Commit 070c32223ae8a724a190ea769104ea41567e3673
Committed by
Artem Bityutskiy
1 parent
ff3206b245
Exists in
smarc-l5.0.0_1.0.0-ga
and in
5 other branches
mtd: fix recovery after failed write-buffer operation in cfi_cmdset_0002.c
When working on a problem with some flash chips that lock up during write-buffer operations, I think there may be a bug in the linux handling of chips using cfi_cmdset_0002.c. The datasheets I have found for a number of these chips all specify that when aborting a write-buffer command, it is not enough to use the standard reset. Rather a "write-to-buffer-reset command" is needed. This command is quite similar for all chips, the main variance seem to be if the final 0xF0 can go to any address or must go to addr_unlock1. The bug is then in the recovery handling when timing out at the end of do_write_buffer, where using the normal reset command is not sufficient. Without this change, if the write-buffer command fails then any following operations on the flash also fail. Signed-off-by: Harald Nordgard-Hansen <hhansen@pvv.org> Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Showing 1 changed file with 14 additions and 2 deletions Inline Diff
drivers/mtd/chips/cfi_cmdset_0002.c
1 | /* | 1 | /* |
2 | * Common Flash Interface support: | 2 | * Common Flash Interface support: |
3 | * AMD & Fujitsu Standard Vendor Command Set (ID 0x0002) | 3 | * AMD & Fujitsu Standard Vendor Command Set (ID 0x0002) |
4 | * | 4 | * |
5 | * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp> | 5 | * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp> |
6 | * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com> | 6 | * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com> |
7 | * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com> | 7 | * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com> |
8 | * | 8 | * |
9 | * 2_by_8 routines added by Simon Munton | 9 | * 2_by_8 routines added by Simon Munton |
10 | * | 10 | * |
11 | * 4_by_16 work by Carolyn J. Smith | 11 | * 4_by_16 work by Carolyn J. Smith |
12 | * | 12 | * |
13 | * XIP support hooks by Vitaly Wool (based on code for Intel flash | 13 | * XIP support hooks by Vitaly Wool (based on code for Intel flash |
14 | * by Nicolas Pitre) | 14 | * by Nicolas Pitre) |
15 | * | 15 | * |
16 | * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0 | 16 | * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0 |
17 | * | 17 | * |
18 | * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com | 18 | * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com |
19 | * | 19 | * |
20 | * This code is GPL | 20 | * This code is GPL |
21 | */ | 21 | */ |
22 | 22 | ||
23 | #include <linux/module.h> | 23 | #include <linux/module.h> |
24 | #include <linux/types.h> | 24 | #include <linux/types.h> |
25 | #include <linux/kernel.h> | 25 | #include <linux/kernel.h> |
26 | #include <linux/sched.h> | 26 | #include <linux/sched.h> |
27 | #include <linux/init.h> | 27 | #include <linux/init.h> |
28 | #include <asm/io.h> | 28 | #include <asm/io.h> |
29 | #include <asm/byteorder.h> | 29 | #include <asm/byteorder.h> |
30 | 30 | ||
31 | #include <linux/errno.h> | 31 | #include <linux/errno.h> |
32 | #include <linux/slab.h> | 32 | #include <linux/slab.h> |
33 | #include <linux/delay.h> | 33 | #include <linux/delay.h> |
34 | #include <linux/interrupt.h> | 34 | #include <linux/interrupt.h> |
35 | #include <linux/reboot.h> | 35 | #include <linux/reboot.h> |
36 | #include <linux/mtd/map.h> | 36 | #include <linux/mtd/map.h> |
37 | #include <linux/mtd/mtd.h> | 37 | #include <linux/mtd/mtd.h> |
38 | #include <linux/mtd/cfi.h> | 38 | #include <linux/mtd/cfi.h> |
39 | #include <linux/mtd/xip.h> | 39 | #include <linux/mtd/xip.h> |
40 | 40 | ||
41 | #define AMD_BOOTLOC_BUG | 41 | #define AMD_BOOTLOC_BUG |
42 | #define FORCE_WORD_WRITE 0 | 42 | #define FORCE_WORD_WRITE 0 |
43 | 43 | ||
44 | #define MAX_WORD_RETRIES 3 | 44 | #define MAX_WORD_RETRIES 3 |
45 | 45 | ||
46 | #define SST49LF004B 0x0060 | 46 | #define SST49LF004B 0x0060 |
47 | #define SST49LF040B 0x0050 | 47 | #define SST49LF040B 0x0050 |
48 | #define SST49LF008A 0x005a | 48 | #define SST49LF008A 0x005a |
49 | #define AT49BV6416 0x00d6 | 49 | #define AT49BV6416 0x00d6 |
50 | 50 | ||
51 | static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); | 51 | static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); |
52 | static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); | 52 | static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); |
53 | static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); | 53 | static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); |
54 | static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *); | 54 | static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *); |
55 | static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *); | 55 | static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *); |
56 | static void cfi_amdstd_sync (struct mtd_info *); | 56 | static void cfi_amdstd_sync (struct mtd_info *); |
57 | static int cfi_amdstd_suspend (struct mtd_info *); | 57 | static int cfi_amdstd_suspend (struct mtd_info *); |
58 | static void cfi_amdstd_resume (struct mtd_info *); | 58 | static void cfi_amdstd_resume (struct mtd_info *); |
59 | static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *); | 59 | static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *); |
60 | static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); | 60 | static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); |
61 | 61 | ||
62 | static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, | 62 | static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, |
63 | size_t *retlen, const u_char *buf); | 63 | size_t *retlen, const u_char *buf); |
64 | 64 | ||
65 | static void cfi_amdstd_destroy(struct mtd_info *); | 65 | static void cfi_amdstd_destroy(struct mtd_info *); |
66 | 66 | ||
67 | struct mtd_info *cfi_cmdset_0002(struct map_info *, int); | 67 | struct mtd_info *cfi_cmdset_0002(struct map_info *, int); |
68 | static struct mtd_info *cfi_amdstd_setup (struct mtd_info *); | 68 | static struct mtd_info *cfi_amdstd_setup (struct mtd_info *); |
69 | 69 | ||
70 | static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode); | 70 | static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode); |
71 | static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr); | 71 | static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr); |
72 | #include "fwh_lock.h" | 72 | #include "fwh_lock.h" |
73 | 73 | ||
74 | static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); | 74 | static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); |
75 | static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); | 75 | static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); |
76 | 76 | ||
77 | static struct mtd_chip_driver cfi_amdstd_chipdrv = { | 77 | static struct mtd_chip_driver cfi_amdstd_chipdrv = { |
78 | .probe = NULL, /* Not usable directly */ | 78 | .probe = NULL, /* Not usable directly */ |
79 | .destroy = cfi_amdstd_destroy, | 79 | .destroy = cfi_amdstd_destroy, |
80 | .name = "cfi_cmdset_0002", | 80 | .name = "cfi_cmdset_0002", |
81 | .module = THIS_MODULE | 81 | .module = THIS_MODULE |
82 | }; | 82 | }; |
83 | 83 | ||
84 | 84 | ||
85 | /* #define DEBUG_CFI_FEATURES */ | 85 | /* #define DEBUG_CFI_FEATURES */ |
86 | 86 | ||
87 | 87 | ||
88 | #ifdef DEBUG_CFI_FEATURES | 88 | #ifdef DEBUG_CFI_FEATURES |
89 | static void cfi_tell_features(struct cfi_pri_amdstd *extp) | 89 | static void cfi_tell_features(struct cfi_pri_amdstd *extp) |
90 | { | 90 | { |
91 | const char* erase_suspend[3] = { | 91 | const char* erase_suspend[3] = { |
92 | "Not supported", "Read only", "Read/write" | 92 | "Not supported", "Read only", "Read/write" |
93 | }; | 93 | }; |
94 | const char* top_bottom[6] = { | 94 | const char* top_bottom[6] = { |
95 | "No WP", "8x8KiB sectors at top & bottom, no WP", | 95 | "No WP", "8x8KiB sectors at top & bottom, no WP", |
96 | "Bottom boot", "Top boot", | 96 | "Bottom boot", "Top boot", |
97 | "Uniform, Bottom WP", "Uniform, Top WP" | 97 | "Uniform, Bottom WP", "Uniform, Top WP" |
98 | }; | 98 | }; |
99 | 99 | ||
100 | printk(" Silicon revision: %d\n", extp->SiliconRevision >> 1); | 100 | printk(" Silicon revision: %d\n", extp->SiliconRevision >> 1); |
101 | printk(" Address sensitive unlock: %s\n", | 101 | printk(" Address sensitive unlock: %s\n", |
102 | (extp->SiliconRevision & 1) ? "Not required" : "Required"); | 102 | (extp->SiliconRevision & 1) ? "Not required" : "Required"); |
103 | 103 | ||
104 | if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend)) | 104 | if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend)) |
105 | printk(" Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]); | 105 | printk(" Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]); |
106 | else | 106 | else |
107 | printk(" Erase Suspend: Unknown value %d\n", extp->EraseSuspend); | 107 | printk(" Erase Suspend: Unknown value %d\n", extp->EraseSuspend); |
108 | 108 | ||
109 | if (extp->BlkProt == 0) | 109 | if (extp->BlkProt == 0) |
110 | printk(" Block protection: Not supported\n"); | 110 | printk(" Block protection: Not supported\n"); |
111 | else | 111 | else |
112 | printk(" Block protection: %d sectors per group\n", extp->BlkProt); | 112 | printk(" Block protection: %d sectors per group\n", extp->BlkProt); |
113 | 113 | ||
114 | 114 | ||
115 | printk(" Temporary block unprotect: %s\n", | 115 | printk(" Temporary block unprotect: %s\n", |
116 | extp->TmpBlkUnprotect ? "Supported" : "Not supported"); | 116 | extp->TmpBlkUnprotect ? "Supported" : "Not supported"); |
117 | printk(" Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot); | 117 | printk(" Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot); |
118 | printk(" Number of simultaneous operations: %d\n", extp->SimultaneousOps); | 118 | printk(" Number of simultaneous operations: %d\n", extp->SimultaneousOps); |
119 | printk(" Burst mode: %s\n", | 119 | printk(" Burst mode: %s\n", |
120 | extp->BurstMode ? "Supported" : "Not supported"); | 120 | extp->BurstMode ? "Supported" : "Not supported"); |
121 | if (extp->PageMode == 0) | 121 | if (extp->PageMode == 0) |
122 | printk(" Page mode: Not supported\n"); | 122 | printk(" Page mode: Not supported\n"); |
123 | else | 123 | else |
124 | printk(" Page mode: %d word page\n", extp->PageMode << 2); | 124 | printk(" Page mode: %d word page\n", extp->PageMode << 2); |
125 | 125 | ||
126 | printk(" Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n", | 126 | printk(" Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n", |
127 | extp->VppMin >> 4, extp->VppMin & 0xf); | 127 | extp->VppMin >> 4, extp->VppMin & 0xf); |
128 | printk(" Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n", | 128 | printk(" Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n", |
129 | extp->VppMax >> 4, extp->VppMax & 0xf); | 129 | extp->VppMax >> 4, extp->VppMax & 0xf); |
130 | 130 | ||
131 | if (extp->TopBottom < ARRAY_SIZE(top_bottom)) | 131 | if (extp->TopBottom < ARRAY_SIZE(top_bottom)) |
132 | printk(" Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]); | 132 | printk(" Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]); |
133 | else | 133 | else |
134 | printk(" Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom); | 134 | printk(" Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom); |
135 | } | 135 | } |
136 | #endif | 136 | #endif |
137 | 137 | ||
138 | #ifdef AMD_BOOTLOC_BUG | 138 | #ifdef AMD_BOOTLOC_BUG |
139 | /* Wheee. Bring me the head of someone at AMD. */ | 139 | /* Wheee. Bring me the head of someone at AMD. */ |
140 | static void fixup_amd_bootblock(struct mtd_info *mtd) | 140 | static void fixup_amd_bootblock(struct mtd_info *mtd) |
141 | { | 141 | { |
142 | struct map_info *map = mtd->priv; | 142 | struct map_info *map = mtd->priv; |
143 | struct cfi_private *cfi = map->fldrv_priv; | 143 | struct cfi_private *cfi = map->fldrv_priv; |
144 | struct cfi_pri_amdstd *extp = cfi->cmdset_priv; | 144 | struct cfi_pri_amdstd *extp = cfi->cmdset_priv; |
145 | __u8 major = extp->MajorVersion; | 145 | __u8 major = extp->MajorVersion; |
146 | __u8 minor = extp->MinorVersion; | 146 | __u8 minor = extp->MinorVersion; |
147 | 147 | ||
148 | if (((major << 8) | minor) < 0x3131) { | 148 | if (((major << 8) | minor) < 0x3131) { |
149 | /* CFI version 1.0 => don't trust bootloc */ | 149 | /* CFI version 1.0 => don't trust bootloc */ |
150 | 150 | ||
151 | pr_debug("%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n", | 151 | pr_debug("%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n", |
152 | map->name, cfi->mfr, cfi->id); | 152 | map->name, cfi->mfr, cfi->id); |
153 | 153 | ||
154 | /* AFAICS all 29LV400 with a bottom boot block have a device ID | 154 | /* AFAICS all 29LV400 with a bottom boot block have a device ID |
155 | * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode. | 155 | * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode. |
156 | * These were badly detected as they have the 0x80 bit set | 156 | * These were badly detected as they have the 0x80 bit set |
157 | * so treat them as a special case. | 157 | * so treat them as a special case. |
158 | */ | 158 | */ |
159 | if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) && | 159 | if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) && |
160 | 160 | ||
161 | /* Macronix added CFI to their 2nd generation | 161 | /* Macronix added CFI to their 2nd generation |
162 | * MX29LV400C B/T but AFAICS no other 29LV400 (AMD, | 162 | * MX29LV400C B/T but AFAICS no other 29LV400 (AMD, |
163 | * Fujitsu, Spansion, EON, ESI and older Macronix) | 163 | * Fujitsu, Spansion, EON, ESI and older Macronix) |
164 | * has CFI. | 164 | * has CFI. |
165 | * | 165 | * |
166 | * Therefore also check the manufacturer. | 166 | * Therefore also check the manufacturer. |
167 | * This reduces the risk of false detection due to | 167 | * This reduces the risk of false detection due to |
168 | * the 8-bit device ID. | 168 | * the 8-bit device ID. |
169 | */ | 169 | */ |
170 | (cfi->mfr == CFI_MFR_MACRONIX)) { | 170 | (cfi->mfr == CFI_MFR_MACRONIX)) { |
171 | pr_debug("%s: Macronix MX29LV400C with bottom boot block" | 171 | pr_debug("%s: Macronix MX29LV400C with bottom boot block" |
172 | " detected\n", map->name); | 172 | " detected\n", map->name); |
173 | extp->TopBottom = 2; /* bottom boot */ | 173 | extp->TopBottom = 2; /* bottom boot */ |
174 | } else | 174 | } else |
175 | if (cfi->id & 0x80) { | 175 | if (cfi->id & 0x80) { |
176 | printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id); | 176 | printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id); |
177 | extp->TopBottom = 3; /* top boot */ | 177 | extp->TopBottom = 3; /* top boot */ |
178 | } else { | 178 | } else { |
179 | extp->TopBottom = 2; /* bottom boot */ | 179 | extp->TopBottom = 2; /* bottom boot */ |
180 | } | 180 | } |
181 | 181 | ||
182 | pr_debug("%s: AMD CFI PRI V%c.%c has no boot block field;" | 182 | pr_debug("%s: AMD CFI PRI V%c.%c has no boot block field;" |
183 | " deduced %s from Device ID\n", map->name, major, minor, | 183 | " deduced %s from Device ID\n", map->name, major, minor, |
184 | extp->TopBottom == 2 ? "bottom" : "top"); | 184 | extp->TopBottom == 2 ? "bottom" : "top"); |
185 | } | 185 | } |
186 | } | 186 | } |
187 | #endif | 187 | #endif |
188 | 188 | ||
189 | static void fixup_use_write_buffers(struct mtd_info *mtd) | 189 | static void fixup_use_write_buffers(struct mtd_info *mtd) |
190 | { | 190 | { |
191 | struct map_info *map = mtd->priv; | 191 | struct map_info *map = mtd->priv; |
192 | struct cfi_private *cfi = map->fldrv_priv; | 192 | struct cfi_private *cfi = map->fldrv_priv; |
193 | if (cfi->cfiq->BufWriteTimeoutTyp) { | 193 | if (cfi->cfiq->BufWriteTimeoutTyp) { |
194 | pr_debug("Using buffer write method\n" ); | 194 | pr_debug("Using buffer write method\n" ); |
195 | mtd->_write = cfi_amdstd_write_buffers; | 195 | mtd->_write = cfi_amdstd_write_buffers; |
196 | } | 196 | } |
197 | } | 197 | } |
198 | 198 | ||
199 | /* Atmel chips don't use the same PRI format as AMD chips */ | 199 | /* Atmel chips don't use the same PRI format as AMD chips */ |
200 | static void fixup_convert_atmel_pri(struct mtd_info *mtd) | 200 | static void fixup_convert_atmel_pri(struct mtd_info *mtd) |
201 | { | 201 | { |
202 | struct map_info *map = mtd->priv; | 202 | struct map_info *map = mtd->priv; |
203 | struct cfi_private *cfi = map->fldrv_priv; | 203 | struct cfi_private *cfi = map->fldrv_priv; |
204 | struct cfi_pri_amdstd *extp = cfi->cmdset_priv; | 204 | struct cfi_pri_amdstd *extp = cfi->cmdset_priv; |
205 | struct cfi_pri_atmel atmel_pri; | 205 | struct cfi_pri_atmel atmel_pri; |
206 | 206 | ||
207 | memcpy(&atmel_pri, extp, sizeof(atmel_pri)); | 207 | memcpy(&atmel_pri, extp, sizeof(atmel_pri)); |
208 | memset((char *)extp + 5, 0, sizeof(*extp) - 5); | 208 | memset((char *)extp + 5, 0, sizeof(*extp) - 5); |
209 | 209 | ||
210 | if (atmel_pri.Features & 0x02) | 210 | if (atmel_pri.Features & 0x02) |
211 | extp->EraseSuspend = 2; | 211 | extp->EraseSuspend = 2; |
212 | 212 | ||
213 | /* Some chips got it backwards... */ | 213 | /* Some chips got it backwards... */ |
214 | if (cfi->id == AT49BV6416) { | 214 | if (cfi->id == AT49BV6416) { |
215 | if (atmel_pri.BottomBoot) | 215 | if (atmel_pri.BottomBoot) |
216 | extp->TopBottom = 3; | 216 | extp->TopBottom = 3; |
217 | else | 217 | else |
218 | extp->TopBottom = 2; | 218 | extp->TopBottom = 2; |
219 | } else { | 219 | } else { |
220 | if (atmel_pri.BottomBoot) | 220 | if (atmel_pri.BottomBoot) |
221 | extp->TopBottom = 2; | 221 | extp->TopBottom = 2; |
222 | else | 222 | else |
223 | extp->TopBottom = 3; | 223 | extp->TopBottom = 3; |
224 | } | 224 | } |
225 | 225 | ||
226 | /* burst write mode not supported */ | 226 | /* burst write mode not supported */ |
227 | cfi->cfiq->BufWriteTimeoutTyp = 0; | 227 | cfi->cfiq->BufWriteTimeoutTyp = 0; |
228 | cfi->cfiq->BufWriteTimeoutMax = 0; | 228 | cfi->cfiq->BufWriteTimeoutMax = 0; |
229 | } | 229 | } |
230 | 230 | ||
231 | static void fixup_use_secsi(struct mtd_info *mtd) | 231 | static void fixup_use_secsi(struct mtd_info *mtd) |
232 | { | 232 | { |
233 | /* Setup for chips with a secsi area */ | 233 | /* Setup for chips with a secsi area */ |
234 | mtd->_read_user_prot_reg = cfi_amdstd_secsi_read; | 234 | mtd->_read_user_prot_reg = cfi_amdstd_secsi_read; |
235 | mtd->_read_fact_prot_reg = cfi_amdstd_secsi_read; | 235 | mtd->_read_fact_prot_reg = cfi_amdstd_secsi_read; |
236 | } | 236 | } |
237 | 237 | ||
238 | static void fixup_use_erase_chip(struct mtd_info *mtd) | 238 | static void fixup_use_erase_chip(struct mtd_info *mtd) |
239 | { | 239 | { |
240 | struct map_info *map = mtd->priv; | 240 | struct map_info *map = mtd->priv; |
241 | struct cfi_private *cfi = map->fldrv_priv; | 241 | struct cfi_private *cfi = map->fldrv_priv; |
242 | if ((cfi->cfiq->NumEraseRegions == 1) && | 242 | if ((cfi->cfiq->NumEraseRegions == 1) && |
243 | ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) { | 243 | ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) { |
244 | mtd->_erase = cfi_amdstd_erase_chip; | 244 | mtd->_erase = cfi_amdstd_erase_chip; |
245 | } | 245 | } |
246 | 246 | ||
247 | } | 247 | } |
248 | 248 | ||
249 | /* | 249 | /* |
250 | * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors | 250 | * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors |
251 | * locked by default. | 251 | * locked by default. |
252 | */ | 252 | */ |
253 | static void fixup_use_atmel_lock(struct mtd_info *mtd) | 253 | static void fixup_use_atmel_lock(struct mtd_info *mtd) |
254 | { | 254 | { |
255 | mtd->_lock = cfi_atmel_lock; | 255 | mtd->_lock = cfi_atmel_lock; |
256 | mtd->_unlock = cfi_atmel_unlock; | 256 | mtd->_unlock = cfi_atmel_unlock; |
257 | mtd->flags |= MTD_POWERUP_LOCK; | 257 | mtd->flags |= MTD_POWERUP_LOCK; |
258 | } | 258 | } |
259 | 259 | ||
260 | static void fixup_old_sst_eraseregion(struct mtd_info *mtd) | 260 | static void fixup_old_sst_eraseregion(struct mtd_info *mtd) |
