Commit 550fcb8f7cab665ced9386bcf6b5a02df65318b6

Authored by Lucas Stach
Committed by Linus Torvalds
1 parent 0f157a5b58

drivers/rtc/rtc-rs5c372.c: add R2221T/L variant to the driver

Register layout is the same, so just add the variant to the appropriate
places.

Signed-off-by: Lucas Stach <l.stach@pengutronix.de>
Signed-off-by: Jan Luebbe <jlu@pengutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>

Showing 1 changed file with 5 additions and 0 deletions Inline Diff

drivers/rtc/rtc-rs5c372.c
1 /* 1 /*
2 * An I2C driver for Ricoh RS5C372, R2025S/D and RV5C38[67] RTCs 2 * An I2C driver for Ricoh RS5C372, R2025S/D and RV5C38[67] RTCs
3 * 3 *
4 * Copyright (C) 2005 Pavel Mironchik <pmironchik@optifacio.net> 4 * Copyright (C) 2005 Pavel Mironchik <pmironchik@optifacio.net>
5 * Copyright (C) 2006 Tower Technologies 5 * Copyright (C) 2006 Tower Technologies
6 * Copyright (C) 2008 Paul Mundt 6 * Copyright (C) 2008 Paul Mundt
7 * 7 *
8 * This program is free software; you can redistribute it and/or modify 8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as 9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation. 10 * published by the Free Software Foundation.
11 */ 11 */
12 12
13 #include <linux/i2c.h> 13 #include <linux/i2c.h>
14 #include <linux/rtc.h> 14 #include <linux/rtc.h>
15 #include <linux/bcd.h> 15 #include <linux/bcd.h>
16 #include <linux/slab.h> 16 #include <linux/slab.h>
17 #include <linux/module.h> 17 #include <linux/module.h>
18 18
19 #define DRV_VERSION "0.6" 19 #define DRV_VERSION "0.6"
20 20
21 21
22 /* 22 /*
23 * Ricoh has a family of I2C based RTCs, which differ only slightly from 23 * Ricoh has a family of I2C based RTCs, which differ only slightly from
24 * each other. Differences center on pinout (e.g. how many interrupts, 24 * each other. Differences center on pinout (e.g. how many interrupts,
25 * output clock, etc) and how the control registers are used. The '372 25 * output clock, etc) and how the control registers are used. The '372
26 * is significant only because that's the one this driver first supported. 26 * is significant only because that's the one this driver first supported.
27 */ 27 */
28 #define RS5C372_REG_SECS 0 28 #define RS5C372_REG_SECS 0
29 #define RS5C372_REG_MINS 1 29 #define RS5C372_REG_MINS 1
30 #define RS5C372_REG_HOURS 2 30 #define RS5C372_REG_HOURS 2
31 #define RS5C372_REG_WDAY 3 31 #define RS5C372_REG_WDAY 3
32 #define RS5C372_REG_DAY 4 32 #define RS5C372_REG_DAY 4
33 #define RS5C372_REG_MONTH 5 33 #define RS5C372_REG_MONTH 5
34 #define RS5C372_REG_YEAR 6 34 #define RS5C372_REG_YEAR 6
35 #define RS5C372_REG_TRIM 7 35 #define RS5C372_REG_TRIM 7
36 # define RS5C372_TRIM_XSL 0x80 36 # define RS5C372_TRIM_XSL 0x80
37 # define RS5C372_TRIM_MASK 0x7F 37 # define RS5C372_TRIM_MASK 0x7F
38 38
39 #define RS5C_REG_ALARM_A_MIN 8 /* or ALARM_W */ 39 #define RS5C_REG_ALARM_A_MIN 8 /* or ALARM_W */
40 #define RS5C_REG_ALARM_A_HOURS 9 40 #define RS5C_REG_ALARM_A_HOURS 9
41 #define RS5C_REG_ALARM_A_WDAY 10 41 #define RS5C_REG_ALARM_A_WDAY 10
42 42
43 #define RS5C_REG_ALARM_B_MIN 11 /* or ALARM_D */ 43 #define RS5C_REG_ALARM_B_MIN 11 /* or ALARM_D */
44 #define RS5C_REG_ALARM_B_HOURS 12 44 #define RS5C_REG_ALARM_B_HOURS 12
45 #define RS5C_REG_ALARM_B_WDAY 13 /* (ALARM_B only) */ 45 #define RS5C_REG_ALARM_B_WDAY 13 /* (ALARM_B only) */
46 46
47 #define RS5C_REG_CTRL1 14 47 #define RS5C_REG_CTRL1 14
48 # define RS5C_CTRL1_AALE (1 << 7) /* or WALE */ 48 # define RS5C_CTRL1_AALE (1 << 7) /* or WALE */
49 # define RS5C_CTRL1_BALE (1 << 6) /* or DALE */ 49 # define RS5C_CTRL1_BALE (1 << 6) /* or DALE */
50 # define RV5C387_CTRL1_24 (1 << 5) 50 # define RV5C387_CTRL1_24 (1 << 5)
51 # define RS5C372A_CTRL1_SL1 (1 << 5) 51 # define RS5C372A_CTRL1_SL1 (1 << 5)
52 # define RS5C_CTRL1_CT_MASK (7 << 0) 52 # define RS5C_CTRL1_CT_MASK (7 << 0)
53 # define RS5C_CTRL1_CT0 (0 << 0) /* no periodic irq */ 53 # define RS5C_CTRL1_CT0 (0 << 0) /* no periodic irq */
54 # define RS5C_CTRL1_CT4 (4 << 0) /* 1 Hz level irq */ 54 # define RS5C_CTRL1_CT4 (4 << 0) /* 1 Hz level irq */
55 #define RS5C_REG_CTRL2 15 55 #define RS5C_REG_CTRL2 15
56 # define RS5C372_CTRL2_24 (1 << 5) 56 # define RS5C372_CTRL2_24 (1 << 5)
57 # define R2025_CTRL2_XST (1 << 5) 57 # define R2025_CTRL2_XST (1 << 5)
58 # define RS5C_CTRL2_XSTP (1 << 4) /* only if !R2025S/D */ 58 # define RS5C_CTRL2_XSTP (1 << 4) /* only if !R2025S/D */
59 # define RS5C_CTRL2_CTFG (1 << 2) 59 # define RS5C_CTRL2_CTFG (1 << 2)
60 # define RS5C_CTRL2_AAFG (1 << 1) /* or WAFG */ 60 # define RS5C_CTRL2_AAFG (1 << 1) /* or WAFG */
61 # define RS5C_CTRL2_BAFG (1 << 0) /* or DAFG */ 61 # define RS5C_CTRL2_BAFG (1 << 0) /* or DAFG */
62 62
63 63
64 /* to read (style 1) or write registers starting at R */ 64 /* to read (style 1) or write registers starting at R */
65 #define RS5C_ADDR(R) (((R) << 4) | 0) 65 #define RS5C_ADDR(R) (((R) << 4) | 0)
66 66
67 67
