Commit 0562f7882d968463119bb63d47ef4bdaba7d6631

Authored by Mika Westerberg
Committed by Mark Brown
1 parent 7750752a22

ASoC: don't register AC97 devices twice

With generic AC97 ASoC glue driver (codec/ac97.c), we get following warning when
the device is registered (slightly stripped the backtrace):

kobject (c5a863e8): tried to init an initialized object, something is seriously
                    wrong.
[<c00254fc>] (unwind_backtrace+0x0/0xec)
[<c014fad0>] (kobject_init+0x38/0x70)
[<c0171e94>] (device_initialize+0x20/0x70)
[<c017267c>] (device_register+0xc/0x18)
[<bf20db70>] (snd_soc_instantiate_cards+0x924/0xacc [snd_soc_core])
[<bf20e0d0>] (snd_soc_register_platform+0x16c/0x198 [snd_soc_core])
[<c0175304>] (platform_drv_probe+0x18/0x1c)
[<c0174454>] (driver_probe_device+0xb0/0x16c)
[<c017456c>] (__driver_attach+0x5c/0x7c)
[<c0173cec>] (bus_for_each_dev+0x48/0x78)
[<c0173600>] (bus_add_driver+0x98/0x214)
[<c0174834>] (driver_register+0xa4/0x130)
[<c001f410>] (do_one_initcall+0xd0/0x1a4)
[<c0062ddc>] (sys_init_module+0x12b0/0x1454)

This happens because the generic AC97 glue driver creates its codec->ac97 via
calling snd_ac97_mixer(). snd_ac97_mixer() provides own version of
snd_device.register which handles the device registration when
snd_card_register() is called.

To avoid registering the AC97 device twice, we add a new flag to the
snd_soc_codec: ac97_created which tells whether the AC97 device was created by
SoC subsystem.

Signed-off-by: Mika Westerberg <mika.westerberg@iki.fi>
Acked-by: Liam Girdwood <lrg@slimlogic.co.uk>
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>

Showing 2 changed files with 19 additions and 0 deletions Inline Diff

1 /* 1 /*
2 * linux/sound/soc.h -- ALSA SoC Layer 2 * linux/sound/soc.h -- ALSA SoC Layer
3 * 3 *
4 * Author: Liam Girdwood 4 * Author: Liam Girdwood
5 * Created: Aug 11th 2005 5 * Created: Aug 11th 2005
6 * Copyright: Wolfson Microelectronics. PLC. 6 * Copyright: Wolfson Microelectronics. PLC.
7 * 7 *
8 * This program is free software; you can redistribute it and/or modify 8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as 9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation. 10 * published by the Free Software Foundation.
11 */ 11 */
12 12
13 #ifndef __LINUX_SND_SOC_H 13 #ifndef __LINUX_SND_SOC_H
14 #define __LINUX_SND_SOC_H 14 #define __LINUX_SND_SOC_H
15 15
16 #include <linux/platform_device.h> 16 #include <linux/platform_device.h>
17 #include <linux/types.h> 17 #include <linux/types.h>
18 #include <linux/notifier.h> 18 #include <linux/notifier.h>
19 #include <linux/workqueue.h> 19 #include <linux/workqueue.h>
20 #include <linux/interrupt.h> 20 #include <linux/interrupt.h>
21 #include <linux/kernel.h> 21 #include <linux/kernel.h>
22 #include <sound/core.h> 22 #include <sound/core.h>
23 #include <sound/pcm.h> 23 #include <sound/pcm.h>
24 #include <sound/control.h> 24 #include <sound/control.h>
25 #include <sound/ac97_codec.h> 25 #include <sound/ac97_codec.h>
26 26
27 /* 27 /*
28 * Convenience kcontrol builders 28 * Convenience kcontrol builders
29 */ 29 */
30 #define SOC_SINGLE_VALUE(xreg, xshift, xmax, xinvert) \ 30 #define SOC_SINGLE_VALUE(xreg, xshift, xmax, xinvert) \
31 ((unsigned long)&(struct soc_mixer_control) \ 31 ((unsigned long)&(struct soc_mixer_control) \
32 {.reg = xreg, .shift = xshift, .rshift = xshift, .max = xmax, \ 32 {.reg = xreg, .shift = xshift, .rshift = xshift, .max = xmax, \
33 .platform_max = xmax, .invert = xinvert}) 33 .platform_max = xmax, .invert = xinvert})
34 #define SOC_SINGLE_VALUE_EXT(xreg, xmax, xinvert) \ 34 #define SOC_SINGLE_VALUE_EXT(xreg, xmax, xinvert) \
35 ((unsigned long)&(struct soc_mixer_control) \ 35 ((unsigned long)&(struct soc_mixer_control) \
36 {.reg = xreg, .max = xmax, .platform_max = xmax, .invert = xinvert}) 36 {.reg = xreg, .max = xmax, .platform_max = xmax, .invert = xinvert})
37 #define SOC_SINGLE(xname, reg, shift, max, invert) \ 37 #define SOC_SINGLE(xname, reg, shift, max, invert) \
38 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 38 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
39 .info = snd_soc_info_volsw, .get = snd_soc_get_volsw,\ 39 .info = snd_soc_info_volsw, .get = snd_soc_get_volsw,\
40 .put = snd_soc_put_volsw, \ 40 .put = snd_soc_put_volsw, \
41 .private_value = SOC_SINGLE_VALUE(reg, shift, max, invert) } 41 .private_value = SOC_SINGLE_VALUE(reg, shift, max, invert) }
42 #define SOC_SINGLE_TLV(xname, reg, shift, max, invert, tlv_array) \ 42 #define SOC_SINGLE_TLV(xname, reg, shift, max, invert, tlv_array) \
43 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 43 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
44 .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |\ 44 .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |\
45 SNDRV_CTL_ELEM_ACCESS_READWRITE,\ 45 SNDRV_CTL_ELEM_ACCESS_READWRITE,\
46 .tlv.p = (tlv_array), \ 46 .tlv.p = (tlv_array), \
47 .info = snd_soc_info_volsw, .get = snd_soc_get_volsw,\ 47 .info = snd_soc_info_volsw, .get = snd_soc_get_volsw,\
48 .put = snd_soc_put_volsw, \ 48 .put = snd_soc_put_volsw, \
49 .private_value = SOC_SINGLE_VALUE(reg, shift, max, invert) } 49 .private_value = SOC_SINGLE_VALUE(reg, shift, max, invert) }
50 #define SOC_DOUBLE(xname, xreg, shift_left, shift_right, xmax, xinvert) \ 50 #define SOC_DOUBLE(xname, xreg, shift_left, shift_right, xmax, xinvert) \
51 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),\ 51 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),\
52 .info = snd_soc_info_volsw, .get = snd_soc_get_volsw, \ 52 .info = snd_soc_info_volsw, .get = snd_soc_get_volsw, \
53 .put = snd_soc_put_volsw, \ 53 .put = snd_soc_put_volsw, \
54 .private_value = (unsigned long)&(struct soc_mixer_control) \ 54 .private_value = (unsigned long)&(struct soc_mixer_control) \
55 {.reg = xreg, .shift = shift_left, .rshift = shift_right, \ 55 {.reg = xreg, .shift = shift_left, .rshift = shift_right, \
56 .max = xmax, .platform_max = xmax, .invert = xinvert} } 56 .max = xmax, .platform_max = xmax, .invert = xinvert} }
57 #define SOC_DOUBLE_R(xname, reg_left, reg_right, xshift, xmax, xinvert) \ 57 #define SOC_DOUBLE_R(xname, reg_left, reg_right, xshift, xmax, xinvert) \
58 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), \ 58 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), \
59 .info = snd_soc_info_volsw_2r, \ 59 .info = snd_soc_info_volsw_2r, \
60 .get = snd_soc_get_volsw_2r, .put = snd_soc_put_volsw_2r, \ 60 .get = snd_soc_get_volsw_2r, .put = snd_soc_put_volsw_2r, \
61 .private_value = (unsigned long)&(struct soc_mixer_control) \ 61 .private_value = (unsigned long)&(struct soc_mixer_control) \
62 {.reg = reg_left, .rreg = reg_right, .shift = xshift, \ 62 {.reg = reg_left, .rreg = reg_right, .shift = xshift, \
63 .max = xmax, .platform_max = xmax, .invert = xinvert} } 63 .max = xmax, .platform_max = xmax, .invert = xinvert} }
64 #define SOC_DOUBLE_TLV(xname, xreg, shift_left, shift_right, xmax, xinvert, tlv_array) \ 64 #define SOC_DOUBLE_TLV(xname, xreg, shift_left, shift_right, xmax, xinvert, tlv_array) \
65 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),\ 65 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),\
66 .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |\ 66 .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |\
67 SNDRV_CTL_ELEM_ACCESS_READWRITE,\ 67 SNDRV_CTL_ELEM_ACCESS_READWRITE,\
68 .tlv.p = (tlv_array), \ 68 .tlv.p = (tlv_array), \
69 .info = snd_soc_info_volsw, .get = snd_soc_get_volsw, \ 69 .info = snd_soc_info_volsw, .get = snd_soc_get_volsw, \
70 .put = snd_soc_put_volsw, \ 70 .put = snd_soc_put_volsw, \
71 .private_value = (unsigned long)&(struct soc_mixer_control) \ 71 .private_value = (unsigned long)&(struct soc_mixer_control) \
72 {.reg = xreg, .shift = shift_left, .rshift = shift_right,\ 72 {.reg = xreg, .shift = shift_left, .rshift = shift_right,\
73 .max = xmax, .platform_max = xmax, .invert = xinvert} } 73 .max = xmax, .platform_max = xmax, .invert = xinvert} }
74 #define SOC_DOUBLE_R_TLV(xname, reg_left, reg_right, xshift, xmax, xinvert, tlv_array) \ 74 #define SOC_DOUBLE_R_TLV(xname, reg_left, reg_right, xshift, xmax, xinvert, tlv_array) \
75 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),\ 75 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),\
76 .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |\ 76 .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |\
77 SNDRV_CTL_ELEM_ACCESS_READWRITE,\ 77 SNDRV_CTL_ELEM_ACCESS_READWRITE,\
78 .tlv.p = (tlv_array), \ 78 .tlv.p = (tlv_array), \
79 .info = snd_soc_info_volsw_2r, \ 79 .info = snd_soc_info_volsw_2r, \
80 .get = snd_soc_get_volsw_2r, .put = snd_soc_put_volsw_2r, \ 80 .get = snd_soc_get_volsw_2r, .put = snd_soc_put_volsw_2r, \
81 .private_value = (unsigned long)&(struct soc_mixer_control) \ 81 .private_value = (unsigned long)&(struct soc_mixer_control) \
82 {.reg = reg_left, .rreg = reg_right, .shift = xshift, \ 82 {.reg = reg_left, .rreg = reg_right, .shift = xshift, \
83 .max = xmax, .platform_max = xmax, .invert = xinvert} } 83 .max = xmax, .platform_max = xmax, .invert = xinvert} }
84 #define SOC_DOUBLE_S8_TLV(xname, xreg, xmin, xmax, tlv_array) \ 84 #define SOC_DOUBLE_S8_TLV(xname, xreg, xmin, xmax, tlv_array) \
85 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), \ 85 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), \
86 .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ | \ 86 .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ | \
87 SNDRV_CTL_ELEM_ACCESS_READWRITE, \ 87 SNDRV_CTL_ELEM_ACCESS_READWRITE, \
88 .tlv.p = (tlv_array), \ 88 .tlv.p = (tlv_array), \
89 .info = snd_soc_info_volsw_s8, .get = snd_soc_get_volsw_s8, \ 89 .info = snd_soc_info_volsw_s8, .get = snd_soc_get_volsw_s8, \
90 .put = snd_soc_put_volsw_s8, \ 90 .put = snd_soc_put_volsw_s8, \
91 .private_value = (unsigned long)&(struct soc_mixer_control) \ 91 .private_value = (unsigned long)&(struct soc_mixer_control) \
92 {.reg = xreg, .min = xmin, .max = xmax, \ 92 {.reg = xreg, .min = xmin, .max = xmax, \
93 .platform_max = xmax} } 93 .platform_max = xmax} }
94 #define SOC_ENUM_DOUBLE(xreg, xshift_l, xshift_r, xmax, xtexts) \ 94 #define SOC_ENUM_DOUBLE(xreg, xshift_l, xshift_r, xmax, xtexts) \
95 { .reg = xreg, .shift_l = xshift_l, .shift_r = xshift_r, \ 95 { .reg = xreg, .shift_l = xshift_l, .shift_r = xshift_r, \
96 .max = xmax, .texts = xtexts } 96 .max = xmax, .texts = xtexts }
97 #define SOC_ENUM_SINGLE(xreg, xshift, xmax, xtexts) \ 97 #define SOC_ENUM_SINGLE(xreg, xshift, xmax, xtexts) \
98 SOC_ENUM_DOUBLE(xreg, xshift, xshift, xmax, xtexts) 98 SOC_ENUM_DOUBLE(xreg, xshift, xshift, xmax, xtexts)
99 #define SOC_ENUM_SINGLE_EXT(xmax, xtexts) \ 99 #define SOC_ENUM_SINGLE_EXT(xmax, xtexts) \
100 { .max = xmax, .texts = xtexts } 100 { .max = xmax, .texts = xtexts }
101 #define SOC_VALUE_ENUM_DOUBLE(xreg, xshift_l, xshift_r, xmask, xmax, xtexts, xvalues) \ 101 #define SOC_VALUE_ENUM_DOUBLE(xreg, xshift_l, xshift_r, xmask, xmax, xtexts, xvalues) \
102 { .reg = xreg, .shift_l = xshift_l, .shift_r = xshift_r, \ 102 { .reg = xreg, .shift_l = xshift_l, .shift_r = xshift_r, \
103 .mask = xmask, .max = xmax, .texts = xtexts, .values = xvalues} 103 .mask = xmask, .max = xmax, .texts = xtexts, .values = xvalues}
104 #define SOC_VALUE_ENUM_SINGLE(xreg, xshift, xmask, xmax, xtexts, xvalues) \ 104 #define SOC_VALUE_ENUM_SINGLE(xreg, xshift, xmask, xmax, xtexts, xvalues) \
105 SOC_VALUE_ENUM_DOUBLE(xreg, xshift, xshift, xmask, xmax, xtexts, xvalues) 105 SOC_VALUE_ENUM_DOUBLE(xreg, xshift, xshift, xmask, xmax, xtexts, xvalues)
106 #define SOC_ENUM(xname, xenum) \ 106 #define SOC_ENUM(xname, xenum) \
107 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname,\ 107 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname,\
108 .info = snd_soc_info_enum_double, \ 108 .info = snd_soc_info_enum_double, \
109 .get = snd_soc_get_enum_double, .put = snd_soc_put_enum_double, \ 109 .get = snd_soc_get_enum_double, .put = snd_soc_put_enum_double, \
110 .private_value = (unsigned long)&xenum } 110 .private_value = (unsigned long)&xenum }
111 #define SOC_VALUE_ENUM(xname, xenum) \ 111 #define SOC_VALUE_ENUM(xname, xenum) \
112 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname,\ 112 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname,\
113 .info = snd_soc_info_enum_double, \ 113 .info = snd_soc_info_enum_double, \
114 .get = snd_soc_get_value_enum_double, \ 114 .get = snd_soc_get_value_enum_double, \
115 .put = snd_soc_put_value_enum_double, \ 115 .put = snd_soc_put_value_enum_double, \
116 .private_value = (unsigned long)&xenum } 116 .private_value = (unsigned long)&xenum }
117 #define SOC_SINGLE_EXT(xname, xreg, xshift, xmax, xinvert,\ 117 #define SOC_SINGLE_EXT(xname, xreg, xshift, xmax, xinvert,\
118 xhandler_get, xhandler_put) \ 118 xhandler_get, xhandler_put) \
119 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 119 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
120 .info = snd_soc_info_volsw, \ 120 .info = snd_soc_info_volsw, \
121 .get = xhandler_get, .put = xhandler_put, \ 121 .get = xhandler_get, .put = xhandler_put, \
122 .private_value = SOC_SINGLE_VALUE(xreg, xshift, xmax, xinvert) } 122 .private_value = SOC_SINGLE_VALUE(xreg, xshift, xmax, xinvert) }
123 #define SOC_DOUBLE_EXT(xname, xreg, shift_left, shift_right, xmax, xinvert,\ 123 #define SOC_DOUBLE_EXT(xname, xreg, shift_left, shift_right, xmax, xinvert,\
124 xhandler_get, xhandler_put) \ 124 xhandler_get, xhandler_put) \
125 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),\ 125 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),\
126 .info = snd_soc_info_volsw, \ 126 .info = snd_soc_info_volsw, \
127 .get = xhandler_get, .put = xhandler_put, \ 127 .get = xhandler_get, .put = xhandler_put, \
128 .private_value = (unsigned long)&(struct soc_mixer_control) \ 128 .private_value = (unsigned long)&(struct soc_mixer_control) \
129 {.reg = xreg, .shift = shift_left, .rshift = shift_right, \ 129 {.reg = xreg, .shift = shift_left, .rshift = shift_right, \
130 .max = xmax, .platform_max = xmax, .invert = xinvert} } 130 .max = xmax, .platform_max = xmax, .invert = xinvert} }
131 #define SOC_SINGLE_EXT_TLV(xname, xreg, xshift, xmax, xinvert,\ 131 #define SOC_SINGLE_EXT_TLV(xname, xreg, xshift, xmax, xinvert,\
132 xhandler_get, xhandler_put, tlv_array) \ 132 xhandler_get, xhandler_put, tlv_array) \
133 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 133 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
134 .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |\ 134 .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |\
135 SNDRV_CTL_ELEM_ACCESS_READWRITE,\ 135 SNDRV_CTL_ELEM_ACCESS_READWRITE,\
136 .tlv.p = (tlv_array), \ 136 .tlv.p = (tlv_array), \
137 .info = snd_soc_info_volsw, \ 137 .info = snd_soc_info_volsw, \
138 .get = xhandler_get, .put = xhandler_put, \ 138 .get = xhandler_get, .put = xhandler_put, \
139 .private_value = SOC_SINGLE_VALUE(xreg, xshift, xmax, xinvert) } 139 .private_value = SOC_SINGLE_VALUE(xreg, xshift, xmax, xinvert) }
140 #define SOC_DOUBLE_EXT_TLV(xname, xreg, shift_left, shift_right, xmax, xinvert,\ 140 #define SOC_DOUBLE_EXT_TLV(xname, xreg, shift_left, shift_right, xmax, xinvert,\
141 xhandler_get, xhandler_put, tlv_array) \ 141 xhandler_get, xhandler_put, tlv_array) \
142 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), \ 142 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), \
143 .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ | \ 143 .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ | \
144 SNDRV_CTL_ELEM_ACCESS_READWRITE, \ 144 SNDRV_CTL_ELEM_ACCESS_READWRITE, \
145 .tlv.p = (tlv_array), \ 145 .tlv.p = (tlv_array), \
146 .info = snd_soc_info_volsw, \ 146 .info = snd_soc_info_volsw, \
147 .get = xhandler_get, .put = xhandler_put, \ 147 .get = xhandler_get, .put = xhandler_put, \
148 .private_value = (unsigned long)&(struct soc_mixer_control) \ 148 .private_value = (unsigned long)&(struct soc_mixer_control) \
149 {.reg = xreg, .shift = shift_left, .rshift = shift_right, \ 149 {.reg = xreg, .shift = shift_left, .rshift = shift_right, \
150 .max = xmax, .platform_max = xmax, .invert = xinvert} } 150 .max = xmax, .platform_max = xmax, .invert = xinvert} }
151 #define SOC_DOUBLE_R_EXT_TLV(xname, reg_left, reg_right, xshift, xmax, xinvert,\ 151 #define SOC_DOUBLE_R_EXT_TLV(xname, reg_left, reg_right, xshift, xmax, xinvert,\
152 xhandler_get, xhandler_put, tlv_array) \ 152 xhandler_get, xhandler_put, tlv_array) \
153 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), \ 153 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), \
154 .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ | \ 154 .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ | \
155 SNDRV_CTL_ELEM_ACCESS_READWRITE, \ 155 SNDRV_CTL_ELEM_ACCESS_READWRITE, \
156 .tlv.p = (tlv_array), \ 156 .tlv.p = (tlv_array), \
157 .info = snd_soc_info_volsw_2r, \ 157 .info = snd_soc_info_volsw_2r, \
158 .get = xhandler_get, .put = xhandler_put, \ 158 .get = xhandler_get, .put = xhandler_put, \
159 .private_value = (unsigned long)&(struct soc_mixer_control) \ 159 .private_value = (unsigned long)&(struct soc_mixer_control) \
160 {.reg = reg_left, .rreg = reg_right, .shift = xshift, \ 160 {.reg = reg_left, .rreg = reg_right, .shift = xshift, \
161 .max = xmax, .platform_max = xmax, .invert = xinvert} } 161 .max = xmax, .platform_max = xmax, .invert = xinvert} }
162 #define SOC_SINGLE_BOOL_EXT(xname, xdata, xhandler_get, xhandler_put) \ 162 #define SOC_SINGLE_BOOL_EXT(xname, xdata, xhandler_get, xhandler_put) \
163 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 163 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
164 .info = snd_soc_info_bool_ext, \ 164 .info = snd_soc_info_bool_ext, \
165 .get = xhandler_get, .put = xhandler_put, \ 165 .get = xhandler_get, .put = xhandler_put, \
166 .private_value = xdata } 166 .private_value = xdata }
167 #define SOC_ENUM_EXT(xname, xenum, xhandler_get, xhandler_put) \ 167 #define SOC_ENUM_EXT(xname, xenum, xhandler_get, xhandler_put) \
168 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 168 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
169 .info = snd_soc_info_enum_ext, \ 169 .info = snd_soc_info_enum_ext, \
170 .get = xhandler_get, .put = xhandler_put, \ 170 .get = xhandler_get, .put = xhandler_put, \
171 .private_value = (unsigned long)&xenum } 171 .private_value = (unsigned long)&xenum }
172 172
173 #define SOC_DOUBLE_R_SX_TLV(xname, xreg_left, xreg_right, xshift,\ 173 #define SOC_DOUBLE_R_SX_TLV(xname, xreg_left, xreg_right, xshift,\
174 xmin, xmax, tlv_array) \ 174 xmin, xmax, tlv_array) \
175 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), \ 175 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), \
176 .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ | \ 176 .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ | \
177 SNDRV_CTL_ELEM_ACCESS_READWRITE, \ 177 SNDRV_CTL_ELEM_ACCESS_READWRITE, \
178 .tlv.p = (tlv_array), \ 178 .tlv.p = (tlv_array), \
179 .info = snd_soc_info_volsw_2r_sx, \ 179 .info = snd_soc_info_volsw_2r_sx, \
180 .get = snd_soc_get_volsw_2r_sx, \ 180 .get = snd_soc_get_volsw_2r_sx, \
181 .put = snd_soc_put_volsw_2r_sx, \ 181 .put = snd_soc_put_volsw_2r_sx, \
182 .private_value = (unsigned long)&(struct soc_mixer_control) \ 182 .private_value = (unsigned long)&(struct soc_mixer_control) \
183 {.reg = xreg_left, \ 183 {.reg = xreg_left, \
184 .rreg = xreg_right, .shift = xshift, \ 184 .rreg = xreg_right, .shift = xshift, \
185 .min = xmin, .max = xmax} } 185 .min = xmin, .max = xmax} }
186 186
187 187
188 /* 188 /*
189 * Simplified versions of above macros, declaring a struct and calculating 189 * Simplified versions of above macros, declaring a struct and calculating
190 * ARRAY_SIZE internally 190 * ARRAY_SIZE internally
191 */ 191 */
192 #define SOC_ENUM_DOUBLE_DECL(name, xreg, xshift_l, xshift_r, xtexts) \ 192 #define SOC_ENUM_DOUBLE_DECL(name, xreg, xshift_l, xshift_r, xtexts) \
193 struct soc_enum name = SOC_ENUM_DOUBLE(xreg, xshift_l, xshift_r, \ 193 struct soc_enum name = SOC_ENUM_DOUBLE(xreg, xshift_l, xshift_r, \
194 ARRAY_SIZE(xtexts), xtexts) 194 ARRAY_SIZE(xtexts), xtexts)
195 #define SOC_ENUM_SINGLE_DECL(name, xreg, xshift, xtexts) \ 195 #define SOC_ENUM_SINGLE_DECL(name, xreg, xshift, xtexts) \
196 SOC_ENUM_DOUBLE_DECL(name, xreg, xshift, xshift, xtexts) 196 SOC_ENUM_DOUBLE_DECL(name, xreg, xshift, xshift, xtexts)
197 #define SOC_ENUM_SINGLE_EXT_DECL(name, xtexts) \ 197 #define SOC_ENUM_SINGLE_EXT_DECL(name, xtexts) \
198 struct soc_enum name = SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(xtexts), xtexts) 198 struct soc_enum name = SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(xtexts), xtexts)
199 #define SOC_VALUE_ENUM_DOUBLE_DECL(name, xreg, xshift_l, xshift_r, xmask, xtexts, xvalues) \ 199 #define SOC_VALUE_ENUM_DOUBLE_DECL(name, xreg, xshift_l, xshift_r, xmask, xtexts, xvalues) \
200 struct soc_enum name = SOC_VALUE_ENUM_DOUBLE(xreg, xshift_l, xshift_r, xmask, \ 200 struct soc_enum name = SOC_VALUE_ENUM_DOUBLE(xreg, xshift_l, xshift_r, xmask, \
201 ARRAY_SIZE(xtexts), xtexts, xvalues) 201 ARRAY_SIZE(xtexts), xtexts, xvalues)
202 #define SOC_VALUE_ENUM_SINGLE_DECL(name, xreg, xshift, xmask, xtexts, xvalues) \ 202 #define SOC_VALUE_ENUM_SINGLE_DECL(name, xreg, xshift, xmask, xtexts, xvalues) \
203 SOC_VALUE_ENUM_DOUBLE_DECL(name, xreg, xshift, xshift, xmask, xtexts, xvalues) 203 SOC_VALUE_ENUM_DOUBLE_DECL(name, xreg, xshift, xshift, xmask, xtexts, xvalues)
204 204
205 /* 205 /*
206 * Bias levels 206 * Bias levels
207 * 207 *
208 * @ON: Bias is fully on for audio playback and capture operations. 208 * @ON: Bias is fully on for audio playback and capture operations.
209 * @PREPARE: Prepare for audio operations. Called before DAPM switching for 209 * @PREPARE: Prepare for audio operations. Called before DAPM switching for
210 * stream start and stop operations. 210 * stream start and stop operations.
211 * @STANDBY: Low power standby state when no playback/capture operations are 211 * @STANDBY: Low power standby state when no playback/capture operations are
212 * in progress. NOTE: The transition time between STANDBY and ON 212 * in progress. NOTE: The transition time between STANDBY and ON
213 * should be as fast as possible and no longer than 10ms. 213 * should be as fast as possible and no longer than 10ms.
214 * @OFF: Power Off. No restrictions on transition times. 214 * @OFF: Power Off. No restrictions on transition times.