261 | { | 261 | { |
262 | struct map_info *map = mtd->priv; | 262 | struct map_info *map = mtd->priv; |
263 | struct cfi_private *cfi = map->fldrv_priv; | 263 | struct cfi_private *cfi = map->fldrv_priv; |
264 | 264 | ||
265 | /* | 265 | /* |
266 | * These flashes report two separate eraseblock regions based on the | 266 | * These flashes report two separate eraseblock regions based on the |
267 | * sector_erase-size and block_erase-size, although they both operate on the | 267 | * sector_erase-size and block_erase-size, although they both operate on the |
268 | * same memory. This is not allowed according to CFI, so we just pick the | 268 | * same memory. This is not allowed according to CFI, so we just pick the |
269 | * sector_erase-size. | 269 | * sector_erase-size. |
270 | */ | 270 | */ |
271 | cfi->cfiq->NumEraseRegions = 1; | 271 | cfi->cfiq->NumEraseRegions = 1; |
272 | } | 272 | } |
273 | 273 | ||
274 | static void fixup_sst39vf(struct mtd_info *mtd) | 274 | static void fixup_sst39vf(struct mtd_info *mtd) |
275 | { | 275 | { |
276 | struct map_info *map = mtd->priv; | 276 | struct map_info *map = mtd->priv; |
277 | struct cfi_private *cfi = map->fldrv_priv; | 277 | struct cfi_private *cfi = map->fldrv_priv; |
278 | 278 | ||
279 | fixup_old_sst_eraseregion(mtd); | 279 | fixup_old_sst_eraseregion(mtd); |
280 | 280 | ||
281 | cfi->addr_unlock1 = 0x5555; | 281 | cfi->addr_unlock1 = 0x5555; |
282 | cfi->addr_unlock2 = 0x2AAA; | 282 | cfi->addr_unlock2 = 0x2AAA; |
283 | } | 283 | } |
284 | 284 | ||
285 | static void fixup_sst39vf_rev_b(struct mtd_info *mtd) | 285 | static void fixup_sst39vf_rev_b(struct mtd_info *mtd) |
286 | { | 286 | { |
287 | struct map_info *map = mtd->priv; | 287 | struct map_info *map = mtd->priv; |
288 | struct cfi_private *cfi = map->fldrv_priv; | 288 | struct cfi_private *cfi = map->fldrv_priv; |
289 | 289 | ||
290 | fixup_old_sst_eraseregion(mtd); | 290 | fixup_old_sst_eraseregion(mtd); |
291 | 291 | ||
292 | cfi->addr_unlock1 = 0x555; | 292 | cfi->addr_unlock1 = 0x555; |
293 | cfi->addr_unlock2 = 0x2AA; | 293 | cfi->addr_unlock2 = 0x2AA; |
294 | 294 | ||
295 | cfi->sector_erase_cmd = CMD(0x50); | 295 | cfi->sector_erase_cmd = CMD(0x50); |
296 | } | 296 | } |
297 | 297 | ||
298 | static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd) | 298 | static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd) |
299 | { | 299 | { |
300 | struct map_info *map = mtd->priv; | 300 | struct map_info *map = mtd->priv; |
301 | struct cfi_private *cfi = map->fldrv_priv; | 301 | struct cfi_private *cfi = map->fldrv_priv; |
302 | 302 | ||
303 | fixup_sst39vf_rev_b(mtd); | 303 | fixup_sst39vf_rev_b(mtd); |
304 | 304 | ||
305 | /* | 305 | /* |
306 | * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where | 306 | * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where |
307 | * it should report a size of 8KBytes (0x0020*256). | 307 | * it should report a size of 8KBytes (0x0020*256). |
308 | */ | 308 | */ |
309 | cfi->cfiq->EraseRegionInfo[0] = 0x002003ff; | 309 | cfi->cfiq->EraseRegionInfo[0] = 0x002003ff; |
310 | pr_warning("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n", mtd->name); | 310 | pr_warning("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n", mtd->name); |
311 | } | 311 | } |
312 | 312 | ||
313 | static void fixup_s29gl064n_sectors(struct mtd_info *mtd) | 313 | static void fixup_s29gl064n_sectors(struct mtd_info *mtd) |
314 | { | 314 | { |
315 | struct map_info *map = mtd->priv; | 315 | struct map_info *map = mtd->priv; |
316 | struct cfi_private *cfi = map->fldrv_priv; | 316 | struct cfi_private *cfi = map->fldrv_priv; |
317 | 317 | ||
318 | if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) { | 318 | if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) { |
319 | cfi->cfiq->EraseRegionInfo[0] |= 0x0040; | 319 | cfi->cfiq->EraseRegionInfo[0] |= 0x0040; |
320 | pr_warning("%s: Bad S29GL064N CFI data; adjust from 64 to 128 sectors\n", mtd->name); | 320 | pr_warning("%s: Bad S29GL064N CFI data; adjust from 64 to 128 sectors\n", mtd->name); |
321 | } | 321 | } |
322 | } | 322 | } |
323 | 323 | ||
324 | static void fixup_s29gl032n_sectors(struct mtd_info *mtd) | 324 | static void fixup_s29gl032n_sectors(struct mtd_info *mtd) |
325 | { | 325 | { |
326 | struct map_info *map = mtd->priv; | 326 | struct map_info *map = mtd->priv; |
327 | struct cfi_private *cfi = map->fldrv_priv; | 327 | struct cfi_private *cfi = map->fldrv_priv; |
328 | 328 | ||
329 | if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) { | 329 | if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) { |
330 | cfi->cfiq->EraseRegionInfo[1] &= ~0x0040; | 330 | cfi->cfiq->EraseRegionInfo[1] &= ~0x0040; |
331 | pr_warning("%s: Bad S29GL032N CFI data; adjust from 127 to 63 sectors\n", mtd->name); | 331 | pr_warning("%s: Bad S29GL032N CFI data; adjust from 127 to 63 sectors\n", mtd->name); |
332 | } | 332 | } |
333 | } | 333 | } |
334 | 334 | ||
335 | static void fixup_s29ns512p_sectors(struct mtd_info *mtd) | 335 | static void fixup_s29ns512p_sectors(struct mtd_info *mtd) |
336 | { | 336 | { |
337 | struct map_info *map = mtd->priv; | 337 | struct map_info *map = mtd->priv; |
338 | struct cfi_private *cfi = map->fldrv_priv; | 338 | struct cfi_private *cfi = map->fldrv_priv; |
339 | 339 | ||
340 | /* | 340 | /* |
341 | * S29NS512P flash uses more than 8bits to report number of sectors, | 341 | * S29NS512P flash uses more than 8bits to report number of sectors, |
342 | * which is not permitted by CFI. | 342 | * which is not permitted by CFI. |
343 | */ | 343 | */ |
344 | cfi->cfiq->EraseRegionInfo[0] = 0x020001ff; | 344 | cfi->cfiq->EraseRegionInfo[0] = 0x020001ff; |
345 | pr_warning("%s: Bad S29NS512P CFI data; adjust to 512 sectors\n", mtd->name); | 345 | pr_warning("%s: Bad S29NS512P CFI data; adjust to 512 sectors\n", mtd->name); |
346 | } | 346 | } |
347 | 347 | ||
348 | /* Used to fix CFI-Tables of chips without Extended Query Tables */ | 348 | /* Used to fix CFI-Tables of chips without Extended Query Tables */ |
349 | static struct cfi_fixup cfi_nopri_fixup_table[] = { | 349 | static struct cfi_fixup cfi_nopri_fixup_table[] = { |
350 | { CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */ | 350 | { CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */ |
351 | { CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */ | 351 | { CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */ |
352 | { CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */ | 352 | { CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */ |
353 | { CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */ | 353 | { CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */ |
354 | { CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */ | 354 | { CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */ |
355 | { CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */ | 355 | { CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */ |
356 | { CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */ | 356 | { CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */ |
357 | { CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */ | 357 | { CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */ |
358 | { 0, 0, NULL } | 358 | { 0, 0, NULL } |
359 | }; | 359 | }; |
360 | 360 | ||
361 | static struct cfi_fixup cfi_fixup_table[] = { | 361 | static struct cfi_fixup cfi_fixup_table[] = { |
362 | { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri }, | 362 | { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri }, |
363 | #ifdef AMD_BOOTLOC_BUG | 363 | #ifdef AMD_BOOTLOC_BUG |
364 | { CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock }, | 364 | { CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock }, |
365 | { CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock }, | 365 | { CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock }, |
366 | { CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock }, | 366 | { CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock }, |
367 | #endif | 367 | #endif |
368 | { CFI_MFR_AMD, 0x0050, fixup_use_secsi }, | 368 | { CFI_MFR_AMD, 0x0050, fixup_use_secsi }, |
369 | { CFI_MFR_AMD, 0x0053, fixup_use_secsi }, | 369 | { CFI_MFR_AMD, 0x0053, fixup_use_secsi }, |
370 | { CFI_MFR_AMD, 0x0055, fixup_use_secsi }, | 370 | { CFI_MFR_AMD, 0x0055, fixup_use_secsi }, |
371 | { CFI_MFR_AMD, 0x0056, fixup_use_secsi }, | 371 | { CFI_MFR_AMD, 0x0056, fixup_use_secsi }, |
372 | { CFI_MFR_AMD, 0x005C, fixup_use_secsi }, | 372 | { CFI_MFR_AMD, 0x005C, fixup_use_secsi }, |
373 | { CFI_MFR_AMD, 0x005F, fixup_use_secsi }, | 373 | { CFI_MFR_AMD, 0x005F, fixup_use_secsi }, |
374 | { CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors }, | 374 | { CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors }, |
375 | { CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors }, | 375 | { CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors }, |
376 | { CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors }, | 376 | { CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors }, |
377 | { CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors }, | 377 | { CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors }, |
378 | { CFI_MFR_AMD, 0x3f00, fixup_s29ns512p_sectors }, | 378 | { CFI_MFR_AMD, 0x3f00, fixup_s29ns512p_sectors }, |
379 | { CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */ | 379 | { CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */ |
380 | { CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */ | 380 | { CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */ |
381 | { CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */ | 381 | { CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */ |
382 | { CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */ | 382 | { CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */ |
383 | #if !FORCE_WORD_WRITE | 383 | #if !FORCE_WORD_WRITE |
384 | { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers }, | 384 | { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers }, |
385 | #endif | 385 | #endif |
386 | { 0, 0, NULL } | 386 | { 0, 0, NULL } |
387 | }; | 387 | }; |
388 | static struct cfi_fixup jedec_fixup_table[] = { | 388 | static struct cfi_fixup jedec_fixup_table[] = { |
389 | { CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock }, | 389 | { CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock }, |
390 | { CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock }, | 390 | { CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock }, |
391 | { CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock }, | 391 | { CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock }, |
392 | { 0, 0, NULL } | 392 | { 0, 0, NULL } |
393 | }; | 393 | }; |
394 | 394 | ||
395 | static struct cfi_fixup fixup_table[] = { | 395 | static struct cfi_fixup fixup_table[] = { |
396 | /* The CFI vendor ids and the JEDEC vendor IDs appear | 396 | /* The CFI vendor ids and the JEDEC vendor IDs appear |
397 | * to be common. It is like the devices id's are as | 397 | * to be common. It is like the devices id's are as |
398 | * well. This table is to pick all cases where | 398 | * well. This table is to pick all cases where |
399 | * we know that is the case. | 399 | * we know that is the case. |
400 | */ | 400 | */ |
401 | { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip }, | 401 | { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip }, |
402 | { CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock }, | 402 | { CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock }, |
403 | { 0, 0, NULL } | 403 | { 0, 0, NULL } |
404 | }; | 404 | }; |
405 | 405 | ||
406 | 406 | ||
407 | static void cfi_fixup_major_minor(struct cfi_private *cfi, | 407 | static void cfi_fixup_major_minor(struct cfi_private *cfi, |
408 | struct cfi_pri_amdstd *extp) | 408 | struct cfi_pri_amdstd *extp) |
409 | { | 409 | { |
410 | if (cfi->mfr == CFI_MFR_SAMSUNG) { | 410 | if (cfi->mfr == CFI_MFR_SAMSUNG) { |
411 | if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') || | 411 | if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') || |
412 | (extp->MajorVersion == '3' && extp->MinorVersion == '3')) { | 412 | (extp->MajorVersion == '3' && extp->MinorVersion == '3')) { |
413 | /* | 413 | /* |
414 | * Samsung K8P2815UQB and K8D6x16UxM chips | 414 | * Samsung K8P2815UQB and K8D6x16UxM chips |
415 | * report major=0 / minor=0. | 415 | * report major=0 / minor=0. |
416 | * K8D3x16UxC chips report major=3 / minor=3. | 416 | * K8D3x16UxC chips report major=3 / minor=3. |
417 | */ | 417 | */ |
418 | printk(KERN_NOTICE " Fixing Samsung's Amd/Fujitsu" | 418 | printk(KERN_NOTICE " Fixing Samsung's Amd/Fujitsu" |
419 | " Extended Query version to 1.%c\n", | 419 | " Extended Query version to 1.%c\n", |
420 | extp->MinorVersion); | 420 | extp->MinorVersion); |
421 | extp->MajorVersion = '1'; | 421 | extp->MajorVersion = '1'; |
422 | } | 422 | } |
423 | } | 423 | } |
424 | 424 | ||
425 | /* | 425 | /* |
426 | * SST 38VF640x chips report major=0xFF / minor=0xFF. | 426 | * SST 38VF640x chips report major=0xFF / minor=0xFF. |
427 | */ | 427 | */ |
428 | if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) { | 428 | if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) { |
429 | extp->MajorVersion = '1'; | 429 | extp->MajorVersion = '1'; |
430 | extp->MinorVersion = '0'; | 430 | extp->MinorVersion = '0'; |
431 | } | 431 | } |
432 | } | 432 | } |
433 | 433 | ||
434 | static int is_m29ew(struct cfi_private *cfi) | 434 | static int is_m29ew(struct cfi_private *cfi) |
435 | { | 435 | { |
436 | if (cfi->mfr == CFI_MFR_INTEL && | 436 | if (cfi->mfr == CFI_MFR_INTEL && |
437 | ((cfi->device_type == CFI_DEVICETYPE_X8 && (cfi->id & 0xff) == 0x7e) || | 437 | ((cfi->device_type == CFI_DEVICETYPE_X8 && (cfi->id & 0xff) == 0x7e) || |
438 | (cfi->device_type == CFI_DEVICETYPE_X16 && cfi->id == 0x227e))) | 438 | (cfi->device_type == CFI_DEVICETYPE_X16 && cfi->id == 0x227e))) |
439 | return 1; | 439 | return 1; |
440 | return 0; | 440 | return 0; |
441 | } | 441 | } |
442 | 442 | ||
443 | /* | 443 | /* |
444 | * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 20: | 444 | * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 20: |
445 | * Some revisions of the M29EW suffer from erase suspend hang ups. In | 445 | * Some revisions of the M29EW suffer from erase suspend hang ups. In |
446 | * particular, it can occur when the sequence | 446 | * particular, it can occur when the sequence |
447 | * Erase Confirm -> Suspend -> Program -> Resume | 447 | * Erase Confirm -> Suspend -> Program -> Resume |
448 | * causes a lockup due to internal timing issues. The consequence is that the | 448 | * causes a lockup due to internal timing issues. The consequence is that the |
449 | * erase cannot be resumed without inserting a dummy command after programming | 449 | * erase cannot be resumed without inserting a dummy command after programming |
450 | * and prior to resuming. [...] The work-around is to issue a dummy write cycle | 450 | * and prior to resuming. [...] The work-around is to issue a dummy write cycle |
451 | * that writes an F0 command code before the RESUME command. | 451 | * that writes an F0 command code before the RESUME command. |
452 | */ | 452 | */ |
453 | static void cfi_fixup_m29ew_erase_suspend(struct map_info *map, | 453 | static void cfi_fixup_m29ew_erase_suspend(struct map_info *map, |
454 | unsigned long adr) | 454 | unsigned long adr) |
455 | { | 455 | { |
456 | struct cfi_private *cfi = map->fldrv_priv; | 456 | struct cfi_private *cfi = map->fldrv_priv; |
457 | /* before resume, insert a dummy 0xF0 cycle for Micron M29EW devices */ | 457 | /* before resume, insert a dummy 0xF0 cycle for Micron M29EW devices */ |
458 | if (is_m29ew(cfi)) | 458 | if (is_m29ew(cfi)) |
459 | map_write(map, CMD(0xF0), adr); | 459 | map_write(map, CMD(0xF0), adr); |
460 | } | 460 | } |
461 | 461 | ||
462 | /* | 462 | /* |
463 | * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 22: | 463 | * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 22: |
464 | * | 464 | * |
465 | * Some revisions of the M29EW (for example, A1 and A2 step revisions) | 465 | * Some revisions of the M29EW (for example, A1 and A2 step revisions) |
466 | * are affected by a problem that could cause a hang up when an ERASE SUSPEND | 466 | * are affected by a problem that could cause a hang up when an ERASE SUSPEND |
467 | * command is issued after an ERASE RESUME operation without waiting for a | 467 | * command is issued after an ERASE RESUME operation without waiting for a |
468 | * minimum delay. The result is that once the ERASE seems to be completed | 468 | * minimum delay. The result is that once the ERASE seems to be completed |
469 | * (no bits are toggling), the contents of the Flash memory block on which | 469 | * (no bits are toggling), the contents of the Flash memory block on which |
470 | * the erase was ongoing could be inconsistent with the expected values | 470 | * the erase was ongoing could be inconsistent with the expected values |
471 | * (typically, the array value is stuck to the 0xC0, 0xC4, 0x80, or 0x84 | 471 | * (typically, the array value is stuck to the 0xC0, 0xC4, 0x80, or 0x84 |
472 | * values), causing a consequent failure of the ERASE operation. | 472 | * values), causing a consequent failure of the ERASE operation. |
473 | * The occurrence of this issue could be high, especially when file system | 473 | * The occurrence of this issue could be high, especially when file system |
474 | * operations on the Flash are intensive. As a result, it is recommended | 474 | * operations on the Flash are intensive. As a result, it is recommended |
475 | * that a patch be applied. Intensive file system operations can cause many | 475 | * that a patch be applied. Intensive file system operations can cause many |
476 | * calls to the garbage routine to free Flash space (also by erasing physical | 476 | * calls to the garbage routine to free Flash space (also by erasing physical |
477 | * Flash blocks) and as a result, many consecutive SUSPEND and RESUME | 477 | * Flash blocks) and as a result, many consecutive SUSPEND and RESUME |
478 | * commands can occur. The problem disappears when a delay is inserted after | 478 | * commands can occur. The problem disappears when a delay is inserted after |
479 | * the RESUME command by using the udelay() function available in Linux. | 479 | * the RESUME command by using the udelay() function available in Linux. |
480 | * The DELAY value must be tuned based on the customer's platform. | 480 | * The DELAY value must be tuned based on the customer's platform. |
481 | * The maximum value that fixes the problem in all cases is 500us. | 481 | * The maximum value that fixes the problem in all cases is 500us. |
482 | * But, in our experience, a delay of 30 ยตs to 50 ยตs is sufficient | 482 | * But, in our experience, a delay of 30 ยตs to 50 ยตs is sufficient |
483 | * in most cases. | 483 | * in most cases. |
484 | * We have chosen 500ยตs because this latency is acceptable. | 484 | * We have chosen 500ยตs because this latency is acceptable. |
485 | */ | 485 | */ |
486 | static void cfi_fixup_m29ew_delay_after_resume(struct cfi_private *cfi) | 486 | static void cfi_fixup_m29ew_delay_after_resume(struct cfi_private *cfi) |
487 | { | 487 | { |
488 | /* | 488 | /* |
489 | * Resolving the Delay After Resume Issue see Micron TN-13-07 | 489 | * Resolving the Delay After Resume Issue see Micron TN-13-07 |
490 | * Worst case delay must be 500ยตs but 30-50ยตs should be ok as well | 490 | * Worst case delay must be 500ยตs but 30-50ยตs should be ok as well |
491 | */ | 491 | */ |
492 | if (is_m29ew(cfi)) | 492 | if (is_m29ew(cfi)) |
493 | cfi_udelay(500); | 493 | cfi_udelay(500); |
494 | } | 494 | } |
495 | 495 | ||
496 | struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary) | 496 | struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary) |
497 | { | 497 | { |
498 | struct cfi_private *cfi = map->fldrv_priv; | 498 | struct cfi_private *cfi = map->fldrv_priv; |
