Commit 100d13c3b5b9410f604b86f5e0a34da64b8cf659

Authored by Catalin Marinas
Committed by Tejun Heo
1 parent 42b6428145

kmemleak: Fix the kmemleak tracking of the percpu areas with !SMP

Kmemleak tracks the percpu allocations via a specific API and the
originally allocated areas must be removed from kmemleak (via
kmemleak_free). The code was already doing this for SMP systems.

Reported-by: Sami Liedes <sami.liedes@iki.fi>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

Showing 1 changed file with 2 additions and 0 deletions Inline Diff

1 /* 1 /*
2 * mm/percpu.c - percpu memory allocator 2 * mm/percpu.c - percpu memory allocator
3 * 3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH 4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org> 5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 * 6 *
7 * This file is released under the GPLv2. 7 * This file is released under the GPLv2.
8 * 8 *
9 * This is percpu allocator which can handle both static and dynamic 9 * This is percpu allocator which can handle both static and dynamic
10 * areas. Percpu areas are allocated in chunks. Each chunk is 10 * areas. Percpu areas are allocated in chunks. Each chunk is
11 * consisted of boot-time determined number of units and the first 11 * consisted of boot-time determined number of units and the first
12 * chunk is used for static percpu variables in the kernel image 12 * chunk is used for static percpu variables in the kernel image
13 * (special boot time alloc/init handling necessary as these areas 13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running). 14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison. 15 * Unit grows as necessary and all units grow or shrink in unison.
16 * When a chunk is filled up, another chunk is allocated. 16 * When a chunk is filled up, another chunk is allocated.
17 * 17 *
18 * c0 c1 c2 18 * c0 c1 c2
19 * ------------------- ------------------- ------------ 19 * ------------------- ------------------- ------------
20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u 20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
21 * ------------------- ...... ------------------- .... ------------ 21 * ------------------- ...... ------------------- .... ------------
22 * 22 *
23 * Allocation is done in offset-size areas of single unit space. Ie, 23 * Allocation is done in offset-size areas of single unit space. Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0, 24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to 25 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
26 * cpus. On NUMA, the mapping can be non-linear and even sparse. 26 * cpus. On NUMA, the mapping can be non-linear and even sparse.
27 * Percpu access can be done by configuring percpu base registers 27 * Percpu access can be done by configuring percpu base registers
28 * according to cpu to unit mapping and pcpu_unit_size. 28 * according to cpu to unit mapping and pcpu_unit_size.
29 * 29 *
30 * There are usually many small percpu allocations many of them being 30 * There are usually many small percpu allocations many of them being
31 * as small as 4 bytes. The allocator organizes chunks into lists 31 * as small as 4 bytes. The allocator organizes chunks into lists
32 * according to free size and tries to allocate from the fullest one. 32 * according to free size and tries to allocate from the fullest one.
33 * Each chunk keeps the maximum contiguous area size hint which is 33 * Each chunk keeps the maximum contiguous area size hint which is
34 * guaranteed to be equal to or larger than the maximum contiguous 34 * guaranteed to be equal to or larger than the maximum contiguous
35 * area in the chunk. This helps the allocator not to iterate the 35 * area in the chunk. This helps the allocator not to iterate the
36 * chunk maps unnecessarily. 36 * chunk maps unnecessarily.
37 * 37 *
38 * Allocation state in each chunk is kept using an array of integers 38 * Allocation state in each chunk is kept using an array of integers
39 * on chunk->map. A positive value in the map represents a free 39 * on chunk->map. A positive value in the map represents a free
40 * region and negative allocated. Allocation inside a chunk is done 40 * region and negative allocated. Allocation inside a chunk is done
41 * by scanning this map sequentially and serving the first matching 41 * by scanning this map sequentially and serving the first matching
42 * entry. This is mostly copied from the percpu_modalloc() allocator. 42 * entry. This is mostly copied from the percpu_modalloc() allocator.
43 * Chunks can be determined from the address using the index field 43 * Chunks can be determined from the address using the index field
44 * in the page struct. The index field contains a pointer to the chunk. 44 * in the page struct. The index field contains a pointer to the chunk.
45 * 45 *
46 * To use this allocator, arch code should do the followings. 46 * To use this allocator, arch code should do the followings.
47 * 47 *
48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate 48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49 * regular address to percpu pointer and back if they need to be 49 * regular address to percpu pointer and back if they need to be
50 * different from the default 50 * different from the default
51 * 51 *
52 * - use pcpu_setup_first_chunk() during percpu area initialization to 52 * - use pcpu_setup_first_chunk() during percpu area initialization to
53 * setup the first chunk containing the kernel static percpu area 53 * setup the first chunk containing the kernel static percpu area
54 */ 54 */
55 55
56 #include <linux/bitmap.h> 56 #include <linux/bitmap.h>
57 #include <linux/bootmem.h> 57 #include <linux/bootmem.h>
58 #include <linux/err.h> 58 #include <linux/err.h>
59 #include <linux/list.h> 59 #include <linux/list.h>
60 #include <linux/log2.h> 60 #include <linux/log2.h>
61 #include <linux/mm.h> 61 #include <linux/mm.h>
62 #include <linux/module.h> 62 #include <linux/module.h>
63 #include <linux/mutex.h> 63 #include <linux/mutex.h>
64 #include <linux/percpu.h> 64 #include <linux/percpu.h>
65 #include <linux/pfn.h> 65 #include <linux/pfn.h>
66 #include <linux/slab.h> 66 #include <linux/slab.h>
67 #include <linux/spinlock.h> 67 #include <linux/spinlock.h>
68 #include <linux/vmalloc.h> 68 #include <linux/vmalloc.h>
69 #include <linux/workqueue.h> 69 #include <linux/workqueue.h>
70 #include <linux/kmemleak.h> 70 #include <linux/kmemleak.h>
71 71
72 #include <asm/cacheflush.h> 72 #include <asm/cacheflush.h>
73 #include <asm/sections.h> 73 #include <asm/sections.h>
74 #include <asm/tlbflush.h> 74 #include <asm/tlbflush.h>
75 #include <asm/io.h> 75 #include <asm/io.h>
76 76
77 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */ 77 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
78 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */ 78 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
79 79
80 #ifdef CONFIG_SMP 80 #ifdef CONFIG_SMP
81 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ 81 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
82 #ifndef __addr_to_pcpu_ptr 82 #ifndef __addr_to_pcpu_ptr
83 #define __addr_to_pcpu_ptr(addr) \ 83 #define __addr_to_pcpu_ptr(addr) \
84 (void __percpu *)((unsigned long)(addr) - \ 84 (void __percpu *)((unsigned long)(addr) - \
85 (unsigned long)pcpu_base_addr + \ 85 (unsigned long)pcpu_base_addr + \
86 (unsigned long)__per_cpu_start) 86 (unsigned long)__per_cpu_start)
87 #endif 87 #endif
88 #ifndef __pcpu_ptr_to_addr 88 #ifndef __pcpu_ptr_to_addr
89 #define __pcpu_ptr_to_addr(ptr) \ 89 #define __pcpu_ptr_to_addr(ptr) \
90 (void __force *)((unsigned long)(ptr) + \ 90 (void __force *)((unsigned long)(ptr) + \
91 (unsigned long)pcpu_base_addr - \ 91 (unsigned long)pcpu_base_addr - \
92 (unsigned long)__per_cpu_start) 92 (unsigned long)__per_cpu_start)
93 #endif 93 #endif
94 #else /* CONFIG_SMP */ 94 #else /* CONFIG_SMP */
95 /* on UP, it's always identity mapped */ 95 /* on UP, it's always identity mapped */
96 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr) 96 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
97 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr) 97 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
98 #endif /* CONFIG_SMP */ 98 #endif /* CONFIG_SMP */
99 99
100 struct pcpu_chunk { 100 struct pcpu_chunk {
101 struct list_head list; /* linked to pcpu_slot lists */ 101 struct list_head list; /* linked to pcpu_slot lists */
102 int free_size; /* free bytes in the chunk */ 102 int free_size; /* free bytes in the chunk */
103 int contig_hint; /* max contiguous size hint */ 103 int contig_hint; /* max contiguous size hint */
104 void *base_addr; /* base address of this chunk */ 104 void *base_addr; /* base address of this chunk */
105 int map_used; /* # of map entries used */ 105 int map_used; /* # of map entries used */
106 int map_alloc; /* # of map entries allocated */ 106 int map_alloc; /* # of map entries allocated */
107 int *map; /* allocation map */ 107 int *map; /* allocation map */
108 void *data; /* chunk data */ 108 void *data; /* chunk data */
109 bool immutable; /* no [de]population allowed */ 109 bool immutable; /* no [de]population allowed */
110 unsigned long populated[]; /* populated bitmap */ 110 unsigned long populated[]; /* populated bitmap */
111 }; 111 };
112 112
113 static int pcpu_unit_pages __read_mostly; 113 static int pcpu_unit_pages __read_mostly;
114 static int pcpu_unit_size __read_mostly; 114 static int pcpu_unit_size __read_mostly;
115 static int pcpu_nr_units __read_mostly; 115 static int pcpu_nr_units __read_mostly;
116 static int pcpu_atom_size __read_mostly; 116 static int pcpu_atom_size __read_mostly;
117 static int pcpu_nr_slots __read_mostly; 117 static int pcpu_nr_slots __read_mostly;
118 static size_t pcpu_chunk_struct_size __read_mostly; 118 static size_t pcpu_chunk_struct_size __read_mostly;
119 119
120 /* cpus with the lowest and highest unit addresses */ 120 /* cpus with the lowest and highest unit addresses */
121 static unsigned int pcpu_low_unit_cpu __read_mostly; 121 static unsigned int pcpu_low_unit_cpu __read_mostly;
122 static unsigned int pcpu_high_unit_cpu __read_mostly; 122 static unsigned int pcpu_high_unit_cpu __read_mostly;
123 123
124 /* the address of the first chunk which starts with the kernel static area */ 124 /* the address of the first chunk which starts with the kernel static area */
125 void *pcpu_base_addr __read_mostly; 125 void *pcpu_base_addr __read_mostly;
126 EXPORT_SYMBOL_GPL(pcpu_base_addr); 126 EXPORT_SYMBOL_GPL(pcpu_base_addr);
127 127
128 static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */ 128 static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */
129 const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */ 129 const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */
130 130
131 /* group information, used for vm allocation */ 131 /* group information, used for vm allocation */
132 static int pcpu_nr_groups __read_mostly; 132 static int pcpu_nr_groups __read_mostly;
133 static const unsigned long *pcpu_group_offsets __read_mostly; 133 static const unsigned long *pcpu_group_offsets __read_mostly;
134 static const size_t *pcpu_group_sizes __read_mostly; 134 static const size_t *pcpu_group_sizes __read_mostly;
135 135
136 /* 136 /*
137 * The first chunk which always exists. Note that unlike other 137 * The first chunk which always exists. Note that unlike other
138 * chunks, this one can be allocated and mapped in several different 138 * chunks, this one can be allocated and mapped in several different
139 * ways and thus often doesn't live in the vmalloc area. 139 * ways and thus often doesn't live in the vmalloc area.
140 */ 140 */
141 static struct pcpu_chunk *pcpu_first_chunk; 141 static struct pcpu_chunk *pcpu_first_chunk;
142 142
143 /* 143 /*
144 * Optional reserved chunk. This chunk reserves part of the first 144 * Optional reserved chunk. This chunk reserves part of the first
145 * chunk and serves it for reserved allocations. The amount of 145 * chunk and serves it for reserved allocations. The amount of
146 * reserved offset is in pcpu_reserved_chunk_limit. When reserved 146 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
147 * area doesn't exist, the following variables contain NULL and 0 147 * area doesn't exist, the following variables contain NULL and 0
148 * respectively. 148 * respectively.
149 */ 149 */
150 static struct pcpu_chunk *pcpu_reserved_chunk; 150 static struct pcpu_chunk *pcpu_reserved_chunk;
151 static int pcpu_reserved_chunk_limit; 151 static int pcpu_reserved_chunk_limit;
152 152
153 /* 153 /*
154 * Synchronization rules. 154 * Synchronization rules.
155 * 155 *
156 * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former 156 * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former
157 * protects allocation/reclaim paths, chunks, populated bitmap and 157 * protects allocation/reclaim paths, chunks, populated bitmap and
158 * vmalloc mapping. The latter is a spinlock and protects the index 158 * vmalloc mapping. The latter is a spinlock and protects the index
159 * data structures - chunk slots, chunks and area maps in chunks. 159 * data structures - chunk slots, chunks and area maps in chunks.
160 * 160 *
161 * During allocation, pcpu_alloc_mutex is kept locked all the time and 161 * During allocation, pcpu_alloc_mutex is kept locked all the time and
162 * pcpu_lock is grabbed and released as necessary. All actual memory 162 * pcpu_lock is grabbed and released as necessary. All actual memory
163 * allocations are done using GFP_KERNEL with pcpu_lock released. In 163 * allocations are done using GFP_KERNEL with pcpu_lock released. In
164 * general, percpu memory can't be allocated with irq off but 164 * general, percpu memory can't be allocated with irq off but
165 * irqsave/restore are still used in alloc path so that it can be used 165 * irqsave/restore are still used in alloc path so that it can be used
166 * from early init path - sched_init() specifically. 166 * from early init path - sched_init() specifically.
167 * 167 *
168 * Free path accesses and alters only the index data structures, so it 168 * Free path accesses and alters only the index data structures, so it
169 * can be safely called from atomic context. When memory needs to be 169 * can be safely called from atomic context. When memory needs to be
170 * returned to the system, free path schedules reclaim_work which 170 * returned to the system, free path schedules reclaim_work which
171 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be 171 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
172 * reclaimed, release both locks and frees the chunks. Note that it's 172 * reclaimed, release both locks and frees the chunks. Note that it's
173 * necessary to grab both locks to remove a chunk from circulation as 173 * necessary to grab both locks to remove a chunk from circulation as
174 * allocation path might be referencing the chunk with only 174 * allocation path might be referencing the chunk with only
175 * pcpu_alloc_mutex locked. 175 * pcpu_alloc_mutex locked.
