Commit 3ee247ebce93a526f482d6bc714ce796fa85a81a

Authored by Alasdair G Kergon
Committed by Linus Torvalds
1 parent 4aac0a63fe

[PATCH] dm: dm-table warning fix

drivers/md/dm-table.c:500: warning: comparison of distinct pointer types lacks a cast

Signed-off-by: Alasdair G Kergon <agk@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>

Showing 2 changed files with 2 additions and 2 deletions Inline Diff

drivers/md/dm-table.c
1 /* 1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited. 2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004 Red Hat, Inc. All rights reserved. 3 * Copyright (C) 2004 Red Hat, Inc. All rights reserved.
4 * 4 *
5 * This file is released under the GPL. 5 * This file is released under the GPL.
6 */ 6 */
7 7
8 #include "dm.h" 8 #include "dm.h"
9 9
10 #include <linux/module.h> 10 #include <linux/module.h>
11 #include <linux/vmalloc.h> 11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h> 12 #include <linux/blkdev.h>
13 #include <linux/namei.h> 13 #include <linux/namei.h>
14 #include <linux/ctype.h> 14 #include <linux/ctype.h>
15 #include <linux/slab.h> 15 #include <linux/slab.h>
16 #include <linux/interrupt.h> 16 #include <linux/interrupt.h>
17 #include <asm/atomic.h> 17 #include <asm/atomic.h>
18 18
19 #define MAX_DEPTH 16 19 #define MAX_DEPTH 16
20 #define NODE_SIZE L1_CACHE_BYTES 20 #define NODE_SIZE L1_CACHE_BYTES
21 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 21 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
22 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 22 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
23 23
24 struct dm_table { 24 struct dm_table {
25 atomic_t holders; 25 atomic_t holders;
26 26
27 /* btree table */ 27 /* btree table */
28 unsigned int depth; 28 unsigned int depth;
29 unsigned int counts[MAX_DEPTH]; /* in nodes */ 29 unsigned int counts[MAX_DEPTH]; /* in nodes */
30 sector_t *index[MAX_DEPTH]; 30 sector_t *index[MAX_DEPTH];
31 31
32 unsigned int num_targets; 32 unsigned int num_targets;
33 unsigned int num_allocated; 33 unsigned int num_allocated;
34 sector_t *highs; 34 sector_t *highs;
35 struct dm_target *targets; 35 struct dm_target *targets;
36 36
37 /* 37 /*
38 * Indicates the rw permissions for the new logical 38 * Indicates the rw permissions for the new logical
39 * device. This should be a combination of FMODE_READ 39 * device. This should be a combination of FMODE_READ
40 * and FMODE_WRITE. 40 * and FMODE_WRITE.
41 */ 41 */
42 int mode; 42 int mode;
43 43
44 /* a list of devices used by this table */ 44 /* a list of devices used by this table */
45 struct list_head devices; 45 struct list_head devices;
46 46
47 /* 47 /*
48 * These are optimistic limits taken from all the 48 * These are optimistic limits taken from all the
49 * targets, some targets will need smaller limits. 49 * targets, some targets will need smaller limits.
50 */ 50 */
51 struct io_restrictions limits; 51 struct io_restrictions limits;
52 52
53 /* events get handed up using this callback */ 53 /* events get handed up using this callback */
54 void (*event_fn)(void *); 54 void (*event_fn)(void *);
55 void *event_context; 55 void *event_context;
56 }; 56 };
57 57
58 /* 58 /*
59 * Similar to ceiling(log_size(n)) 59 * Similar to ceiling(log_size(n))
60 */ 60 */
61 static unsigned int int_log(unsigned int n, unsigned int base) 61 static unsigned int int_log(unsigned int n, unsigned int base)
62 { 62 {
63 int result = 0; 63 int result = 0;
64 64
65 while (n > 1) { 65 while (n > 1) {
66 n = dm_div_up(n, base); 66 n = dm_div_up(n, base);
67 result++; 67 result++;
68 } 68 }
69 69
70 return result; 70 return result;
71 } 71 }
72 72
73 /* 73 /*
74 * Returns the minimum that is _not_ zero, unless both are zero. 74 * Returns the minimum that is _not_ zero, unless both are zero.
75 */ 75 */
76 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r)) 76 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
77 77
78 /* 78 /*
79 * Combine two io_restrictions, always taking the lower value. 79 * Combine two io_restrictions, always taking the lower value.
80 */ 80 */
81 static void combine_restrictions_low(struct io_restrictions *lhs, 81 static void combine_restrictions_low(struct io_restrictions *lhs,
82 struct io_restrictions *rhs) 82 struct io_restrictions *rhs)
83 { 83 {
84 lhs->max_sectors = 84 lhs->max_sectors =
85 min_not_zero(lhs->max_sectors, rhs->max_sectors); 85 min_not_zero(lhs->max_sectors, rhs->max_sectors);
86 86
87 lhs->max_phys_segments = 87 lhs->max_phys_segments =
88 min_not_zero(lhs->max_phys_segments, rhs->max_phys_segments); 88 min_not_zero(lhs->max_phys_segments, rhs->max_phys_segments);
89 89
90 lhs->max_hw_segments = 90 lhs->max_hw_segments =
91 min_not_zero(lhs->max_hw_segments, rhs->max_hw_segments); 91 min_not_zero(lhs->max_hw_segments, rhs->max_hw_segments);
92 92
93 lhs->hardsect_size = max(lhs->hardsect_size, rhs->hardsect_size); 93 lhs->hardsect_size = max(lhs->hardsect_size, rhs->hardsect_size);
94 94
95 lhs->max_segment_size = 95 lhs->max_segment_size =
96 min_not_zero(lhs->max_segment_size, rhs->max_segment_size); 96 min_not_zero(lhs->max_segment_size, rhs->max_segment_size);
97 97
98 lhs->seg_boundary_mask = 98 lhs->seg_boundary_mask =
99 min_not_zero(lhs->seg_boundary_mask, rhs->seg_boundary_mask); 99 min_not_zero(lhs->seg_boundary_mask, rhs->seg_boundary_mask);
100 } 100 }
101 101
102 /* 102 /*
103 * Calculate the index of the child node of the n'th node k'th key. 103 * Calculate the index of the child node of the n'th node k'th key.
104 */ 104 */
105 static inline unsigned int get_child(unsigned int n, unsigned int k) 105 static inline unsigned int get_child(unsigned int n, unsigned int k)
106 { 106 {
107 return (n * CHILDREN_PER_NODE) + k; 107 return (n * CHILDREN_PER_NODE) + k;
108 } 108 }
109 109
110 /* 110 /*
111 * Return the n'th node of level l from table t. 111 * Return the n'th node of level l from table t.
112 */ 112 */
113 static inline sector_t *get_node(struct dm_table *t, 113 static inline sector_t *get_node(struct dm_table *t,
114 unsigned int l, unsigned int n) 114 unsigned int l, unsigned int n)
115 { 115 {
116 return t->index[l] + (n * KEYS_PER_NODE); 116 return t->index[l] + (n * KEYS_PER_NODE);
117 } 117 }
118 118
119 /* 119 /*
120 * Return the highest key that you could lookup from the n'th 120 * Return the highest key that you could lookup from the n'th
121 * node on level l of the btree. 121 * node on level l of the btree.
122 */ 122 */
123 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 123 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
124 { 124 {
125 for (; l < t->depth - 1; l++) 125 for (; l < t->depth - 1; l++)
126 n = get_child(n, CHILDREN_PER_NODE - 1); 126 n = get_child(n, CHILDREN_PER_NODE - 1);
127 127
128 if (n >= t->counts[l]) 128 if (n >= t->counts[l])
129 return (sector_t) - 1; 129 return (sector_t) - 1;
130 130
131 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 131 return get_node(t, l, n)[KEYS_PER_NODE - 1];
132 } 132 }
133 133
134 /* 134 /*
135 * Fills in a level of the btree based on the highs of the level 135 * Fills in a level of the btree based on the highs of the level
136 * below it. 136 * below it.
