Commit 1f0532eb617d28f65c93593a1491f662f14f7eac
Committed by
Pekka Enberg
1 parent
1eb5ac6466
Exists in
master
and in
7 other branches
mm: SLOB fix reclaim_state
SLOB does not correctly account reclaim_state.reclaimed_slab, so it will break memory reclaim. Account it like SLAB does. Cc: stable@kernel.org Cc: linux-mm@kvack.org Acked-by: Matt Mackall <mpm@selenic.com> Acked-by: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Showing 1 changed file with 4 additions and 1 deletions Inline Diff
mm/slob.c
1 | /* | 1 | /* |
2 | * SLOB Allocator: Simple List Of Blocks | 2 | * SLOB Allocator: Simple List Of Blocks |
3 | * | 3 | * |
4 | * Matt Mackall <mpm@selenic.com> 12/30/03 | 4 | * Matt Mackall <mpm@selenic.com> 12/30/03 |
5 | * | 5 | * |
6 | * NUMA support by Paul Mundt, 2007. | 6 | * NUMA support by Paul Mundt, 2007. |
7 | * | 7 | * |
8 | * How SLOB works: | 8 | * How SLOB works: |
9 | * | 9 | * |
10 | * The core of SLOB is a traditional K&R style heap allocator, with | 10 | * The core of SLOB is a traditional K&R style heap allocator, with |
11 | * support for returning aligned objects. The granularity of this | 11 | * support for returning aligned objects. The granularity of this |
12 | * allocator is as little as 2 bytes, however typically most architectures | 12 | * allocator is as little as 2 bytes, however typically most architectures |
13 | * will require 4 bytes on 32-bit and 8 bytes on 64-bit. | 13 | * will require 4 bytes on 32-bit and 8 bytes on 64-bit. |
14 | * | 14 | * |
15 | * The slob heap is a set of linked list of pages from alloc_pages(), | 15 | * The slob heap is a set of linked list of pages from alloc_pages(), |
16 | * and within each page, there is a singly-linked list of free blocks | 16 | * and within each page, there is a singly-linked list of free blocks |
17 | * (slob_t). The heap is grown on demand. To reduce fragmentation, | 17 | * (slob_t). The heap is grown on demand. To reduce fragmentation, |
18 | * heap pages are segregated into three lists, with objects less than | 18 | * heap pages are segregated into three lists, with objects less than |
19 | * 256 bytes, objects less than 1024 bytes, and all other objects. | 19 | * 256 bytes, objects less than 1024 bytes, and all other objects. |
20 | * | 20 | * |
21 | * Allocation from heap involves first searching for a page with | 21 | * Allocation from heap involves first searching for a page with |
22 | * sufficient free blocks (using a next-fit-like approach) followed by | 22 | * sufficient free blocks (using a next-fit-like approach) followed by |
23 | * a first-fit scan of the page. Deallocation inserts objects back | 23 | * a first-fit scan of the page. Deallocation inserts objects back |
24 | * into the free list in address order, so this is effectively an | 24 | * into the free list in address order, so this is effectively an |
25 | * address-ordered first fit. | 25 | * address-ordered first fit. |
26 | * | 26 | * |
27 | * Above this is an implementation of kmalloc/kfree. Blocks returned | 27 | * Above this is an implementation of kmalloc/kfree. Blocks returned |
28 | * from kmalloc are prepended with a 4-byte header with the kmalloc size. | 28 | * from kmalloc are prepended with a 4-byte header with the kmalloc size. |
29 | * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls | 29 | * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls |
30 | * alloc_pages() directly, allocating compound pages so the page order | 30 | * alloc_pages() directly, allocating compound pages so the page order |
31 | * does not have to be separately tracked, and also stores the exact | 31 | * does not have to be separately tracked, and also stores the exact |
32 | * allocation size in page->private so that it can be used to accurately | 32 | * allocation size in page->private so that it can be used to accurately |
33 | * provide ksize(). These objects are detected in kfree() because slob_page() | 33 | * provide ksize(). These objects are detected in kfree() because slob_page() |
34 | * is false for them. | 34 | * is false for them. |
35 | * | 35 | * |
36 | * SLAB is emulated on top of SLOB by simply calling constructors and | 36 | * SLAB is emulated on top of SLOB by simply calling constructors and |
37 | * destructors for every SLAB allocation. Objects are returned with the | 37 | * destructors for every SLAB allocation. Objects are returned with the |
38 | * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which | 38 | * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which |
39 | * case the low-level allocator will fragment blocks to create the proper | 39 | * case the low-level allocator will fragment blocks to create the proper |
40 | * alignment. Again, objects of page-size or greater are allocated by | 40 | * alignment. Again, objects of page-size or greater are allocated by |
41 | * calling alloc_pages(). As SLAB objects know their size, no separate | 41 | * calling alloc_pages(). As SLAB objects know their size, no separate |
42 | * size bookkeeping is necessary and there is essentially no allocation | 42 | * size bookkeeping is necessary and there is essentially no allocation |
43 | * space overhead, and compound pages aren't needed for multi-page | 43 | * space overhead, and compound pages aren't needed for multi-page |
44 | * allocations. | 44 | * allocations. |
45 | * | 45 | * |
46 | * NUMA support in SLOB is fairly simplistic, pushing most of the real | 46 | * NUMA support in SLOB is fairly simplistic, pushing most of the real |
