Commit 3ec717b7ca4ee1d75d77e4f6286430d8f01d1dbd

Authored by Shaohua Li
Committed by Jens Axboe
1 parent 9937a5e2f3

block: don't delay blk_run_queue_async

Let's check a scenario:
1. blk_delay_queue(q, SCSI_QUEUE_DELAY);
2. blk_run_queue_async();
the second one will became a noop, because q->delay_work already has
WORK_STRUCT_PENDING_BIT set, so the delayed work will still run after
SCSI_QUEUE_DELAY. But blk_run_queue_async actually hopes the delayed
work runs immediately.

Fix this by doing a cancel on potentially pending delayed work
before queuing an immediate run of the workqueue.

Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>

Showing 1 changed file with 3 additions and 1 deletions Inline Diff

1 /* 1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds 2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000 7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */ 9 */
10 10
11 /* 11 /*
12 * This handles all read/write requests to block devices 12 * This handles all read/write requests to block devices
13 */ 13 */
14 #include <linux/kernel.h> 14 #include <linux/kernel.h>
15 #include <linux/module.h> 15 #include <linux/module.h>
16 #include <linux/backing-dev.h> 16 #include <linux/backing-dev.h>
17 #include <linux/bio.h> 17 #include <linux/bio.h>
18 #include <linux/blkdev.h> 18 #include <linux/blkdev.h>
19 #include <linux/highmem.h> 19 #include <linux/highmem.h>
20 #include <linux/mm.h> 20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h> 21 #include <linux/kernel_stat.h>
22 #include <linux/string.h> 22 #include <linux/string.h>
23 #include <linux/init.h> 23 #include <linux/init.h>
24 #include <linux/completion.h> 24 #include <linux/completion.h>
25 #include <linux/slab.h> 25 #include <linux/slab.h>
26 #include <linux/swap.h> 26 #include <linux/swap.h>
27 #include <linux/writeback.h> 27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h> 28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h> 29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h> 30 #include <linux/list_sort.h>
31 31
32 #define CREATE_TRACE_POINTS 32 #define CREATE_TRACE_POINTS
33 #include <trace/events/block.h> 33 #include <trace/events/block.h>
34 34
35 #include "blk.h" 35 #include "blk.h"
36 36
37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 39 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
40 40
41 static int __make_request(struct request_queue *q, struct bio *bio); 41 static int __make_request(struct request_queue *q, struct bio *bio);
42 42
43 /* 43 /*
44 * For the allocated request tables 44 * For the allocated request tables
45 */ 45 */
46 static struct kmem_cache *request_cachep; 46 static struct kmem_cache *request_cachep;
47 47
48 /* 48 /*
49 * For queue allocation 49 * For queue allocation
50 */ 50 */
51 struct kmem_cache *blk_requestq_cachep; 51 struct kmem_cache *blk_requestq_cachep;
52 52
53 /* 53 /*
54 * Controlling structure to kblockd 54 * Controlling structure to kblockd
55 */ 55 */
56 static struct workqueue_struct *kblockd_workqueue; 56 static struct workqueue_struct *kblockd_workqueue;
57 57
58 static void drive_stat_acct(struct request *rq, int new_io) 58 static void drive_stat_acct(struct request *rq, int new_io)
59 { 59 {
60 struct hd_struct *part; 60 struct hd_struct *part;
61 int rw = rq_data_dir(rq); 61 int rw = rq_data_dir(rq);
62 int cpu; 62 int cpu;
63 63
64 if (!blk_do_io_stat(rq)) 64 if (!blk_do_io_stat(rq))
65 return; 65 return;
66 66
67 cpu = part_stat_lock(); 67 cpu = part_stat_lock();
68 68
69 if (!new_io) { 69 if (!new_io) {
70 part = rq->part; 70 part = rq->part;
71 part_stat_inc(cpu, part, merges[rw]); 71 part_stat_inc(cpu, part, merges[rw]);
72 } else { 72 } else {
73 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 73 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
74 if (!hd_struct_try_get(part)) { 74 if (!hd_struct_try_get(part)) {
75 /* 75 /*
76 * The partition is already being removed, 76 * The partition is already being removed,
77 * the request will be accounted on the disk only 77 * the request will be accounted on the disk only
78 * 78 *
79 * We take a reference on disk->part0 although that 79 * We take a reference on disk->part0 although that
80 * partition will never be deleted, so we can treat 80 * partition will never be deleted, so we can treat
81 * it as any other partition. 81 * it as any other partition.
82 */ 82 */
83 part = &rq->rq_disk->part0; 83 part = &rq->rq_disk->part0;
84 hd_struct_get(part); 84 hd_struct_get(part);
85 } 85 }
86 part_round_stats(cpu, part); 86 part_round_stats(cpu, part);
87 part_inc_in_flight(part, rw); 87 part_inc_in_flight(part, rw);
88 rq->part = part; 88 rq->part = part;
89 } 89 }
90 90
91 part_stat_unlock(); 91 part_stat_unlock();
92 } 92 }
93 93
94 void blk_queue_congestion_threshold(struct request_queue *q) 94 void blk_queue_congestion_threshold(struct request_queue *q)
95 { 95 {
96 int nr; 96 int nr;
97 97
98 nr = q->nr_requests - (q->nr_requests / 8) + 1; 98 nr = q->nr_requests - (q->nr_requests / 8) + 1;
99 if (nr > q->nr_requests) 99 if (nr > q->nr_requests)
100 nr = q->nr_requests; 100 nr = q->nr_requests;
101 q->nr_congestion_on = nr; 101 q->nr_congestion_on = nr;
102 102
103 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 103 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
104 if (nr < 1) 104 if (nr < 1)
105 nr = 1; 105 nr = 1;
106 q->nr_congestion_off = nr; 106 q->nr_congestion_off = nr;
107 } 107 }
108 108
109 /** 109 /**
110 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info 110 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
111 * @bdev: device 111 * @bdev: device
112 * 112 *
113 * Locates the passed device's request queue and returns the address of its 113 * Locates the passed device's request queue and returns the address of its
114 * backing_dev_info 114 * backing_dev_info
115 * 115 *
116 * Will return NULL if the request queue cannot be located. 116 * Will return NULL if the request queue cannot be located.
117 */ 117 */
118 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) 118 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
119 { 119 {
120 struct backing_dev_info *ret = NULL; 120 struct backing_dev_info *ret = NULL;
121 struct request_queue *q = bdev_get_queue(bdev); 121 struct request_queue *q = bdev_get_queue(bdev);
122 122
123 if (q) 123 if (q)
124 ret = &q->backing_dev_info; 124 ret = &q->backing_dev_info;
125 return ret; 125 return ret;
126 } 126 }
127 EXPORT_SYMBOL(blk_get_backing_dev_info); 127 EXPORT_SYMBOL(blk_get_backing_dev_info);
128 128
129 void blk_rq_init(struct request_queue *q, struct request *rq) 129 void blk_rq_init(struct request_queue *q, struct request *rq)
130 { 130 {
131 memset(rq, 0, sizeof(*rq)); 131 memset(rq, 0, sizeof(*rq));
132 132
133 INIT_LIST_HEAD(&rq->queuelist); 133 INIT_LIST_HEAD(&rq->queuelist);
134 INIT_LIST_HEAD(&rq->timeout_list); 134 INIT_LIST_HEAD(&rq->timeout_list);
135 rq->cpu = -1; 135 rq->cpu = -1;
136 rq->q = q; 136 rq->q = q;
137 rq->__sector = (sector_t) -1; 137 rq->__sector = (sector_t) -1;
138 INIT_HLIST_NODE(&rq->hash); 138 INIT_HLIST_NODE(&rq->hash);
139 RB_CLEAR_NODE(&rq->rb_node); 139 RB_CLEAR_NODE(&rq->rb_node);
140 rq->cmd = rq->__cmd; 140 rq->cmd = rq->__cmd;
141 rq->cmd_len = BLK_MAX_CDB; 141 rq->cmd_len = BLK_MAX_CDB;
142 rq->tag = -1; 142 rq->tag = -1;
143 rq->ref_count = 1; 143 rq->ref_count = 1;
144 rq->start_time = jiffies; 144 rq->start_time = jiffies;
145 set_start_time_ns(rq); 145 set_start_time_ns(rq);
146 rq->part = NULL; 146 rq->part = NULL;
147 } 147 }
148 EXPORT_SYMBOL(blk_rq_init); 148 EXPORT_SYMBOL(blk_rq_init);
149 149
150 static void req_bio_endio(struct request *rq, struct bio *bio, 150 static void req_bio_endio(struct request *rq, struct bio *bio,
151 unsigned int nbytes, int error) 151 unsigned int nbytes, int error)
152 { 152 {
153 if (error) 153 if (error)
154 clear_bit(BIO_UPTODATE, &bio->bi_flags); 154 clear_bit(BIO_UPTODATE, &bio->bi_flags);
155 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 155 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
156 error = -EIO; 156 error = -EIO;
157 157
158 if (unlikely(nbytes > bio->bi_size)) { 158 if (unlikely(nbytes > bio->bi_size)) {
159 printk(KERN_ERR "%s: want %u bytes done, %u left\n", 159 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
160 __func__, nbytes, bio->bi_size); 160 __func__, nbytes, bio->bi_size);
161 nbytes = bio->bi_size; 161 nbytes = bio->bi_size;
162 } 162 }
163 163
164 if (unlikely(rq->cmd_flags & REQ_QUIET)) 164 if (unlikely(rq->cmd_flags & REQ_QUIET))
165 set_bit(BIO_QUIET, &bio->bi_flags); 165 set_bit(BIO_QUIET, &bio->bi_flags);
166 166
167 bio->bi_size -= nbytes; 167 bio->bi_size -= nbytes;
168 bio->bi_sector += (nbytes >> 9); 168 bio->bi_sector += (nbytes >> 9);
169 169
170 if (bio_integrity(bio)) 170 if (bio_integrity(bio))
171 bio_integrity_advance(bio, nbytes); 171 bio_integrity_advance(bio, nbytes);
172 172
173 /* don't actually finish bio if it's part of flush sequence */ 173 /* don't actually finish bio if it's part of flush sequence */
174 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ)) 174 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
175 bio_endio(bio, error); 175 bio_endio(bio, error);
176 } 176 }
177 177
178 void blk_dump_rq_flags(struct request *rq, char *msg) 178 void blk_dump_rq_flags(struct request *rq, char *msg)
179 { 179 {
180 int bit; 180 int bit;
181 181
182 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg, 182 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
183 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, 183 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
184 rq->cmd_flags); 184 rq->cmd_flags);
185 185
186 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 186 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
187 (unsigned long long)blk_rq_pos(rq), 187 (unsigned long long)blk_rq_pos(rq),
188 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 188 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
189 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n", 189 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
190 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq)); 190 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
191 191
192 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 192 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
193 printk(KERN_INFO " cdb: "); 193 printk(KERN_INFO " cdb: ");
194 for (bit = 0; bit < BLK_MAX_CDB; bit++) 194 for (bit = 0; bit < BLK_MAX_CDB; bit++)
195 printk("%02x ", rq->cmd[bit]); 195 printk("%02x ", rq->cmd[bit]);
196 printk("\n"); 196 printk("\n");
197 } 197 }
198 } 198 }
199 EXPORT_SYMBOL(blk_dump_rq_flags); 199 EXPORT_SYMBOL(blk_dump_rq_flags);
200 200
201 static void blk_delay_work(struct work_struct *work) 201 static void blk_delay_work(struct work_struct *work)
202 { 202 {
203 struct request_queue *q; 203 struct request_queue *q;
204 204
205 q = container_of(work, struct request_queue, delay_work.work); 205 q = container_of(work, struct request_queue, delay_work.work);
206 spin_lock_irq(q->queue_lock); 206 spin_lock_irq(q->queue_lock);
207 __blk_run_queue(q); 207 __blk_run_queue(q);
208 spin_unlock_irq(q->queue_lock); 208 spin_unlock_irq(q->queue_lock);
209 } 209 }
210 210
211 /** 211 /**
212 * blk_delay_queue - restart queueing after defined interval 212 * blk_delay_queue - restart queueing after defined interval
213 * @q: The &struct request_queue in question 213 * @q: The &struct request_queue in question
214 * @msecs: Delay in msecs 214 * @msecs: Delay in msecs
215 * 215 *
216 * Description: 216 * Description:
217 * Sometimes queueing needs to be postponed for a little while, to allow 217 * Sometimes queueing needs to be postponed for a little while, to allow
218 * resources to come back. This function will make sure that queueing is 218 * resources to come back. This function will make sure that queueing is
219 * restarted around the specified time. 219 * restarted around the specified time.
220 */ 220 */
221 void blk_delay_queue(struct request_queue *q, unsigned long msecs) 221 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
222 { 222 {
223 queue_delayed_work(kblockd_workqueue, &q->delay_work, 223 queue_delayed_work(kblockd_workqueue, &q->delay_work,
224 msecs_to_jiffies(msecs)); 224 msecs_to_jiffies(msecs));
225 } 225 }
226 EXPORT_SYMBOL(blk_delay_queue); 226 EXPORT_SYMBOL(blk_delay_queue);
227 227
228 /** 228 /**
229 * blk_start_queue - restart a previously stopped queue 229 * blk_start_queue - restart a previously stopped queue
230 * @q: The &struct request_queue in question 230 * @q: The &struct request_queue in question
231 * 231 *
232 * Description: 232 * Description:
233 * blk_start_queue() will clear the stop flag on the queue, and call 233 * blk_start_queue() will clear the stop flag on the queue, and call
234 * the request_fn for the queue if it was in a stopped state when 234 * the request_fn for the queue if it was in a stopped state when
235 * entered. Also see blk_stop_queue(). Queue lock must be held. 235 * entered. Also see blk_stop_queue(). Queue lock must be held.
236 **/ 236 **/
237 void blk_start_queue(struct request_queue *q) 237 void blk_start_queue(struct request_queue *q)
238 { 238 {
239 WARN_ON(!irqs_disabled()); 239 WARN_ON(!irqs_disabled());
240 240
241 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 241 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
242 __blk_run_queue(q); 242 __blk_run_queue(q);
243 } 243 }
244 EXPORT_SYMBOL(blk_start_queue); 244 EXPORT_SYMBOL(blk_start_queue);
245 245
246 /** 246 /**
247 * blk_stop_queue - stop a queue 247 * blk_stop_queue - stop a queue
248 * @q: The &struct request_queue in question 248 * @q: The &struct request_queue in question
249 * 249 *
250 * Description: 250 * Description:
251 * The Linux block layer assumes that a block driver will consume all 251 * The Linux block layer assumes that a block driver will consume all
252 * entries on the request queue when the request_fn strategy is called. 252 * entries on the request queue when the request_fn strategy is called.
253 * Often this will not happen, because of hardware limitations (queue 253 * Often this will not happen, because of hardware limitations (queue
254 * depth settings). If a device driver gets a 'queue full' response, 254 * depth settings). If a device driver gets a 'queue full' response,
255 * or if it simply chooses not to queue more I/O at one point, it can 255 * or if it simply chooses not to queue more I/O at one point, it can
256 * call this function to prevent the request_fn from being called until 256 * call this function to prevent the request_fn from being called until
257 * the driver has signalled it's ready to go again. This happens by calling 257 * the driver has signalled it's ready to go again. This happens by calling
258 * blk_start_queue() to restart queue operations. Queue lock must be held. 258 * blk_start_queue() to restart queue operations. Queue lock must be held.
259 **/ 259 **/
260 void blk_stop_queue(struct request_queue *q) 260 void blk_stop_queue(struct request_queue *q)
261 { 261 {
262 __cancel_delayed_work(&q->delay_work); 262 __cancel_delayed_work(&q->delay_work);
263 queue_flag_set(QUEUE_FLAG_STOPPED, q); 263 queue_flag_set(QUEUE_FLAG_STOPPED, q);
264 } 264 }
265 EXPORT_SYMBOL(blk_stop_queue); 265 EXPORT_SYMBOL(blk_stop_queue);
266 266
267 /** 267 /**
268 * blk_sync_queue - cancel any pending callbacks on a queue 268 * blk_sync_queue - cancel any pending callbacks on a queue
269 * @q: the queue 269 * @q: the queue
270 * 270 *
271 * Description: 271 * Description:
272 * The block layer may perform asynchronous callback activity 272 * The block layer may perform asynchronous callback activity
273 * on a queue, such as calling the unplug function after a timeout. 273 * on a queue, such as calling the unplug function after a timeout.
274 * A block device may call blk_sync_queue to ensure that any 274 * A block device may call blk_sync_queue to ensure that any
275 * such activity is cancelled, thus allowing it to release resources 275 * such activity is cancelled, thus allowing it to release resources
276 * that the callbacks might use. The caller must already have made sure 276 * that the callbacks might use. The caller must already have made sure
277 * that its ->make_request_fn will not re-add plugging prior to calling 277 * that its ->make_request_fn will not re-add plugging prior to calling
278 * this function. 278 * this function.
279 * 279 *
280 * This function does not cancel any asynchronous activity arising 280 * This function does not cancel any asynchronous activity arising
281 * out of elevator or throttling code. That would require elevaotor_exit() 281 * out of elevator or throttling code. That would require elevaotor_exit()
282 * and blk_throtl_exit() to be called with queue lock initialized. 282 * and blk_throtl_exit() to be called with queue lock initialized.
283 * 283 *
284 */ 284 */
285 void blk_sync_queue(struct request_queue *q) 285 void blk_sync_queue(struct request_queue *q)
286 { 286 {
287 del_timer_sync(&q->timeout); 287 del_timer_sync(&q->timeout);
288 cancel_delayed_work_sync(&q->delay_work); 288 cancel_delayed_work_sync(&q->delay_work);
289 } 289 }
290 EXPORT_SYMBOL(blk_sync_queue); 290 EXPORT_SYMBOL(blk_sync_queue);
291 291
292 /** 292 /**
293 * __blk_run_queue - run a single device queue 293 * __blk_run_queue - run a single device queue
294 * @q: The queue to run 294 * @q: The queue to run
295 * 295 *
296 * Description: 296 * Description:
297 * See @blk_run_queue. This variant must be called with the queue lock 297 * See @blk_run_queue. This variant must be called with the queue lock
298 * held and interrupts disabled. 298 * held and interrupts disabled.
299 */ 299 */
300 void __blk_run_queue(struct request_queue *q) 300 void __blk_run_queue(struct request_queue *q)
301 { 301 {
302 if (unlikely(blk_queue_stopped(q))) 302 if (unlikely(blk_queue_stopped(q)))
303 return; 303 return;
304 304
305 q->request_fn(q); 305 q->request_fn(q);
306 } 306 }
307 EXPORT_SYMBOL(__blk_run_queue); 307 EXPORT_SYMBOL(__blk_run_queue);
308 308
309 /** 309 /**
310 * blk_run_queue_async - run a single device queue in workqueue context 310 * blk_run_queue_async - run a single device queue in workqueue context
311 * @q: The queue to run 311 * @q: The queue to run
312 * 312 *
313 * Description: 313 * Description:
314 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf 314 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
315 * of us. 315 * of us.
316 */ 316 */
317 void blk_run_queue_async(struct request_queue *q) 317 void blk_run_queue_async(struct request_queue *q)
318 { 318 {
319 if (likely(!blk_queue_stopped(q))) 319 if (likely(!blk_queue_stopped(q))) {
320 __cancel_delayed_work(&q->delay_work);
320 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0); 321 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
322 }
321 } 323 }
322 EXPORT_SYMBOL(blk_run_queue_async); 324 EXPORT_SYMBOL(blk_run_queue_async);
323 325
324 /** 326 /**
325 * blk_run_queue - run a single device queue 327 * blk_run_queue - run a single device queue
326 * @q: The queue to run 328 * @q: The queue to run
327 * 329 *
328 * Description: 330 * Description:
329 * Invoke request handling on this queue, if it has pending work to do. 331 * Invoke request handling on this queue, if it has pending work to do.
330 * May be used to restart queueing when a request has completed. 332 * May be used to restart queueing when a request has completed.
331 */ 333 */
332 void blk_run_queue(struct request_queue *q) 334 void blk_run_queue(struct request_queue *q)
333 { 335 {
334 unsigned long flags; 336 unsigned long flags;
335 337
336 spin_lock_irqsave(q->queue_lock, flags); 338 spin_lock_irqsave(q->queue_lock, flags);
337 __blk_run_queue(q); 339 __blk_run_queue(q);
338 spin_unlock_irqrestore(q->queue_lock, flags); 340 spin_unlock_irqrestore(q->queue_lock, flags);
339 } 341 }
340 EXPORT_SYMBOL(blk_run_queue); 342 EXPORT_SYMBOL(blk_run_queue);
341 343
342 void blk_put_queue(struct request_queue *q) 344 void blk_put_queue(struct request_queue *q)
343 { 345 {
344 kobject_put(&q->kobj); 346 kobject_put(&q->kobj);
345 } 347 }
346 348
347 /* 349 /*
348 * Note: If a driver supplied the queue lock, it should not zap that lock 350 * Note: If a driver supplied the queue lock, it should not zap that lock
349 * unexpectedly as some queue cleanup components like elevator_exit() and 351 * unexpectedly as some queue cleanup components like elevator_exit() and
350 * blk_throtl_exit() need queue lock. 352 * blk_throtl_exit() need queue lock.