137 */ 137 */
138 static int setup_btree_index(unsigned int l, struct dm_table *t) 138 static int setup_btree_index(unsigned int l, struct dm_table *t)
139 { 139 {
140 unsigned int n, k; 140 unsigned int n, k;
141 sector_t *node; 141 sector_t *node;
142 142
143 for (n = 0U; n < t->counts[l]; n++) { 143 for (n = 0U; n < t->counts[l]; n++) {
144 node = get_node(t, l, n); 144 node = get_node(t, l, n);
145 145
146 for (k = 0U; k < KEYS_PER_NODE; k++) 146 for (k = 0U; k < KEYS_PER_NODE; k++)
147 node[k] = high(t, l + 1, get_child(n, k)); 147 node[k] = high(t, l + 1, get_child(n, k));
148 } 148 }
149 149
150 return 0; 150 return 0;
151 } 151 }
152 152
153 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) 153 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
154 { 154 {
155 unsigned long size; 155 unsigned long size;
156 void *addr; 156 void *addr;
157 157
158 /* 158 /*
159 * Check that we're not going to overflow. 159 * Check that we're not going to overflow.
160 */ 160 */
161 if (nmemb > (ULONG_MAX / elem_size)) 161 if (nmemb > (ULONG_MAX / elem_size))
162 return NULL; 162 return NULL;
163 163
164 size = nmemb * elem_size; 164 size = nmemb * elem_size;
165 addr = vmalloc(size); 165 addr = vmalloc(size);
166 if (addr) 166 if (addr)
167 memset(addr, 0, size); 167 memset(addr, 0, size);
168 168
169 return addr; 169 return addr;
170 } 170 }
171 171
172 /* 172 /*
173 * highs, and targets are managed as dynamic arrays during a 173 * highs, and targets are managed as dynamic arrays during a
174 * table load. 174 * table load.
175 */ 175 */
176 static int alloc_targets(struct dm_table *t, unsigned int num) 176 static int alloc_targets(struct dm_table *t, unsigned int num)
177 { 177 {
178 sector_t *n_highs; 178 sector_t *n_highs;
179 struct dm_target *n_targets; 179 struct dm_target *n_targets;
180 int n = t->num_targets; 180 int n = t->num_targets;
181 181
182 /* 182 /*
183 * Allocate both the target array and offset array at once. 183 * Allocate both the target array and offset array at once.
184 */ 184 */
185 n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) + 185 n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) +
186 sizeof(sector_t)); 186 sizeof(sector_t));
187 if (!n_highs) 187 if (!n_highs)
188 return -ENOMEM; 188 return -ENOMEM;
189 189
190 n_targets = (struct dm_target *) (n_highs + num); 190 n_targets = (struct dm_target *) (n_highs + num);
191 191
192 if (n) { 192 if (n) {
193 memcpy(n_highs, t->highs, sizeof(*n_highs) * n); 193 memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
194 memcpy(n_targets, t->targets, sizeof(*n_targets) * n); 194 memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
195 } 195 }
196 196
197 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n)); 197 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
198 vfree(t->highs); 198 vfree(t->highs);
199 199
200 t->num_allocated = num; 200 t->num_allocated = num;
201 t->highs = n_highs; 201 t->highs = n_highs;
202 t->targets = n_targets; 202 t->targets = n_targets;
203 203
204 return 0; 204 return 0;
205 } 205 }
206 206
207 int dm_table_create(struct dm_table **result, int mode, unsigned num_targets) 207 int dm_table_create(struct dm_table **result, int mode, unsigned num_targets)
208 { 208 {
209 struct dm_table *t = kmalloc(sizeof(*t), GFP_KERNEL); 209 struct dm_table *t = kmalloc(sizeof(*t), GFP_KERNEL);
210 210
211 if (!t) 211 if (!t)
212 return -ENOMEM; 212 return -ENOMEM;
213 213
214 memset(t, 0, sizeof(*t)); 214 memset(t, 0, sizeof(*t));
215 INIT_LIST_HEAD(&t->devices); 215 INIT_LIST_HEAD(&t->devices);
216 atomic_set(&t->holders, 1); 216 atomic_set(&t->holders, 1);
217 217
218 if (!num_targets) 218 if (!num_targets)
219 num_targets = KEYS_PER_NODE; 219 num_targets = KEYS_PER_NODE;
220 220
221 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 221 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
222 222
223 if (alloc_targets(t, num_targets)) { 223 if (alloc_targets(t, num_targets)) {
224 kfree(t); 224 kfree(t);
225 t = NULL; 225 t = NULL;
226 return -ENOMEM; 226 return -ENOMEM;
227 } 227 }
228 228
229 t->mode = mode; 229 t->mode = mode;
230 *result = t; 230 *result = t;
231 return 0; 231 return 0;
232 } 232 }
233 233
234 static void free_devices(struct list_head *devices) 234 static void free_devices(struct list_head *devices)
235 { 235 {
236 struct list_head *tmp, *next; 236 struct list_head *tmp, *next;
237 237
238 for (tmp = devices->next; tmp != devices; tmp = next) { 238 for (tmp = devices->next; tmp != devices; tmp = next) {
239 struct dm_dev *dd = list_entry(tmp, struct dm_dev, list); 239 struct dm_dev *dd = list_entry(tmp, struct dm_dev, list);
240 next = tmp->next; 240 next = tmp->next;
241 kfree(dd); 241 kfree(dd);
242 } 242 }
243 } 243 }
244 244
245 static void table_destroy(struct dm_table *t) 245 static void table_destroy(struct dm_table *t)
246 { 246 {
247 unsigned int i; 247 unsigned int i;
248 248
249 /* free the indexes (see dm_table_complete) */ 249 /* free the indexes (see dm_table_complete) */
250 if (t->depth >= 2) 250 if (t->depth >= 2)
251 vfree(t->index[t->depth - 2]); 251 vfree(t->index[t->depth - 2]);
252 252
253 /* free the targets */ 253 /* free the targets */
254 for (i = 0; i < t->num_targets; i++) { 254 for (i = 0; i < t->num_targets; i++) {
255 struct dm_target *tgt = t->targets + i; 255 struct dm_target *tgt = t->targets + i;
256 256
257 if (tgt->type->dtr) 257 if (tgt->type->dtr)
258 tgt->type->dtr(tgt); 258 tgt->type->dtr(tgt);
259 259
260 dm_put_target_type(tgt->type); 260 dm_put_target_type(tgt->type);
261 } 261 }
262 262
263 vfree(t->highs); 263 vfree(t->highs);
264 264
265 /* free the device list */ 265 /* free the device list */
266 if (t->devices.next != &t->devices) { 266 if (t->devices.next != &t->devices) {
267 DMWARN("devices still present during destroy: " 267 DMWARN("devices still present during destroy: "
268 "dm_table_remove_device calls missing"); 268 "dm_table_remove_device calls missing");
269 269
270 free_devices(&t->devices); 270 free_devices(&t->devices);
271 } 271 }
272 272
273 kfree(t); 273 kfree(t);
274 } 274 }
275 275
276 void dm_table_get(struct dm_table *t) 276 void dm_table_get(struct dm_table *t)
277 { 277 {
278 atomic_inc(&t->holders); 278 atomic_inc(&t->holders);
279 } 279 }
280 280
281 void dm_table_put(struct dm_table *t) 281 void dm_table_put(struct dm_table *t)
282 { 282 {
283 if (!t) 283 if (!t)
284 return; 284 return;
285 285
286 if (atomic_dec_and_test(&t->holders)) 286 if (atomic_dec_and_test(&t->holders))
287 table_destroy(t); 287 table_destroy(t);
288 } 288 }
289 289
290 /* 290 /*
291 * Checks to see if we need to extend highs or targets. 291 * Checks to see if we need to extend highs or targets.
