Commit 2b2811178e85553405b86e3fe78357b9b95889ce
Committed by
Linus Torvalds
1 parent
4e2e2770b1
Exists in
smarc-imx_3.14.28_1.0.0_ga
and in
1 other branch
zswap: add to mm/
zswap is a thin backend for frontswap that takes pages that are in the process of being swapped out and attempts to compress them and store them in a RAM-based memory pool. This can result in a significant I/O reduction on the swap device and, in the case where decompressing from RAM is faster than reading from the swap device, can also improve workload performance. It also has support for evicting swap pages that are currently compressed in zswap to the swap device on an LRU(ish) basis. This functionality makes zswap a true cache in that, once the cache is full, the oldest pages can be moved out of zswap to the swap device so newer pages can be compressed and stored in zswap. This patch adds the zswap driver to mm/ Signed-off-by: Seth Jennings <sjenning@linux.vnet.ibm.com> Acked-by: Rik van Riel <riel@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Robert Jennings <rcj@linux.vnet.ibm.com> Cc: Jenifer Hopper <jhopper@us.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <jweiner@redhat.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dave Hansen <dave@sr71.net> Cc: Joe Perches <joe@perches.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Cody P Schafer <cody@linux.vnet.ibm.com> Cc: Hugh Dickens <hughd@google.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Showing 3 changed files with 964 additions and 0 deletions Inline Diff
mm/Kconfig
1 | config SELECT_MEMORY_MODEL | 1 | config SELECT_MEMORY_MODEL |
2 | def_bool y | 2 | def_bool y |
3 | depends on ARCH_SELECT_MEMORY_MODEL | 3 | depends on ARCH_SELECT_MEMORY_MODEL |
4 | 4 | ||
5 | choice | 5 | choice |
6 | prompt "Memory model" | 6 | prompt "Memory model" |
7 | depends on SELECT_MEMORY_MODEL | 7 | depends on SELECT_MEMORY_MODEL |
8 | default DISCONTIGMEM_MANUAL if ARCH_DISCONTIGMEM_DEFAULT | 8 | default DISCONTIGMEM_MANUAL if ARCH_DISCONTIGMEM_DEFAULT |
9 | default SPARSEMEM_MANUAL if ARCH_SPARSEMEM_DEFAULT | 9 | default SPARSEMEM_MANUAL if ARCH_SPARSEMEM_DEFAULT |
10 | default FLATMEM_MANUAL | 10 | default FLATMEM_MANUAL |
11 | 11 | ||
12 | config FLATMEM_MANUAL | 12 | config FLATMEM_MANUAL |
13 | bool "Flat Memory" | 13 | bool "Flat Memory" |
14 | depends on !(ARCH_DISCONTIGMEM_ENABLE || ARCH_SPARSEMEM_ENABLE) || ARCH_FLATMEM_ENABLE | 14 | depends on !(ARCH_DISCONTIGMEM_ENABLE || ARCH_SPARSEMEM_ENABLE) || ARCH_FLATMEM_ENABLE |
15 | help | 15 | help |
16 | This option allows you to change some of the ways that | 16 | This option allows you to change some of the ways that |
17 | Linux manages its memory internally. Most users will | 17 | Linux manages its memory internally. Most users will |
18 | only have one option here: FLATMEM. This is normal | 18 | only have one option here: FLATMEM. This is normal |
19 | and a correct option. | 19 | and a correct option. |
20 | 20 | ||
21 | Some users of more advanced features like NUMA and | 21 | Some users of more advanced features like NUMA and |
22 | memory hotplug may have different options here. | 22 | memory hotplug may have different options here. |
23 | DISCONTIGMEM is an more mature, better tested system, | 23 | DISCONTIGMEM is an more mature, better tested system, |
24 | but is incompatible with memory hotplug and may suffer | 24 | but is incompatible with memory hotplug and may suffer |
25 | decreased performance over SPARSEMEM. If unsure between | 25 | decreased performance over SPARSEMEM. If unsure between |
26 | "Sparse Memory" and "Discontiguous Memory", choose | 26 | "Sparse Memory" and "Discontiguous Memory", choose |
27 | "Discontiguous Memory". | 27 | "Discontiguous Memory". |
28 | 28 | ||
29 | If unsure, choose this option (Flat Memory) over any other. | 29 | If unsure, choose this option (Flat Memory) over any other. |
30 | 30 | ||
31 | config DISCONTIGMEM_MANUAL | 31 | config DISCONTIGMEM_MANUAL |
32 | bool "Discontiguous Memory" | 32 | bool "Discontiguous Memory" |
33 | depends on ARCH_DISCONTIGMEM_ENABLE | 33 | depends on ARCH_DISCONTIGMEM_ENABLE |
34 | help | 34 | help |
35 | This option provides enhanced support for discontiguous | 35 | This option provides enhanced support for discontiguous |
36 | memory systems, over FLATMEM. These systems have holes | 36 | memory systems, over FLATMEM. These systems have holes |
37 | in their physical address spaces, and this option provides | 37 | in their physical address spaces, and this option provides |
38 | more efficient handling of these holes. However, the vast | 38 | more efficient handling of these holes. However, the vast |
39 | majority of hardware has quite flat address spaces, and | 39 | majority of hardware has quite flat address spaces, and |
40 | can have degraded performance from the extra overhead that | 40 | can have degraded performance from the extra overhead that |
41 | this option imposes. | 41 | this option imposes. |
42 | 42 | ||
43 | Many NUMA configurations will have this as the only option. | 43 | Many NUMA configurations will have this as the only option. |
44 | 44 | ||
45 | If unsure, choose "Flat Memory" over this option. | 45 | If unsure, choose "Flat Memory" over this option. |
46 | 46 | ||
47 | config SPARSEMEM_MANUAL | 47 | config SPARSEMEM_MANUAL |
48 | bool "Sparse Memory" | 48 | bool "Sparse Memory" |
49 | depends on ARCH_SPARSEMEM_ENABLE | 49 | depends on ARCH_SPARSEMEM_ENABLE |
50 | help | 50 | help |
51 | This will be the only option for some systems, including | 51 | This will be the only option for some systems, including |
52 | memory hotplug systems. This is normal. | 52 | memory hotplug systems. This is normal. |
53 | 53 | ||
54 | For many other systems, this will be an alternative to | 54 | For many other systems, this will be an alternative to |
55 | "Discontiguous Memory". This option provides some potential | 55 | "Discontiguous Memory". This option provides some potential |
56 | performance benefits, along with decreased code complexity, | 56 | performance benefits, along with decreased code complexity, |
57 | but it is newer, and more experimental. | 57 | but it is newer, and more experimental. |
58 | 58 | ||
59 | If unsure, choose "Discontiguous Memory" or "Flat Memory" | 59 | If unsure, choose "Discontiguous Memory" or "Flat Memory" |
60 | over this option. | 60 | over this option. |
61 | 61 | ||
62 | endchoice | 62 | endchoice |
63 | 63 | ||
64 | config DISCONTIGMEM | 64 | config DISCONTIGMEM |
65 | def_bool y | 65 | def_bool y |
66 | depends on (!SELECT_MEMORY_MODEL && ARCH_DISCONTIGMEM_ENABLE) || DISCONTIGMEM_MANUAL | 66 | depends on (!SELECT_MEMORY_MODEL && ARCH_DISCONTIGMEM_ENABLE) || DISCONTIGMEM_MANUAL |
67 | 67 | ||
68 | config SPARSEMEM | 68 | config SPARSEMEM |
69 | def_bool y | 69 | def_bool y |
70 | depends on (!SELECT_MEMORY_MODEL && ARCH_SPARSEMEM_ENABLE) || SPARSEMEM_MANUAL | 70 | depends on (!SELECT_MEMORY_MODEL && ARCH_SPARSEMEM_ENABLE) || SPARSEMEM_MANUAL |
71 | 71 | ||
72 | config FLATMEM | 72 | config FLATMEM |
73 | def_bool y | 73 | def_bool y |
74 | depends on (!DISCONTIGMEM && !SPARSEMEM) || FLATMEM_MANUAL | 74 | depends on (!DISCONTIGMEM && !SPARSEMEM) || FLATMEM_MANUAL |
75 | 75 | ||
76 | config FLAT_NODE_MEM_MAP | 76 | config FLAT_NODE_MEM_MAP |
77 | def_bool y | 77 | def_bool y |
78 | depends on !SPARSEMEM | 78 | depends on !SPARSEMEM |
79 | 79 | ||
80 | # | 80 | # |
81 | # Both the NUMA code and DISCONTIGMEM use arrays of pg_data_t's | 81 | # Both the NUMA code and DISCONTIGMEM use arrays of pg_data_t's |
82 | # to represent different areas of memory. This variable allows | 82 | # to represent different areas of memory. This variable allows |
83 | # those dependencies to exist individually. | 83 | # those dependencies to exist individually. |
84 | # | 84 | # |
85 | config NEED_MULTIPLE_NODES | 85 | config NEED_MULTIPLE_NODES |
86 | def_bool y | 86 | def_bool y |
87 | depends on DISCONTIGMEM || NUMA | 87 | depends on DISCONTIGMEM || NUMA |
88 | 88 | ||
89 | config HAVE_MEMORY_PRESENT | 89 | config HAVE_MEMORY_PRESENT |
90 | def_bool y | 90 | def_bool y |
91 | depends on ARCH_HAVE_MEMORY_PRESENT || SPARSEMEM | 91 | depends on ARCH_HAVE_MEMORY_PRESENT || SPARSEMEM |
92 | 92 | ||
93 | # | 93 | # |
94 | # SPARSEMEM_EXTREME (which is the default) does some bootmem | 94 | # SPARSEMEM_EXTREME (which is the default) does some bootmem |
95 | # allocations when memory_present() is called. If this cannot | 95 | # allocations when memory_present() is called. If this cannot |
96 | # be done on your architecture, select this option. However, | 96 | # be done on your architecture, select this option. However, |
97 | # statically allocating the mem_section[] array can potentially | 97 | # statically allocating the mem_section[] array can potentially |
98 | # consume vast quantities of .bss, so be careful. | 98 | # consume vast quantities of .bss, so be careful. |
99 | # | 99 | # |
100 | # This option will also potentially produce smaller runtime code | 100 | # This option will also potentially produce smaller runtime code |
101 | # with gcc 3.4 and later. | 101 | # with gcc 3.4 and later. |
102 | # | 102 | # |
103 | config SPARSEMEM_STATIC | 103 | config SPARSEMEM_STATIC |
104 | bool | 104 | bool |
105 | 105 | ||
106 | # | 106 | # |
107 | # Architecture platforms which require a two level mem_section in SPARSEMEM | 107 | # Architecture platforms which require a two level mem_section in SPARSEMEM |
108 | # must select this option. This is usually for architecture platforms with | 108 | # must select this option. This is usually for architecture platforms with |
109 | # an extremely sparse physical address space. | 109 | # an extremely sparse physical address space. |
110 | # | 110 | # |
111 | config SPARSEMEM_EXTREME | 111 | config SPARSEMEM_EXTREME |
112 | def_bool y | 112 | def_bool y |
113 | depends on SPARSEMEM && !SPARSEMEM_STATIC | 113 | depends on SPARSEMEM && !SPARSEMEM_STATIC |
114 | 114 | ||
115 | config SPARSEMEM_VMEMMAP_ENABLE | 115 | config SPARSEMEM_VMEMMAP_ENABLE |
116 | bool | 116 | bool |
117 | 117 | ||
118 | config SPARSEMEM_ALLOC_MEM_MAP_TOGETHER | 118 | config SPARSEMEM_ALLOC_MEM_MAP_TOGETHER |
119 | def_bool y | 119 | def_bool y |
