Commit 2940b26bec9fe5bf183c994678e62b55d35717e6

Authored by Daniel Borkmann
Committed by David S. Miller
1 parent b9c32fb271

packet: doc: update timestamping part

Bring the timestamping section in sync with the implementation.

Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Acked-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>

Showing 1 changed file with 35 additions and 6 deletions Inline Diff

Documentation/networking/packet_mmap.txt
1 -------------------------------------------------------------------------------- 1 --------------------------------------------------------------------------------
2 + ABSTRACT 2 + ABSTRACT
3 -------------------------------------------------------------------------------- 3 --------------------------------------------------------------------------------
4 4
5 This file documents the mmap() facility available with the PACKET 5 This file documents the mmap() facility available with the PACKET
6 socket interface on 2.4/2.6/3.x kernels. This type of sockets is used for 6 socket interface on 2.4/2.6/3.x kernels. This type of sockets is used for
7 i) capture network traffic with utilities like tcpdump, ii) transmit network 7 i) capture network traffic with utilities like tcpdump, ii) transmit network
8 traffic, or any other that needs raw access to network interface. 8 traffic, or any other that needs raw access to network interface.
9 9
10 You can find the latest version of this document at: 10 You can find the latest version of this document at:
11 http://wiki.ipxwarzone.com/index.php5?title=Linux_packet_mmap 11 http://wiki.ipxwarzone.com/index.php5?title=Linux_packet_mmap
12 12
13 Howto can be found at: 13 Howto can be found at:
14 http://wiki.gnu-log.net (packet_mmap) 14 http://wiki.gnu-log.net (packet_mmap)
15 15
16 Please send your comments to 16 Please send your comments to
17 Ulisses Alonso Camaró <uaca@i.hate.spam.alumni.uv.es> 17 Ulisses Alonso Camaró <uaca@i.hate.spam.alumni.uv.es>
18 Johann Baudy <johann.baudy@gnu-log.net> 18 Johann Baudy <johann.baudy@gnu-log.net>
19 19
20 ------------------------------------------------------------------------------- 20 -------------------------------------------------------------------------------
21 + Why use PACKET_MMAP 21 + Why use PACKET_MMAP
22 -------------------------------------------------------------------------------- 22 --------------------------------------------------------------------------------
23 23
24 In Linux 2.4/2.6/3.x if PACKET_MMAP is not enabled, the capture process is very 24 In Linux 2.4/2.6/3.x if PACKET_MMAP is not enabled, the capture process is very
25 inefficient. It uses very limited buffers and requires one system call to 25 inefficient. It uses very limited buffers and requires one system call to
26 capture each packet, it requires two if you want to get packet's timestamp 26 capture each packet, it requires two if you want to get packet's timestamp
27 (like libpcap always does). 27 (like libpcap always does).
28 28
29 In the other hand PACKET_MMAP is very efficient. PACKET_MMAP provides a size 29 In the other hand PACKET_MMAP is very efficient. PACKET_MMAP provides a size
30 configurable circular buffer mapped in user space that can be used to either 30 configurable circular buffer mapped in user space that can be used to either
31 send or receive packets. This way reading packets just needs to wait for them, 31 send or receive packets. This way reading packets just needs to wait for them,
32 most of the time there is no need to issue a single system call. Concerning 32 most of the time there is no need to issue a single system call. Concerning
33 transmission, multiple packets can be sent through one system call to get the 33 transmission, multiple packets can be sent through one system call to get the
34 highest bandwidth. By using a shared buffer between the kernel and the user 34 highest bandwidth. By using a shared buffer between the kernel and the user
35 also has the benefit of minimizing packet copies. 35 also has the benefit of minimizing packet copies.
36 36
37 It's fine to use PACKET_MMAP to improve the performance of the capture and 37 It's fine to use PACKET_MMAP to improve the performance of the capture and
38 transmission process, but it isn't everything. At least, if you are capturing 38 transmission process, but it isn't everything. At least, if you are capturing
39 at high speeds (this is relative to the cpu speed), you should check if the 39 at high speeds (this is relative to the cpu speed), you should check if the
40 device driver of your network interface card supports some sort of interrupt 40 device driver of your network interface card supports some sort of interrupt
41 load mitigation or (even better) if it supports NAPI, also make sure it is 41 load mitigation or (even better) if it supports NAPI, also make sure it is
42 enabled. For transmission, check the MTU (Maximum Transmission Unit) used and 42 enabled. For transmission, check the MTU (Maximum Transmission Unit) used and
43 supported by devices of your network. CPU IRQ pinning of your network interface 43 supported by devices of your network. CPU IRQ pinning of your network interface
44 card can also be an advantage. 44 card can also be an advantage.
45 45
46 -------------------------------------------------------------------------------- 46 --------------------------------------------------------------------------------
47 + How to use mmap() to improve capture process 47 + How to use mmap() to improve capture process
48 -------------------------------------------------------------------------------- 48 --------------------------------------------------------------------------------
49 49
50 From the user standpoint, you should use the higher level libpcap library, which 50 From the user standpoint, you should use the higher level libpcap library, which
51 is a de facto standard, portable across nearly all operating systems 51 is a de facto standard, portable across nearly all operating systems
52 including Win32. 52 including Win32.
53 53
54 Said that, at time of this writing, official libpcap 0.8.1 is out and doesn't include 54 Said that, at time of this writing, official libpcap 0.8.1 is out and doesn't include
55 support for PACKET_MMAP, and also probably the libpcap included in your distribution. 55 support for PACKET_MMAP, and also probably the libpcap included in your distribution.
56 56
57 I'm aware of two implementations of PACKET_MMAP in libpcap: 57 I'm aware of two implementations of PACKET_MMAP in libpcap:
58 58
59 http://wiki.ipxwarzone.com/ (by Simon Patarin, based on libpcap 0.6.2) 59 http://wiki.ipxwarzone.com/ (by Simon Patarin, based on libpcap 0.6.2)
60 http://public.lanl.gov/cpw/ (by Phil Wood, based on lastest libpcap) 60 http://public.lanl.gov/cpw/ (by Phil Wood, based on lastest libpcap)
61 61
62 The rest of this document is intended for people who want to understand 62 The rest of this document is intended for people who want to understand
63 the low level details or want to improve libpcap by including PACKET_MMAP 63 the low level details or want to improve libpcap by including PACKET_MMAP
64 support. 64 support.
65 65
66 -------------------------------------------------------------------------------- 66 --------------------------------------------------------------------------------
67 + How to use mmap() directly to improve capture process 67 + How to use mmap() directly to improve capture process
68 -------------------------------------------------------------------------------- 68 --------------------------------------------------------------------------------
69 69
70 From the system calls stand point, the use of PACKET_MMAP involves 70 From the system calls stand point, the use of PACKET_MMAP involves
71 the following process: 71 the following process:
72 72
73 73
74 [setup] socket() -------> creation of the capture socket 74 [setup] socket() -------> creation of the capture socket
75 setsockopt() ---> allocation of the circular buffer (ring) 75 setsockopt() ---> allocation of the circular buffer (ring)
76 option: PACKET_RX_RING 76 option: PACKET_RX_RING
77 mmap() ---------> mapping of the allocated buffer to the 77 mmap() ---------> mapping of the allocated buffer to the
78 user process 78 user process
79 79
80 [capture] poll() ---------> to wait for incoming packets 80 [capture] poll() ---------> to wait for incoming packets
81 81
82 [shutdown] close() --------> destruction of the capture socket and 82 [shutdown] close() --------> destruction of the capture socket and
83 deallocation of all associated 83 deallocation of all associated
84 resources. 84 resources.
85 85
86 86
87 socket creation and destruction is straight forward, and is done 87 socket creation and destruction is straight forward, and is done
88 the same way with or without PACKET_MMAP: 88 the same way with or without PACKET_MMAP:
89 89
90 int fd = socket(PF_PACKET, mode, htons(ETH_P_ALL)); 90 int fd = socket(PF_PACKET, mode, htons(ETH_P_ALL));
91 91
92 where mode is SOCK_RAW for the raw interface were link level 92 where mode is SOCK_RAW for the raw interface were link level
93 information can be captured or SOCK_DGRAM for the cooked 93 information can be captured or SOCK_DGRAM for the cooked
94 interface where link level information capture is not 94 interface where link level information capture is not
95 supported and a link level pseudo-header is provided 95 supported and a link level pseudo-header is provided
96 by the kernel. 96 by the kernel.
97 97
98 The destruction of the socket and all associated resources 98 The destruction of the socket and all associated resources
99 is done by a simple call to close(fd). 99 is done by a simple call to close(fd).
100 100
101 Next I will describe PACKET_MMAP settings and its constraints, 101 Next I will describe PACKET_MMAP settings and its constraints,
102 also the mapping of the circular buffer in the user process and 102 also the mapping of the circular buffer in the user process and
103 the use of this buffer. 103 the use of this buffer.
104 104
105 -------------------------------------------------------------------------------- 105 --------------------------------------------------------------------------------
106 + How to use mmap() directly to improve transmission process 106 + How to use mmap() directly to improve transmission process
107 -------------------------------------------------------------------------------- 107 --------------------------------------------------------------------------------
108 Transmission process is similar to capture as shown below. 108 Transmission process is similar to capture as shown below.
109 109
110 [setup] socket() -------> creation of the transmission socket 110 [setup] socket() -------> creation of the transmission socket
111 setsockopt() ---> allocation of the circular buffer (ring) 111 setsockopt() ---> allocation of the circular buffer (ring)
112 option: PACKET_TX_RING 112 option: PACKET_TX_RING
113 bind() ---------> bind transmission socket with a network interface 113 bind() ---------> bind transmission socket with a network interface
114 mmap() ---------> mapping of the allocated buffer to the 114 mmap() ---------> mapping of the allocated buffer to the
115 user process 115 user process
116 116
117 [transmission] poll() ---------> wait for free packets (optional) 117 [transmission] poll() ---------> wait for free packets (optional)
118 send() ---------> send all packets that are set as ready in 118 send() ---------> send all packets that are set as ready in
119 the ring 119 the ring
120 The flag MSG_DONTWAIT can be used to return 120 The flag MSG_DONTWAIT can be used to return
121 before end of transfer. 121 before end of transfer.
122 122
123 [shutdown] close() --------> destruction of the transmission socket and 123 [shutdown] close() --------> destruction of the transmission socket and
124 deallocation of all associated resources. 124 deallocation of all associated resources.
