Commit 0c34029abdfdea64420cb4264c4e91a776b22157

Authored by Lai Jiangshan
Committed by Paul E. McKenney
1 parent f261414f0d

rcu: move some code from macro to function

Shrink the RCU_INIT_FLAVOR() macro by moving all but the initialization
of the ->rda[] array to rcu_init_one().  The call to rcu_init_one()
can then be moved to the end of the RCU_INIT_FLAVOR() macro, which is
required because rcu_boot_init_percpu_data(), which is now called from
rcu_init_one(), depends on the initialization of the ->rda[] array.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>

Showing 1 changed file with 9 additions and 9 deletions Inline Diff

1 /* 1 /*
2 * Read-Copy Update mechanism for mutual exclusion 2 * Read-Copy Update mechanism for mutual exclusion
3 * 3 *
4 * This program is free software; you can redistribute it and/or modify 4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by 5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or 6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version. 7 * (at your option) any later version.
8 * 8 *
9 * This program is distributed in the hope that it will be useful, 9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details. 12 * GNU General Public License for more details.
13 * 13 *
14 * You should have received a copy of the GNU General Public License 14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software 15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 * 17 *
18 * Copyright IBM Corporation, 2008 18 * Copyright IBM Corporation, 2008
19 * 19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com> 21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version 22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 * 23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 * 26 *
27 * For detailed explanation of Read-Copy Update mechanism see - 27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU 28 * Documentation/RCU
29 */ 29 */
30 #include <linux/types.h> 30 #include <linux/types.h>
31 #include <linux/kernel.h> 31 #include <linux/kernel.h>
32 #include <linux/init.h> 32 #include <linux/init.h>
33 #include <linux/spinlock.h> 33 #include <linux/spinlock.h>
34 #include <linux/smp.h> 34 #include <linux/smp.h>
35 #include <linux/rcupdate.h> 35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h> 36 #include <linux/interrupt.h>
37 #include <linux/sched.h> 37 #include <linux/sched.h>
38 #include <linux/nmi.h> 38 #include <linux/nmi.h>
39 #include <asm/atomic.h> 39 #include <asm/atomic.h>
40 #include <linux/bitops.h> 40 #include <linux/bitops.h>
41 #include <linux/module.h> 41 #include <linux/module.h>
42 #include <linux/completion.h> 42 #include <linux/completion.h>
43 #include <linux/moduleparam.h> 43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h> 44 #include <linux/percpu.h>
45 #include <linux/notifier.h> 45 #include <linux/notifier.h>
46 #include <linux/cpu.h> 46 #include <linux/cpu.h>
47 #include <linux/mutex.h> 47 #include <linux/mutex.h>
48 #include <linux/time.h> 48 #include <linux/time.h>
49 49
50 #include "rcutree.h" 50 #include "rcutree.h"
51 51
52 /* Data structures. */ 52 /* Data structures. */
53 53
54 static struct lock_class_key rcu_node_class[NUM_RCU_LVLS]; 54 static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
55 55
56 #define RCU_STATE_INITIALIZER(name) { \ 56 #define RCU_STATE_INITIALIZER(name) { \
57 .level = { &name.node[0] }, \ 57 .level = { &name.node[0] }, \
58 .levelcnt = { \ 58 .levelcnt = { \
59 NUM_RCU_LVL_0, /* root of hierarchy. */ \ 59 NUM_RCU_LVL_0, /* root of hierarchy. */ \
60 NUM_RCU_LVL_1, \ 60 NUM_RCU_LVL_1, \
61 NUM_RCU_LVL_2, \ 61 NUM_RCU_LVL_2, \
62 NUM_RCU_LVL_3, \ 62 NUM_RCU_LVL_3, \
63 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \ 63 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
64 }, \ 64 }, \
65 .signaled = RCU_GP_IDLE, \ 65 .signaled = RCU_GP_IDLE, \
66 .gpnum = -300, \ 66 .gpnum = -300, \
67 .completed = -300, \ 67 .completed = -300, \
68 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&name.onofflock), \ 68 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&name.onofflock), \
69 .orphan_cbs_list = NULL, \ 69 .orphan_cbs_list = NULL, \
70 .orphan_cbs_tail = &name.orphan_cbs_list, \ 70 .orphan_cbs_tail = &name.orphan_cbs_list, \
71 .orphan_qlen = 0, \ 71 .orphan_qlen = 0, \
72 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&name.fqslock), \ 72 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&name.fqslock), \
73 .n_force_qs = 0, \ 73 .n_force_qs = 0, \
74 .n_force_qs_ngp = 0, \ 74 .n_force_qs_ngp = 0, \
75 } 75 }
76 76
77 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state); 77 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
78 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data); 78 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
79 79
80 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state); 80 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
81 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data); 81 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
82 82
83 /* 83 /*
84 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s 84 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
85 * permit this function to be invoked without holding the root rcu_node 85 * permit this function to be invoked without holding the root rcu_node
86 * structure's ->lock, but of course results can be subject to change. 86 * structure's ->lock, but of course results can be subject to change.
87 */ 87 */
88 static int rcu_gp_in_progress(struct rcu_state *rsp) 88 static int rcu_gp_in_progress(struct rcu_state *rsp)
89 { 89 {
90 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum); 90 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
91 } 91 }
92 92
93 /* 93 /*
94 * Note a quiescent state. Because we do not need to know 94 * Note a quiescent state. Because we do not need to know
95 * how many quiescent states passed, just if there was at least 95 * how many quiescent states passed, just if there was at least
96 * one since the start of the grace period, this just sets a flag. 96 * one since the start of the grace period, this just sets a flag.
97 */ 97 */
98 void rcu_sched_qs(int cpu) 98 void rcu_sched_qs(int cpu)
99 { 99 {
100 struct rcu_data *rdp; 100 struct rcu_data *rdp;
101 101
102 rdp = &per_cpu(rcu_sched_data, cpu); 102 rdp = &per_cpu(rcu_sched_data, cpu);
103 rdp->passed_quiesc_completed = rdp->gpnum - 1; 103 rdp->passed_quiesc_completed = rdp->gpnum - 1;
104 barrier(); 104 barrier();
105 rdp->passed_quiesc = 1; 105 rdp->passed_quiesc = 1;
106 rcu_preempt_note_context_switch(cpu); 106 rcu_preempt_note_context_switch(cpu);
107 } 107 }
108 108
109 void rcu_bh_qs(int cpu) 109 void rcu_bh_qs(int cpu)
110 { 110 {
111 struct rcu_data *rdp; 111 struct rcu_data *rdp;
112 112
113 rdp = &per_cpu(rcu_bh_data, cpu); 113 rdp = &per_cpu(rcu_bh_data, cpu);
114 rdp->passed_quiesc_completed = rdp->gpnum - 1; 114 rdp->passed_quiesc_completed = rdp->gpnum - 1;
115 barrier(); 115 barrier();
116 rdp->passed_quiesc = 1; 116 rdp->passed_quiesc = 1;
117 } 117 }
118 118
119 #ifdef CONFIG_NO_HZ 119 #ifdef CONFIG_NO_HZ
120 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = { 120 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
121 .dynticks_nesting = 1, 121 .dynticks_nesting = 1,
122 .dynticks = 1, 122 .dynticks = 1,
123 }; 123 };
124 #endif /* #ifdef CONFIG_NO_HZ */ 124 #endif /* #ifdef CONFIG_NO_HZ */
125 125
126 static int blimit = 10; /* Maximum callbacks per softirq. */ 126 static int blimit = 10; /* Maximum callbacks per softirq. */
127 static int qhimark = 10000; /* If this many pending, ignore blimit. */ 127 static int qhimark = 10000; /* If this many pending, ignore blimit. */
128 static int qlowmark = 100; /* Once only this many pending, use blimit. */ 128 static int qlowmark = 100; /* Once only this many pending, use blimit. */
129 129
130 module_param(blimit, int, 0); 130 module_param(blimit, int, 0);
131 module_param(qhimark, int, 0); 131 module_param(qhimark, int, 0);
132 module_param(qlowmark, int, 0); 132 module_param(qlowmark, int, 0);
133 133
134 static void force_quiescent_state(struct rcu_state *rsp, int relaxed); 134 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
135 static int rcu_pending(int cpu); 135 static int rcu_pending(int cpu);
136 136
137 /* 137 /*
138 * Return the number of RCU-sched batches processed thus far for debug & stats. 138 * Return the number of RCU-sched batches processed thus far for debug & stats.
139 */ 139 */
140 long rcu_batches_completed_sched(void) 140 long rcu_batches_completed_sched(void)
141 { 141 {
142 return rcu_sched_state.completed; 142 return rcu_sched_state.completed;
143 } 143 }
144 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched); 144 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
145 145
146 /* 146 /*
147 * Return the number of RCU BH batches processed thus far for debug & stats. 147 * Return the number of RCU BH batches processed thus far for debug & stats.
148 */ 148 */
149 long rcu_batches_completed_bh(void) 149 long rcu_batches_completed_bh(void)
150 { 150 {
151 return rcu_bh_state.completed; 151 return rcu_bh_state.completed;
152 } 152 }
153 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh); 153 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
154 154
155 /* 155 /*
156 * Force a quiescent state for RCU BH. 156 * Force a quiescent state for RCU BH.
157 */ 157 */
158 void rcu_bh_force_quiescent_state(void) 158 void rcu_bh_force_quiescent_state(void)
159 { 159 {
160 force_quiescent_state(&rcu_bh_state, 0); 160 force_quiescent_state(&rcu_bh_state, 0);
161 } 161 }
162 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state); 162 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
163 163
164 /* 164 /*
165 * Force a quiescent state for RCU-sched. 165 * Force a quiescent state for RCU-sched.
166 */ 166 */
167 void rcu_sched_force_quiescent_state(void) 167 void rcu_sched_force_quiescent_state(void)
168 { 168 {
169 force_quiescent_state(&rcu_sched_state, 0); 169 force_quiescent_state(&rcu_sched_state, 0);
170 } 170 }
171 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state); 171 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
172 172
173 /* 173 /*
174 * Does the CPU have callbacks ready to be invoked? 174 * Does the CPU have callbacks ready to be invoked?
175 */ 175 */
176 static int 176 static int
177 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp) 177 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
178 { 178 {
179 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL]; 179 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
180 } 180 }
181 181
182 /* 182 /*
183 * Does the current CPU require a yet-as-unscheduled grace period? 183 * Does the current CPU require a yet-as-unscheduled grace period?
184 */ 184 */
185 static int 185 static int
186 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp) 186 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
187 { 187 {
188 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp); 188 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
189 } 189 }
190 190
191 /* 191 /*
192 * Return the root node of the specified rcu_state structure. 192 * Return the root node of the specified rcu_state structure.
193 */ 193 */
194 static struct rcu_node *rcu_get_root(struct rcu_state *rsp) 194 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
195 { 195 {
196 return &rsp->node[0]; 196 return &rsp->node[0];
197 } 197 }
198 198
199 #ifdef CONFIG_SMP 199 #ifdef CONFIG_SMP
200 200
201 /* 201 /*
202 * If the specified CPU is offline, tell the caller that it is in 202 * If the specified CPU is offline, tell the caller that it is in
203 * a quiescent state. Otherwise, whack it with a reschedule IPI. 203 * a quiescent state. Otherwise, whack it with a reschedule IPI.
204 * Grace periods can end up waiting on an offline CPU when that 204 * Grace periods can end up waiting on an offline CPU when that
205 * CPU is in the process of coming online -- it will be added to the 205 * CPU is in the process of coming online -- it will be added to the
206 * rcu_node bitmasks before it actually makes it online. The same thing 206 * rcu_node bitmasks before it actually makes it online. The same thing
207 * can happen while a CPU is in the process of coming online. Because this 207 * can happen while a CPU is in the process of coming online. Because this
208 * race is quite rare, we check for it after detecting that the grace 208 * race is quite rare, we check for it after detecting that the grace
209 * period has been delayed rather than checking each and every CPU 209 * period has been delayed rather than checking each and every CPU
210 * each and every time we start a new grace period. 210 * each and every time we start a new grace period.
211 */ 211 */
212 static int rcu_implicit_offline_qs(struct rcu_data *rdp) 212 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
213 { 213 {
214 /* 214 /*
215 * If the CPU is offline, it is in a quiescent state. We can 215 * If the CPU is offline, it is in a quiescent state. We can
216 * trust its state not to change because interrupts are disabled. 216 * trust its state not to change because interrupts are disabled.
217 */ 217 */
218 if (cpu_is_offline(rdp->cpu)) { 218 if (cpu_is_offline(rdp->cpu)) {
219 rdp->offline_fqs++; 219 rdp->offline_fqs++;
220 return 1; 220 return 1;
221 } 221 }
222 222
223 /* If preemptable RCU, no point in sending reschedule IPI. */ 223 /* If preemptable RCU, no point in sending reschedule IPI. */
224 if (rdp->preemptable) 224 if (rdp->preemptable)
225 return 0; 225 return 0;
226 226
227 /* The CPU is online, so send it a reschedule IPI. */ 227 /* The CPU is online, so send it a reschedule IPI. */
228 if (rdp->cpu != smp_processor_id()) 228 if (rdp->cpu != smp_processor_id())
229 smp_send_reschedule(rdp->cpu); 229 smp_send_reschedule(rdp->cpu);
230 else 230 else
231 set_need_resched(); 231 set_need_resched();
232 rdp->resched_ipi++; 232 rdp->resched_ipi++;
233 return 0; 233 return 0;
234 } 234 }
235 235
236 #endif /* #ifdef CONFIG_SMP */ 236 #endif /* #ifdef CONFIG_SMP */
237 237
238 #ifdef CONFIG_NO_HZ 238 #ifdef CONFIG_NO_HZ
239 239
240 /** 240 /**
241 * rcu_enter_nohz - inform RCU that current CPU is entering nohz 241 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
242 * 242 *
243 * Enter nohz mode, in other words, -leave- the mode in which RCU 243 * Enter nohz mode, in other words, -leave- the mode in which RCU
244 * read-side critical sections can occur. (Though RCU read-side 244 * read-side critical sections can occur. (Though RCU read-side
245 * critical sections can occur in irq handlers in nohz mode, a possibility 245 * critical sections can occur in irq handlers in nohz mode, a possibility
246 * handled by rcu_irq_enter() and rcu_irq_exit()). 246 * handled by rcu_irq_enter() and rcu_irq_exit()).
247 */ 247 */
248 void rcu_enter_nohz(void) 248 void rcu_enter_nohz(void)
249 { 249 {
250 unsigned long flags; 250 unsigned long flags;
251 struct rcu_dynticks *rdtp; 251 struct rcu_dynticks *rdtp;
252 252
253 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */ 253 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
254 local_irq_save(flags); 254 local_irq_save(flags);
255 rdtp = &__get_cpu_var(rcu_dynticks); 255 rdtp = &__get_cpu_var(rcu_dynticks);
256 rdtp->dynticks++; 256 rdtp->dynticks++;
257 rdtp->dynticks_nesting--; 257 rdtp->dynticks_nesting--;
258 WARN_ON_ONCE(rdtp->dynticks & 0x1); 258 WARN_ON_ONCE(rdtp->dynticks & 0x1);
259 local_irq_restore(flags); 259 local_irq_restore(flags);
260 } 260 }
261 261
262 /* 262 /*
263 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz 263 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
264 * 264 *
265 * Exit nohz mode, in other words, -enter- the mode in which RCU 265 * Exit nohz mode, in other words, -enter- the mode in which RCU
266 * read-side critical sections normally occur. 266 * read-side critical sections normally occur.