292 */ 292 */
293 static inline int check_space(struct dm_table *t) 293 static inline int check_space(struct dm_table *t)
294 { 294 {
295 if (t->num_targets >= t->num_allocated) 295 if (t->num_targets >= t->num_allocated)
296 return alloc_targets(t, t->num_allocated * 2); 296 return alloc_targets(t, t->num_allocated * 2);
297 297
298 return 0; 298 return 0;
299 } 299 }
300 300
301 /* 301 /*
302 * Convert a device path to a dev_t. 302 * Convert a device path to a dev_t.
303 */ 303 */
304 static int lookup_device(const char *path, dev_t *dev) 304 static int lookup_device(const char *path, dev_t *dev)
305 { 305 {
306 int r; 306 int r;
307 struct nameidata nd; 307 struct nameidata nd;
308 struct inode *inode; 308 struct inode *inode;
309 309
310 if ((r = path_lookup(path, LOOKUP_FOLLOW, &nd))) 310 if ((r = path_lookup(path, LOOKUP_FOLLOW, &nd)))
311 return r; 311 return r;
312 312
313 inode = nd.dentry->d_inode; 313 inode = nd.dentry->d_inode;
314 if (!inode) { 314 if (!inode) {
315 r = -ENOENT; 315 r = -ENOENT;
316 goto out; 316 goto out;
317 } 317 }
318 318
319 if (!S_ISBLK(inode->i_mode)) { 319 if (!S_ISBLK(inode->i_mode)) {
320 r = -ENOTBLK; 320 r = -ENOTBLK;
321 goto out; 321 goto out;
322 } 322 }
323 323
324 *dev = inode->i_rdev; 324 *dev = inode->i_rdev;
325 325
326 out: 326 out:
327 path_release(&nd); 327 path_release(&nd);
328 return r; 328 return r;
329 } 329 }
330 330
331 /* 331 /*
332 * See if we've already got a device in the list. 332 * See if we've already got a device in the list.
333 */ 333 */
334 static struct dm_dev *find_device(struct list_head *l, dev_t dev) 334 static struct dm_dev *find_device(struct list_head *l, dev_t dev)
335 { 335 {
336 struct dm_dev *dd; 336 struct dm_dev *dd;
337 337
338 list_for_each_entry (dd, l, list) 338 list_for_each_entry (dd, l, list)
339 if (dd->bdev->bd_dev == dev) 339 if (dd->bdev->bd_dev == dev)
340 return dd; 340 return dd;
341 341
342 return NULL; 342 return NULL;
343 } 343 }
344 344
345 /* 345 /*
346 * Open a device so we can use it as a map destination. 346 * Open a device so we can use it as a map destination.
347 */ 347 */
348 static int open_dev(struct dm_dev *d, dev_t dev) 348 static int open_dev(struct dm_dev *d, dev_t dev)
349 { 349 {
350 static char *_claim_ptr = "I belong to device-mapper"; 350 static char *_claim_ptr = "I belong to device-mapper";
351 struct block_device *bdev; 351 struct block_device *bdev;
352 352
353 int r; 353 int r;
354 354
355 if (d->bdev) 355 if (d->bdev)
356 BUG(); 356 BUG();
357 357
358 bdev = open_by_devnum(dev, d->mode); 358 bdev = open_by_devnum(dev, d->mode);
359 if (IS_ERR(bdev)) 359 if (IS_ERR(bdev))
360 return PTR_ERR(bdev); 360 return PTR_ERR(bdev);
361 r = bd_claim(bdev, _claim_ptr); 361 r = bd_claim(bdev, _claim_ptr);
362 if (r) 362 if (r)
363 blkdev_put(bdev); 363 blkdev_put(bdev);
364 else 364 else
365 d->bdev = bdev; 365 d->bdev = bdev;
366 return r; 366 return r;
367 } 367 }
368 368
369 /* 369 /*
370 * Close a device that we've been using. 370 * Close a device that we've been using.
371 */ 371 */
372 static void close_dev(struct dm_dev *d) 372 static void close_dev(struct dm_dev *d)
373 { 373 {
374 if (!d->bdev) 374 if (!d->bdev)
375 return; 375 return;
376 376
377 bd_release(d->bdev); 377 bd_release(d->bdev);
378 blkdev_put(d->bdev); 378 blkdev_put(d->bdev);
379 d->bdev = NULL; 379 d->bdev = NULL;
380 } 380 }
381 381
382 /* 382 /*
383 * If possible (ie. blk_size[major] is set), this checks an area 383 * If possible (ie. blk_size[major] is set), this checks an area
384 * of a destination device is valid. 384 * of a destination device is valid.
385 */ 385 */
386 static int check_device_area(struct dm_dev *dd, sector_t start, sector_t len) 386 static int check_device_area(struct dm_dev *dd, sector_t start, sector_t len)
387 { 387 {
388 sector_t dev_size; 388 sector_t dev_size;
389 dev_size = dd->bdev->bd_inode->i_size >> SECTOR_SHIFT; 389 dev_size = dd->bdev->bd_inode->i_size >> SECTOR_SHIFT;
390 return ((start < dev_size) && (len <= (dev_size - start))); 390 return ((start < dev_size) && (len <= (dev_size - start)));
391 } 391 }
392 392
393 /* 393 /*
394 * This upgrades the mode on an already open dm_dev. Being 394 * This upgrades the mode on an already open dm_dev. Being
395 * careful to leave things as they were if we fail to reopen the 395 * careful to leave things as they were if we fail to reopen the
396 * device. 396 * device.
397 */ 397 */
398 static int upgrade_mode(struct dm_dev *dd, int new_mode) 398 static int upgrade_mode(struct dm_dev *dd, int new_mode)
399 { 399 {
400 int r; 400 int r;
401 struct dm_dev dd_copy; 401 struct dm_dev dd_copy;
402 dev_t dev = dd->bdev->bd_dev; 402 dev_t dev = dd->bdev->bd_dev;
403 403
404 dd_copy = *dd; 404 dd_copy = *dd;
405 405
406 dd->mode |= new_mode; 406 dd->mode |= new_mode;
407 dd->bdev = NULL; 407 dd->bdev = NULL;
408 r = open_dev(dd, dev); 408 r = open_dev(dd, dev);
409 if (!r) 409 if (!r)
410 close_dev(&dd_copy); 410 close_dev(&dd_copy);
411 else 411 else
412 *dd = dd_copy; 412 *dd = dd_copy;
413 413
414 return r; 414 return r;
415 } 415 }
416 416
417 /* 417 /*
418 * Add a device to the list, or just increment the usage count if 418 * Add a device to the list, or just increment the usage count if
419 * it's already present. 419 * it's already present.