125 125
126 Binding the socket to your network interface is mandatory (with zero copy) to 126 Binding the socket to your network interface is mandatory (with zero copy) to
127 know the header size of frames used in the circular buffer. 127 know the header size of frames used in the circular buffer.
128 128
129 As capture, each frame contains two parts: 129 As capture, each frame contains two parts:
130 130
131 -------------------- 131 --------------------
132 | struct tpacket_hdr | Header. It contains the status of 132 | struct tpacket_hdr | Header. It contains the status of
133 | | of this frame 133 | | of this frame
134 |--------------------| 134 |--------------------|
135 | data buffer | 135 | data buffer |
136 . . Data that will be sent over the network interface. 136 . . Data that will be sent over the network interface.
137 . . 137 . .
138 -------------------- 138 --------------------
139 139
140 bind() associates the socket to your network interface thanks to 140 bind() associates the socket to your network interface thanks to
141 sll_ifindex parameter of struct sockaddr_ll. 141 sll_ifindex parameter of struct sockaddr_ll.
142 142
143 Initialization example: 143 Initialization example:
144 144
145 struct sockaddr_ll my_addr; 145 struct sockaddr_ll my_addr;
146 struct ifreq s_ifr; 146 struct ifreq s_ifr;
147 ... 147 ...
148 148
149 strncpy (s_ifr.ifr_name, "eth0", sizeof(s_ifr.ifr_name)); 149 strncpy (s_ifr.ifr_name, "eth0", sizeof(s_ifr.ifr_name));
150 150
151 /* get interface index of eth0 */ 151 /* get interface index of eth0 */
152 ioctl(this->socket, SIOCGIFINDEX, &s_ifr); 152 ioctl(this->socket, SIOCGIFINDEX, &s_ifr);
153 153
154 /* fill sockaddr_ll struct to prepare binding */ 154 /* fill sockaddr_ll struct to prepare binding */
155 my_addr.sll_family = AF_PACKET; 155 my_addr.sll_family = AF_PACKET;
156 my_addr.sll_protocol = htons(ETH_P_ALL); 156 my_addr.sll_protocol = htons(ETH_P_ALL);
157 my_addr.sll_ifindex = s_ifr.ifr_ifindex; 157 my_addr.sll_ifindex = s_ifr.ifr_ifindex;
158 158
159 /* bind socket to eth0 */ 159 /* bind socket to eth0 */
160 bind(this->socket, (struct sockaddr *)&my_addr, sizeof(struct sockaddr_ll)); 160 bind(this->socket, (struct sockaddr *)&my_addr, sizeof(struct sockaddr_ll));
161 161
162 A complete tutorial is available at: http://wiki.gnu-log.net/ 162 A complete tutorial is available at: http://wiki.gnu-log.net/
163 163
164 By default, the user should put data at : 164 By default, the user should put data at :
165 frame base + TPACKET_HDRLEN - sizeof(struct sockaddr_ll) 165 frame base + TPACKET_HDRLEN - sizeof(struct sockaddr_ll)
166 166
167 So, whatever you choose for the socket mode (SOCK_DGRAM or SOCK_RAW), 167 So, whatever you choose for the socket mode (SOCK_DGRAM or SOCK_RAW),
168 the beginning of the user data will be at : 168 the beginning of the user data will be at :
169 frame base + TPACKET_ALIGN(sizeof(struct tpacket_hdr)) 169 frame base + TPACKET_ALIGN(sizeof(struct tpacket_hdr))
170 170
171 If you wish to put user data at a custom offset from the beginning of 171 If you wish to put user data at a custom offset from the beginning of
172 the frame (for payload alignment with SOCK_RAW mode for instance) you 172 the frame (for payload alignment with SOCK_RAW mode for instance) you
173 can set tp_net (with SOCK_DGRAM) or tp_mac (with SOCK_RAW). In order 173 can set tp_net (with SOCK_DGRAM) or tp_mac (with SOCK_RAW). In order
174 to make this work it must be enabled previously with setsockopt() 174 to make this work it must be enabled previously with setsockopt()
175 and the PACKET_TX_HAS_OFF option. 175 and the PACKET_TX_HAS_OFF option.
176 176
177 -------------------------------------------------------------------------------- 177 --------------------------------------------------------------------------------
178 + PACKET_MMAP settings 178 + PACKET_MMAP settings
179 -------------------------------------------------------------------------------- 179 --------------------------------------------------------------------------------
180 180
181 To setup PACKET_MMAP from user level code is done with a call like 181 To setup PACKET_MMAP from user level code is done with a call like
182 182
183 - Capture process 183 - Capture process
184 setsockopt(fd, SOL_PACKET, PACKET_RX_RING, (void *) &req, sizeof(req)) 184 setsockopt(fd, SOL_PACKET, PACKET_RX_RING, (void *) &req, sizeof(req))
185 - Transmission process 185 - Transmission process
186 setsockopt(fd, SOL_PACKET, PACKET_TX_RING, (void *) &req, sizeof(req)) 186 setsockopt(fd, SOL_PACKET, PACKET_TX_RING, (void *) &req, sizeof(req))
187 187
188 The most significant argument in the previous call is the req parameter, 188 The most significant argument in the previous call is the req parameter,
189 this parameter must to have the following structure: 189 this parameter must to have the following structure:
190 190
191 struct tpacket_req 191 struct tpacket_req
192 { 192 {
193 unsigned int tp_block_size; /* Minimal size of contiguous block */ 193 unsigned int tp_block_size; /* Minimal size of contiguous block */
194 unsigned int tp_block_nr; /* Number of blocks */ 194 unsigned int tp_block_nr; /* Number of blocks */
195 unsigned int tp_frame_size; /* Size of frame */ 195 unsigned int tp_frame_size; /* Size of frame */
196 unsigned int tp_frame_nr; /* Total number of frames */ 196 unsigned int tp_frame_nr; /* Total number of frames */
197 }; 197 };
198 198
199 This structure is defined in /usr/include/linux/if_packet.h and establishes a 199 This structure is defined in /usr/include/linux/if_packet.h and establishes a
200 circular buffer (ring) of unswappable memory. 200 circular buffer (ring) of unswappable memory.
201 Being mapped in the capture process allows reading the captured frames and 201 Being mapped in the capture process allows reading the captured frames and
202 related meta-information like timestamps without requiring a system call. 202 related meta-information like timestamps without requiring a system call.
203 203
204 Frames are grouped in blocks. Each block is a physically contiguous 204 Frames are grouped in blocks. Each block is a physically contiguous
205 region of memory and holds tp_block_size/tp_frame_size frames. The total number 205 region of memory and holds tp_block_size/tp_frame_size frames. The total number
206 of blocks is tp_block_nr. Note that tp_frame_nr is a redundant parameter because 206 of blocks is tp_block_nr. Note that tp_frame_nr is a redundant parameter because
207 207
208 frames_per_block = tp_block_size/tp_frame_size 208 frames_per_block = tp_block_size/tp_frame_size
209 209
210 indeed, packet_set_ring checks that the following condition is true 210 indeed, packet_set_ring checks that the following condition is true
211 211
212 frames_per_block * tp_block_nr == tp_frame_nr 212 frames_per_block * tp_block_nr == tp_frame_nr
213 213
214 Lets see an example, with the following values: 214 Lets see an example, with the following values:
215 215
216 tp_block_size= 4096 216 tp_block_size= 4096
217 tp_frame_size= 2048 217 tp_frame_size= 2048
218 tp_block_nr = 4 218 tp_block_nr = 4
219 tp_frame_nr = 8 219 tp_frame_nr = 8
220 220
221 we will get the following buffer structure: 221 we will get the following buffer structure:
222 222
223 block #1 block #2 223 block #1 block #2
224 +---------+---------+ +---------+---------+ 224 +---------+---------+ +---------+---------+
225 | frame 1 | frame 2 | | frame 3 | frame 4 | 225 | frame 1 | frame 2 | | frame 3 | frame 4 |
226 +---------+---------+ +---------+---------+ 226 +---------+---------+ +---------+---------+
227 227
228 block #3 block #4 228 block #3 block #4
229 +---------+---------+ +---------+---------+ 229 +---------+---------+ +---------+---------+
230 | frame 5 | frame 6 | | frame 7 | frame 8 | 230 | frame 5 | frame 6 | | frame 7 | frame 8 |
231 +---------+---------+ +---------+---------+ 231 +---------+---------+ +---------+---------+
232 232
233 A frame can be of any size with the only condition it can fit in a block. A block 233 A frame can be of any size with the only condition it can fit in a block. A block
234 can only hold an integer number of frames, or in other words, a frame cannot 234 can only hold an integer number of frames, or in other words, a frame cannot
235 be spawned across two blocks, so there are some details you have to take into 235 be spawned across two blocks, so there are some details you have to take into
236 account when choosing the frame_size. See "Mapping and use of the circular 236 account when choosing the frame_size. See "Mapping and use of the circular
237 buffer (ring)". 237 buffer (ring)".
238 238
239 -------------------------------------------------------------------------------- 239 --------------------------------------------------------------------------------
240 + PACKET_MMAP setting constraints 240 + PACKET_MMAP setting constraints
241 -------------------------------------------------------------------------------- 241 --------------------------------------------------------------------------------
242 242
243 In kernel versions prior to 2.4.26 (for the 2.4 branch) and 2.6.5 (2.6 branch), 243 In kernel versions prior to 2.4.26 (for the 2.4 branch) and 2.6.5 (2.6 branch),
244 the PACKET_MMAP buffer could hold only 32768 frames in a 32 bit architecture or 244 the PACKET_MMAP buffer could hold only 32768 frames in a 32 bit architecture or
245 16384 in a 64 bit architecture. For information on these kernel versions 245 16384 in a 64 bit architecture. For information on these kernel versions
246 see http://pusa.uv.es/~ulisses/packet_mmap/packet_mmap.pre-2.4.26_2.6.5.txt 246 see http://pusa.uv.es/~ulisses/packet_mmap/packet_mmap.pre-2.4.26_2.6.5.txt
247 247
248 Block size limit 248 Block size limit
249 ------------------ 249 ------------------
250 250
251 As stated earlier, each block is a contiguous physical region of memory. These 251 As stated earlier, each block is a contiguous physical region of memory. These
252 memory regions are allocated with calls to the __get_free_pages() function. As 252 memory regions are allocated with calls to the __get_free_pages() function. As
253 the name indicates, this function allocates pages of memory, and the second 253 the name indicates, this function allocates pages of memory, and the second
254 argument is "order" or a power of two number of pages, that is 254 argument is "order" or a power of two number of pages, that is
255 (for PAGE_SIZE == 4096) order=0 ==> 4096 bytes, order=1 ==> 8192 bytes, 255 (for PAGE_SIZE == 4096) order=0 ==> 4096 bytes, order=1 ==> 8192 bytes,
256 order=2 ==> 16384 bytes, etc. The maximum size of a 256 order=2 ==> 16384 bytes, etc. The maximum size of a
257 region allocated by __get_free_pages is determined by the MAX_ORDER macro. More 257 region allocated by __get_free_pages is determined by the MAX_ORDER macro. More
258 precisely the limit can be calculated as: 258 precisely the limit can be calculated as:
259 259
260 PAGE_SIZE << MAX_ORDER 260 PAGE_SIZE << MAX_ORDER
261 261
262 In a i386 architecture PAGE_SIZE is 4096 bytes 262 In a i386 architecture PAGE_SIZE is 4096 bytes
263 In a 2.4/i386 kernel MAX_ORDER is 10 263 In a 2.4/i386 kernel MAX_ORDER is 10
264 In a 2.6/i386 kernel MAX_ORDER is 11 264 In a 2.6/i386 kernel MAX_ORDER is 11
265 265
266 So get_free_pages can allocate as much as 4MB or 8MB in a 2.4/2.6 kernel 266 So get_free_pages can allocate as much as 4MB or 8MB in a 2.4/2.6 kernel
267 respectively, with an i386 architecture. 267 respectively, with an i386 architecture.