267 */ 267 */
268 void rcu_exit_nohz(void) 268 void rcu_exit_nohz(void)
269 { 269 {
270 unsigned long flags; 270 unsigned long flags;
271 struct rcu_dynticks *rdtp; 271 struct rcu_dynticks *rdtp;
272 272
273 local_irq_save(flags); 273 local_irq_save(flags);
274 rdtp = &__get_cpu_var(rcu_dynticks); 274 rdtp = &__get_cpu_var(rcu_dynticks);
275 rdtp->dynticks++; 275 rdtp->dynticks++;
276 rdtp->dynticks_nesting++; 276 rdtp->dynticks_nesting++;
277 WARN_ON_ONCE(!(rdtp->dynticks & 0x1)); 277 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
278 local_irq_restore(flags); 278 local_irq_restore(flags);
279 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */ 279 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
280 } 280 }
281 281
282 /** 282 /**
283 * rcu_nmi_enter - inform RCU of entry to NMI context 283 * rcu_nmi_enter - inform RCU of entry to NMI context
284 * 284 *
285 * If the CPU was idle with dynamic ticks active, and there is no 285 * If the CPU was idle with dynamic ticks active, and there is no
286 * irq handler running, this updates rdtp->dynticks_nmi to let the 286 * irq handler running, this updates rdtp->dynticks_nmi to let the
287 * RCU grace-period handling know that the CPU is active. 287 * RCU grace-period handling know that the CPU is active.
288 */ 288 */
289 void rcu_nmi_enter(void) 289 void rcu_nmi_enter(void)
290 { 290 {
291 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks); 291 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
292 292
293 if (rdtp->dynticks & 0x1) 293 if (rdtp->dynticks & 0x1)
294 return; 294 return;
295 rdtp->dynticks_nmi++; 295 rdtp->dynticks_nmi++;
296 WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1)); 296 WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1));
297 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */ 297 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
298 } 298 }
299 299
300 /** 300 /**
301 * rcu_nmi_exit - inform RCU of exit from NMI context 301 * rcu_nmi_exit - inform RCU of exit from NMI context
302 * 302 *
303 * If the CPU was idle with dynamic ticks active, and there is no 303 * If the CPU was idle with dynamic ticks active, and there is no
304 * irq handler running, this updates rdtp->dynticks_nmi to let the 304 * irq handler running, this updates rdtp->dynticks_nmi to let the
305 * RCU grace-period handling know that the CPU is no longer active. 305 * RCU grace-period handling know that the CPU is no longer active.
306 */ 306 */
307 void rcu_nmi_exit(void) 307 void rcu_nmi_exit(void)
308 { 308 {
309 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks); 309 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
310 310
311 if (rdtp->dynticks & 0x1) 311 if (rdtp->dynticks & 0x1)
312 return; 312 return;
313 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */ 313 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
314 rdtp->dynticks_nmi++; 314 rdtp->dynticks_nmi++;
315 WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1); 315 WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1);
316 } 316 }
317 317
318 /** 318 /**
319 * rcu_irq_enter - inform RCU of entry to hard irq context 319 * rcu_irq_enter - inform RCU of entry to hard irq context
320 * 320 *
321 * If the CPU was idle with dynamic ticks active, this updates the 321 * If the CPU was idle with dynamic ticks active, this updates the
322 * rdtp->dynticks to let the RCU handling know that the CPU is active. 322 * rdtp->dynticks to let the RCU handling know that the CPU is active.
323 */ 323 */
324 void rcu_irq_enter(void) 324 void rcu_irq_enter(void)
325 { 325 {
326 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks); 326 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
327 327
328 if (rdtp->dynticks_nesting++) 328 if (rdtp->dynticks_nesting++)
329 return; 329 return;
330 rdtp->dynticks++; 330 rdtp->dynticks++;
331 WARN_ON_ONCE(!(rdtp->dynticks & 0x1)); 331 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
332 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */ 332 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
333 } 333 }
334 334
335 /** 335 /**
336 * rcu_irq_exit - inform RCU of exit from hard irq context 336 * rcu_irq_exit - inform RCU of exit from hard irq context
337 * 337 *
338 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks 338 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
339 * to put let the RCU handling be aware that the CPU is going back to idle 339 * to put let the RCU handling be aware that the CPU is going back to idle
340 * with no ticks. 340 * with no ticks.
341 */ 341 */
342 void rcu_irq_exit(void) 342 void rcu_irq_exit(void)
343 { 343 {
344 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks); 344 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
345 345
346 if (--rdtp->dynticks_nesting) 346 if (--rdtp->dynticks_nesting)
347 return; 347 return;
348 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */ 348 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
349 rdtp->dynticks++; 349 rdtp->dynticks++;
350 WARN_ON_ONCE(rdtp->dynticks & 0x1); 350 WARN_ON_ONCE(rdtp->dynticks & 0x1);
351 351
352 /* If the interrupt queued a callback, get out of dyntick mode. */ 352 /* If the interrupt queued a callback, get out of dyntick mode. */
353 if (__get_cpu_var(rcu_sched_data).nxtlist || 353 if (__get_cpu_var(rcu_sched_data).nxtlist ||
354 __get_cpu_var(rcu_bh_data).nxtlist) 354 __get_cpu_var(rcu_bh_data).nxtlist)
355 set_need_resched(); 355 set_need_resched();
356 } 356 }
357 357
358 #ifdef CONFIG_SMP 358 #ifdef CONFIG_SMP
359 359
360 /* 360 /*
361 * Snapshot the specified CPU's dynticks counter so that we can later 361 * Snapshot the specified CPU's dynticks counter so that we can later
362 * credit them with an implicit quiescent state. Return 1 if this CPU 362 * credit them with an implicit quiescent state. Return 1 if this CPU
363 * is in dynticks idle mode, which is an extended quiescent state. 363 * is in dynticks idle mode, which is an extended quiescent state.
364 */ 364 */
365 static int dyntick_save_progress_counter(struct rcu_data *rdp) 365 static int dyntick_save_progress_counter(struct rcu_data *rdp)
366 { 366 {
367 int ret; 367 int ret;
368 int snap; 368 int snap;
369 int snap_nmi; 369 int snap_nmi;
370 370
371 snap = rdp->dynticks->dynticks; 371 snap = rdp->dynticks->dynticks;
372 snap_nmi = rdp->dynticks->dynticks_nmi; 372 snap_nmi = rdp->dynticks->dynticks_nmi;
373 smp_mb(); /* Order sampling of snap with end of grace period. */ 373 smp_mb(); /* Order sampling of snap with end of grace period. */
374 rdp->dynticks_snap = snap; 374 rdp->dynticks_snap = snap;
375 rdp->dynticks_nmi_snap = snap_nmi; 375 rdp->dynticks_nmi_snap = snap_nmi;
376 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0); 376 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
377 if (ret) 377 if (ret)
378 rdp->dynticks_fqs++; 378 rdp->dynticks_fqs++;
379 return ret; 379 return ret;
380 } 380 }
381 381
382 /* 382 /*
383 * Return true if the specified CPU has passed through a quiescent 383 * Return true if the specified CPU has passed through a quiescent
384 * state by virtue of being in or having passed through an dynticks 384 * state by virtue of being in or having passed through an dynticks
385 * idle state since the last call to dyntick_save_progress_counter() 385 * idle state since the last call to dyntick_save_progress_counter()
386 * for this same CPU. 386 * for this same CPU.
387 */ 387 */
388 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) 388 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
389 { 389 {
390 long curr; 390 long curr;
391 long curr_nmi; 391 long curr_nmi;
392 long snap; 392 long snap;
393 long snap_nmi; 393 long snap_nmi;
394 394
395 curr = rdp->dynticks->dynticks; 395 curr = rdp->dynticks->dynticks;
396 snap = rdp->dynticks_snap; 396 snap = rdp->dynticks_snap;
397 curr_nmi = rdp->dynticks->dynticks_nmi; 397 curr_nmi = rdp->dynticks->dynticks_nmi;
398 snap_nmi = rdp->dynticks_nmi_snap; 398 snap_nmi = rdp->dynticks_nmi_snap;
399 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */ 399 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
400 400
401 /* 401 /*
402 * If the CPU passed through or entered a dynticks idle phase with 402 * If the CPU passed through or entered a dynticks idle phase with
403 * no active irq/NMI handlers, then we can safely pretend that the CPU 403 * no active irq/NMI handlers, then we can safely pretend that the CPU
404 * already acknowledged the request to pass through a quiescent 404 * already acknowledged the request to pass through a quiescent
405 * state. Either way, that CPU cannot possibly be in an RCU 405 * state. Either way, that CPU cannot possibly be in an RCU
406 * read-side critical section that started before the beginning 406 * read-side critical section that started before the beginning
407 * of the current RCU grace period. 407 * of the current RCU grace period.
408 */ 408 */
409 if ((curr != snap || (curr & 0x1) == 0) && 409 if ((curr != snap || (curr & 0x1) == 0) &&
410 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) { 410 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
411 rdp->dynticks_fqs++; 411 rdp->dynticks_fqs++;
412 return 1; 412 return 1;
413 } 413 }
414 414
415 /* Go check for the CPU being offline. */ 415 /* Go check for the CPU being offline. */
416 return rcu_implicit_offline_qs(rdp); 416 return rcu_implicit_offline_qs(rdp);
417 } 417 }
418 418
419 #endif /* #ifdef CONFIG_SMP */ 419 #endif /* #ifdef CONFIG_SMP */
420 420
421 #else /* #ifdef CONFIG_NO_HZ */ 421 #else /* #ifdef CONFIG_NO_HZ */
422 422
423 #ifdef CONFIG_SMP 423 #ifdef CONFIG_SMP
424 424
425 static int dyntick_save_progress_counter(struct rcu_data *rdp) 425 static int dyntick_save_progress_counter(struct rcu_data *rdp)
426 { 426 {
427 return 0; 427 return 0;
428 } 428 }
429 429
430 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) 430 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
431 { 431 {
432 return rcu_implicit_offline_qs(rdp); 432 return rcu_implicit_offline_qs(rdp);
433 } 433 }
434 434
435 #endif /* #ifdef CONFIG_SMP */ 435 #endif /* #ifdef CONFIG_SMP */
436 436
437 #endif /* #else #ifdef CONFIG_NO_HZ */ 437 #endif /* #else #ifdef CONFIG_NO_HZ */
438 438
439 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR 439 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
440 440
441 static void record_gp_stall_check_time(struct rcu_state *rsp) 441 static void record_gp_stall_check_time(struct rcu_state *rsp)
442 { 442 {
443 rsp->gp_start = jiffies; 443 rsp->gp_start = jiffies;
444 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK; 444 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
445 } 445 }
446 446
447 static void print_other_cpu_stall(struct rcu_state *rsp) 447 static void print_other_cpu_stall(struct rcu_state *rsp)
448 { 448 {
449 int cpu; 449 int cpu;
450 long delta; 450 long delta;
451 unsigned long flags; 451 unsigned long flags;
452 struct rcu_node *rnp = rcu_get_root(rsp); 452 struct rcu_node *rnp = rcu_get_root(rsp);
453 453
454 /* Only let one CPU complain about others per time interval. */ 454 /* Only let one CPU complain about others per time interval. */
455 455
456 raw_spin_lock_irqsave(&rnp->lock, flags); 456 raw_spin_lock_irqsave(&rnp->lock, flags);
457 delta = jiffies - rsp->jiffies_stall; 457 delta = jiffies - rsp->jiffies_stall;
458 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) { 458 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
459 raw_spin_unlock_irqrestore(&rnp->lock, flags); 459 raw_spin_unlock_irqrestore(&rnp->lock, flags);
460 return; 460 return;
461 } 461 }
462 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK; 462 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
463 463
464 /* 464 /*
465 * Now rat on any tasks that got kicked up to the root rcu_node 465 * Now rat on any tasks that got kicked up to the root rcu_node
466 * due to CPU offlining. 466 * due to CPU offlining.
467 */ 467 */
468 rcu_print_task_stall(rnp); 468 rcu_print_task_stall(rnp);
469 raw_spin_unlock_irqrestore(&rnp->lock, flags); 469 raw_spin_unlock_irqrestore(&rnp->lock, flags);
470 470
471 /* OK, time to rat on our buddy... */ 471 /* OK, time to rat on our buddy... */
472 472
473 printk(KERN_ERR "INFO: RCU detected CPU stalls:"); 473 printk(KERN_ERR "INFO: RCU detected CPU stalls:");
474 rcu_for_each_leaf_node(rsp, rnp) { 474 rcu_for_each_leaf_node(rsp, rnp) {
475 raw_spin_lock_irqsave(&rnp->lock, flags); 475 raw_spin_lock_irqsave(&rnp->lock, flags);
476 rcu_print_task_stall(rnp); 476 rcu_print_task_stall(rnp);
477 raw_spin_unlock_irqrestore(&rnp->lock, flags); 477 raw_spin_unlock_irqrestore(&rnp->lock, flags);
478 if (rnp->qsmask == 0) 478 if (rnp->qsmask == 0)
479 continue; 479 continue;
480 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++) 480 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
481 if (rnp->qsmask & (1UL << cpu)) 481 if (rnp->qsmask & (1UL << cpu))
482 printk(" %d", rnp->grplo + cpu); 482 printk(" %d", rnp->grplo + cpu);
483 } 483 }
484 printk(" (detected by %d, t=%ld jiffies)\n", 484 printk(" (detected by %d, t=%ld jiffies)\n",
485 smp_processor_id(), (long)(jiffies - rsp->gp_start)); 485 smp_processor_id(), (long)(jiffies - rsp->gp_start));
486 trigger_all_cpu_backtrace(); 486 trigger_all_cpu_backtrace();
487 487
488 /* If so configured, complain about tasks blocking the grace period. */ 488 /* If so configured, complain about tasks blocking the grace period. */
489 489
490 rcu_print_detail_task_stall(rsp); 490 rcu_print_detail_task_stall(rsp);
491 491
492 force_quiescent_state(rsp, 0); /* Kick them all. */ 492 force_quiescent_state(rsp, 0); /* Kick them all. */
493 } 493 }
494 494
495 static void print_cpu_stall(struct rcu_state *rsp) 495 static void print_cpu_stall(struct rcu_state *rsp)
496 { 496 {
497 unsigned long flags; 497 unsigned long flags;
498 struct rcu_node *rnp = rcu_get_root(rsp); 498 struct rcu_node *rnp = rcu_get_root(rsp);
499 499
500 printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n", 500 printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n",
501 smp_processor_id(), jiffies - rsp->gp_start); 501 smp_processor_id(), jiffies - rsp->gp_start);
502 trigger_all_cpu_backtrace(); 502 trigger_all_cpu_backtrace();
503 503
504 raw_spin_lock_irqsave(&rnp->lock, flags); 504 raw_spin_lock_irqsave(&rnp->lock, flags);
505 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall)) 505 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
506 rsp->jiffies_stall = 506 rsp->jiffies_stall =
507 jiffies + RCU_SECONDS_TILL_STALL_RECHECK; 507 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
508 raw_spin_unlock_irqrestore(&rnp->lock, flags); 508 raw_spin_unlock_irqrestore(&rnp->lock, flags);
509 509
510 set_need_resched(); /* kick ourselves to get things going. */ 510 set_need_resched(); /* kick ourselves to get things going. */
511 } 511 }
512 512
513 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) 513 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
514 { 514 {
515 long delta; 515 long delta;
516 struct rcu_node *rnp; 516 struct rcu_node *rnp;
517 517
518 delta = jiffies - rsp->jiffies_stall; 518 delta = jiffies - rsp->jiffies_stall;
519 rnp = rdp->mynode; 519 rnp = rdp->mynode;
520 if ((rnp->qsmask & rdp->grpmask) && delta >= 0) { 520 if ((rnp->qsmask & rdp->grpmask) && delta >= 0) {
521 521
522 /* We haven't checked in, so go dump stack. */ 522 /* We haven't checked in, so go dump stack. */
523 print_cpu_stall(rsp); 523 print_cpu_stall(rsp);
524 524
525 } else if (rcu_gp_in_progress(rsp) && delta >= RCU_STALL_RAT_DELAY) { 525 } else if (rcu_gp_in_progress(rsp) && delta >= RCU_STALL_RAT_DELAY) {
526 526
527 /* They had two time units to dump stack, so complain. */ 527 /* They had two time units to dump stack, so complain. */
528 print_other_cpu_stall(rsp); 528 print_other_cpu_stall(rsp);
529 } 529 }
530 } 530 }
531 531
532 #else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ 532 #else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
533 533
534 static void record_gp_stall_check_time(struct rcu_state *rsp) 534 static void record_gp_stall_check_time(struct rcu_state *rsp)
535 { 535 {
536 } 536 }
537 537
538 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) 538 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
539 { 539 {
540 } 540 }
541 541
542 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ 542 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
543 543
544 /* 544 /*
545 * Update CPU-local rcu_data state to record the newly noticed grace period. 545 * Update CPU-local rcu_data state to record the newly noticed grace period.
