Commit 4cddb886a4d0e5cc7a790151740bfb87b568c97d

Authored by Alan Cox
Committed by Tony Luck
1 parent fb86611f8f

mmtimer: Push BKL down into the ioctl handler

Switches to unlocked_ioctl read to remove ioctl BKL method. Fix the
unknown ioctl return. Probably a nice easy one to kill off BKL usage
entirely later

Signed-off-by: Alan Cox <alan@redhat.com>
Acked-by: Jes Sorensen <jes@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>

Showing 1 changed file with 15 additions and 14 deletions Inline Diff

drivers/char/mmtimer.c
1 /* 1 /*
2 * Timer device implementation for SGI SN platforms. 2 * Timer device implementation for SGI SN platforms.
3 * 3 *
4 * This file is subject to the terms and conditions of the GNU General Public 4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive 5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details. 6 * for more details.
7 * 7 *
8 * Copyright (c) 2001-2006 Silicon Graphics, Inc. All rights reserved. 8 * Copyright (c) 2001-2006 Silicon Graphics, Inc. All rights reserved.
9 * 9 *
10 * This driver exports an API that should be supportable by any HPET or IA-PC 10 * This driver exports an API that should be supportable by any HPET or IA-PC
11 * multimedia timer. The code below is currently specific to the SGI Altix 11 * multimedia timer. The code below is currently specific to the SGI Altix
12 * SHub RTC, however. 12 * SHub RTC, however.
13 * 13 *
14 * 11/01/01 - jbarnes - initial revision 14 * 11/01/01 - jbarnes - initial revision
15 * 9/10/04 - Christoph Lameter - remove interrupt support for kernel inclusion 15 * 9/10/04 - Christoph Lameter - remove interrupt support for kernel inclusion
16 * 10/1/04 - Christoph Lameter - provide posix clock CLOCK_SGI_CYCLE 16 * 10/1/04 - Christoph Lameter - provide posix clock CLOCK_SGI_CYCLE
17 * 10/13/04 - Christoph Lameter, Dimitri Sivanich - provide timer interrupt 17 * 10/13/04 - Christoph Lameter, Dimitri Sivanich - provide timer interrupt
18 * support via the posix timer interface 18 * support via the posix timer interface
19 */ 19 */
20 20
21 #include <linux/types.h> 21 #include <linux/types.h>
22 #include <linux/kernel.h> 22 #include <linux/kernel.h>
23 #include <linux/ioctl.h> 23 #include <linux/ioctl.h>
24 #include <linux/module.h> 24 #include <linux/module.h>
25 #include <linux/init.h> 25 #include <linux/init.h>
26 #include <linux/errno.h> 26 #include <linux/errno.h>
27 #include <linux/mm.h> 27 #include <linux/mm.h>
28 #include <linux/fs.h> 28 #include <linux/fs.h>
29 #include <linux/mmtimer.h> 29 #include <linux/mmtimer.h>
30 #include <linux/miscdevice.h> 30 #include <linux/miscdevice.h>
31 #include <linux/posix-timers.h> 31 #include <linux/posix-timers.h>
32 #include <linux/interrupt.h> 32 #include <linux/interrupt.h>
33 #include <linux/time.h> 33 #include <linux/time.h>
34 #include <linux/math64.h> 34 #include <linux/math64.h>
35 #include <linux/smp_lock.h>
35 36
36 #include <asm/uaccess.h> 37 #include <asm/uaccess.h>
37 #include <asm/sn/addrs.h> 38 #include <asm/sn/addrs.h>
38 #include <asm/sn/intr.h> 39 #include <asm/sn/intr.h>
39 #include <asm/sn/shub_mmr.h> 40 #include <asm/sn/shub_mmr.h>
40 #include <asm/sn/nodepda.h> 41 #include <asm/sn/nodepda.h>
41 #include <asm/sn/shubio.h> 42 #include <asm/sn/shubio.h>
42 43
43 MODULE_AUTHOR("Jesse Barnes <jbarnes@sgi.com>"); 44 MODULE_AUTHOR("Jesse Barnes <jbarnes@sgi.com>");
44 MODULE_DESCRIPTION("SGI Altix RTC Timer"); 45 MODULE_DESCRIPTION("SGI Altix RTC Timer");
45 MODULE_LICENSE("GPL"); 46 MODULE_LICENSE("GPL");
46 47
47 /* name of the device, usually in /dev */ 48 /* name of the device, usually in /dev */
48 #define MMTIMER_NAME "mmtimer" 49 #define MMTIMER_NAME "mmtimer"
49 #define MMTIMER_DESC "SGI Altix RTC Timer" 50 #define MMTIMER_DESC "SGI Altix RTC Timer"
50 #define MMTIMER_VERSION "2.1" 51 #define MMTIMER_VERSION "2.1"
51 52
52 #define RTC_BITS 55 /* 55 bits for this implementation */ 53 #define RTC_BITS 55 /* 55 bits for this implementation */
53 54
54 extern unsigned long sn_rtc_cycles_per_second; 55 extern unsigned long sn_rtc_cycles_per_second;
55 56
56 #define RTC_COUNTER_ADDR ((long *)LOCAL_MMR_ADDR(SH_RTC)) 57 #define RTC_COUNTER_ADDR ((long *)LOCAL_MMR_ADDR(SH_RTC))
57 58
58 #define rtc_time() (*RTC_COUNTER_ADDR) 59 #define rtc_time() (*RTC_COUNTER_ADDR)
59 60
60 static int mmtimer_ioctl(struct inode *inode, struct file *file, 61 static long mmtimer_ioctl(struct file *file, unsigned int cmd,
61 unsigned int cmd, unsigned long arg); 62 unsigned long arg);
62 static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma); 63 static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma);
63 64
64 /* 65 /*
65 * Period in femtoseconds (10^-15 s) 66 * Period in femtoseconds (10^-15 s)
66 */ 67 */
67 static unsigned long mmtimer_femtoperiod = 0; 68 static unsigned long mmtimer_femtoperiod = 0;
68 69
69 static const struct file_operations mmtimer_fops = { 70 static const struct file_operations mmtimer_fops = {
70 .owner = THIS_MODULE, 71 .owner = THIS_MODULE,
71 .mmap = mmtimer_mmap, 72 .mmap = mmtimer_mmap,
72 .ioctl = mmtimer_ioctl, 73 .unlocked_ioctl = mmtimer_ioctl,
73 }; 74 };
74 75
75 /* 76 /*
76 * We only have comparison registers RTC1-4 currently available per 77 * We only have comparison registers RTC1-4 currently available per
77 * node. RTC0 is used by SAL. 78 * node. RTC0 is used by SAL.