268 268
269 User space programs can include /usr/include/sys/user.h and 269 User space programs can include /usr/include/sys/user.h and
270 /usr/include/linux/mmzone.h to get PAGE_SIZE MAX_ORDER declarations. 270 /usr/include/linux/mmzone.h to get PAGE_SIZE MAX_ORDER declarations.
271 271
272 The pagesize can also be determined dynamically with the getpagesize (2) 272 The pagesize can also be determined dynamically with the getpagesize (2)
273 system call. 273 system call.
274 274
275 Block number limit 275 Block number limit
276 -------------------- 276 --------------------
277 277
278 To understand the constraints of PACKET_MMAP, we have to see the structure 278 To understand the constraints of PACKET_MMAP, we have to see the structure
279 used to hold the pointers to each block. 279 used to hold the pointers to each block.
280 280
281 Currently, this structure is a dynamically allocated vector with kmalloc 281 Currently, this structure is a dynamically allocated vector with kmalloc
282 called pg_vec, its size limits the number of blocks that can be allocated. 282 called pg_vec, its size limits the number of blocks that can be allocated.
283 283
284 +---+---+---+---+ 284 +---+---+---+---+
285 | x | x | x | x | 285 | x | x | x | x |
286 +---+---+---+---+ 286 +---+---+---+---+
287 | | | | 287 | | | |
288 | | | v 288 | | | v
289 | | v block #4 289 | | v block #4
290 | v block #3 290 | v block #3
291 v block #2 291 v block #2
292 block #1 292 block #1
293 293
294 kmalloc allocates any number of bytes of physically contiguous memory from 294 kmalloc allocates any number of bytes of physically contiguous memory from
295 a pool of pre-determined sizes. This pool of memory is maintained by the slab 295 a pool of pre-determined sizes. This pool of memory is maintained by the slab
296 allocator which is at the end the responsible for doing the allocation and 296 allocator which is at the end the responsible for doing the allocation and
297 hence which imposes the maximum memory that kmalloc can allocate. 297 hence which imposes the maximum memory that kmalloc can allocate.
298 298
299 In a 2.4/2.6 kernel and the i386 architecture, the limit is 131072 bytes. The 299 In a 2.4/2.6 kernel and the i386 architecture, the limit is 131072 bytes. The
300 predetermined sizes that kmalloc uses can be checked in the "size-<bytes>" 300 predetermined sizes that kmalloc uses can be checked in the "size-<bytes>"
301 entries of /proc/slabinfo 301 entries of /proc/slabinfo
302 302
303 In a 32 bit architecture, pointers are 4 bytes long, so the total number of 303 In a 32 bit architecture, pointers are 4 bytes long, so the total number of
304 pointers to blocks is 304 pointers to blocks is
305 305
306 131072/4 = 32768 blocks 306 131072/4 = 32768 blocks
307 307
308 PACKET_MMAP buffer size calculator 308 PACKET_MMAP buffer size calculator
309 ------------------------------------ 309 ------------------------------------
310 310
311 Definitions: 311 Definitions:
312 312
313 <size-max> : is the maximum size of allocable with kmalloc (see /proc/slabinfo) 313 <size-max> : is the maximum size of allocable with kmalloc (see /proc/slabinfo)
314 <pointer size>: depends on the architecture -- sizeof(void *) 314 <pointer size>: depends on the architecture -- sizeof(void *)
315 <page size> : depends on the architecture -- PAGE_SIZE or getpagesize (2) 315 <page size> : depends on the architecture -- PAGE_SIZE or getpagesize (2)
316 <max-order> : is the value defined with MAX_ORDER 316 <max-order> : is the value defined with MAX_ORDER
317 <frame size> : it's an upper bound of frame's capture size (more on this later) 317 <frame size> : it's an upper bound of frame's capture size (more on this later)
318 318
319 from these definitions we will derive 319 from these definitions we will derive
320 320
321 <block number> = <size-max>/<pointer size> 321 <block number> = <size-max>/<pointer size>
322 <block size> = <pagesize> << <max-order> 322 <block size> = <pagesize> << <max-order>
323 323
324 so, the max buffer size is 324 so, the max buffer size is
325 325
326 <block number> * <block size> 326 <block number> * <block size>
327 327
328 and, the number of frames be 328 and, the number of frames be
329 329
330 <block number> * <block size> / <frame size> 330 <block number> * <block size> / <frame size>
331 331
332 Suppose the following parameters, which apply for 2.6 kernel and an 332 Suppose the following parameters, which apply for 2.6 kernel and an
333 i386 architecture: 333 i386 architecture:
334 334
335 <size-max> = 131072 bytes 335 <size-max> = 131072 bytes
336 <pointer size> = 4 bytes 336 <pointer size> = 4 bytes
337 <pagesize> = 4096 bytes 337 <pagesize> = 4096 bytes
338 <max-order> = 11 338 <max-order> = 11
339 339
340 and a value for <frame size> of 2048 bytes. These parameters will yield 340 and a value for <frame size> of 2048 bytes. These parameters will yield
341 341
342 <block number> = 131072/4 = 32768 blocks 342 <block number> = 131072/4 = 32768 blocks
343 <block size> = 4096 << 11 = 8 MiB. 343 <block size> = 4096 << 11 = 8 MiB.
344 344
345 and hence the buffer will have a 262144 MiB size. So it can hold 345 and hence the buffer will have a 262144 MiB size. So it can hold
346 262144 MiB / 2048 bytes = 134217728 frames 346 262144 MiB / 2048 bytes = 134217728 frames
347 347
348 Actually, this buffer size is not possible with an i386 architecture. 348 Actually, this buffer size is not possible with an i386 architecture.
349 Remember that the memory is allocated in kernel space, in the case of 349 Remember that the memory is allocated in kernel space, in the case of
350 an i386 kernel's memory size is limited to 1GiB. 350 an i386 kernel's memory size is limited to 1GiB.
351 351
352 All memory allocations are not freed until the socket is closed. The memory 352 All memory allocations are not freed until the socket is closed. The memory
353 allocations are done with GFP_KERNEL priority, this basically means that 353 allocations are done with GFP_KERNEL priority, this basically means that
354 the allocation can wait and swap other process' memory in order to allocate 354 the allocation can wait and swap other process' memory in order to allocate
355 the necessary memory, so normally limits can be reached. 355 the necessary memory, so normally limits can be reached.
356 356
357 Other constraints 357 Other constraints
358 ------------------- 358 -------------------
359 359
360 If you check the source code you will see that what I draw here as a frame 360 If you check the source code you will see that what I draw here as a frame
361 is not only the link level frame. At the beginning of each frame there is a 361 is not only the link level frame. At the beginning of each frame there is a
362 header called struct tpacket_hdr used in PACKET_MMAP to hold link level's frame 362 header called struct tpacket_hdr used in PACKET_MMAP to hold link level's frame
363 meta information like timestamp. So what we draw here a frame it's really 363 meta information like timestamp. So what we draw here a frame it's really
364 the following (from include/linux/if_packet.h): 364 the following (from include/linux/if_packet.h):
365 365
366 /* 366 /*
367 Frame structure: 367 Frame structure:
368 368
369 - Start. Frame must be aligned to TPACKET_ALIGNMENT=16 369 - Start. Frame must be aligned to TPACKET_ALIGNMENT=16
370 - struct tpacket_hdr 370 - struct tpacket_hdr
371 - pad to TPACKET_ALIGNMENT=16 371 - pad to TPACKET_ALIGNMENT=16
372 - struct sockaddr_ll 372 - struct sockaddr_ll
373 - Gap, chosen so that packet data (Start+tp_net) aligns to 373 - Gap, chosen so that packet data (Start+tp_net) aligns to
374 TPACKET_ALIGNMENT=16 374 TPACKET_ALIGNMENT=16
375 - Start+tp_mac: [ Optional MAC header ] 375 - Start+tp_mac: [ Optional MAC header ]
376 - Start+tp_net: Packet data, aligned to TPACKET_ALIGNMENT=16. 376 - Start+tp_net: Packet data, aligned to TPACKET_ALIGNMENT=16.
377 - Pad to align to TPACKET_ALIGNMENT=16 377 - Pad to align to TPACKET_ALIGNMENT=16
378 */ 378 */
379 379
380 The following are conditions that are checked in packet_set_ring 380 The following are conditions that are checked in packet_set_ring
381 381
382 tp_block_size must be a multiple of PAGE_SIZE (1) 382 tp_block_size must be a multiple of PAGE_SIZE (1)
383 tp_frame_size must be greater than TPACKET_HDRLEN (obvious) 383 tp_frame_size must be greater than TPACKET_HDRLEN (obvious)
384 tp_frame_size must be a multiple of TPACKET_ALIGNMENT 384 tp_frame_size must be a multiple of TPACKET_ALIGNMENT
385 tp_frame_nr must be exactly frames_per_block*tp_block_nr 385 tp_frame_nr must be exactly frames_per_block*tp_block_nr
386 386
387 Note that tp_block_size should be chosen to be a power of two or there will 387 Note that tp_block_size should be chosen to be a power of two or there will
388 be a waste of memory. 388 be a waste of memory.