176 */ 176 */
177 static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */ 177 static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */
178 static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */ 178 static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */
179 179
180 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */ 180 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
181 181
182 /* reclaim work to release fully free chunks, scheduled from free path */ 182 /* reclaim work to release fully free chunks, scheduled from free path */
183 static void pcpu_reclaim(struct work_struct *work); 183 static void pcpu_reclaim(struct work_struct *work);
184 static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim); 184 static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
185 185
186 static bool pcpu_addr_in_first_chunk(void *addr) 186 static bool pcpu_addr_in_first_chunk(void *addr)
187 { 187 {
188 void *first_start = pcpu_first_chunk->base_addr; 188 void *first_start = pcpu_first_chunk->base_addr;
189 189
190 return addr >= first_start && addr < first_start + pcpu_unit_size; 190 return addr >= first_start && addr < first_start + pcpu_unit_size;
191 } 191 }
192 192
193 static bool pcpu_addr_in_reserved_chunk(void *addr) 193 static bool pcpu_addr_in_reserved_chunk(void *addr)
194 { 194 {
195 void *first_start = pcpu_first_chunk->base_addr; 195 void *first_start = pcpu_first_chunk->base_addr;
196 196
197 return addr >= first_start && 197 return addr >= first_start &&
198 addr < first_start + pcpu_reserved_chunk_limit; 198 addr < first_start + pcpu_reserved_chunk_limit;
199 } 199 }
200 200
201 static int __pcpu_size_to_slot(int size) 201 static int __pcpu_size_to_slot(int size)
202 { 202 {
203 int highbit = fls(size); /* size is in bytes */ 203 int highbit = fls(size); /* size is in bytes */
204 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); 204 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
205 } 205 }
206 206
207 static int pcpu_size_to_slot(int size) 207 static int pcpu_size_to_slot(int size)
208 { 208 {
209 if (size == pcpu_unit_size) 209 if (size == pcpu_unit_size)
210 return pcpu_nr_slots - 1; 210 return pcpu_nr_slots - 1;
211 return __pcpu_size_to_slot(size); 211 return __pcpu_size_to_slot(size);
212 } 212 }
213 213
214 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) 214 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
215 { 215 {
216 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int)) 216 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
217 return 0; 217 return 0;
218 218
219 return pcpu_size_to_slot(chunk->free_size); 219 return pcpu_size_to_slot(chunk->free_size);
220 } 220 }
221 221
222 /* set the pointer to a chunk in a page struct */ 222 /* set the pointer to a chunk in a page struct */
223 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) 223 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
224 { 224 {
225 page->index = (unsigned long)pcpu; 225 page->index = (unsigned long)pcpu;
226 } 226 }
227 227
228 /* obtain pointer to a chunk from a page struct */ 228 /* obtain pointer to a chunk from a page struct */
229 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) 229 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
230 { 230 {
231 return (struct pcpu_chunk *)page->index; 231 return (struct pcpu_chunk *)page->index;
232 } 232 }
233 233
234 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx) 234 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
235 { 235 {
236 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; 236 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
237 } 237 }
238 238
239 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, 239 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
240 unsigned int cpu, int page_idx) 240 unsigned int cpu, int page_idx)
241 { 241 {
242 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] + 242 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
243 (page_idx << PAGE_SHIFT); 243 (page_idx << PAGE_SHIFT);
244 } 244 }
245 245
246 static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk, 246 static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
247 int *rs, int *re, int end) 247 int *rs, int *re, int end)
248 { 248 {
249 *rs = find_next_zero_bit(chunk->populated, end, *rs); 249 *rs = find_next_zero_bit(chunk->populated, end, *rs);
250 *re = find_next_bit(chunk->populated, end, *rs + 1); 250 *re = find_next_bit(chunk->populated, end, *rs + 1);
251 } 251 }
252 252
253 static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk, 253 static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
254 int *rs, int *re, int end) 254 int *rs, int *re, int end)
255 { 255 {
256 *rs = find_next_bit(chunk->populated, end, *rs); 256 *rs = find_next_bit(chunk->populated, end, *rs);
257 *re = find_next_zero_bit(chunk->populated, end, *rs + 1); 257 *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
258 } 258 }
259 259
260 /* 260 /*
261 * (Un)populated page region iterators. Iterate over (un)populated 261 * (Un)populated page region iterators. Iterate over (un)populated
262 * page regions between @start and @end in @chunk. @rs and @re should 262 * page regions between @start and @end in @chunk. @rs and @re should
263 * be integer variables and will be set to start and end page index of 263 * be integer variables and will be set to start and end page index of
264 * the current region. 264 * the current region.
265 */ 265 */
266 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \ 266 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
267 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \ 267 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
268 (rs) < (re); \ 268 (rs) < (re); \
269 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end))) 269 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
270 270
271 #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \ 271 #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
272 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \ 272 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
273 (rs) < (re); \ 273 (rs) < (re); \
274 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end))) 274 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
275 275
276 /** 276 /**
277 * pcpu_mem_zalloc - allocate memory 277 * pcpu_mem_zalloc - allocate memory
278 * @size: bytes to allocate 278 * @size: bytes to allocate
279 * 279 *
280 * Allocate @size bytes. If @size is smaller than PAGE_SIZE, 280 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
281 * kzalloc() is used; otherwise, vzalloc() is used. The returned 281 * kzalloc() is used; otherwise, vzalloc() is used. The returned
282 * memory is always zeroed. 282 * memory is always zeroed.
283 * 283 *
284 * CONTEXT: 284 * CONTEXT:
285 * Does GFP_KERNEL allocation. 285 * Does GFP_KERNEL allocation.
286 * 286 *
287 * RETURNS: 287 * RETURNS:
288 * Pointer to the allocated area on success, NULL on failure. 288 * Pointer to the allocated area on success, NULL on failure.
289 */ 289 */
290 static void *pcpu_mem_zalloc(size_t size) 290 static void *pcpu_mem_zalloc(size_t size)
291 { 291 {
292 if (WARN_ON_ONCE(!slab_is_available())) 292 if (WARN_ON_ONCE(!slab_is_available()))
293 return NULL; 293 return NULL;
294 294
295 if (size <= PAGE_SIZE) 295 if (size <= PAGE_SIZE)
296 return kzalloc(size, GFP_KERNEL); 296 return kzalloc(size, GFP_KERNEL);
297 else 297 else
298 return vzalloc(size); 298 return vzalloc(size);
299 } 299 }
300 300
301 /** 301 /**
302 * pcpu_mem_free - free memory 302 * pcpu_mem_free - free memory
303 * @ptr: memory to free 303 * @ptr: memory to free
304 * @size: size of the area 304 * @size: size of the area
305 * 305 *
306 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc(). 306 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
307 */ 307 */
308 static void pcpu_mem_free(void *ptr, size_t size) 308 static void pcpu_mem_free(void *ptr, size_t size)
309 { 309 {
310 if (size <= PAGE_SIZE) 310 if (size <= PAGE_SIZE)
311 kfree(ptr); 311 kfree(ptr);
312 else 312 else
313 vfree(ptr); 313 vfree(ptr);
314 } 314 }
315 315
316 /** 316 /**
317 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot 317 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
318 * @chunk: chunk of interest 318 * @chunk: chunk of interest
319 * @oslot: the previous slot it was on 319 * @oslot: the previous slot it was on
320 * 320 *
321 * This function is called after an allocation or free changed @chunk. 321 * This function is called after an allocation or free changed @chunk.
322 * New slot according to the changed state is determined and @chunk is 322 * New slot according to the changed state is determined and @chunk is
323 * moved to the slot. Note that the reserved chunk is never put on 323 * moved to the slot. Note that the reserved chunk is never put on
324 * chunk slots. 324 * chunk slots.
325 * 325 *
326 * CONTEXT: 326 * CONTEXT:
327 * pcpu_lock. 327 * pcpu_lock.
328 */ 328 */
329 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) 329 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
330 { 330 {
331 int nslot = pcpu_chunk_slot(chunk); 331 int nslot = pcpu_chunk_slot(chunk);
332 332
333 if (chunk != pcpu_reserved_chunk && oslot != nslot) { 333 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
334 if (oslot < nslot) 334 if (oslot < nslot)
335 list_move(&chunk->list, &pcpu_slot[nslot]); 335 list_move(&chunk->list, &pcpu_slot[nslot]);
336 else 336 else
337 list_move_tail(&chunk->list, &pcpu_slot[nslot]); 337 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
338 } 338 }
339 } 339 }
340 340
341 /** 341 /**
342 * pcpu_need_to_extend - determine whether chunk area map needs to be extended 342 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
343 * @chunk: chunk of interest 343 * @chunk: chunk of interest
344 * 344 *
345 * Determine whether area map of @chunk needs to be extended to 345 * Determine whether area map of @chunk needs to be extended to
346 * accommodate a new allocation. 346 * accommodate a new allocation.
347 * 347 *
348 * CONTEXT: 348 * CONTEXT:
349 * pcpu_lock. 349 * pcpu_lock.
350 * 350 *
351 * RETURNS: 351 * RETURNS:
352 * New target map allocation length if extension is necessary, 0 352 * New target map allocation length if extension is necessary, 0
353 * otherwise. 353 * otherwise.
354 */ 354 */
355 static int pcpu_need_to_extend(struct pcpu_chunk *chunk) 355 static int pcpu_need_to_extend(struct pcpu_chunk *chunk)
356 { 356 {
357 int new_alloc; 357 int new_alloc;
358 358
359 if (chunk->map_alloc >= chunk->map_used + 2) 359 if (chunk->map_alloc >= chunk->map_used + 2)
360 return 0; 360 return 0;
361 361
362 new_alloc = PCPU_DFL_MAP_ALLOC; 362 new_alloc = PCPU_DFL_MAP_ALLOC;
363 while (new_alloc < chunk->map_used + 2) 363 while (new_alloc < chunk->map_used + 2)
364 new_alloc *= 2; 364 new_alloc *= 2;
365 365
366 return new_alloc; 366 return new_alloc;
367 } 367 }
368 368
369 /** 369 /**
370 * pcpu_extend_area_map - extend area map of a chunk 370 * pcpu_extend_area_map - extend area map of a chunk
371 * @chunk: chunk of interest 371 * @chunk: chunk of interest
372 * @new_alloc: new target allocation length of the area map 372 * @new_alloc: new target allocation length of the area map
373 * 373 *
374 * Extend area map of @chunk to have @new_alloc entries. 374 * Extend area map of @chunk to have @new_alloc entries.
375 * 375 *
376 * CONTEXT: 376 * CONTEXT:
377 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock. 377 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
378 * 378 *
379 * RETURNS: 379 * RETURNS:
380 * 0 on success, -errno on failure. 380 * 0 on success, -errno on failure.
381 */ 381 */
382 static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc) 382 static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
383 { 383 {
384 int *old = NULL, *new = NULL; 384 int *old = NULL, *new = NULL;
385 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]); 385 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
386 unsigned long flags; 386 unsigned long flags;
387 387
388 new = pcpu_mem_zalloc(new_size); 388 new = pcpu_mem_zalloc(new_size);
389 if (!new) 389 if (!new)
390 return -ENOMEM; 390 return -ENOMEM;
391 391
392 /* acquire pcpu_lock and switch to new area map */ 392 /* acquire pcpu_lock and switch to new area map */
393 spin_lock_irqsave(&pcpu_lock, flags); 393 spin_lock_irqsave(&pcpu_lock, flags);
394 394
395 if (new_alloc <= chunk->map_alloc) 395 if (new_alloc <= chunk->map_alloc)
396 goto out_unlock; 396 goto out_unlock;
397 397
398 old_size = chunk->map_alloc * sizeof(chunk->map[0]); 398 old_size = chunk->map_alloc * sizeof(chunk->map[0]);
399 old = chunk->map; 399 old = chunk->map;
400 400
401 memcpy(new, old, old_size); 401 memcpy(new, old, old_size);
402 402
403 chunk->map_alloc = new_alloc; 403 chunk->map_alloc = new_alloc;
404 chunk->map = new; 404 chunk->map = new;
405 new = NULL; 405 new = NULL;
406 406
407 out_unlock: 407 out_unlock:
408 spin_unlock_irqrestore(&pcpu_lock, flags); 408 spin_unlock_irqrestore(&pcpu_lock, flags);
409 409
410 /* 410 /*
411 * pcpu_mem_free() might end up calling vfree() which uses 411 * pcpu_mem_free() might end up calling vfree() which uses
412 * IRQ-unsafe lock and thus can't be called under pcpu_lock. 412 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
413 */ 413 */
414 pcpu_mem_free(old, old_size); 414 pcpu_mem_free(old, old_size);
415 pcpu_mem_free(new, new_size); 415 pcpu_mem_free(new, new_size);
416 416
417 return 0; 417 return 0;
418 } 418 }
419 419
420 /** 420 /**
421 * pcpu_split_block - split a map block 421 * pcpu_split_block - split a map block
422 * @chunk: chunk of interest 422 * @chunk: chunk of interest
423 * @i: index of map block to split 423 * @i: index of map block to split
424 * @head: head size in bytes (can be 0) 424 * @head: head size in bytes (can be 0)
425 * @tail: tail size in bytes (can be 0) 425 * @tail: tail size in bytes (can be 0)
426 * 426 *
427 * Split the @i'th map block into two or three blocks. If @head is 427 * Split the @i'th map block into two or three blocks. If @head is
428 * non-zero, @head bytes block is inserted before block @i moving it 428 * non-zero, @head bytes block is inserted before block @i moving it
429 * to @i+1 and reducing its size by @head bytes. 429 * to @i+1 and reducing its size by @head bytes.
430 * 430 *
431 * If @tail is non-zero, the target block, which can be @i or @i+1 431 * If @tail is non-zero, the target block, which can be @i or @i+1
432 * depending on @head, is reduced by @tail bytes and @tail byte block 432 * depending on @head, is reduced by @tail bytes and @tail byte block
433 * is inserted after the target block. 433 * is inserted after the target block.
434 * 434 *
435 * @chunk->map must have enough free slots to accommodate the split. 435 * @chunk->map must have enough free slots to accommodate the split.
436 * 436 *
437 * CONTEXT: 437 * CONTEXT:
438 * pcpu_lock. 438 * pcpu_lock.
439 */ 439 */
440 static void pcpu_split_block(struct pcpu_chunk *chunk, int i, 440 static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
441 int head, int tail) 441 int head, int tail)
442 { 442 {
443 int nr_extra = !!head + !!tail; 443 int nr_extra = !!head + !!tail;
444 444
445 BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra); 445 BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
446 446
447 /* insert new subblocks */ 447 /* insert new subblocks */
448 memmove(&chunk->map[i + nr_extra], &chunk->map[i], 448 memmove(&chunk->map[i + nr_extra], &chunk->map[i],
449 sizeof(chunk->map[0]) * (chunk->map_used - i)); 449 sizeof(chunk->map[0]) * (chunk->map_used - i));
450 chunk->map_used += nr_extra; 450 chunk->map_used += nr_extra;
451 451
452 if (head) { 452 if (head) {
453 chunk->map[i + 1] = chunk->map[i] - head; 453 chunk->map[i + 1] = chunk->map[i] - head;
454 chunk->map[i++] = head; 454 chunk->map[i++] = head;
455 } 455 }
456 if (tail) { 456 if (tail) {
457 chunk->map[i++] -= tail; 457 chunk->map[i++] -= tail;
458 chunk->map[i] = tail; 458 chunk->map[i] = tail;
459 } 459 }
460 } 460 }
461 461
462 /** 462 /**
463 * pcpu_alloc_area - allocate area from a pcpu_chunk 463 * pcpu_alloc_area - allocate area from a pcpu_chunk
464 * @chunk: chunk of interest 464 * @chunk: chunk of interest
465 * @size: wanted size in bytes 465 * @size: wanted size in bytes
466 * @align: wanted align 466 * @align: wanted align
467 * 467 *
468 * Try to allocate @size bytes area aligned at @align from @chunk. 468 * Try to allocate @size bytes area aligned at @align from @chunk.
469 * Note that this function only allocates the offset. It doesn't 469 * Note that this function only allocates the offset. It doesn't
470 * populate or map the area. 470 * populate or map the area.
471 * 471 *
472 * @chunk->map must have at least two free slots. 472 * @chunk->map must have at least two free slots.
473 * 473 *
474 * CONTEXT: 474 * CONTEXT:
475 * pcpu_lock. 475 * pcpu_lock.
476 * 476 *
477 * RETURNS: 477 * RETURNS:
478 * Allocated offset in @chunk on success, -1 if no matching area is 478 * Allocated offset in @chunk on success, -1 if no matching area is
479 * found. 479 * found.
480 */ 480 */
481 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align) 481 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
482 { 482 {
483 int oslot = pcpu_chunk_slot(chunk); 483 int oslot = pcpu_chunk_slot(chunk);
484 int max_contig = 0; 484 int max_contig = 0;
485 int i, off; 485 int i, off;
486 486
487 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) { 487 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
488 bool is_last = i + 1 == chunk->map_used; 488 bool is_last = i + 1 == chunk->map_used;
489 int head, tail; 489 int head, tail;
490 490
491 /* extra for alignment requirement */ 491 /* extra for alignment requirement */
492 head = ALIGN(off, align) - off; 492 head = ALIGN(off, align) - off;
493 BUG_ON(i == 0 && head != 0); 493 BUG_ON(i == 0 && head != 0);
494 494
495 if (chunk->map[i] < 0) 495 if (chunk->map[i] < 0)
496 continue; 496 continue;
497 if (chunk->map[i] < head + size) { 497 if (chunk->map[i] < head + size) {
498 max_contig = max(chunk->map[i], max_contig); 498 max_contig = max(chunk->map[i], max_contig);
499 continue; 499 continue;
500 } 500 }
501 501
502 /* 502 /*
503 * If head is small or the previous block is free, 503 * If head is small or the previous block is free,
504 * merge'em. Note that 'small' is defined as smaller 504 * merge'em. Note that 'small' is defined as smaller
505 * than sizeof(int), which is very small but isn't too 505 * than sizeof(int), which is very small but isn't too
506 * uncommon for percpu allocations. 506 * uncommon for percpu allocations.
