Commit 3210d190dcb717c328d74f8c3f69ec717d665b40

Authored by Linus Torvalds

Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee1394/linux1394-2.6

* 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee1394/linux1394-2.6:
  firewire: core: handle ack_busy when fetching the Config ROM

Showing 1 changed file Inline Diff

drivers/firewire/core-device.c
1 /* 1 /*
2 * Device probing and sysfs code. 2 * Device probing and sysfs code.
3 * 3 *
4 * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net> 4 * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 * 5 *
6 * This program is free software; you can redistribute it and/or modify 6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by 7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or 8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version. 9 * (at your option) any later version.
10 * 10 *
11 * This program is distributed in the hope that it will be useful, 11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details. 14 * GNU General Public License for more details.
15 * 15 *
16 * You should have received a copy of the GNU General Public License 16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation, 17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */ 19 */
20 20
21 #include <linux/bug.h> 21 #include <linux/bug.h>
22 #include <linux/ctype.h> 22 #include <linux/ctype.h>
23 #include <linux/delay.h> 23 #include <linux/delay.h>
24 #include <linux/device.h> 24 #include <linux/device.h>
25 #include <linux/errno.h> 25 #include <linux/errno.h>
26 #include <linux/firewire.h> 26 #include <linux/firewire.h>
27 #include <linux/firewire-constants.h> 27 #include <linux/firewire-constants.h>
28 #include <linux/idr.h> 28 #include <linux/idr.h>
29 #include <linux/jiffies.h> 29 #include <linux/jiffies.h>
30 #include <linux/kobject.h> 30 #include <linux/kobject.h>
31 #include <linux/list.h> 31 #include <linux/list.h>
32 #include <linux/mod_devicetable.h> 32 #include <linux/mod_devicetable.h>
33 #include <linux/module.h> 33 #include <linux/module.h>
34 #include <linux/mutex.h> 34 #include <linux/mutex.h>
35 #include <linux/rwsem.h> 35 #include <linux/rwsem.h>
36 #include <linux/slab.h> 36 #include <linux/slab.h>
37 #include <linux/spinlock.h> 37 #include <linux/spinlock.h>
38 #include <linux/string.h> 38 #include <linux/string.h>
39 #include <linux/workqueue.h> 39 #include <linux/workqueue.h>
40 40
41 #include <linux/atomic.h> 41 #include <linux/atomic.h>
42 #include <asm/byteorder.h> 42 #include <asm/byteorder.h>
43 #include <asm/system.h> 43 #include <asm/system.h>
44 44
45 #include "core.h" 45 #include "core.h"
46 46
47 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p) 47 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
48 { 48 {
49 ci->p = p + 1; 49 ci->p = p + 1;
50 ci->end = ci->p + (p[0] >> 16); 50 ci->end = ci->p + (p[0] >> 16);
51 } 51 }
52 EXPORT_SYMBOL(fw_csr_iterator_init); 52 EXPORT_SYMBOL(fw_csr_iterator_init);
53 53
54 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value) 54 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
55 { 55 {
56 *key = *ci->p >> 24; 56 *key = *ci->p >> 24;
57 *value = *ci->p & 0xffffff; 57 *value = *ci->p & 0xffffff;
58 58
59 return ci->p++ < ci->end; 59 return ci->p++ < ci->end;
60 } 60 }
61 EXPORT_SYMBOL(fw_csr_iterator_next); 61 EXPORT_SYMBOL(fw_csr_iterator_next);
62 62
63 static const u32 *search_leaf(const u32 *directory, int search_key) 63 static const u32 *search_leaf(const u32 *directory, int search_key)
64 { 64 {
65 struct fw_csr_iterator ci; 65 struct fw_csr_iterator ci;
66 int last_key = 0, key, value; 66 int last_key = 0, key, value;
67 67
68 fw_csr_iterator_init(&ci, directory); 68 fw_csr_iterator_init(&ci, directory);
69 while (fw_csr_iterator_next(&ci, &key, &value)) { 69 while (fw_csr_iterator_next(&ci, &key, &value)) {
70 if (last_key == search_key && 70 if (last_key == search_key &&
71 key == (CSR_DESCRIPTOR | CSR_LEAF)) 71 key == (CSR_DESCRIPTOR | CSR_LEAF))
72 return ci.p - 1 + value; 72 return ci.p - 1 + value;
73 73
74 last_key = key; 74 last_key = key;
75 } 75 }
76 76
77 return NULL; 77 return NULL;
78 } 78 }
79 79
80 static int textual_leaf_to_string(const u32 *block, char *buf, size_t size) 80 static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
81 { 81 {
82 unsigned int quadlets, i; 82 unsigned int quadlets, i;
83 char c; 83 char c;
84 84
85 if (!size || !buf) 85 if (!size || !buf)
86 return -EINVAL; 86 return -EINVAL;
87 87
88 quadlets = min(block[0] >> 16, 256U); 88 quadlets = min(block[0] >> 16, 256U);
89 if (quadlets < 2) 89 if (quadlets < 2)
90 return -ENODATA; 90 return -ENODATA;
91 91
92 if (block[1] != 0 || block[2] != 0) 92 if (block[1] != 0 || block[2] != 0)
93 /* unknown language/character set */ 93 /* unknown language/character set */
94 return -ENODATA; 94 return -ENODATA;
95 95
96 block += 3; 96 block += 3;
97 quadlets -= 2; 97 quadlets -= 2;
98 for (i = 0; i < quadlets * 4 && i < size - 1; i++) { 98 for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
99 c = block[i / 4] >> (24 - 8 * (i % 4)); 99 c = block[i / 4] >> (24 - 8 * (i % 4));
100 if (c == '\0') 100 if (c == '\0')
101 break; 101 break;
102 buf[i] = c; 102 buf[i] = c;
103 } 103 }
104 buf[i] = '\0'; 104 buf[i] = '\0';
105 105
106 return i; 106 return i;
107 } 107 }
108 108
109 /** 109 /**
110 * fw_csr_string() - reads a string from the configuration ROM 110 * fw_csr_string() - reads a string from the configuration ROM
111 * @directory: e.g. root directory or unit directory 111 * @directory: e.g. root directory or unit directory
112 * @key: the key of the preceding directory entry 112 * @key: the key of the preceding directory entry
113 * @buf: where to put the string 113 * @buf: where to put the string
114 * @size: size of @buf, in bytes 114 * @size: size of @buf, in bytes
115 * 115 *
116 * The string is taken from a minimal ASCII text descriptor leaf after 116 * The string is taken from a minimal ASCII text descriptor leaf after
117 * the immediate entry with @key. The string is zero-terminated. 117 * the immediate entry with @key. The string is zero-terminated.
118 * Returns strlen(buf) or a negative error code. 118 * Returns strlen(buf) or a negative error code.
119 */ 119 */
120 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size) 120 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
121 { 121 {
122 const u32 *leaf = search_leaf(directory, key); 122 const u32 *leaf = search_leaf(directory, key);
123 if (!leaf) 123 if (!leaf)
124 return -ENOENT; 124 return -ENOENT;
125 125
126 return textual_leaf_to_string(leaf, buf, size); 126 return textual_leaf_to_string(leaf, buf, size);
127 } 127 }
128 EXPORT_SYMBOL(fw_csr_string); 128 EXPORT_SYMBOL(fw_csr_string);
129 129
130 static void get_ids(const u32 *directory, int *id) 130 static void get_ids(const u32 *directory, int *id)
131 { 131 {
132 struct fw_csr_iterator ci; 132 struct fw_csr_iterator ci;
133 int key, value; 133 int key, value;
134 134
135 fw_csr_iterator_init(&ci, directory); 135 fw_csr_iterator_init(&ci, directory);
136 while (fw_csr_iterator_next(&ci, &key, &value)) { 136 while (fw_csr_iterator_next(&ci, &key, &value)) {
137 switch (key) { 137 switch (key) {
138 case CSR_VENDOR: id[0] = value; break; 138 case CSR_VENDOR: id[0] = value; break;
139 case CSR_MODEL: id[1] = value; break; 139 case CSR_MODEL: id[1] = value; break;
140 case CSR_SPECIFIER_ID: id[2] = value; break; 140 case CSR_SPECIFIER_ID: id[2] = value; break;
141 case CSR_VERSION: id[3] = value; break; 141 case CSR_VERSION: id[3] = value; break;
142 } 142 }
143 } 143 }
144 } 144 }
145 145
146 static void get_modalias_ids(struct fw_unit *unit, int *id) 146 static void get_modalias_ids(struct fw_unit *unit, int *id)
147 { 147 {
148 get_ids(&fw_parent_device(unit)->config_rom[5], id); 148 get_ids(&fw_parent_device(unit)->config_rom[5], id);
149 get_ids(unit->directory, id); 149 get_ids(unit->directory, id);
150 } 150 }
151 151
152 static bool match_ids(const struct ieee1394_device_id *id_table, int *id) 152 static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
153 { 153 {
154 int match = 0; 154 int match = 0;
155 155
156 if (id[0] == id_table->vendor_id) 156 if (id[0] == id_table->vendor_id)
157 match |= IEEE1394_MATCH_VENDOR_ID; 157 match |= IEEE1394_MATCH_VENDOR_ID;
158 if (id[1] == id_table->model_id) 158 if (id[1] == id_table->model_id)
159 match |= IEEE1394_MATCH_MODEL_ID; 159 match |= IEEE1394_MATCH_MODEL_ID;
160 if (id[2] == id_table->specifier_id) 160 if (id[2] == id_table->specifier_id)
161 match |= IEEE1394_MATCH_SPECIFIER_ID; 161 match |= IEEE1394_MATCH_SPECIFIER_ID;
162 if (id[3] == id_table->version) 162 if (id[3] == id_table->version)
163 match |= IEEE1394_MATCH_VERSION; 163 match |= IEEE1394_MATCH_VERSION;
164 164
165 return (match & id_table->match_flags) == id_table->match_flags; 165 return (match & id_table->match_flags) == id_table->match_flags;
166 } 166 }
167 167
168 static bool is_fw_unit(struct device *dev); 168 static bool is_fw_unit(struct device *dev);
169 169
170 static int fw_unit_match(struct device *dev, struct device_driver *drv) 170 static int fw_unit_match(struct device *dev, struct device_driver *drv)
171 { 171 {
