SYMBOL(wake_up_process); 2510 EXPORT_SYMBOL(wake_up_process);
2511 2511
2512 int wake_up_state(struct task_struct *p, unsigned int state) 2512 int wake_up_state(struct task_struct *p, unsigned int state)
2513 { 2513 {
2514 return try_to_wake_up(p, state, 0); 2514 return try_to_wake_up(p, state, 0);
2515 } 2515 }
2516 2516
2517 /* 2517 /*
2518 * Perform scheduler related setup for a newly forked process p. 2518 * Perform scheduler related setup for a newly forked process p.
2519 * p is forked by current. 2519 * p is forked by current.
2520 * 2520 *
2521 * __sched_fork() is basic setup used by init_idle() too: 2521 * __sched_fork() is basic setup used by init_idle() too:
2522 */ 2522 */
2523 static void __sched_fork(struct task_struct *p) 2523 static void __sched_fork(struct task_struct *p)
2524 { 2524 {
2525 p->se.exec_start = 0; 2525 p->se.exec_start = 0;
2526 p->se.sum_exec_runtime = 0; 2526 p->se.sum_exec_runtime = 0;
2527 p->se.prev_sum_exec_runtime = 0; 2527 p->se.prev_sum_exec_runtime = 0;
2528 p->se.nr_migrations = 0; 2528 p->se.nr_migrations = 0;
2529 p->se.last_wakeup = 0; 2529 p->se.last_wakeup = 0;
2530 p->se.avg_overlap = 0; 2530 p->se.avg_overlap = 0;
2531 p->se.start_runtime = 0; 2531 p->se.start_runtime = 0;
2532 p->se.avg_wakeup = sysctl_sched_wakeup_granularity; 2532 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2533 2533
2534 #ifdef CONFIG_SCHEDSTATS 2534 #ifdef CONFIG_SCHEDSTATS
2535 p->se.wait_start = 0; 2535 p->se.wait_start = 0;
2536 p->se.wait_max = 0; 2536 p->se.wait_max = 0;
2537 p->se.wait_count = 0; 2537 p->se.wait_count = 0;
2538 p->se.wait_sum = 0; 2538 p->se.wait_sum = 0;
2539 2539
2540 p->se.sleep_start = 0; 2540 p->se.sleep_start = 0;
2541 p->se.sleep_max = 0; 2541 p->se.sleep_max = 0;
2542 p->se.sum_sleep_runtime = 0; 2542 p->se.sum_sleep_runtime = 0;
2543 2543
2544 p->se.block_start = 0; 2544 p->se.block_start = 0;
2545 p->se.block_max = 0; 2545 p->se.block_max = 0;
2546 p->se.exec_max = 0; 2546 p->se.exec_max = 0;
2547 p->se.slice_max = 0; 2547 p->se.slice_max = 0;
2548 2548
2549 p->se.nr_migrations_cold = 0; 2549 p->se.nr_migrations_cold = 0;
2550 p->se.nr_failed_migrations_affine = 0; 2550 p->se.nr_failed_migrations_affine = 0;
2551 p->se.nr_failed_migrations_running = 0; 2551 p->se.nr_failed_migrations_running = 0;
2552 p->se.nr_failed_migrations_hot = 0; 2552 p->se.nr_failed_migrations_hot = 0;
2553 p->se.nr_forced_migrations = 0; 2553 p->se.nr_forced_migrations = 0;
2554 2554
2555 p->se.nr_wakeups = 0; 2555 p->se.nr_wakeups = 0;
2556 p->se.nr_wakeups_sync = 0; 2556 p->se.nr_wakeups_sync = 0;
2557 p->se.nr_wakeups_migrate = 0; 2557 p->se.nr_wakeups_migrate = 0;
2558 p->se.nr_wakeups_local = 0; 2558 p->se.nr_wakeups_local = 0;
2559 p->se.nr_wakeups_remote = 0; 2559 p->se.nr_wakeups_remote = 0;
2560 p->se.nr_wakeups_affine = 0; 2560 p->se.nr_wakeups_affine = 0;
2561 p->se.nr_wakeups_affine_attempts = 0; 2561 p->se.nr_wakeups_affine_attempts = 0;
2562 p->se.nr_wakeups_passive = 0; 2562 p->se.nr_wakeups_passive = 0;
2563 p->se.nr_wakeups_idle = 0; 2563 p->se.nr_wakeups_idle = 0;
2564 2564
2565 #endif 2565 #endif
2566 2566
2567 INIT_LIST_HEAD(&p->rt.run_list); 2567 INIT_LIST_HEAD(&p->rt.run_list);
2568 p->se.on_rq = 0; 2568 p->se.on_rq = 0;
2569 INIT_LIST_HEAD(&p->se.group_node); 2569 INIT_LIST_HEAD(&p->se.group_node);
2570 2570
2571 #ifdef CONFIG_PREEMPT_NOTIFIERS 2571 #ifdef CONFIG_PREEMPT_NOTIFIERS
2572 INIT_HLIST_HEAD(&p->preempt_notifiers); 2572 INIT_HLIST_HEAD(&p->preempt_notifiers);
2573 #endif 2573 #endif
2574 } 2574 }
2575 2575
2576 /* 2576 /*
2577 * fork()/clone()-time setup: 2577 * fork()/clone()-time setup:
2578 */ 2578 */
2579 void sched_fork(struct task_struct *p, int clone_flags) 2579 void sched_fork(struct task_struct *p, int clone_flags)
2580 { 2580 {
2581 int cpu = get_cpu(); 2581 int cpu = get_cpu();
2582 2582
2583 __sched_fork(p); 2583 __sched_fork(p);
2584 /* 2584 /*
2585 * We mark the process as waking here. This guarantees that 2585 * We mark the process as waking here. This guarantees that
2586 * nobody will actually run it, and a signal or other external 2586 * nobody will actually run it, and a signal or other external
2587 * event cannot wake it up and insert it on the runqueue either. 2587 * event cannot wake it up and insert it on the runqueue either.
2588 */ 2588 */
2589 p->state = TASK_WAKING; 2589 p->state = TASK_WAKING;
2590 2590
2591 /* 2591 /*
2592 * Revert to default priority/policy on fork if requested. 2592 * Revert to default priority/policy on fork if requested.
2593 */ 2593 */
2594 if (unlikely(p->sched_reset_on_fork)) { 2594 if (unlikely(p->sched_reset_on_fork)) {
2595 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) { 2595 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2596 p->policy = SCHED_NORMAL; 2596 p->policy = SCHED_NORMAL;
2597 p->normal_prio = p->static_prio; 2597 p->normal_prio = p->static_prio;
2598 } 2598 }
2599 2599
2600 if (PRIO_TO_NICE(p->static_prio) < 0) { 2600 if (PRIO_TO_NICE(p->static_prio) < 0) {
2601 p->static_prio = NICE_TO_PRIO(0); 2601 p->static_prio = NICE_TO_PRIO(0);
2602 p->normal_prio = p->static_prio; 2602 p->normal_prio = p->static_prio;
2603 set_load_weight(p); 2603 set_load_weight(p);
2604 } 2604 }
2605 2605
2606 /* 2606 /*
2607 * We don't need the reset flag anymore after the fork. It has 2607 * We don't need the reset flag anymore after the fork. It has
2608 * fulfilled its duty: 2608 * fulfilled its duty:
2609 */ 2609 */
2610 p->sched_reset_on_fork = 0; 2610 p->sched_reset_on_fork = 0;
2611 } 2611 }
2612 2612
2613 /* 2613 /*
2614 * Make sure we do not leak PI boosting priority to the child. 2614 * Make sure we do not leak PI boosting priority to the child.
2615 */ 2615 */
2616 p->prio = current->normal_prio; 2616 p->prio = current->normal_prio;
2617 2617
2618 if (!rt_prio(p->prio)) 2618 if (!rt_prio(p->prio))
2619 p->sched_class = &fair_sched_class; 2619 p->sched_class = &fair_sched_class;
2620 2620
2621 if (p->sched_class->task_fork) 2621 if (p->sched_class->task_fork)
2622 p->sched_class->task_fork(p); 2622 p->sched_class->task_fork(p);
2623 2623
2624 set_task_cpu(p, cpu); 2624 set_task_cpu(p, cpu);
2625 2625
2626 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 2626 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2627 if (likely(sched_info_on())) 2627 if (likely(sched_info_on()))
2628 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2628 memset(&p->sched_info, 0, sizeof(p->sched_info));
2629 #endif 2629 #endif
2630 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) 2630 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2631 p->oncpu = 0; 2631 p->oncpu = 0;
2632 #endif 2632 #endif
2633 #ifdef CONFIG_PREEMPT 2633 #ifdef CONFIG_PREEMPT
2634 /* Want to start with kernel preemption disabled. */ 2634 /* Want to start with kernel preemption disabled. */
2635 task_thread_info(p)->preempt_count = 1; 2635 task_thread_info(p)->preempt_count = 1;
2636 #endif 2636 #endif
2637 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2637 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2638 2638
2639 put_cpu(); 2639 put_cpu();
2640 } 2640 }
2641 2641
2642 /* 2642 /*
2643 * wake_up_new_task - wake up a newly created task for the first time. 2643 * wake_up_new_task - wake up a newly created task for the first time.
2644 * 2644 *
2645 * This function will do some initial scheduler statistics housekeeping 2645 * This function will do some initial scheduler statistics housekeeping
2646 * that must be done for every newly created context, then puts the task 2646 * that must be done for every newly created context, then puts the task
2647 * on the runqueue and wakes it. 2647 * on the runqueue and wakes it.
2648 */ 2648 */
2649 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) 2649 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2650 { 2650 {
2651 unsigned long flags; 2651 unsigned long flags;
2652 struct rq *rq; 2652 struct rq *rq;
2653 int cpu __maybe_unused = get_cpu(); 2653 int cpu __maybe_unused = get_cpu();
2654 2654
2655 #ifdef CONFIG_SMP 2655 #ifdef CONFIG_SMP
2656 /* 2656 /*
2657 * Fork balancing, do it here and not earlier because: 2657 * Fork balancing, do it here and not earlier because:
2658 * - cpus_allowed can change in the fork path 2658 * - cpus_allowed can change in the fork path
2659 * - any previously selected cpu might disappear through hotplug 2659 * - any previously selected cpu might disappear through hotplug
2660 * 2660 *
2661 * We still have TASK_WAKING but PF_STARTING is gone now, meaning 2661 * We still have TASK_WAKING but PF_STARTING is gone now, meaning
2662 * ->cpus_allowed is stable, we have preemption disabled, meaning 2662 * ->cpus_allowed is stable, we have preemption disabled, meaning
2663 * cpu_online_mask is stable. 2663 * cpu_online_mask is stable.
2664 */ 2664 */
2665 cpu = select_task_rq(p, SD_BALANCE_FORK, 0); 2665 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2666 set_task_cpu(p, cpu); 2666 set_task_cpu(p, cpu);
2667 #endif 2667 #endif
2668 2668
2669 /* 2669 /*
2670 * Since the task is not on the rq and we still have TASK_WAKING set 2670 * Since the task is not on the rq and we still have TASK_WAKING set
2671 * nobody else will migrate this task. 2671 * nobody else will migrate this task.
2672 */ 2672 */
2673 rq = cpu_rq(cpu); 2673 rq = cpu_rq(cpu);
2674 raw_spin_lock_irqsave(&rq->lock, flags); 2674 raw_spin_lock_irqsave(&rq->lock, flags);
2675 2675
2676 BUG_ON(p->state != TASK_WAKING); 2676 BUG_ON(p->state != TASK_WAKING);
2677 p->state = TASK_RUNNING; 2677 p->state = TASK_RUNNING;
2678 update_rq_clock(rq); 2678 update_rq_clock(rq);
2679 activate_task(rq, p, 0); 2679 activate_task(rq, p, 0);
2680 trace_sched_wakeup_new(rq, p, 1); 2680 trace_sched_wakeup_new(rq, p, 1);
2681 check_preempt_curr(rq, p, WF_FORK); 2681 check_preempt_curr(rq, p, WF_FORK);
2682 #ifdef CONFIG_SMP 2682 #ifdef CONFIG_SMP
2683 if (p->sched_class->task_woken) 2683 if (p->sched_class->task_woken)
2684 p->sched_class->task_woken(rq, p); 2684 p->sched_class->task_woken(rq, p);
2685 #endif 2685 #endif
2686 task_rq_unlock(rq, &flags); 2686 task_rq_unlock(rq, &flags);
2687 put_cpu(); 2687 put_cpu();
2688 } 2688 }
2689 2689
2690 #ifdef CONFIG_PREEMPT_NOTIFIERS 2690 #ifdef CONFIG_PREEMPT_NOTIFIERS
2691 2691
2692 /** 2692 /**
2693 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2693 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2694 * @notifier: notifier struct to register 2694 * @notifier: notifier struct to register
2695 */ 2695 */
2696 void preempt_notifier_register(struct preempt_notifier *notifier) 2696 void preempt_notifier_register(struct preempt_notifier *notifier)
2697 { 2697 {
2698 hlist_add_head(&notifier->link, &current->preempt_notifiers); 2698 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2699 } 2699 }
2700 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2700 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2701 2701
2702 /** 2702 /**
2703 * preempt_notifier_unregister - no longer interested in preemption notifications 2703 * preempt_notifier_unregister - no longer interested in preemption notifications
2704 * @notifier: notifier struct to unregister 2704 * @notifier: notifier struct to unregister
2705 * 2705 *
2706 * This is safe to call from within a preemption notifier. 2706 * This is safe to call from within a preemption notifier.
2707 */ 2707 */
2708 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2708 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2709 { 2709 {
2710 hlist_del(&notifier->link); 2710 hlist_del(&notifier->link);
2711 } 2711 }
2712 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2712 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2713 2713
2714 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2714 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2715 { 2715 {
2716 struct preempt_notifier *notifier; 2716 struct preempt_notifier *notifier;
2717 struct hlist_node *node; 2717 struct hlist_node *node;
2718 2718
2719 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) 2719 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2720 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2720 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2721 } 2721 }
2722 2722
2723 static void 2723 static void
2724 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2724 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2725 struct task_struct *next) 2725 struct task_struct *next)
2726 { 2726 {
2727 struct preempt_notifier *notifier; 2727 struct preempt_notifier *notifier;
2728 struct hlist_node *node; 2728 struct hlist_node *node;
2729 2729
2730 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) 2730 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2731 notifier->ops->sched_out(notifier, next); 2731 notifier->ops->sched_out(notifier, next);
2732 } 2732 }
2733 2733
2734 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2734 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2735 2735
2736 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2736 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2737 { 2737 {
2738 } 2738 }
2739 2739
2740 static void 2740 static void
2741 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2741 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2742 struct task_struct *next) 2742 struct task_struct *next)
2743 { 2743 {
2744 } 2744 }
2745 2745
2746 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2746 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2747 2747
2748 /** 2748 /**
2749 * prepare_task_switch - prepare to switch tasks 2749 * prepare_task_switch - prepare to switch tasks
2750 * @rq: the runqueue preparing to switch 2750 * @rq: the runqueue preparing to switch
2751 * @prev: the current task that is being switched out 2751 * @prev: the current task that is being switched out
2752 * @next: the task we are going to switch to. 2752 * @next: the task we are going to switch to.
2753 * 2753 *
2754 * This is called with the rq lock held and interrupts off. It must 2754 * This is called with the rq lock held and interrupts off. It must
2755 * be paired with a subsequent finish_task_switch after the context 2755 * be paired with a subsequent finish_task_switch after the context
2756 * switch. 2756 * switch.
2757 * 2757 *
2758 * prepare_task_switch sets up locking and calls architecture specific 2758 * prepare_task_switch sets up locking and calls architecture specific
2759 * hooks. 2759 * hooks.
2760 */ 2760 */
2761 static inline void 2761 static inline void
2762 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2762 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2763 struct task_struct *next) 2763 struct task_struct *next)
2764 { 2764 {
2765 fire_sched_out_preempt_notifiers(prev, next); 2765 fire_sched_out_preempt_notifiers(prev, next);
2766 prepare_lock_switch(rq, next); 2766 prepare_lock_switch(rq, next);
2767 prepare_arch_switch(next); 2767 prepare_arch_switch(next);
2768 } 2768 }
2769 2769
2770 /** 2770 /**
2771 * finish_task_switch - clean up after a task-switch 2771 * finish_task_switch - clean up after a task-switch
2772 * @rq: runqueue associated with task-switch 2772 * @rq: runqueue associated with task-switch
2773 * @prev: the thread we just switched away from. 2773 * @prev: the thread we just switched away from.
2774 * 2774 *
2775 * finish_task_switch must be called after the context switch, paired 2775 * finish_task_switch must be called after the context switch, paired
2776 * with a prepare_task_switch call before the context switch. 2776 * with a prepare_task_switch call before the context switch.
2777 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2777 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2778 * and do any other architecture-specific cleanup actions. 2778 * and do any other architecture-specific cleanup actions.
2779 * 2779 *
2780 * Note that we may have delayed dropping an mm in context_switch(). If 2780 * Note that we may have delayed dropping an mm in context_switch(). If
2781 * so, we finish that here outside of the runqueue lock. (Doing it 2781 * so, we finish that here outside of the runqueue lock. (Doing it
2782 * with the lock held can cause deadlocks; see schedule() for 2782 * with the lock held can cause deadlocks; see schedule() for
2783 * details.) 2783 * details.)
2784 */ 2784 */
2785 static void finish_task_switch(struct rq *rq, struct task_struct *prev) 2785 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2786 __releases(rq->lock) 2786 __releases(rq->lock)
2787 { 2787 {
2788 struct mm_struct *mm = rq->prev_mm; 2788 struct mm_struct *mm = rq->prev_mm;
2789 long prev_state; 2789 long prev_state;
2790 2790
2791 rq->prev_mm = NULL; 2791 rq->prev_mm = NULL;
2792 2792
2793 /* 2793 /*
2794 * A task struct has one reference for the use as "current". 2794 * A task struct has one reference for the use as "current".
2795 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2795 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2796 * schedule one last time. The schedule call will never return, and 2796 * schedule one last time. The schedule call will never return, and
2797 * the scheduled task must drop that reference. 2797 * the scheduled task must drop that reference.
2798 * The test for TASK_DEAD must occur while the runqueue locks are 2798 * The test for TASK_DEAD must occur while the runqueue locks are
2799 * still held, otherwise prev could be scheduled on another cpu, die 2799 * still held, otherwise prev could be scheduled on another cpu, die
2800 * there before we look at prev->state, and then the reference would 2800 * there before we look at prev->state, and then the reference would
2801 * be dropped twice. 2801 * be dropped twice.
2802 * Manfred Spraul <manfred@colorfullife.com> 2802 * Manfred Spraul <manfred@colorfullife.com>
2803 */ 2803 */
2804 prev_state = prev->state; 2804 prev_state = prev->state;
2805 finish_arch_switch(prev); 2805 finish_arch_switch(prev);
2806 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 2806 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2807 local_irq_disable(); 2807 local_irq_disable();
2808 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ 2808 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2809 perf_event_task_sched_in(current); 2809 perf_event_task_sched_in(current);
2810 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 2810 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2811 local_irq_enable(); 2811 local_irq_enable();
2812 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ 2812 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2813 finish_lock_switch(rq, prev); 2813 finish_lock_switch(rq, prev);
2814 2814
2815 fire_sched_in_preempt_notifiers(current); 2815 fire_sched_in_preempt_notifiers(current);
2816 if (mm) 2816 if (mm)
2817 mmdrop(mm); 2817 mmdrop(mm);
2818 if (unlikely(prev_state == TASK_DEAD)) { 2818 if (unlikely(prev_state == TASK_DEAD)) {
2819 /* 2819 /*
2820 * Remove function-return probe instances associated with this 2820 * Remove function-return probe instances associated with this
2821 * task and put them back on the free list. 2821 * task and put them back on the free list.
2822 */ 2822 */
2823 kprobe_flush_task(prev); 2823 kprobe_flush_task(prev);
2824 put_task_struct(prev); 2824 put_task_struct(prev);
2825 } 2825 }
2826 } 2826 }
2827 2827
2828 #ifdef CONFIG_SMP 2828 #ifdef CONFIG_SMP
2829 2829
2830 /* assumes rq->lock is held */ 2830 /* assumes rq->lock is held */
2831 static inline void pre_schedule(struct rq *rq, struct task_struct *prev) 2831 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2832 { 2832 {
2833 if (prev->sched_class->pre_schedule) 2833 if (prev->sched_class->pre_schedule)
2834 prev->sched_class->pre_schedule(rq, prev); 2834 prev->sched_class->pre_schedule(rq, prev);
2835 } 2835 }
2836 2836
2837 /* rq->lock is NOT held, but preemption is disabled */ 2837 /* rq->lock is NOT held, but preemption is disabled */
2838 static inline void post_schedule(struct rq *rq) 2838 static inline void post_schedule(struct rq *rq)
2839 { 2839 {
2840 if (rq->post_schedule) { 2840 if (rq->post_schedule) {
2841 unsigned long flags; 2841 unsigned long flags;
2842 2842
2843 raw_spin_lock_irqsave(&rq->lock, flags); 2843 raw_spin_lock_irqsave(&rq->lock, flags);
2844 if (rq->curr->sched_class->post_schedule) 2844 if (rq->curr->sched_class->post_schedule)
2845 rq->curr->sched_class->post_schedule(rq); 2845 rq->curr->sched_class->post_schedule(rq);
2846 raw_spin_unlock_irqrestore(&rq->lock, flags); 2846 raw_spin_unlock_irqrestore(&rq->lock, flags);
2847 2847
2848 rq->post_schedule = 0; 2848 rq->post_schedule = 0;
2849 } 2849 }
2850 } 2850 }
2851 2851
2852 #else 2852 #else
2853 2853
2854 static inline void pre_schedule(struct rq *rq, struct task_struct *p) 2854 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2855 { 2855 {
2856 } 2856 }
2857 2857
2858 static inline void post_schedule(struct rq *rq) 2858 static inline void post_schedule(struct rq *rq)
2859 { 2859 {
2860 } 2860 }
2861 2861
2862 #endif 2862 #endif
2863 2863
2864 /** 2864 /**
2865 * schedule_tail - first thing a freshly forked thread must call. 2865 * schedule_tail - first thing a freshly forked thread must call.
2866 * @prev: the thread we just switched away from. 2866 * @prev: the thread we just switched away from.
2867 */ 2867 */
2868 asmlinkage void schedule_tail(struct task_struct *prev) 2868 asmlinkage void schedule_tail(struct task_struct *prev)
2869 __releases(rq->lock) 2869 __releases(rq->lock)
2870 { 2870 {
2871 struct rq *rq = this_rq(); 2871 struct rq *rq = this_rq();
2872 2872
2873 finish_task_switch(rq, prev); 2873 finish_task_switch(rq, prev);
2874 2874
2875 /* 2875 /*
2876 * FIXME: do we need to worry about rq being invalidated by the 2876 * FIXME: do we need to worry about rq being invalidated by the
2877 * task_switch? 2877 * task_switch?
2878 */ 2878 */
2879 post_schedule(rq); 2879 post_schedule(rq);
2880 2880
2881 #ifdef __ARCH_WANT_UNLOCKED_CTXSW 2881 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2882 /* In this case, finish_task_switch does not reenable preemption */ 2882 /* In this case, finish_task_switch does not reenable preemption */
2883 preempt_enable(); 2883 preempt_enable();
2884 #endif 2884 #endif
2885 if (current->set_child_tid) 2885 if (current->set_child_tid)
2886 put_user(task_pid_vnr(current), current->set_child_tid); 2886 put_user(task_pid_vnr(current), current->set_child_tid);
2887 } 2887 }
2888 2888
2889 /* 2889 /*
2890 * context_switch - switch to the new MM and the new 2890 * context_switch - switch to the new MM and the new
2891 * thread's register state. 2891 * thread's register state.
2892 */ 2892 */
2893 static inline void 2893 static inline void
2894 context_switch(struct rq *rq, struct task_struct *prev, 2894 context_switch(struct rq *rq, struct task_struct *prev,
2895 struct task_struct *next) 2895 struct task_struct *next)
2896 { 2896 {
2897 struct mm_struct *mm, *oldmm; 2897 struct mm_struct *mm, *oldmm;
2898 2898
2899 prepare_task_switch(rq, prev, next); 2899 prepare_task_switch(rq, prev, next);
2900 trace_sched_switch(rq, prev, next); 2900 trace_sched_switch(rq, prev, next);
2901 mm = next->mm; 2901 mm = next->mm;
2902 oldmm = prev->active_mm; 2902 oldmm = prev->active_mm;
2903 /* 2903 /*
2904 * For paravirt, this is coupled with an exit in switch_to to 2904 * For paravirt, this is coupled with an exit in switch_to to
2905 * combine the page table reload and the switch backend into 2905 * combine the page table reload and the switch backend into
2906 * one hypercall. 2906 * one hypercall.
2907 */ 2907 */
2908 arch_start_context_switch(prev); 2908 arch_start_context_switch(prev);
2909 2909
2910 if (likely(!mm)) { 2910 if (likely(!mm)) {
2911 next->active_mm = oldmm; 2911 next->active_mm = oldmm;
2912 atomic_inc(&oldmm->mm_count); 2912 atomic_inc(&oldmm->mm_count);
2913 enter_lazy_tlb(oldmm, next); 2913 enter_lazy_tlb(oldmm, next);
2914 } else 2914 } else
2915 switch_mm(oldmm, mm, next); 2915 switch_mm(oldmm, mm, next);
2916 2916
2917 if (likely(!prev->mm)) { 2917 if (likely(!prev->mm)) {
2918 prev->active_mm = NULL; 2918 prev->active_mm = NULL;
2919 rq->prev_mm = oldmm; 2919 rq->prev_mm = oldmm;
2920 } 2920 }
2921 /* 2921 /*
2922 * Since the runqueue lock will be released by the next 2922 * Since the runqueue lock will be released by the next
2923 * task (which is an invalid locking op but in the case 2923 * task (which is an invalid locking op but in the case
2924 * of the scheduler it's an obvious special-case), so we 2924 * of the scheduler it's an obvious special-case), so we
2925 * do an early lockdep release here: 2925 * do an early lockdep release here:
2926 */ 2926 */
2927 #ifndef __ARCH_WANT_UNLOCKED_CTXSW 2927 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2928 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2928 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2929 #endif 2929 #endif
2930 2930
2931 /* Here we just switch the register state and the stack. */ 2931 /* Here we just switch the register state and the stack. */
2932 switch_to(prev, next, prev); 2932 switch_to(prev, next, prev);
2933 2933
2934 barrier(); 2934 barrier();
2935 /* 2935 /*
2936 * this_rq must be evaluated again because prev may have moved 2936 * this_rq must be evaluated again because prev may have moved
2937 * CPUs since it called schedule(), thus the 'rq' on its stack 2937 * CPUs since it called schedule(), thus the 'rq' on its stack
2938 * frame will be invalid. 2938 * frame will be invalid.
2939 */ 2939 */
2940 finish_task_switch(this_rq(), prev); 2940 finish_task_switch(this_rq(), prev);
2941 } 2941 }
2942 2942
2943 /* 2943 /*
2944 * nr_running, nr_uninterruptible and nr_context_switches: 2944 * nr_running, nr_uninterruptible and nr_context_switches:
2945 * 2945 *
2946 * externally visible scheduler statistics: current number of runnable 2946 * externally visible scheduler statistics: current number of runnable
2947 * threads, current number of uninterruptible-sleeping threads, total 2947 * threads, current number of uninterruptible-sleeping threads, total
2948 * number of context switches performed since bootup. 2948 * number of context switches performed since bootup.
2949 */ 2949 */
2950 unsigned long nr_running(void) 2950 unsigned long nr_running(void)
2951 { 2951 {
2952 unsigned long i, sum = 0; 2952 unsigned long i, sum = 0;
2953 2953
2954 for_each_online_cpu(i) 2954 for_each_online_cpu(i)
2955 sum += cpu_rq(i)->nr_running; 2955 sum += cpu_rq(i)->nr_running;
2956 2956
2957 return sum; 2957 return sum;
2958 } 2958 }
2959 2959
2960 unsigned long nr_uninterruptible(void) 2960 unsigned long nr_uninterruptible(void)
2961 { 2961 {
2962 unsigned long i, sum = 0; 2962 unsigned long i, sum = 0;
2963 2963
2964 for_each_possible_cpu(i) 2964 for_each_possible_cpu(i)
2965 sum += cpu_rq(i)->nr_uninterruptible; 2965 sum += cpu_rq(i)->nr_uninterruptible;
2966 2966
2967 /* 2967 /*
2968 * Since we read the counters lockless, it might be slightly 2968 * Since we read the counters lockless, it might be slightly
2969 * inaccurate. Do not allow it to go below zero though: 2969 * inaccurate. Do not allow it to go below zero though:
2970 */ 2970 */
2971 if (unlikely((long)sum < 0)) 2971 if (unlikely((long)sum < 0))
2972 sum = 0; 2972 sum = 0;
2973 2973
2974 return sum; 2974 return sum;
2975 } 2975 }
2976 2976
2977 unsigned long long nr_context_switches(void) 2977 unsigned long long nr_context_switches(void)
2978 { 2978 {
2979 int i; 2979 int i;
2980 unsigned long long sum = 0; 2980 unsigned long long sum = 0;
2981 2981
2982 for_each_possible_cpu(i) 2982 for_each_possible_cpu(i)
2983 sum += cpu_rq(i)->nr_switches; 2983 sum += cpu_rq(i)->nr_switches;
2984 2984
2985 return sum; 2985 return sum;
2986 } 2986 }
2987 2987
2988 unsigned long nr_iowait(void) 2988 unsigned long nr_iowait(void)
2989 { 2989 {
2990 unsigned long i, sum = 0; 2990 unsigned long i, sum = 0;
2991 2991
2992 for_each_possible_cpu(i) 2992 for_each_possible_cpu(i)
2993 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2993 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2994 2994
2995 return sum; 2995 return sum;
2996 } 2996 }
2997 2997
2998 unsigned long nr_iowait_cpu(void) 2998 unsigned long nr_iowait_cpu(void)
2999 { 2999 {
3000 struct rq *this = this_rq(); 3000 struct rq *this = this_rq();
3001 return atomic_read(&this->nr_iowait); 3001 return atomic_read(&this->nr_iowait);
3002 } 3002 }
3003 3003
3004 unsigned long this_cpu_load(void) 3004 unsigned long this_cpu_load(void)
3005 { 3005 {
3006 struct rq *this = this_rq(); 3006 struct rq *this = this_rq();
3007 return this->cpu_load[0]; 3007 return this->cpu_load[0];
3008 } 3008 }
3009 3009
3010 3010
3011 /* Variables and functions for calc_load */ 3011 /* Variables and functions for calc_load */
3012 static atomic_long_t calc_load_tasks; 3012 static atomic_long_t calc_load_tasks;
3013 static unsigned long calc_load_update; 3013 static unsigned long calc_load_update;
3014 unsigned long avenrun[3]; 3014 unsigned long avenrun[3];
3015 EXPORT_SYMBOL(avenrun); 3015 EXPORT_SYMBOL(avenrun);
3016 3016
3017 /** 3017 /**
3018 * get_avenrun - get the load average array 3018 * get_avenrun - get the load average array
3019 * @loads: pointer to dest load array 3019 * @loads: pointer to dest load array
3020 * @offset: offset to add 3020 * @offset: offset to add
3021 * @shift: shift count to shift the result left 3021 * @shift: shift count to shift the result left
3022 * 3022 *
3023 * These values are estimates at best, so no need for locking. 3023 * These values are estimates at best, so no need for locking.
3024 */ 3024 */
3025 void get_avenrun(unsigned long *loads, unsigned long offset, int shift) 3025 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3026 { 3026 {
3027 loads[0] = (avenrun[0] + offset) << shift; 3027 loads[0] = (avenrun[0] + offset) << shift;
3028 loads[1] = (avenrun[1] + offset) << shift; 3028 loads[1] = (avenrun[1] + offset) << shift;
3029 loads[2] = (avenrun[2] + offset) << shift; 3029 loads[2] = (avenrun[2] + offset) << shift;
3030 } 3030 }
3031 3031
3032 static unsigned long 3032 static unsigned long
3033 calc_load(unsigned long load, unsigned long exp, unsigned long active) 3033 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3034 { 3034 {
3035 load *= exp; 3035 load *= exp;
3036 load += active * (FIXED_1 - exp); 3036 load += active * (FIXED_1 - exp);
3037 return load >> FSHIFT; 3037 return load >> FSHIFT;
3038 } 3038 }
3039 3039
3040 /* 3040 /*
3041 * calc_load - update the avenrun load estimates 10 ticks after the 3041 * calc_load - update the avenrun load estimates 10 ticks after the
3042 * CPUs have updated calc_load_tasks. 3042 * CPUs have updated calc_load_tasks.
3043 */ 3043 */
3044 void calc_global_load(void) 3044 void calc_global_load(void)
3045 { 3045 {
3046 unsigned long upd = calc_load_update + 10; 3046 unsigned long upd = calc_load_update + 10;
3047 long active; 3047 long active;
3048 3048
3049 if (time_before(jiffies, upd)) 3049 if (time_before(jiffies, upd))
3050 return; 3050 return;
3051 3051
3052 active = atomic_long_read(&calc_load_tasks); 3052 active = atomic_long_read(&calc_load_tasks);
3053 active = active > 0 ? active * FIXED_1 : 0; 3053 active = active > 0 ? active * FIXED_1 : 0;
3054 3054
3055 avenrun[0] = calc_load(avenrun[0], EXP_1, active); 3055 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3056 avenrun[1] = calc_load(avenrun[1], EXP_5, active); 3056 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3057 avenrun[2] = calc_load(avenrun[2], EXP_15, active); 3057 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3058 3058
3059 calc_load_update += LOAD_FREQ; 3059 calc_load_update += LOAD_FREQ;
3060 } 3060 }
3061 3061
3062 /* 3062 /*
3063 * Either called from update_cpu_load() or from a cpu going idle 3063 * Either called from update_cpu_load() or from a cpu going idle
3064 */ 3064 */
3065 static void calc_load_account_active(struct rq *this_rq) 3065 static void calc_load_account_active(struct rq *this_rq)
3066 { 3066 {
3067 long nr_active, delta; 3067 long nr_active, delta;
3068 3068
3069 nr_active = this_rq->nr_running; 3069 nr_active = this_rq->nr_running;
3070 nr_active += (long) this_rq->nr_uninterruptible; 3070 nr_active += (long) this_rq->nr_uninterruptible;
3071 3071
3072 if (nr_active != this_rq->calc_load_active) { 3072 if (nr_active != this_rq->calc_load_active) {
3073 delta = nr_active - this_rq->calc_load_active; 3073 delta = nr_active - this_rq->calc_load_active;
3074 this_rq->calc_load_active = nr_active; 3074 this_rq->calc_load_active = nr_active;
3075 atomic_long_add(delta, &calc_load_tasks); 3075 atomic_long_add(delta, &calc_load_tasks);
3076 } 3076 }
3077 } 3077 }
3078 3078
3079 /* 3079 /*
3080 * Update rq->cpu_load[] statistics. This function is usually called every 3080 * Update rq->cpu_load[] statistics. This function is usually called every
3081 * scheduler tick (TICK_NSEC). 3081 * scheduler tick (TICK_NSEC).
3082 */ 3082 */
3083 static void update_cpu_load(struct rq *this_rq) 3083 static void update_cpu_load(struct rq *this_rq)
3084 { 3084 {
3085 unsigned long this_load = this_rq->load.weight; 3085 unsigned long this_load = this_rq->load.weight;
3086 int i, scale; 3086 int i, scale;
3087 3087
3088 this_rq->nr_load_updates++; 3088 this_rq->nr_load_updates++;
3089 3089
3090 /* Update our load: */ 3090 /* Update our load: */
3091 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { 3091 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3092 unsigned long old_load, new_load; 3092 unsigned long old_load, new_load;
3093 3093
3094 /* scale is effectively 1 << i now, and >> i divides by scale */ 3094 /* scale is effectively 1 << i now, and >> i divides by scale */
3095 3095
3096 old_load = this_rq->cpu_load[i]; 3096 old_load = this_rq->cpu_load[i];
3097 new_load = this_load; 3097 new_load = this_load;
3098 /* 3098 /*
3099 * Round up the averaging division if load is increasing. This 3099 * Round up the averaging division if load is increasing. This
3100 * prevents us from getting stuck on 9 if the load is 10, for 3100 * prevents us from getting stuck on 9 if the load is 10, for
3101 * example. 3101 * example.
3102 */ 3102 */
3103 if (new_load > old_load) 3103 if (new_load > old_load)
3104 new_load += scale-1; 3104 new_load += scale-1;
3105 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i; 3105 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3106 } 3106 }
3107 3107
3108 if (time_after_eq(jiffies, this_rq->calc_load_update)) { 3108 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3109 this_rq->calc_load_update += LOAD_FREQ; 3109 this_rq->calc_load_update += LOAD_FREQ;
3110 calc_load_account_active(this_rq); 3110 calc_load_account_active(this_rq);
3111 } 3111 }
3112 } 3112 }
3113 3113
3114 #ifdef CONFIG_SMP 3114 #ifdef CONFIG_SMP
3115 3115
3116 /* 3116 /*
3117 * sched_exec - execve() is a valuable balancing opportunity, because at 3117 * sched_exec - execve() is a valuable balancing opportunity, because at
3118 * this point the task has the smallest effective memory and cache footprint. 3118 * this point the task has the smallest effective memory and cache footprint.
3119 */ 3119 */
3120 void sched_exec(void) 3120 void sched_exec(void)
3121 { 3121 {
3122 struct task_struct *p = current; 3122 struct task_struct *p = current;
3123 struct migration_req req; 3123 struct migration_req req;
3124 int dest_cpu, this_cpu; 3124 int dest_cpu, this_cpu;
3125 unsigned long flags; 3125 unsigned long flags;
3126 struct rq *rq; 3126 struct rq *rq;
3127 3127
3128 again: 3128 again:
3129 this_cpu = get_cpu(); 3129 this_cpu = get_cpu();
3130 dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0); 3130 dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
3131 if (dest_cpu == this_cpu) { 3131 if (dest_cpu == this_cpu) {
3132 put_cpu(); 3132 put_cpu();
3133 return; 3133 return;
3134 } 3134 }
3135 3135
3136 rq = task_rq_lock(p, &flags); 3136 rq = task_rq_lock(p, &flags);
3137 put_cpu(); 3137 put_cpu();
3138 3138
3139 /* 3139 /*
3140 * select_task_rq() can race against ->cpus_allowed 3140 * select_task_rq() can race against ->cpus_allowed
3141 */ 3141 */
3142 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed) 3142 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3143 || unlikely(!cpu_active(dest_cpu))) { 3143 || unlikely(!cpu_active(dest_cpu))) {
3144 task_rq_unlock(rq, &flags); 3144 task_rq_unlock(rq, &flags);
3145 goto again; 3145 goto again;
3146 } 3146 }
3147 3147
3148 /* force the process onto the specified CPU */ 3148 /* force the process onto the specified CPU */
3149 if (migrate_task(p, dest_cpu, &req)) { 3149 if (migrate_task(p, dest_cpu, &req)) {
3150 /* Need to wait for migration thread (might exit: take ref). */ 3150 /* Need to wait for migration thread (might exit: take ref). */
3151 struct task_struct *mt = rq->migration_thread; 3151 struct task_struct *mt = rq->migration_thread;
3152 3152
3153 get_task_struct(mt); 3153 get_task_struct(mt);
3154 task_rq_unlock(rq, &flags); 3154 task_rq_unlock(rq, &flags);
3155 wake_up_process(mt); 3155 wake_up_process(mt);
3156 put_task_struct(mt); 3156 put_task_struct(mt);
3157 wait_for_completion(&req.done); 3157 wait_for_completion(&req.done);
3158 3158
3159 return; 3159 return;
3160 } 3160 }
3161 task_rq_unlock(rq, &flags); 3161 task_rq_unlock(rq, &flags);
3162 } 3162 }
3163 3163
3164 #endif 3164 #endif
3165 3165
3166 DEFINE_PER_CPU(struct kernel_stat, kstat); 3166 DEFINE_PER_CPU(struct kernel_stat, kstat);
3167 3167
3168 EXPORT_PER_CPU_SYMBOL(kstat); 3168 EXPORT_PER_CPU_SYMBOL(kstat);
3169 3169
3170 /* 3170 /*
3171 * Return any ns on the sched_clock that have not yet been accounted in 3171 * Return any ns on the sched_clock that have not yet been accounted in
3172 * @p in case that task is currently running. 3172 * @p in case that task is currently running.
3173 * 3173 *
3174 * Called with task_rq_lock() held on @rq. 3174 * Called with task_rq_lock() held on @rq.
3175 */ 3175 */
3176 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) 3176 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3177 { 3177 {
3178 u64 ns = 0; 3178 u64 ns = 0;
3179 3179
3180 if (task_current(rq, p)) { 3180 if (task_current(rq, p)) {
3181 update_rq_clock(rq); 3181 update_rq_clock(rq);
3182 ns = rq->clock - p->se.exec_start; 3182 ns = rq->clock - p->se.exec_start;
3183 if ((s64)ns < 0) 3183 if ((s64)ns < 0)
3184 ns = 0; 3184 ns = 0;
3185 } 3185 }
3186 3186
3187 return ns; 3187 return ns;
3188 } 3188 }
3189 3189
3190 unsigned long long task_delta_exec(struct task_struct *p) 3190 unsigned long long task_delta_exec(struct task_struct *p)
3191 { 3191 {
3192 unsigned long flags; 3192 unsigned long flags;
3193 struct rq *rq; 3193 struct rq *rq;
3194 u64 ns = 0; 3194 u64 ns = 0;
3195 3195
3196 rq = task_rq_lock(p, &flags); 3196 rq = task_rq_lock(p, &flags);
3197 ns = do_task_delta_exec(p, rq); 3197 ns = do_task_delta_exec(p, rq);
3198 task_rq_unlock(rq, &flags); 3198 task_rq_unlock(rq, &flags);
3199 3199
3200 return ns; 3200 return ns;
3201 } 3201 }
3202 3202
3203 /* 3203 /*
3204 * Return accounted runtime for the task. 3204 * Return accounted runtime for the task.
3205 * In case the task is currently running, return the runtime plus current's 3205 * In case the task is currently running, return the runtime plus current's
3206 * pending runtime that have not been accounted yet. 3206 * pending runtime that have not been accounted yet.
3207 */ 3207 */
3208 unsigned long long task_sched_runtime(struct task_struct *p) 3208 unsigned long long task_sched_runtime(struct task_struct *p)
3209 { 3209 {
3210 unsigned long flags; 3210 unsigned long flags;
3211 struct rq *rq; 3211 struct rq *rq;
3212 u64 ns = 0; 3212 u64 ns = 0;
3213 3213
3214 rq = task_rq_lock(p, &flags); 3214 rq = task_rq_lock(p, &flags);
3215 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq); 3215 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3216 task_rq_unlock(rq, &flags); 3216 task_rq_unlock(rq, &flags);
3217 3217
3218 return ns; 3218 return ns;
3219 } 3219 }
3220 3220
3221 /* 3221 /*
3222 * Return sum_exec_runtime for the thread group. 3222 * Return sum_exec_runtime for the thread group.
3223 * In case the task is currently running, return the sum plus current's 3223 * In case the task is currently running, return the sum plus current's
3224 * pending runtime that have not been accounted yet. 3224 * pending runtime that have not been accounted yet.
3225 * 3225 *
3226 * Note that the thread group might have other running tasks as well, 3226 * Note that the thread group might have other running tasks as well,
3227 * so the return value not includes other pending runtime that other 3227 * so the return value not includes other pending runtime that other
3228 * running tasks might have. 3228 * running tasks might have.
3229 */ 3229 */
3230 unsigned long long thread_group_sched_runtime(struct task_struct *p) 3230 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3231 { 3231 {
3232 struct task_cputime totals; 3232 struct task_cputime totals;
3233 unsigned long flags; 3233 unsigned long flags;
3234 struct rq *rq; 3234 struct rq *rq;
3235 u64 ns; 3235 u64 ns;
3236 3236
3237 rq = task_rq_lock(p, &flags); 3237 rq = task_rq_lock(p, &flags);
3238 thread_group_cputime(p, &totals); 3238 thread_group_cputime(p, &totals);
3239 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq); 3239 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3240 task_rq_unlock(rq, &flags); 3240 task_rq_unlock(rq, &flags);
3241 3241
3242 return ns; 3242 return ns;
3243 } 3243 }
3244 3244
3245 /* 3245 /*
3246 * Account user cpu time to a process. 3246 * Account user cpu time to a process.
3247 * @p: the process that the cpu time gets accounted to 3247 * @p: the process that the cpu time gets accounted to
3248 * @cputime: the cpu time spent in user space since the last update 3248 * @cputime: the cpu time spent in user space since the last update
3249 * @cputime_scaled: cputime scaled by cpu frequency 3249 * @cputime_scaled: cputime scaled by cpu frequency
3250 */ 3250 */
3251 void account_user_time(struct task_struct *p, cputime_t cputime, 3251 void account_user_time(struct task_struct *p, cputime_t cputime,
3252 cputime_t cputime_scaled) 3252 cputime_t cputime_scaled)
3253 { 3253 {
3254 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; 3254 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3255 cputime64_t tmp; 3255 cputime64_t tmp;
3256 3256
3257 /* Add user time to process. */ 3257 /* Add user time to process. */
3258 p->utime = cputime_add(p->utime, cputime); 3258 p->utime = cputime_add(p->utime, cputime);
3259 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled); 3259 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3260 account_group_user_time(p, cputime); 3260 account_group_user_time(p, cputime);
3261 3261
3262 /* Add user time to cpustat. */ 3262 /* Add user time to cpustat. */
3263 tmp = cputime_to_cputime64(cputime); 3263 tmp = cputime_to_cputime64(cputime);
3264 if (TASK_NICE(p) > 0) 3264 if (TASK_NICE(p) > 0)
3265 cpustat->nice = cputime64_add(cpustat->nice, tmp); 3265 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3266 else 3266 else
3267 cpustat->user = cputime64_add(cpustat->user, tmp); 3267 cpustat->user = cputime64_add(cpustat->user, tmp);
3268 3268
3269 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime); 3269 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3270 /* Account for user time used */ 3270 /* Account for user time used */
3271 acct_update_integrals(p); 3271 acct_update_integrals(p);
3272 } 3272 }
3273 3273
3274 /* 3274 /*
3275 * Account guest cpu time to a process. 3275 * Account guest cpu time to a process.
3276 * @p: the process that the cpu time gets accounted to 3276 * @p: the process that the cpu time gets accounted to
3277 * @cputime: the cpu time spent in virtual machine since the last update 3277 * @cputime: the cpu time spent in virtual machine since the last update
3278 * @cputime_scaled: cputime scaled by cpu frequency 3278 * @cputime_scaled: cputime scaled by cpu frequency
3279 */ 3279 */
3280 static void account_guest_time(struct task_struct *p, cputime_t cputime, 3280 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3281 cputime_t cputime_scaled) 3281 cputime_t cputime_scaled)
3282 { 3282 {
3283 cputime64_t tmp; 3283 cputime64_t tmp;
3284 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; 3284 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3285 3285
3286 tmp = cputime_to_cputime64(cputime); 3286 tmp = cputime_to_cputime64(cputime);
3287 3287
3288 /* Add guest time to process. */ 3288 /* Add guest time to process. */
3289 p->utime = cputime_add(p->utime, cputime); 3289 p->utime = cputime_add(p->utime, cputime);
3290 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled); 3290 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3291 account_group_user_time(p, cputime); 3291 account_group_user_time(p, cputime);
3292 p->gtime = cputime_add(p->gtime, cputime); 3292 p->gtime = cputime_add(p->gtime, cputime);
3293 3293
3294 /* Add guest time to cpustat. */ 3294 /* Add guest time to cpustat. */
3295 if (TASK_NICE(p) > 0) { 3295 if (TASK_NICE(p) > 0) {
3296 cpustat->nice = cputime64_add(cpustat->nice, tmp); 3296 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3297 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp); 3297 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3298 } else { 3298 } else {
3299 cpustat->user = cputime64_add(cpustat->user, tmp); 3299 cpustat->user = cputime64_add(cpustat->user, tmp);
3300 cpustat->guest = cputime64_add(cpustat->guest, tmp); 3300 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3301 } 3301 }
3302 } 3302 }
3303 3303
3304 /* 3304 /*
3305 * Account system cpu time to a process. 3305 * Account system cpu time to a process.
3306 * @p: the process that the cpu time gets accounted to 3306 * @p: the process that the cpu time gets accounted to
3307 * @hardirq_offset: the offset to subtract from hardirq_count() 3307 * @hardirq_offset: the offset to subtract from hardirq_count()
3308 * @cputime: the cpu time spent in kernel space since the last update 3308 * @cputime: the cpu time spent in kernel space since the last update
3309 * @cputime_scaled: cputime scaled by cpu frequency 3309 * @cputime_scaled: cputime scaled by cpu frequency
3310 */ 3310 */
3311 void account_system_time(struct task_struct *p, int hardirq_offset, 3311 void account_system_time(struct task_struct *p, int hardirq_offset,
3312 cputime_t cputime, cputime_t cputime_scaled) 3312 cputime_t cputime, cputime_t cputime_scaled)
3313 { 3313 {
3314 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; 3314 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3315 cputime64_t tmp; 3315 cputime64_t tmp;
3316 3316
3317 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { 3317 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3318 account_guest_time(p, cputime, cputime_scaled); 3318 account_guest_time(p, cputime, cputime_scaled);
3319 return; 3319 return;
3320 } 3320 }
3321 3321
3322 /* Add system time to process. */ 3322 /* Add system time to process. */
3323 p->stime = cputime_add(p->stime, cputime); 3323 p->stime = cputime_add(p->stime, cputime);
3324 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled); 3324 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3325 account_group_system_time(p, cputime); 3325 account_group_system_time(p, cputime);
3326 3326
3327 /* Add system time to cpustat. */ 3327 /* Add system time to cpustat. */
3328 tmp = cputime_to_cputime64(cputime); 3328 tmp = cputime_to_cputime64(cputime);
3329 if (hardirq_count() - hardirq_offset) 3329 if (hardirq_count() - hardirq_offset)
3330 cpustat->irq = cputime64_add(cpustat->irq, tmp); 3330 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3331 else if (softirq_count()) 3331 else if (softirq_count())
3332 cpustat->softirq = cputime64_add(cpustat->softirq, tmp); 3332 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3333 else 3333 else
3334 cpustat->system = cputime64_add(cpustat->system, tmp); 3334 cpustat->system = cputime64_add(cpustat->system, tmp);
3335 3335
3336 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime); 3336 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3337 3337
3338 /* Account for system time used */ 3338 /* Account for system time used */
3339 acct_update_integrals(p); 3339 acct_update_integrals(p);
3340 } 3340 }
3341 3341
3342 /* 3342 /*
3343 * Account for involuntary wait time. 3343 * Account for involuntary wait time.
3344 * @steal: the cpu time spent in involuntary wait 3344 * @steal: the cpu time spent in involuntary wait
3345 */ 3345 */
3346 void account_steal_time(cputime_t cputime) 3346 void account_steal_time(cputime_t cputime)
3347 { 3347 {
3348 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; 3348 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3349 cputime64_t cputime64 = cputime_to_cputime64(cputime); 3349 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3350 3350
3351 cpustat->steal = cputime64_add(cpustat->steal, cputime64); 3351 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3352 } 3352 }
3353 3353
3354 /* 3354 /*
3355 * Account for idle time. 3355 * Account for idle time.
3356 * @cputime: the cpu time spent in idle wait 3356 * @cputime: the cpu time spent in idle wait
3357 */ 3357 */
3358 void account_idle_time(cputime_t cputime) 3358 void account_idle_time(cputime_t cputime)
3359 { 3359 {
3360 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; 3360 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3361 cputime64_t cputime64 = cputime_to_cputime64(cputime); 3361 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3362 struct rq *rq = this_rq(); 3362 struct rq *rq = this_rq();
3363 3363
3364 if (atomic_read(&rq->nr_iowait) > 0) 3364 if (atomic_read(&rq->nr_iowait) > 0)
3365 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64); 3365 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3366 else 3366 else
3367 cpustat->idle = cputime64_add(cpustat->idle, cputime64); 3367 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3368 } 3368 }
3369 3369
3370 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 3370 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3371 3371
3372 /* 3372 /*
3373 * Account a single tick of cpu time. 3373 * Account a single tick of cpu time.
3374 * @p: the process that the cpu time gets accounted to 3374 * @p: the process that the cpu time gets accounted to
3375 * @user_tick: indicates if the tick is a user or a system tick 3375 * @user_tick: indicates if the tick is a user or a system tick
3376 */ 3376 */
3377 void account_process_tick(struct task_struct *p, int user_tick) 3377 void account_process_tick(struct task_struct *p, int user_tick)
3378 { 3378 {
3379 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); 3379 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3380 struct rq *rq = this_rq(); 3380 struct rq *rq = this_rq();
3381 3381
3382 if (user_tick) 3382 if (user_tick)
3383 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); 3383 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3384 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) 3384 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3385 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy, 3385 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3386 one_jiffy_scaled); 3386 one_jiffy_scaled);
3387 else 3387 else
3388 account_idle_time(cputime_one_jiffy); 3388 account_idle_time(cputime_one_jiffy);
3389 } 3389 }
3390 3390
3391 /* 3391 /*
3392 * Account multiple ticks of steal time. 3392 * Account multiple ticks of steal time.
3393 * @p: the process from which the cpu time has been stolen 3393 * @p: the process from which the cpu time has been stolen
3394 * @ticks: number of stolen ticks 3394 * @ticks: number of stolen ticks
3395 */ 3395 */
3396 void account_steal_ticks(unsigned long ticks) 3396 void account_steal_ticks(unsigned long ticks)
3397 { 3397 {
3398 account_steal_time(jiffies_to_cputime(ticks)); 3398 account_steal_time(jiffies_to_cputime(ticks));
3399 } 3399 }
3400 3400
3401 /* 3401 /*
3402 * Account multiple ticks of idle time. 3402 * Account multiple ticks of idle time.