507 */ 507 */
508 if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) { 508 if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
509 if (chunk->map[i - 1] > 0) 509 if (chunk->map[i - 1] > 0)
510 chunk->map[i - 1] += head; 510 chunk->map[i - 1] += head;
511 else { 511 else {
512 chunk->map[i - 1] -= head; 512 chunk->map[i - 1] -= head;
513 chunk->free_size -= head; 513 chunk->free_size -= head;
514 } 514 }
515 chunk->map[i] -= head; 515 chunk->map[i] -= head;
516 off += head; 516 off += head;
517 head = 0; 517 head = 0;
518 } 518 }
519 519
520 /* if tail is small, just keep it around */ 520 /* if tail is small, just keep it around */
521 tail = chunk->map[i] - head - size; 521 tail = chunk->map[i] - head - size;
522 if (tail < sizeof(int)) 522 if (tail < sizeof(int))
523 tail = 0; 523 tail = 0;
524 524
525 /* split if warranted */ 525 /* split if warranted */
526 if (head || tail) { 526 if (head || tail) {
527 pcpu_split_block(chunk, i, head, tail); 527 pcpu_split_block(chunk, i, head, tail);
528 if (head) { 528 if (head) {
529 i++; 529 i++;
530 off += head; 530 off += head;
531 max_contig = max(chunk->map[i - 1], max_contig); 531 max_contig = max(chunk->map[i - 1], max_contig);
532 } 532 }
533 if (tail) 533 if (tail)
534 max_contig = max(chunk->map[i + 1], max_contig); 534 max_contig = max(chunk->map[i + 1], max_contig);
535 } 535 }
536 536
537 /* update hint and mark allocated */ 537 /* update hint and mark allocated */
538 if (is_last) 538 if (is_last)
539 chunk->contig_hint = max_contig; /* fully scanned */ 539 chunk->contig_hint = max_contig; /* fully scanned */
540 else 540 else
541 chunk->contig_hint = max(chunk->contig_hint, 541 chunk->contig_hint = max(chunk->contig_hint,
542 max_contig); 542 max_contig);
543 543
544 chunk->free_size -= chunk->map[i]; 544 chunk->free_size -= chunk->map[i];
545 chunk->map[i] = -chunk->map[i]; 545 chunk->map[i] = -chunk->map[i];
546 546
547 pcpu_chunk_relocate(chunk, oslot); 547 pcpu_chunk_relocate(chunk, oslot);
548 return off; 548 return off;
549 } 549 }
550 550
551 chunk->contig_hint = max_contig; /* fully scanned */ 551 chunk->contig_hint = max_contig; /* fully scanned */
552 pcpu_chunk_relocate(chunk, oslot); 552 pcpu_chunk_relocate(chunk, oslot);
553 553
554 /* tell the upper layer that this chunk has no matching area */ 554 /* tell the upper layer that this chunk has no matching area */
555 return -1; 555 return -1;
556 } 556 }
557 557
558 /** 558 /**
559 * pcpu_free_area - free area to a pcpu_chunk 559 * pcpu_free_area - free area to a pcpu_chunk
560 * @chunk: chunk of interest 560 * @chunk: chunk of interest
561 * @freeme: offset of area to free 561 * @freeme: offset of area to free
562 * 562 *
563 * Free area starting from @freeme to @chunk. Note that this function 563 * Free area starting from @freeme to @chunk. Note that this function
564 * only modifies the allocation map. It doesn't depopulate or unmap 564 * only modifies the allocation map. It doesn't depopulate or unmap
565 * the area. 565 * the area.
566 * 566 *
567 * CONTEXT: 567 * CONTEXT:
568 * pcpu_lock. 568 * pcpu_lock.
569 */ 569 */
570 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme) 570 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
571 { 571 {
572 int oslot = pcpu_chunk_slot(chunk); 572 int oslot = pcpu_chunk_slot(chunk);
573 int i, off; 573 int i, off;
574 574
575 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) 575 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
576 if (off == freeme) 576 if (off == freeme)
577 break; 577 break;
578 BUG_ON(off != freeme); 578 BUG_ON(off != freeme);
579 BUG_ON(chunk->map[i] > 0); 579 BUG_ON(chunk->map[i] > 0);
580 580
581 chunk->map[i] = -chunk->map[i]; 581 chunk->map[i] = -chunk->map[i];
582 chunk->free_size += chunk->map[i]; 582 chunk->free_size += chunk->map[i];
583 583
584 /* merge with previous? */ 584 /* merge with previous? */
585 if (i > 0 && chunk->map[i - 1] >= 0) { 585 if (i > 0 && chunk->map[i - 1] >= 0) {
586 chunk->map[i - 1] += chunk->map[i]; 586 chunk->map[i - 1] += chunk->map[i];
587 chunk->map_used--; 587 chunk->map_used--;
588 memmove(&chunk->map[i], &chunk->map[i + 1], 588 memmove(&chunk->map[i], &chunk->map[i + 1],
589 (chunk->map_used - i) * sizeof(chunk->map[0])); 589 (chunk->map_used - i) * sizeof(chunk->map[0]));
590 i--; 590 i--;
591 } 591 }
592 /* merge with next? */ 592 /* merge with next? */
593 if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) { 593 if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
594 chunk->map[i] += chunk->map[i + 1]; 594 chunk->map[i] += chunk->map[i + 1];
595 chunk->map_used--; 595 chunk->map_used--;
596 memmove(&chunk->map[i + 1], &chunk->map[i + 2], 596 memmove(&chunk->map[i + 1], &chunk->map[i + 2],
597 (chunk->map_used - (i + 1)) * sizeof(chunk->map[0])); 597 (chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
598 } 598 }
599 599
600 chunk->contig_hint = max(chunk->map[i], chunk->contig_hint); 600 chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
601 pcpu_chunk_relocate(chunk, oslot); 601 pcpu_chunk_relocate(chunk, oslot);
602 } 602 }
603 603
604 static struct pcpu_chunk *pcpu_alloc_chunk(void) 604 static struct pcpu_chunk *pcpu_alloc_chunk(void)
605 { 605 {
606 struct pcpu_chunk *chunk; 606 struct pcpu_chunk *chunk;
607 607
608 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size); 608 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
609 if (!chunk) 609 if (!chunk)
610 return NULL; 610 return NULL;
611 611
612 chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC * 612 chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
613 sizeof(chunk->map[0])); 613 sizeof(chunk->map[0]));
614 if (!chunk->map) { 614 if (!chunk->map) {
615 kfree(chunk); 615 kfree(chunk);
616 return NULL; 616 return NULL;
617 } 617 }
618 618
619 chunk->map_alloc = PCPU_DFL_MAP_ALLOC; 619 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
620 chunk->map[chunk->map_used++] = pcpu_unit_size; 620 chunk->map[chunk->map_used++] = pcpu_unit_size;
621 621
622 INIT_LIST_HEAD(&chunk->list); 622 INIT_LIST_HEAD(&chunk->list);
623 chunk->free_size = pcpu_unit_size; 623 chunk->free_size = pcpu_unit_size;
624 chunk->contig_hint = pcpu_unit_size; 624 chunk->contig_hint = pcpu_unit_size;
625 625
626 return chunk; 626 return chunk;
627 } 627 }
628 628
629 static void pcpu_free_chunk(struct pcpu_chunk *chunk) 629 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
630 { 630 {
631 if (!chunk) 631 if (!chunk)
632 return; 632 return;
633 pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0])); 633 pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
634 kfree(chunk); 634 kfree(chunk);
635 } 635 }
636 636
637 /* 637 /*
638 * Chunk management implementation. 638 * Chunk management implementation.
639 * 639 *
640 * To allow different implementations, chunk alloc/free and 640 * To allow different implementations, chunk alloc/free and
641 * [de]population are implemented in a separate file which is pulled 641 * [de]population are implemented in a separate file which is pulled
642 * into this file and compiled together. The following functions 642 * into this file and compiled together. The following functions
643 * should be implemented. 643 * should be implemented.
644 * 644 *
645 * pcpu_populate_chunk - populate the specified range of a chunk 645 * pcpu_populate_chunk - populate the specified range of a chunk
646 * pcpu_depopulate_chunk - depopulate the specified range of a chunk 646 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
647 * pcpu_create_chunk - create a new chunk 647 * pcpu_create_chunk - create a new chunk
648 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop 648 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
649 * pcpu_addr_to_page - translate address to physical address 649 * pcpu_addr_to_page - translate address to physical address
650 * pcpu_verify_alloc_info - check alloc_info is acceptable during init 650 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
651 */ 651 */
652 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size); 652 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
653 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size); 653 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
654 static struct pcpu_chunk *pcpu_create_chunk(void); 654 static struct pcpu_chunk *pcpu_create_chunk(void);
655 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk); 655 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
656 static struct page *pcpu_addr_to_page(void *addr); 656 static struct page *pcpu_addr_to_page(void *addr);
657 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai); 657 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
658 658
659 #ifdef CONFIG_NEED_PER_CPU_KM 659 #ifdef CONFIG_NEED_PER_CPU_KM
660 #include "percpu-km.c" 660 #include "percpu-km.c"
661 #else 661 #else
662 #include "percpu-vm.c" 662 #include "percpu-vm.c"
663 #endif 663 #endif
664 664
665 /** 665 /**
666 * pcpu_chunk_addr_search - determine chunk containing specified address 666 * pcpu_chunk_addr_search - determine chunk containing specified address
667 * @addr: address for which the chunk needs to be determined. 667 * @addr: address for which the chunk needs to be determined.
668 * 668 *
669 * RETURNS: 669 * RETURNS:
670 * The address of the found chunk. 670 * The address of the found chunk.
671 */ 671 */
672 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) 672 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
673 { 673 {
674 /* is it in the first chunk? */ 674 /* is it in the first chunk? */
675 if (pcpu_addr_in_first_chunk(addr)) { 675 if (pcpu_addr_in_first_chunk(addr)) {
676 /* is it in the reserved area? */ 676 /* is it in the reserved area? */
677 if (pcpu_addr_in_reserved_chunk(addr)) 677 if (pcpu_addr_in_reserved_chunk(addr))
678 return pcpu_reserved_chunk; 678 return pcpu_reserved_chunk;
679 return pcpu_first_chunk; 679 return pcpu_first_chunk;
680 } 680 }
681 681
682 /* 682 /*
683 * The address is relative to unit0 which might be unused and 683 * The address is relative to unit0 which might be unused and
684 * thus unmapped. Offset the address to the unit space of the 684 * thus unmapped. Offset the address to the unit space of the
685 * current processor before looking it up in the vmalloc 685 * current processor before looking it up in the vmalloc
686 * space. Note that any possible cpu id can be used here, so 686 * space. Note that any possible cpu id can be used here, so
687 * there's no need to worry about preemption or cpu hotplug. 687 * there's no need to worry about preemption or cpu hotplug.
688 */ 688 */
689 addr += pcpu_unit_offsets[raw_smp_processor_id()]; 689 addr += pcpu_unit_offsets[raw_smp_processor_id()];
690 return pcpu_get_page_chunk(pcpu_addr_to_page(addr)); 690 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
691 } 691 }
692 692
693 /** 693 /**
694 * pcpu_alloc - the percpu allocator 694 * pcpu_alloc - the percpu allocator
695 * @size: size of area to allocate in bytes 695 * @size: size of area to allocate in bytes
696 * @align: alignment of area (max PAGE_SIZE) 696 * @align: alignment of area (max PAGE_SIZE)
697 * @reserved: allocate from the reserved chunk if available 697 * @reserved: allocate from the reserved chunk if available
698 * 698 *
699 * Allocate percpu area of @size bytes aligned at @align. 699 * Allocate percpu area of @size bytes aligned at @align.
700 * 700 *
701 * CONTEXT: 701 * CONTEXT:
702 * Does GFP_KERNEL allocation. 702 * Does GFP_KERNEL allocation.
703 * 703 *
704 * RETURNS: 704 * RETURNS:
705 * Percpu pointer to the allocated area on success, NULL on failure. 705 * Percpu pointer to the allocated area on success, NULL on failure.
706 */ 706 */
707 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved) 707 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved)
708 { 708 {
709 static int warn_limit = 10; 709 static int warn_limit = 10;
710 struct pcpu_chunk *chunk; 710 struct pcpu_chunk *chunk;
711 const char *err; 711 const char *err;
712 int slot, off, new_alloc; 712 int slot, off, new_alloc;
713 unsigned long flags; 713 unsigned long flags;
714 void __percpu *ptr; 714 void __percpu *ptr;
715 715
716 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) { 716 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
717 WARN(true, "illegal size (%zu) or align (%zu) for " 717 WARN(true, "illegal size (%zu) or align (%zu) for "
718 "percpu allocation\n", size, align); 718 "percpu allocation\n", size, align);
719 return NULL; 719 return NULL;
720 } 720 }
721 721
722 mutex_lock(&pcpu_alloc_mutex); 722 mutex_lock(&pcpu_alloc_mutex);
723 spin_lock_irqsave(&pcpu_lock, flags); 723 spin_lock_irqsave(&pcpu_lock, flags);
724 724
725 /* serve reserved allocations from the reserved chunk if available */ 725 /* serve reserved allocations from the reserved chunk if available */
726 if (reserved && pcpu_reserved_chunk) { 726 if (reserved && pcpu_reserved_chunk) {
727 chunk = pcpu_reserved_chunk; 727 chunk = pcpu_reserved_chunk;
728 728
729 if (size > chunk->contig_hint) { 729 if (size > chunk->contig_hint) {
730 err = "alloc from reserved chunk failed"; 730 err = "alloc from reserved chunk failed";
731 goto fail_unlock; 731 goto fail_unlock;
732 } 732 }
733 733
734 while ((new_alloc = pcpu_need_to_extend(chunk))) { 734 while ((new_alloc = pcpu_need_to_extend(chunk))) {
735 spin_unlock_irqrestore(&pcpu_lock, flags); 735 spin_unlock_irqrestore(&pcpu_lock, flags);
736 if (pcpu_extend_area_map(chunk, new_alloc) < 0) { 736 if (pcpu_extend_area_map(chunk, new_alloc) < 0) {
737 err = "failed to extend area map of reserved chunk"; 737 err = "failed to extend area map of reserved chunk";
738 goto fail_unlock_mutex; 738 goto fail_unlock_mutex;
739 } 739 }
740 spin_lock_irqsave(&pcpu_lock, flags); 740 spin_lock_irqsave(&pcpu_lock, flags);
741 } 741 }
742 742
743 off = pcpu_alloc_area(chunk, size, align); 743 off = pcpu_alloc_area(chunk, size, align);
744 if (off >= 0) 744 if (off >= 0)
745 goto area_found; 745 goto area_found;
746 746
747 err = "alloc from reserved chunk failed"; 747 err = "alloc from reserved chunk failed";
748 goto fail_unlock; 748 goto fail_unlock;
749 } 749 }
750 750
751 restart: 751 restart:
752 /* search through normal chunks */ 752 /* search through normal chunks */
753 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) { 753 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
754 list_for_each_entry(chunk, &pcpu_slot[slot], list) { 754 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
755 if (size > chunk->contig_hint) 755 if (size > chunk->contig_hint)
756 continue; 756 continue;
757 757
758 new_alloc = pcpu_need_to_extend(chunk); 758 new_alloc = pcpu_need_to_extend(chunk);
759 if (new_alloc) { 759 if (new_alloc) {
760 spin_unlock_irqrestore(&pcpu_lock, flags); 760 spin_unlock_irqrestore(&pcpu_lock, flags);
761 if (pcpu_extend_area_map(chunk, 761 if (pcpu_extend_area_map(chunk,
762 new_alloc) < 0) { 762 new_alloc) < 0) {
763 err = "failed to extend area map"; 763 err = "failed to extend area map";
764 goto fail_unlock_mutex; 764 goto fail_unlock_mutex;
765 } 765 }
766 spin_lock_irqsave(&pcpu_lock, flags); 766 spin_lock_irqsave(&pcpu_lock, flags);
767 /* 767 /*
768 * pcpu_lock has been dropped, need to 768 * pcpu_lock has been dropped, need to
769 * restart cpu_slot list walking. 769 * restart cpu_slot list walking.
