Commit 479bf98c1c29b40d86e40a4e6e4944c2f03d9493
1 parent
bb3696da89
Exists in
master
and in
6 other branches
ptrace: wait_consider_task: s/same_thread_group/ptrace_reparented/
wait_consider_task() checks same_thread_group(parent, real_parent), this is the open-coded ptrace_reparented(). __ptrace_detach() remains the only function which has to check this by hand, although we could reorganize the code to delay __ptrace_unlink. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Acked-by: Tejun Heo <tj@kernel.org>
Showing 1 changed file with 1 additions and 2 deletions Inline Diff
kernel/exit.c
1 | /* | 1 | /* |
2 | * linux/kernel/exit.c | 2 | * linux/kernel/exit.c |
3 | * | 3 | * |
4 | * Copyright (C) 1991, 1992 Linus Torvalds | 4 | * Copyright (C) 1991, 1992 Linus Torvalds |
5 | */ | 5 | */ |
6 | 6 | ||
7 | #include <linux/mm.h> | 7 | #include <linux/mm.h> |
8 | #include <linux/slab.h> | 8 | #include <linux/slab.h> |
9 | #include <linux/interrupt.h> | 9 | #include <linux/interrupt.h> |
10 | #include <linux/module.h> | 10 | #include <linux/module.h> |
11 | #include <linux/capability.h> | 11 | #include <linux/capability.h> |
12 | #include <linux/completion.h> | 12 | #include <linux/completion.h> |
13 | #include <linux/personality.h> | 13 | #include <linux/personality.h> |
14 | #include <linux/tty.h> | 14 | #include <linux/tty.h> |
15 | #include <linux/iocontext.h> | 15 | #include <linux/iocontext.h> |
16 | #include <linux/key.h> | 16 | #include <linux/key.h> |
17 | #include <linux/security.h> | 17 | #include <linux/security.h> |
18 | #include <linux/cpu.h> | 18 | #include <linux/cpu.h> |
19 | #include <linux/acct.h> | 19 | #include <linux/acct.h> |
20 | #include <linux/tsacct_kern.h> | 20 | #include <linux/tsacct_kern.h> |
21 | #include <linux/file.h> | 21 | #include <linux/file.h> |
22 | #include <linux/fdtable.h> | 22 | #include <linux/fdtable.h> |
23 | #include <linux/binfmts.h> | 23 | #include <linux/binfmts.h> |
24 | #include <linux/nsproxy.h> | 24 | #include <linux/nsproxy.h> |
25 | #include <linux/pid_namespace.h> | 25 | #include <linux/pid_namespace.h> |
26 | #include <linux/ptrace.h> | 26 | #include <linux/ptrace.h> |
27 | #include <linux/profile.h> | 27 | #include <linux/profile.h> |
28 | #include <linux/mount.h> | 28 | #include <linux/mount.h> |
29 | #include <linux/proc_fs.h> | 29 | #include <linux/proc_fs.h> |
30 | #include <linux/kthread.h> | 30 | #include <linux/kthread.h> |
31 | #include <linux/mempolicy.h> | 31 | #include <linux/mempolicy.h> |
32 | #include <linux/taskstats_kern.h> | 32 | #include <linux/taskstats_kern.h> |
33 | #include <linux/delayacct.h> | 33 | #include <linux/delayacct.h> |
34 | #include <linux/freezer.h> | 34 | #include <linux/freezer.h> |
35 | #include <linux/cgroup.h> | 35 | #include <linux/cgroup.h> |
36 | #include <linux/syscalls.h> | 36 | #include <linux/syscalls.h> |
37 | #include <linux/signal.h> | 37 | #include <linux/signal.h> |
38 | #include <linux/posix-timers.h> | 38 | #include <linux/posix-timers.h> |
39 | #include <linux/cn_proc.h> | 39 | #include <linux/cn_proc.h> |
40 | #include <linux/mutex.h> | 40 | #include <linux/mutex.h> |
41 | #include <linux/futex.h> | 41 | #include <linux/futex.h> |
42 | #include <linux/pipe_fs_i.h> | 42 | #include <linux/pipe_fs_i.h> |
43 | #include <linux/audit.h> /* for audit_free() */ | 43 | #include <linux/audit.h> /* for audit_free() */ |
44 | #include <linux/resource.h> | 44 | #include <linux/resource.h> |
45 | #include <linux/blkdev.h> | 45 | #include <linux/blkdev.h> |
46 | #include <linux/task_io_accounting_ops.h> | 46 | #include <linux/task_io_accounting_ops.h> |
47 | #include <linux/tracehook.h> | 47 | #include <linux/tracehook.h> |
48 | #include <linux/fs_struct.h> | 48 | #include <linux/fs_struct.h> |
49 | #include <linux/init_task.h> | 49 | #include <linux/init_task.h> |
50 | #include <linux/perf_event.h> | 50 | #include <linux/perf_event.h> |
51 | #include <trace/events/sched.h> | 51 | #include <trace/events/sched.h> |
52 | #include <linux/hw_breakpoint.h> | 52 | #include <linux/hw_breakpoint.h> |
53 | #include <linux/oom.h> | 53 | #include <linux/oom.h> |
54 | 54 | ||
55 | #include <asm/uaccess.h> | 55 | #include <asm/uaccess.h> |
56 | #include <asm/unistd.h> | 56 | #include <asm/unistd.h> |
57 | #include <asm/pgtable.h> | 57 | #include <asm/pgtable.h> |
58 | #include <asm/mmu_context.h> | 58 | #include <asm/mmu_context.h> |
59 | 59 | ||
60 | static void exit_mm(struct task_struct * tsk); | 60 | static void exit_mm(struct task_struct * tsk); |
61 | 61 | ||
62 | static void __unhash_process(struct task_struct *p, bool group_dead) | 62 | static void __unhash_process(struct task_struct *p, bool group_dead) |
63 | { | 63 | { |
64 | nr_threads--; | 64 | nr_threads--; |
65 | detach_pid(p, PIDTYPE_PID); | 65 | detach_pid(p, PIDTYPE_PID); |
66 | if (group_dead) { | 66 | if (group_dead) { |
67 | detach_pid(p, PIDTYPE_PGID); | 67 | detach_pid(p, PIDTYPE_PGID); |
68 | detach_pid(p, PIDTYPE_SID); | 68 | detach_pid(p, PIDTYPE_SID); |
69 | 69 | ||
70 | list_del_rcu(&p->tasks); | 70 | list_del_rcu(&p->tasks); |
71 | list_del_init(&p->sibling); | 71 | list_del_init(&p->sibling); |
72 | __this_cpu_dec(process_counts); | 72 | __this_cpu_dec(process_counts); |
73 | } | 73 | } |
74 | list_del_rcu(&p->thread_group); | 74 | list_del_rcu(&p->thread_group); |
75 | } | 75 | } |
76 | 76 | ||
77 | /* | 77 | /* |
78 | * This function expects the tasklist_lock write-locked. | 78 | * This function expects the tasklist_lock write-locked. |
79 | */ | 79 | */ |
80 | static void __exit_signal(struct task_struct *tsk) | 80 | static void __exit_signal(struct task_struct *tsk) |
81 | { | 81 | { |
82 | struct signal_struct *sig = tsk->signal; | 82 | struct signal_struct *sig = tsk->signal; |
83 | bool group_dead = thread_group_leader(tsk); | 83 | bool group_dead = thread_group_leader(tsk); |
84 | struct sighand_struct *sighand; | 84 | struct sighand_struct *sighand; |
85 | struct tty_struct *uninitialized_var(tty); | 85 | struct tty_struct *uninitialized_var(tty); |
86 | 86 | ||
87 | sighand = rcu_dereference_check(tsk->sighand, | 87 | sighand = rcu_dereference_check(tsk->sighand, |
88 | rcu_read_lock_held() || | 88 | rcu_read_lock_held() || |
89 | lockdep_tasklist_lock_is_held()); | 89 | lockdep_tasklist_lock_is_held()); |
90 | spin_lock(&sighand->siglock); | 90 | spin_lock(&sighand->siglock); |
91 | 91 | ||
92 | posix_cpu_timers_exit(tsk); | 92 | posix_cpu_timers_exit(tsk); |
93 | if (group_dead) { | 93 | if (group_dead) { |
94 | posix_cpu_timers_exit_group(tsk); | 94 | posix_cpu_timers_exit_group(tsk); |
95 | tty = sig->tty; | 95 | tty = sig->tty; |
96 | sig->tty = NULL; | 96 | sig->tty = NULL; |
97 | } else { | 97 | } else { |
98 | /* | 98 | /* |
99 | * This can only happen if the caller is de_thread(). | 99 | * This can only happen if the caller is de_thread(). |
100 | * FIXME: this is the temporary hack, we should teach | 100 | * FIXME: this is the temporary hack, we should teach |
101 | * posix-cpu-timers to handle this case correctly. | 101 | * posix-cpu-timers to handle this case correctly. |
102 | */ | 102 | */ |
103 | if (unlikely(has_group_leader_pid(tsk))) | 103 | if (unlikely(has_group_leader_pid(tsk))) |
104 | posix_cpu_timers_exit_group(tsk); | 104 | posix_cpu_timers_exit_group(tsk); |
105 | 105 | ||
106 | /* | 106 | /* |
107 | * If there is any task waiting for the group exit | 107 | * If there is any task waiting for the group exit |
108 | * then notify it: | 108 | * then notify it: |
109 | */ | 109 | */ |
110 | if (sig->notify_count > 0 && !--sig->notify_count) | 110 | if (sig->notify_count > 0 && !--sig->notify_count) |
111 | wake_up_process(sig->group_exit_task); | 111 | wake_up_process(sig->group_exit_task); |
112 | 112 | ||
113 | if (tsk == sig->curr_target) | 113 | if (tsk == sig->curr_target) |
114 | sig->curr_target = next_thread(tsk); | 114 | sig->curr_target = next_thread(tsk); |
115 | /* | 115 | /* |
116 | * Accumulate here the counters for all threads but the | 116 | * Accumulate here the counters for all threads but the |
117 | * group leader as they die, so they can be added into | 117 | * group leader as they die, so they can be added into |
118 | * the process-wide totals when those are taken. | 118 | * the process-wide totals when those are taken. |
119 | * The group leader stays around as a zombie as long | 119 | * The group leader stays around as a zombie as long |
120 | * as there are other threads. When it gets reaped, | 120 | * as there are other threads. When it gets reaped, |
121 | * the exit.c code will add its counts into these totals. | 121 | * the exit.c code will add its counts into these totals. |
122 | * We won't ever get here for the group leader, since it | 122 | * We won't ever get here for the group leader, since it |
123 | * will have been the last reference on the signal_struct. | 123 | * will have been the last reference on the signal_struct. |
124 | */ | 124 | */ |
125 | sig->utime = cputime_add(sig->utime, tsk->utime); | 125 | sig->utime = cputime_add(sig->utime, tsk->utime); |
126 | sig->stime = cputime_add(sig->stime, tsk->stime); | 126 | sig->stime = cputime_add(sig->stime, tsk->stime); |
127 | sig->gtime = cputime_add(sig->gtime, tsk->gtime); | 127 | sig->gtime = cputime_add(sig->gtime, tsk->gtime); |
128 | sig->min_flt += tsk->min_flt; | 128 | sig->min_flt += tsk->min_flt; |
129 | sig->maj_flt += tsk->maj_flt; | 129 | sig->maj_flt += tsk->maj_flt; |
130 | sig->nvcsw += tsk->nvcsw; | 130 | sig->nvcsw += tsk->nvcsw; |
131 | sig->nivcsw += tsk->nivcsw; | 131 | sig->nivcsw += tsk->nivcsw; |
132 | sig->inblock += task_io_get_inblock(tsk); | 132 | sig->inblock += task_io_get_inblock(tsk); |
133 | sig->oublock += task_io_get_oublock(tsk); | 133 | sig->oublock += task_io_get_oublock(tsk); |
134 | task_io_accounting_add(&sig->ioac, &tsk->ioac); | 134 | task_io_accounting_add(&sig->ioac, &tsk->ioac); |
135 | sig->sum_sched_runtime += tsk->se.sum_exec_runtime; | 135 | sig->sum_sched_runtime += tsk->se.sum_exec_runtime; |
136 | } | 136 | } |
137 | 137 | ||
138 | sig->nr_threads--; | 138 | sig->nr_threads--; |
139 | __unhash_process(tsk, group_dead); | 139 | __unhash_process(tsk, group_dead); |
140 | 140 | ||
141 | /* | 141 | /* |
142 | * Do this under ->siglock, we can race with another thread | 142 | * Do this under ->siglock, we can race with another thread |
143 | * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. | 143 | * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. |
144 | */ | 144 | */ |
145 | flush_sigqueue(&tsk->pending); | 145 | flush_sigqueue(&tsk->pending); |
146 | tsk->sighand = NULL; | 146 | tsk->sighand = NULL; |
147 | spin_unlock(&sighand->siglock); | 147 | spin_unlock(&sighand->siglock); |
148 | 148 | ||
149 | __cleanup_sighand(sighand); | 149 | __cleanup_sighand(sighand); |
150 | clear_tsk_thread_flag(tsk,TIF_SIGPENDING); | 150 | clear_tsk_thread_flag(tsk,TIF_SIGPENDING); |
151 | if (group_dead) { | 151 | if (group_dead) { |
152 | flush_sigqueue(&sig->shared_pending); | 152 | flush_sigqueue(&sig->shared_pending); |
153 | tty_kref_put(tty); | 153 | tty_kref_put(tty); |
154 | } | 154 | } |
155 | } | 155 | } |
156 | 156 | ||
157 | static void delayed_put_task_struct(struct rcu_head *rhp) | 157 | static void delayed_put_task_struct(struct rcu_head *rhp) |
158 | { | 158 | { |
159 | struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); | 159 | struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); |
160 | 160 | ||
161 | perf_event_delayed_put(tsk); | 161 | perf_event_delayed_put(tsk); |
162 | trace_sched_process_free(tsk); | 162 | trace_sched_process_free(tsk); |
163 | put_task_struct(tsk); | 163 | put_task_struct(tsk); |
164 | } | 164 | } |
165 | 165 | ||
166 | 166 | ||
167 | void release_task(struct task_struct * p) | 167 | void release_task(struct task_struct * p) |
168 | { | 168 | { |
169 | struct task_struct *leader; | 169 | struct task_struct *leader; |
170 | int zap_leader; | 170 | int zap_leader; |
171 | repeat: | 171 | repeat: |
172 | /* don't need to get the RCU readlock here - the process is dead and | 172 | /* don't need to get the RCU readlock here - the process is dead and |
173 | * can't be modifying its own credentials. But shut RCU-lockdep up */ | 173 | * can't be modifying its own credentials. But shut RCU-lockdep up */ |
174 | rcu_read_lock(); | 174 | rcu_read_lock(); |
175 | atomic_dec(&__task_cred(p)->user->processes); | 175 | atomic_dec(&__task_cred(p)->user->processes); |
176 | rcu_read_unlock(); | 176 | rcu_read_unlock(); |
177 | 177 | ||
178 | proc_flush_task(p); | 178 | proc_flush_task(p); |
179 | 179 | ||
180 | write_lock_irq(&tasklist_lock); | 180 | write_lock_irq(&tasklist_lock); |
181 | ptrace_release_task(p); | 181 | ptrace_release_task(p); |
182 | __exit_signal(p); | 182 | __exit_signal(p); |
183 | 183 | ||
184 | /* | 184 | /* |
185 | * If we are the last non-leader member of the thread | 185 | * If we are the last non-leader member of the thread |
186 | * group, and the leader is zombie, then notify the | 186 | * group, and the leader is zombie, then notify the |
187 | * group leader's parent process. (if it wants notification.) | 187 | * group leader's parent process. (if it wants notification.) |
188 | */ | 188 | */ |
189 | zap_leader = 0; | 189 | zap_leader = 0; |
190 | leader = p->group_leader; | 190 | leader = p->group_leader; |
191 | if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { | 191 | if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { |
192 | /* | 192 | /* |
193 | * If we were the last child thread and the leader has | 193 | * If we were the last child thread and the leader has |
194 | * exited already, and the leader's parent ignores SIGCHLD, | 194 | * exited already, and the leader's parent ignores SIGCHLD, |
195 | * then we are the one who should release the leader. | 195 | * then we are the one who should release the leader. |
196 | */ | 196 | */ |
197 | zap_leader = do_notify_parent(leader, leader->exit_signal); | 197 | zap_leader = do_notify_parent(leader, leader->exit_signal); |
198 | if (zap_leader) | 198 | if (zap_leader) |
199 | leader->exit_state = EXIT_DEAD; | 199 | leader->exit_state = EXIT_DEAD; |
200 | } | 200 | } |
201 | 201 | ||
202 | write_unlock_irq(&tasklist_lock); | 202 | write_unlock_irq(&tasklist_lock); |
203 | release_thread(p); | 203 | release_thread(p); |
204 | call_rcu(&p->rcu, delayed_put_task_struct); | 204 | call_rcu(&p->rcu, delayed_put_task_struct); |
205 | 205 | ||
206 | p = leader; | 206 | p = leader; |
207 | if (unlikely(zap_leader)) | 207 | if (unlikely(zap_leader)) |
208 | goto repeat; | 208 | goto repeat; |
209 | } | 209 | } |
210 | 210 | ||
211 | /* | 211 | /* |
212 | * This checks not only the pgrp, but falls back on the pid if no | 212 | * This checks not only the pgrp, but falls back on the pid if no |
213 | * satisfactory pgrp is found. I dunno - gdb doesn't work correctly | 213 | * satisfactory pgrp is found. I dunno - gdb doesn't work correctly |
214 | * without this... | 214 | * without this... |
215 | * | 215 | * |
216 | * The caller must hold rcu lock or the tasklist lock. | 216 | * The caller must hold rcu lock or the tasklist lock. |