546 * This is used both when we started the grace period and when we notice 546 * This is used both when we started the grace period and when we notice
547 * that someone else started the grace period. The caller must hold the 547 * that someone else started the grace period. The caller must hold the
548 * ->lock of the leaf rcu_node structure corresponding to the current CPU, 548 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
549 * and must have irqs disabled. 549 * and must have irqs disabled.
550 */ 550 */
551 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp) 551 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
552 { 552 {
553 if (rdp->gpnum != rnp->gpnum) { 553 if (rdp->gpnum != rnp->gpnum) {
554 rdp->qs_pending = 1; 554 rdp->qs_pending = 1;
555 rdp->passed_quiesc = 0; 555 rdp->passed_quiesc = 0;
556 rdp->gpnum = rnp->gpnum; 556 rdp->gpnum = rnp->gpnum;
557 } 557 }
558 } 558 }
559 559
560 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp) 560 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
561 { 561 {
562 unsigned long flags; 562 unsigned long flags;
563 struct rcu_node *rnp; 563 struct rcu_node *rnp;
564 564
565 local_irq_save(flags); 565 local_irq_save(flags);
566 rnp = rdp->mynode; 566 rnp = rdp->mynode;
567 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */ 567 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
568 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */ 568 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
569 local_irq_restore(flags); 569 local_irq_restore(flags);
570 return; 570 return;
571 } 571 }
572 __note_new_gpnum(rsp, rnp, rdp); 572 __note_new_gpnum(rsp, rnp, rdp);
573 raw_spin_unlock_irqrestore(&rnp->lock, flags); 573 raw_spin_unlock_irqrestore(&rnp->lock, flags);
574 } 574 }
575 575
576 /* 576 /*
577 * Did someone else start a new RCU grace period start since we last 577 * Did someone else start a new RCU grace period start since we last
578 * checked? Update local state appropriately if so. Must be called 578 * checked? Update local state appropriately if so. Must be called
579 * on the CPU corresponding to rdp. 579 * on the CPU corresponding to rdp.
580 */ 580 */
581 static int 581 static int
582 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp) 582 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
583 { 583 {
584 unsigned long flags; 584 unsigned long flags;
585 int ret = 0; 585 int ret = 0;
586 586
587 local_irq_save(flags); 587 local_irq_save(flags);
588 if (rdp->gpnum != rsp->gpnum) { 588 if (rdp->gpnum != rsp->gpnum) {
589 note_new_gpnum(rsp, rdp); 589 note_new_gpnum(rsp, rdp);
590 ret = 1; 590 ret = 1;
591 } 591 }
592 local_irq_restore(flags); 592 local_irq_restore(flags);
593 return ret; 593 return ret;
594 } 594 }
595 595
596 /* 596 /*
597 * Advance this CPU's callbacks, but only if the current grace period 597 * Advance this CPU's callbacks, but only if the current grace period
598 * has ended. This may be called only from the CPU to whom the rdp 598 * has ended. This may be called only from the CPU to whom the rdp
599 * belongs. In addition, the corresponding leaf rcu_node structure's 599 * belongs. In addition, the corresponding leaf rcu_node structure's
600 * ->lock must be held by the caller, with irqs disabled. 600 * ->lock must be held by the caller, with irqs disabled.
601 */ 601 */
602 static void 602 static void
603 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp) 603 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
604 { 604 {
605 /* Did another grace period end? */ 605 /* Did another grace period end? */
606 if (rdp->completed != rnp->completed) { 606 if (rdp->completed != rnp->completed) {
607 607
608 /* Advance callbacks. No harm if list empty. */ 608 /* Advance callbacks. No harm if list empty. */
609 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL]; 609 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
610 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL]; 610 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
611 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; 611 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
612 612
613 /* Remember that we saw this grace-period completion. */ 613 /* Remember that we saw this grace-period completion. */
614 rdp->completed = rnp->completed; 614 rdp->completed = rnp->completed;
615 } 615 }
616 } 616 }
617 617
618 /* 618 /*
619 * Advance this CPU's callbacks, but only if the current grace period 619 * Advance this CPU's callbacks, but only if the current grace period
620 * has ended. This may be called only from the CPU to whom the rdp 620 * has ended. This may be called only from the CPU to whom the rdp
621 * belongs. 621 * belongs.
622 */ 622 */
623 static void 623 static void
624 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp) 624 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
625 { 625 {
626 unsigned long flags; 626 unsigned long flags;
627 struct rcu_node *rnp; 627 struct rcu_node *rnp;
628 628
629 local_irq_save(flags); 629 local_irq_save(flags);
630 rnp = rdp->mynode; 630 rnp = rdp->mynode;
631 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */ 631 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
632 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */ 632 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
633 local_irq_restore(flags); 633 local_irq_restore(flags);
634 return; 634 return;
635 } 635 }
636 __rcu_process_gp_end(rsp, rnp, rdp); 636 __rcu_process_gp_end(rsp, rnp, rdp);
637 raw_spin_unlock_irqrestore(&rnp->lock, flags); 637 raw_spin_unlock_irqrestore(&rnp->lock, flags);
638 } 638 }
639 639
640 /* 640 /*
641 * Do per-CPU grace-period initialization for running CPU. The caller 641 * Do per-CPU grace-period initialization for running CPU. The caller
642 * must hold the lock of the leaf rcu_node structure corresponding to 642 * must hold the lock of the leaf rcu_node structure corresponding to
643 * this CPU. 643 * this CPU.
644 */ 644 */
645 static void 645 static void
646 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp) 646 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
647 { 647 {
648 /* Prior grace period ended, so advance callbacks for current CPU. */ 648 /* Prior grace period ended, so advance callbacks for current CPU. */
649 __rcu_process_gp_end(rsp, rnp, rdp); 649 __rcu_process_gp_end(rsp, rnp, rdp);
650 650
651 /* 651 /*
652 * Because this CPU just now started the new grace period, we know 652 * Because this CPU just now started the new grace period, we know
653 * that all of its callbacks will be covered by this upcoming grace 653 * that all of its callbacks will be covered by this upcoming grace
654 * period, even the ones that were registered arbitrarily recently. 654 * period, even the ones that were registered arbitrarily recently.
655 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL. 655 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
656 * 656 *
657 * Other CPUs cannot be sure exactly when the grace period started. 657 * Other CPUs cannot be sure exactly when the grace period started.
658 * Therefore, their recently registered callbacks must pass through 658 * Therefore, their recently registered callbacks must pass through
659 * an additional RCU_NEXT_READY stage, so that they will be handled 659 * an additional RCU_NEXT_READY stage, so that they will be handled
660 * by the next RCU grace period. 660 * by the next RCU grace period.
661 */ 661 */
662 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; 662 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
663 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; 663 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
664 664
665 /* Set state so that this CPU will detect the next quiescent state. */ 665 /* Set state so that this CPU will detect the next quiescent state. */
666 __note_new_gpnum(rsp, rnp, rdp); 666 __note_new_gpnum(rsp, rnp, rdp);
667 } 667 }
668 668
669 /* 669 /*
670 * Start a new RCU grace period if warranted, re-initializing the hierarchy 670 * Start a new RCU grace period if warranted, re-initializing the hierarchy
671 * in preparation for detecting the next grace period. The caller must hold 671 * in preparation for detecting the next grace period. The caller must hold
672 * the root node's ->lock, which is released before return. Hard irqs must 672 * the root node's ->lock, which is released before return. Hard irqs must
673 * be disabled. 673 * be disabled.
674 */ 674 */
675 static void 675 static void
676 rcu_start_gp(struct rcu_state *rsp, unsigned long flags) 676 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
677 __releases(rcu_get_root(rsp)->lock) 677 __releases(rcu_get_root(rsp)->lock)
678 { 678 {
679 struct rcu_data *rdp = rsp->rda[smp_processor_id()]; 679 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
680 struct rcu_node *rnp = rcu_get_root(rsp); 680 struct rcu_node *rnp = rcu_get_root(rsp);
681 681
682 if (!cpu_needs_another_gp(rsp, rdp) || rsp->fqs_active) { 682 if (!cpu_needs_another_gp(rsp, rdp) || rsp->fqs_active) {
683 if (cpu_needs_another_gp(rsp, rdp)) 683 if (cpu_needs_another_gp(rsp, rdp))
684 rsp->fqs_need_gp = 1; 684 rsp->fqs_need_gp = 1;
685 if (rnp->completed == rsp->completed) { 685 if (rnp->completed == rsp->completed) {
686 raw_spin_unlock_irqrestore(&rnp->lock, flags); 686 raw_spin_unlock_irqrestore(&rnp->lock, flags);
687 return; 687 return;
688 } 688 }
689 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 689 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
690 690
691 /* 691 /*
692 * Propagate new ->completed value to rcu_node structures 692 * Propagate new ->completed value to rcu_node structures
693 * so that other CPUs don't have to wait until the start 693 * so that other CPUs don't have to wait until the start
694 * of the next grace period to process their callbacks. 694 * of the next grace period to process their callbacks.
695 */ 695 */
696 rcu_for_each_node_breadth_first(rsp, rnp) { 696 rcu_for_each_node_breadth_first(rsp, rnp) {
697 raw_spin_lock(&rnp->lock); /* irqs already disabled. */ 697 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
698 rnp->completed = rsp->completed; 698 rnp->completed = rsp->completed;
699 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 699 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
700 } 700 }
701 local_irq_restore(flags); 701 local_irq_restore(flags);
702 return; 702 return;
703 } 703 }
704 704
705 /* Advance to a new grace period and initialize state. */ 705 /* Advance to a new grace period and initialize state. */
706 rsp->gpnum++; 706 rsp->gpnum++;
707 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT); 707 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
708 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */ 708 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
709 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS; 709 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
710 record_gp_stall_check_time(rsp); 710 record_gp_stall_check_time(rsp);
711 711
712 /* Special-case the common single-level case. */ 712 /* Special-case the common single-level case. */
713 if (NUM_RCU_NODES == 1) { 713 if (NUM_RCU_NODES == 1) {
714 rcu_preempt_check_blocked_tasks(rnp); 714 rcu_preempt_check_blocked_tasks(rnp);
715 rnp->qsmask = rnp->qsmaskinit; 715 rnp->qsmask = rnp->qsmaskinit;
716 rnp->gpnum = rsp->gpnum; 716 rnp->gpnum = rsp->gpnum;
717 rnp->completed = rsp->completed; 717 rnp->completed = rsp->completed;
718 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */ 718 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
719 rcu_start_gp_per_cpu(rsp, rnp, rdp); 719 rcu_start_gp_per_cpu(rsp, rnp, rdp);
720 raw_spin_unlock_irqrestore(&rnp->lock, flags); 720 raw_spin_unlock_irqrestore(&rnp->lock, flags);
721 return; 721 return;
722 } 722 }
723 723
724 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */ 724 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
725 725
726 726
727 /* Exclude any concurrent CPU-hotplug operations. */ 727 /* Exclude any concurrent CPU-hotplug operations. */
728 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */ 728 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
729 729
730 /* 730 /*
731 * Set the quiescent-state-needed bits in all the rcu_node 731 * Set the quiescent-state-needed bits in all the rcu_node
732 * structures for all currently online CPUs in breadth-first 732 * structures for all currently online CPUs in breadth-first
733 * order, starting from the root rcu_node structure. This 733 * order, starting from the root rcu_node structure. This
734 * operation relies on the layout of the hierarchy within the 734 * operation relies on the layout of the hierarchy within the
735 * rsp->node[] array. Note that other CPUs will access only 735 * rsp->node[] array. Note that other CPUs will access only
736 * the leaves of the hierarchy, which still indicate that no 736 * the leaves of the hierarchy, which still indicate that no
737 * grace period is in progress, at least until the corresponding 737 * grace period is in progress, at least until the corresponding
738 * leaf node has been initialized. In addition, we have excluded 738 * leaf node has been initialized. In addition, we have excluded
739 * CPU-hotplug operations. 739 * CPU-hotplug operations.
740 * 740 *
741 * Note that the grace period cannot complete until we finish 741 * Note that the grace period cannot complete until we finish
742 * the initialization process, as there will be at least one 742 * the initialization process, as there will be at least one
743 * qsmask bit set in the root node until that time, namely the 743 * qsmask bit set in the root node until that time, namely the
744 * one corresponding to this CPU, due to the fact that we have 744 * one corresponding to this CPU, due to the fact that we have
745 * irqs disabled. 745 * irqs disabled.
746 */ 746 */
747 rcu_for_each_node_breadth_first(rsp, rnp) { 747 rcu_for_each_node_breadth_first(rsp, rnp) {
748 raw_spin_lock(&rnp->lock); /* irqs already disabled. */ 748 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
749 rcu_preempt_check_blocked_tasks(rnp); 749 rcu_preempt_check_blocked_tasks(rnp);
750 rnp->qsmask = rnp->qsmaskinit; 750 rnp->qsmask = rnp->qsmaskinit;
751 rnp->gpnum = rsp->gpnum; 751 rnp->gpnum = rsp->gpnum;
752 rnp->completed = rsp->completed; 752 rnp->completed = rsp->completed;
753 if (rnp == rdp->mynode) 753 if (rnp == rdp->mynode)
754 rcu_start_gp_per_cpu(rsp, rnp, rdp); 754 rcu_start_gp_per_cpu(rsp, rnp, rdp);
755 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 755 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
756 } 756 }
757 757
758 rnp = rcu_get_root(rsp); 758 rnp = rcu_get_root(rsp);
759 raw_spin_lock(&rnp->lock); /* irqs already disabled. */ 759 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
760 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */ 760 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
761 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 761 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
762 raw_spin_unlock_irqrestore(&rsp->onofflock, flags); 762 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
763 } 763 }
764 764
765 /* 765 /*
766 * Report a full set of quiescent states to the specified rcu_state 766 * Report a full set of quiescent states to the specified rcu_state
767 * data structure. This involves cleaning up after the prior grace 767 * data structure. This involves cleaning up after the prior grace
768 * period and letting rcu_start_gp() start up the next grace period 768 * period and letting rcu_start_gp() start up the next grace period
769 * if one is needed. Note that the caller must hold rnp->lock, as 769 * if one is needed. Note that the caller must hold rnp->lock, as
770 * required by rcu_start_gp(), which will release it. 770 * required by rcu_start_gp(), which will release it.
