Commit 479bf98c1c29b40d86e40a4e6e4944c2f03d9493

Authored by Oleg Nesterov
1 parent bb3696da89

ptrace: wait_consider_task: s/same_thread_group/ptrace_reparented/

wait_consider_task() checks same_thread_group(parent, real_parent),
this is the open-coded ptrace_reparented().

__ptrace_detach() remains the only function which has to check this by
hand, although we could reorganize the code to delay __ptrace_unlink.

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Tejun Heo <tj@kernel.org>

Showing 1 changed file with 1 additions and 2 deletions Inline Diff

1 /* 1 /*
2 * linux/kernel/exit.c 2 * linux/kernel/exit.c
3 * 3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds 4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */ 5 */
6 6
7 #include <linux/mm.h> 7 #include <linux/mm.h>
8 #include <linux/slab.h> 8 #include <linux/slab.h>
9 #include <linux/interrupt.h> 9 #include <linux/interrupt.h>
10 #include <linux/module.h> 10 #include <linux/module.h>
11 #include <linux/capability.h> 11 #include <linux/capability.h>
12 #include <linux/completion.h> 12 #include <linux/completion.h>
13 #include <linux/personality.h> 13 #include <linux/personality.h>
14 #include <linux/tty.h> 14 #include <linux/tty.h>
15 #include <linux/iocontext.h> 15 #include <linux/iocontext.h>
16 #include <linux/key.h> 16 #include <linux/key.h>
17 #include <linux/security.h> 17 #include <linux/security.h>
18 #include <linux/cpu.h> 18 #include <linux/cpu.h>
19 #include <linux/acct.h> 19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h> 20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h> 21 #include <linux/file.h>
22 #include <linux/fdtable.h> 22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h> 23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h> 24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h> 25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h> 26 #include <linux/ptrace.h>
27 #include <linux/profile.h> 27 #include <linux/profile.h>
28 #include <linux/mount.h> 28 #include <linux/mount.h>
29 #include <linux/proc_fs.h> 29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h> 30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h> 31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h> 32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h> 33 #include <linux/delayacct.h>
34 #include <linux/freezer.h> 34 #include <linux/freezer.h>
35 #include <linux/cgroup.h> 35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h> 36 #include <linux/syscalls.h>
37 #include <linux/signal.h> 37 #include <linux/signal.h>
38 #include <linux/posix-timers.h> 38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h> 39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h> 40 #include <linux/mutex.h>
41 #include <linux/futex.h> 41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h> 42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */ 43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h> 44 #include <linux/resource.h>
45 #include <linux/blkdev.h> 45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h> 46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h> 47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h> 48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h> 49 #include <linux/init_task.h>
50 #include <linux/perf_event.h> 50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h> 51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h> 52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h> 53 #include <linux/oom.h>
54 54
55 #include <asm/uaccess.h> 55 #include <asm/uaccess.h>
56 #include <asm/unistd.h> 56 #include <asm/unistd.h>
57 #include <asm/pgtable.h> 57 #include <asm/pgtable.h>
58 #include <asm/mmu_context.h> 58 #include <asm/mmu_context.h>
59 59
60 static void exit_mm(struct task_struct * tsk); 60 static void exit_mm(struct task_struct * tsk);
61 61
62 static void __unhash_process(struct task_struct *p, bool group_dead) 62 static void __unhash_process(struct task_struct *p, bool group_dead)
63 { 63 {
64 nr_threads--; 64 nr_threads--;
65 detach_pid(p, PIDTYPE_PID); 65 detach_pid(p, PIDTYPE_PID);
66 if (group_dead) { 66 if (group_dead) {
67 detach_pid(p, PIDTYPE_PGID); 67 detach_pid(p, PIDTYPE_PGID);
68 detach_pid(p, PIDTYPE_SID); 68 detach_pid(p, PIDTYPE_SID);
69 69
70 list_del_rcu(&p->tasks); 70 list_del_rcu(&p->tasks);
71 list_del_init(&p->sibling); 71 list_del_init(&p->sibling);
72 __this_cpu_dec(process_counts); 72 __this_cpu_dec(process_counts);
73 } 73 }
74 list_del_rcu(&p->thread_group); 74 list_del_rcu(&p->thread_group);
75 } 75 }
76 76
77 /* 77 /*
78 * This function expects the tasklist_lock write-locked. 78 * This function expects the tasklist_lock write-locked.
79 */ 79 */
80 static void __exit_signal(struct task_struct *tsk) 80 static void __exit_signal(struct task_struct *tsk)
81 { 81 {
82 struct signal_struct *sig = tsk->signal; 82 struct signal_struct *sig = tsk->signal;
83 bool group_dead = thread_group_leader(tsk); 83 bool group_dead = thread_group_leader(tsk);
84 struct sighand_struct *sighand; 84 struct sighand_struct *sighand;
85 struct tty_struct *uninitialized_var(tty); 85 struct tty_struct *uninitialized_var(tty);
86 86
87 sighand = rcu_dereference_check(tsk->sighand, 87 sighand = rcu_dereference_check(tsk->sighand,
88 rcu_read_lock_held() || 88 rcu_read_lock_held() ||
89 lockdep_tasklist_lock_is_held()); 89 lockdep_tasklist_lock_is_held());
90 spin_lock(&sighand->siglock); 90 spin_lock(&sighand->siglock);
91 91
92 posix_cpu_timers_exit(tsk); 92 posix_cpu_timers_exit(tsk);
93 if (group_dead) { 93 if (group_dead) {
94 posix_cpu_timers_exit_group(tsk); 94 posix_cpu_timers_exit_group(tsk);
95 tty = sig->tty; 95 tty = sig->tty;
96 sig->tty = NULL; 96 sig->tty = NULL;
97 } else { 97 } else {
98 /* 98 /*
99 * This can only happen if the caller is de_thread(). 99 * This can only happen if the caller is de_thread().
100 * FIXME: this is the temporary hack, we should teach 100 * FIXME: this is the temporary hack, we should teach
101 * posix-cpu-timers to handle this case correctly. 101 * posix-cpu-timers to handle this case correctly.
102 */ 102 */
103 if (unlikely(has_group_leader_pid(tsk))) 103 if (unlikely(has_group_leader_pid(tsk)))
104 posix_cpu_timers_exit_group(tsk); 104 posix_cpu_timers_exit_group(tsk);
105 105
106 /* 106 /*
107 * If there is any task waiting for the group exit 107 * If there is any task waiting for the group exit
108 * then notify it: 108 * then notify it:
109 */ 109 */
110 if (sig->notify_count > 0 && !--sig->notify_count) 110 if (sig->notify_count > 0 && !--sig->notify_count)
111 wake_up_process(sig->group_exit_task); 111 wake_up_process(sig->group_exit_task);
112 112
113 if (tsk == sig->curr_target) 113 if (tsk == sig->curr_target)
114 sig->curr_target = next_thread(tsk); 114 sig->curr_target = next_thread(tsk);
115 /* 115 /*
116 * Accumulate here the counters for all threads but the 116 * Accumulate here the counters for all threads but the
117 * group leader as they die, so they can be added into 117 * group leader as they die, so they can be added into
118 * the process-wide totals when those are taken. 118 * the process-wide totals when those are taken.
119 * The group leader stays around as a zombie as long 119 * The group leader stays around as a zombie as long
120 * as there are other threads. When it gets reaped, 120 * as there are other threads. When it gets reaped,
121 * the exit.c code will add its counts into these totals. 121 * the exit.c code will add its counts into these totals.
122 * We won't ever get here for the group leader, since it 122 * We won't ever get here for the group leader, since it
123 * will have been the last reference on the signal_struct. 123 * will have been the last reference on the signal_struct.
124 */ 124 */
125 sig->utime = cputime_add(sig->utime, tsk->utime); 125 sig->utime = cputime_add(sig->utime, tsk->utime);
126 sig->stime = cputime_add(sig->stime, tsk->stime); 126 sig->stime = cputime_add(sig->stime, tsk->stime);
127 sig->gtime = cputime_add(sig->gtime, tsk->gtime); 127 sig->gtime = cputime_add(sig->gtime, tsk->gtime);
128 sig->min_flt += tsk->min_flt; 128 sig->min_flt += tsk->min_flt;
129 sig->maj_flt += tsk->maj_flt; 129 sig->maj_flt += tsk->maj_flt;
130 sig->nvcsw += tsk->nvcsw; 130 sig->nvcsw += tsk->nvcsw;
131 sig->nivcsw += tsk->nivcsw; 131 sig->nivcsw += tsk->nivcsw;
132 sig->inblock += task_io_get_inblock(tsk); 132 sig->inblock += task_io_get_inblock(tsk);
133 sig->oublock += task_io_get_oublock(tsk); 133 sig->oublock += task_io_get_oublock(tsk);
134 task_io_accounting_add(&sig->ioac, &tsk->ioac); 134 task_io_accounting_add(&sig->ioac, &tsk->ioac);
135 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 135 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
136 } 136 }
137 137
138 sig->nr_threads--; 138 sig->nr_threads--;
139 __unhash_process(tsk, group_dead); 139 __unhash_process(tsk, group_dead);
140 140
141 /* 141 /*
142 * Do this under ->siglock, we can race with another thread 142 * Do this under ->siglock, we can race with another thread
143 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 143 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
144 */ 144 */
145 flush_sigqueue(&tsk->pending); 145 flush_sigqueue(&tsk->pending);
146 tsk->sighand = NULL; 146 tsk->sighand = NULL;
147 spin_unlock(&sighand->siglock); 147 spin_unlock(&sighand->siglock);
148 148
149 __cleanup_sighand(sighand); 149 __cleanup_sighand(sighand);
150 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 150 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
151 if (group_dead) { 151 if (group_dead) {
152 flush_sigqueue(&sig->shared_pending); 152 flush_sigqueue(&sig->shared_pending);
153 tty_kref_put(tty); 153 tty_kref_put(tty);
154 } 154 }
155 } 155 }
156 156
157 static void delayed_put_task_struct(struct rcu_head *rhp) 157 static void delayed_put_task_struct(struct rcu_head *rhp)
158 { 158 {
159 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 159 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
160 160
161 perf_event_delayed_put(tsk); 161 perf_event_delayed_put(tsk);
162 trace_sched_process_free(tsk); 162 trace_sched_process_free(tsk);
163 put_task_struct(tsk); 163 put_task_struct(tsk);
164 } 164 }
165 165
166 166
167 void release_task(struct task_struct * p) 167 void release_task(struct task_struct * p)
168 { 168 {
169 struct task_struct *leader; 169 struct task_struct *leader;
170 int zap_leader; 170 int zap_leader;
171 repeat: 171 repeat:
172 /* don't need to get the RCU readlock here - the process is dead and 172 /* don't need to get the RCU readlock here - the process is dead and
173 * can't be modifying its own credentials. But shut RCU-lockdep up */ 173 * can't be modifying its own credentials. But shut RCU-lockdep up */
174 rcu_read_lock(); 174 rcu_read_lock();
175 atomic_dec(&__task_cred(p)->user->processes); 175 atomic_dec(&__task_cred(p)->user->processes);
176 rcu_read_unlock(); 176 rcu_read_unlock();
177 177
178 proc_flush_task(p); 178 proc_flush_task(p);
179 179
180 write_lock_irq(&tasklist_lock); 180 write_lock_irq(&tasklist_lock);
181 ptrace_release_task(p); 181 ptrace_release_task(p);
182 __exit_signal(p); 182 __exit_signal(p);
183 183
184 /* 184 /*
185 * If we are the last non-leader member of the thread 185 * If we are the last non-leader member of the thread
186 * group, and the leader is zombie, then notify the 186 * group, and the leader is zombie, then notify the
187 * group leader's parent process. (if it wants notification.) 187 * group leader's parent process. (if it wants notification.)
188 */ 188 */
189 zap_leader = 0; 189 zap_leader = 0;
190 leader = p->group_leader; 190 leader = p->group_leader;
191 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 191 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
192 /* 192 /*
193 * If we were the last child thread and the leader has 193 * If we were the last child thread and the leader has
194 * exited already, and the leader's parent ignores SIGCHLD, 194 * exited already, and the leader's parent ignores SIGCHLD,
195 * then we are the one who should release the leader. 195 * then we are the one who should release the leader.
196 */ 196 */
197 zap_leader = do_notify_parent(leader, leader->exit_signal); 197 zap_leader = do_notify_parent(leader, leader->exit_signal);
198 if (zap_leader) 198 if (zap_leader)
199 leader->exit_state = EXIT_DEAD; 199 leader->exit_state = EXIT_DEAD;
200 } 200 }
201 201
202 write_unlock_irq(&tasklist_lock); 202 write_unlock_irq(&tasklist_lock);
203 release_thread(p); 203 release_thread(p);
204 call_rcu(&p->rcu, delayed_put_task_struct); 204 call_rcu(&p->rcu, delayed_put_task_struct);
205 205
206 p = leader; 206 p = leader;
207 if (unlikely(zap_leader)) 207 if (unlikely(zap_leader))
208 goto repeat; 208 goto repeat;
209 } 209 }
210 210
211 /* 211 /*
212 * This checks not only the pgrp, but falls back on the pid if no 212 * This checks not only the pgrp, but falls back on the pid if no
213 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 213 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
214 * without this... 214 * without this...
215 * 215 *
216 * The caller must hold rcu lock or the tasklist lock. 216 * The caller must hold rcu lock or the tasklist lock.
217 */ 217 */
218 struct pid *session_of_pgrp(struct pid *pgrp) 218 struct pid *session_of_pgrp(struct pid *pgrp)
219 { 219 {
220 struct task_struct *p; 220 struct task_struct *p;
221 struct pid *sid = NULL; 221 struct pid *sid = NULL;
222 222
223 p = pid_task(pgrp, PIDTYPE_PGID); 223 p = pid_task(pgrp, PIDTYPE_PGID);
224 if (p == NULL) 224 if (p == NULL)
225 p = pid_task(pgrp, PIDTYPE_PID); 225 p = pid_task(pgrp, PIDTYPE_PID);
226 if (p != NULL) 226 if (p != NULL)
227 sid = task_session(p); 227 sid = task_session(p);
228 228
229 return sid; 229 return sid;
230 } 230 }
231 231
232 /* 232 /*
233 * Determine if a process group is "orphaned", according to the POSIX 233 * Determine if a process group is "orphaned", according to the POSIX
234 * definition in 2.2.2.52. Orphaned process groups are not to be affected 234 * definition in 2.2.2.52. Orphaned process groups are not to be affected
235 * by terminal-generated stop signals. Newly orphaned process groups are 235 * by terminal-generated stop signals. Newly orphaned process groups are
236 * to receive a SIGHUP and a SIGCONT. 236 * to receive a SIGHUP and a SIGCONT.