68 enum rtc_type { 68 enum rtc_type {
69 rtc_undef = 0, 69 rtc_undef = 0,
70 rtc_r2025sd, 70 rtc_r2025sd,
71 rtc_r2221tl,
71 rtc_rs5c372a, 72 rtc_rs5c372a,
72 rtc_rs5c372b, 73 rtc_rs5c372b,
73 rtc_rv5c386, 74 rtc_rv5c386,
74 rtc_rv5c387a, 75 rtc_rv5c387a,
75 }; 76 };
76 77
77 static const struct i2c_device_id rs5c372_id[] = { 78 static const struct i2c_device_id rs5c372_id[] = {
78 { "r2025sd", rtc_r2025sd }, 79 { "r2025sd", rtc_r2025sd },
80 { "r2221tl", rtc_r2221tl },
79 { "rs5c372a", rtc_rs5c372a }, 81 { "rs5c372a", rtc_rs5c372a },
80 { "rs5c372b", rtc_rs5c372b }, 82 { "rs5c372b", rtc_rs5c372b },
81 { "rv5c386", rtc_rv5c386 }, 83 { "rv5c386", rtc_rv5c386 },
82 { "rv5c387a", rtc_rv5c387a }, 84 { "rv5c387a", rtc_rv5c387a },
83 { } 85 { }
84 }; 86 };
85 MODULE_DEVICE_TABLE(i2c, rs5c372_id); 87 MODULE_DEVICE_TABLE(i2c, rs5c372_id);
86 88
87 /* REVISIT: this assumes that: 89 /* REVISIT: this assumes that:
88 * - we're in the 21st century, so it's safe to ignore the century 90 * - we're in the 21st century, so it's safe to ignore the century
89 * bit for rv5c38[67] (REG_MONTH bit 7); 91 * bit for rv5c38[67] (REG_MONTH bit 7);
90 * - we should use ALARM_A not ALARM_B (may be wrong on some boards) 92 * - we should use ALARM_A not ALARM_B (may be wrong on some boards)
91 */ 93 */
92 struct rs5c372 { 94 struct rs5c372 {
93 struct i2c_client *client; 95 struct i2c_client *client;
94 struct rtc_device *rtc; 96 struct rtc_device *rtc;
95 enum rtc_type type; 97 enum rtc_type type;
96 unsigned time24:1; 98 unsigned time24:1;
97 unsigned has_irq:1; 99 unsigned has_irq:1;
98 unsigned smbus:1; 100 unsigned smbus:1;
99 char buf[17]; 101 char buf[17];
100 char *regs; 102 char *regs;
101 }; 103 };
102 104
103 static int rs5c_get_regs(struct rs5c372 *rs5c) 105 static int rs5c_get_regs(struct rs5c372 *rs5c)
104 { 106 {
105 struct i2c_client *client = rs5c->client; 107 struct i2c_client *client = rs5c->client;
106 struct i2c_msg msgs[] = { 108 struct i2c_msg msgs[] = {
107 { 109 {
108 .addr = client->addr, 110 .addr = client->addr,
109 .flags = I2C_M_RD, 111 .flags = I2C_M_RD,
110 .len = sizeof(rs5c->buf), 112 .len = sizeof(rs5c->buf),
111 .buf = rs5c->buf 113 .buf = rs5c->buf
112 }, 114 },
113 }; 115 };
114 116
115 /* This implements the third reading method from the datasheet, using 117 /* This implements the third reading method from the datasheet, using
116 * an internal address that's reset after each transaction (by STOP) 118 * an internal address that's reset after each transaction (by STOP)
117 * to 0x0f ... so we read extra registers, and skip the first one. 119 * to 0x0f ... so we read extra registers, and skip the first one.
118 * 120 *
119 * The first method doesn't work with the iop3xx adapter driver, on at 121 * The first method doesn't work with the iop3xx adapter driver, on at
120 * least 80219 chips; this works around that bug. 122 * least 80219 chips; this works around that bug.
121 * 123 *
122 * The third method on the other hand doesn't work for the SMBus-only 124 * The third method on the other hand doesn't work for the SMBus-only
123 * configurations, so we use the the first method there, stripping off 125 * configurations, so we use the the first method there, stripping off
124 * the extra register in the process. 126 * the extra register in the process.
125 */ 127 */
126 if (rs5c->smbus) { 128 if (rs5c->smbus) {
127 int addr = RS5C_ADDR(RS5C372_REG_SECS); 129 int addr = RS5C_ADDR(RS5C372_REG_SECS);
128 int size = sizeof(rs5c->buf) - 1; 130 int size = sizeof(rs5c->buf) - 1;
129 131
130 if (i2c_smbus_read_i2c_block_data(client, addr, size, 132 if (i2c_smbus_read_i2c_block_data(client, addr, size,
131 rs5c->buf + 1) != size) { 133 rs5c->buf + 1) != size) {
132 dev_warn(&client->dev, "can't read registers\n"); 134 dev_warn(&client->dev, "can't read registers\n");
133 return -EIO; 135 return -EIO;
134 } 136 }
135 } else { 137 } else {
136 if ((i2c_transfer(client->adapter, msgs, 1)) != 1) { 138 if ((i2c_transfer(client->adapter, msgs, 1)) != 1) {
137 dev_warn(&client->dev, "can't read registers\n"); 139 dev_warn(&client->dev, "can't read registers\n");
138 return -EIO; 140 return -EIO;
139 } 141 }
140 } 142 }
141 143
142 dev_dbg(&client->dev, 144 dev_dbg(&client->dev,
143 "%02x %02x %02x (%02x) %02x %02x %02x (%02x), " 145 "%02x %02x %02x (%02x) %02x %02x %02x (%02x), "
144 "%02x %02x %02x, %02x %02x %02x; %02x %02x\n", 146 "%02x %02x %02x, %02x %02x %02x; %02x %02x\n",
145 rs5c->regs[0], rs5c->regs[1], rs5c->regs[2], rs5c->regs[3], 147 rs5c->regs[0], rs5c->regs[1], rs5c->regs[2], rs5c->regs[3],
146 rs5c->regs[4], rs5c->regs[5], rs5c->regs[6], rs5c->regs[7], 148 rs5c->regs[4], rs5c->regs[5], rs5c->regs[6], rs5c->regs[7],
147 rs5c->regs[8], rs5c->regs[9], rs5c->regs[10], rs5c->regs[11], 149 rs5c->regs[8], rs5c->regs[9], rs5c->regs[10], rs5c->regs[11],
148 rs5c->regs[12], rs5c->regs[13], rs5c->regs[14], rs5c->regs[15]); 150 rs5c->regs[12], rs5c->regs[13], rs5c->regs[14], rs5c->regs[15]);