120 | depends on SPARSEMEM && X86_64 | 120 | depends on SPARSEMEM && X86_64 |
121 | 121 | ||
122 | config SPARSEMEM_VMEMMAP | 122 | config SPARSEMEM_VMEMMAP |
123 | bool "Sparse Memory virtual memmap" | 123 | bool "Sparse Memory virtual memmap" |
124 | depends on SPARSEMEM && SPARSEMEM_VMEMMAP_ENABLE | 124 | depends on SPARSEMEM && SPARSEMEM_VMEMMAP_ENABLE |
125 | default y | 125 | default y |
126 | help | 126 | help |
127 | SPARSEMEM_VMEMMAP uses a virtually mapped memmap to optimise | 127 | SPARSEMEM_VMEMMAP uses a virtually mapped memmap to optimise |
128 | pfn_to_page and page_to_pfn operations. This is the most | 128 | pfn_to_page and page_to_pfn operations. This is the most |
129 | efficient option when sufficient kernel resources are available. | 129 | efficient option when sufficient kernel resources are available. |
130 | 130 | ||
131 | config HAVE_MEMBLOCK | 131 | config HAVE_MEMBLOCK |
132 | boolean | 132 | boolean |
133 | 133 | ||
134 | config HAVE_MEMBLOCK_NODE_MAP | 134 | config HAVE_MEMBLOCK_NODE_MAP |
135 | boolean | 135 | boolean |
136 | 136 | ||
137 | config ARCH_DISCARD_MEMBLOCK | 137 | config ARCH_DISCARD_MEMBLOCK |
138 | boolean | 138 | boolean |
139 | 139 | ||
140 | config NO_BOOTMEM | 140 | config NO_BOOTMEM |
141 | boolean | 141 | boolean |
142 | 142 | ||
143 | config MEMORY_ISOLATION | 143 | config MEMORY_ISOLATION |
144 | boolean | 144 | boolean |
145 | 145 | ||
146 | config MOVABLE_NODE | 146 | config MOVABLE_NODE |
147 | boolean "Enable to assign a node which has only movable memory" | 147 | boolean "Enable to assign a node which has only movable memory" |
148 | depends on HAVE_MEMBLOCK | 148 | depends on HAVE_MEMBLOCK |
149 | depends on NO_BOOTMEM | 149 | depends on NO_BOOTMEM |
150 | depends on X86_64 | 150 | depends on X86_64 |
151 | depends on NUMA | 151 | depends on NUMA |
152 | default n | 152 | default n |
153 | help | 153 | help |
154 | Allow a node to have only movable memory. Pages used by the kernel, | 154 | Allow a node to have only movable memory. Pages used by the kernel, |
155 | such as direct mapping pages cannot be migrated. So the corresponding | 155 | such as direct mapping pages cannot be migrated. So the corresponding |
156 | memory device cannot be hotplugged. This option allows users to | 156 | memory device cannot be hotplugged. This option allows users to |
157 | online all the memory of a node as movable memory so that the whole | 157 | online all the memory of a node as movable memory so that the whole |
158 | node can be hotplugged. Users who don't use the memory hotplug | 158 | node can be hotplugged. Users who don't use the memory hotplug |
159 | feature are fine with this option on since they don't online memory | 159 | feature are fine with this option on since they don't online memory |
160 | as movable. | 160 | as movable. |
161 | 161 | ||
162 | Say Y here if you want to hotplug a whole node. | 162 | Say Y here if you want to hotplug a whole node. |
163 | Say N here if you want kernel to use memory on all nodes evenly. | 163 | Say N here if you want kernel to use memory on all nodes evenly. |
164 | 164 | ||
165 | # | 165 | # |
166 | # Only be set on architectures that have completely implemented memory hotplug | 166 | # Only be set on architectures that have completely implemented memory hotplug |
167 | # feature. If you are not sure, don't touch it. | 167 | # feature. If you are not sure, don't touch it. |
168 | # | 168 | # |
169 | config HAVE_BOOTMEM_INFO_NODE | 169 | config HAVE_BOOTMEM_INFO_NODE |
170 | def_bool n | 170 | def_bool n |
171 | 171 | ||
172 | # eventually, we can have this option just 'select SPARSEMEM' | 172 | # eventually, we can have this option just 'select SPARSEMEM' |
173 | config MEMORY_HOTPLUG | 173 | config MEMORY_HOTPLUG |
174 | bool "Allow for memory hot-add" | 174 | bool "Allow for memory hot-add" |
175 | depends on SPARSEMEM || X86_64_ACPI_NUMA | 175 | depends on SPARSEMEM || X86_64_ACPI_NUMA |
176 | depends on ARCH_ENABLE_MEMORY_HOTPLUG | 176 | depends on ARCH_ENABLE_MEMORY_HOTPLUG |
177 | depends on (IA64 || X86 || PPC_BOOK3S_64 || SUPERH || S390) | 177 | depends on (IA64 || X86 || PPC_BOOK3S_64 || SUPERH || S390) |
178 | 178 | ||
179 | config MEMORY_HOTPLUG_SPARSE | 179 | config MEMORY_HOTPLUG_SPARSE |
180 | def_bool y | 180 | def_bool y |
181 | depends on SPARSEMEM && MEMORY_HOTPLUG | 181 | depends on SPARSEMEM && MEMORY_HOTPLUG |
182 | 182 | ||
183 | config MEMORY_HOTREMOVE | 183 | config MEMORY_HOTREMOVE |
184 | bool "Allow for memory hot remove" | 184 | bool "Allow for memory hot remove" |
185 | select MEMORY_ISOLATION | 185 | select MEMORY_ISOLATION |
186 | select HAVE_BOOTMEM_INFO_NODE if X86_64 | 186 | select HAVE_BOOTMEM_INFO_NODE if X86_64 |
187 | depends on MEMORY_HOTPLUG && ARCH_ENABLE_MEMORY_HOTREMOVE | 187 | depends on MEMORY_HOTPLUG && ARCH_ENABLE_MEMORY_HOTREMOVE |
188 | depends on MIGRATION | 188 | depends on MIGRATION |
189 | 189 | ||
190 | # | 190 | # |
191 | # If we have space for more page flags then we can enable additional | 191 | # If we have space for more page flags then we can enable additional |
192 | # optimizations and functionality. | 192 | # optimizations and functionality. |
193 | # | 193 | # |
194 | # Regular Sparsemem takes page flag bits for the sectionid if it does not | 194 | # Regular Sparsemem takes page flag bits for the sectionid if it does not |
195 | # use a virtual memmap. Disable extended page flags for 32 bit platforms | 195 | # use a virtual memmap. Disable extended page flags for 32 bit platforms |
196 | # that require the use of a sectionid in the page flags. | 196 | # that require the use of a sectionid in the page flags. |
197 | # | 197 | # |
198 | config PAGEFLAGS_EXTENDED | 198 | config PAGEFLAGS_EXTENDED |
199 | def_bool y | 199 | def_bool y |
200 | depends on 64BIT || SPARSEMEM_VMEMMAP || !SPARSEMEM | 200 | depends on 64BIT || SPARSEMEM_VMEMMAP || !SPARSEMEM |
201 | 201 | ||
202 | # Heavily threaded applications may benefit from splitting the mm-wide | 202 | # Heavily threaded applications may benefit from splitting the mm-wide |
203 | # page_table_lock, so that faults on different parts of the user address | 203 | # page_table_lock, so that faults on different parts of the user address |
204 | # space can be handled with less contention: split it at this NR_CPUS. | 204 | # space can be handled with less contention: split it at this NR_CPUS. |
205 | # Default to 4 for wider testing, though 8 might be more appropriate. | 205 | # Default to 4 for wider testing, though 8 might be more appropriate. |
206 | # ARM's adjust_pte (unused if VIPT) depends on mm-wide page_table_lock. | 206 | # ARM's adjust_pte (unused if VIPT) depends on mm-wide page_table_lock. |
207 | # PA-RISC 7xxx's spinlock_t would enlarge struct page from 32 to 44 bytes. | 207 | # PA-RISC 7xxx's spinlock_t would enlarge struct page from 32 to 44 bytes. |
208 | # DEBUG_SPINLOCK and DEBUG_LOCK_ALLOC spinlock_t also enlarge struct page. | 208 | # DEBUG_SPINLOCK and DEBUG_LOCK_ALLOC spinlock_t also enlarge struct page. |
209 | # | 209 | # |
210 | config SPLIT_PTLOCK_CPUS | 210 | config SPLIT_PTLOCK_CPUS |
211 | int | 211 | int |
212 | default "999999" if ARM && !CPU_CACHE_VIPT | 212 | default "999999" if ARM && !CPU_CACHE_VIPT |
213 | default "999999" if PARISC && !PA20 | 213 | default "999999" if PARISC && !PA20 |
214 | default "999999" if DEBUG_SPINLOCK || DEBUG_LOCK_ALLOC | 214 | default "999999" if DEBUG_SPINLOCK || DEBUG_LOCK_ALLOC |
215 | default "4" | 215 | default "4" |
216 | 216 | ||
217 | # | 217 | # |
218 | # support for memory balloon compaction | 218 | # support for memory balloon compaction |
219 | config BALLOON_COMPACTION | 219 | config BALLOON_COMPACTION |
220 | bool "Allow for balloon memory compaction/migration" | 220 | bool "Allow for balloon memory compaction/migration" |
221 | def_bool y | 221 | def_bool y |
222 | depends on COMPACTION && VIRTIO_BALLOON | 222 | depends on COMPACTION && VIRTIO_BALLOON |
223 | help | 223 | help |
224 | Memory fragmentation introduced by ballooning might reduce | 224 | Memory fragmentation introduced by ballooning might reduce |
225 | significantly the number of 2MB contiguous memory blocks that can be | 225 | significantly the number of 2MB contiguous memory blocks that can be |
226 | used within a guest, thus imposing performance penalties associated | 226 | used within a guest, thus imposing performance penalties associated |
227 | with the reduced number of transparent huge pages that could be used | 227 | with the reduced number of transparent huge pages that could be used |
228 | by the guest workload. Allowing the compaction & migration for memory | 228 | by the guest workload. Allowing the compaction & migration for memory |
229 | pages enlisted as being part of memory balloon devices avoids the | 229 | pages enlisted as being part of memory balloon devices avoids the |
230 | scenario aforementioned and helps improving memory defragmentation. | 230 | scenario aforementioned and helps improving memory defragmentation. |
231 | 231 | ||
232 | # | 232 | # |
233 | # support for memory compaction | 233 | # support for memory compaction |
234 | config COMPACTION | 234 | config COMPACTION |
235 | bool "Allow for memory compaction" | 235 | bool "Allow for memory compaction" |
236 | def_bool y | 236 | def_bool y |
237 | select MIGRATION | 237 | select MIGRATION |
238 | depends on MMU | 238 | depends on MMU |
239 | help | 239 | help |
240 | Allows the compaction of memory for the allocation of huge pages. | 240 | Allows the compaction of memory for the allocation of huge pages. |
241 | 241 | ||
242 | # | 242 | # |
243 | # support for page migration | 243 | # support for page migration |
244 | # | 244 | # |
245 | config MIGRATION | 245 | config MIGRATION |
246 | bool "Page migration" | 246 | bool "Page migration" |
247 | def_bool y | 247 | def_bool y |
248 | depends on NUMA || ARCH_ENABLE_MEMORY_HOTREMOVE || COMPACTION || CMA | 248 | depends on NUMA || ARCH_ENABLE_MEMORY_HOTREMOVE || COMPACTION || CMA |
249 | help | 249 | help |
250 | Allows the migration of the physical location of pages of processes | 250 | Allows the migration of the physical location of pages of processes |
251 | while the virtual addresses are not changed. This is useful in | 251 | while the virtual addresses are not changed. This is useful in |