47 | * logic down to the page allocator, and simply doing the node accounting | 47 | * logic down to the page allocator, and simply doing the node accounting |
48 | * on the upper levels. In the event that a node id is explicitly | 48 | * on the upper levels. In the event that a node id is explicitly |
49 | * provided, alloc_pages_node() with the specified node id is used | 49 | * provided, alloc_pages_node() with the specified node id is used |
50 | * instead. The common case (or when the node id isn't explicitly provided) | 50 | * instead. The common case (or when the node id isn't explicitly provided) |
51 | * will default to the current node, as per numa_node_id(). | 51 | * will default to the current node, as per numa_node_id(). |
52 | * | 52 | * |
53 | * Node aware pages are still inserted in to the global freelist, and | 53 | * Node aware pages are still inserted in to the global freelist, and |
54 | * these are scanned for by matching against the node id encoded in the | 54 | * these are scanned for by matching against the node id encoded in the |
55 | * page flags. As a result, block allocations that can be satisfied from | 55 | * page flags. As a result, block allocations that can be satisfied from |
56 | * the freelist will only be done so on pages residing on the same node, | 56 | * the freelist will only be done so on pages residing on the same node, |
57 | * in order to prevent random node placement. | 57 | * in order to prevent random node placement. |
58 | */ | 58 | */ |
59 | 59 | ||
60 | #include <linux/kernel.h> | 60 | #include <linux/kernel.h> |
61 | #include <linux/slab.h> | 61 | #include <linux/slab.h> |
62 | #include <linux/mm.h> | 62 | #include <linux/mm.h> |
63 | #include <linux/swap.h> /* struct reclaim_state */ | ||
63 | #include <linux/cache.h> | 64 | #include <linux/cache.h> |
64 | #include <linux/init.h> | 65 | #include <linux/init.h> |
65 | #include <linux/module.h> | 66 | #include <linux/module.h> |
66 | #include <linux/rcupdate.h> | 67 | #include <linux/rcupdate.h> |
67 | #include <linux/list.h> | 68 | #include <linux/list.h> |
68 | #include <trace/kmemtrace.h> | 69 | #include <trace/kmemtrace.h> |
69 | #include <asm/atomic.h> | 70 | #include <asm/atomic.h> |
70 | 71 | ||
71 | /* | 72 | /* |
72 | * slob_block has a field 'units', which indicates size of block if +ve, | 73 | * slob_block has a field 'units', which indicates size of block if +ve, |
73 | * or offset of next block if -ve (in SLOB_UNITs). | 74 | * or offset of next block if -ve (in SLOB_UNITs). |
74 | * | 75 | * |
75 | * Free blocks of size 1 unit simply contain the offset of the next block. | 76 | * Free blocks of size 1 unit simply contain the offset of the next block. |
76 | * Those with larger size contain their size in the first SLOB_UNIT of | 77 | * Those with larger size contain their size in the first SLOB_UNIT of |
77 | * memory, and the offset of the next free block in the second SLOB_UNIT. | 78 | * memory, and the offset of the next free block in the second SLOB_UNIT. |
78 | */ | 79 | */ |
79 | #if PAGE_SIZE <= (32767 * 2) | 80 | #if PAGE_SIZE <= (32767 * 2) |
80 | typedef s16 slobidx_t; | 81 | typedef s16 slobidx_t; |
81 | #else | 82 | #else |
82 | typedef s32 slobidx_t; | 83 | typedef s32 slobidx_t; |
83 | #endif | 84 | #endif |
84 | 85 | ||
85 | struct slob_block { | 86 | struct slob_block { |
86 | slobidx_t units; | 87 | slobidx_t units; |
87 | }; | 88 | }; |
88 | typedef struct slob_block slob_t; | 89 | typedef struct slob_block slob_t; |
89 | 90 | ||
90 | /* | 91 | /* |
91 | * We use struct page fields to manage some slob allocation aspects, | 92 | * We use struct page fields to manage some slob allocation aspects, |
92 | * however to avoid the horrible mess in include/linux/mm_types.h, we'll | 93 | * however to avoid the horrible mess in include/linux/mm_types.h, we'll |
93 | * just define our own struct page type variant here. | 94 | * just define our own struct page type variant here. |
94 | */ | 95 | */ |
95 | struct slob_page { | 96 | struct slob_page { |
96 | union { | 97 | union { |
97 | struct { | 98 | struct { |
98 | unsigned long flags; /* mandatory */ | 99 | unsigned long flags; /* mandatory */ |
99 | atomic_t _count; /* mandatory */ | 100 | atomic_t _count; /* mandatory */ |
100 | slobidx_t units; /* free units left in page */ | 101 | slobidx_t units; /* free units left in page */ |
101 | unsigned long pad[2]; | 102 | unsigned long pad[2]; |
102 | slob_t *free; /* first free slob_t in page */ | 103 | slob_t *free; /* first free slob_t in page */ |
103 | struct list_head list; /* linked list of free pages */ | 104 | struct list_head list; /* linked list of free pages */ |
104 | }; | 105 | }; |
105 | struct page page; | 106 | struct page page; |
106 | }; | 107 | }; |
107 | }; | 108 | }; |
108 | static inline void struct_slob_page_wrong_size(void) | 109 | static inline void struct_slob_page_wrong_size(void) |
109 | { BUILD_BUG_ON(sizeof(struct slob_page) != sizeof(struct page)); } | 110 | { BUILD_BUG_ON(sizeof(struct slob_page) != sizeof(struct page)); } |
110 | 111 | ||
111 | /* | 112 | /* |
112 | * free_slob_page: call before a slob_page is returned to the page allocator. | 113 | * free_slob_page: call before a slob_page is returned to the page allocator. |
113 | */ | 114 | */ |
114 | static inline void free_slob_page(struct slob_page *sp) | 115 | static inline void free_slob_page(struct slob_page *sp) |