3403 * @ticks: number of stolen ticks 3403 * @ticks: number of stolen ticks
3404 */ 3404 */
3405 void account_idle_ticks(unsigned long ticks) 3405 void account_idle_ticks(unsigned long ticks)
3406 { 3406 {
3407 account_idle_time(jiffies_to_cputime(ticks)); 3407 account_idle_time(jiffies_to_cputime(ticks));
3408 } 3408 }
3409 3409
3410 #endif 3410 #endif
3411 3411
3412 /* 3412 /*
3413 * Use precise platform statistics if available: 3413 * Use precise platform statistics if available:
3414 */ 3414 */
3415 #ifdef CONFIG_VIRT_CPU_ACCOUNTING 3415 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3416 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) 3416 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3417 { 3417 {
3418 *ut = p->utime; 3418 *ut = p->utime;
3419 *st = p->stime; 3419 *st = p->stime;
3420 } 3420 }
3421 3421
3422 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) 3422 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3423 { 3423 {
3424 struct task_cputime cputime; 3424 struct task_cputime cputime;
3425 3425
3426 thread_group_cputime(p, &cputime); 3426 thread_group_cputime(p, &cputime);
3427 3427
3428 *ut = cputime.utime; 3428 *ut = cputime.utime;
3429 *st = cputime.stime; 3429 *st = cputime.stime;
3430 } 3430 }
3431 #else 3431 #else
3432 3432
3433 #ifndef nsecs_to_cputime 3433 #ifndef nsecs_to_cputime
3434 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs) 3434 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3435 #endif 3435 #endif
3436 3436
3437 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) 3437 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3438 { 3438 {
3439 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime); 3439 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3440 3440
3441 /* 3441 /*
3442 * Use CFS's precise accounting: 3442 * Use CFS's precise accounting:
3443 */ 3443 */
3444 rtime = nsecs_to_cputime(p->se.sum_exec_runtime); 3444 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3445 3445
3446 if (total) { 3446 if (total) {
3447 u64 temp; 3447 u64 temp;
3448 3448
3449 temp = (u64)(rtime * utime); 3449 temp = (u64)(rtime * utime);
3450 do_div(temp, total); 3450 do_div(temp, total);
3451 utime = (cputime_t)temp; 3451 utime = (cputime_t)temp;
3452 } else 3452 } else
3453 utime = rtime; 3453 utime = rtime;
3454 3454
3455 /* 3455 /*
3456 * Compare with previous values, to keep monotonicity: 3456 * Compare with previous values, to keep monotonicity:
3457 */ 3457 */
3458 p->prev_utime = max(p->prev_utime, utime); 3458 p->prev_utime = max(p->prev_utime, utime);
3459 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime)); 3459 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3460 3460
3461 *ut = p->prev_utime; 3461 *ut = p->prev_utime;
3462 *st = p->prev_stime; 3462 *st = p->prev_stime;
3463 } 3463 }
3464 3464
3465 /* 3465 /*
3466 * Must be called with siglock held. 3466 * Must be called with siglock held.
3467 */ 3467 */
3468 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) 3468 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3469 { 3469 {
3470 struct signal_struct *sig = p->signal; 3470 struct signal_struct *sig = p->signal;
3471 struct task_cputime cputime; 3471 struct task_cputime cputime;
3472 cputime_t rtime, utime, total; 3472 cputime_t rtime, utime, total;
3473 3473
3474 thread_group_cputime(p, &cputime); 3474 thread_group_cputime(p, &cputime);
3475 3475
3476 total = cputime_add(cputime.utime, cputime.stime); 3476 total = cputime_add(cputime.utime, cputime.stime);
3477 rtime = nsecs_to_cputime(cputime.sum_exec_runtime); 3477 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3478 3478
3479 if (total) { 3479 if (total) {
3480 u64 temp; 3480 u64 temp;
3481 3481
3482 temp = (u64)(rtime * cputime.utime); 3482 temp = (u64)(rtime * cputime.utime);
3483 do_div(temp, total); 3483 do_div(temp, total);
3484 utime = (cputime_t)temp; 3484 utime = (cputime_t)temp;
3485 } else 3485 } else
3486 utime = rtime; 3486 utime = rtime;
3487 3487
3488 sig->prev_utime = max(sig->prev_utime, utime); 3488 sig->prev_utime = max(sig->prev_utime, utime);
3489 sig->prev_stime = max(sig->prev_stime, 3489 sig->prev_stime = max(sig->prev_stime,
3490 cputime_sub(rtime, sig->prev_utime)); 3490 cputime_sub(rtime, sig->prev_utime));
3491 3491
3492 *ut = sig->prev_utime; 3492 *ut = sig->prev_utime;
3493 *st = sig->prev_stime; 3493 *st = sig->prev_stime;
3494 } 3494 }
3495 #endif 3495 #endif
3496 3496
3497 /* 3497 /*
3498 * This function gets called by the timer code, with HZ frequency. 3498 * This function gets called by the timer code, with HZ frequency.
3499 * We call it with interrupts disabled. 3499 * We call it with interrupts disabled.
3500 * 3500 *
3501 * It also gets called by the fork code, when changing the parent's 3501 * It also gets called by the fork code, when changing the parent's
3502 * timeslices. 3502 * timeslices.
3503 */ 3503 */
3504 void scheduler_tick(void) 3504 void scheduler_tick(void)
3505 { 3505 {
3506 int cpu = smp_processor_id(); 3506 int cpu = smp_processor_id();
3507 struct rq *rq = cpu_rq(cpu); 3507 struct rq *rq = cpu_rq(cpu);
3508 struct task_struct *curr = rq->curr; 3508 struct task_struct *curr = rq->curr;
3509 3509
3510 sched_clock_tick(); 3510 sched_clock_tick();
3511 3511
3512 raw_spin_lock(&rq->lock); 3512 raw_spin_lock(&rq->lock);
3513 update_rq_clock(rq); 3513 update_rq_clock(rq);
3514 update_cpu_load(rq); 3514 update_cpu_load(rq);
3515 curr->sched_class->task_tick(rq, curr, 0); 3515 curr->sched_class->task_tick(rq, curr, 0);
3516 raw_spin_unlock(&rq->lock); 3516 raw_spin_unlock(&rq->lock);
3517 3517
3518 perf_event_task_tick(curr); 3518 perf_event_task_tick(curr);
3519 3519
3520 #ifdef CONFIG_SMP 3520 #ifdef CONFIG_SMP
3521 rq->idle_at_tick = idle_cpu(cpu); 3521 rq->idle_at_tick = idle_cpu(cpu);
3522 trigger_load_balance(rq, cpu); 3522 trigger_load_balance(rq, cpu);
3523 #endif 3523 #endif
3524 } 3524 }
3525 3525
3526 notrace unsigned long get_parent_ip(unsigned long addr) 3526 notrace unsigned long get_parent_ip(unsigned long addr)
3527 { 3527 {
3528 if (in_lock_functions(addr)) { 3528 if (in_lock_functions(addr)) {
3529 addr = CALLER_ADDR2; 3529 addr = CALLER_ADDR2;
3530 if (in_lock_functions(addr)) 3530 if (in_lock_functions(addr))
3531 addr = CALLER_ADDR3; 3531 addr = CALLER_ADDR3;
3532 } 3532 }
3533 return addr; 3533 return addr;
3534 } 3534 }
3535 3535
3536 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3536 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3537 defined(CONFIG_PREEMPT_TRACER)) 3537 defined(CONFIG_PREEMPT_TRACER))
3538 3538
3539 void __kprobes add_preempt_count(int val) 3539 void __kprobes add_preempt_count(int val)
3540 { 3540 {
3541 #ifdef CONFIG_DEBUG_PREEMPT 3541 #ifdef CONFIG_DEBUG_PREEMPT
3542 /* 3542 /*
3543 * Underflow? 3543 * Underflow?
3544 */ 3544 */
3545 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3545 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3546 return; 3546 return;
3547 #endif 3547 #endif
3548 preempt_count() += val; 3548 preempt_count() += val;
3549 #ifdef CONFIG_DEBUG_PREEMPT 3549 #ifdef CONFIG_DEBUG_PREEMPT
3550 /* 3550 /*
3551 * Spinlock count overflowing soon? 3551 * Spinlock count overflowing soon?
3552 */ 3552 */
3553 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3553 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3554 PREEMPT_MASK - 10); 3554 PREEMPT_MASK - 10);
3555 #endif 3555 #endif
3556 if (preempt_count() == val) 3556 if (preempt_count() == val)
3557 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 3557 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3558 } 3558 }
3559 EXPORT_SYMBOL(add_preempt_count); 3559 EXPORT_SYMBOL(add_preempt_count);
3560 3560
3561 void __kprobes sub_preempt_count(int val) 3561 void __kprobes sub_preempt_count(int val)
3562 { 3562 {
3563 #ifdef CONFIG_DEBUG_PREEMPT 3563 #ifdef CONFIG_DEBUG_PREEMPT
3564 /* 3564 /*
3565 * Underflow? 3565 * Underflow?
3566 */ 3566 */
3567 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3567 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3568 return; 3568 return;
3569 /* 3569 /*
3570 * Is the spinlock portion underflowing? 3570 * Is the spinlock portion underflowing?
3571 */ 3571 */
3572 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3572 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3573 !(preempt_count() & PREEMPT_MASK))) 3573 !(preempt_count() & PREEMPT_MASK)))
3574 return; 3574 return;
3575 #endif 3575 #endif
3576 3576
3577 if (preempt_count() == val) 3577 if (preempt_count() == val)
3578 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 3578 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3579 preempt_count() -= val; 3579 preempt_count() -= val;
3580 } 3580 }
3581 EXPORT_SYMBOL(sub_preempt_count); 3581 EXPORT_SYMBOL(sub_preempt_count);
3582 3582
3583 #endif 3583 #endif
3584 3584
3585 /* 3585 /*
3586 * Print scheduling while atomic bug: 3586 * Print scheduling while atomic bug:
3587 */ 3587 */
3588 static noinline void __schedule_bug(struct task_struct *prev) 3588 static noinline void __schedule_bug(struct task_struct *prev)
3589 { 3589 {
3590 struct pt_regs *regs = get_irq_regs(); 3590 struct pt_regs *regs = get_irq_regs();
3591 3591
3592 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3592 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3593 prev->comm, prev->pid, preempt_count()); 3593 prev->comm, prev->pid, preempt_count());
3594 3594
3595 debug_show_held_locks(prev); 3595 debug_show_held_locks(prev);
3596 print_modules(); 3596 print_modules();
3597 if (irqs_disabled()) 3597 if (irqs_disabled())
3598 print_irqtrace_events(prev); 3598 print_irqtrace_events(prev);
3599 3599
3600 if (regs) 3600 if (regs)
3601 show_regs(regs); 3601 show_regs(regs);
3602 else 3602 else
3603 dump_stack(); 3603 dump_stack();
3604 } 3604 }
3605 3605
3606 /* 3606 /*
3607 * Various schedule()-time debugging checks and statistics: 3607 * Various schedule()-time debugging checks and statistics:
3608 */ 3608 */
3609 static inline void schedule_debug(struct task_struct *prev) 3609 static inline void schedule_debug(struct task_struct *prev)
3610 { 3610 {
3611 /* 3611 /*
3612 * Test if we are atomic. Since do_exit() needs to call into 3612 * Test if we are atomic. Since do_exit() needs to call into
3613 * schedule() atomically, we ignore that path for now. 3613 * schedule() atomically, we ignore that path for now.
3614 * Otherwise, whine if we are scheduling when we should not be. 3614 * Otherwise, whine if we are scheduling when we should not be.
3615 */ 3615 */
3616 if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) 3616 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3617 __schedule_bug(prev); 3617 __schedule_bug(prev);
3618 3618
3619 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3619 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3620 3620
3621 schedstat_inc(this_rq(), sched_count); 3621 schedstat_inc(this_rq(), sched_count);
3622 #ifdef CONFIG_SCHEDSTATS 3622 #ifdef CONFIG_SCHEDSTATS
3623 if (unlikely(prev->lock_depth >= 0)) { 3623 if (unlikely(prev->lock_depth >= 0)) {
3624 schedstat_inc(this_rq(), bkl_count); 3624 schedstat_inc(this_rq(), bkl_count);
3625 schedstat_inc(prev, sched_info.bkl_count); 3625 schedstat_inc(prev, sched_info.bkl_count);
3626 } 3626 }
3627 #endif 3627 #endif
3628 } 3628 }
3629 3629
3630 static void put_prev_task(struct rq *rq, struct task_struct *prev) 3630 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3631 { 3631 {
3632 if (prev->state == TASK_RUNNING) { 3632 if (prev->state == TASK_RUNNING) {
3633 u64 runtime = prev->se.sum_exec_runtime; 3633 u64 runtime = prev->se.sum_exec_runtime;
3634 3634
3635 runtime -= prev->se.prev_sum_exec_runtime; 3635 runtime -= prev->se.prev_sum_exec_runtime;
3636 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost); 3636 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
3637 3637
3638 /* 3638 /*
3639 * In order to avoid avg_overlap growing stale when we are 3639 * In order to avoid avg_overlap growing stale when we are
3640 * indeed overlapping and hence not getting put to sleep, grow 3640 * indeed overlapping and hence not getting put to sleep, grow
3641 * the avg_overlap on preemption. 3641 * the avg_overlap on preemption.
3642 * 3642 *
3643 * We use the average preemption runtime because that 3643 * We use the average preemption runtime because that
3644 * correlates to the amount of cache footprint a task can 3644 * correlates to the amount of cache footprint a task can
3645 * build up. 3645 * build up.
3646 */ 3646 */
3647 update_avg(&prev->se.avg_overlap, runtime); 3647 update_avg(&prev->se.avg_overlap, runtime);
3648 } 3648 }
3649 prev->sched_class->put_prev_task(rq, prev); 3649 prev->sched_class->put_prev_task(rq, prev);
3650 } 3650 }
3651 3651
3652 /* 3652 /*
3653 * Pick up the highest-prio task: 3653 * Pick up the highest-prio task:
3654 */ 3654 */
3655 static inline struct task_struct * 3655 static inline struct task_struct *
3656 pick_next_task(struct rq *rq) 3656 pick_next_task(struct rq *rq)
3657 { 3657 {
3658 const struct sched_class *class; 3658 const struct sched_class *class;
3659 struct task_struct *p; 3659 struct task_struct *p;
3660 3660
3661 /* 3661 /*
3662 * Optimization: we know that if all tasks are in 3662 * Optimization: we know that if all tasks are in
3663 * the fair class we can call that function directly: 3663 * the fair class we can call that function directly:
3664 */ 3664 */
3665 if (likely(rq->nr_running == rq->cfs.nr_running)) { 3665 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3666 p = fair_sched_class.pick_next_task(rq); 3666 p = fair_sched_class.pick_next_task(rq);
3667 if (likely(p)) 3667 if (likely(p))
3668 return p; 3668 return p;
3669 } 3669 }
3670 3670
3671 class = sched_class_highest; 3671 class = sched_class_highest;
3672 for ( ; ; ) { 3672 for ( ; ; ) {
3673 p = class->pick_next_task(rq); 3673 p = class->pick_next_task(rq);
3674 if (p) 3674 if (p)
3675 return p; 3675 return p;
3676 /* 3676 /*
3677 * Will never be NULL as the idle class always 3677 * Will never be NULL as the idle class always
3678 * returns a non-NULL p: 3678 * returns a non-NULL p:
3679 */ 3679 */
3680 class = class->next; 3680 class = class->next;
3681 } 3681 }
3682 } 3682 }
3683 3683
3684 /* 3684 /*
3685 * schedule() is the main scheduler function. 3685 * schedule() is the main scheduler function.
3686 */ 3686 */
3687 asmlinkage void __sched schedule(void) 3687 asmlinkage void __sched schedule(void)
3688 { 3688 {
3689 struct task_struct *prev, *next; 3689 struct task_struct *prev, *next;
3690 unsigned long *switch_count; 3690 unsigned long *switch_count;
3691 struct rq *rq; 3691 struct rq *rq;
3692 int cpu; 3692 int cpu;
3693 3693
3694 need_resched: 3694 need_resched:
3695 preempt_disable(); 3695 preempt_disable();
3696 cpu = smp_processor_id(); 3696 cpu = smp_processor_id();
3697 rq = cpu_rq(cpu); 3697 rq = cpu_rq(cpu);
3698 rcu_sched_qs(cpu); 3698 rcu_sched_qs(cpu);
3699 prev = rq->curr; 3699 prev = rq->curr;
3700 switch_count = &prev->nivcsw; 3700 switch_count = &prev->nivcsw;
3701 3701
3702 release_kernel_lock(prev); 3702 release_kernel_lock(prev);
3703 need_resched_nonpreemptible: 3703 need_resched_nonpreemptible:
3704 3704
3705 schedule_debug(prev); 3705 schedule_debug(prev);
3706 3706
3707 if (sched_feat(HRTICK)) 3707 if (sched_feat(HRTICK))
3708 hrtick_clear(rq); 3708 hrtick_clear(rq);
3709 3709
3710 raw_spin_lock_irq(&rq->lock); 3710 raw_spin_lock_irq(&rq->lock);
3711 update_rq_clock(rq); 3711 update_rq_clock(rq);
3712 clear_tsk_need_resched(prev); 3712 clear_tsk_need_resched(prev);
3713 3713
3714 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { 3714 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3715 if (unlikely(signal_pending_state(prev->state, prev))) 3715 if (unlikely(signal_pending_state(prev->state, prev)))
3716 prev->state = TASK_RUNNING; 3716 prev->state = TASK_RUNNING;
3717 else 3717 else
3718 deactivate_task(rq, prev, 1); 3718 deactivate_task(rq, prev, 1);
3719 switch_count = &prev->nvcsw; 3719 switch_count = &prev->nvcsw;
3720 } 3720 }
3721 3721
3722 pre_schedule(rq, prev); 3722 pre_schedule(rq, prev);
3723 3723
3724 if (unlikely(!rq->nr_running)) 3724 if (unlikely(!rq->nr_running))
3725 idle_balance(cpu, rq); 3725 idle_balance(cpu, rq);
3726 3726
3727 put_prev_task(rq, prev); 3727 put_prev_task(rq, prev);
3728 next = pick_next_task(rq); 3728 next = pick_next_task(rq);
3729 3729
3730 if (likely(prev != next)) { 3730 if (likely(prev != next)) {
3731 sched_info_switch(prev, next); 3731 sched_info_switch(prev, next);
3732 perf_event_task_sched_out(prev, next); 3732 perf_event_task_sched_out(prev, next);
3733 3733
3734 rq->nr_switches++; 3734 rq->nr_switches++;
3735 rq->curr = next; 3735 rq->curr = next;
3736 ++*switch_count; 3736 ++*switch_count;
3737 3737
3738 context_switch(rq, prev, next); /* unlocks the rq */ 3738 context_switch(rq, prev, next); /* unlocks the rq */
3739 /* 3739 /*
3740 * the context switch might have flipped the stack from under 3740 * the context switch might have flipped the stack from under
3741 * us, hence refresh the local variables. 3741 * us, hence refresh the local variables.
3742 */ 3742 */
3743 cpu = smp_processor_id(); 3743 cpu = smp_processor_id();
3744 rq = cpu_rq(cpu); 3744 rq = cpu_rq(cpu);
3745 } else 3745 } else
3746 raw_spin_unlock_irq(&rq->lock); 3746 raw_spin_unlock_irq(&rq->lock);
3747 3747
3748 post_schedule(rq); 3748 post_schedule(rq);
3749 3749
3750 if (unlikely(reacquire_kernel_lock(current) < 0)) { 3750 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3751 prev = rq->curr; 3751 prev = rq->curr;
3752 switch_count = &prev->nivcsw; 3752 switch_count = &prev->nivcsw;
3753 goto need_resched_nonpreemptible; 3753 goto need_resched_nonpreemptible;
3754 } 3754 }
3755 3755
3756 preempt_enable_no_resched(); 3756 preempt_enable_no_resched();
3757 if (need_resched()) 3757 if (need_resched())
3758 goto need_resched; 3758 goto need_resched;
3759 } 3759 }
3760 EXPORT_SYMBOL(schedule); 3760 EXPORT_SYMBOL(schedule);
3761 3761
3762 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 3762 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3763 /* 3763 /*
3764 * Look out! "owner" is an entirely speculative pointer 3764 * Look out! "owner" is an entirely speculative pointer
3765 * access and not reliable. 3765 * access and not reliable.
3766 */ 3766 */
3767 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner) 3767 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3768 { 3768 {
3769 unsigned int cpu; 3769 unsigned int cpu;
3770 struct rq *rq; 3770 struct rq *rq;
3771 3771
3772 if (!sched_feat(OWNER_SPIN)) 3772 if (!sched_feat(OWNER_SPIN))
3773 return 0; 3773 return 0;
3774 3774
3775 #ifdef CONFIG_DEBUG_PAGEALLOC 3775 #ifdef CONFIG_DEBUG_PAGEALLOC
3776 /* 3776 /*
3777 * Need to access the cpu field knowing that 3777 * Need to access the cpu field knowing that
3778 * DEBUG_PAGEALLOC could have unmapped it if 3778 * DEBUG_PAGEALLOC could have unmapped it if
3779 * the mutex owner just released it and exited. 3779 * the mutex owner just released it and exited.
3780 */ 3780 */
3781 if (probe_kernel_address(&owner->cpu, cpu)) 3781 if (probe_kernel_address(&owner->cpu, cpu))
3782 goto out; 3782 goto out;
3783 #else 3783 #else
3784 cpu = owner->cpu; 3784 cpu = owner->cpu;
3785 #endif 3785 #endif
3786 3786
3787 /* 3787 /*
3788 * Even if the access succeeded (likely case), 3788 * Even if the access succeeded (likely case),
3789 * the cpu field may no longer be valid. 3789 * the cpu field may no longer be valid.
3790 */ 3790 */
3791 if (cpu >= nr_cpumask_bits) 3791 if (cpu >= nr_cpumask_bits)
3792 goto out; 3792 goto out;
3793 3793
3794 /* 3794 /*
3795 * We need to validate that we can do a 3795 * We need to validate that we can do a
3796 * get_cpu() and that we have the percpu area. 3796 * get_cpu() and that we have the percpu area.
3797 */ 3797 */
3798 if (!cpu_online(cpu)) 3798 if (!cpu_online(cpu))
3799 goto out; 3799 goto out;
3800 3800
3801 rq = cpu_rq(cpu); 3801 rq = cpu_rq(cpu);
3802 3802
3803 for (;;) { 3803 for (;;) {
3804 /* 3804 /*
3805 * Owner changed, break to re-assess state. 3805 * Owner changed, break to re-assess state.
3806 */ 3806 */
3807 if (lock->owner != owner) 3807 if (lock->owner != owner)
3808 break; 3808 break;
3809 3809
3810 /* 3810 /*
3811 * Is that owner really running on that cpu? 3811 * Is that owner really running on that cpu?
3812 */ 3812 */
3813 if (task_thread_info(rq->curr) != owner || need_resched()) 3813 if (task_thread_info(rq->curr) != owner || need_resched())
3814 return 0; 3814 return 0;
3815 3815
3816 cpu_relax(); 3816 cpu_relax();
3817 } 3817 }
3818 out: 3818 out:
3819 return 1; 3819 return 1;
3820 } 3820 }
3821 #endif 3821 #endif
3822 3822
3823 #ifdef CONFIG_PREEMPT 3823 #ifdef CONFIG_PREEMPT
3824 /* 3824 /*
3825 * this is the entry point to schedule() from in-kernel preemption 3825 * this is the entry point to schedule() from in-kernel preemption
3826 * off of preempt_enable. Kernel preemptions off return from interrupt 3826 * off of preempt_enable. Kernel preemptions off return from interrupt
3827 * occur there and call schedule directly. 3827 * occur there and call schedule directly.
3828 */ 3828 */
3829 asmlinkage void __sched preempt_schedule(void) 3829 asmlinkage void __sched preempt_schedule(void)
3830 { 3830 {
3831 struct thread_info *ti = current_thread_info(); 3831 struct thread_info *ti = current_thread_info();
3832 3832
3833 /* 3833 /*
3834 * If there is a non-zero preempt_count or interrupts are disabled, 3834 * If there is a non-zero preempt_count or interrupts are disabled,
3835 * we do not want to preempt the current task. Just return.. 3835 * we do not want to preempt the current task. Just return..
3836 */ 3836 */
3837 if (likely(ti->preempt_count || irqs_disabled())) 3837 if (likely(ti->preempt_count || irqs_disabled()))
3838 return; 3838 return;
3839 3839
3840 do { 3840 do {
3841 add_preempt_count(PREEMPT_ACTIVE); 3841 add_preempt_count(PREEMPT_ACTIVE);
3842 schedule(); 3842 schedule();
3843 sub_preempt_count(PREEMPT_ACTIVE); 3843 sub_preempt_count(PREEMPT_ACTIVE);
3844 3844
3845 /* 3845 /*
3846 * Check again in case we missed a preemption opportunity 3846 * Check again in case we missed a preemption opportunity
3847 * between schedule and now. 3847 * between schedule and now.
3848 */ 3848 */
3849 barrier(); 3849 barrier();
3850 } while (need_resched()); 3850 } while (need_resched());
3851 } 3851 }
3852 EXPORT_SYMBOL(preempt_schedule); 3852 EXPORT_SYMBOL(preempt_schedule);
3853 3853
3854 /* 3854 /*
3855 * this is the entry point to schedule() from kernel preemption 3855 * this is the entry point to schedule() from kernel preemption
3856 * off of irq context. 3856 * off of irq context.
3857 * Note, that this is called and return with irqs disabled. This will 3857 * Note, that this is called and return with irqs disabled. This will
3858 * protect us against recursive calling from irq. 3858 * protect us against recursive calling from irq.
3859 */ 3859 */
3860 asmlinkage void __sched preempt_schedule_irq(void) 3860 asmlinkage void __sched preempt_schedule_irq(void)
3861 { 3861 {
3862 struct thread_info *ti = current_thread_info(); 3862 struct thread_info *ti = current_thread_info();
3863 3863
3864 /* Catch callers which need to be fixed */ 3864 /* Catch callers which need to be fixed */
3865 BUG_ON(ti->preempt_count || !irqs_disabled()); 3865 BUG_ON(ti->preempt_count || !irqs_disabled());
3866 3866
3867 do { 3867 do {
3868 add_preempt_count(PREEMPT_ACTIVE); 3868 add_preempt_count(PREEMPT_ACTIVE);
3869 local_irq_enable(); 3869 local_irq_enable();
3870 schedule(); 3870 schedule();
3871 local_irq_disable(); 3871 local_irq_disable();
3872 sub_preempt_count(PREEMPT_ACTIVE); 3872 sub_preempt_count(PREEMPT_ACTIVE);
3873 3873
3874 /* 3874 /*
3875 * Check again in case we missed a preemption opportunity 3875 * Check again in case we missed a preemption opportunity
3876 * between schedule and now. 3876 * between schedule and now.
3877 */ 3877 */
3878 barrier(); 3878 barrier();
3879 } while (need_resched()); 3879 } while (need_resched());
3880 } 3880 }
3881 3881
3882 #endif /* CONFIG_PREEMPT */ 3882 #endif /* CONFIG_PREEMPT */
3883 3883
3884 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 3884 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3885 void *key) 3885 void *key)
3886 { 3886 {
3887 return try_to_wake_up(curr->private, mode, wake_flags); 3887 return try_to_wake_up(curr->private, mode, wake_flags);
3888 } 3888 }
3889 EXPORT_SYMBOL(default_wake_function); 3889 EXPORT_SYMBOL(default_wake_function);
3890 3890
3891 /* 3891 /*
3892 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just 3892 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3893 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve 3893 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3894 * number) then we wake all the non-exclusive tasks and one exclusive task. 3894 * number) then we wake all the non-exclusive tasks and one exclusive task.
3895 * 3895 *
3896 * There are circumstances in which we can try to wake a task which has already 3896 * There are circumstances in which we can try to wake a task which has already
3897 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns 3897 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3898 * zero in this (rare) case, and we handle it by continuing to scan the queue. 3898 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3899 */ 3899 */
3900 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, 3900 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3901 int nr_exclusive, int wake_flags, void *key) 3901 int nr_exclusive, int wake_flags, void *key)
3902 { 3902 {
3903 wait_queue_t *curr, *next; 3903 wait_queue_t *curr, *next;
3904 3904
3905 list_for_each_entry_safe(curr, next, &q->task_list, task_list) { 3905 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3906 unsigned flags = curr->flags; 3906 unsigned flags = curr->flags;
3907 3907
3908 if (curr->func(curr, mode, wake_flags, key) && 3908 if (curr->func(curr, mode, wake_flags, key) &&
3909 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) 3909 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3910 break; 3910 break;
3911 } 3911 }
3912 } 3912 }
3913 3913
3914 /** 3914 /**
3915 * __wake_up - wake up threads blocked on a waitqueue. 3915 * __wake_up - wake up threads blocked on a waitqueue.
3916 * @q: the waitqueue 3916 * @q: the waitqueue
3917 * @mode: which threads 3917 * @mode: which threads
3918 * @nr_exclusive: how many wake-one or wake-many threads to wake up 3918 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3919 * @key: is directly passed to the wakeup function 3919 * @key: is directly passed to the wakeup function
3920 * 3920 *
3921 * It may be assumed that this function implies a write memory barrier before 3921 * It may be assumed that this function implies a write memory barrier before
3922 * changing the task state if and only if any tasks are woken up. 3922 * changing the task state if and only if any tasks are woken up.
3923 */ 3923 */
3924 void __wake_up(wait_queue_head_t *q, unsigned int mode, 3924 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3925 int nr_exclusive, void *key) 3925 int nr_exclusive, void *key)
3926 { 3926 {
3927 unsigned long flags; 3927 unsigned long flags;
3928 3928
3929 spin_lock_irqsave(&q->lock, flags); 3929 spin_lock_irqsave(&q->lock, flags);
3930 __wake_up_common(q, mode, nr_exclusive, 0, key); 3930 __wake_up_common(q, mode, nr_exclusive, 0, key);
3931 spin_unlock_irqrestore(&q->lock, flags); 3931 spin_unlock_irqrestore(&q->lock, flags);
3932 } 3932 }
3933 EXPORT_SYMBOL(__wake_up); 3933 EXPORT_SYMBOL(__wake_up);
3934 3934
3935 /* 3935 /*
3936 * Same as __wake_up but called with the spinlock in wait_queue_head_t held. 3936 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3937 */ 3937 */
3938 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode) 3938 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3939 { 3939 {
3940 __wake_up_common(q, mode, 1, 0, NULL); 3940 __wake_up_common(q, mode, 1, 0, NULL);
3941 } 3941 }
3942 3942
3943 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) 3943 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3944 { 3944 {
3945 __wake_up_common(q, mode, 1, 0, key); 3945 __wake_up_common(q, mode, 1, 0, key);
3946 } 3946 }
3947 3947
3948 /** 3948 /**
3949 * __wake_up_sync_key - wake up threads blocked on a waitqueue. 3949 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3950 * @q: the waitqueue 3950 * @q: the waitqueue
3951 * @mode: which threads 3951 * @mode: which threads
3952 * @nr_exclusive: how many wake-one or wake-many threads to wake up 3952 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3953 * @key: opaque value to be passed to wakeup targets 3953 * @key: opaque value to be passed to wakeup targets
3954 * 3954 *
3955 * The sync wakeup differs that the waker knows that it will schedule 3955 * The sync wakeup differs that the waker knows that it will schedule
3956 * away soon, so while the target thread will be woken up, it will not 3956 * away soon, so while the target thread will be woken up, it will not
3957 * be migrated to another CPU - ie. the two threads are 'synchronized' 3957 * be migrated to another CPU - ie. the two threads are 'synchronized'
3958 * with each other. This can prevent needless bouncing between CPUs. 3958 * with each other. This can prevent needless bouncing between CPUs.
3959 * 3959 *
3960 * On UP it can prevent extra preemption. 3960 * On UP it can prevent extra preemption.
3961 * 3961 *
3962 * It may be assumed that this function implies a write memory barrier before 3962 * It may be assumed that this function implies a write memory barrier before
3963 * changing the task state if and only if any tasks are woken up. 3963 * changing the task state if and only if any tasks are woken up.
3964 */ 3964 */
3965 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, 3965 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3966 int nr_exclusive, void *key) 3966 int nr_exclusive, void *key)
3967 { 3967 {
3968 unsigned long flags; 3968 unsigned long flags;
3969 int wake_flags = WF_SYNC; 3969 int wake_flags = WF_SYNC;
3970 3970
3971 if (unlikely(!q)) 3971 if (unlikely(!q))
3972 return; 3972 return;
3973 3973
3974 if (unlikely(!nr_exclusive)) 3974 if (unlikely(!nr_exclusive))
3975 wake_flags = 0; 3975 wake_flags = 0;
3976 3976
3977 spin_lock_irqsave(&q->lock, flags); 3977 spin_lock_irqsave(&q->lock, flags);
3978 __wake_up_common(q, mode, nr_exclusive, wake_flags, key); 3978 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3979 spin_unlock_irqrestore(&q->lock, flags); 3979 spin_unlock_irqrestore(&q->lock, flags);
3980 } 3980 }
3981 EXPORT_SYMBOL_GPL(__wake_up_sync_key); 3981 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3982 3982
3983 /* 3983 /*
3984 * __wake_up_sync - see __wake_up_sync_key() 3984 * __wake_up_sync - see __wake_up_sync_key()
3985 */ 3985 */
3986 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) 3986 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3987 { 3987 {
3988 __wake_up_sync_key(q, mode, nr_exclusive, NULL); 3988 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3989 } 3989 }
3990 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ 3990 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3991 3991
3992 /** 3992 /**
3993 * complete: - signals a single thread waiting on this completion 3993 * complete: - signals a single thread waiting on this completion
3994 * @x: holds the state of this particular completion 3994 * @x: holds the state of this particular completion
3995 * 3995 *
3996 * This will wake up a single thread waiting on this completion. Threads will be 3996 * This will wake up a single thread waiting on this completion. Threads will be
3997 * awakened in the same order in which they were queued. 3997 * awakened in the same order in which they were queued.
3998 * 3998 *
3999 * See also complete_all(), wait_for_completion() and related routines. 3999 * See also complete_all(), wait_for_completion() and related routines.
4000 * 4000 *
4001 * It may be assumed that this function implies a write memory barrier before 4001 * It may be assumed that this function implies a write memory barrier before
4002 * changing the task state if and only if any tasks are woken up. 4002 * changing the task state if and only if any tasks are woken up.
4003 */ 4003 */
4004 void complete(struct completion *x) 4004 void complete(struct completion *x)
4005 { 4005 {
4006 unsigned long flags; 4006 unsigned long flags;
4007 4007
4008 spin_lock_irqsave(&x->wait.lock, flags); 4008 spin_lock_irqsave(&x->wait.lock, flags);
4009 x->done++; 4009 x->done++;
4010 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL); 4010 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4011 spin_unlock_irqrestore(&x->wait.lock, flags); 4011 spin_unlock_irqrestore(&x->wait.lock, flags);
4012 } 4012 }
4013 EXPORT_SYMBOL(complete); 4013 EXPORT_SYMBOL(complete);
4014 4014
4015 /** 4015 /**
4016 * complete_all: - signals all threads waiting on this completion 4016 * complete_all: - signals all threads waiting on this completion
4017 * @x: holds the state of this particular completion 4017 * @x: holds the state of this particular completion
4018 * 4018 *
4019 * This will wake up all threads waiting on this particular completion event. 4019 * This will wake up all threads waiting on this particular completion event.
4020 * 4020 *
4021 * It may be assumed that this function implies a write memory barrier before 4021 * It may be assumed that this function implies a write memory barrier before
4022 * changing the task state if and only if any tasks are woken up. 4022 * changing the task state if and only if any tasks are woken up.
4023 */ 4023 */
4024 void complete_all(struct completion *x) 4024 void complete_all(struct completion *x)
4025 { 4025 {
4026 unsigned long flags; 4026 unsigned long flags;
4027 4027
4028 spin_lock_irqsave(&x->wait.lock, flags); 4028 spin_lock_irqsave(&x->wait.lock, flags);
4029 x->done += UINT_MAX/2; 4029 x->done += UINT_MAX/2;
4030 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL); 4030 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4031 spin_unlock_irqrestore(&x->wait.lock, flags); 4031 spin_unlock_irqrestore(&x->wait.lock, flags);
4032 } 4032 }
4033 EXPORT_SYMBOL(complete_all); 4033 EXPORT_SYMBOL(complete_all);
4034 4034
4035 static inline long __sched 4035 static inline long __sched
4036 do_wait_for_common(struct completion *x, long timeout, int state) 4036 do_wait_for_common(struct completion *x, long timeout, int state)
4037 { 4037 {
4038 if (!x->done) { 4038 if (!x->done) {
4039 DECLARE_WAITQUEUE(wait, current); 4039 DECLARE_WAITQUEUE(wait, current);
4040 4040
4041 wait.flags |= WQ_FLAG_EXCLUSIVE; 4041 wait.flags |= WQ_FLAG_EXCLUSIVE;
4042 __add_wait_queue_tail(&x->wait, &wait); 4042 __add_wait_queue_tail(&x->wait, &wait);
4043 do { 4043 do {
4044 if (signal_pending_state(state, current)) { 4044 if (signal_pending_state(state, current)) {
4045 timeout = -ERESTARTSYS; 4045 timeout = -ERESTARTSYS;
4046 break; 4046 break;
4047 } 4047 }
4048 __set_current_state(state); 4048 __set_current_state(state);
4049 spin_unlock_irq(&x->wait.lock); 4049 spin_unlock_irq(&x->wait.lock);
4050 timeout = schedule_timeout(timeout); 4050 timeout = schedule_timeout(timeout);
4051 spin_lock_irq(&x->wait.lock); 4051 spin_lock_irq(&x->wait.lock);
4052 } while (!x->done && timeout); 4052 } while (!x->done && timeout);
4053 __remove_wait_queue(&x->wait, &wait); 4053 __remove_wait_queue(&x->wait, &wait);
4054 if (!x->done) 4054 if (!x->done)
4055 return timeout; 4055 return timeout;
4056 } 4056 }
4057 x->done--; 4057 x->done--;
4058 return timeout ?: 1; 4058 return timeout ?: 1;
4059 } 4059 }
4060 4060
4061 static long __sched 4061 static long __sched
4062 wait_for_common(struct completion *x, long timeout, int state) 4062 wait_for_common(struct completion *x, long timeout, int state)
4063 { 4063 {
4064 might_sleep(); 4064 might_sleep();
4065 4065
4066 spin_lock_irq(&x->wait.lock); 4066 spin_lock_irq(&x->wait.lock);
4067 timeout = do_wait_for_common(x, timeout, state); 4067 timeout = do_wait_for_common(x, timeout, state);
4068 spin_unlock_irq(&x->wait.lock); 4068 spin_unlock_irq(&x->wait.lock);
4069 return timeout; 4069 return timeout;
4070 } 4070 }
4071 4071
4072 /** 4072 /**
4073 * wait_for_completion: - waits for completion of a task 4073 * wait_for_completion: - waits for completion of a task
4074 * @x: holds the state of this particular completion 4074 * @x: holds the state of this particular completion
4075 * 4075 *
4076 * This waits to be signaled for completion of a specific task. It is NOT 4076 * This waits to be signaled for completion of a specific task. It is NOT
4077 * interruptible and there is no timeout. 4077 * interruptible and there is no timeout.
4078 * 4078 *
4079 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout 4079 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4080 * and interrupt capability. Also see complete(). 4080 * and interrupt capability. Also see complete().
4081 */ 4081 */
4082 void __sched wait_for_completion(struct completion *x) 4082 void __sched wait_for_completion(struct completion *x)
4083 { 4083 {
4084 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); 4084 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4085 } 4085 }
4086 EXPORT_SYMBOL(wait_for_completion); 4086 EXPORT_SYMBOL(wait_for_completion);
4087 4087
4088 /** 4088 /**
4089 * wait_for_completion_timeout: - waits for completion of a task (w/timeout) 4089 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4090 * @x: holds the state of this particular completion 4090 * @x: holds the state of this particular completion
4091 * @timeout: timeout value in jiffies 4091 * @timeout: timeout value in jiffies
4092 * 4092 *
4093 * This waits for either a completion of a specific task to be signaled or for a 4093 * This waits for either a completion of a specific task to be signaled or for a
4094 * specified timeout to expire. The timeout is in jiffies. It is not 4094 * specified timeout to expire. The timeout is in jiffies. It is not
4095 * interruptible. 4095 * interruptible.
4096 */ 4096 */
4097 unsigned long __sched 4097 unsigned long __sched
4098 wait_for_completion_timeout(struct completion *x, unsigned long timeout) 4098 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4099 { 4099 {
4100 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); 4100 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4101 } 4101 }
4102 EXPORT_SYMBOL(wait_for_completion_timeout); 4102 EXPORT_SYMBOL(wait_for_completion_timeout);
4103 4103
4104 /** 4104 /**
4105 * wait_for_completion_interruptible: - waits for completion of a task (w/intr) 4105 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4106 * @x: holds the state of this particular completion 4106 * @x: holds the state of this particular completion
4107 * 4107 *
4108 * This waits for completion of a specific task to be signaled. It is 4108 * This waits for completion of a specific task to be signaled. It is
4109 * interruptible. 4109 * interruptible.
4110 */ 4110 */
4111 int __sched wait_for_completion_interruptible(struct completion *x) 4111 int __sched wait_for_completion_interruptible(struct completion *x)
4112 { 4112 {
4113 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); 4113 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4114 if (t == -ERESTARTSYS) 4114 if (t == -ERESTARTSYS)
4115 return t; 4115 return t;
4116 return 0; 4116 return 0;
4117 } 4117 }
4118 EXPORT_SYMBOL(wait_for_completion_interruptible); 4118 EXPORT_SYMBOL(wait_for_completion_interruptible);
4119 4119
4120 /** 4120 /**
4121 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr)) 4121 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4122 * @x: holds the state of this particular completion 4122 * @x: holds the state of this particular completion
4123 * @timeout: timeout value in jiffies 4123 * @timeout: timeout value in jiffies
4124 * 4124 *
4125 * This waits for either a completion of a specific task to be signaled or for a 4125 * This waits for either a completion of a specific task to be signaled or for a
4126 * specified timeout to expire. It is interruptible. The timeout is in jiffies. 4126 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4127 */ 4127 */
4128 unsigned long __sched 4128 unsigned long __sched
4129 wait_for_completion_interruptible_timeout(struct completion *x, 4129 wait_for_completion_interruptible_timeout(struct completion *x,
4130 unsigned long timeout) 4130 unsigned long timeout)
4131 { 4131 {
4132 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); 4132 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4133 } 4133 }
4134 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); 4134 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4135 4135
4136 /** 4136 /**
4137 * wait_for_completion_killable: - waits for completion of a task (killable) 4137 * wait_for_completion_killable: - waits for completion of a task (killable)
4138 * @x: holds the state of this particular completion 4138 * @x: holds the state of this particular completion
4139 * 4139 *
4140 * This waits to be signaled for completion of a specific task. It can be 4140 * This waits to be signaled for completion of a specific task. It can be
4141 * interrupted by a kill signal. 4141 * interrupted by a kill signal.
4142 */ 4142 */
4143 int __sched wait_for_completion_killable(struct completion *x) 4143 int __sched wait_for_completion_killable(struct completion *x)
4144 { 4144 {
4145 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); 4145 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4146 if (t == -ERESTARTSYS) 4146 if (t == -ERESTARTSYS)
4147 return t; 4147 return t;
4148 return 0; 4148 return 0;
4149 } 4149 }
4150 EXPORT_SYMBOL(wait_for_completion_killable); 4150 EXPORT_SYMBOL(wait_for_completion_killable);
4151 4151
4152 /** 4152 /**
4153 * try_wait_for_completion - try to decrement a completion without blocking 4153 * try_wait_for_completion - try to decrement a completion without blocking
4154 * @x: completion structure 4154 * @x: completion structure
4155 * 4155 *
4156 * Returns: 0 if a decrement cannot be done without blocking 4156 * Returns: 0 if a decrement cannot be done without blocking
4157 * 1 if a decrement succeeded. 4157 * 1 if a decrement succeeded.
4158 * 4158 *
4159 * If a completion is being used as a counting completion, 4159 * If a completion is being used as a counting completion,
4160 * attempt to decrement the counter without blocking. This 4160 * attempt to decrement the counter without blocking. This
4161 * enables us to avoid waiting if the resource the completion 4161 * enables us to avoid waiting if the resource the completion
4162 * is protecting is not available. 4162 * is protecting is not available.
4163 */ 4163 */
4164 bool try_wait_for_completion(struct completion *x) 4164 bool try_wait_for_completion(struct completion *x)
4165 { 4165 {
4166 unsigned long flags; 4166 unsigned long flags;
4167 int ret = 1; 4167 int ret = 1;
4168 4168
4169 spin_lock_irqsave(&x->wait.lock, flags); 4169 spin_lock_irqsave(&x->wait.lock, flags);
4170 if (!x->done) 4170 if (!x->done)
4171 ret = 0; 4171 ret = 0;
4172 else 4172 else
4173 x->done--; 4173 x->done--;
4174 spin_unlock_irqrestore(&x->wait.lock, flags); 4174 spin_unlock_irqrestore(&x->wait.lock, flags);
4175 return ret; 4175 return ret;
4176 } 4176 }
4177 EXPORT_SYMBOL(try_wait_for_completion); 4177 EXPORT_SYMBOL(try_wait_for_completion);
4178 4178
4179 /** 4179 /**
4180 * completion_done - Test to see if a completion has any waiters 4180 * completion_done - Test to see if a completion has any waiters
4181 * @x: completion structure 4181 * @x: completion structure
4182 * 4182 *
4183 * Returns: 0 if there are waiters (wait_for_completion() in progress) 4183 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4184 * 1 if there are no waiters. 4184 * 1 if there are no waiters.
4185 * 4185 *
4186 */ 4186 */
4187 bool completion_done(struct completion *x) 4187 bool completion_done(struct completion *x)
4188 { 4188 {
4189 unsigned long flags; 4189 unsigned long flags;
4190 int ret = 1; 4190 int ret = 1;
4191 4191
4192 spin_lock_irqsave(&x->wait.lock, flags); 4192 spin_lock_irqsave(&x->wait.lock, flags);
4193 if (!x->done) 4193 if (!x->done)
4194 ret = 0; 4194 ret = 0;
4195 spin_unlock_irqrestore(&x->wait.lock, flags); 4195 spin_unlock_irqrestore(&x->wait.lock, flags);
4196 return ret; 4196 return ret;
4197 } 4197 }
4198 EXPORT_SYMBOL(completion_done); 4198 EXPORT_SYMBOL(completion_done);
4199 4199
4200 static long __sched 4200 static long __sched
4201 sleep_on_common(wait_queue_head_t *q, int state, long timeout) 4201 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4202 { 4202 {
4203 unsigned long flags; 4203 unsigned long flags;
4204 wait_queue_t wait; 4204 wait_queue_t wait;
4205 4205
4206 init_waitqueue_entry(&wait, current); 4206 init_waitqueue_entry(&wait, current);
4207 4207
4208 __set_current_state(state); 4208 __set_current_state(state);
4209 4209
4210 spin_lock_irqsave(&q->lock, flags); 4210 spin_lock_irqsave(&q->lock, flags);
4211 __add_wait_queue(q, &wait); 4211 __add_wait_queue(q, &wait);
4212 spin_unlock(&q->lock); 4212 spin_unlock(&q->lock);
4213 timeout = schedule_timeout(timeout); 4213 timeout = schedule_timeout(timeout);
4214 spin_lock_irq(&q->lock); 4214 spin_lock_irq(&q->lock);
4215 __remove_wait_queue(q, &wait); 4215 __remove_wait_queue(q, &wait);
4216 spin_unlock_irqrestore(&q->lock, flags); 4216 spin_unlock_irqrestore(&q->lock, flags);
4217 4217
4218 return timeout; 4218 return timeout;
4219 } 4219 }
4220 4220
4221 void __sched interruptible_sleep_on(wait_queue_head_t *q) 4221 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4222 { 4222 {
4223 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 4223 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4224 } 4224 }
4225 EXPORT_SYMBOL(interruptible_sleep_on); 4225 EXPORT_SYMBOL(interruptible_sleep_on);
4226 4226
4227 long __sched 4227 long __sched
4228 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) 4228 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4229 { 4229 {
4230 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); 4230 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4231 } 4231 }
4232 EXPORT_SYMBOL(interruptible_sleep_on_timeout); 4232 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4233 4233
4234 void __sched sleep_on(wait_queue_head_t *q) 4234 void __sched sleep_on(wait_queue_head_t *q)
4235 { 4235 {
4236 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 4236 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4237 } 4237 }
4238 EXPORT_SYMBOL(sleep_on); 4238 EXPORT_SYMBOL(sleep_on);
4239 4239
4240 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) 4240 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4241 { 4241 {
4242 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); 4242 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4243 } 4243 }
4244 EXPORT_SYMBOL(sleep_on_timeout); 4244 EXPORT_SYMBOL(sleep_on_timeout);
4245 4245
4246 #ifdef CONFIG_RT_MUTEXES 4246 #ifdef CONFIG_RT_MUTEXES
4247 4247
4248 /* 4248 /*
4249 * rt_mutex_setprio - set the current priority of a task 4249 * rt_mutex_setprio - set the current priority of a task
4250 * @p: task 4250 * @p: task
4251 * @prio: prio value (kernel-internal form) 4251 * @prio: prio value (kernel-internal form)
4252 * 4252 *
4253 * This function changes the 'effective' priority of a task. It does 4253 * This function changes the 'effective' priority of a task. It does
4254 * not touch ->normal_prio like __setscheduler(). 4254 * not touch ->normal_prio like __setscheduler().
4255 * 4255 *
4256 * Used by the rt_mutex code to implement priority inheritance logic. 4256 * Used by the rt_mutex code to implement priority inheritance logic.
4257 */ 4257 */
4258 void rt_mutex_setprio(struct task_struct *p, int prio) 4258 void rt_mutex_setprio(struct task_struct *p, int prio)
4259 { 4259 {
4260 unsigned long flags; 4260 unsigned long flags;
4261 int oldprio, on_rq, running; 4261 int oldprio, on_rq, running;
4262 struct rq *rq; 4262 struct rq *rq;
4263 const struct sched_class *prev_class; 4263 const struct sched_class *prev_class;
4264 4264
4265 BUG_ON(prio < 0 || prio > MAX_PRIO); 4265 BUG_ON(prio < 0 || prio > MAX_PRIO);
4266 4266
4267 rq = task_rq_lock(p, &flags); 4267 rq = task_rq_lock(p, &flags);
4268 update_rq_clock(rq); 4268 update_rq_clock(rq);
4269 4269
4270 oldprio = p->prio; 4270 oldprio = p->prio;
4271 prev_class = p->sched_class; 4271 prev_class = p->sched_class;
4272 on_rq = p->se.on_rq; 4272 on_rq = p->se.on_rq;
4273 running = task_current(rq, p); 4273 running = task_current(rq, p);
4274 if (on_rq) 4274 if (on_rq)
4275 dequeue_task(rq, p, 0); 4275 dequeue_task(rq, p, 0);
4276 if (running) 4276 if (running)
4277 p->sched_class->put_prev_task(rq, p); 4277 p->sched_class->put_prev_task(rq, p);
4278 4278
4279 if (rt_prio(prio)) 4279 if (rt_prio(prio))
4280 p->sched_class = &rt_sched_class; 4280 p->sched_class = &rt_sched_class;
4281 else 4281 else
4282 p->sched_class = &fair_sched_class; 4282 p->sched_class = &fair_sched_class;
4283 4283
4284 p->prio = prio; 4284 p->prio = prio;
4285 4285
4286 if (running) 4286 if (running)
4287 p->sched_class->set_curr_task(rq); 4287 p->sched_class->set_curr_task(rq);
4288 if (on_rq) { 4288 if (on_rq) {
4289 enqueue_task(rq, p, 0, oldprio < prio); 4289 enqueue_task(rq, p, 0, oldprio < prio);
4290 4290
4291 check_class_changed(rq, p, prev_class, oldprio, running); 4291 check_class_changed(rq, p, prev_class, oldprio, running);
4292 } 4292 }
4293 task_rq_unlock(rq, &flags); 4293 task_rq_unlock(rq, &flags);
4294 } 4294 }
4295 4295
4296 #endif 4296 #endif
4297 4297
4298 void set_user_nice(struct task_struct *p, long nice) 4298 void set_user_nice(struct task_struct *p, long nice)
4299 { 4299 {
4300 int old_prio, delta, on_rq; 4300 int old_prio, delta, on_rq;
4301 unsigned long flags; 4301 unsigned long flags;
4302 struct rq *rq; 4302 struct rq *rq;
4303 4303
4304 if (TASK_NICE(p) == nice || nice < -20 || nice > 19) 4304 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4305 return; 4305 return;
4306 /* 4306 /*
4307 * We have to be careful, if called from sys_setpriority(), 4307 * We have to be careful, if called from sys_setpriority(),
4308 * the task might be in the middle of scheduling on another CPU. 4308 * the task might be in the middle of scheduling on another CPU.