172 const struct ieee1394_device_id *id_table = 172 const struct ieee1394_device_id *id_table =
173 container_of(drv, struct fw_driver, driver)->id_table; 173 container_of(drv, struct fw_driver, driver)->id_table;
174 int id[] = {0, 0, 0, 0}; 174 int id[] = {0, 0, 0, 0};
175 175
176 /* We only allow binding to fw_units. */ 176 /* We only allow binding to fw_units. */
177 if (!is_fw_unit(dev)) 177 if (!is_fw_unit(dev))
178 return 0; 178 return 0;
179 179
180 get_modalias_ids(fw_unit(dev), id); 180 get_modalias_ids(fw_unit(dev), id);
181 181
182 for (; id_table->match_flags != 0; id_table++) 182 for (; id_table->match_flags != 0; id_table++)
183 if (match_ids(id_table, id)) 183 if (match_ids(id_table, id))
184 return 1; 184 return 1;
185 185
186 return 0; 186 return 0;
187 } 187 }
188 188
189 static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size) 189 static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
190 { 190 {
191 int id[] = {0, 0, 0, 0}; 191 int id[] = {0, 0, 0, 0};
192 192
193 get_modalias_ids(unit, id); 193 get_modalias_ids(unit, id);
194 194
195 return snprintf(buffer, buffer_size, 195 return snprintf(buffer, buffer_size,
196 "ieee1394:ven%08Xmo%08Xsp%08Xver%08X", 196 "ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
197 id[0], id[1], id[2], id[3]); 197 id[0], id[1], id[2], id[3]);
198 } 198 }
199 199
200 static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env) 200 static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
201 { 201 {
202 struct fw_unit *unit = fw_unit(dev); 202 struct fw_unit *unit = fw_unit(dev);
203 char modalias[64]; 203 char modalias[64];
204 204
205 get_modalias(unit, modalias, sizeof(modalias)); 205 get_modalias(unit, modalias, sizeof(modalias));
206 206
207 if (add_uevent_var(env, "MODALIAS=%s", modalias)) 207 if (add_uevent_var(env, "MODALIAS=%s", modalias))
208 return -ENOMEM; 208 return -ENOMEM;
209 209
210 return 0; 210 return 0;
211 } 211 }
212 212
213 struct bus_type fw_bus_type = { 213 struct bus_type fw_bus_type = {
214 .name = "firewire", 214 .name = "firewire",
215 .match = fw_unit_match, 215 .match = fw_unit_match,
216 }; 216 };
217 EXPORT_SYMBOL(fw_bus_type); 217 EXPORT_SYMBOL(fw_bus_type);
218 218
219 int fw_device_enable_phys_dma(struct fw_device *device) 219 int fw_device_enable_phys_dma(struct fw_device *device)
220 { 220 {
221 int generation = device->generation; 221 int generation = device->generation;
222 222
223 /* device->node_id, accessed below, must not be older than generation */ 223 /* device->node_id, accessed below, must not be older than generation */
224 smp_rmb(); 224 smp_rmb();
225 225
226 return device->card->driver->enable_phys_dma(device->card, 226 return device->card->driver->enable_phys_dma(device->card,
227 device->node_id, 227 device->node_id,
228 generation); 228 generation);
229 } 229 }
230 EXPORT_SYMBOL(fw_device_enable_phys_dma); 230 EXPORT_SYMBOL(fw_device_enable_phys_dma);
231 231
232 struct config_rom_attribute { 232 struct config_rom_attribute {
233 struct device_attribute attr; 233 struct device_attribute attr;
234 u32 key; 234 u32 key;
235 }; 235 };
236 236
237 static ssize_t show_immediate(struct device *dev, 237 static ssize_t show_immediate(struct device *dev,
238 struct device_attribute *dattr, char *buf) 238 struct device_attribute *dattr, char *buf)
239 { 239 {
240 struct config_rom_attribute *attr = 240 struct config_rom_attribute *attr =
241 container_of(dattr, struct config_rom_attribute, attr); 241 container_of(dattr, struct config_rom_attribute, attr);
242 struct fw_csr_iterator ci; 242 struct fw_csr_iterator ci;
243 const u32 *dir; 243 const u32 *dir;
244 int key, value, ret = -ENOENT; 244 int key, value, ret = -ENOENT;
245 245
246 down_read(&fw_device_rwsem); 246 down_read(&fw_device_rwsem);
247 247
248 if (is_fw_unit(dev)) 248 if (is_fw_unit(dev))
249 dir = fw_unit(dev)->directory; 249 dir = fw_unit(dev)->directory;
250 else 250 else
251 dir = fw_device(dev)->config_rom + 5; 251 dir = fw_device(dev)->config_rom + 5;
252 252
253 fw_csr_iterator_init(&ci, dir); 253 fw_csr_iterator_init(&ci, dir);
254 while (fw_csr_iterator_next(&ci, &key, &value)) 254 while (fw_csr_iterator_next(&ci, &key, &value))
255 if (attr->key == key) { 255 if (attr->key == key) {
256 ret = snprintf(buf, buf ? PAGE_SIZE : 0, 256 ret = snprintf(buf, buf ? PAGE_SIZE : 0,
257 "0x%06x\n", value); 257 "0x%06x\n", value);
258 break; 258 break;
259 } 259 }
260 260
261 up_read(&fw_device_rwsem); 261 up_read(&fw_device_rwsem);
262 262
263 return ret; 263 return ret;
264 } 264 }
265 265
266 #define IMMEDIATE_ATTR(name, key) \ 266 #define IMMEDIATE_ATTR(name, key) \
267 { __ATTR(name, S_IRUGO, show_immediate, NULL), key } 267 { __ATTR(name, S_IRUGO, show_immediate, NULL), key }
268 268
269 static ssize_t show_text_leaf(struct device *dev, 269 static ssize_t show_text_leaf(struct device *dev,
270 struct device_attribute *dattr, char *buf) 270 struct device_attribute *dattr, char *buf)
271 { 271 {
272 struct config_rom_attribute *attr = 272 struct config_rom_attribute *attr =
273 container_of(dattr, struct config_rom_attribute, attr); 273 container_of(dattr, struct config_rom_attribute, attr);
274 const u32 *dir; 274 const u32 *dir;
275 size_t bufsize; 275 size_t bufsize;
276 char dummy_buf[2]; 276 char dummy_buf[2];
277 int ret; 277 int ret;
278 278
279 down_read(&fw_device_rwsem); 279 down_read(&fw_device_rwsem);
280 280
281 if (is_fw_unit(dev)) 281 if (is_fw_unit(dev))
282 dir = fw_unit(dev)->directory; 282 dir = fw_unit(dev)->directory;
283 else 283 else
284 dir = fw_device(dev)->config_rom + 5; 284 dir = fw_device(dev)->config_rom + 5;
285 285
286 if (buf) { 286 if (buf) {
287 bufsize = PAGE_SIZE - 1; 287 bufsize = PAGE_SIZE - 1;
288 } else { 288 } else {
289 buf = dummy_buf; 289 buf = dummy_buf;
290 bufsize = 1; 290 bufsize = 1;
291 } 291 }
292 292
293 ret = fw_csr_string(dir, attr->key, buf, bufsize); 293 ret = fw_csr_string(dir, attr->key, buf, bufsize);
294 294
295 if (ret >= 0) { 295 if (ret >= 0) {
296 /* Strip trailing whitespace and add newline. */ 296 /* Strip trailing whitespace and add newline. */
297 while (ret > 0 && isspace(buf[ret - 1])) 297 while (ret > 0 && isspace(buf[ret - 1]))
298 ret--; 298 ret--;
299 strcpy(buf + ret, "\n"); 299 strcpy(buf + ret, "\n");
300 ret++; 300 ret++;
301 } 301 }
302 302
303 up_read(&fw_device_rwsem); 303 up_read(&fw_device_rwsem);
304 304
305 return ret; 305 return ret;
306 } 306 }
307 307
308 #define TEXT_LEAF_ATTR(name, key) \ 308 #define TEXT_LEAF_ATTR(name, key) \
309 { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key } 309 { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
310 310
311 static struct config_rom_attribute config_rom_attributes[] = { 311 static struct config_rom_attribute config_rom_attributes[] = {
312 IMMEDIATE_ATTR(vendor, CSR_VENDOR), 312 IMMEDIATE_ATTR(vendor, CSR_VENDOR),
313 IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION), 313 IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
314 IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID), 314 IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
315 IMMEDIATE_ATTR(version, CSR_VERSION), 315 IMMEDIATE_ATTR(version, CSR_VERSION),
316 IMMEDIATE_ATTR(model, CSR_MODEL), 316 IMMEDIATE_ATTR(model, CSR_MODEL),
317 TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR), 317 TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
318 TEXT_LEAF_ATTR(model_name, CSR_MODEL), 318 TEXT_LEAF_ATTR(model_name, CSR_MODEL),
319 TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION), 319 TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
320 }; 320 };
321 321
322 static void init_fw_attribute_group(struct device *dev, 322 static void init_fw_attribute_group(struct device *dev,
323 struct device_attribute *attrs, 323 struct device_attribute *attrs,
324 struct fw_attribute_group *group) 324 struct fw_attribute_group *group)
325 { 325 {
326 struct device_attribute *attr; 326 struct device_attribute *attr;
327 int i, j; 327 int i, j;
328 328
329 for (j = 0; attrs[j].attr.name != NULL; j++) 329 for (j = 0; attrs[j].attr.name != NULL; j++)
330 group->attrs[j] = &attrs[j].attr; 330 group->attrs[j] = &attrs[j].attr;
331 331
332 for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) { 332 for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
333 attr = &config_rom_attributes[i].attr; 333 attr = &config_rom_attributes[i].attr;
334 if (attr->show(dev, attr, NULL) < 0) 334 if (attr->show(dev, attr, NULL) < 0)
335 continue; 335 continue;
336 group->attrs[j++] = &attr->attr; 336 group->attrs[j++] = &attr->attr;
337 } 337 }
338 338
339 group->attrs[j] = NULL; 339 group->attrs[j] = NULL;
340 group->groups[0] = &group->group; 340 group->groups[0] = &group->group;
341 group->groups[1] = NULL; 341 group->groups[1] = NULL;
342 group->group.attrs = group->attrs; 342 group->group.attrs = group->attrs;
343 dev->groups = (const struct attribute_group **) group->groups; 343 dev->groups = (const struct attribute_group **) group->groups;
344 } 344 }
345 345
346 static ssize_t modalias_show(struct device *dev, 346 static ssize_t modalias_show(struct device *dev,
347 struct device_attribute *attr, char *buf) 347 struct device_attribute *attr, char *buf)