389 389
390 -------------------------------------------------------------------------------- 390 --------------------------------------------------------------------------------
391 + Mapping and use of the circular buffer (ring) 391 + Mapping and use of the circular buffer (ring)
392 -------------------------------------------------------------------------------- 392 --------------------------------------------------------------------------------
393 393
394 The mapping of the buffer in the user process is done with the conventional 394 The mapping of the buffer in the user process is done with the conventional
395 mmap function. Even the circular buffer is compound of several physically 395 mmap function. Even the circular buffer is compound of several physically
396 discontiguous blocks of memory, they are contiguous to the user space, hence 396 discontiguous blocks of memory, they are contiguous to the user space, hence
397 just one call to mmap is needed: 397 just one call to mmap is needed:
398 398
399 mmap(0, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0); 399 mmap(0, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
400 400
401 If tp_frame_size is a divisor of tp_block_size frames will be 401 If tp_frame_size is a divisor of tp_block_size frames will be
402 contiguously spaced by tp_frame_size bytes. If not, each 402 contiguously spaced by tp_frame_size bytes. If not, each
403 tp_block_size/tp_frame_size frames there will be a gap between 403 tp_block_size/tp_frame_size frames there will be a gap between
404 the frames. This is because a frame cannot be spawn across two 404 the frames. This is because a frame cannot be spawn across two
405 blocks. 405 blocks.
406 406
407 At the beginning of each frame there is an status field (see 407 At the beginning of each frame there is an status field (see
408 struct tpacket_hdr). If this field is 0 means that the frame is ready 408 struct tpacket_hdr). If this field is 0 means that the frame is ready
409 to be used for the kernel, If not, there is a frame the user can read 409 to be used for the kernel, If not, there is a frame the user can read
410 and the following flags apply: 410 and the following flags apply:
411 411
412 +++ Capture process: 412 +++ Capture process:
413 from include/linux/if_packet.h 413 from include/linux/if_packet.h
414 414
415 #define TP_STATUS_COPY 2 415 #define TP_STATUS_COPY 2
416 #define TP_STATUS_LOSING 4 416 #define TP_STATUS_LOSING 4
417 #define TP_STATUS_CSUMNOTREADY 8 417 #define TP_STATUS_CSUMNOTREADY 8
418 418
419 TP_STATUS_COPY : This flag indicates that the frame (and associated 419 TP_STATUS_COPY : This flag indicates that the frame (and associated
420 meta information) has been truncated because it's 420 meta information) has been truncated because it's
421 larger than tp_frame_size. This packet can be 421 larger than tp_frame_size. This packet can be
422 read entirely with recvfrom(). 422 read entirely with recvfrom().
423 423
424 In order to make this work it must to be 424 In order to make this work it must to be
425 enabled previously with setsockopt() and 425 enabled previously with setsockopt() and
426 the PACKET_COPY_THRESH option. 426 the PACKET_COPY_THRESH option.
427 427
428 The number of frames than can be buffered to 428 The number of frames than can be buffered to
429 be read with recvfrom is limited like a normal socket. 429 be read with recvfrom is limited like a normal socket.
430 See the SO_RCVBUF option in the socket (7) man page. 430 See the SO_RCVBUF option in the socket (7) man page.
431 431
432 TP_STATUS_LOSING : indicates there were packet drops from last time 432 TP_STATUS_LOSING : indicates there were packet drops from last time
433 statistics where checked with getsockopt() and 433 statistics where checked with getsockopt() and
434 the PACKET_STATISTICS option. 434 the PACKET_STATISTICS option.
435 435
436 TP_STATUS_CSUMNOTREADY: currently it's used for outgoing IP packets which 436 TP_STATUS_CSUMNOTREADY: currently it's used for outgoing IP packets which
437 its checksum will be done in hardware. So while 437 its checksum will be done in hardware. So while
438 reading the packet we should not try to check the 438 reading the packet we should not try to check the
439 checksum. 439 checksum.
440 440
441 for convenience there are also the following defines: 441 for convenience there are also the following defines:
442 442
443 #define TP_STATUS_KERNEL 0 443 #define TP_STATUS_KERNEL 0
444 #define TP_STATUS_USER 1 444 #define TP_STATUS_USER 1
445 445
446 The kernel initializes all frames to TP_STATUS_KERNEL, when the kernel 446 The kernel initializes all frames to TP_STATUS_KERNEL, when the kernel
447 receives a packet it puts in the buffer and updates the status with 447 receives a packet it puts in the buffer and updates the status with
448 at least the TP_STATUS_USER flag. Then the user can read the packet, 448 at least the TP_STATUS_USER flag. Then the user can read the packet,
449 once the packet is read the user must zero the status field, so the kernel 449 once the packet is read the user must zero the status field, so the kernel
450 can use again that frame buffer. 450 can use again that frame buffer.
451 451
452 The user can use poll (any other variant should apply too) to check if new 452 The user can use poll (any other variant should apply too) to check if new
453 packets are in the ring: 453 packets are in the ring:
454 454
455 struct pollfd pfd; 455 struct pollfd pfd;
456 456
457 pfd.fd = fd; 457 pfd.fd = fd;
458 pfd.revents = 0; 458 pfd.revents = 0;
459 pfd.events = POLLIN|POLLRDNORM|POLLERR; 459 pfd.events = POLLIN|POLLRDNORM|POLLERR;
460 460
461 if (status == TP_STATUS_KERNEL) 461 if (status == TP_STATUS_KERNEL)
462 retval = poll(&pfd, 1, timeout); 462 retval = poll(&pfd, 1, timeout);
463 463
464 It doesn't incur in a race condition to first check the status value and 464 It doesn't incur in a race condition to first check the status value and
465 then poll for frames. 465 then poll for frames.
466 466
467 ++ Transmission process 467 ++ Transmission process
468 Those defines are also used for transmission: 468 Those defines are also used for transmission:
469 469
470 #define TP_STATUS_AVAILABLE 0 // Frame is available 470 #define TP_STATUS_AVAILABLE 0 // Frame is available
471 #define TP_STATUS_SEND_REQUEST 1 // Frame will be sent on next send() 471 #define TP_STATUS_SEND_REQUEST 1 // Frame will be sent on next send()
472 #define TP_STATUS_SENDING 2 // Frame is currently in transmission 472 #define TP_STATUS_SENDING 2 // Frame is currently in transmission
473 #define TP_STATUS_WRONG_FORMAT 4 // Frame format is not correct 473 #define TP_STATUS_WRONG_FORMAT 4 // Frame format is not correct
474 474
475 First, the kernel initializes all frames to TP_STATUS_AVAILABLE. To send a 475 First, the kernel initializes all frames to TP_STATUS_AVAILABLE. To send a
476 packet, the user fills a data buffer of an available frame, sets tp_len to 476 packet, the user fills a data buffer of an available frame, sets tp_len to
477 current data buffer size and sets its status field to TP_STATUS_SEND_REQUEST. 477 current data buffer size and sets its status field to TP_STATUS_SEND_REQUEST.
478 This can be done on multiple frames. Once the user is ready to transmit, it 478 This can be done on multiple frames. Once the user is ready to transmit, it
479 calls send(). Then all buffers with status equal to TP_STATUS_SEND_REQUEST are 479 calls send(). Then all buffers with status equal to TP_STATUS_SEND_REQUEST are
480 forwarded to the network device. The kernel updates each status of sent 480 forwarded to the network device. The kernel updates each status of sent
481 frames with TP_STATUS_SENDING until the end of transfer. 481 frames with TP_STATUS_SENDING until the end of transfer.
482 At the end of each transfer, buffer status returns to TP_STATUS_AVAILABLE. 482 At the end of each transfer, buffer status returns to TP_STATUS_AVAILABLE.
483 483
484 header->tp_len = in_i_size; 484 header->tp_len = in_i_size;
485 header->tp_status = TP_STATUS_SEND_REQUEST; 485 header->tp_status = TP_STATUS_SEND_REQUEST;
486 retval = send(this->socket, NULL, 0, 0); 486 retval = send(this->socket, NULL, 0, 0);
487 487
488 The user can also use poll() to check if a buffer is available: 488 The user can also use poll() to check if a buffer is available:
489 (status == TP_STATUS_SENDING) 489 (status == TP_STATUS_SENDING)
490 490
491 struct pollfd pfd; 491 struct pollfd pfd;
492 pfd.fd = fd; 492 pfd.fd = fd;
493 pfd.revents = 0; 493 pfd.revents = 0;
494 pfd.events = POLLOUT; 494 pfd.events = POLLOUT;
495 retval = poll(&pfd, 1, timeout); 495 retval = poll(&pfd, 1, timeout);
496 496
497 ------------------------------------------------------------------------------- 497 -------------------------------------------------------------------------------
498 + What TPACKET versions are available and when to use them? 498 + What TPACKET versions are available and when to use them?
499 ------------------------------------------------------------------------------- 499 -------------------------------------------------------------------------------
500 500
501 int val = tpacket_version; 501 int val = tpacket_version;
502 setsockopt(fd, SOL_PACKET, PACKET_VERSION, &val, sizeof(val)); 502 setsockopt(fd, SOL_PACKET, PACKET_VERSION, &val, sizeof(val));
503 getsockopt(fd, SOL_PACKET, PACKET_VERSION, &val, sizeof(val)); 503 getsockopt(fd, SOL_PACKET, PACKET_VERSION, &val, sizeof(val));
504 504
505 where 'tpacket_version' can be TPACKET_V1 (default), TPACKET_V2, TPACKET_V3. 505 where 'tpacket_version' can be TPACKET_V1 (default), TPACKET_V2, TPACKET_V3.