115 | { | 116 | { |
116 | reset_page_mapcount(&sp->page); | 117 | reset_page_mapcount(&sp->page); |
117 | sp->page.mapping = NULL; | 118 | sp->page.mapping = NULL; |
118 | } | 119 | } |
119 | 120 | ||
120 | /* | 121 | /* |
121 | * All partially free slob pages go on these lists. | 122 | * All partially free slob pages go on these lists. |
122 | */ | 123 | */ |
123 | #define SLOB_BREAK1 256 | 124 | #define SLOB_BREAK1 256 |
124 | #define SLOB_BREAK2 1024 | 125 | #define SLOB_BREAK2 1024 |
125 | static LIST_HEAD(free_slob_small); | 126 | static LIST_HEAD(free_slob_small); |
126 | static LIST_HEAD(free_slob_medium); | 127 | static LIST_HEAD(free_slob_medium); |
127 | static LIST_HEAD(free_slob_large); | 128 | static LIST_HEAD(free_slob_large); |
128 | 129 | ||
129 | /* | 130 | /* |
130 | * is_slob_page: True for all slob pages (false for bigblock pages) | 131 | * is_slob_page: True for all slob pages (false for bigblock pages) |
131 | */ | 132 | */ |
132 | static inline int is_slob_page(struct slob_page *sp) | 133 | static inline int is_slob_page(struct slob_page *sp) |
133 | { | 134 | { |
134 | return PageSlobPage((struct page *)sp); | 135 | return PageSlobPage((struct page *)sp); |
135 | } | 136 | } |
136 | 137 | ||
137 | static inline void set_slob_page(struct slob_page *sp) | 138 | static inline void set_slob_page(struct slob_page *sp) |
138 | { | 139 | { |
139 | __SetPageSlobPage((struct page *)sp); | 140 | __SetPageSlobPage((struct page *)sp); |
140 | } | 141 | } |
141 | 142 | ||
142 | static inline void clear_slob_page(struct slob_page *sp) | 143 | static inline void clear_slob_page(struct slob_page *sp) |
143 | { | 144 | { |
144 | __ClearPageSlobPage((struct page *)sp); | 145 | __ClearPageSlobPage((struct page *)sp); |
145 | } | 146 | } |
146 | 147 | ||
147 | static inline struct slob_page *slob_page(const void *addr) | 148 | static inline struct slob_page *slob_page(const void *addr) |
148 | { | 149 | { |
149 | return (struct slob_page *)virt_to_page(addr); | 150 | return (struct slob_page *)virt_to_page(addr); |
150 | } | 151 | } |
151 | 152 | ||
152 | /* | 153 | /* |
153 | * slob_page_free: true for pages on free_slob_pages list. | 154 | * slob_page_free: true for pages on free_slob_pages list. |
154 | */ | 155 | */ |
155 | static inline int slob_page_free(struct slob_page *sp) | 156 | static inline int slob_page_free(struct slob_page *sp) |
156 | { | 157 | { |
157 | return PageSlobFree((struct page *)sp); | 158 | return PageSlobFree((struct page *)sp); |
158 | } | 159 | } |
159 | 160 | ||
160 | static void set_slob_page_free(struct slob_page *sp, struct list_head *list) | 161 | static void set_slob_page_free(struct slob_page *sp, struct list_head *list) |
161 | { | 162 | { |
162 | list_add(&sp->list, list); | 163 | list_add(&sp->list, list); |
163 | __SetPageSlobFree((struct page *)sp); | 164 | __SetPageSlobFree((struct page *)sp); |
164 | } | 165 | } |
165 | 166 | ||
166 | static inline void clear_slob_page_free(struct slob_page *sp) | 167 | static inline void clear_slob_page_free(struct slob_page *sp) |
167 | { | 168 | { |
168 | list_del(&sp->list); | 169 | list_del(&sp->list); |
169 | __ClearPageSlobFree((struct page *)sp); | 170 | __ClearPageSlobFree((struct page *)sp); |
170 | } | 171 | } |
171 | 172 | ||
172 | #define SLOB_UNIT sizeof(slob_t) | 173 | #define SLOB_UNIT sizeof(slob_t) |
173 | #define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT) | 174 | #define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT) |
174 | #define SLOB_ALIGN L1_CACHE_BYTES | 175 | #define SLOB_ALIGN L1_CACHE_BYTES |
175 | 176 | ||
176 | /* | 177 | /* |
177 | * struct slob_rcu is inserted at the tail of allocated slob blocks, which | 178 | * struct slob_rcu is inserted at the tail of allocated slob blocks, which |
178 | * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free | 179 | * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free |
179 | * the block using call_rcu. | 180 | * the block using call_rcu. |
180 | */ | 181 | */ |
181 | struct slob_rcu { | 182 | struct slob_rcu { |
182 | struct rcu_head head; | 183 | struct rcu_head head; |
183 | int size; | 184 | int size; |
184 | }; | 185 | }; |
185 | 186 | ||
186 | /* | 187 | /* |
187 | * slob_lock protects all slob allocator structures. | 188 | * slob_lock protects all slob allocator structures. |
188 | */ | 189 | */ |
189 | static DEFINE_SPINLOCK(slob_lock); | 190 | static DEFINE_SPINLOCK(slob_lock); |
190 | 191 | ||
191 | /* | 192 | /* |
192 | * Encode the given size and next info into a free slob block s. | 193 | * Encode the given size and next info into a free slob block s. |
193 | */ | 194 | */ |
194 | static void set_slob(slob_t *s, slobidx_t size, slob_t *next) | 195 | static void set_slob(slob_t *s, slobidx_t size, slob_t *next) |
195 | { | 196 | { |
196 | slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK); | 197 | slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK); |
197 | slobidx_t offset = next - base; | 198 | slobidx_t offset = next - base; |
198 | 199 | ||
199 | if (size > 1) { | 200 | if (size > 1) { |
200 | s[0].units = size; | 201 | s[0].units = size; |
201 | s[1].units = offset; | 202 | s[1].units = offset; |
202 | } else | 203 | } else |
203 | s[0].units = -offset; | 204 | s[0].units = -offset; |
204 | } | 205 | } |
205 | 206 | ||
206 | /* | 207 | /* |
207 | * Return the size of a slob block. | 208 | * Return the size of a slob block. |
208 | */ | 209 | */ |