237 * 237 *
238 * "I ask you, have you ever known what it is to be an orphan?" 238 * "I ask you, have you ever known what it is to be an orphan?"
239 */ 239 */
240 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 240 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
241 { 241 {
242 struct task_struct *p; 242 struct task_struct *p;
243 243
244 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 244 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
245 if ((p == ignored_task) || 245 if ((p == ignored_task) ||
246 (p->exit_state && thread_group_empty(p)) || 246 (p->exit_state && thread_group_empty(p)) ||
247 is_global_init(p->real_parent)) 247 is_global_init(p->real_parent))
248 continue; 248 continue;
249 249
250 if (task_pgrp(p->real_parent) != pgrp && 250 if (task_pgrp(p->real_parent) != pgrp &&
251 task_session(p->real_parent) == task_session(p)) 251 task_session(p->real_parent) == task_session(p))
252 return 0; 252 return 0;
253 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 253 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
254 254
255 return 1; 255 return 1;
256 } 256 }
257 257
258 int is_current_pgrp_orphaned(void) 258 int is_current_pgrp_orphaned(void)
259 { 259 {
260 int retval; 260 int retval;
261 261
262 read_lock(&tasklist_lock); 262 read_lock(&tasklist_lock);
263 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 263 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
264 read_unlock(&tasklist_lock); 264 read_unlock(&tasklist_lock);
265 265
266 return retval; 266 return retval;
267 } 267 }
268 268
269 static int has_stopped_jobs(struct pid *pgrp) 269 static int has_stopped_jobs(struct pid *pgrp)
270 { 270 {
271 int retval = 0; 271 int retval = 0;
272 struct task_struct *p; 272 struct task_struct *p;
273 273
274 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 274 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
275 if (!task_is_stopped(p)) 275 if (!task_is_stopped(p))
276 continue; 276 continue;
277 retval = 1; 277 retval = 1;
278 break; 278 break;
279 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 279 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
280 return retval; 280 return retval;
281 } 281 }
282 282
283 /* 283 /*
284 * Check to see if any process groups have become orphaned as 284 * Check to see if any process groups have become orphaned as
285 * a result of our exiting, and if they have any stopped jobs, 285 * a result of our exiting, and if they have any stopped jobs,
286 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 286 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
287 */ 287 */
288 static void 288 static void
289 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 289 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
290 { 290 {
291 struct pid *pgrp = task_pgrp(tsk); 291 struct pid *pgrp = task_pgrp(tsk);
292 struct task_struct *ignored_task = tsk; 292 struct task_struct *ignored_task = tsk;
293 293
294 if (!parent) 294 if (!parent)
295 /* exit: our father is in a different pgrp than 295 /* exit: our father is in a different pgrp than
296 * we are and we were the only connection outside. 296 * we are and we were the only connection outside.
297 */ 297 */
298 parent = tsk->real_parent; 298 parent = tsk->real_parent;
299 else 299 else
300 /* reparent: our child is in a different pgrp than 300 /* reparent: our child is in a different pgrp than
301 * we are, and it was the only connection outside. 301 * we are, and it was the only connection outside.
302 */ 302 */
303 ignored_task = NULL; 303 ignored_task = NULL;
304 304
305 if (task_pgrp(parent) != pgrp && 305 if (task_pgrp(parent) != pgrp &&
306 task_session(parent) == task_session(tsk) && 306 task_session(parent) == task_session(tsk) &&
307 will_become_orphaned_pgrp(pgrp, ignored_task) && 307 will_become_orphaned_pgrp(pgrp, ignored_task) &&
308 has_stopped_jobs(pgrp)) { 308 has_stopped_jobs(pgrp)) {
309 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 309 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
310 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 310 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
311 } 311 }
312 } 312 }
313 313
314 /** 314 /**
315 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd 315 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
316 * 316 *
317 * If a kernel thread is launched as a result of a system call, or if 317 * If a kernel thread is launched as a result of a system call, or if
318 * it ever exits, it should generally reparent itself to kthreadd so it 318 * it ever exits, it should generally reparent itself to kthreadd so it
319 * isn't in the way of other processes and is correctly cleaned up on exit. 319 * isn't in the way of other processes and is correctly cleaned up on exit.
320 * 320 *
321 * The various task state such as scheduling policy and priority may have 321 * The various task state such as scheduling policy and priority may have
322 * been inherited from a user process, so we reset them to sane values here. 322 * been inherited from a user process, so we reset them to sane values here.
323 * 323 *
324 * NOTE that reparent_to_kthreadd() gives the caller full capabilities. 324 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
325 */ 325 */
326 static void reparent_to_kthreadd(void) 326 static void reparent_to_kthreadd(void)
327 { 327 {
328 write_lock_irq(&tasklist_lock); 328 write_lock_irq(&tasklist_lock);
329 329
330 ptrace_unlink(current); 330 ptrace_unlink(current);
331 /* Reparent to init */ 331 /* Reparent to init */
332 current->real_parent = current->parent = kthreadd_task; 332 current->real_parent = current->parent = kthreadd_task;
333 list_move_tail(&current->sibling, &current->real_parent->children); 333 list_move_tail(&current->sibling, &current->real_parent->children);
334 334
335 /* Set the exit signal to SIGCHLD so we signal init on exit */ 335 /* Set the exit signal to SIGCHLD so we signal init on exit */
336 current->exit_signal = SIGCHLD; 336 current->exit_signal = SIGCHLD;
337 337
338 if (task_nice(current) < 0) 338 if (task_nice(current) < 0)
339 set_user_nice(current, 0); 339 set_user_nice(current, 0);
340 /* cpus_allowed? */ 340 /* cpus_allowed? */
341 /* rt_priority? */ 341 /* rt_priority? */
342 /* signals? */ 342 /* signals? */
343 memcpy(current->signal->rlim, init_task.signal->rlim, 343 memcpy(current->signal->rlim, init_task.signal->rlim,
344 sizeof(current->signal->rlim)); 344 sizeof(current->signal->rlim));
345 345
346 atomic_inc(&init_cred.usage); 346 atomic_inc(&init_cred.usage);
347 commit_creds(&init_cred); 347 commit_creds(&init_cred);
348 write_unlock_irq(&tasklist_lock); 348 write_unlock_irq(&tasklist_lock);
349 } 349 }
350 350
351 void __set_special_pids(struct pid *pid) 351 void __set_special_pids(struct pid *pid)
352 { 352 {
353 struct task_struct *curr = current->group_leader; 353 struct task_struct *curr = current->group_leader;
354 354
355 if (task_session(curr) != pid) 355 if (task_session(curr) != pid)
356 change_pid(curr, PIDTYPE_SID, pid); 356 change_pid(curr, PIDTYPE_SID, pid);
357 357
358 if (task_pgrp(curr) != pid) 358 if (task_pgrp(curr) != pid)
359 change_pid(curr, PIDTYPE_PGID, pid); 359 change_pid(curr, PIDTYPE_PGID, pid);
360 } 360 }
361 361
362 static void set_special_pids(struct pid *pid) 362 static void set_special_pids(struct pid *pid)
363 { 363 {
364 write_lock_irq(&tasklist_lock); 364 write_lock_irq(&tasklist_lock);
365 __set_special_pids(pid); 365 __set_special_pids(pid);
366 write_unlock_irq(&tasklist_lock); 366 write_unlock_irq(&tasklist_lock);
367 } 367 }
368 368
369 /* 369 /*
370 * Let kernel threads use this to say that they allow a certain signal. 370 * Let kernel threads use this to say that they allow a certain signal.
371 * Must not be used if kthread was cloned with CLONE_SIGHAND. 371 * Must not be used if kthread was cloned with CLONE_SIGHAND.
372 */ 372 */
373 int allow_signal(int sig) 373 int allow_signal(int sig)
374 { 374 {
375 if (!valid_signal(sig) || sig < 1) 375 if (!valid_signal(sig) || sig < 1)
376 return -EINVAL; 376 return -EINVAL;
377 377
378 spin_lock_irq(&current->sighand->siglock); 378 spin_lock_irq(&current->sighand->siglock);
379 /* This is only needed for daemonize()'ed kthreads */ 379 /* This is only needed for daemonize()'ed kthreads */
380 sigdelset(&current->blocked, sig); 380 sigdelset(&current->blocked, sig);
381 /* 381 /*
382 * Kernel threads handle their own signals. Let the signal code 382 * Kernel threads handle their own signals. Let the signal code
383 * know it'll be handled, so that they don't get converted to 383 * know it'll be handled, so that they don't get converted to
384 * SIGKILL or just silently dropped. 384 * SIGKILL or just silently dropped.
385 */ 385 */
386 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 386 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
387 recalc_sigpending(); 387 recalc_sigpending();
388 spin_unlock_irq(&current->sighand->siglock); 388 spin_unlock_irq(&current->sighand->siglock);
389 return 0; 389 return 0;
390 } 390 }
391 391
392 EXPORT_SYMBOL(allow_signal); 392 EXPORT_SYMBOL(allow_signal);
393 393
394 int disallow_signal(int sig) 394 int disallow_signal(int sig)
395 { 395 {
396 if (!valid_signal(sig) || sig < 1) 396 if (!valid_signal(sig) || sig < 1)
397 return -EINVAL; 397 return -EINVAL;
398 398
399 spin_lock_irq(&current->sighand->siglock); 399 spin_lock_irq(&current->sighand->siglock);
400 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; 400 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
401 recalc_sigpending(); 401 recalc_sigpending();
402 spin_unlock_irq(&current->sighand->siglock); 402 spin_unlock_irq(&current->sighand->siglock);
403 return 0; 403 return 0;
404 } 404 }
405 405
406 EXPORT_SYMBOL(disallow_signal); 406 EXPORT_SYMBOL(disallow_signal);
407 407
408 /* 408 /*
409 * Put all the gunge required to become a kernel thread without 409 * Put all the gunge required to become a kernel thread without
410 * attached user resources in one place where it belongs. 410 * attached user resources in one place where it belongs.
411 */ 411 */
412 412
413 void daemonize(const char *name, ...) 413 void daemonize(const char *name, ...)
414 { 414 {
415 va_list args; 415 va_list args;
416 sigset_t blocked; 416 sigset_t blocked;
417 417
418 va_start(args, name); 418 va_start(args, name);
419 vsnprintf(current->comm, sizeof(current->comm), name, args); 419 vsnprintf(current->comm, sizeof(current->comm), name, args);
420 va_end(args); 420 va_end(args);
421 421
422 /* 422 /*
423 * If we were started as result of loading a module, close all of the 423 * If we were started as result of loading a module, close all of the
424 * user space pages. We don't need them, and if we didn't close them 424 * user space pages. We don't need them, and if we didn't close them
425 * they would be locked into memory. 425 * they would be locked into memory.
426 */ 426 */
427 exit_mm(current); 427 exit_mm(current);
428 /* 428 /*
429 * We don't want to have TIF_FREEZE set if the system-wide hibernation 429 * We don't want to have TIF_FREEZE set if the system-wide hibernation
430 * or suspend transition begins right now. 430 * or suspend transition begins right now.
431 */ 431 */
432 current->flags |= (PF_NOFREEZE | PF_KTHREAD); 432 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
433 433
434 if (current->nsproxy != &init_nsproxy) { 434 if (current->nsproxy != &init_nsproxy) {
435 get_nsproxy(&init_nsproxy); 435 get_nsproxy(&init_nsproxy);
436 switch_task_namespaces(current, &init_nsproxy); 436 switch_task_namespaces(current, &init_nsproxy);
437 } 437 }
438 set_special_pids(&init_struct_pid); 438 set_special_pids(&init_struct_pid);
439 proc_clear_tty(current); 439 proc_clear_tty(current);
440 440
441 /* Block and flush all signals */ 441 /* Block and flush all signals */
442 sigfillset(&blocked); 442 sigfillset(&blocked);
443 sigprocmask(SIG_BLOCK, &blocked, NULL); 443 sigprocmask(SIG_BLOCK, &blocked, NULL);
444 flush_signals(current); 444 flush_signals(current);
445 445
446 /* Become as one with the init task */ 446 /* Become as one with the init task */
447 447
448 daemonize_fs_struct(); 448 daemonize_fs_struct();
449 exit_files(current); 449 exit_files(current);
450 current->files = init_task.files; 450 current->files = init_task.files;
451 atomic_inc(&current->files->count); 451 atomic_inc(&current->files->count);
452 452
453 reparent_to_kthreadd(); 453 reparent_to_kthreadd();
454 } 454 }
455 455
456 EXPORT_SYMBOL(daemonize); 456 EXPORT_SYMBOL(daemonize);
457 457
458 static void close_files(struct files_struct * files) 458 static void close_files(struct files_struct * files)
459 { 459 {
460 int i, j; 460 int i, j;
461 struct fdtable *fdt; 461 struct fdtable *fdt;
462 462
463 j = 0; 463 j = 0;
464 464
465 /* 465 /*
466 * It is safe to dereference the fd table without RCU or 466 * It is safe to dereference the fd table without RCU or
467 * ->file_lock because this is the last reference to the 467 * ->file_lock because this is the last reference to the
468 * files structure. But use RCU to shut RCU-lockdep up. 468 * files structure. But use RCU to shut RCU-lockdep up.