217 | */ | 217 | */ |
218 | struct pid *session_of_pgrp(struct pid *pgrp) | 218 | struct pid *session_of_pgrp(struct pid *pgrp) |
219 | { | 219 | { |
220 | struct task_struct *p; | 220 | struct task_struct *p; |
221 | struct pid *sid = NULL; | 221 | struct pid *sid = NULL; |
222 | 222 | ||
223 | p = pid_task(pgrp, PIDTYPE_PGID); | 223 | p = pid_task(pgrp, PIDTYPE_PGID); |
224 | if (p == NULL) | 224 | if (p == NULL) |
225 | p = pid_task(pgrp, PIDTYPE_PID); | 225 | p = pid_task(pgrp, PIDTYPE_PID); |
226 | if (p != NULL) | 226 | if (p != NULL) |
227 | sid = task_session(p); | 227 | sid = task_session(p); |
228 | 228 | ||
229 | return sid; | 229 | return sid; |
230 | } | 230 | } |
231 | 231 | ||
232 | /* | 232 | /* |
233 | * Determine if a process group is "orphaned", according to the POSIX | 233 | * Determine if a process group is "orphaned", according to the POSIX |
234 | * definition in 2.2.2.52. Orphaned process groups are not to be affected | 234 | * definition in 2.2.2.52. Orphaned process groups are not to be affected |
235 | * by terminal-generated stop signals. Newly orphaned process groups are | 235 | * by terminal-generated stop signals. Newly orphaned process groups are |
236 | * to receive a SIGHUP and a SIGCONT. | 236 | * to receive a SIGHUP and a SIGCONT. |
237 | * | 237 | * |
238 | * "I ask you, have you ever known what it is to be an orphan?" | 238 | * "I ask you, have you ever known what it is to be an orphan?" |
239 | */ | 239 | */ |
240 | static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) | 240 | static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) |
241 | { | 241 | { |
242 | struct task_struct *p; | 242 | struct task_struct *p; |
243 | 243 | ||
244 | do_each_pid_task(pgrp, PIDTYPE_PGID, p) { | 244 | do_each_pid_task(pgrp, PIDTYPE_PGID, p) { |
245 | if ((p == ignored_task) || | 245 | if ((p == ignored_task) || |
246 | (p->exit_state && thread_group_empty(p)) || | 246 | (p->exit_state && thread_group_empty(p)) || |
247 | is_global_init(p->real_parent)) | 247 | is_global_init(p->real_parent)) |
248 | continue; | 248 | continue; |
249 | 249 | ||
250 | if (task_pgrp(p->real_parent) != pgrp && | 250 | if (task_pgrp(p->real_parent) != pgrp && |
251 | task_session(p->real_parent) == task_session(p)) | 251 | task_session(p->real_parent) == task_session(p)) |
252 | return 0; | 252 | return 0; |
253 | } while_each_pid_task(pgrp, PIDTYPE_PGID, p); | 253 | } while_each_pid_task(pgrp, PIDTYPE_PGID, p); |
254 | 254 | ||
255 | return 1; | 255 | return 1; |
256 | } | 256 | } |
257 | 257 | ||
258 | int is_current_pgrp_orphaned(void) | 258 | int is_current_pgrp_orphaned(void) |
259 | { | 259 | { |
260 | int retval; | 260 | int retval; |
261 | 261 | ||
262 | read_lock(&tasklist_lock); | 262 | read_lock(&tasklist_lock); |
263 | retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); | 263 | retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); |
264 | read_unlock(&tasklist_lock); | 264 | read_unlock(&tasklist_lock); |
265 | 265 | ||
266 | return retval; | 266 | return retval; |
267 | } | 267 | } |
268 | 268 | ||
269 | static int has_stopped_jobs(struct pid *pgrp) | 269 | static int has_stopped_jobs(struct pid *pgrp) |
270 | { | 270 | { |
271 | int retval = 0; | 271 | int retval = 0; |
272 | struct task_struct *p; | 272 | struct task_struct *p; |
273 | 273 | ||
274 | do_each_pid_task(pgrp, PIDTYPE_PGID, p) { | 274 | do_each_pid_task(pgrp, PIDTYPE_PGID, p) { |
275 | if (!task_is_stopped(p)) | 275 | if (!task_is_stopped(p)) |
276 | continue; | 276 | continue; |
277 | retval = 1; | 277 | retval = 1; |
278 | break; | 278 | break; |
279 | } while_each_pid_task(pgrp, PIDTYPE_PGID, p); | 279 | } while_each_pid_task(pgrp, PIDTYPE_PGID, p); |
280 | return retval; | 280 | return retval; |
281 | } | 281 | } |
282 | 282 | ||
283 | /* | 283 | /* |
284 | * Check to see if any process groups have become orphaned as | 284 | * Check to see if any process groups have become orphaned as |
285 | * a result of our exiting, and if they have any stopped jobs, | 285 | * a result of our exiting, and if they have any stopped jobs, |
286 | * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) | 286 | * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) |
287 | */ | 287 | */ |
288 | static void | 288 | static void |
289 | kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) | 289 | kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) |
290 | { | 290 | { |
291 | struct pid *pgrp = task_pgrp(tsk); | 291 | struct pid *pgrp = task_pgrp(tsk); |
292 | struct task_struct *ignored_task = tsk; | 292 | struct task_struct *ignored_task = tsk; |
293 | 293 | ||
294 | if (!parent) | 294 | if (!parent) |
295 | /* exit: our father is in a different pgrp than | 295 | /* exit: our father is in a different pgrp than |
296 | * we are and we were the only connection outside. | 296 | * we are and we were the only connection outside. |
297 | */ | 297 | */ |
298 | parent = tsk->real_parent; | 298 | parent = tsk->real_parent; |
299 | else | 299 | else |
300 | /* reparent: our child is in a different pgrp than | 300 | /* reparent: our child is in a different pgrp than |
301 | * we are, and it was the only connection outside. | 301 | * we are, and it was the only connection outside. |
302 | */ | 302 | */ |
303 | ignored_task = NULL; | 303 | ignored_task = NULL; |
304 | 304 | ||
305 | if (task_pgrp(parent) != pgrp && | 305 | if (task_pgrp(parent) != pgrp && |
306 | task_session(parent) == task_session(tsk) && | 306 | task_session(parent) == task_session(tsk) && |
307 | will_become_orphaned_pgrp(pgrp, ignored_task) && | 307 | will_become_orphaned_pgrp(pgrp, ignored_task) && |
308 | has_stopped_jobs(pgrp)) { | 308 | has_stopped_jobs(pgrp)) { |
309 | __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); | 309 | __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); |
310 | __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); | 310 | __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); |
311 | } | 311 | } |
312 | } | 312 | } |
313 | 313 | ||
314 | /** | 314 | /** |
315 | * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd | 315 | * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd |
316 | * | 316 | * |
317 | * If a kernel thread is launched as a result of a system call, or if | 317 | * If a kernel thread is launched as a result of a system call, or if |
318 | * it ever exits, it should generally reparent itself to kthreadd so it | 318 | * it ever exits, it should generally reparent itself to kthreadd so it |
319 | * isn't in the way of other processes and is correctly cleaned up on exit. | 319 | * isn't in the way of other processes and is correctly cleaned up on exit. |
320 | * | 320 | * |
321 | * The various task state such as scheduling policy and priority may have | 321 | * The various task state such as scheduling policy and priority may have |
322 | * been inherited from a user process, so we reset them to sane values here. | 322 | * been inherited from a user process, so we reset them to sane values here. |
323 | * | 323 | * |
324 | * NOTE that reparent_to_kthreadd() gives the caller full capabilities. | 324 | * NOTE that reparent_to_kthreadd() gives the caller full capabilities. |
325 | */ | 325 | */ |
326 | static void reparent_to_kthreadd(void) | 326 | static void reparent_to_kthreadd(void) |
327 | { | 327 | { |
328 | write_lock_irq(&tasklist_lock); | 328 | write_lock_irq(&tasklist_lock); |
329 | 329 | ||
330 | ptrace_unlink(current); | 330 | ptrace_unlink(current); |
331 | /* Reparent to init */ | 331 | /* Reparent to init */ |
332 | current->real_parent = current->parent = kthreadd_task; | 332 | current->real_parent = current->parent = kthreadd_task; |
333 | list_move_tail(¤t->sibling, ¤t->real_parent->children); | 333 | list_move_tail(¤t->sibling, ¤t->real_parent->children); |
334 | 334 | ||
335 | /* Set the exit signal to SIGCHLD so we signal init on exit */ | 335 | /* Set the exit signal to SIGCHLD so we signal init on exit */ |
336 | current->exit_signal = SIGCHLD; | 336 | current->exit_signal = SIGCHLD; |
337 | 337 | ||
338 | if (task_nice(current) < 0) | 338 | if (task_nice(current) < 0) |
339 | set_user_nice(current, 0); | 339 | set_user_nice(current, 0); |
340 | /* cpus_allowed? */ | 340 | /* cpus_allowed? */ |
341 | /* rt_priority? */ | 341 | /* rt_priority? */ |
342 | /* signals? */ | 342 | /* signals? */ |
343 | memcpy(current->signal->rlim, init_task.signal->rlim, | 343 | memcpy(current->signal->rlim, init_task.signal->rlim, |
344 | sizeof(current->signal->rlim)); | 344 | sizeof(current->signal->rlim)); |
345 | 345 | ||
346 | atomic_inc(&init_cred.usage); | 346 | atomic_inc(&init_cred.usage); |
347 | commit_creds(&init_cred); | 347 | commit_creds(&init_cred); |
348 | write_unlock_irq(&tasklist_lock); | 348 | write_unlock_irq(&tasklist_lock); |
349 | } | 349 | } |
350 | 350 | ||
351 | void __set_special_pids(struct pid *pid) | 351 | void __set_special_pids(struct pid *pid) |
352 | { | 352 | { |
353 | struct task_struct *curr = current->group_leader; | 353 | struct task_struct *curr = current->group_leader; |
354 | 354 | ||
355 | if (task_session(curr) != pid) | 355 | if (task_session(curr) != pid) |
356 | change_pid(curr, PIDTYPE_SID, pid); | 356 | change_pid(curr, PIDTYPE_SID, pid); |
357 | 357 | ||
358 | if (task_pgrp(curr) != pid) | 358 | if (task_pgrp(curr) != pid) |
359 | change_pid(curr, PIDTYPE_PGID, pid); | 359 | change_pid(curr, PIDTYPE_PGID, pid); |
360 | } | 360 | } |
361 | 361 | ||
362 | static void set_special_pids(struct pid *pid) | 362 | static void set_special_pids(struct pid *pid) |
363 | { | 363 | { |
364 | write_lock_irq(&tasklist_lock); | 364 | write_lock_irq(&tasklist_lock); |
365 | __set_special_pids(pid); | 365 | __set_special_pids(pid); |
366 | write_unlock_irq(&tasklist_lock); | 366 | write_unlock_irq(&tasklist_lock); |
367 | } | 367 | } |
368 | 368 | ||
369 | /* | 369 | /* |
370 | * Let kernel threads use this to say that they allow a certain signal. | 370 | * Let kernel threads use this to say that they allow a certain signal. |
371 | * Must not be used if kthread was cloned with CLONE_SIGHAND. | 371 | * Must not be used if kthread was cloned with CLONE_SIGHAND. |
372 | */ | 372 | */ |
373 | int allow_signal(int sig) | 373 | int allow_signal(int sig) |
374 | { | 374 | { |
375 | if (!valid_signal(sig) || sig < 1) | 375 | if (!valid_signal(sig) || sig < 1) |
376 | return -EINVAL; | 376 | return -EINVAL; |
377 | 377 | ||
378 | spin_lock_irq(¤t->sighand->siglock); | 378 | spin_lock_irq(¤t->sighand->siglock); |
379 | /* This is only needed for daemonize()'ed kthreads */ | 379 | /* This is only needed for daemonize()'ed kthreads */ |
380 | sigdelset(¤t->blocked, sig); | 380 | sigdelset(¤t->blocked, sig); |
381 | /* | 381 | /* |
382 | * Kernel threads handle their own signals. Let the signal code | 382 | * Kernel threads handle their own signals. Let the signal code |
383 | * know it'll be handled, so that they don't get converted to | 383 | * know it'll be handled, so that they don't get converted to |
384 | * SIGKILL or just silently dropped. | 384 | * SIGKILL or just silently dropped. |
385 | */ | 385 | */ |
386 | current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; | 386 | current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; |
387 | recalc_sigpending(); | 387 | recalc_sigpending(); |
388 | spin_unlock_irq(¤t->sighand->siglock); | 388 | spin_unlock_irq(¤t->sighand->siglock); |
389 | return 0; | 389 | return 0; |
390 | } | 390 | } |
391 | 391 | ||
392 | EXPORT_SYMBOL(allow_signal); | 392 | EXPORT_SYMBOL(allow_signal); |
393 | 393 | ||
394 | int disallow_signal(int sig) | 394 | int disallow_signal(int sig) |
395 | { | 395 | { |
396 | if (!valid_signal(sig) || sig < 1) | 396 | if (!valid_signal(sig) || sig < 1) |
397 | return -EINVAL; | 397 | return -EINVAL; |
398 | 398 | ||
399 | spin_lock_irq(¤t->sighand->siglock); | 399 | spin_lock_irq(¤t->sighand->siglock); |
400 | current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; | 400 | current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; |
401 | recalc_sigpending(); | 401 | recalc_sigpending(); |
402 | spin_unlock_irq(¤t->sighand->siglock); | 402 | spin_unlock_irq(¤t->sighand->siglock); |
403 | return 0; | 403 | return 0; |
404 | } | 404 | } |
405 | 405 | ||
406 | EXPORT_SYMBOL(disallow_signal); | 406 | EXPORT_SYMBOL(disallow_signal); |
407 | 407 | ||
408 | /* | 408 | /* |
409 | * Put all the gunge required to become a kernel thread without | 409 | * Put all the gunge required to become a kernel thread without |
410 | * attached user resources in one place where it belongs. | 410 | * attached user resources in one place where it belongs. |
411 | */ | 411 | */ |
412 | 412 | ||
413 | void daemonize(const char *name, ...) | 413 | void daemonize(const char *name, ...) |
414 | { | 414 | { |
415 | va_list args; | 415 | va_list args; |
416 | sigset_t blocked; | 416 | sigset_t blocked; |
417 | 417 | ||
418 | va_start(args, name); | 418 | va_start(args, name); |
419 | vsnprintf(current->comm, sizeof(current->comm), name, args); | 419 | vsnprintf(current->comm, sizeof(current->comm), name, args); |
420 | va_end(args); | 420 | va_end(args); |
421 | 421 | ||
422 | /* | 422 | /* |
423 | * If we were started as result of loading a module, close all of the | 423 | * If we were started as result of loading a module, close all of the |
424 | * user space pages. We don't need them, and if we didn't close them | 424 | * user space pages. We don't need them, and if we didn't close them |
425 | * they would be locked into memory. | 425 | * they would be locked into memory. |
426 | */ | 426 | */ |
427 | exit_mm(current); | 427 | exit_mm(current); |
428 | /* | 428 | /* |
429 | * We don't want to have TIF_FREEZE set if the system-wide hibernation | 429 | * We don't want to have TIF_FREEZE set if the system-wide hibernation |
430 | * or suspend transition begins right now. | 430 | * or suspend transition begins right now. |
431 | */ | 431 | */ |
432 | current->flags |= (PF_NOFREEZE | PF_KTHREAD); | 432 | current->flags |= (PF_NOFREEZE | PF_KTHREAD); |
433 | 433 | ||
434 | if (current->nsproxy != &init_nsproxy) { | 434 | if (current->nsproxy != &init_nsproxy) { |
435 | get_nsproxy(&init_nsproxy); | 435 | get_nsproxy(&init_nsproxy); |
436 | switch_task_namespaces(current, &init_nsproxy); | 436 | switch_task_namespaces(current, &init_nsproxy); |
437 | } | 437 | } |
438 | set_special_pids(&init_struct_pid); | 438 | set_special_pids(&init_struct_pid); |
439 | proc_clear_tty(current); | 439 | proc_clear_tty(current); |
440 | 440 | ||
441 | /* Block and flush all signals */ | 441 | /* Block and flush all signals */ |
442 | sigfillset(&blocked); | 442 | sigfillset(&blocked); |
443 | sigprocmask(SIG_BLOCK, &blocked, NULL); | 443 | sigprocmask(SIG_BLOCK, &blocked, NULL); |
444 | flush_signals(current); | 444 | flush_signals(current); |
445 | 445 | ||
446 | /* Become as one with the init task */ | 446 | /* Become as one with the init task */ |
447 | 447 | ||
448 | daemonize_fs_struct(); | 448 | daemonize_fs_struct(); |
