Commit 1158ddb55416855fd17abe3214298f736f00426a
Committed by
Ingo Molnar
1 parent
a59f4e079d
Exists in
smarc-l5.0.0_1.0.0-ga
and in
5 other branches
sched/rt: Add reschedule check to switched_from_rt()
Reschedule rq->curr if the first RT task has just been pulled to the rq. Signed-off-by: Kirill V Tkhai <tkhai@yandex.ru> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Tkhai Kirill <tkhai@yandex.ru> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/118761353614535@web28f.yandex.ru Signed-off-by: Ingo Molnar <mingo@kernel.org>
Showing 1 changed file with 5 additions and 2 deletions Inline Diff
kernel/sched/rt.c
1 | /* | 1 | /* |
2 | * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR | 2 | * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR |
3 | * policies) | 3 | * policies) |
4 | */ | 4 | */ |
5 | 5 | ||
6 | #include "sched.h" | 6 | #include "sched.h" |
7 | 7 | ||
8 | #include <linux/slab.h> | 8 | #include <linux/slab.h> |
9 | 9 | ||
10 | static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); | 10 | static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); |
11 | 11 | ||
12 | struct rt_bandwidth def_rt_bandwidth; | 12 | struct rt_bandwidth def_rt_bandwidth; |
13 | 13 | ||
14 | static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) | 14 | static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) |
15 | { | 15 | { |
16 | struct rt_bandwidth *rt_b = | 16 | struct rt_bandwidth *rt_b = |
17 | container_of(timer, struct rt_bandwidth, rt_period_timer); | 17 | container_of(timer, struct rt_bandwidth, rt_period_timer); |
18 | ktime_t now; | 18 | ktime_t now; |
19 | int overrun; | 19 | int overrun; |
20 | int idle = 0; | 20 | int idle = 0; |
21 | 21 | ||
22 | for (;;) { | 22 | for (;;) { |
23 | now = hrtimer_cb_get_time(timer); | 23 | now = hrtimer_cb_get_time(timer); |
24 | overrun = hrtimer_forward(timer, now, rt_b->rt_period); | 24 | overrun = hrtimer_forward(timer, now, rt_b->rt_period); |
25 | 25 | ||
26 | if (!overrun) | 26 | if (!overrun) |
27 | break; | 27 | break; |
28 | 28 | ||
29 | idle = do_sched_rt_period_timer(rt_b, overrun); | 29 | idle = do_sched_rt_period_timer(rt_b, overrun); |
30 | } | 30 | } |
31 | 31 | ||
32 | return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; | 32 | return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; |
33 | } | 33 | } |
34 | 34 | ||
35 | void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) | 35 | void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) |
36 | { | 36 | { |
37 | rt_b->rt_period = ns_to_ktime(period); | 37 | rt_b->rt_period = ns_to_ktime(period); |
38 | rt_b->rt_runtime = runtime; | 38 | rt_b->rt_runtime = runtime; |
39 | 39 | ||
40 | raw_spin_lock_init(&rt_b->rt_runtime_lock); | 40 | raw_spin_lock_init(&rt_b->rt_runtime_lock); |
41 | 41 | ||
42 | hrtimer_init(&rt_b->rt_period_timer, | 42 | hrtimer_init(&rt_b->rt_period_timer, |
43 | CLOCK_MONOTONIC, HRTIMER_MODE_REL); | 43 | CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
44 | rt_b->rt_period_timer.function = sched_rt_period_timer; | 44 | rt_b->rt_period_timer.function = sched_rt_period_timer; |
45 | } | 45 | } |
46 | 46 | ||
47 | static void start_rt_bandwidth(struct rt_bandwidth *rt_b) | 47 | static void start_rt_bandwidth(struct rt_bandwidth *rt_b) |
48 | { | 48 | { |
49 | if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) | 49 | if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) |
50 | return; | 50 | return; |
51 | 51 | ||
52 | if (hrtimer_active(&rt_b->rt_period_timer)) | 52 | if (hrtimer_active(&rt_b->rt_period_timer)) |
53 | return; | 53 | return; |
54 | 54 | ||
55 | raw_spin_lock(&rt_b->rt_runtime_lock); | 55 | raw_spin_lock(&rt_b->rt_runtime_lock); |
56 | start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period); | 56 | start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period); |
57 | raw_spin_unlock(&rt_b->rt_runtime_lock); | 57 | raw_spin_unlock(&rt_b->rt_runtime_lock); |
58 | } | 58 | } |
59 | 59 | ||
60 | void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) | 60 | void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) |
61 | { | 61 | { |
62 | struct rt_prio_array *array; | 62 | struct rt_prio_array *array; |
63 | int i; | 63 | int i; |
64 | 64 | ||
65 | array = &rt_rq->active; | 65 | array = &rt_rq->active; |
66 | for (i = 0; i < MAX_RT_PRIO; i++) { | 66 | for (i = 0; i < MAX_RT_PRIO; i++) { |
67 | INIT_LIST_HEAD(array->queue + i); | 67 | INIT_LIST_HEAD(array->queue + i); |
68 | __clear_bit(i, array->bitmap); | 68 | __clear_bit(i, array->bitmap); |
69 | } | 69 | } |
70 | /* delimiter for bitsearch: */ | 70 | /* delimiter for bitsearch: */ |
71 | __set_bit(MAX_RT_PRIO, array->bitmap); | 71 | __set_bit(MAX_RT_PRIO, array->bitmap); |
72 | 72 | ||
73 | #if defined CONFIG_SMP | 73 | #if defined CONFIG_SMP |
74 | rt_rq->highest_prio.curr = MAX_RT_PRIO; | 74 | rt_rq->highest_prio.curr = MAX_RT_PRIO; |
75 | rt_rq->highest_prio.next = MAX_RT_PRIO; | 75 | rt_rq->highest_prio.next = MAX_RT_PRIO; |
76 | rt_rq->rt_nr_migratory = 0; | 76 | rt_rq->rt_nr_migratory = 0; |
77 | rt_rq->overloaded = 0; | 77 | rt_rq->overloaded = 0; |
78 | plist_head_init(&rt_rq->pushable_tasks); | 78 | plist_head_init(&rt_rq->pushable_tasks); |
79 | #endif | 79 | #endif |
80 | 80 | ||
81 | rt_rq->rt_time = 0; | 81 | rt_rq->rt_time = 0; |
82 | rt_rq->rt_throttled = 0; | 82 | rt_rq->rt_throttled = 0; |
83 | rt_rq->rt_runtime = 0; | 83 | rt_rq->rt_runtime = 0; |
84 | raw_spin_lock_init(&rt_rq->rt_runtime_lock); | 84 | raw_spin_lock_init(&rt_rq->rt_runtime_lock); |
85 | } | 85 | } |
86 | 86 | ||
87 | #ifdef CONFIG_RT_GROUP_SCHED | 87 | #ifdef CONFIG_RT_GROUP_SCHED |
88 | static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) | 88 | static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) |
89 | { | 89 | { |
90 | hrtimer_cancel(&rt_b->rt_period_timer); | 90 | hrtimer_cancel(&rt_b->rt_period_timer); |
91 | } | 91 | } |
92 | 92 | ||
93 | #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) | 93 | #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) |
94 | 94 | ||
95 | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) | 95 | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) |
96 | { | 96 | { |
97 | #ifdef CONFIG_SCHED_DEBUG | 97 | #ifdef CONFIG_SCHED_DEBUG |
98 | WARN_ON_ONCE(!rt_entity_is_task(rt_se)); | 98 | WARN_ON_ONCE(!rt_entity_is_task(rt_se)); |
99 | #endif | 99 | #endif |
100 | return container_of(rt_se, struct task_struct, rt); | 100 | return container_of(rt_se, struct task_struct, rt); |
101 | } | 101 | } |
102 | 102 | ||
103 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | 103 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) |
104 | { | 104 | { |
105 | return rt_rq->rq; | 105 | return rt_rq->rq; |
106 | } | 106 | } |
107 | 107 | ||
108 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | 108 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) |
109 | { | 109 | { |
110 | return rt_se->rt_rq; | 110 | return rt_se->rt_rq; |
111 | } | 111 | } |
112 | 112 | ||
113 | void free_rt_sched_group(struct task_group *tg) | 113 | void free_rt_sched_group(struct task_group *tg) |
114 | { | 114 | { |
115 | int i; | 115 | int i; |
116 | 116 | ||
117 | if (tg->rt_se) | 117 | if (tg->rt_se) |
118 | destroy_rt_bandwidth(&tg->rt_bandwidth); | 118 | destroy_rt_bandwidth(&tg->rt_bandwidth); |
119 | 119 | ||
120 | for_each_possible_cpu(i) { | 120 | for_each_possible_cpu(i) { |
121 | if (tg->rt_rq) | 121 | if (tg->rt_rq) |
122 | kfree(tg->rt_rq[i]); | 122 | kfree(tg->rt_rq[i]); |
123 | if (tg->rt_se) | 123 | if (tg->rt_se) |
124 | kfree(tg->rt_se[i]); | 124 | kfree(tg->rt_se[i]); |
125 | } | 125 | } |
126 | 126 | ||
127 | kfree(tg->rt_rq); | 127 | kfree(tg->rt_rq); |
128 | kfree(tg->rt_se); | 128 | kfree(tg->rt_se); |
129 | } | 129 | } |
130 | 130 | ||
131 | void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, | 131 | void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, |
132 | struct sched_rt_entity *rt_se, int cpu, | 132 | struct sched_rt_entity *rt_se, int cpu, |
133 | struct sched_rt_entity *parent) | 133 | struct sched_rt_entity *parent) |
134 | { | 134 | { |
135 | struct rq *rq = cpu_rq(cpu); | 135 | struct rq *rq = cpu_rq(cpu); |
136 | 136 | ||
137 | rt_rq->highest_prio.curr = MAX_RT_PRIO; | 137 | rt_rq->highest_prio.curr = MAX_RT_PRIO; |
138 | rt_rq->rt_nr_boosted = 0; | 138 | rt_rq->rt_nr_boosted = 0; |
139 | rt_rq->rq = rq; | 139 | rt_rq->rq = rq; |
140 | rt_rq->tg = tg; | 140 | rt_rq->tg = tg; |
141 | 141 | ||
142 | tg->rt_rq[cpu] = rt_rq; | 142 | tg->rt_rq[cpu] = rt_rq; |
143 | tg->rt_se[cpu] = rt_se; | 143 | tg->rt_se[cpu] = rt_se; |
144 | 144 | ||
145 | if (!rt_se) | 145 | if (!rt_se) |
146 | return; | 146 | return; |
147 | 147 | ||
148 | if (!parent) | 148 | if (!parent) |
149 | rt_se->rt_rq = &rq->rt; | 149 | rt_se->rt_rq = &rq->rt; |
150 | else | 150 | else |
151 | rt_se->rt_rq = parent->my_q; | 151 | rt_se->rt_rq = parent->my_q; |
152 | 152 | ||
153 | rt_se->my_q = rt_rq; | 153 | rt_se->my_q = rt_rq; |
154 | rt_se->parent = parent; | 154 | rt_se->parent = parent; |
155 | INIT_LIST_HEAD(&rt_se->run_list); | 155 | INIT_LIST_HEAD(&rt_se->run_list); |
156 | } | 156 | } |
157 | 157 | ||
158 | int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) | 158 | int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) |
159 | { | 159 | { |
160 | struct rt_rq *rt_rq; | 160 | struct rt_rq *rt_rq; |
161 | struct sched_rt_entity *rt_se; | 161 | struct sched_rt_entity *rt_se; |
162 | int i; | 162 | int i; |
163 | 163 | ||
164 | tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL); | 164 | tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL); |
165 | if (!tg->rt_rq) | 165 | if (!tg->rt_rq) |
166 | goto err; | 166 | goto err; |
167 | tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL); | 167 | tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL); |
168 | if (!tg->rt_se) | 168 | if (!tg->rt_se) |
169 | goto err; | 169 | goto err; |
170 | 170 | ||
171 | init_rt_bandwidth(&tg->rt_bandwidth, | 171 | init_rt_bandwidth(&tg->rt_bandwidth, |
172 | ktime_to_ns(def_rt_bandwidth.rt_period), 0); | 172 | ktime_to_ns(def_rt_bandwidth.rt_period), 0); |
173 | 173 | ||
174 | for_each_possible_cpu(i) { | 174 | for_each_possible_cpu(i) { |
175 | rt_rq = kzalloc_node(sizeof(struct rt_rq), | 175 | rt_rq = kzalloc_node(sizeof(struct rt_rq), |
176 | GFP_KERNEL, cpu_to_node(i)); | 176 | GFP_KERNEL, cpu_to_node(i)); |
177 | if (!rt_rq) | 177 | if (!rt_rq) |
178 | goto err; | 178 | goto err; |
179 | 179 | ||
180 | rt_se = kzalloc_node(sizeof(struct sched_rt_entity), | 180 | rt_se = kzalloc_node(sizeof(struct sched_rt_entity), |
181 | GFP_KERNEL, cpu_to_node(i)); | 181 | GFP_KERNEL, cpu_to_node(i)); |
182 | if (!rt_se) | 182 | if (!rt_se) |
183 | goto err_free_rq; | 183 | goto err_free_rq; |
184 | 184 | ||
185 | init_rt_rq(rt_rq, cpu_rq(i)); | 185 | init_rt_rq(rt_rq, cpu_rq(i)); |
186 | rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; | 186 | rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; |
187 | init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); | 187 | init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); |
188 | } | 188 | } |
189 | 189 | ||
190 | return 1; | 190 | return 1; |
191 | 191 | ||
192 | err_free_rq: | 192 | err_free_rq: |
193 | kfree(rt_rq); | 193 | kfree(rt_rq); |
194 | err: | 194 | err: |
195 | return 0; | 195 | return 0; |
196 | } | 196 | } |
197 | 197 | ||
198 | #else /* CONFIG_RT_GROUP_SCHED */ | 198 | #else /* CONFIG_RT_GROUP_SCHED */ |
199 | 199 | ||
200 | #define rt_entity_is_task(rt_se) (1) | 200 | #define rt_entity_is_task(rt_se) (1) |
201 | 201 | ||
202 | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) | 202 | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) |
203 | { | 203 | { |
204 | return container_of(rt_se, struct task_struct, rt); | 204 | return container_of(rt_se, struct task_struct, rt); |
205 | } | 205 | } |
206 | 206 | ||
207 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | 207 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) |
208 | { | 208 | { |
209 | return container_of(rt_rq, struct rq, rt); | 209 | return container_of(rt_rq, struct rq, rt); |
210 | } | 210 | } |
211 | 211 | ||
212 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | 212 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) |
213 | { | 213 | { |
214 | struct task_struct *p = rt_task_of(rt_se); | 214 | struct task_struct *p = rt_task_of(rt_se); |
215 | struct rq *rq = task_rq(p); | 215 | struct rq *rq = task_rq(p); |
216 | 216 | ||
217 | return &rq->rt; | 217 | return &rq->rt; |
218 | } | 218 | } |
219 | 219 | ||
220 | void free_rt_sched_group(struct task_group *tg) { } | 220 | void free_rt_sched_group(struct task_group *tg) { } |
221 | 221 | ||
222 | int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) | 222 | int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) |
223 | { | 223 | { |
224 | return 1; | 224 | return 1; |
225 | } | 225 | } |
226 | #endif /* CONFIG_RT_GROUP_SCHED */ | 226 | #endif /* CONFIG_RT_GROUP_SCHED */ |
227 | 227 | ||
228 | #ifdef CONFIG_SMP | 228 | #ifdef CONFIG_SMP |
229 | 229 | ||
230 | static inline int rt_overloaded(struct rq *rq) | 230 | static inline int rt_overloaded(struct rq *rq) |
231 | { | 231 | { |
232 | return atomic_read(&rq->rd->rto_count); | 232 | return atomic_read(&rq->rd->rto_count); |
233 | } | 233 | } |
234 | 234 | ||
235 | static inline void rt_set_overload(struct rq *rq) | 235 | static inline void rt_set_overload(struct rq *rq) |
236 | { | 236 | { |
237 | if (!rq->online) | 237 | if (!rq->online) |
238 | return; | 238 | return; |
239 | 239 | ||
240 | cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); | 240 | cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); |
241 | /* | 241 | /* |
242 | * Make sure the mask is visible before we set | 242 | * Make sure the mask is visible before we set |
243 | * the overload count. That is checked to determine | 243 | * the overload count. That is checked to determine |
244 | * if we should look at the mask. It would be a shame | 244 | * if we should look at the mask. It would be a shame |
245 | * if we looked at the mask, but the mask was not | 245 | * if we looked at the mask, but the mask was not |
246 | * updated yet. | 246 | * updated yet. |
247 | */ | 247 | */ |
248 | wmb(); | 248 | wmb(); |
249 | atomic_inc(&rq->rd->rto_count); | 249 | atomic_inc(&rq->rd->rto_count); |
250 | } | 250 | } |
251 | 251 | ||
252 | static inline void rt_clear_overload(struct rq *rq) | 252 | static inline void rt_clear_overload(struct rq *rq) |
253 | { | 253 | { |
254 | if (!rq->online) | 254 | if (!rq->online) |
255 | return; | 255 | return; |
256 | 256 | ||
257 | /* the order here really doesn't matter */ | 257 | /* the order here really doesn't matter */ |
258 | atomic_dec(&rq->rd->rto_count); | 258 | atomic_dec(&rq->rd->rto_count); |
259 | cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); | 259 | cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); |
260 | } | 260 | } |
261 | 261 | ||
262 | static void update_rt_migration(struct rt_rq *rt_rq) | 262 | static void update_rt_migration(struct rt_rq *rt_rq) |
263 | { | 263 | { |
264 | if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) { | 264 | if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) { |
265 | if (!rt_rq->overloaded) { | 265 | if (!rt_rq->overloaded) { |
266 | rt_set_overload(rq_of_rt_rq(rt_rq)); | 266 | rt_set_overload(rq_of_rt_rq(rt_rq)); |
267 | rt_rq->overloaded = 1; | 267 | rt_rq->overloaded = 1; |
268 | } | 268 | } |
269 | } else if (rt_rq->overloaded) { | 269 | } else if (rt_rq->overloaded) { |
270 | rt_clear_overload(rq_of_rt_rq(rt_rq)); | 270 | rt_clear_overload(rq_of_rt_rq(rt_rq)); |