506 506
507 TPACKET_V1: 507 TPACKET_V1:
508 - Default if not otherwise specified by setsockopt(2) 508 - Default if not otherwise specified by setsockopt(2)
509 - RX_RING, TX_RING available 509 - RX_RING, TX_RING available
510 - VLAN metadata information available for packets 510 - VLAN metadata information available for packets
511 (TP_STATUS_VLAN_VALID) 511 (TP_STATUS_VLAN_VALID)
512 512
513 TPACKET_V1 --> TPACKET_V2: 513 TPACKET_V1 --> TPACKET_V2:
514 - Made 64 bit clean due to unsigned long usage in TPACKET_V1 514 - Made 64 bit clean due to unsigned long usage in TPACKET_V1
515 structures, thus this also works on 64 bit kernel with 32 bit 515 structures, thus this also works on 64 bit kernel with 32 bit
516 userspace and the like 516 userspace and the like
517 - Timestamp resolution in nanoseconds instead of microseconds 517 - Timestamp resolution in nanoseconds instead of microseconds
518 - RX_RING, TX_RING available 518 - RX_RING, TX_RING available
519 - How to switch to TPACKET_V2: 519 - How to switch to TPACKET_V2:
520 1. Replace struct tpacket_hdr by struct tpacket2_hdr 520 1. Replace struct tpacket_hdr by struct tpacket2_hdr
521 2. Query header len and save 521 2. Query header len and save
522 3. Set protocol version to 2, set up ring as usual 522 3. Set protocol version to 2, set up ring as usual
523 4. For getting the sockaddr_ll, 523 4. For getting the sockaddr_ll,
524 use (void *)hdr + TPACKET_ALIGN(hdrlen) instead of 524 use (void *)hdr + TPACKET_ALIGN(hdrlen) instead of
525 (void *)hdr + TPACKET_ALIGN(sizeof(struct tpacket_hdr)) 525 (void *)hdr + TPACKET_ALIGN(sizeof(struct tpacket_hdr))
526 526
527 TPACKET_V2 --> TPACKET_V3: 527 TPACKET_V2 --> TPACKET_V3:
528 - Flexible buffer implementation: 528 - Flexible buffer implementation:
529 1. Blocks can be configured with non-static frame-size 529 1. Blocks can be configured with non-static frame-size
530 2. Read/poll is at a block-level (as opposed to packet-level) 530 2. Read/poll is at a block-level (as opposed to packet-level)
531 3. Added poll timeout to avoid indefinite user-space wait 531 3. Added poll timeout to avoid indefinite user-space wait
532 on idle links 532 on idle links
533 4. Added user-configurable knobs: 533 4. Added user-configurable knobs:
534 4.1 block::timeout 534 4.1 block::timeout
535 4.2 tpkt_hdr::sk_rxhash 535 4.2 tpkt_hdr::sk_rxhash
536 - RX Hash data available in user space 536 - RX Hash data available in user space
537 - Currently only RX_RING available 537 - Currently only RX_RING available
538 538
539 ------------------------------------------------------------------------------- 539 -------------------------------------------------------------------------------
540 + AF_PACKET fanout mode 540 + AF_PACKET fanout mode
541 ------------------------------------------------------------------------------- 541 -------------------------------------------------------------------------------
542 542
543 In the AF_PACKET fanout mode, packet reception can be load balanced among 543 In the AF_PACKET fanout mode, packet reception can be load balanced among
544 processes. This also works in combination with mmap(2) on packet sockets. 544 processes. This also works in combination with mmap(2) on packet sockets.
545 545
546 Minimal example code by David S. Miller (try things like "./test eth0 hash", 546 Minimal example code by David S. Miller (try things like "./test eth0 hash",
547 "./test eth0 lb", etc.): 547 "./test eth0 lb", etc.):
548 548
549 #include <stddef.h> 549 #include <stddef.h>
550 #include <stdlib.h> 550 #include <stdlib.h>
551 #include <stdio.h> 551 #include <stdio.h>
552 #include <string.h> 552 #include <string.h>
553 553
554 #include <sys/types.h> 554 #include <sys/types.h>
555 #include <sys/wait.h> 555 #include <sys/wait.h>
556 #include <sys/socket.h> 556 #include <sys/socket.h>
557 #include <sys/ioctl.h> 557 #include <sys/ioctl.h>
558 558
559 #include <unistd.h> 559 #include <unistd.h>
560 560
561 #include <linux/if_ether.h> 561 #include <linux/if_ether.h>
562 #include <linux/if_packet.h> 562 #include <linux/if_packet.h>
563 563
564 #include <net/if.h> 564 #include <net/if.h>
565 565
566 static const char *device_name; 566 static const char *device_name;
567 static int fanout_type; 567 static int fanout_type;
568 static int fanout_id; 568 static int fanout_id;
569 569
570 #ifndef PACKET_FANOUT 570 #ifndef PACKET_FANOUT
571 # define PACKET_FANOUT 18 571 # define PACKET_FANOUT 18
572 # define PACKET_FANOUT_HASH 0 572 # define PACKET_FANOUT_HASH 0
573 # define PACKET_FANOUT_LB 1 573 # define PACKET_FANOUT_LB 1
574 #endif 574 #endif
575 575
576 static int setup_socket(void) 576 static int setup_socket(void)
577 { 577 {
578 int err, fd = socket(AF_PACKET, SOCK_RAW, htons(ETH_P_IP)); 578 int err, fd = socket(AF_PACKET, SOCK_RAW, htons(ETH_P_IP));
579 struct sockaddr_ll ll; 579 struct sockaddr_ll ll;
580 struct ifreq ifr; 580 struct ifreq ifr;
581 int fanout_arg; 581 int fanout_arg;
582 582
583 if (fd < 0) { 583 if (fd < 0) {
584 perror("socket"); 584 perror("socket");
585 return EXIT_FAILURE; 585 return EXIT_FAILURE;
586 } 586 }
587 587
588 memset(&ifr, 0, sizeof(ifr)); 588 memset(&ifr, 0, sizeof(ifr));
589 strcpy(ifr.ifr_name, device_name); 589 strcpy(ifr.ifr_name, device_name);
590 err = ioctl(fd, SIOCGIFINDEX, &ifr); 590 err = ioctl(fd, SIOCGIFINDEX, &ifr);
591 if (err < 0) { 591 if (err < 0) {
592 perror("SIOCGIFINDEX"); 592 perror("SIOCGIFINDEX");
593 return EXIT_FAILURE; 593 return EXIT_FAILURE;
594 } 594 }
595 595
596 memset(&ll, 0, sizeof(ll)); 596 memset(&ll, 0, sizeof(ll));
597 ll.sll_family = AF_PACKET; 597 ll.sll_family = AF_PACKET;
598 ll.sll_ifindex = ifr.ifr_ifindex; 598 ll.sll_ifindex = ifr.ifr_ifindex;
599 err = bind(fd, (struct sockaddr *) &ll, sizeof(ll)); 599 err = bind(fd, (struct sockaddr *) &ll, sizeof(ll));
600 if (err < 0) { 600 if (err < 0) {
601 perror("bind"); 601 perror("bind");
602 return EXIT_FAILURE; 602 return EXIT_FAILURE;
603 } 603 }
604 604
605 fanout_arg = (fanout_id | (fanout_type << 16)); 605 fanout_arg = (fanout_id | (fanout_type << 16));
606 err = setsockopt(fd, SOL_PACKET, PACKET_FANOUT, 606 err = setsockopt(fd, SOL_PACKET, PACKET_FANOUT,
607 &fanout_arg, sizeof(fanout_arg)); 607 &fanout_arg, sizeof(fanout_arg));
608 if (err) { 608 if (err) {
609 perror("setsockopt"); 609 perror("setsockopt");
610 return EXIT_FAILURE; 610 return EXIT_FAILURE;
611 } 611 }
612 612
613 return fd; 613 return fd;
614 } 614 }
615 615
616 static void fanout_thread(void) 616 static void fanout_thread(void)
617 { 617 {
618 int fd = setup_socket(); 618 int fd = setup_socket();
619 int limit = 10000; 619 int limit = 10000;
620 620
621 if (fd < 0) 621 if (fd < 0)
622 exit(fd); 622 exit(fd);
623 623
624 while (limit-- > 0) { 624 while (limit-- > 0) {
625 char buf[1600]; 625 char buf[1600];
626 int err; 626 int err;
627 627
628 err = read(fd, buf, sizeof(buf)); 628 err = read(fd, buf, sizeof(buf));
629 if (err < 0) { 629 if (err < 0) {
630 perror("read"); 630 perror("read");
631 exit(EXIT_FAILURE); 631 exit(EXIT_FAILURE);
632 } 632 }
633 if ((limit % 10) == 0) 633 if ((limit % 10) == 0)
634 fprintf(stdout, "(%d) \n", getpid()); 634 fprintf(stdout, "(%d) \n", getpid());
635 } 635 }
636 636
637 fprintf(stdout, "%d: Received 10000 packets\n", getpid()); 637 fprintf(stdout, "%d: Received 10000 packets\n", getpid());
638 638
639 close(fd); 639 close(fd);
640 exit(0); 640 exit(0);
641 } 641 }
642 642
643 int main(int argc, char **argp) 643 int main(int argc, char **argp)
644 { 644 {
645 int fd, err; 645 int fd, err;
646 int i; 646 int i;
647 647
648 if (argc != 3) { 648 if (argc != 3) {
649 fprintf(stderr, "Usage: %s INTERFACE {hash|lb}\n", argp[0]); 649 fprintf(stderr, "Usage: %s INTERFACE {hash|lb}\n", argp[0]);
650 return EXIT_FAILURE; 650 return EXIT_FAILURE;
651 } 651 }
652 652
653 if (!strcmp(argp[2], "hash")) 653 if (!strcmp(argp[2], "hash"))
654 fanout_type = PACKET_FANOUT_HASH; 654 fanout_type = PACKET_FANOUT_HASH;
655 else if (!strcmp(argp[2], "lb")) 655 else if (!strcmp(argp[2], "lb"))
656 fanout_type = PACKET_FANOUT_LB; 656 fanout_type = PACKET_FANOUT_LB;
657 else { 657 else {
658 fprintf(stderr, "Unknown fanout type [%s]\n", argp[2]); 658 fprintf(stderr, "Unknown fanout type [%s]\n", argp[2]);
659 exit(EXIT_FAILURE); 659 exit(EXIT_FAILURE);
660 } 660 }
661 661
662 device_name = argp[1]; 662 device_name = argp[1];
663 fanout_id = getpid() & 0xffff; 663 fanout_id = getpid() & 0xffff;
664 664
665 for (i = 0; i < 4; i++) { 665 for (i = 0; i < 4; i++) {
666 pid_t pid = fork(); 666 pid_t pid = fork();
667 667
668 switch (pid) { 668 switch (pid) {
669 case 0: 669 case 0:
670 fanout_thread(); 670 fanout_thread();
671 671
672 case -1: 672 case -1:
673 perror("fork"); 673 perror("fork");
674 exit(EXIT_FAILURE); 674 exit(EXIT_FAILURE);
675 } 675 }
676 } 676 }
677 677
678 for (i = 0; i < 4; i++) { 678 for (i = 0; i < 4; i++) {
679 int status; 679 int status;
680 680
681 wait(&status); 681 wait(&status);
682 } 682 }
683 683
684 return 0; 684 return 0;
685 } 685 }
686 686
687 ------------------------------------------------------------------------------- 687 -------------------------------------------------------------------------------
688 + AF_PACKET TPACKET_V3 example 688 + AF_PACKET TPACKET_V3 example
689 ------------------------------------------------------------------------------- 689 -------------------------------------------------------------------------------
690 690
691 AF_PACKET's TPACKET_V3 ring buffer can be configured to use non-static frame 691 AF_PACKET's TPACKET_V3 ring buffer can be configured to use non-static frame
692 sizes by doing it's own memory management. It is based on blocks where polling 692 sizes by doing it's own memory management. It is based on blocks where polling
693 works on a per block basis instead of per ring as in TPACKET_V2 and predecessor. 693 works on a per block basis instead of per ring as in TPACKET_V2 and predecessor.