252 | two situations. The first is on NUMA systems to put pages nearer | 252 | two situations. The first is on NUMA systems to put pages nearer |
253 | to the processors accessing. The second is when allocating huge | 253 | to the processors accessing. The second is when allocating huge |
254 | pages as migration can relocate pages to satisfy a huge page | 254 | pages as migration can relocate pages to satisfy a huge page |
255 | allocation instead of reclaiming. | 255 | allocation instead of reclaiming. |
256 | 256 | ||
257 | config PHYS_ADDR_T_64BIT | 257 | config PHYS_ADDR_T_64BIT |
258 | def_bool 64BIT || ARCH_PHYS_ADDR_T_64BIT | 258 | def_bool 64BIT || ARCH_PHYS_ADDR_T_64BIT |
259 | 259 | ||
260 | config ZONE_DMA_FLAG | 260 | config ZONE_DMA_FLAG |
261 | int | 261 | int |
262 | default "0" if !ZONE_DMA | 262 | default "0" if !ZONE_DMA |
263 | default "1" | 263 | default "1" |
264 | 264 | ||
265 | config BOUNCE | 265 | config BOUNCE |
266 | bool "Enable bounce buffers" | 266 | bool "Enable bounce buffers" |
267 | default y | 267 | default y |
268 | depends on BLOCK && MMU && (ZONE_DMA || HIGHMEM) | 268 | depends on BLOCK && MMU && (ZONE_DMA || HIGHMEM) |
269 | help | 269 | help |
270 | Enable bounce buffers for devices that cannot access | 270 | Enable bounce buffers for devices that cannot access |
271 | the full range of memory available to the CPU. Enabled | 271 | the full range of memory available to the CPU. Enabled |
272 | by default when ZONE_DMA or HIGHMEM is selected, but you | 272 | by default when ZONE_DMA or HIGHMEM is selected, but you |
273 | may say n to override this. | 273 | may say n to override this. |
274 | 274 | ||
275 | # On the 'tile' arch, USB OHCI needs the bounce pool since tilegx will often | 275 | # On the 'tile' arch, USB OHCI needs the bounce pool since tilegx will often |
276 | # have more than 4GB of memory, but we don't currently use the IOTLB to present | 276 | # have more than 4GB of memory, but we don't currently use the IOTLB to present |
277 | # a 32-bit address to OHCI. So we need to use a bounce pool instead. | 277 | # a 32-bit address to OHCI. So we need to use a bounce pool instead. |
278 | # | 278 | # |
279 | # We also use the bounce pool to provide stable page writes for jbd. jbd | 279 | # We also use the bounce pool to provide stable page writes for jbd. jbd |
280 | # initiates buffer writeback without locking the page or setting PG_writeback, | 280 | # initiates buffer writeback without locking the page or setting PG_writeback, |
281 | # and fixing that behavior (a second time; jbd2 doesn't have this problem) is | 281 | # and fixing that behavior (a second time; jbd2 doesn't have this problem) is |
282 | # a major rework effort. Instead, use the bounce buffer to snapshot pages | 282 | # a major rework effort. Instead, use the bounce buffer to snapshot pages |
283 | # (until jbd goes away). The only jbd user is ext3. | 283 | # (until jbd goes away). The only jbd user is ext3. |
284 | config NEED_BOUNCE_POOL | 284 | config NEED_BOUNCE_POOL |
285 | bool | 285 | bool |
286 | default y if (TILE && USB_OHCI_HCD) || (BLK_DEV_INTEGRITY && JBD) | 286 | default y if (TILE && USB_OHCI_HCD) || (BLK_DEV_INTEGRITY && JBD) |
287 | 287 | ||
288 | config NR_QUICK | 288 | config NR_QUICK |
289 | int | 289 | int |
290 | depends on QUICKLIST | 290 | depends on QUICKLIST |
291 | default "2" if AVR32 | 291 | default "2" if AVR32 |
292 | default "1" | 292 | default "1" |
293 | 293 | ||
294 | config VIRT_TO_BUS | 294 | config VIRT_TO_BUS |
295 | bool | 295 | bool |
296 | help | 296 | help |
297 | An architecture should select this if it implements the | 297 | An architecture should select this if it implements the |
298 | deprecated interface virt_to_bus(). All new architectures | 298 | deprecated interface virt_to_bus(). All new architectures |
299 | should probably not select this. | 299 | should probably not select this. |
300 | 300 | ||
301 | 301 | ||
302 | config MMU_NOTIFIER | 302 | config MMU_NOTIFIER |
303 | bool | 303 | bool |
304 | 304 | ||
305 | config KSM | 305 | config KSM |
306 | bool "Enable KSM for page merging" | 306 | bool "Enable KSM for page merging" |
307 | depends on MMU | 307 | depends on MMU |
308 | help | 308 | help |
309 | Enable Kernel Samepage Merging: KSM periodically scans those areas | 309 | Enable Kernel Samepage Merging: KSM periodically scans those areas |
310 | of an application's address space that an app has advised may be | 310 | of an application's address space that an app has advised may be |
311 | mergeable. When it finds pages of identical content, it replaces | 311 | mergeable. When it finds pages of identical content, it replaces |
312 | the many instances by a single page with that content, so | 312 | the many instances by a single page with that content, so |
313 | saving memory until one or another app needs to modify the content. | 313 | saving memory until one or another app needs to modify the content. |
314 | Recommended for use with KVM, or with other duplicative applications. | 314 | Recommended for use with KVM, or with other duplicative applications. |
315 | See Documentation/vm/ksm.txt for more information: KSM is inactive | 315 | See Documentation/vm/ksm.txt for more information: KSM is inactive |
316 | until a program has madvised that an area is MADV_MERGEABLE, and | 316 | until a program has madvised that an area is MADV_MERGEABLE, and |
317 | root has set /sys/kernel/mm/ksm/run to 1 (if CONFIG_SYSFS is set). | 317 | root has set /sys/kernel/mm/ksm/run to 1 (if CONFIG_SYSFS is set). |
318 | 318 | ||
319 | config DEFAULT_MMAP_MIN_ADDR | 319 | config DEFAULT_MMAP_MIN_ADDR |
320 | int "Low address space to protect from user allocation" | 320 | int "Low address space to protect from user allocation" |
321 | depends on MMU | 321 | depends on MMU |
322 | default 4096 | 322 | default 4096 |
323 | help | 323 | help |
324 | This is the portion of low virtual memory which should be protected | 324 | This is the portion of low virtual memory which should be protected |
325 | from userspace allocation. Keeping a user from writing to low pages | 325 | from userspace allocation. Keeping a user from writing to low pages |
326 | can help reduce the impact of kernel NULL pointer bugs. | 326 | can help reduce the impact of kernel NULL pointer bugs. |
327 | 327 | ||
328 | For most ia64, ppc64 and x86 users with lots of address space | 328 | For most ia64, ppc64 and x86 users with lots of address space |
329 | a value of 65536 is reasonable and should cause no problems. | 329 | a value of 65536 is reasonable and should cause no problems. |
330 | On arm and other archs it should not be higher than 32768. | 330 | On arm and other archs it should not be higher than 32768. |
331 | Programs which use vm86 functionality or have some need to map | 331 | Programs which use vm86 functionality or have some need to map |
332 | this low address space will need CAP_SYS_RAWIO or disable this | 332 | this low address space will need CAP_SYS_RAWIO or disable this |
333 | protection by setting the value to 0. | 333 | protection by setting the value to 0. |
334 | 334 | ||
335 | This value can be changed after boot using the | 335 | This value can be changed after boot using the |
336 | /proc/sys/vm/mmap_min_addr tunable. | 336 | /proc/sys/vm/mmap_min_addr tunable. |
337 | 337 | ||
338 | config ARCH_SUPPORTS_MEMORY_FAILURE | 338 | config ARCH_SUPPORTS_MEMORY_FAILURE |
339 | bool | 339 | bool |
340 | 340 | ||
341 | config MEMORY_FAILURE | 341 | config MEMORY_FAILURE |
342 | depends on MMU | 342 | depends on MMU |
343 | depends on ARCH_SUPPORTS_MEMORY_FAILURE | 343 | depends on ARCH_SUPPORTS_MEMORY_FAILURE |
344 | bool "Enable recovery from hardware memory errors" | 344 | bool "Enable recovery from hardware memory errors" |
345 | select MEMORY_ISOLATION | 345 | select MEMORY_ISOLATION |
346 | help | 346 | help |
347 | Enables code to recover from some memory failures on systems | 347 | Enables code to recover from some memory failures on systems |
348 | with MCA recovery. This allows a system to continue running | 348 | with MCA recovery. This allows a system to continue running |
349 | even when some of its memory has uncorrected errors. This requires | 349 | even when some of its memory has uncorrected errors. This requires |
350 | special hardware support and typically ECC memory. | 350 | special hardware support and typically ECC memory. |
351 | 351 | ||
352 | config HWPOISON_INJECT | 352 | config HWPOISON_INJECT |
353 | tristate "HWPoison pages injector" | 353 | tristate "HWPoison pages injector" |
354 | depends on MEMORY_FAILURE && DEBUG_KERNEL && PROC_FS | 354 | depends on MEMORY_FAILURE && DEBUG_KERNEL && PROC_FS |
355 | select PROC_PAGE_MONITOR | 355 | select PROC_PAGE_MONITOR |
356 | 356 | ||
357 | config NOMMU_INITIAL_TRIM_EXCESS | 357 | config NOMMU_INITIAL_TRIM_EXCESS |
358 | int "Turn on mmap() excess space trimming before booting" | 358 | int "Turn on mmap() excess space trimming before booting" |
359 | depends on !MMU | 359 | depends on !MMU |
360 | default 1 | 360 | default 1 |
361 | help | 361 | help |
362 | The NOMMU mmap() frequently needs to allocate large contiguous chunks | 362 | The NOMMU mmap() frequently needs to allocate large contiguous chunks |
363 | of memory on which to store mappings, but it can only ask the system | 363 | of memory on which to store mappings, but it can only ask the system |
364 | allocator for chunks in 2^N*PAGE_SIZE amounts - which is frequently | 364 | allocator for chunks in 2^N*PAGE_SIZE amounts - which is frequently |
365 | more than it requires. To deal with this, mmap() is able to trim off | 365 | more than it requires. To deal with this, mmap() is able to trim off |
366 | the excess and return it to the allocator. | 366 | the excess and return it to the allocator. |
367 | 367 | ||
368 | If trimming is enabled, the excess is trimmed off and returned to the | 368 | If trimming is enabled, the excess is trimmed off and returned to the |
369 | system allocator, which can cause extra fragmentation, particularly | 369 | system allocator, which can cause extra fragmentation, particularly |
370 | if there are a lot of transient processes. | 370 | if there are a lot of transient processes. |
