Commit 45cdf5cc0703c537194588c63d53bad1f2539d36
1 parent
53c8f9f199
Exists in
master
and in
6 other branches
kill tracehook_notify_death()
Kill tracehook_notify_death(), reimplement the logic in its caller, exit_notify(). Also, change the exec_id's check to use thread_group_leader() instead of task_detached(), this is more clear. This logic only applies to the exiting leader, a sub-thread must never change its exit_signal. Note: when the traced group leader exits the exit_signal-or-SIGCHLD logic looks really strange: - we notify the tracer even if !thread_group_empty() but do_wait(WEXITED) can't work until all threads exit - if the tracer is real_parent, it is not clear why can't we use ->exit_signal event if !thread_group_empty() -v2: do not try to fix the 2nd oddity to avoid the subtle behavior change mixed with reorganization, suggested by Tejun. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Reviewed-by: Tejun Heo <tj@kernel.org>
Showing 2 changed files with 13 additions and 42 deletions Inline Diff
include/linux/tracehook.h
1 | /* | 1 | /* |
2 | * Tracing hooks | 2 | * Tracing hooks |
3 | * | 3 | * |
4 | * Copyright (C) 2008-2009 Red Hat, Inc. All rights reserved. | 4 | * Copyright (C) 2008-2009 Red Hat, Inc. All rights reserved. |
5 | * | 5 | * |
6 | * This copyrighted material is made available to anyone wishing to use, | 6 | * This copyrighted material is made available to anyone wishing to use, |
7 | * modify, copy, or redistribute it subject to the terms and conditions | 7 | * modify, copy, or redistribute it subject to the terms and conditions |
8 | * of the GNU General Public License v.2. | 8 | * of the GNU General Public License v.2. |
9 | * | 9 | * |
10 | * This file defines hook entry points called by core code where | 10 | * This file defines hook entry points called by core code where |
11 | * user tracing/debugging support might need to do something. These | 11 | * user tracing/debugging support might need to do something. These |
12 | * entry points are called tracehook_*(). Each hook declared below | 12 | * entry points are called tracehook_*(). Each hook declared below |
13 | * has a detailed kerneldoc comment giving the context (locking et | 13 | * has a detailed kerneldoc comment giving the context (locking et |
14 | * al) from which it is called, and the meaning of its return value. | 14 | * al) from which it is called, and the meaning of its return value. |
15 | * | 15 | * |
16 | * Each function here typically has only one call site, so it is ok | 16 | * Each function here typically has only one call site, so it is ok |
17 | * to have some nontrivial tracehook_*() inlines. In all cases, the | 17 | * to have some nontrivial tracehook_*() inlines. In all cases, the |
18 | * fast path when no tracing is enabled should be very short. | 18 | * fast path when no tracing is enabled should be very short. |
19 | * | 19 | * |
20 | * The purpose of this file and the tracehook_* layer is to consolidate | 20 | * The purpose of this file and the tracehook_* layer is to consolidate |
21 | * the interface that the kernel core and arch code uses to enable any | 21 | * the interface that the kernel core and arch code uses to enable any |
22 | * user debugging or tracing facility (such as ptrace). The interfaces | 22 | * user debugging or tracing facility (such as ptrace). The interfaces |
23 | * here are carefully documented so that maintainers of core and arch | 23 | * here are carefully documented so that maintainers of core and arch |
24 | * code do not need to think about the implementation details of the | 24 | * code do not need to think about the implementation details of the |
25 | * tracing facilities. Likewise, maintainers of the tracing code do not | 25 | * tracing facilities. Likewise, maintainers of the tracing code do not |
26 | * need to understand all the calling core or arch code in detail, just | 26 | * need to understand all the calling core or arch code in detail, just |
27 | * documented circumstances of each call, such as locking conditions. | 27 | * documented circumstances of each call, such as locking conditions. |
28 | * | 28 | * |
29 | * If the calling core code changes so that locking is different, then | 29 | * If the calling core code changes so that locking is different, then |
30 | * it is ok to change the interface documented here. The maintainer of | 30 | * it is ok to change the interface documented here. The maintainer of |
31 | * core code changing should notify the maintainers of the tracing code | 31 | * core code changing should notify the maintainers of the tracing code |
32 | * that they need to work out the change. | 32 | * that they need to work out the change. |
33 | * | 33 | * |
34 | * Some tracehook_*() inlines take arguments that the current tracing | 34 | * Some tracehook_*() inlines take arguments that the current tracing |
35 | * implementations might not necessarily use. These function signatures | 35 | * implementations might not necessarily use. These function signatures |
36 | * are chosen to pass in all the information that is on hand in the | 36 | * are chosen to pass in all the information that is on hand in the |
37 | * caller and might conceivably be relevant to a tracer, so that the | 37 | * caller and might conceivably be relevant to a tracer, so that the |
38 | * core code won't have to be updated when tracing adds more features. | 38 | * core code won't have to be updated when tracing adds more features. |
39 | * If a call site changes so that some of those parameters are no longer | 39 | * If a call site changes so that some of those parameters are no longer |
40 | * already on hand without extra work, then the tracehook_* interface | 40 | * already on hand without extra work, then the tracehook_* interface |
41 | * can change so there is no make-work burden on the core code. The | 41 | * can change so there is no make-work burden on the core code. The |
42 | * maintainer of core code changing should notify the maintainers of the | 42 | * maintainer of core code changing should notify the maintainers of the |
43 | * tracing code that they need to work out the change. | 43 | * tracing code that they need to work out the change. |
44 | */ | 44 | */ |
45 | 45 | ||
46 | #ifndef _LINUX_TRACEHOOK_H | 46 | #ifndef _LINUX_TRACEHOOK_H |
47 | #define _LINUX_TRACEHOOK_H 1 | 47 | #define _LINUX_TRACEHOOK_H 1 |
48 | 48 | ||
49 | #include <linux/sched.h> | 49 | #include <linux/sched.h> |
50 | #include <linux/ptrace.h> | 50 | #include <linux/ptrace.h> |
51 | #include <linux/security.h> | 51 | #include <linux/security.h> |
52 | struct linux_binprm; | 52 | struct linux_binprm; |
53 | 53 | ||
54 | /* | 54 | /* |
55 | * ptrace report for syscall entry and exit looks identical. | 55 | * ptrace report for syscall entry and exit looks identical. |
56 | */ | 56 | */ |
57 | static inline void ptrace_report_syscall(struct pt_regs *regs) | 57 | static inline void ptrace_report_syscall(struct pt_regs *regs) |
58 | { | 58 | { |
59 | int ptrace = current->ptrace; | 59 | int ptrace = current->ptrace; |
60 | 60 | ||
61 | if (!(ptrace & PT_PTRACED)) | 61 | if (!(ptrace & PT_PTRACED)) |
62 | return; | 62 | return; |
63 | 63 | ||
64 | ptrace_notify(SIGTRAP | ((ptrace & PT_TRACESYSGOOD) ? 0x80 : 0)); | 64 | ptrace_notify(SIGTRAP | ((ptrace & PT_TRACESYSGOOD) ? 0x80 : 0)); |
65 | 65 | ||
66 | /* | 66 | /* |
67 | * this isn't the same as continuing with a signal, but it will do | 67 | * this isn't the same as continuing with a signal, but it will do |
68 | * for normal use. strace only continues with a signal if the | 68 | * for normal use. strace only continues with a signal if the |
69 | * stopping signal is not SIGTRAP. -brl | 69 | * stopping signal is not SIGTRAP. -brl |
70 | */ | 70 | */ |
71 | if (current->exit_code) { | 71 | if (current->exit_code) { |
72 | send_sig(current->exit_code, current, 1); | 72 | send_sig(current->exit_code, current, 1); |
73 | current->exit_code = 0; | 73 | current->exit_code = 0; |
74 | } | 74 | } |
75 | } | 75 | } |
76 | 76 | ||
77 | /** | 77 | /** |
78 | * tracehook_report_syscall_entry - task is about to attempt a system call | 78 | * tracehook_report_syscall_entry - task is about to attempt a system call |
79 | * @regs: user register state of current task | 79 | * @regs: user register state of current task |
80 | * | 80 | * |
81 | * This will be called if %TIF_SYSCALL_TRACE has been set, when the | 81 | * This will be called if %TIF_SYSCALL_TRACE has been set, when the |
82 | * current task has just entered the kernel for a system call. | 82 | * current task has just entered the kernel for a system call. |
83 | * Full user register state is available here. Changing the values | 83 | * Full user register state is available here. Changing the values |
84 | * in @regs can affect the system call number and arguments to be tried. | 84 | * in @regs can affect the system call number and arguments to be tried. |
85 | * It is safe to block here, preventing the system call from beginning. | 85 | * It is safe to block here, preventing the system call from beginning. |
86 | * | 86 | * |
87 | * Returns zero normally, or nonzero if the calling arch code should abort | 87 | * Returns zero normally, or nonzero if the calling arch code should abort |
88 | * the system call. That must prevent normal entry so no system call is | 88 | * the system call. That must prevent normal entry so no system call is |
89 | * made. If @task ever returns to user mode after this, its register state | 89 | * made. If @task ever returns to user mode after this, its register state |
90 | * is unspecified, but should be something harmless like an %ENOSYS error | 90 | * is unspecified, but should be something harmless like an %ENOSYS error |
91 | * return. It should preserve enough information so that syscall_rollback() | 91 | * return. It should preserve enough information so that syscall_rollback() |
92 | * can work (see asm-generic/syscall.h). | 92 | * can work (see asm-generic/syscall.h). |
93 | * | 93 | * |
94 | * Called without locks, just after entering kernel mode. | 94 | * Called without locks, just after entering kernel mode. |
95 | */ | 95 | */ |
96 | static inline __must_check int tracehook_report_syscall_entry( | 96 | static inline __must_check int tracehook_report_syscall_entry( |
97 | struct pt_regs *regs) | 97 | struct pt_regs *regs) |
98 | { | 98 | { |
99 | ptrace_report_syscall(regs); | 99 | ptrace_report_syscall(regs); |
100 | return 0; | 100 | return 0; |
101 | } | 101 | } |
102 | 102 | ||
103 | /** | 103 | /** |
104 | * tracehook_report_syscall_exit - task has just finished a system call | 104 | * tracehook_report_syscall_exit - task has just finished a system call |
105 | * @regs: user register state of current task | 105 | * @regs: user register state of current task |
106 | * @step: nonzero if simulating single-step or block-step | 106 | * @step: nonzero if simulating single-step or block-step |
107 | * | 107 | * |
108 | * This will be called if %TIF_SYSCALL_TRACE has been set, when the | 108 | * This will be called if %TIF_SYSCALL_TRACE has been set, when the |
109 | * current task has just finished an attempted system call. Full | 109 | * current task has just finished an attempted system call. Full |
110 | * user register state is available here. It is safe to block here, | 110 | * user register state is available here. It is safe to block here, |
111 | * preventing signals from being processed. | 111 | * preventing signals from being processed. |
112 | * | 112 | * |
113 | * If @step is nonzero, this report is also in lieu of the normal | 113 | * If @step is nonzero, this report is also in lieu of the normal |
114 | * trap that would follow the system call instruction because | 114 | * trap that would follow the system call instruction because |
115 | * user_enable_block_step() or user_enable_single_step() was used. | 115 | * user_enable_block_step() or user_enable_single_step() was used. |
116 | * In this case, %TIF_SYSCALL_TRACE might not be set. | 116 | * In this case, %TIF_SYSCALL_TRACE might not be set. |
117 | * | 117 | * |
118 | * Called without locks, just before checking for pending signals. | 118 | * Called without locks, just before checking for pending signals. |
119 | */ | 119 | */ |
120 | static inline void tracehook_report_syscall_exit(struct pt_regs *regs, int step) | 120 | static inline void tracehook_report_syscall_exit(struct pt_regs *regs, int step) |
121 | { | 121 | { |
122 | if (step) { | 122 | if (step) { |
123 | siginfo_t info; | 123 | siginfo_t info; |
124 | user_single_step_siginfo(current, regs, &info); | 124 | user_single_step_siginfo(current, regs, &info); |
125 | force_sig_info(SIGTRAP, &info, current); | 125 | force_sig_info(SIGTRAP, &info, current); |
126 | return; | 126 | return; |
127 | } | 127 | } |
128 | 128 | ||
129 | ptrace_report_syscall(regs); | 129 | ptrace_report_syscall(regs); |
130 | } | 130 | } |
131 | 131 | ||
132 | /** | 132 | /** |
133 | * tracehook_signal_handler - signal handler setup is complete | 133 | * tracehook_signal_handler - signal handler setup is complete |
134 | * @sig: number of signal being delivered | 134 | * @sig: number of signal being delivered |
135 | * @info: siginfo_t of signal being delivered | 135 | * @info: siginfo_t of signal being delivered |
136 | * @ka: sigaction setting that chose the handler | 136 | * @ka: sigaction setting that chose the handler |
137 | * @regs: user register state | 137 | * @regs: user register state |
138 | * @stepping: nonzero if debugger single-step or block-step in use | 138 | * @stepping: nonzero if debugger single-step or block-step in use |
139 | * | 139 | * |
140 | * Called by the arch code after a signal handler has been set up. | 140 | * Called by the arch code after a signal handler has been set up. |
141 | * Register and stack state reflects the user handler about to run. | 141 | * Register and stack state reflects the user handler about to run. |
142 | * Signal mask changes have already been made. | 142 | * Signal mask changes have already been made. |
143 | * | 143 | * |
144 | * Called without locks, shortly before returning to user mode | 144 | * Called without locks, shortly before returning to user mode |
145 | * (or handling more signals). | 145 | * (or handling more signals). |
146 | */ | 146 | */ |
147 | static inline void tracehook_signal_handler(int sig, siginfo_t *info, | 147 | static inline void tracehook_signal_handler(int sig, siginfo_t *info, |
148 | const struct k_sigaction *ka, | 148 | const struct k_sigaction *ka, |
149 | struct pt_regs *regs, int stepping) | 149 | struct pt_regs *regs, int stepping) |
150 | { | 150 | { |
151 | if (stepping) | 151 | if (stepping) |
152 | ptrace_notify(SIGTRAP); | 152 | ptrace_notify(SIGTRAP); |
153 | } | 153 | } |
154 | 154 | ||
155 | #define DEATH_REAP -1 | ||
156 | #define DEATH_DELAYED_GROUP_LEADER -2 | ||
157 | |||
158 | /** | ||
159 | * tracehook_notify_death - task is dead, ready to notify parent | ||
160 | * @task: @current task now exiting | ||
161 | * @death_cookie: value to pass to tracehook_report_death() | ||
162 | * @group_dead: nonzero if this was the last thread in the group to die | ||
163 | * | ||
164 | * A return value >= 0 means call do_notify_parent() with that signal | ||
165 | * number. Negative return value can be %DEATH_REAP to self-reap right | ||
166 | * now, or %DEATH_DELAYED_GROUP_LEADER to a zombie without notifying our | ||
167 | * parent. Note that a return value of 0 means a do_notify_parent() call | ||
168 | * that sends no signal, but still wakes up a parent blocked in wait*(). | ||
169 | * | ||
170 | * Called with write_lock_irq(&tasklist_lock) held. | ||
171 | */ | ||
172 | static inline int tracehook_notify_death(struct task_struct *task, | ||
173 | void **death_cookie, int group_dead) | ||
174 | { | ||
175 | if (task_detached(task)) | ||
176 | return task->ptrace ? SIGCHLD : DEATH_REAP; | ||
177 | |||
178 | /* | ||
179 | * If something other than our normal parent is ptracing us, then | ||
180 | * send it a SIGCHLD instead of honoring exit_signal. exit_signal | ||
181 | * only has special meaning to our real parent. | ||
182 | */ | ||
183 | if (thread_group_empty(task) && !ptrace_reparented(task)) | ||
184 | return task->exit_signal; | ||
185 | |||
186 | return task->ptrace ? SIGCHLD : DEATH_DELAYED_GROUP_LEADER; | ||
187 | } | ||
188 | |||
189 | #ifdef TIF_NOTIFY_RESUME | 155 | #ifdef TIF_NOTIFY_RESUME |
190 | /** | 156 | /** |
191 | * set_notify_resume - cause tracehook_notify_resume() to be called | 157 | * set_notify_resume - cause tracehook_notify_resume() to be called |
192 | * @task: task that will call tracehook_notify_resume() | 158 | * @task: task that will call tracehook_notify_resume() |
193 | * | 159 | * |
194 | * Calling this arranges that @task will call tracehook_notify_resume() | 160 | * Calling this arranges that @task will call tracehook_notify_resume() |
195 | * before returning to user mode. If it's already running in user mode, | 161 | * before returning to user mode. If it's already running in user mode, |
196 | * it will enter the kernel and call tracehook_notify_resume() soon. | 162 | * it will enter the kernel and call tracehook_notify_resume() soon. |
197 | * If it's blocked, it will not be woken. | 163 | * If it's blocked, it will not be woken. |
198 | */ | 164 | */ |
199 | static inline void set_notify_resume(struct task_struct *task) | 165 | static inline void set_notify_resume(struct task_struct *task) |
200 | { | 166 | { |
