Commit 04903664325acb3f199dd8a4b8f1aa437e9fd6b2
Committed by
Linus Torvalds
1 parent
93f210dd9e
Exists in
master
and in
7 other branches
[PATCH] remove HASH_HIGHMEM
It has no users and it's doubtful that we'll need it again. Cc: "David S. Miller" <davem@davemloft.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Showing 2 changed files with 2 additions and 3 deletions Inline Diff
include/linux/bootmem.h
1 | /* | 1 | /* |
2 | * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 | 2 | * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 |
3 | */ | 3 | */ |
4 | #ifndef _LINUX_BOOTMEM_H | 4 | #ifndef _LINUX_BOOTMEM_H |
5 | #define _LINUX_BOOTMEM_H | 5 | #define _LINUX_BOOTMEM_H |
6 | 6 | ||
7 | #include <linux/mmzone.h> | 7 | #include <linux/mmzone.h> |
8 | #include <asm/dma.h> | 8 | #include <asm/dma.h> |
9 | 9 | ||
10 | /* | 10 | /* |
11 | * simple boot-time physical memory area allocator. | 11 | * simple boot-time physical memory area allocator. |
12 | */ | 12 | */ |
13 | 13 | ||
14 | extern unsigned long max_low_pfn; | 14 | extern unsigned long max_low_pfn; |
15 | extern unsigned long min_low_pfn; | 15 | extern unsigned long min_low_pfn; |
16 | 16 | ||
17 | /* | 17 | /* |
18 | * highest page | 18 | * highest page |
19 | */ | 19 | */ |
20 | extern unsigned long max_pfn; | 20 | extern unsigned long max_pfn; |
21 | 21 | ||
22 | #ifdef CONFIG_CRASH_DUMP | 22 | #ifdef CONFIG_CRASH_DUMP |
23 | extern unsigned long saved_max_pfn; | 23 | extern unsigned long saved_max_pfn; |
24 | #endif | 24 | #endif |
25 | 25 | ||
26 | /* | 26 | /* |
27 | * node_bootmem_map is a map pointer - the bits represent all physical | 27 | * node_bootmem_map is a map pointer - the bits represent all physical |
28 | * memory pages (including holes) on the node. | 28 | * memory pages (including holes) on the node. |
29 | */ | 29 | */ |
30 | typedef struct bootmem_data { | 30 | typedef struct bootmem_data { |
31 | unsigned long node_boot_start; | 31 | unsigned long node_boot_start; |
32 | unsigned long node_low_pfn; | 32 | unsigned long node_low_pfn; |
33 | void *node_bootmem_map; | 33 | void *node_bootmem_map; |
34 | unsigned long last_offset; | 34 | unsigned long last_offset; |
35 | unsigned long last_pos; | 35 | unsigned long last_pos; |
36 | unsigned long last_success; /* Previous allocation point. To speed | 36 | unsigned long last_success; /* Previous allocation point. To speed |
37 | * up searching */ | 37 | * up searching */ |
38 | struct list_head list; | 38 | struct list_head list; |
39 | } bootmem_data_t; | 39 | } bootmem_data_t; |
40 | 40 | ||
41 | extern unsigned long bootmem_bootmap_pages(unsigned long); | 41 | extern unsigned long bootmem_bootmap_pages(unsigned long); |
42 | extern unsigned long init_bootmem(unsigned long addr, unsigned long memend); | 42 | extern unsigned long init_bootmem(unsigned long addr, unsigned long memend); |
43 | extern void free_bootmem(unsigned long addr, unsigned long size); | 43 | extern void free_bootmem(unsigned long addr, unsigned long size); |
44 | extern void *__alloc_bootmem(unsigned long size, | 44 | extern void *__alloc_bootmem(unsigned long size, |
45 | unsigned long align, | 45 | unsigned long align, |
46 | unsigned long goal); | 46 | unsigned long goal); |
47 | extern void *__alloc_bootmem_nopanic(unsigned long size, | 47 | extern void *__alloc_bootmem_nopanic(unsigned long size, |
48 | unsigned long align, | 48 | unsigned long align, |
49 | unsigned long goal); | 49 | unsigned long goal); |
50 | extern void *__alloc_bootmem_low(unsigned long size, | 50 | extern void *__alloc_bootmem_low(unsigned long size, |
51 | unsigned long align, | 51 | unsigned long align, |
52 | unsigned long goal); | 52 | unsigned long goal); |
53 | extern void *__alloc_bootmem_low_node(pg_data_t *pgdat, | 53 | extern void *__alloc_bootmem_low_node(pg_data_t *pgdat, |
54 | unsigned long size, | 54 | unsigned long size, |
55 | unsigned long align, | 55 | unsigned long align, |
56 | unsigned long goal); | 56 | unsigned long goal); |
57 | extern void *__alloc_bootmem_core(struct bootmem_data *bdata, | 57 | extern void *__alloc_bootmem_core(struct bootmem_data *bdata, |
58 | unsigned long size, | 58 | unsigned long size, |
59 | unsigned long align, | 59 | unsigned long align, |
60 | unsigned long goal, | 60 | unsigned long goal, |
61 | unsigned long limit); | 61 | unsigned long limit); |
62 | 62 | ||
63 | #ifndef CONFIG_HAVE_ARCH_BOOTMEM_NODE | 63 | #ifndef CONFIG_HAVE_ARCH_BOOTMEM_NODE |
64 | extern void reserve_bootmem(unsigned long addr, unsigned long size); | 64 | extern void reserve_bootmem(unsigned long addr, unsigned long size); |
65 | #define alloc_bootmem(x) \ | 65 | #define alloc_bootmem(x) \ |
66 | __alloc_bootmem(x, SMP_CACHE_BYTES, __pa(MAX_DMA_ADDRESS)) | 66 | __alloc_bootmem(x, SMP_CACHE_BYTES, __pa(MAX_DMA_ADDRESS)) |
67 | #define alloc_bootmem_low(x) \ | 67 | #define alloc_bootmem_low(x) \ |
68 | __alloc_bootmem_low(x, SMP_CACHE_BYTES, 0) | 68 | __alloc_bootmem_low(x, SMP_CACHE_BYTES, 0) |
69 | #define alloc_bootmem_pages(x) \ | 69 | #define alloc_bootmem_pages(x) \ |
70 | __alloc_bootmem(x, PAGE_SIZE, __pa(MAX_DMA_ADDRESS)) | 70 | __alloc_bootmem(x, PAGE_SIZE, __pa(MAX_DMA_ADDRESS)) |
71 | #define alloc_bootmem_low_pages(x) \ | 71 | #define alloc_bootmem_low_pages(x) \ |
72 | __alloc_bootmem_low(x, PAGE_SIZE, 0) | 72 | __alloc_bootmem_low(x, PAGE_SIZE, 0) |
73 | #endif /* !CONFIG_HAVE_ARCH_BOOTMEM_NODE */ | 73 | #endif /* !CONFIG_HAVE_ARCH_BOOTMEM_NODE */ |
74 | 74 | ||
75 | extern unsigned long free_all_bootmem(void); | 75 | extern unsigned long free_all_bootmem(void); |
76 | extern unsigned long free_all_bootmem_node(pg_data_t *pgdat); | 76 | extern unsigned long free_all_bootmem_node(pg_data_t *pgdat); |
77 | extern void *__alloc_bootmem_node(pg_data_t *pgdat, | 77 | extern void *__alloc_bootmem_node(pg_data_t *pgdat, |
78 | unsigned long size, | 78 | unsigned long size, |
79 | unsigned long align, | 79 | unsigned long align, |
80 | unsigned long goal); | 80 | unsigned long goal); |
81 | extern unsigned long init_bootmem_node(pg_data_t *pgdat, | 81 | extern unsigned long init_bootmem_node(pg_data_t *pgdat, |
82 | unsigned long freepfn, | 82 | unsigned long freepfn, |
83 | unsigned long startpfn, | 83 | unsigned long startpfn, |
84 | unsigned long endpfn); | 84 | unsigned long endpfn); |
85 | extern void reserve_bootmem_node(pg_data_t *pgdat, | 85 | extern void reserve_bootmem_node(pg_data_t *pgdat, |
86 | unsigned long physaddr, | 86 | unsigned long physaddr, |
87 | unsigned long size); | 87 | unsigned long size); |
88 | extern void free_bootmem_node(pg_data_t *pgdat, | 88 | extern void free_bootmem_node(pg_data_t *pgdat, |
89 | unsigned long addr, | 89 | unsigned long addr, |
90 | unsigned long size); | 90 | unsigned long size); |
91 | 91 | ||
92 | #ifndef CONFIG_HAVE_ARCH_BOOTMEM_NODE | 92 | #ifndef CONFIG_HAVE_ARCH_BOOTMEM_NODE |
93 | #define alloc_bootmem_node(pgdat, x) \ | 93 | #define alloc_bootmem_node(pgdat, x) \ |
94 | __alloc_bootmem_node(pgdat, x, SMP_CACHE_BYTES, __pa(MAX_DMA_ADDRESS)) | 94 | __alloc_bootmem_node(pgdat, x, SMP_CACHE_BYTES, __pa(MAX_DMA_ADDRESS)) |
95 | #define alloc_bootmem_pages_node(pgdat, x) \ | 95 | #define alloc_bootmem_pages_node(pgdat, x) \ |
96 | __alloc_bootmem_node(pgdat, x, PAGE_SIZE, __pa(MAX_DMA_ADDRESS)) | 96 | __alloc_bootmem_node(pgdat, x, PAGE_SIZE, __pa(MAX_DMA_ADDRESS)) |
97 | #define alloc_bootmem_low_pages_node(pgdat, x) \ | 97 | #define alloc_bootmem_low_pages_node(pgdat, x) \ |
98 | __alloc_bootmem_low_node(pgdat, x, PAGE_SIZE, 0) | 98 | __alloc_bootmem_low_node(pgdat, x, PAGE_SIZE, 0) |
99 | #endif /* !CONFIG_HAVE_ARCH_BOOTMEM_NODE */ | 99 | #endif /* !CONFIG_HAVE_ARCH_BOOTMEM_NODE */ |
100 | 100 | ||
101 | #ifdef CONFIG_HAVE_ARCH_ALLOC_REMAP | 101 | #ifdef CONFIG_HAVE_ARCH_ALLOC_REMAP |
102 | extern void *alloc_remap(int nid, unsigned long size); | 102 | extern void *alloc_remap(int nid, unsigned long size); |
103 | #else | 103 | #else |
104 | static inline void *alloc_remap(int nid, unsigned long size) | 104 | static inline void *alloc_remap(int nid, unsigned long size) |
105 | { | 105 | { |
106 | return NULL; | 106 | return NULL; |
107 | } | 107 | } |
108 | #endif /* CONFIG_HAVE_ARCH_ALLOC_REMAP */ | 108 | #endif /* CONFIG_HAVE_ARCH_ALLOC_REMAP */ |
109 | 109 | ||
110 | extern unsigned long __meminitdata nr_kernel_pages; | 110 | extern unsigned long __meminitdata nr_kernel_pages; |
111 | extern unsigned long nr_all_pages; | 111 | extern unsigned long nr_all_pages; |
112 | 112 | ||
113 | extern void *alloc_large_system_hash(const char *tablename, | 113 | extern void *alloc_large_system_hash(const char *tablename, |
114 | unsigned long bucketsize, | 114 | unsigned long bucketsize, |
115 | unsigned long numentries, | 115 | unsigned long numentries, |
116 | int scale, | 116 | int scale, |
117 | int flags, | 117 | int flags, |
118 | unsigned int *_hash_shift, | 118 | unsigned int *_hash_shift, |
119 | unsigned int *_hash_mask, | 119 | unsigned int *_hash_mask, |
120 | unsigned long limit); | 120 | unsigned long limit); |
121 | 121 | ||
122 | #define HASH_HIGHMEM 0x00000001 /* Consider highmem? */ | 122 | #define HASH_EARLY 0x00000001 /* Allocating during early boot? */ |
123 | #define HASH_EARLY 0x00000002 /* Allocating during early boot? */ | ||
124 | 123 | ||
125 | /* Only NUMA needs hash distribution. | 124 | /* Only NUMA needs hash distribution. |
126 | * IA64 is known to have sufficient vmalloc space. | 125 | * IA64 is known to have sufficient vmalloc space. |
127 | */ | 126 | */ |
128 | #if defined(CONFIG_NUMA) && defined(CONFIG_IA64) | 127 | #if defined(CONFIG_NUMA) && defined(CONFIG_IA64) |
129 | #define HASHDIST_DEFAULT 1 | 128 | #define HASHDIST_DEFAULT 1 |
130 | #else | 129 | #else |
131 | #define HASHDIST_DEFAULT 0 | 130 | #define HASHDIST_DEFAULT 0 |
132 | #endif | 131 | #endif |
133 | extern int hashdist; /* Distribute hashes across NUMA nodes? */ | 132 | extern int hashdist; /* Distribute hashes across NUMA nodes? */ |
134 | 133 | ||
135 | 134 | ||
136 | #endif /* _LINUX_BOOTMEM_H */ | 135 | #endif /* _LINUX_BOOTMEM_H */ |
137 | 136 |
mm/page_alloc.c
1 | /* | 1 | /* |
2 | * linux/mm/page_alloc.c | 2 | * linux/mm/page_alloc.c |
3 | * | 3 | * |
4 | * Manages the free list, the system allocates free pages here. | 4 | * Manages the free list, the system allocates free pages here. |
5 | * Note that kmalloc() lives in slab.c | 5 | * Note that kmalloc() lives in slab.c |
6 | * | 6 | * |
7 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | 7 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
8 | * Swap reorganised 29.12.95, Stephen Tweedie | 8 | * Swap reorganised 29.12.95, Stephen Tweedie |
9 | * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 | 9 | * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 |
10 | * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 | 10 | * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 |
11 | * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 | 11 | * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 |
12 | * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 | 12 | * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 |
13 | * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 | 13 | * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 |
14 | * (lots of bits borrowed from Ingo Molnar & Andrew Morton) | 14 | * (lots of bits borrowed from Ingo Molnar & Andrew Morton) |
15 | */ | 15 | */ |
16 | 16 | ||
17 | #include <linux/stddef.h> | 17 | #include <linux/stddef.h> |
18 | #include <linux/mm.h> | 18 | #include <linux/mm.h> |
19 | #include <linux/swap.h> | 19 | #include <linux/swap.h> |
20 | #include <linux/interrupt.h> | 20 | #include <linux/interrupt.h> |
21 | #include <linux/pagemap.h> | 21 | #include <linux/pagemap.h> |
22 | #include <linux/bootmem.h> | 22 | #include <linux/bootmem.h> |
23 | #include <linux/compiler.h> | 23 | #include <linux/compiler.h> |
24 | #include <linux/kernel.h> | 24 | #include <linux/kernel.h> |
25 | #include <linux/module.h> | 25 | #include <linux/module.h> |
26 | #include <linux/suspend.h> | 26 | #include <linux/suspend.h> |
27 | #include <linux/pagevec.h> | 27 | #include <linux/pagevec.h> |
28 | #include <linux/blkdev.h> | 28 | #include <linux/blkdev.h> |
29 | #include <linux/slab.h> | 29 | #include <linux/slab.h> |
30 | #include <linux/notifier.h> | 30 | #include <linux/notifier.h> |
31 | #include <linux/topology.h> | 31 | #include <linux/topology.h> |
32 | #include <linux/sysctl.h> | 32 | #include <linux/sysctl.h> |
33 | #include <linux/cpu.h> | 33 | #include <linux/cpu.h> |
34 | #include <linux/cpuset.h> | 34 | #include <linux/cpuset.h> |
35 | #include <linux/memory_hotplug.h> | 35 | #include <linux/memory_hotplug.h> |
36 | #include <linux/nodemask.h> | 36 | #include <linux/nodemask.h> |
37 | #include <linux/vmalloc.h> | 37 | #include <linux/vmalloc.h> |
38 | #include <linux/mempolicy.h> | 38 | #include <linux/mempolicy.h> |
39 | #include <linux/stop_machine.h> | 39 | #include <linux/stop_machine.h> |
40 | #include <linux/sort.h> | 40 | #include <linux/sort.h> |
41 | #include <linux/pfn.h> | 41 | #include <linux/pfn.h> |
42 | #include <linux/backing-dev.h> | 42 | #include <linux/backing-dev.h> |
43 | 43 | ||
44 | #include <asm/tlbflush.h> | 44 | #include <asm/tlbflush.h> |
45 | #include <asm/div64.h> | 45 | #include <asm/div64.h> |
46 | #include "internal.h" | 46 | #include "internal.h" |
47 | 47 | ||
48 | /* | 48 | /* |
49 | * MCD - HACK: Find somewhere to initialize this EARLY, or make this | 49 | * MCD - HACK: Find somewhere to initialize this EARLY, or make this |
50 | * initializer cleaner | 50 | * initializer cleaner |
51 | */ | 51 | */ |
52 | nodemask_t node_online_map __read_mostly = { { [0] = 1UL } }; | 52 | nodemask_t node_online_map __read_mostly = { { [0] = 1UL } }; |
53 | EXPORT_SYMBOL(node_online_map); | 53 | EXPORT_SYMBOL(node_online_map); |
54 | nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL; | 54 | nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL; |
55 | EXPORT_SYMBOL(node_possible_map); | 55 | EXPORT_SYMBOL(node_possible_map); |
56 | unsigned long totalram_pages __read_mostly; | 56 | unsigned long totalram_pages __read_mostly; |
57 | unsigned long totalreserve_pages __read_mostly; | 57 | unsigned long totalreserve_pages __read_mostly; |
58 | long nr_swap_pages; | 58 | long nr_swap_pages; |
59 | int percpu_pagelist_fraction; | 59 | int percpu_pagelist_fraction; |
60 | 60 | ||
61 | static void __free_pages_ok(struct page *page, unsigned int order); | 61 | static void __free_pages_ok(struct page *page, unsigned int order); |
62 | 62 | ||
63 | /* | 63 | /* |
64 | * results with 256, 32 in the lowmem_reserve sysctl: | 64 | * results with 256, 32 in the lowmem_reserve sysctl: |
65 | * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) | 65 | * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) |
66 | * 1G machine -> (16M dma, 784M normal, 224M high) | 66 | * 1G machine -> (16M dma, 784M normal, 224M high) |
67 | * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA | 67 | * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA |
68 | * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL | 68 | * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL |
69 | * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA | 69 | * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA |
70 | * | 70 | * |
71 | * TBD: should special case ZONE_DMA32 machines here - in those we normally | 71 | * TBD: should special case ZONE_DMA32 machines here - in those we normally |
72 | * don't need any ZONE_NORMAL reservation | 72 | * don't need any ZONE_NORMAL reservation |
73 | */ | 73 | */ |
74 | int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { | 74 | int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { |
75 | 256, | 75 | 256, |
76 | #ifdef CONFIG_ZONE_DMA32 | 76 | #ifdef CONFIG_ZONE_DMA32 |
77 | 256, | 77 | 256, |
78 | #endif | 78 | #endif |
79 | #ifdef CONFIG_HIGHMEM | 79 | #ifdef CONFIG_HIGHMEM |
80 | 32 | 80 | 32 |
81 | #endif | 81 | #endif |
82 | }; | 82 | }; |
83 | 83 | ||
84 | EXPORT_SYMBOL(totalram_pages); | 84 | EXPORT_SYMBOL(totalram_pages); |
85 | 85 | ||
86 | static char *zone_names[MAX_NR_ZONES] = { | 86 | static char *zone_names[MAX_NR_ZONES] = { |
87 | "DMA", | 87 | "DMA", |
88 | #ifdef CONFIG_ZONE_DMA32 | 88 | #ifdef CONFIG_ZONE_DMA32 |
89 | "DMA32", | 89 | "DMA32", |
90 | #endif | 90 | #endif |
91 | "Normal", | 91 | "Normal", |
92 | #ifdef CONFIG_HIGHMEM | 92 | #ifdef CONFIG_HIGHMEM |
93 | "HighMem" | 93 | "HighMem" |
94 | #endif | 94 | #endif |
95 | }; | 95 | }; |
96 | 96 | ||
97 | int min_free_kbytes = 1024; | 97 | int min_free_kbytes = 1024; |
98 | 98 | ||
99 | unsigned long __meminitdata nr_kernel_pages; | 99 | unsigned long __meminitdata nr_kernel_pages; |
100 | unsigned long __meminitdata nr_all_pages; | 100 | unsigned long __meminitdata nr_all_pages; |
101 | static unsigned long __initdata dma_reserve; | 101 | static unsigned long __initdata dma_reserve; |
102 | 102 | ||
103 | #ifdef CONFIG_ARCH_POPULATES_NODE_MAP | 103 | #ifdef CONFIG_ARCH_POPULATES_NODE_MAP |
104 | /* | 104 | /* |
105 | * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct | 105 | * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct |
106 | * ranges of memory (RAM) that may be registered with add_active_range(). | 106 | * ranges of memory (RAM) that may be registered with add_active_range(). |
107 | * Ranges passed to add_active_range() will be merged if possible | 107 | * Ranges passed to add_active_range() will be merged if possible |
108 | * so the number of times add_active_range() can be called is | 108 | * so the number of times add_active_range() can be called is |
109 | * related to the number of nodes and the number of holes | 109 | * related to the number of nodes and the number of holes |
110 | */ | 110 | */ |
111 | #ifdef CONFIG_MAX_ACTIVE_REGIONS | 111 | #ifdef CONFIG_MAX_ACTIVE_REGIONS |
112 | /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */ | 112 | /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */ |
113 | #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS | 113 | #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS |
114 | #else | 114 | #else |
115 | #if MAX_NUMNODES >= 32 | 115 | #if MAX_NUMNODES >= 32 |
116 | /* If there can be many nodes, allow up to 50 holes per node */ | 116 | /* If there can be many nodes, allow up to 50 holes per node */ |
117 | #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50) | 117 | #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50) |
118 | #else | 118 | #else |
119 | /* By default, allow up to 256 distinct regions */ | 119 | /* By default, allow up to 256 distinct regions */ |
120 | #define MAX_ACTIVE_REGIONS 256 | 120 | #define MAX_ACTIVE_REGIONS 256 |
121 | #endif | 121 | #endif |
122 | #endif | 122 | #endif |
123 | 123 | ||
124 | struct node_active_region __initdata early_node_map[MAX_ACTIVE_REGIONS]; | 124 | struct node_active_region __initdata early_node_map[MAX_ACTIVE_REGIONS]; |
125 | int __initdata nr_nodemap_entries; | 125 | int __initdata nr_nodemap_entries; |
126 | unsigned long __initdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; | 126 | unsigned long __initdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; |
127 | unsigned long __initdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; | 127 | unsigned long __initdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; |
128 | #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE | 128 | #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE |
129 | unsigned long __initdata node_boundary_start_pfn[MAX_NUMNODES]; | 129 | unsigned long __initdata node_boundary_start_pfn[MAX_NUMNODES]; |
130 | unsigned long __initdata node_boundary_end_pfn[MAX_NUMNODES]; | 130 | unsigned long __initdata node_boundary_end_pfn[MAX_NUMNODES]; |
131 | #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */ | 131 | #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */ |
132 | #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ | 132 | #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ |
133 | 133 | ||
134 | #ifdef CONFIG_DEBUG_VM | 134 | #ifdef CONFIG_DEBUG_VM |
135 | static int page_outside_zone_boundaries(struct zone *zone, struct page *page) | 135 | static int page_outside_zone_boundaries(struct zone *zone, struct page *page) |
136 | { | 136 | { |
137 | int ret = 0; | 137 | int ret = 0; |
138 | unsigned seq; | 138 | unsigned seq; |
139 | unsigned long pfn = page_to_pfn(page); | 139 | unsigned long pfn = page_to_pfn(page); |
140 | 140 | ||
141 | do { | 141 | do { |
142 | seq = zone_span_seqbegin(zone); | 142 | seq = zone_span_seqbegin(zone); |
143 | if (pfn >= zone->zone_start_pfn + zone->spanned_pages) | 143 | if (pfn >= zone->zone_start_pfn + zone->spanned_pages) |
144 | ret = 1; | 144 | ret = 1; |
145 | else if (pfn < zone->zone_start_pfn) | 145 | else if (pfn < zone->zone_start_pfn) |
146 | ret = 1; | 146 | ret = 1; |
147 | } while (zone_span_seqretry(zone, seq)); | 147 | } while (zone_span_seqretry(zone, seq)); |
148 | 148 | ||
149 | return ret; | 149 | return ret; |
150 | } | 150 | } |
151 | 151 | ||
152 | static int page_is_consistent(struct zone *zone, struct page *page) | 152 | static int page_is_consistent(struct zone *zone, struct page *page) |
153 | { | 153 | { |
154 | #ifdef CONFIG_HOLES_IN_ZONE | 154 | #ifdef CONFIG_HOLES_IN_ZONE |
155 | if (!pfn_valid(page_to_pfn(page))) | 155 | if (!pfn_valid(page_to_pfn(page))) |
156 | return 0; | 156 | return 0; |
157 | #endif | 157 | #endif |
158 | if (zone != page_zone(page)) | 158 | if (zone != page_zone(page)) |
159 | return 0; | 159 | return 0; |
160 | 160 | ||
161 | return 1; | 161 | return 1; |
162 | } | 162 | } |
163 | /* | 163 | /* |
164 | * Temporary debugging check for pages not lying within a given zone. | 164 | * Temporary debugging check for pages not lying within a given zone. |
165 | */ | 165 | */ |
166 | static int bad_range(struct zone *zone, struct page *page) | 166 | static int bad_range(struct zone *zone, struct page *page) |
167 | { | 167 | { |
168 | if (page_outside_zone_boundaries(zone, page)) | 168 | if (page_outside_zone_boundaries(zone, page)) |
169 | return 1; | 169 | return 1; |
170 | if (!page_is_consistent(zone, page)) | 170 | if (!page_is_consistent(zone, page)) |
171 | return 1; | 171 | return 1; |
172 | 172 | ||
173 | return 0; | 173 | return 0; |
174 | } | 174 | } |
175 | #else | 175 | #else |
176 | static inline int bad_range(struct zone *zone, struct page *page) | 176 | static inline int bad_range(struct zone *zone, struct page *page) |
177 | { | 177 | { |
178 | return 0; | 178 | return 0; |
179 | } | 179 | } |
180 | #endif | 180 | #endif |
181 | 181 | ||
182 | static void bad_page(struct page *page) | 182 | static void bad_page(struct page *page) |
183 | { | 183 | { |
184 | printk(KERN_EMERG "Bad page state in process '%s'\n" | 184 | printk(KERN_EMERG "Bad page state in process '%s'\n" |
185 | KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n" | 185 | KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n" |
186 | KERN_EMERG "Trying to fix it up, but a reboot is needed\n" | 186 | KERN_EMERG "Trying to fix it up, but a reboot is needed\n" |
187 | KERN_EMERG "Backtrace:\n", | 187 | KERN_EMERG "Backtrace:\n", |
188 | current->comm, page, (int)(2*sizeof(unsigned long)), | 188 | current->comm, page, (int)(2*sizeof(unsigned long)), |
189 | (unsigned long)page->flags, page->mapping, | 189 | (unsigned long)page->flags, page->mapping, |
190 | page_mapcount(page), page_count(page)); | 190 | page_mapcount(page), page_count(page)); |
191 | dump_stack(); | 191 | dump_stack(); |
192 | page->flags &= ~(1 << PG_lru | | 192 | page->flags &= ~(1 << PG_lru | |
193 | 1 << PG_private | | 193 | 1 << PG_private | |
194 | 1 << PG_locked | | 194 | 1 << PG_locked | |
195 | 1 << PG_active | | 195 | 1 << PG_active | |
196 | 1 << PG_dirty | | 196 | 1 << PG_dirty | |
197 | 1 << PG_reclaim | | 197 | 1 << PG_reclaim | |
198 | 1 << PG_slab | | 198 | 1 << PG_slab | |
199 | 1 << PG_swapcache | | 199 | 1 << PG_swapcache | |
200 | 1 << PG_writeback | | 200 | 1 << PG_writeback | |
201 | 1 << PG_buddy ); | 201 | 1 << PG_buddy ); |
202 | set_page_count(page, 0); | 202 | set_page_count(page, 0); |
203 | reset_page_mapcount(page); | 203 | reset_page_mapcount(page); |
204 | page->mapping = NULL; | 204 | page->mapping = NULL; |
205 | add_taint(TAINT_BAD_PAGE); | 205 | add_taint(TAINT_BAD_PAGE); |
206 | } | 206 | } |
207 | 207 | ||
208 | /* | 208 | /* |
209 | * Higher-order pages are called "compound pages". They are structured thusly: | 209 | * Higher-order pages are called "compound pages". They are structured thusly: |
210 | * | 210 | * |
211 | * The first PAGE_SIZE page is called the "head page". | 211 | * The first PAGE_SIZE page is called the "head page". |
212 | * | 212 | * |
213 | * The remaining PAGE_SIZE pages are called "tail pages". | 213 | * The remaining PAGE_SIZE pages are called "tail pages". |
214 | * | 214 | * |
215 | * All pages have PG_compound set. All pages have their ->private pointing at | 215 | * All pages have PG_compound set. All pages have their ->private pointing at |
216 | * the head page (even the head page has this). | 216 | * the head page (even the head page has this). |
217 | * | 217 | * |
218 | * The first tail page's ->lru.next holds the address of the compound page's | 218 | * The first tail page's ->lru.next holds the address of the compound page's |
219 | * put_page() function. Its ->lru.prev holds the order of allocation. | 219 | * put_page() function. Its ->lru.prev holds the order of allocation. |
220 | * This usage means that zero-order pages may not be compound. | 220 | * This usage means that zero-order pages may not be compound. |
221 | */ | 221 | */ |
222 | 222 | ||
223 | static void free_compound_page(struct page *page) | 223 | static void free_compound_page(struct page *page) |
224 | { | 224 | { |
225 | __free_pages_ok(page, (unsigned long)page[1].lru.prev); | 225 | __free_pages_ok(page, (unsigned long)page[1].lru.prev); |
226 | } | 226 | } |
227 | 227 | ||
228 | static void prep_compound_page(struct page *page, unsigned long order) | 228 | static void prep_compound_page(struct page *page, unsigned long order) |
229 | { | 229 | { |
230 | int i; | 230 | int i; |
231 | int nr_pages = 1 << order; | 231 | int nr_pages = 1 << order; |
232 | 232 | ||
233 | set_compound_page_dtor(page, free_compound_page); | 233 | set_compound_page_dtor(page, free_compound_page); |
234 | page[1].lru.prev = (void *)order; | 234 | page[1].lru.prev = (void *)order; |
235 | for (i = 0; i < nr_pages; i++) { | 235 | for (i = 0; i < nr_pages; i++) { |
236 | struct page *p = page + i; | 236 | struct page *p = page + i; |
237 | 237 | ||
238 | __SetPageCompound(p); | 238 | __SetPageCompound(p); |
239 | set_page_private(p, (unsigned long)page); | 239 | set_page_private(p, (unsigned long)page); |
240 | } | 240 | } |
241 | } | 241 | } |
242 | 242 | ||
243 | static void destroy_compound_page(struct page *page, unsigned long order) | 243 | static void destroy_compound_page(struct page *page, unsigned long order) |
244 | { | 244 | { |
245 | int i; | 245 | int i; |
246 | int nr_pages = 1 << order; | 246 | int nr_pages = 1 << order; |
247 | 247 | ||
248 | if (unlikely((unsigned long)page[1].lru.prev != order)) | 248 | if (unlikely((unsigned long)page[1].lru.prev != order)) |
249 | bad_page(page); | 249 | bad_page(page); |
250 | 250 | ||
251 | for (i = 0; i < nr_pages; i++) { | 251 | for (i = 0; i < nr_pages; i++) { |
252 | struct page *p = page + i; | 252 | struct page *p = page + i; |
253 | 253 | ||
254 | if (unlikely(!PageCompound(p) | | 254 | if (unlikely(!PageCompound(p) | |
255 | (page_private(p) != (unsigned long)page))) | 255 | (page_private(p) != (unsigned long)page))) |
256 | bad_page(page); | 256 | bad_page(page); |
257 | __ClearPageCompound(p); | 257 | __ClearPageCompound(p); |
258 | } | 258 | } |
259 | } | 259 | } |
260 | 260 | ||
261 | static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) | 261 | static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) |
262 | { | 262 | { |
263 | int i; | 263 | int i; |
264 | 264 | ||
265 | VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM); | 265 | VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM); |
266 | /* | 266 | /* |
267 | * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO | 267 | * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO |
268 | * and __GFP_HIGHMEM from hard or soft interrupt context. | 268 | * and __GFP_HIGHMEM from hard or soft interrupt context. |
269 | */ | 269 | */ |
270 | VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); | 270 | VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); |
271 | for (i = 0; i < (1 << order); i++) | 271 | for (i = 0; i < (1 << order); i++) |
272 | clear_highpage(page + i); | 272 | clear_highpage(page + i); |
273 | } | 273 | } |
274 | 274 | ||
275 | /* | 275 | /* |
276 | * function for dealing with page's order in buddy system. | 276 | * function for dealing with page's order in buddy system. |
277 | * zone->lock is already acquired when we use these. | 277 | * zone->lock is already acquired when we use these. |
278 | * So, we don't need atomic page->flags operations here. | 278 | * So, we don't need atomic page->flags operations here. |
279 | */ | 279 | */ |
280 | static inline unsigned long page_order(struct page *page) | 280 | static inline unsigned long page_order(struct page *page) |
281 | { | 281 | { |
282 | return page_private(page); | 282 | return page_private(page); |
283 | } | 283 | } |
284 | 284 | ||
285 | static inline void set_page_order(struct page *page, int order) | 285 | static inline void set_page_order(struct page *page, int order) |
