Commit 2adee9b30d1382fba97825b9c50e4f50a0117c36

Authored by Suresh Siddha
Committed by Ingo Molnar
1 parent 1679f2710a

x86: fpu xstate split fix

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>

Showing 2 changed files with 8 additions and 3 deletions Inline Diff

include/asm-x86/thread_info.h
1 #ifndef _ASM_X86_THREAD_INFO_H 1 #ifndef _ASM_X86_THREAD_INFO_H
2 #ifdef CONFIG_X86_32 2 #ifdef CONFIG_X86_32
3 # include "thread_info_32.h" 3 # include "thread_info_32.h"
4 #else 4 #else
5 # include "thread_info_64.h" 5 # include "thread_info_64.h"
6 #endif 6 #endif
7 7
8 #ifndef __ASSEMBLY__ 8 #ifndef __ASSEMBLY__
9 extern void arch_task_cache_init(void); 9 extern void arch_task_cache_init(void);
10 extern void free_thread_info(struct thread_info *ti); 10 extern void free_thread_info(struct thread_info *ti);
11 extern int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src); 11 extern int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src);
12 #define arch_task_cache_init arch_task_cache_init
12 #endif 13 #endif
13 #endif /* _ASM_X86_THREAD_INFO_H */ 14 #endif /* _ASM_X86_THREAD_INFO_H */
14 15
1 /* 1 /*
2 * linux/kernel/fork.c 2 * linux/kernel/fork.c
3 * 3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds 4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */ 5 */
6 6
7 /* 7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call 8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others). 9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory 10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */ 12 */
13 13
14 #include <linux/slab.h> 14 #include <linux/slab.h>
15 #include <linux/init.h> 15 #include <linux/init.h>
16 #include <linux/unistd.h> 16 #include <linux/unistd.h>
17 #include <linux/module.h> 17 #include <linux/module.h>
18 #include <linux/vmalloc.h> 18 #include <linux/vmalloc.h>
19 #include <linux/completion.h> 19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h> 20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h> 21 #include <linux/personality.h>
22 #include <linux/mempolicy.h> 22 #include <linux/mempolicy.h>
23 #include <linux/sem.h> 23 #include <linux/sem.h>
24 #include <linux/file.h> 24 #include <linux/file.h>
25 #include <linux/key.h> 25 #include <linux/key.h>
26 #include <linux/binfmts.h> 26 #include <linux/binfmts.h>
27 #include <linux/mman.h> 27 #include <linux/mman.h>
28 #include <linux/fs.h> 28 #include <linux/fs.h>
29 #include <linux/nsproxy.h> 29 #include <linux/nsproxy.h>
30 #include <linux/capability.h> 30 #include <linux/capability.h>
31 #include <linux/cpu.h> 31 #include <linux/cpu.h>
32 #include <linux/cgroup.h> 32 #include <linux/cgroup.h>
33 #include <linux/security.h> 33 #include <linux/security.h>
34 #include <linux/swap.h> 34 #include <linux/swap.h>
35 #include <linux/syscalls.h> 35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h> 36 #include <linux/jiffies.h>
37 #include <linux/futex.h> 37 #include <linux/futex.h>
38 #include <linux/task_io_accounting_ops.h> 38 #include <linux/task_io_accounting_ops.h>
39 #include <linux/rcupdate.h> 39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h> 40 #include <linux/ptrace.h>
41 #include <linux/mount.h> 41 #include <linux/mount.h>
42 #include <linux/audit.h> 42 #include <linux/audit.h>
43 #include <linux/memcontrol.h> 43 #include <linux/memcontrol.h>
44 #include <linux/profile.h> 44 #include <linux/profile.h>
45 #include <linux/rmap.h> 45 #include <linux/rmap.h>
46 #include <linux/acct.h> 46 #include <linux/acct.h>
47 #include <linux/tsacct_kern.h> 47 #include <linux/tsacct_kern.h>
48 #include <linux/cn_proc.h> 48 #include <linux/cn_proc.h>
49 #include <linux/freezer.h> 49 #include <linux/freezer.h>
50 #include <linux/delayacct.h> 50 #include <linux/delayacct.h>
51 #include <linux/taskstats_kern.h> 51 #include <linux/taskstats_kern.h>
52 #include <linux/random.h> 52 #include <linux/random.h>
53 #include <linux/tty.h> 53 #include <linux/tty.h>
54 #include <linux/proc_fs.h> 54 #include <linux/proc_fs.h>
55 #include <linux/blkdev.h> 55 #include <linux/blkdev.h>
56 56
57 #include <asm/pgtable.h> 57 #include <asm/pgtable.h>
58 #include <asm/pgalloc.h> 58 #include <asm/pgalloc.h>
59 #include <asm/uaccess.h> 59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h> 60 #include <asm/mmu_context.h>
61 #include <asm/cacheflush.h> 61 #include <asm/cacheflush.h>
62 #include <asm/tlbflush.h> 62 #include <asm/tlbflush.h>
63 63
64 /* 64 /*
65 * Protected counters by write_lock_irq(&tasklist_lock) 65 * Protected counters by write_lock_irq(&tasklist_lock)
66 */ 66 */
67 unsigned long total_forks; /* Handle normal Linux uptimes. */ 67 unsigned long total_forks; /* Handle normal Linux uptimes. */
68 int nr_threads; /* The idle threads do not count.. */ 68 int nr_threads; /* The idle threads do not count.. */
69 69
70 int max_threads; /* tunable limit on nr_threads */ 70 int max_threads; /* tunable limit on nr_threads */
71 71
72 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 72 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
73 73
74 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 74 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
75 75
76 int nr_processes(void) 76 int nr_processes(void)
77 { 77 {
78 int cpu; 78 int cpu;
79 int total = 0; 79 int total = 0;
80 80
81 for_each_online_cpu(cpu) 81 for_each_online_cpu(cpu)
82 total += per_cpu(process_counts, cpu); 82 total += per_cpu(process_counts, cpu);
83 83
84 return total; 84 return total;
85 } 85 }
86 86
87 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR 87 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
88 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL) 88 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
89 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk)) 89 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
90 static struct kmem_cache *task_struct_cachep; 90 static struct kmem_cache *task_struct_cachep;
91 #endif 91 #endif
92 92
93 /* SLAB cache for signal_struct structures (tsk->signal) */ 93 /* SLAB cache for signal_struct structures (tsk->signal) */
94 static struct kmem_cache *signal_cachep; 94 static struct kmem_cache *signal_cachep;
95 95
96 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 96 /* SLAB cache for sighand_struct structures (tsk->sighand) */
97 struct kmem_cache *sighand_cachep; 97 struct kmem_cache *sighand_cachep;
98 98
99 /* SLAB cache for files_struct structures (tsk->files) */ 99 /* SLAB cache for files_struct structures (tsk->files) */
100 struct kmem_cache *files_cachep; 100 struct kmem_cache *files_cachep;
101 101
102 /* SLAB cache for fs_struct structures (tsk->fs) */ 102 /* SLAB cache for fs_struct structures (tsk->fs) */
103 struct kmem_cache *fs_cachep; 103 struct kmem_cache *fs_cachep;
104 104
105 /* SLAB cache for vm_area_struct structures */ 105 /* SLAB cache for vm_area_struct structures */
106 struct kmem_cache *vm_area_cachep; 106 struct kmem_cache *vm_area_cachep;
107 107
108 /* SLAB cache for mm_struct structures (tsk->mm) */ 108 /* SLAB cache for mm_struct structures (tsk->mm) */
109 static struct kmem_cache *mm_cachep; 109 static struct kmem_cache *mm_cachep;
110 110
111 void free_task(struct task_struct *tsk) 111 void free_task(struct task_struct *tsk)
112 { 112 {
113 prop_local_destroy_single(&tsk->dirties); 113 prop_local_destroy_single(&tsk->dirties);
114 free_thread_info(tsk->stack); 114 free_thread_info(tsk->stack);
115 rt_mutex_debug_task_free(tsk); 115 rt_mutex_debug_task_free(tsk);
116 free_task_struct(tsk); 116 free_task_struct(tsk);
117 } 117 }
118 EXPORT_SYMBOL(free_task); 118 EXPORT_SYMBOL(free_task);
119 119
120 void __put_task_struct(struct task_struct *tsk) 120 void __put_task_struct(struct task_struct *tsk)
121 { 121 {
122 WARN_ON(!tsk->exit_state); 122 WARN_ON(!tsk->exit_state);
123 WARN_ON(atomic_read(&tsk->usage)); 123 WARN_ON(atomic_read(&tsk->usage));
124 WARN_ON(tsk == current); 124 WARN_ON(tsk == current);
125 125
126 security_task_free(tsk); 126 security_task_free(tsk);
127 free_uid(tsk->user); 127 free_uid(tsk->user);
128 put_group_info(tsk->group_info); 128 put_group_info(tsk->group_info);
129 delayacct_tsk_free(tsk); 129 delayacct_tsk_free(tsk);
130 130
131 if (!profile_handoff_task(tsk)) 131 if (!profile_handoff_task(tsk))
132 free_task(tsk); 132 free_task(tsk);
133 } 133 }
134 134
135 void __attribute__((weak)) arch_task_cache_init(void) 135 /*
136 { 136 * macro override instead of weak attribute alias, to workaround
137 } 137 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
138 */
139 #ifndef arch_task_cache_init
140 #define arch_task_cache_init()
141 #endif
138 142
139 void __init fork_init(unsigned long mempages) 143 void __init fork_init(unsigned long mempages)
140 { 144 {
141 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR 145 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
142 #ifndef ARCH_MIN_TASKALIGN 146 #ifndef ARCH_MIN_TASKALIGN
143 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES 147 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
144 #endif 148 #endif
145 /* create a slab on which task_structs can be allocated */ 149 /* create a slab on which task_structs can be allocated */
146 task_struct_cachep = 150 task_struct_cachep =
147 kmem_cache_create("task_struct", sizeof(struct task_struct), 151 kmem_cache_create("task_struct", sizeof(struct task_struct),
148 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL); 152 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
149 #endif 153 #endif
150 154
151 /* do the arch specific task caches init */ 155 /* do the arch specific task caches init */
152 arch_task_cache_init(); 156 arch_task_cache_init();
153 157
154 /* 158 /*
155 * The default maximum number of threads is set to a safe 159 * The default maximum number of threads is set to a safe
156 * value: the thread structures can take up at most half 160 * value: the thread structures can take up at most half
157 * of memory. 161 * of memory.