694 694
695 It is said that TPACKET_V3 brings the following benefits: 695 It is said that TPACKET_V3 brings the following benefits:
696 *) ~15 - 20% reduction in CPU-usage 696 *) ~15 - 20% reduction in CPU-usage
697 *) ~20% increase in packet capture rate 697 *) ~20% increase in packet capture rate
698 *) ~2x increase in packet density 698 *) ~2x increase in packet density
699 *) Port aggregation analysis 699 *) Port aggregation analysis
700 *) Non static frame size to capture entire packet payload 700 *) Non static frame size to capture entire packet payload
701 701
702 So it seems to be a good candidate to be used with packet fanout. 702 So it seems to be a good candidate to be used with packet fanout.
703 703
704 Minimal example code by Daniel Borkmann based on Chetan Loke's lolpcap (compile 704 Minimal example code by Daniel Borkmann based on Chetan Loke's lolpcap (compile
705 it with gcc -Wall -O2 blob.c, and try things like "./a.out eth0", etc.): 705 it with gcc -Wall -O2 blob.c, and try things like "./a.out eth0", etc.):
706 706
707 #include <stdio.h> 707 #include <stdio.h>
708 #include <stdlib.h> 708 #include <stdlib.h>
709 #include <stdint.h> 709 #include <stdint.h>
710 #include <string.h> 710 #include <string.h>
711 #include <assert.h> 711 #include <assert.h>
712 #include <net/if.h> 712 #include <net/if.h>
713 #include <arpa/inet.h> 713 #include <arpa/inet.h>
714 #include <netdb.h> 714 #include <netdb.h>
715 #include <poll.h> 715 #include <poll.h>
716 #include <unistd.h> 716 #include <unistd.h>
717 #include <signal.h> 717 #include <signal.h>
718 #include <inttypes.h> 718 #include <inttypes.h>
719 #include <sys/socket.h> 719 #include <sys/socket.h>
720 #include <sys/mman.h> 720 #include <sys/mman.h>
721 #include <linux/if_packet.h> 721 #include <linux/if_packet.h>
722 #include <linux/if_ether.h> 722 #include <linux/if_ether.h>
723 #include <linux/ip.h> 723 #include <linux/ip.h>
724 724
725 #define BLOCK_SIZE (1 << 22) 725 #define BLOCK_SIZE (1 << 22)
726 #define FRAME_SIZE 2048 726 #define FRAME_SIZE 2048
727 727
728 #define NUM_BLOCKS 64 728 #define NUM_BLOCKS 64
729 #define NUM_FRAMES ((BLOCK_SIZE * NUM_BLOCKS) / FRAME_SIZE) 729 #define NUM_FRAMES ((BLOCK_SIZE * NUM_BLOCKS) / FRAME_SIZE)
730 730
731 #define BLOCK_RETIRE_TOV_IN_MS 64 731 #define BLOCK_RETIRE_TOV_IN_MS 64
732 #define BLOCK_PRIV_AREA_SZ 13 732 #define BLOCK_PRIV_AREA_SZ 13
733 733
734 #define ALIGN_8(x) (((x) + 8 - 1) & ~(8 - 1)) 734 #define ALIGN_8(x) (((x) + 8 - 1) & ~(8 - 1))
735 735
736 #define BLOCK_STATUS(x) ((x)->h1.block_status) 736 #define BLOCK_STATUS(x) ((x)->h1.block_status)
737 #define BLOCK_NUM_PKTS(x) ((x)->h1.num_pkts) 737 #define BLOCK_NUM_PKTS(x) ((x)->h1.num_pkts)
738 #define BLOCK_O2FP(x) ((x)->h1.offset_to_first_pkt) 738 #define BLOCK_O2FP(x) ((x)->h1.offset_to_first_pkt)
739 #define BLOCK_LEN(x) ((x)->h1.blk_len) 739 #define BLOCK_LEN(x) ((x)->h1.blk_len)
740 #define BLOCK_SNUM(x) ((x)->h1.seq_num) 740 #define BLOCK_SNUM(x) ((x)->h1.seq_num)
741 #define BLOCK_O2PRIV(x) ((x)->offset_to_priv) 741 #define BLOCK_O2PRIV(x) ((x)->offset_to_priv)
742 #define BLOCK_PRIV(x) ((void *) ((uint8_t *) (x) + BLOCK_O2PRIV(x))) 742 #define BLOCK_PRIV(x) ((void *) ((uint8_t *) (x) + BLOCK_O2PRIV(x)))
743 #define BLOCK_HDR_LEN (ALIGN_8(sizeof(struct block_desc))) 743 #define BLOCK_HDR_LEN (ALIGN_8(sizeof(struct block_desc)))
744 #define BLOCK_PLUS_PRIV(sz_pri) (BLOCK_HDR_LEN + ALIGN_8((sz_pri))) 744 #define BLOCK_PLUS_PRIV(sz_pri) (BLOCK_HDR_LEN + ALIGN_8((sz_pri)))
745 745
746 #ifndef likely 746 #ifndef likely
747 # define likely(x) __builtin_expect(!!(x), 1) 747 # define likely(x) __builtin_expect(!!(x), 1)
748 #endif 748 #endif
749 #ifndef unlikely 749 #ifndef unlikely
750 # define unlikely(x) __builtin_expect(!!(x), 0) 750 # define unlikely(x) __builtin_expect(!!(x), 0)
751 #endif 751 #endif
752 752
753 struct block_desc { 753 struct block_desc {
754 uint32_t version; 754 uint32_t version;
755 uint32_t offset_to_priv; 755 uint32_t offset_to_priv;
756 struct tpacket_hdr_v1 h1; 756 struct tpacket_hdr_v1 h1;
757 }; 757 };
758 758
759 struct ring { 759 struct ring {
760 struct iovec *rd; 760 struct iovec *rd;
761 uint8_t *map; 761 uint8_t *map;
762 struct tpacket_req3 req; 762 struct tpacket_req3 req;
763 }; 763 };
764 764
765 static unsigned long packets_total = 0, bytes_total = 0; 765 static unsigned long packets_total = 0, bytes_total = 0;
766 static sig_atomic_t sigint = 0; 766 static sig_atomic_t sigint = 0;
767 767
768 void sighandler(int num) 768 void sighandler(int num)
769 { 769 {
770 sigint = 1; 770 sigint = 1;
771 } 771 }
772 772
773 static int setup_socket(struct ring *ring, char *netdev) 773 static int setup_socket(struct ring *ring, char *netdev)
774 { 774 {
775 int err, i, fd, v = TPACKET_V3; 775 int err, i, fd, v = TPACKET_V3;
776 struct sockaddr_ll ll; 776 struct sockaddr_ll ll;
777 777
778 fd = socket(AF_PACKET, SOCK_RAW, htons(ETH_P_ALL)); 778 fd = socket(AF_PACKET, SOCK_RAW, htons(ETH_P_ALL));
779 if (fd < 0) { 779 if (fd < 0) {
780 perror("socket"); 780 perror("socket");
781 exit(1); 781 exit(1);
782 } 782 }
783 783
784 err = setsockopt(fd, SOL_PACKET, PACKET_VERSION, &v, sizeof(v)); 784 err = setsockopt(fd, SOL_PACKET, PACKET_VERSION, &v, sizeof(v));
785 if (err < 0) { 785 if (err < 0) {
786 perror("setsockopt"); 786 perror("setsockopt");
787 exit(1); 787 exit(1);
788 } 788 }
789 789
790 memset(&ring->req, 0, sizeof(ring->req)); 790 memset(&ring->req, 0, sizeof(ring->req));
791 ring->req.tp_block_size = BLOCK_SIZE; 791 ring->req.tp_block_size = BLOCK_SIZE;
792 ring->req.tp_frame_size = FRAME_SIZE; 792 ring->req.tp_frame_size = FRAME_SIZE;
793 ring->req.tp_block_nr = NUM_BLOCKS; 793 ring->req.tp_block_nr = NUM_BLOCKS;
794 ring->req.tp_frame_nr = NUM_FRAMES; 794 ring->req.tp_frame_nr = NUM_FRAMES;
795 ring->req.tp_retire_blk_tov = BLOCK_RETIRE_TOV_IN_MS; 795 ring->req.tp_retire_blk_tov = BLOCK_RETIRE_TOV_IN_MS;
796 ring->req.tp_sizeof_priv = BLOCK_PRIV_AREA_SZ; 796 ring->req.tp_sizeof_priv = BLOCK_PRIV_AREA_SZ;
797 ring->req.tp_feature_req_word |= TP_FT_REQ_FILL_RXHASH; 797 ring->req.tp_feature_req_word |= TP_FT_REQ_FILL_RXHASH;
798 798
799 err = setsockopt(fd, SOL_PACKET, PACKET_RX_RING, &ring->req, 799 err = setsockopt(fd, SOL_PACKET, PACKET_RX_RING, &ring->req,
800 sizeof(ring->req)); 800 sizeof(ring->req));
801 if (err < 0) { 801 if (err < 0) {
802 perror("setsockopt"); 802 perror("setsockopt");
803 exit(1); 803 exit(1);
804 } 804 }
805 805
806 ring->map = mmap(NULL, ring->req.tp_block_size * ring->req.tp_block_nr, 806 ring->map = mmap(NULL, ring->req.tp_block_size * ring->req.tp_block_nr,
807 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_LOCKED, 807 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_LOCKED,
808 fd, 0); 808 fd, 0);
809 if (ring->map == MAP_FAILED) { 809 if (ring->map == MAP_FAILED) {
810 perror("mmap"); 810 perror("mmap");
811 exit(1); 811 exit(1);
812 } 812 }
813 813
814 ring->rd = malloc(ring->req.tp_block_nr * sizeof(*ring->rd)); 814 ring->rd = malloc(ring->req.tp_block_nr * sizeof(*ring->rd));
815 assert(ring->rd); 815 assert(ring->rd);
816 for (i = 0; i < ring->req.tp_block_nr; ++i) { 816 for (i = 0; i < ring->req.tp_block_nr; ++i) {
817 ring->rd[i].iov_base = ring->map + (i * ring->req.tp_block_size); 817 ring->rd[i].iov_base = ring->map + (i * ring->req.tp_block_size);
818 ring->rd[i].iov_len = ring->req.tp_block_size; 818 ring->rd[i].iov_len = ring->req.tp_block_size;
819 } 819 }
820 820
821 memset(&ll, 0, sizeof(ll)); 821 memset(&ll, 0, sizeof(ll));
822 ll.sll_family = PF_PACKET; 822 ll.sll_family = PF_PACKET;
823 ll.sll_protocol = htons(ETH_P_ALL); 823 ll.sll_protocol = htons(ETH_P_ALL);
824 ll.sll_ifindex = if_nametoindex(netdev); 824 ll.sll_ifindex = if_nametoindex(netdev);
825 ll.sll_hatype = 0; 825 ll.sll_hatype = 0;