78 */ 79 */
79 /* Check for an RTC interrupt pending */ 80 /* Check for an RTC interrupt pending */
80 static int mmtimer_int_pending(int comparator) 81 static int mmtimer_int_pending(int comparator)
81 { 82 {
82 if (HUB_L((unsigned long *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED)) & 83 if (HUB_L((unsigned long *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED)) &
83 SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator) 84 SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator)
84 return 1; 85 return 1;
85 else 86 else
86 return 0; 87 return 0;
87 } 88 }
88 89
89 /* Clear the RTC interrupt pending bit */ 90 /* Clear the RTC interrupt pending bit */
90 static void mmtimer_clr_int_pending(int comparator) 91 static void mmtimer_clr_int_pending(int comparator)
91 { 92 {
92 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS), 93 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS),
93 SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator); 94 SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator);
94 } 95 }
95 96
96 /* Setup timer on comparator RTC1 */ 97 /* Setup timer on comparator RTC1 */
97 static void mmtimer_setup_int_0(int cpu, u64 expires) 98 static void mmtimer_setup_int_0(int cpu, u64 expires)
98 { 99 {
99 u64 val; 100 u64 val;
100 101
101 /* Disable interrupt */ 102 /* Disable interrupt */
102 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 0UL); 103 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 0UL);
103 104
104 /* Initialize comparator value */ 105 /* Initialize comparator value */
105 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), -1L); 106 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), -1L);
106 107
107 /* Clear pending bit */ 108 /* Clear pending bit */
108 mmtimer_clr_int_pending(0); 109 mmtimer_clr_int_pending(0);
109 110
110 val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC1_INT_CONFIG_IDX_SHFT) | 111 val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC1_INT_CONFIG_IDX_SHFT) |
111 ((u64)cpu_physical_id(cpu) << 112 ((u64)cpu_physical_id(cpu) <<
112 SH_RTC1_INT_CONFIG_PID_SHFT); 113 SH_RTC1_INT_CONFIG_PID_SHFT);
113 114
114 /* Set configuration */ 115 /* Set configuration */
115 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_CONFIG), val); 116 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_CONFIG), val);
116 117
117 /* Enable RTC interrupts */ 118 /* Enable RTC interrupts */
118 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 1UL); 119 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 1UL);
119 120
120 /* Initialize comparator value */ 121 /* Initialize comparator value */
121 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), expires); 122 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), expires);
122 123
123 124
124 } 125 }
125 126
126 /* Setup timer on comparator RTC2 */ 127 /* Setup timer on comparator RTC2 */
127 static void mmtimer_setup_int_1(int cpu, u64 expires) 128 static void mmtimer_setup_int_1(int cpu, u64 expires)
128 { 129 {
129 u64 val; 130 u64 val;
130 131
131 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 0UL); 132 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 0UL);
132 133
133 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), -1L); 134 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), -1L);
134 135
135 mmtimer_clr_int_pending(1); 136 mmtimer_clr_int_pending(1);
136 137
137 val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC2_INT_CONFIG_IDX_SHFT) | 138 val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC2_INT_CONFIG_IDX_SHFT) |
138 ((u64)cpu_physical_id(cpu) << 139 ((u64)cpu_physical_id(cpu) <<
139 SH_RTC2_INT_CONFIG_PID_SHFT); 140 SH_RTC2_INT_CONFIG_PID_SHFT);
140 141
141 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_CONFIG), val); 142 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_CONFIG), val);
142 143
143 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 1UL); 144 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 1UL);
144 145
145 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), expires); 146 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), expires);
146 } 147 }
147 148
148 /* Setup timer on comparator RTC3 */ 149 /* Setup timer on comparator RTC3 */
149 static void mmtimer_setup_int_2(int cpu, u64 expires) 150 static void mmtimer_setup_int_2(int cpu, u64 expires)
150 { 151 {
151 u64 val; 152 u64 val;
152 153
153 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 0UL); 154 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 0UL);
154 155
155 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), -1L); 156 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), -1L);
156 157
157 mmtimer_clr_int_pending(2); 158 mmtimer_clr_int_pending(2);
158 159
159 val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC3_INT_CONFIG_IDX_SHFT) | 160 val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC3_INT_CONFIG_IDX_SHFT) |
160 ((u64)cpu_physical_id(cpu) << 161 ((u64)cpu_physical_id(cpu) <<
161 SH_RTC3_INT_CONFIG_PID_SHFT); 162 SH_RTC3_INT_CONFIG_PID_SHFT);
162 163
163 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_CONFIG), val); 164 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_CONFIG), val);
164 165
165 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 1UL); 166 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 1UL);
166 167
167 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), expires); 168 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), expires);
168 } 169 }
169 170
170 /* 171 /*
171 * This function must be called with interrupts disabled and preemption off 172 * This function must be called with interrupts disabled and preemption off
172 * in order to insure that the setup succeeds in a deterministic time frame. 173 * in order to insure that the setup succeeds in a deterministic time frame.
173 * It will check if the interrupt setup succeeded. 174 * It will check if the interrupt setup succeeded.
174 */ 175 */
175 static int mmtimer_setup(int cpu, int comparator, unsigned long expires) 176 static int mmtimer_setup(int cpu, int comparator, unsigned long expires)
176 { 177 {
177 178
178 switch (comparator) { 179 switch (comparator) {
179 case 0: 180 case 0:
180 mmtimer_setup_int_0(cpu, expires); 181 mmtimer_setup_int_0(cpu, expires);
181 break; 182 break;
182 case 1: 183 case 1:
183 mmtimer_setup_int_1(cpu, expires); 184 mmtimer_setup_int_1(cpu, expires);
184 break; 185 break;
185 case 2: 186 case 2:
186 mmtimer_setup_int_2(cpu, expires); 187 mmtimer_setup_int_2(cpu, expires);
187 break; 188 break;
188 } 189 }
189 /* We might've missed our expiration time */ 190 /* We might've missed our expiration time */
190 if (rtc_time() <= expires) 191 if (rtc_time() <= expires)
191 return 1; 192 return 1;
192 193
193 /* 194 /*
194 * If an interrupt is already pending then its okay 195 * If an interrupt is already pending then its okay
195 * if not then we failed 196 * if not then we failed
196 */ 197 */
197 return mmtimer_int_pending(comparator); 198 return mmtimer_int_pending(comparator);
198 } 199 }
199 200
200 static int mmtimer_disable_int(long nasid, int comparator) 201 static int mmtimer_disable_int(long nasid, int comparator)
201 { 202 {
202 switch (comparator) { 203 switch (comparator) {
203 case 0: 204 case 0:
204 nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 205 nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE),
205 0UL) : REMOTE_HUB_S(nasid, SH_RTC1_INT_ENABLE, 0UL); 206 0UL) : REMOTE_HUB_S(nasid, SH_RTC1_INT_ENABLE, 0UL);
206 break; 207 break;
207 case 1: 208 case 1:
208 nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 209 nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE),
209 0UL) : REMOTE_HUB_S(nasid, SH_RTC2_INT_ENABLE, 0UL); 210 0UL) : REMOTE_HUB_S(nasid, SH_RTC2_INT_ENABLE, 0UL);
210 break; 211 break;
211 case 2: 212 case 2:
212 nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 213 nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE),
213 0UL) : REMOTE_HUB_S(nasid, SH_RTC3_INT_ENABLE, 0UL); 214 0UL) : REMOTE_HUB_S(nasid, SH_RTC3_INT_ENABLE, 0UL);
214 break; 215 break;
215 default: 216 default:
216 return -EFAULT; 217 return -EFAULT;
217 } 218 }
218 return 0; 219 return 0;
219 } 220 }
220 221
221 #define COMPARATOR 1 /* The comparator to use */ 222 #define COMPARATOR 1 /* The comparator to use */
222 223
223 #define TIMER_OFF 0xbadcabLL /* Timer is not setup */ 224 #define TIMER_OFF 0xbadcabLL /* Timer is not setup */
224 #define TIMER_SET 0 /* Comparator is set for this timer */ 225 #define TIMER_SET 0 /* Comparator is set for this timer */
225 226
226 /* There is one of these for each timer */ 227 /* There is one of these for each timer */
227 struct mmtimer { 228 struct mmtimer {
228 struct rb_node list; 229 struct rb_node list;
229 struct k_itimer *timer; 230 struct k_itimer *timer;
230 int cpu; 231 int cpu;
231 }; 232 };
232 233
233 struct mmtimer_node { 234 struct mmtimer_node {
234 spinlock_t lock ____cacheline_aligned; 235 spinlock_t lock ____cacheline_aligned;
235 struct rb_root timer_head; 236 struct rb_root timer_head;
236 struct rb_node *next; 237 struct rb_node *next;
237 struct tasklet_struct tasklet; 238 struct tasklet_struct tasklet;
238 }; 239 };
239 static struct mmtimer_node *timers; 240 static struct mmtimer_node *timers;
240 241
241 242
242 /* 243 /*
243 * Add a new mmtimer struct to the node's mmtimer list. 244 * Add a new mmtimer struct to the node's mmtimer list.