348 { 348 {
349 struct fw_unit *unit = fw_unit(dev); 349 struct fw_unit *unit = fw_unit(dev);
350 int length; 350 int length;
351 351
352 length = get_modalias(unit, buf, PAGE_SIZE); 352 length = get_modalias(unit, buf, PAGE_SIZE);
353 strcpy(buf + length, "\n"); 353 strcpy(buf + length, "\n");
354 354
355 return length + 1; 355 return length + 1;
356 } 356 }
357 357
358 static ssize_t rom_index_show(struct device *dev, 358 static ssize_t rom_index_show(struct device *dev,
359 struct device_attribute *attr, char *buf) 359 struct device_attribute *attr, char *buf)
360 { 360 {
361 struct fw_device *device = fw_device(dev->parent); 361 struct fw_device *device = fw_device(dev->parent);
362 struct fw_unit *unit = fw_unit(dev); 362 struct fw_unit *unit = fw_unit(dev);
363 363
364 return snprintf(buf, PAGE_SIZE, "%d\n", 364 return snprintf(buf, PAGE_SIZE, "%d\n",
365 (int)(unit->directory - device->config_rom)); 365 (int)(unit->directory - device->config_rom));
366 } 366 }
367 367
368 static struct device_attribute fw_unit_attributes[] = { 368 static struct device_attribute fw_unit_attributes[] = {
369 __ATTR_RO(modalias), 369 __ATTR_RO(modalias),
370 __ATTR_RO(rom_index), 370 __ATTR_RO(rom_index),
371 __ATTR_NULL, 371 __ATTR_NULL,
372 }; 372 };
373 373
374 static ssize_t config_rom_show(struct device *dev, 374 static ssize_t config_rom_show(struct device *dev,
375 struct device_attribute *attr, char *buf) 375 struct device_attribute *attr, char *buf)
376 { 376 {
377 struct fw_device *device = fw_device(dev); 377 struct fw_device *device = fw_device(dev);
378 size_t length; 378 size_t length;
379 379
380 down_read(&fw_device_rwsem); 380 down_read(&fw_device_rwsem);
381 length = device->config_rom_length * 4; 381 length = device->config_rom_length * 4;
382 memcpy(buf, device->config_rom, length); 382 memcpy(buf, device->config_rom, length);
383 up_read(&fw_device_rwsem); 383 up_read(&fw_device_rwsem);
384 384
385 return length; 385 return length;
386 } 386 }
387 387
388 static ssize_t guid_show(struct device *dev, 388 static ssize_t guid_show(struct device *dev,
389 struct device_attribute *attr, char *buf) 389 struct device_attribute *attr, char *buf)
390 { 390 {
391 struct fw_device *device = fw_device(dev); 391 struct fw_device *device = fw_device(dev);
392 int ret; 392 int ret;
393 393
394 down_read(&fw_device_rwsem); 394 down_read(&fw_device_rwsem);
395 ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n", 395 ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
396 device->config_rom[3], device->config_rom[4]); 396 device->config_rom[3], device->config_rom[4]);
397 up_read(&fw_device_rwsem); 397 up_read(&fw_device_rwsem);
398 398
399 return ret; 399 return ret;
400 } 400 }
401 401
402 static int units_sprintf(char *buf, const u32 *directory) 402 static int units_sprintf(char *buf, const u32 *directory)
403 { 403 {
404 struct fw_csr_iterator ci; 404 struct fw_csr_iterator ci;
405 int key, value; 405 int key, value;
406 int specifier_id = 0; 406 int specifier_id = 0;
407 int version = 0; 407 int version = 0;
408 408
409 fw_csr_iterator_init(&ci, directory); 409 fw_csr_iterator_init(&ci, directory);
410 while (fw_csr_iterator_next(&ci, &key, &value)) { 410 while (fw_csr_iterator_next(&ci, &key, &value)) {
411 switch (key) { 411 switch (key) {
412 case CSR_SPECIFIER_ID: 412 case CSR_SPECIFIER_ID:
413 specifier_id = value; 413 specifier_id = value;
414 break; 414 break;
415 case CSR_VERSION: 415 case CSR_VERSION:
416 version = value; 416 version = value;
417 break; 417 break;
418 } 418 }
419 } 419 }
420 420
421 return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version); 421 return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
422 } 422 }
423 423
424 static ssize_t units_show(struct device *dev, 424 static ssize_t units_show(struct device *dev,
425 struct device_attribute *attr, char *buf) 425 struct device_attribute *attr, char *buf)
426 { 426 {
427 struct fw_device *device = fw_device(dev); 427 struct fw_device *device = fw_device(dev);
428 struct fw_csr_iterator ci; 428 struct fw_csr_iterator ci;
429 int key, value, i = 0; 429 int key, value, i = 0;
430 430
431 down_read(&fw_device_rwsem); 431 down_read(&fw_device_rwsem);
432 fw_csr_iterator_init(&ci, &device->config_rom[5]); 432 fw_csr_iterator_init(&ci, &device->config_rom[5]);
433 while (fw_csr_iterator_next(&ci, &key, &value)) { 433 while (fw_csr_iterator_next(&ci, &key, &value)) {
434 if (key != (CSR_UNIT | CSR_DIRECTORY)) 434 if (key != (CSR_UNIT | CSR_DIRECTORY))
435 continue; 435 continue;
436 i += units_sprintf(&buf[i], ci.p + value - 1); 436 i += units_sprintf(&buf[i], ci.p + value - 1);
437 if (i >= PAGE_SIZE - (8 + 1 + 8 + 1)) 437 if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
438 break; 438 break;
439 } 439 }
440 up_read(&fw_device_rwsem); 440 up_read(&fw_device_rwsem);
441 441
442 if (i) 442 if (i)
443 buf[i - 1] = '\n'; 443 buf[i - 1] = '\n';
444 444
445 return i; 445 return i;
446 } 446 }
447 447
448 static struct device_attribute fw_device_attributes[] = { 448 static struct device_attribute fw_device_attributes[] = {
449 __ATTR_RO(config_rom), 449 __ATTR_RO(config_rom),
450 __ATTR_RO(guid), 450 __ATTR_RO(guid),
451 __ATTR_RO(units), 451 __ATTR_RO(units),
452 __ATTR_NULL, 452 __ATTR_NULL,
453 }; 453 };
454 454
455 static int read_rom(struct fw_device *device, 455 static int read_rom(struct fw_device *device,
456 int generation, int index, u32 *data) 456 int generation, int index, u32 *data)
457 { 457 {
458 int rcode; 458 u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
459 int i, rcode;
459 460
460 /* device->node_id, accessed below, must not be older than generation */ 461 /* device->node_id, accessed below, must not be older than generation */
461 smp_rmb(); 462 smp_rmb();
462 463
463 rcode = fw_run_transaction(device->card, TCODE_READ_QUADLET_REQUEST, 464 for (i = 10; i < 100; i += 10) {
464 device->node_id, generation, device->max_speed, 465 rcode = fw_run_transaction(device->card,
465 (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4, 466 TCODE_READ_QUADLET_REQUEST, device->node_id,
466 data, 4); 467 generation, device->max_speed, offset, data, 4);
468 if (rcode != RCODE_BUSY)
469 break;
470 msleep(i);
471 }
467 be32_to_cpus(data); 472 be32_to_cpus(data);
468 473
469 return rcode; 474 return rcode;
470 } 475 }
471 476
472 #define MAX_CONFIG_ROM_SIZE 256 477 #define MAX_CONFIG_ROM_SIZE 256
473 478
474 /* 479 /*
475 * Read the bus info block, perform a speed probe, and read all of the rest of 480 * Read the bus info block, perform a speed probe, and read all of the rest of
476 * the config ROM. We do all this with a cached bus generation. If the bus 481 * the config ROM. We do all this with a cached bus generation. If the bus
477 * generation changes under us, read_config_rom will fail and get retried. 482 * generation changes under us, read_config_rom will fail and get retried.
478 * It's better to start all over in this case because the node from which we 483 * It's better to start all over in this case because the node from which we
479 * are reading the ROM may have changed the ROM during the reset. 484 * are reading the ROM may have changed the ROM during the reset.
480 */ 485 */
481 static int read_config_rom(struct fw_device *device, int generation) 486 static int read_config_rom(struct fw_device *device, int generation)
482 { 487 {
483 const u32 *old_rom, *new_rom; 488 const u32 *old_rom, *new_rom;
484 u32 *rom, *stack; 489 u32 *rom, *stack;
485 u32 sp, key; 490 u32 sp, key;
486 int i, end, length, ret = -1; 491 int i, end, length, ret = -1;
487 492
488 rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE + 493 rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
489 sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL); 494 sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
490 if (rom == NULL) 495 if (rom == NULL)
491 return -ENOMEM; 496 return -ENOMEM;
492 497
493 stack = &rom[MAX_CONFIG_ROM_SIZE]; 498 stack = &rom[MAX_CONFIG_ROM_SIZE];
494 memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE); 499 memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
495 500
496 device->max_speed = SCODE_100; 501 device->max_speed = SCODE_100;
497 502
498 /* First read the bus info block. */ 503 /* First read the bus info block. */
499 for (i = 0; i < 5; i++) { 504 for (i = 0; i < 5; i++) {
500 if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE) 505 if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
501 goto out; 506 goto out;
502 /* 507 /*
503 * As per IEEE1212 7.2, during power-up, devices can 508 * As per IEEE1212 7.2, during power-up, devices can
504 * reply with a 0 for the first quadlet of the config 509 * reply with a 0 for the first quadlet of the config
505 * rom to indicate that they are booting (for example, 510 * rom to indicate that they are booting (for example,
506 * if the firmware is on the disk of a external 511 * if the firmware is on the disk of a external
507 * harddisk). In that case we just fail, and the 512 * harddisk). In that case we just fail, and the
508 * retry mechanism will try again later. 513 * retry mechanism will try again later.