449 | exit_files(current); | 449 | exit_files(current); |
450 | current->files = init_task.files; | 450 | current->files = init_task.files; |
451 | atomic_inc(¤t->files->count); | 451 | atomic_inc(¤t->files->count); |
452 | 452 | ||
453 | reparent_to_kthreadd(); | 453 | reparent_to_kthreadd(); |
454 | } | 454 | } |
455 | 455 | ||
456 | EXPORT_SYMBOL(daemonize); | 456 | EXPORT_SYMBOL(daemonize); |
457 | 457 | ||
458 | static void close_files(struct files_struct * files) | 458 | static void close_files(struct files_struct * files) |
459 | { | 459 | { |
460 | int i, j; | 460 | int i, j; |
461 | struct fdtable *fdt; | 461 | struct fdtable *fdt; |
462 | 462 | ||
463 | j = 0; | 463 | j = 0; |
464 | 464 | ||
465 | /* | 465 | /* |
466 | * It is safe to dereference the fd table without RCU or | 466 | * It is safe to dereference the fd table without RCU or |
467 | * ->file_lock because this is the last reference to the | 467 | * ->file_lock because this is the last reference to the |
468 | * files structure. But use RCU to shut RCU-lockdep up. | 468 | * files structure. But use RCU to shut RCU-lockdep up. |
469 | */ | 469 | */ |
470 | rcu_read_lock(); | 470 | rcu_read_lock(); |
471 | fdt = files_fdtable(files); | 471 | fdt = files_fdtable(files); |
472 | rcu_read_unlock(); | 472 | rcu_read_unlock(); |
473 | for (;;) { | 473 | for (;;) { |
474 | unsigned long set; | 474 | unsigned long set; |
475 | i = j * __NFDBITS; | 475 | i = j * __NFDBITS; |
476 | if (i >= fdt->max_fds) | 476 | if (i >= fdt->max_fds) |
477 | break; | 477 | break; |
478 | set = fdt->open_fds->fds_bits[j++]; | 478 | set = fdt->open_fds->fds_bits[j++]; |
479 | while (set) { | 479 | while (set) { |
480 | if (set & 1) { | 480 | if (set & 1) { |
481 | struct file * file = xchg(&fdt->fd[i], NULL); | 481 | struct file * file = xchg(&fdt->fd[i], NULL); |
482 | if (file) { | 482 | if (file) { |
483 | filp_close(file, files); | 483 | filp_close(file, files); |
484 | cond_resched(); | 484 | cond_resched(); |
485 | } | 485 | } |
486 | } | 486 | } |
487 | i++; | 487 | i++; |
488 | set >>= 1; | 488 | set >>= 1; |
489 | } | 489 | } |
490 | } | 490 | } |
491 | } | 491 | } |
492 | 492 | ||
493 | struct files_struct *get_files_struct(struct task_struct *task) | 493 | struct files_struct *get_files_struct(struct task_struct *task) |
494 | { | 494 | { |
495 | struct files_struct *files; | 495 | struct files_struct *files; |
496 | 496 | ||
497 | task_lock(task); | 497 | task_lock(task); |
498 | files = task->files; | 498 | files = task->files; |
499 | if (files) | 499 | if (files) |
500 | atomic_inc(&files->count); | 500 | atomic_inc(&files->count); |
501 | task_unlock(task); | 501 | task_unlock(task); |
502 | 502 | ||
503 | return files; | 503 | return files; |
504 | } | 504 | } |
505 | 505 | ||
506 | void put_files_struct(struct files_struct *files) | 506 | void put_files_struct(struct files_struct *files) |
507 | { | 507 | { |
508 | struct fdtable *fdt; | 508 | struct fdtable *fdt; |
509 | 509 | ||
510 | if (atomic_dec_and_test(&files->count)) { | 510 | if (atomic_dec_and_test(&files->count)) { |
511 | close_files(files); | 511 | close_files(files); |
512 | /* | 512 | /* |
513 | * Free the fd and fdset arrays if we expanded them. | 513 | * Free the fd and fdset arrays if we expanded them. |
514 | * If the fdtable was embedded, pass files for freeing | 514 | * If the fdtable was embedded, pass files for freeing |
515 | * at the end of the RCU grace period. Otherwise, | 515 | * at the end of the RCU grace period. Otherwise, |
516 | * you can free files immediately. | 516 | * you can free files immediately. |
517 | */ | 517 | */ |
518 | rcu_read_lock(); | 518 | rcu_read_lock(); |
519 | fdt = files_fdtable(files); | 519 | fdt = files_fdtable(files); |
520 | if (fdt != &files->fdtab) | 520 | if (fdt != &files->fdtab) |
521 | kmem_cache_free(files_cachep, files); | 521 | kmem_cache_free(files_cachep, files); |
522 | free_fdtable(fdt); | 522 | free_fdtable(fdt); |
523 | rcu_read_unlock(); | 523 | rcu_read_unlock(); |
524 | } | 524 | } |
525 | } | 525 | } |
526 | 526 | ||
527 | void reset_files_struct(struct files_struct *files) | 527 | void reset_files_struct(struct files_struct *files) |
528 | { | 528 | { |
529 | struct task_struct *tsk = current; | 529 | struct task_struct *tsk = current; |
530 | struct files_struct *old; | 530 | struct files_struct *old; |
531 | 531 | ||
532 | old = tsk->files; | 532 | old = tsk->files; |
533 | task_lock(tsk); | 533 | task_lock(tsk); |
534 | tsk->files = files; | 534 | tsk->files = files; |
535 | task_unlock(tsk); | 535 | task_unlock(tsk); |
536 | put_files_struct(old); | 536 | put_files_struct(old); |
537 | } | 537 | } |
538 | 538 | ||
539 | void exit_files(struct task_struct *tsk) | 539 | void exit_files(struct task_struct *tsk) |
540 | { | 540 | { |
541 | struct files_struct * files = tsk->files; | 541 | struct files_struct * files = tsk->files; |
542 | 542 | ||
543 | if (files) { | 543 | if (files) { |
544 | task_lock(tsk); | 544 | task_lock(tsk); |
545 | tsk->files = NULL; | 545 | tsk->files = NULL; |
546 | task_unlock(tsk); | 546 | task_unlock(tsk); |
547 | put_files_struct(files); | 547 | put_files_struct(files); |
548 | } | 548 | } |
549 | } | 549 | } |
550 | 550 | ||
551 | #ifdef CONFIG_MM_OWNER | 551 | #ifdef CONFIG_MM_OWNER |
552 | /* | 552 | /* |
553 | * Task p is exiting and it owned mm, lets find a new owner for it | 553 | * Task p is exiting and it owned mm, lets find a new owner for it |
554 | */ | 554 | */ |
555 | static inline int | 555 | static inline int |
556 | mm_need_new_owner(struct mm_struct *mm, struct task_struct *p) | 556 | mm_need_new_owner(struct mm_struct *mm, struct task_struct *p) |
557 | { | 557 | { |
558 | /* | 558 | /* |
559 | * If there are other users of the mm and the owner (us) is exiting | 559 | * If there are other users of the mm and the owner (us) is exiting |
560 | * we need to find a new owner to take on the responsibility. | 560 | * we need to find a new owner to take on the responsibility. |
561 | */ | 561 | */ |
562 | if (atomic_read(&mm->mm_users) <= 1) | 562 | if (atomic_read(&mm->mm_users) <= 1) |
563 | return 0; | 563 | return 0; |
564 | if (mm->owner != p) | 564 | if (mm->owner != p) |
565 | return 0; | 565 | return 0; |
566 | return 1; | 566 | return 1; |
567 | } | 567 | } |
568 | 568 | ||
569 | void mm_update_next_owner(struct mm_struct *mm) | 569 | void mm_update_next_owner(struct mm_struct *mm) |
570 | { | 570 | { |
571 | struct task_struct *c, *g, *p = current; | 571 | struct task_struct *c, *g, *p = current; |
572 | 572 | ||
573 | retry: | 573 | retry: |
574 | if (!mm_need_new_owner(mm, p)) | 574 | if (!mm_need_new_owner(mm, p)) |
575 | return; | 575 | return; |
576 | 576 | ||
577 | read_lock(&tasklist_lock); | 577 | read_lock(&tasklist_lock); |
578 | /* | 578 | /* |
579 | * Search in the children | 579 | * Search in the children |
580 | */ | 580 | */ |
581 | list_for_each_entry(c, &p->children, sibling) { | 581 | list_for_each_entry(c, &p->children, sibling) { |
582 | if (c->mm == mm) | 582 | if (c->mm == mm) |
583 | goto assign_new_owner; | 583 | goto assign_new_owner; |
584 | } | 584 | } |
585 | 585 | ||
586 | /* | 586 | /* |
587 | * Search in the siblings | 587 | * Search in the siblings |
588 | */ | 588 | */ |
589 | list_for_each_entry(c, &p->real_parent->children, sibling) { | 589 | list_for_each_entry(c, &p->real_parent->children, sibling) { |
590 | if (c->mm == mm) | 590 | if (c->mm == mm) |
591 | goto assign_new_owner; | 591 | goto assign_new_owner; |
592 | } | 592 | } |
593 | 593 | ||
594 | /* | 594 | /* |
595 | * Search through everything else. We should not get | 595 | * Search through everything else. We should not get |
596 | * here often | 596 | * here often |
597 | */ | 597 | */ |
598 | do_each_thread(g, c) { | 598 | do_each_thread(g, c) { |
599 | if (c->mm == mm) | 599 | if (c->mm == mm) |
600 | goto assign_new_owner; | 600 | goto assign_new_owner; |
601 | } while_each_thread(g, c); | 601 | } while_each_thread(g, c); |
602 | 602 | ||
603 | read_unlock(&tasklist_lock); | 603 | read_unlock(&tasklist_lock); |
604 | /* | 604 | /* |
605 | * We found no owner yet mm_users > 1: this implies that we are | 605 | * We found no owner yet mm_users > 1: this implies that we are |
606 | * most likely racing with swapoff (try_to_unuse()) or /proc or | 606 | * most likely racing with swapoff (try_to_unuse()) or /proc or |
607 | * ptrace or page migration (get_task_mm()). Mark owner as NULL. | 607 | * ptrace or page migration (get_task_mm()). Mark owner as NULL. |
608 | */ | 608 | */ |
609 | mm->owner = NULL; | 609 | mm->owner = NULL; |
610 | return; | 610 | return; |
611 | 611 | ||
612 | assign_new_owner: | 612 | assign_new_owner: |
613 | BUG_ON(c == p); | 613 | BUG_ON(c == p); |
614 | get_task_struct(c); | 614 | get_task_struct(c); |
615 | /* | 615 | /* |
616 | * The task_lock protects c->mm from changing. | 616 | * The task_lock protects c->mm from changing. |
617 | * We always want mm->owner->mm == mm | 617 | * We always want mm->owner->mm == mm |
618 | */ | 618 | */ |
619 | task_lock(c); | 619 | task_lock(c); |
620 | /* | 620 | /* |
621 | * Delay read_unlock() till we have the task_lock() | 621 | * Delay read_unlock() till we have the task_lock() |
622 | * to ensure that c does not slip away underneath us | 622 | * to ensure that c does not slip away underneath us |
623 | */ | 623 | */ |
624 | read_unlock(&tasklist_lock); | 624 | read_unlock(&tasklist_lock); |
625 | if (c->mm != mm) { | 625 | if (c->mm != mm) { |
626 | task_unlock(c); | 626 | task_unlock(c); |
627 | put_task_struct(c); | 627 | put_task_struct(c); |
628 | goto retry; | 628 | goto retry; |
629 | } | 629 | } |
630 | mm->owner = c; | 630 | mm->owner = c; |
631 | task_unlock(c); | 631 | task_unlock(c); |
632 | put_task_struct(c); | 632 | put_task_struct(c); |
633 | } | 633 | } |
634 | #endif /* CONFIG_MM_OWNER */ | 634 | #endif /* CONFIG_MM_OWNER */ |
635 | 635 | ||
636 | /* | 636 | /* |
637 | * Turn us into a lazy TLB process if we | 637 | * Turn us into a lazy TLB process if we |
638 | * aren't already.. | 638 | * aren't already.. |
639 | */ | 639 | */ |
640 | static void exit_mm(struct task_struct * tsk) | 640 | static void exit_mm(struct task_struct * tsk) |
641 | { | 641 | { |
642 | struct mm_struct *mm = tsk->mm; | 642 | struct mm_struct *mm = tsk->mm; |
643 | struct core_state *core_state; | 643 | struct core_state *core_state; |
644 | 644 | ||
645 | mm_release(tsk, mm); | 645 | mm_release(tsk, mm); |
646 | if (!mm) | 646 | if (!mm) |
647 | return; | 647 | return; |
648 | /* | 648 | /* |
649 | * Serialize with any possible pending coredump. | 649 | * Serialize with any possible pending coredump. |
650 | * We must hold mmap_sem around checking core_state | 650 | * We must hold mmap_sem around checking core_state |
651 | * and clearing tsk->mm. The core-inducing thread | 651 | * and clearing tsk->mm. The core-inducing thread |
652 | * will increment ->nr_threads for each thread in the | 652 | * will increment ->nr_threads for each thread in the |
653 | * group with ->mm != NULL. | 653 | * group with ->mm != NULL. |
654 | */ | 654 | */ |
655 | down_read(&mm->mmap_sem); | 655 | down_read(&mm->mmap_sem); |
656 | core_state = mm->core_state; | 656 | core_state = mm->core_state; |
657 | if (core_state) { | 657 | if (core_state) { |
658 | struct core_thread self; | 658 | struct core_thread self; |
659 | up_read(&mm->mmap_sem); | 659 | up_read(&mm->mmap_sem); |
660 | 660 | ||
661 | self.task = tsk; | 661 | self.task = tsk; |
662 | self.next = xchg(&core_state->dumper.next, &self); | 662 | self.next = xchg(&core_state->dumper.next, &self); |
663 | /* | 663 | /* |
664 | * Implies mb(), the result of xchg() must be visible | 664 | * Implies mb(), the result of xchg() must be visible |
665 | * to core_state->dumper. | 665 | * to core_state->dumper. |
666 | */ | 666 | */ |
667 | if (atomic_dec_and_test(&core_state->nr_threads)) | 667 | if (atomic_dec_and_test(&core_state->nr_threads)) |
668 | complete(&core_state->startup); | 668 | complete(&core_state->startup); |
669 | 669 | ||
670 | for (;;) { | 670 | for (;;) { |
671 | set_task_state(tsk, TASK_UNINTERRUPTIBLE); | 671 | set_task_state(tsk, TASK_UNINTERRUPTIBLE); |
672 | if (!self.task) /* see coredump_finish() */ | 672 | if (!self.task) /* see coredump_finish() */ |
673 | break; | 673 | break; |
674 | schedule(); | 674 | schedule(); |
675 | } | 675 | } |
676 | __set_task_state(tsk, TASK_RUNNING); | 676 | __set_task_state(tsk, TASK_RUNNING); |
677 | down_read(&mm->mmap_sem); | 677 | down_read(&mm->mmap_sem); |
678 | } | 678 | } |
679 | atomic_inc(&mm->mm_count); | 679 | atomic_inc(&mm->mm_count); |
680 | BUG_ON(mm != tsk->active_mm); | 680 | BUG_ON(mm != tsk->active_mm); |
681 | /* more a memory barrier than a real lock */ | 681 | /* more a memory barrier than a real lock */ |
682 | task_lock(tsk); | 682 | task_lock(tsk); |
683 | tsk->mm = NULL; | 683 | tsk->mm = NULL; |
684 | up_read(&mm->mmap_sem); | 684 | up_read(&mm->mmap_sem); |
685 | enter_lazy_tlb(mm, current); | 685 | enter_lazy_tlb(mm, current); |
686 | /* We don't want this task to be frozen prematurely */ | 686 | /* We don't want this task to be frozen prematurely */ |
687 | clear_freeze_flag(tsk); | 687 | clear_freeze_flag(tsk); |
688 | if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) | 688 | if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) |
689 | atomic_dec(&mm->oom_disable_count); | 689 | atomic_dec(&mm->oom_disable_count); |
690 | task_unlock(tsk); | 690 | task_unlock(tsk); |
691 | mm_update_next_owner(mm); | 691 | mm_update_next_owner(mm); |
692 | mmput(mm); | 692 | mmput(mm); |
693 | } | 693 | } |
694 | 694 | ||
695 | /* | 695 | /* |
696 | * When we die, we re-parent all our children. | 696 | * When we die, we re-parent all our children. |
697 | * Try to give them to another thread in our thread | 697 | * Try to give them to another thread in our thread |
698 | * group, and if no such member exists, give it to | 698 | * group, and if no such member exists, give it to |
699 | * the child reaper process (ie "init") in our pid | 699 | * the child reaper process (ie "init") in our pid |
700 | * space. | 700 | * space. |
701 | */ | 701 | */ |
702 | static struct task_struct *find_new_reaper(struct task_struct *father) | 702 | static struct task_struct *find_new_reaper(struct task_struct *father) |
703 | __releases(&tasklist_lock) | 703 | __releases(&tasklist_lock) |
704 | __acquires(&tasklist_lock) | 704 | __acquires(&tasklist_lock) |
705 | { | 705 | { |
706 | struct pid_namespace *pid_ns = task_active_pid_ns(father); | 706 | struct pid_namespace *pid_ns = task_active_pid_ns(father); |
707 | struct task_struct *thread; | 707 | struct task_struct *thread; |
708 | 708 | ||
709 | thread = father; | 709 | thread = father; |
710 | while_each_thread(father, thread) { | 710 | while_each_thread(father, thread) { |
711 | if (thread->flags & PF_EXITING) | 711 | if (thread->flags & PF_EXITING) |
712 | continue; | 712 | continue; |
713 | if (unlikely(pid_ns->child_reaper == father)) | 713 | if (unlikely(pid_ns->child_reaper == father)) |