286 | { | 286 | { |
287 | set_page_private(page, order); | 287 | set_page_private(page, order); |
288 | __SetPageBuddy(page); | 288 | __SetPageBuddy(page); |
289 | } | 289 | } |
290 | 290 | ||
291 | static inline void rmv_page_order(struct page *page) | 291 | static inline void rmv_page_order(struct page *page) |
292 | { | 292 | { |
293 | __ClearPageBuddy(page); | 293 | __ClearPageBuddy(page); |
294 | set_page_private(page, 0); | 294 | set_page_private(page, 0); |
295 | } | 295 | } |
296 | 296 | ||
297 | /* | 297 | /* |
298 | * Locate the struct page for both the matching buddy in our | 298 | * Locate the struct page for both the matching buddy in our |
299 | * pair (buddy1) and the combined O(n+1) page they form (page). | 299 | * pair (buddy1) and the combined O(n+1) page they form (page). |
300 | * | 300 | * |
301 | * 1) Any buddy B1 will have an order O twin B2 which satisfies | 301 | * 1) Any buddy B1 will have an order O twin B2 which satisfies |
302 | * the following equation: | 302 | * the following equation: |
303 | * B2 = B1 ^ (1 << O) | 303 | * B2 = B1 ^ (1 << O) |
304 | * For example, if the starting buddy (buddy2) is #8 its order | 304 | * For example, if the starting buddy (buddy2) is #8 its order |
305 | * 1 buddy is #10: | 305 | * 1 buddy is #10: |
306 | * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 | 306 | * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 |
307 | * | 307 | * |
308 | * 2) Any buddy B will have an order O+1 parent P which | 308 | * 2) Any buddy B will have an order O+1 parent P which |
309 | * satisfies the following equation: | 309 | * satisfies the following equation: |
310 | * P = B & ~(1 << O) | 310 | * P = B & ~(1 << O) |
311 | * | 311 | * |
312 | * Assumption: *_mem_map is contiguous at least up to MAX_ORDER | 312 | * Assumption: *_mem_map is contiguous at least up to MAX_ORDER |
313 | */ | 313 | */ |
314 | static inline struct page * | 314 | static inline struct page * |
315 | __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) | 315 | __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) |
316 | { | 316 | { |
317 | unsigned long buddy_idx = page_idx ^ (1 << order); | 317 | unsigned long buddy_idx = page_idx ^ (1 << order); |
318 | 318 | ||
319 | return page + (buddy_idx - page_idx); | 319 | return page + (buddy_idx - page_idx); |
320 | } | 320 | } |
321 | 321 | ||
322 | static inline unsigned long | 322 | static inline unsigned long |
323 | __find_combined_index(unsigned long page_idx, unsigned int order) | 323 | __find_combined_index(unsigned long page_idx, unsigned int order) |
324 | { | 324 | { |
325 | return (page_idx & ~(1 << order)); | 325 | return (page_idx & ~(1 << order)); |
326 | } | 326 | } |
327 | 327 | ||
328 | /* | 328 | /* |
329 | * This function checks whether a page is free && is the buddy | 329 | * This function checks whether a page is free && is the buddy |
330 | * we can do coalesce a page and its buddy if | 330 | * we can do coalesce a page and its buddy if |
331 | * (a) the buddy is not in a hole && | 331 | * (a) the buddy is not in a hole && |
332 | * (b) the buddy is in the buddy system && | 332 | * (b) the buddy is in the buddy system && |
333 | * (c) a page and its buddy have the same order && | 333 | * (c) a page and its buddy have the same order && |
334 | * (d) a page and its buddy are in the same zone. | 334 | * (d) a page and its buddy are in the same zone. |
335 | * | 335 | * |
336 | * For recording whether a page is in the buddy system, we use PG_buddy. | 336 | * For recording whether a page is in the buddy system, we use PG_buddy. |
337 | * Setting, clearing, and testing PG_buddy is serialized by zone->lock. | 337 | * Setting, clearing, and testing PG_buddy is serialized by zone->lock. |
338 | * | 338 | * |
339 | * For recording page's order, we use page_private(page). | 339 | * For recording page's order, we use page_private(page). |
340 | */ | 340 | */ |
341 | static inline int page_is_buddy(struct page *page, struct page *buddy, | 341 | static inline int page_is_buddy(struct page *page, struct page *buddy, |
342 | int order) | 342 | int order) |
343 | { | 343 | { |
344 | #ifdef CONFIG_HOLES_IN_ZONE | 344 | #ifdef CONFIG_HOLES_IN_ZONE |
345 | if (!pfn_valid(page_to_pfn(buddy))) | 345 | if (!pfn_valid(page_to_pfn(buddy))) |
346 | return 0; | 346 | return 0; |
347 | #endif | 347 | #endif |
348 | 348 | ||
349 | if (page_zone_id(page) != page_zone_id(buddy)) | 349 | if (page_zone_id(page) != page_zone_id(buddy)) |
350 | return 0; | 350 | return 0; |
351 | 351 | ||
352 | if (PageBuddy(buddy) && page_order(buddy) == order) { | 352 | if (PageBuddy(buddy) && page_order(buddy) == order) { |
353 | BUG_ON(page_count(buddy) != 0); | 353 | BUG_ON(page_count(buddy) != 0); |
354 | return 1; | 354 | return 1; |
355 | } | 355 | } |
356 | return 0; | 356 | return 0; |
357 | } | 357 | } |
358 | 358 | ||
359 | /* | 359 | /* |
360 | * Freeing function for a buddy system allocator. | 360 | * Freeing function for a buddy system allocator. |
361 | * | 361 | * |
362 | * The concept of a buddy system is to maintain direct-mapped table | 362 | * The concept of a buddy system is to maintain direct-mapped table |
363 | * (containing bit values) for memory blocks of various "orders". | 363 | * (containing bit values) for memory blocks of various "orders". |
364 | * The bottom level table contains the map for the smallest allocatable | 364 | * The bottom level table contains the map for the smallest allocatable |
365 | * units of memory (here, pages), and each level above it describes | 365 | * units of memory (here, pages), and each level above it describes |
366 | * pairs of units from the levels below, hence, "buddies". | 366 | * pairs of units from the levels below, hence, "buddies". |
367 | * At a high level, all that happens here is marking the table entry | 367 | * At a high level, all that happens here is marking the table entry |
368 | * at the bottom level available, and propagating the changes upward | 368 | * at the bottom level available, and propagating the changes upward |
369 | * as necessary, plus some accounting needed to play nicely with other | 369 | * as necessary, plus some accounting needed to play nicely with other |
370 | * parts of the VM system. | 370 | * parts of the VM system. |
371 | * At each level, we keep a list of pages, which are heads of continuous | 371 | * At each level, we keep a list of pages, which are heads of continuous |
372 | * free pages of length of (1 << order) and marked with PG_buddy. Page's | 372 | * free pages of length of (1 << order) and marked with PG_buddy. Page's |
373 | * order is recorded in page_private(page) field. | 373 | * order is recorded in page_private(page) field. |
374 | * So when we are allocating or freeing one, we can derive the state of the | 374 | * So when we are allocating or freeing one, we can derive the state of the |
375 | * other. That is, if we allocate a small block, and both were | 375 | * other. That is, if we allocate a small block, and both were |
376 | * free, the remainder of the region must be split into blocks. | 376 | * free, the remainder of the region must be split into blocks. |
377 | * If a block is freed, and its buddy is also free, then this | 377 | * If a block is freed, and its buddy is also free, then this |
378 | * triggers coalescing into a block of larger size. | 378 | * triggers coalescing into a block of larger size. |
379 | * | 379 | * |
380 | * -- wli | 380 | * -- wli |
381 | */ | 381 | */ |
382 | 382 | ||
383 | static inline void __free_one_page(struct page *page, | 383 | static inline void __free_one_page(struct page *page, |
384 | struct zone *zone, unsigned int order) | 384 | struct zone *zone, unsigned int order) |
385 | { | 385 | { |
386 | unsigned long page_idx; | 386 | unsigned long page_idx; |
387 | int order_size = 1 << order; | 387 | int order_size = 1 << order; |
388 | 388 | ||
389 | if (unlikely(PageCompound(page))) | 389 | if (unlikely(PageCompound(page))) |
390 | destroy_compound_page(page, order); | 390 | destroy_compound_page(page, order); |
391 | 391 | ||
392 | page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); | 392 | page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); |
393 | 393 | ||
394 | VM_BUG_ON(page_idx & (order_size - 1)); | 394 | VM_BUG_ON(page_idx & (order_size - 1)); |
395 | VM_BUG_ON(bad_range(zone, page)); | 395 | VM_BUG_ON(bad_range(zone, page)); |
396 | 396 | ||
397 | zone->free_pages += order_size; | 397 | zone->free_pages += order_size; |
398 | while (order < MAX_ORDER-1) { | 398 | while (order < MAX_ORDER-1) { |
399 | unsigned long combined_idx; | 399 | unsigned long combined_idx; |
400 | struct free_area *area; | 400 | struct free_area *area; |
401 | struct page *buddy; | 401 | struct page *buddy; |
402 | 402 | ||
403 | buddy = __page_find_buddy(page, page_idx, order); | 403 | buddy = __page_find_buddy(page, page_idx, order); |
404 | if (!page_is_buddy(page, buddy, order)) | 404 | if (!page_is_buddy(page, buddy, order)) |
405 | break; /* Move the buddy up one level. */ | 405 | break; /* Move the buddy up one level. */ |
406 | 406 | ||
407 | list_del(&buddy->lru); | 407 | list_del(&buddy->lru); |
408 | area = zone->free_area + order; | 408 | area = zone->free_area + order; |
409 | area->nr_free--; | 409 | area->nr_free--; |
410 | rmv_page_order(buddy); | 410 | rmv_page_order(buddy); |
411 | combined_idx = __find_combined_index(page_idx, order); | 411 | combined_idx = __find_combined_index(page_idx, order); |
412 | page = page + (combined_idx - page_idx); | 412 | page = page + (combined_idx - page_idx); |
413 | page_idx = combined_idx; | 413 | page_idx = combined_idx; |
414 | order++; | 414 | order++; |
415 | } | 415 | } |
416 | set_page_order(page, order); | 416 | set_page_order(page, order); |
417 | list_add(&page->lru, &zone->free_area[order].free_list); | 417 | list_add(&page->lru, &zone->free_area[order].free_list); |
418 | zone->free_area[order].nr_free++; | 418 | zone->free_area[order].nr_free++; |
419 | } | 419 | } |
420 | 420 | ||
421 | static inline int free_pages_check(struct page *page) | 421 | static inline int free_pages_check(struct page *page) |
422 | { | 422 | { |
423 | if (unlikely(page_mapcount(page) | | 423 | if (unlikely(page_mapcount(page) | |
424 | (page->mapping != NULL) | | 424 | (page->mapping != NULL) | |
425 | (page_count(page) != 0) | | 425 | (page_count(page) != 0) | |
426 | (page->flags & ( | 426 | (page->flags & ( |
427 | 1 << PG_lru | | 427 | 1 << PG_lru | |
428 | 1 << PG_private | | 428 | 1 << PG_private | |
429 | 1 << PG_locked | | 429 | 1 << PG_locked | |
430 | 1 << PG_active | | 430 | 1 << PG_active | |
431 | 1 << PG_reclaim | | 431 | 1 << PG_reclaim | |
432 | 1 << PG_slab | | 432 | 1 << PG_slab | |
433 | 1 << PG_swapcache | | 433 | 1 << PG_swapcache | |
434 | 1 << PG_writeback | | 434 | 1 << PG_writeback | |
435 | 1 << PG_reserved | | 435 | 1 << PG_reserved | |
436 | 1 << PG_buddy )))) | 436 | 1 << PG_buddy )))) |
437 | bad_page(page); | 437 | bad_page(page); |
438 | if (PageDirty(page)) | 438 | if (PageDirty(page)) |
439 | __ClearPageDirty(page); | 439 | __ClearPageDirty(page); |
440 | /* | 440 | /* |
441 | * For now, we report if PG_reserved was found set, but do not | 441 | * For now, we report if PG_reserved was found set, but do not |
442 | * clear it, and do not free the page. But we shall soon need | 442 | * clear it, and do not free the page. But we shall soon need |
443 | * to do more, for when the ZERO_PAGE count wraps negative. | 443 | * to do more, for when the ZERO_PAGE count wraps negative. |
444 | */ | 444 | */ |
445 | return PageReserved(page); | 445 | return PageReserved(page); |
446 | } | 446 | } |
447 | 447 | ||
448 | /* | 448 | /* |
449 | * Frees a list of pages. | 449 | * Frees a list of pages. |
450 | * Assumes all pages on list are in same zone, and of same order. | 450 | * Assumes all pages on list are in same zone, and of same order. |
451 | * count is the number of pages to free. | 451 | * count is the number of pages to free. |
452 | * | 452 | * |
453 | * If the zone was previously in an "all pages pinned" state then look to | 453 | * If the zone was previously in an "all pages pinned" state then look to |
454 | * see if this freeing clears that state. | 454 | * see if this freeing clears that state. |
455 | * | 455 | * |
456 | * And clear the zone's pages_scanned counter, to hold off the "all pages are | 456 | * And clear the zone's pages_scanned counter, to hold off the "all pages are |
457 | * pinned" detection logic. | 457 | * pinned" detection logic. |
458 | */ | 458 | */ |
459 | static void free_pages_bulk(struct zone *zone, int count, | 459 | static void free_pages_bulk(struct zone *zone, int count, |
460 | struct list_head *list, int order) | 460 | struct list_head *list, int order) |
461 | { | 461 | { |
462 | spin_lock(&zone->lock); | 462 | spin_lock(&zone->lock); |
463 | zone->all_unreclaimable = 0; | 463 | zone->all_unreclaimable = 0; |
464 | zone->pages_scanned = 0; | 464 | zone->pages_scanned = 0; |
465 | while (count--) { | 465 | while (count--) { |
466 | struct page *page; | 466 | struct page *page; |
467 | 467 | ||
468 | VM_BUG_ON(list_empty(list)); | 468 | VM_BUG_ON(list_empty(list)); |
469 | page = list_entry(list->prev, struct page, lru); | 469 | page = list_entry(list->prev, struct page, lru); |
470 | /* have to delete it as __free_one_page list manipulates */ | 470 | /* have to delete it as __free_one_page list manipulates */ |
471 | list_del(&page->lru); | 471 | list_del(&page->lru); |
472 | __free_one_page(page, zone, order); | 472 | __free_one_page(page, zone, order); |
473 | } | 473 | } |
474 | spin_unlock(&zone->lock); | 474 | spin_unlock(&zone->lock); |
475 | } | 475 | } |
476 | 476 | ||
477 | static void free_one_page(struct zone *zone, struct page *page, int order) | 477 | static void free_one_page(struct zone *zone, struct page *page, int order) |
478 | { | 478 | { |
479 | spin_lock(&zone->lock); | 479 | spin_lock(&zone->lock); |
480 | zone->all_unreclaimable = 0; | 480 | zone->all_unreclaimable = 0; |
481 | zone->pages_scanned = 0; | 481 | zone->pages_scanned = 0; |
482 | __free_one_page(page, zone, order); | 482 | __free_one_page(page, zone, order); |
483 | spin_unlock(&zone->lock); | 483 | spin_unlock(&zone->lock); |
484 | } | 484 | } |
485 | 485 | ||
486 | static void __free_pages_ok(struct page *page, unsigned int order) | 486 | static void __free_pages_ok(struct page *page, unsigned int order) |
487 | { | 487 | { |
488 | unsigned long flags; | 488 | unsigned long flags; |
489 | int i; | 489 | int i; |
490 | int reserved = 0; | 490 | int reserved = 0; |
491 | 491 | ||
492 | for (i = 0 ; i < (1 << order) ; ++i) | 492 | for (i = 0 ; i < (1 << order) ; ++i) |
493 | reserved += free_pages_check(page + i); | 493 | reserved += free_pages_check(page + i); |
494 | if (reserved) | 494 | if (reserved) |
495 | return; | 495 | return; |
496 | 496 | ||
497 | if (!PageHighMem(page)) | 497 | if (!PageHighMem(page)) |
498 | debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); | 498 | debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); |
499 | arch_free_page(page, order); | 499 | arch_free_page(page, order); |
500 | kernel_map_pages(page, 1 << order, 0); | 500 | kernel_map_pages(page, 1 << order, 0); |
501 | 501 | ||
502 | local_irq_save(flags); | 502 | local_irq_save(flags); |
503 | __count_vm_events(PGFREE, 1 << order); | 503 | __count_vm_events(PGFREE, 1 << order); |
504 | free_one_page(page_zone(page), page, order); | 504 | free_one_page(page_zone(page), page, order); |
505 | local_irq_restore(flags); | 505 | local_irq_restore(flags); |
506 | } | 506 | } |
507 | 507 | ||
508 | /* | 508 | /* |
509 | * permit the bootmem allocator to evade page validation on high-order frees | 509 | * permit the bootmem allocator to evade page validation on high-order frees |
510 | */ | 510 | */ |
511 | void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order) | 511 | void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order) |
512 | { | 512 | { |
513 | if (order == 0) { | 513 | if (order == 0) { |
514 | __ClearPageReserved(page); | 514 | __ClearPageReserved(page); |
515 | set_page_count(page, 0); | 515 | set_page_count(page, 0); |
516 | set_page_refcounted(page); | 516 | set_page_refcounted(page); |
517 | __free_page(page); | 517 | __free_page(page); |
518 | } else { | 518 | } else { |
519 | int loop; | 519 | int loop; |
520 | 520 | ||
521 | prefetchw(page); | 521 | prefetchw(page); |
522 | for (loop = 0; loop < BITS_PER_LONG; loop++) { | 522 | for (loop = 0; loop < BITS_PER_LONG; loop++) { |
523 | struct page *p = &page[loop]; | 523 | struct page *p = &page[loop]; |
524 | 524 | ||
525 | if (loop + 1 < BITS_PER_LONG) | 525 | if (loop + 1 < BITS_PER_LONG) |
526 | prefetchw(p + 1); | 526 | prefetchw(p + 1); |
527 | __ClearPageReserved(p); | 527 | __ClearPageReserved(p); |
528 | set_page_count(p, 0); | 528 | set_page_count(p, 0); |
529 | } | 529 | } |
530 | 530 | ||
531 | set_page_refcounted(page); | 531 | set_page_refcounted(page); |
532 | __free_pages(page, order); | 532 | __free_pages(page, order); |
533 | } | 533 | } |
534 | } | 534 | } |
535 | 535 | ||
536 | 536 | ||
537 | /* | 537 | /* |
538 | * The order of subdivision here is critical for the IO subsystem. | 538 | * The order of subdivision here is critical for the IO subsystem. |
539 | * Please do not alter this order without good reasons and regression | 539 | * Please do not alter this order without good reasons and regression |
540 | * testing. Specifically, as large blocks of memory are subdivided, | 540 | * testing. Specifically, as large blocks of memory are subdivided, |
541 | * the order in which smaller blocks are delivered depends on the order | 541 | * the order in which smaller blocks are delivered depends on the order |
542 | * they're subdivided in this function. This is the primary factor | 542 | * they're subdivided in this function. This is the primary factor |
543 | * influencing the order in which pages are delivered to the IO | 543 | * influencing the order in which pages are delivered to the IO |
544 | * subsystem according to empirical testing, and this is also justified | 544 | * subsystem according to empirical testing, and this is also justified |
545 | * by considering the behavior of a buddy system containing a single | 545 | * by considering the behavior of a buddy system containing a single |
546 | * large block of memory acted on by a series of small allocations. | 546 | * large block of memory acted on by a series of small allocations. |
547 | * This behavior is a critical factor in sglist merging's success. | 547 | * This behavior is a critical factor in sglist merging's success. |
548 | * | 548 | * |
549 | * -- wli | 549 | * -- wli |
550 | */ | 550 | */ |
551 | static inline void expand(struct zone *zone, struct page *page, | 551 | static inline void expand(struct zone *zone, struct page *page, |
552 | int low, int high, struct free_area *area) | 552 | int low, int high, struct free_area *area) |
553 | { | 553 | { |
554 | unsigned long size = 1 << high; | 554 | unsigned long size = 1 << high; |
555 | 555 | ||
556 | while (high > low) { | 556 | while (high > low) { |
557 | area--; | 557 | area--; |
558 | high--; | 558 | high--; |
559 | size >>= 1; | 559 | size >>= 1; |
560 | VM_BUG_ON(bad_range(zone, &page[size])); | 560 | VM_BUG_ON(bad_range(zone, &page[size])); |
561 | list_add(&page[size].lru, &area->free_list); | 561 | list_add(&page[size].lru, &area->free_list); |
562 | area->nr_free++; | 562 | area->nr_free++; |
563 | set_page_order(&page[size], high); | 563 | set_page_order(&page[size], high); |
564 | } | 564 | } |
565 | } | 565 | } |
566 | 566 | ||
567 | /* | 567 | /* |
568 | * This page is about to be returned from the page allocator | 568 | * This page is about to be returned from the page allocator |
569 | */ | 569 | */ |
570 | static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) | 570 | static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) |
571 | { | 571 | { |
572 | if (unlikely(page_mapcount(page) | | 572 | if (unlikely(page_mapcount(page) | |
573 | (page->mapping != NULL) | | 573 | (page->mapping != NULL) | |
574 | (page_count(page) != 0) | | 574 | (page_count(page) != 0) | |
575 | (page->flags & ( | 575 | (page->flags & ( |
576 | 1 << PG_lru | | 576 | 1 << PG_lru | |
577 | 1 << PG_private | | 577 | 1 << PG_private | |
578 | 1 << PG_locked | | 578 | 1 << PG_locked | |
579 | 1 << PG_active | | 579 | 1 << PG_active | |
580 | 1 << PG_dirty | | 580 | 1 << PG_dirty | |
581 | 1 << PG_reclaim | | 581 | 1 << PG_reclaim | |
582 | 1 << PG_slab | | 582 | 1 << PG_slab | |
583 | 1 << PG_swapcache | | 583 | 1 << PG_swapcache | |
584 | 1 << PG_writeback | | 584 | 1 << PG_writeback | |
585 | 1 << PG_reserved | | 585 | 1 << PG_reserved | |
586 | 1 << PG_buddy )))) | 586 | 1 << PG_buddy )))) |
587 | bad_page(page); | 587 | bad_page(page); |
588 | 588 | ||
589 | /* | 589 | /* |
590 | * For now, we report if PG_reserved was found set, but do not | 590 | * For now, we report if PG_reserved was found set, but do not |
591 | * clear it, and do not allocate the page: as a safety net. | 591 | * clear it, and do not allocate the page: as a safety net. |
592 | */ | 592 | */ |
593 | if (PageReserved(page)) | 593 | if (PageReserved(page)) |
594 | return 1; | 594 | return 1; |
595 | 595 | ||
596 | page->flags &= ~(1 << PG_uptodate | 1 << PG_error | | 596 | page->flags &= ~(1 << PG_uptodate | 1 << PG_error | |
597 | 1 << PG_referenced | 1 << PG_arch_1 | | 597 | 1 << PG_referenced | 1 << PG_arch_1 | |
598 | 1 << PG_checked | 1 << PG_mappedtodisk); | 598 | 1 << PG_checked | 1 << PG_mappedtodisk); |
599 | set_page_private(page, 0); | 599 | set_page_private(page, 0); |
600 | set_page_refcounted(page); | 600 | set_page_refcounted(page); |
601 | 601 | ||
602 | arch_alloc_page(page, order); | 602 | arch_alloc_page(page, order); |
603 | kernel_map_pages(page, 1 << order, 1); | 603 | kernel_map_pages(page, 1 << order, 1); |
604 | 604 | ||
605 | if (gfp_flags & __GFP_ZERO) | 605 | if (gfp_flags & __GFP_ZERO) |
606 | prep_zero_page(page, order, gfp_flags); | 606 | prep_zero_page(page, order, gfp_flags); |
607 | 607 | ||
608 | if (order && (gfp_flags & __GFP_COMP)) | 608 | if (order && (gfp_flags & __GFP_COMP)) |
609 | prep_compound_page(page, order); | 609 | prep_compound_page(page, order); |
610 | 610 | ||
611 | return 0; | 611 | return 0; |
612 | } | 612 | } |
613 | 613 | ||
614 | /* | 614 | /* |
615 | * Do the hard work of removing an element from the buddy allocator. | 615 | * Do the hard work of removing an element from the buddy allocator. |
616 | * Call me with the zone->lock already held. | 616 | * Call me with the zone->lock already held. |
617 | */ | 617 | */ |
618 | static struct page *__rmqueue(struct zone *zone, unsigned int order) | 618 | static struct page *__rmqueue(struct zone *zone, unsigned int order) |
619 | { | 619 | { |
620 | struct free_area * area; | 620 | struct free_area * area; |
621 | unsigned int current_order; | 621 | unsigned int current_order; |
622 | struct page *page; | 622 | struct page *page; |
623 | 623 | ||
624 | for (current_order = order; current_order < MAX_ORDER; ++current_order) { | 624 | for (current_order = order; current_order < MAX_ORDER; ++current_order) { |
625 | area = zone->free_area + current_order; | 625 | area = zone->free_area + current_order; |
626 | if (list_empty(&area->free_list)) | 626 | if (list_empty(&area->free_list)) |
627 | continue; | 627 | continue; |
628 | 628 | ||
629 | page = list_entry(area->free_list.next, struct page, lru); | 629 | page = list_entry(area->free_list.next, struct page, lru); |
630 | list_del(&page->lru); | 630 | list_del(&page->lru); |
631 | rmv_page_order(page); | 631 | rmv_page_order(page); |
632 | area->nr_free--; | 632 | area->nr_free--; |
633 | zone->free_pages -= 1UL << order; | 633 | zone->free_pages -= 1UL << order; |
634 | expand(zone, page, order, current_order, area); | 634 | expand(zone, page, order, current_order, area); |
635 | return page; | 635 | return page; |
636 | } | 636 | } |
637 | 637 | ||
638 | return NULL; | 638 | return NULL; |
639 | } | 639 | } |
640 | 640 | ||
641 | /* | 641 | /* |
642 | * Obtain a specified number of elements from the buddy allocator, all under | 642 | * Obtain a specified number of elements from the buddy allocator, all under |
643 | * a single hold of the lock, for efficiency. Add them to the supplied list. | 643 | * a single hold of the lock, for efficiency. Add them to the supplied list. |
644 | * Returns the number of new pages which were placed at *list. | 644 | * Returns the number of new pages which were placed at *list. |
645 | */ | 645 | */ |
646 | static int rmqueue_bulk(struct zone *zone, unsigned int order, | 646 | static int rmqueue_bulk(struct zone *zone, unsigned int order, |
647 | unsigned long count, struct list_head *list) | 647 | unsigned long count, struct list_head *list) |
648 | { | 648 | { |
649 | int i; | 649 | int i; |
650 | 650 | ||
651 | spin_lock(&zone->lock); | 651 | spin_lock(&zone->lock); |
652 | for (i = 0; i < count; ++i) { | 652 | for (i = 0; i < count; ++i) { |
653 | struct page *page = __rmqueue(zone, order); | 653 | struct page *page = __rmqueue(zone, order); |
654 | if (unlikely(page == NULL)) | 654 | if (unlikely(page == NULL)) |
655 | break; | 655 | break; |
656 | list_add_tail(&page->lru, list); | 656 | list_add_tail(&page->lru, list); |
657 | } | 657 | } |
658 | spin_unlock(&zone->lock); | 658 | spin_unlock(&zone->lock); |
659 | return i; | 659 | return i; |
660 | } | 660 | } |
661 | 661 | ||
662 | #ifdef CONFIG_NUMA | 662 | #ifdef CONFIG_NUMA |
663 | /* | 663 | /* |
664 | * Called from the slab reaper to drain pagesets on a particular node that | 664 | * Called from the slab reaper to drain pagesets on a particular node that |
665 | * belongs to the currently executing processor. | 665 | * belongs to the currently executing processor. |
666 | * Note that this function must be called with the thread pinned to | 666 | * Note that this function must be called with the thread pinned to |
667 | * a single processor. | 667 | * a single processor. |
668 | */ | 668 | */ |
669 | void drain_node_pages(int nodeid) | 669 | void drain_node_pages(int nodeid) |
670 | { | 670 | { |
671 | int i; | 671 | int i; |
672 | enum zone_type z; | 672 | enum zone_type z; |
673 | unsigned long flags; | 673 | unsigned long flags; |
674 | 674 | ||
675 | for (z = 0; z < MAX_NR_ZONES; z++) { | 675 | for (z = 0; z < MAX_NR_ZONES; z++) { |
676 | struct zone *zone = NODE_DATA(nodeid)->node_zones + z; | 676 | struct zone *zone = NODE_DATA(nodeid)->node_zones + z; |
677 | struct per_cpu_pageset *pset; | 677 | struct per_cpu_pageset *pset; |
678 | 678 | ||
679 | if (!populated_zone(zone)) | 679 | if (!populated_zone(zone)) |
680 | continue; | 680 | continue; |
681 | 681 | ||
682 | pset = zone_pcp(zone, smp_processor_id()); | 682 | pset = zone_pcp(zone, smp_processor_id()); |
683 | for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { | 683 | for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { |
684 | struct per_cpu_pages *pcp; | 684 | struct per_cpu_pages *pcp; |
685 | 685 | ||
686 | pcp = &pset->pcp[i]; | 686 | pcp = &pset->pcp[i]; |
687 | if (pcp->count) { | 687 | if (pcp->count) { |
688 | int to_drain; | 688 | int to_drain; |
689 | 689 | ||
690 | local_irq_save(flags); | 690 | local_irq_save(flags); |
691 | if (pcp->count >= pcp->batch) | 691 | if (pcp->count >= pcp->batch) |
692 | to_drain = pcp->batch; | 692 | to_drain = pcp->batch; |
693 | else | 693 | else |
694 | to_drain = pcp->count; | 694 | to_drain = pcp->count; |
695 | free_pages_bulk(zone, to_drain, &pcp->list, 0); | 695 | free_pages_bulk(zone, to_drain, &pcp->list, 0); |
696 | pcp->count -= to_drain; | 696 | pcp->count -= to_drain; |
697 | local_irq_restore(flags); | 697 | local_irq_restore(flags); |
698 | } | 698 | } |
699 | } | 699 | } |
700 | } | 700 | } |
701 | } | 701 | } |
702 | #endif | 702 | #endif |
703 | 703 | ||
704 | #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU) | 704 | #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU) |
705 | static void __drain_pages(unsigned int cpu) | 705 | static void __drain_pages(unsigned int cpu) |
706 | { | 706 | { |
707 | unsigned long flags; | 707 | unsigned long flags; |
708 | struct zone *zone; | 708 | struct zone *zone; |
709 | int i; | 709 | int i; |
710 | 710 | ||
711 | for_each_zone(zone) { | 711 | for_each_zone(zone) { |
712 | struct per_cpu_pageset *pset; | 712 | struct per_cpu_pageset *pset; |
713 | 713 | ||
714 | pset = zone_pcp(zone, cpu); | 714 | pset = zone_pcp(zone, cpu); |
715 | for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { | 715 | for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { |
716 | struct per_cpu_pages *pcp; | 716 | struct per_cpu_pages *pcp; |
717 | 717 | ||
718 | pcp = &pset->pcp[i]; | 718 | pcp = &pset->pcp[i]; |
719 | local_irq_save(flags); | 719 | local_irq_save(flags); |
720 | free_pages_bulk(zone, pcp->count, &pcp->list, 0); | 720 | free_pages_bulk(zone, pcp->count, &pcp->list, 0); |
721 | pcp->count = 0; | 721 | pcp->count = 0; |
722 | local_irq_restore(flags); | 722 | local_irq_restore(flags); |
723 | } | 723 | } |
724 | } | 724 | } |
725 | } | 725 | } |
726 | #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */ | 726 | #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */ |
727 | 727 | ||
728 | #ifdef CONFIG_PM | 728 | #ifdef CONFIG_PM |
729 | 729 | ||
730 | void mark_free_pages(struct zone *zone) | 730 | void mark_free_pages(struct zone *zone) |
731 | { | 731 | { |
732 | unsigned long pfn, max_zone_pfn; | 732 | unsigned long pfn, max_zone_pfn; |