149 151
150 return 0; 152 return 0;
151 } 153 }
152 154
153 static unsigned rs5c_reg2hr(struct rs5c372 *rs5c, unsigned reg) 155 static unsigned rs5c_reg2hr(struct rs5c372 *rs5c, unsigned reg)
154 { 156 {
155 unsigned hour; 157 unsigned hour;
156 158
157 if (rs5c->time24) 159 if (rs5c->time24)
158 return bcd2bin(reg & 0x3f); 160 return bcd2bin(reg & 0x3f);
159 161
160 hour = bcd2bin(reg & 0x1f); 162 hour = bcd2bin(reg & 0x1f);
161 if (hour == 12) 163 if (hour == 12)
162 hour = 0; 164 hour = 0;
163 if (reg & 0x20) 165 if (reg & 0x20)
164 hour += 12; 166 hour += 12;
165 return hour; 167 return hour;
166 } 168 }
167 169
168 static unsigned rs5c_hr2reg(struct rs5c372 *rs5c, unsigned hour) 170 static unsigned rs5c_hr2reg(struct rs5c372 *rs5c, unsigned hour)
169 { 171 {
170 if (rs5c->time24) 172 if (rs5c->time24)
171 return bin2bcd(hour); 173 return bin2bcd(hour);
172 174
173 if (hour > 12) 175 if (hour > 12)
174 return 0x20 | bin2bcd(hour - 12); 176 return 0x20 | bin2bcd(hour - 12);
175 if (hour == 12) 177 if (hour == 12)
176 return 0x20 | bin2bcd(12); 178 return 0x20 | bin2bcd(12);
177 if (hour == 0) 179 if (hour == 0)
178 return bin2bcd(12); 180 return bin2bcd(12);
179 return bin2bcd(hour); 181 return bin2bcd(hour);
180 } 182 }
181 183
182 static int rs5c372_get_datetime(struct i2c_client *client, struct rtc_time *tm) 184 static int rs5c372_get_datetime(struct i2c_client *client, struct rtc_time *tm)
183 { 185 {
184 struct rs5c372 *rs5c = i2c_get_clientdata(client); 186 struct rs5c372 *rs5c = i2c_get_clientdata(client);
185 int status = rs5c_get_regs(rs5c); 187 int status = rs5c_get_regs(rs5c);
186 188
187 if (status < 0) 189 if (status < 0)
188 return status; 190 return status;
189 191
190 tm->tm_sec = bcd2bin(rs5c->regs[RS5C372_REG_SECS] & 0x7f); 192 tm->tm_sec = bcd2bin(rs5c->regs[RS5C372_REG_SECS] & 0x7f);
191 tm->tm_min = bcd2bin(rs5c->regs[RS5C372_REG_MINS] & 0x7f); 193 tm->tm_min = bcd2bin(rs5c->regs[RS5C372_REG_MINS] & 0x7f);
192 tm->tm_hour = rs5c_reg2hr(rs5c, rs5c->regs[RS5C372_REG_HOURS]); 194 tm->tm_hour = rs5c_reg2hr(rs5c, rs5c->regs[RS5C372_REG_HOURS]);
193 195
194 tm->tm_wday = bcd2bin(rs5c->regs[RS5C372_REG_WDAY] & 0x07); 196 tm->tm_wday = bcd2bin(rs5c->regs[RS5C372_REG_WDAY] & 0x07);
195 tm->tm_mday = bcd2bin(rs5c->regs[RS5C372_REG_DAY] & 0x3f); 197 tm->tm_mday = bcd2bin(rs5c->regs[RS5C372_REG_DAY] & 0x3f);
196 198
197 /* tm->tm_mon is zero-based */ 199 /* tm->tm_mon is zero-based */
198 tm->tm_mon = bcd2bin(rs5c->regs[RS5C372_REG_MONTH] & 0x1f) - 1; 200 tm->tm_mon = bcd2bin(rs5c->regs[RS5C372_REG_MONTH] & 0x1f) - 1;
199 201
200 /* year is 1900 + tm->tm_year */ 202 /* year is 1900 + tm->tm_year */
201 tm->tm_year = bcd2bin(rs5c->regs[RS5C372_REG_YEAR]) + 100; 203 tm->tm_year = bcd2bin(rs5c->regs[RS5C372_REG_YEAR]) + 100;
202 204
203 dev_dbg(&client->dev, "%s: tm is secs=%d, mins=%d, hours=%d, " 205 dev_dbg(&client->dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
204 "mday=%d, mon=%d, year=%d, wday=%d\n", 206 "mday=%d, mon=%d, year=%d, wday=%d\n",
205 __func__, 207 __func__,
206 tm->tm_sec, tm->tm_min, tm->tm_hour, 208 tm->tm_sec, tm->tm_min, tm->tm_hour,
207 tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday); 209 tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
208 210
209 /* rtc might need initialization */ 211 /* rtc might need initialization */
210 return rtc_valid_tm(tm); 212 return rtc_valid_tm(tm);
211 } 213 }
212 214
213 static int rs5c372_set_datetime(struct i2c_client *client, struct rtc_time *tm) 215 static int rs5c372_set_datetime(struct i2c_client *client, struct rtc_time *tm)
214 { 216 {
215 struct rs5c372 *rs5c = i2c_get_clientdata(client); 217 struct rs5c372 *rs5c = i2c_get_clientdata(client);
216 unsigned char buf[7]; 218 unsigned char buf[7];
217 int addr; 219 int addr;
218 220
219 dev_dbg(&client->dev, "%s: tm is secs=%d, mins=%d, hours=%d " 221 dev_dbg(&client->dev, "%s: tm is secs=%d, mins=%d, hours=%d "
220 "mday=%d, mon=%d, year=%d, wday=%d\n", 222 "mday=%d, mon=%d, year=%d, wday=%d\n",
221 __func__, 223 __func__,
222 tm->tm_sec, tm->tm_min, tm->tm_hour, 224 tm->tm_sec, tm->tm_min, tm->tm_hour,
223 tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday); 225 tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
224 226
225 addr = RS5C_ADDR(RS5C372_REG_SECS); 227 addr = RS5C_ADDR(RS5C372_REG_SECS);
226 buf[0] = bin2bcd(tm->tm_sec); 228 buf[0] = bin2bcd(tm->tm_sec);
227 buf[1] = bin2bcd(tm->tm_min); 229 buf[1] = bin2bcd(tm->tm_min);
228 buf[2] = rs5c_hr2reg(rs5c, tm->tm_hour); 230 buf[2] = rs5c_hr2reg(rs5c, tm->tm_hour);
229 buf[3] = bin2bcd(tm->tm_wday); 231 buf[3] = bin2bcd(tm->tm_wday);
230 buf[4] = bin2bcd(tm->tm_mday); 232 buf[4] = bin2bcd(tm->tm_mday);
231 buf[5] = bin2bcd(tm->tm_mon + 1); 233 buf[5] = bin2bcd(tm->tm_mon + 1);
232 buf[6] = bin2bcd(tm->tm_year - 100); 234 buf[6] = bin2bcd(tm->tm_year - 100);
233 235