469 */ 469 */
470 rcu_read_lock(); 470 rcu_read_lock();
471 fdt = files_fdtable(files); 471 fdt = files_fdtable(files);
472 rcu_read_unlock(); 472 rcu_read_unlock();
473 for (;;) { 473 for (;;) {
474 unsigned long set; 474 unsigned long set;
475 i = j * __NFDBITS; 475 i = j * __NFDBITS;
476 if (i >= fdt->max_fds) 476 if (i >= fdt->max_fds)
477 break; 477 break;
478 set = fdt->open_fds->fds_bits[j++]; 478 set = fdt->open_fds->fds_bits[j++];
479 while (set) { 479 while (set) {
480 if (set & 1) { 480 if (set & 1) {
481 struct file * file = xchg(&fdt->fd[i], NULL); 481 struct file * file = xchg(&fdt->fd[i], NULL);
482 if (file) { 482 if (file) {
483 filp_close(file, files); 483 filp_close(file, files);
484 cond_resched(); 484 cond_resched();
485 } 485 }
486 } 486 }
487 i++; 487 i++;
488 set >>= 1; 488 set >>= 1;
489 } 489 }
490 } 490 }
491 } 491 }
492 492
493 struct files_struct *get_files_struct(struct task_struct *task) 493 struct files_struct *get_files_struct(struct task_struct *task)
494 { 494 {
495 struct files_struct *files; 495 struct files_struct *files;
496 496
497 task_lock(task); 497 task_lock(task);
498 files = task->files; 498 files = task->files;
499 if (files) 499 if (files)
500 atomic_inc(&files->count); 500 atomic_inc(&files->count);
501 task_unlock(task); 501 task_unlock(task);
502 502
503 return files; 503 return files;
504 } 504 }
505 505
506 void put_files_struct(struct files_struct *files) 506 void put_files_struct(struct files_struct *files)
507 { 507 {
508 struct fdtable *fdt; 508 struct fdtable *fdt;
509 509
510 if (atomic_dec_and_test(&files->count)) { 510 if (atomic_dec_and_test(&files->count)) {
511 close_files(files); 511 close_files(files);
512 /* 512 /*
513 * Free the fd and fdset arrays if we expanded them. 513 * Free the fd and fdset arrays if we expanded them.
514 * If the fdtable was embedded, pass files for freeing 514 * If the fdtable was embedded, pass files for freeing
515 * at the end of the RCU grace period. Otherwise, 515 * at the end of the RCU grace period. Otherwise,
516 * you can free files immediately. 516 * you can free files immediately.
517 */ 517 */
518 rcu_read_lock(); 518 rcu_read_lock();
519 fdt = files_fdtable(files); 519 fdt = files_fdtable(files);
520 if (fdt != &files->fdtab) 520 if (fdt != &files->fdtab)
521 kmem_cache_free(files_cachep, files); 521 kmem_cache_free(files_cachep, files);
522 free_fdtable(fdt); 522 free_fdtable(fdt);
523 rcu_read_unlock(); 523 rcu_read_unlock();
524 } 524 }
525 } 525 }
526 526
527 void reset_files_struct(struct files_struct *files) 527 void reset_files_struct(struct files_struct *files)
528 { 528 {
529 struct task_struct *tsk = current; 529 struct task_struct *tsk = current;
530 struct files_struct *old; 530 struct files_struct *old;
531 531
532 old = tsk->files; 532 old = tsk->files;
533 task_lock(tsk); 533 task_lock(tsk);
534 tsk->files = files; 534 tsk->files = files;
535 task_unlock(tsk); 535 task_unlock(tsk);
536 put_files_struct(old); 536 put_files_struct(old);
537 } 537 }
538 538
539 void exit_files(struct task_struct *tsk) 539 void exit_files(struct task_struct *tsk)
540 { 540 {
541 struct files_struct * files = tsk->files; 541 struct files_struct * files = tsk->files;
542 542
543 if (files) { 543 if (files) {
544 task_lock(tsk); 544 task_lock(tsk);
545 tsk->files = NULL; 545 tsk->files = NULL;
546 task_unlock(tsk); 546 task_unlock(tsk);
547 put_files_struct(files); 547 put_files_struct(files);
548 } 548 }
549 } 549 }
550 550
551 #ifdef CONFIG_MM_OWNER 551 #ifdef CONFIG_MM_OWNER
552 /* 552 /*
553 * Task p is exiting and it owned mm, lets find a new owner for it 553 * Task p is exiting and it owned mm, lets find a new owner for it
554 */ 554 */
555 static inline int 555 static inline int
556 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p) 556 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
557 { 557 {
558 /* 558 /*
559 * If there are other users of the mm and the owner (us) is exiting 559 * If there are other users of the mm and the owner (us) is exiting
560 * we need to find a new owner to take on the responsibility. 560 * we need to find a new owner to take on the responsibility.
561 */ 561 */
562 if (atomic_read(&mm->mm_users) <= 1) 562 if (atomic_read(&mm->mm_users) <= 1)
563 return 0; 563 return 0;
564 if (mm->owner != p) 564 if (mm->owner != p)
565 return 0; 565 return 0;
566 return 1; 566 return 1;
567 } 567 }
568 568
569 void mm_update_next_owner(struct mm_struct *mm) 569 void mm_update_next_owner(struct mm_struct *mm)
570 { 570 {
571 struct task_struct *c, *g, *p = current; 571 struct task_struct *c, *g, *p = current;
572 572
573 retry: 573 retry:
574 if (!mm_need_new_owner(mm, p)) 574 if (!mm_need_new_owner(mm, p))
575 return; 575 return;
576 576
577 read_lock(&tasklist_lock); 577 read_lock(&tasklist_lock);
578 /* 578 /*
579 * Search in the children 579 * Search in the children
580 */ 580 */
581 list_for_each_entry(c, &p->children, sibling) { 581 list_for_each_entry(c, &p->children, sibling) {
582 if (c->mm == mm) 582 if (c->mm == mm)
583 goto assign_new_owner; 583 goto assign_new_owner;
584 } 584 }
585 585
586 /* 586 /*
587 * Search in the siblings 587 * Search in the siblings
588 */ 588 */
589 list_for_each_entry(c, &p->real_parent->children, sibling) { 589 list_for_each_entry(c, &p->real_parent->children, sibling) {
590 if (c->mm == mm) 590 if (c->mm == mm)
591 goto assign_new_owner; 591 goto assign_new_owner;
592 } 592 }
593 593
594 /* 594 /*
595 * Search through everything else. We should not get 595 * Search through everything else. We should not get
596 * here often 596 * here often
597 */ 597 */
598 do_each_thread(g, c) { 598 do_each_thread(g, c) {
599 if (c->mm == mm) 599 if (c->mm == mm)
600 goto assign_new_owner; 600 goto assign_new_owner;
601 } while_each_thread(g, c); 601 } while_each_thread(g, c);
602 602
603 read_unlock(&tasklist_lock); 603 read_unlock(&tasklist_lock);
604 /* 604 /*
605 * We found no owner yet mm_users > 1: this implies that we are 605 * We found no owner yet mm_users > 1: this implies that we are
606 * most likely racing with swapoff (try_to_unuse()) or /proc or 606 * most likely racing with swapoff (try_to_unuse()) or /proc or
607 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 607 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
608 */ 608 */
609 mm->owner = NULL; 609 mm->owner = NULL;
610 return; 610 return;
611 611
612 assign_new_owner: 612 assign_new_owner:
613 BUG_ON(c == p); 613 BUG_ON(c == p);
614 get_task_struct(c); 614 get_task_struct(c);
615 /* 615 /*
616 * The task_lock protects c->mm from changing. 616 * The task_lock protects c->mm from changing.
617 * We always want mm->owner->mm == mm 617 * We always want mm->owner->mm == mm
618 */ 618 */
619 task_lock(c); 619 task_lock(c);
620 /* 620 /*
621 * Delay read_unlock() till we have the task_lock() 621 * Delay read_unlock() till we have the task_lock()
622 * to ensure that c does not slip away underneath us 622 * to ensure that c does not slip away underneath us
623 */ 623 */
624 read_unlock(&tasklist_lock); 624 read_unlock(&tasklist_lock);
625 if (c->mm != mm) { 625 if (c->mm != mm) {
626 task_unlock(c); 626 task_unlock(c);
627 put_task_struct(c); 627 put_task_struct(c);
628 goto retry; 628 goto retry;
629 } 629 }
630 mm->owner = c; 630 mm->owner = c;
631 task_unlock(c); 631 task_unlock(c);
632 put_task_struct(c); 632 put_task_struct(c);
633 } 633 }
634 #endif /* CONFIG_MM_OWNER */ 634 #endif /* CONFIG_MM_OWNER */
635 635
636 /* 636 /*
637 * Turn us into a lazy TLB process if we 637 * Turn us into a lazy TLB process if we
638 * aren't already.. 638 * aren't already..
639 */ 639 */
640 static void exit_mm(struct task_struct * tsk) 640 static void exit_mm(struct task_struct * tsk)
641 { 641 {
642 struct mm_struct *mm = tsk->mm; 642 struct mm_struct *mm = tsk->mm;
643 struct core_state *core_state; 643 struct core_state *core_state;
644 644
645 mm_release(tsk, mm); 645 mm_release(tsk, mm);
646 if (!mm) 646 if (!mm)
647 return; 647 return;
648 /* 648 /*
649 * Serialize with any possible pending coredump. 649 * Serialize with any possible pending coredump.
650 * We must hold mmap_sem around checking core_state 650 * We must hold mmap_sem around checking core_state
651 * and clearing tsk->mm. The core-inducing thread 651 * and clearing tsk->mm. The core-inducing thread
652 * will increment ->nr_threads for each thread in the 652 * will increment ->nr_threads for each thread in the
653 * group with ->mm != NULL. 653 * group with ->mm != NULL.
654 */ 654 */
655 down_read(&mm->mmap_sem); 655 down_read(&mm->mmap_sem);
656 core_state = mm->core_state; 656 core_state = mm->core_state;
657 if (core_state) { 657 if (core_state) {
658 struct core_thread self; 658 struct core_thread self;
659 up_read(&mm->mmap_sem); 659 up_read(&mm->mmap_sem);
660 660
661 self.task = tsk; 661 self.task = tsk;
662 self.next = xchg(&core_state->dumper.next, &self); 662 self.next = xchg(&core_state->dumper.next, &self);
663 /* 663 /*
664 * Implies mb(), the result of xchg() must be visible 664 * Implies mb(), the result of xchg() must be visible
665 * to core_state->dumper. 665 * to core_state->dumper.
666 */ 666 */
667 if (atomic_dec_and_test(&core_state->nr_threads)) 667 if (atomic_dec_and_test(&core_state->nr_threads))
668 complete(&core_state->startup); 668 complete(&core_state->startup);
669 669
670 for (;;) { 670 for (;;) {
671 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 671 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
672 if (!self.task) /* see coredump_finish() */ 672 if (!self.task) /* see coredump_finish() */
673 break; 673 break;
674 schedule(); 674 schedule();
675 } 675 }
676 __set_task_state(tsk, TASK_RUNNING); 676 __set_task_state(tsk, TASK_RUNNING);
677 down_read(&mm->mmap_sem); 677 down_read(&mm->mmap_sem);
678 } 678 }
679 atomic_inc(&mm->mm_count); 679 atomic_inc(&mm->mm_count);
680 BUG_ON(mm != tsk->active_mm); 680 BUG_ON(mm != tsk->active_mm);
681 /* more a memory barrier than a real lock */ 681 /* more a memory barrier than a real lock */
682 task_lock(tsk); 682 task_lock(tsk);
683 tsk->mm = NULL; 683 tsk->mm = NULL;
684 up_read(&mm->mmap_sem); 684 up_read(&mm->mmap_sem);
685 enter_lazy_tlb(mm, current); 685 enter_lazy_tlb(mm, current);
686 /* We don't want this task to be frozen prematurely */ 686 /* We don't want this task to be frozen prematurely */
687 clear_freeze_flag(tsk); 687 clear_freeze_flag(tsk);
688 if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) 688 if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
689 atomic_dec(&mm->oom_disable_count); 689 atomic_dec(&mm->oom_disable_count);
690 task_unlock(tsk); 690 task_unlock(tsk);
691 mm_update_next_owner(mm); 691 mm_update_next_owner(mm);
692 mmput(mm); 692 mmput(mm);
693 } 693 }
694 694
695 /* 695 /*
696 * When we die, we re-parent all our children. 696 * When we die, we re-parent all our children.
697 * Try to give them to another thread in our thread 697 * Try to give them to another thread in our thread
698 * group, and if no such member exists, give it to 698 * group, and if no such member exists, give it to
699 * the child reaper process (ie "init") in our pid 699 * the child reaper process (ie "init") in our pid
700 * space. 700 * space.
701 */ 701 */
702 static struct task_struct *find_new_reaper(struct task_struct *father) 702 static struct task_struct *find_new_reaper(struct task_struct *father)
703 __releases(&tasklist_lock) 703 __releases(&tasklist_lock)
704 __acquires(&tasklist_lock) 704 __acquires(&tasklist_lock)
705 { 705 {
706 struct pid_namespace *pid_ns = task_active_pid_ns(father); 706 struct pid_namespace *pid_ns = task_active_pid_ns(father);
707 struct task_struct *thread; 707 struct task_struct *thread;
708 708
709 thread = father; 709 thread = father;
710 while_each_thread(father, thread) { 710 while_each_thread(father, thread) {
711 if (thread->flags & PF_EXITING) 711 if (thread->flags & PF_EXITING)
712 continue; 712 continue;
713 if (unlikely(pid_ns->child_reaper == father)) 713 if (unlikely(pid_ns->child_reaper == father))
714 pid_ns->child_reaper = thread; 714 pid_ns->child_reaper = thread;
715 return thread; 715 return thread;
716 } 716 }
717 717
718 if (unlikely(pid_ns->child_reaper == father)) { 718 if (unlikely(pid_ns->child_reaper == father)) {
719 write_unlock_irq(&tasklist_lock); 719 write_unlock_irq(&tasklist_lock);
720 if (unlikely(pid_ns == &init_pid_ns)) 720 if (unlikely(pid_ns == &init_pid_ns))
721 panic("Attempted to kill init!"); 721 panic("Attempted to kill init!");
722 722
723 zap_pid_ns_processes(pid_ns); 723 zap_pid_ns_processes(pid_ns);
724 write_lock_irq(&tasklist_lock); 724 write_lock_irq(&tasklist_lock);
725 /* 725 /*
726 * We can not clear ->child_reaper or leave it alone. 726 * We can not clear ->child_reaper or leave it alone.
727 * There may by stealth EXIT_DEAD tasks on ->children, 727 * There may by stealth EXIT_DEAD tasks on ->children,
728 * forget_original_parent() must move them somewhere. 728 * forget_original_parent() must move them somewhere.