271 | rt_rq->overloaded = 0; | 271 | rt_rq->overloaded = 0; |
272 | } | 272 | } |
273 | } | 273 | } |
274 | 274 | ||
275 | static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 275 | static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) |
276 | { | 276 | { |
277 | struct task_struct *p; | 277 | struct task_struct *p; |
278 | 278 | ||
279 | if (!rt_entity_is_task(rt_se)) | 279 | if (!rt_entity_is_task(rt_se)) |
280 | return; | 280 | return; |
281 | 281 | ||
282 | p = rt_task_of(rt_se); | 282 | p = rt_task_of(rt_se); |
283 | rt_rq = &rq_of_rt_rq(rt_rq)->rt; | 283 | rt_rq = &rq_of_rt_rq(rt_rq)->rt; |
284 | 284 | ||
285 | rt_rq->rt_nr_total++; | 285 | rt_rq->rt_nr_total++; |
286 | if (p->nr_cpus_allowed > 1) | 286 | if (p->nr_cpus_allowed > 1) |
287 | rt_rq->rt_nr_migratory++; | 287 | rt_rq->rt_nr_migratory++; |
288 | 288 | ||
289 | update_rt_migration(rt_rq); | 289 | update_rt_migration(rt_rq); |
290 | } | 290 | } |
291 | 291 | ||
292 | static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 292 | static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) |
293 | { | 293 | { |
294 | struct task_struct *p; | 294 | struct task_struct *p; |
295 | 295 | ||
296 | if (!rt_entity_is_task(rt_se)) | 296 | if (!rt_entity_is_task(rt_se)) |
297 | return; | 297 | return; |
298 | 298 | ||
299 | p = rt_task_of(rt_se); | 299 | p = rt_task_of(rt_se); |
300 | rt_rq = &rq_of_rt_rq(rt_rq)->rt; | 300 | rt_rq = &rq_of_rt_rq(rt_rq)->rt; |
301 | 301 | ||
302 | rt_rq->rt_nr_total--; | 302 | rt_rq->rt_nr_total--; |
303 | if (p->nr_cpus_allowed > 1) | 303 | if (p->nr_cpus_allowed > 1) |
304 | rt_rq->rt_nr_migratory--; | 304 | rt_rq->rt_nr_migratory--; |
305 | 305 | ||
306 | update_rt_migration(rt_rq); | 306 | update_rt_migration(rt_rq); |
307 | } | 307 | } |
308 | 308 | ||
309 | static inline int has_pushable_tasks(struct rq *rq) | 309 | static inline int has_pushable_tasks(struct rq *rq) |
310 | { | 310 | { |
311 | return !plist_head_empty(&rq->rt.pushable_tasks); | 311 | return !plist_head_empty(&rq->rt.pushable_tasks); |
312 | } | 312 | } |
313 | 313 | ||
314 | static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) | 314 | static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) |
315 | { | 315 | { |
316 | plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); | 316 | plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); |
317 | plist_node_init(&p->pushable_tasks, p->prio); | 317 | plist_node_init(&p->pushable_tasks, p->prio); |
318 | plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); | 318 | plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); |
319 | 319 | ||
320 | /* Update the highest prio pushable task */ | 320 | /* Update the highest prio pushable task */ |
321 | if (p->prio < rq->rt.highest_prio.next) | 321 | if (p->prio < rq->rt.highest_prio.next) |
322 | rq->rt.highest_prio.next = p->prio; | 322 | rq->rt.highest_prio.next = p->prio; |
323 | } | 323 | } |
324 | 324 | ||
325 | static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) | 325 | static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) |
326 | { | 326 | { |
327 | plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); | 327 | plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); |
328 | 328 | ||
329 | /* Update the new highest prio pushable task */ | 329 | /* Update the new highest prio pushable task */ |
330 | if (has_pushable_tasks(rq)) { | 330 | if (has_pushable_tasks(rq)) { |
331 | p = plist_first_entry(&rq->rt.pushable_tasks, | 331 | p = plist_first_entry(&rq->rt.pushable_tasks, |
332 | struct task_struct, pushable_tasks); | 332 | struct task_struct, pushable_tasks); |
333 | rq->rt.highest_prio.next = p->prio; | 333 | rq->rt.highest_prio.next = p->prio; |
334 | } else | 334 | } else |
335 | rq->rt.highest_prio.next = MAX_RT_PRIO; | 335 | rq->rt.highest_prio.next = MAX_RT_PRIO; |
336 | } | 336 | } |
337 | 337 | ||
338 | #else | 338 | #else |
339 | 339 | ||
340 | static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) | 340 | static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) |
341 | { | 341 | { |
342 | } | 342 | } |
343 | 343 | ||
344 | static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) | 344 | static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) |
345 | { | 345 | { |
346 | } | 346 | } |
347 | 347 | ||
348 | static inline | 348 | static inline |
349 | void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 349 | void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) |
350 | { | 350 | { |
351 | } | 351 | } |
352 | 352 | ||
353 | static inline | 353 | static inline |
354 | void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 354 | void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) |
355 | { | 355 | { |
356 | } | 356 | } |
357 | 357 | ||
358 | #endif /* CONFIG_SMP */ | 358 | #endif /* CONFIG_SMP */ |
359 | 359 | ||
360 | static inline int on_rt_rq(struct sched_rt_entity *rt_se) | 360 | static inline int on_rt_rq(struct sched_rt_entity *rt_se) |
361 | { | 361 | { |
362 | return !list_empty(&rt_se->run_list); | 362 | return !list_empty(&rt_se->run_list); |
363 | } | 363 | } |
364 | 364 | ||
365 | #ifdef CONFIG_RT_GROUP_SCHED | 365 | #ifdef CONFIG_RT_GROUP_SCHED |
366 | 366 | ||
367 | static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) | 367 | static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) |
368 | { | 368 | { |
369 | if (!rt_rq->tg) | 369 | if (!rt_rq->tg) |
370 | return RUNTIME_INF; | 370 | return RUNTIME_INF; |
371 | 371 | ||
372 | return rt_rq->rt_runtime; | 372 | return rt_rq->rt_runtime; |
373 | } | 373 | } |
374 | 374 | ||
375 | static inline u64 sched_rt_period(struct rt_rq *rt_rq) | 375 | static inline u64 sched_rt_period(struct rt_rq *rt_rq) |
376 | { | 376 | { |
377 | return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); | 377 | return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); |
378 | } | 378 | } |
379 | 379 | ||
380 | typedef struct task_group *rt_rq_iter_t; | 380 | typedef struct task_group *rt_rq_iter_t; |
381 | 381 | ||
382 | static inline struct task_group *next_task_group(struct task_group *tg) | 382 | static inline struct task_group *next_task_group(struct task_group *tg) |
383 | { | 383 | { |
384 | do { | 384 | do { |
385 | tg = list_entry_rcu(tg->list.next, | 385 | tg = list_entry_rcu(tg->list.next, |
386 | typeof(struct task_group), list); | 386 | typeof(struct task_group), list); |
387 | } while (&tg->list != &task_groups && task_group_is_autogroup(tg)); | 387 | } while (&tg->list != &task_groups && task_group_is_autogroup(tg)); |
388 | 388 | ||
389 | if (&tg->list == &task_groups) | 389 | if (&tg->list == &task_groups) |
390 | tg = NULL; | 390 | tg = NULL; |
391 | 391 | ||
392 | return tg; | 392 | return tg; |
393 | } | 393 | } |
394 | 394 | ||
395 | #define for_each_rt_rq(rt_rq, iter, rq) \ | 395 | #define for_each_rt_rq(rt_rq, iter, rq) \ |
396 | for (iter = container_of(&task_groups, typeof(*iter), list); \ | 396 | for (iter = container_of(&task_groups, typeof(*iter), list); \ |
397 | (iter = next_task_group(iter)) && \ | 397 | (iter = next_task_group(iter)) && \ |
398 | (rt_rq = iter->rt_rq[cpu_of(rq)]);) | 398 | (rt_rq = iter->rt_rq[cpu_of(rq)]);) |
399 | 399 | ||
400 | static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq) | 400 | static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq) |
401 | { | 401 | { |
402 | list_add_rcu(&rt_rq->leaf_rt_rq_list, | 402 | list_add_rcu(&rt_rq->leaf_rt_rq_list, |
403 | &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list); | 403 | &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list); |
404 | } | 404 | } |
405 | 405 | ||
406 | static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq) | 406 | static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq) |
407 | { | 407 | { |
408 | list_del_rcu(&rt_rq->leaf_rt_rq_list); | 408 | list_del_rcu(&rt_rq->leaf_rt_rq_list); |
409 | } | 409 | } |
410 | 410 | ||
411 | #define for_each_leaf_rt_rq(rt_rq, rq) \ | 411 | #define for_each_leaf_rt_rq(rt_rq, rq) \ |
412 | list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list) | 412 | list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list) |
413 | 413 | ||
414 | #define for_each_sched_rt_entity(rt_se) \ | 414 | #define for_each_sched_rt_entity(rt_se) \ |
415 | for (; rt_se; rt_se = rt_se->parent) | 415 | for (; rt_se; rt_se = rt_se->parent) |
416 | 416 | ||
417 | static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) | 417 | static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) |
418 | { | 418 | { |
419 | return rt_se->my_q; | 419 | return rt_se->my_q; |
420 | } | 420 | } |
421 | 421 | ||
422 | static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head); | 422 | static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head); |
423 | static void dequeue_rt_entity(struct sched_rt_entity *rt_se); | 423 | static void dequeue_rt_entity(struct sched_rt_entity *rt_se); |
424 | 424 | ||
425 | static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) | 425 | static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) |
426 | { | 426 | { |
427 | struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; | 427 | struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; |
428 | struct sched_rt_entity *rt_se; | 428 | struct sched_rt_entity *rt_se; |
429 | 429 | ||
430 | int cpu = cpu_of(rq_of_rt_rq(rt_rq)); | 430 | int cpu = cpu_of(rq_of_rt_rq(rt_rq)); |
431 | 431 | ||
432 | rt_se = rt_rq->tg->rt_se[cpu]; | 432 | rt_se = rt_rq->tg->rt_se[cpu]; |
433 | 433 | ||
434 | if (rt_rq->rt_nr_running) { | 434 | if (rt_rq->rt_nr_running) { |
435 | if (rt_se && !on_rt_rq(rt_se)) | 435 | if (rt_se && !on_rt_rq(rt_se)) |
436 | enqueue_rt_entity(rt_se, false); | 436 | enqueue_rt_entity(rt_se, false); |
437 | if (rt_rq->highest_prio.curr < curr->prio) | 437 | if (rt_rq->highest_prio.curr < curr->prio) |
438 | resched_task(curr); | 438 | resched_task(curr); |
439 | } | 439 | } |
440 | } | 440 | } |
441 | 441 | ||
442 | static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) | 442 | static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) |
443 | { | 443 | { |
444 | struct sched_rt_entity *rt_se; | 444 | struct sched_rt_entity *rt_se; |
445 | int cpu = cpu_of(rq_of_rt_rq(rt_rq)); | 445 | int cpu = cpu_of(rq_of_rt_rq(rt_rq)); |
446 | 446 | ||
447 | rt_se = rt_rq->tg->rt_se[cpu]; | 447 | rt_se = rt_rq->tg->rt_se[cpu]; |
448 | 448 | ||
449 | if (rt_se && on_rt_rq(rt_se)) | 449 | if (rt_se && on_rt_rq(rt_se)) |
450 | dequeue_rt_entity(rt_se); | 450 | dequeue_rt_entity(rt_se); |
451 | } | 451 | } |
452 | 452 | ||
453 | static inline int rt_rq_throttled(struct rt_rq *rt_rq) | 453 | static inline int rt_rq_throttled(struct rt_rq *rt_rq) |
454 | { | 454 | { |
455 | return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; | 455 | return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; |
456 | } | 456 | } |
457 | 457 | ||
458 | static int rt_se_boosted(struct sched_rt_entity *rt_se) | 458 | static int rt_se_boosted(struct sched_rt_entity *rt_se) |
459 | { | 459 | { |
460 | struct rt_rq *rt_rq = group_rt_rq(rt_se); | 460 | struct rt_rq *rt_rq = group_rt_rq(rt_se); |
461 | struct task_struct *p; | 461 | struct task_struct *p; |
462 | 462 | ||
463 | if (rt_rq) | 463 | if (rt_rq) |
464 | return !!rt_rq->rt_nr_boosted; | 464 | return !!rt_rq->rt_nr_boosted; |
465 | 465 | ||
466 | p = rt_task_of(rt_se); | 466 | p = rt_task_of(rt_se); |
467 | return p->prio != p->normal_prio; | 467 | return p->prio != p->normal_prio; |
468 | } | 468 | } |
469 | 469 | ||
470 | #ifdef CONFIG_SMP | 470 | #ifdef CONFIG_SMP |
471 | static inline const struct cpumask *sched_rt_period_mask(void) | 471 | static inline const struct cpumask *sched_rt_period_mask(void) |
472 | { | 472 | { |
473 | return cpu_rq(smp_processor_id())->rd->span; | 473 | return cpu_rq(smp_processor_id())->rd->span; |
474 | } | 474 | } |
475 | #else | 475 | #else |
476 | static inline const struct cpumask *sched_rt_period_mask(void) | 476 | static inline const struct cpumask *sched_rt_period_mask(void) |
477 | { | 477 | { |
478 | return cpu_online_mask; | 478 | return cpu_online_mask; |
479 | } | 479 | } |
480 | #endif | 480 | #endif |
481 | 481 | ||
482 | static inline | 482 | static inline |
483 | struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) | 483 | struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) |
484 | { | 484 | { |
485 | return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; | 485 | return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; |
486 | } | 486 | } |
487 | 487 | ||
488 | static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) | 488 | static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) |
489 | { | 489 | { |
490 | return &rt_rq->tg->rt_bandwidth; | 490 | return &rt_rq->tg->rt_bandwidth; |
491 | } | 491 | } |
492 | 492 | ||
493 | #else /* !CONFIG_RT_GROUP_SCHED */ | 493 | #else /* !CONFIG_RT_GROUP_SCHED */ |
494 | 494 | ||
495 | static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) | 495 | static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) |
496 | { | 496 | { |
497 | return rt_rq->rt_runtime; | 497 | return rt_rq->rt_runtime; |
498 | } | 498 | } |
499 | 499 | ||
500 | static inline u64 sched_rt_period(struct rt_rq *rt_rq) | 500 | static inline u64 sched_rt_period(struct rt_rq *rt_rq) |
501 | { | 501 | { |
502 | return ktime_to_ns(def_rt_bandwidth.rt_period); | 502 | return ktime_to_ns(def_rt_bandwidth.rt_period); |
503 | } | 503 | } |
504 | 504 | ||
505 | typedef struct rt_rq *rt_rq_iter_t; | 505 | typedef struct rt_rq *rt_rq_iter_t; |
506 | 506 | ||
507 | #define for_each_rt_rq(rt_rq, iter, rq) \ | 507 | #define for_each_rt_rq(rt_rq, iter, rq) \ |
508 | for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) | 508 | for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) |
509 | 509 | ||
510 | static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq) | 510 | static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq) |
511 | { | 511 | { |
512 | } | 512 | } |
513 | 513 | ||
514 | static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq) | 514 | static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq) |
515 | { | 515 | { |
516 | } | 516 | } |
517 | 517 | ||
518 | #define for_each_leaf_rt_rq(rt_rq, rq) \ | 518 | #define for_each_leaf_rt_rq(rt_rq, rq) \ |
519 | for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL) | 519 | for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL) |
520 | 520 | ||
521 | #define for_each_sched_rt_entity(rt_se) \ | 521 | #define for_each_sched_rt_entity(rt_se) \ |
522 | for (; rt_se; rt_se = NULL) | 522 | for (; rt_se; rt_se = NULL) |
523 | 523 | ||
524 | static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) | 524 | static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) |
525 | { | 525 | { |
526 | return NULL; | 526 | return NULL; |
527 | } | 527 | } |
528 | 528 | ||
529 | static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) | 529 | static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) |
530 | { | 530 | { |
531 | if (rt_rq->rt_nr_running) | 531 | if (rt_rq->rt_nr_running) |
532 | resched_task(rq_of_rt_rq(rt_rq)->curr); | 532 | resched_task(rq_of_rt_rq(rt_rq)->curr); |
533 | } | 533 | } |
534 | 534 | ||
535 | static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) | 535 | static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) |
536 | { | 536 | { |
537 | } | 537 | } |
538 | 538 | ||
539 | static inline int rt_rq_throttled(struct rt_rq *rt_rq) | 539 | static inline int rt_rq_throttled(struct rt_rq *rt_rq) |
540 | { | 540 | { |