771 */ 771 */
772 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags) 772 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
773 __releases(rcu_get_root(rsp)->lock) 773 __releases(rcu_get_root(rsp)->lock)
774 { 774 {
775 WARN_ON_ONCE(!rcu_gp_in_progress(rsp)); 775 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
776 rsp->completed = rsp->gpnum; 776 rsp->completed = rsp->gpnum;
777 rsp->signaled = RCU_GP_IDLE; 777 rsp->signaled = RCU_GP_IDLE;
778 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */ 778 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
779 } 779 }
780 780
781 /* 781 /*
782 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 782 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
783 * Allows quiescent states for a group of CPUs to be reported at one go 783 * Allows quiescent states for a group of CPUs to be reported at one go
784 * to the specified rcu_node structure, though all the CPUs in the group 784 * to the specified rcu_node structure, though all the CPUs in the group
785 * must be represented by the same rcu_node structure (which need not be 785 * must be represented by the same rcu_node structure (which need not be
786 * a leaf rcu_node structure, though it often will be). That structure's 786 * a leaf rcu_node structure, though it often will be). That structure's
787 * lock must be held upon entry, and it is released before return. 787 * lock must be held upon entry, and it is released before return.
788 */ 788 */
789 static void 789 static void
790 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp, 790 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
791 struct rcu_node *rnp, unsigned long flags) 791 struct rcu_node *rnp, unsigned long flags)
792 __releases(rnp->lock) 792 __releases(rnp->lock)
793 { 793 {
794 struct rcu_node *rnp_c; 794 struct rcu_node *rnp_c;
795 795
796 /* Walk up the rcu_node hierarchy. */ 796 /* Walk up the rcu_node hierarchy. */
797 for (;;) { 797 for (;;) {
798 if (!(rnp->qsmask & mask)) { 798 if (!(rnp->qsmask & mask)) {
799 799
800 /* Our bit has already been cleared, so done. */ 800 /* Our bit has already been cleared, so done. */
801 raw_spin_unlock_irqrestore(&rnp->lock, flags); 801 raw_spin_unlock_irqrestore(&rnp->lock, flags);
802 return; 802 return;
803 } 803 }
804 rnp->qsmask &= ~mask; 804 rnp->qsmask &= ~mask;
805 if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) { 805 if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
806 806
807 /* Other bits still set at this level, so done. */ 807 /* Other bits still set at this level, so done. */
808 raw_spin_unlock_irqrestore(&rnp->lock, flags); 808 raw_spin_unlock_irqrestore(&rnp->lock, flags);
809 return; 809 return;
810 } 810 }
811 mask = rnp->grpmask; 811 mask = rnp->grpmask;
812 if (rnp->parent == NULL) { 812 if (rnp->parent == NULL) {
813 813
814 /* No more levels. Exit loop holding root lock. */ 814 /* No more levels. Exit loop holding root lock. */
815 815
816 break; 816 break;
817 } 817 }
818 raw_spin_unlock_irqrestore(&rnp->lock, flags); 818 raw_spin_unlock_irqrestore(&rnp->lock, flags);
819 rnp_c = rnp; 819 rnp_c = rnp;
820 rnp = rnp->parent; 820 rnp = rnp->parent;
821 raw_spin_lock_irqsave(&rnp->lock, flags); 821 raw_spin_lock_irqsave(&rnp->lock, flags);
822 WARN_ON_ONCE(rnp_c->qsmask); 822 WARN_ON_ONCE(rnp_c->qsmask);
823 } 823 }
824 824
825 /* 825 /*
826 * Get here if we are the last CPU to pass through a quiescent 826 * Get here if we are the last CPU to pass through a quiescent
827 * state for this grace period. Invoke rcu_report_qs_rsp() 827 * state for this grace period. Invoke rcu_report_qs_rsp()
828 * to clean up and start the next grace period if one is needed. 828 * to clean up and start the next grace period if one is needed.
829 */ 829 */
830 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */ 830 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
831 } 831 }
832 832
833 /* 833 /*
834 * Record a quiescent state for the specified CPU to that CPU's rcu_data 834 * Record a quiescent state for the specified CPU to that CPU's rcu_data
835 * structure. This must be either called from the specified CPU, or 835 * structure. This must be either called from the specified CPU, or
836 * called when the specified CPU is known to be offline (and when it is 836 * called when the specified CPU is known to be offline (and when it is
837 * also known that no other CPU is concurrently trying to help the offline 837 * also known that no other CPU is concurrently trying to help the offline
838 * CPU). The lastcomp argument is used to make sure we are still in the 838 * CPU). The lastcomp argument is used to make sure we are still in the
839 * grace period of interest. We don't want to end the current grace period 839 * grace period of interest. We don't want to end the current grace period
840 * based on quiescent states detected in an earlier grace period! 840 * based on quiescent states detected in an earlier grace period!
841 */ 841 */
842 static void 842 static void
843 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp) 843 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
844 { 844 {
845 unsigned long flags; 845 unsigned long flags;
846 unsigned long mask; 846 unsigned long mask;
847 struct rcu_node *rnp; 847 struct rcu_node *rnp;
848 848
849 rnp = rdp->mynode; 849 rnp = rdp->mynode;
850 raw_spin_lock_irqsave(&rnp->lock, flags); 850 raw_spin_lock_irqsave(&rnp->lock, flags);
851 if (lastcomp != rnp->completed) { 851 if (lastcomp != rnp->completed) {
852 852
853 /* 853 /*
854 * Someone beat us to it for this grace period, so leave. 854 * Someone beat us to it for this grace period, so leave.
855 * The race with GP start is resolved by the fact that we 855 * The race with GP start is resolved by the fact that we
856 * hold the leaf rcu_node lock, so that the per-CPU bits 856 * hold the leaf rcu_node lock, so that the per-CPU bits
857 * cannot yet be initialized -- so we would simply find our 857 * cannot yet be initialized -- so we would simply find our
858 * CPU's bit already cleared in rcu_report_qs_rnp() if this 858 * CPU's bit already cleared in rcu_report_qs_rnp() if this
859 * race occurred. 859 * race occurred.
860 */ 860 */
861 rdp->passed_quiesc = 0; /* try again later! */ 861 rdp->passed_quiesc = 0; /* try again later! */
862 raw_spin_unlock_irqrestore(&rnp->lock, flags); 862 raw_spin_unlock_irqrestore(&rnp->lock, flags);
863 return; 863 return;
864 } 864 }
865 mask = rdp->grpmask; 865 mask = rdp->grpmask;
866 if ((rnp->qsmask & mask) == 0) { 866 if ((rnp->qsmask & mask) == 0) {
867 raw_spin_unlock_irqrestore(&rnp->lock, flags); 867 raw_spin_unlock_irqrestore(&rnp->lock, flags);
868 } else { 868 } else {
869 rdp->qs_pending = 0; 869 rdp->qs_pending = 0;
870 870
871 /* 871 /*
872 * This GP can't end until cpu checks in, so all of our 872 * This GP can't end until cpu checks in, so all of our
873 * callbacks can be processed during the next GP. 873 * callbacks can be processed during the next GP.
874 */ 874 */
875 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; 875 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
876 876
877 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */ 877 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
878 } 878 }
879 } 879 }
880 880
881 /* 881 /*
882 * Check to see if there is a new grace period of which this CPU 882 * Check to see if there is a new grace period of which this CPU
883 * is not yet aware, and if so, set up local rcu_data state for it. 883 * is not yet aware, and if so, set up local rcu_data state for it.
884 * Otherwise, see if this CPU has just passed through its first 884 * Otherwise, see if this CPU has just passed through its first
885 * quiescent state for this grace period, and record that fact if so. 885 * quiescent state for this grace period, and record that fact if so.
886 */ 886 */
887 static void 887 static void
888 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp) 888 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
889 { 889 {
890 /* If there is now a new grace period, record and return. */ 890 /* If there is now a new grace period, record and return. */
891 if (check_for_new_grace_period(rsp, rdp)) 891 if (check_for_new_grace_period(rsp, rdp))
892 return; 892 return;
893 893
894 /* 894 /*
895 * Does this CPU still need to do its part for current grace period? 895 * Does this CPU still need to do its part for current grace period?
896 * If no, return and let the other CPUs do their part as well. 896 * If no, return and let the other CPUs do their part as well.
897 */ 897 */
898 if (!rdp->qs_pending) 898 if (!rdp->qs_pending)
899 return; 899 return;
900 900
901 /* 901 /*
902 * Was there a quiescent state since the beginning of the grace 902 * Was there a quiescent state since the beginning of the grace
903 * period? If no, then exit and wait for the next call. 903 * period? If no, then exit and wait for the next call.
904 */ 904 */
905 if (!rdp->passed_quiesc) 905 if (!rdp->passed_quiesc)
906 return; 906 return;
907 907
908 /* 908 /*
909 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 909 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
910 * judge of that). 910 * judge of that).
911 */ 911 */
912 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed); 912 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
913 } 913 }
914 914
915 #ifdef CONFIG_HOTPLUG_CPU 915 #ifdef CONFIG_HOTPLUG_CPU
916 916
917 /* 917 /*
918 * Move a dying CPU's RCU callbacks to the ->orphan_cbs_list for the 918 * Move a dying CPU's RCU callbacks to the ->orphan_cbs_list for the
919 * specified flavor of RCU. The callbacks will be adopted by the next 919 * specified flavor of RCU. The callbacks will be adopted by the next
920 * _rcu_barrier() invocation or by the CPU_DEAD notifier, whichever 920 * _rcu_barrier() invocation or by the CPU_DEAD notifier, whichever
921 * comes first. Because this is invoked from the CPU_DYING notifier, 921 * comes first. Because this is invoked from the CPU_DYING notifier,
922 * irqs are already disabled. 922 * irqs are already disabled.
923 */ 923 */
924 static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp) 924 static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
925 { 925 {
926 int i; 926 int i;
927 struct rcu_data *rdp = rsp->rda[smp_processor_id()]; 927 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
928 928
929 if (rdp->nxtlist == NULL) 929 if (rdp->nxtlist == NULL)
930 return; /* irqs disabled, so comparison is stable. */ 930 return; /* irqs disabled, so comparison is stable. */
931 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */ 931 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
932 *rsp->orphan_cbs_tail = rdp->nxtlist; 932 *rsp->orphan_cbs_tail = rdp->nxtlist;
933 rsp->orphan_cbs_tail = rdp->nxttail[RCU_NEXT_TAIL]; 933 rsp->orphan_cbs_tail = rdp->nxttail[RCU_NEXT_TAIL];
934 rdp->nxtlist = NULL; 934 rdp->nxtlist = NULL;
935 for (i = 0; i < RCU_NEXT_SIZE; i++) 935 for (i = 0; i < RCU_NEXT_SIZE; i++)
936 rdp->nxttail[i] = &rdp->nxtlist; 936 rdp->nxttail[i] = &rdp->nxtlist;
937 rsp->orphan_qlen += rdp->qlen; 937 rsp->orphan_qlen += rdp->qlen;
938 rdp->qlen = 0; 938 rdp->qlen = 0;
939 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */ 939 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
940 } 940 }
941 941
942 /* 942 /*
943 * Adopt previously orphaned RCU callbacks. 943 * Adopt previously orphaned RCU callbacks.
944 */ 944 */
945 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp) 945 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
946 { 946 {
947 unsigned long flags; 947 unsigned long flags;
948 struct rcu_data *rdp; 948 struct rcu_data *rdp;
949 949
950 raw_spin_lock_irqsave(&rsp->onofflock, flags); 950 raw_spin_lock_irqsave(&rsp->onofflock, flags);
951 rdp = rsp->rda[smp_processor_id()]; 951 rdp = rsp->rda[smp_processor_id()];
952 if (rsp->orphan_cbs_list == NULL) { 952 if (rsp->orphan_cbs_list == NULL) {
953 raw_spin_unlock_irqrestore(&rsp->onofflock, flags); 953 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
954 return; 954 return;
955 } 955 }
956 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_list; 956 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_list;
957 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_tail; 957 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_tail;
958 rdp->qlen += rsp->orphan_qlen; 958 rdp->qlen += rsp->orphan_qlen;
959 rsp->orphan_cbs_list = NULL; 959 rsp->orphan_cbs_list = NULL;
960 rsp->orphan_cbs_tail = &rsp->orphan_cbs_list; 960 rsp->orphan_cbs_tail = &rsp->orphan_cbs_list;
961 rsp->orphan_qlen = 0; 961 rsp->orphan_qlen = 0;
962 raw_spin_unlock_irqrestore(&rsp->onofflock, flags); 962 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
963 } 963 }
964 964
965 /* 965 /*
966 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy 966 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
967 * and move all callbacks from the outgoing CPU to the current one. 967 * and move all callbacks from the outgoing CPU to the current one.
968 */ 968 */
969 static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp) 969 static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
970 { 970 {
971 unsigned long flags; 971 unsigned long flags;
972 unsigned long mask; 972 unsigned long mask;
973 int need_report = 0; 973 int need_report = 0;
974 struct rcu_data *rdp = rsp->rda[cpu]; 974 struct rcu_data *rdp = rsp->rda[cpu];
975 struct rcu_node *rnp; 975 struct rcu_node *rnp;
976 976
977 /* Exclude any attempts to start a new grace period. */ 977 /* Exclude any attempts to start a new grace period. */
978 raw_spin_lock_irqsave(&rsp->onofflock, flags); 978 raw_spin_lock_irqsave(&rsp->onofflock, flags);
979 979
980 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */ 980 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
981 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */ 981 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
982 mask = rdp->grpmask; /* rnp->grplo is constant. */ 982 mask = rdp->grpmask; /* rnp->grplo is constant. */
983 do { 983 do {
984 raw_spin_lock(&rnp->lock); /* irqs already disabled. */ 984 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
985 rnp->qsmaskinit &= ~mask; 985 rnp->qsmaskinit &= ~mask;
986 if (rnp->qsmaskinit != 0) { 986 if (rnp->qsmaskinit != 0) {
987 if (rnp != rdp->mynode) 987 if (rnp != rdp->mynode)
988 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 988 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
989 break; 989 break;
990 } 990 }
991 if (rnp == rdp->mynode) 991 if (rnp == rdp->mynode)
992 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp); 992 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
993 else 993 else
994 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 994 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
995 mask = rnp->grpmask; 995 mask = rnp->grpmask;
996 rnp = rnp->parent; 996 rnp = rnp->parent;
997 } while (rnp != NULL); 997 } while (rnp != NULL);
998 998
999 /* 999 /*
1000 * We still hold the leaf rcu_node structure lock here, and 1000 * We still hold the leaf rcu_node structure lock here, and
1001 * irqs are still disabled. The reason for this subterfuge is 1001 * irqs are still disabled. The reason for this subterfuge is
1002 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock 1002 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1003 * held leads to deadlock. 1003 * held leads to deadlock.
