Commit 1eb5ac6466d4be7b15b38ce3ab709600f1bc891f
Committed by
Pekka Enberg
1 parent
ce8a7424d2
Exists in
master
and in
7 other branches
mm: SLUB fix reclaim_state
SLUB does not correctly account reclaim_state.reclaimed_slab, so it will break memory reclaim. Account it like SLAB does. Cc: stable@kernel.org Cc: linux-mm@kvack.org Cc: Matt Mackall <mpm@selenic.com> Acked-by: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Showing 1 changed file with 3 additions and 0 deletions Inline Diff
mm/slub.c
1 | /* | 1 | /* |
2 | * SLUB: A slab allocator that limits cache line use instead of queuing | 2 | * SLUB: A slab allocator that limits cache line use instead of queuing |
3 | * objects in per cpu and per node lists. | 3 | * objects in per cpu and per node lists. |
4 | * | 4 | * |
5 | * The allocator synchronizes using per slab locks and only | 5 | * The allocator synchronizes using per slab locks and only |
6 | * uses a centralized lock to manage a pool of partial slabs. | 6 | * uses a centralized lock to manage a pool of partial slabs. |
7 | * | 7 | * |
8 | * (C) 2007 SGI, Christoph Lameter | 8 | * (C) 2007 SGI, Christoph Lameter |
9 | */ | 9 | */ |
10 | 10 | ||
11 | #include <linux/mm.h> | 11 | #include <linux/mm.h> |
12 | #include <linux/swap.h> /* struct reclaim_state */ | ||
12 | #include <linux/module.h> | 13 | #include <linux/module.h> |
13 | #include <linux/bit_spinlock.h> | 14 | #include <linux/bit_spinlock.h> |
14 | #include <linux/interrupt.h> | 15 | #include <linux/interrupt.h> |
15 | #include <linux/bitops.h> | 16 | #include <linux/bitops.h> |
16 | #include <linux/slab.h> | 17 | #include <linux/slab.h> |
17 | #include <linux/proc_fs.h> | 18 | #include <linux/proc_fs.h> |
18 | #include <linux/seq_file.h> | 19 | #include <linux/seq_file.h> |
19 | #include <trace/kmemtrace.h> | 20 | #include <trace/kmemtrace.h> |
20 | #include <linux/cpu.h> | 21 | #include <linux/cpu.h> |
21 | #include <linux/cpuset.h> | 22 | #include <linux/cpuset.h> |
22 | #include <linux/mempolicy.h> | 23 | #include <linux/mempolicy.h> |
23 | #include <linux/ctype.h> | 24 | #include <linux/ctype.h> |
24 | #include <linux/debugobjects.h> | 25 | #include <linux/debugobjects.h> |
25 | #include <linux/kallsyms.h> | 26 | #include <linux/kallsyms.h> |
26 | #include <linux/memory.h> | 27 | #include <linux/memory.h> |
27 | #include <linux/math64.h> | 28 | #include <linux/math64.h> |
28 | #include <linux/fault-inject.h> | 29 | #include <linux/fault-inject.h> |
29 | 30 | ||
30 | /* | 31 | /* |
31 | * Lock order: | 32 | * Lock order: |
32 | * 1. slab_lock(page) | 33 | * 1. slab_lock(page) |
33 | * 2. slab->list_lock | 34 | * 2. slab->list_lock |
34 | * | 35 | * |
35 | * The slab_lock protects operations on the object of a particular | 36 | * The slab_lock protects operations on the object of a particular |
36 | * slab and its metadata in the page struct. If the slab lock | 37 | * slab and its metadata in the page struct. If the slab lock |
37 | * has been taken then no allocations nor frees can be performed | 38 | * has been taken then no allocations nor frees can be performed |
38 | * on the objects in the slab nor can the slab be added or removed | 39 | * on the objects in the slab nor can the slab be added or removed |
39 | * from the partial or full lists since this would mean modifying | 40 | * from the partial or full lists since this would mean modifying |
40 | * the page_struct of the slab. | 41 | * the page_struct of the slab. |
41 | * | 42 | * |
42 | * The list_lock protects the partial and full list on each node and | 43 | * The list_lock protects the partial and full list on each node and |
43 | * the partial slab counter. If taken then no new slabs may be added or | 44 | * the partial slab counter. If taken then no new slabs may be added or |
44 | * removed from the lists nor make the number of partial slabs be modified. | 45 | * removed from the lists nor make the number of partial slabs be modified. |
45 | * (Note that the total number of slabs is an atomic value that may be | 46 | * (Note that the total number of slabs is an atomic value that may be |
46 | * modified without taking the list lock). | 47 | * modified without taking the list lock). |
47 | * | 48 | * |
48 | * The list_lock is a centralized lock and thus we avoid taking it as | 49 | * The list_lock is a centralized lock and thus we avoid taking it as |
49 | * much as possible. As long as SLUB does not have to handle partial | 50 | * much as possible. As long as SLUB does not have to handle partial |
50 | * slabs, operations can continue without any centralized lock. F.e. | 51 | * slabs, operations can continue without any centralized lock. F.e. |
51 | * allocating a long series of objects that fill up slabs does not require | 52 | * allocating a long series of objects that fill up slabs does not require |
52 | * the list lock. | 53 | * the list lock. |
53 | * | 54 | * |
54 | * The lock order is sometimes inverted when we are trying to get a slab | 55 | * The lock order is sometimes inverted when we are trying to get a slab |
55 | * off a list. We take the list_lock and then look for a page on the list | 56 | * off a list. We take the list_lock and then look for a page on the list |
56 | * to use. While we do that objects in the slabs may be freed. We can | 57 | * to use. While we do that objects in the slabs may be freed. We can |
57 | * only operate on the slab if we have also taken the slab_lock. So we use | 58 | * only operate on the slab if we have also taken the slab_lock. So we use |
58 | * a slab_trylock() on the slab. If trylock was successful then no frees | 59 | * a slab_trylock() on the slab. If trylock was successful then no frees |
59 | * can occur anymore and we can use the slab for allocations etc. If the | 60 | * can occur anymore and we can use the slab for allocations etc. If the |
60 | * slab_trylock() does not succeed then frees are in progress in the slab and | 61 | * slab_trylock() does not succeed then frees are in progress in the slab and |
61 | * we must stay away from it for a while since we may cause a bouncing | 62 | * we must stay away from it for a while since we may cause a bouncing |
62 | * cacheline if we try to acquire the lock. So go onto the next slab. | 63 | * cacheline if we try to acquire the lock. So go onto the next slab. |
63 | * If all pages are busy then we may allocate a new slab instead of reusing | 64 | * If all pages are busy then we may allocate a new slab instead of reusing |
64 | * a partial slab. A new slab has noone operating on it and thus there is | 65 | * a partial slab. A new slab has noone operating on it and thus there is |
65 | * no danger of cacheline contention. | 66 | * no danger of cacheline contention. |
66 | * | 67 | * |
67 | * Interrupts are disabled during allocation and deallocation in order to | 68 | * Interrupts are disabled during allocation and deallocation in order to |
68 | * make the slab allocator safe to use in the context of an irq. In addition | 69 | * make the slab allocator safe to use in the context of an irq. In addition |
69 | * interrupts are disabled to ensure that the processor does not change | 70 | * interrupts are disabled to ensure that the processor does not change |
70 | * while handling per_cpu slabs, due to kernel preemption. | 71 | * while handling per_cpu slabs, due to kernel preemption. |
71 | * | 72 | * |
72 | * SLUB assigns one slab for allocation to each processor. | 73 | * SLUB assigns one slab for allocation to each processor. |
73 | * Allocations only occur from these slabs called cpu slabs. | 74 | * Allocations only occur from these slabs called cpu slabs. |
74 | * | 75 | * |
75 | * Slabs with free elements are kept on a partial list and during regular | 76 | * Slabs with free elements are kept on a partial list and during regular |
76 | * operations no list for full slabs is used. If an object in a full slab is | 77 | * operations no list for full slabs is used. If an object in a full slab is |
77 | * freed then the slab will show up again on the partial lists. | 78 | * freed then the slab will show up again on the partial lists. |
78 | * We track full slabs for debugging purposes though because otherwise we | 79 | * We track full slabs for debugging purposes though because otherwise we |
79 | * cannot scan all objects. | 80 | * cannot scan all objects. |
80 | * | 81 | * |
81 | * Slabs are freed when they become empty. Teardown and setup is | 82 | * Slabs are freed when they become empty. Teardown and setup is |
82 | * minimal so we rely on the page allocators per cpu caches for | 83 | * minimal so we rely on the page allocators per cpu caches for |
83 | * fast frees and allocs. | 84 | * fast frees and allocs. |
84 | * | 85 | * |
85 | * Overloading of page flags that are otherwise used for LRU management. | 86 | * Overloading of page flags that are otherwise used for LRU management. |
86 | * | 87 | * |
87 | * PageActive The slab is frozen and exempt from list processing. | 88 | * PageActive The slab is frozen and exempt from list processing. |
88 | * This means that the slab is dedicated to a purpose | 89 | * This means that the slab is dedicated to a purpose |
89 | * such as satisfying allocations for a specific | 90 | * such as satisfying allocations for a specific |
90 | * processor. Objects may be freed in the slab while | 91 | * processor. Objects may be freed in the slab while |
91 | * it is frozen but slab_free will then skip the usual | 92 | * it is frozen but slab_free will then skip the usual |
92 | * list operations. It is up to the processor holding | 93 | * list operations. It is up to the processor holding |
93 | * the slab to integrate the slab into the slab lists | 94 | * the slab to integrate the slab into the slab lists |
94 | * when the slab is no longer needed. | 95 | * when the slab is no longer needed. |
95 | * | 96 | * |
96 | * One use of this flag is to mark slabs that are | 97 | * One use of this flag is to mark slabs that are |
97 | * used for allocations. Then such a slab becomes a cpu | 98 | * used for allocations. Then such a slab becomes a cpu |
98 | * slab. The cpu slab may be equipped with an additional | 99 | * slab. The cpu slab may be equipped with an additional |
99 | * freelist that allows lockless access to | 100 | * freelist that allows lockless access to |
100 | * free objects in addition to the regular freelist | 101 | * free objects in addition to the regular freelist |
101 | * that requires the slab lock. | 102 | * that requires the slab lock. |
102 | * | 103 | * |
103 | * PageError Slab requires special handling due to debug | 104 | * PageError Slab requires special handling due to debug |
104 | * options set. This moves slab handling out of | 105 | * options set. This moves slab handling out of |
105 | * the fast path and disables lockless freelists. | 106 | * the fast path and disables lockless freelists. |
106 | */ | 107 | */ |
107 | 108 | ||
108 | #ifdef CONFIG_SLUB_DEBUG | 109 | #ifdef CONFIG_SLUB_DEBUG |
109 | #define SLABDEBUG 1 | 110 | #define SLABDEBUG 1 |
110 | #else | 111 | #else |
111 | #define SLABDEBUG 0 | 112 | #define SLABDEBUG 0 |
112 | #endif | 113 | #endif |
113 | 114 | ||
114 | /* | 115 | /* |
115 | * Issues still to be resolved: | 116 | * Issues still to be resolved: |
116 | * | 117 | * |
117 | * - Support PAGE_ALLOC_DEBUG. Should be easy to do. | 118 | * - Support PAGE_ALLOC_DEBUG. Should be easy to do. |
118 | * | 119 | * |
119 | * - Variable sizing of the per node arrays | 120 | * - Variable sizing of the per node arrays |
120 | */ | 121 | */ |
121 | 122 | ||
122 | /* Enable to test recovery from slab corruption on boot */ | 123 | /* Enable to test recovery from slab corruption on boot */ |
123 | #undef SLUB_RESILIENCY_TEST | 124 | #undef SLUB_RESILIENCY_TEST |
124 | 125 | ||
125 | /* | 126 | /* |
126 | * Mininum number of partial slabs. These will be left on the partial | 127 | * Mininum number of partial slabs. These will be left on the partial |
127 | * lists even if they are empty. kmem_cache_shrink may reclaim them. | 128 | * lists even if they are empty. kmem_cache_shrink may reclaim them. |
128 | */ | 129 | */ |
129 | #define MIN_PARTIAL 5 | 130 | #define MIN_PARTIAL 5 |
130 | 131 | ||
131 | /* | 132 | /* |
132 | * Maximum number of desirable partial slabs. | 133 | * Maximum number of desirable partial slabs. |
133 | * The existence of more partial slabs makes kmem_cache_shrink | 134 | * The existence of more partial slabs makes kmem_cache_shrink |
134 | * sort the partial list by the number of objects in the. | 135 | * sort the partial list by the number of objects in the. |
135 | */ | 136 | */ |
136 | #define MAX_PARTIAL 10 | 137 | #define MAX_PARTIAL 10 |
137 | 138 | ||
138 | #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ | 139 | #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ |
139 | SLAB_POISON | SLAB_STORE_USER) | 140 | SLAB_POISON | SLAB_STORE_USER) |
140 | 141 | ||
141 | /* | 142 | /* |
142 | * Set of flags that will prevent slab merging | 143 | * Set of flags that will prevent slab merging |
143 | */ | 144 | */ |
144 | #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ | 145 | #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ |
145 | SLAB_TRACE | SLAB_DESTROY_BY_RCU) | 146 | SLAB_TRACE | SLAB_DESTROY_BY_RCU) |
146 | 147 | ||
147 | #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ | 148 | #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ |
148 | SLAB_CACHE_DMA) | 149 | SLAB_CACHE_DMA) |
149 | 150 | ||
150 | #ifndef ARCH_KMALLOC_MINALIGN | 151 | #ifndef ARCH_KMALLOC_MINALIGN |
151 | #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) | 152 | #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) |
152 | #endif | 153 | #endif |
153 | 154 | ||
154 | #ifndef ARCH_SLAB_MINALIGN | 155 | #ifndef ARCH_SLAB_MINALIGN |
155 | #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) | 156 | #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) |
156 | #endif | 157 | #endif |
157 | 158 | ||
158 | #define OO_SHIFT 16 | 159 | #define OO_SHIFT 16 |
159 | #define OO_MASK ((1 << OO_SHIFT) - 1) | 160 | #define OO_MASK ((1 << OO_SHIFT) - 1) |
160 | #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */ | 161 | #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */ |
161 | 162 | ||
162 | /* Internal SLUB flags */ | 163 | /* Internal SLUB flags */ |
163 | #define __OBJECT_POISON 0x80000000 /* Poison object */ | 164 | #define __OBJECT_POISON 0x80000000 /* Poison object */ |
164 | #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */ | 165 | #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */ |
165 | 166 | ||
166 | static int kmem_size = sizeof(struct kmem_cache); | 167 | static int kmem_size = sizeof(struct kmem_cache); |
167 | 168 | ||
168 | #ifdef CONFIG_SMP | 169 | #ifdef CONFIG_SMP |
169 | static struct notifier_block slab_notifier; | 170 | static struct notifier_block slab_notifier; |
170 | #endif | 171 | #endif |
171 | 172 | ||
172 | static enum { | 173 | static enum { |
173 | DOWN, /* No slab functionality available */ | 174 | DOWN, /* No slab functionality available */ |
174 | PARTIAL, /* kmem_cache_open() works but kmalloc does not */ | 175 | PARTIAL, /* kmem_cache_open() works but kmalloc does not */ |
175 | UP, /* Everything works but does not show up in sysfs */ | 176 | UP, /* Everything works but does not show up in sysfs */ |
176 | SYSFS /* Sysfs up */ | 177 | SYSFS /* Sysfs up */ |
177 | } slab_state = DOWN; | 178 | } slab_state = DOWN; |
178 | 179 | ||
179 | /* A list of all slab caches on the system */ | 180 | /* A list of all slab caches on the system */ |
180 | static DECLARE_RWSEM(slub_lock); | 181 | static DECLARE_RWSEM(slub_lock); |
181 | static LIST_HEAD(slab_caches); | 182 | static LIST_HEAD(slab_caches); |
182 | 183 | ||
183 | /* | 184 | /* |
184 | * Tracking user of a slab. | 185 | * Tracking user of a slab. |
185 | */ | 186 | */ |
186 | struct track { | 187 | struct track { |
187 | unsigned long addr; /* Called from address */ | 188 | unsigned long addr; /* Called from address */ |
188 | int cpu; /* Was running on cpu */ | 189 | int cpu; /* Was running on cpu */ |
189 | int pid; /* Pid context */ | 190 | int pid; /* Pid context */ |
190 | unsigned long when; /* When did the operation occur */ | 191 | unsigned long when; /* When did the operation occur */ |
191 | }; | 192 | }; |
192 | 193 | ||
193 | enum track_item { TRACK_ALLOC, TRACK_FREE }; | 194 | enum track_item { TRACK_ALLOC, TRACK_FREE }; |
194 | 195 | ||
195 | #ifdef CONFIG_SLUB_DEBUG | 196 | #ifdef CONFIG_SLUB_DEBUG |
196 | static int sysfs_slab_add(struct kmem_cache *); | 197 | static int sysfs_slab_add(struct kmem_cache *); |
197 | static int sysfs_slab_alias(struct kmem_cache *, const char *); | 198 | static int sysfs_slab_alias(struct kmem_cache *, const char *); |
198 | static void sysfs_slab_remove(struct kmem_cache *); | 199 | static void sysfs_slab_remove(struct kmem_cache *); |
199 | 200 | ||
200 | #else | 201 | #else |
201 | static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } | 202 | static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } |
202 | static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) | 203 | static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) |
203 | { return 0; } | 204 | { return 0; } |
204 | static inline void sysfs_slab_remove(struct kmem_cache *s) | 205 | static inline void sysfs_slab_remove(struct kmem_cache *s) |
205 | { | 206 | { |
206 | kfree(s); | 207 | kfree(s); |
207 | } | 208 | } |
208 | 209 | ||
209 | #endif | 210 | #endif |
210 | 211 | ||
211 | static inline void stat(struct kmem_cache_cpu *c, enum stat_item si) | 212 | static inline void stat(struct kmem_cache_cpu *c, enum stat_item si) |
212 | { | 213 | { |
213 | #ifdef CONFIG_SLUB_STATS | 214 | #ifdef CONFIG_SLUB_STATS |
214 | c->stat[si]++; | 215 | c->stat[si]++; |
215 | #endif | 216 | #endif |
216 | } | 217 | } |
217 | 218 | ||
218 | /******************************************************************** | 219 | /******************************************************************** |
219 | * Core slab cache functions | 220 | * Core slab cache functions |
220 | *******************************************************************/ | 221 | *******************************************************************/ |
221 | 222 | ||
222 | int slab_is_available(void) | 223 | int slab_is_available(void) |
223 | { | 224 | { |
224 | return slab_state >= UP; | 225 | return slab_state >= UP; |
225 | } | 226 | } |
226 | 227 | ||
227 | static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) | 228 | static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) |
228 | { | 229 | { |
229 | #ifdef CONFIG_NUMA | 230 | #ifdef CONFIG_NUMA |
230 | return s->node[node]; | 231 | return s->node[node]; |
231 | #else | 232 | #else |
232 | return &s->local_node; | 233 | return &s->local_node; |
233 | #endif | 234 | #endif |
234 | } | 235 | } |
235 | 236 | ||
236 | static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu) | 237 | static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu) |
237 | { | 238 | { |
238 | #ifdef CONFIG_SMP | 239 | #ifdef CONFIG_SMP |
239 | return s->cpu_slab[cpu]; | 240 | return s->cpu_slab[cpu]; |
240 | #else | 241 | #else |
241 | return &s->cpu_slab; | 242 | return &s->cpu_slab; |
242 | #endif | 243 | #endif |
243 | } | 244 | } |
244 | 245 | ||
245 | /* Verify that a pointer has an address that is valid within a slab page */ | 246 | /* Verify that a pointer has an address that is valid within a slab page */ |
246 | static inline int check_valid_pointer(struct kmem_cache *s, | 247 | static inline int check_valid_pointer(struct kmem_cache *s, |
247 | struct page *page, const void *object) | 248 | struct page *page, const void *object) |
248 | { | 249 | { |
249 | void *base; | 250 | void *base; |
250 | 251 | ||
251 | if (!object) | 252 | if (!object) |
252 | return 1; | 253 | return 1; |
253 | 254 | ||
254 | base = page_address(page); | 255 | base = page_address(page); |
255 | if (object < base || object >= base + page->objects * s->size || | 256 | if (object < base || object >= base + page->objects * s->size || |
256 | (object - base) % s->size) { | 257 | (object - base) % s->size) { |
257 | return 0; | 258 | return 0; |
258 | } | 259 | } |
259 | 260 | ||
260 | return 1; | 261 | return 1; |
261 | } | 262 | } |
262 | 263 | ||
263 | /* | 264 | /* |
264 | * Slow version of get and set free pointer. | 265 | * Slow version of get and set free pointer. |
265 | * | 266 | * |
266 | * This version requires touching the cache lines of kmem_cache which | 267 | * This version requires touching the cache lines of kmem_cache which |
267 | * we avoid to do in the fast alloc free paths. There we obtain the offset | 268 | * we avoid to do in the fast alloc free paths. There we obtain the offset |
268 | * from the page struct. | 269 | * from the page struct. |
269 | */ | 270 | */ |
270 | static inline void *get_freepointer(struct kmem_cache *s, void *object) | 271 | static inline void *get_freepointer(struct kmem_cache *s, void *object) |
271 | { | 272 | { |
272 | return *(void **)(object + s->offset); | 273 | return *(void **)(object + s->offset); |
273 | } | 274 | } |
274 | 275 | ||
275 | static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) | 276 | static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) |
276 | { | 277 | { |
277 | *(void **)(object + s->offset) = fp; | 278 | *(void **)(object + s->offset) = fp; |
278 | } | 279 | } |
279 | 280 | ||
280 | /* Loop over all objects in a slab */ | 281 | /* Loop over all objects in a slab */ |
281 | #define for_each_object(__p, __s, __addr, __objects) \ | 282 | #define for_each_object(__p, __s, __addr, __objects) \ |
282 | for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ | 283 | for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ |
283 | __p += (__s)->size) | 284 | __p += (__s)->size) |
284 | 285 | ||
285 | /* Scan freelist */ | 286 | /* Scan freelist */ |
286 | #define for_each_free_object(__p, __s, __free) \ | 287 | #define for_each_free_object(__p, __s, __free) \ |
287 | for (__p = (__free); __p; __p = get_freepointer((__s), __p)) | 288 | for (__p = (__free); __p; __p = get_freepointer((__s), __p)) |
288 | 289 | ||
289 | /* Determine object index from a given position */ | 290 | /* Determine object index from a given position */ |
290 | static inline int slab_index(void *p, struct kmem_cache *s, void *addr) | 291 | static inline int slab_index(void *p, struct kmem_cache *s, void *addr) |
291 | { | 292 | { |
292 | return (p - addr) / s->size; | 293 | return (p - addr) / s->size; |
293 | } | 294 | } |
294 | 295 | ||
295 | static inline struct kmem_cache_order_objects oo_make(int order, | 296 | static inline struct kmem_cache_order_objects oo_make(int order, |
296 | unsigned long size) | 297 | unsigned long size) |
297 | { | 298 | { |
298 | struct kmem_cache_order_objects x = { | 299 | struct kmem_cache_order_objects x = { |
299 | (order << OO_SHIFT) + (PAGE_SIZE << order) / size | 300 | (order << OO_SHIFT) + (PAGE_SIZE << order) / size |
300 | }; | 301 | }; |
301 | 302 | ||
302 | return x; | 303 | return x; |
303 | } | 304 | } |
304 | 305 | ||
305 | static inline int oo_order(struct kmem_cache_order_objects x) | 306 | static inline int oo_order(struct kmem_cache_order_objects x) |
306 | { | 307 | { |
307 | return x.x >> OO_SHIFT; | 308 | return x.x >> OO_SHIFT; |
308 | } | 309 | } |
309 | 310 | ||
310 | static inline int oo_objects(struct kmem_cache_order_objects x) | 311 | static inline int oo_objects(struct kmem_cache_order_objects x) |
311 | { | 312 | { |
312 | return x.x & OO_MASK; | 313 | return x.x & OO_MASK; |
313 | } | 314 | } |
314 | 315 | ||
315 | #ifdef CONFIG_SLUB_DEBUG | 316 | #ifdef CONFIG_SLUB_DEBUG |
316 | /* | 317 | /* |
317 | * Debug settings: | 318 | * Debug settings: |
318 | */ | 319 | */ |
319 | #ifdef CONFIG_SLUB_DEBUG_ON | 320 | #ifdef CONFIG_SLUB_DEBUG_ON |
320 | static int slub_debug = DEBUG_DEFAULT_FLAGS; | 321 | static int slub_debug = DEBUG_DEFAULT_FLAGS; |
321 | #else | 322 | #else |
322 | static int slub_debug; | 323 | static int slub_debug; |
323 | #endif | 324 | #endif |
324 | 325 | ||
325 | static char *slub_debug_slabs; | 326 | static char *slub_debug_slabs; |
326 | 327 | ||
327 | /* | 328 | /* |
328 | * Object debugging | 329 | * Object debugging |
329 | */ | 330 | */ |
330 | static void print_section(char *text, u8 *addr, unsigned int length) | 331 | static void print_section(char *text, u8 *addr, unsigned int length) |
331 | { | 332 | { |
332 | int i, offset; | 333 | int i, offset; |
333 | int newline = 1; | 334 | int newline = 1; |
334 | char ascii[17]; | 335 | char ascii[17]; |
335 | 336 | ||
336 | ascii[16] = 0; | 337 | ascii[16] = 0; |
337 | 338 | ||
338 | for (i = 0; i < length; i++) { | 339 | for (i = 0; i < length; i++) { |
339 | if (newline) { | 340 | if (newline) { |
340 | printk(KERN_ERR "%8s 0x%p: ", text, addr + i); | 341 | printk(KERN_ERR "%8s 0x%p: ", text, addr + i); |
341 | newline = 0; | 342 | newline = 0; |
342 | } | 343 | } |
343 | printk(KERN_CONT " %02x", addr[i]); | 344 | printk(KERN_CONT " %02x", addr[i]); |
344 | offset = i % 16; | 345 | offset = i % 16; |
345 | ascii[offset] = isgraph(addr[i]) ? addr[i] : '.'; | 346 | ascii[offset] = isgraph(addr[i]) ? addr[i] : '.'; |
346 | if (offset == 15) { | 347 | if (offset == 15) { |
347 | printk(KERN_CONT " %s\n", ascii); | 348 | printk(KERN_CONT " %s\n", ascii); |
348 | newline = 1; | 349 | newline = 1; |
349 | } | 350 | } |
350 | } | 351 | } |
351 | if (!newline) { | 352 | if (!newline) { |
352 | i %= 16; | 353 | i %= 16; |
353 | while (i < 16) { | 354 | while (i < 16) { |
354 | printk(KERN_CONT " "); | 355 | printk(KERN_CONT " "); |
355 | ascii[i] = ' '; | 356 | ascii[i] = ' '; |
356 | i++; | 357 | i++; |
357 | } | 358 | } |
358 | printk(KERN_CONT " %s\n", ascii); | 359 | printk(KERN_CONT " %s\n", ascii); |
359 | } | 360 | } |
360 | } | 361 | } |
361 | 362 | ||
362 | static struct track *get_track(struct kmem_cache *s, void *object, | 363 | static struct track *get_track(struct kmem_cache *s, void *object, |
363 | enum track_item alloc) | 364 | enum track_item alloc) |
364 | { | 365 | { |
365 | struct track *p; | 366 | struct track *p; |
366 | 367 | ||
367 | if (s->offset) | 368 | if (s->offset) |
368 | p = object + s->offset + sizeof(void *); | 369 | p = object + s->offset + sizeof(void *); |
369 | else | 370 | else |
370 | p = object + s->inuse; | 371 | p = object + s->inuse; |
371 | 372 | ||
372 | return p + alloc; | 373 | return p + alloc; |
373 | } | 374 | } |
374 | 375 | ||
375 | static void set_track(struct kmem_cache *s, void *object, | 376 | static void set_track(struct kmem_cache *s, void *object, |
376 | enum track_item alloc, unsigned long addr) | 377 | enum track_item alloc, unsigned long addr) |
377 | { | 378 | { |
378 | struct track *p = get_track(s, object, alloc); | 379 | struct track *p = get_track(s, object, alloc); |
379 | 380 | ||
380 | if (addr) { | 381 | if (addr) { |
381 | p->addr = addr; | 382 | p->addr = addr; |
382 | p->cpu = smp_processor_id(); | 383 | p->cpu = smp_processor_id(); |
383 | p->pid = current->pid; | 384 | p->pid = current->pid; |
384 | p->when = jiffies; | 385 | p->when = jiffies; |
385 | } else | 386 | } else |
386 | memset(p, 0, sizeof(struct track)); | 387 | memset(p, 0, sizeof(struct track)); |
387 | } | 388 | } |
388 | 389 | ||
389 | static void init_tracking(struct kmem_cache *s, void *object) | 390 | static void init_tracking(struct kmem_cache *s, void *object) |
390 | { | 391 | { |
391 | if (!(s->flags & SLAB_STORE_USER)) | 392 | if (!(s->flags & SLAB_STORE_USER)) |
392 | return; | 393 | return; |
393 | 394 | ||
394 | set_track(s, object, TRACK_FREE, 0UL); | 395 | set_track(s, object, TRACK_FREE, 0UL); |
395 | set_track(s, object, TRACK_ALLOC, 0UL); | 396 | set_track(s, object, TRACK_ALLOC, 0UL); |
396 | } | 397 | } |
397 | 398 | ||
398 | static void print_track(const char *s, struct track *t) | 399 | static void print_track(const char *s, struct track *t) |
399 | { | 400 | { |
400 | if (!t->addr) | 401 | if (!t->addr) |
401 | return; | 402 | return; |
402 | 403 | ||
403 | printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n", | 404 | printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n", |
404 | s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); | 405 | s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); |
405 | } | 406 | } |
406 | 407 | ||
407 | static void print_tracking(struct kmem_cache *s, void *object) | 408 | static void print_tracking(struct kmem_cache *s, void *object) |
408 | { | 409 | { |
409 | if (!(s->flags & SLAB_STORE_USER)) | 410 | if (!(s->flags & SLAB_STORE_USER)) |
410 | return; | 411 | return; |
411 | 412 | ||
412 | print_track("Allocated", get_track(s, object, TRACK_ALLOC)); | 413 | print_track("Allocated", get_track(s, object, TRACK_ALLOC)); |
413 | print_track("Freed", get_track(s, object, TRACK_FREE)); | 414 | print_track("Freed", get_track(s, object, TRACK_FREE)); |
414 | } | 415 | } |
415 | 416 | ||
416 | static void print_page_info(struct page *page) | 417 | static void print_page_info(struct page *page) |
417 | { | 418 | { |
418 | printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", | 419 | printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", |
419 | page, page->objects, page->inuse, page->freelist, page->flags); | 420 | page, page->objects, page->inuse, page->freelist, page->flags); |
420 | 421 | ||
421 | } | 422 | } |
422 | 423 | ||
423 | static void slab_bug(struct kmem_cache *s, char *fmt, ...) | 424 | static void slab_bug(struct kmem_cache *s, char *fmt, ...) |
424 | { | 425 | { |
425 | va_list args; | 426 | va_list args; |
426 | char buf[100]; | 427 | char buf[100]; |
427 | 428 | ||
428 | va_start(args, fmt); | 429 | va_start(args, fmt); |
429 | vsnprintf(buf, sizeof(buf), fmt, args); | 430 | vsnprintf(buf, sizeof(buf), fmt, args); |
430 | va_end(args); | 431 | va_end(args); |
431 | printk(KERN_ERR "========================================" | 432 | printk(KERN_ERR "========================================" |
432 | "=====================================\n"); | 433 | "=====================================\n"); |
433 | printk(KERN_ERR "BUG %s: %s\n", s->name, buf); | 434 | printk(KERN_ERR "BUG %s: %s\n", s->name, buf); |
434 | printk(KERN_ERR "----------------------------------------" | 435 | printk(KERN_ERR "----------------------------------------" |
435 | "-------------------------------------\n\n"); | 436 | "-------------------------------------\n\n"); |
436 | } | 437 | } |
437 | 438 | ||
438 | static void slab_fix(struct kmem_cache *s, char *fmt, ...) | 439 | static void slab_fix(struct kmem_cache *s, char *fmt, ...) |
439 | { | 440 | { |
440 | va_list args; | 441 | va_list args; |
441 | char buf[100]; | 442 | char buf[100]; |
442 | 443 | ||
443 | va_start(args, fmt); | 444 | va_start(args, fmt); |
444 | vsnprintf(buf, sizeof(buf), fmt, args); | 445 | vsnprintf(buf, sizeof(buf), fmt, args); |
445 | va_end(args); | 446 | va_end(args); |
446 | printk(KERN_ERR "FIX %s: %s\n", s->name, buf); | 447 | printk(KERN_ERR "FIX %s: %s\n", s->name, buf); |
447 | } | 448 | } |
448 | 449 | ||
449 | static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) | 450 | static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) |
450 | { | 451 | { |
451 | unsigned int off; /* Offset of last byte */ | 452 | unsigned int off; /* Offset of last byte */ |
452 | u8 *addr = page_address(page); | 453 | u8 *addr = page_address(page); |
453 | 454 | ||
454 | print_tracking(s, p); | 455 | print_tracking(s, p); |
455 | 456 | ||
456 | print_page_info(page); | 457 | print_page_info(page); |
457 | 458 | ||
458 | printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", | 459 | printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", |
459 | p, p - addr, get_freepointer(s, p)); | 460 | p, p - addr, get_freepointer(s, p)); |
460 | 461 | ||
461 | if (p > addr + 16) | 462 | if (p > addr + 16) |
462 | print_section("Bytes b4", p - 16, 16); | 463 | print_section("Bytes b4", p - 16, 16); |
463 | 464 | ||
464 | print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE)); | 465 | print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE)); |
465 | 466 | ||
466 | if (s->flags & SLAB_RED_ZONE) | 467 | if (s->flags & SLAB_RED_ZONE) |
467 | print_section("Redzone", p + s->objsize, | 468 | print_section("Redzone", p + s->objsize, |
468 | s->inuse - s->objsize); | 469 | s->inuse - s->objsize); |
469 | 470 | ||
470 | if (s->offset) | 471 | if (s->offset) |
471 | off = s->offset + sizeof(void *); | 472 | off = s->offset + sizeof(void *); |
472 | else | 473 | else |
473 | off = s->inuse; | 474 | off = s->inuse; |
474 | 475 | ||
475 | if (s->flags & SLAB_STORE_USER) | 476 | if (s->flags & SLAB_STORE_USER) |
476 | off += 2 * sizeof(struct track); | 477 | off += 2 * sizeof(struct track); |
477 | 478 | ||
478 | if (off != s->size) | 479 | if (off != s->size) |
479 | /* Beginning of the filler is the free pointer */ | 480 | /* Beginning of the filler is the free pointer */ |
480 | print_section("Padding", p + off, s->size - off); | 481 | print_section("Padding", p + off, s->size - off); |
481 | 482 | ||
482 | dump_stack(); | 483 | dump_stack(); |
483 | } | 484 | } |
484 | 485 | ||
485 | static void object_err(struct kmem_cache *s, struct page *page, | 486 | static void object_err(struct kmem_cache *s, struct page *page, |
486 | u8 *object, char *reason) | 487 | u8 *object, char *reason) |
487 | { | 488 | { |
488 | slab_bug(s, "%s", reason); | 489 | slab_bug(s, "%s", reason); |
489 | print_trailer(s, page, object); | 490 | print_trailer(s, page, object); |
490 | } | 491 | } |
491 | 492 | ||
492 | static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...) | 493 | static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...) |
493 | { | 494 | { |
494 | va_list args; | 495 | va_list args; |
495 | char buf[100]; | 496 | char buf[100]; |
496 | 497 | ||
497 | va_start(args, fmt); | 498 | va_start(args, fmt); |
498 | vsnprintf(buf, sizeof(buf), fmt, args); | 499 | vsnprintf(buf, sizeof(buf), fmt, args); |
499 | va_end(args); | 500 | va_end(args); |
500 | slab_bug(s, "%s", buf); | 501 | slab_bug(s, "%s", buf); |
501 | print_page_info(page); | 502 | print_page_info(page); |
502 | dump_stack(); | 503 | dump_stack(); |
503 | } | 504 | } |
504 | 505 | ||
505 | static void init_object(struct kmem_cache *s, void *object, int active) | 506 | static void init_object(struct kmem_cache *s, void *object, int active) |
506 | { | 507 | { |
507 | u8 *p = object; | 508 | u8 *p = object; |
508 | 509 | ||
509 | if (s->flags & __OBJECT_POISON) { | 510 | if (s->flags & __OBJECT_POISON) { |
510 | memset(p, POISON_FREE, s->objsize - 1); | 511 | memset(p, POISON_FREE, s->objsize - 1); |
511 | p[s->objsize - 1] = POISON_END; | 512 | p[s->objsize - 1] = POISON_END; |
512 | } | 513 | } |
513 | 514 | ||
514 | if (s->flags & SLAB_RED_ZONE) | 515 | if (s->flags & SLAB_RED_ZONE) |
515 | memset(p + s->objsize, | 516 | memset(p + s->objsize, |
516 | active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE, | 517 | active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE, |
517 | s->inuse - s->objsize); | 518 | s->inuse - s->objsize); |
518 | } | 519 | } |
519 | 520 | ||
520 | static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes) | 521 | static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes) |
521 | { | 522 | { |
522 | while (bytes) { | 523 | while (bytes) { |
523 | if (*start != (u8)value) | 524 | if (*start != (u8)value) |
524 | return start; | 525 | return start; |
525 | start++; | 526 | start++; |
526 | bytes--; | 527 | bytes--; |
527 | } | 528 | } |
528 | return NULL; | 529 | return NULL; |
529 | } | 530 | } |
530 | 531 | ||
531 | static void restore_bytes(struct kmem_cache *s, char *message, u8 data, | 532 | static void restore_bytes(struct kmem_cache *s, char *message, u8 data, |
532 | void *from, void *to) | 533 | void *from, void *to) |
533 | { | 534 | { |