209 | static slobidx_t slob_units(slob_t *s) | 210 | static slobidx_t slob_units(slob_t *s) |
210 | { | 211 | { |
211 | if (s->units > 0) | 212 | if (s->units > 0) |
212 | return s->units; | 213 | return s->units; |
213 | return 1; | 214 | return 1; |
214 | } | 215 | } |
215 | 216 | ||
216 | /* | 217 | /* |
217 | * Return the next free slob block pointer after this one. | 218 | * Return the next free slob block pointer after this one. |
218 | */ | 219 | */ |
219 | static slob_t *slob_next(slob_t *s) | 220 | static slob_t *slob_next(slob_t *s) |
220 | { | 221 | { |
221 | slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK); | 222 | slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK); |
222 | slobidx_t next; | 223 | slobidx_t next; |
223 | 224 | ||
224 | if (s[0].units < 0) | 225 | if (s[0].units < 0) |
225 | next = -s[0].units; | 226 | next = -s[0].units; |
226 | else | 227 | else |
227 | next = s[1].units; | 228 | next = s[1].units; |
228 | return base+next; | 229 | return base+next; |
229 | } | 230 | } |
230 | 231 | ||
231 | /* | 232 | /* |
232 | * Returns true if s is the last free block in its page. | 233 | * Returns true if s is the last free block in its page. |
233 | */ | 234 | */ |
234 | static int slob_last(slob_t *s) | 235 | static int slob_last(slob_t *s) |
235 | { | 236 | { |
236 | return !((unsigned long)slob_next(s) & ~PAGE_MASK); | 237 | return !((unsigned long)slob_next(s) & ~PAGE_MASK); |
237 | } | 238 | } |
238 | 239 | ||
239 | static void *slob_new_pages(gfp_t gfp, int order, int node) | 240 | static void *slob_new_pages(gfp_t gfp, int order, int node) |
240 | { | 241 | { |
241 | void *page; | 242 | void *page; |
242 | 243 | ||
243 | #ifdef CONFIG_NUMA | 244 | #ifdef CONFIG_NUMA |
244 | if (node != -1) | 245 | if (node != -1) |
245 | page = alloc_pages_node(node, gfp, order); | 246 | page = alloc_pages_node(node, gfp, order); |
246 | else | 247 | else |
247 | #endif | 248 | #endif |
248 | page = alloc_pages(gfp, order); | 249 | page = alloc_pages(gfp, order); |
249 | 250 | ||
250 | if (!page) | 251 | if (!page) |
251 | return NULL; | 252 | return NULL; |
252 | 253 | ||
253 | return page_address(page); | 254 | return page_address(page); |
254 | } | 255 | } |
255 | 256 | ||
256 | static void slob_free_pages(void *b, int order) | 257 | static void slob_free_pages(void *b, int order) |
257 | { | 258 | { |
259 | if (current->reclaim_state) | ||
260 | current->reclaim_state->reclaimed_slab += 1 << order; | ||
258 | free_pages((unsigned long)b, order); | 261 | free_pages((unsigned long)b, order); |
259 | } | 262 | } |
260 | 263 | ||
261 | /* | 264 | /* |
262 | * Allocate a slob block within a given slob_page sp. | 265 | * Allocate a slob block within a given slob_page sp. |
263 | */ | 266 | */ |
264 | static void *slob_page_alloc(struct slob_page *sp, size_t size, int align) | 267 | static void *slob_page_alloc(struct slob_page *sp, size_t size, int align) |
265 | { | 268 | { |
266 | slob_t *prev, *cur, *aligned = NULL; | 269 | slob_t *prev, *cur, *aligned = NULL; |
267 | int delta = 0, units = SLOB_UNITS(size); | 270 | int delta = 0, units = SLOB_UNITS(size); |
268 | 271 | ||
269 | for (prev = NULL, cur = sp->free; ; prev = cur, cur = slob_next(cur)) { | 272 | for (prev = NULL, cur = sp->free; ; prev = cur, cur = slob_next(cur)) { |
270 | slobidx_t avail = slob_units(cur); | 273 | slobidx_t avail = slob_units(cur); |
271 | 274 | ||
272 | if (align) { | 275 | if (align) { |
273 | aligned = (slob_t *)ALIGN((unsigned long)cur, align); | 276 | aligned = (slob_t *)ALIGN((unsigned long)cur, align); |
274 | delta = aligned - cur; | 277 | delta = aligned - cur; |
275 | } | 278 | } |
276 | if (avail >= units + delta) { /* room enough? */ | 279 | if (avail >= units + delta) { /* room enough? */ |
277 | slob_t *next; | 280 | slob_t *next; |
278 | 281 | ||
279 | if (delta) { /* need to fragment head to align? */ | 282 | if (delta) { /* need to fragment head to align? */ |
280 | next = slob_next(cur); | 283 | next = slob_next(cur); |
281 | set_slob(aligned, avail - delta, next); | 284 | set_slob(aligned, avail - delta, next); |
282 | set_slob(cur, delta, aligned); | 285 | set_slob(cur, delta, aligned); |
283 | prev = cur; | 286 | prev = cur; |
284 | cur = aligned; | 287 | cur = aligned; |
285 | avail = slob_units(cur); | 288 | avail = slob_units(cur); |
286 | } | 289 | } |
287 | 290 | ||
288 | next = slob_next(cur); | 291 | next = slob_next(cur); |
289 | if (avail == units) { /* exact fit? unlink. */ | 292 | if (avail == units) { /* exact fit? unlink. */ |
290 | if (prev) | 293 | if (prev) |
291 | set_slob(prev, slob_units(prev), next); | 294 | set_slob(prev, slob_units(prev), next); |
292 | else | 295 | else |
293 | sp->free = next; | 296 | sp->free = next; |
294 | } else { /* fragment */ | 297 | } else { /* fragment */ |
295 | if (prev) | 298 | if (prev) |
296 | set_slob(prev, slob_units(prev), cur + units); | 299 | set_slob(prev, slob_units(prev), cur + units); |
297 | else | 300 | else |
298 | sp->free = cur + units; | 301 | sp->free = cur + units; |
299 | set_slob(cur + units, avail - units, next); | 302 | set_slob(cur + units, avail - units, next); |
300 | } | 303 | } |
301 | 304 | ||
302 | sp->units -= units; | 305 | sp->units -= units; |
303 | if (!sp->units) | 306 | if (!sp->units) |
304 | clear_slob_page_free(sp); | 307 | clear_slob_page_free(sp); |
305 | return cur; | 308 | return cur; |
306 | } | 309 | } |
307 | if (slob_last(cur)) | 310 | if (slob_last(cur)) |