509 */ 514 */
510 if (i == 0 && rom[i] == 0) 515 if (i == 0 && rom[i] == 0)
511 goto out; 516 goto out;
512 } 517 }
513 518
514 device->max_speed = device->node->max_speed; 519 device->max_speed = device->node->max_speed;
515 520
516 /* 521 /*
517 * Determine the speed of 522 * Determine the speed of
518 * - devices with link speed less than PHY speed, 523 * - devices with link speed less than PHY speed,
519 * - devices with 1394b PHY (unless only connected to 1394a PHYs), 524 * - devices with 1394b PHY (unless only connected to 1394a PHYs),
520 * - all devices if there are 1394b repeaters. 525 * - all devices if there are 1394b repeaters.
521 * Note, we cannot use the bus info block's link_spd as starting point 526 * Note, we cannot use the bus info block's link_spd as starting point
522 * because some buggy firmwares set it lower than necessary and because 527 * because some buggy firmwares set it lower than necessary and because
523 * 1394-1995 nodes do not have the field. 528 * 1394-1995 nodes do not have the field.
524 */ 529 */
525 if ((rom[2] & 0x7) < device->max_speed || 530 if ((rom[2] & 0x7) < device->max_speed ||
526 device->max_speed == SCODE_BETA || 531 device->max_speed == SCODE_BETA ||
527 device->card->beta_repeaters_present) { 532 device->card->beta_repeaters_present) {
528 u32 dummy; 533 u32 dummy;
529 534
530 /* for S1600 and S3200 */ 535 /* for S1600 and S3200 */
531 if (device->max_speed == SCODE_BETA) 536 if (device->max_speed == SCODE_BETA)
532 device->max_speed = device->card->link_speed; 537 device->max_speed = device->card->link_speed;
533 538
534 while (device->max_speed > SCODE_100) { 539 while (device->max_speed > SCODE_100) {
535 if (read_rom(device, generation, 0, &dummy) == 540 if (read_rom(device, generation, 0, &dummy) ==
536 RCODE_COMPLETE) 541 RCODE_COMPLETE)
537 break; 542 break;
538 device->max_speed--; 543 device->max_speed--;
539 } 544 }
540 } 545 }
541 546
542 /* 547 /*
543 * Now parse the config rom. The config rom is a recursive 548 * Now parse the config rom. The config rom is a recursive
544 * directory structure so we parse it using a stack of 549 * directory structure so we parse it using a stack of
545 * references to the blocks that make up the structure. We 550 * references to the blocks that make up the structure. We
546 * push a reference to the root directory on the stack to 551 * push a reference to the root directory on the stack to
547 * start things off. 552 * start things off.
548 */ 553 */
549 length = i; 554 length = i;
550 sp = 0; 555 sp = 0;
551 stack[sp++] = 0xc0000005; 556 stack[sp++] = 0xc0000005;
552 while (sp > 0) { 557 while (sp > 0) {
553 /* 558 /*
554 * Pop the next block reference of the stack. The 559 * Pop the next block reference of the stack. The
555 * lower 24 bits is the offset into the config rom, 560 * lower 24 bits is the offset into the config rom,
556 * the upper 8 bits are the type of the reference the 561 * the upper 8 bits are the type of the reference the
557 * block. 562 * block.
558 */ 563 */
559 key = stack[--sp]; 564 key = stack[--sp];
560 i = key & 0xffffff; 565 i = key & 0xffffff;
561 if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) 566 if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE))
562 goto out; 567 goto out;
563 568
564 /* Read header quadlet for the block to get the length. */ 569 /* Read header quadlet for the block to get the length. */
565 if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE) 570 if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
566 goto out; 571 goto out;
567 end = i + (rom[i] >> 16) + 1; 572 end = i + (rom[i] >> 16) + 1;
568 if (end > MAX_CONFIG_ROM_SIZE) { 573 if (end > MAX_CONFIG_ROM_SIZE) {
569 /* 574 /*
570 * This block extends outside the config ROM which is 575 * This block extends outside the config ROM which is
571 * a firmware bug. Ignore this whole block, i.e. 576 * a firmware bug. Ignore this whole block, i.e.
572 * simply set a fake block length of 0. 577 * simply set a fake block length of 0.
573 */ 578 */
574 fw_error("skipped invalid ROM block %x at %llx\n", 579 fw_error("skipped invalid ROM block %x at %llx\n",
575 rom[i], 580 rom[i],
576 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM); 581 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
577 rom[i] = 0; 582 rom[i] = 0;
578 end = i; 583 end = i;
579 } 584 }
580 i++; 585 i++;
581 586
582 /* 587 /*
583 * Now read in the block. If this is a directory 588 * Now read in the block. If this is a directory
584 * block, check the entries as we read them to see if 589 * block, check the entries as we read them to see if
585 * it references another block, and push it in that case. 590 * it references another block, and push it in that case.
586 */ 591 */
587 for (; i < end; i++) { 592 for (; i < end; i++) {
588 if (read_rom(device, generation, i, &rom[i]) != 593 if (read_rom(device, generation, i, &rom[i]) !=
589 RCODE_COMPLETE) 594 RCODE_COMPLETE)
590 goto out; 595 goto out;
591 596
592 if ((key >> 30) != 3 || (rom[i] >> 30) < 2) 597 if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
593 continue; 598 continue;
594 /* 599 /*
595 * Offset points outside the ROM. May be a firmware 600 * Offset points outside the ROM. May be a firmware
596 * bug or an Extended ROM entry (IEEE 1212-2001 clause 601 * bug or an Extended ROM entry (IEEE 1212-2001 clause
597 * 7.7.18). Simply overwrite this pointer here by a 602 * 7.7.18). Simply overwrite this pointer here by a
598 * fake immediate entry so that later iterators over 603 * fake immediate entry so that later iterators over
599 * the ROM don't have to check offsets all the time. 604 * the ROM don't have to check offsets all the time.
600 */ 605 */
601 if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) { 606 if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
602 fw_error("skipped unsupported ROM entry %x at %llx\n", 607 fw_error("skipped unsupported ROM entry %x at %llx\n",
603 rom[i], 608 rom[i],
604 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM); 609 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
605 rom[i] = 0; 610 rom[i] = 0;
606 continue; 611 continue;
607 } 612 }
608 stack[sp++] = i + rom[i]; 613 stack[sp++] = i + rom[i];
609 } 614 }
610 if (length < i) 615 if (length < i)
611 length = i; 616 length = i;
612 } 617 }
613 618
614 old_rom = device->config_rom; 619 old_rom = device->config_rom;
615 new_rom = kmemdup(rom, length * 4, GFP_KERNEL); 620 new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
616 if (new_rom == NULL) 621 if (new_rom == NULL)
617 goto out; 622 goto out;
618 623
619 down_write(&fw_device_rwsem); 624 down_write(&fw_device_rwsem);
620 device->config_rom = new_rom; 625 device->config_rom = new_rom;
621 device->config_rom_length = length; 626 device->config_rom_length = length;
622 up_write(&fw_device_rwsem); 627 up_write(&fw_device_rwsem);
623 628
624 kfree(old_rom); 629 kfree(old_rom);
625 ret = 0; 630 ret = 0;
626 device->max_rec = rom[2] >> 12 & 0xf; 631 device->max_rec = rom[2] >> 12 & 0xf;
627 device->cmc = rom[2] >> 30 & 1; 632 device->cmc = rom[2] >> 30 & 1;
628 device->irmc = rom[2] >> 31 & 1; 633 device->irmc = rom[2] >> 31 & 1;
629 out: 634 out:
630 kfree(rom); 635 kfree(rom);
631 636
632 return ret; 637 return ret;
633 } 638 }
634 639
635 static void fw_unit_release(struct device *dev) 640 static void fw_unit_release(struct device *dev)
636 { 641 {
637 struct fw_unit *unit = fw_unit(dev); 642 struct fw_unit *unit = fw_unit(dev);
638 643
639 kfree(unit); 644 kfree(unit);
640 } 645 }
641 646
642 static struct device_type fw_unit_type = { 647 static struct device_type fw_unit_type = {
643 .uevent = fw_unit_uevent, 648 .uevent = fw_unit_uevent,
644 .release = fw_unit_release, 649 .release = fw_unit_release,
645 }; 650 };
646 651
647 static bool is_fw_unit(struct device *dev) 652 static bool is_fw_unit(struct device *dev)
648 { 653 {
649 return dev->type == &fw_unit_type; 654 return dev->type == &fw_unit_type;
650 } 655 }
651 656
652 static void create_units(struct fw_device *device) 657 static void create_units(struct fw_device *device)
653 { 658 {
654 struct fw_csr_iterator ci; 659 struct fw_csr_iterator ci;
655 struct fw_unit *unit; 660 struct fw_unit *unit;
656 int key, value, i; 661 int key, value, i;
657 662
658 i = 0; 663 i = 0;
659 fw_csr_iterator_init(&ci, &device->config_rom[5]); 664 fw_csr_iterator_init(&ci, &device->config_rom[5]);
660 while (fw_csr_iterator_next(&ci, &key, &value)) { 665 while (fw_csr_iterator_next(&ci, &key, &value)) {
661 if (key != (CSR_UNIT | CSR_DIRECTORY)) 666 if (key != (CSR_UNIT | CSR_DIRECTORY))
662 continue; 667 continue;
663 668
664 /* 669 /*
665 * Get the address of the unit directory and try to 670 * Get the address of the unit directory and try to
666 * match the drivers id_tables against it. 671 * match the drivers id_tables against it.