201 | if (!test_and_set_tsk_thread_flag(task, TIF_NOTIFY_RESUME)) | 167 | if (!test_and_set_tsk_thread_flag(task, TIF_NOTIFY_RESUME)) |
202 | kick_process(task); | 168 | kick_process(task); |
203 | } | 169 | } |
204 | 170 | ||
205 | /** | 171 | /** |
206 | * tracehook_notify_resume - report when about to return to user mode | 172 | * tracehook_notify_resume - report when about to return to user mode |
207 | * @regs: user-mode registers of @current task | 173 | * @regs: user-mode registers of @current task |
208 | * | 174 | * |
209 | * This is called when %TIF_NOTIFY_RESUME has been set. Now we are | 175 | * This is called when %TIF_NOTIFY_RESUME has been set. Now we are |
210 | * about to return to user mode, and the user state in @regs can be | 176 | * about to return to user mode, and the user state in @regs can be |
211 | * inspected or adjusted. The caller in arch code has cleared | 177 | * inspected or adjusted. The caller in arch code has cleared |
212 | * %TIF_NOTIFY_RESUME before the call. If the flag gets set again | 178 | * %TIF_NOTIFY_RESUME before the call. If the flag gets set again |
213 | * asynchronously, this will be called again before we return to | 179 | * asynchronously, this will be called again before we return to |
214 | * user mode. | 180 | * user mode. |
215 | * | 181 | * |
216 | * Called without locks. | 182 | * Called without locks. |
217 | */ | 183 | */ |
218 | static inline void tracehook_notify_resume(struct pt_regs *regs) | 184 | static inline void tracehook_notify_resume(struct pt_regs *regs) |
219 | { | 185 | { |
220 | } | 186 | } |
221 | #endif /* TIF_NOTIFY_RESUME */ | 187 | #endif /* TIF_NOTIFY_RESUME */ |
222 | 188 | ||
223 | #endif /* <linux/tracehook.h> */ | 189 | #endif /* <linux/tracehook.h> */ |
224 | 190 |
kernel/exit.c
1 | /* | 1 | /* |
2 | * linux/kernel/exit.c | 2 | * linux/kernel/exit.c |
3 | * | 3 | * |
4 | * Copyright (C) 1991, 1992 Linus Torvalds | 4 | * Copyright (C) 1991, 1992 Linus Torvalds |
5 | */ | 5 | */ |
6 | 6 | ||
7 | #include <linux/mm.h> | 7 | #include <linux/mm.h> |
8 | #include <linux/slab.h> | 8 | #include <linux/slab.h> |
9 | #include <linux/interrupt.h> | 9 | #include <linux/interrupt.h> |
10 | #include <linux/module.h> | 10 | #include <linux/module.h> |
11 | #include <linux/capability.h> | 11 | #include <linux/capability.h> |
12 | #include <linux/completion.h> | 12 | #include <linux/completion.h> |
13 | #include <linux/personality.h> | 13 | #include <linux/personality.h> |
14 | #include <linux/tty.h> | 14 | #include <linux/tty.h> |
15 | #include <linux/iocontext.h> | 15 | #include <linux/iocontext.h> |
16 | #include <linux/key.h> | 16 | #include <linux/key.h> |
17 | #include <linux/security.h> | 17 | #include <linux/security.h> |
18 | #include <linux/cpu.h> | 18 | #include <linux/cpu.h> |
19 | #include <linux/acct.h> | 19 | #include <linux/acct.h> |
20 | #include <linux/tsacct_kern.h> | 20 | #include <linux/tsacct_kern.h> |
21 | #include <linux/file.h> | 21 | #include <linux/file.h> |
22 | #include <linux/fdtable.h> | 22 | #include <linux/fdtable.h> |
23 | #include <linux/binfmts.h> | 23 | #include <linux/binfmts.h> |
24 | #include <linux/nsproxy.h> | 24 | #include <linux/nsproxy.h> |
25 | #include <linux/pid_namespace.h> | 25 | #include <linux/pid_namespace.h> |
26 | #include <linux/ptrace.h> | 26 | #include <linux/ptrace.h> |
27 | #include <linux/profile.h> | 27 | #include <linux/profile.h> |
28 | #include <linux/mount.h> | 28 | #include <linux/mount.h> |
29 | #include <linux/proc_fs.h> | 29 | #include <linux/proc_fs.h> |
30 | #include <linux/kthread.h> | 30 | #include <linux/kthread.h> |
31 | #include <linux/mempolicy.h> | 31 | #include <linux/mempolicy.h> |
32 | #include <linux/taskstats_kern.h> | 32 | #include <linux/taskstats_kern.h> |
33 | #include <linux/delayacct.h> | 33 | #include <linux/delayacct.h> |
34 | #include <linux/freezer.h> | 34 | #include <linux/freezer.h> |
35 | #include <linux/cgroup.h> | 35 | #include <linux/cgroup.h> |
36 | #include <linux/syscalls.h> | 36 | #include <linux/syscalls.h> |
37 | #include <linux/signal.h> | 37 | #include <linux/signal.h> |
38 | #include <linux/posix-timers.h> | 38 | #include <linux/posix-timers.h> |
39 | #include <linux/cn_proc.h> | 39 | #include <linux/cn_proc.h> |
40 | #include <linux/mutex.h> | 40 | #include <linux/mutex.h> |
41 | #include <linux/futex.h> | 41 | #include <linux/futex.h> |
42 | #include <linux/pipe_fs_i.h> | 42 | #include <linux/pipe_fs_i.h> |
43 | #include <linux/audit.h> /* for audit_free() */ | 43 | #include <linux/audit.h> /* for audit_free() */ |
44 | #include <linux/resource.h> | 44 | #include <linux/resource.h> |
45 | #include <linux/blkdev.h> | 45 | #include <linux/blkdev.h> |
46 | #include <linux/task_io_accounting_ops.h> | 46 | #include <linux/task_io_accounting_ops.h> |
47 | #include <linux/tracehook.h> | 47 | #include <linux/tracehook.h> |
48 | #include <linux/fs_struct.h> | 48 | #include <linux/fs_struct.h> |
49 | #include <linux/init_task.h> | 49 | #include <linux/init_task.h> |
50 | #include <linux/perf_event.h> | 50 | #include <linux/perf_event.h> |
51 | #include <trace/events/sched.h> | 51 | #include <trace/events/sched.h> |
52 | #include <linux/hw_breakpoint.h> | 52 | #include <linux/hw_breakpoint.h> |
53 | #include <linux/oom.h> | 53 | #include <linux/oom.h> |
54 | 54 | ||
55 | #include <asm/uaccess.h> | 55 | #include <asm/uaccess.h> |
56 | #include <asm/unistd.h> | 56 | #include <asm/unistd.h> |
57 | #include <asm/pgtable.h> | 57 | #include <asm/pgtable.h> |
58 | #include <asm/mmu_context.h> | 58 | #include <asm/mmu_context.h> |
59 | 59 | ||
60 | static void exit_mm(struct task_struct * tsk); | 60 | static void exit_mm(struct task_struct * tsk); |
61 | 61 | ||
62 | static void __unhash_process(struct task_struct *p, bool group_dead) | 62 | static void __unhash_process(struct task_struct *p, bool group_dead) |
63 | { | 63 | { |
64 | nr_threads--; | 64 | nr_threads--; |
65 | detach_pid(p, PIDTYPE_PID); | 65 | detach_pid(p, PIDTYPE_PID); |
66 | if (group_dead) { | 66 | if (group_dead) { |
67 | detach_pid(p, PIDTYPE_PGID); | 67 | detach_pid(p, PIDTYPE_PGID); |
68 | detach_pid(p, PIDTYPE_SID); | 68 | detach_pid(p, PIDTYPE_SID); |
69 | 69 | ||
70 | list_del_rcu(&p->tasks); | 70 | list_del_rcu(&p->tasks); |
71 | list_del_init(&p->sibling); | 71 | list_del_init(&p->sibling); |
72 | __this_cpu_dec(process_counts); | 72 | __this_cpu_dec(process_counts); |
73 | } | 73 | } |
74 | list_del_rcu(&p->thread_group); | 74 | list_del_rcu(&p->thread_group); |
75 | } | 75 | } |
76 | 76 | ||
77 | /* | 77 | /* |
78 | * This function expects the tasklist_lock write-locked. | 78 | * This function expects the tasklist_lock write-locked. |
79 | */ | 79 | */ |
80 | static void __exit_signal(struct task_struct *tsk) | 80 | static void __exit_signal(struct task_struct *tsk) |
81 | { | 81 | { |
82 | struct signal_struct *sig = tsk->signal; | 82 | struct signal_struct *sig = tsk->signal; |
83 | bool group_dead = thread_group_leader(tsk); | 83 | bool group_dead = thread_group_leader(tsk); |
84 | struct sighand_struct *sighand; | 84 | struct sighand_struct *sighand; |
85 | struct tty_struct *uninitialized_var(tty); | 85 | struct tty_struct *uninitialized_var(tty); |
86 | 86 | ||
87 | sighand = rcu_dereference_check(tsk->sighand, | 87 | sighand = rcu_dereference_check(tsk->sighand, |
88 | rcu_read_lock_held() || | 88 | rcu_read_lock_held() || |
89 | lockdep_tasklist_lock_is_held()); | 89 | lockdep_tasklist_lock_is_held()); |
90 | spin_lock(&sighand->siglock); | 90 | spin_lock(&sighand->siglock); |
91 | 91 | ||
92 | posix_cpu_timers_exit(tsk); | 92 | posix_cpu_timers_exit(tsk); |
93 | if (group_dead) { | 93 | if (group_dead) { |
94 | posix_cpu_timers_exit_group(tsk); | 94 | posix_cpu_timers_exit_group(tsk); |
95 | tty = sig->tty; | 95 | tty = sig->tty; |
96 | sig->tty = NULL; | 96 | sig->tty = NULL; |
97 | } else { | 97 | } else { |
98 | /* | 98 | /* |
99 | * This can only happen if the caller is de_thread(). | 99 | * This can only happen if the caller is de_thread(). |
100 | * FIXME: this is the temporary hack, we should teach | 100 | * FIXME: this is the temporary hack, we should teach |
101 | * posix-cpu-timers to handle this case correctly. | 101 | * posix-cpu-timers to handle this case correctly. |
102 | */ | 102 | */ |
103 | if (unlikely(has_group_leader_pid(tsk))) | 103 | if (unlikely(has_group_leader_pid(tsk))) |
104 | posix_cpu_timers_exit_group(tsk); | 104 | posix_cpu_timers_exit_group(tsk); |
105 | 105 | ||
106 | /* | 106 | /* |
107 | * If there is any task waiting for the group exit | 107 | * If there is any task waiting for the group exit |
108 | * then notify it: | 108 | * then notify it: |
109 | */ | 109 | */ |
110 | if (sig->notify_count > 0 && !--sig->notify_count) | 110 | if (sig->notify_count > 0 && !--sig->notify_count) |
111 | wake_up_process(sig->group_exit_task); | 111 | wake_up_process(sig->group_exit_task); |
112 | 112 | ||
113 | if (tsk == sig->curr_target) | 113 | if (tsk == sig->curr_target) |
114 | sig->curr_target = next_thread(tsk); | 114 | sig->curr_target = next_thread(tsk); |
115 | /* | 115 | /* |
116 | * Accumulate here the counters for all threads but the | 116 | * Accumulate here the counters for all threads but the |
117 | * group leader as they die, so they can be added into | 117 | * group leader as they die, so they can be added into |
118 | * the process-wide totals when those are taken. | 118 | * the process-wide totals when those are taken. |
119 | * The group leader stays around as a zombie as long | 119 | * The group leader stays around as a zombie as long |
120 | * as there are other threads. When it gets reaped, | 120 | * as there are other threads. When it gets reaped, |
121 | * the exit.c code will add its counts into these totals. | 121 | * the exit.c code will add its counts into these totals. |
122 | * We won't ever get here for the group leader, since it | 122 | * We won't ever get here for the group leader, since it |
123 | * will have been the last reference on the signal_struct. | 123 | * will have been the last reference on the signal_struct. |
124 | */ | 124 | */ |
125 | sig->utime = cputime_add(sig->utime, tsk->utime); | 125 | sig->utime = cputime_add(sig->utime, tsk->utime); |
126 | sig->stime = cputime_add(sig->stime, tsk->stime); | 126 | sig->stime = cputime_add(sig->stime, tsk->stime); |
127 | sig->gtime = cputime_add(sig->gtime, tsk->gtime); | 127 | sig->gtime = cputime_add(sig->gtime, tsk->gtime); |
128 | sig->min_flt += tsk->min_flt; | 128 | sig->min_flt += tsk->min_flt; |
129 | sig->maj_flt += tsk->maj_flt; | 129 | sig->maj_flt += tsk->maj_flt; |
130 | sig->nvcsw += tsk->nvcsw; | 130 | sig->nvcsw += tsk->nvcsw; |
131 | sig->nivcsw += tsk->nivcsw; | 131 | sig->nivcsw += tsk->nivcsw; |
132 | sig->inblock += task_io_get_inblock(tsk); | 132 | sig->inblock += task_io_get_inblock(tsk); |
133 | sig->oublock += task_io_get_oublock(tsk); | 133 | sig->oublock += task_io_get_oublock(tsk); |
134 | task_io_accounting_add(&sig->ioac, &tsk->ioac); | 134 | task_io_accounting_add(&sig->ioac, &tsk->ioac); |
135 | sig->sum_sched_runtime += tsk->se.sum_exec_runtime; | 135 | sig->sum_sched_runtime += tsk->se.sum_exec_runtime; |
136 | } | 136 | } |
137 | 137 | ||
138 | sig->nr_threads--; | 138 | sig->nr_threads--; |
139 | __unhash_process(tsk, group_dead); | 139 | __unhash_process(tsk, group_dead); |
140 | 140 | ||
141 | /* | 141 | /* |
142 | * Do this under ->siglock, we can race with another thread | 142 | * Do this under ->siglock, we can race with another thread |
143 | * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. | 143 | * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. |
144 | */ | 144 | */ |
145 | flush_sigqueue(&tsk->pending); | 145 | flush_sigqueue(&tsk->pending); |
146 | tsk->sighand = NULL; | 146 | tsk->sighand = NULL; |
147 | spin_unlock(&sighand->siglock); | 147 | spin_unlock(&sighand->siglock); |
148 | 148 | ||
149 | __cleanup_sighand(sighand); | 149 | __cleanup_sighand(sighand); |
150 | clear_tsk_thread_flag(tsk,TIF_SIGPENDING); | 150 | clear_tsk_thread_flag(tsk,TIF_SIGPENDING); |
151 | if (group_dead) { | 151 | if (group_dead) { |
152 | flush_sigqueue(&sig->shared_pending); | 152 | flush_sigqueue(&sig->shared_pending); |
153 | tty_kref_put(tty); | 153 | tty_kref_put(tty); |
154 | } | 154 | } |
155 | } | 155 | } |
156 | 156 | ||
157 | static void delayed_put_task_struct(struct rcu_head *rhp) | 157 | static void delayed_put_task_struct(struct rcu_head *rhp) |
158 | { | 158 | { |
159 | struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); | 159 | struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); |
160 | 160 | ||
161 | perf_event_delayed_put(tsk); | 161 | perf_event_delayed_put(tsk); |
162 | trace_sched_process_free(tsk); | 162 | trace_sched_process_free(tsk); |
163 | put_task_struct(tsk); | 163 | put_task_struct(tsk); |
164 | } | 164 | } |
165 | 165 | ||
166 | 166 | ||
167 | void release_task(struct task_struct * p) | 167 | void release_task(struct task_struct * p) |
168 | { | 168 | { |
169 | struct task_struct *leader; | 169 | struct task_struct *leader; |
170 | int zap_leader; | 170 | int zap_leader; |
171 | repeat: | 171 | repeat: |
172 | /* don't need to get the RCU readlock here - the process is dead and | 172 | /* don't need to get the RCU readlock here - the process is dead and |
173 | * can't be modifying its own credentials. But shut RCU-lockdep up */ | 173 | * can't be modifying its own credentials. But shut RCU-lockdep up */ |
174 | rcu_read_lock(); | 174 | rcu_read_lock(); |
175 | atomic_dec(&__task_cred(p)->user->processes); | 175 | atomic_dec(&__task_cred(p)->user->processes); |
176 | rcu_read_unlock(); | 176 | rcu_read_unlock(); |
177 | 177 | ||
178 | proc_flush_task(p); | 178 | proc_flush_task(p); |
179 | 179 | ||
180 | write_lock_irq(&tasklist_lock); | 180 | write_lock_irq(&tasklist_lock); |
181 | ptrace_release_task(p); | 181 | ptrace_release_task(p); |
182 | __exit_signal(p); | 182 | __exit_signal(p); |
183 | 183 | ||
184 | /* | 184 | /* |
185 | * If we are the last non-leader member of the thread | 185 | * If we are the last non-leader member of the thread |
186 | * group, and the leader is zombie, then notify the | 186 | * group, and the leader is zombie, then notify the |
187 | * group leader's parent process. (if it wants notification.) | 187 | * group leader's parent process. (if it wants notification.) |
188 | */ | 188 | */ |
189 | zap_leader = 0; | 189 | zap_leader = 0; |
190 | leader = p->group_leader; | 190 | leader = p->group_leader; |
191 | if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { | 191 | if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { |
192 | BUG_ON(task_detached(leader)); | 192 | BUG_ON(task_detached(leader)); |
193 | do_notify_parent(leader, leader->exit_signal); | 193 | do_notify_parent(leader, leader->exit_signal); |
194 | /* | 194 | /* |
195 | * If we were the last child thread and the leader has | 195 | * If we were the last child thread and the leader has |
196 | * exited already, and the leader's parent ignores SIGCHLD, | 196 | * exited already, and the leader's parent ignores SIGCHLD, |
197 | * then we are the one who should release the leader. | 197 | * then we are the one who should release the leader. |
198 | * | 198 | * |
199 | * do_notify_parent() will have marked it self-reaping in | 199 | * do_notify_parent() will have marked it self-reaping in |
200 | * that case. | 200 | * that case. |
201 | */ | 201 | */ |
202 | zap_leader = task_detached(leader); | 202 | zap_leader = task_detached(leader); |
203 | 203 | ||
204 | /* | 204 | /* |
205 | * This maintains the invariant that release_task() | 205 | * This maintains the invariant that release_task() |
206 | * only runs on a task in EXIT_DEAD, just for sanity. | 206 | * only runs on a task in EXIT_DEAD, just for sanity. |
207 | */ | 207 | */ |
208 | if (zap_leader) | 208 | if (zap_leader) |
209 | leader->exit_state = EXIT_DEAD; | 209 | leader->exit_state = EXIT_DEAD; |
210 | } | 210 | } |
211 | 211 | ||
212 | write_unlock_irq(&tasklist_lock); | 212 | write_unlock_irq(&tasklist_lock); |
213 | release_thread(p); | 213 | release_thread(p); |
214 | call_rcu(&p->rcu, delayed_put_task_struct); | 214 | call_rcu(&p->rcu, delayed_put_task_struct); |
215 | 215 | ||
216 | p = leader; | 216 | p = leader; |
217 | if (unlikely(zap_leader)) | 217 | if (unlikely(zap_leader)) |
218 | goto repeat; | 218 | goto repeat; |
219 | } | 219 | } |
220 | 220 | ||
221 | /* | 221 | /* |
222 | * This checks not only the pgrp, but falls back on the pid if no | 222 | * This checks not only the pgrp, but falls back on the pid if no |
223 | * satisfactory pgrp is found. I dunno - gdb doesn't work correctly | 223 | * satisfactory pgrp is found. I dunno - gdb doesn't work correctly |
224 | * without this... | 224 | * without this... |
225 | * | 225 | * |
226 | * The caller must hold rcu lock or the tasklist lock. | 226 | * The caller must hold rcu lock or the tasklist lock. |
227 | */ | 227 | */ |
228 | struct pid *session_of_pgrp(struct pid *pgrp) | 228 | struct pid *session_of_pgrp(struct pid *pgrp) |
229 | { | 229 | { |
230 | struct task_struct *p; | 230 | struct task_struct *p; |
231 | struct pid *sid = NULL; | 231 | struct pid *sid = NULL; |
232 | 232 | ||
233 | p = pid_task(pgrp, PIDTYPE_PGID); | 233 | p = pid_task(pgrp, PIDTYPE_PGID); |
234 | if (p == NULL) | 234 | if (p == NULL) |
235 | p = pid_task(pgrp, PIDTYPE_PID); | 235 | p = pid_task(pgrp, PIDTYPE_PID); |
236 | if (p != NULL) | 236 | if (p != NULL) |