534 | slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); | 535 | slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); |
535 | memset(from, data, to - from); | 536 | memset(from, data, to - from); |
536 | } | 537 | } |
537 | 538 | ||
538 | static int check_bytes_and_report(struct kmem_cache *s, struct page *page, | 539 | static int check_bytes_and_report(struct kmem_cache *s, struct page *page, |
539 | u8 *object, char *what, | 540 | u8 *object, char *what, |
540 | u8 *start, unsigned int value, unsigned int bytes) | 541 | u8 *start, unsigned int value, unsigned int bytes) |
541 | { | 542 | { |
542 | u8 *fault; | 543 | u8 *fault; |
543 | u8 *end; | 544 | u8 *end; |
544 | 545 | ||
545 | fault = check_bytes(start, value, bytes); | 546 | fault = check_bytes(start, value, bytes); |
546 | if (!fault) | 547 | if (!fault) |
547 | return 1; | 548 | return 1; |
548 | 549 | ||
549 | end = start + bytes; | 550 | end = start + bytes; |
550 | while (end > fault && end[-1] == value) | 551 | while (end > fault && end[-1] == value) |
551 | end--; | 552 | end--; |
552 | 553 | ||
553 | slab_bug(s, "%s overwritten", what); | 554 | slab_bug(s, "%s overwritten", what); |
554 | printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", | 555 | printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", |
555 | fault, end - 1, fault[0], value); | 556 | fault, end - 1, fault[0], value); |
556 | print_trailer(s, page, object); | 557 | print_trailer(s, page, object); |
557 | 558 | ||
558 | restore_bytes(s, what, value, fault, end); | 559 | restore_bytes(s, what, value, fault, end); |
559 | return 0; | 560 | return 0; |
560 | } | 561 | } |
561 | 562 | ||
562 | /* | 563 | /* |
563 | * Object layout: | 564 | * Object layout: |
564 | * | 565 | * |
565 | * object address | 566 | * object address |
566 | * Bytes of the object to be managed. | 567 | * Bytes of the object to be managed. |
567 | * If the freepointer may overlay the object then the free | 568 | * If the freepointer may overlay the object then the free |
568 | * pointer is the first word of the object. | 569 | * pointer is the first word of the object. |
569 | * | 570 | * |
570 | * Poisoning uses 0x6b (POISON_FREE) and the last byte is | 571 | * Poisoning uses 0x6b (POISON_FREE) and the last byte is |
571 | * 0xa5 (POISON_END) | 572 | * 0xa5 (POISON_END) |
572 | * | 573 | * |
573 | * object + s->objsize | 574 | * object + s->objsize |
574 | * Padding to reach word boundary. This is also used for Redzoning. | 575 | * Padding to reach word boundary. This is also used for Redzoning. |
575 | * Padding is extended by another word if Redzoning is enabled and | 576 | * Padding is extended by another word if Redzoning is enabled and |
576 | * objsize == inuse. | 577 | * objsize == inuse. |
577 | * | 578 | * |
578 | * We fill with 0xbb (RED_INACTIVE) for inactive objects and with | 579 | * We fill with 0xbb (RED_INACTIVE) for inactive objects and with |
579 | * 0xcc (RED_ACTIVE) for objects in use. | 580 | * 0xcc (RED_ACTIVE) for objects in use. |
580 | * | 581 | * |
581 | * object + s->inuse | 582 | * object + s->inuse |
582 | * Meta data starts here. | 583 | * Meta data starts here. |
583 | * | 584 | * |
584 | * A. Free pointer (if we cannot overwrite object on free) | 585 | * A. Free pointer (if we cannot overwrite object on free) |
585 | * B. Tracking data for SLAB_STORE_USER | 586 | * B. Tracking data for SLAB_STORE_USER |
586 | * C. Padding to reach required alignment boundary or at mininum | 587 | * C. Padding to reach required alignment boundary or at mininum |
587 | * one word if debugging is on to be able to detect writes | 588 | * one word if debugging is on to be able to detect writes |
588 | * before the word boundary. | 589 | * before the word boundary. |
589 | * | 590 | * |
590 | * Padding is done using 0x5a (POISON_INUSE) | 591 | * Padding is done using 0x5a (POISON_INUSE) |
591 | * | 592 | * |
592 | * object + s->size | 593 | * object + s->size |
593 | * Nothing is used beyond s->size. | 594 | * Nothing is used beyond s->size. |
594 | * | 595 | * |
595 | * If slabcaches are merged then the objsize and inuse boundaries are mostly | 596 | * If slabcaches are merged then the objsize and inuse boundaries are mostly |
596 | * ignored. And therefore no slab options that rely on these boundaries | 597 | * ignored. And therefore no slab options that rely on these boundaries |
597 | * may be used with merged slabcaches. | 598 | * may be used with merged slabcaches. |
598 | */ | 599 | */ |
599 | 600 | ||
600 | static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) | 601 | static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) |
601 | { | 602 | { |
602 | unsigned long off = s->inuse; /* The end of info */ | 603 | unsigned long off = s->inuse; /* The end of info */ |
603 | 604 | ||
604 | if (s->offset) | 605 | if (s->offset) |
605 | /* Freepointer is placed after the object. */ | 606 | /* Freepointer is placed after the object. */ |
606 | off += sizeof(void *); | 607 | off += sizeof(void *); |
607 | 608 | ||
608 | if (s->flags & SLAB_STORE_USER) | 609 | if (s->flags & SLAB_STORE_USER) |
609 | /* We also have user information there */ | 610 | /* We also have user information there */ |
610 | off += 2 * sizeof(struct track); | 611 | off += 2 * sizeof(struct track); |
611 | 612 | ||
612 | if (s->size == off) | 613 | if (s->size == off) |
613 | return 1; | 614 | return 1; |
614 | 615 | ||
615 | return check_bytes_and_report(s, page, p, "Object padding", | 616 | return check_bytes_and_report(s, page, p, "Object padding", |
616 | p + off, POISON_INUSE, s->size - off); | 617 | p + off, POISON_INUSE, s->size - off); |
617 | } | 618 | } |
618 | 619 | ||
619 | /* Check the pad bytes at the end of a slab page */ | 620 | /* Check the pad bytes at the end of a slab page */ |
620 | static int slab_pad_check(struct kmem_cache *s, struct page *page) | 621 | static int slab_pad_check(struct kmem_cache *s, struct page *page) |
621 | { | 622 | { |
622 | u8 *start; | 623 | u8 *start; |
623 | u8 *fault; | 624 | u8 *fault; |
624 | u8 *end; | 625 | u8 *end; |
625 | int length; | 626 | int length; |
626 | int remainder; | 627 | int remainder; |
627 | 628 | ||
628 | if (!(s->flags & SLAB_POISON)) | 629 | if (!(s->flags & SLAB_POISON)) |
629 | return 1; | 630 | return 1; |
630 | 631 | ||
631 | start = page_address(page); | 632 | start = page_address(page); |
632 | length = (PAGE_SIZE << compound_order(page)); | 633 | length = (PAGE_SIZE << compound_order(page)); |
633 | end = start + length; | 634 | end = start + length; |
634 | remainder = length % s->size; | 635 | remainder = length % s->size; |
635 | if (!remainder) | 636 | if (!remainder) |
636 | return 1; | 637 | return 1; |
637 | 638 | ||
638 | fault = check_bytes(end - remainder, POISON_INUSE, remainder); | 639 | fault = check_bytes(end - remainder, POISON_INUSE, remainder); |
639 | if (!fault) | 640 | if (!fault) |
640 | return 1; | 641 | return 1; |
641 | while (end > fault && end[-1] == POISON_INUSE) | 642 | while (end > fault && end[-1] == POISON_INUSE) |
642 | end--; | 643 | end--; |
643 | 644 | ||
644 | slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); | 645 | slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); |
645 | print_section("Padding", end - remainder, remainder); | 646 | print_section("Padding", end - remainder, remainder); |
646 | 647 | ||
647 | restore_bytes(s, "slab padding", POISON_INUSE, start, end); | 648 | restore_bytes(s, "slab padding", POISON_INUSE, start, end); |
648 | return 0; | 649 | return 0; |
649 | } | 650 | } |
650 | 651 | ||
651 | static int check_object(struct kmem_cache *s, struct page *page, | 652 | static int check_object(struct kmem_cache *s, struct page *page, |
652 | void *object, int active) | 653 | void *object, int active) |
653 | { | 654 | { |
654 | u8 *p = object; | 655 | u8 *p = object; |
655 | u8 *endobject = object + s->objsize; | 656 | u8 *endobject = object + s->objsize; |
656 | 657 | ||
657 | if (s->flags & SLAB_RED_ZONE) { | 658 | if (s->flags & SLAB_RED_ZONE) { |
658 | unsigned int red = | 659 | unsigned int red = |
659 | active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE; | 660 | active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE; |
660 | 661 | ||
661 | if (!check_bytes_and_report(s, page, object, "Redzone", | 662 | if (!check_bytes_and_report(s, page, object, "Redzone", |
662 | endobject, red, s->inuse - s->objsize)) | 663 | endobject, red, s->inuse - s->objsize)) |
663 | return 0; | 664 | return 0; |
664 | } else { | 665 | } else { |
665 | if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) { | 666 | if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) { |
666 | check_bytes_and_report(s, page, p, "Alignment padding", | 667 | check_bytes_and_report(s, page, p, "Alignment padding", |
667 | endobject, POISON_INUSE, s->inuse - s->objsize); | 668 | endobject, POISON_INUSE, s->inuse - s->objsize); |
668 | } | 669 | } |
669 | } | 670 | } |
670 | 671 | ||
671 | if (s->flags & SLAB_POISON) { | 672 | if (s->flags & SLAB_POISON) { |
672 | if (!active && (s->flags & __OBJECT_POISON) && | 673 | if (!active && (s->flags & __OBJECT_POISON) && |
673 | (!check_bytes_and_report(s, page, p, "Poison", p, | 674 | (!check_bytes_and_report(s, page, p, "Poison", p, |
674 | POISON_FREE, s->objsize - 1) || | 675 | POISON_FREE, s->objsize - 1) || |
675 | !check_bytes_and_report(s, page, p, "Poison", | 676 | !check_bytes_and_report(s, page, p, "Poison", |
676 | p + s->objsize - 1, POISON_END, 1))) | 677 | p + s->objsize - 1, POISON_END, 1))) |
677 | return 0; | 678 | return 0; |
678 | /* | 679 | /* |
679 | * check_pad_bytes cleans up on its own. | 680 | * check_pad_bytes cleans up on its own. |
680 | */ | 681 | */ |
681 | check_pad_bytes(s, page, p); | 682 | check_pad_bytes(s, page, p); |
682 | } | 683 | } |
683 | 684 | ||
684 | if (!s->offset && active) | 685 | if (!s->offset && active) |
685 | /* | 686 | /* |
686 | * Object and freepointer overlap. Cannot check | 687 | * Object and freepointer overlap. Cannot check |
687 | * freepointer while object is allocated. | 688 | * freepointer while object is allocated. |
688 | */ | 689 | */ |
689 | return 1; | 690 | return 1; |
690 | 691 | ||
691 | /* Check free pointer validity */ | 692 | /* Check free pointer validity */ |
692 | if (!check_valid_pointer(s, page, get_freepointer(s, p))) { | 693 | if (!check_valid_pointer(s, page, get_freepointer(s, p))) { |
693 | object_err(s, page, p, "Freepointer corrupt"); | 694 | object_err(s, page, p, "Freepointer corrupt"); |
694 | /* | 695 | /* |
695 | * No choice but to zap it and thus lose the remainder | 696 | * No choice but to zap it and thus lose the remainder |
696 | * of the free objects in this slab. May cause | 697 | * of the free objects in this slab. May cause |
697 | * another error because the object count is now wrong. | 698 | * another error because the object count is now wrong. |
698 | */ | 699 | */ |
699 | set_freepointer(s, p, NULL); | 700 | set_freepointer(s, p, NULL); |
700 | return 0; | 701 | return 0; |
701 | } | 702 | } |
702 | return 1; | 703 | return 1; |
703 | } | 704 | } |
704 | 705 | ||
705 | static int check_slab(struct kmem_cache *s, struct page *page) | 706 | static int check_slab(struct kmem_cache *s, struct page *page) |
706 | { | 707 | { |
707 | int maxobj; | 708 | int maxobj; |
708 | 709 | ||
709 | VM_BUG_ON(!irqs_disabled()); | 710 | VM_BUG_ON(!irqs_disabled()); |
710 | 711 | ||
711 | if (!PageSlab(page)) { | 712 | if (!PageSlab(page)) { |
712 | slab_err(s, page, "Not a valid slab page"); | 713 | slab_err(s, page, "Not a valid slab page"); |
713 | return 0; | 714 | return 0; |
714 | } | 715 | } |
715 | 716 | ||
716 | maxobj = (PAGE_SIZE << compound_order(page)) / s->size; | 717 | maxobj = (PAGE_SIZE << compound_order(page)) / s->size; |
717 | if (page->objects > maxobj) { | 718 | if (page->objects > maxobj) { |
718 | slab_err(s, page, "objects %u > max %u", | 719 | slab_err(s, page, "objects %u > max %u", |
719 | s->name, page->objects, maxobj); | 720 | s->name, page->objects, maxobj); |
720 | return 0; | 721 | return 0; |
721 | } | 722 | } |
722 | if (page->inuse > page->objects) { | 723 | if (page->inuse > page->objects) { |
723 | slab_err(s, page, "inuse %u > max %u", | 724 | slab_err(s, page, "inuse %u > max %u", |
724 | s->name, page->inuse, page->objects); | 725 | s->name, page->inuse, page->objects); |
725 | return 0; | 726 | return 0; |
726 | } | 727 | } |
727 | /* Slab_pad_check fixes things up after itself */ | 728 | /* Slab_pad_check fixes things up after itself */ |
728 | slab_pad_check(s, page); | 729 | slab_pad_check(s, page); |
729 | return 1; | 730 | return 1; |
730 | } | 731 | } |
731 | 732 | ||
732 | /* | 733 | /* |
733 | * Determine if a certain object on a page is on the freelist. Must hold the | 734 | * Determine if a certain object on a page is on the freelist. Must hold the |
734 | * slab lock to guarantee that the chains are in a consistent state. | 735 | * slab lock to guarantee that the chains are in a consistent state. |
735 | */ | 736 | */ |
736 | static int on_freelist(struct kmem_cache *s, struct page *page, void *search) | 737 | static int on_freelist(struct kmem_cache *s, struct page *page, void *search) |
737 | { | 738 | { |
738 | int nr = 0; | 739 | int nr = 0; |
739 | void *fp = page->freelist; | 740 | void *fp = page->freelist; |
740 | void *object = NULL; | 741 | void *object = NULL; |
741 | unsigned long max_objects; | 742 | unsigned long max_objects; |
742 | 743 | ||
743 | while (fp && nr <= page->objects) { | 744 | while (fp && nr <= page->objects) { |
744 | if (fp == search) | 745 | if (fp == search) |
745 | return 1; | 746 | return 1; |
746 | if (!check_valid_pointer(s, page, fp)) { | 747 | if (!check_valid_pointer(s, page, fp)) { |
747 | if (object) { | 748 | if (object) { |
748 | object_err(s, page, object, | 749 | object_err(s, page, object, |
749 | "Freechain corrupt"); | 750 | "Freechain corrupt"); |
750 | set_freepointer(s, object, NULL); | 751 | set_freepointer(s, object, NULL); |
751 | break; | 752 | break; |
752 | } else { | 753 | } else { |
753 | slab_err(s, page, "Freepointer corrupt"); | 754 | slab_err(s, page, "Freepointer corrupt"); |
754 | page->freelist = NULL; | 755 | page->freelist = NULL; |
755 | page->inuse = page->objects; | 756 | page->inuse = page->objects; |
756 | slab_fix(s, "Freelist cleared"); | 757 | slab_fix(s, "Freelist cleared"); |
757 | return 0; | 758 | return 0; |
758 | } | 759 | } |
759 | break; | 760 | break; |
760 | } | 761 | } |
761 | object = fp; | 762 | object = fp; |
762 | fp = get_freepointer(s, object); | 763 | fp = get_freepointer(s, object); |
763 | nr++; | 764 | nr++; |
764 | } | 765 | } |
765 | 766 | ||
766 | max_objects = (PAGE_SIZE << compound_order(page)) / s->size; | 767 | max_objects = (PAGE_SIZE << compound_order(page)) / s->size; |
767 | if (max_objects > MAX_OBJS_PER_PAGE) | 768 | if (max_objects > MAX_OBJS_PER_PAGE) |
768 | max_objects = MAX_OBJS_PER_PAGE; | 769 | max_objects = MAX_OBJS_PER_PAGE; |
769 | 770 | ||
770 | if (page->objects != max_objects) { | 771 | if (page->objects != max_objects) { |
771 | slab_err(s, page, "Wrong number of objects. Found %d but " | 772 | slab_err(s, page, "Wrong number of objects. Found %d but " |
772 | "should be %d", page->objects, max_objects); | 773 | "should be %d", page->objects, max_objects); |
773 | page->objects = max_objects; | 774 | page->objects = max_objects; |
774 | slab_fix(s, "Number of objects adjusted."); | 775 | slab_fix(s, "Number of objects adjusted."); |
775 | } | 776 | } |
776 | if (page->inuse != page->objects - nr) { | 777 | if (page->inuse != page->objects - nr) { |
777 | slab_err(s, page, "Wrong object count. Counter is %d but " | 778 | slab_err(s, page, "Wrong object count. Counter is %d but " |
778 | "counted were %d", page->inuse, page->objects - nr); | 779 | "counted were %d", page->inuse, page->objects - nr); |
779 | page->inuse = page->objects - nr; | 780 | page->inuse = page->objects - nr; |
780 | slab_fix(s, "Object count adjusted."); | 781 | slab_fix(s, "Object count adjusted."); |
781 | } | 782 | } |
782 | return search == NULL; | 783 | return search == NULL; |
783 | } | 784 | } |
784 | 785 | ||
785 | static void trace(struct kmem_cache *s, struct page *page, void *object, | 786 | static void trace(struct kmem_cache *s, struct page *page, void *object, |
786 | int alloc) | 787 | int alloc) |
787 | { | 788 | { |
788 | if (s->flags & SLAB_TRACE) { | 789 | if (s->flags & SLAB_TRACE) { |
789 | printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n", | 790 | printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n", |
790 | s->name, | 791 | s->name, |
791 | alloc ? "alloc" : "free", | 792 | alloc ? "alloc" : "free", |
792 | object, page->inuse, | 793 | object, page->inuse, |
793 | page->freelist); | 794 | page->freelist); |
794 | 795 | ||
795 | if (!alloc) | 796 | if (!alloc) |
796 | print_section("Object", (void *)object, s->objsize); | 797 | print_section("Object", (void *)object, s->objsize); |
797 | 798 | ||
798 | dump_stack(); | 799 | dump_stack(); |
799 | } | 800 | } |
800 | } | 801 | } |
801 | 802 | ||
802 | /* | 803 | /* |
803 | * Tracking of fully allocated slabs for debugging purposes. | 804 | * Tracking of fully allocated slabs for debugging purposes. |
804 | */ | 805 | */ |
805 | static void add_full(struct kmem_cache_node *n, struct page *page) | 806 | static void add_full(struct kmem_cache_node *n, struct page *page) |
806 | { | 807 | { |
807 | spin_lock(&n->list_lock); | 808 | spin_lock(&n->list_lock); |
808 | list_add(&page->lru, &n->full); | 809 | list_add(&page->lru, &n->full); |
809 | spin_unlock(&n->list_lock); | 810 | spin_unlock(&n->list_lock); |
810 | } | 811 | } |
811 | 812 | ||
812 | static void remove_full(struct kmem_cache *s, struct page *page) | 813 | static void remove_full(struct kmem_cache *s, struct page *page) |
813 | { | 814 | { |
814 | struct kmem_cache_node *n; | 815 | struct kmem_cache_node *n; |
815 | 816 | ||
816 | if (!(s->flags & SLAB_STORE_USER)) | 817 | if (!(s->flags & SLAB_STORE_USER)) |
817 | return; | 818 | return; |
818 | 819 | ||
819 | n = get_node(s, page_to_nid(page)); | 820 | n = get_node(s, page_to_nid(page)); |
820 | 821 | ||
821 | spin_lock(&n->list_lock); | 822 | spin_lock(&n->list_lock); |
822 | list_del(&page->lru); | 823 | list_del(&page->lru); |
823 | spin_unlock(&n->list_lock); | 824 | spin_unlock(&n->list_lock); |
824 | } | 825 | } |
825 | 826 | ||
826 | /* Tracking of the number of slabs for debugging purposes */ | 827 | /* Tracking of the number of slabs for debugging purposes */ |
827 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) | 828 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) |
828 | { | 829 | { |
829 | struct kmem_cache_node *n = get_node(s, node); | 830 | struct kmem_cache_node *n = get_node(s, node); |
830 | 831 | ||
831 | return atomic_long_read(&n->nr_slabs); | 832 | return atomic_long_read(&n->nr_slabs); |
832 | } | 833 | } |
833 | 834 | ||
834 | static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) | 835 | static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) |
835 | { | 836 | { |
836 | struct kmem_cache_node *n = get_node(s, node); | 837 | struct kmem_cache_node *n = get_node(s, node); |
837 | 838 | ||
838 | /* | 839 | /* |
839 | * May be called early in order to allocate a slab for the | 840 | * May be called early in order to allocate a slab for the |
840 | * kmem_cache_node structure. Solve the chicken-egg | 841 | * kmem_cache_node structure. Solve the chicken-egg |
841 | * dilemma by deferring the increment of the count during | 842 | * dilemma by deferring the increment of the count during |
842 | * bootstrap (see early_kmem_cache_node_alloc). | 843 | * bootstrap (see early_kmem_cache_node_alloc). |
843 | */ | 844 | */ |
844 | if (!NUMA_BUILD || n) { | 845 | if (!NUMA_BUILD || n) { |
845 | atomic_long_inc(&n->nr_slabs); | 846 | atomic_long_inc(&n->nr_slabs); |
846 | atomic_long_add(objects, &n->total_objects); | 847 | atomic_long_add(objects, &n->total_objects); |
847 | } | 848 | } |
848 | } | 849 | } |
849 | static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) | 850 | static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) |
850 | { | 851 | { |
851 | struct kmem_cache_node *n = get_node(s, node); | 852 | struct kmem_cache_node *n = get_node(s, node); |
852 | 853 | ||
853 | atomic_long_dec(&n->nr_slabs); | 854 | atomic_long_dec(&n->nr_slabs); |
854 | atomic_long_sub(objects, &n->total_objects); | 855 | atomic_long_sub(objects, &n->total_objects); |
855 | } | 856 | } |
856 | 857 | ||
857 | /* Object debug checks for alloc/free paths */ | 858 | /* Object debug checks for alloc/free paths */ |
858 | static void setup_object_debug(struct kmem_cache *s, struct page *page, | 859 | static void setup_object_debug(struct kmem_cache *s, struct page *page, |
859 | void *object) | 860 | void *object) |
860 | { | 861 | { |
861 | if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) | 862 | if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) |
862 | return; | 863 | return; |
863 | 864 | ||
864 | init_object(s, object, 0); | 865 | init_object(s, object, 0); |
865 | init_tracking(s, object); | 866 | init_tracking(s, object); |
866 | } | 867 | } |
867 | 868 | ||
868 | static int alloc_debug_processing(struct kmem_cache *s, struct page *page, | 869 | static int alloc_debug_processing(struct kmem_cache *s, struct page *page, |
869 | void *object, unsigned long addr) | 870 | void *object, unsigned long addr) |
870 | { | 871 | { |
871 | if (!check_slab(s, page)) | 872 | if (!check_slab(s, page)) |
872 | goto bad; | 873 | goto bad; |
873 | 874 | ||
874 | if (!on_freelist(s, page, object)) { | 875 | if (!on_freelist(s, page, object)) { |
875 | object_err(s, page, object, "Object already allocated"); | 876 | object_err(s, page, object, "Object already allocated"); |
876 | goto bad; | 877 | goto bad; |
877 | } | 878 | } |
878 | 879 | ||
879 | if (!check_valid_pointer(s, page, object)) { | 880 | if (!check_valid_pointer(s, page, object)) { |
880 | object_err(s, page, object, "Freelist Pointer check fails"); | 881 | object_err(s, page, object, "Freelist Pointer check fails"); |
881 | goto bad; | 882 | goto bad; |
882 | } | 883 | } |
883 | 884 | ||
884 | if (!check_object(s, page, object, 0)) | 885 | if (!check_object(s, page, object, 0)) |
885 | goto bad; | 886 | goto bad; |
886 | 887 | ||
887 | /* Success perform special debug activities for allocs */ | 888 | /* Success perform special debug activities for allocs */ |
888 | if (s->flags & SLAB_STORE_USER) | 889 | if (s->flags & SLAB_STORE_USER) |
889 | set_track(s, object, TRACK_ALLOC, addr); | 890 | set_track(s, object, TRACK_ALLOC, addr); |
890 | trace(s, page, object, 1); | 891 | trace(s, page, object, 1); |
891 | init_object(s, object, 1); | 892 | init_object(s, object, 1); |
892 | return 1; | 893 | return 1; |
893 | 894 | ||
894 | bad: | 895 | bad: |
895 | if (PageSlab(page)) { | 896 | if (PageSlab(page)) { |
896 | /* | 897 | /* |
897 | * If this is a slab page then lets do the best we can | 898 | * If this is a slab page then lets do the best we can |
898 | * to avoid issues in the future. Marking all objects | 899 | * to avoid issues in the future. Marking all objects |
899 | * as used avoids touching the remaining objects. | 900 | * as used avoids touching the remaining objects. |
900 | */ | 901 | */ |
901 | slab_fix(s, "Marking all objects used"); | 902 | slab_fix(s, "Marking all objects used"); |
902 | page->inuse = page->objects; | 903 | page->inuse = page->objects; |
903 | page->freelist = NULL; | 904 | page->freelist = NULL; |
904 | } | 905 | } |
905 | return 0; | 906 | return 0; |
906 | } | 907 | } |
907 | 908 | ||
908 | static int free_debug_processing(struct kmem_cache *s, struct page *page, | 909 | static int free_debug_processing(struct kmem_cache *s, struct page *page, |
909 | void *object, unsigned long addr) | 910 | void *object, unsigned long addr) |
910 | { | 911 | { |
911 | if (!check_slab(s, page)) | 912 | if (!check_slab(s, page)) |
912 | goto fail; | 913 | goto fail; |
913 | 914 | ||
914 | if (!check_valid_pointer(s, page, object)) { | 915 | if (!check_valid_pointer(s, page, object)) { |
915 | slab_err(s, page, "Invalid object pointer 0x%p", object); | 916 | slab_err(s, page, "Invalid object pointer 0x%p", object); |
916 | goto fail; | 917 | goto fail; |
917 | } | 918 | } |
918 | 919 | ||
919 | if (on_freelist(s, page, object)) { | 920 | if (on_freelist(s, page, object)) { |
920 | object_err(s, page, object, "Object already free"); | 921 | object_err(s, page, object, "Object already free"); |
921 | goto fail; | 922 | goto fail; |
922 | } | 923 | } |
923 | 924 | ||
924 | if (!check_object(s, page, object, 1)) | 925 | if (!check_object(s, page, object, 1)) |
925 | return 0; | 926 | return 0; |
926 | 927 | ||
927 | if (unlikely(s != page->slab)) { | 928 | if (unlikely(s != page->slab)) { |
928 | if (!PageSlab(page)) { | 929 | if (!PageSlab(page)) { |
929 | slab_err(s, page, "Attempt to free object(0x%p) " | 930 | slab_err(s, page, "Attempt to free object(0x%p) " |
930 | "outside of slab", object); | 931 | "outside of slab", object); |
931 | } else if (!page->slab) { | 932 | } else if (!page->slab) { |
932 | printk(KERN_ERR | 933 | printk(KERN_ERR |
933 | "SLUB <none>: no slab for object 0x%p.\n", | 934 | "SLUB <none>: no slab for object 0x%p.\n", |
934 | object); | 935 | object); |
935 | dump_stack(); | 936 | dump_stack(); |
936 | } else | 937 | } else |
937 | object_err(s, page, object, | 938 | object_err(s, page, object, |
938 | "page slab pointer corrupt."); | 939 | "page slab pointer corrupt."); |
939 | goto fail; | 940 | goto fail; |
940 | } | 941 | } |
941 | 942 | ||
942 | /* Special debug activities for freeing objects */ | 943 | /* Special debug activities for freeing objects */ |
943 | if (!PageSlubFrozen(page) && !page->freelist) | 944 | if (!PageSlubFrozen(page) && !page->freelist) |
944 | remove_full(s, page); | 945 | remove_full(s, page); |
945 | if (s->flags & SLAB_STORE_USER) | 946 | if (s->flags & SLAB_STORE_USER) |
946 | set_track(s, object, TRACK_FREE, addr); | 947 | set_track(s, object, TRACK_FREE, addr); |
947 | trace(s, page, object, 0); | 948 | trace(s, page, object, 0); |
948 | init_object(s, object, 0); | 949 | init_object(s, object, 0); |
949 | return 1; | 950 | return 1; |
950 | 951 | ||
951 | fail: | 952 | fail: |
952 | slab_fix(s, "Object at 0x%p not freed", object); | 953 | slab_fix(s, "Object at 0x%p not freed", object); |
953 | return 0; | 954 | return 0; |
954 | } | 955 | } |
955 | 956 | ||
956 | static int __init setup_slub_debug(char *str) | 957 | static int __init setup_slub_debug(char *str) |
957 | { | 958 | { |
958 | slub_debug = DEBUG_DEFAULT_FLAGS; | 959 | slub_debug = DEBUG_DEFAULT_FLAGS; |
959 | if (*str++ != '=' || !*str) | 960 | if (*str++ != '=' || !*str) |
960 | /* | 961 | /* |
961 | * No options specified. Switch on full debugging. | 962 | * No options specified. Switch on full debugging. |
962 | */ | 963 | */ |
963 | goto out; | 964 | goto out; |
964 | 965 | ||
965 | if (*str == ',') | 966 | if (*str == ',') |
966 | /* | 967 | /* |
967 | * No options but restriction on slabs. This means full | 968 | * No options but restriction on slabs. This means full |
968 | * debugging for slabs matching a pattern. | 969 | * debugging for slabs matching a pattern. |
969 | */ | 970 | */ |
970 | goto check_slabs; | 971 | goto check_slabs; |
971 | 972 | ||
972 | slub_debug = 0; | 973 | slub_debug = 0; |
973 | if (*str == '-') | 974 | if (*str == '-') |
974 | /* | 975 | /* |
975 | * Switch off all debugging measures. | 976 | * Switch off all debugging measures. |
976 | */ | 977 | */ |
977 | goto out; | 978 | goto out; |
978 | 979 | ||
979 | /* | 980 | /* |
980 | * Determine which debug features should be switched on | 981 | * Determine which debug features should be switched on |
981 | */ | 982 | */ |
982 | for (; *str && *str != ','; str++) { | 983 | for (; *str && *str != ','; str++) { |
983 | switch (tolower(*str)) { | 984 | switch (tolower(*str)) { |
984 | case 'f': | 985 | case 'f': |
985 | slub_debug |= SLAB_DEBUG_FREE; | 986 | slub_debug |= SLAB_DEBUG_FREE; |
986 | break; | 987 | break; |
987 | case 'z': | 988 | case 'z': |
988 | slub_debug |= SLAB_RED_ZONE; | 989 | slub_debug |= SLAB_RED_ZONE; |
989 | break; | 990 | break; |
990 | case 'p': | 991 | case 'p': |
991 | slub_debug |= SLAB_POISON; | 992 | slub_debug |= SLAB_POISON; |
992 | break; | 993 | break; |
993 | case 'u': | 994 | case 'u': |
994 | slub_debug |= SLAB_STORE_USER; | 995 | slub_debug |= SLAB_STORE_USER; |
995 | break; | 996 | break; |
996 | case 't': | 997 | case 't': |
997 | slub_debug |= SLAB_TRACE; | 998 | slub_debug |= SLAB_TRACE; |
998 | break; | 999 | break; |
999 | default: | 1000 | default: |
1000 | printk(KERN_ERR "slub_debug option '%c' " | 1001 | printk(KERN_ERR "slub_debug option '%c' " |
1001 | "unknown. skipped\n", *str); | 1002 | "unknown. skipped\n", *str); |
1002 | } | 1003 | } |
1003 | } | 1004 | } |
1004 | 1005 | ||
1005 | check_slabs: | 1006 | check_slabs: |
1006 | if (*str == ',') | 1007 | if (*str == ',') |
1007 | slub_debug_slabs = str + 1; | 1008 | slub_debug_slabs = str + 1; |
1008 | out: | 1009 | out: |
1009 | return 1; | 1010 | return 1; |
1010 | } | 1011 | } |
1011 | 1012 | ||
1012 | __setup("slub_debug", setup_slub_debug); | 1013 | __setup("slub_debug", setup_slub_debug); |
1013 | 1014 | ||
1014 | static unsigned long kmem_cache_flags(unsigned long objsize, | 1015 | static unsigned long kmem_cache_flags(unsigned long objsize, |
1015 | unsigned long flags, const char *name, | 1016 | unsigned long flags, const char *name, |
1016 | void (*ctor)(void *)) | 1017 | void (*ctor)(void *)) |
1017 | { | 1018 | { |
1018 | /* | 1019 | /* |
1019 | * Enable debugging if selected on the kernel commandline. | 1020 | * Enable debugging if selected on the kernel commandline. |
1020 | */ | 1021 | */ |
1021 | if (slub_debug && (!slub_debug_slabs || | 1022 | if (slub_debug && (!slub_debug_slabs || |
1022 | strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0)) | 1023 | strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0)) |
1023 | flags |= slub_debug; | 1024 | flags |= slub_debug; |
1024 | 1025 | ||
1025 | return flags; | 1026 | return flags; |
1026 | } | 1027 | } |
1027 | #else | 1028 | #else |
1028 | static inline void setup_object_debug(struct kmem_cache *s, | 1029 | static inline void setup_object_debug(struct kmem_cache *s, |
1029 | struct page *page, void *object) {} | 1030 | struct page *page, void *object) {} |
1030 | 1031 | ||
1031 | static inline int alloc_debug_processing(struct kmem_cache *s, | 1032 | static inline int alloc_debug_processing(struct kmem_cache *s, |
1032 | struct page *page, void *object, unsigned long addr) { return 0; } | 1033 | struct page *page, void *object, unsigned long addr) { return 0; } |
1033 | 1034 | ||
1034 | static inline int free_debug_processing(struct kmem_cache *s, | 1035 | static inline int free_debug_processing(struct kmem_cache *s, |
1035 | struct page *page, void *object, unsigned long addr) { return 0; } | 1036 | struct page *page, void *object, unsigned long addr) { return 0; } |
1036 | 1037 | ||
1037 | static inline int slab_pad_check(struct kmem_cache *s, struct page *page) | 1038 | static inline int slab_pad_check(struct kmem_cache *s, struct page *page) |
1038 | { return 1; } | 1039 | { return 1; } |
1039 | static inline int check_object(struct kmem_cache *s, struct page *page, | 1040 | static inline int check_object(struct kmem_cache *s, struct page *page, |
1040 | void *object, int active) { return 1; } | 1041 | void *object, int active) { return 1; } |
1041 | static inline void add_full(struct kmem_cache_node *n, struct page *page) {} | 1042 | static inline void add_full(struct kmem_cache_node *n, struct page *page) {} |
1042 | static inline unsigned long kmem_cache_flags(unsigned long objsize, | 1043 | static inline unsigned long kmem_cache_flags(unsigned long objsize, |
1043 | unsigned long flags, const char *name, | 1044 | unsigned long flags, const char *name, |
1044 | void (*ctor)(void *)) | 1045 | void (*ctor)(void *)) |
1045 | { | 1046 | { |
1046 | return flags; | 1047 | return flags; |
1047 | } | 1048 | } |
1048 | #define slub_debug 0 | 1049 | #define slub_debug 0 |
1049 | 1050 | ||
1050 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) | 1051 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) |
1051 | { return 0; } | 1052 | { return 0; } |
1052 | static inline void inc_slabs_node(struct kmem_cache *s, int node, | 1053 | static inline void inc_slabs_node(struct kmem_cache *s, int node, |
1053 | int objects) {} | 1054 | int objects) {} |
1054 | static inline void dec_slabs_node(struct kmem_cache *s, int node, | 1055 | static inline void dec_slabs_node(struct kmem_cache *s, int node, |
1055 | int objects) {} | 1056 | int objects) {} |
1056 | #endif | 1057 | #endif |
1057 | 1058 | ||
1058 | /* | 1059 | /* |
1059 | * Slab allocation and freeing | 1060 | * Slab allocation and freeing |
1060 | */ | 1061 | */ |
1061 | static inline struct page *alloc_slab_page(gfp_t flags, int node, | 1062 | static inline struct page *alloc_slab_page(gfp_t flags, int node, |
1062 | struct kmem_cache_order_objects oo) | 1063 | struct kmem_cache_order_objects oo) |
1063 | { | 1064 | { |
1064 | int order = oo_order(oo); | 1065 | int order = oo_order(oo); |
1065 | 1066 | ||
1066 | if (node == -1) | 1067 | if (node == -1) |
1067 | return alloc_pages(flags, order); | 1068 | return alloc_pages(flags, order); |
1068 | else | 1069 | else |
1069 | return alloc_pages_node(node, flags, order); | 1070 | return alloc_pages_node(node, flags, order); |
1070 | } | 1071 | } |
1071 | 1072 | ||
1072 | static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) | 1073 | static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) |
1073 | { | 1074 | { |
1074 | struct page *page; | 1075 | struct page *page; |
1075 | struct kmem_cache_order_objects oo = s->oo; | 1076 | struct kmem_cache_order_objects oo = s->oo; |
1076 | 1077 | ||
1077 | flags |= s->allocflags; | 1078 | flags |= s->allocflags; |
1078 | 1079 | ||
1079 | page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node, | 1080 | page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node, |
1080 | oo); | 1081 | oo); |
1081 | if (unlikely(!page)) { | 1082 | if (unlikely(!page)) { |
1082 | oo = s->min; | 1083 | oo = s->min; |
1083 | /* | 1084 | /* |
1084 | * Allocation may have failed due to fragmentation. | 1085 | * Allocation may have failed due to fragmentation. |
1085 | * Try a lower order alloc if possible | 1086 | * Try a lower order alloc if possible |
1086 | */ | 1087 | */ |
1087 | page = alloc_slab_page(flags, node, oo); | 1088 | page = alloc_slab_page(flags, node, oo); |
1088 | if (!page) | 1089 | if (!page) |
1089 | return NULL; | 1090 | return NULL; |
1090 | 1091 | ||
1091 | stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK); | 1092 | stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK); |
1092 | } | 1093 | } |
1093 | page->objects = oo_objects(oo); | 1094 | page->objects = oo_objects(oo); |
1094 | mod_zone_page_state(page_zone(page), | 1095 | mod_zone_page_state(page_zone(page), |
1095 | (s->flags & SLAB_RECLAIM_ACCOUNT) ? | 1096 | (s->flags & SLAB_RECLAIM_ACCOUNT) ? |
1096 | NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, | 1097 | NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, |
1097 | 1 << oo_order(oo)); | 1098 | 1 << oo_order(oo)); |
1098 | 1099 | ||
1099 | return page; | 1100 | return page; |
1100 | } | 1101 | } |
1101 | 1102 | ||
1102 | static void setup_object(struct kmem_cache *s, struct page *page, | 1103 | static void setup_object(struct kmem_cache *s, struct page *page, |
1103 | void *object) | 1104 | void *object) |
1104 | { | 1105 | { |
1105 | setup_object_debug(s, page, object); | 1106 | setup_object_debug(s, page, object); |
1106 | if (unlikely(s->ctor)) | 1107 | if (unlikely(s->ctor)) |