499 | struct mtd_info *mtd; | 499 | struct mtd_info *mtd; |
500 | int i; | 500 | int i; |
501 | 501 | ||
502 | mtd = kzalloc(sizeof(*mtd), GFP_KERNEL); | 502 | mtd = kzalloc(sizeof(*mtd), GFP_KERNEL); |
503 | if (!mtd) { | 503 | if (!mtd) { |
504 | printk(KERN_WARNING "Failed to allocate memory for MTD device\n"); | 504 | printk(KERN_WARNING "Failed to allocate memory for MTD device\n"); |
505 | return NULL; | 505 | return NULL; |
506 | } | 506 | } |
507 | mtd->priv = map; | 507 | mtd->priv = map; |
508 | mtd->type = MTD_NORFLASH; | 508 | mtd->type = MTD_NORFLASH; |
509 | 509 | ||
510 | /* Fill in the default mtd operations */ | 510 | /* Fill in the default mtd operations */ |
511 | mtd->_erase = cfi_amdstd_erase_varsize; | 511 | mtd->_erase = cfi_amdstd_erase_varsize; |
512 | mtd->_write = cfi_amdstd_write_words; | 512 | mtd->_write = cfi_amdstd_write_words; |
513 | mtd->_read = cfi_amdstd_read; | 513 | mtd->_read = cfi_amdstd_read; |
514 | mtd->_sync = cfi_amdstd_sync; | 514 | mtd->_sync = cfi_amdstd_sync; |
515 | mtd->_suspend = cfi_amdstd_suspend; | 515 | mtd->_suspend = cfi_amdstd_suspend; |
516 | mtd->_resume = cfi_amdstd_resume; | 516 | mtd->_resume = cfi_amdstd_resume; |
517 | mtd->flags = MTD_CAP_NORFLASH; | 517 | mtd->flags = MTD_CAP_NORFLASH; |
518 | mtd->name = map->name; | 518 | mtd->name = map->name; |
519 | mtd->writesize = 1; | 519 | mtd->writesize = 1; |
520 | mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; | 520 | mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; |
521 | 521 | ||
522 | pr_debug("MTD %s(): write buffer size %d\n", __func__, | 522 | pr_debug("MTD %s(): write buffer size %d\n", __func__, |
523 | mtd->writebufsize); | 523 | mtd->writebufsize); |
524 | 524 | ||
525 | mtd->_panic_write = cfi_amdstd_panic_write; | 525 | mtd->_panic_write = cfi_amdstd_panic_write; |
526 | mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot; | 526 | mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot; |
527 | 527 | ||
528 | if (cfi->cfi_mode==CFI_MODE_CFI){ | 528 | if (cfi->cfi_mode==CFI_MODE_CFI){ |
529 | unsigned char bootloc; | 529 | unsigned char bootloc; |
530 | __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR; | 530 | __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR; |
531 | struct cfi_pri_amdstd *extp; | 531 | struct cfi_pri_amdstd *extp; |
532 | 532 | ||
533 | extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu"); | 533 | extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu"); |
534 | if (extp) { | 534 | if (extp) { |
535 | /* | 535 | /* |
536 | * It's a real CFI chip, not one for which the probe | 536 | * It's a real CFI chip, not one for which the probe |
537 | * routine faked a CFI structure. | 537 | * routine faked a CFI structure. |
538 | */ | 538 | */ |
539 | cfi_fixup_major_minor(cfi, extp); | 539 | cfi_fixup_major_minor(cfi, extp); |
540 | 540 | ||
541 | /* | 541 | /* |
542 | * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5 | 542 | * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5 |
543 | * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19 | 543 | * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19 |
544 | * http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf | 544 | * http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf |
545 | * http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf | 545 | * http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf |
546 | * http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf | 546 | * http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf |
547 | */ | 547 | */ |
548 | if (extp->MajorVersion != '1' || | 548 | if (extp->MajorVersion != '1' || |
549 | (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '5'))) { | 549 | (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '5'))) { |
550 | printk(KERN_ERR " Unknown Amd/Fujitsu Extended Query " | 550 | printk(KERN_ERR " Unknown Amd/Fujitsu Extended Query " |
551 | "version %c.%c (%#02x/%#02x).\n", | 551 | "version %c.%c (%#02x/%#02x).\n", |
552 | extp->MajorVersion, extp->MinorVersion, | 552 | extp->MajorVersion, extp->MinorVersion, |
553 | extp->MajorVersion, extp->MinorVersion); | 553 | extp->MajorVersion, extp->MinorVersion); |
554 | kfree(extp); | 554 | kfree(extp); |
555 | kfree(mtd); | 555 | kfree(mtd); |
556 | return NULL; | 556 | return NULL; |
557 | } | 557 | } |
558 | 558 | ||
559 | printk(KERN_INFO " Amd/Fujitsu Extended Query version %c.%c.\n", | 559 | printk(KERN_INFO " Amd/Fujitsu Extended Query version %c.%c.\n", |
560 | extp->MajorVersion, extp->MinorVersion); | 560 | extp->MajorVersion, extp->MinorVersion); |
561 | 561 | ||
562 | /* Install our own private info structure */ | 562 | /* Install our own private info structure */ |
563 | cfi->cmdset_priv = extp; | 563 | cfi->cmdset_priv = extp; |
564 | 564 | ||
565 | /* Apply cfi device specific fixups */ | 565 | /* Apply cfi device specific fixups */ |
566 | cfi_fixup(mtd, cfi_fixup_table); | 566 | cfi_fixup(mtd, cfi_fixup_table); |
567 | 567 | ||
568 | #ifdef DEBUG_CFI_FEATURES | 568 | #ifdef DEBUG_CFI_FEATURES |
569 | /* Tell the user about it in lots of lovely detail */ | 569 | /* Tell the user about it in lots of lovely detail */ |
570 | cfi_tell_features(extp); | 570 | cfi_tell_features(extp); |
571 | #endif | 571 | #endif |
572 | 572 | ||
573 | bootloc = extp->TopBottom; | 573 | bootloc = extp->TopBottom; |
574 | if ((bootloc < 2) || (bootloc > 5)) { | 574 | if ((bootloc < 2) || (bootloc > 5)) { |
575 | printk(KERN_WARNING "%s: CFI contains unrecognised boot " | 575 | printk(KERN_WARNING "%s: CFI contains unrecognised boot " |
576 | "bank location (%d). Assuming bottom.\n", | 576 | "bank location (%d). Assuming bottom.\n", |
577 | map->name, bootloc); | 577 | map->name, bootloc); |
578 | bootloc = 2; | 578 | bootloc = 2; |
579 | } | 579 | } |
580 | 580 | ||
581 | if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) { | 581 | if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) { |
582 | printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name); | 582 | printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name); |
583 | 583 | ||
584 | for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) { | 584 | for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) { |
585 | int j = (cfi->cfiq->NumEraseRegions-1)-i; | 585 | int j = (cfi->cfiq->NumEraseRegions-1)-i; |
586 | __u32 swap; | 586 | __u32 swap; |
587 | 587 | ||
588 | swap = cfi->cfiq->EraseRegionInfo[i]; | 588 | swap = cfi->cfiq->EraseRegionInfo[i]; |
589 | cfi->cfiq->EraseRegionInfo[i] = cfi->cfiq->EraseRegionInfo[j]; | 589 | cfi->cfiq->EraseRegionInfo[i] = cfi->cfiq->EraseRegionInfo[j]; |
590 | cfi->cfiq->EraseRegionInfo[j] = swap; | 590 | cfi->cfiq->EraseRegionInfo[j] = swap; |
591 | } | 591 | } |
592 | } | 592 | } |
593 | /* Set the default CFI lock/unlock addresses */ | 593 | /* Set the default CFI lock/unlock addresses */ |
594 | cfi->addr_unlock1 = 0x555; | 594 | cfi->addr_unlock1 = 0x555; |
595 | cfi->addr_unlock2 = 0x2aa; | 595 | cfi->addr_unlock2 = 0x2aa; |
596 | } | 596 | } |
597 | cfi_fixup(mtd, cfi_nopri_fixup_table); | 597 | cfi_fixup(mtd, cfi_nopri_fixup_table); |
598 | 598 | ||
599 | if (!cfi->addr_unlock1 || !cfi->addr_unlock2) { | 599 | if (!cfi->addr_unlock1 || !cfi->addr_unlock2) { |
600 | kfree(mtd); | 600 | kfree(mtd); |
601 | return NULL; | 601 | return NULL; |
602 | } | 602 | } |
603 | 603 | ||
604 | } /* CFI mode */ | 604 | } /* CFI mode */ |
605 | else if (cfi->cfi_mode == CFI_MODE_JEDEC) { | 605 | else if (cfi->cfi_mode == CFI_MODE_JEDEC) { |
606 | /* Apply jedec specific fixups */ | 606 | /* Apply jedec specific fixups */ |
607 | cfi_fixup(mtd, jedec_fixup_table); | 607 | cfi_fixup(mtd, jedec_fixup_table); |
608 | } | 608 | } |
609 | /* Apply generic fixups */ | 609 | /* Apply generic fixups */ |
610 | cfi_fixup(mtd, fixup_table); | 610 | cfi_fixup(mtd, fixup_table); |
611 | 611 | ||
612 | for (i=0; i< cfi->numchips; i++) { | 612 | for (i=0; i< cfi->numchips; i++) { |
613 | cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp; | 613 | cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp; |
614 | cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp; | 614 | cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp; |
615 | cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp; | 615 | cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp; |
616 | cfi->chips[i].ref_point_counter = 0; | 616 | cfi->chips[i].ref_point_counter = 0; |
617 | init_waitqueue_head(&(cfi->chips[i].wq)); | 617 | init_waitqueue_head(&(cfi->chips[i].wq)); |
618 | } | 618 | } |
619 | 619 | ||
620 | map->fldrv = &cfi_amdstd_chipdrv; | 620 | map->fldrv = &cfi_amdstd_chipdrv; |
621 | 621 | ||
622 | return cfi_amdstd_setup(mtd); | 622 | return cfi_amdstd_setup(mtd); |
623 | } | 623 | } |
624 | struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002"))); | 624 | struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002"))); |
625 | struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002"))); | 625 | struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002"))); |
626 | EXPORT_SYMBOL_GPL(cfi_cmdset_0002); | 626 | EXPORT_SYMBOL_GPL(cfi_cmdset_0002); |
627 | EXPORT_SYMBOL_GPL(cfi_cmdset_0006); | 627 | EXPORT_SYMBOL_GPL(cfi_cmdset_0006); |
628 | EXPORT_SYMBOL_GPL(cfi_cmdset_0701); | 628 | EXPORT_SYMBOL_GPL(cfi_cmdset_0701); |
629 | 629 | ||
630 | static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd) | 630 | static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd) |
631 | { | 631 | { |
632 | struct map_info *map = mtd->priv; | 632 | struct map_info *map = mtd->priv; |
633 | struct cfi_private *cfi = map->fldrv_priv; | 633 | struct cfi_private *cfi = map->fldrv_priv; |
634 | unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave; | 634 | unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave; |
635 | unsigned long offset = 0; | 635 | unsigned long offset = 0; |
636 | int i,j; | 636 | int i,j; |
637 | 637 | ||
638 | printk(KERN_NOTICE "number of %s chips: %d\n", | 638 | printk(KERN_NOTICE "number of %s chips: %d\n", |
639 | (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips); | 639 | (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips); |
640 | /* Select the correct geometry setup */ | 640 | /* Select the correct geometry setup */ |
641 | mtd->size = devsize * cfi->numchips; | 641 | mtd->size = devsize * cfi->numchips; |
642 | 642 | ||
643 | mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips; | 643 | mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips; |
644 | mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info) | 644 | mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info) |
645 | * mtd->numeraseregions, GFP_KERNEL); | 645 | * mtd->numeraseregions, GFP_KERNEL); |
646 | if (!mtd->eraseregions) { | 646 | if (!mtd->eraseregions) { |
647 | printk(KERN_WARNING "Failed to allocate memory for MTD erase region info\n"); | 647 | printk(KERN_WARNING "Failed to allocate memory for MTD erase region info\n"); |
648 | goto setup_err; | 648 | goto setup_err; |
649 | } | 649 | } |
650 | 650 | ||
651 | for (i=0; i<cfi->cfiq->NumEraseRegions; i++) { | 651 | for (i=0; i<cfi->cfiq->NumEraseRegions; i++) { |
652 | unsigned long ernum, ersize; | 652 | unsigned long ernum, ersize; |
653 | ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave; | 653 | ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave; |
654 | ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1; | 654 | ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1; |
655 | 655 | ||
656 | if (mtd->erasesize < ersize) { | 656 | if (mtd->erasesize < ersize) { |
657 | mtd->erasesize = ersize; | 657 | mtd->erasesize = ersize; |
658 | } | 658 | } |
659 | for (j=0; j<cfi->numchips; j++) { | 659 | for (j=0; j<cfi->numchips; j++) { |
660 | mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset; | 660 | mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset; |
661 | mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize; | 661 | mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize; |
662 | mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum; | 662 | mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum; |
663 | } | 663 | } |
664 | offset += (ersize * ernum); | 664 | offset += (ersize * ernum); |
665 | } | 665 | } |
666 | if (offset != devsize) { | 666 | if (offset != devsize) { |
667 | /* Argh */ | 667 | /* Argh */ |
668 | printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize); | 668 | printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize); |
669 | goto setup_err; | 669 | goto setup_err; |
670 | } | 670 | } |
671 | 671 | ||
672 | __module_get(THIS_MODULE); | 672 | __module_get(THIS_MODULE); |
673 | register_reboot_notifier(&mtd->reboot_notifier); | 673 | register_reboot_notifier(&mtd->reboot_notifier); |
674 | return mtd; | 674 | return mtd; |
675 | 675 | ||
676 | setup_err: | 676 | setup_err: |
677 | kfree(mtd->eraseregions); | 677 | kfree(mtd->eraseregions); |
678 | kfree(mtd); | 678 | kfree(mtd); |
679 | kfree(cfi->cmdset_priv); | 679 | kfree(cfi->cmdset_priv); |
680 | kfree(cfi->cfiq); | 680 | kfree(cfi->cfiq); |
681 | return NULL; | 681 | return NULL; |
682 | } | 682 | } |
683 | 683 | ||
684 | /* | 684 | /* |
685 | * Return true if the chip is ready. | 685 | * Return true if the chip is ready. |
686 | * | 686 | * |
687 | * Ready is one of: read mode, query mode, erase-suspend-read mode (in any | 687 | * Ready is one of: read mode, query mode, erase-suspend-read mode (in any |
688 | * non-suspended sector) and is indicated by no toggle bits toggling. | 688 | * non-suspended sector) and is indicated by no toggle bits toggling. |
689 | * | 689 | * |
690 | * Note that anything more complicated than checking if no bits are toggling | 690 | * Note that anything more complicated than checking if no bits are toggling |
691 | * (including checking DQ5 for an error status) is tricky to get working | 691 | * (including checking DQ5 for an error status) is tricky to get working |
692 | * correctly and is therefore not done (particularly with interleaved chips | 692 | * correctly and is therefore not done (particularly with interleaved chips |
693 | * as each chip must be checked independently of the others). | 693 | * as each chip must be checked independently of the others). |
694 | */ | 694 | */ |
695 | static int __xipram chip_ready(struct map_info *map, unsigned long addr) | 695 | static int __xipram chip_ready(struct map_info *map, unsigned long addr) |
696 | { | 696 | { |
697 | map_word d, t; | 697 | map_word d, t; |
698 | 698 | ||
699 | d = map_read(map, addr); | 699 | d = map_read(map, addr); |
700 | t = map_read(map, addr); | 700 | t = map_read(map, addr); |
701 | 701 | ||
702 | return map_word_equal(map, d, t); | 702 | return map_word_equal(map, d, t); |
703 | } | 703 | } |
704 | 704 | ||
705 | /* | 705 | /* |
706 | * Return true if the chip is ready and has the correct value. | 706 | * Return true if the chip is ready and has the correct value. |
707 | * | 707 | * |
708 | * Ready is one of: read mode, query mode, erase-suspend-read mode (in any | 708 | * Ready is one of: read mode, query mode, erase-suspend-read mode (in any |
709 | * non-suspended sector) and it is indicated by no bits toggling. | 709 | * non-suspended sector) and it is indicated by no bits toggling. |
710 | * | 710 | * |
711 | * Error are indicated by toggling bits or bits held with the wrong value, | 711 | * Error are indicated by toggling bits or bits held with the wrong value, |
712 | * or with bits toggling. | 712 | * or with bits toggling. |
713 | * | 713 | * |
714 | * Note that anything more complicated than checking if no bits are toggling | 714 | * Note that anything more complicated than checking if no bits are toggling |
715 | * (including checking DQ5 for an error status) is tricky to get working | 715 | * (including checking DQ5 for an error status) is tricky to get working |
716 | * correctly and is therefore not done (particularly with interleaved chips | 716 | * correctly and is therefore not done (particularly with interleaved chips |
717 | * as each chip must be checked independently of the others). | 717 | * as each chip must be checked independently of the others). |
718 | * | 718 | * |
719 | */ | 719 | */ |
720 | static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected) | 720 | static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected) |
721 | { | 721 | { |
722 | map_word oldd, curd; | 722 | map_word oldd, curd; |
723 | 723 | ||
724 | oldd = map_read(map, addr); | 724 | oldd = map_read(map, addr); |
725 | curd = map_read(map, addr); | 725 | curd = map_read(map, addr); |
726 | 726 | ||
727 | return map_word_equal(map, oldd, curd) && | 727 | return map_word_equal(map, oldd, curd) && |
728 | map_word_equal(map, curd, expected); | 728 | map_word_equal(map, curd, expected); |
729 | } | 729 | } |
730 | 730 | ||
731 | static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode) | 731 | static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode) |
732 | { | 732 | { |
733 | DECLARE_WAITQUEUE(wait, current); | 733 | DECLARE_WAITQUEUE(wait, current); |
734 | struct cfi_private *cfi = map->fldrv_priv; | 734 | struct cfi_private *cfi = map->fldrv_priv; |
735 | unsigned long timeo; | 735 | unsigned long timeo; |
736 | struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv; | 736 | struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv; |
737 | 737 | ||
738 | resettime: | 738 | resettime: |
739 | timeo = jiffies + HZ; | 739 | timeo = jiffies + HZ; |
740 | retry: | 740 | retry: |
741 | switch (chip->state) { | 741 | switch (chip->state) { |
742 | 742 | ||
743 | case FL_STATUS: | 743 | case FL_STATUS: |
744 | for (;;) { | 744 | for (;;) { |
745 | if (chip_ready(map, adr)) | 745 | if (chip_ready(map, adr)) |
746 | break; | 746 | break; |
747 | 747 | ||
748 | if (time_after(jiffies, timeo)) { | 748 | if (time_after(jiffies, timeo)) { |
749 | printk(KERN_ERR "Waiting for chip to be ready timed out.\n"); | 749 | printk(KERN_ERR "Waiting for chip to be ready timed out.\n"); |
750 | return -EIO; | 750 | return -EIO; |
751 | } | 751 | } |
752 | mutex_unlock(&chip->mutex); | 752 | mutex_unlock(&chip->mutex); |
753 | cfi_udelay(1); | 753 | cfi_udelay(1); |
754 | mutex_lock(&chip->mutex); | 754 | mutex_lock(&chip->mutex); |
755 | /* Someone else might have been playing with it. */ | 755 | /* Someone else might have been playing with it. */ |
756 | goto retry; | 756 | goto retry; |
757 | } | 757 | } |
758 | 758 | ||
759 | case FL_READY: | 759 | case FL_READY: |
760 | case FL_CFI_QUERY: | 760 | case FL_CFI_QUERY: |
761 | case FL_JEDEC_QUERY: | 761 | case FL_JEDEC_QUERY: |
762 | return 0; | 762 | return 0; |
763 | 763 | ||
764 | case FL_ERASING: | 764 | case FL_ERASING: |
765 | if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) || | 765 | if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) || |
766 | !(mode == FL_READY || mode == FL_POINT || | 766 | !(mode == FL_READY || mode == FL_POINT || |
767 | (mode == FL_WRITING && (cfip->EraseSuspend & 0x2)))) | 767 | (mode == FL_WRITING && (cfip->EraseSuspend & 0x2)))) |
768 | goto sleep; | 768 | goto sleep; |
769 | 769 | ||
770 | /* We could check to see if we're trying to access the sector | 770 | /* We could check to see if we're trying to access the sector |
771 | * that is currently being erased. However, no user will try | 771 | * that is currently being erased. However, no user will try |
772 | * anything like that so we just wait for the timeout. */ | 772 | * anything like that so we just wait for the timeout. */ |
773 | 773 | ||
774 | /* Erase suspend */ | 774 | /* Erase suspend */ |
775 | /* It's harmless to issue the Erase-Suspend and Erase-Resume | 775 | /* It's harmless to issue the Erase-Suspend and Erase-Resume |
776 | * commands when the erase algorithm isn't in progress. */ | 776 | * commands when the erase algorithm isn't in progress. */ |
777 | map_write(map, CMD(0xB0), chip->in_progress_block_addr); | 777 | map_write(map, CMD(0xB0), chip->in_progress_block_addr); |
778 | chip->oldstate = FL_ERASING; | 778 | chip->oldstate = FL_ERASING; |