770 */ 770 */
771 goto restart; 771 goto restart;
772 } 772 }
773 773
774 off = pcpu_alloc_area(chunk, size, align); 774 off = pcpu_alloc_area(chunk, size, align);
775 if (off >= 0) 775 if (off >= 0)
776 goto area_found; 776 goto area_found;
777 } 777 }
778 } 778 }
779 779
780 /* hmmm... no space left, create a new chunk */ 780 /* hmmm... no space left, create a new chunk */
781 spin_unlock_irqrestore(&pcpu_lock, flags); 781 spin_unlock_irqrestore(&pcpu_lock, flags);
782 782
783 chunk = pcpu_create_chunk(); 783 chunk = pcpu_create_chunk();
784 if (!chunk) { 784 if (!chunk) {
785 err = "failed to allocate new chunk"; 785 err = "failed to allocate new chunk";
786 goto fail_unlock_mutex; 786 goto fail_unlock_mutex;
787 } 787 }
788 788
789 spin_lock_irqsave(&pcpu_lock, flags); 789 spin_lock_irqsave(&pcpu_lock, flags);
790 pcpu_chunk_relocate(chunk, -1); 790 pcpu_chunk_relocate(chunk, -1);
791 goto restart; 791 goto restart;
792 792
793 area_found: 793 area_found:
794 spin_unlock_irqrestore(&pcpu_lock, flags); 794 spin_unlock_irqrestore(&pcpu_lock, flags);
795 795
796 /* populate, map and clear the area */ 796 /* populate, map and clear the area */
797 if (pcpu_populate_chunk(chunk, off, size)) { 797 if (pcpu_populate_chunk(chunk, off, size)) {
798 spin_lock_irqsave(&pcpu_lock, flags); 798 spin_lock_irqsave(&pcpu_lock, flags);
799 pcpu_free_area(chunk, off); 799 pcpu_free_area(chunk, off);
800 err = "failed to populate"; 800 err = "failed to populate";
801 goto fail_unlock; 801 goto fail_unlock;
802 } 802 }
803 803
804 mutex_unlock(&pcpu_alloc_mutex); 804 mutex_unlock(&pcpu_alloc_mutex);
805 805
806 /* return address relative to base address */ 806 /* return address relative to base address */
807 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off); 807 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
808 kmemleak_alloc_percpu(ptr, size); 808 kmemleak_alloc_percpu(ptr, size);
809 return ptr; 809 return ptr;
810 810
811 fail_unlock: 811 fail_unlock:
812 spin_unlock_irqrestore(&pcpu_lock, flags); 812 spin_unlock_irqrestore(&pcpu_lock, flags);
813 fail_unlock_mutex: 813 fail_unlock_mutex:
814 mutex_unlock(&pcpu_alloc_mutex); 814 mutex_unlock(&pcpu_alloc_mutex);
815 if (warn_limit) { 815 if (warn_limit) {
816 pr_warning("PERCPU: allocation failed, size=%zu align=%zu, " 816 pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
817 "%s\n", size, align, err); 817 "%s\n", size, align, err);
818 dump_stack(); 818 dump_stack();
819 if (!--warn_limit) 819 if (!--warn_limit)
820 pr_info("PERCPU: limit reached, disable warning\n"); 820 pr_info("PERCPU: limit reached, disable warning\n");
821 } 821 }
822 return NULL; 822 return NULL;
823 } 823 }
824 824
825 /** 825 /**
826 * __alloc_percpu - allocate dynamic percpu area 826 * __alloc_percpu - allocate dynamic percpu area
827 * @size: size of area to allocate in bytes 827 * @size: size of area to allocate in bytes
828 * @align: alignment of area (max PAGE_SIZE) 828 * @align: alignment of area (max PAGE_SIZE)
829 * 829 *
830 * Allocate zero-filled percpu area of @size bytes aligned at @align. 830 * Allocate zero-filled percpu area of @size bytes aligned at @align.
831 * Might sleep. Might trigger writeouts. 831 * Might sleep. Might trigger writeouts.
832 * 832 *
833 * CONTEXT: 833 * CONTEXT:
834 * Does GFP_KERNEL allocation. 834 * Does GFP_KERNEL allocation.
835 * 835 *
836 * RETURNS: 836 * RETURNS:
837 * Percpu pointer to the allocated area on success, NULL on failure. 837 * Percpu pointer to the allocated area on success, NULL on failure.
838 */ 838 */
839 void __percpu *__alloc_percpu(size_t size, size_t align) 839 void __percpu *__alloc_percpu(size_t size, size_t align)
840 { 840 {
841 return pcpu_alloc(size, align, false); 841 return pcpu_alloc(size, align, false);
842 } 842 }
843 EXPORT_SYMBOL_GPL(__alloc_percpu); 843 EXPORT_SYMBOL_GPL(__alloc_percpu);
844 844
845 /** 845 /**
846 * __alloc_reserved_percpu - allocate reserved percpu area 846 * __alloc_reserved_percpu - allocate reserved percpu area
847 * @size: size of area to allocate in bytes 847 * @size: size of area to allocate in bytes
848 * @align: alignment of area (max PAGE_SIZE) 848 * @align: alignment of area (max PAGE_SIZE)
849 * 849 *
850 * Allocate zero-filled percpu area of @size bytes aligned at @align 850 * Allocate zero-filled percpu area of @size bytes aligned at @align
851 * from reserved percpu area if arch has set it up; otherwise, 851 * from reserved percpu area if arch has set it up; otherwise,
852 * allocation is served from the same dynamic area. Might sleep. 852 * allocation is served from the same dynamic area. Might sleep.
853 * Might trigger writeouts. 853 * Might trigger writeouts.
854 * 854 *
855 * CONTEXT: 855 * CONTEXT:
856 * Does GFP_KERNEL allocation. 856 * Does GFP_KERNEL allocation.
857 * 857 *
858 * RETURNS: 858 * RETURNS:
859 * Percpu pointer to the allocated area on success, NULL on failure. 859 * Percpu pointer to the allocated area on success, NULL on failure.
860 */ 860 */
861 void __percpu *__alloc_reserved_percpu(size_t size, size_t align) 861 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
862 { 862 {
863 return pcpu_alloc(size, align, true); 863 return pcpu_alloc(size, align, true);
864 } 864 }
865 865
866 /** 866 /**
867 * pcpu_reclaim - reclaim fully free chunks, workqueue function 867 * pcpu_reclaim - reclaim fully free chunks, workqueue function
868 * @work: unused 868 * @work: unused
869 * 869 *
870 * Reclaim all fully free chunks except for the first one. 870 * Reclaim all fully free chunks except for the first one.
871 * 871 *
872 * CONTEXT: 872 * CONTEXT:
873 * workqueue context. 873 * workqueue context.
874 */ 874 */
875 static void pcpu_reclaim(struct work_struct *work) 875 static void pcpu_reclaim(struct work_struct *work)
876 { 876 {
877 LIST_HEAD(todo); 877 LIST_HEAD(todo);
878 struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1]; 878 struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
879 struct pcpu_chunk *chunk, *next; 879 struct pcpu_chunk *chunk, *next;
880 880
881 mutex_lock(&pcpu_alloc_mutex); 881 mutex_lock(&pcpu_alloc_mutex);
882 spin_lock_irq(&pcpu_lock); 882 spin_lock_irq(&pcpu_lock);
883 883
884 list_for_each_entry_safe(chunk, next, head, list) { 884 list_for_each_entry_safe(chunk, next, head, list) {
885 WARN_ON(chunk->immutable); 885 WARN_ON(chunk->immutable);
886 886
887 /* spare the first one */ 887 /* spare the first one */
888 if (chunk == list_first_entry(head, struct pcpu_chunk, list)) 888 if (chunk == list_first_entry(head, struct pcpu_chunk, list))
889 continue; 889 continue;
890 890
891 list_move(&chunk->list, &todo); 891 list_move(&chunk->list, &todo);
892 } 892 }
893 893
894 spin_unlock_irq(&pcpu_lock); 894 spin_unlock_irq(&pcpu_lock);
895 895
896 list_for_each_entry_safe(chunk, next, &todo, list) { 896 list_for_each_entry_safe(chunk, next, &todo, list) {
897 pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size); 897 pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
898 pcpu_destroy_chunk(chunk); 898 pcpu_destroy_chunk(chunk);
899 } 899 }
900 900
901 mutex_unlock(&pcpu_alloc_mutex); 901 mutex_unlock(&pcpu_alloc_mutex);
902 } 902 }
903 903
904 /** 904 /**
905 * free_percpu - free percpu area 905 * free_percpu - free percpu area
906 * @ptr: pointer to area to free 906 * @ptr: pointer to area to free
907 * 907 *
908 * Free percpu area @ptr. 908 * Free percpu area @ptr.
909 * 909 *
910 * CONTEXT: 910 * CONTEXT:
911 * Can be called from atomic context. 911 * Can be called from atomic context.
912 */ 912 */
913 void free_percpu(void __percpu *ptr) 913 void free_percpu(void __percpu *ptr)
914 { 914 {
915 void *addr; 915 void *addr;
916 struct pcpu_chunk *chunk; 916 struct pcpu_chunk *chunk;
917 unsigned long flags; 917 unsigned long flags;
918 int off; 918 int off;
919 919
920 if (!ptr) 920 if (!ptr)
921 return; 921 return;
922 922
923 kmemleak_free_percpu(ptr); 923 kmemleak_free_percpu(ptr);
924 924
925 addr = __pcpu_ptr_to_addr(ptr); 925 addr = __pcpu_ptr_to_addr(ptr);
926 926
927 spin_lock_irqsave(&pcpu_lock, flags); 927 spin_lock_irqsave(&pcpu_lock, flags);
928 928
929 chunk = pcpu_chunk_addr_search(addr); 929 chunk = pcpu_chunk_addr_search(addr);
930 off = addr - chunk->base_addr; 930 off = addr - chunk->base_addr;
931 931
932 pcpu_free_area(chunk, off); 932 pcpu_free_area(chunk, off);
933 933
934 /* if there are more than one fully free chunks, wake up grim reaper */ 934 /* if there are more than one fully free chunks, wake up grim reaper */
935 if (chunk->free_size == pcpu_unit_size) { 935 if (chunk->free_size == pcpu_unit_size) {
936 struct pcpu_chunk *pos; 936 struct pcpu_chunk *pos;
937 937
938 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list) 938 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
939 if (pos != chunk) { 939 if (pos != chunk) {
940 schedule_work(&pcpu_reclaim_work); 940 schedule_work(&pcpu_reclaim_work);
941 break; 941 break;
942 } 942 }
943 } 943 }
944 944
945 spin_unlock_irqrestore(&pcpu_lock, flags); 945 spin_unlock_irqrestore(&pcpu_lock, flags);
946 } 946 }
947 EXPORT_SYMBOL_GPL(free_percpu); 947 EXPORT_SYMBOL_GPL(free_percpu);
948 948
949 /** 949 /**
950 * is_kernel_percpu_address - test whether address is from static percpu area 950 * is_kernel_percpu_address - test whether address is from static percpu area
951 * @addr: address to test 951 * @addr: address to test
952 * 952 *
953 * Test whether @addr belongs to in-kernel static percpu area. Module 953 * Test whether @addr belongs to in-kernel static percpu area. Module
954 * static percpu areas are not considered. For those, use 954 * static percpu areas are not considered. For those, use
955 * is_module_percpu_address(). 955 * is_module_percpu_address().
956 * 956 *
957 * RETURNS: 957 * RETURNS:
958 * %true if @addr is from in-kernel static percpu area, %false otherwise. 958 * %true if @addr is from in-kernel static percpu area, %false otherwise.
959 */ 959 */
960 bool is_kernel_percpu_address(unsigned long addr) 960 bool is_kernel_percpu_address(unsigned long addr)
961 { 961 {
962 #ifdef CONFIG_SMP 962 #ifdef CONFIG_SMP
963 const size_t static_size = __per_cpu_end - __per_cpu_start; 963 const size_t static_size = __per_cpu_end - __per_cpu_start;
964 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 964 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
965 unsigned int cpu; 965 unsigned int cpu;
966 966
967 for_each_possible_cpu(cpu) { 967 for_each_possible_cpu(cpu) {
968 void *start = per_cpu_ptr(base, cpu); 968 void *start = per_cpu_ptr(base, cpu);
969 969
970 if ((void *)addr >= start && (void *)addr < start + static_size) 970 if ((void *)addr >= start && (void *)addr < start + static_size)
971 return true; 971 return true;
972 } 972 }
973 #endif 973 #endif
974 /* on UP, can't distinguish from other static vars, always false */ 974 /* on UP, can't distinguish from other static vars, always false */
975 return false; 975 return false;
976 } 976 }
977 977
978 /** 978 /**
979 * per_cpu_ptr_to_phys - convert translated percpu address to physical address 979 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
980 * @addr: the address to be converted to physical address 980 * @addr: the address to be converted to physical address
981 * 981 *
982 * Given @addr which is dereferenceable address obtained via one of 982 * Given @addr which is dereferenceable address obtained via one of
983 * percpu access macros, this function translates it into its physical 983 * percpu access macros, this function translates it into its physical
984 * address. The caller is responsible for ensuring @addr stays valid 984 * address. The caller is responsible for ensuring @addr stays valid
985 * until this function finishes. 985 * until this function finishes.
986 * 986 *
987 * percpu allocator has special setup for the first chunk, which currently 987 * percpu allocator has special setup for the first chunk, which currently
988 * supports either embedding in linear address space or vmalloc mapping, 988 * supports either embedding in linear address space or vmalloc mapping,
989 * and, from the second one, the backing allocator (currently either vm or 989 * and, from the second one, the backing allocator (currently either vm or
990 * km) provides translation. 990 * km) provides translation.
991 * 991 *
992 * The addr can be tranlated simply without checking if it falls into the 992 * The addr can be tranlated simply without checking if it falls into the
993 * first chunk. But the current code reflects better how percpu allocator 993 * first chunk. But the current code reflects better how percpu allocator
994 * actually works, and the verification can discover both bugs in percpu 994 * actually works, and the verification can discover both bugs in percpu
995 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current 995 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
996 * code. 996 * code.
997 * 997 *
998 * RETURNS: 998 * RETURNS:
999 * The physical address for @addr. 999 * The physical address for @addr.
1000 */ 1000 */
1001 phys_addr_t per_cpu_ptr_to_phys(void *addr) 1001 phys_addr_t per_cpu_ptr_to_phys(void *addr)
1002 { 1002 {
1003 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 1003 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1004 bool in_first_chunk = false; 1004 bool in_first_chunk = false;
1005 unsigned long first_low, first_high; 1005 unsigned long first_low, first_high;
1006 unsigned int cpu; 1006 unsigned int cpu;
1007 1007
1008 /* 1008 /*
1009 * The following test on unit_low/high isn't strictly 1009 * The following test on unit_low/high isn't strictly
1010 * necessary but will speed up lookups of addresses which 1010 * necessary but will speed up lookups of addresses which
1011 * aren't in the first chunk. 1011 * aren't in the first chunk.