308 | return NULL; | 311 | return NULL; |
309 | } | 312 | } |
310 | } | 313 | } |
311 | 314 | ||
312 | /* | 315 | /* |
313 | * slob_alloc: entry point into the slob allocator. | 316 | * slob_alloc: entry point into the slob allocator. |
314 | */ | 317 | */ |
315 | static void *slob_alloc(size_t size, gfp_t gfp, int align, int node) | 318 | static void *slob_alloc(size_t size, gfp_t gfp, int align, int node) |
316 | { | 319 | { |
317 | struct slob_page *sp; | 320 | struct slob_page *sp; |
318 | struct list_head *prev; | 321 | struct list_head *prev; |
319 | struct list_head *slob_list; | 322 | struct list_head *slob_list; |
320 | slob_t *b = NULL; | 323 | slob_t *b = NULL; |
321 | unsigned long flags; | 324 | unsigned long flags; |
322 | 325 | ||
323 | if (size < SLOB_BREAK1) | 326 | if (size < SLOB_BREAK1) |
324 | slob_list = &free_slob_small; | 327 | slob_list = &free_slob_small; |
325 | else if (size < SLOB_BREAK2) | 328 | else if (size < SLOB_BREAK2) |
326 | slob_list = &free_slob_medium; | 329 | slob_list = &free_slob_medium; |
327 | else | 330 | else |
328 | slob_list = &free_slob_large; | 331 | slob_list = &free_slob_large; |
329 | 332 | ||
330 | spin_lock_irqsave(&slob_lock, flags); | 333 | spin_lock_irqsave(&slob_lock, flags); |
331 | /* Iterate through each partially free page, try to find room */ | 334 | /* Iterate through each partially free page, try to find room */ |
332 | list_for_each_entry(sp, slob_list, list) { | 335 | list_for_each_entry(sp, slob_list, list) { |
333 | #ifdef CONFIG_NUMA | 336 | #ifdef CONFIG_NUMA |
334 | /* | 337 | /* |
335 | * If there's a node specification, search for a partial | 338 | * If there's a node specification, search for a partial |
336 | * page with a matching node id in the freelist. | 339 | * page with a matching node id in the freelist. |
337 | */ | 340 | */ |
338 | if (node != -1 && page_to_nid(&sp->page) != node) | 341 | if (node != -1 && page_to_nid(&sp->page) != node) |
339 | continue; | 342 | continue; |
340 | #endif | 343 | #endif |
341 | /* Enough room on this page? */ | 344 | /* Enough room on this page? */ |
342 | if (sp->units < SLOB_UNITS(size)) | 345 | if (sp->units < SLOB_UNITS(size)) |
343 | continue; | 346 | continue; |
344 | 347 | ||
345 | /* Attempt to alloc */ | 348 | /* Attempt to alloc */ |
346 | prev = sp->list.prev; | 349 | prev = sp->list.prev; |
347 | b = slob_page_alloc(sp, size, align); | 350 | b = slob_page_alloc(sp, size, align); |
348 | if (!b) | 351 | if (!b) |
349 | continue; | 352 | continue; |
350 | 353 | ||
351 | /* Improve fragment distribution and reduce our average | 354 | /* Improve fragment distribution and reduce our average |
352 | * search time by starting our next search here. (see | 355 | * search time by starting our next search here. (see |
353 | * Knuth vol 1, sec 2.5, pg 449) */ | 356 | * Knuth vol 1, sec 2.5, pg 449) */ |
354 | if (prev != slob_list->prev && | 357 | if (prev != slob_list->prev && |
355 | slob_list->next != prev->next) | 358 | slob_list->next != prev->next) |
356 | list_move_tail(slob_list, prev->next); | 359 | list_move_tail(slob_list, prev->next); |
357 | break; | 360 | break; |
358 | } | 361 | } |
359 | spin_unlock_irqrestore(&slob_lock, flags); | 362 | spin_unlock_irqrestore(&slob_lock, flags); |
360 | 363 | ||
361 | /* Not enough space: must allocate a new page */ | 364 | /* Not enough space: must allocate a new page */ |
362 | if (!b) { | 365 | if (!b) { |
363 | b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node); | 366 | b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node); |
364 | if (!b) | 367 | if (!b) |
365 | return NULL; | 368 | return NULL; |
366 | sp = slob_page(b); | 369 | sp = slob_page(b); |
367 | set_slob_page(sp); | 370 | set_slob_page(sp); |
368 | 371 | ||
369 | spin_lock_irqsave(&slob_lock, flags); | 372 | spin_lock_irqsave(&slob_lock, flags); |
370 | sp->units = SLOB_UNITS(PAGE_SIZE); | 373 | sp->units = SLOB_UNITS(PAGE_SIZE); |
371 | sp->free = b; | 374 | sp->free = b; |
372 | INIT_LIST_HEAD(&sp->list); | 375 | INIT_LIST_HEAD(&sp->list); |
373 | set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE)); | 376 | set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE)); |
374 | set_slob_page_free(sp, slob_list); | 377 | set_slob_page_free(sp, slob_list); |
375 | b = slob_page_alloc(sp, size, align); | 378 | b = slob_page_alloc(sp, size, align); |
376 | BUG_ON(!b); | 379 | BUG_ON(!b); |
377 | spin_unlock_irqrestore(&slob_lock, flags); | 380 | spin_unlock_irqrestore(&slob_lock, flags); |
378 | } | 381 | } |
379 | if (unlikely((gfp & __GFP_ZERO) && b)) | 382 | if (unlikely((gfp & __GFP_ZERO) && b)) |
380 | memset(b, 0, size); | 383 | memset(b, 0, size); |
381 | return b; | 384 | return b; |
382 | } | 385 | } |
383 | 386 | ||
384 | /* | 387 | /* |
385 | * slob_free: entry point into the slob allocator. | 388 | * slob_free: entry point into the slob allocator. |
386 | */ | 389 | */ |
387 | static void slob_free(void *block, int size) | 390 | static void slob_free(void *block, int size) |
388 | { | 391 | { |
389 | struct slob_page *sp; | 392 | struct slob_page *sp; |
390 | slob_t *prev, *next, *b = (slob_t *)block; | 393 | slob_t *prev, *next, *b = (slob_t *)block; |
391 | slobidx_t units; | 394 | slobidx_t units; |
392 | unsigned long flags; | 395 | unsigned long flags; |
393 | 396 | ||
394 | if (unlikely(ZERO_OR_NULL_PTR(block))) | 397 | if (unlikely(ZERO_OR_NULL_PTR(block))) |