779 | chip->state = FL_ERASE_SUSPENDING; | 779 | chip->state = FL_ERASE_SUSPENDING; |
780 | chip->erase_suspended = 1; | 780 | chip->erase_suspended = 1; |
781 | for (;;) { | 781 | for (;;) { |
782 | if (chip_ready(map, adr)) | 782 | if (chip_ready(map, adr)) |
783 | break; | 783 | break; |
784 | 784 | ||
785 | if (time_after(jiffies, timeo)) { | 785 | if (time_after(jiffies, timeo)) { |
786 | /* Should have suspended the erase by now. | 786 | /* Should have suspended the erase by now. |
787 | * Send an Erase-Resume command as either | 787 | * Send an Erase-Resume command as either |
788 | * there was an error (so leave the erase | 788 | * there was an error (so leave the erase |
789 | * routine to recover from it) or we trying to | 789 | * routine to recover from it) or we trying to |
790 | * use the erase-in-progress sector. */ | 790 | * use the erase-in-progress sector. */ |
791 | put_chip(map, chip, adr); | 791 | put_chip(map, chip, adr); |
792 | printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__); | 792 | printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__); |
793 | return -EIO; | 793 | return -EIO; |
794 | } | 794 | } |
795 | 795 | ||
796 | mutex_unlock(&chip->mutex); | 796 | mutex_unlock(&chip->mutex); |
797 | cfi_udelay(1); | 797 | cfi_udelay(1); |
798 | mutex_lock(&chip->mutex); | 798 | mutex_lock(&chip->mutex); |
799 | /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING. | 799 | /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING. |
800 | So we can just loop here. */ | 800 | So we can just loop here. */ |
801 | } | 801 | } |
802 | chip->state = FL_READY; | 802 | chip->state = FL_READY; |
803 | return 0; | 803 | return 0; |
804 | 804 | ||
805 | case FL_XIP_WHILE_ERASING: | 805 | case FL_XIP_WHILE_ERASING: |
806 | if (mode != FL_READY && mode != FL_POINT && | 806 | if (mode != FL_READY && mode != FL_POINT && |
807 | (!cfip || !(cfip->EraseSuspend&2))) | 807 | (!cfip || !(cfip->EraseSuspend&2))) |
808 | goto sleep; | 808 | goto sleep; |
809 | chip->oldstate = chip->state; | 809 | chip->oldstate = chip->state; |
810 | chip->state = FL_READY; | 810 | chip->state = FL_READY; |
811 | return 0; | 811 | return 0; |
812 | 812 | ||
813 | case FL_SHUTDOWN: | 813 | case FL_SHUTDOWN: |
814 | /* The machine is rebooting */ | 814 | /* The machine is rebooting */ |
815 | return -EIO; | 815 | return -EIO; |
816 | 816 | ||
817 | case FL_POINT: | 817 | case FL_POINT: |
818 | /* Only if there's no operation suspended... */ | 818 | /* Only if there's no operation suspended... */ |
819 | if (mode == FL_READY && chip->oldstate == FL_READY) | 819 | if (mode == FL_READY && chip->oldstate == FL_READY) |
820 | return 0; | 820 | return 0; |
821 | 821 | ||
822 | default: | 822 | default: |
823 | sleep: | 823 | sleep: |
824 | set_current_state(TASK_UNINTERRUPTIBLE); | 824 | set_current_state(TASK_UNINTERRUPTIBLE); |
825 | add_wait_queue(&chip->wq, &wait); | 825 | add_wait_queue(&chip->wq, &wait); |
826 | mutex_unlock(&chip->mutex); | 826 | mutex_unlock(&chip->mutex); |
827 | schedule(); | 827 | schedule(); |
828 | remove_wait_queue(&chip->wq, &wait); | 828 | remove_wait_queue(&chip->wq, &wait); |
829 | mutex_lock(&chip->mutex); | 829 | mutex_lock(&chip->mutex); |
830 | goto resettime; | 830 | goto resettime; |
831 | } | 831 | } |
832 | } | 832 | } |
833 | 833 | ||
834 | 834 | ||
835 | static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr) | 835 | static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr) |
836 | { | 836 | { |
837 | struct cfi_private *cfi = map->fldrv_priv; | 837 | struct cfi_private *cfi = map->fldrv_priv; |
838 | 838 | ||
839 | switch(chip->oldstate) { | 839 | switch(chip->oldstate) { |
840 | case FL_ERASING: | 840 | case FL_ERASING: |
841 | cfi_fixup_m29ew_erase_suspend(map, | 841 | cfi_fixup_m29ew_erase_suspend(map, |
842 | chip->in_progress_block_addr); | 842 | chip->in_progress_block_addr); |
843 | map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr); | 843 | map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr); |
844 | cfi_fixup_m29ew_delay_after_resume(cfi); | 844 | cfi_fixup_m29ew_delay_after_resume(cfi); |
845 | chip->oldstate = FL_READY; | 845 | chip->oldstate = FL_READY; |
846 | chip->state = FL_ERASING; | 846 | chip->state = FL_ERASING; |
847 | break; | 847 | break; |
848 | 848 | ||
849 | case FL_XIP_WHILE_ERASING: | 849 | case FL_XIP_WHILE_ERASING: |
850 | chip->state = chip->oldstate; | 850 | chip->state = chip->oldstate; |
851 | chip->oldstate = FL_READY; | 851 | chip->oldstate = FL_READY; |
852 | break; | 852 | break; |
853 | 853 | ||
854 | case FL_READY: | 854 | case FL_READY: |
855 | case FL_STATUS: | 855 | case FL_STATUS: |
856 | break; | 856 | break; |
857 | default: | 857 | default: |
858 | printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate); | 858 | printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate); |
859 | } | 859 | } |
860 | wake_up(&chip->wq); | 860 | wake_up(&chip->wq); |
861 | } | 861 | } |
862 | 862 | ||
863 | #ifdef CONFIG_MTD_XIP | 863 | #ifdef CONFIG_MTD_XIP |
864 | 864 | ||
865 | /* | 865 | /* |
866 | * No interrupt what so ever can be serviced while the flash isn't in array | 866 | * No interrupt what so ever can be serviced while the flash isn't in array |
867 | * mode. This is ensured by the xip_disable() and xip_enable() functions | 867 | * mode. This is ensured by the xip_disable() and xip_enable() functions |
868 | * enclosing any code path where the flash is known not to be in array mode. | 868 | * enclosing any code path where the flash is known not to be in array mode. |
869 | * And within a XIP disabled code path, only functions marked with __xipram | 869 | * And within a XIP disabled code path, only functions marked with __xipram |
870 | * may be called and nothing else (it's a good thing to inspect generated | 870 | * may be called and nothing else (it's a good thing to inspect generated |
871 | * assembly to make sure inline functions were actually inlined and that gcc | 871 | * assembly to make sure inline functions were actually inlined and that gcc |
872 | * didn't emit calls to its own support functions). Also configuring MTD CFI | 872 | * didn't emit calls to its own support functions). Also configuring MTD CFI |
873 | * support to a single buswidth and a single interleave is also recommended. | 873 | * support to a single buswidth and a single interleave is also recommended. |
874 | */ | 874 | */ |
875 | 875 | ||
876 | static void xip_disable(struct map_info *map, struct flchip *chip, | 876 | static void xip_disable(struct map_info *map, struct flchip *chip, |
877 | unsigned long adr) | 877 | unsigned long adr) |
878 | { | 878 | { |
879 | /* TODO: chips with no XIP use should ignore and return */ | 879 | /* TODO: chips with no XIP use should ignore and return */ |
880 | (void) map_read(map, adr); /* ensure mmu mapping is up to date */ | 880 | (void) map_read(map, adr); /* ensure mmu mapping is up to date */ |
881 | local_irq_disable(); | 881 | local_irq_disable(); |
882 | } | 882 | } |
883 | 883 | ||
884 | static void __xipram xip_enable(struct map_info *map, struct flchip *chip, | 884 | static void __xipram xip_enable(struct map_info *map, struct flchip *chip, |
885 | unsigned long adr) | 885 | unsigned long adr) |
886 | { | 886 | { |
887 | struct cfi_private *cfi = map->fldrv_priv; | 887 | struct cfi_private *cfi = map->fldrv_priv; |
888 | 888 | ||
889 | if (chip->state != FL_POINT && chip->state != FL_READY) { | 889 | if (chip->state != FL_POINT && chip->state != FL_READY) { |
890 | map_write(map, CMD(0xf0), adr); | 890 | map_write(map, CMD(0xf0), adr); |
891 | chip->state = FL_READY; | 891 | chip->state = FL_READY; |
892 | } | 892 | } |
893 | (void) map_read(map, adr); | 893 | (void) map_read(map, adr); |
894 | xip_iprefetch(); | 894 | xip_iprefetch(); |
895 | local_irq_enable(); | 895 | local_irq_enable(); |
896 | } | 896 | } |
897 | 897 | ||
898 | /* | 898 | /* |
899 | * When a delay is required for the flash operation to complete, the | 899 | * When a delay is required for the flash operation to complete, the |
900 | * xip_udelay() function is polling for both the given timeout and pending | 900 | * xip_udelay() function is polling for both the given timeout and pending |
901 | * (but still masked) hardware interrupts. Whenever there is an interrupt | 901 | * (but still masked) hardware interrupts. Whenever there is an interrupt |
902 | * pending then the flash erase operation is suspended, array mode restored | 902 | * pending then the flash erase operation is suspended, array mode restored |
903 | * and interrupts unmasked. Task scheduling might also happen at that | 903 | * and interrupts unmasked. Task scheduling might also happen at that |
904 | * point. The CPU eventually returns from the interrupt or the call to | 904 | * point. The CPU eventually returns from the interrupt or the call to |
905 | * schedule() and the suspended flash operation is resumed for the remaining | 905 | * schedule() and the suspended flash operation is resumed for the remaining |
906 | * of the delay period. | 906 | * of the delay period. |
907 | * | 907 | * |
908 | * Warning: this function _will_ fool interrupt latency tracing tools. | 908 | * Warning: this function _will_ fool interrupt latency tracing tools. |
909 | */ | 909 | */ |
910 | 910 | ||
911 | static void __xipram xip_udelay(struct map_info *map, struct flchip *chip, | 911 | static void __xipram xip_udelay(struct map_info *map, struct flchip *chip, |
912 | unsigned long adr, int usec) | 912 | unsigned long adr, int usec) |
913 | { | 913 | { |
914 | struct cfi_private *cfi = map->fldrv_priv; | 914 | struct cfi_private *cfi = map->fldrv_priv; |
915 | struct cfi_pri_amdstd *extp = cfi->cmdset_priv; | 915 | struct cfi_pri_amdstd *extp = cfi->cmdset_priv; |
916 | map_word status, OK = CMD(0x80); | 916 | map_word status, OK = CMD(0x80); |
917 | unsigned long suspended, start = xip_currtime(); | 917 | unsigned long suspended, start = xip_currtime(); |
918 | flstate_t oldstate; | 918 | flstate_t oldstate; |
919 | 919 | ||
920 | do { | 920 | do { |
921 | cpu_relax(); | 921 | cpu_relax(); |
922 | if (xip_irqpending() && extp && | 922 | if (xip_irqpending() && extp && |
923 | ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) && | 923 | ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) && |
924 | (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) { | 924 | (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) { |
925 | /* | 925 | /* |
926 | * Let's suspend the erase operation when supported. | 926 | * Let's suspend the erase operation when supported. |
927 | * Note that we currently don't try to suspend | 927 | * Note that we currently don't try to suspend |
928 | * interleaved chips if there is already another | 928 | * interleaved chips if there is already another |
929 | * operation suspended (imagine what happens | 929 | * operation suspended (imagine what happens |
930 | * when one chip was already done with the current | 930 | * when one chip was already done with the current |
931 | * operation while another chip suspended it, then | 931 | * operation while another chip suspended it, then |
932 | * we resume the whole thing at once). Yes, it | 932 | * we resume the whole thing at once). Yes, it |
933 | * can happen! | 933 | * can happen! |
934 | */ | 934 | */ |
935 | map_write(map, CMD(0xb0), adr); | 935 | map_write(map, CMD(0xb0), adr); |
936 | usec -= xip_elapsed_since(start); | 936 | usec -= xip_elapsed_since(start); |
937 | suspended = xip_currtime(); | 937 | suspended = xip_currtime(); |
938 | do { | 938 | do { |
939 | if (xip_elapsed_since(suspended) > 100000) { | 939 | if (xip_elapsed_since(suspended) > 100000) { |
940 | /* | 940 | /* |
941 | * The chip doesn't want to suspend | 941 | * The chip doesn't want to suspend |
942 | * after waiting for 100 msecs. | 942 | * after waiting for 100 msecs. |
943 | * This is a critical error but there | 943 | * This is a critical error but there |
944 | * is not much we can do here. | 944 | * is not much we can do here. |
945 | */ | 945 | */ |
946 | return; | 946 | return; |
947 | } | 947 | } |
948 | status = map_read(map, adr); | 948 | status = map_read(map, adr); |
949 | } while (!map_word_andequal(map, status, OK, OK)); | 949 | } while (!map_word_andequal(map, status, OK, OK)); |
950 | 950 | ||
951 | /* Suspend succeeded */ | 951 | /* Suspend succeeded */ |
952 | oldstate = chip->state; | 952 | oldstate = chip->state; |
953 | if (!map_word_bitsset(map, status, CMD(0x40))) | 953 | if (!map_word_bitsset(map, status, CMD(0x40))) |
954 | break; | 954 | break; |
955 | chip->state = FL_XIP_WHILE_ERASING; | 955 | chip->state = FL_XIP_WHILE_ERASING; |
956 | chip->erase_suspended = 1; | 956 | chip->erase_suspended = 1; |
957 | map_write(map, CMD(0xf0), adr); | 957 | map_write(map, CMD(0xf0), adr); |
958 | (void) map_read(map, adr); | 958 | (void) map_read(map, adr); |
959 | xip_iprefetch(); | 959 | xip_iprefetch(); |
960 | local_irq_enable(); | 960 | local_irq_enable(); |
961 | mutex_unlock(&chip->mutex); | 961 | mutex_unlock(&chip->mutex); |
962 | xip_iprefetch(); | 962 | xip_iprefetch(); |
963 | cond_resched(); | 963 | cond_resched(); |
964 | 964 | ||
965 | /* | 965 | /* |
966 | * We're back. However someone else might have | 966 | * We're back. However someone else might have |
967 | * decided to go write to the chip if we are in | 967 | * decided to go write to the chip if we are in |
968 | * a suspended erase state. If so let's wait | 968 | * a suspended erase state. If so let's wait |
969 | * until it's done. | 969 | * until it's done. |
970 | */ | 970 | */ |
971 | mutex_lock(&chip->mutex); | 971 | mutex_lock(&chip->mutex); |
972 | while (chip->state != FL_XIP_WHILE_ERASING) { | 972 | while (chip->state != FL_XIP_WHILE_ERASING) { |
973 | DECLARE_WAITQUEUE(wait, current); | 973 | DECLARE_WAITQUEUE(wait, current); |
974 | set_current_state(TASK_UNINTERRUPTIBLE); | 974 | set_current_state(TASK_UNINTERRUPTIBLE); |
975 | add_wait_queue(&chip->wq, &wait); | 975 | add_wait_queue(&chip->wq, &wait); |
976 | mutex_unlock(&chip->mutex); | 976 | mutex_unlock(&chip->mutex); |
977 | schedule(); | 977 | schedule(); |
978 | remove_wait_queue(&chip->wq, &wait); | 978 | remove_wait_queue(&chip->wq, &wait); |
979 | mutex_lock(&chip->mutex); | 979 | mutex_lock(&chip->mutex); |
980 | } | 980 | } |
981 | /* Disallow XIP again */ | 981 | /* Disallow XIP again */ |
982 | local_irq_disable(); | 982 | local_irq_disable(); |
983 | 983 | ||
984 | /* Correct Erase Suspend Hangups for M29EW */ | 984 | /* Correct Erase Suspend Hangups for M29EW */ |
985 | cfi_fixup_m29ew_erase_suspend(map, adr); | 985 | cfi_fixup_m29ew_erase_suspend(map, adr); |
986 | /* Resume the write or erase operation */ | 986 | /* Resume the write or erase operation */ |
987 | map_write(map, cfi->sector_erase_cmd, adr); | 987 | map_write(map, cfi->sector_erase_cmd, adr); |
988 | chip->state = oldstate; | 988 | chip->state = oldstate; |
989 | start = xip_currtime(); | 989 | start = xip_currtime(); |
990 | } else if (usec >= 1000000/HZ) { | 990 | } else if (usec >= 1000000/HZ) { |
991 | /* | 991 | /* |
992 | * Try to save on CPU power when waiting delay | 992 | * Try to save on CPU power when waiting delay |
993 | * is at least a system timer tick period. | 993 | * is at least a system timer tick period. |
994 | * No need to be extremely accurate here. | 994 | * No need to be extremely accurate here. |
995 | */ | 995 | */ |
996 | xip_cpu_idle(); | 996 | xip_cpu_idle(); |
997 | } | 997 | } |
998 | status = map_read(map, adr); | 998 | status = map_read(map, adr); |
999 | } while (!map_word_andequal(map, status, OK, OK) | 999 | } while (!map_word_andequal(map, status, OK, OK) |
1000 | && xip_elapsed_since(start) < usec); | 1000 | && xip_elapsed_since(start) < usec); |
1001 | } | 1001 | } |
1002 | 1002 | ||
1003 | #define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec) | 1003 | #define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec) |
1004 | 1004 | ||
1005 | /* | 1005 | /* |
1006 | * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while | 1006 | * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while |
1007 | * the flash is actively programming or erasing since we have to poll for | 1007 | * the flash is actively programming or erasing since we have to poll for |
1008 | * the operation to complete anyway. We can't do that in a generic way with | 1008 | * the operation to complete anyway. We can't do that in a generic way with |
1009 | * a XIP setup so do it before the actual flash operation in this case | 1009 | * a XIP setup so do it before the actual flash operation in this case |
1010 | * and stub it out from INVALIDATE_CACHE_UDELAY. | 1010 | * and stub it out from INVALIDATE_CACHE_UDELAY. |
1011 | */ | 1011 | */ |
1012 | #define XIP_INVAL_CACHED_RANGE(map, from, size) \ | 1012 | #define XIP_INVAL_CACHED_RANGE(map, from, size) \ |
1013 | INVALIDATE_CACHED_RANGE(map, from, size) | 1013 | INVALIDATE_CACHED_RANGE(map, from, size) |
1014 | 1014 | ||
1015 | #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \ | 1015 | #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \ |
1016 | UDELAY(map, chip, adr, usec) | 1016 | UDELAY(map, chip, adr, usec) |
1017 | 1017 | ||
1018 | /* | 1018 | /* |
1019 | * Extra notes: | 1019 | * Extra notes: |
1020 | * | 1020 | * |
1021 | * Activating this XIP support changes the way the code works a bit. For | 1021 | * Activating this XIP support changes the way the code works a bit. For |
1022 | * example the code to suspend the current process when concurrent access | 1022 | * example the code to suspend the current process when concurrent access |
1023 | * happens is never executed because xip_udelay() will always return with the | 1023 | * happens is never executed because xip_udelay() will always return with the |
1024 | * same chip state as it was entered with. This is why there is no care for | 1024 | * same chip state as it was entered with. This is why there is no care for |
1025 | * the presence of add_wait_queue() or schedule() calls from within a couple | 1025 | * the presence of add_wait_queue() or schedule() calls from within a couple |
1026 | * xip_disable()'d areas of code, like in do_erase_oneblock for example. | 1026 | * xip_disable()'d areas of code, like in do_erase_oneblock for example. |
1027 | * The queueing and scheduling are always happening within xip_udelay(). | 1027 | * The queueing and scheduling are always happening within xip_udelay(). |
1028 | * | 1028 | * |
1029 | * Similarly, get_chip() and put_chip() just happen to always be executed | 1029 | * Similarly, get_chip() and put_chip() just happen to always be executed |
1030 | * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state | 1030 | * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state |
1031 | * is in array mode, therefore never executing many cases therein and not | 1031 | * is in array mode, therefore never executing many cases therein and not |
1032 | * causing any problem with XIP. | 1032 | * causing any problem with XIP. |
1033 | */ | 1033 | */ |
1034 | 1034 | ||
1035 | #else | 1035 | #else |
1036 | 1036 | ||
1037 | #define xip_disable(map, chip, adr) | 1037 | #define xip_disable(map, chip, adr) |
1038 | #define xip_enable(map, chip, adr) | 1038 | #define xip_enable(map, chip, adr) |
1039 | #define XIP_INVAL_CACHED_RANGE(x...) | 1039 | #define XIP_INVAL_CACHED_RANGE(x...) |
1040 | 1040 | ||
1041 | #define UDELAY(map, chip, adr, usec) \ | 1041 | #define UDELAY(map, chip, adr, usec) \ |
1042 | do { \ | 1042 | do { \ |
1043 | mutex_unlock(&chip->mutex); \ | 1043 | mutex_unlock(&chip->mutex); \ |
1044 | cfi_udelay(usec); \ | 1044 | cfi_udelay(usec); \ |
1045 | mutex_lock(&chip->mutex); \ | 1045 | mutex_lock(&chip->mutex); \ |
1046 | } while (0) | 1046 | } while (0) |
1047 | 1047 | ||
1048 | #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \ | 1048 | #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \ |
1049 | do { \ | 1049 | do { \ |
1050 | mutex_unlock(&chip->mutex); \ | 1050 | mutex_unlock(&chip->mutex); \ |