234 if (i2c_smbus_write_i2c_block_data(client, addr, sizeof(buf), buf) < 0) { 236 if (i2c_smbus_write_i2c_block_data(client, addr, sizeof(buf), buf) < 0) {
235 dev_err(&client->dev, "%s: write error\n", __func__); 237 dev_err(&client->dev, "%s: write error\n", __func__);
236 return -EIO; 238 return -EIO;
237 } 239 }
238 240
239 return 0; 241 return 0;
240 } 242 }
241 243
242 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE) 244 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
243 #define NEED_TRIM 245 #define NEED_TRIM
244 #endif 246 #endif
245 247
246 #if defined(CONFIG_RTC_INTF_SYSFS) || defined(CONFIG_RTC_INTF_SYSFS_MODULE) 248 #if defined(CONFIG_RTC_INTF_SYSFS) || defined(CONFIG_RTC_INTF_SYSFS_MODULE)
247 #define NEED_TRIM 249 #define NEED_TRIM
248 #endif 250 #endif
249 251
250 #ifdef NEED_TRIM 252 #ifdef NEED_TRIM
251 static int rs5c372_get_trim(struct i2c_client *client, int *osc, int *trim) 253 static int rs5c372_get_trim(struct i2c_client *client, int *osc, int *trim)
252 { 254 {
253 struct rs5c372 *rs5c372 = i2c_get_clientdata(client); 255 struct rs5c372 *rs5c372 = i2c_get_clientdata(client);
254 u8 tmp = rs5c372->regs[RS5C372_REG_TRIM]; 256 u8 tmp = rs5c372->regs[RS5C372_REG_TRIM];
255 257
256 if (osc) 258 if (osc)
257 *osc = (tmp & RS5C372_TRIM_XSL) ? 32000 : 32768; 259 *osc = (tmp & RS5C372_TRIM_XSL) ? 32000 : 32768;
258 260
259 if (trim) { 261 if (trim) {
260 dev_dbg(&client->dev, "%s: raw trim=%x\n", __func__, tmp); 262 dev_dbg(&client->dev, "%s: raw trim=%x\n", __func__, tmp);
261 tmp &= RS5C372_TRIM_MASK; 263 tmp &= RS5C372_TRIM_MASK;
262 if (tmp & 0x3e) { 264 if (tmp & 0x3e) {
263 int t = tmp & 0x3f; 265 int t = tmp & 0x3f;
264 266
265 if (tmp & 0x40) 267 if (tmp & 0x40)
266 t = (~t | (s8)0xc0) + 1; 268 t = (~t | (s8)0xc0) + 1;
267 else 269 else
268 t = t - 1; 270 t = t - 1;
269 271
270 tmp = t * 2; 272 tmp = t * 2;
271 } else 273 } else
272 tmp = 0; 274 tmp = 0;
273 *trim = tmp; 275 *trim = tmp;
274 } 276 }
275 277
276 return 0; 278 return 0;
277 } 279 }
278 #endif 280 #endif
279 281
280 static int rs5c372_rtc_read_time(struct device *dev, struct rtc_time *tm) 282 static int rs5c372_rtc_read_time(struct device *dev, struct rtc_time *tm)
281 { 283 {
282 return rs5c372_get_datetime(to_i2c_client(dev), tm); 284 return rs5c372_get_datetime(to_i2c_client(dev), tm);
283 } 285 }
284 286
285 static int rs5c372_rtc_set_time(struct device *dev, struct rtc_time *tm) 287 static int rs5c372_rtc_set_time(struct device *dev, struct rtc_time *tm)
286 { 288 {
287 return rs5c372_set_datetime(to_i2c_client(dev), tm); 289 return rs5c372_set_datetime(to_i2c_client(dev), tm);
288 } 290 }
289 291
290 292
291 static int rs5c_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled) 293 static int rs5c_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
292 { 294 {
293 struct i2c_client *client = to_i2c_client(dev); 295 struct i2c_client *client = to_i2c_client(dev);
294 struct rs5c372 *rs5c = i2c_get_clientdata(client); 296 struct rs5c372 *rs5c = i2c_get_clientdata(client);
295 unsigned char buf; 297 unsigned char buf;
296 int status, addr; 298 int status, addr;
297 299
298 buf = rs5c->regs[RS5C_REG_CTRL1]; 300 buf = rs5c->regs[RS5C_REG_CTRL1];
299 301
300 if (!rs5c->has_irq) 302 if (!rs5c->has_irq)
301 return -EINVAL; 303 return -EINVAL;
302 304
303 status = rs5c_get_regs(rs5c); 305 status = rs5c_get_regs(rs5c);
304 if (status < 0) 306 if (status < 0)
305 return status; 307 return status;
306 308
307 addr = RS5C_ADDR(RS5C_REG_CTRL1); 309 addr = RS5C_ADDR(RS5C_REG_CTRL1);
308 if (enabled) 310 if (enabled)
309 buf |= RS5C_CTRL1_AALE; 311 buf |= RS5C_CTRL1_AALE;
310 else 312 else
311 buf &= ~RS5C_CTRL1_AALE; 313 buf &= ~RS5C_CTRL1_AALE;
312 314
313 if (i2c_smbus_write_byte_data(client, addr, buf) < 0) { 315 if (i2c_smbus_write_byte_data(client, addr, buf) < 0) {
314 dev_warn(dev, "can't update alarm\n"); 316 dev_warn(dev, "can't update alarm\n");
315 status = -EIO; 317 status = -EIO;
316 } else 318 } else
317 rs5c->regs[RS5C_REG_CTRL1] = buf; 319 rs5c->regs[RS5C_REG_CTRL1] = buf;
318 320
319 return status; 321 return status;
320 } 322 }
321 323
322 324
323 /* NOTE: Since RTC_WKALM_{RD,SET} were originally defined for EFI, 325 /* NOTE: Since RTC_WKALM_{RD,SET} were originally defined for EFI,
324 * which only exposes a polled programming interface; and since 326 * which only exposes a polled programming interface; and since
325 * these calls map directly to those EFI requests; we don't demand 327 * these calls map directly to those EFI requests; we don't demand
326 * we have an IRQ for this chip when we go through this API. 328 * we have an IRQ for this chip when we go through this API.
327 * 329 *
328 * The older x86_pc derived RTC_ALM_{READ,SET} calls require irqs 330 * The older x86_pc derived RTC_ALM_{READ,SET} calls require irqs
329 * though, managed through RTC_AIE_{ON,OFF} requests. 331 * though, managed through RTC_AIE_{ON,OFF} requests.