667 */ 672 */
668 unit = kzalloc(sizeof(*unit), GFP_KERNEL); 673 unit = kzalloc(sizeof(*unit), GFP_KERNEL);
669 if (unit == NULL) { 674 if (unit == NULL) {
670 fw_error("failed to allocate memory for unit\n"); 675 fw_error("failed to allocate memory for unit\n");
671 continue; 676 continue;
672 } 677 }
673 678
674 unit->directory = ci.p + value - 1; 679 unit->directory = ci.p + value - 1;
675 unit->device.bus = &fw_bus_type; 680 unit->device.bus = &fw_bus_type;
676 unit->device.type = &fw_unit_type; 681 unit->device.type = &fw_unit_type;
677 unit->device.parent = &device->device; 682 unit->device.parent = &device->device;
678 dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++); 683 dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
679 684
680 BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) < 685 BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
681 ARRAY_SIZE(fw_unit_attributes) + 686 ARRAY_SIZE(fw_unit_attributes) +
682 ARRAY_SIZE(config_rom_attributes)); 687 ARRAY_SIZE(config_rom_attributes));
683 init_fw_attribute_group(&unit->device, 688 init_fw_attribute_group(&unit->device,
684 fw_unit_attributes, 689 fw_unit_attributes,
685 &unit->attribute_group); 690 &unit->attribute_group);
686 691
687 if (device_register(&unit->device) < 0) 692 if (device_register(&unit->device) < 0)
688 goto skip_unit; 693 goto skip_unit;
689 694
690 continue; 695 continue;
691 696
692 skip_unit: 697 skip_unit:
693 kfree(unit); 698 kfree(unit);
694 } 699 }
695 } 700 }
696 701
697 static int shutdown_unit(struct device *device, void *data) 702 static int shutdown_unit(struct device *device, void *data)
698 { 703 {
699 device_unregister(device); 704 device_unregister(device);
700 705
701 return 0; 706 return 0;
702 } 707 }
703 708
704 /* 709 /*
705 * fw_device_rwsem acts as dual purpose mutex: 710 * fw_device_rwsem acts as dual purpose mutex:
706 * - serializes accesses to fw_device_idr, 711 * - serializes accesses to fw_device_idr,
707 * - serializes accesses to fw_device.config_rom/.config_rom_length and 712 * - serializes accesses to fw_device.config_rom/.config_rom_length and
708 * fw_unit.directory, unless those accesses happen at safe occasions 713 * fw_unit.directory, unless those accesses happen at safe occasions
709 */ 714 */
710 DECLARE_RWSEM(fw_device_rwsem); 715 DECLARE_RWSEM(fw_device_rwsem);
711 716
712 DEFINE_IDR(fw_device_idr); 717 DEFINE_IDR(fw_device_idr);
713 int fw_cdev_major; 718 int fw_cdev_major;
714 719
715 struct fw_device *fw_device_get_by_devt(dev_t devt) 720 struct fw_device *fw_device_get_by_devt(dev_t devt)
716 { 721 {
717 struct fw_device *device; 722 struct fw_device *device;
718 723
719 down_read(&fw_device_rwsem); 724 down_read(&fw_device_rwsem);
720 device = idr_find(&fw_device_idr, MINOR(devt)); 725 device = idr_find(&fw_device_idr, MINOR(devt));
721 if (device) 726 if (device)
722 fw_device_get(device); 727 fw_device_get(device);
723 up_read(&fw_device_rwsem); 728 up_read(&fw_device_rwsem);
724 729
725 return device; 730 return device;
726 } 731 }
727 732
728 struct workqueue_struct *fw_workqueue; 733 struct workqueue_struct *fw_workqueue;
729 EXPORT_SYMBOL(fw_workqueue); 734 EXPORT_SYMBOL(fw_workqueue);
730 735
731 static void fw_schedule_device_work(struct fw_device *device, 736 static void fw_schedule_device_work(struct fw_device *device,
732 unsigned long delay) 737 unsigned long delay)
733 { 738 {
734 queue_delayed_work(fw_workqueue, &device->work, delay); 739 queue_delayed_work(fw_workqueue, &device->work, delay);
735 } 740 }
736 741
737 /* 742 /*
738 * These defines control the retry behavior for reading the config 743 * These defines control the retry behavior for reading the config
739 * rom. It shouldn't be necessary to tweak these; if the device 744 * rom. It shouldn't be necessary to tweak these; if the device
740 * doesn't respond to a config rom read within 10 seconds, it's not 745 * doesn't respond to a config rom read within 10 seconds, it's not
741 * going to respond at all. As for the initial delay, a lot of 746 * going to respond at all. As for the initial delay, a lot of
742 * devices will be able to respond within half a second after bus 747 * devices will be able to respond within half a second after bus
743 * reset. On the other hand, it's not really worth being more 748 * reset. On the other hand, it's not really worth being more
744 * aggressive than that, since it scales pretty well; if 10 devices 749 * aggressive than that, since it scales pretty well; if 10 devices
745 * are plugged in, they're all getting read within one second. 750 * are plugged in, they're all getting read within one second.
746 */ 751 */
747 752
748 #define MAX_RETRIES 10 753 #define MAX_RETRIES 10
749 #define RETRY_DELAY (3 * HZ) 754 #define RETRY_DELAY (3 * HZ)
750 #define INITIAL_DELAY (HZ / 2) 755 #define INITIAL_DELAY (HZ / 2)
751 #define SHUTDOWN_DELAY (2 * HZ) 756 #define SHUTDOWN_DELAY (2 * HZ)
752 757
753 static void fw_device_shutdown(struct work_struct *work) 758 static void fw_device_shutdown(struct work_struct *work)
754 { 759 {
755 struct fw_device *device = 760 struct fw_device *device =
756 container_of(work, struct fw_device, work.work); 761 container_of(work, struct fw_device, work.work);
757 int minor = MINOR(device->device.devt); 762 int minor = MINOR(device->device.devt);
758 763
759 if (time_before64(get_jiffies_64(), 764 if (time_before64(get_jiffies_64(),
760 device->card->reset_jiffies + SHUTDOWN_DELAY) 765 device->card->reset_jiffies + SHUTDOWN_DELAY)
761 && !list_empty(&device->card->link)) { 766 && !list_empty(&device->card->link)) {
762 fw_schedule_device_work(device, SHUTDOWN_DELAY); 767 fw_schedule_device_work(device, SHUTDOWN_DELAY);
763 return; 768 return;
764 } 769 }
765 770
766 if (atomic_cmpxchg(&device->state, 771 if (atomic_cmpxchg(&device->state,
767 FW_DEVICE_GONE, 772 FW_DEVICE_GONE,
768 FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE) 773 FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
769 return; 774 return;
770 775
771 fw_device_cdev_remove(device); 776 fw_device_cdev_remove(device);
772 device_for_each_child(&device->device, NULL, shutdown_unit); 777 device_for_each_child(&device->device, NULL, shutdown_unit);
773 device_unregister(&device->device); 778 device_unregister(&device->device);
774 779
775 down_write(&fw_device_rwsem); 780 down_write(&fw_device_rwsem);
776 idr_remove(&fw_device_idr, minor); 781 idr_remove(&fw_device_idr, minor);
777 up_write(&fw_device_rwsem); 782 up_write(&fw_device_rwsem);
778 783
779 fw_device_put(device); 784 fw_device_put(device);
780 } 785 }
781 786
782 static void fw_device_release(struct device *dev) 787 static void fw_device_release(struct device *dev)
783 { 788 {
784 struct fw_device *device = fw_device(dev); 789 struct fw_device *device = fw_device(dev);
785 struct fw_card *card = device->card; 790 struct fw_card *card = device->card;
786 unsigned long flags; 791 unsigned long flags;
787 792
788 /* 793 /*
789 * Take the card lock so we don't set this to NULL while a 794 * Take the card lock so we don't set this to NULL while a
790 * FW_NODE_UPDATED callback is being handled or while the 795 * FW_NODE_UPDATED callback is being handled or while the
791 * bus manager work looks at this node. 796 * bus manager work looks at this node.
792 */ 797 */
793 spin_lock_irqsave(&card->lock, flags); 798 spin_lock_irqsave(&card->lock, flags);
794 device->node->data = NULL; 799 device->node->data = NULL;
795 spin_unlock_irqrestore(&card->lock, flags); 800 spin_unlock_irqrestore(&card->lock, flags);
796 801
797 fw_node_put(device->node); 802 fw_node_put(device->node);
798 kfree(device->config_rom); 803 kfree(device->config_rom);
799 kfree(device); 804 kfree(device);
800 fw_card_put(card); 805 fw_card_put(card);
801 } 806 }
802 807
803 static struct device_type fw_device_type = { 808 static struct device_type fw_device_type = {
804 .release = fw_device_release, 809 .release = fw_device_release,
805 }; 810 };
806 811
807 static bool is_fw_device(struct device *dev) 812 static bool is_fw_device(struct device *dev)
808 { 813 {
809 return dev->type == &fw_device_type; 814 return dev->type == &fw_device_type;
810 } 815 }
811 816
812 static int update_unit(struct device *dev, void *data) 817 static int update_unit(struct device *dev, void *data)
813 { 818 {
814 struct fw_unit *unit = fw_unit(dev); 819 struct fw_unit *unit = fw_unit(dev);
815 struct fw_driver *driver = (struct fw_driver *)dev->driver; 820 struct fw_driver *driver = (struct fw_driver *)dev->driver;
816 821
817 if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) { 822 if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
818 device_lock(dev); 823 device_lock(dev);
819 driver->update(unit); 824 driver->update(unit);
820 device_unlock(dev); 825 device_unlock(dev);
821 } 826 }
822 827
823 return 0; 828 return 0;
824 } 829 }
825 830
826 static void fw_device_update(struct work_struct *work) 831 static void fw_device_update(struct work_struct *work)
827 { 832 {
828 struct fw_device *device = 833 struct fw_device *device =
829 container_of(work, struct fw_device, work.work); 834 container_of(work, struct fw_device, work.work);
830 835
831 fw_device_cdev_update(device); 836 fw_device_cdev_update(device);
832 device_for_each_child(&device->device, NULL, update_unit); 837 device_for_each_child(&device->device, NULL, update_unit);
833 } 838 }
834 839
835 /* 840 /*
836 * If a device was pending for deletion because its node went away but its 841 * If a device was pending for deletion because its node went away but its
837 * bus info block and root directory header matches that of a newly discovered 842 * bus info block and root directory header matches that of a newly discovered
838 * device, revive the existing fw_device. 843 * device, revive the existing fw_device.