351 */ 353 */
352 void blk_cleanup_queue(struct request_queue *q) 354 void blk_cleanup_queue(struct request_queue *q)
353 { 355 {
354 /* 356 /*
355 * We know we have process context here, so we can be a little 357 * We know we have process context here, so we can be a little
356 * cautious and ensure that pending block actions on this device 358 * cautious and ensure that pending block actions on this device
357 * are done before moving on. Going into this function, we should 359 * are done before moving on. Going into this function, we should
358 * not have processes doing IO to this device. 360 * not have processes doing IO to this device.
359 */ 361 */
360 blk_sync_queue(q); 362 blk_sync_queue(q);
361 363
362 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer); 364 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
363 mutex_lock(&q->sysfs_lock); 365 mutex_lock(&q->sysfs_lock);
364 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q); 366 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
365 mutex_unlock(&q->sysfs_lock); 367 mutex_unlock(&q->sysfs_lock);
366 368
367 if (q->elevator) 369 if (q->elevator)
368 elevator_exit(q->elevator); 370 elevator_exit(q->elevator);
369 371
370 blk_throtl_exit(q); 372 blk_throtl_exit(q);
371 373
372 blk_put_queue(q); 374 blk_put_queue(q);
373 } 375 }
374 EXPORT_SYMBOL(blk_cleanup_queue); 376 EXPORT_SYMBOL(blk_cleanup_queue);
375 377
376 static int blk_init_free_list(struct request_queue *q) 378 static int blk_init_free_list(struct request_queue *q)
377 { 379 {
378 struct request_list *rl = &q->rq; 380 struct request_list *rl = &q->rq;
379 381
380 if (unlikely(rl->rq_pool)) 382 if (unlikely(rl->rq_pool))
381 return 0; 383 return 0;
382 384
383 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 385 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
384 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 386 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
385 rl->elvpriv = 0; 387 rl->elvpriv = 0;
386 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 388 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
387 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 389 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
388 390
389 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, 391 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
390 mempool_free_slab, request_cachep, q->node); 392 mempool_free_slab, request_cachep, q->node);
391 393
392 if (!rl->rq_pool) 394 if (!rl->rq_pool)
393 return -ENOMEM; 395 return -ENOMEM;
394 396
395 return 0; 397 return 0;
396 } 398 }
397 399
398 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 400 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
399 { 401 {
400 return blk_alloc_queue_node(gfp_mask, -1); 402 return blk_alloc_queue_node(gfp_mask, -1);
401 } 403 }
402 EXPORT_SYMBOL(blk_alloc_queue); 404 EXPORT_SYMBOL(blk_alloc_queue);
403 405
404 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 406 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
405 { 407 {
406 struct request_queue *q; 408 struct request_queue *q;
407 int err; 409 int err;
408 410
409 q = kmem_cache_alloc_node(blk_requestq_cachep, 411 q = kmem_cache_alloc_node(blk_requestq_cachep,
410 gfp_mask | __GFP_ZERO, node_id); 412 gfp_mask | __GFP_ZERO, node_id);
411 if (!q) 413 if (!q)
412 return NULL; 414 return NULL;
413 415
414 q->backing_dev_info.ra_pages = 416 q->backing_dev_info.ra_pages =
415 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE; 417 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
416 q->backing_dev_info.state = 0; 418 q->backing_dev_info.state = 0;
417 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY; 419 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
418 q->backing_dev_info.name = "block"; 420 q->backing_dev_info.name = "block";
419 421
420 err = bdi_init(&q->backing_dev_info); 422 err = bdi_init(&q->backing_dev_info);
421 if (err) { 423 if (err) {
422 kmem_cache_free(blk_requestq_cachep, q); 424 kmem_cache_free(blk_requestq_cachep, q);
423 return NULL; 425 return NULL;
424 } 426 }
425 427
426 if (blk_throtl_init(q)) { 428 if (blk_throtl_init(q)) {
427 kmem_cache_free(blk_requestq_cachep, q); 429 kmem_cache_free(blk_requestq_cachep, q);
428 return NULL; 430 return NULL;
429 } 431 }
430 432
431 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer, 433 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
432 laptop_mode_timer_fn, (unsigned long) q); 434 laptop_mode_timer_fn, (unsigned long) q);
433 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 435 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
434 INIT_LIST_HEAD(&q->timeout_list); 436 INIT_LIST_HEAD(&q->timeout_list);
435 INIT_LIST_HEAD(&q->flush_queue[0]); 437 INIT_LIST_HEAD(&q->flush_queue[0]);
436 INIT_LIST_HEAD(&q->flush_queue[1]); 438 INIT_LIST_HEAD(&q->flush_queue[1]);
437 INIT_LIST_HEAD(&q->flush_data_in_flight); 439 INIT_LIST_HEAD(&q->flush_data_in_flight);
438 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); 440 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
439 441
440 kobject_init(&q->kobj, &blk_queue_ktype); 442 kobject_init(&q->kobj, &blk_queue_ktype);
441 443
442 mutex_init(&q->sysfs_lock); 444 mutex_init(&q->sysfs_lock);
443 spin_lock_init(&q->__queue_lock); 445 spin_lock_init(&q->__queue_lock);
444 446
445 /* 447 /*
446 * By default initialize queue_lock to internal lock and driver can 448 * By default initialize queue_lock to internal lock and driver can
447 * override it later if need be. 449 * override it later if need be.
448 */ 450 */
449 q->queue_lock = &q->__queue_lock; 451 q->queue_lock = &q->__queue_lock;
450 452
451 return q; 453 return q;
452 } 454 }
453 EXPORT_SYMBOL(blk_alloc_queue_node); 455 EXPORT_SYMBOL(blk_alloc_queue_node);
454 456
455 /** 457 /**
456 * blk_init_queue - prepare a request queue for use with a block device 458 * blk_init_queue - prepare a request queue for use with a block device
457 * @rfn: The function to be called to process requests that have been 459 * @rfn: The function to be called to process requests that have been
458 * placed on the queue. 460 * placed on the queue.
459 * @lock: Request queue spin lock 461 * @lock: Request queue spin lock
460 * 462 *
461 * Description: 463 * Description:
462 * If a block device wishes to use the standard request handling procedures, 464 * If a block device wishes to use the standard request handling procedures,
463 * which sorts requests and coalesces adjacent requests, then it must 465 * which sorts requests and coalesces adjacent requests, then it must
464 * call blk_init_queue(). The function @rfn will be called when there 466 * call blk_init_queue(). The function @rfn will be called when there
465 * are requests on the queue that need to be processed. If the device 467 * are requests on the queue that need to be processed. If the device
466 * supports plugging, then @rfn may not be called immediately when requests 468 * supports plugging, then @rfn may not be called immediately when requests
467 * are available on the queue, but may be called at some time later instead. 469 * are available on the queue, but may be called at some time later instead.
468 * Plugged queues are generally unplugged when a buffer belonging to one 470 * Plugged queues are generally unplugged when a buffer belonging to one
469 * of the requests on the queue is needed, or due to memory pressure. 471 * of the requests on the queue is needed, or due to memory pressure.
470 * 472 *
471 * @rfn is not required, or even expected, to remove all requests off the 473 * @rfn is not required, or even expected, to remove all requests off the
472 * queue, but only as many as it can handle at a time. If it does leave 474 * queue, but only as many as it can handle at a time. If it does leave
473 * requests on the queue, it is responsible for arranging that the requests 475 * requests on the queue, it is responsible for arranging that the requests
474 * get dealt with eventually. 476 * get dealt with eventually.
475 * 477 *
476 * The queue spin lock must be held while manipulating the requests on the 478 * The queue spin lock must be held while manipulating the requests on the
477 * request queue; this lock will be taken also from interrupt context, so irq 479 * request queue; this lock will be taken also from interrupt context, so irq
478 * disabling is needed for it. 480 * disabling is needed for it.
479 * 481 *
480 * Function returns a pointer to the initialized request queue, or %NULL if 482 * Function returns a pointer to the initialized request queue, or %NULL if
481 * it didn't succeed. 483 * it didn't succeed.
482 * 484 *
483 * Note: 485 * Note:
484 * blk_init_queue() must be paired with a blk_cleanup_queue() call 486 * blk_init_queue() must be paired with a blk_cleanup_queue() call
485 * when the block device is deactivated (such as at module unload). 487 * when the block device is deactivated (such as at module unload).
486 **/ 488 **/
487 489
488 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 490 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
489 { 491 {
490 return blk_init_queue_node(rfn, lock, -1); 492 return blk_init_queue_node(rfn, lock, -1);
491 } 493 }
492 EXPORT_SYMBOL(blk_init_queue); 494 EXPORT_SYMBOL(blk_init_queue);
493 495
494 struct request_queue * 496 struct request_queue *
495 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 497 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
496 { 498 {
497 struct request_queue *uninit_q, *q; 499 struct request_queue *uninit_q, *q;
498 500
499 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id); 501 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
500 if (!uninit_q) 502 if (!uninit_q)
501 return NULL; 503 return NULL;
502 504
503 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id); 505 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
504 if (!q) 506 if (!q)
505 blk_cleanup_queue(uninit_q); 507 blk_cleanup_queue(uninit_q);
506 508
507 return q; 509 return q;
508 } 510 }
509 EXPORT_SYMBOL(blk_init_queue_node); 511 EXPORT_SYMBOL(blk_init_queue_node);
510 512
511 struct request_queue * 513 struct request_queue *
512 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn, 514 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
513 spinlock_t *lock) 515 spinlock_t *lock)
514 { 516 {
515 return blk_init_allocated_queue_node(q, rfn, lock, -1); 517 return blk_init_allocated_queue_node(q, rfn, lock, -1);
516 } 518 }
517 EXPORT_SYMBOL(blk_init_allocated_queue); 519 EXPORT_SYMBOL(blk_init_allocated_queue);
518 520
519 struct request_queue * 521 struct request_queue *
520 blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn, 522 blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
521 spinlock_t *lock, int node_id) 523 spinlock_t *lock, int node_id)
522 { 524 {
523 if (!q) 525 if (!q)
524 return NULL; 526 return NULL;
525 527
526 q->node = node_id; 528 q->node = node_id;
527 if (blk_init_free_list(q)) 529 if (blk_init_free_list(q))
528 return NULL; 530 return NULL;
529 531
530 q->request_fn = rfn; 532 q->request_fn = rfn;
531 q->prep_rq_fn = NULL; 533 q->prep_rq_fn = NULL;
532 q->unprep_rq_fn = NULL; 534 q->unprep_rq_fn = NULL;
533 q->queue_flags = QUEUE_FLAG_DEFAULT; 535 q->queue_flags = QUEUE_FLAG_DEFAULT;
534 536
535 /* Override internal queue lock with supplied lock pointer */ 537 /* Override internal queue lock with supplied lock pointer */
536 if (lock) 538 if (lock)
537 q->queue_lock = lock; 539 q->queue_lock = lock;
538 540
539 /* 541 /*
540 * This also sets hw/phys segments, boundary and size 542 * This also sets hw/phys segments, boundary and size
541 */ 543 */
542 blk_queue_make_request(q, __make_request); 544 blk_queue_make_request(q, __make_request);
543 545
544 q->sg_reserved_size = INT_MAX; 546 q->sg_reserved_size = INT_MAX;
545 547
546 /* 548 /*
547 * all done 549 * all done
548 */ 550 */
549 if (!elevator_init(q, NULL)) { 551 if (!elevator_init(q, NULL)) {
550 blk_queue_congestion_threshold(q); 552 blk_queue_congestion_threshold(q);
551 return q; 553 return q;
552 } 554 }
553 555
554 return NULL; 556 return NULL;
555 } 557 }
556 EXPORT_SYMBOL(blk_init_allocated_queue_node); 558 EXPORT_SYMBOL(blk_init_allocated_queue_node);
557 559
558 int blk_get_queue(struct request_queue *q) 560 int blk_get_queue(struct request_queue *q)
559 { 561 {
560 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) { 562 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
561 kobject_get(&q->kobj); 563 kobject_get(&q->kobj);
562 return 0; 564 return 0;
563 } 565 }
564 566
565 return 1; 567 return 1;
566 } 568 }
567 569
568 static inline void blk_free_request(struct request_queue *q, struct request *rq) 570 static inline void blk_free_request(struct request_queue *q, struct request *rq)
569 { 571 {
570 BUG_ON(rq->cmd_flags & REQ_ON_PLUG); 572 BUG_ON(rq->cmd_flags & REQ_ON_PLUG);
571 573
572 if (rq->cmd_flags & REQ_ELVPRIV) 574 if (rq->cmd_flags & REQ_ELVPRIV)
573 elv_put_request(q, rq); 575 elv_put_request(q, rq);
574 mempool_free(rq, q->rq.rq_pool); 576 mempool_free(rq, q->rq.rq_pool);
575 } 577 }
576 578
577 static struct request * 579 static struct request *
578 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask) 580 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
579 { 581 {
580 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask); 582 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
581 583
582 if (!rq) 584 if (!rq)
583 return NULL; 585 return NULL;
584 586
585 blk_rq_init(q, rq); 587 blk_rq_init(q, rq);
586 588
587 rq->cmd_flags = flags | REQ_ALLOCED; 589 rq->cmd_flags = flags | REQ_ALLOCED;
588 590
589 if (priv) { 591 if (priv) {
590 if (unlikely(elv_set_request(q, rq, gfp_mask))) { 592 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
591 mempool_free(rq, q->rq.rq_pool); 593 mempool_free(rq, q->rq.rq_pool);
592 return NULL; 594 return NULL;
593 } 595 }
594 rq->cmd_flags |= REQ_ELVPRIV; 596 rq->cmd_flags |= REQ_ELVPRIV;
595 } 597 }
596 598
597 return rq; 599 return rq;
598 } 600 }
599 601
600 /* 602 /*
601 * ioc_batching returns true if the ioc is a valid batching request and 603 * ioc_batching returns true if the ioc is a valid batching request and
602 * should be given priority access to a request. 604 * should be given priority access to a request.
603 */ 605 */
604 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 606 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
605 { 607 {
606 if (!ioc) 608 if (!ioc)
607 return 0; 609 return 0;
608 610
609 /* 611 /*
610 * Make sure the process is able to allocate at least 1 request 612 * Make sure the process is able to allocate at least 1 request
611 * even if the batch times out, otherwise we could theoretically 613 * even if the batch times out, otherwise we could theoretically
612 * lose wakeups. 614 * lose wakeups.
613 */ 615 */
614 return ioc->nr_batch_requests == q->nr_batching || 616 return ioc->nr_batch_requests == q->nr_batching ||
615 (ioc->nr_batch_requests > 0 617 (ioc->nr_batch_requests > 0
616 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 618 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
617 } 619 }
618 620
619 /* 621 /*
620 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 622 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
621 * will cause the process to be a "batcher" on all queues in the system. This 623 * will cause the process to be a "batcher" on all queues in the system. This
622 * is the behaviour we want though - once it gets a wakeup it should be given 624 * is the behaviour we want though - once it gets a wakeup it should be given
623 * a nice run. 625 * a nice run.
624 */ 626 */
625 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 627 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
626 { 628 {
627 if (!ioc || ioc_batching(q, ioc)) 629 if (!ioc || ioc_batching(q, ioc))
628 return; 630 return;
629 631
630 ioc->nr_batch_requests = q->nr_batching; 632 ioc->nr_batch_requests = q->nr_batching;
631 ioc->last_waited = jiffies; 633 ioc->last_waited = jiffies;
632 } 634 }
633 635
634 static void __freed_request(struct request_queue *q, int sync) 636 static void __freed_request(struct request_queue *q, int sync)
635 { 637 {
636 struct request_list *rl = &q->rq; 638 struct request_list *rl = &q->rq;
637 639
638 if (rl->count[sync] < queue_congestion_off_threshold(q)) 640 if (rl->count[sync] < queue_congestion_off_threshold(q))
639 blk_clear_queue_congested(q, sync); 641 blk_clear_queue_congested(q, sync);
640 642
641 if (rl->count[sync] + 1 <= q->nr_requests) { 643 if (rl->count[sync] + 1 <= q->nr_requests) {
642 if (waitqueue_active(&rl->wait[sync])) 644 if (waitqueue_active(&rl->wait[sync]))
643 wake_up(&rl->wait[sync]); 645 wake_up(&rl->wait[sync]);
644 646
645 blk_clear_queue_full(q, sync); 647 blk_clear_queue_full(q, sync);
646 } 648 }
647 } 649 }
648 650
649 /* 651 /*
650 * A request has just been released. Account for it, update the full and 652 * A request has just been released. Account for it, update the full and
651 * congestion status, wake up any waiters. Called under q->queue_lock. 653 * congestion status, wake up any waiters. Called under q->queue_lock.
652 */ 654 */
653 static void freed_request(struct request_queue *q, int sync, int priv) 655 static void freed_request(struct request_queue *q, int sync, int priv)
654 { 656 {
655 struct request_list *rl = &q->rq; 657 struct request_list *rl = &q->rq;
656 658
657 rl->count[sync]--; 659 rl->count[sync]--;
658 if (priv) 660 if (priv)
659 rl->elvpriv--; 661 rl->elvpriv--;
660 662
661 __freed_request(q, sync); 663 __freed_request(q, sync);
662 664
663 if (unlikely(rl->starved[sync ^ 1])) 665 if (unlikely(rl->starved[sync ^ 1]))
664 __freed_request(q, sync ^ 1); 666 __freed_request(q, sync ^ 1);
665 } 667 }
666 668
667 /* 669 /*
668 * Determine if elevator data should be initialized when allocating the 670 * Determine if elevator data should be initialized when allocating the
669 * request associated with @bio. 671 * request associated with @bio.
670 */ 672 */
671 static bool blk_rq_should_init_elevator(struct bio *bio) 673 static bool blk_rq_should_init_elevator(struct bio *bio)
672 { 674 {
673 if (!bio) 675 if (!bio)
674 return true; 676 return true;
675 677
676 /* 678 /*
677 * Flush requests do not use the elevator so skip initialization. 679 * Flush requests do not use the elevator so skip initialization.
678 * This allows a request to share the flush and elevator data. 680 * This allows a request to share the flush and elevator data.
679 */ 681 */
680 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) 682 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
681 return false; 683 return false;
682 684
683 return true; 685 return true;
684 } 686 }
685 687
686 /* 688 /*
687 * Get a free request, queue_lock must be held. 689 * Get a free request, queue_lock must be held.
688 * Returns NULL on failure, with queue_lock held. 690 * Returns NULL on failure, with queue_lock held.
689 * Returns !NULL on success, with queue_lock *not held*. 691 * Returns !NULL on success, with queue_lock *not held*.
690 */ 692 */
691 static struct request *get_request(struct request_queue *q, int rw_flags, 693 static struct request *get_request(struct request_queue *q, int rw_flags,
692 struct bio *bio, gfp_t gfp_mask) 694 struct bio *bio, gfp_t gfp_mask)
693 { 695 {
694 struct request *rq = NULL; 696 struct request *rq = NULL;
695 struct request_list *rl = &q->rq; 697 struct request_list *rl = &q->rq;
696 struct io_context *ioc = NULL; 698 struct io_context *ioc = NULL;
697 const bool is_sync = rw_is_sync(rw_flags) != 0; 699 const bool is_sync = rw_is_sync(rw_flags) != 0;
698 int may_queue, priv = 0; 700 int may_queue, priv = 0;
699 701
700 may_queue = elv_may_queue(q, rw_flags); 702 may_queue = elv_may_queue(q, rw_flags);
701 if (may_queue == ELV_MQUEUE_NO) 703 if (may_queue == ELV_MQUEUE_NO)
702 goto rq_starved; 704 goto rq_starved;
703 705
704 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 706 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
705 if (rl->count[is_sync]+1 >= q->nr_requests) { 707 if (rl->count[is_sync]+1 >= q->nr_requests) {
706 ioc = current_io_context(GFP_ATOMIC, q->node); 708 ioc = current_io_context(GFP_ATOMIC, q->node);
707 /* 709 /*
708 * The queue will fill after this allocation, so set 710 * The queue will fill after this allocation, so set
709 * it as full, and mark this process as "batching". 711 * it as full, and mark this process as "batching".
710 * This process will be allowed to complete a batch of 712 * This process will be allowed to complete a batch of
711 * requests, others will be blocked. 713 * requests, others will be blocked.
712 */ 714 */
713 if (!blk_queue_full(q, is_sync)) { 715 if (!blk_queue_full(q, is_sync)) {
714 ioc_set_batching(q, ioc); 716 ioc_set_batching(q, ioc);
715 blk_set_queue_full(q, is_sync); 717 blk_set_queue_full(q, is_sync);
716 } else { 718 } else {
717 if (may_queue != ELV_MQUEUE_MUST 719 if (may_queue != ELV_MQUEUE_MUST
718 && !ioc_batching(q, ioc)) { 720 && !ioc_batching(q, ioc)) {
719 /* 721 /*
720 * The queue is full and the allocating 722 * The queue is full and the allocating
721 * process is not a "batcher", and not 723 * process is not a "batcher", and not
722 * exempted by the IO scheduler 724 * exempted by the IO scheduler
723 */ 725 */
724 goto out; 726 goto out;
725 } 727 }
726 } 728 }
727 } 729 }
728 blk_set_queue_congested(q, is_sync); 730 blk_set_queue_congested(q, is_sync);
729 } 731 }
730 732
731 /* 733 /*
732 * Only allow batching queuers to allocate up to 50% over the defined 734 * Only allow batching queuers to allocate up to 50% over the defined
733 * limit of requests, otherwise we could have thousands of requests 735 * limit of requests, otherwise we could have thousands of requests
734 * allocated with any setting of ->nr_requests 736 * allocated with any setting of ->nr_requests
735 */ 737 */
736 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 738 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
737 goto out; 739 goto out;
738 740
739 rl->count[is_sync]++; 741 rl->count[is_sync]++;
740 rl->starved[is_sync] = 0; 742 rl->starved[is_sync] = 0;
741 743
742 if (blk_rq_should_init_elevator(bio)) { 744 if (blk_rq_should_init_elevator(bio)) {
743 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags); 745 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
744 if (priv) 746 if (priv)
745 rl->elvpriv++; 747 rl->elvpriv++;
746 } 748 }
747 749
748 if (blk_queue_io_stat(q)) 750 if (blk_queue_io_stat(q))
749 rw_flags |= REQ_IO_STAT; 751 rw_flags |= REQ_IO_STAT;
750 spin_unlock_irq(q->queue_lock); 752 spin_unlock_irq(q->queue_lock);
751 753
752 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask); 754 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
753 if (unlikely(!rq)) { 755 if (unlikely(!rq)) {
754 /* 756 /*
755 * Allocation failed presumably due to memory. Undo anything 757 * Allocation failed presumably due to memory. Undo anything
756 * we might have messed up. 758 * we might have messed up.