420 */ 420 */
421 static int __table_get_device(struct dm_table *t, struct dm_target *ti, 421 static int __table_get_device(struct dm_table *t, struct dm_target *ti,
422 const char *path, sector_t start, sector_t len, 422 const char *path, sector_t start, sector_t len,
423 int mode, struct dm_dev **result) 423 int mode, struct dm_dev **result)
424 { 424 {
425 int r; 425 int r;
426 dev_t dev; 426 dev_t dev;
427 struct dm_dev *dd; 427 struct dm_dev *dd;
428 unsigned int major, minor; 428 unsigned int major, minor;
429 429
430 if (!t) 430 if (!t)
431 BUG(); 431 BUG();
432 432
433 if (sscanf(path, "%u:%u", &major, &minor) == 2) { 433 if (sscanf(path, "%u:%u", &major, &minor) == 2) {
434 /* Extract the major/minor numbers */ 434 /* Extract the major/minor numbers */
435 dev = MKDEV(major, minor); 435 dev = MKDEV(major, minor);
436 if (MAJOR(dev) != major || MINOR(dev) != minor) 436 if (MAJOR(dev) != major || MINOR(dev) != minor)
437 return -EOVERFLOW; 437 return -EOVERFLOW;
438 } else { 438 } else {
439 /* convert the path to a device */ 439 /* convert the path to a device */
440 if ((r = lookup_device(path, &dev))) 440 if ((r = lookup_device(path, &dev)))
441 return r; 441 return r;
442 } 442 }
443 443
444 dd = find_device(&t->devices, dev); 444 dd = find_device(&t->devices, dev);
445 if (!dd) { 445 if (!dd) {
446 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 446 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
447 if (!dd) 447 if (!dd)
448 return -ENOMEM; 448 return -ENOMEM;
449 449
450 dd->mode = mode; 450 dd->mode = mode;
451 dd->bdev = NULL; 451 dd->bdev = NULL;
452 452
453 if ((r = open_dev(dd, dev))) { 453 if ((r = open_dev(dd, dev))) {
454 kfree(dd); 454 kfree(dd);
455 return r; 455 return r;
456 } 456 }
457 457
458 format_dev_t(dd->name, dev); 458 format_dev_t(dd->name, dev);
459 459
460 atomic_set(&dd->count, 0); 460 atomic_set(&dd->count, 0);
461 list_add(&dd->list, &t->devices); 461 list_add(&dd->list, &t->devices);
462 462
463 } else if (dd->mode != (mode | dd->mode)) { 463 } else if (dd->mode != (mode | dd->mode)) {
464 r = upgrade_mode(dd, mode); 464 r = upgrade_mode(dd, mode);
465 if (r) 465 if (r)
466 return r; 466 return r;
467 } 467 }
468 atomic_inc(&dd->count); 468 atomic_inc(&dd->count);
469 469
470 if (!check_device_area(dd, start, len)) { 470 if (!check_device_area(dd, start, len)) {
471 DMWARN("device %s too small for target", path); 471 DMWARN("device %s too small for target", path);
472 dm_put_device(ti, dd); 472 dm_put_device(ti, dd);
473 return -EINVAL; 473 return -EINVAL;
474 } 474 }
475 475
476 *result = dd; 476 *result = dd;
477 477
478 return 0; 478 return 0;
479 } 479 }
480 480
481 481
482 int dm_get_device(struct dm_target *ti, const char *path, sector_t start, 482 int dm_get_device(struct dm_target *ti, const char *path, sector_t start,
483 sector_t len, int mode, struct dm_dev **result) 483 sector_t len, int mode, struct dm_dev **result)
484 { 484 {
485 int r = __table_get_device(ti->table, ti, path, 485 int r = __table_get_device(ti->table, ti, path,
486 start, len, mode, result); 486 start, len, mode, result);
487 if (!r) { 487 if (!r) {
488 request_queue_t *q = bdev_get_queue((*result)->bdev); 488 request_queue_t *q = bdev_get_queue((*result)->bdev);
489 struct io_restrictions *rs = &ti->limits; 489 struct io_restrictions *rs = &ti->limits;
490 490
491 /* 491 /*
492 * Combine the device limits low. 492 * Combine the device limits low.
493 * 493 *
494 * FIXME: if we move an io_restriction struct 494 * FIXME: if we move an io_restriction struct
495 * into q this would just be a call to 495 * into q this would just be a call to
496 * combine_restrictions_low() 496 * combine_restrictions_low()
497 */ 497 */
498 rs->max_sectors = 498 rs->max_sectors =
499 min_not_zero(rs->max_sectors, q->max_sectors); 499 min_not_zero(rs->max_sectors, q->max_sectors);
500 500
501 /* FIXME: Device-Mapper on top of RAID-0 breaks because DM 501 /* FIXME: Device-Mapper on top of RAID-0 breaks because DM
502 * currently doesn't honor MD's merge_bvec_fn routine. 502 * currently doesn't honor MD's merge_bvec_fn routine.
503 * In this case, we'll force DM to use PAGE_SIZE or 503 * In this case, we'll force DM to use PAGE_SIZE or
504 * smaller I/O, just to be safe. A better fix is in the 504 * smaller I/O, just to be safe. A better fix is in the
505 * works, but add this for the time being so it will at 505 * works, but add this for the time being so it will at
506 * least operate correctly. 506 * least operate correctly.
507 */ 507 */
508 if (q->merge_bvec_fn) 508 if (q->merge_bvec_fn)
509 rs->max_sectors = 509 rs->max_sectors =
510 min_not_zero(rs->max_sectors, 510 min_not_zero(rs->max_sectors,
511 (unsigned short)(PAGE_SIZE >> 9)); 511 (unsigned int) (PAGE_SIZE >> 9));
512 512
513 rs->max_phys_segments = 513 rs->max_phys_segments =
514 min_not_zero(rs->max_phys_segments, 514 min_not_zero(rs->max_phys_segments,
515 q->max_phys_segments); 515 q->max_phys_segments);
516 516
517 rs->max_hw_segments = 517 rs->max_hw_segments =
518 min_not_zero(rs->max_hw_segments, q->max_hw_segments); 518 min_not_zero(rs->max_hw_segments, q->max_hw_segments);
519 519
520 rs->hardsect_size = max(rs->hardsect_size, q->hardsect_size); 520 rs->hardsect_size = max(rs->hardsect_size, q->hardsect_size);
521 521
522 rs->max_segment_size = 522 rs->max_segment_size =
523 min_not_zero(rs->max_segment_size, q->max_segment_size); 523 min_not_zero(rs->max_segment_size, q->max_segment_size);
524 524
525 rs->seg_boundary_mask = 525 rs->seg_boundary_mask =
526 min_not_zero(rs->seg_boundary_mask, 526 min_not_zero(rs->seg_boundary_mask,
527 q->seg_boundary_mask); 527 q->seg_boundary_mask);
528 } 528 }
529 529
530 return r; 530 return r;
531 } 531 }
532 532
533 /* 533 /*
534 * Decrement a devices use count and remove it if necessary. 534 * Decrement a devices use count and remove it if necessary.
535 */ 535 */
536 void dm_put_device(struct dm_target *ti, struct dm_dev *dd) 536 void dm_put_device(struct dm_target *ti, struct dm_dev *dd)
537 { 537 {
538 if (atomic_dec_and_test(&dd->count)) { 538 if (atomic_dec_and_test(&dd->count)) {
539 close_dev(dd); 539 close_dev(dd);
540 list_del(&dd->list); 540 list_del(&dd->list);
541 kfree(dd); 541 kfree(dd);
542 } 542 }
543 } 543 }
544 544
545 /* 545 /*
546 * Checks to see if the target joins onto the end of the table. 546 * Checks to see if the target joins onto the end of the table.
547 */ 547 */
548 static int adjoin(struct dm_table *table, struct dm_target *ti) 548 static int adjoin(struct dm_table *table, struct dm_target *ti)
549 { 549 {
550 struct dm_target *prev; 550 struct dm_target *prev;
551 551
552 if (!table->num_targets) 552 if (!table->num_targets)
553 return !ti->begin; 553 return !ti->begin;
554 554
555 prev = &table->targets[table->num_targets - 1]; 555 prev = &table->targets[table->num_targets - 1];
556 return (ti->begin == (prev->begin + prev->len)); 556 return (ti->begin == (prev->begin + prev->len));
557 } 557 }
558 558
559 /* 559 /*
560 * Used to dynamically allocate the arg array. 560 * Used to dynamically allocate the arg array.