244 * This function assumes the struct mmtimer_node is locked. 245 * This function assumes the struct mmtimer_node is locked.
245 */ 246 */
246 static void mmtimer_add_list(struct mmtimer *n) 247 static void mmtimer_add_list(struct mmtimer *n)
247 { 248 {
248 int nodeid = n->timer->it.mmtimer.node; 249 int nodeid = n->timer->it.mmtimer.node;
249 unsigned long expires = n->timer->it.mmtimer.expires; 250 unsigned long expires = n->timer->it.mmtimer.expires;
250 struct rb_node **link = &timers[nodeid].timer_head.rb_node; 251 struct rb_node **link = &timers[nodeid].timer_head.rb_node;
251 struct rb_node *parent = NULL; 252 struct rb_node *parent = NULL;
252 struct mmtimer *x; 253 struct mmtimer *x;
253 254
254 /* 255 /*
255 * Find the right place in the rbtree: 256 * Find the right place in the rbtree:
256 */ 257 */
257 while (*link) { 258 while (*link) {
258 parent = *link; 259 parent = *link;
259 x = rb_entry(parent, struct mmtimer, list); 260 x = rb_entry(parent, struct mmtimer, list);
260 261
261 if (expires < x->timer->it.mmtimer.expires) 262 if (expires < x->timer->it.mmtimer.expires)
262 link = &(*link)->rb_left; 263 link = &(*link)->rb_left;
263 else 264 else
264 link = &(*link)->rb_right; 265 link = &(*link)->rb_right;
265 } 266 }
266 267
267 /* 268 /*
268 * Insert the timer to the rbtree and check whether it 269 * Insert the timer to the rbtree and check whether it
269 * replaces the first pending timer 270 * replaces the first pending timer
270 */ 271 */
271 rb_link_node(&n->list, parent, link); 272 rb_link_node(&n->list, parent, link);
272 rb_insert_color(&n->list, &timers[nodeid].timer_head); 273 rb_insert_color(&n->list, &timers[nodeid].timer_head);
273 274
274 if (!timers[nodeid].next || expires < rb_entry(timers[nodeid].next, 275 if (!timers[nodeid].next || expires < rb_entry(timers[nodeid].next,
275 struct mmtimer, list)->timer->it.mmtimer.expires) 276 struct mmtimer, list)->timer->it.mmtimer.expires)
276 timers[nodeid].next = &n->list; 277 timers[nodeid].next = &n->list;
277 } 278 }
278 279
279 /* 280 /*
280 * Set the comparator for the next timer. 281 * Set the comparator for the next timer.
281 * This function assumes the struct mmtimer_node is locked. 282 * This function assumes the struct mmtimer_node is locked.
282 */ 283 */
283 static void mmtimer_set_next_timer(int nodeid) 284 static void mmtimer_set_next_timer(int nodeid)
284 { 285 {
285 struct mmtimer_node *n = &timers[nodeid]; 286 struct mmtimer_node *n = &timers[nodeid];
286 struct mmtimer *x; 287 struct mmtimer *x;
287 struct k_itimer *t; 288 struct k_itimer *t;
288 int o; 289 int o;
289 290
290 restart: 291 restart:
291 if (n->next == NULL) 292 if (n->next == NULL)
292 return; 293 return;
293 294
294 x = rb_entry(n->next, struct mmtimer, list); 295 x = rb_entry(n->next, struct mmtimer, list);
295 t = x->timer; 296 t = x->timer;
296 if (!t->it.mmtimer.incr) { 297 if (!t->it.mmtimer.incr) {
297 /* Not an interval timer */ 298 /* Not an interval timer */
298 if (!mmtimer_setup(x->cpu, COMPARATOR, 299 if (!mmtimer_setup(x->cpu, COMPARATOR,
299 t->it.mmtimer.expires)) { 300 t->it.mmtimer.expires)) {
300 /* Late setup, fire now */ 301 /* Late setup, fire now */
301 tasklet_schedule(&n->tasklet); 302 tasklet_schedule(&n->tasklet);
302 } 303 }
303 return; 304 return;
304 } 305 }
305 306
306 /* Interval timer */ 307 /* Interval timer */
307 o = 0; 308 o = 0;
308 while (!mmtimer_setup(x->cpu, COMPARATOR, t->it.mmtimer.expires)) { 309 while (!mmtimer_setup(x->cpu, COMPARATOR, t->it.mmtimer.expires)) {
309 unsigned long e, e1; 310 unsigned long e, e1;
310 struct rb_node *next; 311 struct rb_node *next;
311 t->it.mmtimer.expires += t->it.mmtimer.incr << o; 312 t->it.mmtimer.expires += t->it.mmtimer.incr << o;
312 t->it_overrun += 1 << o; 313 t->it_overrun += 1 << o;
313 o++; 314 o++;
314 if (o > 20) { 315 if (o > 20) {
315 printk(KERN_ALERT "mmtimer: cannot reschedule timer\n"); 316 printk(KERN_ALERT "mmtimer: cannot reschedule timer\n");
316 t->it.mmtimer.clock = TIMER_OFF; 317 t->it.mmtimer.clock = TIMER_OFF;
317 n->next = rb_next(&x->list); 318 n->next = rb_next(&x->list);
318 rb_erase(&x->list, &n->timer_head); 319 rb_erase(&x->list, &n->timer_head);
319 kfree(x); 320 kfree(x);
320 goto restart; 321 goto restart;
321 } 322 }
322 323
323 e = t->it.mmtimer.expires; 324 e = t->it.mmtimer.expires;
324 next = rb_next(&x->list); 325 next = rb_next(&x->list);
325 326
326 if (next == NULL) 327 if (next == NULL)
327 continue; 328 continue;
328 329
329 e1 = rb_entry(next, struct mmtimer, list)-> 330 e1 = rb_entry(next, struct mmtimer, list)->
330 timer->it.mmtimer.expires; 331 timer->it.mmtimer.expires;
331 if (e > e1) { 332 if (e > e1) {
332 n->next = next; 333 n->next = next;
333 rb_erase(&x->list, &n->timer_head); 334 rb_erase(&x->list, &n->timer_head);
334 mmtimer_add_list(x); 335 mmtimer_add_list(x);
335 goto restart; 336 goto restart;
336 } 337 }
337 } 338 }
338 } 339 }
339 340
340 /** 341 /**
341 * mmtimer_ioctl - ioctl interface for /dev/mmtimer 342 * mmtimer_ioctl - ioctl interface for /dev/mmtimer
342 * @inode: inode of the device
343 * @file: file structure for the device 343 * @file: file structure for the device
344 * @cmd: command to execute 344 * @cmd: command to execute
345 * @arg: optional argument to command 345 * @arg: optional argument to command
346 * 346 *
347 * Executes the command specified by @cmd. Returns 0 for success, < 0 for 347 * Executes the command specified by @cmd. Returns 0 for success, < 0 for
348 * failure. 348 * failure.