729 */ 729 */
730 pid_ns->child_reaper = init_pid_ns.child_reaper; 730 pid_ns->child_reaper = init_pid_ns.child_reaper;
731 } 731 }
732 732
733 return pid_ns->child_reaper; 733 return pid_ns->child_reaper;
734 } 734 }
735 735
736 /* 736 /*
737 * Any that need to be release_task'd are put on the @dead list. 737 * Any that need to be release_task'd are put on the @dead list.
738 */ 738 */
739 static void reparent_leader(struct task_struct *father, struct task_struct *p, 739 static void reparent_leader(struct task_struct *father, struct task_struct *p,
740 struct list_head *dead) 740 struct list_head *dead)
741 { 741 {
742 list_move_tail(&p->sibling, &p->real_parent->children); 742 list_move_tail(&p->sibling, &p->real_parent->children);
743 743
744 if (p->exit_state == EXIT_DEAD) 744 if (p->exit_state == EXIT_DEAD)
745 return; 745 return;
746 /* 746 /*
747 * If this is a threaded reparent there is no need to 747 * If this is a threaded reparent there is no need to
748 * notify anyone anything has happened. 748 * notify anyone anything has happened.
749 */ 749 */
750 if (same_thread_group(p->real_parent, father)) 750 if (same_thread_group(p->real_parent, father))
751 return; 751 return;
752 752
753 /* We don't want people slaying init. */ 753 /* We don't want people slaying init. */
754 p->exit_signal = SIGCHLD; 754 p->exit_signal = SIGCHLD;
755 755
756 /* If it has exited notify the new parent about this child's death. */ 756 /* If it has exited notify the new parent about this child's death. */
757 if (!p->ptrace && 757 if (!p->ptrace &&
758 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 758 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
759 if (do_notify_parent(p, p->exit_signal)) { 759 if (do_notify_parent(p, p->exit_signal)) {
760 p->exit_state = EXIT_DEAD; 760 p->exit_state = EXIT_DEAD;
761 list_move_tail(&p->sibling, dead); 761 list_move_tail(&p->sibling, dead);
762 } 762 }
763 } 763 }
764 764
765 kill_orphaned_pgrp(p, father); 765 kill_orphaned_pgrp(p, father);
766 } 766 }
767 767
768 static void forget_original_parent(struct task_struct *father) 768 static void forget_original_parent(struct task_struct *father)
769 { 769 {
770 struct task_struct *p, *n, *reaper; 770 struct task_struct *p, *n, *reaper;
771 LIST_HEAD(dead_children); 771 LIST_HEAD(dead_children);
772 772
773 write_lock_irq(&tasklist_lock); 773 write_lock_irq(&tasklist_lock);
774 /* 774 /*
775 * Note that exit_ptrace() and find_new_reaper() might 775 * Note that exit_ptrace() and find_new_reaper() might
776 * drop tasklist_lock and reacquire it. 776 * drop tasklist_lock and reacquire it.
777 */ 777 */
778 exit_ptrace(father); 778 exit_ptrace(father);
779 reaper = find_new_reaper(father); 779 reaper = find_new_reaper(father);
780 780
781 list_for_each_entry_safe(p, n, &father->children, sibling) { 781 list_for_each_entry_safe(p, n, &father->children, sibling) {
782 struct task_struct *t = p; 782 struct task_struct *t = p;
783 do { 783 do {
784 t->real_parent = reaper; 784 t->real_parent = reaper;
785 if (t->parent == father) { 785 if (t->parent == father) {
786 BUG_ON(t->ptrace); 786 BUG_ON(t->ptrace);
787 t->parent = t->real_parent; 787 t->parent = t->real_parent;
788 } 788 }
789 if (t->pdeath_signal) 789 if (t->pdeath_signal)
790 group_send_sig_info(t->pdeath_signal, 790 group_send_sig_info(t->pdeath_signal,
791 SEND_SIG_NOINFO, t); 791 SEND_SIG_NOINFO, t);
792 } while_each_thread(p, t); 792 } while_each_thread(p, t);
793 reparent_leader(father, p, &dead_children); 793 reparent_leader(father, p, &dead_children);
794 } 794 }
795 write_unlock_irq(&tasklist_lock); 795 write_unlock_irq(&tasklist_lock);
796 796
797 BUG_ON(!list_empty(&father->children)); 797 BUG_ON(!list_empty(&father->children));
798 798
799 list_for_each_entry_safe(p, n, &dead_children, sibling) { 799 list_for_each_entry_safe(p, n, &dead_children, sibling) {
800 list_del_init(&p->sibling); 800 list_del_init(&p->sibling);
801 release_task(p); 801 release_task(p);
802 } 802 }
803 } 803 }
804 804
805 /* 805 /*
806 * Send signals to all our closest relatives so that they know 806 * Send signals to all our closest relatives so that they know
807 * to properly mourn us.. 807 * to properly mourn us..
808 */ 808 */
809 static void exit_notify(struct task_struct *tsk, int group_dead) 809 static void exit_notify(struct task_struct *tsk, int group_dead)
810 { 810 {
811 bool autoreap; 811 bool autoreap;
812 812
813 /* 813 /*
814 * This does two things: 814 * This does two things:
815 * 815 *
816 * A. Make init inherit all the child processes 816 * A. Make init inherit all the child processes
817 * B. Check to see if any process groups have become orphaned 817 * B. Check to see if any process groups have become orphaned
818 * as a result of our exiting, and if they have any stopped 818 * as a result of our exiting, and if they have any stopped
819 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 819 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
820 */ 820 */
821 forget_original_parent(tsk); 821 forget_original_parent(tsk);
822 exit_task_namespaces(tsk); 822 exit_task_namespaces(tsk);
823 823
824 write_lock_irq(&tasklist_lock); 824 write_lock_irq(&tasklist_lock);
825 if (group_dead) 825 if (group_dead)
826 kill_orphaned_pgrp(tsk->group_leader, NULL); 826 kill_orphaned_pgrp(tsk->group_leader, NULL);
827 827
828 /* Let father know we died 828 /* Let father know we died
829 * 829 *
830 * Thread signals are configurable, but you aren't going to use 830 * Thread signals are configurable, but you aren't going to use
831 * that to send signals to arbitrary processes. 831 * that to send signals to arbitrary processes.
832 * That stops right now. 832 * That stops right now.
833 * 833 *
834 * If the parent exec id doesn't match the exec id we saved 834 * If the parent exec id doesn't match the exec id we saved
835 * when we started then we know the parent has changed security 835 * when we started then we know the parent has changed security
836 * domain. 836 * domain.
837 * 837 *
838 * If our self_exec id doesn't match our parent_exec_id then 838 * If our self_exec id doesn't match our parent_exec_id then
839 * we have changed execution domain as these two values started 839 * we have changed execution domain as these two values started
840 * the same after a fork. 840 * the same after a fork.
841 */ 841 */
842 if (thread_group_leader(tsk) && tsk->exit_signal != SIGCHLD && 842 if (thread_group_leader(tsk) && tsk->exit_signal != SIGCHLD &&
843 (tsk->parent_exec_id != tsk->real_parent->self_exec_id || 843 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
844 tsk->self_exec_id != tsk->parent_exec_id)) 844 tsk->self_exec_id != tsk->parent_exec_id))
845 tsk->exit_signal = SIGCHLD; 845 tsk->exit_signal = SIGCHLD;
846 846
847 if (unlikely(tsk->ptrace)) { 847 if (unlikely(tsk->ptrace)) {
848 int sig = thread_group_leader(tsk) && 848 int sig = thread_group_leader(tsk) &&
849 thread_group_empty(tsk) && 849 thread_group_empty(tsk) &&
850 !ptrace_reparented(tsk) ? 850 !ptrace_reparented(tsk) ?
851 tsk->exit_signal : SIGCHLD; 851 tsk->exit_signal : SIGCHLD;
852 autoreap = do_notify_parent(tsk, sig); 852 autoreap = do_notify_parent(tsk, sig);
853 } else if (thread_group_leader(tsk)) { 853 } else if (thread_group_leader(tsk)) {
854 autoreap = thread_group_empty(tsk) && 854 autoreap = thread_group_empty(tsk) &&
855 do_notify_parent(tsk, tsk->exit_signal); 855 do_notify_parent(tsk, tsk->exit_signal);
856 } else { 856 } else {
857 autoreap = true; 857 autoreap = true;
858 } 858 }
859 859
860 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE; 860 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
861 861
862 /* mt-exec, de_thread() is waiting for group leader */ 862 /* mt-exec, de_thread() is waiting for group leader */
863 if (unlikely(tsk->signal->notify_count < 0)) 863 if (unlikely(tsk->signal->notify_count < 0))
864 wake_up_process(tsk->signal->group_exit_task); 864 wake_up_process(tsk->signal->group_exit_task);
865 write_unlock_irq(&tasklist_lock); 865 write_unlock_irq(&tasklist_lock);
866 866
867 /* If the process is dead, release it - nobody will wait for it */ 867 /* If the process is dead, release it - nobody will wait for it */
868 if (autoreap) 868 if (autoreap)
869 release_task(tsk); 869 release_task(tsk);
870 } 870 }
871 871
872 #ifdef CONFIG_DEBUG_STACK_USAGE 872 #ifdef CONFIG_DEBUG_STACK_USAGE
873 static void check_stack_usage(void) 873 static void check_stack_usage(void)
874 { 874 {
875 static DEFINE_SPINLOCK(low_water_lock); 875 static DEFINE_SPINLOCK(low_water_lock);
876 static int lowest_to_date = THREAD_SIZE; 876 static int lowest_to_date = THREAD_SIZE;
877 unsigned long free; 877 unsigned long free;
878 878
879 free = stack_not_used(current); 879 free = stack_not_used(current);
880 880
881 if (free >= lowest_to_date) 881 if (free >= lowest_to_date)
882 return; 882 return;
883 883
884 spin_lock(&low_water_lock); 884 spin_lock(&low_water_lock);
885 if (free < lowest_to_date) { 885 if (free < lowest_to_date) {
886 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes " 886 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
887 "left\n", 887 "left\n",
888 current->comm, free); 888 current->comm, free);
889 lowest_to_date = free; 889 lowest_to_date = free;
890 } 890 }
891 spin_unlock(&low_water_lock); 891 spin_unlock(&low_water_lock);
892 } 892 }
893 #else 893 #else
894 static inline void check_stack_usage(void) {} 894 static inline void check_stack_usage(void) {}
895 #endif 895 #endif
896 896
897 NORET_TYPE void do_exit(long code) 897 NORET_TYPE void do_exit(long code)
898 { 898 {
899 struct task_struct *tsk = current; 899 struct task_struct *tsk = current;
900 int group_dead; 900 int group_dead;
901 901
902 profile_task_exit(tsk); 902 profile_task_exit(tsk);
903 903
904 WARN_ON(atomic_read(&tsk->fs_excl)); 904 WARN_ON(atomic_read(&tsk->fs_excl));
905 WARN_ON(blk_needs_flush_plug(tsk)); 905 WARN_ON(blk_needs_flush_plug(tsk));
906 906
907 if (unlikely(in_interrupt())) 907 if (unlikely(in_interrupt()))
908 panic("Aiee, killing interrupt handler!"); 908 panic("Aiee, killing interrupt handler!");
909 if (unlikely(!tsk->pid)) 909 if (unlikely(!tsk->pid))
910 panic("Attempted to kill the idle task!"); 910 panic("Attempted to kill the idle task!");
911 911
912 /* 912 /*
913 * If do_exit is called because this processes oopsed, it's possible 913 * If do_exit is called because this processes oopsed, it's possible
914 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before 914 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
915 * continuing. Amongst other possible reasons, this is to prevent 915 * continuing. Amongst other possible reasons, this is to prevent
916 * mm_release()->clear_child_tid() from writing to a user-controlled 916 * mm_release()->clear_child_tid() from writing to a user-controlled
917 * kernel address. 917 * kernel address.
918 */ 918 */
919 set_fs(USER_DS); 919 set_fs(USER_DS);
920 920
921 ptrace_event(PTRACE_EVENT_EXIT, code); 921 ptrace_event(PTRACE_EVENT_EXIT, code);
922 922
923 validate_creds_for_do_exit(tsk); 923 validate_creds_for_do_exit(tsk);
924 924
925 /* 925 /*
926 * We're taking recursive faults here in do_exit. Safest is to just 926 * We're taking recursive faults here in do_exit. Safest is to just
927 * leave this task alone and wait for reboot. 927 * leave this task alone and wait for reboot.
928 */ 928 */
929 if (unlikely(tsk->flags & PF_EXITING)) { 929 if (unlikely(tsk->flags & PF_EXITING)) {
930 printk(KERN_ALERT 930 printk(KERN_ALERT
931 "Fixing recursive fault but reboot is needed!\n"); 931 "Fixing recursive fault but reboot is needed!\n");
932 /* 932 /*
933 * We can do this unlocked here. The futex code uses 933 * We can do this unlocked here. The futex code uses
934 * this flag just to verify whether the pi state 934 * this flag just to verify whether the pi state
935 * cleanup has been done or not. In the worst case it 935 * cleanup has been done or not. In the worst case it
936 * loops once more. We pretend that the cleanup was 936 * loops once more. We pretend that the cleanup was
937 * done as there is no way to return. Either the 937 * done as there is no way to return. Either the
938 * OWNER_DIED bit is set by now or we push the blocked 938 * OWNER_DIED bit is set by now or we push the blocked
939 * task into the wait for ever nirwana as well. 939 * task into the wait for ever nirwana as well.
940 */ 940 */
941 tsk->flags |= PF_EXITPIDONE; 941 tsk->flags |= PF_EXITPIDONE;
942 set_current_state(TASK_UNINTERRUPTIBLE); 942 set_current_state(TASK_UNINTERRUPTIBLE);
943 schedule(); 943 schedule();
944 } 944 }
945 945
946 exit_irq_thread(); 946 exit_irq_thread();
947 947
948 exit_signals(tsk); /* sets PF_EXITING */ 948 exit_signals(tsk); /* sets PF_EXITING */
949 /* 949 /*
950 * tsk->flags are checked in the futex code to protect against 950 * tsk->flags are checked in the futex code to protect against
951 * an exiting task cleaning up the robust pi futexes. 951 * an exiting task cleaning up the robust pi futexes.