371 | 371 | ||
372 | If trimming is disabled, the excess is kept, but not used, which for | 372 | If trimming is disabled, the excess is kept, but not used, which for |
373 | long-term mappings means that the space is wasted. | 373 | long-term mappings means that the space is wasted. |
374 | 374 | ||
375 | Trimming can be dynamically controlled through a sysctl option | 375 | Trimming can be dynamically controlled through a sysctl option |
376 | (/proc/sys/vm/nr_trim_pages) which specifies the minimum number of | 376 | (/proc/sys/vm/nr_trim_pages) which specifies the minimum number of |
377 | excess pages there must be before trimming should occur, or zero if | 377 | excess pages there must be before trimming should occur, or zero if |
378 | no trimming is to occur. | 378 | no trimming is to occur. |
379 | 379 | ||
380 | This option specifies the initial value of this option. The default | 380 | This option specifies the initial value of this option. The default |
381 | of 1 says that all excess pages should be trimmed. | 381 | of 1 says that all excess pages should be trimmed. |
382 | 382 | ||
383 | See Documentation/nommu-mmap.txt for more information. | 383 | See Documentation/nommu-mmap.txt for more information. |
384 | 384 | ||
385 | config TRANSPARENT_HUGEPAGE | 385 | config TRANSPARENT_HUGEPAGE |
386 | bool "Transparent Hugepage Support" | 386 | bool "Transparent Hugepage Support" |
387 | depends on HAVE_ARCH_TRANSPARENT_HUGEPAGE | 387 | depends on HAVE_ARCH_TRANSPARENT_HUGEPAGE |
388 | select COMPACTION | 388 | select COMPACTION |
389 | help | 389 | help |
390 | Transparent Hugepages allows the kernel to use huge pages and | 390 | Transparent Hugepages allows the kernel to use huge pages and |
391 | huge tlb transparently to the applications whenever possible. | 391 | huge tlb transparently to the applications whenever possible. |
392 | This feature can improve computing performance to certain | 392 | This feature can improve computing performance to certain |
393 | applications by speeding up page faults during memory | 393 | applications by speeding up page faults during memory |
394 | allocation, by reducing the number of tlb misses and by speeding | 394 | allocation, by reducing the number of tlb misses and by speeding |
395 | up the pagetable walking. | 395 | up the pagetable walking. |
396 | 396 | ||
397 | If memory constrained on embedded, you may want to say N. | 397 | If memory constrained on embedded, you may want to say N. |
398 | 398 | ||
399 | choice | 399 | choice |
400 | prompt "Transparent Hugepage Support sysfs defaults" | 400 | prompt "Transparent Hugepage Support sysfs defaults" |
401 | depends on TRANSPARENT_HUGEPAGE | 401 | depends on TRANSPARENT_HUGEPAGE |
402 | default TRANSPARENT_HUGEPAGE_ALWAYS | 402 | default TRANSPARENT_HUGEPAGE_ALWAYS |
403 | help | 403 | help |
404 | Selects the sysfs defaults for Transparent Hugepage Support. | 404 | Selects the sysfs defaults for Transparent Hugepage Support. |
405 | 405 | ||
406 | config TRANSPARENT_HUGEPAGE_ALWAYS | 406 | config TRANSPARENT_HUGEPAGE_ALWAYS |
407 | bool "always" | 407 | bool "always" |
408 | help | 408 | help |
409 | Enabling Transparent Hugepage always, can increase the | 409 | Enabling Transparent Hugepage always, can increase the |
410 | memory footprint of applications without a guaranteed | 410 | memory footprint of applications without a guaranteed |
411 | benefit but it will work automatically for all applications. | 411 | benefit but it will work automatically for all applications. |
412 | 412 | ||
413 | config TRANSPARENT_HUGEPAGE_MADVISE | 413 | config TRANSPARENT_HUGEPAGE_MADVISE |
414 | bool "madvise" | 414 | bool "madvise" |
415 | help | 415 | help |
416 | Enabling Transparent Hugepage madvise, will only provide a | 416 | Enabling Transparent Hugepage madvise, will only provide a |
417 | performance improvement benefit to the applications using | 417 | performance improvement benefit to the applications using |
418 | madvise(MADV_HUGEPAGE) but it won't risk to increase the | 418 | madvise(MADV_HUGEPAGE) but it won't risk to increase the |
419 | memory footprint of applications without a guaranteed | 419 | memory footprint of applications without a guaranteed |
420 | benefit. | 420 | benefit. |
421 | endchoice | 421 | endchoice |
422 | 422 | ||
423 | config CROSS_MEMORY_ATTACH | 423 | config CROSS_MEMORY_ATTACH |
424 | bool "Cross Memory Support" | 424 | bool "Cross Memory Support" |
425 | depends on MMU | 425 | depends on MMU |
426 | default y | 426 | default y |
427 | help | 427 | help |
428 | Enabling this option adds the system calls process_vm_readv and | 428 | Enabling this option adds the system calls process_vm_readv and |
429 | process_vm_writev which allow a process with the correct privileges | 429 | process_vm_writev which allow a process with the correct privileges |
430 | to directly read from or write to to another process's address space. | 430 | to directly read from or write to to another process's address space. |
431 | See the man page for more details. | 431 | See the man page for more details. |
432 | 432 | ||
433 | # | 433 | # |
434 | # UP and nommu archs use km based percpu allocator | 434 | # UP and nommu archs use km based percpu allocator |
435 | # | 435 | # |
436 | config NEED_PER_CPU_KM | 436 | config NEED_PER_CPU_KM |
437 | depends on !SMP | 437 | depends on !SMP |
438 | bool | 438 | bool |
439 | default y | 439 | default y |
440 | 440 | ||
441 | config CLEANCACHE | 441 | config CLEANCACHE |
442 | bool "Enable cleancache driver to cache clean pages if tmem is present" | 442 | bool "Enable cleancache driver to cache clean pages if tmem is present" |
443 | default n | 443 | default n |
444 | help | 444 | help |
445 | Cleancache can be thought of as a page-granularity victim cache | 445 | Cleancache can be thought of as a page-granularity victim cache |
446 | for clean pages that the kernel's pageframe replacement algorithm | 446 | for clean pages that the kernel's pageframe replacement algorithm |
447 | (PFRA) would like to keep around, but can't since there isn't enough | 447 | (PFRA) would like to keep around, but can't since there isn't enough |
448 | memory. So when the PFRA "evicts" a page, it first attempts to use | 448 | memory. So when the PFRA "evicts" a page, it first attempts to use |
449 | cleancache code to put the data contained in that page into | 449 | cleancache code to put the data contained in that page into |
450 | "transcendent memory", memory that is not directly accessible or | 450 | "transcendent memory", memory that is not directly accessible or |
451 | addressable by the kernel and is of unknown and possibly | 451 | addressable by the kernel and is of unknown and possibly |
452 | time-varying size. And when a cleancache-enabled | 452 | time-varying size. And when a cleancache-enabled |
453 | filesystem wishes to access a page in a file on disk, it first | 453 | filesystem wishes to access a page in a file on disk, it first |
454 | checks cleancache to see if it already contains it; if it does, | 454 | checks cleancache to see if it already contains it; if it does, |
455 | the page is copied into the kernel and a disk access is avoided. | 455 | the page is copied into the kernel and a disk access is avoided. |
456 | When a transcendent memory driver is available (such as zcache or | 456 | When a transcendent memory driver is available (such as zcache or |
457 | Xen transcendent memory), a significant I/O reduction | 457 | Xen transcendent memory), a significant I/O reduction |
458 | may be achieved. When none is available, all cleancache calls | 458 | may be achieved. When none is available, all cleancache calls |
459 | are reduced to a single pointer-compare-against-NULL resulting | 459 | are reduced to a single pointer-compare-against-NULL resulting |
460 | in a negligible performance hit. | 460 | in a negligible performance hit. |
461 | 461 | ||
462 | If unsure, say Y to enable cleancache | 462 | If unsure, say Y to enable cleancache |
463 | 463 | ||
464 | config FRONTSWAP | 464 | config FRONTSWAP |
465 | bool "Enable frontswap to cache swap pages if tmem is present" | 465 | bool "Enable frontswap to cache swap pages if tmem is present" |
466 | depends on SWAP | 466 | depends on SWAP |
467 | default n | 467 | default n |
468 | help | 468 | help |
469 | Frontswap is so named because it can be thought of as the opposite | 469 | Frontswap is so named because it can be thought of as the opposite |
470 | of a "backing" store for a swap device. The data is stored into | 470 | of a "backing" store for a swap device. The data is stored into |
471 | "transcendent memory", memory that is not directly accessible or | 471 | "transcendent memory", memory that is not directly accessible or |
472 | addressable by the kernel and is of unknown and possibly | 472 | addressable by the kernel and is of unknown and possibly |
473 | time-varying size. When space in transcendent memory is available, | 473 | time-varying size. When space in transcendent memory is available, |
474 | a significant swap I/O reduction may be achieved. When none is | 474 | a significant swap I/O reduction may be achieved. When none is |
475 | available, all frontswap calls are reduced to a single pointer- | 475 | available, all frontswap calls are reduced to a single pointer- |
476 | compare-against-NULL resulting in a negligible performance hit | 476 | compare-against-NULL resulting in a negligible performance hit |
477 | and swap data is stored as normal on the matching swap device. | 477 | and swap data is stored as normal on the matching swap device. |
478 | 478 | ||
479 | If unsure, say Y to enable frontswap. | 479 | If unsure, say Y to enable frontswap. |
480 | 480 | ||
481 | config ZBUD | 481 | config ZBUD |
482 | tristate | 482 | tristate |
483 | default n | 483 | default n |
484 | help | 484 | help |
485 | A special purpose allocator for storing compressed pages. | 485 | A special purpose allocator for storing compressed pages. |
486 | It is designed to store up to two compressed pages per physical | 486 | It is designed to store up to two compressed pages per physical |