1051 | INVALIDATE_CACHED_RANGE(map, adr, len); \ | 1051 | INVALIDATE_CACHED_RANGE(map, adr, len); \ |
1052 | cfi_udelay(usec); \ | 1052 | cfi_udelay(usec); \ |
1053 | mutex_lock(&chip->mutex); \ | 1053 | mutex_lock(&chip->mutex); \ |
1054 | } while (0) | 1054 | } while (0) |
1055 | 1055 | ||
1056 | #endif | 1056 | #endif |
1057 | 1057 | ||
1058 | static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf) | 1058 | static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf) |
1059 | { | 1059 | { |
1060 | unsigned long cmd_addr; | 1060 | unsigned long cmd_addr; |
1061 | struct cfi_private *cfi = map->fldrv_priv; | 1061 | struct cfi_private *cfi = map->fldrv_priv; |
1062 | int ret; | 1062 | int ret; |
1063 | 1063 | ||
1064 | adr += chip->start; | 1064 | adr += chip->start; |
1065 | 1065 | ||
1066 | /* Ensure cmd read/writes are aligned. */ | 1066 | /* Ensure cmd read/writes are aligned. */ |
1067 | cmd_addr = adr & ~(map_bankwidth(map)-1); | 1067 | cmd_addr = adr & ~(map_bankwidth(map)-1); |
1068 | 1068 | ||
1069 | mutex_lock(&chip->mutex); | 1069 | mutex_lock(&chip->mutex); |
1070 | ret = get_chip(map, chip, cmd_addr, FL_READY); | 1070 | ret = get_chip(map, chip, cmd_addr, FL_READY); |
1071 | if (ret) { | 1071 | if (ret) { |
1072 | mutex_unlock(&chip->mutex); | 1072 | mutex_unlock(&chip->mutex); |
1073 | return ret; | 1073 | return ret; |
1074 | } | 1074 | } |
1075 | 1075 | ||
1076 | if (chip->state != FL_POINT && chip->state != FL_READY) { | 1076 | if (chip->state != FL_POINT && chip->state != FL_READY) { |
1077 | map_write(map, CMD(0xf0), cmd_addr); | 1077 | map_write(map, CMD(0xf0), cmd_addr); |
1078 | chip->state = FL_READY; | 1078 | chip->state = FL_READY; |
1079 | } | 1079 | } |
1080 | 1080 | ||
1081 | map_copy_from(map, buf, adr, len); | 1081 | map_copy_from(map, buf, adr, len); |
1082 | 1082 | ||
1083 | put_chip(map, chip, cmd_addr); | 1083 | put_chip(map, chip, cmd_addr); |
1084 | 1084 | ||
1085 | mutex_unlock(&chip->mutex); | 1085 | mutex_unlock(&chip->mutex); |
1086 | return 0; | 1086 | return 0; |
1087 | } | 1087 | } |
1088 | 1088 | ||
1089 | 1089 | ||
1090 | static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) | 1090 | static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) |
1091 | { | 1091 | { |
1092 | struct map_info *map = mtd->priv; | 1092 | struct map_info *map = mtd->priv; |
1093 | struct cfi_private *cfi = map->fldrv_priv; | 1093 | struct cfi_private *cfi = map->fldrv_priv; |
1094 | unsigned long ofs; | 1094 | unsigned long ofs; |
1095 | int chipnum; | 1095 | int chipnum; |
1096 | int ret = 0; | 1096 | int ret = 0; |
1097 | 1097 | ||
1098 | /* ofs: offset within the first chip that the first read should start */ | 1098 | /* ofs: offset within the first chip that the first read should start */ |
1099 | chipnum = (from >> cfi->chipshift); | 1099 | chipnum = (from >> cfi->chipshift); |
1100 | ofs = from - (chipnum << cfi->chipshift); | 1100 | ofs = from - (chipnum << cfi->chipshift); |
1101 | 1101 | ||
1102 | while (len) { | 1102 | while (len) { |
1103 | unsigned long thislen; | 1103 | unsigned long thislen; |
1104 | 1104 | ||
1105 | if (chipnum >= cfi->numchips) | 1105 | if (chipnum >= cfi->numchips) |
1106 | break; | 1106 | break; |
1107 | 1107 | ||
1108 | if ((len + ofs -1) >> cfi->chipshift) | 1108 | if ((len + ofs -1) >> cfi->chipshift) |
1109 | thislen = (1<<cfi->chipshift) - ofs; | 1109 | thislen = (1<<cfi->chipshift) - ofs; |
1110 | else | 1110 | else |
1111 | thislen = len; | 1111 | thislen = len; |
1112 | 1112 | ||
1113 | ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf); | 1113 | ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf); |
1114 | if (ret) | 1114 | if (ret) |
1115 | break; | 1115 | break; |
1116 | 1116 | ||
1117 | *retlen += thislen; | 1117 | *retlen += thislen; |
1118 | len -= thislen; | 1118 | len -= thislen; |
1119 | buf += thislen; | 1119 | buf += thislen; |
1120 | 1120 | ||
1121 | ofs = 0; | 1121 | ofs = 0; |
1122 | chipnum++; | 1122 | chipnum++; |
1123 | } | 1123 | } |
1124 | return ret; | 1124 | return ret; |
1125 | } | 1125 | } |
1126 | 1126 | ||
1127 | 1127 | ||
1128 | static inline int do_read_secsi_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf) | 1128 | static inline int do_read_secsi_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf) |
1129 | { | 1129 | { |
1130 | DECLARE_WAITQUEUE(wait, current); | 1130 | DECLARE_WAITQUEUE(wait, current); |
1131 | unsigned long timeo = jiffies + HZ; | 1131 | unsigned long timeo = jiffies + HZ; |
1132 | struct cfi_private *cfi = map->fldrv_priv; | 1132 | struct cfi_private *cfi = map->fldrv_priv; |
1133 | 1133 | ||
1134 | retry: | 1134 | retry: |
1135 | mutex_lock(&chip->mutex); | 1135 | mutex_lock(&chip->mutex); |
1136 | 1136 | ||
1137 | if (chip->state != FL_READY){ | 1137 | if (chip->state != FL_READY){ |
1138 | set_current_state(TASK_UNINTERRUPTIBLE); | 1138 | set_current_state(TASK_UNINTERRUPTIBLE); |
1139 | add_wait_queue(&chip->wq, &wait); | 1139 | add_wait_queue(&chip->wq, &wait); |
1140 | 1140 | ||
1141 | mutex_unlock(&chip->mutex); | 1141 | mutex_unlock(&chip->mutex); |
1142 | 1142 | ||
1143 | schedule(); | 1143 | schedule(); |
1144 | remove_wait_queue(&chip->wq, &wait); | 1144 | remove_wait_queue(&chip->wq, &wait); |
1145 | timeo = jiffies + HZ; | 1145 | timeo = jiffies + HZ; |
1146 | 1146 | ||
1147 | goto retry; | 1147 | goto retry; |
1148 | } | 1148 | } |
1149 | 1149 | ||
1150 | adr += chip->start; | 1150 | adr += chip->start; |
1151 | 1151 | ||
1152 | chip->state = FL_READY; | 1152 | chip->state = FL_READY; |
1153 | 1153 | ||
1154 | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); | 1154 | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); |
1155 | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); | 1155 | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); |
1156 | cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); | 1156 | cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); |
1157 | 1157 | ||
1158 | map_copy_from(map, buf, adr, len); | 1158 | map_copy_from(map, buf, adr, len); |
1159 | 1159 | ||
1160 | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); | 1160 | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); |
1161 | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); | 1161 | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); |
1162 | cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); | 1162 | cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); |
1163 | cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); | 1163 | cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); |
1164 | 1164 | ||
1165 | wake_up(&chip->wq); | 1165 | wake_up(&chip->wq); |
1166 | mutex_unlock(&chip->mutex); | 1166 | mutex_unlock(&chip->mutex); |
1167 | 1167 | ||
1168 | return 0; | 1168 | return 0; |
1169 | } | 1169 | } |
1170 | 1170 | ||
1171 | static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) | 1171 | static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) |
1172 | { | 1172 | { |
1173 | struct map_info *map = mtd->priv; | 1173 | struct map_info *map = mtd->priv; |
1174 | struct cfi_private *cfi = map->fldrv_priv; | 1174 | struct cfi_private *cfi = map->fldrv_priv; |
1175 | unsigned long ofs; | 1175 | unsigned long ofs; |
1176 | int chipnum; | 1176 | int chipnum; |
1177 | int ret = 0; | 1177 | int ret = 0; |
1178 | 1178 | ||
1179 | /* ofs: offset within the first chip that the first read should start */ | 1179 | /* ofs: offset within the first chip that the first read should start */ |
1180 | /* 8 secsi bytes per chip */ | 1180 | /* 8 secsi bytes per chip */ |
1181 | chipnum=from>>3; | 1181 | chipnum=from>>3; |
1182 | ofs=from & 7; | 1182 | ofs=from & 7; |
1183 | 1183 | ||
1184 | while (len) { | 1184 | while (len) { |
1185 | unsigned long thislen; | 1185 | unsigned long thislen; |
1186 | 1186 | ||
1187 | if (chipnum >= cfi->numchips) | 1187 | if (chipnum >= cfi->numchips) |
1188 | break; | 1188 | break; |
1189 | 1189 | ||
1190 | if ((len + ofs -1) >> 3) | 1190 | if ((len + ofs -1) >> 3) |
1191 | thislen = (1<<3) - ofs; | 1191 | thislen = (1<<3) - ofs; |
1192 | else | 1192 | else |
1193 | thislen = len; | 1193 | thislen = len; |
1194 | 1194 | ||
1195 | ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf); | 1195 | ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf); |
1196 | if (ret) | 1196 | if (ret) |
1197 | break; | 1197 | break; |
1198 | 1198 | ||
1199 | *retlen += thislen; | 1199 | *retlen += thislen; |
1200 | len -= thislen; | 1200 | len -= thislen; |
1201 | buf += thislen; | 1201 | buf += thislen; |
1202 | 1202 | ||
1203 | ofs = 0; | 1203 | ofs = 0; |
1204 | chipnum++; | 1204 | chipnum++; |
1205 | } | 1205 | } |
1206 | return ret; | 1206 | return ret; |
1207 | } | 1207 | } |
1208 | 1208 | ||
1209 | 1209 | ||
1210 | static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, unsigned long adr, map_word datum) | 1210 | static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, unsigned long adr, map_word datum) |
1211 | { | 1211 | { |
1212 | struct cfi_private *cfi = map->fldrv_priv; | 1212 | struct cfi_private *cfi = map->fldrv_priv; |
1213 | unsigned long timeo = jiffies + HZ; | 1213 | unsigned long timeo = jiffies + HZ; |
1214 | /* | 1214 | /* |
1215 | * We use a 1ms + 1 jiffies generic timeout for writes (most devices | 1215 | * We use a 1ms + 1 jiffies generic timeout for writes (most devices |
1216 | * have a max write time of a few hundreds usec). However, we should | 1216 | * have a max write time of a few hundreds usec). However, we should |
1217 | * use the maximum timeout value given by the chip at probe time | 1217 | * use the maximum timeout value given by the chip at probe time |
1218 | * instead. Unfortunately, struct flchip does have a field for | 1218 | * instead. Unfortunately, struct flchip does have a field for |
1219 | * maximum timeout, only for typical which can be far too short | 1219 | * maximum timeout, only for typical which can be far too short |
1220 | * depending of the conditions. The ' + 1' is to avoid having a | 1220 | * depending of the conditions. The ' + 1' is to avoid having a |
1221 | * timeout of 0 jiffies if HZ is smaller than 1000. | 1221 | * timeout of 0 jiffies if HZ is smaller than 1000. |
1222 | */ | 1222 | */ |
1223 | unsigned long uWriteTimeout = ( HZ / 1000 ) + 1; | 1223 | unsigned long uWriteTimeout = ( HZ / 1000 ) + 1; |
1224 | int ret = 0; | 1224 | int ret = 0; |
1225 | map_word oldd; | 1225 | map_word oldd; |
1226 | int retry_cnt = 0; | 1226 | int retry_cnt = 0; |
1227 | 1227 | ||
1228 | adr += chip->start; | 1228 | adr += chip->start; |
1229 | 1229 | ||
1230 | mutex_lock(&chip->mutex); | 1230 | mutex_lock(&chip->mutex); |
1231 | ret = get_chip(map, chip, adr, FL_WRITING); | 1231 | ret = get_chip(map, chip, adr, FL_WRITING); |
1232 | if (ret) { | 1232 | if (ret) { |
1233 | mutex_unlock(&chip->mutex); | 1233 | mutex_unlock(&chip->mutex); |
1234 | return ret; | 1234 | return ret; |
1235 | } | 1235 | } |
1236 | 1236 | ||
1237 | pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n", | 1237 | pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n", |
1238 | __func__, adr, datum.x[0] ); | 1238 | __func__, adr, datum.x[0] ); |
1239 | 1239 | ||
1240 | /* | 1240 | /* |
1241 | * Check for a NOP for the case when the datum to write is already | 1241 | * Check for a NOP for the case when the datum to write is already |
1242 | * present - it saves time and works around buggy chips that corrupt | 1242 | * present - it saves time and works around buggy chips that corrupt |
1243 | * data at other locations when 0xff is written to a location that | 1243 | * data at other locations when 0xff is written to a location that |
1244 | * already contains 0xff. | 1244 | * already contains 0xff. |
1245 | */ | 1245 | */ |
1246 | oldd = map_read(map, adr); | 1246 | oldd = map_read(map, adr); |
1247 | if (map_word_equal(map, oldd, datum)) { | 1247 | if (map_word_equal(map, oldd, datum)) { |
1248 | pr_debug("MTD %s(): NOP\n", | 1248 | pr_debug("MTD %s(): NOP\n", |
1249 | __func__); | 1249 | __func__); |
1250 | goto op_done; | 1250 | goto op_done; |
1251 | } | 1251 | } |
1252 | 1252 | ||
1253 | XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map)); | 1253 | XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map)); |
1254 | ENABLE_VPP(map); | 1254 | ENABLE_VPP(map); |
1255 | xip_disable(map, chip, adr); | 1255 | xip_disable(map, chip, adr); |
1256 | retry: | 1256 | retry: |
1257 | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); | 1257 | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); |
1258 | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); | 1258 | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); |
1259 | cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); | 1259 | cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); |
1260 | map_write(map, datum, adr); | 1260 | map_write(map, datum, adr); |
1261 | chip->state = FL_WRITING; | 1261 | chip->state = FL_WRITING; |
1262 | 1262 | ||
1263 | INVALIDATE_CACHE_UDELAY(map, chip, | 1263 | INVALIDATE_CACHE_UDELAY(map, chip, |
1264 | adr, map_bankwidth(map), | 1264 | adr, map_bankwidth(map), |
1265 | chip->word_write_time); | 1265 | chip->word_write_time); |
1266 | 1266 | ||
1267 | /* See comment above for timeout value. */ | 1267 | /* See comment above for timeout value. */ |
1268 | timeo = jiffies + uWriteTimeout; | 1268 | timeo = jiffies + uWriteTimeout; |
1269 | for (;;) { | 1269 | for (;;) { |
1270 | if (chip->state != FL_WRITING) { | 1270 | if (chip->state != FL_WRITING) { |
1271 | /* Someone's suspended the write. Sleep */ | 1271 | /* Someone's suspended the write. Sleep */ |
1272 | DECLARE_WAITQUEUE(wait, current); | 1272 | DECLARE_WAITQUEUE(wait, current); |
1273 | 1273 | ||
1274 | set_current_state(TASK_UNINTERRUPTIBLE); | 1274 | set_current_state(TASK_UNINTERRUPTIBLE); |
1275 | add_wait_queue(&chip->wq, &wait); | 1275 | add_wait_queue(&chip->wq, &wait); |
1276 | mutex_unlock(&chip->mutex); | 1276 | mutex_unlock(&chip->mutex); |
1277 | schedule(); | 1277 | schedule(); |
1278 | remove_wait_queue(&chip->wq, &wait); | 1278 | remove_wait_queue(&chip->wq, &wait); |
1279 | timeo = jiffies + (HZ / 2); /* FIXME */ | 1279 | timeo = jiffies + (HZ / 2); /* FIXME */ |
1280 | mutex_lock(&chip->mutex); | 1280 | mutex_lock(&chip->mutex); |
1281 | continue; | 1281 | continue; |
1282 | } | 1282 | } |
1283 | 1283 | ||
1284 | if (time_after(jiffies, timeo) && !chip_ready(map, adr)){ | 1284 | if (time_after(jiffies, timeo) && !chip_ready(map, adr)){ |
1285 | xip_enable(map, chip, adr); | 1285 | xip_enable(map, chip, adr); |
1286 | printk(KERN_WARNING "MTD %s(): software timeout\n", __func__); | 1286 | printk(KERN_WARNING "MTD %s(): software timeout\n", __func__); |
1287 | xip_disable(map, chip, adr); | 1287 | xip_disable(map, chip, adr); |
1288 | break; | 1288 | break; |
1289 | } | 1289 | } |
1290 | 1290 | ||
1291 | if (chip_ready(map, adr)) | 1291 | if (chip_ready(map, adr)) |
1292 | break; | 1292 | break; |
1293 | 1293 | ||
1294 | /* Latency issues. Drop the lock, wait a while and retry */ | 1294 | /* Latency issues. Drop the lock, wait a while and retry */ |
1295 | UDELAY(map, chip, adr, 1); | 1295 | UDELAY(map, chip, adr, 1); |
1296 | } | 1296 | } |
1297 | /* Did we succeed? */ | 1297 | /* Did we succeed? */ |
1298 | if (!chip_good(map, adr, datum)) { | 1298 | if (!chip_good(map, adr, datum)) { |
1299 | /* reset on all failures. */ | 1299 | /* reset on all failures. */ |
1300 | map_write( map, CMD(0xF0), chip->start ); | 1300 | map_write( map, CMD(0xF0), chip->start ); |
1301 | /* FIXME - should have reset delay before continuing */ | 1301 | /* FIXME - should have reset delay before continuing */ |
1302 | 1302 | ||
1303 | if (++retry_cnt <= MAX_WORD_RETRIES) | 1303 | if (++retry_cnt <= MAX_WORD_RETRIES) |
1304 | goto retry; | 1304 | goto retry; |
1305 | 1305 | ||
1306 | ret = -EIO; | 1306 | ret = -EIO; |
1307 | } | 1307 | } |
1308 | xip_enable(map, chip, adr); | 1308 | xip_enable(map, chip, adr); |
1309 | op_done: | 1309 | op_done: |
1310 | chip->state = FL_READY; | 1310 | chip->state = FL_READY; |
1311 | DISABLE_VPP(map); | 1311 | DISABLE_VPP(map); |
1312 | put_chip(map, chip, adr); | 1312 | put_chip(map, chip, adr); |
1313 | mutex_unlock(&chip->mutex); | 1313 | mutex_unlock(&chip->mutex); |
1314 | 1314 | ||
1315 | return ret; | 1315 | return ret; |
1316 | } | 1316 | } |
1317 | 1317 | ||
1318 | 1318 | ||
1319 | static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len, | 1319 | static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len, |
1320 | size_t *retlen, const u_char *buf) | 1320 | size_t *retlen, const u_char *buf) |
1321 | { | 1321 | { |
1322 | struct map_info *map = mtd->priv; | 1322 | struct map_info *map = mtd->priv; |
1323 | struct cfi_private *cfi = map->fldrv_priv; | 1323 | struct cfi_private *cfi = map->fldrv_priv; |
1324 | int ret = 0; | 1324 | int ret = 0; |
1325 | int chipnum; | 1325 | int chipnum; |
1326 | unsigned long ofs, chipstart; | 1326 | unsigned long ofs, chipstart; |
1327 | DECLARE_WAITQUEUE(wait, current); | 1327 | DECLARE_WAITQUEUE(wait, current); |
1328 | 1328 | ||
1329 | chipnum = to >> cfi->chipshift; | 1329 | chipnum = to >> cfi->chipshift; |
1330 | ofs = to - (chipnum << cfi->chipshift); | 1330 | ofs = to - (chipnum << cfi->chipshift); |
1331 | chipstart = cfi->chips[chipnum].start; | 1331 | chipstart = cfi->chips[chipnum].start; |
1332 | 1332 | ||
1333 | /* If it's not bus-aligned, do the first byte write */ | 1333 | /* If it's not bus-aligned, do the first byte write */ |
1334 | if (ofs & (map_bankwidth(map)-1)) { | 1334 | if (ofs & (map_bankwidth(map)-1)) { |
1335 | unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1); | 1335 | unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1); |
1336 | int i = ofs - bus_ofs; | 1336 | int i = ofs - bus_ofs; |
1337 | int n = 0; | 1337 | int n = 0; |
1338 | map_word tmp_buf; | 1338 | map_word tmp_buf; |
1339 | 1339 | ||
1340 | retry: | 1340 | retry: |
1341 | mutex_lock(&cfi->chips[chipnum].mutex); | 1341 | mutex_lock(&cfi->chips[chipnum].mutex); |
1342 | 1342 | ||
1343 | if (cfi->chips[chipnum].state != FL_READY) { | 1343 | if (cfi->chips[chipnum].state != FL_READY) { |
1344 | set_current_state(TASK_UNINTERRUPTIBLE); | 1344 | set_current_state(TASK_UNINTERRUPTIBLE); |
1345 | add_wait_queue(&cfi->chips[chipnum].wq, &wait); | 1345 | add_wait_queue(&cfi->chips[chipnum].wq, &wait); |
1346 | 1346 | ||
1347 | mutex_unlock(&cfi->chips[chipnum].mutex); | 1347 | mutex_unlock(&cfi->chips[chipnum].mutex); |
1348 | 1348 | ||
1349 | schedule(); | 1349 | schedule(); |
1350 | remove_wait_queue(&cfi->chips[chipnum].wq, &wait); | 1350 | remove_wait_queue(&cfi->chips[chipnum].wq, &wait); |
1351 | goto retry; | 1351 | goto retry; |
1352 | } | 1352 | } |
1353 | 1353 | ||
1354 | /* Load 'tmp_buf' with old contents of flash */ | 1354 | /* Load 'tmp_buf' with old contents of flash */ |
1355 | tmp_buf = map_read(map, bus_ofs+chipstart); | 1355 | tmp_buf = map_read(map, bus_ofs+chipstart); |
1356 | 1356 | ||
1357 | mutex_unlock(&cfi->chips[chipnum].mutex); | 1357 | mutex_unlock(&cfi->chips[chipnum].mutex); |
1358 | 1358 | ||
1359 | /* Number of bytes to copy from buffer */ | 1359 | /* Number of bytes to copy from buffer */ |
1360 | n = min_t(int, len, map_bankwidth(map)-i); | 1360 | n = min_t(int, len, map_bankwidth(map)-i); |
1361 | 1361 | ||
1362 | tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n); | 1362 | tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n); |
1363 | 1363 | ||
1364 | ret = do_write_oneword(map, &cfi->chips[chipnum], | 1364 | ret = do_write_oneword(map, &cfi->chips[chipnum], |
1365 | bus_ofs, tmp_buf); | 1365 | bus_ofs, tmp_buf); |
1366 | if (ret) | 1366 | if (ret) |
1367 | return ret; | 1367 | return ret; |
1368 | 1368 | ||
1369 | ofs += n; | 1369 | ofs += n; |
1370 | buf += n; | 1370 | buf += n; |
1371 | (*retlen) += n; | 1371 | (*retlen) += n; |
1372 | len -= n; | 1372 | len -= n; |
1373 | 1373 | ||
1374 | if (ofs >> cfi->chipshift) { | 1374 | if (ofs >> cfi->chipshift) { |
1375 | chipnum ++; | 1375 | chipnum ++; |
1376 | ofs = 0; | 1376 | ofs = 0; |
1377 | if (chipnum == cfi->numchips) | 1377 | if (chipnum == cfi->numchips) |