349 * 349 *
350 * Valid commands: 350 * Valid commands:
351 * 351 *
352 * %MMTIMER_GETOFFSET - Should return the offset (relative to the start 352 * %MMTIMER_GETOFFSET - Should return the offset (relative to the start
353 * of the page where the registers are mapped) for the counter in question. 353 * of the page where the registers are mapped) for the counter in question.
354 * 354 *
355 * %MMTIMER_GETRES - Returns the resolution of the clock in femto (10^-15) 355 * %MMTIMER_GETRES - Returns the resolution of the clock in femto (10^-15)
356 * seconds 356 * seconds
357 * 357 *
358 * %MMTIMER_GETFREQ - Copies the frequency of the clock in Hz to the address 358 * %MMTIMER_GETFREQ - Copies the frequency of the clock in Hz to the address
359 * specified by @arg 359 * specified by @arg
360 * 360 *
361 * %MMTIMER_GETBITS - Returns the number of bits in the clock's counter 361 * %MMTIMER_GETBITS - Returns the number of bits in the clock's counter
362 * 362 *
363 * %MMTIMER_MMAPAVAIL - Returns 1 if the registers can be mmap'd into userspace 363 * %MMTIMER_MMAPAVAIL - Returns 1 if the registers can be mmap'd into userspace
364 * 364 *
365 * %MMTIMER_GETCOUNTER - Gets the current value in the counter and places it 365 * %MMTIMER_GETCOUNTER - Gets the current value in the counter and places it
366 * in the address specified by @arg. 366 * in the address specified by @arg.
367 */ 367 */
368 static int mmtimer_ioctl(struct inode *inode, struct file *file, 368 static long mmtimer_ioctl(struct file *file, unsigned int cmd,
369 unsigned int cmd, unsigned long arg) 369 unsigned long arg)
370 { 370 {
371 int ret = 0; 371 int ret = 0;
372 372
373 lock_kernel();
374
373 switch (cmd) { 375 switch (cmd) {
374 case MMTIMER_GETOFFSET: /* offset of the counter */ 376 case MMTIMER_GETOFFSET: /* offset of the counter */
375 /* 377 /*
376 * SN RTC registers are on their own 64k page 378 * SN RTC registers are on their own 64k page
377 */ 379 */
378 if(PAGE_SIZE <= (1 << 16)) 380 if(PAGE_SIZE <= (1 << 16))
379 ret = (((long)RTC_COUNTER_ADDR) & (PAGE_SIZE-1)) / 8; 381 ret = (((long)RTC_COUNTER_ADDR) & (PAGE_SIZE-1)) / 8;
380 else 382 else
381 ret = -ENOSYS; 383 ret = -ENOSYS;
382 break; 384 break;
383 385
384 case MMTIMER_GETRES: /* resolution of the clock in 10^-15 s */ 386 case MMTIMER_GETRES: /* resolution of the clock in 10^-15 s */
385 if(copy_to_user((unsigned long __user *)arg, 387 if(copy_to_user((unsigned long __user *)arg,
386 &mmtimer_femtoperiod, sizeof(unsigned long))) 388 &mmtimer_femtoperiod, sizeof(unsigned long)))
387 return -EFAULT; 389 ret = -EFAULT;
388 break; 390 break;
389 391
390 case MMTIMER_GETFREQ: /* frequency in Hz */ 392 case MMTIMER_GETFREQ: /* frequency in Hz */
391 if(copy_to_user((unsigned long __user *)arg, 393 if(copy_to_user((unsigned long __user *)arg,
392 &sn_rtc_cycles_per_second, 394 &sn_rtc_cycles_per_second,
393 sizeof(unsigned long))) 395 sizeof(unsigned long)))
394 return -EFAULT; 396 ret = -EFAULT;
395 ret = 0;
396 break; 397 break;
397 398
398 case MMTIMER_GETBITS: /* number of bits in the clock */ 399 case MMTIMER_GETBITS: /* number of bits in the clock */
399 ret = RTC_BITS; 400 ret = RTC_BITS;
400 break; 401 break;
401 402
402 case MMTIMER_MMAPAVAIL: /* can we mmap the clock into userspace? */ 403 case MMTIMER_MMAPAVAIL: /* can we mmap the clock into userspace? */
403 ret = (PAGE_SIZE <= (1 << 16)) ? 1 : 0; 404 ret = (PAGE_SIZE <= (1 << 16)) ? 1 : 0;
404 break; 405 break;
405 406
406 case MMTIMER_GETCOUNTER: 407 case MMTIMER_GETCOUNTER:
407 if(copy_to_user((unsigned long __user *)arg, 408 if(copy_to_user((unsigned long __user *)arg,
408 RTC_COUNTER_ADDR, sizeof(unsigned long))) 409 RTC_COUNTER_ADDR, sizeof(unsigned long)))
409 return -EFAULT; 410 ret = -EFAULT;
410 break; 411 break;
411 default: 412 default:
412 ret = -ENOSYS; 413 ret = -ENOTTY;
413 break; 414 break;
414 } 415 }
415 416 unlock_kernel();
416 return ret; 417 return ret;
417 } 418 }
418 419
419 /** 420 /**
420 * mmtimer_mmap - maps the clock's registers into userspace 421 * mmtimer_mmap - maps the clock's registers into userspace
421 * @file: file structure for the device 422 * @file: file structure for the device
422 * @vma: VMA to map the registers into 423 * @vma: VMA to map the registers into
423 * 424 *
424 * Calls remap_pfn_range() to map the clock's registers into 425 * Calls remap_pfn_range() to map the clock's registers into
425 * the calling process' address space. 426 * the calling process' address space.