541 | return rt_rq->rt_throttled; | 541 | return rt_rq->rt_throttled; |
542 | } | 542 | } |
543 | 543 | ||
544 | static inline const struct cpumask *sched_rt_period_mask(void) | 544 | static inline const struct cpumask *sched_rt_period_mask(void) |
545 | { | 545 | { |
546 | return cpu_online_mask; | 546 | return cpu_online_mask; |
547 | } | 547 | } |
548 | 548 | ||
549 | static inline | 549 | static inline |
550 | struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) | 550 | struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) |
551 | { | 551 | { |
552 | return &cpu_rq(cpu)->rt; | 552 | return &cpu_rq(cpu)->rt; |
553 | } | 553 | } |
554 | 554 | ||
555 | static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) | 555 | static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) |
556 | { | 556 | { |
557 | return &def_rt_bandwidth; | 557 | return &def_rt_bandwidth; |
558 | } | 558 | } |
559 | 559 | ||
560 | #endif /* CONFIG_RT_GROUP_SCHED */ | 560 | #endif /* CONFIG_RT_GROUP_SCHED */ |
561 | 561 | ||
562 | #ifdef CONFIG_SMP | 562 | #ifdef CONFIG_SMP |
563 | /* | 563 | /* |
564 | * We ran out of runtime, see if we can borrow some from our neighbours. | 564 | * We ran out of runtime, see if we can borrow some from our neighbours. |
565 | */ | 565 | */ |
566 | static int do_balance_runtime(struct rt_rq *rt_rq) | 566 | static int do_balance_runtime(struct rt_rq *rt_rq) |
567 | { | 567 | { |
568 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); | 568 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); |
569 | struct root_domain *rd = cpu_rq(smp_processor_id())->rd; | 569 | struct root_domain *rd = cpu_rq(smp_processor_id())->rd; |
570 | int i, weight, more = 0; | 570 | int i, weight, more = 0; |
571 | u64 rt_period; | 571 | u64 rt_period; |
572 | 572 | ||
573 | weight = cpumask_weight(rd->span); | 573 | weight = cpumask_weight(rd->span); |
574 | 574 | ||
575 | raw_spin_lock(&rt_b->rt_runtime_lock); | 575 | raw_spin_lock(&rt_b->rt_runtime_lock); |
576 | rt_period = ktime_to_ns(rt_b->rt_period); | 576 | rt_period = ktime_to_ns(rt_b->rt_period); |
577 | for_each_cpu(i, rd->span) { | 577 | for_each_cpu(i, rd->span) { |
578 | struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); | 578 | struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); |
579 | s64 diff; | 579 | s64 diff; |
580 | 580 | ||
581 | if (iter == rt_rq) | 581 | if (iter == rt_rq) |
582 | continue; | 582 | continue; |
583 | 583 | ||
584 | raw_spin_lock(&iter->rt_runtime_lock); | 584 | raw_spin_lock(&iter->rt_runtime_lock); |
585 | /* | 585 | /* |
586 | * Either all rqs have inf runtime and there's nothing to steal | 586 | * Either all rqs have inf runtime and there's nothing to steal |
587 | * or __disable_runtime() below sets a specific rq to inf to | 587 | * or __disable_runtime() below sets a specific rq to inf to |
588 | * indicate its been disabled and disalow stealing. | 588 | * indicate its been disabled and disalow stealing. |
589 | */ | 589 | */ |
590 | if (iter->rt_runtime == RUNTIME_INF) | 590 | if (iter->rt_runtime == RUNTIME_INF) |
591 | goto next; | 591 | goto next; |
592 | 592 | ||
593 | /* | 593 | /* |
594 | * From runqueues with spare time, take 1/n part of their | 594 | * From runqueues with spare time, take 1/n part of their |
595 | * spare time, but no more than our period. | 595 | * spare time, but no more than our period. |
596 | */ | 596 | */ |
597 | diff = iter->rt_runtime - iter->rt_time; | 597 | diff = iter->rt_runtime - iter->rt_time; |
598 | if (diff > 0) { | 598 | if (diff > 0) { |
599 | diff = div_u64((u64)diff, weight); | 599 | diff = div_u64((u64)diff, weight); |
600 | if (rt_rq->rt_runtime + diff > rt_period) | 600 | if (rt_rq->rt_runtime + diff > rt_period) |
601 | diff = rt_period - rt_rq->rt_runtime; | 601 | diff = rt_period - rt_rq->rt_runtime; |
602 | iter->rt_runtime -= diff; | 602 | iter->rt_runtime -= diff; |
603 | rt_rq->rt_runtime += diff; | 603 | rt_rq->rt_runtime += diff; |
604 | more = 1; | 604 | more = 1; |
605 | if (rt_rq->rt_runtime == rt_period) { | 605 | if (rt_rq->rt_runtime == rt_period) { |
606 | raw_spin_unlock(&iter->rt_runtime_lock); | 606 | raw_spin_unlock(&iter->rt_runtime_lock); |
607 | break; | 607 | break; |
608 | } | 608 | } |
609 | } | 609 | } |
610 | next: | 610 | next: |
611 | raw_spin_unlock(&iter->rt_runtime_lock); | 611 | raw_spin_unlock(&iter->rt_runtime_lock); |
612 | } | 612 | } |
613 | raw_spin_unlock(&rt_b->rt_runtime_lock); | 613 | raw_spin_unlock(&rt_b->rt_runtime_lock); |
614 | 614 | ||
615 | return more; | 615 | return more; |
616 | } | 616 | } |
617 | 617 | ||
618 | /* | 618 | /* |
619 | * Ensure this RQ takes back all the runtime it lend to its neighbours. | 619 | * Ensure this RQ takes back all the runtime it lend to its neighbours. |
620 | */ | 620 | */ |
621 | static void __disable_runtime(struct rq *rq) | 621 | static void __disable_runtime(struct rq *rq) |
622 | { | 622 | { |
623 | struct root_domain *rd = rq->rd; | 623 | struct root_domain *rd = rq->rd; |
624 | rt_rq_iter_t iter; | 624 | rt_rq_iter_t iter; |
625 | struct rt_rq *rt_rq; | 625 | struct rt_rq *rt_rq; |
626 | 626 | ||
627 | if (unlikely(!scheduler_running)) | 627 | if (unlikely(!scheduler_running)) |
628 | return; | 628 | return; |
629 | 629 | ||
630 | for_each_rt_rq(rt_rq, iter, rq) { | 630 | for_each_rt_rq(rt_rq, iter, rq) { |
631 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); | 631 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); |
632 | s64 want; | 632 | s64 want; |
633 | int i; | 633 | int i; |
634 | 634 | ||
635 | raw_spin_lock(&rt_b->rt_runtime_lock); | 635 | raw_spin_lock(&rt_b->rt_runtime_lock); |
636 | raw_spin_lock(&rt_rq->rt_runtime_lock); | 636 | raw_spin_lock(&rt_rq->rt_runtime_lock); |
637 | /* | 637 | /* |
638 | * Either we're all inf and nobody needs to borrow, or we're | 638 | * Either we're all inf and nobody needs to borrow, or we're |
639 | * already disabled and thus have nothing to do, or we have | 639 | * already disabled and thus have nothing to do, or we have |
640 | * exactly the right amount of runtime to take out. | 640 | * exactly the right amount of runtime to take out. |
641 | */ | 641 | */ |
642 | if (rt_rq->rt_runtime == RUNTIME_INF || | 642 | if (rt_rq->rt_runtime == RUNTIME_INF || |
643 | rt_rq->rt_runtime == rt_b->rt_runtime) | 643 | rt_rq->rt_runtime == rt_b->rt_runtime) |
644 | goto balanced; | 644 | goto balanced; |
645 | raw_spin_unlock(&rt_rq->rt_runtime_lock); | 645 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
646 | 646 | ||
647 | /* | 647 | /* |
648 | * Calculate the difference between what we started out with | 648 | * Calculate the difference between what we started out with |
649 | * and what we current have, that's the amount of runtime | 649 | * and what we current have, that's the amount of runtime |
650 | * we lend and now have to reclaim. | 650 | * we lend and now have to reclaim. |
651 | */ | 651 | */ |
652 | want = rt_b->rt_runtime - rt_rq->rt_runtime; | 652 | want = rt_b->rt_runtime - rt_rq->rt_runtime; |
653 | 653 | ||
654 | /* | 654 | /* |
655 | * Greedy reclaim, take back as much as we can. | 655 | * Greedy reclaim, take back as much as we can. |
656 | */ | 656 | */ |
657 | for_each_cpu(i, rd->span) { | 657 | for_each_cpu(i, rd->span) { |
658 | struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); | 658 | struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); |
659 | s64 diff; | 659 | s64 diff; |
660 | 660 | ||
661 | /* | 661 | /* |
662 | * Can't reclaim from ourselves or disabled runqueues. | 662 | * Can't reclaim from ourselves or disabled runqueues. |
663 | */ | 663 | */ |
664 | if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) | 664 | if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) |
665 | continue; | 665 | continue; |
666 | 666 | ||
667 | raw_spin_lock(&iter->rt_runtime_lock); | 667 | raw_spin_lock(&iter->rt_runtime_lock); |
668 | if (want > 0) { | 668 | if (want > 0) { |
669 | diff = min_t(s64, iter->rt_runtime, want); | 669 | diff = min_t(s64, iter->rt_runtime, want); |
670 | iter->rt_runtime -= diff; | 670 | iter->rt_runtime -= diff; |
671 | want -= diff; | 671 | want -= diff; |
672 | } else { | 672 | } else { |
673 | iter->rt_runtime -= want; | 673 | iter->rt_runtime -= want; |
674 | want -= want; | 674 | want -= want; |
675 | } | 675 | } |
676 | raw_spin_unlock(&iter->rt_runtime_lock); | 676 | raw_spin_unlock(&iter->rt_runtime_lock); |
677 | 677 | ||
678 | if (!want) | 678 | if (!want) |
679 | break; | 679 | break; |
680 | } | 680 | } |
681 | 681 | ||
682 | raw_spin_lock(&rt_rq->rt_runtime_lock); | 682 | raw_spin_lock(&rt_rq->rt_runtime_lock); |
683 | /* | 683 | /* |
684 | * We cannot be left wanting - that would mean some runtime | 684 | * We cannot be left wanting - that would mean some runtime |
685 | * leaked out of the system. | 685 | * leaked out of the system. |
686 | */ | 686 | */ |
687 | BUG_ON(want); | 687 | BUG_ON(want); |
688 | balanced: | 688 | balanced: |
689 | /* | 689 | /* |
690 | * Disable all the borrow logic by pretending we have inf | 690 | * Disable all the borrow logic by pretending we have inf |
691 | * runtime - in which case borrowing doesn't make sense. | 691 | * runtime - in which case borrowing doesn't make sense. |
692 | */ | 692 | */ |
693 | rt_rq->rt_runtime = RUNTIME_INF; | 693 | rt_rq->rt_runtime = RUNTIME_INF; |
694 | rt_rq->rt_throttled = 0; | 694 | rt_rq->rt_throttled = 0; |
695 | raw_spin_unlock(&rt_rq->rt_runtime_lock); | 695 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
696 | raw_spin_unlock(&rt_b->rt_runtime_lock); | 696 | raw_spin_unlock(&rt_b->rt_runtime_lock); |
697 | } | 697 | } |
698 | } | 698 | } |
699 | 699 | ||
700 | static void disable_runtime(struct rq *rq) | 700 | static void disable_runtime(struct rq *rq) |
701 | { | 701 | { |
702 | unsigned long flags; | 702 | unsigned long flags; |
703 | 703 | ||
704 | raw_spin_lock_irqsave(&rq->lock, flags); | 704 | raw_spin_lock_irqsave(&rq->lock, flags); |
705 | __disable_runtime(rq); | 705 | __disable_runtime(rq); |
706 | raw_spin_unlock_irqrestore(&rq->lock, flags); | 706 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
707 | } | 707 | } |
708 | 708 | ||
709 | static void __enable_runtime(struct rq *rq) | 709 | static void __enable_runtime(struct rq *rq) |
710 | { | 710 | { |
711 | rt_rq_iter_t iter; | 711 | rt_rq_iter_t iter; |
712 | struct rt_rq *rt_rq; | 712 | struct rt_rq *rt_rq; |
713 | 713 | ||
714 | if (unlikely(!scheduler_running)) | 714 | if (unlikely(!scheduler_running)) |
715 | return; | 715 | return; |
716 | 716 | ||
717 | /* | 717 | /* |
718 | * Reset each runqueue's bandwidth settings | 718 | * Reset each runqueue's bandwidth settings |
719 | */ | 719 | */ |
720 | for_each_rt_rq(rt_rq, iter, rq) { | 720 | for_each_rt_rq(rt_rq, iter, rq) { |
721 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); | 721 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); |
722 | 722 | ||
723 | raw_spin_lock(&rt_b->rt_runtime_lock); | 723 | raw_spin_lock(&rt_b->rt_runtime_lock); |
724 | raw_spin_lock(&rt_rq->rt_runtime_lock); | 724 | raw_spin_lock(&rt_rq->rt_runtime_lock); |
725 | rt_rq->rt_runtime = rt_b->rt_runtime; | 725 | rt_rq->rt_runtime = rt_b->rt_runtime; |
726 | rt_rq->rt_time = 0; | 726 | rt_rq->rt_time = 0; |
727 | rt_rq->rt_throttled = 0; | 727 | rt_rq->rt_throttled = 0; |
728 | raw_spin_unlock(&rt_rq->rt_runtime_lock); | 728 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
729 | raw_spin_unlock(&rt_b->rt_runtime_lock); | 729 | raw_spin_unlock(&rt_b->rt_runtime_lock); |
730 | } | 730 | } |
731 | } | 731 | } |
732 | 732 | ||
733 | static void enable_runtime(struct rq *rq) | 733 | static void enable_runtime(struct rq *rq) |
734 | { | 734 | { |
735 | unsigned long flags; | 735 | unsigned long flags; |
736 | 736 | ||
737 | raw_spin_lock_irqsave(&rq->lock, flags); | 737 | raw_spin_lock_irqsave(&rq->lock, flags); |
738 | __enable_runtime(rq); | 738 | __enable_runtime(rq); |
739 | raw_spin_unlock_irqrestore(&rq->lock, flags); | 739 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
740 | } | 740 | } |
741 | 741 | ||
742 | int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu) | 742 | int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu) |
743 | { | 743 | { |
744 | int cpu = (int)(long)hcpu; | 744 | int cpu = (int)(long)hcpu; |
745 | 745 | ||
746 | switch (action) { | 746 | switch (action) { |
747 | case CPU_DOWN_PREPARE: | 747 | case CPU_DOWN_PREPARE: |
748 | case CPU_DOWN_PREPARE_FROZEN: | 748 | case CPU_DOWN_PREPARE_FROZEN: |
749 | disable_runtime(cpu_rq(cpu)); | 749 | disable_runtime(cpu_rq(cpu)); |
750 | return NOTIFY_OK; | 750 | return NOTIFY_OK; |
751 | 751 | ||
752 | case CPU_DOWN_FAILED: | 752 | case CPU_DOWN_FAILED: |
753 | case CPU_DOWN_FAILED_FROZEN: | 753 | case CPU_DOWN_FAILED_FROZEN: |
754 | case CPU_ONLINE: | 754 | case CPU_ONLINE: |
755 | case CPU_ONLINE_FROZEN: | 755 | case CPU_ONLINE_FROZEN: |
756 | enable_runtime(cpu_rq(cpu)); | 756 | enable_runtime(cpu_rq(cpu)); |
757 | return NOTIFY_OK; | 757 | return NOTIFY_OK; |
758 | 758 | ||
759 | default: | 759 | default: |
760 | return NOTIFY_DONE; | 760 | return NOTIFY_DONE; |
761 | } | 761 | } |
762 | } | 762 | } |
763 | 763 | ||
764 | static int balance_runtime(struct rt_rq *rt_rq) | 764 | static int balance_runtime(struct rt_rq *rt_rq) |
765 | { | 765 | { |
766 | int more = 0; | 766 | int more = 0; |
767 | 767 | ||
768 | if (!sched_feat(RT_RUNTIME_SHARE)) | 768 | if (!sched_feat(RT_RUNTIME_SHARE)) |
769 | return more; | 769 | return more; |
770 | 770 | ||
771 | if (rt_rq->rt_time > rt_rq->rt_runtime) { | 771 | if (rt_rq->rt_time > rt_rq->rt_runtime) { |
772 | raw_spin_unlock(&rt_rq->rt_runtime_lock); | 772 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
773 | more = do_balance_runtime(rt_rq); | 773 | more = do_balance_runtime(rt_rq); |
774 | raw_spin_lock(&rt_rq->rt_runtime_lock); | 774 | raw_spin_lock(&rt_rq->rt_runtime_lock); |
775 | } | 775 | } |
776 | 776 | ||
777 | return more; | 777 | return more; |
778 | } | 778 | } |
779 | #else /* !CONFIG_SMP */ | 779 | #else /* !CONFIG_SMP */ |
780 | static inline int balance_runtime(struct rt_rq *rt_rq) | 780 | static inline int balance_runtime(struct rt_rq *rt_rq) |
781 | { | 781 | { |
782 | return 0; | 782 | return 0; |
783 | } | 783 | } |
784 | #endif /* CONFIG_SMP */ | 784 | #endif /* CONFIG_SMP */ |
785 | 785 | ||
786 | static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) | 786 | static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) |
787 | { | 787 | { |
788 | int i, idle = 1, throttled = 0; | 788 | int i, idle = 1, throttled = 0; |
789 | const struct cpumask *span; | 789 | const struct cpumask *span; |
790 | 790 | ||
791 | span = sched_rt_period_mask(); | 791 | span = sched_rt_period_mask(); |
792 | #ifdef CONFIG_RT_GROUP_SCHED | 792 | #ifdef CONFIG_RT_GROUP_SCHED |
793 | /* | 793 | /* |
794 | * FIXME: isolated CPUs should really leave the root task group, | 794 | * FIXME: isolated CPUs should really leave the root task group, |
795 | * whether they are isolcpus or were isolated via cpusets, lest | 795 | * whether they are isolcpus or were isolated via cpusets, lest |
796 | * the timer run on a CPU which does not service all runqueues, | 796 | * the timer run on a CPU which does not service all runqueues, |
797 | * potentially leaving other CPUs indefinitely throttled. If | 797 | * potentially leaving other CPUs indefinitely throttled. If |
798 | * isolation is really required, the user will turn the throttle | 798 | * isolation is really required, the user will turn the throttle |
799 | * off to kill the perturbations it causes anyway. Meanwhile, | 799 | * off to kill the perturbations it causes anyway. Meanwhile, |