952 */ 952 */
953 smp_mb(); 953 smp_mb();
954 raw_spin_unlock_wait(&tsk->pi_lock); 954 raw_spin_unlock_wait(&tsk->pi_lock);
955 955
956 if (unlikely(in_atomic())) 956 if (unlikely(in_atomic()))
957 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 957 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
958 current->comm, task_pid_nr(current), 958 current->comm, task_pid_nr(current),
959 preempt_count()); 959 preempt_count());
960 960
961 acct_update_integrals(tsk); 961 acct_update_integrals(tsk);
962 /* sync mm's RSS info before statistics gathering */ 962 /* sync mm's RSS info before statistics gathering */
963 if (tsk->mm) 963 if (tsk->mm)
964 sync_mm_rss(tsk, tsk->mm); 964 sync_mm_rss(tsk, tsk->mm);
965 group_dead = atomic_dec_and_test(&tsk->signal->live); 965 group_dead = atomic_dec_and_test(&tsk->signal->live);
966 if (group_dead) { 966 if (group_dead) {
967 hrtimer_cancel(&tsk->signal->real_timer); 967 hrtimer_cancel(&tsk->signal->real_timer);
968 exit_itimers(tsk->signal); 968 exit_itimers(tsk->signal);
969 if (tsk->mm) 969 if (tsk->mm)
970 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 970 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
971 } 971 }
972 acct_collect(code, group_dead); 972 acct_collect(code, group_dead);
973 if (group_dead) 973 if (group_dead)
974 tty_audit_exit(); 974 tty_audit_exit();
975 if (unlikely(tsk->audit_context)) 975 if (unlikely(tsk->audit_context))
976 audit_free(tsk); 976 audit_free(tsk);
977 977
978 tsk->exit_code = code; 978 tsk->exit_code = code;
979 taskstats_exit(tsk, group_dead); 979 taskstats_exit(tsk, group_dead);
980 980
981 exit_mm(tsk); 981 exit_mm(tsk);
982 982
983 if (group_dead) 983 if (group_dead)
984 acct_process(); 984 acct_process();
985 trace_sched_process_exit(tsk); 985 trace_sched_process_exit(tsk);
986 986
987 exit_sem(tsk); 987 exit_sem(tsk);
988 exit_files(tsk); 988 exit_files(tsk);
989 exit_fs(tsk); 989 exit_fs(tsk);
990 check_stack_usage(); 990 check_stack_usage();
991 exit_thread(); 991 exit_thread();
992 992
993 /* 993 /*
994 * Flush inherited counters to the parent - before the parent 994 * Flush inherited counters to the parent - before the parent
995 * gets woken up by child-exit notifications. 995 * gets woken up by child-exit notifications.
996 * 996 *
997 * because of cgroup mode, must be called before cgroup_exit() 997 * because of cgroup mode, must be called before cgroup_exit()
998 */ 998 */
999 perf_event_exit_task(tsk); 999 perf_event_exit_task(tsk);
1000 1000
1001 cgroup_exit(tsk, 1); 1001 cgroup_exit(tsk, 1);
1002 1002
1003 if (group_dead) 1003 if (group_dead)
1004 disassociate_ctty(1); 1004 disassociate_ctty(1);
1005 1005
1006 module_put(task_thread_info(tsk)->exec_domain->module); 1006 module_put(task_thread_info(tsk)->exec_domain->module);
1007 1007
1008 proc_exit_connector(tsk); 1008 proc_exit_connector(tsk);
1009 1009
1010 /* 1010 /*
1011 * FIXME: do that only when needed, using sched_exit tracepoint 1011 * FIXME: do that only when needed, using sched_exit tracepoint
1012 */ 1012 */
1013 ptrace_put_breakpoints(tsk); 1013 ptrace_put_breakpoints(tsk);
1014 1014
1015 exit_notify(tsk, group_dead); 1015 exit_notify(tsk, group_dead);
1016 #ifdef CONFIG_NUMA 1016 #ifdef CONFIG_NUMA
1017 task_lock(tsk); 1017 task_lock(tsk);
1018 mpol_put(tsk->mempolicy); 1018 mpol_put(tsk->mempolicy);
1019 tsk->mempolicy = NULL; 1019 tsk->mempolicy = NULL;
1020 task_unlock(tsk); 1020 task_unlock(tsk);
1021 #endif 1021 #endif
1022 #ifdef CONFIG_FUTEX 1022 #ifdef CONFIG_FUTEX
1023 if (unlikely(current->pi_state_cache)) 1023 if (unlikely(current->pi_state_cache))
1024 kfree(current->pi_state_cache); 1024 kfree(current->pi_state_cache);
1025 #endif 1025 #endif
1026 /* 1026 /*
1027 * Make sure we are holding no locks: 1027 * Make sure we are holding no locks:
1028 */ 1028 */
1029 debug_check_no_locks_held(tsk); 1029 debug_check_no_locks_held(tsk);
1030 /* 1030 /*
1031 * We can do this unlocked here. The futex code uses this flag 1031 * We can do this unlocked here. The futex code uses this flag
1032 * just to verify whether the pi state cleanup has been done 1032 * just to verify whether the pi state cleanup has been done
1033 * or not. In the worst case it loops once more. 1033 * or not. In the worst case it loops once more.
1034 */ 1034 */
1035 tsk->flags |= PF_EXITPIDONE; 1035 tsk->flags |= PF_EXITPIDONE;
1036 1036
1037 if (tsk->io_context) 1037 if (tsk->io_context)
1038 exit_io_context(tsk); 1038 exit_io_context(tsk);
1039 1039
1040 if (tsk->splice_pipe) 1040 if (tsk->splice_pipe)
1041 __free_pipe_info(tsk->splice_pipe); 1041 __free_pipe_info(tsk->splice_pipe);
1042 1042
1043 validate_creds_for_do_exit(tsk); 1043 validate_creds_for_do_exit(tsk);
1044 1044
1045 preempt_disable(); 1045 preempt_disable();
1046 exit_rcu(); 1046 exit_rcu();
1047 /* causes final put_task_struct in finish_task_switch(). */ 1047 /* causes final put_task_struct in finish_task_switch(). */
1048 tsk->state = TASK_DEAD; 1048 tsk->state = TASK_DEAD;
1049 schedule(); 1049 schedule();
1050 BUG(); 1050 BUG();
1051 /* Avoid "noreturn function does return". */ 1051 /* Avoid "noreturn function does return". */
1052 for (;;) 1052 for (;;)
1053 cpu_relax(); /* For when BUG is null */ 1053 cpu_relax(); /* For when BUG is null */
1054 } 1054 }
1055 1055
1056 EXPORT_SYMBOL_GPL(do_exit); 1056 EXPORT_SYMBOL_GPL(do_exit);
1057 1057
1058 NORET_TYPE void complete_and_exit(struct completion *comp, long code) 1058 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1059 { 1059 {
1060 if (comp) 1060 if (comp)
1061 complete(comp); 1061 complete(comp);
1062 1062
1063 do_exit(code); 1063 do_exit(code);
1064 } 1064 }
1065 1065
1066 EXPORT_SYMBOL(complete_and_exit); 1066 EXPORT_SYMBOL(complete_and_exit);
1067 1067
1068 SYSCALL_DEFINE1(exit, int, error_code) 1068 SYSCALL_DEFINE1(exit, int, error_code)
1069 { 1069 {
1070 do_exit((error_code&0xff)<<8); 1070 do_exit((error_code&0xff)<<8);
1071 } 1071 }
1072 1072
1073 /* 1073 /*
1074 * Take down every thread in the group. This is called by fatal signals 1074 * Take down every thread in the group. This is called by fatal signals
1075 * as well as by sys_exit_group (below). 1075 * as well as by sys_exit_group (below).
1076 */ 1076 */
1077 NORET_TYPE void 1077 NORET_TYPE void
1078 do_group_exit(int exit_code) 1078 do_group_exit(int exit_code)
1079 { 1079 {
1080 struct signal_struct *sig = current->signal; 1080 struct signal_struct *sig = current->signal;
1081 1081
1082 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 1082 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1083 1083
1084 if (signal_group_exit(sig)) 1084 if (signal_group_exit(sig))
1085 exit_code = sig->group_exit_code; 1085 exit_code = sig->group_exit_code;
1086 else if (!thread_group_empty(current)) { 1086 else if (!thread_group_empty(current)) {
1087 struct sighand_struct *const sighand = current->sighand; 1087 struct sighand_struct *const sighand = current->sighand;
1088 spin_lock_irq(&sighand->siglock); 1088 spin_lock_irq(&sighand->siglock);
1089 if (signal_group_exit(sig)) 1089 if (signal_group_exit(sig))
1090 /* Another thread got here before we took the lock. */ 1090 /* Another thread got here before we took the lock. */
1091 exit_code = sig->group_exit_code; 1091 exit_code = sig->group_exit_code;
1092 else { 1092 else {
1093 sig->group_exit_code = exit_code; 1093 sig->group_exit_code = exit_code;
1094 sig->flags = SIGNAL_GROUP_EXIT; 1094 sig->flags = SIGNAL_GROUP_EXIT;
1095 zap_other_threads(current); 1095 zap_other_threads(current);
1096 } 1096 }
1097 spin_unlock_irq(&sighand->siglock); 1097 spin_unlock_irq(&sighand->siglock);
1098 } 1098 }
1099 1099
1100 do_exit(exit_code); 1100 do_exit(exit_code);
1101 /* NOTREACHED */ 1101 /* NOTREACHED */
1102 } 1102 }
1103 1103
1104 /* 1104 /*
1105 * this kills every thread in the thread group. Note that any externally 1105 * this kills every thread in the thread group. Note that any externally
1106 * wait4()-ing process will get the correct exit code - even if this 1106 * wait4()-ing process will get the correct exit code - even if this
1107 * thread is not the thread group leader. 1107 * thread is not the thread group leader.
1108 */ 1108 */
1109 SYSCALL_DEFINE1(exit_group, int, error_code) 1109 SYSCALL_DEFINE1(exit_group, int, error_code)
1110 { 1110 {
1111 do_group_exit((error_code & 0xff) << 8); 1111 do_group_exit((error_code & 0xff) << 8);
1112 /* NOTREACHED */ 1112 /* NOTREACHED */
1113 return 0; 1113 return 0;
1114 } 1114 }
1115 1115
1116 struct wait_opts { 1116 struct wait_opts {
1117 enum pid_type wo_type; 1117 enum pid_type wo_type;
1118 int wo_flags; 1118 int wo_flags;
1119 struct pid *wo_pid; 1119 struct pid *wo_pid;
1120 1120
1121 struct siginfo __user *wo_info; 1121 struct siginfo __user *wo_info;
1122 int __user *wo_stat; 1122 int __user *wo_stat;
1123 struct rusage __user *wo_rusage; 1123 struct rusage __user *wo_rusage;
1124 1124
1125 wait_queue_t child_wait; 1125 wait_queue_t child_wait;
1126 int notask_error; 1126 int notask_error;
1127 }; 1127 };
1128 1128
1129 static inline 1129 static inline
1130 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 1130 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1131 { 1131 {
1132 if (type != PIDTYPE_PID) 1132 if (type != PIDTYPE_PID)
1133 task = task->group_leader; 1133 task = task->group_leader;
1134 return task->pids[type].pid; 1134 return task->pids[type].pid;
1135 } 1135 }
1136 1136
1137 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 1137 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1138 { 1138 {
1139 return wo->wo_type == PIDTYPE_MAX || 1139 return wo->wo_type == PIDTYPE_MAX ||
1140 task_pid_type(p, wo->wo_type) == wo->wo_pid; 1140 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1141 } 1141 }
1142 1142
1143 static int eligible_child(struct wait_opts *wo, struct task_struct *p) 1143 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1144 { 1144 {
1145 if (!eligible_pid(wo, p)) 1145 if (!eligible_pid(wo, p))
1146 return 0; 1146 return 0;
1147 /* Wait for all children (clone and not) if __WALL is set; 1147 /* Wait for all children (clone and not) if __WALL is set;
1148 * otherwise, wait for clone children *only* if __WCLONE is 1148 * otherwise, wait for clone children *only* if __WCLONE is
1149 * set; otherwise, wait for non-clone children *only*. (Note: 1149 * set; otherwise, wait for non-clone children *only*. (Note:
1150 * A "clone" child here is one that reports to its parent 1150 * A "clone" child here is one that reports to its parent
1151 * using a signal other than SIGCHLD.) */ 1151 * using a signal other than SIGCHLD.) */
1152 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1152 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1153 && !(wo->wo_flags & __WALL)) 1153 && !(wo->wo_flags & __WALL))
1154 return 0; 1154 return 0;
1155 1155
1156 return 1; 1156 return 1;
1157 } 1157 }
1158 1158
1159 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, 1159 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1160 pid_t pid, uid_t uid, int why, int status) 1160 pid_t pid, uid_t uid, int why, int status)
1161 { 1161 {
1162 struct siginfo __user *infop; 1162 struct siginfo __user *infop;
1163 int retval = wo->wo_rusage 1163 int retval = wo->wo_rusage
1164 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1164 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1165 1165
1166 put_task_struct(p); 1166 put_task_struct(p);
1167 infop = wo->wo_info; 1167 infop = wo->wo_info;
1168 if (infop) { 1168 if (infop) {
1169 if (!retval) 1169 if (!retval)
1170 retval = put_user(SIGCHLD, &infop->si_signo); 1170 retval = put_user(SIGCHLD, &infop->si_signo);
1171 if (!retval) 1171 if (!retval)
1172 retval = put_user(0, &infop->si_errno); 1172 retval = put_user(0, &infop->si_errno);
1173 if (!retval) 1173 if (!retval)
1174 retval = put_user((short)why, &infop->si_code); 1174 retval = put_user((short)why, &infop->si_code);
1175 if (!retval) 1175 if (!retval)
1176 retval = put_user(pid, &infop->si_pid); 1176 retval = put_user(pid, &infop->si_pid);
1177 if (!retval) 1177 if (!retval)
1178 retval = put_user(uid, &infop->si_uid); 1178 retval = put_user(uid, &infop->si_uid);
1179 if (!retval) 1179 if (!retval)
1180 retval = put_user(status, &infop->si_status); 1180 retval = put_user(status, &infop->si_status);
1181 } 1181 }
1182 if (!retval) 1182 if (!retval)
1183 retval = pid; 1183 retval = pid;
1184 return retval; 1184 return retval;
1185 } 1185 }
1186 1186
1187 /* 1187 /*
1188 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1188 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1189 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1189 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1190 * the lock and this task is uninteresting. If we return nonzero, we have 1190 * the lock and this task is uninteresting. If we return nonzero, we have
1191 * released the lock and the system call should return. 1191 * released the lock and the system call should return.