714 | pid_ns->child_reaper = thread; | 714 | pid_ns->child_reaper = thread; |
715 | return thread; | 715 | return thread; |
716 | } | 716 | } |
717 | 717 | ||
718 | if (unlikely(pid_ns->child_reaper == father)) { | 718 | if (unlikely(pid_ns->child_reaper == father)) { |
719 | write_unlock_irq(&tasklist_lock); | 719 | write_unlock_irq(&tasklist_lock); |
720 | if (unlikely(pid_ns == &init_pid_ns)) | 720 | if (unlikely(pid_ns == &init_pid_ns)) |
721 | panic("Attempted to kill init!"); | 721 | panic("Attempted to kill init!"); |
722 | 722 | ||
723 | zap_pid_ns_processes(pid_ns); | 723 | zap_pid_ns_processes(pid_ns); |
724 | write_lock_irq(&tasklist_lock); | 724 | write_lock_irq(&tasklist_lock); |
725 | /* | 725 | /* |
726 | * We can not clear ->child_reaper or leave it alone. | 726 | * We can not clear ->child_reaper or leave it alone. |
727 | * There may by stealth EXIT_DEAD tasks on ->children, | 727 | * There may by stealth EXIT_DEAD tasks on ->children, |
728 | * forget_original_parent() must move them somewhere. | 728 | * forget_original_parent() must move them somewhere. |
729 | */ | 729 | */ |
730 | pid_ns->child_reaper = init_pid_ns.child_reaper; | 730 | pid_ns->child_reaper = init_pid_ns.child_reaper; |
731 | } | 731 | } |
732 | 732 | ||
733 | return pid_ns->child_reaper; | 733 | return pid_ns->child_reaper; |
734 | } | 734 | } |
735 | 735 | ||
736 | /* | 736 | /* |
737 | * Any that need to be release_task'd are put on the @dead list. | 737 | * Any that need to be release_task'd are put on the @dead list. |
738 | */ | 738 | */ |
739 | static void reparent_leader(struct task_struct *father, struct task_struct *p, | 739 | static void reparent_leader(struct task_struct *father, struct task_struct *p, |
740 | struct list_head *dead) | 740 | struct list_head *dead) |
741 | { | 741 | { |
742 | list_move_tail(&p->sibling, &p->real_parent->children); | 742 | list_move_tail(&p->sibling, &p->real_parent->children); |
743 | 743 | ||
744 | if (p->exit_state == EXIT_DEAD) | 744 | if (p->exit_state == EXIT_DEAD) |
745 | return; | 745 | return; |
746 | /* | 746 | /* |
747 | * If this is a threaded reparent there is no need to | 747 | * If this is a threaded reparent there is no need to |
748 | * notify anyone anything has happened. | 748 | * notify anyone anything has happened. |
749 | */ | 749 | */ |
750 | if (same_thread_group(p->real_parent, father)) | 750 | if (same_thread_group(p->real_parent, father)) |
751 | return; | 751 | return; |
752 | 752 | ||
753 | /* We don't want people slaying init. */ | 753 | /* We don't want people slaying init. */ |
754 | p->exit_signal = SIGCHLD; | 754 | p->exit_signal = SIGCHLD; |
755 | 755 | ||
756 | /* If it has exited notify the new parent about this child's death. */ | 756 | /* If it has exited notify the new parent about this child's death. */ |
757 | if (!p->ptrace && | 757 | if (!p->ptrace && |
758 | p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { | 758 | p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { |
759 | if (do_notify_parent(p, p->exit_signal)) { | 759 | if (do_notify_parent(p, p->exit_signal)) { |
760 | p->exit_state = EXIT_DEAD; | 760 | p->exit_state = EXIT_DEAD; |
761 | list_move_tail(&p->sibling, dead); | 761 | list_move_tail(&p->sibling, dead); |
762 | } | 762 | } |
763 | } | 763 | } |
764 | 764 | ||
765 | kill_orphaned_pgrp(p, father); | 765 | kill_orphaned_pgrp(p, father); |
766 | } | 766 | } |
767 | 767 | ||
768 | static void forget_original_parent(struct task_struct *father) | 768 | static void forget_original_parent(struct task_struct *father) |
769 | { | 769 | { |
770 | struct task_struct *p, *n, *reaper; | 770 | struct task_struct *p, *n, *reaper; |
771 | LIST_HEAD(dead_children); | 771 | LIST_HEAD(dead_children); |
772 | 772 | ||
773 | write_lock_irq(&tasklist_lock); | 773 | write_lock_irq(&tasklist_lock); |
774 | /* | 774 | /* |
775 | * Note that exit_ptrace() and find_new_reaper() might | 775 | * Note that exit_ptrace() and find_new_reaper() might |
776 | * drop tasklist_lock and reacquire it. | 776 | * drop tasklist_lock and reacquire it. |
777 | */ | 777 | */ |
778 | exit_ptrace(father); | 778 | exit_ptrace(father); |
779 | reaper = find_new_reaper(father); | 779 | reaper = find_new_reaper(father); |
780 | 780 | ||
781 | list_for_each_entry_safe(p, n, &father->children, sibling) { | 781 | list_for_each_entry_safe(p, n, &father->children, sibling) { |
782 | struct task_struct *t = p; | 782 | struct task_struct *t = p; |
783 | do { | 783 | do { |
784 | t->real_parent = reaper; | 784 | t->real_parent = reaper; |
785 | if (t->parent == father) { | 785 | if (t->parent == father) { |
786 | BUG_ON(t->ptrace); | 786 | BUG_ON(t->ptrace); |
787 | t->parent = t->real_parent; | 787 | t->parent = t->real_parent; |
788 | } | 788 | } |
789 | if (t->pdeath_signal) | 789 | if (t->pdeath_signal) |
790 | group_send_sig_info(t->pdeath_signal, | 790 | group_send_sig_info(t->pdeath_signal, |
791 | SEND_SIG_NOINFO, t); | 791 | SEND_SIG_NOINFO, t); |
792 | } while_each_thread(p, t); | 792 | } while_each_thread(p, t); |
793 | reparent_leader(father, p, &dead_children); | 793 | reparent_leader(father, p, &dead_children); |
794 | } | 794 | } |
795 | write_unlock_irq(&tasklist_lock); | 795 | write_unlock_irq(&tasklist_lock); |
796 | 796 | ||
797 | BUG_ON(!list_empty(&father->children)); | 797 | BUG_ON(!list_empty(&father->children)); |
798 | 798 | ||
799 | list_for_each_entry_safe(p, n, &dead_children, sibling) { | 799 | list_for_each_entry_safe(p, n, &dead_children, sibling) { |
800 | list_del_init(&p->sibling); | 800 | list_del_init(&p->sibling); |
801 | release_task(p); | 801 | release_task(p); |
802 | } | 802 | } |
803 | } | 803 | } |
804 | 804 | ||
805 | /* | 805 | /* |
806 | * Send signals to all our closest relatives so that they know | 806 | * Send signals to all our closest relatives so that they know |
807 | * to properly mourn us.. | 807 | * to properly mourn us.. |
808 | */ | 808 | */ |
809 | static void exit_notify(struct task_struct *tsk, int group_dead) | 809 | static void exit_notify(struct task_struct *tsk, int group_dead) |
810 | { | 810 | { |
811 | bool autoreap; | 811 | bool autoreap; |
812 | 812 | ||
813 | /* | 813 | /* |
814 | * This does two things: | 814 | * This does two things: |
815 | * | 815 | * |
816 | * A. Make init inherit all the child processes | 816 | * A. Make init inherit all the child processes |
817 | * B. Check to see if any process groups have become orphaned | 817 | * B. Check to see if any process groups have become orphaned |
818 | * as a result of our exiting, and if they have any stopped | 818 | * as a result of our exiting, and if they have any stopped |
819 | * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) | 819 | * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) |
820 | */ | 820 | */ |
821 | forget_original_parent(tsk); | 821 | forget_original_parent(tsk); |
822 | exit_task_namespaces(tsk); | 822 | exit_task_namespaces(tsk); |
823 | 823 | ||
824 | write_lock_irq(&tasklist_lock); | 824 | write_lock_irq(&tasklist_lock); |
825 | if (group_dead) | 825 | if (group_dead) |
826 | kill_orphaned_pgrp(tsk->group_leader, NULL); | 826 | kill_orphaned_pgrp(tsk->group_leader, NULL); |
827 | 827 | ||
828 | /* Let father know we died | 828 | /* Let father know we died |
829 | * | 829 | * |
830 | * Thread signals are configurable, but you aren't going to use | 830 | * Thread signals are configurable, but you aren't going to use |
831 | * that to send signals to arbitrary processes. | 831 | * that to send signals to arbitrary processes. |
832 | * That stops right now. | 832 | * That stops right now. |
833 | * | 833 | * |
834 | * If the parent exec id doesn't match the exec id we saved | 834 | * If the parent exec id doesn't match the exec id we saved |
835 | * when we started then we know the parent has changed security | 835 | * when we started then we know the parent has changed security |
836 | * domain. | 836 | * domain. |
837 | * | 837 | * |
838 | * If our self_exec id doesn't match our parent_exec_id then | 838 | * If our self_exec id doesn't match our parent_exec_id then |
839 | * we have changed execution domain as these two values started | 839 | * we have changed execution domain as these two values started |
840 | * the same after a fork. | 840 | * the same after a fork. |
841 | */ | 841 | */ |
842 | if (thread_group_leader(tsk) && tsk->exit_signal != SIGCHLD && | 842 | if (thread_group_leader(tsk) && tsk->exit_signal != SIGCHLD && |
843 | (tsk->parent_exec_id != tsk->real_parent->self_exec_id || | 843 | (tsk->parent_exec_id != tsk->real_parent->self_exec_id || |
844 | tsk->self_exec_id != tsk->parent_exec_id)) | 844 | tsk->self_exec_id != tsk->parent_exec_id)) |
845 | tsk->exit_signal = SIGCHLD; | 845 | tsk->exit_signal = SIGCHLD; |
846 | 846 | ||
847 | if (unlikely(tsk->ptrace)) { | 847 | if (unlikely(tsk->ptrace)) { |
848 | int sig = thread_group_leader(tsk) && | 848 | int sig = thread_group_leader(tsk) && |
849 | thread_group_empty(tsk) && | 849 | thread_group_empty(tsk) && |
850 | !ptrace_reparented(tsk) ? | 850 | !ptrace_reparented(tsk) ? |
851 | tsk->exit_signal : SIGCHLD; | 851 | tsk->exit_signal : SIGCHLD; |
852 | autoreap = do_notify_parent(tsk, sig); | 852 | autoreap = do_notify_parent(tsk, sig); |
853 | } else if (thread_group_leader(tsk)) { | 853 | } else if (thread_group_leader(tsk)) { |
854 | autoreap = thread_group_empty(tsk) && | 854 | autoreap = thread_group_empty(tsk) && |
855 | do_notify_parent(tsk, tsk->exit_signal); | 855 | do_notify_parent(tsk, tsk->exit_signal); |
856 | } else { | 856 | } else { |
857 | autoreap = true; | 857 | autoreap = true; |
858 | } | 858 | } |
859 | 859 | ||
860 | tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE; | 860 | tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE; |
861 | 861 | ||
862 | /* mt-exec, de_thread() is waiting for group leader */ | 862 | /* mt-exec, de_thread() is waiting for group leader */ |
863 | if (unlikely(tsk->signal->notify_count < 0)) | 863 | if (unlikely(tsk->signal->notify_count < 0)) |
864 | wake_up_process(tsk->signal->group_exit_task); | 864 | wake_up_process(tsk->signal->group_exit_task); |
865 | write_unlock_irq(&tasklist_lock); | 865 | write_unlock_irq(&tasklist_lock); |
866 | 866 | ||
867 | /* If the process is dead, release it - nobody will wait for it */ | 867 | /* If the process is dead, release it - nobody will wait for it */ |
868 | if (autoreap) | 868 | if (autoreap) |
869 | release_task(tsk); | 869 | release_task(tsk); |
870 | } | 870 | } |
871 | 871 | ||
872 | #ifdef CONFIG_DEBUG_STACK_USAGE | 872 | #ifdef CONFIG_DEBUG_STACK_USAGE |
873 | static void check_stack_usage(void) | 873 | static void check_stack_usage(void) |
874 | { | 874 | { |
875 | static DEFINE_SPINLOCK(low_water_lock); | 875 | static DEFINE_SPINLOCK(low_water_lock); |
876 | static int lowest_to_date = THREAD_SIZE; | 876 | static int lowest_to_date = THREAD_SIZE; |
877 | unsigned long free; | 877 | unsigned long free; |
878 | 878 | ||
879 | free = stack_not_used(current); | 879 | free = stack_not_used(current); |
880 | 880 | ||
881 | if (free >= lowest_to_date) | 881 | if (free >= lowest_to_date) |
882 | return; | 882 | return; |
883 | 883 | ||
884 | spin_lock(&low_water_lock); | 884 | spin_lock(&low_water_lock); |
885 | if (free < lowest_to_date) { | 885 | if (free < lowest_to_date) { |
886 | printk(KERN_WARNING "%s used greatest stack depth: %lu bytes " | 886 | printk(KERN_WARNING "%s used greatest stack depth: %lu bytes " |
887 | "left\n", | 887 | "left\n", |
888 | current->comm, free); | 888 | current->comm, free); |
889 | lowest_to_date = free; | 889 | lowest_to_date = free; |
890 | } | 890 | } |
891 | spin_unlock(&low_water_lock); | 891 | spin_unlock(&low_water_lock); |
892 | } | 892 | } |
893 | #else | 893 | #else |
894 | static inline void check_stack_usage(void) {} | 894 | static inline void check_stack_usage(void) {} |
895 | #endif | 895 | #endif |
896 | 896 | ||
897 | NORET_TYPE void do_exit(long code) | 897 | NORET_TYPE void do_exit(long code) |
898 | { | 898 | { |
899 | struct task_struct *tsk = current; | 899 | struct task_struct *tsk = current; |
900 | int group_dead; | 900 | int group_dead; |
901 | 901 | ||
902 | profile_task_exit(tsk); | 902 | profile_task_exit(tsk); |
903 | 903 | ||
904 | WARN_ON(atomic_read(&tsk->fs_excl)); | 904 | WARN_ON(atomic_read(&tsk->fs_excl)); |
905 | WARN_ON(blk_needs_flush_plug(tsk)); | 905 | WARN_ON(blk_needs_flush_plug(tsk)); |
906 | 906 | ||
907 | if (unlikely(in_interrupt())) | 907 | if (unlikely(in_interrupt())) |
908 | panic("Aiee, killing interrupt handler!"); | 908 | panic("Aiee, killing interrupt handler!"); |
909 | if (unlikely(!tsk->pid)) | 909 | if (unlikely(!tsk->pid)) |
910 | panic("Attempted to kill the idle task!"); | 910 | panic("Attempted to kill the idle task!"); |
911 | 911 | ||
912 | /* | 912 | /* |
913 | * If do_exit is called because this processes oopsed, it's possible | 913 | * If do_exit is called because this processes oopsed, it's possible |
914 | * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before | 914 | * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before |
915 | * continuing. Amongst other possible reasons, this is to prevent | 915 | * continuing. Amongst other possible reasons, this is to prevent |
916 | * mm_release()->clear_child_tid() from writing to a user-controlled | 916 | * mm_release()->clear_child_tid() from writing to a user-controlled |
917 | * kernel address. | 917 | * kernel address. |
918 | */ | 918 | */ |
919 | set_fs(USER_DS); | 919 | set_fs(USER_DS); |
920 | 920 | ||
921 | ptrace_event(PTRACE_EVENT_EXIT, code); | 921 | ptrace_event(PTRACE_EVENT_EXIT, code); |
922 | 922 | ||
923 | validate_creds_for_do_exit(tsk); | 923 | validate_creds_for_do_exit(tsk); |
924 | 924 | ||
925 | /* | 925 | /* |
926 | * We're taking recursive faults here in do_exit. Safest is to just | 926 | * We're taking recursive faults here in do_exit. Safest is to just |
927 | * leave this task alone and wait for reboot. | 927 | * leave this task alone and wait for reboot. |
928 | */ | 928 | */ |
929 | if (unlikely(tsk->flags & PF_EXITING)) { | 929 | if (unlikely(tsk->flags & PF_EXITING)) { |
930 | printk(KERN_ALERT | 930 | printk(KERN_ALERT |
931 | "Fixing recursive fault but reboot is needed!\n"); | 931 | "Fixing recursive fault but reboot is needed!\n"); |
932 | /* | 932 | /* |
933 | * We can do this unlocked here. The futex code uses | 933 | * We can do this unlocked here. The futex code uses |
934 | * this flag just to verify whether the pi state | 934 | * this flag just to verify whether the pi state |
935 | * cleanup has been done or not. In the worst case it | 935 | * cleanup has been done or not. In the worst case it |
936 | * loops once more. We pretend that the cleanup was | 936 | * loops once more. We pretend that the cleanup was |
937 | * done as there is no way to return. Either the | 937 | * done as there is no way to return. Either the |
938 | * OWNER_DIED bit is set by now or we push the blocked | 938 | * OWNER_DIED bit is set by now or we push the blocked |