237 | sid = task_session(p); | 237 | sid = task_session(p); |
238 | 238 | ||
239 | return sid; | 239 | return sid; |
240 | } | 240 | } |
241 | 241 | ||
242 | /* | 242 | /* |
243 | * Determine if a process group is "orphaned", according to the POSIX | 243 | * Determine if a process group is "orphaned", according to the POSIX |
244 | * definition in 2.2.2.52. Orphaned process groups are not to be affected | 244 | * definition in 2.2.2.52. Orphaned process groups are not to be affected |
245 | * by terminal-generated stop signals. Newly orphaned process groups are | 245 | * by terminal-generated stop signals. Newly orphaned process groups are |
246 | * to receive a SIGHUP and a SIGCONT. | 246 | * to receive a SIGHUP and a SIGCONT. |
247 | * | 247 | * |
248 | * "I ask you, have you ever known what it is to be an orphan?" | 248 | * "I ask you, have you ever known what it is to be an orphan?" |
249 | */ | 249 | */ |
250 | static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) | 250 | static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) |
251 | { | 251 | { |
252 | struct task_struct *p; | 252 | struct task_struct *p; |
253 | 253 | ||
254 | do_each_pid_task(pgrp, PIDTYPE_PGID, p) { | 254 | do_each_pid_task(pgrp, PIDTYPE_PGID, p) { |
255 | if ((p == ignored_task) || | 255 | if ((p == ignored_task) || |
256 | (p->exit_state && thread_group_empty(p)) || | 256 | (p->exit_state && thread_group_empty(p)) || |
257 | is_global_init(p->real_parent)) | 257 | is_global_init(p->real_parent)) |
258 | continue; | 258 | continue; |
259 | 259 | ||
260 | if (task_pgrp(p->real_parent) != pgrp && | 260 | if (task_pgrp(p->real_parent) != pgrp && |
261 | task_session(p->real_parent) == task_session(p)) | 261 | task_session(p->real_parent) == task_session(p)) |
262 | return 0; | 262 | return 0; |
263 | } while_each_pid_task(pgrp, PIDTYPE_PGID, p); | 263 | } while_each_pid_task(pgrp, PIDTYPE_PGID, p); |
264 | 264 | ||
265 | return 1; | 265 | return 1; |
266 | } | 266 | } |
267 | 267 | ||
268 | int is_current_pgrp_orphaned(void) | 268 | int is_current_pgrp_orphaned(void) |
269 | { | 269 | { |
270 | int retval; | 270 | int retval; |
271 | 271 | ||
272 | read_lock(&tasklist_lock); | 272 | read_lock(&tasklist_lock); |
273 | retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); | 273 | retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); |
274 | read_unlock(&tasklist_lock); | 274 | read_unlock(&tasklist_lock); |
275 | 275 | ||
276 | return retval; | 276 | return retval; |
277 | } | 277 | } |
278 | 278 | ||
279 | static int has_stopped_jobs(struct pid *pgrp) | 279 | static int has_stopped_jobs(struct pid *pgrp) |
280 | { | 280 | { |
281 | int retval = 0; | 281 | int retval = 0; |
282 | struct task_struct *p; | 282 | struct task_struct *p; |
283 | 283 | ||
284 | do_each_pid_task(pgrp, PIDTYPE_PGID, p) { | 284 | do_each_pid_task(pgrp, PIDTYPE_PGID, p) { |
285 | if (!task_is_stopped(p)) | 285 | if (!task_is_stopped(p)) |
286 | continue; | 286 | continue; |
287 | retval = 1; | 287 | retval = 1; |
288 | break; | 288 | break; |
289 | } while_each_pid_task(pgrp, PIDTYPE_PGID, p); | 289 | } while_each_pid_task(pgrp, PIDTYPE_PGID, p); |
290 | return retval; | 290 | return retval; |
291 | } | 291 | } |
292 | 292 | ||
293 | /* | 293 | /* |
294 | * Check to see if any process groups have become orphaned as | 294 | * Check to see if any process groups have become orphaned as |
295 | * a result of our exiting, and if they have any stopped jobs, | 295 | * a result of our exiting, and if they have any stopped jobs, |
296 | * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) | 296 | * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) |
297 | */ | 297 | */ |
298 | static void | 298 | static void |
299 | kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) | 299 | kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) |
300 | { | 300 | { |
301 | struct pid *pgrp = task_pgrp(tsk); | 301 | struct pid *pgrp = task_pgrp(tsk); |
302 | struct task_struct *ignored_task = tsk; | 302 | struct task_struct *ignored_task = tsk; |
303 | 303 | ||
304 | if (!parent) | 304 | if (!parent) |
305 | /* exit: our father is in a different pgrp than | 305 | /* exit: our father is in a different pgrp than |
306 | * we are and we were the only connection outside. | 306 | * we are and we were the only connection outside. |
307 | */ | 307 | */ |
308 | parent = tsk->real_parent; | 308 | parent = tsk->real_parent; |
309 | else | 309 | else |
310 | /* reparent: our child is in a different pgrp than | 310 | /* reparent: our child is in a different pgrp than |
311 | * we are, and it was the only connection outside. | 311 | * we are, and it was the only connection outside. |
312 | */ | 312 | */ |
313 | ignored_task = NULL; | 313 | ignored_task = NULL; |
314 | 314 | ||
315 | if (task_pgrp(parent) != pgrp && | 315 | if (task_pgrp(parent) != pgrp && |
316 | task_session(parent) == task_session(tsk) && | 316 | task_session(parent) == task_session(tsk) && |
317 | will_become_orphaned_pgrp(pgrp, ignored_task) && | 317 | will_become_orphaned_pgrp(pgrp, ignored_task) && |
318 | has_stopped_jobs(pgrp)) { | 318 | has_stopped_jobs(pgrp)) { |
319 | __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); | 319 | __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); |
320 | __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); | 320 | __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); |
321 | } | 321 | } |
322 | } | 322 | } |
323 | 323 | ||
324 | /** | 324 | /** |
325 | * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd | 325 | * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd |
326 | * | 326 | * |
327 | * If a kernel thread is launched as a result of a system call, or if | 327 | * If a kernel thread is launched as a result of a system call, or if |
328 | * it ever exits, it should generally reparent itself to kthreadd so it | 328 | * it ever exits, it should generally reparent itself to kthreadd so it |
329 | * isn't in the way of other processes and is correctly cleaned up on exit. | 329 | * isn't in the way of other processes and is correctly cleaned up on exit. |
330 | * | 330 | * |
331 | * The various task state such as scheduling policy and priority may have | 331 | * The various task state such as scheduling policy and priority may have |
332 | * been inherited from a user process, so we reset them to sane values here. | 332 | * been inherited from a user process, so we reset them to sane values here. |
333 | * | 333 | * |
334 | * NOTE that reparent_to_kthreadd() gives the caller full capabilities. | 334 | * NOTE that reparent_to_kthreadd() gives the caller full capabilities. |
335 | */ | 335 | */ |
336 | static void reparent_to_kthreadd(void) | 336 | static void reparent_to_kthreadd(void) |
337 | { | 337 | { |
338 | write_lock_irq(&tasklist_lock); | 338 | write_lock_irq(&tasklist_lock); |
339 | 339 | ||
340 | ptrace_unlink(current); | 340 | ptrace_unlink(current); |
341 | /* Reparent to init */ | 341 | /* Reparent to init */ |
342 | current->real_parent = current->parent = kthreadd_task; | 342 | current->real_parent = current->parent = kthreadd_task; |
343 | list_move_tail(¤t->sibling, ¤t->real_parent->children); | 343 | list_move_tail(¤t->sibling, ¤t->real_parent->children); |
344 | 344 | ||
345 | /* Set the exit signal to SIGCHLD so we signal init on exit */ | 345 | /* Set the exit signal to SIGCHLD so we signal init on exit */ |
346 | current->exit_signal = SIGCHLD; | 346 | current->exit_signal = SIGCHLD; |
347 | 347 | ||
348 | if (task_nice(current) < 0) | 348 | if (task_nice(current) < 0) |
349 | set_user_nice(current, 0); | 349 | set_user_nice(current, 0); |
350 | /* cpus_allowed? */ | 350 | /* cpus_allowed? */ |
351 | /* rt_priority? */ | 351 | /* rt_priority? */ |
352 | /* signals? */ | 352 | /* signals? */ |
353 | memcpy(current->signal->rlim, init_task.signal->rlim, | 353 | memcpy(current->signal->rlim, init_task.signal->rlim, |
354 | sizeof(current->signal->rlim)); | 354 | sizeof(current->signal->rlim)); |
355 | 355 | ||
356 | atomic_inc(&init_cred.usage); | 356 | atomic_inc(&init_cred.usage); |
357 | commit_creds(&init_cred); | 357 | commit_creds(&init_cred); |
358 | write_unlock_irq(&tasklist_lock); | 358 | write_unlock_irq(&tasklist_lock); |
359 | } | 359 | } |
360 | 360 | ||
361 | void __set_special_pids(struct pid *pid) | 361 | void __set_special_pids(struct pid *pid) |
362 | { | 362 | { |
363 | struct task_struct *curr = current->group_leader; | 363 | struct task_struct *curr = current->group_leader; |
364 | 364 | ||
365 | if (task_session(curr) != pid) | 365 | if (task_session(curr) != pid) |
366 | change_pid(curr, PIDTYPE_SID, pid); | 366 | change_pid(curr, PIDTYPE_SID, pid); |
367 | 367 | ||
368 | if (task_pgrp(curr) != pid) | 368 | if (task_pgrp(curr) != pid) |
369 | change_pid(curr, PIDTYPE_PGID, pid); | 369 | change_pid(curr, PIDTYPE_PGID, pid); |
370 | } | 370 | } |
371 | 371 | ||
372 | static void set_special_pids(struct pid *pid) | 372 | static void set_special_pids(struct pid *pid) |
373 | { | 373 | { |
374 | write_lock_irq(&tasklist_lock); | 374 | write_lock_irq(&tasklist_lock); |
375 | __set_special_pids(pid); | 375 | __set_special_pids(pid); |
376 | write_unlock_irq(&tasklist_lock); | 376 | write_unlock_irq(&tasklist_lock); |
377 | } | 377 | } |
378 | 378 | ||
379 | /* | 379 | /* |
380 | * Let kernel threads use this to say that they allow a certain signal. | 380 | * Let kernel threads use this to say that they allow a certain signal. |
381 | * Must not be used if kthread was cloned with CLONE_SIGHAND. | 381 | * Must not be used if kthread was cloned with CLONE_SIGHAND. |
382 | */ | 382 | */ |
383 | int allow_signal(int sig) | 383 | int allow_signal(int sig) |
384 | { | 384 | { |
385 | if (!valid_signal(sig) || sig < 1) | 385 | if (!valid_signal(sig) || sig < 1) |
386 | return -EINVAL; | 386 | return -EINVAL; |
387 | 387 | ||
388 | spin_lock_irq(¤t->sighand->siglock); | 388 | spin_lock_irq(¤t->sighand->siglock); |
389 | /* This is only needed for daemonize()'ed kthreads */ | 389 | /* This is only needed for daemonize()'ed kthreads */ |
390 | sigdelset(¤t->blocked, sig); | 390 | sigdelset(¤t->blocked, sig); |
391 | /* | 391 | /* |
392 | * Kernel threads handle their own signals. Let the signal code | 392 | * Kernel threads handle their own signals. Let the signal code |
393 | * know it'll be handled, so that they don't get converted to | 393 | * know it'll be handled, so that they don't get converted to |
394 | * SIGKILL or just silently dropped. | 394 | * SIGKILL or just silently dropped. |
395 | */ | 395 | */ |
396 | current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; | 396 | current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; |
397 | recalc_sigpending(); | 397 | recalc_sigpending(); |
398 | spin_unlock_irq(¤t->sighand->siglock); | 398 | spin_unlock_irq(¤t->sighand->siglock); |
399 | return 0; | 399 | return 0; |
400 | } | 400 | } |
401 | 401 | ||
402 | EXPORT_SYMBOL(allow_signal); | 402 | EXPORT_SYMBOL(allow_signal); |
403 | 403 | ||
404 | int disallow_signal(int sig) | 404 | int disallow_signal(int sig) |
405 | { | 405 | { |
406 | if (!valid_signal(sig) || sig < 1) | 406 | if (!valid_signal(sig) || sig < 1) |
407 | return -EINVAL; | 407 | return -EINVAL; |
408 | 408 | ||
409 | spin_lock_irq(¤t->sighand->siglock); | 409 | spin_lock_irq(¤t->sighand->siglock); |
410 | current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; | 410 | current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; |
411 | recalc_sigpending(); | 411 | recalc_sigpending(); |
412 | spin_unlock_irq(¤t->sighand->siglock); | 412 | spin_unlock_irq(¤t->sighand->siglock); |
413 | return 0; | 413 | return 0; |
414 | } | 414 | } |
415 | 415 | ||
416 | EXPORT_SYMBOL(disallow_signal); | 416 | EXPORT_SYMBOL(disallow_signal); |
417 | 417 | ||
418 | /* | 418 | /* |
419 | * Put all the gunge required to become a kernel thread without | 419 | * Put all the gunge required to become a kernel thread without |
420 | * attached user resources in one place where it belongs. | 420 | * attached user resources in one place where it belongs. |
421 | */ | 421 | */ |
422 | 422 | ||
423 | void daemonize(const char *name, ...) | 423 | void daemonize(const char *name, ...) |
424 | { | 424 | { |
425 | va_list args; | 425 | va_list args; |
426 | sigset_t blocked; | 426 | sigset_t blocked; |
427 | 427 | ||
428 | va_start(args, name); | 428 | va_start(args, name); |
429 | vsnprintf(current->comm, sizeof(current->comm), name, args); | 429 | vsnprintf(current->comm, sizeof(current->comm), name, args); |
430 | va_end(args); | 430 | va_end(args); |
431 | 431 | ||
432 | /* | 432 | /* |
433 | * If we were started as result of loading a module, close all of the | 433 | * If we were started as result of loading a module, close all of the |
434 | * user space pages. We don't need them, and if we didn't close them | 434 | * user space pages. We don't need them, and if we didn't close them |
435 | * they would be locked into memory. | 435 | * they would be locked into memory. |
436 | */ | 436 | */ |
437 | exit_mm(current); | 437 | exit_mm(current); |
438 | /* | 438 | /* |
439 | * We don't want to have TIF_FREEZE set if the system-wide hibernation | 439 | * We don't want to have TIF_FREEZE set if the system-wide hibernation |
440 | * or suspend transition begins right now. | 440 | * or suspend transition begins right now. |
441 | */ | 441 | */ |
442 | current->flags |= (PF_NOFREEZE | PF_KTHREAD); | 442 | current->flags |= (PF_NOFREEZE | PF_KTHREAD); |
443 | 443 | ||
444 | if (current->nsproxy != &init_nsproxy) { | 444 | if (current->nsproxy != &init_nsproxy) { |
445 | get_nsproxy(&init_nsproxy); | 445 | get_nsproxy(&init_nsproxy); |
446 | switch_task_namespaces(current, &init_nsproxy); | 446 | switch_task_namespaces(current, &init_nsproxy); |
447 | } | 447 | } |
448 | set_special_pids(&init_struct_pid); | 448 | set_special_pids(&init_struct_pid); |
449 | proc_clear_tty(current); | 449 | proc_clear_tty(current); |
450 | 450 | ||
451 | /* Block and flush all signals */ | 451 | /* Block and flush all signals */ |
452 | sigfillset(&blocked); | 452 | sigfillset(&blocked); |
453 | sigprocmask(SIG_BLOCK, &blocked, NULL); | 453 | sigprocmask(SIG_BLOCK, &blocked, NULL); |
454 | flush_signals(current); | 454 | flush_signals(current); |
455 | 455 | ||
456 | /* Become as one with the init task */ | 456 | /* Become as one with the init task */ |
457 | 457 | ||
458 | daemonize_fs_struct(); | 458 | daemonize_fs_struct(); |
459 | exit_files(current); | 459 | exit_files(current); |
460 | current->files = init_task.files; | 460 | current->files = init_task.files; |
461 | atomic_inc(¤t->files->count); | 461 | atomic_inc(¤t->files->count); |
462 | 462 | ||
463 | reparent_to_kthreadd(); | 463 | reparent_to_kthreadd(); |
464 | } | 464 | } |
465 | 465 | ||
466 | EXPORT_SYMBOL(daemonize); | 466 | EXPORT_SYMBOL(daemonize); |
467 | 467 | ||
468 | static void close_files(struct files_struct * files) | 468 | static void close_files(struct files_struct * files) |
469 | { | 469 | { |
470 | int i, j; | 470 | int i, j; |
471 | struct fdtable *fdt; | 471 | struct fdtable *fdt; |
472 | 472 | ||
473 | j = 0; | 473 | j = 0; |
474 | 474 | ||
475 | /* | 475 | /* |
476 | * It is safe to dereference the fd table without RCU or | 476 | * It is safe to dereference the fd table without RCU or |
477 | * ->file_lock because this is the last reference to the | 477 | * ->file_lock because this is the last reference to the |
478 | * files structure. But use RCU to shut RCU-lockdep up. | 478 | * files structure. But use RCU to shut RCU-lockdep up. |
479 | */ | 479 | */ |
480 | rcu_read_lock(); | 480 | rcu_read_lock(); |
481 | fdt = files_fdtable(files); | 481 | fdt = files_fdtable(files); |
482 | rcu_read_unlock(); | 482 | rcu_read_unlock(); |
483 | for (;;) { | 483 | for (;;) { |
484 | unsigned long set; | 484 | unsigned long set; |
485 | i = j * __NFDBITS; | 485 | i = j * __NFDBITS; |
486 | if (i >= fdt->max_fds) | 486 | if (i >= fdt->max_fds) |
487 | break; | 487 | break; |
488 | set = fdt->open_fds->fds_bits[j++]; | 488 | set = fdt->open_fds->fds_bits[j++]; |
489 | while (set) { | 489 | while (set) { |
490 | if (set & 1) { | 490 | if (set & 1) { |
491 | struct file * file = xchg(&fdt->fd[i], NULL); | 491 | struct file * file = xchg(&fdt->fd[i], NULL); |
492 | if (file) { | 492 | if (file) { |
493 | filp_close(file, files); | 493 | filp_close(file, files); |
494 | cond_resched(); | 494 | cond_resched(); |
495 | } | 495 | } |
496 | } | 496 | } |
497 | i++; | 497 | i++; |
498 | set >>= 1; | 498 | set >>= 1; |
499 | } | 499 | } |
500 | } | 500 | } |
501 | } | 501 | } |
502 | 502 | ||
503 | struct files_struct *get_files_struct(struct task_struct *task) | 503 | struct files_struct *get_files_struct(struct task_struct *task) |
504 | { | 504 | { |
505 | struct files_struct *files; | 505 | struct files_struct *files; |
506 | 506 | ||
507 | task_lock(task); | 507 | task_lock(task); |
508 | files = task->files; | 508 | files = task->files; |
509 | if (files) | 509 | if (files) |
510 | atomic_inc(&files->count); | 510 | atomic_inc(&files->count); |
511 | task_unlock(task); | 511 | task_unlock(task); |
512 | 512 | ||
513 | return files; | 513 | return files; |
514 | } | 514 | } |
515 | 515 | ||
516 | void put_files_struct(struct files_struct *files) | 516 | void put_files_struct(struct files_struct *files) |
517 | { | 517 | { |
518 | struct fdtable *fdt; | 518 | struct fdtable *fdt; |
519 | 519 | ||