1192 */ 1192 */
1193 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1193 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1194 { 1194 {
1195 unsigned long state; 1195 unsigned long state;
1196 int retval, status, traced; 1196 int retval, status, traced;
1197 pid_t pid = task_pid_vnr(p); 1197 pid_t pid = task_pid_vnr(p);
1198 uid_t uid = __task_cred(p)->uid; 1198 uid_t uid = __task_cred(p)->uid;
1199 struct siginfo __user *infop; 1199 struct siginfo __user *infop;
1200 1200
1201 if (!likely(wo->wo_flags & WEXITED)) 1201 if (!likely(wo->wo_flags & WEXITED))
1202 return 0; 1202 return 0;
1203 1203
1204 if (unlikely(wo->wo_flags & WNOWAIT)) { 1204 if (unlikely(wo->wo_flags & WNOWAIT)) {
1205 int exit_code = p->exit_code; 1205 int exit_code = p->exit_code;
1206 int why; 1206 int why;
1207 1207
1208 get_task_struct(p); 1208 get_task_struct(p);
1209 read_unlock(&tasklist_lock); 1209 read_unlock(&tasklist_lock);
1210 if ((exit_code & 0x7f) == 0) { 1210 if ((exit_code & 0x7f) == 0) {
1211 why = CLD_EXITED; 1211 why = CLD_EXITED;
1212 status = exit_code >> 8; 1212 status = exit_code >> 8;
1213 } else { 1213 } else {
1214 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1214 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1215 status = exit_code & 0x7f; 1215 status = exit_code & 0x7f;
1216 } 1216 }
1217 return wait_noreap_copyout(wo, p, pid, uid, why, status); 1217 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1218 } 1218 }
1219 1219
1220 /* 1220 /*
1221 * Try to move the task's state to DEAD 1221 * Try to move the task's state to DEAD
1222 * only one thread is allowed to do this: 1222 * only one thread is allowed to do this:
1223 */ 1223 */
1224 state = xchg(&p->exit_state, EXIT_DEAD); 1224 state = xchg(&p->exit_state, EXIT_DEAD);
1225 if (state != EXIT_ZOMBIE) { 1225 if (state != EXIT_ZOMBIE) {
1226 BUG_ON(state != EXIT_DEAD); 1226 BUG_ON(state != EXIT_DEAD);
1227 return 0; 1227 return 0;
1228 } 1228 }
1229 1229
1230 traced = ptrace_reparented(p); 1230 traced = ptrace_reparented(p);
1231 /* 1231 /*
1232 * It can be ptraced but not reparented, check 1232 * It can be ptraced but not reparented, check
1233 * thread_group_leader() to filter out sub-threads. 1233 * thread_group_leader() to filter out sub-threads.
1234 */ 1234 */
1235 if (likely(!traced) && thread_group_leader(p)) { 1235 if (likely(!traced) && thread_group_leader(p)) {
1236 struct signal_struct *psig; 1236 struct signal_struct *psig;
1237 struct signal_struct *sig; 1237 struct signal_struct *sig;
1238 unsigned long maxrss; 1238 unsigned long maxrss;
1239 cputime_t tgutime, tgstime; 1239 cputime_t tgutime, tgstime;
1240 1240
1241 /* 1241 /*
1242 * The resource counters for the group leader are in its 1242 * The resource counters for the group leader are in its
1243 * own task_struct. Those for dead threads in the group 1243 * own task_struct. Those for dead threads in the group
1244 * are in its signal_struct, as are those for the child 1244 * are in its signal_struct, as are those for the child
1245 * processes it has previously reaped. All these 1245 * processes it has previously reaped. All these
1246 * accumulate in the parent's signal_struct c* fields. 1246 * accumulate in the parent's signal_struct c* fields.
1247 * 1247 *
1248 * We don't bother to take a lock here to protect these 1248 * We don't bother to take a lock here to protect these
1249 * p->signal fields, because they are only touched by 1249 * p->signal fields, because they are only touched by
1250 * __exit_signal, which runs with tasklist_lock 1250 * __exit_signal, which runs with tasklist_lock
1251 * write-locked anyway, and so is excluded here. We do 1251 * write-locked anyway, and so is excluded here. We do
1252 * need to protect the access to parent->signal fields, 1252 * need to protect the access to parent->signal fields,
1253 * as other threads in the parent group can be right 1253 * as other threads in the parent group can be right
1254 * here reaping other children at the same time. 1254 * here reaping other children at the same time.
1255 * 1255 *
1256 * We use thread_group_times() to get times for the thread 1256 * We use thread_group_times() to get times for the thread
1257 * group, which consolidates times for all threads in the 1257 * group, which consolidates times for all threads in the
1258 * group including the group leader. 1258 * group including the group leader.
1259 */ 1259 */
1260 thread_group_times(p, &tgutime, &tgstime); 1260 thread_group_times(p, &tgutime, &tgstime);
1261 spin_lock_irq(&p->real_parent->sighand->siglock); 1261 spin_lock_irq(&p->real_parent->sighand->siglock);
1262 psig = p->real_parent->signal; 1262 psig = p->real_parent->signal;
1263 sig = p->signal; 1263 sig = p->signal;
1264 psig->cutime = 1264 psig->cutime =
1265 cputime_add(psig->cutime, 1265 cputime_add(psig->cutime,
1266 cputime_add(tgutime, 1266 cputime_add(tgutime,
1267 sig->cutime)); 1267 sig->cutime));
1268 psig->cstime = 1268 psig->cstime =
1269 cputime_add(psig->cstime, 1269 cputime_add(psig->cstime,
1270 cputime_add(tgstime, 1270 cputime_add(tgstime,
1271 sig->cstime)); 1271 sig->cstime));
1272 psig->cgtime = 1272 psig->cgtime =
1273 cputime_add(psig->cgtime, 1273 cputime_add(psig->cgtime,
1274 cputime_add(p->gtime, 1274 cputime_add(p->gtime,
1275 cputime_add(sig->gtime, 1275 cputime_add(sig->gtime,
1276 sig->cgtime))); 1276 sig->cgtime)));
1277 psig->cmin_flt += 1277 psig->cmin_flt +=
1278 p->min_flt + sig->min_flt + sig->cmin_flt; 1278 p->min_flt + sig->min_flt + sig->cmin_flt;
1279 psig->cmaj_flt += 1279 psig->cmaj_flt +=
1280 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1280 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1281 psig->cnvcsw += 1281 psig->cnvcsw +=
1282 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1282 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1283 psig->cnivcsw += 1283 psig->cnivcsw +=
1284 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1284 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1285 psig->cinblock += 1285 psig->cinblock +=
1286 task_io_get_inblock(p) + 1286 task_io_get_inblock(p) +
1287 sig->inblock + sig->cinblock; 1287 sig->inblock + sig->cinblock;
1288 psig->coublock += 1288 psig->coublock +=
1289 task_io_get_oublock(p) + 1289 task_io_get_oublock(p) +
1290 sig->oublock + sig->coublock; 1290 sig->oublock + sig->coublock;
1291 maxrss = max(sig->maxrss, sig->cmaxrss); 1291 maxrss = max(sig->maxrss, sig->cmaxrss);
1292 if (psig->cmaxrss < maxrss) 1292 if (psig->cmaxrss < maxrss)
1293 psig->cmaxrss = maxrss; 1293 psig->cmaxrss = maxrss;
1294 task_io_accounting_add(&psig->ioac, &p->ioac); 1294 task_io_accounting_add(&psig->ioac, &p->ioac);
1295 task_io_accounting_add(&psig->ioac, &sig->ioac); 1295 task_io_accounting_add(&psig->ioac, &sig->ioac);
1296 spin_unlock_irq(&p->real_parent->sighand->siglock); 1296 spin_unlock_irq(&p->real_parent->sighand->siglock);
1297 } 1297 }
1298 1298
1299 /* 1299 /*
1300 * Now we are sure this task is interesting, and no other 1300 * Now we are sure this task is interesting, and no other
1301 * thread can reap it because we set its state to EXIT_DEAD. 1301 * thread can reap it because we set its state to EXIT_DEAD.
1302 */ 1302 */
1303 read_unlock(&tasklist_lock); 1303 read_unlock(&tasklist_lock);
1304 1304
1305 retval = wo->wo_rusage 1305 retval = wo->wo_rusage
1306 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1306 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1307 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1307 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1308 ? p->signal->group_exit_code : p->exit_code; 1308 ? p->signal->group_exit_code : p->exit_code;
1309 if (!retval && wo->wo_stat) 1309 if (!retval && wo->wo_stat)
1310 retval = put_user(status, wo->wo_stat); 1310 retval = put_user(status, wo->wo_stat);
1311 1311
1312 infop = wo->wo_info; 1312 infop = wo->wo_info;
1313 if (!retval && infop) 1313 if (!retval && infop)
1314 retval = put_user(SIGCHLD, &infop->si_signo); 1314 retval = put_user(SIGCHLD, &infop->si_signo);
1315 if (!retval && infop) 1315 if (!retval && infop)
1316 retval = put_user(0, &infop->si_errno); 1316 retval = put_user(0, &infop->si_errno);
1317 if (!retval && infop) { 1317 if (!retval && infop) {
1318 int why; 1318 int why;
1319 1319
1320 if ((status & 0x7f) == 0) { 1320 if ((status & 0x7f) == 0) {
1321 why = CLD_EXITED; 1321 why = CLD_EXITED;
1322 status >>= 8; 1322 status >>= 8;
1323 } else { 1323 } else {
1324 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1324 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1325 status &= 0x7f; 1325 status &= 0x7f;
1326 } 1326 }
1327 retval = put_user((short)why, &infop->si_code); 1327 retval = put_user((short)why, &infop->si_code);
1328 if (!retval) 1328 if (!retval)
1329 retval = put_user(status, &infop->si_status); 1329 retval = put_user(status, &infop->si_status);
1330 } 1330 }
1331 if (!retval && infop) 1331 if (!retval && infop)
1332 retval = put_user(pid, &infop->si_pid); 1332 retval = put_user(pid, &infop->si_pid);
1333 if (!retval && infop) 1333 if (!retval && infop)
1334 retval = put_user(uid, &infop->si_uid); 1334 retval = put_user(uid, &infop->si_uid);
1335 if (!retval) 1335 if (!retval)
1336 retval = pid; 1336 retval = pid;
1337 1337
1338 if (traced) { 1338 if (traced) {
1339 write_lock_irq(&tasklist_lock); 1339 write_lock_irq(&tasklist_lock);
1340 /* We dropped tasklist, ptracer could die and untrace */ 1340 /* We dropped tasklist, ptracer could die and untrace */
1341 ptrace_unlink(p); 1341 ptrace_unlink(p);
1342 /* 1342 /*
1343 * If this is not a sub-thread, notify the parent. 1343 * If this is not a sub-thread, notify the parent.
1344 * If parent wants a zombie, don't release it now. 1344 * If parent wants a zombie, don't release it now.
1345 */ 1345 */
1346 if (thread_group_leader(p) && 1346 if (thread_group_leader(p) &&
1347 !do_notify_parent(p, p->exit_signal)) { 1347 !do_notify_parent(p, p->exit_signal)) {
1348 p->exit_state = EXIT_ZOMBIE; 1348 p->exit_state = EXIT_ZOMBIE;
1349 p = NULL; 1349 p = NULL;
1350 } 1350 }
1351 write_unlock_irq(&tasklist_lock); 1351 write_unlock_irq(&tasklist_lock);
1352 } 1352 }
1353 if (p != NULL) 1353 if (p != NULL)
1354 release_task(p); 1354 release_task(p);
1355 1355
1356 return retval; 1356 return retval;
1357 } 1357 }
1358 1358
1359 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1359 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1360 { 1360 {
1361 if (ptrace) { 1361 if (ptrace) {
1362 if (task_is_stopped_or_traced(p) && 1362 if (task_is_stopped_or_traced(p) &&
1363 !(p->jobctl & JOBCTL_LISTENING)) 1363 !(p->jobctl & JOBCTL_LISTENING))
1364 return &p->exit_code; 1364 return &p->exit_code;
1365 } else { 1365 } else {
1366 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1366 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1367 return &p->signal->group_exit_code; 1367 return &p->signal->group_exit_code;
1368 } 1368 }
1369 return NULL; 1369 return NULL;
1370 } 1370 }
1371 1371
1372 /** 1372 /**
1373 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1373 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1374 * @wo: wait options 1374 * @wo: wait options
1375 * @ptrace: is the wait for ptrace 1375 * @ptrace: is the wait for ptrace
1376 * @p: task to wait for 1376 * @p: task to wait for
1377 * 1377 *
1378 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1378 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1379 * 1379 *
1380 * CONTEXT: 1380 * CONTEXT:
1381 * read_lock(&tasklist_lock), which is released if return value is 1381 * read_lock(&tasklist_lock), which is released if return value is
1382 * non-zero. Also, grabs and releases @p->sighand->siglock. 1382 * non-zero. Also, grabs and releases @p->sighand->siglock.
1383 * 1383 *
1384 * RETURNS: 1384 * RETURNS:
1385 * 0 if wait condition didn't exist and search for other wait conditions 1385 * 0 if wait condition didn't exist and search for other wait conditions
1386 * should continue. Non-zero return, -errno on failure and @p's pid on 1386 * should continue. Non-zero return, -errno on failure and @p's pid on
1387 * success, implies that tasklist_lock is released and wait condition 1387 * success, implies that tasklist_lock is released and wait condition
1388 * search should terminate. 1388 * search should terminate.