1107 | s->ctor(object); | 1108 | s->ctor(object); |
1108 | } | 1109 | } |
1109 | 1110 | ||
1110 | static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) | 1111 | static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) |
1111 | { | 1112 | { |
1112 | struct page *page; | 1113 | struct page *page; |
1113 | void *start; | 1114 | void *start; |
1114 | void *last; | 1115 | void *last; |
1115 | void *p; | 1116 | void *p; |
1116 | 1117 | ||
1117 | BUG_ON(flags & GFP_SLAB_BUG_MASK); | 1118 | BUG_ON(flags & GFP_SLAB_BUG_MASK); |
1118 | 1119 | ||
1119 | page = allocate_slab(s, | 1120 | page = allocate_slab(s, |
1120 | flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); | 1121 | flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); |
1121 | if (!page) | 1122 | if (!page) |
1122 | goto out; | 1123 | goto out; |
1123 | 1124 | ||
1124 | inc_slabs_node(s, page_to_nid(page), page->objects); | 1125 | inc_slabs_node(s, page_to_nid(page), page->objects); |
1125 | page->slab = s; | 1126 | page->slab = s; |
1126 | page->flags |= 1 << PG_slab; | 1127 | page->flags |= 1 << PG_slab; |
1127 | if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON | | 1128 | if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON | |
1128 | SLAB_STORE_USER | SLAB_TRACE)) | 1129 | SLAB_STORE_USER | SLAB_TRACE)) |
1129 | __SetPageSlubDebug(page); | 1130 | __SetPageSlubDebug(page); |
1130 | 1131 | ||
1131 | start = page_address(page); | 1132 | start = page_address(page); |
1132 | 1133 | ||
1133 | if (unlikely(s->flags & SLAB_POISON)) | 1134 | if (unlikely(s->flags & SLAB_POISON)) |
1134 | memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page)); | 1135 | memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page)); |
1135 | 1136 | ||
1136 | last = start; | 1137 | last = start; |
1137 | for_each_object(p, s, start, page->objects) { | 1138 | for_each_object(p, s, start, page->objects) { |
1138 | setup_object(s, page, last); | 1139 | setup_object(s, page, last); |
1139 | set_freepointer(s, last, p); | 1140 | set_freepointer(s, last, p); |
1140 | last = p; | 1141 | last = p; |
1141 | } | 1142 | } |
1142 | setup_object(s, page, last); | 1143 | setup_object(s, page, last); |
1143 | set_freepointer(s, last, NULL); | 1144 | set_freepointer(s, last, NULL); |
1144 | 1145 | ||
1145 | page->freelist = start; | 1146 | page->freelist = start; |
1146 | page->inuse = 0; | 1147 | page->inuse = 0; |
1147 | out: | 1148 | out: |
1148 | return page; | 1149 | return page; |
1149 | } | 1150 | } |
1150 | 1151 | ||
1151 | static void __free_slab(struct kmem_cache *s, struct page *page) | 1152 | static void __free_slab(struct kmem_cache *s, struct page *page) |
1152 | { | 1153 | { |
1153 | int order = compound_order(page); | 1154 | int order = compound_order(page); |
1154 | int pages = 1 << order; | 1155 | int pages = 1 << order; |
1155 | 1156 | ||
1156 | if (unlikely(SLABDEBUG && PageSlubDebug(page))) { | 1157 | if (unlikely(SLABDEBUG && PageSlubDebug(page))) { |
1157 | void *p; | 1158 | void *p; |
1158 | 1159 | ||
1159 | slab_pad_check(s, page); | 1160 | slab_pad_check(s, page); |
1160 | for_each_object(p, s, page_address(page), | 1161 | for_each_object(p, s, page_address(page), |
1161 | page->objects) | 1162 | page->objects) |
1162 | check_object(s, page, p, 0); | 1163 | check_object(s, page, p, 0); |
1163 | __ClearPageSlubDebug(page); | 1164 | __ClearPageSlubDebug(page); |
1164 | } | 1165 | } |
1165 | 1166 | ||
1166 | mod_zone_page_state(page_zone(page), | 1167 | mod_zone_page_state(page_zone(page), |
1167 | (s->flags & SLAB_RECLAIM_ACCOUNT) ? | 1168 | (s->flags & SLAB_RECLAIM_ACCOUNT) ? |
1168 | NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, | 1169 | NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, |
1169 | -pages); | 1170 | -pages); |
1170 | 1171 | ||
1171 | __ClearPageSlab(page); | 1172 | __ClearPageSlab(page); |
1172 | reset_page_mapcount(page); | 1173 | reset_page_mapcount(page); |
1174 | if (current->reclaim_state) | ||
1175 | current->reclaim_state->reclaimed_slab += pages; | ||
1173 | __free_pages(page, order); | 1176 | __free_pages(page, order); |
1174 | } | 1177 | } |
1175 | 1178 | ||
1176 | static void rcu_free_slab(struct rcu_head *h) | 1179 | static void rcu_free_slab(struct rcu_head *h) |
1177 | { | 1180 | { |
1178 | struct page *page; | 1181 | struct page *page; |
1179 | 1182 | ||
1180 | page = container_of((struct list_head *)h, struct page, lru); | 1183 | page = container_of((struct list_head *)h, struct page, lru); |
1181 | __free_slab(page->slab, page); | 1184 | __free_slab(page->slab, page); |
1182 | } | 1185 | } |
1183 | 1186 | ||
1184 | static void free_slab(struct kmem_cache *s, struct page *page) | 1187 | static void free_slab(struct kmem_cache *s, struct page *page) |
1185 | { | 1188 | { |
1186 | if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { | 1189 | if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { |
1187 | /* | 1190 | /* |
1188 | * RCU free overloads the RCU head over the LRU | 1191 | * RCU free overloads the RCU head over the LRU |
1189 | */ | 1192 | */ |
1190 | struct rcu_head *head = (void *)&page->lru; | 1193 | struct rcu_head *head = (void *)&page->lru; |
1191 | 1194 | ||
1192 | call_rcu(head, rcu_free_slab); | 1195 | call_rcu(head, rcu_free_slab); |
1193 | } else | 1196 | } else |
1194 | __free_slab(s, page); | 1197 | __free_slab(s, page); |
1195 | } | 1198 | } |
1196 | 1199 | ||
1197 | static void discard_slab(struct kmem_cache *s, struct page *page) | 1200 | static void discard_slab(struct kmem_cache *s, struct page *page) |
1198 | { | 1201 | { |
1199 | dec_slabs_node(s, page_to_nid(page), page->objects); | 1202 | dec_slabs_node(s, page_to_nid(page), page->objects); |
1200 | free_slab(s, page); | 1203 | free_slab(s, page); |
1201 | } | 1204 | } |
1202 | 1205 | ||
1203 | /* | 1206 | /* |
1204 | * Per slab locking using the pagelock | 1207 | * Per slab locking using the pagelock |
1205 | */ | 1208 | */ |
1206 | static __always_inline void slab_lock(struct page *page) | 1209 | static __always_inline void slab_lock(struct page *page) |
1207 | { | 1210 | { |
1208 | bit_spin_lock(PG_locked, &page->flags); | 1211 | bit_spin_lock(PG_locked, &page->flags); |
1209 | } | 1212 | } |
1210 | 1213 | ||
1211 | static __always_inline void slab_unlock(struct page *page) | 1214 | static __always_inline void slab_unlock(struct page *page) |
1212 | { | 1215 | { |
1213 | __bit_spin_unlock(PG_locked, &page->flags); | 1216 | __bit_spin_unlock(PG_locked, &page->flags); |
1214 | } | 1217 | } |
1215 | 1218 | ||
1216 | static __always_inline int slab_trylock(struct page *page) | 1219 | static __always_inline int slab_trylock(struct page *page) |
1217 | { | 1220 | { |
1218 | int rc = 1; | 1221 | int rc = 1; |
1219 | 1222 | ||
1220 | rc = bit_spin_trylock(PG_locked, &page->flags); | 1223 | rc = bit_spin_trylock(PG_locked, &page->flags); |
1221 | return rc; | 1224 | return rc; |
1222 | } | 1225 | } |
1223 | 1226 | ||
1224 | /* | 1227 | /* |
1225 | * Management of partially allocated slabs | 1228 | * Management of partially allocated slabs |
1226 | */ | 1229 | */ |
1227 | static void add_partial(struct kmem_cache_node *n, | 1230 | static void add_partial(struct kmem_cache_node *n, |
1228 | struct page *page, int tail) | 1231 | struct page *page, int tail) |
1229 | { | 1232 | { |
1230 | spin_lock(&n->list_lock); | 1233 | spin_lock(&n->list_lock); |
1231 | n->nr_partial++; | 1234 | n->nr_partial++; |
1232 | if (tail) | 1235 | if (tail) |
1233 | list_add_tail(&page->lru, &n->partial); | 1236 | list_add_tail(&page->lru, &n->partial); |
1234 | else | 1237 | else |
1235 | list_add(&page->lru, &n->partial); | 1238 | list_add(&page->lru, &n->partial); |
1236 | spin_unlock(&n->list_lock); | 1239 | spin_unlock(&n->list_lock); |
1237 | } | 1240 | } |
1238 | 1241 | ||
1239 | static void remove_partial(struct kmem_cache *s, struct page *page) | 1242 | static void remove_partial(struct kmem_cache *s, struct page *page) |
1240 | { | 1243 | { |
1241 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); | 1244 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); |
1242 | 1245 | ||
1243 | spin_lock(&n->list_lock); | 1246 | spin_lock(&n->list_lock); |
1244 | list_del(&page->lru); | 1247 | list_del(&page->lru); |
1245 | n->nr_partial--; | 1248 | n->nr_partial--; |
1246 | spin_unlock(&n->list_lock); | 1249 | spin_unlock(&n->list_lock); |
1247 | } | 1250 | } |
1248 | 1251 | ||
1249 | /* | 1252 | /* |
1250 | * Lock slab and remove from the partial list. | 1253 | * Lock slab and remove from the partial list. |
1251 | * | 1254 | * |
1252 | * Must hold list_lock. | 1255 | * Must hold list_lock. |
1253 | */ | 1256 | */ |
1254 | static inline int lock_and_freeze_slab(struct kmem_cache_node *n, | 1257 | static inline int lock_and_freeze_slab(struct kmem_cache_node *n, |
1255 | struct page *page) | 1258 | struct page *page) |
1256 | { | 1259 | { |
1257 | if (slab_trylock(page)) { | 1260 | if (slab_trylock(page)) { |
1258 | list_del(&page->lru); | 1261 | list_del(&page->lru); |
1259 | n->nr_partial--; | 1262 | n->nr_partial--; |
1260 | __SetPageSlubFrozen(page); | 1263 | __SetPageSlubFrozen(page); |
1261 | return 1; | 1264 | return 1; |
1262 | } | 1265 | } |
1263 | return 0; | 1266 | return 0; |
1264 | } | 1267 | } |
1265 | 1268 | ||
1266 | /* | 1269 | /* |
1267 | * Try to allocate a partial slab from a specific node. | 1270 | * Try to allocate a partial slab from a specific node. |
1268 | */ | 1271 | */ |
1269 | static struct page *get_partial_node(struct kmem_cache_node *n) | 1272 | static struct page *get_partial_node(struct kmem_cache_node *n) |
1270 | { | 1273 | { |
1271 | struct page *page; | 1274 | struct page *page; |
1272 | 1275 | ||
1273 | /* | 1276 | /* |
1274 | * Racy check. If we mistakenly see no partial slabs then we | 1277 | * Racy check. If we mistakenly see no partial slabs then we |
1275 | * just allocate an empty slab. If we mistakenly try to get a | 1278 | * just allocate an empty slab. If we mistakenly try to get a |
1276 | * partial slab and there is none available then get_partials() | 1279 | * partial slab and there is none available then get_partials() |
1277 | * will return NULL. | 1280 | * will return NULL. |
1278 | */ | 1281 | */ |
1279 | if (!n || !n->nr_partial) | 1282 | if (!n || !n->nr_partial) |
1280 | return NULL; | 1283 | return NULL; |
1281 | 1284 | ||
1282 | spin_lock(&n->list_lock); | 1285 | spin_lock(&n->list_lock); |
1283 | list_for_each_entry(page, &n->partial, lru) | 1286 | list_for_each_entry(page, &n->partial, lru) |
1284 | if (lock_and_freeze_slab(n, page)) | 1287 | if (lock_and_freeze_slab(n, page)) |
1285 | goto out; | 1288 | goto out; |
1286 | page = NULL; | 1289 | page = NULL; |
1287 | out: | 1290 | out: |
1288 | spin_unlock(&n->list_lock); | 1291 | spin_unlock(&n->list_lock); |
1289 | return page; | 1292 | return page; |
1290 | } | 1293 | } |
1291 | 1294 | ||
1292 | /* | 1295 | /* |
1293 | * Get a page from somewhere. Search in increasing NUMA distances. | 1296 | * Get a page from somewhere. Search in increasing NUMA distances. |
1294 | */ | 1297 | */ |
1295 | static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags) | 1298 | static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags) |
1296 | { | 1299 | { |
1297 | #ifdef CONFIG_NUMA | 1300 | #ifdef CONFIG_NUMA |
1298 | struct zonelist *zonelist; | 1301 | struct zonelist *zonelist; |
1299 | struct zoneref *z; | 1302 | struct zoneref *z; |
1300 | struct zone *zone; | 1303 | struct zone *zone; |
1301 | enum zone_type high_zoneidx = gfp_zone(flags); | 1304 | enum zone_type high_zoneidx = gfp_zone(flags); |
1302 | struct page *page; | 1305 | struct page *page; |
1303 | 1306 | ||
1304 | /* | 1307 | /* |
1305 | * The defrag ratio allows a configuration of the tradeoffs between | 1308 | * The defrag ratio allows a configuration of the tradeoffs between |
1306 | * inter node defragmentation and node local allocations. A lower | 1309 | * inter node defragmentation and node local allocations. A lower |
1307 | * defrag_ratio increases the tendency to do local allocations | 1310 | * defrag_ratio increases the tendency to do local allocations |
1308 | * instead of attempting to obtain partial slabs from other nodes. | 1311 | * instead of attempting to obtain partial slabs from other nodes. |
1309 | * | 1312 | * |
1310 | * If the defrag_ratio is set to 0 then kmalloc() always | 1313 | * If the defrag_ratio is set to 0 then kmalloc() always |
1311 | * returns node local objects. If the ratio is higher then kmalloc() | 1314 | * returns node local objects. If the ratio is higher then kmalloc() |
1312 | * may return off node objects because partial slabs are obtained | 1315 | * may return off node objects because partial slabs are obtained |
1313 | * from other nodes and filled up. | 1316 | * from other nodes and filled up. |
1314 | * | 1317 | * |
1315 | * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes | 1318 | * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes |
1316 | * defrag_ratio = 1000) then every (well almost) allocation will | 1319 | * defrag_ratio = 1000) then every (well almost) allocation will |
1317 | * first attempt to defrag slab caches on other nodes. This means | 1320 | * first attempt to defrag slab caches on other nodes. This means |
1318 | * scanning over all nodes to look for partial slabs which may be | 1321 | * scanning over all nodes to look for partial slabs which may be |
1319 | * expensive if we do it every time we are trying to find a slab | 1322 | * expensive if we do it every time we are trying to find a slab |
1320 | * with available objects. | 1323 | * with available objects. |
1321 | */ | 1324 | */ |
1322 | if (!s->remote_node_defrag_ratio || | 1325 | if (!s->remote_node_defrag_ratio || |
1323 | get_cycles() % 1024 > s->remote_node_defrag_ratio) | 1326 | get_cycles() % 1024 > s->remote_node_defrag_ratio) |
1324 | return NULL; | 1327 | return NULL; |
1325 | 1328 | ||
1326 | zonelist = node_zonelist(slab_node(current->mempolicy), flags); | 1329 | zonelist = node_zonelist(slab_node(current->mempolicy), flags); |
1327 | for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { | 1330 | for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { |
1328 | struct kmem_cache_node *n; | 1331 | struct kmem_cache_node *n; |
1329 | 1332 | ||
1330 | n = get_node(s, zone_to_nid(zone)); | 1333 | n = get_node(s, zone_to_nid(zone)); |
1331 | 1334 | ||
1332 | if (n && cpuset_zone_allowed_hardwall(zone, flags) && | 1335 | if (n && cpuset_zone_allowed_hardwall(zone, flags) && |
1333 | n->nr_partial > s->min_partial) { | 1336 | n->nr_partial > s->min_partial) { |
1334 | page = get_partial_node(n); | 1337 | page = get_partial_node(n); |
1335 | if (page) | 1338 | if (page) |
1336 | return page; | 1339 | return page; |
1337 | } | 1340 | } |
1338 | } | 1341 | } |
1339 | #endif | 1342 | #endif |
1340 | return NULL; | 1343 | return NULL; |
1341 | } | 1344 | } |
1342 | 1345 | ||
1343 | /* | 1346 | /* |
1344 | * Get a partial page, lock it and return it. | 1347 | * Get a partial page, lock it and return it. |
1345 | */ | 1348 | */ |
1346 | static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node) | 1349 | static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node) |
1347 | { | 1350 | { |
1348 | struct page *page; | 1351 | struct page *page; |
1349 | int searchnode = (node == -1) ? numa_node_id() : node; | 1352 | int searchnode = (node == -1) ? numa_node_id() : node; |
1350 | 1353 | ||
1351 | page = get_partial_node(get_node(s, searchnode)); | 1354 | page = get_partial_node(get_node(s, searchnode)); |
1352 | if (page || (flags & __GFP_THISNODE)) | 1355 | if (page || (flags & __GFP_THISNODE)) |
1353 | return page; | 1356 | return page; |
1354 | 1357 | ||
1355 | return get_any_partial(s, flags); | 1358 | return get_any_partial(s, flags); |
1356 | } | 1359 | } |
1357 | 1360 | ||
1358 | /* | 1361 | /* |
1359 | * Move a page back to the lists. | 1362 | * Move a page back to the lists. |
1360 | * | 1363 | * |
1361 | * Must be called with the slab lock held. | 1364 | * Must be called with the slab lock held. |
1362 | * | 1365 | * |
1363 | * On exit the slab lock will have been dropped. | 1366 | * On exit the slab lock will have been dropped. |
1364 | */ | 1367 | */ |
1365 | static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail) | 1368 | static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail) |
1366 | { | 1369 | { |
1367 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); | 1370 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); |
1368 | struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id()); | 1371 | struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id()); |
1369 | 1372 | ||
1370 | __ClearPageSlubFrozen(page); | 1373 | __ClearPageSlubFrozen(page); |
1371 | if (page->inuse) { | 1374 | if (page->inuse) { |
1372 | 1375 | ||
1373 | if (page->freelist) { | 1376 | if (page->freelist) { |
1374 | add_partial(n, page, tail); | 1377 | add_partial(n, page, tail); |
1375 | stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD); | 1378 | stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD); |
1376 | } else { | 1379 | } else { |
1377 | stat(c, DEACTIVATE_FULL); | 1380 | stat(c, DEACTIVATE_FULL); |
1378 | if (SLABDEBUG && PageSlubDebug(page) && | 1381 | if (SLABDEBUG && PageSlubDebug(page) && |
1379 | (s->flags & SLAB_STORE_USER)) | 1382 | (s->flags & SLAB_STORE_USER)) |
1380 | add_full(n, page); | 1383 | add_full(n, page); |
1381 | } | 1384 | } |
1382 | slab_unlock(page); | 1385 | slab_unlock(page); |
1383 | } else { | 1386 | } else { |
1384 | stat(c, DEACTIVATE_EMPTY); | 1387 | stat(c, DEACTIVATE_EMPTY); |
1385 | if (n->nr_partial < s->min_partial) { | 1388 | if (n->nr_partial < s->min_partial) { |
1386 | /* | 1389 | /* |
1387 | * Adding an empty slab to the partial slabs in order | 1390 | * Adding an empty slab to the partial slabs in order |
1388 | * to avoid page allocator overhead. This slab needs | 1391 | * to avoid page allocator overhead. This slab needs |
1389 | * to come after the other slabs with objects in | 1392 | * to come after the other slabs with objects in |
1390 | * so that the others get filled first. That way the | 1393 | * so that the others get filled first. That way the |
1391 | * size of the partial list stays small. | 1394 | * size of the partial list stays small. |
1392 | * | 1395 | * |
1393 | * kmem_cache_shrink can reclaim any empty slabs from | 1396 | * kmem_cache_shrink can reclaim any empty slabs from |
1394 | * the partial list. | 1397 | * the partial list. |
1395 | */ | 1398 | */ |
1396 | add_partial(n, page, 1); | 1399 | add_partial(n, page, 1); |
1397 | slab_unlock(page); | 1400 | slab_unlock(page); |
1398 | } else { | 1401 | } else { |
1399 | slab_unlock(page); | 1402 | slab_unlock(page); |
1400 | stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB); | 1403 | stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB); |
1401 | discard_slab(s, page); | 1404 | discard_slab(s, page); |
1402 | } | 1405 | } |
1403 | } | 1406 | } |
1404 | } | 1407 | } |
1405 | 1408 | ||
1406 | /* | 1409 | /* |
1407 | * Remove the cpu slab | 1410 | * Remove the cpu slab |
1408 | */ | 1411 | */ |
1409 | static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) | 1412 | static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) |
1410 | { | 1413 | { |
1411 | struct page *page = c->page; | 1414 | struct page *page = c->page; |
1412 | int tail = 1; | 1415 | int tail = 1; |
1413 | 1416 | ||
1414 | if (page->freelist) | 1417 | if (page->freelist) |
1415 | stat(c, DEACTIVATE_REMOTE_FREES); | 1418 | stat(c, DEACTIVATE_REMOTE_FREES); |
1416 | /* | 1419 | /* |
1417 | * Merge cpu freelist into slab freelist. Typically we get here | 1420 | * Merge cpu freelist into slab freelist. Typically we get here |
1418 | * because both freelists are empty. So this is unlikely | 1421 | * because both freelists are empty. So this is unlikely |
1419 | * to occur. | 1422 | * to occur. |
1420 | */ | 1423 | */ |
1421 | while (unlikely(c->freelist)) { | 1424 | while (unlikely(c->freelist)) { |
1422 | void **object; | 1425 | void **object; |
1423 | 1426 | ||
1424 | tail = 0; /* Hot objects. Put the slab first */ | 1427 | tail = 0; /* Hot objects. Put the slab first */ |
1425 | 1428 | ||
1426 | /* Retrieve object from cpu_freelist */ | 1429 | /* Retrieve object from cpu_freelist */ |
1427 | object = c->freelist; | 1430 | object = c->freelist; |
1428 | c->freelist = c->freelist[c->offset]; | 1431 | c->freelist = c->freelist[c->offset]; |
1429 | 1432 | ||
1430 | /* And put onto the regular freelist */ | 1433 | /* And put onto the regular freelist */ |
1431 | object[c->offset] = page->freelist; | 1434 | object[c->offset] = page->freelist; |
1432 | page->freelist = object; | 1435 | page->freelist = object; |
1433 | page->inuse--; | 1436 | page->inuse--; |
1434 | } | 1437 | } |
1435 | c->page = NULL; | 1438 | c->page = NULL; |
1436 | unfreeze_slab(s, page, tail); | 1439 | unfreeze_slab(s, page, tail); |
1437 | } | 1440 | } |
1438 | 1441 | ||
1439 | static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) | 1442 | static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) |
1440 | { | 1443 | { |
1441 | stat(c, CPUSLAB_FLUSH); | 1444 | stat(c, CPUSLAB_FLUSH); |
1442 | slab_lock(c->page); | 1445 | slab_lock(c->page); |
1443 | deactivate_slab(s, c); | 1446 | deactivate_slab(s, c); |
1444 | } | 1447 | } |
1445 | 1448 | ||
1446 | /* | 1449 | /* |
1447 | * Flush cpu slab. | 1450 | * Flush cpu slab. |
1448 | * | 1451 | * |
1449 | * Called from IPI handler with interrupts disabled. | 1452 | * Called from IPI handler with interrupts disabled. |
1450 | */ | 1453 | */ |
1451 | static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) | 1454 | static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) |
1452 | { | 1455 | { |
1453 | struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); | 1456 | struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); |
1454 | 1457 | ||
1455 | if (likely(c && c->page)) | 1458 | if (likely(c && c->page)) |
1456 | flush_slab(s, c); | 1459 | flush_slab(s, c); |
1457 | } | 1460 | } |
1458 | 1461 | ||
1459 | static void flush_cpu_slab(void *d) | 1462 | static void flush_cpu_slab(void *d) |
1460 | { | 1463 | { |
1461 | struct kmem_cache *s = d; | 1464 | struct kmem_cache *s = d; |
1462 | 1465 | ||
1463 | __flush_cpu_slab(s, smp_processor_id()); | 1466 | __flush_cpu_slab(s, smp_processor_id()); |
1464 | } | 1467 | } |
1465 | 1468 | ||
1466 | static void flush_all(struct kmem_cache *s) | 1469 | static void flush_all(struct kmem_cache *s) |
1467 | { | 1470 | { |
1468 | on_each_cpu(flush_cpu_slab, s, 1); | 1471 | on_each_cpu(flush_cpu_slab, s, 1); |
1469 | } | 1472 | } |
1470 | 1473 | ||
1471 | /* | 1474 | /* |
1472 | * Check if the objects in a per cpu structure fit numa | 1475 | * Check if the objects in a per cpu structure fit numa |
1473 | * locality expectations. | 1476 | * locality expectations. |
1474 | */ | 1477 | */ |
1475 | static inline int node_match(struct kmem_cache_cpu *c, int node) | 1478 | static inline int node_match(struct kmem_cache_cpu *c, int node) |
1476 | { | 1479 | { |
1477 | #ifdef CONFIG_NUMA | 1480 | #ifdef CONFIG_NUMA |
1478 | if (node != -1 && c->node != node) | 1481 | if (node != -1 && c->node != node) |
1479 | return 0; | 1482 | return 0; |
1480 | #endif | 1483 | #endif |
1481 | return 1; | 1484 | return 1; |
1482 | } | 1485 | } |
1483 | 1486 | ||
1484 | /* | 1487 | /* |
1485 | * Slow path. The lockless freelist is empty or we need to perform | 1488 | * Slow path. The lockless freelist is empty or we need to perform |
1486 | * debugging duties. | 1489 | * debugging duties. |
1487 | * | 1490 | * |
1488 | * Interrupts are disabled. | 1491 | * Interrupts are disabled. |
1489 | * | 1492 | * |
1490 | * Processing is still very fast if new objects have been freed to the | 1493 | * Processing is still very fast if new objects have been freed to the |
1491 | * regular freelist. In that case we simply take over the regular freelist | 1494 | * regular freelist. In that case we simply take over the regular freelist |
1492 | * as the lockless freelist and zap the regular freelist. | 1495 | * as the lockless freelist and zap the regular freelist. |
1493 | * | 1496 | * |
1494 | * If that is not working then we fall back to the partial lists. We take the | 1497 | * If that is not working then we fall back to the partial lists. We take the |
1495 | * first element of the freelist as the object to allocate now and move the | 1498 | * first element of the freelist as the object to allocate now and move the |
1496 | * rest of the freelist to the lockless freelist. | 1499 | * rest of the freelist to the lockless freelist. |
1497 | * | 1500 | * |
1498 | * And if we were unable to get a new slab from the partial slab lists then | 1501 | * And if we were unable to get a new slab from the partial slab lists then |
1499 | * we need to allocate a new slab. This is the slowest path since it involves | 1502 | * we need to allocate a new slab. This is the slowest path since it involves |
1500 | * a call to the page allocator and the setup of a new slab. | 1503 | * a call to the page allocator and the setup of a new slab. |
1501 | */ | 1504 | */ |
1502 | static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, | 1505 | static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, |
1503 | unsigned long addr, struct kmem_cache_cpu *c) | 1506 | unsigned long addr, struct kmem_cache_cpu *c) |
1504 | { | 1507 | { |
1505 | void **object; | 1508 | void **object; |
1506 | struct page *new; | 1509 | struct page *new; |
1507 | 1510 | ||
1508 | /* We handle __GFP_ZERO in the caller */ | 1511 | /* We handle __GFP_ZERO in the caller */ |
1509 | gfpflags &= ~__GFP_ZERO; | 1512 | gfpflags &= ~__GFP_ZERO; |
1510 | 1513 | ||
1511 | if (!c->page) | 1514 | if (!c->page) |
1512 | goto new_slab; | 1515 | goto new_slab; |
1513 | 1516 | ||
1514 | slab_lock(c->page); | 1517 | slab_lock(c->page); |
1515 | if (unlikely(!node_match(c, node))) | 1518 | if (unlikely(!node_match(c, node))) |
1516 | goto another_slab; | 1519 | goto another_slab; |
1517 | 1520 | ||
1518 | stat(c, ALLOC_REFILL); | 1521 | stat(c, ALLOC_REFILL); |
1519 | 1522 | ||
1520 | load_freelist: | 1523 | load_freelist: |
1521 | object = c->page->freelist; | 1524 | object = c->page->freelist; |
1522 | if (unlikely(!object)) | 1525 | if (unlikely(!object)) |
1523 | goto another_slab; | 1526 | goto another_slab; |
1524 | if (unlikely(SLABDEBUG && PageSlubDebug(c->page))) | 1527 | if (unlikely(SLABDEBUG && PageSlubDebug(c->page))) |
1525 | goto debug; | 1528 | goto debug; |
1526 | 1529 | ||
1527 | c->freelist = object[c->offset]; | 1530 | c->freelist = object[c->offset]; |
1528 | c->page->inuse = c->page->objects; | 1531 | c->page->inuse = c->page->objects; |
1529 | c->page->freelist = NULL; | 1532 | c->page->freelist = NULL; |
1530 | c->node = page_to_nid(c->page); | 1533 | c->node = page_to_nid(c->page); |
1531 | unlock_out: | 1534 | unlock_out: |
1532 | slab_unlock(c->page); | 1535 | slab_unlock(c->page); |
1533 | stat(c, ALLOC_SLOWPATH); | 1536 | stat(c, ALLOC_SLOWPATH); |
1534 | return object; | 1537 | return object; |
1535 | 1538 | ||
1536 | another_slab: | 1539 | another_slab: |
1537 | deactivate_slab(s, c); | 1540 | deactivate_slab(s, c); |
1538 | 1541 | ||
1539 | new_slab: | 1542 | new_slab: |
1540 | new = get_partial(s, gfpflags, node); | 1543 | new = get_partial(s, gfpflags, node); |
1541 | if (new) { | 1544 | if (new) { |
1542 | c->page = new; | 1545 | c->page = new; |
1543 | stat(c, ALLOC_FROM_PARTIAL); | 1546 | stat(c, ALLOC_FROM_PARTIAL); |
1544 | goto load_freelist; | 1547 | goto load_freelist; |
1545 | } | 1548 | } |
1546 | 1549 | ||
1547 | if (gfpflags & __GFP_WAIT) | 1550 | if (gfpflags & __GFP_WAIT) |
1548 | local_irq_enable(); | 1551 | local_irq_enable(); |
1549 | 1552 | ||
1550 | new = new_slab(s, gfpflags, node); | 1553 | new = new_slab(s, gfpflags, node); |
1551 | 1554 | ||
1552 | if (gfpflags & __GFP_WAIT) | 1555 | if (gfpflags & __GFP_WAIT) |
1553 | local_irq_disable(); | 1556 | local_irq_disable(); |
1554 | 1557 | ||
1555 | if (new) { | 1558 | if (new) { |
1556 | c = get_cpu_slab(s, smp_processor_id()); | 1559 | c = get_cpu_slab(s, smp_processor_id()); |
1557 | stat(c, ALLOC_SLAB); | 1560 | stat(c, ALLOC_SLAB); |
1558 | if (c->page) | 1561 | if (c->page) |
1559 | flush_slab(s, c); | 1562 | flush_slab(s, c); |
1560 | slab_lock(new); | 1563 | slab_lock(new); |
1561 | __SetPageSlubFrozen(new); | 1564 | __SetPageSlubFrozen(new); |
1562 | c->page = new; | 1565 | c->page = new; |
1563 | goto load_freelist; | 1566 | goto load_freelist; |
1564 | } | 1567 | } |
1565 | return NULL; | 1568 | return NULL; |
1566 | debug: | 1569 | debug: |
1567 | if (!alloc_debug_processing(s, c->page, object, addr)) | 1570 | if (!alloc_debug_processing(s, c->page, object, addr)) |
1568 | goto another_slab; | 1571 | goto another_slab; |
1569 | 1572 | ||
1570 | c->page->inuse++; | 1573 | c->page->inuse++; |
1571 | c->page->freelist = object[c->offset]; | 1574 | c->page->freelist = object[c->offset]; |
1572 | c->node = -1; | 1575 | c->node = -1; |
1573 | goto unlock_out; | 1576 | goto unlock_out; |
1574 | } | 1577 | } |
1575 | 1578 | ||
1576 | /* | 1579 | /* |
1577 | * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) | 1580 | * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) |
1578 | * have the fastpath folded into their functions. So no function call | 1581 | * have the fastpath folded into their functions. So no function call |
1579 | * overhead for requests that can be satisfied on the fastpath. | 1582 | * overhead for requests that can be satisfied on the fastpath. |
1580 | * | 1583 | * |
1581 | * The fastpath works by first checking if the lockless freelist can be used. | 1584 | * The fastpath works by first checking if the lockless freelist can be used. |
1582 | * If not then __slab_alloc is called for slow processing. | 1585 | * If not then __slab_alloc is called for slow processing. |
1583 | * | 1586 | * |
1584 | * Otherwise we can simply pick the next object from the lockless free list. | 1587 | * Otherwise we can simply pick the next object from the lockless free list. |
1585 | */ | 1588 | */ |
1586 | static __always_inline void *slab_alloc(struct kmem_cache *s, | 1589 | static __always_inline void *slab_alloc(struct kmem_cache *s, |
1587 | gfp_t gfpflags, int node, unsigned long addr) | 1590 | gfp_t gfpflags, int node, unsigned long addr) |
1588 | { | 1591 | { |
1589 | void **object; | 1592 | void **object; |
1590 | struct kmem_cache_cpu *c; | 1593 | struct kmem_cache_cpu *c; |
1591 | unsigned long flags; | 1594 | unsigned long flags; |
1592 | unsigned int objsize; | 1595 | unsigned int objsize; |
1593 | 1596 | ||
1594 | lockdep_trace_alloc(gfpflags); | 1597 | lockdep_trace_alloc(gfpflags); |
1595 | might_sleep_if(gfpflags & __GFP_WAIT); | 1598 | might_sleep_if(gfpflags & __GFP_WAIT); |
1596 | 1599 | ||
1597 | if (should_failslab(s->objsize, gfpflags)) | 1600 | if (should_failslab(s->objsize, gfpflags)) |
1598 | return NULL; | 1601 | return NULL; |
1599 | 1602 | ||
1600 | local_irq_save(flags); | 1603 | local_irq_save(flags); |
1601 | c = get_cpu_slab(s, smp_processor_id()); | 1604 | c = get_cpu_slab(s, smp_processor_id()); |
1602 | objsize = c->objsize; | 1605 | objsize = c->objsize; |
1603 | if (unlikely(!c->freelist || !node_match(c, node))) | 1606 | if (unlikely(!c->freelist || !node_match(c, node))) |
1604 | 1607 | ||
1605 | object = __slab_alloc(s, gfpflags, node, addr, c); | 1608 | object = __slab_alloc(s, gfpflags, node, addr, c); |
1606 | 1609 | ||
1607 | else { | 1610 | else { |
1608 | object = c->freelist; | 1611 | object = c->freelist; |
1609 | c->freelist = object[c->offset]; | 1612 | c->freelist = object[c->offset]; |
1610 | stat(c, ALLOC_FASTPATH); | 1613 | stat(c, ALLOC_FASTPATH); |
1611 | } | 1614 | } |
1612 | local_irq_restore(flags); | 1615 | local_irq_restore(flags); |
1613 | 1616 | ||
1614 | if (unlikely((gfpflags & __GFP_ZERO) && object)) | 1617 | if (unlikely((gfpflags & __GFP_ZERO) && object)) |
1615 | memset(object, 0, objsize); | 1618 | memset(object, 0, objsize); |
1616 | 1619 | ||
1617 | return object; | 1620 | return object; |
1618 | } | 1621 | } |
1619 | 1622 | ||
1620 | void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) | 1623 | void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) |
1621 | { | 1624 | { |
1622 | void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_); | 1625 | void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_); |
1623 | 1626 | ||
1624 | trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags); | 1627 | trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags); |
1625 | 1628 | ||
1626 | return ret; | 1629 | return ret; |
1627 | } | 1630 | } |
1628 | EXPORT_SYMBOL(kmem_cache_alloc); | 1631 | EXPORT_SYMBOL(kmem_cache_alloc); |
1629 | 1632 | ||
1630 | #ifdef CONFIG_KMEMTRACE | 1633 | #ifdef CONFIG_KMEMTRACE |
1631 | void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags) | 1634 | void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags) |
1632 | { | 1635 | { |
1633 | return slab_alloc(s, gfpflags, -1, _RET_IP_); | 1636 | return slab_alloc(s, gfpflags, -1, _RET_IP_); |
1634 | } | 1637 | } |
1635 | EXPORT_SYMBOL(kmem_cache_alloc_notrace); | 1638 | EXPORT_SYMBOL(kmem_cache_alloc_notrace); |
1636 | #endif | 1639 | #endif |
1637 | 1640 | ||
1638 | #ifdef CONFIG_NUMA | 1641 | #ifdef CONFIG_NUMA |
1639 | void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) | 1642 | void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) |
1640 | { | 1643 | { |
1641 | void *ret = slab_alloc(s, gfpflags, node, _RET_IP_); | 1644 | void *ret = slab_alloc(s, gfpflags, node, _RET_IP_); |
1642 | 1645 | ||
1643 | trace_kmem_cache_alloc_node(_RET_IP_, ret, | 1646 | trace_kmem_cache_alloc_node(_RET_IP_, ret, |
1644 | s->objsize, s->size, gfpflags, node); | 1647 | s->objsize, s->size, gfpflags, node); |
1645 | 1648 | ||
1646 | return ret; | 1649 | return ret; |
1647 | } | 1650 | } |
1648 | EXPORT_SYMBOL(kmem_cache_alloc_node); | 1651 | EXPORT_SYMBOL(kmem_cache_alloc_node); |
1649 | #endif | 1652 | #endif |
1650 | 1653 | ||
1651 | #ifdef CONFIG_KMEMTRACE | 1654 | #ifdef CONFIG_KMEMTRACE |
1652 | void *kmem_cache_alloc_node_notrace(struct kmem_cache *s, | 1655 | void *kmem_cache_alloc_node_notrace(struct kmem_cache *s, |
1653 | gfp_t gfpflags, | 1656 | gfp_t gfpflags, |
1654 | int node) | 1657 | int node) |
1655 | { | 1658 | { |
1656 | return slab_alloc(s, gfpflags, node, _RET_IP_); | 1659 | return slab_alloc(s, gfpflags, node, _RET_IP_); |
1657 | } | 1660 | } |
1658 | EXPORT_SYMBOL(kmem_cache_alloc_node_notrace); | 1661 | EXPORT_SYMBOL(kmem_cache_alloc_node_notrace); |
1659 | #endif | 1662 | #endif |
1660 | 1663 | ||
1661 | /* | 1664 | /* |
1662 | * Slow patch handling. This may still be called frequently since objects | 1665 | * Slow patch handling. This may still be called frequently since objects |
1663 | * have a longer lifetime than the cpu slabs in most processing loads. | 1666 | * have a longer lifetime than the cpu slabs in most processing loads. |
1664 | * | 1667 | * |
1665 | * So we still attempt to reduce cache line usage. Just take the slab | 1668 | * So we still attempt to reduce cache line usage. Just take the slab |
1666 | * lock and free the item. If there is no additional partial page | 1669 | * lock and free the item. If there is no additional partial page |
1667 | * handling required then we can return immediately. | 1670 | * handling required then we can return immediately. |
1668 | */ | 1671 | */ |
1669 | static void __slab_free(struct kmem_cache *s, struct page *page, | 1672 | static void __slab_free(struct kmem_cache *s, struct page *page, |
1670 | void *x, unsigned long addr, unsigned int offset) | 1673 | void *x, unsigned long addr, unsigned int offset) |
1671 | { | 1674 | { |
1672 | void *prior; | 1675 | void *prior; |
1673 | void **object = (void *)x; | 1676 | void **object = (void *)x; |