561 */ 561 */
562 static char **realloc_argv(unsigned *array_size, char **old_argv) 562 static char **realloc_argv(unsigned *array_size, char **old_argv)
563 { 563 {
564 char **argv; 564 char **argv;
565 unsigned new_size; 565 unsigned new_size;
566 566
567 new_size = *array_size ? *array_size * 2 : 64; 567 new_size = *array_size ? *array_size * 2 : 64;
568 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL); 568 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
569 if (argv) { 569 if (argv) {
570 memcpy(argv, old_argv, *array_size * sizeof(*argv)); 570 memcpy(argv, old_argv, *array_size * sizeof(*argv));
571 *array_size = new_size; 571 *array_size = new_size;
572 } 572 }
573 573
574 kfree(old_argv); 574 kfree(old_argv);
575 return argv; 575 return argv;
576 } 576 }
577 577
578 /* 578 /*
579 * Destructively splits up the argument list to pass to ctr. 579 * Destructively splits up the argument list to pass to ctr.
580 */ 580 */
581 int dm_split_args(int *argc, char ***argvp, char *input) 581 int dm_split_args(int *argc, char ***argvp, char *input)
582 { 582 {
583 char *start, *end = input, *out, **argv = NULL; 583 char *start, *end = input, *out, **argv = NULL;
584 unsigned array_size = 0; 584 unsigned array_size = 0;
585 585
586 *argc = 0; 586 *argc = 0;
587 argv = realloc_argv(&array_size, argv); 587 argv = realloc_argv(&array_size, argv);
588 if (!argv) 588 if (!argv)
589 return -ENOMEM; 589 return -ENOMEM;
590 590
591 while (1) { 591 while (1) {
592 start = end; 592 start = end;
593 593
594 /* Skip whitespace */ 594 /* Skip whitespace */
595 while (*start && isspace(*start)) 595 while (*start && isspace(*start))
596 start++; 596 start++;
597 597
598 if (!*start) 598 if (!*start)
599 break; /* success, we hit the end */ 599 break; /* success, we hit the end */
600 600
601 /* 'out' is used to remove any back-quotes */ 601 /* 'out' is used to remove any back-quotes */
602 end = out = start; 602 end = out = start;
603 while (*end) { 603 while (*end) {
604 /* Everything apart from '\0' can be quoted */ 604 /* Everything apart from '\0' can be quoted */
605 if (*end == '\\' && *(end + 1)) { 605 if (*end == '\\' && *(end + 1)) {
606 *out++ = *(end + 1); 606 *out++ = *(end + 1);
607 end += 2; 607 end += 2;
608 continue; 608 continue;
609 } 609 }
610 610
611 if (isspace(*end)) 611 if (isspace(*end))
612 break; /* end of token */ 612 break; /* end of token */
613 613
614 *out++ = *end++; 614 *out++ = *end++;
615 } 615 }
616 616
617 /* have we already filled the array ? */ 617 /* have we already filled the array ? */
618 if ((*argc + 1) > array_size) { 618 if ((*argc + 1) > array_size) {
619 argv = realloc_argv(&array_size, argv); 619 argv = realloc_argv(&array_size, argv);
620 if (!argv) 620 if (!argv)
621 return -ENOMEM; 621 return -ENOMEM;
622 } 622 }
623 623
624 /* we know this is whitespace */ 624 /* we know this is whitespace */
625 if (*end) 625 if (*end)
626 end++; 626 end++;
627 627
628 /* terminate the string and put it in the array */ 628 /* terminate the string and put it in the array */
629 *out = '\0'; 629 *out = '\0';
630 argv[*argc] = start; 630 argv[*argc] = start;
631 (*argc)++; 631 (*argc)++;
632 } 632 }
633 633
634 *argvp = argv; 634 *argvp = argv;
635 return 0; 635 return 0;
636 } 636 }
637 637
638 static void check_for_valid_limits(struct io_restrictions *rs) 638 static void check_for_valid_limits(struct io_restrictions *rs)
639 { 639 {
640 if (!rs->max_sectors) 640 if (!rs->max_sectors)
641 rs->max_sectors = SAFE_MAX_SECTORS; 641 rs->max_sectors = SAFE_MAX_SECTORS;
642 if (!rs->max_phys_segments) 642 if (!rs->max_phys_segments)
643 rs->max_phys_segments = MAX_PHYS_SEGMENTS; 643 rs->max_phys_segments = MAX_PHYS_SEGMENTS;
644 if (!rs->max_hw_segments) 644 if (!rs->max_hw_segments)
645 rs->max_hw_segments = MAX_HW_SEGMENTS; 645 rs->max_hw_segments = MAX_HW_SEGMENTS;
646 if (!rs->hardsect_size) 646 if (!rs->hardsect_size)
647 rs->hardsect_size = 1 << SECTOR_SHIFT; 647 rs->hardsect_size = 1 << SECTOR_SHIFT;
648 if (!rs->max_segment_size) 648 if (!rs->max_segment_size)
649 rs->max_segment_size = MAX_SEGMENT_SIZE; 649 rs->max_segment_size = MAX_SEGMENT_SIZE;
650 if (!rs->seg_boundary_mask) 650 if (!rs->seg_boundary_mask)
651 rs->seg_boundary_mask = -1; 651 rs->seg_boundary_mask = -1;
652 } 652 }
653 653
654 int dm_table_add_target(struct dm_table *t, const char *type, 654 int dm_table_add_target(struct dm_table *t, const char *type,
655 sector_t start, sector_t len, char *params) 655 sector_t start, sector_t len, char *params)
656 { 656 {
657 int r = -EINVAL, argc; 657 int r = -EINVAL, argc;
658 char **argv; 658 char **argv;
659 struct dm_target *tgt; 659 struct dm_target *tgt;
660 660
661 if ((r = check_space(t))) 661 if ((r = check_space(t)))
662 return r; 662 return r;
663 663
664 tgt = t->targets + t->num_targets; 664 tgt = t->targets + t->num_targets;
665 memset(tgt, 0, sizeof(*tgt)); 665 memset(tgt, 0, sizeof(*tgt));
666 666
667 if (!len) { 667 if (!len) {
668 tgt->error = "zero-length target"; 668 tgt->error = "zero-length target";
669 DMERR("%s", tgt->error); 669 DMERR("%s", tgt->error);
670 return -EINVAL; 670 return -EINVAL;
671 } 671 }
672 672
673 tgt->type = dm_get_target_type(type); 673 tgt->type = dm_get_target_type(type);
674 if (!tgt->type) { 674 if (!tgt->type) {
675 tgt->error = "unknown target type"; 675 tgt->error = "unknown target type";
676 DMERR("%s", tgt->error); 676 DMERR("%s", tgt->error);
677 return -EINVAL; 677 return -EINVAL;
678 } 678 }
679 679
680 tgt->table = t; 680 tgt->table = t;
681 tgt->begin = start; 681 tgt->begin = start;
682 tgt->len = len; 682 tgt->len = len;
683 tgt->error = "Unknown error"; 683 tgt->error = "Unknown error";
684 684
685 /* 685 /*
686 * Does this target adjoin the previous one ? 686 * Does this target adjoin the previous one ?