158 */ 162 */
159 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE); 163 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
160 164
161 /* 165 /*
162 * we need to allow at least 20 threads to boot a system 166 * we need to allow at least 20 threads to boot a system
163 */ 167 */
164 if(max_threads < 20) 168 if(max_threads < 20)
165 max_threads = 20; 169 max_threads = 20;
166 170
167 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 171 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
168 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 172 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
169 init_task.signal->rlim[RLIMIT_SIGPENDING] = 173 init_task.signal->rlim[RLIMIT_SIGPENDING] =
170 init_task.signal->rlim[RLIMIT_NPROC]; 174 init_task.signal->rlim[RLIMIT_NPROC];
171 } 175 }
172 176
173 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst, 177 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
174 struct task_struct *src) 178 struct task_struct *src)
175 { 179 {
176 *dst = *src; 180 *dst = *src;
177 return 0; 181 return 0;
178 } 182 }
179 183
180 static struct task_struct *dup_task_struct(struct task_struct *orig) 184 static struct task_struct *dup_task_struct(struct task_struct *orig)
181 { 185 {
182 struct task_struct *tsk; 186 struct task_struct *tsk;
183 struct thread_info *ti; 187 struct thread_info *ti;
184 int err; 188 int err;
185 189
186 prepare_to_copy(orig); 190 prepare_to_copy(orig);
187 191
188 tsk = alloc_task_struct(); 192 tsk = alloc_task_struct();
189 if (!tsk) 193 if (!tsk)
190 return NULL; 194 return NULL;
191 195
192 ti = alloc_thread_info(tsk); 196 ti = alloc_thread_info(tsk);
193 if (!ti) { 197 if (!ti) {
194 free_task_struct(tsk); 198 free_task_struct(tsk);
195 return NULL; 199 return NULL;
196 } 200 }
197 201
198 err = arch_dup_task_struct(tsk, orig); 202 err = arch_dup_task_struct(tsk, orig);
199 if (err) 203 if (err)
200 goto out; 204 goto out;
201 205
202 tsk->stack = ti; 206 tsk->stack = ti;
203 207
204 err = prop_local_init_single(&tsk->dirties); 208 err = prop_local_init_single(&tsk->dirties);
205 if (err) 209 if (err)
206 goto out; 210 goto out;
207 211
208 setup_thread_stack(tsk, orig); 212 setup_thread_stack(tsk, orig);
209 213
210 #ifdef CONFIG_CC_STACKPROTECTOR 214 #ifdef CONFIG_CC_STACKPROTECTOR
211 tsk->stack_canary = get_random_int(); 215 tsk->stack_canary = get_random_int();
212 #endif 216 #endif
213 217
214 /* One for us, one for whoever does the "release_task()" (usually parent) */ 218 /* One for us, one for whoever does the "release_task()" (usually parent) */
215 atomic_set(&tsk->usage,2); 219 atomic_set(&tsk->usage,2);
216 atomic_set(&tsk->fs_excl, 0); 220 atomic_set(&tsk->fs_excl, 0);
217 #ifdef CONFIG_BLK_DEV_IO_TRACE 221 #ifdef CONFIG_BLK_DEV_IO_TRACE
218 tsk->btrace_seq = 0; 222 tsk->btrace_seq = 0;
219 #endif 223 #endif
220 tsk->splice_pipe = NULL; 224 tsk->splice_pipe = NULL;
221 return tsk; 225 return tsk;
222 226
223 out: 227 out:
224 free_thread_info(ti); 228 free_thread_info(ti);
225 free_task_struct(tsk); 229 free_task_struct(tsk);
226 return NULL; 230 return NULL;
227 } 231 }
228 232
229 #ifdef CONFIG_MMU 233 #ifdef CONFIG_MMU
230 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 234 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
231 { 235 {
232 struct vm_area_struct *mpnt, *tmp, **pprev; 236 struct vm_area_struct *mpnt, *tmp, **pprev;
233 struct rb_node **rb_link, *rb_parent; 237 struct rb_node **rb_link, *rb_parent;
234 int retval; 238 int retval;
235 unsigned long charge; 239 unsigned long charge;
236 struct mempolicy *pol; 240 struct mempolicy *pol;
237 241
238 down_write(&oldmm->mmap_sem); 242 down_write(&oldmm->mmap_sem);
239 flush_cache_dup_mm(oldmm); 243 flush_cache_dup_mm(oldmm);
240 /* 244 /*
241 * Not linked in yet - no deadlock potential: 245 * Not linked in yet - no deadlock potential:
242 */ 246 */
243 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING); 247 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
244 248
245 mm->locked_vm = 0; 249 mm->locked_vm = 0;
246 mm->mmap = NULL; 250 mm->mmap = NULL;
247 mm->mmap_cache = NULL; 251 mm->mmap_cache = NULL;
248 mm->free_area_cache = oldmm->mmap_base; 252 mm->free_area_cache = oldmm->mmap_base;
249 mm->cached_hole_size = ~0UL; 253 mm->cached_hole_size = ~0UL;
250 mm->map_count = 0; 254 mm->map_count = 0;
251 cpus_clear(mm->cpu_vm_mask); 255 cpus_clear(mm->cpu_vm_mask);
252 mm->mm_rb = RB_ROOT; 256 mm->mm_rb = RB_ROOT;
253 rb_link = &mm->mm_rb.rb_node; 257 rb_link = &mm->mm_rb.rb_node;
254 rb_parent = NULL; 258 rb_parent = NULL;
255 pprev = &mm->mmap; 259 pprev = &mm->mmap;
256 260
257 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 261 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
258 struct file *file; 262 struct file *file;
259 263
260 if (mpnt->vm_flags & VM_DONTCOPY) { 264 if (mpnt->vm_flags & VM_DONTCOPY) {
261 long pages = vma_pages(mpnt); 265 long pages = vma_pages(mpnt);
262 mm->total_vm -= pages; 266 mm->total_vm -= pages;
263 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file, 267 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
264 -pages); 268 -pages);
265 continue; 269 continue;
266 } 270 }
267 charge = 0; 271 charge = 0;
268 if (mpnt->vm_flags & VM_ACCOUNT) { 272 if (mpnt->vm_flags & VM_ACCOUNT) {
269 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT; 273 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
270 if (security_vm_enough_memory(len)) 274 if (security_vm_enough_memory(len))
271 goto fail_nomem; 275 goto fail_nomem;
272 charge = len; 276 charge = len;
273 } 277 }
274 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 278 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
275 if (!tmp) 279 if (!tmp)
276 goto fail_nomem; 280 goto fail_nomem;
277 *tmp = *mpnt; 281 *tmp = *mpnt;
278 pol = mpol_copy(vma_policy(mpnt)); 282 pol = mpol_copy(vma_policy(mpnt));
279 retval = PTR_ERR(pol); 283 retval = PTR_ERR(pol);
280 if (IS_ERR(pol)) 284 if (IS_ERR(pol))
281 goto fail_nomem_policy; 285 goto fail_nomem_policy;
282 vma_set_policy(tmp, pol); 286 vma_set_policy(tmp, pol);
283 tmp->vm_flags &= ~VM_LOCKED; 287 tmp->vm_flags &= ~VM_LOCKED;
284 tmp->vm_mm = mm; 288 tmp->vm_mm = mm;
285 tmp->vm_next = NULL; 289 tmp->vm_next = NULL;
286 anon_vma_link(tmp); 290 anon_vma_link(tmp);
287 file = tmp->vm_file; 291 file = tmp->vm_file;
288 if (file) { 292 if (file) {
289 struct inode *inode = file->f_path.dentry->d_inode; 293 struct inode *inode = file->f_path.dentry->d_inode;
290 get_file(file); 294 get_file(file);
291 if (tmp->vm_flags & VM_DENYWRITE) 295 if (tmp->vm_flags & VM_DENYWRITE)
292 atomic_dec(&inode->i_writecount); 296 atomic_dec(&inode->i_writecount);
293 297
294 /* insert tmp into the share list, just after mpnt */ 298 /* insert tmp into the share list, just after mpnt */
295 spin_lock(&file->f_mapping->i_mmap_lock); 299 spin_lock(&file->f_mapping->i_mmap_lock);
296 tmp->vm_truncate_count = mpnt->vm_truncate_count; 300 tmp->vm_truncate_count = mpnt->vm_truncate_count;
297 flush_dcache_mmap_lock(file->f_mapping); 301 flush_dcache_mmap_lock(file->f_mapping);
298 vma_prio_tree_add(tmp, mpnt); 302 vma_prio_tree_add(tmp, mpnt);
299 flush_dcache_mmap_unlock(file->f_mapping); 303 flush_dcache_mmap_unlock(file->f_mapping);
300 spin_unlock(&file->f_mapping->i_mmap_lock); 304 spin_unlock(&file->f_mapping->i_mmap_lock);
301 } 305 }
302 306
303 /* 307 /*
304 * Link in the new vma and copy the page table entries. 308 * Link in the new vma and copy the page table entries.
305 */ 309 */
306 *pprev = tmp; 310 *pprev = tmp;
307 pprev = &tmp->vm_next; 311 pprev = &tmp->vm_next;
308 312
309 __vma_link_rb(mm, tmp, rb_link, rb_parent); 313 __vma_link_rb(mm, tmp, rb_link, rb_parent);
310 rb_link = &tmp->vm_rb.rb_right; 314 rb_link = &tmp->vm_rb.rb_right;
311 rb_parent = &tmp->vm_rb; 315 rb_parent = &tmp->vm_rb;
312 316
313 mm->map_count++; 317 mm->map_count++;
314 retval = copy_page_range(mm, oldmm, mpnt); 318 retval = copy_page_range(mm, oldmm, mpnt);
315 319
316 if (tmp->vm_ops && tmp->vm_ops->open) 320 if (tmp->vm_ops && tmp->vm_ops->open)
317 tmp->vm_ops->open(tmp); 321 tmp->vm_ops->open(tmp);
318 322
319 if (retval) 323 if (retval)
320 goto out; 324 goto out;
321 } 325 }
322 /* a new mm has just been created */ 326 /* a new mm has just been created */
323 arch_dup_mmap(oldmm, mm); 327 arch_dup_mmap(oldmm, mm);
324 retval = 0; 328 retval = 0;
325 out: 329 out:
326 up_write(&mm->mmap_sem); 330 up_write(&mm->mmap_sem);
327 flush_tlb_mm(oldmm); 331 flush_tlb_mm(oldmm);
328 up_write(&oldmm->mmap_sem); 332 up_write(&oldmm->mmap_sem);
329 return retval; 333 return retval;
330 fail_nomem_policy: 334 fail_nomem_policy:
331 kmem_cache_free(vm_area_cachep, tmp); 335 kmem_cache_free(vm_area_cachep, tmp);
332 fail_nomem: 336 fail_nomem:
333 retval = -ENOMEM; 337 retval = -ENOMEM;
334 vm_unacct_memory(charge); 338 vm_unacct_memory(charge);
335 goto out; 339 goto out;
336 } 340 }
337 341
338 static inline int mm_alloc_pgd(struct mm_struct * mm) 342 static inline int mm_alloc_pgd(struct mm_struct * mm)
339 { 343 {
340 mm->pgd = pgd_alloc(mm); 344 mm->pgd = pgd_alloc(mm);
341 if (unlikely(!mm->pgd)) 345 if (unlikely(!mm->pgd))
342 return -ENOMEM; 346 return -ENOMEM;
343 return 0; 347 return 0;
344 } 348 }
345 349
346 static inline void mm_free_pgd(struct mm_struct * mm) 350 static inline void mm_free_pgd(struct mm_struct * mm)
347 { 351 {
348 pgd_free(mm, mm->pgd); 352 pgd_free(mm, mm->pgd);
349 } 353 }
350 #else 354 #else
351 #define dup_mmap(mm, oldmm) (0) 355 #define dup_mmap(mm, oldmm) (0)
352 #define mm_alloc_pgd(mm) (0) 356 #define mm_alloc_pgd(mm) (0)
353 #define mm_free_pgd(mm) 357 #define mm_free_pgd(mm)
354 #endif /* CONFIG_MMU */ 358 #endif /* CONFIG_MMU */
355 359
356 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 360 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
357 361
358 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 362 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
359 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 363 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
360 364
361 #include <linux/init_task.h> 365 #include <linux/init_task.h>
362 366
363 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p) 367 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
364 { 368 {
365 atomic_set(&mm->mm_users, 1); 369 atomic_set(&mm->mm_users, 1);
366 atomic_set(&mm->mm_count, 1); 370 atomic_set(&mm->mm_count, 1);
367 init_rwsem(&mm->mmap_sem); 371 init_rwsem(&mm->mmap_sem);
368 INIT_LIST_HEAD(&mm->mmlist); 372 INIT_LIST_HEAD(&mm->mmlist);
369 mm->flags = (current->mm) ? current->mm->flags 373 mm->flags = (current->mm) ? current->mm->flags
370 : MMF_DUMP_FILTER_DEFAULT; 374 : MMF_DUMP_FILTER_DEFAULT;
371 mm->core_waiters = 0; 375 mm->core_waiters = 0;
372 mm->nr_ptes = 0; 376 mm->nr_ptes = 0;
373 set_mm_counter(mm, file_rss, 0); 377 set_mm_counter(mm, file_rss, 0);
374 set_mm_counter(mm, anon_rss, 0); 378 set_mm_counter(mm, anon_rss, 0);
375 spin_lock_init(&mm->page_table_lock); 379 spin_lock_init(&mm->page_table_lock);
376 rwlock_init(&mm->ioctx_list_lock); 380 rwlock_init(&mm->ioctx_list_lock);
377 mm->ioctx_list = NULL; 381 mm->ioctx_list = NULL;
378 mm->free_area_cache = TASK_UNMAPPED_BASE; 382 mm->free_area_cache = TASK_UNMAPPED_BASE;
379 mm->cached_hole_size = ~0UL; 383 mm->cached_hole_size = ~0UL;
380 mm_init_cgroup(mm, p); 384 mm_init_cgroup(mm, p);
381 385
382 if (likely(!mm_alloc_pgd(mm))) { 386 if (likely(!mm_alloc_pgd(mm))) {
383 mm->def_flags = 0; 387 mm->def_flags = 0;
384 return mm; 388 return mm;
385 } 389 }
386 390
387 mm_free_cgroup(mm); 391 mm_free_cgroup(mm);
388 free_mm(mm); 392 free_mm(mm);
389 return NULL; 393 return NULL;
390 } 394 }
391 395
392 /* 396 /*
393 * Allocate and initialize an mm_struct. 397 * Allocate and initialize an mm_struct.
394 */ 398 */
395 struct mm_struct * mm_alloc(void) 399 struct mm_struct * mm_alloc(void)
396 { 400 {
397 struct mm_struct * mm; 401 struct mm_struct * mm;
398 402
399 mm = allocate_mm(); 403 mm = allocate_mm();
400 if (mm) { 404 if (mm) {
401 memset(mm, 0, sizeof(*mm)); 405 memset(mm, 0, sizeof(*mm));
402 mm = mm_init(mm, current); 406 mm = mm_init(mm, current);
403 } 407 }
404 return mm; 408 return mm;
405 } 409 }
406 410
407 /* 411 /*
408 * Called when the last reference to the mm 412 * Called when the last reference to the mm
409 * is dropped: either by a lazy thread or by 413 * is dropped: either by a lazy thread or by
410 * mmput. Free the page directory and the mm. 414 * mmput. Free the page directory and the mm.
411 */ 415 */
412 void __mmdrop(struct mm_struct *mm) 416 void __mmdrop(struct mm_struct *mm)
413 { 417 {
414 BUG_ON(mm == &init_mm); 418 BUG_ON(mm == &init_mm);
415 mm_free_pgd(mm); 419 mm_free_pgd(mm);
416 destroy_context(mm); 420 destroy_context(mm);
417 free_mm(mm); 421 free_mm(mm);
418 } 422 }
419 EXPORT_SYMBOL_GPL(__mmdrop); 423 EXPORT_SYMBOL_GPL(__mmdrop);
420 424
421 /* 425 /*
422 * Decrement the use count and release all resources for an mm. 426 * Decrement the use count and release all resources for an mm.
423 */ 427 */
424 void mmput(struct mm_struct *mm) 428 void mmput(struct mm_struct *mm)
425 { 429 {
426 might_sleep(); 430 might_sleep();
427 431
428 if (atomic_dec_and_test(&mm->mm_users)) { 432 if (atomic_dec_and_test(&mm->mm_users)) {
429 exit_aio(mm); 433 exit_aio(mm);
430 exit_mmap(mm); 434 exit_mmap(mm);
431 if (!list_empty(&mm->mmlist)) { 435 if (!list_empty(&mm->mmlist)) {
432 spin_lock(&mmlist_lock); 436 spin_lock(&mmlist_lock);
433 list_del(&mm->mmlist); 437 list_del(&mm->mmlist);
434 spin_unlock(&mmlist_lock); 438 spin_unlock(&mmlist_lock);
435 } 439 }
436 put_swap_token(mm); 440 put_swap_token(mm);
437 mm_free_cgroup(mm); 441 mm_free_cgroup(mm);
438 mmdrop(mm); 442 mmdrop(mm);
439 } 443 }
440 } 444 }
441 EXPORT_SYMBOL_GPL(mmput); 445 EXPORT_SYMBOL_GPL(mmput);
442 446
443 /** 447 /**
444 * get_task_mm - acquire a reference to the task's mm 448 * get_task_mm - acquire a reference to the task's mm
445 * 449 *
446 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning 450 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
447 * this kernel workthread has transiently adopted a user mm with use_mm, 451 * this kernel workthread has transiently adopted a user mm with use_mm,
448 * to do its AIO) is not set and if so returns a reference to it, after 452 * to do its AIO) is not set and if so returns a reference to it, after
449 * bumping up the use count. User must release the mm via mmput() 453 * bumping up the use count. User must release the mm via mmput()
450 * after use. Typically used by /proc and ptrace. 454 * after use. Typically used by /proc and ptrace.