939 | * task into the wait for ever nirwana as well. | 939 | * task into the wait for ever nirwana as well. |
940 | */ | 940 | */ |
941 | tsk->flags |= PF_EXITPIDONE; | 941 | tsk->flags |= PF_EXITPIDONE; |
942 | set_current_state(TASK_UNINTERRUPTIBLE); | 942 | set_current_state(TASK_UNINTERRUPTIBLE); |
943 | schedule(); | 943 | schedule(); |
944 | } | 944 | } |
945 | 945 | ||
946 | exit_irq_thread(); | 946 | exit_irq_thread(); |
947 | 947 | ||
948 | exit_signals(tsk); /* sets PF_EXITING */ | 948 | exit_signals(tsk); /* sets PF_EXITING */ |
949 | /* | 949 | /* |
950 | * tsk->flags are checked in the futex code to protect against | 950 | * tsk->flags are checked in the futex code to protect against |
951 | * an exiting task cleaning up the robust pi futexes. | 951 | * an exiting task cleaning up the robust pi futexes. |
952 | */ | 952 | */ |
953 | smp_mb(); | 953 | smp_mb(); |
954 | raw_spin_unlock_wait(&tsk->pi_lock); | 954 | raw_spin_unlock_wait(&tsk->pi_lock); |
955 | 955 | ||
956 | if (unlikely(in_atomic())) | 956 | if (unlikely(in_atomic())) |
957 | printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", | 957 | printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", |
958 | current->comm, task_pid_nr(current), | 958 | current->comm, task_pid_nr(current), |
959 | preempt_count()); | 959 | preempt_count()); |
960 | 960 | ||
961 | acct_update_integrals(tsk); | 961 | acct_update_integrals(tsk); |
962 | /* sync mm's RSS info before statistics gathering */ | 962 | /* sync mm's RSS info before statistics gathering */ |
963 | if (tsk->mm) | 963 | if (tsk->mm) |
964 | sync_mm_rss(tsk, tsk->mm); | 964 | sync_mm_rss(tsk, tsk->mm); |
965 | group_dead = atomic_dec_and_test(&tsk->signal->live); | 965 | group_dead = atomic_dec_and_test(&tsk->signal->live); |
966 | if (group_dead) { | 966 | if (group_dead) { |
967 | hrtimer_cancel(&tsk->signal->real_timer); | 967 | hrtimer_cancel(&tsk->signal->real_timer); |
968 | exit_itimers(tsk->signal); | 968 | exit_itimers(tsk->signal); |
969 | if (tsk->mm) | 969 | if (tsk->mm) |
970 | setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); | 970 | setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); |
971 | } | 971 | } |
972 | acct_collect(code, group_dead); | 972 | acct_collect(code, group_dead); |
973 | if (group_dead) | 973 | if (group_dead) |
974 | tty_audit_exit(); | 974 | tty_audit_exit(); |
975 | if (unlikely(tsk->audit_context)) | 975 | if (unlikely(tsk->audit_context)) |
976 | audit_free(tsk); | 976 | audit_free(tsk); |
977 | 977 | ||
978 | tsk->exit_code = code; | 978 | tsk->exit_code = code; |
979 | taskstats_exit(tsk, group_dead); | 979 | taskstats_exit(tsk, group_dead); |
980 | 980 | ||
981 | exit_mm(tsk); | 981 | exit_mm(tsk); |
982 | 982 | ||
983 | if (group_dead) | 983 | if (group_dead) |
984 | acct_process(); | 984 | acct_process(); |
985 | trace_sched_process_exit(tsk); | 985 | trace_sched_process_exit(tsk); |
986 | 986 | ||
987 | exit_sem(tsk); | 987 | exit_sem(tsk); |
988 | exit_files(tsk); | 988 | exit_files(tsk); |
989 | exit_fs(tsk); | 989 | exit_fs(tsk); |
990 | check_stack_usage(); | 990 | check_stack_usage(); |
991 | exit_thread(); | 991 | exit_thread(); |
992 | 992 | ||
993 | /* | 993 | /* |
994 | * Flush inherited counters to the parent - before the parent | 994 | * Flush inherited counters to the parent - before the parent |
995 | * gets woken up by child-exit notifications. | 995 | * gets woken up by child-exit notifications. |
996 | * | 996 | * |
997 | * because of cgroup mode, must be called before cgroup_exit() | 997 | * because of cgroup mode, must be called before cgroup_exit() |
998 | */ | 998 | */ |
999 | perf_event_exit_task(tsk); | 999 | perf_event_exit_task(tsk); |
1000 | 1000 | ||
1001 | cgroup_exit(tsk, 1); | 1001 | cgroup_exit(tsk, 1); |
1002 | 1002 | ||
1003 | if (group_dead) | 1003 | if (group_dead) |
1004 | disassociate_ctty(1); | 1004 | disassociate_ctty(1); |
1005 | 1005 | ||
1006 | module_put(task_thread_info(tsk)->exec_domain->module); | 1006 | module_put(task_thread_info(tsk)->exec_domain->module); |
1007 | 1007 | ||
1008 | proc_exit_connector(tsk); | 1008 | proc_exit_connector(tsk); |
1009 | 1009 | ||
1010 | /* | 1010 | /* |
1011 | * FIXME: do that only when needed, using sched_exit tracepoint | 1011 | * FIXME: do that only when needed, using sched_exit tracepoint |
1012 | */ | 1012 | */ |
1013 | ptrace_put_breakpoints(tsk); | 1013 | ptrace_put_breakpoints(tsk); |
1014 | 1014 | ||
1015 | exit_notify(tsk, group_dead); | 1015 | exit_notify(tsk, group_dead); |
1016 | #ifdef CONFIG_NUMA | 1016 | #ifdef CONFIG_NUMA |
1017 | task_lock(tsk); | 1017 | task_lock(tsk); |
1018 | mpol_put(tsk->mempolicy); | 1018 | mpol_put(tsk->mempolicy); |
1019 | tsk->mempolicy = NULL; | 1019 | tsk->mempolicy = NULL; |
1020 | task_unlock(tsk); | 1020 | task_unlock(tsk); |
1021 | #endif | 1021 | #endif |
1022 | #ifdef CONFIG_FUTEX | 1022 | #ifdef CONFIG_FUTEX |
1023 | if (unlikely(current->pi_state_cache)) | 1023 | if (unlikely(current->pi_state_cache)) |
1024 | kfree(current->pi_state_cache); | 1024 | kfree(current->pi_state_cache); |
1025 | #endif | 1025 | #endif |
1026 | /* | 1026 | /* |
1027 | * Make sure we are holding no locks: | 1027 | * Make sure we are holding no locks: |
1028 | */ | 1028 | */ |
1029 | debug_check_no_locks_held(tsk); | 1029 | debug_check_no_locks_held(tsk); |
1030 | /* | 1030 | /* |
1031 | * We can do this unlocked here. The futex code uses this flag | 1031 | * We can do this unlocked here. The futex code uses this flag |
1032 | * just to verify whether the pi state cleanup has been done | 1032 | * just to verify whether the pi state cleanup has been done |
1033 | * or not. In the worst case it loops once more. | 1033 | * or not. In the worst case it loops once more. |
1034 | */ | 1034 | */ |
1035 | tsk->flags |= PF_EXITPIDONE; | 1035 | tsk->flags |= PF_EXITPIDONE; |
1036 | 1036 | ||
1037 | if (tsk->io_context) | 1037 | if (tsk->io_context) |
1038 | exit_io_context(tsk); | 1038 | exit_io_context(tsk); |
1039 | 1039 | ||
1040 | if (tsk->splice_pipe) | 1040 | if (tsk->splice_pipe) |
1041 | __free_pipe_info(tsk->splice_pipe); | 1041 | __free_pipe_info(tsk->splice_pipe); |
1042 | 1042 | ||
1043 | validate_creds_for_do_exit(tsk); | 1043 | validate_creds_for_do_exit(tsk); |
1044 | 1044 | ||
1045 | preempt_disable(); | 1045 | preempt_disable(); |
1046 | exit_rcu(); | 1046 | exit_rcu(); |
1047 | /* causes final put_task_struct in finish_task_switch(). */ | 1047 | /* causes final put_task_struct in finish_task_switch(). */ |
1048 | tsk->state = TASK_DEAD; | 1048 | tsk->state = TASK_DEAD; |
1049 | schedule(); | 1049 | schedule(); |
1050 | BUG(); | 1050 | BUG(); |
1051 | /* Avoid "noreturn function does return". */ | 1051 | /* Avoid "noreturn function does return". */ |
1052 | for (;;) | 1052 | for (;;) |
1053 | cpu_relax(); /* For when BUG is null */ | 1053 | cpu_relax(); /* For when BUG is null */ |
1054 | } | 1054 | } |
1055 | 1055 | ||
1056 | EXPORT_SYMBOL_GPL(do_exit); | 1056 | EXPORT_SYMBOL_GPL(do_exit); |
1057 | 1057 | ||
1058 | NORET_TYPE void complete_and_exit(struct completion *comp, long code) | 1058 | NORET_TYPE void complete_and_exit(struct completion *comp, long code) |
1059 | { | 1059 | { |
1060 | if (comp) | 1060 | if (comp) |
1061 | complete(comp); | 1061 | complete(comp); |
1062 | 1062 | ||
1063 | do_exit(code); | 1063 | do_exit(code); |
1064 | } | 1064 | } |
1065 | 1065 | ||
1066 | EXPORT_SYMBOL(complete_and_exit); | 1066 | EXPORT_SYMBOL(complete_and_exit); |
1067 | 1067 | ||
1068 | SYSCALL_DEFINE1(exit, int, error_code) | 1068 | SYSCALL_DEFINE1(exit, int, error_code) |
1069 | { | 1069 | { |
1070 | do_exit((error_code&0xff)<<8); | 1070 | do_exit((error_code&0xff)<<8); |
1071 | } | 1071 | } |
1072 | 1072 | ||
1073 | /* | 1073 | /* |
1074 | * Take down every thread in the group. This is called by fatal signals | 1074 | * Take down every thread in the group. This is called by fatal signals |
1075 | * as well as by sys_exit_group (below). | 1075 | * as well as by sys_exit_group (below). |
1076 | */ | 1076 | */ |
1077 | NORET_TYPE void | 1077 | NORET_TYPE void |
1078 | do_group_exit(int exit_code) | 1078 | do_group_exit(int exit_code) |
1079 | { | 1079 | { |
1080 | struct signal_struct *sig = current->signal; | 1080 | struct signal_struct *sig = current->signal; |
1081 | 1081 | ||
1082 | BUG_ON(exit_code & 0x80); /* core dumps don't get here */ | 1082 | BUG_ON(exit_code & 0x80); /* core dumps don't get here */ |
1083 | 1083 | ||
1084 | if (signal_group_exit(sig)) | 1084 | if (signal_group_exit(sig)) |
1085 | exit_code = sig->group_exit_code; | 1085 | exit_code = sig->group_exit_code; |
1086 | else if (!thread_group_empty(current)) { | 1086 | else if (!thread_group_empty(current)) { |
1087 | struct sighand_struct *const sighand = current->sighand; | 1087 | struct sighand_struct *const sighand = current->sighand; |
1088 | spin_lock_irq(&sighand->siglock); | 1088 | spin_lock_irq(&sighand->siglock); |
1089 | if (signal_group_exit(sig)) | 1089 | if (signal_group_exit(sig)) |
1090 | /* Another thread got here before we took the lock. */ | 1090 | /* Another thread got here before we took the lock. */ |
1091 | exit_code = sig->group_exit_code; | 1091 | exit_code = sig->group_exit_code; |
1092 | else { | 1092 | else { |
1093 | sig->group_exit_code = exit_code; | 1093 | sig->group_exit_code = exit_code; |
1094 | sig->flags = SIGNAL_GROUP_EXIT; | 1094 | sig->flags = SIGNAL_GROUP_EXIT; |
1095 | zap_other_threads(current); | 1095 | zap_other_threads(current); |
1096 | } | 1096 | } |
1097 | spin_unlock_irq(&sighand->siglock); | 1097 | spin_unlock_irq(&sighand->siglock); |
1098 | } | 1098 | } |
1099 | 1099 | ||
1100 | do_exit(exit_code); | 1100 | do_exit(exit_code); |
1101 | /* NOTREACHED */ | 1101 | /* NOTREACHED */ |
1102 | } | 1102 | } |
1103 | 1103 | ||
1104 | /* | 1104 | /* |
1105 | * this kills every thread in the thread group. Note that any externally | 1105 | * this kills every thread in the thread group. Note that any externally |
1106 | * wait4()-ing process will get the correct exit code - even if this | 1106 | * wait4()-ing process will get the correct exit code - even if this |
1107 | * thread is not the thread group leader. | 1107 | * thread is not the thread group leader. |
1108 | */ | 1108 | */ |
1109 | SYSCALL_DEFINE1(exit_group, int, error_code) | 1109 | SYSCALL_DEFINE1(exit_group, int, error_code) |
1110 | { | 1110 | { |
1111 | do_group_exit((error_code & 0xff) << 8); | 1111 | do_group_exit((error_code & 0xff) << 8); |
1112 | /* NOTREACHED */ | 1112 | /* NOTREACHED */ |
1113 | return 0; | 1113 | return 0; |
1114 | } | 1114 | } |
1115 | 1115 | ||
1116 | struct wait_opts { | 1116 | struct wait_opts { |
1117 | enum pid_type wo_type; | 1117 | enum pid_type wo_type; |
1118 | int wo_flags; | 1118 | int wo_flags; |
1119 | struct pid *wo_pid; | 1119 | struct pid *wo_pid; |
1120 | 1120 | ||
1121 | struct siginfo __user *wo_info; | 1121 | struct siginfo __user *wo_info; |
1122 | int __user *wo_stat; | 1122 | int __user *wo_stat; |
1123 | struct rusage __user *wo_rusage; | 1123 | struct rusage __user *wo_rusage; |
1124 | 1124 | ||
1125 | wait_queue_t child_wait; | 1125 | wait_queue_t child_wait; |
1126 | int notask_error; | 1126 | int notask_error; |
1127 | }; | 1127 | }; |
1128 | 1128 | ||
1129 | static inline | 1129 | static inline |
1130 | struct pid *task_pid_type(struct task_struct *task, enum pid_type type) | 1130 | struct pid *task_pid_type(struct task_struct *task, enum pid_type type) |
1131 | { | 1131 | { |
1132 | if (type != PIDTYPE_PID) | 1132 | if (type != PIDTYPE_PID) |
1133 | task = task->group_leader; | 1133 | task = task->group_leader; |
1134 | return task->pids[type].pid; | 1134 | return task->pids[type].pid; |
1135 | } | 1135 | } |
1136 | 1136 | ||
1137 | static int eligible_pid(struct wait_opts *wo, struct task_struct *p) | 1137 | static int eligible_pid(struct wait_opts *wo, struct task_struct *p) |
1138 | { | 1138 | { |
1139 | return wo->wo_type == PIDTYPE_MAX || | 1139 | return wo->wo_type == PIDTYPE_MAX || |
1140 | task_pid_type(p, wo->wo_type) == wo->wo_pid; | 1140 | task_pid_type(p, wo->wo_type) == wo->wo_pid; |
1141 | } | 1141 | } |
1142 | 1142 | ||
1143 | static int eligible_child(struct wait_opts *wo, struct task_struct *p) | 1143 | static int eligible_child(struct wait_opts *wo, struct task_struct *p) |
1144 | { | 1144 | { |
1145 | if (!eligible_pid(wo, p)) | 1145 | if (!eligible_pid(wo, p)) |
1146 | return 0; | 1146 | return 0; |
1147 | /* Wait for all children (clone and not) if __WALL is set; | 1147 | /* Wait for all children (clone and not) if __WALL is set; |
1148 | * otherwise, wait for clone children *only* if __WCLONE is | 1148 | * otherwise, wait for clone children *only* if __WCLONE is |
1149 | * set; otherwise, wait for non-clone children *only*. (Note: | 1149 | * set; otherwise, wait for non-clone children *only*. (Note: |
1150 | * A "clone" child here is one that reports to its parent | 1150 | * A "clone" child here is one that reports to its parent |
1151 | * using a signal other than SIGCHLD.) */ | 1151 | * using a signal other than SIGCHLD.) */ |
1152 | if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) | 1152 | if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) |
1153 | && !(wo->wo_flags & __WALL)) | 1153 | && !(wo->wo_flags & __WALL)) |
1154 | return 0; | 1154 | return 0; |
1155 | 1155 | ||
1156 | return 1; | 1156 | return 1; |
1157 | } | 1157 | } |
1158 | 1158 | ||
1159 | static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, | 1159 | static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, |
1160 | pid_t pid, uid_t uid, int why, int status) | 1160 | pid_t pid, uid_t uid, int why, int status) |
1161 | { | 1161 | { |
1162 | struct siginfo __user *infop; | 1162 | struct siginfo __user *infop; |
1163 | int retval = wo->wo_rusage | 1163 | int retval = wo->wo_rusage |
1164 | ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; | 1164 | ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; |
1165 | 1165 | ||
1166 | put_task_struct(p); | 1166 | put_task_struct(p); |
1167 | infop = wo->wo_info; | 1167 | infop = wo->wo_info; |
1168 | if (infop) { | 1168 | if (infop) { |
1169 | if (!retval) | 1169 | if (!retval) |
1170 | retval = put_user(SIGCHLD, &infop->si_signo); | 1170 | retval = put_user(SIGCHLD, &infop->si_signo); |
1171 | if (!retval) | 1171 | if (!retval) |
1172 | retval = put_user(0, &infop->si_errno); | 1172 | retval = put_user(0, &infop->si_errno); |
1173 | if (!retval) | 1173 | if (!retval) |
1174 | retval = put_user((short)why, &infop->si_code); | 1174 | retval = put_user((short)why, &infop->si_code); |
1175 | if (!retval) | 1175 | if (!retval) |
1176 | retval = put_user(pid, &infop->si_pid); | 1176 | retval = put_user(pid, &infop->si_pid); |
1177 | if (!retval) | 1177 | if (!retval) |
1178 | retval = put_user(uid, &infop->si_uid); | 1178 | retval = put_user(uid, &infop->si_uid); |
1179 | if (!retval) | 1179 | if (!retval) |
1180 | retval = put_user(status, &infop->si_status); | 1180 | retval = put_user(status, &infop->si_status); |
1181 | } | 1181 | } |
1182 | if (!retval) | 1182 | if (!retval) |