520 | if (atomic_dec_and_test(&files->count)) { | 520 | if (atomic_dec_and_test(&files->count)) { |
521 | close_files(files); | 521 | close_files(files); |
522 | /* | 522 | /* |
523 | * Free the fd and fdset arrays if we expanded them. | 523 | * Free the fd and fdset arrays if we expanded them. |
524 | * If the fdtable was embedded, pass files for freeing | 524 | * If the fdtable was embedded, pass files for freeing |
525 | * at the end of the RCU grace period. Otherwise, | 525 | * at the end of the RCU grace period. Otherwise, |
526 | * you can free files immediately. | 526 | * you can free files immediately. |
527 | */ | 527 | */ |
528 | rcu_read_lock(); | 528 | rcu_read_lock(); |
529 | fdt = files_fdtable(files); | 529 | fdt = files_fdtable(files); |
530 | if (fdt != &files->fdtab) | 530 | if (fdt != &files->fdtab) |
531 | kmem_cache_free(files_cachep, files); | 531 | kmem_cache_free(files_cachep, files); |
532 | free_fdtable(fdt); | 532 | free_fdtable(fdt); |
533 | rcu_read_unlock(); | 533 | rcu_read_unlock(); |
534 | } | 534 | } |
535 | } | 535 | } |
536 | 536 | ||
537 | void reset_files_struct(struct files_struct *files) | 537 | void reset_files_struct(struct files_struct *files) |
538 | { | 538 | { |
539 | struct task_struct *tsk = current; | 539 | struct task_struct *tsk = current; |
540 | struct files_struct *old; | 540 | struct files_struct *old; |
541 | 541 | ||
542 | old = tsk->files; | 542 | old = tsk->files; |
543 | task_lock(tsk); | 543 | task_lock(tsk); |
544 | tsk->files = files; | 544 | tsk->files = files; |
545 | task_unlock(tsk); | 545 | task_unlock(tsk); |
546 | put_files_struct(old); | 546 | put_files_struct(old); |
547 | } | 547 | } |
548 | 548 | ||
549 | void exit_files(struct task_struct *tsk) | 549 | void exit_files(struct task_struct *tsk) |
550 | { | 550 | { |
551 | struct files_struct * files = tsk->files; | 551 | struct files_struct * files = tsk->files; |
552 | 552 | ||
553 | if (files) { | 553 | if (files) { |
554 | task_lock(tsk); | 554 | task_lock(tsk); |
555 | tsk->files = NULL; | 555 | tsk->files = NULL; |
556 | task_unlock(tsk); | 556 | task_unlock(tsk); |
557 | put_files_struct(files); | 557 | put_files_struct(files); |
558 | } | 558 | } |
559 | } | 559 | } |
560 | 560 | ||
561 | #ifdef CONFIG_MM_OWNER | 561 | #ifdef CONFIG_MM_OWNER |
562 | /* | 562 | /* |
563 | * Task p is exiting and it owned mm, lets find a new owner for it | 563 | * Task p is exiting and it owned mm, lets find a new owner for it |
564 | */ | 564 | */ |
565 | static inline int | 565 | static inline int |
566 | mm_need_new_owner(struct mm_struct *mm, struct task_struct *p) | 566 | mm_need_new_owner(struct mm_struct *mm, struct task_struct *p) |
567 | { | 567 | { |
568 | /* | 568 | /* |
569 | * If there are other users of the mm and the owner (us) is exiting | 569 | * If there are other users of the mm and the owner (us) is exiting |
570 | * we need to find a new owner to take on the responsibility. | 570 | * we need to find a new owner to take on the responsibility. |
571 | */ | 571 | */ |
572 | if (atomic_read(&mm->mm_users) <= 1) | 572 | if (atomic_read(&mm->mm_users) <= 1) |
573 | return 0; | 573 | return 0; |
574 | if (mm->owner != p) | 574 | if (mm->owner != p) |
575 | return 0; | 575 | return 0; |
576 | return 1; | 576 | return 1; |
577 | } | 577 | } |
578 | 578 | ||
579 | void mm_update_next_owner(struct mm_struct *mm) | 579 | void mm_update_next_owner(struct mm_struct *mm) |
580 | { | 580 | { |
581 | struct task_struct *c, *g, *p = current; | 581 | struct task_struct *c, *g, *p = current; |
582 | 582 | ||
583 | retry: | 583 | retry: |
584 | if (!mm_need_new_owner(mm, p)) | 584 | if (!mm_need_new_owner(mm, p)) |
585 | return; | 585 | return; |
586 | 586 | ||
587 | read_lock(&tasklist_lock); | 587 | read_lock(&tasklist_lock); |
588 | /* | 588 | /* |
589 | * Search in the children | 589 | * Search in the children |
590 | */ | 590 | */ |
591 | list_for_each_entry(c, &p->children, sibling) { | 591 | list_for_each_entry(c, &p->children, sibling) { |
592 | if (c->mm == mm) | 592 | if (c->mm == mm) |
593 | goto assign_new_owner; | 593 | goto assign_new_owner; |
594 | } | 594 | } |
595 | 595 | ||
596 | /* | 596 | /* |
597 | * Search in the siblings | 597 | * Search in the siblings |
598 | */ | 598 | */ |
599 | list_for_each_entry(c, &p->real_parent->children, sibling) { | 599 | list_for_each_entry(c, &p->real_parent->children, sibling) { |
600 | if (c->mm == mm) | 600 | if (c->mm == mm) |
601 | goto assign_new_owner; | 601 | goto assign_new_owner; |
602 | } | 602 | } |
603 | 603 | ||
604 | /* | 604 | /* |
605 | * Search through everything else. We should not get | 605 | * Search through everything else. We should not get |
606 | * here often | 606 | * here often |
607 | */ | 607 | */ |
608 | do_each_thread(g, c) { | 608 | do_each_thread(g, c) { |
609 | if (c->mm == mm) | 609 | if (c->mm == mm) |
610 | goto assign_new_owner; | 610 | goto assign_new_owner; |
611 | } while_each_thread(g, c); | 611 | } while_each_thread(g, c); |
612 | 612 | ||
613 | read_unlock(&tasklist_lock); | 613 | read_unlock(&tasklist_lock); |
614 | /* | 614 | /* |
615 | * We found no owner yet mm_users > 1: this implies that we are | 615 | * We found no owner yet mm_users > 1: this implies that we are |
616 | * most likely racing with swapoff (try_to_unuse()) or /proc or | 616 | * most likely racing with swapoff (try_to_unuse()) or /proc or |
617 | * ptrace or page migration (get_task_mm()). Mark owner as NULL. | 617 | * ptrace or page migration (get_task_mm()). Mark owner as NULL. |
618 | */ | 618 | */ |
619 | mm->owner = NULL; | 619 | mm->owner = NULL; |
620 | return; | 620 | return; |
621 | 621 | ||
622 | assign_new_owner: | 622 | assign_new_owner: |
623 | BUG_ON(c == p); | 623 | BUG_ON(c == p); |
624 | get_task_struct(c); | 624 | get_task_struct(c); |
625 | /* | 625 | /* |
626 | * The task_lock protects c->mm from changing. | 626 | * The task_lock protects c->mm from changing. |
627 | * We always want mm->owner->mm == mm | 627 | * We always want mm->owner->mm == mm |
628 | */ | 628 | */ |
629 | task_lock(c); | 629 | task_lock(c); |
630 | /* | 630 | /* |
631 | * Delay read_unlock() till we have the task_lock() | 631 | * Delay read_unlock() till we have the task_lock() |
632 | * to ensure that c does not slip away underneath us | 632 | * to ensure that c does not slip away underneath us |
633 | */ | 633 | */ |
634 | read_unlock(&tasklist_lock); | 634 | read_unlock(&tasklist_lock); |
635 | if (c->mm != mm) { | 635 | if (c->mm != mm) { |
636 | task_unlock(c); | 636 | task_unlock(c); |
637 | put_task_struct(c); | 637 | put_task_struct(c); |
638 | goto retry; | 638 | goto retry; |
639 | } | 639 | } |
640 | mm->owner = c; | 640 | mm->owner = c; |
641 | task_unlock(c); | 641 | task_unlock(c); |
642 | put_task_struct(c); | 642 | put_task_struct(c); |
643 | } | 643 | } |
644 | #endif /* CONFIG_MM_OWNER */ | 644 | #endif /* CONFIG_MM_OWNER */ |
645 | 645 | ||
646 | /* | 646 | /* |
647 | * Turn us into a lazy TLB process if we | 647 | * Turn us into a lazy TLB process if we |
648 | * aren't already.. | 648 | * aren't already.. |
649 | */ | 649 | */ |
650 | static void exit_mm(struct task_struct * tsk) | 650 | static void exit_mm(struct task_struct * tsk) |
651 | { | 651 | { |
652 | struct mm_struct *mm = tsk->mm; | 652 | struct mm_struct *mm = tsk->mm; |
653 | struct core_state *core_state; | 653 | struct core_state *core_state; |
654 | 654 | ||
655 | mm_release(tsk, mm); | 655 | mm_release(tsk, mm); |
656 | if (!mm) | 656 | if (!mm) |
657 | return; | 657 | return; |
658 | /* | 658 | /* |
659 | * Serialize with any possible pending coredump. | 659 | * Serialize with any possible pending coredump. |
660 | * We must hold mmap_sem around checking core_state | 660 | * We must hold mmap_sem around checking core_state |
661 | * and clearing tsk->mm. The core-inducing thread | 661 | * and clearing tsk->mm. The core-inducing thread |
662 | * will increment ->nr_threads for each thread in the | 662 | * will increment ->nr_threads for each thread in the |
663 | * group with ->mm != NULL. | 663 | * group with ->mm != NULL. |
664 | */ | 664 | */ |
665 | down_read(&mm->mmap_sem); | 665 | down_read(&mm->mmap_sem); |
666 | core_state = mm->core_state; | 666 | core_state = mm->core_state; |
667 | if (core_state) { | 667 | if (core_state) { |
668 | struct core_thread self; | 668 | struct core_thread self; |
669 | up_read(&mm->mmap_sem); | 669 | up_read(&mm->mmap_sem); |
670 | 670 | ||
671 | self.task = tsk; | 671 | self.task = tsk; |
672 | self.next = xchg(&core_state->dumper.next, &self); | 672 | self.next = xchg(&core_state->dumper.next, &self); |
673 | /* | 673 | /* |
674 | * Implies mb(), the result of xchg() must be visible | 674 | * Implies mb(), the result of xchg() must be visible |
675 | * to core_state->dumper. | 675 | * to core_state->dumper. |
676 | */ | 676 | */ |
677 | if (atomic_dec_and_test(&core_state->nr_threads)) | 677 | if (atomic_dec_and_test(&core_state->nr_threads)) |
678 | complete(&core_state->startup); | 678 | complete(&core_state->startup); |
679 | 679 | ||
680 | for (;;) { | 680 | for (;;) { |
681 | set_task_state(tsk, TASK_UNINTERRUPTIBLE); | 681 | set_task_state(tsk, TASK_UNINTERRUPTIBLE); |
682 | if (!self.task) /* see coredump_finish() */ | 682 | if (!self.task) /* see coredump_finish() */ |
683 | break; | 683 | break; |
684 | schedule(); | 684 | schedule(); |
685 | } | 685 | } |
686 | __set_task_state(tsk, TASK_RUNNING); | 686 | __set_task_state(tsk, TASK_RUNNING); |
687 | down_read(&mm->mmap_sem); | 687 | down_read(&mm->mmap_sem); |
688 | } | 688 | } |
689 | atomic_inc(&mm->mm_count); | 689 | atomic_inc(&mm->mm_count); |
690 | BUG_ON(mm != tsk->active_mm); | 690 | BUG_ON(mm != tsk->active_mm); |
691 | /* more a memory barrier than a real lock */ | 691 | /* more a memory barrier than a real lock */ |
692 | task_lock(tsk); | 692 | task_lock(tsk); |
693 | tsk->mm = NULL; | 693 | tsk->mm = NULL; |
694 | up_read(&mm->mmap_sem); | 694 | up_read(&mm->mmap_sem); |
695 | enter_lazy_tlb(mm, current); | 695 | enter_lazy_tlb(mm, current); |
696 | /* We don't want this task to be frozen prematurely */ | 696 | /* We don't want this task to be frozen prematurely */ |
697 | clear_freeze_flag(tsk); | 697 | clear_freeze_flag(tsk); |
698 | if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) | 698 | if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) |
699 | atomic_dec(&mm->oom_disable_count); | 699 | atomic_dec(&mm->oom_disable_count); |
700 | task_unlock(tsk); | 700 | task_unlock(tsk); |
701 | mm_update_next_owner(mm); | 701 | mm_update_next_owner(mm); |
702 | mmput(mm); | 702 | mmput(mm); |
703 | } | 703 | } |
704 | 704 | ||
705 | /* | 705 | /* |
706 | * When we die, we re-parent all our children. | 706 | * When we die, we re-parent all our children. |
707 | * Try to give them to another thread in our thread | 707 | * Try to give them to another thread in our thread |
708 | * group, and if no such member exists, give it to | 708 | * group, and if no such member exists, give it to |
709 | * the child reaper process (ie "init") in our pid | 709 | * the child reaper process (ie "init") in our pid |
710 | * space. | 710 | * space. |
711 | */ | 711 | */ |
712 | static struct task_struct *find_new_reaper(struct task_struct *father) | 712 | static struct task_struct *find_new_reaper(struct task_struct *father) |
713 | __releases(&tasklist_lock) | 713 | __releases(&tasklist_lock) |
714 | __acquires(&tasklist_lock) | 714 | __acquires(&tasklist_lock) |
715 | { | 715 | { |
716 | struct pid_namespace *pid_ns = task_active_pid_ns(father); | 716 | struct pid_namespace *pid_ns = task_active_pid_ns(father); |
717 | struct task_struct *thread; | 717 | struct task_struct *thread; |
718 | 718 | ||
719 | thread = father; | 719 | thread = father; |
720 | while_each_thread(father, thread) { | 720 | while_each_thread(father, thread) { |
721 | if (thread->flags & PF_EXITING) | 721 | if (thread->flags & PF_EXITING) |
722 | continue; | 722 | continue; |
723 | if (unlikely(pid_ns->child_reaper == father)) | 723 | if (unlikely(pid_ns->child_reaper == father)) |
724 | pid_ns->child_reaper = thread; | 724 | pid_ns->child_reaper = thread; |
725 | return thread; | 725 | return thread; |
726 | } | 726 | } |
727 | 727 | ||
728 | if (unlikely(pid_ns->child_reaper == father)) { | 728 | if (unlikely(pid_ns->child_reaper == father)) { |
729 | write_unlock_irq(&tasklist_lock); | 729 | write_unlock_irq(&tasklist_lock); |
730 | if (unlikely(pid_ns == &init_pid_ns)) | 730 | if (unlikely(pid_ns == &init_pid_ns)) |
731 | panic("Attempted to kill init!"); | 731 | panic("Attempted to kill init!"); |
732 | 732 | ||
733 | zap_pid_ns_processes(pid_ns); | 733 | zap_pid_ns_processes(pid_ns); |
734 | write_lock_irq(&tasklist_lock); | 734 | write_lock_irq(&tasklist_lock); |
735 | /* | 735 | /* |
736 | * We can not clear ->child_reaper or leave it alone. | 736 | * We can not clear ->child_reaper or leave it alone. |
737 | * There may by stealth EXIT_DEAD tasks on ->children, | 737 | * There may by stealth EXIT_DEAD tasks on ->children, |
738 | * forget_original_parent() must move them somewhere. | 738 | * forget_original_parent() must move them somewhere. |
739 | */ | 739 | */ |
740 | pid_ns->child_reaper = init_pid_ns.child_reaper; | 740 | pid_ns->child_reaper = init_pid_ns.child_reaper; |
741 | } | 741 | } |
742 | 742 | ||
743 | return pid_ns->child_reaper; | 743 | return pid_ns->child_reaper; |
744 | } | 744 | } |
745 | 745 | ||
746 | /* | 746 | /* |
747 | * Any that need to be release_task'd are put on the @dead list. | 747 | * Any that need to be release_task'd are put on the @dead list. |
748 | */ | 748 | */ |
749 | static void reparent_leader(struct task_struct *father, struct task_struct *p, | 749 | static void reparent_leader(struct task_struct *father, struct task_struct *p, |
750 | struct list_head *dead) | 750 | struct list_head *dead) |
751 | { | 751 | { |
752 | list_move_tail(&p->sibling, &p->real_parent->children); | 752 | list_move_tail(&p->sibling, &p->real_parent->children); |
753 | 753 | ||
754 | if (task_detached(p)) | 754 | if (task_detached(p)) |
755 | return; | 755 | return; |
756 | /* | 756 | /* |
757 | * If this is a threaded reparent there is no need to | 757 | * If this is a threaded reparent there is no need to |
758 | * notify anyone anything has happened. | 758 | * notify anyone anything has happened. |
759 | */ | 759 | */ |
760 | if (same_thread_group(p->real_parent, father)) | 760 | if (same_thread_group(p->real_parent, father)) |
761 | return; | 761 | return; |
762 | 762 | ||
763 | /* We don't want people slaying init. */ | 763 | /* We don't want people slaying init. */ |
764 | p->exit_signal = SIGCHLD; | 764 | p->exit_signal = SIGCHLD; |
765 | 765 | ||
766 | /* If it has exited notify the new parent about this child's death. */ | 766 | /* If it has exited notify the new parent about this child's death. */ |
767 | if (!p->ptrace && | 767 | if (!p->ptrace && |
768 | p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { | 768 | p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { |
769 | do_notify_parent(p, p->exit_signal); | 769 | do_notify_parent(p, p->exit_signal); |
770 | if (task_detached(p)) { | 770 | if (task_detached(p)) { |
771 | p->exit_state = EXIT_DEAD; | 771 | p->exit_state = EXIT_DEAD; |
772 | list_move_tail(&p->sibling, dead); | 772 | list_move_tail(&p->sibling, dead); |
773 | } | 773 | } |
774 | } | 774 | } |
775 | 775 | ||
776 | kill_orphaned_pgrp(p, father); | 776 | kill_orphaned_pgrp(p, father); |
777 | } | 777 | } |
778 | 778 | ||
779 | static void forget_original_parent(struct task_struct *father) | 779 | static void forget_original_parent(struct task_struct *father) |
780 | { | 780 | { |
781 | struct task_struct *p, *n, *reaper; | 781 | struct task_struct *p, *n, *reaper; |
782 | LIST_HEAD(dead_children); | 782 | LIST_HEAD(dead_children); |
783 | 783 | ||
784 | write_lock_irq(&tasklist_lock); | 784 | write_lock_irq(&tasklist_lock); |
785 | /* | 785 | /* |
786 | * Note that exit_ptrace() and find_new_reaper() might | 786 | * Note that exit_ptrace() and find_new_reaper() might |
787 | * drop tasklist_lock and reacquire it. | 787 | * drop tasklist_lock and reacquire it. |
788 | */ | 788 | */ |
789 | exit_ptrace(father); | 789 | exit_ptrace(father); |
790 | reaper = find_new_reaper(father); | 790 | reaper = find_new_reaper(father); |
791 | 791 | ||
792 | list_for_each_entry_safe(p, n, &father->children, sibling) { | 792 | list_for_each_entry_safe(p, n, &father->children, sibling) { |
793 | struct task_struct *t = p; | 793 | struct task_struct *t = p; |
794 | do { | 794 | do { |
795 | t->real_parent = reaper; | 795 | t->real_parent = reaper; |
796 | if (t->parent == father) { | 796 | if (t->parent == father) { |
797 | BUG_ON(t->ptrace); | 797 | BUG_ON(t->ptrace); |
798 | t->parent = t->real_parent; | 798 | t->parent = t->real_parent; |
799 | } | 799 | } |
800 | if (t->pdeath_signal) | 800 | if (t->pdeath_signal) |
801 | group_send_sig_info(t->pdeath_signal, | 801 | group_send_sig_info(t->pdeath_signal, |
802 | SEND_SIG_NOINFO, t); | 802 | SEND_SIG_NOINFO, t); |
803 | } while_each_thread(p, t); | 803 | } while_each_thread(p, t); |
804 | reparent_leader(father, p, &dead_children); | 804 | reparent_leader(father, p, &dead_children); |
805 | } | 805 | } |
806 | write_unlock_irq(&tasklist_lock); | 806 | write_unlock_irq(&tasklist_lock); |
807 | 807 | ||
808 | BUG_ON(!list_empty(&father->children)); | 808 | BUG_ON(!list_empty(&father->children)); |
809 | 809 | ||