330 */ 332 */
331 333
332 static int rs5c_read_alarm(struct device *dev, struct rtc_wkalrm *t) 334 static int rs5c_read_alarm(struct device *dev, struct rtc_wkalrm *t)
333 { 335 {
334 struct i2c_client *client = to_i2c_client(dev); 336 struct i2c_client *client = to_i2c_client(dev);
335 struct rs5c372 *rs5c = i2c_get_clientdata(client); 337 struct rs5c372 *rs5c = i2c_get_clientdata(client);
336 int status; 338 int status;
337 339
338 status = rs5c_get_regs(rs5c); 340 status = rs5c_get_regs(rs5c);
339 if (status < 0) 341 if (status < 0)
340 return status; 342 return status;
341 343
342 /* report alarm time */ 344 /* report alarm time */
343 t->time.tm_sec = 0; 345 t->time.tm_sec = 0;
344 t->time.tm_min = bcd2bin(rs5c->regs[RS5C_REG_ALARM_A_MIN] & 0x7f); 346 t->time.tm_min = bcd2bin(rs5c->regs[RS5C_REG_ALARM_A_MIN] & 0x7f);
345 t->time.tm_hour = rs5c_reg2hr(rs5c, rs5c->regs[RS5C_REG_ALARM_A_HOURS]); 347 t->time.tm_hour = rs5c_reg2hr(rs5c, rs5c->regs[RS5C_REG_ALARM_A_HOURS]);
346 t->time.tm_mday = -1; 348 t->time.tm_mday = -1;
347 t->time.tm_mon = -1; 349 t->time.tm_mon = -1;
348 t->time.tm_year = -1; 350 t->time.tm_year = -1;
349 t->time.tm_wday = -1; 351 t->time.tm_wday = -1;
350 t->time.tm_yday = -1; 352 t->time.tm_yday = -1;
351 t->time.tm_isdst = -1; 353 t->time.tm_isdst = -1;
352 354
353 /* ... and status */ 355 /* ... and status */
354 t->enabled = !!(rs5c->regs[RS5C_REG_CTRL1] & RS5C_CTRL1_AALE); 356 t->enabled = !!(rs5c->regs[RS5C_REG_CTRL1] & RS5C_CTRL1_AALE);
355 t->pending = !!(rs5c->regs[RS5C_REG_CTRL2] & RS5C_CTRL2_AAFG); 357 t->pending = !!(rs5c->regs[RS5C_REG_CTRL2] & RS5C_CTRL2_AAFG);
356 358
357 return 0; 359 return 0;
358 } 360 }
359 361
360 static int rs5c_set_alarm(struct device *dev, struct rtc_wkalrm *t) 362 static int rs5c_set_alarm(struct device *dev, struct rtc_wkalrm *t)
361 { 363 {
362 struct i2c_client *client = to_i2c_client(dev); 364 struct i2c_client *client = to_i2c_client(dev);
363 struct rs5c372 *rs5c = i2c_get_clientdata(client); 365 struct rs5c372 *rs5c = i2c_get_clientdata(client);
364 int status, addr, i; 366 int status, addr, i;
365 unsigned char buf[3]; 367 unsigned char buf[3];
366 368
367 /* only handle up to 24 hours in the future, like RTC_ALM_SET */ 369 /* only handle up to 24 hours in the future, like RTC_ALM_SET */
368 if (t->time.tm_mday != -1 370 if (t->time.tm_mday != -1
369 || t->time.tm_mon != -1 371 || t->time.tm_mon != -1
370 || t->time.tm_year != -1) 372 || t->time.tm_year != -1)
371 return -EINVAL; 373 return -EINVAL;
372 374
373 /* REVISIT: round up tm_sec */ 375 /* REVISIT: round up tm_sec */
374 376
375 /* if needed, disable irq (clears pending status) */ 377 /* if needed, disable irq (clears pending status) */
376 status = rs5c_get_regs(rs5c); 378 status = rs5c_get_regs(rs5c);
377 if (status < 0) 379 if (status < 0)
378 return status; 380 return status;
379 if (rs5c->regs[RS5C_REG_CTRL1] & RS5C_CTRL1_AALE) { 381 if (rs5c->regs[RS5C_REG_CTRL1] & RS5C_CTRL1_AALE) {
380 addr = RS5C_ADDR(RS5C_REG_CTRL1); 382 addr = RS5C_ADDR(RS5C_REG_CTRL1);
381 buf[0] = rs5c->regs[RS5C_REG_CTRL1] & ~RS5C_CTRL1_AALE; 383 buf[0] = rs5c->regs[RS5C_REG_CTRL1] & ~RS5C_CTRL1_AALE;
382 if (i2c_smbus_write_byte_data(client, addr, buf[0]) < 0) { 384 if (i2c_smbus_write_byte_data(client, addr, buf[0]) < 0) {
383 dev_dbg(dev, "can't disable alarm\n"); 385 dev_dbg(dev, "can't disable alarm\n");
384 return -EIO; 386 return -EIO;
385 } 387 }
386 rs5c->regs[RS5C_REG_CTRL1] = buf[0]; 388 rs5c->regs[RS5C_REG_CTRL1] = buf[0];
387 } 389 }
388 390
389 /* set alarm */ 391 /* set alarm */
390 buf[0] = bin2bcd(t->time.tm_min); 392 buf[0] = bin2bcd(t->time.tm_min);
391 buf[1] = rs5c_hr2reg(rs5c, t->time.tm_hour); 393 buf[1] = rs5c_hr2reg(rs5c, t->time.tm_hour);
392 buf[2] = 0x7f; /* any/all days */ 394 buf[2] = 0x7f; /* any/all days */
393 395
394 for (i = 0; i < sizeof(buf); i++) { 396 for (i = 0; i < sizeof(buf); i++) {
395 addr = RS5C_ADDR(RS5C_REG_ALARM_A_MIN + i); 397 addr = RS5C_ADDR(RS5C_REG_ALARM_A_MIN + i);
396 if (i2c_smbus_write_byte_data(client, addr, buf[i]) < 0) { 398 if (i2c_smbus_write_byte_data(client, addr, buf[i]) < 0) {
397 dev_dbg(dev, "can't set alarm time\n"); 399 dev_dbg(dev, "can't set alarm time\n");
398 return -EIO; 400 return -EIO;
399 } 401 }
400 } 402 }
401 403
402 /* ... and maybe enable its irq */ 404 /* ... and maybe enable its irq */
403 if (t->enabled) { 405 if (t->enabled) {
404 addr = RS5C_ADDR(RS5C_REG_CTRL1); 406 addr = RS5C_ADDR(RS5C_REG_CTRL1);
405 buf[0] = rs5c->regs[RS5C_REG_CTRL1] | RS5C_CTRL1_AALE; 407 buf[0] = rs5c->regs[RS5C_REG_CTRL1] | RS5C_CTRL1_AALE;
406 if (i2c_smbus_write_byte_data(client, addr, buf[0]) < 0) 408 if (i2c_smbus_write_byte_data(client, addr, buf[0]) < 0)
407 dev_warn(dev, "can't enable alarm\n"); 409 dev_warn(dev, "can't enable alarm\n");
408 rs5c->regs[RS5C_REG_CTRL1] = buf[0]; 410 rs5c->regs[RS5C_REG_CTRL1] = buf[0];
409 } 411 }
410 412
411 return 0; 413 return 0;
412 } 414 }