800 | * this maintains functionality for boot and/or troubleshooting. | 800 | * this maintains functionality for boot and/or troubleshooting. |
801 | */ | 801 | */ |
802 | if (rt_b == &root_task_group.rt_bandwidth) | 802 | if (rt_b == &root_task_group.rt_bandwidth) |
803 | span = cpu_online_mask; | 803 | span = cpu_online_mask; |
804 | #endif | 804 | #endif |
805 | for_each_cpu(i, span) { | 805 | for_each_cpu(i, span) { |
806 | int enqueue = 0; | 806 | int enqueue = 0; |
807 | struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); | 807 | struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); |
808 | struct rq *rq = rq_of_rt_rq(rt_rq); | 808 | struct rq *rq = rq_of_rt_rq(rt_rq); |
809 | 809 | ||
810 | raw_spin_lock(&rq->lock); | 810 | raw_spin_lock(&rq->lock); |
811 | if (rt_rq->rt_time) { | 811 | if (rt_rq->rt_time) { |
812 | u64 runtime; | 812 | u64 runtime; |
813 | 813 | ||
814 | raw_spin_lock(&rt_rq->rt_runtime_lock); | 814 | raw_spin_lock(&rt_rq->rt_runtime_lock); |
815 | if (rt_rq->rt_throttled) | 815 | if (rt_rq->rt_throttled) |
816 | balance_runtime(rt_rq); | 816 | balance_runtime(rt_rq); |
817 | runtime = rt_rq->rt_runtime; | 817 | runtime = rt_rq->rt_runtime; |
818 | rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); | 818 | rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); |
819 | if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { | 819 | if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { |
820 | rt_rq->rt_throttled = 0; | 820 | rt_rq->rt_throttled = 0; |
821 | enqueue = 1; | 821 | enqueue = 1; |
822 | 822 | ||
823 | /* | 823 | /* |
824 | * Force a clock update if the CPU was idle, | 824 | * Force a clock update if the CPU was idle, |
825 | * lest wakeup -> unthrottle time accumulate. | 825 | * lest wakeup -> unthrottle time accumulate. |
826 | */ | 826 | */ |
827 | if (rt_rq->rt_nr_running && rq->curr == rq->idle) | 827 | if (rt_rq->rt_nr_running && rq->curr == rq->idle) |
828 | rq->skip_clock_update = -1; | 828 | rq->skip_clock_update = -1; |
829 | } | 829 | } |
830 | if (rt_rq->rt_time || rt_rq->rt_nr_running) | 830 | if (rt_rq->rt_time || rt_rq->rt_nr_running) |
831 | idle = 0; | 831 | idle = 0; |
832 | raw_spin_unlock(&rt_rq->rt_runtime_lock); | 832 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
833 | } else if (rt_rq->rt_nr_running) { | 833 | } else if (rt_rq->rt_nr_running) { |
834 | idle = 0; | 834 | idle = 0; |
835 | if (!rt_rq_throttled(rt_rq)) | 835 | if (!rt_rq_throttled(rt_rq)) |
836 | enqueue = 1; | 836 | enqueue = 1; |
837 | } | 837 | } |
838 | if (rt_rq->rt_throttled) | 838 | if (rt_rq->rt_throttled) |
839 | throttled = 1; | 839 | throttled = 1; |
840 | 840 | ||
841 | if (enqueue) | 841 | if (enqueue) |
842 | sched_rt_rq_enqueue(rt_rq); | 842 | sched_rt_rq_enqueue(rt_rq); |
843 | raw_spin_unlock(&rq->lock); | 843 | raw_spin_unlock(&rq->lock); |
844 | } | 844 | } |
845 | 845 | ||
846 | if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)) | 846 | if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)) |
847 | return 1; | 847 | return 1; |
848 | 848 | ||
849 | return idle; | 849 | return idle; |
850 | } | 850 | } |
851 | 851 | ||
852 | static inline int rt_se_prio(struct sched_rt_entity *rt_se) | 852 | static inline int rt_se_prio(struct sched_rt_entity *rt_se) |
853 | { | 853 | { |
854 | #ifdef CONFIG_RT_GROUP_SCHED | 854 | #ifdef CONFIG_RT_GROUP_SCHED |
855 | struct rt_rq *rt_rq = group_rt_rq(rt_se); | 855 | struct rt_rq *rt_rq = group_rt_rq(rt_se); |
856 | 856 | ||
857 | if (rt_rq) | 857 | if (rt_rq) |
858 | return rt_rq->highest_prio.curr; | 858 | return rt_rq->highest_prio.curr; |
859 | #endif | 859 | #endif |
860 | 860 | ||
861 | return rt_task_of(rt_se)->prio; | 861 | return rt_task_of(rt_se)->prio; |
862 | } | 862 | } |
863 | 863 | ||
864 | static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) | 864 | static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) |
865 | { | 865 | { |
866 | u64 runtime = sched_rt_runtime(rt_rq); | 866 | u64 runtime = sched_rt_runtime(rt_rq); |
867 | 867 | ||
868 | if (rt_rq->rt_throttled) | 868 | if (rt_rq->rt_throttled) |
869 | return rt_rq_throttled(rt_rq); | 869 | return rt_rq_throttled(rt_rq); |
870 | 870 | ||
871 | if (runtime >= sched_rt_period(rt_rq)) | 871 | if (runtime >= sched_rt_period(rt_rq)) |
872 | return 0; | 872 | return 0; |
873 | 873 | ||
874 | balance_runtime(rt_rq); | 874 | balance_runtime(rt_rq); |
875 | runtime = sched_rt_runtime(rt_rq); | 875 | runtime = sched_rt_runtime(rt_rq); |
876 | if (runtime == RUNTIME_INF) | 876 | if (runtime == RUNTIME_INF) |
877 | return 0; | 877 | return 0; |
878 | 878 | ||
879 | if (rt_rq->rt_time > runtime) { | 879 | if (rt_rq->rt_time > runtime) { |
880 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); | 880 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); |
881 | 881 | ||
882 | /* | 882 | /* |
883 | * Don't actually throttle groups that have no runtime assigned | 883 | * Don't actually throttle groups that have no runtime assigned |
884 | * but accrue some time due to boosting. | 884 | * but accrue some time due to boosting. |
885 | */ | 885 | */ |
886 | if (likely(rt_b->rt_runtime)) { | 886 | if (likely(rt_b->rt_runtime)) { |
887 | static bool once = false; | 887 | static bool once = false; |
888 | 888 | ||
889 | rt_rq->rt_throttled = 1; | 889 | rt_rq->rt_throttled = 1; |
890 | 890 | ||
891 | if (!once) { | 891 | if (!once) { |
892 | once = true; | 892 | once = true; |
893 | printk_sched("sched: RT throttling activated\n"); | 893 | printk_sched("sched: RT throttling activated\n"); |
894 | } | 894 | } |
895 | } else { | 895 | } else { |
896 | /* | 896 | /* |
897 | * In case we did anyway, make it go away, | 897 | * In case we did anyway, make it go away, |
898 | * replenishment is a joke, since it will replenish us | 898 | * replenishment is a joke, since it will replenish us |
899 | * with exactly 0 ns. | 899 | * with exactly 0 ns. |
900 | */ | 900 | */ |
901 | rt_rq->rt_time = 0; | 901 | rt_rq->rt_time = 0; |
902 | } | 902 | } |
903 | 903 | ||
904 | if (rt_rq_throttled(rt_rq)) { | 904 | if (rt_rq_throttled(rt_rq)) { |
905 | sched_rt_rq_dequeue(rt_rq); | 905 | sched_rt_rq_dequeue(rt_rq); |
906 | return 1; | 906 | return 1; |
907 | } | 907 | } |
908 | } | 908 | } |
909 | 909 | ||
910 | return 0; | 910 | return 0; |
911 | } | 911 | } |
912 | 912 | ||
913 | /* | 913 | /* |
914 | * Update the current task's runtime statistics. Skip current tasks that | 914 | * Update the current task's runtime statistics. Skip current tasks that |
915 | * are not in our scheduling class. | 915 | * are not in our scheduling class. |
916 | */ | 916 | */ |
917 | static void update_curr_rt(struct rq *rq) | 917 | static void update_curr_rt(struct rq *rq) |
918 | { | 918 | { |
919 | struct task_struct *curr = rq->curr; | 919 | struct task_struct *curr = rq->curr; |
920 | struct sched_rt_entity *rt_se = &curr->rt; | 920 | struct sched_rt_entity *rt_se = &curr->rt; |
921 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); | 921 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); |
922 | u64 delta_exec; | 922 | u64 delta_exec; |
923 | 923 | ||
924 | if (curr->sched_class != &rt_sched_class) | 924 | if (curr->sched_class != &rt_sched_class) |
925 | return; | 925 | return; |
926 | 926 | ||
927 | delta_exec = rq->clock_task - curr->se.exec_start; | 927 | delta_exec = rq->clock_task - curr->se.exec_start; |
928 | if (unlikely((s64)delta_exec < 0)) | 928 | if (unlikely((s64)delta_exec < 0)) |
929 | delta_exec = 0; | 929 | delta_exec = 0; |
930 | 930 | ||
931 | schedstat_set(curr->se.statistics.exec_max, | 931 | schedstat_set(curr->se.statistics.exec_max, |
932 | max(curr->se.statistics.exec_max, delta_exec)); | 932 | max(curr->se.statistics.exec_max, delta_exec)); |
933 | 933 | ||
934 | curr->se.sum_exec_runtime += delta_exec; | 934 | curr->se.sum_exec_runtime += delta_exec; |
935 | account_group_exec_runtime(curr, delta_exec); | 935 | account_group_exec_runtime(curr, delta_exec); |
936 | 936 | ||
937 | curr->se.exec_start = rq->clock_task; | 937 | curr->se.exec_start = rq->clock_task; |
938 | cpuacct_charge(curr, delta_exec); | 938 | cpuacct_charge(curr, delta_exec); |
939 | 939 | ||
940 | sched_rt_avg_update(rq, delta_exec); | 940 | sched_rt_avg_update(rq, delta_exec); |
941 | 941 | ||
942 | if (!rt_bandwidth_enabled()) | 942 | if (!rt_bandwidth_enabled()) |
943 | return; | 943 | return; |
944 | 944 | ||
945 | for_each_sched_rt_entity(rt_se) { | 945 | for_each_sched_rt_entity(rt_se) { |
946 | rt_rq = rt_rq_of_se(rt_se); | 946 | rt_rq = rt_rq_of_se(rt_se); |
947 | 947 | ||
948 | if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { | 948 | if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { |
949 | raw_spin_lock(&rt_rq->rt_runtime_lock); | 949 | raw_spin_lock(&rt_rq->rt_runtime_lock); |
950 | rt_rq->rt_time += delta_exec; | 950 | rt_rq->rt_time += delta_exec; |
951 | if (sched_rt_runtime_exceeded(rt_rq)) | 951 | if (sched_rt_runtime_exceeded(rt_rq)) |
952 | resched_task(curr); | 952 | resched_task(curr); |
953 | raw_spin_unlock(&rt_rq->rt_runtime_lock); | 953 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
954 | } | 954 | } |
955 | } | 955 | } |
956 | } | 956 | } |
957 | 957 | ||
958 | #if defined CONFIG_SMP | 958 | #if defined CONFIG_SMP |
959 | 959 | ||
960 | static void | 960 | static void |
961 | inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) | 961 | inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) |
962 | { | 962 | { |
963 | struct rq *rq = rq_of_rt_rq(rt_rq); | 963 | struct rq *rq = rq_of_rt_rq(rt_rq); |
964 | 964 | ||
965 | if (rq->online && prio < prev_prio) | 965 | if (rq->online && prio < prev_prio) |
966 | cpupri_set(&rq->rd->cpupri, rq->cpu, prio); | 966 | cpupri_set(&rq->rd->cpupri, rq->cpu, prio); |
967 | } | 967 | } |
968 | 968 | ||
969 | static void | 969 | static void |
970 | dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) | 970 | dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) |
971 | { | 971 | { |
972 | struct rq *rq = rq_of_rt_rq(rt_rq); | 972 | struct rq *rq = rq_of_rt_rq(rt_rq); |
973 | 973 | ||
974 | if (rq->online && rt_rq->highest_prio.curr != prev_prio) | 974 | if (rq->online && rt_rq->highest_prio.curr != prev_prio) |
975 | cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); | 975 | cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); |
976 | } | 976 | } |
977 | 977 | ||
978 | #else /* CONFIG_SMP */ | 978 | #else /* CONFIG_SMP */ |
979 | 979 | ||
980 | static inline | 980 | static inline |
981 | void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} | 981 | void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} |
982 | static inline | 982 | static inline |
983 | void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} | 983 | void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} |
984 | 984 | ||
985 | #endif /* CONFIG_SMP */ | 985 | #endif /* CONFIG_SMP */ |
986 | 986 | ||
987 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | 987 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
988 | static void | 988 | static void |
989 | inc_rt_prio(struct rt_rq *rt_rq, int prio) | 989 | inc_rt_prio(struct rt_rq *rt_rq, int prio) |
990 | { | 990 | { |
991 | int prev_prio = rt_rq->highest_prio.curr; | 991 | int prev_prio = rt_rq->highest_prio.curr; |
992 | 992 | ||
993 | if (prio < prev_prio) | 993 | if (prio < prev_prio) |
994 | rt_rq->highest_prio.curr = prio; | 994 | rt_rq->highest_prio.curr = prio; |
995 | 995 | ||
996 | inc_rt_prio_smp(rt_rq, prio, prev_prio); | 996 | inc_rt_prio_smp(rt_rq, prio, prev_prio); |
997 | } | 997 | } |
998 | 998 | ||
999 | static void | 999 | static void |
1000 | dec_rt_prio(struct rt_rq *rt_rq, int prio) | 1000 | dec_rt_prio(struct rt_rq *rt_rq, int prio) |
1001 | { | 1001 | { |
1002 | int prev_prio = rt_rq->highest_prio.curr; | 1002 | int prev_prio = rt_rq->highest_prio.curr; |
1003 | 1003 | ||
1004 | if (rt_rq->rt_nr_running) { | 1004 | if (rt_rq->rt_nr_running) { |
1005 | 1005 | ||
1006 | WARN_ON(prio < prev_prio); | 1006 | WARN_ON(prio < prev_prio); |
1007 | 1007 | ||
1008 | /* | 1008 | /* |
1009 | * This may have been our highest task, and therefore | 1009 | * This may have been our highest task, and therefore |
1010 | * we may have some recomputation to do | 1010 | * we may have some recomputation to do |
1011 | */ | 1011 | */ |
1012 | if (prio == prev_prio) { | 1012 | if (prio == prev_prio) { |
1013 | struct rt_prio_array *array = &rt_rq->active; | 1013 | struct rt_prio_array *array = &rt_rq->active; |
1014 | 1014 | ||
1015 | rt_rq->highest_prio.curr = | 1015 | rt_rq->highest_prio.curr = |
1016 | sched_find_first_bit(array->bitmap); | 1016 | sched_find_first_bit(array->bitmap); |
1017 | } | 1017 | } |
1018 | 1018 | ||
1019 | } else | 1019 | } else |
1020 | rt_rq->highest_prio.curr = MAX_RT_PRIO; | 1020 | rt_rq->highest_prio.curr = MAX_RT_PRIO; |
1021 | 1021 | ||
1022 | dec_rt_prio_smp(rt_rq, prio, prev_prio); | 1022 | dec_rt_prio_smp(rt_rq, prio, prev_prio); |
1023 | } | 1023 | } |
1024 | 1024 | ||
1025 | #else | 1025 | #else |
1026 | 1026 | ||
1027 | static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} | 1027 | static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} |
1028 | static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} | 1028 | static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} |
1029 | 1029 | ||
1030 | #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ | 1030 | #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ |
1031 | 1031 | ||
1032 | #ifdef CONFIG_RT_GROUP_SCHED | 1032 | #ifdef CONFIG_RT_GROUP_SCHED |
1033 | 1033 | ||
1034 | static void | 1034 | static void |
1035 | inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 1035 | inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) |
1036 | { | 1036 | { |
1037 | if (rt_se_boosted(rt_se)) | 1037 | if (rt_se_boosted(rt_se)) |
1038 | rt_rq->rt_nr_boosted++; | 1038 | rt_rq->rt_nr_boosted++; |
1039 | 1039 | ||
1040 | if (rt_rq->tg) | 1040 | if (rt_rq->tg) |
1041 | start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); | 1041 | start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); |
1042 | } | 1042 | } |
1043 | 1043 | ||
1044 | static void | 1044 | static void |
1045 | dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 1045 | dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) |
1046 | { | 1046 | { |
1047 | if (rt_se_boosted(rt_se)) | 1047 | if (rt_se_boosted(rt_se)) |
1048 | rt_rq->rt_nr_boosted--; | 1048 | rt_rq->rt_nr_boosted--; |
1049 | 1049 | ||
1050 | WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); | 1050 | WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); |
1051 | } | 1051 | } |
1052 | 1052 | ||
1053 | #else /* CONFIG_RT_GROUP_SCHED */ | 1053 | #else /* CONFIG_RT_GROUP_SCHED */ |
1054 | 1054 | ||
1055 | static void | 1055 | static void |
1056 | inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 1056 | inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) |
1057 | { | 1057 | { |
1058 | start_rt_bandwidth(&def_rt_bandwidth); | 1058 | start_rt_bandwidth(&def_rt_bandwidth); |
1059 | } | 1059 | } |
1060 | 1060 | ||
1061 | static inline | 1061 | static inline |
1062 | void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} | 1062 | void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} |
1063 | 1063 | ||
1064 | #endif /* CONFIG_RT_GROUP_SCHED */ | 1064 | #endif /* CONFIG_RT_GROUP_SCHED */ |
1065 | 1065 | ||
1066 | static inline | 1066 | static inline |
1067 | void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 1067 | void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) |