733 | unsigned long flags; | 733 | unsigned long flags; |
734 | int order; | 734 | int order; |
735 | struct list_head *curr; | 735 | struct list_head *curr; |
736 | 736 | ||
737 | if (!zone->spanned_pages) | 737 | if (!zone->spanned_pages) |
738 | return; | 738 | return; |
739 | 739 | ||
740 | spin_lock_irqsave(&zone->lock, flags); | 740 | spin_lock_irqsave(&zone->lock, flags); |
741 | 741 | ||
742 | max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; | 742 | max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; |
743 | for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) | 743 | for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) |
744 | if (pfn_valid(pfn)) { | 744 | if (pfn_valid(pfn)) { |
745 | struct page *page = pfn_to_page(pfn); | 745 | struct page *page = pfn_to_page(pfn); |
746 | 746 | ||
747 | if (!PageNosave(page)) | 747 | if (!PageNosave(page)) |
748 | ClearPageNosaveFree(page); | 748 | ClearPageNosaveFree(page); |
749 | } | 749 | } |
750 | 750 | ||
751 | for (order = MAX_ORDER - 1; order >= 0; --order) | 751 | for (order = MAX_ORDER - 1; order >= 0; --order) |
752 | list_for_each(curr, &zone->free_area[order].free_list) { | 752 | list_for_each(curr, &zone->free_area[order].free_list) { |
753 | unsigned long i; | 753 | unsigned long i; |
754 | 754 | ||
755 | pfn = page_to_pfn(list_entry(curr, struct page, lru)); | 755 | pfn = page_to_pfn(list_entry(curr, struct page, lru)); |
756 | for (i = 0; i < (1UL << order); i++) | 756 | for (i = 0; i < (1UL << order); i++) |
757 | SetPageNosaveFree(pfn_to_page(pfn + i)); | 757 | SetPageNosaveFree(pfn_to_page(pfn + i)); |
758 | } | 758 | } |
759 | 759 | ||
760 | spin_unlock_irqrestore(&zone->lock, flags); | 760 | spin_unlock_irqrestore(&zone->lock, flags); |
761 | } | 761 | } |
762 | 762 | ||
763 | /* | 763 | /* |
764 | * Spill all of this CPU's per-cpu pages back into the buddy allocator. | 764 | * Spill all of this CPU's per-cpu pages back into the buddy allocator. |
765 | */ | 765 | */ |
766 | void drain_local_pages(void) | 766 | void drain_local_pages(void) |
767 | { | 767 | { |
768 | unsigned long flags; | 768 | unsigned long flags; |
769 | 769 | ||
770 | local_irq_save(flags); | 770 | local_irq_save(flags); |
771 | __drain_pages(smp_processor_id()); | 771 | __drain_pages(smp_processor_id()); |
772 | local_irq_restore(flags); | 772 | local_irq_restore(flags); |
773 | } | 773 | } |
774 | #endif /* CONFIG_PM */ | 774 | #endif /* CONFIG_PM */ |
775 | 775 | ||
776 | /* | 776 | /* |
777 | * Free a 0-order page | 777 | * Free a 0-order page |
778 | */ | 778 | */ |
779 | static void fastcall free_hot_cold_page(struct page *page, int cold) | 779 | static void fastcall free_hot_cold_page(struct page *page, int cold) |
780 | { | 780 | { |
781 | struct zone *zone = page_zone(page); | 781 | struct zone *zone = page_zone(page); |
782 | struct per_cpu_pages *pcp; | 782 | struct per_cpu_pages *pcp; |
783 | unsigned long flags; | 783 | unsigned long flags; |
784 | 784 | ||
785 | if (PageAnon(page)) | 785 | if (PageAnon(page)) |
786 | page->mapping = NULL; | 786 | page->mapping = NULL; |
787 | if (free_pages_check(page)) | 787 | if (free_pages_check(page)) |
788 | return; | 788 | return; |
789 | 789 | ||
790 | if (!PageHighMem(page)) | 790 | if (!PageHighMem(page)) |
791 | debug_check_no_locks_freed(page_address(page), PAGE_SIZE); | 791 | debug_check_no_locks_freed(page_address(page), PAGE_SIZE); |
792 | arch_free_page(page, 0); | 792 | arch_free_page(page, 0); |
793 | kernel_map_pages(page, 1, 0); | 793 | kernel_map_pages(page, 1, 0); |
794 | 794 | ||
795 | pcp = &zone_pcp(zone, get_cpu())->pcp[cold]; | 795 | pcp = &zone_pcp(zone, get_cpu())->pcp[cold]; |
796 | local_irq_save(flags); | 796 | local_irq_save(flags); |
797 | __count_vm_event(PGFREE); | 797 | __count_vm_event(PGFREE); |
798 | list_add(&page->lru, &pcp->list); | 798 | list_add(&page->lru, &pcp->list); |
799 | pcp->count++; | 799 | pcp->count++; |
800 | if (pcp->count >= pcp->high) { | 800 | if (pcp->count >= pcp->high) { |
801 | free_pages_bulk(zone, pcp->batch, &pcp->list, 0); | 801 | free_pages_bulk(zone, pcp->batch, &pcp->list, 0); |
802 | pcp->count -= pcp->batch; | 802 | pcp->count -= pcp->batch; |
803 | } | 803 | } |
804 | local_irq_restore(flags); | 804 | local_irq_restore(flags); |
805 | put_cpu(); | 805 | put_cpu(); |
806 | } | 806 | } |
807 | 807 | ||
808 | void fastcall free_hot_page(struct page *page) | 808 | void fastcall free_hot_page(struct page *page) |
809 | { | 809 | { |
810 | free_hot_cold_page(page, 0); | 810 | free_hot_cold_page(page, 0); |
811 | } | 811 | } |
812 | 812 | ||
813 | void fastcall free_cold_page(struct page *page) | 813 | void fastcall free_cold_page(struct page *page) |
814 | { | 814 | { |
815 | free_hot_cold_page(page, 1); | 815 | free_hot_cold_page(page, 1); |
816 | } | 816 | } |
817 | 817 | ||
818 | /* | 818 | /* |
819 | * split_page takes a non-compound higher-order page, and splits it into | 819 | * split_page takes a non-compound higher-order page, and splits it into |
820 | * n (1<<order) sub-pages: page[0..n] | 820 | * n (1<<order) sub-pages: page[0..n] |
821 | * Each sub-page must be freed individually. | 821 | * Each sub-page must be freed individually. |
822 | * | 822 | * |
823 | * Note: this is probably too low level an operation for use in drivers. | 823 | * Note: this is probably too low level an operation for use in drivers. |
824 | * Please consult with lkml before using this in your driver. | 824 | * Please consult with lkml before using this in your driver. |
825 | */ | 825 | */ |
826 | void split_page(struct page *page, unsigned int order) | 826 | void split_page(struct page *page, unsigned int order) |
827 | { | 827 | { |
828 | int i; | 828 | int i; |
829 | 829 | ||
830 | VM_BUG_ON(PageCompound(page)); | 830 | VM_BUG_ON(PageCompound(page)); |
831 | VM_BUG_ON(!page_count(page)); | 831 | VM_BUG_ON(!page_count(page)); |
832 | for (i = 1; i < (1 << order); i++) | 832 | for (i = 1; i < (1 << order); i++) |
833 | set_page_refcounted(page + i); | 833 | set_page_refcounted(page + i); |
834 | } | 834 | } |
835 | 835 | ||
836 | /* | 836 | /* |
837 | * Really, prep_compound_page() should be called from __rmqueue_bulk(). But | 837 | * Really, prep_compound_page() should be called from __rmqueue_bulk(). But |
838 | * we cheat by calling it from here, in the order > 0 path. Saves a branch | 838 | * we cheat by calling it from here, in the order > 0 path. Saves a branch |
839 | * or two. | 839 | * or two. |
840 | */ | 840 | */ |
841 | static struct page *buffered_rmqueue(struct zonelist *zonelist, | 841 | static struct page *buffered_rmqueue(struct zonelist *zonelist, |
842 | struct zone *zone, int order, gfp_t gfp_flags) | 842 | struct zone *zone, int order, gfp_t gfp_flags) |
843 | { | 843 | { |
844 | unsigned long flags; | 844 | unsigned long flags; |
845 | struct page *page; | 845 | struct page *page; |
846 | int cold = !!(gfp_flags & __GFP_COLD); | 846 | int cold = !!(gfp_flags & __GFP_COLD); |
847 | int cpu; | 847 | int cpu; |
848 | 848 | ||
849 | again: | 849 | again: |
850 | cpu = get_cpu(); | 850 | cpu = get_cpu(); |
851 | if (likely(order == 0)) { | 851 | if (likely(order == 0)) { |
852 | struct per_cpu_pages *pcp; | 852 | struct per_cpu_pages *pcp; |
853 | 853 | ||
854 | pcp = &zone_pcp(zone, cpu)->pcp[cold]; | 854 | pcp = &zone_pcp(zone, cpu)->pcp[cold]; |
855 | local_irq_save(flags); | 855 | local_irq_save(flags); |
856 | if (!pcp->count) { | 856 | if (!pcp->count) { |
857 | pcp->count = rmqueue_bulk(zone, 0, | 857 | pcp->count = rmqueue_bulk(zone, 0, |
858 | pcp->batch, &pcp->list); | 858 | pcp->batch, &pcp->list); |
859 | if (unlikely(!pcp->count)) | 859 | if (unlikely(!pcp->count)) |
860 | goto failed; | 860 | goto failed; |
861 | } | 861 | } |
862 | page = list_entry(pcp->list.next, struct page, lru); | 862 | page = list_entry(pcp->list.next, struct page, lru); |
863 | list_del(&page->lru); | 863 | list_del(&page->lru); |
864 | pcp->count--; | 864 | pcp->count--; |
865 | } else { | 865 | } else { |
866 | spin_lock_irqsave(&zone->lock, flags); | 866 | spin_lock_irqsave(&zone->lock, flags); |
867 | page = __rmqueue(zone, order); | 867 | page = __rmqueue(zone, order); |
868 | spin_unlock(&zone->lock); | 868 | spin_unlock(&zone->lock); |
869 | if (!page) | 869 | if (!page) |
870 | goto failed; | 870 | goto failed; |
871 | } | 871 | } |
872 | 872 | ||
873 | __count_zone_vm_events(PGALLOC, zone, 1 << order); | 873 | __count_zone_vm_events(PGALLOC, zone, 1 << order); |
874 | zone_statistics(zonelist, zone); | 874 | zone_statistics(zonelist, zone); |
875 | local_irq_restore(flags); | 875 | local_irq_restore(flags); |
876 | put_cpu(); | 876 | put_cpu(); |
877 | 877 | ||
878 | VM_BUG_ON(bad_range(zone, page)); | 878 | VM_BUG_ON(bad_range(zone, page)); |
879 | if (prep_new_page(page, order, gfp_flags)) | 879 | if (prep_new_page(page, order, gfp_flags)) |
880 | goto again; | 880 | goto again; |
881 | return page; | 881 | return page; |
882 | 882 | ||
883 | failed: | 883 | failed: |
884 | local_irq_restore(flags); | 884 | local_irq_restore(flags); |
885 | put_cpu(); | 885 | put_cpu(); |
886 | return NULL; | 886 | return NULL; |
887 | } | 887 | } |
888 | 888 | ||
889 | #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */ | 889 | #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */ |
890 | #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */ | 890 | #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */ |
891 | #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */ | 891 | #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */ |
892 | #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */ | 892 | #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */ |
893 | #define ALLOC_HARDER 0x10 /* try to alloc harder */ | 893 | #define ALLOC_HARDER 0x10 /* try to alloc harder */ |
894 | #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ | 894 | #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ |
895 | #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ | 895 | #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ |
896 | 896 | ||
897 | /* | 897 | /* |
898 | * Return 1 if free pages are above 'mark'. This takes into account the order | 898 | * Return 1 if free pages are above 'mark'. This takes into account the order |
899 | * of the allocation. | 899 | * of the allocation. |
900 | */ | 900 | */ |
901 | int zone_watermark_ok(struct zone *z, int order, unsigned long mark, | 901 | int zone_watermark_ok(struct zone *z, int order, unsigned long mark, |
902 | int classzone_idx, int alloc_flags) | 902 | int classzone_idx, int alloc_flags) |
903 | { | 903 | { |
904 | /* free_pages my go negative - that's OK */ | 904 | /* free_pages my go negative - that's OK */ |
905 | unsigned long min = mark; | 905 | unsigned long min = mark; |
906 | long free_pages = z->free_pages - (1 << order) + 1; | 906 | long free_pages = z->free_pages - (1 << order) + 1; |
907 | int o; | 907 | int o; |
908 | 908 | ||
909 | if (alloc_flags & ALLOC_HIGH) | 909 | if (alloc_flags & ALLOC_HIGH) |
910 | min -= min / 2; | 910 | min -= min / 2; |
911 | if (alloc_flags & ALLOC_HARDER) | 911 | if (alloc_flags & ALLOC_HARDER) |
912 | min -= min / 4; | 912 | min -= min / 4; |
913 | 913 | ||
914 | if (free_pages <= min + z->lowmem_reserve[classzone_idx]) | 914 | if (free_pages <= min + z->lowmem_reserve[classzone_idx]) |
915 | return 0; | 915 | return 0; |
916 | for (o = 0; o < order; o++) { | 916 | for (o = 0; o < order; o++) { |
917 | /* At the next order, this order's pages become unavailable */ | 917 | /* At the next order, this order's pages become unavailable */ |
918 | free_pages -= z->free_area[o].nr_free << o; | 918 | free_pages -= z->free_area[o].nr_free << o; |
919 | 919 | ||
920 | /* Require fewer higher order pages to be free */ | 920 | /* Require fewer higher order pages to be free */ |
921 | min >>= 1; | 921 | min >>= 1; |
922 | 922 | ||
923 | if (free_pages <= min) | 923 | if (free_pages <= min) |
924 | return 0; | 924 | return 0; |
925 | } | 925 | } |
926 | return 1; | 926 | return 1; |
927 | } | 927 | } |
928 | 928 | ||
929 | #ifdef CONFIG_NUMA | 929 | #ifdef CONFIG_NUMA |
930 | /* | 930 | /* |
931 | * zlc_setup - Setup for "zonelist cache". Uses cached zone data to | 931 | * zlc_setup - Setup for "zonelist cache". Uses cached zone data to |
932 | * skip over zones that are not allowed by the cpuset, or that have | 932 | * skip over zones that are not allowed by the cpuset, or that have |
933 | * been recently (in last second) found to be nearly full. See further | 933 | * been recently (in last second) found to be nearly full. See further |
934 | * comments in mmzone.h. Reduces cache footprint of zonelist scans | 934 | * comments in mmzone.h. Reduces cache footprint of zonelist scans |
935 | * that have to skip over alot of full or unallowed zones. | 935 | * that have to skip over alot of full or unallowed zones. |
936 | * | 936 | * |
937 | * If the zonelist cache is present in the passed in zonelist, then | 937 | * If the zonelist cache is present in the passed in zonelist, then |
938 | * returns a pointer to the allowed node mask (either the current | 938 | * returns a pointer to the allowed node mask (either the current |
939 | * tasks mems_allowed, or node_online_map.) | 939 | * tasks mems_allowed, or node_online_map.) |
940 | * | 940 | * |
941 | * If the zonelist cache is not available for this zonelist, does | 941 | * If the zonelist cache is not available for this zonelist, does |
942 | * nothing and returns NULL. | 942 | * nothing and returns NULL. |
943 | * | 943 | * |
944 | * If the fullzones BITMAP in the zonelist cache is stale (more than | 944 | * If the fullzones BITMAP in the zonelist cache is stale (more than |
945 | * a second since last zap'd) then we zap it out (clear its bits.) | 945 | * a second since last zap'd) then we zap it out (clear its bits.) |
946 | * | 946 | * |
947 | * We hold off even calling zlc_setup, until after we've checked the | 947 | * We hold off even calling zlc_setup, until after we've checked the |
948 | * first zone in the zonelist, on the theory that most allocations will | 948 | * first zone in the zonelist, on the theory that most allocations will |
949 | * be satisfied from that first zone, so best to examine that zone as | 949 | * be satisfied from that first zone, so best to examine that zone as |
950 | * quickly as we can. | 950 | * quickly as we can. |
951 | */ | 951 | */ |
952 | static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) | 952 | static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) |
953 | { | 953 | { |
954 | struct zonelist_cache *zlc; /* cached zonelist speedup info */ | 954 | struct zonelist_cache *zlc; /* cached zonelist speedup info */ |
955 | nodemask_t *allowednodes; /* zonelist_cache approximation */ | 955 | nodemask_t *allowednodes; /* zonelist_cache approximation */ |
956 | 956 | ||
957 | zlc = zonelist->zlcache_ptr; | 957 | zlc = zonelist->zlcache_ptr; |
958 | if (!zlc) | 958 | if (!zlc) |
959 | return NULL; | 959 | return NULL; |
960 | 960 | ||
961 | if (jiffies - zlc->last_full_zap > 1 * HZ) { | 961 | if (jiffies - zlc->last_full_zap > 1 * HZ) { |
962 | bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); | 962 | bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); |
963 | zlc->last_full_zap = jiffies; | 963 | zlc->last_full_zap = jiffies; |
964 | } | 964 | } |
965 | 965 | ||
966 | allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? | 966 | allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? |
967 | &cpuset_current_mems_allowed : | 967 | &cpuset_current_mems_allowed : |
968 | &node_online_map; | 968 | &node_online_map; |
969 | return allowednodes; | 969 | return allowednodes; |
970 | } | 970 | } |
971 | 971 | ||
972 | /* | 972 | /* |
973 | * Given 'z' scanning a zonelist, run a couple of quick checks to see | 973 | * Given 'z' scanning a zonelist, run a couple of quick checks to see |
974 | * if it is worth looking at further for free memory: | 974 | * if it is worth looking at further for free memory: |
975 | * 1) Check that the zone isn't thought to be full (doesn't have its | 975 | * 1) Check that the zone isn't thought to be full (doesn't have its |
976 | * bit set in the zonelist_cache fullzones BITMAP). | 976 | * bit set in the zonelist_cache fullzones BITMAP). |
977 | * 2) Check that the zones node (obtained from the zonelist_cache | 977 | * 2) Check that the zones node (obtained from the zonelist_cache |
978 | * z_to_n[] mapping) is allowed in the passed in allowednodes mask. | 978 | * z_to_n[] mapping) is allowed in the passed in allowednodes mask. |
979 | * Return true (non-zero) if zone is worth looking at further, or | 979 | * Return true (non-zero) if zone is worth looking at further, or |
980 | * else return false (zero) if it is not. | 980 | * else return false (zero) if it is not. |
981 | * | 981 | * |
982 | * This check -ignores- the distinction between various watermarks, | 982 | * This check -ignores- the distinction between various watermarks, |
983 | * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is | 983 | * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is |
984 | * found to be full for any variation of these watermarks, it will | 984 | * found to be full for any variation of these watermarks, it will |
985 | * be considered full for up to one second by all requests, unless | 985 | * be considered full for up to one second by all requests, unless |
986 | * we are so low on memory on all allowed nodes that we are forced | 986 | * we are so low on memory on all allowed nodes that we are forced |
987 | * into the second scan of the zonelist. | 987 | * into the second scan of the zonelist. |
988 | * | 988 | * |
989 | * In the second scan we ignore this zonelist cache and exactly | 989 | * In the second scan we ignore this zonelist cache and exactly |
990 | * apply the watermarks to all zones, even it is slower to do so. | 990 | * apply the watermarks to all zones, even it is slower to do so. |
991 | * We are low on memory in the second scan, and should leave no stone | 991 | * We are low on memory in the second scan, and should leave no stone |
992 | * unturned looking for a free page. | 992 | * unturned looking for a free page. |
993 | */ | 993 | */ |
994 | static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z, | 994 | static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z, |
995 | nodemask_t *allowednodes) | 995 | nodemask_t *allowednodes) |
996 | { | 996 | { |
997 | struct zonelist_cache *zlc; /* cached zonelist speedup info */ | 997 | struct zonelist_cache *zlc; /* cached zonelist speedup info */ |
998 | int i; /* index of *z in zonelist zones */ | 998 | int i; /* index of *z in zonelist zones */ |
999 | int n; /* node that zone *z is on */ | 999 | int n; /* node that zone *z is on */ |
1000 | 1000 | ||
1001 | zlc = zonelist->zlcache_ptr; | 1001 | zlc = zonelist->zlcache_ptr; |
1002 | if (!zlc) | 1002 | if (!zlc) |
1003 | return 1; | 1003 | return 1; |
1004 | 1004 | ||
1005 | i = z - zonelist->zones; | 1005 | i = z - zonelist->zones; |
1006 | n = zlc->z_to_n[i]; | 1006 | n = zlc->z_to_n[i]; |
1007 | 1007 | ||
1008 | /* This zone is worth trying if it is allowed but not full */ | 1008 | /* This zone is worth trying if it is allowed but not full */ |
1009 | return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); | 1009 | return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); |
1010 | } | 1010 | } |
1011 | 1011 | ||
1012 | /* | 1012 | /* |
1013 | * Given 'z' scanning a zonelist, set the corresponding bit in | 1013 | * Given 'z' scanning a zonelist, set the corresponding bit in |
1014 | * zlc->fullzones, so that subsequent attempts to allocate a page | 1014 | * zlc->fullzones, so that subsequent attempts to allocate a page |
1015 | * from that zone don't waste time re-examining it. | 1015 | * from that zone don't waste time re-examining it. |
1016 | */ | 1016 | */ |
1017 | static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z) | 1017 | static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z) |
1018 | { | 1018 | { |
1019 | struct zonelist_cache *zlc; /* cached zonelist speedup info */ | 1019 | struct zonelist_cache *zlc; /* cached zonelist speedup info */ |
1020 | int i; /* index of *z in zonelist zones */ | 1020 | int i; /* index of *z in zonelist zones */ |
1021 | 1021 | ||
1022 | zlc = zonelist->zlcache_ptr; | 1022 | zlc = zonelist->zlcache_ptr; |
1023 | if (!zlc) | 1023 | if (!zlc) |
1024 | return; | 1024 | return; |
1025 | 1025 | ||
1026 | i = z - zonelist->zones; | 1026 | i = z - zonelist->zones; |
1027 | 1027 | ||
1028 | set_bit(i, zlc->fullzones); | 1028 | set_bit(i, zlc->fullzones); |
1029 | } | 1029 | } |
1030 | 1030 | ||
1031 | #else /* CONFIG_NUMA */ | 1031 | #else /* CONFIG_NUMA */ |
1032 | 1032 | ||
1033 | static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) | 1033 | static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) |
1034 | { | 1034 | { |
1035 | return NULL; | 1035 | return NULL; |
1036 | } | 1036 | } |
1037 | 1037 | ||
1038 | static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z, | 1038 | static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z, |
1039 | nodemask_t *allowednodes) | 1039 | nodemask_t *allowednodes) |
1040 | { | 1040 | { |
1041 | return 1; | 1041 | return 1; |
1042 | } | 1042 | } |
1043 | 1043 | ||
1044 | static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z) | 1044 | static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z) |
1045 | { | 1045 | { |
1046 | } | 1046 | } |
1047 | #endif /* CONFIG_NUMA */ | 1047 | #endif /* CONFIG_NUMA */ |
1048 | 1048 | ||
1049 | /* | 1049 | /* |
1050 | * get_page_from_freelist goes through the zonelist trying to allocate | 1050 | * get_page_from_freelist goes through the zonelist trying to allocate |
1051 | * a page. | 1051 | * a page. |
1052 | */ | 1052 | */ |
1053 | static struct page * | 1053 | static struct page * |
1054 | get_page_from_freelist(gfp_t gfp_mask, unsigned int order, | 1054 | get_page_from_freelist(gfp_t gfp_mask, unsigned int order, |
1055 | struct zonelist *zonelist, int alloc_flags) | 1055 | struct zonelist *zonelist, int alloc_flags) |
1056 | { | 1056 | { |
1057 | struct zone **z; | 1057 | struct zone **z; |
1058 | struct page *page = NULL; | 1058 | struct page *page = NULL; |
1059 | int classzone_idx = zone_idx(zonelist->zones[0]); | 1059 | int classzone_idx = zone_idx(zonelist->zones[0]); |
1060 | struct zone *zone; | 1060 | struct zone *zone; |
1061 | nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ | 1061 | nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ |
1062 | int zlc_active = 0; /* set if using zonelist_cache */ | 1062 | int zlc_active = 0; /* set if using zonelist_cache */ |
1063 | int did_zlc_setup = 0; /* just call zlc_setup() one time */ | 1063 | int did_zlc_setup = 0; /* just call zlc_setup() one time */ |
1064 | 1064 | ||
1065 | zonelist_scan: | 1065 | zonelist_scan: |
1066 | /* | 1066 | /* |
1067 | * Scan zonelist, looking for a zone with enough free. | 1067 | * Scan zonelist, looking for a zone with enough free. |
1068 | * See also cpuset_zone_allowed() comment in kernel/cpuset.c. | 1068 | * See also cpuset_zone_allowed() comment in kernel/cpuset.c. |
1069 | */ | 1069 | */ |
1070 | z = zonelist->zones; | 1070 | z = zonelist->zones; |
1071 | 1071 | ||
1072 | do { | 1072 | do { |
1073 | if (NUMA_BUILD && zlc_active && | 1073 | if (NUMA_BUILD && zlc_active && |
1074 | !zlc_zone_worth_trying(zonelist, z, allowednodes)) | 1074 | !zlc_zone_worth_trying(zonelist, z, allowednodes)) |
1075 | continue; | 1075 | continue; |
1076 | zone = *z; | 1076 | zone = *z; |
1077 | if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) && | 1077 | if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) && |
1078 | zone->zone_pgdat != zonelist->zones[0]->zone_pgdat)) | 1078 | zone->zone_pgdat != zonelist->zones[0]->zone_pgdat)) |
1079 | break; | 1079 | break; |
1080 | if ((alloc_flags & ALLOC_CPUSET) && | 1080 | if ((alloc_flags & ALLOC_CPUSET) && |
1081 | !cpuset_zone_allowed(zone, gfp_mask)) | 1081 | !cpuset_zone_allowed(zone, gfp_mask)) |
1082 | goto try_next_zone; | 1082 | goto try_next_zone; |
1083 | 1083 | ||
1084 | if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { | 1084 | if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { |
1085 | unsigned long mark; | 1085 | unsigned long mark; |
1086 | if (alloc_flags & ALLOC_WMARK_MIN) | 1086 | if (alloc_flags & ALLOC_WMARK_MIN) |
1087 | mark = zone->pages_min; | 1087 | mark = zone->pages_min; |
1088 | else if (alloc_flags & ALLOC_WMARK_LOW) | 1088 | else if (alloc_flags & ALLOC_WMARK_LOW) |
1089 | mark = zone->pages_low; | 1089 | mark = zone->pages_low; |
1090 | else | 1090 | else |
1091 | mark = zone->pages_high; | 1091 | mark = zone->pages_high; |
1092 | if (!zone_watermark_ok(zone, order, mark, | 1092 | if (!zone_watermark_ok(zone, order, mark, |
1093 | classzone_idx, alloc_flags)) { | 1093 | classzone_idx, alloc_flags)) { |
1094 | if (!zone_reclaim_mode || | 1094 | if (!zone_reclaim_mode || |
1095 | !zone_reclaim(zone, gfp_mask, order)) | 1095 | !zone_reclaim(zone, gfp_mask, order)) |
1096 | goto this_zone_full; | 1096 | goto this_zone_full; |
1097 | } | 1097 | } |
1098 | } | 1098 | } |
1099 | 1099 | ||
1100 | page = buffered_rmqueue(zonelist, zone, order, gfp_mask); | 1100 | page = buffered_rmqueue(zonelist, zone, order, gfp_mask); |
1101 | if (page) | 1101 | if (page) |
1102 | break; | 1102 | break; |
1103 | this_zone_full: | 1103 | this_zone_full: |
1104 | if (NUMA_BUILD) | 1104 | if (NUMA_BUILD) |
1105 | zlc_mark_zone_full(zonelist, z); | 1105 | zlc_mark_zone_full(zonelist, z); |
1106 | try_next_zone: | 1106 | try_next_zone: |
1107 | if (NUMA_BUILD && !did_zlc_setup) { | 1107 | if (NUMA_BUILD && !did_zlc_setup) { |
1108 | /* we do zlc_setup after the first zone is tried */ | 1108 | /* we do zlc_setup after the first zone is tried */ |
1109 | allowednodes = zlc_setup(zonelist, alloc_flags); | 1109 | allowednodes = zlc_setup(zonelist, alloc_flags); |
1110 | zlc_active = 1; | 1110 | zlc_active = 1; |
1111 | did_zlc_setup = 1; | 1111 | did_zlc_setup = 1; |
1112 | } | 1112 | } |
1113 | } while (*(++z) != NULL); | 1113 | } while (*(++z) != NULL); |
1114 | 1114 | ||
1115 | if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { | 1115 | if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { |
1116 | /* Disable zlc cache for second zonelist scan */ | 1116 | /* Disable zlc cache for second zonelist scan */ |
1117 | zlc_active = 0; | 1117 | zlc_active = 0; |
1118 | goto zonelist_scan; | 1118 | goto zonelist_scan; |
1119 | } | 1119 | } |
1120 | return page; | 1120 | return page; |
1121 | } | 1121 | } |
1122 | 1122 | ||
1123 | /* | 1123 | /* |
1124 | * This is the 'heart' of the zoned buddy allocator. | 1124 | * This is the 'heart' of the zoned buddy allocator. |
1125 | */ | 1125 | */ |
1126 | struct page * fastcall | 1126 | struct page * fastcall |
1127 | __alloc_pages(gfp_t gfp_mask, unsigned int order, | 1127 | __alloc_pages(gfp_t gfp_mask, unsigned int order, |
1128 | struct zonelist *zonelist) | 1128 | struct zonelist *zonelist) |
1129 | { | 1129 | { |
1130 | const gfp_t wait = gfp_mask & __GFP_WAIT; | 1130 | const gfp_t wait = gfp_mask & __GFP_WAIT; |
1131 | struct zone **z; | 1131 | struct zone **z; |
1132 | struct page *page; | 1132 | struct page *page; |
1133 | struct reclaim_state reclaim_state; | 1133 | struct reclaim_state reclaim_state; |
1134 | struct task_struct *p = current; | 1134 | struct task_struct *p = current; |
1135 | int do_retry; | 1135 | int do_retry; |
1136 | int alloc_flags; | 1136 | int alloc_flags; |
1137 | int did_some_progress; | 1137 | int did_some_progress; |
1138 | 1138 | ||
1139 | might_sleep_if(wait); | 1139 | might_sleep_if(wait); |
1140 | 1140 | ||
1141 | restart: | 1141 | restart: |
1142 | z = zonelist->zones; /* the list of zones suitable for gfp_mask */ | 1142 | z = zonelist->zones; /* the list of zones suitable for gfp_mask */ |
1143 | 1143 | ||
1144 | if (unlikely(*z == NULL)) { | 1144 | if (unlikely(*z == NULL)) { |
1145 | /* Should this ever happen?? */ | 1145 | /* Should this ever happen?? */ |
1146 | return NULL; | 1146 | return NULL; |
1147 | } | 1147 | } |
1148 | 1148 | ||
1149 | page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, | 1149 | page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, |
1150 | zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET); | 1150 | zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET); |
1151 | if (page) | 1151 | if (page) |
1152 | goto got_pg; | 1152 | goto got_pg; |
1153 | 1153 | ||
1154 | /* | 1154 | /* |
1155 | * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and | 1155 | * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and |
1156 | * __GFP_NOWARN set) should not cause reclaim since the subsystem | 1156 | * __GFP_NOWARN set) should not cause reclaim since the subsystem |
1157 | * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim | 1157 | * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim |
1158 | * using a larger set of nodes after it has established that the | 1158 | * using a larger set of nodes after it has established that the |
1159 | * allowed per node queues are empty and that nodes are | 1159 | * allowed per node queues are empty and that nodes are |
1160 | * over allocated. | 1160 | * over allocated. |
1161 | */ | 1161 | */ |
1162 | if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) | 1162 | if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) |
1163 | goto nopage; | 1163 | goto nopage; |
1164 | 1164 | ||
1165 | for (z = zonelist->zones; *z; z++) | 1165 | for (z = zonelist->zones; *z; z++) |