1674 | struct kmem_cache_cpu *c; | 1677 | struct kmem_cache_cpu *c; |
1675 | 1678 | ||
1676 | c = get_cpu_slab(s, raw_smp_processor_id()); | 1679 | c = get_cpu_slab(s, raw_smp_processor_id()); |
1677 | stat(c, FREE_SLOWPATH); | 1680 | stat(c, FREE_SLOWPATH); |
1678 | slab_lock(page); | 1681 | slab_lock(page); |
1679 | 1682 | ||
1680 | if (unlikely(SLABDEBUG && PageSlubDebug(page))) | 1683 | if (unlikely(SLABDEBUG && PageSlubDebug(page))) |
1681 | goto debug; | 1684 | goto debug; |
1682 | 1685 | ||
1683 | checks_ok: | 1686 | checks_ok: |
1684 | prior = object[offset] = page->freelist; | 1687 | prior = object[offset] = page->freelist; |
1685 | page->freelist = object; | 1688 | page->freelist = object; |
1686 | page->inuse--; | 1689 | page->inuse--; |
1687 | 1690 | ||
1688 | if (unlikely(PageSlubFrozen(page))) { | 1691 | if (unlikely(PageSlubFrozen(page))) { |
1689 | stat(c, FREE_FROZEN); | 1692 | stat(c, FREE_FROZEN); |
1690 | goto out_unlock; | 1693 | goto out_unlock; |
1691 | } | 1694 | } |
1692 | 1695 | ||
1693 | if (unlikely(!page->inuse)) | 1696 | if (unlikely(!page->inuse)) |
1694 | goto slab_empty; | 1697 | goto slab_empty; |
1695 | 1698 | ||
1696 | /* | 1699 | /* |
1697 | * Objects left in the slab. If it was not on the partial list before | 1700 | * Objects left in the slab. If it was not on the partial list before |
1698 | * then add it. | 1701 | * then add it. |
1699 | */ | 1702 | */ |
1700 | if (unlikely(!prior)) { | 1703 | if (unlikely(!prior)) { |
1701 | add_partial(get_node(s, page_to_nid(page)), page, 1); | 1704 | add_partial(get_node(s, page_to_nid(page)), page, 1); |
1702 | stat(c, FREE_ADD_PARTIAL); | 1705 | stat(c, FREE_ADD_PARTIAL); |
1703 | } | 1706 | } |
1704 | 1707 | ||
1705 | out_unlock: | 1708 | out_unlock: |
1706 | slab_unlock(page); | 1709 | slab_unlock(page); |
1707 | return; | 1710 | return; |
1708 | 1711 | ||
1709 | slab_empty: | 1712 | slab_empty: |
1710 | if (prior) { | 1713 | if (prior) { |
1711 | /* | 1714 | /* |
1712 | * Slab still on the partial list. | 1715 | * Slab still on the partial list. |
1713 | */ | 1716 | */ |
1714 | remove_partial(s, page); | 1717 | remove_partial(s, page); |
1715 | stat(c, FREE_REMOVE_PARTIAL); | 1718 | stat(c, FREE_REMOVE_PARTIAL); |
1716 | } | 1719 | } |
1717 | slab_unlock(page); | 1720 | slab_unlock(page); |
1718 | stat(c, FREE_SLAB); | 1721 | stat(c, FREE_SLAB); |
1719 | discard_slab(s, page); | 1722 | discard_slab(s, page); |
1720 | return; | 1723 | return; |
1721 | 1724 | ||
1722 | debug: | 1725 | debug: |
1723 | if (!free_debug_processing(s, page, x, addr)) | 1726 | if (!free_debug_processing(s, page, x, addr)) |
1724 | goto out_unlock; | 1727 | goto out_unlock; |
1725 | goto checks_ok; | 1728 | goto checks_ok; |
1726 | } | 1729 | } |
1727 | 1730 | ||
1728 | /* | 1731 | /* |
1729 | * Fastpath with forced inlining to produce a kfree and kmem_cache_free that | 1732 | * Fastpath with forced inlining to produce a kfree and kmem_cache_free that |
1730 | * can perform fastpath freeing without additional function calls. | 1733 | * can perform fastpath freeing without additional function calls. |
1731 | * | 1734 | * |
1732 | * The fastpath is only possible if we are freeing to the current cpu slab | 1735 | * The fastpath is only possible if we are freeing to the current cpu slab |
1733 | * of this processor. This typically the case if we have just allocated | 1736 | * of this processor. This typically the case if we have just allocated |
1734 | * the item before. | 1737 | * the item before. |
1735 | * | 1738 | * |
1736 | * If fastpath is not possible then fall back to __slab_free where we deal | 1739 | * If fastpath is not possible then fall back to __slab_free where we deal |
1737 | * with all sorts of special processing. | 1740 | * with all sorts of special processing. |
1738 | */ | 1741 | */ |
1739 | static __always_inline void slab_free(struct kmem_cache *s, | 1742 | static __always_inline void slab_free(struct kmem_cache *s, |
1740 | struct page *page, void *x, unsigned long addr) | 1743 | struct page *page, void *x, unsigned long addr) |
1741 | { | 1744 | { |
1742 | void **object = (void *)x; | 1745 | void **object = (void *)x; |
1743 | struct kmem_cache_cpu *c; | 1746 | struct kmem_cache_cpu *c; |
1744 | unsigned long flags; | 1747 | unsigned long flags; |
1745 | 1748 | ||
1746 | local_irq_save(flags); | 1749 | local_irq_save(flags); |
1747 | c = get_cpu_slab(s, smp_processor_id()); | 1750 | c = get_cpu_slab(s, smp_processor_id()); |
1748 | debug_check_no_locks_freed(object, c->objsize); | 1751 | debug_check_no_locks_freed(object, c->objsize); |
1749 | if (!(s->flags & SLAB_DEBUG_OBJECTS)) | 1752 | if (!(s->flags & SLAB_DEBUG_OBJECTS)) |
1750 | debug_check_no_obj_freed(object, c->objsize); | 1753 | debug_check_no_obj_freed(object, c->objsize); |
1751 | if (likely(page == c->page && c->node >= 0)) { | 1754 | if (likely(page == c->page && c->node >= 0)) { |
1752 | object[c->offset] = c->freelist; | 1755 | object[c->offset] = c->freelist; |
1753 | c->freelist = object; | 1756 | c->freelist = object; |
1754 | stat(c, FREE_FASTPATH); | 1757 | stat(c, FREE_FASTPATH); |
1755 | } else | 1758 | } else |
1756 | __slab_free(s, page, x, addr, c->offset); | 1759 | __slab_free(s, page, x, addr, c->offset); |
1757 | 1760 | ||
1758 | local_irq_restore(flags); | 1761 | local_irq_restore(flags); |
1759 | } | 1762 | } |
1760 | 1763 | ||
1761 | void kmem_cache_free(struct kmem_cache *s, void *x) | 1764 | void kmem_cache_free(struct kmem_cache *s, void *x) |
1762 | { | 1765 | { |
1763 | struct page *page; | 1766 | struct page *page; |
1764 | 1767 | ||
1765 | page = virt_to_head_page(x); | 1768 | page = virt_to_head_page(x); |
1766 | 1769 | ||
1767 | slab_free(s, page, x, _RET_IP_); | 1770 | slab_free(s, page, x, _RET_IP_); |
1768 | 1771 | ||
1769 | trace_kmem_cache_free(_RET_IP_, x); | 1772 | trace_kmem_cache_free(_RET_IP_, x); |
1770 | } | 1773 | } |
1771 | EXPORT_SYMBOL(kmem_cache_free); | 1774 | EXPORT_SYMBOL(kmem_cache_free); |
1772 | 1775 | ||
1773 | /* Figure out on which slab page the object resides */ | 1776 | /* Figure out on which slab page the object resides */ |
1774 | static struct page *get_object_page(const void *x) | 1777 | static struct page *get_object_page(const void *x) |
1775 | { | 1778 | { |
1776 | struct page *page = virt_to_head_page(x); | 1779 | struct page *page = virt_to_head_page(x); |
1777 | 1780 | ||
1778 | if (!PageSlab(page)) | 1781 | if (!PageSlab(page)) |
1779 | return NULL; | 1782 | return NULL; |
1780 | 1783 | ||
1781 | return page; | 1784 | return page; |
1782 | } | 1785 | } |
1783 | 1786 | ||
1784 | /* | 1787 | /* |
1785 | * Object placement in a slab is made very easy because we always start at | 1788 | * Object placement in a slab is made very easy because we always start at |
1786 | * offset 0. If we tune the size of the object to the alignment then we can | 1789 | * offset 0. If we tune the size of the object to the alignment then we can |
1787 | * get the required alignment by putting one properly sized object after | 1790 | * get the required alignment by putting one properly sized object after |
1788 | * another. | 1791 | * another. |
1789 | * | 1792 | * |
1790 | * Notice that the allocation order determines the sizes of the per cpu | 1793 | * Notice that the allocation order determines the sizes of the per cpu |
1791 | * caches. Each processor has always one slab available for allocations. | 1794 | * caches. Each processor has always one slab available for allocations. |
1792 | * Increasing the allocation order reduces the number of times that slabs | 1795 | * Increasing the allocation order reduces the number of times that slabs |
1793 | * must be moved on and off the partial lists and is therefore a factor in | 1796 | * must be moved on and off the partial lists and is therefore a factor in |
1794 | * locking overhead. | 1797 | * locking overhead. |
1795 | */ | 1798 | */ |
1796 | 1799 | ||
1797 | /* | 1800 | /* |
1798 | * Mininum / Maximum order of slab pages. This influences locking overhead | 1801 | * Mininum / Maximum order of slab pages. This influences locking overhead |
1799 | * and slab fragmentation. A higher order reduces the number of partial slabs | 1802 | * and slab fragmentation. A higher order reduces the number of partial slabs |
1800 | * and increases the number of allocations possible without having to | 1803 | * and increases the number of allocations possible without having to |
1801 | * take the list_lock. | 1804 | * take the list_lock. |
1802 | */ | 1805 | */ |
1803 | static int slub_min_order; | 1806 | static int slub_min_order; |
1804 | static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; | 1807 | static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; |
1805 | static int slub_min_objects; | 1808 | static int slub_min_objects; |
1806 | 1809 | ||
1807 | /* | 1810 | /* |
1808 | * Merge control. If this is set then no merging of slab caches will occur. | 1811 | * Merge control. If this is set then no merging of slab caches will occur. |
1809 | * (Could be removed. This was introduced to pacify the merge skeptics.) | 1812 | * (Could be removed. This was introduced to pacify the merge skeptics.) |
1810 | */ | 1813 | */ |
1811 | static int slub_nomerge; | 1814 | static int slub_nomerge; |
1812 | 1815 | ||
1813 | /* | 1816 | /* |
1814 | * Calculate the order of allocation given an slab object size. | 1817 | * Calculate the order of allocation given an slab object size. |
1815 | * | 1818 | * |
1816 | * The order of allocation has significant impact on performance and other | 1819 | * The order of allocation has significant impact on performance and other |
1817 | * system components. Generally order 0 allocations should be preferred since | 1820 | * system components. Generally order 0 allocations should be preferred since |
1818 | * order 0 does not cause fragmentation in the page allocator. Larger objects | 1821 | * order 0 does not cause fragmentation in the page allocator. Larger objects |
1819 | * be problematic to put into order 0 slabs because there may be too much | 1822 | * be problematic to put into order 0 slabs because there may be too much |
1820 | * unused space left. We go to a higher order if more than 1/16th of the slab | 1823 | * unused space left. We go to a higher order if more than 1/16th of the slab |
1821 | * would be wasted. | 1824 | * would be wasted. |
1822 | * | 1825 | * |
1823 | * In order to reach satisfactory performance we must ensure that a minimum | 1826 | * In order to reach satisfactory performance we must ensure that a minimum |
1824 | * number of objects is in one slab. Otherwise we may generate too much | 1827 | * number of objects is in one slab. Otherwise we may generate too much |
1825 | * activity on the partial lists which requires taking the list_lock. This is | 1828 | * activity on the partial lists which requires taking the list_lock. This is |
1826 | * less a concern for large slabs though which are rarely used. | 1829 | * less a concern for large slabs though which are rarely used. |
1827 | * | 1830 | * |
1828 | * slub_max_order specifies the order where we begin to stop considering the | 1831 | * slub_max_order specifies the order where we begin to stop considering the |
1829 | * number of objects in a slab as critical. If we reach slub_max_order then | 1832 | * number of objects in a slab as critical. If we reach slub_max_order then |
1830 | * we try to keep the page order as low as possible. So we accept more waste | 1833 | * we try to keep the page order as low as possible. So we accept more waste |
1831 | * of space in favor of a small page order. | 1834 | * of space in favor of a small page order. |
1832 | * | 1835 | * |
1833 | * Higher order allocations also allow the placement of more objects in a | 1836 | * Higher order allocations also allow the placement of more objects in a |
1834 | * slab and thereby reduce object handling overhead. If the user has | 1837 | * slab and thereby reduce object handling overhead. If the user has |
1835 | * requested a higher mininum order then we start with that one instead of | 1838 | * requested a higher mininum order then we start with that one instead of |
1836 | * the smallest order which will fit the object. | 1839 | * the smallest order which will fit the object. |
1837 | */ | 1840 | */ |
1838 | static inline int slab_order(int size, int min_objects, | 1841 | static inline int slab_order(int size, int min_objects, |
1839 | int max_order, int fract_leftover) | 1842 | int max_order, int fract_leftover) |
1840 | { | 1843 | { |
1841 | int order; | 1844 | int order; |
1842 | int rem; | 1845 | int rem; |
1843 | int min_order = slub_min_order; | 1846 | int min_order = slub_min_order; |
1844 | 1847 | ||
1845 | if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE) | 1848 | if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE) |
1846 | return get_order(size * MAX_OBJS_PER_PAGE) - 1; | 1849 | return get_order(size * MAX_OBJS_PER_PAGE) - 1; |
1847 | 1850 | ||
1848 | for (order = max(min_order, | 1851 | for (order = max(min_order, |
1849 | fls(min_objects * size - 1) - PAGE_SHIFT); | 1852 | fls(min_objects * size - 1) - PAGE_SHIFT); |
1850 | order <= max_order; order++) { | 1853 | order <= max_order; order++) { |
1851 | 1854 | ||
1852 | unsigned long slab_size = PAGE_SIZE << order; | 1855 | unsigned long slab_size = PAGE_SIZE << order; |
1853 | 1856 | ||
1854 | if (slab_size < min_objects * size) | 1857 | if (slab_size < min_objects * size) |
1855 | continue; | 1858 | continue; |
1856 | 1859 | ||
1857 | rem = slab_size % size; | 1860 | rem = slab_size % size; |
1858 | 1861 | ||
1859 | if (rem <= slab_size / fract_leftover) | 1862 | if (rem <= slab_size / fract_leftover) |
1860 | break; | 1863 | break; |
1861 | 1864 | ||
1862 | } | 1865 | } |
1863 | 1866 | ||
1864 | return order; | 1867 | return order; |
1865 | } | 1868 | } |
1866 | 1869 | ||
1867 | static inline int calculate_order(int size) | 1870 | static inline int calculate_order(int size) |
1868 | { | 1871 | { |
1869 | int order; | 1872 | int order; |
1870 | int min_objects; | 1873 | int min_objects; |
1871 | int fraction; | 1874 | int fraction; |
1872 | int max_objects; | 1875 | int max_objects; |
1873 | 1876 | ||
1874 | /* | 1877 | /* |
1875 | * Attempt to find best configuration for a slab. This | 1878 | * Attempt to find best configuration for a slab. This |
1876 | * works by first attempting to generate a layout with | 1879 | * works by first attempting to generate a layout with |
1877 | * the best configuration and backing off gradually. | 1880 | * the best configuration and backing off gradually. |
1878 | * | 1881 | * |
1879 | * First we reduce the acceptable waste in a slab. Then | 1882 | * First we reduce the acceptable waste in a slab. Then |
1880 | * we reduce the minimum objects required in a slab. | 1883 | * we reduce the minimum objects required in a slab. |
1881 | */ | 1884 | */ |
1882 | min_objects = slub_min_objects; | 1885 | min_objects = slub_min_objects; |
1883 | if (!min_objects) | 1886 | if (!min_objects) |
1884 | min_objects = 4 * (fls(nr_cpu_ids) + 1); | 1887 | min_objects = 4 * (fls(nr_cpu_ids) + 1); |
1885 | max_objects = (PAGE_SIZE << slub_max_order)/size; | 1888 | max_objects = (PAGE_SIZE << slub_max_order)/size; |
1886 | min_objects = min(min_objects, max_objects); | 1889 | min_objects = min(min_objects, max_objects); |
1887 | 1890 | ||
1888 | while (min_objects > 1) { | 1891 | while (min_objects > 1) { |
1889 | fraction = 16; | 1892 | fraction = 16; |
1890 | while (fraction >= 4) { | 1893 | while (fraction >= 4) { |
1891 | order = slab_order(size, min_objects, | 1894 | order = slab_order(size, min_objects, |
1892 | slub_max_order, fraction); | 1895 | slub_max_order, fraction); |
1893 | if (order <= slub_max_order) | 1896 | if (order <= slub_max_order) |
1894 | return order; | 1897 | return order; |
1895 | fraction /= 2; | 1898 | fraction /= 2; |
1896 | } | 1899 | } |
1897 | min_objects --; | 1900 | min_objects --; |
1898 | } | 1901 | } |
1899 | 1902 | ||
1900 | /* | 1903 | /* |
1901 | * We were unable to place multiple objects in a slab. Now | 1904 | * We were unable to place multiple objects in a slab. Now |
1902 | * lets see if we can place a single object there. | 1905 | * lets see if we can place a single object there. |
1903 | */ | 1906 | */ |
1904 | order = slab_order(size, 1, slub_max_order, 1); | 1907 | order = slab_order(size, 1, slub_max_order, 1); |
1905 | if (order <= slub_max_order) | 1908 | if (order <= slub_max_order) |
1906 | return order; | 1909 | return order; |
1907 | 1910 | ||
1908 | /* | 1911 | /* |
1909 | * Doh this slab cannot be placed using slub_max_order. | 1912 | * Doh this slab cannot be placed using slub_max_order. |
1910 | */ | 1913 | */ |
1911 | order = slab_order(size, 1, MAX_ORDER, 1); | 1914 | order = slab_order(size, 1, MAX_ORDER, 1); |
1912 | if (order <= MAX_ORDER) | 1915 | if (order <= MAX_ORDER) |
1913 | return order; | 1916 | return order; |
1914 | return -ENOSYS; | 1917 | return -ENOSYS; |
1915 | } | 1918 | } |
1916 | 1919 | ||
1917 | /* | 1920 | /* |
1918 | * Figure out what the alignment of the objects will be. | 1921 | * Figure out what the alignment of the objects will be. |
1919 | */ | 1922 | */ |
1920 | static unsigned long calculate_alignment(unsigned long flags, | 1923 | static unsigned long calculate_alignment(unsigned long flags, |
1921 | unsigned long align, unsigned long size) | 1924 | unsigned long align, unsigned long size) |
1922 | { | 1925 | { |
1923 | /* | 1926 | /* |
1924 | * If the user wants hardware cache aligned objects then follow that | 1927 | * If the user wants hardware cache aligned objects then follow that |
1925 | * suggestion if the object is sufficiently large. | 1928 | * suggestion if the object is sufficiently large. |
1926 | * | 1929 | * |
1927 | * The hardware cache alignment cannot override the specified | 1930 | * The hardware cache alignment cannot override the specified |
1928 | * alignment though. If that is greater then use it. | 1931 | * alignment though. If that is greater then use it. |
1929 | */ | 1932 | */ |
1930 | if (flags & SLAB_HWCACHE_ALIGN) { | 1933 | if (flags & SLAB_HWCACHE_ALIGN) { |
1931 | unsigned long ralign = cache_line_size(); | 1934 | unsigned long ralign = cache_line_size(); |
1932 | while (size <= ralign / 2) | 1935 | while (size <= ralign / 2) |
1933 | ralign /= 2; | 1936 | ralign /= 2; |
1934 | align = max(align, ralign); | 1937 | align = max(align, ralign); |
1935 | } | 1938 | } |
1936 | 1939 | ||
1937 | if (align < ARCH_SLAB_MINALIGN) | 1940 | if (align < ARCH_SLAB_MINALIGN) |
1938 | align = ARCH_SLAB_MINALIGN; | 1941 | align = ARCH_SLAB_MINALIGN; |
1939 | 1942 | ||
1940 | return ALIGN(align, sizeof(void *)); | 1943 | return ALIGN(align, sizeof(void *)); |
1941 | } | 1944 | } |
1942 | 1945 | ||
1943 | static void init_kmem_cache_cpu(struct kmem_cache *s, | 1946 | static void init_kmem_cache_cpu(struct kmem_cache *s, |
1944 | struct kmem_cache_cpu *c) | 1947 | struct kmem_cache_cpu *c) |
1945 | { | 1948 | { |
1946 | c->page = NULL; | 1949 | c->page = NULL; |
1947 | c->freelist = NULL; | 1950 | c->freelist = NULL; |
1948 | c->node = 0; | 1951 | c->node = 0; |
1949 | c->offset = s->offset / sizeof(void *); | 1952 | c->offset = s->offset / sizeof(void *); |
1950 | c->objsize = s->objsize; | 1953 | c->objsize = s->objsize; |
1951 | #ifdef CONFIG_SLUB_STATS | 1954 | #ifdef CONFIG_SLUB_STATS |
1952 | memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned)); | 1955 | memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned)); |
1953 | #endif | 1956 | #endif |
1954 | } | 1957 | } |
1955 | 1958 | ||
1956 | static void | 1959 | static void |
1957 | init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s) | 1960 | init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s) |
1958 | { | 1961 | { |
1959 | n->nr_partial = 0; | 1962 | n->nr_partial = 0; |
1960 | spin_lock_init(&n->list_lock); | 1963 | spin_lock_init(&n->list_lock); |
1961 | INIT_LIST_HEAD(&n->partial); | 1964 | INIT_LIST_HEAD(&n->partial); |
1962 | #ifdef CONFIG_SLUB_DEBUG | 1965 | #ifdef CONFIG_SLUB_DEBUG |
1963 | atomic_long_set(&n->nr_slabs, 0); | 1966 | atomic_long_set(&n->nr_slabs, 0); |
1964 | atomic_long_set(&n->total_objects, 0); | 1967 | atomic_long_set(&n->total_objects, 0); |
1965 | INIT_LIST_HEAD(&n->full); | 1968 | INIT_LIST_HEAD(&n->full); |
1966 | #endif | 1969 | #endif |
1967 | } | 1970 | } |
1968 | 1971 | ||
1969 | #ifdef CONFIG_SMP | 1972 | #ifdef CONFIG_SMP |
1970 | /* | 1973 | /* |
1971 | * Per cpu array for per cpu structures. | 1974 | * Per cpu array for per cpu structures. |
1972 | * | 1975 | * |
1973 | * The per cpu array places all kmem_cache_cpu structures from one processor | 1976 | * The per cpu array places all kmem_cache_cpu structures from one processor |
1974 | * close together meaning that it becomes possible that multiple per cpu | 1977 | * close together meaning that it becomes possible that multiple per cpu |
1975 | * structures are contained in one cacheline. This may be particularly | 1978 | * structures are contained in one cacheline. This may be particularly |
1976 | * beneficial for the kmalloc caches. | 1979 | * beneficial for the kmalloc caches. |
1977 | * | 1980 | * |
1978 | * A desktop system typically has around 60-80 slabs. With 100 here we are | 1981 | * A desktop system typically has around 60-80 slabs. With 100 here we are |
1979 | * likely able to get per cpu structures for all caches from the array defined | 1982 | * likely able to get per cpu structures for all caches from the array defined |
1980 | * here. We must be able to cover all kmalloc caches during bootstrap. | 1983 | * here. We must be able to cover all kmalloc caches during bootstrap. |
1981 | * | 1984 | * |
1982 | * If the per cpu array is exhausted then fall back to kmalloc | 1985 | * If the per cpu array is exhausted then fall back to kmalloc |
1983 | * of individual cachelines. No sharing is possible then. | 1986 | * of individual cachelines. No sharing is possible then. |
1984 | */ | 1987 | */ |
1985 | #define NR_KMEM_CACHE_CPU 100 | 1988 | #define NR_KMEM_CACHE_CPU 100 |
1986 | 1989 | ||
1987 | static DEFINE_PER_CPU(struct kmem_cache_cpu, | 1990 | static DEFINE_PER_CPU(struct kmem_cache_cpu, |
1988 | kmem_cache_cpu)[NR_KMEM_CACHE_CPU]; | 1991 | kmem_cache_cpu)[NR_KMEM_CACHE_CPU]; |
1989 | 1992 | ||
1990 | static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free); | 1993 | static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free); |
1991 | static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS); | 1994 | static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS); |
1992 | 1995 | ||
1993 | static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s, | 1996 | static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s, |
1994 | int cpu, gfp_t flags) | 1997 | int cpu, gfp_t flags) |
1995 | { | 1998 | { |
1996 | struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu); | 1999 | struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu); |
1997 | 2000 | ||
1998 | if (c) | 2001 | if (c) |
1999 | per_cpu(kmem_cache_cpu_free, cpu) = | 2002 | per_cpu(kmem_cache_cpu_free, cpu) = |
2000 | (void *)c->freelist; | 2003 | (void *)c->freelist; |
2001 | else { | 2004 | else { |
2002 | /* Table overflow: So allocate ourselves */ | 2005 | /* Table overflow: So allocate ourselves */ |
2003 | c = kmalloc_node( | 2006 | c = kmalloc_node( |
2004 | ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()), | 2007 | ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()), |
2005 | flags, cpu_to_node(cpu)); | 2008 | flags, cpu_to_node(cpu)); |
2006 | if (!c) | 2009 | if (!c) |
2007 | return NULL; | 2010 | return NULL; |
2008 | } | 2011 | } |
2009 | 2012 | ||
2010 | init_kmem_cache_cpu(s, c); | 2013 | init_kmem_cache_cpu(s, c); |
2011 | return c; | 2014 | return c; |
2012 | } | 2015 | } |
2013 | 2016 | ||
2014 | static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu) | 2017 | static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu) |
2015 | { | 2018 | { |
2016 | if (c < per_cpu(kmem_cache_cpu, cpu) || | 2019 | if (c < per_cpu(kmem_cache_cpu, cpu) || |
2017 | c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) { | 2020 | c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) { |
2018 | kfree(c); | 2021 | kfree(c); |
2019 | return; | 2022 | return; |
2020 | } | 2023 | } |
2021 | c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu); | 2024 | c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu); |
2022 | per_cpu(kmem_cache_cpu_free, cpu) = c; | 2025 | per_cpu(kmem_cache_cpu_free, cpu) = c; |
2023 | } | 2026 | } |
2024 | 2027 | ||
2025 | static void free_kmem_cache_cpus(struct kmem_cache *s) | 2028 | static void free_kmem_cache_cpus(struct kmem_cache *s) |
2026 | { | 2029 | { |
2027 | int cpu; | 2030 | int cpu; |
2028 | 2031 | ||
2029 | for_each_online_cpu(cpu) { | 2032 | for_each_online_cpu(cpu) { |
2030 | struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); | 2033 | struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); |
2031 | 2034 | ||
2032 | if (c) { | 2035 | if (c) { |
2033 | s->cpu_slab[cpu] = NULL; | 2036 | s->cpu_slab[cpu] = NULL; |
2034 | free_kmem_cache_cpu(c, cpu); | 2037 | free_kmem_cache_cpu(c, cpu); |
2035 | } | 2038 | } |
2036 | } | 2039 | } |
2037 | } | 2040 | } |
2038 | 2041 | ||
2039 | static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags) | 2042 | static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags) |
2040 | { | 2043 | { |
2041 | int cpu; | 2044 | int cpu; |
2042 | 2045 | ||
2043 | for_each_online_cpu(cpu) { | 2046 | for_each_online_cpu(cpu) { |
2044 | struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); | 2047 | struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); |
2045 | 2048 | ||
2046 | if (c) | 2049 | if (c) |
2047 | continue; | 2050 | continue; |
2048 | 2051 | ||
2049 | c = alloc_kmem_cache_cpu(s, cpu, flags); | 2052 | c = alloc_kmem_cache_cpu(s, cpu, flags); |
2050 | if (!c) { | 2053 | if (!c) { |
2051 | free_kmem_cache_cpus(s); | 2054 | free_kmem_cache_cpus(s); |
2052 | return 0; | 2055 | return 0; |
2053 | } | 2056 | } |
2054 | s->cpu_slab[cpu] = c; | 2057 | s->cpu_slab[cpu] = c; |
2055 | } | 2058 | } |
2056 | return 1; | 2059 | return 1; |
2057 | } | 2060 | } |
2058 | 2061 | ||
2059 | /* | 2062 | /* |
2060 | * Initialize the per cpu array. | 2063 | * Initialize the per cpu array. |
2061 | */ | 2064 | */ |
2062 | static void init_alloc_cpu_cpu(int cpu) | 2065 | static void init_alloc_cpu_cpu(int cpu) |
2063 | { | 2066 | { |
2064 | int i; | 2067 | int i; |
2065 | 2068 | ||
2066 | if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once))) | 2069 | if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once))) |
2067 | return; | 2070 | return; |
2068 | 2071 | ||
2069 | for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--) | 2072 | for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--) |
2070 | free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu); | 2073 | free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu); |
2071 | 2074 | ||
2072 | cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)); | 2075 | cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)); |
2073 | } | 2076 | } |
2074 | 2077 | ||
2075 | static void __init init_alloc_cpu(void) | 2078 | static void __init init_alloc_cpu(void) |
2076 | { | 2079 | { |
2077 | int cpu; | 2080 | int cpu; |
2078 | 2081 | ||
2079 | for_each_online_cpu(cpu) | 2082 | for_each_online_cpu(cpu) |
2080 | init_alloc_cpu_cpu(cpu); | 2083 | init_alloc_cpu_cpu(cpu); |
2081 | } | 2084 | } |
2082 | 2085 | ||
2083 | #else | 2086 | #else |
2084 | static inline void free_kmem_cache_cpus(struct kmem_cache *s) {} | 2087 | static inline void free_kmem_cache_cpus(struct kmem_cache *s) {} |
2085 | static inline void init_alloc_cpu(void) {} | 2088 | static inline void init_alloc_cpu(void) {} |
2086 | 2089 | ||
2087 | static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags) | 2090 | static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags) |
2088 | { | 2091 | { |
2089 | init_kmem_cache_cpu(s, &s->cpu_slab); | 2092 | init_kmem_cache_cpu(s, &s->cpu_slab); |
2090 | return 1; | 2093 | return 1; |
2091 | } | 2094 | } |
2092 | #endif | 2095 | #endif |
2093 | 2096 | ||
2094 | #ifdef CONFIG_NUMA | 2097 | #ifdef CONFIG_NUMA |
2095 | /* | 2098 | /* |
2096 | * No kmalloc_node yet so do it by hand. We know that this is the first | 2099 | * No kmalloc_node yet so do it by hand. We know that this is the first |
2097 | * slab on the node for this slabcache. There are no concurrent accesses | 2100 | * slab on the node for this slabcache. There are no concurrent accesses |
2098 | * possible. | 2101 | * possible. |
2099 | * | 2102 | * |
2100 | * Note that this function only works on the kmalloc_node_cache | 2103 | * Note that this function only works on the kmalloc_node_cache |
2101 | * when allocating for the kmalloc_node_cache. This is used for bootstrapping | 2104 | * when allocating for the kmalloc_node_cache. This is used for bootstrapping |
2102 | * memory on a fresh node that has no slab structures yet. | 2105 | * memory on a fresh node that has no slab structures yet. |
2103 | */ | 2106 | */ |
2104 | static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node) | 2107 | static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node) |
2105 | { | 2108 | { |
2106 | struct page *page; | 2109 | struct page *page; |
2107 | struct kmem_cache_node *n; | 2110 | struct kmem_cache_node *n; |
2108 | unsigned long flags; | 2111 | unsigned long flags; |
2109 | 2112 | ||
2110 | BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node)); | 2113 | BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node)); |
2111 | 2114 | ||
2112 | page = new_slab(kmalloc_caches, gfpflags, node); | 2115 | page = new_slab(kmalloc_caches, gfpflags, node); |
2113 | 2116 | ||
2114 | BUG_ON(!page); | 2117 | BUG_ON(!page); |
2115 | if (page_to_nid(page) != node) { | 2118 | if (page_to_nid(page) != node) { |
2116 | printk(KERN_ERR "SLUB: Unable to allocate memory from " | 2119 | printk(KERN_ERR "SLUB: Unable to allocate memory from " |
2117 | "node %d\n", node); | 2120 | "node %d\n", node); |
2118 | printk(KERN_ERR "SLUB: Allocating a useless per node structure " | 2121 | printk(KERN_ERR "SLUB: Allocating a useless per node structure " |
2119 | "in order to be able to continue\n"); | 2122 | "in order to be able to continue\n"); |
2120 | } | 2123 | } |
2121 | 2124 | ||
2122 | n = page->freelist; | 2125 | n = page->freelist; |
2123 | BUG_ON(!n); | 2126 | BUG_ON(!n); |
2124 | page->freelist = get_freepointer(kmalloc_caches, n); | 2127 | page->freelist = get_freepointer(kmalloc_caches, n); |
2125 | page->inuse++; | 2128 | page->inuse++; |
2126 | kmalloc_caches->node[node] = n; | 2129 | kmalloc_caches->node[node] = n; |
2127 | #ifdef CONFIG_SLUB_DEBUG | 2130 | #ifdef CONFIG_SLUB_DEBUG |
2128 | init_object(kmalloc_caches, n, 1); | 2131 | init_object(kmalloc_caches, n, 1); |
2129 | init_tracking(kmalloc_caches, n); | 2132 | init_tracking(kmalloc_caches, n); |
2130 | #endif | 2133 | #endif |
2131 | init_kmem_cache_node(n, kmalloc_caches); | 2134 | init_kmem_cache_node(n, kmalloc_caches); |
2132 | inc_slabs_node(kmalloc_caches, node, page->objects); | 2135 | inc_slabs_node(kmalloc_caches, node, page->objects); |
2133 | 2136 | ||
2134 | /* | 2137 | /* |
2135 | * lockdep requires consistent irq usage for each lock | 2138 | * lockdep requires consistent irq usage for each lock |
2136 | * so even though there cannot be a race this early in | 2139 | * so even though there cannot be a race this early in |
2137 | * the boot sequence, we still disable irqs. | 2140 | * the boot sequence, we still disable irqs. |
2138 | */ | 2141 | */ |
2139 | local_irq_save(flags); | 2142 | local_irq_save(flags); |
2140 | add_partial(n, page, 0); | 2143 | add_partial(n, page, 0); |
2141 | local_irq_restore(flags); | 2144 | local_irq_restore(flags); |
2142 | } | 2145 | } |
2143 | 2146 | ||
2144 | static void free_kmem_cache_nodes(struct kmem_cache *s) | 2147 | static void free_kmem_cache_nodes(struct kmem_cache *s) |
2145 | { | 2148 | { |
2146 | int node; | 2149 | int node; |
2147 | 2150 | ||
2148 | for_each_node_state(node, N_NORMAL_MEMORY) { | 2151 | for_each_node_state(node, N_NORMAL_MEMORY) { |
2149 | struct kmem_cache_node *n = s->node[node]; | 2152 | struct kmem_cache_node *n = s->node[node]; |
2150 | if (n && n != &s->local_node) | 2153 | if (n && n != &s->local_node) |
2151 | kmem_cache_free(kmalloc_caches, n); | 2154 | kmem_cache_free(kmalloc_caches, n); |
2152 | s->node[node] = NULL; | 2155 | s->node[node] = NULL; |
2153 | } | 2156 | } |
2154 | } | 2157 | } |
2155 | 2158 | ||
2156 | static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) | 2159 | static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) |
2157 | { | 2160 | { |
2158 | int node; | 2161 | int node; |
2159 | int local_node; | 2162 | int local_node; |
2160 | 2163 | ||
2161 | if (slab_state >= UP) | 2164 | if (slab_state >= UP) |
2162 | local_node = page_to_nid(virt_to_page(s)); | 2165 | local_node = page_to_nid(virt_to_page(s)); |
2163 | else | 2166 | else |
2164 | local_node = 0; | 2167 | local_node = 0; |
2165 | 2168 | ||
2166 | for_each_node_state(node, N_NORMAL_MEMORY) { | 2169 | for_each_node_state(node, N_NORMAL_MEMORY) { |
2167 | struct kmem_cache_node *n; | 2170 | struct kmem_cache_node *n; |
2168 | 2171 | ||
2169 | if (local_node == node) | 2172 | if (local_node == node) |
2170 | n = &s->local_node; | 2173 | n = &s->local_node; |
2171 | else { | 2174 | else { |
2172 | if (slab_state == DOWN) { | 2175 | if (slab_state == DOWN) { |
2173 | early_kmem_cache_node_alloc(gfpflags, node); | 2176 | early_kmem_cache_node_alloc(gfpflags, node); |
2174 | continue; | 2177 | continue; |
2175 | } | 2178 | } |
2176 | n = kmem_cache_alloc_node(kmalloc_caches, | 2179 | n = kmem_cache_alloc_node(kmalloc_caches, |
2177 | gfpflags, node); | 2180 | gfpflags, node); |
2178 | 2181 | ||
2179 | if (!n) { | 2182 | if (!n) { |
2180 | free_kmem_cache_nodes(s); | 2183 | free_kmem_cache_nodes(s); |
2181 | return 0; | 2184 | return 0; |
2182 | } | 2185 | } |
2183 | 2186 | ||
2184 | } | 2187 | } |
2185 | s->node[node] = n; | 2188 | s->node[node] = n; |
2186 | init_kmem_cache_node(n, s); | 2189 | init_kmem_cache_node(n, s); |
2187 | } | 2190 | } |
2188 | return 1; | 2191 | return 1; |
2189 | } | 2192 | } |
2190 | #else | 2193 | #else |
2191 | static void free_kmem_cache_nodes(struct kmem_cache *s) | 2194 | static void free_kmem_cache_nodes(struct kmem_cache *s) |
2192 | { | 2195 | { |
2193 | } | 2196 | } |
2194 | 2197 | ||
2195 | static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) | 2198 | static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) |
2196 | { | 2199 | { |
2197 | init_kmem_cache_node(&s->local_node, s); | 2200 | init_kmem_cache_node(&s->local_node, s); |
2198 | return 1; | 2201 | return 1; |
2199 | } | 2202 | } |
2200 | #endif | 2203 | #endif |
2201 | 2204 | ||
2202 | static void set_min_partial(struct kmem_cache *s, unsigned long min) | 2205 | static void set_min_partial(struct kmem_cache *s, unsigned long min) |
2203 | { | 2206 | { |
2204 | if (min < MIN_PARTIAL) | 2207 | if (min < MIN_PARTIAL) |
2205 | min = MIN_PARTIAL; | 2208 | min = MIN_PARTIAL; |
2206 | else if (min > MAX_PARTIAL) | 2209 | else if (min > MAX_PARTIAL) |
2207 | min = MAX_PARTIAL; | 2210 | min = MAX_PARTIAL; |
2208 | s->min_partial = min; | 2211 | s->min_partial = min; |
2209 | } | 2212 | } |
2210 | 2213 | ||
2211 | /* | 2214 | /* |
2212 | * calculate_sizes() determines the order and the distribution of data within | 2215 | * calculate_sizes() determines the order and the distribution of data within |
2213 | * a slab object. | 2216 | * a slab object. |
2214 | */ | 2217 | */ |
2215 | static int calculate_sizes(struct kmem_cache *s, int forced_order) | 2218 | static int calculate_sizes(struct kmem_cache *s, int forced_order) |
2216 | { | 2219 | { |
2217 | unsigned long flags = s->flags; | 2220 | unsigned long flags = s->flags; |