487 | page. While this design limits storage density, it has simple and | 487 | page. While this design limits storage density, it has simple and |
488 | deterministic reclaim properties that make it preferable to a higher | 488 | deterministic reclaim properties that make it preferable to a higher |
489 | density approach when reclaim will be used. | 489 | density approach when reclaim will be used. |
490 | 490 | ||
491 | config ZSWAP | ||
492 | bool "Compressed cache for swap pages (EXPERIMENTAL)" | ||
493 | depends on FRONTSWAP && CRYPTO=y | ||
494 | select CRYPTO_LZO | ||
495 | select ZBUD | ||
496 | default n | ||
497 | help | ||
498 | A lightweight compressed cache for swap pages. It takes | ||
499 | pages that are in the process of being swapped out and attempts to | ||
500 | compress them into a dynamically allocated RAM-based memory pool. | ||
501 | This can result in a significant I/O reduction on swap device and, | ||
502 | in the case where decompressing from RAM is faster that swap device | ||
503 | reads, can also improve workload performance. | ||
504 | |||
505 | This is marked experimental because it is a new feature (as of | ||
506 | v3.11) that interacts heavily with memory reclaim. While these | ||
507 | interactions don't cause any known issues on simple memory setups, | ||
508 | they have not be fully explored on the large set of potential | ||
509 | configurations and workloads that exist. | ||
510 | |||
491 | config MEM_SOFT_DIRTY | 511 | config MEM_SOFT_DIRTY |
492 | bool "Track memory changes" | 512 | bool "Track memory changes" |
493 | depends on CHECKPOINT_RESTORE && HAVE_ARCH_SOFT_DIRTY | 513 | depends on CHECKPOINT_RESTORE && HAVE_ARCH_SOFT_DIRTY |
494 | select PROC_PAGE_MONITOR | 514 | select PROC_PAGE_MONITOR |
495 | help | 515 | help |
496 | This option enables memory changes tracking by introducing a | 516 | This option enables memory changes tracking by introducing a |
497 | soft-dirty bit on pte-s. This bit it set when someone writes | 517 | soft-dirty bit on pte-s. This bit it set when someone writes |
498 | into a page just as regular dirty bit, but unlike the latter | 518 | into a page just as regular dirty bit, but unlike the latter |
499 | it can be cleared by hands. | 519 | it can be cleared by hands. |
500 | 520 | ||
501 | See Documentation/vm/soft-dirty.txt for more details. | 521 | See Documentation/vm/soft-dirty.txt for more details. |
502 | 522 |
mm/Makefile
1 | # | 1 | # |
2 | # Makefile for the linux memory manager. | 2 | # Makefile for the linux memory manager. |
3 | # | 3 | # |
4 | 4 | ||
5 | mmu-y := nommu.o | 5 | mmu-y := nommu.o |
6 | mmu-$(CONFIG_MMU) := fremap.o highmem.o madvise.o memory.o mincore.o \ | 6 | mmu-$(CONFIG_MMU) := fremap.o highmem.o madvise.o memory.o mincore.o \ |
7 | mlock.o mmap.o mprotect.o mremap.o msync.o rmap.o \ | 7 | mlock.o mmap.o mprotect.o mremap.o msync.o rmap.o \ |
8 | vmalloc.o pagewalk.o pgtable-generic.o | 8 | vmalloc.o pagewalk.o pgtable-generic.o |
9 | 9 | ||
10 | ifdef CONFIG_CROSS_MEMORY_ATTACH | 10 | ifdef CONFIG_CROSS_MEMORY_ATTACH |
11 | mmu-$(CONFIG_MMU) += process_vm_access.o | 11 | mmu-$(CONFIG_MMU) += process_vm_access.o |
12 | endif | 12 | endif |
13 | 13 | ||
14 | obj-y := filemap.o mempool.o oom_kill.o fadvise.o \ | 14 | obj-y := filemap.o mempool.o oom_kill.o fadvise.o \ |
15 | maccess.o page_alloc.o page-writeback.o \ | 15 | maccess.o page_alloc.o page-writeback.o \ |
16 | readahead.o swap.o truncate.o vmscan.o shmem.o \ | 16 | readahead.o swap.o truncate.o vmscan.o shmem.o \ |
17 | util.o mmzone.o vmstat.o backing-dev.o \ | 17 | util.o mmzone.o vmstat.o backing-dev.o \ |
18 | mm_init.o mmu_context.o percpu.o slab_common.o \ | 18 | mm_init.o mmu_context.o percpu.o slab_common.o \ |
19 | compaction.o balloon_compaction.o \ | 19 | compaction.o balloon_compaction.o \ |
20 | interval_tree.o $(mmu-y) | 20 | interval_tree.o $(mmu-y) |
21 | 21 | ||
22 | obj-y += init-mm.o | 22 | obj-y += init-mm.o |
23 | 23 | ||
24 | ifdef CONFIG_NO_BOOTMEM | 24 | ifdef CONFIG_NO_BOOTMEM |
25 | obj-y += nobootmem.o | 25 | obj-y += nobootmem.o |
26 | else | 26 | else |
27 | obj-y += bootmem.o | 27 | obj-y += bootmem.o |
28 | endif | 28 | endif |
29 | 29 | ||
30 | obj-$(CONFIG_HAVE_MEMBLOCK) += memblock.o | 30 | obj-$(CONFIG_HAVE_MEMBLOCK) += memblock.o |
31 | 31 | ||
32 | obj-$(CONFIG_BOUNCE) += bounce.o | 32 | obj-$(CONFIG_BOUNCE) += bounce.o |
33 | obj-$(CONFIG_SWAP) += page_io.o swap_state.o swapfile.o | 33 | obj-$(CONFIG_SWAP) += page_io.o swap_state.o swapfile.o |
34 | obj-$(CONFIG_FRONTSWAP) += frontswap.o | 34 | obj-$(CONFIG_FRONTSWAP) += frontswap.o |
35 | obj-$(CONFIG_ZSWAP) += zswap.o | ||
35 | obj-$(CONFIG_HAS_DMA) += dmapool.o | 36 | obj-$(CONFIG_HAS_DMA) += dmapool.o |
36 | obj-$(CONFIG_HUGETLBFS) += hugetlb.o | 37 | obj-$(CONFIG_HUGETLBFS) += hugetlb.o |
37 | obj-$(CONFIG_NUMA) += mempolicy.o | 38 | obj-$(CONFIG_NUMA) += mempolicy.o |
38 | obj-$(CONFIG_SPARSEMEM) += sparse.o | 39 | obj-$(CONFIG_SPARSEMEM) += sparse.o |
39 | obj-$(CONFIG_SPARSEMEM_VMEMMAP) += sparse-vmemmap.o | 40 | obj-$(CONFIG_SPARSEMEM_VMEMMAP) += sparse-vmemmap.o |
40 | obj-$(CONFIG_SLOB) += slob.o | 41 | obj-$(CONFIG_SLOB) += slob.o |
41 | obj-$(CONFIG_MMU_NOTIFIER) += mmu_notifier.o | 42 | obj-$(CONFIG_MMU_NOTIFIER) += mmu_notifier.o |
42 | obj-$(CONFIG_KSM) += ksm.o | 43 | obj-$(CONFIG_KSM) += ksm.o |
43 | obj-$(CONFIG_PAGE_POISONING) += debug-pagealloc.o | 44 | obj-$(CONFIG_PAGE_POISONING) += debug-pagealloc.o |
44 | obj-$(CONFIG_SLAB) += slab.o | 45 | obj-$(CONFIG_SLAB) += slab.o |
45 | obj-$(CONFIG_SLUB) += slub.o | 46 | obj-$(CONFIG_SLUB) += slub.o |
46 | obj-$(CONFIG_KMEMCHECK) += kmemcheck.o | 47 | obj-$(CONFIG_KMEMCHECK) += kmemcheck.o |
47 | obj-$(CONFIG_FAILSLAB) += failslab.o | 48 | obj-$(CONFIG_FAILSLAB) += failslab.o |
48 | obj-$(CONFIG_MEMORY_HOTPLUG) += memory_hotplug.o | 49 | obj-$(CONFIG_MEMORY_HOTPLUG) += memory_hotplug.o |
49 | obj-$(CONFIG_FS_XIP) += filemap_xip.o | 50 | obj-$(CONFIG_FS_XIP) += filemap_xip.o |
50 | obj-$(CONFIG_MIGRATION) += migrate.o | 51 | obj-$(CONFIG_MIGRATION) += migrate.o |
51 | obj-$(CONFIG_QUICKLIST) += quicklist.o | 52 | obj-$(CONFIG_QUICKLIST) += quicklist.o |
52 | obj-$(CONFIG_TRANSPARENT_HUGEPAGE) += huge_memory.o | 53 | obj-$(CONFIG_TRANSPARENT_HUGEPAGE) += huge_memory.o |
53 | obj-$(CONFIG_MEMCG) += memcontrol.o page_cgroup.o vmpressure.o | 54 | obj-$(CONFIG_MEMCG) += memcontrol.o page_cgroup.o vmpressure.o |
54 | obj-$(CONFIG_CGROUP_HUGETLB) += hugetlb_cgroup.o | 55 | obj-$(CONFIG_CGROUP_HUGETLB) += hugetlb_cgroup.o |
55 | obj-$(CONFIG_MEMORY_FAILURE) += memory-failure.o | 56 | obj-$(CONFIG_MEMORY_FAILURE) += memory-failure.o |
56 | obj-$(CONFIG_HWPOISON_INJECT) += hwpoison-inject.o | 57 | obj-$(CONFIG_HWPOISON_INJECT) += hwpoison-inject.o |
57 | obj-$(CONFIG_DEBUG_KMEMLEAK) += kmemleak.o | 58 | obj-$(CONFIG_DEBUG_KMEMLEAK) += kmemleak.o |
58 | obj-$(CONFIG_DEBUG_KMEMLEAK_TEST) += kmemleak-test.o | 59 | obj-$(CONFIG_DEBUG_KMEMLEAK_TEST) += kmemleak-test.o |
59 | obj-$(CONFIG_CLEANCACHE) += cleancache.o | 60 | obj-$(CONFIG_CLEANCACHE) += cleancache.o |
60 | obj-$(CONFIG_MEMORY_ISOLATION) += page_isolation.o | 61 | obj-$(CONFIG_MEMORY_ISOLATION) += page_isolation.o |
61 | obj-$(CONFIG_ZBUD) += zbud.o | 62 | obj-$(CONFIG_ZBUD) += zbud.o |
62 | 63 |
mm/zswap.c
File was created | 1 | /* | |
2 | * zswap.c - zswap driver file | ||
3 | * | ||
4 | * zswap is a backend for frontswap that takes pages that are in the process | ||
5 | * of being swapped out and attempts to compress and store them in a | ||
6 | * RAM-based memory pool. This can result in a significant I/O reduction on | ||
7 | * the swap device and, in the case where decompressing from RAM is faster | ||
8 | * than reading from the swap device, can also improve workload performance. | ||
9 | * | ||
10 | * Copyright (C) 2012 Seth Jennings <sjenning@linux.vnet.ibm.com> | ||
11 | * | ||
12 | * This program is free software; you can redistribute it and/or | ||
13 | * modify it under the terms of the GNU General Public License | ||
14 | * as published by the Free Software Foundation; either version 2 | ||
15 | * of the License, or (at your option) any later version. | ||
16 | * | ||
17 | * This program is distributed in the hope that it will be useful, | ||
18 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
19 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
20 | * GNU General Public License for more details. | ||
21 | */ | ||
22 | |||
23 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | ||
24 | |||
25 | #include <linux/module.h> | ||
26 | #include <linux/cpu.h> | ||
27 | #include <linux/highmem.h> | ||
28 | #include <linux/slab.h> | ||
29 | #include <linux/spinlock.h> | ||
30 | #include <linux/types.h> | ||
31 | #include <linux/atomic.h> | ||
32 | #include <linux/frontswap.h> | ||
33 | #include <linux/rbtree.h> | ||
34 | #include <linux/swap.h> | ||
35 | #include <linux/crypto.h> | ||
36 | #include <linux/mempool.h> | ||
37 | #include <linux/zbud.h> | ||
38 | |||
39 | #include <linux/mm_types.h> | ||
40 | #include <linux/page-flags.h> | ||
41 | #include <linux/swapops.h> | ||
42 | #include <linux/writeback.h> | ||
43 | #include <linux/pagemap.h> | ||
44 | |||
45 | /********************************* | ||
46 | * statistics | ||
47 | **********************************/ | ||
48 | /* Number of memory pages used by the compressed pool */ | ||
49 | static u64 zswap_pool_pages; | ||
50 | /* The number of compressed pages currently stored in zswap */ | ||
51 | static atomic_t zswap_stored_pages = ATOMIC_INIT(0); | ||
52 | |||
53 | /* | ||
54 | * The statistics below are not protected from concurrent access for | ||
55 | * performance reasons so they may not be a 100% accurate. However, | ||
56 | * they do provide useful information on roughly how many times a | ||
57 | * certain event is occurring. | ||
58 | */ | ||
59 | |||
60 | /* Pool limit was hit (see zswap_max_pool_percent) */ | ||
61 | static u64 zswap_pool_limit_hit; | ||
62 | /* Pages written back when pool limit was reached */ | ||
63 | static u64 zswap_written_back_pages; | ||
64 | /* Store failed due to a reclaim failure after pool limit was reached */ | ||
65 | static u64 zswap_reject_reclaim_fail; | ||
66 | /* Compressed page was too big for the allocator to (optimally) store */ | ||
67 | static u64 zswap_reject_compress_poor; | ||