687 */ 687 */
688 if (!adjoin(t, tgt)) { 688 if (!adjoin(t, tgt)) {
689 tgt->error = "Gap in table"; 689 tgt->error = "Gap in table";
690 r = -EINVAL; 690 r = -EINVAL;
691 goto bad; 691 goto bad;
692 } 692 }
693 693
694 r = dm_split_args(&argc, &argv, params); 694 r = dm_split_args(&argc, &argv, params);
695 if (r) { 695 if (r) {
696 tgt->error = "couldn't split parameters (insufficient memory)"; 696 tgt->error = "couldn't split parameters (insufficient memory)";
697 goto bad; 697 goto bad;
698 } 698 }
699 699
700 r = tgt->type->ctr(tgt, argc, argv); 700 r = tgt->type->ctr(tgt, argc, argv);
701 kfree(argv); 701 kfree(argv);
702 if (r) 702 if (r)
703 goto bad; 703 goto bad;
704 704
705 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 705 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
706 706
707 /* FIXME: the plan is to combine high here and then have 707 /* FIXME: the plan is to combine high here and then have
708 * the merge fn apply the target level restrictions. */ 708 * the merge fn apply the target level restrictions. */
709 combine_restrictions_low(&t->limits, &tgt->limits); 709 combine_restrictions_low(&t->limits, &tgt->limits);
710 return 0; 710 return 0;
711 711
712 bad: 712 bad:
713 DMERR("%s", tgt->error); 713 DMERR("%s", tgt->error);
714 dm_put_target_type(tgt->type); 714 dm_put_target_type(tgt->type);
715 return r; 715 return r;
716 } 716 }
717 717
718 static int setup_indexes(struct dm_table *t) 718 static int setup_indexes(struct dm_table *t)
719 { 719 {
720 int i; 720 int i;
721 unsigned int total = 0; 721 unsigned int total = 0;
722 sector_t *indexes; 722 sector_t *indexes;
723 723
724 /* allocate the space for *all* the indexes */ 724 /* allocate the space for *all* the indexes */
725 for (i = t->depth - 2; i >= 0; i--) { 725 for (i = t->depth - 2; i >= 0; i--) {
726 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 726 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
727 total += t->counts[i]; 727 total += t->counts[i];
728 } 728 }
729 729
730 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); 730 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
731 if (!indexes) 731 if (!indexes)
732 return -ENOMEM; 732 return -ENOMEM;
733 733
734 /* set up internal nodes, bottom-up */ 734 /* set up internal nodes, bottom-up */
735 for (i = t->depth - 2, total = 0; i >= 0; i--) { 735 for (i = t->depth - 2, total = 0; i >= 0; i--) {
736 t->index[i] = indexes; 736 t->index[i] = indexes;
737 indexes += (KEYS_PER_NODE * t->counts[i]); 737 indexes += (KEYS_PER_NODE * t->counts[i]);
738 setup_btree_index(i, t); 738 setup_btree_index(i, t);
739 } 739 }
740 740
741 return 0; 741 return 0;
742 } 742 }
743 743
744 /* 744 /*
745 * Builds the btree to index the map. 745 * Builds the btree to index the map.
746 */ 746 */
747 int dm_table_complete(struct dm_table *t) 747 int dm_table_complete(struct dm_table *t)
748 { 748 {
749 int r = 0; 749 int r = 0;
750 unsigned int leaf_nodes; 750 unsigned int leaf_nodes;
751 751
752 check_for_valid_limits(&t->limits); 752 check_for_valid_limits(&t->limits);
753 753
754 /* how many indexes will the btree have ? */ 754 /* how many indexes will the btree have ? */
755 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 755 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
756 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 756 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
757 757
758 /* leaf layer has already been set up */ 758 /* leaf layer has already been set up */
759 t->counts[t->depth - 1] = leaf_nodes; 759 t->counts[t->depth - 1] = leaf_nodes;
760 t->index[t->depth - 1] = t->highs; 760 t->index[t->depth - 1] = t->highs;
761 761
762 if (t->depth >= 2) 762 if (t->depth >= 2)
763 r = setup_indexes(t); 763 r = setup_indexes(t);
764 764
765 return r; 765 return r;
766 } 766 }
767 767
768 static DECLARE_MUTEX(_event_lock); 768 static DECLARE_MUTEX(_event_lock);
769 void dm_table_event_callback(struct dm_table *t, 769 void dm_table_event_callback(struct dm_table *t,
770 void (*fn)(void *), void *context) 770 void (*fn)(void *), void *context)
771 { 771 {
772 down(&_event_lock); 772 down(&_event_lock);
773 t->event_fn = fn; 773 t->event_fn = fn;
774 t->event_context = context; 774 t->event_context = context;
775 up(&_event_lock); 775 up(&_event_lock);
776 } 776 }
777 777
778 void dm_table_event(struct dm_table *t) 778 void dm_table_event(struct dm_table *t)
779 { 779 {
780 /* 780 /*
781 * You can no longer call dm_table_event() from interrupt 781 * You can no longer call dm_table_event() from interrupt
782 * context, use a bottom half instead. 782 * context, use a bottom half instead.
783 */ 783 */
784 BUG_ON(in_interrupt()); 784 BUG_ON(in_interrupt());
785 785
786 down(&_event_lock); 786 down(&_event_lock);
787 if (t->event_fn) 787 if (t->event_fn)
788 t->event_fn(t->event_context); 788 t->event_fn(t->event_context);
789 up(&_event_lock); 789 up(&_event_lock);
790 } 790 }
791 791
792 sector_t dm_table_get_size(struct dm_table *t) 792 sector_t dm_table_get_size(struct dm_table *t)
793 { 793 {
794 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 794 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
795 } 795 }
796 796
797 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 797 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
798 { 798 {
799 if (index > t->num_targets) 799 if (index > t->num_targets)
800 return NULL; 800 return NULL;
801 801
802 return t->targets + index; 802 return t->targets + index;
803 } 803 }
804 804
805 /* 805 /*
806 * Search the btree for the correct target. 806 * Search the btree for the correct target.
807 */ 807 */
808 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 808 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
809 { 809 {
810 unsigned int l, n = 0, k = 0; 810 unsigned int l, n = 0, k = 0;
811 sector_t *node; 811 sector_t *node;
812 812
813 for (l = 0; l < t->depth; l++) { 813 for (l = 0; l < t->depth; l++) {
814 n = get_child(n, k); 814 n = get_child(n, k);
815 node = get_node(t, l, n); 815 node = get_node(t, l, n);
816 816
817 for (k = 0; k < KEYS_PER_NODE; k++) 817 for (k = 0; k < KEYS_PER_NODE; k++)
818 if (node[k] >= sector) 818 if (node[k] >= sector)
819 break; 819 break;
820 } 820 }
821 821
822 return &t->targets[(KEYS_PER_NODE * n) + k]; 822 return &t->targets[(KEYS_PER_NODE * n) + k];
823 } 823 }
824 824
825 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q) 825 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q)
826 { 826 {
827 /* 827 /*
828 * Make sure we obey the optimistic sub devices 828 * Make sure we obey the optimistic sub devices
829 * restrictions. 829 * restrictions.