413 415
414 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE) 416 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
415 417
416 static int rs5c372_rtc_proc(struct device *dev, struct seq_file *seq) 418 static int rs5c372_rtc_proc(struct device *dev, struct seq_file *seq)
417 { 419 {
418 int err, osc, trim; 420 int err, osc, trim;
419 421
420 err = rs5c372_get_trim(to_i2c_client(dev), &osc, &trim); 422 err = rs5c372_get_trim(to_i2c_client(dev), &osc, &trim);
421 if (err == 0) { 423 if (err == 0) {
422 seq_printf(seq, "crystal\t\t: %d.%03d KHz\n", 424 seq_printf(seq, "crystal\t\t: %d.%03d KHz\n",
423 osc / 1000, osc % 1000); 425 osc / 1000, osc % 1000);
424 seq_printf(seq, "trim\t\t: %d\n", trim); 426 seq_printf(seq, "trim\t\t: %d\n", trim);
425 } 427 }
426 428
427 return 0; 429 return 0;
428 } 430 }
429 431
430 #else 432 #else
431 #define rs5c372_rtc_proc NULL 433 #define rs5c372_rtc_proc NULL
432 #endif 434 #endif
433 435
434 static const struct rtc_class_ops rs5c372_rtc_ops = { 436 static const struct rtc_class_ops rs5c372_rtc_ops = {
435 .proc = rs5c372_rtc_proc, 437 .proc = rs5c372_rtc_proc,
436 .read_time = rs5c372_rtc_read_time, 438 .read_time = rs5c372_rtc_read_time,
437 .set_time = rs5c372_rtc_set_time, 439 .set_time = rs5c372_rtc_set_time,
438 .read_alarm = rs5c_read_alarm, 440 .read_alarm = rs5c_read_alarm,
439 .set_alarm = rs5c_set_alarm, 441 .set_alarm = rs5c_set_alarm,
440 .alarm_irq_enable = rs5c_rtc_alarm_irq_enable, 442 .alarm_irq_enable = rs5c_rtc_alarm_irq_enable,
441 }; 443 };
442 444
443 #if defined(CONFIG_RTC_INTF_SYSFS) || defined(CONFIG_RTC_INTF_SYSFS_MODULE) 445 #if defined(CONFIG_RTC_INTF_SYSFS) || defined(CONFIG_RTC_INTF_SYSFS_MODULE)
444 446
445 static ssize_t rs5c372_sysfs_show_trim(struct device *dev, 447 static ssize_t rs5c372_sysfs_show_trim(struct device *dev,
446 struct device_attribute *attr, char *buf) 448 struct device_attribute *attr, char *buf)
447 { 449 {
448 int err, trim; 450 int err, trim;
449 451
450 err = rs5c372_get_trim(to_i2c_client(dev), NULL, &trim); 452 err = rs5c372_get_trim(to_i2c_client(dev), NULL, &trim);
451 if (err) 453 if (err)
452 return err; 454 return err;
453 455
454 return sprintf(buf, "%d\n", trim); 456 return sprintf(buf, "%d\n", trim);
455 } 457 }
456 static DEVICE_ATTR(trim, S_IRUGO, rs5c372_sysfs_show_trim, NULL); 458 static DEVICE_ATTR(trim, S_IRUGO, rs5c372_sysfs_show_trim, NULL);
457 459
458 static ssize_t rs5c372_sysfs_show_osc(struct device *dev, 460 static ssize_t rs5c372_sysfs_show_osc(struct device *dev,
459 struct device_attribute *attr, char *buf) 461 struct device_attribute *attr, char *buf)
460 { 462 {
461 int err, osc; 463 int err, osc;
462 464
463 err = rs5c372_get_trim(to_i2c_client(dev), &osc, NULL); 465 err = rs5c372_get_trim(to_i2c_client(dev), &osc, NULL);
464 if (err) 466 if (err)
465 return err; 467 return err;
466 468
467 return sprintf(buf, "%d.%03d KHz\n", osc / 1000, osc % 1000); 469 return sprintf(buf, "%d.%03d KHz\n", osc / 1000, osc % 1000);
468 } 470 }
469 static DEVICE_ATTR(osc, S_IRUGO, rs5c372_sysfs_show_osc, NULL); 471 static DEVICE_ATTR(osc, S_IRUGO, rs5c372_sysfs_show_osc, NULL);
470 472
471 static int rs5c_sysfs_register(struct device *dev) 473 static int rs5c_sysfs_register(struct device *dev)
472 { 474 {
473 int err; 475 int err;
474 476
475 err = device_create_file(dev, &dev_attr_trim); 477 err = device_create_file(dev, &dev_attr_trim);
476 if (err) 478 if (err)
477 return err; 479 return err;
478 err = device_create_file(dev, &dev_attr_osc); 480 err = device_create_file(dev, &dev_attr_osc);
479 if (err) 481 if (err)
480 device_remove_file(dev, &dev_attr_trim); 482 device_remove_file(dev, &dev_attr_trim);
481 483
482 return err; 484 return err;
483 } 485 }
484 486
485 static void rs5c_sysfs_unregister(struct device *dev) 487 static void rs5c_sysfs_unregister(struct device *dev)
486 { 488 {
487 device_remove_file(dev, &dev_attr_trim); 489 device_remove_file(dev, &dev_attr_trim);
488 device_remove_file(dev, &dev_attr_osc); 490 device_remove_file(dev, &dev_attr_osc);
489 } 491 }
490 492
491 #else 493 #else
492 static int rs5c_sysfs_register(struct device *dev) 494 static int rs5c_sysfs_register(struct device *dev)
493 { 495 {
494 return 0; 496 return 0;
495 } 497 }
496 498
497 static void rs5c_sysfs_unregister(struct device *dev) 499 static void rs5c_sysfs_unregister(struct device *dev)
498 { 500 {
499 /* nothing */ 501 /* nothing */
500 } 502 }
501 #endif /* SYSFS */ 503 #endif /* SYSFS */
502 504
503 static struct i2c_driver rs5c372_driver; 505 static struct i2c_driver rs5c372_driver;
504 506
505 static int rs5c_oscillator_setup(struct rs5c372 *rs5c372) 507 static int rs5c_oscillator_setup(struct rs5c372 *rs5c372)
506 { 508 {
507 unsigned char buf[2]; 509 unsigned char buf[2];
508 int addr, i, ret = 0; 510 int addr, i, ret = 0;
509 511
510 if (rs5c372->type == rtc_r2025sd) { 512 if (rs5c372->type == rtc_r2025sd) {
