Commit 58dadcdbc2584db050969f9781727fc5a3f618db

Authored by Julia Lawall
Committed by Mark Fasheh
1 parent 4d0ddb2ce2

fs/ocfs2/aops.c: test for IS_ERR rather than 0

The function ocfs2_start_trans always returns either a valid pointer or a
value made with ERR_PTR, so its result should be tested with IS_ERR, not
with a test for 0.

Signed-off-by: Julia Lawall <julia@diku.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>

Showing 1 changed file with 3 additions and 3 deletions Inline Diff

1 /* -*- mode: c; c-basic-offset: 8; -*- 1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0: 2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 * 3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 * 5 *
6 * This program is free software; you can redistribute it and/or 6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public 7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either 8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version. 9 * version 2 of the License, or (at your option) any later version.
10 * 10 *
11 * This program is distributed in the hope that it will be useful, 11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details. 14 * General Public License for more details.
15 * 15 *
16 * You should have received a copy of the GNU General Public 16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the 17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA. 19 * Boston, MA 021110-1307, USA.
20 */ 20 */
21 21
22 #include <linux/fs.h> 22 #include <linux/fs.h>
23 #include <linux/slab.h> 23 #include <linux/slab.h>
24 #include <linux/highmem.h> 24 #include <linux/highmem.h>
25 #include <linux/pagemap.h> 25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h> 26 #include <asm/byteorder.h>
27 #include <linux/swap.h> 27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h> 28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h> 29 #include <linux/mpage.h>
30 30
31 #define MLOG_MASK_PREFIX ML_FILE_IO 31 #define MLOG_MASK_PREFIX ML_FILE_IO
32 #include <cluster/masklog.h> 32 #include <cluster/masklog.h>
33 33
34 #include "ocfs2.h" 34 #include "ocfs2.h"
35 35
36 #include "alloc.h" 36 #include "alloc.h"
37 #include "aops.h" 37 #include "aops.h"
38 #include "dlmglue.h" 38 #include "dlmglue.h"
39 #include "extent_map.h" 39 #include "extent_map.h"
40 #include "file.h" 40 #include "file.h"
41 #include "inode.h" 41 #include "inode.h"
42 #include "journal.h" 42 #include "journal.h"
43 #include "suballoc.h" 43 #include "suballoc.h"
44 #include "super.h" 44 #include "super.h"
45 #include "symlink.h" 45 #include "symlink.h"
46 46
47 #include "buffer_head_io.h" 47 #include "buffer_head_io.h"
48 48
49 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock, 49 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
50 struct buffer_head *bh_result, int create) 50 struct buffer_head *bh_result, int create)
51 { 51 {
52 int err = -EIO; 52 int err = -EIO;
53 int status; 53 int status;
54 struct ocfs2_dinode *fe = NULL; 54 struct ocfs2_dinode *fe = NULL;
55 struct buffer_head *bh = NULL; 55 struct buffer_head *bh = NULL;
56 struct buffer_head *buffer_cache_bh = NULL; 56 struct buffer_head *buffer_cache_bh = NULL;
57 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 57 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
58 void *kaddr; 58 void *kaddr;
59 59
60 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode, 60 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
61 (unsigned long long)iblock, bh_result, create); 61 (unsigned long long)iblock, bh_result, create);
62 62
63 BUG_ON(ocfs2_inode_is_fast_symlink(inode)); 63 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
64 64
65 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) { 65 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
66 mlog(ML_ERROR, "block offset > PATH_MAX: %llu", 66 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
67 (unsigned long long)iblock); 67 (unsigned long long)iblock);