810 | list_for_each_entry_safe(p, n, &dead_children, sibling) { | 810 | list_for_each_entry_safe(p, n, &dead_children, sibling) { |
811 | list_del_init(&p->sibling); | 811 | list_del_init(&p->sibling); |
812 | release_task(p); | 812 | release_task(p); |
813 | } | 813 | } |
814 | } | 814 | } |
815 | 815 | ||
816 | /* | 816 | /* |
817 | * Send signals to all our closest relatives so that they know | 817 | * Send signals to all our closest relatives so that they know |
818 | * to properly mourn us.. | 818 | * to properly mourn us.. |
819 | */ | 819 | */ |
820 | static void exit_notify(struct task_struct *tsk, int group_dead) | 820 | static void exit_notify(struct task_struct *tsk, int group_dead) |
821 | { | 821 | { |
822 | int signal; | ||
823 | bool autoreap; | 822 | bool autoreap; |
824 | void *cookie; | ||
825 | 823 | ||
826 | /* | 824 | /* |
827 | * This does two things: | 825 | * This does two things: |
828 | * | 826 | * |
829 | * A. Make init inherit all the child processes | 827 | * A. Make init inherit all the child processes |
830 | * B. Check to see if any process groups have become orphaned | 828 | * B. Check to see if any process groups have become orphaned |
831 | * as a result of our exiting, and if they have any stopped | 829 | * as a result of our exiting, and if they have any stopped |
832 | * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) | 830 | * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) |
833 | */ | 831 | */ |
834 | forget_original_parent(tsk); | 832 | forget_original_parent(tsk); |
835 | exit_task_namespaces(tsk); | 833 | exit_task_namespaces(tsk); |
836 | 834 | ||
837 | write_lock_irq(&tasklist_lock); | 835 | write_lock_irq(&tasklist_lock); |
838 | if (group_dead) | 836 | if (group_dead) |
839 | kill_orphaned_pgrp(tsk->group_leader, NULL); | 837 | kill_orphaned_pgrp(tsk->group_leader, NULL); |
840 | 838 | ||
841 | /* Let father know we died | 839 | /* Let father know we died |
842 | * | 840 | * |
843 | * Thread signals are configurable, but you aren't going to use | 841 | * Thread signals are configurable, but you aren't going to use |
844 | * that to send signals to arbitrary processes. | 842 | * that to send signals to arbitrary processes. |
845 | * That stops right now. | 843 | * That stops right now. |
846 | * | 844 | * |
847 | * If the parent exec id doesn't match the exec id we saved | 845 | * If the parent exec id doesn't match the exec id we saved |
848 | * when we started then we know the parent has changed security | 846 | * when we started then we know the parent has changed security |
849 | * domain. | 847 | * domain. |
850 | * | 848 | * |
851 | * If our self_exec id doesn't match our parent_exec_id then | 849 | * If our self_exec id doesn't match our parent_exec_id then |
852 | * we have changed execution domain as these two values started | 850 | * we have changed execution domain as these two values started |
853 | * the same after a fork. | 851 | * the same after a fork. |
854 | */ | 852 | */ |
855 | if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) && | 853 | if (thread_group_leader(tsk) && tsk->exit_signal != SIGCHLD && |
856 | (tsk->parent_exec_id != tsk->real_parent->self_exec_id || | 854 | (tsk->parent_exec_id != tsk->real_parent->self_exec_id || |
857 | tsk->self_exec_id != tsk->parent_exec_id)) | 855 | tsk->self_exec_id != tsk->parent_exec_id)) |
858 | tsk->exit_signal = SIGCHLD; | 856 | tsk->exit_signal = SIGCHLD; |
859 | 857 | ||
860 | signal = tracehook_notify_death(tsk, &cookie, group_dead); | 858 | if (unlikely(tsk->ptrace)) { |
861 | if (signal >= 0) | 859 | int sig = thread_group_leader(tsk) && |
862 | autoreap = do_notify_parent(tsk, signal); | 860 | thread_group_empty(tsk) && |
863 | else | 861 | !ptrace_reparented(tsk) ? |
864 | autoreap = (signal == DEATH_REAP); | 862 | tsk->exit_signal : SIGCHLD; |
863 | autoreap = do_notify_parent(tsk, sig); | ||
864 | } else if (thread_group_leader(tsk)) { | ||
865 | autoreap = thread_group_empty(tsk) && | ||
866 | do_notify_parent(tsk, tsk->exit_signal); | ||
867 | } else { | ||
868 | autoreap = true; | ||
869 | } | ||
865 | 870 | ||
866 | tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE; | 871 | tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE; |
867 | 872 | ||
868 | /* mt-exec, de_thread() is waiting for group leader */ | 873 | /* mt-exec, de_thread() is waiting for group leader */ |
869 | if (unlikely(tsk->signal->notify_count < 0)) | 874 | if (unlikely(tsk->signal->notify_count < 0)) |
870 | wake_up_process(tsk->signal->group_exit_task); | 875 | wake_up_process(tsk->signal->group_exit_task); |
871 | write_unlock_irq(&tasklist_lock); | 876 | write_unlock_irq(&tasklist_lock); |
872 | 877 | ||
873 | /* If the process is dead, release it - nobody will wait for it */ | 878 | /* If the process is dead, release it - nobody will wait for it */ |
874 | if (autoreap) | 879 | if (autoreap) |
875 | release_task(tsk); | 880 | release_task(tsk); |
876 | } | 881 | } |
877 | 882 | ||
878 | #ifdef CONFIG_DEBUG_STACK_USAGE | 883 | #ifdef CONFIG_DEBUG_STACK_USAGE |
879 | static void check_stack_usage(void) | 884 | static void check_stack_usage(void) |
880 | { | 885 | { |
881 | static DEFINE_SPINLOCK(low_water_lock); | 886 | static DEFINE_SPINLOCK(low_water_lock); |
882 | static int lowest_to_date = THREAD_SIZE; | 887 | static int lowest_to_date = THREAD_SIZE; |
883 | unsigned long free; | 888 | unsigned long free; |
884 | 889 | ||
885 | free = stack_not_used(current); | 890 | free = stack_not_used(current); |
886 | 891 | ||
887 | if (free >= lowest_to_date) | 892 | if (free >= lowest_to_date) |
888 | return; | 893 | return; |
889 | 894 | ||
890 | spin_lock(&low_water_lock); | 895 | spin_lock(&low_water_lock); |
891 | if (free < lowest_to_date) { | 896 | if (free < lowest_to_date) { |
892 | printk(KERN_WARNING "%s used greatest stack depth: %lu bytes " | 897 | printk(KERN_WARNING "%s used greatest stack depth: %lu bytes " |
893 | "left\n", | 898 | "left\n", |
894 | current->comm, free); | 899 | current->comm, free); |
895 | lowest_to_date = free; | 900 | lowest_to_date = free; |
896 | } | 901 | } |
897 | spin_unlock(&low_water_lock); | 902 | spin_unlock(&low_water_lock); |
898 | } | 903 | } |
899 | #else | 904 | #else |
900 | static inline void check_stack_usage(void) {} | 905 | static inline void check_stack_usage(void) {} |
901 | #endif | 906 | #endif |
902 | 907 | ||
903 | NORET_TYPE void do_exit(long code) | 908 | NORET_TYPE void do_exit(long code) |
904 | { | 909 | { |
905 | struct task_struct *tsk = current; | 910 | struct task_struct *tsk = current; |
906 | int group_dead; | 911 | int group_dead; |
907 | 912 | ||
908 | profile_task_exit(tsk); | 913 | profile_task_exit(tsk); |
909 | 914 | ||
910 | WARN_ON(atomic_read(&tsk->fs_excl)); | 915 | WARN_ON(atomic_read(&tsk->fs_excl)); |
911 | WARN_ON(blk_needs_flush_plug(tsk)); | 916 | WARN_ON(blk_needs_flush_plug(tsk)); |
912 | 917 | ||
913 | if (unlikely(in_interrupt())) | 918 | if (unlikely(in_interrupt())) |
914 | panic("Aiee, killing interrupt handler!"); | 919 | panic("Aiee, killing interrupt handler!"); |
915 | if (unlikely(!tsk->pid)) | 920 | if (unlikely(!tsk->pid)) |
916 | panic("Attempted to kill the idle task!"); | 921 | panic("Attempted to kill the idle task!"); |
917 | 922 | ||
918 | /* | 923 | /* |
919 | * If do_exit is called because this processes oopsed, it's possible | 924 | * If do_exit is called because this processes oopsed, it's possible |
920 | * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before | 925 | * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before |
921 | * continuing. Amongst other possible reasons, this is to prevent | 926 | * continuing. Amongst other possible reasons, this is to prevent |
922 | * mm_release()->clear_child_tid() from writing to a user-controlled | 927 | * mm_release()->clear_child_tid() from writing to a user-controlled |
923 | * kernel address. | 928 | * kernel address. |
924 | */ | 929 | */ |
925 | set_fs(USER_DS); | 930 | set_fs(USER_DS); |
926 | 931 | ||
927 | ptrace_event(PTRACE_EVENT_EXIT, code); | 932 | ptrace_event(PTRACE_EVENT_EXIT, code); |
928 | 933 | ||
929 | validate_creds_for_do_exit(tsk); | 934 | validate_creds_for_do_exit(tsk); |
930 | 935 | ||
931 | /* | 936 | /* |
932 | * We're taking recursive faults here in do_exit. Safest is to just | 937 | * We're taking recursive faults here in do_exit. Safest is to just |
933 | * leave this task alone and wait for reboot. | 938 | * leave this task alone and wait for reboot. |
934 | */ | 939 | */ |
935 | if (unlikely(tsk->flags & PF_EXITING)) { | 940 | if (unlikely(tsk->flags & PF_EXITING)) { |
936 | printk(KERN_ALERT | 941 | printk(KERN_ALERT |
937 | "Fixing recursive fault but reboot is needed!\n"); | 942 | "Fixing recursive fault but reboot is needed!\n"); |
938 | /* | 943 | /* |
939 | * We can do this unlocked here. The futex code uses | 944 | * We can do this unlocked here. The futex code uses |
940 | * this flag just to verify whether the pi state | 945 | * this flag just to verify whether the pi state |
941 | * cleanup has been done or not. In the worst case it | 946 | * cleanup has been done or not. In the worst case it |
942 | * loops once more. We pretend that the cleanup was | 947 | * loops once more. We pretend that the cleanup was |
943 | * done as there is no way to return. Either the | 948 | * done as there is no way to return. Either the |
944 | * OWNER_DIED bit is set by now or we push the blocked | 949 | * OWNER_DIED bit is set by now or we push the blocked |
945 | * task into the wait for ever nirwana as well. | 950 | * task into the wait for ever nirwana as well. |
946 | */ | 951 | */ |
947 | tsk->flags |= PF_EXITPIDONE; | 952 | tsk->flags |= PF_EXITPIDONE; |
948 | set_current_state(TASK_UNINTERRUPTIBLE); | 953 | set_current_state(TASK_UNINTERRUPTIBLE); |
949 | schedule(); | 954 | schedule(); |
950 | } | 955 | } |
951 | 956 | ||
952 | exit_irq_thread(); | 957 | exit_irq_thread(); |
953 | 958 | ||
954 | exit_signals(tsk); /* sets PF_EXITING */ | 959 | exit_signals(tsk); /* sets PF_EXITING */ |
955 | /* | 960 | /* |
956 | * tsk->flags are checked in the futex code to protect against | 961 | * tsk->flags are checked in the futex code to protect against |
957 | * an exiting task cleaning up the robust pi futexes. | 962 | * an exiting task cleaning up the robust pi futexes. |
958 | */ | 963 | */ |
959 | smp_mb(); | 964 | smp_mb(); |
960 | raw_spin_unlock_wait(&tsk->pi_lock); | 965 | raw_spin_unlock_wait(&tsk->pi_lock); |
961 | 966 | ||
962 | if (unlikely(in_atomic())) | 967 | if (unlikely(in_atomic())) |
963 | printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", | 968 | printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", |
964 | current->comm, task_pid_nr(current), | 969 | current->comm, task_pid_nr(current), |
965 | preempt_count()); | 970 | preempt_count()); |
966 | 971 | ||
967 | acct_update_integrals(tsk); | 972 | acct_update_integrals(tsk); |
968 | /* sync mm's RSS info before statistics gathering */ | 973 | /* sync mm's RSS info before statistics gathering */ |
969 | if (tsk->mm) | 974 | if (tsk->mm) |
970 | sync_mm_rss(tsk, tsk->mm); | 975 | sync_mm_rss(tsk, tsk->mm); |
971 | group_dead = atomic_dec_and_test(&tsk->signal->live); | 976 | group_dead = atomic_dec_and_test(&tsk->signal->live); |
972 | if (group_dead) { | 977 | if (group_dead) { |
973 | hrtimer_cancel(&tsk->signal->real_timer); | 978 | hrtimer_cancel(&tsk->signal->real_timer); |
974 | exit_itimers(tsk->signal); | 979 | exit_itimers(tsk->signal); |
975 | if (tsk->mm) | 980 | if (tsk->mm) |
976 | setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); | 981 | setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); |
977 | } | 982 | } |
978 | acct_collect(code, group_dead); | 983 | acct_collect(code, group_dead); |
979 | if (group_dead) | 984 | if (group_dead) |
980 | tty_audit_exit(); | 985 | tty_audit_exit(); |
981 | if (unlikely(tsk->audit_context)) | 986 | if (unlikely(tsk->audit_context)) |
982 | audit_free(tsk); | 987 | audit_free(tsk); |
983 | 988 | ||
984 | tsk->exit_code = code; | 989 | tsk->exit_code = code; |
985 | taskstats_exit(tsk, group_dead); | 990 | taskstats_exit(tsk, group_dead); |
986 | 991 | ||
987 | exit_mm(tsk); | 992 | exit_mm(tsk); |
988 | 993 | ||
989 | if (group_dead) | 994 | if (group_dead) |
990 | acct_process(); | 995 | acct_process(); |
991 | trace_sched_process_exit(tsk); | 996 | trace_sched_process_exit(tsk); |
992 | 997 | ||
993 | exit_sem(tsk); | 998 | exit_sem(tsk); |
994 | exit_files(tsk); | 999 | exit_files(tsk); |
995 | exit_fs(tsk); | 1000 | exit_fs(tsk); |
996 | check_stack_usage(); | 1001 | check_stack_usage(); |
997 | exit_thread(); | 1002 | exit_thread(); |
998 | 1003 | ||
999 | /* | 1004 | /* |
1000 | * Flush inherited counters to the parent - before the parent | 1005 | * Flush inherited counters to the parent - before the parent |
1001 | * gets woken up by child-exit notifications. | 1006 | * gets woken up by child-exit notifications. |
1002 | * | 1007 | * |
1003 | * because of cgroup mode, must be called before cgroup_exit() | 1008 | * because of cgroup mode, must be called before cgroup_exit() |
1004 | */ | 1009 | */ |
1005 | perf_event_exit_task(tsk); | 1010 | perf_event_exit_task(tsk); |
1006 | 1011 | ||
1007 | cgroup_exit(tsk, 1); | 1012 | cgroup_exit(tsk, 1); |
1008 | 1013 | ||
1009 | if (group_dead) | 1014 | if (group_dead) |
1010 | disassociate_ctty(1); | 1015 | disassociate_ctty(1); |
1011 | 1016 | ||
1012 | module_put(task_thread_info(tsk)->exec_domain->module); | 1017 | module_put(task_thread_info(tsk)->exec_domain->module); |
1013 | 1018 | ||
1014 | proc_exit_connector(tsk); | 1019 | proc_exit_connector(tsk); |
1015 | 1020 | ||
1016 | /* | 1021 | /* |
1017 | * FIXME: do that only when needed, using sched_exit tracepoint | 1022 | * FIXME: do that only when needed, using sched_exit tracepoint |
1018 | */ | 1023 | */ |
1019 | ptrace_put_breakpoints(tsk); | 1024 | ptrace_put_breakpoints(tsk); |
1020 | 1025 | ||
1021 | exit_notify(tsk, group_dead); | 1026 | exit_notify(tsk, group_dead); |
1022 | #ifdef CONFIG_NUMA | 1027 | #ifdef CONFIG_NUMA |
1023 | task_lock(tsk); | 1028 | task_lock(tsk); |
1024 | mpol_put(tsk->mempolicy); | 1029 | mpol_put(tsk->mempolicy); |
1025 | tsk->mempolicy = NULL; | 1030 | tsk->mempolicy = NULL; |
1026 | task_unlock(tsk); | 1031 | task_unlock(tsk); |
1027 | #endif | 1032 | #endif |
1028 | #ifdef CONFIG_FUTEX | 1033 | #ifdef CONFIG_FUTEX |
1029 | if (unlikely(current->pi_state_cache)) | 1034 | if (unlikely(current->pi_state_cache)) |
1030 | kfree(current->pi_state_cache); | 1035 | kfree(current->pi_state_cache); |
1031 | #endif | 1036 | #endif |
1032 | /* | 1037 | /* |
1033 | * Make sure we are holding no locks: | 1038 | * Make sure we are holding no locks: |
1034 | */ | 1039 | */ |
1035 | debug_check_no_locks_held(tsk); | 1040 | debug_check_no_locks_held(tsk); |
1036 | /* | 1041 | /* |
1037 | * We can do this unlocked here. The futex code uses this flag | 1042 | * We can do this unlocked here. The futex code uses this flag |
1038 | * just to verify whether the pi state cleanup has been done | 1043 | * just to verify whether the pi state cleanup has been done |
1039 | * or not. In the worst case it loops once more. | 1044 | * or not. In the worst case it loops once more. |
1040 | */ | 1045 | */ |
1041 | tsk->flags |= PF_EXITPIDONE; | 1046 | tsk->flags |= PF_EXITPIDONE; |
1042 | 1047 | ||
1043 | if (tsk->io_context) | 1048 | if (tsk->io_context) |
1044 | exit_io_context(tsk); | 1049 | exit_io_context(tsk); |
1045 | 1050 | ||
1046 | if (tsk->splice_pipe) | 1051 | if (tsk->splice_pipe) |
1047 | __free_pipe_info(tsk->splice_pipe); | 1052 | __free_pipe_info(tsk->splice_pipe); |
1048 | 1053 | ||
1049 | validate_creds_for_do_exit(tsk); | 1054 | validate_creds_for_do_exit(tsk); |
1050 | 1055 | ||
1051 | preempt_disable(); | 1056 | preempt_disable(); |
1052 | exit_rcu(); | 1057 | exit_rcu(); |
1053 | /* causes final put_task_struct in finish_task_switch(). */ | 1058 | /* causes final put_task_struct in finish_task_switch(). */ |
1054 | tsk->state = TASK_DEAD; | 1059 | tsk->state = TASK_DEAD; |
1055 | schedule(); | 1060 | schedule(); |
1056 | BUG(); | 1061 | BUG(); |
1057 | /* Avoid "noreturn function does return". */ | 1062 | /* Avoid "noreturn function does return". */ |
1058 | for (;;) | 1063 | for (;;) |
1059 | cpu_relax(); /* For when BUG is null */ | 1064 | cpu_relax(); /* For when BUG is null */ |
1060 | } | 1065 | } |
1061 | 1066 | ||
1062 | EXPORT_SYMBOL_GPL(do_exit); | 1067 | EXPORT_SYMBOL_GPL(do_exit); |
1063 | 1068 | ||
1064 | NORET_TYPE void complete_and_exit(struct completion *comp, long code) | 1069 | NORET_TYPE void complete_and_exit(struct completion *comp, long code) |
1065 | { | 1070 | { |
1066 | if (comp) | 1071 | if (comp) |
1067 | complete(comp); | 1072 | complete(comp); |
1068 | 1073 | ||
1069 | do_exit(code); | 1074 | do_exit(code); |
1070 | } | 1075 | } |
1071 | 1076 | ||
1072 | EXPORT_SYMBOL(complete_and_exit); | 1077 | EXPORT_SYMBOL(complete_and_exit); |
1073 | 1078 | ||
1074 | SYSCALL_DEFINE1(exit, int, error_code) | 1079 | SYSCALL_DEFINE1(exit, int, error_code) |
1075 | { | 1080 | { |
1076 | do_exit((error_code&0xff)<<8); | 1081 | do_exit((error_code&0xff)<<8); |
1077 | } | 1082 | } |
1078 | 1083 | ||
1079 | /* | 1084 | /* |
1080 | * Take down every thread in the group. This is called by fatal signals | 1085 | * Take down every thread in the group. This is called by fatal signals |
1081 | * as well as by sys_exit_group (below). | 1086 | * as well as by sys_exit_group (below). |