1068 | { | 1068 | { |
1069 | int prio = rt_se_prio(rt_se); | 1069 | int prio = rt_se_prio(rt_se); |
1070 | 1070 | ||
1071 | WARN_ON(!rt_prio(prio)); | 1071 | WARN_ON(!rt_prio(prio)); |
1072 | rt_rq->rt_nr_running++; | 1072 | rt_rq->rt_nr_running++; |
1073 | 1073 | ||
1074 | inc_rt_prio(rt_rq, prio); | 1074 | inc_rt_prio(rt_rq, prio); |
1075 | inc_rt_migration(rt_se, rt_rq); | 1075 | inc_rt_migration(rt_se, rt_rq); |
1076 | inc_rt_group(rt_se, rt_rq); | 1076 | inc_rt_group(rt_se, rt_rq); |
1077 | } | 1077 | } |
1078 | 1078 | ||
1079 | static inline | 1079 | static inline |
1080 | void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 1080 | void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) |
1081 | { | 1081 | { |
1082 | WARN_ON(!rt_prio(rt_se_prio(rt_se))); | 1082 | WARN_ON(!rt_prio(rt_se_prio(rt_se))); |
1083 | WARN_ON(!rt_rq->rt_nr_running); | 1083 | WARN_ON(!rt_rq->rt_nr_running); |
1084 | rt_rq->rt_nr_running--; | 1084 | rt_rq->rt_nr_running--; |
1085 | 1085 | ||
1086 | dec_rt_prio(rt_rq, rt_se_prio(rt_se)); | 1086 | dec_rt_prio(rt_rq, rt_se_prio(rt_se)); |
1087 | dec_rt_migration(rt_se, rt_rq); | 1087 | dec_rt_migration(rt_se, rt_rq); |
1088 | dec_rt_group(rt_se, rt_rq); | 1088 | dec_rt_group(rt_se, rt_rq); |
1089 | } | 1089 | } |
1090 | 1090 | ||
1091 | static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head) | 1091 | static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head) |
1092 | { | 1092 | { |
1093 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); | 1093 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); |
1094 | struct rt_prio_array *array = &rt_rq->active; | 1094 | struct rt_prio_array *array = &rt_rq->active; |
1095 | struct rt_rq *group_rq = group_rt_rq(rt_se); | 1095 | struct rt_rq *group_rq = group_rt_rq(rt_se); |
1096 | struct list_head *queue = array->queue + rt_se_prio(rt_se); | 1096 | struct list_head *queue = array->queue + rt_se_prio(rt_se); |
1097 | 1097 | ||
1098 | /* | 1098 | /* |
1099 | * Don't enqueue the group if its throttled, or when empty. | 1099 | * Don't enqueue the group if its throttled, or when empty. |
1100 | * The latter is a consequence of the former when a child group | 1100 | * The latter is a consequence of the former when a child group |
1101 | * get throttled and the current group doesn't have any other | 1101 | * get throttled and the current group doesn't have any other |
1102 | * active members. | 1102 | * active members. |
1103 | */ | 1103 | */ |
1104 | if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) | 1104 | if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) |
1105 | return; | 1105 | return; |
1106 | 1106 | ||
1107 | if (!rt_rq->rt_nr_running) | 1107 | if (!rt_rq->rt_nr_running) |
1108 | list_add_leaf_rt_rq(rt_rq); | 1108 | list_add_leaf_rt_rq(rt_rq); |
1109 | 1109 | ||
1110 | if (head) | 1110 | if (head) |
1111 | list_add(&rt_se->run_list, queue); | 1111 | list_add(&rt_se->run_list, queue); |
1112 | else | 1112 | else |
1113 | list_add_tail(&rt_se->run_list, queue); | 1113 | list_add_tail(&rt_se->run_list, queue); |
1114 | __set_bit(rt_se_prio(rt_se), array->bitmap); | 1114 | __set_bit(rt_se_prio(rt_se), array->bitmap); |
1115 | 1115 | ||
1116 | inc_rt_tasks(rt_se, rt_rq); | 1116 | inc_rt_tasks(rt_se, rt_rq); |
1117 | } | 1117 | } |
1118 | 1118 | ||
1119 | static void __dequeue_rt_entity(struct sched_rt_entity *rt_se) | 1119 | static void __dequeue_rt_entity(struct sched_rt_entity *rt_se) |
1120 | { | 1120 | { |
1121 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); | 1121 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); |
1122 | struct rt_prio_array *array = &rt_rq->active; | 1122 | struct rt_prio_array *array = &rt_rq->active; |
1123 | 1123 | ||
1124 | list_del_init(&rt_se->run_list); | 1124 | list_del_init(&rt_se->run_list); |
1125 | if (list_empty(array->queue + rt_se_prio(rt_se))) | 1125 | if (list_empty(array->queue + rt_se_prio(rt_se))) |
1126 | __clear_bit(rt_se_prio(rt_se), array->bitmap); | 1126 | __clear_bit(rt_se_prio(rt_se), array->bitmap); |
1127 | 1127 | ||
1128 | dec_rt_tasks(rt_se, rt_rq); | 1128 | dec_rt_tasks(rt_se, rt_rq); |
1129 | if (!rt_rq->rt_nr_running) | 1129 | if (!rt_rq->rt_nr_running) |
1130 | list_del_leaf_rt_rq(rt_rq); | 1130 | list_del_leaf_rt_rq(rt_rq); |
1131 | } | 1131 | } |
1132 | 1132 | ||
1133 | /* | 1133 | /* |
1134 | * Because the prio of an upper entry depends on the lower | 1134 | * Because the prio of an upper entry depends on the lower |
1135 | * entries, we must remove entries top - down. | 1135 | * entries, we must remove entries top - down. |
1136 | */ | 1136 | */ |
1137 | static void dequeue_rt_stack(struct sched_rt_entity *rt_se) | 1137 | static void dequeue_rt_stack(struct sched_rt_entity *rt_se) |
1138 | { | 1138 | { |
1139 | struct sched_rt_entity *back = NULL; | 1139 | struct sched_rt_entity *back = NULL; |
1140 | 1140 | ||
1141 | for_each_sched_rt_entity(rt_se) { | 1141 | for_each_sched_rt_entity(rt_se) { |
1142 | rt_se->back = back; | 1142 | rt_se->back = back; |
1143 | back = rt_se; | 1143 | back = rt_se; |
1144 | } | 1144 | } |
1145 | 1145 | ||
1146 | for (rt_se = back; rt_se; rt_se = rt_se->back) { | 1146 | for (rt_se = back; rt_se; rt_se = rt_se->back) { |
1147 | if (on_rt_rq(rt_se)) | 1147 | if (on_rt_rq(rt_se)) |
1148 | __dequeue_rt_entity(rt_se); | 1148 | __dequeue_rt_entity(rt_se); |
1149 | } | 1149 | } |
1150 | } | 1150 | } |
1151 | 1151 | ||
1152 | static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head) | 1152 | static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head) |
1153 | { | 1153 | { |
1154 | dequeue_rt_stack(rt_se); | 1154 | dequeue_rt_stack(rt_se); |
1155 | for_each_sched_rt_entity(rt_se) | 1155 | for_each_sched_rt_entity(rt_se) |
1156 | __enqueue_rt_entity(rt_se, head); | 1156 | __enqueue_rt_entity(rt_se, head); |
1157 | } | 1157 | } |
1158 | 1158 | ||
1159 | static void dequeue_rt_entity(struct sched_rt_entity *rt_se) | 1159 | static void dequeue_rt_entity(struct sched_rt_entity *rt_se) |
1160 | { | 1160 | { |
1161 | dequeue_rt_stack(rt_se); | 1161 | dequeue_rt_stack(rt_se); |
1162 | 1162 | ||
1163 | for_each_sched_rt_entity(rt_se) { | 1163 | for_each_sched_rt_entity(rt_se) { |
1164 | struct rt_rq *rt_rq = group_rt_rq(rt_se); | 1164 | struct rt_rq *rt_rq = group_rt_rq(rt_se); |
1165 | 1165 | ||
1166 | if (rt_rq && rt_rq->rt_nr_running) | 1166 | if (rt_rq && rt_rq->rt_nr_running) |
1167 | __enqueue_rt_entity(rt_se, false); | 1167 | __enqueue_rt_entity(rt_se, false); |
1168 | } | 1168 | } |
1169 | } | 1169 | } |
1170 | 1170 | ||
1171 | /* | 1171 | /* |
1172 | * Adding/removing a task to/from a priority array: | 1172 | * Adding/removing a task to/from a priority array: |
1173 | */ | 1173 | */ |
1174 | static void | 1174 | static void |
1175 | enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) | 1175 | enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) |
1176 | { | 1176 | { |
1177 | struct sched_rt_entity *rt_se = &p->rt; | 1177 | struct sched_rt_entity *rt_se = &p->rt; |
1178 | 1178 | ||
1179 | if (flags & ENQUEUE_WAKEUP) | 1179 | if (flags & ENQUEUE_WAKEUP) |
1180 | rt_se->timeout = 0; | 1180 | rt_se->timeout = 0; |
1181 | 1181 | ||
1182 | enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD); | 1182 | enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD); |
1183 | 1183 | ||
1184 | if (!task_current(rq, p) && p->nr_cpus_allowed > 1) | 1184 | if (!task_current(rq, p) && p->nr_cpus_allowed > 1) |
1185 | enqueue_pushable_task(rq, p); | 1185 | enqueue_pushable_task(rq, p); |
1186 | 1186 | ||
1187 | inc_nr_running(rq); | 1187 | inc_nr_running(rq); |
1188 | } | 1188 | } |
1189 | 1189 | ||
1190 | static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) | 1190 | static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) |
1191 | { | 1191 | { |
1192 | struct sched_rt_entity *rt_se = &p->rt; | 1192 | struct sched_rt_entity *rt_se = &p->rt; |
1193 | 1193 | ||
1194 | update_curr_rt(rq); | 1194 | update_curr_rt(rq); |
1195 | dequeue_rt_entity(rt_se); | 1195 | dequeue_rt_entity(rt_se); |
1196 | 1196 | ||
1197 | dequeue_pushable_task(rq, p); | 1197 | dequeue_pushable_task(rq, p); |
1198 | 1198 | ||
1199 | dec_nr_running(rq); | 1199 | dec_nr_running(rq); |
1200 | } | 1200 | } |
1201 | 1201 | ||
1202 | /* | 1202 | /* |
1203 | * Put task to the head or the end of the run list without the overhead of | 1203 | * Put task to the head or the end of the run list without the overhead of |
1204 | * dequeue followed by enqueue. | 1204 | * dequeue followed by enqueue. |
1205 | */ | 1205 | */ |
1206 | static void | 1206 | static void |
1207 | requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) | 1207 | requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) |
1208 | { | 1208 | { |
1209 | if (on_rt_rq(rt_se)) { | 1209 | if (on_rt_rq(rt_se)) { |
1210 | struct rt_prio_array *array = &rt_rq->active; | 1210 | struct rt_prio_array *array = &rt_rq->active; |
1211 | struct list_head *queue = array->queue + rt_se_prio(rt_se); | 1211 | struct list_head *queue = array->queue + rt_se_prio(rt_se); |
1212 | 1212 | ||
1213 | if (head) | 1213 | if (head) |
1214 | list_move(&rt_se->run_list, queue); | 1214 | list_move(&rt_se->run_list, queue); |
1215 | else | 1215 | else |
1216 | list_move_tail(&rt_se->run_list, queue); | 1216 | list_move_tail(&rt_se->run_list, queue); |
1217 | } | 1217 | } |
1218 | } | 1218 | } |
1219 | 1219 | ||
1220 | static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) | 1220 | static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) |
1221 | { | 1221 | { |
1222 | struct sched_rt_entity *rt_se = &p->rt; | 1222 | struct sched_rt_entity *rt_se = &p->rt; |
1223 | struct rt_rq *rt_rq; | 1223 | struct rt_rq *rt_rq; |
1224 | 1224 | ||
1225 | for_each_sched_rt_entity(rt_se) { | 1225 | for_each_sched_rt_entity(rt_se) { |
1226 | rt_rq = rt_rq_of_se(rt_se); | 1226 | rt_rq = rt_rq_of_se(rt_se); |
1227 | requeue_rt_entity(rt_rq, rt_se, head); | 1227 | requeue_rt_entity(rt_rq, rt_se, head); |
1228 | } | 1228 | } |
1229 | } | 1229 | } |
1230 | 1230 | ||
1231 | static void yield_task_rt(struct rq *rq) | 1231 | static void yield_task_rt(struct rq *rq) |
1232 | { | 1232 | { |
1233 | requeue_task_rt(rq, rq->curr, 0); | 1233 | requeue_task_rt(rq, rq->curr, 0); |
1234 | } | 1234 | } |
1235 | 1235 | ||
1236 | #ifdef CONFIG_SMP | 1236 | #ifdef CONFIG_SMP |
1237 | static int find_lowest_rq(struct task_struct *task); | 1237 | static int find_lowest_rq(struct task_struct *task); |
1238 | 1238 | ||
1239 | static int | 1239 | static int |
1240 | select_task_rq_rt(struct task_struct *p, int sd_flag, int flags) | 1240 | select_task_rq_rt(struct task_struct *p, int sd_flag, int flags) |
1241 | { | 1241 | { |
1242 | struct task_struct *curr; | 1242 | struct task_struct *curr; |
1243 | struct rq *rq; | 1243 | struct rq *rq; |
1244 | int cpu; | 1244 | int cpu; |
1245 | 1245 | ||
1246 | cpu = task_cpu(p); | 1246 | cpu = task_cpu(p); |
1247 | 1247 | ||
1248 | if (p->nr_cpus_allowed == 1) | 1248 | if (p->nr_cpus_allowed == 1) |
1249 | goto out; | 1249 | goto out; |
1250 | 1250 | ||
1251 | /* For anything but wake ups, just return the task_cpu */ | 1251 | /* For anything but wake ups, just return the task_cpu */ |
1252 | if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK) | 1252 | if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK) |
1253 | goto out; | 1253 | goto out; |
1254 | 1254 | ||
1255 | rq = cpu_rq(cpu); | 1255 | rq = cpu_rq(cpu); |
1256 | 1256 | ||
1257 | rcu_read_lock(); | 1257 | rcu_read_lock(); |
1258 | curr = ACCESS_ONCE(rq->curr); /* unlocked access */ | 1258 | curr = ACCESS_ONCE(rq->curr); /* unlocked access */ |
1259 | 1259 | ||
1260 | /* | 1260 | /* |
1261 | * If the current task on @p's runqueue is an RT task, then | 1261 | * If the current task on @p's runqueue is an RT task, then |
1262 | * try to see if we can wake this RT task up on another | 1262 | * try to see if we can wake this RT task up on another |
1263 | * runqueue. Otherwise simply start this RT task | 1263 | * runqueue. Otherwise simply start this RT task |
1264 | * on its current runqueue. | 1264 | * on its current runqueue. |
1265 | * | 1265 | * |
1266 | * We want to avoid overloading runqueues. If the woken | 1266 | * We want to avoid overloading runqueues. If the woken |
1267 | * task is a higher priority, then it will stay on this CPU | 1267 | * task is a higher priority, then it will stay on this CPU |
1268 | * and the lower prio task should be moved to another CPU. | 1268 | * and the lower prio task should be moved to another CPU. |
1269 | * Even though this will probably make the lower prio task | 1269 | * Even though this will probably make the lower prio task |
1270 | * lose its cache, we do not want to bounce a higher task | 1270 | * lose its cache, we do not want to bounce a higher task |
1271 | * around just because it gave up its CPU, perhaps for a | 1271 | * around just because it gave up its CPU, perhaps for a |
1272 | * lock? | 1272 | * lock? |
1273 | * | 1273 | * |
1274 | * For equal prio tasks, we just let the scheduler sort it out. | 1274 | * For equal prio tasks, we just let the scheduler sort it out. |
1275 | * | 1275 | * |
1276 | * Otherwise, just let it ride on the affined RQ and the | 1276 | * Otherwise, just let it ride on the affined RQ and the |
1277 | * post-schedule router will push the preempted task away | 1277 | * post-schedule router will push the preempted task away |
1278 | * | 1278 | * |
1279 | * This test is optimistic, if we get it wrong the load-balancer | 1279 | * This test is optimistic, if we get it wrong the load-balancer |
1280 | * will have to sort it out. | 1280 | * will have to sort it out. |
1281 | */ | 1281 | */ |
1282 | if (curr && unlikely(rt_task(curr)) && | 1282 | if (curr && unlikely(rt_task(curr)) && |
1283 | (curr->nr_cpus_allowed < 2 || | 1283 | (curr->nr_cpus_allowed < 2 || |
1284 | curr->prio <= p->prio) && | 1284 | curr->prio <= p->prio) && |
1285 | (p->nr_cpus_allowed > 1)) { | 1285 | (p->nr_cpus_allowed > 1)) { |
1286 | int target = find_lowest_rq(p); | 1286 | int target = find_lowest_rq(p); |
1287 | 1287 | ||
1288 | if (target != -1) | 1288 | if (target != -1) |
1289 | cpu = target; | 1289 | cpu = target; |
1290 | } | 1290 | } |
1291 | rcu_read_unlock(); | 1291 | rcu_read_unlock(); |
1292 | 1292 | ||
1293 | out: | 1293 | out: |
1294 | return cpu; | 1294 | return cpu; |
1295 | } | 1295 | } |
1296 | 1296 | ||
1297 | static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) | 1297 | static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) |
1298 | { | 1298 | { |
1299 | if (rq->curr->nr_cpus_allowed == 1) | 1299 | if (rq->curr->nr_cpus_allowed == 1) |
1300 | return; | 1300 | return; |
1301 | 1301 | ||
1302 | if (p->nr_cpus_allowed != 1 | 1302 | if (p->nr_cpus_allowed != 1 |
1303 | && cpupri_find(&rq->rd->cpupri, p, NULL)) | 1303 | && cpupri_find(&rq->rd->cpupri, p, NULL)) |
1304 | return; | 1304 | return; |
1305 | 1305 | ||
1306 | if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL)) | 1306 | if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL)) |
1307 | return; | 1307 | return; |
1308 | 1308 | ||
1309 | /* | 1309 | /* |
1310 | * There appears to be other cpus that can accept | 1310 | * There appears to be other cpus that can accept |
1311 | * current and none to run 'p', so lets reschedule | 1311 | * current and none to run 'p', so lets reschedule |
1312 | * to try and push current away: | 1312 | * to try and push current away: |
1313 | */ | 1313 | */ |
1314 | requeue_task_rt(rq, p, 1); | 1314 | requeue_task_rt(rq, p, 1); |
1315 | resched_task(rq->curr); | 1315 | resched_task(rq->curr); |
1316 | } | 1316 | } |