4309 */ 4309 */
4310 rq = task_rq_lock(p, &flags); 4310 rq = task_rq_lock(p, &flags);
4311 update_rq_clock(rq); 4311 update_rq_clock(rq);
4312 /* 4312 /*
4313 * The RT priorities are set via sched_setscheduler(), but we still 4313 * The RT priorities are set via sched_setscheduler(), but we still
4314 * allow the 'normal' nice value to be set - but as expected 4314 * allow the 'normal' nice value to be set - but as expected
4315 * it wont have any effect on scheduling until the task is 4315 * it wont have any effect on scheduling until the task is
4316 * SCHED_FIFO/SCHED_RR: 4316 * SCHED_FIFO/SCHED_RR:
4317 */ 4317 */
4318 if (task_has_rt_policy(p)) { 4318 if (task_has_rt_policy(p)) {
4319 p->static_prio = NICE_TO_PRIO(nice); 4319 p->static_prio = NICE_TO_PRIO(nice);
4320 goto out_unlock; 4320 goto out_unlock;
4321 } 4321 }
4322 on_rq = p->se.on_rq; 4322 on_rq = p->se.on_rq;
4323 if (on_rq) 4323 if (on_rq)
4324 dequeue_task(rq, p, 0); 4324 dequeue_task(rq, p, 0);
4325 4325
4326 p->static_prio = NICE_TO_PRIO(nice); 4326 p->static_prio = NICE_TO_PRIO(nice);
4327 set_load_weight(p); 4327 set_load_weight(p);
4328 old_prio = p->prio; 4328 old_prio = p->prio;
4329 p->prio = effective_prio(p); 4329 p->prio = effective_prio(p);
4330 delta = p->prio - old_prio; 4330 delta = p->prio - old_prio;
4331 4331
4332 if (on_rq) { 4332 if (on_rq) {
4333 enqueue_task(rq, p, 0, false); 4333 enqueue_task(rq, p, 0, false);
4334 /* 4334 /*
4335 * If the task increased its priority or is running and 4335 * If the task increased its priority or is running and
4336 * lowered its priority, then reschedule its CPU: 4336 * lowered its priority, then reschedule its CPU:
4337 */ 4337 */
4338 if (delta < 0 || (delta > 0 && task_running(rq, p))) 4338 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4339 resched_task(rq->curr); 4339 resched_task(rq->curr);
4340 } 4340 }
4341 out_unlock: 4341 out_unlock:
4342 task_rq_unlock(rq, &flags); 4342 task_rq_unlock(rq, &flags);
4343 } 4343 }
4344 EXPORT_SYMBOL(set_user_nice); 4344 EXPORT_SYMBOL(set_user_nice);
4345 4345
4346 /* 4346 /*
4347 * can_nice - check if a task can reduce its nice value 4347 * can_nice - check if a task can reduce its nice value
4348 * @p: task 4348 * @p: task
4349 * @nice: nice value 4349 * @nice: nice value
4350 */ 4350 */
4351 int can_nice(const struct task_struct *p, const int nice) 4351 int can_nice(const struct task_struct *p, const int nice)
4352 { 4352 {
4353 /* convert nice value [19,-20] to rlimit style value [1,40] */ 4353 /* convert nice value [19,-20] to rlimit style value [1,40] */
4354 int nice_rlim = 20 - nice; 4354 int nice_rlim = 20 - nice;
4355 4355
4356 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 4356 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4357 capable(CAP_SYS_NICE)); 4357 capable(CAP_SYS_NICE));
4358 } 4358 }
4359 4359
4360 #ifdef __ARCH_WANT_SYS_NICE 4360 #ifdef __ARCH_WANT_SYS_NICE
4361 4361
4362 /* 4362 /*
4363 * sys_nice - change the priority of the current process. 4363 * sys_nice - change the priority of the current process.
4364 * @increment: priority increment 4364 * @increment: priority increment
4365 * 4365 *
4366 * sys_setpriority is a more generic, but much slower function that 4366 * sys_setpriority is a more generic, but much slower function that
4367 * does similar things. 4367 * does similar things.
4368 */ 4368 */
4369 SYSCALL_DEFINE1(nice, int, increment) 4369 SYSCALL_DEFINE1(nice, int, increment)
4370 { 4370 {
4371 long nice, retval; 4371 long nice, retval;
4372 4372
4373 /* 4373 /*
4374 * Setpriority might change our priority at the same moment. 4374 * Setpriority might change our priority at the same moment.
4375 * We don't have to worry. Conceptually one call occurs first 4375 * We don't have to worry. Conceptually one call occurs first
4376 * and we have a single winner. 4376 * and we have a single winner.
4377 */ 4377 */
4378 if (increment < -40) 4378 if (increment < -40)
4379 increment = -40; 4379 increment = -40;
4380 if (increment > 40) 4380 if (increment > 40)
4381 increment = 40; 4381 increment = 40;
4382 4382
4383 nice = TASK_NICE(current) + increment; 4383 nice = TASK_NICE(current) + increment;
4384 if (nice < -20) 4384 if (nice < -20)
4385 nice = -20; 4385 nice = -20;
4386 if (nice > 19) 4386 if (nice > 19)
4387 nice = 19; 4387 nice = 19;
4388 4388
4389 if (increment < 0 && !can_nice(current, nice)) 4389 if (increment < 0 && !can_nice(current, nice))
4390 return -EPERM; 4390 return -EPERM;
4391 4391
4392 retval = security_task_setnice(current, nice); 4392 retval = security_task_setnice(current, nice);
4393 if (retval) 4393 if (retval)
4394 return retval; 4394 return retval;
4395 4395
4396 set_user_nice(current, nice); 4396 set_user_nice(current, nice);
4397 return 0; 4397 return 0;
4398 } 4398 }
4399 4399
4400 #endif 4400 #endif
4401 4401
4402 /** 4402 /**
4403 * task_prio - return the priority value of a given task. 4403 * task_prio - return the priority value of a given task.
4404 * @p: the task in question. 4404 * @p: the task in question.
4405 * 4405 *
4406 * This is the priority value as seen by users in /proc. 4406 * This is the priority value as seen by users in /proc.
4407 * RT tasks are offset by -200. Normal tasks are centered 4407 * RT tasks are offset by -200. Normal tasks are centered
4408 * around 0, value goes from -16 to +15. 4408 * around 0, value goes from -16 to +15.
4409 */ 4409 */
4410 int task_prio(const struct task_struct *p) 4410 int task_prio(const struct task_struct *p)
4411 { 4411 {
4412 return p->prio - MAX_RT_PRIO; 4412 return p->prio - MAX_RT_PRIO;
4413 } 4413 }
4414 4414
4415 /** 4415 /**
4416 * task_nice - return the nice value of a given task. 4416 * task_nice - return the nice value of a given task.
4417 * @p: the task in question. 4417 * @p: the task in question.
4418 */ 4418 */
4419 int task_nice(const struct task_struct *p) 4419 int task_nice(const struct task_struct *p)
4420 { 4420 {
4421 return TASK_NICE(p); 4421 return TASK_NICE(p);
4422 } 4422 }
4423 EXPORT_SYMBOL(task_nice); 4423 EXPORT_SYMBOL(task_nice);
4424 4424
4425 /** 4425 /**
4426 * idle_cpu - is a given cpu idle currently? 4426 * idle_cpu - is a given cpu idle currently?
4427 * @cpu: the processor in question. 4427 * @cpu: the processor in question.
4428 */ 4428 */
4429 int idle_cpu(int cpu) 4429 int idle_cpu(int cpu)
4430 { 4430 {
4431 return cpu_curr(cpu) == cpu_rq(cpu)->idle; 4431 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4432 } 4432 }
4433 4433
4434 /** 4434 /**
4435 * idle_task - return the idle task for a given cpu. 4435 * idle_task - return the idle task for a given cpu.
4436 * @cpu: the processor in question. 4436 * @cpu: the processor in question.
4437 */ 4437 */
4438 struct task_struct *idle_task(int cpu) 4438 struct task_struct *idle_task(int cpu)
4439 { 4439 {
4440 return cpu_rq(cpu)->idle; 4440 return cpu_rq(cpu)->idle;
4441 } 4441 }
4442 4442
4443 /** 4443 /**
4444 * find_process_by_pid - find a process with a matching PID value. 4444 * find_process_by_pid - find a process with a matching PID value.
4445 * @pid: the pid in question. 4445 * @pid: the pid in question.
4446 */ 4446 */
4447 static struct task_struct *find_process_by_pid(pid_t pid) 4447 static struct task_struct *find_process_by_pid(pid_t pid)
4448 { 4448 {
4449 return pid ? find_task_by_vpid(pid) : current; 4449 return pid ? find_task_by_vpid(pid) : current;
4450 } 4450 }
4451 4451
4452 /* Actually do priority change: must hold rq lock. */ 4452 /* Actually do priority change: must hold rq lock. */
4453 static void 4453 static void
4454 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) 4454 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4455 { 4455 {
4456 BUG_ON(p->se.on_rq); 4456 BUG_ON(p->se.on_rq);
4457 4457
4458 p->policy = policy; 4458 p->policy = policy;
4459 p->rt_priority = prio; 4459 p->rt_priority = prio;
4460 p->normal_prio = normal_prio(p); 4460 p->normal_prio = normal_prio(p);
4461 /* we are holding p->pi_lock already */ 4461 /* we are holding p->pi_lock already */
4462 p->prio = rt_mutex_getprio(p); 4462 p->prio = rt_mutex_getprio(p);
4463 if (rt_prio(p->prio)) 4463 if (rt_prio(p->prio))
4464 p->sched_class = &rt_sched_class; 4464 p->sched_class = &rt_sched_class;
4465 else 4465 else
4466 p->sched_class = &fair_sched_class; 4466 p->sched_class = &fair_sched_class;
4467 set_load_weight(p); 4467 set_load_weight(p);
4468 } 4468 }
4469 4469
4470 /* 4470 /*
4471 * check the target process has a UID that matches the current process's 4471 * check the target process has a UID that matches the current process's
4472 */ 4472 */
4473 static bool check_same_owner(struct task_struct *p) 4473 static bool check_same_owner(struct task_struct *p)
4474 { 4474 {
4475 const struct cred *cred = current_cred(), *pcred; 4475 const struct cred *cred = current_cred(), *pcred;
4476 bool match; 4476 bool match;
4477 4477
4478 rcu_read_lock(); 4478 rcu_read_lock();
4479 pcred = __task_cred(p); 4479 pcred = __task_cred(p);
4480 match = (cred->euid == pcred->euid || 4480 match = (cred->euid == pcred->euid ||
4481 cred->euid == pcred->uid); 4481 cred->euid == pcred->uid);
4482 rcu_read_unlock(); 4482 rcu_read_unlock();
4483 return match; 4483 return match;
4484 } 4484 }
4485 4485
4486 static int __sched_setscheduler(struct task_struct *p, int policy, 4486 static int __sched_setscheduler(struct task_struct *p, int policy,
4487 struct sched_param *param, bool user) 4487 struct sched_param *param, bool user)
4488 { 4488 {
4489 int retval, oldprio, oldpolicy = -1, on_rq, running; 4489 int retval, oldprio, oldpolicy = -1, on_rq, running;
4490 unsigned long flags; 4490 unsigned long flags;
4491 const struct sched_class *prev_class; 4491 const struct sched_class *prev_class;
4492 struct rq *rq; 4492 struct rq *rq;
4493 int reset_on_fork; 4493 int reset_on_fork;
4494 4494
4495 /* may grab non-irq protected spin_locks */ 4495 /* may grab non-irq protected spin_locks */
4496 BUG_ON(in_interrupt()); 4496 BUG_ON(in_interrupt());
4497 recheck: 4497 recheck:
4498 /* double check policy once rq lock held */ 4498 /* double check policy once rq lock held */
4499 if (policy < 0) { 4499 if (policy < 0) {
4500 reset_on_fork = p->sched_reset_on_fork; 4500 reset_on_fork = p->sched_reset_on_fork;
4501 policy = oldpolicy = p->policy; 4501 policy = oldpolicy = p->policy;
4502 } else { 4502 } else {
4503 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK); 4503 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4504 policy &= ~SCHED_RESET_ON_FORK; 4504 policy &= ~SCHED_RESET_ON_FORK;
4505 4505
4506 if (policy != SCHED_FIFO && policy != SCHED_RR && 4506 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4507 policy != SCHED_NORMAL && policy != SCHED_BATCH && 4507 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4508 policy != SCHED_IDLE) 4508 policy != SCHED_IDLE)
4509 return -EINVAL; 4509 return -EINVAL;
4510 } 4510 }
4511 4511
4512 /* 4512 /*
4513 * Valid priorities for SCHED_FIFO and SCHED_RR are 4513 * Valid priorities for SCHED_FIFO and SCHED_RR are
4514 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4514 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4515 * SCHED_BATCH and SCHED_IDLE is 0. 4515 * SCHED_BATCH and SCHED_IDLE is 0.
4516 */ 4516 */
4517 if (param->sched_priority < 0 || 4517 if (param->sched_priority < 0 ||
4518 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || 4518 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4519 (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) 4519 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4520 return -EINVAL; 4520 return -EINVAL;
4521 if (rt_policy(policy) != (param->sched_priority != 0)) 4521 if (rt_policy(policy) != (param->sched_priority != 0))
4522 return -EINVAL; 4522 return -EINVAL;
4523 4523
4524 /* 4524 /*
4525 * Allow unprivileged RT tasks to decrease priority: 4525 * Allow unprivileged RT tasks to decrease priority:
4526 */ 4526 */
4527 if (user && !capable(CAP_SYS_NICE)) { 4527 if (user && !capable(CAP_SYS_NICE)) {
4528 if (rt_policy(policy)) { 4528 if (rt_policy(policy)) {
4529 unsigned long rlim_rtprio; 4529 unsigned long rlim_rtprio;
4530 4530
4531 if (!lock_task_sighand(p, &flags)) 4531 if (!lock_task_sighand(p, &flags))
4532 return -ESRCH; 4532 return -ESRCH;
4533 rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO); 4533 rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
4534 unlock_task_sighand(p, &flags); 4534 unlock_task_sighand(p, &flags);
4535 4535
4536 /* can't set/change the rt policy */ 4536 /* can't set/change the rt policy */
4537 if (policy != p->policy && !rlim_rtprio) 4537 if (policy != p->policy && !rlim_rtprio)
4538 return -EPERM; 4538 return -EPERM;
4539 4539
4540 /* can't increase priority */ 4540 /* can't increase priority */
4541 if (param->sched_priority > p->rt_priority && 4541 if (param->sched_priority > p->rt_priority &&
4542 param->sched_priority > rlim_rtprio) 4542 param->sched_priority > rlim_rtprio)
4543 return -EPERM; 4543 return -EPERM;
4544 } 4544 }
4545 /* 4545 /*
4546 * Like positive nice levels, dont allow tasks to 4546 * Like positive nice levels, dont allow tasks to
4547 * move out of SCHED_IDLE either: 4547 * move out of SCHED_IDLE either:
4548 */ 4548 */
4549 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) 4549 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4550 return -EPERM; 4550 return -EPERM;
4551 4551
4552 /* can't change other user's priorities */ 4552 /* can't change other user's priorities */
4553 if (!check_same_owner(p)) 4553 if (!check_same_owner(p))
4554 return -EPERM; 4554 return -EPERM;
4555 4555
4556 /* Normal users shall not reset the sched_reset_on_fork flag */ 4556 /* Normal users shall not reset the sched_reset_on_fork flag */
4557 if (p->sched_reset_on_fork && !reset_on_fork) 4557 if (p->sched_reset_on_fork && !reset_on_fork)
4558 return -EPERM; 4558 return -EPERM;
4559 } 4559 }
4560 4560
4561 if (user) { 4561 if (user) {
4562 #ifdef CONFIG_RT_GROUP_SCHED 4562 #ifdef CONFIG_RT_GROUP_SCHED
4563 /* 4563 /*
4564 * Do not allow realtime tasks into groups that have no runtime 4564 * Do not allow realtime tasks into groups that have no runtime
4565 * assigned. 4565 * assigned.
4566 */ 4566 */
4567 if (rt_bandwidth_enabled() && rt_policy(policy) && 4567 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4568 task_group(p)->rt_bandwidth.rt_runtime == 0) 4568 task_group(p)->rt_bandwidth.rt_runtime == 0)
4569 return -EPERM; 4569 return -EPERM;
4570 #endif 4570 #endif
4571 4571
4572 retval = security_task_setscheduler(p, policy, param); 4572 retval = security_task_setscheduler(p, policy, param);
4573 if (retval) 4573 if (retval)
4574 return retval; 4574 return retval;
4575 } 4575 }
4576 4576
4577 /* 4577 /*
4578 * make sure no PI-waiters arrive (or leave) while we are 4578 * make sure no PI-waiters arrive (or leave) while we are
4579 * changing the priority of the task: 4579 * changing the priority of the task:
4580 */ 4580 */
4581 raw_spin_lock_irqsave(&p->pi_lock, flags); 4581 raw_spin_lock_irqsave(&p->pi_lock, flags);
4582 /* 4582 /*
4583 * To be able to change p->policy safely, the apropriate 4583 * To be able to change p->policy safely, the apropriate
4584 * runqueue lock must be held. 4584 * runqueue lock must be held.
4585 */ 4585 */
4586 rq = __task_rq_lock(p); 4586 rq = __task_rq_lock(p);
4587 /* recheck policy now with rq lock held */ 4587 /* recheck policy now with rq lock held */
4588 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4588 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4589 policy = oldpolicy = -1; 4589 policy = oldpolicy = -1;
4590 __task_rq_unlock(rq); 4590 __task_rq_unlock(rq);
4591 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4591 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4592 goto recheck; 4592 goto recheck;
4593 } 4593 }
4594 update_rq_clock(rq); 4594 update_rq_clock(rq);
4595 on_rq = p->se.on_rq; 4595 on_rq = p->se.on_rq;
4596 running = task_current(rq, p); 4596 running = task_current(rq, p);
4597 if (on_rq) 4597 if (on_rq)
4598 deactivate_task(rq, p, 0); 4598 deactivate_task(rq, p, 0);
4599 if (running) 4599 if (running)
4600 p->sched_class->put_prev_task(rq, p); 4600 p->sched_class->put_prev_task(rq, p);
4601 4601
4602 p->sched_reset_on_fork = reset_on_fork; 4602 p->sched_reset_on_fork = reset_on_fork;
4603 4603
4604 oldprio = p->prio; 4604 oldprio = p->prio;
4605 prev_class = p->sched_class; 4605 prev_class = p->sched_class;
4606 __setscheduler(rq, p, policy, param->sched_priority); 4606 __setscheduler(rq, p, policy, param->sched_priority);
4607 4607
4608 if (running) 4608 if (running)
4609 p->sched_class->set_curr_task(rq); 4609 p->sched_class->set_curr_task(rq);
4610 if (on_rq) { 4610 if (on_rq) {
4611 activate_task(rq, p, 0); 4611 activate_task(rq, p, 0);
4612 4612
4613 check_class_changed(rq, p, prev_class, oldprio, running); 4613 check_class_changed(rq, p, prev_class, oldprio, running);
4614 } 4614 }
4615 __task_rq_unlock(rq); 4615 __task_rq_unlock(rq);
4616 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4616 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4617 4617
4618 rt_mutex_adjust_pi(p); 4618 rt_mutex_adjust_pi(p);
4619 4619
4620 return 0; 4620 return 0;
4621 } 4621 }
4622 4622
4623 /** 4623 /**
4624 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 4624 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4625 * @p: the task in question. 4625 * @p: the task in question.
4626 * @policy: new policy. 4626 * @policy: new policy.
4627 * @param: structure containing the new RT priority. 4627 * @param: structure containing the new RT priority.
4628 * 4628 *
4629 * NOTE that the task may be already dead. 4629 * NOTE that the task may be already dead.
4630 */ 4630 */
4631 int sched_setscheduler(struct task_struct *p, int policy, 4631 int sched_setscheduler(struct task_struct *p, int policy,
4632 struct sched_param *param) 4632 struct sched_param *param)
4633 { 4633 {
4634 return __sched_setscheduler(p, policy, param, true); 4634 return __sched_setscheduler(p, policy, param, true);
4635 } 4635 }
4636 EXPORT_SYMBOL_GPL(sched_setscheduler); 4636 EXPORT_SYMBOL_GPL(sched_setscheduler);
4637 4637
4638 /** 4638 /**
4639 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 4639 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4640 * @p: the task in question. 4640 * @p: the task in question.
4641 * @policy: new policy. 4641 * @policy: new policy.
4642 * @param: structure containing the new RT priority. 4642 * @param: structure containing the new RT priority.
4643 * 4643 *
4644 * Just like sched_setscheduler, only don't bother checking if the 4644 * Just like sched_setscheduler, only don't bother checking if the
4645 * current context has permission. For example, this is needed in 4645 * current context has permission. For example, this is needed in
4646 * stop_machine(): we create temporary high priority worker threads, 4646 * stop_machine(): we create temporary high priority worker threads,
4647 * but our caller might not have that capability. 4647 * but our caller might not have that capability.
4648 */ 4648 */
4649 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4649 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4650 struct sched_param *param) 4650 struct sched_param *param)
4651 { 4651 {
4652 return __sched_setscheduler(p, policy, param, false); 4652 return __sched_setscheduler(p, policy, param, false);
4653 } 4653 }
4654 4654
4655 static int 4655 static int
4656 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4656 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4657 { 4657 {
4658 struct sched_param lparam; 4658 struct sched_param lparam;
4659 struct task_struct *p; 4659 struct task_struct *p;
4660 int retval; 4660 int retval;
4661 4661
4662 if (!param || pid < 0) 4662 if (!param || pid < 0)
4663 return -EINVAL; 4663 return -EINVAL;
4664 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4664 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4665 return -EFAULT; 4665 return -EFAULT;
4666 4666
4667 rcu_read_lock(); 4667 rcu_read_lock();
4668 retval = -ESRCH; 4668 retval = -ESRCH;
4669 p = find_process_by_pid(pid); 4669 p = find_process_by_pid(pid);
4670 if (p != NULL) 4670 if (p != NULL)
4671 retval = sched_setscheduler(p, policy, &lparam); 4671 retval = sched_setscheduler(p, policy, &lparam);
4672 rcu_read_unlock(); 4672 rcu_read_unlock();
4673 4673
4674 return retval; 4674 return retval;
4675 } 4675 }
4676 4676
4677 /** 4677 /**
4678 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4678 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4679 * @pid: the pid in question. 4679 * @pid: the pid in question.
4680 * @policy: new policy. 4680 * @policy: new policy.
4681 * @param: structure containing the new RT priority. 4681 * @param: structure containing the new RT priority.
4682 */ 4682 */
4683 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 4683 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4684 struct sched_param __user *, param) 4684 struct sched_param __user *, param)
4685 { 4685 {
4686 /* negative values for policy are not valid */ 4686 /* negative values for policy are not valid */
4687 if (policy < 0) 4687 if (policy < 0)
4688 return -EINVAL; 4688 return -EINVAL;
4689 4689
4690 return do_sched_setscheduler(pid, policy, param); 4690 return do_sched_setscheduler(pid, policy, param);
4691 } 4691 }
4692 4692
4693 /** 4693 /**
4694 * sys_sched_setparam - set/change the RT priority of a thread 4694 * sys_sched_setparam - set/change the RT priority of a thread
4695 * @pid: the pid in question. 4695 * @pid: the pid in question.
4696 * @param: structure containing the new RT priority. 4696 * @param: structure containing the new RT priority.
4697 */ 4697 */
4698 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4698 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4699 { 4699 {
4700 return do_sched_setscheduler(pid, -1, param); 4700 return do_sched_setscheduler(pid, -1, param);
4701 } 4701 }
4702 4702
4703 /** 4703 /**
4704 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4704 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4705 * @pid: the pid in question. 4705 * @pid: the pid in question.
4706 */ 4706 */
4707 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4707 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4708 { 4708 {
4709 struct task_struct *p; 4709 struct task_struct *p;
4710 int retval; 4710 int retval;
4711 4711
4712 if (pid < 0) 4712 if (pid < 0)
4713 return -EINVAL; 4713 return -EINVAL;
4714 4714
4715 retval = -ESRCH; 4715 retval = -ESRCH;
4716 rcu_read_lock(); 4716 rcu_read_lock();
4717 p = find_process_by_pid(pid); 4717 p = find_process_by_pid(pid);
4718 if (p) { 4718 if (p) {
4719 retval = security_task_getscheduler(p); 4719 retval = security_task_getscheduler(p);
4720 if (!retval) 4720 if (!retval)
4721 retval = p->policy 4721 retval = p->policy
4722 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4722 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4723 } 4723 }
4724 rcu_read_unlock(); 4724 rcu_read_unlock();
4725 return retval; 4725 return retval;
4726 } 4726 }
4727 4727
4728 /** 4728 /**
4729 * sys_sched_getparam - get the RT priority of a thread 4729 * sys_sched_getparam - get the RT priority of a thread
4730 * @pid: the pid in question. 4730 * @pid: the pid in question.
4731 * @param: structure containing the RT priority. 4731 * @param: structure containing the RT priority.
4732 */ 4732 */
4733 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4733 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4734 { 4734 {
4735 struct sched_param lp; 4735 struct sched_param lp;
4736 struct task_struct *p; 4736 struct task_struct *p;
4737 int retval; 4737 int retval;
4738 4738
4739 if (!param || pid < 0) 4739 if (!param || pid < 0)
4740 return -EINVAL; 4740 return -EINVAL;
4741 4741
4742 rcu_read_lock(); 4742 rcu_read_lock();
4743 p = find_process_by_pid(pid); 4743 p = find_process_by_pid(pid);
4744 retval = -ESRCH; 4744 retval = -ESRCH;
4745 if (!p) 4745 if (!p)
4746 goto out_unlock; 4746 goto out_unlock;
4747 4747
4748 retval = security_task_getscheduler(p); 4748 retval = security_task_getscheduler(p);
4749 if (retval) 4749 if (retval)
4750 goto out_unlock; 4750 goto out_unlock;
4751 4751
4752 lp.sched_priority = p->rt_priority; 4752 lp.sched_priority = p->rt_priority;
4753 rcu_read_unlock(); 4753 rcu_read_unlock();
4754 4754
4755 /* 4755 /*
4756 * This one might sleep, we cannot do it with a spinlock held ... 4756 * This one might sleep, we cannot do it with a spinlock held ...
4757 */ 4757 */
4758 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4758 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4759 4759
4760 return retval; 4760 return retval;
4761 4761
4762 out_unlock: 4762 out_unlock:
4763 rcu_read_unlock(); 4763 rcu_read_unlock();
4764 return retval; 4764 return retval;
4765 } 4765 }
4766 4766
4767 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4767 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4768 { 4768 {
4769 cpumask_var_t cpus_allowed, new_mask; 4769 cpumask_var_t cpus_allowed, new_mask;
4770 struct task_struct *p; 4770 struct task_struct *p;
4771 int retval; 4771 int retval;
4772 4772
4773 get_online_cpus(); 4773 get_online_cpus();
4774 rcu_read_lock(); 4774 rcu_read_lock();
4775 4775
4776 p = find_process_by_pid(pid); 4776 p = find_process_by_pid(pid);
4777 if (!p) { 4777 if (!p) {
4778 rcu_read_unlock(); 4778 rcu_read_unlock();
4779 put_online_cpus(); 4779 put_online_cpus();
4780 return -ESRCH; 4780 return -ESRCH;
4781 } 4781 }
4782 4782
4783 /* Prevent p going away */ 4783 /* Prevent p going away */
4784 get_task_struct(p); 4784 get_task_struct(p);
4785 rcu_read_unlock(); 4785 rcu_read_unlock();
4786 4786
4787 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4787 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4788 retval = -ENOMEM; 4788 retval = -ENOMEM;
4789 goto out_put_task; 4789 goto out_put_task;
4790 } 4790 }
4791 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4791 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4792 retval = -ENOMEM; 4792 retval = -ENOMEM;
4793 goto out_free_cpus_allowed; 4793 goto out_free_cpus_allowed;
4794 } 4794 }
4795 retval = -EPERM; 4795 retval = -EPERM;
4796 if (!check_same_owner(p) && !capable(CAP_SYS_NICE)) 4796 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
4797 goto out_unlock; 4797 goto out_unlock;
4798 4798
4799 retval = security_task_setscheduler(p, 0, NULL); 4799 retval = security_task_setscheduler(p, 0, NULL);
4800 if (retval) 4800 if (retval)
4801 goto out_unlock; 4801 goto out_unlock;
4802 4802
4803 cpuset_cpus_allowed(p, cpus_allowed); 4803 cpuset_cpus_allowed(p, cpus_allowed);
4804 cpumask_and(new_mask, in_mask, cpus_allowed); 4804 cpumask_and(new_mask, in_mask, cpus_allowed);
4805 again: 4805 again:
4806 retval = set_cpus_allowed_ptr(p, new_mask); 4806 retval = set_cpus_allowed_ptr(p, new_mask);
4807 4807
4808 if (!retval) { 4808 if (!retval) {
4809 cpuset_cpus_allowed(p, cpus_allowed); 4809 cpuset_cpus_allowed(p, cpus_allowed);
4810 if (!cpumask_subset(new_mask, cpus_allowed)) { 4810 if (!cpumask_subset(new_mask, cpus_allowed)) {
4811 /* 4811 /*
4812 * We must have raced with a concurrent cpuset 4812 * We must have raced with a concurrent cpuset
4813 * update. Just reset the cpus_allowed to the 4813 * update. Just reset the cpus_allowed to the
4814 * cpuset's cpus_allowed 4814 * cpuset's cpus_allowed
4815 */ 4815 */
4816 cpumask_copy(new_mask, cpus_allowed); 4816 cpumask_copy(new_mask, cpus_allowed);
4817 goto again; 4817 goto again;
4818 } 4818 }
4819 } 4819 }
4820 out_unlock: 4820 out_unlock:
4821 free_cpumask_var(new_mask); 4821 free_cpumask_var(new_mask);
4822 out_free_cpus_allowed: 4822 out_free_cpus_allowed:
4823 free_cpumask_var(cpus_allowed); 4823 free_cpumask_var(cpus_allowed);
4824 out_put_task: 4824 out_put_task:
4825 put_task_struct(p); 4825 put_task_struct(p);
4826 put_online_cpus(); 4826 put_online_cpus();
4827 return retval; 4827 return retval;
4828 } 4828 }
4829 4829
4830 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4830 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4831 struct cpumask *new_mask) 4831 struct cpumask *new_mask)
4832 { 4832 {
4833 if (len < cpumask_size()) 4833 if (len < cpumask_size())
4834 cpumask_clear(new_mask); 4834 cpumask_clear(new_mask);
4835 else if (len > cpumask_size()) 4835 else if (len > cpumask_size())
4836 len = cpumask_size(); 4836 len = cpumask_size();
4837 4837
4838 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4838 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4839 } 4839 }
4840 4840
4841 /** 4841 /**
4842 * sys_sched_setaffinity - set the cpu affinity of a process 4842 * sys_sched_setaffinity - set the cpu affinity of a process
4843 * @pid: pid of the process 4843 * @pid: pid of the process
4844 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4844 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4845 * @user_mask_ptr: user-space pointer to the new cpu mask 4845 * @user_mask_ptr: user-space pointer to the new cpu mask
4846 */ 4846 */
4847 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4847 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4848 unsigned long __user *, user_mask_ptr) 4848 unsigned long __user *, user_mask_ptr)
4849 { 4849 {
4850 cpumask_var_t new_mask; 4850 cpumask_var_t new_mask;
4851 int retval; 4851 int retval;
4852 4852
4853 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4853 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4854 return -ENOMEM; 4854 return -ENOMEM;
4855 4855
4856 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4856 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4857 if (retval == 0) 4857 if (retval == 0)
4858 retval = sched_setaffinity(pid, new_mask); 4858 retval = sched_setaffinity(pid, new_mask);
4859 free_cpumask_var(new_mask); 4859 free_cpumask_var(new_mask);
4860 return retval; 4860 return retval;
4861 } 4861 }
4862 4862
4863 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4863 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4864 { 4864 {
4865 struct task_struct *p; 4865 struct task_struct *p;
4866 unsigned long flags; 4866 unsigned long flags;
4867 struct rq *rq; 4867 struct rq *rq;
4868 int retval; 4868 int retval;
4869 4869
4870 get_online_cpus(); 4870 get_online_cpus();
4871 rcu_read_lock(); 4871 rcu_read_lock();
4872 4872
4873 retval = -ESRCH; 4873 retval = -ESRCH;
4874 p = find_process_by_pid(pid); 4874 p = find_process_by_pid(pid);
4875 if (!p) 4875 if (!p)
4876 goto out_unlock; 4876 goto out_unlock;
4877 4877
4878 retval = security_task_getscheduler(p); 4878 retval = security_task_getscheduler(p);
4879 if (retval) 4879 if (retval)
4880 goto out_unlock; 4880 goto out_unlock;
4881 4881
4882 rq = task_rq_lock(p, &flags); 4882 rq = task_rq_lock(p, &flags);
4883 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask); 4883 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4884 task_rq_unlock(rq, &flags); 4884 task_rq_unlock(rq, &flags);
4885 4885
4886 out_unlock: 4886 out_unlock:
4887 rcu_read_unlock(); 4887 rcu_read_unlock();
4888 put_online_cpus(); 4888 put_online_cpus();
4889 4889
4890 return retval; 4890 return retval;
4891 } 4891 }
4892 4892
4893 /** 4893 /**
4894 * sys_sched_getaffinity - get the cpu affinity of a process 4894 * sys_sched_getaffinity - get the cpu affinity of a process
4895 * @pid: pid of the process 4895 * @pid: pid of the process
4896 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4896 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4897 * @user_mask_ptr: user-space pointer to hold the current cpu mask 4897 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4898 */ 4898 */
4899 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4899 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4900 unsigned long __user *, user_mask_ptr) 4900 unsigned long __user *, user_mask_ptr)
4901 { 4901 {
4902 int ret; 4902 int ret;
4903 cpumask_var_t mask; 4903 cpumask_var_t mask;
4904 4904
4905 if (len < nr_cpu_ids) 4905 if (len < nr_cpu_ids)
4906 return -EINVAL; 4906 return -EINVAL;
4907 if (len & (sizeof(unsigned long)-1)) 4907 if (len & (sizeof(unsigned long)-1))
4908 return -EINVAL; 4908 return -EINVAL;
4909 4909
4910 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4910 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4911 return -ENOMEM; 4911 return -ENOMEM;
4912 4912
4913 ret = sched_getaffinity(pid, mask); 4913 ret = sched_getaffinity(pid, mask);
4914 if (ret == 0) { 4914 if (ret == 0) {
4915 size_t retlen = min_t(size_t, len, cpumask_size()); 4915 size_t retlen = min_t(size_t, len, cpumask_size());
4916 4916
4917 if (copy_to_user(user_mask_ptr, mask, retlen)) 4917 if (copy_to_user(user_mask_ptr, mask, retlen))
4918 ret = -EFAULT; 4918 ret = -EFAULT;
4919 else 4919 else
4920 ret = retlen; 4920 ret = retlen;
4921 } 4921 }
4922 free_cpumask_var(mask); 4922 free_cpumask_var(mask);
4923 4923
4924 return ret; 4924 return ret;
4925 } 4925 }
4926 4926
4927 /** 4927 /**
4928 * sys_sched_yield - yield the current processor to other threads. 4928 * sys_sched_yield - yield the current processor to other threads.
4929 * 4929 *
4930 * This function yields the current CPU to other tasks. If there are no 4930 * This function yields the current CPU to other tasks. If there are no
4931 * other threads running on this CPU then this function will return. 4931 * other threads running on this CPU then this function will return.
4932 */ 4932 */
4933 SYSCALL_DEFINE0(sched_yield) 4933 SYSCALL_DEFINE0(sched_yield)
4934 { 4934 {
4935 struct rq *rq = this_rq_lock(); 4935 struct rq *rq = this_rq_lock();
4936 4936
4937 schedstat_inc(rq, yld_count); 4937 schedstat_inc(rq, yld_count);
4938 current->sched_class->yield_task(rq); 4938 current->sched_class->yield_task(rq);
4939 4939
4940 /* 4940 /*
4941 * Since we are going to call schedule() anyway, there's 4941 * Since we are going to call schedule() anyway, there's
4942 * no need to preempt or enable interrupts: 4942 * no need to preempt or enable interrupts:
4943 */ 4943 */
4944 __release(rq->lock); 4944 __release(rq->lock);
4945 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 4945 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4946 do_raw_spin_unlock(&rq->lock); 4946 do_raw_spin_unlock(&rq->lock);
4947 preempt_enable_no_resched(); 4947 preempt_enable_no_resched();
4948 4948
4949 schedule(); 4949 schedule();
4950 4950
4951 return 0; 4951 return 0;
4952 } 4952 }
4953 4953
4954 static inline int should_resched(void) 4954 static inline int should_resched(void)
4955 { 4955 {
4956 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE); 4956 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4957 } 4957 }
4958 4958
4959 static void __cond_resched(void) 4959 static void __cond_resched(void)
4960 { 4960 {
4961 add_preempt_count(PREEMPT_ACTIVE); 4961 add_preempt_count(PREEMPT_ACTIVE);
4962 schedule(); 4962 schedule();
4963 sub_preempt_count(PREEMPT_ACTIVE); 4963 sub_preempt_count(PREEMPT_ACTIVE);
4964 } 4964 }
4965 4965
4966 int __sched _cond_resched(void) 4966 int __sched _cond_resched(void)
4967 { 4967 {
4968 if (should_resched()) { 4968 if (should_resched()) {
4969 __cond_resched(); 4969 __cond_resched();
4970 return 1; 4970 return 1;
4971 } 4971 }
4972 return 0; 4972 return 0;
4973 } 4973 }
4974 EXPORT_SYMBOL(_cond_resched); 4974 EXPORT_SYMBOL(_cond_resched);
4975 4975
4976 /* 4976 /*
4977 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4977 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4978 * call schedule, and on return reacquire the lock. 4978 * call schedule, and on return reacquire the lock.
4979 * 4979 *
4980 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4980 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4981 * operations here to prevent schedule() from being called twice (once via 4981 * operations here to prevent schedule() from being called twice (once via
4982 * spin_unlock(), once by hand). 4982 * spin_unlock(), once by hand).
4983 */ 4983 */
4984 int __cond_resched_lock(spinlock_t *lock) 4984 int __cond_resched_lock(spinlock_t *lock)
4985 { 4985 {
4986 int resched = should_resched(); 4986 int resched = should_resched();
4987 int ret = 0; 4987 int ret = 0;
4988 4988
4989 lockdep_assert_held(lock); 4989 lockdep_assert_held(lock);
4990 4990
4991 if (spin_needbreak(lock) || resched) { 4991 if (spin_needbreak(lock) || resched) {
4992 spin_unlock(lock); 4992 spin_unlock(lock);
4993 if (resched) 4993 if (resched)
4994 __cond_resched(); 4994 __cond_resched();
4995 else 4995 else
4996 cpu_relax(); 4996 cpu_relax();
4997 ret = 1; 4997 ret = 1;
4998 spin_lock(lock); 4998 spin_lock(lock);
4999 } 4999 }
5000 return ret; 5000 return ret;
5001 } 5001 }
5002 EXPORT_SYMBOL(__cond_resched_lock); 5002 EXPORT_SYMBOL(__cond_resched_lock);
5003 5003
5004 int __sched __cond_resched_softirq(void) 5004 int __sched __cond_resched_softirq(void)
5005 { 5005 {
5006 BUG_ON(!in_softirq()); 5006 BUG_ON(!in_softirq());
5007 5007
5008 if (should_resched()) { 5008 if (should_resched()) {
5009 local_bh_enable(); 5009 local_bh_enable();
5010 __cond_resched(); 5010 __cond_resched();
5011 local_bh_disable(); 5011 local_bh_disable();
5012 return 1; 5012 return 1;
5013 } 5013 }
5014 return 0; 5014 return 0;
5015 } 5015 }
5016 EXPORT_SYMBOL(__cond_resched_softirq); 5016 EXPORT_SYMBOL(__cond_resched_softirq);
5017 5017
5018 /** 5018 /**
5019 * yield - yield the current processor to other threads. 5019 * yield - yield the current processor to other threads.
5020 * 5020 *
5021 * This is a shortcut for kernel-space yielding - it marks the 5021 * This is a shortcut for kernel-space yielding - it marks the
5022 * thread runnable and calls sys_sched_yield(). 5022 * thread runnable and calls sys_sched_yield().
5023 */ 5023 */
5024 void __sched yield(void) 5024 void __sched yield(void)
5025 { 5025 {
5026 set_current_state(TASK_RUNNING); 5026 set_current_state(TASK_RUNNING);
5027 sys_sched_yield(); 5027 sys_sched_yield();
5028 } 5028 }
5029 EXPORT_SYMBOL(yield); 5029 EXPORT_SYMBOL(yield);
5030 5030
5031 /* 5031 /*
5032 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 5032 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5033 * that process accounting knows that this is a task in IO wait state. 5033 * that process accounting knows that this is a task in IO wait state.
5034 */ 5034 */
5035 void __sched io_schedule(void) 5035 void __sched io_schedule(void)
5036 { 5036 {
5037 struct rq *rq = raw_rq(); 5037 struct rq *rq = raw_rq();
5038 5038
5039 delayacct_blkio_start(); 5039 delayacct_blkio_start();
5040 atomic_inc(&rq->nr_iowait); 5040 atomic_inc(&rq->nr_iowait);
5041 current->in_iowait = 1; 5041 current->in_iowait = 1;
5042 schedule(); 5042 schedule();
5043 current->in_iowait = 0; 5043 current->in_iowait = 0;
5044 atomic_dec(&rq->nr_iowait); 5044 atomic_dec(&rq->nr_iowait);
5045 delayacct_blkio_end(); 5045 delayacct_blkio_end();
5046 } 5046 }
5047 EXPORT_SYMBOL(io_schedule); 5047 EXPORT_SYMBOL(io_schedule);
5048 5048
5049 long __sched io_schedule_timeout(long timeout) 5049 long __sched io_schedule_timeout(long timeout)
5050 { 5050 {
5051 struct rq *rq = raw_rq(); 5051 struct rq *rq = raw_rq();
5052 long ret; 5052 long ret;
5053 5053
5054 delayacct_blkio_start(); 5054 delayacct_blkio_start();
5055 atomic_inc(&rq->nr_iowait); 5055 atomic_inc(&rq->nr_iowait);
5056 current->in_iowait = 1; 5056 current->in_iowait = 1;
5057 ret = schedule_timeout(timeout); 5057 ret = schedule_timeout(timeout);
5058 current->in_iowait = 0; 5058 current->in_iowait = 0;
5059 atomic_dec(&rq->nr_iowait); 5059 atomic_dec(&rq->nr_iowait);
5060 delayacct_blkio_end(); 5060 delayacct_blkio_end();
5061 return ret; 5061 return ret;
5062 } 5062 }
5063 5063
5064 /** 5064 /**
5065 * sys_sched_get_priority_max - return maximum RT priority. 5065 * sys_sched_get_priority_max - return maximum RT priority.
5066 * @policy: scheduling class. 5066 * @policy: scheduling class.
5067 * 5067 *
5068 * this syscall returns the maximum rt_priority that can be used 5068 * this syscall returns the maximum rt_priority that can be used
5069 * by a given scheduling class. 5069 * by a given scheduling class.
5070 */ 5070 */
5071 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 5071 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5072 { 5072 {
5073 int ret = -EINVAL; 5073 int ret = -EINVAL;
5074 5074
5075 switch (policy) { 5075 switch (policy) {
5076 case SCHED_FIFO: 5076 case SCHED_FIFO:
5077 case SCHED_RR: 5077 case SCHED_RR:
5078 ret = MAX_USER_RT_PRIO-1; 5078 ret = MAX_USER_RT_PRIO-1;
5079 break; 5079 break;
5080 case SCHED_NORMAL: 5080 case SCHED_NORMAL:
5081 case SCHED_BATCH: 5081 case SCHED_BATCH:
5082 case SCHED_IDLE: 5082 case SCHED_IDLE:
5083 ret = 0; 5083 ret = 0;
5084 break; 5084 break;
5085 } 5085 }
5086 return ret; 5086 return ret;
5087 } 5087 }
5088 5088
5089 /** 5089 /**
5090 * sys_sched_get_priority_min - return minimum RT priority. 5090 * sys_sched_get_priority_min - return minimum RT priority.
5091 * @policy: scheduling class. 5091 * @policy: scheduling class.
5092 * 5092 *
5093 * this syscall returns the minimum rt_priority that can be used 5093 * this syscall returns the minimum rt_priority that can be used
5094 * by a given scheduling class. 5094 * by a given scheduling class.
5095 */ 5095 */
5096 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 5096 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5097 { 5097 {
5098 int ret = -EINVAL; 5098 int ret = -EINVAL;
5099 5099
5100 switch (policy) { 5100 switch (policy) {
5101 case SCHED_FIFO: 5101 case SCHED_FIFO:
5102 case SCHED_RR: 5102 case SCHED_RR:
5103 ret = 1; 5103 ret = 1;
5104 break; 5104 break;
5105 case SCHED_NORMAL: 5105 case SCHED_NORMAL:
5106 case SCHED_BATCH: 5106 case SCHED_BATCH:
5107 case SCHED_IDLE: 5107 case SCHED_IDLE:
5108 ret = 0; 5108 ret = 0;
5109 } 5109 }
5110 return ret; 5110 return ret;
5111 } 5111 }
5112 5112
5113 /** 5113 /**
5114 * sys_sched_rr_get_interval - return the default timeslice of a process. 5114 * sys_sched_rr_get_interval - return the default timeslice of a process.
5115 * @pid: pid of the process. 5115 * @pid: pid of the process.
5116 * @interval: userspace pointer to the timeslice value. 5116 * @interval: userspace pointer to the timeslice value.
5117 * 5117 *
5118 * this syscall writes the default timeslice value of a given process 5118 * this syscall writes the default timeslice value of a given process
5119 * into the user-space timespec buffer. A value of '0' means infinity. 5119 * into the user-space timespec buffer. A value of '0' means infinity.
5120 */ 5120 */
5121 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 5121 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5122 struct timespec __user *, interval) 5122 struct timespec __user *, interval)
5123 { 5123 {
5124 struct task_struct *p; 5124 struct task_struct *p;
5125 unsigned int time_slice; 5125 unsigned int time_slice;
5126 unsigned long flags; 5126 unsigned long flags;
5127 struct rq *rq; 5127 struct rq *rq;
5128 int retval; 5128 int retval;
5129 struct timespec t; 5129 struct timespec t;
5130 5130
5131 if (pid < 0) 5131 if (pid < 0)
5132 return -EINVAL; 5132 return -EINVAL;
5133 5133
5134 retval = -ESRCH; 5134 retval = -ESRCH;
5135 rcu_read_lock(); 5135 rcu_read_lock();
5136 p = find_process_by_pid(pid); 5136 p = find_process_by_pid(pid);
5137 if (!p) 5137 if (!p)
5138 goto out_unlock; 5138 goto out_unlock;
5139 5139
5140 retval = security_task_getscheduler(p); 5140 retval = security_task_getscheduler(p);
5141 if (retval) 5141 if (retval)
5142 goto out_unlock; 5142 goto out_unlock;
5143 5143
5144 rq = task_rq_lock(p, &flags); 5144 rq = task_rq_lock(p, &flags);
5145 time_slice = p->sched_class->get_rr_interval(rq, p); 5145 time_slice = p->sched_class->get_rr_interval(rq, p);
5146 task_rq_unlock(rq, &flags); 5146 task_rq_unlock(rq, &flags);
5147 5147
5148 rcu_read_unlock(); 5148 rcu_read_unlock();
5149 jiffies_to_timespec(time_slice, &t); 5149 jiffies_to_timespec(time_slice, &t);
5150 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 5150 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5151 return retval; 5151 return retval;
5152 5152
5153 out_unlock: 5153 out_unlock:
5154 rcu_read_unlock(); 5154 rcu_read_unlock();
5155 return retval; 5155 return retval;
5156 } 5156 }
5157 5157
5158 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 5158 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5159 5159
5160 void sched_show_task(struct task_struct *p) 5160 void sched_show_task(struct task_struct *p)
5161 { 5161 {
5162 unsigned long free = 0; 5162 unsigned long free = 0;
5163 unsigned state; 5163 unsigned state;
5164 5164
5165 state = p->state ? __ffs(p->state) + 1 : 0; 5165 state = p->state ? __ffs(p->state) + 1 : 0;
5166 printk(KERN_INFO "%-13.13s %c", p->comm, 5166 printk(KERN_INFO "%-13.13s %c", p->comm,
5167 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 5167 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5168 #if BITS_PER_LONG == 32 5168 #if BITS_PER_LONG == 32
5169 if (state == TASK_RUNNING) 5169 if (state == TASK_RUNNING)
5170 printk(KERN_CONT " running "); 5170 printk(KERN_CONT " running ");
5171 else 5171 else
5172 printk(KERN_CONT " %08lx ", thread_saved_pc(p)); 5172 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5173 #else 5173 #else
5174 if (state == TASK_RUNNING) 5174 if (state == TASK_RUNNING)
5175 printk(KERN_CONT " running task "); 5175 printk(KERN_CONT " running task ");
5176 else 5176 else
5177 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 5177 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5178 #endif 5178 #endif
5179 #ifdef CONFIG_DEBUG_STACK_USAGE 5179 #ifdef CONFIG_DEBUG_STACK_USAGE
5180 free = stack_not_used(p); 5180 free = stack_not_used(p);
5181 #endif 5181 #endif
5182 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 5182 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5183 task_pid_nr(p), task_pid_nr(p->real_parent), 5183 task_pid_nr(p), task_pid_nr(p->real_parent),
5184 (unsigned long)task_thread_info(p)->flags); 5184 (unsigned long)task_thread_info(p)->flags);
5185 5185
5186 show_stack(p, NULL); 5186 show_stack(p, NULL);
5187 } 5187 }
5188 5188
5189 void show_state_filter(unsigned long state_filter) 5189 void show_state_filter(unsigned long state_filter)
5190 { 5190 {
5191 struct task_struct *g, *p; 5191 struct task_struct *g, *p;
5192 5192
5193 #if BITS_PER_LONG == 32 5193 #if BITS_PER_LONG == 32
5194 printk(KERN_INFO 5194 printk(KERN_INFO
5195 " task PC stack pid father\n"); 5195 " task PC stack pid father\n");
5196 #else 5196 #else
5197 printk(KERN_INFO 5197 printk(KERN_INFO
5198 " task PC stack pid father\n"); 5198 " task PC stack pid father\n");
5199 #endif 5199 #endif
5200 read_lock(&tasklist_lock); 5200 read_lock(&tasklist_lock);
5201 do_each_thread(g, p) { 5201 do_each_thread(g, p) {
5202 /* 5202 /*
5203 * reset the NMI-timeout, listing all files on a slow 5203 * reset the NMI-timeout, listing all files on a slow
5204 * console might take alot of time: 5204 * console might take alot of time:
5205 */ 5205 */
5206 touch_nmi_watchdog(); 5206 touch_nmi_watchdog();
5207 if (!state_filter || (p->state & state_filter)) 5207 if (!state_filter || (p->state & state_filter))
5208 sched_show_task(p); 5208 sched_show_task(p);
5209 } while_each_thread(g, p); 5209 } while_each_thread(g, p);
5210 5210
5211 touch_all_softlockup_watchdogs(); 5211 touch_all_softlockup_watchdogs();
5212 5212
5213 #ifdef CONFIG_SCHED_DEBUG 5213 #ifdef CONFIG_SCHED_DEBUG
5214 sysrq_sched_debug_show(); 5214 sysrq_sched_debug_show();
5215 #endif 5215 #endif
5216 read_unlock(&tasklist_lock); 5216 read_unlock(&tasklist_lock);
5217 /* 5217 /*
5218 * Only show locks if all tasks are dumped: 5218 * Only show locks if all tasks are dumped:
5219 */ 5219 */
5220 if (!state_filter) 5220 if (!state_filter)
5221 debug_show_all_locks(); 5221 debug_show_all_locks();
5222 } 5222 }
5223 5223
5224 void __cpuinit init_idle_bootup_task(struct task_struct *idle) 5224 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5225 { 5225 {
5226 idle->sched_class = &idle_sched_class; 5226 idle->sched_class = &idle_sched_class;
5227 } 5227 }
5228 5228
5229 /** 5229 /**
5230 * init_idle - set up an idle thread for a given CPU 5230 * init_idle - set up an idle thread for a given CPU
5231 * @idle: task in question 5231 * @idle: task in question
5232 * @cpu: cpu the idle task belongs to 5232 * @cpu: cpu the idle task belongs to
5233 * 5233 *
5234 * NOTE: this function does not set the idle thread's NEED_RESCHED 5234 * NOTE: this function does not set the idle thread's NEED_RESCHED
5235 * flag, to make booting more robust. 5235 * flag, to make booting more robust.
5236 */ 5236 */
5237 void __cpuinit init_idle(struct task_struct *idle, int cpu) 5237 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5238 { 5238 {
5239 struct rq *rq = cpu_rq(cpu); 5239 struct rq *rq = cpu_rq(cpu);
5240 unsigned long flags; 5240 unsigned long flags;
5241 5241
5242 raw_spin_lock_irqsave(&rq->lock, flags); 5242 raw_spin_lock_irqsave(&rq->lock, flags);
5243 5243
5244 __sched_fork(idle); 5244 __sched_fork(idle);
5245 idle->state = TASK_RUNNING; 5245 idle->state = TASK_RUNNING;
5246 idle->se.exec_start = sched_clock(); 5246 idle->se.exec_start = sched_clock();
5247 5247
5248 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu)); 5248 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5249 __set_task_cpu(idle, cpu); 5249 __set_task_cpu(idle, cpu);
5250 5250
5251 rq->curr = rq->idle = idle; 5251 rq->curr = rq->idle = idle;
5252 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) 5252 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5253 idle->oncpu = 1; 5253 idle->oncpu = 1;
5254 #endif 5254 #endif
5255 raw_spin_unlock_irqrestore(&rq->lock, flags); 5255 raw_spin_unlock_irqrestore(&rq->lock, flags);
5256 5256
5257 /* Set the preempt count _outside_ the spinlocks! */ 5257 /* Set the preempt count _outside_ the spinlocks! */
5258 #if defined(CONFIG_PREEMPT) 5258 #if defined(CONFIG_PREEMPT)
5259 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0); 5259 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5260 #else 5260 #else
5261 task_thread_info(idle)->preempt_count = 0; 5261 task_thread_info(idle)->preempt_count = 0;
5262 #endif 5262 #endif
5263 /* 5263 /*
5264 * The idle tasks have their own, simple scheduling class: 5264 * The idle tasks have their own, simple scheduling class:
5265 */ 5265 */
5266 idle->sched_class = &idle_sched_class; 5266 idle->sched_class = &idle_sched_class;
5267 ftrace_graph_init_task(idle); 5267 ftrace_graph_init_task(idle);
5268 } 5268 }
5269 5269
5270 /* 5270 /*
5271 * In a system that switches off the HZ timer nohz_cpu_mask 5271 * In a system that switches off the HZ timer nohz_cpu_mask
5272 * indicates which cpus entered this state. This is used 5272 * indicates which cpus entered this state. This is used
5273 * in the rcu update to wait only for active cpus. For system 5273 * in the rcu update to wait only for active cpus. For system
5274 * which do not switch off the HZ timer nohz_cpu_mask should 5274 * which do not switch off the HZ timer nohz_cpu_mask should
5275 * always be CPU_BITS_NONE. 5275 * always be CPU_BITS_NONE.