1082 | */ | 1087 | */ |
1083 | NORET_TYPE void | 1088 | NORET_TYPE void |
1084 | do_group_exit(int exit_code) | 1089 | do_group_exit(int exit_code) |
1085 | { | 1090 | { |
1086 | struct signal_struct *sig = current->signal; | 1091 | struct signal_struct *sig = current->signal; |
1087 | 1092 | ||
1088 | BUG_ON(exit_code & 0x80); /* core dumps don't get here */ | 1093 | BUG_ON(exit_code & 0x80); /* core dumps don't get here */ |
1089 | 1094 | ||
1090 | if (signal_group_exit(sig)) | 1095 | if (signal_group_exit(sig)) |
1091 | exit_code = sig->group_exit_code; | 1096 | exit_code = sig->group_exit_code; |
1092 | else if (!thread_group_empty(current)) { | 1097 | else if (!thread_group_empty(current)) { |
1093 | struct sighand_struct *const sighand = current->sighand; | 1098 | struct sighand_struct *const sighand = current->sighand; |
1094 | spin_lock_irq(&sighand->siglock); | 1099 | spin_lock_irq(&sighand->siglock); |
1095 | if (signal_group_exit(sig)) | 1100 | if (signal_group_exit(sig)) |
1096 | /* Another thread got here before we took the lock. */ | 1101 | /* Another thread got here before we took the lock. */ |
1097 | exit_code = sig->group_exit_code; | 1102 | exit_code = sig->group_exit_code; |
1098 | else { | 1103 | else { |
1099 | sig->group_exit_code = exit_code; | 1104 | sig->group_exit_code = exit_code; |
1100 | sig->flags = SIGNAL_GROUP_EXIT; | 1105 | sig->flags = SIGNAL_GROUP_EXIT; |
1101 | zap_other_threads(current); | 1106 | zap_other_threads(current); |
1102 | } | 1107 | } |
1103 | spin_unlock_irq(&sighand->siglock); | 1108 | spin_unlock_irq(&sighand->siglock); |
1104 | } | 1109 | } |
1105 | 1110 | ||
1106 | do_exit(exit_code); | 1111 | do_exit(exit_code); |
1107 | /* NOTREACHED */ | 1112 | /* NOTREACHED */ |
1108 | } | 1113 | } |
1109 | 1114 | ||
1110 | /* | 1115 | /* |
1111 | * this kills every thread in the thread group. Note that any externally | 1116 | * this kills every thread in the thread group. Note that any externally |
1112 | * wait4()-ing process will get the correct exit code - even if this | 1117 | * wait4()-ing process will get the correct exit code - even if this |
1113 | * thread is not the thread group leader. | 1118 | * thread is not the thread group leader. |
1114 | */ | 1119 | */ |
1115 | SYSCALL_DEFINE1(exit_group, int, error_code) | 1120 | SYSCALL_DEFINE1(exit_group, int, error_code) |
1116 | { | 1121 | { |
1117 | do_group_exit((error_code & 0xff) << 8); | 1122 | do_group_exit((error_code & 0xff) << 8); |
1118 | /* NOTREACHED */ | 1123 | /* NOTREACHED */ |
1119 | return 0; | 1124 | return 0; |
1120 | } | 1125 | } |
1121 | 1126 | ||
1122 | struct wait_opts { | 1127 | struct wait_opts { |
1123 | enum pid_type wo_type; | 1128 | enum pid_type wo_type; |
1124 | int wo_flags; | 1129 | int wo_flags; |
1125 | struct pid *wo_pid; | 1130 | struct pid *wo_pid; |
1126 | 1131 | ||
1127 | struct siginfo __user *wo_info; | 1132 | struct siginfo __user *wo_info; |
1128 | int __user *wo_stat; | 1133 | int __user *wo_stat; |
1129 | struct rusage __user *wo_rusage; | 1134 | struct rusage __user *wo_rusage; |
1130 | 1135 | ||
1131 | wait_queue_t child_wait; | 1136 | wait_queue_t child_wait; |
1132 | int notask_error; | 1137 | int notask_error; |
1133 | }; | 1138 | }; |
1134 | 1139 | ||
1135 | static inline | 1140 | static inline |
1136 | struct pid *task_pid_type(struct task_struct *task, enum pid_type type) | 1141 | struct pid *task_pid_type(struct task_struct *task, enum pid_type type) |
1137 | { | 1142 | { |
1138 | if (type != PIDTYPE_PID) | 1143 | if (type != PIDTYPE_PID) |
1139 | task = task->group_leader; | 1144 | task = task->group_leader; |
1140 | return task->pids[type].pid; | 1145 | return task->pids[type].pid; |
1141 | } | 1146 | } |
1142 | 1147 | ||
1143 | static int eligible_pid(struct wait_opts *wo, struct task_struct *p) | 1148 | static int eligible_pid(struct wait_opts *wo, struct task_struct *p) |
1144 | { | 1149 | { |
1145 | return wo->wo_type == PIDTYPE_MAX || | 1150 | return wo->wo_type == PIDTYPE_MAX || |
1146 | task_pid_type(p, wo->wo_type) == wo->wo_pid; | 1151 | task_pid_type(p, wo->wo_type) == wo->wo_pid; |
1147 | } | 1152 | } |
1148 | 1153 | ||
1149 | static int eligible_child(struct wait_opts *wo, struct task_struct *p) | 1154 | static int eligible_child(struct wait_opts *wo, struct task_struct *p) |
1150 | { | 1155 | { |
1151 | if (!eligible_pid(wo, p)) | 1156 | if (!eligible_pid(wo, p)) |
1152 | return 0; | 1157 | return 0; |
1153 | /* Wait for all children (clone and not) if __WALL is set; | 1158 | /* Wait for all children (clone and not) if __WALL is set; |
1154 | * otherwise, wait for clone children *only* if __WCLONE is | 1159 | * otherwise, wait for clone children *only* if __WCLONE is |
1155 | * set; otherwise, wait for non-clone children *only*. (Note: | 1160 | * set; otherwise, wait for non-clone children *only*. (Note: |
1156 | * A "clone" child here is one that reports to its parent | 1161 | * A "clone" child here is one that reports to its parent |
1157 | * using a signal other than SIGCHLD.) */ | 1162 | * using a signal other than SIGCHLD.) */ |
1158 | if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) | 1163 | if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) |
1159 | && !(wo->wo_flags & __WALL)) | 1164 | && !(wo->wo_flags & __WALL)) |
1160 | return 0; | 1165 | return 0; |
1161 | 1166 | ||
1162 | return 1; | 1167 | return 1; |
1163 | } | 1168 | } |
1164 | 1169 | ||
1165 | static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, | 1170 | static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, |
1166 | pid_t pid, uid_t uid, int why, int status) | 1171 | pid_t pid, uid_t uid, int why, int status) |
1167 | { | 1172 | { |
1168 | struct siginfo __user *infop; | 1173 | struct siginfo __user *infop; |
1169 | int retval = wo->wo_rusage | 1174 | int retval = wo->wo_rusage |
1170 | ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; | 1175 | ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; |
1171 | 1176 | ||
1172 | put_task_struct(p); | 1177 | put_task_struct(p); |
1173 | infop = wo->wo_info; | 1178 | infop = wo->wo_info; |
1174 | if (infop) { | 1179 | if (infop) { |
1175 | if (!retval) | 1180 | if (!retval) |
1176 | retval = put_user(SIGCHLD, &infop->si_signo); | 1181 | retval = put_user(SIGCHLD, &infop->si_signo); |
1177 | if (!retval) | 1182 | if (!retval) |
1178 | retval = put_user(0, &infop->si_errno); | 1183 | retval = put_user(0, &infop->si_errno); |
1179 | if (!retval) | 1184 | if (!retval) |
1180 | retval = put_user((short)why, &infop->si_code); | 1185 | retval = put_user((short)why, &infop->si_code); |
1181 | if (!retval) | 1186 | if (!retval) |
1182 | retval = put_user(pid, &infop->si_pid); | 1187 | retval = put_user(pid, &infop->si_pid); |
1183 | if (!retval) | 1188 | if (!retval) |
1184 | retval = put_user(uid, &infop->si_uid); | 1189 | retval = put_user(uid, &infop->si_uid); |
1185 | if (!retval) | 1190 | if (!retval) |
1186 | retval = put_user(status, &infop->si_status); | 1191 | retval = put_user(status, &infop->si_status); |
1187 | } | 1192 | } |
1188 | if (!retval) | 1193 | if (!retval) |
1189 | retval = pid; | 1194 | retval = pid; |
1190 | return retval; | 1195 | return retval; |
1191 | } | 1196 | } |
1192 | 1197 | ||
1193 | /* | 1198 | /* |
1194 | * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold | 1199 | * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold |
1195 | * read_lock(&tasklist_lock) on entry. If we return zero, we still hold | 1200 | * read_lock(&tasklist_lock) on entry. If we return zero, we still hold |
1196 | * the lock and this task is uninteresting. If we return nonzero, we have | 1201 | * the lock and this task is uninteresting. If we return nonzero, we have |
1197 | * released the lock and the system call should return. | 1202 | * released the lock and the system call should return. |
1198 | */ | 1203 | */ |
1199 | static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) | 1204 | static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) |
1200 | { | 1205 | { |
1201 | unsigned long state; | 1206 | unsigned long state; |
1202 | int retval, status, traced; | 1207 | int retval, status, traced; |
1203 | pid_t pid = task_pid_vnr(p); | 1208 | pid_t pid = task_pid_vnr(p); |
1204 | uid_t uid = __task_cred(p)->uid; | 1209 | uid_t uid = __task_cred(p)->uid; |
1205 | struct siginfo __user *infop; | 1210 | struct siginfo __user *infop; |
1206 | 1211 | ||
1207 | if (!likely(wo->wo_flags & WEXITED)) | 1212 | if (!likely(wo->wo_flags & WEXITED)) |
1208 | return 0; | 1213 | return 0; |
1209 | 1214 | ||
1210 | if (unlikely(wo->wo_flags & WNOWAIT)) { | 1215 | if (unlikely(wo->wo_flags & WNOWAIT)) { |
1211 | int exit_code = p->exit_code; | 1216 | int exit_code = p->exit_code; |
1212 | int why; | 1217 | int why; |
1213 | 1218 | ||
1214 | get_task_struct(p); | 1219 | get_task_struct(p); |
1215 | read_unlock(&tasklist_lock); | 1220 | read_unlock(&tasklist_lock); |
1216 | if ((exit_code & 0x7f) == 0) { | 1221 | if ((exit_code & 0x7f) == 0) { |
1217 | why = CLD_EXITED; | 1222 | why = CLD_EXITED; |
1218 | status = exit_code >> 8; | 1223 | status = exit_code >> 8; |
1219 | } else { | 1224 | } else { |
1220 | why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; | 1225 | why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; |
1221 | status = exit_code & 0x7f; | 1226 | status = exit_code & 0x7f; |
1222 | } | 1227 | } |
1223 | return wait_noreap_copyout(wo, p, pid, uid, why, status); | 1228 | return wait_noreap_copyout(wo, p, pid, uid, why, status); |
1224 | } | 1229 | } |
1225 | 1230 | ||
1226 | /* | 1231 | /* |
1227 | * Try to move the task's state to DEAD | 1232 | * Try to move the task's state to DEAD |
1228 | * only one thread is allowed to do this: | 1233 | * only one thread is allowed to do this: |
1229 | */ | 1234 | */ |
1230 | state = xchg(&p->exit_state, EXIT_DEAD); | 1235 | state = xchg(&p->exit_state, EXIT_DEAD); |
1231 | if (state != EXIT_ZOMBIE) { | 1236 | if (state != EXIT_ZOMBIE) { |
1232 | BUG_ON(state != EXIT_DEAD); | 1237 | BUG_ON(state != EXIT_DEAD); |
1233 | return 0; | 1238 | return 0; |
1234 | } | 1239 | } |
1235 | 1240 | ||
1236 | traced = ptrace_reparented(p); | 1241 | traced = ptrace_reparented(p); |
1237 | /* | 1242 | /* |
1238 | * It can be ptraced but not reparented, check | 1243 | * It can be ptraced but not reparented, check |
1239 | * !task_detached() to filter out sub-threads. | 1244 | * !task_detached() to filter out sub-threads. |
1240 | */ | 1245 | */ |
1241 | if (likely(!traced) && likely(!task_detached(p))) { | 1246 | if (likely(!traced) && likely(!task_detached(p))) { |
1242 | struct signal_struct *psig; | 1247 | struct signal_struct *psig; |
1243 | struct signal_struct *sig; | 1248 | struct signal_struct *sig; |
1244 | unsigned long maxrss; | 1249 | unsigned long maxrss; |
1245 | cputime_t tgutime, tgstime; | 1250 | cputime_t tgutime, tgstime; |
1246 | 1251 | ||
1247 | /* | 1252 | /* |
1248 | * The resource counters for the group leader are in its | 1253 | * The resource counters for the group leader are in its |
1249 | * own task_struct. Those for dead threads in the group | 1254 | * own task_struct. Those for dead threads in the group |
1250 | * are in its signal_struct, as are those for the child | 1255 | * are in its signal_struct, as are those for the child |
1251 | * processes it has previously reaped. All these | 1256 | * processes it has previously reaped. All these |
1252 | * accumulate in the parent's signal_struct c* fields. | 1257 | * accumulate in the parent's signal_struct c* fields. |
1253 | * | 1258 | * |
1254 | * We don't bother to take a lock here to protect these | 1259 | * We don't bother to take a lock here to protect these |
1255 | * p->signal fields, because they are only touched by | 1260 | * p->signal fields, because they are only touched by |
1256 | * __exit_signal, which runs with tasklist_lock | 1261 | * __exit_signal, which runs with tasklist_lock |
1257 | * write-locked anyway, and so is excluded here. We do | 1262 | * write-locked anyway, and so is excluded here. We do |
1258 | * need to protect the access to parent->signal fields, | 1263 | * need to protect the access to parent->signal fields, |
1259 | * as other threads in the parent group can be right | 1264 | * as other threads in the parent group can be right |
1260 | * here reaping other children at the same time. | 1265 | * here reaping other children at the same time. |
1261 | * | 1266 | * |
1262 | * We use thread_group_times() to get times for the thread | 1267 | * We use thread_group_times() to get times for the thread |
1263 | * group, which consolidates times for all threads in the | 1268 | * group, which consolidates times for all threads in the |
1264 | * group including the group leader. | 1269 | * group including the group leader. |
1265 | */ | 1270 | */ |
1266 | thread_group_times(p, &tgutime, &tgstime); | 1271 | thread_group_times(p, &tgutime, &tgstime); |
1267 | spin_lock_irq(&p->real_parent->sighand->siglock); | 1272 | spin_lock_irq(&p->real_parent->sighand->siglock); |
1268 | psig = p->real_parent->signal; | 1273 | psig = p->real_parent->signal; |
1269 | sig = p->signal; | 1274 | sig = p->signal; |
1270 | psig->cutime = | 1275 | psig->cutime = |
1271 | cputime_add(psig->cutime, | 1276 | cputime_add(psig->cutime, |
1272 | cputime_add(tgutime, | 1277 | cputime_add(tgutime, |
1273 | sig->cutime)); | 1278 | sig->cutime)); |
1274 | psig->cstime = | 1279 | psig->cstime = |
1275 | cputime_add(psig->cstime, | 1280 | cputime_add(psig->cstime, |
1276 | cputime_add(tgstime, | 1281 | cputime_add(tgstime, |
1277 | sig->cstime)); | 1282 | sig->cstime)); |
1278 | psig->cgtime = | 1283 | psig->cgtime = |
1279 | cputime_add(psig->cgtime, | 1284 | cputime_add(psig->cgtime, |
1280 | cputime_add(p->gtime, | 1285 | cputime_add(p->gtime, |
1281 | cputime_add(sig->gtime, | 1286 | cputime_add(sig->gtime, |
1282 | sig->cgtime))); | 1287 | sig->cgtime))); |
1283 | psig->cmin_flt += | 1288 | psig->cmin_flt += |
1284 | p->min_flt + sig->min_flt + sig->cmin_flt; | 1289 | p->min_flt + sig->min_flt + sig->cmin_flt; |
1285 | psig->cmaj_flt += | 1290 | psig->cmaj_flt += |
1286 | p->maj_flt + sig->maj_flt + sig->cmaj_flt; | 1291 | p->maj_flt + sig->maj_flt + sig->cmaj_flt; |
1287 | psig->cnvcsw += | 1292 | psig->cnvcsw += |
1288 | p->nvcsw + sig->nvcsw + sig->cnvcsw; | 1293 | p->nvcsw + sig->nvcsw + sig->cnvcsw; |
1289 | psig->cnivcsw += | 1294 | psig->cnivcsw += |
1290 | p->nivcsw + sig->nivcsw + sig->cnivcsw; | 1295 | p->nivcsw + sig->nivcsw + sig->cnivcsw; |
1291 | psig->cinblock += | 1296 | psig->cinblock += |
1292 | task_io_get_inblock(p) + | 1297 | task_io_get_inblock(p) + |
1293 | sig->inblock + sig->cinblock; | 1298 | sig->inblock + sig->cinblock; |
1294 | psig->coublock += | 1299 | psig->coublock += |
1295 | task_io_get_oublock(p) + | 1300 | task_io_get_oublock(p) + |
1296 | sig->oublock + sig->coublock; | 1301 | sig->oublock + sig->coublock; |
1297 | maxrss = max(sig->maxrss, sig->cmaxrss); | 1302 | maxrss = max(sig->maxrss, sig->cmaxrss); |
1298 | if (psig->cmaxrss < maxrss) | 1303 | if (psig->cmaxrss < maxrss) |
1299 | psig->cmaxrss = maxrss; | 1304 | psig->cmaxrss = maxrss; |
1300 | task_io_accounting_add(&psig->ioac, &p->ioac); | 1305 | task_io_accounting_add(&psig->ioac, &p->ioac); |
1301 | task_io_accounting_add(&psig->ioac, &sig->ioac); | 1306 | task_io_accounting_add(&psig->ioac, &sig->ioac); |
1302 | spin_unlock_irq(&p->real_parent->sighand->siglock); | 1307 | spin_unlock_irq(&p->real_parent->sighand->siglock); |
1303 | } | 1308 | } |
1304 | 1309 | ||
1305 | /* | 1310 | /* |
1306 | * Now we are sure this task is interesting, and no other | 1311 | * Now we are sure this task is interesting, and no other |
1307 | * thread can reap it because we set its state to EXIT_DEAD. | 1312 | * thread can reap it because we set its state to EXIT_DEAD. |
1308 | */ | 1313 | */ |
1309 | read_unlock(&tasklist_lock); | 1314 | read_unlock(&tasklist_lock); |
1310 | 1315 | ||
1311 | retval = wo->wo_rusage | 1316 | retval = wo->wo_rusage |
1312 | ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; | 1317 | ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; |
1313 | status = (p->signal->flags & SIGNAL_GROUP_EXIT) | 1318 | status = (p->signal->flags & SIGNAL_GROUP_EXIT) |
1314 | ? p->signal->group_exit_code : p->exit_code; | 1319 | ? p->signal->group_exit_code : p->exit_code; |
1315 | if (!retval && wo->wo_stat) | 1320 | if (!retval && wo->wo_stat) |
1316 | retval = put_user(status, wo->wo_stat); | 1321 | retval = put_user(status, wo->wo_stat); |
1317 | 1322 | ||
1318 | infop = wo->wo_info; | 1323 | infop = wo->wo_info; |
1319 | if (!retval && infop) | 1324 | if (!retval && infop) |
1320 | retval = put_user(SIGCHLD, &infop->si_signo); | 1325 | retval = put_user(SIGCHLD, &infop->si_signo); |
1321 | if (!retval && infop) | 1326 | if (!retval && infop) |
1322 | retval = put_user(0, &infop->si_errno); | 1327 | retval = put_user(0, &infop->si_errno); |
1323 | if (!retval && infop) { | 1328 | if (!retval && infop) { |
1324 | int why; | 1329 | int why; |
1325 | 1330 | ||
1326 | if ((status & 0x7f) == 0) { | 1331 | if ((status & 0x7f) == 0) { |
1327 | why = CLD_EXITED; | 1332 | why = CLD_EXITED; |
1328 | status >>= 8; | 1333 | status >>= 8; |
1329 | } else { | 1334 | } else { |
1330 | why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; | 1335 | why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; |
1331 | status &= 0x7f; | 1336 | status &= 0x7f; |
1332 | } | 1337 | } |