68 goto bail; 68 goto bail;
69 } 69 }
70 70
71 status = ocfs2_read_block(OCFS2_SB(inode->i_sb), 71 status = ocfs2_read_block(OCFS2_SB(inode->i_sb),
72 OCFS2_I(inode)->ip_blkno, 72 OCFS2_I(inode)->ip_blkno,
73 &bh, OCFS2_BH_CACHED, inode); 73 &bh, OCFS2_BH_CACHED, inode);
74 if (status < 0) { 74 if (status < 0) {
75 mlog_errno(status); 75 mlog_errno(status);
76 goto bail; 76 goto bail;
77 } 77 }
78 fe = (struct ocfs2_dinode *) bh->b_data; 78 fe = (struct ocfs2_dinode *) bh->b_data;
79 79
80 if (!OCFS2_IS_VALID_DINODE(fe)) { 80 if (!OCFS2_IS_VALID_DINODE(fe)) {
81 mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n", 81 mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n",
82 (unsigned long long)le64_to_cpu(fe->i_blkno), 7, 82 (unsigned long long)le64_to_cpu(fe->i_blkno), 7,
83 fe->i_signature); 83 fe->i_signature);
84 goto bail; 84 goto bail;
85 } 85 }
86 86
87 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb, 87 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
88 le32_to_cpu(fe->i_clusters))) { 88 le32_to_cpu(fe->i_clusters))) {
89 mlog(ML_ERROR, "block offset is outside the allocated size: " 89 mlog(ML_ERROR, "block offset is outside the allocated size: "
90 "%llu\n", (unsigned long long)iblock); 90 "%llu\n", (unsigned long long)iblock);
91 goto bail; 91 goto bail;
92 } 92 }
93 93
94 /* We don't use the page cache to create symlink data, so if 94 /* We don't use the page cache to create symlink data, so if
95 * need be, copy it over from the buffer cache. */ 95 * need be, copy it over from the buffer cache. */
96 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) { 96 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + 97 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98 iblock; 98 iblock;
99 buffer_cache_bh = sb_getblk(osb->sb, blkno); 99 buffer_cache_bh = sb_getblk(osb->sb, blkno);
100 if (!buffer_cache_bh) { 100 if (!buffer_cache_bh) {
101 mlog(ML_ERROR, "couldn't getblock for symlink!\n"); 101 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
102 goto bail; 102 goto bail;
103 } 103 }
104 104
105 /* we haven't locked out transactions, so a commit 105 /* we haven't locked out transactions, so a commit
106 * could've happened. Since we've got a reference on 106 * could've happened. Since we've got a reference on
107 * the bh, even if it commits while we're doing the 107 * the bh, even if it commits while we're doing the
108 * copy, the data is still good. */ 108 * copy, the data is still good. */
109 if (buffer_jbd(buffer_cache_bh) 109 if (buffer_jbd(buffer_cache_bh)
110 && ocfs2_inode_is_new(inode)) { 110 && ocfs2_inode_is_new(inode)) {
111 kaddr = kmap_atomic(bh_result->b_page, KM_USER0); 111 kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
112 if (!kaddr) { 112 if (!kaddr) {
113 mlog(ML_ERROR, "couldn't kmap!\n"); 113 mlog(ML_ERROR, "couldn't kmap!\n");
114 goto bail; 114 goto bail;
115 } 115 }
116 memcpy(kaddr + (bh_result->b_size * iblock), 116 memcpy(kaddr + (bh_result->b_size * iblock),
117 buffer_cache_bh->b_data, 117 buffer_cache_bh->b_data,
118 bh_result->b_size); 118 bh_result->b_size);
119 kunmap_atomic(kaddr, KM_USER0); 119 kunmap_atomic(kaddr, KM_USER0);
120 set_buffer_uptodate(bh_result); 120 set_buffer_uptodate(bh_result);
121 } 121 }
122 brelse(buffer_cache_bh); 122 brelse(buffer_cache_bh);
123 } 123 }
124 124
125 map_bh(bh_result, inode->i_sb, 125 map_bh(bh_result, inode->i_sb,
126 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock); 126 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
127 127
128 err = 0; 128 err = 0;
129 129
130 bail: 130 bail:
131 if (bh) 131 if (bh)
132 brelse(bh); 132 brelse(bh);
133 133
134 mlog_exit(err); 134 mlog_exit(err);
135 return err; 135 return err;
136 } 136 }
137 137
138 static int ocfs2_get_block(struct inode *inode, sector_t iblock, 138 static int ocfs2_get_block(struct inode *inode, sector_t iblock,
139 struct buffer_head *bh_result, int create) 139 struct buffer_head *bh_result, int create)