451 */ 455 */
452 struct mm_struct *get_task_mm(struct task_struct *task) 456 struct mm_struct *get_task_mm(struct task_struct *task)
453 { 457 {
454 struct mm_struct *mm; 458 struct mm_struct *mm;
455 459
456 task_lock(task); 460 task_lock(task);
457 mm = task->mm; 461 mm = task->mm;
458 if (mm) { 462 if (mm) {
459 if (task->flags & PF_BORROWED_MM) 463 if (task->flags & PF_BORROWED_MM)
460 mm = NULL; 464 mm = NULL;
461 else 465 else
462 atomic_inc(&mm->mm_users); 466 atomic_inc(&mm->mm_users);
463 } 467 }
464 task_unlock(task); 468 task_unlock(task);
465 return mm; 469 return mm;
466 } 470 }
467 EXPORT_SYMBOL_GPL(get_task_mm); 471 EXPORT_SYMBOL_GPL(get_task_mm);
468 472
469 /* Please note the differences between mmput and mm_release. 473 /* Please note the differences between mmput and mm_release.
470 * mmput is called whenever we stop holding onto a mm_struct, 474 * mmput is called whenever we stop holding onto a mm_struct,
471 * error success whatever. 475 * error success whatever.
472 * 476 *
473 * mm_release is called after a mm_struct has been removed 477 * mm_release is called after a mm_struct has been removed
474 * from the current process. 478 * from the current process.
475 * 479 *
476 * This difference is important for error handling, when we 480 * This difference is important for error handling, when we
477 * only half set up a mm_struct for a new process and need to restore 481 * only half set up a mm_struct for a new process and need to restore
478 * the old one. Because we mmput the new mm_struct before 482 * the old one. Because we mmput the new mm_struct before
479 * restoring the old one. . . 483 * restoring the old one. . .
480 * Eric Biederman 10 January 1998 484 * Eric Biederman 10 January 1998
481 */ 485 */
482 void mm_release(struct task_struct *tsk, struct mm_struct *mm) 486 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
483 { 487 {
484 struct completion *vfork_done = tsk->vfork_done; 488 struct completion *vfork_done = tsk->vfork_done;
485 489
486 /* Get rid of any cached register state */ 490 /* Get rid of any cached register state */
487 deactivate_mm(tsk, mm); 491 deactivate_mm(tsk, mm);
488 492
489 /* notify parent sleeping on vfork() */ 493 /* notify parent sleeping on vfork() */
490 if (vfork_done) { 494 if (vfork_done) {
491 tsk->vfork_done = NULL; 495 tsk->vfork_done = NULL;
492 complete(vfork_done); 496 complete(vfork_done);
493 } 497 }
494 498
495 /* 499 /*
496 * If we're exiting normally, clear a user-space tid field if 500 * If we're exiting normally, clear a user-space tid field if
497 * requested. We leave this alone when dying by signal, to leave 501 * requested. We leave this alone when dying by signal, to leave
498 * the value intact in a core dump, and to save the unnecessary 502 * the value intact in a core dump, and to save the unnecessary
499 * trouble otherwise. Userland only wants this done for a sys_exit. 503 * trouble otherwise. Userland only wants this done for a sys_exit.
500 */ 504 */
501 if (tsk->clear_child_tid 505 if (tsk->clear_child_tid
502 && !(tsk->flags & PF_SIGNALED) 506 && !(tsk->flags & PF_SIGNALED)
503 && atomic_read(&mm->mm_users) > 1) { 507 && atomic_read(&mm->mm_users) > 1) {
504 u32 __user * tidptr = tsk->clear_child_tid; 508 u32 __user * tidptr = tsk->clear_child_tid;
505 tsk->clear_child_tid = NULL; 509 tsk->clear_child_tid = NULL;
506 510
507 /* 511 /*
508 * We don't check the error code - if userspace has 512 * We don't check the error code - if userspace has
509 * not set up a proper pointer then tough luck. 513 * not set up a proper pointer then tough luck.
510 */ 514 */
511 put_user(0, tidptr); 515 put_user(0, tidptr);
512 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0); 516 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
513 } 517 }
514 } 518 }
515 519
516 /* 520 /*
517 * Allocate a new mm structure and copy contents from the 521 * Allocate a new mm structure and copy contents from the
518 * mm structure of the passed in task structure. 522 * mm structure of the passed in task structure.
519 */ 523 */
520 static struct mm_struct *dup_mm(struct task_struct *tsk) 524 static struct mm_struct *dup_mm(struct task_struct *tsk)
521 { 525 {
522 struct mm_struct *mm, *oldmm = current->mm; 526 struct mm_struct *mm, *oldmm = current->mm;
523 int err; 527 int err;
524 528
525 if (!oldmm) 529 if (!oldmm)
526 return NULL; 530 return NULL;
527 531
528 mm = allocate_mm(); 532 mm = allocate_mm();
529 if (!mm) 533 if (!mm)
530 goto fail_nomem; 534 goto fail_nomem;
531 535
532 memcpy(mm, oldmm, sizeof(*mm)); 536 memcpy(mm, oldmm, sizeof(*mm));
533 537
534 /* Initializing for Swap token stuff */ 538 /* Initializing for Swap token stuff */
535 mm->token_priority = 0; 539 mm->token_priority = 0;
536 mm->last_interval = 0; 540 mm->last_interval = 0;
537 541
538 if (!mm_init(mm, tsk)) 542 if (!mm_init(mm, tsk))
539 goto fail_nomem; 543 goto fail_nomem;
540 544
541 if (init_new_context(tsk, mm)) 545 if (init_new_context(tsk, mm))
542 goto fail_nocontext; 546 goto fail_nocontext;
543 547
544 err = dup_mmap(mm, oldmm); 548 err = dup_mmap(mm, oldmm);
545 if (err) 549 if (err)
546 goto free_pt; 550 goto free_pt;
547 551
548 mm->hiwater_rss = get_mm_rss(mm); 552 mm->hiwater_rss = get_mm_rss(mm);
549 mm->hiwater_vm = mm->total_vm; 553 mm->hiwater_vm = mm->total_vm;
550 554
551 return mm; 555 return mm;
552 556
553 free_pt: 557 free_pt:
554 mmput(mm); 558 mmput(mm);
555 559
556 fail_nomem: 560 fail_nomem:
557 return NULL; 561 return NULL;
558 562
559 fail_nocontext: 563 fail_nocontext:
560 /* 564 /*
561 * If init_new_context() failed, we cannot use mmput() to free the mm 565 * If init_new_context() failed, we cannot use mmput() to free the mm
562 * because it calls destroy_context() 566 * because it calls destroy_context()
563 */ 567 */
564 mm_free_pgd(mm); 568 mm_free_pgd(mm);
565 free_mm(mm); 569 free_mm(mm);
566 return NULL; 570 return NULL;
567 } 571 }
568 572
569 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk) 573 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
570 { 574 {
571 struct mm_struct * mm, *oldmm; 575 struct mm_struct * mm, *oldmm;
572 int retval; 576 int retval;
573 577
574 tsk->min_flt = tsk->maj_flt = 0; 578 tsk->min_flt = tsk->maj_flt = 0;
575 tsk->nvcsw = tsk->nivcsw = 0; 579 tsk->nvcsw = tsk->nivcsw = 0;
576 580
577 tsk->mm = NULL; 581 tsk->mm = NULL;
578 tsk->active_mm = NULL; 582 tsk->active_mm = NULL;
579 583
580 /* 584 /*
581 * Are we cloning a kernel thread? 585 * Are we cloning a kernel thread?
582 * 586 *
583 * We need to steal a active VM for that.. 587 * We need to steal a active VM for that..
584 */ 588 */
585 oldmm = current->mm; 589 oldmm = current->mm;
586 if (!oldmm) 590 if (!oldmm)
587 return 0; 591 return 0;
588 592
589 if (clone_flags & CLONE_VM) { 593 if (clone_flags & CLONE_VM) {
590 atomic_inc(&oldmm->mm_users); 594 atomic_inc(&oldmm->mm_users);
591 mm = oldmm; 595 mm = oldmm;
592 goto good_mm; 596 goto good_mm;
593 } 597 }
594 598
595 retval = -ENOMEM; 599 retval = -ENOMEM;
596 mm = dup_mm(tsk); 600 mm = dup_mm(tsk);
597 if (!mm) 601 if (!mm)
598 goto fail_nomem; 602 goto fail_nomem;
599 603
600 good_mm: 604 good_mm:
601 /* Initializing for Swap token stuff */ 605 /* Initializing for Swap token stuff */
602 mm->token_priority = 0; 606 mm->token_priority = 0;
603 mm->last_interval = 0; 607 mm->last_interval = 0;
604 608
605 tsk->mm = mm; 609 tsk->mm = mm;
606 tsk->active_mm = mm; 610 tsk->active_mm = mm;
607 return 0; 611 return 0;
608 612
609 fail_nomem: 613 fail_nomem:
610 return retval; 614 return retval;
611 } 615 }
612 616
613 static struct fs_struct *__copy_fs_struct(struct fs_struct *old) 617 static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
614 { 618 {
615 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL); 619 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
616 /* We don't need to lock fs - think why ;-) */ 620 /* We don't need to lock fs - think why ;-) */
617 if (fs) { 621 if (fs) {
618 atomic_set(&fs->count, 1); 622 atomic_set(&fs->count, 1);
619 rwlock_init(&fs->lock); 623 rwlock_init(&fs->lock);
620 fs->umask = old->umask; 624 fs->umask = old->umask;
621 read_lock(&old->lock); 625 read_lock(&old->lock);
622 fs->root = old->root; 626 fs->root = old->root;
623 path_get(&old->root); 627 path_get(&old->root);
624 fs->pwd = old->pwd; 628 fs->pwd = old->pwd;
625 path_get(&old->pwd); 629 path_get(&old->pwd);
626 if (old->altroot.dentry) { 630 if (old->altroot.dentry) {
627 fs->altroot = old->altroot; 631 fs->altroot = old->altroot;
628 path_get(&old->altroot); 632 path_get(&old->altroot);
629 } else { 633 } else {
630 fs->altroot.mnt = NULL; 634 fs->altroot.mnt = NULL;
631 fs->altroot.dentry = NULL; 635 fs->altroot.dentry = NULL;
632 } 636 }
633 read_unlock(&old->lock); 637 read_unlock(&old->lock);
634 } 638 }
635 return fs; 639 return fs;
636 } 640 }
637 641
638 struct fs_struct *copy_fs_struct(struct fs_struct *old) 642 struct fs_struct *copy_fs_struct(struct fs_struct *old)
639 { 643 {
640 return __copy_fs_struct(old); 644 return __copy_fs_struct(old);
641 } 645 }
642 646
643 EXPORT_SYMBOL_GPL(copy_fs_struct); 647 EXPORT_SYMBOL_GPL(copy_fs_struct);
644 648
645 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 649 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
646 { 650 {
647 if (clone_flags & CLONE_FS) { 651 if (clone_flags & CLONE_FS) {
648 atomic_inc(&current->fs->count); 652 atomic_inc(&current->fs->count);
649 return 0; 653 return 0;
650 } 654 }
651 tsk->fs = __copy_fs_struct(current->fs); 655 tsk->fs = __copy_fs_struct(current->fs);
652 if (!tsk->fs) 656 if (!tsk->fs)
653 return -ENOMEM; 657 return -ENOMEM;
654 return 0; 658 return 0;
655 } 659 }
656 660
657 static int count_open_files(struct fdtable *fdt) 661 static int count_open_files(struct fdtable *fdt)
658 { 662 {
659 int size = fdt->max_fds; 663 int size = fdt->max_fds;
660 int i; 664 int i;
661 665
662 /* Find the last open fd */ 666 /* Find the last open fd */
663 for (i = size/(8*sizeof(long)); i > 0; ) { 667 for (i = size/(8*sizeof(long)); i > 0; ) {
664 if (fdt->open_fds->fds_bits[--i]) 668 if (fdt->open_fds->fds_bits[--i])
665 break; 669 break;
666 } 670 }
667 i = (i+1) * 8 * sizeof(long); 671 i = (i+1) * 8 * sizeof(long);
668 return i; 672 return i;
669 } 673 }
670 674
671 static struct files_struct *alloc_files(void) 675 static struct files_struct *alloc_files(void)
672 { 676 {
673 struct files_struct *newf; 677 struct files_struct *newf;
674 struct fdtable *fdt; 678 struct fdtable *fdt;
675 679
676 newf = kmem_cache_alloc(files_cachep, GFP_KERNEL); 680 newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
677 if (!newf) 681 if (!newf)
678 goto out; 682 goto out;
679 683
680 atomic_set(&newf->count, 1); 684 atomic_set(&newf->count, 1);
681 685
682 spin_lock_init(&newf->file_lock); 686 spin_lock_init(&newf->file_lock);
683 newf->next_fd = 0; 687 newf->next_fd = 0;
684 fdt = &newf->fdtab; 688 fdt = &newf->fdtab;
685 fdt->max_fds = NR_OPEN_DEFAULT; 689 fdt->max_fds = NR_OPEN_DEFAULT;
686 fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init; 690 fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
687 fdt->open_fds = (fd_set *)&newf->open_fds_init; 691 fdt->open_fds = (fd_set *)&newf->open_fds_init;
688 fdt->fd = &newf->fd_array[0]; 692 fdt->fd = &newf->fd_array[0];
689 INIT_RCU_HEAD(&fdt->rcu); 693 INIT_RCU_HEAD(&fdt->rcu);
690 fdt->next = NULL; 694 fdt->next = NULL;
691 rcu_assign_pointer(newf->fdt, fdt); 695 rcu_assign_pointer(newf->fdt, fdt);
692 out: 696 out:
693 return newf; 697 return newf;
694 } 698 }
695 699
696 /* 700 /*
697 * Allocate a new files structure and copy contents from the 701 * Allocate a new files structure and copy contents from the
698 * passed in files structure. 702 * passed in files structure.
699 * errorp will be valid only when the returned files_struct is NULL. 703 * errorp will be valid only when the returned files_struct is NULL.
700 */ 704 */
701 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp) 705 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
702 { 706 {
703 struct files_struct *newf; 707 struct files_struct *newf;
704 struct file **old_fds, **new_fds; 708 struct file **old_fds, **new_fds;
705 int open_files, size, i; 709 int open_files, size, i;
706 struct fdtable *old_fdt, *new_fdt; 710 struct fdtable *old_fdt, *new_fdt;
707 711
708 *errorp = -ENOMEM; 712 *errorp = -ENOMEM;
709 newf = alloc_files(); 713 newf = alloc_files();
710 if (!newf) 714 if (!newf)
711 goto out; 715 goto out;
712 716
713 spin_lock(&oldf->file_lock); 717 spin_lock(&oldf->file_lock);
714 old_fdt = files_fdtable(oldf); 718 old_fdt = files_fdtable(oldf);
715 new_fdt = files_fdtable(newf); 719 new_fdt = files_fdtable(newf);
716 open_files = count_open_files(old_fdt); 720 open_files = count_open_files(old_fdt);
717 721
718 /* 722 /*
719 * Check whether we need to allocate a larger fd array and fd set. 723 * Check whether we need to allocate a larger fd array and fd set.