1004 */ 1004 */
1005 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */ 1005 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1006 rnp = rdp->mynode; 1006 rnp = rdp->mynode;
1007 if (need_report & RCU_OFL_TASKS_NORM_GP) 1007 if (need_report & RCU_OFL_TASKS_NORM_GP)
1008 rcu_report_unblock_qs_rnp(rnp, flags); 1008 rcu_report_unblock_qs_rnp(rnp, flags);
1009 else 1009 else
1010 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1010 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1011 if (need_report & RCU_OFL_TASKS_EXP_GP) 1011 if (need_report & RCU_OFL_TASKS_EXP_GP)
1012 rcu_report_exp_rnp(rsp, rnp); 1012 rcu_report_exp_rnp(rsp, rnp);
1013 1013
1014 rcu_adopt_orphan_cbs(rsp); 1014 rcu_adopt_orphan_cbs(rsp);
1015 } 1015 }
1016 1016
1017 /* 1017 /*
1018 * Remove the specified CPU from the RCU hierarchy and move any pending 1018 * Remove the specified CPU from the RCU hierarchy and move any pending
1019 * callbacks that it might have to the current CPU. This code assumes 1019 * callbacks that it might have to the current CPU. This code assumes
1020 * that at least one CPU in the system will remain running at all times. 1020 * that at least one CPU in the system will remain running at all times.
1021 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks. 1021 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1022 */ 1022 */
1023 static void rcu_offline_cpu(int cpu) 1023 static void rcu_offline_cpu(int cpu)
1024 { 1024 {
1025 __rcu_offline_cpu(cpu, &rcu_sched_state); 1025 __rcu_offline_cpu(cpu, &rcu_sched_state);
1026 __rcu_offline_cpu(cpu, &rcu_bh_state); 1026 __rcu_offline_cpu(cpu, &rcu_bh_state);
1027 rcu_preempt_offline_cpu(cpu); 1027 rcu_preempt_offline_cpu(cpu);
1028 } 1028 }
1029 1029
1030 #else /* #ifdef CONFIG_HOTPLUG_CPU */ 1030 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1031 1031
1032 static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp) 1032 static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
1033 { 1033 {
1034 } 1034 }
1035 1035
1036 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp) 1036 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1037 { 1037 {
1038 } 1038 }
1039 1039
1040 static void rcu_offline_cpu(int cpu) 1040 static void rcu_offline_cpu(int cpu)
1041 { 1041 {
1042 } 1042 }
1043 1043
1044 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */ 1044 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1045 1045
1046 /* 1046 /*
1047 * Invoke any RCU callbacks that have made it to the end of their grace 1047 * Invoke any RCU callbacks that have made it to the end of their grace
1048 * period. Thottle as specified by rdp->blimit. 1048 * period. Thottle as specified by rdp->blimit.
1049 */ 1049 */
1050 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp) 1050 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1051 { 1051 {
1052 unsigned long flags; 1052 unsigned long flags;
1053 struct rcu_head *next, *list, **tail; 1053 struct rcu_head *next, *list, **tail;
1054 int count; 1054 int count;
1055 1055
1056 /* If no callbacks are ready, just return.*/ 1056 /* If no callbacks are ready, just return.*/
1057 if (!cpu_has_callbacks_ready_to_invoke(rdp)) 1057 if (!cpu_has_callbacks_ready_to_invoke(rdp))
1058 return; 1058 return;
1059 1059
1060 /* 1060 /*
1061 * Extract the list of ready callbacks, disabling to prevent 1061 * Extract the list of ready callbacks, disabling to prevent
1062 * races with call_rcu() from interrupt handlers. 1062 * races with call_rcu() from interrupt handlers.
1063 */ 1063 */
1064 local_irq_save(flags); 1064 local_irq_save(flags);
1065 list = rdp->nxtlist; 1065 list = rdp->nxtlist;
1066 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL]; 1066 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1067 *rdp->nxttail[RCU_DONE_TAIL] = NULL; 1067 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1068 tail = rdp->nxttail[RCU_DONE_TAIL]; 1068 tail = rdp->nxttail[RCU_DONE_TAIL];
1069 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--) 1069 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1070 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL]) 1070 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1071 rdp->nxttail[count] = &rdp->nxtlist; 1071 rdp->nxttail[count] = &rdp->nxtlist;
1072 local_irq_restore(flags); 1072 local_irq_restore(flags);
1073 1073
1074 /* Invoke callbacks. */ 1074 /* Invoke callbacks. */
1075 count = 0; 1075 count = 0;
1076 while (list) { 1076 while (list) {
1077 next = list->next; 1077 next = list->next;
1078 prefetch(next); 1078 prefetch(next);
1079 list->func(list); 1079 list->func(list);
1080 list = next; 1080 list = next;
1081 if (++count >= rdp->blimit) 1081 if (++count >= rdp->blimit)
1082 break; 1082 break;
1083 } 1083 }
1084 1084
1085 local_irq_save(flags); 1085 local_irq_save(flags);
1086 1086
1087 /* Update count, and requeue any remaining callbacks. */ 1087 /* Update count, and requeue any remaining callbacks. */
1088 rdp->qlen -= count; 1088 rdp->qlen -= count;
1089 if (list != NULL) { 1089 if (list != NULL) {
1090 *tail = rdp->nxtlist; 1090 *tail = rdp->nxtlist;
1091 rdp->nxtlist = list; 1091 rdp->nxtlist = list;
1092 for (count = 0; count < RCU_NEXT_SIZE; count++) 1092 for (count = 0; count < RCU_NEXT_SIZE; count++)
1093 if (&rdp->nxtlist == rdp->nxttail[count]) 1093 if (&rdp->nxtlist == rdp->nxttail[count])
1094 rdp->nxttail[count] = tail; 1094 rdp->nxttail[count] = tail;
1095 else 1095 else
1096 break; 1096 break;
1097 } 1097 }
1098 1098
1099 /* Reinstate batch limit if we have worked down the excess. */ 1099 /* Reinstate batch limit if we have worked down the excess. */
1100 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark) 1100 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1101 rdp->blimit = blimit; 1101 rdp->blimit = blimit;
1102 1102
1103 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 1103 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1104 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) { 1104 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1105 rdp->qlen_last_fqs_check = 0; 1105 rdp->qlen_last_fqs_check = 0;
1106 rdp->n_force_qs_snap = rsp->n_force_qs; 1106 rdp->n_force_qs_snap = rsp->n_force_qs;
1107 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark) 1107 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1108 rdp->qlen_last_fqs_check = rdp->qlen; 1108 rdp->qlen_last_fqs_check = rdp->qlen;
1109 1109
1110 local_irq_restore(flags); 1110 local_irq_restore(flags);
1111 1111
1112 /* Re-raise the RCU softirq if there are callbacks remaining. */ 1112 /* Re-raise the RCU softirq if there are callbacks remaining. */
1113 if (cpu_has_callbacks_ready_to_invoke(rdp)) 1113 if (cpu_has_callbacks_ready_to_invoke(rdp))
1114 raise_softirq(RCU_SOFTIRQ); 1114 raise_softirq(RCU_SOFTIRQ);
1115 } 1115 }
1116 1116
1117 /* 1117 /*
1118 * Check to see if this CPU is in a non-context-switch quiescent state 1118 * Check to see if this CPU is in a non-context-switch quiescent state
1119 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh). 1119 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1120 * Also schedule the RCU softirq handler. 1120 * Also schedule the RCU softirq handler.
1121 * 1121 *
1122 * This function must be called with hardirqs disabled. It is normally 1122 * This function must be called with hardirqs disabled. It is normally
1123 * invoked from the scheduling-clock interrupt. If rcu_pending returns 1123 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1124 * false, there is no point in invoking rcu_check_callbacks(). 1124 * false, there is no point in invoking rcu_check_callbacks().
1125 */ 1125 */
1126 void rcu_check_callbacks(int cpu, int user) 1126 void rcu_check_callbacks(int cpu, int user)
1127 { 1127 {
1128 if (!rcu_pending(cpu)) 1128 if (!rcu_pending(cpu))
1129 return; /* if nothing for RCU to do. */ 1129 return; /* if nothing for RCU to do. */
1130 if (user || 1130 if (user ||
1131 (idle_cpu(cpu) && rcu_scheduler_active && 1131 (idle_cpu(cpu) && rcu_scheduler_active &&
1132 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) { 1132 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
1133 1133
1134 /* 1134 /*
1135 * Get here if this CPU took its interrupt from user 1135 * Get here if this CPU took its interrupt from user
1136 * mode or from the idle loop, and if this is not a 1136 * mode or from the idle loop, and if this is not a
1137 * nested interrupt. In this case, the CPU is in 1137 * nested interrupt. In this case, the CPU is in
1138 * a quiescent state, so note it. 1138 * a quiescent state, so note it.
1139 * 1139 *
1140 * No memory barrier is required here because both 1140 * No memory barrier is required here because both
1141 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local 1141 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1142 * variables that other CPUs neither access nor modify, 1142 * variables that other CPUs neither access nor modify,
1143 * at least not while the corresponding CPU is online. 1143 * at least not while the corresponding CPU is online.
1144 */ 1144 */
1145 1145
1146 rcu_sched_qs(cpu); 1146 rcu_sched_qs(cpu);
1147 rcu_bh_qs(cpu); 1147 rcu_bh_qs(cpu);
1148 1148
1149 } else if (!in_softirq()) { 1149 } else if (!in_softirq()) {
1150 1150
1151 /* 1151 /*
1152 * Get here if this CPU did not take its interrupt from 1152 * Get here if this CPU did not take its interrupt from
1153 * softirq, in other words, if it is not interrupting 1153 * softirq, in other words, if it is not interrupting
1154 * a rcu_bh read-side critical section. This is an _bh 1154 * a rcu_bh read-side critical section. This is an _bh
1155 * critical section, so note it. 1155 * critical section, so note it.
1156 */ 1156 */
1157 1157
1158 rcu_bh_qs(cpu); 1158 rcu_bh_qs(cpu);
1159 } 1159 }
1160 rcu_preempt_check_callbacks(cpu); 1160 rcu_preempt_check_callbacks(cpu);
1161 raise_softirq(RCU_SOFTIRQ); 1161 raise_softirq(RCU_SOFTIRQ);
1162 } 1162 }
1163 1163
1164 #ifdef CONFIG_SMP 1164 #ifdef CONFIG_SMP
1165 1165
1166 /* 1166 /*
1167 * Scan the leaf rcu_node structures, processing dyntick state for any that 1167 * Scan the leaf rcu_node structures, processing dyntick state for any that
1168 * have not yet encountered a quiescent state, using the function specified. 1168 * have not yet encountered a quiescent state, using the function specified.
1169 * The caller must have suppressed start of new grace periods. 1169 * The caller must have suppressed start of new grace periods.
1170 */ 1170 */
1171 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *)) 1171 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1172 { 1172 {
1173 unsigned long bit; 1173 unsigned long bit;
1174 int cpu; 1174 int cpu;
1175 unsigned long flags; 1175 unsigned long flags;
1176 unsigned long mask; 1176 unsigned long mask;
1177 struct rcu_node *rnp; 1177 struct rcu_node *rnp;
1178 1178
1179 rcu_for_each_leaf_node(rsp, rnp) { 1179 rcu_for_each_leaf_node(rsp, rnp) {
1180 mask = 0; 1180 mask = 0;
1181 raw_spin_lock_irqsave(&rnp->lock, flags); 1181 raw_spin_lock_irqsave(&rnp->lock, flags);
1182 if (!rcu_gp_in_progress(rsp)) { 1182 if (!rcu_gp_in_progress(rsp)) {
1183 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1183 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1184 return; 1184 return;
1185 } 1185 }
1186 if (rnp->qsmask == 0) { 1186 if (rnp->qsmask == 0) {
1187 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1187 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1188 continue; 1188 continue;
1189 } 1189 }
1190 cpu = rnp->grplo; 1190 cpu = rnp->grplo;
1191 bit = 1; 1191 bit = 1;
1192 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) { 1192 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1193 if ((rnp->qsmask & bit) != 0 && f(rsp->rda[cpu])) 1193 if ((rnp->qsmask & bit) != 0 && f(rsp->rda[cpu]))
1194 mask |= bit; 1194 mask |= bit;
1195 } 1195 }
1196 if (mask != 0) { 1196 if (mask != 0) {
1197 1197
1198 /* rcu_report_qs_rnp() releases rnp->lock. */ 1198 /* rcu_report_qs_rnp() releases rnp->lock. */
1199 rcu_report_qs_rnp(mask, rsp, rnp, flags); 1199 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1200 continue; 1200 continue;
1201 } 1201 }
1202 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1202 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1203 } 1203 }
1204 } 1204 }
1205 1205
1206 /* 1206 /*
1207 * Force quiescent states on reluctant CPUs, and also detect which 1207 * Force quiescent states on reluctant CPUs, and also detect which
1208 * CPUs are in dyntick-idle mode. 1208 * CPUs are in dyntick-idle mode.
1209 */ 1209 */
1210 static void force_quiescent_state(struct rcu_state *rsp, int relaxed) 1210 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1211 { 1211 {
1212 unsigned long flags; 1212 unsigned long flags;
1213 struct rcu_node *rnp = rcu_get_root(rsp); 1213 struct rcu_node *rnp = rcu_get_root(rsp);
1214 1214
1215 if (!rcu_gp_in_progress(rsp)) 1215 if (!rcu_gp_in_progress(rsp))
1216 return; /* No grace period in progress, nothing to force. */ 1216 return; /* No grace period in progress, nothing to force. */
1217 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) { 1217 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1218 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */ 1218 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1219 return; /* Someone else is already on the job. */ 1219 return; /* Someone else is already on the job. */
1220 } 1220 }
1221 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies)) 1221 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1222 goto unlock_fqs_ret; /* no emergency and done recently. */ 1222 goto unlock_fqs_ret; /* no emergency and done recently. */
1223 rsp->n_force_qs++; 1223 rsp->n_force_qs++;
1224 raw_spin_lock(&rnp->lock); /* irqs already disabled */ 1224 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1225 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS; 1225 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1226 if(!rcu_gp_in_progress(rsp)) { 1226 if(!rcu_gp_in_progress(rsp)) {
1227 rsp->n_force_qs_ngp++; 1227 rsp->n_force_qs_ngp++;
1228 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */ 1228 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1229 goto unlock_fqs_ret; /* no GP in progress, time updated. */ 1229 goto unlock_fqs_ret; /* no GP in progress, time updated. */
1230 } 1230 }
1231 rsp->fqs_active = 1; 1231 rsp->fqs_active = 1;
1232 switch (rsp->signaled) { 1232 switch (rsp->signaled) {
1233 case RCU_GP_IDLE: 1233 case RCU_GP_IDLE:
1234 case RCU_GP_INIT: 1234 case RCU_GP_INIT:
1235 1235
1236 break; /* grace period idle or initializing, ignore. */ 1236 break; /* grace period idle or initializing, ignore. */
1237 1237
1238 case RCU_SAVE_DYNTICK: 1238 case RCU_SAVE_DYNTICK:
1239 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK) 1239 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1240 break; /* So gcc recognizes the dead code. */ 1240 break; /* So gcc recognizes the dead code. */
1241 1241
1242 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */ 1242 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1243 1243
1244 /* Record dyntick-idle state. */ 1244 /* Record dyntick-idle state. */
1245 force_qs_rnp(rsp, dyntick_save_progress_counter); 1245 force_qs_rnp(rsp, dyntick_save_progress_counter);
1246 raw_spin_lock(&rnp->lock); /* irqs already disabled */ 1246 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1247 if (rcu_gp_in_progress(rsp)) 1247 if (rcu_gp_in_progress(rsp))
1248 rsp->signaled = RCU_FORCE_QS; 1248 rsp->signaled = RCU_FORCE_QS;
1249 break; 1249 break;
1250 1250
1251 case RCU_FORCE_QS: 1251 case RCU_FORCE_QS:
1252 1252
1253 /* Check dyntick-idle state, send IPI to laggarts. */ 1253 /* Check dyntick-idle state, send IPI to laggarts. */
1254 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */ 1254 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1255 force_qs_rnp(rsp, rcu_implicit_dynticks_qs); 1255 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1256 1256
1257 /* Leave state in case more forcing is required. */ 1257 /* Leave state in case more forcing is required. */
1258 1258
1259 raw_spin_lock(&rnp->lock); /* irqs already disabled */ 1259 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1260 break; 1260 break;
1261 } 1261 }
1262 rsp->fqs_active = 0; 1262 rsp->fqs_active = 0;
1263 if (rsp->fqs_need_gp) { 1263 if (rsp->fqs_need_gp) {
1264 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */ 1264 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1265 rsp->fqs_need_gp = 0; 1265 rsp->fqs_need_gp = 0;
1266 rcu_start_gp(rsp, flags); /* releases rnp->lock */ 1266 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1267 return; 1267 return;
1268 } 1268 }
1269 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */ 1269 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1270 unlock_fqs_ret: 1270 unlock_fqs_ret:
1271 raw_spin_unlock_irqrestore(&rsp->fqslock, flags); 1271 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1272 } 1272 }
1273 1273
1274 #else /* #ifdef CONFIG_SMP */ 1274 #else /* #ifdef CONFIG_SMP */
1275 1275
1276 static void force_quiescent_state(struct rcu_state *rsp, int relaxed) 1276 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1277 { 1277 {
1278 set_need_resched(); 1278 set_need_resched();
1279 } 1279 }
1280 1280
1281 #endif /* #else #ifdef CONFIG_SMP */ 1281 #endif /* #else #ifdef CONFIG_SMP */
1282 1282
1283 /* 1283 /*
1284 * This does the RCU processing work from softirq context for the 1284 * This does the RCU processing work from softirq context for the
1285 * specified rcu_state and rcu_data structures. This may be called 1285 * specified rcu_state and rcu_data structures. This may be called
1286 * only from the CPU to whom the rdp belongs. 1286 * only from the CPU to whom the rdp belongs.