1333 | retval = put_user((short)why, &infop->si_code); | 1338 | retval = put_user((short)why, &infop->si_code); |
1334 | if (!retval) | 1339 | if (!retval) |
1335 | retval = put_user(status, &infop->si_status); | 1340 | retval = put_user(status, &infop->si_status); |
1336 | } | 1341 | } |
1337 | if (!retval && infop) | 1342 | if (!retval && infop) |
1338 | retval = put_user(pid, &infop->si_pid); | 1343 | retval = put_user(pid, &infop->si_pid); |
1339 | if (!retval && infop) | 1344 | if (!retval && infop) |
1340 | retval = put_user(uid, &infop->si_uid); | 1345 | retval = put_user(uid, &infop->si_uid); |
1341 | if (!retval) | 1346 | if (!retval) |
1342 | retval = pid; | 1347 | retval = pid; |
1343 | 1348 | ||
1344 | if (traced) { | 1349 | if (traced) { |
1345 | write_lock_irq(&tasklist_lock); | 1350 | write_lock_irq(&tasklist_lock); |
1346 | /* We dropped tasklist, ptracer could die and untrace */ | 1351 | /* We dropped tasklist, ptracer could die and untrace */ |
1347 | ptrace_unlink(p); | 1352 | ptrace_unlink(p); |
1348 | /* | 1353 | /* |
1349 | * If this is not a detached task, notify the parent. | 1354 | * If this is not a detached task, notify the parent. |
1350 | * If it's still not detached after that, don't release | 1355 | * If it's still not detached after that, don't release |
1351 | * it now. | 1356 | * it now. |
1352 | */ | 1357 | */ |
1353 | if (!task_detached(p)) { | 1358 | if (!task_detached(p)) { |
1354 | do_notify_parent(p, p->exit_signal); | 1359 | do_notify_parent(p, p->exit_signal); |
1355 | if (!task_detached(p)) { | 1360 | if (!task_detached(p)) { |
1356 | p->exit_state = EXIT_ZOMBIE; | 1361 | p->exit_state = EXIT_ZOMBIE; |
1357 | p = NULL; | 1362 | p = NULL; |
1358 | } | 1363 | } |
1359 | } | 1364 | } |
1360 | write_unlock_irq(&tasklist_lock); | 1365 | write_unlock_irq(&tasklist_lock); |
1361 | } | 1366 | } |
1362 | if (p != NULL) | 1367 | if (p != NULL) |
1363 | release_task(p); | 1368 | release_task(p); |
1364 | 1369 | ||
1365 | return retval; | 1370 | return retval; |
1366 | } | 1371 | } |
1367 | 1372 | ||
1368 | static int *task_stopped_code(struct task_struct *p, bool ptrace) | 1373 | static int *task_stopped_code(struct task_struct *p, bool ptrace) |
1369 | { | 1374 | { |
1370 | if (ptrace) { | 1375 | if (ptrace) { |
1371 | if (task_is_stopped_or_traced(p) && | 1376 | if (task_is_stopped_or_traced(p) && |
1372 | !(p->jobctl & JOBCTL_LISTENING)) | 1377 | !(p->jobctl & JOBCTL_LISTENING)) |
1373 | return &p->exit_code; | 1378 | return &p->exit_code; |
1374 | } else { | 1379 | } else { |
1375 | if (p->signal->flags & SIGNAL_STOP_STOPPED) | 1380 | if (p->signal->flags & SIGNAL_STOP_STOPPED) |
1376 | return &p->signal->group_exit_code; | 1381 | return &p->signal->group_exit_code; |
1377 | } | 1382 | } |
1378 | return NULL; | 1383 | return NULL; |
1379 | } | 1384 | } |
1380 | 1385 | ||
1381 | /** | 1386 | /** |
1382 | * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED | 1387 | * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED |
1383 | * @wo: wait options | 1388 | * @wo: wait options |
1384 | * @ptrace: is the wait for ptrace | 1389 | * @ptrace: is the wait for ptrace |
1385 | * @p: task to wait for | 1390 | * @p: task to wait for |
1386 | * | 1391 | * |
1387 | * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. | 1392 | * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. |
1388 | * | 1393 | * |
1389 | * CONTEXT: | 1394 | * CONTEXT: |
1390 | * read_lock(&tasklist_lock), which is released if return value is | 1395 | * read_lock(&tasklist_lock), which is released if return value is |
1391 | * non-zero. Also, grabs and releases @p->sighand->siglock. | 1396 | * non-zero. Also, grabs and releases @p->sighand->siglock. |
1392 | * | 1397 | * |
1393 | * RETURNS: | 1398 | * RETURNS: |
1394 | * 0 if wait condition didn't exist and search for other wait conditions | 1399 | * 0 if wait condition didn't exist and search for other wait conditions |
1395 | * should continue. Non-zero return, -errno on failure and @p's pid on | 1400 | * should continue. Non-zero return, -errno on failure and @p's pid on |
1396 | * success, implies that tasklist_lock is released and wait condition | 1401 | * success, implies that tasklist_lock is released and wait condition |
1397 | * search should terminate. | 1402 | * search should terminate. |
1398 | */ | 1403 | */ |
1399 | static int wait_task_stopped(struct wait_opts *wo, | 1404 | static int wait_task_stopped(struct wait_opts *wo, |
1400 | int ptrace, struct task_struct *p) | 1405 | int ptrace, struct task_struct *p) |
1401 | { | 1406 | { |
1402 | struct siginfo __user *infop; | 1407 | struct siginfo __user *infop; |
1403 | int retval, exit_code, *p_code, why; | 1408 | int retval, exit_code, *p_code, why; |
1404 | uid_t uid = 0; /* unneeded, required by compiler */ | 1409 | uid_t uid = 0; /* unneeded, required by compiler */ |
1405 | pid_t pid; | 1410 | pid_t pid; |
1406 | 1411 | ||
1407 | /* | 1412 | /* |
1408 | * Traditionally we see ptrace'd stopped tasks regardless of options. | 1413 | * Traditionally we see ptrace'd stopped tasks regardless of options. |
1409 | */ | 1414 | */ |
1410 | if (!ptrace && !(wo->wo_flags & WUNTRACED)) | 1415 | if (!ptrace && !(wo->wo_flags & WUNTRACED)) |
1411 | return 0; | 1416 | return 0; |
1412 | 1417 | ||
1413 | if (!task_stopped_code(p, ptrace)) | 1418 | if (!task_stopped_code(p, ptrace)) |
1414 | return 0; | 1419 | return 0; |
1415 | 1420 | ||
1416 | exit_code = 0; | 1421 | exit_code = 0; |
1417 | spin_lock_irq(&p->sighand->siglock); | 1422 | spin_lock_irq(&p->sighand->siglock); |
1418 | 1423 | ||
1419 | p_code = task_stopped_code(p, ptrace); | 1424 | p_code = task_stopped_code(p, ptrace); |
1420 | if (unlikely(!p_code)) | 1425 | if (unlikely(!p_code)) |
1421 | goto unlock_sig; | 1426 | goto unlock_sig; |
1422 | 1427 | ||
1423 | exit_code = *p_code; | 1428 | exit_code = *p_code; |
1424 | if (!exit_code) | 1429 | if (!exit_code) |
1425 | goto unlock_sig; | 1430 | goto unlock_sig; |
1426 | 1431 | ||
1427 | if (!unlikely(wo->wo_flags & WNOWAIT)) | 1432 | if (!unlikely(wo->wo_flags & WNOWAIT)) |
1428 | *p_code = 0; | 1433 | *p_code = 0; |
1429 | 1434 | ||
1430 | uid = task_uid(p); | 1435 | uid = task_uid(p); |
1431 | unlock_sig: | 1436 | unlock_sig: |
1432 | spin_unlock_irq(&p->sighand->siglock); | 1437 | spin_unlock_irq(&p->sighand->siglock); |
1433 | if (!exit_code) | 1438 | if (!exit_code) |
1434 | return 0; | 1439 | return 0; |
1435 | 1440 | ||
1436 | /* | 1441 | /* |
1437 | * Now we are pretty sure this task is interesting. | 1442 | * Now we are pretty sure this task is interesting. |
1438 | * Make sure it doesn't get reaped out from under us while we | 1443 | * Make sure it doesn't get reaped out from under us while we |
1439 | * give up the lock and then examine it below. We don't want to | 1444 | * give up the lock and then examine it below. We don't want to |
1440 | * keep holding onto the tasklist_lock while we call getrusage and | 1445 | * keep holding onto the tasklist_lock while we call getrusage and |
1441 | * possibly take page faults for user memory. | 1446 | * possibly take page faults for user memory. |
1442 | */ | 1447 | */ |
1443 | get_task_struct(p); | 1448 | get_task_struct(p); |
1444 | pid = task_pid_vnr(p); | 1449 | pid = task_pid_vnr(p); |
1445 | why = ptrace ? CLD_TRAPPED : CLD_STOPPED; | 1450 | why = ptrace ? CLD_TRAPPED : CLD_STOPPED; |
1446 | read_unlock(&tasklist_lock); | 1451 | read_unlock(&tasklist_lock); |
1447 | 1452 | ||
1448 | if (unlikely(wo->wo_flags & WNOWAIT)) | 1453 | if (unlikely(wo->wo_flags & WNOWAIT)) |
1449 | return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); | 1454 | return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); |
1450 | 1455 | ||
1451 | retval = wo->wo_rusage | 1456 | retval = wo->wo_rusage |
1452 | ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; | 1457 | ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; |
1453 | if (!retval && wo->wo_stat) | 1458 | if (!retval && wo->wo_stat) |
1454 | retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); | 1459 | retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); |
1455 | 1460 | ||
1456 | infop = wo->wo_info; | 1461 | infop = wo->wo_info; |
1457 | if (!retval && infop) | 1462 | if (!retval && infop) |
1458 | retval = put_user(SIGCHLD, &infop->si_signo); | 1463 | retval = put_user(SIGCHLD, &infop->si_signo); |
1459 | if (!retval && infop) | 1464 | if (!retval && infop) |
1460 | retval = put_user(0, &infop->si_errno); | 1465 | retval = put_user(0, &infop->si_errno); |
1461 | if (!retval && infop) | 1466 | if (!retval && infop) |
1462 | retval = put_user((short)why, &infop->si_code); | 1467 | retval = put_user((short)why, &infop->si_code); |
1463 | if (!retval && infop) | 1468 | if (!retval && infop) |
1464 | retval = put_user(exit_code, &infop->si_status); | 1469 | retval = put_user(exit_code, &infop->si_status); |
1465 | if (!retval && infop) | 1470 | if (!retval && infop) |
1466 | retval = put_user(pid, &infop->si_pid); | 1471 | retval = put_user(pid, &infop->si_pid); |
1467 | if (!retval && infop) | 1472 | if (!retval && infop) |
1468 | retval = put_user(uid, &infop->si_uid); | 1473 | retval = put_user(uid, &infop->si_uid); |
1469 | if (!retval) | 1474 | if (!retval) |
1470 | retval = pid; | 1475 | retval = pid; |
1471 | put_task_struct(p); | 1476 | put_task_struct(p); |
1472 | 1477 | ||
1473 | BUG_ON(!retval); | 1478 | BUG_ON(!retval); |
1474 | return retval; | 1479 | return retval; |
1475 | } | 1480 | } |
1476 | 1481 | ||
1477 | /* | 1482 | /* |
1478 | * Handle do_wait work for one task in a live, non-stopped state. | 1483 | * Handle do_wait work for one task in a live, non-stopped state. |
1479 | * read_lock(&tasklist_lock) on entry. If we return zero, we still hold | 1484 | * read_lock(&tasklist_lock) on entry. If we return zero, we still hold |
1480 | * the lock and this task is uninteresting. If we return nonzero, we have | 1485 | * the lock and this task is uninteresting. If we return nonzero, we have |
1481 | * released the lock and the system call should return. | 1486 | * released the lock and the system call should return. |
1482 | */ | 1487 | */ |
1483 | static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) | 1488 | static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) |
1484 | { | 1489 | { |
1485 | int retval; | 1490 | int retval; |
1486 | pid_t pid; | 1491 | pid_t pid; |
1487 | uid_t uid; | 1492 | uid_t uid; |
1488 | 1493 | ||
1489 | if (!unlikely(wo->wo_flags & WCONTINUED)) | 1494 | if (!unlikely(wo->wo_flags & WCONTINUED)) |
1490 | return 0; | 1495 | return 0; |
1491 | 1496 | ||
1492 | if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) | 1497 | if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) |
1493 | return 0; | 1498 | return 0; |
1494 | 1499 | ||
1495 | spin_lock_irq(&p->sighand->siglock); | 1500 | spin_lock_irq(&p->sighand->siglock); |
1496 | /* Re-check with the lock held. */ | 1501 | /* Re-check with the lock held. */ |
1497 | if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { | 1502 | if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { |
1498 | spin_unlock_irq(&p->sighand->siglock); | 1503 | spin_unlock_irq(&p->sighand->siglock); |
1499 | return 0; | 1504 | return 0; |
1500 | } | 1505 | } |
1501 | if (!unlikely(wo->wo_flags & WNOWAIT)) | 1506 | if (!unlikely(wo->wo_flags & WNOWAIT)) |
1502 | p->signal->flags &= ~SIGNAL_STOP_CONTINUED; | 1507 | p->signal->flags &= ~SIGNAL_STOP_CONTINUED; |
1503 | uid = task_uid(p); | 1508 | uid = task_uid(p); |
1504 | spin_unlock_irq(&p->sighand->siglock); | 1509 | spin_unlock_irq(&p->sighand->siglock); |
1505 | 1510 | ||
1506 | pid = task_pid_vnr(p); | 1511 | pid = task_pid_vnr(p); |
1507 | get_task_struct(p); | 1512 | get_task_struct(p); |
1508 | read_unlock(&tasklist_lock); | 1513 | read_unlock(&tasklist_lock); |
1509 | 1514 | ||
1510 | if (!wo->wo_info) { | 1515 | if (!wo->wo_info) { |
1511 | retval = wo->wo_rusage | 1516 | retval = wo->wo_rusage |
1512 | ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; | 1517 | ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; |
1513 | put_task_struct(p); | 1518 | put_task_struct(p); |
1514 | if (!retval && wo->wo_stat) | 1519 | if (!retval && wo->wo_stat) |
1515 | retval = put_user(0xffff, wo->wo_stat); | 1520 | retval = put_user(0xffff, wo->wo_stat); |
1516 | if (!retval) | 1521 | if (!retval) |
1517 | retval = pid; | 1522 | retval = pid; |
1518 | } else { | 1523 | } else { |
1519 | retval = wait_noreap_copyout(wo, p, pid, uid, | 1524 | retval = wait_noreap_copyout(wo, p, pid, uid, |
1520 | CLD_CONTINUED, SIGCONT); | 1525 | CLD_CONTINUED, SIGCONT); |
1521 | BUG_ON(retval == 0); | 1526 | BUG_ON(retval == 0); |
1522 | } | 1527 | } |
1523 | 1528 | ||
1524 | return retval; | 1529 | return retval; |
1525 | } | 1530 | } |
1526 | 1531 | ||
1527 | /* | 1532 | /* |
1528 | * Consider @p for a wait by @parent. | 1533 | * Consider @p for a wait by @parent. |
1529 | * | 1534 | * |
1530 | * -ECHILD should be in ->notask_error before the first call. | 1535 | * -ECHILD should be in ->notask_error before the first call. |
1531 | * Returns nonzero for a final return, when we have unlocked tasklist_lock. | 1536 | * Returns nonzero for a final return, when we have unlocked tasklist_lock. |
1532 | * Returns zero if the search for a child should continue; | 1537 | * Returns zero if the search for a child should continue; |
1533 | * then ->notask_error is 0 if @p is an eligible child, | 1538 | * then ->notask_error is 0 if @p is an eligible child, |
1534 | * or another error from security_task_wait(), or still -ECHILD. | 1539 | * or another error from security_task_wait(), or still -ECHILD. |
1535 | */ | 1540 | */ |
1536 | static int wait_consider_task(struct wait_opts *wo, int ptrace, | 1541 | static int wait_consider_task(struct wait_opts *wo, int ptrace, |
1537 | struct task_struct *p) | 1542 | struct task_struct *p) |
1538 | { | 1543 | { |
1539 | int ret = eligible_child(wo, p); | 1544 | int ret = eligible_child(wo, p); |
1540 | if (!ret) | 1545 | if (!ret) |
1541 | return ret; | 1546 | return ret; |
1542 | 1547 | ||
1543 | ret = security_task_wait(p); | 1548 | ret = security_task_wait(p); |
1544 | if (unlikely(ret < 0)) { | 1549 | if (unlikely(ret < 0)) { |
1545 | /* | 1550 | /* |
1546 | * If we have not yet seen any eligible child, | 1551 | * If we have not yet seen any eligible child, |
1547 | * then let this error code replace -ECHILD. | 1552 | * then let this error code replace -ECHILD. |
1548 | * A permission error will give the user a clue | 1553 | * A permission error will give the user a clue |
1549 | * to look for security policy problems, rather | 1554 | * to look for security policy problems, rather |
1550 | * than for mysterious wait bugs. | 1555 | * than for mysterious wait bugs. |
1551 | */ | 1556 | */ |
1552 | if (wo->notask_error) | 1557 | if (wo->notask_error) |
1553 | wo->notask_error = ret; | 1558 | wo->notask_error = ret; |
1554 | return 0; | 1559 | return 0; |
1555 | } | 1560 | } |
1556 | 1561 | ||
1557 | /* dead body doesn't have much to contribute */ | 1562 | /* dead body doesn't have much to contribute */ |
1558 | if (p->exit_state == EXIT_DEAD) | 1563 | if (p->exit_state == EXIT_DEAD) |
1559 | return 0; | 1564 | return 0; |
1560 | 1565 | ||
1561 | /* slay zombie? */ | 1566 | /* slay zombie? */ |
1562 | if (p->exit_state == EXIT_ZOMBIE) { | 1567 | if (p->exit_state == EXIT_ZOMBIE) { |
1563 | /* | 1568 | /* |
1564 | * A zombie ptracee is only visible to its ptracer. | 1569 | * A zombie ptracee is only visible to its ptracer. |
1565 | * Notification and reaping will be cascaded to the real | 1570 | * Notification and reaping will be cascaded to the real |
1566 | * parent when the ptracer detaches. | 1571 | * parent when the ptracer detaches. |
1567 | */ | 1572 | */ |
1568 | if (likely(!ptrace) && unlikely(p->ptrace)) { | 1573 | if (likely(!ptrace) && unlikely(p->ptrace)) { |
1569 | /* it will become visible, clear notask_error */ | 1574 | /* it will become visible, clear notask_error */ |
1570 | wo->notask_error = 0; | 1575 | wo->notask_error = 0; |
1571 | return 0; | 1576 | return 0; |
1572 | } | 1577 | } |
1573 | 1578 | ||
1574 | /* we don't reap group leaders with subthreads */ | 1579 | /* we don't reap group leaders with subthreads */ |
1575 | if (!delay_group_leader(p)) | 1580 | if (!delay_group_leader(p)) |
1576 | return wait_task_zombie(wo, p); | 1581 | return wait_task_zombie(wo, p); |
1577 | 1582 | ||
1578 | /* | 1583 | /* |
1579 | * Allow access to stopped/continued state via zombie by | 1584 | * Allow access to stopped/continued state via zombie by |
1580 | * falling through. Clearing of notask_error is complex. | 1585 | * falling through. Clearing of notask_error is complex. |
1581 | * | 1586 | * |
1582 | * When !@ptrace: | 1587 | * When !@ptrace: |
1583 | * | 1588 | * |
1584 | * If WEXITED is set, notask_error should naturally be | 1589 | * If WEXITED is set, notask_error should naturally be |
1585 | * cleared. If not, subset of WSTOPPED|WCONTINUED is set, | 1590 | * cleared. If not, subset of WSTOPPED|WCONTINUED is set, |
1586 | * so, if there are live subthreads, there are events to | 1591 | * so, if there are live subthreads, there are events to |
1587 | * wait for. If all subthreads are dead, it's still safe | 1592 | * wait for. If all subthreads are dead, it's still safe |
1588 | * to clear - this function will be called again in finite | 1593 | * to clear - this function will be called again in finite |