1317 | 1317 | ||
1318 | #endif /* CONFIG_SMP */ | 1318 | #endif /* CONFIG_SMP */ |
1319 | 1319 | ||
1320 | /* | 1320 | /* |
1321 | * Preempt the current task with a newly woken task if needed: | 1321 | * Preempt the current task with a newly woken task if needed: |
1322 | */ | 1322 | */ |
1323 | static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags) | 1323 | static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags) |
1324 | { | 1324 | { |
1325 | if (p->prio < rq->curr->prio) { | 1325 | if (p->prio < rq->curr->prio) { |
1326 | resched_task(rq->curr); | 1326 | resched_task(rq->curr); |
1327 | return; | 1327 | return; |
1328 | } | 1328 | } |
1329 | 1329 | ||
1330 | #ifdef CONFIG_SMP | 1330 | #ifdef CONFIG_SMP |
1331 | /* | 1331 | /* |
1332 | * If: | 1332 | * If: |
1333 | * | 1333 | * |
1334 | * - the newly woken task is of equal priority to the current task | 1334 | * - the newly woken task is of equal priority to the current task |
1335 | * - the newly woken task is non-migratable while current is migratable | 1335 | * - the newly woken task is non-migratable while current is migratable |
1336 | * - current will be preempted on the next reschedule | 1336 | * - current will be preempted on the next reschedule |
1337 | * | 1337 | * |
1338 | * we should check to see if current can readily move to a different | 1338 | * we should check to see if current can readily move to a different |
1339 | * cpu. If so, we will reschedule to allow the push logic to try | 1339 | * cpu. If so, we will reschedule to allow the push logic to try |
1340 | * to move current somewhere else, making room for our non-migratable | 1340 | * to move current somewhere else, making room for our non-migratable |
1341 | * task. | 1341 | * task. |
1342 | */ | 1342 | */ |
1343 | if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr)) | 1343 | if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr)) |
1344 | check_preempt_equal_prio(rq, p); | 1344 | check_preempt_equal_prio(rq, p); |
1345 | #endif | 1345 | #endif |
1346 | } | 1346 | } |
1347 | 1347 | ||
1348 | static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, | 1348 | static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, |
1349 | struct rt_rq *rt_rq) | 1349 | struct rt_rq *rt_rq) |
1350 | { | 1350 | { |
1351 | struct rt_prio_array *array = &rt_rq->active; | 1351 | struct rt_prio_array *array = &rt_rq->active; |
1352 | struct sched_rt_entity *next = NULL; | 1352 | struct sched_rt_entity *next = NULL; |
1353 | struct list_head *queue; | 1353 | struct list_head *queue; |
1354 | int idx; | 1354 | int idx; |
1355 | 1355 | ||
1356 | idx = sched_find_first_bit(array->bitmap); | 1356 | idx = sched_find_first_bit(array->bitmap); |
1357 | BUG_ON(idx >= MAX_RT_PRIO); | 1357 | BUG_ON(idx >= MAX_RT_PRIO); |
1358 | 1358 | ||
1359 | queue = array->queue + idx; | 1359 | queue = array->queue + idx; |
1360 | next = list_entry(queue->next, struct sched_rt_entity, run_list); | 1360 | next = list_entry(queue->next, struct sched_rt_entity, run_list); |
1361 | 1361 | ||
1362 | return next; | 1362 | return next; |
1363 | } | 1363 | } |
1364 | 1364 | ||
1365 | static struct task_struct *_pick_next_task_rt(struct rq *rq) | 1365 | static struct task_struct *_pick_next_task_rt(struct rq *rq) |
1366 | { | 1366 | { |
1367 | struct sched_rt_entity *rt_se; | 1367 | struct sched_rt_entity *rt_se; |
1368 | struct task_struct *p; | 1368 | struct task_struct *p; |
1369 | struct rt_rq *rt_rq; | 1369 | struct rt_rq *rt_rq; |
1370 | 1370 | ||
1371 | rt_rq = &rq->rt; | 1371 | rt_rq = &rq->rt; |
1372 | 1372 | ||
1373 | if (!rt_rq->rt_nr_running) | 1373 | if (!rt_rq->rt_nr_running) |
1374 | return NULL; | 1374 | return NULL; |
1375 | 1375 | ||
1376 | if (rt_rq_throttled(rt_rq)) | 1376 | if (rt_rq_throttled(rt_rq)) |
1377 | return NULL; | 1377 | return NULL; |
1378 | 1378 | ||
1379 | do { | 1379 | do { |
1380 | rt_se = pick_next_rt_entity(rq, rt_rq); | 1380 | rt_se = pick_next_rt_entity(rq, rt_rq); |
1381 | BUG_ON(!rt_se); | 1381 | BUG_ON(!rt_se); |
1382 | rt_rq = group_rt_rq(rt_se); | 1382 | rt_rq = group_rt_rq(rt_se); |
1383 | } while (rt_rq); | 1383 | } while (rt_rq); |
1384 | 1384 | ||
1385 | p = rt_task_of(rt_se); | 1385 | p = rt_task_of(rt_se); |
1386 | p->se.exec_start = rq->clock_task; | 1386 | p->se.exec_start = rq->clock_task; |
1387 | 1387 | ||
1388 | return p; | 1388 | return p; |
1389 | } | 1389 | } |
1390 | 1390 | ||
1391 | static struct task_struct *pick_next_task_rt(struct rq *rq) | 1391 | static struct task_struct *pick_next_task_rt(struct rq *rq) |
1392 | { | 1392 | { |
1393 | struct task_struct *p = _pick_next_task_rt(rq); | 1393 | struct task_struct *p = _pick_next_task_rt(rq); |
1394 | 1394 | ||
1395 | /* The running task is never eligible for pushing */ | 1395 | /* The running task is never eligible for pushing */ |
1396 | if (p) | 1396 | if (p) |
1397 | dequeue_pushable_task(rq, p); | 1397 | dequeue_pushable_task(rq, p); |
1398 | 1398 | ||
1399 | #ifdef CONFIG_SMP | 1399 | #ifdef CONFIG_SMP |
1400 | /* | 1400 | /* |
1401 | * We detect this state here so that we can avoid taking the RQ | 1401 | * We detect this state here so that we can avoid taking the RQ |
1402 | * lock again later if there is no need to push | 1402 | * lock again later if there is no need to push |
1403 | */ | 1403 | */ |
1404 | rq->post_schedule = has_pushable_tasks(rq); | 1404 | rq->post_schedule = has_pushable_tasks(rq); |
1405 | #endif | 1405 | #endif |
1406 | 1406 | ||
1407 | return p; | 1407 | return p; |
1408 | } | 1408 | } |
1409 | 1409 | ||
1410 | static void put_prev_task_rt(struct rq *rq, struct task_struct *p) | 1410 | static void put_prev_task_rt(struct rq *rq, struct task_struct *p) |
1411 | { | 1411 | { |
1412 | update_curr_rt(rq); | 1412 | update_curr_rt(rq); |
1413 | 1413 | ||
1414 | /* | 1414 | /* |
1415 | * The previous task needs to be made eligible for pushing | 1415 | * The previous task needs to be made eligible for pushing |
1416 | * if it is still active | 1416 | * if it is still active |
1417 | */ | 1417 | */ |
1418 | if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1) | 1418 | if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1) |
1419 | enqueue_pushable_task(rq, p); | 1419 | enqueue_pushable_task(rq, p); |
1420 | } | 1420 | } |
1421 | 1421 | ||
1422 | #ifdef CONFIG_SMP | 1422 | #ifdef CONFIG_SMP |
1423 | 1423 | ||
1424 | /* Only try algorithms three times */ | 1424 | /* Only try algorithms three times */ |
1425 | #define RT_MAX_TRIES 3 | 1425 | #define RT_MAX_TRIES 3 |
1426 | 1426 | ||
1427 | static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) | 1427 | static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) |
1428 | { | 1428 | { |
1429 | if (!task_running(rq, p) && | 1429 | if (!task_running(rq, p) && |
1430 | (cpu < 0 || cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) && | 1430 | (cpu < 0 || cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) && |
1431 | (p->nr_cpus_allowed > 1)) | 1431 | (p->nr_cpus_allowed > 1)) |
1432 | return 1; | 1432 | return 1; |
1433 | return 0; | 1433 | return 0; |
1434 | } | 1434 | } |
1435 | 1435 | ||
1436 | /* Return the second highest RT task, NULL otherwise */ | 1436 | /* Return the second highest RT task, NULL otherwise */ |
1437 | static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu) | 1437 | static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu) |
1438 | { | 1438 | { |
1439 | struct task_struct *next = NULL; | 1439 | struct task_struct *next = NULL; |
1440 | struct sched_rt_entity *rt_se; | 1440 | struct sched_rt_entity *rt_se; |
1441 | struct rt_prio_array *array; | 1441 | struct rt_prio_array *array; |
1442 | struct rt_rq *rt_rq; | 1442 | struct rt_rq *rt_rq; |
1443 | int idx; | 1443 | int idx; |
1444 | 1444 | ||
1445 | for_each_leaf_rt_rq(rt_rq, rq) { | 1445 | for_each_leaf_rt_rq(rt_rq, rq) { |
1446 | array = &rt_rq->active; | 1446 | array = &rt_rq->active; |
1447 | idx = sched_find_first_bit(array->bitmap); | 1447 | idx = sched_find_first_bit(array->bitmap); |
1448 | next_idx: | 1448 | next_idx: |
1449 | if (idx >= MAX_RT_PRIO) | 1449 | if (idx >= MAX_RT_PRIO) |
1450 | continue; | 1450 | continue; |
1451 | if (next && next->prio <= idx) | 1451 | if (next && next->prio <= idx) |
1452 | continue; | 1452 | continue; |
1453 | list_for_each_entry(rt_se, array->queue + idx, run_list) { | 1453 | list_for_each_entry(rt_se, array->queue + idx, run_list) { |
1454 | struct task_struct *p; | 1454 | struct task_struct *p; |
1455 | 1455 | ||
1456 | if (!rt_entity_is_task(rt_se)) | 1456 | if (!rt_entity_is_task(rt_se)) |
1457 | continue; | 1457 | continue; |
1458 | 1458 | ||
1459 | p = rt_task_of(rt_se); | 1459 | p = rt_task_of(rt_se); |
1460 | if (pick_rt_task(rq, p, cpu)) { | 1460 | if (pick_rt_task(rq, p, cpu)) { |
1461 | next = p; | 1461 | next = p; |
1462 | break; | 1462 | break; |
1463 | } | 1463 | } |
1464 | } | 1464 | } |
1465 | if (!next) { | 1465 | if (!next) { |
1466 | idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1); | 1466 | idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1); |
1467 | goto next_idx; | 1467 | goto next_idx; |
1468 | } | 1468 | } |
1469 | } | 1469 | } |
1470 | 1470 | ||
1471 | return next; | 1471 | return next; |
1472 | } | 1472 | } |
1473 | 1473 | ||
1474 | static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); | 1474 | static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); |
1475 | 1475 | ||
1476 | static int find_lowest_rq(struct task_struct *task) | 1476 | static int find_lowest_rq(struct task_struct *task) |
1477 | { | 1477 | { |
1478 | struct sched_domain *sd; | 1478 | struct sched_domain *sd; |
1479 | struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask); | 1479 | struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask); |
1480 | int this_cpu = smp_processor_id(); | 1480 | int this_cpu = smp_processor_id(); |
1481 | int cpu = task_cpu(task); | 1481 | int cpu = task_cpu(task); |
1482 | 1482 | ||
1483 | /* Make sure the mask is initialized first */ | 1483 | /* Make sure the mask is initialized first */ |
1484 | if (unlikely(!lowest_mask)) | 1484 | if (unlikely(!lowest_mask)) |
1485 | return -1; | 1485 | return -1; |
1486 | 1486 | ||
1487 | if (task->nr_cpus_allowed == 1) | 1487 | if (task->nr_cpus_allowed == 1) |
1488 | return -1; /* No other targets possible */ | 1488 | return -1; /* No other targets possible */ |
1489 | 1489 | ||
1490 | if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask)) | 1490 | if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask)) |
1491 | return -1; /* No targets found */ | 1491 | return -1; /* No targets found */ |
1492 | 1492 | ||
1493 | /* | 1493 | /* |
1494 | * At this point we have built a mask of cpus representing the | 1494 | * At this point we have built a mask of cpus representing the |
1495 | * lowest priority tasks in the system. Now we want to elect | 1495 | * lowest priority tasks in the system. Now we want to elect |
1496 | * the best one based on our affinity and topology. | 1496 | * the best one based on our affinity and topology. |
1497 | * | 1497 | * |
1498 | * We prioritize the last cpu that the task executed on since | 1498 | * We prioritize the last cpu that the task executed on since |
1499 | * it is most likely cache-hot in that location. | 1499 | * it is most likely cache-hot in that location. |
1500 | */ | 1500 | */ |
1501 | if (cpumask_test_cpu(cpu, lowest_mask)) | 1501 | if (cpumask_test_cpu(cpu, lowest_mask)) |
1502 | return cpu; | 1502 | return cpu; |
1503 | 1503 | ||
1504 | /* | 1504 | /* |
1505 | * Otherwise, we consult the sched_domains span maps to figure | 1505 | * Otherwise, we consult the sched_domains span maps to figure |
1506 | * out which cpu is logically closest to our hot cache data. | 1506 | * out which cpu is logically closest to our hot cache data. |
1507 | */ | 1507 | */ |
1508 | if (!cpumask_test_cpu(this_cpu, lowest_mask)) | 1508 | if (!cpumask_test_cpu(this_cpu, lowest_mask)) |
1509 | this_cpu = -1; /* Skip this_cpu opt if not among lowest */ | 1509 | this_cpu = -1; /* Skip this_cpu opt if not among lowest */ |
1510 | 1510 | ||
1511 | rcu_read_lock(); | 1511 | rcu_read_lock(); |
1512 | for_each_domain(cpu, sd) { | 1512 | for_each_domain(cpu, sd) { |
1513 | if (sd->flags & SD_WAKE_AFFINE) { | 1513 | if (sd->flags & SD_WAKE_AFFINE) { |
1514 | int best_cpu; | 1514 | int best_cpu; |
1515 | 1515 | ||
1516 | /* | 1516 | /* |
1517 | * "this_cpu" is cheaper to preempt than a | 1517 | * "this_cpu" is cheaper to preempt than a |
1518 | * remote processor. | 1518 | * remote processor. |
1519 | */ | 1519 | */ |
1520 | if (this_cpu != -1 && | 1520 | if (this_cpu != -1 && |
1521 | cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { | 1521 | cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { |
1522 | rcu_read_unlock(); | 1522 | rcu_read_unlock(); |
1523 | return this_cpu; | 1523 | return this_cpu; |
1524 | } | 1524 | } |
1525 | 1525 | ||
1526 | best_cpu = cpumask_first_and(lowest_mask, | 1526 | best_cpu = cpumask_first_and(lowest_mask, |
1527 | sched_domain_span(sd)); | 1527 | sched_domain_span(sd)); |
1528 | if (best_cpu < nr_cpu_ids) { | 1528 | if (best_cpu < nr_cpu_ids) { |
1529 | rcu_read_unlock(); | 1529 | rcu_read_unlock(); |
1530 | return best_cpu; | 1530 | return best_cpu; |
1531 | } | 1531 | } |
1532 | } | 1532 | } |
1533 | } | 1533 | } |
1534 | rcu_read_unlock(); | 1534 | rcu_read_unlock(); |
1535 | 1535 | ||
1536 | /* | 1536 | /* |
1537 | * And finally, if there were no matches within the domains | 1537 | * And finally, if there were no matches within the domains |
1538 | * just give the caller *something* to work with from the compatible | 1538 | * just give the caller *something* to work with from the compatible |
1539 | * locations. | 1539 | * locations. |
1540 | */ | 1540 | */ |
1541 | if (this_cpu != -1) | 1541 | if (this_cpu != -1) |
1542 | return this_cpu; | 1542 | return this_cpu; |
1543 | 1543 | ||
1544 | cpu = cpumask_any(lowest_mask); | 1544 | cpu = cpumask_any(lowest_mask); |
1545 | if (cpu < nr_cpu_ids) | 1545 | if (cpu < nr_cpu_ids) |
1546 | return cpu; | 1546 | return cpu; |
1547 | return -1; | 1547 | return -1; |
1548 | } | 1548 | } |
1549 | 1549 | ||
1550 | /* Will lock the rq it finds */ | 1550 | /* Will lock the rq it finds */ |
1551 | static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) | 1551 | static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) |
1552 | { | 1552 | { |
1553 | struct rq *lowest_rq = NULL; | 1553 | struct rq *lowest_rq = NULL; |
1554 | int tries; | 1554 | int tries; |
1555 | int cpu; | 1555 | int cpu; |
1556 | 1556 | ||
1557 | for (tries = 0; tries < RT_MAX_TRIES; tries++) { | 1557 | for (tries = 0; tries < RT_MAX_TRIES; tries++) { |
1558 | cpu = find_lowest_rq(task); | 1558 | cpu = find_lowest_rq(task); |
1559 | 1559 | ||
1560 | if ((cpu == -1) || (cpu == rq->cpu)) | 1560 | if ((cpu == -1) || (cpu == rq->cpu)) |
1561 | break; | 1561 | break; |
1562 | 1562 | ||
1563 | lowest_rq = cpu_rq(cpu); | 1563 | lowest_rq = cpu_rq(cpu); |
1564 | 1564 | ||
1565 | /* if the prio of this runqueue changed, try again */ | 1565 | /* if the prio of this runqueue changed, try again */ |
1566 | if (double_lock_balance(rq, lowest_rq)) { | 1566 | if (double_lock_balance(rq, lowest_rq)) { |
1567 | /* | 1567 | /* |
1568 | * We had to unlock the run queue. In | 1568 | * We had to unlock the run queue. In |
1569 | * the mean time, task could have | 1569 | * the mean time, task could have |
1570 | * migrated already or had its affinity changed. | 1570 | * migrated already or had its affinity changed. |
1571 | * Also make sure that it wasn't scheduled on its rq. | 1571 | * Also make sure that it wasn't scheduled on its rq. |