140 { 140 {
141 int err = 0; 141 int err = 0;
142 unsigned int ext_flags; 142 unsigned int ext_flags;
143 u64 max_blocks = bh_result->b_size >> inode->i_blkbits; 143 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
144 u64 p_blkno, count, past_eof; 144 u64 p_blkno, count, past_eof;
145 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 145 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
146 146
147 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode, 147 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
148 (unsigned long long)iblock, bh_result, create); 148 (unsigned long long)iblock, bh_result, create);
149 149
150 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE) 150 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
151 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n", 151 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
152 inode, inode->i_ino); 152 inode, inode->i_ino);
153 153
154 if (S_ISLNK(inode->i_mode)) { 154 if (S_ISLNK(inode->i_mode)) {
155 /* this always does I/O for some reason. */ 155 /* this always does I/O for some reason. */
156 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create); 156 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
157 goto bail; 157 goto bail;
158 } 158 }
159 159
160 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count, 160 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
161 &ext_flags); 161 &ext_flags);
162 if (err) { 162 if (err) {
163 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, " 163 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
164 "%llu, NULL)\n", err, inode, (unsigned long long)iblock, 164 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
165 (unsigned long long)p_blkno); 165 (unsigned long long)p_blkno);
166 goto bail; 166 goto bail;
167 } 167 }
168 168
169 if (max_blocks < count) 169 if (max_blocks < count)
170 count = max_blocks; 170 count = max_blocks;
171 171
172 /* 172 /*
173 * ocfs2 never allocates in this function - the only time we 173 * ocfs2 never allocates in this function - the only time we
174 * need to use BH_New is when we're extending i_size on a file 174 * need to use BH_New is when we're extending i_size on a file
175 * system which doesn't support holes, in which case BH_New 175 * system which doesn't support holes, in which case BH_New
176 * allows block_prepare_write() to zero. 176 * allows block_prepare_write() to zero.
177 */ 177 */
178 mlog_bug_on_msg(create && p_blkno == 0 && ocfs2_sparse_alloc(osb), 178 mlog_bug_on_msg(create && p_blkno == 0 && ocfs2_sparse_alloc(osb),
179 "ino %lu, iblock %llu\n", inode->i_ino, 179 "ino %lu, iblock %llu\n", inode->i_ino,
180 (unsigned long long)iblock); 180 (unsigned long long)iblock);
181 181
182 /* Treat the unwritten extent as a hole for zeroing purposes. */ 182 /* Treat the unwritten extent as a hole for zeroing purposes. */
183 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 183 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
184 map_bh(bh_result, inode->i_sb, p_blkno); 184 map_bh(bh_result, inode->i_sb, p_blkno);
185 185
186 bh_result->b_size = count << inode->i_blkbits; 186 bh_result->b_size = count << inode->i_blkbits;
187 187
188 if (!ocfs2_sparse_alloc(osb)) { 188 if (!ocfs2_sparse_alloc(osb)) {
189 if (p_blkno == 0) { 189 if (p_blkno == 0) {
190 err = -EIO; 190 err = -EIO;
191 mlog(ML_ERROR, 191 mlog(ML_ERROR,
192 "iblock = %llu p_blkno = %llu blkno=(%llu)\n", 192 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
193 (unsigned long long)iblock, 193 (unsigned long long)iblock,
194 (unsigned long long)p_blkno, 194 (unsigned long long)p_blkno,
195 (unsigned long long)OCFS2_I(inode)->ip_blkno); 195 (unsigned long long)OCFS2_I(inode)->ip_blkno);
196 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters); 196 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
197 dump_stack(); 197 dump_stack();
198 } 198 }
199 199