1183 | retval = pid; | 1183 | retval = pid; |
1184 | return retval; | 1184 | return retval; |
1185 | } | 1185 | } |
1186 | 1186 | ||
1187 | /* | 1187 | /* |
1188 | * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold | 1188 | * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold |
1189 | * read_lock(&tasklist_lock) on entry. If we return zero, we still hold | 1189 | * read_lock(&tasklist_lock) on entry. If we return zero, we still hold |
1190 | * the lock and this task is uninteresting. If we return nonzero, we have | 1190 | * the lock and this task is uninteresting. If we return nonzero, we have |
1191 | * released the lock and the system call should return. | 1191 | * released the lock and the system call should return. |
1192 | */ | 1192 | */ |
1193 | static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) | 1193 | static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) |
1194 | { | 1194 | { |
1195 | unsigned long state; | 1195 | unsigned long state; |
1196 | int retval, status, traced; | 1196 | int retval, status, traced; |
1197 | pid_t pid = task_pid_vnr(p); | 1197 | pid_t pid = task_pid_vnr(p); |
1198 | uid_t uid = __task_cred(p)->uid; | 1198 | uid_t uid = __task_cred(p)->uid; |
1199 | struct siginfo __user *infop; | 1199 | struct siginfo __user *infop; |
1200 | 1200 | ||
1201 | if (!likely(wo->wo_flags & WEXITED)) | 1201 | if (!likely(wo->wo_flags & WEXITED)) |
1202 | return 0; | 1202 | return 0; |
1203 | 1203 | ||
1204 | if (unlikely(wo->wo_flags & WNOWAIT)) { | 1204 | if (unlikely(wo->wo_flags & WNOWAIT)) { |
1205 | int exit_code = p->exit_code; | 1205 | int exit_code = p->exit_code; |
1206 | int why; | 1206 | int why; |
1207 | 1207 | ||
1208 | get_task_struct(p); | 1208 | get_task_struct(p); |
1209 | read_unlock(&tasklist_lock); | 1209 | read_unlock(&tasklist_lock); |
1210 | if ((exit_code & 0x7f) == 0) { | 1210 | if ((exit_code & 0x7f) == 0) { |
1211 | why = CLD_EXITED; | 1211 | why = CLD_EXITED; |
1212 | status = exit_code >> 8; | 1212 | status = exit_code >> 8; |
1213 | } else { | 1213 | } else { |
1214 | why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; | 1214 | why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; |
1215 | status = exit_code & 0x7f; | 1215 | status = exit_code & 0x7f; |
1216 | } | 1216 | } |
1217 | return wait_noreap_copyout(wo, p, pid, uid, why, status); | 1217 | return wait_noreap_copyout(wo, p, pid, uid, why, status); |
1218 | } | 1218 | } |
1219 | 1219 | ||
1220 | /* | 1220 | /* |
1221 | * Try to move the task's state to DEAD | 1221 | * Try to move the task's state to DEAD |
1222 | * only one thread is allowed to do this: | 1222 | * only one thread is allowed to do this: |
1223 | */ | 1223 | */ |
1224 | state = xchg(&p->exit_state, EXIT_DEAD); | 1224 | state = xchg(&p->exit_state, EXIT_DEAD); |
1225 | if (state != EXIT_ZOMBIE) { | 1225 | if (state != EXIT_ZOMBIE) { |
1226 | BUG_ON(state != EXIT_DEAD); | 1226 | BUG_ON(state != EXIT_DEAD); |
1227 | return 0; | 1227 | return 0; |
1228 | } | 1228 | } |
1229 | 1229 | ||
1230 | traced = ptrace_reparented(p); | 1230 | traced = ptrace_reparented(p); |
1231 | /* | 1231 | /* |
1232 | * It can be ptraced but not reparented, check | 1232 | * It can be ptraced but not reparented, check |
1233 | * thread_group_leader() to filter out sub-threads. | 1233 | * thread_group_leader() to filter out sub-threads. |
1234 | */ | 1234 | */ |
1235 | if (likely(!traced) && thread_group_leader(p)) { | 1235 | if (likely(!traced) && thread_group_leader(p)) { |
1236 | struct signal_struct *psig; | 1236 | struct signal_struct *psig; |
1237 | struct signal_struct *sig; | 1237 | struct signal_struct *sig; |
1238 | unsigned long maxrss; | 1238 | unsigned long maxrss; |
1239 | cputime_t tgutime, tgstime; | 1239 | cputime_t tgutime, tgstime; |
1240 | 1240 | ||
1241 | /* | 1241 | /* |
1242 | * The resource counters for the group leader are in its | 1242 | * The resource counters for the group leader are in its |
1243 | * own task_struct. Those for dead threads in the group | 1243 | * own task_struct. Those for dead threads in the group |
1244 | * are in its signal_struct, as are those for the child | 1244 | * are in its signal_struct, as are those for the child |
1245 | * processes it has previously reaped. All these | 1245 | * processes it has previously reaped. All these |
1246 | * accumulate in the parent's signal_struct c* fields. | 1246 | * accumulate in the parent's signal_struct c* fields. |
1247 | * | 1247 | * |
1248 | * We don't bother to take a lock here to protect these | 1248 | * We don't bother to take a lock here to protect these |
1249 | * p->signal fields, because they are only touched by | 1249 | * p->signal fields, because they are only touched by |
1250 | * __exit_signal, which runs with tasklist_lock | 1250 | * __exit_signal, which runs with tasklist_lock |
1251 | * write-locked anyway, and so is excluded here. We do | 1251 | * write-locked anyway, and so is excluded here. We do |
1252 | * need to protect the access to parent->signal fields, | 1252 | * need to protect the access to parent->signal fields, |
1253 | * as other threads in the parent group can be right | 1253 | * as other threads in the parent group can be right |
1254 | * here reaping other children at the same time. | 1254 | * here reaping other children at the same time. |
1255 | * | 1255 | * |
1256 | * We use thread_group_times() to get times for the thread | 1256 | * We use thread_group_times() to get times for the thread |
1257 | * group, which consolidates times for all threads in the | 1257 | * group, which consolidates times for all threads in the |
1258 | * group including the group leader. | 1258 | * group including the group leader. |
1259 | */ | 1259 | */ |
1260 | thread_group_times(p, &tgutime, &tgstime); | 1260 | thread_group_times(p, &tgutime, &tgstime); |
1261 | spin_lock_irq(&p->real_parent->sighand->siglock); | 1261 | spin_lock_irq(&p->real_parent->sighand->siglock); |
1262 | psig = p->real_parent->signal; | 1262 | psig = p->real_parent->signal; |
1263 | sig = p->signal; | 1263 | sig = p->signal; |
1264 | psig->cutime = | 1264 | psig->cutime = |
1265 | cputime_add(psig->cutime, | 1265 | cputime_add(psig->cutime, |
1266 | cputime_add(tgutime, | 1266 | cputime_add(tgutime, |
1267 | sig->cutime)); | 1267 | sig->cutime)); |
1268 | psig->cstime = | 1268 | psig->cstime = |
1269 | cputime_add(psig->cstime, | 1269 | cputime_add(psig->cstime, |
1270 | cputime_add(tgstime, | 1270 | cputime_add(tgstime, |
1271 | sig->cstime)); | 1271 | sig->cstime)); |
1272 | psig->cgtime = | 1272 | psig->cgtime = |
1273 | cputime_add(psig->cgtime, | 1273 | cputime_add(psig->cgtime, |
1274 | cputime_add(p->gtime, | 1274 | cputime_add(p->gtime, |
1275 | cputime_add(sig->gtime, | 1275 | cputime_add(sig->gtime, |
1276 | sig->cgtime))); | 1276 | sig->cgtime))); |
1277 | psig->cmin_flt += | 1277 | psig->cmin_flt += |
1278 | p->min_flt + sig->min_flt + sig->cmin_flt; | 1278 | p->min_flt + sig->min_flt + sig->cmin_flt; |
1279 | psig->cmaj_flt += | 1279 | psig->cmaj_flt += |
1280 | p->maj_flt + sig->maj_flt + sig->cmaj_flt; | 1280 | p->maj_flt + sig->maj_flt + sig->cmaj_flt; |
1281 | psig->cnvcsw += | 1281 | psig->cnvcsw += |
1282 | p->nvcsw + sig->nvcsw + sig->cnvcsw; | 1282 | p->nvcsw + sig->nvcsw + sig->cnvcsw; |
1283 | psig->cnivcsw += | 1283 | psig->cnivcsw += |
1284 | p->nivcsw + sig->nivcsw + sig->cnivcsw; | 1284 | p->nivcsw + sig->nivcsw + sig->cnivcsw; |
1285 | psig->cinblock += | 1285 | psig->cinblock += |
1286 | task_io_get_inblock(p) + | 1286 | task_io_get_inblock(p) + |
1287 | sig->inblock + sig->cinblock; | 1287 | sig->inblock + sig->cinblock; |
1288 | psig->coublock += | 1288 | psig->coublock += |
1289 | task_io_get_oublock(p) + | 1289 | task_io_get_oublock(p) + |
1290 | sig->oublock + sig->coublock; | 1290 | sig->oublock + sig->coublock; |
1291 | maxrss = max(sig->maxrss, sig->cmaxrss); | 1291 | maxrss = max(sig->maxrss, sig->cmaxrss); |
1292 | if (psig->cmaxrss < maxrss) | 1292 | if (psig->cmaxrss < maxrss) |
1293 | psig->cmaxrss = maxrss; | 1293 | psig->cmaxrss = maxrss; |
1294 | task_io_accounting_add(&psig->ioac, &p->ioac); | 1294 | task_io_accounting_add(&psig->ioac, &p->ioac); |
1295 | task_io_accounting_add(&psig->ioac, &sig->ioac); | 1295 | task_io_accounting_add(&psig->ioac, &sig->ioac); |
1296 | spin_unlock_irq(&p->real_parent->sighand->siglock); | 1296 | spin_unlock_irq(&p->real_parent->sighand->siglock); |
1297 | } | 1297 | } |
1298 | 1298 | ||
1299 | /* | 1299 | /* |
1300 | * Now we are sure this task is interesting, and no other | 1300 | * Now we are sure this task is interesting, and no other |
1301 | * thread can reap it because we set its state to EXIT_DEAD. | 1301 | * thread can reap it because we set its state to EXIT_DEAD. |
1302 | */ | 1302 | */ |
1303 | read_unlock(&tasklist_lock); | 1303 | read_unlock(&tasklist_lock); |
1304 | 1304 | ||
1305 | retval = wo->wo_rusage | 1305 | retval = wo->wo_rusage |
1306 | ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; | 1306 | ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; |
1307 | status = (p->signal->flags & SIGNAL_GROUP_EXIT) | 1307 | status = (p->signal->flags & SIGNAL_GROUP_EXIT) |
1308 | ? p->signal->group_exit_code : p->exit_code; | 1308 | ? p->signal->group_exit_code : p->exit_code; |
1309 | if (!retval && wo->wo_stat) | 1309 | if (!retval && wo->wo_stat) |
1310 | retval = put_user(status, wo->wo_stat); | 1310 | retval = put_user(status, wo->wo_stat); |
1311 | 1311 | ||
1312 | infop = wo->wo_info; | 1312 | infop = wo->wo_info; |
1313 | if (!retval && infop) | 1313 | if (!retval && infop) |
1314 | retval = put_user(SIGCHLD, &infop->si_signo); | 1314 | retval = put_user(SIGCHLD, &infop->si_signo); |
1315 | if (!retval && infop) | 1315 | if (!retval && infop) |
1316 | retval = put_user(0, &infop->si_errno); | 1316 | retval = put_user(0, &infop->si_errno); |
1317 | if (!retval && infop) { | 1317 | if (!retval && infop) { |
1318 | int why; | 1318 | int why; |
1319 | 1319 | ||
1320 | if ((status & 0x7f) == 0) { | 1320 | if ((status & 0x7f) == 0) { |
1321 | why = CLD_EXITED; | 1321 | why = CLD_EXITED; |
1322 | status >>= 8; | 1322 | status >>= 8; |
1323 | } else { | 1323 | } else { |
1324 | why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; | 1324 | why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; |
1325 | status &= 0x7f; | 1325 | status &= 0x7f; |
1326 | } | 1326 | } |
1327 | retval = put_user((short)why, &infop->si_code); | 1327 | retval = put_user((short)why, &infop->si_code); |
1328 | if (!retval) | 1328 | if (!retval) |
1329 | retval = put_user(status, &infop->si_status); | 1329 | retval = put_user(status, &infop->si_status); |
1330 | } | 1330 | } |
1331 | if (!retval && infop) | 1331 | if (!retval && infop) |
1332 | retval = put_user(pid, &infop->si_pid); | 1332 | retval = put_user(pid, &infop->si_pid); |
1333 | if (!retval && infop) | 1333 | if (!retval && infop) |
1334 | retval = put_user(uid, &infop->si_uid); | 1334 | retval = put_user(uid, &infop->si_uid); |
1335 | if (!retval) | 1335 | if (!retval) |
1336 | retval = pid; | 1336 | retval = pid; |
1337 | 1337 | ||
1338 | if (traced) { | 1338 | if (traced) { |
1339 | write_lock_irq(&tasklist_lock); | 1339 | write_lock_irq(&tasklist_lock); |
1340 | /* We dropped tasklist, ptracer could die and untrace */ | 1340 | /* We dropped tasklist, ptracer could die and untrace */ |
1341 | ptrace_unlink(p); | 1341 | ptrace_unlink(p); |
1342 | /* | 1342 | /* |
1343 | * If this is not a sub-thread, notify the parent. | 1343 | * If this is not a sub-thread, notify the parent. |
1344 | * If parent wants a zombie, don't release it now. | 1344 | * If parent wants a zombie, don't release it now. |
1345 | */ | 1345 | */ |
1346 | if (thread_group_leader(p) && | 1346 | if (thread_group_leader(p) && |
1347 | !do_notify_parent(p, p->exit_signal)) { | 1347 | !do_notify_parent(p, p->exit_signal)) { |
1348 | p->exit_state = EXIT_ZOMBIE; | 1348 | p->exit_state = EXIT_ZOMBIE; |
1349 | p = NULL; | 1349 | p = NULL; |
1350 | } | 1350 | } |
1351 | write_unlock_irq(&tasklist_lock); | 1351 | write_unlock_irq(&tasklist_lock); |
1352 | } | 1352 | } |
1353 | if (p != NULL) | 1353 | if (p != NULL) |
1354 | release_task(p); | 1354 | release_task(p); |
1355 | 1355 | ||
1356 | return retval; | 1356 | return retval; |
1357 | } | 1357 | } |
1358 | 1358 | ||
1359 | static int *task_stopped_code(struct task_struct *p, bool ptrace) | 1359 | static int *task_stopped_code(struct task_struct *p, bool ptrace) |
1360 | { | 1360 | { |
1361 | if (ptrace) { | 1361 | if (ptrace) { |
1362 | if (task_is_stopped_or_traced(p) && | 1362 | if (task_is_stopped_or_traced(p) && |
1363 | !(p->jobctl & JOBCTL_LISTENING)) | 1363 | !(p->jobctl & JOBCTL_LISTENING)) |
1364 | return &p->exit_code; | 1364 | return &p->exit_code; |
1365 | } else { | 1365 | } else { |
1366 | if (p->signal->flags & SIGNAL_STOP_STOPPED) | 1366 | if (p->signal->flags & SIGNAL_STOP_STOPPED) |
1367 | return &p->signal->group_exit_code; | 1367 | return &p->signal->group_exit_code; |
1368 | } | 1368 | } |
1369 | return NULL; | 1369 | return NULL; |
1370 | } | 1370 | } |
1371 | 1371 | ||
1372 | /** | 1372 | /** |
1373 | * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED | 1373 | * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED |
1374 | * @wo: wait options | 1374 | * @wo: wait options |
1375 | * @ptrace: is the wait for ptrace | 1375 | * @ptrace: is the wait for ptrace |
1376 | * @p: task to wait for | 1376 | * @p: task to wait for |
1377 | * | 1377 | * |
1378 | * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. | 1378 | * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. |
1379 | * | 1379 | * |
1380 | * CONTEXT: | 1380 | * CONTEXT: |
1381 | * read_lock(&tasklist_lock), which is released if return value is | 1381 | * read_lock(&tasklist_lock), which is released if return value is |
1382 | * non-zero. Also, grabs and releases @p->sighand->siglock. | 1382 | * non-zero. Also, grabs and releases @p->sighand->siglock. |
1383 | * | 1383 | * |
1384 | * RETURNS: | 1384 | * RETURNS: |
1385 | * 0 if wait condition didn't exist and search for other wait conditions | 1385 | * 0 if wait condition didn't exist and search for other wait conditions |
1386 | * should continue. Non-zero return, -errno on failure and @p's pid on | 1386 | * should continue. Non-zero return, -errno on failure and @p's pid on |
1387 | * success, implies that tasklist_lock is released and wait condition | 1387 | * success, implies that tasklist_lock is released and wait condition |
1388 | * search should terminate. | 1388 | * search should terminate. |
1389 | */ | 1389 | */ |
1390 | static int wait_task_stopped(struct wait_opts *wo, | 1390 | static int wait_task_stopped(struct wait_opts *wo, |
1391 | int ptrace, struct task_struct *p) | 1391 | int ptrace, struct task_struct *p) |
1392 | { | 1392 | { |
1393 | struct siginfo __user *infop; | 1393 | struct siginfo __user *infop; |
1394 | int retval, exit_code, *p_code, why; | 1394 | int retval, exit_code, *p_code, why; |
1395 | uid_t uid = 0; /* unneeded, required by compiler */ | 1395 | uid_t uid = 0; /* unneeded, required by compiler */ |