1287 */ 1287 */
1288 static void 1288 static void
1289 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp) 1289 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1290 { 1290 {
1291 unsigned long flags; 1291 unsigned long flags;
1292 1292
1293 WARN_ON_ONCE(rdp->beenonline == 0); 1293 WARN_ON_ONCE(rdp->beenonline == 0);
1294 1294
1295 /* 1295 /*
1296 * If an RCU GP has gone long enough, go check for dyntick 1296 * If an RCU GP has gone long enough, go check for dyntick
1297 * idle CPUs and, if needed, send resched IPIs. 1297 * idle CPUs and, if needed, send resched IPIs.
1298 */ 1298 */
1299 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) 1299 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1300 force_quiescent_state(rsp, 1); 1300 force_quiescent_state(rsp, 1);
1301 1301
1302 /* 1302 /*
1303 * Advance callbacks in response to end of earlier grace 1303 * Advance callbacks in response to end of earlier grace
1304 * period that some other CPU ended. 1304 * period that some other CPU ended.
1305 */ 1305 */
1306 rcu_process_gp_end(rsp, rdp); 1306 rcu_process_gp_end(rsp, rdp);
1307 1307
1308 /* Update RCU state based on any recent quiescent states. */ 1308 /* Update RCU state based on any recent quiescent states. */
1309 rcu_check_quiescent_state(rsp, rdp); 1309 rcu_check_quiescent_state(rsp, rdp);
1310 1310
1311 /* Does this CPU require a not-yet-started grace period? */ 1311 /* Does this CPU require a not-yet-started grace period? */
1312 if (cpu_needs_another_gp(rsp, rdp)) { 1312 if (cpu_needs_another_gp(rsp, rdp)) {
1313 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags); 1313 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1314 rcu_start_gp(rsp, flags); /* releases above lock */ 1314 rcu_start_gp(rsp, flags); /* releases above lock */
1315 } 1315 }
1316 1316
1317 /* If there are callbacks ready, invoke them. */ 1317 /* If there are callbacks ready, invoke them. */
1318 rcu_do_batch(rsp, rdp); 1318 rcu_do_batch(rsp, rdp);
1319 } 1319 }
1320 1320
1321 /* 1321 /*
1322 * Do softirq processing for the current CPU. 1322 * Do softirq processing for the current CPU.
1323 */ 1323 */
1324 static void rcu_process_callbacks(struct softirq_action *unused) 1324 static void rcu_process_callbacks(struct softirq_action *unused)
1325 { 1325 {
1326 /* 1326 /*
1327 * Memory references from any prior RCU read-side critical sections 1327 * Memory references from any prior RCU read-side critical sections
1328 * executed by the interrupted code must be seen before any RCU 1328 * executed by the interrupted code must be seen before any RCU
1329 * grace-period manipulations below. 1329 * grace-period manipulations below.
1330 */ 1330 */
1331 smp_mb(); /* See above block comment. */ 1331 smp_mb(); /* See above block comment. */
1332 1332
1333 __rcu_process_callbacks(&rcu_sched_state, 1333 __rcu_process_callbacks(&rcu_sched_state,
1334 &__get_cpu_var(rcu_sched_data)); 1334 &__get_cpu_var(rcu_sched_data));
1335 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data)); 1335 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1336 rcu_preempt_process_callbacks(); 1336 rcu_preempt_process_callbacks();
1337 1337
1338 /* 1338 /*
1339 * Memory references from any later RCU read-side critical sections 1339 * Memory references from any later RCU read-side critical sections
1340 * executed by the interrupted code must be seen after any RCU 1340 * executed by the interrupted code must be seen after any RCU
1341 * grace-period manipulations above. 1341 * grace-period manipulations above.
1342 */ 1342 */
1343 smp_mb(); /* See above block comment. */ 1343 smp_mb(); /* See above block comment. */
1344 1344
1345 /* If we are last CPU on way to dyntick-idle mode, accelerate it. */ 1345 /* If we are last CPU on way to dyntick-idle mode, accelerate it. */
1346 rcu_needs_cpu_flush(); 1346 rcu_needs_cpu_flush();
1347 } 1347 }
1348 1348
1349 static void 1349 static void
1350 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu), 1350 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1351 struct rcu_state *rsp) 1351 struct rcu_state *rsp)
1352 { 1352 {
1353 unsigned long flags; 1353 unsigned long flags;
1354 struct rcu_data *rdp; 1354 struct rcu_data *rdp;
1355 1355
1356 head->func = func; 1356 head->func = func;
1357 head->next = NULL; 1357 head->next = NULL;
1358 1358
1359 smp_mb(); /* Ensure RCU update seen before callback registry. */ 1359 smp_mb(); /* Ensure RCU update seen before callback registry. */
1360 1360
1361 /* 1361 /*
1362 * Opportunistically note grace-period endings and beginnings. 1362 * Opportunistically note grace-period endings and beginnings.
1363 * Note that we might see a beginning right after we see an 1363 * Note that we might see a beginning right after we see an
1364 * end, but never vice versa, since this CPU has to pass through 1364 * end, but never vice versa, since this CPU has to pass through
1365 * a quiescent state betweentimes. 1365 * a quiescent state betweentimes.
1366 */ 1366 */
1367 local_irq_save(flags); 1367 local_irq_save(flags);
1368 rdp = rsp->rda[smp_processor_id()]; 1368 rdp = rsp->rda[smp_processor_id()];
1369 rcu_process_gp_end(rsp, rdp); 1369 rcu_process_gp_end(rsp, rdp);
1370 check_for_new_grace_period(rsp, rdp); 1370 check_for_new_grace_period(rsp, rdp);
1371 1371
1372 /* Add the callback to our list. */ 1372 /* Add the callback to our list. */
1373 *rdp->nxttail[RCU_NEXT_TAIL] = head; 1373 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1374 rdp->nxttail[RCU_NEXT_TAIL] = &head->next; 1374 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1375 1375
1376 /* Start a new grace period if one not already started. */ 1376 /* Start a new grace period if one not already started. */
1377 if (!rcu_gp_in_progress(rsp)) { 1377 if (!rcu_gp_in_progress(rsp)) {
1378 unsigned long nestflag; 1378 unsigned long nestflag;
1379 struct rcu_node *rnp_root = rcu_get_root(rsp); 1379 struct rcu_node *rnp_root = rcu_get_root(rsp);
1380 1380
1381 raw_spin_lock_irqsave(&rnp_root->lock, nestflag); 1381 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1382 rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */ 1382 rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */
1383 } 1383 }
1384 1384
1385 /* 1385 /*
1386 * Force the grace period if too many callbacks or too long waiting. 1386 * Force the grace period if too many callbacks or too long waiting.
1387 * Enforce hysteresis, and don't invoke force_quiescent_state() 1387 * Enforce hysteresis, and don't invoke force_quiescent_state()
1388 * if some other CPU has recently done so. Also, don't bother 1388 * if some other CPU has recently done so. Also, don't bother
1389 * invoking force_quiescent_state() if the newly enqueued callback 1389 * invoking force_quiescent_state() if the newly enqueued callback
1390 * is the only one waiting for a grace period to complete. 1390 * is the only one waiting for a grace period to complete.
1391 */ 1391 */
1392 if (unlikely(++rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) { 1392 if (unlikely(++rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1393 rdp->blimit = LONG_MAX; 1393 rdp->blimit = LONG_MAX;
1394 if (rsp->n_force_qs == rdp->n_force_qs_snap && 1394 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1395 *rdp->nxttail[RCU_DONE_TAIL] != head) 1395 *rdp->nxttail[RCU_DONE_TAIL] != head)
1396 force_quiescent_state(rsp, 0); 1396 force_quiescent_state(rsp, 0);
1397 rdp->n_force_qs_snap = rsp->n_force_qs; 1397 rdp->n_force_qs_snap = rsp->n_force_qs;
1398 rdp->qlen_last_fqs_check = rdp->qlen; 1398 rdp->qlen_last_fqs_check = rdp->qlen;
1399 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) 1399 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1400 force_quiescent_state(rsp, 1); 1400 force_quiescent_state(rsp, 1);
1401 local_irq_restore(flags); 1401 local_irq_restore(flags);
1402 } 1402 }
1403 1403
1404 /* 1404 /*
1405 * Queue an RCU-sched callback for invocation after a grace period. 1405 * Queue an RCU-sched callback for invocation after a grace period.
1406 */ 1406 */
1407 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) 1407 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1408 { 1408 {
1409 __call_rcu(head, func, &rcu_sched_state); 1409 __call_rcu(head, func, &rcu_sched_state);
1410 } 1410 }
1411 EXPORT_SYMBOL_GPL(call_rcu_sched); 1411 EXPORT_SYMBOL_GPL(call_rcu_sched);
1412 1412
1413 /* 1413 /*
1414 * Queue an RCU for invocation after a quicker grace period. 1414 * Queue an RCU for invocation after a quicker grace period.
1415 */ 1415 */
1416 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) 1416 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1417 { 1417 {
1418 __call_rcu(head, func, &rcu_bh_state); 1418 __call_rcu(head, func, &rcu_bh_state);
1419 } 1419 }
1420 EXPORT_SYMBOL_GPL(call_rcu_bh); 1420 EXPORT_SYMBOL_GPL(call_rcu_bh);
1421 1421
1422 /** 1422 /**
1423 * synchronize_sched - wait until an rcu-sched grace period has elapsed. 1423 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1424 * 1424 *
1425 * Control will return to the caller some time after a full rcu-sched 1425 * Control will return to the caller some time after a full rcu-sched
1426 * grace period has elapsed, in other words after all currently executing 1426 * grace period has elapsed, in other words after all currently executing
1427 * rcu-sched read-side critical sections have completed. These read-side 1427 * rcu-sched read-side critical sections have completed. These read-side
1428 * critical sections are delimited by rcu_read_lock_sched() and 1428 * critical sections are delimited by rcu_read_lock_sched() and
1429 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(), 1429 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1430 * local_irq_disable(), and so on may be used in place of 1430 * local_irq_disable(), and so on may be used in place of
1431 * rcu_read_lock_sched(). 1431 * rcu_read_lock_sched().
1432 * 1432 *
1433 * This means that all preempt_disable code sequences, including NMI and 1433 * This means that all preempt_disable code sequences, including NMI and
1434 * hardware-interrupt handlers, in progress on entry will have completed 1434 * hardware-interrupt handlers, in progress on entry will have completed
1435 * before this primitive returns. However, this does not guarantee that 1435 * before this primitive returns. However, this does not guarantee that
1436 * softirq handlers will have completed, since in some kernels, these 1436 * softirq handlers will have completed, since in some kernels, these
1437 * handlers can run in process context, and can block. 1437 * handlers can run in process context, and can block.
1438 * 1438 *
1439 * This primitive provides the guarantees made by the (now removed) 1439 * This primitive provides the guarantees made by the (now removed)
1440 * synchronize_kernel() API. In contrast, synchronize_rcu() only 1440 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1441 * guarantees that rcu_read_lock() sections will have completed. 1441 * guarantees that rcu_read_lock() sections will have completed.
1442 * In "classic RCU", these two guarantees happen to be one and 1442 * In "classic RCU", these two guarantees happen to be one and
1443 * the same, but can differ in realtime RCU implementations. 1443 * the same, but can differ in realtime RCU implementations.
1444 */ 1444 */
1445 void synchronize_sched(void) 1445 void synchronize_sched(void)
1446 { 1446 {
1447 struct rcu_synchronize rcu; 1447 struct rcu_synchronize rcu;
1448 1448
1449 if (rcu_blocking_is_gp()) 1449 if (rcu_blocking_is_gp())
1450 return; 1450 return;
1451 1451
1452 init_completion(&rcu.completion); 1452 init_completion(&rcu.completion);
1453 /* Will wake me after RCU finished. */ 1453 /* Will wake me after RCU finished. */
1454 call_rcu_sched(&rcu.head, wakeme_after_rcu); 1454 call_rcu_sched(&rcu.head, wakeme_after_rcu);
1455 /* Wait for it. */ 1455 /* Wait for it. */
1456 wait_for_completion(&rcu.completion); 1456 wait_for_completion(&rcu.completion);
1457 } 1457 }
1458 EXPORT_SYMBOL_GPL(synchronize_sched); 1458 EXPORT_SYMBOL_GPL(synchronize_sched);
1459 1459
1460 /** 1460 /**
1461 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed. 1461 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1462 * 1462 *
1463 * Control will return to the caller some time after a full rcu_bh grace 1463 * Control will return to the caller some time after a full rcu_bh grace
1464 * period has elapsed, in other words after all currently executing rcu_bh 1464 * period has elapsed, in other words after all currently executing rcu_bh
1465 * read-side critical sections have completed. RCU read-side critical 1465 * read-side critical sections have completed. RCU read-side critical
1466 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(), 1466 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1467 * and may be nested. 1467 * and may be nested.