757 * 759 *
758 * Allocating task should really be put onto the front of the 760 * Allocating task should really be put onto the front of the
759 * wait queue, but this is pretty rare. 761 * wait queue, but this is pretty rare.
760 */ 762 */
761 spin_lock_irq(q->queue_lock); 763 spin_lock_irq(q->queue_lock);
762 freed_request(q, is_sync, priv); 764 freed_request(q, is_sync, priv);
763 765
764 /* 766 /*
765 * in the very unlikely event that allocation failed and no 767 * in the very unlikely event that allocation failed and no
766 * requests for this direction was pending, mark us starved 768 * requests for this direction was pending, mark us starved
767 * so that freeing of a request in the other direction will 769 * so that freeing of a request in the other direction will
768 * notice us. another possible fix would be to split the 770 * notice us. another possible fix would be to split the
769 * rq mempool into READ and WRITE 771 * rq mempool into READ and WRITE
770 */ 772 */
771 rq_starved: 773 rq_starved:
772 if (unlikely(rl->count[is_sync] == 0)) 774 if (unlikely(rl->count[is_sync] == 0))
773 rl->starved[is_sync] = 1; 775 rl->starved[is_sync] = 1;
774 776
775 goto out; 777 goto out;
776 } 778 }
777 779
778 /* 780 /*
779 * ioc may be NULL here, and ioc_batching will be false. That's 781 * ioc may be NULL here, and ioc_batching will be false. That's
780 * OK, if the queue is under the request limit then requests need 782 * OK, if the queue is under the request limit then requests need
781 * not count toward the nr_batch_requests limit. There will always 783 * not count toward the nr_batch_requests limit. There will always
782 * be some limit enforced by BLK_BATCH_TIME. 784 * be some limit enforced by BLK_BATCH_TIME.
783 */ 785 */
784 if (ioc_batching(q, ioc)) 786 if (ioc_batching(q, ioc))
785 ioc->nr_batch_requests--; 787 ioc->nr_batch_requests--;
786 788
787 trace_block_getrq(q, bio, rw_flags & 1); 789 trace_block_getrq(q, bio, rw_flags & 1);
788 out: 790 out:
789 return rq; 791 return rq;
790 } 792 }
791 793
792 /* 794 /*
793 * No available requests for this queue, wait for some requests to become 795 * No available requests for this queue, wait for some requests to become
794 * available. 796 * available.
795 * 797 *
796 * Called with q->queue_lock held, and returns with it unlocked. 798 * Called with q->queue_lock held, and returns with it unlocked.
797 */ 799 */
798 static struct request *get_request_wait(struct request_queue *q, int rw_flags, 800 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
799 struct bio *bio) 801 struct bio *bio)
800 { 802 {
801 const bool is_sync = rw_is_sync(rw_flags) != 0; 803 const bool is_sync = rw_is_sync(rw_flags) != 0;
802 struct request *rq; 804 struct request *rq;
803 805
804 rq = get_request(q, rw_flags, bio, GFP_NOIO); 806 rq = get_request(q, rw_flags, bio, GFP_NOIO);
805 while (!rq) { 807 while (!rq) {
806 DEFINE_WAIT(wait); 808 DEFINE_WAIT(wait);
807 struct io_context *ioc; 809 struct io_context *ioc;
808 struct request_list *rl = &q->rq; 810 struct request_list *rl = &q->rq;
809 811
810 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 812 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
811 TASK_UNINTERRUPTIBLE); 813 TASK_UNINTERRUPTIBLE);
812 814
813 trace_block_sleeprq(q, bio, rw_flags & 1); 815 trace_block_sleeprq(q, bio, rw_flags & 1);
814 816
815 spin_unlock_irq(q->queue_lock); 817 spin_unlock_irq(q->queue_lock);
816 io_schedule(); 818 io_schedule();
817 819
818 /* 820 /*
819 * After sleeping, we become a "batching" process and 821 * After sleeping, we become a "batching" process and
820 * will be able to allocate at least one request, and 822 * will be able to allocate at least one request, and
821 * up to a big batch of them for a small period time. 823 * up to a big batch of them for a small period time.
822 * See ioc_batching, ioc_set_batching 824 * See ioc_batching, ioc_set_batching
823 */ 825 */
824 ioc = current_io_context(GFP_NOIO, q->node); 826 ioc = current_io_context(GFP_NOIO, q->node);
825 ioc_set_batching(q, ioc); 827 ioc_set_batching(q, ioc);
826 828
827 spin_lock_irq(q->queue_lock); 829 spin_lock_irq(q->queue_lock);
828 finish_wait(&rl->wait[is_sync], &wait); 830 finish_wait(&rl->wait[is_sync], &wait);
829 831
830 rq = get_request(q, rw_flags, bio, GFP_NOIO); 832 rq = get_request(q, rw_flags, bio, GFP_NOIO);
831 }; 833 };
832 834
833 return rq; 835 return rq;
834 } 836 }
835 837
836 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 838 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
837 { 839 {
838 struct request *rq; 840 struct request *rq;
839 841
840 BUG_ON(rw != READ && rw != WRITE); 842 BUG_ON(rw != READ && rw != WRITE);
841 843
842 spin_lock_irq(q->queue_lock); 844 spin_lock_irq(q->queue_lock);
843 if (gfp_mask & __GFP_WAIT) { 845 if (gfp_mask & __GFP_WAIT) {
844 rq = get_request_wait(q, rw, NULL); 846 rq = get_request_wait(q, rw, NULL);
845 } else { 847 } else {
846 rq = get_request(q, rw, NULL, gfp_mask); 848 rq = get_request(q, rw, NULL, gfp_mask);
847 if (!rq) 849 if (!rq)
848 spin_unlock_irq(q->queue_lock); 850 spin_unlock_irq(q->queue_lock);
849 } 851 }
850 /* q->queue_lock is unlocked at this point */ 852 /* q->queue_lock is unlocked at this point */
851 853
852 return rq; 854 return rq;
853 } 855 }
854 EXPORT_SYMBOL(blk_get_request); 856 EXPORT_SYMBOL(blk_get_request);
855 857
856 /** 858 /**
857 * blk_make_request - given a bio, allocate a corresponding struct request. 859 * blk_make_request - given a bio, allocate a corresponding struct request.
858 * @q: target request queue 860 * @q: target request queue
859 * @bio: The bio describing the memory mappings that will be submitted for IO. 861 * @bio: The bio describing the memory mappings that will be submitted for IO.
860 * It may be a chained-bio properly constructed by block/bio layer. 862 * It may be a chained-bio properly constructed by block/bio layer.
861 * @gfp_mask: gfp flags to be used for memory allocation 863 * @gfp_mask: gfp flags to be used for memory allocation
862 * 864 *
863 * blk_make_request is the parallel of generic_make_request for BLOCK_PC 865 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
864 * type commands. Where the struct request needs to be farther initialized by 866 * type commands. Where the struct request needs to be farther initialized by
865 * the caller. It is passed a &struct bio, which describes the memory info of 867 * the caller. It is passed a &struct bio, which describes the memory info of
866 * the I/O transfer. 868 * the I/O transfer.
867 * 869 *
868 * The caller of blk_make_request must make sure that bi_io_vec 870 * The caller of blk_make_request must make sure that bi_io_vec
869 * are set to describe the memory buffers. That bio_data_dir() will return 871 * are set to describe the memory buffers. That bio_data_dir() will return
870 * the needed direction of the request. (And all bio's in the passed bio-chain 872 * the needed direction of the request. (And all bio's in the passed bio-chain
871 * are properly set accordingly) 873 * are properly set accordingly)
872 * 874 *
873 * If called under none-sleepable conditions, mapped bio buffers must not 875 * If called under none-sleepable conditions, mapped bio buffers must not
874 * need bouncing, by calling the appropriate masked or flagged allocator, 876 * need bouncing, by calling the appropriate masked or flagged allocator,
875 * suitable for the target device. Otherwise the call to blk_queue_bounce will 877 * suitable for the target device. Otherwise the call to blk_queue_bounce will
876 * BUG. 878 * BUG.
877 * 879 *
878 * WARNING: When allocating/cloning a bio-chain, careful consideration should be 880 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
879 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for 881 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
880 * anything but the first bio in the chain. Otherwise you risk waiting for IO 882 * anything but the first bio in the chain. Otherwise you risk waiting for IO
881 * completion of a bio that hasn't been submitted yet, thus resulting in a 883 * completion of a bio that hasn't been submitted yet, thus resulting in a
882 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead 884 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
883 * of bio_alloc(), as that avoids the mempool deadlock. 885 * of bio_alloc(), as that avoids the mempool deadlock.
884 * If possible a big IO should be split into smaller parts when allocation 886 * If possible a big IO should be split into smaller parts when allocation
885 * fails. Partial allocation should not be an error, or you risk a live-lock. 887 * fails. Partial allocation should not be an error, or you risk a live-lock.
886 */ 888 */
887 struct request *blk_make_request(struct request_queue *q, struct bio *bio, 889 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
888 gfp_t gfp_mask) 890 gfp_t gfp_mask)
889 { 891 {
890 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask); 892 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
891 893
892 if (unlikely(!rq)) 894 if (unlikely(!rq))
893 return ERR_PTR(-ENOMEM); 895 return ERR_PTR(-ENOMEM);
894 896
895 for_each_bio(bio) { 897 for_each_bio(bio) {
896 struct bio *bounce_bio = bio; 898 struct bio *bounce_bio = bio;
897 int ret; 899 int ret;
898 900
899 blk_queue_bounce(q, &bounce_bio); 901 blk_queue_bounce(q, &bounce_bio);
900 ret = blk_rq_append_bio(q, rq, bounce_bio); 902 ret = blk_rq_append_bio(q, rq, bounce_bio);
901 if (unlikely(ret)) { 903 if (unlikely(ret)) {
902 blk_put_request(rq); 904 blk_put_request(rq);
903 return ERR_PTR(ret); 905 return ERR_PTR(ret);
904 } 906 }
905 } 907 }
906 908
907 return rq; 909 return rq;
908 } 910 }
909 EXPORT_SYMBOL(blk_make_request); 911 EXPORT_SYMBOL(blk_make_request);
910 912
911 /** 913 /**
912 * blk_requeue_request - put a request back on queue 914 * blk_requeue_request - put a request back on queue
913 * @q: request queue where request should be inserted 915 * @q: request queue where request should be inserted
914 * @rq: request to be inserted 916 * @rq: request to be inserted
915 * 917 *
916 * Description: 918 * Description:
917 * Drivers often keep queueing requests until the hardware cannot accept 919 * Drivers often keep queueing requests until the hardware cannot accept
918 * more, when that condition happens we need to put the request back 920 * more, when that condition happens we need to put the request back
919 * on the queue. Must be called with queue lock held. 921 * on the queue. Must be called with queue lock held.
920 */ 922 */
921 void blk_requeue_request(struct request_queue *q, struct request *rq) 923 void blk_requeue_request(struct request_queue *q, struct request *rq)
922 { 924 {
923 blk_delete_timer(rq); 925 blk_delete_timer(rq);
924 blk_clear_rq_complete(rq); 926 blk_clear_rq_complete(rq);
925 trace_block_rq_requeue(q, rq); 927 trace_block_rq_requeue(q, rq);
926 928
927 if (blk_rq_tagged(rq)) 929 if (blk_rq_tagged(rq))
928 blk_queue_end_tag(q, rq); 930 blk_queue_end_tag(q, rq);
929 931
930 BUG_ON(blk_queued_rq(rq)); 932 BUG_ON(blk_queued_rq(rq));
931 933
932 elv_requeue_request(q, rq); 934 elv_requeue_request(q, rq);
933 } 935 }
934 EXPORT_SYMBOL(blk_requeue_request); 936 EXPORT_SYMBOL(blk_requeue_request);
935 937
936 static void add_acct_request(struct request_queue *q, struct request *rq, 938 static void add_acct_request(struct request_queue *q, struct request *rq,
937 int where) 939 int where)
938 { 940 {
939 drive_stat_acct(rq, 1); 941 drive_stat_acct(rq, 1);
940 __elv_add_request(q, rq, where); 942 __elv_add_request(q, rq, where);
941 } 943 }
942 944
943 /** 945 /**
944 * blk_insert_request - insert a special request into a request queue 946 * blk_insert_request - insert a special request into a request queue
945 * @q: request queue where request should be inserted 947 * @q: request queue where request should be inserted
946 * @rq: request to be inserted 948 * @rq: request to be inserted
947 * @at_head: insert request at head or tail of queue 949 * @at_head: insert request at head or tail of queue
948 * @data: private data 950 * @data: private data
949 * 951 *
950 * Description: 952 * Description:
951 * Many block devices need to execute commands asynchronously, so they don't 953 * Many block devices need to execute commands asynchronously, so they don't
952 * block the whole kernel from preemption during request execution. This is 954 * block the whole kernel from preemption during request execution. This is
953 * accomplished normally by inserting aritficial requests tagged as 955 * accomplished normally by inserting aritficial requests tagged as
954 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them 956 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
955 * be scheduled for actual execution by the request queue. 957 * be scheduled for actual execution by the request queue.
956 * 958 *
957 * We have the option of inserting the head or the tail of the queue. 959 * We have the option of inserting the head or the tail of the queue.
958 * Typically we use the tail for new ioctls and so forth. We use the head 960 * Typically we use the tail for new ioctls and so forth. We use the head
959 * of the queue for things like a QUEUE_FULL message from a device, or a 961 * of the queue for things like a QUEUE_FULL message from a device, or a
960 * host that is unable to accept a particular command. 962 * host that is unable to accept a particular command.
961 */ 963 */
962 void blk_insert_request(struct request_queue *q, struct request *rq, 964 void blk_insert_request(struct request_queue *q, struct request *rq,
963 int at_head, void *data) 965 int at_head, void *data)
964 { 966 {
965 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK; 967 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
966 unsigned long flags; 968 unsigned long flags;
967 969
968 /* 970 /*
969 * tell I/O scheduler that this isn't a regular read/write (ie it 971 * tell I/O scheduler that this isn't a regular read/write (ie it
970 * must not attempt merges on this) and that it acts as a soft 972 * must not attempt merges on this) and that it acts as a soft
971 * barrier 973 * barrier
972 */ 974 */
973 rq->cmd_type = REQ_TYPE_SPECIAL; 975 rq->cmd_type = REQ_TYPE_SPECIAL;
974 976
975 rq->special = data; 977 rq->special = data;
976 978
977 spin_lock_irqsave(q->queue_lock, flags); 979 spin_lock_irqsave(q->queue_lock, flags);
978 980
979 /* 981 /*
980 * If command is tagged, release the tag 982 * If command is tagged, release the tag
981 */ 983 */
982 if (blk_rq_tagged(rq)) 984 if (blk_rq_tagged(rq))
983 blk_queue_end_tag(q, rq); 985 blk_queue_end_tag(q, rq);
984 986
985 add_acct_request(q, rq, where); 987 add_acct_request(q, rq, where);
986 __blk_run_queue(q); 988 __blk_run_queue(q);
987 spin_unlock_irqrestore(q->queue_lock, flags); 989 spin_unlock_irqrestore(q->queue_lock, flags);
988 } 990 }
989 EXPORT_SYMBOL(blk_insert_request); 991 EXPORT_SYMBOL(blk_insert_request);
990 992
991 static void part_round_stats_single(int cpu, struct hd_struct *part, 993 static void part_round_stats_single(int cpu, struct hd_struct *part,
992 unsigned long now) 994 unsigned long now)
993 { 995 {
994 if (now == part->stamp) 996 if (now == part->stamp)
995 return; 997 return;
996 998
997 if (part_in_flight(part)) { 999 if (part_in_flight(part)) {
998 __part_stat_add(cpu, part, time_in_queue, 1000 __part_stat_add(cpu, part, time_in_queue,
999 part_in_flight(part) * (now - part->stamp)); 1001 part_in_flight(part) * (now - part->stamp));
1000 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1002 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1001 } 1003 }
1002 part->stamp = now; 1004 part->stamp = now;
1003 } 1005 }
1004 1006
1005 /** 1007 /**
1006 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1008 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1007 * @cpu: cpu number for stats access 1009 * @cpu: cpu number for stats access
1008 * @part: target partition 1010 * @part: target partition
1009 * 1011 *
1010 * The average IO queue length and utilisation statistics are maintained 1012 * The average IO queue length and utilisation statistics are maintained
1011 * by observing the current state of the queue length and the amount of 1013 * by observing the current state of the queue length and the amount of
1012 * time it has been in this state for. 1014 * time it has been in this state for.
1013 * 1015 *
1014 * Normally, that accounting is done on IO completion, but that can result 1016 * Normally, that accounting is done on IO completion, but that can result
1015 * in more than a second's worth of IO being accounted for within any one 1017 * in more than a second's worth of IO being accounted for within any one
1016 * second, leading to >100% utilisation. To deal with that, we call this 1018 * second, leading to >100% utilisation. To deal with that, we call this
1017 * function to do a round-off before returning the results when reading 1019 * function to do a round-off before returning the results when reading
1018 * /proc/diskstats. This accounts immediately for all queue usage up to 1020 * /proc/diskstats. This accounts immediately for all queue usage up to
1019 * the current jiffies and restarts the counters again. 1021 * the current jiffies and restarts the counters again.
1020 */ 1022 */
1021 void part_round_stats(int cpu, struct hd_struct *part) 1023 void part_round_stats(int cpu, struct hd_struct *part)
1022 { 1024 {
1023 unsigned long now = jiffies; 1025 unsigned long now = jiffies;
1024 1026
1025 if (part->partno) 1027 if (part->partno)
1026 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1028 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1027 part_round_stats_single(cpu, part, now); 1029 part_round_stats_single(cpu, part, now);
1028 } 1030 }
1029 EXPORT_SYMBOL_GPL(part_round_stats); 1031 EXPORT_SYMBOL_GPL(part_round_stats);
1030 1032
1031 /* 1033 /*
1032 * queue lock must be held 1034 * queue lock must be held
1033 */ 1035 */
1034 void __blk_put_request(struct request_queue *q, struct request *req) 1036 void __blk_put_request(struct request_queue *q, struct request *req)
1035 { 1037 {
1036 if (unlikely(!q)) 1038 if (unlikely(!q))
1037 return; 1039 return;
1038 if (unlikely(--req->ref_count)) 1040 if (unlikely(--req->ref_count))
1039 return; 1041 return;
1040 1042
1041 elv_completed_request(q, req); 1043 elv_completed_request(q, req);
1042 1044
1043 /* this is a bio leak */ 1045 /* this is a bio leak */
1044 WARN_ON(req->bio != NULL); 1046 WARN_ON(req->bio != NULL);
1045 1047
1046 /* 1048 /*
1047 * Request may not have originated from ll_rw_blk. if not, 1049 * Request may not have originated from ll_rw_blk. if not,
1048 * it didn't come out of our reserved rq pools 1050 * it didn't come out of our reserved rq pools
1049 */ 1051 */
1050 if (req->cmd_flags & REQ_ALLOCED) { 1052 if (req->cmd_flags & REQ_ALLOCED) {
1051 int is_sync = rq_is_sync(req) != 0; 1053 int is_sync = rq_is_sync(req) != 0;
1052 int priv = req->cmd_flags & REQ_ELVPRIV; 1054 int priv = req->cmd_flags & REQ_ELVPRIV;
1053 1055
1054 BUG_ON(!list_empty(&req->queuelist)); 1056 BUG_ON(!list_empty(&req->queuelist));
1055 BUG_ON(!hlist_unhashed(&req->hash)); 1057 BUG_ON(!hlist_unhashed(&req->hash));
1056 1058
1057 blk_free_request(q, req); 1059 blk_free_request(q, req);
1058 freed_request(q, is_sync, priv); 1060 freed_request(q, is_sync, priv);
1059 } 1061 }
1060 } 1062 }
1061 EXPORT_SYMBOL_GPL(__blk_put_request); 1063 EXPORT_SYMBOL_GPL(__blk_put_request);
1062 1064
1063 void blk_put_request(struct request *req) 1065 void blk_put_request(struct request *req)
1064 { 1066 {
1065 unsigned long flags; 1067 unsigned long flags;
1066 struct request_queue *q = req->q; 1068 struct request_queue *q = req->q;
1067 1069
1068 spin_lock_irqsave(q->queue_lock, flags); 1070 spin_lock_irqsave(q->queue_lock, flags);
1069 __blk_put_request(q, req); 1071 __blk_put_request(q, req);
1070 spin_unlock_irqrestore(q->queue_lock, flags); 1072 spin_unlock_irqrestore(q->queue_lock, flags);
1071 } 1073 }
1072 EXPORT_SYMBOL(blk_put_request); 1074 EXPORT_SYMBOL(blk_put_request);
1073 1075
1074 /** 1076 /**
1075 * blk_add_request_payload - add a payload to a request 1077 * blk_add_request_payload - add a payload to a request
1076 * @rq: request to update 1078 * @rq: request to update
1077 * @page: page backing the payload 1079 * @page: page backing the payload
1078 * @len: length of the payload. 1080 * @len: length of the payload.