1396 | pid_t pid; | 1396 | pid_t pid; |
1397 | 1397 | ||
1398 | /* | 1398 | /* |
1399 | * Traditionally we see ptrace'd stopped tasks regardless of options. | 1399 | * Traditionally we see ptrace'd stopped tasks regardless of options. |
1400 | */ | 1400 | */ |
1401 | if (!ptrace && !(wo->wo_flags & WUNTRACED)) | 1401 | if (!ptrace && !(wo->wo_flags & WUNTRACED)) |
1402 | return 0; | 1402 | return 0; |
1403 | 1403 | ||
1404 | if (!task_stopped_code(p, ptrace)) | 1404 | if (!task_stopped_code(p, ptrace)) |
1405 | return 0; | 1405 | return 0; |
1406 | 1406 | ||
1407 | exit_code = 0; | 1407 | exit_code = 0; |
1408 | spin_lock_irq(&p->sighand->siglock); | 1408 | spin_lock_irq(&p->sighand->siglock); |
1409 | 1409 | ||
1410 | p_code = task_stopped_code(p, ptrace); | 1410 | p_code = task_stopped_code(p, ptrace); |
1411 | if (unlikely(!p_code)) | 1411 | if (unlikely(!p_code)) |
1412 | goto unlock_sig; | 1412 | goto unlock_sig; |
1413 | 1413 | ||
1414 | exit_code = *p_code; | 1414 | exit_code = *p_code; |
1415 | if (!exit_code) | 1415 | if (!exit_code) |
1416 | goto unlock_sig; | 1416 | goto unlock_sig; |
1417 | 1417 | ||
1418 | if (!unlikely(wo->wo_flags & WNOWAIT)) | 1418 | if (!unlikely(wo->wo_flags & WNOWAIT)) |
1419 | *p_code = 0; | 1419 | *p_code = 0; |
1420 | 1420 | ||
1421 | uid = task_uid(p); | 1421 | uid = task_uid(p); |
1422 | unlock_sig: | 1422 | unlock_sig: |
1423 | spin_unlock_irq(&p->sighand->siglock); | 1423 | spin_unlock_irq(&p->sighand->siglock); |
1424 | if (!exit_code) | 1424 | if (!exit_code) |
1425 | return 0; | 1425 | return 0; |
1426 | 1426 | ||
1427 | /* | 1427 | /* |
1428 | * Now we are pretty sure this task is interesting. | 1428 | * Now we are pretty sure this task is interesting. |
1429 | * Make sure it doesn't get reaped out from under us while we | 1429 | * Make sure it doesn't get reaped out from under us while we |
1430 | * give up the lock and then examine it below. We don't want to | 1430 | * give up the lock and then examine it below. We don't want to |
1431 | * keep holding onto the tasklist_lock while we call getrusage and | 1431 | * keep holding onto the tasklist_lock while we call getrusage and |
1432 | * possibly take page faults for user memory. | 1432 | * possibly take page faults for user memory. |
1433 | */ | 1433 | */ |
1434 | get_task_struct(p); | 1434 | get_task_struct(p); |
1435 | pid = task_pid_vnr(p); | 1435 | pid = task_pid_vnr(p); |
1436 | why = ptrace ? CLD_TRAPPED : CLD_STOPPED; | 1436 | why = ptrace ? CLD_TRAPPED : CLD_STOPPED; |
1437 | read_unlock(&tasklist_lock); | 1437 | read_unlock(&tasklist_lock); |
1438 | 1438 | ||
1439 | if (unlikely(wo->wo_flags & WNOWAIT)) | 1439 | if (unlikely(wo->wo_flags & WNOWAIT)) |
1440 | return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); | 1440 | return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); |
1441 | 1441 | ||
1442 | retval = wo->wo_rusage | 1442 | retval = wo->wo_rusage |
1443 | ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; | 1443 | ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; |
1444 | if (!retval && wo->wo_stat) | 1444 | if (!retval && wo->wo_stat) |
1445 | retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); | 1445 | retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); |
1446 | 1446 | ||
1447 | infop = wo->wo_info; | 1447 | infop = wo->wo_info; |
1448 | if (!retval && infop) | 1448 | if (!retval && infop) |
1449 | retval = put_user(SIGCHLD, &infop->si_signo); | 1449 | retval = put_user(SIGCHLD, &infop->si_signo); |
1450 | if (!retval && infop) | 1450 | if (!retval && infop) |
1451 | retval = put_user(0, &infop->si_errno); | 1451 | retval = put_user(0, &infop->si_errno); |
1452 | if (!retval && infop) | 1452 | if (!retval && infop) |
1453 | retval = put_user((short)why, &infop->si_code); | 1453 | retval = put_user((short)why, &infop->si_code); |
1454 | if (!retval && infop) | 1454 | if (!retval && infop) |
1455 | retval = put_user(exit_code, &infop->si_status); | 1455 | retval = put_user(exit_code, &infop->si_status); |
1456 | if (!retval && infop) | 1456 | if (!retval && infop) |
1457 | retval = put_user(pid, &infop->si_pid); | 1457 | retval = put_user(pid, &infop->si_pid); |
1458 | if (!retval && infop) | 1458 | if (!retval && infop) |
1459 | retval = put_user(uid, &infop->si_uid); | 1459 | retval = put_user(uid, &infop->si_uid); |
1460 | if (!retval) | 1460 | if (!retval) |
1461 | retval = pid; | 1461 | retval = pid; |
1462 | put_task_struct(p); | 1462 | put_task_struct(p); |
1463 | 1463 | ||
1464 | BUG_ON(!retval); | 1464 | BUG_ON(!retval); |
1465 | return retval; | 1465 | return retval; |
1466 | } | 1466 | } |
1467 | 1467 | ||
1468 | /* | 1468 | /* |
1469 | * Handle do_wait work for one task in a live, non-stopped state. | 1469 | * Handle do_wait work for one task in a live, non-stopped state. |
1470 | * read_lock(&tasklist_lock) on entry. If we return zero, we still hold | 1470 | * read_lock(&tasklist_lock) on entry. If we return zero, we still hold |
1471 | * the lock and this task is uninteresting. If we return nonzero, we have | 1471 | * the lock and this task is uninteresting. If we return nonzero, we have |
1472 | * released the lock and the system call should return. | 1472 | * released the lock and the system call should return. |
1473 | */ | 1473 | */ |
1474 | static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) | 1474 | static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) |
1475 | { | 1475 | { |
1476 | int retval; | 1476 | int retval; |
1477 | pid_t pid; | 1477 | pid_t pid; |
1478 | uid_t uid; | 1478 | uid_t uid; |
1479 | 1479 | ||
1480 | if (!unlikely(wo->wo_flags & WCONTINUED)) | 1480 | if (!unlikely(wo->wo_flags & WCONTINUED)) |
1481 | return 0; | 1481 | return 0; |
1482 | 1482 | ||
1483 | if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) | 1483 | if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) |
1484 | return 0; | 1484 | return 0; |
1485 | 1485 | ||
1486 | spin_lock_irq(&p->sighand->siglock); | 1486 | spin_lock_irq(&p->sighand->siglock); |
1487 | /* Re-check with the lock held. */ | 1487 | /* Re-check with the lock held. */ |
1488 | if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { | 1488 | if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { |
1489 | spin_unlock_irq(&p->sighand->siglock); | 1489 | spin_unlock_irq(&p->sighand->siglock); |
1490 | return 0; | 1490 | return 0; |
1491 | } | 1491 | } |
1492 | if (!unlikely(wo->wo_flags & WNOWAIT)) | 1492 | if (!unlikely(wo->wo_flags & WNOWAIT)) |
1493 | p->signal->flags &= ~SIGNAL_STOP_CONTINUED; | 1493 | p->signal->flags &= ~SIGNAL_STOP_CONTINUED; |
1494 | uid = task_uid(p); | 1494 | uid = task_uid(p); |
1495 | spin_unlock_irq(&p->sighand->siglock); | 1495 | spin_unlock_irq(&p->sighand->siglock); |
1496 | 1496 | ||
1497 | pid = task_pid_vnr(p); | 1497 | pid = task_pid_vnr(p); |
1498 | get_task_struct(p); | 1498 | get_task_struct(p); |
1499 | read_unlock(&tasklist_lock); | 1499 | read_unlock(&tasklist_lock); |
1500 | 1500 | ||
1501 | if (!wo->wo_info) { | 1501 | if (!wo->wo_info) { |
1502 | retval = wo->wo_rusage | 1502 | retval = wo->wo_rusage |
1503 | ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; | 1503 | ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; |
1504 | put_task_struct(p); | 1504 | put_task_struct(p); |
1505 | if (!retval && wo->wo_stat) | 1505 | if (!retval && wo->wo_stat) |
1506 | retval = put_user(0xffff, wo->wo_stat); | 1506 | retval = put_user(0xffff, wo->wo_stat); |
1507 | if (!retval) | 1507 | if (!retval) |
1508 | retval = pid; | 1508 | retval = pid; |
1509 | } else { | 1509 | } else { |
1510 | retval = wait_noreap_copyout(wo, p, pid, uid, | 1510 | retval = wait_noreap_copyout(wo, p, pid, uid, |
1511 | CLD_CONTINUED, SIGCONT); | 1511 | CLD_CONTINUED, SIGCONT); |
1512 | BUG_ON(retval == 0); | 1512 | BUG_ON(retval == 0); |
1513 | } | 1513 | } |
1514 | 1514 | ||
1515 | return retval; | 1515 | return retval; |
1516 | } | 1516 | } |
1517 | 1517 | ||
1518 | /* | 1518 | /* |
1519 | * Consider @p for a wait by @parent. | 1519 | * Consider @p for a wait by @parent. |
1520 | * | 1520 | * |
1521 | * -ECHILD should be in ->notask_error before the first call. | 1521 | * -ECHILD should be in ->notask_error before the first call. |
1522 | * Returns nonzero for a final return, when we have unlocked tasklist_lock. | 1522 | * Returns nonzero for a final return, when we have unlocked tasklist_lock. |
1523 | * Returns zero if the search for a child should continue; | 1523 | * Returns zero if the search for a child should continue; |
1524 | * then ->notask_error is 0 if @p is an eligible child, | 1524 | * then ->notask_error is 0 if @p is an eligible child, |
1525 | * or another error from security_task_wait(), or still -ECHILD. | 1525 | * or another error from security_task_wait(), or still -ECHILD. |
1526 | */ | 1526 | */ |
1527 | static int wait_consider_task(struct wait_opts *wo, int ptrace, | 1527 | static int wait_consider_task(struct wait_opts *wo, int ptrace, |
1528 | struct task_struct *p) | 1528 | struct task_struct *p) |
1529 | { | 1529 | { |
1530 | int ret = eligible_child(wo, p); | 1530 | int ret = eligible_child(wo, p); |
1531 | if (!ret) | 1531 | if (!ret) |
1532 | return ret; | 1532 | return ret; |
1533 | 1533 | ||
1534 | ret = security_task_wait(p); | 1534 | ret = security_task_wait(p); |
1535 | if (unlikely(ret < 0)) { | 1535 | if (unlikely(ret < 0)) { |
1536 | /* | 1536 | /* |
1537 | * If we have not yet seen any eligible child, | 1537 | * If we have not yet seen any eligible child, |
1538 | * then let this error code replace -ECHILD. | 1538 | * then let this error code replace -ECHILD. |
1539 | * A permission error will give the user a clue | 1539 | * A permission error will give the user a clue |
1540 | * to look for security policy problems, rather | 1540 | * to look for security policy problems, rather |
1541 | * than for mysterious wait bugs. | 1541 | * than for mysterious wait bugs. |
1542 | */ | 1542 | */ |
1543 | if (wo->notask_error) | 1543 | if (wo->notask_error) |
1544 | wo->notask_error = ret; | 1544 | wo->notask_error = ret; |
1545 | return 0; | 1545 | return 0; |
1546 | } | 1546 | } |
1547 | 1547 | ||
1548 | /* dead body doesn't have much to contribute */ | 1548 | /* dead body doesn't have much to contribute */ |
1549 | if (p->exit_state == EXIT_DEAD) | 1549 | if (p->exit_state == EXIT_DEAD) |
1550 | return 0; | 1550 | return 0; |
1551 | 1551 | ||
1552 | /* slay zombie? */ | 1552 | /* slay zombie? */ |
1553 | if (p->exit_state == EXIT_ZOMBIE) { | 1553 | if (p->exit_state == EXIT_ZOMBIE) { |
1554 | /* | 1554 | /* |
1555 | * A zombie ptracee is only visible to its ptracer. | 1555 | * A zombie ptracee is only visible to its ptracer. |
1556 | * Notification and reaping will be cascaded to the real | 1556 | * Notification and reaping will be cascaded to the real |
1557 | * parent when the ptracer detaches. | 1557 | * parent when the ptracer detaches. |
1558 | */ | 1558 | */ |
1559 | if (likely(!ptrace) && unlikely(p->ptrace)) { | 1559 | if (likely(!ptrace) && unlikely(p->ptrace)) { |
1560 | /* it will become visible, clear notask_error */ | 1560 | /* it will become visible, clear notask_error */ |
1561 | wo->notask_error = 0; | 1561 | wo->notask_error = 0; |
1562 | return 0; | 1562 | return 0; |
1563 | } | 1563 | } |
1564 | 1564 | ||
1565 | /* we don't reap group leaders with subthreads */ | 1565 | /* we don't reap group leaders with subthreads */ |
1566 | if (!delay_group_leader(p)) | 1566 | if (!delay_group_leader(p)) |
1567 | return wait_task_zombie(wo, p); | 1567 | return wait_task_zombie(wo, p); |
1568 | 1568 | ||
1569 | /* | 1569 | /* |
1570 | * Allow access to stopped/continued state via zombie by | 1570 | * Allow access to stopped/continued state via zombie by |
1571 | * falling through. Clearing of notask_error is complex. | 1571 | * falling through. Clearing of notask_error is complex. |
1572 | * | 1572 | * |
1573 | * When !@ptrace: | 1573 | * When !@ptrace: |
1574 | * | 1574 | * |
1575 | * If WEXITED is set, notask_error should naturally be | 1575 | * If WEXITED is set, notask_error should naturally be |
1576 | * cleared. If not, subset of WSTOPPED|WCONTINUED is set, | 1576 | * cleared. If not, subset of WSTOPPED|WCONTINUED is set, |
1577 | * so, if there are live subthreads, there are events to | 1577 | * so, if there are live subthreads, there are events to |
1578 | * wait for. If all subthreads are dead, it's still safe | 1578 | * wait for. If all subthreads are dead, it's still safe |
1579 | * to clear - this function will be called again in finite | 1579 | * to clear - this function will be called again in finite |
1580 | * amount time once all the subthreads are released and | 1580 | * amount time once all the subthreads are released and |
1581 | * will then return without clearing. | 1581 | * will then return without clearing. |
1582 | * | 1582 | * |
1583 | * When @ptrace: | 1583 | * When @ptrace: |
1584 | * | 1584 | * |
1585 | * Stopped state is per-task and thus can't change once the | 1585 | * Stopped state is per-task and thus can't change once the |
1586 | * target task dies. Only continued and exited can happen. | 1586 | * target task dies. Only continued and exited can happen. |
1587 | * Clear notask_error if WCONTINUED | WEXITED. | 1587 | * Clear notask_error if WCONTINUED | WEXITED. |
1588 | */ | 1588 | */ |
1589 | if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) | 1589 | if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) |
1590 | wo->notask_error = 0; | 1590 | wo->notask_error = 0; |
1591 | } else { | 1591 | } else { |
1592 | /* | 1592 | /* |
1593 | * If @p is ptraced by a task in its real parent's group, | 1593 | * If @p is ptraced by a task in its real parent's group, |
1594 | * hide group stop/continued state when looking at @p as | 1594 | * hide group stop/continued state when looking at @p as |
1595 | * the real parent; otherwise, a single stop can be | 1595 | * the real parent; otherwise, a single stop can be |
1596 | * reported twice as group and ptrace stops. | 1596 | * reported twice as group and ptrace stops. |
1597 | * | 1597 | * |
1598 | * If a ptracer wants to distinguish the two events for its | 1598 | * If a ptracer wants to distinguish the two events for its |
1599 | * own children, it should create a separate process which | 1599 | * own children, it should create a separate process which |
1600 | * takes the role of real parent. | 1600 | * takes the role of real parent. |
1601 | */ | 1601 | */ |
1602 | if (likely(!ptrace) && p->ptrace && | 1602 | if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p)) |
1603 | same_thread_group(p->parent, p->real_parent)) | ||
1604 | return 0; | 1603 | return 0; |
1605 | 1604 | ||
1606 | /* | 1605 | /* |
1607 | * @p is alive and it's gonna stop, continue or exit, so | 1606 | * @p is alive and it's gonna stop, continue or exit, so |
1608 | * there always is something to wait for. | 1607 | * there always is something to wait for. |
1609 | */ | 1608 | */ |
1610 | wo->notask_error = 0; | 1609 | wo->notask_error = 0; |
1611 | } | 1610 | } |
1612 | 1611 | ||