1012 */ 1012 */
1013 first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0); 1013 first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
1014 first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu, 1014 first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
1015 pcpu_unit_pages); 1015 pcpu_unit_pages);
1016 if ((unsigned long)addr >= first_low && 1016 if ((unsigned long)addr >= first_low &&
1017 (unsigned long)addr < first_high) { 1017 (unsigned long)addr < first_high) {
1018 for_each_possible_cpu(cpu) { 1018 for_each_possible_cpu(cpu) {
1019 void *start = per_cpu_ptr(base, cpu); 1019 void *start = per_cpu_ptr(base, cpu);
1020 1020
1021 if (addr >= start && addr < start + pcpu_unit_size) { 1021 if (addr >= start && addr < start + pcpu_unit_size) {
1022 in_first_chunk = true; 1022 in_first_chunk = true;
1023 break; 1023 break;
1024 } 1024 }
1025 } 1025 }
1026 } 1026 }
1027 1027
1028 if (in_first_chunk) { 1028 if (in_first_chunk) {
1029 if (!is_vmalloc_addr(addr)) 1029 if (!is_vmalloc_addr(addr))
1030 return __pa(addr); 1030 return __pa(addr);
1031 else 1031 else
1032 return page_to_phys(vmalloc_to_page(addr)) + 1032 return page_to_phys(vmalloc_to_page(addr)) +
1033 offset_in_page(addr); 1033 offset_in_page(addr);
1034 } else 1034 } else
1035 return page_to_phys(pcpu_addr_to_page(addr)) + 1035 return page_to_phys(pcpu_addr_to_page(addr)) +
1036 offset_in_page(addr); 1036 offset_in_page(addr);
1037 } 1037 }
1038 1038
1039 /** 1039 /**
1040 * pcpu_alloc_alloc_info - allocate percpu allocation info 1040 * pcpu_alloc_alloc_info - allocate percpu allocation info
1041 * @nr_groups: the number of groups 1041 * @nr_groups: the number of groups
1042 * @nr_units: the number of units 1042 * @nr_units: the number of units
1043 * 1043 *
1044 * Allocate ai which is large enough for @nr_groups groups containing 1044 * Allocate ai which is large enough for @nr_groups groups containing
1045 * @nr_units units. The returned ai's groups[0].cpu_map points to the 1045 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1046 * cpu_map array which is long enough for @nr_units and filled with 1046 * cpu_map array which is long enough for @nr_units and filled with
1047 * NR_CPUS. It's the caller's responsibility to initialize cpu_map 1047 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1048 * pointer of other groups. 1048 * pointer of other groups.
1049 * 1049 *
1050 * RETURNS: 1050 * RETURNS:
1051 * Pointer to the allocated pcpu_alloc_info on success, NULL on 1051 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1052 * failure. 1052 * failure.
1053 */ 1053 */
1054 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 1054 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1055 int nr_units) 1055 int nr_units)
1056 { 1056 {
1057 struct pcpu_alloc_info *ai; 1057 struct pcpu_alloc_info *ai;
1058 size_t base_size, ai_size; 1058 size_t base_size, ai_size;
1059 void *ptr; 1059 void *ptr;
1060 int unit; 1060 int unit;
1061 1061
1062 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]), 1062 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1063 __alignof__(ai->groups[0].cpu_map[0])); 1063 __alignof__(ai->groups[0].cpu_map[0]));
1064 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); 1064 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1065 1065
1066 ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size)); 1066 ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size));
1067 if (!ptr) 1067 if (!ptr)
1068 return NULL; 1068 return NULL;
1069 ai = ptr; 1069 ai = ptr;
1070 ptr += base_size; 1070 ptr += base_size;
1071 1071
1072 ai->groups[0].cpu_map = ptr; 1072 ai->groups[0].cpu_map = ptr;
1073 1073
1074 for (unit = 0; unit < nr_units; unit++) 1074 for (unit = 0; unit < nr_units; unit++)
1075 ai->groups[0].cpu_map[unit] = NR_CPUS; 1075 ai->groups[0].cpu_map[unit] = NR_CPUS;
1076 1076
1077 ai->nr_groups = nr_groups; 1077 ai->nr_groups = nr_groups;
1078 ai->__ai_size = PFN_ALIGN(ai_size); 1078 ai->__ai_size = PFN_ALIGN(ai_size);
1079 1079
1080 return ai; 1080 return ai;
1081 } 1081 }
1082 1082
1083 /** 1083 /**
1084 * pcpu_free_alloc_info - free percpu allocation info 1084 * pcpu_free_alloc_info - free percpu allocation info
1085 * @ai: pcpu_alloc_info to free 1085 * @ai: pcpu_alloc_info to free
1086 * 1086 *
1087 * Free @ai which was allocated by pcpu_alloc_alloc_info(). 1087 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1088 */ 1088 */
1089 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) 1089 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1090 { 1090 {
1091 free_bootmem(__pa(ai), ai->__ai_size); 1091 free_bootmem(__pa(ai), ai->__ai_size);
1092 } 1092 }
1093 1093
1094 /** 1094 /**
1095 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info 1095 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1096 * @lvl: loglevel 1096 * @lvl: loglevel
1097 * @ai: allocation info to dump 1097 * @ai: allocation info to dump
1098 * 1098 *
1099 * Print out information about @ai using loglevel @lvl. 1099 * Print out information about @ai using loglevel @lvl.
1100 */ 1100 */
1101 static void pcpu_dump_alloc_info(const char *lvl, 1101 static void pcpu_dump_alloc_info(const char *lvl,
1102 const struct pcpu_alloc_info *ai) 1102 const struct pcpu_alloc_info *ai)
1103 { 1103 {
1104 int group_width = 1, cpu_width = 1, width; 1104 int group_width = 1, cpu_width = 1, width;
1105 char empty_str[] = "--------"; 1105 char empty_str[] = "--------";
1106 int alloc = 0, alloc_end = 0; 1106 int alloc = 0, alloc_end = 0;
1107 int group, v; 1107 int group, v;
1108 int upa, apl; /* units per alloc, allocs per line */ 1108 int upa, apl; /* units per alloc, allocs per line */
1109 1109
1110 v = ai->nr_groups; 1110 v = ai->nr_groups;
1111 while (v /= 10) 1111 while (v /= 10)
1112 group_width++; 1112 group_width++;
1113 1113
1114 v = num_possible_cpus(); 1114 v = num_possible_cpus();
1115 while (v /= 10) 1115 while (v /= 10)
1116 cpu_width++; 1116 cpu_width++;
1117 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0'; 1117 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1118 1118
1119 upa = ai->alloc_size / ai->unit_size; 1119 upa = ai->alloc_size / ai->unit_size;
1120 width = upa * (cpu_width + 1) + group_width + 3; 1120 width = upa * (cpu_width + 1) + group_width + 3;
1121 apl = rounddown_pow_of_two(max(60 / width, 1)); 1121 apl = rounddown_pow_of_two(max(60 / width, 1));
1122 1122
1123 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu", 1123 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1124 lvl, ai->static_size, ai->reserved_size, ai->dyn_size, 1124 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1125 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size); 1125 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1126 1126
1127 for (group = 0; group < ai->nr_groups; group++) { 1127 for (group = 0; group < ai->nr_groups; group++) {
1128 const struct pcpu_group_info *gi = &ai->groups[group]; 1128 const struct pcpu_group_info *gi = &ai->groups[group];
1129 int unit = 0, unit_end = 0; 1129 int unit = 0, unit_end = 0;
1130 1130
1131 BUG_ON(gi->nr_units % upa); 1131 BUG_ON(gi->nr_units % upa);
1132 for (alloc_end += gi->nr_units / upa; 1132 for (alloc_end += gi->nr_units / upa;
1133 alloc < alloc_end; alloc++) { 1133 alloc < alloc_end; alloc++) {
1134 if (!(alloc % apl)) { 1134 if (!(alloc % apl)) {
1135 printk(KERN_CONT "\n"); 1135 printk(KERN_CONT "\n");
1136 printk("%spcpu-alloc: ", lvl); 1136 printk("%spcpu-alloc: ", lvl);
1137 } 1137 }
1138 printk(KERN_CONT "[%0*d] ", group_width, group); 1138 printk(KERN_CONT "[%0*d] ", group_width, group);
1139 1139
1140 for (unit_end += upa; unit < unit_end; unit++) 1140 for (unit_end += upa; unit < unit_end; unit++)
1141 if (gi->cpu_map[unit] != NR_CPUS) 1141 if (gi->cpu_map[unit] != NR_CPUS)
1142 printk(KERN_CONT "%0*d ", cpu_width, 1142 printk(KERN_CONT "%0*d ", cpu_width,
1143 gi->cpu_map[unit]); 1143 gi->cpu_map[unit]);
1144 else 1144 else
1145 printk(KERN_CONT "%s ", empty_str); 1145 printk(KERN_CONT "%s ", empty_str);
1146 } 1146 }
1147 } 1147 }
1148 printk(KERN_CONT "\n"); 1148 printk(KERN_CONT "\n");
1149 } 1149 }
1150 1150
1151 /** 1151 /**
1152 * pcpu_setup_first_chunk - initialize the first percpu chunk 1152 * pcpu_setup_first_chunk - initialize the first percpu chunk
1153 * @ai: pcpu_alloc_info describing how to percpu area is shaped 1153 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1154 * @base_addr: mapped address 1154 * @base_addr: mapped address
1155 * 1155 *
1156 * Initialize the first percpu chunk which contains the kernel static 1156 * Initialize the first percpu chunk which contains the kernel static
1157 * perpcu area. This function is to be called from arch percpu area 1157 * perpcu area. This function is to be called from arch percpu area
1158 * setup path. 1158 * setup path.
1159 * 1159 *
1160 * @ai contains all information necessary to initialize the first 1160 * @ai contains all information necessary to initialize the first
1161 * chunk and prime the dynamic percpu allocator. 1161 * chunk and prime the dynamic percpu allocator.
1162 * 1162 *
1163 * @ai->static_size is the size of static percpu area. 1163 * @ai->static_size is the size of static percpu area.
1164 * 1164 *
1165 * @ai->reserved_size, if non-zero, specifies the amount of bytes to 1165 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1166 * reserve after the static area in the first chunk. This reserves 1166 * reserve after the static area in the first chunk. This reserves
1167 * the first chunk such that it's available only through reserved 1167 * the first chunk such that it's available only through reserved
1168 * percpu allocation. This is primarily used to serve module percpu 1168 * percpu allocation. This is primarily used to serve module percpu
1169 * static areas on architectures where the addressing model has 1169 * static areas on architectures where the addressing model has
1170 * limited offset range for symbol relocations to guarantee module 1170 * limited offset range for symbol relocations to guarantee module
1171 * percpu symbols fall inside the relocatable range. 1171 * percpu symbols fall inside the relocatable range.
1172 * 1172 *
1173 * @ai->dyn_size determines the number of bytes available for dynamic 1173 * @ai->dyn_size determines the number of bytes available for dynamic
1174 * allocation in the first chunk. The area between @ai->static_size + 1174 * allocation in the first chunk. The area between @ai->static_size +
1175 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused. 1175 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1176 * 1176 *
1177 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE 1177 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1178 * and equal to or larger than @ai->static_size + @ai->reserved_size + 1178 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1179 * @ai->dyn_size. 1179 * @ai->dyn_size.
1180 * 1180 *
1181 * @ai->atom_size is the allocation atom size and used as alignment 1181 * @ai->atom_size is the allocation atom size and used as alignment
1182 * for vm areas. 1182 * for vm areas.
1183 * 1183 *
1184 * @ai->alloc_size is the allocation size and always multiple of 1184 * @ai->alloc_size is the allocation size and always multiple of
1185 * @ai->atom_size. This is larger than @ai->atom_size if 1185 * @ai->atom_size. This is larger than @ai->atom_size if
1186 * @ai->unit_size is larger than @ai->atom_size. 1186 * @ai->unit_size is larger than @ai->atom_size.
1187 * 1187 *
1188 * @ai->nr_groups and @ai->groups describe virtual memory layout of 1188 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1189 * percpu areas. Units which should be colocated are put into the 1189 * percpu areas. Units which should be colocated are put into the
1190 * same group. Dynamic VM areas will be allocated according to these 1190 * same group. Dynamic VM areas will be allocated according to these
1191 * groupings. If @ai->nr_groups is zero, a single group containing 1191 * groupings. If @ai->nr_groups is zero, a single group containing
1192 * all units is assumed. 1192 * all units is assumed.
1193 * 1193 *
1194 * The caller should have mapped the first chunk at @base_addr and 1194 * The caller should have mapped the first chunk at @base_addr and
1195 * copied static data to each unit. 1195 * copied static data to each unit.
1196 * 1196 *
1197 * If the first chunk ends up with both reserved and dynamic areas, it 1197 * If the first chunk ends up with both reserved and dynamic areas, it
1198 * is served by two chunks - one to serve the core static and reserved 1198 * is served by two chunks - one to serve the core static and reserved
1199 * areas and the other for the dynamic area. They share the same vm 1199 * areas and the other for the dynamic area. They share the same vm
1200 * and page map but uses different area allocation map to stay away 1200 * and page map but uses different area allocation map to stay away
1201 * from each other. The latter chunk is circulated in the chunk slots 1201 * from each other. The latter chunk is circulated in the chunk slots
1202 * and available for dynamic allocation like any other chunks. 1202 * and available for dynamic allocation like any other chunks.
1203 * 1203 *
1204 * RETURNS: 1204 * RETURNS:
1205 * 0 on success, -errno on failure. 1205 * 0 on success, -errno on failure.