1468 */ 1468 */
1469 void synchronize_rcu_bh(void) 1469 void synchronize_rcu_bh(void)
1470 { 1470 {
1471 struct rcu_synchronize rcu; 1471 struct rcu_synchronize rcu;
1472 1472
1473 if (rcu_blocking_is_gp()) 1473 if (rcu_blocking_is_gp())
1474 return; 1474 return;
1475 1475
1476 init_completion(&rcu.completion); 1476 init_completion(&rcu.completion);
1477 /* Will wake me after RCU finished. */ 1477 /* Will wake me after RCU finished. */
1478 call_rcu_bh(&rcu.head, wakeme_after_rcu); 1478 call_rcu_bh(&rcu.head, wakeme_after_rcu);
1479 /* Wait for it. */ 1479 /* Wait for it. */
1480 wait_for_completion(&rcu.completion); 1480 wait_for_completion(&rcu.completion);
1481 } 1481 }
1482 EXPORT_SYMBOL_GPL(synchronize_rcu_bh); 1482 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1483 1483
1484 /* 1484 /*
1485 * Check to see if there is any immediate RCU-related work to be done 1485 * Check to see if there is any immediate RCU-related work to be done
1486 * by the current CPU, for the specified type of RCU, returning 1 if so. 1486 * by the current CPU, for the specified type of RCU, returning 1 if so.
1487 * The checks are in order of increasing expense: checks that can be 1487 * The checks are in order of increasing expense: checks that can be
1488 * carried out against CPU-local state are performed first. However, 1488 * carried out against CPU-local state are performed first. However,
1489 * we must check for CPU stalls first, else we might not get a chance. 1489 * we must check for CPU stalls first, else we might not get a chance.
1490 */ 1490 */
1491 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp) 1491 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1492 { 1492 {
1493 struct rcu_node *rnp = rdp->mynode; 1493 struct rcu_node *rnp = rdp->mynode;
1494 1494
1495 rdp->n_rcu_pending++; 1495 rdp->n_rcu_pending++;
1496 1496
1497 /* Check for CPU stalls, if enabled. */ 1497 /* Check for CPU stalls, if enabled. */
1498 check_cpu_stall(rsp, rdp); 1498 check_cpu_stall(rsp, rdp);
1499 1499
1500 /* Is the RCU core waiting for a quiescent state from this CPU? */ 1500 /* Is the RCU core waiting for a quiescent state from this CPU? */
1501 if (rdp->qs_pending) { 1501 if (rdp->qs_pending) {
1502 1502
1503 /* 1503 /*
1504 * If force_quiescent_state() coming soon and this CPU 1504 * If force_quiescent_state() coming soon and this CPU
1505 * needs a quiescent state, and this is either RCU-sched 1505 * needs a quiescent state, and this is either RCU-sched
1506 * or RCU-bh, force a local reschedule. 1506 * or RCU-bh, force a local reschedule.
1507 */ 1507 */
1508 if (!rdp->preemptable && 1508 if (!rdp->preemptable &&
1509 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1, 1509 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
1510 jiffies)) 1510 jiffies))
1511 set_need_resched(); 1511 set_need_resched();
1512 rdp->n_rp_qs_pending++; 1512 rdp->n_rp_qs_pending++;
1513 return 1; 1513 return 1;
1514 } 1514 }
1515 1515
1516 /* Does this CPU have callbacks ready to invoke? */ 1516 /* Does this CPU have callbacks ready to invoke? */
1517 if (cpu_has_callbacks_ready_to_invoke(rdp)) { 1517 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1518 rdp->n_rp_cb_ready++; 1518 rdp->n_rp_cb_ready++;
1519 return 1; 1519 return 1;
1520 } 1520 }
1521 1521
1522 /* Has RCU gone idle with this CPU needing another grace period? */ 1522 /* Has RCU gone idle with this CPU needing another grace period? */
1523 if (cpu_needs_another_gp(rsp, rdp)) { 1523 if (cpu_needs_another_gp(rsp, rdp)) {
1524 rdp->n_rp_cpu_needs_gp++; 1524 rdp->n_rp_cpu_needs_gp++;
1525 return 1; 1525 return 1;
1526 } 1526 }
1527 1527
1528 /* Has another RCU grace period completed? */ 1528 /* Has another RCU grace period completed? */
1529 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */ 1529 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
1530 rdp->n_rp_gp_completed++; 1530 rdp->n_rp_gp_completed++;
1531 return 1; 1531 return 1;
1532 } 1532 }
1533 1533
1534 /* Has a new RCU grace period started? */ 1534 /* Has a new RCU grace period started? */
1535 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */ 1535 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
1536 rdp->n_rp_gp_started++; 1536 rdp->n_rp_gp_started++;
1537 return 1; 1537 return 1;
1538 } 1538 }
1539 1539
1540 /* Has an RCU GP gone long enough to send resched IPIs &c? */ 1540 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1541 if (rcu_gp_in_progress(rsp) && 1541 if (rcu_gp_in_progress(rsp) &&
1542 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) { 1542 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
1543 rdp->n_rp_need_fqs++; 1543 rdp->n_rp_need_fqs++;
1544 return 1; 1544 return 1;
1545 } 1545 }
1546 1546
1547 /* nothing to do */ 1547 /* nothing to do */
1548 rdp->n_rp_need_nothing++; 1548 rdp->n_rp_need_nothing++;
1549 return 0; 1549 return 0;
1550 } 1550 }
1551 1551
1552 /* 1552 /*
1553 * Check to see if there is any immediate RCU-related work to be done 1553 * Check to see if there is any immediate RCU-related work to be done
1554 * by the current CPU, returning 1 if so. This function is part of the 1554 * by the current CPU, returning 1 if so. This function is part of the
1555 * RCU implementation; it is -not- an exported member of the RCU API. 1555 * RCU implementation; it is -not- an exported member of the RCU API.
1556 */ 1556 */
1557 static int rcu_pending(int cpu) 1557 static int rcu_pending(int cpu)
1558 { 1558 {
1559 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) || 1559 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1560 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) || 1560 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1561 rcu_preempt_pending(cpu); 1561 rcu_preempt_pending(cpu);
1562 } 1562 }
1563 1563
1564 /* 1564 /*
1565 * Check to see if any future RCU-related work will need to be done 1565 * Check to see if any future RCU-related work will need to be done
1566 * by the current CPU, even if none need be done immediately, returning 1566 * by the current CPU, even if none need be done immediately, returning
1567 * 1 if so. 1567 * 1 if so.
1568 */ 1568 */
1569 static int rcu_needs_cpu_quick_check(int cpu) 1569 static int rcu_needs_cpu_quick_check(int cpu)
1570 { 1570 {
1571 /* RCU callbacks either ready or pending? */ 1571 /* RCU callbacks either ready or pending? */
1572 return per_cpu(rcu_sched_data, cpu).nxtlist || 1572 return per_cpu(rcu_sched_data, cpu).nxtlist ||
1573 per_cpu(rcu_bh_data, cpu).nxtlist || 1573 per_cpu(rcu_bh_data, cpu).nxtlist ||
1574 rcu_preempt_needs_cpu(cpu); 1574 rcu_preempt_needs_cpu(cpu);
1575 } 1575 }
1576 1576
1577 static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL}; 1577 static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1578 static atomic_t rcu_barrier_cpu_count; 1578 static atomic_t rcu_barrier_cpu_count;
1579 static DEFINE_MUTEX(rcu_barrier_mutex); 1579 static DEFINE_MUTEX(rcu_barrier_mutex);
1580 static struct completion rcu_barrier_completion; 1580 static struct completion rcu_barrier_completion;
1581 1581
1582 static void rcu_barrier_callback(struct rcu_head *notused) 1582 static void rcu_barrier_callback(struct rcu_head *notused)
1583 { 1583 {
1584 if (atomic_dec_and_test(&rcu_barrier_cpu_count)) 1584 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1585 complete(&rcu_barrier_completion); 1585 complete(&rcu_barrier_completion);
1586 } 1586 }
1587 1587
1588 /* 1588 /*
1589 * Called with preemption disabled, and from cross-cpu IRQ context. 1589 * Called with preemption disabled, and from cross-cpu IRQ context.
1590 */ 1590 */
1591 static void rcu_barrier_func(void *type) 1591 static void rcu_barrier_func(void *type)
1592 { 1592 {
1593 int cpu = smp_processor_id(); 1593 int cpu = smp_processor_id();
1594 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu); 1594 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
1595 void (*call_rcu_func)(struct rcu_head *head, 1595 void (*call_rcu_func)(struct rcu_head *head,
1596 void (*func)(struct rcu_head *head)); 1596 void (*func)(struct rcu_head *head));
1597 1597
1598 atomic_inc(&rcu_barrier_cpu_count); 1598 atomic_inc(&rcu_barrier_cpu_count);
1599 call_rcu_func = type; 1599 call_rcu_func = type;
1600 call_rcu_func(head, rcu_barrier_callback); 1600 call_rcu_func(head, rcu_barrier_callback);
1601 } 1601 }
1602 1602
1603 /* 1603 /*
1604 * Orchestrate the specified type of RCU barrier, waiting for all 1604 * Orchestrate the specified type of RCU barrier, waiting for all
1605 * RCU callbacks of the specified type to complete. 1605 * RCU callbacks of the specified type to complete.
1606 */ 1606 */
1607 static void _rcu_barrier(struct rcu_state *rsp, 1607 static void _rcu_barrier(struct rcu_state *rsp,
1608 void (*call_rcu_func)(struct rcu_head *head, 1608 void (*call_rcu_func)(struct rcu_head *head,
1609 void (*func)(struct rcu_head *head))) 1609 void (*func)(struct rcu_head *head)))
1610 { 1610 {
1611 BUG_ON(in_interrupt()); 1611 BUG_ON(in_interrupt());
1612 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 1612 /* Take mutex to serialize concurrent rcu_barrier() requests. */
1613 mutex_lock(&rcu_barrier_mutex); 1613 mutex_lock(&rcu_barrier_mutex);
1614 init_completion(&rcu_barrier_completion); 1614 init_completion(&rcu_barrier_completion);
1615 /* 1615 /*
1616 * Initialize rcu_barrier_cpu_count to 1, then invoke 1616 * Initialize rcu_barrier_cpu_count to 1, then invoke
1617 * rcu_barrier_func() on each CPU, so that each CPU also has 1617 * rcu_barrier_func() on each CPU, so that each CPU also has
1618 * incremented rcu_barrier_cpu_count. Only then is it safe to 1618 * incremented rcu_barrier_cpu_count. Only then is it safe to
1619 * decrement rcu_barrier_cpu_count -- otherwise the first CPU 1619 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1620 * might complete its grace period before all of the other CPUs 1620 * might complete its grace period before all of the other CPUs
1621 * did their increment, causing this function to return too 1621 * did their increment, causing this function to return too
1622 * early. 1622 * early.
1623 */ 1623 */
1624 atomic_set(&rcu_barrier_cpu_count, 1); 1624 atomic_set(&rcu_barrier_cpu_count, 1);
1625 preempt_disable(); /* stop CPU_DYING from filling orphan_cbs_list */ 1625 preempt_disable(); /* stop CPU_DYING from filling orphan_cbs_list */
1626 rcu_adopt_orphan_cbs(rsp); 1626 rcu_adopt_orphan_cbs(rsp);
1627 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1); 1627 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
1628 preempt_enable(); /* CPU_DYING can again fill orphan_cbs_list */ 1628 preempt_enable(); /* CPU_DYING can again fill orphan_cbs_list */
1629 if (atomic_dec_and_test(&rcu_barrier_cpu_count)) 1629 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1630 complete(&rcu_barrier_completion); 1630 complete(&rcu_barrier_completion);
1631 wait_for_completion(&rcu_barrier_completion); 1631 wait_for_completion(&rcu_barrier_completion);
1632 mutex_unlock(&rcu_barrier_mutex); 1632 mutex_unlock(&rcu_barrier_mutex);
1633 } 1633 }
1634 1634
1635 /** 1635 /**
1636 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete. 1636 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
1637 */ 1637 */
1638 void rcu_barrier_bh(void) 1638 void rcu_barrier_bh(void)
1639 { 1639 {
1640 _rcu_barrier(&rcu_bh_state, call_rcu_bh); 1640 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
1641 } 1641 }
1642 EXPORT_SYMBOL_GPL(rcu_barrier_bh); 1642 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
1643 1643
1644 /** 1644 /**
1645 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks. 1645 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
1646 */ 1646 */
1647 void rcu_barrier_sched(void) 1647 void rcu_barrier_sched(void)
1648 { 1648 {
1649 _rcu_barrier(&rcu_sched_state, call_rcu_sched); 1649 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
1650 } 1650 }
1651 EXPORT_SYMBOL_GPL(rcu_barrier_sched); 1651 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
1652 1652
1653 /* 1653 /*
1654 * Do boot-time initialization of a CPU's per-CPU RCU data. 1654 * Do boot-time initialization of a CPU's per-CPU RCU data.
1655 */ 1655 */
1656 static void __init 1656 static void __init
1657 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp) 1657 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
1658 { 1658 {
1659 unsigned long flags; 1659 unsigned long flags;
1660 int i; 1660 int i;
1661 struct rcu_data *rdp = rsp->rda[cpu]; 1661 struct rcu_data *rdp = rsp->rda[cpu];
1662 struct rcu_node *rnp = rcu_get_root(rsp); 1662 struct rcu_node *rnp = rcu_get_root(rsp);
1663 1663
1664 /* Set up local state, ensuring consistent view of global state. */ 1664 /* Set up local state, ensuring consistent view of global state. */
1665 raw_spin_lock_irqsave(&rnp->lock, flags); 1665 raw_spin_lock_irqsave(&rnp->lock, flags);
1666 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo); 1666 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1667 rdp->nxtlist = NULL; 1667 rdp->nxtlist = NULL;
1668 for (i = 0; i < RCU_NEXT_SIZE; i++) 1668 for (i = 0; i < RCU_NEXT_SIZE; i++)
1669 rdp->nxttail[i] = &rdp->nxtlist; 1669 rdp->nxttail[i] = &rdp->nxtlist;
1670 rdp->qlen = 0; 1670 rdp->qlen = 0;
1671 #ifdef CONFIG_NO_HZ 1671 #ifdef CONFIG_NO_HZ
1672 rdp->dynticks = &per_cpu(rcu_dynticks, cpu); 1672 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1673 #endif /* #ifdef CONFIG_NO_HZ */ 1673 #endif /* #ifdef CONFIG_NO_HZ */
1674 rdp->cpu = cpu; 1674 rdp->cpu = cpu;
1675 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1675 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1676 } 1676 }
1677 1677
1678 /* 1678 /*
1679 * Initialize a CPU's per-CPU RCU data. Note that only one online or 1679 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1680 * offline event can be happening at a given time. Note also that we 1680 * offline event can be happening at a given time. Note also that we
1681 * can accept some slop in the rsp->completed access due to the fact 1681 * can accept some slop in the rsp->completed access due to the fact
1682 * that this CPU cannot possibly have any RCU callbacks in flight yet. 1682 * that this CPU cannot possibly have any RCU callbacks in flight yet.