830 */ 830 */
831 blk_queue_max_sectors(q, t->limits.max_sectors); 831 blk_queue_max_sectors(q, t->limits.max_sectors);
832 q->max_phys_segments = t->limits.max_phys_segments; 832 q->max_phys_segments = t->limits.max_phys_segments;
833 q->max_hw_segments = t->limits.max_hw_segments; 833 q->max_hw_segments = t->limits.max_hw_segments;
834 q->hardsect_size = t->limits.hardsect_size; 834 q->hardsect_size = t->limits.hardsect_size;
835 q->max_segment_size = t->limits.max_segment_size; 835 q->max_segment_size = t->limits.max_segment_size;
836 q->seg_boundary_mask = t->limits.seg_boundary_mask; 836 q->seg_boundary_mask = t->limits.seg_boundary_mask;
837 } 837 }
838 838
839 unsigned int dm_table_get_num_targets(struct dm_table *t) 839 unsigned int dm_table_get_num_targets(struct dm_table *t)
840 { 840 {
841 return t->num_targets; 841 return t->num_targets;
842 } 842 }
843 843
844 struct list_head *dm_table_get_devices(struct dm_table *t) 844 struct list_head *dm_table_get_devices(struct dm_table *t)
845 { 845 {
846 return &t->devices; 846 return &t->devices;
847 } 847 }
848 848
849 int dm_table_get_mode(struct dm_table *t) 849 int dm_table_get_mode(struct dm_table *t)
850 { 850 {
851 return t->mode; 851 return t->mode;
852 } 852 }
853 853
854 static void suspend_targets(struct dm_table *t, unsigned postsuspend) 854 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
855 { 855 {
856 int i = t->num_targets; 856 int i = t->num_targets;
857 struct dm_target *ti = t->targets; 857 struct dm_target *ti = t->targets;
858 858
859 while (i--) { 859 while (i--) {
860 if (postsuspend) { 860 if (postsuspend) {
861 if (ti->type->postsuspend) 861 if (ti->type->postsuspend)
862 ti->type->postsuspend(ti); 862 ti->type->postsuspend(ti);
863 } else if (ti->type->presuspend) 863 } else if (ti->type->presuspend)
864 ti->type->presuspend(ti); 864 ti->type->presuspend(ti);
865 865
866 ti++; 866 ti++;
867 } 867 }
868 } 868 }
869 869
870 void dm_table_presuspend_targets(struct dm_table *t) 870 void dm_table_presuspend_targets(struct dm_table *t)
871 { 871 {
872 if (!t) 872 if (!t)
873 return; 873 return;
874 874
875 return suspend_targets(t, 0); 875 return suspend_targets(t, 0);
876 } 876 }
877 877
878 void dm_table_postsuspend_targets(struct dm_table *t) 878 void dm_table_postsuspend_targets(struct dm_table *t)
879 { 879 {
880 if (!t) 880 if (!t)
881 return; 881 return;
882 882
883 return suspend_targets(t, 1); 883 return suspend_targets(t, 1);
884 } 884 }
885 885
886 void dm_table_resume_targets(struct dm_table *t) 886 void dm_table_resume_targets(struct dm_table *t)
887 { 887 {
888 int i; 888 int i;
889 889
890 for (i = 0; i < t->num_targets; i++) { 890 for (i = 0; i < t->num_targets; i++) {
891 struct dm_target *ti = t->targets + i; 891 struct dm_target *ti = t->targets + i;
892 892
893 if (ti->type->resume) 893 if (ti->type->resume)
894 ti->type->resume(ti); 894 ti->type->resume(ti);
895 } 895 }
896 } 896 }
897 897
898 int dm_table_any_congested(struct dm_table *t, int bdi_bits) 898 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
899 { 899 {
900 struct list_head *d, *devices; 900 struct list_head *d, *devices;
901 int r = 0; 901 int r = 0;
902 902
903 devices = dm_table_get_devices(t); 903 devices = dm_table_get_devices(t);
904 for (d = devices->next; d != devices; d = d->next) { 904 for (d = devices->next; d != devices; d = d->next) {
905 struct dm_dev *dd = list_entry(d, struct dm_dev, list); 905 struct dm_dev *dd = list_entry(d, struct dm_dev, list);
906 request_queue_t *q = bdev_get_queue(dd->bdev); 906 request_queue_t *q = bdev_get_queue(dd->bdev);
907 r |= bdi_congested(&q->backing_dev_info, bdi_bits); 907 r |= bdi_congested(&q->backing_dev_info, bdi_bits);
908 } 908 }
909 909
910 return r; 910 return r;
911 } 911 }
912 912
913 void dm_table_unplug_all(struct dm_table *t) 913 void dm_table_unplug_all(struct dm_table *t)
914 { 914 {
915 struct list_head *d, *devices = dm_table_get_devices(t); 915 struct list_head *d, *devices = dm_table_get_devices(t);
916 916
917 for (d = devices->next; d != devices; d = d->next) { 917 for (d = devices->next; d != devices; d = d->next) {
918 struct dm_dev *dd = list_entry(d, struct dm_dev, list); 918 struct dm_dev *dd = list_entry(d, struct dm_dev, list);
919 request_queue_t *q = bdev_get_queue(dd->bdev); 919 request_queue_t *q = bdev_get_queue(dd->bdev);
920 920
921 if (q->unplug_fn) 921 if (q->unplug_fn)
922 q->unplug_fn(q); 922 q->unplug_fn(q);
923 } 923 }
924 } 924 }
925 925
926 int dm_table_flush_all(struct dm_table *t) 926 int dm_table_flush_all(struct dm_table *t)
927 { 927 {
928 struct list_head *d, *devices = dm_table_get_devices(t); 928 struct list_head *d, *devices = dm_table_get_devices(t);
929 int ret = 0; 929 int ret = 0;
930 930
931 for (d = devices->next; d != devices; d = d->next) { 931 for (d = devices->next; d != devices; d = d->next) {
932 struct dm_dev *dd = list_entry(d, struct dm_dev, list); 932 struct dm_dev *dd = list_entry(d, struct dm_dev, list);
933 request_queue_t *q = bdev_get_queue(dd->bdev); 933 request_queue_t *q = bdev_get_queue(dd->bdev);
934 int err; 934 int err;
935 935
936 if (!q->issue_flush_fn) 936 if (!q->issue_flush_fn)
937 err = -EOPNOTSUPP; 937 err = -EOPNOTSUPP;
938 else 938 else
939 err = q->issue_flush_fn(q, dd->bdev->bd_disk, NULL); 939 err = q->issue_flush_fn(q, dd->bdev->bd_disk, NULL);
940 940
941 if (!ret) 941 if (!ret)
942 ret = err; 942 ret = err;
943 } 943 }
944 944
945 return ret; 945 return ret;
946 } 946 }
947 947
948 EXPORT_SYMBOL(dm_vcalloc); 948 EXPORT_SYMBOL(dm_vcalloc);
949 EXPORT_SYMBOL(dm_get_device); 949 EXPORT_SYMBOL(dm_get_device);
950 EXPORT_SYMBOL(dm_put_device); 950 EXPORT_SYMBOL(dm_put_device);
951 EXPORT_SYMBOL(dm_table_event); 951 EXPORT_SYMBOL(dm_table_event);
952 EXPORT_SYMBOL(dm_table_get_size); 952 EXPORT_SYMBOL(dm_table_get_size);
953 EXPORT_SYMBOL(dm_table_get_mode); 953 EXPORT_SYMBOL(dm_table_get_mode);
954 EXPORT_SYMBOL(dm_table_put); 954 EXPORT_SYMBOL(dm_table_put);
955 EXPORT_SYMBOL(dm_table_get); 955 EXPORT_SYMBOL(dm_table_get);
956 EXPORT_SYMBOL(dm_table_unplug_all); 956 EXPORT_SYMBOL(dm_table_unplug_all);
957 EXPORT_SYMBOL(dm_table_flush_all); 957 EXPORT_SYMBOL(dm_table_flush_all);
958 958
include/linux/device-mapper.h
1 /* 1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited. 2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004 Red Hat, Inc. All rights reserved. 3 * Copyright (C) 2004 Red Hat, Inc. All rights reserved.
4 * 4 *
5 * This file is released under the LGPL. 5 * This file is released under the LGPL.