1079 * 1081 *
1080 * This allows to later add a payload to an already submitted request by 1082 * This allows to later add a payload to an already submitted request by
1081 * a block driver. The driver needs to take care of freeing the payload 1083 * a block driver. The driver needs to take care of freeing the payload
1082 * itself. 1084 * itself.
1083 * 1085 *
1084 * Note that this is a quite horrible hack and nothing but handling of 1086 * Note that this is a quite horrible hack and nothing but handling of
1085 * discard requests should ever use it. 1087 * discard requests should ever use it.
1086 */ 1088 */
1087 void blk_add_request_payload(struct request *rq, struct page *page, 1089 void blk_add_request_payload(struct request *rq, struct page *page,
1088 unsigned int len) 1090 unsigned int len)
1089 { 1091 {
1090 struct bio *bio = rq->bio; 1092 struct bio *bio = rq->bio;
1091 1093
1092 bio->bi_io_vec->bv_page = page; 1094 bio->bi_io_vec->bv_page = page;
1093 bio->bi_io_vec->bv_offset = 0; 1095 bio->bi_io_vec->bv_offset = 0;
1094 bio->bi_io_vec->bv_len = len; 1096 bio->bi_io_vec->bv_len = len;
1095 1097
1096 bio->bi_size = len; 1098 bio->bi_size = len;
1097 bio->bi_vcnt = 1; 1099 bio->bi_vcnt = 1;
1098 bio->bi_phys_segments = 1; 1100 bio->bi_phys_segments = 1;
1099 1101
1100 rq->__data_len = rq->resid_len = len; 1102 rq->__data_len = rq->resid_len = len;
1101 rq->nr_phys_segments = 1; 1103 rq->nr_phys_segments = 1;
1102 rq->buffer = bio_data(bio); 1104 rq->buffer = bio_data(bio);
1103 } 1105 }
1104 EXPORT_SYMBOL_GPL(blk_add_request_payload); 1106 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1105 1107
1106 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 1108 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1107 struct bio *bio) 1109 struct bio *bio)
1108 { 1110 {
1109 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1111 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1110 1112
1111 /* 1113 /*
1112 * Debug stuff, kill later 1114 * Debug stuff, kill later
1113 */ 1115 */
1114 if (!rq_mergeable(req)) { 1116 if (!rq_mergeable(req)) {
1115 blk_dump_rq_flags(req, "back"); 1117 blk_dump_rq_flags(req, "back");
1116 return false; 1118 return false;
1117 } 1119 }
1118 1120
1119 if (!ll_back_merge_fn(q, req, bio)) 1121 if (!ll_back_merge_fn(q, req, bio))
1120 return false; 1122 return false;
1121 1123
1122 trace_block_bio_backmerge(q, bio); 1124 trace_block_bio_backmerge(q, bio);
1123 1125
1124 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1126 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1125 blk_rq_set_mixed_merge(req); 1127 blk_rq_set_mixed_merge(req);
1126 1128
1127 req->biotail->bi_next = bio; 1129 req->biotail->bi_next = bio;
1128 req->biotail = bio; 1130 req->biotail = bio;
1129 req->__data_len += bio->bi_size; 1131 req->__data_len += bio->bi_size;
1130 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1132 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1131 1133
1132 drive_stat_acct(req, 0); 1134 drive_stat_acct(req, 0);
1133 return true; 1135 return true;
1134 } 1136 }
1135 1137
1136 static bool bio_attempt_front_merge(struct request_queue *q, 1138 static bool bio_attempt_front_merge(struct request_queue *q,
1137 struct request *req, struct bio *bio) 1139 struct request *req, struct bio *bio)
1138 { 1140 {
1139 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1141 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1140 sector_t sector; 1142 sector_t sector;
1141 1143
1142 /* 1144 /*
1143 * Debug stuff, kill later 1145 * Debug stuff, kill later
1144 */ 1146 */
1145 if (!rq_mergeable(req)) { 1147 if (!rq_mergeable(req)) {
1146 blk_dump_rq_flags(req, "front"); 1148 blk_dump_rq_flags(req, "front");
1147 return false; 1149 return false;
1148 } 1150 }
1149 1151
1150 if (!ll_front_merge_fn(q, req, bio)) 1152 if (!ll_front_merge_fn(q, req, bio))
1151 return false; 1153 return false;
1152 1154
1153 trace_block_bio_frontmerge(q, bio); 1155 trace_block_bio_frontmerge(q, bio);
1154 1156
1155 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1157 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1156 blk_rq_set_mixed_merge(req); 1158 blk_rq_set_mixed_merge(req);
1157 1159
1158 sector = bio->bi_sector; 1160 sector = bio->bi_sector;
1159 1161
1160 bio->bi_next = req->bio; 1162 bio->bi_next = req->bio;
1161 req->bio = bio; 1163 req->bio = bio;
1162 1164
1163 /* 1165 /*
1164 * may not be valid. if the low level driver said 1166 * may not be valid. if the low level driver said
1165 * it didn't need a bounce buffer then it better 1167 * it didn't need a bounce buffer then it better
1166 * not touch req->buffer either... 1168 * not touch req->buffer either...
1167 */ 1169 */
1168 req->buffer = bio_data(bio); 1170 req->buffer = bio_data(bio);
1169 req->__sector = bio->bi_sector; 1171 req->__sector = bio->bi_sector;
1170 req->__data_len += bio->bi_size; 1172 req->__data_len += bio->bi_size;
1171 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1173 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1172 1174
1173 drive_stat_acct(req, 0); 1175 drive_stat_acct(req, 0);
1174 return true; 1176 return true;
1175 } 1177 }
1176 1178
1177 /* 1179 /*
1178 * Attempts to merge with the plugged list in the current process. Returns 1180 * Attempts to merge with the plugged list in the current process. Returns
1179 * true if merge was successful, otherwise false. 1181 * true if merge was successful, otherwise false.
1180 */ 1182 */
1181 static bool attempt_plug_merge(struct task_struct *tsk, struct request_queue *q, 1183 static bool attempt_plug_merge(struct task_struct *tsk, struct request_queue *q,
1182 struct bio *bio) 1184 struct bio *bio)
1183 { 1185 {
1184 struct blk_plug *plug; 1186 struct blk_plug *plug;
1185 struct request *rq; 1187 struct request *rq;
1186 bool ret = false; 1188 bool ret = false;
1187 1189
1188 plug = tsk->plug; 1190 plug = tsk->plug;
1189 if (!plug) 1191 if (!plug)
1190 goto out; 1192 goto out;
1191 1193
1192 list_for_each_entry_reverse(rq, &plug->list, queuelist) { 1194 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1193 int el_ret; 1195 int el_ret;
1194 1196
1195 if (rq->q != q) 1197 if (rq->q != q)
1196 continue; 1198 continue;
1197 1199
1198 el_ret = elv_try_merge(rq, bio); 1200 el_ret = elv_try_merge(rq, bio);
1199 if (el_ret == ELEVATOR_BACK_MERGE) { 1201 if (el_ret == ELEVATOR_BACK_MERGE) {
1200 ret = bio_attempt_back_merge(q, rq, bio); 1202 ret = bio_attempt_back_merge(q, rq, bio);
1201 if (ret) 1203 if (ret)
1202 break; 1204 break;
1203 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1205 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1204 ret = bio_attempt_front_merge(q, rq, bio); 1206 ret = bio_attempt_front_merge(q, rq, bio);
1205 if (ret) 1207 if (ret)
1206 break; 1208 break;
1207 } 1209 }
1208 } 1210 }
1209 out: 1211 out:
1210 return ret; 1212 return ret;
1211 } 1213 }
1212 1214
1213 void init_request_from_bio(struct request *req, struct bio *bio) 1215 void init_request_from_bio(struct request *req, struct bio *bio)
1214 { 1216 {
1215 req->cpu = bio->bi_comp_cpu; 1217 req->cpu = bio->bi_comp_cpu;
1216 req->cmd_type = REQ_TYPE_FS; 1218 req->cmd_type = REQ_TYPE_FS;
1217 1219
1218 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK; 1220 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1219 if (bio->bi_rw & REQ_RAHEAD) 1221 if (bio->bi_rw & REQ_RAHEAD)
1220 req->cmd_flags |= REQ_FAILFAST_MASK; 1222 req->cmd_flags |= REQ_FAILFAST_MASK;
1221 1223
1222 req->errors = 0; 1224 req->errors = 0;
1223 req->__sector = bio->bi_sector; 1225 req->__sector = bio->bi_sector;
1224 req->ioprio = bio_prio(bio); 1226 req->ioprio = bio_prio(bio);
1225 blk_rq_bio_prep(req->q, req, bio); 1227 blk_rq_bio_prep(req->q, req, bio);
1226 } 1228 }
1227 1229
1228 static int __make_request(struct request_queue *q, struct bio *bio) 1230 static int __make_request(struct request_queue *q, struct bio *bio)
1229 { 1231 {
1230 const bool sync = !!(bio->bi_rw & REQ_SYNC); 1232 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1231 struct blk_plug *plug; 1233 struct blk_plug *plug;
1232 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT; 1234 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1233 struct request *req; 1235 struct request *req;
1234 1236
1235 /* 1237 /*
1236 * low level driver can indicate that it wants pages above a 1238 * low level driver can indicate that it wants pages above a
1237 * certain limit bounced to low memory (ie for highmem, or even 1239 * certain limit bounced to low memory (ie for highmem, or even
1238 * ISA dma in theory) 1240 * ISA dma in theory)
1239 */ 1241 */
1240 blk_queue_bounce(q, &bio); 1242 blk_queue_bounce(q, &bio);
1241 1243
1242 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) { 1244 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1243 spin_lock_irq(q->queue_lock); 1245 spin_lock_irq(q->queue_lock);
1244 where = ELEVATOR_INSERT_FLUSH; 1246 where = ELEVATOR_INSERT_FLUSH;
1245 goto get_rq; 1247 goto get_rq;
1246 } 1248 }
1247 1249
1248 /* 1250 /*
1249 * Check if we can merge with the plugged list before grabbing 1251 * Check if we can merge with the plugged list before grabbing
1250 * any locks. 1252 * any locks.
1251 */ 1253 */
1252 if (attempt_plug_merge(current, q, bio)) 1254 if (attempt_plug_merge(current, q, bio))
1253 goto out; 1255 goto out;
1254 1256
1255 spin_lock_irq(q->queue_lock); 1257 spin_lock_irq(q->queue_lock);
1256 1258
1257 el_ret = elv_merge(q, &req, bio); 1259 el_ret = elv_merge(q, &req, bio);
1258 if (el_ret == ELEVATOR_BACK_MERGE) { 1260 if (el_ret == ELEVATOR_BACK_MERGE) {
1259 BUG_ON(req->cmd_flags & REQ_ON_PLUG); 1261 BUG_ON(req->cmd_flags & REQ_ON_PLUG);
1260 if (bio_attempt_back_merge(q, req, bio)) { 1262 if (bio_attempt_back_merge(q, req, bio)) {
1261 if (!attempt_back_merge(q, req)) 1263 if (!attempt_back_merge(q, req))
1262 elv_merged_request(q, req, el_ret); 1264 elv_merged_request(q, req, el_ret);
1263 goto out_unlock; 1265 goto out_unlock;
1264 } 1266 }
1265 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1267 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1266 BUG_ON(req->cmd_flags & REQ_ON_PLUG); 1268 BUG_ON(req->cmd_flags & REQ_ON_PLUG);
1267 if (bio_attempt_front_merge(q, req, bio)) { 1269 if (bio_attempt_front_merge(q, req, bio)) {
1268 if (!attempt_front_merge(q, req)) 1270 if (!attempt_front_merge(q, req))
1269 elv_merged_request(q, req, el_ret); 1271 elv_merged_request(q, req, el_ret);
1270 goto out_unlock; 1272 goto out_unlock;
1271 } 1273 }
1272 } 1274 }
1273 1275
1274 get_rq: 1276 get_rq:
1275 /* 1277 /*
1276 * This sync check and mask will be re-done in init_request_from_bio(), 1278 * This sync check and mask will be re-done in init_request_from_bio(),
1277 * but we need to set it earlier to expose the sync flag to the 1279 * but we need to set it earlier to expose the sync flag to the
1278 * rq allocator and io schedulers. 1280 * rq allocator and io schedulers.
1279 */ 1281 */
1280 rw_flags = bio_data_dir(bio); 1282 rw_flags = bio_data_dir(bio);
1281 if (sync) 1283 if (sync)
1282 rw_flags |= REQ_SYNC; 1284 rw_flags |= REQ_SYNC;
1283 1285
1284 /* 1286 /*
1285 * Grab a free request. This is might sleep but can not fail. 1287 * Grab a free request. This is might sleep but can not fail.
1286 * Returns with the queue unlocked. 1288 * Returns with the queue unlocked.
1287 */ 1289 */
1288 req = get_request_wait(q, rw_flags, bio); 1290 req = get_request_wait(q, rw_flags, bio);
1289 1291
1290 /* 1292 /*
1291 * After dropping the lock and possibly sleeping here, our request 1293 * After dropping the lock and possibly sleeping here, our request
1292 * may now be mergeable after it had proven unmergeable (above). 1294 * may now be mergeable after it had proven unmergeable (above).
1293 * We don't worry about that case for efficiency. It won't happen 1295 * We don't worry about that case for efficiency. It won't happen
1294 * often, and the elevators are able to handle it. 1296 * often, and the elevators are able to handle it.
1295 */ 1297 */
1296 init_request_from_bio(req, bio); 1298 init_request_from_bio(req, bio);
1297 1299
1298 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) || 1300 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1299 bio_flagged(bio, BIO_CPU_AFFINE)) { 1301 bio_flagged(bio, BIO_CPU_AFFINE)) {
1300 req->cpu = blk_cpu_to_group(get_cpu()); 1302 req->cpu = blk_cpu_to_group(get_cpu());
1301 put_cpu(); 1303 put_cpu();
1302 } 1304 }
1303 1305
1304 plug = current->plug; 1306 plug = current->plug;
1305 if (plug) { 1307 if (plug) {
1306 /* 1308 /*
1307 * If this is the first request added after a plug, fire 1309 * If this is the first request added after a plug, fire
1308 * of a plug trace. If others have been added before, check 1310 * of a plug trace. If others have been added before, check
1309 * if we have multiple devices in this plug. If so, make a 1311 * if we have multiple devices in this plug. If so, make a
1310 * note to sort the list before dispatch. 1312 * note to sort the list before dispatch.
1311 */ 1313 */
1312 if (list_empty(&plug->list)) 1314 if (list_empty(&plug->list))
1313 trace_block_plug(q); 1315 trace_block_plug(q);
1314 else if (!plug->should_sort) { 1316 else if (!plug->should_sort) {
1315 struct request *__rq; 1317 struct request *__rq;
1316 1318
1317 __rq = list_entry_rq(plug->list.prev); 1319 __rq = list_entry_rq(plug->list.prev);
1318 if (__rq->q != q) 1320 if (__rq->q != q)
1319 plug->should_sort = 1; 1321 plug->should_sort = 1;
1320 } 1322 }
1321 /* 1323 /*
1322 * Debug flag, kill later 1324 * Debug flag, kill later
1323 */ 1325 */
1324 req->cmd_flags |= REQ_ON_PLUG; 1326 req->cmd_flags |= REQ_ON_PLUG;
1325 list_add_tail(&req->queuelist, &plug->list); 1327 list_add_tail(&req->queuelist, &plug->list);
1326 drive_stat_acct(req, 1); 1328 drive_stat_acct(req, 1);
1327 } else { 1329 } else {
1328 spin_lock_irq(q->queue_lock); 1330 spin_lock_irq(q->queue_lock);
1329 add_acct_request(q, req, where); 1331 add_acct_request(q, req, where);
1330 __blk_run_queue(q); 1332 __blk_run_queue(q);
1331 out_unlock: 1333 out_unlock:
1332 spin_unlock_irq(q->queue_lock); 1334 spin_unlock_irq(q->queue_lock);
1333 } 1335 }
1334 out: 1336 out:
1335 return 0; 1337 return 0;
1336 } 1338 }
1337 1339
1338 /* 1340 /*
1339 * If bio->bi_dev is a partition, remap the location 1341 * If bio->bi_dev is a partition, remap the location
1340 */ 1342 */
1341 static inline void blk_partition_remap(struct bio *bio) 1343 static inline void blk_partition_remap(struct bio *bio)
1342 { 1344 {
1343 struct block_device *bdev = bio->bi_bdev; 1345 struct block_device *bdev = bio->bi_bdev;
1344 1346
1345 if (bio_sectors(bio) && bdev != bdev->bd_contains) { 1347 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1346 struct hd_struct *p = bdev->bd_part; 1348 struct hd_struct *p = bdev->bd_part;
1347 1349
1348 bio->bi_sector += p->start_sect; 1350 bio->bi_sector += p->start_sect;
1349 bio->bi_bdev = bdev->bd_contains; 1351 bio->bi_bdev = bdev->bd_contains;
1350 1352
1351 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio, 1353 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1352 bdev->bd_dev, 1354 bdev->bd_dev,
1353 bio->bi_sector - p->start_sect); 1355 bio->bi_sector - p->start_sect);
1354 } 1356 }
1355 } 1357 }
1356 1358
1357 static void handle_bad_sector(struct bio *bio) 1359 static void handle_bad_sector(struct bio *bio)
1358 { 1360 {
1359 char b[BDEVNAME_SIZE]; 1361 char b[BDEVNAME_SIZE];
1360 1362
1361 printk(KERN_INFO "attempt to access beyond end of device\n"); 1363 printk(KERN_INFO "attempt to access beyond end of device\n");
1362 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n", 1364 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1363 bdevname(bio->bi_bdev, b), 1365 bdevname(bio->bi_bdev, b),
1364 bio->bi_rw, 1366 bio->bi_rw,
1365 (unsigned long long)bio->bi_sector + bio_sectors(bio), 1367 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1366 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9)); 1368 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1367 1369
1368 set_bit(BIO_EOF, &bio->bi_flags); 1370 set_bit(BIO_EOF, &bio->bi_flags);
1369 } 1371 }
1370 1372
1371 #ifdef CONFIG_FAIL_MAKE_REQUEST 1373 #ifdef CONFIG_FAIL_MAKE_REQUEST
1372 1374
1373 static DECLARE_FAULT_ATTR(fail_make_request); 1375 static DECLARE_FAULT_ATTR(fail_make_request);
1374 1376
1375 static int __init setup_fail_make_request(char *str) 1377 static int __init setup_fail_make_request(char *str)
1376 { 1378 {
1377 return setup_fault_attr(&fail_make_request, str); 1379 return setup_fault_attr(&fail_make_request, str);
1378 } 1380 }
1379 __setup("fail_make_request=", setup_fail_make_request); 1381 __setup("fail_make_request=", setup_fail_make_request);
1380 1382
1381 static int should_fail_request(struct bio *bio) 1383 static int should_fail_request(struct bio *bio)
1382 { 1384 {
1383 struct hd_struct *part = bio->bi_bdev->bd_part; 1385 struct hd_struct *part = bio->bi_bdev->bd_part;
1384 1386
1385 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail) 1387 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1386 return should_fail(&fail_make_request, bio->bi_size); 1388 return should_fail(&fail_make_request, bio->bi_size);
1387 1389
1388 return 0; 1390 return 0;
1389 } 1391 }
1390 1392
1391 static int __init fail_make_request_debugfs(void) 1393 static int __init fail_make_request_debugfs(void)
1392 { 1394 {
1393 return init_fault_attr_dentries(&fail_make_request, 1395 return init_fault_attr_dentries(&fail_make_request,
1394 "fail_make_request"); 1396 "fail_make_request");
1395 } 1397 }
1396 1398
1397 late_initcall(fail_make_request_debugfs); 1399 late_initcall(fail_make_request_debugfs);
1398 1400
1399 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1401 #else /* CONFIG_FAIL_MAKE_REQUEST */
1400 1402
1401 static inline int should_fail_request(struct bio *bio) 1403 static inline int should_fail_request(struct bio *bio)
1402 { 1404 {
1403 return 0; 1405 return 0;
1404 } 1406 }
1405 1407
1406 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1408 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1407 1409
1408 /* 1410 /*
1409 * Check whether this bio extends beyond the end of the device. 1411 * Check whether this bio extends beyond the end of the device.
1410 */ 1412 */
1411 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1413 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1412 { 1414 {
1413 sector_t maxsector; 1415 sector_t maxsector;
1414 1416
1415 if (!nr_sectors) 1417 if (!nr_sectors)
1416 return 0; 1418 return 0;
1417 1419
1418 /* Test device or partition size, when known. */ 1420 /* Test device or partition size, when known. */
1419 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 1421 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1420 if (maxsector) { 1422 if (maxsector) {
1421 sector_t sector = bio->bi_sector; 1423 sector_t sector = bio->bi_sector;
1422 1424
1423 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1425 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1424 /* 1426 /*
1425 * This may well happen - the kernel calls bread() 1427 * This may well happen - the kernel calls bread()
1426 * without checking the size of the device, e.g., when 1428 * without checking the size of the device, e.g., when
1427 * mounting a device. 1429 * mounting a device.