215 */ 215 */
216 enum snd_soc_bias_level { 216 enum snd_soc_bias_level {
217 SND_SOC_BIAS_OFF, 217 SND_SOC_BIAS_OFF,
218 SND_SOC_BIAS_STANDBY, 218 SND_SOC_BIAS_STANDBY,
219 SND_SOC_BIAS_PREPARE, 219 SND_SOC_BIAS_PREPARE,
220 SND_SOC_BIAS_ON, 220 SND_SOC_BIAS_ON,
221 }; 221 };
222 222
223 struct snd_jack; 223 struct snd_jack;
224 struct snd_soc_card; 224 struct snd_soc_card;
225 struct snd_soc_device; 225 struct snd_soc_device;
226 struct snd_soc_pcm_stream; 226 struct snd_soc_pcm_stream;
227 struct snd_soc_ops; 227 struct snd_soc_ops;
228 struct snd_soc_dai_mode; 228 struct snd_soc_dai_mode;
229 struct snd_soc_pcm_runtime; 229 struct snd_soc_pcm_runtime;
230 struct snd_soc_dai; 230 struct snd_soc_dai;
231 struct snd_soc_dai_driver; 231 struct snd_soc_dai_driver;
232 struct snd_soc_platform; 232 struct snd_soc_platform;
233 struct snd_soc_dai_link; 233 struct snd_soc_dai_link;
234 struct snd_soc_platform_driver; 234 struct snd_soc_platform_driver;
235 struct snd_soc_codec; 235 struct snd_soc_codec;
236 struct snd_soc_codec_driver; 236 struct snd_soc_codec_driver;
237 struct soc_enum; 237 struct soc_enum;
238 struct snd_soc_ac97_ops; 238 struct snd_soc_ac97_ops;
239 struct snd_soc_jack; 239 struct snd_soc_jack;
240 struct snd_soc_jack_pin; 240 struct snd_soc_jack_pin;
241 241
242 #ifdef CONFIG_GPIOLIB 242 #ifdef CONFIG_GPIOLIB
243 struct snd_soc_jack_gpio; 243 struct snd_soc_jack_gpio;
244 #endif 244 #endif
245 245
246 typedef int (*hw_write_t)(void *,const char* ,int); 246 typedef int (*hw_write_t)(void *,const char* ,int);
247 247
248 extern struct snd_ac97_bus_ops soc_ac97_ops; 248 extern struct snd_ac97_bus_ops soc_ac97_ops;
249 249
250 enum snd_soc_control_type { 250 enum snd_soc_control_type {
251 SND_SOC_CUSTOM, 251 SND_SOC_CUSTOM,
252 SND_SOC_I2C, 252 SND_SOC_I2C,
253 SND_SOC_SPI, 253 SND_SOC_SPI,
254 }; 254 };
255 255
256 int snd_soc_register_platform(struct device *dev, 256 int snd_soc_register_platform(struct device *dev,
257 struct snd_soc_platform_driver *platform_drv); 257 struct snd_soc_platform_driver *platform_drv);
258 void snd_soc_unregister_platform(struct device *dev); 258 void snd_soc_unregister_platform(struct device *dev);
259 int snd_soc_register_codec(struct device *dev, 259 int snd_soc_register_codec(struct device *dev,
260 struct snd_soc_codec_driver *codec_drv, 260 struct snd_soc_codec_driver *codec_drv,
261 struct snd_soc_dai_driver *dai_drv, int num_dai); 261 struct snd_soc_dai_driver *dai_drv, int num_dai);
262 void snd_soc_unregister_codec(struct device *dev); 262 void snd_soc_unregister_codec(struct device *dev);
263 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec, int reg); 263 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec, int reg);
264 int snd_soc_codec_set_cache_io(struct snd_soc_codec *codec, 264 int snd_soc_codec_set_cache_io(struct snd_soc_codec *codec,
265 int addr_bits, int data_bits, 265 int addr_bits, int data_bits,
266 enum snd_soc_control_type control); 266 enum snd_soc_control_type control);
267 267
268 /* Utility functions to get clock rates from various things */ 268 /* Utility functions to get clock rates from various things */
269 int snd_soc_calc_frame_size(int sample_size, int channels, int tdm_slots); 269 int snd_soc_calc_frame_size(int sample_size, int channels, int tdm_slots);
270 int snd_soc_params_to_frame_size(struct snd_pcm_hw_params *params); 270 int snd_soc_params_to_frame_size(struct snd_pcm_hw_params *params);
271 int snd_soc_calc_bclk(int fs, int sample_size, int channels, int tdm_slots); 271 int snd_soc_calc_bclk(int fs, int sample_size, int channels, int tdm_slots);
272 int snd_soc_params_to_bclk(struct snd_pcm_hw_params *parms); 272 int snd_soc_params_to_bclk(struct snd_pcm_hw_params *parms);
273 273
274 /* set runtime hw params */ 274 /* set runtime hw params */
275 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream, 275 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
276 const struct snd_pcm_hardware *hw); 276 const struct snd_pcm_hardware *hw);
277 277
278 /* Jack reporting */ 278 /* Jack reporting */
279 int snd_soc_jack_new(struct snd_soc_codec *codec, const char *id, int type, 279 int snd_soc_jack_new(struct snd_soc_codec *codec, const char *id, int type,
280 struct snd_soc_jack *jack); 280 struct snd_soc_jack *jack);
281 void snd_soc_jack_report(struct snd_soc_jack *jack, int status, int mask); 281 void snd_soc_jack_report(struct snd_soc_jack *jack, int status, int mask);
282 int snd_soc_jack_add_pins(struct snd_soc_jack *jack, int count, 282 int snd_soc_jack_add_pins(struct snd_soc_jack *jack, int count,
283 struct snd_soc_jack_pin *pins); 283 struct snd_soc_jack_pin *pins);
284 void snd_soc_jack_notifier_register(struct snd_soc_jack *jack, 284 void snd_soc_jack_notifier_register(struct snd_soc_jack *jack,
285 struct notifier_block *nb); 285 struct notifier_block *nb);
286 void snd_soc_jack_notifier_unregister(struct snd_soc_jack *jack, 286 void snd_soc_jack_notifier_unregister(struct snd_soc_jack *jack,
287 struct notifier_block *nb); 287 struct notifier_block *nb);
288 #ifdef CONFIG_GPIOLIB 288 #ifdef CONFIG_GPIOLIB
289 int snd_soc_jack_add_gpios(struct snd_soc_jack *jack, int count, 289 int snd_soc_jack_add_gpios(struct snd_soc_jack *jack, int count,
290 struct snd_soc_jack_gpio *gpios); 290 struct snd_soc_jack_gpio *gpios);
291 void snd_soc_jack_free_gpios(struct snd_soc_jack *jack, int count, 291 void snd_soc_jack_free_gpios(struct snd_soc_jack *jack, int count,
292 struct snd_soc_jack_gpio *gpios); 292 struct snd_soc_jack_gpio *gpios);
293 #endif 293 #endif
294 294
295 /* codec register bit access */ 295 /* codec register bit access */
296 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg, 296 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
297 unsigned int mask, unsigned int value); 297 unsigned int mask, unsigned int value);
298 int snd_soc_update_bits_locked(struct snd_soc_codec *codec, 298 int snd_soc_update_bits_locked(struct snd_soc_codec *codec,
299 unsigned short reg, unsigned int mask, 299 unsigned short reg, unsigned int mask,
300 unsigned int value); 300 unsigned int value);
301 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg, 301 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
302 unsigned int mask, unsigned int value); 302 unsigned int mask, unsigned int value);
303 303
304 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec, 304 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
305 struct snd_ac97_bus_ops *ops, int num); 305 struct snd_ac97_bus_ops *ops, int num);
306 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec); 306 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec);
307 307
308 /* 308 /*
309 *Controls 309 *Controls
310 */ 310 */
311 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template, 311 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
312 void *data, char *long_name); 312 void *data, char *long_name);
313 int snd_soc_add_controls(struct snd_soc_codec *codec, 313 int snd_soc_add_controls(struct snd_soc_codec *codec,
314 const struct snd_kcontrol_new *controls, int num_controls); 314 const struct snd_kcontrol_new *controls, int num_controls);
315 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol, 315 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
316 struct snd_ctl_elem_info *uinfo); 316 struct snd_ctl_elem_info *uinfo);
317 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol, 317 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
318 struct snd_ctl_elem_info *uinfo); 318 struct snd_ctl_elem_info *uinfo);
319 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol, 319 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
320 struct snd_ctl_elem_value *ucontrol); 320 struct snd_ctl_elem_value *ucontrol);
321 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol, 321 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
322 struct snd_ctl_elem_value *ucontrol); 322 struct snd_ctl_elem_value *ucontrol);
323 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol, 323 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
324 struct snd_ctl_elem_value *ucontrol); 324 struct snd_ctl_elem_value *ucontrol);
325 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol, 325 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
326 struct snd_ctl_elem_value *ucontrol); 326 struct snd_ctl_elem_value *ucontrol);
327 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol, 327 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
328 struct snd_ctl_elem_info *uinfo); 328 struct snd_ctl_elem_info *uinfo);
329 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol, 329 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
330 struct snd_ctl_elem_info *uinfo); 330 struct snd_ctl_elem_info *uinfo);
331 #define snd_soc_info_bool_ext snd_ctl_boolean_mono_info 331 #define snd_soc_info_bool_ext snd_ctl_boolean_mono_info
332 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol, 332 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
333 struct snd_ctl_elem_value *ucontrol); 333 struct snd_ctl_elem_value *ucontrol);
334 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol, 334 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
335 struct snd_ctl_elem_value *ucontrol); 335 struct snd_ctl_elem_value *ucontrol);
336 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol, 336 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
337 struct snd_ctl_elem_info *uinfo); 337 struct snd_ctl_elem_info *uinfo);
338 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol, 338 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
339 struct snd_ctl_elem_value *ucontrol); 339 struct snd_ctl_elem_value *ucontrol);
340 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol, 340 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
341 struct snd_ctl_elem_value *ucontrol); 341 struct snd_ctl_elem_value *ucontrol);
342 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol, 342 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
343 struct snd_ctl_elem_info *uinfo); 343 struct snd_ctl_elem_info *uinfo);
344 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol, 344 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
345 struct snd_ctl_elem_value *ucontrol); 345 struct snd_ctl_elem_value *ucontrol);
346 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol, 346 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
347 struct snd_ctl_elem_value *ucontrol); 347 struct snd_ctl_elem_value *ucontrol);
348 int snd_soc_limit_volume(struct snd_soc_codec *codec, 348 int snd_soc_limit_volume(struct snd_soc_codec *codec,
349 const char *name, int max); 349 const char *name, int max);
350 int snd_soc_info_volsw_2r_sx(struct snd_kcontrol *kcontrol, 350 int snd_soc_info_volsw_2r_sx(struct snd_kcontrol *kcontrol,
351 struct snd_ctl_elem_info *uinfo); 351 struct snd_ctl_elem_info *uinfo);
352 int snd_soc_get_volsw_2r_sx(struct snd_kcontrol *kcontrol, 352 int snd_soc_get_volsw_2r_sx(struct snd_kcontrol *kcontrol,
353 struct snd_ctl_elem_value *ucontrol); 353 struct snd_ctl_elem_value *ucontrol);
354 int snd_soc_put_volsw_2r_sx(struct snd_kcontrol *kcontrol, 354 int snd_soc_put_volsw_2r_sx(struct snd_kcontrol *kcontrol,
355 struct snd_ctl_elem_value *ucontrol); 355 struct snd_ctl_elem_value *ucontrol);
356 356
357 /** 357 /**
358 * struct snd_soc_jack_pin - Describes a pin to update based on jack detection 358 * struct snd_soc_jack_pin - Describes a pin to update based on jack detection
359 * 359 *
360 * @pin: name of the pin to update 360 * @pin: name of the pin to update
361 * @mask: bits to check for in reported jack status 361 * @mask: bits to check for in reported jack status
362 * @invert: if non-zero then pin is enabled when status is not reported 362 * @invert: if non-zero then pin is enabled when status is not reported
363 */ 363 */
364 struct snd_soc_jack_pin { 364 struct snd_soc_jack_pin {
365 struct list_head list; 365 struct list_head list;
366 const char *pin; 366 const char *pin;
367 int mask; 367 int mask;
368 bool invert; 368 bool invert;
369 }; 369 };
370 370
371 /** 371 /**
372 * struct snd_soc_jack_gpio - Describes a gpio pin for jack detection 372 * struct snd_soc_jack_gpio - Describes a gpio pin for jack detection
373 * 373 *
374 * @gpio: gpio number 374 * @gpio: gpio number
375 * @name: gpio name 375 * @name: gpio name
376 * @report: value to report when jack detected 376 * @report: value to report when jack detected
377 * @invert: report presence in low state 377 * @invert: report presence in low state
378 * @debouce_time: debouce time in ms 378 * @debouce_time: debouce time in ms
379 */ 379 */
380 #ifdef CONFIG_GPIOLIB 380 #ifdef CONFIG_GPIOLIB
381 struct snd_soc_jack_gpio { 381 struct snd_soc_jack_gpio {
382 unsigned int gpio; 382 unsigned int gpio;
383 const char *name; 383 const char *name;
384 int report; 384 int report;
385 int invert; 385 int invert;
386 int debounce_time; 386 int debounce_time;
387 struct snd_soc_jack *jack; 387 struct snd_soc_jack *jack;
388 struct delayed_work work; 388 struct delayed_work work;
389 389
390 int (*jack_status_check)(void); 390 int (*jack_status_check)(void);
391 }; 391 };
392 #endif 392 #endif
393 393
394 struct snd_soc_jack { 394 struct snd_soc_jack {
395 struct snd_jack *jack; 395 struct snd_jack *jack;
396 struct snd_soc_codec *codec; 396 struct snd_soc_codec *codec;
397 struct list_head pins; 397 struct list_head pins;
398 int status; 398 int status;
399 struct blocking_notifier_head notifier; 399 struct blocking_notifier_head notifier;
400 }; 400 };
401 401
402 /* SoC PCM stream information */ 402 /* SoC PCM stream information */
403 struct snd_soc_pcm_stream { 403 struct snd_soc_pcm_stream {
404 const char *stream_name; 404 const char *stream_name;
405 u64 formats; /* SNDRV_PCM_FMTBIT_* */ 405 u64 formats; /* SNDRV_PCM_FMTBIT_* */
406 unsigned int rates; /* SNDRV_PCM_RATE_* */ 406 unsigned int rates; /* SNDRV_PCM_RATE_* */
407 unsigned int rate_min; /* min rate */ 407 unsigned int rate_min; /* min rate */
408 unsigned int rate_max; /* max rate */ 408 unsigned int rate_max; /* max rate */
409 unsigned int channels_min; /* min channels */ 409 unsigned int channels_min; /* min channels */
410 unsigned int channels_max; /* max channels */ 410 unsigned int channels_max; /* max channels */
411 }; 411 };
412 412
413 /* SoC audio ops */ 413 /* SoC audio ops */
414 struct snd_soc_ops { 414 struct snd_soc_ops {
415 int (*startup)(struct snd_pcm_substream *); 415 int (*startup)(struct snd_pcm_substream *);
416 void (*shutdown)(struct snd_pcm_substream *); 416 void (*shutdown)(struct snd_pcm_substream *);
417 int (*hw_params)(struct snd_pcm_substream *, struct snd_pcm_hw_params *); 417 int (*hw_params)(struct snd_pcm_substream *, struct snd_pcm_hw_params *);
418 int (*hw_free)(struct snd_pcm_substream *); 418 int (*hw_free)(struct snd_pcm_substream *);
419 int (*prepare)(struct snd_pcm_substream *); 419 int (*prepare)(struct snd_pcm_substream *);
420 int (*trigger)(struct snd_pcm_substream *, int); 420 int (*trigger)(struct snd_pcm_substream *, int);
421 }; 421 };
422 422
423 /* SoC Audio Codec device */ 423 /* SoC Audio Codec device */
424 struct snd_soc_codec { 424 struct snd_soc_codec {
425 const char *name; 425 const char *name;
426 int id; 426 int id;
427 struct device *dev; 427 struct device *dev;
428 struct snd_soc_codec_driver *driver; 428 struct snd_soc_codec_driver *driver;
429 429
430 struct mutex mutex; 430 struct mutex mutex;
431 struct snd_soc_card *card; 431 struct snd_soc_card *card;
432 struct list_head list; 432 struct list_head list;
433 struct list_head card_list; 433 struct list_head card_list;
434 int num_dai; 434 int num_dai;
435 435
436 /* runtime */ 436 /* runtime */
437 struct snd_ac97 *ac97; /* for ad-hoc ac97 devices */ 437 struct snd_ac97 *ac97; /* for ad-hoc ac97 devices */
438 unsigned int active; 438 unsigned int active;
439 unsigned int idle_bias_off:1; /* Use BIAS_OFF instead of STANDBY */ 439 unsigned int idle_bias_off:1; /* Use BIAS_OFF instead of STANDBY */
440 unsigned int cache_only:1; /* Suppress writes to hardware */ 440 unsigned int cache_only:1; /* Suppress writes to hardware */
441 unsigned int cache_sync:1; /* Cache needs to be synced to hardware */ 441 unsigned int cache_sync:1; /* Cache needs to be synced to hardware */
442 unsigned int suspended:1; /* Codec is in suspend PM state */ 442 unsigned int suspended:1; /* Codec is in suspend PM state */
443 unsigned int probed:1; /* Codec has been probed */ 443 unsigned int probed:1; /* Codec has been probed */
444 unsigned int ac97_registered:1; /* Codec has been AC97 registered */ 444 unsigned int ac97_registered:1; /* Codec has been AC97 registered */
445 unsigned int ac97_created:1; /* Codec has been created by SoC */
445 unsigned int sysfs_registered:1; /* codec has been sysfs registered */ 446 unsigned int sysfs_registered:1; /* codec has been sysfs registered */
446 447
447 /* codec IO */ 448 /* codec IO */
448 void *control_data; /* codec control (i2c/3wire) data */ 449 void *control_data; /* codec control (i2c/3wire) data */
449 hw_write_t hw_write; 450 hw_write_t hw_write;
450 unsigned int (*hw_read)(struct snd_soc_codec *, unsigned int); 451 unsigned int (*hw_read)(struct snd_soc_codec *, unsigned int);
451 void *reg_cache; 452 void *reg_cache;
452 453
453 /* dapm */ 454 /* dapm */
454 u32 pop_time; 455 u32 pop_time;
455 struct list_head dapm_widgets; 456 struct list_head dapm_widgets;
456 struct list_head dapm_paths; 457 struct list_head dapm_paths;
457 enum snd_soc_bias_level bias_level; 458 enum snd_soc_bias_level bias_level;
458 enum snd_soc_bias_level suspend_bias_level; 459 enum snd_soc_bias_level suspend_bias_level;
459 struct delayed_work delayed_work; 460 struct delayed_work delayed_work;
460 461
461 #ifdef CONFIG_DEBUG_FS 462 #ifdef CONFIG_DEBUG_FS
462 struct dentry *debugfs_codec_root; 463 struct dentry *debugfs_codec_root;
463 struct dentry *debugfs_reg; 464 struct dentry *debugfs_reg;
464 struct dentry *debugfs_pop_time; 465 struct dentry *debugfs_pop_time;
465 struct dentry *debugfs_dapm; 466 struct dentry *debugfs_dapm;
466 #endif 467 #endif
467 }; 468 };
468 469
469 /* codec driver */ 470 /* codec driver */
470 struct snd_soc_codec_driver { 471 struct snd_soc_codec_driver {
471 472
472 /* driver ops */ 473 /* driver ops */
473 int (*probe)(struct snd_soc_codec *); 474 int (*probe)(struct snd_soc_codec *);
474 int (*remove)(struct snd_soc_codec *); 475 int (*remove)(struct snd_soc_codec *);
475 int (*suspend)(struct snd_soc_codec *, 476 int (*suspend)(struct snd_soc_codec *,
476 pm_message_t state); 477 pm_message_t state);
477 int (*resume)(struct snd_soc_codec *); 478 int (*resume)(struct snd_soc_codec *);
478 479
479 /* codec IO */ 480 /* codec IO */
480 unsigned int (*read)(struct snd_soc_codec *, unsigned int); 481 unsigned int (*read)(struct snd_soc_codec *, unsigned int);
481 int (*write)(struct snd_soc_codec *, unsigned int, unsigned int); 482 int (*write)(struct snd_soc_codec *, unsigned int, unsigned int);
482 int (*display_register)(struct snd_soc_codec *, char *, 483 int (*display_register)(struct snd_soc_codec *, char *,
483 size_t, unsigned int); 484 size_t, unsigned int);
484 int (*volatile_register)(unsigned int); 485 int (*volatile_register)(unsigned int);
485 int (*readable_register)(unsigned int); 486 int (*readable_register)(unsigned int);
486 short reg_cache_size; 487 short reg_cache_size;
487 short reg_cache_step; 488 short reg_cache_step;
488 short reg_word_size; 489 short reg_word_size;
489 const void *reg_cache_default; 490 const void *reg_cache_default;
490 491
491 /* codec bias level */ 492 /* codec bias level */
492 int (*set_bias_level)(struct snd_soc_codec *, 493 int (*set_bias_level)(struct snd_soc_codec *,
493 enum snd_soc_bias_level level); 494 enum snd_soc_bias_level level);
494 }; 495 };
495 496
496 /* SoC platform interface */ 497 /* SoC platform interface */
497 struct snd_soc_platform_driver { 498 struct snd_soc_platform_driver {
498 499
499 int (*probe)(struct snd_soc_platform *); 500 int (*probe)(struct snd_soc_platform *);
500 int (*remove)(struct snd_soc_platform *); 501 int (*remove)(struct snd_soc_platform *);
501 int (*suspend)(struct snd_soc_dai *dai); 502 int (*suspend)(struct snd_soc_dai *dai);
502 int (*resume)(struct snd_soc_dai *dai); 503 int (*resume)(struct snd_soc_dai *dai);
503 504
504 /* pcm creation and destruction */ 505 /* pcm creation and destruction */
505 int (*pcm_new)(struct snd_card *, struct snd_soc_dai *, 506 int (*pcm_new)(struct snd_card *, struct snd_soc_dai *,
506 struct snd_pcm *); 507 struct snd_pcm *);
507 void (*pcm_free)(struct snd_pcm *); 508 void (*pcm_free)(struct snd_pcm *);
508 509
509 /* 510 /*
510 * For platform caused delay reporting. 511 * For platform caused delay reporting.
511 * Optional. 512 * Optional.
512 */ 513 */
513 snd_pcm_sframes_t (*delay)(struct snd_pcm_substream *, 514 snd_pcm_sframes_t (*delay)(struct snd_pcm_substream *,
514 struct snd_soc_dai *); 515 struct snd_soc_dai *);
515 516
516 /* platform stream ops */ 517 /* platform stream ops */
517 struct snd_pcm_ops *ops; 518 struct snd_pcm_ops *ops;
518 }; 519 };
519 520
520 struct snd_soc_platform { 521 struct snd_soc_platform {
521 const char *name; 522 const char *name;
522 int id; 523 int id;
523 struct device *dev; 524 struct device *dev;
524 struct snd_soc_platform_driver *driver; 525 struct snd_soc_platform_driver *driver;
525 526
526 unsigned int suspended:1; /* platform is suspended */ 527 unsigned int suspended:1; /* platform is suspended */
527 unsigned int probed:1; 528 unsigned int probed:1;
528 529
529 struct snd_soc_card *card; 530 struct snd_soc_card *card;
530 struct list_head list; 531 struct list_head list;
531 struct list_head card_list; 532 struct list_head card_list;
532 }; 533 };
533 534
534 struct snd_soc_dai_link { 535 struct snd_soc_dai_link {
535 /* config - must be set by machine driver */ 536 /* config - must be set by machine driver */
536 const char *name; /* Codec name */ 537 const char *name; /* Codec name */
537 const char *stream_name; /* Stream name */ 538 const char *stream_name; /* Stream name */
538 const char *codec_name; /* for multi-codec */ 539 const char *codec_name; /* for multi-codec */
539 const char *platform_name; /* for multi-platform */ 540 const char *platform_name; /* for multi-platform */
540 const char *cpu_dai_name; 541 const char *cpu_dai_name;
541 const char *codec_dai_name; 542 const char *codec_dai_name;
542 543
543 /* Keep DAI active over suspend */ 544 /* Keep DAI active over suspend */
544 unsigned int ignore_suspend:1; 545 unsigned int ignore_suspend:1;
545 546
546 /* Symmetry requirements */ 547 /* Symmetry requirements */
547 unsigned int symmetric_rates:1; 548 unsigned int symmetric_rates:1;
548 549
549 /* codec/machine specific init - e.g. add machine controls */ 550 /* codec/machine specific init - e.g. add machine controls */
550 int (*init)(struct snd_soc_pcm_runtime *rtd); 551 int (*init)(struct snd_soc_pcm_runtime *rtd);
551 552
552 /* machine stream operations */ 553 /* machine stream operations */
553 struct snd_soc_ops *ops; 554 struct snd_soc_ops *ops;
554 }; 555 };
555 556
556 /* SoC card */ 557 /* SoC card */
557 struct snd_soc_card { 558 struct snd_soc_card {
558 const char *name; 559 const char *name;
559 struct device *dev; 560 struct device *dev;
560 struct snd_card *snd_card; 561 struct snd_card *snd_card;
561 struct module *owner; 562 struct module *owner;
562 563
563 struct list_head list; 564 struct list_head list;
564 struct mutex mutex; 565 struct mutex mutex;
565 566
566 bool instantiated; 567 bool instantiated;
567 568
568 int (*probe)(struct platform_device *pdev); 569 int (*probe)(struct platform_device *pdev);
569 int (*remove)(struct platform_device *pdev); 570 int (*remove)(struct platform_device *pdev);
570 571
571 /* the pre and post PM functions are used to do any PM work before and 572 /* the pre and post PM functions are used to do any PM work before and
572 * after the codec and DAI's do any PM work. */ 573 * after the codec and DAI's do any PM work. */
573 int (*suspend_pre)(struct platform_device *pdev, pm_message_t state); 574 int (*suspend_pre)(struct platform_device *pdev, pm_message_t state);
574 int (*suspend_post)(struct platform_device *pdev, pm_message_t state); 575 int (*suspend_post)(struct platform_device *pdev, pm_message_t state);
575 int (*resume_pre)(struct platform_device *pdev); 576 int (*resume_pre)(struct platform_device *pdev);
576 int (*resume_post)(struct platform_device *pdev); 577 int (*resume_post)(struct platform_device *pdev);
577 578
578 /* callbacks */ 579 /* callbacks */
579 int (*set_bias_level)(struct snd_soc_card *, 580 int (*set_bias_level)(struct snd_soc_card *,
580 enum snd_soc_bias_level level); 581 enum snd_soc_bias_level level);
581 582
582 long pmdown_time; 583 long pmdown_time;
583 584
584 /* CPU <--> Codec DAI links */ 585 /* CPU <--> Codec DAI links */
585 struct snd_soc_dai_link *dai_link; 586 struct snd_soc_dai_link *dai_link;
586 int num_links; 587 int num_links;
587 struct snd_soc_pcm_runtime *rtd; 588 struct snd_soc_pcm_runtime *rtd;
588 int num_rtd; 589 int num_rtd;
589 590
590 struct work_struct deferred_resume_work; 591 struct work_struct deferred_resume_work;
591 592
592 /* lists of probed devices belonging to this card */ 593 /* lists of probed devices belonging to this card */
593 struct list_head codec_dev_list; 594 struct list_head codec_dev_list;
594 struct list_head platform_dev_list; 595 struct list_head platform_dev_list;
595 struct list_head dai_dev_list; 596 struct list_head dai_dev_list;
596 }; 597 };
597 598
598 /* SoC machine DAI configuration, glues a codec and cpu DAI together */ 599 /* SoC machine DAI configuration, glues a codec and cpu DAI together */
599 struct snd_soc_pcm_runtime { 600 struct snd_soc_pcm_runtime {
600 struct device dev; 601 struct device dev;
601 struct snd_soc_card *card; 602 struct snd_soc_card *card;
602 struct snd_soc_dai_link *dai_link; 603 struct snd_soc_dai_link *dai_link;
603 604
604 unsigned int complete:1; 605 unsigned int complete:1;
605 unsigned int dev_registered:1; 606 unsigned int dev_registered:1;
606 607
607 /* Symmetry data - only valid if symmetry is being enforced */ 608 /* Symmetry data - only valid if symmetry is being enforced */
608 unsigned int rate; 609 unsigned int rate;
609 long pmdown_time; 610 long pmdown_time;
610 611
611 /* runtime devices */ 612 /* runtime devices */
612 struct snd_pcm *pcm; 613 struct snd_pcm *pcm;
613 struct snd_soc_codec *codec; 614 struct snd_soc_codec *codec;
614 struct snd_soc_platform *platform; 615 struct snd_soc_platform *platform;
615 struct snd_soc_dai *codec_dai; 616 struct snd_soc_dai *codec_dai;
616 struct snd_soc_dai *cpu_dai; 617 struct snd_soc_dai *cpu_dai;
617 618
618 struct delayed_work delayed_work; 619 struct delayed_work delayed_work;
619 }; 620 };
620 621
621 /* mixer control */ 622 /* mixer control */
622 struct soc_mixer_control { 623 struct soc_mixer_control {
623 int min, max, platform_max; 624 int min, max, platform_max;
624 unsigned int reg, rreg, shift, rshift, invert; 625 unsigned int reg, rreg, shift, rshift, invert;
625 }; 626 };
626 627
627 /* enumerated kcontrol */ 628 /* enumerated kcontrol */
628 struct soc_enum { 629 struct soc_enum {
629 unsigned short reg; 630 unsigned short reg;
630 unsigned short reg2; 631 unsigned short reg2;
631 unsigned char shift_l; 632 unsigned char shift_l;
632 unsigned char shift_r; 633 unsigned char shift_r;
633 unsigned int max; 634 unsigned int max;
634 unsigned int mask; 635 unsigned int mask;
635 const char **texts; 636 const char **texts;
636 const unsigned int *values; 637 const unsigned int *values;
637 void *dapm; 638 void *dapm;
638 }; 639 };
639 640
640 /* codec IO */ 641 /* codec IO */
641 static inline unsigned int snd_soc_read(struct snd_soc_codec *codec, 642 static inline unsigned int snd_soc_read(struct snd_soc_codec *codec,
642 unsigned int reg) 643 unsigned int reg)
643 { 644 {
644 return codec->driver->read(codec, reg); 645 return codec->driver->read(codec, reg);
645 } 646 }
646 647
647 static inline unsigned int snd_soc_write(struct snd_soc_codec *codec, 648 static inline unsigned int snd_soc_write(struct snd_soc_codec *codec,
648 unsigned int reg, unsigned int val) 649 unsigned int reg, unsigned int val)
649 { 650 {
650 return codec->driver->write(codec, reg, val); 651 return codec->driver->write(codec, reg, val);
651 } 652 }
652 653
653 /* device driver data */ 654 /* device driver data */
654 655
655 static inline void snd_soc_codec_set_drvdata(struct snd_soc_codec *codec, 656 static inline void snd_soc_codec_set_drvdata(struct snd_soc_codec *codec,
656 void *data) 657 void *data)
657 { 658 {
658 dev_set_drvdata(codec->dev, data); 659 dev_set_drvdata(codec->dev, data);
659 } 660 }
660 661
661 static inline void *snd_soc_codec_get_drvdata(struct snd_soc_codec *codec) 662 static inline void *snd_soc_codec_get_drvdata(struct snd_soc_codec *codec)
662 { 663 {
663 return dev_get_drvdata(codec->dev); 664 return dev_get_drvdata(codec->dev);
664 } 665 }
665 666
666 static inline void snd_soc_platform_set_drvdata(struct snd_soc_platform *platform, 667 static inline void snd_soc_platform_set_drvdata(struct snd_soc_platform *platform,
667 void *data) 668 void *data)
668 { 669 {
669 dev_set_drvdata(platform->dev, data); 670 dev_set_drvdata(platform->dev, data);
670 } 671 }
671 672
672 static inline void *snd_soc_platform_get_drvdata(struct snd_soc_platform *platform) 673 static inline void *snd_soc_platform_get_drvdata(struct snd_soc_platform *platform)
673 { 674 {
674 return dev_get_drvdata(platform->dev); 675 return dev_get_drvdata(platform->dev);
675 } 676 }
676 677
677 static inline void snd_soc_pcm_set_drvdata(struct snd_soc_pcm_runtime *rtd, 678 static inline void snd_soc_pcm_set_drvdata(struct snd_soc_pcm_runtime *rtd,
678 void *data) 679 void *data)
679 { 680 {
680 dev_set_drvdata(&rtd->dev, data); 681 dev_set_drvdata(&rtd->dev, data);
681 } 682 }
682 683
683 static inline void *snd_soc_pcm_get_drvdata(struct snd_soc_pcm_runtime *rtd) 684 static inline void *snd_soc_pcm_get_drvdata(struct snd_soc_pcm_runtime *rtd)
684 { 685 {
685 return dev_get_drvdata(&rtd->dev); 686 return dev_get_drvdata(&rtd->dev);
686 } 687 }
687 688
688 #include <sound/soc-dai.h> 689 #include <sound/soc-dai.h>
689 690
690 #endif 691 #endif
691 692
sound/soc/soc-core.c
1 /* 1 /*
2 * soc-core.c -- ALSA SoC Audio Layer 2 * soc-core.c -- ALSA SoC Audio Layer
3 * 3 *
4 * Copyright 2005 Wolfson Microelectronics PLC. 4 * Copyright 2005 Wolfson Microelectronics PLC.
5 * Copyright 2005 Openedhand Ltd. 5 * Copyright 2005 Openedhand Ltd.
6 * Copyright (C) 2010 Slimlogic Ltd. 6 * Copyright (C) 2010 Slimlogic Ltd.
7 * Copyright (C) 2010 Texas Instruments Inc. 7 * Copyright (C) 2010 Texas Instruments Inc.
8 * 8 *
9 * Author: Liam Girdwood <lrg@slimlogic.co.uk> 9 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
10 * with code, comments and ideas from :- 10 * with code, comments and ideas from :-
11 * Richard Purdie <richard@openedhand.com> 11 * Richard Purdie <richard@openedhand.com>
12 * 12 *
13 * This program is free software; you can redistribute it and/or modify it 13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the 14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your 15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version. 16 * option) any later version.
17 * 17 *
18 * TODO: 18 * TODO:
19 * o Add hw rules to enforce rates, etc. 19 * o Add hw rules to enforce rates, etc.
20 * o More testing with other codecs/machines. 20 * o More testing with other codecs/machines.
21 * o Add more codecs and platforms to ensure good API coverage. 21 * o Add more codecs and platforms to ensure good API coverage.
22 * o Support TDM on PCM and I2S 22 * o Support TDM on PCM and I2S
23 */ 23 */
24 24
25 #include <linux/module.h> 25 #include <linux/module.h>
26 #include <linux/moduleparam.h> 26 #include <linux/moduleparam.h>
27 #include <linux/init.h> 27 #include <linux/init.h>
28 #include <linux/delay.h> 28 #include <linux/delay.h>
29 #include <linux/pm.h> 29 #include <linux/pm.h>
30 #include <linux/bitops.h> 30 #include <linux/bitops.h>
31 #include <linux/debugfs.h> 31 #include <linux/debugfs.h>
32 #include <linux/platform_device.h> 32 #include <linux/platform_device.h>
33 #include <linux/slab.h> 33 #include <linux/slab.h>
34 #include <sound/ac97_codec.h> 34 #include <sound/ac97_codec.h>
35 #include <sound/core.h> 35 #include <sound/core.h>
36 #include <sound/pcm.h> 36 #include <sound/pcm.h>
37 #include <sound/pcm_params.h> 37 #include <sound/pcm_params.h>
38 #include <sound/soc.h> 38 #include <sound/soc.h>
39 #include <sound/soc-dapm.h> 39 #include <sound/soc-dapm.h>
40 #include <sound/initval.h> 40 #include <sound/initval.h>
41 41
42 #define NAME_SIZE 32 42 #define NAME_SIZE 32
43 43
44 static DEFINE_MUTEX(pcm_mutex); 44 static DEFINE_MUTEX(pcm_mutex);
45 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq); 45 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
46 46
47 #ifdef CONFIG_DEBUG_FS 47 #ifdef CONFIG_DEBUG_FS
48 static struct dentry *debugfs_root; 48 static struct dentry *debugfs_root;
49 #endif 49 #endif
50 50
51 static DEFINE_MUTEX(client_mutex); 51 static DEFINE_MUTEX(client_mutex);
52 static LIST_HEAD(card_list); 52 static LIST_HEAD(card_list);
53 static LIST_HEAD(dai_list); 53 static LIST_HEAD(dai_list);
54 static LIST_HEAD(platform_list); 54 static LIST_HEAD(platform_list);
55 static LIST_HEAD(codec_list); 55 static LIST_HEAD(codec_list);
56 56
57 static int snd_soc_register_card(struct snd_soc_card *card); 57 static int snd_soc_register_card(struct snd_soc_card *card);
58 static int snd_soc_unregister_card(struct snd_soc_card *card); 58 static int snd_soc_unregister_card(struct snd_soc_card *card);
59 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num); 59 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num);
60 60
61 /* 61 /*
62 * This is a timeout to do a DAPM powerdown after a stream is closed(). 62 * This is a timeout to do a DAPM powerdown after a stream is closed().
63 * It can be used to eliminate pops between different playback streams, e.g. 63 * It can be used to eliminate pops between different playback streams, e.g.
64 * between two audio tracks. 64 * between two audio tracks.
65 */ 65 */
66 static int pmdown_time = 5000; 66 static int pmdown_time = 5000;
67 module_param(pmdown_time, int, 0); 67 module_param(pmdown_time, int, 0);
68 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)"); 68 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
69 69
70 /* 70 /*
71 * This function forces any delayed work to be queued and run. 71 * This function forces any delayed work to be queued and run.
72 */ 72 */
73 static int run_delayed_work(struct delayed_work *dwork) 73 static int run_delayed_work(struct delayed_work *dwork)
74 { 74 {
75 int ret; 75 int ret;
76 76
77 /* cancel any work waiting to be queued. */ 77 /* cancel any work waiting to be queued. */
78 ret = cancel_delayed_work(dwork); 78 ret = cancel_delayed_work(dwork);
79 79
80 /* if there was any work waiting then we run it now and 80 /* if there was any work waiting then we run it now and
81 * wait for it's completion */ 81 * wait for it's completion */
82 if (ret) { 82 if (ret) {
83 schedule_delayed_work(dwork, 0); 83 schedule_delayed_work(dwork, 0);
84 flush_scheduled_work(); 84 flush_scheduled_work();
85 } 85 }
86 return ret; 86 return ret;
87 } 87 }
88 88
89 /* codec register dump */ 89 /* codec register dump */
90 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf) 90 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf)
91 { 91 {
92 int ret, i, step = 1, count = 0; 92 int ret, i, step = 1, count = 0;
93 93
94 if (!codec->driver->reg_cache_size) 94 if (!codec->driver->reg_cache_size)
95 return 0; 95 return 0;
96 96
97 if (codec->driver->reg_cache_step) 97 if (codec->driver->reg_cache_step)
98 step = codec->driver->reg_cache_step; 98 step = codec->driver->reg_cache_step;
99 99
100 count += sprintf(buf, "%s registers\n", codec->name); 100 count += sprintf(buf, "%s registers\n", codec->name);
101 for (i = 0; i < codec->driver->reg_cache_size; i += step) { 101 for (i = 0; i < codec->driver->reg_cache_size; i += step) {
102 if (codec->driver->readable_register && !codec->driver->readable_register(i)) 102 if (codec->driver->readable_register && !codec->driver->readable_register(i))
103 continue; 103 continue;
104 104
105 count += sprintf(buf + count, "%2x: ", i); 105 count += sprintf(buf + count, "%2x: ", i);
106 if (count >= PAGE_SIZE - 1) 106 if (count >= PAGE_SIZE - 1)
107 break; 107 break;
108 108
109 if (codec->driver->display_register) { 109 if (codec->driver->display_register) {
110 count += codec->driver->display_register(codec, buf + count, 110 count += codec->driver->display_register(codec, buf + count,
111 PAGE_SIZE - count, i); 111 PAGE_SIZE - count, i);
112 } else { 112 } else {
113 /* If the read fails it's almost certainly due to 113 /* If the read fails it's almost certainly due to
114 * the register being volatile and the device being 114 * the register being volatile and the device being
115 * powered off. 115 * powered off.