826 ll.sll_pkttype = 0; 826 ll.sll_pkttype = 0;
827 ll.sll_halen = 0; 827 ll.sll_halen = 0;
828 828
829 err = bind(fd, (struct sockaddr *) &ll, sizeof(ll)); 829 err = bind(fd, (struct sockaddr *) &ll, sizeof(ll));
830 if (err < 0) { 830 if (err < 0) {
831 perror("bind"); 831 perror("bind");
832 exit(1); 832 exit(1);
833 } 833 }
834 834
835 return fd; 835 return fd;
836 } 836 }
837 837
838 #ifdef __checked 838 #ifdef __checked
839 static uint64_t prev_block_seq_num = 0; 839 static uint64_t prev_block_seq_num = 0;
840 840
841 void assert_block_seq_num(struct block_desc *pbd) 841 void assert_block_seq_num(struct block_desc *pbd)
842 { 842 {
843 if (unlikely(prev_block_seq_num + 1 != BLOCK_SNUM(pbd))) { 843 if (unlikely(prev_block_seq_num + 1 != BLOCK_SNUM(pbd))) {
844 printf("prev_block_seq_num:%"PRIu64", expected seq:%"PRIu64" != " 844 printf("prev_block_seq_num:%"PRIu64", expected seq:%"PRIu64" != "
845 "actual seq:%"PRIu64"\n", prev_block_seq_num, 845 "actual seq:%"PRIu64"\n", prev_block_seq_num,
846 prev_block_seq_num + 1, (uint64_t) BLOCK_SNUM(pbd)); 846 prev_block_seq_num + 1, (uint64_t) BLOCK_SNUM(pbd));
847 exit(1); 847 exit(1);
848 } 848 }
849 849
850 prev_block_seq_num = BLOCK_SNUM(pbd); 850 prev_block_seq_num = BLOCK_SNUM(pbd);
851 } 851 }
852 852
853 static void assert_block_len(struct block_desc *pbd, uint32_t bytes, int block_num) 853 static void assert_block_len(struct block_desc *pbd, uint32_t bytes, int block_num)
854 { 854 {
855 if (BLOCK_NUM_PKTS(pbd)) { 855 if (BLOCK_NUM_PKTS(pbd)) {
856 if (unlikely(bytes != BLOCK_LEN(pbd))) { 856 if (unlikely(bytes != BLOCK_LEN(pbd))) {
857 printf("block:%u with %upackets, expected len:%u != actual len:%u\n", 857 printf("block:%u with %upackets, expected len:%u != actual len:%u\n",
858 block_num, BLOCK_NUM_PKTS(pbd), bytes, BLOCK_LEN(pbd)); 858 block_num, BLOCK_NUM_PKTS(pbd), bytes, BLOCK_LEN(pbd));
859 exit(1); 859 exit(1);
860 } 860 }
861 } else { 861 } else {
862 if (unlikely(BLOCK_LEN(pbd) != BLOCK_PLUS_PRIV(BLOCK_PRIV_AREA_SZ))) { 862 if (unlikely(BLOCK_LEN(pbd) != BLOCK_PLUS_PRIV(BLOCK_PRIV_AREA_SZ))) {
863 printf("block:%u, expected len:%lu != actual len:%u\n", 863 printf("block:%u, expected len:%lu != actual len:%u\n",
864 block_num, BLOCK_HDR_LEN, BLOCK_LEN(pbd)); 864 block_num, BLOCK_HDR_LEN, BLOCK_LEN(pbd));
865 exit(1); 865 exit(1);
866 } 866 }
867 } 867 }
868 } 868 }
869 869
870 static void assert_block_header(struct block_desc *pbd, const int block_num) 870 static void assert_block_header(struct block_desc *pbd, const int block_num)
871 { 871 {
872 uint32_t block_status = BLOCK_STATUS(pbd); 872 uint32_t block_status = BLOCK_STATUS(pbd);
873 873
874 if (unlikely((block_status & TP_STATUS_USER) == 0)) { 874 if (unlikely((block_status & TP_STATUS_USER) == 0)) {
875 printf("block:%u, not in TP_STATUS_USER\n", block_num); 875 printf("block:%u, not in TP_STATUS_USER\n", block_num);
876 exit(1); 876 exit(1);
877 } 877 }
878 878
879 assert_block_seq_num(pbd); 879 assert_block_seq_num(pbd);
880 } 880 }
881 #else 881 #else
882 static inline void assert_block_header(struct block_desc *pbd, const int block_num) 882 static inline void assert_block_header(struct block_desc *pbd, const int block_num)
883 { 883 {
884 } 884 }
885 static void assert_block_len(struct block_desc *pbd, uint32_t bytes, int block_num) 885 static void assert_block_len(struct block_desc *pbd, uint32_t bytes, int block_num)
886 { 886 {
887 } 887 }
888 #endif 888 #endif
889 889
890 static void display(struct tpacket3_hdr *ppd) 890 static void display(struct tpacket3_hdr *ppd)
891 { 891 {
892 struct ethhdr *eth = (struct ethhdr *) ((uint8_t *) ppd + ppd->tp_mac); 892 struct ethhdr *eth = (struct ethhdr *) ((uint8_t *) ppd + ppd->tp_mac);
893 struct iphdr *ip = (struct iphdr *) ((uint8_t *) eth + ETH_HLEN); 893 struct iphdr *ip = (struct iphdr *) ((uint8_t *) eth + ETH_HLEN);
894 894
895 if (eth->h_proto == htons(ETH_P_IP)) { 895 if (eth->h_proto == htons(ETH_P_IP)) {
896 struct sockaddr_in ss, sd; 896 struct sockaddr_in ss, sd;
897 char sbuff[NI_MAXHOST], dbuff[NI_MAXHOST]; 897 char sbuff[NI_MAXHOST], dbuff[NI_MAXHOST];
898 898
899 memset(&ss, 0, sizeof(ss)); 899 memset(&ss, 0, sizeof(ss));
900 ss.sin_family = PF_INET; 900 ss.sin_family = PF_INET;
901 ss.sin_addr.s_addr = ip->saddr; 901 ss.sin_addr.s_addr = ip->saddr;
902 getnameinfo((struct sockaddr *) &ss, sizeof(ss), 902 getnameinfo((struct sockaddr *) &ss, sizeof(ss),
903 sbuff, sizeof(sbuff), NULL, 0, NI_NUMERICHOST); 903 sbuff, sizeof(sbuff), NULL, 0, NI_NUMERICHOST);
904 904
905 memset(&sd, 0, sizeof(sd)); 905 memset(&sd, 0, sizeof(sd));
906 sd.sin_family = PF_INET; 906 sd.sin_family = PF_INET;
907 sd.sin_addr.s_addr = ip->daddr; 907 sd.sin_addr.s_addr = ip->daddr;
908 getnameinfo((struct sockaddr *) &sd, sizeof(sd), 908 getnameinfo((struct sockaddr *) &sd, sizeof(sd),
909 dbuff, sizeof(dbuff), NULL, 0, NI_NUMERICHOST); 909 dbuff, sizeof(dbuff), NULL, 0, NI_NUMERICHOST);
910 910
911 printf("%s -> %s, ", sbuff, dbuff); 911 printf("%s -> %s, ", sbuff, dbuff);
912 } 912 }
913 913
914 printf("rxhash: 0x%x\n", ppd->hv1.tp_rxhash); 914 printf("rxhash: 0x%x\n", ppd->hv1.tp_rxhash);
915 } 915 }
916 916
917 static void walk_block(struct block_desc *pbd, const int block_num) 917 static void walk_block(struct block_desc *pbd, const int block_num)
918 { 918 {
919 int num_pkts = BLOCK_NUM_PKTS(pbd), i; 919 int num_pkts = BLOCK_NUM_PKTS(pbd), i;
920 unsigned long bytes = 0; 920 unsigned long bytes = 0;
921 unsigned long bytes_with_padding = BLOCK_PLUS_PRIV(BLOCK_PRIV_AREA_SZ); 921 unsigned long bytes_with_padding = BLOCK_PLUS_PRIV(BLOCK_PRIV_AREA_SZ);
922 struct tpacket3_hdr *ppd; 922 struct tpacket3_hdr *ppd;
923 923
924 assert_block_header(pbd, block_num); 924 assert_block_header(pbd, block_num);
925 925
926 ppd = (struct tpacket3_hdr *) ((uint8_t *) pbd + BLOCK_O2FP(pbd)); 926 ppd = (struct tpacket3_hdr *) ((uint8_t *) pbd + BLOCK_O2FP(pbd));
927 for (i = 0; i < num_pkts; ++i) { 927 for (i = 0; i < num_pkts; ++i) {
928 bytes += ppd->tp_snaplen; 928 bytes += ppd->tp_snaplen;
929 if (ppd->tp_next_offset) 929 if (ppd->tp_next_offset)
930 bytes_with_padding += ppd->tp_next_offset; 930 bytes_with_padding += ppd->tp_next_offset;
931 else 931 else
932 bytes_with_padding += ALIGN_8(ppd->tp_snaplen + ppd->tp_mac); 932 bytes_with_padding += ALIGN_8(ppd->tp_snaplen + ppd->tp_mac);
933 933
934 display(ppd); 934 display(ppd);
935 935
936 ppd = (struct tpacket3_hdr *) ((uint8_t *) ppd + ppd->tp_next_offset); 936 ppd = (struct tpacket3_hdr *) ((uint8_t *) ppd + ppd->tp_next_offset);
937 __sync_synchronize(); 937 __sync_synchronize();
938 } 938 }
939 939
940 assert_block_len(pbd, bytes_with_padding, block_num); 940 assert_block_len(pbd, bytes_with_padding, block_num);
941 941
942 packets_total += num_pkts; 942 packets_total += num_pkts;
943 bytes_total += bytes; 943 bytes_total += bytes;
944 } 944 }
945 945
946 void flush_block(struct block_desc *pbd) 946 void flush_block(struct block_desc *pbd)
947 { 947 {
948 BLOCK_STATUS(pbd) = TP_STATUS_KERNEL; 948 BLOCK_STATUS(pbd) = TP_STATUS_KERNEL;
949 __sync_synchronize(); 949 __sync_synchronize();
950 } 950 }
951 951
952 static void teardown_socket(struct ring *ring, int fd) 952 static void teardown_socket(struct ring *ring, int fd)
953 { 953 {
954 munmap(ring->map, ring->req.tp_block_size * ring->req.tp_block_nr); 954 munmap(ring->map, ring->req.tp_block_size * ring->req.tp_block_nr);
955 free(ring->rd); 955 free(ring->rd);
956 close(fd); 956 close(fd);
957 } 957 }
958 958
959 int main(int argc, char **argp) 959 int main(int argc, char **argp)
960 { 960 {
961 int fd, err; 961 int fd, err;
962 socklen_t len; 962 socklen_t len;
963 struct ring ring; 963 struct ring ring;
964 struct pollfd pfd; 964 struct pollfd pfd;
965 unsigned int block_num = 0; 965 unsigned int block_num = 0;