511 if (!(rs5c372->regs[RS5C_REG_CTRL2] & R2025_CTRL2_XST)) 513 if (!(rs5c372->regs[RS5C_REG_CTRL2] & R2025_CTRL2_XST))
512 return ret; 514 return ret;
513 rs5c372->regs[RS5C_REG_CTRL2] &= ~R2025_CTRL2_XST; 515 rs5c372->regs[RS5C_REG_CTRL2] &= ~R2025_CTRL2_XST;
514 } else { 516 } else {
515 if (!(rs5c372->regs[RS5C_REG_CTRL2] & RS5C_CTRL2_XSTP)) 517 if (!(rs5c372->regs[RS5C_REG_CTRL2] & RS5C_CTRL2_XSTP))
516 return ret; 518 return ret;
517 rs5c372->regs[RS5C_REG_CTRL2] &= ~RS5C_CTRL2_XSTP; 519 rs5c372->regs[RS5C_REG_CTRL2] &= ~RS5C_CTRL2_XSTP;
518 } 520 }
519 521
520 addr = RS5C_ADDR(RS5C_REG_CTRL1); 522 addr = RS5C_ADDR(RS5C_REG_CTRL1);
521 buf[0] = rs5c372->regs[RS5C_REG_CTRL1]; 523 buf[0] = rs5c372->regs[RS5C_REG_CTRL1];
522 buf[1] = rs5c372->regs[RS5C_REG_CTRL2]; 524 buf[1] = rs5c372->regs[RS5C_REG_CTRL2];
523 525
524 /* use 24hr mode */ 526 /* use 24hr mode */
525 switch (rs5c372->type) { 527 switch (rs5c372->type) {
526 case rtc_rs5c372a: 528 case rtc_rs5c372a:
527 case rtc_rs5c372b: 529 case rtc_rs5c372b:
528 buf[1] |= RS5C372_CTRL2_24; 530 buf[1] |= RS5C372_CTRL2_24;
529 rs5c372->time24 = 1; 531 rs5c372->time24 = 1;
530 break; 532 break;
531 case rtc_r2025sd: 533 case rtc_r2025sd:
534 case rtc_r2221tl:
532 case rtc_rv5c386: 535 case rtc_rv5c386:
533 case rtc_rv5c387a: 536 case rtc_rv5c387a:
534 buf[0] |= RV5C387_CTRL1_24; 537 buf[0] |= RV5C387_CTRL1_24;
535 rs5c372->time24 = 1; 538 rs5c372->time24 = 1;
536 break; 539 break;
537 default: 540 default:
538 /* impossible */ 541 /* impossible */
539 break; 542 break;
540 } 543 }
541 544
542 for (i = 0; i < sizeof(buf); i++) { 545 for (i = 0; i < sizeof(buf); i++) {
543 addr = RS5C_ADDR(RS5C_REG_CTRL1 + i); 546 addr = RS5C_ADDR(RS5C_REG_CTRL1 + i);
544 ret = i2c_smbus_write_byte_data(rs5c372->client, addr, buf[i]); 547 ret = i2c_smbus_write_byte_data(rs5c372->client, addr, buf[i]);
545 if (unlikely(ret < 0)) 548 if (unlikely(ret < 0))
546 return ret; 549 return ret;
547 } 550 }
548 551
549 rs5c372->regs[RS5C_REG_CTRL1] = buf[0]; 552 rs5c372->regs[RS5C_REG_CTRL1] = buf[0];
550 rs5c372->regs[RS5C_REG_CTRL2] = buf[1]; 553 rs5c372->regs[RS5C_REG_CTRL2] = buf[1];
551 554
552 return 0; 555 return 0;
553 } 556 }
554 557
555 static int rs5c372_probe(struct i2c_client *client, 558 static int rs5c372_probe(struct i2c_client *client,
556 const struct i2c_device_id *id) 559 const struct i2c_device_id *id)
557 { 560 {
558 int err = 0; 561 int err = 0;
559 int smbus_mode = 0; 562 int smbus_mode = 0;
560 struct rs5c372 *rs5c372; 563 struct rs5c372 *rs5c372;
561 struct rtc_time tm; 564 struct rtc_time tm;
562 565
563 dev_dbg(&client->dev, "%s\n", __func__); 566 dev_dbg(&client->dev, "%s\n", __func__);
564 567
565 if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C | 568 if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C |
566 I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_I2C_BLOCK)) { 569 I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_I2C_BLOCK)) {
567 /* 570 /*
568 * If we don't have any master mode adapter, try breaking 571 * If we don't have any master mode adapter, try breaking
569 * it down in to the barest of capabilities. 572 * it down in to the barest of capabilities.
570 */ 573 */
571 if (i2c_check_functionality(client->adapter, 574 if (i2c_check_functionality(client->adapter,
572 I2C_FUNC_SMBUS_BYTE_DATA | 575 I2C_FUNC_SMBUS_BYTE_DATA |
573 I2C_FUNC_SMBUS_I2C_BLOCK)) 576 I2C_FUNC_SMBUS_I2C_BLOCK))
574 smbus_mode = 1; 577 smbus_mode = 1;
575 else { 578 else {
576 /* Still no good, give up */ 579 /* Still no good, give up */
577 err = -ENODEV; 580 err = -ENODEV;
578 goto exit; 581 goto exit;
579 } 582 }
580 } 583 }
581 584
582 rs5c372 = devm_kzalloc(&client->dev, sizeof(struct rs5c372), 585 rs5c372 = devm_kzalloc(&client->dev, sizeof(struct rs5c372),
583 GFP_KERNEL); 586 GFP_KERNEL);
584 if (!rs5c372) { 587 if (!rs5c372) {
585 err = -ENOMEM; 588 err = -ENOMEM;
586 goto exit; 589 goto exit;
587 } 590 }
588 591
589 rs5c372->client = client; 592 rs5c372->client = client;
590 i2c_set_clientdata(client, rs5c372); 593 i2c_set_clientdata(client, rs5c372);
591 rs5c372->type = id->driver_data; 594 rs5c372->type = id->driver_data;
592 595
593 /* we read registers 0x0f then 0x00-0x0f; skip the first one */ 596 /* we read registers 0x0f then 0x00-0x0f; skip the first one */
594 rs5c372->regs = &rs5c372->buf[1]; 597 rs5c372->regs = &rs5c372->buf[1];
595 rs5c372->smbus = smbus_mode; 598 rs5c372->smbus = smbus_mode;
596 599
597 err = rs5c_get_regs(rs5c372); 600 err = rs5c_get_regs(rs5c372);
598 if (err < 0) 601 if (err < 0)
599 goto exit; 602 goto exit;
600 603
601 /* clock may be set for am/pm or 24 hr time */ 604 /* clock may be set for am/pm or 24 hr time */
602 switch (rs5c372->type) { 605 switch (rs5c372->type) {
603 case rtc_rs5c372a: 606 case rtc_rs5c372a:
604 case rtc_rs5c372b: 607 case rtc_rs5c372b:
605 /* alarm uses ALARM_A; and nINTRA on 372a, nINTR on 372b. 608 /* alarm uses ALARM_A; and nINTRA on 372a, nINTR on 372b.