116 */ 116 */
117 ret = codec->driver->read(codec, i); 117 ret = codec->driver->read(codec, i);
118 if (ret >= 0) 118 if (ret >= 0)
119 count += snprintf(buf + count, 119 count += snprintf(buf + count,
120 PAGE_SIZE - count, 120 PAGE_SIZE - count,
121 "%4x", ret); 121 "%4x", ret);
122 else 122 else
123 count += snprintf(buf + count, 123 count += snprintf(buf + count,
124 PAGE_SIZE - count, 124 PAGE_SIZE - count,
125 "<no data: %d>", ret); 125 "<no data: %d>", ret);
126 } 126 }
127 127
128 if (count >= PAGE_SIZE - 1) 128 if (count >= PAGE_SIZE - 1)
129 break; 129 break;
130 130
131 count += snprintf(buf + count, PAGE_SIZE - count, "\n"); 131 count += snprintf(buf + count, PAGE_SIZE - count, "\n");
132 if (count >= PAGE_SIZE - 1) 132 if (count >= PAGE_SIZE - 1)
133 break; 133 break;
134 } 134 }
135 135
136 /* Truncate count; min() would cause a warning */ 136 /* Truncate count; min() would cause a warning */
137 if (count >= PAGE_SIZE) 137 if (count >= PAGE_SIZE)
138 count = PAGE_SIZE - 1; 138 count = PAGE_SIZE - 1;
139 139
140 return count; 140 return count;
141 } 141 }
142 static ssize_t codec_reg_show(struct device *dev, 142 static ssize_t codec_reg_show(struct device *dev,
143 struct device_attribute *attr, char *buf) 143 struct device_attribute *attr, char *buf)
144 { 144 {
145 struct snd_soc_pcm_runtime *rtd = 145 struct snd_soc_pcm_runtime *rtd =
146 container_of(dev, struct snd_soc_pcm_runtime, dev); 146 container_of(dev, struct snd_soc_pcm_runtime, dev);
147 147
148 return soc_codec_reg_show(rtd->codec, buf); 148 return soc_codec_reg_show(rtd->codec, buf);
149 } 149 }
150 150
151 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL); 151 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
152 152
153 static ssize_t pmdown_time_show(struct device *dev, 153 static ssize_t pmdown_time_show(struct device *dev,
154 struct device_attribute *attr, char *buf) 154 struct device_attribute *attr, char *buf)
155 { 155 {
156 struct snd_soc_pcm_runtime *rtd = 156 struct snd_soc_pcm_runtime *rtd =
157 container_of(dev, struct snd_soc_pcm_runtime, dev); 157 container_of(dev, struct snd_soc_pcm_runtime, dev);
158 158
159 return sprintf(buf, "%ld\n", rtd->pmdown_time); 159 return sprintf(buf, "%ld\n", rtd->pmdown_time);
160 } 160 }
161 161
162 static ssize_t pmdown_time_set(struct device *dev, 162 static ssize_t pmdown_time_set(struct device *dev,
163 struct device_attribute *attr, 163 struct device_attribute *attr,
164 const char *buf, size_t count) 164 const char *buf, size_t count)
165 { 165 {
166 struct snd_soc_pcm_runtime *rtd = 166 struct snd_soc_pcm_runtime *rtd =
167 container_of(dev, struct snd_soc_pcm_runtime, dev); 167 container_of(dev, struct snd_soc_pcm_runtime, dev);
168 168
169 strict_strtol(buf, 10, &rtd->pmdown_time); 169 strict_strtol(buf, 10, &rtd->pmdown_time);
170 170
171 return count; 171 return count;
172 } 172 }
173 173
174 static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set); 174 static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set);
175 175
176 #ifdef CONFIG_DEBUG_FS 176 #ifdef CONFIG_DEBUG_FS
177 static int codec_reg_open_file(struct inode *inode, struct file *file) 177 static int codec_reg_open_file(struct inode *inode, struct file *file)
178 { 178 {
179 file->private_data = inode->i_private; 179 file->private_data = inode->i_private;
180 return 0; 180 return 0;
181 } 181 }
182 182
183 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf, 183 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
184 size_t count, loff_t *ppos) 184 size_t count, loff_t *ppos)
185 { 185 {
186 ssize_t ret; 186 ssize_t ret;
187 struct snd_soc_codec *codec = file->private_data; 187 struct snd_soc_codec *codec = file->private_data;
188 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 188 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
189 if (!buf) 189 if (!buf)
190 return -ENOMEM; 190 return -ENOMEM;
191 ret = soc_codec_reg_show(codec, buf); 191 ret = soc_codec_reg_show(codec, buf);
192 if (ret >= 0) 192 if (ret >= 0)
193 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 193 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
194 kfree(buf); 194 kfree(buf);
195 return ret; 195 return ret;
196 } 196 }
197 197
198 static ssize_t codec_reg_write_file(struct file *file, 198 static ssize_t codec_reg_write_file(struct file *file,
199 const char __user *user_buf, size_t count, loff_t *ppos) 199 const char __user *user_buf, size_t count, loff_t *ppos)
200 { 200 {
201 char buf[32]; 201 char buf[32];
202 int buf_size; 202 int buf_size;
203 char *start = buf; 203 char *start = buf;
204 unsigned long reg, value; 204 unsigned long reg, value;
205 int step = 1; 205 int step = 1;
206 struct snd_soc_codec *codec = file->private_data; 206 struct snd_soc_codec *codec = file->private_data;
207 207
208 buf_size = min(count, (sizeof(buf)-1)); 208 buf_size = min(count, (sizeof(buf)-1));
209 if (copy_from_user(buf, user_buf, buf_size)) 209 if (copy_from_user(buf, user_buf, buf_size))
210 return -EFAULT; 210 return -EFAULT;
211 buf[buf_size] = 0; 211 buf[buf_size] = 0;
212 212
213 if (codec->driver->reg_cache_step) 213 if (codec->driver->reg_cache_step)
214 step = codec->driver->reg_cache_step; 214 step = codec->driver->reg_cache_step;
215 215
216 while (*start == ' ') 216 while (*start == ' ')
217 start++; 217 start++;
218 reg = simple_strtoul(start, &start, 16); 218 reg = simple_strtoul(start, &start, 16);
219 if ((reg >= codec->driver->reg_cache_size) || (reg % step)) 219 if ((reg >= codec->driver->reg_cache_size) || (reg % step))
220 return -EINVAL; 220 return -EINVAL;
221 while (*start == ' ') 221 while (*start == ' ')
222 start++; 222 start++;
223 if (strict_strtoul(start, 16, &value)) 223 if (strict_strtoul(start, 16, &value))
224 return -EINVAL; 224 return -EINVAL;
225 codec->driver->write(codec, reg, value); 225 codec->driver->write(codec, reg, value);
226 return buf_size; 226 return buf_size;
227 } 227 }
228 228
229 static const struct file_operations codec_reg_fops = { 229 static const struct file_operations codec_reg_fops = {
230 .open = codec_reg_open_file, 230 .open = codec_reg_open_file,
231 .read = codec_reg_read_file, 231 .read = codec_reg_read_file,
232 .write = codec_reg_write_file, 232 .write = codec_reg_write_file,
233 }; 233 };
234 234
235 static void soc_init_codec_debugfs(struct snd_soc_codec *codec) 235 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
236 { 236 {
237 codec->debugfs_codec_root = debugfs_create_dir(codec->name , 237 codec->debugfs_codec_root = debugfs_create_dir(codec->name ,
238 debugfs_root); 238 debugfs_root);
239 if (!codec->debugfs_codec_root) { 239 if (!codec->debugfs_codec_root) {
240 printk(KERN_WARNING 240 printk(KERN_WARNING
241 "ASoC: Failed to create codec debugfs directory\n"); 241 "ASoC: Failed to create codec debugfs directory\n");
242 return; 242 return;
243 } 243 }
244 244
245 codec->debugfs_reg = debugfs_create_file("codec_reg", 0644, 245 codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
246 codec->debugfs_codec_root, 246 codec->debugfs_codec_root,
247 codec, &codec_reg_fops); 247 codec, &codec_reg_fops);
248 if (!codec->debugfs_reg) 248 if (!codec->debugfs_reg)
249 printk(KERN_WARNING 249 printk(KERN_WARNING
250 "ASoC: Failed to create codec register debugfs file\n"); 250 "ASoC: Failed to create codec register debugfs file\n");
251 251
252 codec->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0644, 252 codec->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0644,
253 codec->debugfs_codec_root, 253 codec->debugfs_codec_root,
254 &codec->pop_time); 254 &codec->pop_time);
255 if (!codec->debugfs_pop_time) 255 if (!codec->debugfs_pop_time)
256 printk(KERN_WARNING 256 printk(KERN_WARNING
257 "Failed to create pop time debugfs file\n"); 257 "Failed to create pop time debugfs file\n");
258 258
259 codec->debugfs_dapm = debugfs_create_dir("dapm", 259 codec->debugfs_dapm = debugfs_create_dir("dapm",
260 codec->debugfs_codec_root); 260 codec->debugfs_codec_root);
261 if (!codec->debugfs_dapm) 261 if (!codec->debugfs_dapm)
262 printk(KERN_WARNING 262 printk(KERN_WARNING
263 "Failed to create DAPM debugfs directory\n"); 263 "Failed to create DAPM debugfs directory\n");
264 264
265 snd_soc_dapm_debugfs_init(codec); 265 snd_soc_dapm_debugfs_init(codec);
266 } 266 }
267 267
268 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec) 268 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
269 { 269 {
270 debugfs_remove_recursive(codec->debugfs_codec_root); 270 debugfs_remove_recursive(codec->debugfs_codec_root);
271 } 271 }
272 272
273 static ssize_t codec_list_read_file(struct file *file, char __user *user_buf, 273 static ssize_t codec_list_read_file(struct file *file, char __user *user_buf,
274 size_t count, loff_t *ppos) 274 size_t count, loff_t *ppos)
275 { 275 {
276 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 276 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
277 ssize_t ret = 0; 277 ssize_t ret = 0;
278 struct snd_soc_codec *codec; 278 struct snd_soc_codec *codec;
279 279
280 if (!buf) 280 if (!buf)
281 return -ENOMEM; 281 return -ENOMEM;
282 282
283 list_for_each_entry(codec, &codec_list, list) 283 list_for_each_entry(codec, &codec_list, list)
284 ret += snprintf(buf + ret, PAGE_SIZE - ret, "%s\n", 284 ret += snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
285 codec->name); 285 codec->name);
286 286
287 if (ret >= 0) 287 if (ret >= 0)
288 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 288 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
289 289
290 kfree(buf); 290 kfree(buf);
291 291
292 return ret; 292 return ret;
293 } 293 }
294 294
295 static const struct file_operations codec_list_fops = { 295 static const struct file_operations codec_list_fops = {
296 .read = codec_list_read_file, 296 .read = codec_list_read_file,
297 .llseek = default_llseek,/* read accesses f_pos */ 297 .llseek = default_llseek,/* read accesses f_pos */
298 }; 298 };
299 299
300 static ssize_t dai_list_read_file(struct file *file, char __user *user_buf, 300 static ssize_t dai_list_read_file(struct file *file, char __user *user_buf,
301 size_t count, loff_t *ppos) 301 size_t count, loff_t *ppos)
302 { 302 {
303 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 303 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
304 ssize_t ret = 0; 304 ssize_t ret = 0;
305 struct snd_soc_dai *dai; 305 struct snd_soc_dai *dai;
306 306
307 if (!buf) 307 if (!buf)
308 return -ENOMEM; 308 return -ENOMEM;
309 309
310 list_for_each_entry(dai, &dai_list, list) 310 list_for_each_entry(dai, &dai_list, list)
311 ret += snprintf(buf + ret, PAGE_SIZE - ret, "%s\n", dai->name); 311 ret += snprintf(buf + ret, PAGE_SIZE - ret, "%s\n", dai->name);
312 312
313 if (ret >= 0) 313 if (ret >= 0)
314 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 314 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
315 315
316 kfree(buf); 316 kfree(buf);
317 317
318 return ret; 318 return ret;
319 } 319 }
320 320
321 static const struct file_operations dai_list_fops = { 321 static const struct file_operations dai_list_fops = {
322 .read = dai_list_read_file, 322 .read = dai_list_read_file,
323 .llseek = default_llseek,/* read accesses f_pos */ 323 .llseek = default_llseek,/* read accesses f_pos */
324 }; 324 };
325 325
326 static ssize_t platform_list_read_file(struct file *file, 326 static ssize_t platform_list_read_file(struct file *file,
327 char __user *user_buf, 327 char __user *user_buf,
328 size_t count, loff_t *ppos) 328 size_t count, loff_t *ppos)
329 { 329 {
330 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 330 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
331 ssize_t ret = 0; 331 ssize_t ret = 0;
332 struct snd_soc_platform *platform; 332 struct snd_soc_platform *platform;
333 333
334 if (!buf) 334 if (!buf)
335 return -ENOMEM; 335 return -ENOMEM;
336 336
337 list_for_each_entry(platform, &platform_list, list) 337 list_for_each_entry(platform, &platform_list, list)
338 ret += snprintf(buf + ret, PAGE_SIZE - ret, "%s\n", 338 ret += snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
339 platform->name); 339 platform->name);
340 340
341 if (ret >= 0) 341 if (ret >= 0)
342 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 342 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
343 343
344 kfree(buf); 344 kfree(buf);
345 345
346 return ret; 346 return ret;
347 } 347 }
348 348
349 static const struct file_operations platform_list_fops = { 349 static const struct file_operations platform_list_fops = {
350 .read = platform_list_read_file, 350 .read = platform_list_read_file,
351 .llseek = default_llseek,/* read accesses f_pos */ 351 .llseek = default_llseek,/* read accesses f_pos */
352 }; 352 };
353 353
354 #else 354 #else
355 355
356 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec) 356 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
357 { 357 {
358 } 358 }
359 359
360 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec) 360 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
361 { 361 {
362 } 362 }
363 #endif 363 #endif
364 364
365 #ifdef CONFIG_SND_SOC_AC97_BUS 365 #ifdef CONFIG_SND_SOC_AC97_BUS
366 /* unregister ac97 codec */ 366 /* unregister ac97 codec */
367 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec) 367 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
368 { 368 {
369 if (codec->ac97->dev.bus) 369 if (codec->ac97->dev.bus)
370 device_unregister(&codec->ac97->dev); 370 device_unregister(&codec->ac97->dev);
371 return 0; 371 return 0;
372 } 372 }
373 373
374 /* stop no dev release warning */ 374 /* stop no dev release warning */
375 static void soc_ac97_device_release(struct device *dev){} 375 static void soc_ac97_device_release(struct device *dev){}
376 376
377 /* register ac97 codec to bus */ 377 /* register ac97 codec to bus */
378 static int soc_ac97_dev_register(struct snd_soc_codec *codec) 378 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
379 { 379 {
380 int err; 380 int err;
381 381
382 codec->ac97->dev.bus = &ac97_bus_type; 382 codec->ac97->dev.bus = &ac97_bus_type;
383 codec->ac97->dev.parent = codec->card->dev; 383 codec->ac97->dev.parent = codec->card->dev;
384 codec->ac97->dev.release = soc_ac97_device_release; 384 codec->ac97->dev.release = soc_ac97_device_release;
385 385
386 dev_set_name(&codec->ac97->dev, "%d-%d:%s", 386 dev_set_name(&codec->ac97->dev, "%d-%d:%s",
387 codec->card->snd_card->number, 0, codec->name); 387 codec->card->snd_card->number, 0, codec->name);
388 err = device_register(&codec->ac97->dev); 388 err = device_register(&codec->ac97->dev);
389 if (err < 0) { 389 if (err < 0) {
390 snd_printk(KERN_ERR "Can't register ac97 bus\n"); 390 snd_printk(KERN_ERR "Can't register ac97 bus\n");
391 codec->ac97->dev.bus = NULL; 391 codec->ac97->dev.bus = NULL;
392 return err; 392 return err;
393 } 393 }
394 return 0; 394 return 0;
395 } 395 }
396 #endif 396 #endif
397 397
398 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream) 398 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream)
399 { 399 {
400 struct snd_soc_pcm_runtime *rtd = substream->private_data; 400 struct snd_soc_pcm_runtime *rtd = substream->private_data;
401 struct snd_soc_dai *cpu_dai = rtd->cpu_dai; 401 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
402 struct snd_soc_dai *codec_dai = rtd->codec_dai; 402 struct snd_soc_dai *codec_dai = rtd->codec_dai;
403 int ret; 403 int ret;
404 404
405 if (codec_dai->driver->symmetric_rates || cpu_dai->driver->symmetric_rates || 405 if (codec_dai->driver->symmetric_rates || cpu_dai->driver->symmetric_rates ||
406 rtd->dai_link->symmetric_rates) { 406 rtd->dai_link->symmetric_rates) {
407 dev_dbg(&rtd->dev, "Symmetry forces %dHz rate\n", 407 dev_dbg(&rtd->dev, "Symmetry forces %dHz rate\n",
408 rtd->rate); 408 rtd->rate);
409 409
410 ret = snd_pcm_hw_constraint_minmax(substream->runtime, 410 ret = snd_pcm_hw_constraint_minmax(substream->runtime,
411 SNDRV_PCM_HW_PARAM_RATE, 411 SNDRV_PCM_HW_PARAM_RATE,
412 rtd->rate, 412 rtd->rate,
413 rtd->rate); 413 rtd->rate);
414 if (ret < 0) { 414 if (ret < 0) {
415 dev_err(&rtd->dev, 415 dev_err(&rtd->dev,
416 "Unable to apply rate symmetry constraint: %d\n", ret); 416 "Unable to apply rate symmetry constraint: %d\n", ret);
417 return ret; 417 return ret;
418 } 418 }
419 } 419 }
420 420
421 return 0; 421 return 0;
422 } 422 }
423 423
424 /* 424 /*
425 * Called by ALSA when a PCM substream is opened, the runtime->hw record is 425 * Called by ALSA when a PCM substream is opened, the runtime->hw record is
426 * then initialized and any private data can be allocated. This also calls 426 * then initialized and any private data can be allocated. This also calls
427 * startup for the cpu DAI, platform, machine and codec DAI. 427 * startup for the cpu DAI, platform, machine and codec DAI.
428 */ 428 */
429 static int soc_pcm_open(struct snd_pcm_substream *substream) 429 static int soc_pcm_open(struct snd_pcm_substream *substream)
430 { 430 {
431 struct snd_soc_pcm_runtime *rtd = substream->private_data; 431 struct snd_soc_pcm_runtime *rtd = substream->private_data;
432 struct snd_pcm_runtime *runtime = substream->runtime; 432 struct snd_pcm_runtime *runtime = substream->runtime;
433 struct snd_soc_platform *platform = rtd->platform; 433 struct snd_soc_platform *platform = rtd->platform;
434 struct snd_soc_dai *cpu_dai = rtd->cpu_dai; 434 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
435 struct snd_soc_dai *codec_dai = rtd->codec_dai; 435 struct snd_soc_dai *codec_dai = rtd->codec_dai;
436 struct snd_soc_dai_driver *cpu_dai_drv = cpu_dai->driver; 436 struct snd_soc_dai_driver *cpu_dai_drv = cpu_dai->driver;
437 struct snd_soc_dai_driver *codec_dai_drv = codec_dai->driver; 437 struct snd_soc_dai_driver *codec_dai_drv = codec_dai->driver;
438 int ret = 0; 438 int ret = 0;
439 439
440 mutex_lock(&pcm_mutex); 440 mutex_lock(&pcm_mutex);
441 441
442 /* startup the audio subsystem */ 442 /* startup the audio subsystem */
443 if (cpu_dai->driver->ops->startup) { 443 if (cpu_dai->driver->ops->startup) {
444 ret = cpu_dai->driver->ops->startup(substream, cpu_dai); 444 ret = cpu_dai->driver->ops->startup(substream, cpu_dai);
445 if (ret < 0) { 445 if (ret < 0) {
446 printk(KERN_ERR "asoc: can't open interface %s\n", 446 printk(KERN_ERR "asoc: can't open interface %s\n",
447 cpu_dai->name); 447 cpu_dai->name);
448 goto out; 448 goto out;
449 } 449 }
450 } 450 }
451 451
452 if (platform->driver->ops->open) { 452 if (platform->driver->ops->open) {
453 ret = platform->driver->ops->open(substream); 453 ret = platform->driver->ops->open(substream);
454 if (ret < 0) { 454 if (ret < 0) {
455 printk(KERN_ERR "asoc: can't open platform %s\n", platform->name); 455 printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
456 goto platform_err; 456 goto platform_err;
457 } 457 }
458 } 458 }
459 459
460 if (codec_dai->driver->ops->startup) { 460 if (codec_dai->driver->ops->startup) {
461 ret = codec_dai->driver->ops->startup(substream, codec_dai); 461 ret = codec_dai->driver->ops->startup(substream, codec_dai);
462 if (ret < 0) { 462 if (ret < 0) {
463 printk(KERN_ERR "asoc: can't open codec %s\n", 463 printk(KERN_ERR "asoc: can't open codec %s\n",
464 codec_dai->name); 464 codec_dai->name);
465 goto codec_dai_err; 465 goto codec_dai_err;
466 } 466 }
467 } 467 }
468 468
469 if (rtd->dai_link->ops && rtd->dai_link->ops->startup) { 469 if (rtd->dai_link->ops && rtd->dai_link->ops->startup) {
470 ret = rtd->dai_link->ops->startup(substream); 470 ret = rtd->dai_link->ops->startup(substream);
471 if (ret < 0) { 471 if (ret < 0) {
472 printk(KERN_ERR "asoc: %s startup failed\n", rtd->dai_link->name); 472 printk(KERN_ERR "asoc: %s startup failed\n", rtd->dai_link->name);
473 goto machine_err; 473 goto machine_err;
474 } 474 }
475 } 475 }
476 476
477 /* Check that the codec and cpu DAI's are compatible */ 477 /* Check that the codec and cpu DAI's are compatible */
478 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 478 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
479 runtime->hw.rate_min = 479 runtime->hw.rate_min =
480 max(codec_dai_drv->playback.rate_min, 480 max(codec_dai_drv->playback.rate_min,
481 cpu_dai_drv->playback.rate_min); 481 cpu_dai_drv->playback.rate_min);
482 runtime->hw.rate_max = 482 runtime->hw.rate_max =
483 min(codec_dai_drv->playback.rate_max, 483 min(codec_dai_drv->playback.rate_max,
484 cpu_dai_drv->playback.rate_max); 484 cpu_dai_drv->playback.rate_max);
485 runtime->hw.channels_min = 485 runtime->hw.channels_min =
486 max(codec_dai_drv->playback.channels_min, 486 max(codec_dai_drv->playback.channels_min,
487 cpu_dai_drv->playback.channels_min); 487 cpu_dai_drv->playback.channels_min);
488 runtime->hw.channels_max = 488 runtime->hw.channels_max =
489 min(codec_dai_drv->playback.channels_max, 489 min(codec_dai_drv->playback.channels_max,
490 cpu_dai_drv->playback.channels_max); 490 cpu_dai_drv->playback.channels_max);
491 runtime->hw.formats = 491 runtime->hw.formats =
492 codec_dai_drv->playback.formats & cpu_dai_drv->playback.formats; 492 codec_dai_drv->playback.formats & cpu_dai_drv->playback.formats;
493 runtime->hw.rates = 493 runtime->hw.rates =
494 codec_dai_drv->playback.rates & cpu_dai_drv->playback.rates; 494 codec_dai_drv->playback.rates & cpu_dai_drv->playback.rates;
495 if (codec_dai_drv->playback.rates 495 if (codec_dai_drv->playback.rates
496 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS)) 496 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
497 runtime->hw.rates |= cpu_dai_drv->playback.rates; 497 runtime->hw.rates |= cpu_dai_drv->playback.rates;
498 if (cpu_dai_drv->playback.rates 498 if (cpu_dai_drv->playback.rates
499 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS)) 499 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
500 runtime->hw.rates |= codec_dai_drv->playback.rates; 500 runtime->hw.rates |= codec_dai_drv->playback.rates;
501 } else { 501 } else {
502 runtime->hw.rate_min = 502 runtime->hw.rate_min =
503 max(codec_dai_drv->capture.rate_min, 503 max(codec_dai_drv->capture.rate_min,
504 cpu_dai_drv->capture.rate_min); 504 cpu_dai_drv->capture.rate_min);
505 runtime->hw.rate_max = 505 runtime->hw.rate_max =
506 min(codec_dai_drv->capture.rate_max, 506 min(codec_dai_drv->capture.rate_max,
507 cpu_dai_drv->capture.rate_max); 507 cpu_dai_drv->capture.rate_max);
508 runtime->hw.channels_min = 508 runtime->hw.channels_min =
509 max(codec_dai_drv->capture.channels_min, 509 max(codec_dai_drv->capture.channels_min,
510 cpu_dai_drv->capture.channels_min); 510 cpu_dai_drv->capture.channels_min);
511 runtime->hw.channels_max = 511 runtime->hw.channels_max =
512 min(codec_dai_drv->capture.channels_max, 512 min(codec_dai_drv->capture.channels_max,
513 cpu_dai_drv->capture.channels_max); 513 cpu_dai_drv->capture.channels_max);
514 runtime->hw.formats = 514 runtime->hw.formats =
515 codec_dai_drv->capture.formats & cpu_dai_drv->capture.formats; 515 codec_dai_drv->capture.formats & cpu_dai_drv->capture.formats;
516 runtime->hw.rates = 516 runtime->hw.rates =
517 codec_dai_drv->capture.rates & cpu_dai_drv->capture.rates; 517 codec_dai_drv->capture.rates & cpu_dai_drv->capture.rates;
518 if (codec_dai_drv->capture.rates 518 if (codec_dai_drv->capture.rates
519 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS)) 519 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
520 runtime->hw.rates |= cpu_dai_drv->capture.rates; 520 runtime->hw.rates |= cpu_dai_drv->capture.rates;
521 if (cpu_dai_drv->capture.rates 521 if (cpu_dai_drv->capture.rates
522 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS)) 522 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
523 runtime->hw.rates |= codec_dai_drv->capture.rates; 523 runtime->hw.rates |= codec_dai_drv->capture.rates;
524 } 524 }
525 525
526 snd_pcm_limit_hw_rates(runtime); 526 snd_pcm_limit_hw_rates(runtime);
527 if (!runtime->hw.rates) { 527 if (!runtime->hw.rates) {
528 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n", 528 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
529 codec_dai->name, cpu_dai->name); 529 codec_dai->name, cpu_dai->name);
530 goto config_err; 530 goto config_err;
531 } 531 }
532 if (!runtime->hw.formats) { 532 if (!runtime->hw.formats) {
533 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n", 533 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
534 codec_dai->name, cpu_dai->name); 534 codec_dai->name, cpu_dai->name);
535 goto config_err; 535 goto config_err;
536 } 536 }
537 if (!runtime->hw.channels_min || !runtime->hw.channels_max) { 537 if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
538 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n", 538 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
539 codec_dai->name, cpu_dai->name); 539 codec_dai->name, cpu_dai->name);
540 goto config_err; 540 goto config_err;
541 } 541 }
542 542
543 /* Symmetry only applies if we've already got an active stream. */ 543 /* Symmetry only applies if we've already got an active stream. */
544 if (cpu_dai->active || codec_dai->active) { 544 if (cpu_dai->active || codec_dai->active) {
545 ret = soc_pcm_apply_symmetry(substream); 545 ret = soc_pcm_apply_symmetry(substream);
546 if (ret != 0) 546 if (ret != 0)
547 goto config_err; 547 goto config_err;
548 } 548 }
549 549
550 pr_debug("asoc: %s <-> %s info:\n", 550 pr_debug("asoc: %s <-> %s info:\n",
551 codec_dai->name, cpu_dai->name); 551 codec_dai->name, cpu_dai->name);
552 pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates); 552 pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
553 pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min, 553 pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
554 runtime->hw.channels_max); 554 runtime->hw.channels_max);
555 pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min, 555 pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
556 runtime->hw.rate_max); 556 runtime->hw.rate_max);
557 557
558 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 558 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
559 cpu_dai->playback_active++; 559 cpu_dai->playback_active++;
560 codec_dai->playback_active++; 560 codec_dai->playback_active++;
561 } else { 561 } else {
562 cpu_dai->capture_active++; 562 cpu_dai->capture_active++;
563 codec_dai->capture_active++; 563 codec_dai->capture_active++;
564 } 564 }
565 cpu_dai->active++; 565 cpu_dai->active++;
566 codec_dai->active++; 566 codec_dai->active++;
567 rtd->codec->active++; 567 rtd->codec->active++;
568 mutex_unlock(&pcm_mutex); 568 mutex_unlock(&pcm_mutex);
569 return 0; 569 return 0;
570 570
571 config_err: 571 config_err:
572 if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown) 572 if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
573 rtd->dai_link->ops->shutdown(substream); 573 rtd->dai_link->ops->shutdown(substream);
574 574
575 machine_err: 575 machine_err:
576 if (codec_dai->driver->ops->shutdown) 576 if (codec_dai->driver->ops->shutdown)
577 codec_dai->driver->ops->shutdown(substream, codec_dai); 577 codec_dai->driver->ops->shutdown(substream, codec_dai);
578 578
579 codec_dai_err: 579 codec_dai_err:
580 if (platform->driver->ops->close) 580 if (platform->driver->ops->close)
581 platform->driver->ops->close(substream); 581 platform->driver->ops->close(substream);
582 582
583 platform_err: 583 platform_err:
584 if (cpu_dai->driver->ops->shutdown) 584 if (cpu_dai->driver->ops->shutdown)
585 cpu_dai->driver->ops->shutdown(substream, cpu_dai); 585 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
586 out: 586 out:
587 mutex_unlock(&pcm_mutex); 587 mutex_unlock(&pcm_mutex);
588 return ret; 588 return ret;
589 } 589 }
590 590
591 /* 591 /*
592 * Power down the audio subsystem pmdown_time msecs after close is called. 592 * Power down the audio subsystem pmdown_time msecs after close is called.
593 * This is to ensure there are no pops or clicks in between any music tracks 593 * This is to ensure there are no pops or clicks in between any music tracks
594 * due to DAPM power cycling. 594 * due to DAPM power cycling.
595 */ 595 */
596 static void close_delayed_work(struct work_struct *work) 596 static void close_delayed_work(struct work_struct *work)
597 { 597 {
598 struct snd_soc_pcm_runtime *rtd = 598 struct snd_soc_pcm_runtime *rtd =
599 container_of(work, struct snd_soc_pcm_runtime, delayed_work.work); 599 container_of(work, struct snd_soc_pcm_runtime, delayed_work.work);
600 struct snd_soc_dai *codec_dai = rtd->codec_dai; 600 struct snd_soc_dai *codec_dai = rtd->codec_dai;
601 601
602 mutex_lock(&pcm_mutex); 602 mutex_lock(&pcm_mutex);
603 603
604 pr_debug("pop wq checking: %s status: %s waiting: %s\n", 604 pr_debug("pop wq checking: %s status: %s waiting: %s\n",
605 codec_dai->driver->playback.stream_name, 605 codec_dai->driver->playback.stream_name,
606 codec_dai->playback_active ? "active" : "inactive", 606 codec_dai->playback_active ? "active" : "inactive",
607 codec_dai->pop_wait ? "yes" : "no"); 607 codec_dai->pop_wait ? "yes" : "no");
608 608
609 /* are we waiting on this codec DAI stream */ 609 /* are we waiting on this codec DAI stream */
610 if (codec_dai->pop_wait == 1) { 610 if (codec_dai->pop_wait == 1) {
611 codec_dai->pop_wait = 0; 611 codec_dai->pop_wait = 0;
612 snd_soc_dapm_stream_event(rtd, 612 snd_soc_dapm_stream_event(rtd,
613 codec_dai->driver->playback.stream_name, 613 codec_dai->driver->playback.stream_name,
614 SND_SOC_DAPM_STREAM_STOP); 614 SND_SOC_DAPM_STREAM_STOP);
615 } 615 }
616 616
617 mutex_unlock(&pcm_mutex); 617 mutex_unlock(&pcm_mutex);
618 } 618 }
619 619
620 /* 620 /*
621 * Called by ALSA when a PCM substream is closed. Private data can be 621 * Called by ALSA when a PCM substream is closed. Private data can be
622 * freed here. The cpu DAI, codec DAI, machine and platform are also 622 * freed here. The cpu DAI, codec DAI, machine and platform are also
623 * shutdown. 623 * shutdown.
624 */ 624 */
625 static int soc_codec_close(struct snd_pcm_substream *substream) 625 static int soc_codec_close(struct snd_pcm_substream *substream)
626 { 626 {
627 struct snd_soc_pcm_runtime *rtd = substream->private_data; 627 struct snd_soc_pcm_runtime *rtd = substream->private_data;
628 struct snd_soc_platform *platform = rtd->platform; 628 struct snd_soc_platform *platform = rtd->platform;
629 struct snd_soc_dai *cpu_dai = rtd->cpu_dai; 629 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
630 struct snd_soc_dai *codec_dai = rtd->codec_dai; 630 struct snd_soc_dai *codec_dai = rtd->codec_dai;
631 struct snd_soc_codec *codec = rtd->codec; 631 struct snd_soc_codec *codec = rtd->codec;
632 632
633 mutex_lock(&pcm_mutex); 633 mutex_lock(&pcm_mutex);
634 634
635 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 635 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
636 cpu_dai->playback_active--; 636 cpu_dai->playback_active--;
637 codec_dai->playback_active--; 637 codec_dai->playback_active--;
638 } else { 638 } else {
639 cpu_dai->capture_active--; 639 cpu_dai->capture_active--;
640 codec_dai->capture_active--; 640 codec_dai->capture_active--;
641 } 641 }
642 642
643 cpu_dai->active--; 643 cpu_dai->active--;
644 codec_dai->active--; 644 codec_dai->active--;
645 codec->active--; 645 codec->active--;
646 646
647 /* Muting the DAC suppresses artifacts caused during digital 647 /* Muting the DAC suppresses artifacts caused during digital
648 * shutdown, for example from stopping clocks. 648 * shutdown, for example from stopping clocks.
649 */ 649 */
650 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 650 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
651 snd_soc_dai_digital_mute(codec_dai, 1); 651 snd_soc_dai_digital_mute(codec_dai, 1);
652 652
653 if (cpu_dai->driver->ops->shutdown) 653 if (cpu_dai->driver->ops->shutdown)
654 cpu_dai->driver->ops->shutdown(substream, cpu_dai); 654 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
655 655
656 if (codec_dai->driver->ops->shutdown) 656 if (codec_dai->driver->ops->shutdown)
657 codec_dai->driver->ops->shutdown(substream, codec_dai); 657 codec_dai->driver->ops->shutdown(substream, codec_dai);
658 658
659 if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown) 659 if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
660 rtd->dai_link->ops->shutdown(substream); 660 rtd->dai_link->ops->shutdown(substream);
661 661
662 if (platform->driver->ops->close) 662 if (platform->driver->ops->close)
663 platform->driver->ops->close(substream); 663 platform->driver->ops->close(substream);
664 cpu_dai->runtime = NULL; 664 cpu_dai->runtime = NULL;
665 665
666 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 666 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
667 /* start delayed pop wq here for playback streams */ 667 /* start delayed pop wq here for playback streams */
668 codec_dai->pop_wait = 1; 668 codec_dai->pop_wait = 1;
669 schedule_delayed_work(&rtd->delayed_work, 669 schedule_delayed_work(&rtd->delayed_work,
670 msecs_to_jiffies(rtd->pmdown_time)); 670 msecs_to_jiffies(rtd->pmdown_time));
671 } else { 671 } else {
672 /* capture streams can be powered down now */ 672 /* capture streams can be powered down now */
673 snd_soc_dapm_stream_event(rtd, 673 snd_soc_dapm_stream_event(rtd,
674 codec_dai->driver->capture.stream_name, 674 codec_dai->driver->capture.stream_name,
675 SND_SOC_DAPM_STREAM_STOP); 675 SND_SOC_DAPM_STREAM_STOP);
676 } 676 }
677 677
678 mutex_unlock(&pcm_mutex); 678 mutex_unlock(&pcm_mutex);
679 return 0; 679 return 0;
680 } 680 }
681 681
682 /* 682 /*
683 * Called by ALSA when the PCM substream is prepared, can set format, sample 683 * Called by ALSA when the PCM substream is prepared, can set format, sample
684 * rate, etc. This function is non atomic and can be called multiple times, 684 * rate, etc. This function is non atomic and can be called multiple times,
685 * it can refer to the runtime info. 685 * it can refer to the runtime info.