966 struct block_desc *pbd; 966 struct block_desc *pbd;
967 struct tpacket_stats_v3 stats; 967 struct tpacket_stats_v3 stats;
968 968
969 if (argc != 2) { 969 if (argc != 2) {
970 fprintf(stderr, "Usage: %s INTERFACE\n", argp[0]); 970 fprintf(stderr, "Usage: %s INTERFACE\n", argp[0]);
971 return EXIT_FAILURE; 971 return EXIT_FAILURE;
972 } 972 }
973 973
974 signal(SIGINT, sighandler); 974 signal(SIGINT, sighandler);
975 975
976 memset(&ring, 0, sizeof(ring)); 976 memset(&ring, 0, sizeof(ring));
977 fd = setup_socket(&ring, argp[argc - 1]); 977 fd = setup_socket(&ring, argp[argc - 1]);
978 assert(fd > 0); 978 assert(fd > 0);
979 979
980 memset(&pfd, 0, sizeof(pfd)); 980 memset(&pfd, 0, sizeof(pfd));
981 pfd.fd = fd; 981 pfd.fd = fd;
982 pfd.events = POLLIN | POLLERR; 982 pfd.events = POLLIN | POLLERR;
983 pfd.revents = 0; 983 pfd.revents = 0;
984 984
985 while (likely(!sigint)) { 985 while (likely(!sigint)) {
986 pbd = (struct block_desc *) ring.rd[block_num].iov_base; 986 pbd = (struct block_desc *) ring.rd[block_num].iov_base;
987 retry_block: 987 retry_block:
988 if ((BLOCK_STATUS(pbd) & TP_STATUS_USER) == 0) { 988 if ((BLOCK_STATUS(pbd) & TP_STATUS_USER) == 0) {
989 poll(&pfd, 1, -1); 989 poll(&pfd, 1, -1);
990 goto retry_block; 990 goto retry_block;
991 } 991 }
992 992
993 walk_block(pbd, block_num); 993 walk_block(pbd, block_num);
994 flush_block(pbd); 994 flush_block(pbd);
995 block_num = (block_num + 1) % NUM_BLOCKS; 995 block_num = (block_num + 1) % NUM_BLOCKS;
996 } 996 }
997 997
998 len = sizeof(stats); 998 len = sizeof(stats);
999 err = getsockopt(fd, SOL_PACKET, PACKET_STATISTICS, &stats, &len); 999 err = getsockopt(fd, SOL_PACKET, PACKET_STATISTICS, &stats, &len);
1000 if (err < 0) { 1000 if (err < 0) {
1001 perror("getsockopt"); 1001 perror("getsockopt");
1002 exit(1); 1002 exit(1);
1003 } 1003 }
1004 1004
1005 fflush(stdout); 1005 fflush(stdout);
1006 printf("\nReceived %u packets, %lu bytes, %u dropped, freeze_q_cnt: %u\n", 1006 printf("\nReceived %u packets, %lu bytes, %u dropped, freeze_q_cnt: %u\n",
1007 stats.tp_packets, bytes_total, stats.tp_drops, 1007 stats.tp_packets, bytes_total, stats.tp_drops,
1008 stats.tp_freeze_q_cnt); 1008 stats.tp_freeze_q_cnt);
1009 1009
1010 teardown_socket(&ring, fd); 1010 teardown_socket(&ring, fd);
1011 return 0; 1011 return 0;
1012 } 1012 }
1013 1013
1014 ------------------------------------------------------------------------------- 1014 -------------------------------------------------------------------------------
1015 + PACKET_TIMESTAMP 1015 + PACKET_TIMESTAMP
1016 ------------------------------------------------------------------------------- 1016 -------------------------------------------------------------------------------
1017 1017
1018 The PACKET_TIMESTAMP setting determines the source of the timestamp in 1018 The PACKET_TIMESTAMP setting determines the source of the timestamp in
1019 the packet meta information. If your NIC is capable of timestamping 1019 the packet meta information for mmap(2)ed RX_RING and TX_RINGs. If your
1020 packets in hardware, you can request those hardware timestamps to used. 1020 NIC is capable of timestamping packets in hardware, you can request those
1021 Note: you may need to enable the generation of hardware timestamps with 1021 hardware timestamps to be used. Note: you may need to enable the generation
1022 SIOCSHWTSTAMP. 1022 of hardware timestamps with SIOCSHWTSTAMP (see related information from
1023 Documentation/networking/timestamping.txt).
1023 1024
1024 PACKET_TIMESTAMP accepts the same integer bit field as 1025 PACKET_TIMESTAMP accepts the same integer bit field as
1025 SO_TIMESTAMPING. However, only the SOF_TIMESTAMPING_SYS_HARDWARE 1026 SO_TIMESTAMPING. However, only the SOF_TIMESTAMPING_SYS_HARDWARE
1026 and SOF_TIMESTAMPING_RAW_HARDWARE values are recognized by 1027 and SOF_TIMESTAMPING_RAW_HARDWARE values are recognized by
1027 PACKET_TIMESTAMP. SOF_TIMESTAMPING_SYS_HARDWARE takes precedence over 1028 PACKET_TIMESTAMP. SOF_TIMESTAMPING_SYS_HARDWARE takes precedence over
1028 SOF_TIMESTAMPING_RAW_HARDWARE if both bits are set. 1029 SOF_TIMESTAMPING_RAW_HARDWARE if both bits are set.
1029 1030
1030 int req = 0; 1031 int req = 0;
1031 req |= SOF_TIMESTAMPING_SYS_HARDWARE; 1032 req |= SOF_TIMESTAMPING_SYS_HARDWARE;
1032 setsockopt(fd, SOL_PACKET, PACKET_TIMESTAMP, (void *) &req, sizeof(req)) 1033 setsockopt(fd, SOL_PACKET, PACKET_TIMESTAMP, (void *) &req, sizeof(req))
1033 1034
1034 If PACKET_TIMESTAMP is not set, a software timestamp generated inside 1035 For the mmap(2)ed ring buffers, such timestamps are stored in the
1035 the networking stack is used (the behavior before this setting was added). 1036 tpacket{,2,3}_hdr structure's tp_sec and tp_{n,u}sec members. To determine
1037 what kind of timestamp has been reported, the tp_status field is binary |'ed
1038 with the following possible bits ...
1039
1040 TP_STATUS_TS_SYS_HARDWARE
1041 TP_STATUS_TS_RAW_HARDWARE
1042 TP_STATUS_TS_SOFTWARE
1043
1044 ... that are equivalent to its SOF_TIMESTAMPING_* counterparts. For the
1045 RX_RING, if none of those 3 are set (i.e. PACKET_TIMESTAMP is not set),
1046 then this means that a software fallback was invoked *within* PF_PACKET's
1047 processing code (less precise).
1048
1049 Getting timestamps for the TX_RING works as follows: i) fill the ring frames,
1050 ii) call sendto() e.g. in blocking mode, iii) wait for status of relevant
1051 frames to be updated resp. the frame handed over to the application, iv) walk
1052 through the frames to pick up the individual hw/sw timestamps.
1053
1054 Only (!) if transmit timestamping is enabled, then these bits are combined
1055 with binary | with TP_STATUS_AVAILABLE, so you must check for that in your
1056 application (e.g. !(tp_status & (TP_STATUS_SEND_REQUEST | TP_STATUS_SENDING))
1057 in a first step to see if the frame belongs to the application, and then
1058 one can extract the type of timestamp in a second step from tp_status)!
1059
1060 If you don't care about them, thus having it disabled, checking for
1061 TP_STATUS_AVAILABLE resp. TP_STATUS_WRONG_FORMAT is sufficient. If in the
1062 TX_RING part only TP_STATUS_AVAILABLE is set, then the tp_sec and tp_{n,u}sec
1063 members do not contain a valid value. For TX_RINGs, by default no timestamp
1064 is generated!
1036 1065
1037 See include/linux/net_tstamp.h and Documentation/networking/timestamping 1066 See include/linux/net_tstamp.h and Documentation/networking/timestamping
1038 for more information on hardware timestamps. 1067 for more information on hardware timestamps.
1039 1068
1040 ------------------------------------------------------------------------------- 1069 -------------------------------------------------------------------------------
1041 + Miscellaneous bits 1070 + Miscellaneous bits
1042 ------------------------------------------------------------------------------- 1071 -------------------------------------------------------------------------------
1043 1072
1044 - Packet sockets work well together with Linux socket filters, thus you also 1073 - Packet sockets work well together with Linux socket filters, thus you also
1045 might want to have a look at Documentation/networking/filter.txt 1074 might want to have a look at Documentation/networking/filter.txt
1046 1075
1047 -------------------------------------------------------------------------------- 1076 --------------------------------------------------------------------------------
1048 + THANKS 1077 + THANKS
1049 -------------------------------------------------------------------------------- 1078 --------------------------------------------------------------------------------
1050 1079
1051 Jesse Brandeburg, for fixing my grammathical/spelling errors 1080 Jesse Brandeburg, for fixing my grammathical/spelling errors
1052 1081
1053 1082