5276 */ 5276 */
5277 cpumask_var_t nohz_cpu_mask; 5277 cpumask_var_t nohz_cpu_mask;
5278 5278
5279 /* 5279 /*
5280 * Increase the granularity value when there are more CPUs, 5280 * Increase the granularity value when there are more CPUs,
5281 * because with more CPUs the 'effective latency' as visible 5281 * because with more CPUs the 'effective latency' as visible
5282 * to users decreases. But the relationship is not linear, 5282 * to users decreases. But the relationship is not linear,
5283 * so pick a second-best guess by going with the log2 of the 5283 * so pick a second-best guess by going with the log2 of the
5284 * number of CPUs. 5284 * number of CPUs.
5285 * 5285 *
5286 * This idea comes from the SD scheduler of Con Kolivas: 5286 * This idea comes from the SD scheduler of Con Kolivas:
5287 */ 5287 */
5288 static int get_update_sysctl_factor(void) 5288 static int get_update_sysctl_factor(void)
5289 { 5289 {
5290 unsigned int cpus = min_t(int, num_online_cpus(), 8); 5290 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5291 unsigned int factor; 5291 unsigned int factor;
5292 5292
5293 switch (sysctl_sched_tunable_scaling) { 5293 switch (sysctl_sched_tunable_scaling) {
5294 case SCHED_TUNABLESCALING_NONE: 5294 case SCHED_TUNABLESCALING_NONE:
5295 factor = 1; 5295 factor = 1;
5296 break; 5296 break;
5297 case SCHED_TUNABLESCALING_LINEAR: 5297 case SCHED_TUNABLESCALING_LINEAR:
5298 factor = cpus; 5298 factor = cpus;
5299 break; 5299 break;
5300 case SCHED_TUNABLESCALING_LOG: 5300 case SCHED_TUNABLESCALING_LOG:
5301 default: 5301 default:
5302 factor = 1 + ilog2(cpus); 5302 factor = 1 + ilog2(cpus);
5303 break; 5303 break;
5304 } 5304 }
5305 5305
5306 return factor; 5306 return factor;
5307 } 5307 }
5308 5308
5309 static void update_sysctl(void) 5309 static void update_sysctl(void)
5310 { 5310 {
5311 unsigned int factor = get_update_sysctl_factor(); 5311 unsigned int factor = get_update_sysctl_factor();
5312 5312
5313 #define SET_SYSCTL(name) \ 5313 #define SET_SYSCTL(name) \
5314 (sysctl_##name = (factor) * normalized_sysctl_##name) 5314 (sysctl_##name = (factor) * normalized_sysctl_##name)
5315 SET_SYSCTL(sched_min_granularity); 5315 SET_SYSCTL(sched_min_granularity);
5316 SET_SYSCTL(sched_latency); 5316 SET_SYSCTL(sched_latency);
5317 SET_SYSCTL(sched_wakeup_granularity); 5317 SET_SYSCTL(sched_wakeup_granularity);
5318 SET_SYSCTL(sched_shares_ratelimit); 5318 SET_SYSCTL(sched_shares_ratelimit);
5319 #undef SET_SYSCTL 5319 #undef SET_SYSCTL
5320 } 5320 }
5321 5321
5322 static inline void sched_init_granularity(void) 5322 static inline void sched_init_granularity(void)
5323 { 5323 {
5324 update_sysctl(); 5324 update_sysctl();
5325 } 5325 }
5326 5326
5327 #ifdef CONFIG_SMP 5327 #ifdef CONFIG_SMP
5328 /* 5328 /*
5329 * This is how migration works: 5329 * This is how migration works:
5330 * 5330 *
5331 * 1) we queue a struct migration_req structure in the source CPU's 5331 * 1) we queue a struct migration_req structure in the source CPU's
5332 * runqueue and wake up that CPU's migration thread. 5332 * runqueue and wake up that CPU's migration thread.
5333 * 2) we down() the locked semaphore => thread blocks. 5333 * 2) we down() the locked semaphore => thread blocks.
5334 * 3) migration thread wakes up (implicitly it forces the migrated 5334 * 3) migration thread wakes up (implicitly it forces the migrated
5335 * thread off the CPU) 5335 * thread off the CPU)
5336 * 4) it gets the migration request and checks whether the migrated 5336 * 4) it gets the migration request and checks whether the migrated
5337 * task is still in the wrong runqueue. 5337 * task is still in the wrong runqueue.
5338 * 5) if it's in the wrong runqueue then the migration thread removes 5338 * 5) if it's in the wrong runqueue then the migration thread removes
5339 * it and puts it into the right queue. 5339 * it and puts it into the right queue.
5340 * 6) migration thread up()s the semaphore. 5340 * 6) migration thread up()s the semaphore.
5341 * 7) we wake up and the migration is done. 5341 * 7) we wake up and the migration is done.
5342 */ 5342 */
5343 5343
5344 /* 5344 /*
5345 * Change a given task's CPU affinity. Migrate the thread to a 5345 * Change a given task's CPU affinity. Migrate the thread to a
5346 * proper CPU and schedule it away if the CPU it's executing on 5346 * proper CPU and schedule it away if the CPU it's executing on
5347 * is removed from the allowed bitmask. 5347 * is removed from the allowed bitmask.
5348 * 5348 *
5349 * NOTE: the caller must have a valid reference to the task, the 5349 * NOTE: the caller must have a valid reference to the task, the
5350 * task must not exit() & deallocate itself prematurely. The 5350 * task must not exit() & deallocate itself prematurely. The
5351 * call is not atomic; no spinlocks may be held. 5351 * call is not atomic; no spinlocks may be held.
5352 */ 5352 */
5353 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 5353 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5354 { 5354 {
5355 struct migration_req req; 5355 struct migration_req req;
5356 unsigned long flags; 5356 unsigned long flags;
5357 struct rq *rq; 5357 struct rq *rq;
5358 int ret = 0; 5358 int ret = 0;
5359 5359
5360 rq = task_rq_lock(p, &flags); 5360 rq = task_rq_lock(p, &flags);
5361 5361
5362 if (!cpumask_intersects(new_mask, cpu_active_mask)) { 5362 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5363 ret = -EINVAL; 5363 ret = -EINVAL;
5364 goto out; 5364 goto out;
5365 } 5365 }
5366 5366
5367 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current && 5367 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5368 !cpumask_equal(&p->cpus_allowed, new_mask))) { 5368 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5369 ret = -EINVAL; 5369 ret = -EINVAL;
5370 goto out; 5370 goto out;
5371 } 5371 }
5372 5372
5373 if (p->sched_class->set_cpus_allowed) 5373 if (p->sched_class->set_cpus_allowed)
5374 p->sched_class->set_cpus_allowed(p, new_mask); 5374 p->sched_class->set_cpus_allowed(p, new_mask);
5375 else { 5375 else {
5376 cpumask_copy(&p->cpus_allowed, new_mask); 5376 cpumask_copy(&p->cpus_allowed, new_mask);
5377 p->rt.nr_cpus_allowed = cpumask_weight(new_mask); 5377 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5378 } 5378 }
5379 5379
5380 /* Can the task run on the task's current CPU? If so, we're done */ 5380 /* Can the task run on the task's current CPU? If so, we're done */
5381 if (cpumask_test_cpu(task_cpu(p), new_mask)) 5381 if (cpumask_test_cpu(task_cpu(p), new_mask))
5382 goto out; 5382 goto out;
5383 5383
5384 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) { 5384 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
5385 /* Need help from migration thread: drop lock and wait. */ 5385 /* Need help from migration thread: drop lock and wait. */
5386 struct task_struct *mt = rq->migration_thread; 5386 struct task_struct *mt = rq->migration_thread;
5387 5387
5388 get_task_struct(mt); 5388 get_task_struct(mt);
5389 task_rq_unlock(rq, &flags); 5389 task_rq_unlock(rq, &flags);
5390 wake_up_process(rq->migration_thread); 5390 wake_up_process(mt);
5391 put_task_struct(mt); 5391 put_task_struct(mt);
5392 wait_for_completion(&req.done); 5392 wait_for_completion(&req.done);
5393 tlb_migrate_finish(p->mm); 5393 tlb_migrate_finish(p->mm);
5394 return 0; 5394 return 0;
5395 } 5395 }
5396 out: 5396 out:
5397 task_rq_unlock(rq, &flags); 5397 task_rq_unlock(rq, &flags);
5398 5398
5399 return ret; 5399 return ret;
5400 } 5400 }
5401 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 5401 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5402 5402
5403 /* 5403 /*
5404 * Move (not current) task off this cpu, onto dest cpu. We're doing 5404 * Move (not current) task off this cpu, onto dest cpu. We're doing
5405 * this because either it can't run here any more (set_cpus_allowed() 5405 * this because either it can't run here any more (set_cpus_allowed()
5406 * away from this CPU, or CPU going down), or because we're 5406 * away from this CPU, or CPU going down), or because we're
5407 * attempting to rebalance this task on exec (sched_exec). 5407 * attempting to rebalance this task on exec (sched_exec).
5408 * 5408 *
5409 * So we race with normal scheduler movements, but that's OK, as long 5409 * So we race with normal scheduler movements, but that's OK, as long
5410 * as the task is no longer on this CPU. 5410 * as the task is no longer on this CPU.
5411 * 5411 *
5412 * Returns non-zero if task was successfully migrated. 5412 * Returns non-zero if task was successfully migrated.
5413 */ 5413 */
5414 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) 5414 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5415 { 5415 {
5416 struct rq *rq_dest, *rq_src; 5416 struct rq *rq_dest, *rq_src;
5417 int ret = 0; 5417 int ret = 0;
5418 5418
5419 if (unlikely(!cpu_active(dest_cpu))) 5419 if (unlikely(!cpu_active(dest_cpu)))
5420 return ret; 5420 return ret;
5421 5421
5422 rq_src = cpu_rq(src_cpu); 5422 rq_src = cpu_rq(src_cpu);
5423 rq_dest = cpu_rq(dest_cpu); 5423 rq_dest = cpu_rq(dest_cpu);
5424 5424
5425 double_rq_lock(rq_src, rq_dest); 5425 double_rq_lock(rq_src, rq_dest);
5426 /* Already moved. */ 5426 /* Already moved. */
5427 if (task_cpu(p) != src_cpu) 5427 if (task_cpu(p) != src_cpu)
5428 goto done; 5428 goto done;
5429 /* Affinity changed (again). */ 5429 /* Affinity changed (again). */
5430 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) 5430 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5431 goto fail; 5431 goto fail;
5432 5432
5433 /* 5433 /*
5434 * If we're not on a rq, the next wake-up will ensure we're 5434 * If we're not on a rq, the next wake-up will ensure we're
5435 * placed properly. 5435 * placed properly.
5436 */ 5436 */
5437 if (p->se.on_rq) { 5437 if (p->se.on_rq) {
5438 deactivate_task(rq_src, p, 0); 5438 deactivate_task(rq_src, p, 0);
5439 set_task_cpu(p, dest_cpu); 5439 set_task_cpu(p, dest_cpu);
5440 activate_task(rq_dest, p, 0); 5440 activate_task(rq_dest, p, 0);
5441 check_preempt_curr(rq_dest, p, 0); 5441 check_preempt_curr(rq_dest, p, 0);
5442 } 5442 }
5443 done: 5443 done:
5444 ret = 1; 5444 ret = 1;
5445 fail: 5445 fail:
5446 double_rq_unlock(rq_src, rq_dest); 5446 double_rq_unlock(rq_src, rq_dest);
5447 return ret; 5447 return ret;
5448 } 5448 }
5449 5449
5450 #define RCU_MIGRATION_IDLE 0 5450 #define RCU_MIGRATION_IDLE 0
5451 #define RCU_MIGRATION_NEED_QS 1 5451 #define RCU_MIGRATION_NEED_QS 1
5452 #define RCU_MIGRATION_GOT_QS 2 5452 #define RCU_MIGRATION_GOT_QS 2
5453 #define RCU_MIGRATION_MUST_SYNC 3 5453 #define RCU_MIGRATION_MUST_SYNC 3
5454 5454
5455 /* 5455 /*
5456 * migration_thread - this is a highprio system thread that performs 5456 * migration_thread - this is a highprio system thread that performs
5457 * thread migration by bumping thread off CPU then 'pushing' onto 5457 * thread migration by bumping thread off CPU then 'pushing' onto
5458 * another runqueue. 5458 * another runqueue.
5459 */ 5459 */
5460 static int migration_thread(void *data) 5460 static int migration_thread(void *data)
5461 { 5461 {
5462 int badcpu; 5462 int badcpu;
5463 int cpu = (long)data; 5463 int cpu = (long)data;
5464 struct rq *rq; 5464 struct rq *rq;
5465 5465
5466 rq = cpu_rq(cpu); 5466 rq = cpu_rq(cpu);
5467 BUG_ON(rq->migration_thread != current); 5467 BUG_ON(rq->migration_thread != current);
5468 5468
5469 set_current_state(TASK_INTERRUPTIBLE); 5469 set_current_state(TASK_INTERRUPTIBLE);
5470 while (!kthread_should_stop()) { 5470 while (!kthread_should_stop()) {
5471 struct migration_req *req; 5471 struct migration_req *req;
5472 struct list_head *head; 5472 struct list_head *head;
5473 5473
5474 raw_spin_lock_irq(&rq->lock); 5474 raw_spin_lock_irq(&rq->lock);
5475 5475
5476 if (cpu_is_offline(cpu)) { 5476 if (cpu_is_offline(cpu)) {
5477 raw_spin_unlock_irq(&rq->lock); 5477 raw_spin_unlock_irq(&rq->lock);
5478 break; 5478 break;
5479 } 5479 }
5480 5480
5481 if (rq->active_balance) { 5481 if (rq->active_balance) {
5482 active_load_balance(rq, cpu); 5482 active_load_balance(rq, cpu);
5483 rq->active_balance = 0; 5483 rq->active_balance = 0;
5484 } 5484 }
5485 5485
5486 head = &rq->migration_queue; 5486 head = &rq->migration_queue;
5487 5487
5488 if (list_empty(head)) { 5488 if (list_empty(head)) {
5489 raw_spin_unlock_irq(&rq->lock); 5489 raw_spin_unlock_irq(&rq->lock);
5490 schedule(); 5490 schedule();
5491 set_current_state(TASK_INTERRUPTIBLE); 5491 set_current_state(TASK_INTERRUPTIBLE);
5492 continue; 5492 continue;
5493 } 5493 }
5494 req = list_entry(head->next, struct migration_req, list); 5494 req = list_entry(head->next, struct migration_req, list);
5495 list_del_init(head->next); 5495 list_del_init(head->next);
5496 5496
5497 if (req->task != NULL) { 5497 if (req->task != NULL) {
5498 raw_spin_unlock(&rq->lock); 5498 raw_spin_unlock(&rq->lock);
5499 __migrate_task(req->task, cpu, req->dest_cpu); 5499 __migrate_task(req->task, cpu, req->dest_cpu);
5500 } else if (likely(cpu == (badcpu = smp_processor_id()))) { 5500 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
5501 req->dest_cpu = RCU_MIGRATION_GOT_QS; 5501 req->dest_cpu = RCU_MIGRATION_GOT_QS;
5502 raw_spin_unlock(&rq->lock); 5502 raw_spin_unlock(&rq->lock);
5503 } else { 5503 } else {
5504 req->dest_cpu = RCU_MIGRATION_MUST_SYNC; 5504 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
5505 raw_spin_unlock(&rq->lock); 5505 raw_spin_unlock(&rq->lock);
5506 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu); 5506 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
5507 } 5507 }
5508 local_irq_enable(); 5508 local_irq_enable();
5509 5509
5510 complete(&req->done); 5510 complete(&req->done);
5511 } 5511 }
5512 __set_current_state(TASK_RUNNING); 5512 __set_current_state(TASK_RUNNING);
5513 5513
5514 return 0; 5514 return 0;
5515 } 5515 }
5516 5516
5517 #ifdef CONFIG_HOTPLUG_CPU 5517 #ifdef CONFIG_HOTPLUG_CPU
5518 5518
5519 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu) 5519 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5520 { 5520 {
5521 int ret; 5521 int ret;
5522 5522
5523 local_irq_disable(); 5523 local_irq_disable();
5524 ret = __migrate_task(p, src_cpu, dest_cpu); 5524 ret = __migrate_task(p, src_cpu, dest_cpu);
5525 local_irq_enable(); 5525 local_irq_enable();
5526 return ret; 5526 return ret;
5527 } 5527 }
5528 5528
5529 /* 5529 /*
5530 * Figure out where task on dead CPU should go, use force if necessary. 5530 * Figure out where task on dead CPU should go, use force if necessary.
5531 */ 5531 */
5532 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p) 5532 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5533 { 5533 {
5534 int dest_cpu; 5534 int dest_cpu;
5535 5535
5536 again: 5536 again:
5537 dest_cpu = select_fallback_rq(dead_cpu, p); 5537 dest_cpu = select_fallback_rq(dead_cpu, p);
5538 5538
5539 /* It can have affinity changed while we were choosing. */ 5539 /* It can have affinity changed while we were choosing. */
5540 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu))) 5540 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
5541 goto again; 5541 goto again;
5542 } 5542 }
5543 5543
5544 /* 5544 /*
5545 * While a dead CPU has no uninterruptible tasks queued at this point, 5545 * While a dead CPU has no uninterruptible tasks queued at this point,
5546 * it might still have a nonzero ->nr_uninterruptible counter, because 5546 * it might still have a nonzero ->nr_uninterruptible counter, because
5547 * for performance reasons the counter is not stricly tracking tasks to 5547 * for performance reasons the counter is not stricly tracking tasks to
5548 * their home CPUs. So we just add the counter to another CPU's counter, 5548 * their home CPUs. So we just add the counter to another CPU's counter,
5549 * to keep the global sum constant after CPU-down: 5549 * to keep the global sum constant after CPU-down:
5550 */ 5550 */
5551 static void migrate_nr_uninterruptible(struct rq *rq_src) 5551 static void migrate_nr_uninterruptible(struct rq *rq_src)
5552 { 5552 {
5553 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask)); 5553 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5554 unsigned long flags; 5554 unsigned long flags;
5555 5555
5556 local_irq_save(flags); 5556 local_irq_save(flags);
5557 double_rq_lock(rq_src, rq_dest); 5557 double_rq_lock(rq_src, rq_dest);
5558 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible; 5558 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5559 rq_src->nr_uninterruptible = 0; 5559 rq_src->nr_uninterruptible = 0;
5560 double_rq_unlock(rq_src, rq_dest); 5560 double_rq_unlock(rq_src, rq_dest);
5561 local_irq_restore(flags); 5561 local_irq_restore(flags);
5562 } 5562 }
5563 5563
5564 /* Run through task list and migrate tasks from the dead cpu. */ 5564 /* Run through task list and migrate tasks from the dead cpu. */
5565 static void migrate_live_tasks(int src_cpu) 5565 static void migrate_live_tasks(int src_cpu)
5566 { 5566 {
5567 struct task_struct *p, *t; 5567 struct task_struct *p, *t;
5568 5568
5569 read_lock(&tasklist_lock); 5569 read_lock(&tasklist_lock);
5570 5570
5571 do_each_thread(t, p) { 5571 do_each_thread(t, p) {
5572 if (p == current) 5572 if (p == current)
5573 continue; 5573 continue;
5574 5574
5575 if (task_cpu(p) == src_cpu) 5575 if (task_cpu(p) == src_cpu)
5576 move_task_off_dead_cpu(src_cpu, p); 5576 move_task_off_dead_cpu(src_cpu, p);
5577 } while_each_thread(t, p); 5577 } while_each_thread(t, p);
5578 5578
5579 read_unlock(&tasklist_lock); 5579 read_unlock(&tasklist_lock);
5580 } 5580 }
5581 5581
5582 /* 5582 /*
5583 * Schedules idle task to be the next runnable task on current CPU. 5583 * Schedules idle task to be the next runnable task on current CPU.
5584 * It does so by boosting its priority to highest possible. 5584 * It does so by boosting its priority to highest possible.
5585 * Used by CPU offline code. 5585 * Used by CPU offline code.
5586 */ 5586 */
5587 void sched_idle_next(void) 5587 void sched_idle_next(void)
5588 { 5588 {
5589 int this_cpu = smp_processor_id(); 5589 int this_cpu = smp_processor_id();
5590 struct rq *rq = cpu_rq(this_cpu); 5590 struct rq *rq = cpu_rq(this_cpu);
5591 struct task_struct *p = rq->idle; 5591 struct task_struct *p = rq->idle;
5592 unsigned long flags; 5592 unsigned long flags;
5593 5593
5594 /* cpu has to be offline */ 5594 /* cpu has to be offline */
5595 BUG_ON(cpu_online(this_cpu)); 5595 BUG_ON(cpu_online(this_cpu));
5596 5596
5597 /* 5597 /*
5598 * Strictly not necessary since rest of the CPUs are stopped by now 5598 * Strictly not necessary since rest of the CPUs are stopped by now
5599 * and interrupts disabled on the current cpu. 5599 * and interrupts disabled on the current cpu.
5600 */ 5600 */
5601 raw_spin_lock_irqsave(&rq->lock, flags); 5601 raw_spin_lock_irqsave(&rq->lock, flags);
5602 5602
5603 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); 5603 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5604 5604
5605 update_rq_clock(rq); 5605 update_rq_clock(rq);
5606 activate_task(rq, p, 0); 5606 activate_task(rq, p, 0);
5607 5607
5608 raw_spin_unlock_irqrestore(&rq->lock, flags); 5608 raw_spin_unlock_irqrestore(&rq->lock, flags);
5609 } 5609 }
5610 5610
5611 /* 5611 /*
5612 * Ensures that the idle task is using init_mm right before its cpu goes 5612 * Ensures that the idle task is using init_mm right before its cpu goes
5613 * offline. 5613 * offline.
5614 */ 5614 */
5615 void idle_task_exit(void) 5615 void idle_task_exit(void)
5616 { 5616 {
5617 struct mm_struct *mm = current->active_mm; 5617 struct mm_struct *mm = current->active_mm;
5618 5618
5619 BUG_ON(cpu_online(smp_processor_id())); 5619 BUG_ON(cpu_online(smp_processor_id()));
5620 5620
5621 if (mm != &init_mm) 5621 if (mm != &init_mm)
5622 switch_mm(mm, &init_mm, current); 5622 switch_mm(mm, &init_mm, current);
5623 mmdrop(mm); 5623 mmdrop(mm);
5624 } 5624 }
5625 5625
5626 /* called under rq->lock with disabled interrupts */ 5626 /* called under rq->lock with disabled interrupts */
5627 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p) 5627 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5628 { 5628 {
5629 struct rq *rq = cpu_rq(dead_cpu); 5629 struct rq *rq = cpu_rq(dead_cpu);
5630 5630
5631 /* Must be exiting, otherwise would be on tasklist. */ 5631 /* Must be exiting, otherwise would be on tasklist. */
5632 BUG_ON(!p->exit_state); 5632 BUG_ON(!p->exit_state);
5633 5633
5634 /* Cannot have done final schedule yet: would have vanished. */ 5634 /* Cannot have done final schedule yet: would have vanished. */
5635 BUG_ON(p->state == TASK_DEAD); 5635 BUG_ON(p->state == TASK_DEAD);
5636 5636
5637 get_task_struct(p); 5637 get_task_struct(p);
5638 5638
5639 /* 5639 /*
5640 * Drop lock around migration; if someone else moves it, 5640 * Drop lock around migration; if someone else moves it,
5641 * that's OK. No task can be added to this CPU, so iteration is 5641 * that's OK. No task can be added to this CPU, so iteration is
5642 * fine. 5642 * fine.
5643 */ 5643 */
5644 raw_spin_unlock_irq(&rq->lock); 5644 raw_spin_unlock_irq(&rq->lock);
5645 move_task_off_dead_cpu(dead_cpu, p); 5645 move_task_off_dead_cpu(dead_cpu, p);
5646 raw_spin_lock_irq(&rq->lock); 5646 raw_spin_lock_irq(&rq->lock);
5647 5647
5648 put_task_struct(p); 5648 put_task_struct(p);
5649 } 5649 }
5650 5650
5651 /* release_task() removes task from tasklist, so we won't find dead tasks. */ 5651 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5652 static void migrate_dead_tasks(unsigned int dead_cpu) 5652 static void migrate_dead_tasks(unsigned int dead_cpu)
5653 { 5653 {
5654 struct rq *rq = cpu_rq(dead_cpu); 5654 struct rq *rq = cpu_rq(dead_cpu);
5655 struct task_struct *next; 5655 struct task_struct *next;
5656 5656
5657 for ( ; ; ) { 5657 for ( ; ; ) {
5658 if (!rq->nr_running) 5658 if (!rq->nr_running)
5659 break; 5659 break;
5660 update_rq_clock(rq); 5660 update_rq_clock(rq);
5661 next = pick_next_task(rq); 5661 next = pick_next_task(rq);
5662 if (!next) 5662 if (!next)
5663 break; 5663 break;
5664 next->sched_class->put_prev_task(rq, next); 5664 next->sched_class->put_prev_task(rq, next);
5665 migrate_dead(dead_cpu, next); 5665 migrate_dead(dead_cpu, next);
5666 5666
5667 } 5667 }
5668 } 5668 }
5669 5669
5670 /* 5670 /*
5671 * remove the tasks which were accounted by rq from calc_load_tasks. 5671 * remove the tasks which were accounted by rq from calc_load_tasks.
5672 */ 5672 */
5673 static void calc_global_load_remove(struct rq *rq) 5673 static void calc_global_load_remove(struct rq *rq)
5674 { 5674 {
5675 atomic_long_sub(rq->calc_load_active, &calc_load_tasks); 5675 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5676 rq->calc_load_active = 0; 5676 rq->calc_load_active = 0;
5677 } 5677 }
5678 #endif /* CONFIG_HOTPLUG_CPU */ 5678 #endif /* CONFIG_HOTPLUG_CPU */
5679 5679
5680 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) 5680 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5681 5681
5682 static struct ctl_table sd_ctl_dir[] = { 5682 static struct ctl_table sd_ctl_dir[] = {
5683 { 5683 {
5684 .procname = "sched_domain", 5684 .procname = "sched_domain",
5685 .mode = 0555, 5685 .mode = 0555,
5686 }, 5686 },
5687 {} 5687 {}
5688 }; 5688 };
5689 5689
5690 static struct ctl_table sd_ctl_root[] = { 5690 static struct ctl_table sd_ctl_root[] = {
5691 { 5691 {
5692 .procname = "kernel", 5692 .procname = "kernel",
5693 .mode = 0555, 5693 .mode = 0555,
5694 .child = sd_ctl_dir, 5694 .child = sd_ctl_dir,
5695 }, 5695 },
5696 {} 5696 {}
5697 }; 5697 };
5698 5698
5699 static struct ctl_table *sd_alloc_ctl_entry(int n) 5699 static struct ctl_table *sd_alloc_ctl_entry(int n)
5700 { 5700 {
5701 struct ctl_table *entry = 5701 struct ctl_table *entry =
5702 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 5702 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5703 5703
5704 return entry; 5704 return entry;
5705 } 5705 }
5706 5706
5707 static void sd_free_ctl_entry(struct ctl_table **tablep) 5707 static void sd_free_ctl_entry(struct ctl_table **tablep)
5708 { 5708 {
5709 struct ctl_table *entry; 5709 struct ctl_table *entry;
5710 5710
5711 /* 5711 /*
5712 * In the intermediate directories, both the child directory and 5712 * In the intermediate directories, both the child directory and
5713 * procname are dynamically allocated and could fail but the mode 5713 * procname are dynamically allocated and could fail but the mode
5714 * will always be set. In the lowest directory the names are 5714 * will always be set. In the lowest directory the names are
5715 * static strings and all have proc handlers. 5715 * static strings and all have proc handlers.
5716 */ 5716 */
5717 for (entry = *tablep; entry->mode; entry++) { 5717 for (entry = *tablep; entry->mode; entry++) {
5718 if (entry->child) 5718 if (entry->child)
5719 sd_free_ctl_entry(&entry->child); 5719 sd_free_ctl_entry(&entry->child);
5720 if (entry->proc_handler == NULL) 5720 if (entry->proc_handler == NULL)
5721 kfree(entry->procname); 5721 kfree(entry->procname);
5722 } 5722 }
5723 5723
5724 kfree(*tablep); 5724 kfree(*tablep);
5725 *tablep = NULL; 5725 *tablep = NULL;
5726 } 5726 }
5727 5727
5728 static void 5728 static void
5729 set_table_entry(struct ctl_table *entry, 5729 set_table_entry(struct ctl_table *entry,
5730 const char *procname, void *data, int maxlen, 5730 const char *procname, void *data, int maxlen,
5731 mode_t mode, proc_handler *proc_handler) 5731 mode_t mode, proc_handler *proc_handler)
5732 { 5732 {
5733 entry->procname = procname; 5733 entry->procname = procname;
5734 entry->data = data; 5734 entry->data = data;
5735 entry->maxlen = maxlen; 5735 entry->maxlen = maxlen;
5736 entry->mode = mode; 5736 entry->mode = mode;
5737 entry->proc_handler = proc_handler; 5737 entry->proc_handler = proc_handler;
5738 } 5738 }
5739 5739
5740 static struct ctl_table * 5740 static struct ctl_table *
5741 sd_alloc_ctl_domain_table(struct sched_domain *sd) 5741 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5742 { 5742 {
5743 struct ctl_table *table = sd_alloc_ctl_entry(13); 5743 struct ctl_table *table = sd_alloc_ctl_entry(13);
5744 5744
5745 if (table == NULL) 5745 if (table == NULL)
5746 return NULL; 5746 return NULL;
5747 5747
5748 set_table_entry(&table[0], "min_interval", &sd->min_interval, 5748 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5749 sizeof(long), 0644, proc_doulongvec_minmax); 5749 sizeof(long), 0644, proc_doulongvec_minmax);
5750 set_table_entry(&table[1], "max_interval", &sd->max_interval, 5750 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5751 sizeof(long), 0644, proc_doulongvec_minmax); 5751 sizeof(long), 0644, proc_doulongvec_minmax);
5752 set_table_entry(&table[2], "busy_idx", &sd->busy_idx, 5752 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5753 sizeof(int), 0644, proc_dointvec_minmax); 5753 sizeof(int), 0644, proc_dointvec_minmax);
5754 set_table_entry(&table[3], "idle_idx", &sd->idle_idx, 5754 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5755 sizeof(int), 0644, proc_dointvec_minmax); 5755 sizeof(int), 0644, proc_dointvec_minmax);
5756 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, 5756 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5757 sizeof(int), 0644, proc_dointvec_minmax); 5757 sizeof(int), 0644, proc_dointvec_minmax);
5758 set_table_entry(&table[5], "wake_idx", &sd->wake_idx, 5758 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5759 sizeof(int), 0644, proc_dointvec_minmax); 5759 sizeof(int), 0644, proc_dointvec_minmax);
5760 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, 5760 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5761 sizeof(int), 0644, proc_dointvec_minmax); 5761 sizeof(int), 0644, proc_dointvec_minmax);
5762 set_table_entry(&table[7], "busy_factor", &sd->busy_factor, 5762 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5763 sizeof(int), 0644, proc_dointvec_minmax); 5763 sizeof(int), 0644, proc_dointvec_minmax);
5764 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, 5764 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5765 sizeof(int), 0644, proc_dointvec_minmax); 5765 sizeof(int), 0644, proc_dointvec_minmax);
5766 set_table_entry(&table[9], "cache_nice_tries", 5766 set_table_entry(&table[9], "cache_nice_tries",
5767 &sd->cache_nice_tries, 5767 &sd->cache_nice_tries,
5768 sizeof(int), 0644, proc_dointvec_minmax); 5768 sizeof(int), 0644, proc_dointvec_minmax);
5769 set_table_entry(&table[10], "flags", &sd->flags, 5769 set_table_entry(&table[10], "flags", &sd->flags,
5770 sizeof(int), 0644, proc_dointvec_minmax); 5770 sizeof(int), 0644, proc_dointvec_minmax);
5771 set_table_entry(&table[11], "name", sd->name, 5771 set_table_entry(&table[11], "name", sd->name,
5772 CORENAME_MAX_SIZE, 0444, proc_dostring); 5772 CORENAME_MAX_SIZE, 0444, proc_dostring);
5773 /* &table[12] is terminator */ 5773 /* &table[12] is terminator */
5774 5774
5775 return table; 5775 return table;
5776 } 5776 }
5777 5777
5778 static ctl_table *sd_alloc_ctl_cpu_table(int cpu) 5778 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5779 { 5779 {
5780 struct ctl_table *entry, *table; 5780 struct ctl_table *entry, *table;
5781 struct sched_domain *sd; 5781 struct sched_domain *sd;
5782 int domain_num = 0, i; 5782 int domain_num = 0, i;
5783 char buf[32]; 5783 char buf[32];
5784 5784
5785 for_each_domain(cpu, sd) 5785 for_each_domain(cpu, sd)
5786 domain_num++; 5786 domain_num++;
5787 entry = table = sd_alloc_ctl_entry(domain_num + 1); 5787 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5788 if (table == NULL) 5788 if (table == NULL)
5789 return NULL; 5789 return NULL;
5790 5790
5791 i = 0; 5791 i = 0;
5792 for_each_domain(cpu, sd) { 5792 for_each_domain(cpu, sd) {
5793 snprintf(buf, 32, "domain%d", i); 5793 snprintf(buf, 32, "domain%d", i);
5794 entry->procname = kstrdup(buf, GFP_KERNEL); 5794 entry->procname = kstrdup(buf, GFP_KERNEL);
5795 entry->mode = 0555; 5795 entry->mode = 0555;
5796 entry->child = sd_alloc_ctl_domain_table(sd); 5796 entry->child = sd_alloc_ctl_domain_table(sd);
5797 entry++; 5797 entry++;
5798 i++; 5798 i++;
5799 } 5799 }
5800 return table; 5800 return table;
5801 } 5801 }
5802 5802
5803 static struct ctl_table_header *sd_sysctl_header; 5803 static struct ctl_table_header *sd_sysctl_header;
5804 static void register_sched_domain_sysctl(void) 5804 static void register_sched_domain_sysctl(void)
5805 { 5805 {
5806 int i, cpu_num = num_possible_cpus(); 5806 int i, cpu_num = num_possible_cpus();
5807 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); 5807 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5808 char buf[32]; 5808 char buf[32];
5809 5809
5810 WARN_ON(sd_ctl_dir[0].child); 5810 WARN_ON(sd_ctl_dir[0].child);
5811 sd_ctl_dir[0].child = entry; 5811 sd_ctl_dir[0].child = entry;
5812 5812
5813 if (entry == NULL) 5813 if (entry == NULL)
5814 return; 5814 return;
5815 5815
5816 for_each_possible_cpu(i) { 5816 for_each_possible_cpu(i) {
5817 snprintf(buf, 32, "cpu%d", i); 5817 snprintf(buf, 32, "cpu%d", i);
5818 entry->procname = kstrdup(buf, GFP_KERNEL); 5818 entry->procname = kstrdup(buf, GFP_KERNEL);
5819 entry->mode = 0555; 5819 entry->mode = 0555;
5820 entry->child = sd_alloc_ctl_cpu_table(i); 5820 entry->child = sd_alloc_ctl_cpu_table(i);
5821 entry++; 5821 entry++;
5822 } 5822 }
5823 5823
5824 WARN_ON(sd_sysctl_header); 5824 WARN_ON(sd_sysctl_header);
5825 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 5825 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5826 } 5826 }
5827 5827
5828 /* may be called multiple times per register */ 5828 /* may be called multiple times per register */
5829 static void unregister_sched_domain_sysctl(void) 5829 static void unregister_sched_domain_sysctl(void)
5830 { 5830 {
5831 if (sd_sysctl_header) 5831 if (sd_sysctl_header)
5832 unregister_sysctl_table(sd_sysctl_header); 5832 unregister_sysctl_table(sd_sysctl_header);
5833 sd_sysctl_header = NULL; 5833 sd_sysctl_header = NULL;
5834 if (sd_ctl_dir[0].child) 5834 if (sd_ctl_dir[0].child)
5835 sd_free_ctl_entry(&sd_ctl_dir[0].child); 5835 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5836 } 5836 }
5837 #else 5837 #else
5838 static void register_sched_domain_sysctl(void) 5838 static void register_sched_domain_sysctl(void)
5839 { 5839 {
5840 } 5840 }
5841 static void unregister_sched_domain_sysctl(void) 5841 static void unregister_sched_domain_sysctl(void)
5842 { 5842 {
5843 } 5843 }
5844 #endif 5844 #endif
5845 5845
5846 static void set_rq_online(struct rq *rq) 5846 static void set_rq_online(struct rq *rq)
5847 { 5847 {
5848 if (!rq->online) { 5848 if (!rq->online) {
5849 const struct sched_class *class; 5849 const struct sched_class *class;
5850 5850
5851 cpumask_set_cpu(rq->cpu, rq->rd->online); 5851 cpumask_set_cpu(rq->cpu, rq->rd->online);
5852 rq->online = 1; 5852 rq->online = 1;
5853 5853
5854 for_each_class(class) { 5854 for_each_class(class) {
5855 if (class->rq_online) 5855 if (class->rq_online)
5856 class->rq_online(rq); 5856 class->rq_online(rq);
5857 } 5857 }
5858 } 5858 }
5859 } 5859 }
5860 5860
5861 static void set_rq_offline(struct rq *rq) 5861 static void set_rq_offline(struct rq *rq)
5862 { 5862 {
5863 if (rq->online) { 5863 if (rq->online) {
5864 const struct sched_class *class; 5864 const struct sched_class *class;
5865 5865
5866 for_each_class(class) { 5866 for_each_class(class) {
5867 if (class->rq_offline) 5867 if (class->rq_offline)
5868 class->rq_offline(rq); 5868 class->rq_offline(rq);
5869 } 5869 }
5870 5870
5871 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5871 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5872 rq->online = 0; 5872 rq->online = 0;
5873 } 5873 }
5874 } 5874 }
5875 5875
5876 /* 5876 /*
5877 * migration_call - callback that gets triggered when a CPU is added. 5877 * migration_call - callback that gets triggered when a CPU is added.
5878 * Here we can start up the necessary migration thread for the new CPU. 5878 * Here we can start up the necessary migration thread for the new CPU.
5879 */ 5879 */
5880 static int __cpuinit 5880 static int __cpuinit
5881 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) 5881 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5882 { 5882 {
5883 struct task_struct *p; 5883 struct task_struct *p;
5884 int cpu = (long)hcpu; 5884 int cpu = (long)hcpu;
5885 unsigned long flags; 5885 unsigned long flags;
5886 struct rq *rq; 5886 struct rq *rq;
5887 5887
5888 switch (action) { 5888 switch (action) {
5889 5889
5890 case CPU_UP_PREPARE: 5890 case CPU_UP_PREPARE:
5891 case CPU_UP_PREPARE_FROZEN: 5891 case CPU_UP_PREPARE_FROZEN:
5892 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu); 5892 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5893 if (IS_ERR(p)) 5893 if (IS_ERR(p))
5894 return NOTIFY_BAD; 5894 return NOTIFY_BAD;
5895 kthread_bind(p, cpu); 5895 kthread_bind(p, cpu);
5896 /* Must be high prio: stop_machine expects to yield to it. */ 5896 /* Must be high prio: stop_machine expects to yield to it. */
5897 rq = task_rq_lock(p, &flags); 5897 rq = task_rq_lock(p, &flags);
5898 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); 5898 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5899 task_rq_unlock(rq, &flags); 5899 task_rq_unlock(rq, &flags);
5900 get_task_struct(p); 5900 get_task_struct(p);
5901 cpu_rq(cpu)->migration_thread = p; 5901 cpu_rq(cpu)->migration_thread = p;
5902 rq->calc_load_update = calc_load_update; 5902 rq->calc_load_update = calc_load_update;
5903 break; 5903 break;
5904 5904
5905 case CPU_ONLINE: 5905 case CPU_ONLINE:
5906 case CPU_ONLINE_FROZEN: 5906 case CPU_ONLINE_FROZEN:
5907 /* Strictly unnecessary, as first user will wake it. */ 5907 /* Strictly unnecessary, as first user will wake it. */
5908 wake_up_process(cpu_rq(cpu)->migration_thread); 5908 wake_up_process(cpu_rq(cpu)->migration_thread);
5909 5909
5910 /* Update our root-domain */ 5910 /* Update our root-domain */
5911 rq = cpu_rq(cpu); 5911 rq = cpu_rq(cpu);
5912 raw_spin_lock_irqsave(&rq->lock, flags); 5912 raw_spin_lock_irqsave(&rq->lock, flags);
5913 if (rq->rd) { 5913 if (rq->rd) {
5914 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5914 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5915 5915
5916 set_rq_online(rq); 5916 set_rq_online(rq);
5917 } 5917 }
5918 raw_spin_unlock_irqrestore(&rq->lock, flags); 5918 raw_spin_unlock_irqrestore(&rq->lock, flags);
5919 break; 5919 break;
5920 5920
5921 #ifdef CONFIG_HOTPLUG_CPU 5921 #ifdef CONFIG_HOTPLUG_CPU
5922 case CPU_UP_CANCELED: 5922 case CPU_UP_CANCELED:
5923 case CPU_UP_CANCELED_FROZEN: 5923 case CPU_UP_CANCELED_FROZEN:
5924 if (!cpu_rq(cpu)->migration_thread) 5924 if (!cpu_rq(cpu)->migration_thread)
5925 break; 5925 break;
5926 /* Unbind it from offline cpu so it can run. Fall thru. */ 5926 /* Unbind it from offline cpu so it can run. Fall thru. */
5927 kthread_bind(cpu_rq(cpu)->migration_thread, 5927 kthread_bind(cpu_rq(cpu)->migration_thread,
5928 cpumask_any(cpu_online_mask)); 5928 cpumask_any(cpu_online_mask));
5929 kthread_stop(cpu_rq(cpu)->migration_thread); 5929 kthread_stop(cpu_rq(cpu)->migration_thread);
5930 put_task_struct(cpu_rq(cpu)->migration_thread); 5930 put_task_struct(cpu_rq(cpu)->migration_thread);
5931 cpu_rq(cpu)->migration_thread = NULL; 5931 cpu_rq(cpu)->migration_thread = NULL;
5932 break; 5932 break;
5933 5933
5934 case CPU_DEAD: 5934 case CPU_DEAD:
5935 case CPU_DEAD_FROZEN: 5935 case CPU_DEAD_FROZEN:
5936 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */ 5936 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5937 migrate_live_tasks(cpu); 5937 migrate_live_tasks(cpu);
5938 rq = cpu_rq(cpu); 5938 rq = cpu_rq(cpu);
5939 kthread_stop(rq->migration_thread); 5939 kthread_stop(rq->migration_thread);
5940 put_task_struct(rq->migration_thread); 5940 put_task_struct(rq->migration_thread);
5941 rq->migration_thread = NULL; 5941 rq->migration_thread = NULL;
5942 /* Idle task back to normal (off runqueue, low prio) */ 5942 /* Idle task back to normal (off runqueue, low prio) */
5943 raw_spin_lock_irq(&rq->lock); 5943 raw_spin_lock_irq(&rq->lock);
5944 update_rq_clock(rq); 5944 update_rq_clock(rq);
5945 deactivate_task(rq, rq->idle, 0); 5945 deactivate_task(rq, rq->idle, 0);
5946 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0); 5946 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5947 rq->idle->sched_class = &idle_sched_class; 5947 rq->idle->sched_class = &idle_sched_class;
5948 migrate_dead_tasks(cpu); 5948 migrate_dead_tasks(cpu);
5949 raw_spin_unlock_irq(&rq->lock); 5949 raw_spin_unlock_irq(&rq->lock);
5950 cpuset_unlock(); 5950 cpuset_unlock();
5951 migrate_nr_uninterruptible(rq); 5951 migrate_nr_uninterruptible(rq);
5952 BUG_ON(rq->nr_running != 0); 5952 BUG_ON(rq->nr_running != 0);
5953 calc_global_load_remove(rq); 5953 calc_global_load_remove(rq);
5954 /* 5954 /*
5955 * No need to migrate the tasks: it was best-effort if 5955 * No need to migrate the tasks: it was best-effort if
5956 * they didn't take sched_hotcpu_mutex. Just wake up 5956 * they didn't take sched_hotcpu_mutex. Just wake up
5957 * the requestors. 5957 * the requestors.
5958 */ 5958 */
5959 raw_spin_lock_irq(&rq->lock); 5959 raw_spin_lock_irq(&rq->lock);
5960 while (!list_empty(&rq->migration_queue)) { 5960 while (!list_empty(&rq->migration_queue)) {
5961 struct migration_req *req; 5961 struct migration_req *req;
5962 5962
5963 req = list_entry(rq->migration_queue.next, 5963 req = list_entry(rq->migration_queue.next,
5964 struct migration_req, list); 5964 struct migration_req, list);
5965 list_del_init(&req->list); 5965 list_del_init(&req->list);
5966 raw_spin_unlock_irq(&rq->lock); 5966 raw_spin_unlock_irq(&rq->lock);
5967 complete(&req->done); 5967 complete(&req->done);
5968 raw_spin_lock_irq(&rq->lock); 5968 raw_spin_lock_irq(&rq->lock);
5969 } 5969 }
5970 raw_spin_unlock_irq(&rq->lock); 5970 raw_spin_unlock_irq(&rq->lock);
5971 break; 5971 break;
5972 5972
5973 case CPU_DYING: 5973 case CPU_DYING:
5974 case CPU_DYING_FROZEN: 5974 case CPU_DYING_FROZEN:
5975 /* Update our root-domain */ 5975 /* Update our root-domain */
5976 rq = cpu_rq(cpu); 5976 rq = cpu_rq(cpu);
5977 raw_spin_lock_irqsave(&rq->lock, flags); 5977 raw_spin_lock_irqsave(&rq->lock, flags);
5978 if (rq->rd) { 5978 if (rq->rd) {
5979 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5979 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5980 set_rq_offline(rq); 5980 set_rq_offline(rq);
5981 } 5981 }
5982 raw_spin_unlock_irqrestore(&rq->lock, flags); 5982 raw_spin_unlock_irqrestore(&rq->lock, flags);
5983 break; 5983 break;
5984 #endif 5984 #endif
5985 } 5985 }
5986 return NOTIFY_OK; 5986 return NOTIFY_OK;
5987 } 5987 }
5988 5988
5989 /* 5989 /*
5990 * Register at high priority so that task migration (migrate_all_tasks) 5990 * Register at high priority so that task migration (migrate_all_tasks)
5991 * happens before everything else. This has to be lower priority than 5991 * happens before everything else. This has to be lower priority than
5992 * the notifier in the perf_event subsystem, though. 5992 * the notifier in the perf_event subsystem, though.