1428 */ 1430 */
1429 handle_bad_sector(bio); 1431 handle_bad_sector(bio);
1430 return 1; 1432 return 1;
1431 } 1433 }
1432 } 1434 }
1433 1435
1434 return 0; 1436 return 0;
1435 } 1437 }
1436 1438
1437 /** 1439 /**
1438 * generic_make_request - hand a buffer to its device driver for I/O 1440 * generic_make_request - hand a buffer to its device driver for I/O
1439 * @bio: The bio describing the location in memory and on the device. 1441 * @bio: The bio describing the location in memory and on the device.
1440 * 1442 *
1441 * generic_make_request() is used to make I/O requests of block 1443 * generic_make_request() is used to make I/O requests of block
1442 * devices. It is passed a &struct bio, which describes the I/O that needs 1444 * devices. It is passed a &struct bio, which describes the I/O that needs
1443 * to be done. 1445 * to be done.
1444 * 1446 *
1445 * generic_make_request() does not return any status. The 1447 * generic_make_request() does not return any status. The
1446 * success/failure status of the request, along with notification of 1448 * success/failure status of the request, along with notification of
1447 * completion, is delivered asynchronously through the bio->bi_end_io 1449 * completion, is delivered asynchronously through the bio->bi_end_io
1448 * function described (one day) else where. 1450 * function described (one day) else where.
1449 * 1451 *
1450 * The caller of generic_make_request must make sure that bi_io_vec 1452 * The caller of generic_make_request must make sure that bi_io_vec
1451 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1453 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1452 * set to describe the device address, and the 1454 * set to describe the device address, and the
1453 * bi_end_io and optionally bi_private are set to describe how 1455 * bi_end_io and optionally bi_private are set to describe how
1454 * completion notification should be signaled. 1456 * completion notification should be signaled.
1455 * 1457 *
1456 * generic_make_request and the drivers it calls may use bi_next if this 1458 * generic_make_request and the drivers it calls may use bi_next if this
1457 * bio happens to be merged with someone else, and may change bi_dev and 1459 * bio happens to be merged with someone else, and may change bi_dev and
1458 * bi_sector for remaps as it sees fit. So the values of these fields 1460 * bi_sector for remaps as it sees fit. So the values of these fields
1459 * should NOT be depended on after the call to generic_make_request. 1461 * should NOT be depended on after the call to generic_make_request.
1460 */ 1462 */
1461 static inline void __generic_make_request(struct bio *bio) 1463 static inline void __generic_make_request(struct bio *bio)
1462 { 1464 {
1463 struct request_queue *q; 1465 struct request_queue *q;
1464 sector_t old_sector; 1466 sector_t old_sector;
1465 int ret, nr_sectors = bio_sectors(bio); 1467 int ret, nr_sectors = bio_sectors(bio);
1466 dev_t old_dev; 1468 dev_t old_dev;
1467 int err = -EIO; 1469 int err = -EIO;
1468 1470
1469 might_sleep(); 1471 might_sleep();
1470 1472
1471 if (bio_check_eod(bio, nr_sectors)) 1473 if (bio_check_eod(bio, nr_sectors))
1472 goto end_io; 1474 goto end_io;
1473 1475
1474 /* 1476 /*
1475 * Resolve the mapping until finished. (drivers are 1477 * Resolve the mapping until finished. (drivers are
1476 * still free to implement/resolve their own stacking 1478 * still free to implement/resolve their own stacking
1477 * by explicitly returning 0) 1479 * by explicitly returning 0)
1478 * 1480 *
1479 * NOTE: we don't repeat the blk_size check for each new device. 1481 * NOTE: we don't repeat the blk_size check for each new device.
1480 * Stacking drivers are expected to know what they are doing. 1482 * Stacking drivers are expected to know what they are doing.
1481 */ 1483 */
1482 old_sector = -1; 1484 old_sector = -1;
1483 old_dev = 0; 1485 old_dev = 0;
1484 do { 1486 do {
1485 char b[BDEVNAME_SIZE]; 1487 char b[BDEVNAME_SIZE];
1486 1488
1487 q = bdev_get_queue(bio->bi_bdev); 1489 q = bdev_get_queue(bio->bi_bdev);
1488 if (unlikely(!q)) { 1490 if (unlikely(!q)) {
1489 printk(KERN_ERR 1491 printk(KERN_ERR
1490 "generic_make_request: Trying to access " 1492 "generic_make_request: Trying to access "
1491 "nonexistent block-device %s (%Lu)\n", 1493 "nonexistent block-device %s (%Lu)\n",
1492 bdevname(bio->bi_bdev, b), 1494 bdevname(bio->bi_bdev, b),
1493 (long long) bio->bi_sector); 1495 (long long) bio->bi_sector);
1494 goto end_io; 1496 goto end_io;
1495 } 1497 }
1496 1498
1497 if (unlikely(!(bio->bi_rw & REQ_DISCARD) && 1499 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1498 nr_sectors > queue_max_hw_sectors(q))) { 1500 nr_sectors > queue_max_hw_sectors(q))) {
1499 printk(KERN_ERR "bio too big device %s (%u > %u)\n", 1501 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1500 bdevname(bio->bi_bdev, b), 1502 bdevname(bio->bi_bdev, b),
1501 bio_sectors(bio), 1503 bio_sectors(bio),
1502 queue_max_hw_sectors(q)); 1504 queue_max_hw_sectors(q));
1503 goto end_io; 1505 goto end_io;
1504 } 1506 }
1505 1507
1506 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) 1508 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1507 goto end_io; 1509 goto end_io;
1508 1510
1509 if (should_fail_request(bio)) 1511 if (should_fail_request(bio))
1510 goto end_io; 1512 goto end_io;
1511 1513
1512 /* 1514 /*
1513 * If this device has partitions, remap block n 1515 * If this device has partitions, remap block n
1514 * of partition p to block n+start(p) of the disk. 1516 * of partition p to block n+start(p) of the disk.
1515 */ 1517 */
1516 blk_partition_remap(bio); 1518 blk_partition_remap(bio);
1517 1519
1518 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) 1520 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1519 goto end_io; 1521 goto end_io;
1520 1522
1521 if (old_sector != -1) 1523 if (old_sector != -1)
1522 trace_block_bio_remap(q, bio, old_dev, old_sector); 1524 trace_block_bio_remap(q, bio, old_dev, old_sector);
1523 1525
1524 old_sector = bio->bi_sector; 1526 old_sector = bio->bi_sector;
1525 old_dev = bio->bi_bdev->bd_dev; 1527 old_dev = bio->bi_bdev->bd_dev;
1526 1528
1527 if (bio_check_eod(bio, nr_sectors)) 1529 if (bio_check_eod(bio, nr_sectors))
1528 goto end_io; 1530 goto end_io;
1529 1531
1530 /* 1532 /*
1531 * Filter flush bio's early so that make_request based 1533 * Filter flush bio's early so that make_request based
1532 * drivers without flush support don't have to worry 1534 * drivers without flush support don't have to worry
1533 * about them. 1535 * about them.
1534 */ 1536 */
1535 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) { 1537 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1536 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA); 1538 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1537 if (!nr_sectors) { 1539 if (!nr_sectors) {
1538 err = 0; 1540 err = 0;
1539 goto end_io; 1541 goto end_io;
1540 } 1542 }
1541 } 1543 }
1542 1544
1543 if ((bio->bi_rw & REQ_DISCARD) && 1545 if ((bio->bi_rw & REQ_DISCARD) &&
1544 (!blk_queue_discard(q) || 1546 (!blk_queue_discard(q) ||
1545 ((bio->bi_rw & REQ_SECURE) && 1547 ((bio->bi_rw & REQ_SECURE) &&
1546 !blk_queue_secdiscard(q)))) { 1548 !blk_queue_secdiscard(q)))) {
1547 err = -EOPNOTSUPP; 1549 err = -EOPNOTSUPP;
1548 goto end_io; 1550 goto end_io;
1549 } 1551 }
1550 1552
1551 blk_throtl_bio(q, &bio); 1553 blk_throtl_bio(q, &bio);
1552 1554
1553 /* 1555 /*
1554 * If bio = NULL, bio has been throttled and will be submitted 1556 * If bio = NULL, bio has been throttled and will be submitted
1555 * later. 1557 * later.
1556 */ 1558 */
1557 if (!bio) 1559 if (!bio)
1558 break; 1560 break;
1559 1561
1560 trace_block_bio_queue(q, bio); 1562 trace_block_bio_queue(q, bio);
1561 1563
1562 ret = q->make_request_fn(q, bio); 1564 ret = q->make_request_fn(q, bio);
1563 } while (ret); 1565 } while (ret);
1564 1566
1565 return; 1567 return;
1566 1568
1567 end_io: 1569 end_io:
1568 bio_endio(bio, err); 1570 bio_endio(bio, err);
1569 } 1571 }
1570 1572
1571 /* 1573 /*
1572 * We only want one ->make_request_fn to be active at a time, 1574 * We only want one ->make_request_fn to be active at a time,
1573 * else stack usage with stacked devices could be a problem. 1575 * else stack usage with stacked devices could be a problem.
1574 * So use current->bio_list to keep a list of requests 1576 * So use current->bio_list to keep a list of requests
1575 * submited by a make_request_fn function. 1577 * submited by a make_request_fn function.
1576 * current->bio_list is also used as a flag to say if 1578 * current->bio_list is also used as a flag to say if
1577 * generic_make_request is currently active in this task or not. 1579 * generic_make_request is currently active in this task or not.
1578 * If it is NULL, then no make_request is active. If it is non-NULL, 1580 * If it is NULL, then no make_request is active. If it is non-NULL,
1579 * then a make_request is active, and new requests should be added 1581 * then a make_request is active, and new requests should be added
1580 * at the tail 1582 * at the tail
1581 */ 1583 */
1582 void generic_make_request(struct bio *bio) 1584 void generic_make_request(struct bio *bio)
1583 { 1585 {
1584 struct bio_list bio_list_on_stack; 1586 struct bio_list bio_list_on_stack;
1585 1587
1586 if (current->bio_list) { 1588 if (current->bio_list) {
1587 /* make_request is active */ 1589 /* make_request is active */
1588 bio_list_add(current->bio_list, bio); 1590 bio_list_add(current->bio_list, bio);
1589 return; 1591 return;
1590 } 1592 }
1591 /* following loop may be a bit non-obvious, and so deserves some 1593 /* following loop may be a bit non-obvious, and so deserves some
1592 * explanation. 1594 * explanation.
1593 * Before entering the loop, bio->bi_next is NULL (as all callers 1595 * Before entering the loop, bio->bi_next is NULL (as all callers
1594 * ensure that) so we have a list with a single bio. 1596 * ensure that) so we have a list with a single bio.
1595 * We pretend that we have just taken it off a longer list, so 1597 * We pretend that we have just taken it off a longer list, so
1596 * we assign bio_list to a pointer to the bio_list_on_stack, 1598 * we assign bio_list to a pointer to the bio_list_on_stack,
1597 * thus initialising the bio_list of new bios to be 1599 * thus initialising the bio_list of new bios to be
1598 * added. __generic_make_request may indeed add some more bios 1600 * added. __generic_make_request may indeed add some more bios
1599 * through a recursive call to generic_make_request. If it 1601 * through a recursive call to generic_make_request. If it
1600 * did, we find a non-NULL value in bio_list and re-enter the loop 1602 * did, we find a non-NULL value in bio_list and re-enter the loop
1601 * from the top. In this case we really did just take the bio 1603 * from the top. In this case we really did just take the bio
1602 * of the top of the list (no pretending) and so remove it from 1604 * of the top of the list (no pretending) and so remove it from
1603 * bio_list, and call into __generic_make_request again. 1605 * bio_list, and call into __generic_make_request again.
1604 * 1606 *
1605 * The loop was structured like this to make only one call to 1607 * The loop was structured like this to make only one call to
1606 * __generic_make_request (which is important as it is large and 1608 * __generic_make_request (which is important as it is large and
1607 * inlined) and to keep the structure simple. 1609 * inlined) and to keep the structure simple.
1608 */ 1610 */
1609 BUG_ON(bio->bi_next); 1611 BUG_ON(bio->bi_next);
1610 bio_list_init(&bio_list_on_stack); 1612 bio_list_init(&bio_list_on_stack);
1611 current->bio_list = &bio_list_on_stack; 1613 current->bio_list = &bio_list_on_stack;
1612 do { 1614 do {
1613 __generic_make_request(bio); 1615 __generic_make_request(bio);
1614 bio = bio_list_pop(current->bio_list); 1616 bio = bio_list_pop(current->bio_list);
1615 } while (bio); 1617 } while (bio);
1616 current->bio_list = NULL; /* deactivate */ 1618 current->bio_list = NULL; /* deactivate */
1617 } 1619 }
1618 EXPORT_SYMBOL(generic_make_request); 1620 EXPORT_SYMBOL(generic_make_request);
1619 1621
1620 /** 1622 /**
1621 * submit_bio - submit a bio to the block device layer for I/O 1623 * submit_bio - submit a bio to the block device layer for I/O
1622 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 1624 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1623 * @bio: The &struct bio which describes the I/O 1625 * @bio: The &struct bio which describes the I/O
1624 * 1626 *
1625 * submit_bio() is very similar in purpose to generic_make_request(), and 1627 * submit_bio() is very similar in purpose to generic_make_request(), and
1626 * uses that function to do most of the work. Both are fairly rough 1628 * uses that function to do most of the work. Both are fairly rough
1627 * interfaces; @bio must be presetup and ready for I/O. 1629 * interfaces; @bio must be presetup and ready for I/O.
1628 * 1630 *
1629 */ 1631 */
1630 void submit_bio(int rw, struct bio *bio) 1632 void submit_bio(int rw, struct bio *bio)
1631 { 1633 {
1632 int count = bio_sectors(bio); 1634 int count = bio_sectors(bio);
1633 1635
1634 bio->bi_rw |= rw; 1636 bio->bi_rw |= rw;
1635 1637
1636 /* 1638 /*
1637 * If it's a regular read/write or a barrier with data attached, 1639 * If it's a regular read/write or a barrier with data attached,
1638 * go through the normal accounting stuff before submission. 1640 * go through the normal accounting stuff before submission.
1639 */ 1641 */
1640 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) { 1642 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
1641 if (rw & WRITE) { 1643 if (rw & WRITE) {
1642 count_vm_events(PGPGOUT, count); 1644 count_vm_events(PGPGOUT, count);
1643 } else { 1645 } else {
1644 task_io_account_read(bio->bi_size); 1646 task_io_account_read(bio->bi_size);
1645 count_vm_events(PGPGIN, count); 1647 count_vm_events(PGPGIN, count);
1646 } 1648 }
1647 1649
1648 if (unlikely(block_dump)) { 1650 if (unlikely(block_dump)) {
1649 char b[BDEVNAME_SIZE]; 1651 char b[BDEVNAME_SIZE];
1650 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 1652 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1651 current->comm, task_pid_nr(current), 1653 current->comm, task_pid_nr(current),
1652 (rw & WRITE) ? "WRITE" : "READ", 1654 (rw & WRITE) ? "WRITE" : "READ",
1653 (unsigned long long)bio->bi_sector, 1655 (unsigned long long)bio->bi_sector,
1654 bdevname(bio->bi_bdev, b), 1656 bdevname(bio->bi_bdev, b),
1655 count); 1657 count);
1656 } 1658 }
1657 } 1659 }
1658 1660
1659 generic_make_request(bio); 1661 generic_make_request(bio);
1660 } 1662 }
1661 EXPORT_SYMBOL(submit_bio); 1663 EXPORT_SYMBOL(submit_bio);
1662 1664
1663 /** 1665 /**
1664 * blk_rq_check_limits - Helper function to check a request for the queue limit 1666 * blk_rq_check_limits - Helper function to check a request for the queue limit
1665 * @q: the queue 1667 * @q: the queue
1666 * @rq: the request being checked 1668 * @rq: the request being checked
1667 * 1669 *
1668 * Description: 1670 * Description:
1669 * @rq may have been made based on weaker limitations of upper-level queues 1671 * @rq may have been made based on weaker limitations of upper-level queues
1670 * in request stacking drivers, and it may violate the limitation of @q. 1672 * in request stacking drivers, and it may violate the limitation of @q.
1671 * Since the block layer and the underlying device driver trust @rq 1673 * Since the block layer and the underlying device driver trust @rq
1672 * after it is inserted to @q, it should be checked against @q before 1674 * after it is inserted to @q, it should be checked against @q before
1673 * the insertion using this generic function. 1675 * the insertion using this generic function.
1674 * 1676 *
1675 * This function should also be useful for request stacking drivers 1677 * This function should also be useful for request stacking drivers
1676 * in some cases below, so export this function. 1678 * in some cases below, so export this function.
1677 * Request stacking drivers like request-based dm may change the queue 1679 * Request stacking drivers like request-based dm may change the queue
1678 * limits while requests are in the queue (e.g. dm's table swapping). 1680 * limits while requests are in the queue (e.g. dm's table swapping).
1679 * Such request stacking drivers should check those requests agaist 1681 * Such request stacking drivers should check those requests agaist
1680 * the new queue limits again when they dispatch those requests, 1682 * the new queue limits again when they dispatch those requests,
1681 * although such checkings are also done against the old queue limits 1683 * although such checkings are also done against the old queue limits
1682 * when submitting requests. 1684 * when submitting requests.
1683 */ 1685 */
1684 int blk_rq_check_limits(struct request_queue *q, struct request *rq) 1686 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1685 { 1687 {
1686 if (rq->cmd_flags & REQ_DISCARD) 1688 if (rq->cmd_flags & REQ_DISCARD)
1687 return 0; 1689 return 0;
1688 1690
1689 if (blk_rq_sectors(rq) > queue_max_sectors(q) || 1691 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1690 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) { 1692 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1691 printk(KERN_ERR "%s: over max size limit.\n", __func__); 1693 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1692 return -EIO; 1694 return -EIO;
1693 } 1695 }
1694 1696
1695 /* 1697 /*
1696 * queue's settings related to segment counting like q->bounce_pfn 1698 * queue's settings related to segment counting like q->bounce_pfn
1697 * may differ from that of other stacking queues. 1699 * may differ from that of other stacking queues.
1698 * Recalculate it to check the request correctly on this queue's 1700 * Recalculate it to check the request correctly on this queue's
1699 * limitation. 1701 * limitation.
1700 */ 1702 */
1701 blk_recalc_rq_segments(rq); 1703 blk_recalc_rq_segments(rq);
1702 if (rq->nr_phys_segments > queue_max_segments(q)) { 1704 if (rq->nr_phys_segments > queue_max_segments(q)) {
1703 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 1705 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1704 return -EIO; 1706 return -EIO;
1705 } 1707 }
1706 1708
1707 return 0; 1709 return 0;
1708 } 1710 }
1709 EXPORT_SYMBOL_GPL(blk_rq_check_limits); 1711 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1710 1712
1711 /** 1713 /**
1712 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1714 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1713 * @q: the queue to submit the request 1715 * @q: the queue to submit the request
1714 * @rq: the request being queued 1716 * @rq: the request being queued
1715 */ 1717 */
1716 int blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1718 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1717 { 1719 {
1718 unsigned long flags; 1720 unsigned long flags;
1719 1721
1720 if (blk_rq_check_limits(q, rq)) 1722 if (blk_rq_check_limits(q, rq))
1721 return -EIO; 1723 return -EIO;
1722 1724
1723 #ifdef CONFIG_FAIL_MAKE_REQUEST 1725 #ifdef CONFIG_FAIL_MAKE_REQUEST
1724 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail && 1726 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1725 should_fail(&fail_make_request, blk_rq_bytes(rq))) 1727 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1726 return -EIO; 1728 return -EIO;
1727 #endif 1729 #endif
1728 1730
1729 spin_lock_irqsave(q->queue_lock, flags); 1731 spin_lock_irqsave(q->queue_lock, flags);
1730 1732
1731 /* 1733 /*
1732 * Submitting request must be dequeued before calling this function 1734 * Submitting request must be dequeued before calling this function
1733 * because it will be linked to another request_queue 1735 * because it will be linked to another request_queue
1734 */ 1736 */
1735 BUG_ON(blk_queued_rq(rq)); 1737 BUG_ON(blk_queued_rq(rq));
1736 1738
1737 add_acct_request(q, rq, ELEVATOR_INSERT_BACK); 1739 add_acct_request(q, rq, ELEVATOR_INSERT_BACK);
1738 spin_unlock_irqrestore(q->queue_lock, flags); 1740 spin_unlock_irqrestore(q->queue_lock, flags);
1739 1741
1740 return 0; 1742 return 0;
1741 } 1743 }
1742 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 1744 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1743 1745
1744 /** 1746 /**
1745 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 1747 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1746 * @rq: request to examine 1748 * @rq: request to examine
1747 * 1749 *
1748 * Description: 1750 * Description:
1749 * A request could be merge of IOs which require different failure 1751 * A request could be merge of IOs which require different failure
1750 * handling. This function determines the number of bytes which 1752 * handling. This function determines the number of bytes which
1751 * can be failed from the beginning of the request without 1753 * can be failed from the beginning of the request without
1752 * crossing into area which need to be retried further. 1754 * crossing into area which need to be retried further.
1753 * 1755 *
1754 * Return: 1756 * Return:
1755 * The number of bytes to fail. 1757 * The number of bytes to fail.