839 * The newly allocated fw_device becomes obsolete instead. 844 * The newly allocated fw_device becomes obsolete instead.
840 */ 845 */
841 static int lookup_existing_device(struct device *dev, void *data) 846 static int lookup_existing_device(struct device *dev, void *data)
842 { 847 {
843 struct fw_device *old = fw_device(dev); 848 struct fw_device *old = fw_device(dev);
844 struct fw_device *new = data; 849 struct fw_device *new = data;
845 struct fw_card *card = new->card; 850 struct fw_card *card = new->card;
846 int match = 0; 851 int match = 0;
847 852
848 if (!is_fw_device(dev)) 853 if (!is_fw_device(dev))
849 return 0; 854 return 0;
850 855
851 down_read(&fw_device_rwsem); /* serialize config_rom access */ 856 down_read(&fw_device_rwsem); /* serialize config_rom access */
852 spin_lock_irq(&card->lock); /* serialize node access */ 857 spin_lock_irq(&card->lock); /* serialize node access */
853 858
854 if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 && 859 if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
855 atomic_cmpxchg(&old->state, 860 atomic_cmpxchg(&old->state,
856 FW_DEVICE_GONE, 861 FW_DEVICE_GONE,
857 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) { 862 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
858 struct fw_node *current_node = new->node; 863 struct fw_node *current_node = new->node;
859 struct fw_node *obsolete_node = old->node; 864 struct fw_node *obsolete_node = old->node;
860 865
861 new->node = obsolete_node; 866 new->node = obsolete_node;
862 new->node->data = new; 867 new->node->data = new;
863 old->node = current_node; 868 old->node = current_node;
864 old->node->data = old; 869 old->node->data = old;
865 870
866 old->max_speed = new->max_speed; 871 old->max_speed = new->max_speed;
867 old->node_id = current_node->node_id; 872 old->node_id = current_node->node_id;
868 smp_wmb(); /* update node_id before generation */ 873 smp_wmb(); /* update node_id before generation */
869 old->generation = card->generation; 874 old->generation = card->generation;
870 old->config_rom_retries = 0; 875 old->config_rom_retries = 0;
871 fw_notify("rediscovered device %s\n", dev_name(dev)); 876 fw_notify("rediscovered device %s\n", dev_name(dev));
872 877
873 PREPARE_DELAYED_WORK(&old->work, fw_device_update); 878 PREPARE_DELAYED_WORK(&old->work, fw_device_update);
874 fw_schedule_device_work(old, 0); 879 fw_schedule_device_work(old, 0);
875 880
876 if (current_node == card->root_node) 881 if (current_node == card->root_node)
877 fw_schedule_bm_work(card, 0); 882 fw_schedule_bm_work(card, 0);
878 883
879 match = 1; 884 match = 1;
880 } 885 }
881 886
882 spin_unlock_irq(&card->lock); 887 spin_unlock_irq(&card->lock);
883 up_read(&fw_device_rwsem); 888 up_read(&fw_device_rwsem);
884 889
885 return match; 890 return match;
886 } 891 }
887 892
888 enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, }; 893 enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
889 894
890 static void set_broadcast_channel(struct fw_device *device, int generation) 895 static void set_broadcast_channel(struct fw_device *device, int generation)
891 { 896 {
892 struct fw_card *card = device->card; 897 struct fw_card *card = device->card;
893 __be32 data; 898 __be32 data;
894 int rcode; 899 int rcode;
895 900
896 if (!card->broadcast_channel_allocated) 901 if (!card->broadcast_channel_allocated)
897 return; 902 return;
898 903
899 /* 904 /*
900 * The Broadcast_Channel Valid bit is required by nodes which want to 905 * The Broadcast_Channel Valid bit is required by nodes which want to
901 * transmit on this channel. Such transmissions are practically 906 * transmit on this channel. Such transmissions are practically
902 * exclusive to IP over 1394 (RFC 2734). IP capable nodes are required 907 * exclusive to IP over 1394 (RFC 2734). IP capable nodes are required
903 * to be IRM capable and have a max_rec of 8 or more. We use this fact 908 * to be IRM capable and have a max_rec of 8 or more. We use this fact
904 * to narrow down to which nodes we send Broadcast_Channel updates. 909 * to narrow down to which nodes we send Broadcast_Channel updates.
905 */ 910 */
906 if (!device->irmc || device->max_rec < 8) 911 if (!device->irmc || device->max_rec < 8)
907 return; 912 return;
908 913
909 /* 914 /*
910 * Some 1394-1995 nodes crash if this 1394a-2000 register is written. 915 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
911 * Perform a read test first. 916 * Perform a read test first.
912 */ 917 */
913 if (device->bc_implemented == BC_UNKNOWN) { 918 if (device->bc_implemented == BC_UNKNOWN) {
914 rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST, 919 rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
915 device->node_id, generation, device->max_speed, 920 device->node_id, generation, device->max_speed,
916 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL, 921 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
917 &data, 4); 922 &data, 4);
918 switch (rcode) { 923 switch (rcode) {
919 case RCODE_COMPLETE: 924 case RCODE_COMPLETE:
920 if (data & cpu_to_be32(1 << 31)) { 925 if (data & cpu_to_be32(1 << 31)) {
921 device->bc_implemented = BC_IMPLEMENTED; 926 device->bc_implemented = BC_IMPLEMENTED;
922 break; 927 break;
923 } 928 }
924 /* else fall through to case address error */ 929 /* else fall through to case address error */
925 case RCODE_ADDRESS_ERROR: 930 case RCODE_ADDRESS_ERROR:
926 device->bc_implemented = BC_UNIMPLEMENTED; 931 device->bc_implemented = BC_UNIMPLEMENTED;
927 } 932 }
928 } 933 }
929 934
930 if (device->bc_implemented == BC_IMPLEMENTED) { 935 if (device->bc_implemented == BC_IMPLEMENTED) {
931 data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL | 936 data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
932 BROADCAST_CHANNEL_VALID); 937 BROADCAST_CHANNEL_VALID);
933 fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST, 938 fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
934 device->node_id, generation, device->max_speed, 939 device->node_id, generation, device->max_speed,
935 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL, 940 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
936 &data, 4); 941 &data, 4);
937 } 942 }
938 } 943 }
939 944
940 int fw_device_set_broadcast_channel(struct device *dev, void *gen) 945 int fw_device_set_broadcast_channel(struct device *dev, void *gen)
941 { 946 {
942 if (is_fw_device(dev)) 947 if (is_fw_device(dev))
943 set_broadcast_channel(fw_device(dev), (long)gen); 948 set_broadcast_channel(fw_device(dev), (long)gen);
944 949
945 return 0; 950 return 0;
946 } 951 }
947 952
948 static void fw_device_init(struct work_struct *work) 953 static void fw_device_init(struct work_struct *work)
949 { 954 {
950 struct fw_device *device = 955 struct fw_device *device =
951 container_of(work, struct fw_device, work.work); 956 container_of(work, struct fw_device, work.work);
952 struct device *revived_dev; 957 struct device *revived_dev;
953 int minor, ret; 958 int minor, ret;
954 959
955 /* 960 /*
956 * All failure paths here set node->data to NULL, so that we 961 * All failure paths here set node->data to NULL, so that we
957 * don't try to do device_for_each_child() on a kfree()'d 962 * don't try to do device_for_each_child() on a kfree()'d
958 * device. 963 * device.
959 */ 964 */
960 965
961 if (read_config_rom(device, device->generation) < 0) { 966 if (read_config_rom(device, device->generation) < 0) {
962 if (device->config_rom_retries < MAX_RETRIES && 967 if (device->config_rom_retries < MAX_RETRIES &&
963 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) { 968 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
964 device->config_rom_retries++; 969 device->config_rom_retries++;
965 fw_schedule_device_work(device, RETRY_DELAY); 970 fw_schedule_device_work(device, RETRY_DELAY);
966 } else { 971 } else {
967 if (device->node->link_on) 972 if (device->node->link_on)
968 fw_notify("giving up on config rom for node id %x\n", 973 fw_notify("giving up on config rom for node id %x\n",
969 device->node_id); 974 device->node_id);
970 if (device->node == device->card->root_node) 975 if (device->node == device->card->root_node)
971 fw_schedule_bm_work(device->card, 0); 976 fw_schedule_bm_work(device->card, 0);
972 fw_device_release(&device->device); 977 fw_device_release(&device->device);
973 } 978 }
974 return; 979 return;
975 } 980 }
976 981
977 revived_dev = device_find_child(device->card->device, 982 revived_dev = device_find_child(device->card->device,
978 device, lookup_existing_device); 983 device, lookup_existing_device);
979 if (revived_dev) { 984 if (revived_dev) {
980 put_device(revived_dev); 985 put_device(revived_dev);
981 fw_device_release(&device->device); 986 fw_device_release(&device->device);
982 987
983 return; 988 return;
984 } 989 }
985 990
986 device_initialize(&device->device); 991 device_initialize(&device->device);
987 992
988 fw_device_get(device); 993 fw_device_get(device);
989 down_write(&fw_device_rwsem); 994 down_write(&fw_device_rwsem);
990 ret = idr_pre_get(&fw_device_idr, GFP_KERNEL) ? 995 ret = idr_pre_get(&fw_device_idr, GFP_KERNEL) ?