68 | /* Store failed because underlying allocator could not get memory */ | ||
69 | static u64 zswap_reject_alloc_fail; | ||
70 | /* Store failed because the entry metadata could not be allocated (rare) */ | ||
71 | static u64 zswap_reject_kmemcache_fail; | ||
72 | /* Duplicate store was encountered (rare) */ | ||
73 | static u64 zswap_duplicate_entry; | ||
74 | |||
75 | /********************************* | ||
76 | * tunables | ||
77 | **********************************/ | ||
78 | /* Enable/disable zswap (disabled by default, fixed at boot for now) */ | ||
79 | static bool zswap_enabled __read_mostly; | ||
80 | module_param_named(enabled, zswap_enabled, bool, 0); | ||
81 | |||
82 | /* Compressor to be used by zswap (fixed at boot for now) */ | ||
83 | #define ZSWAP_COMPRESSOR_DEFAULT "lzo" | ||
84 | static char *zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT; | ||
85 | module_param_named(compressor, zswap_compressor, charp, 0); | ||
86 | |||
87 | /* The maximum percentage of memory that the compressed pool can occupy */ | ||
88 | static unsigned int zswap_max_pool_percent = 20; | ||
89 | module_param_named(max_pool_percent, | ||
90 | zswap_max_pool_percent, uint, 0644); | ||
91 | |||
92 | /********************************* | ||
93 | * compression functions | ||
94 | **********************************/ | ||
95 | /* per-cpu compression transforms */ | ||
96 | static struct crypto_comp * __percpu *zswap_comp_pcpu_tfms; | ||
97 | |||
98 | enum comp_op { | ||
99 | ZSWAP_COMPOP_COMPRESS, | ||
100 | ZSWAP_COMPOP_DECOMPRESS | ||
101 | }; | ||
102 | |||
103 | static int zswap_comp_op(enum comp_op op, const u8 *src, unsigned int slen, | ||
104 | u8 *dst, unsigned int *dlen) | ||
105 | { | ||
106 | struct crypto_comp *tfm; | ||
107 | int ret; | ||
108 | |||
109 | tfm = *per_cpu_ptr(zswap_comp_pcpu_tfms, get_cpu()); | ||
110 | switch (op) { | ||
111 | case ZSWAP_COMPOP_COMPRESS: | ||
112 | ret = crypto_comp_compress(tfm, src, slen, dst, dlen); | ||
113 | break; | ||
114 | case ZSWAP_COMPOP_DECOMPRESS: | ||
115 | ret = crypto_comp_decompress(tfm, src, slen, dst, dlen); | ||
116 | break; | ||
117 | default: | ||
118 | ret = -EINVAL; | ||
119 | } | ||
120 | |||
121 | put_cpu(); | ||
122 | return ret; | ||
123 | } | ||
124 | |||
125 | static int __init zswap_comp_init(void) | ||
126 | { | ||
127 | if (!crypto_has_comp(zswap_compressor, 0, 0)) { | ||
128 | pr_info("%s compressor not available\n", zswap_compressor); | ||
129 | /* fall back to default compressor */ | ||
130 | zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT; | ||
131 | if (!crypto_has_comp(zswap_compressor, 0, 0)) | ||
132 | /* can't even load the default compressor */ | ||
133 | return -ENODEV; | ||
134 | } | ||
135 | pr_info("using %s compressor\n", zswap_compressor); | ||
136 | |||
137 | /* alloc percpu transforms */ | ||
138 | zswap_comp_pcpu_tfms = alloc_percpu(struct crypto_comp *); | ||
139 | if (!zswap_comp_pcpu_tfms) | ||
140 | return -ENOMEM; | ||
141 | return 0; | ||
142 | } | ||
143 | |||
144 | static void zswap_comp_exit(void) | ||
145 | { | ||
146 | /* free percpu transforms */ | ||
147 | if (zswap_comp_pcpu_tfms) | ||
148 | free_percpu(zswap_comp_pcpu_tfms); | ||
149 | } | ||
150 | |||
151 | /********************************* | ||
152 | * data structures | ||
153 | **********************************/ | ||
154 | /* | ||
155 | * struct zswap_entry | ||
156 | * | ||
157 | * This structure contains the metadata for tracking a single compressed | ||
158 | * page within zswap. | ||
159 | * | ||
160 | * rbnode - links the entry into red-black tree for the appropriate swap type | ||
161 | * refcount - the number of outstanding reference to the entry. This is needed | ||
162 | * to protect against premature freeing of the entry by code | ||
163 | * concurent calls to load, invalidate, and writeback. The lock | ||
164 | * for the zswap_tree structure that contains the entry must | ||
165 | * be held while changing the refcount. Since the lock must | ||
166 | * be held, there is no reason to also make refcount atomic. | ||
167 | * offset - the swap offset for the entry. Index into the red-black tree. | ||
168 | * handle - zsmalloc allocation handle that stores the compressed page data | ||
169 | * length - the length in bytes of the compressed page data. Needed during | ||
170 | * decompression | ||
171 | */ | ||
172 | struct zswap_entry { | ||
173 | struct rb_node rbnode; | ||
174 | pgoff_t offset; | ||
175 | int refcount; | ||
176 | unsigned int length; | ||
177 | unsigned long handle; | ||
178 | }; | ||
179 | |||
180 | struct zswap_header { | ||
181 | swp_entry_t swpentry; | ||
182 | }; | ||
183 | |||
184 | /* | ||
185 | * The tree lock in the zswap_tree struct protects a few things: | ||
186 | * - the rbtree | ||
187 | * - the refcount field of each entry in the tree | ||
188 | */ | ||
189 | struct zswap_tree { | ||
190 | struct rb_root rbroot; | ||
191 | spinlock_t lock; | ||
192 | struct zbud_pool *pool; | ||
193 | }; | ||
194 | |||
195 | static struct zswap_tree *zswap_trees[MAX_SWAPFILES]; | ||
196 | |||
197 | /********************************* | ||
198 | * zswap entry functions | ||
199 | **********************************/ | ||
200 | static struct kmem_cache *zswap_entry_cache; | ||
201 | |||
202 | static int zswap_entry_cache_create(void) | ||
203 | { | ||
204 | zswap_entry_cache = KMEM_CACHE(zswap_entry, 0); | ||
205 | return (zswap_entry_cache == NULL); | ||
206 | } | ||
207 | |||
208 | static void zswap_entry_cache_destory(void) | ||
209 | { | ||
210 | kmem_cache_destroy(zswap_entry_cache); | ||
211 | } | ||
212 | |||
213 | static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp) | ||
214 | { | ||
215 | struct zswap_entry *entry; | ||
216 | entry = kmem_cache_alloc(zswap_entry_cache, gfp); | ||
217 | if (!entry) | ||
218 | return NULL; | ||
219 | entry->refcount = 1; | ||
220 | return entry; | ||
221 | } | ||
222 | |||
223 | static void zswap_entry_cache_free(struct zswap_entry *entry) | ||
224 | { | ||
225 | kmem_cache_free(zswap_entry_cache, entry); | ||
226 | } | ||
227 | |||
228 | /* caller must hold the tree lock */ | ||
229 | static void zswap_entry_get(struct zswap_entry *entry) | ||
230 | { | ||
231 | entry->refcount++; | ||
232 | } | ||
233 | |||
234 | /* caller must hold the tree lock */ | ||
235 | static int zswap_entry_put(struct zswap_entry *entry) | ||
236 | { | ||
237 | entry->refcount--; | ||
238 | return entry->refcount; | ||
239 | } | ||
240 | |||
241 | /********************************* | ||
242 | * rbtree functions | ||
243 | **********************************/ | ||
244 | static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset) | ||
245 | { | ||
246 | struct rb_node *node = root->rb_node; | ||
247 | struct zswap_entry *entry; | ||
248 | |||
249 | while (node) { | ||
250 | entry = rb_entry(node, struct zswap_entry, rbnode); | ||
251 | if (entry->offset > offset) | ||
252 | node = node->rb_left; | ||
253 | else if (entry->offset < offset) | ||
254 | node = node->rb_right; | ||
255 | else | ||
256 | return entry; | ||
257 | } | ||
258 | return NULL; | ||
259 | } | ||
260 | |||
261 | /* | ||
262 | * In the case that a entry with the same offset is found, a pointer to | ||
263 | * the existing entry is stored in dupentry and the function returns -EEXIST | ||
264 | */ | ||
265 | static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry, | ||
266 | struct zswap_entry **dupentry) | ||
267 | { | ||
268 | struct rb_node **link = &root->rb_node, *parent = NULL; | ||
269 | struct zswap_entry *myentry; | ||
270 | |||
271 | while (*link) { | ||
272 | parent = *link; | ||
273 | myentry = rb_entry(parent, struct zswap_entry, rbnode); | ||
274 | if (myentry->offset > entry->offset) | ||
275 | link = &(*link)->rb_left; | ||
276 | else if (myentry->offset < entry->offset) | ||
277 | link = &(*link)->rb_right; | ||
278 | else { | ||
279 | *dupentry = myentry; | ||
280 | return -EEXIST; | ||
281 | } | ||
282 | } | ||
283 | rb_link_node(&entry->rbnode, parent, link); | ||
284 | rb_insert_color(&entry->rbnode, root); | ||
285 | return 0; | ||
286 | } | ||
287 | |||
288 | /********************************* | ||
289 | * per-cpu code | ||
290 | **********************************/ | ||
291 | static DEFINE_PER_CPU(u8 *, zswap_dstmem); | ||
292 | |||
293 | static int __zswap_cpu_notifier(unsigned long action, unsigned long cpu) | ||
294 | { | ||
295 | struct crypto_comp *tfm; | ||
296 | u8 *dst; | ||
297 | |||
298 | switch (action) { | ||
299 | case CPU_UP_PREPARE: | ||
300 | tfm = crypto_alloc_comp(zswap_compressor, 0, 0); | ||
301 | if (IS_ERR(tfm)) { | ||
302 | pr_err("can't allocate compressor transform\n"); | ||
303 | return NOTIFY_BAD; | ||
304 | } | ||
305 | *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = tfm; | ||
306 | dst = kmalloc(PAGE_SIZE * 2, GFP_KERNEL); | ||
307 | if (!dst) { | ||
308 | pr_err("can't allocate compressor buffer\n"); | ||
309 | crypto_free_comp(tfm); | ||
310 | *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = NULL; | ||
311 | return NOTIFY_BAD; | ||
312 | } | ||
313 | per_cpu(zswap_dstmem, cpu) = dst; | ||
314 | break; | ||
315 | case CPU_DEAD: | ||
316 | case CPU_UP_CANCELED: | ||
317 | tfm = *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu); | ||
318 | if (tfm) { | ||
319 | crypto_free_comp(tfm); | ||
320 | *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = NULL; | ||
321 | } | ||
322 | dst = per_cpu(zswap_dstmem, cpu); | ||
323 | kfree(dst); | ||
324 | per_cpu(zswap_dstmem, cpu) = NULL; | ||
325 | break; | ||
326 | default: | ||
327 | break; | ||
328 | } | ||
329 | return NOTIFY_OK; | ||
330 | } | ||
331 | |||
332 | static int zswap_cpu_notifier(struct notifier_block *nb, | ||
333 | unsigned long action, void *pcpu) | ||
334 | { | ||
335 | unsigned long cpu = (unsigned long)pcpu; | ||
336 | return __zswap_cpu_notifier(action, cpu); | ||
337 | } | ||
338 | |||
339 | static struct notifier_block zswap_cpu_notifier_block = { | ||
340 | .notifier_call = zswap_cpu_notifier | ||
341 | }; | ||
342 | |||
343 | static int zswap_cpu_init(void) | ||
344 | { | ||
345 | unsigned long cpu; | ||
346 | |||
347 | get_online_cpus(); | ||
348 | for_each_online_cpu(cpu) | ||
349 | if (__zswap_cpu_notifier(CPU_UP_PREPARE, cpu) != NOTIFY_OK) | ||
350 | goto cleanup; | ||