1756 * 1758 *
1757 * Context: 1759 * Context:
1758 * queue_lock must be held. 1760 * queue_lock must be held.
1759 */ 1761 */
1760 unsigned int blk_rq_err_bytes(const struct request *rq) 1762 unsigned int blk_rq_err_bytes(const struct request *rq)
1761 { 1763 {
1762 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 1764 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1763 unsigned int bytes = 0; 1765 unsigned int bytes = 0;
1764 struct bio *bio; 1766 struct bio *bio;
1765 1767
1766 if (!(rq->cmd_flags & REQ_MIXED_MERGE)) 1768 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1767 return blk_rq_bytes(rq); 1769 return blk_rq_bytes(rq);
1768 1770
1769 /* 1771 /*
1770 * Currently the only 'mixing' which can happen is between 1772 * Currently the only 'mixing' which can happen is between
1771 * different fastfail types. We can safely fail portions 1773 * different fastfail types. We can safely fail portions
1772 * which have all the failfast bits that the first one has - 1774 * which have all the failfast bits that the first one has -
1773 * the ones which are at least as eager to fail as the first 1775 * the ones which are at least as eager to fail as the first
1774 * one. 1776 * one.
1775 */ 1777 */
1776 for (bio = rq->bio; bio; bio = bio->bi_next) { 1778 for (bio = rq->bio; bio; bio = bio->bi_next) {
1777 if ((bio->bi_rw & ff) != ff) 1779 if ((bio->bi_rw & ff) != ff)
1778 break; 1780 break;
1779 bytes += bio->bi_size; 1781 bytes += bio->bi_size;
1780 } 1782 }
1781 1783
1782 /* this could lead to infinite loop */ 1784 /* this could lead to infinite loop */
1783 BUG_ON(blk_rq_bytes(rq) && !bytes); 1785 BUG_ON(blk_rq_bytes(rq) && !bytes);
1784 return bytes; 1786 return bytes;
1785 } 1787 }
1786 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 1788 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1787 1789
1788 static void blk_account_io_completion(struct request *req, unsigned int bytes) 1790 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1789 { 1791 {
1790 if (blk_do_io_stat(req)) { 1792 if (blk_do_io_stat(req)) {
1791 const int rw = rq_data_dir(req); 1793 const int rw = rq_data_dir(req);
1792 struct hd_struct *part; 1794 struct hd_struct *part;
1793 int cpu; 1795 int cpu;
1794 1796
1795 cpu = part_stat_lock(); 1797 cpu = part_stat_lock();
1796 part = req->part; 1798 part = req->part;
1797 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 1799 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1798 part_stat_unlock(); 1800 part_stat_unlock();
1799 } 1801 }
1800 } 1802 }
1801 1803
1802 static void blk_account_io_done(struct request *req) 1804 static void blk_account_io_done(struct request *req)
1803 { 1805 {
1804 /* 1806 /*
1805 * Account IO completion. flush_rq isn't accounted as a 1807 * Account IO completion. flush_rq isn't accounted as a
1806 * normal IO on queueing nor completion. Accounting the 1808 * normal IO on queueing nor completion. Accounting the
1807 * containing request is enough. 1809 * containing request is enough.
1808 */ 1810 */
1809 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) { 1811 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
1810 unsigned long duration = jiffies - req->start_time; 1812 unsigned long duration = jiffies - req->start_time;
1811 const int rw = rq_data_dir(req); 1813 const int rw = rq_data_dir(req);
1812 struct hd_struct *part; 1814 struct hd_struct *part;
1813 int cpu; 1815 int cpu;
1814 1816
1815 cpu = part_stat_lock(); 1817 cpu = part_stat_lock();
1816 part = req->part; 1818 part = req->part;
1817 1819
1818 part_stat_inc(cpu, part, ios[rw]); 1820 part_stat_inc(cpu, part, ios[rw]);
1819 part_stat_add(cpu, part, ticks[rw], duration); 1821 part_stat_add(cpu, part, ticks[rw], duration);
1820 part_round_stats(cpu, part); 1822 part_round_stats(cpu, part);
1821 part_dec_in_flight(part, rw); 1823 part_dec_in_flight(part, rw);
1822 1824
1823 hd_struct_put(part); 1825 hd_struct_put(part);
1824 part_stat_unlock(); 1826 part_stat_unlock();
1825 } 1827 }
1826 } 1828 }
1827 1829
1828 /** 1830 /**
1829 * blk_peek_request - peek at the top of a request queue 1831 * blk_peek_request - peek at the top of a request queue
1830 * @q: request queue to peek at 1832 * @q: request queue to peek at
1831 * 1833 *
1832 * Description: 1834 * Description:
1833 * Return the request at the top of @q. The returned request 1835 * Return the request at the top of @q. The returned request
1834 * should be started using blk_start_request() before LLD starts 1836 * should be started using blk_start_request() before LLD starts
1835 * processing it. 1837 * processing it.
1836 * 1838 *
1837 * Return: 1839 * Return:
1838 * Pointer to the request at the top of @q if available. Null 1840 * Pointer to the request at the top of @q if available. Null
1839 * otherwise. 1841 * otherwise.
1840 * 1842 *
1841 * Context: 1843 * Context:
1842 * queue_lock must be held. 1844 * queue_lock must be held.
1843 */ 1845 */
1844 struct request *blk_peek_request(struct request_queue *q) 1846 struct request *blk_peek_request(struct request_queue *q)
1845 { 1847 {
1846 struct request *rq; 1848 struct request *rq;
1847 int ret; 1849 int ret;
1848 1850
1849 while ((rq = __elv_next_request(q)) != NULL) { 1851 while ((rq = __elv_next_request(q)) != NULL) {
1850 if (!(rq->cmd_flags & REQ_STARTED)) { 1852 if (!(rq->cmd_flags & REQ_STARTED)) {
1851 /* 1853 /*
1852 * This is the first time the device driver 1854 * This is the first time the device driver
1853 * sees this request (possibly after 1855 * sees this request (possibly after
1854 * requeueing). Notify IO scheduler. 1856 * requeueing). Notify IO scheduler.
1855 */ 1857 */
1856 if (rq->cmd_flags & REQ_SORTED) 1858 if (rq->cmd_flags & REQ_SORTED)
1857 elv_activate_rq(q, rq); 1859 elv_activate_rq(q, rq);
1858 1860
1859 /* 1861 /*
1860 * just mark as started even if we don't start 1862 * just mark as started even if we don't start
1861 * it, a request that has been delayed should 1863 * it, a request that has been delayed should
1862 * not be passed by new incoming requests 1864 * not be passed by new incoming requests
1863 */ 1865 */
1864 rq->cmd_flags |= REQ_STARTED; 1866 rq->cmd_flags |= REQ_STARTED;
1865 trace_block_rq_issue(q, rq); 1867 trace_block_rq_issue(q, rq);
1866 } 1868 }
1867 1869
1868 if (!q->boundary_rq || q->boundary_rq == rq) { 1870 if (!q->boundary_rq || q->boundary_rq == rq) {
1869 q->end_sector = rq_end_sector(rq); 1871 q->end_sector = rq_end_sector(rq);
1870 q->boundary_rq = NULL; 1872 q->boundary_rq = NULL;
1871 } 1873 }
1872 1874
1873 if (rq->cmd_flags & REQ_DONTPREP) 1875 if (rq->cmd_flags & REQ_DONTPREP)
1874 break; 1876 break;
1875 1877
1876 if (q->dma_drain_size && blk_rq_bytes(rq)) { 1878 if (q->dma_drain_size && blk_rq_bytes(rq)) {
1877 /* 1879 /*
1878 * make sure space for the drain appears we 1880 * make sure space for the drain appears we
1879 * know we can do this because max_hw_segments 1881 * know we can do this because max_hw_segments
1880 * has been adjusted to be one fewer than the 1882 * has been adjusted to be one fewer than the
1881 * device can handle 1883 * device can handle
1882 */ 1884 */
1883 rq->nr_phys_segments++; 1885 rq->nr_phys_segments++;
1884 } 1886 }
1885 1887
1886 if (!q->prep_rq_fn) 1888 if (!q->prep_rq_fn)
1887 break; 1889 break;
1888 1890
1889 ret = q->prep_rq_fn(q, rq); 1891 ret = q->prep_rq_fn(q, rq);
1890 if (ret == BLKPREP_OK) { 1892 if (ret == BLKPREP_OK) {
1891 break; 1893 break;
1892 } else if (ret == BLKPREP_DEFER) { 1894 } else if (ret == BLKPREP_DEFER) {
1893 /* 1895 /*
1894 * the request may have been (partially) prepped. 1896 * the request may have been (partially) prepped.
1895 * we need to keep this request in the front to 1897 * we need to keep this request in the front to
1896 * avoid resource deadlock. REQ_STARTED will 1898 * avoid resource deadlock. REQ_STARTED will
1897 * prevent other fs requests from passing this one. 1899 * prevent other fs requests from passing this one.
1898 */ 1900 */
1899 if (q->dma_drain_size && blk_rq_bytes(rq) && 1901 if (q->dma_drain_size && blk_rq_bytes(rq) &&
1900 !(rq->cmd_flags & REQ_DONTPREP)) { 1902 !(rq->cmd_flags & REQ_DONTPREP)) {
1901 /* 1903 /*
1902 * remove the space for the drain we added 1904 * remove the space for the drain we added
1903 * so that we don't add it again 1905 * so that we don't add it again
1904 */ 1906 */
1905 --rq->nr_phys_segments; 1907 --rq->nr_phys_segments;
1906 } 1908 }
1907 1909
1908 rq = NULL; 1910 rq = NULL;
1909 break; 1911 break;
1910 } else if (ret == BLKPREP_KILL) { 1912 } else if (ret == BLKPREP_KILL) {
1911 rq->cmd_flags |= REQ_QUIET; 1913 rq->cmd_flags |= REQ_QUIET;
1912 /* 1914 /*
1913 * Mark this request as started so we don't trigger 1915 * Mark this request as started so we don't trigger
1914 * any debug logic in the end I/O path. 1916 * any debug logic in the end I/O path.
1915 */ 1917 */
1916 blk_start_request(rq); 1918 blk_start_request(rq);
1917 __blk_end_request_all(rq, -EIO); 1919 __blk_end_request_all(rq, -EIO);
1918 } else { 1920 } else {
1919 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 1921 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1920 break; 1922 break;
1921 } 1923 }
1922 } 1924 }
1923 1925
1924 return rq; 1926 return rq;
1925 } 1927 }
1926 EXPORT_SYMBOL(blk_peek_request); 1928 EXPORT_SYMBOL(blk_peek_request);
1927 1929
1928 void blk_dequeue_request(struct request *rq) 1930 void blk_dequeue_request(struct request *rq)
1929 { 1931 {
1930 struct request_queue *q = rq->q; 1932 struct request_queue *q = rq->q;
1931 1933
1932 BUG_ON(list_empty(&rq->queuelist)); 1934 BUG_ON(list_empty(&rq->queuelist));
1933 BUG_ON(ELV_ON_HASH(rq)); 1935 BUG_ON(ELV_ON_HASH(rq));
1934 1936
1935 list_del_init(&rq->queuelist); 1937 list_del_init(&rq->queuelist);
1936 1938
1937 /* 1939 /*
1938 * the time frame between a request being removed from the lists 1940 * the time frame between a request being removed from the lists
1939 * and to it is freed is accounted as io that is in progress at 1941 * and to it is freed is accounted as io that is in progress at
1940 * the driver side. 1942 * the driver side.
1941 */ 1943 */
1942 if (blk_account_rq(rq)) { 1944 if (blk_account_rq(rq)) {
1943 q->in_flight[rq_is_sync(rq)]++; 1945 q->in_flight[rq_is_sync(rq)]++;
1944 set_io_start_time_ns(rq); 1946 set_io_start_time_ns(rq);
1945 } 1947 }
1946 } 1948 }
1947 1949
1948 /** 1950 /**
1949 * blk_start_request - start request processing on the driver 1951 * blk_start_request - start request processing on the driver
1950 * @req: request to dequeue 1952 * @req: request to dequeue
1951 * 1953 *
1952 * Description: 1954 * Description:
1953 * Dequeue @req and start timeout timer on it. This hands off the 1955 * Dequeue @req and start timeout timer on it. This hands off the
1954 * request to the driver. 1956 * request to the driver.
1955 * 1957 *
1956 * Block internal functions which don't want to start timer should 1958 * Block internal functions which don't want to start timer should
1957 * call blk_dequeue_request(). 1959 * call blk_dequeue_request().
1958 * 1960 *
1959 * Context: 1961 * Context:
1960 * queue_lock must be held. 1962 * queue_lock must be held.
1961 */ 1963 */
1962 void blk_start_request(struct request *req) 1964 void blk_start_request(struct request *req)
1963 { 1965 {
1964 blk_dequeue_request(req); 1966 blk_dequeue_request(req);
1965 1967
1966 /* 1968 /*
1967 * We are now handing the request to the hardware, initialize 1969 * We are now handing the request to the hardware, initialize
1968 * resid_len to full count and add the timeout handler. 1970 * resid_len to full count and add the timeout handler.
1969 */ 1971 */
1970 req->resid_len = blk_rq_bytes(req); 1972 req->resid_len = blk_rq_bytes(req);
1971 if (unlikely(blk_bidi_rq(req))) 1973 if (unlikely(blk_bidi_rq(req)))
1972 req->next_rq->resid_len = blk_rq_bytes(req->next_rq); 1974 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1973 1975
1974 blk_add_timer(req); 1976 blk_add_timer(req);
1975 } 1977 }
1976 EXPORT_SYMBOL(blk_start_request); 1978 EXPORT_SYMBOL(blk_start_request);
1977 1979
1978 /** 1980 /**
1979 * blk_fetch_request - fetch a request from a request queue 1981 * blk_fetch_request - fetch a request from a request queue
1980 * @q: request queue to fetch a request from 1982 * @q: request queue to fetch a request from
1981 * 1983 *
1982 * Description: 1984 * Description:
1983 * Return the request at the top of @q. The request is started on 1985 * Return the request at the top of @q. The request is started on
1984 * return and LLD can start processing it immediately. 1986 * return and LLD can start processing it immediately.
1985 * 1987 *
1986 * Return: 1988 * Return:
1987 * Pointer to the request at the top of @q if available. Null 1989 * Pointer to the request at the top of @q if available. Null
1988 * otherwise. 1990 * otherwise.
1989 * 1991 *
1990 * Context: 1992 * Context:
1991 * queue_lock must be held. 1993 * queue_lock must be held.
1992 */ 1994 */
1993 struct request *blk_fetch_request(struct request_queue *q) 1995 struct request *blk_fetch_request(struct request_queue *q)
1994 { 1996 {
1995 struct request *rq; 1997 struct request *rq;
1996 1998
1997 rq = blk_peek_request(q); 1999 rq = blk_peek_request(q);
1998 if (rq) 2000 if (rq)
1999 blk_start_request(rq); 2001 blk_start_request(rq);
2000 return rq; 2002 return rq;
2001 } 2003 }
2002 EXPORT_SYMBOL(blk_fetch_request); 2004 EXPORT_SYMBOL(blk_fetch_request);
2003 2005
2004 /** 2006 /**
2005 * blk_update_request - Special helper function for request stacking drivers 2007 * blk_update_request - Special helper function for request stacking drivers
2006 * @req: the request being processed 2008 * @req: the request being processed
2007 * @error: %0 for success, < %0 for error 2009 * @error: %0 for success, < %0 for error
2008 * @nr_bytes: number of bytes to complete @req 2010 * @nr_bytes: number of bytes to complete @req
2009 * 2011 *
2010 * Description: 2012 * Description:
2011 * Ends I/O on a number of bytes attached to @req, but doesn't complete 2013 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2012 * the request structure even if @req doesn't have leftover. 2014 * the request structure even if @req doesn't have leftover.
2013 * If @req has leftover, sets it up for the next range of segments. 2015 * If @req has leftover, sets it up for the next range of segments.
2014 * 2016 *
2015 * This special helper function is only for request stacking drivers 2017 * This special helper function is only for request stacking drivers
2016 * (e.g. request-based dm) so that they can handle partial completion. 2018 * (e.g. request-based dm) so that they can handle partial completion.
2017 * Actual device drivers should use blk_end_request instead. 2019 * Actual device drivers should use blk_end_request instead.
2018 * 2020 *
2019 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 2021 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2020 * %false return from this function. 2022 * %false return from this function.
2021 * 2023 *
2022 * Return: 2024 * Return:
2023 * %false - this request doesn't have any more data 2025 * %false - this request doesn't have any more data
2024 * %true - this request has more data 2026 * %true - this request has more data
2025 **/ 2027 **/
2026 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes) 2028 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2027 { 2029 {
2028 int total_bytes, bio_nbytes, next_idx = 0; 2030 int total_bytes, bio_nbytes, next_idx = 0;
2029 struct bio *bio; 2031 struct bio *bio;
2030 2032
2031 if (!req->bio) 2033 if (!req->bio)
2032 return false; 2034 return false;
2033 2035
2034 trace_block_rq_complete(req->q, req); 2036 trace_block_rq_complete(req->q, req);
2035 2037
2036 /* 2038 /*
2037 * For fs requests, rq is just carrier of independent bio's 2039 * For fs requests, rq is just carrier of independent bio's
2038 * and each partial completion should be handled separately. 2040 * and each partial completion should be handled separately.
2039 * Reset per-request error on each partial completion. 2041 * Reset per-request error on each partial completion.
2040 * 2042 *
2041 * TODO: tj: This is too subtle. It would be better to let 2043 * TODO: tj: This is too subtle. It would be better to let
2042 * low level drivers do what they see fit. 2044 * low level drivers do what they see fit.
2043 */ 2045 */
2044 if (req->cmd_type == REQ_TYPE_FS) 2046 if (req->cmd_type == REQ_TYPE_FS)
2045 req->errors = 0; 2047 req->errors = 0;
2046 2048
2047 if (error && req->cmd_type == REQ_TYPE_FS && 2049 if (error && req->cmd_type == REQ_TYPE_FS &&
2048 !(req->cmd_flags & REQ_QUIET)) { 2050 !(req->cmd_flags & REQ_QUIET)) {
2049 char *error_type; 2051 char *error_type;
2050 2052
2051 switch (error) { 2053 switch (error) {
2052 case -ENOLINK: 2054 case -ENOLINK:
2053 error_type = "recoverable transport"; 2055 error_type = "recoverable transport";
2054 break; 2056 break;
2055 case -EREMOTEIO: 2057 case -EREMOTEIO:
2056 error_type = "critical target"; 2058 error_type = "critical target";
2057 break; 2059 break;
2058 case -EBADE: 2060 case -EBADE:
2059 error_type = "critical nexus"; 2061 error_type = "critical nexus";
2060 break; 2062 break;
2061 case -EIO: 2063 case -EIO:
2062 default: 2064 default:
2063 error_type = "I/O"; 2065 error_type = "I/O";
2064 break; 2066 break;
2065 } 2067 }
2066 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n", 2068 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2067 error_type, req->rq_disk ? req->rq_disk->disk_name : "?", 2069 error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2068 (unsigned long long)blk_rq_pos(req)); 2070 (unsigned long long)blk_rq_pos(req));
2069 } 2071 }
2070 2072
2071 blk_account_io_completion(req, nr_bytes); 2073 blk_account_io_completion(req, nr_bytes);
2072 2074
2073 total_bytes = bio_nbytes = 0; 2075 total_bytes = bio_nbytes = 0;
2074 while ((bio = req->bio) != NULL) { 2076 while ((bio = req->bio) != NULL) {
2075 int nbytes; 2077 int nbytes;
2076 2078
2077 if (nr_bytes >= bio->bi_size) { 2079 if (nr_bytes >= bio->bi_size) {
2078 req->bio = bio->bi_next; 2080 req->bio = bio->bi_next;
2079 nbytes = bio->bi_size; 2081 nbytes = bio->bi_size;
2080 req_bio_endio(req, bio, nbytes, error); 2082 req_bio_endio(req, bio, nbytes, error);
2081 next_idx = 0; 2083 next_idx = 0;
2082 bio_nbytes = 0; 2084 bio_nbytes = 0;
2083 } else { 2085 } else {
2084 int idx = bio->bi_idx + next_idx; 2086 int idx = bio->bi_idx + next_idx;
2085 2087
2086 if (unlikely(idx >= bio->bi_vcnt)) { 2088 if (unlikely(idx >= bio->bi_vcnt)) {
2087 blk_dump_rq_flags(req, "__end_that"); 2089 blk_dump_rq_flags(req, "__end_that");
2088 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n", 2090 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2089 __func__, idx, bio->bi_vcnt); 2091 __func__, idx, bio->bi_vcnt);
2090 break; 2092 break;
2091 } 2093 }
2092 2094
2093 nbytes = bio_iovec_idx(bio, idx)->bv_len; 2095 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2094 BIO_BUG_ON(nbytes > bio->bi_size); 2096 BIO_BUG_ON(nbytes > bio->bi_size);
2095 2097
2096 /* 2098 /*
2097 * not a complete bvec done 2099 * not a complete bvec done
2098 */ 2100 */
2099 if (unlikely(nbytes > nr_bytes)) { 2101 if (unlikely(nbytes > nr_bytes)) {
2100 bio_nbytes += nr_bytes; 2102 bio_nbytes += nr_bytes;
2101 total_bytes += nr_bytes; 2103 total_bytes += nr_bytes;
2102 break; 2104 break;
2103 } 2105 }
2104 2106
2105 /* 2107 /*
2106 * advance to the next vector 2108 * advance to the next vector
2107 */ 2109 */
2108 next_idx++; 2110 next_idx++;
2109 bio_nbytes += nbytes; 2111 bio_nbytes += nbytes;
2110 } 2112 }
2111 2113
2112 total_bytes += nbytes; 2114 total_bytes += nbytes;
2113 nr_bytes -= nbytes; 2115 nr_bytes -= nbytes;
2114 2116
2115 bio = req->bio; 2117 bio = req->bio;
2116 if (bio) { 2118 if (bio) {
2117 /* 2119 /*
2118 * end more in this run, or just return 'not-done' 2120 * end more in this run, or just return 'not-done'
2119 */ 2121 */
2120 if (unlikely(nr_bytes <= 0)) 2122 if (unlikely(nr_bytes <= 0))
2121 break; 2123 break;
2122 } 2124 }
2123 } 2125 }
2124 2126
2125 /* 2127 /*
2126 * completely done 2128 * completely done
2127 */ 2129 */
2128 if (!req->bio) { 2130 if (!req->bio) {
2129 /* 2131 /*
2130 * Reset counters so that the request stacking driver 2132 * Reset counters so that the request stacking driver
2131 * can find how many bytes remain in the request 2133 * can find how many bytes remain in the request
2132 * later. 2134 * later.