395 | return; | 398 | return; |
396 | BUG_ON(!size); | 399 | BUG_ON(!size); |
397 | 400 | ||
398 | sp = slob_page(block); | 401 | sp = slob_page(block); |
399 | units = SLOB_UNITS(size); | 402 | units = SLOB_UNITS(size); |
400 | 403 | ||
401 | spin_lock_irqsave(&slob_lock, flags); | 404 | spin_lock_irqsave(&slob_lock, flags); |
402 | 405 | ||
403 | if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) { | 406 | if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) { |
404 | /* Go directly to page allocator. Do not pass slob allocator */ | 407 | /* Go directly to page allocator. Do not pass slob allocator */ |
405 | if (slob_page_free(sp)) | 408 | if (slob_page_free(sp)) |
406 | clear_slob_page_free(sp); | 409 | clear_slob_page_free(sp); |
407 | spin_unlock_irqrestore(&slob_lock, flags); | 410 | spin_unlock_irqrestore(&slob_lock, flags); |
408 | clear_slob_page(sp); | 411 | clear_slob_page(sp); |
409 | free_slob_page(sp); | 412 | free_slob_page(sp); |
410 | free_page((unsigned long)b); | 413 | slob_free_pages(b, 0); |
411 | return; | 414 | return; |
412 | } | 415 | } |
413 | 416 | ||
414 | if (!slob_page_free(sp)) { | 417 | if (!slob_page_free(sp)) { |
415 | /* This slob page is about to become partially free. Easy! */ | 418 | /* This slob page is about to become partially free. Easy! */ |
416 | sp->units = units; | 419 | sp->units = units; |
417 | sp->free = b; | 420 | sp->free = b; |
418 | set_slob(b, units, | 421 | set_slob(b, units, |
419 | (void *)((unsigned long)(b + | 422 | (void *)((unsigned long)(b + |
420 | SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK)); | 423 | SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK)); |
421 | set_slob_page_free(sp, &free_slob_small); | 424 | set_slob_page_free(sp, &free_slob_small); |
422 | goto out; | 425 | goto out; |
423 | } | 426 | } |
424 | 427 | ||
425 | /* | 428 | /* |
426 | * Otherwise the page is already partially free, so find reinsertion | 429 | * Otherwise the page is already partially free, so find reinsertion |
427 | * point. | 430 | * point. |
428 | */ | 431 | */ |
429 | sp->units += units; | 432 | sp->units += units; |
430 | 433 | ||
431 | if (b < sp->free) { | 434 | if (b < sp->free) { |
432 | if (b + units == sp->free) { | 435 | if (b + units == sp->free) { |
433 | units += slob_units(sp->free); | 436 | units += slob_units(sp->free); |
434 | sp->free = slob_next(sp->free); | 437 | sp->free = slob_next(sp->free); |
435 | } | 438 | } |
436 | set_slob(b, units, sp->free); | 439 | set_slob(b, units, sp->free); |
437 | sp->free = b; | 440 | sp->free = b; |
438 | } else { | 441 | } else { |
439 | prev = sp->free; | 442 | prev = sp->free; |
440 | next = slob_next(prev); | 443 | next = slob_next(prev); |
441 | while (b > next) { | 444 | while (b > next) { |
442 | prev = next; | 445 | prev = next; |
443 | next = slob_next(prev); | 446 | next = slob_next(prev); |
444 | } | 447 | } |
445 | 448 | ||
446 | if (!slob_last(prev) && b + units == next) { | 449 | if (!slob_last(prev) && b + units == next) { |
447 | units += slob_units(next); | 450 | units += slob_units(next); |
448 | set_slob(b, units, slob_next(next)); | 451 | set_slob(b, units, slob_next(next)); |
449 | } else | 452 | } else |
450 | set_slob(b, units, next); | 453 | set_slob(b, units, next); |
451 | 454 | ||
452 | if (prev + slob_units(prev) == b) { | 455 | if (prev + slob_units(prev) == b) { |
453 | units = slob_units(b) + slob_units(prev); | 456 | units = slob_units(b) + slob_units(prev); |
454 | set_slob(prev, units, slob_next(b)); | 457 | set_slob(prev, units, slob_next(b)); |
455 | } else | 458 | } else |
456 | set_slob(prev, slob_units(prev), b); | 459 | set_slob(prev, slob_units(prev), b); |
457 | } | 460 | } |
458 | out: | 461 | out: |
459 | spin_unlock_irqrestore(&slob_lock, flags); | 462 | spin_unlock_irqrestore(&slob_lock, flags); |
460 | } | 463 | } |
461 | 464 | ||
462 | /* | 465 | /* |
463 | * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend. | 466 | * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend. |
464 | */ | 467 | */ |
465 | 468 | ||
466 | #ifndef ARCH_KMALLOC_MINALIGN | 469 | #ifndef ARCH_KMALLOC_MINALIGN |
467 | #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long) | 470 | #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long) |
468 | #endif | 471 | #endif |
469 | 472 | ||
470 | #ifndef ARCH_SLAB_MINALIGN | 473 | #ifndef ARCH_SLAB_MINALIGN |
471 | #define ARCH_SLAB_MINALIGN __alignof__(unsigned long) | 474 | #define ARCH_SLAB_MINALIGN __alignof__(unsigned long) |
472 | #endif | 475 | #endif |
473 | 476 | ||
474 | void *__kmalloc_node(size_t size, gfp_t gfp, int node) | 477 | void *__kmalloc_node(size_t size, gfp_t gfp, int node) |
475 | { | 478 | { |
476 | unsigned int *m; | 479 | unsigned int *m; |
477 | int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); | 480 | int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); |
478 | void *ret; | 481 | void *ret; |
479 | 482 | ||
480 | lockdep_trace_alloc(gfp); | 483 | lockdep_trace_alloc(gfp); |
481 | 484 | ||
482 | if (size < PAGE_SIZE - align) { | 485 | if (size < PAGE_SIZE - align) { |
483 | if (!size) | 486 | if (!size) |
484 | return ZERO_SIZE_PTR; | 487 | return ZERO_SIZE_PTR; |
485 | 488 | ||
486 | m = slob_alloc(size + align, gfp, align, node); | 489 | m = slob_alloc(size + align, gfp, align, node); |
487 | 490 | ||
488 | if (!m) | 491 | if (!m) |
489 | return NULL; | 492 | return NULL; |
490 | *m = size; | 493 | *m = size; |