720 * Note: we're not a clone task, so the open count won't change. 724 * Note: we're not a clone task, so the open count won't change.
721 */ 725 */
722 if (open_files > new_fdt->max_fds) { 726 if (open_files > new_fdt->max_fds) {
723 new_fdt->max_fds = 0; 727 new_fdt->max_fds = 0;
724 spin_unlock(&oldf->file_lock); 728 spin_unlock(&oldf->file_lock);
725 spin_lock(&newf->file_lock); 729 spin_lock(&newf->file_lock);
726 *errorp = expand_files(newf, open_files-1); 730 *errorp = expand_files(newf, open_files-1);
727 spin_unlock(&newf->file_lock); 731 spin_unlock(&newf->file_lock);
728 if (*errorp < 0) 732 if (*errorp < 0)
729 goto out_release; 733 goto out_release;
730 new_fdt = files_fdtable(newf); 734 new_fdt = files_fdtable(newf);
731 /* 735 /*
732 * Reacquire the oldf lock and a pointer to its fd table 736 * Reacquire the oldf lock and a pointer to its fd table
733 * who knows it may have a new bigger fd table. We need 737 * who knows it may have a new bigger fd table. We need
734 * the latest pointer. 738 * the latest pointer.
735 */ 739 */
736 spin_lock(&oldf->file_lock); 740 spin_lock(&oldf->file_lock);
737 old_fdt = files_fdtable(oldf); 741 old_fdt = files_fdtable(oldf);
738 } 742 }
739 743
740 old_fds = old_fdt->fd; 744 old_fds = old_fdt->fd;
741 new_fds = new_fdt->fd; 745 new_fds = new_fdt->fd;
742 746
743 memcpy(new_fdt->open_fds->fds_bits, 747 memcpy(new_fdt->open_fds->fds_bits,
744 old_fdt->open_fds->fds_bits, open_files/8); 748 old_fdt->open_fds->fds_bits, open_files/8);
745 memcpy(new_fdt->close_on_exec->fds_bits, 749 memcpy(new_fdt->close_on_exec->fds_bits,
746 old_fdt->close_on_exec->fds_bits, open_files/8); 750 old_fdt->close_on_exec->fds_bits, open_files/8);
747 751
748 for (i = open_files; i != 0; i--) { 752 for (i = open_files; i != 0; i--) {
749 struct file *f = *old_fds++; 753 struct file *f = *old_fds++;
750 if (f) { 754 if (f) {
751 get_file(f); 755 get_file(f);
752 } else { 756 } else {
753 /* 757 /*
754 * The fd may be claimed in the fd bitmap but not yet 758 * The fd may be claimed in the fd bitmap but not yet
755 * instantiated in the files array if a sibling thread 759 * instantiated in the files array if a sibling thread
756 * is partway through open(). So make sure that this 760 * is partway through open(). So make sure that this
757 * fd is available to the new process. 761 * fd is available to the new process.
758 */ 762 */
759 FD_CLR(open_files - i, new_fdt->open_fds); 763 FD_CLR(open_files - i, new_fdt->open_fds);
760 } 764 }
761 rcu_assign_pointer(*new_fds++, f); 765 rcu_assign_pointer(*new_fds++, f);
762 } 766 }
763 spin_unlock(&oldf->file_lock); 767 spin_unlock(&oldf->file_lock);
764 768
765 /* compute the remainder to be cleared */ 769 /* compute the remainder to be cleared */
766 size = (new_fdt->max_fds - open_files) * sizeof(struct file *); 770 size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
767 771
768 /* This is long word aligned thus could use a optimized version */ 772 /* This is long word aligned thus could use a optimized version */
769 memset(new_fds, 0, size); 773 memset(new_fds, 0, size);
770 774
771 if (new_fdt->max_fds > open_files) { 775 if (new_fdt->max_fds > open_files) {
772 int left = (new_fdt->max_fds-open_files)/8; 776 int left = (new_fdt->max_fds-open_files)/8;
773 int start = open_files / (8 * sizeof(unsigned long)); 777 int start = open_files / (8 * sizeof(unsigned long));
774 778
775 memset(&new_fdt->open_fds->fds_bits[start], 0, left); 779 memset(&new_fdt->open_fds->fds_bits[start], 0, left);
776 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left); 780 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
777 } 781 }
778 782
779 return newf; 783 return newf;
780 784
781 out_release: 785 out_release:
782 kmem_cache_free(files_cachep, newf); 786 kmem_cache_free(files_cachep, newf);
783 out: 787 out:
784 return NULL; 788 return NULL;
785 } 789 }
786 790
787 static int copy_files(unsigned long clone_flags, struct task_struct * tsk) 791 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
788 { 792 {
789 struct files_struct *oldf, *newf; 793 struct files_struct *oldf, *newf;
790 int error = 0; 794 int error = 0;
791 795
792 /* 796 /*
793 * A background process may not have any files ... 797 * A background process may not have any files ...
794 */ 798 */
795 oldf = current->files; 799 oldf = current->files;
796 if (!oldf) 800 if (!oldf)
797 goto out; 801 goto out;
798 802
799 if (clone_flags & CLONE_FILES) { 803 if (clone_flags & CLONE_FILES) {
800 atomic_inc(&oldf->count); 804 atomic_inc(&oldf->count);
801 goto out; 805 goto out;
802 } 806 }
803 807
804 /* 808 /*
805 * Note: we may be using current for both targets (See exec.c) 809 * Note: we may be using current for both targets (See exec.c)
806 * This works because we cache current->files (old) as oldf. Don't 810 * This works because we cache current->files (old) as oldf. Don't
807 * break this. 811 * break this.
808 */ 812 */
809 tsk->files = NULL; 813 tsk->files = NULL;
810 newf = dup_fd(oldf, &error); 814 newf = dup_fd(oldf, &error);
811 if (!newf) 815 if (!newf)
812 goto out; 816 goto out;
813 817
814 tsk->files = newf; 818 tsk->files = newf;
815 error = 0; 819 error = 0;
816 out: 820 out:
817 return error; 821 return error;
818 } 822 }
819 823
820 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 824 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
821 { 825 {
822 #ifdef CONFIG_BLOCK 826 #ifdef CONFIG_BLOCK
823 struct io_context *ioc = current->io_context; 827 struct io_context *ioc = current->io_context;
824 828
825 if (!ioc) 829 if (!ioc)
826 return 0; 830 return 0;
827 /* 831 /*
828 * Share io context with parent, if CLONE_IO is set 832 * Share io context with parent, if CLONE_IO is set
829 */ 833 */
830 if (clone_flags & CLONE_IO) { 834 if (clone_flags & CLONE_IO) {
831 tsk->io_context = ioc_task_link(ioc); 835 tsk->io_context = ioc_task_link(ioc);
832 if (unlikely(!tsk->io_context)) 836 if (unlikely(!tsk->io_context))
833 return -ENOMEM; 837 return -ENOMEM;
834 } else if (ioprio_valid(ioc->ioprio)) { 838 } else if (ioprio_valid(ioc->ioprio)) {
835 tsk->io_context = alloc_io_context(GFP_KERNEL, -1); 839 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
836 if (unlikely(!tsk->io_context)) 840 if (unlikely(!tsk->io_context))
837 return -ENOMEM; 841 return -ENOMEM;
838 842
839 tsk->io_context->ioprio = ioc->ioprio; 843 tsk->io_context->ioprio = ioc->ioprio;
840 } 844 }
841 #endif 845 #endif
842 return 0; 846 return 0;
843 } 847 }
844 848
845 /* 849 /*
846 * Helper to unshare the files of the current task. 850 * Helper to unshare the files of the current task.
847 * We don't want to expose copy_files internals to 851 * We don't want to expose copy_files internals to
848 * the exec layer of the kernel. 852 * the exec layer of the kernel.
849 */ 853 */
850 854
851 int unshare_files(void) 855 int unshare_files(void)
852 { 856 {
853 struct files_struct *files = current->files; 857 struct files_struct *files = current->files;
854 int rc; 858 int rc;
855 859
856 BUG_ON(!files); 860 BUG_ON(!files);
857 861
858 /* This can race but the race causes us to copy when we don't 862 /* This can race but the race causes us to copy when we don't
859 need to and drop the copy */ 863 need to and drop the copy */
860 if(atomic_read(&files->count) == 1) 864 if(atomic_read(&files->count) == 1)
861 { 865 {
862 atomic_inc(&files->count); 866 atomic_inc(&files->count);
863 return 0; 867 return 0;
864 } 868 }
865 rc = copy_files(0, current); 869 rc = copy_files(0, current);
866 if(rc) 870 if(rc)
867 current->files = files; 871 current->files = files;
868 return rc; 872 return rc;
869 } 873 }
870 874
871 EXPORT_SYMBOL(unshare_files); 875 EXPORT_SYMBOL(unshare_files);
872 876
873 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 877 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
874 { 878 {
875 struct sighand_struct *sig; 879 struct sighand_struct *sig;
876 880
877 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) { 881 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
878 atomic_inc(&current->sighand->count); 882 atomic_inc(&current->sighand->count);
879 return 0; 883 return 0;
880 } 884 }
881 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 885 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
882 rcu_assign_pointer(tsk->sighand, sig); 886 rcu_assign_pointer(tsk->sighand, sig);
883 if (!sig) 887 if (!sig)
884 return -ENOMEM; 888 return -ENOMEM;
885 atomic_set(&sig->count, 1); 889 atomic_set(&sig->count, 1);
886 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 890 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
887 return 0; 891 return 0;
888 } 892 }
889 893
890 void __cleanup_sighand(struct sighand_struct *sighand) 894 void __cleanup_sighand(struct sighand_struct *sighand)
891 { 895 {
892 if (atomic_dec_and_test(&sighand->count)) 896 if (atomic_dec_and_test(&sighand->count))
893 kmem_cache_free(sighand_cachep, sighand); 897 kmem_cache_free(sighand_cachep, sighand);
894 } 898 }
895 899
896 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 900 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
897 { 901 {
898 struct signal_struct *sig; 902 struct signal_struct *sig;
899 int ret; 903 int ret;
900 904
901 if (clone_flags & CLONE_THREAD) { 905 if (clone_flags & CLONE_THREAD) {
902 atomic_inc(&current->signal->count); 906 atomic_inc(&current->signal->count);
903 atomic_inc(&current->signal->live); 907 atomic_inc(&current->signal->live);
904 return 0; 908 return 0;
905 } 909 }
906 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL); 910 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
907 tsk->signal = sig; 911 tsk->signal = sig;
908 if (!sig) 912 if (!sig)
909 return -ENOMEM; 913 return -ENOMEM;
910 914
911 ret = copy_thread_group_keys(tsk); 915 ret = copy_thread_group_keys(tsk);
912 if (ret < 0) { 916 if (ret < 0) {
913 kmem_cache_free(signal_cachep, sig); 917 kmem_cache_free(signal_cachep, sig);
914 return ret; 918 return ret;
915 } 919 }
916 920
917 atomic_set(&sig->count, 1); 921 atomic_set(&sig->count, 1);
918 atomic_set(&sig->live, 1); 922 atomic_set(&sig->live, 1);
919 init_waitqueue_head(&sig->wait_chldexit); 923 init_waitqueue_head(&sig->wait_chldexit);
920 sig->flags = 0; 924 sig->flags = 0;
921 sig->group_exit_code = 0; 925 sig->group_exit_code = 0;
922 sig->group_exit_task = NULL; 926 sig->group_exit_task = NULL;
923 sig->group_stop_count = 0; 927 sig->group_stop_count = 0;
924 sig->curr_target = NULL; 928 sig->curr_target = NULL;
925 init_sigpending(&sig->shared_pending); 929 init_sigpending(&sig->shared_pending);
926 INIT_LIST_HEAD(&sig->posix_timers); 930 INIT_LIST_HEAD(&sig->posix_timers);
927 931
928 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 932 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
929 sig->it_real_incr.tv64 = 0; 933 sig->it_real_incr.tv64 = 0;
930 sig->real_timer.function = it_real_fn; 934 sig->real_timer.function = it_real_fn;
931 935
932 sig->it_virt_expires = cputime_zero; 936 sig->it_virt_expires = cputime_zero;
933 sig->it_virt_incr = cputime_zero; 937 sig->it_virt_incr = cputime_zero;
934 sig->it_prof_expires = cputime_zero; 938 sig->it_prof_expires = cputime_zero;
935 sig->it_prof_incr = cputime_zero; 939 sig->it_prof_incr = cputime_zero;
936 940
937 sig->leader = 0; /* session leadership doesn't inherit */ 941 sig->leader = 0; /* session leadership doesn't inherit */
938 sig->tty_old_pgrp = NULL; 942 sig->tty_old_pgrp = NULL;
939 943
940 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero; 944 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
941 sig->gtime = cputime_zero; 945 sig->gtime = cputime_zero;
942 sig->cgtime = cputime_zero; 946 sig->cgtime = cputime_zero;
943 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0; 947 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
944 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0; 948 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
945 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0; 949 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
946 sig->sum_sched_runtime = 0; 950 sig->sum_sched_runtime = 0;
947 INIT_LIST_HEAD(&sig->cpu_timers[0]); 951 INIT_LIST_HEAD(&sig->cpu_timers[0]);
948 INIT_LIST_HEAD(&sig->cpu_timers[1]); 952 INIT_LIST_HEAD(&sig->cpu_timers[1]);
949 INIT_LIST_HEAD(&sig->cpu_timers[2]); 953 INIT_LIST_HEAD(&sig->cpu_timers[2]);
950 taskstats_tgid_init(sig); 954 taskstats_tgid_init(sig);
951 955
952 task_lock(current->group_leader); 956 task_lock(current->group_leader);
953 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 957 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
954 task_unlock(current->group_leader); 958 task_unlock(current->group_leader);
955 959
956 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { 960 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
957 /* 961 /*
958 * New sole thread in the process gets an expiry time 962 * New sole thread in the process gets an expiry time
959 * of the whole CPU time limit. 963 * of the whole CPU time limit.