426 */ 427 */
427 static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma) 428 static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma)
428 { 429 {
429 unsigned long mmtimer_addr; 430 unsigned long mmtimer_addr;
430 431
431 if (vma->vm_end - vma->vm_start != PAGE_SIZE) 432 if (vma->vm_end - vma->vm_start != PAGE_SIZE)
432 return -EINVAL; 433 return -EINVAL;
433 434
434 if (vma->vm_flags & VM_WRITE) 435 if (vma->vm_flags & VM_WRITE)
435 return -EPERM; 436 return -EPERM;
436 437
437 if (PAGE_SIZE > (1 << 16)) 438 if (PAGE_SIZE > (1 << 16))
438 return -ENOSYS; 439 return -ENOSYS;
439 440
440 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 441 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
441 442
442 mmtimer_addr = __pa(RTC_COUNTER_ADDR); 443 mmtimer_addr = __pa(RTC_COUNTER_ADDR);
443 mmtimer_addr &= ~(PAGE_SIZE - 1); 444 mmtimer_addr &= ~(PAGE_SIZE - 1);
444 mmtimer_addr &= 0xfffffffffffffffUL; 445 mmtimer_addr &= 0xfffffffffffffffUL;
445 446
446 if (remap_pfn_range(vma, vma->vm_start, mmtimer_addr >> PAGE_SHIFT, 447 if (remap_pfn_range(vma, vma->vm_start, mmtimer_addr >> PAGE_SHIFT,
447 PAGE_SIZE, vma->vm_page_prot)) { 448 PAGE_SIZE, vma->vm_page_prot)) {
448 printk(KERN_ERR "remap_pfn_range failed in mmtimer.c\n"); 449 printk(KERN_ERR "remap_pfn_range failed in mmtimer.c\n");
449 return -EAGAIN; 450 return -EAGAIN;
450 } 451 }
451 452
452 return 0; 453 return 0;
453 } 454 }
454 455
455 static struct miscdevice mmtimer_miscdev = { 456 static struct miscdevice mmtimer_miscdev = {
456 SGI_MMTIMER, 457 SGI_MMTIMER,
457 MMTIMER_NAME, 458 MMTIMER_NAME,
458 &mmtimer_fops 459 &mmtimer_fops
459 }; 460 };
460 461
461 static struct timespec sgi_clock_offset; 462 static struct timespec sgi_clock_offset;
462 static int sgi_clock_period; 463 static int sgi_clock_period;
463 464
464 /* 465 /*
465 * Posix Timer Interface 466 * Posix Timer Interface
466 */ 467 */
467 468
468 static struct timespec sgi_clock_offset; 469 static struct timespec sgi_clock_offset;
469 static int sgi_clock_period; 470 static int sgi_clock_period;
470 471
471 static int sgi_clock_get(clockid_t clockid, struct timespec *tp) 472 static int sgi_clock_get(clockid_t clockid, struct timespec *tp)
472 { 473 {
473 u64 nsec; 474 u64 nsec;
474 475
475 nsec = rtc_time() * sgi_clock_period 476 nsec = rtc_time() * sgi_clock_period
476 + sgi_clock_offset.tv_nsec; 477 + sgi_clock_offset.tv_nsec;
477 *tp = ns_to_timespec(nsec); 478 *tp = ns_to_timespec(nsec);
478 tp->tv_sec += sgi_clock_offset.tv_sec; 479 tp->tv_sec += sgi_clock_offset.tv_sec;
479 return 0; 480 return 0;
480 }; 481 };
481 482
482 static int sgi_clock_set(clockid_t clockid, struct timespec *tp) 483 static int sgi_clock_set(clockid_t clockid, struct timespec *tp)
483 { 484 {
484 485
485 u64 nsec; 486 u64 nsec;
486 u32 rem; 487 u32 rem;
487 488
488 nsec = rtc_time() * sgi_clock_period; 489 nsec = rtc_time() * sgi_clock_period;
489 490
490 sgi_clock_offset.tv_sec = tp->tv_sec - div_u64_rem(nsec, NSEC_PER_SEC, &rem); 491 sgi_clock_offset.tv_sec = tp->tv_sec - div_u64_rem(nsec, NSEC_PER_SEC, &rem);
491 492
492 if (rem <= tp->tv_nsec) 493 if (rem <= tp->tv_nsec)
493 sgi_clock_offset.tv_nsec = tp->tv_sec - rem; 494 sgi_clock_offset.tv_nsec = tp->tv_sec - rem;
494 else { 495 else {
495 sgi_clock_offset.tv_nsec = tp->tv_sec + NSEC_PER_SEC - rem; 496 sgi_clock_offset.tv_nsec = tp->tv_sec + NSEC_PER_SEC - rem;
496 sgi_clock_offset.tv_sec--; 497 sgi_clock_offset.tv_sec--;
497 } 498 }
498 return 0; 499 return 0;
499 } 500 }
500 501
501 /** 502 /**
502 * mmtimer_interrupt - timer interrupt handler 503 * mmtimer_interrupt - timer interrupt handler
503 * @irq: irq received 504 * @irq: irq received
504 * @dev_id: device the irq came from 505 * @dev_id: device the irq came from
505 * 506 *
506 * Called when one of the comarators matches the counter, This 507 * Called when one of the comarators matches the counter, This
507 * routine will send signals to processes that have requested 508 * routine will send signals to processes that have requested
508 * them. 509 * them.
509 * 510 *
510 * This interrupt is run in an interrupt context 511 * This interrupt is run in an interrupt context
511 * by the SHUB. It is therefore safe to locally access SHub 512 * by the SHUB. It is therefore safe to locally access SHub
512 * registers. 513 * registers.