1166 | wakeup_kswapd(*z, order); | 1166 | wakeup_kswapd(*z, order); |
1167 | 1167 | ||
1168 | /* | 1168 | /* |
1169 | * OK, we're below the kswapd watermark and have kicked background | 1169 | * OK, we're below the kswapd watermark and have kicked background |
1170 | * reclaim. Now things get more complex, so set up alloc_flags according | 1170 | * reclaim. Now things get more complex, so set up alloc_flags according |
1171 | * to how we want to proceed. | 1171 | * to how we want to proceed. |
1172 | * | 1172 | * |
1173 | * The caller may dip into page reserves a bit more if the caller | 1173 | * The caller may dip into page reserves a bit more if the caller |
1174 | * cannot run direct reclaim, or if the caller has realtime scheduling | 1174 | * cannot run direct reclaim, or if the caller has realtime scheduling |
1175 | * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will | 1175 | * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will |
1176 | * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). | 1176 | * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). |
1177 | */ | 1177 | */ |
1178 | alloc_flags = ALLOC_WMARK_MIN; | 1178 | alloc_flags = ALLOC_WMARK_MIN; |
1179 | if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait) | 1179 | if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait) |
1180 | alloc_flags |= ALLOC_HARDER; | 1180 | alloc_flags |= ALLOC_HARDER; |
1181 | if (gfp_mask & __GFP_HIGH) | 1181 | if (gfp_mask & __GFP_HIGH) |
1182 | alloc_flags |= ALLOC_HIGH; | 1182 | alloc_flags |= ALLOC_HIGH; |
1183 | if (wait) | 1183 | if (wait) |
1184 | alloc_flags |= ALLOC_CPUSET; | 1184 | alloc_flags |= ALLOC_CPUSET; |
1185 | 1185 | ||
1186 | /* | 1186 | /* |
1187 | * Go through the zonelist again. Let __GFP_HIGH and allocations | 1187 | * Go through the zonelist again. Let __GFP_HIGH and allocations |
1188 | * coming from realtime tasks go deeper into reserves. | 1188 | * coming from realtime tasks go deeper into reserves. |
1189 | * | 1189 | * |
1190 | * This is the last chance, in general, before the goto nopage. | 1190 | * This is the last chance, in general, before the goto nopage. |
1191 | * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. | 1191 | * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. |
1192 | * See also cpuset_zone_allowed() comment in kernel/cpuset.c. | 1192 | * See also cpuset_zone_allowed() comment in kernel/cpuset.c. |
1193 | */ | 1193 | */ |
1194 | page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags); | 1194 | page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags); |
1195 | if (page) | 1195 | if (page) |
1196 | goto got_pg; | 1196 | goto got_pg; |
1197 | 1197 | ||
1198 | /* This allocation should allow future memory freeing. */ | 1198 | /* This allocation should allow future memory freeing. */ |
1199 | 1199 | ||
1200 | rebalance: | 1200 | rebalance: |
1201 | if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE))) | 1201 | if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE))) |
1202 | && !in_interrupt()) { | 1202 | && !in_interrupt()) { |
1203 | if (!(gfp_mask & __GFP_NOMEMALLOC)) { | 1203 | if (!(gfp_mask & __GFP_NOMEMALLOC)) { |
1204 | nofail_alloc: | 1204 | nofail_alloc: |
1205 | /* go through the zonelist yet again, ignoring mins */ | 1205 | /* go through the zonelist yet again, ignoring mins */ |
1206 | page = get_page_from_freelist(gfp_mask, order, | 1206 | page = get_page_from_freelist(gfp_mask, order, |
1207 | zonelist, ALLOC_NO_WATERMARKS); | 1207 | zonelist, ALLOC_NO_WATERMARKS); |
1208 | if (page) | 1208 | if (page) |
1209 | goto got_pg; | 1209 | goto got_pg; |
1210 | if (gfp_mask & __GFP_NOFAIL) { | 1210 | if (gfp_mask & __GFP_NOFAIL) { |
1211 | congestion_wait(WRITE, HZ/50); | 1211 | congestion_wait(WRITE, HZ/50); |
1212 | goto nofail_alloc; | 1212 | goto nofail_alloc; |
1213 | } | 1213 | } |
1214 | } | 1214 | } |
1215 | goto nopage; | 1215 | goto nopage; |
1216 | } | 1216 | } |
1217 | 1217 | ||
1218 | /* Atomic allocations - we can't balance anything */ | 1218 | /* Atomic allocations - we can't balance anything */ |
1219 | if (!wait) | 1219 | if (!wait) |
1220 | goto nopage; | 1220 | goto nopage; |
1221 | 1221 | ||
1222 | cond_resched(); | 1222 | cond_resched(); |
1223 | 1223 | ||
1224 | /* We now go into synchronous reclaim */ | 1224 | /* We now go into synchronous reclaim */ |
1225 | cpuset_memory_pressure_bump(); | 1225 | cpuset_memory_pressure_bump(); |
1226 | p->flags |= PF_MEMALLOC; | 1226 | p->flags |= PF_MEMALLOC; |
1227 | reclaim_state.reclaimed_slab = 0; | 1227 | reclaim_state.reclaimed_slab = 0; |
1228 | p->reclaim_state = &reclaim_state; | 1228 | p->reclaim_state = &reclaim_state; |
1229 | 1229 | ||
1230 | did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask); | 1230 | did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask); |
1231 | 1231 | ||
1232 | p->reclaim_state = NULL; | 1232 | p->reclaim_state = NULL; |
1233 | p->flags &= ~PF_MEMALLOC; | 1233 | p->flags &= ~PF_MEMALLOC; |
1234 | 1234 | ||
1235 | cond_resched(); | 1235 | cond_resched(); |
1236 | 1236 | ||
1237 | if (likely(did_some_progress)) { | 1237 | if (likely(did_some_progress)) { |
1238 | page = get_page_from_freelist(gfp_mask, order, | 1238 | page = get_page_from_freelist(gfp_mask, order, |
1239 | zonelist, alloc_flags); | 1239 | zonelist, alloc_flags); |
1240 | if (page) | 1240 | if (page) |
1241 | goto got_pg; | 1241 | goto got_pg; |
1242 | } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { | 1242 | } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { |
1243 | /* | 1243 | /* |
1244 | * Go through the zonelist yet one more time, keep | 1244 | * Go through the zonelist yet one more time, keep |
1245 | * very high watermark here, this is only to catch | 1245 | * very high watermark here, this is only to catch |
1246 | * a parallel oom killing, we must fail if we're still | 1246 | * a parallel oom killing, we must fail if we're still |
1247 | * under heavy pressure. | 1247 | * under heavy pressure. |
1248 | */ | 1248 | */ |
1249 | page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, | 1249 | page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, |
1250 | zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET); | 1250 | zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET); |
1251 | if (page) | 1251 | if (page) |
1252 | goto got_pg; | 1252 | goto got_pg; |
1253 | 1253 | ||
1254 | out_of_memory(zonelist, gfp_mask, order); | 1254 | out_of_memory(zonelist, gfp_mask, order); |
1255 | goto restart; | 1255 | goto restart; |
1256 | } | 1256 | } |
1257 | 1257 | ||
1258 | /* | 1258 | /* |
1259 | * Don't let big-order allocations loop unless the caller explicitly | 1259 | * Don't let big-order allocations loop unless the caller explicitly |
1260 | * requests that. Wait for some write requests to complete then retry. | 1260 | * requests that. Wait for some write requests to complete then retry. |
1261 | * | 1261 | * |
1262 | * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order | 1262 | * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order |
1263 | * <= 3, but that may not be true in other implementations. | 1263 | * <= 3, but that may not be true in other implementations. |
1264 | */ | 1264 | */ |
1265 | do_retry = 0; | 1265 | do_retry = 0; |
1266 | if (!(gfp_mask & __GFP_NORETRY)) { | 1266 | if (!(gfp_mask & __GFP_NORETRY)) { |
1267 | if ((order <= 3) || (gfp_mask & __GFP_REPEAT)) | 1267 | if ((order <= 3) || (gfp_mask & __GFP_REPEAT)) |
1268 | do_retry = 1; | 1268 | do_retry = 1; |
1269 | if (gfp_mask & __GFP_NOFAIL) | 1269 | if (gfp_mask & __GFP_NOFAIL) |
1270 | do_retry = 1; | 1270 | do_retry = 1; |
1271 | } | 1271 | } |
1272 | if (do_retry) { | 1272 | if (do_retry) { |
1273 | congestion_wait(WRITE, HZ/50); | 1273 | congestion_wait(WRITE, HZ/50); |
1274 | goto rebalance; | 1274 | goto rebalance; |
1275 | } | 1275 | } |
1276 | 1276 | ||
1277 | nopage: | 1277 | nopage: |
1278 | if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { | 1278 | if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { |
1279 | printk(KERN_WARNING "%s: page allocation failure." | 1279 | printk(KERN_WARNING "%s: page allocation failure." |
1280 | " order:%d, mode:0x%x\n", | 1280 | " order:%d, mode:0x%x\n", |
1281 | p->comm, order, gfp_mask); | 1281 | p->comm, order, gfp_mask); |
1282 | dump_stack(); | 1282 | dump_stack(); |
1283 | show_mem(); | 1283 | show_mem(); |
1284 | } | 1284 | } |
1285 | got_pg: | 1285 | got_pg: |
1286 | return page; | 1286 | return page; |
1287 | } | 1287 | } |
1288 | 1288 | ||
1289 | EXPORT_SYMBOL(__alloc_pages); | 1289 | EXPORT_SYMBOL(__alloc_pages); |
1290 | 1290 | ||
1291 | /* | 1291 | /* |
1292 | * Common helper functions. | 1292 | * Common helper functions. |
1293 | */ | 1293 | */ |
1294 | fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) | 1294 | fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) |
1295 | { | 1295 | { |
1296 | struct page * page; | 1296 | struct page * page; |
1297 | page = alloc_pages(gfp_mask, order); | 1297 | page = alloc_pages(gfp_mask, order); |
1298 | if (!page) | 1298 | if (!page) |
1299 | return 0; | 1299 | return 0; |
1300 | return (unsigned long) page_address(page); | 1300 | return (unsigned long) page_address(page); |
1301 | } | 1301 | } |
1302 | 1302 | ||
1303 | EXPORT_SYMBOL(__get_free_pages); | 1303 | EXPORT_SYMBOL(__get_free_pages); |
1304 | 1304 | ||
1305 | fastcall unsigned long get_zeroed_page(gfp_t gfp_mask) | 1305 | fastcall unsigned long get_zeroed_page(gfp_t gfp_mask) |
1306 | { | 1306 | { |
1307 | struct page * page; | 1307 | struct page * page; |
1308 | 1308 | ||
1309 | /* | 1309 | /* |
1310 | * get_zeroed_page() returns a 32-bit address, which cannot represent | 1310 | * get_zeroed_page() returns a 32-bit address, which cannot represent |
1311 | * a highmem page | 1311 | * a highmem page |
1312 | */ | 1312 | */ |
1313 | VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); | 1313 | VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); |
1314 | 1314 | ||
1315 | page = alloc_pages(gfp_mask | __GFP_ZERO, 0); | 1315 | page = alloc_pages(gfp_mask | __GFP_ZERO, 0); |
1316 | if (page) | 1316 | if (page) |
1317 | return (unsigned long) page_address(page); | 1317 | return (unsigned long) page_address(page); |
1318 | return 0; | 1318 | return 0; |
1319 | } | 1319 | } |
1320 | 1320 | ||
1321 | EXPORT_SYMBOL(get_zeroed_page); | 1321 | EXPORT_SYMBOL(get_zeroed_page); |
1322 | 1322 | ||
1323 | void __pagevec_free(struct pagevec *pvec) | 1323 | void __pagevec_free(struct pagevec *pvec) |
1324 | { | 1324 | { |
1325 | int i = pagevec_count(pvec); | 1325 | int i = pagevec_count(pvec); |
1326 | 1326 | ||
1327 | while (--i >= 0) | 1327 | while (--i >= 0) |
1328 | free_hot_cold_page(pvec->pages[i], pvec->cold); | 1328 | free_hot_cold_page(pvec->pages[i], pvec->cold); |
1329 | } | 1329 | } |
1330 | 1330 | ||
1331 | fastcall void __free_pages(struct page *page, unsigned int order) | 1331 | fastcall void __free_pages(struct page *page, unsigned int order) |
1332 | { | 1332 | { |
1333 | if (put_page_testzero(page)) { | 1333 | if (put_page_testzero(page)) { |
1334 | if (order == 0) | 1334 | if (order == 0) |
1335 | free_hot_page(page); | 1335 | free_hot_page(page); |
1336 | else | 1336 | else |
1337 | __free_pages_ok(page, order); | 1337 | __free_pages_ok(page, order); |
1338 | } | 1338 | } |
1339 | } | 1339 | } |
1340 | 1340 | ||
1341 | EXPORT_SYMBOL(__free_pages); | 1341 | EXPORT_SYMBOL(__free_pages); |
1342 | 1342 | ||
1343 | fastcall void free_pages(unsigned long addr, unsigned int order) | 1343 | fastcall void free_pages(unsigned long addr, unsigned int order) |
1344 | { | 1344 | { |
1345 | if (addr != 0) { | 1345 | if (addr != 0) { |
1346 | VM_BUG_ON(!virt_addr_valid((void *)addr)); | 1346 | VM_BUG_ON(!virt_addr_valid((void *)addr)); |
1347 | __free_pages(virt_to_page((void *)addr), order); | 1347 | __free_pages(virt_to_page((void *)addr), order); |
1348 | } | 1348 | } |
1349 | } | 1349 | } |
1350 | 1350 | ||
1351 | EXPORT_SYMBOL(free_pages); | 1351 | EXPORT_SYMBOL(free_pages); |
1352 | 1352 | ||
1353 | /* | 1353 | /* |
1354 | * Total amount of free (allocatable) RAM: | 1354 | * Total amount of free (allocatable) RAM: |
1355 | */ | 1355 | */ |
1356 | unsigned int nr_free_pages(void) | 1356 | unsigned int nr_free_pages(void) |
1357 | { | 1357 | { |
1358 | unsigned int sum = 0; | 1358 | unsigned int sum = 0; |
1359 | struct zone *zone; | 1359 | struct zone *zone; |
1360 | 1360 | ||
1361 | for_each_zone(zone) | 1361 | for_each_zone(zone) |
1362 | sum += zone->free_pages; | 1362 | sum += zone->free_pages; |
1363 | 1363 | ||
1364 | return sum; | 1364 | return sum; |
1365 | } | 1365 | } |
1366 | 1366 | ||
1367 | EXPORT_SYMBOL(nr_free_pages); | 1367 | EXPORT_SYMBOL(nr_free_pages); |
1368 | 1368 | ||
1369 | #ifdef CONFIG_NUMA | 1369 | #ifdef CONFIG_NUMA |
1370 | unsigned int nr_free_pages_pgdat(pg_data_t *pgdat) | 1370 | unsigned int nr_free_pages_pgdat(pg_data_t *pgdat) |
1371 | { | 1371 | { |
1372 | unsigned int sum = 0; | 1372 | unsigned int sum = 0; |
1373 | enum zone_type i; | 1373 | enum zone_type i; |
1374 | 1374 | ||
1375 | for (i = 0; i < MAX_NR_ZONES; i++) | 1375 | for (i = 0; i < MAX_NR_ZONES; i++) |
1376 | sum += pgdat->node_zones[i].free_pages; | 1376 | sum += pgdat->node_zones[i].free_pages; |
1377 | 1377 | ||
1378 | return sum; | 1378 | return sum; |
1379 | } | 1379 | } |
1380 | #endif | 1380 | #endif |
1381 | 1381 | ||
1382 | static unsigned int nr_free_zone_pages(int offset) | 1382 | static unsigned int nr_free_zone_pages(int offset) |
1383 | { | 1383 | { |
1384 | /* Just pick one node, since fallback list is circular */ | 1384 | /* Just pick one node, since fallback list is circular */ |
1385 | pg_data_t *pgdat = NODE_DATA(numa_node_id()); | 1385 | pg_data_t *pgdat = NODE_DATA(numa_node_id()); |
1386 | unsigned int sum = 0; | 1386 | unsigned int sum = 0; |
1387 | 1387 | ||
1388 | struct zonelist *zonelist = pgdat->node_zonelists + offset; | 1388 | struct zonelist *zonelist = pgdat->node_zonelists + offset; |
1389 | struct zone **zonep = zonelist->zones; | 1389 | struct zone **zonep = zonelist->zones; |
1390 | struct zone *zone; | 1390 | struct zone *zone; |
1391 | 1391 | ||
1392 | for (zone = *zonep++; zone; zone = *zonep++) { | 1392 | for (zone = *zonep++; zone; zone = *zonep++) { |
1393 | unsigned long size = zone->present_pages; | 1393 | unsigned long size = zone->present_pages; |
1394 | unsigned long high = zone->pages_high; | 1394 | unsigned long high = zone->pages_high; |
1395 | if (size > high) | 1395 | if (size > high) |
1396 | sum += size - high; | 1396 | sum += size - high; |
1397 | } | 1397 | } |
1398 | 1398 | ||
1399 | return sum; | 1399 | return sum; |
1400 | } | 1400 | } |
1401 | 1401 | ||
1402 | /* | 1402 | /* |
1403 | * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL | 1403 | * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL |
1404 | */ | 1404 | */ |
1405 | unsigned int nr_free_buffer_pages(void) | 1405 | unsigned int nr_free_buffer_pages(void) |
1406 | { | 1406 | { |
1407 | return nr_free_zone_pages(gfp_zone(GFP_USER)); | 1407 | return nr_free_zone_pages(gfp_zone(GFP_USER)); |
1408 | } | 1408 | } |
1409 | 1409 | ||
1410 | /* | 1410 | /* |
1411 | * Amount of free RAM allocatable within all zones | 1411 | * Amount of free RAM allocatable within all zones |
1412 | */ | 1412 | */ |
1413 | unsigned int nr_free_pagecache_pages(void) | 1413 | unsigned int nr_free_pagecache_pages(void) |
1414 | { | 1414 | { |
1415 | return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER)); | 1415 | return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER)); |
1416 | } | 1416 | } |
1417 | 1417 | ||
1418 | static inline void show_node(struct zone *zone) | 1418 | static inline void show_node(struct zone *zone) |
1419 | { | 1419 | { |
1420 | if (NUMA_BUILD) | 1420 | if (NUMA_BUILD) |
1421 | printk("Node %d ", zone_to_nid(zone)); | 1421 | printk("Node %d ", zone_to_nid(zone)); |
1422 | } | 1422 | } |
1423 | 1423 | ||
1424 | void si_meminfo(struct sysinfo *val) | 1424 | void si_meminfo(struct sysinfo *val) |
1425 | { | 1425 | { |
1426 | val->totalram = totalram_pages; | 1426 | val->totalram = totalram_pages; |
1427 | val->sharedram = 0; | 1427 | val->sharedram = 0; |
1428 | val->freeram = nr_free_pages(); | 1428 | val->freeram = nr_free_pages(); |
1429 | val->bufferram = nr_blockdev_pages(); | 1429 | val->bufferram = nr_blockdev_pages(); |
1430 | val->totalhigh = totalhigh_pages; | 1430 | val->totalhigh = totalhigh_pages; |
1431 | val->freehigh = nr_free_highpages(); | 1431 | val->freehigh = nr_free_highpages(); |
1432 | val->mem_unit = PAGE_SIZE; | 1432 | val->mem_unit = PAGE_SIZE; |
1433 | } | 1433 | } |
1434 | 1434 | ||
1435 | EXPORT_SYMBOL(si_meminfo); | 1435 | EXPORT_SYMBOL(si_meminfo); |
1436 | 1436 | ||
1437 | #ifdef CONFIG_NUMA | 1437 | #ifdef CONFIG_NUMA |
1438 | void si_meminfo_node(struct sysinfo *val, int nid) | 1438 | void si_meminfo_node(struct sysinfo *val, int nid) |
1439 | { | 1439 | { |
1440 | pg_data_t *pgdat = NODE_DATA(nid); | 1440 | pg_data_t *pgdat = NODE_DATA(nid); |
1441 | 1441 | ||
1442 | val->totalram = pgdat->node_present_pages; | 1442 | val->totalram = pgdat->node_present_pages; |
1443 | val->freeram = nr_free_pages_pgdat(pgdat); | 1443 | val->freeram = nr_free_pages_pgdat(pgdat); |
1444 | #ifdef CONFIG_HIGHMEM | 1444 | #ifdef CONFIG_HIGHMEM |
1445 | val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; | 1445 | val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; |
1446 | val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages; | 1446 | val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages; |
1447 | #else | 1447 | #else |
1448 | val->totalhigh = 0; | 1448 | val->totalhigh = 0; |
1449 | val->freehigh = 0; | 1449 | val->freehigh = 0; |
1450 | #endif | 1450 | #endif |
1451 | val->mem_unit = PAGE_SIZE; | 1451 | val->mem_unit = PAGE_SIZE; |
1452 | } | 1452 | } |
1453 | #endif | 1453 | #endif |
1454 | 1454 | ||
1455 | #define K(x) ((x) << (PAGE_SHIFT-10)) | 1455 | #define K(x) ((x) << (PAGE_SHIFT-10)) |
1456 | 1456 | ||
1457 | /* | 1457 | /* |
1458 | * Show free area list (used inside shift_scroll-lock stuff) | 1458 | * Show free area list (used inside shift_scroll-lock stuff) |
1459 | * We also calculate the percentage fragmentation. We do this by counting the | 1459 | * We also calculate the percentage fragmentation. We do this by counting the |
1460 | * memory on each free list with the exception of the first item on the list. | 1460 | * memory on each free list with the exception of the first item on the list. |
1461 | */ | 1461 | */ |
1462 | void show_free_areas(void) | 1462 | void show_free_areas(void) |
1463 | { | 1463 | { |
1464 | int cpu; | 1464 | int cpu; |
1465 | unsigned long active; | 1465 | unsigned long active; |
1466 | unsigned long inactive; | 1466 | unsigned long inactive; |
1467 | unsigned long free; | 1467 | unsigned long free; |
1468 | struct zone *zone; | 1468 | struct zone *zone; |
1469 | 1469 | ||
1470 | for_each_zone(zone) { | 1470 | for_each_zone(zone) { |
1471 | if (!populated_zone(zone)) | 1471 | if (!populated_zone(zone)) |
1472 | continue; | 1472 | continue; |
1473 | 1473 | ||
1474 | show_node(zone); | 1474 | show_node(zone); |
1475 | printk("%s per-cpu:\n", zone->name); | 1475 | printk("%s per-cpu:\n", zone->name); |
1476 | 1476 | ||
1477 | for_each_online_cpu(cpu) { | 1477 | for_each_online_cpu(cpu) { |
1478 | struct per_cpu_pageset *pageset; | 1478 | struct per_cpu_pageset *pageset; |
1479 | 1479 | ||
1480 | pageset = zone_pcp(zone, cpu); | 1480 | pageset = zone_pcp(zone, cpu); |
1481 | 1481 | ||
1482 | printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d " | 1482 | printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d " |
1483 | "Cold: hi:%5d, btch:%4d usd:%4d\n", | 1483 | "Cold: hi:%5d, btch:%4d usd:%4d\n", |
1484 | cpu, pageset->pcp[0].high, | 1484 | cpu, pageset->pcp[0].high, |
1485 | pageset->pcp[0].batch, pageset->pcp[0].count, | 1485 | pageset->pcp[0].batch, pageset->pcp[0].count, |
1486 | pageset->pcp[1].high, pageset->pcp[1].batch, | 1486 | pageset->pcp[1].high, pageset->pcp[1].batch, |
1487 | pageset->pcp[1].count); | 1487 | pageset->pcp[1].count); |
1488 | } | 1488 | } |
1489 | } | 1489 | } |
1490 | 1490 | ||
1491 | get_zone_counts(&active, &inactive, &free); | 1491 | get_zone_counts(&active, &inactive, &free); |
1492 | 1492 | ||
1493 | printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu " | 1493 | printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu " |
1494 | "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n", | 1494 | "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n", |
1495 | active, | 1495 | active, |
1496 | inactive, | 1496 | inactive, |
1497 | global_page_state(NR_FILE_DIRTY), | 1497 | global_page_state(NR_FILE_DIRTY), |
1498 | global_page_state(NR_WRITEBACK), | 1498 | global_page_state(NR_WRITEBACK), |
1499 | global_page_state(NR_UNSTABLE_NFS), | 1499 | global_page_state(NR_UNSTABLE_NFS), |
1500 | nr_free_pages(), | 1500 | nr_free_pages(), |
1501 | global_page_state(NR_SLAB_RECLAIMABLE) + | 1501 | global_page_state(NR_SLAB_RECLAIMABLE) + |
1502 | global_page_state(NR_SLAB_UNRECLAIMABLE), | 1502 | global_page_state(NR_SLAB_UNRECLAIMABLE), |
1503 | global_page_state(NR_FILE_MAPPED), | 1503 | global_page_state(NR_FILE_MAPPED), |
1504 | global_page_state(NR_PAGETABLE)); | 1504 | global_page_state(NR_PAGETABLE)); |
1505 | 1505 | ||
1506 | for_each_zone(zone) { | 1506 | for_each_zone(zone) { |
1507 | int i; | 1507 | int i; |
1508 | 1508 | ||
1509 | if (!populated_zone(zone)) | 1509 | if (!populated_zone(zone)) |
1510 | continue; | 1510 | continue; |
1511 | 1511 | ||
1512 | show_node(zone); | 1512 | show_node(zone); |
1513 | printk("%s" | 1513 | printk("%s" |
1514 | " free:%lukB" | 1514 | " free:%lukB" |
1515 | " min:%lukB" | 1515 | " min:%lukB" |
1516 | " low:%lukB" | 1516 | " low:%lukB" |
1517 | " high:%lukB" | 1517 | " high:%lukB" |
1518 | " active:%lukB" | 1518 | " active:%lukB" |
1519 | " inactive:%lukB" | 1519 | " inactive:%lukB" |
1520 | " present:%lukB" | 1520 | " present:%lukB" |
1521 | " pages_scanned:%lu" | 1521 | " pages_scanned:%lu" |
1522 | " all_unreclaimable? %s" | 1522 | " all_unreclaimable? %s" |
1523 | "\n", | 1523 | "\n", |
1524 | zone->name, | 1524 | zone->name, |
1525 | K(zone->free_pages), | 1525 | K(zone->free_pages), |
1526 | K(zone->pages_min), | 1526 | K(zone->pages_min), |
1527 | K(zone->pages_low), | 1527 | K(zone->pages_low), |
1528 | K(zone->pages_high), | 1528 | K(zone->pages_high), |
1529 | K(zone->nr_active), | 1529 | K(zone->nr_active), |
1530 | K(zone->nr_inactive), | 1530 | K(zone->nr_inactive), |
1531 | K(zone->present_pages), | 1531 | K(zone->present_pages), |
1532 | zone->pages_scanned, | 1532 | zone->pages_scanned, |
1533 | (zone->all_unreclaimable ? "yes" : "no") | 1533 | (zone->all_unreclaimable ? "yes" : "no") |
1534 | ); | 1534 | ); |
1535 | printk("lowmem_reserve[]:"); | 1535 | printk("lowmem_reserve[]:"); |
1536 | for (i = 0; i < MAX_NR_ZONES; i++) | 1536 | for (i = 0; i < MAX_NR_ZONES; i++) |
1537 | printk(" %lu", zone->lowmem_reserve[i]); | 1537 | printk(" %lu", zone->lowmem_reserve[i]); |
1538 | printk("\n"); | 1538 | printk("\n"); |
1539 | } | 1539 | } |
1540 | 1540 | ||
1541 | for_each_zone(zone) { | 1541 | for_each_zone(zone) { |
1542 | unsigned long nr[MAX_ORDER], flags, order, total = 0; | 1542 | unsigned long nr[MAX_ORDER], flags, order, total = 0; |
1543 | 1543 | ||
1544 | if (!populated_zone(zone)) | 1544 | if (!populated_zone(zone)) |
1545 | continue; | 1545 | continue; |
1546 | 1546 | ||
1547 | show_node(zone); | 1547 | show_node(zone); |
1548 | printk("%s: ", zone->name); | 1548 | printk("%s: ", zone->name); |
1549 | 1549 | ||
1550 | spin_lock_irqsave(&zone->lock, flags); | 1550 | spin_lock_irqsave(&zone->lock, flags); |
1551 | for (order = 0; order < MAX_ORDER; order++) { | 1551 | for (order = 0; order < MAX_ORDER; order++) { |
1552 | nr[order] = zone->free_area[order].nr_free; | 1552 | nr[order] = zone->free_area[order].nr_free; |
1553 | total += nr[order] << order; | 1553 | total += nr[order] << order; |
1554 | } | 1554 | } |
1555 | spin_unlock_irqrestore(&zone->lock, flags); | 1555 | spin_unlock_irqrestore(&zone->lock, flags); |
1556 | for (order = 0; order < MAX_ORDER; order++) | 1556 | for (order = 0; order < MAX_ORDER; order++) |
1557 | printk("%lu*%lukB ", nr[order], K(1UL) << order); | 1557 | printk("%lu*%lukB ", nr[order], K(1UL) << order); |
1558 | printk("= %lukB\n", K(total)); | 1558 | printk("= %lukB\n", K(total)); |
1559 | } | 1559 | } |
1560 | 1560 | ||
1561 | show_swap_cache_info(); | 1561 | show_swap_cache_info(); |
1562 | } | 1562 | } |
1563 | 1563 | ||
1564 | /* | 1564 | /* |
1565 | * Builds allocation fallback zone lists. | 1565 | * Builds allocation fallback zone lists. |
1566 | * | 1566 | * |
1567 | * Add all populated zones of a node to the zonelist. | 1567 | * Add all populated zones of a node to the zonelist. |
1568 | */ | 1568 | */ |
1569 | static int __meminit build_zonelists_node(pg_data_t *pgdat, | 1569 | static int __meminit build_zonelists_node(pg_data_t *pgdat, |
1570 | struct zonelist *zonelist, int nr_zones, enum zone_type zone_type) | 1570 | struct zonelist *zonelist, int nr_zones, enum zone_type zone_type) |
1571 | { | 1571 | { |
1572 | struct zone *zone; | 1572 | struct zone *zone; |
1573 | 1573 | ||
1574 | BUG_ON(zone_type >= MAX_NR_ZONES); | 1574 | BUG_ON(zone_type >= MAX_NR_ZONES); |
1575 | zone_type++; | 1575 | zone_type++; |
1576 | 1576 | ||
1577 | do { | 1577 | do { |
1578 | zone_type--; | 1578 | zone_type--; |
1579 | zone = pgdat->node_zones + zone_type; | 1579 | zone = pgdat->node_zones + zone_type; |
1580 | if (populated_zone(zone)) { | 1580 | if (populated_zone(zone)) { |
1581 | zonelist->zones[nr_zones++] = zone; | 1581 | zonelist->zones[nr_zones++] = zone; |
1582 | check_highest_zone(zone_type); | 1582 | check_highest_zone(zone_type); |
1583 | } | 1583 | } |
1584 | 1584 | ||
1585 | } while (zone_type); | 1585 | } while (zone_type); |
1586 | return nr_zones; | 1586 | return nr_zones; |
1587 | } | 1587 | } |
1588 | 1588 | ||
1589 | #ifdef CONFIG_NUMA | 1589 | #ifdef CONFIG_NUMA |
1590 | #define MAX_NODE_LOAD (num_online_nodes()) | 1590 | #define MAX_NODE_LOAD (num_online_nodes()) |
1591 | static int __meminitdata node_load[MAX_NUMNODES]; | 1591 | static int __meminitdata node_load[MAX_NUMNODES]; |
1592 | /** | 1592 | /** |
1593 | * find_next_best_node - find the next node that should appear in a given node's fallback list | 1593 | * find_next_best_node - find the next node that should appear in a given node's fallback list |
1594 | * @node: node whose fallback list we're appending | 1594 | * @node: node whose fallback list we're appending |
1595 | * @used_node_mask: nodemask_t of already used nodes | 1595 | * @used_node_mask: nodemask_t of already used nodes |
1596 | * | 1596 | * |
1597 | * We use a number of factors to determine which is the next node that should | 1597 | * We use a number of factors to determine which is the next node that should |
1598 | * appear on a given node's fallback list. The node should not have appeared | 1598 | * appear on a given node's fallback list. The node should not have appeared |
1599 | * already in @node's fallback list, and it should be the next closest node | 1599 | * already in @node's fallback list, and it should be the next closest node |
1600 | * according to the distance array (which contains arbitrary distance values | 1600 | * according to the distance array (which contains arbitrary distance values |
1601 | * from each node to each node in the system), and should also prefer nodes | 1601 | * from each node to each node in the system), and should also prefer nodes |
1602 | * with no CPUs, since presumably they'll have very little allocation pressure | 1602 | * with no CPUs, since presumably they'll have very little allocation pressure |
1603 | * on them otherwise. | 1603 | * on them otherwise. |
1604 | * It returns -1 if no node is found. | 1604 | * It returns -1 if no node is found. |
1605 | */ | 1605 | */ |
1606 | static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask) | 1606 | static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask) |
1607 | { | 1607 | { |
1608 | int n, val; | 1608 | int n, val; |
1609 | int min_val = INT_MAX; | 1609 | int min_val = INT_MAX; |
1610 | int best_node = -1; | 1610 | int best_node = -1; |
1611 | 1611 | ||
1612 | /* Use the local node if we haven't already */ | 1612 | /* Use the local node if we haven't already */ |
1613 | if (!node_isset(node, *used_node_mask)) { | 1613 | if (!node_isset(node, *used_node_mask)) { |
1614 | node_set(node, *used_node_mask); | 1614 | node_set(node, *used_node_mask); |
1615 | return node; | 1615 | return node; |
1616 | } | 1616 | } |
1617 | 1617 | ||
1618 | for_each_online_node(n) { | 1618 | for_each_online_node(n) { |
1619 | cpumask_t tmp; | 1619 | cpumask_t tmp; |
1620 | 1620 | ||
1621 | /* Don't want a node to appear more than once */ | 1621 | /* Don't want a node to appear more than once */ |
1622 | if (node_isset(n, *used_node_mask)) | 1622 | if (node_isset(n, *used_node_mask)) |
1623 | continue; | 1623 | continue; |
1624 | 1624 | ||
1625 | /* Use the distance array to find the distance */ | 1625 | /* Use the distance array to find the distance */ |
1626 | val = node_distance(node, n); | 1626 | val = node_distance(node, n); |
1627 | 1627 | ||
1628 | /* Penalize nodes under us ("prefer the next node") */ | 1628 | /* Penalize nodes under us ("prefer the next node") */ |
1629 | val += (n < node); | 1629 | val += (n < node); |
1630 | 1630 | ||
1631 | /* Give preference to headless and unused nodes */ | 1631 | /* Give preference to headless and unused nodes */ |