960 */ 964 */
961 tsk->it_prof_expires = 965 tsk->it_prof_expires =
962 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur); 966 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
963 } 967 }
964 acct_init_pacct(&sig->pacct); 968 acct_init_pacct(&sig->pacct);
965 969
966 tty_audit_fork(sig); 970 tty_audit_fork(sig);
967 971
968 return 0; 972 return 0;
969 } 973 }
970 974
971 void __cleanup_signal(struct signal_struct *sig) 975 void __cleanup_signal(struct signal_struct *sig)
972 { 976 {
973 exit_thread_group_keys(sig); 977 exit_thread_group_keys(sig);
974 kmem_cache_free(signal_cachep, sig); 978 kmem_cache_free(signal_cachep, sig);
975 } 979 }
976 980
977 static void cleanup_signal(struct task_struct *tsk) 981 static void cleanup_signal(struct task_struct *tsk)
978 { 982 {
979 struct signal_struct *sig = tsk->signal; 983 struct signal_struct *sig = tsk->signal;
980 984
981 atomic_dec(&sig->live); 985 atomic_dec(&sig->live);
982 986
983 if (atomic_dec_and_test(&sig->count)) 987 if (atomic_dec_and_test(&sig->count))
984 __cleanup_signal(sig); 988 __cleanup_signal(sig);
985 } 989 }
986 990
987 static void copy_flags(unsigned long clone_flags, struct task_struct *p) 991 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
988 { 992 {
989 unsigned long new_flags = p->flags; 993 unsigned long new_flags = p->flags;
990 994
991 new_flags &= ~PF_SUPERPRIV; 995 new_flags &= ~PF_SUPERPRIV;
992 new_flags |= PF_FORKNOEXEC; 996 new_flags |= PF_FORKNOEXEC;
993 if (!(clone_flags & CLONE_PTRACE)) 997 if (!(clone_flags & CLONE_PTRACE))
994 p->ptrace = 0; 998 p->ptrace = 0;
995 p->flags = new_flags; 999 p->flags = new_flags;
996 clear_freeze_flag(p); 1000 clear_freeze_flag(p);
997 } 1001 }
998 1002
999 asmlinkage long sys_set_tid_address(int __user *tidptr) 1003 asmlinkage long sys_set_tid_address(int __user *tidptr)
1000 { 1004 {
1001 current->clear_child_tid = tidptr; 1005 current->clear_child_tid = tidptr;
1002 1006
1003 return task_pid_vnr(current); 1007 return task_pid_vnr(current);
1004 } 1008 }
1005 1009
1006 static void rt_mutex_init_task(struct task_struct *p) 1010 static void rt_mutex_init_task(struct task_struct *p)
1007 { 1011 {
1008 spin_lock_init(&p->pi_lock); 1012 spin_lock_init(&p->pi_lock);
1009 #ifdef CONFIG_RT_MUTEXES 1013 #ifdef CONFIG_RT_MUTEXES
1010 plist_head_init(&p->pi_waiters, &p->pi_lock); 1014 plist_head_init(&p->pi_waiters, &p->pi_lock);
1011 p->pi_blocked_on = NULL; 1015 p->pi_blocked_on = NULL;
1012 #endif 1016 #endif
1013 } 1017 }
1014 1018
1015 /* 1019 /*
1016 * This creates a new process as a copy of the old one, 1020 * This creates a new process as a copy of the old one,
1017 * but does not actually start it yet. 1021 * but does not actually start it yet.
1018 * 1022 *
1019 * It copies the registers, and all the appropriate 1023 * It copies the registers, and all the appropriate
1020 * parts of the process environment (as per the clone 1024 * parts of the process environment (as per the clone
1021 * flags). The actual kick-off is left to the caller. 1025 * flags). The actual kick-off is left to the caller.
1022 */ 1026 */
1023 static struct task_struct *copy_process(unsigned long clone_flags, 1027 static struct task_struct *copy_process(unsigned long clone_flags,
1024 unsigned long stack_start, 1028 unsigned long stack_start,
1025 struct pt_regs *regs, 1029 struct pt_regs *regs,
1026 unsigned long stack_size, 1030 unsigned long stack_size,
1027 int __user *child_tidptr, 1031 int __user *child_tidptr,
1028 struct pid *pid) 1032 struct pid *pid)
1029 { 1033 {
1030 int retval; 1034 int retval;
1031 struct task_struct *p; 1035 struct task_struct *p;
1032 int cgroup_callbacks_done = 0; 1036 int cgroup_callbacks_done = 0;
1033 1037
1034 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1038 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1035 return ERR_PTR(-EINVAL); 1039 return ERR_PTR(-EINVAL);
1036 1040
1037 /* 1041 /*
1038 * Thread groups must share signals as well, and detached threads 1042 * Thread groups must share signals as well, and detached threads
1039 * can only be started up within the thread group. 1043 * can only be started up within the thread group.
1040 */ 1044 */
1041 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1045 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1042 return ERR_PTR(-EINVAL); 1046 return ERR_PTR(-EINVAL);
1043 1047
1044 /* 1048 /*
1045 * Shared signal handlers imply shared VM. By way of the above, 1049 * Shared signal handlers imply shared VM. By way of the above,
1046 * thread groups also imply shared VM. Blocking this case allows 1050 * thread groups also imply shared VM. Blocking this case allows
1047 * for various simplifications in other code. 1051 * for various simplifications in other code.
1048 */ 1052 */
1049 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1053 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1050 return ERR_PTR(-EINVAL); 1054 return ERR_PTR(-EINVAL);
1051 1055
1052 retval = security_task_create(clone_flags); 1056 retval = security_task_create(clone_flags);
1053 if (retval) 1057 if (retval)
1054 goto fork_out; 1058 goto fork_out;
1055 1059
1056 retval = -ENOMEM; 1060 retval = -ENOMEM;
1057 p = dup_task_struct(current); 1061 p = dup_task_struct(current);
1058 if (!p) 1062 if (!p)
1059 goto fork_out; 1063 goto fork_out;
1060 1064
1061 rt_mutex_init_task(p); 1065 rt_mutex_init_task(p);
1062 1066
1063 #ifdef CONFIG_TRACE_IRQFLAGS 1067 #ifdef CONFIG_TRACE_IRQFLAGS
1064 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); 1068 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1065 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1069 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1066 #endif 1070 #endif
1067 retval = -EAGAIN; 1071 retval = -EAGAIN;
1068 if (atomic_read(&p->user->processes) >= 1072 if (atomic_read(&p->user->processes) >=
1069 p->signal->rlim[RLIMIT_NPROC].rlim_cur) { 1073 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1070 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) && 1074 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1071 p->user != current->nsproxy->user_ns->root_user) 1075 p->user != current->nsproxy->user_ns->root_user)
1072 goto bad_fork_free; 1076 goto bad_fork_free;
1073 } 1077 }
1074 1078
1075 atomic_inc(&p->user->__count); 1079 atomic_inc(&p->user->__count);
1076 atomic_inc(&p->user->processes); 1080 atomic_inc(&p->user->processes);
1077 get_group_info(p->group_info); 1081 get_group_info(p->group_info);
1078 1082
1079 /* 1083 /*
1080 * If multiple threads are within copy_process(), then this check 1084 * If multiple threads are within copy_process(), then this check
1081 * triggers too late. This doesn't hurt, the check is only there 1085 * triggers too late. This doesn't hurt, the check is only there
1082 * to stop root fork bombs. 1086 * to stop root fork bombs.
1083 */ 1087 */
1084 if (nr_threads >= max_threads) 1088 if (nr_threads >= max_threads)
1085 goto bad_fork_cleanup_count; 1089 goto bad_fork_cleanup_count;
1086 1090
1087 if (!try_module_get(task_thread_info(p)->exec_domain->module)) 1091 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1088 goto bad_fork_cleanup_count; 1092 goto bad_fork_cleanup_count;
1089 1093
1090 if (p->binfmt && !try_module_get(p->binfmt->module)) 1094 if (p->binfmt && !try_module_get(p->binfmt->module))
1091 goto bad_fork_cleanup_put_domain; 1095 goto bad_fork_cleanup_put_domain;
1092 1096
1093 p->did_exec = 0; 1097 p->did_exec = 0;
1094 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 1098 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1095 copy_flags(clone_flags, p); 1099 copy_flags(clone_flags, p);
1096 INIT_LIST_HEAD(&p->children); 1100 INIT_LIST_HEAD(&p->children);
1097 INIT_LIST_HEAD(&p->sibling); 1101 INIT_LIST_HEAD(&p->sibling);
1098 #ifdef CONFIG_PREEMPT_RCU 1102 #ifdef CONFIG_PREEMPT_RCU
1099 p->rcu_read_lock_nesting = 0; 1103 p->rcu_read_lock_nesting = 0;
1100 p->rcu_flipctr_idx = 0; 1104 p->rcu_flipctr_idx = 0;
1101 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1105 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1102 p->vfork_done = NULL; 1106 p->vfork_done = NULL;
1103 spin_lock_init(&p->alloc_lock); 1107 spin_lock_init(&p->alloc_lock);
1104 1108
1105 clear_tsk_thread_flag(p, TIF_SIGPENDING); 1109 clear_tsk_thread_flag(p, TIF_SIGPENDING);
1106 init_sigpending(&p->pending); 1110 init_sigpending(&p->pending);
1107 1111
1108 p->utime = cputime_zero; 1112 p->utime = cputime_zero;
1109 p->stime = cputime_zero; 1113 p->stime = cputime_zero;
1110 p->gtime = cputime_zero; 1114 p->gtime = cputime_zero;
1111 p->utimescaled = cputime_zero; 1115 p->utimescaled = cputime_zero;
1112 p->stimescaled = cputime_zero; 1116 p->stimescaled = cputime_zero;
1113 p->prev_utime = cputime_zero; 1117 p->prev_utime = cputime_zero;
1114 p->prev_stime = cputime_zero; 1118 p->prev_stime = cputime_zero;
1115 1119
1116 #ifdef CONFIG_DETECT_SOFTLOCKUP 1120 #ifdef CONFIG_DETECT_SOFTLOCKUP
1117 p->last_switch_count = 0; 1121 p->last_switch_count = 0;
1118 p->last_switch_timestamp = 0; 1122 p->last_switch_timestamp = 0;
1119 #endif 1123 #endif
1120 1124
1121 #ifdef CONFIG_TASK_XACCT 1125 #ifdef CONFIG_TASK_XACCT
1122 p->rchar = 0; /* I/O counter: bytes read */ 1126 p->rchar = 0; /* I/O counter: bytes read */
1123 p->wchar = 0; /* I/O counter: bytes written */ 1127 p->wchar = 0; /* I/O counter: bytes written */
1124 p->syscr = 0; /* I/O counter: read syscalls */ 1128 p->syscr = 0; /* I/O counter: read syscalls */
1125 p->syscw = 0; /* I/O counter: write syscalls */ 1129 p->syscw = 0; /* I/O counter: write syscalls */
1126 #endif 1130 #endif
1127 task_io_accounting_init(p); 1131 task_io_accounting_init(p);
1128 acct_clear_integrals(p); 1132 acct_clear_integrals(p);
1129 1133
1130 p->it_virt_expires = cputime_zero; 1134 p->it_virt_expires = cputime_zero;
1131 p->it_prof_expires = cputime_zero; 1135 p->it_prof_expires = cputime_zero;
1132 p->it_sched_expires = 0; 1136 p->it_sched_expires = 0;
1133 INIT_LIST_HEAD(&p->cpu_timers[0]); 1137 INIT_LIST_HEAD(&p->cpu_timers[0]);
1134 INIT_LIST_HEAD(&p->cpu_timers[1]); 1138 INIT_LIST_HEAD(&p->cpu_timers[1]);
1135 INIT_LIST_HEAD(&p->cpu_timers[2]); 1139 INIT_LIST_HEAD(&p->cpu_timers[2]);
1136 1140
1137 p->lock_depth = -1; /* -1 = no lock */ 1141 p->lock_depth = -1; /* -1 = no lock */
1138 do_posix_clock_monotonic_gettime(&p->start_time); 1142 do_posix_clock_monotonic_gettime(&p->start_time);
1139 p->real_start_time = p->start_time; 1143 p->real_start_time = p->start_time;
1140 monotonic_to_bootbased(&p->real_start_time); 1144 monotonic_to_bootbased(&p->real_start_time);
1141 #ifdef CONFIG_SECURITY 1145 #ifdef CONFIG_SECURITY
1142 p->security = NULL; 1146 p->security = NULL;
1143 #endif 1147 #endif
1144 p->cap_bset = current->cap_bset; 1148 p->cap_bset = current->cap_bset;
1145 p->io_context = NULL; 1149 p->io_context = NULL;
1146 p->audit_context = NULL; 1150 p->audit_context = NULL;
1147 cgroup_fork(p); 1151 cgroup_fork(p);
1148 #ifdef CONFIG_NUMA 1152 #ifdef CONFIG_NUMA
1149 p->mempolicy = mpol_copy(p->mempolicy); 1153 p->mempolicy = mpol_copy(p->mempolicy);
1150 if (IS_ERR(p->mempolicy)) { 1154 if (IS_ERR(p->mempolicy)) {
1151 retval = PTR_ERR(p->mempolicy); 1155 retval = PTR_ERR(p->mempolicy);
1152 p->mempolicy = NULL; 1156 p->mempolicy = NULL;
1153 goto bad_fork_cleanup_cgroup; 1157 goto bad_fork_cleanup_cgroup;
1154 } 1158 }
1155 mpol_fix_fork_child_flag(p); 1159 mpol_fix_fork_child_flag(p);
1156 #endif 1160 #endif
1157 #ifdef CONFIG_TRACE_IRQFLAGS 1161 #ifdef CONFIG_TRACE_IRQFLAGS
1158 p->irq_events = 0; 1162 p->irq_events = 0;
1159 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1163 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1160 p->hardirqs_enabled = 1; 1164 p->hardirqs_enabled = 1;
1161 #else 1165 #else
1162 p->hardirqs_enabled = 0; 1166 p->hardirqs_enabled = 0;
1163 #endif 1167 #endif
1164 p->hardirq_enable_ip = 0; 1168 p->hardirq_enable_ip = 0;
1165 p->hardirq_enable_event = 0; 1169 p->hardirq_enable_event = 0;
1166 p->hardirq_disable_ip = _THIS_IP_; 1170 p->hardirq_disable_ip = _THIS_IP_;