686 */ 686 */
687 static int soc_pcm_prepare(struct snd_pcm_substream *substream) 687 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
688 { 688 {
689 struct snd_soc_pcm_runtime *rtd = substream->private_data; 689 struct snd_soc_pcm_runtime *rtd = substream->private_data;
690 struct snd_soc_platform *platform = rtd->platform; 690 struct snd_soc_platform *platform = rtd->platform;
691 struct snd_soc_dai *cpu_dai = rtd->cpu_dai; 691 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
692 struct snd_soc_dai *codec_dai = rtd->codec_dai; 692 struct snd_soc_dai *codec_dai = rtd->codec_dai;
693 int ret = 0; 693 int ret = 0;
694 694
695 mutex_lock(&pcm_mutex); 695 mutex_lock(&pcm_mutex);
696 696
697 if (rtd->dai_link->ops && rtd->dai_link->ops->prepare) { 697 if (rtd->dai_link->ops && rtd->dai_link->ops->prepare) {
698 ret = rtd->dai_link->ops->prepare(substream); 698 ret = rtd->dai_link->ops->prepare(substream);
699 if (ret < 0) { 699 if (ret < 0) {
700 printk(KERN_ERR "asoc: machine prepare error\n"); 700 printk(KERN_ERR "asoc: machine prepare error\n");
701 goto out; 701 goto out;
702 } 702 }
703 } 703 }
704 704
705 if (platform->driver->ops->prepare) { 705 if (platform->driver->ops->prepare) {
706 ret = platform->driver->ops->prepare(substream); 706 ret = platform->driver->ops->prepare(substream);
707 if (ret < 0) { 707 if (ret < 0) {
708 printk(KERN_ERR "asoc: platform prepare error\n"); 708 printk(KERN_ERR "asoc: platform prepare error\n");
709 goto out; 709 goto out;
710 } 710 }
711 } 711 }
712 712
713 if (codec_dai->driver->ops->prepare) { 713 if (codec_dai->driver->ops->prepare) {
714 ret = codec_dai->driver->ops->prepare(substream, codec_dai); 714 ret = codec_dai->driver->ops->prepare(substream, codec_dai);
715 if (ret < 0) { 715 if (ret < 0) {
716 printk(KERN_ERR "asoc: codec DAI prepare error\n"); 716 printk(KERN_ERR "asoc: codec DAI prepare error\n");
717 goto out; 717 goto out;
718 } 718 }
719 } 719 }
720 720
721 if (cpu_dai->driver->ops->prepare) { 721 if (cpu_dai->driver->ops->prepare) {
722 ret = cpu_dai->driver->ops->prepare(substream, cpu_dai); 722 ret = cpu_dai->driver->ops->prepare(substream, cpu_dai);
723 if (ret < 0) { 723 if (ret < 0) {
724 printk(KERN_ERR "asoc: cpu DAI prepare error\n"); 724 printk(KERN_ERR "asoc: cpu DAI prepare error\n");
725 goto out; 725 goto out;
726 } 726 }
727 } 727 }
728 728
729 /* cancel any delayed stream shutdown that is pending */ 729 /* cancel any delayed stream shutdown that is pending */
730 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && 730 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
731 codec_dai->pop_wait) { 731 codec_dai->pop_wait) {
732 codec_dai->pop_wait = 0; 732 codec_dai->pop_wait = 0;
733 cancel_delayed_work(&rtd->delayed_work); 733 cancel_delayed_work(&rtd->delayed_work);
734 } 734 }
735 735
736 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 736 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
737 snd_soc_dapm_stream_event(rtd, 737 snd_soc_dapm_stream_event(rtd,
738 codec_dai->driver->playback.stream_name, 738 codec_dai->driver->playback.stream_name,
739 SND_SOC_DAPM_STREAM_START); 739 SND_SOC_DAPM_STREAM_START);
740 else 740 else
741 snd_soc_dapm_stream_event(rtd, 741 snd_soc_dapm_stream_event(rtd,
742 codec_dai->driver->capture.stream_name, 742 codec_dai->driver->capture.stream_name,
743 SND_SOC_DAPM_STREAM_START); 743 SND_SOC_DAPM_STREAM_START);
744 744
745 snd_soc_dai_digital_mute(codec_dai, 0); 745 snd_soc_dai_digital_mute(codec_dai, 0);
746 746
747 out: 747 out:
748 mutex_unlock(&pcm_mutex); 748 mutex_unlock(&pcm_mutex);
749 return ret; 749 return ret;
750 } 750 }
751 751
752 /* 752 /*
753 * Called by ALSA when the hardware params are set by application. This 753 * Called by ALSA when the hardware params are set by application. This
754 * function can also be called multiple times and can allocate buffers 754 * function can also be called multiple times and can allocate buffers
755 * (using snd_pcm_lib_* ). It's non-atomic. 755 * (using snd_pcm_lib_* ). It's non-atomic.
756 */ 756 */
757 static int soc_pcm_hw_params(struct snd_pcm_substream *substream, 757 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
758 struct snd_pcm_hw_params *params) 758 struct snd_pcm_hw_params *params)
759 { 759 {
760 struct snd_soc_pcm_runtime *rtd = substream->private_data; 760 struct snd_soc_pcm_runtime *rtd = substream->private_data;
761 struct snd_soc_platform *platform = rtd->platform; 761 struct snd_soc_platform *platform = rtd->platform;
762 struct snd_soc_dai *cpu_dai = rtd->cpu_dai; 762 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
763 struct snd_soc_dai *codec_dai = rtd->codec_dai; 763 struct snd_soc_dai *codec_dai = rtd->codec_dai;
764 int ret = 0; 764 int ret = 0;
765 765
766 mutex_lock(&pcm_mutex); 766 mutex_lock(&pcm_mutex);
767 767
768 if (rtd->dai_link->ops && rtd->dai_link->ops->hw_params) { 768 if (rtd->dai_link->ops && rtd->dai_link->ops->hw_params) {
769 ret = rtd->dai_link->ops->hw_params(substream, params); 769 ret = rtd->dai_link->ops->hw_params(substream, params);
770 if (ret < 0) { 770 if (ret < 0) {
771 printk(KERN_ERR "asoc: machine hw_params failed\n"); 771 printk(KERN_ERR "asoc: machine hw_params failed\n");
772 goto out; 772 goto out;
773 } 773 }
774 } 774 }
775 775
776 if (codec_dai->driver->ops->hw_params) { 776 if (codec_dai->driver->ops->hw_params) {
777 ret = codec_dai->driver->ops->hw_params(substream, params, codec_dai); 777 ret = codec_dai->driver->ops->hw_params(substream, params, codec_dai);
778 if (ret < 0) { 778 if (ret < 0) {
779 printk(KERN_ERR "asoc: can't set codec %s hw params\n", 779 printk(KERN_ERR "asoc: can't set codec %s hw params\n",
780 codec_dai->name); 780 codec_dai->name);
781 goto codec_err; 781 goto codec_err;
782 } 782 }
783 } 783 }
784 784
785 if (cpu_dai->driver->ops->hw_params) { 785 if (cpu_dai->driver->ops->hw_params) {
786 ret = cpu_dai->driver->ops->hw_params(substream, params, cpu_dai); 786 ret = cpu_dai->driver->ops->hw_params(substream, params, cpu_dai);
787 if (ret < 0) { 787 if (ret < 0) {
788 printk(KERN_ERR "asoc: interface %s hw params failed\n", 788 printk(KERN_ERR "asoc: interface %s hw params failed\n",
789 cpu_dai->name); 789 cpu_dai->name);
790 goto interface_err; 790 goto interface_err;
791 } 791 }
792 } 792 }
793 793
794 if (platform->driver->ops->hw_params) { 794 if (platform->driver->ops->hw_params) {
795 ret = platform->driver->ops->hw_params(substream, params); 795 ret = platform->driver->ops->hw_params(substream, params);
796 if (ret < 0) { 796 if (ret < 0) {
797 printk(KERN_ERR "asoc: platform %s hw params failed\n", 797 printk(KERN_ERR "asoc: platform %s hw params failed\n",
798 platform->name); 798 platform->name);
799 goto platform_err; 799 goto platform_err;
800 } 800 }
801 } 801 }
802 802
803 rtd->rate = params_rate(params); 803 rtd->rate = params_rate(params);
804 804
805 out: 805 out:
806 mutex_unlock(&pcm_mutex); 806 mutex_unlock(&pcm_mutex);
807 return ret; 807 return ret;
808 808
809 platform_err: 809 platform_err:
810 if (cpu_dai->driver->ops->hw_free) 810 if (cpu_dai->driver->ops->hw_free)
811 cpu_dai->driver->ops->hw_free(substream, cpu_dai); 811 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
812 812
813 interface_err: 813 interface_err:
814 if (codec_dai->driver->ops->hw_free) 814 if (codec_dai->driver->ops->hw_free)
815 codec_dai->driver->ops->hw_free(substream, codec_dai); 815 codec_dai->driver->ops->hw_free(substream, codec_dai);
816 816
817 codec_err: 817 codec_err:
818 if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free) 818 if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
819 rtd->dai_link->ops->hw_free(substream); 819 rtd->dai_link->ops->hw_free(substream);
820 820
821 mutex_unlock(&pcm_mutex); 821 mutex_unlock(&pcm_mutex);
822 return ret; 822 return ret;
823 } 823 }
824 824
825 /* 825 /*
826 * Free's resources allocated by hw_params, can be called multiple times 826 * Free's resources allocated by hw_params, can be called multiple times
827 */ 827 */
828 static int soc_pcm_hw_free(struct snd_pcm_substream *substream) 828 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
829 { 829 {
830 struct snd_soc_pcm_runtime *rtd = substream->private_data; 830 struct snd_soc_pcm_runtime *rtd = substream->private_data;
831 struct snd_soc_platform *platform = rtd->platform; 831 struct snd_soc_platform *platform = rtd->platform;
832 struct snd_soc_dai *cpu_dai = rtd->cpu_dai; 832 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
833 struct snd_soc_dai *codec_dai = rtd->codec_dai; 833 struct snd_soc_dai *codec_dai = rtd->codec_dai;
834 struct snd_soc_codec *codec = rtd->codec; 834 struct snd_soc_codec *codec = rtd->codec;
835 835
836 mutex_lock(&pcm_mutex); 836 mutex_lock(&pcm_mutex);
837 837
838 /* apply codec digital mute */ 838 /* apply codec digital mute */
839 if (!codec->active) 839 if (!codec->active)
840 snd_soc_dai_digital_mute(codec_dai, 1); 840 snd_soc_dai_digital_mute(codec_dai, 1);
841 841
842 /* free any machine hw params */ 842 /* free any machine hw params */
843 if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free) 843 if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
844 rtd->dai_link->ops->hw_free(substream); 844 rtd->dai_link->ops->hw_free(substream);
845 845
846 /* free any DMA resources */ 846 /* free any DMA resources */
847 if (platform->driver->ops->hw_free) 847 if (platform->driver->ops->hw_free)
848 platform->driver->ops->hw_free(substream); 848 platform->driver->ops->hw_free(substream);
849 849
850 /* now free hw params for the DAI's */ 850 /* now free hw params for the DAI's */
851 if (codec_dai->driver->ops->hw_free) 851 if (codec_dai->driver->ops->hw_free)
852 codec_dai->driver->ops->hw_free(substream, codec_dai); 852 codec_dai->driver->ops->hw_free(substream, codec_dai);
853 853
854 if (cpu_dai->driver->ops->hw_free) 854 if (cpu_dai->driver->ops->hw_free)
855 cpu_dai->driver->ops->hw_free(substream, cpu_dai); 855 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
856 856
857 mutex_unlock(&pcm_mutex); 857 mutex_unlock(&pcm_mutex);
858 return 0; 858 return 0;
859 } 859 }
860 860
861 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd) 861 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
862 { 862 {
863 struct snd_soc_pcm_runtime *rtd = substream->private_data; 863 struct snd_soc_pcm_runtime *rtd = substream->private_data;
864 struct snd_soc_platform *platform = rtd->platform; 864 struct snd_soc_platform *platform = rtd->platform;
865 struct snd_soc_dai *cpu_dai = rtd->cpu_dai; 865 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
866 struct snd_soc_dai *codec_dai = rtd->codec_dai; 866 struct snd_soc_dai *codec_dai = rtd->codec_dai;
867 int ret; 867 int ret;
868 868
869 if (codec_dai->driver->ops->trigger) { 869 if (codec_dai->driver->ops->trigger) {
870 ret = codec_dai->driver->ops->trigger(substream, cmd, codec_dai); 870 ret = codec_dai->driver->ops->trigger(substream, cmd, codec_dai);
871 if (ret < 0) 871 if (ret < 0)
872 return ret; 872 return ret;
873 } 873 }
874 874
875 if (platform->driver->ops->trigger) { 875 if (platform->driver->ops->trigger) {
876 ret = platform->driver->ops->trigger(substream, cmd); 876 ret = platform->driver->ops->trigger(substream, cmd);
877 if (ret < 0) 877 if (ret < 0)
878 return ret; 878 return ret;
879 } 879 }
880 880
881 if (cpu_dai->driver->ops->trigger) { 881 if (cpu_dai->driver->ops->trigger) {
882 ret = cpu_dai->driver->ops->trigger(substream, cmd, cpu_dai); 882 ret = cpu_dai->driver->ops->trigger(substream, cmd, cpu_dai);
883 if (ret < 0) 883 if (ret < 0)
884 return ret; 884 return ret;
885 } 885 }
886 return 0; 886 return 0;
887 } 887 }
888 888
889 /* 889 /*
890 * soc level wrapper for pointer callback 890 * soc level wrapper for pointer callback
891 * If cpu_dai, codec_dai, platform driver has the delay callback, than 891 * If cpu_dai, codec_dai, platform driver has the delay callback, than
892 * the runtime->delay will be updated accordingly. 892 * the runtime->delay will be updated accordingly.
893 */ 893 */
894 static snd_pcm_uframes_t soc_pcm_pointer(struct snd_pcm_substream *substream) 894 static snd_pcm_uframes_t soc_pcm_pointer(struct snd_pcm_substream *substream)
895 { 895 {
896 struct snd_soc_pcm_runtime *rtd = substream->private_data; 896 struct snd_soc_pcm_runtime *rtd = substream->private_data;
897 struct snd_soc_platform *platform = rtd->platform; 897 struct snd_soc_platform *platform = rtd->platform;
898 struct snd_soc_dai *cpu_dai = rtd->cpu_dai; 898 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
899 struct snd_soc_dai *codec_dai = rtd->codec_dai; 899 struct snd_soc_dai *codec_dai = rtd->codec_dai;
900 struct snd_pcm_runtime *runtime = substream->runtime; 900 struct snd_pcm_runtime *runtime = substream->runtime;
901 snd_pcm_uframes_t offset = 0; 901 snd_pcm_uframes_t offset = 0;
902 snd_pcm_sframes_t delay = 0; 902 snd_pcm_sframes_t delay = 0;
903 903
904 if (platform->driver->ops->pointer) 904 if (platform->driver->ops->pointer)
905 offset = platform->driver->ops->pointer(substream); 905 offset = platform->driver->ops->pointer(substream);
906 906
907 if (cpu_dai->driver->ops->delay) 907 if (cpu_dai->driver->ops->delay)
908 delay += cpu_dai->driver->ops->delay(substream, cpu_dai); 908 delay += cpu_dai->driver->ops->delay(substream, cpu_dai);
909 909
910 if (codec_dai->driver->ops->delay) 910 if (codec_dai->driver->ops->delay)
911 delay += codec_dai->driver->ops->delay(substream, codec_dai); 911 delay += codec_dai->driver->ops->delay(substream, codec_dai);
912 912
913 if (platform->driver->delay) 913 if (platform->driver->delay)
914 delay += platform->driver->delay(substream, codec_dai); 914 delay += platform->driver->delay(substream, codec_dai);
915 915
916 runtime->delay = delay; 916 runtime->delay = delay;
917 917
918 return offset; 918 return offset;
919 } 919 }
920 920
921 /* ASoC PCM operations */ 921 /* ASoC PCM operations */
922 static struct snd_pcm_ops soc_pcm_ops = { 922 static struct snd_pcm_ops soc_pcm_ops = {
923 .open = soc_pcm_open, 923 .open = soc_pcm_open,
924 .close = soc_codec_close, 924 .close = soc_codec_close,
925 .hw_params = soc_pcm_hw_params, 925 .hw_params = soc_pcm_hw_params,
926 .hw_free = soc_pcm_hw_free, 926 .hw_free = soc_pcm_hw_free,
927 .prepare = soc_pcm_prepare, 927 .prepare = soc_pcm_prepare,
928 .trigger = soc_pcm_trigger, 928 .trigger = soc_pcm_trigger,
929 .pointer = soc_pcm_pointer, 929 .pointer = soc_pcm_pointer,
930 }; 930 };
931 931
932 #ifdef CONFIG_PM 932 #ifdef CONFIG_PM
933 /* powers down audio subsystem for suspend */ 933 /* powers down audio subsystem for suspend */
934 static int soc_suspend(struct device *dev) 934 static int soc_suspend(struct device *dev)
935 { 935 {
936 struct platform_device *pdev = to_platform_device(dev); 936 struct platform_device *pdev = to_platform_device(dev);
937 struct snd_soc_card *card = platform_get_drvdata(pdev); 937 struct snd_soc_card *card = platform_get_drvdata(pdev);
938 int i; 938 int i;
939 939
940 /* If the initialization of this soc device failed, there is no codec 940 /* If the initialization of this soc device failed, there is no codec
941 * associated with it. Just bail out in this case. 941 * associated with it. Just bail out in this case.
942 */ 942 */
943 if (list_empty(&card->codec_dev_list)) 943 if (list_empty(&card->codec_dev_list))
944 return 0; 944 return 0;
945 945
946 /* Due to the resume being scheduled into a workqueue we could 946 /* Due to the resume being scheduled into a workqueue we could
947 * suspend before that's finished - wait for it to complete. 947 * suspend before that's finished - wait for it to complete.
948 */ 948 */
949 snd_power_lock(card->snd_card); 949 snd_power_lock(card->snd_card);
950 snd_power_wait(card->snd_card, SNDRV_CTL_POWER_D0); 950 snd_power_wait(card->snd_card, SNDRV_CTL_POWER_D0);
951 snd_power_unlock(card->snd_card); 951 snd_power_unlock(card->snd_card);
952 952
953 /* we're going to block userspace touching us until resume completes */ 953 /* we're going to block userspace touching us until resume completes */
954 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D3hot); 954 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D3hot);
955 955
956 /* mute any active DAC's */ 956 /* mute any active DAC's */
957 for (i = 0; i < card->num_rtd; i++) { 957 for (i = 0; i < card->num_rtd; i++) {
958 struct snd_soc_dai *dai = card->rtd[i].codec_dai; 958 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
959 struct snd_soc_dai_driver *drv = dai->driver; 959 struct snd_soc_dai_driver *drv = dai->driver;
960 960
961 if (card->rtd[i].dai_link->ignore_suspend) 961 if (card->rtd[i].dai_link->ignore_suspend)
962 continue; 962 continue;
963 963
964 if (drv->ops->digital_mute && dai->playback_active) 964 if (drv->ops->digital_mute && dai->playback_active)
965 drv->ops->digital_mute(dai, 1); 965 drv->ops->digital_mute(dai, 1);
966 } 966 }
967 967
968 /* suspend all pcms */ 968 /* suspend all pcms */
969 for (i = 0; i < card->num_rtd; i++) { 969 for (i = 0; i < card->num_rtd; i++) {
970 if (card->rtd[i].dai_link->ignore_suspend) 970 if (card->rtd[i].dai_link->ignore_suspend)
971 continue; 971 continue;
972 972
973 snd_pcm_suspend_all(card->rtd[i].pcm); 973 snd_pcm_suspend_all(card->rtd[i].pcm);
974 } 974 }
975 975
976 if (card->suspend_pre) 976 if (card->suspend_pre)
977 card->suspend_pre(pdev, PMSG_SUSPEND); 977 card->suspend_pre(pdev, PMSG_SUSPEND);
978 978
979 for (i = 0; i < card->num_rtd; i++) { 979 for (i = 0; i < card->num_rtd; i++) {
980 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai; 980 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
981 struct snd_soc_platform *platform = card->rtd[i].platform; 981 struct snd_soc_platform *platform = card->rtd[i].platform;
982 982
983 if (card->rtd[i].dai_link->ignore_suspend) 983 if (card->rtd[i].dai_link->ignore_suspend)
984 continue; 984 continue;
985 985
986 if (cpu_dai->driver->suspend && !cpu_dai->driver->ac97_control) 986 if (cpu_dai->driver->suspend && !cpu_dai->driver->ac97_control)
987 cpu_dai->driver->suspend(cpu_dai); 987 cpu_dai->driver->suspend(cpu_dai);
988 if (platform->driver->suspend && !platform->suspended) { 988 if (platform->driver->suspend && !platform->suspended) {
989 platform->driver->suspend(cpu_dai); 989 platform->driver->suspend(cpu_dai);
990 platform->suspended = 1; 990 platform->suspended = 1;
991 } 991 }
992 } 992 }
993 993
994 /* close any waiting streams and save state */ 994 /* close any waiting streams and save state */
995 for (i = 0; i < card->num_rtd; i++) { 995 for (i = 0; i < card->num_rtd; i++) {
996 run_delayed_work(&card->rtd[i].delayed_work); 996 run_delayed_work(&card->rtd[i].delayed_work);
997 card->rtd[i].codec->suspend_bias_level = card->rtd[i].codec->bias_level; 997 card->rtd[i].codec->suspend_bias_level = card->rtd[i].codec->bias_level;
998 } 998 }
999 999
1000 for (i = 0; i < card->num_rtd; i++) { 1000 for (i = 0; i < card->num_rtd; i++) {
1001 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver; 1001 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1002 1002
1003 if (card->rtd[i].dai_link->ignore_suspend) 1003 if (card->rtd[i].dai_link->ignore_suspend)
1004 continue; 1004 continue;
1005 1005
1006 if (driver->playback.stream_name != NULL) 1006 if (driver->playback.stream_name != NULL)
1007 snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name, 1007 snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1008 SND_SOC_DAPM_STREAM_SUSPEND); 1008 SND_SOC_DAPM_STREAM_SUSPEND);
1009 1009
1010 if (driver->capture.stream_name != NULL) 1010 if (driver->capture.stream_name != NULL)
1011 snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name, 1011 snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1012 SND_SOC_DAPM_STREAM_SUSPEND); 1012 SND_SOC_DAPM_STREAM_SUSPEND);
1013 } 1013 }
1014 1014
1015 /* suspend all CODECs */ 1015 /* suspend all CODECs */
1016 for (i = 0; i < card->num_rtd; i++) { 1016 for (i = 0; i < card->num_rtd; i++) {
1017 struct snd_soc_codec *codec = card->rtd[i].codec; 1017 struct snd_soc_codec *codec = card->rtd[i].codec;
1018 /* If there are paths active then the CODEC will be held with 1018 /* If there are paths active then the CODEC will be held with
1019 * bias _ON and should not be suspended. */ 1019 * bias _ON and should not be suspended. */
1020 if (!codec->suspended && codec->driver->suspend) { 1020 if (!codec->suspended && codec->driver->suspend) {
1021 switch (codec->bias_level) { 1021 switch (codec->bias_level) {
1022 case SND_SOC_BIAS_STANDBY: 1022 case SND_SOC_BIAS_STANDBY:
1023 case SND_SOC_BIAS_OFF: 1023 case SND_SOC_BIAS_OFF:
1024 codec->driver->suspend(codec, PMSG_SUSPEND); 1024 codec->driver->suspend(codec, PMSG_SUSPEND);
1025 codec->suspended = 1; 1025 codec->suspended = 1;
1026 break; 1026 break;
1027 default: 1027 default:
1028 dev_dbg(codec->dev, "CODEC is on over suspend\n"); 1028 dev_dbg(codec->dev, "CODEC is on over suspend\n");
1029 break; 1029 break;
1030 } 1030 }
1031 } 1031 }
1032 } 1032 }
1033 1033
1034 for (i = 0; i < card->num_rtd; i++) { 1034 for (i = 0; i < card->num_rtd; i++) {
1035 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai; 1035 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1036 1036
1037 if (card->rtd[i].dai_link->ignore_suspend) 1037 if (card->rtd[i].dai_link->ignore_suspend)
1038 continue; 1038 continue;
1039 1039
1040 if (cpu_dai->driver->suspend && cpu_dai->driver->ac97_control) 1040 if (cpu_dai->driver->suspend && cpu_dai->driver->ac97_control)
1041 cpu_dai->driver->suspend(cpu_dai); 1041 cpu_dai->driver->suspend(cpu_dai);
1042 } 1042 }
1043 1043
1044 if (card->suspend_post) 1044 if (card->suspend_post)
1045 card->suspend_post(pdev, PMSG_SUSPEND); 1045 card->suspend_post(pdev, PMSG_SUSPEND);
1046 1046
1047 return 0; 1047 return 0;
1048 } 1048 }
1049 1049
1050 /* deferred resume work, so resume can complete before we finished 1050 /* deferred resume work, so resume can complete before we finished
1051 * setting our codec back up, which can be very slow on I2C 1051 * setting our codec back up, which can be very slow on I2C
1052 */ 1052 */
1053 static void soc_resume_deferred(struct work_struct *work) 1053 static void soc_resume_deferred(struct work_struct *work)
1054 { 1054 {
1055 struct snd_soc_card *card = 1055 struct snd_soc_card *card =
1056 container_of(work, struct snd_soc_card, deferred_resume_work); 1056 container_of(work, struct snd_soc_card, deferred_resume_work);
1057 struct platform_device *pdev = to_platform_device(card->dev); 1057 struct platform_device *pdev = to_platform_device(card->dev);
1058 int i; 1058 int i;
1059 1059
1060 /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time, 1060 /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
1061 * so userspace apps are blocked from touching us 1061 * so userspace apps are blocked from touching us
1062 */ 1062 */
1063 1063
1064 dev_dbg(card->dev, "starting resume work\n"); 1064 dev_dbg(card->dev, "starting resume work\n");
1065 1065
1066 /* Bring us up into D2 so that DAPM starts enabling things */ 1066 /* Bring us up into D2 so that DAPM starts enabling things */
1067 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D2); 1067 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D2);
1068 1068
1069 if (card->resume_pre) 1069 if (card->resume_pre)
1070 card->resume_pre(pdev); 1070 card->resume_pre(pdev);
1071 1071
1072 /* resume AC97 DAIs */ 1072 /* resume AC97 DAIs */
1073 for (i = 0; i < card->num_rtd; i++) { 1073 for (i = 0; i < card->num_rtd; i++) {
1074 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai; 1074 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1075 1075
1076 if (card->rtd[i].dai_link->ignore_suspend) 1076 if (card->rtd[i].dai_link->ignore_suspend)
1077 continue; 1077 continue;
1078 1078
1079 if (cpu_dai->driver->resume && cpu_dai->driver->ac97_control) 1079 if (cpu_dai->driver->resume && cpu_dai->driver->ac97_control)
1080 cpu_dai->driver->resume(cpu_dai); 1080 cpu_dai->driver->resume(cpu_dai);
1081 } 1081 }
1082 1082
1083 for (i = 0; i < card->num_rtd; i++) { 1083 for (i = 0; i < card->num_rtd; i++) {
1084 struct snd_soc_codec *codec = card->rtd[i].codec; 1084 struct snd_soc_codec *codec = card->rtd[i].codec;
1085 /* If the CODEC was idle over suspend then it will have been 1085 /* If the CODEC was idle over suspend then it will have been
1086 * left with bias OFF or STANDBY and suspended so we must now 1086 * left with bias OFF or STANDBY and suspended so we must now
1087 * resume. Otherwise the suspend was suppressed. 1087 * resume. Otherwise the suspend was suppressed.
1088 */ 1088 */
1089 if (codec->driver->resume && codec->suspended) { 1089 if (codec->driver->resume && codec->suspended) {
1090 switch (codec->bias_level) { 1090 switch (codec->bias_level) {
1091 case SND_SOC_BIAS_STANDBY: 1091 case SND_SOC_BIAS_STANDBY:
1092 case SND_SOC_BIAS_OFF: 1092 case SND_SOC_BIAS_OFF:
1093 codec->driver->resume(codec); 1093 codec->driver->resume(codec);
1094 codec->suspended = 0; 1094 codec->suspended = 0;
1095 break; 1095 break;
1096 default: 1096 default:
1097 dev_dbg(codec->dev, "CODEC was on over suspend\n"); 1097 dev_dbg(codec->dev, "CODEC was on over suspend\n");
1098 break; 1098 break;
1099 } 1099 }
1100 } 1100 }
1101 } 1101 }
1102 1102
1103 for (i = 0; i < card->num_rtd; i++) { 1103 for (i = 0; i < card->num_rtd; i++) {
1104 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver; 1104 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1105 1105
1106 if (card->rtd[i].dai_link->ignore_suspend) 1106 if (card->rtd[i].dai_link->ignore_suspend)
1107 continue; 1107 continue;
1108 1108
1109 if (driver->playback.stream_name != NULL) 1109 if (driver->playback.stream_name != NULL)
1110 snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name, 1110 snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1111 SND_SOC_DAPM_STREAM_RESUME); 1111 SND_SOC_DAPM_STREAM_RESUME);
1112 1112
1113 if (driver->capture.stream_name != NULL) 1113 if (driver->capture.stream_name != NULL)
1114 snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name, 1114 snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1115 SND_SOC_DAPM_STREAM_RESUME); 1115 SND_SOC_DAPM_STREAM_RESUME);
1116 } 1116 }
1117 1117
1118 /* unmute any active DACs */ 1118 /* unmute any active DACs */
1119 for (i = 0; i < card->num_rtd; i++) { 1119 for (i = 0; i < card->num_rtd; i++) {
1120 struct snd_soc_dai *dai = card->rtd[i].codec_dai; 1120 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
1121 struct snd_soc_dai_driver *drv = dai->driver; 1121 struct snd_soc_dai_driver *drv = dai->driver;
1122 1122
1123 if (card->rtd[i].dai_link->ignore_suspend) 1123 if (card->rtd[i].dai_link->ignore_suspend)
1124 continue; 1124 continue;
1125 1125
1126 if (drv->ops->digital_mute && dai->playback_active) 1126 if (drv->ops->digital_mute && dai->playback_active)
1127 drv->ops->digital_mute(dai, 0); 1127 drv->ops->digital_mute(dai, 0);
1128 } 1128 }
1129 1129
1130 for (i = 0; i < card->num_rtd; i++) { 1130 for (i = 0; i < card->num_rtd; i++) {
1131 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai; 1131 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1132 struct snd_soc_platform *platform = card->rtd[i].platform; 1132 struct snd_soc_platform *platform = card->rtd[i].platform;
1133 1133
1134 if (card->rtd[i].dai_link->ignore_suspend) 1134 if (card->rtd[i].dai_link->ignore_suspend)
1135 continue; 1135 continue;
1136 1136
1137 if (cpu_dai->driver->resume && !cpu_dai->driver->ac97_control) 1137 if (cpu_dai->driver->resume && !cpu_dai->driver->ac97_control)
1138 cpu_dai->driver->resume(cpu_dai); 1138 cpu_dai->driver->resume(cpu_dai);
1139 if (platform->driver->resume && platform->suspended) { 1139 if (platform->driver->resume && platform->suspended) {
1140 platform->driver->resume(cpu_dai); 1140 platform->driver->resume(cpu_dai);
1141 platform->suspended = 0; 1141 platform->suspended = 0;
1142 } 1142 }
1143 } 1143 }
1144 1144
1145 if (card->resume_post) 1145 if (card->resume_post)
1146 card->resume_post(pdev); 1146 card->resume_post(pdev);
1147 1147
1148 dev_dbg(card->dev, "resume work completed\n"); 1148 dev_dbg(card->dev, "resume work completed\n");
1149 1149
1150 /* userspace can access us now we are back as we were before */ 1150 /* userspace can access us now we are back as we were before */
1151 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D0); 1151 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D0);
1152 } 1152 }
1153 1153
1154 /* powers up audio subsystem after a suspend */ 1154 /* powers up audio subsystem after a suspend */
1155 static int soc_resume(struct device *dev) 1155 static int soc_resume(struct device *dev)
1156 { 1156 {
1157 struct platform_device *pdev = to_platform_device(dev); 1157 struct platform_device *pdev = to_platform_device(dev);
1158 struct snd_soc_card *card = platform_get_drvdata(pdev); 1158 struct snd_soc_card *card = platform_get_drvdata(pdev);
1159 int i; 1159 int i;
1160 1160
1161 /* AC97 devices might have other drivers hanging off them so 1161 /* AC97 devices might have other drivers hanging off them so
1162 * need to resume immediately. Other drivers don't have that 1162 * need to resume immediately. Other drivers don't have that
1163 * problem and may take a substantial amount of time to resume 1163 * problem and may take a substantial amount of time to resume
1164 * due to I/O costs and anti-pop so handle them out of line. 1164 * due to I/O costs and anti-pop so handle them out of line.