1378 | return 0; | 1378 | return 0; |
1379 | } | 1379 | } |
1380 | } | 1380 | } |
1381 | 1381 | ||
1382 | /* We are now aligned, write as much as possible */ | 1382 | /* We are now aligned, write as much as possible */ |
1383 | while(len >= map_bankwidth(map)) { | 1383 | while(len >= map_bankwidth(map)) { |
1384 | map_word datum; | 1384 | map_word datum; |
1385 | 1385 | ||
1386 | datum = map_word_load(map, buf); | 1386 | datum = map_word_load(map, buf); |
1387 | 1387 | ||
1388 | ret = do_write_oneword(map, &cfi->chips[chipnum], | 1388 | ret = do_write_oneword(map, &cfi->chips[chipnum], |
1389 | ofs, datum); | 1389 | ofs, datum); |
1390 | if (ret) | 1390 | if (ret) |
1391 | return ret; | 1391 | return ret; |
1392 | 1392 | ||
1393 | ofs += map_bankwidth(map); | 1393 | ofs += map_bankwidth(map); |
1394 | buf += map_bankwidth(map); | 1394 | buf += map_bankwidth(map); |
1395 | (*retlen) += map_bankwidth(map); | 1395 | (*retlen) += map_bankwidth(map); |
1396 | len -= map_bankwidth(map); | 1396 | len -= map_bankwidth(map); |
1397 | 1397 | ||
1398 | if (ofs >> cfi->chipshift) { | 1398 | if (ofs >> cfi->chipshift) { |
1399 | chipnum ++; | 1399 | chipnum ++; |
1400 | ofs = 0; | 1400 | ofs = 0; |
1401 | if (chipnum == cfi->numchips) | 1401 | if (chipnum == cfi->numchips) |
1402 | return 0; | 1402 | return 0; |
1403 | chipstart = cfi->chips[chipnum].start; | 1403 | chipstart = cfi->chips[chipnum].start; |
1404 | } | 1404 | } |
1405 | } | 1405 | } |
1406 | 1406 | ||
1407 | /* Write the trailing bytes if any */ | 1407 | /* Write the trailing bytes if any */ |
1408 | if (len & (map_bankwidth(map)-1)) { | 1408 | if (len & (map_bankwidth(map)-1)) { |
1409 | map_word tmp_buf; | 1409 | map_word tmp_buf; |
1410 | 1410 | ||
1411 | retry1: | 1411 | retry1: |
1412 | mutex_lock(&cfi->chips[chipnum].mutex); | 1412 | mutex_lock(&cfi->chips[chipnum].mutex); |
1413 | 1413 | ||
1414 | if (cfi->chips[chipnum].state != FL_READY) { | 1414 | if (cfi->chips[chipnum].state != FL_READY) { |
1415 | set_current_state(TASK_UNINTERRUPTIBLE); | 1415 | set_current_state(TASK_UNINTERRUPTIBLE); |
1416 | add_wait_queue(&cfi->chips[chipnum].wq, &wait); | 1416 | add_wait_queue(&cfi->chips[chipnum].wq, &wait); |
1417 | 1417 | ||
1418 | mutex_unlock(&cfi->chips[chipnum].mutex); | 1418 | mutex_unlock(&cfi->chips[chipnum].mutex); |
1419 | 1419 | ||
1420 | schedule(); | 1420 | schedule(); |
1421 | remove_wait_queue(&cfi->chips[chipnum].wq, &wait); | 1421 | remove_wait_queue(&cfi->chips[chipnum].wq, &wait); |
1422 | goto retry1; | 1422 | goto retry1; |
1423 | } | 1423 | } |
1424 | 1424 | ||
1425 | tmp_buf = map_read(map, ofs + chipstart); | 1425 | tmp_buf = map_read(map, ofs + chipstart); |
1426 | 1426 | ||
1427 | mutex_unlock(&cfi->chips[chipnum].mutex); | 1427 | mutex_unlock(&cfi->chips[chipnum].mutex); |
1428 | 1428 | ||
1429 | tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len); | 1429 | tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len); |
1430 | 1430 | ||
1431 | ret = do_write_oneword(map, &cfi->chips[chipnum], | 1431 | ret = do_write_oneword(map, &cfi->chips[chipnum], |
1432 | ofs, tmp_buf); | 1432 | ofs, tmp_buf); |
1433 | if (ret) | 1433 | if (ret) |
1434 | return ret; | 1434 | return ret; |
1435 | 1435 | ||
1436 | (*retlen) += len; | 1436 | (*retlen) += len; |
1437 | } | 1437 | } |
1438 | 1438 | ||
1439 | return 0; | 1439 | return 0; |
1440 | } | 1440 | } |
1441 | 1441 | ||
1442 | 1442 | ||
1443 | /* | 1443 | /* |
1444 | * FIXME: interleaved mode not tested, and probably not supported! | 1444 | * FIXME: interleaved mode not tested, and probably not supported! |
1445 | */ | 1445 | */ |
1446 | static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip, | 1446 | static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip, |
1447 | unsigned long adr, const u_char *buf, | 1447 | unsigned long adr, const u_char *buf, |
1448 | int len) | 1448 | int len) |
1449 | { | 1449 | { |
1450 | struct cfi_private *cfi = map->fldrv_priv; | 1450 | struct cfi_private *cfi = map->fldrv_priv; |
1451 | unsigned long timeo = jiffies + HZ; | 1451 | unsigned long timeo = jiffies + HZ; |
1452 | /* see comments in do_write_oneword() regarding uWriteTimeo. */ | 1452 | /* see comments in do_write_oneword() regarding uWriteTimeo. */ |
1453 | unsigned long uWriteTimeout = ( HZ / 1000 ) + 1; | 1453 | unsigned long uWriteTimeout = ( HZ / 1000 ) + 1; |
1454 | int ret = -EIO; | 1454 | int ret = -EIO; |
1455 | unsigned long cmd_adr; | 1455 | unsigned long cmd_adr; |
1456 | int z, words; | 1456 | int z, words; |
1457 | map_word datum; | 1457 | map_word datum; |
1458 | 1458 | ||
1459 | adr += chip->start; | 1459 | adr += chip->start; |
1460 | cmd_adr = adr; | 1460 | cmd_adr = adr; |
1461 | 1461 | ||
1462 | mutex_lock(&chip->mutex); | 1462 | mutex_lock(&chip->mutex); |
1463 | ret = get_chip(map, chip, adr, FL_WRITING); | 1463 | ret = get_chip(map, chip, adr, FL_WRITING); |
1464 | if (ret) { | 1464 | if (ret) { |
1465 | mutex_unlock(&chip->mutex); | 1465 | mutex_unlock(&chip->mutex); |
1466 | return ret; | 1466 | return ret; |
1467 | } | 1467 | } |
1468 | 1468 | ||
1469 | datum = map_word_load(map, buf); | 1469 | datum = map_word_load(map, buf); |
1470 | 1470 | ||
1471 | pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n", | 1471 | pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n", |
1472 | __func__, adr, datum.x[0] ); | 1472 | __func__, adr, datum.x[0] ); |
1473 | 1473 | ||
1474 | XIP_INVAL_CACHED_RANGE(map, adr, len); | 1474 | XIP_INVAL_CACHED_RANGE(map, adr, len); |
1475 | ENABLE_VPP(map); | 1475 | ENABLE_VPP(map); |
1476 | xip_disable(map, chip, cmd_adr); | 1476 | xip_disable(map, chip, cmd_adr); |
1477 | 1477 | ||
1478 | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); | 1478 | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); |
1479 | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); | 1479 | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); |
1480 | 1480 | ||
1481 | /* Write Buffer Load */ | 1481 | /* Write Buffer Load */ |
1482 | map_write(map, CMD(0x25), cmd_adr); | 1482 | map_write(map, CMD(0x25), cmd_adr); |
1483 | 1483 | ||
1484 | chip->state = FL_WRITING_TO_BUFFER; | 1484 | chip->state = FL_WRITING_TO_BUFFER; |
1485 | 1485 | ||
1486 | /* Write length of data to come */ | 1486 | /* Write length of data to come */ |
1487 | words = len / map_bankwidth(map); | 1487 | words = len / map_bankwidth(map); |
1488 | map_write(map, CMD(words - 1), cmd_adr); | 1488 | map_write(map, CMD(words - 1), cmd_adr); |
1489 | /* Write data */ | 1489 | /* Write data */ |
1490 | z = 0; | 1490 | z = 0; |
1491 | while(z < words * map_bankwidth(map)) { | 1491 | while(z < words * map_bankwidth(map)) { |
1492 | datum = map_word_load(map, buf); | 1492 | datum = map_word_load(map, buf); |
1493 | map_write(map, datum, adr + z); | 1493 | map_write(map, datum, adr + z); |
1494 | 1494 | ||
1495 | z += map_bankwidth(map); | 1495 | z += map_bankwidth(map); |
1496 | buf += map_bankwidth(map); | 1496 | buf += map_bankwidth(map); |
1497 | } | 1497 | } |
1498 | z -= map_bankwidth(map); | 1498 | z -= map_bankwidth(map); |
1499 | 1499 | ||
1500 | adr += z; | 1500 | adr += z; |
1501 | 1501 | ||
1502 | /* Write Buffer Program Confirm: GO GO GO */ | 1502 | /* Write Buffer Program Confirm: GO GO GO */ |
1503 | map_write(map, CMD(0x29), cmd_adr); | 1503 | map_write(map, CMD(0x29), cmd_adr); |
1504 | chip->state = FL_WRITING; | 1504 | chip->state = FL_WRITING; |
1505 | 1505 | ||
1506 | INVALIDATE_CACHE_UDELAY(map, chip, | 1506 | INVALIDATE_CACHE_UDELAY(map, chip, |
1507 | adr, map_bankwidth(map), | 1507 | adr, map_bankwidth(map), |
1508 | chip->word_write_time); | 1508 | chip->word_write_time); |
1509 | 1509 | ||
1510 | timeo = jiffies + uWriteTimeout; | 1510 | timeo = jiffies + uWriteTimeout; |
1511 | 1511 | ||
1512 | for (;;) { | 1512 | for (;;) { |
1513 | if (chip->state != FL_WRITING) { | 1513 | if (chip->state != FL_WRITING) { |
1514 | /* Someone's suspended the write. Sleep */ | 1514 | /* Someone's suspended the write. Sleep */ |
1515 | DECLARE_WAITQUEUE(wait, current); | 1515 | DECLARE_WAITQUEUE(wait, current); |
1516 | 1516 | ||
1517 | set_current_state(TASK_UNINTERRUPTIBLE); | 1517 | set_current_state(TASK_UNINTERRUPTIBLE); |
1518 | add_wait_queue(&chip->wq, &wait); | 1518 | add_wait_queue(&chip->wq, &wait); |
1519 | mutex_unlock(&chip->mutex); | 1519 | mutex_unlock(&chip->mutex); |
1520 | schedule(); | 1520 | schedule(); |
1521 | remove_wait_queue(&chip->wq, &wait); | 1521 | remove_wait_queue(&chip->wq, &wait); |
1522 | timeo = jiffies + (HZ / 2); /* FIXME */ | 1522 | timeo = jiffies + (HZ / 2); /* FIXME */ |
1523 | mutex_lock(&chip->mutex); | 1523 | mutex_lock(&chip->mutex); |
1524 | continue; | 1524 | continue; |
1525 | } | 1525 | } |
1526 | 1526 | ||
1527 | if (time_after(jiffies, timeo) && !chip_ready(map, adr)) | 1527 | if (time_after(jiffies, timeo) && !chip_ready(map, adr)) |
1528 | break; | 1528 | break; |
1529 | 1529 | ||
1530 | if (chip_ready(map, adr)) { | 1530 | if (chip_ready(map, adr)) { |
1531 | xip_enable(map, chip, adr); | 1531 | xip_enable(map, chip, adr); |
1532 | goto op_done; | 1532 | goto op_done; |
1533 | } | 1533 | } |
1534 | 1534 | ||
1535 | /* Latency issues. Drop the lock, wait a while and retry */ | 1535 | /* Latency issues. Drop the lock, wait a while and retry */ |
1536 | UDELAY(map, chip, adr, 1); | 1536 | UDELAY(map, chip, adr, 1); |
1537 | } | 1537 | } |
1538 | 1538 | ||
1539 | /* reset on all failures. */ | 1539 | /* |
1540 | map_write( map, CMD(0xF0), chip->start ); | 1540 | * Recovery from write-buffer programming failures requires |
1541 | * the write-to-buffer-reset sequence. Since the last part | ||
1542 | * of the sequence also works as a normal reset, we can run | ||
1543 | * the same commands regardless of why we are here. | ||
1544 | * See e.g. | ||
1545 | * http://www.spansion.com/Support/Application%20Notes/MirrorBit_Write_Buffer_Prog_Page_Buffer_Read_AN.pdf | ||
1546 | */ | ||
1547 | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, | ||
1548 | cfi->device_type, NULL); | ||
1549 | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, | ||
1550 | cfi->device_type, NULL); | ||
1551 | cfi_send_gen_cmd(0xF0, cfi->addr_unlock1, chip->start, map, cfi, | ||
1552 | cfi->device_type, NULL); | ||
1541 | xip_enable(map, chip, adr); | 1553 | xip_enable(map, chip, adr); |
1542 | /* FIXME - should have reset delay before continuing */ | 1554 | /* FIXME - should have reset delay before continuing */ |
1543 | 1555 | ||
1544 | printk(KERN_WARNING "MTD %s(): software timeout\n", | 1556 | printk(KERN_WARNING "MTD %s(): software timeout\n", |
1545 | __func__ ); | 1557 | __func__ ); |
1546 | 1558 | ||
1547 | ret = -EIO; | 1559 | ret = -EIO; |
1548 | op_done: | 1560 | op_done: |
1549 | chip->state = FL_READY; | 1561 | chip->state = FL_READY; |
1550 | DISABLE_VPP(map); | 1562 | DISABLE_VPP(map); |
1551 | put_chip(map, chip, adr); | 1563 | put_chip(map, chip, adr); |
1552 | mutex_unlock(&chip->mutex); | 1564 | mutex_unlock(&chip->mutex); |
1553 | 1565 | ||
1554 | return ret; | 1566 | return ret; |
1555 | } | 1567 | } |
1556 | 1568 | ||
1557 | 1569 | ||
1558 | static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len, | 1570 | static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len, |
1559 | size_t *retlen, const u_char *buf) | 1571 | size_t *retlen, const u_char *buf) |
1560 | { | 1572 | { |
1561 | struct map_info *map = mtd->priv; | 1573 | struct map_info *map = mtd->priv; |
1562 | struct cfi_private *cfi = map->fldrv_priv; | 1574 | struct cfi_private *cfi = map->fldrv_priv; |
1563 | int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; | 1575 | int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; |
1564 | int ret = 0; | 1576 | int ret = 0; |
1565 | int chipnum; | 1577 | int chipnum; |
1566 | unsigned long ofs; | 1578 | unsigned long ofs; |
1567 | 1579 | ||
1568 | chipnum = to >> cfi->chipshift; | 1580 | chipnum = to >> cfi->chipshift; |
1569 | ofs = to - (chipnum << cfi->chipshift); | 1581 | ofs = to - (chipnum << cfi->chipshift); |
1570 | 1582 | ||
1571 | /* If it's not bus-aligned, do the first word write */ | 1583 | /* If it's not bus-aligned, do the first word write */ |
1572 | if (ofs & (map_bankwidth(map)-1)) { | 1584 | if (ofs & (map_bankwidth(map)-1)) { |
1573 | size_t local_len = (-ofs)&(map_bankwidth(map)-1); | 1585 | size_t local_len = (-ofs)&(map_bankwidth(map)-1); |
1574 | if (local_len > len) | 1586 | if (local_len > len) |
1575 | local_len = len; | 1587 | local_len = len; |
1576 | ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift), | 1588 | ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift), |
1577 | local_len, retlen, buf); | 1589 | local_len, retlen, buf); |
1578 | if (ret) | 1590 | if (ret) |
1579 | return ret; | 1591 | return ret; |
1580 | ofs += local_len; | 1592 | ofs += local_len; |
1581 | buf += local_len; | 1593 | buf += local_len; |
1582 | len -= local_len; | 1594 | len -= local_len; |
1583 | 1595 | ||
1584 | if (ofs >> cfi->chipshift) { | 1596 | if (ofs >> cfi->chipshift) { |
1585 | chipnum ++; | 1597 | chipnum ++; |
1586 | ofs = 0; | 1598 | ofs = 0; |
1587 | if (chipnum == cfi->numchips) | 1599 | if (chipnum == cfi->numchips) |
1588 | return 0; | 1600 | return 0; |
1589 | } | 1601 | } |
1590 | } | 1602 | } |
1591 | 1603 | ||
1592 | /* Write buffer is worth it only if more than one word to write... */ | 1604 | /* Write buffer is worth it only if more than one word to write... */ |
1593 | while (len >= map_bankwidth(map) * 2) { | 1605 | while (len >= map_bankwidth(map) * 2) { |
1594 | /* We must not cross write block boundaries */ | 1606 | /* We must not cross write block boundaries */ |
1595 | int size = wbufsize - (ofs & (wbufsize-1)); | 1607 | int size = wbufsize - (ofs & (wbufsize-1)); |
1596 | 1608 | ||
1597 | if (size > len) | 1609 | if (size > len) |
1598 | size = len; | 1610 | size = len; |
1599 | if (size % map_bankwidth(map)) | 1611 | if (size % map_bankwidth(map)) |
1600 | size -= size % map_bankwidth(map); | 1612 | size -= size % map_bankwidth(map); |
1601 | 1613 | ||
1602 | ret = do_write_buffer(map, &cfi->chips[chipnum], | 1614 | ret = do_write_buffer(map, &cfi->chips[chipnum], |
1603 | ofs, buf, size); | 1615 | ofs, buf, size); |
1604 | if (ret) | 1616 | if (ret) |
1605 | return ret; | 1617 | return ret; |
1606 | 1618 | ||
1607 | ofs += size; | 1619 | ofs += size; |
1608 | buf += size; | 1620 | buf += size; |
1609 | (*retlen) += size; | 1621 | (*retlen) += size; |
1610 | len -= size; | 1622 | len -= size; |
1611 | 1623 | ||
1612 | if (ofs >> cfi->chipshift) { | 1624 | if (ofs >> cfi->chipshift) { |
1613 | chipnum ++; | 1625 | chipnum ++; |
1614 | ofs = 0; | 1626 | ofs = 0; |
1615 | if (chipnum == cfi->numchips) | 1627 | if (chipnum == cfi->numchips) |
1616 | return 0; | 1628 | return 0; |
1617 | } | 1629 | } |
1618 | } | 1630 | } |
1619 | 1631 | ||
1620 | if (len) { | 1632 | if (len) { |
1621 | size_t retlen_dregs = 0; | 1633 | size_t retlen_dregs = 0; |
1622 | 1634 | ||
1623 | ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift), | 1635 | ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift), |
1624 | len, &retlen_dregs, buf); | 1636 | len, &retlen_dregs, buf); |
1625 | 1637 | ||
1626 | *retlen += retlen_dregs; | 1638 | *retlen += retlen_dregs; |
1627 | return ret; | 1639 | return ret; |
1628 | } | 1640 | } |
1629 | 1641 | ||
1630 | return 0; | 1642 | return 0; |
1631 | } | 1643 | } |
1632 | 1644 | ||
1633 | /* | 1645 | /* |
1634 | * Wait for the flash chip to become ready to write data | 1646 | * Wait for the flash chip to become ready to write data |
1635 | * | 1647 | * |
1636 | * This is only called during the panic_write() path. When panic_write() | 1648 | * This is only called during the panic_write() path. When panic_write() |
1637 | * is called, the kernel is in the process of a panic, and will soon be | 1649 | * is called, the kernel is in the process of a panic, and will soon be |
1638 | * dead. Therefore we don't take any locks, and attempt to get access | 1650 | * dead. Therefore we don't take any locks, and attempt to get access |
1639 | * to the chip as soon as possible. | 1651 | * to the chip as soon as possible. |
1640 | */ | 1652 | */ |
1641 | static int cfi_amdstd_panic_wait(struct map_info *map, struct flchip *chip, | 1653 | static int cfi_amdstd_panic_wait(struct map_info *map, struct flchip *chip, |
1642 | unsigned long adr) | 1654 | unsigned long adr) |
1643 | { | 1655 | { |
1644 | struct cfi_private *cfi = map->fldrv_priv; | 1656 | struct cfi_private *cfi = map->fldrv_priv; |
1645 | int retries = 10; | 1657 | int retries = 10; |
1646 | int i; | 1658 | int i; |
1647 | 1659 | ||
1648 | /* | 1660 | /* |
1649 | * If the driver thinks the chip is idle, and no toggle bits | 1661 | * If the driver thinks the chip is idle, and no toggle bits |
1650 | * are changing, then the chip is actually idle for sure. | 1662 | * are changing, then the chip is actually idle for sure. |
1651 | */ | 1663 | */ |
1652 | if (chip->state == FL_READY && chip_ready(map, adr)) | 1664 | if (chip->state == FL_READY && chip_ready(map, adr)) |
1653 | return 0; | 1665 | return 0; |
1654 | 1666 | ||
1655 | /* | 1667 | /* |
1656 | * Try several times to reset the chip and then wait for it | 1668 | * Try several times to reset the chip and then wait for it |
1657 | * to become idle. The upper limit of a few milliseconds of | 1669 | * to become idle. The upper limit of a few milliseconds of |
1658 | * delay isn't a big problem: the kernel is dying anyway. It | 1670 | * delay isn't a big problem: the kernel is dying anyway. It |
1659 | * is more important to save the messages. | 1671 | * is more important to save the messages. |
1660 | */ | 1672 | */ |
1661 | while (retries > 0) { | 1673 | while (retries > 0) { |
1662 | const unsigned long timeo = (HZ / 1000) + 1; | 1674 | const unsigned long timeo = (HZ / 1000) + 1; |
1663 | 1675 | ||
1664 | /* send the reset command */ | 1676 | /* send the reset command */ |
1665 | map_write(map, CMD(0xF0), chip->start); | 1677 | map_write(map, CMD(0xF0), chip->start); |
1666 | 1678 | ||
1667 | /* wait for the chip to become ready */ | 1679 | /* wait for the chip to become ready */ |
1668 | for (i = 0; i < jiffies_to_usecs(timeo); i++) { | 1680 | for (i = 0; i < jiffies_to_usecs(timeo); i++) { |
1669 | if (chip_ready(map, adr)) | 1681 | if (chip_ready(map, adr)) |
1670 | return 0; | 1682 | return 0; |
1671 | 1683 | ||
1672 | udelay(1); | 1684 | udelay(1); |
1673 | } | 1685 | } |
1674 | } | 1686 | } |
1675 | 1687 | ||
1676 | /* the chip never became ready */ | 1688 | /* the chip never became ready */ |
1677 | return -EBUSY; | 1689 | return -EBUSY; |
1678 | } | 1690 | } |
1679 | 1691 | ||
1680 | /* | 1692 | /* |
1681 | * Write out one word of data to a single flash chip during a kernel panic | 1693 | * Write out one word of data to a single flash chip during a kernel panic |
1682 | * | 1694 | * |
1683 | * This is only called during the panic_write() path. When panic_write() | 1695 | * This is only called during the panic_write() path. When panic_write() |
1684 | * is called, the kernel is in the process of a panic, and will soon be | 1696 | * is called, the kernel is in the process of a panic, and will soon be |
1685 | * dead. Therefore we don't take any locks, and attempt to get access | 1697 | * dead. Therefore we don't take any locks, and attempt to get access |
1686 | * to the chip as soon as possible. | 1698 | * to the chip as soon as possible. |
1687 | * | 1699 | * |
1688 | * The implementation of this routine is intentionally similar to | 1700 | * The implementation of this routine is intentionally similar to |
1689 | * do_write_oneword(), in order to ease code maintenance. | 1701 | * do_write_oneword(), in order to ease code maintenance. |
1690 | */ | 1702 | */ |
1691 | static int do_panic_write_oneword(struct map_info *map, struct flchip *chip, | 1703 | static int do_panic_write_oneword(struct map_info *map, struct flchip *chip, |
1692 | unsigned long adr, map_word datum) | 1704 | unsigned long adr, map_word datum) |
1693 | { | 1705 | { |
1694 | const unsigned long uWriteTimeout = (HZ / 1000) + 1; | 1706 | const unsigned long uWriteTimeout = (HZ / 1000) + 1; |