1632 | tmp = node_to_cpumask(n); | 1632 | tmp = node_to_cpumask(n); |
1633 | if (!cpus_empty(tmp)) | 1633 | if (!cpus_empty(tmp)) |
1634 | val += PENALTY_FOR_NODE_WITH_CPUS; | 1634 | val += PENALTY_FOR_NODE_WITH_CPUS; |
1635 | 1635 | ||
1636 | /* Slight preference for less loaded node */ | 1636 | /* Slight preference for less loaded node */ |
1637 | val *= (MAX_NODE_LOAD*MAX_NUMNODES); | 1637 | val *= (MAX_NODE_LOAD*MAX_NUMNODES); |
1638 | val += node_load[n]; | 1638 | val += node_load[n]; |
1639 | 1639 | ||
1640 | if (val < min_val) { | 1640 | if (val < min_val) { |
1641 | min_val = val; | 1641 | min_val = val; |
1642 | best_node = n; | 1642 | best_node = n; |
1643 | } | 1643 | } |
1644 | } | 1644 | } |
1645 | 1645 | ||
1646 | if (best_node >= 0) | 1646 | if (best_node >= 0) |
1647 | node_set(best_node, *used_node_mask); | 1647 | node_set(best_node, *used_node_mask); |
1648 | 1648 | ||
1649 | return best_node; | 1649 | return best_node; |
1650 | } | 1650 | } |
1651 | 1651 | ||
1652 | static void __meminit build_zonelists(pg_data_t *pgdat) | 1652 | static void __meminit build_zonelists(pg_data_t *pgdat) |
1653 | { | 1653 | { |
1654 | int j, node, local_node; | 1654 | int j, node, local_node; |
1655 | enum zone_type i; | 1655 | enum zone_type i; |
1656 | int prev_node, load; | 1656 | int prev_node, load; |
1657 | struct zonelist *zonelist; | 1657 | struct zonelist *zonelist; |
1658 | nodemask_t used_mask; | 1658 | nodemask_t used_mask; |
1659 | 1659 | ||
1660 | /* initialize zonelists */ | 1660 | /* initialize zonelists */ |
1661 | for (i = 0; i < MAX_NR_ZONES; i++) { | 1661 | for (i = 0; i < MAX_NR_ZONES; i++) { |
1662 | zonelist = pgdat->node_zonelists + i; | 1662 | zonelist = pgdat->node_zonelists + i; |
1663 | zonelist->zones[0] = NULL; | 1663 | zonelist->zones[0] = NULL; |
1664 | } | 1664 | } |
1665 | 1665 | ||
1666 | /* NUMA-aware ordering of nodes */ | 1666 | /* NUMA-aware ordering of nodes */ |
1667 | local_node = pgdat->node_id; | 1667 | local_node = pgdat->node_id; |
1668 | load = num_online_nodes(); | 1668 | load = num_online_nodes(); |
1669 | prev_node = local_node; | 1669 | prev_node = local_node; |
1670 | nodes_clear(used_mask); | 1670 | nodes_clear(used_mask); |
1671 | while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { | 1671 | while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { |
1672 | int distance = node_distance(local_node, node); | 1672 | int distance = node_distance(local_node, node); |
1673 | 1673 | ||
1674 | /* | 1674 | /* |
1675 | * If another node is sufficiently far away then it is better | 1675 | * If another node is sufficiently far away then it is better |
1676 | * to reclaim pages in a zone before going off node. | 1676 | * to reclaim pages in a zone before going off node. |
1677 | */ | 1677 | */ |
1678 | if (distance > RECLAIM_DISTANCE) | 1678 | if (distance > RECLAIM_DISTANCE) |
1679 | zone_reclaim_mode = 1; | 1679 | zone_reclaim_mode = 1; |
1680 | 1680 | ||
1681 | /* | 1681 | /* |
1682 | * We don't want to pressure a particular node. | 1682 | * We don't want to pressure a particular node. |
1683 | * So adding penalty to the first node in same | 1683 | * So adding penalty to the first node in same |
1684 | * distance group to make it round-robin. | 1684 | * distance group to make it round-robin. |
1685 | */ | 1685 | */ |
1686 | 1686 | ||
1687 | if (distance != node_distance(local_node, prev_node)) | 1687 | if (distance != node_distance(local_node, prev_node)) |
1688 | node_load[node] += load; | 1688 | node_load[node] += load; |
1689 | prev_node = node; | 1689 | prev_node = node; |
1690 | load--; | 1690 | load--; |
1691 | for (i = 0; i < MAX_NR_ZONES; i++) { | 1691 | for (i = 0; i < MAX_NR_ZONES; i++) { |
1692 | zonelist = pgdat->node_zonelists + i; | 1692 | zonelist = pgdat->node_zonelists + i; |
1693 | for (j = 0; zonelist->zones[j] != NULL; j++); | 1693 | for (j = 0; zonelist->zones[j] != NULL; j++); |
1694 | 1694 | ||
1695 | j = build_zonelists_node(NODE_DATA(node), zonelist, j, i); | 1695 | j = build_zonelists_node(NODE_DATA(node), zonelist, j, i); |
1696 | zonelist->zones[j] = NULL; | 1696 | zonelist->zones[j] = NULL; |
1697 | } | 1697 | } |
1698 | } | 1698 | } |
1699 | } | 1699 | } |
1700 | 1700 | ||
1701 | /* Construct the zonelist performance cache - see further mmzone.h */ | 1701 | /* Construct the zonelist performance cache - see further mmzone.h */ |
1702 | static void __meminit build_zonelist_cache(pg_data_t *pgdat) | 1702 | static void __meminit build_zonelist_cache(pg_data_t *pgdat) |
1703 | { | 1703 | { |
1704 | int i; | 1704 | int i; |
1705 | 1705 | ||
1706 | for (i = 0; i < MAX_NR_ZONES; i++) { | 1706 | for (i = 0; i < MAX_NR_ZONES; i++) { |
1707 | struct zonelist *zonelist; | 1707 | struct zonelist *zonelist; |
1708 | struct zonelist_cache *zlc; | 1708 | struct zonelist_cache *zlc; |
1709 | struct zone **z; | 1709 | struct zone **z; |
1710 | 1710 | ||
1711 | zonelist = pgdat->node_zonelists + i; | 1711 | zonelist = pgdat->node_zonelists + i; |
1712 | zonelist->zlcache_ptr = zlc = &zonelist->zlcache; | 1712 | zonelist->zlcache_ptr = zlc = &zonelist->zlcache; |
1713 | bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); | 1713 | bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); |
1714 | for (z = zonelist->zones; *z; z++) | 1714 | for (z = zonelist->zones; *z; z++) |
1715 | zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z); | 1715 | zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z); |
1716 | } | 1716 | } |
1717 | } | 1717 | } |
1718 | 1718 | ||
1719 | #else /* CONFIG_NUMA */ | 1719 | #else /* CONFIG_NUMA */ |
1720 | 1720 | ||
1721 | static void __meminit build_zonelists(pg_data_t *pgdat) | 1721 | static void __meminit build_zonelists(pg_data_t *pgdat) |
1722 | { | 1722 | { |
1723 | int node, local_node; | 1723 | int node, local_node; |
1724 | enum zone_type i,j; | 1724 | enum zone_type i,j; |
1725 | 1725 | ||
1726 | local_node = pgdat->node_id; | 1726 | local_node = pgdat->node_id; |
1727 | for (i = 0; i < MAX_NR_ZONES; i++) { | 1727 | for (i = 0; i < MAX_NR_ZONES; i++) { |
1728 | struct zonelist *zonelist; | 1728 | struct zonelist *zonelist; |
1729 | 1729 | ||
1730 | zonelist = pgdat->node_zonelists + i; | 1730 | zonelist = pgdat->node_zonelists + i; |
1731 | 1731 | ||
1732 | j = build_zonelists_node(pgdat, zonelist, 0, i); | 1732 | j = build_zonelists_node(pgdat, zonelist, 0, i); |
1733 | /* | 1733 | /* |
1734 | * Now we build the zonelist so that it contains the zones | 1734 | * Now we build the zonelist so that it contains the zones |
1735 | * of all the other nodes. | 1735 | * of all the other nodes. |
1736 | * We don't want to pressure a particular node, so when | 1736 | * We don't want to pressure a particular node, so when |
1737 | * building the zones for node N, we make sure that the | 1737 | * building the zones for node N, we make sure that the |
1738 | * zones coming right after the local ones are those from | 1738 | * zones coming right after the local ones are those from |
1739 | * node N+1 (modulo N) | 1739 | * node N+1 (modulo N) |
1740 | */ | 1740 | */ |
1741 | for (node = local_node + 1; node < MAX_NUMNODES; node++) { | 1741 | for (node = local_node + 1; node < MAX_NUMNODES; node++) { |
1742 | if (!node_online(node)) | 1742 | if (!node_online(node)) |
1743 | continue; | 1743 | continue; |
1744 | j = build_zonelists_node(NODE_DATA(node), zonelist, j, i); | 1744 | j = build_zonelists_node(NODE_DATA(node), zonelist, j, i); |
1745 | } | 1745 | } |
1746 | for (node = 0; node < local_node; node++) { | 1746 | for (node = 0; node < local_node; node++) { |
1747 | if (!node_online(node)) | 1747 | if (!node_online(node)) |
1748 | continue; | 1748 | continue; |
1749 | j = build_zonelists_node(NODE_DATA(node), zonelist, j, i); | 1749 | j = build_zonelists_node(NODE_DATA(node), zonelist, j, i); |
1750 | } | 1750 | } |
1751 | 1751 | ||
1752 | zonelist->zones[j] = NULL; | 1752 | zonelist->zones[j] = NULL; |
1753 | } | 1753 | } |
1754 | } | 1754 | } |
1755 | 1755 | ||
1756 | /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ | 1756 | /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ |
1757 | static void __meminit build_zonelist_cache(pg_data_t *pgdat) | 1757 | static void __meminit build_zonelist_cache(pg_data_t *pgdat) |
1758 | { | 1758 | { |
1759 | int i; | 1759 | int i; |
1760 | 1760 | ||
1761 | for (i = 0; i < MAX_NR_ZONES; i++) | 1761 | for (i = 0; i < MAX_NR_ZONES; i++) |
1762 | pgdat->node_zonelists[i].zlcache_ptr = NULL; | 1762 | pgdat->node_zonelists[i].zlcache_ptr = NULL; |
1763 | } | 1763 | } |
1764 | 1764 | ||
1765 | #endif /* CONFIG_NUMA */ | 1765 | #endif /* CONFIG_NUMA */ |
1766 | 1766 | ||
1767 | /* return values int ....just for stop_machine_run() */ | 1767 | /* return values int ....just for stop_machine_run() */ |
1768 | static int __meminit __build_all_zonelists(void *dummy) | 1768 | static int __meminit __build_all_zonelists(void *dummy) |
1769 | { | 1769 | { |
1770 | int nid; | 1770 | int nid; |
1771 | 1771 | ||
1772 | for_each_online_node(nid) { | 1772 | for_each_online_node(nid) { |
1773 | build_zonelists(NODE_DATA(nid)); | 1773 | build_zonelists(NODE_DATA(nid)); |
1774 | build_zonelist_cache(NODE_DATA(nid)); | 1774 | build_zonelist_cache(NODE_DATA(nid)); |
1775 | } | 1775 | } |
1776 | return 0; | 1776 | return 0; |
1777 | } | 1777 | } |
1778 | 1778 | ||
1779 | void __meminit build_all_zonelists(void) | 1779 | void __meminit build_all_zonelists(void) |
1780 | { | 1780 | { |
1781 | if (system_state == SYSTEM_BOOTING) { | 1781 | if (system_state == SYSTEM_BOOTING) { |
1782 | __build_all_zonelists(NULL); | 1782 | __build_all_zonelists(NULL); |
1783 | cpuset_init_current_mems_allowed(); | 1783 | cpuset_init_current_mems_allowed(); |
1784 | } else { | 1784 | } else { |
1785 | /* we have to stop all cpus to guaranntee there is no user | 1785 | /* we have to stop all cpus to guaranntee there is no user |
1786 | of zonelist */ | 1786 | of zonelist */ |
1787 | stop_machine_run(__build_all_zonelists, NULL, NR_CPUS); | 1787 | stop_machine_run(__build_all_zonelists, NULL, NR_CPUS); |
1788 | /* cpuset refresh routine should be here */ | 1788 | /* cpuset refresh routine should be here */ |
1789 | } | 1789 | } |
1790 | vm_total_pages = nr_free_pagecache_pages(); | 1790 | vm_total_pages = nr_free_pagecache_pages(); |
1791 | printk("Built %i zonelists. Total pages: %ld\n", | 1791 | printk("Built %i zonelists. Total pages: %ld\n", |
1792 | num_online_nodes(), vm_total_pages); | 1792 | num_online_nodes(), vm_total_pages); |
1793 | } | 1793 | } |
1794 | 1794 | ||
1795 | /* | 1795 | /* |
1796 | * Helper functions to size the waitqueue hash table. | 1796 | * Helper functions to size the waitqueue hash table. |
1797 | * Essentially these want to choose hash table sizes sufficiently | 1797 | * Essentially these want to choose hash table sizes sufficiently |
1798 | * large so that collisions trying to wait on pages are rare. | 1798 | * large so that collisions trying to wait on pages are rare. |
1799 | * But in fact, the number of active page waitqueues on typical | 1799 | * But in fact, the number of active page waitqueues on typical |
1800 | * systems is ridiculously low, less than 200. So this is even | 1800 | * systems is ridiculously low, less than 200. So this is even |
1801 | * conservative, even though it seems large. | 1801 | * conservative, even though it seems large. |
1802 | * | 1802 | * |
1803 | * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to | 1803 | * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to |
1804 | * waitqueues, i.e. the size of the waitq table given the number of pages. | 1804 | * waitqueues, i.e. the size of the waitq table given the number of pages. |
1805 | */ | 1805 | */ |
1806 | #define PAGES_PER_WAITQUEUE 256 | 1806 | #define PAGES_PER_WAITQUEUE 256 |
1807 | 1807 | ||
1808 | #ifndef CONFIG_MEMORY_HOTPLUG | 1808 | #ifndef CONFIG_MEMORY_HOTPLUG |
1809 | static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) | 1809 | static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) |
1810 | { | 1810 | { |
1811 | unsigned long size = 1; | 1811 | unsigned long size = 1; |
1812 | 1812 | ||
1813 | pages /= PAGES_PER_WAITQUEUE; | 1813 | pages /= PAGES_PER_WAITQUEUE; |
1814 | 1814 | ||
1815 | while (size < pages) | 1815 | while (size < pages) |
1816 | size <<= 1; | 1816 | size <<= 1; |
1817 | 1817 | ||
1818 | /* | 1818 | /* |
1819 | * Once we have dozens or even hundreds of threads sleeping | 1819 | * Once we have dozens or even hundreds of threads sleeping |
1820 | * on IO we've got bigger problems than wait queue collision. | 1820 | * on IO we've got bigger problems than wait queue collision. |
1821 | * Limit the size of the wait table to a reasonable size. | 1821 | * Limit the size of the wait table to a reasonable size. |
1822 | */ | 1822 | */ |
1823 | size = min(size, 4096UL); | 1823 | size = min(size, 4096UL); |
1824 | 1824 | ||
1825 | return max(size, 4UL); | 1825 | return max(size, 4UL); |
1826 | } | 1826 | } |
1827 | #else | 1827 | #else |
1828 | /* | 1828 | /* |
1829 | * A zone's size might be changed by hot-add, so it is not possible to determine | 1829 | * A zone's size might be changed by hot-add, so it is not possible to determine |
1830 | * a suitable size for its wait_table. So we use the maximum size now. | 1830 | * a suitable size for its wait_table. So we use the maximum size now. |
1831 | * | 1831 | * |
1832 | * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: | 1832 | * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: |
1833 | * | 1833 | * |
1834 | * i386 (preemption config) : 4096 x 16 = 64Kbyte. | 1834 | * i386 (preemption config) : 4096 x 16 = 64Kbyte. |
1835 | * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. | 1835 | * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. |
1836 | * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. | 1836 | * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. |
1837 | * | 1837 | * |
1838 | * The maximum entries are prepared when a zone's memory is (512K + 256) pages | 1838 | * The maximum entries are prepared when a zone's memory is (512K + 256) pages |
1839 | * or more by the traditional way. (See above). It equals: | 1839 | * or more by the traditional way. (See above). It equals: |
1840 | * | 1840 | * |
1841 | * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. | 1841 | * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. |
1842 | * ia64(16K page size) : = ( 8G + 4M)byte. | 1842 | * ia64(16K page size) : = ( 8G + 4M)byte. |
1843 | * powerpc (64K page size) : = (32G +16M)byte. | 1843 | * powerpc (64K page size) : = (32G +16M)byte. |
1844 | */ | 1844 | */ |
1845 | static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) | 1845 | static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) |
1846 | { | 1846 | { |
1847 | return 4096UL; | 1847 | return 4096UL; |
1848 | } | 1848 | } |
1849 | #endif | 1849 | #endif |
1850 | 1850 | ||
1851 | /* | 1851 | /* |
1852 | * This is an integer logarithm so that shifts can be used later | 1852 | * This is an integer logarithm so that shifts can be used later |
1853 | * to extract the more random high bits from the multiplicative | 1853 | * to extract the more random high bits from the multiplicative |
1854 | * hash function before the remainder is taken. | 1854 | * hash function before the remainder is taken. |
1855 | */ | 1855 | */ |
1856 | static inline unsigned long wait_table_bits(unsigned long size) | 1856 | static inline unsigned long wait_table_bits(unsigned long size) |
1857 | { | 1857 | { |
1858 | return ffz(~size); | 1858 | return ffz(~size); |
1859 | } | 1859 | } |
1860 | 1860 | ||
1861 | #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) | 1861 | #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) |
1862 | 1862 | ||
1863 | /* | 1863 | /* |
1864 | * Initially all pages are reserved - free ones are freed | 1864 | * Initially all pages are reserved - free ones are freed |
1865 | * up by free_all_bootmem() once the early boot process is | 1865 | * up by free_all_bootmem() once the early boot process is |
1866 | * done. Non-atomic initialization, single-pass. | 1866 | * done. Non-atomic initialization, single-pass. |
1867 | */ | 1867 | */ |
1868 | void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, | 1868 | void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, |
1869 | unsigned long start_pfn) | 1869 | unsigned long start_pfn) |
1870 | { | 1870 | { |
1871 | struct page *page; | 1871 | struct page *page; |
1872 | unsigned long end_pfn = start_pfn + size; | 1872 | unsigned long end_pfn = start_pfn + size; |
1873 | unsigned long pfn; | 1873 | unsigned long pfn; |
1874 | 1874 | ||
1875 | for (pfn = start_pfn; pfn < end_pfn; pfn++) { | 1875 | for (pfn = start_pfn; pfn < end_pfn; pfn++) { |
1876 | if (!early_pfn_valid(pfn)) | 1876 | if (!early_pfn_valid(pfn)) |
1877 | continue; | 1877 | continue; |
1878 | if (!early_pfn_in_nid(pfn, nid)) | 1878 | if (!early_pfn_in_nid(pfn, nid)) |
1879 | continue; | 1879 | continue; |
1880 | page = pfn_to_page(pfn); | 1880 | page = pfn_to_page(pfn); |
1881 | set_page_links(page, zone, nid, pfn); | 1881 | set_page_links(page, zone, nid, pfn); |
1882 | init_page_count(page); | 1882 | init_page_count(page); |
1883 | reset_page_mapcount(page); | 1883 | reset_page_mapcount(page); |
1884 | SetPageReserved(page); | 1884 | SetPageReserved(page); |
1885 | INIT_LIST_HEAD(&page->lru); | 1885 | INIT_LIST_HEAD(&page->lru); |
1886 | #ifdef WANT_PAGE_VIRTUAL | 1886 | #ifdef WANT_PAGE_VIRTUAL |
1887 | /* The shift won't overflow because ZONE_NORMAL is below 4G. */ | 1887 | /* The shift won't overflow because ZONE_NORMAL is below 4G. */ |
1888 | if (!is_highmem_idx(zone)) | 1888 | if (!is_highmem_idx(zone)) |
1889 | set_page_address(page, __va(pfn << PAGE_SHIFT)); | 1889 | set_page_address(page, __va(pfn << PAGE_SHIFT)); |
1890 | #endif | 1890 | #endif |
1891 | } | 1891 | } |
1892 | } | 1892 | } |
1893 | 1893 | ||
1894 | void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone, | 1894 | void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone, |
1895 | unsigned long size) | 1895 | unsigned long size) |
1896 | { | 1896 | { |
1897 | int order; | 1897 | int order; |
1898 | for (order = 0; order < MAX_ORDER ; order++) { | 1898 | for (order = 0; order < MAX_ORDER ; order++) { |
1899 | INIT_LIST_HEAD(&zone->free_area[order].free_list); | 1899 | INIT_LIST_HEAD(&zone->free_area[order].free_list); |
1900 | zone->free_area[order].nr_free = 0; | 1900 | zone->free_area[order].nr_free = 0; |
1901 | } | 1901 | } |
1902 | } | 1902 | } |
1903 | 1903 | ||
1904 | #ifndef __HAVE_ARCH_MEMMAP_INIT | 1904 | #ifndef __HAVE_ARCH_MEMMAP_INIT |
1905 | #define memmap_init(size, nid, zone, start_pfn) \ | 1905 | #define memmap_init(size, nid, zone, start_pfn) \ |
1906 | memmap_init_zone((size), (nid), (zone), (start_pfn)) | 1906 | memmap_init_zone((size), (nid), (zone), (start_pfn)) |
1907 | #endif | 1907 | #endif |
1908 | 1908 | ||
1909 | static int __cpuinit zone_batchsize(struct zone *zone) | 1909 | static int __cpuinit zone_batchsize(struct zone *zone) |
1910 | { | 1910 | { |
1911 | int batch; | 1911 | int batch; |
1912 | 1912 | ||
1913 | /* | 1913 | /* |
1914 | * The per-cpu-pages pools are set to around 1000th of the | 1914 | * The per-cpu-pages pools are set to around 1000th of the |
1915 | * size of the zone. But no more than 1/2 of a meg. | 1915 | * size of the zone. But no more than 1/2 of a meg. |
1916 | * | 1916 | * |
1917 | * OK, so we don't know how big the cache is. So guess. | 1917 | * OK, so we don't know how big the cache is. So guess. |
1918 | */ | 1918 | */ |
1919 | batch = zone->present_pages / 1024; | 1919 | batch = zone->present_pages / 1024; |
1920 | if (batch * PAGE_SIZE > 512 * 1024) | 1920 | if (batch * PAGE_SIZE > 512 * 1024) |
1921 | batch = (512 * 1024) / PAGE_SIZE; | 1921 | batch = (512 * 1024) / PAGE_SIZE; |
1922 | batch /= 4; /* We effectively *= 4 below */ | 1922 | batch /= 4; /* We effectively *= 4 below */ |
1923 | if (batch < 1) | 1923 | if (batch < 1) |
1924 | batch = 1; | 1924 | batch = 1; |
1925 | 1925 | ||
1926 | /* | 1926 | /* |
1927 | * Clamp the batch to a 2^n - 1 value. Having a power | 1927 | * Clamp the batch to a 2^n - 1 value. Having a power |
1928 | * of 2 value was found to be more likely to have | 1928 | * of 2 value was found to be more likely to have |
1929 | * suboptimal cache aliasing properties in some cases. | 1929 | * suboptimal cache aliasing properties in some cases. |
1930 | * | 1930 | * |
1931 | * For example if 2 tasks are alternately allocating | 1931 | * For example if 2 tasks are alternately allocating |
1932 | * batches of pages, one task can end up with a lot | 1932 | * batches of pages, one task can end up with a lot |
1933 | * of pages of one half of the possible page colors | 1933 | * of pages of one half of the possible page colors |
1934 | * and the other with pages of the other colors. | 1934 | * and the other with pages of the other colors. |
1935 | */ | 1935 | */ |
1936 | batch = (1 << (fls(batch + batch/2)-1)) - 1; | 1936 | batch = (1 << (fls(batch + batch/2)-1)) - 1; |
1937 | 1937 | ||
1938 | return batch; | 1938 | return batch; |
1939 | } | 1939 | } |
1940 | 1940 | ||
1941 | inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) | 1941 | inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) |
1942 | { | 1942 | { |
1943 | struct per_cpu_pages *pcp; | 1943 | struct per_cpu_pages *pcp; |
1944 | 1944 | ||
1945 | memset(p, 0, sizeof(*p)); | 1945 | memset(p, 0, sizeof(*p)); |
1946 | 1946 | ||
1947 | pcp = &p->pcp[0]; /* hot */ | 1947 | pcp = &p->pcp[0]; /* hot */ |
1948 | pcp->count = 0; | 1948 | pcp->count = 0; |
1949 | pcp->high = 6 * batch; | 1949 | pcp->high = 6 * batch; |
1950 | pcp->batch = max(1UL, 1 * batch); | 1950 | pcp->batch = max(1UL, 1 * batch); |
1951 | INIT_LIST_HEAD(&pcp->list); | 1951 | INIT_LIST_HEAD(&pcp->list); |
1952 | 1952 | ||
1953 | pcp = &p->pcp[1]; /* cold*/ | 1953 | pcp = &p->pcp[1]; /* cold*/ |
1954 | pcp->count = 0; | 1954 | pcp->count = 0; |
1955 | pcp->high = 2 * batch; | 1955 | pcp->high = 2 * batch; |
1956 | pcp->batch = max(1UL, batch/2); | 1956 | pcp->batch = max(1UL, batch/2); |
1957 | INIT_LIST_HEAD(&pcp->list); | 1957 | INIT_LIST_HEAD(&pcp->list); |
1958 | } | 1958 | } |
1959 | 1959 | ||
1960 | /* | 1960 | /* |
1961 | * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist | 1961 | * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist |
1962 | * to the value high for the pageset p. | 1962 | * to the value high for the pageset p. |
1963 | */ | 1963 | */ |
1964 | 1964 | ||
1965 | static void setup_pagelist_highmark(struct per_cpu_pageset *p, | 1965 | static void setup_pagelist_highmark(struct per_cpu_pageset *p, |
1966 | unsigned long high) | 1966 | unsigned long high) |
1967 | { | 1967 | { |
1968 | struct per_cpu_pages *pcp; | 1968 | struct per_cpu_pages *pcp; |
1969 | 1969 | ||
1970 | pcp = &p->pcp[0]; /* hot list */ | 1970 | pcp = &p->pcp[0]; /* hot list */ |
1971 | pcp->high = high; | 1971 | pcp->high = high; |
1972 | pcp->batch = max(1UL, high/4); | 1972 | pcp->batch = max(1UL, high/4); |
1973 | if ((high/4) > (PAGE_SHIFT * 8)) | 1973 | if ((high/4) > (PAGE_SHIFT * 8)) |
1974 | pcp->batch = PAGE_SHIFT * 8; | 1974 | pcp->batch = PAGE_SHIFT * 8; |
1975 | } | 1975 | } |
1976 | 1976 | ||
1977 | 1977 | ||
1978 | #ifdef CONFIG_NUMA | 1978 | #ifdef CONFIG_NUMA |
1979 | /* | 1979 | /* |
1980 | * Boot pageset table. One per cpu which is going to be used for all | 1980 | * Boot pageset table. One per cpu which is going to be used for all |
1981 | * zones and all nodes. The parameters will be set in such a way | 1981 | * zones and all nodes. The parameters will be set in such a way |
1982 | * that an item put on a list will immediately be handed over to | 1982 | * that an item put on a list will immediately be handed over to |
1983 | * the buddy list. This is safe since pageset manipulation is done | 1983 | * the buddy list. This is safe since pageset manipulation is done |
1984 | * with interrupts disabled. | 1984 | * with interrupts disabled. |
1985 | * | 1985 | * |
1986 | * Some NUMA counter updates may also be caught by the boot pagesets. | 1986 | * Some NUMA counter updates may also be caught by the boot pagesets. |
1987 | * | 1987 | * |
1988 | * The boot_pagesets must be kept even after bootup is complete for | 1988 | * The boot_pagesets must be kept even after bootup is complete for |
1989 | * unused processors and/or zones. They do play a role for bootstrapping | 1989 | * unused processors and/or zones. They do play a role for bootstrapping |
1990 | * hotplugged processors. | 1990 | * hotplugged processors. |
1991 | * | 1991 | * |
1992 | * zoneinfo_show() and maybe other functions do | 1992 | * zoneinfo_show() and maybe other functions do |
1993 | * not check if the processor is online before following the pageset pointer. | 1993 | * not check if the processor is online before following the pageset pointer. |
1994 | * Other parts of the kernel may not check if the zone is available. | 1994 | * Other parts of the kernel may not check if the zone is available. |
1995 | */ | 1995 | */ |
1996 | static struct per_cpu_pageset boot_pageset[NR_CPUS]; | 1996 | static struct per_cpu_pageset boot_pageset[NR_CPUS]; |
1997 | 1997 | ||
1998 | /* | 1998 | /* |
1999 | * Dynamically allocate memory for the | 1999 | * Dynamically allocate memory for the |
2000 | * per cpu pageset array in struct zone. | 2000 | * per cpu pageset array in struct zone. |
2001 | */ | 2001 | */ |
2002 | static int __cpuinit process_zones(int cpu) | 2002 | static int __cpuinit process_zones(int cpu) |
2003 | { | 2003 | { |
2004 | struct zone *zone, *dzone; | 2004 | struct zone *zone, *dzone; |
2005 | 2005 | ||
2006 | for_each_zone(zone) { | 2006 | for_each_zone(zone) { |
2007 | 2007 | ||
2008 | if (!populated_zone(zone)) | 2008 | if (!populated_zone(zone)) |
2009 | continue; | 2009 | continue; |
2010 | 2010 | ||
2011 | zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset), | 2011 | zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset), |
2012 | GFP_KERNEL, cpu_to_node(cpu)); | 2012 | GFP_KERNEL, cpu_to_node(cpu)); |
2013 | if (!zone_pcp(zone, cpu)) | 2013 | if (!zone_pcp(zone, cpu)) |
2014 | goto bad; | 2014 | goto bad; |
2015 | 2015 | ||
2016 | setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone)); | 2016 | setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone)); |
2017 | 2017 | ||
2018 | if (percpu_pagelist_fraction) | 2018 | if (percpu_pagelist_fraction) |
2019 | setup_pagelist_highmark(zone_pcp(zone, cpu), | 2019 | setup_pagelist_highmark(zone_pcp(zone, cpu), |
2020 | (zone->present_pages / percpu_pagelist_fraction)); | 2020 | (zone->present_pages / percpu_pagelist_fraction)); |
2021 | } | 2021 | } |
2022 | 2022 | ||
2023 | return 0; | 2023 | return 0; |
2024 | bad: | 2024 | bad: |
2025 | for_each_zone(dzone) { | 2025 | for_each_zone(dzone) { |
2026 | if (dzone == zone) | 2026 | if (dzone == zone) |
2027 | break; | 2027 | break; |
2028 | kfree(zone_pcp(dzone, cpu)); | 2028 | kfree(zone_pcp(dzone, cpu)); |
2029 | zone_pcp(dzone, cpu) = NULL; | 2029 | zone_pcp(dzone, cpu) = NULL; |
2030 | } | 2030 | } |
2031 | return -ENOMEM; | 2031 | return -ENOMEM; |
2032 | } | 2032 | } |
2033 | 2033 | ||
2034 | static inline void free_zone_pagesets(int cpu) | 2034 | static inline void free_zone_pagesets(int cpu) |
2035 | { | 2035 | { |
2036 | struct zone *zone; | 2036 | struct zone *zone; |
2037 | 2037 | ||
2038 | for_each_zone(zone) { | 2038 | for_each_zone(zone) { |
2039 | struct per_cpu_pageset *pset = zone_pcp(zone, cpu); | 2039 | struct per_cpu_pageset *pset = zone_pcp(zone, cpu); |
2040 | 2040 | ||
2041 | /* Free per_cpu_pageset if it is slab allocated */ | 2041 | /* Free per_cpu_pageset if it is slab allocated */ |
2042 | if (pset != &boot_pageset[cpu]) | 2042 | if (pset != &boot_pageset[cpu]) |
2043 | kfree(pset); | 2043 | kfree(pset); |
2044 | zone_pcp(zone, cpu) = NULL; | 2044 | zone_pcp(zone, cpu) = NULL; |
2045 | } | 2045 | } |
2046 | } | 2046 | } |
2047 | 2047 | ||
2048 | static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb, | 2048 | static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb, |
2049 | unsigned long action, | 2049 | unsigned long action, |
2050 | void *hcpu) | 2050 | void *hcpu) |
2051 | { | 2051 | { |
2052 | int cpu = (long)hcpu; | 2052 | int cpu = (long)hcpu; |
2053 | int ret = NOTIFY_OK; | 2053 | int ret = NOTIFY_OK; |
2054 | 2054 | ||
2055 | switch (action) { | 2055 | switch (action) { |
2056 | case CPU_UP_PREPARE: | 2056 | case CPU_UP_PREPARE: |
2057 | if (process_zones(cpu)) | 2057 | if (process_zones(cpu)) |
2058 | ret = NOTIFY_BAD; | 2058 | ret = NOTIFY_BAD; |
2059 | break; | 2059 | break; |
2060 | case CPU_UP_CANCELED: | 2060 | case CPU_UP_CANCELED: |
2061 | case CPU_DEAD: | 2061 | case CPU_DEAD: |
2062 | free_zone_pagesets(cpu); | 2062 | free_zone_pagesets(cpu); |
2063 | break; | 2063 | break; |
2064 | default: | 2064 | default: |
2065 | break; | 2065 | break; |
2066 | } | 2066 | } |
2067 | return ret; | 2067 | return ret; |
2068 | } | 2068 | } |
2069 | 2069 | ||
2070 | static struct notifier_block __cpuinitdata pageset_notifier = | 2070 | static struct notifier_block __cpuinitdata pageset_notifier = |
2071 | { &pageset_cpuup_callback, NULL, 0 }; | 2071 | { &pageset_cpuup_callback, NULL, 0 }; |
2072 | 2072 | ||
2073 | void __init setup_per_cpu_pageset(void) | 2073 | void __init setup_per_cpu_pageset(void) |
2074 | { | 2074 | { |
2075 | int err; | 2075 | int err; |
2076 | 2076 | ||
2077 | /* Initialize per_cpu_pageset for cpu 0. | 2077 | /* Initialize per_cpu_pageset for cpu 0. |
2078 | * A cpuup callback will do this for every cpu | 2078 | * A cpuup callback will do this for every cpu |