606 * so does periodic irq, except some 327a modes. 609 * so does periodic irq, except some 327a modes.
607 */ 610 */
608 if (rs5c372->regs[RS5C_REG_CTRL2] & RS5C372_CTRL2_24) 611 if (rs5c372->regs[RS5C_REG_CTRL2] & RS5C372_CTRL2_24)
609 rs5c372->time24 = 1; 612 rs5c372->time24 = 1;
610 break; 613 break;
611 case rtc_r2025sd: 614 case rtc_r2025sd:
615 case rtc_r2221tl:
612 case rtc_rv5c386: 616 case rtc_rv5c386:
613 case rtc_rv5c387a: 617 case rtc_rv5c387a:
614 if (rs5c372->regs[RS5C_REG_CTRL1] & RV5C387_CTRL1_24) 618 if (rs5c372->regs[RS5C_REG_CTRL1] & RV5C387_CTRL1_24)
615 rs5c372->time24 = 1; 619 rs5c372->time24 = 1;
616 /* alarm uses ALARM_W; and nINTRB for alarm and periodic 620 /* alarm uses ALARM_W; and nINTRB for alarm and periodic
617 * irq, on both 386 and 387 621 * irq, on both 386 and 387
618 */ 622 */
619 break; 623 break;
620 default: 624 default:
621 dev_err(&client->dev, "unknown RTC type\n"); 625 dev_err(&client->dev, "unknown RTC type\n");
622 goto exit; 626 goto exit;
623 } 627 }
624 628
625 /* if the oscillator lost power and no other software (like 629 /* if the oscillator lost power and no other software (like
626 * the bootloader) set it up, do it here. 630 * the bootloader) set it up, do it here.
627 * 631 *
628 * The R2025S/D does this a little differently than the other 632 * The R2025S/D does this a little differently than the other
629 * parts, so we special case that.. 633 * parts, so we special case that..
630 */ 634 */
631 err = rs5c_oscillator_setup(rs5c372); 635 err = rs5c_oscillator_setup(rs5c372);
632 if (unlikely(err < 0)) { 636 if (unlikely(err < 0)) {
633 dev_err(&client->dev, "setup error\n"); 637 dev_err(&client->dev, "setup error\n");
634 goto exit; 638 goto exit;
635 } 639 }
636 640
637 if (rs5c372_get_datetime(client, &tm) < 0) 641 if (rs5c372_get_datetime(client, &tm) < 0)
638 dev_warn(&client->dev, "clock needs to be set\n"); 642 dev_warn(&client->dev, "clock needs to be set\n");
639 643
640 dev_info(&client->dev, "%s found, %s, driver version " DRV_VERSION "\n", 644 dev_info(&client->dev, "%s found, %s, driver version " DRV_VERSION "\n",
641 ({ char *s; switch (rs5c372->type) { 645 ({ char *s; switch (rs5c372->type) {
642 case rtc_r2025sd: s = "r2025sd"; break; 646 case rtc_r2025sd: s = "r2025sd"; break;
647 case rtc_r2221tl: s = "r2221tl"; break;
643 case rtc_rs5c372a: s = "rs5c372a"; break; 648 case rtc_rs5c372a: s = "rs5c372a"; break;
644 case rtc_rs5c372b: s = "rs5c372b"; break; 649 case rtc_rs5c372b: s = "rs5c372b"; break;
645 case rtc_rv5c386: s = "rv5c386"; break; 650 case rtc_rv5c386: s = "rv5c386"; break;
646 case rtc_rv5c387a: s = "rv5c387a"; break; 651 case rtc_rv5c387a: s = "rv5c387a"; break;
647 default: s = "chip"; break; 652 default: s = "chip"; break;
648 }; s;}), 653 }; s;}),
649 rs5c372->time24 ? "24hr" : "am/pm" 654 rs5c372->time24 ? "24hr" : "am/pm"
650 ); 655 );
651 656
652 /* REVISIT use client->irq to register alarm irq ... */ 657 /* REVISIT use client->irq to register alarm irq ... */
653 rs5c372->rtc = devm_rtc_device_register(&client->dev, 658 rs5c372->rtc = devm_rtc_device_register(&client->dev,
654 rs5c372_driver.driver.name, 659 rs5c372_driver.driver.name,
655 &rs5c372_rtc_ops, THIS_MODULE); 660 &rs5c372_rtc_ops, THIS_MODULE);
656 661
657 if (IS_ERR(rs5c372->rtc)) { 662 if (IS_ERR(rs5c372->rtc)) {
658 err = PTR_ERR(rs5c372->rtc); 663 err = PTR_ERR(rs5c372->rtc);
659 goto exit; 664 goto exit;
660 } 665 }
661 666
662 err = rs5c_sysfs_register(&client->dev); 667 err = rs5c_sysfs_register(&client->dev);
663 if (err) 668 if (err)
664 goto exit; 669 goto exit;
665 670
666 return 0; 671 return 0;
667 672
668 exit: 673 exit:
669 return err; 674 return err;
670 } 675 }
671 676
672 static int rs5c372_remove(struct i2c_client *client) 677 static int rs5c372_remove(struct i2c_client *client)
673 { 678 {
674 rs5c_sysfs_unregister(&client->dev); 679 rs5c_sysfs_unregister(&client->dev);
675 return 0; 680 return 0;
676 } 681 }
677 682
678 static struct i2c_driver rs5c372_driver = { 683 static struct i2c_driver rs5c372_driver = {
679 .driver = { 684 .driver = {
680 .name = "rtc-rs5c372", 685 .name = "rtc-rs5c372",
681 }, 686 },
682 .probe = rs5c372_probe, 687 .probe = rs5c372_probe,
683 .remove = rs5c372_remove, 688 .remove = rs5c372_remove,
684 .id_table = rs5c372_id, 689 .id_table = rs5c372_id,
685 }; 690 };
686 691
687 module_i2c_driver(rs5c372_driver); 692 module_i2c_driver(rs5c372_driver);
688 693
689 MODULE_AUTHOR( 694 MODULE_AUTHOR(
690 "Pavel Mironchik <pmironchik@optifacio.net>, " 695 "Pavel Mironchik <pmironchik@optifacio.net>, "
691 "Alessandro Zummo <a.zummo@towertech.it>, " 696 "Alessandro Zummo <a.zummo@towertech.it>, "
692 "Paul Mundt <lethal@linux-sh.org>"); 697 "Paul Mundt <lethal@linux-sh.org>");
693 MODULE_DESCRIPTION("Ricoh RS5C372 RTC driver"); 698 MODULE_DESCRIPTION("Ricoh RS5C372 RTC driver");
694 MODULE_LICENSE("GPL"); 699 MODULE_LICENSE("GPL");
695 MODULE_VERSION(DRV_VERSION); 700 MODULE_VERSION(DRV_VERSION);
696 701