5993 */ 5993 */
5994 static struct notifier_block __cpuinitdata migration_notifier = { 5994 static struct notifier_block __cpuinitdata migration_notifier = {
5995 .notifier_call = migration_call, 5995 .notifier_call = migration_call,
5996 .priority = 10 5996 .priority = 10
5997 }; 5997 };
5998 5998
5999 static int __init migration_init(void) 5999 static int __init migration_init(void)
6000 { 6000 {
6001 void *cpu = (void *)(long)smp_processor_id(); 6001 void *cpu = (void *)(long)smp_processor_id();
6002 int err; 6002 int err;
6003 6003
6004 /* Start one for the boot CPU: */ 6004 /* Start one for the boot CPU: */
6005 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); 6005 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6006 BUG_ON(err == NOTIFY_BAD); 6006 BUG_ON(err == NOTIFY_BAD);
6007 migration_call(&migration_notifier, CPU_ONLINE, cpu); 6007 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6008 register_cpu_notifier(&migration_notifier); 6008 register_cpu_notifier(&migration_notifier);
6009 6009
6010 return 0; 6010 return 0;
6011 } 6011 }
6012 early_initcall(migration_init); 6012 early_initcall(migration_init);
6013 #endif 6013 #endif
6014 6014
6015 #ifdef CONFIG_SMP 6015 #ifdef CONFIG_SMP
6016 6016
6017 #ifdef CONFIG_SCHED_DEBUG 6017 #ifdef CONFIG_SCHED_DEBUG
6018 6018
6019 static __read_mostly int sched_domain_debug_enabled; 6019 static __read_mostly int sched_domain_debug_enabled;
6020 6020
6021 static int __init sched_domain_debug_setup(char *str) 6021 static int __init sched_domain_debug_setup(char *str)
6022 { 6022 {
6023 sched_domain_debug_enabled = 1; 6023 sched_domain_debug_enabled = 1;
6024 6024
6025 return 0; 6025 return 0;
6026 } 6026 }
6027 early_param("sched_debug", sched_domain_debug_setup); 6027 early_param("sched_debug", sched_domain_debug_setup);
6028 6028
6029 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 6029 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6030 struct cpumask *groupmask) 6030 struct cpumask *groupmask)
6031 { 6031 {
6032 struct sched_group *group = sd->groups; 6032 struct sched_group *group = sd->groups;
6033 char str[256]; 6033 char str[256];
6034 6034
6035 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); 6035 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6036 cpumask_clear(groupmask); 6036 cpumask_clear(groupmask);
6037 6037
6038 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 6038 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6039 6039
6040 if (!(sd->flags & SD_LOAD_BALANCE)) { 6040 if (!(sd->flags & SD_LOAD_BALANCE)) {
6041 printk("does not load-balance\n"); 6041 printk("does not load-balance\n");
6042 if (sd->parent) 6042 if (sd->parent)
6043 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 6043 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6044 " has parent"); 6044 " has parent");
6045 return -1; 6045 return -1;
6046 } 6046 }
6047 6047
6048 printk(KERN_CONT "span %s level %s\n", str, sd->name); 6048 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6049 6049
6050 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 6050 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6051 printk(KERN_ERR "ERROR: domain->span does not contain " 6051 printk(KERN_ERR "ERROR: domain->span does not contain "
6052 "CPU%d\n", cpu); 6052 "CPU%d\n", cpu);
6053 } 6053 }
6054 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 6054 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6055 printk(KERN_ERR "ERROR: domain->groups does not contain" 6055 printk(KERN_ERR "ERROR: domain->groups does not contain"
6056 " CPU%d\n", cpu); 6056 " CPU%d\n", cpu);
6057 } 6057 }
6058 6058
6059 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 6059 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6060 do { 6060 do {
6061 if (!group) { 6061 if (!group) {
6062 printk("\n"); 6062 printk("\n");
6063 printk(KERN_ERR "ERROR: group is NULL\n"); 6063 printk(KERN_ERR "ERROR: group is NULL\n");
6064 break; 6064 break;
6065 } 6065 }
6066 6066
6067 if (!group->cpu_power) { 6067 if (!group->cpu_power) {
6068 printk(KERN_CONT "\n"); 6068 printk(KERN_CONT "\n");
6069 printk(KERN_ERR "ERROR: domain->cpu_power not " 6069 printk(KERN_ERR "ERROR: domain->cpu_power not "
6070 "set\n"); 6070 "set\n");
6071 break; 6071 break;
6072 } 6072 }
6073 6073
6074 if (!cpumask_weight(sched_group_cpus(group))) { 6074 if (!cpumask_weight(sched_group_cpus(group))) {
6075 printk(KERN_CONT "\n"); 6075 printk(KERN_CONT "\n");
6076 printk(KERN_ERR "ERROR: empty group\n"); 6076 printk(KERN_ERR "ERROR: empty group\n");
6077 break; 6077 break;
6078 } 6078 }
6079 6079
6080 if (cpumask_intersects(groupmask, sched_group_cpus(group))) { 6080 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6081 printk(KERN_CONT "\n"); 6081 printk(KERN_CONT "\n");
6082 printk(KERN_ERR "ERROR: repeated CPUs\n"); 6082 printk(KERN_ERR "ERROR: repeated CPUs\n");
6083 break; 6083 break;
6084 } 6084 }
6085 6085
6086 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 6086 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6087 6087
6088 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); 6088 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6089 6089
6090 printk(KERN_CONT " %s", str); 6090 printk(KERN_CONT " %s", str);
6091 if (group->cpu_power != SCHED_LOAD_SCALE) { 6091 if (group->cpu_power != SCHED_LOAD_SCALE) {
6092 printk(KERN_CONT " (cpu_power = %d)", 6092 printk(KERN_CONT " (cpu_power = %d)",
6093 group->cpu_power); 6093 group->cpu_power);
6094 } 6094 }
6095 6095
6096 group = group->next; 6096 group = group->next;
6097 } while (group != sd->groups); 6097 } while (group != sd->groups);
6098 printk(KERN_CONT "\n"); 6098 printk(KERN_CONT "\n");
6099 6099
6100 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 6100 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6101 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 6101 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6102 6102
6103 if (sd->parent && 6103 if (sd->parent &&
6104 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 6104 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6105 printk(KERN_ERR "ERROR: parent span is not a superset " 6105 printk(KERN_ERR "ERROR: parent span is not a superset "
6106 "of domain->span\n"); 6106 "of domain->span\n");
6107 return 0; 6107 return 0;
6108 } 6108 }
6109 6109
6110 static void sched_domain_debug(struct sched_domain *sd, int cpu) 6110 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6111 { 6111 {
6112 cpumask_var_t groupmask; 6112 cpumask_var_t groupmask;
6113 int level = 0; 6113 int level = 0;
6114 6114
6115 if (!sched_domain_debug_enabled) 6115 if (!sched_domain_debug_enabled)
6116 return; 6116 return;
6117 6117
6118 if (!sd) { 6118 if (!sd) {
6119 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 6119 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6120 return; 6120 return;
6121 } 6121 }
6122 6122
6123 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 6123 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6124 6124
6125 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) { 6125 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6126 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n"); 6126 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6127 return; 6127 return;
6128 } 6128 }
6129 6129
6130 for (;;) { 6130 for (;;) {
6131 if (sched_domain_debug_one(sd, cpu, level, groupmask)) 6131 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6132 break; 6132 break;
6133 level++; 6133 level++;
6134 sd = sd->parent; 6134 sd = sd->parent;
6135 if (!sd) 6135 if (!sd)
6136 break; 6136 break;
6137 } 6137 }
6138 free_cpumask_var(groupmask); 6138 free_cpumask_var(groupmask);
6139 } 6139 }
6140 #else /* !CONFIG_SCHED_DEBUG */ 6140 #else /* !CONFIG_SCHED_DEBUG */
6141 # define sched_domain_debug(sd, cpu) do { } while (0) 6141 # define sched_domain_debug(sd, cpu) do { } while (0)
6142 #endif /* CONFIG_SCHED_DEBUG */ 6142 #endif /* CONFIG_SCHED_DEBUG */
6143 6143
6144 static int sd_degenerate(struct sched_domain *sd) 6144 static int sd_degenerate(struct sched_domain *sd)
6145 { 6145 {
6146 if (cpumask_weight(sched_domain_span(sd)) == 1) 6146 if (cpumask_weight(sched_domain_span(sd)) == 1)
6147 return 1; 6147 return 1;
6148 6148
6149 /* Following flags need at least 2 groups */ 6149 /* Following flags need at least 2 groups */
6150 if (sd->flags & (SD_LOAD_BALANCE | 6150 if (sd->flags & (SD_LOAD_BALANCE |
6151 SD_BALANCE_NEWIDLE | 6151 SD_BALANCE_NEWIDLE |
6152 SD_BALANCE_FORK | 6152 SD_BALANCE_FORK |
6153 SD_BALANCE_EXEC | 6153 SD_BALANCE_EXEC |
6154 SD_SHARE_CPUPOWER | 6154 SD_SHARE_CPUPOWER |
6155 SD_SHARE_PKG_RESOURCES)) { 6155 SD_SHARE_PKG_RESOURCES)) {
6156 if (sd->groups != sd->groups->next) 6156 if (sd->groups != sd->groups->next)
6157 return 0; 6157 return 0;
6158 } 6158 }
6159 6159
6160 /* Following flags don't use groups */ 6160 /* Following flags don't use groups */
6161 if (sd->flags & (SD_WAKE_AFFINE)) 6161 if (sd->flags & (SD_WAKE_AFFINE))
6162 return 0; 6162 return 0;
6163 6163
6164 return 1; 6164 return 1;
6165 } 6165 }
6166 6166
6167 static int 6167 static int
6168 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 6168 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6169 { 6169 {
6170 unsigned long cflags = sd->flags, pflags = parent->flags; 6170 unsigned long cflags = sd->flags, pflags = parent->flags;
6171 6171
6172 if (sd_degenerate(parent)) 6172 if (sd_degenerate(parent))
6173 return 1; 6173 return 1;
6174 6174
6175 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 6175 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6176 return 0; 6176 return 0;
6177 6177
6178 /* Flags needing groups don't count if only 1 group in parent */ 6178 /* Flags needing groups don't count if only 1 group in parent */
6179 if (parent->groups == parent->groups->next) { 6179 if (parent->groups == parent->groups->next) {
6180 pflags &= ~(SD_LOAD_BALANCE | 6180 pflags &= ~(SD_LOAD_BALANCE |
6181 SD_BALANCE_NEWIDLE | 6181 SD_BALANCE_NEWIDLE |
6182 SD_BALANCE_FORK | 6182 SD_BALANCE_FORK |
6183 SD_BALANCE_EXEC | 6183 SD_BALANCE_EXEC |
6184 SD_SHARE_CPUPOWER | 6184 SD_SHARE_CPUPOWER |
6185 SD_SHARE_PKG_RESOURCES); 6185 SD_SHARE_PKG_RESOURCES);
6186 if (nr_node_ids == 1) 6186 if (nr_node_ids == 1)
6187 pflags &= ~SD_SERIALIZE; 6187 pflags &= ~SD_SERIALIZE;
6188 } 6188 }
6189 if (~cflags & pflags) 6189 if (~cflags & pflags)
6190 return 0; 6190 return 0;
6191 6191
6192 return 1; 6192 return 1;
6193 } 6193 }
6194 6194
6195 static void free_rootdomain(struct root_domain *rd) 6195 static void free_rootdomain(struct root_domain *rd)
6196 { 6196 {
6197 synchronize_sched(); 6197 synchronize_sched();
6198 6198
6199 cpupri_cleanup(&rd->cpupri); 6199 cpupri_cleanup(&rd->cpupri);
6200 6200
6201 free_cpumask_var(rd->rto_mask); 6201 free_cpumask_var(rd->rto_mask);
6202 free_cpumask_var(rd->online); 6202 free_cpumask_var(rd->online);
6203 free_cpumask_var(rd->span); 6203 free_cpumask_var(rd->span);
6204 kfree(rd); 6204 kfree(rd);
6205 } 6205 }
6206 6206
6207 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 6207 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6208 { 6208 {
6209 struct root_domain *old_rd = NULL; 6209 struct root_domain *old_rd = NULL;
6210 unsigned long flags; 6210 unsigned long flags;
6211 6211
6212 raw_spin_lock_irqsave(&rq->lock, flags); 6212 raw_spin_lock_irqsave(&rq->lock, flags);
6213 6213
6214 if (rq->rd) { 6214 if (rq->rd) {
6215 old_rd = rq->rd; 6215 old_rd = rq->rd;
6216 6216
6217 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 6217 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6218 set_rq_offline(rq); 6218 set_rq_offline(rq);
6219 6219
6220 cpumask_clear_cpu(rq->cpu, old_rd->span); 6220 cpumask_clear_cpu(rq->cpu, old_rd->span);
6221 6221
6222 /* 6222 /*
6223 * If we dont want to free the old_rt yet then 6223 * If we dont want to free the old_rt yet then
6224 * set old_rd to NULL to skip the freeing later 6224 * set old_rd to NULL to skip the freeing later
6225 * in this function: 6225 * in this function:
6226 */ 6226 */
6227 if (!atomic_dec_and_test(&old_rd->refcount)) 6227 if (!atomic_dec_and_test(&old_rd->refcount))
6228 old_rd = NULL; 6228 old_rd = NULL;
6229 } 6229 }
6230 6230
6231 atomic_inc(&rd->refcount); 6231 atomic_inc(&rd->refcount);
6232 rq->rd = rd; 6232 rq->rd = rd;
6233 6233
6234 cpumask_set_cpu(rq->cpu, rd->span); 6234 cpumask_set_cpu(rq->cpu, rd->span);
6235 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 6235 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6236 set_rq_online(rq); 6236 set_rq_online(rq);
6237 6237
6238 raw_spin_unlock_irqrestore(&rq->lock, flags); 6238 raw_spin_unlock_irqrestore(&rq->lock, flags);
6239 6239
6240 if (old_rd) 6240 if (old_rd)
6241 free_rootdomain(old_rd); 6241 free_rootdomain(old_rd);
6242 } 6242 }
6243 6243
6244 static int init_rootdomain(struct root_domain *rd, bool bootmem) 6244 static int init_rootdomain(struct root_domain *rd, bool bootmem)
6245 { 6245 {
6246 gfp_t gfp = GFP_KERNEL; 6246 gfp_t gfp = GFP_KERNEL;
6247 6247
6248 memset(rd, 0, sizeof(*rd)); 6248 memset(rd, 0, sizeof(*rd));
6249 6249
6250 if (bootmem) 6250 if (bootmem)
6251 gfp = GFP_NOWAIT; 6251 gfp = GFP_NOWAIT;
6252 6252
6253 if (!alloc_cpumask_var(&rd->span, gfp)) 6253 if (!alloc_cpumask_var(&rd->span, gfp))
6254 goto out; 6254 goto out;
6255 if (!alloc_cpumask_var(&rd->online, gfp)) 6255 if (!alloc_cpumask_var(&rd->online, gfp))
6256 goto free_span; 6256 goto free_span;
6257 if (!alloc_cpumask_var(&rd->rto_mask, gfp)) 6257 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
6258 goto free_online; 6258 goto free_online;
6259 6259
6260 if (cpupri_init(&rd->cpupri, bootmem) != 0) 6260 if (cpupri_init(&rd->cpupri, bootmem) != 0)
6261 goto free_rto_mask; 6261 goto free_rto_mask;
6262 return 0; 6262 return 0;
6263 6263
6264 free_rto_mask: 6264 free_rto_mask:
6265 free_cpumask_var(rd->rto_mask); 6265 free_cpumask_var(rd->rto_mask);
6266 free_online: 6266 free_online:
6267 free_cpumask_var(rd->online); 6267 free_cpumask_var(rd->online);
6268 free_span: 6268 free_span:
6269 free_cpumask_var(rd->span); 6269 free_cpumask_var(rd->span);
6270 out: 6270 out:
6271 return -ENOMEM; 6271 return -ENOMEM;
6272 } 6272 }
6273 6273
6274 static void init_defrootdomain(void) 6274 static void init_defrootdomain(void)
6275 { 6275 {
6276 init_rootdomain(&def_root_domain, true); 6276 init_rootdomain(&def_root_domain, true);
6277 6277
6278 atomic_set(&def_root_domain.refcount, 1); 6278 atomic_set(&def_root_domain.refcount, 1);
6279 } 6279 }
6280 6280
6281 static struct root_domain *alloc_rootdomain(void) 6281 static struct root_domain *alloc_rootdomain(void)
6282 { 6282 {
6283 struct root_domain *rd; 6283 struct root_domain *rd;
6284 6284
6285 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 6285 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6286 if (!rd) 6286 if (!rd)
6287 return NULL; 6287 return NULL;
6288 6288
6289 if (init_rootdomain(rd, false) != 0) { 6289 if (init_rootdomain(rd, false) != 0) {
6290 kfree(rd); 6290 kfree(rd);
6291 return NULL; 6291 return NULL;
6292 } 6292 }
6293 6293
6294 return rd; 6294 return rd;
6295 } 6295 }
6296 6296
6297 /* 6297 /*
6298 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 6298 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6299 * hold the hotplug lock. 6299 * hold the hotplug lock.
6300 */ 6300 */
6301 static void 6301 static void
6302 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 6302 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6303 { 6303 {
6304 struct rq *rq = cpu_rq(cpu); 6304 struct rq *rq = cpu_rq(cpu);
6305 struct sched_domain *tmp; 6305 struct sched_domain *tmp;
6306 6306
6307 /* Remove the sched domains which do not contribute to scheduling. */ 6307 /* Remove the sched domains which do not contribute to scheduling. */
6308 for (tmp = sd; tmp; ) { 6308 for (tmp = sd; tmp; ) {
6309 struct sched_domain *parent = tmp->parent; 6309 struct sched_domain *parent = tmp->parent;
6310 if (!parent) 6310 if (!parent)
6311 break; 6311 break;
6312 6312
6313 if (sd_parent_degenerate(tmp, parent)) { 6313 if (sd_parent_degenerate(tmp, parent)) {
6314 tmp->parent = parent->parent; 6314 tmp->parent = parent->parent;
6315 if (parent->parent) 6315 if (parent->parent)
6316 parent->parent->child = tmp; 6316 parent->parent->child = tmp;
6317 } else 6317 } else
6318 tmp = tmp->parent; 6318 tmp = tmp->parent;
6319 } 6319 }
6320 6320
6321 if (sd && sd_degenerate(sd)) { 6321 if (sd && sd_degenerate(sd)) {
6322 sd = sd->parent; 6322 sd = sd->parent;
6323 if (sd) 6323 if (sd)
6324 sd->child = NULL; 6324 sd->child = NULL;
6325 } 6325 }
6326 6326
6327 sched_domain_debug(sd, cpu); 6327 sched_domain_debug(sd, cpu);
6328 6328
6329 rq_attach_root(rq, rd); 6329 rq_attach_root(rq, rd);
6330 rcu_assign_pointer(rq->sd, sd); 6330 rcu_assign_pointer(rq->sd, sd);
6331 } 6331 }
6332 6332
6333 /* cpus with isolated domains */ 6333 /* cpus with isolated domains */
6334 static cpumask_var_t cpu_isolated_map; 6334 static cpumask_var_t cpu_isolated_map;
6335 6335
6336 /* Setup the mask of cpus configured for isolated domains */ 6336 /* Setup the mask of cpus configured for isolated domains */
6337 static int __init isolated_cpu_setup(char *str) 6337 static int __init isolated_cpu_setup(char *str)
6338 { 6338 {
6339 alloc_bootmem_cpumask_var(&cpu_isolated_map); 6339 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6340 cpulist_parse(str, cpu_isolated_map); 6340 cpulist_parse(str, cpu_isolated_map);
6341 return 1; 6341 return 1;
6342 } 6342 }
6343 6343
6344 __setup("isolcpus=", isolated_cpu_setup); 6344 __setup("isolcpus=", isolated_cpu_setup);
6345 6345
6346 /* 6346 /*
6347 * init_sched_build_groups takes the cpumask we wish to span, and a pointer 6347 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6348 * to a function which identifies what group(along with sched group) a CPU 6348 * to a function which identifies what group(along with sched group) a CPU
6349 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids 6349 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6350 * (due to the fact that we keep track of groups covered with a struct cpumask). 6350 * (due to the fact that we keep track of groups covered with a struct cpumask).
6351 * 6351 *
6352 * init_sched_build_groups will build a circular linked list of the groups 6352 * init_sched_build_groups will build a circular linked list of the groups
6353 * covered by the given span, and will set each group's ->cpumask correctly, 6353 * covered by the given span, and will set each group's ->cpumask correctly,
6354 * and ->cpu_power to 0. 6354 * and ->cpu_power to 0.
6355 */ 6355 */
6356 static void 6356 static void
6357 init_sched_build_groups(const struct cpumask *span, 6357 init_sched_build_groups(const struct cpumask *span,
6358 const struct cpumask *cpu_map, 6358 const struct cpumask *cpu_map,
6359 int (*group_fn)(int cpu, const struct cpumask *cpu_map, 6359 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6360 struct sched_group **sg, 6360 struct sched_group **sg,
6361 struct cpumask *tmpmask), 6361 struct cpumask *tmpmask),
6362 struct cpumask *covered, struct cpumask *tmpmask) 6362 struct cpumask *covered, struct cpumask *tmpmask)
6363 { 6363 {
6364 struct sched_group *first = NULL, *last = NULL; 6364 struct sched_group *first = NULL, *last = NULL;
6365 int i; 6365 int i;
6366 6366
6367 cpumask_clear(covered); 6367 cpumask_clear(covered);
6368 6368
6369 for_each_cpu(i, span) { 6369 for_each_cpu(i, span) {
6370 struct sched_group *sg; 6370 struct sched_group *sg;
6371 int group = group_fn(i, cpu_map, &sg, tmpmask); 6371 int group = group_fn(i, cpu_map, &sg, tmpmask);
6372 int j; 6372 int j;
6373 6373
6374 if (cpumask_test_cpu(i, covered)) 6374 if (cpumask_test_cpu(i, covered))
6375 continue; 6375 continue;
6376 6376
6377 cpumask_clear(sched_group_cpus(sg)); 6377 cpumask_clear(sched_group_cpus(sg));
6378 sg->cpu_power = 0; 6378 sg->cpu_power = 0;
6379 6379
6380 for_each_cpu(j, span) { 6380 for_each_cpu(j, span) {
6381 if (group_fn(j, cpu_map, NULL, tmpmask) != group) 6381 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6382 continue; 6382 continue;
6383 6383
6384 cpumask_set_cpu(j, covered); 6384 cpumask_set_cpu(j, covered);
6385 cpumask_set_cpu(j, sched_group_cpus(sg)); 6385 cpumask_set_cpu(j, sched_group_cpus(sg));
6386 } 6386 }
6387 if (!first) 6387 if (!first)
6388 first = sg; 6388 first = sg;
6389 if (last) 6389 if (last)
6390 last->next = sg; 6390 last->next = sg;
6391 last = sg; 6391 last = sg;
6392 } 6392 }
6393 last->next = first; 6393 last->next = first;
6394 } 6394 }
6395 6395
6396 #define SD_NODES_PER_DOMAIN 16 6396 #define SD_NODES_PER_DOMAIN 16
6397 6397
6398 #ifdef CONFIG_NUMA 6398 #ifdef CONFIG_NUMA
6399 6399
6400 /** 6400 /**
6401 * find_next_best_node - find the next node to include in a sched_domain 6401 * find_next_best_node - find the next node to include in a sched_domain
6402 * @node: node whose sched_domain we're building 6402 * @node: node whose sched_domain we're building
6403 * @used_nodes: nodes already in the sched_domain 6403 * @used_nodes: nodes already in the sched_domain
6404 * 6404 *
6405 * Find the next node to include in a given scheduling domain. Simply 6405 * Find the next node to include in a given scheduling domain. Simply
6406 * finds the closest node not already in the @used_nodes map. 6406 * finds the closest node not already in the @used_nodes map.
6407 * 6407 *
6408 * Should use nodemask_t. 6408 * Should use nodemask_t.
6409 */ 6409 */
6410 static int find_next_best_node(int node, nodemask_t *used_nodes) 6410 static int find_next_best_node(int node, nodemask_t *used_nodes)
6411 { 6411 {
6412 int i, n, val, min_val, best_node = 0; 6412 int i, n, val, min_val, best_node = 0;
6413 6413
6414 min_val = INT_MAX; 6414 min_val = INT_MAX;
6415 6415
6416 for (i = 0; i < nr_node_ids; i++) { 6416 for (i = 0; i < nr_node_ids; i++) {
6417 /* Start at @node */ 6417 /* Start at @node */
6418 n = (node + i) % nr_node_ids; 6418 n = (node + i) % nr_node_ids;
6419 6419
6420 if (!nr_cpus_node(n)) 6420 if (!nr_cpus_node(n))
6421 continue; 6421 continue;
6422 6422
6423 /* Skip already used nodes */ 6423 /* Skip already used nodes */
6424 if (node_isset(n, *used_nodes)) 6424 if (node_isset(n, *used_nodes))
6425 continue; 6425 continue;
6426 6426
6427 /* Simple min distance search */ 6427 /* Simple min distance search */
6428 val = node_distance(node, n); 6428 val = node_distance(node, n);
6429 6429
6430 if (val < min_val) { 6430 if (val < min_val) {
6431 min_val = val; 6431 min_val = val;
6432 best_node = n; 6432 best_node = n;
6433 } 6433 }
6434 } 6434 }
6435 6435
6436 node_set(best_node, *used_nodes); 6436 node_set(best_node, *used_nodes);
6437 return best_node; 6437 return best_node;
6438 } 6438 }
6439 6439
6440 /** 6440 /**
6441 * sched_domain_node_span - get a cpumask for a node's sched_domain 6441 * sched_domain_node_span - get a cpumask for a node's sched_domain
6442 * @node: node whose cpumask we're constructing 6442 * @node: node whose cpumask we're constructing
6443 * @span: resulting cpumask 6443 * @span: resulting cpumask
6444 * 6444 *
6445 * Given a node, construct a good cpumask for its sched_domain to span. It 6445 * Given a node, construct a good cpumask for its sched_domain to span. It
6446 * should be one that prevents unnecessary balancing, but also spreads tasks 6446 * should be one that prevents unnecessary balancing, but also spreads tasks
6447 * out optimally. 6447 * out optimally.
6448 */ 6448 */
6449 static void sched_domain_node_span(int node, struct cpumask *span) 6449 static void sched_domain_node_span(int node, struct cpumask *span)
6450 { 6450 {
6451 nodemask_t used_nodes; 6451 nodemask_t used_nodes;
6452 int i; 6452 int i;
6453 6453
6454 cpumask_clear(span); 6454 cpumask_clear(span);
6455 nodes_clear(used_nodes); 6455 nodes_clear(used_nodes);
6456 6456
6457 cpumask_or(span, span, cpumask_of_node(node)); 6457 cpumask_or(span, span, cpumask_of_node(node));
6458 node_set(node, used_nodes); 6458 node_set(node, used_nodes);
6459 6459
6460 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) { 6460 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6461 int next_node = find_next_best_node(node, &used_nodes); 6461 int next_node = find_next_best_node(node, &used_nodes);
6462 6462
6463 cpumask_or(span, span, cpumask_of_node(next_node)); 6463 cpumask_or(span, span, cpumask_of_node(next_node));
6464 } 6464 }
6465 } 6465 }
6466 #endif /* CONFIG_NUMA */ 6466 #endif /* CONFIG_NUMA */
6467 6467
6468 int sched_smt_power_savings = 0, sched_mc_power_savings = 0; 6468 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6469 6469
6470 /* 6470 /*
6471 * The cpus mask in sched_group and sched_domain hangs off the end. 6471 * The cpus mask in sched_group and sched_domain hangs off the end.
6472 * 6472 *
6473 * ( See the the comments in include/linux/sched.h:struct sched_group 6473 * ( See the the comments in include/linux/sched.h:struct sched_group
6474 * and struct sched_domain. ) 6474 * and struct sched_domain. )
6475 */ 6475 */
6476 struct static_sched_group { 6476 struct static_sched_group {
6477 struct sched_group sg; 6477 struct sched_group sg;
6478 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS); 6478 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6479 }; 6479 };
6480 6480
6481 struct static_sched_domain { 6481 struct static_sched_domain {
6482 struct sched_domain sd; 6482 struct sched_domain sd;
6483 DECLARE_BITMAP(span, CONFIG_NR_CPUS); 6483 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6484 }; 6484 };
6485 6485
6486 struct s_data { 6486 struct s_data {
6487 #ifdef CONFIG_NUMA 6487 #ifdef CONFIG_NUMA
6488 int sd_allnodes; 6488 int sd_allnodes;
6489 cpumask_var_t domainspan; 6489 cpumask_var_t domainspan;
6490 cpumask_var_t covered; 6490 cpumask_var_t covered;
6491 cpumask_var_t notcovered; 6491 cpumask_var_t notcovered;
6492 #endif 6492 #endif
6493 cpumask_var_t nodemask; 6493 cpumask_var_t nodemask;
6494 cpumask_var_t this_sibling_map; 6494 cpumask_var_t this_sibling_map;
6495 cpumask_var_t this_core_map; 6495 cpumask_var_t this_core_map;
6496 cpumask_var_t send_covered; 6496 cpumask_var_t send_covered;
6497 cpumask_var_t tmpmask; 6497 cpumask_var_t tmpmask;
6498 struct sched_group **sched_group_nodes; 6498 struct sched_group **sched_group_nodes;
6499 struct root_domain *rd; 6499 struct root_domain *rd;
6500 }; 6500 };
6501 6501
6502 enum s_alloc { 6502 enum s_alloc {
6503 sa_sched_groups = 0, 6503 sa_sched_groups = 0,
6504 sa_rootdomain, 6504 sa_rootdomain,
6505 sa_tmpmask, 6505 sa_tmpmask,
6506 sa_send_covered, 6506 sa_send_covered,
6507 sa_this_core_map, 6507 sa_this_core_map,
6508 sa_this_sibling_map, 6508 sa_this_sibling_map,
6509 sa_nodemask, 6509 sa_nodemask,
6510 sa_sched_group_nodes, 6510 sa_sched_group_nodes,
6511 #ifdef CONFIG_NUMA 6511 #ifdef CONFIG_NUMA
6512 sa_notcovered, 6512 sa_notcovered,
6513 sa_covered, 6513 sa_covered,
6514 sa_domainspan, 6514 sa_domainspan,
6515 #endif 6515 #endif
6516 sa_none, 6516 sa_none,
6517 }; 6517 };
6518 6518
6519 /* 6519 /*
6520 * SMT sched-domains: 6520 * SMT sched-domains:
6521 */ 6521 */
6522 #ifdef CONFIG_SCHED_SMT 6522 #ifdef CONFIG_SCHED_SMT
6523 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains); 6523 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6524 static DEFINE_PER_CPU(struct static_sched_group, sched_groups); 6524 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6525 6525
6526 static int 6526 static int
6527 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map, 6527 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6528 struct sched_group **sg, struct cpumask *unused) 6528 struct sched_group **sg, struct cpumask *unused)
6529 { 6529 {
6530 if (sg) 6530 if (sg)
6531 *sg = &per_cpu(sched_groups, cpu).sg; 6531 *sg = &per_cpu(sched_groups, cpu).sg;
6532 return cpu; 6532 return cpu;
6533 } 6533 }
6534 #endif /* CONFIG_SCHED_SMT */ 6534 #endif /* CONFIG_SCHED_SMT */
6535 6535
6536 /* 6536 /*
6537 * multi-core sched-domains: 6537 * multi-core sched-domains:
6538 */ 6538 */
6539 #ifdef CONFIG_SCHED_MC 6539 #ifdef CONFIG_SCHED_MC
6540 static DEFINE_PER_CPU(struct static_sched_domain, core_domains); 6540 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6541 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core); 6541 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6542 #endif /* CONFIG_SCHED_MC */ 6542 #endif /* CONFIG_SCHED_MC */
6543 6543
6544 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT) 6544 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6545 static int 6545 static int
6546 cpu_to_core_group(int cpu, const struct cpumask *cpu_map, 6546 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6547 struct sched_group **sg, struct cpumask *mask) 6547 struct sched_group **sg, struct cpumask *mask)
6548 { 6548 {
6549 int group; 6549 int group;
6550 6550
6551 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map); 6551 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6552 group = cpumask_first(mask); 6552 group = cpumask_first(mask);
6553 if (sg) 6553 if (sg)
6554 *sg = &per_cpu(sched_group_core, group).sg; 6554 *sg = &per_cpu(sched_group_core, group).sg;
6555 return group; 6555 return group;
6556 } 6556 }
6557 #elif defined(CONFIG_SCHED_MC) 6557 #elif defined(CONFIG_SCHED_MC)
6558 static int 6558 static int
6559 cpu_to_core_group(int cpu, const struct cpumask *cpu_map, 6559 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6560 struct sched_group **sg, struct cpumask *unused) 6560 struct sched_group **sg, struct cpumask *unused)
6561 { 6561 {
6562 if (sg) 6562 if (sg)
6563 *sg = &per_cpu(sched_group_core, cpu).sg; 6563 *sg = &per_cpu(sched_group_core, cpu).sg;
6564 return cpu; 6564 return cpu;
6565 } 6565 }
6566 #endif 6566 #endif
6567 6567
6568 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains); 6568 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6569 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys); 6569 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6570 6570
6571 static int 6571 static int
6572 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map, 6572 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6573 struct sched_group **sg, struct cpumask *mask) 6573 struct sched_group **sg, struct cpumask *mask)
6574 { 6574 {
6575 int group; 6575 int group;
6576 #ifdef CONFIG_SCHED_MC 6576 #ifdef CONFIG_SCHED_MC
6577 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map); 6577 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6578 group = cpumask_first(mask); 6578 group = cpumask_first(mask);
6579 #elif defined(CONFIG_SCHED_SMT) 6579 #elif defined(CONFIG_SCHED_SMT)
6580 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map); 6580 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6581 group = cpumask_first(mask); 6581 group = cpumask_first(mask);
6582 #else 6582 #else
6583 group = cpu; 6583 group = cpu;
6584 #endif 6584 #endif
6585 if (sg) 6585 if (sg)
6586 *sg = &per_cpu(sched_group_phys, group).sg; 6586 *sg = &per_cpu(sched_group_phys, group).sg;
6587 return group; 6587 return group;
6588 } 6588 }
6589 6589
6590 #ifdef CONFIG_NUMA 6590 #ifdef CONFIG_NUMA
6591 /* 6591 /*
6592 * The init_sched_build_groups can't handle what we want to do with node 6592 * The init_sched_build_groups can't handle what we want to do with node
6593 * groups, so roll our own. Now each node has its own list of groups which 6593 * groups, so roll our own. Now each node has its own list of groups which
6594 * gets dynamically allocated. 6594 * gets dynamically allocated.
6595 */ 6595 */
6596 static DEFINE_PER_CPU(struct static_sched_domain, node_domains); 6596 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6597 static struct sched_group ***sched_group_nodes_bycpu; 6597 static struct sched_group ***sched_group_nodes_bycpu;
6598 6598
6599 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains); 6599 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6600 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes); 6600 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6601 6601
6602 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map, 6602 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6603 struct sched_group **sg, 6603 struct sched_group **sg,
6604 struct cpumask *nodemask) 6604 struct cpumask *nodemask)
6605 { 6605 {
6606 int group; 6606 int group;
6607 6607
6608 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map); 6608 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6609 group = cpumask_first(nodemask); 6609 group = cpumask_first(nodemask);
6610 6610
6611 if (sg) 6611 if (sg)
6612 *sg = &per_cpu(sched_group_allnodes, group).sg; 6612 *sg = &per_cpu(sched_group_allnodes, group).sg;
6613 return group; 6613 return group;
6614 } 6614 }
6615 6615
6616 static void init_numa_sched_groups_power(struct sched_group *group_head) 6616 static void init_numa_sched_groups_power(struct sched_group *group_head)
6617 { 6617 {
6618 struct sched_group *sg = group_head; 6618 struct sched_group *sg = group_head;
6619 int j; 6619 int j;
6620 6620
6621 if (!sg) 6621 if (!sg)
6622 return; 6622 return;
6623 do { 6623 do {
6624 for_each_cpu(j, sched_group_cpus(sg)) { 6624 for_each_cpu(j, sched_group_cpus(sg)) {
6625 struct sched_domain *sd; 6625 struct sched_domain *sd;
6626 6626
6627 sd = &per_cpu(phys_domains, j).sd; 6627 sd = &per_cpu(phys_domains, j).sd;
6628 if (j != group_first_cpu(sd->groups)) { 6628 if (j != group_first_cpu(sd->groups)) {
6629 /* 6629 /*
6630 * Only add "power" once for each 6630 * Only add "power" once for each
6631 * physical package. 6631 * physical package.
6632 */ 6632 */
6633 continue; 6633 continue;
6634 } 6634 }
6635 6635
6636 sg->cpu_power += sd->groups->cpu_power; 6636 sg->cpu_power += sd->groups->cpu_power;
6637 } 6637 }
6638 sg = sg->next; 6638 sg = sg->next;
6639 } while (sg != group_head); 6639 } while (sg != group_head);
6640 } 6640 }
6641 6641
6642 static int build_numa_sched_groups(struct s_data *d, 6642 static int build_numa_sched_groups(struct s_data *d,
6643 const struct cpumask *cpu_map, int num) 6643 const struct cpumask *cpu_map, int num)
6644 { 6644 {
6645 struct sched_domain *sd; 6645 struct sched_domain *sd;
6646 struct sched_group *sg, *prev; 6646 struct sched_group *sg, *prev;
6647 int n, j; 6647 int n, j;
6648 6648
6649 cpumask_clear(d->covered); 6649 cpumask_clear(d->covered);
6650 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map); 6650 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6651 if (cpumask_empty(d->nodemask)) { 6651 if (cpumask_empty(d->nodemask)) {
6652 d->sched_group_nodes[num] = NULL; 6652 d->sched_group_nodes[num] = NULL;
6653 goto out; 6653 goto out;
6654 } 6654 }
6655 6655
6656 sched_domain_node_span(num, d->domainspan); 6656 sched_domain_node_span(num, d->domainspan);
6657 cpumask_and(d->domainspan, d->domainspan, cpu_map); 6657 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6658 6658
6659 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(), 6659 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6660 GFP_KERNEL, num); 6660 GFP_KERNEL, num);
6661 if (!sg) { 6661 if (!sg) {
6662 printk(KERN_WARNING "Can not alloc domain group for node %d\n", 6662 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6663 num); 6663 num);
6664 return -ENOMEM; 6664 return -ENOMEM;
6665 } 6665 }
6666 d->sched_group_nodes[num] = sg; 6666 d->sched_group_nodes[num] = sg;
6667 6667
6668 for_each_cpu(j, d->nodemask) { 6668 for_each_cpu(j, d->nodemask) {
6669 sd = &per_cpu(node_domains, j).sd; 6669 sd = &per_cpu(node_domains, j).sd;
6670 sd->groups = sg; 6670 sd->groups = sg;
6671 } 6671 }
6672 6672
6673 sg->cpu_power = 0; 6673 sg->cpu_power = 0;
6674 cpumask_copy(sched_group_cpus(sg), d->nodemask); 6674 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6675 sg->next = sg; 6675 sg->next = sg;
6676 cpumask_or(d->covered, d->covered, d->nodemask); 6676 cpumask_or(d->covered, d->covered, d->nodemask);
6677 6677
6678 prev = sg; 6678 prev = sg;
6679 for (j = 0; j < nr_node_ids; j++) { 6679 for (j = 0; j < nr_node_ids; j++) {
6680 n = (num + j) % nr_node_ids; 6680 n = (num + j) % nr_node_ids;
6681 cpumask_complement(d->notcovered, d->covered); 6681 cpumask_complement(d->notcovered, d->covered);
6682 cpumask_and(d->tmpmask, d->notcovered, cpu_map); 6682 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6683 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan); 6683 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6684 if (cpumask_empty(d->tmpmask)) 6684 if (cpumask_empty(d->tmpmask))
6685 break; 6685 break;
6686 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n)); 6686 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6687 if (cpumask_empty(d->tmpmask)) 6687 if (cpumask_empty(d->tmpmask))
6688 continue; 6688 continue;
6689 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(), 6689 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6690 GFP_KERNEL, num); 6690 GFP_KERNEL, num);
6691 if (!sg) { 6691 if (!sg) {
6692 printk(KERN_WARNING 6692 printk(KERN_WARNING
6693 "Can not alloc domain group for node %d\n", j); 6693 "Can not alloc domain group for node %d\n", j);
6694 return -ENOMEM; 6694 return -ENOMEM;
6695 } 6695 }
6696 sg->cpu_power = 0; 6696 sg->cpu_power = 0;
6697 cpumask_copy(sched_group_cpus(sg), d->tmpmask); 6697 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6698 sg->next = prev->next; 6698 sg->next = prev->next;
6699 cpumask_or(d->covered, d->covered, d->tmpmask); 6699 cpumask_or(d->covered, d->covered, d->tmpmask);
6700 prev->next = sg; 6700 prev->next = sg;
6701 prev = sg; 6701 prev = sg;
6702 } 6702 }
6703 out: 6703 out:
6704 return 0; 6704 return 0;
6705 } 6705 }
6706 #endif /* CONFIG_NUMA */ 6706 #endif /* CONFIG_NUMA */
6707 6707
6708 #ifdef CONFIG_NUMA 6708 #ifdef CONFIG_NUMA
6709 /* Free memory allocated for various sched_group structures */ 6709 /* Free memory allocated for various sched_group structures */
6710 static void free_sched_groups(const struct cpumask *cpu_map, 6710 static void free_sched_groups(const struct cpumask *cpu_map,
6711 struct cpumask *nodemask) 6711 struct cpumask *nodemask)
6712 { 6712 {
6713 int cpu, i; 6713 int cpu, i;
6714 6714
6715 for_each_cpu(cpu, cpu_map) { 6715 for_each_cpu(cpu, cpu_map) {
6716 struct sched_group **sched_group_nodes 6716 struct sched_group **sched_group_nodes
6717 = sched_group_nodes_bycpu[cpu]; 6717 = sched_group_nodes_bycpu[cpu];
6718 6718
6719 if (!sched_group_nodes) 6719 if (!sched_group_nodes)
6720 continue; 6720 continue;
6721 6721
6722 for (i = 0; i < nr_node_ids; i++) { 6722 for (i = 0; i < nr_node_ids; i++) {
6723 struct sched_group *oldsg, *sg = sched_group_nodes[i]; 6723 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6724 6724
6725 cpumask_and(nodemask, cpumask_of_node(i), cpu_map); 6725 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6726 if (cpumask_empty(nodemask)) 6726 if (cpumask_empty(nodemask))
6727 continue; 6727 continue;
6728 6728
6729 if (sg == NULL) 6729 if (sg == NULL)
6730 continue; 6730 continue;
6731 sg = sg->next; 6731 sg = sg->next;
6732 next_sg: 6732 next_sg:
6733 oldsg = sg; 6733 oldsg = sg;
6734 sg = sg->next; 6734 sg = sg->next;
6735 kfree(oldsg); 6735 kfree(oldsg);
6736 if (oldsg != sched_group_nodes[i]) 6736 if (oldsg != sched_group_nodes[i])
6737 goto next_sg; 6737 goto next_sg;
6738 } 6738 }
6739 kfree(sched_group_nodes); 6739 kfree(sched_group_nodes);
6740 sched_group_nodes_bycpu[cpu] = NULL; 6740 sched_group_nodes_bycpu[cpu] = NULL;
6741 } 6741 }
6742 } 6742 }
6743 #else /* !CONFIG_NUMA */ 6743 #else /* !CONFIG_NUMA */
6744 static void free_sched_groups(const struct cpumask *cpu_map, 6744 static void free_sched_groups(const struct cpumask *cpu_map,
6745 struct cpumask *nodemask) 6745 struct cpumask *nodemask)
6746 { 6746 {
6747 } 6747 }
6748 #endif /* CONFIG_NUMA */ 6748 #endif /* CONFIG_NUMA */
6749 6749
6750 /* 6750 /*
6751 * Initialize sched groups cpu_power. 6751 * Initialize sched groups cpu_power.
6752 * 6752 *
6753 * cpu_power indicates the capacity of sched group, which is used while 6753 * cpu_power indicates the capacity of sched group, which is used while
6754 * distributing the load between different sched groups in a sched domain. 6754 * distributing the load between different sched groups in a sched domain.
6755 * Typically cpu_power for all the groups in a sched domain will be same unless 6755 * Typically cpu_power for all the groups in a sched domain will be same unless
6756 * there are asymmetries in the topology. If there are asymmetries, group 6756 * there are asymmetries in the topology. If there are asymmetries, group
6757 * having more cpu_power will pickup more load compared to the group having 6757 * having more cpu_power will pickup more load compared to the group having
6758 * less cpu_power. 6758 * less cpu_power.
6759 */ 6759 */
6760 static void init_sched_groups_power(int cpu, struct sched_domain *sd) 6760 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6761 { 6761 {
6762 struct sched_domain *child; 6762 struct sched_domain *child;
6763 struct sched_group *group; 6763 struct sched_group *group;
6764 long power; 6764 long power;
6765 int weight; 6765 int weight;
6766 6766
6767 WARN_ON(!sd || !sd->groups); 6767 WARN_ON(!sd || !sd->groups);
6768 6768
6769 if (cpu != group_first_cpu(sd->groups)) 6769 if (cpu != group_first_cpu(sd->groups))
6770 return; 6770 return;
6771 6771
6772 child = sd->child; 6772 child = sd->child;
6773 6773
6774 sd->groups->cpu_power = 0; 6774 sd->groups->cpu_power = 0;
6775 6775
6776 if (!child) { 6776 if (!child) {
6777 power = SCHED_LOAD_SCALE; 6777 power = SCHED_LOAD_SCALE;
6778 weight = cpumask_weight(sched_domain_span(sd)); 6778 weight = cpumask_weight(sched_domain_span(sd));
6779 /* 6779 /*
6780 * SMT siblings share the power of a single core. 6780 * SMT siblings share the power of a single core.
6781 * Usually multiple threads get a better yield out of 6781 * Usually multiple threads get a better yield out of
6782 * that one core than a single thread would have, 6782 * that one core than a single thread would have,
6783 * reflect that in sd->smt_gain. 6783 * reflect that in sd->smt_gain.
6784 */ 6784 */
6785 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { 6785 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6786 power *= sd->smt_gain; 6786 power *= sd->smt_gain;
6787 power /= weight; 6787 power /= weight;
6788 power >>= SCHED_LOAD_SHIFT; 6788 power >>= SCHED_LOAD_SHIFT;
6789 } 6789 }
6790 sd->groups->cpu_power += power; 6790 sd->groups->cpu_power += power;
6791 return; 6791 return;
6792 } 6792 }
6793 6793
6794 /* 6794 /*
6795 * Add cpu_power of each child group to this groups cpu_power. 6795 * Add cpu_power of each child group to this groups cpu_power.
6796 */ 6796 */
6797 group = child->groups; 6797 group = child->groups;
6798 do { 6798 do {
6799 sd->groups->cpu_power += group->cpu_power; 6799 sd->groups->cpu_power += group->cpu_power;
6800 group = group->next; 6800 group = group->next;
6801 } while (group != child->groups); 6801 } while (group != child->groups);
6802 } 6802 }
6803 6803
6804 /* 6804 /*
6805 * Initializers for schedule domains 6805 * Initializers for schedule domains
6806 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 6806 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6807 */ 6807 */
6808 6808
6809 #ifdef CONFIG_SCHED_DEBUG 6809 #ifdef CONFIG_SCHED_DEBUG
6810 # define SD_INIT_NAME(sd, type) sd->name = #type 6810 # define SD_INIT_NAME(sd, type) sd->name = #type
6811 #else 6811 #else
6812 # define SD_INIT_NAME(sd, type) do { } while (0) 6812 # define SD_INIT_NAME(sd, type) do { } while (0)
6813 #endif 6813 #endif
6814 6814
6815 #define SD_INIT(sd, type) sd_init_##type(sd) 6815 #define SD_INIT(sd, type) sd_init_##type(sd)
6816 6816
6817 #define SD_INIT_FUNC(type) \ 6817 #define SD_INIT_FUNC(type) \
6818 static noinline void sd_init_##type(struct sched_domain *sd) \ 6818 static noinline void sd_init_##type(struct sched_domain *sd) \
6819 { \ 6819 { \
6820 memset(sd, 0, sizeof(*sd)); \ 6820 memset(sd, 0, sizeof(*sd)); \
6821 *sd = SD_##type##_INIT; \ 6821 *sd = SD_##type##_INIT; \
6822 sd->level = SD_LV_##type; \ 6822 sd->level = SD_LV_##type; \
6823 SD_INIT_NAME(sd, type); \ 6823 SD_INIT_NAME(sd, type); \
6824 } 6824 }
6825 6825
6826 SD_INIT_FUNC(CPU) 6826 SD_INIT_FUNC(CPU)
6827 #ifdef CONFIG_NUMA 6827 #ifdef CONFIG_NUMA
6828 SD_INIT_FUNC(ALLNODES) 6828 SD_INIT_FUNC(ALLNODES)
6829 SD_INIT_FUNC(NODE) 6829 SD_INIT_FUNC(NODE)
6830 #endif 6830 #endif
6831 #ifdef CONFIG_SCHED_SMT 6831 #ifdef CONFIG_SCHED_SMT
6832 SD_INIT_FUNC(SIBLING) 6832 SD_INIT_FUNC(SIBLING)
6833 #endif 6833 #endif
6834 #ifdef CONFIG_SCHED_MC 6834 #ifdef CONFIG_SCHED_MC
6835 SD_INIT_FUNC(MC) 6835 SD_INIT_FUNC(MC)
6836 #endif 6836 #endif
6837 6837
6838 static int default_relax_domain_level = -1; 6838 static int default_relax_domain_level = -1;
6839 6839
6840 static int __init setup_relax_domain_level(char *str) 6840 static int __init setup_relax_domain_level(char *str)
6841 { 6841 {
6842 unsigned long val; 6842 unsigned long val;
6843 6843
6844 val = simple_strtoul(str, NULL, 0); 6844 val = simple_strtoul(str, NULL, 0);
6845 if (val < SD_LV_MAX) 6845 if (val < SD_LV_MAX)
6846 default_relax_domain_level = val; 6846 default_relax_domain_level = val;
6847 6847
6848 return 1; 6848 return 1;
6849 } 6849 }
6850 __setup("relax_domain_level=", setup_relax_domain_level); 6850 __setup("relax_domain_level=", setup_relax_domain_level);
6851 6851
6852 static void set_domain_attribute(struct sched_domain *sd, 6852 static void set_domain_attribute(struct sched_domain *sd,
6853 struct sched_domain_attr *attr) 6853 struct sched_domain_attr *attr)
6854 { 6854 {
6855 int request; 6855 int request;
6856 6856
6857 if (!attr || attr->relax_domain_level < 0) { 6857 if (!attr || attr->relax_domain_level < 0) {
6858 if (default_relax_domain_level < 0) 6858 if (default_relax_domain_level < 0)
6859 return; 6859 return;
6860 else 6860 else
6861 request = default_relax_domain_level; 6861 request = default_relax_domain_level;
6862 } else 6862 } else
6863 request = attr->relax_domain_level; 6863 request = attr->relax_domain_level;
6864 if (request < sd->level) { 6864 if (request < sd->level) {
6865 /* turn off idle balance on this domain */ 6865 /* turn off idle balance on this domain */
6866 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6866 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6867 } else { 6867 } else {
6868 /* turn on idle balance on this domain */ 6868 /* turn on idle balance on this domain */
6869 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6869 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6870 } 6870 }
6871 } 6871 }
6872 6872
6873 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 6873 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6874 const struct cpumask *cpu_map) 6874 const struct cpumask *cpu_map)
6875 { 6875 {
6876 switch (what) { 6876 switch (what) {
6877 case sa_sched_groups: 6877 case sa_sched_groups:
6878 free_sched_groups(cpu_map, d->tmpmask); /* fall through */ 6878 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6879 d->sched_group_nodes = NULL; 6879 d->sched_group_nodes = NULL;
6880 case sa_rootdomain: 6880 case sa_rootdomain:
6881 free_rootdomain(d->rd); /* fall through */ 6881 free_rootdomain(d->rd); /* fall through */
6882 case sa_tmpmask: 6882 case sa_tmpmask:
6883 free_cpumask_var(d->tmpmask); /* fall through */ 6883 free_cpumask_var(d->tmpmask); /* fall through */
6884 case sa_send_covered: 6884 case sa_send_covered:
6885 free_cpumask_var(d->send_covered); /* fall through */ 6885 free_cpumask_var(d->send_covered); /* fall through */
6886 case sa_this_core_map: 6886 case sa_this_core_map:
6887 free_cpumask_var(d->this_core_map); /* fall through */ 6887 free_cpumask_var(d->this_core_map); /* fall through */
6888 case sa_this_sibling_map: 6888 case sa_this_sibling_map:
6889 free_cpumask_var(d->this_sibling_map); /* fall through */ 6889 free_cpumask_var(d->this_sibling_map); /* fall through */
6890 case sa_nodemask: 6890 case sa_nodemask:
6891 free_cpumask_var(d->nodemask); /* fall through */ 6891 free_cpumask_var(d->nodemask); /* fall through */
6892 case sa_sched_group_nodes: 6892 case sa_sched_group_nodes:
6893 #ifdef CONFIG_NUMA 6893 #ifdef CONFIG_NUMA
6894 kfree(d->sched_group_nodes); /* fall through */ 6894 kfree(d->sched_group_nodes); /* fall through */
6895 case sa_notcovered: 6895 case sa_notcovered:
6896 free_cpumask_var(d->notcovered); /* fall through */ 6896 free_cpumask_var(d->notcovered); /* fall through */
6897 case sa_covered: 6897 case sa_covered:
6898 free_cpumask_var(d->covered); /* fall through */ 6898 free_cpumask_var(d->covered); /* fall through */
6899 case sa_domainspan: 6899 case sa_domainspan:
6900 free_cpumask_var(d->domainspan); /* fall through */ 6900 free_cpumask_var(d->domainspan); /* fall through */
6901 #endif 6901 #endif
6902 case sa_none: 6902 case sa_none:
6903 break; 6903 break;
6904 } 6904 }
6905 } 6905 }
6906 6906
6907 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 6907 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6908 const struct cpumask *cpu_map) 6908 const struct cpumask *cpu_map)
6909 { 6909 {
6910 #ifdef CONFIG_NUMA 6910 #ifdef CONFIG_NUMA
6911 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL)) 6911 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6912 return sa_none; 6912 return sa_none;
6913 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL)) 6913 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6914 return sa_domainspan; 6914 return sa_domainspan;
6915 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL)) 6915 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6916 return sa_covered; 6916 return sa_covered;
6917 /* Allocate the per-node list of sched groups */ 6917 /* Allocate the per-node list of sched groups */
6918 d->sched_group_nodes = kcalloc(nr_node_ids, 6918 d->sched_group_nodes = kcalloc(nr_node_ids,
6919 sizeof(struct sched_group *), GFP_KERNEL); 6919 sizeof(struct sched_group *), GFP_KERNEL);
6920 if (!d->sched_group_nodes) { 6920 if (!d->sched_group_nodes) {
6921 printk(KERN_WARNING "Can not alloc sched group node list\n"); 6921 printk(KERN_WARNING "Can not alloc sched group node list\n");
6922 return sa_notcovered; 6922 return sa_notcovered;
6923 } 6923 }
6924 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes; 6924 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6925 #endif 6925 #endif
6926 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL)) 6926 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6927 return sa_sched_group_nodes; 6927 return sa_sched_group_nodes;
6928 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL)) 6928 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6929 return sa_nodemask; 6929 return sa_nodemask;
6930 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL)) 6930 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6931 return sa_this_sibling_map; 6931 return sa_this_sibling_map;
6932 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL)) 6932 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6933 return sa_this_core_map; 6933 return sa_this_core_map;
6934 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL)) 6934 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6935 return sa_send_covered; 6935 return sa_send_covered;
6936 d->rd = alloc_rootdomain(); 6936 d->rd = alloc_rootdomain();
6937 if (!d->rd) { 6937 if (!d->rd) {
6938 printk(KERN_WARNING "Cannot alloc root domain\n"); 6938 printk(KERN_WARNING "Cannot alloc root domain\n");
6939 return sa_tmpmask; 6939 return sa_tmpmask;
6940 } 6940 }
6941 return sa_rootdomain; 6941 return sa_rootdomain;
6942 } 6942 }
6943 6943
6944 static struct sched_domain *__build_numa_sched_domains(struct s_data *d, 6944 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6945 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i) 6945 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6946 { 6946 {
6947 struct sched_domain *sd = NULL; 6947 struct sched_domain *sd = NULL;
6948 #ifdef CONFIG_NUMA 6948 #ifdef CONFIG_NUMA
6949 struct sched_domain *parent; 6949 struct sched_domain *parent;
6950 6950
6951 d->sd_allnodes = 0; 6951 d->sd_allnodes = 0;
6952 if (cpumask_weight(cpu_map) > 6952 if (cpumask_weight(cpu_map) >
6953 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) { 6953 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6954 sd = &per_cpu(allnodes_domains, i).sd; 6954 sd = &per_cpu(allnodes_domains, i).sd;
6955 SD_INIT(sd, ALLNODES); 6955 SD_INIT(sd, ALLNODES);
6956 set_domain_attribute(sd, attr); 6956 set_domain_attribute(sd, attr);
6957 cpumask_copy(sched_domain_span(sd), cpu_map); 6957 cpumask_copy(sched_domain_span(sd), cpu_map);
6958 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask); 6958 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6959 d->sd_allnodes = 1; 6959 d->sd_allnodes = 1;
6960 } 6960 }
6961 parent = sd; 6961 parent = sd;
6962 6962
6963 sd = &per_cpu(node_domains, i).sd; 6963 sd = &per_cpu(node_domains, i).sd;
6964 SD_INIT(sd, NODE); 6964 SD_INIT(sd, NODE);
6965 set_domain_attribute(sd, attr); 6965 set_domain_attribute(sd, attr);
6966 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd)); 6966 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6967 sd->parent = parent; 6967 sd->parent = parent;
6968 if (parent) 6968 if (parent)
6969 parent->child = sd; 6969 parent->child = sd;
6970 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map); 6970 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
6971 #endif 6971 #endif
6972 return sd; 6972 return sd;
6973 } 6973 }
6974 6974
6975 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d, 6975 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6976 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 6976 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6977 struct sched_domain *parent, int i) 6977 struct sched_domain *parent, int i)
6978 { 6978 {
6979 struct sched_domain *sd; 6979 struct sched_domain *sd;
6980 sd = &per_cpu(phys_domains, i).sd; 6980 sd = &per_cpu(phys_domains, i).sd;
6981 SD_INIT(sd, CPU); 6981 SD_INIT(sd, CPU);
6982 set_domain_attribute(sd, attr); 6982 set_domain_attribute(sd, attr);
6983 cpumask_copy(sched_domain_span(sd), d->nodemask); 6983 cpumask_copy(sched_domain_span(sd), d->nodemask);
6984 sd->parent = parent; 6984 sd->parent = parent;
6985 if (parent) 6985 if (parent)
6986 parent->child = sd; 6986 parent->child = sd;
6987 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask); 6987 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6988 return sd; 6988 return sd;
6989 } 6989 }
6990 6990
6991 static struct sched_domain *__build_mc_sched_domain(struct s_data *d, 6991 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6992 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 6992 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6993 struct sched_domain *parent, int i) 6993 struct sched_domain *parent, int i)
6994 { 6994 {
6995 struct sched_domain *sd = parent; 6995 struct sched_domain *sd = parent;
6996 #ifdef CONFIG_SCHED_MC 6996 #ifdef CONFIG_SCHED_MC
6997 sd = &per_cpu(core_domains, i).sd; 6997 sd = &per_cpu(core_domains, i).sd;
6998 SD_INIT(sd, MC); 6998 SD_INIT(sd, MC);
6999 set_domain_attribute(sd, attr); 6999 set_domain_attribute(sd, attr);
7000 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i)); 7000 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7001 sd->parent = parent; 7001 sd->parent = parent;
7002 parent->child = sd; 7002 parent->child = sd;
7003 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask); 7003 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
7004 #endif 7004 #endif
7005 return sd; 7005 return sd;
7006 } 7006 }
7007 7007
7008 static struct sched_domain *__build_smt_sched_domain(struct s_data *d, 7008 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7009 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 7009 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7010 struct sched_domain *parent, int i) 7010 struct sched_domain *parent, int i)
7011 { 7011 {
7012 struct sched_domain *sd = parent; 7012 struct sched_domain *sd = parent;
7013 #ifdef CONFIG_SCHED_SMT 7013 #ifdef CONFIG_SCHED_SMT
7014 sd = &per_cpu(cpu_domains, i).sd; 7014 sd = &per_cpu(cpu_domains, i).sd;
7015 SD_INIT(sd, SIBLING); 7015 SD_INIT(sd, SIBLING);
7016 set_domain_attribute(sd, attr); 7016 set_domain_attribute(sd, attr);
7017 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i)); 7017 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7018 sd->parent = parent; 7018 sd->parent = parent;
7019 parent->child = sd; 7019 parent->child = sd;
7020 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask); 7020 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
7021 #endif 7021 #endif
7022 return sd; 7022 return sd;
7023 } 7023 }
7024 7024
7025 static void build_sched_groups(struct s_data *d, enum sched_domain_level l, 7025 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7026 const struct cpumask *cpu_map, int cpu) 7026 const struct cpumask *cpu_map, int cpu)
7027 { 7027 {
7028 switch (l) { 7028 switch (l) {
7029 #ifdef CONFIG_SCHED_SMT 7029 #ifdef CONFIG_SCHED_SMT
7030 case SD_LV_SIBLING: /* set up CPU (sibling) groups */ 7030 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7031 cpumask_and(d->this_sibling_map, cpu_map, 7031 cpumask_and(d->this_sibling_map, cpu_map,
7032 topology_thread_cpumask(cpu)); 7032 topology_thread_cpumask(cpu));
7033 if (cpu == cpumask_first(d->this_sibling_map)) 7033 if (cpu == cpumask_first(d->this_sibling_map))
7034 init_sched_build_groups(d->this_sibling_map, cpu_map, 7034 init_sched_build_groups(d->this_sibling_map, cpu_map,
7035 &cpu_to_cpu_group, 7035 &cpu_to_cpu_group,
7036 d->send_covered, d->tmpmask); 7036 d->send_covered, d->tmpmask);
7037 break; 7037 break;
7038 #endif 7038 #endif
7039 #ifdef CONFIG_SCHED_MC 7039 #ifdef CONFIG_SCHED_MC
7040 case SD_LV_MC: /* set up multi-core groups */ 7040 case SD_LV_MC: /* set up multi-core groups */
7041 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu)); 7041 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7042 if (cpu == cpumask_first(d->this_core_map)) 7042 if (cpu == cpumask_first(d->this_core_map))
7043 init_sched_build_groups(d->this_core_map, cpu_map, 7043 init_sched_build_groups(d->this_core_map, cpu_map,
7044 &cpu_to_core_group, 7044 &cpu_to_core_group,
7045 d->send_covered, d->tmpmask); 7045 d->send_covered, d->tmpmask);
7046 break; 7046 break;
7047 #endif 7047 #endif
7048 case SD_LV_CPU: /* set up physical groups */ 7048 case SD_LV_CPU: /* set up physical groups */
7049 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map); 7049 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7050 if (!cpumask_empty(d->nodemask)) 7050 if (!cpumask_empty(d->nodemask))
7051 init_sched_build_groups(d->nodemask, cpu_map, 7051 init_sched_build_groups(d->nodemask, cpu_map,
7052 &cpu_to_phys_group, 7052 &cpu_to_phys_group,
7053 d->send_covered, d->tmpmask); 7053 d->send_covered, d->tmpmask);
7054 break; 7054 break;
7055 #ifdef CONFIG_NUMA 7055 #ifdef CONFIG_NUMA
7056 case SD_LV_ALLNODES: 7056 case SD_LV_ALLNODES:
7057 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group, 7057 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7058 d->send_covered, d->tmpmask); 7058 d->send_covered, d->tmpmask);
7059 break; 7059 break;
7060 #endif 7060 #endif
7061 default: 7061 default:
7062 break; 7062 break;
7063 } 7063 }
7064 } 7064 }
7065 7065
7066 /* 7066 /*
7067 * Build sched domains for a given set of cpus and attach the sched domains 7067 * Build sched domains for a given set of cpus and attach the sched domains
7068 * to the individual cpus 7068 * to the individual cpus
7069 */ 7069 */
7070 static int __build_sched_domains(const struct cpumask *cpu_map, 7070 static int __build_sched_domains(const struct cpumask *cpu_map,
7071 struct sched_domain_attr *attr) 7071 struct sched_domain_attr *attr)
7072 { 7072 {
7073 enum s_alloc alloc_state = sa_none; 7073 enum s_alloc alloc_state = sa_none;
7074 struct s_data d; 7074 struct s_data d;
7075 struct sched_domain *sd; 7075 struct sched_domain *sd;
7076 int i; 7076 int i;
7077 #ifdef CONFIG_NUMA 7077 #ifdef CONFIG_NUMA
7078 d.sd_allnodes = 0; 7078 d.sd_allnodes = 0;
7079 #endif 7079 #endif
7080 7080
7081 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 7081 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7082 if (alloc_state != sa_rootdomain) 7082 if (alloc_state != sa_rootdomain)
7083 goto error; 7083 goto error;
7084 alloc_state = sa_sched_groups; 7084 alloc_state = sa_sched_groups;
7085 7085
7086 /* 7086 /*
7087 * Set up domains for cpus specified by the cpu_map. 7087 * Set up domains for cpus specified by the cpu_map.