1206 */ 1206 */
1207 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 1207 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1208 void *base_addr) 1208 void *base_addr)
1209 { 1209 {
1210 static char cpus_buf[4096] __initdata; 1210 static char cpus_buf[4096] __initdata;
1211 static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata; 1211 static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1212 static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata; 1212 static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1213 size_t dyn_size = ai->dyn_size; 1213 size_t dyn_size = ai->dyn_size;
1214 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size; 1214 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1215 struct pcpu_chunk *schunk, *dchunk = NULL; 1215 struct pcpu_chunk *schunk, *dchunk = NULL;
1216 unsigned long *group_offsets; 1216 unsigned long *group_offsets;
1217 size_t *group_sizes; 1217 size_t *group_sizes;
1218 unsigned long *unit_off; 1218 unsigned long *unit_off;
1219 unsigned int cpu; 1219 unsigned int cpu;
1220 int *unit_map; 1220 int *unit_map;
1221 int group, unit, i; 1221 int group, unit, i;
1222 1222
1223 cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask); 1223 cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);
1224 1224
1225 #define PCPU_SETUP_BUG_ON(cond) do { \ 1225 #define PCPU_SETUP_BUG_ON(cond) do { \
1226 if (unlikely(cond)) { \ 1226 if (unlikely(cond)) { \
1227 pr_emerg("PERCPU: failed to initialize, %s", #cond); \ 1227 pr_emerg("PERCPU: failed to initialize, %s", #cond); \
1228 pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf); \ 1228 pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf); \
1229 pcpu_dump_alloc_info(KERN_EMERG, ai); \ 1229 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1230 BUG(); \ 1230 BUG(); \
1231 } \ 1231 } \
1232 } while (0) 1232 } while (0)
1233 1233
1234 /* sanity checks */ 1234 /* sanity checks */
1235 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0); 1235 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1236 #ifdef CONFIG_SMP 1236 #ifdef CONFIG_SMP
1237 PCPU_SETUP_BUG_ON(!ai->static_size); 1237 PCPU_SETUP_BUG_ON(!ai->static_size);
1238 PCPU_SETUP_BUG_ON((unsigned long)__per_cpu_start & ~PAGE_MASK); 1238 PCPU_SETUP_BUG_ON((unsigned long)__per_cpu_start & ~PAGE_MASK);
1239 #endif 1239 #endif
1240 PCPU_SETUP_BUG_ON(!base_addr); 1240 PCPU_SETUP_BUG_ON(!base_addr);
1241 PCPU_SETUP_BUG_ON((unsigned long)base_addr & ~PAGE_MASK); 1241 PCPU_SETUP_BUG_ON((unsigned long)base_addr & ~PAGE_MASK);
1242 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); 1242 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1243 PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK); 1243 PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
1244 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); 1244 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1245 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE); 1245 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
1246 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); 1246 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
1247 1247
1248 /* process group information and build config tables accordingly */ 1248 /* process group information and build config tables accordingly */
1249 group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0])); 1249 group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0]));
1250 group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0])); 1250 group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0]));
1251 unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0])); 1251 unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0]));
1252 unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0])); 1252 unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0]));
1253 1253
1254 for (cpu = 0; cpu < nr_cpu_ids; cpu++) 1254 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1255 unit_map[cpu] = UINT_MAX; 1255 unit_map[cpu] = UINT_MAX;
1256 1256
1257 pcpu_low_unit_cpu = NR_CPUS; 1257 pcpu_low_unit_cpu = NR_CPUS;
1258 pcpu_high_unit_cpu = NR_CPUS; 1258 pcpu_high_unit_cpu = NR_CPUS;
1259 1259
1260 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { 1260 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1261 const struct pcpu_group_info *gi = &ai->groups[group]; 1261 const struct pcpu_group_info *gi = &ai->groups[group];
1262 1262
1263 group_offsets[group] = gi->base_offset; 1263 group_offsets[group] = gi->base_offset;
1264 group_sizes[group] = gi->nr_units * ai->unit_size; 1264 group_sizes[group] = gi->nr_units * ai->unit_size;
1265 1265
1266 for (i = 0; i < gi->nr_units; i++) { 1266 for (i = 0; i < gi->nr_units; i++) {
1267 cpu = gi->cpu_map[i]; 1267 cpu = gi->cpu_map[i];
1268 if (cpu == NR_CPUS) 1268 if (cpu == NR_CPUS)
1269 continue; 1269 continue;
1270 1270
1271 PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids); 1271 PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
1272 PCPU_SETUP_BUG_ON(!cpu_possible(cpu)); 1272 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1273 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX); 1273 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1274 1274
1275 unit_map[cpu] = unit + i; 1275 unit_map[cpu] = unit + i;
1276 unit_off[cpu] = gi->base_offset + i * ai->unit_size; 1276 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1277 1277
1278 /* determine low/high unit_cpu */ 1278 /* determine low/high unit_cpu */
1279 if (pcpu_low_unit_cpu == NR_CPUS || 1279 if (pcpu_low_unit_cpu == NR_CPUS ||
1280 unit_off[cpu] < unit_off[pcpu_low_unit_cpu]) 1280 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1281 pcpu_low_unit_cpu = cpu; 1281 pcpu_low_unit_cpu = cpu;
1282 if (pcpu_high_unit_cpu == NR_CPUS || 1282 if (pcpu_high_unit_cpu == NR_CPUS ||
1283 unit_off[cpu] > unit_off[pcpu_high_unit_cpu]) 1283 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1284 pcpu_high_unit_cpu = cpu; 1284 pcpu_high_unit_cpu = cpu;
1285 } 1285 }
1286 } 1286 }
1287 pcpu_nr_units = unit; 1287 pcpu_nr_units = unit;
1288 1288
1289 for_each_possible_cpu(cpu) 1289 for_each_possible_cpu(cpu)
1290 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX); 1290 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1291 1291
1292 /* we're done parsing the input, undefine BUG macro and dump config */ 1292 /* we're done parsing the input, undefine BUG macro and dump config */
1293 #undef PCPU_SETUP_BUG_ON 1293 #undef PCPU_SETUP_BUG_ON
1294 pcpu_dump_alloc_info(KERN_DEBUG, ai); 1294 pcpu_dump_alloc_info(KERN_DEBUG, ai);
1295 1295
1296 pcpu_nr_groups = ai->nr_groups; 1296 pcpu_nr_groups = ai->nr_groups;
1297 pcpu_group_offsets = group_offsets; 1297 pcpu_group_offsets = group_offsets;
1298 pcpu_group_sizes = group_sizes; 1298 pcpu_group_sizes = group_sizes;
1299 pcpu_unit_map = unit_map; 1299 pcpu_unit_map = unit_map;
1300 pcpu_unit_offsets = unit_off; 1300 pcpu_unit_offsets = unit_off;
1301 1301
1302 /* determine basic parameters */ 1302 /* determine basic parameters */
1303 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT; 1303 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1304 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; 1304 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1305 pcpu_atom_size = ai->atom_size; 1305 pcpu_atom_size = ai->atom_size;
1306 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) + 1306 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1307 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long); 1307 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1308 1308
1309 /* 1309 /*
1310 * Allocate chunk slots. The additional last slot is for 1310 * Allocate chunk slots. The additional last slot is for
1311 * empty chunks. 1311 * empty chunks.
1312 */ 1312 */
1313 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2; 1313 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1314 pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0])); 1314 pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
1315 for (i = 0; i < pcpu_nr_slots; i++) 1315 for (i = 0; i < pcpu_nr_slots; i++)
1316 INIT_LIST_HEAD(&pcpu_slot[i]); 1316 INIT_LIST_HEAD(&pcpu_slot[i]);
1317 1317
1318 /* 1318 /*
1319 * Initialize static chunk. If reserved_size is zero, the 1319 * Initialize static chunk. If reserved_size is zero, the
1320 * static chunk covers static area + dynamic allocation area 1320 * static chunk covers static area + dynamic allocation area
1321 * in the first chunk. If reserved_size is not zero, it 1321 * in the first chunk. If reserved_size is not zero, it
1322 * covers static area + reserved area (mostly used for module 1322 * covers static area + reserved area (mostly used for module
1323 * static percpu allocation). 1323 * static percpu allocation).
1324 */ 1324 */
1325 schunk = alloc_bootmem(pcpu_chunk_struct_size); 1325 schunk = alloc_bootmem(pcpu_chunk_struct_size);
1326 INIT_LIST_HEAD(&schunk->list); 1326 INIT_LIST_HEAD(&schunk->list);
1327 schunk->base_addr = base_addr; 1327 schunk->base_addr = base_addr;
1328 schunk->map = smap; 1328 schunk->map = smap;
1329 schunk->map_alloc = ARRAY_SIZE(smap); 1329 schunk->map_alloc = ARRAY_SIZE(smap);
1330 schunk->immutable = true; 1330 schunk->immutable = true;
1331 bitmap_fill(schunk->populated, pcpu_unit_pages); 1331 bitmap_fill(schunk->populated, pcpu_unit_pages);
1332 1332
1333 if (ai->reserved_size) { 1333 if (ai->reserved_size) {
1334 schunk->free_size = ai->reserved_size; 1334 schunk->free_size = ai->reserved_size;
1335 pcpu_reserved_chunk = schunk; 1335 pcpu_reserved_chunk = schunk;
1336 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size; 1336 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1337 } else { 1337 } else {
1338 schunk->free_size = dyn_size; 1338 schunk->free_size = dyn_size;
1339 dyn_size = 0; /* dynamic area covered */ 1339 dyn_size = 0; /* dynamic area covered */
1340 } 1340 }
1341 schunk->contig_hint = schunk->free_size; 1341 schunk->contig_hint = schunk->free_size;
1342 1342
1343 schunk->map[schunk->map_used++] = -ai->static_size; 1343 schunk->map[schunk->map_used++] = -ai->static_size;
1344 if (schunk->free_size) 1344 if (schunk->free_size)
1345 schunk->map[schunk->map_used++] = schunk->free_size; 1345 schunk->map[schunk->map_used++] = schunk->free_size;
1346 1346
1347 /* init dynamic chunk if necessary */ 1347 /* init dynamic chunk if necessary */
1348 if (dyn_size) { 1348 if (dyn_size) {
1349 dchunk = alloc_bootmem(pcpu_chunk_struct_size); 1349 dchunk = alloc_bootmem(pcpu_chunk_struct_size);
1350 INIT_LIST_HEAD(&dchunk->list); 1350 INIT_LIST_HEAD(&dchunk->list);
1351 dchunk->base_addr = base_addr; 1351 dchunk->base_addr = base_addr;
1352 dchunk->map = dmap; 1352 dchunk->map = dmap;
1353 dchunk->map_alloc = ARRAY_SIZE(dmap); 1353 dchunk->map_alloc = ARRAY_SIZE(dmap);
1354 dchunk->immutable = true; 1354 dchunk->immutable = true;
1355 bitmap_fill(dchunk->populated, pcpu_unit_pages); 1355 bitmap_fill(dchunk->populated, pcpu_unit_pages);
1356 1356
1357 dchunk->contig_hint = dchunk->free_size = dyn_size; 1357 dchunk->contig_hint = dchunk->free_size = dyn_size;
1358 dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit; 1358 dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
1359 dchunk->map[dchunk->map_used++] = dchunk->free_size; 1359 dchunk->map[dchunk->map_used++] = dchunk->free_size;
1360 } 1360 }
1361 1361
1362 /* link the first chunk in */ 1362 /* link the first chunk in */
1363 pcpu_first_chunk = dchunk ?: schunk; 1363 pcpu_first_chunk = dchunk ?: schunk;
1364 pcpu_chunk_relocate(pcpu_first_chunk, -1); 1364 pcpu_chunk_relocate(pcpu_first_chunk, -1);
1365 1365
1366 /* we're done */ 1366 /* we're done */
1367 pcpu_base_addr = base_addr; 1367 pcpu_base_addr = base_addr;
1368 return 0; 1368 return 0;
1369 } 1369 }
1370 1370
1371 #ifdef CONFIG_SMP 1371 #ifdef CONFIG_SMP
1372 1372
1373 const char *pcpu_fc_names[PCPU_FC_NR] __initdata = { 1373 const char *pcpu_fc_names[PCPU_FC_NR] __initdata = {
1374 [PCPU_FC_AUTO] = "auto", 1374 [PCPU_FC_AUTO] = "auto",
1375 [PCPU_FC_EMBED] = "embed", 1375 [PCPU_FC_EMBED] = "embed",
1376 [PCPU_FC_PAGE] = "page", 1376 [PCPU_FC_PAGE] = "page",
1377 }; 1377 };
1378 1378
1379 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO; 1379 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1380 1380
1381 static int __init percpu_alloc_setup(char *str) 1381 static int __init percpu_alloc_setup(char *str)
1382 { 1382 {
1383 if (0) 1383 if (0)
1384 /* nada */; 1384 /* nada */;
1385 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 1385 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1386 else if (!strcmp(str, "embed")) 1386 else if (!strcmp(str, "embed"))
1387 pcpu_chosen_fc = PCPU_FC_EMBED; 1387 pcpu_chosen_fc = PCPU_FC_EMBED;
1388 #endif 1388 #endif
1389 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 1389 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1390 else if (!strcmp(str, "page")) 1390 else if (!strcmp(str, "page"))
1391 pcpu_chosen_fc = PCPU_FC_PAGE; 1391 pcpu_chosen_fc = PCPU_FC_PAGE;
1392 #endif 1392 #endif
1393 else 1393 else
1394 pr_warning("PERCPU: unknown allocator %s specified\n", str); 1394 pr_warning("PERCPU: unknown allocator %s specified\n", str);
1395 1395
1396 return 0; 1396 return 0;
1397 } 1397 }
1398 early_param("percpu_alloc", percpu_alloc_setup); 1398 early_param("percpu_alloc", percpu_alloc_setup);
1399 1399
1400 /* 1400 /*
1401 * pcpu_embed_first_chunk() is used by the generic percpu setup. 1401 * pcpu_embed_first_chunk() is used by the generic percpu setup.
1402 * Build it if needed by the arch config or the generic setup is going 1402 * Build it if needed by the arch config or the generic setup is going
1403 * to be used. 1403 * to be used.
1404 */ 1404 */
1405 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \ 1405 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1406 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) 1406 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1407 #define BUILD_EMBED_FIRST_CHUNK 1407 #define BUILD_EMBED_FIRST_CHUNK
1408 #endif 1408 #endif
1409 1409
1410 /* build pcpu_page_first_chunk() iff needed by the arch config */ 1410 /* build pcpu_page_first_chunk() iff needed by the arch config */
1411 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK) 1411 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1412 #define BUILD_PAGE_FIRST_CHUNK 1412 #define BUILD_PAGE_FIRST_CHUNK
1413 #endif 1413 #endif
1414 1414
1415 /* pcpu_build_alloc_info() is used by both embed and page first chunk */ 1415 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
1416 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK) 1416 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1417 /** 1417 /**
1418 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs 1418 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1419 * @reserved_size: the size of reserved percpu area in bytes 1419 * @reserved_size: the size of reserved percpu area in bytes
1420 * @dyn_size: minimum free size for dynamic allocation in bytes 1420 * @dyn_size: minimum free size for dynamic allocation in bytes
1421 * @atom_size: allocation atom size 1421 * @atom_size: allocation atom size
1422 * @cpu_distance_fn: callback to determine distance between cpus, optional 1422 * @cpu_distance_fn: callback to determine distance between cpus, optional
1423 * 1423 *
1424 * This function determines grouping of units, their mappings to cpus 1424 * This function determines grouping of units, their mappings to cpus
1425 * and other parameters considering needed percpu size, allocation 1425 * and other parameters considering needed percpu size, allocation
1426 * atom size and distances between CPUs. 1426 * atom size and distances between CPUs.
1427 * 1427 *
1428 * Groups are always mutliples of atom size and CPUs which are of 1428 * Groups are always mutliples of atom size and CPUs which are of
1429 * LOCAL_DISTANCE both ways are grouped together and share space for 1429 * LOCAL_DISTANCE both ways are grouped together and share space for
1430 * units in the same group. The returned configuration is guaranteed 1430 * units in the same group. The returned configuration is guaranteed
1431 * to have CPUs on different nodes on different groups and >=75% usage 1431 * to have CPUs on different nodes on different groups and >=75% usage
1432 * of allocated virtual address space. 1432 * of allocated virtual address space.
1433 * 1433 *
1434 * RETURNS: 1434 * RETURNS:
1435 * On success, pointer to the new allocation_info is returned. On 1435 * On success, pointer to the new allocation_info is returned. On
1436 * failure, ERR_PTR value is returned. 1436 * failure, ERR_PTR value is returned.
1437 */ 1437 */
1438 static struct pcpu_alloc_info * __init pcpu_build_alloc_info( 1438 static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1439 size_t reserved_size, size_t dyn_size, 1439 size_t reserved_size, size_t dyn_size,
1440 size_t atom_size, 1440 size_t atom_size,
1441 pcpu_fc_cpu_distance_fn_t cpu_distance_fn) 1441 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1442 { 1442 {
1443 static int group_map[NR_CPUS] __initdata; 1443 static int group_map[NR_CPUS] __initdata;
1444 static int group_cnt[NR_CPUS] __initdata; 1444 static int group_cnt[NR_CPUS] __initdata;
1445 const size_t static_size = __per_cpu_end - __per_cpu_start; 1445 const size_t static_size = __per_cpu_end - __per_cpu_start;
1446 int nr_groups = 1, nr_units = 0; 1446 int nr_groups = 1, nr_units = 0;
1447 size_t size_sum, min_unit_size, alloc_size; 1447 size_t size_sum, min_unit_size, alloc_size;
1448 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */ 1448 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
1449 int last_allocs, group, unit; 1449 int last_allocs, group, unit;
1450 unsigned int cpu, tcpu; 1450 unsigned int cpu, tcpu;
1451 struct pcpu_alloc_info *ai; 1451 struct pcpu_alloc_info *ai;
1452 unsigned int *cpu_map; 1452 unsigned int *cpu_map;
1453 1453
1454 /* this function may be called multiple times */ 1454 /* this function may be called multiple times */
1455 memset(group_map, 0, sizeof(group_map)); 1455 memset(group_map, 0, sizeof(group_map));
1456 memset(group_cnt, 0, sizeof(group_cnt)); 1456 memset(group_cnt, 0, sizeof(group_cnt));
1457 1457
1458 /* calculate size_sum and ensure dyn_size is enough for early alloc */ 1458 /* calculate size_sum and ensure dyn_size is enough for early alloc */
1459 size_sum = PFN_ALIGN(static_size + reserved_size + 1459 size_sum = PFN_ALIGN(static_size + reserved_size +
1460 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE)); 1460 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1461 dyn_size = size_sum - static_size - reserved_size; 1461 dyn_size = size_sum - static_size - reserved_size;
1462 1462
1463 /* 1463 /*
1464 * Determine min_unit_size, alloc_size and max_upa such that 1464 * Determine min_unit_size, alloc_size and max_upa such that
1465 * alloc_size is multiple of atom_size and is the smallest 1465 * alloc_size is multiple of atom_size and is the smallest
1466 * which can accommodate 4k aligned segments which are equal to 1466 * which can accommodate 4k aligned segments which are equal to
1467 * or larger than min_unit_size. 1467 * or larger than min_unit_size.