1165 */ 1165 */
1166 for (i = 0; i < card->num_rtd; i++) { 1166 for (i = 0; i < card->num_rtd; i++) {
1167 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai; 1167 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1168 if (cpu_dai->driver->ac97_control) { 1168 if (cpu_dai->driver->ac97_control) {
1169 dev_dbg(dev, "Resuming AC97 immediately\n"); 1169 dev_dbg(dev, "Resuming AC97 immediately\n");
1170 soc_resume_deferred(&card->deferred_resume_work); 1170 soc_resume_deferred(&card->deferred_resume_work);
1171 } else { 1171 } else {
1172 dev_dbg(dev, "Scheduling resume work\n"); 1172 dev_dbg(dev, "Scheduling resume work\n");
1173 if (!schedule_work(&card->deferred_resume_work)) 1173 if (!schedule_work(&card->deferred_resume_work))
1174 dev_err(dev, "resume work item may be lost\n"); 1174 dev_err(dev, "resume work item may be lost\n");
1175 } 1175 }
1176 } 1176 }
1177 1177
1178 return 0; 1178 return 0;
1179 } 1179 }
1180 #else 1180 #else
1181 #define soc_suspend NULL 1181 #define soc_suspend NULL
1182 #define soc_resume NULL 1182 #define soc_resume NULL
1183 #endif 1183 #endif
1184 1184
1185 static struct snd_soc_dai_ops null_dai_ops = { 1185 static struct snd_soc_dai_ops null_dai_ops = {
1186 }; 1186 };
1187 1187
1188 static int soc_bind_dai_link(struct snd_soc_card *card, int num) 1188 static int soc_bind_dai_link(struct snd_soc_card *card, int num)
1189 { 1189 {
1190 struct snd_soc_dai_link *dai_link = &card->dai_link[num]; 1190 struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1191 struct snd_soc_pcm_runtime *rtd = &card->rtd[num]; 1191 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1192 struct snd_soc_codec *codec; 1192 struct snd_soc_codec *codec;
1193 struct snd_soc_platform *platform; 1193 struct snd_soc_platform *platform;
1194 struct snd_soc_dai *codec_dai, *cpu_dai; 1194 struct snd_soc_dai *codec_dai, *cpu_dai;
1195 1195
1196 if (rtd->complete) 1196 if (rtd->complete)
1197 return 1; 1197 return 1;
1198 dev_dbg(card->dev, "binding %s at idx %d\n", dai_link->name, num); 1198 dev_dbg(card->dev, "binding %s at idx %d\n", dai_link->name, num);
1199 1199
1200 /* do we already have the CPU DAI for this link ? */ 1200 /* do we already have the CPU DAI for this link ? */
1201 if (rtd->cpu_dai) { 1201 if (rtd->cpu_dai) {
1202 goto find_codec; 1202 goto find_codec;
1203 } 1203 }
1204 /* no, then find CPU DAI from registered DAIs*/ 1204 /* no, then find CPU DAI from registered DAIs*/
1205 list_for_each_entry(cpu_dai, &dai_list, list) { 1205 list_for_each_entry(cpu_dai, &dai_list, list) {
1206 if (!strcmp(cpu_dai->name, dai_link->cpu_dai_name)) { 1206 if (!strcmp(cpu_dai->name, dai_link->cpu_dai_name)) {
1207 1207
1208 if (!try_module_get(cpu_dai->dev->driver->owner)) 1208 if (!try_module_get(cpu_dai->dev->driver->owner))
1209 return -ENODEV; 1209 return -ENODEV;
1210 1210
1211 rtd->cpu_dai = cpu_dai; 1211 rtd->cpu_dai = cpu_dai;
1212 goto find_codec; 1212 goto find_codec;
1213 } 1213 }
1214 } 1214 }
1215 dev_dbg(card->dev, "CPU DAI %s not registered\n", 1215 dev_dbg(card->dev, "CPU DAI %s not registered\n",
1216 dai_link->cpu_dai_name); 1216 dai_link->cpu_dai_name);
1217 1217
1218 find_codec: 1218 find_codec:
1219 /* do we already have the CODEC for this link ? */ 1219 /* do we already have the CODEC for this link ? */
1220 if (rtd->codec) { 1220 if (rtd->codec) {
1221 goto find_platform; 1221 goto find_platform;
1222 } 1222 }
1223 1223
1224 /* no, then find CODEC from registered CODECs*/ 1224 /* no, then find CODEC from registered CODECs*/
1225 list_for_each_entry(codec, &codec_list, list) { 1225 list_for_each_entry(codec, &codec_list, list) {
1226 if (!strcmp(codec->name, dai_link->codec_name)) { 1226 if (!strcmp(codec->name, dai_link->codec_name)) {
1227 rtd->codec = codec; 1227 rtd->codec = codec;
1228 1228
1229 if (!try_module_get(codec->dev->driver->owner)) 1229 if (!try_module_get(codec->dev->driver->owner))
1230 return -ENODEV; 1230 return -ENODEV;
1231 1231
1232 /* CODEC found, so find CODEC DAI from registered DAIs from this CODEC*/ 1232 /* CODEC found, so find CODEC DAI from registered DAIs from this CODEC*/
1233 list_for_each_entry(codec_dai, &dai_list, list) { 1233 list_for_each_entry(codec_dai, &dai_list, list) {
1234 if (codec->dev == codec_dai->dev && 1234 if (codec->dev == codec_dai->dev &&
1235 !strcmp(codec_dai->name, dai_link->codec_dai_name)) { 1235 !strcmp(codec_dai->name, dai_link->codec_dai_name)) {
1236 rtd->codec_dai = codec_dai; 1236 rtd->codec_dai = codec_dai;
1237 goto find_platform; 1237 goto find_platform;
1238 } 1238 }
1239 } 1239 }
1240 dev_dbg(card->dev, "CODEC DAI %s not registered\n", 1240 dev_dbg(card->dev, "CODEC DAI %s not registered\n",
1241 dai_link->codec_dai_name); 1241 dai_link->codec_dai_name);
1242 1242
1243 goto find_platform; 1243 goto find_platform;
1244 } 1244 }
1245 } 1245 }
1246 dev_dbg(card->dev, "CODEC %s not registered\n", 1246 dev_dbg(card->dev, "CODEC %s not registered\n",
1247 dai_link->codec_name); 1247 dai_link->codec_name);
1248 1248
1249 find_platform: 1249 find_platform:
1250 /* do we already have the CODEC DAI for this link ? */ 1250 /* do we already have the CODEC DAI for this link ? */
1251 if (rtd->platform) { 1251 if (rtd->platform) {
1252 goto out; 1252 goto out;
1253 } 1253 }
1254 /* no, then find CPU DAI from registered DAIs*/ 1254 /* no, then find CPU DAI from registered DAIs*/
1255 list_for_each_entry(platform, &platform_list, list) { 1255 list_for_each_entry(platform, &platform_list, list) {
1256 if (!strcmp(platform->name, dai_link->platform_name)) { 1256 if (!strcmp(platform->name, dai_link->platform_name)) {
1257 1257
1258 if (!try_module_get(platform->dev->driver->owner)) 1258 if (!try_module_get(platform->dev->driver->owner))
1259 return -ENODEV; 1259 return -ENODEV;
1260 1260
1261 rtd->platform = platform; 1261 rtd->platform = platform;
1262 goto out; 1262 goto out;
1263 } 1263 }
1264 } 1264 }
1265 1265
1266 dev_dbg(card->dev, "platform %s not registered\n", 1266 dev_dbg(card->dev, "platform %s not registered\n",
1267 dai_link->platform_name); 1267 dai_link->platform_name);
1268 return 0; 1268 return 0;
1269 1269
1270 out: 1270 out:
1271 /* mark rtd as complete if we found all 4 of our client devices */ 1271 /* mark rtd as complete if we found all 4 of our client devices */
1272 if (rtd->codec && rtd->codec_dai && rtd->platform && rtd->cpu_dai) { 1272 if (rtd->codec && rtd->codec_dai && rtd->platform && rtd->cpu_dai) {
1273 rtd->complete = 1; 1273 rtd->complete = 1;
1274 card->num_rtd++; 1274 card->num_rtd++;
1275 } 1275 }
1276 return 1; 1276 return 1;
1277 } 1277 }
1278 1278
1279 static void soc_remove_dai_link(struct snd_soc_card *card, int num) 1279 static void soc_remove_dai_link(struct snd_soc_card *card, int num)
1280 { 1280 {
1281 struct snd_soc_pcm_runtime *rtd = &card->rtd[num]; 1281 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1282 struct snd_soc_codec *codec = rtd->codec; 1282 struct snd_soc_codec *codec = rtd->codec;
1283 struct snd_soc_platform *platform = rtd->platform; 1283 struct snd_soc_platform *platform = rtd->platform;
1284 struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai; 1284 struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1285 int err; 1285 int err;
1286 1286
1287 /* unregister the rtd device */ 1287 /* unregister the rtd device */
1288 if (rtd->dev_registered) { 1288 if (rtd->dev_registered) {
1289 device_remove_file(&rtd->dev, &dev_attr_pmdown_time); 1289 device_remove_file(&rtd->dev, &dev_attr_pmdown_time);
1290 device_unregister(&rtd->dev); 1290 device_unregister(&rtd->dev);
1291 rtd->dev_registered = 0; 1291 rtd->dev_registered = 0;
1292 } 1292 }
1293 1293
1294 /* remove the CODEC DAI */ 1294 /* remove the CODEC DAI */
1295 if (codec_dai && codec_dai->probed) { 1295 if (codec_dai && codec_dai->probed) {
1296 if (codec_dai->driver->remove) { 1296 if (codec_dai->driver->remove) {
1297 err = codec_dai->driver->remove(codec_dai); 1297 err = codec_dai->driver->remove(codec_dai);
1298 if (err < 0) 1298 if (err < 0)
1299 printk(KERN_ERR "asoc: failed to remove %s\n", codec_dai->name); 1299 printk(KERN_ERR "asoc: failed to remove %s\n", codec_dai->name);
1300 } 1300 }
1301 codec_dai->probed = 0; 1301 codec_dai->probed = 0;
1302 list_del(&codec_dai->card_list); 1302 list_del(&codec_dai->card_list);
1303 } 1303 }
1304 1304
1305 /* remove the platform */ 1305 /* remove the platform */
1306 if (platform && platform->probed) { 1306 if (platform && platform->probed) {
1307 if (platform->driver->remove) { 1307 if (platform->driver->remove) {
1308 err = platform->driver->remove(platform); 1308 err = platform->driver->remove(platform);
1309 if (err < 0) 1309 if (err < 0)
1310 printk(KERN_ERR "asoc: failed to remove %s\n", platform->name); 1310 printk(KERN_ERR "asoc: failed to remove %s\n", platform->name);
1311 } 1311 }
1312 platform->probed = 0; 1312 platform->probed = 0;
1313 list_del(&platform->card_list); 1313 list_del(&platform->card_list);
1314 module_put(platform->dev->driver->owner); 1314 module_put(platform->dev->driver->owner);
1315 } 1315 }
1316 1316
1317 /* remove the CODEC */ 1317 /* remove the CODEC */
1318 if (codec && codec->probed) { 1318 if (codec && codec->probed) {
1319 if (codec->driver->remove) { 1319 if (codec->driver->remove) {
1320 err = codec->driver->remove(codec); 1320 err = codec->driver->remove(codec);
1321 if (err < 0) 1321 if (err < 0)
1322 printk(KERN_ERR "asoc: failed to remove %s\n", codec->name); 1322 printk(KERN_ERR "asoc: failed to remove %s\n", codec->name);
1323 } 1323 }
1324 1324
1325 /* Make sure all DAPM widgets are freed */ 1325 /* Make sure all DAPM widgets are freed */
1326 snd_soc_dapm_free(codec); 1326 snd_soc_dapm_free(codec);
1327 1327
1328 soc_cleanup_codec_debugfs(codec); 1328 soc_cleanup_codec_debugfs(codec);
1329 device_remove_file(&rtd->dev, &dev_attr_codec_reg); 1329 device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1330 codec->probed = 0; 1330 codec->probed = 0;
1331 list_del(&codec->card_list); 1331 list_del(&codec->card_list);
1332 module_put(codec->dev->driver->owner); 1332 module_put(codec->dev->driver->owner);
1333 } 1333 }
1334 1334
1335 /* remove the cpu_dai */ 1335 /* remove the cpu_dai */
1336 if (cpu_dai && cpu_dai->probed) { 1336 if (cpu_dai && cpu_dai->probed) {
1337 if (cpu_dai->driver->remove) { 1337 if (cpu_dai->driver->remove) {
1338 err = cpu_dai->driver->remove(cpu_dai); 1338 err = cpu_dai->driver->remove(cpu_dai);
1339 if (err < 0) 1339 if (err < 0)
1340 printk(KERN_ERR "asoc: failed to remove %s\n", cpu_dai->name); 1340 printk(KERN_ERR "asoc: failed to remove %s\n", cpu_dai->name);
1341 } 1341 }
1342 cpu_dai->probed = 0; 1342 cpu_dai->probed = 0;
1343 list_del(&cpu_dai->card_list); 1343 list_del(&cpu_dai->card_list);
1344 module_put(cpu_dai->dev->driver->owner); 1344 module_put(cpu_dai->dev->driver->owner);
1345 } 1345 }
1346 } 1346 }
1347 1347
1348 static void rtd_release(struct device *dev) {} 1348 static void rtd_release(struct device *dev) {}
1349 1349
1350 static int soc_probe_dai_link(struct snd_soc_card *card, int num) 1350 static int soc_probe_dai_link(struct snd_soc_card *card, int num)
1351 { 1351 {
1352 struct snd_soc_dai_link *dai_link = &card->dai_link[num]; 1352 struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1353 struct snd_soc_pcm_runtime *rtd = &card->rtd[num]; 1353 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1354 struct snd_soc_codec *codec = rtd->codec; 1354 struct snd_soc_codec *codec = rtd->codec;
1355 struct snd_soc_platform *platform = rtd->platform; 1355 struct snd_soc_platform *platform = rtd->platform;
1356 struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai; 1356 struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1357 int ret; 1357 int ret;
1358 1358
1359 dev_dbg(card->dev, "probe %s dai link %d\n", card->name, num); 1359 dev_dbg(card->dev, "probe %s dai link %d\n", card->name, num);
1360 1360
1361 /* config components */ 1361 /* config components */
1362 codec_dai->codec = codec; 1362 codec_dai->codec = codec;
1363 codec->card = card; 1363 codec->card = card;
1364 cpu_dai->platform = platform; 1364 cpu_dai->platform = platform;
1365 rtd->card = card; 1365 rtd->card = card;
1366 rtd->dev.parent = card->dev; 1366 rtd->dev.parent = card->dev;
1367 codec_dai->card = card; 1367 codec_dai->card = card;
1368 cpu_dai->card = card; 1368 cpu_dai->card = card;
1369 1369
1370 /* set default power off timeout */ 1370 /* set default power off timeout */
1371 rtd->pmdown_time = pmdown_time; 1371 rtd->pmdown_time = pmdown_time;
1372 1372
1373 /* probe the cpu_dai */ 1373 /* probe the cpu_dai */
1374 if (!cpu_dai->probed) { 1374 if (!cpu_dai->probed) {
1375 if (cpu_dai->driver->probe) { 1375 if (cpu_dai->driver->probe) {
1376 ret = cpu_dai->driver->probe(cpu_dai); 1376 ret = cpu_dai->driver->probe(cpu_dai);
1377 if (ret < 0) { 1377 if (ret < 0) {
1378 printk(KERN_ERR "asoc: failed to probe CPU DAI %s\n", 1378 printk(KERN_ERR "asoc: failed to probe CPU DAI %s\n",
1379 cpu_dai->name); 1379 cpu_dai->name);
1380 return ret; 1380 return ret;
1381 } 1381 }
1382 } 1382 }
1383 cpu_dai->probed = 1; 1383 cpu_dai->probed = 1;
1384 /* mark cpu_dai as probed and add to card cpu_dai list */ 1384 /* mark cpu_dai as probed and add to card cpu_dai list */
1385 list_add(&cpu_dai->card_list, &card->dai_dev_list); 1385 list_add(&cpu_dai->card_list, &card->dai_dev_list);
1386 } 1386 }
1387 1387
1388 /* probe the CODEC */ 1388 /* probe the CODEC */
1389 if (!codec->probed) { 1389 if (!codec->probed) {
1390 if (codec->driver->probe) { 1390 if (codec->driver->probe) {
1391 ret = codec->driver->probe(codec); 1391 ret = codec->driver->probe(codec);
1392 if (ret < 0) { 1392 if (ret < 0) {
1393 printk(KERN_ERR "asoc: failed to probe CODEC %s\n", 1393 printk(KERN_ERR "asoc: failed to probe CODEC %s\n",
1394 codec->name); 1394 codec->name);
1395 return ret; 1395 return ret;
1396 } 1396 }
1397 } 1397 }
1398 1398
1399 soc_init_codec_debugfs(codec); 1399 soc_init_codec_debugfs(codec);
1400 1400
1401 /* mark codec as probed and add to card codec list */ 1401 /* mark codec as probed and add to card codec list */
1402 codec->probed = 1; 1402 codec->probed = 1;
1403 list_add(&codec->card_list, &card->codec_dev_list); 1403 list_add(&codec->card_list, &card->codec_dev_list);
1404 } 1404 }
1405 1405
1406 /* probe the platform */ 1406 /* probe the platform */
1407 if (!platform->probed) { 1407 if (!platform->probed) {
1408 if (platform->driver->probe) { 1408 if (platform->driver->probe) {
1409 ret = platform->driver->probe(platform); 1409 ret = platform->driver->probe(platform);
1410 if (ret < 0) { 1410 if (ret < 0) {
1411 printk(KERN_ERR "asoc: failed to probe platform %s\n", 1411 printk(KERN_ERR "asoc: failed to probe platform %s\n",
1412 platform->name); 1412 platform->name);
1413 return ret; 1413 return ret;
1414 } 1414 }
1415 } 1415 }
1416 /* mark platform as probed and add to card platform list */ 1416 /* mark platform as probed and add to card platform list */
1417 platform->probed = 1; 1417 platform->probed = 1;
1418 list_add(&platform->card_list, &card->platform_dev_list); 1418 list_add(&platform->card_list, &card->platform_dev_list);
1419 } 1419 }
1420 1420
1421 /* probe the CODEC DAI */ 1421 /* probe the CODEC DAI */
1422 if (!codec_dai->probed) { 1422 if (!codec_dai->probed) {
1423 if (codec_dai->driver->probe) { 1423 if (codec_dai->driver->probe) {
1424 ret = codec_dai->driver->probe(codec_dai); 1424 ret = codec_dai->driver->probe(codec_dai);
1425 if (ret < 0) { 1425 if (ret < 0) {
1426 printk(KERN_ERR "asoc: failed to probe CODEC DAI %s\n", 1426 printk(KERN_ERR "asoc: failed to probe CODEC DAI %s\n",
1427 codec_dai->name); 1427 codec_dai->name);
1428 return ret; 1428 return ret;
1429 } 1429 }
1430 } 1430 }
1431 1431
1432 /* mark cpu_dai as probed and add to card cpu_dai list */ 1432 /* mark cpu_dai as probed and add to card cpu_dai list */
1433 codec_dai->probed = 1; 1433 codec_dai->probed = 1;
1434 list_add(&codec_dai->card_list, &card->dai_dev_list); 1434 list_add(&codec_dai->card_list, &card->dai_dev_list);
1435 } 1435 }
1436 1436
1437 /* DAPM dai link stream work */ 1437 /* DAPM dai link stream work */
1438 INIT_DELAYED_WORK(&rtd->delayed_work, close_delayed_work); 1438 INIT_DELAYED_WORK(&rtd->delayed_work, close_delayed_work);
1439 1439
1440 /* now that all clients have probed, initialise the DAI link */ 1440 /* now that all clients have probed, initialise the DAI link */
1441 if (dai_link->init) { 1441 if (dai_link->init) {
1442 ret = dai_link->init(rtd); 1442 ret = dai_link->init(rtd);
1443 if (ret < 0) { 1443 if (ret < 0) {
1444 printk(KERN_ERR "asoc: failed to init %s\n", dai_link->stream_name); 1444 printk(KERN_ERR "asoc: failed to init %s\n", dai_link->stream_name);
1445 return ret; 1445 return ret;
1446 } 1446 }
1447 } 1447 }
1448 1448
1449 /* Make sure all DAPM widgets are instantiated */ 1449 /* Make sure all DAPM widgets are instantiated */
1450 snd_soc_dapm_new_widgets(codec); 1450 snd_soc_dapm_new_widgets(codec);
1451 snd_soc_dapm_sync(codec); 1451 snd_soc_dapm_sync(codec);
1452 1452
1453 /* register the rtd device */ 1453 /* register the rtd device */
1454 rtd->dev.release = rtd_release; 1454 rtd->dev.release = rtd_release;
1455 rtd->dev.init_name = dai_link->name; 1455 rtd->dev.init_name = dai_link->name;
1456 ret = device_register(&rtd->dev); 1456 ret = device_register(&rtd->dev);
1457 if (ret < 0) { 1457 if (ret < 0) {
1458 printk(KERN_ERR "asoc: failed to register DAI runtime device %d\n", ret); 1458 printk(KERN_ERR "asoc: failed to register DAI runtime device %d\n", ret);
1459 return ret; 1459 return ret;
1460 } 1460 }
1461 1461
1462 rtd->dev_registered = 1; 1462 rtd->dev_registered = 1;
1463 ret = device_create_file(&rtd->dev, &dev_attr_pmdown_time); 1463 ret = device_create_file(&rtd->dev, &dev_attr_pmdown_time);
1464 if (ret < 0) 1464 if (ret < 0)
1465 printk(KERN_WARNING "asoc: failed to add pmdown_time sysfs\n"); 1465 printk(KERN_WARNING "asoc: failed to add pmdown_time sysfs\n");
1466 1466
1467 /* add DAPM sysfs entries for this codec */ 1467 /* add DAPM sysfs entries for this codec */
1468 ret = snd_soc_dapm_sys_add(&rtd->dev); 1468 ret = snd_soc_dapm_sys_add(&rtd->dev);
1469 if (ret < 0) 1469 if (ret < 0)
1470 printk(KERN_WARNING "asoc: failed to add codec dapm sysfs entries\n"); 1470 printk(KERN_WARNING "asoc: failed to add codec dapm sysfs entries\n");
1471 1471
1472 /* add codec sysfs entries */ 1472 /* add codec sysfs entries */
1473 ret = device_create_file(&rtd->dev, &dev_attr_codec_reg); 1473 ret = device_create_file(&rtd->dev, &dev_attr_codec_reg);
1474 if (ret < 0) 1474 if (ret < 0)
1475 printk(KERN_WARNING "asoc: failed to add codec sysfs files\n"); 1475 printk(KERN_WARNING "asoc: failed to add codec sysfs files\n");
1476 1476
1477 /* create the pcm */ 1477 /* create the pcm */
1478 ret = soc_new_pcm(rtd, num); 1478 ret = soc_new_pcm(rtd, num);
1479 if (ret < 0) { 1479 if (ret < 0) {
1480 printk(KERN_ERR "asoc: can't create pcm %s\n", dai_link->stream_name); 1480 printk(KERN_ERR "asoc: can't create pcm %s\n", dai_link->stream_name);
1481 return ret; 1481 return ret;
1482 } 1482 }
1483 1483
1484 /* add platform data for AC97 devices */ 1484 /* add platform data for AC97 devices */
1485 if (rtd->codec_dai->driver->ac97_control) 1485 if (rtd->codec_dai->driver->ac97_control)
1486 snd_ac97_dev_add_pdata(codec->ac97, rtd->cpu_dai->ac97_pdata); 1486 snd_ac97_dev_add_pdata(codec->ac97, rtd->cpu_dai->ac97_pdata);
1487 1487
1488 return 0; 1488 return 0;
1489 } 1489 }
1490 1490
1491 #ifdef CONFIG_SND_SOC_AC97_BUS 1491 #ifdef CONFIG_SND_SOC_AC97_BUS
1492 static int soc_register_ac97_dai_link(struct snd_soc_pcm_runtime *rtd) 1492 static int soc_register_ac97_dai_link(struct snd_soc_pcm_runtime *rtd)
1493 { 1493 {
1494 int ret; 1494 int ret;
1495 1495
1496 /* Only instantiate AC97 if not already done by the adaptor 1496 /* Only instantiate AC97 if not already done by the adaptor
1497 * for the generic AC97 subsystem. 1497 * for the generic AC97 subsystem.
1498 */ 1498 */
1499 if (rtd->codec_dai->driver->ac97_control && !rtd->codec->ac97_registered) { 1499 if (rtd->codec_dai->driver->ac97_control && !rtd->codec->ac97_registered) {
1500 /*
1501 * It is possible that the AC97 device is already registered to
1502 * the device subsystem. This happens when the device is created
1503 * via snd_ac97_mixer(). Currently only SoC codec that does so
1504 * is the generic AC97 glue but others migh emerge.
1505 *
1506 * In those cases we don't try to register the device again.
1507 */
1508 if (!rtd->codec->ac97_created)
1509 return 0;
1500 1510
1501 ret = soc_ac97_dev_register(rtd->codec); 1511 ret = soc_ac97_dev_register(rtd->codec);
1502 if (ret < 0) { 1512 if (ret < 0) {
1503 printk(KERN_ERR "asoc: AC97 device register failed\n"); 1513 printk(KERN_ERR "asoc: AC97 device register failed\n");
1504 return ret; 1514 return ret;
1505 } 1515 }
1506 1516
1507 rtd->codec->ac97_registered = 1; 1517 rtd->codec->ac97_registered = 1;
1508 } 1518 }
1509 return 0; 1519 return 0;
1510 } 1520 }
1511 1521
1512 static void soc_unregister_ac97_dai_link(struct snd_soc_codec *codec) 1522 static void soc_unregister_ac97_dai_link(struct snd_soc_codec *codec)
1513 { 1523 {
1514 if (codec->ac97_registered) { 1524 if (codec->ac97_registered) {
1515 soc_ac97_dev_unregister(codec); 1525 soc_ac97_dev_unregister(codec);
1516 codec->ac97_registered = 0; 1526 codec->ac97_registered = 0;
1517 } 1527 }
1518 } 1528 }
1519 #endif 1529 #endif
1520 1530
1521 static void snd_soc_instantiate_card(struct snd_soc_card *card) 1531 static void snd_soc_instantiate_card(struct snd_soc_card *card)
1522 { 1532 {
1523 struct platform_device *pdev = to_platform_device(card->dev); 1533 struct platform_device *pdev = to_platform_device(card->dev);
1524 int ret, i; 1534 int ret, i;
1525 1535
1526 mutex_lock(&card->mutex); 1536 mutex_lock(&card->mutex);
1527 1537
1528 if (card->instantiated) { 1538 if (card->instantiated) {
1529 mutex_unlock(&card->mutex); 1539 mutex_unlock(&card->mutex);
1530 return; 1540 return;
1531 } 1541 }
1532 1542
1533 /* bind DAIs */ 1543 /* bind DAIs */
1534 for (i = 0; i < card->num_links; i++) 1544 for (i = 0; i < card->num_links; i++)
1535 soc_bind_dai_link(card, i); 1545 soc_bind_dai_link(card, i);
1536 1546
1537 /* bind completed ? */ 1547 /* bind completed ? */
1538 if (card->num_rtd != card->num_links) { 1548 if (card->num_rtd != card->num_links) {
1539 mutex_unlock(&card->mutex); 1549 mutex_unlock(&card->mutex);
1540 return; 1550 return;
1541 } 1551 }
1542 1552
1543 /* card bind complete so register a sound card */ 1553 /* card bind complete so register a sound card */
1544 ret = snd_card_create(SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1, 1554 ret = snd_card_create(SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1,
1545 card->owner, 0, &card->snd_card); 1555 card->owner, 0, &card->snd_card);
1546 if (ret < 0) { 1556 if (ret < 0) {
1547 printk(KERN_ERR "asoc: can't create sound card for card %s\n", 1557 printk(KERN_ERR "asoc: can't create sound card for card %s\n",
1548 card->name); 1558 card->name);
1549 mutex_unlock(&card->mutex); 1559 mutex_unlock(&card->mutex);
1550 return; 1560 return;
1551 } 1561 }
1552 card->snd_card->dev = card->dev; 1562 card->snd_card->dev = card->dev;
1553 1563
1554 #ifdef CONFIG_PM 1564 #ifdef CONFIG_PM
1555 /* deferred resume work */ 1565 /* deferred resume work */
1556 INIT_WORK(&card->deferred_resume_work, soc_resume_deferred); 1566 INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
1557 #endif 1567 #endif
1558 1568
1559 /* initialise the sound card only once */ 1569 /* initialise the sound card only once */
1560 if (card->probe) { 1570 if (card->probe) {
1561 ret = card->probe(pdev); 1571 ret = card->probe(pdev);
1562 if (ret < 0) 1572 if (ret < 0)
1563 goto card_probe_error; 1573 goto card_probe_error;
1564 } 1574 }
1565 1575
1566 for (i = 0; i < card->num_links; i++) { 1576 for (i = 0; i < card->num_links; i++) {
1567 ret = soc_probe_dai_link(card, i); 1577 ret = soc_probe_dai_link(card, i);
1568 if (ret < 0) { 1578 if (ret < 0) {
1569 pr_err("asoc: failed to instantiate card %s: %d\n", 1579 pr_err("asoc: failed to instantiate card %s: %d\n",
1570 card->name, ret); 1580 card->name, ret);
1571 goto probe_dai_err; 1581 goto probe_dai_err;
1572 } 1582 }
1573 } 1583 }
1574 1584
1575 snprintf(card->snd_card->shortname, sizeof(card->snd_card->shortname), 1585 snprintf(card->snd_card->shortname, sizeof(card->snd_card->shortname),
1576 "%s", card->name); 1586 "%s", card->name);
1577 snprintf(card->snd_card->longname, sizeof(card->snd_card->longname), 1587 snprintf(card->snd_card->longname, sizeof(card->snd_card->longname),
1578 "%s", card->name); 1588 "%s", card->name);
1579 1589
1580 ret = snd_card_register(card->snd_card); 1590 ret = snd_card_register(card->snd_card);
1581 if (ret < 0) { 1591 if (ret < 0) {
1582 printk(KERN_ERR "asoc: failed to register soundcard for %s\n", card->name); 1592 printk(KERN_ERR "asoc: failed to register soundcard for %s\n", card->name);
1583 goto probe_dai_err; 1593 goto probe_dai_err;
1584 } 1594 }
1585 1595
1586 #ifdef CONFIG_SND_SOC_AC97_BUS 1596 #ifdef CONFIG_SND_SOC_AC97_BUS
1587 /* register any AC97 codecs */ 1597 /* register any AC97 codecs */
1588 for (i = 0; i < card->num_rtd; i++) { 1598 for (i = 0; i < card->num_rtd; i++) {
1589 ret = soc_register_ac97_dai_link(&card->rtd[i]); 1599 ret = soc_register_ac97_dai_link(&card->rtd[i]);
1590 if (ret < 0) { 1600 if (ret < 0) {
1591 printk(KERN_ERR "asoc: failed to register AC97 %s\n", card->name); 1601 printk(KERN_ERR "asoc: failed to register AC97 %s\n", card->name);
1592 goto probe_dai_err; 1602 goto probe_dai_err;
1593 } 1603 }
1594 } 1604 }
1595 #endif 1605 #endif
1596 1606
1597 card->instantiated = 1; 1607 card->instantiated = 1;
1598 mutex_unlock(&card->mutex); 1608 mutex_unlock(&card->mutex);
1599 return; 1609 return;
1600 1610
1601 probe_dai_err: 1611 probe_dai_err:
1602 for (i = 0; i < card->num_links; i++) 1612 for (i = 0; i < card->num_links; i++)
1603 soc_remove_dai_link(card, i); 1613 soc_remove_dai_link(card, i);
1604 1614
1605 card_probe_error: 1615 card_probe_error:
1606 if (card->remove) 1616 if (card->remove)
1607 card->remove(pdev); 1617 card->remove(pdev);
1608 1618
1609 snd_card_free(card->snd_card); 1619 snd_card_free(card->snd_card);
1610 1620
1611 mutex_unlock(&card->mutex); 1621 mutex_unlock(&card->mutex);
1612 } 1622 }
1613 1623
1614 /* 1624 /*
1615 * Attempt to initialise any uninitialised cards. Must be called with 1625 * Attempt to initialise any uninitialised cards. Must be called with
1616 * client_mutex. 1626 * client_mutex.