491 | ret = (void *)m + align; | 494 | ret = (void *)m + align; |
492 | 495 | ||
493 | trace_kmalloc_node(_RET_IP_, ret, | 496 | trace_kmalloc_node(_RET_IP_, ret, |
494 | size, size + align, gfp, node); | 497 | size, size + align, gfp, node); |
495 | } else { | 498 | } else { |
496 | unsigned int order = get_order(size); | 499 | unsigned int order = get_order(size); |
497 | 500 | ||
498 | ret = slob_new_pages(gfp | __GFP_COMP, get_order(size), node); | 501 | ret = slob_new_pages(gfp | __GFP_COMP, get_order(size), node); |
499 | if (ret) { | 502 | if (ret) { |
500 | struct page *page; | 503 | struct page *page; |
501 | page = virt_to_page(ret); | 504 | page = virt_to_page(ret); |
502 | page->private = size; | 505 | page->private = size; |
503 | } | 506 | } |
504 | 507 | ||
505 | trace_kmalloc_node(_RET_IP_, ret, | 508 | trace_kmalloc_node(_RET_IP_, ret, |
506 | size, PAGE_SIZE << order, gfp, node); | 509 | size, PAGE_SIZE << order, gfp, node); |
507 | } | 510 | } |
508 | 511 | ||
509 | return ret; | 512 | return ret; |
510 | } | 513 | } |
511 | EXPORT_SYMBOL(__kmalloc_node); | 514 | EXPORT_SYMBOL(__kmalloc_node); |
512 | 515 | ||
513 | void kfree(const void *block) | 516 | void kfree(const void *block) |
514 | { | 517 | { |
515 | struct slob_page *sp; | 518 | struct slob_page *sp; |
516 | 519 | ||
517 | trace_kfree(_RET_IP_, block); | 520 | trace_kfree(_RET_IP_, block); |
518 | 521 | ||
519 | if (unlikely(ZERO_OR_NULL_PTR(block))) | 522 | if (unlikely(ZERO_OR_NULL_PTR(block))) |
520 | return; | 523 | return; |
521 | 524 | ||
522 | sp = slob_page(block); | 525 | sp = slob_page(block); |
523 | if (is_slob_page(sp)) { | 526 | if (is_slob_page(sp)) { |
524 | int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); | 527 | int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); |
525 | unsigned int *m = (unsigned int *)(block - align); | 528 | unsigned int *m = (unsigned int *)(block - align); |
526 | slob_free(m, *m + align); | 529 | slob_free(m, *m + align); |
527 | } else | 530 | } else |
528 | put_page(&sp->page); | 531 | put_page(&sp->page); |
529 | } | 532 | } |
530 | EXPORT_SYMBOL(kfree); | 533 | EXPORT_SYMBOL(kfree); |
531 | 534 | ||
532 | /* can't use ksize for kmem_cache_alloc memory, only kmalloc */ | 535 | /* can't use ksize for kmem_cache_alloc memory, only kmalloc */ |
533 | size_t ksize(const void *block) | 536 | size_t ksize(const void *block) |
534 | { | 537 | { |
535 | struct slob_page *sp; | 538 | struct slob_page *sp; |
536 | 539 | ||
537 | BUG_ON(!block); | 540 | BUG_ON(!block); |
538 | if (unlikely(block == ZERO_SIZE_PTR)) | 541 | if (unlikely(block == ZERO_SIZE_PTR)) |
539 | return 0; | 542 | return 0; |
540 | 543 | ||
541 | sp = slob_page(block); | 544 | sp = slob_page(block); |
542 | if (is_slob_page(sp)) { | 545 | if (is_slob_page(sp)) { |
543 | int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); | 546 | int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); |
544 | unsigned int *m = (unsigned int *)(block - align); | 547 | unsigned int *m = (unsigned int *)(block - align); |
545 | return SLOB_UNITS(*m) * SLOB_UNIT; | 548 | return SLOB_UNITS(*m) * SLOB_UNIT; |
546 | } else | 549 | } else |
547 | return sp->page.private; | 550 | return sp->page.private; |
548 | } | 551 | } |
549 | EXPORT_SYMBOL(ksize); | 552 | EXPORT_SYMBOL(ksize); |
550 | 553 | ||
551 | struct kmem_cache { | 554 | struct kmem_cache { |
552 | unsigned int size, align; | 555 | unsigned int size, align; |
553 | unsigned long flags; | 556 | unsigned long flags; |
554 | const char *name; | 557 | const char *name; |
555 | void (*ctor)(void *); | 558 | void (*ctor)(void *); |
556 | }; | 559 | }; |
557 | 560 | ||
558 | struct kmem_cache *kmem_cache_create(const char *name, size_t size, | 561 | struct kmem_cache *kmem_cache_create(const char *name, size_t size, |
559 | size_t align, unsigned long flags, void (*ctor)(void *)) | 562 | size_t align, unsigned long flags, void (*ctor)(void *)) |
560 | { | 563 | { |
561 | struct kmem_cache *c; | 564 | struct kmem_cache *c; |
562 | 565 | ||
563 | c = slob_alloc(sizeof(struct kmem_cache), | 566 | c = slob_alloc(sizeof(struct kmem_cache), |
564 | GFP_KERNEL, ARCH_KMALLOC_MINALIGN, -1); | 567 | GFP_KERNEL, ARCH_KMALLOC_MINALIGN, -1); |
565 | 568 | ||
566 | if (c) { | 569 | if (c) { |
567 | c->name = name; | 570 | c->name = name; |
568 | c->size = size; | 571 | c->size = size; |
569 | if (flags & SLAB_DESTROY_BY_RCU) { | 572 | if (flags & SLAB_DESTROY_BY_RCU) { |
570 | /* leave room for rcu footer at the end of object */ | 573 | /* leave room for rcu footer at the end of object */ |
571 | c->size += sizeof(struct slob_rcu); | 574 | c->size += sizeof(struct slob_rcu); |
572 | } | 575 | } |
573 | c->flags = flags; | 576 | c->flags = flags; |
574 | c->ctor = ctor; | 577 | c->ctor = ctor; |
575 | /* ignore alignment unless it's forced */ | 578 | /* ignore alignment unless it's forced */ |
576 | c->align = (flags & SLAB_HWCACHE_ALIGN) ? SLOB_ALIGN : 0; | 579 | c->align = (flags & SLAB_HWCACHE_ALIGN) ? SLOB_ALIGN : 0; |
577 | if (c->align < ARCH_SLAB_MINALIGN) | 580 | if (c->align < ARCH_SLAB_MINALIGN) |
578 | c->align = ARCH_SLAB_MINALIGN; | 581 | c->align = ARCH_SLAB_MINALIGN; |
579 | if (c->align < align) | 582 | if (c->align < align) |
580 | c->align = align; | 583 | c->align = align; |
581 | } else if (flags & SLAB_PANIC) | 584 | } else if (flags & SLAB_PANIC) |
582 | panic("Cannot create slab cache %s\n", name); | 585 | panic("Cannot create slab cache %s\n", name); |