1695 | struct cfi_private *cfi = map->fldrv_priv; | 1707 | struct cfi_private *cfi = map->fldrv_priv; |
1696 | int retry_cnt = 0; | 1708 | int retry_cnt = 0; |
1697 | map_word oldd; | 1709 | map_word oldd; |
1698 | int ret = 0; | 1710 | int ret = 0; |
1699 | int i; | 1711 | int i; |
1700 | 1712 | ||
1701 | adr += chip->start; | 1713 | adr += chip->start; |
1702 | 1714 | ||
1703 | ret = cfi_amdstd_panic_wait(map, chip, adr); | 1715 | ret = cfi_amdstd_panic_wait(map, chip, adr); |
1704 | if (ret) | 1716 | if (ret) |
1705 | return ret; | 1717 | return ret; |
1706 | 1718 | ||
1707 | pr_debug("MTD %s(): PANIC WRITE 0x%.8lx(0x%.8lx)\n", | 1719 | pr_debug("MTD %s(): PANIC WRITE 0x%.8lx(0x%.8lx)\n", |
1708 | __func__, adr, datum.x[0]); | 1720 | __func__, adr, datum.x[0]); |
1709 | 1721 | ||
1710 | /* | 1722 | /* |
1711 | * Check for a NOP for the case when the datum to write is already | 1723 | * Check for a NOP for the case when the datum to write is already |
1712 | * present - it saves time and works around buggy chips that corrupt | 1724 | * present - it saves time and works around buggy chips that corrupt |
1713 | * data at other locations when 0xff is written to a location that | 1725 | * data at other locations when 0xff is written to a location that |
1714 | * already contains 0xff. | 1726 | * already contains 0xff. |
1715 | */ | 1727 | */ |
1716 | oldd = map_read(map, adr); | 1728 | oldd = map_read(map, adr); |
1717 | if (map_word_equal(map, oldd, datum)) { | 1729 | if (map_word_equal(map, oldd, datum)) { |
1718 | pr_debug("MTD %s(): NOP\n", __func__); | 1730 | pr_debug("MTD %s(): NOP\n", __func__); |
1719 | goto op_done; | 1731 | goto op_done; |
1720 | } | 1732 | } |
1721 | 1733 | ||
1722 | ENABLE_VPP(map); | 1734 | ENABLE_VPP(map); |
1723 | 1735 | ||
1724 | retry: | 1736 | retry: |
1725 | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); | 1737 | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); |
1726 | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); | 1738 | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); |
1727 | cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); | 1739 | cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); |
1728 | map_write(map, datum, adr); | 1740 | map_write(map, datum, adr); |
1729 | 1741 | ||
1730 | for (i = 0; i < jiffies_to_usecs(uWriteTimeout); i++) { | 1742 | for (i = 0; i < jiffies_to_usecs(uWriteTimeout); i++) { |
1731 | if (chip_ready(map, adr)) | 1743 | if (chip_ready(map, adr)) |
1732 | break; | 1744 | break; |
1733 | 1745 | ||
1734 | udelay(1); | 1746 | udelay(1); |
1735 | } | 1747 | } |
1736 | 1748 | ||
1737 | if (!chip_good(map, adr, datum)) { | 1749 | if (!chip_good(map, adr, datum)) { |
1738 | /* reset on all failures. */ | 1750 | /* reset on all failures. */ |
1739 | map_write(map, CMD(0xF0), chip->start); | 1751 | map_write(map, CMD(0xF0), chip->start); |
1740 | /* FIXME - should have reset delay before continuing */ | 1752 | /* FIXME - should have reset delay before continuing */ |
1741 | 1753 | ||
1742 | if (++retry_cnt <= MAX_WORD_RETRIES) | 1754 | if (++retry_cnt <= MAX_WORD_RETRIES) |
1743 | goto retry; | 1755 | goto retry; |
1744 | 1756 | ||
1745 | ret = -EIO; | 1757 | ret = -EIO; |
1746 | } | 1758 | } |
1747 | 1759 | ||
1748 | op_done: | 1760 | op_done: |
1749 | DISABLE_VPP(map); | 1761 | DISABLE_VPP(map); |
1750 | return ret; | 1762 | return ret; |
1751 | } | 1763 | } |
1752 | 1764 | ||
1753 | /* | 1765 | /* |
1754 | * Write out some data during a kernel panic | 1766 | * Write out some data during a kernel panic |
1755 | * | 1767 | * |
1756 | * This is used by the mtdoops driver to save the dying messages from a | 1768 | * This is used by the mtdoops driver to save the dying messages from a |
1757 | * kernel which has panic'd. | 1769 | * kernel which has panic'd. |
1758 | * | 1770 | * |
1759 | * This routine ignores all of the locking used throughout the rest of the | 1771 | * This routine ignores all of the locking used throughout the rest of the |
1760 | * driver, in order to ensure that the data gets written out no matter what | 1772 | * driver, in order to ensure that the data gets written out no matter what |
1761 | * state this driver (and the flash chip itself) was in when the kernel crashed. | 1773 | * state this driver (and the flash chip itself) was in when the kernel crashed. |
1762 | * | 1774 | * |
1763 | * The implementation of this routine is intentionally similar to | 1775 | * The implementation of this routine is intentionally similar to |
1764 | * cfi_amdstd_write_words(), in order to ease code maintenance. | 1776 | * cfi_amdstd_write_words(), in order to ease code maintenance. |
1765 | */ | 1777 | */ |
1766 | static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, | 1778 | static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, |
1767 | size_t *retlen, const u_char *buf) | 1779 | size_t *retlen, const u_char *buf) |
1768 | { | 1780 | { |
1769 | struct map_info *map = mtd->priv; | 1781 | struct map_info *map = mtd->priv; |
1770 | struct cfi_private *cfi = map->fldrv_priv; | 1782 | struct cfi_private *cfi = map->fldrv_priv; |
1771 | unsigned long ofs, chipstart; | 1783 | unsigned long ofs, chipstart; |
1772 | int ret = 0; | 1784 | int ret = 0; |
1773 | int chipnum; | 1785 | int chipnum; |
1774 | 1786 | ||
1775 | chipnum = to >> cfi->chipshift; | 1787 | chipnum = to >> cfi->chipshift; |
1776 | ofs = to - (chipnum << cfi->chipshift); | 1788 | ofs = to - (chipnum << cfi->chipshift); |
1777 | chipstart = cfi->chips[chipnum].start; | 1789 | chipstart = cfi->chips[chipnum].start; |
1778 | 1790 | ||
1779 | /* If it's not bus aligned, do the first byte write */ | 1791 | /* If it's not bus aligned, do the first byte write */ |
1780 | if (ofs & (map_bankwidth(map) - 1)) { | 1792 | if (ofs & (map_bankwidth(map) - 1)) { |
1781 | unsigned long bus_ofs = ofs & ~(map_bankwidth(map) - 1); | 1793 | unsigned long bus_ofs = ofs & ~(map_bankwidth(map) - 1); |
1782 | int i = ofs - bus_ofs; | 1794 | int i = ofs - bus_ofs; |
1783 | int n = 0; | 1795 | int n = 0; |
1784 | map_word tmp_buf; | 1796 | map_word tmp_buf; |
1785 | 1797 | ||
1786 | ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], bus_ofs); | 1798 | ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], bus_ofs); |
1787 | if (ret) | 1799 | if (ret) |
1788 | return ret; | 1800 | return ret; |
1789 | 1801 | ||
1790 | /* Load 'tmp_buf' with old contents of flash */ | 1802 | /* Load 'tmp_buf' with old contents of flash */ |
1791 | tmp_buf = map_read(map, bus_ofs + chipstart); | 1803 | tmp_buf = map_read(map, bus_ofs + chipstart); |
1792 | 1804 | ||
1793 | /* Number of bytes to copy from buffer */ | 1805 | /* Number of bytes to copy from buffer */ |
1794 | n = min_t(int, len, map_bankwidth(map) - i); | 1806 | n = min_t(int, len, map_bankwidth(map) - i); |
1795 | 1807 | ||
1796 | tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n); | 1808 | tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n); |
1797 | 1809 | ||
1798 | ret = do_panic_write_oneword(map, &cfi->chips[chipnum], | 1810 | ret = do_panic_write_oneword(map, &cfi->chips[chipnum], |
1799 | bus_ofs, tmp_buf); | 1811 | bus_ofs, tmp_buf); |
1800 | if (ret) | 1812 | if (ret) |
1801 | return ret; | 1813 | return ret; |
1802 | 1814 | ||
1803 | ofs += n; | 1815 | ofs += n; |
1804 | buf += n; | 1816 | buf += n; |
1805 | (*retlen) += n; | 1817 | (*retlen) += n; |
1806 | len -= n; | 1818 | len -= n; |
1807 | 1819 | ||
1808 | if (ofs >> cfi->chipshift) { | 1820 | if (ofs >> cfi->chipshift) { |
1809 | chipnum++; | 1821 | chipnum++; |
1810 | ofs = 0; | 1822 | ofs = 0; |
1811 | if (chipnum == cfi->numchips) | 1823 | if (chipnum == cfi->numchips) |
1812 | return 0; | 1824 | return 0; |
1813 | } | 1825 | } |
1814 | } | 1826 | } |
1815 | 1827 | ||
1816 | /* We are now aligned, write as much as possible */ | 1828 | /* We are now aligned, write as much as possible */ |
1817 | while (len >= map_bankwidth(map)) { | 1829 | while (len >= map_bankwidth(map)) { |
1818 | map_word datum; | 1830 | map_word datum; |
1819 | 1831 | ||
1820 | datum = map_word_load(map, buf); | 1832 | datum = map_word_load(map, buf); |
1821 | 1833 | ||
1822 | ret = do_panic_write_oneword(map, &cfi->chips[chipnum], | 1834 | ret = do_panic_write_oneword(map, &cfi->chips[chipnum], |
1823 | ofs, datum); | 1835 | ofs, datum); |
1824 | if (ret) | 1836 | if (ret) |
1825 | return ret; | 1837 | return ret; |
1826 | 1838 | ||
1827 | ofs += map_bankwidth(map); | 1839 | ofs += map_bankwidth(map); |
1828 | buf += map_bankwidth(map); | 1840 | buf += map_bankwidth(map); |
1829 | (*retlen) += map_bankwidth(map); | 1841 | (*retlen) += map_bankwidth(map); |
1830 | len -= map_bankwidth(map); | 1842 | len -= map_bankwidth(map); |
1831 | 1843 | ||
1832 | if (ofs >> cfi->chipshift) { | 1844 | if (ofs >> cfi->chipshift) { |
1833 | chipnum++; | 1845 | chipnum++; |
1834 | ofs = 0; | 1846 | ofs = 0; |
1835 | if (chipnum == cfi->numchips) | 1847 | if (chipnum == cfi->numchips) |
1836 | return 0; | 1848 | return 0; |
1837 | 1849 | ||
1838 | chipstart = cfi->chips[chipnum].start; | 1850 | chipstart = cfi->chips[chipnum].start; |
1839 | } | 1851 | } |
1840 | } | 1852 | } |
1841 | 1853 | ||
1842 | /* Write the trailing bytes if any */ | 1854 | /* Write the trailing bytes if any */ |
1843 | if (len & (map_bankwidth(map) - 1)) { | 1855 | if (len & (map_bankwidth(map) - 1)) { |
1844 | map_word tmp_buf; | 1856 | map_word tmp_buf; |
1845 | 1857 | ||
1846 | ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], ofs); | 1858 | ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], ofs); |
1847 | if (ret) | 1859 | if (ret) |
1848 | return ret; | 1860 | return ret; |
1849 | 1861 | ||
1850 | tmp_buf = map_read(map, ofs + chipstart); | 1862 | tmp_buf = map_read(map, ofs + chipstart); |
1851 | 1863 | ||
1852 | tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len); | 1864 | tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len); |
1853 | 1865 | ||
1854 | ret = do_panic_write_oneword(map, &cfi->chips[chipnum], | 1866 | ret = do_panic_write_oneword(map, &cfi->chips[chipnum], |
1855 | ofs, tmp_buf); | 1867 | ofs, tmp_buf); |
1856 | if (ret) | 1868 | if (ret) |
1857 | return ret; | 1869 | return ret; |
1858 | 1870 | ||
1859 | (*retlen) += len; | 1871 | (*retlen) += len; |
1860 | } | 1872 | } |
1861 | 1873 | ||
1862 | return 0; | 1874 | return 0; |
1863 | } | 1875 | } |
1864 | 1876 | ||
1865 | 1877 | ||
1866 | /* | 1878 | /* |
1867 | * Handle devices with one erase region, that only implement | 1879 | * Handle devices with one erase region, that only implement |
1868 | * the chip erase command. | 1880 | * the chip erase command. |
1869 | */ | 1881 | */ |
1870 | static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip) | 1882 | static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip) |
1871 | { | 1883 | { |
1872 | struct cfi_private *cfi = map->fldrv_priv; | 1884 | struct cfi_private *cfi = map->fldrv_priv; |
1873 | unsigned long timeo = jiffies + HZ; | 1885 | unsigned long timeo = jiffies + HZ; |
1874 | unsigned long int adr; | 1886 | unsigned long int adr; |
1875 | DECLARE_WAITQUEUE(wait, current); | 1887 | DECLARE_WAITQUEUE(wait, current); |
1876 | int ret = 0; | 1888 | int ret = 0; |
1877 | 1889 | ||
1878 | adr = cfi->addr_unlock1; | 1890 | adr = cfi->addr_unlock1; |
1879 | 1891 | ||
1880 | mutex_lock(&chip->mutex); | 1892 | mutex_lock(&chip->mutex); |
1881 | ret = get_chip(map, chip, adr, FL_WRITING); | 1893 | ret = get_chip(map, chip, adr, FL_WRITING); |
1882 | if (ret) { | 1894 | if (ret) { |
1883 | mutex_unlock(&chip->mutex); | 1895 | mutex_unlock(&chip->mutex); |
1884 | return ret; | 1896 | return ret; |
1885 | } | 1897 | } |
1886 | 1898 | ||
1887 | pr_debug("MTD %s(): ERASE 0x%.8lx\n", | 1899 | pr_debug("MTD %s(): ERASE 0x%.8lx\n", |
1888 | __func__, chip->start ); | 1900 | __func__, chip->start ); |
1889 | 1901 | ||
1890 | XIP_INVAL_CACHED_RANGE(map, adr, map->size); | 1902 | XIP_INVAL_CACHED_RANGE(map, adr, map->size); |
1891 | ENABLE_VPP(map); | 1903 | ENABLE_VPP(map); |
1892 | xip_disable(map, chip, adr); | 1904 | xip_disable(map, chip, adr); |
1893 | 1905 | ||
1894 | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); | 1906 | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); |
1895 | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); | 1907 | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); |
1896 | cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); | 1908 | cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); |
1897 | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); | 1909 | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); |
1898 | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); | 1910 | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); |
1899 | cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); | 1911 | cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); |
1900 | 1912 | ||
1901 | chip->state = FL_ERASING; | 1913 | chip->state = FL_ERASING; |
1902 | chip->erase_suspended = 0; | 1914 | chip->erase_suspended = 0; |
1903 | chip->in_progress_block_addr = adr; | 1915 | chip->in_progress_block_addr = adr; |
1904 | 1916 | ||
1905 | INVALIDATE_CACHE_UDELAY(map, chip, | 1917 | INVALIDATE_CACHE_UDELAY(map, chip, |
1906 | adr, map->size, | 1918 | adr, map->size, |
1907 | chip->erase_time*500); | 1919 | chip->erase_time*500); |
1908 | 1920 | ||
1909 | timeo = jiffies + (HZ*20); | 1921 | timeo = jiffies + (HZ*20); |
1910 | 1922 | ||
1911 | for (;;) { | 1923 | for (;;) { |
1912 | if (chip->state != FL_ERASING) { | 1924 | if (chip->state != FL_ERASING) { |
1913 | /* Someone's suspended the erase. Sleep */ | 1925 | /* Someone's suspended the erase. Sleep */ |
1914 | set_current_state(TASK_UNINTERRUPTIBLE); | 1926 | set_current_state(TASK_UNINTERRUPTIBLE); |
1915 | add_wait_queue(&chip->wq, &wait); | 1927 | add_wait_queue(&chip->wq, &wait); |
1916 | mutex_unlock(&chip->mutex); | 1928 | mutex_unlock(&chip->mutex); |
1917 | schedule(); | 1929 | schedule(); |
1918 | remove_wait_queue(&chip->wq, &wait); | 1930 | remove_wait_queue(&chip->wq, &wait); |
1919 | mutex_lock(&chip->mutex); | 1931 | mutex_lock(&chip->mutex); |
1920 | continue; | 1932 | continue; |
1921 | } | 1933 | } |
1922 | if (chip->erase_suspended) { | 1934 | if (chip->erase_suspended) { |
1923 | /* This erase was suspended and resumed. | 1935 | /* This erase was suspended and resumed. |
1924 | Adjust the timeout */ | 1936 | Adjust the timeout */ |
1925 | timeo = jiffies + (HZ*20); /* FIXME */ | 1937 | timeo = jiffies + (HZ*20); /* FIXME */ |
1926 | chip->erase_suspended = 0; | 1938 | chip->erase_suspended = 0; |
1927 | } | 1939 | } |
1928 | 1940 | ||
1929 | if (chip_ready(map, adr)) | 1941 | if (chip_ready(map, adr)) |
1930 | break; | 1942 | break; |
1931 | 1943 | ||
1932 | if (time_after(jiffies, timeo)) { | 1944 | if (time_after(jiffies, timeo)) { |
1933 | printk(KERN_WARNING "MTD %s(): software timeout\n", | 1945 | printk(KERN_WARNING "MTD %s(): software timeout\n", |
1934 | __func__ ); | 1946 | __func__ ); |
1935 | break; | 1947 | break; |
1936 | } | 1948 | } |
1937 | 1949 | ||
1938 | /* Latency issues. Drop the lock, wait a while and retry */ | 1950 | /* Latency issues. Drop the lock, wait a while and retry */ |
1939 | UDELAY(map, chip, adr, 1000000/HZ); | 1951 | UDELAY(map, chip, adr, 1000000/HZ); |
1940 | } | 1952 | } |
1941 | /* Did we succeed? */ | 1953 | /* Did we succeed? */ |
1942 | if (!chip_good(map, adr, map_word_ff(map))) { | 1954 | if (!chip_good(map, adr, map_word_ff(map))) { |
1943 | /* reset on all failures. */ | 1955 | /* reset on all failures. */ |
1944 | map_write( map, CMD(0xF0), chip->start ); | 1956 | map_write( map, CMD(0xF0), chip->start ); |
1945 | /* FIXME - should have reset delay before continuing */ | 1957 | /* FIXME - should have reset delay before continuing */ |
1946 | 1958 | ||
1947 | ret = -EIO; | 1959 | ret = -EIO; |
1948 | } | 1960 | } |
1949 | 1961 | ||
1950 | chip->state = FL_READY; | 1962 | chip->state = FL_READY; |
1951 | xip_enable(map, chip, adr); | 1963 | xip_enable(map, chip, adr); |
1952 | DISABLE_VPP(map); | 1964 | DISABLE_VPP(map); |
1953 | put_chip(map, chip, adr); | 1965 | put_chip(map, chip, adr); |
1954 | mutex_unlock(&chip->mutex); | 1966 | mutex_unlock(&chip->mutex); |
1955 | 1967 | ||
1956 | return ret; | 1968 | return ret; |
1957 | } | 1969 | } |
1958 | 1970 | ||
1959 | 1971 | ||
1960 | static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk) | 1972 | static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk) |
1961 | { | 1973 | { |
1962 | struct cfi_private *cfi = map->fldrv_priv; | 1974 | struct cfi_private *cfi = map->fldrv_priv; |
1963 | unsigned long timeo = jiffies + HZ; | 1975 | unsigned long timeo = jiffies + HZ; |
1964 | DECLARE_WAITQUEUE(wait, current); | 1976 | DECLARE_WAITQUEUE(wait, current); |
1965 | int ret = 0; | 1977 | int ret = 0; |
1966 | 1978 | ||
1967 | adr += chip->start; | 1979 | adr += chip->start; |
1968 | 1980 | ||
1969 | mutex_lock(&chip->mutex); | 1981 | mutex_lock(&chip->mutex); |
1970 | ret = get_chip(map, chip, adr, FL_ERASING); | 1982 | ret = get_chip(map, chip, adr, FL_ERASING); |
1971 | if (ret) { | 1983 | if (ret) { |
1972 | mutex_unlock(&chip->mutex); | 1984 | mutex_unlock(&chip->mutex); |
1973 | return ret; | 1985 | return ret; |
1974 | } | 1986 | } |
1975 | 1987 | ||
1976 | pr_debug("MTD %s(): ERASE 0x%.8lx\n", | 1988 | pr_debug("MTD %s(): ERASE 0x%.8lx\n", |
1977 | __func__, adr ); | 1989 | __func__, adr ); |
1978 | 1990 | ||
1979 | XIP_INVAL_CACHED_RANGE(map, adr, len); | 1991 | XIP_INVAL_CACHED_RANGE(map, adr, len); |
1980 | ENABLE_VPP(map); | 1992 | ENABLE_VPP(map); |
1981 | xip_disable(map, chip, adr); | 1993 | xip_disable(map, chip, adr); |
1982 | 1994 | ||
1983 | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); | 1995 | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); |
1984 | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); | 1996 | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); |
1985 | cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); | 1997 | cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); |
1986 | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); | 1998 | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); |
1987 | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); | 1999 | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); |
1988 | map_write(map, cfi->sector_erase_cmd, adr); | 2000 | map_write(map, cfi->sector_erase_cmd, adr); |
1989 | 2001 | ||
1990 | chip->state = FL_ERASING; | 2002 | chip->state = FL_ERASING; |
1991 | chip->erase_suspended = 0; | 2003 | chip->erase_suspended = 0; |
1992 | chip->in_progress_block_addr = adr; | 2004 | chip->in_progress_block_addr = adr; |
1993 | 2005 | ||
1994 | INVALIDATE_CACHE_UDELAY(map, chip, | 2006 | INVALIDATE_CACHE_UDELAY(map, chip, |
1995 | adr, len, | 2007 | adr, len, |
1996 | chip->erase_time*500); | 2008 | chip->erase_time*500); |
1997 | 2009 | ||
1998 | timeo = jiffies + (HZ*20); | 2010 | timeo = jiffies + (HZ*20); |
1999 | 2011 | ||
2000 | for (;;) { | 2012 | for (;;) { |
2001 | if (chip->state != FL_ERASING) { | 2013 | if (chip->state != FL_ERASING) { |
2002 | /* Someone's suspended the erase. Sleep */ | 2014 | /* Someone's suspended the erase. Sleep */ |
2003 | set_current_state(TASK_UNINTERRUPTIBLE); | 2015 | set_current_state(TASK_UNINTERRUPTIBLE); |
2004 | add_wait_queue(&chip->wq, &wait); | 2016 | add_wait_queue(&chip->wq, &wait); |
2005 | mutex_unlock(&chip->mutex); | 2017 | mutex_unlock(&chip->mutex); |
2006 | schedule(); | 2018 | schedule(); |
2007 | remove_wait_queue(&chip->wq, &wait); | 2019 | remove_wait_queue(&chip->wq, &wait); |
2008 | mutex_lock(&chip->mutex); | 2020 | mutex_lock(&chip->mutex); |
2009 | continue; | 2021 | continue; |
2010 | } | 2022 | } |
2011 | if (chip->erase_suspended) { | 2023 | if (chip->erase_suspended) { |
2012 | /* This erase was suspended and resumed. | 2024 | /* This erase was suspended and resumed. |
2013 | Adjust the timeout */ | 2025 | Adjust the timeout */ |
2014 | timeo = jiffies + (HZ*20); /* FIXME */ | 2026 | timeo = jiffies + (HZ*20); /* FIXME */ |