1589 | * amount time once all the subthreads are released and | 1594 | * amount time once all the subthreads are released and |
1590 | * will then return without clearing. | 1595 | * will then return without clearing. |
1591 | * | 1596 | * |
1592 | * When @ptrace: | 1597 | * When @ptrace: |
1593 | * | 1598 | * |
1594 | * Stopped state is per-task and thus can't change once the | 1599 | * Stopped state is per-task and thus can't change once the |
1595 | * target task dies. Only continued and exited can happen. | 1600 | * target task dies. Only continued and exited can happen. |
1596 | * Clear notask_error if WCONTINUED | WEXITED. | 1601 | * Clear notask_error if WCONTINUED | WEXITED. |
1597 | */ | 1602 | */ |
1598 | if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) | 1603 | if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) |
1599 | wo->notask_error = 0; | 1604 | wo->notask_error = 0; |
1600 | } else { | 1605 | } else { |
1601 | /* | 1606 | /* |
1602 | * If @p is ptraced by a task in its real parent's group, | 1607 | * If @p is ptraced by a task in its real parent's group, |
1603 | * hide group stop/continued state when looking at @p as | 1608 | * hide group stop/continued state when looking at @p as |
1604 | * the real parent; otherwise, a single stop can be | 1609 | * the real parent; otherwise, a single stop can be |
1605 | * reported twice as group and ptrace stops. | 1610 | * reported twice as group and ptrace stops. |
1606 | * | 1611 | * |
1607 | * If a ptracer wants to distinguish the two events for its | 1612 | * If a ptracer wants to distinguish the two events for its |
1608 | * own children, it should create a separate process which | 1613 | * own children, it should create a separate process which |
1609 | * takes the role of real parent. | 1614 | * takes the role of real parent. |
1610 | */ | 1615 | */ |
1611 | if (likely(!ptrace) && p->ptrace && | 1616 | if (likely(!ptrace) && p->ptrace && |
1612 | same_thread_group(p->parent, p->real_parent)) | 1617 | same_thread_group(p->parent, p->real_parent)) |
1613 | return 0; | 1618 | return 0; |
1614 | 1619 | ||
1615 | /* | 1620 | /* |
1616 | * @p is alive and it's gonna stop, continue or exit, so | 1621 | * @p is alive and it's gonna stop, continue or exit, so |
1617 | * there always is something to wait for. | 1622 | * there always is something to wait for. |
1618 | */ | 1623 | */ |
1619 | wo->notask_error = 0; | 1624 | wo->notask_error = 0; |
1620 | } | 1625 | } |
1621 | 1626 | ||
1622 | /* | 1627 | /* |
1623 | * Wait for stopped. Depending on @ptrace, different stopped state | 1628 | * Wait for stopped. Depending on @ptrace, different stopped state |
1624 | * is used and the two don't interact with each other. | 1629 | * is used and the two don't interact with each other. |
1625 | */ | 1630 | */ |
1626 | ret = wait_task_stopped(wo, ptrace, p); | 1631 | ret = wait_task_stopped(wo, ptrace, p); |
1627 | if (ret) | 1632 | if (ret) |
1628 | return ret; | 1633 | return ret; |
1629 | 1634 | ||
1630 | /* | 1635 | /* |
1631 | * Wait for continued. There's only one continued state and the | 1636 | * Wait for continued. There's only one continued state and the |
1632 | * ptracer can consume it which can confuse the real parent. Don't | 1637 | * ptracer can consume it which can confuse the real parent. Don't |
1633 | * use WCONTINUED from ptracer. You don't need or want it. | 1638 | * use WCONTINUED from ptracer. You don't need or want it. |
1634 | */ | 1639 | */ |
1635 | return wait_task_continued(wo, p); | 1640 | return wait_task_continued(wo, p); |
1636 | } | 1641 | } |
1637 | 1642 | ||
1638 | /* | 1643 | /* |
1639 | * Do the work of do_wait() for one thread in the group, @tsk. | 1644 | * Do the work of do_wait() for one thread in the group, @tsk. |
1640 | * | 1645 | * |
1641 | * -ECHILD should be in ->notask_error before the first call. | 1646 | * -ECHILD should be in ->notask_error before the first call. |
1642 | * Returns nonzero for a final return, when we have unlocked tasklist_lock. | 1647 | * Returns nonzero for a final return, when we have unlocked tasklist_lock. |
1643 | * Returns zero if the search for a child should continue; then | 1648 | * Returns zero if the search for a child should continue; then |
1644 | * ->notask_error is 0 if there were any eligible children, | 1649 | * ->notask_error is 0 if there were any eligible children, |
1645 | * or another error from security_task_wait(), or still -ECHILD. | 1650 | * or another error from security_task_wait(), or still -ECHILD. |
1646 | */ | 1651 | */ |
1647 | static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) | 1652 | static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) |
1648 | { | 1653 | { |
1649 | struct task_struct *p; | 1654 | struct task_struct *p; |
1650 | 1655 | ||
1651 | list_for_each_entry(p, &tsk->children, sibling) { | 1656 | list_for_each_entry(p, &tsk->children, sibling) { |
1652 | int ret = wait_consider_task(wo, 0, p); | 1657 | int ret = wait_consider_task(wo, 0, p); |
1653 | if (ret) | 1658 | if (ret) |
1654 | return ret; | 1659 | return ret; |
1655 | } | 1660 | } |
1656 | 1661 | ||
1657 | return 0; | 1662 | return 0; |
1658 | } | 1663 | } |
1659 | 1664 | ||
1660 | static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) | 1665 | static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) |
1661 | { | 1666 | { |
1662 | struct task_struct *p; | 1667 | struct task_struct *p; |
1663 | 1668 | ||
1664 | list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { | 1669 | list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { |
1665 | int ret = wait_consider_task(wo, 1, p); | 1670 | int ret = wait_consider_task(wo, 1, p); |
1666 | if (ret) | 1671 | if (ret) |
1667 | return ret; | 1672 | return ret; |
1668 | } | 1673 | } |
1669 | 1674 | ||
1670 | return 0; | 1675 | return 0; |
1671 | } | 1676 | } |
1672 | 1677 | ||
1673 | static int child_wait_callback(wait_queue_t *wait, unsigned mode, | 1678 | static int child_wait_callback(wait_queue_t *wait, unsigned mode, |
1674 | int sync, void *key) | 1679 | int sync, void *key) |
1675 | { | 1680 | { |
1676 | struct wait_opts *wo = container_of(wait, struct wait_opts, | 1681 | struct wait_opts *wo = container_of(wait, struct wait_opts, |
1677 | child_wait); | 1682 | child_wait); |
1678 | struct task_struct *p = key; | 1683 | struct task_struct *p = key; |
1679 | 1684 | ||
1680 | if (!eligible_pid(wo, p)) | 1685 | if (!eligible_pid(wo, p)) |
1681 | return 0; | 1686 | return 0; |
1682 | 1687 | ||
1683 | if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) | 1688 | if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) |
1684 | return 0; | 1689 | return 0; |
1685 | 1690 | ||
1686 | return default_wake_function(wait, mode, sync, key); | 1691 | return default_wake_function(wait, mode, sync, key); |
1687 | } | 1692 | } |
1688 | 1693 | ||
1689 | void __wake_up_parent(struct task_struct *p, struct task_struct *parent) | 1694 | void __wake_up_parent(struct task_struct *p, struct task_struct *parent) |
1690 | { | 1695 | { |
1691 | __wake_up_sync_key(&parent->signal->wait_chldexit, | 1696 | __wake_up_sync_key(&parent->signal->wait_chldexit, |
1692 | TASK_INTERRUPTIBLE, 1, p); | 1697 | TASK_INTERRUPTIBLE, 1, p); |
1693 | } | 1698 | } |
1694 | 1699 | ||
1695 | static long do_wait(struct wait_opts *wo) | 1700 | static long do_wait(struct wait_opts *wo) |
1696 | { | 1701 | { |
1697 | struct task_struct *tsk; | 1702 | struct task_struct *tsk; |
1698 | int retval; | 1703 | int retval; |
1699 | 1704 | ||
1700 | trace_sched_process_wait(wo->wo_pid); | 1705 | trace_sched_process_wait(wo->wo_pid); |
1701 | 1706 | ||
1702 | init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); | 1707 | init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); |
1703 | wo->child_wait.private = current; | 1708 | wo->child_wait.private = current; |
1704 | add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); | 1709 | add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); |
1705 | repeat: | 1710 | repeat: |
1706 | /* | 1711 | /* |
1707 | * If there is nothing that can match our critiera just get out. | 1712 | * If there is nothing that can match our critiera just get out. |
1708 | * We will clear ->notask_error to zero if we see any child that | 1713 | * We will clear ->notask_error to zero if we see any child that |
1709 | * might later match our criteria, even if we are not able to reap | 1714 | * might later match our criteria, even if we are not able to reap |
1710 | * it yet. | 1715 | * it yet. |
1711 | */ | 1716 | */ |
1712 | wo->notask_error = -ECHILD; | 1717 | wo->notask_error = -ECHILD; |
1713 | if ((wo->wo_type < PIDTYPE_MAX) && | 1718 | if ((wo->wo_type < PIDTYPE_MAX) && |
1714 | (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) | 1719 | (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) |
1715 | goto notask; | 1720 | goto notask; |
1716 | 1721 | ||
1717 | set_current_state(TASK_INTERRUPTIBLE); | 1722 | set_current_state(TASK_INTERRUPTIBLE); |
1718 | read_lock(&tasklist_lock); | 1723 | read_lock(&tasklist_lock); |
1719 | tsk = current; | 1724 | tsk = current; |
1720 | do { | 1725 | do { |
1721 | retval = do_wait_thread(wo, tsk); | 1726 | retval = do_wait_thread(wo, tsk); |
1722 | if (retval) | 1727 | if (retval) |
1723 | goto end; | 1728 | goto end; |
1724 | 1729 | ||
1725 | retval = ptrace_do_wait(wo, tsk); | 1730 | retval = ptrace_do_wait(wo, tsk); |
1726 | if (retval) | 1731 | if (retval) |
1727 | goto end; | 1732 | goto end; |
1728 | 1733 | ||
1729 | if (wo->wo_flags & __WNOTHREAD) | 1734 | if (wo->wo_flags & __WNOTHREAD) |
1730 | break; | 1735 | break; |
1731 | } while_each_thread(current, tsk); | 1736 | } while_each_thread(current, tsk); |
1732 | read_unlock(&tasklist_lock); | 1737 | read_unlock(&tasklist_lock); |
1733 | 1738 | ||
1734 | notask: | 1739 | notask: |
1735 | retval = wo->notask_error; | 1740 | retval = wo->notask_error; |
1736 | if (!retval && !(wo->wo_flags & WNOHANG)) { | 1741 | if (!retval && !(wo->wo_flags & WNOHANG)) { |
1737 | retval = -ERESTARTSYS; | 1742 | retval = -ERESTARTSYS; |
1738 | if (!signal_pending(current)) { | 1743 | if (!signal_pending(current)) { |
1739 | schedule(); | 1744 | schedule(); |
1740 | goto repeat; | 1745 | goto repeat; |
1741 | } | 1746 | } |
1742 | } | 1747 | } |
1743 | end: | 1748 | end: |
1744 | __set_current_state(TASK_RUNNING); | 1749 | __set_current_state(TASK_RUNNING); |
1745 | remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); | 1750 | remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); |
1746 | return retval; | 1751 | return retval; |
1747 | } | 1752 | } |
1748 | 1753 | ||
1749 | SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, | 1754 | SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, |
1750 | infop, int, options, struct rusage __user *, ru) | 1755 | infop, int, options, struct rusage __user *, ru) |
1751 | { | 1756 | { |
1752 | struct wait_opts wo; | 1757 | struct wait_opts wo; |
1753 | struct pid *pid = NULL; | 1758 | struct pid *pid = NULL; |
1754 | enum pid_type type; | 1759 | enum pid_type type; |
1755 | long ret; | 1760 | long ret; |
1756 | 1761 | ||
1757 | if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) | 1762 | if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) |
1758 | return -EINVAL; | 1763 | return -EINVAL; |
1759 | if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) | 1764 | if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) |
1760 | return -EINVAL; | 1765 | return -EINVAL; |
1761 | 1766 | ||
1762 | switch (which) { | 1767 | switch (which) { |
1763 | case P_ALL: | 1768 | case P_ALL: |
1764 | type = PIDTYPE_MAX; | 1769 | type = PIDTYPE_MAX; |
1765 | break; | 1770 | break; |
1766 | case P_PID: | 1771 | case P_PID: |
1767 | type = PIDTYPE_PID; | 1772 | type = PIDTYPE_PID; |
1768 | if (upid <= 0) | 1773 | if (upid <= 0) |
1769 | return -EINVAL; | 1774 | return -EINVAL; |
1770 | break; | 1775 | break; |
1771 | case P_PGID: | 1776 | case P_PGID: |
1772 | type = PIDTYPE_PGID; | 1777 | type = PIDTYPE_PGID; |
1773 | if (upid <= 0) | 1778 | if (upid <= 0) |
1774 | return -EINVAL; | 1779 | return -EINVAL; |
1775 | break; | 1780 | break; |
1776 | default: | 1781 | default: |
1777 | return -EINVAL; | 1782 | return -EINVAL; |
1778 | } | 1783 | } |
1779 | 1784 | ||
1780 | if (type < PIDTYPE_MAX) | 1785 | if (type < PIDTYPE_MAX) |
1781 | pid = find_get_pid(upid); | 1786 | pid = find_get_pid(upid); |
1782 | 1787 | ||
1783 | wo.wo_type = type; | 1788 | wo.wo_type = type; |
1784 | wo.wo_pid = pid; | 1789 | wo.wo_pid = pid; |
1785 | wo.wo_flags = options; | 1790 | wo.wo_flags = options; |
1786 | wo.wo_info = infop; | 1791 | wo.wo_info = infop; |
1787 | wo.wo_stat = NULL; | 1792 | wo.wo_stat = NULL; |
1788 | wo.wo_rusage = ru; | 1793 | wo.wo_rusage = ru; |
1789 | ret = do_wait(&wo); | 1794 | ret = do_wait(&wo); |
1790 | 1795 | ||
1791 | if (ret > 0) { | 1796 | if (ret > 0) { |
1792 | ret = 0; | 1797 | ret = 0; |
1793 | } else if (infop) { | 1798 | } else if (infop) { |
1794 | /* | 1799 | /* |
1795 | * For a WNOHANG return, clear out all the fields | 1800 | * For a WNOHANG return, clear out all the fields |
1796 | * we would set so the user can easily tell the | 1801 | * we would set so the user can easily tell the |
1797 | * difference. | 1802 | * difference. |
1798 | */ | 1803 | */ |
1799 | if (!ret) | 1804 | if (!ret) |
1800 | ret = put_user(0, &infop->si_signo); | 1805 | ret = put_user(0, &infop->si_signo); |
1801 | if (!ret) | 1806 | if (!ret) |
1802 | ret = put_user(0, &infop->si_errno); | 1807 | ret = put_user(0, &infop->si_errno); |
1803 | if (!ret) | 1808 | if (!ret) |
1804 | ret = put_user(0, &infop->si_code); | 1809 | ret = put_user(0, &infop->si_code); |
1805 | if (!ret) | 1810 | if (!ret) |
1806 | ret = put_user(0, &infop->si_pid); | 1811 | ret = put_user(0, &infop->si_pid); |
1807 | if (!ret) | 1812 | if (!ret) |
1808 | ret = put_user(0, &infop->si_uid); | 1813 | ret = put_user(0, &infop->si_uid); |
1809 | if (!ret) | 1814 | if (!ret) |
1810 | ret = put_user(0, &infop->si_status); | 1815 | ret = put_user(0, &infop->si_status); |
1811 | } | 1816 | } |
1812 | 1817 | ||
1813 | put_pid(pid); | 1818 | put_pid(pid); |
1814 | 1819 | ||
1815 | /* avoid REGPARM breakage on x86: */ | 1820 | /* avoid REGPARM breakage on x86: */ |
1816 | asmlinkage_protect(5, ret, which, upid, infop, options, ru); | 1821 | asmlinkage_protect(5, ret, which, upid, infop, options, ru); |
1817 | return ret; | 1822 | return ret; |
1818 | } | 1823 | } |
1819 | 1824 | ||
1820 | SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, | 1825 | SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, |
1821 | int, options, struct rusage __user *, ru) | 1826 | int, options, struct rusage __user *, ru) |
1822 | { | 1827 | { |
1823 | struct wait_opts wo; | 1828 | struct wait_opts wo; |
1824 | struct pid *pid = NULL; | 1829 | struct pid *pid = NULL; |
1825 | enum pid_type type; | 1830 | enum pid_type type; |
1826 | long ret; | 1831 | long ret; |
1827 | 1832 | ||
1828 | if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| | 1833 | if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| |
1829 | __WNOTHREAD|__WCLONE|__WALL)) | 1834 | __WNOTHREAD|__WCLONE|__WALL)) |
1830 | return -EINVAL; | 1835 | return -EINVAL; |
1831 | 1836 | ||
1832 | if (upid == -1) | 1837 | if (upid == -1) |
1833 | type = PIDTYPE_MAX; | 1838 | type = PIDTYPE_MAX; |
1834 | else if (upid < 0) { | 1839 | else if (upid < 0) { |
1835 | type = PIDTYPE_PGID; | 1840 | type = PIDTYPE_PGID; |
1836 | pid = find_get_pid(-upid); | 1841 | pid = find_get_pid(-upid); |
1837 | } else if (upid == 0) { | 1842 | } else if (upid == 0) { |
1838 | type = PIDTYPE_PGID; | 1843 | type = PIDTYPE_PGID; |
1839 | pid = get_task_pid(current, PIDTYPE_PGID); | 1844 | pid = get_task_pid(current, PIDTYPE_PGID); |
1840 | } else /* upid > 0 */ { | 1845 | } else /* upid > 0 */ { |
1841 | type = PIDTYPE_PID; | 1846 | type = PIDTYPE_PID; |
1842 | pid = find_get_pid(upid); | 1847 | pid = find_get_pid(upid); |
1843 | } | 1848 | } |
1844 | 1849 | ||
1845 | wo.wo_type = type; | 1850 | wo.wo_type = type; |
1846 | wo.wo_pid = pid; | 1851 | wo.wo_pid = pid; |
1847 | wo.wo_flags = options | WEXITED; | 1852 | wo.wo_flags = options | WEXITED; |
1848 | wo.wo_info = NULL; | 1853 | wo.wo_info = NULL; |
1849 | wo.wo_stat = stat_addr; | 1854 | wo.wo_stat = stat_addr; |
1850 | wo.wo_rusage = ru; | 1855 | wo.wo_rusage = ru; |
1851 | ret = do_wait(&wo); | 1856 | ret = do_wait(&wo); |
1852 | put_pid(pid); | 1857 | put_pid(pid); |
1853 | 1858 | ||
1854 | /* avoid REGPARM breakage on x86: */ | 1859 | /* avoid REGPARM breakage on x86: */ |
1855 | asmlinkage_protect(4, ret, upid, stat_addr, options, ru); | 1860 | asmlinkage_protect(4, ret, upid, stat_addr, options, ru); |
1856 | return ret; | 1861 | return ret; |
1857 | } | 1862 | } |
1858 | 1863 | ||
1859 | #ifdef __ARCH_WANT_SYS_WAITPID | 1864 | #ifdef __ARCH_WANT_SYS_WAITPID |
1860 | 1865 | ||
1861 | /* | 1866 | /* |
1862 | * sys_waitpid() remains for compatibility. waitpid() should be | 1867 | * sys_waitpid() remains for compatibility. waitpid() should be |
1863 | * implemented by calling sys_wait4() from libc.a. | 1868 | * implemented by calling sys_wait4() from libc.a. |
1864 | */ | 1869 | */ |
1865 | SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) | 1870 | SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) |
1866 | { | 1871 | { |
1867 | return sys_wait4(pid, stat_addr, options, NULL); | 1872 | return sys_wait4(pid, stat_addr, options, NULL); |
1868 | } | 1873 | } |
1869 | 1874 |