1613 | /* | 1612 | /* |
1614 | * Wait for stopped. Depending on @ptrace, different stopped state | 1613 | * Wait for stopped. Depending on @ptrace, different stopped state |
1615 | * is used and the two don't interact with each other. | 1614 | * is used and the two don't interact with each other. |
1616 | */ | 1615 | */ |
1617 | ret = wait_task_stopped(wo, ptrace, p); | 1616 | ret = wait_task_stopped(wo, ptrace, p); |
1618 | if (ret) | 1617 | if (ret) |
1619 | return ret; | 1618 | return ret; |
1620 | 1619 | ||
1621 | /* | 1620 | /* |
1622 | * Wait for continued. There's only one continued state and the | 1621 | * Wait for continued. There's only one continued state and the |
1623 | * ptracer can consume it which can confuse the real parent. Don't | 1622 | * ptracer can consume it which can confuse the real parent. Don't |
1624 | * use WCONTINUED from ptracer. You don't need or want it. | 1623 | * use WCONTINUED from ptracer. You don't need or want it. |
1625 | */ | 1624 | */ |
1626 | return wait_task_continued(wo, p); | 1625 | return wait_task_continued(wo, p); |
1627 | } | 1626 | } |
1628 | 1627 | ||
1629 | /* | 1628 | /* |
1630 | * Do the work of do_wait() for one thread in the group, @tsk. | 1629 | * Do the work of do_wait() for one thread in the group, @tsk. |
1631 | * | 1630 | * |
1632 | * -ECHILD should be in ->notask_error before the first call. | 1631 | * -ECHILD should be in ->notask_error before the first call. |
1633 | * Returns nonzero for a final return, when we have unlocked tasklist_lock. | 1632 | * Returns nonzero for a final return, when we have unlocked tasklist_lock. |
1634 | * Returns zero if the search for a child should continue; then | 1633 | * Returns zero if the search for a child should continue; then |
1635 | * ->notask_error is 0 if there were any eligible children, | 1634 | * ->notask_error is 0 if there were any eligible children, |
1636 | * or another error from security_task_wait(), or still -ECHILD. | 1635 | * or another error from security_task_wait(), or still -ECHILD. |
1637 | */ | 1636 | */ |
1638 | static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) | 1637 | static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) |
1639 | { | 1638 | { |
1640 | struct task_struct *p; | 1639 | struct task_struct *p; |
1641 | 1640 | ||
1642 | list_for_each_entry(p, &tsk->children, sibling) { | 1641 | list_for_each_entry(p, &tsk->children, sibling) { |
1643 | int ret = wait_consider_task(wo, 0, p); | 1642 | int ret = wait_consider_task(wo, 0, p); |
1644 | if (ret) | 1643 | if (ret) |
1645 | return ret; | 1644 | return ret; |
1646 | } | 1645 | } |
1647 | 1646 | ||
1648 | return 0; | 1647 | return 0; |
1649 | } | 1648 | } |
1650 | 1649 | ||
1651 | static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) | 1650 | static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) |
1652 | { | 1651 | { |
1653 | struct task_struct *p; | 1652 | struct task_struct *p; |
1654 | 1653 | ||
1655 | list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { | 1654 | list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { |
1656 | int ret = wait_consider_task(wo, 1, p); | 1655 | int ret = wait_consider_task(wo, 1, p); |
1657 | if (ret) | 1656 | if (ret) |
1658 | return ret; | 1657 | return ret; |
1659 | } | 1658 | } |
1660 | 1659 | ||
1661 | return 0; | 1660 | return 0; |
1662 | } | 1661 | } |
1663 | 1662 | ||
1664 | static int child_wait_callback(wait_queue_t *wait, unsigned mode, | 1663 | static int child_wait_callback(wait_queue_t *wait, unsigned mode, |
1665 | int sync, void *key) | 1664 | int sync, void *key) |
1666 | { | 1665 | { |
1667 | struct wait_opts *wo = container_of(wait, struct wait_opts, | 1666 | struct wait_opts *wo = container_of(wait, struct wait_opts, |
1668 | child_wait); | 1667 | child_wait); |
1669 | struct task_struct *p = key; | 1668 | struct task_struct *p = key; |
1670 | 1669 | ||
1671 | if (!eligible_pid(wo, p)) | 1670 | if (!eligible_pid(wo, p)) |
1672 | return 0; | 1671 | return 0; |
1673 | 1672 | ||
1674 | if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) | 1673 | if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) |
1675 | return 0; | 1674 | return 0; |
1676 | 1675 | ||
1677 | return default_wake_function(wait, mode, sync, key); | 1676 | return default_wake_function(wait, mode, sync, key); |
1678 | } | 1677 | } |
1679 | 1678 | ||
1680 | void __wake_up_parent(struct task_struct *p, struct task_struct *parent) | 1679 | void __wake_up_parent(struct task_struct *p, struct task_struct *parent) |
1681 | { | 1680 | { |
1682 | __wake_up_sync_key(&parent->signal->wait_chldexit, | 1681 | __wake_up_sync_key(&parent->signal->wait_chldexit, |
1683 | TASK_INTERRUPTIBLE, 1, p); | 1682 | TASK_INTERRUPTIBLE, 1, p); |
1684 | } | 1683 | } |
1685 | 1684 | ||
1686 | static long do_wait(struct wait_opts *wo) | 1685 | static long do_wait(struct wait_opts *wo) |
1687 | { | 1686 | { |
1688 | struct task_struct *tsk; | 1687 | struct task_struct *tsk; |
1689 | int retval; | 1688 | int retval; |
1690 | 1689 | ||
1691 | trace_sched_process_wait(wo->wo_pid); | 1690 | trace_sched_process_wait(wo->wo_pid); |
1692 | 1691 | ||
1693 | init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); | 1692 | init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); |
1694 | wo->child_wait.private = current; | 1693 | wo->child_wait.private = current; |
1695 | add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); | 1694 | add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); |
1696 | repeat: | 1695 | repeat: |
1697 | /* | 1696 | /* |
1698 | * If there is nothing that can match our critiera just get out. | 1697 | * If there is nothing that can match our critiera just get out. |
1699 | * We will clear ->notask_error to zero if we see any child that | 1698 | * We will clear ->notask_error to zero if we see any child that |
1700 | * might later match our criteria, even if we are not able to reap | 1699 | * might later match our criteria, even if we are not able to reap |
1701 | * it yet. | 1700 | * it yet. |
1702 | */ | 1701 | */ |
1703 | wo->notask_error = -ECHILD; | 1702 | wo->notask_error = -ECHILD; |
1704 | if ((wo->wo_type < PIDTYPE_MAX) && | 1703 | if ((wo->wo_type < PIDTYPE_MAX) && |
1705 | (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) | 1704 | (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) |
1706 | goto notask; | 1705 | goto notask; |
1707 | 1706 | ||
1708 | set_current_state(TASK_INTERRUPTIBLE); | 1707 | set_current_state(TASK_INTERRUPTIBLE); |
1709 | read_lock(&tasklist_lock); | 1708 | read_lock(&tasklist_lock); |
1710 | tsk = current; | 1709 | tsk = current; |
1711 | do { | 1710 | do { |
1712 | retval = do_wait_thread(wo, tsk); | 1711 | retval = do_wait_thread(wo, tsk); |
1713 | if (retval) | 1712 | if (retval) |
1714 | goto end; | 1713 | goto end; |
1715 | 1714 | ||
1716 | retval = ptrace_do_wait(wo, tsk); | 1715 | retval = ptrace_do_wait(wo, tsk); |
1717 | if (retval) | 1716 | if (retval) |
1718 | goto end; | 1717 | goto end; |
1719 | 1718 | ||
1720 | if (wo->wo_flags & __WNOTHREAD) | 1719 | if (wo->wo_flags & __WNOTHREAD) |
1721 | break; | 1720 | break; |
1722 | } while_each_thread(current, tsk); | 1721 | } while_each_thread(current, tsk); |
1723 | read_unlock(&tasklist_lock); | 1722 | read_unlock(&tasklist_lock); |
1724 | 1723 | ||
1725 | notask: | 1724 | notask: |
1726 | retval = wo->notask_error; | 1725 | retval = wo->notask_error; |
1727 | if (!retval && !(wo->wo_flags & WNOHANG)) { | 1726 | if (!retval && !(wo->wo_flags & WNOHANG)) { |
1728 | retval = -ERESTARTSYS; | 1727 | retval = -ERESTARTSYS; |
1729 | if (!signal_pending(current)) { | 1728 | if (!signal_pending(current)) { |
1730 | schedule(); | 1729 | schedule(); |
1731 | goto repeat; | 1730 | goto repeat; |
1732 | } | 1731 | } |
1733 | } | 1732 | } |
1734 | end: | 1733 | end: |
1735 | __set_current_state(TASK_RUNNING); | 1734 | __set_current_state(TASK_RUNNING); |
1736 | remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); | 1735 | remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); |
1737 | return retval; | 1736 | return retval; |
1738 | } | 1737 | } |
1739 | 1738 | ||
1740 | SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, | 1739 | SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, |
1741 | infop, int, options, struct rusage __user *, ru) | 1740 | infop, int, options, struct rusage __user *, ru) |
1742 | { | 1741 | { |
1743 | struct wait_opts wo; | 1742 | struct wait_opts wo; |
1744 | struct pid *pid = NULL; | 1743 | struct pid *pid = NULL; |
1745 | enum pid_type type; | 1744 | enum pid_type type; |
1746 | long ret; | 1745 | long ret; |
1747 | 1746 | ||
1748 | if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) | 1747 | if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) |
1749 | return -EINVAL; | 1748 | return -EINVAL; |
1750 | if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) | 1749 | if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) |
1751 | return -EINVAL; | 1750 | return -EINVAL; |
1752 | 1751 | ||
1753 | switch (which) { | 1752 | switch (which) { |
1754 | case P_ALL: | 1753 | case P_ALL: |
1755 | type = PIDTYPE_MAX; | 1754 | type = PIDTYPE_MAX; |
1756 | break; | 1755 | break; |
1757 | case P_PID: | 1756 | case P_PID: |
1758 | type = PIDTYPE_PID; | 1757 | type = PIDTYPE_PID; |
1759 | if (upid <= 0) | 1758 | if (upid <= 0) |
1760 | return -EINVAL; | 1759 | return -EINVAL; |
1761 | break; | 1760 | break; |
1762 | case P_PGID: | 1761 | case P_PGID: |
1763 | type = PIDTYPE_PGID; | 1762 | type = PIDTYPE_PGID; |
1764 | if (upid <= 0) | 1763 | if (upid <= 0) |
1765 | return -EINVAL; | 1764 | return -EINVAL; |
1766 | break; | 1765 | break; |
1767 | default: | 1766 | default: |
1768 | return -EINVAL; | 1767 | return -EINVAL; |
1769 | } | 1768 | } |
1770 | 1769 | ||
1771 | if (type < PIDTYPE_MAX) | 1770 | if (type < PIDTYPE_MAX) |
1772 | pid = find_get_pid(upid); | 1771 | pid = find_get_pid(upid); |
1773 | 1772 | ||
1774 | wo.wo_type = type; | 1773 | wo.wo_type = type; |
1775 | wo.wo_pid = pid; | 1774 | wo.wo_pid = pid; |
1776 | wo.wo_flags = options; | 1775 | wo.wo_flags = options; |
1777 | wo.wo_info = infop; | 1776 | wo.wo_info = infop; |
1778 | wo.wo_stat = NULL; | 1777 | wo.wo_stat = NULL; |
1779 | wo.wo_rusage = ru; | 1778 | wo.wo_rusage = ru; |
1780 | ret = do_wait(&wo); | 1779 | ret = do_wait(&wo); |
1781 | 1780 | ||
1782 | if (ret > 0) { | 1781 | if (ret > 0) { |
1783 | ret = 0; | 1782 | ret = 0; |
1784 | } else if (infop) { | 1783 | } else if (infop) { |
1785 | /* | 1784 | /* |
1786 | * For a WNOHANG return, clear out all the fields | 1785 | * For a WNOHANG return, clear out all the fields |
1787 | * we would set so the user can easily tell the | 1786 | * we would set so the user can easily tell the |
1788 | * difference. | 1787 | * difference. |
1789 | */ | 1788 | */ |
1790 | if (!ret) | 1789 | if (!ret) |
1791 | ret = put_user(0, &infop->si_signo); | 1790 | ret = put_user(0, &infop->si_signo); |
1792 | if (!ret) | 1791 | if (!ret) |
1793 | ret = put_user(0, &infop->si_errno); | 1792 | ret = put_user(0, &infop->si_errno); |
1794 | if (!ret) | 1793 | if (!ret) |
1795 | ret = put_user(0, &infop->si_code); | 1794 | ret = put_user(0, &infop->si_code); |
1796 | if (!ret) | 1795 | if (!ret) |
1797 | ret = put_user(0, &infop->si_pid); | 1796 | ret = put_user(0, &infop->si_pid); |
1798 | if (!ret) | 1797 | if (!ret) |
1799 | ret = put_user(0, &infop->si_uid); | 1798 | ret = put_user(0, &infop->si_uid); |
1800 | if (!ret) | 1799 | if (!ret) |
1801 | ret = put_user(0, &infop->si_status); | 1800 | ret = put_user(0, &infop->si_status); |
1802 | } | 1801 | } |
1803 | 1802 | ||
1804 | put_pid(pid); | 1803 | put_pid(pid); |
1805 | 1804 | ||
1806 | /* avoid REGPARM breakage on x86: */ | 1805 | /* avoid REGPARM breakage on x86: */ |
1807 | asmlinkage_protect(5, ret, which, upid, infop, options, ru); | 1806 | asmlinkage_protect(5, ret, which, upid, infop, options, ru); |
1808 | return ret; | 1807 | return ret; |
1809 | } | 1808 | } |
1810 | 1809 | ||
1811 | SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, | 1810 | SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, |
1812 | int, options, struct rusage __user *, ru) | 1811 | int, options, struct rusage __user *, ru) |
1813 | { | 1812 | { |
1814 | struct wait_opts wo; | 1813 | struct wait_opts wo; |
1815 | struct pid *pid = NULL; | 1814 | struct pid *pid = NULL; |
1816 | enum pid_type type; | 1815 | enum pid_type type; |
1817 | long ret; | 1816 | long ret; |
1818 | 1817 | ||
1819 | if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| | 1818 | if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| |
1820 | __WNOTHREAD|__WCLONE|__WALL)) | 1819 | __WNOTHREAD|__WCLONE|__WALL)) |
1821 | return -EINVAL; | 1820 | return -EINVAL; |
1822 | 1821 | ||
1823 | if (upid == -1) | 1822 | if (upid == -1) |
1824 | type = PIDTYPE_MAX; | 1823 | type = PIDTYPE_MAX; |
1825 | else if (upid < 0) { | 1824 | else if (upid < 0) { |
1826 | type = PIDTYPE_PGID; | 1825 | type = PIDTYPE_PGID; |
1827 | pid = find_get_pid(-upid); | 1826 | pid = find_get_pid(-upid); |
1828 | } else if (upid == 0) { | 1827 | } else if (upid == 0) { |
1829 | type = PIDTYPE_PGID; | 1828 | type = PIDTYPE_PGID; |
1830 | pid = get_task_pid(current, PIDTYPE_PGID); | 1829 | pid = get_task_pid(current, PIDTYPE_PGID); |
1831 | } else /* upid > 0 */ { | 1830 | } else /* upid > 0 */ { |
1832 | type = PIDTYPE_PID; | 1831 | type = PIDTYPE_PID; |
1833 | pid = find_get_pid(upid); | 1832 | pid = find_get_pid(upid); |
1834 | } | 1833 | } |
1835 | 1834 | ||
1836 | wo.wo_type = type; | 1835 | wo.wo_type = type; |
1837 | wo.wo_pid = pid; | 1836 | wo.wo_pid = pid; |
1838 | wo.wo_flags = options | WEXITED; | 1837 | wo.wo_flags = options | WEXITED; |
1839 | wo.wo_info = NULL; | 1838 | wo.wo_info = NULL; |
1840 | wo.wo_stat = stat_addr; | 1839 | wo.wo_stat = stat_addr; |
1841 | wo.wo_rusage = ru; | 1840 | wo.wo_rusage = ru; |
1842 | ret = do_wait(&wo); | 1841 | ret = do_wait(&wo); |
1843 | put_pid(pid); | 1842 | put_pid(pid); |
1844 | 1843 | ||
1845 | /* avoid REGPARM breakage on x86: */ | 1844 | /* avoid REGPARM breakage on x86: */ |
1846 | asmlinkage_protect(4, ret, upid, stat_addr, options, ru); | 1845 | asmlinkage_protect(4, ret, upid, stat_addr, options, ru); |
1847 | return ret; | 1846 | return ret; |
1848 | } | 1847 | } |
1849 | 1848 | ||
1850 | #ifdef __ARCH_WANT_SYS_WAITPID | 1849 | #ifdef __ARCH_WANT_SYS_WAITPID |
1851 | 1850 | ||
1852 | /* | 1851 | /* |
1853 | * sys_waitpid() remains for compatibility. waitpid() should be | 1852 | * sys_waitpid() remains for compatibility. waitpid() should be |
1854 | * implemented by calling sys_wait4() from libc.a. | 1853 | * implemented by calling sys_wait4() from libc.a. |
1855 | */ | 1854 | */ |
1856 | SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) | 1855 | SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) |
1857 | { | 1856 | { |
1858 | return sys_wait4(pid, stat_addr, options, NULL); | 1857 | return sys_wait4(pid, stat_addr, options, NULL); |
1859 | } | 1858 | } |
1860 | 1859 | ||
1861 | #endif | 1860 | #endif |
1862 | 1861 |