1389 */ 1389 */
1390 static int wait_task_stopped(struct wait_opts *wo, 1390 static int wait_task_stopped(struct wait_opts *wo,
1391 int ptrace, struct task_struct *p) 1391 int ptrace, struct task_struct *p)
1392 { 1392 {
1393 struct siginfo __user *infop; 1393 struct siginfo __user *infop;
1394 int retval, exit_code, *p_code, why; 1394 int retval, exit_code, *p_code, why;
1395 uid_t uid = 0; /* unneeded, required by compiler */ 1395 uid_t uid = 0; /* unneeded, required by compiler */
1396 pid_t pid; 1396 pid_t pid;
1397 1397
1398 /* 1398 /*
1399 * Traditionally we see ptrace'd stopped tasks regardless of options. 1399 * Traditionally we see ptrace'd stopped tasks regardless of options.
1400 */ 1400 */
1401 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1401 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1402 return 0; 1402 return 0;
1403 1403
1404 if (!task_stopped_code(p, ptrace)) 1404 if (!task_stopped_code(p, ptrace))
1405 return 0; 1405 return 0;
1406 1406
1407 exit_code = 0; 1407 exit_code = 0;
1408 spin_lock_irq(&p->sighand->siglock); 1408 spin_lock_irq(&p->sighand->siglock);
1409 1409
1410 p_code = task_stopped_code(p, ptrace); 1410 p_code = task_stopped_code(p, ptrace);
1411 if (unlikely(!p_code)) 1411 if (unlikely(!p_code))
1412 goto unlock_sig; 1412 goto unlock_sig;
1413 1413
1414 exit_code = *p_code; 1414 exit_code = *p_code;
1415 if (!exit_code) 1415 if (!exit_code)
1416 goto unlock_sig; 1416 goto unlock_sig;
1417 1417
1418 if (!unlikely(wo->wo_flags & WNOWAIT)) 1418 if (!unlikely(wo->wo_flags & WNOWAIT))
1419 *p_code = 0; 1419 *p_code = 0;
1420 1420
1421 uid = task_uid(p); 1421 uid = task_uid(p);
1422 unlock_sig: 1422 unlock_sig:
1423 spin_unlock_irq(&p->sighand->siglock); 1423 spin_unlock_irq(&p->sighand->siglock);
1424 if (!exit_code) 1424 if (!exit_code)
1425 return 0; 1425 return 0;
1426 1426
1427 /* 1427 /*
1428 * Now we are pretty sure this task is interesting. 1428 * Now we are pretty sure this task is interesting.
1429 * Make sure it doesn't get reaped out from under us while we 1429 * Make sure it doesn't get reaped out from under us while we
1430 * give up the lock and then examine it below. We don't want to 1430 * give up the lock and then examine it below. We don't want to
1431 * keep holding onto the tasklist_lock while we call getrusage and 1431 * keep holding onto the tasklist_lock while we call getrusage and
1432 * possibly take page faults for user memory. 1432 * possibly take page faults for user memory.
1433 */ 1433 */
1434 get_task_struct(p); 1434 get_task_struct(p);
1435 pid = task_pid_vnr(p); 1435 pid = task_pid_vnr(p);
1436 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1436 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1437 read_unlock(&tasklist_lock); 1437 read_unlock(&tasklist_lock);
1438 1438
1439 if (unlikely(wo->wo_flags & WNOWAIT)) 1439 if (unlikely(wo->wo_flags & WNOWAIT))
1440 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); 1440 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1441 1441
1442 retval = wo->wo_rusage 1442 retval = wo->wo_rusage
1443 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1443 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1444 if (!retval && wo->wo_stat) 1444 if (!retval && wo->wo_stat)
1445 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); 1445 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1446 1446
1447 infop = wo->wo_info; 1447 infop = wo->wo_info;
1448 if (!retval && infop) 1448 if (!retval && infop)
1449 retval = put_user(SIGCHLD, &infop->si_signo); 1449 retval = put_user(SIGCHLD, &infop->si_signo);
1450 if (!retval && infop) 1450 if (!retval && infop)
1451 retval = put_user(0, &infop->si_errno); 1451 retval = put_user(0, &infop->si_errno);
1452 if (!retval && infop) 1452 if (!retval && infop)
1453 retval = put_user((short)why, &infop->si_code); 1453 retval = put_user((short)why, &infop->si_code);
1454 if (!retval && infop) 1454 if (!retval && infop)
1455 retval = put_user(exit_code, &infop->si_status); 1455 retval = put_user(exit_code, &infop->si_status);
1456 if (!retval && infop) 1456 if (!retval && infop)
1457 retval = put_user(pid, &infop->si_pid); 1457 retval = put_user(pid, &infop->si_pid);
1458 if (!retval && infop) 1458 if (!retval && infop)
1459 retval = put_user(uid, &infop->si_uid); 1459 retval = put_user(uid, &infop->si_uid);
1460 if (!retval) 1460 if (!retval)
1461 retval = pid; 1461 retval = pid;
1462 put_task_struct(p); 1462 put_task_struct(p);
1463 1463
1464 BUG_ON(!retval); 1464 BUG_ON(!retval);
1465 return retval; 1465 return retval;
1466 } 1466 }
1467 1467
1468 /* 1468 /*
1469 * Handle do_wait work for one task in a live, non-stopped state. 1469 * Handle do_wait work for one task in a live, non-stopped state.
1470 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1470 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1471 * the lock and this task is uninteresting. If we return nonzero, we have 1471 * the lock and this task is uninteresting. If we return nonzero, we have
1472 * released the lock and the system call should return. 1472 * released the lock and the system call should return.
1473 */ 1473 */
1474 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1474 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1475 { 1475 {
1476 int retval; 1476 int retval;
1477 pid_t pid; 1477 pid_t pid;
1478 uid_t uid; 1478 uid_t uid;
1479 1479
1480 if (!unlikely(wo->wo_flags & WCONTINUED)) 1480 if (!unlikely(wo->wo_flags & WCONTINUED))
1481 return 0; 1481 return 0;
1482 1482
1483 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1483 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1484 return 0; 1484 return 0;
1485 1485
1486 spin_lock_irq(&p->sighand->siglock); 1486 spin_lock_irq(&p->sighand->siglock);
1487 /* Re-check with the lock held. */ 1487 /* Re-check with the lock held. */
1488 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1488 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1489 spin_unlock_irq(&p->sighand->siglock); 1489 spin_unlock_irq(&p->sighand->siglock);
1490 return 0; 1490 return 0;
1491 } 1491 }
1492 if (!unlikely(wo->wo_flags & WNOWAIT)) 1492 if (!unlikely(wo->wo_flags & WNOWAIT))
1493 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1493 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1494 uid = task_uid(p); 1494 uid = task_uid(p);
1495 spin_unlock_irq(&p->sighand->siglock); 1495 spin_unlock_irq(&p->sighand->siglock);
1496 1496
1497 pid = task_pid_vnr(p); 1497 pid = task_pid_vnr(p);
1498 get_task_struct(p); 1498 get_task_struct(p);
1499 read_unlock(&tasklist_lock); 1499 read_unlock(&tasklist_lock);
1500 1500
1501 if (!wo->wo_info) { 1501 if (!wo->wo_info) {
1502 retval = wo->wo_rusage 1502 retval = wo->wo_rusage
1503 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1503 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1504 put_task_struct(p); 1504 put_task_struct(p);
1505 if (!retval && wo->wo_stat) 1505 if (!retval && wo->wo_stat)
1506 retval = put_user(0xffff, wo->wo_stat); 1506 retval = put_user(0xffff, wo->wo_stat);
1507 if (!retval) 1507 if (!retval)
1508 retval = pid; 1508 retval = pid;
1509 } else { 1509 } else {
1510 retval = wait_noreap_copyout(wo, p, pid, uid, 1510 retval = wait_noreap_copyout(wo, p, pid, uid,
1511 CLD_CONTINUED, SIGCONT); 1511 CLD_CONTINUED, SIGCONT);
1512 BUG_ON(retval == 0); 1512 BUG_ON(retval == 0);
1513 } 1513 }
1514 1514
1515 return retval; 1515 return retval;
1516 } 1516 }
1517 1517
1518 /* 1518 /*
1519 * Consider @p for a wait by @parent. 1519 * Consider @p for a wait by @parent.
1520 * 1520 *
1521 * -ECHILD should be in ->notask_error before the first call. 1521 * -ECHILD should be in ->notask_error before the first call.
1522 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1522 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1523 * Returns zero if the search for a child should continue; 1523 * Returns zero if the search for a child should continue;
1524 * then ->notask_error is 0 if @p is an eligible child, 1524 * then ->notask_error is 0 if @p is an eligible child,
1525 * or another error from security_task_wait(), or still -ECHILD. 1525 * or another error from security_task_wait(), or still -ECHILD.
1526 */ 1526 */
1527 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1527 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1528 struct task_struct *p) 1528 struct task_struct *p)
1529 { 1529 {
1530 int ret = eligible_child(wo, p); 1530 int ret = eligible_child(wo, p);
1531 if (!ret) 1531 if (!ret)
1532 return ret; 1532 return ret;
1533 1533
1534 ret = security_task_wait(p); 1534 ret = security_task_wait(p);
1535 if (unlikely(ret < 0)) { 1535 if (unlikely(ret < 0)) {
1536 /* 1536 /*
1537 * If we have not yet seen any eligible child, 1537 * If we have not yet seen any eligible child,
1538 * then let this error code replace -ECHILD. 1538 * then let this error code replace -ECHILD.
1539 * A permission error will give the user a clue 1539 * A permission error will give the user a clue
1540 * to look for security policy problems, rather 1540 * to look for security policy problems, rather
1541 * than for mysterious wait bugs. 1541 * than for mysterious wait bugs.
1542 */ 1542 */
1543 if (wo->notask_error) 1543 if (wo->notask_error)
1544 wo->notask_error = ret; 1544 wo->notask_error = ret;
1545 return 0; 1545 return 0;
1546 } 1546 }
1547 1547
1548 /* dead body doesn't have much to contribute */ 1548 /* dead body doesn't have much to contribute */
1549 if (p->exit_state == EXIT_DEAD) 1549 if (p->exit_state == EXIT_DEAD)
1550 return 0; 1550 return 0;
1551 1551
1552 /* slay zombie? */ 1552 /* slay zombie? */
1553 if (p->exit_state == EXIT_ZOMBIE) { 1553 if (p->exit_state == EXIT_ZOMBIE) {
1554 /* 1554 /*
1555 * A zombie ptracee is only visible to its ptracer. 1555 * A zombie ptracee is only visible to its ptracer.
1556 * Notification and reaping will be cascaded to the real 1556 * Notification and reaping will be cascaded to the real
1557 * parent when the ptracer detaches. 1557 * parent when the ptracer detaches.
1558 */ 1558 */
1559 if (likely(!ptrace) && unlikely(p->ptrace)) { 1559 if (likely(!ptrace) && unlikely(p->ptrace)) {
1560 /* it will become visible, clear notask_error */ 1560 /* it will become visible, clear notask_error */
1561 wo->notask_error = 0; 1561 wo->notask_error = 0;
1562 return 0; 1562 return 0;
1563 } 1563 }
1564 1564
1565 /* we don't reap group leaders with subthreads */ 1565 /* we don't reap group leaders with subthreads */
1566 if (!delay_group_leader(p)) 1566 if (!delay_group_leader(p))
1567 return wait_task_zombie(wo, p); 1567 return wait_task_zombie(wo, p);
1568 1568
1569 /* 1569 /*
1570 * Allow access to stopped/continued state via zombie by 1570 * Allow access to stopped/continued state via zombie by
1571 * falling through. Clearing of notask_error is complex. 1571 * falling through. Clearing of notask_error is complex.
1572 * 1572 *
1573 * When !@ptrace: 1573 * When !@ptrace:
1574 * 1574 *
1575 * If WEXITED is set, notask_error should naturally be 1575 * If WEXITED is set, notask_error should naturally be
1576 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1576 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1577 * so, if there are live subthreads, there are events to 1577 * so, if there are live subthreads, there are events to
1578 * wait for. If all subthreads are dead, it's still safe 1578 * wait for. If all subthreads are dead, it's still safe
1579 * to clear - this function will be called again in finite 1579 * to clear - this function will be called again in finite
1580 * amount time once all the subthreads are released and 1580 * amount time once all the subthreads are released and
1581 * will then return without clearing. 1581 * will then return without clearing.
1582 * 1582 *
1583 * When @ptrace: 1583 * When @ptrace:
1584 * 1584 *
1585 * Stopped state is per-task and thus can't change once the 1585 * Stopped state is per-task and thus can't change once the
1586 * target task dies. Only continued and exited can happen. 1586 * target task dies. Only continued and exited can happen.
1587 * Clear notask_error if WCONTINUED | WEXITED. 1587 * Clear notask_error if WCONTINUED | WEXITED.
1588 */ 1588 */
1589 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1589 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1590 wo->notask_error = 0; 1590 wo->notask_error = 0;
1591 } else { 1591 } else {
1592 /* 1592 /*
1593 * If @p is ptraced by a task in its real parent's group, 1593 * If @p is ptraced by a task in its real parent's group,
1594 * hide group stop/continued state when looking at @p as 1594 * hide group stop/continued state when looking at @p as
1595 * the real parent; otherwise, a single stop can be 1595 * the real parent; otherwise, a single stop can be
1596 * reported twice as group and ptrace stops. 1596 * reported twice as group and ptrace stops.
1597 * 1597 *
1598 * If a ptracer wants to distinguish the two events for its 1598 * If a ptracer wants to distinguish the two events for its
1599 * own children, it should create a separate process which 1599 * own children, it should create a separate process which
1600 * takes the role of real parent. 1600 * takes the role of real parent.
1601 */ 1601 */
1602 if (likely(!ptrace) && p->ptrace && 1602 if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p))
1603 same_thread_group(p->parent, p->real_parent))
1604 return 0; 1603 return 0;
1605 1604
1606 /* 1605 /*
1607 * @p is alive and it's gonna stop, continue or exit, so 1606 * @p is alive and it's gonna stop, continue or exit, so
1608 * there always is something to wait for. 1607 * there always is something to wait for.
1609 */ 1608 */
1610 wo->notask_error = 0; 1609 wo->notask_error = 0;
1611 } 1610 }
1612 1611
1613 /* 1612 /*
1614 * Wait for stopped. Depending on @ptrace, different stopped state 1613 * Wait for stopped. Depending on @ptrace, different stopped state
1615 * is used and the two don't interact with each other. 1614 * is used and the two don't interact with each other.