6 */ 6 */
7 7
8 #ifndef _LINUX_DEVICE_MAPPER_H 8 #ifndef _LINUX_DEVICE_MAPPER_H
9 #define _LINUX_DEVICE_MAPPER_H 9 #define _LINUX_DEVICE_MAPPER_H
10 10
11 struct dm_target; 11 struct dm_target;
12 struct dm_table; 12 struct dm_table;
13 struct dm_dev; 13 struct dm_dev;
14 14
15 typedef enum { STATUSTYPE_INFO, STATUSTYPE_TABLE } status_type_t; 15 typedef enum { STATUSTYPE_INFO, STATUSTYPE_TABLE } status_type_t;
16 16
17 union map_info { 17 union map_info {
18 void *ptr; 18 void *ptr;
19 unsigned long long ll; 19 unsigned long long ll;
20 }; 20 };
21 21
22 /* 22 /*
23 * In the constructor the target parameter will already have the 23 * In the constructor the target parameter will already have the
24 * table, type, begin and len fields filled in. 24 * table, type, begin and len fields filled in.
25 */ 25 */
26 typedef int (*dm_ctr_fn) (struct dm_target *target, 26 typedef int (*dm_ctr_fn) (struct dm_target *target,
27 unsigned int argc, char **argv); 27 unsigned int argc, char **argv);
28 28
29 /* 29 /*
30 * The destructor doesn't need to free the dm_target, just 30 * The destructor doesn't need to free the dm_target, just
31 * anything hidden ti->private. 31 * anything hidden ti->private.
32 */ 32 */
33 typedef void (*dm_dtr_fn) (struct dm_target *ti); 33 typedef void (*dm_dtr_fn) (struct dm_target *ti);
34 34
35 /* 35 /*
36 * The map function must return: 36 * The map function must return:
37 * < 0: error 37 * < 0: error
38 * = 0: The target will handle the io by resubmitting it later 38 * = 0: The target will handle the io by resubmitting it later
39 * > 0: simple remap complete 39 * > 0: simple remap complete
40 */ 40 */
41 typedef int (*dm_map_fn) (struct dm_target *ti, struct bio *bio, 41 typedef int (*dm_map_fn) (struct dm_target *ti, struct bio *bio,
42 union map_info *map_context); 42 union map_info *map_context);
43 43
44 /* 44 /*
45 * Returns: 45 * Returns:
46 * < 0 : error (currently ignored) 46 * < 0 : error (currently ignored)
47 * 0 : ended successfully 47 * 0 : ended successfully
48 * 1 : for some reason the io has still not completed (eg, 48 * 1 : for some reason the io has still not completed (eg,
49 * multipath target might want to requeue a failed io). 49 * multipath target might want to requeue a failed io).
50 */ 50 */
51 typedef int (*dm_endio_fn) (struct dm_target *ti, 51 typedef int (*dm_endio_fn) (struct dm_target *ti,
52 struct bio *bio, int error, 52 struct bio *bio, int error,
53 union map_info *map_context); 53 union map_info *map_context);
54 54
55 typedef void (*dm_presuspend_fn) (struct dm_target *ti); 55 typedef void (*dm_presuspend_fn) (struct dm_target *ti);
56 typedef void (*dm_postsuspend_fn) (struct dm_target *ti); 56 typedef void (*dm_postsuspend_fn) (struct dm_target *ti);
57 typedef void (*dm_resume_fn) (struct dm_target *ti); 57 typedef void (*dm_resume_fn) (struct dm_target *ti);
58 58
59 typedef int (*dm_status_fn) (struct dm_target *ti, status_type_t status_type, 59 typedef int (*dm_status_fn) (struct dm_target *ti, status_type_t status_type,
60 char *result, unsigned int maxlen); 60 char *result, unsigned int maxlen);
61 61
62 typedef int (*dm_message_fn) (struct dm_target *ti, unsigned argc, char **argv); 62 typedef int (*dm_message_fn) (struct dm_target *ti, unsigned argc, char **argv);
63 63
64 void dm_error(const char *message); 64 void dm_error(const char *message);
65 65
66 /* 66 /*
67 * Constructors should call these functions to ensure destination devices 67 * Constructors should call these functions to ensure destination devices
68 * are opened/closed correctly. 68 * are opened/closed correctly.
69 * FIXME: too many arguments. 69 * FIXME: too many arguments.
70 */ 70 */
71 int dm_get_device(struct dm_target *ti, const char *path, sector_t start, 71 int dm_get_device(struct dm_target *ti, const char *path, sector_t start,
72 sector_t len, int mode, struct dm_dev **result); 72 sector_t len, int mode, struct dm_dev **result);
73 void dm_put_device(struct dm_target *ti, struct dm_dev *d); 73 void dm_put_device(struct dm_target *ti, struct dm_dev *d);
74 74
75 /* 75 /*
76 * Information about a target type 76 * Information about a target type
77 */ 77 */
78 struct target_type { 78 struct target_type {
79 const char *name; 79 const char *name;
80 struct module *module; 80 struct module *module;
81 unsigned version[3]; 81 unsigned version[3];
82 dm_ctr_fn ctr; 82 dm_ctr_fn ctr;
83 dm_dtr_fn dtr; 83 dm_dtr_fn dtr;
84 dm_map_fn map; 84 dm_map_fn map;
85 dm_endio_fn end_io; 85 dm_endio_fn end_io;
86 dm_presuspend_fn presuspend; 86 dm_presuspend_fn presuspend;
87 dm_postsuspend_fn postsuspend; 87 dm_postsuspend_fn postsuspend;
88 dm_resume_fn resume; 88 dm_resume_fn resume;
89 dm_status_fn status; 89 dm_status_fn status;
90 dm_message_fn message; 90 dm_message_fn message;
91 }; 91 };
92 92
93 struct io_restrictions { 93 struct io_restrictions {
94 unsigned short max_sectors; 94 unsigned int max_sectors;
95 unsigned short max_phys_segments; 95 unsigned short max_phys_segments;
96 unsigned short max_hw_segments; 96 unsigned short max_hw_segments;
97 unsigned short hardsect_size; 97 unsigned short hardsect_size;
98 unsigned int max_segment_size; 98 unsigned int max_segment_size;
99 unsigned long seg_boundary_mask; 99 unsigned long seg_boundary_mask;
100 }; 100 };
101 101
102 struct dm_target { 102 struct dm_target {
103 struct dm_table *table; 103 struct dm_table *table;
104 struct target_type *type; 104 struct target_type *type;
105 105
106 /* target limits */ 106 /* target limits */
107 sector_t begin; 107 sector_t begin;
108 sector_t len; 108 sector_t len;
109 109
110 /* FIXME: turn this into a mask, and merge with io_restrictions */ 110 /* FIXME: turn this into a mask, and merge with io_restrictions */
111 /* Always a power of 2 */ 111 /* Always a power of 2 */
112 sector_t split_io; 112 sector_t split_io;
113 113
114 /* 114 /*
115 * These are automatically filled in by 115 * These are automatically filled in by
116 * dm_table_get_device. 116 * dm_table_get_device.
117 */ 117 */
118 struct io_restrictions limits; 118 struct io_restrictions limits;
119 119
120 /* target specific data */ 120 /* target specific data */
121 void *private; 121 void *private;
122 122
123 /* Used to provide an error string from the ctr */ 123 /* Used to provide an error string from the ctr */
124 char *error; 124 char *error;
125 }; 125 };
126 126
127 int dm_register_target(struct target_type *t); 127 int dm_register_target(struct target_type *t);
128 int dm_unregister_target(struct target_type *t); 128 int dm_unregister_target(struct target_type *t);
129 129
130 #endif /* _LINUX_DEVICE_MAPPER_H */ 130 #endif /* _LINUX_DEVICE_MAPPER_H */
131 131