1167 p->hardirq_disable_event = 0; 1171 p->hardirq_disable_event = 0;
1168 p->softirqs_enabled = 1; 1172 p->softirqs_enabled = 1;
1169 p->softirq_enable_ip = _THIS_IP_; 1173 p->softirq_enable_ip = _THIS_IP_;
1170 p->softirq_enable_event = 0; 1174 p->softirq_enable_event = 0;
1171 p->softirq_disable_ip = 0; 1175 p->softirq_disable_ip = 0;
1172 p->softirq_disable_event = 0; 1176 p->softirq_disable_event = 0;
1173 p->hardirq_context = 0; 1177 p->hardirq_context = 0;
1174 p->softirq_context = 0; 1178 p->softirq_context = 0;
1175 #endif 1179 #endif
1176 #ifdef CONFIG_LOCKDEP 1180 #ifdef CONFIG_LOCKDEP
1177 p->lockdep_depth = 0; /* no locks held yet */ 1181 p->lockdep_depth = 0; /* no locks held yet */
1178 p->curr_chain_key = 0; 1182 p->curr_chain_key = 0;
1179 p->lockdep_recursion = 0; 1183 p->lockdep_recursion = 0;
1180 #endif 1184 #endif
1181 1185
1182 #ifdef CONFIG_DEBUG_MUTEXES 1186 #ifdef CONFIG_DEBUG_MUTEXES
1183 p->blocked_on = NULL; /* not blocked yet */ 1187 p->blocked_on = NULL; /* not blocked yet */
1184 #endif 1188 #endif
1185 1189
1186 /* Perform scheduler related setup. Assign this task to a CPU. */ 1190 /* Perform scheduler related setup. Assign this task to a CPU. */
1187 sched_fork(p, clone_flags); 1191 sched_fork(p, clone_flags);
1188 1192
1189 if ((retval = security_task_alloc(p))) 1193 if ((retval = security_task_alloc(p)))
1190 goto bad_fork_cleanup_policy; 1194 goto bad_fork_cleanup_policy;
1191 if ((retval = audit_alloc(p))) 1195 if ((retval = audit_alloc(p)))
1192 goto bad_fork_cleanup_security; 1196 goto bad_fork_cleanup_security;
1193 /* copy all the process information */ 1197 /* copy all the process information */
1194 if ((retval = copy_semundo(clone_flags, p))) 1198 if ((retval = copy_semundo(clone_flags, p)))
1195 goto bad_fork_cleanup_audit; 1199 goto bad_fork_cleanup_audit;
1196 if ((retval = copy_files(clone_flags, p))) 1200 if ((retval = copy_files(clone_flags, p)))
1197 goto bad_fork_cleanup_semundo; 1201 goto bad_fork_cleanup_semundo;
1198 if ((retval = copy_fs(clone_flags, p))) 1202 if ((retval = copy_fs(clone_flags, p)))
1199 goto bad_fork_cleanup_files; 1203 goto bad_fork_cleanup_files;
1200 if ((retval = copy_sighand(clone_flags, p))) 1204 if ((retval = copy_sighand(clone_flags, p)))
1201 goto bad_fork_cleanup_fs; 1205 goto bad_fork_cleanup_fs;
1202 if ((retval = copy_signal(clone_flags, p))) 1206 if ((retval = copy_signal(clone_flags, p)))
1203 goto bad_fork_cleanup_sighand; 1207 goto bad_fork_cleanup_sighand;
1204 if ((retval = copy_mm(clone_flags, p))) 1208 if ((retval = copy_mm(clone_flags, p)))
1205 goto bad_fork_cleanup_signal; 1209 goto bad_fork_cleanup_signal;
1206 if ((retval = copy_keys(clone_flags, p))) 1210 if ((retval = copy_keys(clone_flags, p)))
1207 goto bad_fork_cleanup_mm; 1211 goto bad_fork_cleanup_mm;
1208 if ((retval = copy_namespaces(clone_flags, p))) 1212 if ((retval = copy_namespaces(clone_flags, p)))
1209 goto bad_fork_cleanup_keys; 1213 goto bad_fork_cleanup_keys;
1210 if ((retval = copy_io(clone_flags, p))) 1214 if ((retval = copy_io(clone_flags, p)))
1211 goto bad_fork_cleanup_namespaces; 1215 goto bad_fork_cleanup_namespaces;
1212 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs); 1216 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1213 if (retval) 1217 if (retval)
1214 goto bad_fork_cleanup_io; 1218 goto bad_fork_cleanup_io;
1215 1219
1216 if (pid != &init_struct_pid) { 1220 if (pid != &init_struct_pid) {
1217 retval = -ENOMEM; 1221 retval = -ENOMEM;
1218 pid = alloc_pid(task_active_pid_ns(p)); 1222 pid = alloc_pid(task_active_pid_ns(p));
1219 if (!pid) 1223 if (!pid)
1220 goto bad_fork_cleanup_io; 1224 goto bad_fork_cleanup_io;
1221 1225
1222 if (clone_flags & CLONE_NEWPID) { 1226 if (clone_flags & CLONE_NEWPID) {
1223 retval = pid_ns_prepare_proc(task_active_pid_ns(p)); 1227 retval = pid_ns_prepare_proc(task_active_pid_ns(p));
1224 if (retval < 0) 1228 if (retval < 0)
1225 goto bad_fork_free_pid; 1229 goto bad_fork_free_pid;
1226 } 1230 }
1227 } 1231 }
1228 1232
1229 p->pid = pid_nr(pid); 1233 p->pid = pid_nr(pid);
1230 p->tgid = p->pid; 1234 p->tgid = p->pid;
1231 if (clone_flags & CLONE_THREAD) 1235 if (clone_flags & CLONE_THREAD)
1232 p->tgid = current->tgid; 1236 p->tgid = current->tgid;
1233 1237
1234 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL; 1238 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1235 /* 1239 /*
1236 * Clear TID on mm_release()? 1240 * Clear TID on mm_release()?
1237 */ 1241 */
1238 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL; 1242 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1239 #ifdef CONFIG_FUTEX 1243 #ifdef CONFIG_FUTEX
1240 p->robust_list = NULL; 1244 p->robust_list = NULL;
1241 #ifdef CONFIG_COMPAT 1245 #ifdef CONFIG_COMPAT
1242 p->compat_robust_list = NULL; 1246 p->compat_robust_list = NULL;
1243 #endif 1247 #endif
1244 INIT_LIST_HEAD(&p->pi_state_list); 1248 INIT_LIST_HEAD(&p->pi_state_list);
1245 p->pi_state_cache = NULL; 1249 p->pi_state_cache = NULL;
1246 #endif 1250 #endif
1247 /* 1251 /*
1248 * sigaltstack should be cleared when sharing the same VM 1252 * sigaltstack should be cleared when sharing the same VM
1249 */ 1253 */
1250 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 1254 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1251 p->sas_ss_sp = p->sas_ss_size = 0; 1255 p->sas_ss_sp = p->sas_ss_size = 0;
1252 1256
1253 /* 1257 /*
1254 * Syscall tracing should be turned off in the child regardless 1258 * Syscall tracing should be turned off in the child regardless
1255 * of CLONE_PTRACE. 1259 * of CLONE_PTRACE.
1256 */ 1260 */
1257 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); 1261 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1258 #ifdef TIF_SYSCALL_EMU 1262 #ifdef TIF_SYSCALL_EMU
1259 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); 1263 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1260 #endif 1264 #endif
1261 clear_all_latency_tracing(p); 1265 clear_all_latency_tracing(p);
1262 1266
1263 /* Our parent execution domain becomes current domain 1267 /* Our parent execution domain becomes current domain
1264 These must match for thread signalling to apply */ 1268 These must match for thread signalling to apply */
1265 p->parent_exec_id = p->self_exec_id; 1269 p->parent_exec_id = p->self_exec_id;
1266 1270
1267 /* ok, now we should be set up.. */ 1271 /* ok, now we should be set up.. */
1268 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL); 1272 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1269 p->pdeath_signal = 0; 1273 p->pdeath_signal = 0;
1270 p->exit_state = 0; 1274 p->exit_state = 0;
1271 1275
1272 /* 1276 /*
1273 * Ok, make it visible to the rest of the system. 1277 * Ok, make it visible to the rest of the system.
1274 * We dont wake it up yet. 1278 * We dont wake it up yet.
1275 */ 1279 */
1276 p->group_leader = p; 1280 p->group_leader = p;
1277 INIT_LIST_HEAD(&p->thread_group); 1281 INIT_LIST_HEAD(&p->thread_group);
1278 INIT_LIST_HEAD(&p->ptrace_children); 1282 INIT_LIST_HEAD(&p->ptrace_children);
1279 INIT_LIST_HEAD(&p->ptrace_list); 1283 INIT_LIST_HEAD(&p->ptrace_list);
1280 1284
1281 /* Now that the task is set up, run cgroup callbacks if 1285 /* Now that the task is set up, run cgroup callbacks if
1282 * necessary. We need to run them before the task is visible 1286 * necessary. We need to run them before the task is visible
1283 * on the tasklist. */ 1287 * on the tasklist. */
1284 cgroup_fork_callbacks(p); 1288 cgroup_fork_callbacks(p);
1285 cgroup_callbacks_done = 1; 1289 cgroup_callbacks_done = 1;
1286 1290
1287 /* Need tasklist lock for parent etc handling! */ 1291 /* Need tasklist lock for parent etc handling! */
1288 write_lock_irq(&tasklist_lock); 1292 write_lock_irq(&tasklist_lock);
1289 1293
1290 /* 1294 /*
1291 * The task hasn't been attached yet, so its cpus_allowed mask will 1295 * The task hasn't been attached yet, so its cpus_allowed mask will
1292 * not be changed, nor will its assigned CPU. 1296 * not be changed, nor will its assigned CPU.
1293 * 1297 *
1294 * The cpus_allowed mask of the parent may have changed after it was 1298 * The cpus_allowed mask of the parent may have changed after it was
1295 * copied first time - so re-copy it here, then check the child's CPU 1299 * copied first time - so re-copy it here, then check the child's CPU
1296 * to ensure it is on a valid CPU (and if not, just force it back to 1300 * to ensure it is on a valid CPU (and if not, just force it back to
1297 * parent's CPU). This avoids alot of nasty races. 1301 * parent's CPU). This avoids alot of nasty races.
1298 */ 1302 */
1299 p->cpus_allowed = current->cpus_allowed; 1303 p->cpus_allowed = current->cpus_allowed;
1300 p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed; 1304 p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1301 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) || 1305 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1302 !cpu_online(task_cpu(p)))) 1306 !cpu_online(task_cpu(p))))
1303 set_task_cpu(p, smp_processor_id()); 1307 set_task_cpu(p, smp_processor_id());
1304 1308
1305 /* CLONE_PARENT re-uses the old parent */ 1309 /* CLONE_PARENT re-uses the old parent */
1306 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) 1310 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1307 p->real_parent = current->real_parent; 1311 p->real_parent = current->real_parent;
1308 else 1312 else
1309 p->real_parent = current; 1313 p->real_parent = current;
1310 p->parent = p->real_parent; 1314 p->parent = p->real_parent;
1311 1315
1312 spin_lock(&current->sighand->siglock); 1316 spin_lock(&current->sighand->siglock);
1313 1317
1314 /* 1318 /*
1315 * Process group and session signals need to be delivered to just the 1319 * Process group and session signals need to be delivered to just the
1316 * parent before the fork or both the parent and the child after the 1320 * parent before the fork or both the parent and the child after the
1317 * fork. Restart if a signal comes in before we add the new process to 1321 * fork. Restart if a signal comes in before we add the new process to
1318 * it's process group. 1322 * it's process group.
1319 * A fatal signal pending means that current will exit, so the new 1323 * A fatal signal pending means that current will exit, so the new
1320 * thread can't slip out of an OOM kill (or normal SIGKILL). 1324 * thread can't slip out of an OOM kill (or normal SIGKILL).
1321 */ 1325 */
1322 recalc_sigpending(); 1326 recalc_sigpending();
1323 if (signal_pending(current)) { 1327 if (signal_pending(current)) {
1324 spin_unlock(&current->sighand->siglock); 1328 spin_unlock(&current->sighand->siglock);
1325 write_unlock_irq(&tasklist_lock); 1329 write_unlock_irq(&tasklist_lock);
1326 retval = -ERESTARTNOINTR; 1330 retval = -ERESTARTNOINTR;
1327 goto bad_fork_free_pid; 1331 goto bad_fork_free_pid;
1328 } 1332 }
1329 1333
1330 if (clone_flags & CLONE_THREAD) { 1334 if (clone_flags & CLONE_THREAD) {
1331 p->group_leader = current->group_leader; 1335 p->group_leader = current->group_leader;
1332 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group); 1336 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1333 1337
1334 if (!cputime_eq(current->signal->it_virt_expires, 1338 if (!cputime_eq(current->signal->it_virt_expires,
1335 cputime_zero) || 1339 cputime_zero) ||
1336 !cputime_eq(current->signal->it_prof_expires, 1340 !cputime_eq(current->signal->it_prof_expires,
1337 cputime_zero) || 1341 cputime_zero) ||
1338 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY || 1342 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1339 !list_empty(&current->signal->cpu_timers[0]) || 1343 !list_empty(&current->signal->cpu_timers[0]) ||
1340 !list_empty(&current->signal->cpu_timers[1]) || 1344 !list_empty(&current->signal->cpu_timers[1]) ||
1341 !list_empty(&current->signal->cpu_timers[2])) { 1345 !list_empty(&current->signal->cpu_timers[2])) {
1342 /* 1346 /*
1343 * Have child wake up on its first tick to check 1347 * Have child wake up on its first tick to check
1344 * for process CPU timers. 1348 * for process CPU timers.