1617 */ 1627 */
1618 static void snd_soc_instantiate_cards(void) 1628 static void snd_soc_instantiate_cards(void)
1619 { 1629 {
1620 struct snd_soc_card *card; 1630 struct snd_soc_card *card;
1621 list_for_each_entry(card, &card_list, list) 1631 list_for_each_entry(card, &card_list, list)
1622 snd_soc_instantiate_card(card); 1632 snd_soc_instantiate_card(card);
1623 } 1633 }
1624 1634
1625 /* probes a new socdev */ 1635 /* probes a new socdev */
1626 static int soc_probe(struct platform_device *pdev) 1636 static int soc_probe(struct platform_device *pdev)
1627 { 1637 {
1628 struct snd_soc_card *card = platform_get_drvdata(pdev); 1638 struct snd_soc_card *card = platform_get_drvdata(pdev);
1629 int ret = 0; 1639 int ret = 0;
1630 1640
1631 /* Bodge while we unpick instantiation */ 1641 /* Bodge while we unpick instantiation */
1632 card->dev = &pdev->dev; 1642 card->dev = &pdev->dev;
1633 INIT_LIST_HEAD(&card->dai_dev_list); 1643 INIT_LIST_HEAD(&card->dai_dev_list);
1634 INIT_LIST_HEAD(&card->codec_dev_list); 1644 INIT_LIST_HEAD(&card->codec_dev_list);
1635 INIT_LIST_HEAD(&card->platform_dev_list); 1645 INIT_LIST_HEAD(&card->platform_dev_list);
1636 1646
1637 ret = snd_soc_register_card(card); 1647 ret = snd_soc_register_card(card);
1638 if (ret != 0) { 1648 if (ret != 0) {
1639 dev_err(&pdev->dev, "Failed to register card\n"); 1649 dev_err(&pdev->dev, "Failed to register card\n");
1640 return ret; 1650 return ret;
1641 } 1651 }
1642 1652
1643 return 0; 1653 return 0;
1644 } 1654 }
1645 1655
1646 /* removes a socdev */ 1656 /* removes a socdev */
1647 static int soc_remove(struct platform_device *pdev) 1657 static int soc_remove(struct platform_device *pdev)
1648 { 1658 {
1649 struct snd_soc_card *card = platform_get_drvdata(pdev); 1659 struct snd_soc_card *card = platform_get_drvdata(pdev);
1650 int i; 1660 int i;
1651 1661
1652 if (card->instantiated) { 1662 if (card->instantiated) {
1653 1663
1654 /* make sure any delayed work runs */ 1664 /* make sure any delayed work runs */
1655 for (i = 0; i < card->num_rtd; i++) { 1665 for (i = 0; i < card->num_rtd; i++) {
1656 struct snd_soc_pcm_runtime *rtd = &card->rtd[i]; 1666 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1657 run_delayed_work(&rtd->delayed_work); 1667 run_delayed_work(&rtd->delayed_work);
1658 } 1668 }
1659 1669
1660 /* remove and free each DAI */ 1670 /* remove and free each DAI */
1661 for (i = 0; i < card->num_rtd; i++) 1671 for (i = 0; i < card->num_rtd; i++)
1662 soc_remove_dai_link(card, i); 1672 soc_remove_dai_link(card, i);
1663 1673
1664 /* remove the card */ 1674 /* remove the card */
1665 if (card->remove) 1675 if (card->remove)
1666 card->remove(pdev); 1676 card->remove(pdev);
1667 1677
1668 kfree(card->rtd); 1678 kfree(card->rtd);
1669 snd_card_free(card->snd_card); 1679 snd_card_free(card->snd_card);
1670 } 1680 }
1671 snd_soc_unregister_card(card); 1681 snd_soc_unregister_card(card);
1672 return 0; 1682 return 0;
1673 } 1683 }
1674 1684
1675 static int soc_poweroff(struct device *dev) 1685 static int soc_poweroff(struct device *dev)
1676 { 1686 {
1677 struct platform_device *pdev = to_platform_device(dev); 1687 struct platform_device *pdev = to_platform_device(dev);
1678 struct snd_soc_card *card = platform_get_drvdata(pdev); 1688 struct snd_soc_card *card = platform_get_drvdata(pdev);
1679 int i; 1689 int i;
1680 1690
1681 if (!card->instantiated) 1691 if (!card->instantiated)
1682 return 0; 1692 return 0;
1683 1693
1684 /* Flush out pmdown_time work - we actually do want to run it 1694 /* Flush out pmdown_time work - we actually do want to run it
1685 * now, we're shutting down so no imminent restart. */ 1695 * now, we're shutting down so no imminent restart. */
1686 for (i = 0; i < card->num_rtd; i++) { 1696 for (i = 0; i < card->num_rtd; i++) {
1687 struct snd_soc_pcm_runtime *rtd = &card->rtd[i]; 1697 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1688 run_delayed_work(&rtd->delayed_work); 1698 run_delayed_work(&rtd->delayed_work);
1689 } 1699 }
1690 1700
1691 snd_soc_dapm_shutdown(card); 1701 snd_soc_dapm_shutdown(card);
1692 1702
1693 return 0; 1703 return 0;
1694 } 1704 }
1695 1705
1696 static const struct dev_pm_ops soc_pm_ops = { 1706 static const struct dev_pm_ops soc_pm_ops = {
1697 .suspend = soc_suspend, 1707 .suspend = soc_suspend,
1698 .resume = soc_resume, 1708 .resume = soc_resume,
1699 .poweroff = soc_poweroff, 1709 .poweroff = soc_poweroff,
1700 }; 1710 };
1701 1711
1702 /* ASoC platform driver */ 1712 /* ASoC platform driver */
1703 static struct platform_driver soc_driver = { 1713 static struct platform_driver soc_driver = {
1704 .driver = { 1714 .driver = {
1705 .name = "soc-audio", 1715 .name = "soc-audio",
1706 .owner = THIS_MODULE, 1716 .owner = THIS_MODULE,
1707 .pm = &soc_pm_ops, 1717 .pm = &soc_pm_ops,
1708 }, 1718 },
1709 .probe = soc_probe, 1719 .probe = soc_probe,
1710 .remove = soc_remove, 1720 .remove = soc_remove,
1711 }; 1721 };
1712 1722
1713 /* create a new pcm */ 1723 /* create a new pcm */
1714 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num) 1724 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num)
1715 { 1725 {
1716 struct snd_soc_codec *codec = rtd->codec; 1726 struct snd_soc_codec *codec = rtd->codec;
1717 struct snd_soc_platform *platform = rtd->platform; 1727 struct snd_soc_platform *platform = rtd->platform;
1718 struct snd_soc_dai *codec_dai = rtd->codec_dai; 1728 struct snd_soc_dai *codec_dai = rtd->codec_dai;
1719 struct snd_soc_dai *cpu_dai = rtd->cpu_dai; 1729 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1720 struct snd_pcm *pcm; 1730 struct snd_pcm *pcm;
1721 char new_name[64]; 1731 char new_name[64];
1722 int ret = 0, playback = 0, capture = 0; 1732 int ret = 0, playback = 0, capture = 0;
1723 1733
1724 /* check client and interface hw capabilities */ 1734 /* check client and interface hw capabilities */
1725 snprintf(new_name, sizeof(new_name), "%s %s-%d", 1735 snprintf(new_name, sizeof(new_name), "%s %s-%d",
1726 rtd->dai_link->stream_name, codec_dai->name, num); 1736 rtd->dai_link->stream_name, codec_dai->name, num);
1727 1737
1728 if (codec_dai->driver->playback.channels_min) 1738 if (codec_dai->driver->playback.channels_min)
1729 playback = 1; 1739 playback = 1;
1730 if (codec_dai->driver->capture.channels_min) 1740 if (codec_dai->driver->capture.channels_min)
1731 capture = 1; 1741 capture = 1;
1732 1742
1733 dev_dbg(rtd->card->dev, "registered pcm #%d %s\n",num,new_name); 1743 dev_dbg(rtd->card->dev, "registered pcm #%d %s\n",num,new_name);
1734 ret = snd_pcm_new(rtd->card->snd_card, new_name, 1744 ret = snd_pcm_new(rtd->card->snd_card, new_name,
1735 num, playback, capture, &pcm); 1745 num, playback, capture, &pcm);
1736 if (ret < 0) { 1746 if (ret < 0) {
1737 printk(KERN_ERR "asoc: can't create pcm for codec %s\n", codec->name); 1747 printk(KERN_ERR "asoc: can't create pcm for codec %s\n", codec->name);
1738 return ret; 1748 return ret;
1739 } 1749 }
1740 1750
1741 rtd->pcm = pcm; 1751 rtd->pcm = pcm;
1742 pcm->private_data = rtd; 1752 pcm->private_data = rtd;
1743 soc_pcm_ops.mmap = platform->driver->ops->mmap; 1753 soc_pcm_ops.mmap = platform->driver->ops->mmap;
1744 soc_pcm_ops.pointer = platform->driver->ops->pointer; 1754 soc_pcm_ops.pointer = platform->driver->ops->pointer;
1745 soc_pcm_ops.ioctl = platform->driver->ops->ioctl; 1755 soc_pcm_ops.ioctl = platform->driver->ops->ioctl;
1746 soc_pcm_ops.copy = platform->driver->ops->copy; 1756 soc_pcm_ops.copy = platform->driver->ops->copy;
1747 soc_pcm_ops.silence = platform->driver->ops->silence; 1757 soc_pcm_ops.silence = platform->driver->ops->silence;
1748 soc_pcm_ops.ack = platform->driver->ops->ack; 1758 soc_pcm_ops.ack = platform->driver->ops->ack;
1749 soc_pcm_ops.page = platform->driver->ops->page; 1759 soc_pcm_ops.page = platform->driver->ops->page;
1750 1760
1751 if (playback) 1761 if (playback)
1752 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops); 1762 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
1753 1763
1754 if (capture) 1764 if (capture)
1755 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops); 1765 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
1756 1766
1757 ret = platform->driver->pcm_new(rtd->card->snd_card, codec_dai, pcm); 1767 ret = platform->driver->pcm_new(rtd->card->snd_card, codec_dai, pcm);
1758 if (ret < 0) { 1768 if (ret < 0) {
1759 printk(KERN_ERR "asoc: platform pcm constructor failed\n"); 1769 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
1760 return ret; 1770 return ret;
1761 } 1771 }
1762 1772
1763 pcm->private_free = platform->driver->pcm_free; 1773 pcm->private_free = platform->driver->pcm_free;
1764 printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name, 1774 printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
1765 cpu_dai->name); 1775 cpu_dai->name);
1766 return ret; 1776 return ret;
1767 } 1777 }
1768 1778
1769 /** 1779 /**
1770 * snd_soc_codec_volatile_register: Report if a register is volatile. 1780 * snd_soc_codec_volatile_register: Report if a register is volatile.
1771 * 1781 *
1772 * @codec: CODEC to query. 1782 * @codec: CODEC to query.
1773 * @reg: Register to query. 1783 * @reg: Register to query.
1774 * 1784 *
1775 * Boolean function indiciating if a CODEC register is volatile. 1785 * Boolean function indiciating if a CODEC register is volatile.
1776 */ 1786 */
1777 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec, int reg) 1787 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec, int reg)
1778 { 1788 {
1779 if (codec->driver->volatile_register) 1789 if (codec->driver->volatile_register)
1780 return codec->driver->volatile_register(reg); 1790 return codec->driver->volatile_register(reg);
1781 else 1791 else
1782 return 0; 1792 return 0;
1783 } 1793 }
1784 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register); 1794 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);
1785 1795
1786 /** 1796 /**
1787 * snd_soc_new_ac97_codec - initailise AC97 device 1797 * snd_soc_new_ac97_codec - initailise AC97 device
1788 * @codec: audio codec 1798 * @codec: audio codec
1789 * @ops: AC97 bus operations 1799 * @ops: AC97 bus operations
1790 * @num: AC97 codec number 1800 * @num: AC97 codec number
1791 * 1801 *
1792 * Initialises AC97 codec resources for use by ad-hoc devices only. 1802 * Initialises AC97 codec resources for use by ad-hoc devices only.
1793 */ 1803 */
1794 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec, 1804 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
1795 struct snd_ac97_bus_ops *ops, int num) 1805 struct snd_ac97_bus_ops *ops, int num)
1796 { 1806 {
1797 mutex_lock(&codec->mutex); 1807 mutex_lock(&codec->mutex);
1798 1808
1799 codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL); 1809 codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
1800 if (codec->ac97 == NULL) { 1810 if (codec->ac97 == NULL) {
1801 mutex_unlock(&codec->mutex); 1811 mutex_unlock(&codec->mutex);
1802 return -ENOMEM; 1812 return -ENOMEM;
1803 } 1813 }
1804 1814
1805 codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL); 1815 codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
1806 if (codec->ac97->bus == NULL) { 1816 if (codec->ac97->bus == NULL) {
1807 kfree(codec->ac97); 1817 kfree(codec->ac97);
1808 codec->ac97 = NULL; 1818 codec->ac97 = NULL;
1809 mutex_unlock(&codec->mutex); 1819 mutex_unlock(&codec->mutex);
1810 return -ENOMEM; 1820 return -ENOMEM;
1811 } 1821 }
1812 1822
1813 codec->ac97->bus->ops = ops; 1823 codec->ac97->bus->ops = ops;
1814 codec->ac97->num = num; 1824 codec->ac97->num = num;
1825
1826 /*
1827 * Mark the AC97 device to be created by us. This way we ensure that the
1828 * device will be registered with the device subsystem later on.
1829 */
1830 codec->ac97_created = 1;
1831
1815 mutex_unlock(&codec->mutex); 1832 mutex_unlock(&codec->mutex);
1816 return 0; 1833 return 0;
1817 } 1834 }
1818 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec); 1835 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
1819 1836
1820 /** 1837 /**
1821 * snd_soc_free_ac97_codec - free AC97 codec device 1838 * snd_soc_free_ac97_codec - free AC97 codec device
1822 * @codec: audio codec 1839 * @codec: audio codec
1823 * 1840 *
1824 * Frees AC97 codec device resources. 1841 * Frees AC97 codec device resources.
1825 */ 1842 */
1826 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec) 1843 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
1827 { 1844 {
1828 mutex_lock(&codec->mutex); 1845 mutex_lock(&codec->mutex);
1829 #ifdef CONFIG_SND_SOC_AC97_BUS 1846 #ifdef CONFIG_SND_SOC_AC97_BUS
1830 soc_unregister_ac97_dai_link(codec); 1847 soc_unregister_ac97_dai_link(codec);
1831 #endif 1848 #endif
1832 kfree(codec->ac97->bus); 1849 kfree(codec->ac97->bus);
1833 kfree(codec->ac97); 1850 kfree(codec->ac97);
1834 codec->ac97 = NULL; 1851 codec->ac97 = NULL;
1852 codec->ac97_created = 0;
1835 mutex_unlock(&codec->mutex); 1853 mutex_unlock(&codec->mutex);
1836 } 1854 }
1837 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec); 1855 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
1838 1856
1839 /** 1857 /**
1840 * snd_soc_update_bits - update codec register bits 1858 * snd_soc_update_bits - update codec register bits
1841 * @codec: audio codec 1859 * @codec: audio codec
1842 * @reg: codec register 1860 * @reg: codec register
1843 * @mask: register mask 1861 * @mask: register mask
1844 * @value: new value 1862 * @value: new value
1845 * 1863 *
1846 * Writes new register value. 1864 * Writes new register value.
1847 * 1865 *
1848 * Returns 1 for change else 0. 1866 * Returns 1 for change else 0.
1849 */ 1867 */
1850 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg, 1868 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
1851 unsigned int mask, unsigned int value) 1869 unsigned int mask, unsigned int value)
1852 { 1870 {
1853 int change; 1871 int change;
1854 unsigned int old, new; 1872 unsigned int old, new;
1855 1873
1856 old = snd_soc_read(codec, reg); 1874 old = snd_soc_read(codec, reg);
1857 new = (old & ~mask) | value; 1875 new = (old & ~mask) | value;
1858 change = old != new; 1876 change = old != new;
1859 if (change) 1877 if (change)
1860 snd_soc_write(codec, reg, new); 1878 snd_soc_write(codec, reg, new);
1861 1879
1862 return change; 1880 return change;
1863 } 1881 }
1864 EXPORT_SYMBOL_GPL(snd_soc_update_bits); 1882 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
1865 1883
1866 /** 1884 /**
1867 * snd_soc_update_bits_locked - update codec register bits 1885 * snd_soc_update_bits_locked - update codec register bits
1868 * @codec: audio codec 1886 * @codec: audio codec
1869 * @reg: codec register 1887 * @reg: codec register
1870 * @mask: register mask 1888 * @mask: register mask
1871 * @value: new value 1889 * @value: new value
1872 * 1890 *
1873 * Writes new register value, and takes the codec mutex. 1891 * Writes new register value, and takes the codec mutex.
1874 * 1892 *
1875 * Returns 1 for change else 0. 1893 * Returns 1 for change else 0.
1876 */ 1894 */
1877 int snd_soc_update_bits_locked(struct snd_soc_codec *codec, 1895 int snd_soc_update_bits_locked(struct snd_soc_codec *codec,
1878 unsigned short reg, unsigned int mask, 1896 unsigned short reg, unsigned int mask,
1879 unsigned int value) 1897 unsigned int value)
1880 { 1898 {
1881 int change; 1899 int change;
1882 1900
1883 mutex_lock(&codec->mutex); 1901 mutex_lock(&codec->mutex);
1884 change = snd_soc_update_bits(codec, reg, mask, value); 1902 change = snd_soc_update_bits(codec, reg, mask, value);
1885 mutex_unlock(&codec->mutex); 1903 mutex_unlock(&codec->mutex);
1886 1904
1887 return change; 1905 return change;
1888 } 1906 }
1889 EXPORT_SYMBOL_GPL(snd_soc_update_bits_locked); 1907 EXPORT_SYMBOL_GPL(snd_soc_update_bits_locked);
1890 1908
1891 /** 1909 /**
1892 * snd_soc_test_bits - test register for change 1910 * snd_soc_test_bits - test register for change
1893 * @codec: audio codec 1911 * @codec: audio codec
1894 * @reg: codec register 1912 * @reg: codec register
1895 * @mask: register mask 1913 * @mask: register mask
1896 * @value: new value 1914 * @value: new value
1897 * 1915 *
1898 * Tests a register with a new value and checks if the new value is 1916 * Tests a register with a new value and checks if the new value is
1899 * different from the old value. 1917 * different from the old value.
1900 * 1918 *
1901 * Returns 1 for change else 0. 1919 * Returns 1 for change else 0.
1902 */ 1920 */
1903 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg, 1921 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
1904 unsigned int mask, unsigned int value) 1922 unsigned int mask, unsigned int value)
1905 { 1923 {
1906 int change; 1924 int change;
1907 unsigned int old, new; 1925 unsigned int old, new;
1908 1926
1909 old = snd_soc_read(codec, reg); 1927 old = snd_soc_read(codec, reg);
1910 new = (old & ~mask) | value; 1928 new = (old & ~mask) | value;
1911 change = old != new; 1929 change = old != new;
1912 1930
1913 return change; 1931 return change;
1914 } 1932 }
1915 EXPORT_SYMBOL_GPL(snd_soc_test_bits); 1933 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
1916 1934
1917 /** 1935 /**
1918 * snd_soc_set_runtime_hwparams - set the runtime hardware parameters 1936 * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
1919 * @substream: the pcm substream 1937 * @substream: the pcm substream
1920 * @hw: the hardware parameters 1938 * @hw: the hardware parameters
1921 * 1939 *
1922 * Sets the substream runtime hardware parameters. 1940 * Sets the substream runtime hardware parameters.
1923 */ 1941 */
1924 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream, 1942 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
1925 const struct snd_pcm_hardware *hw) 1943 const struct snd_pcm_hardware *hw)
1926 { 1944 {
1927 struct snd_pcm_runtime *runtime = substream->runtime; 1945 struct snd_pcm_runtime *runtime = substream->runtime;
1928 runtime->hw.info = hw->info; 1946 runtime->hw.info = hw->info;
1929 runtime->hw.formats = hw->formats; 1947 runtime->hw.formats = hw->formats;
1930 runtime->hw.period_bytes_min = hw->period_bytes_min; 1948 runtime->hw.period_bytes_min = hw->period_bytes_min;
1931 runtime->hw.period_bytes_max = hw->period_bytes_max; 1949 runtime->hw.period_bytes_max = hw->period_bytes_max;
1932 runtime->hw.periods_min = hw->periods_min; 1950 runtime->hw.periods_min = hw->periods_min;
1933 runtime->hw.periods_max = hw->periods_max; 1951 runtime->hw.periods_max = hw->periods_max;
1934 runtime->hw.buffer_bytes_max = hw->buffer_bytes_max; 1952 runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
1935 runtime->hw.fifo_size = hw->fifo_size; 1953 runtime->hw.fifo_size = hw->fifo_size;
1936 return 0; 1954 return 0;
1937 } 1955 }
1938 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams); 1956 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
1939 1957
1940 /** 1958 /**
1941 * snd_soc_cnew - create new control 1959 * snd_soc_cnew - create new control
1942 * @_template: control template 1960 * @_template: control template
1943 * @data: control private data 1961 * @data: control private data
1944 * @long_name: control long name 1962 * @long_name: control long name
1945 * 1963 *
1946 * Create a new mixer control from a template control. 1964 * Create a new mixer control from a template control.
1947 * 1965 *
1948 * Returns 0 for success, else error. 1966 * Returns 0 for success, else error.
1949 */ 1967 */
1950 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template, 1968 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
1951 void *data, char *long_name) 1969 void *data, char *long_name)
1952 { 1970 {
1953 struct snd_kcontrol_new template; 1971 struct snd_kcontrol_new template;
1954 1972
1955 memcpy(&template, _template, sizeof(template)); 1973 memcpy(&template, _template, sizeof(template));
1956 if (long_name) 1974 if (long_name)
1957 template.name = long_name; 1975 template.name = long_name;
1958 template.index = 0; 1976 template.index = 0;
1959 1977
1960 return snd_ctl_new1(&template, data); 1978 return snd_ctl_new1(&template, data);
1961 } 1979 }
1962 EXPORT_SYMBOL_GPL(snd_soc_cnew); 1980 EXPORT_SYMBOL_GPL(snd_soc_cnew);
1963 1981
1964 /** 1982 /**
1965 * snd_soc_add_controls - add an array of controls to a codec. 1983 * snd_soc_add_controls - add an array of controls to a codec.
1966 * Convienience function to add a list of controls. Many codecs were 1984 * Convienience function to add a list of controls. Many codecs were
1967 * duplicating this code. 1985 * duplicating this code.
1968 * 1986 *
1969 * @codec: codec to add controls to 1987 * @codec: codec to add controls to
1970 * @controls: array of controls to add 1988 * @controls: array of controls to add
1971 * @num_controls: number of elements in the array 1989 * @num_controls: number of elements in the array
1972 * 1990 *
1973 * Return 0 for success, else error. 1991 * Return 0 for success, else error.
1974 */ 1992 */
1975 int snd_soc_add_controls(struct snd_soc_codec *codec, 1993 int snd_soc_add_controls(struct snd_soc_codec *codec,
1976 const struct snd_kcontrol_new *controls, int num_controls) 1994 const struct snd_kcontrol_new *controls, int num_controls)
1977 { 1995 {
1978 struct snd_card *card = codec->card->snd_card; 1996 struct snd_card *card = codec->card->snd_card;
1979 int err, i; 1997 int err, i;
1980 1998
1981 for (i = 0; i < num_controls; i++) { 1999 for (i = 0; i < num_controls; i++) {
1982 const struct snd_kcontrol_new *control = &controls[i]; 2000 const struct snd_kcontrol_new *control = &controls[i];
1983 err = snd_ctl_add(card, snd_soc_cnew(control, codec, NULL)); 2001 err = snd_ctl_add(card, snd_soc_cnew(control, codec, NULL));
1984 if (err < 0) { 2002 if (err < 0) {
1985 dev_err(codec->dev, "%s: Failed to add %s: %d\n", 2003 dev_err(codec->dev, "%s: Failed to add %s: %d\n",
1986 codec->name, control->name, err); 2004 codec->name, control->name, err);
1987 return err; 2005 return err;
1988 } 2006 }
1989 } 2007 }
1990 2008
1991 return 0; 2009 return 0;
1992 } 2010 }
1993 EXPORT_SYMBOL_GPL(snd_soc_add_controls); 2011 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
1994 2012
1995 /** 2013 /**
1996 * snd_soc_info_enum_double - enumerated double mixer info callback 2014 * snd_soc_info_enum_double - enumerated double mixer info callback
1997 * @kcontrol: mixer control 2015 * @kcontrol: mixer control
1998 * @uinfo: control element information 2016 * @uinfo: control element information
1999 * 2017 *
2000 * Callback to provide information about a double enumerated 2018 * Callback to provide information about a double enumerated
2001 * mixer control. 2019 * mixer control.
2002 * 2020 *
2003 * Returns 0 for success. 2021 * Returns 0 for success.
2004 */ 2022 */
2005 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol, 2023 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
2006 struct snd_ctl_elem_info *uinfo) 2024 struct snd_ctl_elem_info *uinfo)
2007 { 2025 {
2008 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; 2026 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2009 2027
2010 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 2028 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2011 uinfo->count = e->shift_l == e->shift_r ? 1 : 2; 2029 uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
2012 uinfo->value.enumerated.items = e->max; 2030 uinfo->value.enumerated.items = e->max;
2013 2031
2014 if (uinfo->value.enumerated.item > e->max - 1) 2032 if (uinfo->value.enumerated.item > e->max - 1)
2015 uinfo->value.enumerated.item = e->max - 1; 2033 uinfo->value.enumerated.item = e->max - 1;
2016 strcpy(uinfo->value.enumerated.name, 2034 strcpy(uinfo->value.enumerated.name,
2017 e->texts[uinfo->value.enumerated.item]); 2035 e->texts[uinfo->value.enumerated.item]);
2018 return 0; 2036 return 0;
2019 } 2037 }
2020 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double); 2038 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
2021 2039
2022 /** 2040 /**
2023 * snd_soc_get_enum_double - enumerated double mixer get callback 2041 * snd_soc_get_enum_double - enumerated double mixer get callback
2024 * @kcontrol: mixer control 2042 * @kcontrol: mixer control
2025 * @ucontrol: control element information 2043 * @ucontrol: control element information
2026 * 2044 *
2027 * Callback to get the value of a double enumerated mixer. 2045 * Callback to get the value of a double enumerated mixer.
2028 * 2046 *
2029 * Returns 0 for success. 2047 * Returns 0 for success.
2030 */ 2048 */
2031 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol, 2049 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
2032 struct snd_ctl_elem_value *ucontrol) 2050 struct snd_ctl_elem_value *ucontrol)
2033 { 2051 {
2034 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2052 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2035 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; 2053 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2036 unsigned int val, bitmask; 2054 unsigned int val, bitmask;
2037 2055
2038 for (bitmask = 1; bitmask < e->max; bitmask <<= 1) 2056 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2039 ; 2057 ;
2040 val = snd_soc_read(codec, e->reg); 2058 val = snd_soc_read(codec, e->reg);
2041 ucontrol->value.enumerated.item[0] 2059 ucontrol->value.enumerated.item[0]
2042 = (val >> e->shift_l) & (bitmask - 1); 2060 = (val >> e->shift_l) & (bitmask - 1);
2043 if (e->shift_l != e->shift_r) 2061 if (e->shift_l != e->shift_r)
2044 ucontrol->value.enumerated.item[1] = 2062 ucontrol->value.enumerated.item[1] =
2045 (val >> e->shift_r) & (bitmask - 1); 2063 (val >> e->shift_r) & (bitmask - 1);
2046 2064
2047 return 0; 2065 return 0;
2048 } 2066 }
2049 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double); 2067 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
2050 2068
2051 /** 2069 /**
2052 * snd_soc_put_enum_double - enumerated double mixer put callback 2070 * snd_soc_put_enum_double - enumerated double mixer put callback
2053 * @kcontrol: mixer control 2071 * @kcontrol: mixer control
2054 * @ucontrol: control element information 2072 * @ucontrol: control element information
2055 * 2073 *
2056 * Callback to set the value of a double enumerated mixer. 2074 * Callback to set the value of a double enumerated mixer.
2057 * 2075 *
2058 * Returns 0 for success. 2076 * Returns 0 for success.
2059 */ 2077 */
2060 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol, 2078 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
2061 struct snd_ctl_elem_value *ucontrol) 2079 struct snd_ctl_elem_value *ucontrol)
2062 { 2080 {
2063 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2081 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2064 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; 2082 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2065 unsigned int val; 2083 unsigned int val;
2066 unsigned int mask, bitmask; 2084 unsigned int mask, bitmask;
2067 2085
2068 for (bitmask = 1; bitmask < e->max; bitmask <<= 1) 2086 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2069 ; 2087 ;
2070 if (ucontrol->value.enumerated.item[0] > e->max - 1) 2088 if (ucontrol->value.enumerated.item[0] > e->max - 1)
2071 return -EINVAL; 2089 return -EINVAL;
2072 val = ucontrol->value.enumerated.item[0] << e->shift_l; 2090 val = ucontrol->value.enumerated.item[0] << e->shift_l;
2073 mask = (bitmask - 1) << e->shift_l; 2091 mask = (bitmask - 1) << e->shift_l;
2074 if (e->shift_l != e->shift_r) { 2092 if (e->shift_l != e->shift_r) {
2075 if (ucontrol->value.enumerated.item[1] > e->max - 1) 2093 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2076 return -EINVAL; 2094 return -EINVAL;
2077 val |= ucontrol->value.enumerated.item[1] << e->shift_r; 2095 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
2078 mask |= (bitmask - 1) << e->shift_r; 2096 mask |= (bitmask - 1) << e->shift_r;
2079 } 2097 }
2080 2098
2081 return snd_soc_update_bits_locked(codec, e->reg, mask, val); 2099 return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2082 } 2100 }
2083 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double); 2101 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
2084 2102
2085 /** 2103 /**
2086 * snd_soc_get_value_enum_double - semi enumerated double mixer get callback 2104 * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
2087 * @kcontrol: mixer control 2105 * @kcontrol: mixer control
2088 * @ucontrol: control element information 2106 * @ucontrol: control element information
2089 * 2107 *
2090 * Callback to get the value of a double semi enumerated mixer. 2108 * Callback to get the value of a double semi enumerated mixer.
2091 * 2109 *
2092 * Semi enumerated mixer: the enumerated items are referred as values. Can be 2110 * Semi enumerated mixer: the enumerated items are referred as values. Can be
2093 * used for handling bitfield coded enumeration for example. 2111 * used for handling bitfield coded enumeration for example.
2094 * 2112 *
2095 * Returns 0 for success. 2113 * Returns 0 for success.
2096 */ 2114 */
2097 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol, 2115 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
2098 struct snd_ctl_elem_value *ucontrol) 2116 struct snd_ctl_elem_value *ucontrol)
2099 { 2117 {
2100 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2118 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2101 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; 2119 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2102 unsigned int reg_val, val, mux; 2120 unsigned int reg_val, val, mux;
2103 2121
2104 reg_val = snd_soc_read(codec, e->reg); 2122 reg_val = snd_soc_read(codec, e->reg);
2105 val = (reg_val >> e->shift_l) & e->mask; 2123 val = (reg_val >> e->shift_l) & e->mask;
2106 for (mux = 0; mux < e->max; mux++) { 2124 for (mux = 0; mux < e->max; mux++) {
2107 if (val == e->values[mux]) 2125 if (val == e->values[mux])
2108 break; 2126 break;
2109 } 2127 }
2110 ucontrol->value.enumerated.item[0] = mux; 2128 ucontrol->value.enumerated.item[0] = mux;
2111 if (e->shift_l != e->shift_r) { 2129 if (e->shift_l != e->shift_r) {
2112 val = (reg_val >> e->shift_r) & e->mask; 2130 val = (reg_val >> e->shift_r) & e->mask;
2113 for (mux = 0; mux < e->max; mux++) { 2131 for (mux = 0; mux < e->max; mux++) {
2114 if (val == e->values[mux]) 2132 if (val == e->values[mux])
2115 break; 2133 break;
2116 } 2134 }
2117 ucontrol->value.enumerated.item[1] = mux; 2135 ucontrol->value.enumerated.item[1] = mux;
2118 } 2136 }
2119 2137
2120 return 0; 2138 return 0;
2121 } 2139 }
2122 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double); 2140 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
2123 2141
2124 /** 2142 /**
2125 * snd_soc_put_value_enum_double - semi enumerated double mixer put callback 2143 * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
2126 * @kcontrol: mixer control 2144 * @kcontrol: mixer control
2127 * @ucontrol: control element information 2145 * @ucontrol: control element information
2128 * 2146 *
2129 * Callback to set the value of a double semi enumerated mixer. 2147 * Callback to set the value of a double semi enumerated mixer.
2130 * 2148 *
2131 * Semi enumerated mixer: the enumerated items are referred as values. Can be 2149 * Semi enumerated mixer: the enumerated items are referred as values. Can be
2132 * used for handling bitfield coded enumeration for example. 2150 * used for handling bitfield coded enumeration for example.
2133 * 2151 *
2134 * Returns 0 for success. 2152 * Returns 0 for success.
2135 */ 2153 */
2136 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol, 2154 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
2137 struct snd_ctl_elem_value *ucontrol) 2155 struct snd_ctl_elem_value *ucontrol)
2138 { 2156 {
2139 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2157 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2140 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; 2158 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2141 unsigned int val; 2159 unsigned int val;
2142 unsigned int mask; 2160 unsigned int mask;
2143 2161
2144 if (ucontrol->value.enumerated.item[0] > e->max - 1) 2162 if (ucontrol->value.enumerated.item[0] > e->max - 1)
2145 return -EINVAL; 2163 return -EINVAL;
2146 val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l; 2164 val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
2147 mask = e->mask << e->shift_l; 2165 mask = e->mask << e->shift_l;
2148 if (e->shift_l != e->shift_r) { 2166 if (e->shift_l != e->shift_r) {
2149 if (ucontrol->value.enumerated.item[1] > e->max - 1) 2167 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2150 return -EINVAL; 2168 return -EINVAL;
2151 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r; 2169 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
2152 mask |= e->mask << e->shift_r; 2170 mask |= e->mask << e->shift_r;
2153 } 2171 }
2154 2172
2155 return snd_soc_update_bits_locked(codec, e->reg, mask, val); 2173 return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2156 } 2174 }
2157 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double); 2175 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
2158 2176
2159 /** 2177 /**
2160 * snd_soc_info_enum_ext - external enumerated single mixer info callback 2178 * snd_soc_info_enum_ext - external enumerated single mixer info callback
2161 * @kcontrol: mixer control 2179 * @kcontrol: mixer control
2162 * @uinfo: control element information 2180 * @uinfo: control element information
2163 * 2181 *
2164 * Callback to provide information about an external enumerated 2182 * Callback to provide information about an external enumerated
2165 * single mixer. 2183 * single mixer.
2166 * 2184 *
2167 * Returns 0 for success. 2185 * Returns 0 for success.
2168 */ 2186 */
2169 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol, 2187 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
2170 struct snd_ctl_elem_info *uinfo) 2188 struct snd_ctl_elem_info *uinfo)
2171 { 2189 {
2172 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; 2190 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2173 2191
2174 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 2192 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2175 uinfo->count = 1; 2193 uinfo->count = 1;
2176 uinfo->value.enumerated.items = e->max; 2194 uinfo->value.enumerated.items = e->max;
2177 2195
2178 if (uinfo->value.enumerated.item > e->max - 1) 2196 if (uinfo->value.enumerated.item > e->max - 1)
2179 uinfo->value.enumerated.item = e->max - 1; 2197 uinfo->value.enumerated.item = e->max - 1;
2180 strcpy(uinfo->value.enumerated.name, 2198 strcpy(uinfo->value.enumerated.name,
2181 e->texts[uinfo->value.enumerated.item]); 2199 e->texts[uinfo->value.enumerated.item]);
2182 return 0; 2200 return 0;
2183 } 2201 }
2184 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext); 2202 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
2185 2203
2186 /** 2204 /**
2187 * snd_soc_info_volsw_ext - external single mixer info callback 2205 * snd_soc_info_volsw_ext - external single mixer info callback
2188 * @kcontrol: mixer control 2206 * @kcontrol: mixer control
2189 * @uinfo: control element information 2207 * @uinfo: control element information
2190 * 2208 *
2191 * Callback to provide information about a single external mixer control. 2209 * Callback to provide information about a single external mixer control.
2192 * 2210 *
2193 * Returns 0 for success. 2211 * Returns 0 for success.
2194 */ 2212 */
2195 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol, 2213 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
2196 struct snd_ctl_elem_info *uinfo) 2214 struct snd_ctl_elem_info *uinfo)
2197 { 2215 {
2198 int max = kcontrol->private_value; 2216 int max = kcontrol->private_value;
2199 2217
2200 if (max == 1 && !strstr(kcontrol->id.name, " Volume")) 2218 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
2201 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 2219 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2202 else 2220 else
2203 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 2221 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2204 2222
2205 uinfo->count = 1; 2223 uinfo->count = 1;
2206 uinfo->value.integer.min = 0; 2224 uinfo->value.integer.min = 0;
2207 uinfo->value.integer.max = max; 2225 uinfo->value.integer.max = max;
2208 return 0; 2226 return 0;
2209 } 2227 }
2210 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext); 2228 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
2211 2229
2212 /** 2230 /**
2213 * snd_soc_info_volsw - single mixer info callback 2231 * snd_soc_info_volsw - single mixer info callback
2214 * @kcontrol: mixer control 2232 * @kcontrol: mixer control
2215 * @uinfo: control element information 2233 * @uinfo: control element information
2216 * 2234 *
2217 * Callback to provide information about a single mixer control. 2235 * Callback to provide information about a single mixer control.
2218 * 2236 *
2219 * Returns 0 for success. 2237 * Returns 0 for success.