2218 | unsigned long size = s->objsize; | 2221 | unsigned long size = s->objsize; |
2219 | unsigned long align = s->align; | 2222 | unsigned long align = s->align; |
2220 | int order; | 2223 | int order; |
2221 | 2224 | ||
2222 | /* | 2225 | /* |
2223 | * Round up object size to the next word boundary. We can only | 2226 | * Round up object size to the next word boundary. We can only |
2224 | * place the free pointer at word boundaries and this determines | 2227 | * place the free pointer at word boundaries and this determines |
2225 | * the possible location of the free pointer. | 2228 | * the possible location of the free pointer. |
2226 | */ | 2229 | */ |
2227 | size = ALIGN(size, sizeof(void *)); | 2230 | size = ALIGN(size, sizeof(void *)); |
2228 | 2231 | ||
2229 | #ifdef CONFIG_SLUB_DEBUG | 2232 | #ifdef CONFIG_SLUB_DEBUG |
2230 | /* | 2233 | /* |
2231 | * Determine if we can poison the object itself. If the user of | 2234 | * Determine if we can poison the object itself. If the user of |
2232 | * the slab may touch the object after free or before allocation | 2235 | * the slab may touch the object after free or before allocation |
2233 | * then we should never poison the object itself. | 2236 | * then we should never poison the object itself. |
2234 | */ | 2237 | */ |
2235 | if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && | 2238 | if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && |
2236 | !s->ctor) | 2239 | !s->ctor) |
2237 | s->flags |= __OBJECT_POISON; | 2240 | s->flags |= __OBJECT_POISON; |
2238 | else | 2241 | else |
2239 | s->flags &= ~__OBJECT_POISON; | 2242 | s->flags &= ~__OBJECT_POISON; |
2240 | 2243 | ||
2241 | 2244 | ||
2242 | /* | 2245 | /* |
2243 | * If we are Redzoning then check if there is some space between the | 2246 | * If we are Redzoning then check if there is some space between the |
2244 | * end of the object and the free pointer. If not then add an | 2247 | * end of the object and the free pointer. If not then add an |
2245 | * additional word to have some bytes to store Redzone information. | 2248 | * additional word to have some bytes to store Redzone information. |
2246 | */ | 2249 | */ |
2247 | if ((flags & SLAB_RED_ZONE) && size == s->objsize) | 2250 | if ((flags & SLAB_RED_ZONE) && size == s->objsize) |
2248 | size += sizeof(void *); | 2251 | size += sizeof(void *); |
2249 | #endif | 2252 | #endif |
2250 | 2253 | ||
2251 | /* | 2254 | /* |
2252 | * With that we have determined the number of bytes in actual use | 2255 | * With that we have determined the number of bytes in actual use |
2253 | * by the object. This is the potential offset to the free pointer. | 2256 | * by the object. This is the potential offset to the free pointer. |
2254 | */ | 2257 | */ |
2255 | s->inuse = size; | 2258 | s->inuse = size; |
2256 | 2259 | ||
2257 | if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || | 2260 | if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || |
2258 | s->ctor)) { | 2261 | s->ctor)) { |
2259 | /* | 2262 | /* |
2260 | * Relocate free pointer after the object if it is not | 2263 | * Relocate free pointer after the object if it is not |
2261 | * permitted to overwrite the first word of the object on | 2264 | * permitted to overwrite the first word of the object on |
2262 | * kmem_cache_free. | 2265 | * kmem_cache_free. |
2263 | * | 2266 | * |
2264 | * This is the case if we do RCU, have a constructor or | 2267 | * This is the case if we do RCU, have a constructor or |
2265 | * destructor or are poisoning the objects. | 2268 | * destructor or are poisoning the objects. |
2266 | */ | 2269 | */ |
2267 | s->offset = size; | 2270 | s->offset = size; |
2268 | size += sizeof(void *); | 2271 | size += sizeof(void *); |
2269 | } | 2272 | } |
2270 | 2273 | ||
2271 | #ifdef CONFIG_SLUB_DEBUG | 2274 | #ifdef CONFIG_SLUB_DEBUG |
2272 | if (flags & SLAB_STORE_USER) | 2275 | if (flags & SLAB_STORE_USER) |
2273 | /* | 2276 | /* |
2274 | * Need to store information about allocs and frees after | 2277 | * Need to store information about allocs and frees after |
2275 | * the object. | 2278 | * the object. |
2276 | */ | 2279 | */ |
2277 | size += 2 * sizeof(struct track); | 2280 | size += 2 * sizeof(struct track); |
2278 | 2281 | ||
2279 | if (flags & SLAB_RED_ZONE) | 2282 | if (flags & SLAB_RED_ZONE) |
2280 | /* | 2283 | /* |
2281 | * Add some empty padding so that we can catch | 2284 | * Add some empty padding so that we can catch |
2282 | * overwrites from earlier objects rather than let | 2285 | * overwrites from earlier objects rather than let |
2283 | * tracking information or the free pointer be | 2286 | * tracking information or the free pointer be |
2284 | * corrupted if a user writes before the start | 2287 | * corrupted if a user writes before the start |
2285 | * of the object. | 2288 | * of the object. |
2286 | */ | 2289 | */ |
2287 | size += sizeof(void *); | 2290 | size += sizeof(void *); |
2288 | #endif | 2291 | #endif |
2289 | 2292 | ||
2290 | /* | 2293 | /* |
2291 | * Determine the alignment based on various parameters that the | 2294 | * Determine the alignment based on various parameters that the |
2292 | * user specified and the dynamic determination of cache line size | 2295 | * user specified and the dynamic determination of cache line size |
2293 | * on bootup. | 2296 | * on bootup. |
2294 | */ | 2297 | */ |
2295 | align = calculate_alignment(flags, align, s->objsize); | 2298 | align = calculate_alignment(flags, align, s->objsize); |
2296 | 2299 | ||
2297 | /* | 2300 | /* |
2298 | * SLUB stores one object immediately after another beginning from | 2301 | * SLUB stores one object immediately after another beginning from |
2299 | * offset 0. In order to align the objects we have to simply size | 2302 | * offset 0. In order to align the objects we have to simply size |
2300 | * each object to conform to the alignment. | 2303 | * each object to conform to the alignment. |
2301 | */ | 2304 | */ |
2302 | size = ALIGN(size, align); | 2305 | size = ALIGN(size, align); |
2303 | s->size = size; | 2306 | s->size = size; |
2304 | if (forced_order >= 0) | 2307 | if (forced_order >= 0) |
2305 | order = forced_order; | 2308 | order = forced_order; |
2306 | else | 2309 | else |
2307 | order = calculate_order(size); | 2310 | order = calculate_order(size); |
2308 | 2311 | ||
2309 | if (order < 0) | 2312 | if (order < 0) |
2310 | return 0; | 2313 | return 0; |
2311 | 2314 | ||
2312 | s->allocflags = 0; | 2315 | s->allocflags = 0; |
2313 | if (order) | 2316 | if (order) |
2314 | s->allocflags |= __GFP_COMP; | 2317 | s->allocflags |= __GFP_COMP; |
2315 | 2318 | ||
2316 | if (s->flags & SLAB_CACHE_DMA) | 2319 | if (s->flags & SLAB_CACHE_DMA) |
2317 | s->allocflags |= SLUB_DMA; | 2320 | s->allocflags |= SLUB_DMA; |
2318 | 2321 | ||
2319 | if (s->flags & SLAB_RECLAIM_ACCOUNT) | 2322 | if (s->flags & SLAB_RECLAIM_ACCOUNT) |
2320 | s->allocflags |= __GFP_RECLAIMABLE; | 2323 | s->allocflags |= __GFP_RECLAIMABLE; |
2321 | 2324 | ||
2322 | /* | 2325 | /* |
2323 | * Determine the number of objects per slab | 2326 | * Determine the number of objects per slab |
2324 | */ | 2327 | */ |
2325 | s->oo = oo_make(order, size); | 2328 | s->oo = oo_make(order, size); |
2326 | s->min = oo_make(get_order(size), size); | 2329 | s->min = oo_make(get_order(size), size); |
2327 | if (oo_objects(s->oo) > oo_objects(s->max)) | 2330 | if (oo_objects(s->oo) > oo_objects(s->max)) |
2328 | s->max = s->oo; | 2331 | s->max = s->oo; |
2329 | 2332 | ||
2330 | return !!oo_objects(s->oo); | 2333 | return !!oo_objects(s->oo); |
2331 | 2334 | ||
2332 | } | 2335 | } |
2333 | 2336 | ||
2334 | static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags, | 2337 | static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags, |
2335 | const char *name, size_t size, | 2338 | const char *name, size_t size, |
2336 | size_t align, unsigned long flags, | 2339 | size_t align, unsigned long flags, |
2337 | void (*ctor)(void *)) | 2340 | void (*ctor)(void *)) |
2338 | { | 2341 | { |
2339 | memset(s, 0, kmem_size); | 2342 | memset(s, 0, kmem_size); |
2340 | s->name = name; | 2343 | s->name = name; |
2341 | s->ctor = ctor; | 2344 | s->ctor = ctor; |
2342 | s->objsize = size; | 2345 | s->objsize = size; |
2343 | s->align = align; | 2346 | s->align = align; |
2344 | s->flags = kmem_cache_flags(size, flags, name, ctor); | 2347 | s->flags = kmem_cache_flags(size, flags, name, ctor); |
2345 | 2348 | ||
2346 | if (!calculate_sizes(s, -1)) | 2349 | if (!calculate_sizes(s, -1)) |
2347 | goto error; | 2350 | goto error; |
2348 | 2351 | ||
2349 | /* | 2352 | /* |
2350 | * The larger the object size is, the more pages we want on the partial | 2353 | * The larger the object size is, the more pages we want on the partial |
2351 | * list to avoid pounding the page allocator excessively. | 2354 | * list to avoid pounding the page allocator excessively. |
2352 | */ | 2355 | */ |
2353 | set_min_partial(s, ilog2(s->size)); | 2356 | set_min_partial(s, ilog2(s->size)); |
2354 | s->refcount = 1; | 2357 | s->refcount = 1; |
2355 | #ifdef CONFIG_NUMA | 2358 | #ifdef CONFIG_NUMA |
2356 | s->remote_node_defrag_ratio = 1000; | 2359 | s->remote_node_defrag_ratio = 1000; |
2357 | #endif | 2360 | #endif |
2358 | if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA)) | 2361 | if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA)) |
2359 | goto error; | 2362 | goto error; |
2360 | 2363 | ||
2361 | if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA)) | 2364 | if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA)) |
2362 | return 1; | 2365 | return 1; |
2363 | free_kmem_cache_nodes(s); | 2366 | free_kmem_cache_nodes(s); |
2364 | error: | 2367 | error: |
2365 | if (flags & SLAB_PANIC) | 2368 | if (flags & SLAB_PANIC) |
2366 | panic("Cannot create slab %s size=%lu realsize=%u " | 2369 | panic("Cannot create slab %s size=%lu realsize=%u " |
2367 | "order=%u offset=%u flags=%lx\n", | 2370 | "order=%u offset=%u flags=%lx\n", |
2368 | s->name, (unsigned long)size, s->size, oo_order(s->oo), | 2371 | s->name, (unsigned long)size, s->size, oo_order(s->oo), |
2369 | s->offset, flags); | 2372 | s->offset, flags); |
2370 | return 0; | 2373 | return 0; |
2371 | } | 2374 | } |
2372 | 2375 | ||
2373 | /* | 2376 | /* |
2374 | * Check if a given pointer is valid | 2377 | * Check if a given pointer is valid |
2375 | */ | 2378 | */ |
2376 | int kmem_ptr_validate(struct kmem_cache *s, const void *object) | 2379 | int kmem_ptr_validate(struct kmem_cache *s, const void *object) |
2377 | { | 2380 | { |
2378 | struct page *page; | 2381 | struct page *page; |
2379 | 2382 | ||
2380 | page = get_object_page(object); | 2383 | page = get_object_page(object); |
2381 | 2384 | ||
2382 | if (!page || s != page->slab) | 2385 | if (!page || s != page->slab) |
2383 | /* No slab or wrong slab */ | 2386 | /* No slab or wrong slab */ |
2384 | return 0; | 2387 | return 0; |
2385 | 2388 | ||
2386 | if (!check_valid_pointer(s, page, object)) | 2389 | if (!check_valid_pointer(s, page, object)) |
2387 | return 0; | 2390 | return 0; |
2388 | 2391 | ||
2389 | /* | 2392 | /* |
2390 | * We could also check if the object is on the slabs freelist. | 2393 | * We could also check if the object is on the slabs freelist. |
2391 | * But this would be too expensive and it seems that the main | 2394 | * But this would be too expensive and it seems that the main |
2392 | * purpose of kmem_ptr_valid() is to check if the object belongs | 2395 | * purpose of kmem_ptr_valid() is to check if the object belongs |
2393 | * to a certain slab. | 2396 | * to a certain slab. |
2394 | */ | 2397 | */ |
2395 | return 1; | 2398 | return 1; |
2396 | } | 2399 | } |
2397 | EXPORT_SYMBOL(kmem_ptr_validate); | 2400 | EXPORT_SYMBOL(kmem_ptr_validate); |
2398 | 2401 | ||
2399 | /* | 2402 | /* |
2400 | * Determine the size of a slab object | 2403 | * Determine the size of a slab object |
2401 | */ | 2404 | */ |
2402 | unsigned int kmem_cache_size(struct kmem_cache *s) | 2405 | unsigned int kmem_cache_size(struct kmem_cache *s) |
2403 | { | 2406 | { |
2404 | return s->objsize; | 2407 | return s->objsize; |
2405 | } | 2408 | } |
2406 | EXPORT_SYMBOL(kmem_cache_size); | 2409 | EXPORT_SYMBOL(kmem_cache_size); |
2407 | 2410 | ||
2408 | const char *kmem_cache_name(struct kmem_cache *s) | 2411 | const char *kmem_cache_name(struct kmem_cache *s) |
2409 | { | 2412 | { |
2410 | return s->name; | 2413 | return s->name; |
2411 | } | 2414 | } |
2412 | EXPORT_SYMBOL(kmem_cache_name); | 2415 | EXPORT_SYMBOL(kmem_cache_name); |
2413 | 2416 | ||
2414 | static void list_slab_objects(struct kmem_cache *s, struct page *page, | 2417 | static void list_slab_objects(struct kmem_cache *s, struct page *page, |
2415 | const char *text) | 2418 | const char *text) |
2416 | { | 2419 | { |
2417 | #ifdef CONFIG_SLUB_DEBUG | 2420 | #ifdef CONFIG_SLUB_DEBUG |
2418 | void *addr = page_address(page); | 2421 | void *addr = page_address(page); |
2419 | void *p; | 2422 | void *p; |
2420 | DECLARE_BITMAP(map, page->objects); | 2423 | DECLARE_BITMAP(map, page->objects); |
2421 | 2424 | ||
2422 | bitmap_zero(map, page->objects); | 2425 | bitmap_zero(map, page->objects); |
2423 | slab_err(s, page, "%s", text); | 2426 | slab_err(s, page, "%s", text); |
2424 | slab_lock(page); | 2427 | slab_lock(page); |
2425 | for_each_free_object(p, s, page->freelist) | 2428 | for_each_free_object(p, s, page->freelist) |
2426 | set_bit(slab_index(p, s, addr), map); | 2429 | set_bit(slab_index(p, s, addr), map); |
2427 | 2430 | ||
2428 | for_each_object(p, s, addr, page->objects) { | 2431 | for_each_object(p, s, addr, page->objects) { |
2429 | 2432 | ||
2430 | if (!test_bit(slab_index(p, s, addr), map)) { | 2433 | if (!test_bit(slab_index(p, s, addr), map)) { |
2431 | printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n", | 2434 | printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n", |
2432 | p, p - addr); | 2435 | p, p - addr); |
2433 | print_tracking(s, p); | 2436 | print_tracking(s, p); |
2434 | } | 2437 | } |
2435 | } | 2438 | } |
2436 | slab_unlock(page); | 2439 | slab_unlock(page); |
2437 | #endif | 2440 | #endif |
2438 | } | 2441 | } |
2439 | 2442 | ||
2440 | /* | 2443 | /* |
2441 | * Attempt to free all partial slabs on a node. | 2444 | * Attempt to free all partial slabs on a node. |
2442 | */ | 2445 | */ |
2443 | static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) | 2446 | static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) |
2444 | { | 2447 | { |
2445 | unsigned long flags; | 2448 | unsigned long flags; |
2446 | struct page *page, *h; | 2449 | struct page *page, *h; |
2447 | 2450 | ||
2448 | spin_lock_irqsave(&n->list_lock, flags); | 2451 | spin_lock_irqsave(&n->list_lock, flags); |
2449 | list_for_each_entry_safe(page, h, &n->partial, lru) { | 2452 | list_for_each_entry_safe(page, h, &n->partial, lru) { |
2450 | if (!page->inuse) { | 2453 | if (!page->inuse) { |
2451 | list_del(&page->lru); | 2454 | list_del(&page->lru); |
2452 | discard_slab(s, page); | 2455 | discard_slab(s, page); |
2453 | n->nr_partial--; | 2456 | n->nr_partial--; |
2454 | } else { | 2457 | } else { |
2455 | list_slab_objects(s, page, | 2458 | list_slab_objects(s, page, |
2456 | "Objects remaining on kmem_cache_close()"); | 2459 | "Objects remaining on kmem_cache_close()"); |
2457 | } | 2460 | } |
2458 | } | 2461 | } |
2459 | spin_unlock_irqrestore(&n->list_lock, flags); | 2462 | spin_unlock_irqrestore(&n->list_lock, flags); |
2460 | } | 2463 | } |
2461 | 2464 | ||
2462 | /* | 2465 | /* |
2463 | * Release all resources used by a slab cache. | 2466 | * Release all resources used by a slab cache. |
2464 | */ | 2467 | */ |
2465 | static inline int kmem_cache_close(struct kmem_cache *s) | 2468 | static inline int kmem_cache_close(struct kmem_cache *s) |
2466 | { | 2469 | { |
2467 | int node; | 2470 | int node; |
2468 | 2471 | ||
2469 | flush_all(s); | 2472 | flush_all(s); |
2470 | 2473 | ||
2471 | /* Attempt to free all objects */ | 2474 | /* Attempt to free all objects */ |
2472 | free_kmem_cache_cpus(s); | 2475 | free_kmem_cache_cpus(s); |
2473 | for_each_node_state(node, N_NORMAL_MEMORY) { | 2476 | for_each_node_state(node, N_NORMAL_MEMORY) { |
2474 | struct kmem_cache_node *n = get_node(s, node); | 2477 | struct kmem_cache_node *n = get_node(s, node); |
2475 | 2478 | ||
2476 | free_partial(s, n); | 2479 | free_partial(s, n); |
2477 | if (n->nr_partial || slabs_node(s, node)) | 2480 | if (n->nr_partial || slabs_node(s, node)) |
2478 | return 1; | 2481 | return 1; |
2479 | } | 2482 | } |
2480 | free_kmem_cache_nodes(s); | 2483 | free_kmem_cache_nodes(s); |
2481 | return 0; | 2484 | return 0; |
2482 | } | 2485 | } |
2483 | 2486 | ||
2484 | /* | 2487 | /* |
2485 | * Close a cache and release the kmem_cache structure | 2488 | * Close a cache and release the kmem_cache structure |
2486 | * (must be used for caches created using kmem_cache_create) | 2489 | * (must be used for caches created using kmem_cache_create) |
2487 | */ | 2490 | */ |
2488 | void kmem_cache_destroy(struct kmem_cache *s) | 2491 | void kmem_cache_destroy(struct kmem_cache *s) |
2489 | { | 2492 | { |
2490 | down_write(&slub_lock); | 2493 | down_write(&slub_lock); |
2491 | s->refcount--; | 2494 | s->refcount--; |
2492 | if (!s->refcount) { | 2495 | if (!s->refcount) { |
2493 | list_del(&s->list); | 2496 | list_del(&s->list); |
2494 | up_write(&slub_lock); | 2497 | up_write(&slub_lock); |
2495 | if (kmem_cache_close(s)) { | 2498 | if (kmem_cache_close(s)) { |
2496 | printk(KERN_ERR "SLUB %s: %s called for cache that " | 2499 | printk(KERN_ERR "SLUB %s: %s called for cache that " |
2497 | "still has objects.\n", s->name, __func__); | 2500 | "still has objects.\n", s->name, __func__); |
2498 | dump_stack(); | 2501 | dump_stack(); |
2499 | } | 2502 | } |
2500 | sysfs_slab_remove(s); | 2503 | sysfs_slab_remove(s); |
2501 | } else | 2504 | } else |
2502 | up_write(&slub_lock); | 2505 | up_write(&slub_lock); |
2503 | } | 2506 | } |
2504 | EXPORT_SYMBOL(kmem_cache_destroy); | 2507 | EXPORT_SYMBOL(kmem_cache_destroy); |
2505 | 2508 | ||
2506 | /******************************************************************** | 2509 | /******************************************************************** |
2507 | * Kmalloc subsystem | 2510 | * Kmalloc subsystem |
2508 | *******************************************************************/ | 2511 | *******************************************************************/ |
2509 | 2512 | ||
2510 | struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned; | 2513 | struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned; |
2511 | EXPORT_SYMBOL(kmalloc_caches); | 2514 | EXPORT_SYMBOL(kmalloc_caches); |
2512 | 2515 | ||
2513 | static int __init setup_slub_min_order(char *str) | 2516 | static int __init setup_slub_min_order(char *str) |
2514 | { | 2517 | { |
2515 | get_option(&str, &slub_min_order); | 2518 | get_option(&str, &slub_min_order); |
2516 | 2519 | ||
2517 | return 1; | 2520 | return 1; |
2518 | } | 2521 | } |
2519 | 2522 | ||
2520 | __setup("slub_min_order=", setup_slub_min_order); | 2523 | __setup("slub_min_order=", setup_slub_min_order); |
2521 | 2524 | ||
2522 | static int __init setup_slub_max_order(char *str) | 2525 | static int __init setup_slub_max_order(char *str) |
2523 | { | 2526 | { |
2524 | get_option(&str, &slub_max_order); | 2527 | get_option(&str, &slub_max_order); |
2525 | 2528 | ||
2526 | return 1; | 2529 | return 1; |
2527 | } | 2530 | } |
2528 | 2531 | ||
2529 | __setup("slub_max_order=", setup_slub_max_order); | 2532 | __setup("slub_max_order=", setup_slub_max_order); |
2530 | 2533 | ||
2531 | static int __init setup_slub_min_objects(char *str) | 2534 | static int __init setup_slub_min_objects(char *str) |
2532 | { | 2535 | { |
2533 | get_option(&str, &slub_min_objects); | 2536 | get_option(&str, &slub_min_objects); |
2534 | 2537 | ||
2535 | return 1; | 2538 | return 1; |
2536 | } | 2539 | } |
2537 | 2540 | ||
2538 | __setup("slub_min_objects=", setup_slub_min_objects); | 2541 | __setup("slub_min_objects=", setup_slub_min_objects); |
2539 | 2542 | ||
2540 | static int __init setup_slub_nomerge(char *str) | 2543 | static int __init setup_slub_nomerge(char *str) |
2541 | { | 2544 | { |
2542 | slub_nomerge = 1; | 2545 | slub_nomerge = 1; |
2543 | return 1; | 2546 | return 1; |
2544 | } | 2547 | } |
2545 | 2548 | ||
2546 | __setup("slub_nomerge", setup_slub_nomerge); | 2549 | __setup("slub_nomerge", setup_slub_nomerge); |
2547 | 2550 | ||
2548 | static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s, | 2551 | static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s, |
2549 | const char *name, int size, gfp_t gfp_flags) | 2552 | const char *name, int size, gfp_t gfp_flags) |
2550 | { | 2553 | { |
2551 | unsigned int flags = 0; | 2554 | unsigned int flags = 0; |
2552 | 2555 | ||
2553 | if (gfp_flags & SLUB_DMA) | 2556 | if (gfp_flags & SLUB_DMA) |
2554 | flags = SLAB_CACHE_DMA; | 2557 | flags = SLAB_CACHE_DMA; |
2555 | 2558 | ||
2556 | down_write(&slub_lock); | 2559 | down_write(&slub_lock); |
2557 | if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN, | 2560 | if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN, |
2558 | flags, NULL)) | 2561 | flags, NULL)) |
2559 | goto panic; | 2562 | goto panic; |
2560 | 2563 | ||
2561 | list_add(&s->list, &slab_caches); | 2564 | list_add(&s->list, &slab_caches); |
2562 | up_write(&slub_lock); | 2565 | up_write(&slub_lock); |
2563 | if (sysfs_slab_add(s)) | 2566 | if (sysfs_slab_add(s)) |
2564 | goto panic; | 2567 | goto panic; |
2565 | return s; | 2568 | return s; |
2566 | 2569 | ||
2567 | panic: | 2570 | panic: |
2568 | panic("Creation of kmalloc slab %s size=%d failed.\n", name, size); | 2571 | panic("Creation of kmalloc slab %s size=%d failed.\n", name, size); |
2569 | } | 2572 | } |
2570 | 2573 | ||
2571 | #ifdef CONFIG_ZONE_DMA | 2574 | #ifdef CONFIG_ZONE_DMA |
2572 | static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT]; | 2575 | static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT]; |
2573 | 2576 | ||
2574 | static void sysfs_add_func(struct work_struct *w) | 2577 | static void sysfs_add_func(struct work_struct *w) |
2575 | { | 2578 | { |
2576 | struct kmem_cache *s; | 2579 | struct kmem_cache *s; |
2577 | 2580 | ||
2578 | down_write(&slub_lock); | 2581 | down_write(&slub_lock); |
2579 | list_for_each_entry(s, &slab_caches, list) { | 2582 | list_for_each_entry(s, &slab_caches, list) { |
2580 | if (s->flags & __SYSFS_ADD_DEFERRED) { | 2583 | if (s->flags & __SYSFS_ADD_DEFERRED) { |
2581 | s->flags &= ~__SYSFS_ADD_DEFERRED; | 2584 | s->flags &= ~__SYSFS_ADD_DEFERRED; |
2582 | sysfs_slab_add(s); | 2585 | sysfs_slab_add(s); |
2583 | } | 2586 | } |
2584 | } | 2587 | } |
2585 | up_write(&slub_lock); | 2588 | up_write(&slub_lock); |
2586 | } | 2589 | } |
2587 | 2590 | ||
2588 | static DECLARE_WORK(sysfs_add_work, sysfs_add_func); | 2591 | static DECLARE_WORK(sysfs_add_work, sysfs_add_func); |
2589 | 2592 | ||
2590 | static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags) | 2593 | static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags) |
2591 | { | 2594 | { |
2592 | struct kmem_cache *s; | 2595 | struct kmem_cache *s; |
2593 | char *text; | 2596 | char *text; |
2594 | size_t realsize; | 2597 | size_t realsize; |
2595 | 2598 | ||
2596 | s = kmalloc_caches_dma[index]; | 2599 | s = kmalloc_caches_dma[index]; |
2597 | if (s) | 2600 | if (s) |
2598 | return s; | 2601 | return s; |
2599 | 2602 | ||
2600 | /* Dynamically create dma cache */ | 2603 | /* Dynamically create dma cache */ |
2601 | if (flags & __GFP_WAIT) | 2604 | if (flags & __GFP_WAIT) |
2602 | down_write(&slub_lock); | 2605 | down_write(&slub_lock); |
2603 | else { | 2606 | else { |
2604 | if (!down_write_trylock(&slub_lock)) | 2607 | if (!down_write_trylock(&slub_lock)) |
2605 | goto out; | 2608 | goto out; |
2606 | } | 2609 | } |
2607 | 2610 | ||
2608 | if (kmalloc_caches_dma[index]) | 2611 | if (kmalloc_caches_dma[index]) |
2609 | goto unlock_out; | 2612 | goto unlock_out; |
2610 | 2613 | ||
2611 | realsize = kmalloc_caches[index].objsize; | 2614 | realsize = kmalloc_caches[index].objsize; |
2612 | text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", | 2615 | text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", |
2613 | (unsigned int)realsize); | 2616 | (unsigned int)realsize); |
2614 | s = kmalloc(kmem_size, flags & ~SLUB_DMA); | 2617 | s = kmalloc(kmem_size, flags & ~SLUB_DMA); |
2615 | 2618 | ||
2616 | if (!s || !text || !kmem_cache_open(s, flags, text, | 2619 | if (!s || !text || !kmem_cache_open(s, flags, text, |
2617 | realsize, ARCH_KMALLOC_MINALIGN, | 2620 | realsize, ARCH_KMALLOC_MINALIGN, |
2618 | SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) { | 2621 | SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) { |
2619 | kfree(s); | 2622 | kfree(s); |
2620 | kfree(text); | 2623 | kfree(text); |
2621 | goto unlock_out; | 2624 | goto unlock_out; |
2622 | } | 2625 | } |
2623 | 2626 | ||
2624 | list_add(&s->list, &slab_caches); | 2627 | list_add(&s->list, &slab_caches); |
2625 | kmalloc_caches_dma[index] = s; | 2628 | kmalloc_caches_dma[index] = s; |
2626 | 2629 | ||
2627 | schedule_work(&sysfs_add_work); | 2630 | schedule_work(&sysfs_add_work); |
2628 | 2631 | ||
2629 | unlock_out: | 2632 | unlock_out: |
2630 | up_write(&slub_lock); | 2633 | up_write(&slub_lock); |
2631 | out: | 2634 | out: |
2632 | return kmalloc_caches_dma[index]; | 2635 | return kmalloc_caches_dma[index]; |
2633 | } | 2636 | } |
2634 | #endif | 2637 | #endif |
2635 | 2638 | ||
2636 | /* | 2639 | /* |
2637 | * Conversion table for small slabs sizes / 8 to the index in the | 2640 | * Conversion table for small slabs sizes / 8 to the index in the |
2638 | * kmalloc array. This is necessary for slabs < 192 since we have non power | 2641 | * kmalloc array. This is necessary for slabs < 192 since we have non power |
2639 | * of two cache sizes there. The size of larger slabs can be determined using | 2642 | * of two cache sizes there. The size of larger slabs can be determined using |
2640 | * fls. | 2643 | * fls. |
2641 | */ | 2644 | */ |
2642 | static s8 size_index[24] = { | 2645 | static s8 size_index[24] = { |
2643 | 3, /* 8 */ | 2646 | 3, /* 8 */ |
2644 | 4, /* 16 */ | 2647 | 4, /* 16 */ |
2645 | 5, /* 24 */ | 2648 | 5, /* 24 */ |
2646 | 5, /* 32 */ | 2649 | 5, /* 32 */ |
2647 | 6, /* 40 */ | 2650 | 6, /* 40 */ |
2648 | 6, /* 48 */ | 2651 | 6, /* 48 */ |
2649 | 6, /* 56 */ | 2652 | 6, /* 56 */ |
2650 | 6, /* 64 */ | 2653 | 6, /* 64 */ |
2651 | 1, /* 72 */ | 2654 | 1, /* 72 */ |
2652 | 1, /* 80 */ | 2655 | 1, /* 80 */ |
2653 | 1, /* 88 */ | 2656 | 1, /* 88 */ |
2654 | 1, /* 96 */ | 2657 | 1, /* 96 */ |
2655 | 7, /* 104 */ | 2658 | 7, /* 104 */ |
2656 | 7, /* 112 */ | 2659 | 7, /* 112 */ |
2657 | 7, /* 120 */ | 2660 | 7, /* 120 */ |
2658 | 7, /* 128 */ | 2661 | 7, /* 128 */ |
2659 | 2, /* 136 */ | 2662 | 2, /* 136 */ |
2660 | 2, /* 144 */ | 2663 | 2, /* 144 */ |
2661 | 2, /* 152 */ | 2664 | 2, /* 152 */ |
2662 | 2, /* 160 */ | 2665 | 2, /* 160 */ |
2663 | 2, /* 168 */ | 2666 | 2, /* 168 */ |
2664 | 2, /* 176 */ | 2667 | 2, /* 176 */ |
2665 | 2, /* 184 */ | 2668 | 2, /* 184 */ |
2666 | 2 /* 192 */ | 2669 | 2 /* 192 */ |
2667 | }; | 2670 | }; |
2668 | 2671 | ||
2669 | static struct kmem_cache *get_slab(size_t size, gfp_t flags) | 2672 | static struct kmem_cache *get_slab(size_t size, gfp_t flags) |
2670 | { | 2673 | { |
2671 | int index; | 2674 | int index; |
2672 | 2675 | ||
2673 | if (size <= 192) { | 2676 | if (size <= 192) { |
2674 | if (!size) | 2677 | if (!size) |
2675 | return ZERO_SIZE_PTR; | 2678 | return ZERO_SIZE_PTR; |
2676 | 2679 | ||
2677 | index = size_index[(size - 1) / 8]; | 2680 | index = size_index[(size - 1) / 8]; |
2678 | } else | 2681 | } else |
2679 | index = fls(size - 1); | 2682 | index = fls(size - 1); |
2680 | 2683 | ||
2681 | #ifdef CONFIG_ZONE_DMA | 2684 | #ifdef CONFIG_ZONE_DMA |
2682 | if (unlikely((flags & SLUB_DMA))) | 2685 | if (unlikely((flags & SLUB_DMA))) |
2683 | return dma_kmalloc_cache(index, flags); | 2686 | return dma_kmalloc_cache(index, flags); |
2684 | 2687 | ||
2685 | #endif | 2688 | #endif |
2686 | return &kmalloc_caches[index]; | 2689 | return &kmalloc_caches[index]; |
2687 | } | 2690 | } |
2688 | 2691 | ||
2689 | void *__kmalloc(size_t size, gfp_t flags) | 2692 | void *__kmalloc(size_t size, gfp_t flags) |
2690 | { | 2693 | { |
2691 | struct kmem_cache *s; | 2694 | struct kmem_cache *s; |
2692 | void *ret; | 2695 | void *ret; |
2693 | 2696 | ||
2694 | if (unlikely(size > SLUB_MAX_SIZE)) | 2697 | if (unlikely(size > SLUB_MAX_SIZE)) |
2695 | return kmalloc_large(size, flags); | 2698 | return kmalloc_large(size, flags); |
2696 | 2699 | ||
2697 | s = get_slab(size, flags); | 2700 | s = get_slab(size, flags); |
2698 | 2701 | ||
2699 | if (unlikely(ZERO_OR_NULL_PTR(s))) | 2702 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
2700 | return s; | 2703 | return s; |
2701 | 2704 | ||
2702 | ret = slab_alloc(s, flags, -1, _RET_IP_); | 2705 | ret = slab_alloc(s, flags, -1, _RET_IP_); |
2703 | 2706 | ||
2704 | trace_kmalloc(_RET_IP_, ret, size, s->size, flags); | 2707 | trace_kmalloc(_RET_IP_, ret, size, s->size, flags); |
2705 | 2708 | ||
2706 | return ret; | 2709 | return ret; |
2707 | } | 2710 | } |
2708 | EXPORT_SYMBOL(__kmalloc); | 2711 | EXPORT_SYMBOL(__kmalloc); |
2709 | 2712 | ||
2710 | static void *kmalloc_large_node(size_t size, gfp_t flags, int node) | 2713 | static void *kmalloc_large_node(size_t size, gfp_t flags, int node) |
2711 | { | 2714 | { |
2712 | struct page *page = alloc_pages_node(node, flags | __GFP_COMP, | 2715 | struct page *page = alloc_pages_node(node, flags | __GFP_COMP, |
2713 | get_order(size)); | 2716 | get_order(size)); |
2714 | 2717 | ||
2715 | if (page) | 2718 | if (page) |
2716 | return page_address(page); | 2719 | return page_address(page); |
2717 | else | 2720 | else |
2718 | return NULL; | 2721 | return NULL; |
2719 | } | 2722 | } |
2720 | 2723 | ||
2721 | #ifdef CONFIG_NUMA | 2724 | #ifdef CONFIG_NUMA |
2722 | void *__kmalloc_node(size_t size, gfp_t flags, int node) | 2725 | void *__kmalloc_node(size_t size, gfp_t flags, int node) |
2723 | { | 2726 | { |
2724 | struct kmem_cache *s; | 2727 | struct kmem_cache *s; |
2725 | void *ret; | 2728 | void *ret; |
2726 | 2729 | ||
2727 | if (unlikely(size > SLUB_MAX_SIZE)) { | 2730 | if (unlikely(size > SLUB_MAX_SIZE)) { |
2728 | ret = kmalloc_large_node(size, flags, node); | 2731 | ret = kmalloc_large_node(size, flags, node); |
2729 | 2732 | ||
2730 | trace_kmalloc_node(_RET_IP_, ret, | 2733 | trace_kmalloc_node(_RET_IP_, ret, |
2731 | size, PAGE_SIZE << get_order(size), | 2734 | size, PAGE_SIZE << get_order(size), |
2732 | flags, node); | 2735 | flags, node); |
2733 | 2736 | ||
2734 | return ret; | 2737 | return ret; |
2735 | } | 2738 | } |
2736 | 2739 | ||
2737 | s = get_slab(size, flags); | 2740 | s = get_slab(size, flags); |
2738 | 2741 | ||
2739 | if (unlikely(ZERO_OR_NULL_PTR(s))) | 2742 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
2740 | return s; | 2743 | return s; |
2741 | 2744 | ||
2742 | ret = slab_alloc(s, flags, node, _RET_IP_); | 2745 | ret = slab_alloc(s, flags, node, _RET_IP_); |
2743 | 2746 | ||
2744 | trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); | 2747 | trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); |
2745 | 2748 | ||
2746 | return ret; | 2749 | return ret; |
2747 | } | 2750 | } |
2748 | EXPORT_SYMBOL(__kmalloc_node); | 2751 | EXPORT_SYMBOL(__kmalloc_node); |
2749 | #endif | 2752 | #endif |
2750 | 2753 | ||
2751 | size_t ksize(const void *object) | 2754 | size_t ksize(const void *object) |
2752 | { | 2755 | { |
2753 | struct page *page; | 2756 | struct page *page; |
2754 | struct kmem_cache *s; | 2757 | struct kmem_cache *s; |
2755 | 2758 | ||
2756 | if (unlikely(object == ZERO_SIZE_PTR)) | 2759 | if (unlikely(object == ZERO_SIZE_PTR)) |
2757 | return 0; | 2760 | return 0; |
2758 | 2761 | ||
2759 | page = virt_to_head_page(object); | 2762 | page = virt_to_head_page(object); |
2760 | 2763 | ||
2761 | if (unlikely(!PageSlab(page))) { | 2764 | if (unlikely(!PageSlab(page))) { |
2762 | WARN_ON(!PageCompound(page)); | 2765 | WARN_ON(!PageCompound(page)); |
2763 | return PAGE_SIZE << compound_order(page); | 2766 | return PAGE_SIZE << compound_order(page); |
2764 | } | 2767 | } |
2765 | s = page->slab; | 2768 | s = page->slab; |
2766 | 2769 | ||
2767 | #ifdef CONFIG_SLUB_DEBUG | 2770 | #ifdef CONFIG_SLUB_DEBUG |
2768 | /* | 2771 | /* |
2769 | * Debugging requires use of the padding between object | 2772 | * Debugging requires use of the padding between object |
2770 | * and whatever may come after it. | 2773 | * and whatever may come after it. |
2771 | */ | 2774 | */ |
2772 | if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) | 2775 | if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) |
2773 | return s->objsize; | 2776 | return s->objsize; |
2774 | 2777 | ||
2775 | #endif | 2778 | #endif |
2776 | /* | 2779 | /* |
2777 | * If we have the need to store the freelist pointer | 2780 | * If we have the need to store the freelist pointer |
2778 | * back there or track user information then we can | 2781 | * back there or track user information then we can |
2779 | * only use the space before that information. | 2782 | * only use the space before that information. |
2780 | */ | 2783 | */ |
2781 | if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) | 2784 | if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) |
2782 | return s->inuse; | 2785 | return s->inuse; |
2783 | /* | 2786 | /* |
2784 | * Else we can use all the padding etc for the allocation | 2787 | * Else we can use all the padding etc for the allocation |
2785 | */ | 2788 | */ |
2786 | return s->size; | 2789 | return s->size; |
2787 | } | 2790 | } |
2788 | EXPORT_SYMBOL(ksize); | 2791 | EXPORT_SYMBOL(ksize); |
2789 | 2792 | ||
2790 | void kfree(const void *x) | 2793 | void kfree(const void *x) |
2791 | { | 2794 | { |
2792 | struct page *page; | 2795 | struct page *page; |
2793 | void *object = (void *)x; | 2796 | void *object = (void *)x; |
2794 | 2797 | ||
2795 | trace_kfree(_RET_IP_, x); | 2798 | trace_kfree(_RET_IP_, x); |
2796 | 2799 | ||
2797 | if (unlikely(ZERO_OR_NULL_PTR(x))) | 2800 | if (unlikely(ZERO_OR_NULL_PTR(x))) |
2798 | return; | 2801 | return; |
2799 | 2802 | ||
2800 | page = virt_to_head_page(x); | 2803 | page = virt_to_head_page(x); |
2801 | if (unlikely(!PageSlab(page))) { | 2804 | if (unlikely(!PageSlab(page))) { |
2802 | BUG_ON(!PageCompound(page)); | 2805 | BUG_ON(!PageCompound(page)); |
2803 | put_page(page); | 2806 | put_page(page); |
2804 | return; | 2807 | return; |
2805 | } | 2808 | } |
2806 | slab_free(page->slab, page, object, _RET_IP_); | 2809 | slab_free(page->slab, page, object, _RET_IP_); |
2807 | } | 2810 | } |
2808 | EXPORT_SYMBOL(kfree); | 2811 | EXPORT_SYMBOL(kfree); |
2809 | 2812 | ||
2810 | /* | 2813 | /* |
2811 | * kmem_cache_shrink removes empty slabs from the partial lists and sorts | 2814 | * kmem_cache_shrink removes empty slabs from the partial lists and sorts |
2812 | * the remaining slabs by the number of items in use. The slabs with the | 2815 | * the remaining slabs by the number of items in use. The slabs with the |
2813 | * most items in use come first. New allocations will then fill those up | 2816 | * most items in use come first. New allocations will then fill those up |
2814 | * and thus they can be removed from the partial lists. | 2817 | * and thus they can be removed from the partial lists. |
2815 | * | 2818 | * |
2816 | * The slabs with the least items are placed last. This results in them | 2819 | * The slabs with the least items are placed last. This results in them |
2817 | * being allocated from last increasing the chance that the last objects | 2820 | * being allocated from last increasing the chance that the last objects |
2818 | * are freed in them. | 2821 | * are freed in them. |
2819 | */ | 2822 | */ |