2133 */ 2135 */
2134 req->__data_len = 0; 2136 req->__data_len = 0;
2135 return false; 2137 return false;
2136 } 2138 }
2137 2139
2138 /* 2140 /*
2139 * if the request wasn't completed, update state 2141 * if the request wasn't completed, update state
2140 */ 2142 */
2141 if (bio_nbytes) { 2143 if (bio_nbytes) {
2142 req_bio_endio(req, bio, bio_nbytes, error); 2144 req_bio_endio(req, bio, bio_nbytes, error);
2143 bio->bi_idx += next_idx; 2145 bio->bi_idx += next_idx;
2144 bio_iovec(bio)->bv_offset += nr_bytes; 2146 bio_iovec(bio)->bv_offset += nr_bytes;
2145 bio_iovec(bio)->bv_len -= nr_bytes; 2147 bio_iovec(bio)->bv_len -= nr_bytes;
2146 } 2148 }
2147 2149
2148 req->__data_len -= total_bytes; 2150 req->__data_len -= total_bytes;
2149 req->buffer = bio_data(req->bio); 2151 req->buffer = bio_data(req->bio);
2150 2152
2151 /* update sector only for requests with clear definition of sector */ 2153 /* update sector only for requests with clear definition of sector */
2152 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD)) 2154 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2153 req->__sector += total_bytes >> 9; 2155 req->__sector += total_bytes >> 9;
2154 2156
2155 /* mixed attributes always follow the first bio */ 2157 /* mixed attributes always follow the first bio */
2156 if (req->cmd_flags & REQ_MIXED_MERGE) { 2158 if (req->cmd_flags & REQ_MIXED_MERGE) {
2157 req->cmd_flags &= ~REQ_FAILFAST_MASK; 2159 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2158 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK; 2160 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2159 } 2161 }
2160 2162
2161 /* 2163 /*
2162 * If total number of sectors is less than the first segment 2164 * If total number of sectors is less than the first segment
2163 * size, something has gone terribly wrong. 2165 * size, something has gone terribly wrong.
2164 */ 2166 */
2165 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 2167 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2166 blk_dump_rq_flags(req, "request botched"); 2168 blk_dump_rq_flags(req, "request botched");
2167 req->__data_len = blk_rq_cur_bytes(req); 2169 req->__data_len = blk_rq_cur_bytes(req);
2168 } 2170 }
2169 2171
2170 /* recalculate the number of segments */ 2172 /* recalculate the number of segments */
2171 blk_recalc_rq_segments(req); 2173 blk_recalc_rq_segments(req);
2172 2174
2173 return true; 2175 return true;
2174 } 2176 }
2175 EXPORT_SYMBOL_GPL(blk_update_request); 2177 EXPORT_SYMBOL_GPL(blk_update_request);
2176 2178
2177 static bool blk_update_bidi_request(struct request *rq, int error, 2179 static bool blk_update_bidi_request(struct request *rq, int error,
2178 unsigned int nr_bytes, 2180 unsigned int nr_bytes,
2179 unsigned int bidi_bytes) 2181 unsigned int bidi_bytes)
2180 { 2182 {
2181 if (blk_update_request(rq, error, nr_bytes)) 2183 if (blk_update_request(rq, error, nr_bytes))
2182 return true; 2184 return true;
2183 2185
2184 /* Bidi request must be completed as a whole */ 2186 /* Bidi request must be completed as a whole */
2185 if (unlikely(blk_bidi_rq(rq)) && 2187 if (unlikely(blk_bidi_rq(rq)) &&
2186 blk_update_request(rq->next_rq, error, bidi_bytes)) 2188 blk_update_request(rq->next_rq, error, bidi_bytes))
2187 return true; 2189 return true;
2188 2190
2189 if (blk_queue_add_random(rq->q)) 2191 if (blk_queue_add_random(rq->q))
2190 add_disk_randomness(rq->rq_disk); 2192 add_disk_randomness(rq->rq_disk);
2191 2193
2192 return false; 2194 return false;
2193 } 2195 }
2194 2196
2195 /** 2197 /**
2196 * blk_unprep_request - unprepare a request 2198 * blk_unprep_request - unprepare a request
2197 * @req: the request 2199 * @req: the request
2198 * 2200 *
2199 * This function makes a request ready for complete resubmission (or 2201 * This function makes a request ready for complete resubmission (or
2200 * completion). It happens only after all error handling is complete, 2202 * completion). It happens only after all error handling is complete,
2201 * so represents the appropriate moment to deallocate any resources 2203 * so represents the appropriate moment to deallocate any resources
2202 * that were allocated to the request in the prep_rq_fn. The queue 2204 * that were allocated to the request in the prep_rq_fn. The queue
2203 * lock is held when calling this. 2205 * lock is held when calling this.
2204 */ 2206 */
2205 void blk_unprep_request(struct request *req) 2207 void blk_unprep_request(struct request *req)
2206 { 2208 {
2207 struct request_queue *q = req->q; 2209 struct request_queue *q = req->q;
2208 2210
2209 req->cmd_flags &= ~REQ_DONTPREP; 2211 req->cmd_flags &= ~REQ_DONTPREP;
2210 if (q->unprep_rq_fn) 2212 if (q->unprep_rq_fn)
2211 q->unprep_rq_fn(q, req); 2213 q->unprep_rq_fn(q, req);
2212 } 2214 }
2213 EXPORT_SYMBOL_GPL(blk_unprep_request); 2215 EXPORT_SYMBOL_GPL(blk_unprep_request);
2214 2216
2215 /* 2217 /*
2216 * queue lock must be held 2218 * queue lock must be held
2217 */ 2219 */
2218 static void blk_finish_request(struct request *req, int error) 2220 static void blk_finish_request(struct request *req, int error)
2219 { 2221 {
2220 if (blk_rq_tagged(req)) 2222 if (blk_rq_tagged(req))
2221 blk_queue_end_tag(req->q, req); 2223 blk_queue_end_tag(req->q, req);
2222 2224
2223 BUG_ON(blk_queued_rq(req)); 2225 BUG_ON(blk_queued_rq(req));
2224 2226
2225 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS) 2227 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2226 laptop_io_completion(&req->q->backing_dev_info); 2228 laptop_io_completion(&req->q->backing_dev_info);
2227 2229
2228 blk_delete_timer(req); 2230 blk_delete_timer(req);
2229 2231
2230 if (req->cmd_flags & REQ_DONTPREP) 2232 if (req->cmd_flags & REQ_DONTPREP)
2231 blk_unprep_request(req); 2233 blk_unprep_request(req);
2232 2234
2233 2235
2234 blk_account_io_done(req); 2236 blk_account_io_done(req);
2235 2237
2236 if (req->end_io) 2238 if (req->end_io)
2237 req->end_io(req, error); 2239 req->end_io(req, error);
2238 else { 2240 else {
2239 if (blk_bidi_rq(req)) 2241 if (blk_bidi_rq(req))
2240 __blk_put_request(req->next_rq->q, req->next_rq); 2242 __blk_put_request(req->next_rq->q, req->next_rq);
2241 2243
2242 __blk_put_request(req->q, req); 2244 __blk_put_request(req->q, req);
2243 } 2245 }
2244 } 2246 }
2245 2247
2246 /** 2248 /**
2247 * blk_end_bidi_request - Complete a bidi request 2249 * blk_end_bidi_request - Complete a bidi request
2248 * @rq: the request to complete 2250 * @rq: the request to complete
2249 * @error: %0 for success, < %0 for error 2251 * @error: %0 for success, < %0 for error
2250 * @nr_bytes: number of bytes to complete @rq 2252 * @nr_bytes: number of bytes to complete @rq
2251 * @bidi_bytes: number of bytes to complete @rq->next_rq 2253 * @bidi_bytes: number of bytes to complete @rq->next_rq
2252 * 2254 *
2253 * Description: 2255 * Description:
2254 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 2256 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2255 * Drivers that supports bidi can safely call this member for any 2257 * Drivers that supports bidi can safely call this member for any
2256 * type of request, bidi or uni. In the later case @bidi_bytes is 2258 * type of request, bidi or uni. In the later case @bidi_bytes is
2257 * just ignored. 2259 * just ignored.
2258 * 2260 *
2259 * Return: 2261 * Return:
2260 * %false - we are done with this request 2262 * %false - we are done with this request
2261 * %true - still buffers pending for this request 2263 * %true - still buffers pending for this request
2262 **/ 2264 **/
2263 static bool blk_end_bidi_request(struct request *rq, int error, 2265 static bool blk_end_bidi_request(struct request *rq, int error,
2264 unsigned int nr_bytes, unsigned int bidi_bytes) 2266 unsigned int nr_bytes, unsigned int bidi_bytes)
2265 { 2267 {
2266 struct request_queue *q = rq->q; 2268 struct request_queue *q = rq->q;
2267 unsigned long flags; 2269 unsigned long flags;
2268 2270
2269 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2271 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2270 return true; 2272 return true;
2271 2273
2272 spin_lock_irqsave(q->queue_lock, flags); 2274 spin_lock_irqsave(q->queue_lock, flags);
2273 blk_finish_request(rq, error); 2275 blk_finish_request(rq, error);
2274 spin_unlock_irqrestore(q->queue_lock, flags); 2276 spin_unlock_irqrestore(q->queue_lock, flags);
2275 2277
2276 return false; 2278 return false;
2277 } 2279 }
2278 2280
2279 /** 2281 /**
2280 * __blk_end_bidi_request - Complete a bidi request with queue lock held 2282 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2281 * @rq: the request to complete 2283 * @rq: the request to complete
2282 * @error: %0 for success, < %0 for error 2284 * @error: %0 for success, < %0 for error
2283 * @nr_bytes: number of bytes to complete @rq 2285 * @nr_bytes: number of bytes to complete @rq
2284 * @bidi_bytes: number of bytes to complete @rq->next_rq 2286 * @bidi_bytes: number of bytes to complete @rq->next_rq
2285 * 2287 *
2286 * Description: 2288 * Description:
2287 * Identical to blk_end_bidi_request() except that queue lock is 2289 * Identical to blk_end_bidi_request() except that queue lock is
2288 * assumed to be locked on entry and remains so on return. 2290 * assumed to be locked on entry and remains so on return.
2289 * 2291 *
2290 * Return: 2292 * Return:
2291 * %false - we are done with this request 2293 * %false - we are done with this request
2292 * %true - still buffers pending for this request 2294 * %true - still buffers pending for this request
2293 **/ 2295 **/
2294 static bool __blk_end_bidi_request(struct request *rq, int error, 2296 static bool __blk_end_bidi_request(struct request *rq, int error,
2295 unsigned int nr_bytes, unsigned int bidi_bytes) 2297 unsigned int nr_bytes, unsigned int bidi_bytes)
2296 { 2298 {
2297 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2299 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2298 return true; 2300 return true;
2299 2301
2300 blk_finish_request(rq, error); 2302 blk_finish_request(rq, error);
2301 2303
2302 return false; 2304 return false;
2303 } 2305 }
2304 2306
2305 /** 2307 /**
2306 * blk_end_request - Helper function for drivers to complete the request. 2308 * blk_end_request - Helper function for drivers to complete the request.
2307 * @rq: the request being processed 2309 * @rq: the request being processed
2308 * @error: %0 for success, < %0 for error 2310 * @error: %0 for success, < %0 for error
2309 * @nr_bytes: number of bytes to complete 2311 * @nr_bytes: number of bytes to complete
2310 * 2312 *
2311 * Description: 2313 * Description:
2312 * Ends I/O on a number of bytes attached to @rq. 2314 * Ends I/O on a number of bytes attached to @rq.
2313 * If @rq has leftover, sets it up for the next range of segments. 2315 * If @rq has leftover, sets it up for the next range of segments.
2314 * 2316 *
2315 * Return: 2317 * Return:
2316 * %false - we are done with this request 2318 * %false - we are done with this request
2317 * %true - still buffers pending for this request 2319 * %true - still buffers pending for this request
2318 **/ 2320 **/
2319 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2321 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2320 { 2322 {
2321 return blk_end_bidi_request(rq, error, nr_bytes, 0); 2323 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2322 } 2324 }
2323 EXPORT_SYMBOL(blk_end_request); 2325 EXPORT_SYMBOL(blk_end_request);
2324 2326
2325 /** 2327 /**
2326 * blk_end_request_all - Helper function for drives to finish the request. 2328 * blk_end_request_all - Helper function for drives to finish the request.
2327 * @rq: the request to finish 2329 * @rq: the request to finish
2328 * @error: %0 for success, < %0 for error 2330 * @error: %0 for success, < %0 for error
2329 * 2331 *
2330 * Description: 2332 * Description:
2331 * Completely finish @rq. 2333 * Completely finish @rq.
2332 */ 2334 */
2333 void blk_end_request_all(struct request *rq, int error) 2335 void blk_end_request_all(struct request *rq, int error)
2334 { 2336 {
2335 bool pending; 2337 bool pending;
2336 unsigned int bidi_bytes = 0; 2338 unsigned int bidi_bytes = 0;
2337 2339
2338 if (unlikely(blk_bidi_rq(rq))) 2340 if (unlikely(blk_bidi_rq(rq)))
2339 bidi_bytes = blk_rq_bytes(rq->next_rq); 2341 bidi_bytes = blk_rq_bytes(rq->next_rq);
2340 2342
2341 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2343 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2342 BUG_ON(pending); 2344 BUG_ON(pending);
2343 } 2345 }
2344 EXPORT_SYMBOL(blk_end_request_all); 2346 EXPORT_SYMBOL(blk_end_request_all);
2345 2347
2346 /** 2348 /**
2347 * blk_end_request_cur - Helper function to finish the current request chunk. 2349 * blk_end_request_cur - Helper function to finish the current request chunk.
2348 * @rq: the request to finish the current chunk for 2350 * @rq: the request to finish the current chunk for
2349 * @error: %0 for success, < %0 for error 2351 * @error: %0 for success, < %0 for error
2350 * 2352 *
2351 * Description: 2353 * Description:
2352 * Complete the current consecutively mapped chunk from @rq. 2354 * Complete the current consecutively mapped chunk from @rq.
2353 * 2355 *
2354 * Return: 2356 * Return:
2355 * %false - we are done with this request 2357 * %false - we are done with this request
2356 * %true - still buffers pending for this request 2358 * %true - still buffers pending for this request
2357 */ 2359 */
2358 bool blk_end_request_cur(struct request *rq, int error) 2360 bool blk_end_request_cur(struct request *rq, int error)
2359 { 2361 {
2360 return blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2362 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2361 } 2363 }
2362 EXPORT_SYMBOL(blk_end_request_cur); 2364 EXPORT_SYMBOL(blk_end_request_cur);
2363 2365
2364 /** 2366 /**
2365 * blk_end_request_err - Finish a request till the next failure boundary. 2367 * blk_end_request_err - Finish a request till the next failure boundary.
2366 * @rq: the request to finish till the next failure boundary for 2368 * @rq: the request to finish till the next failure boundary for
2367 * @error: must be negative errno 2369 * @error: must be negative errno
2368 * 2370 *
2369 * Description: 2371 * Description:
2370 * Complete @rq till the next failure boundary. 2372 * Complete @rq till the next failure boundary.
2371 * 2373 *
2372 * Return: 2374 * Return:
2373 * %false - we are done with this request 2375 * %false - we are done with this request
2374 * %true - still buffers pending for this request 2376 * %true - still buffers pending for this request
2375 */ 2377 */
2376 bool blk_end_request_err(struct request *rq, int error) 2378 bool blk_end_request_err(struct request *rq, int error)
2377 { 2379 {
2378 WARN_ON(error >= 0); 2380 WARN_ON(error >= 0);
2379 return blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2381 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2380 } 2382 }
2381 EXPORT_SYMBOL_GPL(blk_end_request_err); 2383 EXPORT_SYMBOL_GPL(blk_end_request_err);
2382 2384
2383 /** 2385 /**
2384 * __blk_end_request - Helper function for drivers to complete the request. 2386 * __blk_end_request - Helper function for drivers to complete the request.
2385 * @rq: the request being processed 2387 * @rq: the request being processed
2386 * @error: %0 for success, < %0 for error 2388 * @error: %0 for success, < %0 for error
2387 * @nr_bytes: number of bytes to complete 2389 * @nr_bytes: number of bytes to complete
2388 * 2390 *
2389 * Description: 2391 * Description:
2390 * Must be called with queue lock held unlike blk_end_request(). 2392 * Must be called with queue lock held unlike blk_end_request().
2391 * 2393 *
2392 * Return: 2394 * Return:
2393 * %false - we are done with this request 2395 * %false - we are done with this request
2394 * %true - still buffers pending for this request 2396 * %true - still buffers pending for this request
2395 **/ 2397 **/
2396 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2398 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2397 { 2399 {
2398 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 2400 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2399 } 2401 }
2400 EXPORT_SYMBOL(__blk_end_request); 2402 EXPORT_SYMBOL(__blk_end_request);
2401 2403
2402 /** 2404 /**
2403 * __blk_end_request_all - Helper function for drives to finish the request. 2405 * __blk_end_request_all - Helper function for drives to finish the request.
2404 * @rq: the request to finish 2406 * @rq: the request to finish
2405 * @error: %0 for success, < %0 for error 2407 * @error: %0 for success, < %0 for error
2406 * 2408 *
2407 * Description: 2409 * Description:
2408 * Completely finish @rq. Must be called with queue lock held. 2410 * Completely finish @rq. Must be called with queue lock held.
2409 */ 2411 */
2410 void __blk_end_request_all(struct request *rq, int error) 2412 void __blk_end_request_all(struct request *rq, int error)
2411 { 2413 {
2412 bool pending; 2414 bool pending;
2413 unsigned int bidi_bytes = 0; 2415 unsigned int bidi_bytes = 0;
2414 2416
2415 if (unlikely(blk_bidi_rq(rq))) 2417 if (unlikely(blk_bidi_rq(rq)))
2416 bidi_bytes = blk_rq_bytes(rq->next_rq); 2418 bidi_bytes = blk_rq_bytes(rq->next_rq);
2417 2419
2418 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2420 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2419 BUG_ON(pending); 2421 BUG_ON(pending);
2420 } 2422 }
2421 EXPORT_SYMBOL(__blk_end_request_all); 2423 EXPORT_SYMBOL(__blk_end_request_all);
2422 2424
2423 /** 2425 /**
2424 * __blk_end_request_cur - Helper function to finish the current request chunk. 2426 * __blk_end_request_cur - Helper function to finish the current request chunk.
2425 * @rq: the request to finish the current chunk for 2427 * @rq: the request to finish the current chunk for
2426 * @error: %0 for success, < %0 for error 2428 * @error: %0 for success, < %0 for error
2427 * 2429 *
2428 * Description: 2430 * Description:
2429 * Complete the current consecutively mapped chunk from @rq. Must 2431 * Complete the current consecutively mapped chunk from @rq. Must
2430 * be called with queue lock held. 2432 * be called with queue lock held.
2431 * 2433 *
2432 * Return: 2434 * Return:
2433 * %false - we are done with this request 2435 * %false - we are done with this request
2434 * %true - still buffers pending for this request 2436 * %true - still buffers pending for this request
2435 */ 2437 */
2436 bool __blk_end_request_cur(struct request *rq, int error) 2438 bool __blk_end_request_cur(struct request *rq, int error)
2437 { 2439 {
2438 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2440 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2439 } 2441 }
2440 EXPORT_SYMBOL(__blk_end_request_cur); 2442 EXPORT_SYMBOL(__blk_end_request_cur);
2441 2443
2442 /** 2444 /**
2443 * __blk_end_request_err - Finish a request till the next failure boundary. 2445 * __blk_end_request_err - Finish a request till the next failure boundary.
2444 * @rq: the request to finish till the next failure boundary for 2446 * @rq: the request to finish till the next failure boundary for
2445 * @error: must be negative errno 2447 * @error: must be negative errno
2446 * 2448 *
2447 * Description: 2449 * Description:
2448 * Complete @rq till the next failure boundary. Must be called 2450 * Complete @rq till the next failure boundary. Must be called
2449 * with queue lock held. 2451 * with queue lock held.