2220 */ 2238 */
2221 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol, 2239 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
2222 struct snd_ctl_elem_info *uinfo) 2240 struct snd_ctl_elem_info *uinfo)
2223 { 2241 {
2224 struct soc_mixer_control *mc = 2242 struct soc_mixer_control *mc =
2225 (struct soc_mixer_control *)kcontrol->private_value; 2243 (struct soc_mixer_control *)kcontrol->private_value;
2226 int platform_max; 2244 int platform_max;
2227 unsigned int shift = mc->shift; 2245 unsigned int shift = mc->shift;
2228 unsigned int rshift = mc->rshift; 2246 unsigned int rshift = mc->rshift;
2229 2247
2230 if (!mc->platform_max) 2248 if (!mc->platform_max)
2231 mc->platform_max = mc->max; 2249 mc->platform_max = mc->max;
2232 platform_max = mc->platform_max; 2250 platform_max = mc->platform_max;
2233 2251
2234 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume")) 2252 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2235 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 2253 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2236 else 2254 else
2237 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 2255 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2238 2256
2239 uinfo->count = shift == rshift ? 1 : 2; 2257 uinfo->count = shift == rshift ? 1 : 2;
2240 uinfo->value.integer.min = 0; 2258 uinfo->value.integer.min = 0;
2241 uinfo->value.integer.max = platform_max; 2259 uinfo->value.integer.max = platform_max;
2242 return 0; 2260 return 0;
2243 } 2261 }
2244 EXPORT_SYMBOL_GPL(snd_soc_info_volsw); 2262 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
2245 2263
2246 /** 2264 /**
2247 * snd_soc_get_volsw - single mixer get callback 2265 * snd_soc_get_volsw - single mixer get callback
2248 * @kcontrol: mixer control 2266 * @kcontrol: mixer control
2249 * @ucontrol: control element information 2267 * @ucontrol: control element information
2250 * 2268 *
2251 * Callback to get the value of a single mixer control. 2269 * Callback to get the value of a single mixer control.
2252 * 2270 *
2253 * Returns 0 for success. 2271 * Returns 0 for success.
2254 */ 2272 */
2255 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol, 2273 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
2256 struct snd_ctl_elem_value *ucontrol) 2274 struct snd_ctl_elem_value *ucontrol)
2257 { 2275 {
2258 struct soc_mixer_control *mc = 2276 struct soc_mixer_control *mc =
2259 (struct soc_mixer_control *)kcontrol->private_value; 2277 (struct soc_mixer_control *)kcontrol->private_value;
2260 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2278 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2261 unsigned int reg = mc->reg; 2279 unsigned int reg = mc->reg;
2262 unsigned int shift = mc->shift; 2280 unsigned int shift = mc->shift;
2263 unsigned int rshift = mc->rshift; 2281 unsigned int rshift = mc->rshift;
2264 int max = mc->max; 2282 int max = mc->max;
2265 unsigned int mask = (1 << fls(max)) - 1; 2283 unsigned int mask = (1 << fls(max)) - 1;
2266 unsigned int invert = mc->invert; 2284 unsigned int invert = mc->invert;
2267 2285
2268 ucontrol->value.integer.value[0] = 2286 ucontrol->value.integer.value[0] =
2269 (snd_soc_read(codec, reg) >> shift) & mask; 2287 (snd_soc_read(codec, reg) >> shift) & mask;
2270 if (shift != rshift) 2288 if (shift != rshift)
2271 ucontrol->value.integer.value[1] = 2289 ucontrol->value.integer.value[1] =
2272 (snd_soc_read(codec, reg) >> rshift) & mask; 2290 (snd_soc_read(codec, reg) >> rshift) & mask;
2273 if (invert) { 2291 if (invert) {
2274 ucontrol->value.integer.value[0] = 2292 ucontrol->value.integer.value[0] =
2275 max - ucontrol->value.integer.value[0]; 2293 max - ucontrol->value.integer.value[0];
2276 if (shift != rshift) 2294 if (shift != rshift)
2277 ucontrol->value.integer.value[1] = 2295 ucontrol->value.integer.value[1] =
2278 max - ucontrol->value.integer.value[1]; 2296 max - ucontrol->value.integer.value[1];
2279 } 2297 }
2280 2298
2281 return 0; 2299 return 0;
2282 } 2300 }
2283 EXPORT_SYMBOL_GPL(snd_soc_get_volsw); 2301 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
2284 2302
2285 /** 2303 /**
2286 * snd_soc_put_volsw - single mixer put callback 2304 * snd_soc_put_volsw - single mixer put callback
2287 * @kcontrol: mixer control 2305 * @kcontrol: mixer control
2288 * @ucontrol: control element information 2306 * @ucontrol: control element information
2289 * 2307 *
2290 * Callback to set the value of a single mixer control. 2308 * Callback to set the value of a single mixer control.
2291 * 2309 *
2292 * Returns 0 for success. 2310 * Returns 0 for success.
2293 */ 2311 */
2294 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol, 2312 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
2295 struct snd_ctl_elem_value *ucontrol) 2313 struct snd_ctl_elem_value *ucontrol)
2296 { 2314 {
2297 struct soc_mixer_control *mc = 2315 struct soc_mixer_control *mc =
2298 (struct soc_mixer_control *)kcontrol->private_value; 2316 (struct soc_mixer_control *)kcontrol->private_value;
2299 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2317 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2300 unsigned int reg = mc->reg; 2318 unsigned int reg = mc->reg;
2301 unsigned int shift = mc->shift; 2319 unsigned int shift = mc->shift;
2302 unsigned int rshift = mc->rshift; 2320 unsigned int rshift = mc->rshift;
2303 int max = mc->max; 2321 int max = mc->max;
2304 unsigned int mask = (1 << fls(max)) - 1; 2322 unsigned int mask = (1 << fls(max)) - 1;
2305 unsigned int invert = mc->invert; 2323 unsigned int invert = mc->invert;
2306 unsigned int val, val2, val_mask; 2324 unsigned int val, val2, val_mask;
2307 2325
2308 val = (ucontrol->value.integer.value[0] & mask); 2326 val = (ucontrol->value.integer.value[0] & mask);
2309 if (invert) 2327 if (invert)
2310 val = max - val; 2328 val = max - val;
2311 val_mask = mask << shift; 2329 val_mask = mask << shift;
2312 val = val << shift; 2330 val = val << shift;
2313 if (shift != rshift) { 2331 if (shift != rshift) {
2314 val2 = (ucontrol->value.integer.value[1] & mask); 2332 val2 = (ucontrol->value.integer.value[1] & mask);
2315 if (invert) 2333 if (invert)
2316 val2 = max - val2; 2334 val2 = max - val2;
2317 val_mask |= mask << rshift; 2335 val_mask |= mask << rshift;
2318 val |= val2 << rshift; 2336 val |= val2 << rshift;
2319 } 2337 }
2320 return snd_soc_update_bits_locked(codec, reg, val_mask, val); 2338 return snd_soc_update_bits_locked(codec, reg, val_mask, val);
2321 } 2339 }
2322 EXPORT_SYMBOL_GPL(snd_soc_put_volsw); 2340 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
2323 2341
2324 /** 2342 /**
2325 * snd_soc_info_volsw_2r - double mixer info callback 2343 * snd_soc_info_volsw_2r - double mixer info callback
2326 * @kcontrol: mixer control 2344 * @kcontrol: mixer control
2327 * @uinfo: control element information 2345 * @uinfo: control element information
2328 * 2346 *
2329 * Callback to provide information about a double mixer control that 2347 * Callback to provide information about a double mixer control that
2330 * spans 2 codec registers. 2348 * spans 2 codec registers.
2331 * 2349 *
2332 * Returns 0 for success. 2350 * Returns 0 for success.
2333 */ 2351 */
2334 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol, 2352 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
2335 struct snd_ctl_elem_info *uinfo) 2353 struct snd_ctl_elem_info *uinfo)
2336 { 2354 {
2337 struct soc_mixer_control *mc = 2355 struct soc_mixer_control *mc =
2338 (struct soc_mixer_control *)kcontrol->private_value; 2356 (struct soc_mixer_control *)kcontrol->private_value;
2339 int platform_max; 2357 int platform_max;
2340 2358
2341 if (!mc->platform_max) 2359 if (!mc->platform_max)
2342 mc->platform_max = mc->max; 2360 mc->platform_max = mc->max;
2343 platform_max = mc->platform_max; 2361 platform_max = mc->platform_max;
2344 2362
2345 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume")) 2363 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2346 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 2364 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2347 else 2365 else
2348 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 2366 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2349 2367
2350 uinfo->count = 2; 2368 uinfo->count = 2;
2351 uinfo->value.integer.min = 0; 2369 uinfo->value.integer.min = 0;
2352 uinfo->value.integer.max = platform_max; 2370 uinfo->value.integer.max = platform_max;
2353 return 0; 2371 return 0;
2354 } 2372 }
2355 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r); 2373 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
2356 2374
2357 /** 2375 /**
2358 * snd_soc_get_volsw_2r - double mixer get callback 2376 * snd_soc_get_volsw_2r - double mixer get callback
2359 * @kcontrol: mixer control 2377 * @kcontrol: mixer control
2360 * @ucontrol: control element information 2378 * @ucontrol: control element information
2361 * 2379 *
2362 * Callback to get the value of a double mixer control that spans 2 registers. 2380 * Callback to get the value of a double mixer control that spans 2 registers.
2363 * 2381 *
2364 * Returns 0 for success. 2382 * Returns 0 for success.
2365 */ 2383 */
2366 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol, 2384 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
2367 struct snd_ctl_elem_value *ucontrol) 2385 struct snd_ctl_elem_value *ucontrol)
2368 { 2386 {
2369 struct soc_mixer_control *mc = 2387 struct soc_mixer_control *mc =
2370 (struct soc_mixer_control *)kcontrol->private_value; 2388 (struct soc_mixer_control *)kcontrol->private_value;
2371 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2389 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2372 unsigned int reg = mc->reg; 2390 unsigned int reg = mc->reg;
2373 unsigned int reg2 = mc->rreg; 2391 unsigned int reg2 = mc->rreg;
2374 unsigned int shift = mc->shift; 2392 unsigned int shift = mc->shift;
2375 int max = mc->max; 2393 int max = mc->max;
2376 unsigned int mask = (1 << fls(max)) - 1; 2394 unsigned int mask = (1 << fls(max)) - 1;
2377 unsigned int invert = mc->invert; 2395 unsigned int invert = mc->invert;
2378 2396
2379 ucontrol->value.integer.value[0] = 2397 ucontrol->value.integer.value[0] =
2380 (snd_soc_read(codec, reg) >> shift) & mask; 2398 (snd_soc_read(codec, reg) >> shift) & mask;
2381 ucontrol->value.integer.value[1] = 2399 ucontrol->value.integer.value[1] =
2382 (snd_soc_read(codec, reg2) >> shift) & mask; 2400 (snd_soc_read(codec, reg2) >> shift) & mask;
2383 if (invert) { 2401 if (invert) {
2384 ucontrol->value.integer.value[0] = 2402 ucontrol->value.integer.value[0] =
2385 max - ucontrol->value.integer.value[0]; 2403 max - ucontrol->value.integer.value[0];
2386 ucontrol->value.integer.value[1] = 2404 ucontrol->value.integer.value[1] =
2387 max - ucontrol->value.integer.value[1]; 2405 max - ucontrol->value.integer.value[1];
2388 } 2406 }
2389 2407
2390 return 0; 2408 return 0;
2391 } 2409 }
2392 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r); 2410 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
2393 2411
2394 /** 2412 /**
2395 * snd_soc_put_volsw_2r - double mixer set callback 2413 * snd_soc_put_volsw_2r - double mixer set callback
2396 * @kcontrol: mixer control 2414 * @kcontrol: mixer control
2397 * @ucontrol: control element information 2415 * @ucontrol: control element information
2398 * 2416 *
2399 * Callback to set the value of a double mixer control that spans 2 registers. 2417 * Callback to set the value of a double mixer control that spans 2 registers.
2400 * 2418 *
2401 * Returns 0 for success. 2419 * Returns 0 for success.
2402 */ 2420 */
2403 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol, 2421 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
2404 struct snd_ctl_elem_value *ucontrol) 2422 struct snd_ctl_elem_value *ucontrol)
2405 { 2423 {
2406 struct soc_mixer_control *mc = 2424 struct soc_mixer_control *mc =
2407 (struct soc_mixer_control *)kcontrol->private_value; 2425 (struct soc_mixer_control *)kcontrol->private_value;
2408 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2426 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2409 unsigned int reg = mc->reg; 2427 unsigned int reg = mc->reg;
2410 unsigned int reg2 = mc->rreg; 2428 unsigned int reg2 = mc->rreg;
2411 unsigned int shift = mc->shift; 2429 unsigned int shift = mc->shift;
2412 int max = mc->max; 2430 int max = mc->max;
2413 unsigned int mask = (1 << fls(max)) - 1; 2431 unsigned int mask = (1 << fls(max)) - 1;
2414 unsigned int invert = mc->invert; 2432 unsigned int invert = mc->invert;
2415 int err; 2433 int err;
2416 unsigned int val, val2, val_mask; 2434 unsigned int val, val2, val_mask;
2417 2435
2418 val_mask = mask << shift; 2436 val_mask = mask << shift;
2419 val = (ucontrol->value.integer.value[0] & mask); 2437 val = (ucontrol->value.integer.value[0] & mask);
2420 val2 = (ucontrol->value.integer.value[1] & mask); 2438 val2 = (ucontrol->value.integer.value[1] & mask);
2421 2439
2422 if (invert) { 2440 if (invert) {
2423 val = max - val; 2441 val = max - val;
2424 val2 = max - val2; 2442 val2 = max - val2;
2425 } 2443 }
2426 2444
2427 val = val << shift; 2445 val = val << shift;
2428 val2 = val2 << shift; 2446 val2 = val2 << shift;
2429 2447
2430 err = snd_soc_update_bits_locked(codec, reg, val_mask, val); 2448 err = snd_soc_update_bits_locked(codec, reg, val_mask, val);
2431 if (err < 0) 2449 if (err < 0)
2432 return err; 2450 return err;
2433 2451
2434 err = snd_soc_update_bits_locked(codec, reg2, val_mask, val2); 2452 err = snd_soc_update_bits_locked(codec, reg2, val_mask, val2);
2435 return err; 2453 return err;
2436 } 2454 }
2437 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r); 2455 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
2438 2456
2439 /** 2457 /**
2440 * snd_soc_info_volsw_s8 - signed mixer info callback 2458 * snd_soc_info_volsw_s8 - signed mixer info callback
2441 * @kcontrol: mixer control 2459 * @kcontrol: mixer control
2442 * @uinfo: control element information 2460 * @uinfo: control element information
2443 * 2461 *
2444 * Callback to provide information about a signed mixer control. 2462 * Callback to provide information about a signed mixer control.
2445 * 2463 *
2446 * Returns 0 for success. 2464 * Returns 0 for success.
2447 */ 2465 */
2448 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol, 2466 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2449 struct snd_ctl_elem_info *uinfo) 2467 struct snd_ctl_elem_info *uinfo)
2450 { 2468 {
2451 struct soc_mixer_control *mc = 2469 struct soc_mixer_control *mc =
2452 (struct soc_mixer_control *)kcontrol->private_value; 2470 (struct soc_mixer_control *)kcontrol->private_value;
2453 int platform_max; 2471 int platform_max;
2454 int min = mc->min; 2472 int min = mc->min;
2455 2473
2456 if (!mc->platform_max) 2474 if (!mc->platform_max)
2457 mc->platform_max = mc->max; 2475 mc->platform_max = mc->max;
2458 platform_max = mc->platform_max; 2476 platform_max = mc->platform_max;
2459 2477
2460 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 2478 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2461 uinfo->count = 2; 2479 uinfo->count = 2;
2462 uinfo->value.integer.min = 0; 2480 uinfo->value.integer.min = 0;
2463 uinfo->value.integer.max = platform_max - min; 2481 uinfo->value.integer.max = platform_max - min;
2464 return 0; 2482 return 0;
2465 } 2483 }
2466 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8); 2484 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2467 2485
2468 /** 2486 /**
2469 * snd_soc_get_volsw_s8 - signed mixer get callback 2487 * snd_soc_get_volsw_s8 - signed mixer get callback
2470 * @kcontrol: mixer control 2488 * @kcontrol: mixer control
2471 * @ucontrol: control element information 2489 * @ucontrol: control element information
2472 * 2490 *
2473 * Callback to get the value of a signed mixer control. 2491 * Callback to get the value of a signed mixer control.
2474 * 2492 *
2475 * Returns 0 for success. 2493 * Returns 0 for success.
2476 */ 2494 */
2477 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol, 2495 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2478 struct snd_ctl_elem_value *ucontrol) 2496 struct snd_ctl_elem_value *ucontrol)
2479 { 2497 {
2480 struct soc_mixer_control *mc = 2498 struct soc_mixer_control *mc =
2481 (struct soc_mixer_control *)kcontrol->private_value; 2499 (struct soc_mixer_control *)kcontrol->private_value;
2482 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2500 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2483 unsigned int reg = mc->reg; 2501 unsigned int reg = mc->reg;
2484 int min = mc->min; 2502 int min = mc->min;
2485 int val = snd_soc_read(codec, reg); 2503 int val = snd_soc_read(codec, reg);
2486 2504
2487 ucontrol->value.integer.value[0] = 2505 ucontrol->value.integer.value[0] =
2488 ((signed char)(val & 0xff))-min; 2506 ((signed char)(val & 0xff))-min;
2489 ucontrol->value.integer.value[1] = 2507 ucontrol->value.integer.value[1] =
2490 ((signed char)((val >> 8) & 0xff))-min; 2508 ((signed char)((val >> 8) & 0xff))-min;
2491 return 0; 2509 return 0;
2492 } 2510 }
2493 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8); 2511 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2494 2512
2495 /** 2513 /**
2496 * snd_soc_put_volsw_sgn - signed mixer put callback 2514 * snd_soc_put_volsw_sgn - signed mixer put callback
2497 * @kcontrol: mixer control 2515 * @kcontrol: mixer control
2498 * @ucontrol: control element information 2516 * @ucontrol: control element information
2499 * 2517 *
2500 * Callback to set the value of a signed mixer control. 2518 * Callback to set the value of a signed mixer control.
2501 * 2519 *
2502 * Returns 0 for success. 2520 * Returns 0 for success.
2503 */ 2521 */
2504 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol, 2522 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2505 struct snd_ctl_elem_value *ucontrol) 2523 struct snd_ctl_elem_value *ucontrol)
2506 { 2524 {
2507 struct soc_mixer_control *mc = 2525 struct soc_mixer_control *mc =
2508 (struct soc_mixer_control *)kcontrol->private_value; 2526 (struct soc_mixer_control *)kcontrol->private_value;
2509 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2527 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2510 unsigned int reg = mc->reg; 2528 unsigned int reg = mc->reg;
2511 int min = mc->min; 2529 int min = mc->min;
2512 unsigned int val; 2530 unsigned int val;
2513 2531
2514 val = (ucontrol->value.integer.value[0]+min) & 0xff; 2532 val = (ucontrol->value.integer.value[0]+min) & 0xff;
2515 val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8; 2533 val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2516 2534
2517 return snd_soc_update_bits_locked(codec, reg, 0xffff, val); 2535 return snd_soc_update_bits_locked(codec, reg, 0xffff, val);
2518 } 2536 }
2519 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8); 2537 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2520 2538
2521 /** 2539 /**
2522 * snd_soc_limit_volume - Set new limit to an existing volume control. 2540 * snd_soc_limit_volume - Set new limit to an existing volume control.
2523 * 2541 *
2524 * @codec: where to look for the control 2542 * @codec: where to look for the control
2525 * @name: Name of the control 2543 * @name: Name of the control
2526 * @max: new maximum limit 2544 * @max: new maximum limit
2527 * 2545 *
2528 * Return 0 for success, else error. 2546 * Return 0 for success, else error.
2529 */ 2547 */
2530 int snd_soc_limit_volume(struct snd_soc_codec *codec, 2548 int snd_soc_limit_volume(struct snd_soc_codec *codec,
2531 const char *name, int max) 2549 const char *name, int max)
2532 { 2550 {
2533 struct snd_card *card = codec->card->snd_card; 2551 struct snd_card *card = codec->card->snd_card;
2534 struct snd_kcontrol *kctl; 2552 struct snd_kcontrol *kctl;
2535 struct soc_mixer_control *mc; 2553 struct soc_mixer_control *mc;
2536 int found = 0; 2554 int found = 0;
2537 int ret = -EINVAL; 2555 int ret = -EINVAL;
2538 2556
2539 /* Sanity check for name and max */ 2557 /* Sanity check for name and max */
2540 if (unlikely(!name || max <= 0)) 2558 if (unlikely(!name || max <= 0))
2541 return -EINVAL; 2559 return -EINVAL;
2542 2560
2543 list_for_each_entry(kctl, &card->controls, list) { 2561 list_for_each_entry(kctl, &card->controls, list) {
2544 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) { 2562 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
2545 found = 1; 2563 found = 1;
2546 break; 2564 break;
2547 } 2565 }
2548 } 2566 }
2549 if (found) { 2567 if (found) {
2550 mc = (struct soc_mixer_control *)kctl->private_value; 2568 mc = (struct soc_mixer_control *)kctl->private_value;
2551 if (max <= mc->max) { 2569 if (max <= mc->max) {
2552 mc->platform_max = max; 2570 mc->platform_max = max;
2553 ret = 0; 2571 ret = 0;
2554 } 2572 }
2555 } 2573 }
2556 return ret; 2574 return ret;
2557 } 2575 }
2558 EXPORT_SYMBOL_GPL(snd_soc_limit_volume); 2576 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
2559 2577
2560 /** 2578 /**
2561 * snd_soc_info_volsw_2r_sx - double with tlv and variable data size 2579 * snd_soc_info_volsw_2r_sx - double with tlv and variable data size
2562 * mixer info callback 2580 * mixer info callback
2563 * @kcontrol: mixer control 2581 * @kcontrol: mixer control
2564 * @uinfo: control element information 2582 * @uinfo: control element information
2565 * 2583 *
2566 * Returns 0 for success. 2584 * Returns 0 for success.
2567 */ 2585 */
2568 int snd_soc_info_volsw_2r_sx(struct snd_kcontrol *kcontrol, 2586 int snd_soc_info_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2569 struct snd_ctl_elem_info *uinfo) 2587 struct snd_ctl_elem_info *uinfo)
2570 { 2588 {
2571 struct soc_mixer_control *mc = 2589 struct soc_mixer_control *mc =
2572 (struct soc_mixer_control *)kcontrol->private_value; 2590 (struct soc_mixer_control *)kcontrol->private_value;
2573 int max = mc->max; 2591 int max = mc->max;
2574 int min = mc->min; 2592 int min = mc->min;
2575 2593
2576 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 2594 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2577 uinfo->count = 2; 2595 uinfo->count = 2;
2578 uinfo->value.integer.min = 0; 2596 uinfo->value.integer.min = 0;
2579 uinfo->value.integer.max = max-min; 2597 uinfo->value.integer.max = max-min;
2580 2598
2581 return 0; 2599 return 0;
2582 } 2600 }
2583 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r_sx); 2601 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r_sx);
2584 2602
2585 /** 2603 /**
2586 * snd_soc_get_volsw_2r_sx - double with tlv and variable data size 2604 * snd_soc_get_volsw_2r_sx - double with tlv and variable data size
2587 * mixer get callback 2605 * mixer get callback
2588 * @kcontrol: mixer control 2606 * @kcontrol: mixer control
2589 * @uinfo: control element information 2607 * @uinfo: control element information
2590 * 2608 *
2591 * Returns 0 for success. 2609 * Returns 0 for success.
2592 */ 2610 */
2593 int snd_soc_get_volsw_2r_sx(struct snd_kcontrol *kcontrol, 2611 int snd_soc_get_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2594 struct snd_ctl_elem_value *ucontrol) 2612 struct snd_ctl_elem_value *ucontrol)
2595 { 2613 {
2596 struct soc_mixer_control *mc = 2614 struct soc_mixer_control *mc =
2597 (struct soc_mixer_control *)kcontrol->private_value; 2615 (struct soc_mixer_control *)kcontrol->private_value;
2598 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2616 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2599 unsigned int mask = (1<<mc->shift)-1; 2617 unsigned int mask = (1<<mc->shift)-1;
2600 int min = mc->min; 2618 int min = mc->min;
2601 int val = snd_soc_read(codec, mc->reg) & mask; 2619 int val = snd_soc_read(codec, mc->reg) & mask;
2602 int valr = snd_soc_read(codec, mc->rreg) & mask; 2620 int valr = snd_soc_read(codec, mc->rreg) & mask;
2603 2621
2604 ucontrol->value.integer.value[0] = ((val & 0xff)-min) & mask; 2622 ucontrol->value.integer.value[0] = ((val & 0xff)-min) & mask;
2605 ucontrol->value.integer.value[1] = ((valr & 0xff)-min) & mask; 2623 ucontrol->value.integer.value[1] = ((valr & 0xff)-min) & mask;
2606 return 0; 2624 return 0;
2607 } 2625 }
2608 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r_sx); 2626 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r_sx);
2609 2627
2610 /** 2628 /**
2611 * snd_soc_put_volsw_2r_sx - double with tlv and variable data size 2629 * snd_soc_put_volsw_2r_sx - double with tlv and variable data size
2612 * mixer put callback 2630 * mixer put callback
2613 * @kcontrol: mixer control 2631 * @kcontrol: mixer control
2614 * @uinfo: control element information 2632 * @uinfo: control element information
2615 * 2633 *
2616 * Returns 0 for success. 2634 * Returns 0 for success.
2617 */ 2635 */
2618 int snd_soc_put_volsw_2r_sx(struct snd_kcontrol *kcontrol, 2636 int snd_soc_put_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2619 struct snd_ctl_elem_value *ucontrol) 2637 struct snd_ctl_elem_value *ucontrol)
2620 { 2638 {
2621 struct soc_mixer_control *mc = 2639 struct soc_mixer_control *mc =
2622 (struct soc_mixer_control *)kcontrol->private_value; 2640 (struct soc_mixer_control *)kcontrol->private_value;
2623 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2641 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2624 unsigned int mask = (1<<mc->shift)-1; 2642 unsigned int mask = (1<<mc->shift)-1;
2625 int min = mc->min; 2643 int min = mc->min;
2626 int ret; 2644 int ret;
2627 unsigned int val, valr, oval, ovalr; 2645 unsigned int val, valr, oval, ovalr;
2628 2646
2629 val = ((ucontrol->value.integer.value[0]+min) & 0xff); 2647 val = ((ucontrol->value.integer.value[0]+min) & 0xff);
2630 val &= mask; 2648 val &= mask;
2631 valr = ((ucontrol->value.integer.value[1]+min) & 0xff); 2649 valr = ((ucontrol->value.integer.value[1]+min) & 0xff);
2632 valr &= mask; 2650 valr &= mask;
2633 2651
2634 oval = snd_soc_read(codec, mc->reg) & mask; 2652 oval = snd_soc_read(codec, mc->reg) & mask;
2635 ovalr = snd_soc_read(codec, mc->rreg) & mask; 2653 ovalr = snd_soc_read(codec, mc->rreg) & mask;
2636 2654
2637 ret = 0; 2655 ret = 0;
2638 if (oval != val) { 2656 if (oval != val) {
2639 ret = snd_soc_write(codec, mc->reg, val); 2657 ret = snd_soc_write(codec, mc->reg, val);
2640 if (ret < 0) 2658 if (ret < 0)
2641 return ret; 2659 return ret;
2642 } 2660 }
2643 if (ovalr != valr) { 2661 if (ovalr != valr) {
2644 ret = snd_soc_write(codec, mc->rreg, valr); 2662 ret = snd_soc_write(codec, mc->rreg, valr);
2645 if (ret < 0) 2663 if (ret < 0)
2646 return ret; 2664 return ret;
2647 } 2665 }
2648 2666
2649 return 0; 2667 return 0;
2650 } 2668 }
2651 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r_sx); 2669 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r_sx);
2652 2670
2653 /** 2671 /**
2654 * snd_soc_dai_set_sysclk - configure DAI system or master clock. 2672 * snd_soc_dai_set_sysclk - configure DAI system or master clock.
2655 * @dai: DAI 2673 * @dai: DAI
2656 * @clk_id: DAI specific clock ID 2674 * @clk_id: DAI specific clock ID
2657 * @freq: new clock frequency in Hz 2675 * @freq: new clock frequency in Hz
2658 * @dir: new clock direction - input/output. 2676 * @dir: new clock direction - input/output.
2659 * 2677 *
2660 * Configures the DAI master (MCLK) or system (SYSCLK) clocking. 2678 * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
2661 */ 2679 */
2662 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id, 2680 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
2663 unsigned int freq, int dir) 2681 unsigned int freq, int dir)
2664 { 2682 {
2665 if (dai->driver && dai->driver->ops->set_sysclk) 2683 if (dai->driver && dai->driver->ops->set_sysclk)
2666 return dai->driver->ops->set_sysclk(dai, clk_id, freq, dir); 2684 return dai->driver->ops->set_sysclk(dai, clk_id, freq, dir);
2667 else 2685 else
2668 return -EINVAL; 2686 return -EINVAL;
2669 } 2687 }
2670 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk); 2688 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
2671 2689
2672 /** 2690 /**
2673 * snd_soc_dai_set_clkdiv - configure DAI clock dividers. 2691 * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
2674 * @dai: DAI 2692 * @dai: DAI
2675 * @div_id: DAI specific clock divider ID 2693 * @div_id: DAI specific clock divider ID
2676 * @div: new clock divisor. 2694 * @div: new clock divisor.
2677 * 2695 *
2678 * Configures the clock dividers. This is used to derive the best DAI bit and 2696 * Configures the clock dividers. This is used to derive the best DAI bit and
2679 * frame clocks from the system or master clock. It's best to set the DAI bit 2697 * frame clocks from the system or master clock. It's best to set the DAI bit
2680 * and frame clocks as low as possible to save system power. 2698 * and frame clocks as low as possible to save system power.
2681 */ 2699 */
2682 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai, 2700 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
2683 int div_id, int div) 2701 int div_id, int div)
2684 { 2702 {
2685 if (dai->driver && dai->driver->ops->set_clkdiv) 2703 if (dai->driver && dai->driver->ops->set_clkdiv)
2686 return dai->driver->ops->set_clkdiv(dai, div_id, div); 2704 return dai->driver->ops->set_clkdiv(dai, div_id, div);
2687 else 2705 else
2688 return -EINVAL; 2706 return -EINVAL;
2689 } 2707 }
2690 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv); 2708 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
2691 2709
2692 /** 2710 /**
2693 * snd_soc_dai_set_pll - configure DAI PLL. 2711 * snd_soc_dai_set_pll - configure DAI PLL.
2694 * @dai: DAI 2712 * @dai: DAI
2695 * @pll_id: DAI specific PLL ID 2713 * @pll_id: DAI specific PLL ID
2696 * @source: DAI specific source for the PLL 2714 * @source: DAI specific source for the PLL
2697 * @freq_in: PLL input clock frequency in Hz 2715 * @freq_in: PLL input clock frequency in Hz
2698 * @freq_out: requested PLL output clock frequency in Hz 2716 * @freq_out: requested PLL output clock frequency in Hz
2699 * 2717 *
2700 * Configures and enables PLL to generate output clock based on input clock. 2718 * Configures and enables PLL to generate output clock based on input clock.
2701 */ 2719 */
2702 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source, 2720 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
2703 unsigned int freq_in, unsigned int freq_out) 2721 unsigned int freq_in, unsigned int freq_out)
2704 { 2722 {
2705 if (dai->driver && dai->driver->ops->set_pll) 2723 if (dai->driver && dai->driver->ops->set_pll)
2706 return dai->driver->ops->set_pll(dai, pll_id, source, 2724 return dai->driver->ops->set_pll(dai, pll_id, source,
2707 freq_in, freq_out); 2725 freq_in, freq_out);
2708 else 2726 else
2709 return -EINVAL; 2727 return -EINVAL;
2710 } 2728 }
2711 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll); 2729 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
2712 2730
2713 /** 2731 /**
2714 * snd_soc_dai_set_fmt - configure DAI hardware audio format. 2732 * snd_soc_dai_set_fmt - configure DAI hardware audio format.
2715 * @dai: DAI 2733 * @dai: DAI
2716 * @fmt: SND_SOC_DAIFMT_ format value. 2734 * @fmt: SND_SOC_DAIFMT_ format value.
2717 * 2735 *
2718 * Configures the DAI hardware format and clocking. 2736 * Configures the DAI hardware format and clocking.
2719 */ 2737 */
2720 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt) 2738 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
2721 { 2739 {
2722 if (dai->driver && dai->driver->ops->set_fmt) 2740 if (dai->driver && dai->driver->ops->set_fmt)
2723 return dai->driver->ops->set_fmt(dai, fmt); 2741 return dai->driver->ops->set_fmt(dai, fmt);
2724 else 2742 else
2725 return -EINVAL; 2743 return -EINVAL;
2726 } 2744 }
2727 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt); 2745 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
2728 2746
2729 /** 2747 /**
2730 * snd_soc_dai_set_tdm_slot - configure DAI TDM. 2748 * snd_soc_dai_set_tdm_slot - configure DAI TDM.
2731 * @dai: DAI 2749 * @dai: DAI
2732 * @tx_mask: bitmask representing active TX slots. 2750 * @tx_mask: bitmask representing active TX slots.
2733 * @rx_mask: bitmask representing active RX slots. 2751 * @rx_mask: bitmask representing active RX slots.
2734 * @slots: Number of slots in use. 2752 * @slots: Number of slots in use.
2735 * @slot_width: Width in bits for each slot. 2753 * @slot_width: Width in bits for each slot.
2736 * 2754 *
2737 * Configures a DAI for TDM operation. Both mask and slots are codec and DAI 2755 * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
2738 * specific. 2756 * specific.
2739 */ 2757 */
2740 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai, 2758 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
2741 unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width) 2759 unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
2742 { 2760 {
2743 if (dai->driver && dai->driver->ops->set_tdm_slot) 2761 if (dai->driver && dai->driver->ops->set_tdm_slot)
2744 return dai->driver->ops->set_tdm_slot(dai, tx_mask, rx_mask, 2762 return dai->driver->ops->set_tdm_slot(dai, tx_mask, rx_mask,
2745 slots, slot_width); 2763 slots, slot_width);
2746 else 2764 else
2747 return -EINVAL; 2765 return -EINVAL;
2748 } 2766 }
2749 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot); 2767 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
2750 2768
2751 /** 2769 /**
2752 * snd_soc_dai_set_channel_map - configure DAI audio channel map 2770 * snd_soc_dai_set_channel_map - configure DAI audio channel map
2753 * @dai: DAI 2771 * @dai: DAI
2754 * @tx_num: how many TX channels 2772 * @tx_num: how many TX channels
2755 * @tx_slot: pointer to an array which imply the TX slot number channel 2773 * @tx_slot: pointer to an array which imply the TX slot number channel
2756 * 0~num-1 uses 2774 * 0~num-1 uses
2757 * @rx_num: how many RX channels 2775 * @rx_num: how many RX channels
2758 * @rx_slot: pointer to an array which imply the RX slot number channel 2776 * @rx_slot: pointer to an array which imply the RX slot number channel
2759 * 0~num-1 uses 2777 * 0~num-1 uses
2760 * 2778 *
2761 * configure the relationship between channel number and TDM slot number. 2779 * configure the relationship between channel number and TDM slot number.