2820 | int kmem_cache_shrink(struct kmem_cache *s) | 2823 | int kmem_cache_shrink(struct kmem_cache *s) |
2821 | { | 2824 | { |
2822 | int node; | 2825 | int node; |
2823 | int i; | 2826 | int i; |
2824 | struct kmem_cache_node *n; | 2827 | struct kmem_cache_node *n; |
2825 | struct page *page; | 2828 | struct page *page; |
2826 | struct page *t; | 2829 | struct page *t; |
2827 | int objects = oo_objects(s->max); | 2830 | int objects = oo_objects(s->max); |
2828 | struct list_head *slabs_by_inuse = | 2831 | struct list_head *slabs_by_inuse = |
2829 | kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL); | 2832 | kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL); |
2830 | unsigned long flags; | 2833 | unsigned long flags; |
2831 | 2834 | ||
2832 | if (!slabs_by_inuse) | 2835 | if (!slabs_by_inuse) |
2833 | return -ENOMEM; | 2836 | return -ENOMEM; |
2834 | 2837 | ||
2835 | flush_all(s); | 2838 | flush_all(s); |
2836 | for_each_node_state(node, N_NORMAL_MEMORY) { | 2839 | for_each_node_state(node, N_NORMAL_MEMORY) { |
2837 | n = get_node(s, node); | 2840 | n = get_node(s, node); |
2838 | 2841 | ||
2839 | if (!n->nr_partial) | 2842 | if (!n->nr_partial) |
2840 | continue; | 2843 | continue; |
2841 | 2844 | ||
2842 | for (i = 0; i < objects; i++) | 2845 | for (i = 0; i < objects; i++) |
2843 | INIT_LIST_HEAD(slabs_by_inuse + i); | 2846 | INIT_LIST_HEAD(slabs_by_inuse + i); |
2844 | 2847 | ||
2845 | spin_lock_irqsave(&n->list_lock, flags); | 2848 | spin_lock_irqsave(&n->list_lock, flags); |
2846 | 2849 | ||
2847 | /* | 2850 | /* |
2848 | * Build lists indexed by the items in use in each slab. | 2851 | * Build lists indexed by the items in use in each slab. |
2849 | * | 2852 | * |
2850 | * Note that concurrent frees may occur while we hold the | 2853 | * Note that concurrent frees may occur while we hold the |
2851 | * list_lock. page->inuse here is the upper limit. | 2854 | * list_lock. page->inuse here is the upper limit. |
2852 | */ | 2855 | */ |
2853 | list_for_each_entry_safe(page, t, &n->partial, lru) { | 2856 | list_for_each_entry_safe(page, t, &n->partial, lru) { |
2854 | if (!page->inuse && slab_trylock(page)) { | 2857 | if (!page->inuse && slab_trylock(page)) { |
2855 | /* | 2858 | /* |
2856 | * Must hold slab lock here because slab_free | 2859 | * Must hold slab lock here because slab_free |
2857 | * may have freed the last object and be | 2860 | * may have freed the last object and be |
2858 | * waiting to release the slab. | 2861 | * waiting to release the slab. |
2859 | */ | 2862 | */ |
2860 | list_del(&page->lru); | 2863 | list_del(&page->lru); |
2861 | n->nr_partial--; | 2864 | n->nr_partial--; |
2862 | slab_unlock(page); | 2865 | slab_unlock(page); |
2863 | discard_slab(s, page); | 2866 | discard_slab(s, page); |
2864 | } else { | 2867 | } else { |
2865 | list_move(&page->lru, | 2868 | list_move(&page->lru, |
2866 | slabs_by_inuse + page->inuse); | 2869 | slabs_by_inuse + page->inuse); |
2867 | } | 2870 | } |
2868 | } | 2871 | } |
2869 | 2872 | ||
2870 | /* | 2873 | /* |
2871 | * Rebuild the partial list with the slabs filled up most | 2874 | * Rebuild the partial list with the slabs filled up most |
2872 | * first and the least used slabs at the end. | 2875 | * first and the least used slabs at the end. |
2873 | */ | 2876 | */ |
2874 | for (i = objects - 1; i >= 0; i--) | 2877 | for (i = objects - 1; i >= 0; i--) |
2875 | list_splice(slabs_by_inuse + i, n->partial.prev); | 2878 | list_splice(slabs_by_inuse + i, n->partial.prev); |
2876 | 2879 | ||
2877 | spin_unlock_irqrestore(&n->list_lock, flags); | 2880 | spin_unlock_irqrestore(&n->list_lock, flags); |
2878 | } | 2881 | } |
2879 | 2882 | ||
2880 | kfree(slabs_by_inuse); | 2883 | kfree(slabs_by_inuse); |
2881 | return 0; | 2884 | return 0; |
2882 | } | 2885 | } |
2883 | EXPORT_SYMBOL(kmem_cache_shrink); | 2886 | EXPORT_SYMBOL(kmem_cache_shrink); |
2884 | 2887 | ||
2885 | #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) | 2888 | #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) |
2886 | static int slab_mem_going_offline_callback(void *arg) | 2889 | static int slab_mem_going_offline_callback(void *arg) |
2887 | { | 2890 | { |
2888 | struct kmem_cache *s; | 2891 | struct kmem_cache *s; |
2889 | 2892 | ||
2890 | down_read(&slub_lock); | 2893 | down_read(&slub_lock); |
2891 | list_for_each_entry(s, &slab_caches, list) | 2894 | list_for_each_entry(s, &slab_caches, list) |
2892 | kmem_cache_shrink(s); | 2895 | kmem_cache_shrink(s); |
2893 | up_read(&slub_lock); | 2896 | up_read(&slub_lock); |
2894 | 2897 | ||
2895 | return 0; | 2898 | return 0; |
2896 | } | 2899 | } |
2897 | 2900 | ||
2898 | static void slab_mem_offline_callback(void *arg) | 2901 | static void slab_mem_offline_callback(void *arg) |
2899 | { | 2902 | { |
2900 | struct kmem_cache_node *n; | 2903 | struct kmem_cache_node *n; |
2901 | struct kmem_cache *s; | 2904 | struct kmem_cache *s; |
2902 | struct memory_notify *marg = arg; | 2905 | struct memory_notify *marg = arg; |
2903 | int offline_node; | 2906 | int offline_node; |
2904 | 2907 | ||
2905 | offline_node = marg->status_change_nid; | 2908 | offline_node = marg->status_change_nid; |
2906 | 2909 | ||
2907 | /* | 2910 | /* |
2908 | * If the node still has available memory. we need kmem_cache_node | 2911 | * If the node still has available memory. we need kmem_cache_node |
2909 | * for it yet. | 2912 | * for it yet. |
2910 | */ | 2913 | */ |
2911 | if (offline_node < 0) | 2914 | if (offline_node < 0) |
2912 | return; | 2915 | return; |
2913 | 2916 | ||
2914 | down_read(&slub_lock); | 2917 | down_read(&slub_lock); |
2915 | list_for_each_entry(s, &slab_caches, list) { | 2918 | list_for_each_entry(s, &slab_caches, list) { |
2916 | n = get_node(s, offline_node); | 2919 | n = get_node(s, offline_node); |
2917 | if (n) { | 2920 | if (n) { |
2918 | /* | 2921 | /* |
2919 | * if n->nr_slabs > 0, slabs still exist on the node | 2922 | * if n->nr_slabs > 0, slabs still exist on the node |
2920 | * that is going down. We were unable to free them, | 2923 | * that is going down. We were unable to free them, |
2921 | * and offline_pages() function shoudn't call this | 2924 | * and offline_pages() function shoudn't call this |
2922 | * callback. So, we must fail. | 2925 | * callback. So, we must fail. |
2923 | */ | 2926 | */ |
2924 | BUG_ON(slabs_node(s, offline_node)); | 2927 | BUG_ON(slabs_node(s, offline_node)); |
2925 | 2928 | ||
2926 | s->node[offline_node] = NULL; | 2929 | s->node[offline_node] = NULL; |
2927 | kmem_cache_free(kmalloc_caches, n); | 2930 | kmem_cache_free(kmalloc_caches, n); |
2928 | } | 2931 | } |
2929 | } | 2932 | } |
2930 | up_read(&slub_lock); | 2933 | up_read(&slub_lock); |
2931 | } | 2934 | } |
2932 | 2935 | ||
2933 | static int slab_mem_going_online_callback(void *arg) | 2936 | static int slab_mem_going_online_callback(void *arg) |
2934 | { | 2937 | { |
2935 | struct kmem_cache_node *n; | 2938 | struct kmem_cache_node *n; |
2936 | struct kmem_cache *s; | 2939 | struct kmem_cache *s; |
2937 | struct memory_notify *marg = arg; | 2940 | struct memory_notify *marg = arg; |
2938 | int nid = marg->status_change_nid; | 2941 | int nid = marg->status_change_nid; |
2939 | int ret = 0; | 2942 | int ret = 0; |
2940 | 2943 | ||
2941 | /* | 2944 | /* |
2942 | * If the node's memory is already available, then kmem_cache_node is | 2945 | * If the node's memory is already available, then kmem_cache_node is |
2943 | * already created. Nothing to do. | 2946 | * already created. Nothing to do. |
2944 | */ | 2947 | */ |
2945 | if (nid < 0) | 2948 | if (nid < 0) |
2946 | return 0; | 2949 | return 0; |
2947 | 2950 | ||
2948 | /* | 2951 | /* |
2949 | * We are bringing a node online. No memory is available yet. We must | 2952 | * We are bringing a node online. No memory is available yet. We must |
2950 | * allocate a kmem_cache_node structure in order to bring the node | 2953 | * allocate a kmem_cache_node structure in order to bring the node |
2951 | * online. | 2954 | * online. |
2952 | */ | 2955 | */ |
2953 | down_read(&slub_lock); | 2956 | down_read(&slub_lock); |
2954 | list_for_each_entry(s, &slab_caches, list) { | 2957 | list_for_each_entry(s, &slab_caches, list) { |
2955 | /* | 2958 | /* |
2956 | * XXX: kmem_cache_alloc_node will fallback to other nodes | 2959 | * XXX: kmem_cache_alloc_node will fallback to other nodes |
2957 | * since memory is not yet available from the node that | 2960 | * since memory is not yet available from the node that |
2958 | * is brought up. | 2961 | * is brought up. |
2959 | */ | 2962 | */ |
2960 | n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL); | 2963 | n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL); |
2961 | if (!n) { | 2964 | if (!n) { |
2962 | ret = -ENOMEM; | 2965 | ret = -ENOMEM; |
2963 | goto out; | 2966 | goto out; |
2964 | } | 2967 | } |
2965 | init_kmem_cache_node(n, s); | 2968 | init_kmem_cache_node(n, s); |
2966 | s->node[nid] = n; | 2969 | s->node[nid] = n; |
2967 | } | 2970 | } |
2968 | out: | 2971 | out: |
2969 | up_read(&slub_lock); | 2972 | up_read(&slub_lock); |
2970 | return ret; | 2973 | return ret; |
2971 | } | 2974 | } |
2972 | 2975 | ||
2973 | static int slab_memory_callback(struct notifier_block *self, | 2976 | static int slab_memory_callback(struct notifier_block *self, |
2974 | unsigned long action, void *arg) | 2977 | unsigned long action, void *arg) |
2975 | { | 2978 | { |
2976 | int ret = 0; | 2979 | int ret = 0; |
2977 | 2980 | ||
2978 | switch (action) { | 2981 | switch (action) { |
2979 | case MEM_GOING_ONLINE: | 2982 | case MEM_GOING_ONLINE: |
2980 | ret = slab_mem_going_online_callback(arg); | 2983 | ret = slab_mem_going_online_callback(arg); |
2981 | break; | 2984 | break; |
2982 | case MEM_GOING_OFFLINE: | 2985 | case MEM_GOING_OFFLINE: |
2983 | ret = slab_mem_going_offline_callback(arg); | 2986 | ret = slab_mem_going_offline_callback(arg); |
2984 | break; | 2987 | break; |
2985 | case MEM_OFFLINE: | 2988 | case MEM_OFFLINE: |
2986 | case MEM_CANCEL_ONLINE: | 2989 | case MEM_CANCEL_ONLINE: |
2987 | slab_mem_offline_callback(arg); | 2990 | slab_mem_offline_callback(arg); |
2988 | break; | 2991 | break; |
2989 | case MEM_ONLINE: | 2992 | case MEM_ONLINE: |
2990 | case MEM_CANCEL_OFFLINE: | 2993 | case MEM_CANCEL_OFFLINE: |
2991 | break; | 2994 | break; |
2992 | } | 2995 | } |
2993 | if (ret) | 2996 | if (ret) |
2994 | ret = notifier_from_errno(ret); | 2997 | ret = notifier_from_errno(ret); |
2995 | else | 2998 | else |
2996 | ret = NOTIFY_OK; | 2999 | ret = NOTIFY_OK; |
2997 | return ret; | 3000 | return ret; |
2998 | } | 3001 | } |
2999 | 3002 | ||
3000 | #endif /* CONFIG_MEMORY_HOTPLUG */ | 3003 | #endif /* CONFIG_MEMORY_HOTPLUG */ |
3001 | 3004 | ||
3002 | /******************************************************************** | 3005 | /******************************************************************** |
3003 | * Basic setup of slabs | 3006 | * Basic setup of slabs |
3004 | *******************************************************************/ | 3007 | *******************************************************************/ |
3005 | 3008 | ||
3006 | void __init kmem_cache_init(void) | 3009 | void __init kmem_cache_init(void) |
3007 | { | 3010 | { |
3008 | int i; | 3011 | int i; |
3009 | int caches = 0; | 3012 | int caches = 0; |
3010 | 3013 | ||
3011 | init_alloc_cpu(); | 3014 | init_alloc_cpu(); |
3012 | 3015 | ||
3013 | #ifdef CONFIG_NUMA | 3016 | #ifdef CONFIG_NUMA |
3014 | /* | 3017 | /* |
3015 | * Must first have the slab cache available for the allocations of the | 3018 | * Must first have the slab cache available for the allocations of the |
3016 | * struct kmem_cache_node's. There is special bootstrap code in | 3019 | * struct kmem_cache_node's. There is special bootstrap code in |
3017 | * kmem_cache_open for slab_state == DOWN. | 3020 | * kmem_cache_open for slab_state == DOWN. |
3018 | */ | 3021 | */ |
3019 | create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node", | 3022 | create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node", |
3020 | sizeof(struct kmem_cache_node), GFP_KERNEL); | 3023 | sizeof(struct kmem_cache_node), GFP_KERNEL); |
3021 | kmalloc_caches[0].refcount = -1; | 3024 | kmalloc_caches[0].refcount = -1; |
3022 | caches++; | 3025 | caches++; |
3023 | 3026 | ||
3024 | hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); | 3027 | hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); |
3025 | #endif | 3028 | #endif |
3026 | 3029 | ||
3027 | /* Able to allocate the per node structures */ | 3030 | /* Able to allocate the per node structures */ |
3028 | slab_state = PARTIAL; | 3031 | slab_state = PARTIAL; |
3029 | 3032 | ||
3030 | /* Caches that are not of the two-to-the-power-of size */ | 3033 | /* Caches that are not of the two-to-the-power-of size */ |
3031 | if (KMALLOC_MIN_SIZE <= 64) { | 3034 | if (KMALLOC_MIN_SIZE <= 64) { |
3032 | create_kmalloc_cache(&kmalloc_caches[1], | 3035 | create_kmalloc_cache(&kmalloc_caches[1], |
3033 | "kmalloc-96", 96, GFP_KERNEL); | 3036 | "kmalloc-96", 96, GFP_KERNEL); |
3034 | caches++; | 3037 | caches++; |
3035 | create_kmalloc_cache(&kmalloc_caches[2], | 3038 | create_kmalloc_cache(&kmalloc_caches[2], |
3036 | "kmalloc-192", 192, GFP_KERNEL); | 3039 | "kmalloc-192", 192, GFP_KERNEL); |
3037 | caches++; | 3040 | caches++; |
3038 | } | 3041 | } |
3039 | 3042 | ||
3040 | for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { | 3043 | for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { |
3041 | create_kmalloc_cache(&kmalloc_caches[i], | 3044 | create_kmalloc_cache(&kmalloc_caches[i], |
3042 | "kmalloc", 1 << i, GFP_KERNEL); | 3045 | "kmalloc", 1 << i, GFP_KERNEL); |
3043 | caches++; | 3046 | caches++; |
3044 | } | 3047 | } |
3045 | 3048 | ||
3046 | 3049 | ||
3047 | /* | 3050 | /* |
3048 | * Patch up the size_index table if we have strange large alignment | 3051 | * Patch up the size_index table if we have strange large alignment |
3049 | * requirements for the kmalloc array. This is only the case for | 3052 | * requirements for the kmalloc array. This is only the case for |
3050 | * MIPS it seems. The standard arches will not generate any code here. | 3053 | * MIPS it seems. The standard arches will not generate any code here. |
3051 | * | 3054 | * |
3052 | * Largest permitted alignment is 256 bytes due to the way we | 3055 | * Largest permitted alignment is 256 bytes due to the way we |
3053 | * handle the index determination for the smaller caches. | 3056 | * handle the index determination for the smaller caches. |
3054 | * | 3057 | * |
3055 | * Make sure that nothing crazy happens if someone starts tinkering | 3058 | * Make sure that nothing crazy happens if someone starts tinkering |
3056 | * around with ARCH_KMALLOC_MINALIGN | 3059 | * around with ARCH_KMALLOC_MINALIGN |
3057 | */ | 3060 | */ |
3058 | BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || | 3061 | BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || |
3059 | (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); | 3062 | (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); |
3060 | 3063 | ||
3061 | for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) | 3064 | for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) |
3062 | size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW; | 3065 | size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW; |
3063 | 3066 | ||
3064 | if (KMALLOC_MIN_SIZE == 128) { | 3067 | if (KMALLOC_MIN_SIZE == 128) { |
3065 | /* | 3068 | /* |
3066 | * The 192 byte sized cache is not used if the alignment | 3069 | * The 192 byte sized cache is not used if the alignment |
3067 | * is 128 byte. Redirect kmalloc to use the 256 byte cache | 3070 | * is 128 byte. Redirect kmalloc to use the 256 byte cache |
3068 | * instead. | 3071 | * instead. |
3069 | */ | 3072 | */ |
3070 | for (i = 128 + 8; i <= 192; i += 8) | 3073 | for (i = 128 + 8; i <= 192; i += 8) |
3071 | size_index[(i - 1) / 8] = 8; | 3074 | size_index[(i - 1) / 8] = 8; |
3072 | } | 3075 | } |
3073 | 3076 | ||
3074 | slab_state = UP; | 3077 | slab_state = UP; |
3075 | 3078 | ||
3076 | /* Provide the correct kmalloc names now that the caches are up */ | 3079 | /* Provide the correct kmalloc names now that the caches are up */ |
3077 | for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) | 3080 | for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) |
3078 | kmalloc_caches[i]. name = | 3081 | kmalloc_caches[i]. name = |
3079 | kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i); | 3082 | kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i); |
3080 | 3083 | ||
3081 | #ifdef CONFIG_SMP | 3084 | #ifdef CONFIG_SMP |
3082 | register_cpu_notifier(&slab_notifier); | 3085 | register_cpu_notifier(&slab_notifier); |
3083 | kmem_size = offsetof(struct kmem_cache, cpu_slab) + | 3086 | kmem_size = offsetof(struct kmem_cache, cpu_slab) + |
3084 | nr_cpu_ids * sizeof(struct kmem_cache_cpu *); | 3087 | nr_cpu_ids * sizeof(struct kmem_cache_cpu *); |
3085 | #else | 3088 | #else |
3086 | kmem_size = sizeof(struct kmem_cache); | 3089 | kmem_size = sizeof(struct kmem_cache); |
3087 | #endif | 3090 | #endif |
3088 | 3091 | ||
3089 | printk(KERN_INFO | 3092 | printk(KERN_INFO |
3090 | "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d," | 3093 | "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d," |
3091 | " CPUs=%d, Nodes=%d\n", | 3094 | " CPUs=%d, Nodes=%d\n", |
3092 | caches, cache_line_size(), | 3095 | caches, cache_line_size(), |
3093 | slub_min_order, slub_max_order, slub_min_objects, | 3096 | slub_min_order, slub_max_order, slub_min_objects, |
3094 | nr_cpu_ids, nr_node_ids); | 3097 | nr_cpu_ids, nr_node_ids); |
3095 | } | 3098 | } |
3096 | 3099 | ||
3097 | /* | 3100 | /* |
3098 | * Find a mergeable slab cache | 3101 | * Find a mergeable slab cache |
3099 | */ | 3102 | */ |
3100 | static int slab_unmergeable(struct kmem_cache *s) | 3103 | static int slab_unmergeable(struct kmem_cache *s) |
3101 | { | 3104 | { |
3102 | if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) | 3105 | if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) |
3103 | return 1; | 3106 | return 1; |
3104 | 3107 | ||
3105 | if (s->ctor) | 3108 | if (s->ctor) |
3106 | return 1; | 3109 | return 1; |
3107 | 3110 | ||
3108 | /* | 3111 | /* |
3109 | * We may have set a slab to be unmergeable during bootstrap. | 3112 | * We may have set a slab to be unmergeable during bootstrap. |
3110 | */ | 3113 | */ |
3111 | if (s->refcount < 0) | 3114 | if (s->refcount < 0) |
3112 | return 1; | 3115 | return 1; |
3113 | 3116 | ||
3114 | return 0; | 3117 | return 0; |
3115 | } | 3118 | } |
3116 | 3119 | ||
3117 | static struct kmem_cache *find_mergeable(size_t size, | 3120 | static struct kmem_cache *find_mergeable(size_t size, |
3118 | size_t align, unsigned long flags, const char *name, | 3121 | size_t align, unsigned long flags, const char *name, |
3119 | void (*ctor)(void *)) | 3122 | void (*ctor)(void *)) |
3120 | { | 3123 | { |
3121 | struct kmem_cache *s; | 3124 | struct kmem_cache *s; |
3122 | 3125 | ||
3123 | if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) | 3126 | if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) |
3124 | return NULL; | 3127 | return NULL; |
3125 | 3128 | ||
3126 | if (ctor) | 3129 | if (ctor) |
3127 | return NULL; | 3130 | return NULL; |
3128 | 3131 | ||
3129 | size = ALIGN(size, sizeof(void *)); | 3132 | size = ALIGN(size, sizeof(void *)); |
3130 | align = calculate_alignment(flags, align, size); | 3133 | align = calculate_alignment(flags, align, size); |
3131 | size = ALIGN(size, align); | 3134 | size = ALIGN(size, align); |
3132 | flags = kmem_cache_flags(size, flags, name, NULL); | 3135 | flags = kmem_cache_flags(size, flags, name, NULL); |
3133 | 3136 | ||
3134 | list_for_each_entry(s, &slab_caches, list) { | 3137 | list_for_each_entry(s, &slab_caches, list) { |
3135 | if (slab_unmergeable(s)) | 3138 | if (slab_unmergeable(s)) |
3136 | continue; | 3139 | continue; |
3137 | 3140 | ||
3138 | if (size > s->size) | 3141 | if (size > s->size) |
3139 | continue; | 3142 | continue; |
3140 | 3143 | ||
3141 | if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) | 3144 | if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) |
3142 | continue; | 3145 | continue; |
3143 | /* | 3146 | /* |
3144 | * Check if alignment is compatible. | 3147 | * Check if alignment is compatible. |
3145 | * Courtesy of Adrian Drzewiecki | 3148 | * Courtesy of Adrian Drzewiecki |
3146 | */ | 3149 | */ |
3147 | if ((s->size & ~(align - 1)) != s->size) | 3150 | if ((s->size & ~(align - 1)) != s->size) |
3148 | continue; | 3151 | continue; |
3149 | 3152 | ||
3150 | if (s->size - size >= sizeof(void *)) | 3153 | if (s->size - size >= sizeof(void *)) |
3151 | continue; | 3154 | continue; |
3152 | 3155 | ||
3153 | return s; | 3156 | return s; |
3154 | } | 3157 | } |
3155 | return NULL; | 3158 | return NULL; |
3156 | } | 3159 | } |
3157 | 3160 | ||
3158 | struct kmem_cache *kmem_cache_create(const char *name, size_t size, | 3161 | struct kmem_cache *kmem_cache_create(const char *name, size_t size, |
3159 | size_t align, unsigned long flags, void (*ctor)(void *)) | 3162 | size_t align, unsigned long flags, void (*ctor)(void *)) |
3160 | { | 3163 | { |
3161 | struct kmem_cache *s; | 3164 | struct kmem_cache *s; |
3162 | 3165 | ||
3163 | down_write(&slub_lock); | 3166 | down_write(&slub_lock); |
3164 | s = find_mergeable(size, align, flags, name, ctor); | 3167 | s = find_mergeable(size, align, flags, name, ctor); |
3165 | if (s) { | 3168 | if (s) { |
3166 | int cpu; | 3169 | int cpu; |
3167 | 3170 | ||
3168 | s->refcount++; | 3171 | s->refcount++; |
3169 | /* | 3172 | /* |
3170 | * Adjust the object sizes so that we clear | 3173 | * Adjust the object sizes so that we clear |
3171 | * the complete object on kzalloc. | 3174 | * the complete object on kzalloc. |
3172 | */ | 3175 | */ |
3173 | s->objsize = max(s->objsize, (int)size); | 3176 | s->objsize = max(s->objsize, (int)size); |
3174 | 3177 | ||
3175 | /* | 3178 | /* |
3176 | * And then we need to update the object size in the | 3179 | * And then we need to update the object size in the |
3177 | * per cpu structures | 3180 | * per cpu structures |
3178 | */ | 3181 | */ |
3179 | for_each_online_cpu(cpu) | 3182 | for_each_online_cpu(cpu) |
3180 | get_cpu_slab(s, cpu)->objsize = s->objsize; | 3183 | get_cpu_slab(s, cpu)->objsize = s->objsize; |
3181 | 3184 | ||
3182 | s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); | 3185 | s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); |
3183 | up_write(&slub_lock); | 3186 | up_write(&slub_lock); |
3184 | 3187 | ||
3185 | if (sysfs_slab_alias(s, name)) { | 3188 | if (sysfs_slab_alias(s, name)) { |
3186 | down_write(&slub_lock); | 3189 | down_write(&slub_lock); |
3187 | s->refcount--; | 3190 | s->refcount--; |
3188 | up_write(&slub_lock); | 3191 | up_write(&slub_lock); |
3189 | goto err; | 3192 | goto err; |
3190 | } | 3193 | } |
3191 | return s; | 3194 | return s; |
3192 | } | 3195 | } |
3193 | 3196 | ||
3194 | s = kmalloc(kmem_size, GFP_KERNEL); | 3197 | s = kmalloc(kmem_size, GFP_KERNEL); |
3195 | if (s) { | 3198 | if (s) { |
3196 | if (kmem_cache_open(s, GFP_KERNEL, name, | 3199 | if (kmem_cache_open(s, GFP_KERNEL, name, |
3197 | size, align, flags, ctor)) { | 3200 | size, align, flags, ctor)) { |
3198 | list_add(&s->list, &slab_caches); | 3201 | list_add(&s->list, &slab_caches); |
3199 | up_write(&slub_lock); | 3202 | up_write(&slub_lock); |
3200 | if (sysfs_slab_add(s)) { | 3203 | if (sysfs_slab_add(s)) { |
3201 | down_write(&slub_lock); | 3204 | down_write(&slub_lock); |
3202 | list_del(&s->list); | 3205 | list_del(&s->list); |
3203 | up_write(&slub_lock); | 3206 | up_write(&slub_lock); |
3204 | kfree(s); | 3207 | kfree(s); |
3205 | goto err; | 3208 | goto err; |
3206 | } | 3209 | } |
3207 | return s; | 3210 | return s; |
3208 | } | 3211 | } |
3209 | kfree(s); | 3212 | kfree(s); |
3210 | } | 3213 | } |
3211 | up_write(&slub_lock); | 3214 | up_write(&slub_lock); |
3212 | 3215 | ||
3213 | err: | 3216 | err: |
3214 | if (flags & SLAB_PANIC) | 3217 | if (flags & SLAB_PANIC) |
3215 | panic("Cannot create slabcache %s\n", name); | 3218 | panic("Cannot create slabcache %s\n", name); |
3216 | else | 3219 | else |
3217 | s = NULL; | 3220 | s = NULL; |
3218 | return s; | 3221 | return s; |
3219 | } | 3222 | } |
3220 | EXPORT_SYMBOL(kmem_cache_create); | 3223 | EXPORT_SYMBOL(kmem_cache_create); |
3221 | 3224 | ||
3222 | #ifdef CONFIG_SMP | 3225 | #ifdef CONFIG_SMP |
3223 | /* | 3226 | /* |
3224 | * Use the cpu notifier to insure that the cpu slabs are flushed when | 3227 | * Use the cpu notifier to insure that the cpu slabs are flushed when |
3225 | * necessary. | 3228 | * necessary. |
3226 | */ | 3229 | */ |
3227 | static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, | 3230 | static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, |
3228 | unsigned long action, void *hcpu) | 3231 | unsigned long action, void *hcpu) |
3229 | { | 3232 | { |
3230 | long cpu = (long)hcpu; | 3233 | long cpu = (long)hcpu; |
3231 | struct kmem_cache *s; | 3234 | struct kmem_cache *s; |
3232 | unsigned long flags; | 3235 | unsigned long flags; |
3233 | 3236 | ||
3234 | switch (action) { | 3237 | switch (action) { |
3235 | case CPU_UP_PREPARE: | 3238 | case CPU_UP_PREPARE: |
3236 | case CPU_UP_PREPARE_FROZEN: | 3239 | case CPU_UP_PREPARE_FROZEN: |
3237 | init_alloc_cpu_cpu(cpu); | 3240 | init_alloc_cpu_cpu(cpu); |
3238 | down_read(&slub_lock); | 3241 | down_read(&slub_lock); |
3239 | list_for_each_entry(s, &slab_caches, list) | 3242 | list_for_each_entry(s, &slab_caches, list) |
3240 | s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu, | 3243 | s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu, |
3241 | GFP_KERNEL); | 3244 | GFP_KERNEL); |
3242 | up_read(&slub_lock); | 3245 | up_read(&slub_lock); |
3243 | break; | 3246 | break; |
3244 | 3247 | ||
3245 | case CPU_UP_CANCELED: | 3248 | case CPU_UP_CANCELED: |
3246 | case CPU_UP_CANCELED_FROZEN: | 3249 | case CPU_UP_CANCELED_FROZEN: |
3247 | case CPU_DEAD: | 3250 | case CPU_DEAD: |
3248 | case CPU_DEAD_FROZEN: | 3251 | case CPU_DEAD_FROZEN: |
3249 | down_read(&slub_lock); | 3252 | down_read(&slub_lock); |
3250 | list_for_each_entry(s, &slab_caches, list) { | 3253 | list_for_each_entry(s, &slab_caches, list) { |
3251 | struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); | 3254 | struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); |
3252 | 3255 | ||
3253 | local_irq_save(flags); | 3256 | local_irq_save(flags); |
3254 | __flush_cpu_slab(s, cpu); | 3257 | __flush_cpu_slab(s, cpu); |
3255 | local_irq_restore(flags); | 3258 | local_irq_restore(flags); |
3256 | free_kmem_cache_cpu(c, cpu); | 3259 | free_kmem_cache_cpu(c, cpu); |
3257 | s->cpu_slab[cpu] = NULL; | 3260 | s->cpu_slab[cpu] = NULL; |
3258 | } | 3261 | } |
3259 | up_read(&slub_lock); | 3262 | up_read(&slub_lock); |
3260 | break; | 3263 | break; |
3261 | default: | 3264 | default: |
3262 | break; | 3265 | break; |
3263 | } | 3266 | } |
3264 | return NOTIFY_OK; | 3267 | return NOTIFY_OK; |
3265 | } | 3268 | } |
3266 | 3269 | ||
3267 | static struct notifier_block __cpuinitdata slab_notifier = { | 3270 | static struct notifier_block __cpuinitdata slab_notifier = { |
3268 | .notifier_call = slab_cpuup_callback | 3271 | .notifier_call = slab_cpuup_callback |
3269 | }; | 3272 | }; |
3270 | 3273 | ||
3271 | #endif | 3274 | #endif |
3272 | 3275 | ||
3273 | void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) | 3276 | void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) |
3274 | { | 3277 | { |
3275 | struct kmem_cache *s; | 3278 | struct kmem_cache *s; |
3276 | void *ret; | 3279 | void *ret; |
3277 | 3280 | ||
3278 | if (unlikely(size > SLUB_MAX_SIZE)) | 3281 | if (unlikely(size > SLUB_MAX_SIZE)) |
3279 | return kmalloc_large(size, gfpflags); | 3282 | return kmalloc_large(size, gfpflags); |
3280 | 3283 | ||
3281 | s = get_slab(size, gfpflags); | 3284 | s = get_slab(size, gfpflags); |
3282 | 3285 | ||
3283 | if (unlikely(ZERO_OR_NULL_PTR(s))) | 3286 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
3284 | return s; | 3287 | return s; |
3285 | 3288 | ||
3286 | ret = slab_alloc(s, gfpflags, -1, caller); | 3289 | ret = slab_alloc(s, gfpflags, -1, caller); |
3287 | 3290 | ||
3288 | /* Honor the call site pointer we recieved. */ | 3291 | /* Honor the call site pointer we recieved. */ |
3289 | trace_kmalloc(caller, ret, size, s->size, gfpflags); | 3292 | trace_kmalloc(caller, ret, size, s->size, gfpflags); |
3290 | 3293 | ||
3291 | return ret; | 3294 | return ret; |
3292 | } | 3295 | } |
3293 | 3296 | ||
3294 | void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, | 3297 | void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, |
3295 | int node, unsigned long caller) | 3298 | int node, unsigned long caller) |
3296 | { | 3299 | { |
3297 | struct kmem_cache *s; | 3300 | struct kmem_cache *s; |
3298 | void *ret; | 3301 | void *ret; |
3299 | 3302 | ||
3300 | if (unlikely(size > SLUB_MAX_SIZE)) | 3303 | if (unlikely(size > SLUB_MAX_SIZE)) |
3301 | return kmalloc_large_node(size, gfpflags, node); | 3304 | return kmalloc_large_node(size, gfpflags, node); |
3302 | 3305 | ||
3303 | s = get_slab(size, gfpflags); | 3306 | s = get_slab(size, gfpflags); |
3304 | 3307 | ||
3305 | if (unlikely(ZERO_OR_NULL_PTR(s))) | 3308 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
3306 | return s; | 3309 | return s; |
3307 | 3310 | ||
3308 | ret = slab_alloc(s, gfpflags, node, caller); | 3311 | ret = slab_alloc(s, gfpflags, node, caller); |
3309 | 3312 | ||
3310 | /* Honor the call site pointer we recieved. */ | 3313 | /* Honor the call site pointer we recieved. */ |
3311 | trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); | 3314 | trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); |
3312 | 3315 | ||
3313 | return ret; | 3316 | return ret; |
3314 | } | 3317 | } |
3315 | 3318 | ||
3316 | #ifdef CONFIG_SLUB_DEBUG | 3319 | #ifdef CONFIG_SLUB_DEBUG |
3317 | static unsigned long count_partial(struct kmem_cache_node *n, | 3320 | static unsigned long count_partial(struct kmem_cache_node *n, |
3318 | int (*get_count)(struct page *)) | 3321 | int (*get_count)(struct page *)) |
3319 | { | 3322 | { |
3320 | unsigned long flags; | 3323 | unsigned long flags; |
3321 | unsigned long x = 0; | 3324 | unsigned long x = 0; |
3322 | struct page *page; | 3325 | struct page *page; |
3323 | 3326 | ||
3324 | spin_lock_irqsave(&n->list_lock, flags); | 3327 | spin_lock_irqsave(&n->list_lock, flags); |
3325 | list_for_each_entry(page, &n->partial, lru) | 3328 | list_for_each_entry(page, &n->partial, lru) |
3326 | x += get_count(page); | 3329 | x += get_count(page); |
3327 | spin_unlock_irqrestore(&n->list_lock, flags); | 3330 | spin_unlock_irqrestore(&n->list_lock, flags); |
3328 | return x; | 3331 | return x; |
3329 | } | 3332 | } |
3330 | 3333 | ||
3331 | static int count_inuse(struct page *page) | 3334 | static int count_inuse(struct page *page) |
3332 | { | 3335 | { |
3333 | return page->inuse; | 3336 | return page->inuse; |
3334 | } | 3337 | } |
3335 | 3338 | ||
3336 | static int count_total(struct page *page) | 3339 | static int count_total(struct page *page) |
3337 | { | 3340 | { |
3338 | return page->objects; | 3341 | return page->objects; |
3339 | } | 3342 | } |
3340 | 3343 | ||
3341 | static int count_free(struct page *page) | 3344 | static int count_free(struct page *page) |
3342 | { | 3345 | { |
3343 | return page->objects - page->inuse; | 3346 | return page->objects - page->inuse; |
3344 | } | 3347 | } |
3345 | 3348 | ||
3346 | static int validate_slab(struct kmem_cache *s, struct page *page, | 3349 | static int validate_slab(struct kmem_cache *s, struct page *page, |
3347 | unsigned long *map) | 3350 | unsigned long *map) |
3348 | { | 3351 | { |
3349 | void *p; | 3352 | void *p; |
3350 | void *addr = page_address(page); | 3353 | void *addr = page_address(page); |
3351 | 3354 | ||
3352 | if (!check_slab(s, page) || | 3355 | if (!check_slab(s, page) || |
3353 | !on_freelist(s, page, NULL)) | 3356 | !on_freelist(s, page, NULL)) |
3354 | return 0; | 3357 | return 0; |
3355 | 3358 | ||
3356 | /* Now we know that a valid freelist exists */ | 3359 | /* Now we know that a valid freelist exists */ |
3357 | bitmap_zero(map, page->objects); | 3360 | bitmap_zero(map, page->objects); |
3358 | 3361 | ||
3359 | for_each_free_object(p, s, page->freelist) { | 3362 | for_each_free_object(p, s, page->freelist) { |
3360 | set_bit(slab_index(p, s, addr), map); | 3363 | set_bit(slab_index(p, s, addr), map); |
3361 | if (!check_object(s, page, p, 0)) | 3364 | if (!check_object(s, page, p, 0)) |
3362 | return 0; | 3365 | return 0; |
3363 | } | 3366 | } |
3364 | 3367 | ||
3365 | for_each_object(p, s, addr, page->objects) | 3368 | for_each_object(p, s, addr, page->objects) |
3366 | if (!test_bit(slab_index(p, s, addr), map)) | 3369 | if (!test_bit(slab_index(p, s, addr), map)) |
3367 | if (!check_object(s, page, p, 1)) | 3370 | if (!check_object(s, page, p, 1)) |
3368 | return 0; | 3371 | return 0; |
3369 | return 1; | 3372 | return 1; |
3370 | } | 3373 | } |
3371 | 3374 | ||
3372 | static void validate_slab_slab(struct kmem_cache *s, struct page *page, | 3375 | static void validate_slab_slab(struct kmem_cache *s, struct page *page, |
3373 | unsigned long *map) | 3376 | unsigned long *map) |
3374 | { | 3377 | { |
3375 | if (slab_trylock(page)) { | 3378 | if (slab_trylock(page)) { |
3376 | validate_slab(s, page, map); | 3379 | validate_slab(s, page, map); |
3377 | slab_unlock(page); | 3380 | slab_unlock(page); |
3378 | } else | 3381 | } else |
3379 | printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n", | 3382 | printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n", |
3380 | s->name, page); | 3383 | s->name, page); |
3381 | 3384 | ||
3382 | if (s->flags & DEBUG_DEFAULT_FLAGS) { | 3385 | if (s->flags & DEBUG_DEFAULT_FLAGS) { |
3383 | if (!PageSlubDebug(page)) | 3386 | if (!PageSlubDebug(page)) |
3384 | printk(KERN_ERR "SLUB %s: SlubDebug not set " | 3387 | printk(KERN_ERR "SLUB %s: SlubDebug not set " |
3385 | "on slab 0x%p\n", s->name, page); | 3388 | "on slab 0x%p\n", s->name, page); |
3386 | } else { | 3389 | } else { |
3387 | if (PageSlubDebug(page)) | 3390 | if (PageSlubDebug(page)) |
3388 | printk(KERN_ERR "SLUB %s: SlubDebug set on " | 3391 | printk(KERN_ERR "SLUB %s: SlubDebug set on " |
3389 | "slab 0x%p\n", s->name, page); | 3392 | "slab 0x%p\n", s->name, page); |
3390 | } | 3393 | } |
3391 | } | 3394 | } |
3392 | 3395 | ||
3393 | static int validate_slab_node(struct kmem_cache *s, | 3396 | static int validate_slab_node(struct kmem_cache *s, |
3394 | struct kmem_cache_node *n, unsigned long *map) | 3397 | struct kmem_cache_node *n, unsigned long *map) |
3395 | { | 3398 | { |
3396 | unsigned long count = 0; | 3399 | unsigned long count = 0; |
3397 | struct page *page; | 3400 | struct page *page; |
3398 | unsigned long flags; | 3401 | unsigned long flags; |
3399 | 3402 | ||
3400 | spin_lock_irqsave(&n->list_lock, flags); | 3403 | spin_lock_irqsave(&n->list_lock, flags); |
3401 | 3404 | ||
3402 | list_for_each_entry(page, &n->partial, lru) { | 3405 | list_for_each_entry(page, &n->partial, lru) { |
3403 | validate_slab_slab(s, page, map); | 3406 | validate_slab_slab(s, page, map); |
3404 | count++; | 3407 | count++; |
3405 | } | 3408 | } |
3406 | if (count != n->nr_partial) | 3409 | if (count != n->nr_partial) |
3407 | printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " | 3410 | printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " |
3408 | "counter=%ld\n", s->name, count, n->nr_partial); | 3411 | "counter=%ld\n", s->name, count, n->nr_partial); |
3409 | 3412 | ||
3410 | if (!(s->flags & SLAB_STORE_USER)) | 3413 | if (!(s->flags & SLAB_STORE_USER)) |
3411 | goto out; | 3414 | goto out; |
3412 | 3415 | ||
3413 | list_for_each_entry(page, &n->full, lru) { | 3416 | list_for_each_entry(page, &n->full, lru) { |
3414 | validate_slab_slab(s, page, map); | 3417 | validate_slab_slab(s, page, map); |