2079 | * as it comes online | 2079 | * as it comes online |
2080 | */ | 2080 | */ |
2081 | err = process_zones(smp_processor_id()); | 2081 | err = process_zones(smp_processor_id()); |
2082 | BUG_ON(err); | 2082 | BUG_ON(err); |
2083 | register_cpu_notifier(&pageset_notifier); | 2083 | register_cpu_notifier(&pageset_notifier); |
2084 | } | 2084 | } |
2085 | 2085 | ||
2086 | #endif | 2086 | #endif |
2087 | 2087 | ||
2088 | static __meminit | 2088 | static __meminit |
2089 | int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) | 2089 | int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) |
2090 | { | 2090 | { |
2091 | int i; | 2091 | int i; |
2092 | struct pglist_data *pgdat = zone->zone_pgdat; | 2092 | struct pglist_data *pgdat = zone->zone_pgdat; |
2093 | size_t alloc_size; | 2093 | size_t alloc_size; |
2094 | 2094 | ||
2095 | /* | 2095 | /* |
2096 | * The per-page waitqueue mechanism uses hashed waitqueues | 2096 | * The per-page waitqueue mechanism uses hashed waitqueues |
2097 | * per zone. | 2097 | * per zone. |
2098 | */ | 2098 | */ |
2099 | zone->wait_table_hash_nr_entries = | 2099 | zone->wait_table_hash_nr_entries = |
2100 | wait_table_hash_nr_entries(zone_size_pages); | 2100 | wait_table_hash_nr_entries(zone_size_pages); |
2101 | zone->wait_table_bits = | 2101 | zone->wait_table_bits = |
2102 | wait_table_bits(zone->wait_table_hash_nr_entries); | 2102 | wait_table_bits(zone->wait_table_hash_nr_entries); |
2103 | alloc_size = zone->wait_table_hash_nr_entries | 2103 | alloc_size = zone->wait_table_hash_nr_entries |
2104 | * sizeof(wait_queue_head_t); | 2104 | * sizeof(wait_queue_head_t); |
2105 | 2105 | ||
2106 | if (system_state == SYSTEM_BOOTING) { | 2106 | if (system_state == SYSTEM_BOOTING) { |
2107 | zone->wait_table = (wait_queue_head_t *) | 2107 | zone->wait_table = (wait_queue_head_t *) |
2108 | alloc_bootmem_node(pgdat, alloc_size); | 2108 | alloc_bootmem_node(pgdat, alloc_size); |
2109 | } else { | 2109 | } else { |
2110 | /* | 2110 | /* |
2111 | * This case means that a zone whose size was 0 gets new memory | 2111 | * This case means that a zone whose size was 0 gets new memory |
2112 | * via memory hot-add. | 2112 | * via memory hot-add. |
2113 | * But it may be the case that a new node was hot-added. In | 2113 | * But it may be the case that a new node was hot-added. In |
2114 | * this case vmalloc() will not be able to use this new node's | 2114 | * this case vmalloc() will not be able to use this new node's |
2115 | * memory - this wait_table must be initialized to use this new | 2115 | * memory - this wait_table must be initialized to use this new |
2116 | * node itself as well. | 2116 | * node itself as well. |
2117 | * To use this new node's memory, further consideration will be | 2117 | * To use this new node's memory, further consideration will be |
2118 | * necessary. | 2118 | * necessary. |
2119 | */ | 2119 | */ |
2120 | zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size); | 2120 | zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size); |
2121 | } | 2121 | } |
2122 | if (!zone->wait_table) | 2122 | if (!zone->wait_table) |
2123 | return -ENOMEM; | 2123 | return -ENOMEM; |
2124 | 2124 | ||
2125 | for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) | 2125 | for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) |
2126 | init_waitqueue_head(zone->wait_table + i); | 2126 | init_waitqueue_head(zone->wait_table + i); |
2127 | 2127 | ||
2128 | return 0; | 2128 | return 0; |
2129 | } | 2129 | } |
2130 | 2130 | ||
2131 | static __meminit void zone_pcp_init(struct zone *zone) | 2131 | static __meminit void zone_pcp_init(struct zone *zone) |
2132 | { | 2132 | { |
2133 | int cpu; | 2133 | int cpu; |
2134 | unsigned long batch = zone_batchsize(zone); | 2134 | unsigned long batch = zone_batchsize(zone); |
2135 | 2135 | ||
2136 | for (cpu = 0; cpu < NR_CPUS; cpu++) { | 2136 | for (cpu = 0; cpu < NR_CPUS; cpu++) { |
2137 | #ifdef CONFIG_NUMA | 2137 | #ifdef CONFIG_NUMA |
2138 | /* Early boot. Slab allocator not functional yet */ | 2138 | /* Early boot. Slab allocator not functional yet */ |
2139 | zone_pcp(zone, cpu) = &boot_pageset[cpu]; | 2139 | zone_pcp(zone, cpu) = &boot_pageset[cpu]; |
2140 | setup_pageset(&boot_pageset[cpu],0); | 2140 | setup_pageset(&boot_pageset[cpu],0); |
2141 | #else | 2141 | #else |
2142 | setup_pageset(zone_pcp(zone,cpu), batch); | 2142 | setup_pageset(zone_pcp(zone,cpu), batch); |
2143 | #endif | 2143 | #endif |
2144 | } | 2144 | } |
2145 | if (zone->present_pages) | 2145 | if (zone->present_pages) |
2146 | printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", | 2146 | printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", |
2147 | zone->name, zone->present_pages, batch); | 2147 | zone->name, zone->present_pages, batch); |
2148 | } | 2148 | } |
2149 | 2149 | ||
2150 | __meminit int init_currently_empty_zone(struct zone *zone, | 2150 | __meminit int init_currently_empty_zone(struct zone *zone, |
2151 | unsigned long zone_start_pfn, | 2151 | unsigned long zone_start_pfn, |
2152 | unsigned long size) | 2152 | unsigned long size) |
2153 | { | 2153 | { |
2154 | struct pglist_data *pgdat = zone->zone_pgdat; | 2154 | struct pglist_data *pgdat = zone->zone_pgdat; |
2155 | int ret; | 2155 | int ret; |
2156 | ret = zone_wait_table_init(zone, size); | 2156 | ret = zone_wait_table_init(zone, size); |
2157 | if (ret) | 2157 | if (ret) |
2158 | return ret; | 2158 | return ret; |
2159 | pgdat->nr_zones = zone_idx(zone) + 1; | 2159 | pgdat->nr_zones = zone_idx(zone) + 1; |
2160 | 2160 | ||
2161 | zone->zone_start_pfn = zone_start_pfn; | 2161 | zone->zone_start_pfn = zone_start_pfn; |
2162 | 2162 | ||
2163 | memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn); | 2163 | memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn); |
2164 | 2164 | ||
2165 | zone_init_free_lists(pgdat, zone, zone->spanned_pages); | 2165 | zone_init_free_lists(pgdat, zone, zone->spanned_pages); |
2166 | 2166 | ||
2167 | return 0; | 2167 | return 0; |
2168 | } | 2168 | } |
2169 | 2169 | ||
2170 | #ifdef CONFIG_ARCH_POPULATES_NODE_MAP | 2170 | #ifdef CONFIG_ARCH_POPULATES_NODE_MAP |
2171 | /* | 2171 | /* |
2172 | * Basic iterator support. Return the first range of PFNs for a node | 2172 | * Basic iterator support. Return the first range of PFNs for a node |
2173 | * Note: nid == MAX_NUMNODES returns first region regardless of node | 2173 | * Note: nid == MAX_NUMNODES returns first region regardless of node |
2174 | */ | 2174 | */ |
2175 | static int __init first_active_region_index_in_nid(int nid) | 2175 | static int __init first_active_region_index_in_nid(int nid) |
2176 | { | 2176 | { |
2177 | int i; | 2177 | int i; |
2178 | 2178 | ||
2179 | for (i = 0; i < nr_nodemap_entries; i++) | 2179 | for (i = 0; i < nr_nodemap_entries; i++) |
2180 | if (nid == MAX_NUMNODES || early_node_map[i].nid == nid) | 2180 | if (nid == MAX_NUMNODES || early_node_map[i].nid == nid) |
2181 | return i; | 2181 | return i; |
2182 | 2182 | ||
2183 | return -1; | 2183 | return -1; |
2184 | } | 2184 | } |
2185 | 2185 | ||
2186 | /* | 2186 | /* |
2187 | * Basic iterator support. Return the next active range of PFNs for a node | 2187 | * Basic iterator support. Return the next active range of PFNs for a node |
2188 | * Note: nid == MAX_NUMNODES returns next region regardles of node | 2188 | * Note: nid == MAX_NUMNODES returns next region regardles of node |
2189 | */ | 2189 | */ |
2190 | static int __init next_active_region_index_in_nid(int index, int nid) | 2190 | static int __init next_active_region_index_in_nid(int index, int nid) |
2191 | { | 2191 | { |
2192 | for (index = index + 1; index < nr_nodemap_entries; index++) | 2192 | for (index = index + 1; index < nr_nodemap_entries; index++) |
2193 | if (nid == MAX_NUMNODES || early_node_map[index].nid == nid) | 2193 | if (nid == MAX_NUMNODES || early_node_map[index].nid == nid) |
2194 | return index; | 2194 | return index; |
2195 | 2195 | ||
2196 | return -1; | 2196 | return -1; |
2197 | } | 2197 | } |
2198 | 2198 | ||
2199 | #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID | 2199 | #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID |
2200 | /* | 2200 | /* |
2201 | * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. | 2201 | * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. |
2202 | * Architectures may implement their own version but if add_active_range() | 2202 | * Architectures may implement their own version but if add_active_range() |
2203 | * was used and there are no special requirements, this is a convenient | 2203 | * was used and there are no special requirements, this is a convenient |
2204 | * alternative | 2204 | * alternative |
2205 | */ | 2205 | */ |
2206 | int __init early_pfn_to_nid(unsigned long pfn) | 2206 | int __init early_pfn_to_nid(unsigned long pfn) |
2207 | { | 2207 | { |
2208 | int i; | 2208 | int i; |
2209 | 2209 | ||
2210 | for (i = 0; i < nr_nodemap_entries; i++) { | 2210 | for (i = 0; i < nr_nodemap_entries; i++) { |
2211 | unsigned long start_pfn = early_node_map[i].start_pfn; | 2211 | unsigned long start_pfn = early_node_map[i].start_pfn; |
2212 | unsigned long end_pfn = early_node_map[i].end_pfn; | 2212 | unsigned long end_pfn = early_node_map[i].end_pfn; |
2213 | 2213 | ||
2214 | if (start_pfn <= pfn && pfn < end_pfn) | 2214 | if (start_pfn <= pfn && pfn < end_pfn) |
2215 | return early_node_map[i].nid; | 2215 | return early_node_map[i].nid; |
2216 | } | 2216 | } |
2217 | 2217 | ||
2218 | return 0; | 2218 | return 0; |
2219 | } | 2219 | } |
2220 | #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ | 2220 | #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ |
2221 | 2221 | ||
2222 | /* Basic iterator support to walk early_node_map[] */ | 2222 | /* Basic iterator support to walk early_node_map[] */ |
2223 | #define for_each_active_range_index_in_nid(i, nid) \ | 2223 | #define for_each_active_range_index_in_nid(i, nid) \ |
2224 | for (i = first_active_region_index_in_nid(nid); i != -1; \ | 2224 | for (i = first_active_region_index_in_nid(nid); i != -1; \ |
2225 | i = next_active_region_index_in_nid(i, nid)) | 2225 | i = next_active_region_index_in_nid(i, nid)) |
2226 | 2226 | ||
2227 | /** | 2227 | /** |
2228 | * free_bootmem_with_active_regions - Call free_bootmem_node for each active range | 2228 | * free_bootmem_with_active_regions - Call free_bootmem_node for each active range |
2229 | * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. | 2229 | * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. |
2230 | * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node | 2230 | * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node |
2231 | * | 2231 | * |
2232 | * If an architecture guarantees that all ranges registered with | 2232 | * If an architecture guarantees that all ranges registered with |
2233 | * add_active_ranges() contain no holes and may be freed, this | 2233 | * add_active_ranges() contain no holes and may be freed, this |
2234 | * this function may be used instead of calling free_bootmem() manually. | 2234 | * this function may be used instead of calling free_bootmem() manually. |
2235 | */ | 2235 | */ |
2236 | void __init free_bootmem_with_active_regions(int nid, | 2236 | void __init free_bootmem_with_active_regions(int nid, |
2237 | unsigned long max_low_pfn) | 2237 | unsigned long max_low_pfn) |
2238 | { | 2238 | { |
2239 | int i; | 2239 | int i; |
2240 | 2240 | ||
2241 | for_each_active_range_index_in_nid(i, nid) { | 2241 | for_each_active_range_index_in_nid(i, nid) { |
2242 | unsigned long size_pages = 0; | 2242 | unsigned long size_pages = 0; |
2243 | unsigned long end_pfn = early_node_map[i].end_pfn; | 2243 | unsigned long end_pfn = early_node_map[i].end_pfn; |
2244 | 2244 | ||
2245 | if (early_node_map[i].start_pfn >= max_low_pfn) | 2245 | if (early_node_map[i].start_pfn >= max_low_pfn) |
2246 | continue; | 2246 | continue; |
2247 | 2247 | ||
2248 | if (end_pfn > max_low_pfn) | 2248 | if (end_pfn > max_low_pfn) |
2249 | end_pfn = max_low_pfn; | 2249 | end_pfn = max_low_pfn; |
2250 | 2250 | ||
2251 | size_pages = end_pfn - early_node_map[i].start_pfn; | 2251 | size_pages = end_pfn - early_node_map[i].start_pfn; |
2252 | free_bootmem_node(NODE_DATA(early_node_map[i].nid), | 2252 | free_bootmem_node(NODE_DATA(early_node_map[i].nid), |
2253 | PFN_PHYS(early_node_map[i].start_pfn), | 2253 | PFN_PHYS(early_node_map[i].start_pfn), |
2254 | size_pages << PAGE_SHIFT); | 2254 | size_pages << PAGE_SHIFT); |
2255 | } | 2255 | } |
2256 | } | 2256 | } |
2257 | 2257 | ||
2258 | /** | 2258 | /** |
2259 | * sparse_memory_present_with_active_regions - Call memory_present for each active range | 2259 | * sparse_memory_present_with_active_regions - Call memory_present for each active range |
2260 | * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. | 2260 | * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. |
2261 | * | 2261 | * |
2262 | * If an architecture guarantees that all ranges registered with | 2262 | * If an architecture guarantees that all ranges registered with |
2263 | * add_active_ranges() contain no holes and may be freed, this | 2263 | * add_active_ranges() contain no holes and may be freed, this |
2264 | * function may be used instead of calling memory_present() manually. | 2264 | * function may be used instead of calling memory_present() manually. |
2265 | */ | 2265 | */ |
2266 | void __init sparse_memory_present_with_active_regions(int nid) | 2266 | void __init sparse_memory_present_with_active_regions(int nid) |
2267 | { | 2267 | { |
2268 | int i; | 2268 | int i; |
2269 | 2269 | ||
2270 | for_each_active_range_index_in_nid(i, nid) | 2270 | for_each_active_range_index_in_nid(i, nid) |
2271 | memory_present(early_node_map[i].nid, | 2271 | memory_present(early_node_map[i].nid, |
2272 | early_node_map[i].start_pfn, | 2272 | early_node_map[i].start_pfn, |
2273 | early_node_map[i].end_pfn); | 2273 | early_node_map[i].end_pfn); |
2274 | } | 2274 | } |
2275 | 2275 | ||
2276 | /** | 2276 | /** |
2277 | * push_node_boundaries - Push node boundaries to at least the requested boundary | 2277 | * push_node_boundaries - Push node boundaries to at least the requested boundary |
2278 | * @nid: The nid of the node to push the boundary for | 2278 | * @nid: The nid of the node to push the boundary for |
2279 | * @start_pfn: The start pfn of the node | 2279 | * @start_pfn: The start pfn of the node |
2280 | * @end_pfn: The end pfn of the node | 2280 | * @end_pfn: The end pfn of the node |
2281 | * | 2281 | * |
2282 | * In reserve-based hot-add, mem_map is allocated that is unused until hotadd | 2282 | * In reserve-based hot-add, mem_map is allocated that is unused until hotadd |
2283 | * time. Specifically, on x86_64, SRAT will report ranges that can potentially | 2283 | * time. Specifically, on x86_64, SRAT will report ranges that can potentially |
2284 | * be hotplugged even though no physical memory exists. This function allows | 2284 | * be hotplugged even though no physical memory exists. This function allows |
2285 | * an arch to push out the node boundaries so mem_map is allocated that can | 2285 | * an arch to push out the node boundaries so mem_map is allocated that can |
2286 | * be used later. | 2286 | * be used later. |
2287 | */ | 2287 | */ |
2288 | #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE | 2288 | #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE |
2289 | void __init push_node_boundaries(unsigned int nid, | 2289 | void __init push_node_boundaries(unsigned int nid, |
2290 | unsigned long start_pfn, unsigned long end_pfn) | 2290 | unsigned long start_pfn, unsigned long end_pfn) |
2291 | { | 2291 | { |
2292 | printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n", | 2292 | printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n", |
2293 | nid, start_pfn, end_pfn); | 2293 | nid, start_pfn, end_pfn); |
2294 | 2294 | ||
2295 | /* Initialise the boundary for this node if necessary */ | 2295 | /* Initialise the boundary for this node if necessary */ |
2296 | if (node_boundary_end_pfn[nid] == 0) | 2296 | if (node_boundary_end_pfn[nid] == 0) |
2297 | node_boundary_start_pfn[nid] = -1UL; | 2297 | node_boundary_start_pfn[nid] = -1UL; |
2298 | 2298 | ||
2299 | /* Update the boundaries */ | 2299 | /* Update the boundaries */ |
2300 | if (node_boundary_start_pfn[nid] > start_pfn) | 2300 | if (node_boundary_start_pfn[nid] > start_pfn) |
2301 | node_boundary_start_pfn[nid] = start_pfn; | 2301 | node_boundary_start_pfn[nid] = start_pfn; |
2302 | if (node_boundary_end_pfn[nid] < end_pfn) | 2302 | if (node_boundary_end_pfn[nid] < end_pfn) |
2303 | node_boundary_end_pfn[nid] = end_pfn; | 2303 | node_boundary_end_pfn[nid] = end_pfn; |
2304 | } | 2304 | } |
2305 | 2305 | ||
2306 | /* If necessary, push the node boundary out for reserve hotadd */ | 2306 | /* If necessary, push the node boundary out for reserve hotadd */ |
2307 | static void __init account_node_boundary(unsigned int nid, | 2307 | static void __init account_node_boundary(unsigned int nid, |
2308 | unsigned long *start_pfn, unsigned long *end_pfn) | 2308 | unsigned long *start_pfn, unsigned long *end_pfn) |
2309 | { | 2309 | { |
2310 | printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n", | 2310 | printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n", |
2311 | nid, *start_pfn, *end_pfn); | 2311 | nid, *start_pfn, *end_pfn); |
2312 | 2312 | ||
2313 | /* Return if boundary information has not been provided */ | 2313 | /* Return if boundary information has not been provided */ |
2314 | if (node_boundary_end_pfn[nid] == 0) | 2314 | if (node_boundary_end_pfn[nid] == 0) |
2315 | return; | 2315 | return; |
2316 | 2316 | ||
2317 | /* Check the boundaries and update if necessary */ | 2317 | /* Check the boundaries and update if necessary */ |
2318 | if (node_boundary_start_pfn[nid] < *start_pfn) | 2318 | if (node_boundary_start_pfn[nid] < *start_pfn) |
2319 | *start_pfn = node_boundary_start_pfn[nid]; | 2319 | *start_pfn = node_boundary_start_pfn[nid]; |
2320 | if (node_boundary_end_pfn[nid] > *end_pfn) | 2320 | if (node_boundary_end_pfn[nid] > *end_pfn) |
2321 | *end_pfn = node_boundary_end_pfn[nid]; | 2321 | *end_pfn = node_boundary_end_pfn[nid]; |
2322 | } | 2322 | } |
2323 | #else | 2323 | #else |
2324 | void __init push_node_boundaries(unsigned int nid, | 2324 | void __init push_node_boundaries(unsigned int nid, |
2325 | unsigned long start_pfn, unsigned long end_pfn) {} | 2325 | unsigned long start_pfn, unsigned long end_pfn) {} |
2326 | 2326 | ||
2327 | static void __init account_node_boundary(unsigned int nid, | 2327 | static void __init account_node_boundary(unsigned int nid, |
2328 | unsigned long *start_pfn, unsigned long *end_pfn) {} | 2328 | unsigned long *start_pfn, unsigned long *end_pfn) {} |
2329 | #endif | 2329 | #endif |
2330 | 2330 | ||
2331 | 2331 | ||
2332 | /** | 2332 | /** |
2333 | * get_pfn_range_for_nid - Return the start and end page frames for a node | 2333 | * get_pfn_range_for_nid - Return the start and end page frames for a node |
2334 | * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. | 2334 | * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. |
2335 | * @start_pfn: Passed by reference. On return, it will have the node start_pfn. | 2335 | * @start_pfn: Passed by reference. On return, it will have the node start_pfn. |
2336 | * @end_pfn: Passed by reference. On return, it will have the node end_pfn. | 2336 | * @end_pfn: Passed by reference. On return, it will have the node end_pfn. |
2337 | * | 2337 | * |
2338 | * It returns the start and end page frame of a node based on information | 2338 | * It returns the start and end page frame of a node based on information |
2339 | * provided by an arch calling add_active_range(). If called for a node | 2339 | * provided by an arch calling add_active_range(). If called for a node |
2340 | * with no available memory, a warning is printed and the start and end | 2340 | * with no available memory, a warning is printed and the start and end |
2341 | * PFNs will be 0. | 2341 | * PFNs will be 0. |
2342 | */ | 2342 | */ |
2343 | void __init get_pfn_range_for_nid(unsigned int nid, | 2343 | void __init get_pfn_range_for_nid(unsigned int nid, |
2344 | unsigned long *start_pfn, unsigned long *end_pfn) | 2344 | unsigned long *start_pfn, unsigned long *end_pfn) |
2345 | { | 2345 | { |
2346 | int i; | 2346 | int i; |
2347 | *start_pfn = -1UL; | 2347 | *start_pfn = -1UL; |
2348 | *end_pfn = 0; | 2348 | *end_pfn = 0; |
2349 | 2349 | ||
2350 | for_each_active_range_index_in_nid(i, nid) { | 2350 | for_each_active_range_index_in_nid(i, nid) { |
2351 | *start_pfn = min(*start_pfn, early_node_map[i].start_pfn); | 2351 | *start_pfn = min(*start_pfn, early_node_map[i].start_pfn); |
2352 | *end_pfn = max(*end_pfn, early_node_map[i].end_pfn); | 2352 | *end_pfn = max(*end_pfn, early_node_map[i].end_pfn); |
2353 | } | 2353 | } |
2354 | 2354 | ||
2355 | if (*start_pfn == -1UL) { | 2355 | if (*start_pfn == -1UL) { |
2356 | printk(KERN_WARNING "Node %u active with no memory\n", nid); | 2356 | printk(KERN_WARNING "Node %u active with no memory\n", nid); |
2357 | *start_pfn = 0; | 2357 | *start_pfn = 0; |
2358 | } | 2358 | } |
2359 | 2359 | ||
2360 | /* Push the node boundaries out if requested */ | 2360 | /* Push the node boundaries out if requested */ |
2361 | account_node_boundary(nid, start_pfn, end_pfn); | 2361 | account_node_boundary(nid, start_pfn, end_pfn); |
2362 | } | 2362 | } |
2363 | 2363 | ||
2364 | /* | 2364 | /* |
2365 | * Return the number of pages a zone spans in a node, including holes | 2365 | * Return the number of pages a zone spans in a node, including holes |
2366 | * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() | 2366 | * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() |
2367 | */ | 2367 | */ |
2368 | unsigned long __init zone_spanned_pages_in_node(int nid, | 2368 | unsigned long __init zone_spanned_pages_in_node(int nid, |
2369 | unsigned long zone_type, | 2369 | unsigned long zone_type, |
2370 | unsigned long *ignored) | 2370 | unsigned long *ignored) |
2371 | { | 2371 | { |
2372 | unsigned long node_start_pfn, node_end_pfn; | 2372 | unsigned long node_start_pfn, node_end_pfn; |
2373 | unsigned long zone_start_pfn, zone_end_pfn; | 2373 | unsigned long zone_start_pfn, zone_end_pfn; |
2374 | 2374 | ||
2375 | /* Get the start and end of the node and zone */ | 2375 | /* Get the start and end of the node and zone */ |
2376 | get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); | 2376 | get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); |
2377 | zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; | 2377 | zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; |
2378 | zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; | 2378 | zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; |
2379 | 2379 | ||
2380 | /* Check that this node has pages within the zone's required range */ | 2380 | /* Check that this node has pages within the zone's required range */ |
2381 | if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) | 2381 | if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) |
2382 | return 0; | 2382 | return 0; |
2383 | 2383 | ||
2384 | /* Move the zone boundaries inside the node if necessary */ | 2384 | /* Move the zone boundaries inside the node if necessary */ |
2385 | zone_end_pfn = min(zone_end_pfn, node_end_pfn); | 2385 | zone_end_pfn = min(zone_end_pfn, node_end_pfn); |
2386 | zone_start_pfn = max(zone_start_pfn, node_start_pfn); | 2386 | zone_start_pfn = max(zone_start_pfn, node_start_pfn); |
2387 | 2387 | ||
2388 | /* Return the spanned pages */ | 2388 | /* Return the spanned pages */ |
2389 | return zone_end_pfn - zone_start_pfn; | 2389 | return zone_end_pfn - zone_start_pfn; |
2390 | } | 2390 | } |
2391 | 2391 | ||
2392 | /* | 2392 | /* |
2393 | * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, | 2393 | * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, |
2394 | * then all holes in the requested range will be accounted for. | 2394 | * then all holes in the requested range will be accounted for. |
2395 | */ | 2395 | */ |
2396 | unsigned long __init __absent_pages_in_range(int nid, | 2396 | unsigned long __init __absent_pages_in_range(int nid, |
2397 | unsigned long range_start_pfn, | 2397 | unsigned long range_start_pfn, |
2398 | unsigned long range_end_pfn) | 2398 | unsigned long range_end_pfn) |
2399 | { | 2399 | { |
2400 | int i = 0; | 2400 | int i = 0; |
2401 | unsigned long prev_end_pfn = 0, hole_pages = 0; | 2401 | unsigned long prev_end_pfn = 0, hole_pages = 0; |
2402 | unsigned long start_pfn; | 2402 | unsigned long start_pfn; |
2403 | 2403 | ||
2404 | /* Find the end_pfn of the first active range of pfns in the node */ | 2404 | /* Find the end_pfn of the first active range of pfns in the node */ |
2405 | i = first_active_region_index_in_nid(nid); | 2405 | i = first_active_region_index_in_nid(nid); |
2406 | if (i == -1) | 2406 | if (i == -1) |
2407 | return 0; | 2407 | return 0; |
2408 | 2408 | ||
2409 | /* Account for ranges before physical memory on this node */ | 2409 | /* Account for ranges before physical memory on this node */ |
2410 | if (early_node_map[i].start_pfn > range_start_pfn) | 2410 | if (early_node_map[i].start_pfn > range_start_pfn) |
2411 | hole_pages = early_node_map[i].start_pfn - range_start_pfn; | 2411 | hole_pages = early_node_map[i].start_pfn - range_start_pfn; |
2412 | 2412 | ||
2413 | prev_end_pfn = early_node_map[i].start_pfn; | 2413 | prev_end_pfn = early_node_map[i].start_pfn; |
2414 | 2414 | ||
2415 | /* Find all holes for the zone within the node */ | 2415 | /* Find all holes for the zone within the node */ |
2416 | for (; i != -1; i = next_active_region_index_in_nid(i, nid)) { | 2416 | for (; i != -1; i = next_active_region_index_in_nid(i, nid)) { |
2417 | 2417 | ||
2418 | /* No need to continue if prev_end_pfn is outside the zone */ | 2418 | /* No need to continue if prev_end_pfn is outside the zone */ |
2419 | if (prev_end_pfn >= range_end_pfn) | 2419 | if (prev_end_pfn >= range_end_pfn) |
2420 | break; | 2420 | break; |
2421 | 2421 | ||
2422 | /* Make sure the end of the zone is not within the hole */ | 2422 | /* Make sure the end of the zone is not within the hole */ |
2423 | start_pfn = min(early_node_map[i].start_pfn, range_end_pfn); | 2423 | start_pfn = min(early_node_map[i].start_pfn, range_end_pfn); |
2424 | prev_end_pfn = max(prev_end_pfn, range_start_pfn); | 2424 | prev_end_pfn = max(prev_end_pfn, range_start_pfn); |
2425 | 2425 | ||
2426 | /* Update the hole size cound and move on */ | 2426 | /* Update the hole size cound and move on */ |
2427 | if (start_pfn > range_start_pfn) { | 2427 | if (start_pfn > range_start_pfn) { |
2428 | BUG_ON(prev_end_pfn > start_pfn); | 2428 | BUG_ON(prev_end_pfn > start_pfn); |
2429 | hole_pages += start_pfn - prev_end_pfn; | 2429 | hole_pages += start_pfn - prev_end_pfn; |
2430 | } | 2430 | } |
2431 | prev_end_pfn = early_node_map[i].end_pfn; | 2431 | prev_end_pfn = early_node_map[i].end_pfn; |
2432 | } | 2432 | } |
2433 | 2433 | ||
2434 | /* Account for ranges past physical memory on this node */ | 2434 | /* Account for ranges past physical memory on this node */ |
2435 | if (range_end_pfn > prev_end_pfn) | 2435 | if (range_end_pfn > prev_end_pfn) |
2436 | hole_pages += range_end_pfn - | 2436 | hole_pages += range_end_pfn - |
2437 | max(range_start_pfn, prev_end_pfn); | 2437 | max(range_start_pfn, prev_end_pfn); |
2438 | 2438 | ||
2439 | return hole_pages; | 2439 | return hole_pages; |
2440 | } | 2440 | } |
2441 | 2441 | ||
2442 | /** | 2442 | /** |
2443 | * absent_pages_in_range - Return number of page frames in holes within a range | 2443 | * absent_pages_in_range - Return number of page frames in holes within a range |
2444 | * @start_pfn: The start PFN to start searching for holes | 2444 | * @start_pfn: The start PFN to start searching for holes |
2445 | * @end_pfn: The end PFN to stop searching for holes | 2445 | * @end_pfn: The end PFN to stop searching for holes |
2446 | * | 2446 | * |
2447 | * It returns the number of pages frames in memory holes within a range. | 2447 | * It returns the number of pages frames in memory holes within a range. |
2448 | */ | 2448 | */ |
2449 | unsigned long __init absent_pages_in_range(unsigned long start_pfn, | 2449 | unsigned long __init absent_pages_in_range(unsigned long start_pfn, |
2450 | unsigned long end_pfn) | 2450 | unsigned long end_pfn) |
2451 | { | 2451 | { |
2452 | return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); | 2452 | return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); |
2453 | } | 2453 | } |
2454 | 2454 | ||
2455 | /* Return the number of page frames in holes in a zone on a node */ | 2455 | /* Return the number of page frames in holes in a zone on a node */ |
2456 | unsigned long __init zone_absent_pages_in_node(int nid, | 2456 | unsigned long __init zone_absent_pages_in_node(int nid, |
2457 | unsigned long zone_type, | 2457 | unsigned long zone_type, |
2458 | unsigned long *ignored) | 2458 | unsigned long *ignored) |
2459 | { | 2459 | { |
2460 | unsigned long node_start_pfn, node_end_pfn; | 2460 | unsigned long node_start_pfn, node_end_pfn; |
2461 | unsigned long zone_start_pfn, zone_end_pfn; | 2461 | unsigned long zone_start_pfn, zone_end_pfn; |
2462 | 2462 | ||
2463 | get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); | 2463 | get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); |
2464 | zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type], | 2464 | zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type], |
2465 | node_start_pfn); | 2465 | node_start_pfn); |