351 | register_cpu_notifier(&zswap_cpu_notifier_block); | ||
352 | put_online_cpus(); | ||
353 | return 0; | ||
354 | |||
355 | cleanup: | ||
356 | for_each_online_cpu(cpu) | ||
357 | __zswap_cpu_notifier(CPU_UP_CANCELED, cpu); | ||
358 | put_online_cpus(); | ||
359 | return -ENOMEM; | ||
360 | } | ||
361 | |||
362 | /********************************* | ||
363 | * helpers | ||
364 | **********************************/ | ||
365 | static bool zswap_is_full(void) | ||
366 | { | ||
367 | return (totalram_pages * zswap_max_pool_percent / 100 < | ||
368 | zswap_pool_pages); | ||
369 | } | ||
370 | |||
371 | /* | ||
372 | * Carries out the common pattern of freeing and entry's zsmalloc allocation, | ||
373 | * freeing the entry itself, and decrementing the number of stored pages. | ||
374 | */ | ||
375 | static void zswap_free_entry(struct zswap_tree *tree, struct zswap_entry *entry) | ||
376 | { | ||
377 | zbud_free(tree->pool, entry->handle); | ||
378 | zswap_entry_cache_free(entry); | ||
379 | atomic_dec(&zswap_stored_pages); | ||
380 | zswap_pool_pages = zbud_get_pool_size(tree->pool); | ||
381 | } | ||
382 | |||
383 | /********************************* | ||
384 | * writeback code | ||
385 | **********************************/ | ||
386 | /* return enum for zswap_get_swap_cache_page */ | ||
387 | enum zswap_get_swap_ret { | ||
388 | ZSWAP_SWAPCACHE_NEW, | ||
389 | ZSWAP_SWAPCACHE_EXIST, | ||
390 | ZSWAP_SWAPCACHE_NOMEM | ||
391 | }; | ||
392 | |||
393 | /* | ||
394 | * zswap_get_swap_cache_page | ||
395 | * | ||
396 | * This is an adaption of read_swap_cache_async() | ||
397 | * | ||
398 | * This function tries to find a page with the given swap entry | ||
399 | * in the swapper_space address space (the swap cache). If the page | ||
400 | * is found, it is returned in retpage. Otherwise, a page is allocated, | ||
401 | * added to the swap cache, and returned in retpage. | ||
402 | * | ||
403 | * If success, the swap cache page is returned in retpage | ||
404 | * Returns 0 if page was already in the swap cache, page is not locked | ||
405 | * Returns 1 if the new page needs to be populated, page is locked | ||
406 | * Returns <0 on error | ||
407 | */ | ||
408 | static int zswap_get_swap_cache_page(swp_entry_t entry, | ||
409 | struct page **retpage) | ||
410 | { | ||
411 | struct page *found_page, *new_page = NULL; | ||
412 | struct address_space *swapper_space = &swapper_spaces[swp_type(entry)]; | ||
413 | int err; | ||
414 | |||
415 | *retpage = NULL; | ||
416 | do { | ||
417 | /* | ||
418 | * First check the swap cache. Since this is normally | ||
419 | * called after lookup_swap_cache() failed, re-calling | ||
420 | * that would confuse statistics. | ||
421 | */ | ||
422 | found_page = find_get_page(swapper_space, entry.val); | ||
423 | if (found_page) | ||
424 | break; | ||
425 | |||
426 | /* | ||
427 | * Get a new page to read into from swap. | ||
428 | */ | ||
429 | if (!new_page) { | ||
430 | new_page = alloc_page(GFP_KERNEL); | ||
431 | if (!new_page) | ||
432 | break; /* Out of memory */ | ||
433 | } | ||
434 | |||
435 | /* | ||
436 | * call radix_tree_preload() while we can wait. | ||
437 | */ | ||
438 | err = radix_tree_preload(GFP_KERNEL); | ||
439 | if (err) | ||
440 | break; | ||
441 | |||
442 | /* | ||
443 | * Swap entry may have been freed since our caller observed it. | ||
444 | */ | ||
445 | err = swapcache_prepare(entry); | ||
446 | if (err == -EEXIST) { /* seems racy */ | ||
447 | radix_tree_preload_end(); | ||
448 | continue; | ||
449 | } | ||
450 | if (err) { /* swp entry is obsolete ? */ | ||
451 | radix_tree_preload_end(); | ||
452 | break; | ||
453 | } | ||
454 | |||
455 | /* May fail (-ENOMEM) if radix-tree node allocation failed. */ | ||
456 | __set_page_locked(new_page); | ||
457 | SetPageSwapBacked(new_page); | ||
458 | err = __add_to_swap_cache(new_page, entry); | ||
459 | if (likely(!err)) { | ||
460 | radix_tree_preload_end(); | ||
461 | lru_cache_add_anon(new_page); | ||
462 | *retpage = new_page; | ||
463 | return ZSWAP_SWAPCACHE_NEW; | ||
464 | } | ||
465 | radix_tree_preload_end(); | ||
466 | ClearPageSwapBacked(new_page); | ||
467 | __clear_page_locked(new_page); | ||
468 | /* | ||
469 | * add_to_swap_cache() doesn't return -EEXIST, so we can safely | ||
470 | * clear SWAP_HAS_CACHE flag. | ||
471 | */ | ||
472 | swapcache_free(entry, NULL); | ||
473 | } while (err != -ENOMEM); | ||
474 | |||
475 | if (new_page) | ||
476 | page_cache_release(new_page); | ||
477 | if (!found_page) | ||
478 | return ZSWAP_SWAPCACHE_NOMEM; | ||
479 | *retpage = found_page; | ||
480 | return ZSWAP_SWAPCACHE_EXIST; | ||
481 | } | ||
482 | |||
483 | /* | ||
484 | * Attempts to free an entry by adding a page to the swap cache, | ||
485 | * decompressing the entry data into the page, and issuing a | ||
486 | * bio write to write the page back to the swap device. | ||
487 | * | ||
488 | * This can be thought of as a "resumed writeback" of the page | ||
489 | * to the swap device. We are basically resuming the same swap | ||
490 | * writeback path that was intercepted with the frontswap_store() | ||
491 | * in the first place. After the page has been decompressed into | ||
492 | * the swap cache, the compressed version stored by zswap can be | ||
493 | * freed. | ||
494 | */ | ||
495 | static int zswap_writeback_entry(struct zbud_pool *pool, unsigned long handle) | ||
496 | { | ||
497 | struct zswap_header *zhdr; | ||
498 | swp_entry_t swpentry; | ||
499 | struct zswap_tree *tree; | ||
500 | pgoff_t offset; | ||
501 | struct zswap_entry *entry; | ||
502 | struct page *page; | ||
503 | u8 *src, *dst; | ||
504 | unsigned int dlen; | ||
505 | int ret, refcount; | ||
506 | struct writeback_control wbc = { | ||
507 | .sync_mode = WB_SYNC_NONE, | ||
508 | }; | ||
509 | |||
510 | /* extract swpentry from data */ | ||
511 | zhdr = zbud_map(pool, handle); | ||
512 | swpentry = zhdr->swpentry; /* here */ | ||
513 | zbud_unmap(pool, handle); | ||
514 | tree = zswap_trees[swp_type(swpentry)]; | ||
515 | offset = swp_offset(swpentry); | ||
516 | BUG_ON(pool != tree->pool); | ||
517 | |||
518 | /* find and ref zswap entry */ | ||
519 | spin_lock(&tree->lock); | ||
520 | entry = zswap_rb_search(&tree->rbroot, offset); | ||
521 | if (!entry) { | ||
522 | /* entry was invalidated */ | ||
523 | spin_unlock(&tree->lock); | ||
524 | return 0; | ||
525 | } | ||
526 | zswap_entry_get(entry); | ||
527 | spin_unlock(&tree->lock); | ||
528 | BUG_ON(offset != entry->offset); | ||
529 | |||
530 | /* try to allocate swap cache page */ | ||
531 | switch (zswap_get_swap_cache_page(swpentry, &page)) { | ||
532 | case ZSWAP_SWAPCACHE_NOMEM: /* no memory */ | ||
533 | ret = -ENOMEM; | ||
534 | goto fail; | ||
535 | |||
536 | case ZSWAP_SWAPCACHE_EXIST: /* page is unlocked */ | ||
537 | /* page is already in the swap cache, ignore for now */ | ||
538 | page_cache_release(page); | ||
539 | ret = -EEXIST; | ||
540 | goto fail; | ||
541 | |||
542 | case ZSWAP_SWAPCACHE_NEW: /* page is locked */ | ||
543 | /* decompress */ | ||
544 | dlen = PAGE_SIZE; | ||
545 | src = (u8 *)zbud_map(tree->pool, entry->handle) + | ||
546 | sizeof(struct zswap_header); | ||
547 | dst = kmap_atomic(page); | ||
548 | ret = zswap_comp_op(ZSWAP_COMPOP_DECOMPRESS, src, | ||
549 | entry->length, dst, &dlen); | ||
550 | kunmap_atomic(dst); | ||
551 | zbud_unmap(tree->pool, entry->handle); | ||
552 | BUG_ON(ret); | ||
553 | BUG_ON(dlen != PAGE_SIZE); | ||
554 | |||
555 | /* page is up to date */ | ||
556 | SetPageUptodate(page); | ||
557 | } | ||
558 | |||
559 | /* start writeback */ | ||
560 | __swap_writepage(page, &wbc, end_swap_bio_write); | ||
561 | page_cache_release(page); | ||
562 | zswap_written_back_pages++; | ||
563 | |||
564 | spin_lock(&tree->lock); | ||
565 | |||
566 | /* drop local reference */ | ||
567 | zswap_entry_put(entry); | ||
568 | /* drop the initial reference from entry creation */ | ||
569 | refcount = zswap_entry_put(entry); | ||
570 | |||
571 | /* | ||
572 | * There are three possible values for refcount here: | ||
573 | * (1) refcount is 1, load is in progress, unlink from rbtree, | ||
574 | * load will free | ||
575 | * (2) refcount is 0, (normal case) entry is valid, | ||
576 | * remove from rbtree and free entry | ||
577 | * (3) refcount is -1, invalidate happened during writeback, | ||
578 | * free entry | ||
579 | */ | ||
580 | if (refcount >= 0) { | ||
581 | /* no invalidate yet, remove from rbtree */ | ||
582 | rb_erase(&entry->rbnode, &tree->rbroot); | ||
583 | } | ||
584 | spin_unlock(&tree->lock); | ||
585 | if (refcount <= 0) { | ||
586 | /* free the entry */ | ||
587 | zswap_free_entry(tree, entry); | ||
588 | return 0; | ||
589 | } | ||
590 | return -EAGAIN; | ||
591 | |||
592 | fail: | ||
593 | spin_lock(&tree->lock); | ||
594 | zswap_entry_put(entry); | ||
595 | spin_unlock(&tree->lock); | ||
596 | return ret; | ||
597 | } | ||
598 | |||
599 | /********************************* | ||
600 | * frontswap hooks | ||
601 | **********************************/ | ||
602 | /* attempts to compress and store an single page */ | ||
603 | static int zswap_frontswap_store(unsigned type, pgoff_t offset, | ||
604 | struct page *page) | ||
605 | { | ||
606 | struct zswap_tree *tree = zswap_trees[type]; | ||
607 | struct zswap_entry *entry, *dupentry; | ||
608 | int ret; | ||
609 | unsigned int dlen = PAGE_SIZE, len; | ||
610 | unsigned long handle; | ||
611 | char *buf; | ||
612 | u8 *src, *dst; | ||
613 | struct zswap_header *zhdr; | ||
614 | |||
615 | if (!tree) { | ||
616 | ret = -ENODEV; | ||
617 | goto reject; | ||
618 | } | ||
619 | |||
620 | /* reclaim space if needed */ | ||
621 | if (zswap_is_full()) { | ||
622 | zswap_pool_limit_hit++; | ||
623 | if (zbud_reclaim_page(tree->pool, 8)) { | ||
624 | zswap_reject_reclaim_fail++; | ||
625 | ret = -ENOMEM; | ||
626 | goto reject; | ||
627 | } | ||
628 | } | ||
629 | |||
630 | /* allocate entry */ | ||
631 | entry = zswap_entry_cache_alloc(GFP_KERNEL); | ||
632 | if (!entry) { | ||
633 | zswap_reject_kmemcache_fail++; | ||
634 | ret = -ENOMEM; | ||
635 | goto reject; | ||
636 | } | ||
637 | |||
638 | /* compress */ | ||
639 | dst = get_cpu_var(zswap_dstmem); | ||
640 | src = kmap_atomic(page); | ||
641 | ret = zswap_comp_op(ZSWAP_COMPOP_COMPRESS, src, PAGE_SIZE, dst, &dlen); | ||