513 */ 514 */
514 static irqreturn_t 515 static irqreturn_t
515 mmtimer_interrupt(int irq, void *dev_id) 516 mmtimer_interrupt(int irq, void *dev_id)
516 { 517 {
517 unsigned long expires = 0; 518 unsigned long expires = 0;
518 int result = IRQ_NONE; 519 int result = IRQ_NONE;
519 unsigned indx = cpu_to_node(smp_processor_id()); 520 unsigned indx = cpu_to_node(smp_processor_id());
520 struct mmtimer *base; 521 struct mmtimer *base;
521 522
522 spin_lock(&timers[indx].lock); 523 spin_lock(&timers[indx].lock);
523 base = rb_entry(timers[indx].next, struct mmtimer, list); 524 base = rb_entry(timers[indx].next, struct mmtimer, list);
524 if (base == NULL) { 525 if (base == NULL) {
525 spin_unlock(&timers[indx].lock); 526 spin_unlock(&timers[indx].lock);
526 return result; 527 return result;
527 } 528 }
528 529
529 if (base->cpu == smp_processor_id()) { 530 if (base->cpu == smp_processor_id()) {
530 if (base->timer) 531 if (base->timer)
531 expires = base->timer->it.mmtimer.expires; 532 expires = base->timer->it.mmtimer.expires;
532 /* expires test won't work with shared irqs */ 533 /* expires test won't work with shared irqs */
533 if ((mmtimer_int_pending(COMPARATOR) > 0) || 534 if ((mmtimer_int_pending(COMPARATOR) > 0) ||
534 (expires && (expires <= rtc_time()))) { 535 (expires && (expires <= rtc_time()))) {
535 mmtimer_clr_int_pending(COMPARATOR); 536 mmtimer_clr_int_pending(COMPARATOR);
536 tasklet_schedule(&timers[indx].tasklet); 537 tasklet_schedule(&timers[indx].tasklet);
537 result = IRQ_HANDLED; 538 result = IRQ_HANDLED;
538 } 539 }
539 } 540 }
540 spin_unlock(&timers[indx].lock); 541 spin_unlock(&timers[indx].lock);
541 return result; 542 return result;
542 } 543 }
543 544
544 static void mmtimer_tasklet(unsigned long data) 545 static void mmtimer_tasklet(unsigned long data)
545 { 546 {
546 int nodeid = data; 547 int nodeid = data;
547 struct mmtimer_node *mn = &timers[nodeid]; 548 struct mmtimer_node *mn = &timers[nodeid];
548 struct mmtimer *x = rb_entry(mn->next, struct mmtimer, list); 549 struct mmtimer *x = rb_entry(mn->next, struct mmtimer, list);
549 struct k_itimer *t; 550 struct k_itimer *t;
550 unsigned long flags; 551 unsigned long flags;
551 552
552 /* Send signal and deal with periodic signals */ 553 /* Send signal and deal with periodic signals */
553 spin_lock_irqsave(&mn->lock, flags); 554 spin_lock_irqsave(&mn->lock, flags);
554 if (!mn->next) 555 if (!mn->next)
555 goto out; 556 goto out;
556 557
557 x = rb_entry(mn->next, struct mmtimer, list); 558 x = rb_entry(mn->next, struct mmtimer, list);
558 t = x->timer; 559 t = x->timer;
559 560
560 if (t->it.mmtimer.clock == TIMER_OFF) 561 if (t->it.mmtimer.clock == TIMER_OFF)
561 goto out; 562 goto out;
562 563
563 t->it_overrun = 0; 564 t->it_overrun = 0;
564 565
565 mn->next = rb_next(&x->list); 566 mn->next = rb_next(&x->list);
566 rb_erase(&x->list, &mn->timer_head); 567 rb_erase(&x->list, &mn->timer_head);
567 568
568 if (posix_timer_event(t, 0) != 0) 569 if (posix_timer_event(t, 0) != 0)
569 t->it_overrun++; 570 t->it_overrun++;
570 571
571 if(t->it.mmtimer.incr) { 572 if(t->it.mmtimer.incr) {
572 t->it.mmtimer.expires += t->it.mmtimer.incr; 573 t->it.mmtimer.expires += t->it.mmtimer.incr;
573 mmtimer_add_list(x); 574 mmtimer_add_list(x);
574 } else { 575 } else {
575 /* Ensure we don't false trigger in mmtimer_interrupt */ 576 /* Ensure we don't false trigger in mmtimer_interrupt */
576 t->it.mmtimer.clock = TIMER_OFF; 577 t->it.mmtimer.clock = TIMER_OFF;
577 t->it.mmtimer.expires = 0; 578 t->it.mmtimer.expires = 0;
578 kfree(x); 579 kfree(x);
579 } 580 }
580 /* Set comparator for next timer, if there is one */ 581 /* Set comparator for next timer, if there is one */
581 mmtimer_set_next_timer(nodeid); 582 mmtimer_set_next_timer(nodeid);
582 583
583 t->it_overrun_last = t->it_overrun; 584 t->it_overrun_last = t->it_overrun;
584 out: 585 out:
585 spin_unlock_irqrestore(&mn->lock, flags); 586 spin_unlock_irqrestore(&mn->lock, flags);
586 } 587 }
587 588
588 static int sgi_timer_create(struct k_itimer *timer) 589 static int sgi_timer_create(struct k_itimer *timer)
589 { 590 {
590 /* Insure that a newly created timer is off */ 591 /* Insure that a newly created timer is off */
591 timer->it.mmtimer.clock = TIMER_OFF; 592 timer->it.mmtimer.clock = TIMER_OFF;
592 return 0; 593 return 0;
593 } 594 }
594 595
595 /* This does not really delete a timer. It just insures 596 /* This does not really delete a timer. It just insures
596 * that the timer is not active 597 * that the timer is not active
597 * 598 *
598 * Assumption: it_lock is already held with irq's disabled 599 * Assumption: it_lock is already held with irq's disabled
599 */ 600 */
600 static int sgi_timer_del(struct k_itimer *timr) 601 static int sgi_timer_del(struct k_itimer *timr)
601 { 602 {
602 cnodeid_t nodeid = timr->it.mmtimer.node; 603 cnodeid_t nodeid = timr->it.mmtimer.node;
603 unsigned long irqflags; 604 unsigned long irqflags;
604 605
605 spin_lock_irqsave(&timers[nodeid].lock, irqflags); 606 spin_lock_irqsave(&timers[nodeid].lock, irqflags);
606 if (timr->it.mmtimer.clock != TIMER_OFF) { 607 if (timr->it.mmtimer.clock != TIMER_OFF) {
607 unsigned long expires = timr->it.mmtimer.expires; 608 unsigned long expires = timr->it.mmtimer.expires;
608 struct rb_node *n = timers[nodeid].timer_head.rb_node; 609 struct rb_node *n = timers[nodeid].timer_head.rb_node;
609 struct mmtimer *uninitialized_var(t); 610 struct mmtimer *uninitialized_var(t);
610 int r = 0; 611 int r = 0;