1345 */ 1349 */
1346 p->it_prof_expires = jiffies_to_cputime(1); 1350 p->it_prof_expires = jiffies_to_cputime(1);
1347 } 1351 }
1348 } 1352 }
1349 1353
1350 if (likely(p->pid)) { 1354 if (likely(p->pid)) {
1351 add_parent(p); 1355 add_parent(p);
1352 if (unlikely(p->ptrace & PT_PTRACED)) 1356 if (unlikely(p->ptrace & PT_PTRACED))
1353 __ptrace_link(p, current->parent); 1357 __ptrace_link(p, current->parent);
1354 1358
1355 if (thread_group_leader(p)) { 1359 if (thread_group_leader(p)) {
1356 if (clone_flags & CLONE_NEWPID) 1360 if (clone_flags & CLONE_NEWPID)
1357 p->nsproxy->pid_ns->child_reaper = p; 1361 p->nsproxy->pid_ns->child_reaper = p;
1358 1362
1359 p->signal->leader_pid = pid; 1363 p->signal->leader_pid = pid;
1360 p->signal->tty = current->signal->tty; 1364 p->signal->tty = current->signal->tty;
1361 set_task_pgrp(p, task_pgrp_nr(current)); 1365 set_task_pgrp(p, task_pgrp_nr(current));
1362 set_task_session(p, task_session_nr(current)); 1366 set_task_session(p, task_session_nr(current));
1363 attach_pid(p, PIDTYPE_PGID, task_pgrp(current)); 1367 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1364 attach_pid(p, PIDTYPE_SID, task_session(current)); 1368 attach_pid(p, PIDTYPE_SID, task_session(current));
1365 list_add_tail_rcu(&p->tasks, &init_task.tasks); 1369 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1366 __get_cpu_var(process_counts)++; 1370 __get_cpu_var(process_counts)++;
1367 } 1371 }
1368 attach_pid(p, PIDTYPE_PID, pid); 1372 attach_pid(p, PIDTYPE_PID, pid);
1369 nr_threads++; 1373 nr_threads++;
1370 } 1374 }
1371 1375
1372 total_forks++; 1376 total_forks++;
1373 spin_unlock(&current->sighand->siglock); 1377 spin_unlock(&current->sighand->siglock);
1374 write_unlock_irq(&tasklist_lock); 1378 write_unlock_irq(&tasklist_lock);
1375 proc_fork_connector(p); 1379 proc_fork_connector(p);
1376 cgroup_post_fork(p); 1380 cgroup_post_fork(p);
1377 return p; 1381 return p;
1378 1382
1379 bad_fork_free_pid: 1383 bad_fork_free_pid:
1380 if (pid != &init_struct_pid) 1384 if (pid != &init_struct_pid)
1381 free_pid(pid); 1385 free_pid(pid);
1382 bad_fork_cleanup_io: 1386 bad_fork_cleanup_io:
1383 put_io_context(p->io_context); 1387 put_io_context(p->io_context);
1384 bad_fork_cleanup_namespaces: 1388 bad_fork_cleanup_namespaces:
1385 exit_task_namespaces(p); 1389 exit_task_namespaces(p);
1386 bad_fork_cleanup_keys: 1390 bad_fork_cleanup_keys:
1387 exit_keys(p); 1391 exit_keys(p);
1388 bad_fork_cleanup_mm: 1392 bad_fork_cleanup_mm:
1389 if (p->mm) 1393 if (p->mm)
1390 mmput(p->mm); 1394 mmput(p->mm);
1391 bad_fork_cleanup_signal: 1395 bad_fork_cleanup_signal:
1392 cleanup_signal(p); 1396 cleanup_signal(p);
1393 bad_fork_cleanup_sighand: 1397 bad_fork_cleanup_sighand:
1394 __cleanup_sighand(p->sighand); 1398 __cleanup_sighand(p->sighand);
1395 bad_fork_cleanup_fs: 1399 bad_fork_cleanup_fs:
1396 exit_fs(p); /* blocking */ 1400 exit_fs(p); /* blocking */
1397 bad_fork_cleanup_files: 1401 bad_fork_cleanup_files:
1398 exit_files(p); /* blocking */ 1402 exit_files(p); /* blocking */
1399 bad_fork_cleanup_semundo: 1403 bad_fork_cleanup_semundo:
1400 exit_sem(p); 1404 exit_sem(p);
1401 bad_fork_cleanup_audit: 1405 bad_fork_cleanup_audit:
1402 audit_free(p); 1406 audit_free(p);
1403 bad_fork_cleanup_security: 1407 bad_fork_cleanup_security:
1404 security_task_free(p); 1408 security_task_free(p);
1405 bad_fork_cleanup_policy: 1409 bad_fork_cleanup_policy:
1406 #ifdef CONFIG_NUMA 1410 #ifdef CONFIG_NUMA
1407 mpol_free(p->mempolicy); 1411 mpol_free(p->mempolicy);
1408 bad_fork_cleanup_cgroup: 1412 bad_fork_cleanup_cgroup:
1409 #endif 1413 #endif
1410 cgroup_exit(p, cgroup_callbacks_done); 1414 cgroup_exit(p, cgroup_callbacks_done);
1411 delayacct_tsk_free(p); 1415 delayacct_tsk_free(p);
1412 if (p->binfmt) 1416 if (p->binfmt)
1413 module_put(p->binfmt->module); 1417 module_put(p->binfmt->module);
1414 bad_fork_cleanup_put_domain: 1418 bad_fork_cleanup_put_domain:
1415 module_put(task_thread_info(p)->exec_domain->module); 1419 module_put(task_thread_info(p)->exec_domain->module);
1416 bad_fork_cleanup_count: 1420 bad_fork_cleanup_count:
1417 put_group_info(p->group_info); 1421 put_group_info(p->group_info);
1418 atomic_dec(&p->user->processes); 1422 atomic_dec(&p->user->processes);
1419 free_uid(p->user); 1423 free_uid(p->user);
1420 bad_fork_free: 1424 bad_fork_free:
1421 free_task(p); 1425 free_task(p);
1422 fork_out: 1426 fork_out:
1423 return ERR_PTR(retval); 1427 return ERR_PTR(retval);
1424 } 1428 }
1425 1429
1426 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs) 1430 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1427 { 1431 {
1428 memset(regs, 0, sizeof(struct pt_regs)); 1432 memset(regs, 0, sizeof(struct pt_regs));
1429 return regs; 1433 return regs;
1430 } 1434 }
1431 1435
1432 struct task_struct * __cpuinit fork_idle(int cpu) 1436 struct task_struct * __cpuinit fork_idle(int cpu)
1433 { 1437 {
1434 struct task_struct *task; 1438 struct task_struct *task;
1435 struct pt_regs regs; 1439 struct pt_regs regs;
1436 1440
1437 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, 1441 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1438 &init_struct_pid); 1442 &init_struct_pid);
1439 if (!IS_ERR(task)) 1443 if (!IS_ERR(task))
1440 init_idle(task, cpu); 1444 init_idle(task, cpu);
1441 1445
1442 return task; 1446 return task;
1443 } 1447 }
1444 1448
1445 static int fork_traceflag(unsigned clone_flags) 1449 static int fork_traceflag(unsigned clone_flags)
1446 { 1450 {
1447 if (clone_flags & CLONE_UNTRACED) 1451 if (clone_flags & CLONE_UNTRACED)
1448 return 0; 1452 return 0;
1449 else if (clone_flags & CLONE_VFORK) { 1453 else if (clone_flags & CLONE_VFORK) {
1450 if (current->ptrace & PT_TRACE_VFORK) 1454 if (current->ptrace & PT_TRACE_VFORK)
1451 return PTRACE_EVENT_VFORK; 1455 return PTRACE_EVENT_VFORK;
1452 } else if ((clone_flags & CSIGNAL) != SIGCHLD) { 1456 } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1453 if (current->ptrace & PT_TRACE_CLONE) 1457 if (current->ptrace & PT_TRACE_CLONE)
1454 return PTRACE_EVENT_CLONE; 1458 return PTRACE_EVENT_CLONE;
1455 } else if (current->ptrace & PT_TRACE_FORK) 1459 } else if (current->ptrace & PT_TRACE_FORK)
1456 return PTRACE_EVENT_FORK; 1460 return PTRACE_EVENT_FORK;
1457 1461
1458 return 0; 1462 return 0;
1459 } 1463 }
1460 1464
1461 /* 1465 /*
1462 * Ok, this is the main fork-routine. 1466 * Ok, this is the main fork-routine.
1463 * 1467 *
1464 * It copies the process, and if successful kick-starts 1468 * It copies the process, and if successful kick-starts
1465 * it and waits for it to finish using the VM if required. 1469 * it and waits for it to finish using the VM if required.
1466 */ 1470 */
1467 long do_fork(unsigned long clone_flags, 1471 long do_fork(unsigned long clone_flags,
1468 unsigned long stack_start, 1472 unsigned long stack_start,
1469 struct pt_regs *regs, 1473 struct pt_regs *regs,
1470 unsigned long stack_size, 1474 unsigned long stack_size,
1471 int __user *parent_tidptr, 1475 int __user *parent_tidptr,
1472 int __user *child_tidptr) 1476 int __user *child_tidptr)
1473 { 1477 {
1474 struct task_struct *p; 1478 struct task_struct *p;
1475 int trace = 0; 1479 int trace = 0;
1476 long nr; 1480 long nr;
1477 1481
1478 /* 1482 /*
1479 * We hope to recycle these flags after 2.6.26 1483 * We hope to recycle these flags after 2.6.26
1480 */ 1484 */
1481 if (unlikely(clone_flags & CLONE_STOPPED)) { 1485 if (unlikely(clone_flags & CLONE_STOPPED)) {
1482 static int __read_mostly count = 100; 1486 static int __read_mostly count = 100;
1483 1487
1484 if (count > 0 && printk_ratelimit()) { 1488 if (count > 0 && printk_ratelimit()) {
1485 char comm[TASK_COMM_LEN]; 1489 char comm[TASK_COMM_LEN];
1486 1490
1487 count--; 1491 count--;
1488 printk(KERN_INFO "fork(): process `%s' used deprecated " 1492 printk(KERN_INFO "fork(): process `%s' used deprecated "
1489 "clone flags 0x%lx\n", 1493 "clone flags 0x%lx\n",
1490 get_task_comm(comm, current), 1494 get_task_comm(comm, current),
1491 clone_flags & CLONE_STOPPED); 1495 clone_flags & CLONE_STOPPED);
1492 } 1496 }
1493 } 1497 }
1494 1498
1495 if (unlikely(current->ptrace)) { 1499 if (unlikely(current->ptrace)) {
1496 trace = fork_traceflag (clone_flags); 1500 trace = fork_traceflag (clone_flags);
1497 if (trace) 1501 if (trace)
1498 clone_flags |= CLONE_PTRACE; 1502 clone_flags |= CLONE_PTRACE;
1499 } 1503 }
1500 1504
1501 p = copy_process(clone_flags, stack_start, regs, stack_size, 1505 p = copy_process(clone_flags, stack_start, regs, stack_size,
1502 child_tidptr, NULL); 1506 child_tidptr, NULL);
1503 /* 1507 /*
1504 * Do this prior waking up the new thread - the thread pointer 1508 * Do this prior waking up the new thread - the thread pointer
1505 * might get invalid after that point, if the thread exits quickly. 1509 * might get invalid after that point, if the thread exits quickly.
1506 */ 1510 */
1507 if (!IS_ERR(p)) { 1511 if (!IS_ERR(p)) {
1508 struct completion vfork; 1512 struct completion vfork;
1509 1513
1510 nr = task_pid_vnr(p); 1514 nr = task_pid_vnr(p);
1511 1515
1512 if (clone_flags & CLONE_PARENT_SETTID) 1516 if (clone_flags & CLONE_PARENT_SETTID)
1513 put_user(nr, parent_tidptr); 1517 put_user(nr, parent_tidptr);
1514 1518
1515 if (clone_flags & CLONE_VFORK) { 1519 if (clone_flags & CLONE_VFORK) {
1516 p->vfork_done = &vfork; 1520 p->vfork_done = &vfork;
1517 init_completion(&vfork); 1521 init_completion(&vfork);
1518 } 1522 }
1519 1523
1520 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) { 1524 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1521 /* 1525 /*
1522 * We'll start up with an immediate SIGSTOP. 1526 * We'll start up with an immediate SIGSTOP.
1523 */ 1527 */
1524 sigaddset(&p->pending.signal, SIGSTOP); 1528 sigaddset(&p->pending.signal, SIGSTOP);
1525 set_tsk_thread_flag(p, TIF_SIGPENDING); 1529 set_tsk_thread_flag(p, TIF_SIGPENDING);
1526 } 1530 }
1527 1531
1528 if (!(clone_flags & CLONE_STOPPED)) 1532 if (!(clone_flags & CLONE_STOPPED))
1529 wake_up_new_task(p, clone_flags); 1533 wake_up_new_task(p, clone_flags);
1530 else 1534 else
1531 __set_task_state(p, TASK_STOPPED); 1535 __set_task_state(p, TASK_STOPPED);
1532 1536
1533 if (unlikely (trace)) { 1537 if (unlikely (trace)) {
1534 current->ptrace_message = nr; 1538 current->ptrace_message = nr;
1535 ptrace_notify ((trace << 8) | SIGTRAP); 1539 ptrace_notify ((trace << 8) | SIGTRAP);
1536 } 1540 }
1537 1541
1538 if (clone_flags & CLONE_VFORK) { 1542 if (clone_flags & CLONE_VFORK) {
1539 freezer_do_not_count(); 1543 freezer_do_not_count();
1540 wait_for_completion(&vfork); 1544 wait_for_completion(&vfork);
1541 freezer_count(); 1545 freezer_count();
1542 if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) { 1546 if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
1543 current->ptrace_message = nr; 1547 current->ptrace_message = nr;
1544 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP); 1548 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1545 } 1549 }
1546 } 1550 }
1547 } else { 1551 } else {
1548 nr = PTR_ERR(p); 1552 nr = PTR_ERR(p);
1549 } 1553 }
1550 return nr; 1554 return nr;
1551 } 1555 }
1552 1556
1553 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 1557 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1554 #define ARCH_MIN_MMSTRUCT_ALIGN 0 1558 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1555 #endif 1559 #endif
1556 1560
1557 static void sighand_ctor(struct kmem_cache *cachep, void *data) 1561 static void sighand_ctor(struct kmem_cache *cachep, void *data)
1558 { 1562 {
1559 struct sighand_struct *sighand = data; 1563 struct sighand_struct *sighand = data;
1560 1564
1561 spin_lock_init(&sighand->siglock); 1565 spin_lock_init(&sighand->siglock);
1562 init_waitqueue_head(&sighand->signalfd_wqh); 1566 init_waitqueue_head(&sighand->signalfd_wqh);
1563 } 1567 }
1564 1568
1565 void __init proc_caches_init(void) 1569 void __init proc_caches_init(void)
1566 { 1570 {
1567 sighand_cachep = kmem_cache_create("sighand_cache", 1571 sighand_cachep = kmem_cache_create("sighand_cache",
1568 sizeof(struct sighand_struct), 0, 1572 sizeof(struct sighand_struct), 0,
1569 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU, 1573 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1570 sighand_ctor); 1574 sighand_ctor);
1571 signal_cachep = kmem_cache_create("signal_cache", 1575 signal_cachep = kmem_cache_create("signal_cache",
1572 sizeof(struct signal_struct), 0, 1576 sizeof(struct signal_struct), 0,
1573 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 1577 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1574 files_cachep = kmem_cache_create("files_cache", 1578 files_cachep = kmem_cache_create("files_cache",
1575 sizeof(struct files_struct), 0, 1579 sizeof(struct files_struct), 0,
1576 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 1580 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1577 fs_cachep = kmem_cache_create("fs_cache", 1581 fs_cachep = kmem_cache_create("fs_cache",
1578 sizeof(struct fs_struct), 0, 1582 sizeof(struct fs_struct), 0,
1579 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 1583 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1580 vm_area_cachep = kmem_cache_create("vm_area_struct", 1584 vm_area_cachep = kmem_cache_create("vm_area_struct",
1581 sizeof(struct vm_area_struct), 0, 1585 sizeof(struct vm_area_struct), 0,
1582 SLAB_PANIC, NULL); 1586 SLAB_PANIC, NULL);
1583 mm_cachep = kmem_cache_create("mm_struct", 1587 mm_cachep = kmem_cache_create("mm_struct",
1584 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN, 1588 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1585 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 1589 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1586 } 1590 }
1587 1591
1588 /* 1592 /*
1589 * Check constraints on flags passed to the unshare system call and 1593 * Check constraints on flags passed to the unshare system call and
1590 * force unsharing of additional process context as appropriate. 1594 * force unsharing of additional process context as appropriate.