1468 */ 1468 */
1469 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); 1469 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1470 1470
1471 alloc_size = roundup(min_unit_size, atom_size); 1471 alloc_size = roundup(min_unit_size, atom_size);
1472 upa = alloc_size / min_unit_size; 1472 upa = alloc_size / min_unit_size;
1473 while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK)) 1473 while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1474 upa--; 1474 upa--;
1475 max_upa = upa; 1475 max_upa = upa;
1476 1476
1477 /* group cpus according to their proximity */ 1477 /* group cpus according to their proximity */
1478 for_each_possible_cpu(cpu) { 1478 for_each_possible_cpu(cpu) {
1479 group = 0; 1479 group = 0;
1480 next_group: 1480 next_group:
1481 for_each_possible_cpu(tcpu) { 1481 for_each_possible_cpu(tcpu) {
1482 if (cpu == tcpu) 1482 if (cpu == tcpu)
1483 break; 1483 break;
1484 if (group_map[tcpu] == group && cpu_distance_fn && 1484 if (group_map[tcpu] == group && cpu_distance_fn &&
1485 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE || 1485 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1486 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) { 1486 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1487 group++; 1487 group++;
1488 nr_groups = max(nr_groups, group + 1); 1488 nr_groups = max(nr_groups, group + 1);
1489 goto next_group; 1489 goto next_group;
1490 } 1490 }
1491 } 1491 }
1492 group_map[cpu] = group; 1492 group_map[cpu] = group;
1493 group_cnt[group]++; 1493 group_cnt[group]++;
1494 } 1494 }
1495 1495
1496 /* 1496 /*
1497 * Expand unit size until address space usage goes over 75% 1497 * Expand unit size until address space usage goes over 75%
1498 * and then as much as possible without using more address 1498 * and then as much as possible without using more address
1499 * space. 1499 * space.
1500 */ 1500 */
1501 last_allocs = INT_MAX; 1501 last_allocs = INT_MAX;
1502 for (upa = max_upa; upa; upa--) { 1502 for (upa = max_upa; upa; upa--) {
1503 int allocs = 0, wasted = 0; 1503 int allocs = 0, wasted = 0;
1504 1504
1505 if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK)) 1505 if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1506 continue; 1506 continue;
1507 1507
1508 for (group = 0; group < nr_groups; group++) { 1508 for (group = 0; group < nr_groups; group++) {
1509 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa); 1509 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1510 allocs += this_allocs; 1510 allocs += this_allocs;
1511 wasted += this_allocs * upa - group_cnt[group]; 1511 wasted += this_allocs * upa - group_cnt[group];
1512 } 1512 }
1513 1513
1514 /* 1514 /*
1515 * Don't accept if wastage is over 1/3. The 1515 * Don't accept if wastage is over 1/3. The
1516 * greater-than comparison ensures upa==1 always 1516 * greater-than comparison ensures upa==1 always
1517 * passes the following check. 1517 * passes the following check.
1518 */ 1518 */
1519 if (wasted > num_possible_cpus() / 3) 1519 if (wasted > num_possible_cpus() / 3)
1520 continue; 1520 continue;
1521 1521
1522 /* and then don't consume more memory */ 1522 /* and then don't consume more memory */
1523 if (allocs > last_allocs) 1523 if (allocs > last_allocs)
1524 break; 1524 break;
1525 last_allocs = allocs; 1525 last_allocs = allocs;
1526 best_upa = upa; 1526 best_upa = upa;
1527 } 1527 }
1528 upa = best_upa; 1528 upa = best_upa;
1529 1529
1530 /* allocate and fill alloc_info */ 1530 /* allocate and fill alloc_info */
1531 for (group = 0; group < nr_groups; group++) 1531 for (group = 0; group < nr_groups; group++)
1532 nr_units += roundup(group_cnt[group], upa); 1532 nr_units += roundup(group_cnt[group], upa);
1533 1533
1534 ai = pcpu_alloc_alloc_info(nr_groups, nr_units); 1534 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1535 if (!ai) 1535 if (!ai)
1536 return ERR_PTR(-ENOMEM); 1536 return ERR_PTR(-ENOMEM);
1537 cpu_map = ai->groups[0].cpu_map; 1537 cpu_map = ai->groups[0].cpu_map;
1538 1538
1539 for (group = 0; group < nr_groups; group++) { 1539 for (group = 0; group < nr_groups; group++) {
1540 ai->groups[group].cpu_map = cpu_map; 1540 ai->groups[group].cpu_map = cpu_map;
1541 cpu_map += roundup(group_cnt[group], upa); 1541 cpu_map += roundup(group_cnt[group], upa);
1542 } 1542 }
1543 1543
1544 ai->static_size = static_size; 1544 ai->static_size = static_size;
1545 ai->reserved_size = reserved_size; 1545 ai->reserved_size = reserved_size;
1546 ai->dyn_size = dyn_size; 1546 ai->dyn_size = dyn_size;
1547 ai->unit_size = alloc_size / upa; 1547 ai->unit_size = alloc_size / upa;
1548 ai->atom_size = atom_size; 1548 ai->atom_size = atom_size;
1549 ai->alloc_size = alloc_size; 1549 ai->alloc_size = alloc_size;
1550 1550
1551 for (group = 0, unit = 0; group_cnt[group]; group++) { 1551 for (group = 0, unit = 0; group_cnt[group]; group++) {
1552 struct pcpu_group_info *gi = &ai->groups[group]; 1552 struct pcpu_group_info *gi = &ai->groups[group];
1553 1553
1554 /* 1554 /*
1555 * Initialize base_offset as if all groups are located 1555 * Initialize base_offset as if all groups are located
1556 * back-to-back. The caller should update this to 1556 * back-to-back. The caller should update this to
1557 * reflect actual allocation. 1557 * reflect actual allocation.
1558 */ 1558 */
1559 gi->base_offset = unit * ai->unit_size; 1559 gi->base_offset = unit * ai->unit_size;
1560 1560
1561 for_each_possible_cpu(cpu) 1561 for_each_possible_cpu(cpu)
1562 if (group_map[cpu] == group) 1562 if (group_map[cpu] == group)
1563 gi->cpu_map[gi->nr_units++] = cpu; 1563 gi->cpu_map[gi->nr_units++] = cpu;
1564 gi->nr_units = roundup(gi->nr_units, upa); 1564 gi->nr_units = roundup(gi->nr_units, upa);
1565 unit += gi->nr_units; 1565 unit += gi->nr_units;
1566 } 1566 }
1567 BUG_ON(unit != nr_units); 1567 BUG_ON(unit != nr_units);
1568 1568
1569 return ai; 1569 return ai;
1570 } 1570 }
1571 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */ 1571 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1572 1572
1573 #if defined(BUILD_EMBED_FIRST_CHUNK) 1573 #if defined(BUILD_EMBED_FIRST_CHUNK)
1574 /** 1574 /**
1575 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem 1575 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1576 * @reserved_size: the size of reserved percpu area in bytes 1576 * @reserved_size: the size of reserved percpu area in bytes
1577 * @dyn_size: minimum free size for dynamic allocation in bytes 1577 * @dyn_size: minimum free size for dynamic allocation in bytes
1578 * @atom_size: allocation atom size 1578 * @atom_size: allocation atom size
1579 * @cpu_distance_fn: callback to determine distance between cpus, optional 1579 * @cpu_distance_fn: callback to determine distance between cpus, optional
1580 * @alloc_fn: function to allocate percpu page 1580 * @alloc_fn: function to allocate percpu page
1581 * @free_fn: function to free percpu page 1581 * @free_fn: function to free percpu page
1582 * 1582 *
1583 * This is a helper to ease setting up embedded first percpu chunk and 1583 * This is a helper to ease setting up embedded first percpu chunk and
1584 * can be called where pcpu_setup_first_chunk() is expected. 1584 * can be called where pcpu_setup_first_chunk() is expected.
1585 * 1585 *
1586 * If this function is used to setup the first chunk, it is allocated 1586 * If this function is used to setup the first chunk, it is allocated
1587 * by calling @alloc_fn and used as-is without being mapped into 1587 * by calling @alloc_fn and used as-is without being mapped into
1588 * vmalloc area. Allocations are always whole multiples of @atom_size 1588 * vmalloc area. Allocations are always whole multiples of @atom_size
1589 * aligned to @atom_size. 1589 * aligned to @atom_size.
1590 * 1590 *
1591 * This enables the first chunk to piggy back on the linear physical 1591 * This enables the first chunk to piggy back on the linear physical
1592 * mapping which often uses larger page size. Please note that this 1592 * mapping which often uses larger page size. Please note that this
1593 * can result in very sparse cpu->unit mapping on NUMA machines thus 1593 * can result in very sparse cpu->unit mapping on NUMA machines thus
1594 * requiring large vmalloc address space. Don't use this allocator if 1594 * requiring large vmalloc address space. Don't use this allocator if
1595 * vmalloc space is not orders of magnitude larger than distances 1595 * vmalloc space is not orders of magnitude larger than distances
1596 * between node memory addresses (ie. 32bit NUMA machines). 1596 * between node memory addresses (ie. 32bit NUMA machines).
1597 * 1597 *
1598 * @dyn_size specifies the minimum dynamic area size. 1598 * @dyn_size specifies the minimum dynamic area size.
1599 * 1599 *
1600 * If the needed size is smaller than the minimum or specified unit 1600 * If the needed size is smaller than the minimum or specified unit
1601 * size, the leftover is returned using @free_fn. 1601 * size, the leftover is returned using @free_fn.
1602 * 1602 *
1603 * RETURNS: 1603 * RETURNS:
1604 * 0 on success, -errno on failure. 1604 * 0 on success, -errno on failure.
1605 */ 1605 */
1606 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, 1606 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
1607 size_t atom_size, 1607 size_t atom_size,
1608 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 1608 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1609 pcpu_fc_alloc_fn_t alloc_fn, 1609 pcpu_fc_alloc_fn_t alloc_fn,
1610 pcpu_fc_free_fn_t free_fn) 1610 pcpu_fc_free_fn_t free_fn)
1611 { 1611 {
1612 void *base = (void *)ULONG_MAX; 1612 void *base = (void *)ULONG_MAX;
1613 void **areas = NULL; 1613 void **areas = NULL;
1614 struct pcpu_alloc_info *ai; 1614 struct pcpu_alloc_info *ai;
1615 size_t size_sum, areas_size, max_distance; 1615 size_t size_sum, areas_size, max_distance;
1616 int group, i, rc; 1616 int group, i, rc;
1617 1617
1618 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size, 1618 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1619 cpu_distance_fn); 1619 cpu_distance_fn);
1620 if (IS_ERR(ai)) 1620 if (IS_ERR(ai))
1621 return PTR_ERR(ai); 1621 return PTR_ERR(ai);
1622 1622
1623 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; 1623 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1624 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); 1624 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1625 1625
1626 areas = alloc_bootmem_nopanic(areas_size); 1626 areas = alloc_bootmem_nopanic(areas_size);
1627 if (!areas) { 1627 if (!areas) {
1628 rc = -ENOMEM; 1628 rc = -ENOMEM;
1629 goto out_free; 1629 goto out_free;
1630 } 1630 }
1631 1631
1632 /* allocate, copy and determine base address */ 1632 /* allocate, copy and determine base address */
1633 for (group = 0; group < ai->nr_groups; group++) { 1633 for (group = 0; group < ai->nr_groups; group++) {
1634 struct pcpu_group_info *gi = &ai->groups[group]; 1634 struct pcpu_group_info *gi = &ai->groups[group];
1635 unsigned int cpu = NR_CPUS; 1635 unsigned int cpu = NR_CPUS;
1636 void *ptr; 1636 void *ptr;
1637 1637
1638 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++) 1638 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1639 cpu = gi->cpu_map[i]; 1639 cpu = gi->cpu_map[i];
1640 BUG_ON(cpu == NR_CPUS); 1640 BUG_ON(cpu == NR_CPUS);
1641 1641
1642 /* allocate space for the whole group */ 1642 /* allocate space for the whole group */
1643 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size); 1643 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1644 if (!ptr) { 1644 if (!ptr) {
1645 rc = -ENOMEM; 1645 rc = -ENOMEM;
1646 goto out_free_areas; 1646 goto out_free_areas;
1647 } 1647 }
1648 /* kmemleak tracks the percpu allocations separately */ 1648 /* kmemleak tracks the percpu allocations separately */
1649 kmemleak_free(ptr); 1649 kmemleak_free(ptr);
1650 areas[group] = ptr; 1650 areas[group] = ptr;
1651 1651
1652 base = min(ptr, base); 1652 base = min(ptr, base);
1653 } 1653 }
1654 1654
1655 /* 1655 /*
1656 * Copy data and free unused parts. This should happen after all 1656 * Copy data and free unused parts. This should happen after all
1657 * allocations are complete; otherwise, we may end up with 1657 * allocations are complete; otherwise, we may end up with
1658 * overlapping groups. 1658 * overlapping groups.
1659 */ 1659 */
1660 for (group = 0; group < ai->nr_groups; group++) { 1660 for (group = 0; group < ai->nr_groups; group++) {
1661 struct pcpu_group_info *gi = &ai->groups[group]; 1661 struct pcpu_group_info *gi = &ai->groups[group];
1662 void *ptr = areas[group]; 1662 void *ptr = areas[group];
1663 1663
1664 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { 1664 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
1665 if (gi->cpu_map[i] == NR_CPUS) { 1665 if (gi->cpu_map[i] == NR_CPUS) {
1666 /* unused unit, free whole */ 1666 /* unused unit, free whole */
1667 free_fn(ptr, ai->unit_size); 1667 free_fn(ptr, ai->unit_size);
1668 continue; 1668 continue;
1669 } 1669 }
1670 /* copy and return the unused part */ 1670 /* copy and return the unused part */
1671 memcpy(ptr, __per_cpu_load, ai->static_size); 1671 memcpy(ptr, __per_cpu_load, ai->static_size);
1672 free_fn(ptr + size_sum, ai->unit_size - size_sum); 1672 free_fn(ptr + size_sum, ai->unit_size - size_sum);
1673 } 1673 }
1674 } 1674 }
1675 1675
1676 /* base address is now known, determine group base offsets */ 1676 /* base address is now known, determine group base offsets */
1677 max_distance = 0; 1677 max_distance = 0;
1678 for (group = 0; group < ai->nr_groups; group++) { 1678 for (group = 0; group < ai->nr_groups; group++) {
1679 ai->groups[group].base_offset = areas[group] - base; 1679 ai->groups[group].base_offset = areas[group] - base;
1680 max_distance = max_t(size_t, max_distance, 1680 max_distance = max_t(size_t, max_distance,
1681 ai->groups[group].base_offset); 1681 ai->groups[group].base_offset);
1682 } 1682 }
1683 max_distance += ai->unit_size; 1683 max_distance += ai->unit_size;
1684 1684
1685 /* warn if maximum distance is further than 75% of vmalloc space */ 1685 /* warn if maximum distance is further than 75% of vmalloc space */
1686 if (max_distance > (VMALLOC_END - VMALLOC_START) * 3 / 4) { 1686 if (max_distance > (VMALLOC_END - VMALLOC_START) * 3 / 4) {
1687 pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc " 1687 pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
1688 "space 0x%lx\n", max_distance, 1688 "space 0x%lx\n", max_distance,
1689 (unsigned long)(VMALLOC_END - VMALLOC_START)); 1689 (unsigned long)(VMALLOC_END - VMALLOC_START));
1690 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 1690 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1691 /* and fail if we have fallback */ 1691 /* and fail if we have fallback */
1692 rc = -EINVAL; 1692 rc = -EINVAL;
1693 goto out_free; 1693 goto out_free;
1694 #endif 1694 #endif
1695 } 1695 }
1696 1696
1697 pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n", 1697 pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
1698 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size, 1698 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
1699 ai->dyn_size, ai->unit_size); 1699 ai->dyn_size, ai->unit_size);
1700 1700
1701 rc = pcpu_setup_first_chunk(ai, base); 1701 rc = pcpu_setup_first_chunk(ai, base);
1702 goto out_free; 1702 goto out_free;
1703 1703
1704 out_free_areas: 1704 out_free_areas:
1705 for (group = 0; group < ai->nr_groups; group++) 1705 for (group = 0; group < ai->nr_groups; group++)
1706 free_fn(areas[group], 1706 free_fn(areas[group],
1707 ai->groups[group].nr_units * ai->unit_size); 1707 ai->groups[group].nr_units * ai->unit_size);
1708 out_free: 1708 out_free:
1709 pcpu_free_alloc_info(ai); 1709 pcpu_free_alloc_info(ai);
1710 if (areas) 1710 if (areas)
1711 free_bootmem(__pa(areas), areas_size); 1711 free_bootmem(__pa(areas), areas_size);
1712 return rc; 1712 return rc;
1713 } 1713 }
1714 #endif /* BUILD_EMBED_FIRST_CHUNK */ 1714 #endif /* BUILD_EMBED_FIRST_CHUNK */
1715 1715
1716 #ifdef BUILD_PAGE_FIRST_CHUNK 1716 #ifdef BUILD_PAGE_FIRST_CHUNK
1717 /** 1717 /**
1718 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages 1718 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
1719 * @reserved_size: the size of reserved percpu area in bytes 1719 * @reserved_size: the size of reserved percpu area in bytes
1720 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE 1720 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
1721 * @free_fn: function to free percpu page, always called with PAGE_SIZE 1721 * @free_fn: function to free percpu page, always called with PAGE_SIZE
1722 * @populate_pte_fn: function to populate pte 1722 * @populate_pte_fn: function to populate pte
1723 * 1723 *
1724 * This is a helper to ease setting up page-remapped first percpu 1724 * This is a helper to ease setting up page-remapped first percpu
1725 * chunk and can be called where pcpu_setup_first_chunk() is expected. 1725 * chunk and can be called where pcpu_setup_first_chunk() is expected.