1572 | */ | 1572 | */ |
1573 | if (unlikely(task_rq(task) != rq || | 1573 | if (unlikely(task_rq(task) != rq || |
1574 | !cpumask_test_cpu(lowest_rq->cpu, | 1574 | !cpumask_test_cpu(lowest_rq->cpu, |
1575 | tsk_cpus_allowed(task)) || | 1575 | tsk_cpus_allowed(task)) || |
1576 | task_running(rq, task) || | 1576 | task_running(rq, task) || |
1577 | !task->on_rq)) { | 1577 | !task->on_rq)) { |
1578 | 1578 | ||
1579 | double_unlock_balance(rq, lowest_rq); | 1579 | double_unlock_balance(rq, lowest_rq); |
1580 | lowest_rq = NULL; | 1580 | lowest_rq = NULL; |
1581 | break; | 1581 | break; |
1582 | } | 1582 | } |
1583 | } | 1583 | } |
1584 | 1584 | ||
1585 | /* If this rq is still suitable use it. */ | 1585 | /* If this rq is still suitable use it. */ |
1586 | if (lowest_rq->rt.highest_prio.curr > task->prio) | 1586 | if (lowest_rq->rt.highest_prio.curr > task->prio) |
1587 | break; | 1587 | break; |
1588 | 1588 | ||
1589 | /* try again */ | 1589 | /* try again */ |
1590 | double_unlock_balance(rq, lowest_rq); | 1590 | double_unlock_balance(rq, lowest_rq); |
1591 | lowest_rq = NULL; | 1591 | lowest_rq = NULL; |
1592 | } | 1592 | } |
1593 | 1593 | ||
1594 | return lowest_rq; | 1594 | return lowest_rq; |
1595 | } | 1595 | } |
1596 | 1596 | ||
1597 | static struct task_struct *pick_next_pushable_task(struct rq *rq) | 1597 | static struct task_struct *pick_next_pushable_task(struct rq *rq) |
1598 | { | 1598 | { |
1599 | struct task_struct *p; | 1599 | struct task_struct *p; |
1600 | 1600 | ||
1601 | if (!has_pushable_tasks(rq)) | 1601 | if (!has_pushable_tasks(rq)) |
1602 | return NULL; | 1602 | return NULL; |
1603 | 1603 | ||
1604 | p = plist_first_entry(&rq->rt.pushable_tasks, | 1604 | p = plist_first_entry(&rq->rt.pushable_tasks, |
1605 | struct task_struct, pushable_tasks); | 1605 | struct task_struct, pushable_tasks); |
1606 | 1606 | ||
1607 | BUG_ON(rq->cpu != task_cpu(p)); | 1607 | BUG_ON(rq->cpu != task_cpu(p)); |
1608 | BUG_ON(task_current(rq, p)); | 1608 | BUG_ON(task_current(rq, p)); |
1609 | BUG_ON(p->nr_cpus_allowed <= 1); | 1609 | BUG_ON(p->nr_cpus_allowed <= 1); |
1610 | 1610 | ||
1611 | BUG_ON(!p->on_rq); | 1611 | BUG_ON(!p->on_rq); |
1612 | BUG_ON(!rt_task(p)); | 1612 | BUG_ON(!rt_task(p)); |
1613 | 1613 | ||
1614 | return p; | 1614 | return p; |
1615 | } | 1615 | } |
1616 | 1616 | ||
1617 | /* | 1617 | /* |
1618 | * If the current CPU has more than one RT task, see if the non | 1618 | * If the current CPU has more than one RT task, see if the non |
1619 | * running task can migrate over to a CPU that is running a task | 1619 | * running task can migrate over to a CPU that is running a task |
1620 | * of lesser priority. | 1620 | * of lesser priority. |
1621 | */ | 1621 | */ |
1622 | static int push_rt_task(struct rq *rq) | 1622 | static int push_rt_task(struct rq *rq) |
1623 | { | 1623 | { |
1624 | struct task_struct *next_task; | 1624 | struct task_struct *next_task; |
1625 | struct rq *lowest_rq; | 1625 | struct rq *lowest_rq; |
1626 | int ret = 0; | 1626 | int ret = 0; |
1627 | 1627 | ||
1628 | if (!rq->rt.overloaded) | 1628 | if (!rq->rt.overloaded) |
1629 | return 0; | 1629 | return 0; |
1630 | 1630 | ||
1631 | next_task = pick_next_pushable_task(rq); | 1631 | next_task = pick_next_pushable_task(rq); |
1632 | if (!next_task) | 1632 | if (!next_task) |
1633 | return 0; | 1633 | return 0; |
1634 | 1634 | ||
1635 | retry: | 1635 | retry: |
1636 | if (unlikely(next_task == rq->curr)) { | 1636 | if (unlikely(next_task == rq->curr)) { |
1637 | WARN_ON(1); | 1637 | WARN_ON(1); |
1638 | return 0; | 1638 | return 0; |
1639 | } | 1639 | } |
1640 | 1640 | ||
1641 | /* | 1641 | /* |
1642 | * It's possible that the next_task slipped in of | 1642 | * It's possible that the next_task slipped in of |
1643 | * higher priority than current. If that's the case | 1643 | * higher priority than current. If that's the case |
1644 | * just reschedule current. | 1644 | * just reschedule current. |
1645 | */ | 1645 | */ |
1646 | if (unlikely(next_task->prio < rq->curr->prio)) { | 1646 | if (unlikely(next_task->prio < rq->curr->prio)) { |
1647 | resched_task(rq->curr); | 1647 | resched_task(rq->curr); |
1648 | return 0; | 1648 | return 0; |
1649 | } | 1649 | } |
1650 | 1650 | ||
1651 | /* We might release rq lock */ | 1651 | /* We might release rq lock */ |
1652 | get_task_struct(next_task); | 1652 | get_task_struct(next_task); |
1653 | 1653 | ||
1654 | /* find_lock_lowest_rq locks the rq if found */ | 1654 | /* find_lock_lowest_rq locks the rq if found */ |
1655 | lowest_rq = find_lock_lowest_rq(next_task, rq); | 1655 | lowest_rq = find_lock_lowest_rq(next_task, rq); |
1656 | if (!lowest_rq) { | 1656 | if (!lowest_rq) { |
1657 | struct task_struct *task; | 1657 | struct task_struct *task; |
1658 | /* | 1658 | /* |
1659 | * find_lock_lowest_rq releases rq->lock | 1659 | * find_lock_lowest_rq releases rq->lock |
1660 | * so it is possible that next_task has migrated. | 1660 | * so it is possible that next_task has migrated. |
1661 | * | 1661 | * |
1662 | * We need to make sure that the task is still on the same | 1662 | * We need to make sure that the task is still on the same |
1663 | * run-queue and is also still the next task eligible for | 1663 | * run-queue and is also still the next task eligible for |
1664 | * pushing. | 1664 | * pushing. |
1665 | */ | 1665 | */ |
1666 | task = pick_next_pushable_task(rq); | 1666 | task = pick_next_pushable_task(rq); |
1667 | if (task_cpu(next_task) == rq->cpu && task == next_task) { | 1667 | if (task_cpu(next_task) == rq->cpu && task == next_task) { |
1668 | /* | 1668 | /* |
1669 | * The task hasn't migrated, and is still the next | 1669 | * The task hasn't migrated, and is still the next |
1670 | * eligible task, but we failed to find a run-queue | 1670 | * eligible task, but we failed to find a run-queue |
1671 | * to push it to. Do not retry in this case, since | 1671 | * to push it to. Do not retry in this case, since |
1672 | * other cpus will pull from us when ready. | 1672 | * other cpus will pull from us when ready. |
1673 | */ | 1673 | */ |
1674 | goto out; | 1674 | goto out; |
1675 | } | 1675 | } |
1676 | 1676 | ||
1677 | if (!task) | 1677 | if (!task) |
1678 | /* No more tasks, just exit */ | 1678 | /* No more tasks, just exit */ |
1679 | goto out; | 1679 | goto out; |
1680 | 1680 | ||
1681 | /* | 1681 | /* |
1682 | * Something has shifted, try again. | 1682 | * Something has shifted, try again. |
1683 | */ | 1683 | */ |
1684 | put_task_struct(next_task); | 1684 | put_task_struct(next_task); |
1685 | next_task = task; | 1685 | next_task = task; |
1686 | goto retry; | 1686 | goto retry; |
1687 | } | 1687 | } |
1688 | 1688 | ||
1689 | deactivate_task(rq, next_task, 0); | 1689 | deactivate_task(rq, next_task, 0); |
1690 | set_task_cpu(next_task, lowest_rq->cpu); | 1690 | set_task_cpu(next_task, lowest_rq->cpu); |
1691 | activate_task(lowest_rq, next_task, 0); | 1691 | activate_task(lowest_rq, next_task, 0); |
1692 | ret = 1; | 1692 | ret = 1; |
1693 | 1693 | ||
1694 | resched_task(lowest_rq->curr); | 1694 | resched_task(lowest_rq->curr); |
1695 | 1695 | ||
1696 | double_unlock_balance(rq, lowest_rq); | 1696 | double_unlock_balance(rq, lowest_rq); |
1697 | 1697 | ||
1698 | out: | 1698 | out: |
1699 | put_task_struct(next_task); | 1699 | put_task_struct(next_task); |
1700 | 1700 | ||
1701 | return ret; | 1701 | return ret; |
1702 | } | 1702 | } |
1703 | 1703 | ||
1704 | static void push_rt_tasks(struct rq *rq) | 1704 | static void push_rt_tasks(struct rq *rq) |
1705 | { | 1705 | { |
1706 | /* push_rt_task will return true if it moved an RT */ | 1706 | /* push_rt_task will return true if it moved an RT */ |
1707 | while (push_rt_task(rq)) | 1707 | while (push_rt_task(rq)) |
1708 | ; | 1708 | ; |
1709 | } | 1709 | } |
1710 | 1710 | ||
1711 | static int pull_rt_task(struct rq *this_rq) | 1711 | static int pull_rt_task(struct rq *this_rq) |
1712 | { | 1712 | { |
1713 | int this_cpu = this_rq->cpu, ret = 0, cpu; | 1713 | int this_cpu = this_rq->cpu, ret = 0, cpu; |
1714 | struct task_struct *p; | 1714 | struct task_struct *p; |
1715 | struct rq *src_rq; | 1715 | struct rq *src_rq; |
1716 | 1716 | ||
1717 | if (likely(!rt_overloaded(this_rq))) | 1717 | if (likely(!rt_overloaded(this_rq))) |
1718 | return 0; | 1718 | return 0; |
1719 | 1719 | ||
1720 | for_each_cpu(cpu, this_rq->rd->rto_mask) { | 1720 | for_each_cpu(cpu, this_rq->rd->rto_mask) { |
1721 | if (this_cpu == cpu) | 1721 | if (this_cpu == cpu) |
1722 | continue; | 1722 | continue; |
1723 | 1723 | ||
1724 | src_rq = cpu_rq(cpu); | 1724 | src_rq = cpu_rq(cpu); |
1725 | 1725 | ||
1726 | /* | 1726 | /* |
1727 | * Don't bother taking the src_rq->lock if the next highest | 1727 | * Don't bother taking the src_rq->lock if the next highest |
1728 | * task is known to be lower-priority than our current task. | 1728 | * task is known to be lower-priority than our current task. |
1729 | * This may look racy, but if this value is about to go | 1729 | * This may look racy, but if this value is about to go |
1730 | * logically higher, the src_rq will push this task away. | 1730 | * logically higher, the src_rq will push this task away. |
1731 | * And if its going logically lower, we do not care | 1731 | * And if its going logically lower, we do not care |
1732 | */ | 1732 | */ |
1733 | if (src_rq->rt.highest_prio.next >= | 1733 | if (src_rq->rt.highest_prio.next >= |
1734 | this_rq->rt.highest_prio.curr) | 1734 | this_rq->rt.highest_prio.curr) |
1735 | continue; | 1735 | continue; |
1736 | 1736 | ||
1737 | /* | 1737 | /* |
1738 | * We can potentially drop this_rq's lock in | 1738 | * We can potentially drop this_rq's lock in |
1739 | * double_lock_balance, and another CPU could | 1739 | * double_lock_balance, and another CPU could |
1740 | * alter this_rq | 1740 | * alter this_rq |
1741 | */ | 1741 | */ |
1742 | double_lock_balance(this_rq, src_rq); | 1742 | double_lock_balance(this_rq, src_rq); |
1743 | 1743 | ||
1744 | /* | 1744 | /* |
1745 | * Are there still pullable RT tasks? | 1745 | * Are there still pullable RT tasks? |
1746 | */ | 1746 | */ |
1747 | if (src_rq->rt.rt_nr_running <= 1) | 1747 | if (src_rq->rt.rt_nr_running <= 1) |
1748 | goto skip; | 1748 | goto skip; |
1749 | 1749 | ||
1750 | p = pick_next_highest_task_rt(src_rq, this_cpu); | 1750 | p = pick_next_highest_task_rt(src_rq, this_cpu); |
1751 | 1751 | ||
1752 | /* | 1752 | /* |
1753 | * Do we have an RT task that preempts | 1753 | * Do we have an RT task that preempts |
1754 | * the to-be-scheduled task? | 1754 | * the to-be-scheduled task? |
1755 | */ | 1755 | */ |
1756 | if (p && (p->prio < this_rq->rt.highest_prio.curr)) { | 1756 | if (p && (p->prio < this_rq->rt.highest_prio.curr)) { |
1757 | WARN_ON(p == src_rq->curr); | 1757 | WARN_ON(p == src_rq->curr); |
1758 | WARN_ON(!p->on_rq); | 1758 | WARN_ON(!p->on_rq); |
1759 | 1759 | ||
1760 | /* | 1760 | /* |
1761 | * There's a chance that p is higher in priority | 1761 | * There's a chance that p is higher in priority |
1762 | * than what's currently running on its cpu. | 1762 | * than what's currently running on its cpu. |
1763 | * This is just that p is wakeing up and hasn't | 1763 | * This is just that p is wakeing up and hasn't |
1764 | * had a chance to schedule. We only pull | 1764 | * had a chance to schedule. We only pull |
1765 | * p if it is lower in priority than the | 1765 | * p if it is lower in priority than the |
1766 | * current task on the run queue | 1766 | * current task on the run queue |
1767 | */ | 1767 | */ |
1768 | if (p->prio < src_rq->curr->prio) | 1768 | if (p->prio < src_rq->curr->prio) |
1769 | goto skip; | 1769 | goto skip; |
1770 | 1770 | ||
1771 | ret = 1; | 1771 | ret = 1; |
1772 | 1772 | ||
1773 | deactivate_task(src_rq, p, 0); | 1773 | deactivate_task(src_rq, p, 0); |
1774 | set_task_cpu(p, this_cpu); | 1774 | set_task_cpu(p, this_cpu); |
1775 | activate_task(this_rq, p, 0); | 1775 | activate_task(this_rq, p, 0); |
1776 | /* | 1776 | /* |
1777 | * We continue with the search, just in | 1777 | * We continue with the search, just in |
1778 | * case there's an even higher prio task | 1778 | * case there's an even higher prio task |
1779 | * in another runqueue. (low likelihood | 1779 | * in another runqueue. (low likelihood |
1780 | * but possible) | 1780 | * but possible) |
1781 | */ | 1781 | */ |
1782 | } | 1782 | } |
1783 | skip: | 1783 | skip: |
1784 | double_unlock_balance(this_rq, src_rq); | 1784 | double_unlock_balance(this_rq, src_rq); |
1785 | } | 1785 | } |
1786 | 1786 | ||
1787 | return ret; | 1787 | return ret; |
1788 | } | 1788 | } |
1789 | 1789 | ||
1790 | static void pre_schedule_rt(struct rq *rq, struct task_struct *prev) | 1790 | static void pre_schedule_rt(struct rq *rq, struct task_struct *prev) |
1791 | { | 1791 | { |
1792 | /* Try to pull RT tasks here if we lower this rq's prio */ | 1792 | /* Try to pull RT tasks here if we lower this rq's prio */ |
1793 | if (rq->rt.highest_prio.curr > prev->prio) | 1793 | if (rq->rt.highest_prio.curr > prev->prio) |
1794 | pull_rt_task(rq); | 1794 | pull_rt_task(rq); |
1795 | } | 1795 | } |
1796 | 1796 | ||
1797 | static void post_schedule_rt(struct rq *rq) | 1797 | static void post_schedule_rt(struct rq *rq) |
1798 | { | 1798 | { |
1799 | push_rt_tasks(rq); | 1799 | push_rt_tasks(rq); |
1800 | } | 1800 | } |
1801 | 1801 | ||
1802 | /* | 1802 | /* |
1803 | * If we are not running and we are not going to reschedule soon, we should | 1803 | * If we are not running and we are not going to reschedule soon, we should |
1804 | * try to push tasks away now | 1804 | * try to push tasks away now |
1805 | */ | 1805 | */ |
1806 | static void task_woken_rt(struct rq *rq, struct task_struct *p) | 1806 | static void task_woken_rt(struct rq *rq, struct task_struct *p) |
1807 | { | 1807 | { |
1808 | if (!task_running(rq, p) && | 1808 | if (!task_running(rq, p) && |
1809 | !test_tsk_need_resched(rq->curr) && | 1809 | !test_tsk_need_resched(rq->curr) && |
1810 | has_pushable_tasks(rq) && | 1810 | has_pushable_tasks(rq) && |
1811 | p->nr_cpus_allowed > 1 && | 1811 | p->nr_cpus_allowed > 1 && |
1812 | rt_task(rq->curr) && | 1812 | rt_task(rq->curr) && |
1813 | (rq->curr->nr_cpus_allowed < 2 || | 1813 | (rq->curr->nr_cpus_allowed < 2 || |
1814 | rq->curr->prio <= p->prio)) | 1814 | rq->curr->prio <= p->prio)) |
1815 | push_rt_tasks(rq); | 1815 | push_rt_tasks(rq); |
1816 | } | 1816 | } |
1817 | 1817 | ||
1818 | static void set_cpus_allowed_rt(struct task_struct *p, | 1818 | static void set_cpus_allowed_rt(struct task_struct *p, |
1819 | const struct cpumask *new_mask) | 1819 | const struct cpumask *new_mask) |
1820 | { | 1820 | { |
1821 | struct rq *rq; | 1821 | struct rq *rq; |
1822 | int weight; | 1822 | int weight; |
1823 | 1823 | ||
1824 | BUG_ON(!rt_task(p)); | 1824 | BUG_ON(!rt_task(p)); |
1825 | 1825 | ||
1826 | if (!p->on_rq) | 1826 | if (!p->on_rq) |
1827 | return; | 1827 | return; |
1828 | 1828 | ||
1829 | weight = cpumask_weight(new_mask); | 1829 | weight = cpumask_weight(new_mask); |
1830 | 1830 | ||
1831 | /* | 1831 | /* |
1832 | * Only update if the process changes its state from whether it | 1832 | * Only update if the process changes its state from whether it |
1833 | * can migrate or not. | 1833 | * can migrate or not. |
1834 | */ | 1834 | */ |
1835 | if ((p->nr_cpus_allowed > 1) == (weight > 1)) | 1835 | if ((p->nr_cpus_allowed > 1) == (weight > 1)) |
1836 | return; | 1836 | return; |
1837 | 1837 | ||
1838 | rq = task_rq(p); | 1838 | rq = task_rq(p); |
1839 | 1839 | ||
1840 | /* | 1840 | /* |