3415 | count++; | 3418 | count++; |
3416 | } | 3419 | } |
3417 | if (count != atomic_long_read(&n->nr_slabs)) | 3420 | if (count != atomic_long_read(&n->nr_slabs)) |
3418 | printk(KERN_ERR "SLUB: %s %ld slabs counted but " | 3421 | printk(KERN_ERR "SLUB: %s %ld slabs counted but " |
3419 | "counter=%ld\n", s->name, count, | 3422 | "counter=%ld\n", s->name, count, |
3420 | atomic_long_read(&n->nr_slabs)); | 3423 | atomic_long_read(&n->nr_slabs)); |
3421 | 3424 | ||
3422 | out: | 3425 | out: |
3423 | spin_unlock_irqrestore(&n->list_lock, flags); | 3426 | spin_unlock_irqrestore(&n->list_lock, flags); |
3424 | return count; | 3427 | return count; |
3425 | } | 3428 | } |
3426 | 3429 | ||
3427 | static long validate_slab_cache(struct kmem_cache *s) | 3430 | static long validate_slab_cache(struct kmem_cache *s) |
3428 | { | 3431 | { |
3429 | int node; | 3432 | int node; |
3430 | unsigned long count = 0; | 3433 | unsigned long count = 0; |
3431 | unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * | 3434 | unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * |
3432 | sizeof(unsigned long), GFP_KERNEL); | 3435 | sizeof(unsigned long), GFP_KERNEL); |
3433 | 3436 | ||
3434 | if (!map) | 3437 | if (!map) |
3435 | return -ENOMEM; | 3438 | return -ENOMEM; |
3436 | 3439 | ||
3437 | flush_all(s); | 3440 | flush_all(s); |
3438 | for_each_node_state(node, N_NORMAL_MEMORY) { | 3441 | for_each_node_state(node, N_NORMAL_MEMORY) { |
3439 | struct kmem_cache_node *n = get_node(s, node); | 3442 | struct kmem_cache_node *n = get_node(s, node); |
3440 | 3443 | ||
3441 | count += validate_slab_node(s, n, map); | 3444 | count += validate_slab_node(s, n, map); |
3442 | } | 3445 | } |
3443 | kfree(map); | 3446 | kfree(map); |
3444 | return count; | 3447 | return count; |
3445 | } | 3448 | } |
3446 | 3449 | ||
3447 | #ifdef SLUB_RESILIENCY_TEST | 3450 | #ifdef SLUB_RESILIENCY_TEST |
3448 | static void resiliency_test(void) | 3451 | static void resiliency_test(void) |
3449 | { | 3452 | { |
3450 | u8 *p; | 3453 | u8 *p; |
3451 | 3454 | ||
3452 | printk(KERN_ERR "SLUB resiliency testing\n"); | 3455 | printk(KERN_ERR "SLUB resiliency testing\n"); |
3453 | printk(KERN_ERR "-----------------------\n"); | 3456 | printk(KERN_ERR "-----------------------\n"); |
3454 | printk(KERN_ERR "A. Corruption after allocation\n"); | 3457 | printk(KERN_ERR "A. Corruption after allocation\n"); |
3455 | 3458 | ||
3456 | p = kzalloc(16, GFP_KERNEL); | 3459 | p = kzalloc(16, GFP_KERNEL); |
3457 | p[16] = 0x12; | 3460 | p[16] = 0x12; |
3458 | printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" | 3461 | printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" |
3459 | " 0x12->0x%p\n\n", p + 16); | 3462 | " 0x12->0x%p\n\n", p + 16); |
3460 | 3463 | ||
3461 | validate_slab_cache(kmalloc_caches + 4); | 3464 | validate_slab_cache(kmalloc_caches + 4); |
3462 | 3465 | ||
3463 | /* Hmmm... The next two are dangerous */ | 3466 | /* Hmmm... The next two are dangerous */ |
3464 | p = kzalloc(32, GFP_KERNEL); | 3467 | p = kzalloc(32, GFP_KERNEL); |
3465 | p[32 + sizeof(void *)] = 0x34; | 3468 | p[32 + sizeof(void *)] = 0x34; |
3466 | printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" | 3469 | printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" |
3467 | " 0x34 -> -0x%p\n", p); | 3470 | " 0x34 -> -0x%p\n", p); |
3468 | printk(KERN_ERR | 3471 | printk(KERN_ERR |
3469 | "If allocated object is overwritten then not detectable\n\n"); | 3472 | "If allocated object is overwritten then not detectable\n\n"); |
3470 | 3473 | ||
3471 | validate_slab_cache(kmalloc_caches + 5); | 3474 | validate_slab_cache(kmalloc_caches + 5); |
3472 | p = kzalloc(64, GFP_KERNEL); | 3475 | p = kzalloc(64, GFP_KERNEL); |
3473 | p += 64 + (get_cycles() & 0xff) * sizeof(void *); | 3476 | p += 64 + (get_cycles() & 0xff) * sizeof(void *); |
3474 | *p = 0x56; | 3477 | *p = 0x56; |
3475 | printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", | 3478 | printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", |
3476 | p); | 3479 | p); |
3477 | printk(KERN_ERR | 3480 | printk(KERN_ERR |
3478 | "If allocated object is overwritten then not detectable\n\n"); | 3481 | "If allocated object is overwritten then not detectable\n\n"); |
3479 | validate_slab_cache(kmalloc_caches + 6); | 3482 | validate_slab_cache(kmalloc_caches + 6); |
3480 | 3483 | ||
3481 | printk(KERN_ERR "\nB. Corruption after free\n"); | 3484 | printk(KERN_ERR "\nB. Corruption after free\n"); |
3482 | p = kzalloc(128, GFP_KERNEL); | 3485 | p = kzalloc(128, GFP_KERNEL); |
3483 | kfree(p); | 3486 | kfree(p); |
3484 | *p = 0x78; | 3487 | *p = 0x78; |
3485 | printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); | 3488 | printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); |
3486 | validate_slab_cache(kmalloc_caches + 7); | 3489 | validate_slab_cache(kmalloc_caches + 7); |
3487 | 3490 | ||
3488 | p = kzalloc(256, GFP_KERNEL); | 3491 | p = kzalloc(256, GFP_KERNEL); |
3489 | kfree(p); | 3492 | kfree(p); |
3490 | p[50] = 0x9a; | 3493 | p[50] = 0x9a; |
3491 | printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", | 3494 | printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", |
3492 | p); | 3495 | p); |
3493 | validate_slab_cache(kmalloc_caches + 8); | 3496 | validate_slab_cache(kmalloc_caches + 8); |
3494 | 3497 | ||
3495 | p = kzalloc(512, GFP_KERNEL); | 3498 | p = kzalloc(512, GFP_KERNEL); |
3496 | kfree(p); | 3499 | kfree(p); |
3497 | p[512] = 0xab; | 3500 | p[512] = 0xab; |
3498 | printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); | 3501 | printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); |
3499 | validate_slab_cache(kmalloc_caches + 9); | 3502 | validate_slab_cache(kmalloc_caches + 9); |
3500 | } | 3503 | } |
3501 | #else | 3504 | #else |
3502 | static void resiliency_test(void) {}; | 3505 | static void resiliency_test(void) {}; |
3503 | #endif | 3506 | #endif |
3504 | 3507 | ||
3505 | /* | 3508 | /* |
3506 | * Generate lists of code addresses where slabcache objects are allocated | 3509 | * Generate lists of code addresses where slabcache objects are allocated |
3507 | * and freed. | 3510 | * and freed. |
3508 | */ | 3511 | */ |
3509 | 3512 | ||
3510 | struct location { | 3513 | struct location { |
3511 | unsigned long count; | 3514 | unsigned long count; |
3512 | unsigned long addr; | 3515 | unsigned long addr; |
3513 | long long sum_time; | 3516 | long long sum_time; |
3514 | long min_time; | 3517 | long min_time; |
3515 | long max_time; | 3518 | long max_time; |
3516 | long min_pid; | 3519 | long min_pid; |
3517 | long max_pid; | 3520 | long max_pid; |
3518 | DECLARE_BITMAP(cpus, NR_CPUS); | 3521 | DECLARE_BITMAP(cpus, NR_CPUS); |
3519 | nodemask_t nodes; | 3522 | nodemask_t nodes; |
3520 | }; | 3523 | }; |
3521 | 3524 | ||
3522 | struct loc_track { | 3525 | struct loc_track { |
3523 | unsigned long max; | 3526 | unsigned long max; |
3524 | unsigned long count; | 3527 | unsigned long count; |
3525 | struct location *loc; | 3528 | struct location *loc; |
3526 | }; | 3529 | }; |
3527 | 3530 | ||
3528 | static void free_loc_track(struct loc_track *t) | 3531 | static void free_loc_track(struct loc_track *t) |
3529 | { | 3532 | { |
3530 | if (t->max) | 3533 | if (t->max) |
3531 | free_pages((unsigned long)t->loc, | 3534 | free_pages((unsigned long)t->loc, |
3532 | get_order(sizeof(struct location) * t->max)); | 3535 | get_order(sizeof(struct location) * t->max)); |
3533 | } | 3536 | } |
3534 | 3537 | ||
3535 | static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) | 3538 | static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) |
3536 | { | 3539 | { |
3537 | struct location *l; | 3540 | struct location *l; |
3538 | int order; | 3541 | int order; |
3539 | 3542 | ||
3540 | order = get_order(sizeof(struct location) * max); | 3543 | order = get_order(sizeof(struct location) * max); |
3541 | 3544 | ||
3542 | l = (void *)__get_free_pages(flags, order); | 3545 | l = (void *)__get_free_pages(flags, order); |
3543 | if (!l) | 3546 | if (!l) |
3544 | return 0; | 3547 | return 0; |
3545 | 3548 | ||
3546 | if (t->count) { | 3549 | if (t->count) { |
3547 | memcpy(l, t->loc, sizeof(struct location) * t->count); | 3550 | memcpy(l, t->loc, sizeof(struct location) * t->count); |
3548 | free_loc_track(t); | 3551 | free_loc_track(t); |
3549 | } | 3552 | } |
3550 | t->max = max; | 3553 | t->max = max; |
3551 | t->loc = l; | 3554 | t->loc = l; |
3552 | return 1; | 3555 | return 1; |
3553 | } | 3556 | } |
3554 | 3557 | ||
3555 | static int add_location(struct loc_track *t, struct kmem_cache *s, | 3558 | static int add_location(struct loc_track *t, struct kmem_cache *s, |
3556 | const struct track *track) | 3559 | const struct track *track) |
3557 | { | 3560 | { |
3558 | long start, end, pos; | 3561 | long start, end, pos; |
3559 | struct location *l; | 3562 | struct location *l; |
3560 | unsigned long caddr; | 3563 | unsigned long caddr; |
3561 | unsigned long age = jiffies - track->when; | 3564 | unsigned long age = jiffies - track->when; |
3562 | 3565 | ||
3563 | start = -1; | 3566 | start = -1; |
3564 | end = t->count; | 3567 | end = t->count; |
3565 | 3568 | ||
3566 | for ( ; ; ) { | 3569 | for ( ; ; ) { |
3567 | pos = start + (end - start + 1) / 2; | 3570 | pos = start + (end - start + 1) / 2; |
3568 | 3571 | ||
3569 | /* | 3572 | /* |
3570 | * There is nothing at "end". If we end up there | 3573 | * There is nothing at "end". If we end up there |
3571 | * we need to add something to before end. | 3574 | * we need to add something to before end. |
3572 | */ | 3575 | */ |
3573 | if (pos == end) | 3576 | if (pos == end) |
3574 | break; | 3577 | break; |
3575 | 3578 | ||
3576 | caddr = t->loc[pos].addr; | 3579 | caddr = t->loc[pos].addr; |
3577 | if (track->addr == caddr) { | 3580 | if (track->addr == caddr) { |
3578 | 3581 | ||
3579 | l = &t->loc[pos]; | 3582 | l = &t->loc[pos]; |
3580 | l->count++; | 3583 | l->count++; |
3581 | if (track->when) { | 3584 | if (track->when) { |
3582 | l->sum_time += age; | 3585 | l->sum_time += age; |
3583 | if (age < l->min_time) | 3586 | if (age < l->min_time) |
3584 | l->min_time = age; | 3587 | l->min_time = age; |
3585 | if (age > l->max_time) | 3588 | if (age > l->max_time) |
3586 | l->max_time = age; | 3589 | l->max_time = age; |
3587 | 3590 | ||
3588 | if (track->pid < l->min_pid) | 3591 | if (track->pid < l->min_pid) |
3589 | l->min_pid = track->pid; | 3592 | l->min_pid = track->pid; |
3590 | if (track->pid > l->max_pid) | 3593 | if (track->pid > l->max_pid) |
3591 | l->max_pid = track->pid; | 3594 | l->max_pid = track->pid; |
3592 | 3595 | ||
3593 | cpumask_set_cpu(track->cpu, | 3596 | cpumask_set_cpu(track->cpu, |
3594 | to_cpumask(l->cpus)); | 3597 | to_cpumask(l->cpus)); |
3595 | } | 3598 | } |
3596 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | 3599 | node_set(page_to_nid(virt_to_page(track)), l->nodes); |
3597 | return 1; | 3600 | return 1; |
3598 | } | 3601 | } |
3599 | 3602 | ||
3600 | if (track->addr < caddr) | 3603 | if (track->addr < caddr) |
3601 | end = pos; | 3604 | end = pos; |
3602 | else | 3605 | else |
3603 | start = pos; | 3606 | start = pos; |
3604 | } | 3607 | } |
3605 | 3608 | ||
3606 | /* | 3609 | /* |
3607 | * Not found. Insert new tracking element. | 3610 | * Not found. Insert new tracking element. |
3608 | */ | 3611 | */ |
3609 | if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) | 3612 | if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) |
3610 | return 0; | 3613 | return 0; |
3611 | 3614 | ||
3612 | l = t->loc + pos; | 3615 | l = t->loc + pos; |
3613 | if (pos < t->count) | 3616 | if (pos < t->count) |
3614 | memmove(l + 1, l, | 3617 | memmove(l + 1, l, |
3615 | (t->count - pos) * sizeof(struct location)); | 3618 | (t->count - pos) * sizeof(struct location)); |
3616 | t->count++; | 3619 | t->count++; |
3617 | l->count = 1; | 3620 | l->count = 1; |
3618 | l->addr = track->addr; | 3621 | l->addr = track->addr; |
3619 | l->sum_time = age; | 3622 | l->sum_time = age; |
3620 | l->min_time = age; | 3623 | l->min_time = age; |
3621 | l->max_time = age; | 3624 | l->max_time = age; |
3622 | l->min_pid = track->pid; | 3625 | l->min_pid = track->pid; |
3623 | l->max_pid = track->pid; | 3626 | l->max_pid = track->pid; |
3624 | cpumask_clear(to_cpumask(l->cpus)); | 3627 | cpumask_clear(to_cpumask(l->cpus)); |
3625 | cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); | 3628 | cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); |
3626 | nodes_clear(l->nodes); | 3629 | nodes_clear(l->nodes); |
3627 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | 3630 | node_set(page_to_nid(virt_to_page(track)), l->nodes); |
3628 | return 1; | 3631 | return 1; |
3629 | } | 3632 | } |
3630 | 3633 | ||
3631 | static void process_slab(struct loc_track *t, struct kmem_cache *s, | 3634 | static void process_slab(struct loc_track *t, struct kmem_cache *s, |
3632 | struct page *page, enum track_item alloc) | 3635 | struct page *page, enum track_item alloc) |
3633 | { | 3636 | { |
3634 | void *addr = page_address(page); | 3637 | void *addr = page_address(page); |
3635 | DECLARE_BITMAP(map, page->objects); | 3638 | DECLARE_BITMAP(map, page->objects); |
3636 | void *p; | 3639 | void *p; |
3637 | 3640 | ||
3638 | bitmap_zero(map, page->objects); | 3641 | bitmap_zero(map, page->objects); |
3639 | for_each_free_object(p, s, page->freelist) | 3642 | for_each_free_object(p, s, page->freelist) |
3640 | set_bit(slab_index(p, s, addr), map); | 3643 | set_bit(slab_index(p, s, addr), map); |
3641 | 3644 | ||
3642 | for_each_object(p, s, addr, page->objects) | 3645 | for_each_object(p, s, addr, page->objects) |
3643 | if (!test_bit(slab_index(p, s, addr), map)) | 3646 | if (!test_bit(slab_index(p, s, addr), map)) |
3644 | add_location(t, s, get_track(s, p, alloc)); | 3647 | add_location(t, s, get_track(s, p, alloc)); |
3645 | } | 3648 | } |
3646 | 3649 | ||
3647 | static int list_locations(struct kmem_cache *s, char *buf, | 3650 | static int list_locations(struct kmem_cache *s, char *buf, |
3648 | enum track_item alloc) | 3651 | enum track_item alloc) |
3649 | { | 3652 | { |
3650 | int len = 0; | 3653 | int len = 0; |
3651 | unsigned long i; | 3654 | unsigned long i; |
3652 | struct loc_track t = { 0, 0, NULL }; | 3655 | struct loc_track t = { 0, 0, NULL }; |
3653 | int node; | 3656 | int node; |
3654 | 3657 | ||
3655 | if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), | 3658 | if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), |
3656 | GFP_TEMPORARY)) | 3659 | GFP_TEMPORARY)) |
3657 | return sprintf(buf, "Out of memory\n"); | 3660 | return sprintf(buf, "Out of memory\n"); |
3658 | 3661 | ||
3659 | /* Push back cpu slabs */ | 3662 | /* Push back cpu slabs */ |
3660 | flush_all(s); | 3663 | flush_all(s); |
3661 | 3664 | ||
3662 | for_each_node_state(node, N_NORMAL_MEMORY) { | 3665 | for_each_node_state(node, N_NORMAL_MEMORY) { |
3663 | struct kmem_cache_node *n = get_node(s, node); | 3666 | struct kmem_cache_node *n = get_node(s, node); |
3664 | unsigned long flags; | 3667 | unsigned long flags; |
3665 | struct page *page; | 3668 | struct page *page; |
3666 | 3669 | ||
3667 | if (!atomic_long_read(&n->nr_slabs)) | 3670 | if (!atomic_long_read(&n->nr_slabs)) |
3668 | continue; | 3671 | continue; |
3669 | 3672 | ||
3670 | spin_lock_irqsave(&n->list_lock, flags); | 3673 | spin_lock_irqsave(&n->list_lock, flags); |
3671 | list_for_each_entry(page, &n->partial, lru) | 3674 | list_for_each_entry(page, &n->partial, lru) |
3672 | process_slab(&t, s, page, alloc); | 3675 | process_slab(&t, s, page, alloc); |
3673 | list_for_each_entry(page, &n->full, lru) | 3676 | list_for_each_entry(page, &n->full, lru) |
3674 | process_slab(&t, s, page, alloc); | 3677 | process_slab(&t, s, page, alloc); |
3675 | spin_unlock_irqrestore(&n->list_lock, flags); | 3678 | spin_unlock_irqrestore(&n->list_lock, flags); |
3676 | } | 3679 | } |
3677 | 3680 | ||
3678 | for (i = 0; i < t.count; i++) { | 3681 | for (i = 0; i < t.count; i++) { |
3679 | struct location *l = &t.loc[i]; | 3682 | struct location *l = &t.loc[i]; |
3680 | 3683 | ||
3681 | if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) | 3684 | if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) |
3682 | break; | 3685 | break; |
3683 | len += sprintf(buf + len, "%7ld ", l->count); | 3686 | len += sprintf(buf + len, "%7ld ", l->count); |
3684 | 3687 | ||
3685 | if (l->addr) | 3688 | if (l->addr) |
3686 | len += sprint_symbol(buf + len, (unsigned long)l->addr); | 3689 | len += sprint_symbol(buf + len, (unsigned long)l->addr); |
3687 | else | 3690 | else |
3688 | len += sprintf(buf + len, "<not-available>"); | 3691 | len += sprintf(buf + len, "<not-available>"); |
3689 | 3692 | ||
3690 | if (l->sum_time != l->min_time) { | 3693 | if (l->sum_time != l->min_time) { |
3691 | len += sprintf(buf + len, " age=%ld/%ld/%ld", | 3694 | len += sprintf(buf + len, " age=%ld/%ld/%ld", |
3692 | l->min_time, | 3695 | l->min_time, |
3693 | (long)div_u64(l->sum_time, l->count), | 3696 | (long)div_u64(l->sum_time, l->count), |
3694 | l->max_time); | 3697 | l->max_time); |
3695 | } else | 3698 | } else |
3696 | len += sprintf(buf + len, " age=%ld", | 3699 | len += sprintf(buf + len, " age=%ld", |
3697 | l->min_time); | 3700 | l->min_time); |
3698 | 3701 | ||
3699 | if (l->min_pid != l->max_pid) | 3702 | if (l->min_pid != l->max_pid) |
3700 | len += sprintf(buf + len, " pid=%ld-%ld", | 3703 | len += sprintf(buf + len, " pid=%ld-%ld", |
3701 | l->min_pid, l->max_pid); | 3704 | l->min_pid, l->max_pid); |
3702 | else | 3705 | else |
3703 | len += sprintf(buf + len, " pid=%ld", | 3706 | len += sprintf(buf + len, " pid=%ld", |
3704 | l->min_pid); | 3707 | l->min_pid); |
3705 | 3708 | ||
3706 | if (num_online_cpus() > 1 && | 3709 | if (num_online_cpus() > 1 && |
3707 | !cpumask_empty(to_cpumask(l->cpus)) && | 3710 | !cpumask_empty(to_cpumask(l->cpus)) && |
3708 | len < PAGE_SIZE - 60) { | 3711 | len < PAGE_SIZE - 60) { |
3709 | len += sprintf(buf + len, " cpus="); | 3712 | len += sprintf(buf + len, " cpus="); |
3710 | len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50, | 3713 | len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50, |
3711 | to_cpumask(l->cpus)); | 3714 | to_cpumask(l->cpus)); |
3712 | } | 3715 | } |
3713 | 3716 | ||
3714 | if (num_online_nodes() > 1 && !nodes_empty(l->nodes) && | 3717 | if (num_online_nodes() > 1 && !nodes_empty(l->nodes) && |
3715 | len < PAGE_SIZE - 60) { | 3718 | len < PAGE_SIZE - 60) { |
3716 | len += sprintf(buf + len, " nodes="); | 3719 | len += sprintf(buf + len, " nodes="); |
3717 | len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50, | 3720 | len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50, |
3718 | l->nodes); | 3721 | l->nodes); |
3719 | } | 3722 | } |
3720 | 3723 | ||
3721 | len += sprintf(buf + len, "\n"); | 3724 | len += sprintf(buf + len, "\n"); |
3722 | } | 3725 | } |
3723 | 3726 | ||
3724 | free_loc_track(&t); | 3727 | free_loc_track(&t); |
3725 | if (!t.count) | 3728 | if (!t.count) |
3726 | len += sprintf(buf, "No data\n"); | 3729 | len += sprintf(buf, "No data\n"); |
3727 | return len; | 3730 | return len; |
3728 | } | 3731 | } |
3729 | 3732 | ||
3730 | enum slab_stat_type { | 3733 | enum slab_stat_type { |
3731 | SL_ALL, /* All slabs */ | 3734 | SL_ALL, /* All slabs */ |
3732 | SL_PARTIAL, /* Only partially allocated slabs */ | 3735 | SL_PARTIAL, /* Only partially allocated slabs */ |
3733 | SL_CPU, /* Only slabs used for cpu caches */ | 3736 | SL_CPU, /* Only slabs used for cpu caches */ |
3734 | SL_OBJECTS, /* Determine allocated objects not slabs */ | 3737 | SL_OBJECTS, /* Determine allocated objects not slabs */ |
3735 | SL_TOTAL /* Determine object capacity not slabs */ | 3738 | SL_TOTAL /* Determine object capacity not slabs */ |
3736 | }; | 3739 | }; |
3737 | 3740 | ||
3738 | #define SO_ALL (1 << SL_ALL) | 3741 | #define SO_ALL (1 << SL_ALL) |
3739 | #define SO_PARTIAL (1 << SL_PARTIAL) | 3742 | #define SO_PARTIAL (1 << SL_PARTIAL) |
3740 | #define SO_CPU (1 << SL_CPU) | 3743 | #define SO_CPU (1 << SL_CPU) |
3741 | #define SO_OBJECTS (1 << SL_OBJECTS) | 3744 | #define SO_OBJECTS (1 << SL_OBJECTS) |
3742 | #define SO_TOTAL (1 << SL_TOTAL) | 3745 | #define SO_TOTAL (1 << SL_TOTAL) |
3743 | 3746 | ||
3744 | static ssize_t show_slab_objects(struct kmem_cache *s, | 3747 | static ssize_t show_slab_objects(struct kmem_cache *s, |
3745 | char *buf, unsigned long flags) | 3748 | char *buf, unsigned long flags) |
3746 | { | 3749 | { |
3747 | unsigned long total = 0; | 3750 | unsigned long total = 0; |
3748 | int node; | 3751 | int node; |
3749 | int x; | 3752 | int x; |
3750 | unsigned long *nodes; | 3753 | unsigned long *nodes; |
3751 | unsigned long *per_cpu; | 3754 | unsigned long *per_cpu; |
3752 | 3755 | ||
3753 | nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); | 3756 | nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); |
3754 | if (!nodes) | 3757 | if (!nodes) |
3755 | return -ENOMEM; | 3758 | return -ENOMEM; |
3756 | per_cpu = nodes + nr_node_ids; | 3759 | per_cpu = nodes + nr_node_ids; |
3757 | 3760 | ||
3758 | if (flags & SO_CPU) { | 3761 | if (flags & SO_CPU) { |
3759 | int cpu; | 3762 | int cpu; |
3760 | 3763 | ||
3761 | for_each_possible_cpu(cpu) { | 3764 | for_each_possible_cpu(cpu) { |
3762 | struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); | 3765 | struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); |
3763 | 3766 | ||
3764 | if (!c || c->node < 0) | 3767 | if (!c || c->node < 0) |
3765 | continue; | 3768 | continue; |
3766 | 3769 | ||
3767 | if (c->page) { | 3770 | if (c->page) { |
3768 | if (flags & SO_TOTAL) | 3771 | if (flags & SO_TOTAL) |
3769 | x = c->page->objects; | 3772 | x = c->page->objects; |
3770 | else if (flags & SO_OBJECTS) | 3773 | else if (flags & SO_OBJECTS) |
3771 | x = c->page->inuse; | 3774 | x = c->page->inuse; |
3772 | else | 3775 | else |
3773 | x = 1; | 3776 | x = 1; |
3774 | 3777 | ||
3775 | total += x; | 3778 | total += x; |
3776 | nodes[c->node] += x; | 3779 | nodes[c->node] += x; |
3777 | } | 3780 | } |
3778 | per_cpu[c->node]++; | 3781 | per_cpu[c->node]++; |
3779 | } | 3782 | } |
3780 | } | 3783 | } |
3781 | 3784 | ||
3782 | if (flags & SO_ALL) { | 3785 | if (flags & SO_ALL) { |
3783 | for_each_node_state(node, N_NORMAL_MEMORY) { | 3786 | for_each_node_state(node, N_NORMAL_MEMORY) { |
3784 | struct kmem_cache_node *n = get_node(s, node); | 3787 | struct kmem_cache_node *n = get_node(s, node); |
3785 | 3788 | ||
3786 | if (flags & SO_TOTAL) | 3789 | if (flags & SO_TOTAL) |
3787 | x = atomic_long_read(&n->total_objects); | 3790 | x = atomic_long_read(&n->total_objects); |
3788 | else if (flags & SO_OBJECTS) | 3791 | else if (flags & SO_OBJECTS) |
3789 | x = atomic_long_read(&n->total_objects) - | 3792 | x = atomic_long_read(&n->total_objects) - |
3790 | count_partial(n, count_free); | 3793 | count_partial(n, count_free); |
3791 | 3794 | ||
3792 | else | 3795 | else |
3793 | x = atomic_long_read(&n->nr_slabs); | 3796 | x = atomic_long_read(&n->nr_slabs); |
3794 | total += x; | 3797 | total += x; |
3795 | nodes[node] += x; | 3798 | nodes[node] += x; |
3796 | } | 3799 | } |
3797 | 3800 | ||
3798 | } else if (flags & SO_PARTIAL) { | 3801 | } else if (flags & SO_PARTIAL) { |
3799 | for_each_node_state(node, N_NORMAL_MEMORY) { | 3802 | for_each_node_state(node, N_NORMAL_MEMORY) { |
3800 | struct kmem_cache_node *n = get_node(s, node); | 3803 | struct kmem_cache_node *n = get_node(s, node); |
3801 | 3804 | ||
3802 | if (flags & SO_TOTAL) | 3805 | if (flags & SO_TOTAL) |
3803 | x = count_partial(n, count_total); | 3806 | x = count_partial(n, count_total); |
3804 | else if (flags & SO_OBJECTS) | 3807 | else if (flags & SO_OBJECTS) |
3805 | x = count_partial(n, count_inuse); | 3808 | x = count_partial(n, count_inuse); |
3806 | else | 3809 | else |
3807 | x = n->nr_partial; | 3810 | x = n->nr_partial; |
3808 | total += x; | 3811 | total += x; |
3809 | nodes[node] += x; | 3812 | nodes[node] += x; |
3810 | } | 3813 | } |
3811 | } | 3814 | } |
3812 | x = sprintf(buf, "%lu", total); | 3815 | x = sprintf(buf, "%lu", total); |
3813 | #ifdef CONFIG_NUMA | 3816 | #ifdef CONFIG_NUMA |
3814 | for_each_node_state(node, N_NORMAL_MEMORY) | 3817 | for_each_node_state(node, N_NORMAL_MEMORY) |
3815 | if (nodes[node]) | 3818 | if (nodes[node]) |
3816 | x += sprintf(buf + x, " N%d=%lu", | 3819 | x += sprintf(buf + x, " N%d=%lu", |
3817 | node, nodes[node]); | 3820 | node, nodes[node]); |
3818 | #endif | 3821 | #endif |
3819 | kfree(nodes); | 3822 | kfree(nodes); |
3820 | return x + sprintf(buf + x, "\n"); | 3823 | return x + sprintf(buf + x, "\n"); |
3821 | } | 3824 | } |
3822 | 3825 | ||
3823 | static int any_slab_objects(struct kmem_cache *s) | 3826 | static int any_slab_objects(struct kmem_cache *s) |
3824 | { | 3827 | { |
3825 | int node; | 3828 | int node; |
3826 | 3829 | ||
3827 | for_each_online_node(node) { | 3830 | for_each_online_node(node) { |
3828 | struct kmem_cache_node *n = get_node(s, node); | 3831 | struct kmem_cache_node *n = get_node(s, node); |
3829 | 3832 | ||
3830 | if (!n) | 3833 | if (!n) |
3831 | continue; | 3834 | continue; |
3832 | 3835 | ||
3833 | if (atomic_long_read(&n->total_objects)) | 3836 | if (atomic_long_read(&n->total_objects)) |
3834 | return 1; | 3837 | return 1; |
3835 | } | 3838 | } |
3836 | return 0; | 3839 | return 0; |
3837 | } | 3840 | } |
3838 | 3841 | ||
3839 | #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) | 3842 | #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) |
3840 | #define to_slab(n) container_of(n, struct kmem_cache, kobj); | 3843 | #define to_slab(n) container_of(n, struct kmem_cache, kobj); |
3841 | 3844 | ||
3842 | struct slab_attribute { | 3845 | struct slab_attribute { |
3843 | struct attribute attr; | 3846 | struct attribute attr; |
3844 | ssize_t (*show)(struct kmem_cache *s, char *buf); | 3847 | ssize_t (*show)(struct kmem_cache *s, char *buf); |
3845 | ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); | 3848 | ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); |
3846 | }; | 3849 | }; |
3847 | 3850 | ||
3848 | #define SLAB_ATTR_RO(_name) \ | 3851 | #define SLAB_ATTR_RO(_name) \ |
3849 | static struct slab_attribute _name##_attr = __ATTR_RO(_name) | 3852 | static struct slab_attribute _name##_attr = __ATTR_RO(_name) |
3850 | 3853 | ||
3851 | #define SLAB_ATTR(_name) \ | 3854 | #define SLAB_ATTR(_name) \ |
3852 | static struct slab_attribute _name##_attr = \ | 3855 | static struct slab_attribute _name##_attr = \ |
3853 | __ATTR(_name, 0644, _name##_show, _name##_store) | 3856 | __ATTR(_name, 0644, _name##_show, _name##_store) |
3854 | 3857 | ||
3855 | static ssize_t slab_size_show(struct kmem_cache *s, char *buf) | 3858 | static ssize_t slab_size_show(struct kmem_cache *s, char *buf) |
3856 | { | 3859 | { |
3857 | return sprintf(buf, "%d\n", s->size); | 3860 | return sprintf(buf, "%d\n", s->size); |
3858 | } | 3861 | } |
3859 | SLAB_ATTR_RO(slab_size); | 3862 | SLAB_ATTR_RO(slab_size); |
3860 | 3863 | ||
3861 | static ssize_t align_show(struct kmem_cache *s, char *buf) | 3864 | static ssize_t align_show(struct kmem_cache *s, char *buf) |
3862 | { | 3865 | { |
3863 | return sprintf(buf, "%d\n", s->align); | 3866 | return sprintf(buf, "%d\n", s->align); |
3864 | } | 3867 | } |
3865 | SLAB_ATTR_RO(align); | 3868 | SLAB_ATTR_RO(align); |
3866 | 3869 | ||
3867 | static ssize_t object_size_show(struct kmem_cache *s, char *buf) | 3870 | static ssize_t object_size_show(struct kmem_cache *s, char *buf) |
3868 | { | 3871 | { |
3869 | return sprintf(buf, "%d\n", s->objsize); | 3872 | return sprintf(buf, "%d\n", s->objsize); |
3870 | } | 3873 | } |
3871 | SLAB_ATTR_RO(object_size); | 3874 | SLAB_ATTR_RO(object_size); |
3872 | 3875 | ||
3873 | static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) | 3876 | static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) |
3874 | { | 3877 | { |
3875 | return sprintf(buf, "%d\n", oo_objects(s->oo)); | 3878 | return sprintf(buf, "%d\n", oo_objects(s->oo)); |
3876 | } | 3879 | } |
3877 | SLAB_ATTR_RO(objs_per_slab); | 3880 | SLAB_ATTR_RO(objs_per_slab); |
3878 | 3881 | ||
3879 | static ssize_t order_store(struct kmem_cache *s, | 3882 | static ssize_t order_store(struct kmem_cache *s, |
3880 | const char *buf, size_t length) | 3883 | const char *buf, size_t length) |
3881 | { | 3884 | { |
3882 | unsigned long order; | 3885 | unsigned long order; |
3883 | int err; | 3886 | int err; |
3884 | 3887 | ||
3885 | err = strict_strtoul(buf, 10, &order); | 3888 | err = strict_strtoul(buf, 10, &order); |
3886 | if (err) | 3889 | if (err) |
3887 | return err; | 3890 | return err; |
3888 | 3891 | ||
3889 | if (order > slub_max_order || order < slub_min_order) | 3892 | if (order > slub_max_order || order < slub_min_order) |
3890 | return -EINVAL; | 3893 | return -EINVAL; |
3891 | 3894 | ||
3892 | calculate_sizes(s, order); | 3895 | calculate_sizes(s, order); |
3893 | return length; | 3896 | return length; |
3894 | } | 3897 | } |
3895 | 3898 | ||
3896 | static ssize_t order_show(struct kmem_cache *s, char *buf) | 3899 | static ssize_t order_show(struct kmem_cache *s, char *buf) |
3897 | { | 3900 | { |
3898 | return sprintf(buf, "%d\n", oo_order(s->oo)); | 3901 | return sprintf(buf, "%d\n", oo_order(s->oo)); |
3899 | } | 3902 | } |
3900 | SLAB_ATTR(order); | 3903 | SLAB_ATTR(order); |
3901 | 3904 | ||
3902 | static ssize_t min_partial_show(struct kmem_cache *s, char *buf) | 3905 | static ssize_t min_partial_show(struct kmem_cache *s, char *buf) |
3903 | { | 3906 | { |
3904 | return sprintf(buf, "%lu\n", s->min_partial); | 3907 | return sprintf(buf, "%lu\n", s->min_partial); |
3905 | } | 3908 | } |
3906 | 3909 | ||
3907 | static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, | 3910 | static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, |
3908 | size_t length) | 3911 | size_t length) |
3909 | { | 3912 | { |
3910 | unsigned long min; | 3913 | unsigned long min; |
3911 | int err; | 3914 | int err; |
3912 | 3915 | ||
3913 | err = strict_strtoul(buf, 10, &min); | 3916 | err = strict_strtoul(buf, 10, &min); |
3914 | if (err) | 3917 | if (err) |
3915 | return err; | 3918 | return err; |
3916 | 3919 | ||
3917 | set_min_partial(s, min); | 3920 | set_min_partial(s, min); |
3918 | return length; | 3921 | return length; |
3919 | } | 3922 | } |
3920 | SLAB_ATTR(min_partial); | 3923 | SLAB_ATTR(min_partial); |
3921 | 3924 | ||
3922 | static ssize_t ctor_show(struct kmem_cache *s, char *buf) | 3925 | static ssize_t ctor_show(struct kmem_cache *s, char *buf) |
3923 | { | 3926 | { |
3924 | if (s->ctor) { | 3927 | if (s->ctor) { |
3925 | int n = sprint_symbol(buf, (unsigned long)s->ctor); | 3928 | int n = sprint_symbol(buf, (unsigned long)s->ctor); |
3926 | 3929 | ||
3927 | return n + sprintf(buf + n, "\n"); | 3930 | return n + sprintf(buf + n, "\n"); |
3928 | } | 3931 | } |
3929 | return 0; | 3932 | return 0; |
3930 | } | 3933 | } |
3931 | SLAB_ATTR_RO(ctor); | 3934 | SLAB_ATTR_RO(ctor); |
3932 | 3935 | ||
3933 | static ssize_t aliases_show(struct kmem_cache *s, char *buf) | 3936 | static ssize_t aliases_show(struct kmem_cache *s, char *buf) |
3934 | { | 3937 | { |
3935 | return sprintf(buf, "%d\n", s->refcount - 1); | 3938 | return sprintf(buf, "%d\n", s->refcount - 1); |
3936 | } | 3939 | } |
3937 | SLAB_ATTR_RO(aliases); | 3940 | SLAB_ATTR_RO(aliases); |
3938 | 3941 | ||
3939 | static ssize_t slabs_show(struct kmem_cache *s, char *buf) | 3942 | static ssize_t slabs_show(struct kmem_cache *s, char *buf) |
3940 | { | 3943 | { |
3941 | return show_slab_objects(s, buf, SO_ALL); | 3944 | return show_slab_objects(s, buf, SO_ALL); |
3942 | } | 3945 | } |
3943 | SLAB_ATTR_RO(slabs); | 3946 | SLAB_ATTR_RO(slabs); |
3944 | 3947 | ||
3945 | static ssize_t partial_show(struct kmem_cache *s, char *buf) | 3948 | static ssize_t partial_show(struct kmem_cache *s, char *buf) |
3946 | { | 3949 | { |
3947 | return show_slab_objects(s, buf, SO_PARTIAL); | 3950 | return show_slab_objects(s, buf, SO_PARTIAL); |
3948 | } | 3951 | } |
3949 | SLAB_ATTR_RO(partial); | 3952 | SLAB_ATTR_RO(partial); |
3950 | 3953 | ||
3951 | static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) | 3954 | static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) |
3952 | { | 3955 | { |
3953 | return show_slab_objects(s, buf, SO_CPU); | 3956 | return show_slab_objects(s, buf, SO_CPU); |
3954 | } | 3957 | } |
3955 | SLAB_ATTR_RO(cpu_slabs); | 3958 | SLAB_ATTR_RO(cpu_slabs); |
3956 | 3959 | ||
3957 | static ssize_t objects_show(struct kmem_cache *s, char *buf) | 3960 | static ssize_t objects_show(struct kmem_cache *s, char *buf) |
3958 | { | 3961 | { |
3959 | return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); | 3962 | return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); |
3960 | } | 3963 | } |
3961 | SLAB_ATTR_RO(objects); | 3964 | SLAB_ATTR_RO(objects); |
3962 | 3965 | ||
3963 | static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) | 3966 | static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) |
3964 | { | 3967 | { |
3965 | return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); | 3968 | return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); |
3966 | } | 3969 | } |
3967 | SLAB_ATTR_RO(objects_partial); | 3970 | SLAB_ATTR_RO(objects_partial); |
3968 | 3971 | ||
3969 | static ssize_t total_objects_show(struct kmem_cache *s, char *buf) | 3972 | static ssize_t total_objects_show(struct kmem_cache *s, char *buf) |
3970 | { | 3973 | { |
3971 | return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); | 3974 | return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); |
3972 | } | 3975 | } |
3973 | SLAB_ATTR_RO(total_objects); | 3976 | SLAB_ATTR_RO(total_objects); |
3974 | 3977 | ||
3975 | static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) | 3978 | static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) |
3976 | { | 3979 | { |
3977 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); | 3980 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); |
3978 | } | 3981 | } |
3979 | 3982 | ||
3980 | static ssize_t sanity_checks_store(struct kmem_cache *s, | 3983 | static ssize_t sanity_checks_store(struct kmem_cache *s, |
3981 | const char *buf, size_t length) | 3984 | const char *buf, size_t length) |
3982 | { | 3985 | { |
3983 | s->flags &= ~SLAB_DEBUG_FREE; | 3986 | s->flags &= ~SLAB_DEBUG_FREE; |
3984 | if (buf[0] == '1') | 3987 | if (buf[0] == '1') |
3985 | s->flags |= SLAB_DEBUG_FREE; | 3988 | s->flags |= SLAB_DEBUG_FREE; |
3986 | return length; | 3989 | return length; |
3987 | } | 3990 | } |
3988 | SLAB_ATTR(sanity_checks); | 3991 | SLAB_ATTR(sanity_checks); |
3989 | 3992 | ||
3990 | static ssize_t trace_show(struct kmem_cache *s, char *buf) | 3993 | static ssize_t trace_show(struct kmem_cache *s, char *buf) |
3991 | { | 3994 | { |
3992 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); | 3995 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); |
3993 | } | 3996 | } |
3994 | 3997 | ||
3995 | static ssize_t trace_store(struct kmem_cache *s, const char *buf, | 3998 | static ssize_t trace_store(struct kmem_cache *s, const char *buf, |
3996 | size_t length) | 3999 | size_t length) |
3997 | { | 4000 | { |
3998 | s->flags &= ~SLAB_TRACE; | 4001 | s->flags &= ~SLAB_TRACE; |
3999 | if (buf[0] == '1') | 4002 | if (buf[0] == '1') |
4000 | s->flags |= SLAB_TRACE; | 4003 | s->flags |= SLAB_TRACE; |
4001 | return length; | 4004 | return length; |
4002 | } | 4005 | } |
4003 | SLAB_ATTR(trace); | 4006 | SLAB_ATTR(trace); |
4004 | 4007 | ||
4005 | static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) | 4008 | static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) |
4006 | { | 4009 | { |
4007 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); | 4010 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); |
4008 | } | 4011 | } |
4009 | 4012 | ||
4010 | static ssize_t reclaim_account_store(struct kmem_cache *s, | 4013 | static ssize_t reclaim_account_store(struct kmem_cache *s, |