991 idr_get_new(&fw_device_idr, device, &minor) : 996 idr_get_new(&fw_device_idr, device, &minor) :
992 -ENOMEM; 997 -ENOMEM;
993 up_write(&fw_device_rwsem); 998 up_write(&fw_device_rwsem);
994 999
995 if (ret < 0) 1000 if (ret < 0)
996 goto error; 1001 goto error;
997 1002
998 device->device.bus = &fw_bus_type; 1003 device->device.bus = &fw_bus_type;
999 device->device.type = &fw_device_type; 1004 device->device.type = &fw_device_type;
1000 device->device.parent = device->card->device; 1005 device->device.parent = device->card->device;
1001 device->device.devt = MKDEV(fw_cdev_major, minor); 1006 device->device.devt = MKDEV(fw_cdev_major, minor);
1002 dev_set_name(&device->device, "fw%d", minor); 1007 dev_set_name(&device->device, "fw%d", minor);
1003 1008
1004 BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) < 1009 BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1005 ARRAY_SIZE(fw_device_attributes) + 1010 ARRAY_SIZE(fw_device_attributes) +
1006 ARRAY_SIZE(config_rom_attributes)); 1011 ARRAY_SIZE(config_rom_attributes));
1007 init_fw_attribute_group(&device->device, 1012 init_fw_attribute_group(&device->device,
1008 fw_device_attributes, 1013 fw_device_attributes,
1009 &device->attribute_group); 1014 &device->attribute_group);
1010 1015
1011 if (device_add(&device->device)) { 1016 if (device_add(&device->device)) {
1012 fw_error("Failed to add device.\n"); 1017 fw_error("Failed to add device.\n");
1013 goto error_with_cdev; 1018 goto error_with_cdev;
1014 } 1019 }
1015 1020
1016 create_units(device); 1021 create_units(device);
1017 1022
1018 /* 1023 /*
1019 * Transition the device to running state. If it got pulled 1024 * Transition the device to running state. If it got pulled
1020 * out from under us while we did the intialization work, we 1025 * out from under us while we did the intialization work, we
1021 * have to shut down the device again here. Normally, though, 1026 * have to shut down the device again here. Normally, though,
1022 * fw_node_event will be responsible for shutting it down when 1027 * fw_node_event will be responsible for shutting it down when
1023 * necessary. We have to use the atomic cmpxchg here to avoid 1028 * necessary. We have to use the atomic cmpxchg here to avoid
1024 * racing with the FW_NODE_DESTROYED case in 1029 * racing with the FW_NODE_DESTROYED case in
1025 * fw_node_event(). 1030 * fw_node_event().
1026 */ 1031 */
1027 if (atomic_cmpxchg(&device->state, 1032 if (atomic_cmpxchg(&device->state,
1028 FW_DEVICE_INITIALIZING, 1033 FW_DEVICE_INITIALIZING,
1029 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) { 1034 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1030 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown); 1035 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1031 fw_schedule_device_work(device, SHUTDOWN_DELAY); 1036 fw_schedule_device_work(device, SHUTDOWN_DELAY);
1032 } else { 1037 } else {
1033 if (device->config_rom_retries) 1038 if (device->config_rom_retries)
1034 fw_notify("created device %s: GUID %08x%08x, S%d00, " 1039 fw_notify("created device %s: GUID %08x%08x, S%d00, "
1035 "%d config ROM retries\n", 1040 "%d config ROM retries\n",
1036 dev_name(&device->device), 1041 dev_name(&device->device),
1037 device->config_rom[3], device->config_rom[4], 1042 device->config_rom[3], device->config_rom[4],
1038 1 << device->max_speed, 1043 1 << device->max_speed,
1039 device->config_rom_retries); 1044 device->config_rom_retries);
1040 else 1045 else
1041 fw_notify("created device %s: GUID %08x%08x, S%d00\n", 1046 fw_notify("created device %s: GUID %08x%08x, S%d00\n",
1042 dev_name(&device->device), 1047 dev_name(&device->device),
1043 device->config_rom[3], device->config_rom[4], 1048 device->config_rom[3], device->config_rom[4],
1044 1 << device->max_speed); 1049 1 << device->max_speed);
1045 device->config_rom_retries = 0; 1050 device->config_rom_retries = 0;
1046 1051
1047 set_broadcast_channel(device, device->generation); 1052 set_broadcast_channel(device, device->generation);
1048 } 1053 }
1049 1054
1050 /* 1055 /*
1051 * Reschedule the IRM work if we just finished reading the 1056 * Reschedule the IRM work if we just finished reading the
1052 * root node config rom. If this races with a bus reset we 1057 * root node config rom. If this races with a bus reset we
1053 * just end up running the IRM work a couple of extra times - 1058 * just end up running the IRM work a couple of extra times -
1054 * pretty harmless. 1059 * pretty harmless.
1055 */ 1060 */
1056 if (device->node == device->card->root_node) 1061 if (device->node == device->card->root_node)
1057 fw_schedule_bm_work(device->card, 0); 1062 fw_schedule_bm_work(device->card, 0);
1058 1063
1059 return; 1064 return;
1060 1065
1061 error_with_cdev: 1066 error_with_cdev:
1062 down_write(&fw_device_rwsem); 1067 down_write(&fw_device_rwsem);
1063 idr_remove(&fw_device_idr, minor); 1068 idr_remove(&fw_device_idr, minor);
1064 up_write(&fw_device_rwsem); 1069 up_write(&fw_device_rwsem);
1065 error: 1070 error:
1066 fw_device_put(device); /* fw_device_idr's reference */ 1071 fw_device_put(device); /* fw_device_idr's reference */
1067 1072
1068 put_device(&device->device); /* our reference */ 1073 put_device(&device->device); /* our reference */
1069 } 1074 }
1070 1075
1071 enum { 1076 enum {
1072 REREAD_BIB_ERROR, 1077 REREAD_BIB_ERROR,
1073 REREAD_BIB_GONE, 1078 REREAD_BIB_GONE,
1074 REREAD_BIB_UNCHANGED, 1079 REREAD_BIB_UNCHANGED,
1075 REREAD_BIB_CHANGED, 1080 REREAD_BIB_CHANGED,
1076 }; 1081 };
1077 1082
1078 /* Reread and compare bus info block and header of root directory */ 1083 /* Reread and compare bus info block and header of root directory */
1079 static int reread_config_rom(struct fw_device *device, int generation) 1084 static int reread_config_rom(struct fw_device *device, int generation)
1080 { 1085 {
1081 u32 q; 1086 u32 q;
1082 int i; 1087 int i;
1083 1088
1084 for (i = 0; i < 6; i++) { 1089 for (i = 0; i < 6; i++) {
1085 if (read_rom(device, generation, i, &q) != RCODE_COMPLETE) 1090 if (read_rom(device, generation, i, &q) != RCODE_COMPLETE)
1086 return REREAD_BIB_ERROR; 1091 return REREAD_BIB_ERROR;
1087 1092
1088 if (i == 0 && q == 0) 1093 if (i == 0 && q == 0)
1089 return REREAD_BIB_GONE; 1094 return REREAD_BIB_GONE;
1090 1095
1091 if (q != device->config_rom[i]) 1096 if (q != device->config_rom[i])
1092 return REREAD_BIB_CHANGED; 1097 return REREAD_BIB_CHANGED;
1093 } 1098 }
1094 1099
1095 return REREAD_BIB_UNCHANGED; 1100 return REREAD_BIB_UNCHANGED;
1096 } 1101 }
1097 1102
1098 static void fw_device_refresh(struct work_struct *work) 1103 static void fw_device_refresh(struct work_struct *work)
1099 { 1104 {
1100 struct fw_device *device = 1105 struct fw_device *device =
1101 container_of(work, struct fw_device, work.work); 1106 container_of(work, struct fw_device, work.work);
1102 struct fw_card *card = device->card; 1107 struct fw_card *card = device->card;
1103 int node_id = device->node_id; 1108 int node_id = device->node_id;
1104 1109
1105 switch (reread_config_rom(device, device->generation)) { 1110 switch (reread_config_rom(device, device->generation)) {
1106 case REREAD_BIB_ERROR: 1111 case REREAD_BIB_ERROR:
1107 if (device->config_rom_retries < MAX_RETRIES / 2 && 1112 if (device->config_rom_retries < MAX_RETRIES / 2 &&
1108 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) { 1113 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1109 device->config_rom_retries++; 1114 device->config_rom_retries++;
1110 fw_schedule_device_work(device, RETRY_DELAY / 2); 1115 fw_schedule_device_work(device, RETRY_DELAY / 2);
1111 1116
1112 return; 1117 return;
1113 } 1118 }
1114 goto give_up; 1119 goto give_up;
1115 1120
1116 case REREAD_BIB_GONE: 1121 case REREAD_BIB_GONE:
1117 goto gone; 1122 goto gone;
1118 1123
1119 case REREAD_BIB_UNCHANGED: 1124 case REREAD_BIB_UNCHANGED:
1120 if (atomic_cmpxchg(&device->state, 1125 if (atomic_cmpxchg(&device->state,
1121 FW_DEVICE_INITIALIZING, 1126 FW_DEVICE_INITIALIZING,
1122 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) 1127 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1123 goto gone; 1128 goto gone;
1124 1129
1125 fw_device_update(work); 1130 fw_device_update(work);
1126 device->config_rom_retries = 0; 1131 device->config_rom_retries = 0;
1127 goto out; 1132 goto out;
1128 1133
1129 case REREAD_BIB_CHANGED: 1134 case REREAD_BIB_CHANGED:
1130 break; 1135 break;
1131 } 1136 }
1132 1137
1133 /* 1138 /*
1134 * Something changed. We keep things simple and don't investigate 1139 * Something changed. We keep things simple and don't investigate
1135 * further. We just destroy all previous units and create new ones. 1140 * further. We just destroy all previous units and create new ones.