1841 | * The process used to be able to migrate OR it can now migrate | 1841 | * The process used to be able to migrate OR it can now migrate |
1842 | */ | 1842 | */ |
1843 | if (weight <= 1) { | 1843 | if (weight <= 1) { |
1844 | if (!task_current(rq, p)) | 1844 | if (!task_current(rq, p)) |
1845 | dequeue_pushable_task(rq, p); | 1845 | dequeue_pushable_task(rq, p); |
1846 | BUG_ON(!rq->rt.rt_nr_migratory); | 1846 | BUG_ON(!rq->rt.rt_nr_migratory); |
1847 | rq->rt.rt_nr_migratory--; | 1847 | rq->rt.rt_nr_migratory--; |
1848 | } else { | 1848 | } else { |
1849 | if (!task_current(rq, p)) | 1849 | if (!task_current(rq, p)) |
1850 | enqueue_pushable_task(rq, p); | 1850 | enqueue_pushable_task(rq, p); |
1851 | rq->rt.rt_nr_migratory++; | 1851 | rq->rt.rt_nr_migratory++; |
1852 | } | 1852 | } |
1853 | 1853 | ||
1854 | update_rt_migration(&rq->rt); | 1854 | update_rt_migration(&rq->rt); |
1855 | } | 1855 | } |
1856 | 1856 | ||
1857 | /* Assumes rq->lock is held */ | 1857 | /* Assumes rq->lock is held */ |
1858 | static void rq_online_rt(struct rq *rq) | 1858 | static void rq_online_rt(struct rq *rq) |
1859 | { | 1859 | { |
1860 | if (rq->rt.overloaded) | 1860 | if (rq->rt.overloaded) |
1861 | rt_set_overload(rq); | 1861 | rt_set_overload(rq); |
1862 | 1862 | ||
1863 | __enable_runtime(rq); | 1863 | __enable_runtime(rq); |
1864 | 1864 | ||
1865 | cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); | 1865 | cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); |
1866 | } | 1866 | } |
1867 | 1867 | ||
1868 | /* Assumes rq->lock is held */ | 1868 | /* Assumes rq->lock is held */ |
1869 | static void rq_offline_rt(struct rq *rq) | 1869 | static void rq_offline_rt(struct rq *rq) |
1870 | { | 1870 | { |
1871 | if (rq->rt.overloaded) | 1871 | if (rq->rt.overloaded) |
1872 | rt_clear_overload(rq); | 1872 | rt_clear_overload(rq); |
1873 | 1873 | ||
1874 | __disable_runtime(rq); | 1874 | __disable_runtime(rq); |
1875 | 1875 | ||
1876 | cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); | 1876 | cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); |
1877 | } | 1877 | } |
1878 | 1878 | ||
1879 | /* | 1879 | /* |
1880 | * When switch from the rt queue, we bring ourselves to a position | 1880 | * When switch from the rt queue, we bring ourselves to a position |
1881 | * that we might want to pull RT tasks from other runqueues. | 1881 | * that we might want to pull RT tasks from other runqueues. |
1882 | */ | 1882 | */ |
1883 | static void switched_from_rt(struct rq *rq, struct task_struct *p) | 1883 | static void switched_from_rt(struct rq *rq, struct task_struct *p) |
1884 | { | 1884 | { |
1885 | /* | 1885 | /* |
1886 | * If there are other RT tasks then we will reschedule | 1886 | * If there are other RT tasks then we will reschedule |
1887 | * and the scheduling of the other RT tasks will handle | 1887 | * and the scheduling of the other RT tasks will handle |
1888 | * the balancing. But if we are the last RT task | 1888 | * the balancing. But if we are the last RT task |
1889 | * we may need to handle the pulling of RT tasks | 1889 | * we may need to handle the pulling of RT tasks |
1890 | * now. | 1890 | * now. |
1891 | */ | 1891 | */ |
1892 | if (p->on_rq && !rq->rt.rt_nr_running) | 1892 | if (!p->on_rq || rq->rt.rt_nr_running) |
1893 | pull_rt_task(rq); | 1893 | return; |
1894 | |||
1895 | if (pull_rt_task(rq)) | ||
1896 | resched_task(rq->curr); | ||
1894 | } | 1897 | } |
1895 | 1898 | ||
1896 | void init_sched_rt_class(void) | 1899 | void init_sched_rt_class(void) |
1897 | { | 1900 | { |
1898 | unsigned int i; | 1901 | unsigned int i; |
1899 | 1902 | ||
1900 | for_each_possible_cpu(i) { | 1903 | for_each_possible_cpu(i) { |
1901 | zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), | 1904 | zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), |
1902 | GFP_KERNEL, cpu_to_node(i)); | 1905 | GFP_KERNEL, cpu_to_node(i)); |
1903 | } | 1906 | } |
1904 | } | 1907 | } |
1905 | #endif /* CONFIG_SMP */ | 1908 | #endif /* CONFIG_SMP */ |
1906 | 1909 | ||
1907 | /* | 1910 | /* |
1908 | * When switching a task to RT, we may overload the runqueue | 1911 | * When switching a task to RT, we may overload the runqueue |
1909 | * with RT tasks. In this case we try to push them off to | 1912 | * with RT tasks. In this case we try to push them off to |
1910 | * other runqueues. | 1913 | * other runqueues. |
1911 | */ | 1914 | */ |
1912 | static void switched_to_rt(struct rq *rq, struct task_struct *p) | 1915 | static void switched_to_rt(struct rq *rq, struct task_struct *p) |
1913 | { | 1916 | { |
1914 | int check_resched = 1; | 1917 | int check_resched = 1; |
1915 | 1918 | ||
1916 | /* | 1919 | /* |
1917 | * If we are already running, then there's nothing | 1920 | * If we are already running, then there's nothing |
1918 | * that needs to be done. But if we are not running | 1921 | * that needs to be done. But if we are not running |
1919 | * we may need to preempt the current running task. | 1922 | * we may need to preempt the current running task. |
1920 | * If that current running task is also an RT task | 1923 | * If that current running task is also an RT task |
1921 | * then see if we can move to another run queue. | 1924 | * then see if we can move to another run queue. |
1922 | */ | 1925 | */ |
1923 | if (p->on_rq && rq->curr != p) { | 1926 | if (p->on_rq && rq->curr != p) { |
1924 | #ifdef CONFIG_SMP | 1927 | #ifdef CONFIG_SMP |
1925 | if (rq->rt.overloaded && push_rt_task(rq) && | 1928 | if (rq->rt.overloaded && push_rt_task(rq) && |
1926 | /* Don't resched if we changed runqueues */ | 1929 | /* Don't resched if we changed runqueues */ |
1927 | rq != task_rq(p)) | 1930 | rq != task_rq(p)) |
1928 | check_resched = 0; | 1931 | check_resched = 0; |
1929 | #endif /* CONFIG_SMP */ | 1932 | #endif /* CONFIG_SMP */ |
1930 | if (check_resched && p->prio < rq->curr->prio) | 1933 | if (check_resched && p->prio < rq->curr->prio) |
1931 | resched_task(rq->curr); | 1934 | resched_task(rq->curr); |
1932 | } | 1935 | } |
1933 | } | 1936 | } |
1934 | 1937 | ||
1935 | /* | 1938 | /* |
1936 | * Priority of the task has changed. This may cause | 1939 | * Priority of the task has changed. This may cause |
1937 | * us to initiate a push or pull. | 1940 | * us to initiate a push or pull. |
1938 | */ | 1941 | */ |
1939 | static void | 1942 | static void |
1940 | prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) | 1943 | prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) |
1941 | { | 1944 | { |
1942 | if (!p->on_rq) | 1945 | if (!p->on_rq) |
1943 | return; | 1946 | return; |
1944 | 1947 | ||
1945 | if (rq->curr == p) { | 1948 | if (rq->curr == p) { |
1946 | #ifdef CONFIG_SMP | 1949 | #ifdef CONFIG_SMP |
1947 | /* | 1950 | /* |
1948 | * If our priority decreases while running, we | 1951 | * If our priority decreases while running, we |
1949 | * may need to pull tasks to this runqueue. | 1952 | * may need to pull tasks to this runqueue. |
1950 | */ | 1953 | */ |
1951 | if (oldprio < p->prio) | 1954 | if (oldprio < p->prio) |
1952 | pull_rt_task(rq); | 1955 | pull_rt_task(rq); |
1953 | /* | 1956 | /* |
1954 | * If there's a higher priority task waiting to run | 1957 | * If there's a higher priority task waiting to run |
1955 | * then reschedule. Note, the above pull_rt_task | 1958 | * then reschedule. Note, the above pull_rt_task |
1956 | * can release the rq lock and p could migrate. | 1959 | * can release the rq lock and p could migrate. |
1957 | * Only reschedule if p is still on the same runqueue. | 1960 | * Only reschedule if p is still on the same runqueue. |
1958 | */ | 1961 | */ |
1959 | if (p->prio > rq->rt.highest_prio.curr && rq->curr == p) | 1962 | if (p->prio > rq->rt.highest_prio.curr && rq->curr == p) |
1960 | resched_task(p); | 1963 | resched_task(p); |
1961 | #else | 1964 | #else |
1962 | /* For UP simply resched on drop of prio */ | 1965 | /* For UP simply resched on drop of prio */ |
1963 | if (oldprio < p->prio) | 1966 | if (oldprio < p->prio) |
1964 | resched_task(p); | 1967 | resched_task(p); |
1965 | #endif /* CONFIG_SMP */ | 1968 | #endif /* CONFIG_SMP */ |
1966 | } else { | 1969 | } else { |
1967 | /* | 1970 | /* |
1968 | * This task is not running, but if it is | 1971 | * This task is not running, but if it is |
1969 | * greater than the current running task | 1972 | * greater than the current running task |
1970 | * then reschedule. | 1973 | * then reschedule. |
1971 | */ | 1974 | */ |
1972 | if (p->prio < rq->curr->prio) | 1975 | if (p->prio < rq->curr->prio) |
1973 | resched_task(rq->curr); | 1976 | resched_task(rq->curr); |
1974 | } | 1977 | } |
1975 | } | 1978 | } |
1976 | 1979 | ||
1977 | static void watchdog(struct rq *rq, struct task_struct *p) | 1980 | static void watchdog(struct rq *rq, struct task_struct *p) |
1978 | { | 1981 | { |
1979 | unsigned long soft, hard; | 1982 | unsigned long soft, hard; |
1980 | 1983 | ||
1981 | /* max may change after cur was read, this will be fixed next tick */ | 1984 | /* max may change after cur was read, this will be fixed next tick */ |
1982 | soft = task_rlimit(p, RLIMIT_RTTIME); | 1985 | soft = task_rlimit(p, RLIMIT_RTTIME); |
1983 | hard = task_rlimit_max(p, RLIMIT_RTTIME); | 1986 | hard = task_rlimit_max(p, RLIMIT_RTTIME); |
1984 | 1987 | ||
1985 | if (soft != RLIM_INFINITY) { | 1988 | if (soft != RLIM_INFINITY) { |
1986 | unsigned long next; | 1989 | unsigned long next; |
1987 | 1990 | ||
1988 | p->rt.timeout++; | 1991 | p->rt.timeout++; |
1989 | next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); | 1992 | next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); |
1990 | if (p->rt.timeout > next) | 1993 | if (p->rt.timeout > next) |
1991 | p->cputime_expires.sched_exp = p->se.sum_exec_runtime; | 1994 | p->cputime_expires.sched_exp = p->se.sum_exec_runtime; |
1992 | } | 1995 | } |
1993 | } | 1996 | } |
1994 | 1997 | ||
1995 | static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) | 1998 | static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) |
1996 | { | 1999 | { |
1997 | struct sched_rt_entity *rt_se = &p->rt; | 2000 | struct sched_rt_entity *rt_se = &p->rt; |
1998 | 2001 | ||
1999 | update_curr_rt(rq); | 2002 | update_curr_rt(rq); |
2000 | 2003 | ||
2001 | watchdog(rq, p); | 2004 | watchdog(rq, p); |
2002 | 2005 | ||
2003 | /* | 2006 | /* |
2004 | * RR tasks need a special form of timeslice management. | 2007 | * RR tasks need a special form of timeslice management. |
2005 | * FIFO tasks have no timeslices. | 2008 | * FIFO tasks have no timeslices. |
2006 | */ | 2009 | */ |
2007 | if (p->policy != SCHED_RR) | 2010 | if (p->policy != SCHED_RR) |
2008 | return; | 2011 | return; |
2009 | 2012 | ||
2010 | if (--p->rt.time_slice) | 2013 | if (--p->rt.time_slice) |
2011 | return; | 2014 | return; |
2012 | 2015 | ||
2013 | p->rt.time_slice = RR_TIMESLICE; | 2016 | p->rt.time_slice = RR_TIMESLICE; |
2014 | 2017 | ||
2015 | /* | 2018 | /* |
2016 | * Requeue to the end of queue if we (and all of our ancestors) are the | 2019 | * Requeue to the end of queue if we (and all of our ancestors) are the |
2017 | * only element on the queue | 2020 | * only element on the queue |
2018 | */ | 2021 | */ |
2019 | for_each_sched_rt_entity(rt_se) { | 2022 | for_each_sched_rt_entity(rt_se) { |
2020 | if (rt_se->run_list.prev != rt_se->run_list.next) { | 2023 | if (rt_se->run_list.prev != rt_se->run_list.next) { |
2021 | requeue_task_rt(rq, p, 0); | 2024 | requeue_task_rt(rq, p, 0); |
2022 | set_tsk_need_resched(p); | 2025 | set_tsk_need_resched(p); |
2023 | return; | 2026 | return; |
2024 | } | 2027 | } |
2025 | } | 2028 | } |
2026 | } | 2029 | } |
2027 | 2030 | ||
2028 | static void set_curr_task_rt(struct rq *rq) | 2031 | static void set_curr_task_rt(struct rq *rq) |
2029 | { | 2032 | { |
2030 | struct task_struct *p = rq->curr; | 2033 | struct task_struct *p = rq->curr; |
2031 | 2034 | ||
2032 | p->se.exec_start = rq->clock_task; | 2035 | p->se.exec_start = rq->clock_task; |
2033 | 2036 | ||
2034 | /* The running task is never eligible for pushing */ | 2037 | /* The running task is never eligible for pushing */ |
2035 | dequeue_pushable_task(rq, p); | 2038 | dequeue_pushable_task(rq, p); |
2036 | } | 2039 | } |
2037 | 2040 | ||
2038 | static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) | 2041 | static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) |
2039 | { | 2042 | { |
2040 | /* | 2043 | /* |
2041 | * Time slice is 0 for SCHED_FIFO tasks | 2044 | * Time slice is 0 for SCHED_FIFO tasks |
2042 | */ | 2045 | */ |
2043 | if (task->policy == SCHED_RR) | 2046 | if (task->policy == SCHED_RR) |
2044 | return RR_TIMESLICE; | 2047 | return RR_TIMESLICE; |
2045 | else | 2048 | else |
2046 | return 0; | 2049 | return 0; |
2047 | } | 2050 | } |
2048 | 2051 | ||
2049 | const struct sched_class rt_sched_class = { | 2052 | const struct sched_class rt_sched_class = { |
2050 | .next = &fair_sched_class, | 2053 | .next = &fair_sched_class, |
2051 | .enqueue_task = enqueue_task_rt, | 2054 | .enqueue_task = enqueue_task_rt, |
2052 | .dequeue_task = dequeue_task_rt, | 2055 | .dequeue_task = dequeue_task_rt, |
2053 | .yield_task = yield_task_rt, | 2056 | .yield_task = yield_task_rt, |
2054 | 2057 | ||
2055 | .check_preempt_curr = check_preempt_curr_rt, | 2058 | .check_preempt_curr = check_preempt_curr_rt, |
2056 | 2059 | ||
2057 | .pick_next_task = pick_next_task_rt, | 2060 | .pick_next_task = pick_next_task_rt, |
2058 | .put_prev_task = put_prev_task_rt, | 2061 | .put_prev_task = put_prev_task_rt, |
2059 | 2062 | ||
2060 | #ifdef CONFIG_SMP | 2063 | #ifdef CONFIG_SMP |
2061 | .select_task_rq = select_task_rq_rt, | 2064 | .select_task_rq = select_task_rq_rt, |
2062 | 2065 | ||
2063 | .set_cpus_allowed = set_cpus_allowed_rt, | 2066 | .set_cpus_allowed = set_cpus_allowed_rt, |
2064 | .rq_online = rq_online_rt, | 2067 | .rq_online = rq_online_rt, |
2065 | .rq_offline = rq_offline_rt, | 2068 | .rq_offline = rq_offline_rt, |
2066 | .pre_schedule = pre_schedule_rt, | 2069 | .pre_schedule = pre_schedule_rt, |
2067 | .post_schedule = post_schedule_rt, | 2070 | .post_schedule = post_schedule_rt, |
2068 | .task_woken = task_woken_rt, | 2071 | .task_woken = task_woken_rt, |
2069 | .switched_from = switched_from_rt, | 2072 | .switched_from = switched_from_rt, |
2070 | #endif | 2073 | #endif |
2071 | 2074 | ||
2072 | .set_curr_task = set_curr_task_rt, | 2075 | .set_curr_task = set_curr_task_rt, |
2073 | .task_tick = task_tick_rt, | 2076 | .task_tick = task_tick_rt, |
2074 | 2077 | ||
2075 | .get_rr_interval = get_rr_interval_rt, | 2078 | .get_rr_interval = get_rr_interval_rt, |
2076 | 2079 | ||
2077 | .prio_changed = prio_changed_rt, | 2080 | .prio_changed = prio_changed_rt, |
2078 | .switched_to = switched_to_rt, | 2081 | .switched_to = switched_to_rt, |
2079 | }; | 2082 | }; |
2080 | 2083 | ||
2081 | #ifdef CONFIG_SCHED_DEBUG | 2084 | #ifdef CONFIG_SCHED_DEBUG |
2082 | extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); | 2085 | extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); |
2083 | 2086 | ||
2084 | void print_rt_stats(struct seq_file *m, int cpu) | 2087 | void print_rt_stats(struct seq_file *m, int cpu) |
2085 | { | 2088 | { |
2086 | rt_rq_iter_t iter; | 2089 | rt_rq_iter_t iter; |
2087 | struct rt_rq *rt_rq; | 2090 | struct rt_rq *rt_rq; |
2088 | 2091 | ||
2089 | rcu_read_lock(); | 2092 | rcu_read_lock(); |
2090 | for_each_rt_rq(rt_rq, iter, cpu_rq(cpu)) | 2093 | for_each_rt_rq(rt_rq, iter, cpu_rq(cpu)) |
2091 | print_rt_rq(m, cpu, rt_rq); | 2094 | print_rt_rq(m, cpu, rt_rq); |
2092 | rcu_read_unlock(); | 2095 | rcu_read_unlock(); |
2093 | } | 2096 | } |
2094 | #endif /* CONFIG_SCHED_DEBUG */ | 2097 | #endif /* CONFIG_SCHED_DEBUG */ |
2095 | 2098 |