611 612
612 timr->it.mmtimer.clock = TIMER_OFF; 613 timr->it.mmtimer.clock = TIMER_OFF;
613 timr->it.mmtimer.expires = 0; 614 timr->it.mmtimer.expires = 0;
614 615
615 while (n) { 616 while (n) {
616 t = rb_entry(n, struct mmtimer, list); 617 t = rb_entry(n, struct mmtimer, list);
617 if (t->timer == timr) 618 if (t->timer == timr)
618 break; 619 break;
619 620
620 if (expires < t->timer->it.mmtimer.expires) 621 if (expires < t->timer->it.mmtimer.expires)
621 n = n->rb_left; 622 n = n->rb_left;
622 else 623 else
623 n = n->rb_right; 624 n = n->rb_right;
624 } 625 }
625 626
626 if (!n) { 627 if (!n) {
627 spin_unlock_irqrestore(&timers[nodeid].lock, irqflags); 628 spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
628 return 0; 629 return 0;
629 } 630 }
630 631
631 if (timers[nodeid].next == n) { 632 if (timers[nodeid].next == n) {
632 timers[nodeid].next = rb_next(n); 633 timers[nodeid].next = rb_next(n);
633 r = 1; 634 r = 1;
634 } 635 }
635 636
636 rb_erase(n, &timers[nodeid].timer_head); 637 rb_erase(n, &timers[nodeid].timer_head);
637 kfree(t); 638 kfree(t);
638 639
639 if (r) { 640 if (r) {
640 mmtimer_disable_int(cnodeid_to_nasid(nodeid), 641 mmtimer_disable_int(cnodeid_to_nasid(nodeid),
641 COMPARATOR); 642 COMPARATOR);
642 mmtimer_set_next_timer(nodeid); 643 mmtimer_set_next_timer(nodeid);
643 } 644 }
644 } 645 }
645 spin_unlock_irqrestore(&timers[nodeid].lock, irqflags); 646 spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
646 return 0; 647 return 0;
647 } 648 }
648 649
649 /* Assumption: it_lock is already held with irq's disabled */ 650 /* Assumption: it_lock is already held with irq's disabled */
650 static void sgi_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting) 651 static void sgi_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
651 { 652 {
652 653
653 if (timr->it.mmtimer.clock == TIMER_OFF) { 654 if (timr->it.mmtimer.clock == TIMER_OFF) {
654 cur_setting->it_interval.tv_nsec = 0; 655 cur_setting->it_interval.tv_nsec = 0;
655 cur_setting->it_interval.tv_sec = 0; 656 cur_setting->it_interval.tv_sec = 0;
656 cur_setting->it_value.tv_nsec = 0; 657 cur_setting->it_value.tv_nsec = 0;
657 cur_setting->it_value.tv_sec =0; 658 cur_setting->it_value.tv_sec =0;
658 return; 659 return;
659 } 660 }
660 661
661 cur_setting->it_interval = ns_to_timespec(timr->it.mmtimer.incr * sgi_clock_period); 662 cur_setting->it_interval = ns_to_timespec(timr->it.mmtimer.incr * sgi_clock_period);
662 cur_setting->it_value = ns_to_timespec((timr->it.mmtimer.expires - rtc_time()) * sgi_clock_period); 663 cur_setting->it_value = ns_to_timespec((timr->it.mmtimer.expires - rtc_time()) * sgi_clock_period);
663 } 664 }
664 665
665 666
666 static int sgi_timer_set(struct k_itimer *timr, int flags, 667 static int sgi_timer_set(struct k_itimer *timr, int flags,
667 struct itimerspec * new_setting, 668 struct itimerspec * new_setting,
668 struct itimerspec * old_setting) 669 struct itimerspec * old_setting)
669 { 670 {
670 unsigned long when, period, irqflags; 671 unsigned long when, period, irqflags;
671 int err = 0; 672 int err = 0;
672 cnodeid_t nodeid; 673 cnodeid_t nodeid;
673 struct mmtimer *base; 674 struct mmtimer *base;
674 struct rb_node *n; 675 struct rb_node *n;
675 676
676 if (old_setting) 677 if (old_setting)
677 sgi_timer_get(timr, old_setting); 678 sgi_timer_get(timr, old_setting);
678 679
679 sgi_timer_del(timr); 680 sgi_timer_del(timr);
680 when = timespec_to_ns(&new_setting->it_value); 681 when = timespec_to_ns(&new_setting->it_value);
681 period = timespec_to_ns(&new_setting->it_interval); 682 period = timespec_to_ns(&new_setting->it_interval);
682 683
683 if (when == 0) 684 if (when == 0)
684 /* Clear timer */ 685 /* Clear timer */
685 return 0; 686 return 0;
686 687
687 base = kmalloc(sizeof(struct mmtimer), GFP_KERNEL); 688 base = kmalloc(sizeof(struct mmtimer), GFP_KERNEL);
688 if (base == NULL) 689 if (base == NULL)
689 return -ENOMEM; 690 return -ENOMEM;
690 691
691 if (flags & TIMER_ABSTIME) { 692 if (flags & TIMER_ABSTIME) {
692 struct timespec n; 693 struct timespec n;
693 unsigned long now; 694 unsigned long now;
694 695
695 getnstimeofday(&n); 696 getnstimeofday(&n);
696 now = timespec_to_ns(&n); 697 now = timespec_to_ns(&n);
697 if (when > now) 698 if (when > now)
698 when -= now; 699 when -= now;
699 else 700 else
700 /* Fire the timer immediately */ 701 /* Fire the timer immediately */
701 when = 0; 702 when = 0;
702 } 703 }
703 704
704 /* 705 /*
705 * Convert to sgi clock period. Need to keep rtc_time() as near as possible 706 * Convert to sgi clock period. Need to keep rtc_time() as near as possible
706 * to getnstimeofday() in order to be as faithful as possible to the time 707 * to getnstimeofday() in order to be as faithful as possible to the time
707 * specified. 708 * specified.
708 */ 709 */
709 when = (when + sgi_clock_period - 1) / sgi_clock_period + rtc_time(); 710 when = (when + sgi_clock_period - 1) / sgi_clock_period + rtc_time();
710 period = (period + sgi_clock_period - 1) / sgi_clock_period; 711 period = (period + sgi_clock_period - 1) / sgi_clock_period;
711 712
712 /* 713 /*
713 * We are allocating a local SHub comparator. If we would be moved to another 714 * We are allocating a local SHub comparator. If we would be moved to another
714 * cpu then another SHub may be local to us. Prohibit that by switching off 715 * cpu then another SHub may be local to us. Prohibit that by switching off
715 * preemption. 716 * preemption.