2762 */ 2780 */
2763 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai, 2781 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
2764 unsigned int tx_num, unsigned int *tx_slot, 2782 unsigned int tx_num, unsigned int *tx_slot,
2765 unsigned int rx_num, unsigned int *rx_slot) 2783 unsigned int rx_num, unsigned int *rx_slot)
2766 { 2784 {
2767 if (dai->driver && dai->driver->ops->set_channel_map) 2785 if (dai->driver && dai->driver->ops->set_channel_map)
2768 return dai->driver->ops->set_channel_map(dai, tx_num, tx_slot, 2786 return dai->driver->ops->set_channel_map(dai, tx_num, tx_slot,
2769 rx_num, rx_slot); 2787 rx_num, rx_slot);
2770 else 2788 else
2771 return -EINVAL; 2789 return -EINVAL;
2772 } 2790 }
2773 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map); 2791 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);
2774 2792
2775 /** 2793 /**
2776 * snd_soc_dai_set_tristate - configure DAI system or master clock. 2794 * snd_soc_dai_set_tristate - configure DAI system or master clock.
2777 * @dai: DAI 2795 * @dai: DAI
2778 * @tristate: tristate enable 2796 * @tristate: tristate enable
2779 * 2797 *
2780 * Tristates the DAI so that others can use it. 2798 * Tristates the DAI so that others can use it.
2781 */ 2799 */
2782 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate) 2800 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
2783 { 2801 {
2784 if (dai->driver && dai->driver->ops->set_tristate) 2802 if (dai->driver && dai->driver->ops->set_tristate)
2785 return dai->driver->ops->set_tristate(dai, tristate); 2803 return dai->driver->ops->set_tristate(dai, tristate);
2786 else 2804 else
2787 return -EINVAL; 2805 return -EINVAL;
2788 } 2806 }
2789 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate); 2807 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
2790 2808
2791 /** 2809 /**
2792 * snd_soc_dai_digital_mute - configure DAI system or master clock. 2810 * snd_soc_dai_digital_mute - configure DAI system or master clock.
2793 * @dai: DAI 2811 * @dai: DAI
2794 * @mute: mute enable 2812 * @mute: mute enable
2795 * 2813 *
2796 * Mutes the DAI DAC. 2814 * Mutes the DAI DAC.
2797 */ 2815 */
2798 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute) 2816 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
2799 { 2817 {
2800 if (dai->driver && dai->driver->ops->digital_mute) 2818 if (dai->driver && dai->driver->ops->digital_mute)
2801 return dai->driver->ops->digital_mute(dai, mute); 2819 return dai->driver->ops->digital_mute(dai, mute);
2802 else 2820 else
2803 return -EINVAL; 2821 return -EINVAL;
2804 } 2822 }
2805 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute); 2823 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
2806 2824
2807 /** 2825 /**
2808 * snd_soc_register_card - Register a card with the ASoC core 2826 * snd_soc_register_card - Register a card with the ASoC core
2809 * 2827 *
2810 * @card: Card to register 2828 * @card: Card to register
2811 * 2829 *
2812 * Note that currently this is an internal only function: it will be 2830 * Note that currently this is an internal only function: it will be
2813 * exposed to machine drivers after further backporting of ASoC v2 2831 * exposed to machine drivers after further backporting of ASoC v2
2814 * registration APIs. 2832 * registration APIs.
2815 */ 2833 */
2816 static int snd_soc_register_card(struct snd_soc_card *card) 2834 static int snd_soc_register_card(struct snd_soc_card *card)
2817 { 2835 {
2818 int i; 2836 int i;
2819 2837
2820 if (!card->name || !card->dev) 2838 if (!card->name || !card->dev)
2821 return -EINVAL; 2839 return -EINVAL;
2822 2840
2823 card->rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime) * card->num_links, 2841 card->rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime) * card->num_links,
2824 GFP_KERNEL); 2842 GFP_KERNEL);
2825 if (card->rtd == NULL) 2843 if (card->rtd == NULL)
2826 return -ENOMEM; 2844 return -ENOMEM;
2827 2845
2828 for (i = 0; i < card->num_links; i++) 2846 for (i = 0; i < card->num_links; i++)
2829 card->rtd[i].dai_link = &card->dai_link[i]; 2847 card->rtd[i].dai_link = &card->dai_link[i];
2830 2848
2831 INIT_LIST_HEAD(&card->list); 2849 INIT_LIST_HEAD(&card->list);
2832 card->instantiated = 0; 2850 card->instantiated = 0;
2833 mutex_init(&card->mutex); 2851 mutex_init(&card->mutex);
2834 2852
2835 mutex_lock(&client_mutex); 2853 mutex_lock(&client_mutex);
2836 list_add(&card->list, &card_list); 2854 list_add(&card->list, &card_list);
2837 snd_soc_instantiate_cards(); 2855 snd_soc_instantiate_cards();
2838 mutex_unlock(&client_mutex); 2856 mutex_unlock(&client_mutex);
2839 2857
2840 dev_dbg(card->dev, "Registered card '%s'\n", card->name); 2858 dev_dbg(card->dev, "Registered card '%s'\n", card->name);
2841 2859
2842 return 0; 2860 return 0;
2843 } 2861 }
2844 2862
2845 /** 2863 /**
2846 * snd_soc_unregister_card - Unregister a card with the ASoC core 2864 * snd_soc_unregister_card - Unregister a card with the ASoC core
2847 * 2865 *
2848 * @card: Card to unregister 2866 * @card: Card to unregister
2849 * 2867 *
2850 * Note that currently this is an internal only function: it will be 2868 * Note that currently this is an internal only function: it will be
2851 * exposed to machine drivers after further backporting of ASoC v2 2869 * exposed to machine drivers after further backporting of ASoC v2
2852 * registration APIs. 2870 * registration APIs.
2853 */ 2871 */
2854 static int snd_soc_unregister_card(struct snd_soc_card *card) 2872 static int snd_soc_unregister_card(struct snd_soc_card *card)
2855 { 2873 {
2856 mutex_lock(&client_mutex); 2874 mutex_lock(&client_mutex);
2857 list_del(&card->list); 2875 list_del(&card->list);
2858 mutex_unlock(&client_mutex); 2876 mutex_unlock(&client_mutex);
2859 dev_dbg(card->dev, "Unregistered card '%s'\n", card->name); 2877 dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
2860 2878
2861 return 0; 2879 return 0;
2862 } 2880 }
2863 2881
2864 /* 2882 /*
2865 * Simplify DAI link configuration by removing ".-1" from device names 2883 * Simplify DAI link configuration by removing ".-1" from device names
2866 * and sanitizing names. 2884 * and sanitizing names.
2867 */ 2885 */
2868 static inline char *fmt_single_name(struct device *dev, int *id) 2886 static inline char *fmt_single_name(struct device *dev, int *id)
2869 { 2887 {
2870 char *found, name[NAME_SIZE]; 2888 char *found, name[NAME_SIZE];
2871 int id1, id2; 2889 int id1, id2;
2872 2890
2873 if (dev_name(dev) == NULL) 2891 if (dev_name(dev) == NULL)
2874 return NULL; 2892 return NULL;
2875 2893
2876 strncpy(name, dev_name(dev), NAME_SIZE); 2894 strncpy(name, dev_name(dev), NAME_SIZE);
2877 2895
2878 /* are we a "%s.%d" name (platform and SPI components) */ 2896 /* are we a "%s.%d" name (platform and SPI components) */
2879 found = strstr(name, dev->driver->name); 2897 found = strstr(name, dev->driver->name);
2880 if (found) { 2898 if (found) {
2881 /* get ID */ 2899 /* get ID */
2882 if (sscanf(&found[strlen(dev->driver->name)], ".%d", id) == 1) { 2900 if (sscanf(&found[strlen(dev->driver->name)], ".%d", id) == 1) {
2883 2901
2884 /* discard ID from name if ID == -1 */ 2902 /* discard ID from name if ID == -1 */
2885 if (*id == -1) 2903 if (*id == -1)
2886 found[strlen(dev->driver->name)] = '\0'; 2904 found[strlen(dev->driver->name)] = '\0';
2887 } 2905 }
2888 2906
2889 } else { 2907 } else {
2890 /* I2C component devices are named "bus-addr" */ 2908 /* I2C component devices are named "bus-addr" */
2891 if (sscanf(name, "%x-%x", &id1, &id2) == 2) { 2909 if (sscanf(name, "%x-%x", &id1, &id2) == 2) {
2892 char tmp[NAME_SIZE]; 2910 char tmp[NAME_SIZE];
2893 2911
2894 /* create unique ID number from I2C addr and bus */ 2912 /* create unique ID number from I2C addr and bus */
2895 *id = ((id1 && 0xffff) << 16) + id2; 2913 *id = ((id1 && 0xffff) << 16) + id2;
2896 2914
2897 /* sanitize component name for DAI link creation */ 2915 /* sanitize component name for DAI link creation */
2898 snprintf(tmp, NAME_SIZE, "%s.%s", dev->driver->name, name); 2916 snprintf(tmp, NAME_SIZE, "%s.%s", dev->driver->name, name);
2899 strncpy(name, tmp, NAME_SIZE); 2917 strncpy(name, tmp, NAME_SIZE);
2900 } else 2918 } else
2901 *id = 0; 2919 *id = 0;
2902 } 2920 }
2903 2921
2904 return kstrdup(name, GFP_KERNEL); 2922 return kstrdup(name, GFP_KERNEL);
2905 } 2923 }
2906 2924
2907 /* 2925 /*
2908 * Simplify DAI link naming for single devices with multiple DAIs by removing 2926 * Simplify DAI link naming for single devices with multiple DAIs by removing
2909 * any ".-1" and using the DAI name (instead of device name). 2927 * any ".-1" and using the DAI name (instead of device name).
2910 */ 2928 */
2911 static inline char *fmt_multiple_name(struct device *dev, 2929 static inline char *fmt_multiple_name(struct device *dev,
2912 struct snd_soc_dai_driver *dai_drv) 2930 struct snd_soc_dai_driver *dai_drv)
2913 { 2931 {
2914 if (dai_drv->name == NULL) { 2932 if (dai_drv->name == NULL) {
2915 printk(KERN_ERR "asoc: error - multiple DAI %s registered with no name\n", 2933 printk(KERN_ERR "asoc: error - multiple DAI %s registered with no name\n",
2916 dev_name(dev)); 2934 dev_name(dev));
2917 return NULL; 2935 return NULL;
2918 } 2936 }
2919 2937
2920 return kstrdup(dai_drv->name, GFP_KERNEL); 2938 return kstrdup(dai_drv->name, GFP_KERNEL);
2921 } 2939 }
2922 2940
2923 /** 2941 /**
2924 * snd_soc_register_dai - Register a DAI with the ASoC core 2942 * snd_soc_register_dai - Register a DAI with the ASoC core
2925 * 2943 *
2926 * @dai: DAI to register 2944 * @dai: DAI to register
2927 */ 2945 */
2928 int snd_soc_register_dai(struct device *dev, 2946 int snd_soc_register_dai(struct device *dev,
2929 struct snd_soc_dai_driver *dai_drv) 2947 struct snd_soc_dai_driver *dai_drv)
2930 { 2948 {
2931 struct snd_soc_dai *dai; 2949 struct snd_soc_dai *dai;
2932 2950
2933 dev_dbg(dev, "dai register %s\n", dev_name(dev)); 2951 dev_dbg(dev, "dai register %s\n", dev_name(dev));
2934 2952
2935 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL); 2953 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
2936 if (dai == NULL) 2954 if (dai == NULL)
2937 return -ENOMEM; 2955 return -ENOMEM;
2938 2956
2939 /* create DAI component name */ 2957 /* create DAI component name */
2940 dai->name = fmt_single_name(dev, &dai->id); 2958 dai->name = fmt_single_name(dev, &dai->id);
2941 if (dai->name == NULL) { 2959 if (dai->name == NULL) {
2942 kfree(dai); 2960 kfree(dai);
2943 return -ENOMEM; 2961 return -ENOMEM;
2944 } 2962 }
2945 2963
2946 dai->dev = dev; 2964 dai->dev = dev;
2947 dai->driver = dai_drv; 2965 dai->driver = dai_drv;
2948 if (!dai->driver->ops) 2966 if (!dai->driver->ops)
2949 dai->driver->ops = &null_dai_ops; 2967 dai->driver->ops = &null_dai_ops;
2950 2968
2951 mutex_lock(&client_mutex); 2969 mutex_lock(&client_mutex);
2952 list_add(&dai->list, &dai_list); 2970 list_add(&dai->list, &dai_list);
2953 snd_soc_instantiate_cards(); 2971 snd_soc_instantiate_cards();
2954 mutex_unlock(&client_mutex); 2972 mutex_unlock(&client_mutex);
2955 2973
2956 pr_debug("Registered DAI '%s'\n", dai->name); 2974 pr_debug("Registered DAI '%s'\n", dai->name);
2957 2975
2958 return 0; 2976 return 0;
2959 } 2977 }
2960 EXPORT_SYMBOL_GPL(snd_soc_register_dai); 2978 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
2961 2979
2962 /** 2980 /**
2963 * snd_soc_unregister_dai - Unregister a DAI from the ASoC core 2981 * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
2964 * 2982 *
2965 * @dai: DAI to unregister 2983 * @dai: DAI to unregister
2966 */ 2984 */
2967 void snd_soc_unregister_dai(struct device *dev) 2985 void snd_soc_unregister_dai(struct device *dev)
2968 { 2986 {
2969 struct snd_soc_dai *dai; 2987 struct snd_soc_dai *dai;
2970 2988
2971 list_for_each_entry(dai, &dai_list, list) { 2989 list_for_each_entry(dai, &dai_list, list) {
2972 if (dev == dai->dev) 2990 if (dev == dai->dev)
2973 goto found; 2991 goto found;
2974 } 2992 }
2975 return; 2993 return;
2976 2994
2977 found: 2995 found:
2978 mutex_lock(&client_mutex); 2996 mutex_lock(&client_mutex);
2979 list_del(&dai->list); 2997 list_del(&dai->list);
2980 mutex_unlock(&client_mutex); 2998 mutex_unlock(&client_mutex);
2981 2999
2982 pr_debug("Unregistered DAI '%s'\n", dai->name); 3000 pr_debug("Unregistered DAI '%s'\n", dai->name);
2983 kfree(dai->name); 3001 kfree(dai->name);
2984 kfree(dai); 3002 kfree(dai);
2985 } 3003 }
2986 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai); 3004 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
2987 3005
2988 /** 3006 /**
2989 * snd_soc_register_dais - Register multiple DAIs with the ASoC core 3007 * snd_soc_register_dais - Register multiple DAIs with the ASoC core
2990 * 3008 *
2991 * @dai: Array of DAIs to register 3009 * @dai: Array of DAIs to register
2992 * @count: Number of DAIs 3010 * @count: Number of DAIs
2993 */ 3011 */
2994 int snd_soc_register_dais(struct device *dev, 3012 int snd_soc_register_dais(struct device *dev,
2995 struct snd_soc_dai_driver *dai_drv, size_t count) 3013 struct snd_soc_dai_driver *dai_drv, size_t count)
2996 { 3014 {
2997 struct snd_soc_dai *dai; 3015 struct snd_soc_dai *dai;
2998 int i, ret = 0; 3016 int i, ret = 0;
2999 3017
3000 dev_dbg(dev, "dai register %s #%Zu\n", dev_name(dev), count); 3018 dev_dbg(dev, "dai register %s #%Zu\n", dev_name(dev), count);
3001 3019
3002 for (i = 0; i < count; i++) { 3020 for (i = 0; i < count; i++) {
3003 3021
3004 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL); 3022 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3005 if (dai == NULL) 3023 if (dai == NULL)
3006 return -ENOMEM; 3024 return -ENOMEM;
3007 3025
3008 /* create DAI component name */ 3026 /* create DAI component name */
3009 dai->name = fmt_multiple_name(dev, &dai_drv[i]); 3027 dai->name = fmt_multiple_name(dev, &dai_drv[i]);
3010 if (dai->name == NULL) { 3028 if (dai->name == NULL) {
3011 kfree(dai); 3029 kfree(dai);
3012 ret = -EINVAL; 3030 ret = -EINVAL;
3013 goto err; 3031 goto err;
3014 } 3032 }
3015 3033
3016 dai->dev = dev; 3034 dai->dev = dev;
3017 dai->id = i; 3035 dai->id = i;
3018 dai->driver = &dai_drv[i]; 3036 dai->driver = &dai_drv[i];
3019 if (!dai->driver->ops) 3037 if (!dai->driver->ops)
3020 dai->driver->ops = &null_dai_ops; 3038 dai->driver->ops = &null_dai_ops;
3021 3039
3022 mutex_lock(&client_mutex); 3040 mutex_lock(&client_mutex);
3023 list_add(&dai->list, &dai_list); 3041 list_add(&dai->list, &dai_list);
3024 mutex_unlock(&client_mutex); 3042 mutex_unlock(&client_mutex);
3025 3043
3026 pr_debug("Registered DAI '%s'\n", dai->name); 3044 pr_debug("Registered DAI '%s'\n", dai->name);
3027 } 3045 }
3028 3046
3029 snd_soc_instantiate_cards(); 3047 snd_soc_instantiate_cards();
3030 return 0; 3048 return 0;
3031 3049
3032 err: 3050 err:
3033 for (i--; i >= 0; i--) 3051 for (i--; i >= 0; i--)
3034 snd_soc_unregister_dai(dev); 3052 snd_soc_unregister_dai(dev);
3035 3053
3036 return ret; 3054 return ret;
3037 } 3055 }
3038 EXPORT_SYMBOL_GPL(snd_soc_register_dais); 3056 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
3039 3057
3040 /** 3058 /**
3041 * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core 3059 * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
3042 * 3060 *
3043 * @dai: Array of DAIs to unregister 3061 * @dai: Array of DAIs to unregister
3044 * @count: Number of DAIs 3062 * @count: Number of DAIs
3045 */ 3063 */
3046 void snd_soc_unregister_dais(struct device *dev, size_t count) 3064 void snd_soc_unregister_dais(struct device *dev, size_t count)
3047 { 3065 {
3048 int i; 3066 int i;
3049 3067
3050 for (i = 0; i < count; i++) 3068 for (i = 0; i < count; i++)
3051 snd_soc_unregister_dai(dev); 3069 snd_soc_unregister_dai(dev);
3052 } 3070 }
3053 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais); 3071 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
3054 3072
3055 /** 3073 /**
3056 * snd_soc_register_platform - Register a platform with the ASoC core 3074 * snd_soc_register_platform - Register a platform with the ASoC core
3057 * 3075 *
3058 * @platform: platform to register 3076 * @platform: platform to register
3059 */ 3077 */
3060 int snd_soc_register_platform(struct device *dev, 3078 int snd_soc_register_platform(struct device *dev,
3061 struct snd_soc_platform_driver *platform_drv) 3079 struct snd_soc_platform_driver *platform_drv)
3062 { 3080 {
3063 struct snd_soc_platform *platform; 3081 struct snd_soc_platform *platform;
3064 3082
3065 dev_dbg(dev, "platform register %s\n", dev_name(dev)); 3083 dev_dbg(dev, "platform register %s\n", dev_name(dev));
3066 3084
3067 platform = kzalloc(sizeof(struct snd_soc_platform), GFP_KERNEL); 3085 platform = kzalloc(sizeof(struct snd_soc_platform), GFP_KERNEL);
3068 if (platform == NULL) 3086 if (platform == NULL)
3069 return -ENOMEM; 3087 return -ENOMEM;
3070 3088
3071 /* create platform component name */ 3089 /* create platform component name */
3072 platform->name = fmt_single_name(dev, &platform->id); 3090 platform->name = fmt_single_name(dev, &platform->id);
3073 if (platform->name == NULL) { 3091 if (platform->name == NULL) {
3074 kfree(platform); 3092 kfree(platform);
3075 return -ENOMEM; 3093 return -ENOMEM;
3076 } 3094 }
3077 3095
3078 platform->dev = dev; 3096 platform->dev = dev;
3079 platform->driver = platform_drv; 3097 platform->driver = platform_drv;
3080 3098
3081 mutex_lock(&client_mutex); 3099 mutex_lock(&client_mutex);
3082 list_add(&platform->list, &platform_list); 3100 list_add(&platform->list, &platform_list);
3083 snd_soc_instantiate_cards(); 3101 snd_soc_instantiate_cards();
3084 mutex_unlock(&client_mutex); 3102 mutex_unlock(&client_mutex);
3085 3103
3086 pr_debug("Registered platform '%s'\n", platform->name); 3104 pr_debug("Registered platform '%s'\n", platform->name);
3087 3105
3088 return 0; 3106 return 0;
3089 } 3107 }
3090 EXPORT_SYMBOL_GPL(snd_soc_register_platform); 3108 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
3091 3109
3092 /** 3110 /**
3093 * snd_soc_unregister_platform - Unregister a platform from the ASoC core 3111 * snd_soc_unregister_platform - Unregister a platform from the ASoC core
3094 * 3112 *
3095 * @platform: platform to unregister 3113 * @platform: platform to unregister
3096 */ 3114 */
3097 void snd_soc_unregister_platform(struct device *dev) 3115 void snd_soc_unregister_platform(struct device *dev)
3098 { 3116 {
3099 struct snd_soc_platform *platform; 3117 struct snd_soc_platform *platform;
3100 3118
3101 list_for_each_entry(platform, &platform_list, list) { 3119 list_for_each_entry(platform, &platform_list, list) {
3102 if (dev == platform->dev) 3120 if (dev == platform->dev)
3103 goto found; 3121 goto found;
3104 } 3122 }
3105 return; 3123 return;
3106 3124
3107 found: 3125 found:
3108 mutex_lock(&client_mutex); 3126 mutex_lock(&client_mutex);
3109 list_del(&platform->list); 3127 list_del(&platform->list);
3110 mutex_unlock(&client_mutex); 3128 mutex_unlock(&client_mutex);
3111 3129
3112 pr_debug("Unregistered platform '%s'\n", platform->name); 3130 pr_debug("Unregistered platform '%s'\n", platform->name);
3113 kfree(platform->name); 3131 kfree(platform->name);
3114 kfree(platform); 3132 kfree(platform);
3115 } 3133 }
3116 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform); 3134 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
3117 3135
3118 static u64 codec_format_map[] = { 3136 static u64 codec_format_map[] = {
3119 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE, 3137 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
3120 SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE, 3138 SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
3121 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE, 3139 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
3122 SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE, 3140 SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
3123 SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE, 3141 SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
3124 SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE, 3142 SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
3125 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE, 3143 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3126 SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE, 3144 SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3127 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE, 3145 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
3128 SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE, 3146 SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
3129 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE, 3147 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
3130 SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE, 3148 SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
3131 SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE, 3149 SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
3132 SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE, 3150 SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
3133 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE 3151 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
3134 | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE, 3152 | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
3135 }; 3153 };
3136 3154
3137 /* Fix up the DAI formats for endianness: codecs don't actually see 3155 /* Fix up the DAI formats for endianness: codecs don't actually see
3138 * the endianness of the data but we're using the CPU format 3156 * the endianness of the data but we're using the CPU format
3139 * definitions which do need to include endianness so we ensure that 3157 * definitions which do need to include endianness so we ensure that
3140 * codec DAIs always have both big and little endian variants set. 3158 * codec DAIs always have both big and little endian variants set.
3141 */ 3159 */
3142 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream) 3160 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
3143 { 3161 {
3144 int i; 3162 int i;
3145 3163
3146 for (i = 0; i < ARRAY_SIZE(codec_format_map); i++) 3164 for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
3147 if (stream->formats & codec_format_map[i]) 3165 if (stream->formats & codec_format_map[i])
3148 stream->formats |= codec_format_map[i]; 3166 stream->formats |= codec_format_map[i];
3149 } 3167 }
3150 3168
3151 /** 3169 /**
3152 * snd_soc_register_codec - Register a codec with the ASoC core 3170 * snd_soc_register_codec - Register a codec with the ASoC core
3153 * 3171 *
3154 * @codec: codec to register 3172 * @codec: codec to register
3155 */ 3173 */
3156 int snd_soc_register_codec(struct device *dev, 3174 int snd_soc_register_codec(struct device *dev,
3157 struct snd_soc_codec_driver *codec_drv, 3175 struct snd_soc_codec_driver *codec_drv,
3158 struct snd_soc_dai_driver *dai_drv, int num_dai) 3176 struct snd_soc_dai_driver *dai_drv, int num_dai)
3159 { 3177 {
3160 struct snd_soc_codec *codec; 3178 struct snd_soc_codec *codec;
3161 int ret, i; 3179 int ret, i;
3162 3180
3163 dev_dbg(dev, "codec register %s\n", dev_name(dev)); 3181 dev_dbg(dev, "codec register %s\n", dev_name(dev));
3164 3182
3165 codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL); 3183 codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL);
3166 if (codec == NULL) 3184 if (codec == NULL)
3167 return -ENOMEM; 3185 return -ENOMEM;
3168 3186
3169 /* create CODEC component name */ 3187 /* create CODEC component name */
3170 codec->name = fmt_single_name(dev, &codec->id); 3188 codec->name = fmt_single_name(dev, &codec->id);
3171 if (codec->name == NULL) { 3189 if (codec->name == NULL) {
3172 kfree(codec); 3190 kfree(codec);
3173 return -ENOMEM; 3191 return -ENOMEM;
3174 } 3192 }
3175 3193
3176 /* allocate CODEC register cache */ 3194 /* allocate CODEC register cache */
3177 if (codec_drv->reg_cache_size && codec_drv->reg_word_size) { 3195 if (codec_drv->reg_cache_size && codec_drv->reg_word_size) {
3178 3196
3179 if (codec_drv->reg_cache_default) 3197 if (codec_drv->reg_cache_default)
3180 codec->reg_cache = kmemdup(codec_drv->reg_cache_default, 3198 codec->reg_cache = kmemdup(codec_drv->reg_cache_default,
3181 codec_drv->reg_cache_size * codec_drv->reg_word_size, GFP_KERNEL); 3199 codec_drv->reg_cache_size * codec_drv->reg_word_size, GFP_KERNEL);
3182 else 3200 else
3183 codec->reg_cache = kzalloc(codec_drv->reg_cache_size * 3201 codec->reg_cache = kzalloc(codec_drv->reg_cache_size *
3184 codec_drv->reg_word_size, GFP_KERNEL); 3202 codec_drv->reg_word_size, GFP_KERNEL);
3185 3203
3186 if (codec->reg_cache == NULL) { 3204 if (codec->reg_cache == NULL) {
3187 kfree(codec->name); 3205 kfree(codec->name);
3188 kfree(codec); 3206 kfree(codec);
3189 return -ENOMEM; 3207 return -ENOMEM;
3190 } 3208 }
3191 } 3209 }
3192 3210
3193 codec->dev = dev; 3211 codec->dev = dev;
3194 codec->driver = codec_drv; 3212 codec->driver = codec_drv;
3195 codec->bias_level = SND_SOC_BIAS_OFF; 3213 codec->bias_level = SND_SOC_BIAS_OFF;
3196 codec->num_dai = num_dai; 3214 codec->num_dai = num_dai;
3197 mutex_init(&codec->mutex); 3215 mutex_init(&codec->mutex);
3198 INIT_LIST_HEAD(&codec->dapm_widgets); 3216 INIT_LIST_HEAD(&codec->dapm_widgets);
3199 INIT_LIST_HEAD(&codec->dapm_paths); 3217 INIT_LIST_HEAD(&codec->dapm_paths);
3200 3218
3201 for (i = 0; i < num_dai; i++) { 3219 for (i = 0; i < num_dai; i++) {
3202 fixup_codec_formats(&dai_drv[i].playback); 3220 fixup_codec_formats(&dai_drv[i].playback);
3203 fixup_codec_formats(&dai_drv[i].capture); 3221 fixup_codec_formats(&dai_drv[i].capture);
3204 } 3222 }
3205 3223
3206 /* register any DAIs */ 3224 /* register any DAIs */
3207 if (num_dai) { 3225 if (num_dai) {
3208 ret = snd_soc_register_dais(dev, dai_drv, num_dai); 3226 ret = snd_soc_register_dais(dev, dai_drv, num_dai);
3209 if (ret < 0) 3227 if (ret < 0)
3210 goto error; 3228 goto error;
3211 } 3229 }
3212 3230
3213 mutex_lock(&client_mutex); 3231 mutex_lock(&client_mutex);
3214 list_add(&codec->list, &codec_list); 3232 list_add(&codec->list, &codec_list);
3215 snd_soc_instantiate_cards(); 3233 snd_soc_instantiate_cards();
3216 mutex_unlock(&client_mutex); 3234 mutex_unlock(&client_mutex);
3217 3235
3218 pr_debug("Registered codec '%s'\n", codec->name); 3236 pr_debug("Registered codec '%s'\n", codec->name);
3219 return 0; 3237 return 0;
3220 3238
3221 error: 3239 error:
3222 for (i--; i >= 0; i--) 3240 for (i--; i >= 0; i--)
3223 snd_soc_unregister_dai(dev); 3241 snd_soc_unregister_dai(dev);
3224 3242
3225 if (codec->reg_cache) 3243 if (codec->reg_cache)
3226 kfree(codec->reg_cache); 3244 kfree(codec->reg_cache);
3227 kfree(codec->name); 3245 kfree(codec->name);
3228 kfree(codec); 3246 kfree(codec);
3229 return ret; 3247 return ret;
3230 } 3248 }
3231 EXPORT_SYMBOL_GPL(snd_soc_register_codec); 3249 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
3232 3250
3233 /** 3251 /**
3234 * snd_soc_unregister_codec - Unregister a codec from the ASoC core 3252 * snd_soc_unregister_codec - Unregister a codec from the ASoC core
3235 * 3253 *
3236 * @codec: codec to unregister 3254 * @codec: codec to unregister
3237 */ 3255 */
3238 void snd_soc_unregister_codec(struct device *dev) 3256 void snd_soc_unregister_codec(struct device *dev)
3239 { 3257 {
3240 struct snd_soc_codec *codec; 3258 struct snd_soc_codec *codec;
3241 int i; 3259 int i;
3242 3260
3243 list_for_each_entry(codec, &codec_list, list) { 3261 list_for_each_entry(codec, &codec_list, list) {
3244 if (dev == codec->dev) 3262 if (dev == codec->dev)
3245 goto found; 3263 goto found;
3246 } 3264 }
3247 return; 3265 return;
3248 3266
3249 found: 3267 found:
3250 if (codec->num_dai) 3268 if (codec->num_dai)
3251 for (i = 0; i < codec->num_dai; i++) 3269 for (i = 0; i < codec->num_dai; i++)
3252 snd_soc_unregister_dai(dev); 3270 snd_soc_unregister_dai(dev);
3253 3271
3254 mutex_lock(&client_mutex); 3272 mutex_lock(&client_mutex);
3255 list_del(&codec->list); 3273 list_del(&codec->list);
3256 mutex_unlock(&client_mutex); 3274 mutex_unlock(&client_mutex);
3257 3275
3258 pr_debug("Unregistered codec '%s'\n", codec->name); 3276 pr_debug("Unregistered codec '%s'\n", codec->name);
3259 3277
3260 if (codec->reg_cache) 3278 if (codec->reg_cache)
3261 kfree(codec->reg_cache); 3279 kfree(codec->reg_cache);
3262 kfree(codec); 3280 kfree(codec);
3263 } 3281 }
3264 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec); 3282 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
3265 3283
3266 static int __init snd_soc_init(void) 3284 static int __init snd_soc_init(void)
3267 { 3285 {
3268 #ifdef CONFIG_DEBUG_FS 3286 #ifdef CONFIG_DEBUG_FS
3269 debugfs_root = debugfs_create_dir("asoc", NULL); 3287 debugfs_root = debugfs_create_dir("asoc", NULL);
3270 if (IS_ERR(debugfs_root) || !debugfs_root) { 3288 if (IS_ERR(debugfs_root) || !debugfs_root) {
3271 printk(KERN_WARNING 3289 printk(KERN_WARNING
3272 "ASoC: Failed to create debugfs directory\n"); 3290 "ASoC: Failed to create debugfs directory\n");
3273 debugfs_root = NULL; 3291 debugfs_root = NULL;
3274 } 3292 }
3275 3293
3276 if (!debugfs_create_file("codecs", 0444, debugfs_root, NULL, 3294 if (!debugfs_create_file("codecs", 0444, debugfs_root, NULL,
3277 &codec_list_fops)) 3295 &codec_list_fops))
3278 pr_warn("ASoC: Failed to create CODEC list debugfs file\n"); 3296 pr_warn("ASoC: Failed to create CODEC list debugfs file\n");
3279 3297
3280 if (!debugfs_create_file("dais", 0444, debugfs_root, NULL, 3298 if (!debugfs_create_file("dais", 0444, debugfs_root, NULL,
3281 &dai_list_fops)) 3299 &dai_list_fops))
3282 pr_warn("ASoC: Failed to create DAI list debugfs file\n"); 3300 pr_warn("ASoC: Failed to create DAI list debugfs file\n");
3283 3301
3284 if (!debugfs_create_file("platforms", 0444, debugfs_root, NULL, 3302 if (!debugfs_create_file("platforms", 0444, debugfs_root, NULL,
3285 &platform_list_fops)) 3303 &platform_list_fops))
3286 pr_warn("ASoC: Failed to create platform list debugfs file\n"); 3304 pr_warn("ASoC: Failed to create platform list debugfs file\n");
3287 #endif 3305 #endif
3288 3306
3289 return platform_driver_register(&soc_driver); 3307 return platform_driver_register(&soc_driver);
3290 } 3308 }
3291 3309
3292 static void __exit snd_soc_exit(void) 3310 static void __exit snd_soc_exit(void)
3293 { 3311 {
3294 #ifdef CONFIG_DEBUG_FS 3312 #ifdef CONFIG_DEBUG_FS
3295 debugfs_remove_recursive(debugfs_root); 3313 debugfs_remove_recursive(debugfs_root);
3296 #endif 3314 #endif
3297 platform_driver_unregister(&soc_driver); 3315 platform_driver_unregister(&soc_driver);
3298 } 3316 }
3299 3317
3300 module_init(snd_soc_init); 3318 module_init(snd_soc_init);
3301 module_exit(snd_soc_exit); 3319 module_exit(snd_soc_exit);
3302 3320
3303 /* Module information */ 3321 /* Module information */
3304 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk"); 3322 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
3305 MODULE_DESCRIPTION("ALSA SoC Core"); 3323 MODULE_DESCRIPTION("ALSA SoC Core");
3306 MODULE_LICENSE("GPL"); 3324 MODULE_LICENSE("GPL");
3307 MODULE_ALIAS("platform:soc-audio"); 3325 MODULE_ALIAS("platform:soc-audio");
3308 3326