1591 */ 1595 */
1592 static void check_unshare_flags(unsigned long *flags_ptr) 1596 static void check_unshare_flags(unsigned long *flags_ptr)
1593 { 1597 {
1594 /* 1598 /*
1595 * If unsharing a thread from a thread group, must also 1599 * If unsharing a thread from a thread group, must also
1596 * unshare vm. 1600 * unshare vm.
1597 */ 1601 */
1598 if (*flags_ptr & CLONE_THREAD) 1602 if (*flags_ptr & CLONE_THREAD)
1599 *flags_ptr |= CLONE_VM; 1603 *flags_ptr |= CLONE_VM;
1600 1604
1601 /* 1605 /*
1602 * If unsharing vm, must also unshare signal handlers. 1606 * If unsharing vm, must also unshare signal handlers.
1603 */ 1607 */
1604 if (*flags_ptr & CLONE_VM) 1608 if (*flags_ptr & CLONE_VM)
1605 *flags_ptr |= CLONE_SIGHAND; 1609 *flags_ptr |= CLONE_SIGHAND;
1606 1610
1607 /* 1611 /*
1608 * If unsharing signal handlers and the task was created 1612 * If unsharing signal handlers and the task was created
1609 * using CLONE_THREAD, then must unshare the thread 1613 * using CLONE_THREAD, then must unshare the thread
1610 */ 1614 */
1611 if ((*flags_ptr & CLONE_SIGHAND) && 1615 if ((*flags_ptr & CLONE_SIGHAND) &&
1612 (atomic_read(&current->signal->count) > 1)) 1616 (atomic_read(&current->signal->count) > 1))
1613 *flags_ptr |= CLONE_THREAD; 1617 *flags_ptr |= CLONE_THREAD;
1614 1618
1615 /* 1619 /*
1616 * If unsharing namespace, must also unshare filesystem information. 1620 * If unsharing namespace, must also unshare filesystem information.
1617 */ 1621 */
1618 if (*flags_ptr & CLONE_NEWNS) 1622 if (*flags_ptr & CLONE_NEWNS)
1619 *flags_ptr |= CLONE_FS; 1623 *flags_ptr |= CLONE_FS;
1620 } 1624 }
1621 1625
1622 /* 1626 /*
1623 * Unsharing of tasks created with CLONE_THREAD is not supported yet 1627 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1624 */ 1628 */
1625 static int unshare_thread(unsigned long unshare_flags) 1629 static int unshare_thread(unsigned long unshare_flags)
1626 { 1630 {
1627 if (unshare_flags & CLONE_THREAD) 1631 if (unshare_flags & CLONE_THREAD)
1628 return -EINVAL; 1632 return -EINVAL;
1629 1633
1630 return 0; 1634 return 0;
1631 } 1635 }
1632 1636
1633 /* 1637 /*
1634 * Unshare the filesystem structure if it is being shared 1638 * Unshare the filesystem structure if it is being shared
1635 */ 1639 */
1636 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 1640 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1637 { 1641 {
1638 struct fs_struct *fs = current->fs; 1642 struct fs_struct *fs = current->fs;
1639 1643
1640 if ((unshare_flags & CLONE_FS) && 1644 if ((unshare_flags & CLONE_FS) &&
1641 (fs && atomic_read(&fs->count) > 1)) { 1645 (fs && atomic_read(&fs->count) > 1)) {
1642 *new_fsp = __copy_fs_struct(current->fs); 1646 *new_fsp = __copy_fs_struct(current->fs);
1643 if (!*new_fsp) 1647 if (!*new_fsp)
1644 return -ENOMEM; 1648 return -ENOMEM;
1645 } 1649 }
1646 1650
1647 return 0; 1651 return 0;
1648 } 1652 }
1649 1653
1650 /* 1654 /*
1651 * Unsharing of sighand is not supported yet 1655 * Unsharing of sighand is not supported yet
1652 */ 1656 */
1653 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp) 1657 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1654 { 1658 {
1655 struct sighand_struct *sigh = current->sighand; 1659 struct sighand_struct *sigh = current->sighand;
1656 1660
1657 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1) 1661 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1658 return -EINVAL; 1662 return -EINVAL;
1659 else 1663 else
1660 return 0; 1664 return 0;
1661 } 1665 }
1662 1666
1663 /* 1667 /*
1664 * Unshare vm if it is being shared 1668 * Unshare vm if it is being shared
1665 */ 1669 */
1666 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp) 1670 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1667 { 1671 {
1668 struct mm_struct *mm = current->mm; 1672 struct mm_struct *mm = current->mm;
1669 1673
1670 if ((unshare_flags & CLONE_VM) && 1674 if ((unshare_flags & CLONE_VM) &&
1671 (mm && atomic_read(&mm->mm_users) > 1)) { 1675 (mm && atomic_read(&mm->mm_users) > 1)) {
1672 return -EINVAL; 1676 return -EINVAL;
1673 } 1677 }
1674 1678
1675 return 0; 1679 return 0;
1676 } 1680 }
1677 1681
1678 /* 1682 /*
1679 * Unshare file descriptor table if it is being shared 1683 * Unshare file descriptor table if it is being shared
1680 */ 1684 */
1681 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 1685 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1682 { 1686 {
1683 struct files_struct *fd = current->files; 1687 struct files_struct *fd = current->files;
1684 int error = 0; 1688 int error = 0;
1685 1689
1686 if ((unshare_flags & CLONE_FILES) && 1690 if ((unshare_flags & CLONE_FILES) &&
1687 (fd && atomic_read(&fd->count) > 1)) { 1691 (fd && atomic_read(&fd->count) > 1)) {
1688 *new_fdp = dup_fd(fd, &error); 1692 *new_fdp = dup_fd(fd, &error);
1689 if (!*new_fdp) 1693 if (!*new_fdp)
1690 return error; 1694 return error;
1691 } 1695 }
1692 1696
1693 return 0; 1697 return 0;
1694 } 1698 }
1695 1699
1696 /* 1700 /*
1697 * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not 1701 * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1698 * supported yet 1702 * supported yet
1699 */ 1703 */
1700 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp) 1704 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1701 { 1705 {
1702 if (unshare_flags & CLONE_SYSVSEM) 1706 if (unshare_flags & CLONE_SYSVSEM)
1703 return -EINVAL; 1707 return -EINVAL;
1704 1708
1705 return 0; 1709 return 0;
1706 } 1710 }
1707 1711
1708 /* 1712 /*
1709 * unshare allows a process to 'unshare' part of the process 1713 * unshare allows a process to 'unshare' part of the process
1710 * context which was originally shared using clone. copy_* 1714 * context which was originally shared using clone. copy_*
1711 * functions used by do_fork() cannot be used here directly 1715 * functions used by do_fork() cannot be used here directly
1712 * because they modify an inactive task_struct that is being 1716 * because they modify an inactive task_struct that is being
1713 * constructed. Here we are modifying the current, active, 1717 * constructed. Here we are modifying the current, active,
1714 * task_struct. 1718 * task_struct.
1715 */ 1719 */
1716 asmlinkage long sys_unshare(unsigned long unshare_flags) 1720 asmlinkage long sys_unshare(unsigned long unshare_flags)
1717 { 1721 {
1718 int err = 0; 1722 int err = 0;
1719 struct fs_struct *fs, *new_fs = NULL; 1723 struct fs_struct *fs, *new_fs = NULL;
1720 struct sighand_struct *new_sigh = NULL; 1724 struct sighand_struct *new_sigh = NULL;
1721 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL; 1725 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1722 struct files_struct *fd, *new_fd = NULL; 1726 struct files_struct *fd, *new_fd = NULL;
1723 struct sem_undo_list *new_ulist = NULL; 1727 struct sem_undo_list *new_ulist = NULL;
1724 struct nsproxy *new_nsproxy = NULL; 1728 struct nsproxy *new_nsproxy = NULL;
1725 1729
1726 check_unshare_flags(&unshare_flags); 1730 check_unshare_flags(&unshare_flags);
1727 1731
1728 /* Return -EINVAL for all unsupported flags */ 1732 /* Return -EINVAL for all unsupported flags */
1729 err = -EINVAL; 1733 err = -EINVAL;
1730 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 1734 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1731 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 1735 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1732 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER| 1736 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
1733 CLONE_NEWNET)) 1737 CLONE_NEWNET))
1734 goto bad_unshare_out; 1738 goto bad_unshare_out;
1735 1739
1736 if ((err = unshare_thread(unshare_flags))) 1740 if ((err = unshare_thread(unshare_flags)))
1737 goto bad_unshare_out; 1741 goto bad_unshare_out;
1738 if ((err = unshare_fs(unshare_flags, &new_fs))) 1742 if ((err = unshare_fs(unshare_flags, &new_fs)))
1739 goto bad_unshare_cleanup_thread; 1743 goto bad_unshare_cleanup_thread;
1740 if ((err = unshare_sighand(unshare_flags, &new_sigh))) 1744 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1741 goto bad_unshare_cleanup_fs; 1745 goto bad_unshare_cleanup_fs;
1742 if ((err = unshare_vm(unshare_flags, &new_mm))) 1746 if ((err = unshare_vm(unshare_flags, &new_mm)))
1743 goto bad_unshare_cleanup_sigh; 1747 goto bad_unshare_cleanup_sigh;
1744 if ((err = unshare_fd(unshare_flags, &new_fd))) 1748 if ((err = unshare_fd(unshare_flags, &new_fd)))
1745 goto bad_unshare_cleanup_vm; 1749 goto bad_unshare_cleanup_vm;
1746 if ((err = unshare_semundo(unshare_flags, &new_ulist))) 1750 if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1747 goto bad_unshare_cleanup_fd; 1751 goto bad_unshare_cleanup_fd;
1748 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 1752 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1749 new_fs))) 1753 new_fs)))
1750 goto bad_unshare_cleanup_semundo; 1754 goto bad_unshare_cleanup_semundo;
1751 1755
1752 if (new_fs || new_mm || new_fd || new_ulist || new_nsproxy) { 1756 if (new_fs || new_mm || new_fd || new_ulist || new_nsproxy) {
1753 1757
1754 if (new_nsproxy) { 1758 if (new_nsproxy) {
1755 switch_task_namespaces(current, new_nsproxy); 1759 switch_task_namespaces(current, new_nsproxy);
1756 new_nsproxy = NULL; 1760 new_nsproxy = NULL;
1757 } 1761 }
1758 1762
1759 task_lock(current); 1763 task_lock(current);
1760 1764
1761 if (new_fs) { 1765 if (new_fs) {
1762 fs = current->fs; 1766 fs = current->fs;
1763 current->fs = new_fs; 1767 current->fs = new_fs;
1764 new_fs = fs; 1768 new_fs = fs;
1765 } 1769 }
1766 1770
1767 if (new_mm) { 1771 if (new_mm) {
1768 mm = current->mm; 1772 mm = current->mm;
1769 active_mm = current->active_mm; 1773 active_mm = current->active_mm;
1770 current->mm = new_mm; 1774 current->mm = new_mm;
1771 current->active_mm = new_mm; 1775 current->active_mm = new_mm;
1772 activate_mm(active_mm, new_mm); 1776 activate_mm(active_mm, new_mm);
1773 new_mm = mm; 1777 new_mm = mm;
1774 } 1778 }
1775 1779
1776 if (new_fd) { 1780 if (new_fd) {
1777 fd = current->files; 1781 fd = current->files;
1778 current->files = new_fd; 1782 current->files = new_fd;
1779 new_fd = fd; 1783 new_fd = fd;
1780 } 1784 }
1781 1785
1782 task_unlock(current); 1786 task_unlock(current);
1783 } 1787 }
1784 1788
1785 if (new_nsproxy) 1789 if (new_nsproxy)
1786 put_nsproxy(new_nsproxy); 1790 put_nsproxy(new_nsproxy);
1787 1791
1788 bad_unshare_cleanup_semundo: 1792 bad_unshare_cleanup_semundo:
1789 bad_unshare_cleanup_fd: 1793 bad_unshare_cleanup_fd:
1790 if (new_fd) 1794 if (new_fd)
1791 put_files_struct(new_fd); 1795 put_files_struct(new_fd);
1792 1796
1793 bad_unshare_cleanup_vm: 1797 bad_unshare_cleanup_vm:
1794 if (new_mm) 1798 if (new_mm)
1795 mmput(new_mm); 1799 mmput(new_mm);
1796 1800
1797 bad_unshare_cleanup_sigh: 1801 bad_unshare_cleanup_sigh:
1798 if (new_sigh) 1802 if (new_sigh)
1799 if (atomic_dec_and_test(&new_sigh->count)) 1803 if (atomic_dec_and_test(&new_sigh->count))
1800 kmem_cache_free(sighand_cachep, new_sigh); 1804 kmem_cache_free(sighand_cachep, new_sigh);
1801 1805
1802 bad_unshare_cleanup_fs: 1806 bad_unshare_cleanup_fs:
1803 if (new_fs) 1807 if (new_fs)
1804 put_fs_struct(new_fs); 1808 put_fs_struct(new_fs);
1805 1809
1806 bad_unshare_cleanup_thread: 1810 bad_unshare_cleanup_thread:
1807 bad_unshare_out: 1811 bad_unshare_out:
1808 return err; 1812 return err;
1809 } 1813 }
1810 1814