4011 | const char *buf, size_t length) | 4014 | const char *buf, size_t length) |
4012 | { | 4015 | { |
4013 | s->flags &= ~SLAB_RECLAIM_ACCOUNT; | 4016 | s->flags &= ~SLAB_RECLAIM_ACCOUNT; |
4014 | if (buf[0] == '1') | 4017 | if (buf[0] == '1') |
4015 | s->flags |= SLAB_RECLAIM_ACCOUNT; | 4018 | s->flags |= SLAB_RECLAIM_ACCOUNT; |
4016 | return length; | 4019 | return length; |
4017 | } | 4020 | } |
4018 | SLAB_ATTR(reclaim_account); | 4021 | SLAB_ATTR(reclaim_account); |
4019 | 4022 | ||
4020 | static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) | 4023 | static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) |
4021 | { | 4024 | { |
4022 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); | 4025 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); |
4023 | } | 4026 | } |
4024 | SLAB_ATTR_RO(hwcache_align); | 4027 | SLAB_ATTR_RO(hwcache_align); |
4025 | 4028 | ||
4026 | #ifdef CONFIG_ZONE_DMA | 4029 | #ifdef CONFIG_ZONE_DMA |
4027 | static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) | 4030 | static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) |
4028 | { | 4031 | { |
4029 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); | 4032 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); |
4030 | } | 4033 | } |
4031 | SLAB_ATTR_RO(cache_dma); | 4034 | SLAB_ATTR_RO(cache_dma); |
4032 | #endif | 4035 | #endif |
4033 | 4036 | ||
4034 | static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) | 4037 | static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) |
4035 | { | 4038 | { |
4036 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); | 4039 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); |
4037 | } | 4040 | } |
4038 | SLAB_ATTR_RO(destroy_by_rcu); | 4041 | SLAB_ATTR_RO(destroy_by_rcu); |
4039 | 4042 | ||
4040 | static ssize_t red_zone_show(struct kmem_cache *s, char *buf) | 4043 | static ssize_t red_zone_show(struct kmem_cache *s, char *buf) |
4041 | { | 4044 | { |
4042 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); | 4045 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); |
4043 | } | 4046 | } |
4044 | 4047 | ||
4045 | static ssize_t red_zone_store(struct kmem_cache *s, | 4048 | static ssize_t red_zone_store(struct kmem_cache *s, |
4046 | const char *buf, size_t length) | 4049 | const char *buf, size_t length) |
4047 | { | 4050 | { |
4048 | if (any_slab_objects(s)) | 4051 | if (any_slab_objects(s)) |
4049 | return -EBUSY; | 4052 | return -EBUSY; |
4050 | 4053 | ||
4051 | s->flags &= ~SLAB_RED_ZONE; | 4054 | s->flags &= ~SLAB_RED_ZONE; |
4052 | if (buf[0] == '1') | 4055 | if (buf[0] == '1') |
4053 | s->flags |= SLAB_RED_ZONE; | 4056 | s->flags |= SLAB_RED_ZONE; |
4054 | calculate_sizes(s, -1); | 4057 | calculate_sizes(s, -1); |
4055 | return length; | 4058 | return length; |
4056 | } | 4059 | } |
4057 | SLAB_ATTR(red_zone); | 4060 | SLAB_ATTR(red_zone); |
4058 | 4061 | ||
4059 | static ssize_t poison_show(struct kmem_cache *s, char *buf) | 4062 | static ssize_t poison_show(struct kmem_cache *s, char *buf) |
4060 | { | 4063 | { |
4061 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); | 4064 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); |
4062 | } | 4065 | } |
4063 | 4066 | ||
4064 | static ssize_t poison_store(struct kmem_cache *s, | 4067 | static ssize_t poison_store(struct kmem_cache *s, |
4065 | const char *buf, size_t length) | 4068 | const char *buf, size_t length) |
4066 | { | 4069 | { |
4067 | if (any_slab_objects(s)) | 4070 | if (any_slab_objects(s)) |
4068 | return -EBUSY; | 4071 | return -EBUSY; |
4069 | 4072 | ||
4070 | s->flags &= ~SLAB_POISON; | 4073 | s->flags &= ~SLAB_POISON; |
4071 | if (buf[0] == '1') | 4074 | if (buf[0] == '1') |
4072 | s->flags |= SLAB_POISON; | 4075 | s->flags |= SLAB_POISON; |
4073 | calculate_sizes(s, -1); | 4076 | calculate_sizes(s, -1); |
4074 | return length; | 4077 | return length; |
4075 | } | 4078 | } |
4076 | SLAB_ATTR(poison); | 4079 | SLAB_ATTR(poison); |
4077 | 4080 | ||
4078 | static ssize_t store_user_show(struct kmem_cache *s, char *buf) | 4081 | static ssize_t store_user_show(struct kmem_cache *s, char *buf) |
4079 | { | 4082 | { |
4080 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); | 4083 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); |
4081 | } | 4084 | } |
4082 | 4085 | ||
4083 | static ssize_t store_user_store(struct kmem_cache *s, | 4086 | static ssize_t store_user_store(struct kmem_cache *s, |
4084 | const char *buf, size_t length) | 4087 | const char *buf, size_t length) |
4085 | { | 4088 | { |
4086 | if (any_slab_objects(s)) | 4089 | if (any_slab_objects(s)) |
4087 | return -EBUSY; | 4090 | return -EBUSY; |
4088 | 4091 | ||
4089 | s->flags &= ~SLAB_STORE_USER; | 4092 | s->flags &= ~SLAB_STORE_USER; |
4090 | if (buf[0] == '1') | 4093 | if (buf[0] == '1') |
4091 | s->flags |= SLAB_STORE_USER; | 4094 | s->flags |= SLAB_STORE_USER; |
4092 | calculate_sizes(s, -1); | 4095 | calculate_sizes(s, -1); |
4093 | return length; | 4096 | return length; |
4094 | } | 4097 | } |
4095 | SLAB_ATTR(store_user); | 4098 | SLAB_ATTR(store_user); |
4096 | 4099 | ||
4097 | static ssize_t validate_show(struct kmem_cache *s, char *buf) | 4100 | static ssize_t validate_show(struct kmem_cache *s, char *buf) |
4098 | { | 4101 | { |
4099 | return 0; | 4102 | return 0; |
4100 | } | 4103 | } |
4101 | 4104 | ||
4102 | static ssize_t validate_store(struct kmem_cache *s, | 4105 | static ssize_t validate_store(struct kmem_cache *s, |
4103 | const char *buf, size_t length) | 4106 | const char *buf, size_t length) |
4104 | { | 4107 | { |
4105 | int ret = -EINVAL; | 4108 | int ret = -EINVAL; |
4106 | 4109 | ||
4107 | if (buf[0] == '1') { | 4110 | if (buf[0] == '1') { |
4108 | ret = validate_slab_cache(s); | 4111 | ret = validate_slab_cache(s); |
4109 | if (ret >= 0) | 4112 | if (ret >= 0) |
4110 | ret = length; | 4113 | ret = length; |
4111 | } | 4114 | } |
4112 | return ret; | 4115 | return ret; |
4113 | } | 4116 | } |
4114 | SLAB_ATTR(validate); | 4117 | SLAB_ATTR(validate); |
4115 | 4118 | ||
4116 | static ssize_t shrink_show(struct kmem_cache *s, char *buf) | 4119 | static ssize_t shrink_show(struct kmem_cache *s, char *buf) |
4117 | { | 4120 | { |
4118 | return 0; | 4121 | return 0; |
4119 | } | 4122 | } |
4120 | 4123 | ||
4121 | static ssize_t shrink_store(struct kmem_cache *s, | 4124 | static ssize_t shrink_store(struct kmem_cache *s, |
4122 | const char *buf, size_t length) | 4125 | const char *buf, size_t length) |
4123 | { | 4126 | { |
4124 | if (buf[0] == '1') { | 4127 | if (buf[0] == '1') { |
4125 | int rc = kmem_cache_shrink(s); | 4128 | int rc = kmem_cache_shrink(s); |
4126 | 4129 | ||
4127 | if (rc) | 4130 | if (rc) |
4128 | return rc; | 4131 | return rc; |
4129 | } else | 4132 | } else |
4130 | return -EINVAL; | 4133 | return -EINVAL; |
4131 | return length; | 4134 | return length; |
4132 | } | 4135 | } |
4133 | SLAB_ATTR(shrink); | 4136 | SLAB_ATTR(shrink); |
4134 | 4137 | ||
4135 | static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) | 4138 | static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) |
4136 | { | 4139 | { |
4137 | if (!(s->flags & SLAB_STORE_USER)) | 4140 | if (!(s->flags & SLAB_STORE_USER)) |
4138 | return -ENOSYS; | 4141 | return -ENOSYS; |
4139 | return list_locations(s, buf, TRACK_ALLOC); | 4142 | return list_locations(s, buf, TRACK_ALLOC); |
4140 | } | 4143 | } |
4141 | SLAB_ATTR_RO(alloc_calls); | 4144 | SLAB_ATTR_RO(alloc_calls); |
4142 | 4145 | ||
4143 | static ssize_t free_calls_show(struct kmem_cache *s, char *buf) | 4146 | static ssize_t free_calls_show(struct kmem_cache *s, char *buf) |
4144 | { | 4147 | { |
4145 | if (!(s->flags & SLAB_STORE_USER)) | 4148 | if (!(s->flags & SLAB_STORE_USER)) |
4146 | return -ENOSYS; | 4149 | return -ENOSYS; |
4147 | return list_locations(s, buf, TRACK_FREE); | 4150 | return list_locations(s, buf, TRACK_FREE); |
4148 | } | 4151 | } |
4149 | SLAB_ATTR_RO(free_calls); | 4152 | SLAB_ATTR_RO(free_calls); |
4150 | 4153 | ||
4151 | #ifdef CONFIG_NUMA | 4154 | #ifdef CONFIG_NUMA |
4152 | static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) | 4155 | static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) |
4153 | { | 4156 | { |
4154 | return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); | 4157 | return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); |
4155 | } | 4158 | } |
4156 | 4159 | ||
4157 | static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, | 4160 | static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, |
4158 | const char *buf, size_t length) | 4161 | const char *buf, size_t length) |
4159 | { | 4162 | { |
4160 | unsigned long ratio; | 4163 | unsigned long ratio; |
4161 | int err; | 4164 | int err; |
4162 | 4165 | ||
4163 | err = strict_strtoul(buf, 10, &ratio); | 4166 | err = strict_strtoul(buf, 10, &ratio); |
4164 | if (err) | 4167 | if (err) |
4165 | return err; | 4168 | return err; |
4166 | 4169 | ||
4167 | if (ratio <= 100) | 4170 | if (ratio <= 100) |
4168 | s->remote_node_defrag_ratio = ratio * 10; | 4171 | s->remote_node_defrag_ratio = ratio * 10; |
4169 | 4172 | ||
4170 | return length; | 4173 | return length; |
4171 | } | 4174 | } |
4172 | SLAB_ATTR(remote_node_defrag_ratio); | 4175 | SLAB_ATTR(remote_node_defrag_ratio); |
4173 | #endif | 4176 | #endif |
4174 | 4177 | ||
4175 | #ifdef CONFIG_SLUB_STATS | 4178 | #ifdef CONFIG_SLUB_STATS |
4176 | static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) | 4179 | static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) |
4177 | { | 4180 | { |
4178 | unsigned long sum = 0; | 4181 | unsigned long sum = 0; |
4179 | int cpu; | 4182 | int cpu; |
4180 | int len; | 4183 | int len; |
4181 | int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); | 4184 | int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); |
4182 | 4185 | ||
4183 | if (!data) | 4186 | if (!data) |
4184 | return -ENOMEM; | 4187 | return -ENOMEM; |
4185 | 4188 | ||
4186 | for_each_online_cpu(cpu) { | 4189 | for_each_online_cpu(cpu) { |
4187 | unsigned x = get_cpu_slab(s, cpu)->stat[si]; | 4190 | unsigned x = get_cpu_slab(s, cpu)->stat[si]; |
4188 | 4191 | ||
4189 | data[cpu] = x; | 4192 | data[cpu] = x; |
4190 | sum += x; | 4193 | sum += x; |
4191 | } | 4194 | } |
4192 | 4195 | ||
4193 | len = sprintf(buf, "%lu", sum); | 4196 | len = sprintf(buf, "%lu", sum); |
4194 | 4197 | ||
4195 | #ifdef CONFIG_SMP | 4198 | #ifdef CONFIG_SMP |
4196 | for_each_online_cpu(cpu) { | 4199 | for_each_online_cpu(cpu) { |
4197 | if (data[cpu] && len < PAGE_SIZE - 20) | 4200 | if (data[cpu] && len < PAGE_SIZE - 20) |
4198 | len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); | 4201 | len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); |
4199 | } | 4202 | } |
4200 | #endif | 4203 | #endif |
4201 | kfree(data); | 4204 | kfree(data); |
4202 | return len + sprintf(buf + len, "\n"); | 4205 | return len + sprintf(buf + len, "\n"); |
4203 | } | 4206 | } |
4204 | 4207 | ||
4205 | #define STAT_ATTR(si, text) \ | 4208 | #define STAT_ATTR(si, text) \ |
4206 | static ssize_t text##_show(struct kmem_cache *s, char *buf) \ | 4209 | static ssize_t text##_show(struct kmem_cache *s, char *buf) \ |
4207 | { \ | 4210 | { \ |
4208 | return show_stat(s, buf, si); \ | 4211 | return show_stat(s, buf, si); \ |
4209 | } \ | 4212 | } \ |
4210 | SLAB_ATTR_RO(text); \ | 4213 | SLAB_ATTR_RO(text); \ |
4211 | 4214 | ||
4212 | STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); | 4215 | STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); |
4213 | STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); | 4216 | STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); |
4214 | STAT_ATTR(FREE_FASTPATH, free_fastpath); | 4217 | STAT_ATTR(FREE_FASTPATH, free_fastpath); |
4215 | STAT_ATTR(FREE_SLOWPATH, free_slowpath); | 4218 | STAT_ATTR(FREE_SLOWPATH, free_slowpath); |
4216 | STAT_ATTR(FREE_FROZEN, free_frozen); | 4219 | STAT_ATTR(FREE_FROZEN, free_frozen); |
4217 | STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); | 4220 | STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); |
4218 | STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); | 4221 | STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); |
4219 | STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); | 4222 | STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); |
4220 | STAT_ATTR(ALLOC_SLAB, alloc_slab); | 4223 | STAT_ATTR(ALLOC_SLAB, alloc_slab); |
4221 | STAT_ATTR(ALLOC_REFILL, alloc_refill); | 4224 | STAT_ATTR(ALLOC_REFILL, alloc_refill); |
4222 | STAT_ATTR(FREE_SLAB, free_slab); | 4225 | STAT_ATTR(FREE_SLAB, free_slab); |
4223 | STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); | 4226 | STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); |
4224 | STAT_ATTR(DEACTIVATE_FULL, deactivate_full); | 4227 | STAT_ATTR(DEACTIVATE_FULL, deactivate_full); |
4225 | STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); | 4228 | STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); |
4226 | STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); | 4229 | STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); |
4227 | STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); | 4230 | STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); |
4228 | STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); | 4231 | STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); |
4229 | STAT_ATTR(ORDER_FALLBACK, order_fallback); | 4232 | STAT_ATTR(ORDER_FALLBACK, order_fallback); |
4230 | #endif | 4233 | #endif |
4231 | 4234 | ||
4232 | static struct attribute *slab_attrs[] = { | 4235 | static struct attribute *slab_attrs[] = { |
4233 | &slab_size_attr.attr, | 4236 | &slab_size_attr.attr, |
4234 | &object_size_attr.attr, | 4237 | &object_size_attr.attr, |
4235 | &objs_per_slab_attr.attr, | 4238 | &objs_per_slab_attr.attr, |
4236 | &order_attr.attr, | 4239 | &order_attr.attr, |
4237 | &min_partial_attr.attr, | 4240 | &min_partial_attr.attr, |
4238 | &objects_attr.attr, | 4241 | &objects_attr.attr, |
4239 | &objects_partial_attr.attr, | 4242 | &objects_partial_attr.attr, |
4240 | &total_objects_attr.attr, | 4243 | &total_objects_attr.attr, |
4241 | &slabs_attr.attr, | 4244 | &slabs_attr.attr, |
4242 | &partial_attr.attr, | 4245 | &partial_attr.attr, |
4243 | &cpu_slabs_attr.attr, | 4246 | &cpu_slabs_attr.attr, |
4244 | &ctor_attr.attr, | 4247 | &ctor_attr.attr, |
4245 | &aliases_attr.attr, | 4248 | &aliases_attr.attr, |
4246 | &align_attr.attr, | 4249 | &align_attr.attr, |
4247 | &sanity_checks_attr.attr, | 4250 | &sanity_checks_attr.attr, |
4248 | &trace_attr.attr, | 4251 | &trace_attr.attr, |
4249 | &hwcache_align_attr.attr, | 4252 | &hwcache_align_attr.attr, |
4250 | &reclaim_account_attr.attr, | 4253 | &reclaim_account_attr.attr, |
4251 | &destroy_by_rcu_attr.attr, | 4254 | &destroy_by_rcu_attr.attr, |
4252 | &red_zone_attr.attr, | 4255 | &red_zone_attr.attr, |
4253 | &poison_attr.attr, | 4256 | &poison_attr.attr, |
4254 | &store_user_attr.attr, | 4257 | &store_user_attr.attr, |
4255 | &validate_attr.attr, | 4258 | &validate_attr.attr, |
4256 | &shrink_attr.attr, | 4259 | &shrink_attr.attr, |
4257 | &alloc_calls_attr.attr, | 4260 | &alloc_calls_attr.attr, |
4258 | &free_calls_attr.attr, | 4261 | &free_calls_attr.attr, |
4259 | #ifdef CONFIG_ZONE_DMA | 4262 | #ifdef CONFIG_ZONE_DMA |
4260 | &cache_dma_attr.attr, | 4263 | &cache_dma_attr.attr, |
4261 | #endif | 4264 | #endif |
4262 | #ifdef CONFIG_NUMA | 4265 | #ifdef CONFIG_NUMA |
4263 | &remote_node_defrag_ratio_attr.attr, | 4266 | &remote_node_defrag_ratio_attr.attr, |
4264 | #endif | 4267 | #endif |
4265 | #ifdef CONFIG_SLUB_STATS | 4268 | #ifdef CONFIG_SLUB_STATS |
4266 | &alloc_fastpath_attr.attr, | 4269 | &alloc_fastpath_attr.attr, |
4267 | &alloc_slowpath_attr.attr, | 4270 | &alloc_slowpath_attr.attr, |
4268 | &free_fastpath_attr.attr, | 4271 | &free_fastpath_attr.attr, |
4269 | &free_slowpath_attr.attr, | 4272 | &free_slowpath_attr.attr, |
4270 | &free_frozen_attr.attr, | 4273 | &free_frozen_attr.attr, |
4271 | &free_add_partial_attr.attr, | 4274 | &free_add_partial_attr.attr, |
4272 | &free_remove_partial_attr.attr, | 4275 | &free_remove_partial_attr.attr, |
4273 | &alloc_from_partial_attr.attr, | 4276 | &alloc_from_partial_attr.attr, |
4274 | &alloc_slab_attr.attr, | 4277 | &alloc_slab_attr.attr, |
4275 | &alloc_refill_attr.attr, | 4278 | &alloc_refill_attr.attr, |
4276 | &free_slab_attr.attr, | 4279 | &free_slab_attr.attr, |
4277 | &cpuslab_flush_attr.attr, | 4280 | &cpuslab_flush_attr.attr, |
4278 | &deactivate_full_attr.attr, | 4281 | &deactivate_full_attr.attr, |
4279 | &deactivate_empty_attr.attr, | 4282 | &deactivate_empty_attr.attr, |
4280 | &deactivate_to_head_attr.attr, | 4283 | &deactivate_to_head_attr.attr, |
4281 | &deactivate_to_tail_attr.attr, | 4284 | &deactivate_to_tail_attr.attr, |
4282 | &deactivate_remote_frees_attr.attr, | 4285 | &deactivate_remote_frees_attr.attr, |
4283 | &order_fallback_attr.attr, | 4286 | &order_fallback_attr.attr, |
4284 | #endif | 4287 | #endif |
4285 | NULL | 4288 | NULL |
4286 | }; | 4289 | }; |
4287 | 4290 | ||
4288 | static struct attribute_group slab_attr_group = { | 4291 | static struct attribute_group slab_attr_group = { |
4289 | .attrs = slab_attrs, | 4292 | .attrs = slab_attrs, |
4290 | }; | 4293 | }; |
4291 | 4294 | ||
4292 | static ssize_t slab_attr_show(struct kobject *kobj, | 4295 | static ssize_t slab_attr_show(struct kobject *kobj, |
4293 | struct attribute *attr, | 4296 | struct attribute *attr, |
4294 | char *buf) | 4297 | char *buf) |
4295 | { | 4298 | { |
4296 | struct slab_attribute *attribute; | 4299 | struct slab_attribute *attribute; |
4297 | struct kmem_cache *s; | 4300 | struct kmem_cache *s; |
4298 | int err; | 4301 | int err; |
4299 | 4302 | ||
4300 | attribute = to_slab_attr(attr); | 4303 | attribute = to_slab_attr(attr); |
4301 | s = to_slab(kobj); | 4304 | s = to_slab(kobj); |
4302 | 4305 | ||
4303 | if (!attribute->show) | 4306 | if (!attribute->show) |
4304 | return -EIO; | 4307 | return -EIO; |
4305 | 4308 | ||
4306 | err = attribute->show(s, buf); | 4309 | err = attribute->show(s, buf); |
4307 | 4310 | ||
4308 | return err; | 4311 | return err; |
4309 | } | 4312 | } |
4310 | 4313 | ||
4311 | static ssize_t slab_attr_store(struct kobject *kobj, | 4314 | static ssize_t slab_attr_store(struct kobject *kobj, |
4312 | struct attribute *attr, | 4315 | struct attribute *attr, |
4313 | const char *buf, size_t len) | 4316 | const char *buf, size_t len) |
4314 | { | 4317 | { |
4315 | struct slab_attribute *attribute; | 4318 | struct slab_attribute *attribute; |
4316 | struct kmem_cache *s; | 4319 | struct kmem_cache *s; |
4317 | int err; | 4320 | int err; |
4318 | 4321 | ||
4319 | attribute = to_slab_attr(attr); | 4322 | attribute = to_slab_attr(attr); |
4320 | s = to_slab(kobj); | 4323 | s = to_slab(kobj); |
4321 | 4324 | ||
4322 | if (!attribute->store) | 4325 | if (!attribute->store) |
4323 | return -EIO; | 4326 | return -EIO; |
4324 | 4327 | ||
4325 | err = attribute->store(s, buf, len); | 4328 | err = attribute->store(s, buf, len); |
4326 | 4329 | ||
4327 | return err; | 4330 | return err; |
4328 | } | 4331 | } |
4329 | 4332 | ||
4330 | static void kmem_cache_release(struct kobject *kobj) | 4333 | static void kmem_cache_release(struct kobject *kobj) |
4331 | { | 4334 | { |
4332 | struct kmem_cache *s = to_slab(kobj); | 4335 | struct kmem_cache *s = to_slab(kobj); |
4333 | 4336 | ||
4334 | kfree(s); | 4337 | kfree(s); |
4335 | } | 4338 | } |
4336 | 4339 | ||
4337 | static struct sysfs_ops slab_sysfs_ops = { | 4340 | static struct sysfs_ops slab_sysfs_ops = { |
4338 | .show = slab_attr_show, | 4341 | .show = slab_attr_show, |
4339 | .store = slab_attr_store, | 4342 | .store = slab_attr_store, |
4340 | }; | 4343 | }; |
4341 | 4344 | ||
4342 | static struct kobj_type slab_ktype = { | 4345 | static struct kobj_type slab_ktype = { |
4343 | .sysfs_ops = &slab_sysfs_ops, | 4346 | .sysfs_ops = &slab_sysfs_ops, |
4344 | .release = kmem_cache_release | 4347 | .release = kmem_cache_release |
4345 | }; | 4348 | }; |
4346 | 4349 | ||
4347 | static int uevent_filter(struct kset *kset, struct kobject *kobj) | 4350 | static int uevent_filter(struct kset *kset, struct kobject *kobj) |
4348 | { | 4351 | { |
4349 | struct kobj_type *ktype = get_ktype(kobj); | 4352 | struct kobj_type *ktype = get_ktype(kobj); |
4350 | 4353 | ||
4351 | if (ktype == &slab_ktype) | 4354 | if (ktype == &slab_ktype) |
4352 | return 1; | 4355 | return 1; |
4353 | return 0; | 4356 | return 0; |
4354 | } | 4357 | } |
4355 | 4358 | ||
4356 | static struct kset_uevent_ops slab_uevent_ops = { | 4359 | static struct kset_uevent_ops slab_uevent_ops = { |
4357 | .filter = uevent_filter, | 4360 | .filter = uevent_filter, |
4358 | }; | 4361 | }; |
4359 | 4362 | ||
4360 | static struct kset *slab_kset; | 4363 | static struct kset *slab_kset; |
4361 | 4364 | ||
4362 | #define ID_STR_LENGTH 64 | 4365 | #define ID_STR_LENGTH 64 |
4363 | 4366 | ||
4364 | /* Create a unique string id for a slab cache: | 4367 | /* Create a unique string id for a slab cache: |
4365 | * | 4368 | * |
4366 | * Format :[flags-]size | 4369 | * Format :[flags-]size |
4367 | */ | 4370 | */ |
4368 | static char *create_unique_id(struct kmem_cache *s) | 4371 | static char *create_unique_id(struct kmem_cache *s) |
4369 | { | 4372 | { |
4370 | char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); | 4373 | char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); |
4371 | char *p = name; | 4374 | char *p = name; |
4372 | 4375 | ||
4373 | BUG_ON(!name); | 4376 | BUG_ON(!name); |
4374 | 4377 | ||
4375 | *p++ = ':'; | 4378 | *p++ = ':'; |
4376 | /* | 4379 | /* |
4377 | * First flags affecting slabcache operations. We will only | 4380 | * First flags affecting slabcache operations. We will only |
4378 | * get here for aliasable slabs so we do not need to support | 4381 | * get here for aliasable slabs so we do not need to support |
4379 | * too many flags. The flags here must cover all flags that | 4382 | * too many flags. The flags here must cover all flags that |
4380 | * are matched during merging to guarantee that the id is | 4383 | * are matched during merging to guarantee that the id is |
4381 | * unique. | 4384 | * unique. |
4382 | */ | 4385 | */ |
4383 | if (s->flags & SLAB_CACHE_DMA) | 4386 | if (s->flags & SLAB_CACHE_DMA) |
4384 | *p++ = 'd'; | 4387 | *p++ = 'd'; |
4385 | if (s->flags & SLAB_RECLAIM_ACCOUNT) | 4388 | if (s->flags & SLAB_RECLAIM_ACCOUNT) |
4386 | *p++ = 'a'; | 4389 | *p++ = 'a'; |
4387 | if (s->flags & SLAB_DEBUG_FREE) | 4390 | if (s->flags & SLAB_DEBUG_FREE) |
4388 | *p++ = 'F'; | 4391 | *p++ = 'F'; |
4389 | if (p != name + 1) | 4392 | if (p != name + 1) |
4390 | *p++ = '-'; | 4393 | *p++ = '-'; |
4391 | p += sprintf(p, "%07d", s->size); | 4394 | p += sprintf(p, "%07d", s->size); |
4392 | BUG_ON(p > name + ID_STR_LENGTH - 1); | 4395 | BUG_ON(p > name + ID_STR_LENGTH - 1); |
4393 | return name; | 4396 | return name; |
4394 | } | 4397 | } |
4395 | 4398 | ||
4396 | static int sysfs_slab_add(struct kmem_cache *s) | 4399 | static int sysfs_slab_add(struct kmem_cache *s) |
4397 | { | 4400 | { |
4398 | int err; | 4401 | int err; |
4399 | const char *name; | 4402 | const char *name; |
4400 | int unmergeable; | 4403 | int unmergeable; |
4401 | 4404 | ||
4402 | if (slab_state < SYSFS) | 4405 | if (slab_state < SYSFS) |
4403 | /* Defer until later */ | 4406 | /* Defer until later */ |
4404 | return 0; | 4407 | return 0; |
4405 | 4408 | ||
4406 | unmergeable = slab_unmergeable(s); | 4409 | unmergeable = slab_unmergeable(s); |
4407 | if (unmergeable) { | 4410 | if (unmergeable) { |
4408 | /* | 4411 | /* |
4409 | * Slabcache can never be merged so we can use the name proper. | 4412 | * Slabcache can never be merged so we can use the name proper. |
4410 | * This is typically the case for debug situations. In that | 4413 | * This is typically the case for debug situations. In that |
4411 | * case we can catch duplicate names easily. | 4414 | * case we can catch duplicate names easily. |
4412 | */ | 4415 | */ |
4413 | sysfs_remove_link(&slab_kset->kobj, s->name); | 4416 | sysfs_remove_link(&slab_kset->kobj, s->name); |
4414 | name = s->name; | 4417 | name = s->name; |
4415 | } else { | 4418 | } else { |
4416 | /* | 4419 | /* |
4417 | * Create a unique name for the slab as a target | 4420 | * Create a unique name for the slab as a target |
4418 | * for the symlinks. | 4421 | * for the symlinks. |
4419 | */ | 4422 | */ |
4420 | name = create_unique_id(s); | 4423 | name = create_unique_id(s); |
4421 | } | 4424 | } |
4422 | 4425 | ||
4423 | s->kobj.kset = slab_kset; | 4426 | s->kobj.kset = slab_kset; |
4424 | err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name); | 4427 | err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name); |
4425 | if (err) { | 4428 | if (err) { |
4426 | kobject_put(&s->kobj); | 4429 | kobject_put(&s->kobj); |
4427 | return err; | 4430 | return err; |
4428 | } | 4431 | } |
4429 | 4432 | ||
4430 | err = sysfs_create_group(&s->kobj, &slab_attr_group); | 4433 | err = sysfs_create_group(&s->kobj, &slab_attr_group); |
4431 | if (err) | 4434 | if (err) |
4432 | return err; | 4435 | return err; |
4433 | kobject_uevent(&s->kobj, KOBJ_ADD); | 4436 | kobject_uevent(&s->kobj, KOBJ_ADD); |
4434 | if (!unmergeable) { | 4437 | if (!unmergeable) { |
4435 | /* Setup first alias */ | 4438 | /* Setup first alias */ |
4436 | sysfs_slab_alias(s, s->name); | 4439 | sysfs_slab_alias(s, s->name); |
4437 | kfree(name); | 4440 | kfree(name); |
4438 | } | 4441 | } |
4439 | return 0; | 4442 | return 0; |
4440 | } | 4443 | } |
4441 | 4444 | ||
4442 | static void sysfs_slab_remove(struct kmem_cache *s) | 4445 | static void sysfs_slab_remove(struct kmem_cache *s) |
4443 | { | 4446 | { |
4444 | kobject_uevent(&s->kobj, KOBJ_REMOVE); | 4447 | kobject_uevent(&s->kobj, KOBJ_REMOVE); |
4445 | kobject_del(&s->kobj); | 4448 | kobject_del(&s->kobj); |
4446 | kobject_put(&s->kobj); | 4449 | kobject_put(&s->kobj); |
4447 | } | 4450 | } |
4448 | 4451 | ||
4449 | /* | 4452 | /* |
4450 | * Need to buffer aliases during bootup until sysfs becomes | 4453 | * Need to buffer aliases during bootup until sysfs becomes |
4451 | * available lest we lose that information. | 4454 | * available lest we lose that information. |
4452 | */ | 4455 | */ |
4453 | struct saved_alias { | 4456 | struct saved_alias { |
4454 | struct kmem_cache *s; | 4457 | struct kmem_cache *s; |
4455 | const char *name; | 4458 | const char *name; |
4456 | struct saved_alias *next; | 4459 | struct saved_alias *next; |
4457 | }; | 4460 | }; |
4458 | 4461 | ||
4459 | static struct saved_alias *alias_list; | 4462 | static struct saved_alias *alias_list; |
4460 | 4463 | ||
4461 | static int sysfs_slab_alias(struct kmem_cache *s, const char *name) | 4464 | static int sysfs_slab_alias(struct kmem_cache *s, const char *name) |
4462 | { | 4465 | { |
4463 | struct saved_alias *al; | 4466 | struct saved_alias *al; |
4464 | 4467 | ||
4465 | if (slab_state == SYSFS) { | 4468 | if (slab_state == SYSFS) { |
4466 | /* | 4469 | /* |
4467 | * If we have a leftover link then remove it. | 4470 | * If we have a leftover link then remove it. |
4468 | */ | 4471 | */ |
4469 | sysfs_remove_link(&slab_kset->kobj, name); | 4472 | sysfs_remove_link(&slab_kset->kobj, name); |
4470 | return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); | 4473 | return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); |
4471 | } | 4474 | } |
4472 | 4475 | ||
4473 | al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); | 4476 | al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); |
4474 | if (!al) | 4477 | if (!al) |
4475 | return -ENOMEM; | 4478 | return -ENOMEM; |
4476 | 4479 | ||
4477 | al->s = s; | 4480 | al->s = s; |
4478 | al->name = name; | 4481 | al->name = name; |
4479 | al->next = alias_list; | 4482 | al->next = alias_list; |
4480 | alias_list = al; | 4483 | alias_list = al; |
4481 | return 0; | 4484 | return 0; |
4482 | } | 4485 | } |
4483 | 4486 | ||
4484 | static int __init slab_sysfs_init(void) | 4487 | static int __init slab_sysfs_init(void) |
4485 | { | 4488 | { |
4486 | struct kmem_cache *s; | 4489 | struct kmem_cache *s; |
4487 | int err; | 4490 | int err; |
4488 | 4491 | ||
4489 | slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); | 4492 | slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); |
4490 | if (!slab_kset) { | 4493 | if (!slab_kset) { |
4491 | printk(KERN_ERR "Cannot register slab subsystem.\n"); | 4494 | printk(KERN_ERR "Cannot register slab subsystem.\n"); |
4492 | return -ENOSYS; | 4495 | return -ENOSYS; |
4493 | } | 4496 | } |
4494 | 4497 | ||
4495 | slab_state = SYSFS; | 4498 | slab_state = SYSFS; |
4496 | 4499 | ||
4497 | list_for_each_entry(s, &slab_caches, list) { | 4500 | list_for_each_entry(s, &slab_caches, list) { |
4498 | err = sysfs_slab_add(s); | 4501 | err = sysfs_slab_add(s); |
4499 | if (err) | 4502 | if (err) |
4500 | printk(KERN_ERR "SLUB: Unable to add boot slab %s" | 4503 | printk(KERN_ERR "SLUB: Unable to add boot slab %s" |
4501 | " to sysfs\n", s->name); | 4504 | " to sysfs\n", s->name); |
4502 | } | 4505 | } |
4503 | 4506 | ||
4504 | while (alias_list) { | 4507 | while (alias_list) { |
4505 | struct saved_alias *al = alias_list; | 4508 | struct saved_alias *al = alias_list; |
4506 | 4509 | ||
4507 | alias_list = alias_list->next; | 4510 | alias_list = alias_list->next; |
4508 | err = sysfs_slab_alias(al->s, al->name); | 4511 | err = sysfs_slab_alias(al->s, al->name); |
4509 | if (err) | 4512 | if (err) |
4510 | printk(KERN_ERR "SLUB: Unable to add boot slab alias" | 4513 | printk(KERN_ERR "SLUB: Unable to add boot slab alias" |
4511 | " %s to sysfs\n", s->name); | 4514 | " %s to sysfs\n", s->name); |
4512 | kfree(al); | 4515 | kfree(al); |
4513 | } | 4516 | } |
4514 | 4517 | ||
4515 | resiliency_test(); | 4518 | resiliency_test(); |
4516 | return 0; | 4519 | return 0; |
4517 | } | 4520 | } |
4518 | 4521 | ||
4519 | __initcall(slab_sysfs_init); | 4522 | __initcall(slab_sysfs_init); |
4520 | #endif | 4523 | #endif |
4521 | 4524 | ||
4522 | /* | 4525 | /* |
4523 | * The /proc/slabinfo ABI | 4526 | * The /proc/slabinfo ABI |
4524 | */ | 4527 | */ |
4525 | #ifdef CONFIG_SLABINFO | 4528 | #ifdef CONFIG_SLABINFO |
4526 | static void print_slabinfo_header(struct seq_file *m) | 4529 | static void print_slabinfo_header(struct seq_file *m) |
4527 | { | 4530 | { |
4528 | seq_puts(m, "slabinfo - version: 2.1\n"); | 4531 | seq_puts(m, "slabinfo - version: 2.1\n"); |
4529 | seq_puts(m, "# name <active_objs> <num_objs> <objsize> " | 4532 | seq_puts(m, "# name <active_objs> <num_objs> <objsize> " |
4530 | "<objperslab> <pagesperslab>"); | 4533 | "<objperslab> <pagesperslab>"); |
4531 | seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); | 4534 | seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); |
4532 | seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); | 4535 | seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); |
4533 | seq_putc(m, '\n'); | 4536 | seq_putc(m, '\n'); |
4534 | } | 4537 | } |
4535 | 4538 | ||
4536 | static void *s_start(struct seq_file *m, loff_t *pos) | 4539 | static void *s_start(struct seq_file *m, loff_t *pos) |
4537 | { | 4540 | { |
4538 | loff_t n = *pos; | 4541 | loff_t n = *pos; |
4539 | 4542 | ||
4540 | down_read(&slub_lock); | 4543 | down_read(&slub_lock); |
4541 | if (!n) | 4544 | if (!n) |
4542 | print_slabinfo_header(m); | 4545 | print_slabinfo_header(m); |
4543 | 4546 | ||
4544 | return seq_list_start(&slab_caches, *pos); | 4547 | return seq_list_start(&slab_caches, *pos); |
4545 | } | 4548 | } |
4546 | 4549 | ||
4547 | static void *s_next(struct seq_file *m, void *p, loff_t *pos) | 4550 | static void *s_next(struct seq_file *m, void *p, loff_t *pos) |
4548 | { | 4551 | { |
4549 | return seq_list_next(p, &slab_caches, pos); | 4552 | return seq_list_next(p, &slab_caches, pos); |
4550 | } | 4553 | } |
4551 | 4554 | ||
4552 | static void s_stop(struct seq_file *m, void *p) | 4555 | static void s_stop(struct seq_file *m, void *p) |
4553 | { | 4556 | { |
4554 | up_read(&slub_lock); | 4557 | up_read(&slub_lock); |
4555 | } | 4558 | } |
4556 | 4559 | ||
4557 | static int s_show(struct seq_file *m, void *p) | 4560 | static int s_show(struct seq_file *m, void *p) |
4558 | { | 4561 | { |
4559 | unsigned long nr_partials = 0; | 4562 | unsigned long nr_partials = 0; |
4560 | unsigned long nr_slabs = 0; | 4563 | unsigned long nr_slabs = 0; |
4561 | unsigned long nr_inuse = 0; | 4564 | unsigned long nr_inuse = 0; |
4562 | unsigned long nr_objs = 0; | 4565 | unsigned long nr_objs = 0; |
4563 | unsigned long nr_free = 0; | 4566 | unsigned long nr_free = 0; |
4564 | struct kmem_cache *s; | 4567 | struct kmem_cache *s; |
4565 | int node; | 4568 | int node; |
4566 | 4569 | ||
4567 | s = list_entry(p, struct kmem_cache, list); | 4570 | s = list_entry(p, struct kmem_cache, list); |
4568 | 4571 | ||
4569 | for_each_online_node(node) { | 4572 | for_each_online_node(node) { |
4570 | struct kmem_cache_node *n = get_node(s, node); | 4573 | struct kmem_cache_node *n = get_node(s, node); |
4571 | 4574 | ||
4572 | if (!n) | 4575 | if (!n) |
4573 | continue; | 4576 | continue; |
4574 | 4577 | ||
4575 | nr_partials += n->nr_partial; | 4578 | nr_partials += n->nr_partial; |
4576 | nr_slabs += atomic_long_read(&n->nr_slabs); | 4579 | nr_slabs += atomic_long_read(&n->nr_slabs); |
4577 | nr_objs += atomic_long_read(&n->total_objects); | 4580 | nr_objs += atomic_long_read(&n->total_objects); |
4578 | nr_free += count_partial(n, count_free); | 4581 | nr_free += count_partial(n, count_free); |
4579 | } | 4582 | } |
4580 | 4583 | ||
4581 | nr_inuse = nr_objs - nr_free; | 4584 | nr_inuse = nr_objs - nr_free; |
4582 | 4585 | ||
4583 | seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse, | 4586 | seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse, |
4584 | nr_objs, s->size, oo_objects(s->oo), | 4587 | nr_objs, s->size, oo_objects(s->oo), |
4585 | (1 << oo_order(s->oo))); | 4588 | (1 << oo_order(s->oo))); |
4586 | seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0); | 4589 | seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0); |
4587 | seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs, | 4590 | seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs, |
4588 | 0UL); | 4591 | 0UL); |
4589 | seq_putc(m, '\n'); | 4592 | seq_putc(m, '\n'); |
4590 | return 0; | 4593 | return 0; |
4591 | } | 4594 | } |
4592 | 4595 | ||
4593 | static const struct seq_operations slabinfo_op = { | 4596 | static const struct seq_operations slabinfo_op = { |
4594 | .start = s_start, | 4597 | .start = s_start, |
4595 | .next = s_next, | 4598 | .next = s_next, |
4596 | .stop = s_stop, | 4599 | .stop = s_stop, |
4597 | .show = s_show, | 4600 | .show = s_show, |
4598 | }; | 4601 | }; |
4599 | 4602 | ||
4600 | static int slabinfo_open(struct inode *inode, struct file *file) | 4603 | static int slabinfo_open(struct inode *inode, struct file *file) |
4601 | { | 4604 | { |
4602 | return seq_open(file, &slabinfo_op); | 4605 | return seq_open(file, &slabinfo_op); |
4603 | } | 4606 | } |
4604 | 4607 | ||
4605 | static const struct file_operations proc_slabinfo_operations = { | 4608 | static const struct file_operations proc_slabinfo_operations = { |
4606 | .open = slabinfo_open, | 4609 | .open = slabinfo_open, |
4607 | .read = seq_read, | 4610 | .read = seq_read, |
4608 | .llseek = seq_lseek, | 4611 | .llseek = seq_lseek, |
4609 | .release = seq_release, | 4612 | .release = seq_release, |
4610 | }; | 4613 | }; |
4611 | 4614 | ||
4612 | static int __init slab_proc_init(void) | 4615 | static int __init slab_proc_init(void) |
4613 | { | 4616 | { |
4614 | proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations); | 4617 | proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations); |
4615 | return 0; | 4618 | return 0; |
4616 | } | 4619 | } |
4617 | module_init(slab_proc_init); | 4620 | module_init(slab_proc_init); |
4618 | #endif /* CONFIG_SLABINFO */ | 4621 | #endif /* CONFIG_SLABINFO */ |
4619 | 4622 |