716 */ 717 */
717 preempt_disable(); 718 preempt_disable();
718 719
719 nodeid = cpu_to_node(smp_processor_id()); 720 nodeid = cpu_to_node(smp_processor_id());
720 721
721 /* Lock the node timer structure */ 722 /* Lock the node timer structure */
722 spin_lock_irqsave(&timers[nodeid].lock, irqflags); 723 spin_lock_irqsave(&timers[nodeid].lock, irqflags);
723 724
724 base->timer = timr; 725 base->timer = timr;
725 base->cpu = smp_processor_id(); 726 base->cpu = smp_processor_id();
726 727
727 timr->it.mmtimer.clock = TIMER_SET; 728 timr->it.mmtimer.clock = TIMER_SET;
728 timr->it.mmtimer.node = nodeid; 729 timr->it.mmtimer.node = nodeid;
729 timr->it.mmtimer.incr = period; 730 timr->it.mmtimer.incr = period;
730 timr->it.mmtimer.expires = when; 731 timr->it.mmtimer.expires = when;
731 732
732 n = timers[nodeid].next; 733 n = timers[nodeid].next;
733 734
734 /* Add the new struct mmtimer to node's timer list */ 735 /* Add the new struct mmtimer to node's timer list */
735 mmtimer_add_list(base); 736 mmtimer_add_list(base);
736 737
737 if (timers[nodeid].next == n) { 738 if (timers[nodeid].next == n) {
738 /* No need to reprogram comparator for now */ 739 /* No need to reprogram comparator for now */
739 spin_unlock_irqrestore(&timers[nodeid].lock, irqflags); 740 spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
740 preempt_enable(); 741 preempt_enable();
741 return err; 742 return err;
742 } 743 }
743 744
744 /* We need to reprogram the comparator */ 745 /* We need to reprogram the comparator */
745 if (n) 746 if (n)
746 mmtimer_disable_int(cnodeid_to_nasid(nodeid), COMPARATOR); 747 mmtimer_disable_int(cnodeid_to_nasid(nodeid), COMPARATOR);
747 748
748 mmtimer_set_next_timer(nodeid); 749 mmtimer_set_next_timer(nodeid);
749 750
750 /* Unlock the node timer structure */ 751 /* Unlock the node timer structure */
751 spin_unlock_irqrestore(&timers[nodeid].lock, irqflags); 752 spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
752 753
753 preempt_enable(); 754 preempt_enable();
754 755
755 return err; 756 return err;
756 } 757 }
757 758
758 static struct k_clock sgi_clock = { 759 static struct k_clock sgi_clock = {
759 .res = 0, 760 .res = 0,
760 .clock_set = sgi_clock_set, 761 .clock_set = sgi_clock_set,
761 .clock_get = sgi_clock_get, 762 .clock_get = sgi_clock_get,
762 .timer_create = sgi_timer_create, 763 .timer_create = sgi_timer_create,
763 .nsleep = do_posix_clock_nonanosleep, 764 .nsleep = do_posix_clock_nonanosleep,
764 .timer_set = sgi_timer_set, 765 .timer_set = sgi_timer_set,
765 .timer_del = sgi_timer_del, 766 .timer_del = sgi_timer_del,
766 .timer_get = sgi_timer_get 767 .timer_get = sgi_timer_get
767 }; 768 };
768 769
769 /** 770 /**
770 * mmtimer_init - device initialization routine 771 * mmtimer_init - device initialization routine
771 * 772 *
772 * Does initial setup for the mmtimer device. 773 * Does initial setup for the mmtimer device.
773 */ 774 */
774 static int __init mmtimer_init(void) 775 static int __init mmtimer_init(void)
775 { 776 {
776 cnodeid_t node, maxn = -1; 777 cnodeid_t node, maxn = -1;
777 778
778 if (!ia64_platform_is("sn2")) 779 if (!ia64_platform_is("sn2"))
779 return 0; 780 return 0;
780 781
781 /* 782 /*
782 * Sanity check the cycles/sec variable 783 * Sanity check the cycles/sec variable
783 */ 784 */
784 if (sn_rtc_cycles_per_second < 100000) { 785 if (sn_rtc_cycles_per_second < 100000) {
785 printk(KERN_ERR "%s: unable to determine clock frequency\n", 786 printk(KERN_ERR "%s: unable to determine clock frequency\n",
786 MMTIMER_NAME); 787 MMTIMER_NAME);
787 goto out1; 788 goto out1;
788 } 789 }
789 790
790 mmtimer_femtoperiod = ((unsigned long)1E15 + sn_rtc_cycles_per_second / 791 mmtimer_femtoperiod = ((unsigned long)1E15 + sn_rtc_cycles_per_second /
791 2) / sn_rtc_cycles_per_second; 792 2) / sn_rtc_cycles_per_second;
792 793
793 if (request_irq(SGI_MMTIMER_VECTOR, mmtimer_interrupt, IRQF_PERCPU, MMTIMER_NAME, NULL)) { 794 if (request_irq(SGI_MMTIMER_VECTOR, mmtimer_interrupt, IRQF_PERCPU, MMTIMER_NAME, NULL)) {
794 printk(KERN_WARNING "%s: unable to allocate interrupt.", 795 printk(KERN_WARNING "%s: unable to allocate interrupt.",
795 MMTIMER_NAME); 796 MMTIMER_NAME);
796 goto out1; 797 goto out1;
797 } 798 }
798 799
799 if (misc_register(&mmtimer_miscdev)) { 800 if (misc_register(&mmtimer_miscdev)) {
800 printk(KERN_ERR "%s: failed to register device\n", 801 printk(KERN_ERR "%s: failed to register device\n",
801 MMTIMER_NAME); 802 MMTIMER_NAME);
802 goto out2; 803 goto out2;
803 } 804 }
804 805
805 /* Get max numbered node, calculate slots needed */ 806 /* Get max numbered node, calculate slots needed */
806 for_each_online_node(node) { 807 for_each_online_node(node) {
807 maxn = node; 808 maxn = node;
808 } 809 }
809 maxn++; 810 maxn++;
810 811
811 /* Allocate list of node ptrs to mmtimer_t's */ 812 /* Allocate list of node ptrs to mmtimer_t's */
812 timers = kzalloc(sizeof(struct mmtimer_node)*maxn, GFP_KERNEL); 813 timers = kzalloc(sizeof(struct mmtimer_node)*maxn, GFP_KERNEL);
813 if (timers == NULL) { 814 if (timers == NULL) {
814 printk(KERN_ERR "%s: failed to allocate memory for device\n", 815 printk(KERN_ERR "%s: failed to allocate memory for device\n",
815 MMTIMER_NAME); 816 MMTIMER_NAME);
816 goto out3; 817 goto out3;
817 } 818 }
818 819
819 /* Initialize struct mmtimer's for each online node */ 820 /* Initialize struct mmtimer's for each online node */
820 for_each_online_node(node) { 821 for_each_online_node(node) {
821 spin_lock_init(&timers[node].lock); 822 spin_lock_init(&timers[node].lock);
822 tasklet_init(&timers[node].tasklet, mmtimer_tasklet, 823 tasklet_init(&timers[node].tasklet, mmtimer_tasklet,
823 (unsigned long) node); 824 (unsigned long) node);
824 } 825 }
825 826
826 sgi_clock_period = sgi_clock.res = NSEC_PER_SEC / sn_rtc_cycles_per_second; 827 sgi_clock_period = sgi_clock.res = NSEC_PER_SEC / sn_rtc_cycles_per_second;
827 register_posix_clock(CLOCK_SGI_CYCLE, &sgi_clock); 828 register_posix_clock(CLOCK_SGI_CYCLE, &sgi_clock);
828 829
829 printk(KERN_INFO "%s: v%s, %ld MHz\n", MMTIMER_DESC, MMTIMER_VERSION, 830 printk(KERN_INFO "%s: v%s, %ld MHz\n", MMTIMER_DESC, MMTIMER_VERSION,
830 sn_rtc_cycles_per_second/(unsigned long)1E6); 831 sn_rtc_cycles_per_second/(unsigned long)1E6);
831 832
832 return 0; 833 return 0;
833 834
834 out3: 835 out3:
835 kfree(timers); 836 kfree(timers);
836 misc_deregister(&mmtimer_miscdev); 837 misc_deregister(&mmtimer_miscdev);
837 out2: 838 out2:
838 free_irq(SGI_MMTIMER_VECTOR, NULL); 839 free_irq(SGI_MMTIMER_VECTOR, NULL);
839 out1: 840 out1:
840 return -1; 841 return -1;
841 } 842 }
842 843