7088 */ 7088 */
7089 for_each_cpu(i, cpu_map) { 7089 for_each_cpu(i, cpu_map) {
7090 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)), 7090 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7091 cpu_map); 7091 cpu_map);
7092 7092
7093 sd = __build_numa_sched_domains(&d, cpu_map, attr, i); 7093 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7094 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i); 7094 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7095 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i); 7095 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7096 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i); 7096 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
7097 } 7097 }
7098 7098
7099 for_each_cpu(i, cpu_map) { 7099 for_each_cpu(i, cpu_map) {
7100 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i); 7100 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7101 build_sched_groups(&d, SD_LV_MC, cpu_map, i); 7101 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
7102 } 7102 }
7103 7103
7104 /* Set up physical groups */ 7104 /* Set up physical groups */
7105 for (i = 0; i < nr_node_ids; i++) 7105 for (i = 0; i < nr_node_ids; i++)
7106 build_sched_groups(&d, SD_LV_CPU, cpu_map, i); 7106 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7107 7107
7108 #ifdef CONFIG_NUMA 7108 #ifdef CONFIG_NUMA
7109 /* Set up node groups */ 7109 /* Set up node groups */
7110 if (d.sd_allnodes) 7110 if (d.sd_allnodes)
7111 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0); 7111 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7112 7112
7113 for (i = 0; i < nr_node_ids; i++) 7113 for (i = 0; i < nr_node_ids; i++)
7114 if (build_numa_sched_groups(&d, cpu_map, i)) 7114 if (build_numa_sched_groups(&d, cpu_map, i))
7115 goto error; 7115 goto error;
7116 #endif 7116 #endif
7117 7117
7118 /* Calculate CPU power for physical packages and nodes */ 7118 /* Calculate CPU power for physical packages and nodes */
7119 #ifdef CONFIG_SCHED_SMT 7119 #ifdef CONFIG_SCHED_SMT
7120 for_each_cpu(i, cpu_map) { 7120 for_each_cpu(i, cpu_map) {
7121 sd = &per_cpu(cpu_domains, i).sd; 7121 sd = &per_cpu(cpu_domains, i).sd;
7122 init_sched_groups_power(i, sd); 7122 init_sched_groups_power(i, sd);
7123 } 7123 }
7124 #endif 7124 #endif
7125 #ifdef CONFIG_SCHED_MC 7125 #ifdef CONFIG_SCHED_MC
7126 for_each_cpu(i, cpu_map) { 7126 for_each_cpu(i, cpu_map) {
7127 sd = &per_cpu(core_domains, i).sd; 7127 sd = &per_cpu(core_domains, i).sd;
7128 init_sched_groups_power(i, sd); 7128 init_sched_groups_power(i, sd);
7129 } 7129 }
7130 #endif 7130 #endif
7131 7131
7132 for_each_cpu(i, cpu_map) { 7132 for_each_cpu(i, cpu_map) {
7133 sd = &per_cpu(phys_domains, i).sd; 7133 sd = &per_cpu(phys_domains, i).sd;
7134 init_sched_groups_power(i, sd); 7134 init_sched_groups_power(i, sd);
7135 } 7135 }
7136 7136
7137 #ifdef CONFIG_NUMA 7137 #ifdef CONFIG_NUMA
7138 for (i = 0; i < nr_node_ids; i++) 7138 for (i = 0; i < nr_node_ids; i++)
7139 init_numa_sched_groups_power(d.sched_group_nodes[i]); 7139 init_numa_sched_groups_power(d.sched_group_nodes[i]);
7140 7140
7141 if (d.sd_allnodes) { 7141 if (d.sd_allnodes) {
7142 struct sched_group *sg; 7142 struct sched_group *sg;
7143 7143
7144 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg, 7144 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7145 d.tmpmask); 7145 d.tmpmask);
7146 init_numa_sched_groups_power(sg); 7146 init_numa_sched_groups_power(sg);
7147 } 7147 }
7148 #endif 7148 #endif
7149 7149
7150 /* Attach the domains */ 7150 /* Attach the domains */
7151 for_each_cpu(i, cpu_map) { 7151 for_each_cpu(i, cpu_map) {
7152 #ifdef CONFIG_SCHED_SMT 7152 #ifdef CONFIG_SCHED_SMT
7153 sd = &per_cpu(cpu_domains, i).sd; 7153 sd = &per_cpu(cpu_domains, i).sd;
7154 #elif defined(CONFIG_SCHED_MC) 7154 #elif defined(CONFIG_SCHED_MC)
7155 sd = &per_cpu(core_domains, i).sd; 7155 sd = &per_cpu(core_domains, i).sd;
7156 #else 7156 #else
7157 sd = &per_cpu(phys_domains, i).sd; 7157 sd = &per_cpu(phys_domains, i).sd;
7158 #endif 7158 #endif
7159 cpu_attach_domain(sd, d.rd, i); 7159 cpu_attach_domain(sd, d.rd, i);
7160 } 7160 }
7161 7161
7162 d.sched_group_nodes = NULL; /* don't free this we still need it */ 7162 d.sched_group_nodes = NULL; /* don't free this we still need it */
7163 __free_domain_allocs(&d, sa_tmpmask, cpu_map); 7163 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7164 return 0; 7164 return 0;
7165 7165
7166 error: 7166 error:
7167 __free_domain_allocs(&d, alloc_state, cpu_map); 7167 __free_domain_allocs(&d, alloc_state, cpu_map);
7168 return -ENOMEM; 7168 return -ENOMEM;
7169 } 7169 }
7170 7170
7171 static int build_sched_domains(const struct cpumask *cpu_map) 7171 static int build_sched_domains(const struct cpumask *cpu_map)
7172 { 7172 {
7173 return __build_sched_domains(cpu_map, NULL); 7173 return __build_sched_domains(cpu_map, NULL);
7174 } 7174 }
7175 7175
7176 static cpumask_var_t *doms_cur; /* current sched domains */ 7176 static cpumask_var_t *doms_cur; /* current sched domains */
7177 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 7177 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7178 static struct sched_domain_attr *dattr_cur; 7178 static struct sched_domain_attr *dattr_cur;
7179 /* attribues of custom domains in 'doms_cur' */ 7179 /* attribues of custom domains in 'doms_cur' */
7180 7180
7181 /* 7181 /*
7182 * Special case: If a kmalloc of a doms_cur partition (array of 7182 * Special case: If a kmalloc of a doms_cur partition (array of
7183 * cpumask) fails, then fallback to a single sched domain, 7183 * cpumask) fails, then fallback to a single sched domain,
7184 * as determined by the single cpumask fallback_doms. 7184 * as determined by the single cpumask fallback_doms.
7185 */ 7185 */
7186 static cpumask_var_t fallback_doms; 7186 static cpumask_var_t fallback_doms;
7187 7187
7188 /* 7188 /*
7189 * arch_update_cpu_topology lets virtualized architectures update the 7189 * arch_update_cpu_topology lets virtualized architectures update the
7190 * cpu core maps. It is supposed to return 1 if the topology changed 7190 * cpu core maps. It is supposed to return 1 if the topology changed
7191 * or 0 if it stayed the same. 7191 * or 0 if it stayed the same.
7192 */ 7192 */
7193 int __attribute__((weak)) arch_update_cpu_topology(void) 7193 int __attribute__((weak)) arch_update_cpu_topology(void)
7194 { 7194 {
7195 return 0; 7195 return 0;
7196 } 7196 }
7197 7197
7198 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 7198 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7199 { 7199 {
7200 int i; 7200 int i;
7201 cpumask_var_t *doms; 7201 cpumask_var_t *doms;
7202 7202
7203 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 7203 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7204 if (!doms) 7204 if (!doms)
7205 return NULL; 7205 return NULL;
7206 for (i = 0; i < ndoms; i++) { 7206 for (i = 0; i < ndoms; i++) {
7207 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 7207 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7208 free_sched_domains(doms, i); 7208 free_sched_domains(doms, i);
7209 return NULL; 7209 return NULL;
7210 } 7210 }
7211 } 7211 }
7212 return doms; 7212 return doms;
7213 } 7213 }
7214 7214
7215 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 7215 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7216 { 7216 {
7217 unsigned int i; 7217 unsigned int i;
7218 for (i = 0; i < ndoms; i++) 7218 for (i = 0; i < ndoms; i++)
7219 free_cpumask_var(doms[i]); 7219 free_cpumask_var(doms[i]);
7220 kfree(doms); 7220 kfree(doms);
7221 } 7221 }
7222 7222
7223 /* 7223 /*
7224 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 7224 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7225 * For now this just excludes isolated cpus, but could be used to 7225 * For now this just excludes isolated cpus, but could be used to
7226 * exclude other special cases in the future. 7226 * exclude other special cases in the future.
7227 */ 7227 */
7228 static int arch_init_sched_domains(const struct cpumask *cpu_map) 7228 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7229 { 7229 {
7230 int err; 7230 int err;
7231 7231
7232 arch_update_cpu_topology(); 7232 arch_update_cpu_topology();
7233 ndoms_cur = 1; 7233 ndoms_cur = 1;
7234 doms_cur = alloc_sched_domains(ndoms_cur); 7234 doms_cur = alloc_sched_domains(ndoms_cur);
7235 if (!doms_cur) 7235 if (!doms_cur)
7236 doms_cur = &fallback_doms; 7236 doms_cur = &fallback_doms;
7237 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 7237 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7238 dattr_cur = NULL; 7238 dattr_cur = NULL;
7239 err = build_sched_domains(doms_cur[0]); 7239 err = build_sched_domains(doms_cur[0]);
7240 register_sched_domain_sysctl(); 7240 register_sched_domain_sysctl();
7241 7241
7242 return err; 7242 return err;
7243 } 7243 }
7244 7244
7245 static void arch_destroy_sched_domains(const struct cpumask *cpu_map, 7245 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7246 struct cpumask *tmpmask) 7246 struct cpumask *tmpmask)
7247 { 7247 {
7248 free_sched_groups(cpu_map, tmpmask); 7248 free_sched_groups(cpu_map, tmpmask);
7249 } 7249 }
7250 7250
7251 /* 7251 /*
7252 * Detach sched domains from a group of cpus specified in cpu_map 7252 * Detach sched domains from a group of cpus specified in cpu_map
7253 * These cpus will now be attached to the NULL domain 7253 * These cpus will now be attached to the NULL domain
7254 */ 7254 */
7255 static void detach_destroy_domains(const struct cpumask *cpu_map) 7255 static void detach_destroy_domains(const struct cpumask *cpu_map)
7256 { 7256 {
7257 /* Save because hotplug lock held. */ 7257 /* Save because hotplug lock held. */
7258 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS); 7258 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7259 int i; 7259 int i;
7260 7260
7261 for_each_cpu(i, cpu_map) 7261 for_each_cpu(i, cpu_map)
7262 cpu_attach_domain(NULL, &def_root_domain, i); 7262 cpu_attach_domain(NULL, &def_root_domain, i);
7263 synchronize_sched(); 7263 synchronize_sched();
7264 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask)); 7264 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7265 } 7265 }
7266 7266
7267 /* handle null as "default" */ 7267 /* handle null as "default" */
7268 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 7268 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7269 struct sched_domain_attr *new, int idx_new) 7269 struct sched_domain_attr *new, int idx_new)
7270 { 7270 {
7271 struct sched_domain_attr tmp; 7271 struct sched_domain_attr tmp;
7272 7272
7273 /* fast path */ 7273 /* fast path */
7274 if (!new && !cur) 7274 if (!new && !cur)
7275 return 1; 7275 return 1;
7276 7276
7277 tmp = SD_ATTR_INIT; 7277 tmp = SD_ATTR_INIT;
7278 return !memcmp(cur ? (cur + idx_cur) : &tmp, 7278 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7279 new ? (new + idx_new) : &tmp, 7279 new ? (new + idx_new) : &tmp,
7280 sizeof(struct sched_domain_attr)); 7280 sizeof(struct sched_domain_attr));
7281 } 7281 }
7282 7282
7283 /* 7283 /*
7284 * Partition sched domains as specified by the 'ndoms_new' 7284 * Partition sched domains as specified by the 'ndoms_new'
7285 * cpumasks in the array doms_new[] of cpumasks. This compares 7285 * cpumasks in the array doms_new[] of cpumasks. This compares
7286 * doms_new[] to the current sched domain partitioning, doms_cur[]. 7286 * doms_new[] to the current sched domain partitioning, doms_cur[].
7287 * It destroys each deleted domain and builds each new domain. 7287 * It destroys each deleted domain and builds each new domain.
7288 * 7288 *
7289 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 7289 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7290 * The masks don't intersect (don't overlap.) We should setup one 7290 * The masks don't intersect (don't overlap.) We should setup one
7291 * sched domain for each mask. CPUs not in any of the cpumasks will 7291 * sched domain for each mask. CPUs not in any of the cpumasks will
7292 * not be load balanced. If the same cpumask appears both in the 7292 * not be load balanced. If the same cpumask appears both in the
7293 * current 'doms_cur' domains and in the new 'doms_new', we can leave 7293 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7294 * it as it is. 7294 * it as it is.
7295 * 7295 *
7296 * The passed in 'doms_new' should be allocated using 7296 * The passed in 'doms_new' should be allocated using
7297 * alloc_sched_domains. This routine takes ownership of it and will 7297 * alloc_sched_domains. This routine takes ownership of it and will
7298 * free_sched_domains it when done with it. If the caller failed the 7298 * free_sched_domains it when done with it. If the caller failed the
7299 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 7299 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7300 * and partition_sched_domains() will fallback to the single partition 7300 * and partition_sched_domains() will fallback to the single partition
7301 * 'fallback_doms', it also forces the domains to be rebuilt. 7301 * 'fallback_doms', it also forces the domains to be rebuilt.
7302 * 7302 *
7303 * If doms_new == NULL it will be replaced with cpu_online_mask. 7303 * If doms_new == NULL it will be replaced with cpu_online_mask.
7304 * ndoms_new == 0 is a special case for destroying existing domains, 7304 * ndoms_new == 0 is a special case for destroying existing domains,
7305 * and it will not create the default domain. 7305 * and it will not create the default domain.
7306 * 7306 *
7307 * Call with hotplug lock held 7307 * Call with hotplug lock held
7308 */ 7308 */
7309 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 7309 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7310 struct sched_domain_attr *dattr_new) 7310 struct sched_domain_attr *dattr_new)
7311 { 7311 {
7312 int i, j, n; 7312 int i, j, n;
7313 int new_topology; 7313 int new_topology;
7314 7314
7315 mutex_lock(&sched_domains_mutex); 7315 mutex_lock(&sched_domains_mutex);
7316 7316
7317 /* always unregister in case we don't destroy any domains */ 7317 /* always unregister in case we don't destroy any domains */
7318 unregister_sched_domain_sysctl(); 7318 unregister_sched_domain_sysctl();
7319 7319
7320 /* Let architecture update cpu core mappings. */ 7320 /* Let architecture update cpu core mappings. */
7321 new_topology = arch_update_cpu_topology(); 7321 new_topology = arch_update_cpu_topology();
7322 7322
7323 n = doms_new ? ndoms_new : 0; 7323 n = doms_new ? ndoms_new : 0;
7324 7324
7325 /* Destroy deleted domains */ 7325 /* Destroy deleted domains */
7326 for (i = 0; i < ndoms_cur; i++) { 7326 for (i = 0; i < ndoms_cur; i++) {
7327 for (j = 0; j < n && !new_topology; j++) { 7327 for (j = 0; j < n && !new_topology; j++) {
7328 if (cpumask_equal(doms_cur[i], doms_new[j]) 7328 if (cpumask_equal(doms_cur[i], doms_new[j])
7329 && dattrs_equal(dattr_cur, i, dattr_new, j)) 7329 && dattrs_equal(dattr_cur, i, dattr_new, j))
7330 goto match1; 7330 goto match1;
7331 } 7331 }
7332 /* no match - a current sched domain not in new doms_new[] */ 7332 /* no match - a current sched domain not in new doms_new[] */
7333 detach_destroy_domains(doms_cur[i]); 7333 detach_destroy_domains(doms_cur[i]);
7334 match1: 7334 match1:
7335 ; 7335 ;
7336 } 7336 }
7337 7337
7338 if (doms_new == NULL) { 7338 if (doms_new == NULL) {
7339 ndoms_cur = 0; 7339 ndoms_cur = 0;
7340 doms_new = &fallback_doms; 7340 doms_new = &fallback_doms;
7341 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 7341 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7342 WARN_ON_ONCE(dattr_new); 7342 WARN_ON_ONCE(dattr_new);
7343 } 7343 }
7344 7344
7345 /* Build new domains */ 7345 /* Build new domains */
7346 for (i = 0; i < ndoms_new; i++) { 7346 for (i = 0; i < ndoms_new; i++) {
7347 for (j = 0; j < ndoms_cur && !new_topology; j++) { 7347 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7348 if (cpumask_equal(doms_new[i], doms_cur[j]) 7348 if (cpumask_equal(doms_new[i], doms_cur[j])
7349 && dattrs_equal(dattr_new, i, dattr_cur, j)) 7349 && dattrs_equal(dattr_new, i, dattr_cur, j))
7350 goto match2; 7350 goto match2;
7351 } 7351 }
7352 /* no match - add a new doms_new */ 7352 /* no match - add a new doms_new */
7353 __build_sched_domains(doms_new[i], 7353 __build_sched_domains(doms_new[i],
7354 dattr_new ? dattr_new + i : NULL); 7354 dattr_new ? dattr_new + i : NULL);
7355 match2: 7355 match2:
7356 ; 7356 ;
7357 } 7357 }
7358 7358
7359 /* Remember the new sched domains */ 7359 /* Remember the new sched domains */
7360 if (doms_cur != &fallback_doms) 7360 if (doms_cur != &fallback_doms)
7361 free_sched_domains(doms_cur, ndoms_cur); 7361 free_sched_domains(doms_cur, ndoms_cur);
7362 kfree(dattr_cur); /* kfree(NULL) is safe */ 7362 kfree(dattr_cur); /* kfree(NULL) is safe */
7363 doms_cur = doms_new; 7363 doms_cur = doms_new;
7364 dattr_cur = dattr_new; 7364 dattr_cur = dattr_new;
7365 ndoms_cur = ndoms_new; 7365 ndoms_cur = ndoms_new;
7366 7366
7367 register_sched_domain_sysctl(); 7367 register_sched_domain_sysctl();
7368 7368
7369 mutex_unlock(&sched_domains_mutex); 7369 mutex_unlock(&sched_domains_mutex);
7370 } 7370 }
7371 7371
7372 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) 7372 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7373 static void arch_reinit_sched_domains(void) 7373 static void arch_reinit_sched_domains(void)
7374 { 7374 {
7375 get_online_cpus(); 7375 get_online_cpus();
7376 7376
7377 /* Destroy domains first to force the rebuild */ 7377 /* Destroy domains first to force the rebuild */
7378 partition_sched_domains(0, NULL, NULL); 7378 partition_sched_domains(0, NULL, NULL);
7379 7379
7380 rebuild_sched_domains(); 7380 rebuild_sched_domains();
7381 put_online_cpus(); 7381 put_online_cpus();
7382 } 7382 }
7383 7383
7384 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt) 7384 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7385 { 7385 {
7386 unsigned int level = 0; 7386 unsigned int level = 0;
7387 7387
7388 if (sscanf(buf, "%u", &level) != 1) 7388 if (sscanf(buf, "%u", &level) != 1)
7389 return -EINVAL; 7389 return -EINVAL;
7390 7390
7391 /* 7391 /*
7392 * level is always be positive so don't check for 7392 * level is always be positive so don't check for
7393 * level < POWERSAVINGS_BALANCE_NONE which is 0 7393 * level < POWERSAVINGS_BALANCE_NONE which is 0
7394 * What happens on 0 or 1 byte write, 7394 * What happens on 0 or 1 byte write,
7395 * need to check for count as well? 7395 * need to check for count as well?
7396 */ 7396 */
7397 7397
7398 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS) 7398 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7399 return -EINVAL; 7399 return -EINVAL;
7400 7400
7401 if (smt) 7401 if (smt)
7402 sched_smt_power_savings = level; 7402 sched_smt_power_savings = level;
7403 else 7403 else
7404 sched_mc_power_savings = level; 7404 sched_mc_power_savings = level;
7405 7405
7406 arch_reinit_sched_domains(); 7406 arch_reinit_sched_domains();
7407 7407
7408 return count; 7408 return count;
7409 } 7409 }
7410 7410
7411 #ifdef CONFIG_SCHED_MC 7411 #ifdef CONFIG_SCHED_MC
7412 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class, 7412 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7413 struct sysdev_class_attribute *attr, 7413 struct sysdev_class_attribute *attr,
7414 char *page) 7414 char *page)
7415 { 7415 {
7416 return sprintf(page, "%u\n", sched_mc_power_savings); 7416 return sprintf(page, "%u\n", sched_mc_power_savings);
7417 } 7417 }
7418 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class, 7418 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7419 struct sysdev_class_attribute *attr, 7419 struct sysdev_class_attribute *attr,
7420 const char *buf, size_t count) 7420 const char *buf, size_t count)
7421 { 7421 {
7422 return sched_power_savings_store(buf, count, 0); 7422 return sched_power_savings_store(buf, count, 0);
7423 } 7423 }
7424 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644, 7424 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7425 sched_mc_power_savings_show, 7425 sched_mc_power_savings_show,
7426 sched_mc_power_savings_store); 7426 sched_mc_power_savings_store);
7427 #endif 7427 #endif
7428 7428
7429 #ifdef CONFIG_SCHED_SMT 7429 #ifdef CONFIG_SCHED_SMT
7430 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev, 7430 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7431 struct sysdev_class_attribute *attr, 7431 struct sysdev_class_attribute *attr,
7432 char *page) 7432 char *page)
7433 { 7433 {
7434 return sprintf(page, "%u\n", sched_smt_power_savings); 7434 return sprintf(page, "%u\n", sched_smt_power_savings);
7435 } 7435 }
7436 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev, 7436 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7437 struct sysdev_class_attribute *attr, 7437 struct sysdev_class_attribute *attr,
7438 const char *buf, size_t count) 7438 const char *buf, size_t count)
7439 { 7439 {
7440 return sched_power_savings_store(buf, count, 1); 7440 return sched_power_savings_store(buf, count, 1);
7441 } 7441 }
7442 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644, 7442 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7443 sched_smt_power_savings_show, 7443 sched_smt_power_savings_show,
7444 sched_smt_power_savings_store); 7444 sched_smt_power_savings_store);
7445 #endif 7445 #endif
7446 7446
7447 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls) 7447 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7448 { 7448 {
7449 int err = 0; 7449 int err = 0;
7450 7450
7451 #ifdef CONFIG_SCHED_SMT 7451 #ifdef CONFIG_SCHED_SMT
7452 if (smt_capable()) 7452 if (smt_capable())
7453 err = sysfs_create_file(&cls->kset.kobj, 7453 err = sysfs_create_file(&cls->kset.kobj,
7454 &attr_sched_smt_power_savings.attr); 7454 &attr_sched_smt_power_savings.attr);
7455 #endif 7455 #endif
7456 #ifdef CONFIG_SCHED_MC 7456 #ifdef CONFIG_SCHED_MC
7457 if (!err && mc_capable()) 7457 if (!err && mc_capable())
7458 err = sysfs_create_file(&cls->kset.kobj, 7458 err = sysfs_create_file(&cls->kset.kobj,
7459 &attr_sched_mc_power_savings.attr); 7459 &attr_sched_mc_power_savings.attr);
7460 #endif 7460 #endif
7461 return err; 7461 return err;
7462 } 7462 }
7463 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ 7463 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7464 7464
7465 #ifndef CONFIG_CPUSETS 7465 #ifndef CONFIG_CPUSETS
7466 /* 7466 /*
7467 * Add online and remove offline CPUs from the scheduler domains. 7467 * Add online and remove offline CPUs from the scheduler domains.
7468 * When cpusets are enabled they take over this function. 7468 * When cpusets are enabled they take over this function.
7469 */ 7469 */
7470 static int update_sched_domains(struct notifier_block *nfb, 7470 static int update_sched_domains(struct notifier_block *nfb,
7471 unsigned long action, void *hcpu) 7471 unsigned long action, void *hcpu)
7472 { 7472 {
7473 switch (action) { 7473 switch (action) {
7474 case CPU_ONLINE: 7474 case CPU_ONLINE:
7475 case CPU_ONLINE_FROZEN: 7475 case CPU_ONLINE_FROZEN:
7476 case CPU_DOWN_PREPARE: 7476 case CPU_DOWN_PREPARE:
7477 case CPU_DOWN_PREPARE_FROZEN: 7477 case CPU_DOWN_PREPARE_FROZEN:
7478 case CPU_DOWN_FAILED: 7478 case CPU_DOWN_FAILED:
7479 case CPU_DOWN_FAILED_FROZEN: 7479 case CPU_DOWN_FAILED_FROZEN:
7480 partition_sched_domains(1, NULL, NULL); 7480 partition_sched_domains(1, NULL, NULL);
7481 return NOTIFY_OK; 7481 return NOTIFY_OK;
7482 7482
7483 default: 7483 default:
7484 return NOTIFY_DONE; 7484 return NOTIFY_DONE;
7485 } 7485 }
7486 } 7486 }
7487 #endif 7487 #endif
7488 7488
7489 static int update_runtime(struct notifier_block *nfb, 7489 static int update_runtime(struct notifier_block *nfb,
7490 unsigned long action, void *hcpu) 7490 unsigned long action, void *hcpu)
7491 { 7491 {
7492 int cpu = (int)(long)hcpu; 7492 int cpu = (int)(long)hcpu;
7493 7493
7494 switch (action) { 7494 switch (action) {
7495 case CPU_DOWN_PREPARE: 7495 case CPU_DOWN_PREPARE:
7496 case CPU_DOWN_PREPARE_FROZEN: 7496 case CPU_DOWN_PREPARE_FROZEN:
7497 disable_runtime(cpu_rq(cpu)); 7497 disable_runtime(cpu_rq(cpu));
7498 return NOTIFY_OK; 7498 return NOTIFY_OK;
7499 7499
7500 case CPU_DOWN_FAILED: 7500 case CPU_DOWN_FAILED:
7501 case CPU_DOWN_FAILED_FROZEN: 7501 case CPU_DOWN_FAILED_FROZEN:
7502 case CPU_ONLINE: 7502 case CPU_ONLINE:
7503 case CPU_ONLINE_FROZEN: 7503 case CPU_ONLINE_FROZEN:
7504 enable_runtime(cpu_rq(cpu)); 7504 enable_runtime(cpu_rq(cpu));
7505 return NOTIFY_OK; 7505 return NOTIFY_OK;
7506 7506
7507 default: 7507 default:
7508 return NOTIFY_DONE; 7508 return NOTIFY_DONE;
7509 } 7509 }
7510 } 7510 }
7511 7511
7512 void __init sched_init_smp(void) 7512 void __init sched_init_smp(void)
7513 { 7513 {
7514 cpumask_var_t non_isolated_cpus; 7514 cpumask_var_t non_isolated_cpus;
7515 7515
7516 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 7516 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7517 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 7517 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7518 7518
7519 #if defined(CONFIG_NUMA) 7519 #if defined(CONFIG_NUMA)
7520 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **), 7520 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7521 GFP_KERNEL); 7521 GFP_KERNEL);
7522 BUG_ON(sched_group_nodes_bycpu == NULL); 7522 BUG_ON(sched_group_nodes_bycpu == NULL);
7523 #endif 7523 #endif
7524 get_online_cpus(); 7524 get_online_cpus();
7525 mutex_lock(&sched_domains_mutex); 7525 mutex_lock(&sched_domains_mutex);
7526 arch_init_sched_domains(cpu_active_mask); 7526 arch_init_sched_domains(cpu_active_mask);
7527 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 7527 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7528 if (cpumask_empty(non_isolated_cpus)) 7528 if (cpumask_empty(non_isolated_cpus))
7529 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 7529 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7530 mutex_unlock(&sched_domains_mutex); 7530 mutex_unlock(&sched_domains_mutex);
7531 put_online_cpus(); 7531 put_online_cpus();
7532 7532
7533 #ifndef CONFIG_CPUSETS 7533 #ifndef CONFIG_CPUSETS
7534 /* XXX: Theoretical race here - CPU may be hotplugged now */ 7534 /* XXX: Theoretical race here - CPU may be hotplugged now */
7535 hotcpu_notifier(update_sched_domains, 0); 7535 hotcpu_notifier(update_sched_domains, 0);
7536 #endif 7536 #endif
7537 7537
7538 /* RT runtime code needs to handle some hotplug events */ 7538 /* RT runtime code needs to handle some hotplug events */
7539 hotcpu_notifier(update_runtime, 0); 7539 hotcpu_notifier(update_runtime, 0);
7540 7540
7541 init_hrtick(); 7541 init_hrtick();
7542 7542
7543 /* Move init over to a non-isolated CPU */ 7543 /* Move init over to a non-isolated CPU */
7544 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 7544 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7545 BUG(); 7545 BUG();
7546 sched_init_granularity(); 7546 sched_init_granularity();
7547 free_cpumask_var(non_isolated_cpus); 7547 free_cpumask_var(non_isolated_cpus);
7548 7548
7549 init_sched_rt_class(); 7549 init_sched_rt_class();
7550 } 7550 }
7551 #else 7551 #else
7552 void __init sched_init_smp(void) 7552 void __init sched_init_smp(void)
7553 { 7553 {
7554 sched_init_granularity(); 7554 sched_init_granularity();
7555 } 7555 }
7556 #endif /* CONFIG_SMP */ 7556 #endif /* CONFIG_SMP */
7557 7557
7558 const_debug unsigned int sysctl_timer_migration = 1; 7558 const_debug unsigned int sysctl_timer_migration = 1;
7559 7559
7560 int in_sched_functions(unsigned long addr) 7560 int in_sched_functions(unsigned long addr)
7561 { 7561 {
7562 return in_lock_functions(addr) || 7562 return in_lock_functions(addr) ||
7563 (addr >= (unsigned long)__sched_text_start 7563 (addr >= (unsigned long)__sched_text_start
7564 && addr < (unsigned long)__sched_text_end); 7564 && addr < (unsigned long)__sched_text_end);
7565 } 7565 }
7566 7566
7567 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq) 7567 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7568 { 7568 {
7569 cfs_rq->tasks_timeline = RB_ROOT; 7569 cfs_rq->tasks_timeline = RB_ROOT;
7570 INIT_LIST_HEAD(&cfs_rq->tasks); 7570 INIT_LIST_HEAD(&cfs_rq->tasks);
7571 #ifdef CONFIG_FAIR_GROUP_SCHED 7571 #ifdef CONFIG_FAIR_GROUP_SCHED
7572 cfs_rq->rq = rq; 7572 cfs_rq->rq = rq;
7573 #endif 7573 #endif
7574 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 7574 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7575 } 7575 }
7576 7576
7577 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) 7577 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7578 { 7578 {
7579 struct rt_prio_array *array; 7579 struct rt_prio_array *array;
7580 int i; 7580 int i;
7581 7581
7582 array = &rt_rq->active; 7582 array = &rt_rq->active;
7583 for (i = 0; i < MAX_RT_PRIO; i++) { 7583 for (i = 0; i < MAX_RT_PRIO; i++) {
7584 INIT_LIST_HEAD(array->queue + i); 7584 INIT_LIST_HEAD(array->queue + i);
7585 __clear_bit(i, array->bitmap); 7585 __clear_bit(i, array->bitmap);
7586 } 7586 }
7587 /* delimiter for bitsearch: */ 7587 /* delimiter for bitsearch: */
7588 __set_bit(MAX_RT_PRIO, array->bitmap); 7588 __set_bit(MAX_RT_PRIO, array->bitmap);
7589 7589
7590 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 7590 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7591 rt_rq->highest_prio.curr = MAX_RT_PRIO; 7591 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7592 #ifdef CONFIG_SMP 7592 #ifdef CONFIG_SMP
7593 rt_rq->highest_prio.next = MAX_RT_PRIO; 7593 rt_rq->highest_prio.next = MAX_RT_PRIO;
7594 #endif 7594 #endif
7595 #endif 7595 #endif
7596 #ifdef CONFIG_SMP 7596 #ifdef CONFIG_SMP
7597 rt_rq->rt_nr_migratory = 0; 7597 rt_rq->rt_nr_migratory = 0;
7598 rt_rq->overloaded = 0; 7598 rt_rq->overloaded = 0;
7599 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock); 7599 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
7600 #endif 7600 #endif
7601 7601
7602 rt_rq->rt_time = 0; 7602 rt_rq->rt_time = 0;
7603 rt_rq->rt_throttled = 0; 7603 rt_rq->rt_throttled = 0;
7604 rt_rq->rt_runtime = 0; 7604 rt_rq->rt_runtime = 0;
7605 raw_spin_lock_init(&rt_rq->rt_runtime_lock); 7605 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7606 7606
7607 #ifdef CONFIG_RT_GROUP_SCHED 7607 #ifdef CONFIG_RT_GROUP_SCHED
7608 rt_rq->rt_nr_boosted = 0; 7608 rt_rq->rt_nr_boosted = 0;
7609 rt_rq->rq = rq; 7609 rt_rq->rq = rq;
7610 #endif 7610 #endif
7611 } 7611 }
7612 7612
7613 #ifdef CONFIG_FAIR_GROUP_SCHED 7613 #ifdef CONFIG_FAIR_GROUP_SCHED
7614 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 7614 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7615 struct sched_entity *se, int cpu, int add, 7615 struct sched_entity *se, int cpu, int add,
7616 struct sched_entity *parent) 7616 struct sched_entity *parent)
7617 { 7617 {
7618 struct rq *rq = cpu_rq(cpu); 7618 struct rq *rq = cpu_rq(cpu);
7619 tg->cfs_rq[cpu] = cfs_rq; 7619 tg->cfs_rq[cpu] = cfs_rq;
7620 init_cfs_rq(cfs_rq, rq); 7620 init_cfs_rq(cfs_rq, rq);
7621 cfs_rq->tg = tg; 7621 cfs_rq->tg = tg;
7622 if (add) 7622 if (add)
7623 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list); 7623 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7624 7624
7625 tg->se[cpu] = se; 7625 tg->se[cpu] = se;
7626 /* se could be NULL for init_task_group */ 7626 /* se could be NULL for init_task_group */
7627 if (!se) 7627 if (!se)
7628 return; 7628 return;
7629 7629
7630 if (!parent) 7630 if (!parent)
7631 se->cfs_rq = &rq->cfs; 7631 se->cfs_rq = &rq->cfs;
7632 else 7632 else
7633 se->cfs_rq = parent->my_q; 7633 se->cfs_rq = parent->my_q;
7634 7634
7635 se->my_q = cfs_rq; 7635 se->my_q = cfs_rq;
7636 se->load.weight = tg->shares; 7636 se->load.weight = tg->shares;
7637 se->load.inv_weight = 0; 7637 se->load.inv_weight = 0;
7638 se->parent = parent; 7638 se->parent = parent;
7639 } 7639 }
7640 #endif 7640 #endif
7641 7641
7642 #ifdef CONFIG_RT_GROUP_SCHED 7642 #ifdef CONFIG_RT_GROUP_SCHED
7643 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 7643 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7644 struct sched_rt_entity *rt_se, int cpu, int add, 7644 struct sched_rt_entity *rt_se, int cpu, int add,
7645 struct sched_rt_entity *parent) 7645 struct sched_rt_entity *parent)
7646 { 7646 {
7647 struct rq *rq = cpu_rq(cpu); 7647 struct rq *rq = cpu_rq(cpu);
7648 7648
7649 tg->rt_rq[cpu] = rt_rq; 7649 tg->rt_rq[cpu] = rt_rq;
7650 init_rt_rq(rt_rq, rq); 7650 init_rt_rq(rt_rq, rq);
7651 rt_rq->tg = tg; 7651 rt_rq->tg = tg;
7652 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; 7652 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7653 if (add) 7653 if (add)
7654 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list); 7654 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7655 7655
7656 tg->rt_se[cpu] = rt_se; 7656 tg->rt_se[cpu] = rt_se;
7657 if (!rt_se) 7657 if (!rt_se)
7658 return; 7658 return;
7659 7659
7660 if (!parent) 7660 if (!parent)
7661 rt_se->rt_rq = &rq->rt; 7661 rt_se->rt_rq = &rq->rt;
7662 else 7662 else
7663 rt_se->rt_rq = parent->my_q; 7663 rt_se->rt_rq = parent->my_q;
7664 7664
7665 rt_se->my_q = rt_rq; 7665 rt_se->my_q = rt_rq;
7666 rt_se->parent = parent; 7666 rt_se->parent = parent;
7667 INIT_LIST_HEAD(&rt_se->run_list); 7667 INIT_LIST_HEAD(&rt_se->run_list);
7668 } 7668 }
7669 #endif 7669 #endif
7670 7670
7671 void __init sched_init(void) 7671 void __init sched_init(void)
7672 { 7672 {
7673 int i, j; 7673 int i, j;
7674 unsigned long alloc_size = 0, ptr; 7674 unsigned long alloc_size = 0, ptr;
7675 7675
7676 #ifdef CONFIG_FAIR_GROUP_SCHED 7676 #ifdef CONFIG_FAIR_GROUP_SCHED
7677 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7677 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7678 #endif 7678 #endif
7679 #ifdef CONFIG_RT_GROUP_SCHED 7679 #ifdef CONFIG_RT_GROUP_SCHED
7680 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7680 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7681 #endif 7681 #endif
7682 #ifdef CONFIG_CPUMASK_OFFSTACK 7682 #ifdef CONFIG_CPUMASK_OFFSTACK
7683 alloc_size += num_possible_cpus() * cpumask_size(); 7683 alloc_size += num_possible_cpus() * cpumask_size();
7684 #endif 7684 #endif
7685 if (alloc_size) { 7685 if (alloc_size) {
7686 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 7686 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7687 7687
7688 #ifdef CONFIG_FAIR_GROUP_SCHED 7688 #ifdef CONFIG_FAIR_GROUP_SCHED
7689 init_task_group.se = (struct sched_entity **)ptr; 7689 init_task_group.se = (struct sched_entity **)ptr;
7690 ptr += nr_cpu_ids * sizeof(void **); 7690 ptr += nr_cpu_ids * sizeof(void **);
7691 7691
7692 init_task_group.cfs_rq = (struct cfs_rq **)ptr; 7692 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7693 ptr += nr_cpu_ids * sizeof(void **); 7693 ptr += nr_cpu_ids * sizeof(void **);
7694 7694
7695 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7695 #endif /* CONFIG_FAIR_GROUP_SCHED */
7696 #ifdef CONFIG_RT_GROUP_SCHED 7696 #ifdef CONFIG_RT_GROUP_SCHED
7697 init_task_group.rt_se = (struct sched_rt_entity **)ptr; 7697 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7698 ptr += nr_cpu_ids * sizeof(void **); 7698 ptr += nr_cpu_ids * sizeof(void **);
7699 7699
7700 init_task_group.rt_rq = (struct rt_rq **)ptr; 7700 init_task_group.rt_rq = (struct rt_rq **)ptr;
7701 ptr += nr_cpu_ids * sizeof(void **); 7701 ptr += nr_cpu_ids * sizeof(void **);
7702 7702
7703 #endif /* CONFIG_RT_GROUP_SCHED */ 7703 #endif /* CONFIG_RT_GROUP_SCHED */
7704 #ifdef CONFIG_CPUMASK_OFFSTACK 7704 #ifdef CONFIG_CPUMASK_OFFSTACK
7705 for_each_possible_cpu(i) { 7705 for_each_possible_cpu(i) {
7706 per_cpu(load_balance_tmpmask, i) = (void *)ptr; 7706 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7707 ptr += cpumask_size(); 7707 ptr += cpumask_size();
7708 } 7708 }
7709 #endif /* CONFIG_CPUMASK_OFFSTACK */ 7709 #endif /* CONFIG_CPUMASK_OFFSTACK */
7710 } 7710 }
7711 7711
7712 #ifdef CONFIG_SMP 7712 #ifdef CONFIG_SMP
7713 init_defrootdomain(); 7713 init_defrootdomain();
7714 #endif 7714 #endif
7715 7715
7716 init_rt_bandwidth(&def_rt_bandwidth, 7716 init_rt_bandwidth(&def_rt_bandwidth,
7717 global_rt_period(), global_rt_runtime()); 7717 global_rt_period(), global_rt_runtime());
7718 7718
7719 #ifdef CONFIG_RT_GROUP_SCHED 7719 #ifdef CONFIG_RT_GROUP_SCHED
7720 init_rt_bandwidth(&init_task_group.rt_bandwidth, 7720 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7721 global_rt_period(), global_rt_runtime()); 7721 global_rt_period(), global_rt_runtime());
7722 #endif /* CONFIG_RT_GROUP_SCHED */ 7722 #endif /* CONFIG_RT_GROUP_SCHED */
7723 7723
7724 #ifdef CONFIG_CGROUP_SCHED 7724 #ifdef CONFIG_CGROUP_SCHED
7725 list_add(&init_task_group.list, &task_groups); 7725 list_add(&init_task_group.list, &task_groups);
7726 INIT_LIST_HEAD(&init_task_group.children); 7726 INIT_LIST_HEAD(&init_task_group.children);
7727 7727
7728 #endif /* CONFIG_CGROUP_SCHED */ 7728 #endif /* CONFIG_CGROUP_SCHED */
7729 7729
7730 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP 7730 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7731 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long), 7731 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7732 __alignof__(unsigned long)); 7732 __alignof__(unsigned long));
7733 #endif 7733 #endif
7734 for_each_possible_cpu(i) { 7734 for_each_possible_cpu(i) {
7735 struct rq *rq; 7735 struct rq *rq;
7736 7736
7737 rq = cpu_rq(i); 7737 rq = cpu_rq(i);
7738 raw_spin_lock_init(&rq->lock); 7738 raw_spin_lock_init(&rq->lock);
7739 rq->nr_running = 0; 7739 rq->nr_running = 0;
7740 rq->calc_load_active = 0; 7740 rq->calc_load_active = 0;
7741 rq->calc_load_update = jiffies + LOAD_FREQ; 7741 rq->calc_load_update = jiffies + LOAD_FREQ;
7742 init_cfs_rq(&rq->cfs, rq); 7742 init_cfs_rq(&rq->cfs, rq);
7743 init_rt_rq(&rq->rt, rq); 7743 init_rt_rq(&rq->rt, rq);
7744 #ifdef CONFIG_FAIR_GROUP_SCHED 7744 #ifdef CONFIG_FAIR_GROUP_SCHED
7745 init_task_group.shares = init_task_group_load; 7745 init_task_group.shares = init_task_group_load;
7746 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 7746 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7747 #ifdef CONFIG_CGROUP_SCHED 7747 #ifdef CONFIG_CGROUP_SCHED
7748 /* 7748 /*
7749 * How much cpu bandwidth does init_task_group get? 7749 * How much cpu bandwidth does init_task_group get?
7750 * 7750 *
7751 * In case of task-groups formed thr' the cgroup filesystem, it 7751 * In case of task-groups formed thr' the cgroup filesystem, it
7752 * gets 100% of the cpu resources in the system. This overall 7752 * gets 100% of the cpu resources in the system. This overall
7753 * system cpu resource is divided among the tasks of 7753 * system cpu resource is divided among the tasks of
7754 * init_task_group and its child task-groups in a fair manner, 7754 * init_task_group and its child task-groups in a fair manner,
7755 * based on each entity's (task or task-group's) weight 7755 * based on each entity's (task or task-group's) weight
7756 * (se->load.weight). 7756 * (se->load.weight).
7757 * 7757 *
7758 * In other words, if init_task_group has 10 tasks of weight 7758 * In other words, if init_task_group has 10 tasks of weight
7759 * 1024) and two child groups A0 and A1 (of weight 1024 each), 7759 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7760 * then A0's share of the cpu resource is: 7760 * then A0's share of the cpu resource is:
7761 * 7761 *
7762 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 7762 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7763 * 7763 *
7764 * We achieve this by letting init_task_group's tasks sit 7764 * We achieve this by letting init_task_group's tasks sit
7765 * directly in rq->cfs (i.e init_task_group->se[] = NULL). 7765 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7766 */ 7766 */
7767 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL); 7767 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7768 #endif 7768 #endif
7769 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7769 #endif /* CONFIG_FAIR_GROUP_SCHED */
7770 7770
7771 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 7771 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7772 #ifdef CONFIG_RT_GROUP_SCHED 7772 #ifdef CONFIG_RT_GROUP_SCHED
7773 INIT_LIST_HEAD(&rq->leaf_rt_rq_list); 7773 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7774 #ifdef CONFIG_CGROUP_SCHED 7774 #ifdef CONFIG_CGROUP_SCHED
7775 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL); 7775 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
7776 #endif 7776 #endif
7777 #endif 7777 #endif
7778 7778
7779 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 7779 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7780 rq->cpu_load[j] = 0; 7780 rq->cpu_load[j] = 0;
7781 #ifdef CONFIG_SMP 7781 #ifdef CONFIG_SMP
7782 rq->sd = NULL; 7782 rq->sd = NULL;
7783 rq->rd = NULL; 7783 rq->rd = NULL;
7784 rq->post_schedule = 0; 7784 rq->post_schedule = 0;
7785 rq->active_balance = 0; 7785 rq->active_balance = 0;
7786 rq->next_balance = jiffies; 7786 rq->next_balance = jiffies;
7787 rq->push_cpu = 0; 7787 rq->push_cpu = 0;
7788 rq->cpu = i; 7788 rq->cpu = i;
7789 rq->online = 0; 7789 rq->online = 0;
7790 rq->migration_thread = NULL; 7790 rq->migration_thread = NULL;
7791 rq->idle_stamp = 0; 7791 rq->idle_stamp = 0;
7792 rq->avg_idle = 2*sysctl_sched_migration_cost; 7792 rq->avg_idle = 2*sysctl_sched_migration_cost;
7793 INIT_LIST_HEAD(&rq->migration_queue); 7793 INIT_LIST_HEAD(&rq->migration_queue);
7794 rq_attach_root(rq, &def_root_domain); 7794 rq_attach_root(rq, &def_root_domain);
7795 #endif 7795 #endif
7796 init_rq_hrtick(rq); 7796 init_rq_hrtick(rq);
7797 atomic_set(&rq->nr_iowait, 0); 7797 atomic_set(&rq->nr_iowait, 0);
7798 } 7798 }
7799 7799
7800 set_load_weight(&init_task); 7800 set_load_weight(&init_task);
7801 7801
7802 #ifdef CONFIG_PREEMPT_NOTIFIERS 7802 #ifdef CONFIG_PREEMPT_NOTIFIERS
7803 INIT_HLIST_HEAD(&init_task.preempt_notifiers); 7803 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7804 #endif 7804 #endif
7805 7805
7806 #ifdef CONFIG_SMP 7806 #ifdef CONFIG_SMP
7807 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 7807 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7808 #endif 7808 #endif
7809 7809
7810 #ifdef CONFIG_RT_MUTEXES 7810 #ifdef CONFIG_RT_MUTEXES
7811 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock); 7811 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7812 #endif 7812 #endif
7813 7813
7814 /* 7814 /*
7815 * The boot idle thread does lazy MMU switching as well: 7815 * The boot idle thread does lazy MMU switching as well:
7816 */ 7816 */
7817 atomic_inc(&init_mm.mm_count); 7817 atomic_inc(&init_mm.mm_count);
7818 enter_lazy_tlb(&init_mm, current); 7818 enter_lazy_tlb(&init_mm, current);
7819 7819
7820 /* 7820 /*
7821 * Make us the idle thread. Technically, schedule() should not be 7821 * Make us the idle thread. Technically, schedule() should not be
7822 * called from this thread, however somewhere below it might be, 7822 * called from this thread, however somewhere below it might be,
7823 * but because we are the idle thread, we just pick up running again 7823 * but because we are the idle thread, we just pick up running again
7824 * when this runqueue becomes "idle". 7824 * when this runqueue becomes "idle".