2450 * 2452 *
2451 * Return: 2453 * Return:
2452 * %false - we are done with this request 2454 * %false - we are done with this request
2453 * %true - still buffers pending for this request 2455 * %true - still buffers pending for this request
2454 */ 2456 */
2455 bool __blk_end_request_err(struct request *rq, int error) 2457 bool __blk_end_request_err(struct request *rq, int error)
2456 { 2458 {
2457 WARN_ON(error >= 0); 2459 WARN_ON(error >= 0);
2458 return __blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2460 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2459 } 2461 }
2460 EXPORT_SYMBOL_GPL(__blk_end_request_err); 2462 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2461 2463
2462 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2464 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2463 struct bio *bio) 2465 struct bio *bio)
2464 { 2466 {
2465 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */ 2467 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2466 rq->cmd_flags |= bio->bi_rw & REQ_WRITE; 2468 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2467 2469
2468 if (bio_has_data(bio)) { 2470 if (bio_has_data(bio)) {
2469 rq->nr_phys_segments = bio_phys_segments(q, bio); 2471 rq->nr_phys_segments = bio_phys_segments(q, bio);
2470 rq->buffer = bio_data(bio); 2472 rq->buffer = bio_data(bio);
2471 } 2473 }
2472 rq->__data_len = bio->bi_size; 2474 rq->__data_len = bio->bi_size;
2473 rq->bio = rq->biotail = bio; 2475 rq->bio = rq->biotail = bio;
2474 2476
2475 if (bio->bi_bdev) 2477 if (bio->bi_bdev)
2476 rq->rq_disk = bio->bi_bdev->bd_disk; 2478 rq->rq_disk = bio->bi_bdev->bd_disk;
2477 } 2479 }
2478 2480
2479 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 2481 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2480 /** 2482 /**
2481 * rq_flush_dcache_pages - Helper function to flush all pages in a request 2483 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2482 * @rq: the request to be flushed 2484 * @rq: the request to be flushed
2483 * 2485 *
2484 * Description: 2486 * Description:
2485 * Flush all pages in @rq. 2487 * Flush all pages in @rq.
2486 */ 2488 */
2487 void rq_flush_dcache_pages(struct request *rq) 2489 void rq_flush_dcache_pages(struct request *rq)
2488 { 2490 {
2489 struct req_iterator iter; 2491 struct req_iterator iter;
2490 struct bio_vec *bvec; 2492 struct bio_vec *bvec;
2491 2493
2492 rq_for_each_segment(bvec, rq, iter) 2494 rq_for_each_segment(bvec, rq, iter)
2493 flush_dcache_page(bvec->bv_page); 2495 flush_dcache_page(bvec->bv_page);
2494 } 2496 }
2495 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 2497 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2496 #endif 2498 #endif
2497 2499
2498 /** 2500 /**
2499 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 2501 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2500 * @q : the queue of the device being checked 2502 * @q : the queue of the device being checked
2501 * 2503 *
2502 * Description: 2504 * Description:
2503 * Check if underlying low-level drivers of a device are busy. 2505 * Check if underlying low-level drivers of a device are busy.
2504 * If the drivers want to export their busy state, they must set own 2506 * If the drivers want to export their busy state, they must set own
2505 * exporting function using blk_queue_lld_busy() first. 2507 * exporting function using blk_queue_lld_busy() first.
2506 * 2508 *
2507 * Basically, this function is used only by request stacking drivers 2509 * Basically, this function is used only by request stacking drivers
2508 * to stop dispatching requests to underlying devices when underlying 2510 * to stop dispatching requests to underlying devices when underlying
2509 * devices are busy. This behavior helps more I/O merging on the queue 2511 * devices are busy. This behavior helps more I/O merging on the queue
2510 * of the request stacking driver and prevents I/O throughput regression 2512 * of the request stacking driver and prevents I/O throughput regression
2511 * on burst I/O load. 2513 * on burst I/O load.
2512 * 2514 *
2513 * Return: 2515 * Return:
2514 * 0 - Not busy (The request stacking driver should dispatch request) 2516 * 0 - Not busy (The request stacking driver should dispatch request)
2515 * 1 - Busy (The request stacking driver should stop dispatching request) 2517 * 1 - Busy (The request stacking driver should stop dispatching request)
2516 */ 2518 */
2517 int blk_lld_busy(struct request_queue *q) 2519 int blk_lld_busy(struct request_queue *q)
2518 { 2520 {
2519 if (q->lld_busy_fn) 2521 if (q->lld_busy_fn)
2520 return q->lld_busy_fn(q); 2522 return q->lld_busy_fn(q);
2521 2523
2522 return 0; 2524 return 0;
2523 } 2525 }
2524 EXPORT_SYMBOL_GPL(blk_lld_busy); 2526 EXPORT_SYMBOL_GPL(blk_lld_busy);
2525 2527
2526 /** 2528 /**
2527 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 2529 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2528 * @rq: the clone request to be cleaned up 2530 * @rq: the clone request to be cleaned up
2529 * 2531 *
2530 * Description: 2532 * Description:
2531 * Free all bios in @rq for a cloned request. 2533 * Free all bios in @rq for a cloned request.
2532 */ 2534 */
2533 void blk_rq_unprep_clone(struct request *rq) 2535 void blk_rq_unprep_clone(struct request *rq)
2534 { 2536 {
2535 struct bio *bio; 2537 struct bio *bio;
2536 2538
2537 while ((bio = rq->bio) != NULL) { 2539 while ((bio = rq->bio) != NULL) {
2538 rq->bio = bio->bi_next; 2540 rq->bio = bio->bi_next;
2539 2541
2540 bio_put(bio); 2542 bio_put(bio);
2541 } 2543 }
2542 } 2544 }
2543 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 2545 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2544 2546
2545 /* 2547 /*
2546 * Copy attributes of the original request to the clone request. 2548 * Copy attributes of the original request to the clone request.
2547 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied. 2549 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2548 */ 2550 */
2549 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 2551 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2550 { 2552 {
2551 dst->cpu = src->cpu; 2553 dst->cpu = src->cpu;
2552 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE; 2554 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2553 dst->cmd_type = src->cmd_type; 2555 dst->cmd_type = src->cmd_type;
2554 dst->__sector = blk_rq_pos(src); 2556 dst->__sector = blk_rq_pos(src);
2555 dst->__data_len = blk_rq_bytes(src); 2557 dst->__data_len = blk_rq_bytes(src);
2556 dst->nr_phys_segments = src->nr_phys_segments; 2558 dst->nr_phys_segments = src->nr_phys_segments;
2557 dst->ioprio = src->ioprio; 2559 dst->ioprio = src->ioprio;
2558 dst->extra_len = src->extra_len; 2560 dst->extra_len = src->extra_len;
2559 } 2561 }
2560 2562
2561 /** 2563 /**
2562 * blk_rq_prep_clone - Helper function to setup clone request 2564 * blk_rq_prep_clone - Helper function to setup clone request
2563 * @rq: the request to be setup 2565 * @rq: the request to be setup
2564 * @rq_src: original request to be cloned 2566 * @rq_src: original request to be cloned
2565 * @bs: bio_set that bios for clone are allocated from 2567 * @bs: bio_set that bios for clone are allocated from
2566 * @gfp_mask: memory allocation mask for bio 2568 * @gfp_mask: memory allocation mask for bio
2567 * @bio_ctr: setup function to be called for each clone bio. 2569 * @bio_ctr: setup function to be called for each clone bio.
2568 * Returns %0 for success, non %0 for failure. 2570 * Returns %0 for success, non %0 for failure.
2569 * @data: private data to be passed to @bio_ctr 2571 * @data: private data to be passed to @bio_ctr
2570 * 2572 *
2571 * Description: 2573 * Description:
2572 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 2574 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2573 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense) 2575 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2574 * are not copied, and copying such parts is the caller's responsibility. 2576 * are not copied, and copying such parts is the caller's responsibility.
2575 * Also, pages which the original bios are pointing to are not copied 2577 * Also, pages which the original bios are pointing to are not copied
2576 * and the cloned bios just point same pages. 2578 * and the cloned bios just point same pages.
2577 * So cloned bios must be completed before original bios, which means 2579 * So cloned bios must be completed before original bios, which means
2578 * the caller must complete @rq before @rq_src. 2580 * the caller must complete @rq before @rq_src.
2579 */ 2581 */
2580 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 2582 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2581 struct bio_set *bs, gfp_t gfp_mask, 2583 struct bio_set *bs, gfp_t gfp_mask,
2582 int (*bio_ctr)(struct bio *, struct bio *, void *), 2584 int (*bio_ctr)(struct bio *, struct bio *, void *),
2583 void *data) 2585 void *data)
2584 { 2586 {
2585 struct bio *bio, *bio_src; 2587 struct bio *bio, *bio_src;
2586 2588
2587 if (!bs) 2589 if (!bs)
2588 bs = fs_bio_set; 2590 bs = fs_bio_set;
2589 2591
2590 blk_rq_init(NULL, rq); 2592 blk_rq_init(NULL, rq);
2591 2593
2592 __rq_for_each_bio(bio_src, rq_src) { 2594 __rq_for_each_bio(bio_src, rq_src) {
2593 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs); 2595 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2594 if (!bio) 2596 if (!bio)
2595 goto free_and_out; 2597 goto free_and_out;
2596 2598
2597 __bio_clone(bio, bio_src); 2599 __bio_clone(bio, bio_src);
2598 2600
2599 if (bio_integrity(bio_src) && 2601 if (bio_integrity(bio_src) &&
2600 bio_integrity_clone(bio, bio_src, gfp_mask, bs)) 2602 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2601 goto free_and_out; 2603 goto free_and_out;
2602 2604
2603 if (bio_ctr && bio_ctr(bio, bio_src, data)) 2605 if (bio_ctr && bio_ctr(bio, bio_src, data))
2604 goto free_and_out; 2606 goto free_and_out;
2605 2607
2606 if (rq->bio) { 2608 if (rq->bio) {
2607 rq->biotail->bi_next = bio; 2609 rq->biotail->bi_next = bio;
2608 rq->biotail = bio; 2610 rq->biotail = bio;
2609 } else 2611 } else
2610 rq->bio = rq->biotail = bio; 2612 rq->bio = rq->biotail = bio;
2611 } 2613 }
2612 2614
2613 __blk_rq_prep_clone(rq, rq_src); 2615 __blk_rq_prep_clone(rq, rq_src);
2614 2616
2615 return 0; 2617 return 0;
2616 2618
2617 free_and_out: 2619 free_and_out:
2618 if (bio) 2620 if (bio)
2619 bio_free(bio, bs); 2621 bio_free(bio, bs);
2620 blk_rq_unprep_clone(rq); 2622 blk_rq_unprep_clone(rq);
2621 2623
2622 return -ENOMEM; 2624 return -ENOMEM;
2623 } 2625 }
2624 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 2626 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2625 2627
2626 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work) 2628 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2627 { 2629 {
2628 return queue_work(kblockd_workqueue, work); 2630 return queue_work(kblockd_workqueue, work);
2629 } 2631 }
2630 EXPORT_SYMBOL(kblockd_schedule_work); 2632 EXPORT_SYMBOL(kblockd_schedule_work);
2631 2633
2632 int kblockd_schedule_delayed_work(struct request_queue *q, 2634 int kblockd_schedule_delayed_work(struct request_queue *q,
2633 struct delayed_work *dwork, unsigned long delay) 2635 struct delayed_work *dwork, unsigned long delay)
2634 { 2636 {
2635 return queue_delayed_work(kblockd_workqueue, dwork, delay); 2637 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2636 } 2638 }
2637 EXPORT_SYMBOL(kblockd_schedule_delayed_work); 2639 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2638 2640
2639 #define PLUG_MAGIC 0x91827364 2641 #define PLUG_MAGIC 0x91827364
2640 2642
2641 void blk_start_plug(struct blk_plug *plug) 2643 void blk_start_plug(struct blk_plug *plug)
2642 { 2644 {
2643 struct task_struct *tsk = current; 2645 struct task_struct *tsk = current;
2644 2646
2645 plug->magic = PLUG_MAGIC; 2647 plug->magic = PLUG_MAGIC;
2646 INIT_LIST_HEAD(&plug->list); 2648 INIT_LIST_HEAD(&plug->list);
2647 INIT_LIST_HEAD(&plug->cb_list); 2649 INIT_LIST_HEAD(&plug->cb_list);
2648 plug->should_sort = 0; 2650 plug->should_sort = 0;
2649 2651
2650 /* 2652 /*
2651 * If this is a nested plug, don't actually assign it. It will be 2653 * If this is a nested plug, don't actually assign it. It will be
2652 * flushed on its own. 2654 * flushed on its own.
2653 */ 2655 */
2654 if (!tsk->plug) { 2656 if (!tsk->plug) {
2655 /* 2657 /*
2656 * Store ordering should not be needed here, since a potential 2658 * Store ordering should not be needed here, since a potential
2657 * preempt will imply a full memory barrier 2659 * preempt will imply a full memory barrier
2658 */ 2660 */
2659 tsk->plug = plug; 2661 tsk->plug = plug;
2660 } 2662 }
2661 } 2663 }
2662 EXPORT_SYMBOL(blk_start_plug); 2664 EXPORT_SYMBOL(blk_start_plug);
2663 2665
2664 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 2666 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2665 { 2667 {
2666 struct request *rqa = container_of(a, struct request, queuelist); 2668 struct request *rqa = container_of(a, struct request, queuelist);
2667 struct request *rqb = container_of(b, struct request, queuelist); 2669 struct request *rqb = container_of(b, struct request, queuelist);
2668 2670
2669 return !(rqa->q <= rqb->q); 2671 return !(rqa->q <= rqb->q);
2670 } 2672 }
2671 2673
2672 /* 2674 /*
2673 * If 'from_schedule' is true, then postpone the dispatch of requests 2675 * If 'from_schedule' is true, then postpone the dispatch of requests
2674 * until a safe kblockd context. We due this to avoid accidental big 2676 * until a safe kblockd context. We due this to avoid accidental big
2675 * additional stack usage in driver dispatch, in places where the originally 2677 * additional stack usage in driver dispatch, in places where the originally
2676 * plugger did not intend it. 2678 * plugger did not intend it.
2677 */ 2679 */
2678 static void queue_unplugged(struct request_queue *q, unsigned int depth, 2680 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2679 bool from_schedule) 2681 bool from_schedule)
2680 __releases(q->queue_lock) 2682 __releases(q->queue_lock)
2681 { 2683 {
2682 trace_block_unplug(q, depth, !from_schedule); 2684 trace_block_unplug(q, depth, !from_schedule);
2683 2685
2684 /* 2686 /*
2685 * If we are punting this to kblockd, then we can safely drop 2687 * If we are punting this to kblockd, then we can safely drop
2686 * the queue_lock before waking kblockd (which needs to take 2688 * the queue_lock before waking kblockd (which needs to take
2687 * this lock). 2689 * this lock).
2688 */ 2690 */
2689 if (from_schedule) { 2691 if (from_schedule) {
2690 spin_unlock(q->queue_lock); 2692 spin_unlock(q->queue_lock);
2691 blk_run_queue_async(q); 2693 blk_run_queue_async(q);
2692 } else { 2694 } else {
2693 __blk_run_queue(q); 2695 __blk_run_queue(q);
2694 spin_unlock(q->queue_lock); 2696 spin_unlock(q->queue_lock);
2695 } 2697 }
2696 2698
2697 } 2699 }
2698 2700
2699 static void flush_plug_callbacks(struct blk_plug *plug) 2701 static void flush_plug_callbacks(struct blk_plug *plug)
2700 { 2702 {
2701 LIST_HEAD(callbacks); 2703 LIST_HEAD(callbacks);
2702 2704
2703 if (list_empty(&plug->cb_list)) 2705 if (list_empty(&plug->cb_list))
2704 return; 2706 return;
2705 2707
2706 list_splice_init(&plug->cb_list, &callbacks); 2708 list_splice_init(&plug->cb_list, &callbacks);
2707 2709
2708 while (!list_empty(&callbacks)) { 2710 while (!list_empty(&callbacks)) {
2709 struct blk_plug_cb *cb = list_first_entry(&callbacks, 2711 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2710 struct blk_plug_cb, 2712 struct blk_plug_cb,
2711 list); 2713 list);
2712 list_del(&cb->list); 2714 list_del(&cb->list);
2713 cb->callback(cb); 2715 cb->callback(cb);
2714 } 2716 }
2715 } 2717 }
2716 2718
2717 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2719 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2718 { 2720 {
2719 struct request_queue *q; 2721 struct request_queue *q;
2720 unsigned long flags; 2722 unsigned long flags;
2721 struct request *rq; 2723 struct request *rq;
2722 LIST_HEAD(list); 2724 LIST_HEAD(list);
2723 unsigned int depth; 2725 unsigned int depth;
2724 2726
2725 BUG_ON(plug->magic != PLUG_MAGIC); 2727 BUG_ON(plug->magic != PLUG_MAGIC);
2726 2728
2727 flush_plug_callbacks(plug); 2729 flush_plug_callbacks(plug);
2728 if (list_empty(&plug->list)) 2730 if (list_empty(&plug->list))
2729 return; 2731 return;
2730 2732
2731 list_splice_init(&plug->list, &list); 2733 list_splice_init(&plug->list, &list);
2732 2734
2733 if (plug->should_sort) { 2735 if (plug->should_sort) {
2734 list_sort(NULL, &list, plug_rq_cmp); 2736 list_sort(NULL, &list, plug_rq_cmp);
2735 plug->should_sort = 0; 2737 plug->should_sort = 0;
2736 } 2738 }
2737 2739
2738 q = NULL; 2740 q = NULL;
2739 depth = 0; 2741 depth = 0;
2740 2742
2741 /* 2743 /*
2742 * Save and disable interrupts here, to avoid doing it for every 2744 * Save and disable interrupts here, to avoid doing it for every
2743 * queue lock we have to take. 2745 * queue lock we have to take.
2744 */ 2746 */
2745 local_irq_save(flags); 2747 local_irq_save(flags);
2746 while (!list_empty(&list)) { 2748 while (!list_empty(&list)) {
2747 rq = list_entry_rq(list.next); 2749 rq = list_entry_rq(list.next);
2748 list_del_init(&rq->queuelist); 2750 list_del_init(&rq->queuelist);
2749 BUG_ON(!(rq->cmd_flags & REQ_ON_PLUG)); 2751 BUG_ON(!(rq->cmd_flags & REQ_ON_PLUG));
2750 BUG_ON(!rq->q); 2752 BUG_ON(!rq->q);
2751 if (rq->q != q) { 2753 if (rq->q != q) {
2752 /* 2754 /*
2753 * This drops the queue lock 2755 * This drops the queue lock
2754 */ 2756 */
2755 if (q) 2757 if (q)
2756 queue_unplugged(q, depth, from_schedule); 2758 queue_unplugged(q, depth, from_schedule);
2757 q = rq->q; 2759 q = rq->q;
2758 depth = 0; 2760 depth = 0;
2759 spin_lock(q->queue_lock); 2761 spin_lock(q->queue_lock);
2760 } 2762 }
2761 rq->cmd_flags &= ~REQ_ON_PLUG; 2763 rq->cmd_flags &= ~REQ_ON_PLUG;
2762 2764
2763 /* 2765 /*
2764 * rq is already accounted, so use raw insert 2766 * rq is already accounted, so use raw insert
2765 */ 2767 */
2766 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA)) 2768 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2767 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); 2769 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2768 else 2770 else
2769 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); 2771 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
2770 2772
2771 depth++; 2773 depth++;
2772 } 2774 }
2773 2775
2774 /* 2776 /*
2775 * This drops the queue lock 2777 * This drops the queue lock
2776 */ 2778 */
2777 if (q) 2779 if (q)
2778 queue_unplugged(q, depth, from_schedule); 2780 queue_unplugged(q, depth, from_schedule);
2779 2781
2780 local_irq_restore(flags); 2782 local_irq_restore(flags);
2781 } 2783 }
2782 2784
2783 void blk_finish_plug(struct blk_plug *plug) 2785 void blk_finish_plug(struct blk_plug *plug)
2784 { 2786 {
2785 blk_flush_plug_list(plug, false); 2787 blk_flush_plug_list(plug, false);
2786 2788
2787 if (plug == current->plug) 2789 if (plug == current->plug)
2788 current->plug = NULL; 2790 current->plug = NULL;
2789 } 2791 }
2790 EXPORT_SYMBOL(blk_finish_plug); 2792 EXPORT_SYMBOL(blk_finish_plug);
2791 2793
2792 int __init blk_dev_init(void) 2794 int __init blk_dev_init(void)
2793 { 2795 {
2794 BUILD_BUG_ON(__REQ_NR_BITS > 8 * 2796 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2795 sizeof(((struct request *)0)->cmd_flags)); 2797 sizeof(((struct request *)0)->cmd_flags));
2796 2798
2797 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 2799 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2798 kblockd_workqueue = alloc_workqueue("kblockd", 2800 kblockd_workqueue = alloc_workqueue("kblockd",
2799 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2801 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2800 if (!kblockd_workqueue) 2802 if (!kblockd_workqueue)
2801 panic("Failed to create kblockd\n"); 2803 panic("Failed to create kblockd\n");
2802 2804
2803 request_cachep = kmem_cache_create("blkdev_requests", 2805 request_cachep = kmem_cache_create("blkdev_requests",
2804 sizeof(struct request), 0, SLAB_PANIC, NULL); 2806 sizeof(struct request), 0, SLAB_PANIC, NULL);
2805 2807
2806 blk_requestq_cachep = kmem_cache_create("blkdev_queue", 2808 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2807 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 2809 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2808 2810
2809 return 0; 2811 return 0;
2810 } 2812 }
2811 2813