583 | 586 | ||
584 | return c; | 587 | return c; |
585 | } | 588 | } |
586 | EXPORT_SYMBOL(kmem_cache_create); | 589 | EXPORT_SYMBOL(kmem_cache_create); |
587 | 590 | ||
588 | void kmem_cache_destroy(struct kmem_cache *c) | 591 | void kmem_cache_destroy(struct kmem_cache *c) |
589 | { | 592 | { |
590 | slob_free(c, sizeof(struct kmem_cache)); | 593 | slob_free(c, sizeof(struct kmem_cache)); |
591 | } | 594 | } |
592 | EXPORT_SYMBOL(kmem_cache_destroy); | 595 | EXPORT_SYMBOL(kmem_cache_destroy); |
593 | 596 | ||
594 | void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node) | 597 | void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node) |
595 | { | 598 | { |
596 | void *b; | 599 | void *b; |
597 | 600 | ||
598 | if (c->size < PAGE_SIZE) { | 601 | if (c->size < PAGE_SIZE) { |
599 | b = slob_alloc(c->size, flags, c->align, node); | 602 | b = slob_alloc(c->size, flags, c->align, node); |
600 | trace_kmem_cache_alloc_node(_RET_IP_, b, c->size, | 603 | trace_kmem_cache_alloc_node(_RET_IP_, b, c->size, |
601 | SLOB_UNITS(c->size) * SLOB_UNIT, | 604 | SLOB_UNITS(c->size) * SLOB_UNIT, |
602 | flags, node); | 605 | flags, node); |
603 | } else { | 606 | } else { |
604 | b = slob_new_pages(flags, get_order(c->size), node); | 607 | b = slob_new_pages(flags, get_order(c->size), node); |
605 | trace_kmem_cache_alloc_node(_RET_IP_, b, c->size, | 608 | trace_kmem_cache_alloc_node(_RET_IP_, b, c->size, |
606 | PAGE_SIZE << get_order(c->size), | 609 | PAGE_SIZE << get_order(c->size), |
607 | flags, node); | 610 | flags, node); |
608 | } | 611 | } |
609 | 612 | ||
610 | if (c->ctor) | 613 | if (c->ctor) |
611 | c->ctor(b); | 614 | c->ctor(b); |
612 | 615 | ||
613 | return b; | 616 | return b; |
614 | } | 617 | } |
615 | EXPORT_SYMBOL(kmem_cache_alloc_node); | 618 | EXPORT_SYMBOL(kmem_cache_alloc_node); |
616 | 619 | ||
617 | static void __kmem_cache_free(void *b, int size) | 620 | static void __kmem_cache_free(void *b, int size) |
618 | { | 621 | { |
619 | if (size < PAGE_SIZE) | 622 | if (size < PAGE_SIZE) |
620 | slob_free(b, size); | 623 | slob_free(b, size); |
621 | else | 624 | else |
622 | slob_free_pages(b, get_order(size)); | 625 | slob_free_pages(b, get_order(size)); |
623 | } | 626 | } |
624 | 627 | ||
625 | static void kmem_rcu_free(struct rcu_head *head) | 628 | static void kmem_rcu_free(struct rcu_head *head) |
626 | { | 629 | { |
627 | struct slob_rcu *slob_rcu = (struct slob_rcu *)head; | 630 | struct slob_rcu *slob_rcu = (struct slob_rcu *)head; |
628 | void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu)); | 631 | void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu)); |
629 | 632 | ||
630 | __kmem_cache_free(b, slob_rcu->size); | 633 | __kmem_cache_free(b, slob_rcu->size); |
631 | } | 634 | } |
632 | 635 | ||
633 | void kmem_cache_free(struct kmem_cache *c, void *b) | 636 | void kmem_cache_free(struct kmem_cache *c, void *b) |
634 | { | 637 | { |
635 | if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) { | 638 | if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) { |
636 | struct slob_rcu *slob_rcu; | 639 | struct slob_rcu *slob_rcu; |
637 | slob_rcu = b + (c->size - sizeof(struct slob_rcu)); | 640 | slob_rcu = b + (c->size - sizeof(struct slob_rcu)); |
638 | INIT_RCU_HEAD(&slob_rcu->head); | 641 | INIT_RCU_HEAD(&slob_rcu->head); |
639 | slob_rcu->size = c->size; | 642 | slob_rcu->size = c->size; |
640 | call_rcu(&slob_rcu->head, kmem_rcu_free); | 643 | call_rcu(&slob_rcu->head, kmem_rcu_free); |
641 | } else { | 644 | } else { |
642 | __kmem_cache_free(b, c->size); | 645 | __kmem_cache_free(b, c->size); |
643 | } | 646 | } |
644 | 647 | ||
645 | trace_kmem_cache_free(_RET_IP_, b); | 648 | trace_kmem_cache_free(_RET_IP_, b); |
646 | } | 649 | } |
647 | EXPORT_SYMBOL(kmem_cache_free); | 650 | EXPORT_SYMBOL(kmem_cache_free); |
648 | 651 | ||
649 | unsigned int kmem_cache_size(struct kmem_cache *c) | 652 | unsigned int kmem_cache_size(struct kmem_cache *c) |
650 | { | 653 | { |
651 | return c->size; | 654 | return c->size; |
652 | } | 655 | } |
653 | EXPORT_SYMBOL(kmem_cache_size); | 656 | EXPORT_SYMBOL(kmem_cache_size); |
654 | 657 | ||
655 | const char *kmem_cache_name(struct kmem_cache *c) | 658 | const char *kmem_cache_name(struct kmem_cache *c) |
656 | { | 659 | { |
657 | return c->name; | 660 | return c->name; |
658 | } | 661 | } |
659 | EXPORT_SYMBOL(kmem_cache_name); | 662 | EXPORT_SYMBOL(kmem_cache_name); |
660 | 663 | ||
661 | int kmem_cache_shrink(struct kmem_cache *d) | 664 | int kmem_cache_shrink(struct kmem_cache *d) |
662 | { | 665 | { |
663 | return 0; | 666 | return 0; |
664 | } | 667 | } |
665 | EXPORT_SYMBOL(kmem_cache_shrink); | 668 | EXPORT_SYMBOL(kmem_cache_shrink); |
666 | 669 | ||
667 | int kmem_ptr_validate(struct kmem_cache *a, const void *b) | 670 | int kmem_ptr_validate(struct kmem_cache *a, const void *b) |
668 | { | 671 | { |
669 | return 0; | 672 | return 0; |
670 | } | 673 | } |
671 | 674 | ||
672 | static unsigned int slob_ready __read_mostly; | 675 | static unsigned int slob_ready __read_mostly; |
673 | 676 | ||
674 | int slab_is_available(void) | 677 | int slab_is_available(void) |
675 | { | 678 | { |
676 | return slob_ready; | 679 | return slob_ready; |
677 | } | 680 | } |
678 | 681 | ||
679 | void __init kmem_cache_init(void) | 682 | void __init kmem_cache_init(void) |
680 | { | 683 | { |
681 | slob_ready = 1; | 684 | slob_ready = 1; |
682 | } | 685 | } |
683 | 686 |