1616 */ 1615 */
1617 ret = wait_task_stopped(wo, ptrace, p); 1616 ret = wait_task_stopped(wo, ptrace, p);
1618 if (ret) 1617 if (ret)
1619 return ret; 1618 return ret;
1620 1619
1621 /* 1620 /*
1622 * Wait for continued. There's only one continued state and the 1621 * Wait for continued. There's only one continued state and the
1623 * ptracer can consume it which can confuse the real parent. Don't 1622 * ptracer can consume it which can confuse the real parent. Don't
1624 * use WCONTINUED from ptracer. You don't need or want it. 1623 * use WCONTINUED from ptracer. You don't need or want it.
1625 */ 1624 */
1626 return wait_task_continued(wo, p); 1625 return wait_task_continued(wo, p);
1627 } 1626 }
1628 1627
1629 /* 1628 /*
1630 * Do the work of do_wait() for one thread in the group, @tsk. 1629 * Do the work of do_wait() for one thread in the group, @tsk.
1631 * 1630 *
1632 * -ECHILD should be in ->notask_error before the first call. 1631 * -ECHILD should be in ->notask_error before the first call.
1633 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1632 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1634 * Returns zero if the search for a child should continue; then 1633 * Returns zero if the search for a child should continue; then
1635 * ->notask_error is 0 if there were any eligible children, 1634 * ->notask_error is 0 if there were any eligible children,
1636 * or another error from security_task_wait(), or still -ECHILD. 1635 * or another error from security_task_wait(), or still -ECHILD.
1637 */ 1636 */
1638 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1637 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1639 { 1638 {
1640 struct task_struct *p; 1639 struct task_struct *p;
1641 1640
1642 list_for_each_entry(p, &tsk->children, sibling) { 1641 list_for_each_entry(p, &tsk->children, sibling) {
1643 int ret = wait_consider_task(wo, 0, p); 1642 int ret = wait_consider_task(wo, 0, p);
1644 if (ret) 1643 if (ret)
1645 return ret; 1644 return ret;
1646 } 1645 }
1647 1646
1648 return 0; 1647 return 0;
1649 } 1648 }
1650 1649
1651 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1650 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1652 { 1651 {
1653 struct task_struct *p; 1652 struct task_struct *p;
1654 1653
1655 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1654 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1656 int ret = wait_consider_task(wo, 1, p); 1655 int ret = wait_consider_task(wo, 1, p);
1657 if (ret) 1656 if (ret)
1658 return ret; 1657 return ret;
1659 } 1658 }
1660 1659
1661 return 0; 1660 return 0;
1662 } 1661 }
1663 1662
1664 static int child_wait_callback(wait_queue_t *wait, unsigned mode, 1663 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1665 int sync, void *key) 1664 int sync, void *key)
1666 { 1665 {
1667 struct wait_opts *wo = container_of(wait, struct wait_opts, 1666 struct wait_opts *wo = container_of(wait, struct wait_opts,
1668 child_wait); 1667 child_wait);
1669 struct task_struct *p = key; 1668 struct task_struct *p = key;
1670 1669
1671 if (!eligible_pid(wo, p)) 1670 if (!eligible_pid(wo, p))
1672 return 0; 1671 return 0;
1673 1672
1674 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1673 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1675 return 0; 1674 return 0;
1676 1675
1677 return default_wake_function(wait, mode, sync, key); 1676 return default_wake_function(wait, mode, sync, key);
1678 } 1677 }
1679 1678
1680 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1679 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1681 { 1680 {
1682 __wake_up_sync_key(&parent->signal->wait_chldexit, 1681 __wake_up_sync_key(&parent->signal->wait_chldexit,
1683 TASK_INTERRUPTIBLE, 1, p); 1682 TASK_INTERRUPTIBLE, 1, p);
1684 } 1683 }
1685 1684
1686 static long do_wait(struct wait_opts *wo) 1685 static long do_wait(struct wait_opts *wo)
1687 { 1686 {
1688 struct task_struct *tsk; 1687 struct task_struct *tsk;
1689 int retval; 1688 int retval;
1690 1689
1691 trace_sched_process_wait(wo->wo_pid); 1690 trace_sched_process_wait(wo->wo_pid);
1692 1691
1693 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1692 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1694 wo->child_wait.private = current; 1693 wo->child_wait.private = current;
1695 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait); 1694 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1696 repeat: 1695 repeat:
1697 /* 1696 /*
1698 * If there is nothing that can match our critiera just get out. 1697 * If there is nothing that can match our critiera just get out.
1699 * We will clear ->notask_error to zero if we see any child that 1698 * We will clear ->notask_error to zero if we see any child that
1700 * might later match our criteria, even if we are not able to reap 1699 * might later match our criteria, even if we are not able to reap
1701 * it yet. 1700 * it yet.
1702 */ 1701 */
1703 wo->notask_error = -ECHILD; 1702 wo->notask_error = -ECHILD;
1704 if ((wo->wo_type < PIDTYPE_MAX) && 1703 if ((wo->wo_type < PIDTYPE_MAX) &&
1705 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) 1704 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1706 goto notask; 1705 goto notask;
1707 1706
1708 set_current_state(TASK_INTERRUPTIBLE); 1707 set_current_state(TASK_INTERRUPTIBLE);
1709 read_lock(&tasklist_lock); 1708 read_lock(&tasklist_lock);
1710 tsk = current; 1709 tsk = current;
1711 do { 1710 do {
1712 retval = do_wait_thread(wo, tsk); 1711 retval = do_wait_thread(wo, tsk);
1713 if (retval) 1712 if (retval)
1714 goto end; 1713 goto end;
1715 1714
1716 retval = ptrace_do_wait(wo, tsk); 1715 retval = ptrace_do_wait(wo, tsk);
1717 if (retval) 1716 if (retval)
1718 goto end; 1717 goto end;
1719 1718
1720 if (wo->wo_flags & __WNOTHREAD) 1719 if (wo->wo_flags & __WNOTHREAD)
1721 break; 1720 break;
1722 } while_each_thread(current, tsk); 1721 } while_each_thread(current, tsk);
1723 read_unlock(&tasklist_lock); 1722 read_unlock(&tasklist_lock);
1724 1723
1725 notask: 1724 notask:
1726 retval = wo->notask_error; 1725 retval = wo->notask_error;
1727 if (!retval && !(wo->wo_flags & WNOHANG)) { 1726 if (!retval && !(wo->wo_flags & WNOHANG)) {
1728 retval = -ERESTARTSYS; 1727 retval = -ERESTARTSYS;
1729 if (!signal_pending(current)) { 1728 if (!signal_pending(current)) {
1730 schedule(); 1729 schedule();
1731 goto repeat; 1730 goto repeat;
1732 } 1731 }
1733 } 1732 }
1734 end: 1733 end:
1735 __set_current_state(TASK_RUNNING); 1734 __set_current_state(TASK_RUNNING);
1736 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait); 1735 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1737 return retval; 1736 return retval;
1738 } 1737 }
1739 1738
1740 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1739 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1741 infop, int, options, struct rusage __user *, ru) 1740 infop, int, options, struct rusage __user *, ru)
1742 { 1741 {
1743 struct wait_opts wo; 1742 struct wait_opts wo;
1744 struct pid *pid = NULL; 1743 struct pid *pid = NULL;
1745 enum pid_type type; 1744 enum pid_type type;
1746 long ret; 1745 long ret;
1747 1746
1748 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1747 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1749 return -EINVAL; 1748 return -EINVAL;
1750 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1749 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1751 return -EINVAL; 1750 return -EINVAL;
1752 1751
1753 switch (which) { 1752 switch (which) {
1754 case P_ALL: 1753 case P_ALL:
1755 type = PIDTYPE_MAX; 1754 type = PIDTYPE_MAX;
1756 break; 1755 break;
1757 case P_PID: 1756 case P_PID:
1758 type = PIDTYPE_PID; 1757 type = PIDTYPE_PID;
1759 if (upid <= 0) 1758 if (upid <= 0)
1760 return -EINVAL; 1759 return -EINVAL;
1761 break; 1760 break;
1762 case P_PGID: 1761 case P_PGID:
1763 type = PIDTYPE_PGID; 1762 type = PIDTYPE_PGID;
1764 if (upid <= 0) 1763 if (upid <= 0)
1765 return -EINVAL; 1764 return -EINVAL;
1766 break; 1765 break;
1767 default: 1766 default:
1768 return -EINVAL; 1767 return -EINVAL;
1769 } 1768 }
1770 1769
1771 if (type < PIDTYPE_MAX) 1770 if (type < PIDTYPE_MAX)
1772 pid = find_get_pid(upid); 1771 pid = find_get_pid(upid);
1773 1772
1774 wo.wo_type = type; 1773 wo.wo_type = type;
1775 wo.wo_pid = pid; 1774 wo.wo_pid = pid;
1776 wo.wo_flags = options; 1775 wo.wo_flags = options;
1777 wo.wo_info = infop; 1776 wo.wo_info = infop;
1778 wo.wo_stat = NULL; 1777 wo.wo_stat = NULL;
1779 wo.wo_rusage = ru; 1778 wo.wo_rusage = ru;
1780 ret = do_wait(&wo); 1779 ret = do_wait(&wo);
1781 1780
1782 if (ret > 0) { 1781 if (ret > 0) {
1783 ret = 0; 1782 ret = 0;
1784 } else if (infop) { 1783 } else if (infop) {
1785 /* 1784 /*
1786 * For a WNOHANG return, clear out all the fields 1785 * For a WNOHANG return, clear out all the fields
1787 * we would set so the user can easily tell the 1786 * we would set so the user can easily tell the
1788 * difference. 1787 * difference.
1789 */ 1788 */
1790 if (!ret) 1789 if (!ret)
1791 ret = put_user(0, &infop->si_signo); 1790 ret = put_user(0, &infop->si_signo);
1792 if (!ret) 1791 if (!ret)
1793 ret = put_user(0, &infop->si_errno); 1792 ret = put_user(0, &infop->si_errno);
1794 if (!ret) 1793 if (!ret)
1795 ret = put_user(0, &infop->si_code); 1794 ret = put_user(0, &infop->si_code);
1796 if (!ret) 1795 if (!ret)
1797 ret = put_user(0, &infop->si_pid); 1796 ret = put_user(0, &infop->si_pid);
1798 if (!ret) 1797 if (!ret)
1799 ret = put_user(0, &infop->si_uid); 1798 ret = put_user(0, &infop->si_uid);
1800 if (!ret) 1799 if (!ret)
1801 ret = put_user(0, &infop->si_status); 1800 ret = put_user(0, &infop->si_status);
1802 } 1801 }
1803 1802
1804 put_pid(pid); 1803 put_pid(pid);
1805 1804
1806 /* avoid REGPARM breakage on x86: */ 1805 /* avoid REGPARM breakage on x86: */
1807 asmlinkage_protect(5, ret, which, upid, infop, options, ru); 1806 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1808 return ret; 1807 return ret;
1809 } 1808 }
1810 1809
1811 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1810 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1812 int, options, struct rusage __user *, ru) 1811 int, options, struct rusage __user *, ru)
1813 { 1812 {
1814 struct wait_opts wo; 1813 struct wait_opts wo;
1815 struct pid *pid = NULL; 1814 struct pid *pid = NULL;
1816 enum pid_type type; 1815 enum pid_type type;
1817 long ret; 1816 long ret;
1818 1817
1819 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1818 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1820 __WNOTHREAD|__WCLONE|__WALL)) 1819 __WNOTHREAD|__WCLONE|__WALL))
1821 return -EINVAL; 1820 return -EINVAL;
1822 1821
1823 if (upid == -1) 1822 if (upid == -1)
1824 type = PIDTYPE_MAX; 1823 type = PIDTYPE_MAX;
1825 else if (upid < 0) { 1824 else if (upid < 0) {
1826 type = PIDTYPE_PGID; 1825 type = PIDTYPE_PGID;
1827 pid = find_get_pid(-upid); 1826 pid = find_get_pid(-upid);
1828 } else if (upid == 0) { 1827 } else if (upid == 0) {
1829 type = PIDTYPE_PGID; 1828 type = PIDTYPE_PGID;
1830 pid = get_task_pid(current, PIDTYPE_PGID); 1829 pid = get_task_pid(current, PIDTYPE_PGID);
1831 } else /* upid > 0 */ { 1830 } else /* upid > 0 */ {
1832 type = PIDTYPE_PID; 1831 type = PIDTYPE_PID;
1833 pid = find_get_pid(upid); 1832 pid = find_get_pid(upid);
1834 } 1833 }
1835 1834
1836 wo.wo_type = type; 1835 wo.wo_type = type;
1837 wo.wo_pid = pid; 1836 wo.wo_pid = pid;
1838 wo.wo_flags = options | WEXITED; 1837 wo.wo_flags = options | WEXITED;
1839 wo.wo_info = NULL; 1838 wo.wo_info = NULL;
1840 wo.wo_stat = stat_addr; 1839 wo.wo_stat = stat_addr;
1841 wo.wo_rusage = ru; 1840 wo.wo_rusage = ru;
1842 ret = do_wait(&wo); 1841 ret = do_wait(&wo);
1843 put_pid(pid); 1842 put_pid(pid);
1844 1843
1845 /* avoid REGPARM breakage on x86: */ 1844 /* avoid REGPARM breakage on x86: */
1846 asmlinkage_protect(4, ret, upid, stat_addr, options, ru); 1845 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1847 return ret; 1846 return ret;
1848 } 1847 }
1849 1848
1850 #ifdef __ARCH_WANT_SYS_WAITPID 1849 #ifdef __ARCH_WANT_SYS_WAITPID
1851 1850
1852 /* 1851 /*
1853 * sys_waitpid() remains for compatibility. waitpid() should be 1852 * sys_waitpid() remains for compatibility. waitpid() should be
1854 * implemented by calling sys_wait4() from libc.a. 1853 * implemented by calling sys_wait4() from libc.a.
1855 */ 1854 */
1856 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1855 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1857 { 1856 {
1858 return sys_wait4(pid, stat_addr, options, NULL); 1857 return sys_wait4(pid, stat_addr, options, NULL);
1859 } 1858 }
1860 1859
1861 #endif 1860 #endif
1862 1861