1683 */ 1683 */
1684 static void __cpuinit 1684 static void __cpuinit
1685 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable) 1685 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
1686 { 1686 {
1687 unsigned long flags; 1687 unsigned long flags;
1688 unsigned long mask; 1688 unsigned long mask;
1689 struct rcu_data *rdp = rsp->rda[cpu]; 1689 struct rcu_data *rdp = rsp->rda[cpu];
1690 struct rcu_node *rnp = rcu_get_root(rsp); 1690 struct rcu_node *rnp = rcu_get_root(rsp);
1691 1691
1692 /* Set up local state, ensuring consistent view of global state. */ 1692 /* Set up local state, ensuring consistent view of global state. */
1693 raw_spin_lock_irqsave(&rnp->lock, flags); 1693 raw_spin_lock_irqsave(&rnp->lock, flags);
1694 rdp->passed_quiesc = 0; /* We could be racing with new GP, */ 1694 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1695 rdp->qs_pending = 1; /* so set up to respond to current GP. */ 1695 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1696 rdp->beenonline = 1; /* We have now been online. */ 1696 rdp->beenonline = 1; /* We have now been online. */
1697 rdp->preemptable = preemptable; 1697 rdp->preemptable = preemptable;
1698 rdp->qlen_last_fqs_check = 0; 1698 rdp->qlen_last_fqs_check = 0;
1699 rdp->n_force_qs_snap = rsp->n_force_qs; 1699 rdp->n_force_qs_snap = rsp->n_force_qs;
1700 rdp->blimit = blimit; 1700 rdp->blimit = blimit;
1701 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 1701 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1702 1702
1703 /* 1703 /*
1704 * A new grace period might start here. If so, we won't be part 1704 * A new grace period might start here. If so, we won't be part
1705 * of it, but that is OK, as we are currently in a quiescent state. 1705 * of it, but that is OK, as we are currently in a quiescent state.
1706 */ 1706 */
1707 1707
1708 /* Exclude any attempts to start a new GP on large systems. */ 1708 /* Exclude any attempts to start a new GP on large systems. */
1709 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */ 1709 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
1710 1710
1711 /* Add CPU to rcu_node bitmasks. */ 1711 /* Add CPU to rcu_node bitmasks. */
1712 rnp = rdp->mynode; 1712 rnp = rdp->mynode;
1713 mask = rdp->grpmask; 1713 mask = rdp->grpmask;
1714 do { 1714 do {
1715 /* Exclude any attempts to start a new GP on small systems. */ 1715 /* Exclude any attempts to start a new GP on small systems. */
1716 raw_spin_lock(&rnp->lock); /* irqs already disabled. */ 1716 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1717 rnp->qsmaskinit |= mask; 1717 rnp->qsmaskinit |= mask;
1718 mask = rnp->grpmask; 1718 mask = rnp->grpmask;
1719 if (rnp == rdp->mynode) { 1719 if (rnp == rdp->mynode) {
1720 rdp->gpnum = rnp->completed; /* if GP in progress... */ 1720 rdp->gpnum = rnp->completed; /* if GP in progress... */
1721 rdp->completed = rnp->completed; 1721 rdp->completed = rnp->completed;
1722 rdp->passed_quiesc_completed = rnp->completed - 1; 1722 rdp->passed_quiesc_completed = rnp->completed - 1;
1723 } 1723 }
1724 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */ 1724 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
1725 rnp = rnp->parent; 1725 rnp = rnp->parent;
1726 } while (rnp != NULL && !(rnp->qsmaskinit & mask)); 1726 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1727 1727
1728 raw_spin_unlock_irqrestore(&rsp->onofflock, flags); 1728 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1729 } 1729 }
1730 1730
1731 static void __cpuinit rcu_online_cpu(int cpu) 1731 static void __cpuinit rcu_online_cpu(int cpu)
1732 { 1732 {
1733 rcu_init_percpu_data(cpu, &rcu_sched_state, 0); 1733 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
1734 rcu_init_percpu_data(cpu, &rcu_bh_state, 0); 1734 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
1735 rcu_preempt_init_percpu_data(cpu); 1735 rcu_preempt_init_percpu_data(cpu);
1736 } 1736 }
1737 1737
1738 /* 1738 /*
1739 * Handle CPU online/offline notification events. 1739 * Handle CPU online/offline notification events.
1740 */ 1740 */
1741 static int __cpuinit rcu_cpu_notify(struct notifier_block *self, 1741 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1742 unsigned long action, void *hcpu) 1742 unsigned long action, void *hcpu)
1743 { 1743 {
1744 long cpu = (long)hcpu; 1744 long cpu = (long)hcpu;
1745 1745
1746 switch (action) { 1746 switch (action) {
1747 case CPU_UP_PREPARE: 1747 case CPU_UP_PREPARE:
1748 case CPU_UP_PREPARE_FROZEN: 1748 case CPU_UP_PREPARE_FROZEN:
1749 rcu_online_cpu(cpu); 1749 rcu_online_cpu(cpu);
1750 break; 1750 break;
1751 case CPU_DYING: 1751 case CPU_DYING:
1752 case CPU_DYING_FROZEN: 1752 case CPU_DYING_FROZEN:
1753 /* 1753 /*
1754 * preempt_disable() in _rcu_barrier() prevents stop_machine(), 1754 * preempt_disable() in _rcu_barrier() prevents stop_machine(),
1755 * so when "on_each_cpu(rcu_barrier_func, (void *)type, 1);" 1755 * so when "on_each_cpu(rcu_barrier_func, (void *)type, 1);"
1756 * returns, all online cpus have queued rcu_barrier_func(). 1756 * returns, all online cpus have queued rcu_barrier_func().
1757 * The dying CPU clears its cpu_online_mask bit and 1757 * The dying CPU clears its cpu_online_mask bit and
1758 * moves all of its RCU callbacks to ->orphan_cbs_list 1758 * moves all of its RCU callbacks to ->orphan_cbs_list
1759 * in the context of stop_machine(), so subsequent calls 1759 * in the context of stop_machine(), so subsequent calls
1760 * to _rcu_barrier() will adopt these callbacks and only 1760 * to _rcu_barrier() will adopt these callbacks and only
1761 * then queue rcu_barrier_func() on all remaining CPUs. 1761 * then queue rcu_barrier_func() on all remaining CPUs.
1762 */ 1762 */
1763 rcu_send_cbs_to_orphanage(&rcu_bh_state); 1763 rcu_send_cbs_to_orphanage(&rcu_bh_state);
1764 rcu_send_cbs_to_orphanage(&rcu_sched_state); 1764 rcu_send_cbs_to_orphanage(&rcu_sched_state);
1765 rcu_preempt_send_cbs_to_orphanage(); 1765 rcu_preempt_send_cbs_to_orphanage();
1766 break; 1766 break;
1767 case CPU_DEAD: 1767 case CPU_DEAD:
1768 case CPU_DEAD_FROZEN: 1768 case CPU_DEAD_FROZEN:
1769 case CPU_UP_CANCELED: 1769 case CPU_UP_CANCELED:
1770 case CPU_UP_CANCELED_FROZEN: 1770 case CPU_UP_CANCELED_FROZEN:
1771 rcu_offline_cpu(cpu); 1771 rcu_offline_cpu(cpu);
1772 break; 1772 break;
1773 default: 1773 default:
1774 break; 1774 break;
1775 } 1775 }
1776 return NOTIFY_OK; 1776 return NOTIFY_OK;
1777 } 1777 }
1778 1778
1779 /* 1779 /*
1780 * Compute the per-level fanout, either using the exact fanout specified 1780 * Compute the per-level fanout, either using the exact fanout specified
1781 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT. 1781 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1782 */ 1782 */
1783 #ifdef CONFIG_RCU_FANOUT_EXACT 1783 #ifdef CONFIG_RCU_FANOUT_EXACT
1784 static void __init rcu_init_levelspread(struct rcu_state *rsp) 1784 static void __init rcu_init_levelspread(struct rcu_state *rsp)
1785 { 1785 {
1786 int i; 1786 int i;
1787 1787
1788 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) 1788 for (i = NUM_RCU_LVLS - 1; i >= 0; i--)
1789 rsp->levelspread[i] = CONFIG_RCU_FANOUT; 1789 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
1790 } 1790 }
1791 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */ 1791 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1792 static void __init rcu_init_levelspread(struct rcu_state *rsp) 1792 static void __init rcu_init_levelspread(struct rcu_state *rsp)
1793 { 1793 {
1794 int ccur; 1794 int ccur;
1795 int cprv; 1795 int cprv;
1796 int i; 1796 int i;
1797 1797
1798 cprv = NR_CPUS; 1798 cprv = NR_CPUS;
1799 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) { 1799 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1800 ccur = rsp->levelcnt[i]; 1800 ccur = rsp->levelcnt[i];
1801 rsp->levelspread[i] = (cprv + ccur - 1) / ccur; 1801 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
1802 cprv = ccur; 1802 cprv = ccur;
1803 } 1803 }
1804 } 1804 }
1805 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */ 1805 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
1806 1806
1807 /* 1807 /*
1808 * Helper function for rcu_init() that initializes one rcu_state structure. 1808 * Helper function for rcu_init() that initializes one rcu_state structure.
1809 */ 1809 */
1810 static void __init rcu_init_one(struct rcu_state *rsp) 1810 static void __init rcu_init_one(struct rcu_state *rsp)
1811 { 1811 {
1812 static char *buf[] = { "rcu_node_level_0", 1812 static char *buf[] = { "rcu_node_level_0",
1813 "rcu_node_level_1", 1813 "rcu_node_level_1",
1814 "rcu_node_level_2", 1814 "rcu_node_level_2",
1815 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */ 1815 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
1816 int cpustride = 1; 1816 int cpustride = 1;
1817 int i; 1817 int i;
1818 int j; 1818 int j;
1819 struct rcu_node *rnp; 1819 struct rcu_node *rnp;
1820 1820
1821 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 1821 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
1822 1822
1823 /* Initialize the level-tracking arrays. */ 1823 /* Initialize the level-tracking arrays. */
1824 1824
1825 for (i = 1; i < NUM_RCU_LVLS; i++) 1825 for (i = 1; i < NUM_RCU_LVLS; i++)
1826 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1]; 1826 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
1827 rcu_init_levelspread(rsp); 1827 rcu_init_levelspread(rsp);
1828 1828
1829 /* Initialize the elements themselves, starting from the leaves. */ 1829 /* Initialize the elements themselves, starting from the leaves. */
1830 1830
1831 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) { 1831 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1832 cpustride *= rsp->levelspread[i]; 1832 cpustride *= rsp->levelspread[i];
1833 rnp = rsp->level[i]; 1833 rnp = rsp->level[i];
1834 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) { 1834 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1835 raw_spin_lock_init(&rnp->lock); 1835 raw_spin_lock_init(&rnp->lock);
1836 lockdep_set_class_and_name(&rnp->lock, 1836 lockdep_set_class_and_name(&rnp->lock,
1837 &rcu_node_class[i], buf[i]); 1837 &rcu_node_class[i], buf[i]);
1838 rnp->gpnum = 0; 1838 rnp->gpnum = 0;
1839 rnp->qsmask = 0; 1839 rnp->qsmask = 0;
1840 rnp->qsmaskinit = 0; 1840 rnp->qsmaskinit = 0;
1841 rnp->grplo = j * cpustride; 1841 rnp->grplo = j * cpustride;
1842 rnp->grphi = (j + 1) * cpustride - 1; 1842 rnp->grphi = (j + 1) * cpustride - 1;
1843 if (rnp->grphi >= NR_CPUS) 1843 if (rnp->grphi >= NR_CPUS)
1844 rnp->grphi = NR_CPUS - 1; 1844 rnp->grphi = NR_CPUS - 1;
1845 if (i == 0) { 1845 if (i == 0) {
1846 rnp->grpnum = 0; 1846 rnp->grpnum = 0;
1847 rnp->grpmask = 0; 1847 rnp->grpmask = 0;
1848 rnp->parent = NULL; 1848 rnp->parent = NULL;
1849 } else { 1849 } else {
1850 rnp->grpnum = j % rsp->levelspread[i - 1]; 1850 rnp->grpnum = j % rsp->levelspread[i - 1];
1851 rnp->grpmask = 1UL << rnp->grpnum; 1851 rnp->grpmask = 1UL << rnp->grpnum;
1852 rnp->parent = rsp->level[i - 1] + 1852 rnp->parent = rsp->level[i - 1] +
1853 j / rsp->levelspread[i - 1]; 1853 j / rsp->levelspread[i - 1];
1854 } 1854 }
1855 rnp->level = i; 1855 rnp->level = i;
1856 INIT_LIST_HEAD(&rnp->blocked_tasks[0]); 1856 INIT_LIST_HEAD(&rnp->blocked_tasks[0]);
1857 INIT_LIST_HEAD(&rnp->blocked_tasks[1]); 1857 INIT_LIST_HEAD(&rnp->blocked_tasks[1]);
1858 INIT_LIST_HEAD(&rnp->blocked_tasks[2]); 1858 INIT_LIST_HEAD(&rnp->blocked_tasks[2]);
1859 INIT_LIST_HEAD(&rnp->blocked_tasks[3]); 1859 INIT_LIST_HEAD(&rnp->blocked_tasks[3]);
1860 } 1860 }
1861 } 1861 }
1862
1863 rnp = rsp->level[NUM_RCU_LVLS - 1];
1864 for_each_possible_cpu(i) {
1865 if (i > rnp->grphi)
1866 rnp++;
1867 rsp->rda[i]->mynode = rnp;
1868 rcu_boot_init_percpu_data(i, rsp);
1869 }
1862 } 1870 }
1863 1871
1864 /* 1872 /*
1865 * Helper macro for __rcu_init() and __rcu_init_preempt(). To be used 1873 * Helper macro for __rcu_init() and __rcu_init_preempt(). To be used
1866 * nowhere else! Assigns leaf node pointers into each CPU's rcu_data 1874 * nowhere else! Assigns leaf node pointers into each CPU's rcu_data
1867 * structure. 1875 * structure.
1868 */ 1876 */
1869 #define RCU_INIT_FLAVOR(rsp, rcu_data) \ 1877 #define RCU_INIT_FLAVOR(rsp, rcu_data) \
1870 do { \ 1878 do { \
1871 int i; \ 1879 int i; \
1872 int j; \
1873 struct rcu_node *rnp; \
1874 \ 1880 \
1875 rcu_init_one(rsp); \
1876 rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
1877 j = 0; \
1878 for_each_possible_cpu(i) { \ 1881 for_each_possible_cpu(i) { \
1879 if (i > rnp[j].grphi) \
1880 j++; \
1881 per_cpu(rcu_data, i).mynode = &rnp[j]; \
1882 (rsp)->rda[i] = &per_cpu(rcu_data, i); \ 1882 (rsp)->rda[i] = &per_cpu(rcu_data, i); \
1883 rcu_boot_init_percpu_data(i, rsp); \
1884 } \ 1883 } \
1884 rcu_init_one(rsp); \
1885 } while (0) 1885 } while (0)
1886 1886
1887 void __init rcu_init(void) 1887 void __init rcu_init(void)
1888 { 1888 {
1889 int cpu; 1889 int cpu;
1890 1890
1891 rcu_bootup_announce(); 1891 rcu_bootup_announce();
1892 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR 1892 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
1893 printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n"); 1893 printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
1894 #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ 1894 #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
1895 #if NUM_RCU_LVL_4 != 0 1895 #if NUM_RCU_LVL_4 != 0
1896 printk(KERN_INFO "Experimental four-level hierarchy is enabled.\n"); 1896 printk(KERN_INFO "Experimental four-level hierarchy is enabled.\n");
1897 #endif /* #if NUM_RCU_LVL_4 != 0 */ 1897 #endif /* #if NUM_RCU_LVL_4 != 0 */
1898 RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data); 1898 RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data);
1899 RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data); 1899 RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data);
1900 __rcu_init_preempt(); 1900 __rcu_init_preempt();
1901 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); 1901 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
1902 1902
1903 /* 1903 /*
1904 * We don't need protection against CPU-hotplug here because 1904 * We don't need protection against CPU-hotplug here because
1905 * this is called early in boot, before either interrupts 1905 * this is called early in boot, before either interrupts