2466 | zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type], | 2466 | zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type], |
2467 | node_end_pfn); | 2467 | node_end_pfn); |
2468 | 2468 | ||
2469 | return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); | 2469 | return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); |
2470 | } | 2470 | } |
2471 | 2471 | ||
2472 | #else | 2472 | #else |
2473 | static inline unsigned long zone_spanned_pages_in_node(int nid, | 2473 | static inline unsigned long zone_spanned_pages_in_node(int nid, |
2474 | unsigned long zone_type, | 2474 | unsigned long zone_type, |
2475 | unsigned long *zones_size) | 2475 | unsigned long *zones_size) |
2476 | { | 2476 | { |
2477 | return zones_size[zone_type]; | 2477 | return zones_size[zone_type]; |
2478 | } | 2478 | } |
2479 | 2479 | ||
2480 | static inline unsigned long zone_absent_pages_in_node(int nid, | 2480 | static inline unsigned long zone_absent_pages_in_node(int nid, |
2481 | unsigned long zone_type, | 2481 | unsigned long zone_type, |
2482 | unsigned long *zholes_size) | 2482 | unsigned long *zholes_size) |
2483 | { | 2483 | { |
2484 | if (!zholes_size) | 2484 | if (!zholes_size) |
2485 | return 0; | 2485 | return 0; |
2486 | 2486 | ||
2487 | return zholes_size[zone_type]; | 2487 | return zholes_size[zone_type]; |
2488 | } | 2488 | } |
2489 | 2489 | ||
2490 | #endif | 2490 | #endif |
2491 | 2491 | ||
2492 | static void __init calculate_node_totalpages(struct pglist_data *pgdat, | 2492 | static void __init calculate_node_totalpages(struct pglist_data *pgdat, |
2493 | unsigned long *zones_size, unsigned long *zholes_size) | 2493 | unsigned long *zones_size, unsigned long *zholes_size) |
2494 | { | 2494 | { |
2495 | unsigned long realtotalpages, totalpages = 0; | 2495 | unsigned long realtotalpages, totalpages = 0; |
2496 | enum zone_type i; | 2496 | enum zone_type i; |
2497 | 2497 | ||
2498 | for (i = 0; i < MAX_NR_ZONES; i++) | 2498 | for (i = 0; i < MAX_NR_ZONES; i++) |
2499 | totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, | 2499 | totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, |
2500 | zones_size); | 2500 | zones_size); |
2501 | pgdat->node_spanned_pages = totalpages; | 2501 | pgdat->node_spanned_pages = totalpages; |
2502 | 2502 | ||
2503 | realtotalpages = totalpages; | 2503 | realtotalpages = totalpages; |
2504 | for (i = 0; i < MAX_NR_ZONES; i++) | 2504 | for (i = 0; i < MAX_NR_ZONES; i++) |
2505 | realtotalpages -= | 2505 | realtotalpages -= |
2506 | zone_absent_pages_in_node(pgdat->node_id, i, | 2506 | zone_absent_pages_in_node(pgdat->node_id, i, |
2507 | zholes_size); | 2507 | zholes_size); |
2508 | pgdat->node_present_pages = realtotalpages; | 2508 | pgdat->node_present_pages = realtotalpages; |
2509 | printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, | 2509 | printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, |
2510 | realtotalpages); | 2510 | realtotalpages); |
2511 | } | 2511 | } |
2512 | 2512 | ||
2513 | /* | 2513 | /* |
2514 | * Set up the zone data structures: | 2514 | * Set up the zone data structures: |
2515 | * - mark all pages reserved | 2515 | * - mark all pages reserved |
2516 | * - mark all memory queues empty | 2516 | * - mark all memory queues empty |
2517 | * - clear the memory bitmaps | 2517 | * - clear the memory bitmaps |
2518 | */ | 2518 | */ |
2519 | static void __meminit free_area_init_core(struct pglist_data *pgdat, | 2519 | static void __meminit free_area_init_core(struct pglist_data *pgdat, |
2520 | unsigned long *zones_size, unsigned long *zholes_size) | 2520 | unsigned long *zones_size, unsigned long *zholes_size) |
2521 | { | 2521 | { |
2522 | enum zone_type j; | 2522 | enum zone_type j; |
2523 | int nid = pgdat->node_id; | 2523 | int nid = pgdat->node_id; |
2524 | unsigned long zone_start_pfn = pgdat->node_start_pfn; | 2524 | unsigned long zone_start_pfn = pgdat->node_start_pfn; |
2525 | int ret; | 2525 | int ret; |
2526 | 2526 | ||
2527 | pgdat_resize_init(pgdat); | 2527 | pgdat_resize_init(pgdat); |
2528 | pgdat->nr_zones = 0; | 2528 | pgdat->nr_zones = 0; |
2529 | init_waitqueue_head(&pgdat->kswapd_wait); | 2529 | init_waitqueue_head(&pgdat->kswapd_wait); |
2530 | pgdat->kswapd_max_order = 0; | 2530 | pgdat->kswapd_max_order = 0; |
2531 | 2531 | ||
2532 | for (j = 0; j < MAX_NR_ZONES; j++) { | 2532 | for (j = 0; j < MAX_NR_ZONES; j++) { |
2533 | struct zone *zone = pgdat->node_zones + j; | 2533 | struct zone *zone = pgdat->node_zones + j; |
2534 | unsigned long size, realsize, memmap_pages; | 2534 | unsigned long size, realsize, memmap_pages; |
2535 | 2535 | ||
2536 | size = zone_spanned_pages_in_node(nid, j, zones_size); | 2536 | size = zone_spanned_pages_in_node(nid, j, zones_size); |
2537 | realsize = size - zone_absent_pages_in_node(nid, j, | 2537 | realsize = size - zone_absent_pages_in_node(nid, j, |
2538 | zholes_size); | 2538 | zholes_size); |
2539 | 2539 | ||
2540 | /* | 2540 | /* |
2541 | * Adjust realsize so that it accounts for how much memory | 2541 | * Adjust realsize so that it accounts for how much memory |
2542 | * is used by this zone for memmap. This affects the watermark | 2542 | * is used by this zone for memmap. This affects the watermark |
2543 | * and per-cpu initialisations | 2543 | * and per-cpu initialisations |
2544 | */ | 2544 | */ |
2545 | memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT; | 2545 | memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT; |
2546 | if (realsize >= memmap_pages) { | 2546 | if (realsize >= memmap_pages) { |
2547 | realsize -= memmap_pages; | 2547 | realsize -= memmap_pages; |
2548 | printk(KERN_DEBUG | 2548 | printk(KERN_DEBUG |
2549 | " %s zone: %lu pages used for memmap\n", | 2549 | " %s zone: %lu pages used for memmap\n", |
2550 | zone_names[j], memmap_pages); | 2550 | zone_names[j], memmap_pages); |
2551 | } else | 2551 | } else |
2552 | printk(KERN_WARNING | 2552 | printk(KERN_WARNING |
2553 | " %s zone: %lu pages exceeds realsize %lu\n", | 2553 | " %s zone: %lu pages exceeds realsize %lu\n", |
2554 | zone_names[j], memmap_pages, realsize); | 2554 | zone_names[j], memmap_pages, realsize); |
2555 | 2555 | ||
2556 | /* Account for reserved DMA pages */ | 2556 | /* Account for reserved DMA pages */ |
2557 | if (j == ZONE_DMA && realsize > dma_reserve) { | 2557 | if (j == ZONE_DMA && realsize > dma_reserve) { |
2558 | realsize -= dma_reserve; | 2558 | realsize -= dma_reserve; |
2559 | printk(KERN_DEBUG " DMA zone: %lu pages reserved\n", | 2559 | printk(KERN_DEBUG " DMA zone: %lu pages reserved\n", |
2560 | dma_reserve); | 2560 | dma_reserve); |
2561 | } | 2561 | } |
2562 | 2562 | ||
2563 | if (!is_highmem_idx(j)) | 2563 | if (!is_highmem_idx(j)) |
2564 | nr_kernel_pages += realsize; | 2564 | nr_kernel_pages += realsize; |
2565 | nr_all_pages += realsize; | 2565 | nr_all_pages += realsize; |
2566 | 2566 | ||
2567 | zone->spanned_pages = size; | 2567 | zone->spanned_pages = size; |
2568 | zone->present_pages = realsize; | 2568 | zone->present_pages = realsize; |
2569 | #ifdef CONFIG_NUMA | 2569 | #ifdef CONFIG_NUMA |
2570 | zone->node = nid; | 2570 | zone->node = nid; |
2571 | zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) | 2571 | zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) |
2572 | / 100; | 2572 | / 100; |
2573 | zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; | 2573 | zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; |
2574 | #endif | 2574 | #endif |
2575 | zone->name = zone_names[j]; | 2575 | zone->name = zone_names[j]; |
2576 | spin_lock_init(&zone->lock); | 2576 | spin_lock_init(&zone->lock); |
2577 | spin_lock_init(&zone->lru_lock); | 2577 | spin_lock_init(&zone->lru_lock); |
2578 | zone_seqlock_init(zone); | 2578 | zone_seqlock_init(zone); |
2579 | zone->zone_pgdat = pgdat; | 2579 | zone->zone_pgdat = pgdat; |
2580 | zone->free_pages = 0; | 2580 | zone->free_pages = 0; |
2581 | 2581 | ||
2582 | zone->prev_priority = DEF_PRIORITY; | 2582 | zone->prev_priority = DEF_PRIORITY; |
2583 | 2583 | ||
2584 | zone_pcp_init(zone); | 2584 | zone_pcp_init(zone); |
2585 | INIT_LIST_HEAD(&zone->active_list); | 2585 | INIT_LIST_HEAD(&zone->active_list); |
2586 | INIT_LIST_HEAD(&zone->inactive_list); | 2586 | INIT_LIST_HEAD(&zone->inactive_list); |
2587 | zone->nr_scan_active = 0; | 2587 | zone->nr_scan_active = 0; |
2588 | zone->nr_scan_inactive = 0; | 2588 | zone->nr_scan_inactive = 0; |
2589 | zone->nr_active = 0; | 2589 | zone->nr_active = 0; |
2590 | zone->nr_inactive = 0; | 2590 | zone->nr_inactive = 0; |
2591 | zap_zone_vm_stats(zone); | 2591 | zap_zone_vm_stats(zone); |
2592 | atomic_set(&zone->reclaim_in_progress, 0); | 2592 | atomic_set(&zone->reclaim_in_progress, 0); |
2593 | if (!size) | 2593 | if (!size) |
2594 | continue; | 2594 | continue; |
2595 | 2595 | ||
2596 | ret = init_currently_empty_zone(zone, zone_start_pfn, size); | 2596 | ret = init_currently_empty_zone(zone, zone_start_pfn, size); |
2597 | BUG_ON(ret); | 2597 | BUG_ON(ret); |
2598 | zone_start_pfn += size; | 2598 | zone_start_pfn += size; |
2599 | } | 2599 | } |
2600 | } | 2600 | } |
2601 | 2601 | ||
2602 | static void __init alloc_node_mem_map(struct pglist_data *pgdat) | 2602 | static void __init alloc_node_mem_map(struct pglist_data *pgdat) |
2603 | { | 2603 | { |
2604 | /* Skip empty nodes */ | 2604 | /* Skip empty nodes */ |
2605 | if (!pgdat->node_spanned_pages) | 2605 | if (!pgdat->node_spanned_pages) |
2606 | return; | 2606 | return; |
2607 | 2607 | ||
2608 | #ifdef CONFIG_FLAT_NODE_MEM_MAP | 2608 | #ifdef CONFIG_FLAT_NODE_MEM_MAP |
2609 | /* ia64 gets its own node_mem_map, before this, without bootmem */ | 2609 | /* ia64 gets its own node_mem_map, before this, without bootmem */ |
2610 | if (!pgdat->node_mem_map) { | 2610 | if (!pgdat->node_mem_map) { |
2611 | unsigned long size, start, end; | 2611 | unsigned long size, start, end; |
2612 | struct page *map; | 2612 | struct page *map; |
2613 | 2613 | ||
2614 | /* | 2614 | /* |
2615 | * The zone's endpoints aren't required to be MAX_ORDER | 2615 | * The zone's endpoints aren't required to be MAX_ORDER |
2616 | * aligned but the node_mem_map endpoints must be in order | 2616 | * aligned but the node_mem_map endpoints must be in order |
2617 | * for the buddy allocator to function correctly. | 2617 | * for the buddy allocator to function correctly. |
2618 | */ | 2618 | */ |
2619 | start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); | 2619 | start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); |
2620 | end = pgdat->node_start_pfn + pgdat->node_spanned_pages; | 2620 | end = pgdat->node_start_pfn + pgdat->node_spanned_pages; |
2621 | end = ALIGN(end, MAX_ORDER_NR_PAGES); | 2621 | end = ALIGN(end, MAX_ORDER_NR_PAGES); |
2622 | size = (end - start) * sizeof(struct page); | 2622 | size = (end - start) * sizeof(struct page); |
2623 | map = alloc_remap(pgdat->node_id, size); | 2623 | map = alloc_remap(pgdat->node_id, size); |
2624 | if (!map) | 2624 | if (!map) |
2625 | map = alloc_bootmem_node(pgdat, size); | 2625 | map = alloc_bootmem_node(pgdat, size); |
2626 | pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); | 2626 | pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); |
2627 | } | 2627 | } |
2628 | #ifdef CONFIG_FLATMEM | 2628 | #ifdef CONFIG_FLATMEM |
2629 | /* | 2629 | /* |
2630 | * With no DISCONTIG, the global mem_map is just set as node 0's | 2630 | * With no DISCONTIG, the global mem_map is just set as node 0's |
2631 | */ | 2631 | */ |
2632 | if (pgdat == NODE_DATA(0)) { | 2632 | if (pgdat == NODE_DATA(0)) { |
2633 | mem_map = NODE_DATA(0)->node_mem_map; | 2633 | mem_map = NODE_DATA(0)->node_mem_map; |
2634 | #ifdef CONFIG_ARCH_POPULATES_NODE_MAP | 2634 | #ifdef CONFIG_ARCH_POPULATES_NODE_MAP |
2635 | if (page_to_pfn(mem_map) != pgdat->node_start_pfn) | 2635 | if (page_to_pfn(mem_map) != pgdat->node_start_pfn) |
2636 | mem_map -= pgdat->node_start_pfn; | 2636 | mem_map -= pgdat->node_start_pfn; |
2637 | #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ | 2637 | #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ |
2638 | } | 2638 | } |
2639 | #endif | 2639 | #endif |
2640 | #endif /* CONFIG_FLAT_NODE_MEM_MAP */ | 2640 | #endif /* CONFIG_FLAT_NODE_MEM_MAP */ |
2641 | } | 2641 | } |
2642 | 2642 | ||
2643 | void __meminit free_area_init_node(int nid, struct pglist_data *pgdat, | 2643 | void __meminit free_area_init_node(int nid, struct pglist_data *pgdat, |
2644 | unsigned long *zones_size, unsigned long node_start_pfn, | 2644 | unsigned long *zones_size, unsigned long node_start_pfn, |
2645 | unsigned long *zholes_size) | 2645 | unsigned long *zholes_size) |
2646 | { | 2646 | { |
2647 | pgdat->node_id = nid; | 2647 | pgdat->node_id = nid; |
2648 | pgdat->node_start_pfn = node_start_pfn; | 2648 | pgdat->node_start_pfn = node_start_pfn; |
2649 | calculate_node_totalpages(pgdat, zones_size, zholes_size); | 2649 | calculate_node_totalpages(pgdat, zones_size, zholes_size); |
2650 | 2650 | ||
2651 | alloc_node_mem_map(pgdat); | 2651 | alloc_node_mem_map(pgdat); |
2652 | 2652 | ||
2653 | free_area_init_core(pgdat, zones_size, zholes_size); | 2653 | free_area_init_core(pgdat, zones_size, zholes_size); |
2654 | } | 2654 | } |
2655 | 2655 | ||
2656 | #ifdef CONFIG_ARCH_POPULATES_NODE_MAP | 2656 | #ifdef CONFIG_ARCH_POPULATES_NODE_MAP |
2657 | /** | 2657 | /** |
2658 | * add_active_range - Register a range of PFNs backed by physical memory | 2658 | * add_active_range - Register a range of PFNs backed by physical memory |
2659 | * @nid: The node ID the range resides on | 2659 | * @nid: The node ID the range resides on |
2660 | * @start_pfn: The start PFN of the available physical memory | 2660 | * @start_pfn: The start PFN of the available physical memory |
2661 | * @end_pfn: The end PFN of the available physical memory | 2661 | * @end_pfn: The end PFN of the available physical memory |
2662 | * | 2662 | * |
2663 | * These ranges are stored in an early_node_map[] and later used by | 2663 | * These ranges are stored in an early_node_map[] and later used by |
2664 | * free_area_init_nodes() to calculate zone sizes and holes. If the | 2664 | * free_area_init_nodes() to calculate zone sizes and holes. If the |
2665 | * range spans a memory hole, it is up to the architecture to ensure | 2665 | * range spans a memory hole, it is up to the architecture to ensure |
2666 | * the memory is not freed by the bootmem allocator. If possible | 2666 | * the memory is not freed by the bootmem allocator. If possible |
2667 | * the range being registered will be merged with existing ranges. | 2667 | * the range being registered will be merged with existing ranges. |
2668 | */ | 2668 | */ |
2669 | void __init add_active_range(unsigned int nid, unsigned long start_pfn, | 2669 | void __init add_active_range(unsigned int nid, unsigned long start_pfn, |
2670 | unsigned long end_pfn) | 2670 | unsigned long end_pfn) |
2671 | { | 2671 | { |
2672 | int i; | 2672 | int i; |
2673 | 2673 | ||
2674 | printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) " | 2674 | printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) " |
2675 | "%d entries of %d used\n", | 2675 | "%d entries of %d used\n", |
2676 | nid, start_pfn, end_pfn, | 2676 | nid, start_pfn, end_pfn, |
2677 | nr_nodemap_entries, MAX_ACTIVE_REGIONS); | 2677 | nr_nodemap_entries, MAX_ACTIVE_REGIONS); |
2678 | 2678 | ||
2679 | /* Merge with existing active regions if possible */ | 2679 | /* Merge with existing active regions if possible */ |
2680 | for (i = 0; i < nr_nodemap_entries; i++) { | 2680 | for (i = 0; i < nr_nodemap_entries; i++) { |
2681 | if (early_node_map[i].nid != nid) | 2681 | if (early_node_map[i].nid != nid) |
2682 | continue; | 2682 | continue; |
2683 | 2683 | ||
2684 | /* Skip if an existing region covers this new one */ | 2684 | /* Skip if an existing region covers this new one */ |
2685 | if (start_pfn >= early_node_map[i].start_pfn && | 2685 | if (start_pfn >= early_node_map[i].start_pfn && |
2686 | end_pfn <= early_node_map[i].end_pfn) | 2686 | end_pfn <= early_node_map[i].end_pfn) |
2687 | return; | 2687 | return; |
2688 | 2688 | ||
2689 | /* Merge forward if suitable */ | 2689 | /* Merge forward if suitable */ |
2690 | if (start_pfn <= early_node_map[i].end_pfn && | 2690 | if (start_pfn <= early_node_map[i].end_pfn && |
2691 | end_pfn > early_node_map[i].end_pfn) { | 2691 | end_pfn > early_node_map[i].end_pfn) { |
2692 | early_node_map[i].end_pfn = end_pfn; | 2692 | early_node_map[i].end_pfn = end_pfn; |
2693 | return; | 2693 | return; |
2694 | } | 2694 | } |
2695 | 2695 | ||
2696 | /* Merge backward if suitable */ | 2696 | /* Merge backward if suitable */ |
2697 | if (start_pfn < early_node_map[i].end_pfn && | 2697 | if (start_pfn < early_node_map[i].end_pfn && |
2698 | end_pfn >= early_node_map[i].start_pfn) { | 2698 | end_pfn >= early_node_map[i].start_pfn) { |
2699 | early_node_map[i].start_pfn = start_pfn; | 2699 | early_node_map[i].start_pfn = start_pfn; |
2700 | return; | 2700 | return; |
2701 | } | 2701 | } |
2702 | } | 2702 | } |
2703 | 2703 | ||
2704 | /* Check that early_node_map is large enough */ | 2704 | /* Check that early_node_map is large enough */ |
2705 | if (i >= MAX_ACTIVE_REGIONS) { | 2705 | if (i >= MAX_ACTIVE_REGIONS) { |
2706 | printk(KERN_CRIT "More than %d memory regions, truncating\n", | 2706 | printk(KERN_CRIT "More than %d memory regions, truncating\n", |
2707 | MAX_ACTIVE_REGIONS); | 2707 | MAX_ACTIVE_REGIONS); |
2708 | return; | 2708 | return; |
2709 | } | 2709 | } |
2710 | 2710 | ||
2711 | early_node_map[i].nid = nid; | 2711 | early_node_map[i].nid = nid; |
2712 | early_node_map[i].start_pfn = start_pfn; | 2712 | early_node_map[i].start_pfn = start_pfn; |
2713 | early_node_map[i].end_pfn = end_pfn; | 2713 | early_node_map[i].end_pfn = end_pfn; |
2714 | nr_nodemap_entries = i + 1; | 2714 | nr_nodemap_entries = i + 1; |
2715 | } | 2715 | } |
2716 | 2716 | ||
2717 | /** | 2717 | /** |
2718 | * shrink_active_range - Shrink an existing registered range of PFNs | 2718 | * shrink_active_range - Shrink an existing registered range of PFNs |
2719 | * @nid: The node id the range is on that should be shrunk | 2719 | * @nid: The node id the range is on that should be shrunk |
2720 | * @old_end_pfn: The old end PFN of the range | 2720 | * @old_end_pfn: The old end PFN of the range |
2721 | * @new_end_pfn: The new PFN of the range | 2721 | * @new_end_pfn: The new PFN of the range |
2722 | * | 2722 | * |
2723 | * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node. | 2723 | * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node. |
2724 | * The map is kept at the end physical page range that has already been | 2724 | * The map is kept at the end physical page range that has already been |
2725 | * registered with add_active_range(). This function allows an arch to shrink | 2725 | * registered with add_active_range(). This function allows an arch to shrink |
2726 | * an existing registered range. | 2726 | * an existing registered range. |
2727 | */ | 2727 | */ |
2728 | void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn, | 2728 | void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn, |
2729 | unsigned long new_end_pfn) | 2729 | unsigned long new_end_pfn) |
2730 | { | 2730 | { |
2731 | int i; | 2731 | int i; |
2732 | 2732 | ||
2733 | /* Find the old active region end and shrink */ | 2733 | /* Find the old active region end and shrink */ |
2734 | for_each_active_range_index_in_nid(i, nid) | 2734 | for_each_active_range_index_in_nid(i, nid) |
2735 | if (early_node_map[i].end_pfn == old_end_pfn) { | 2735 | if (early_node_map[i].end_pfn == old_end_pfn) { |
2736 | early_node_map[i].end_pfn = new_end_pfn; | 2736 | early_node_map[i].end_pfn = new_end_pfn; |
2737 | break; | 2737 | break; |
2738 | } | 2738 | } |
2739 | } | 2739 | } |
2740 | 2740 | ||
2741 | /** | 2741 | /** |
2742 | * remove_all_active_ranges - Remove all currently registered regions | 2742 | * remove_all_active_ranges - Remove all currently registered regions |
2743 | * | 2743 | * |
2744 | * During discovery, it may be found that a table like SRAT is invalid | 2744 | * During discovery, it may be found that a table like SRAT is invalid |
2745 | * and an alternative discovery method must be used. This function removes | 2745 | * and an alternative discovery method must be used. This function removes |
2746 | * all currently registered regions. | 2746 | * all currently registered regions. |
2747 | */ | 2747 | */ |
2748 | void __init remove_all_active_ranges(void) | 2748 | void __init remove_all_active_ranges(void) |
2749 | { | 2749 | { |
2750 | memset(early_node_map, 0, sizeof(early_node_map)); | 2750 | memset(early_node_map, 0, sizeof(early_node_map)); |
2751 | nr_nodemap_entries = 0; | 2751 | nr_nodemap_entries = 0; |
2752 | #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE | 2752 | #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE |
2753 | memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn)); | 2753 | memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn)); |
2754 | memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn)); | 2754 | memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn)); |
2755 | #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */ | 2755 | #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */ |
2756 | } | 2756 | } |
2757 | 2757 | ||
2758 | /* Compare two active node_active_regions */ | 2758 | /* Compare two active node_active_regions */ |
2759 | static int __init cmp_node_active_region(const void *a, const void *b) | 2759 | static int __init cmp_node_active_region(const void *a, const void *b) |
2760 | { | 2760 | { |
2761 | struct node_active_region *arange = (struct node_active_region *)a; | 2761 | struct node_active_region *arange = (struct node_active_region *)a; |
2762 | struct node_active_region *brange = (struct node_active_region *)b; | 2762 | struct node_active_region *brange = (struct node_active_region *)b; |
2763 | 2763 | ||
2764 | /* Done this way to avoid overflows */ | 2764 | /* Done this way to avoid overflows */ |
2765 | if (arange->start_pfn > brange->start_pfn) | 2765 | if (arange->start_pfn > brange->start_pfn) |
2766 | return 1; | 2766 | return 1; |
2767 | if (arange->start_pfn < brange->start_pfn) | 2767 | if (arange->start_pfn < brange->start_pfn) |
2768 | return -1; | 2768 | return -1; |
2769 | 2769 | ||
2770 | return 0; | 2770 | return 0; |
2771 | } | 2771 | } |
2772 | 2772 | ||
2773 | /* sort the node_map by start_pfn */ | 2773 | /* sort the node_map by start_pfn */ |
2774 | static void __init sort_node_map(void) | 2774 | static void __init sort_node_map(void) |
2775 | { | 2775 | { |
2776 | sort(early_node_map, (size_t)nr_nodemap_entries, | 2776 | sort(early_node_map, (size_t)nr_nodemap_entries, |
2777 | sizeof(struct node_active_region), | 2777 | sizeof(struct node_active_region), |
2778 | cmp_node_active_region, NULL); | 2778 | cmp_node_active_region, NULL); |
2779 | } | 2779 | } |
2780 | 2780 | ||
2781 | /* Find the lowest pfn for a node. This depends on a sorted early_node_map */ | 2781 | /* Find the lowest pfn for a node. This depends on a sorted early_node_map */ |
2782 | unsigned long __init find_min_pfn_for_node(unsigned long nid) | 2782 | unsigned long __init find_min_pfn_for_node(unsigned long nid) |
2783 | { | 2783 | { |
2784 | int i; | 2784 | int i; |
2785 | 2785 | ||
2786 | /* Regions in the early_node_map can be in any order */ | 2786 | /* Regions in the early_node_map can be in any order */ |
2787 | sort_node_map(); | 2787 | sort_node_map(); |
2788 | 2788 | ||
2789 | /* Assuming a sorted map, the first range found has the starting pfn */ | 2789 | /* Assuming a sorted map, the first range found has the starting pfn */ |
2790 | for_each_active_range_index_in_nid(i, nid) | 2790 | for_each_active_range_index_in_nid(i, nid) |
2791 | return early_node_map[i].start_pfn; | 2791 | return early_node_map[i].start_pfn; |
2792 | 2792 | ||
2793 | printk(KERN_WARNING "Could not find start_pfn for node %lu\n", nid); | 2793 | printk(KERN_WARNING "Could not find start_pfn for node %lu\n", nid); |
2794 | return 0; | 2794 | return 0; |
2795 | } | 2795 | } |
2796 | 2796 | ||
2797 | /** | 2797 | /** |
2798 | * find_min_pfn_with_active_regions - Find the minimum PFN registered | 2798 | * find_min_pfn_with_active_regions - Find the minimum PFN registered |
2799 | * | 2799 | * |
2800 | * It returns the minimum PFN based on information provided via | 2800 | * It returns the minimum PFN based on information provided via |
2801 | * add_active_range(). | 2801 | * add_active_range(). |
2802 | */ | 2802 | */ |
2803 | unsigned long __init find_min_pfn_with_active_regions(void) | 2803 | unsigned long __init find_min_pfn_with_active_regions(void) |
2804 | { | 2804 | { |
2805 | return find_min_pfn_for_node(MAX_NUMNODES); | 2805 | return find_min_pfn_for_node(MAX_NUMNODES); |
2806 | } | 2806 | } |
2807 | 2807 | ||
2808 | /** | 2808 | /** |
2809 | * find_max_pfn_with_active_regions - Find the maximum PFN registered | 2809 | * find_max_pfn_with_active_regions - Find the maximum PFN registered |
2810 | * | 2810 | * |
2811 | * It returns the maximum PFN based on information provided via | 2811 | * It returns the maximum PFN based on information provided via |
2812 | * add_active_range(). | 2812 | * add_active_range(). |
2813 | */ | 2813 | */ |
2814 | unsigned long __init find_max_pfn_with_active_regions(void) | 2814 | unsigned long __init find_max_pfn_with_active_regions(void) |
2815 | { | 2815 | { |
2816 | int i; | 2816 | int i; |
2817 | unsigned long max_pfn = 0; | 2817 | unsigned long max_pfn = 0; |
2818 | 2818 | ||
2819 | for (i = 0; i < nr_nodemap_entries; i++) | 2819 | for (i = 0; i < nr_nodemap_entries; i++) |
2820 | max_pfn = max(max_pfn, early_node_map[i].end_pfn); | 2820 | max_pfn = max(max_pfn, early_node_map[i].end_pfn); |
2821 | 2821 | ||
2822 | return max_pfn; | 2822 | return max_pfn; |
2823 | } | 2823 | } |
2824 | 2824 | ||
2825 | /** | 2825 | /** |
2826 | * free_area_init_nodes - Initialise all pg_data_t and zone data | 2826 | * free_area_init_nodes - Initialise all pg_data_t and zone data |
2827 | * @max_zone_pfn: an array of max PFNs for each zone | 2827 | * @max_zone_pfn: an array of max PFNs for each zone |
2828 | * | 2828 | * |
2829 | * This will call free_area_init_node() for each active node in the system. | 2829 | * This will call free_area_init_node() for each active node in the system. |
2830 | * Using the page ranges provided by add_active_range(), the size of each | 2830 | * Using the page ranges provided by add_active_range(), the size of each |
2831 | * zone in each node and their holes is calculated. If the maximum PFN | 2831 | * zone in each node and their holes is calculated. If the maximum PFN |
2832 | * between two adjacent zones match, it is assumed that the zone is empty. | 2832 | * between two adjacent zones match, it is assumed that the zone is empty. |
2833 | * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed | 2833 | * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed |
2834 | * that arch_max_dma32_pfn has no pages. It is also assumed that a zone | 2834 | * that arch_max_dma32_pfn has no pages. It is also assumed that a zone |
2835 | * starts where the previous one ended. For example, ZONE_DMA32 starts | 2835 | * starts where the previous one ended. For example, ZONE_DMA32 starts |
2836 | * at arch_max_dma_pfn. | 2836 | * at arch_max_dma_pfn. |
2837 | */ | 2837 | */ |
2838 | void __init free_area_init_nodes(unsigned long *max_zone_pfn) | 2838 | void __init free_area_init_nodes(unsigned long *max_zone_pfn) |
2839 | { | 2839 | { |
2840 | unsigned long nid; | 2840 | unsigned long nid; |
2841 | enum zone_type i; | 2841 | enum zone_type i; |
2842 | 2842 | ||
2843 | /* Record where the zone boundaries are */ | 2843 | /* Record where the zone boundaries are */ |
2844 | memset(arch_zone_lowest_possible_pfn, 0, | 2844 | memset(arch_zone_lowest_possible_pfn, 0, |
2845 | sizeof(arch_zone_lowest_possible_pfn)); | 2845 | sizeof(arch_zone_lowest_possible_pfn)); |
2846 | memset(arch_zone_highest_possible_pfn, 0, | 2846 | memset(arch_zone_highest_possible_pfn, 0, |
2847 | sizeof(arch_zone_highest_possible_pfn)); | 2847 | sizeof(arch_zone_highest_possible_pfn)); |
2848 | arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); | 2848 | arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); |
2849 | arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; | 2849 | arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; |
2850 | for (i = 1; i < MAX_NR_ZONES; i++) { | 2850 | for (i = 1; i < MAX_NR_ZONES; i++) { |
2851 | arch_zone_lowest_possible_pfn[i] = | 2851 | arch_zone_lowest_possible_pfn[i] = |
2852 | arch_zone_highest_possible_pfn[i-1]; | 2852 | arch_zone_highest_possible_pfn[i-1]; |
2853 | arch_zone_highest_possible_pfn[i] = | 2853 | arch_zone_highest_possible_pfn[i] = |
2854 | max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); | 2854 | max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); |
2855 | } | 2855 | } |
2856 | 2856 | ||
2857 | /* Print out the zone ranges */ | 2857 | /* Print out the zone ranges */ |
2858 | printk("Zone PFN ranges:\n"); | 2858 | printk("Zone PFN ranges:\n"); |
2859 | for (i = 0; i < MAX_NR_ZONES; i++) | 2859 | for (i = 0; i < MAX_NR_ZONES; i++) |
2860 | printk(" %-8s %8lu -> %8lu\n", | 2860 | printk(" %-8s %8lu -> %8lu\n", |
2861 | zone_names[i], | 2861 | zone_names[i], |
2862 | arch_zone_lowest_possible_pfn[i], | 2862 | arch_zone_lowest_possible_pfn[i], |
2863 | arch_zone_highest_possible_pfn[i]); | 2863 | arch_zone_highest_possible_pfn[i]); |
2864 | 2864 | ||
2865 | /* Print out the early_node_map[] */ | 2865 | /* Print out the early_node_map[] */ |