2015 | chip->erase_suspended = 0; | 2027 | chip->erase_suspended = 0; |
2016 | } | 2028 | } |
2017 | 2029 | ||
2018 | if (chip_ready(map, adr)) { | 2030 | if (chip_ready(map, adr)) { |
2019 | xip_enable(map, chip, adr); | 2031 | xip_enable(map, chip, adr); |
2020 | break; | 2032 | break; |
2021 | } | 2033 | } |
2022 | 2034 | ||
2023 | if (time_after(jiffies, timeo)) { | 2035 | if (time_after(jiffies, timeo)) { |
2024 | xip_enable(map, chip, adr); | 2036 | xip_enable(map, chip, adr); |
2025 | printk(KERN_WARNING "MTD %s(): software timeout\n", | 2037 | printk(KERN_WARNING "MTD %s(): software timeout\n", |
2026 | __func__ ); | 2038 | __func__ ); |
2027 | break; | 2039 | break; |
2028 | } | 2040 | } |
2029 | 2041 | ||
2030 | /* Latency issues. Drop the lock, wait a while and retry */ | 2042 | /* Latency issues. Drop the lock, wait a while and retry */ |
2031 | UDELAY(map, chip, adr, 1000000/HZ); | 2043 | UDELAY(map, chip, adr, 1000000/HZ); |
2032 | } | 2044 | } |
2033 | /* Did we succeed? */ | 2045 | /* Did we succeed? */ |
2034 | if (!chip_good(map, adr, map_word_ff(map))) { | 2046 | if (!chip_good(map, adr, map_word_ff(map))) { |
2035 | /* reset on all failures. */ | 2047 | /* reset on all failures. */ |
2036 | map_write( map, CMD(0xF0), chip->start ); | 2048 | map_write( map, CMD(0xF0), chip->start ); |
2037 | /* FIXME - should have reset delay before continuing */ | 2049 | /* FIXME - should have reset delay before continuing */ |
2038 | 2050 | ||
2039 | ret = -EIO; | 2051 | ret = -EIO; |
2040 | } | 2052 | } |
2041 | 2053 | ||
2042 | chip->state = FL_READY; | 2054 | chip->state = FL_READY; |
2043 | DISABLE_VPP(map); | 2055 | DISABLE_VPP(map); |
2044 | put_chip(map, chip, adr); | 2056 | put_chip(map, chip, adr); |
2045 | mutex_unlock(&chip->mutex); | 2057 | mutex_unlock(&chip->mutex); |
2046 | return ret; | 2058 | return ret; |
2047 | } | 2059 | } |
2048 | 2060 | ||
2049 | 2061 | ||
2050 | static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr) | 2062 | static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr) |
2051 | { | 2063 | { |
2052 | unsigned long ofs, len; | 2064 | unsigned long ofs, len; |
2053 | int ret; | 2065 | int ret; |
2054 | 2066 | ||
2055 | ofs = instr->addr; | 2067 | ofs = instr->addr; |
2056 | len = instr->len; | 2068 | len = instr->len; |
2057 | 2069 | ||
2058 | ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL); | 2070 | ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL); |
2059 | if (ret) | 2071 | if (ret) |
2060 | return ret; | 2072 | return ret; |
2061 | 2073 | ||
2062 | instr->state = MTD_ERASE_DONE; | 2074 | instr->state = MTD_ERASE_DONE; |
2063 | mtd_erase_callback(instr); | 2075 | mtd_erase_callback(instr); |
2064 | 2076 | ||
2065 | return 0; | 2077 | return 0; |
2066 | } | 2078 | } |
2067 | 2079 | ||
2068 | 2080 | ||
2069 | static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr) | 2081 | static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr) |
2070 | { | 2082 | { |
2071 | struct map_info *map = mtd->priv; | 2083 | struct map_info *map = mtd->priv; |
2072 | struct cfi_private *cfi = map->fldrv_priv; | 2084 | struct cfi_private *cfi = map->fldrv_priv; |
2073 | int ret = 0; | 2085 | int ret = 0; |
2074 | 2086 | ||
2075 | if (instr->addr != 0) | 2087 | if (instr->addr != 0) |
2076 | return -EINVAL; | 2088 | return -EINVAL; |
2077 | 2089 | ||
2078 | if (instr->len != mtd->size) | 2090 | if (instr->len != mtd->size) |
2079 | return -EINVAL; | 2091 | return -EINVAL; |
2080 | 2092 | ||
2081 | ret = do_erase_chip(map, &cfi->chips[0]); | 2093 | ret = do_erase_chip(map, &cfi->chips[0]); |
2082 | if (ret) | 2094 | if (ret) |
2083 | return ret; | 2095 | return ret; |
2084 | 2096 | ||
2085 | instr->state = MTD_ERASE_DONE; | 2097 | instr->state = MTD_ERASE_DONE; |
2086 | mtd_erase_callback(instr); | 2098 | mtd_erase_callback(instr); |
2087 | 2099 | ||
2088 | return 0; | 2100 | return 0; |
2089 | } | 2101 | } |
2090 | 2102 | ||
2091 | static int do_atmel_lock(struct map_info *map, struct flchip *chip, | 2103 | static int do_atmel_lock(struct map_info *map, struct flchip *chip, |
2092 | unsigned long adr, int len, void *thunk) | 2104 | unsigned long adr, int len, void *thunk) |
2093 | { | 2105 | { |
2094 | struct cfi_private *cfi = map->fldrv_priv; | 2106 | struct cfi_private *cfi = map->fldrv_priv; |
2095 | int ret; | 2107 | int ret; |
2096 | 2108 | ||
2097 | mutex_lock(&chip->mutex); | 2109 | mutex_lock(&chip->mutex); |
2098 | ret = get_chip(map, chip, adr + chip->start, FL_LOCKING); | 2110 | ret = get_chip(map, chip, adr + chip->start, FL_LOCKING); |
2099 | if (ret) | 2111 | if (ret) |
2100 | goto out_unlock; | 2112 | goto out_unlock; |
2101 | chip->state = FL_LOCKING; | 2113 | chip->state = FL_LOCKING; |
2102 | 2114 | ||
2103 | pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len); | 2115 | pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len); |
2104 | 2116 | ||
2105 | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, | 2117 | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, |
2106 | cfi->device_type, NULL); | 2118 | cfi->device_type, NULL); |
2107 | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, | 2119 | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, |
2108 | cfi->device_type, NULL); | 2120 | cfi->device_type, NULL); |
2109 | cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, | 2121 | cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, |
2110 | cfi->device_type, NULL); | 2122 | cfi->device_type, NULL); |
2111 | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, | 2123 | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, |
2112 | cfi->device_type, NULL); | 2124 | cfi->device_type, NULL); |
2113 | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, | 2125 | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, |
2114 | cfi->device_type, NULL); | 2126 | cfi->device_type, NULL); |
2115 | map_write(map, CMD(0x40), chip->start + adr); | 2127 | map_write(map, CMD(0x40), chip->start + adr); |
2116 | 2128 | ||
2117 | chip->state = FL_READY; | 2129 | chip->state = FL_READY; |
2118 | put_chip(map, chip, adr + chip->start); | 2130 | put_chip(map, chip, adr + chip->start); |
2119 | ret = 0; | 2131 | ret = 0; |
2120 | 2132 | ||
2121 | out_unlock: | 2133 | out_unlock: |
2122 | mutex_unlock(&chip->mutex); | 2134 | mutex_unlock(&chip->mutex); |
2123 | return ret; | 2135 | return ret; |
2124 | } | 2136 | } |
2125 | 2137 | ||
2126 | static int do_atmel_unlock(struct map_info *map, struct flchip *chip, | 2138 | static int do_atmel_unlock(struct map_info *map, struct flchip *chip, |
2127 | unsigned long adr, int len, void *thunk) | 2139 | unsigned long adr, int len, void *thunk) |
2128 | { | 2140 | { |
2129 | struct cfi_private *cfi = map->fldrv_priv; | 2141 | struct cfi_private *cfi = map->fldrv_priv; |
2130 | int ret; | 2142 | int ret; |
2131 | 2143 | ||
2132 | mutex_lock(&chip->mutex); | 2144 | mutex_lock(&chip->mutex); |
2133 | ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING); | 2145 | ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING); |
2134 | if (ret) | 2146 | if (ret) |
2135 | goto out_unlock; | 2147 | goto out_unlock; |
2136 | chip->state = FL_UNLOCKING; | 2148 | chip->state = FL_UNLOCKING; |
2137 | 2149 | ||
2138 | pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len); | 2150 | pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len); |
2139 | 2151 | ||
2140 | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, | 2152 | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, |
2141 | cfi->device_type, NULL); | 2153 | cfi->device_type, NULL); |
2142 | map_write(map, CMD(0x70), adr); | 2154 | map_write(map, CMD(0x70), adr); |
2143 | 2155 | ||
2144 | chip->state = FL_READY; | 2156 | chip->state = FL_READY; |
2145 | put_chip(map, chip, adr + chip->start); | 2157 | put_chip(map, chip, adr + chip->start); |
2146 | ret = 0; | 2158 | ret = 0; |
2147 | 2159 | ||
2148 | out_unlock: | 2160 | out_unlock: |
2149 | mutex_unlock(&chip->mutex); | 2161 | mutex_unlock(&chip->mutex); |
2150 | return ret; | 2162 | return ret; |
2151 | } | 2163 | } |
2152 | 2164 | ||
2153 | static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) | 2165 | static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) |
2154 | { | 2166 | { |
2155 | return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL); | 2167 | return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL); |
2156 | } | 2168 | } |
2157 | 2169 | ||
2158 | static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) | 2170 | static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) |
2159 | { | 2171 | { |
2160 | return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL); | 2172 | return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL); |
2161 | } | 2173 | } |
2162 | 2174 | ||
2163 | 2175 | ||
2164 | static void cfi_amdstd_sync (struct mtd_info *mtd) | 2176 | static void cfi_amdstd_sync (struct mtd_info *mtd) |
2165 | { | 2177 | { |
2166 | struct map_info *map = mtd->priv; | 2178 | struct map_info *map = mtd->priv; |
2167 | struct cfi_private *cfi = map->fldrv_priv; | 2179 | struct cfi_private *cfi = map->fldrv_priv; |
2168 | int i; | 2180 | int i; |
2169 | struct flchip *chip; | 2181 | struct flchip *chip; |
2170 | int ret = 0; | 2182 | int ret = 0; |
2171 | DECLARE_WAITQUEUE(wait, current); | 2183 | DECLARE_WAITQUEUE(wait, current); |
2172 | 2184 | ||
2173 | for (i=0; !ret && i<cfi->numchips; i++) { | 2185 | for (i=0; !ret && i<cfi->numchips; i++) { |
2174 | chip = &cfi->chips[i]; | 2186 | chip = &cfi->chips[i]; |
2175 | 2187 | ||
2176 | retry: | 2188 | retry: |
2177 | mutex_lock(&chip->mutex); | 2189 | mutex_lock(&chip->mutex); |
2178 | 2190 | ||
2179 | switch(chip->state) { | 2191 | switch(chip->state) { |
2180 | case FL_READY: | 2192 | case FL_READY: |
2181 | case FL_STATUS: | 2193 | case FL_STATUS: |
2182 | case FL_CFI_QUERY: | 2194 | case FL_CFI_QUERY: |
2183 | case FL_JEDEC_QUERY: | 2195 | case FL_JEDEC_QUERY: |
2184 | chip->oldstate = chip->state; | 2196 | chip->oldstate = chip->state; |
2185 | chip->state = FL_SYNCING; | 2197 | chip->state = FL_SYNCING; |
2186 | /* No need to wake_up() on this state change - | 2198 | /* No need to wake_up() on this state change - |
2187 | * as the whole point is that nobody can do anything | 2199 | * as the whole point is that nobody can do anything |
2188 | * with the chip now anyway. | 2200 | * with the chip now anyway. |
2189 | */ | 2201 | */ |
2190 | case FL_SYNCING: | 2202 | case FL_SYNCING: |
2191 | mutex_unlock(&chip->mutex); | 2203 | mutex_unlock(&chip->mutex); |
2192 | break; | 2204 | break; |
2193 | 2205 | ||
2194 | default: | 2206 | default: |
2195 | /* Not an idle state */ | 2207 | /* Not an idle state */ |
2196 | set_current_state(TASK_UNINTERRUPTIBLE); | 2208 | set_current_state(TASK_UNINTERRUPTIBLE); |
2197 | add_wait_queue(&chip->wq, &wait); | 2209 | add_wait_queue(&chip->wq, &wait); |
2198 | 2210 | ||
2199 | mutex_unlock(&chip->mutex); | 2211 | mutex_unlock(&chip->mutex); |
2200 | 2212 | ||
2201 | schedule(); | 2213 | schedule(); |
2202 | 2214 | ||
2203 | remove_wait_queue(&chip->wq, &wait); | 2215 | remove_wait_queue(&chip->wq, &wait); |
2204 | 2216 | ||
2205 | goto retry; | 2217 | goto retry; |
2206 | } | 2218 | } |
2207 | } | 2219 | } |
2208 | 2220 | ||
2209 | /* Unlock the chips again */ | 2221 | /* Unlock the chips again */ |
2210 | 2222 | ||
2211 | for (i--; i >=0; i--) { | 2223 | for (i--; i >=0; i--) { |
2212 | chip = &cfi->chips[i]; | 2224 | chip = &cfi->chips[i]; |
2213 | 2225 | ||
2214 | mutex_lock(&chip->mutex); | 2226 | mutex_lock(&chip->mutex); |
2215 | 2227 | ||
2216 | if (chip->state == FL_SYNCING) { | 2228 | if (chip->state == FL_SYNCING) { |
2217 | chip->state = chip->oldstate; | 2229 | chip->state = chip->oldstate; |
2218 | wake_up(&chip->wq); | 2230 | wake_up(&chip->wq); |
2219 | } | 2231 | } |
2220 | mutex_unlock(&chip->mutex); | 2232 | mutex_unlock(&chip->mutex); |
2221 | } | 2233 | } |
2222 | } | 2234 | } |
2223 | 2235 | ||
2224 | 2236 | ||
2225 | static int cfi_amdstd_suspend(struct mtd_info *mtd) | 2237 | static int cfi_amdstd_suspend(struct mtd_info *mtd) |
2226 | { | 2238 | { |
2227 | struct map_info *map = mtd->priv; | 2239 | struct map_info *map = mtd->priv; |
2228 | struct cfi_private *cfi = map->fldrv_priv; | 2240 | struct cfi_private *cfi = map->fldrv_priv; |
2229 | int i; | 2241 | int i; |
2230 | struct flchip *chip; | 2242 | struct flchip *chip; |
2231 | int ret = 0; | 2243 | int ret = 0; |
2232 | 2244 | ||
2233 | for (i=0; !ret && i<cfi->numchips; i++) { | 2245 | for (i=0; !ret && i<cfi->numchips; i++) { |
2234 | chip = &cfi->chips[i]; | 2246 | chip = &cfi->chips[i]; |
2235 | 2247 | ||
2236 | mutex_lock(&chip->mutex); | 2248 | mutex_lock(&chip->mutex); |
2237 | 2249 | ||
2238 | switch(chip->state) { | 2250 | switch(chip->state) { |
2239 | case FL_READY: | 2251 | case FL_READY: |
2240 | case FL_STATUS: | 2252 | case FL_STATUS: |
2241 | case FL_CFI_QUERY: | 2253 | case FL_CFI_QUERY: |
2242 | case FL_JEDEC_QUERY: | 2254 | case FL_JEDEC_QUERY: |
2243 | chip->oldstate = chip->state; | 2255 | chip->oldstate = chip->state; |
2244 | chip->state = FL_PM_SUSPENDED; | 2256 | chip->state = FL_PM_SUSPENDED; |
2245 | /* No need to wake_up() on this state change - | 2257 | /* No need to wake_up() on this state change - |
2246 | * as the whole point is that nobody can do anything | 2258 | * as the whole point is that nobody can do anything |
2247 | * with the chip now anyway. | 2259 | * with the chip now anyway. |
2248 | */ | 2260 | */ |
2249 | case FL_PM_SUSPENDED: | 2261 | case FL_PM_SUSPENDED: |
2250 | break; | 2262 | break; |
2251 | 2263 | ||
2252 | default: | 2264 | default: |
2253 | ret = -EAGAIN; | 2265 | ret = -EAGAIN; |
2254 | break; | 2266 | break; |
2255 | } | 2267 | } |
2256 | mutex_unlock(&chip->mutex); | 2268 | mutex_unlock(&chip->mutex); |
2257 | } | 2269 | } |
2258 | 2270 | ||
2259 | /* Unlock the chips again */ | 2271 | /* Unlock the chips again */ |
2260 | 2272 | ||
2261 | if (ret) { | 2273 | if (ret) { |
2262 | for (i--; i >=0; i--) { | 2274 | for (i--; i >=0; i--) { |
2263 | chip = &cfi->chips[i]; | 2275 | chip = &cfi->chips[i]; |
2264 | 2276 | ||
2265 | mutex_lock(&chip->mutex); | 2277 | mutex_lock(&chip->mutex); |
2266 | 2278 | ||
2267 | if (chip->state == FL_PM_SUSPENDED) { | 2279 | if (chip->state == FL_PM_SUSPENDED) { |
2268 | chip->state = chip->oldstate; | 2280 | chip->state = chip->oldstate; |
2269 | wake_up(&chip->wq); | 2281 | wake_up(&chip->wq); |
2270 | } | 2282 | } |
2271 | mutex_unlock(&chip->mutex); | 2283 | mutex_unlock(&chip->mutex); |
2272 | } | 2284 | } |
2273 | } | 2285 | } |
2274 | 2286 | ||
2275 | return ret; | 2287 | return ret; |
2276 | } | 2288 | } |
2277 | 2289 | ||
2278 | 2290 | ||
2279 | static void cfi_amdstd_resume(struct mtd_info *mtd) | 2291 | static void cfi_amdstd_resume(struct mtd_info *mtd) |
2280 | { | 2292 | { |
2281 | struct map_info *map = mtd->priv; | 2293 | struct map_info *map = mtd->priv; |
2282 | struct cfi_private *cfi = map->fldrv_priv; | 2294 | struct cfi_private *cfi = map->fldrv_priv; |
2283 | int i; | 2295 | int i; |
2284 | struct flchip *chip; | 2296 | struct flchip *chip; |
2285 | 2297 | ||
2286 | for (i=0; i<cfi->numchips; i++) { | 2298 | for (i=0; i<cfi->numchips; i++) { |
2287 | 2299 | ||
2288 | chip = &cfi->chips[i]; | 2300 | chip = &cfi->chips[i]; |
2289 | 2301 | ||
2290 | mutex_lock(&chip->mutex); | 2302 | mutex_lock(&chip->mutex); |
2291 | 2303 | ||
2292 | if (chip->state == FL_PM_SUSPENDED) { | 2304 | if (chip->state == FL_PM_SUSPENDED) { |
2293 | chip->state = FL_READY; | 2305 | chip->state = FL_READY; |
2294 | map_write(map, CMD(0xF0), chip->start); | 2306 | map_write(map, CMD(0xF0), chip->start); |
2295 | wake_up(&chip->wq); | 2307 | wake_up(&chip->wq); |
2296 | } | 2308 | } |
2297 | else | 2309 | else |
2298 | printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n"); | 2310 | printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n"); |
2299 | 2311 | ||
2300 | mutex_unlock(&chip->mutex); | 2312 | mutex_unlock(&chip->mutex); |
2301 | } | 2313 | } |
2302 | } | 2314 | } |
2303 | 2315 | ||
2304 | 2316 | ||
2305 | /* | 2317 | /* |
2306 | * Ensure that the flash device is put back into read array mode before | 2318 | * Ensure that the flash device is put back into read array mode before |
2307 | * unloading the driver or rebooting. On some systems, rebooting while | 2319 | * unloading the driver or rebooting. On some systems, rebooting while |
2308 | * the flash is in query/program/erase mode will prevent the CPU from | 2320 | * the flash is in query/program/erase mode will prevent the CPU from |
2309 | * fetching the bootloader code, requiring a hard reset or power cycle. | 2321 | * fetching the bootloader code, requiring a hard reset or power cycle. |
2310 | */ | 2322 | */ |
2311 | static int cfi_amdstd_reset(struct mtd_info *mtd) | 2323 | static int cfi_amdstd_reset(struct mtd_info *mtd) |
2312 | { | 2324 | { |
2313 | struct map_info *map = mtd->priv; | 2325 | struct map_info *map = mtd->priv; |
2314 | struct cfi_private *cfi = map->fldrv_priv; | 2326 | struct cfi_private *cfi = map->fldrv_priv; |
2315 | int i, ret; | 2327 | int i, ret; |
2316 | struct flchip *chip; | 2328 | struct flchip *chip; |
2317 | 2329 | ||
2318 | for (i = 0; i < cfi->numchips; i++) { | 2330 | for (i = 0; i < cfi->numchips; i++) { |
2319 | 2331 | ||
2320 | chip = &cfi->chips[i]; | 2332 | chip = &cfi->chips[i]; |
2321 | 2333 | ||
2322 | mutex_lock(&chip->mutex); | 2334 | mutex_lock(&chip->mutex); |
2323 | 2335 | ||
2324 | ret = get_chip(map, chip, chip->start, FL_SHUTDOWN); | 2336 | ret = get_chip(map, chip, chip->start, FL_SHUTDOWN); |
2325 | if (!ret) { | 2337 | if (!ret) { |
2326 | map_write(map, CMD(0xF0), chip->start); | 2338 | map_write(map, CMD(0xF0), chip->start); |
2327 | chip->state = FL_SHUTDOWN; | 2339 | chip->state = FL_SHUTDOWN; |
2328 | put_chip(map, chip, chip->start); | 2340 | put_chip(map, chip, chip->start); |
2329 | } | 2341 | } |
2330 | 2342 | ||
2331 | mutex_unlock(&chip->mutex); | 2343 | mutex_unlock(&chip->mutex); |
2332 | } | 2344 | } |
2333 | 2345 | ||
2334 | return 0; | 2346 | return 0; |
2335 | } | 2347 | } |
2336 | 2348 | ||
2337 | 2349 | ||
2338 | static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val, | 2350 | static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val, |
2339 | void *v) | 2351 | void *v) |
2340 | { | 2352 | { |
2341 | struct mtd_info *mtd; | 2353 | struct mtd_info *mtd; |
2342 | 2354 | ||
2343 | mtd = container_of(nb, struct mtd_info, reboot_notifier); | 2355 | mtd = container_of(nb, struct mtd_info, reboot_notifier); |
2344 | cfi_amdstd_reset(mtd); | 2356 | cfi_amdstd_reset(mtd); |
2345 | return NOTIFY_DONE; | 2357 | return NOTIFY_DONE; |
2346 | } | 2358 | } |
2347 | 2359 | ||
2348 | 2360 | ||
2349 | static void cfi_amdstd_destroy(struct mtd_info *mtd) | 2361 | static void cfi_amdstd_destroy(struct mtd_info *mtd) |
2350 | { | 2362 | { |
2351 | struct map_info *map = mtd->priv; | 2363 | struct map_info *map = mtd->priv; |
2352 | struct cfi_private *cfi = map->fldrv_priv; | 2364 | struct cfi_private *cfi = map->fldrv_priv; |
2353 | 2365 | ||
2354 | cfi_amdstd_reset(mtd); | 2366 | cfi_amdstd_reset(mtd); |
2355 | unregister_reboot_notifier(&mtd->reboot_notifier); | 2367 | unregister_reboot_notifier(&mtd->reboot_notifier); |
2356 | kfree(cfi->cmdset_priv); | 2368 | kfree(cfi->cmdset_priv); |
2357 | kfree(cfi->cfiq); | 2369 | kfree(cfi->cfiq); |
2358 | kfree(cfi); | 2370 | kfree(cfi); |
2359 | kfree(mtd->eraseregions); | 2371 | kfree(mtd->eraseregions); |
2360 | } | 2372 | } |
2361 | 2373 | ||
2362 | MODULE_LICENSE("GPL"); | 2374 | MODULE_LICENSE("GPL"); |
2363 | MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al."); | 2375 | MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al."); |
2364 | MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips"); | 2376 | MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips"); |
2365 | MODULE_ALIAS("cfi_cmdset_0006"); | 2377 | MODULE_ALIAS("cfi_cmdset_0006"); |
2366 | MODULE_ALIAS("cfi_cmdset_0701"); | 2378 | MODULE_ALIAS("cfi_cmdset_0701"); |
2367 | 2379 |