1726 * 1726 *
1727 * This is the basic allocator. Static percpu area is allocated 1727 * This is the basic allocator. Static percpu area is allocated
1728 * page-by-page into vmalloc area. 1728 * page-by-page into vmalloc area.
1729 * 1729 *
1730 * RETURNS: 1730 * RETURNS:
1731 * 0 on success, -errno on failure. 1731 * 0 on success, -errno on failure.
1732 */ 1732 */
1733 int __init pcpu_page_first_chunk(size_t reserved_size, 1733 int __init pcpu_page_first_chunk(size_t reserved_size,
1734 pcpu_fc_alloc_fn_t alloc_fn, 1734 pcpu_fc_alloc_fn_t alloc_fn,
1735 pcpu_fc_free_fn_t free_fn, 1735 pcpu_fc_free_fn_t free_fn,
1736 pcpu_fc_populate_pte_fn_t populate_pte_fn) 1736 pcpu_fc_populate_pte_fn_t populate_pte_fn)
1737 { 1737 {
1738 static struct vm_struct vm; 1738 static struct vm_struct vm;
1739 struct pcpu_alloc_info *ai; 1739 struct pcpu_alloc_info *ai;
1740 char psize_str[16]; 1740 char psize_str[16];
1741 int unit_pages; 1741 int unit_pages;
1742 size_t pages_size; 1742 size_t pages_size;
1743 struct page **pages; 1743 struct page **pages;
1744 int unit, i, j, rc; 1744 int unit, i, j, rc;
1745 1745
1746 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); 1746 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
1747 1747
1748 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL); 1748 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
1749 if (IS_ERR(ai)) 1749 if (IS_ERR(ai))
1750 return PTR_ERR(ai); 1750 return PTR_ERR(ai);
1751 BUG_ON(ai->nr_groups != 1); 1751 BUG_ON(ai->nr_groups != 1);
1752 BUG_ON(ai->groups[0].nr_units != num_possible_cpus()); 1752 BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
1753 1753
1754 unit_pages = ai->unit_size >> PAGE_SHIFT; 1754 unit_pages = ai->unit_size >> PAGE_SHIFT;
1755 1755
1756 /* unaligned allocations can't be freed, round up to page size */ 1756 /* unaligned allocations can't be freed, round up to page size */
1757 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * 1757 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
1758 sizeof(pages[0])); 1758 sizeof(pages[0]));
1759 pages = alloc_bootmem(pages_size); 1759 pages = alloc_bootmem(pages_size);
1760 1760
1761 /* allocate pages */ 1761 /* allocate pages */
1762 j = 0; 1762 j = 0;
1763 for (unit = 0; unit < num_possible_cpus(); unit++) 1763 for (unit = 0; unit < num_possible_cpus(); unit++)
1764 for (i = 0; i < unit_pages; i++) { 1764 for (i = 0; i < unit_pages; i++) {
1765 unsigned int cpu = ai->groups[0].cpu_map[unit]; 1765 unsigned int cpu = ai->groups[0].cpu_map[unit];
1766 void *ptr; 1766 void *ptr;
1767 1767
1768 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE); 1768 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
1769 if (!ptr) { 1769 if (!ptr) {
1770 pr_warning("PERCPU: failed to allocate %s page " 1770 pr_warning("PERCPU: failed to allocate %s page "
1771 "for cpu%u\n", psize_str, cpu); 1771 "for cpu%u\n", psize_str, cpu);
1772 goto enomem; 1772 goto enomem;
1773 } 1773 }
1774 /* kmemleak tracks the percpu allocations separately */ 1774 /* kmemleak tracks the percpu allocations separately */
1775 kmemleak_free(ptr); 1775 kmemleak_free(ptr);
1776 pages[j++] = virt_to_page(ptr); 1776 pages[j++] = virt_to_page(ptr);
1777 } 1777 }
1778 1778
1779 /* allocate vm area, map the pages and copy static data */ 1779 /* allocate vm area, map the pages and copy static data */
1780 vm.flags = VM_ALLOC; 1780 vm.flags = VM_ALLOC;
1781 vm.size = num_possible_cpus() * ai->unit_size; 1781 vm.size = num_possible_cpus() * ai->unit_size;
1782 vm_area_register_early(&vm, PAGE_SIZE); 1782 vm_area_register_early(&vm, PAGE_SIZE);
1783 1783
1784 for (unit = 0; unit < num_possible_cpus(); unit++) { 1784 for (unit = 0; unit < num_possible_cpus(); unit++) {
1785 unsigned long unit_addr = 1785 unsigned long unit_addr =
1786 (unsigned long)vm.addr + unit * ai->unit_size; 1786 (unsigned long)vm.addr + unit * ai->unit_size;
1787 1787
1788 for (i = 0; i < unit_pages; i++) 1788 for (i = 0; i < unit_pages; i++)
1789 populate_pte_fn(unit_addr + (i << PAGE_SHIFT)); 1789 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
1790 1790
1791 /* pte already populated, the following shouldn't fail */ 1791 /* pte already populated, the following shouldn't fail */
1792 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages], 1792 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
1793 unit_pages); 1793 unit_pages);
1794 if (rc < 0) 1794 if (rc < 0)
1795 panic("failed to map percpu area, err=%d\n", rc); 1795 panic("failed to map percpu area, err=%d\n", rc);
1796 1796
1797 /* 1797 /*
1798 * FIXME: Archs with virtual cache should flush local 1798 * FIXME: Archs with virtual cache should flush local
1799 * cache for the linear mapping here - something 1799 * cache for the linear mapping here - something
1800 * equivalent to flush_cache_vmap() on the local cpu. 1800 * equivalent to flush_cache_vmap() on the local cpu.
1801 * flush_cache_vmap() can't be used as most supporting 1801 * flush_cache_vmap() can't be used as most supporting
1802 * data structures are not set up yet. 1802 * data structures are not set up yet.
1803 */ 1803 */
1804 1804
1805 /* copy static data */ 1805 /* copy static data */
1806 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size); 1806 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
1807 } 1807 }
1808 1808
1809 /* we're ready, commit */ 1809 /* we're ready, commit */
1810 pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n", 1810 pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
1811 unit_pages, psize_str, vm.addr, ai->static_size, 1811 unit_pages, psize_str, vm.addr, ai->static_size,
1812 ai->reserved_size, ai->dyn_size); 1812 ai->reserved_size, ai->dyn_size);
1813 1813
1814 rc = pcpu_setup_first_chunk(ai, vm.addr); 1814 rc = pcpu_setup_first_chunk(ai, vm.addr);
1815 goto out_free_ar; 1815 goto out_free_ar;
1816 1816
1817 enomem: 1817 enomem:
1818 while (--j >= 0) 1818 while (--j >= 0)
1819 free_fn(page_address(pages[j]), PAGE_SIZE); 1819 free_fn(page_address(pages[j]), PAGE_SIZE);
1820 rc = -ENOMEM; 1820 rc = -ENOMEM;
1821 out_free_ar: 1821 out_free_ar:
1822 free_bootmem(__pa(pages), pages_size); 1822 free_bootmem(__pa(pages), pages_size);
1823 pcpu_free_alloc_info(ai); 1823 pcpu_free_alloc_info(ai);
1824 return rc; 1824 return rc;
1825 } 1825 }
1826 #endif /* BUILD_PAGE_FIRST_CHUNK */ 1826 #endif /* BUILD_PAGE_FIRST_CHUNK */
1827 1827
1828 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA 1828 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
1829 /* 1829 /*
1830 * Generic SMP percpu area setup. 1830 * Generic SMP percpu area setup.
1831 * 1831 *
1832 * The embedding helper is used because its behavior closely resembles 1832 * The embedding helper is used because its behavior closely resembles
1833 * the original non-dynamic generic percpu area setup. This is 1833 * the original non-dynamic generic percpu area setup. This is
1834 * important because many archs have addressing restrictions and might 1834 * important because many archs have addressing restrictions and might
1835 * fail if the percpu area is located far away from the previous 1835 * fail if the percpu area is located far away from the previous
1836 * location. As an added bonus, in non-NUMA cases, embedding is 1836 * location. As an added bonus, in non-NUMA cases, embedding is
1837 * generally a good idea TLB-wise because percpu area can piggy back 1837 * generally a good idea TLB-wise because percpu area can piggy back
1838 * on the physical linear memory mapping which uses large page 1838 * on the physical linear memory mapping which uses large page
1839 * mappings on applicable archs. 1839 * mappings on applicable archs.
1840 */ 1840 */
1841 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 1841 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
1842 EXPORT_SYMBOL(__per_cpu_offset); 1842 EXPORT_SYMBOL(__per_cpu_offset);
1843 1843
1844 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size, 1844 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
1845 size_t align) 1845 size_t align)
1846 { 1846 {
1847 return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS)); 1847 return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS));
1848 } 1848 }
1849 1849
1850 static void __init pcpu_dfl_fc_free(void *ptr, size_t size) 1850 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
1851 { 1851 {
1852 free_bootmem(__pa(ptr), size); 1852 free_bootmem(__pa(ptr), size);
1853 } 1853 }
1854 1854
1855 void __init setup_per_cpu_areas(void) 1855 void __init setup_per_cpu_areas(void)
1856 { 1856 {
1857 unsigned long delta; 1857 unsigned long delta;
1858 unsigned int cpu; 1858 unsigned int cpu;
1859 int rc; 1859 int rc;
1860 1860
1861 /* 1861 /*
1862 * Always reserve area for module percpu variables. That's 1862 * Always reserve area for module percpu variables. That's
1863 * what the legacy allocator did. 1863 * what the legacy allocator did.
1864 */ 1864 */
1865 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, 1865 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1866 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL, 1866 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
1867 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free); 1867 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
1868 if (rc < 0) 1868 if (rc < 0)
1869 panic("Failed to initialize percpu areas."); 1869 panic("Failed to initialize percpu areas.");
1870 1870
1871 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 1871 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1872 for_each_possible_cpu(cpu) 1872 for_each_possible_cpu(cpu)
1873 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 1873 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
1874 } 1874 }
1875 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ 1875 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
1876 1876
1877 #else /* CONFIG_SMP */ 1877 #else /* CONFIG_SMP */
1878 1878
1879 /* 1879 /*
1880 * UP percpu area setup. 1880 * UP percpu area setup.
1881 * 1881 *
1882 * UP always uses km-based percpu allocator with identity mapping. 1882 * UP always uses km-based percpu allocator with identity mapping.
1883 * Static percpu variables are indistinguishable from the usual static 1883 * Static percpu variables are indistinguishable from the usual static
1884 * variables and don't require any special preparation. 1884 * variables and don't require any special preparation.
1885 */ 1885 */
1886 void __init setup_per_cpu_areas(void) 1886 void __init setup_per_cpu_areas(void)
1887 { 1887 {
1888 const size_t unit_size = 1888 const size_t unit_size =
1889 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE, 1889 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
1890 PERCPU_DYNAMIC_RESERVE)); 1890 PERCPU_DYNAMIC_RESERVE));
1891 struct pcpu_alloc_info *ai; 1891 struct pcpu_alloc_info *ai;
1892 void *fc; 1892 void *fc;
1893 1893
1894 ai = pcpu_alloc_alloc_info(1, 1); 1894 ai = pcpu_alloc_alloc_info(1, 1);
1895 fc = __alloc_bootmem(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); 1895 fc = __alloc_bootmem(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
1896 if (!ai || !fc) 1896 if (!ai || !fc)
1897 panic("Failed to allocate memory for percpu areas."); 1897 panic("Failed to allocate memory for percpu areas.");
1898 /* kmemleak tracks the percpu allocations separately */
1899 kmemleak_free(fc);
1898 1900
1899 ai->dyn_size = unit_size; 1901 ai->dyn_size = unit_size;
1900 ai->unit_size = unit_size; 1902 ai->unit_size = unit_size;
1901 ai->atom_size = unit_size; 1903 ai->atom_size = unit_size;
1902 ai->alloc_size = unit_size; 1904 ai->alloc_size = unit_size;
1903 ai->groups[0].nr_units = 1; 1905 ai->groups[0].nr_units = 1;
1904 ai->groups[0].cpu_map[0] = 0; 1906 ai->groups[0].cpu_map[0] = 0;
1905 1907
1906 if (pcpu_setup_first_chunk(ai, fc) < 0) 1908 if (pcpu_setup_first_chunk(ai, fc) < 0)
1907 panic("Failed to initialize percpu areas."); 1909 panic("Failed to initialize percpu areas.");
1908 } 1910 }
1909 1911
1910 #endif /* CONFIG_SMP */ 1912 #endif /* CONFIG_SMP */
1911 1913
1912 /* 1914 /*
1913 * First and reserved chunks are initialized with temporary allocation 1915 * First and reserved chunks are initialized with temporary allocation
1914 * map in initdata so that they can be used before slab is online. 1916 * map in initdata so that they can be used before slab is online.
1915 * This function is called after slab is brought up and replaces those 1917 * This function is called after slab is brought up and replaces those
1916 * with properly allocated maps. 1918 * with properly allocated maps.
1917 */ 1919 */
1918 void __init percpu_init_late(void) 1920 void __init percpu_init_late(void)
1919 { 1921 {
1920 struct pcpu_chunk *target_chunks[] = 1922 struct pcpu_chunk *target_chunks[] =
1921 { pcpu_first_chunk, pcpu_reserved_chunk, NULL }; 1923 { pcpu_first_chunk, pcpu_reserved_chunk, NULL };
1922 struct pcpu_chunk *chunk; 1924 struct pcpu_chunk *chunk;
1923 unsigned long flags; 1925 unsigned long flags;
1924 int i; 1926 int i;
1925 1927
1926 for (i = 0; (chunk = target_chunks[i]); i++) { 1928 for (i = 0; (chunk = target_chunks[i]); i++) {
1927 int *map; 1929 int *map;
1928 const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]); 1930 const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
1929 1931
1930 BUILD_BUG_ON(size > PAGE_SIZE); 1932 BUILD_BUG_ON(size > PAGE_SIZE);
1931 1933
1932 map = pcpu_mem_zalloc(size); 1934 map = pcpu_mem_zalloc(size);
1933 BUG_ON(!map); 1935 BUG_ON(!map);
1934 1936
1935 spin_lock_irqsave(&pcpu_lock, flags); 1937 spin_lock_irqsave(&pcpu_lock, flags);
1936 memcpy(map, chunk->map, size); 1938 memcpy(map, chunk->map, size);
1937 chunk->map = map; 1939 chunk->map = map;
1938 spin_unlock_irqrestore(&pcpu_lock, flags); 1940 spin_unlock_irqrestore(&pcpu_lock, flags);
1939 } 1941 }
1940 } 1942 }
1941 1943