642 | kunmap_atomic(src); | ||
643 | if (ret) { | ||
644 | ret = -EINVAL; | ||
645 | goto freepage; | ||
646 | } | ||
647 | |||
648 | /* store */ | ||
649 | len = dlen + sizeof(struct zswap_header); | ||
650 | ret = zbud_alloc(tree->pool, len, __GFP_NORETRY | __GFP_NOWARN, | ||
651 | &handle); | ||
652 | if (ret == -ENOSPC) { | ||
653 | zswap_reject_compress_poor++; | ||
654 | goto freepage; | ||
655 | } | ||
656 | if (ret) { | ||
657 | zswap_reject_alloc_fail++; | ||
658 | goto freepage; | ||
659 | } | ||
660 | zhdr = zbud_map(tree->pool, handle); | ||
661 | zhdr->swpentry = swp_entry(type, offset); | ||
662 | buf = (u8 *)(zhdr + 1); | ||
663 | memcpy(buf, dst, dlen); | ||
664 | zbud_unmap(tree->pool, handle); | ||
665 | put_cpu_var(zswap_dstmem); | ||
666 | |||
667 | /* populate entry */ | ||
668 | entry->offset = offset; | ||
669 | entry->handle = handle; | ||
670 | entry->length = dlen; | ||
671 | |||
672 | /* map */ | ||
673 | spin_lock(&tree->lock); | ||
674 | do { | ||
675 | ret = zswap_rb_insert(&tree->rbroot, entry, &dupentry); | ||
676 | if (ret == -EEXIST) { | ||
677 | zswap_duplicate_entry++; | ||
678 | /* remove from rbtree */ | ||
679 | rb_erase(&dupentry->rbnode, &tree->rbroot); | ||
680 | if (!zswap_entry_put(dupentry)) { | ||
681 | /* free */ | ||
682 | zswap_free_entry(tree, dupentry); | ||
683 | } | ||
684 | } | ||
685 | } while (ret == -EEXIST); | ||
686 | spin_unlock(&tree->lock); | ||
687 | |||
688 | /* update stats */ | ||
689 | atomic_inc(&zswap_stored_pages); | ||
690 | zswap_pool_pages = zbud_get_pool_size(tree->pool); | ||
691 | |||
692 | return 0; | ||
693 | |||
694 | freepage: | ||
695 | put_cpu_var(zswap_dstmem); | ||
696 | zswap_entry_cache_free(entry); | ||
697 | reject: | ||
698 | return ret; | ||
699 | } | ||
700 | |||
701 | /* | ||
702 | * returns 0 if the page was successfully decompressed | ||
703 | * return -1 on entry not found or error | ||
704 | */ | ||
705 | static int zswap_frontswap_load(unsigned type, pgoff_t offset, | ||
706 | struct page *page) | ||
707 | { | ||
708 | struct zswap_tree *tree = zswap_trees[type]; | ||
709 | struct zswap_entry *entry; | ||
710 | u8 *src, *dst; | ||
711 | unsigned int dlen; | ||
712 | int refcount, ret; | ||
713 | |||
714 | /* find */ | ||
715 | spin_lock(&tree->lock); | ||
716 | entry = zswap_rb_search(&tree->rbroot, offset); | ||
717 | if (!entry) { | ||
718 | /* entry was written back */ | ||
719 | spin_unlock(&tree->lock); | ||
720 | return -1; | ||
721 | } | ||
722 | zswap_entry_get(entry); | ||
723 | spin_unlock(&tree->lock); | ||
724 | |||
725 | /* decompress */ | ||
726 | dlen = PAGE_SIZE; | ||
727 | src = (u8 *)zbud_map(tree->pool, entry->handle) + | ||
728 | sizeof(struct zswap_header); | ||
729 | dst = kmap_atomic(page); | ||
730 | ret = zswap_comp_op(ZSWAP_COMPOP_DECOMPRESS, src, entry->length, | ||
731 | dst, &dlen); | ||
732 | kunmap_atomic(dst); | ||
733 | zbud_unmap(tree->pool, entry->handle); | ||
734 | BUG_ON(ret); | ||
735 | |||
736 | spin_lock(&tree->lock); | ||
737 | refcount = zswap_entry_put(entry); | ||
738 | if (likely(refcount)) { | ||
739 | spin_unlock(&tree->lock); | ||
740 | return 0; | ||
741 | } | ||
742 | spin_unlock(&tree->lock); | ||
743 | |||
744 | /* | ||
745 | * We don't have to unlink from the rbtree because | ||
746 | * zswap_writeback_entry() or zswap_frontswap_invalidate page() | ||
747 | * has already done this for us if we are the last reference. | ||
748 | */ | ||
749 | /* free */ | ||
750 | |||
751 | zswap_free_entry(tree, entry); | ||
752 | |||
753 | return 0; | ||
754 | } | ||
755 | |||
756 | /* frees an entry in zswap */ | ||
757 | static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset) | ||
758 | { | ||
759 | struct zswap_tree *tree = zswap_trees[type]; | ||
760 | struct zswap_entry *entry; | ||
761 | int refcount; | ||
762 | |||
763 | /* find */ | ||
764 | spin_lock(&tree->lock); | ||
765 | entry = zswap_rb_search(&tree->rbroot, offset); | ||
766 | if (!entry) { | ||
767 | /* entry was written back */ | ||
768 | spin_unlock(&tree->lock); | ||
769 | return; | ||
770 | } | ||
771 | |||
772 | /* remove from rbtree */ | ||
773 | rb_erase(&entry->rbnode, &tree->rbroot); | ||
774 | |||
775 | /* drop the initial reference from entry creation */ | ||
776 | refcount = zswap_entry_put(entry); | ||
777 | |||
778 | spin_unlock(&tree->lock); | ||
779 | |||
780 | if (refcount) { | ||
781 | /* writeback in progress, writeback will free */ | ||
782 | return; | ||
783 | } | ||
784 | |||
785 | /* free */ | ||
786 | zswap_free_entry(tree, entry); | ||
787 | } | ||
788 | |||
789 | /* frees all zswap entries for the given swap type */ | ||
790 | static void zswap_frontswap_invalidate_area(unsigned type) | ||
791 | { | ||
792 | struct zswap_tree *tree = zswap_trees[type]; | ||
793 | struct rb_node *node; | ||
794 | struct zswap_entry *entry; | ||
795 | |||
796 | if (!tree) | ||
797 | return; | ||
798 | |||
799 | /* walk the tree and free everything */ | ||
800 | spin_lock(&tree->lock); | ||
801 | /* | ||
802 | * TODO: Even though this code should not be executed because | ||
803 | * the try_to_unuse() in swapoff should have emptied the tree, | ||
804 | * it is very wasteful to rebalance the tree after every | ||
805 | * removal when we are freeing the whole tree. | ||
806 | * | ||
807 | * If post-order traversal code is ever added to the rbtree | ||
808 | * implementation, it should be used here. | ||
809 | */ | ||
810 | while ((node = rb_first(&tree->rbroot))) { | ||
811 | entry = rb_entry(node, struct zswap_entry, rbnode); | ||
812 | rb_erase(&entry->rbnode, &tree->rbroot); | ||
813 | zbud_free(tree->pool, entry->handle); | ||
814 | zswap_entry_cache_free(entry); | ||
815 | atomic_dec(&zswap_stored_pages); | ||
816 | } | ||
817 | tree->rbroot = RB_ROOT; | ||
818 | spin_unlock(&tree->lock); | ||
819 | } | ||
820 | |||
821 | static struct zbud_ops zswap_zbud_ops = { | ||
822 | .evict = zswap_writeback_entry | ||
823 | }; | ||
824 | |||
825 | static void zswap_frontswap_init(unsigned type) | ||
826 | { | ||
827 | struct zswap_tree *tree; | ||
828 | |||
829 | tree = kzalloc(sizeof(struct zswap_tree), GFP_KERNEL); | ||
830 | if (!tree) | ||
831 | goto err; | ||
832 | tree->pool = zbud_create_pool(GFP_KERNEL, &zswap_zbud_ops); | ||
833 | if (!tree->pool) | ||
834 | goto freetree; | ||
835 | tree->rbroot = RB_ROOT; | ||
836 | spin_lock_init(&tree->lock); | ||
837 | zswap_trees[type] = tree; | ||
838 | return; | ||
839 | |||
840 | freetree: | ||
841 | kfree(tree); | ||
842 | err: | ||
843 | pr_err("alloc failed, zswap disabled for swap type %d\n", type); | ||
844 | } | ||
845 | |||
846 | static struct frontswap_ops zswap_frontswap_ops = { | ||
847 | .store = zswap_frontswap_store, | ||
848 | .load = zswap_frontswap_load, | ||
849 | .invalidate_page = zswap_frontswap_invalidate_page, | ||
850 | .invalidate_area = zswap_frontswap_invalidate_area, | ||
851 | .init = zswap_frontswap_init | ||
852 | }; | ||
853 | |||
854 | /********************************* | ||
855 | * debugfs functions | ||
856 | **********************************/ | ||
857 | #ifdef CONFIG_DEBUG_FS | ||
858 | #include <linux/debugfs.h> | ||
859 | |||
860 | static struct dentry *zswap_debugfs_root; | ||
861 | |||
862 | static int __init zswap_debugfs_init(void) | ||
863 | { | ||
864 | if (!debugfs_initialized()) | ||
865 | return -ENODEV; | ||
866 | |||
867 | zswap_debugfs_root = debugfs_create_dir("zswap", NULL); | ||
868 | if (!zswap_debugfs_root) | ||
869 | return -ENOMEM; | ||
870 | |||
871 | debugfs_create_u64("pool_limit_hit", S_IRUGO, | ||
872 | zswap_debugfs_root, &zswap_pool_limit_hit); | ||
873 | debugfs_create_u64("reject_reclaim_fail", S_IRUGO, | ||
874 | zswap_debugfs_root, &zswap_reject_reclaim_fail); | ||
875 | debugfs_create_u64("reject_alloc_fail", S_IRUGO, | ||
876 | zswap_debugfs_root, &zswap_reject_alloc_fail); | ||
877 | debugfs_create_u64("reject_kmemcache_fail", S_IRUGO, | ||
878 | zswap_debugfs_root, &zswap_reject_kmemcache_fail); | ||
879 | debugfs_create_u64("reject_compress_poor", S_IRUGO, | ||
880 | zswap_debugfs_root, &zswap_reject_compress_poor); | ||
881 | debugfs_create_u64("written_back_pages", S_IRUGO, | ||
882 | zswap_debugfs_root, &zswap_written_back_pages); | ||
883 | debugfs_create_u64("duplicate_entry", S_IRUGO, | ||
884 | zswap_debugfs_root, &zswap_duplicate_entry); | ||
885 | debugfs_create_u64("pool_pages", S_IRUGO, | ||
886 | zswap_debugfs_root, &zswap_pool_pages); | ||
887 | debugfs_create_atomic_t("stored_pages", S_IRUGO, | ||
888 | zswap_debugfs_root, &zswap_stored_pages); | ||
889 | |||
890 | return 0; | ||
891 | } | ||
892 | |||
893 | static void __exit zswap_debugfs_exit(void) | ||
894 | { | ||
895 | debugfs_remove_recursive(zswap_debugfs_root); | ||
896 | } | ||
897 | #else | ||
898 | static int __init zswap_debugfs_init(void) | ||
899 | { | ||
900 | return 0; | ||
901 | } | ||
902 | |||
903 | static void __exit zswap_debugfs_exit(void) { } | ||
904 | #endif | ||
905 | |||
906 | /********************************* | ||
907 | * module init and exit | ||
908 | **********************************/ | ||
909 | static int __init init_zswap(void) | ||
910 | { | ||
911 | if (!zswap_enabled) | ||
912 | return 0; | ||
913 | |||
914 | pr_info("loading zswap\n"); | ||
915 | if (zswap_entry_cache_create()) { | ||
916 | pr_err("entry cache creation failed\n"); | ||
917 | goto error; | ||
918 | } | ||
919 | if (zswap_comp_init()) { | ||
920 | pr_err("compressor initialization failed\n"); | ||
921 | goto compfail; | ||
922 | } | ||
923 | if (zswap_cpu_init()) { | ||
924 | pr_err("per-cpu initialization failed\n"); | ||
925 | goto pcpufail; | ||
926 | } | ||
927 | frontswap_register_ops(&zswap_frontswap_ops); | ||
928 | if (zswap_debugfs_init()) | ||
929 | pr_warn("debugfs initialization failed\n"); | ||
930 | return 0; | ||
931 | pcpufail: | ||
932 | zswap_comp_exit(); | ||
933 | compfail: | ||
934 | zswap_entry_cache_destory(); | ||
935 | error: | ||
936 | return -ENOMEM; | ||
937 | } | ||
938 | /* must be late so crypto has time to come up */ | ||
939 | late_initcall(init_zswap); | ||
940 | |||
941 | MODULE_LICENSE("GPL"); | ||
942 | MODULE_AUTHOR("Seth Jennings <sjenning@linux.vnet.ibm.com>"); | ||
943 | MODULE_DESCRIPTION("Compressed cache for swap pages"); | ||
944 |