7825 */ 7825 */
7826 init_idle(current, smp_processor_id()); 7826 init_idle(current, smp_processor_id());
7827 7827
7828 calc_load_update = jiffies + LOAD_FREQ; 7828 calc_load_update = jiffies + LOAD_FREQ;
7829 7829
7830 /* 7830 /*
7831 * During early bootup we pretend to be a normal task: 7831 * During early bootup we pretend to be a normal task:
7832 */ 7832 */
7833 current->sched_class = &fair_sched_class; 7833 current->sched_class = &fair_sched_class;
7834 7834
7835 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */ 7835 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7836 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT); 7836 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7837 #ifdef CONFIG_SMP 7837 #ifdef CONFIG_SMP
7838 #ifdef CONFIG_NO_HZ 7838 #ifdef CONFIG_NO_HZ
7839 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT); 7839 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
7840 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT); 7840 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7841 #endif 7841 #endif
7842 /* May be allocated at isolcpus cmdline parse time */ 7842 /* May be allocated at isolcpus cmdline parse time */
7843 if (cpu_isolated_map == NULL) 7843 if (cpu_isolated_map == NULL)
7844 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 7844 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7845 #endif /* SMP */ 7845 #endif /* SMP */
7846 7846
7847 perf_event_init(); 7847 perf_event_init();
7848 7848
7849 scheduler_running = 1; 7849 scheduler_running = 1;
7850 } 7850 }
7851 7851
7852 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP 7852 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7853 static inline int preempt_count_equals(int preempt_offset) 7853 static inline int preempt_count_equals(int preempt_offset)
7854 { 7854 {
7855 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); 7855 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7856 7856
7857 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset); 7857 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7858 } 7858 }
7859 7859
7860 void __might_sleep(const char *file, int line, int preempt_offset) 7860 void __might_sleep(const char *file, int line, int preempt_offset)
7861 { 7861 {
7862 #ifdef in_atomic 7862 #ifdef in_atomic
7863 static unsigned long prev_jiffy; /* ratelimiting */ 7863 static unsigned long prev_jiffy; /* ratelimiting */
7864 7864
7865 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) || 7865 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7866 system_state != SYSTEM_RUNNING || oops_in_progress) 7866 system_state != SYSTEM_RUNNING || oops_in_progress)
7867 return; 7867 return;
7868 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7868 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7869 return; 7869 return;
7870 prev_jiffy = jiffies; 7870 prev_jiffy = jiffies;
7871 7871
7872 printk(KERN_ERR 7872 printk(KERN_ERR
7873 "BUG: sleeping function called from invalid context at %s:%d\n", 7873 "BUG: sleeping function called from invalid context at %s:%d\n",
7874 file, line); 7874 file, line);
7875 printk(KERN_ERR 7875 printk(KERN_ERR
7876 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 7876 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7877 in_atomic(), irqs_disabled(), 7877 in_atomic(), irqs_disabled(),
7878 current->pid, current->comm); 7878 current->pid, current->comm);
7879 7879
7880 debug_show_held_locks(current); 7880 debug_show_held_locks(current);
7881 if (irqs_disabled()) 7881 if (irqs_disabled())
7882 print_irqtrace_events(current); 7882 print_irqtrace_events(current);
7883 dump_stack(); 7883 dump_stack();
7884 #endif 7884 #endif
7885 } 7885 }
7886 EXPORT_SYMBOL(__might_sleep); 7886 EXPORT_SYMBOL(__might_sleep);
7887 #endif 7887 #endif
7888 7888
7889 #ifdef CONFIG_MAGIC_SYSRQ 7889 #ifdef CONFIG_MAGIC_SYSRQ
7890 static void normalize_task(struct rq *rq, struct task_struct *p) 7890 static void normalize_task(struct rq *rq, struct task_struct *p)
7891 { 7891 {
7892 int on_rq; 7892 int on_rq;
7893 7893
7894 update_rq_clock(rq); 7894 update_rq_clock(rq);
7895 on_rq = p->se.on_rq; 7895 on_rq = p->se.on_rq;
7896 if (on_rq) 7896 if (on_rq)
7897 deactivate_task(rq, p, 0); 7897 deactivate_task(rq, p, 0);
7898 __setscheduler(rq, p, SCHED_NORMAL, 0); 7898 __setscheduler(rq, p, SCHED_NORMAL, 0);
7899 if (on_rq) { 7899 if (on_rq) {
7900 activate_task(rq, p, 0); 7900 activate_task(rq, p, 0);
7901 resched_task(rq->curr); 7901 resched_task(rq->curr);
7902 } 7902 }
7903 } 7903 }
7904 7904
7905 void normalize_rt_tasks(void) 7905 void normalize_rt_tasks(void)
7906 { 7906 {
7907 struct task_struct *g, *p; 7907 struct task_struct *g, *p;
7908 unsigned long flags; 7908 unsigned long flags;
7909 struct rq *rq; 7909 struct rq *rq;
7910 7910
7911 read_lock_irqsave(&tasklist_lock, flags); 7911 read_lock_irqsave(&tasklist_lock, flags);
7912 do_each_thread(g, p) { 7912 do_each_thread(g, p) {
7913 /* 7913 /*
7914 * Only normalize user tasks: 7914 * Only normalize user tasks:
7915 */ 7915 */
7916 if (!p->mm) 7916 if (!p->mm)
7917 continue; 7917 continue;
7918 7918
7919 p->se.exec_start = 0; 7919 p->se.exec_start = 0;
7920 #ifdef CONFIG_SCHEDSTATS 7920 #ifdef CONFIG_SCHEDSTATS
7921 p->se.wait_start = 0; 7921 p->se.wait_start = 0;
7922 p->se.sleep_start = 0; 7922 p->se.sleep_start = 0;
7923 p->se.block_start = 0; 7923 p->se.block_start = 0;
7924 #endif 7924 #endif
7925 7925
7926 if (!rt_task(p)) { 7926 if (!rt_task(p)) {
7927 /* 7927 /*
7928 * Renice negative nice level userspace 7928 * Renice negative nice level userspace
7929 * tasks back to 0: 7929 * tasks back to 0:
7930 */ 7930 */
7931 if (TASK_NICE(p) < 0 && p->mm) 7931 if (TASK_NICE(p) < 0 && p->mm)
7932 set_user_nice(p, 0); 7932 set_user_nice(p, 0);
7933 continue; 7933 continue;
7934 } 7934 }
7935 7935
7936 raw_spin_lock(&p->pi_lock); 7936 raw_spin_lock(&p->pi_lock);
7937 rq = __task_rq_lock(p); 7937 rq = __task_rq_lock(p);
7938 7938
7939 normalize_task(rq, p); 7939 normalize_task(rq, p);
7940 7940
7941 __task_rq_unlock(rq); 7941 __task_rq_unlock(rq);
7942 raw_spin_unlock(&p->pi_lock); 7942 raw_spin_unlock(&p->pi_lock);
7943 } while_each_thread(g, p); 7943 } while_each_thread(g, p);
7944 7944
7945 read_unlock_irqrestore(&tasklist_lock, flags); 7945 read_unlock_irqrestore(&tasklist_lock, flags);
7946 } 7946 }
7947 7947
7948 #endif /* CONFIG_MAGIC_SYSRQ */ 7948 #endif /* CONFIG_MAGIC_SYSRQ */
7949 7949
7950 #ifdef CONFIG_IA64 7950 #ifdef CONFIG_IA64
7951 /* 7951 /*
7952 * These functions are only useful for the IA64 MCA handling. 7952 * These functions are only useful for the IA64 MCA handling.
7953 * 7953 *
7954 * They can only be called when the whole system has been 7954 * They can only be called when the whole system has been
7955 * stopped - every CPU needs to be quiescent, and no scheduling 7955 * stopped - every CPU needs to be quiescent, and no scheduling
7956 * activity can take place. Using them for anything else would 7956 * activity can take place. Using them for anything else would
7957 * be a serious bug, and as a result, they aren't even visible 7957 * be a serious bug, and as a result, they aren't even visible
7958 * under any other configuration. 7958 * under any other configuration.
7959 */ 7959 */
7960 7960
7961 /** 7961 /**
7962 * curr_task - return the current task for a given cpu. 7962 * curr_task - return the current task for a given cpu.
7963 * @cpu: the processor in question. 7963 * @cpu: the processor in question.
7964 * 7964 *
7965 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7965 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7966 */ 7966 */
7967 struct task_struct *curr_task(int cpu) 7967 struct task_struct *curr_task(int cpu)
7968 { 7968 {
7969 return cpu_curr(cpu); 7969 return cpu_curr(cpu);
7970 } 7970 }
7971 7971
7972 /** 7972 /**
7973 * set_curr_task - set the current task for a given cpu. 7973 * set_curr_task - set the current task for a given cpu.
7974 * @cpu: the processor in question. 7974 * @cpu: the processor in question.
7975 * @p: the task pointer to set. 7975 * @p: the task pointer to set.
7976 * 7976 *
7977 * Description: This function must only be used when non-maskable interrupts 7977 * Description: This function must only be used when non-maskable interrupts
7978 * are serviced on a separate stack. It allows the architecture to switch the 7978 * are serviced on a separate stack. It allows the architecture to switch the
7979 * notion of the current task on a cpu in a non-blocking manner. This function 7979 * notion of the current task on a cpu in a non-blocking manner. This function
7980 * must be called with all CPU's synchronized, and interrupts disabled, the 7980 * must be called with all CPU's synchronized, and interrupts disabled, the
7981 * and caller must save the original value of the current task (see 7981 * and caller must save the original value of the current task (see
7982 * curr_task() above) and restore that value before reenabling interrupts and 7982 * curr_task() above) and restore that value before reenabling interrupts and
7983 * re-starting the system. 7983 * re-starting the system.
7984 * 7984 *
7985 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7985 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7986 */ 7986 */
7987 void set_curr_task(int cpu, struct task_struct *p) 7987 void set_curr_task(int cpu, struct task_struct *p)
7988 { 7988 {
7989 cpu_curr(cpu) = p; 7989 cpu_curr(cpu) = p;
7990 } 7990 }
7991 7991
7992 #endif 7992 #endif
7993 7993
7994 #ifdef CONFIG_FAIR_GROUP_SCHED 7994 #ifdef CONFIG_FAIR_GROUP_SCHED
7995 static void free_fair_sched_group(struct task_group *tg) 7995 static void free_fair_sched_group(struct task_group *tg)
7996 { 7996 {
7997 int i; 7997 int i;
7998 7998
7999 for_each_possible_cpu(i) { 7999 for_each_possible_cpu(i) {
8000 if (tg->cfs_rq) 8000 if (tg->cfs_rq)
8001 kfree(tg->cfs_rq[i]); 8001 kfree(tg->cfs_rq[i]);
8002 if (tg->se) 8002 if (tg->se)
8003 kfree(tg->se[i]); 8003 kfree(tg->se[i]);
8004 } 8004 }
8005 8005
8006 kfree(tg->cfs_rq); 8006 kfree(tg->cfs_rq);
8007 kfree(tg->se); 8007 kfree(tg->se);
8008 } 8008 }
8009 8009
8010 static 8010 static
8011 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 8011 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8012 { 8012 {
8013 struct cfs_rq *cfs_rq; 8013 struct cfs_rq *cfs_rq;
8014 struct sched_entity *se; 8014 struct sched_entity *se;
8015 struct rq *rq; 8015 struct rq *rq;
8016 int i; 8016 int i;
8017 8017
8018 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); 8018 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8019 if (!tg->cfs_rq) 8019 if (!tg->cfs_rq)
8020 goto err; 8020 goto err;
8021 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); 8021 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8022 if (!tg->se) 8022 if (!tg->se)
8023 goto err; 8023 goto err;
8024 8024
8025 tg->shares = NICE_0_LOAD; 8025 tg->shares = NICE_0_LOAD;
8026 8026
8027 for_each_possible_cpu(i) { 8027 for_each_possible_cpu(i) {
8028 rq = cpu_rq(i); 8028 rq = cpu_rq(i);
8029 8029
8030 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 8030 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8031 GFP_KERNEL, cpu_to_node(i)); 8031 GFP_KERNEL, cpu_to_node(i));
8032 if (!cfs_rq) 8032 if (!cfs_rq)
8033 goto err; 8033 goto err;
8034 8034
8035 se = kzalloc_node(sizeof(struct sched_entity), 8035 se = kzalloc_node(sizeof(struct sched_entity),
8036 GFP_KERNEL, cpu_to_node(i)); 8036 GFP_KERNEL, cpu_to_node(i));
8037 if (!se) 8037 if (!se)
8038 goto err_free_rq; 8038 goto err_free_rq;
8039 8039
8040 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]); 8040 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8041 } 8041 }
8042 8042
8043 return 1; 8043 return 1;
8044 8044
8045 err_free_rq: 8045 err_free_rq:
8046 kfree(cfs_rq); 8046 kfree(cfs_rq);
8047 err: 8047 err:
8048 return 0; 8048 return 0;
8049 } 8049 }
8050 8050
8051 static inline void register_fair_sched_group(struct task_group *tg, int cpu) 8051 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8052 { 8052 {
8053 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list, 8053 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8054 &cpu_rq(cpu)->leaf_cfs_rq_list); 8054 &cpu_rq(cpu)->leaf_cfs_rq_list);
8055 } 8055 }
8056 8056
8057 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu) 8057 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8058 { 8058 {
8059 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list); 8059 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8060 } 8060 }
8061 #else /* !CONFG_FAIR_GROUP_SCHED */ 8061 #else /* !CONFG_FAIR_GROUP_SCHED */
8062 static inline void free_fair_sched_group(struct task_group *tg) 8062 static inline void free_fair_sched_group(struct task_group *tg)
8063 { 8063 {
8064 } 8064 }
8065 8065
8066 static inline 8066 static inline
8067 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 8067 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8068 { 8068 {
8069 return 1; 8069 return 1;
8070 } 8070 }
8071 8071
8072 static inline void register_fair_sched_group(struct task_group *tg, int cpu) 8072 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8073 { 8073 {
8074 } 8074 }
8075 8075
8076 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu) 8076 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8077 { 8077 {
8078 } 8078 }
8079 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8079 #endif /* CONFIG_FAIR_GROUP_SCHED */
8080 8080
8081 #ifdef CONFIG_RT_GROUP_SCHED 8081 #ifdef CONFIG_RT_GROUP_SCHED
8082 static void free_rt_sched_group(struct task_group *tg) 8082 static void free_rt_sched_group(struct task_group *tg)
8083 { 8083 {
8084 int i; 8084 int i;
8085 8085
8086 destroy_rt_bandwidth(&tg->rt_bandwidth); 8086 destroy_rt_bandwidth(&tg->rt_bandwidth);
8087 8087
8088 for_each_possible_cpu(i) { 8088 for_each_possible_cpu(i) {
8089 if (tg->rt_rq) 8089 if (tg->rt_rq)
8090 kfree(tg->rt_rq[i]); 8090 kfree(tg->rt_rq[i]);
8091 if (tg->rt_se) 8091 if (tg->rt_se)
8092 kfree(tg->rt_se[i]); 8092 kfree(tg->rt_se[i]);
8093 } 8093 }
8094 8094
8095 kfree(tg->rt_rq); 8095 kfree(tg->rt_rq);
8096 kfree(tg->rt_se); 8096 kfree(tg->rt_se);
8097 } 8097 }
8098 8098
8099 static 8099 static
8100 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 8100 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8101 { 8101 {
8102 struct rt_rq *rt_rq; 8102 struct rt_rq *rt_rq;
8103 struct sched_rt_entity *rt_se; 8103 struct sched_rt_entity *rt_se;
8104 struct rq *rq; 8104 struct rq *rq;
8105 int i; 8105 int i;
8106 8106
8107 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL); 8107 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8108 if (!tg->rt_rq) 8108 if (!tg->rt_rq)
8109 goto err; 8109 goto err;
8110 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL); 8110 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8111 if (!tg->rt_se) 8111 if (!tg->rt_se)
8112 goto err; 8112 goto err;
8113 8113
8114 init_rt_bandwidth(&tg->rt_bandwidth, 8114 init_rt_bandwidth(&tg->rt_bandwidth,
8115 ktime_to_ns(def_rt_bandwidth.rt_period), 0); 8115 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8116 8116
8117 for_each_possible_cpu(i) { 8117 for_each_possible_cpu(i) {
8118 rq = cpu_rq(i); 8118 rq = cpu_rq(i);
8119 8119
8120 rt_rq = kzalloc_node(sizeof(struct rt_rq), 8120 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8121 GFP_KERNEL, cpu_to_node(i)); 8121 GFP_KERNEL, cpu_to_node(i));
8122 if (!rt_rq) 8122 if (!rt_rq)
8123 goto err; 8123 goto err;
8124 8124
8125 rt_se = kzalloc_node(sizeof(struct sched_rt_entity), 8125 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8126 GFP_KERNEL, cpu_to_node(i)); 8126 GFP_KERNEL, cpu_to_node(i));
8127 if (!rt_se) 8127 if (!rt_se)
8128 goto err_free_rq; 8128 goto err_free_rq;
8129 8129
8130 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]); 8130 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8131 } 8131 }
8132 8132
8133 return 1; 8133 return 1;
8134 8134
8135 err_free_rq: 8135 err_free_rq:
8136 kfree(rt_rq); 8136 kfree(rt_rq);
8137 err: 8137 err:
8138 return 0; 8138 return 0;
8139 } 8139 }
8140 8140
8141 static inline void register_rt_sched_group(struct task_group *tg, int cpu) 8141 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8142 { 8142 {
8143 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list, 8143 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8144 &cpu_rq(cpu)->leaf_rt_rq_list); 8144 &cpu_rq(cpu)->leaf_rt_rq_list);
8145 } 8145 }
8146 8146
8147 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu) 8147 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8148 { 8148 {
8149 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list); 8149 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8150 } 8150 }
8151 #else /* !CONFIG_RT_GROUP_SCHED */ 8151 #else /* !CONFIG_RT_GROUP_SCHED */
8152 static inline void free_rt_sched_group(struct task_group *tg) 8152 static inline void free_rt_sched_group(struct task_group *tg)
8153 { 8153 {
8154 } 8154 }
8155 8155
8156 static inline 8156 static inline
8157 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 8157 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8158 { 8158 {
8159 return 1; 8159 return 1;
8160 } 8160 }
8161 8161
8162 static inline void register_rt_sched_group(struct task_group *tg, int cpu) 8162 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8163 { 8163 {
8164 } 8164 }
8165 8165
8166 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu) 8166 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8167 { 8167 {
8168 } 8168 }
8169 #endif /* CONFIG_RT_GROUP_SCHED */ 8169 #endif /* CONFIG_RT_GROUP_SCHED */
8170 8170
8171 #ifdef CONFIG_CGROUP_SCHED 8171 #ifdef CONFIG_CGROUP_SCHED
8172 static void free_sched_group(struct task_group *tg) 8172 static void free_sched_group(struct task_group *tg)
8173 { 8173 {
8174 free_fair_sched_group(tg); 8174 free_fair_sched_group(tg);
8175 free_rt_sched_group(tg); 8175 free_rt_sched_group(tg);
8176 kfree(tg); 8176 kfree(tg);
8177 } 8177 }
8178 8178
8179 /* allocate runqueue etc for a new task group */ 8179 /* allocate runqueue etc for a new task group */
8180 struct task_group *sched_create_group(struct task_group *parent) 8180 struct task_group *sched_create_group(struct task_group *parent)
8181 { 8181 {
8182 struct task_group *tg; 8182 struct task_group *tg;
8183 unsigned long flags; 8183 unsigned long flags;
8184 int i; 8184 int i;
8185 8185
8186 tg = kzalloc(sizeof(*tg), GFP_KERNEL); 8186 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8187 if (!tg) 8187 if (!tg)
8188 return ERR_PTR(-ENOMEM); 8188 return ERR_PTR(-ENOMEM);
8189 8189
8190 if (!alloc_fair_sched_group(tg, parent)) 8190 if (!alloc_fair_sched_group(tg, parent))
8191 goto err; 8191 goto err;
8192 8192
8193 if (!alloc_rt_sched_group(tg, parent)) 8193 if (!alloc_rt_sched_group(tg, parent))
8194 goto err; 8194 goto err;
8195 8195
8196 spin_lock_irqsave(&task_group_lock, flags); 8196 spin_lock_irqsave(&task_group_lock, flags);
8197 for_each_possible_cpu(i) { 8197 for_each_possible_cpu(i) {
8198 register_fair_sched_group(tg, i); 8198 register_fair_sched_group(tg, i);
8199 register_rt_sched_group(tg, i); 8199 register_rt_sched_group(tg, i);
8200 } 8200 }
8201 list_add_rcu(&tg->list, &task_groups); 8201 list_add_rcu(&tg->list, &task_groups);
8202 8202
8203 WARN_ON(!parent); /* root should already exist */ 8203 WARN_ON(!parent); /* root should already exist */
8204 8204
8205 tg->parent = parent; 8205 tg->parent = parent;
8206 INIT_LIST_HEAD(&tg->children); 8206 INIT_LIST_HEAD(&tg->children);
8207 list_add_rcu(&tg->siblings, &parent->children); 8207 list_add_rcu(&tg->siblings, &parent->children);
8208 spin_unlock_irqrestore(&task_group_lock, flags); 8208 spin_unlock_irqrestore(&task_group_lock, flags);
8209 8209
8210 return tg; 8210 return tg;
8211 8211
8212 err: 8212 err:
8213 free_sched_group(tg); 8213 free_sched_group(tg);
8214 return ERR_PTR(-ENOMEM); 8214 return ERR_PTR(-ENOMEM);
8215 } 8215 }
8216 8216
8217 /* rcu callback to free various structures associated with a task group */ 8217 /* rcu callback to free various structures associated with a task group */
8218 static void free_sched_group_rcu(struct rcu_head *rhp) 8218 static void free_sched_group_rcu(struct rcu_head *rhp)
8219 { 8219 {
8220 /* now it should be safe to free those cfs_rqs */ 8220 /* now it should be safe to free those cfs_rqs */
8221 free_sched_group(container_of(rhp, struct task_group, rcu)); 8221 free_sched_group(container_of(rhp, struct task_group, rcu));
8222 } 8222 }
8223 8223
8224 /* Destroy runqueue etc associated with a task group */ 8224 /* Destroy runqueue etc associated with a task group */
8225 void sched_destroy_group(struct task_group *tg) 8225 void sched_destroy_group(struct task_group *tg)
8226 { 8226 {
8227 unsigned long flags; 8227 unsigned long flags;
8228 int i; 8228 int i;
8229 8229
8230 spin_lock_irqsave(&task_group_lock, flags); 8230 spin_lock_irqsave(&task_group_lock, flags);
8231 for_each_possible_cpu(i) { 8231 for_each_possible_cpu(i) {
8232 unregister_fair_sched_group(tg, i); 8232 unregister_fair_sched_group(tg, i);
8233 unregister_rt_sched_group(tg, i); 8233 unregister_rt_sched_group(tg, i);
8234 } 8234 }
8235 list_del_rcu(&tg->list); 8235 list_del_rcu(&tg->list);
8236 list_del_rcu(&tg->siblings); 8236 list_del_rcu(&tg->siblings);
8237 spin_unlock_irqrestore(&task_group_lock, flags); 8237 spin_unlock_irqrestore(&task_group_lock, flags);
8238 8238
8239 /* wait for possible concurrent references to cfs_rqs complete */ 8239 /* wait for possible concurrent references to cfs_rqs complete */
8240 call_rcu(&tg->rcu, free_sched_group_rcu); 8240 call_rcu(&tg->rcu, free_sched_group_rcu);
8241 } 8241 }
8242 8242
8243 /* change task's runqueue when it moves between groups. 8243 /* change task's runqueue when it moves between groups.
8244 * The caller of this function should have put the task in its new group 8244 * The caller of this function should have put the task in its new group
8245 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to 8245 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8246 * reflect its new group. 8246 * reflect its new group.
8247 */ 8247 */
8248 void sched_move_task(struct task_struct *tsk) 8248 void sched_move_task(struct task_struct *tsk)
8249 { 8249 {
8250 int on_rq, running; 8250 int on_rq, running;
8251 unsigned long flags; 8251 unsigned long flags;
8252 struct rq *rq; 8252 struct rq *rq;
8253 8253
8254 rq = task_rq_lock(tsk, &flags); 8254 rq = task_rq_lock(tsk, &flags);
8255 8255
8256 update_rq_clock(rq); 8256 update_rq_clock(rq);
8257 8257
8258 running = task_current(rq, tsk); 8258 running = task_current(rq, tsk);
8259 on_rq = tsk->se.on_rq; 8259 on_rq = tsk->se.on_rq;
8260 8260
8261 if (on_rq) 8261 if (on_rq)
8262 dequeue_task(rq, tsk, 0); 8262 dequeue_task(rq, tsk, 0);
8263 if (unlikely(running)) 8263 if (unlikely(running))
8264 tsk->sched_class->put_prev_task(rq, tsk); 8264 tsk->sched_class->put_prev_task(rq, tsk);
8265 8265
8266 set_task_rq(tsk, task_cpu(tsk)); 8266 set_task_rq(tsk, task_cpu(tsk));
8267 8267
8268 #ifdef CONFIG_FAIR_GROUP_SCHED 8268 #ifdef CONFIG_FAIR_GROUP_SCHED
8269 if (tsk->sched_class->moved_group) 8269 if (tsk->sched_class->moved_group)
8270 tsk->sched_class->moved_group(tsk, on_rq); 8270 tsk->sched_class->moved_group(tsk, on_rq);
8271 #endif 8271 #endif
8272 8272
8273 if (unlikely(running)) 8273 if (unlikely(running))
8274 tsk->sched_class->set_curr_task(rq); 8274 tsk->sched_class->set_curr_task(rq);
8275 if (on_rq) 8275 if (on_rq)
8276 enqueue_task(rq, tsk, 0, false); 8276 enqueue_task(rq, tsk, 0, false);
8277 8277
8278 task_rq_unlock(rq, &flags); 8278 task_rq_unlock(rq, &flags);
8279 } 8279 }
8280 #endif /* CONFIG_CGROUP_SCHED */ 8280 #endif /* CONFIG_CGROUP_SCHED */
8281 8281
8282 #ifdef CONFIG_FAIR_GROUP_SCHED 8282 #ifdef CONFIG_FAIR_GROUP_SCHED
8283 static void __set_se_shares(struct sched_entity *se, unsigned long shares) 8283 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8284 { 8284 {
8285 struct cfs_rq *cfs_rq = se->cfs_rq; 8285 struct cfs_rq *cfs_rq = se->cfs_rq;
8286 int on_rq; 8286 int on_rq;
8287 8287
8288 on_rq = se->on_rq; 8288 on_rq = se->on_rq;
8289 if (on_rq) 8289 if (on_rq)
8290 dequeue_entity(cfs_rq, se, 0); 8290 dequeue_entity(cfs_rq, se, 0);
8291 8291
8292 se->load.weight = shares; 8292 se->load.weight = shares;
8293 se->load.inv_weight = 0; 8293 se->load.inv_weight = 0;
8294 8294
8295 if (on_rq) 8295 if (on_rq)
8296 enqueue_entity(cfs_rq, se, 0); 8296 enqueue_entity(cfs_rq, se, 0);
8297 } 8297 }
8298 8298
8299 static void set_se_shares(struct sched_entity *se, unsigned long shares) 8299 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8300 { 8300 {
8301 struct cfs_rq *cfs_rq = se->cfs_rq; 8301 struct cfs_rq *cfs_rq = se->cfs_rq;
8302 struct rq *rq = cfs_rq->rq; 8302 struct rq *rq = cfs_rq->rq;
8303 unsigned long flags; 8303 unsigned long flags;
8304 8304
8305 raw_spin_lock_irqsave(&rq->lock, flags); 8305 raw_spin_lock_irqsave(&rq->lock, flags);
8306 __set_se_shares(se, shares); 8306 __set_se_shares(se, shares);
8307 raw_spin_unlock_irqrestore(&rq->lock, flags); 8307 raw_spin_unlock_irqrestore(&rq->lock, flags);
8308 } 8308 }
8309 8309
8310 static DEFINE_MUTEX(shares_mutex); 8310 static DEFINE_MUTEX(shares_mutex);
8311 8311
8312 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 8312 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8313 { 8313 {
8314 int i; 8314 int i;
8315 unsigned long flags; 8315 unsigned long flags;
8316 8316
8317 /* 8317 /*
8318 * We can't change the weight of the root cgroup. 8318 * We can't change the weight of the root cgroup.
8319 */ 8319 */
8320 if (!tg->se[0]) 8320 if (!tg->se[0])
8321 return -EINVAL; 8321 return -EINVAL;
8322 8322
8323 if (shares < MIN_SHARES) 8323 if (shares < MIN_SHARES)
8324 shares = MIN_SHARES; 8324 shares = MIN_SHARES;
8325 else if (shares > MAX_SHARES) 8325 else if (shares > MAX_SHARES)
8326 shares = MAX_SHARES; 8326 shares = MAX_SHARES;
8327 8327
8328 mutex_lock(&shares_mutex); 8328 mutex_lock(&shares_mutex);
8329 if (tg->shares == shares) 8329 if (tg->shares == shares)
8330 goto done; 8330 goto done;
8331 8331
8332 spin_lock_irqsave(&task_group_lock, flags); 8332 spin_lock_irqsave(&task_group_lock, flags);
8333 for_each_possible_cpu(i) 8333 for_each_possible_cpu(i)
8334 unregister_fair_sched_group(tg, i); 8334 unregister_fair_sched_group(tg, i);
8335 list_del_rcu(&tg->siblings); 8335 list_del_rcu(&tg->siblings);
8336 spin_unlock_irqrestore(&task_group_lock, flags); 8336 spin_unlock_irqrestore(&task_group_lock, flags);
8337 8337
8338 /* wait for any ongoing reference to this group to finish */ 8338 /* wait for any ongoing reference to this group to finish */
8339 synchronize_sched(); 8339 synchronize_sched();
8340 8340
8341 /* 8341 /*
8342 * Now we are free to modify the group's share on each cpu 8342 * Now we are free to modify the group's share on each cpu
8343 * w/o tripping rebalance_share or load_balance_fair. 8343 * w/o tripping rebalance_share or load_balance_fair.
8344 */ 8344 */
8345 tg->shares = shares; 8345 tg->shares = shares;
8346 for_each_possible_cpu(i) { 8346 for_each_possible_cpu(i) {
8347 /* 8347 /*
8348 * force a rebalance 8348 * force a rebalance
8349 */ 8349 */
8350 cfs_rq_set_shares(tg->cfs_rq[i], 0); 8350 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8351 set_se_shares(tg->se[i], shares); 8351 set_se_shares(tg->se[i], shares);
8352 } 8352 }
8353 8353
8354 /* 8354 /*
8355 * Enable load balance activity on this group, by inserting it back on 8355 * Enable load balance activity on this group, by inserting it back on
8356 * each cpu's rq->leaf_cfs_rq_list. 8356 * each cpu's rq->leaf_cfs_rq_list.
8357 */ 8357 */
8358 spin_lock_irqsave(&task_group_lock, flags); 8358 spin_lock_irqsave(&task_group_lock, flags);
8359 for_each_possible_cpu(i) 8359 for_each_possible_cpu(i)
8360 register_fair_sched_group(tg, i); 8360 register_fair_sched_group(tg, i);
8361 list_add_rcu(&tg->siblings, &tg->parent->children); 8361 list_add_rcu(&tg->siblings, &tg->parent->children);
8362 spin_unlock_irqrestore(&task_group_lock, flags); 8362 spin_unlock_irqrestore(&task_group_lock, flags);
8363 done: 8363 done:
8364 mutex_unlock(&shares_mutex); 8364 mutex_unlock(&shares_mutex);
8365 return 0; 8365 return 0;
8366 } 8366 }
8367 8367
8368 unsigned long sched_group_shares(struct task_group *tg) 8368 unsigned long sched_group_shares(struct task_group *tg)
8369 { 8369 {
8370 return tg->shares; 8370 return tg->shares;
8371 } 8371 }
8372 #endif 8372 #endif
8373 8373
8374 #ifdef CONFIG_RT_GROUP_SCHED 8374 #ifdef CONFIG_RT_GROUP_SCHED
8375 /* 8375 /*
8376 * Ensure that the real time constraints are schedulable. 8376 * Ensure that the real time constraints are schedulable.
8377 */ 8377 */
8378 static DEFINE_MUTEX(rt_constraints_mutex); 8378 static DEFINE_MUTEX(rt_constraints_mutex);
8379 8379
8380 static unsigned long to_ratio(u64 period, u64 runtime) 8380 static unsigned long to_ratio(u64 period, u64 runtime)
8381 { 8381 {
8382 if (runtime == RUNTIME_INF) 8382 if (runtime == RUNTIME_INF)
8383 return 1ULL << 20; 8383 return 1ULL << 20;
8384 8384
8385 return div64_u64(runtime << 20, period); 8385 return div64_u64(runtime << 20, period);
8386 } 8386 }
8387 8387
8388 /* Must be called with tasklist_lock held */ 8388 /* Must be called with tasklist_lock held */
8389 static inline int tg_has_rt_tasks(struct task_group *tg) 8389 static inline int tg_has_rt_tasks(struct task_group *tg)
8390 { 8390 {
8391 struct task_struct *g, *p; 8391 struct task_struct *g, *p;
8392 8392
8393 do_each_thread(g, p) { 8393 do_each_thread(g, p) {
8394 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg) 8394 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8395 return 1; 8395 return 1;
8396 } while_each_thread(g, p); 8396 } while_each_thread(g, p);
8397 8397
8398 return 0; 8398 return 0;
8399 } 8399 }
8400 8400
8401 struct rt_schedulable_data { 8401 struct rt_schedulable_data {
8402 struct task_group *tg; 8402 struct task_group *tg;
8403 u64 rt_period; 8403 u64 rt_period;
8404 u64 rt_runtime; 8404 u64 rt_runtime;
8405 }; 8405 };
8406 8406
8407 static int tg_schedulable(struct task_group *tg, void *data) 8407 static int tg_schedulable(struct task_group *tg, void *data)
8408 { 8408 {
8409 struct rt_schedulable_data *d = data; 8409 struct rt_schedulable_data *d = data;
8410 struct task_group *child; 8410 struct task_group *child;
8411 unsigned long total, sum = 0; 8411 unsigned long total, sum = 0;
8412 u64 period, runtime; 8412 u64 period, runtime;
8413 8413
8414 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 8414 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8415 runtime = tg->rt_bandwidth.rt_runtime; 8415 runtime = tg->rt_bandwidth.rt_runtime;
8416 8416
8417 if (tg == d->tg) { 8417 if (tg == d->tg) {
8418 period = d->rt_period; 8418 period = d->rt_period;
8419 runtime = d->rt_runtime; 8419 runtime = d->rt_runtime;
8420 } 8420 }
8421 8421
8422 /* 8422 /*
8423 * Cannot have more runtime than the period. 8423 * Cannot have more runtime than the period.
8424 */ 8424 */
8425 if (runtime > period && runtime != RUNTIME_INF) 8425 if (runtime > period && runtime != RUNTIME_INF)
8426 return -EINVAL; 8426 return -EINVAL;
8427 8427
8428 /* 8428 /*
8429 * Ensure we don't starve existing RT tasks. 8429 * Ensure we don't starve existing RT tasks.
8430 */ 8430 */
8431 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 8431 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8432 return -EBUSY; 8432 return -EBUSY;
8433 8433
8434 total = to_ratio(period, runtime); 8434 total = to_ratio(period, runtime);
8435 8435
8436 /* 8436 /*
8437 * Nobody can have more than the global setting allows. 8437 * Nobody can have more than the global setting allows.
8438 */ 8438 */
8439 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 8439 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8440 return -EINVAL; 8440 return -EINVAL;
8441 8441
8442 /* 8442 /*
8443 * The sum of our children's runtime should not exceed our own. 8443 * The sum of our children's runtime should not exceed our own.
8444 */ 8444 */
8445 list_for_each_entry_rcu(child, &tg->children, siblings) { 8445 list_for_each_entry_rcu(child, &tg->children, siblings) {
8446 period = ktime_to_ns(child->rt_bandwidth.rt_period); 8446 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8447 runtime = child->rt_bandwidth.rt_runtime; 8447 runtime = child->rt_bandwidth.rt_runtime;
8448 8448
8449 if (child == d->tg) { 8449 if (child == d->tg) {
8450 period = d->rt_period; 8450 period = d->rt_period;
8451 runtime = d->rt_runtime; 8451 runtime = d->rt_runtime;
8452 } 8452 }
8453 8453
8454 sum += to_ratio(period, runtime); 8454 sum += to_ratio(period, runtime);
8455 } 8455 }
8456 8456
8457 if (sum > total) 8457 if (sum > total)
8458 return -EINVAL; 8458 return -EINVAL;
8459 8459
8460 return 0; 8460 return 0;
8461 } 8461 }
8462 8462
8463 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 8463 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8464 { 8464 {
8465 struct rt_schedulable_data data = { 8465 struct rt_schedulable_data data = {
8466 .tg = tg, 8466 .tg = tg,
8467 .rt_period = period, 8467 .rt_period = period,
8468 .rt_runtime = runtime, 8468 .rt_runtime = runtime,
8469 }; 8469 };
8470 8470
8471 return walk_tg_tree(tg_schedulable, tg_nop, &data); 8471 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8472 } 8472 }
8473 8473
8474 static int tg_set_bandwidth(struct task_group *tg, 8474 static int tg_set_bandwidth(struct task_group *tg,
8475 u64 rt_period, u64 rt_runtime) 8475 u64 rt_period, u64 rt_runtime)
8476 { 8476 {
8477 int i, err = 0; 8477 int i, err = 0;
8478 8478
8479 mutex_lock(&rt_constraints_mutex); 8479 mutex_lock(&rt_constraints_mutex);
8480 read_lock(&tasklist_lock); 8480 read_lock(&tasklist_lock);
8481 err = __rt_schedulable(tg, rt_period, rt_runtime); 8481 err = __rt_schedulable(tg, rt_period, rt_runtime);
8482 if (err) 8482 if (err)
8483 goto unlock; 8483 goto unlock;
8484 8484
8485 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 8485 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8486 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 8486 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8487 tg->rt_bandwidth.rt_runtime = rt_runtime; 8487 tg->rt_bandwidth.rt_runtime = rt_runtime;
8488 8488
8489 for_each_possible_cpu(i) { 8489 for_each_possible_cpu(i) {
8490 struct rt_rq *rt_rq = tg->rt_rq[i]; 8490 struct rt_rq *rt_rq = tg->rt_rq[i];
8491 8491
8492 raw_spin_lock(&rt_rq->rt_runtime_lock); 8492 raw_spin_lock(&rt_rq->rt_runtime_lock);
8493 rt_rq->rt_runtime = rt_runtime; 8493 rt_rq->rt_runtime = rt_runtime;
8494 raw_spin_unlock(&rt_rq->rt_runtime_lock); 8494 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8495 } 8495 }
8496 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 8496 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8497 unlock: 8497 unlock:
8498 read_unlock(&tasklist_lock); 8498 read_unlock(&tasklist_lock);
8499 mutex_unlock(&rt_constraints_mutex); 8499 mutex_unlock(&rt_constraints_mutex);
8500 8500
8501 return err; 8501 return err;
8502 } 8502 }
8503 8503
8504 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 8504 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8505 { 8505 {
8506 u64 rt_runtime, rt_period; 8506 u64 rt_runtime, rt_period;
8507 8507
8508 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 8508 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8509 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 8509 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8510 if (rt_runtime_us < 0) 8510 if (rt_runtime_us < 0)
8511 rt_runtime = RUNTIME_INF; 8511 rt_runtime = RUNTIME_INF;
8512 8512
8513 return tg_set_bandwidth(tg, rt_period, rt_runtime); 8513 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8514 } 8514 }
8515 8515
8516 long sched_group_rt_runtime(struct task_group *tg) 8516 long sched_group_rt_runtime(struct task_group *tg)
8517 { 8517 {
8518 u64 rt_runtime_us; 8518 u64 rt_runtime_us;
8519 8519
8520 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 8520 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8521 return -1; 8521 return -1;
8522 8522
8523 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 8523 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8524 do_div(rt_runtime_us, NSEC_PER_USEC); 8524 do_div(rt_runtime_us, NSEC_PER_USEC);
8525 return rt_runtime_us; 8525 return rt_runtime_us;
8526 } 8526 }
8527 8527
8528 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) 8528 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8529 { 8529 {
8530 u64 rt_runtime, rt_period; 8530 u64 rt_runtime, rt_period;
8531 8531
8532 rt_period = (u64)rt_period_us * NSEC_PER_USEC; 8532 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8533 rt_runtime = tg->rt_bandwidth.rt_runtime; 8533 rt_runtime = tg->rt_bandwidth.rt_runtime;
8534 8534
8535 if (rt_period == 0) 8535 if (rt_period == 0)
8536 return -EINVAL; 8536 return -EINVAL;
8537 8537
8538 return tg_set_bandwidth(tg, rt_period, rt_runtime); 8538 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8539 } 8539 }
8540 8540
8541 long sched_group_rt_period(struct task_group *tg) 8541 long sched_group_rt_period(struct task_group *tg)
8542 { 8542 {
8543 u64 rt_period_us; 8543 u64 rt_period_us;
8544 8544
8545 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 8545 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8546 do_div(rt_period_us, NSEC_PER_USEC); 8546 do_div(rt_period_us, NSEC_PER_USEC);
8547 return rt_period_us; 8547 return rt_period_us;
8548 } 8548 }
8549 8549
8550 static int sched_rt_global_constraints(void) 8550 static int sched_rt_global_constraints(void)
8551 { 8551 {
8552 u64 runtime, period; 8552 u64 runtime, period;
8553 int ret = 0; 8553 int ret = 0;
8554 8554
8555 if (sysctl_sched_rt_period <= 0) 8555 if (sysctl_sched_rt_period <= 0)
8556 return -EINVAL; 8556 return -EINVAL;
8557 8557
8558 runtime = global_rt_runtime(); 8558 runtime = global_rt_runtime();
8559 period = global_rt_period(); 8559 period = global_rt_period();
8560 8560
8561 /* 8561 /*
8562 * Sanity check on the sysctl variables. 8562 * Sanity check on the sysctl variables.
8563 */ 8563 */
8564 if (runtime > period && runtime != RUNTIME_INF) 8564 if (runtime > period && runtime != RUNTIME_INF)
8565 return -EINVAL; 8565 return -EINVAL;
8566 8566
8567 mutex_lock(&rt_constraints_mutex); 8567 mutex_lock(&rt_constraints_mutex);
8568 read_lock(&tasklist_lock); 8568 read_lock(&tasklist_lock);
8569 ret = __rt_schedulable(NULL, 0, 0); 8569 ret = __rt_schedulable(NULL, 0, 0);
8570 read_unlock(&tasklist_lock); 8570 read_unlock(&tasklist_lock);
8571 mutex_unlock(&rt_constraints_mutex); 8571 mutex_unlock(&rt_constraints_mutex);
8572 8572
8573 return ret; 8573 return ret;
8574 } 8574 }
8575 8575
8576 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 8576 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8577 { 8577 {
8578 /* Don't accept realtime tasks when there is no way for them to run */ 8578 /* Don't accept realtime tasks when there is no way for them to run */
8579 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 8579 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8580 return 0; 8580 return 0;
8581 8581
8582 return 1; 8582 return 1;
8583 } 8583 }
8584 8584
8585 #else /* !CONFIG_RT_GROUP_SCHED */ 8585 #else /* !CONFIG_RT_GROUP_SCHED */
8586 static int sched_rt_global_constraints(void) 8586 static int sched_rt_global_constraints(void)
8587 { 8587 {
8588 unsigned long flags; 8588 unsigned long flags;
8589 int i; 8589 int i;
8590 8590
8591 if (sysctl_sched_rt_period <= 0) 8591 if (sysctl_sched_rt_period <= 0)
8592 return -EINVAL; 8592 return -EINVAL;
8593 8593
8594 /* 8594 /*
8595 * There's always some RT tasks in the root group 8595 * There's always some RT tasks in the root group
8596 * -- migration, kstopmachine etc.. 8596 * -- migration, kstopmachine etc..
8597 */ 8597 */
8598 if (sysctl_sched_rt_runtime == 0) 8598 if (sysctl_sched_rt_runtime == 0)
8599 return -EBUSY; 8599 return -EBUSY;
8600 8600
8601 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 8601 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8602 for_each_possible_cpu(i) { 8602 for_each_possible_cpu(i) {
8603 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 8603 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8604 8604
8605 raw_spin_lock(&rt_rq->rt_runtime_lock); 8605 raw_spin_lock(&rt_rq->rt_runtime_lock);
8606 rt_rq->rt_runtime = global_rt_runtime(); 8606 rt_rq->rt_runtime = global_rt_runtime();
8607 raw_spin_unlock(&rt_rq->rt_runtime_lock); 8607 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8608 } 8608 }
8609 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 8609 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8610 8610
8611 return 0; 8611 return 0;
8612 } 8612 }
8613 #endif /* CONFIG_RT_GROUP_SCHED */ 8613 #endif /* CONFIG_RT_GROUP_SCHED */
8614 8614
8615 int sched_rt_handler(struct ctl_table *table, int write, 8615 int sched_rt_handler(struct ctl_table *table, int write,
8616 void __user *buffer, size_t *lenp, 8616 void __user *buffer, size_t *lenp,
8617 loff_t *ppos) 8617 loff_t *ppos)
8618 { 8618 {
8619 int ret; 8619 int ret;
8620 int old_period, old_runtime; 8620 int old_period, old_runtime;
8621 static DEFINE_MUTEX(mutex); 8621 static DEFINE_MUTEX(mutex);
8622 8622
8623 mutex_lock(&mutex); 8623 mutex_lock(&mutex);
8624 old_period = sysctl_sched_rt_period; 8624 old_period = sysctl_sched_rt_period;
8625 old_runtime = sysctl_sched_rt_runtime; 8625 old_runtime = sysctl_sched_rt_runtime;
8626 8626
8627 ret = proc_dointvec(table, write, buffer, lenp, ppos); 8627 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8628 8628
8629 if (!ret && write) { 8629 if (!ret && write) {
8630 ret = sched_rt_global_constraints(); 8630 ret = sched_rt_global_constraints();
8631 if (ret) { 8631 if (ret) {
8632 sysctl_sched_rt_period = old_period; 8632 sysctl_sched_rt_period = old_period;
8633 sysctl_sched_rt_runtime = old_runtime; 8633 sysctl_sched_rt_runtime = old_runtime;
8634 } else { 8634 } else {
8635 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 8635 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8636 def_rt_bandwidth.rt_period = 8636 def_rt_bandwidth.rt_period =
8637 ns_to_ktime(global_rt_period()); 8637 ns_to_ktime(global_rt_period());
8638 } 8638 }
8639 } 8639 }
8640 mutex_unlock(&mutex); 8640 mutex_unlock(&mutex);
8641 8641
8642 return ret; 8642 return ret;
8643 } 8643 }
8644 8644
8645 #ifdef CONFIG_CGROUP_SCHED 8645 #ifdef CONFIG_CGROUP_SCHED
8646 8646
8647 /* return corresponding task_group object of a cgroup */ 8647 /* return corresponding task_group object of a cgroup */
8648 static inline struct task_group *cgroup_tg(struct cgroup *cgrp) 8648 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8649 { 8649 {
8650 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id), 8650 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8651 struct task_group, css); 8651 struct task_group, css);
8652 } 8652 }
8653 8653
8654 static struct cgroup_subsys_state * 8654 static struct cgroup_subsys_state *
8655 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp) 8655 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8656 { 8656 {
8657 struct task_group *tg, *parent; 8657 struct task_group *tg, *parent;
8658 8658
8659 if (!cgrp->parent) { 8659 if (!cgrp->parent) {
8660 /* This is early initialization for the top cgroup */ 8660 /* This is early initialization for the top cgroup */
8661 return &init_task_group.css; 8661 return &init_task_group.css;
8662 } 8662 }
8663 8663
8664 parent = cgroup_tg(cgrp->parent); 8664 parent = cgroup_tg(cgrp->parent);
8665 tg = sched_create_group(parent); 8665 tg = sched_create_group(parent);
8666 if (IS_ERR(tg)) 8666 if (IS_ERR(tg))
8667 return ERR_PTR(-ENOMEM); 8667 return ERR_PTR(-ENOMEM);
8668 8668
8669 return &tg->css; 8669 return &tg->css;
8670 } 8670 }
8671 8671
8672 static void 8672 static void
8673 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) 8673 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8674 { 8674 {
8675 struct task_group *tg = cgroup_tg(cgrp); 8675 struct task_group *tg = cgroup_tg(cgrp);
8676 8676
8677 sched_destroy_group(tg); 8677 sched_destroy_group(tg);
8678 } 8678 }
8679 8679
8680 static int 8680 static int
8681 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk) 8681 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8682 { 8682 {
8683 #ifdef CONFIG_RT_GROUP_SCHED 8683 #ifdef CONFIG_RT_GROUP_SCHED
8684 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk)) 8684 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8685 return -EINVAL; 8685 return -EINVAL;
8686 #else 8686 #else
8687 /* We don't support RT-tasks being in separate groups */ 8687 /* We don't support RT-tasks being in separate groups */
8688 if (tsk->sched_class != &fair_sched_class) 8688 if (tsk->sched_class != &fair_sched_class)
8689 return -EINVAL; 8689 return -EINVAL;
8690 #endif 8690 #endif
8691 return 0; 8691 return 0;
8692 } 8692 }
8693 8693
8694 static int 8694 static int
8695 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, 8695 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8696 struct task_struct *tsk, bool threadgroup) 8696 struct task_struct *tsk, bool threadgroup)
8697 { 8697 {
8698 int retval = cpu_cgroup_can_attach_task(cgrp, tsk); 8698 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8699 if (retval) 8699 if (retval)
8700 return retval; 8700 return retval;
8701 if (threadgroup) { 8701 if (threadgroup) {
8702 struct task_struct *c; 8702 struct task_struct *c;
8703 rcu_read_lock(); 8703 rcu_read_lock();
8704 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) { 8704 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8705 retval = cpu_cgroup_can_attach_task(cgrp, c); 8705 retval = cpu_cgroup_can_attach_task(cgrp, c);
8706 if (retval) { 8706 if (retval) {
8707 rcu_read_unlock(); 8707 rcu_read_unlock();
8708 return retval; 8708 return retval;
8709 } 8709 }
8710 } 8710 }
8711 rcu_read_unlock(); 8711 rcu_read_unlock();
8712 } 8712 }
8713 return 0; 8713 return 0;
8714 } 8714 }
8715 8715
8716 static void 8716 static void
8717 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, 8717 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8718 struct cgroup *old_cont, struct task_struct *tsk, 8718 struct cgroup *old_cont, struct task_struct *tsk,
8719 bool threadgroup) 8719 bool threadgroup)
8720 { 8720 {
8721 sched_move_task(tsk); 8721 sched_move_task(tsk);
8722 if (threadgroup) { 8722 if (threadgroup) {
8723 struct task_struct *c; 8723 struct task_struct *c;
8724 rcu_read_lock(); 8724 rcu_read_lock();
8725 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) { 8725 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8726 sched_move_task(c); 8726 sched_move_task(c);
8727 } 8727 }
8728 rcu_read_unlock(); 8728 rcu_read_unlock();
8729 } 8729 }
8730 } 8730 }
8731 8731
8732 #ifdef CONFIG_FAIR_GROUP_SCHED 8732 #ifdef CONFIG_FAIR_GROUP_SCHED
8733 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype, 8733 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8734 u64 shareval) 8734 u64 shareval)
8735 { 8735 {
8736 return sched_group_set_shares(cgroup_tg(cgrp), shareval); 8736 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8737 } 8737 }
8738 8738
8739 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft) 8739 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8740 { 8740 {
8741 struct task_group *tg = cgroup_tg(cgrp); 8741 struct task_group *tg = cgroup_tg(cgrp);
8742 8742
8743 return (u64) tg->shares; 8743 return (u64) tg->shares;
8744 } 8744 }
8745 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8745 #endif /* CONFIG_FAIR_GROUP_SCHED */
8746 8746
8747 #ifdef CONFIG_RT_GROUP_SCHED 8747 #ifdef CONFIG_RT_GROUP_SCHED
8748 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft, 8748 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8749 s64 val) 8749 s64 val)
8750 { 8750 {
8751 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val); 8751 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8752 } 8752 }
8753 8753
8754 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft) 8754 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8755 { 8755 {
8756 return sched_group_rt_runtime(cgroup_tg(cgrp)); 8756 return sched_group_rt_runtime(cgroup_tg(cgrp));
8757 } 8757 }
8758 8758
8759 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype, 8759 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8760 u64 rt_period_us) 8760 u64 rt_period_us)
8761 { 8761 {
8762 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us); 8762 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8763 } 8763 }
8764 8764
8765 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft) 8765 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8766 { 8766 {
8767 return sched_group_rt_period(cgroup_tg(cgrp)); 8767 return sched_group_rt_period(cgroup_tg(cgrp));
8768 } 8768 }
8769 #endif /* CONFIG_RT_GROUP_SCHED */ 8769 #endif /* CONFIG_RT_GROUP_SCHED */
8770 8770
8771 static struct cftype cpu_files[] = { 8771 static struct cftype cpu_files[] = {
8772 #ifdef CONFIG_FAIR_GROUP_SCHED 8772 #ifdef CONFIG_FAIR_GROUP_SCHED
8773 { 8773 {
8774 .name = "shares", 8774 .name = "shares",
8775 .read_u64 = cpu_shares_read_u64, 8775 .read_u64 = cpu_shares_read_u64,
8776 .write_u64 = cpu_shares_write_u64, 8776 .write_u64 = cpu_shares_write_u64,
8777 }, 8777 },
8778 #endif 8778 #endif
8779 #ifdef CONFIG_RT_GROUP_SCHED 8779 #ifdef CONFIG_RT_GROUP_SCHED
8780 { 8780 {
8781 .name = "rt_runtime_us", 8781 .name = "rt_runtime_us",
8782 .read_s64 = cpu_rt_runtime_read, 8782 .read_s64 = cpu_rt_runtime_read,
8783 .write_s64 = cpu_rt_runtime_write, 8783 .write_s64 = cpu_rt_runtime_write,
8784 }, 8784 },
8785 { 8785 {
8786 .name = "rt_period_us", 8786 .name = "rt_period_us",
8787 .read_u64 = cpu_rt_period_read_uint, 8787 .read_u64 = cpu_rt_period_read_uint,
8788 .write_u64 = cpu_rt_period_write_uint, 8788 .write_u64 = cpu_rt_period_write_uint,
8789 }, 8789 },
8790 #endif 8790 #endif
8791 }; 8791 };
8792 8792
8793 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont) 8793 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8794 { 8794 {
8795 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files)); 8795 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8796 } 8796 }
8797 8797
8798 struct cgroup_subsys cpu_cgroup_subsys = { 8798 struct cgroup_subsys cpu_cgroup_subsys = {
8799 .name = "cpu", 8799 .name = "cpu",
8800 .create = cpu_cgroup_create, 8800 .create = cpu_cgroup_create,
8801 .destroy = cpu_cgroup_destroy, 8801 .destroy = cpu_cgroup_destroy,
8802 .can_attach = cpu_cgroup_can_attach, 8802 .can_attach = cpu_cgroup_can_attach,
8803 .attach = cpu_cgroup_attach, 8803 .attach = cpu_cgroup_attach,
8804 .populate = cpu_cgroup_populate, 8804 .populate = cpu_cgroup_populate,
8805 .subsys_id = cpu_cgroup_subsys_id, 8805 .subsys_id = cpu_cgroup_subsys_id,
8806 .early_init = 1, 8806 .early_init = 1,
8807 }; 8807 };
8808 8808
8809 #endif /* CONFIG_CGROUP_SCHED */ 8809 #endif /* CONFIG_CGROUP_SCHED */
8810 8810
8811 #ifdef CONFIG_CGROUP_CPUACCT 8811 #ifdef CONFIG_CGROUP_CPUACCT
8812 8812
8813 /* 8813 /*
8814 * CPU accounting code for task groups. 8814 * CPU accounting code for task groups.