2866 | printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries); | 2866 | printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries); |
2867 | for (i = 0; i < nr_nodemap_entries; i++) | 2867 | for (i = 0; i < nr_nodemap_entries; i++) |
2868 | printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid, | 2868 | printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid, |
2869 | early_node_map[i].start_pfn, | 2869 | early_node_map[i].start_pfn, |
2870 | early_node_map[i].end_pfn); | 2870 | early_node_map[i].end_pfn); |
2871 | 2871 | ||
2872 | /* Initialise every node */ | 2872 | /* Initialise every node */ |
2873 | for_each_online_node(nid) { | 2873 | for_each_online_node(nid) { |
2874 | pg_data_t *pgdat = NODE_DATA(nid); | 2874 | pg_data_t *pgdat = NODE_DATA(nid); |
2875 | free_area_init_node(nid, pgdat, NULL, | 2875 | free_area_init_node(nid, pgdat, NULL, |
2876 | find_min_pfn_for_node(nid), NULL); | 2876 | find_min_pfn_for_node(nid), NULL); |
2877 | } | 2877 | } |
2878 | } | 2878 | } |
2879 | #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ | 2879 | #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ |
2880 | 2880 | ||
2881 | /** | 2881 | /** |
2882 | * set_dma_reserve - set the specified number of pages reserved in the first zone | 2882 | * set_dma_reserve - set the specified number of pages reserved in the first zone |
2883 | * @new_dma_reserve: The number of pages to mark reserved | 2883 | * @new_dma_reserve: The number of pages to mark reserved |
2884 | * | 2884 | * |
2885 | * The per-cpu batchsize and zone watermarks are determined by present_pages. | 2885 | * The per-cpu batchsize and zone watermarks are determined by present_pages. |
2886 | * In the DMA zone, a significant percentage may be consumed by kernel image | 2886 | * In the DMA zone, a significant percentage may be consumed by kernel image |
2887 | * and other unfreeable allocations which can skew the watermarks badly. This | 2887 | * and other unfreeable allocations which can skew the watermarks badly. This |
2888 | * function may optionally be used to account for unfreeable pages in the | 2888 | * function may optionally be used to account for unfreeable pages in the |
2889 | * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and | 2889 | * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and |
2890 | * smaller per-cpu batchsize. | 2890 | * smaller per-cpu batchsize. |
2891 | */ | 2891 | */ |
2892 | void __init set_dma_reserve(unsigned long new_dma_reserve) | 2892 | void __init set_dma_reserve(unsigned long new_dma_reserve) |
2893 | { | 2893 | { |
2894 | dma_reserve = new_dma_reserve; | 2894 | dma_reserve = new_dma_reserve; |
2895 | } | 2895 | } |
2896 | 2896 | ||
2897 | #ifndef CONFIG_NEED_MULTIPLE_NODES | 2897 | #ifndef CONFIG_NEED_MULTIPLE_NODES |
2898 | static bootmem_data_t contig_bootmem_data; | 2898 | static bootmem_data_t contig_bootmem_data; |
2899 | struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data }; | 2899 | struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data }; |
2900 | 2900 | ||
2901 | EXPORT_SYMBOL(contig_page_data); | 2901 | EXPORT_SYMBOL(contig_page_data); |
2902 | #endif | 2902 | #endif |
2903 | 2903 | ||
2904 | void __init free_area_init(unsigned long *zones_size) | 2904 | void __init free_area_init(unsigned long *zones_size) |
2905 | { | 2905 | { |
2906 | free_area_init_node(0, NODE_DATA(0), zones_size, | 2906 | free_area_init_node(0, NODE_DATA(0), zones_size, |
2907 | __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); | 2907 | __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); |
2908 | } | 2908 | } |
2909 | 2909 | ||
2910 | #ifdef CONFIG_HOTPLUG_CPU | 2910 | #ifdef CONFIG_HOTPLUG_CPU |
2911 | static int page_alloc_cpu_notify(struct notifier_block *self, | 2911 | static int page_alloc_cpu_notify(struct notifier_block *self, |
2912 | unsigned long action, void *hcpu) | 2912 | unsigned long action, void *hcpu) |
2913 | { | 2913 | { |
2914 | int cpu = (unsigned long)hcpu; | 2914 | int cpu = (unsigned long)hcpu; |
2915 | 2915 | ||
2916 | if (action == CPU_DEAD) { | 2916 | if (action == CPU_DEAD) { |
2917 | local_irq_disable(); | 2917 | local_irq_disable(); |
2918 | __drain_pages(cpu); | 2918 | __drain_pages(cpu); |
2919 | vm_events_fold_cpu(cpu); | 2919 | vm_events_fold_cpu(cpu); |
2920 | local_irq_enable(); | 2920 | local_irq_enable(); |
2921 | refresh_cpu_vm_stats(cpu); | 2921 | refresh_cpu_vm_stats(cpu); |
2922 | } | 2922 | } |
2923 | return NOTIFY_OK; | 2923 | return NOTIFY_OK; |
2924 | } | 2924 | } |
2925 | #endif /* CONFIG_HOTPLUG_CPU */ | 2925 | #endif /* CONFIG_HOTPLUG_CPU */ |
2926 | 2926 | ||
2927 | void __init page_alloc_init(void) | 2927 | void __init page_alloc_init(void) |
2928 | { | 2928 | { |
2929 | hotcpu_notifier(page_alloc_cpu_notify, 0); | 2929 | hotcpu_notifier(page_alloc_cpu_notify, 0); |
2930 | } | 2930 | } |
2931 | 2931 | ||
2932 | /* | 2932 | /* |
2933 | * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio | 2933 | * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio |
2934 | * or min_free_kbytes changes. | 2934 | * or min_free_kbytes changes. |
2935 | */ | 2935 | */ |
2936 | static void calculate_totalreserve_pages(void) | 2936 | static void calculate_totalreserve_pages(void) |
2937 | { | 2937 | { |
2938 | struct pglist_data *pgdat; | 2938 | struct pglist_data *pgdat; |
2939 | unsigned long reserve_pages = 0; | 2939 | unsigned long reserve_pages = 0; |
2940 | enum zone_type i, j; | 2940 | enum zone_type i, j; |
2941 | 2941 | ||
2942 | for_each_online_pgdat(pgdat) { | 2942 | for_each_online_pgdat(pgdat) { |
2943 | for (i = 0; i < MAX_NR_ZONES; i++) { | 2943 | for (i = 0; i < MAX_NR_ZONES; i++) { |
2944 | struct zone *zone = pgdat->node_zones + i; | 2944 | struct zone *zone = pgdat->node_zones + i; |
2945 | unsigned long max = 0; | 2945 | unsigned long max = 0; |
2946 | 2946 | ||
2947 | /* Find valid and maximum lowmem_reserve in the zone */ | 2947 | /* Find valid and maximum lowmem_reserve in the zone */ |
2948 | for (j = i; j < MAX_NR_ZONES; j++) { | 2948 | for (j = i; j < MAX_NR_ZONES; j++) { |
2949 | if (zone->lowmem_reserve[j] > max) | 2949 | if (zone->lowmem_reserve[j] > max) |
2950 | max = zone->lowmem_reserve[j]; | 2950 | max = zone->lowmem_reserve[j]; |
2951 | } | 2951 | } |
2952 | 2952 | ||
2953 | /* we treat pages_high as reserved pages. */ | 2953 | /* we treat pages_high as reserved pages. */ |
2954 | max += zone->pages_high; | 2954 | max += zone->pages_high; |
2955 | 2955 | ||
2956 | if (max > zone->present_pages) | 2956 | if (max > zone->present_pages) |
2957 | max = zone->present_pages; | 2957 | max = zone->present_pages; |
2958 | reserve_pages += max; | 2958 | reserve_pages += max; |
2959 | } | 2959 | } |
2960 | } | 2960 | } |
2961 | totalreserve_pages = reserve_pages; | 2961 | totalreserve_pages = reserve_pages; |
2962 | } | 2962 | } |
2963 | 2963 | ||
2964 | /* | 2964 | /* |
2965 | * setup_per_zone_lowmem_reserve - called whenever | 2965 | * setup_per_zone_lowmem_reserve - called whenever |
2966 | * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone | 2966 | * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone |
2967 | * has a correct pages reserved value, so an adequate number of | 2967 | * has a correct pages reserved value, so an adequate number of |
2968 | * pages are left in the zone after a successful __alloc_pages(). | 2968 | * pages are left in the zone after a successful __alloc_pages(). |
2969 | */ | 2969 | */ |
2970 | static void setup_per_zone_lowmem_reserve(void) | 2970 | static void setup_per_zone_lowmem_reserve(void) |
2971 | { | 2971 | { |
2972 | struct pglist_data *pgdat; | 2972 | struct pglist_data *pgdat; |
2973 | enum zone_type j, idx; | 2973 | enum zone_type j, idx; |
2974 | 2974 | ||
2975 | for_each_online_pgdat(pgdat) { | 2975 | for_each_online_pgdat(pgdat) { |
2976 | for (j = 0; j < MAX_NR_ZONES; j++) { | 2976 | for (j = 0; j < MAX_NR_ZONES; j++) { |
2977 | struct zone *zone = pgdat->node_zones + j; | 2977 | struct zone *zone = pgdat->node_zones + j; |
2978 | unsigned long present_pages = zone->present_pages; | 2978 | unsigned long present_pages = zone->present_pages; |
2979 | 2979 | ||
2980 | zone->lowmem_reserve[j] = 0; | 2980 | zone->lowmem_reserve[j] = 0; |
2981 | 2981 | ||
2982 | idx = j; | 2982 | idx = j; |
2983 | while (idx) { | 2983 | while (idx) { |
2984 | struct zone *lower_zone; | 2984 | struct zone *lower_zone; |
2985 | 2985 | ||
2986 | idx--; | 2986 | idx--; |
2987 | 2987 | ||
2988 | if (sysctl_lowmem_reserve_ratio[idx] < 1) | 2988 | if (sysctl_lowmem_reserve_ratio[idx] < 1) |
2989 | sysctl_lowmem_reserve_ratio[idx] = 1; | 2989 | sysctl_lowmem_reserve_ratio[idx] = 1; |
2990 | 2990 | ||
2991 | lower_zone = pgdat->node_zones + idx; | 2991 | lower_zone = pgdat->node_zones + idx; |
2992 | lower_zone->lowmem_reserve[j] = present_pages / | 2992 | lower_zone->lowmem_reserve[j] = present_pages / |
2993 | sysctl_lowmem_reserve_ratio[idx]; | 2993 | sysctl_lowmem_reserve_ratio[idx]; |
2994 | present_pages += lower_zone->present_pages; | 2994 | present_pages += lower_zone->present_pages; |
2995 | } | 2995 | } |
2996 | } | 2996 | } |
2997 | } | 2997 | } |
2998 | 2998 | ||
2999 | /* update totalreserve_pages */ | 2999 | /* update totalreserve_pages */ |
3000 | calculate_totalreserve_pages(); | 3000 | calculate_totalreserve_pages(); |
3001 | } | 3001 | } |
3002 | 3002 | ||
3003 | /** | 3003 | /** |
3004 | * setup_per_zone_pages_min - called when min_free_kbytes changes. | 3004 | * setup_per_zone_pages_min - called when min_free_kbytes changes. |
3005 | * | 3005 | * |
3006 | * Ensures that the pages_{min,low,high} values for each zone are set correctly | 3006 | * Ensures that the pages_{min,low,high} values for each zone are set correctly |
3007 | * with respect to min_free_kbytes. | 3007 | * with respect to min_free_kbytes. |
3008 | */ | 3008 | */ |
3009 | void setup_per_zone_pages_min(void) | 3009 | void setup_per_zone_pages_min(void) |
3010 | { | 3010 | { |
3011 | unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); | 3011 | unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); |
3012 | unsigned long lowmem_pages = 0; | 3012 | unsigned long lowmem_pages = 0; |
3013 | struct zone *zone; | 3013 | struct zone *zone; |
3014 | unsigned long flags; | 3014 | unsigned long flags; |
3015 | 3015 | ||
3016 | /* Calculate total number of !ZONE_HIGHMEM pages */ | 3016 | /* Calculate total number of !ZONE_HIGHMEM pages */ |
3017 | for_each_zone(zone) { | 3017 | for_each_zone(zone) { |
3018 | if (!is_highmem(zone)) | 3018 | if (!is_highmem(zone)) |
3019 | lowmem_pages += zone->present_pages; | 3019 | lowmem_pages += zone->present_pages; |
3020 | } | 3020 | } |
3021 | 3021 | ||
3022 | for_each_zone(zone) { | 3022 | for_each_zone(zone) { |
3023 | u64 tmp; | 3023 | u64 tmp; |
3024 | 3024 | ||
3025 | spin_lock_irqsave(&zone->lru_lock, flags); | 3025 | spin_lock_irqsave(&zone->lru_lock, flags); |
3026 | tmp = (u64)pages_min * zone->present_pages; | 3026 | tmp = (u64)pages_min * zone->present_pages; |
3027 | do_div(tmp, lowmem_pages); | 3027 | do_div(tmp, lowmem_pages); |
3028 | if (is_highmem(zone)) { | 3028 | if (is_highmem(zone)) { |
3029 | /* | 3029 | /* |
3030 | * __GFP_HIGH and PF_MEMALLOC allocations usually don't | 3030 | * __GFP_HIGH and PF_MEMALLOC allocations usually don't |
3031 | * need highmem pages, so cap pages_min to a small | 3031 | * need highmem pages, so cap pages_min to a small |
3032 | * value here. | 3032 | * value here. |
3033 | * | 3033 | * |
3034 | * The (pages_high-pages_low) and (pages_low-pages_min) | 3034 | * The (pages_high-pages_low) and (pages_low-pages_min) |
3035 | * deltas controls asynch page reclaim, and so should | 3035 | * deltas controls asynch page reclaim, and so should |
3036 | * not be capped for highmem. | 3036 | * not be capped for highmem. |
3037 | */ | 3037 | */ |
3038 | int min_pages; | 3038 | int min_pages; |
3039 | 3039 | ||
3040 | min_pages = zone->present_pages / 1024; | 3040 | min_pages = zone->present_pages / 1024; |
3041 | if (min_pages < SWAP_CLUSTER_MAX) | 3041 | if (min_pages < SWAP_CLUSTER_MAX) |
3042 | min_pages = SWAP_CLUSTER_MAX; | 3042 | min_pages = SWAP_CLUSTER_MAX; |
3043 | if (min_pages > 128) | 3043 | if (min_pages > 128) |
3044 | min_pages = 128; | 3044 | min_pages = 128; |
3045 | zone->pages_min = min_pages; | 3045 | zone->pages_min = min_pages; |
3046 | } else { | 3046 | } else { |
3047 | /* | 3047 | /* |
3048 | * If it's a lowmem zone, reserve a number of pages | 3048 | * If it's a lowmem zone, reserve a number of pages |
3049 | * proportionate to the zone's size. | 3049 | * proportionate to the zone's size. |
3050 | */ | 3050 | */ |
3051 | zone->pages_min = tmp; | 3051 | zone->pages_min = tmp; |
3052 | } | 3052 | } |
3053 | 3053 | ||
3054 | zone->pages_low = zone->pages_min + (tmp >> 2); | 3054 | zone->pages_low = zone->pages_min + (tmp >> 2); |
3055 | zone->pages_high = zone->pages_min + (tmp >> 1); | 3055 | zone->pages_high = zone->pages_min + (tmp >> 1); |
3056 | spin_unlock_irqrestore(&zone->lru_lock, flags); | 3056 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
3057 | } | 3057 | } |
3058 | 3058 | ||
3059 | /* update totalreserve_pages */ | 3059 | /* update totalreserve_pages */ |
3060 | calculate_totalreserve_pages(); | 3060 | calculate_totalreserve_pages(); |
3061 | } | 3061 | } |
3062 | 3062 | ||
3063 | /* | 3063 | /* |
3064 | * Initialise min_free_kbytes. | 3064 | * Initialise min_free_kbytes. |
3065 | * | 3065 | * |
3066 | * For small machines we want it small (128k min). For large machines | 3066 | * For small machines we want it small (128k min). For large machines |
3067 | * we want it large (64MB max). But it is not linear, because network | 3067 | * we want it large (64MB max). But it is not linear, because network |
3068 | * bandwidth does not increase linearly with machine size. We use | 3068 | * bandwidth does not increase linearly with machine size. We use |
3069 | * | 3069 | * |
3070 | * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: | 3070 | * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: |
3071 | * min_free_kbytes = sqrt(lowmem_kbytes * 16) | 3071 | * min_free_kbytes = sqrt(lowmem_kbytes * 16) |
3072 | * | 3072 | * |
3073 | * which yields | 3073 | * which yields |
3074 | * | 3074 | * |
3075 | * 16MB: 512k | 3075 | * 16MB: 512k |
3076 | * 32MB: 724k | 3076 | * 32MB: 724k |
3077 | * 64MB: 1024k | 3077 | * 64MB: 1024k |
3078 | * 128MB: 1448k | 3078 | * 128MB: 1448k |
3079 | * 256MB: 2048k | 3079 | * 256MB: 2048k |
3080 | * 512MB: 2896k | 3080 | * 512MB: 2896k |
3081 | * 1024MB: 4096k | 3081 | * 1024MB: 4096k |
3082 | * 2048MB: 5792k | 3082 | * 2048MB: 5792k |
3083 | * 4096MB: 8192k | 3083 | * 4096MB: 8192k |
3084 | * 8192MB: 11584k | 3084 | * 8192MB: 11584k |
3085 | * 16384MB: 16384k | 3085 | * 16384MB: 16384k |
3086 | */ | 3086 | */ |
3087 | static int __init init_per_zone_pages_min(void) | 3087 | static int __init init_per_zone_pages_min(void) |
3088 | { | 3088 | { |
3089 | unsigned long lowmem_kbytes; | 3089 | unsigned long lowmem_kbytes; |
3090 | 3090 | ||
3091 | lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); | 3091 | lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); |
3092 | 3092 | ||
3093 | min_free_kbytes = int_sqrt(lowmem_kbytes * 16); | 3093 | min_free_kbytes = int_sqrt(lowmem_kbytes * 16); |
3094 | if (min_free_kbytes < 128) | 3094 | if (min_free_kbytes < 128) |
3095 | min_free_kbytes = 128; | 3095 | min_free_kbytes = 128; |
3096 | if (min_free_kbytes > 65536) | 3096 | if (min_free_kbytes > 65536) |
3097 | min_free_kbytes = 65536; | 3097 | min_free_kbytes = 65536; |
3098 | setup_per_zone_pages_min(); | 3098 | setup_per_zone_pages_min(); |
3099 | setup_per_zone_lowmem_reserve(); | 3099 | setup_per_zone_lowmem_reserve(); |
3100 | return 0; | 3100 | return 0; |
3101 | } | 3101 | } |
3102 | module_init(init_per_zone_pages_min) | 3102 | module_init(init_per_zone_pages_min) |
3103 | 3103 | ||
3104 | /* | 3104 | /* |
3105 | * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so | 3105 | * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so |
3106 | * that we can call two helper functions whenever min_free_kbytes | 3106 | * that we can call two helper functions whenever min_free_kbytes |
3107 | * changes. | 3107 | * changes. |
3108 | */ | 3108 | */ |
3109 | int min_free_kbytes_sysctl_handler(ctl_table *table, int write, | 3109 | int min_free_kbytes_sysctl_handler(ctl_table *table, int write, |
3110 | struct file *file, void __user *buffer, size_t *length, loff_t *ppos) | 3110 | struct file *file, void __user *buffer, size_t *length, loff_t *ppos) |
3111 | { | 3111 | { |
3112 | proc_dointvec(table, write, file, buffer, length, ppos); | 3112 | proc_dointvec(table, write, file, buffer, length, ppos); |
3113 | setup_per_zone_pages_min(); | 3113 | setup_per_zone_pages_min(); |
3114 | return 0; | 3114 | return 0; |
3115 | } | 3115 | } |
3116 | 3116 | ||
3117 | #ifdef CONFIG_NUMA | 3117 | #ifdef CONFIG_NUMA |
3118 | int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, | 3118 | int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, |
3119 | struct file *file, void __user *buffer, size_t *length, loff_t *ppos) | 3119 | struct file *file, void __user *buffer, size_t *length, loff_t *ppos) |
3120 | { | 3120 | { |
3121 | struct zone *zone; | 3121 | struct zone *zone; |
3122 | int rc; | 3122 | int rc; |
3123 | 3123 | ||
3124 | rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); | 3124 | rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); |
3125 | if (rc) | 3125 | if (rc) |
3126 | return rc; | 3126 | return rc; |
3127 | 3127 | ||
3128 | for_each_zone(zone) | 3128 | for_each_zone(zone) |
3129 | zone->min_unmapped_pages = (zone->present_pages * | 3129 | zone->min_unmapped_pages = (zone->present_pages * |
3130 | sysctl_min_unmapped_ratio) / 100; | 3130 | sysctl_min_unmapped_ratio) / 100; |
3131 | return 0; | 3131 | return 0; |
3132 | } | 3132 | } |
3133 | 3133 | ||
3134 | int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, | 3134 | int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, |
3135 | struct file *file, void __user *buffer, size_t *length, loff_t *ppos) | 3135 | struct file *file, void __user *buffer, size_t *length, loff_t *ppos) |
3136 | { | 3136 | { |
3137 | struct zone *zone; | 3137 | struct zone *zone; |
3138 | int rc; | 3138 | int rc; |
3139 | 3139 | ||
3140 | rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); | 3140 | rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); |
3141 | if (rc) | 3141 | if (rc) |
3142 | return rc; | 3142 | return rc; |
3143 | 3143 | ||
3144 | for_each_zone(zone) | 3144 | for_each_zone(zone) |
3145 | zone->min_slab_pages = (zone->present_pages * | 3145 | zone->min_slab_pages = (zone->present_pages * |
3146 | sysctl_min_slab_ratio) / 100; | 3146 | sysctl_min_slab_ratio) / 100; |
3147 | return 0; | 3147 | return 0; |
3148 | } | 3148 | } |
3149 | #endif | 3149 | #endif |
3150 | 3150 | ||
3151 | /* | 3151 | /* |
3152 | * lowmem_reserve_ratio_sysctl_handler - just a wrapper around | 3152 | * lowmem_reserve_ratio_sysctl_handler - just a wrapper around |
3153 | * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() | 3153 | * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() |
3154 | * whenever sysctl_lowmem_reserve_ratio changes. | 3154 | * whenever sysctl_lowmem_reserve_ratio changes. |
3155 | * | 3155 | * |
3156 | * The reserve ratio obviously has absolutely no relation with the | 3156 | * The reserve ratio obviously has absolutely no relation with the |
3157 | * pages_min watermarks. The lowmem reserve ratio can only make sense | 3157 | * pages_min watermarks. The lowmem reserve ratio can only make sense |
3158 | * if in function of the boot time zone sizes. | 3158 | * if in function of the boot time zone sizes. |
3159 | */ | 3159 | */ |
3160 | int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, | 3160 | int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, |
3161 | struct file *file, void __user *buffer, size_t *length, loff_t *ppos) | 3161 | struct file *file, void __user *buffer, size_t *length, loff_t *ppos) |
3162 | { | 3162 | { |
3163 | proc_dointvec_minmax(table, write, file, buffer, length, ppos); | 3163 | proc_dointvec_minmax(table, write, file, buffer, length, ppos); |
3164 | setup_per_zone_lowmem_reserve(); | 3164 | setup_per_zone_lowmem_reserve(); |
3165 | return 0; | 3165 | return 0; |
3166 | } | 3166 | } |
3167 | 3167 | ||
3168 | /* | 3168 | /* |
3169 | * percpu_pagelist_fraction - changes the pcp->high for each zone on each | 3169 | * percpu_pagelist_fraction - changes the pcp->high for each zone on each |
3170 | * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist | 3170 | * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist |
3171 | * can have before it gets flushed back to buddy allocator. | 3171 | * can have before it gets flushed back to buddy allocator. |
3172 | */ | 3172 | */ |
3173 | 3173 | ||
3174 | int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, | 3174 | int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, |
3175 | struct file *file, void __user *buffer, size_t *length, loff_t *ppos) | 3175 | struct file *file, void __user *buffer, size_t *length, loff_t *ppos) |
3176 | { | 3176 | { |
3177 | struct zone *zone; | 3177 | struct zone *zone; |
3178 | unsigned int cpu; | 3178 | unsigned int cpu; |
3179 | int ret; | 3179 | int ret; |
3180 | 3180 | ||
3181 | ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos); | 3181 | ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos); |
3182 | if (!write || (ret == -EINVAL)) | 3182 | if (!write || (ret == -EINVAL)) |
3183 | return ret; | 3183 | return ret; |
3184 | for_each_zone(zone) { | 3184 | for_each_zone(zone) { |
3185 | for_each_online_cpu(cpu) { | 3185 | for_each_online_cpu(cpu) { |
3186 | unsigned long high; | 3186 | unsigned long high; |
3187 | high = zone->present_pages / percpu_pagelist_fraction; | 3187 | high = zone->present_pages / percpu_pagelist_fraction; |
3188 | setup_pagelist_highmark(zone_pcp(zone, cpu), high); | 3188 | setup_pagelist_highmark(zone_pcp(zone, cpu), high); |
3189 | } | 3189 | } |
3190 | } | 3190 | } |
3191 | return 0; | 3191 | return 0; |
3192 | } | 3192 | } |
3193 | 3193 | ||
3194 | int hashdist = HASHDIST_DEFAULT; | 3194 | int hashdist = HASHDIST_DEFAULT; |
3195 | 3195 | ||
3196 | #ifdef CONFIG_NUMA | 3196 | #ifdef CONFIG_NUMA |
3197 | static int __init set_hashdist(char *str) | 3197 | static int __init set_hashdist(char *str) |
3198 | { | 3198 | { |
3199 | if (!str) | 3199 | if (!str) |
3200 | return 0; | 3200 | return 0; |
3201 | hashdist = simple_strtoul(str, &str, 0); | 3201 | hashdist = simple_strtoul(str, &str, 0); |
3202 | return 1; | 3202 | return 1; |
3203 | } | 3203 | } |
3204 | __setup("hashdist=", set_hashdist); | 3204 | __setup("hashdist=", set_hashdist); |
3205 | #endif | 3205 | #endif |
3206 | 3206 | ||
3207 | /* | 3207 | /* |
3208 | * allocate a large system hash table from bootmem | 3208 | * allocate a large system hash table from bootmem |
3209 | * - it is assumed that the hash table must contain an exact power-of-2 | 3209 | * - it is assumed that the hash table must contain an exact power-of-2 |
3210 | * quantity of entries | 3210 | * quantity of entries |
3211 | * - limit is the number of hash buckets, not the total allocation size | 3211 | * - limit is the number of hash buckets, not the total allocation size |
3212 | */ | 3212 | */ |
3213 | void *__init alloc_large_system_hash(const char *tablename, | 3213 | void *__init alloc_large_system_hash(const char *tablename, |
3214 | unsigned long bucketsize, | 3214 | unsigned long bucketsize, |
3215 | unsigned long numentries, | 3215 | unsigned long numentries, |
3216 | int scale, | 3216 | int scale, |
3217 | int flags, | 3217 | int flags, |
3218 | unsigned int *_hash_shift, | 3218 | unsigned int *_hash_shift, |
3219 | unsigned int *_hash_mask, | 3219 | unsigned int *_hash_mask, |
3220 | unsigned long limit) | 3220 | unsigned long limit) |
3221 | { | 3221 | { |
3222 | unsigned long long max = limit; | 3222 | unsigned long long max = limit; |
3223 | unsigned long log2qty, size; | 3223 | unsigned long log2qty, size; |
3224 | void *table = NULL; | 3224 | void *table = NULL; |
3225 | 3225 | ||
3226 | /* allow the kernel cmdline to have a say */ | 3226 | /* allow the kernel cmdline to have a say */ |
3227 | if (!numentries) { | 3227 | if (!numentries) { |
3228 | /* round applicable memory size up to nearest megabyte */ | 3228 | /* round applicable memory size up to nearest megabyte */ |
3229 | numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages; | 3229 | numentries = nr_kernel_pages; |
3230 | numentries += (1UL << (20 - PAGE_SHIFT)) - 1; | 3230 | numentries += (1UL << (20 - PAGE_SHIFT)) - 1; |
3231 | numentries >>= 20 - PAGE_SHIFT; | 3231 | numentries >>= 20 - PAGE_SHIFT; |
3232 | numentries <<= 20 - PAGE_SHIFT; | 3232 | numentries <<= 20 - PAGE_SHIFT; |
3233 | 3233 | ||
3234 | /* limit to 1 bucket per 2^scale bytes of low memory */ | 3234 | /* limit to 1 bucket per 2^scale bytes of low memory */ |
3235 | if (scale > PAGE_SHIFT) | 3235 | if (scale > PAGE_SHIFT) |
3236 | numentries >>= (scale - PAGE_SHIFT); | 3236 | numentries >>= (scale - PAGE_SHIFT); |
3237 | else | 3237 | else |
3238 | numentries <<= (PAGE_SHIFT - scale); | 3238 | numentries <<= (PAGE_SHIFT - scale); |
3239 | } | 3239 | } |
3240 | numentries = roundup_pow_of_two(numentries); | 3240 | numentries = roundup_pow_of_two(numentries); |
3241 | 3241 | ||
3242 | /* limit allocation size to 1/16 total memory by default */ | 3242 | /* limit allocation size to 1/16 total memory by default */ |
3243 | if (max == 0) { | 3243 | if (max == 0) { |
3244 | max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; | 3244 | max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; |
3245 | do_div(max, bucketsize); | 3245 | do_div(max, bucketsize); |
3246 | } | 3246 | } |
3247 | 3247 | ||
3248 | if (numentries > max) | 3248 | if (numentries > max) |
3249 | numentries = max; | 3249 | numentries = max; |
3250 | 3250 | ||
3251 | log2qty = long_log2(numentries); | 3251 | log2qty = long_log2(numentries); |
3252 | 3252 | ||
3253 | do { | 3253 | do { |
3254 | size = bucketsize << log2qty; | 3254 | size = bucketsize << log2qty; |
3255 | if (flags & HASH_EARLY) | 3255 | if (flags & HASH_EARLY) |
3256 | table = alloc_bootmem(size); | 3256 | table = alloc_bootmem(size); |
3257 | else if (hashdist) | 3257 | else if (hashdist) |
3258 | table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); | 3258 | table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); |
3259 | else { | 3259 | else { |
3260 | unsigned long order; | 3260 | unsigned long order; |
3261 | for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++) | 3261 | for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++) |
3262 | ; | 3262 | ; |
3263 | table = (void*) __get_free_pages(GFP_ATOMIC, order); | 3263 | table = (void*) __get_free_pages(GFP_ATOMIC, order); |
3264 | } | 3264 | } |
3265 | } while (!table && size > PAGE_SIZE && --log2qty); | 3265 | } while (!table && size > PAGE_SIZE && --log2qty); |
3266 | 3266 | ||
3267 | if (!table) | 3267 | if (!table) |
3268 | panic("Failed to allocate %s hash table\n", tablename); | 3268 | panic("Failed to allocate %s hash table\n", tablename); |
3269 | 3269 | ||
3270 | printk("%s hash table entries: %d (order: %d, %lu bytes)\n", | 3270 | printk("%s hash table entries: %d (order: %d, %lu bytes)\n", |
3271 | tablename, | 3271 | tablename, |
3272 | (1U << log2qty), | 3272 | (1U << log2qty), |
3273 | long_log2(size) - PAGE_SHIFT, | 3273 | long_log2(size) - PAGE_SHIFT, |
3274 | size); | 3274 | size); |
3275 | 3275 | ||
3276 | if (_hash_shift) | 3276 | if (_hash_shift) |
3277 | *_hash_shift = log2qty; | 3277 | *_hash_shift = log2qty; |
3278 | if (_hash_mask) | 3278 | if (_hash_mask) |
3279 | *_hash_mask = (1 << log2qty) - 1; | 3279 | *_hash_mask = (1 << log2qty) - 1; |
3280 | 3280 | ||
3281 | return table; | 3281 | return table; |
3282 | } | 3282 | } |
3283 | 3283 | ||
3284 | #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE | 3284 | #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE |
3285 | struct page *pfn_to_page(unsigned long pfn) | 3285 | struct page *pfn_to_page(unsigned long pfn) |
3286 | { | 3286 | { |
3287 | return __pfn_to_page(pfn); | 3287 | return __pfn_to_page(pfn); |
3288 | } | 3288 | } |
3289 | unsigned long page_to_pfn(struct page *page) | 3289 | unsigned long page_to_pfn(struct page *page) |
3290 | { | 3290 | { |
3291 | return __page_to_pfn(page); | 3291 | return __page_to_pfn(page); |
3292 | } | 3292 | } |
3293 | EXPORT_SYMBOL(pfn_to_page); | 3293 | EXPORT_SYMBOL(pfn_to_page); |
3294 | EXPORT_SYMBOL(page_to_pfn); | 3294 | EXPORT_SYMBOL(page_to_pfn); |
3295 | #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */ | 3295 | #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */ |
3296 | 3296 | ||
3297 | #if MAX_NUMNODES > 1 | 3297 | #if MAX_NUMNODES > 1 |
3298 | /* | 3298 | /* |
3299 | * Find the highest possible node id. | 3299 | * Find the highest possible node id. |
3300 | */ | 3300 | */ |
3301 | int highest_possible_node_id(void) | 3301 | int highest_possible_node_id(void) |
3302 | { | 3302 | { |
3303 | unsigned int node; | 3303 | unsigned int node; |
3304 | unsigned int highest = 0; | 3304 | unsigned int highest = 0; |
3305 | 3305 | ||
3306 | for_each_node_mask(node, node_possible_map) | 3306 | for_each_node_mask(node, node_possible_map) |
3307 | highest = node; | 3307 | highest = node; |
3308 | return highest; | 3308 | return highest; |
3309 | } | 3309 | } |
3310 | EXPORT_SYMBOL(highest_possible_node_id); | 3310 | EXPORT_SYMBOL(highest_possible_node_id); |
3311 | #endif | 3311 | #endif |
3312 | 3312 |