1136 */ 1141 */
1137 device_for_each_child(&device->device, NULL, shutdown_unit); 1142 device_for_each_child(&device->device, NULL, shutdown_unit);
1138 1143
1139 if (read_config_rom(device, device->generation) < 0) { 1144 if (read_config_rom(device, device->generation) < 0) {
1140 if (device->config_rom_retries < MAX_RETRIES && 1145 if (device->config_rom_retries < MAX_RETRIES &&
1141 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) { 1146 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1142 device->config_rom_retries++; 1147 device->config_rom_retries++;
1143 fw_schedule_device_work(device, RETRY_DELAY); 1148 fw_schedule_device_work(device, RETRY_DELAY);
1144 1149
1145 return; 1150 return;
1146 } 1151 }
1147 goto give_up; 1152 goto give_up;
1148 } 1153 }
1149 1154
1150 fw_device_cdev_update(device); 1155 fw_device_cdev_update(device);
1151 create_units(device); 1156 create_units(device);
1152 1157
1153 /* Userspace may want to re-read attributes. */ 1158 /* Userspace may want to re-read attributes. */
1154 kobject_uevent(&device->device.kobj, KOBJ_CHANGE); 1159 kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1155 1160
1156 if (atomic_cmpxchg(&device->state, 1161 if (atomic_cmpxchg(&device->state,
1157 FW_DEVICE_INITIALIZING, 1162 FW_DEVICE_INITIALIZING,
1158 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) 1163 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1159 goto gone; 1164 goto gone;
1160 1165
1161 fw_notify("refreshed device %s\n", dev_name(&device->device)); 1166 fw_notify("refreshed device %s\n", dev_name(&device->device));
1162 device->config_rom_retries = 0; 1167 device->config_rom_retries = 0;
1163 goto out; 1168 goto out;
1164 1169
1165 give_up: 1170 give_up:
1166 fw_notify("giving up on refresh of device %s\n", dev_name(&device->device)); 1171 fw_notify("giving up on refresh of device %s\n", dev_name(&device->device));
1167 gone: 1172 gone:
1168 atomic_set(&device->state, FW_DEVICE_GONE); 1173 atomic_set(&device->state, FW_DEVICE_GONE);
1169 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown); 1174 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1170 fw_schedule_device_work(device, SHUTDOWN_DELAY); 1175 fw_schedule_device_work(device, SHUTDOWN_DELAY);
1171 out: 1176 out:
1172 if (node_id == card->root_node->node_id) 1177 if (node_id == card->root_node->node_id)
1173 fw_schedule_bm_work(card, 0); 1178 fw_schedule_bm_work(card, 0);
1174 } 1179 }
1175 1180
1176 void fw_node_event(struct fw_card *card, struct fw_node *node, int event) 1181 void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1177 { 1182 {
1178 struct fw_device *device; 1183 struct fw_device *device;
1179 1184
1180 switch (event) { 1185 switch (event) {
1181 case FW_NODE_CREATED: 1186 case FW_NODE_CREATED:
1182 /* 1187 /*
1183 * Attempt to scan the node, regardless whether its self ID has 1188 * Attempt to scan the node, regardless whether its self ID has
1184 * the L (link active) flag set or not. Some broken devices 1189 * the L (link active) flag set or not. Some broken devices
1185 * send L=0 but have an up-and-running link; others send L=1 1190 * send L=0 but have an up-and-running link; others send L=1
1186 * without actually having a link. 1191 * without actually having a link.
1187 */ 1192 */
1188 create: 1193 create:
1189 device = kzalloc(sizeof(*device), GFP_ATOMIC); 1194 device = kzalloc(sizeof(*device), GFP_ATOMIC);
1190 if (device == NULL) 1195 if (device == NULL)
1191 break; 1196 break;
1192 1197
1193 /* 1198 /*
1194 * Do minimal intialization of the device here, the 1199 * Do minimal intialization of the device here, the
1195 * rest will happen in fw_device_init(). 1200 * rest will happen in fw_device_init().
1196 * 1201 *
1197 * Attention: A lot of things, even fw_device_get(), 1202 * Attention: A lot of things, even fw_device_get(),
1198 * cannot be done before fw_device_init() finished! 1203 * cannot be done before fw_device_init() finished!
1199 * You can basically just check device->state and 1204 * You can basically just check device->state and
1200 * schedule work until then, but only while holding 1205 * schedule work until then, but only while holding
1201 * card->lock. 1206 * card->lock.
1202 */ 1207 */
1203 atomic_set(&device->state, FW_DEVICE_INITIALIZING); 1208 atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1204 device->card = fw_card_get(card); 1209 device->card = fw_card_get(card);
1205 device->node = fw_node_get(node); 1210 device->node = fw_node_get(node);
1206 device->node_id = node->node_id; 1211 device->node_id = node->node_id;
1207 device->generation = card->generation; 1212 device->generation = card->generation;
1208 device->is_local = node == card->local_node; 1213 device->is_local = node == card->local_node;
1209 mutex_init(&device->client_list_mutex); 1214 mutex_init(&device->client_list_mutex);
1210 INIT_LIST_HEAD(&device->client_list); 1215 INIT_LIST_HEAD(&device->client_list);
1211 1216
1212 /* 1217 /*
1213 * Set the node data to point back to this device so 1218 * Set the node data to point back to this device so
1214 * FW_NODE_UPDATED callbacks can update the node_id 1219 * FW_NODE_UPDATED callbacks can update the node_id
1215 * and generation for the device. 1220 * and generation for the device.
1216 */ 1221 */
1217 node->data = device; 1222 node->data = device;
1218 1223
1219 /* 1224 /*
1220 * Many devices are slow to respond after bus resets, 1225 * Many devices are slow to respond after bus resets,
1221 * especially if they are bus powered and go through 1226 * especially if they are bus powered and go through
1222 * power-up after getting plugged in. We schedule the 1227 * power-up after getting plugged in. We schedule the
1223 * first config rom scan half a second after bus reset. 1228 * first config rom scan half a second after bus reset.
1224 */ 1229 */
1225 INIT_DELAYED_WORK(&device->work, fw_device_init); 1230 INIT_DELAYED_WORK(&device->work, fw_device_init);
1226 fw_schedule_device_work(device, INITIAL_DELAY); 1231 fw_schedule_device_work(device, INITIAL_DELAY);
1227 break; 1232 break;
1228 1233
1229 case FW_NODE_INITIATED_RESET: 1234 case FW_NODE_INITIATED_RESET:
1230 case FW_NODE_LINK_ON: 1235 case FW_NODE_LINK_ON:
1231 device = node->data; 1236 device = node->data;
1232 if (device == NULL) 1237 if (device == NULL)
1233 goto create; 1238 goto create;
1234 1239
1235 device->node_id = node->node_id; 1240 device->node_id = node->node_id;
1236 smp_wmb(); /* update node_id before generation */ 1241 smp_wmb(); /* update node_id before generation */
1237 device->generation = card->generation; 1242 device->generation = card->generation;
1238 if (atomic_cmpxchg(&device->state, 1243 if (atomic_cmpxchg(&device->state,
1239 FW_DEVICE_RUNNING, 1244 FW_DEVICE_RUNNING,
1240 FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) { 1245 FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1241 PREPARE_DELAYED_WORK(&device->work, fw_device_refresh); 1246 PREPARE_DELAYED_WORK(&device->work, fw_device_refresh);
1242 fw_schedule_device_work(device, 1247 fw_schedule_device_work(device,
1243 device->is_local ? 0 : INITIAL_DELAY); 1248 device->is_local ? 0 : INITIAL_DELAY);
1244 } 1249 }
1245 break; 1250 break;
1246 1251
1247 case FW_NODE_UPDATED: 1252 case FW_NODE_UPDATED:
1248 device = node->data; 1253 device = node->data;
1249 if (device == NULL) 1254 if (device == NULL)
1250 break; 1255 break;
1251 1256
1252 device->node_id = node->node_id; 1257 device->node_id = node->node_id;
1253 smp_wmb(); /* update node_id before generation */ 1258 smp_wmb(); /* update node_id before generation */
1254 device->generation = card->generation; 1259 device->generation = card->generation;
1255 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) { 1260 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1256 PREPARE_DELAYED_WORK(&device->work, fw_device_update); 1261 PREPARE_DELAYED_WORK(&device->work, fw_device_update);
1257 fw_schedule_device_work(device, 0); 1262 fw_schedule_device_work(device, 0);
1258 } 1263 }
1259 break; 1264 break;
1260 1265
1261 case FW_NODE_DESTROYED: 1266 case FW_NODE_DESTROYED:
1262 case FW_NODE_LINK_OFF: 1267 case FW_NODE_LINK_OFF:
1263 if (!node->data) 1268 if (!node->data)
1264 break; 1269 break;
1265 1270
1266 /* 1271 /*
1267 * Destroy the device associated with the node. There 1272 * Destroy the device associated with the node. There
1268 * are two cases here: either the device is fully 1273 * are two cases here: either the device is fully
1269 * initialized (FW_DEVICE_RUNNING) or we're in the 1274 * initialized (FW_DEVICE_RUNNING) or we're in the
1270 * process of reading its config rom 1275 * process of reading its config rom
1271 * (FW_DEVICE_INITIALIZING). If it is fully 1276 * (FW_DEVICE_INITIALIZING). If it is fully
1272 * initialized we can reuse device->work to schedule a 1277 * initialized we can reuse device->work to schedule a
1273 * full fw_device_shutdown(). If not, there's work 1278 * full fw_device_shutdown(). If not, there's work
1274 * scheduled to read it's config rom, and we just put 1279 * scheduled to read it's config rom, and we just put
1275 * the device in shutdown state to have that code fail 1280 * the device in shutdown state to have that code fail
1276 * to create the device. 1281 * to create the device.
1277 */ 1282 */
1278 device = node->data; 1283 device = node->data;
1279 if (atomic_xchg(&device->state, 1284 if (atomic_xchg(&device->state,
1280 FW_DEVICE_GONE) == FW_DEVICE_RUNNING) { 1285 FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1281 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown); 1286 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1282 fw_schedule_device_work(device, 1287 fw_schedule_device_work(device,
1283 list_empty(&card->link) ? 0 : SHUTDOWN_DELAY); 1288 list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1284 } 1289 }
1285 break; 1290 break;
1286 } 1291 }
1287 } 1292 }
1288 1293