8815 * 8815 *
8816 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh 8816 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8817 * (balbir@in.ibm.com). 8817 * (balbir@in.ibm.com).
8818 */ 8818 */
8819 8819
8820 /* track cpu usage of a group of tasks and its child groups */ 8820 /* track cpu usage of a group of tasks and its child groups */
8821 struct cpuacct { 8821 struct cpuacct {
8822 struct cgroup_subsys_state css; 8822 struct cgroup_subsys_state css;
8823 /* cpuusage holds pointer to a u64-type object on every cpu */ 8823 /* cpuusage holds pointer to a u64-type object on every cpu */
8824 u64 __percpu *cpuusage; 8824 u64 __percpu *cpuusage;
8825 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS]; 8825 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8826 struct cpuacct *parent; 8826 struct cpuacct *parent;
8827 }; 8827 };
8828 8828
8829 struct cgroup_subsys cpuacct_subsys; 8829 struct cgroup_subsys cpuacct_subsys;
8830 8830
8831 /* return cpu accounting group corresponding to this container */ 8831 /* return cpu accounting group corresponding to this container */
8832 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp) 8832 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8833 { 8833 {
8834 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id), 8834 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8835 struct cpuacct, css); 8835 struct cpuacct, css);
8836 } 8836 }
8837 8837
8838 /* return cpu accounting group to which this task belongs */ 8838 /* return cpu accounting group to which this task belongs */
8839 static inline struct cpuacct *task_ca(struct task_struct *tsk) 8839 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8840 { 8840 {
8841 return container_of(task_subsys_state(tsk, cpuacct_subsys_id), 8841 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8842 struct cpuacct, css); 8842 struct cpuacct, css);
8843 } 8843 }
8844 8844
8845 /* create a new cpu accounting group */ 8845 /* create a new cpu accounting group */
8846 static struct cgroup_subsys_state *cpuacct_create( 8846 static struct cgroup_subsys_state *cpuacct_create(
8847 struct cgroup_subsys *ss, struct cgroup *cgrp) 8847 struct cgroup_subsys *ss, struct cgroup *cgrp)
8848 { 8848 {
8849 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL); 8849 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8850 int i; 8850 int i;
8851 8851
8852 if (!ca) 8852 if (!ca)
8853 goto out; 8853 goto out;
8854 8854
8855 ca->cpuusage = alloc_percpu(u64); 8855 ca->cpuusage = alloc_percpu(u64);
8856 if (!ca->cpuusage) 8856 if (!ca->cpuusage)
8857 goto out_free_ca; 8857 goto out_free_ca;
8858 8858
8859 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) 8859 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8860 if (percpu_counter_init(&ca->cpustat[i], 0)) 8860 if (percpu_counter_init(&ca->cpustat[i], 0))
8861 goto out_free_counters; 8861 goto out_free_counters;
8862 8862
8863 if (cgrp->parent) 8863 if (cgrp->parent)
8864 ca->parent = cgroup_ca(cgrp->parent); 8864 ca->parent = cgroup_ca(cgrp->parent);
8865 8865
8866 return &ca->css; 8866 return &ca->css;
8867 8867
8868 out_free_counters: 8868 out_free_counters:
8869 while (--i >= 0) 8869 while (--i >= 0)
8870 percpu_counter_destroy(&ca->cpustat[i]); 8870 percpu_counter_destroy(&ca->cpustat[i]);
8871 free_percpu(ca->cpuusage); 8871 free_percpu(ca->cpuusage);
8872 out_free_ca: 8872 out_free_ca:
8873 kfree(ca); 8873 kfree(ca);
8874 out: 8874 out:
8875 return ERR_PTR(-ENOMEM); 8875 return ERR_PTR(-ENOMEM);
8876 } 8876 }
8877 8877
8878 /* destroy an existing cpu accounting group */ 8878 /* destroy an existing cpu accounting group */
8879 static void 8879 static void
8880 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) 8880 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8881 { 8881 {
8882 struct cpuacct *ca = cgroup_ca(cgrp); 8882 struct cpuacct *ca = cgroup_ca(cgrp);
8883 int i; 8883 int i;
8884 8884
8885 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) 8885 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8886 percpu_counter_destroy(&ca->cpustat[i]); 8886 percpu_counter_destroy(&ca->cpustat[i]);
8887 free_percpu(ca->cpuusage); 8887 free_percpu(ca->cpuusage);
8888 kfree(ca); 8888 kfree(ca);
8889 } 8889 }
8890 8890
8891 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu) 8891 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8892 { 8892 {
8893 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); 8893 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8894 u64 data; 8894 u64 data;
8895 8895
8896 #ifndef CONFIG_64BIT 8896 #ifndef CONFIG_64BIT
8897 /* 8897 /*
8898 * Take rq->lock to make 64-bit read safe on 32-bit platforms. 8898 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8899 */ 8899 */
8900 raw_spin_lock_irq(&cpu_rq(cpu)->lock); 8900 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8901 data = *cpuusage; 8901 data = *cpuusage;
8902 raw_spin_unlock_irq(&cpu_rq(cpu)->lock); 8902 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8903 #else 8903 #else
8904 data = *cpuusage; 8904 data = *cpuusage;
8905 #endif 8905 #endif
8906 8906
8907 return data; 8907 return data;
8908 } 8908 }
8909 8909
8910 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val) 8910 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8911 { 8911 {
8912 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); 8912 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8913 8913
8914 #ifndef CONFIG_64BIT 8914 #ifndef CONFIG_64BIT
8915 /* 8915 /*
8916 * Take rq->lock to make 64-bit write safe on 32-bit platforms. 8916 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8917 */ 8917 */
8918 raw_spin_lock_irq(&cpu_rq(cpu)->lock); 8918 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8919 *cpuusage = val; 8919 *cpuusage = val;
8920 raw_spin_unlock_irq(&cpu_rq(cpu)->lock); 8920 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8921 #else 8921 #else
8922 *cpuusage = val; 8922 *cpuusage = val;
8923 #endif 8923 #endif
8924 } 8924 }
8925 8925
8926 /* return total cpu usage (in nanoseconds) of a group */ 8926 /* return total cpu usage (in nanoseconds) of a group */
8927 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft) 8927 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8928 { 8928 {
8929 struct cpuacct *ca = cgroup_ca(cgrp); 8929 struct cpuacct *ca = cgroup_ca(cgrp);
8930 u64 totalcpuusage = 0; 8930 u64 totalcpuusage = 0;
8931 int i; 8931 int i;
8932 8932
8933 for_each_present_cpu(i) 8933 for_each_present_cpu(i)
8934 totalcpuusage += cpuacct_cpuusage_read(ca, i); 8934 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8935 8935
8936 return totalcpuusage; 8936 return totalcpuusage;
8937 } 8937 }
8938 8938
8939 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype, 8939 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8940 u64 reset) 8940 u64 reset)
8941 { 8941 {
8942 struct cpuacct *ca = cgroup_ca(cgrp); 8942 struct cpuacct *ca = cgroup_ca(cgrp);
8943 int err = 0; 8943 int err = 0;
8944 int i; 8944 int i;
8945 8945
8946 if (reset) { 8946 if (reset) {
8947 err = -EINVAL; 8947 err = -EINVAL;
8948 goto out; 8948 goto out;
8949 } 8949 }
8950 8950
8951 for_each_present_cpu(i) 8951 for_each_present_cpu(i)
8952 cpuacct_cpuusage_write(ca, i, 0); 8952 cpuacct_cpuusage_write(ca, i, 0);
8953 8953
8954 out: 8954 out:
8955 return err; 8955 return err;
8956 } 8956 }
8957 8957
8958 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft, 8958 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8959 struct seq_file *m) 8959 struct seq_file *m)
8960 { 8960 {
8961 struct cpuacct *ca = cgroup_ca(cgroup); 8961 struct cpuacct *ca = cgroup_ca(cgroup);
8962 u64 percpu; 8962 u64 percpu;
8963 int i; 8963 int i;
8964 8964
8965 for_each_present_cpu(i) { 8965 for_each_present_cpu(i) {
8966 percpu = cpuacct_cpuusage_read(ca, i); 8966 percpu = cpuacct_cpuusage_read(ca, i);
8967 seq_printf(m, "%llu ", (unsigned long long) percpu); 8967 seq_printf(m, "%llu ", (unsigned long long) percpu);
8968 } 8968 }
8969 seq_printf(m, "\n"); 8969 seq_printf(m, "\n");
8970 return 0; 8970 return 0;
8971 } 8971 }
8972 8972
8973 static const char *cpuacct_stat_desc[] = { 8973 static const char *cpuacct_stat_desc[] = {
8974 [CPUACCT_STAT_USER] = "user", 8974 [CPUACCT_STAT_USER] = "user",
8975 [CPUACCT_STAT_SYSTEM] = "system", 8975 [CPUACCT_STAT_SYSTEM] = "system",
8976 }; 8976 };
8977 8977
8978 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft, 8978 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8979 struct cgroup_map_cb *cb) 8979 struct cgroup_map_cb *cb)
8980 { 8980 {
8981 struct cpuacct *ca = cgroup_ca(cgrp); 8981 struct cpuacct *ca = cgroup_ca(cgrp);
8982 int i; 8982 int i;
8983 8983
8984 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) { 8984 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8985 s64 val = percpu_counter_read(&ca->cpustat[i]); 8985 s64 val = percpu_counter_read(&ca->cpustat[i]);
8986 val = cputime64_to_clock_t(val); 8986 val = cputime64_to_clock_t(val);
8987 cb->fill(cb, cpuacct_stat_desc[i], val); 8987 cb->fill(cb, cpuacct_stat_desc[i], val);
8988 } 8988 }
8989 return 0; 8989 return 0;
8990 } 8990 }
8991 8991
8992 static struct cftype files[] = { 8992 static struct cftype files[] = {
8993 { 8993 {
8994 .name = "usage", 8994 .name = "usage",
8995 .read_u64 = cpuusage_read, 8995 .read_u64 = cpuusage_read,
8996 .write_u64 = cpuusage_write, 8996 .write_u64 = cpuusage_write,
8997 }, 8997 },
8998 { 8998 {
8999 .name = "usage_percpu", 8999 .name = "usage_percpu",
9000 .read_seq_string = cpuacct_percpu_seq_read, 9000 .read_seq_string = cpuacct_percpu_seq_read,
9001 }, 9001 },
9002 { 9002 {
9003 .name = "stat", 9003 .name = "stat",
9004 .read_map = cpuacct_stats_show, 9004 .read_map = cpuacct_stats_show,
9005 }, 9005 },
9006 }; 9006 };
9007 9007
9008 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp) 9008 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9009 { 9009 {
9010 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files)); 9010 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9011 } 9011 }
9012 9012
9013 /* 9013 /*
9014 * charge this task's execution time to its accounting group. 9014 * charge this task's execution time to its accounting group.
9015 * 9015 *
9016 * called with rq->lock held. 9016 * called with rq->lock held.
9017 */ 9017 */
9018 static void cpuacct_charge(struct task_struct *tsk, u64 cputime) 9018 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9019 { 9019 {
9020 struct cpuacct *ca; 9020 struct cpuacct *ca;
9021 int cpu; 9021 int cpu;
9022 9022
9023 if (unlikely(!cpuacct_subsys.active)) 9023 if (unlikely(!cpuacct_subsys.active))
9024 return; 9024 return;
9025 9025
9026 cpu = task_cpu(tsk); 9026 cpu = task_cpu(tsk);
9027 9027
9028 rcu_read_lock(); 9028 rcu_read_lock();
9029 9029
9030 ca = task_ca(tsk); 9030 ca = task_ca(tsk);
9031 9031
9032 for (; ca; ca = ca->parent) { 9032 for (; ca; ca = ca->parent) {
9033 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); 9033 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9034 *cpuusage += cputime; 9034 *cpuusage += cputime;
9035 } 9035 }
9036 9036
9037 rcu_read_unlock(); 9037 rcu_read_unlock();
9038 } 9038 }
9039 9039
9040 /* 9040 /*
9041 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large 9041 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9042 * in cputime_t units. As a result, cpuacct_update_stats calls 9042 * in cputime_t units. As a result, cpuacct_update_stats calls
9043 * percpu_counter_add with values large enough to always overflow the 9043 * percpu_counter_add with values large enough to always overflow the
9044 * per cpu batch limit causing bad SMP scalability. 9044 * per cpu batch limit causing bad SMP scalability.
9045 * 9045 *
9046 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we 9046 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9047 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled 9047 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9048 * and enabled. We cap it at INT_MAX which is the largest allowed batch value. 9048 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9049 */ 9049 */
9050 #ifdef CONFIG_SMP 9050 #ifdef CONFIG_SMP
9051 #define CPUACCT_BATCH \ 9051 #define CPUACCT_BATCH \
9052 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX) 9052 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9053 #else 9053 #else
9054 #define CPUACCT_BATCH 0 9054 #define CPUACCT_BATCH 0
9055 #endif 9055 #endif
9056 9056
9057 /* 9057 /*
9058 * Charge the system/user time to the task's accounting group. 9058 * Charge the system/user time to the task's accounting group.
9059 */ 9059 */
9060 static void cpuacct_update_stats(struct task_struct *tsk, 9060 static void cpuacct_update_stats(struct task_struct *tsk,
9061 enum cpuacct_stat_index idx, cputime_t val) 9061 enum cpuacct_stat_index idx, cputime_t val)
9062 { 9062 {
9063 struct cpuacct *ca; 9063 struct cpuacct *ca;
9064 int batch = CPUACCT_BATCH; 9064 int batch = CPUACCT_BATCH;
9065 9065
9066 if (unlikely(!cpuacct_subsys.active)) 9066 if (unlikely(!cpuacct_subsys.active))
9067 return; 9067 return;
9068 9068
9069 rcu_read_lock(); 9069 rcu_read_lock();
9070 ca = task_ca(tsk); 9070 ca = task_ca(tsk);
9071 9071
9072 do { 9072 do {
9073 __percpu_counter_add(&ca->cpustat[idx], val, batch); 9073 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9074 ca = ca->parent; 9074 ca = ca->parent;
9075 } while (ca); 9075 } while (ca);
9076 rcu_read_unlock(); 9076 rcu_read_unlock();
9077 } 9077 }
9078 9078
9079 struct cgroup_subsys cpuacct_subsys = { 9079 struct cgroup_subsys cpuacct_subsys = {
9080 .name = "cpuacct", 9080 .name = "cpuacct",
9081 .create = cpuacct_create, 9081 .create = cpuacct_create,
9082 .destroy = cpuacct_destroy, 9082 .destroy = cpuacct_destroy,
9083 .populate = cpuacct_populate, 9083 .populate = cpuacct_populate,
9084 .subsys_id = cpuacct_subsys_id, 9084 .subsys_id = cpuacct_subsys_id,
9085 }; 9085 };
9086 #endif /* CONFIG_CGROUP_CPUACCT */ 9086 #endif /* CONFIG_CGROUP_CPUACCT */
9087 9087
9088 #ifndef CONFIG_SMP 9088 #ifndef CONFIG_SMP
9089 9089
9090 int rcu_expedited_torture_stats(char *page) 9090 int rcu_expedited_torture_stats(char *page)
9091 { 9091 {
9092 return 0; 9092 return 0;
9093 } 9093 }
9094 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats); 9094 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9095 9095
9096 void synchronize_sched_expedited(void) 9096 void synchronize_sched_expedited(void)
9097 { 9097 {
9098 } 9098 }
9099 EXPORT_SYMBOL_GPL(synchronize_sched_expedited); 9099 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9100 9100
9101 #else /* #ifndef CONFIG_SMP */ 9101 #else /* #ifndef CONFIG_SMP */
9102 9102
9103 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req); 9103 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
9104 static DEFINE_MUTEX(rcu_sched_expedited_mutex); 9104 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
9105 9105
9106 #define RCU_EXPEDITED_STATE_POST -2 9106 #define RCU_EXPEDITED_STATE_POST -2
9107 #define RCU_EXPEDITED_STATE_IDLE -1 9107 #define RCU_EXPEDITED_STATE_IDLE -1
9108 9108
9109 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE; 9109 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9110 9110
9111 int rcu_expedited_torture_stats(char *page) 9111 int rcu_expedited_torture_stats(char *page)
9112 { 9112 {
9113 int cnt = 0; 9113 int cnt = 0;
9114 int cpu; 9114 int cpu;
9115 9115
9116 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state); 9116 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
9117 for_each_online_cpu(cpu) { 9117 for_each_online_cpu(cpu) {
9118 cnt += sprintf(&page[cnt], " %d:%d", 9118 cnt += sprintf(&page[cnt], " %d:%d",
9119 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu); 9119 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
9120 } 9120 }
9121 cnt += sprintf(&page[cnt], "\n"); 9121 cnt += sprintf(&page[cnt], "\n");
9122 return cnt; 9122 return cnt;
9123 } 9123 }
9124 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats); 9124 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9125 9125
9126 static long synchronize_sched_expedited_count; 9126 static long synchronize_sched_expedited_count;
9127 9127
9128 /* 9128 /*
9129 * Wait for an rcu-sched grace period to elapse, but use "big hammer" 9129 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9130 * approach to force grace period to end quickly. This consumes 9130 * approach to force grace period to end quickly. This consumes
9131 * significant time on all CPUs, and is thus not recommended for 9131 * significant time on all CPUs, and is thus not recommended for
9132 * any sort of common-case code. 9132 * any sort of common-case code.
9133 * 9133 *
9134 * Note that it is illegal to call this function while holding any 9134 * Note that it is illegal to call this function while holding any
9135 * lock that is acquired by a CPU-hotplug notifier. Failing to 9135 * lock that is acquired by a CPU-hotplug notifier. Failing to
9136 * observe this restriction will result in deadlock. 9136 * observe this restriction will result in deadlock.
9137 */ 9137 */
9138 void synchronize_sched_expedited(void) 9138 void synchronize_sched_expedited(void)
9139 { 9139 {
9140 int cpu; 9140 int cpu;
9141 unsigned long flags; 9141 unsigned long flags;
9142 bool need_full_sync = 0; 9142 bool need_full_sync = 0;
9143 struct rq *rq; 9143 struct rq *rq;
9144 struct migration_req *req; 9144 struct migration_req *req;
9145 long snap; 9145 long snap;
9146 int trycount = 0; 9146 int trycount = 0;
9147 9147
9148 smp_mb(); /* ensure prior mod happens before capturing snap. */ 9148 smp_mb(); /* ensure prior mod happens before capturing snap. */
9149 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1; 9149 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
9150 get_online_cpus(); 9150 get_online_cpus();
9151 while (!mutex_trylock(&rcu_sched_expedited_mutex)) { 9151 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
9152 put_online_cpus(); 9152 put_online_cpus();
9153 if (trycount++ < 10) 9153 if (trycount++ < 10)
9154 udelay(trycount * num_online_cpus()); 9154 udelay(trycount * num_online_cpus());
9155 else { 9155 else {
9156 synchronize_sched(); 9156 synchronize_sched();
9157 return; 9157 return;
9158 } 9158 }
9159 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) { 9159 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
9160 smp_mb(); /* ensure test happens before caller kfree */ 9160 smp_mb(); /* ensure test happens before caller kfree */
9161 return; 9161 return;
9162 } 9162 }
9163 get_online_cpus(); 9163 get_online_cpus();
9164 } 9164 }
9165 rcu_expedited_state = RCU_EXPEDITED_STATE_POST; 9165 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
9166 for_each_online_cpu(cpu) { 9166 for_each_online_cpu(cpu) {
9167 rq = cpu_rq(cpu); 9167 rq = cpu_rq(cpu);
9168 req = &per_cpu(rcu_migration_req, cpu); 9168 req = &per_cpu(rcu_migration_req, cpu);
9169 init_completion(&req->done); 9169 init_completion(&req->done);
9170 req->task = NULL; 9170 req->task = NULL;
9171 req->dest_cpu = RCU_MIGRATION_NEED_QS; 9171 req->dest_cpu = RCU_MIGRATION_NEED_QS;
9172 raw_spin_lock_irqsave(&rq->lock, flags); 9172 raw_spin_lock_irqsave(&rq->lock, flags);
9173 list_add(&req->list, &rq->migration_queue); 9173 list_add(&req->list, &rq->migration_queue);
9174 raw_spin_unlock_irqrestore(&rq->lock, flags); 9174 raw_spin_unlock_irqrestore(&rq->lock, flags);
9175 wake_up_process(rq->migration_thread); 9175 wake_up_process(rq->migration_thread);
9176 } 9176 }
9177 for_each_online_cpu(cpu) { 9177 for_each_online_cpu(cpu) {
9178 rcu_expedited_state = cpu; 9178 rcu_expedited_state = cpu;
9179 req = &per_cpu(rcu_migration_req, cpu); 9179 req = &per_cpu(rcu_migration_req, cpu);
9180 rq = cpu_rq(cpu); 9180 rq = cpu_rq(cpu);
9181 wait_for_completion(&req->done); 9181 wait_for_completion(&req->done);
9182 raw_spin_lock_irqsave(&rq->lock, flags); 9182 raw_spin_lock_irqsave(&rq->lock, flags);
9183 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC)) 9183 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
9184 need_full_sync = 1; 9184 need_full_sync = 1;
9185 req->dest_cpu = RCU_MIGRATION_IDLE; 9185 req->dest_cpu = RCU_MIGRATION_IDLE;
9186 raw_spin_unlock_irqrestore(&rq->lock, flags); 9186 raw_spin_unlock_irqrestore(&rq->lock, flags);
9187 } 9187 }
9188 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE; 9188 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9189 synchronize_sched_expedited_count++; 9189 synchronize_sched_expedited_count++;
9190 mutex_unlock(&rcu_sched_expedited_mutex); 9190 mutex_unlock(&rcu_sched_expedited_mutex);
9191 put_online_cpus(); 9191 put_online_cpus();
9192 if (need_full_sync) 9192 if (need_full_sync)
9193 synchronize_sched(); 9193 synchronize_sched();
9194 } 9194 }
9195 EXPORT_SYMBOL_GPL(synchronize_sched_expedited); 9195 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9196 9196
9197 #endif /* #else #ifndef CONFIG_SMP */ 9197 #endif /* #else #ifndef CONFIG_SMP */
9198 9198
kernel/sched_debug.c
1 /* 1 /*
2 * kernel/time/sched_debug.c 2 * kernel/time/sched_debug.c
3 * 3 *
4 * Print the CFS rbtree 4 * Print the CFS rbtree
5 * 5 *
6 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
7 * 7 *
8 * This program is free software; you can redistribute it and/or modify 8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as 9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation. 10 * published by the Free Software Foundation.
11 */ 11 */
12 12
13 #include <linux/proc_fs.h> 13 #include <linux/proc_fs.h>
14 #include <linux/sched.h> 14 #include <linux/sched.h>
15 #include <linux/seq_file.h> 15 #include <linux/seq_file.h>
16 #include <linux/kallsyms.h> 16 #include <linux/kallsyms.h>
17 #include <linux/utsname.h> 17 #include <linux/utsname.h>
18 18
19 /* 19 /*
20 * This allows printing both to /proc/sched_debug and 20 * This allows printing both to /proc/sched_debug and
21 * to the console 21 * to the console
22 */ 22 */
23 #define SEQ_printf(m, x...) \ 23 #define SEQ_printf(m, x...) \
24 do { \ 24 do { \
25 if (m) \ 25 if (m) \
26 seq_printf(m, x); \ 26 seq_printf(m, x); \
27 else \ 27 else \
28 printk(x); \ 28 printk(x); \
29 } while (0) 29 } while (0)
30 30
31 /* 31 /*
32 * Ease the printing of nsec fields: 32 * Ease the printing of nsec fields:
33 */ 33 */
34 static long long nsec_high(unsigned long long nsec) 34 static long long nsec_high(unsigned long long nsec)
35 { 35 {
36 if ((long long)nsec < 0) { 36 if ((long long)nsec < 0) {
37 nsec = -nsec; 37 nsec = -nsec;
38 do_div(nsec, 1000000); 38 do_div(nsec, 1000000);
39 return -nsec; 39 return -nsec;
40 } 40 }
41 do_div(nsec, 1000000); 41 do_div(nsec, 1000000);
42 42
43 return nsec; 43 return nsec;
44 } 44 }
45 45
46 static unsigned long nsec_low(unsigned long long nsec) 46 static unsigned long nsec_low(unsigned long long nsec)
47 { 47 {
48 if ((long long)nsec < 0) 48 if ((long long)nsec < 0)
49 nsec = -nsec; 49 nsec = -nsec;
50 50
51 return do_div(nsec, 1000000); 51 return do_div(nsec, 1000000);
52 } 52 }
53 53
54 #define SPLIT_NS(x) nsec_high(x), nsec_low(x) 54 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
55 55
56 #ifdef CONFIG_FAIR_GROUP_SCHED 56 #ifdef CONFIG_FAIR_GROUP_SCHED
57 static void print_cfs_group_stats(struct seq_file *m, int cpu, 57 static void print_cfs_group_stats(struct seq_file *m, int cpu,
58 struct task_group *tg) 58 struct task_group *tg)
59 { 59 {
60 struct sched_entity *se = tg->se[cpu]; 60 struct sched_entity *se = tg->se[cpu];
61 if (!se) 61 if (!se)
62 return; 62 return;
63 63
64 #define P(F) \ 64 #define P(F) \
65 SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F) 65 SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F)
66 #define PN(F) \ 66 #define PN(F) \
67 SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F)) 67 SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
68 68
69 PN(se->exec_start); 69 PN(se->exec_start);
70 PN(se->vruntime); 70 PN(se->vruntime);
71 PN(se->sum_exec_runtime); 71 PN(se->sum_exec_runtime);
72 #ifdef CONFIG_SCHEDSTATS 72 #ifdef CONFIG_SCHEDSTATS
73 PN(se->wait_start); 73 PN(se->wait_start);
74 PN(se->sleep_start); 74 PN(se->sleep_start);
75 PN(se->block_start); 75 PN(se->block_start);
76 PN(se->sleep_max); 76 PN(se->sleep_max);
77 PN(se->block_max); 77 PN(se->block_max);
78 PN(se->exec_max); 78 PN(se->exec_max);
79 PN(se->slice_max); 79 PN(se->slice_max);
80 PN(se->wait_max); 80 PN(se->wait_max);
81 PN(se->wait_sum); 81 PN(se->wait_sum);
82 P(se->wait_count); 82 P(se->wait_count);
83 #endif 83 #endif
84 P(se->load.weight); 84 P(se->load.weight);
85 #undef PN 85 #undef PN
86 #undef P 86 #undef P
87 } 87 }
88 #endif 88 #endif
89 89
90 static void 90 static void
91 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p) 91 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
92 { 92 {
93 if (rq->curr == p) 93 if (rq->curr == p)
94 SEQ_printf(m, "R"); 94 SEQ_printf(m, "R");
95 else 95 else
96 SEQ_printf(m, " "); 96 SEQ_printf(m, " ");
97 97
98 SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ", 98 SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
99 p->comm, p->pid, 99 p->comm, p->pid,
100 SPLIT_NS(p->se.vruntime), 100 SPLIT_NS(p->se.vruntime),
101 (long long)(p->nvcsw + p->nivcsw), 101 (long long)(p->nvcsw + p->nivcsw),
102 p->prio); 102 p->prio);
103 #ifdef CONFIG_SCHEDSTATS 103 #ifdef CONFIG_SCHEDSTATS
104 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld", 104 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
105 SPLIT_NS(p->se.vruntime), 105 SPLIT_NS(p->se.vruntime),
106 SPLIT_NS(p->se.sum_exec_runtime), 106 SPLIT_NS(p->se.sum_exec_runtime),
107 SPLIT_NS(p->se.sum_sleep_runtime)); 107 SPLIT_NS(p->se.sum_sleep_runtime));
108 #else 108 #else
109 SEQ_printf(m, "%15Ld %15Ld %15Ld.%06ld %15Ld.%06ld %15Ld.%06ld", 109 SEQ_printf(m, "%15Ld %15Ld %15Ld.%06ld %15Ld.%06ld %15Ld.%06ld",
110 0LL, 0LL, 0LL, 0L, 0LL, 0L, 0LL, 0L); 110 0LL, 0LL, 0LL, 0L, 0LL, 0L, 0LL, 0L);
111 #endif 111 #endif
112 112
113 #ifdef CONFIG_CGROUP_SCHED 113 #ifdef CONFIG_CGROUP_SCHED
114 { 114 {
115 char path[64]; 115 char path[64];
116 116
117 cgroup_path(task_group(p)->css.cgroup, path, sizeof(path)); 117 cgroup_path(task_group(p)->css.cgroup, path, sizeof(path));
118 SEQ_printf(m, " %s", path); 118 SEQ_printf(m, " %s", path);
119 } 119 }
120 #endif 120 #endif
121 SEQ_printf(m, "\n"); 121 SEQ_printf(m, "\n");
122 } 122 }
123 123
124 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu) 124 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
125 { 125 {
126 struct task_struct *g, *p; 126 struct task_struct *g, *p;
127 unsigned long flags; 127 unsigned long flags;
128 128
129 SEQ_printf(m, 129 SEQ_printf(m,
130 "\nrunnable tasks:\n" 130 "\nrunnable tasks:\n"
131 " task PID tree-key switches prio" 131 " task PID tree-key switches prio"
132 " exec-runtime sum-exec sum-sleep\n" 132 " exec-runtime sum-exec sum-sleep\n"
133 "------------------------------------------------------" 133 "------------------------------------------------------"
134 "----------------------------------------------------\n"); 134 "----------------------------------------------------\n");
135 135
136 read_lock_irqsave(&tasklist_lock, flags); 136 read_lock_irqsave(&tasklist_lock, flags);
137 137
138 do_each_thread(g, p) { 138 do_each_thread(g, p) {
139 if (!p->se.on_rq || task_cpu(p) != rq_cpu) 139 if (!p->se.on_rq || task_cpu(p) != rq_cpu)
140 continue; 140 continue;
141 141
142 print_task(m, rq, p); 142 print_task(m, rq, p);
143 } while_each_thread(g, p); 143 } while_each_thread(g, p);
144 144
145 read_unlock_irqrestore(&tasklist_lock, flags); 145 read_unlock_irqrestore(&tasklist_lock, flags);
146 } 146 }
147 147
148 #if defined(CONFIG_CGROUP_SCHED) && \ 148 #if defined(CONFIG_CGROUP_SCHED) && \
149 (defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)) 149 (defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED))
150 static void task_group_path(struct task_group *tg, char *buf, int buflen) 150 static void task_group_path(struct task_group *tg, char *buf, int buflen)
151 { 151 {
152 /* may be NULL if the underlying cgroup isn't fully-created yet */ 152 /* may be NULL if the underlying cgroup isn't fully-created yet */
153 if (!tg->css.cgroup) { 153 if (!tg->css.cgroup) {
154 buf[0] = '\0'; 154 buf[0] = '\0';
155 return; 155 return;
156 } 156 }
157 cgroup_path(tg->css.cgroup, buf, buflen); 157 cgroup_path(tg->css.cgroup, buf, buflen);
158 } 158 }
159 #endif 159 #endif
160 160
161 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 161 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
162 { 162 {
163 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1, 163 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
164 spread, rq0_min_vruntime, spread0; 164 spread, rq0_min_vruntime, spread0;
165 struct rq *rq = cpu_rq(cpu); 165 struct rq *rq = cpu_rq(cpu);
166 struct sched_entity *last; 166 struct sched_entity *last;
167 unsigned long flags; 167 unsigned long flags;
168 168
169 #if defined(CONFIG_CGROUP_SCHED) && defined(CONFIG_FAIR_GROUP_SCHED) 169 #if defined(CONFIG_CGROUP_SCHED) && defined(CONFIG_FAIR_GROUP_SCHED)
170 char path[128]; 170 char path[128];
171 struct task_group *tg = cfs_rq->tg; 171 struct task_group *tg = cfs_rq->tg;
172 172
173 task_group_path(tg, path, sizeof(path)); 173 task_group_path(tg, path, sizeof(path));
174 174
175 SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, path); 175 SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, path);
176 #elif defined(CONFIG_USER_SCHED) && defined(CONFIG_FAIR_GROUP_SCHED) 176 #elif defined(CONFIG_USER_SCHED) && defined(CONFIG_FAIR_GROUP_SCHED)
177 { 177 {
178 uid_t uid = cfs_rq->tg->uid; 178 uid_t uid = cfs_rq->tg->uid;
179 SEQ_printf(m, "\ncfs_rq[%d] for UID: %u\n", cpu, uid); 179 SEQ_printf(m, "\ncfs_rq[%d] for UID: %u\n", cpu, uid);
180 } 180 }
181 #else 181 #else
182 SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu); 182 SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu);
183 #endif 183 #endif
184 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock", 184 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock",
185 SPLIT_NS(cfs_rq->exec_clock)); 185 SPLIT_NS(cfs_rq->exec_clock));
186 186
187 raw_spin_lock_irqsave(&rq->lock, flags); 187 raw_spin_lock_irqsave(&rq->lock, flags);
188 if (cfs_rq->rb_leftmost) 188 if (cfs_rq->rb_leftmost)
189 MIN_vruntime = (__pick_next_entity(cfs_rq))->vruntime; 189 MIN_vruntime = (__pick_next_entity(cfs_rq))->vruntime;
190 last = __pick_last_entity(cfs_rq); 190 last = __pick_last_entity(cfs_rq);
191 if (last) 191 if (last)
192 max_vruntime = last->vruntime; 192 max_vruntime = last->vruntime;
193 min_vruntime = cfs_rq->min_vruntime; 193 min_vruntime = cfs_rq->min_vruntime;
194 rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime; 194 rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
195 raw_spin_unlock_irqrestore(&rq->lock, flags); 195 raw_spin_unlock_irqrestore(&rq->lock, flags);
196 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime", 196 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime",
197 SPLIT_NS(MIN_vruntime)); 197 SPLIT_NS(MIN_vruntime));
198 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime", 198 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime",
199 SPLIT_NS(min_vruntime)); 199 SPLIT_NS(min_vruntime));
200 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime", 200 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime",
201 SPLIT_NS(max_vruntime)); 201 SPLIT_NS(max_vruntime));
202 spread = max_vruntime - MIN_vruntime; 202 spread = max_vruntime - MIN_vruntime;
203 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread", 203 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread",
204 SPLIT_NS(spread)); 204 SPLIT_NS(spread));
205 spread0 = min_vruntime - rq0_min_vruntime; 205 spread0 = min_vruntime - rq0_min_vruntime;
206 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0", 206 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0",
207 SPLIT_NS(spread0)); 207 SPLIT_NS(spread0));
208 SEQ_printf(m, " .%-30s: %ld\n", "nr_running", cfs_rq->nr_running); 208 SEQ_printf(m, " .%-30s: %ld\n", "nr_running", cfs_rq->nr_running);
209 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight); 209 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
210 210
211 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over", 211 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over",
212 cfs_rq->nr_spread_over); 212 cfs_rq->nr_spread_over);
213 #ifdef CONFIG_FAIR_GROUP_SCHED 213 #ifdef CONFIG_FAIR_GROUP_SCHED
214 #ifdef CONFIG_SMP 214 #ifdef CONFIG_SMP
215 SEQ_printf(m, " .%-30s: %lu\n", "shares", cfs_rq->shares); 215 SEQ_printf(m, " .%-30s: %lu\n", "shares", cfs_rq->shares);
216 #endif 216 #endif
217 print_cfs_group_stats(m, cpu, cfs_rq->tg); 217 print_cfs_group_stats(m, cpu, cfs_rq->tg);
218 #endif 218 #endif
219 } 219 }
220 220
221 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq) 221 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
222 { 222 {
223 #if defined(CONFIG_CGROUP_SCHED) && defined(CONFIG_RT_GROUP_SCHED) 223 #if defined(CONFIG_CGROUP_SCHED) && defined(CONFIG_RT_GROUP_SCHED)
224 char path[128]; 224 char path[128];
225 struct task_group *tg = rt_rq->tg; 225 struct task_group *tg = rt_rq->tg;
226 226
227 task_group_path(tg, path, sizeof(path)); 227 task_group_path(tg, path, sizeof(path));
228 228
229 SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, path); 229 SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, path);
230 #else 230 #else
231 SEQ_printf(m, "\nrt_rq[%d]:\n", cpu); 231 SEQ_printf(m, "\nrt_rq[%d]:\n", cpu);
232 #endif 232 #endif
233 233
234 234
235 #define P(x) \ 235 #define P(x) \
236 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x)) 236 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
237 #define PN(x) \ 237 #define PN(x) \
238 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x)) 238 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
239 239
240 P(rt_nr_running); 240 P(rt_nr_running);
241 P(rt_throttled); 241 P(rt_throttled);
242 PN(rt_time); 242 PN(rt_time);
243 PN(rt_runtime); 243 PN(rt_runtime);
244 244
245 #undef PN 245 #undef PN
246 #undef P 246 #undef P
247 } 247 }
248 248
249 static void print_cpu(struct seq_file *m, int cpu) 249 static void print_cpu(struct seq_file *m, int cpu)
250 { 250 {
251 struct rq *rq = cpu_rq(cpu); 251 struct rq *rq = cpu_rq(cpu);
252 252
253 #ifdef CONFIG_X86 253 #ifdef CONFIG_X86
254 { 254 {
255 unsigned int freq = cpu_khz ? : 1; 255 unsigned int freq = cpu_khz ? : 1;
256 256
257 SEQ_printf(m, "\ncpu#%d, %u.%03u MHz\n", 257 SEQ_printf(m, "\ncpu#%d, %u.%03u MHz\n",
258 cpu, freq / 1000, (freq % 1000)); 258 cpu, freq / 1000, (freq % 1000));
259 } 259 }
260 #else 260 #else
261 SEQ_printf(m, "\ncpu#%d\n", cpu); 261 SEQ_printf(m, "\ncpu#%d\n", cpu);
262 #endif 262 #endif
263 263
264 #define P(x) \ 264 #define P(x) \
265 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x)) 265 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x))
266 #define PN(x) \ 266 #define PN(x) \
267 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x)) 267 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
268 268
269 P(nr_running); 269 P(nr_running);
270 SEQ_printf(m, " .%-30s: %lu\n", "load", 270 SEQ_printf(m, " .%-30s: %lu\n", "load",
271 rq->load.weight); 271 rq->load.weight);
272 P(nr_switches); 272 P(nr_switches);
273 P(nr_load_updates); 273 P(nr_load_updates);
274 P(nr_uninterruptible); 274 P(nr_uninterruptible);
275 PN(next_balance); 275 PN(next_balance);
276 P(curr->pid); 276 P(curr->pid);
277 PN(clock); 277 PN(clock);
278 P(cpu_load[0]); 278 P(cpu_load[0]);
279 P(cpu_load[1]); 279 P(cpu_load[1]);
280 P(cpu_load[2]); 280 P(cpu_load[2]);
281 P(cpu_load[3]); 281 P(cpu_load[3]);
282 P(cpu_load[4]); 282 P(cpu_load[4]);
283 #undef P 283 #undef P
284 #undef PN 284 #undef PN
285 285
286 #ifdef CONFIG_SCHEDSTATS 286 #ifdef CONFIG_SCHEDSTATS
287 #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, rq->n); 287 #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, rq->n);
288 #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n); 288 #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n);
289 289
290 P(yld_count); 290 P(yld_count);
291 291
292 P(sched_switch); 292 P(sched_switch);
293 P(sched_count); 293 P(sched_count);
294 P(sched_goidle); 294 P(sched_goidle);
295 #ifdef CONFIG_SMP 295 #ifdef CONFIG_SMP
296 P64(avg_idle); 296 P64(avg_idle);
297 #endif 297 #endif
298 298
299 P(ttwu_count); 299 P(ttwu_count);
300 P(ttwu_local); 300 P(ttwu_local);
301 301
302 P(bkl_count); 302 P(bkl_count);
303 303
304 #undef P 304 #undef P
305 #endif 305 #endif
306 print_cfs_stats(m, cpu); 306 print_cfs_stats(m, cpu);
307 print_rt_stats(m, cpu); 307 print_rt_stats(m, cpu);
308 308
309 print_rq(m, rq, cpu); 309 print_rq(m, rq, cpu);
310 } 310 }
311 311
312 static const char *sched_tunable_scaling_names[] = { 312 static const char *sched_tunable_scaling_names[] = {
313 "none", 313 "none",
314 "logaritmic", 314 "logaritmic",
315 "linear" 315 "linear"
316 }; 316 };
317 317
318 static int sched_debug_show(struct seq_file *m, void *v) 318 static int sched_debug_show(struct seq_file *m, void *v)
319 { 319 {
320 u64 now = ktime_to_ns(ktime_get()); 320 u64 now = ktime_to_ns(ktime_get());
321 int cpu; 321 int cpu;
322 322
323 SEQ_printf(m, "Sched Debug Version: v0.09, %s %.*s\n", 323 SEQ_printf(m, "Sched Debug Version: v0.09, %s %.*s\n",
324 init_utsname()->release, 324 init_utsname()->release,
325 (int)strcspn(init_utsname()->version, " "), 325 (int)strcspn(init_utsname()->version, " "),
326 init_utsname()->version); 326 init_utsname()->version);
327 327
328 SEQ_printf(m, "now at %Lu.%06ld msecs\n", SPLIT_NS(now)); 328 SEQ_printf(m, "now at %Lu.%06ld msecs\n", SPLIT_NS(now));
329 329
330 #define P(x) \ 330 #define P(x) \
331 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x)) 331 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
332 #define PN(x) \ 332 #define PN(x) \
333 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 333 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
334 P(jiffies); 334 P(jiffies);
335 PN(sysctl_sched_latency); 335 PN(sysctl_sched_latency);
336 PN(sysctl_sched_min_granularity); 336 PN(sysctl_sched_min_granularity);
337 PN(sysctl_sched_wakeup_granularity); 337 PN(sysctl_sched_wakeup_granularity);
338 PN(sysctl_sched_child_runs_first); 338 PN(sysctl_sched_child_runs_first);
339 P(sysctl_sched_features); 339 P(sysctl_sched_features);
340 #undef PN 340 #undef PN
341 #undef P 341 #undef P
342 342
343 SEQ_printf(m, " .%-40s: %d (%s)\n", "sysctl_sched_tunable_scaling", 343 SEQ_printf(m, " .%-40s: %d (%s)\n", "sysctl_sched_tunable_scaling",
344 sysctl_sched_tunable_scaling, 344 sysctl_sched_tunable_scaling,
345 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]); 345 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
346 346
347 for_each_online_cpu(cpu) 347 for_each_online_cpu(cpu)
348 print_cpu(m, cpu); 348 print_cpu(m, cpu);
349 349
350 SEQ_printf(m, "\n"); 350 SEQ_printf(m, "\n");
351 351
352 return 0; 352 return 0;
353 } 353 }
354 354
355 static void sysrq_sched_debug_show(void) 355 static void sysrq_sched_debug_show(void)
356 { 356 {
357 sched_debug_show(NULL, NULL); 357 sched_debug_show(NULL, NULL);
358 } 358 }
359 359
360 static int sched_debug_open(struct inode *inode, struct file *filp) 360 static int sched_debug_open(struct inode *inode, struct file *filp)
361 { 361 {
362 return single_open(filp, sched_debug_show, NULL); 362 return single_open(filp, sched_debug_show, NULL);
363 } 363 }
364 364
365 static const struct file_operations sched_debug_fops = { 365 static const struct file_operations sched_debug_fops = {
366 .open = sched_debug_open, 366 .open = sched_debug_open,
367 .read = seq_read, 367 .read = seq_read,
368 .llseek = seq_lseek, 368 .llseek = seq_lseek,
369 .release = single_release, 369 .release = single_release,
370 }; 370 };
371 371
372 static int __init init_sched_debug_procfs(void) 372 static int __init init_sched_debug_procfs(void)
373 { 373 {
374 struct proc_dir_entry *pe; 374 struct proc_dir_entry *pe;
375 375
376 pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops); 376 pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops);
377 if (!pe) 377 if (!pe)
378 return -ENOMEM; 378 return -ENOMEM;
379 return 0; 379 return 0;
380 } 380 }
381 381
382 __initcall(init_sched_debug_procfs); 382 __initcall(init_sched_debug_procfs);
383 383
384 void proc_sched_show_task(struct task_struct *p, struct seq_file *m) 384 void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
385 { 385 {
386 unsigned long nr_switches; 386 unsigned long nr_switches;
387 unsigned long flags; 387 unsigned long flags;
388 int num_threads = 1; 388 int num_threads = 1;
389 389
390 if (lock_task_sighand(p, &flags)) { 390 if (lock_task_sighand(p, &flags)) {
391 num_threads = atomic_read(&p->signal->count); 391 num_threads = atomic_read(&p->signal->count);
392 unlock_task_sighand(p, &flags); 392 unlock_task_sighand(p, &flags);
393 } 393 }
394 394
395 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, p->pid, num_threads); 395 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, p->pid, num_threads);
396 SEQ_printf(m, 396 SEQ_printf(m,
397 "---------------------------------------------------------\n"); 397 "---------------------------------------------------------\n");
398 #define __P(F) \ 398 #define __P(F) \
399 SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)F) 399 SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)F)
400 #define P(F) \ 400 #define P(F) \
401 SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)p->F) 401 SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)p->F)
402 #define __PN(F) \ 402 #define __PN(F) \
403 SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F)) 403 SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
404 #define PN(F) \ 404 #define PN(F) \
405 SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F)) 405 SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
406 406
407 PN(se.exec_start); 407 PN(se.exec_start);
408 PN(se.vruntime); 408 PN(se.vruntime);
409 PN(se.sum_exec_runtime); 409 PN(se.sum_exec_runtime);
410 PN(se.avg_overlap); 410 PN(se.avg_overlap);
411 PN(se.avg_wakeup); 411 PN(se.avg_wakeup);
412 412
413 nr_switches = p->nvcsw + p->nivcsw; 413 nr_switches = p->nvcsw + p->nivcsw;
414 414
415 #ifdef CONFIG_SCHEDSTATS 415 #ifdef CONFIG_SCHEDSTATS
416 PN(se.wait_start); 416 PN(se.wait_start);
417 PN(se.sleep_start); 417 PN(se.sleep_start);
418 PN(se.block_start); 418 PN(se.block_start);
419 PN(se.sleep_max); 419 PN(se.sleep_max);
420 PN(se.block_max); 420 PN(se.block_max);
421 PN(se.exec_max); 421 PN(se.exec_max);
422 PN(se.slice_max); 422 PN(se.slice_max);
423 PN(se.wait_max); 423 PN(se.wait_max);
424 PN(se.wait_sum); 424 PN(se.wait_sum);
425 P(se.wait_count); 425 P(se.wait_count);
426 PN(se.iowait_sum); 426 PN(se.iowait_sum);
427 P(se.iowait_count); 427 P(se.iowait_count);
428 P(sched_info.bkl_count); 428 P(sched_info.bkl_count);
429 P(se.nr_migrations); 429 P(se.nr_migrations);
430 P(se.nr_migrations_cold); 430 P(se.nr_migrations_cold);
431 P(se.nr_failed_migrations_affine); 431 P(se.nr_failed_migrations_affine);
432 P(se.nr_failed_migrations_running); 432 P(se.nr_failed_migrations_running);
433 P(se.nr_failed_migrations_hot); 433 P(se.nr_failed_migrations_hot);
434 P(se.nr_forced_migrations); 434 P(se.nr_forced_migrations);
435 P(se.nr_wakeups); 435 P(se.nr_wakeups);
436 P(se.nr_wakeups_sync); 436 P(se.nr_wakeups_sync);
437 P(se.nr_wakeups_migrate); 437 P(se.nr_wakeups_migrate);
438 P(se.nr_wakeups_local); 438 P(se.nr_wakeups_local);
439 P(se.nr_wakeups_remote); 439 P(se.nr_wakeups_remote);
440 P(se.nr_wakeups_affine); 440 P(se.nr_wakeups_affine);
441 P(se.nr_wakeups_affine_attempts); 441 P(se.nr_wakeups_affine_attempts);
442 P(se.nr_wakeups_passive); 442 P(se.nr_wakeups_passive);
443 P(se.nr_wakeups_idle); 443 P(se.nr_wakeups_idle);
444 444
445 { 445 {
446 u64 avg_atom, avg_per_cpu; 446 u64 avg_atom, avg_per_cpu;
447 447
448 avg_atom = p->se.sum_exec_runtime; 448 avg_atom = p->se.sum_exec_runtime;
449 if (nr_switches) 449 if (nr_switches)
450 do_div(avg_atom, nr_switches); 450 do_div(avg_atom, nr_switches);
451 else 451 else
452 avg_atom = -1LL; 452 avg_atom = -1LL;
453 453
454 avg_per_cpu = p->se.sum_exec_runtime; 454 avg_per_cpu = p->se.sum_exec_runtime;
455 if (p->se.nr_migrations) { 455 if (p->se.nr_migrations) {
456 avg_per_cpu = div64_u64(avg_per_cpu, 456 avg_per_cpu = div64_u64(avg_per_cpu,
457 p->se.nr_migrations); 457 p->se.nr_migrations);
458 } else { 458 } else {
459 avg_per_cpu = -1LL; 459 avg_per_cpu = -1LL;
460 } 460 }
461 461
462 __PN(avg_atom); 462 __PN(avg_atom);
463 __PN(avg_per_cpu); 463 __PN(avg_per_cpu);
464 } 464 }
465 #endif 465 #endif
466 __P(nr_switches); 466 __P(nr_switches);
467 SEQ_printf(m, "%-35s:%21Ld\n", 467 SEQ_printf(m, "%-35s:%21Ld\n",
468 "nr_voluntary_switches", (long long)p->nvcsw); 468 "nr_voluntary_switches", (long long)p->nvcsw);
469 SEQ_printf(m, "%-35s:%21Ld\n", 469 SEQ_printf(m, "%-35s:%21Ld\n",
470 "nr_involuntary_switches", (long long)p->nivcsw); 470 "nr_involuntary_switches", (long long)p->nivcsw);
471 471
472 P(se.load.weight); 472 P(se.load.weight);
473 P(policy); 473 P(policy);
474 P(prio); 474 P(prio);
475 #undef PN 475 #undef PN
476 #undef __PN 476 #undef __PN
477 #undef P 477 #undef P
478 #undef __P 478 #undef __P
479 479
480 { 480 {
481 unsigned int this_cpu = raw_smp_processor_id(); 481 unsigned int this_cpu = raw_smp_processor_id();
482 u64 t0, t1; 482 u64 t0, t1;
483 483
484 t0 = cpu_clock(this_cpu); 484 t0 = cpu_clock(this_cpu);
485 t1 = cpu_clock(this_cpu); 485 t1 = cpu_clock(this_cpu);
486 SEQ_printf(m, "%-35s:%21Ld\n", 486 SEQ_printf(m, "%-35s:%21Ld\n",
487 "clock-delta", (long long)(t1-t0)); 487 "clock-delta", (long long)(t1-t0));
488 } 488 }
489 } 489 }
490 490
491 void proc_sched_set_task(struct task_struct *p) 491 void proc_sched_set_task(struct task_struct *p)
492 { 492 {
493 #ifdef CONFIG_SCHEDSTATS 493 #ifdef CONFIG_SCHEDSTATS
494 p->se.wait_max = 0; 494 p->se.wait_max = 0;
495 p->se.wait_sum = 0; 495 p->se.wait_sum = 0;
496 p->se.wait_count = 0; 496 p->se.wait_count = 0;
497 p->se.iowait_sum = 0; 497 p->se.iowait_sum = 0;
498 p->se.iowait_count = 0; 498 p->se.iowait_count = 0;
499 p->se.sleep_max = 0; 499 p->se.sleep_max = 0;
500 p->se.sum_sleep_runtime = 0; 500 p->se.sum_sleep_runtime = 0;
501 p->se.block_max = 0; 501 p->se.block_max = 0;
502 p->se.exec_max = 0; 502 p->se.exec_max = 0;
503 p->se.slice_max = 0; 503 p->se.slice_max = 0;
504 p->se.nr_migrations = 0; 504 p->se.nr_migrations = 0;
505 p->se.nr_migrations_cold = 0; 505 p->se.nr_migrations_cold = 0;
506 p->se.nr_failed_migrations_affine = 0; 506 p->se.nr_failed_migrations_affine = 0;
507 p->se.nr_failed_migrations_running = 0; 507 p->se.nr_failed_migrations_running = 0;
508 p->se.nr_failed_migrations_hot = 0; 508 p->se.nr_failed_migrations_hot = 0;
509 p->se.nr_forced_migrations = 0; 509 p->se.nr_forced_migrations = 0;
510 p->se.nr_wakeups = 0; 510 p->se.nr_wakeups = 0;
511 p->se.nr_wakeups_sync = 0; 511 p->se.nr_wakeups_sync = 0;
512 p->se.nr_wakeups_migrate = 0; 512 p->se.nr_wakeups_migrate = 0;
513 p->se.nr_wakeups_local = 0; 513 p->se.nr_wakeups_local = 0;
514 p->se.nr_wakeups_remote = 0; 514 p->se.nr_wakeups_remote = 0;
515 p->se.nr_wakeups_affine = 0; 515 p->se.nr_wakeups_affine = 0;
516 p->se.nr_wakeups_affine_attempts = 0; 516 p->se.nr_wakeups_affine_attempts = 0;
517 p->se.nr_wakeups_passive = 0; 517 p->se.nr_wakeups_passive = 0;
518 p->se.nr_wakeups_idle = 0; 518 p->se.nr_wakeups_idle = 0;
519 p->sched_info.bkl_count = 0; 519 p->sched_info.bkl_count = 0;
520 #endif 520 #endif
521 p->se.sum_exec_runtime = 0;
522 p->se.prev_sum_exec_runtime = 0;
523 p->nvcsw = 0;
524 p->nivcsw = 0;
525 } 521 }
526 522