200 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 200 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
201 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino, 201 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
202 (unsigned long long)past_eof); 202 (unsigned long long)past_eof);
203 203
204 if (create && (iblock >= past_eof)) 204 if (create && (iblock >= past_eof))
205 set_buffer_new(bh_result); 205 set_buffer_new(bh_result);
206 } 206 }
207 207
208 bail: 208 bail:
209 if (err < 0) 209 if (err < 0)
210 err = -EIO; 210 err = -EIO;
211 211
212 mlog_exit(err); 212 mlog_exit(err);
213 return err; 213 return err;
214 } 214 }
215 215
216 int ocfs2_read_inline_data(struct inode *inode, struct page *page, 216 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
217 struct buffer_head *di_bh) 217 struct buffer_head *di_bh)
218 { 218 {
219 void *kaddr; 219 void *kaddr;
220 loff_t size; 220 loff_t size;
221 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 221 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
222 222
223 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) { 223 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
224 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag", 224 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
225 (unsigned long long)OCFS2_I(inode)->ip_blkno); 225 (unsigned long long)OCFS2_I(inode)->ip_blkno);
226 return -EROFS; 226 return -EROFS;
227 } 227 }
228 228
229 size = i_size_read(inode); 229 size = i_size_read(inode);
230 230
231 if (size > PAGE_CACHE_SIZE || 231 if (size > PAGE_CACHE_SIZE ||
232 size > ocfs2_max_inline_data(inode->i_sb)) { 232 size > ocfs2_max_inline_data(inode->i_sb)) {
233 ocfs2_error(inode->i_sb, 233 ocfs2_error(inode->i_sb,
234 "Inode %llu has with inline data has bad size: %Lu", 234 "Inode %llu has with inline data has bad size: %Lu",
235 (unsigned long long)OCFS2_I(inode)->ip_blkno, 235 (unsigned long long)OCFS2_I(inode)->ip_blkno,
236 (unsigned long long)size); 236 (unsigned long long)size);
237 return -EROFS; 237 return -EROFS;
238 } 238 }
239 239
240 kaddr = kmap_atomic(page, KM_USER0); 240 kaddr = kmap_atomic(page, KM_USER0);
241 if (size) 241 if (size)
242 memcpy(kaddr, di->id2.i_data.id_data, size); 242 memcpy(kaddr, di->id2.i_data.id_data, size);
243 /* Clear the remaining part of the page */ 243 /* Clear the remaining part of the page */
244 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size); 244 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
245 flush_dcache_page(page); 245 flush_dcache_page(page);
246 kunmap_atomic(kaddr, KM_USER0); 246 kunmap_atomic(kaddr, KM_USER0);
247 247
248 SetPageUptodate(page); 248 SetPageUptodate(page);
249 249
250 return 0; 250 return 0;
251 } 251 }
252 252
253 static int ocfs2_readpage_inline(struct inode *inode, struct page *page) 253 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
254 { 254 {
255 int ret; 255 int ret;
256 struct buffer_head *di_bh = NULL; 256 struct buffer_head *di_bh = NULL;
257 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 257 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
258 258
259 BUG_ON(!PageLocked(page)); 259 BUG_ON(!PageLocked(page));
260 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)); 260 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
261 261
262 ret = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &di_bh, 262 ret = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &di_bh,
263 OCFS2_BH_CACHED, inode); 263 OCFS2_BH_CACHED, inode);
264 if (ret) { 264 if (ret) {
265 mlog_errno(ret); 265 mlog_errno(ret);
266 goto out; 266 goto out;
267 } 267 }
268 268
269 ret = ocfs2_read_inline_data(inode, page, di_bh); 269 ret = ocfs2_read_inline_data(inode, page, di_bh);
270 out: 270 out:
271 unlock_page(page); 271 unlock_page(page);
272 272
273 brelse(di_bh); 273 brelse(di_bh);
274 return ret; 274 return ret;
275 } 275 }
276 276
277 static int ocfs2_readpage(struct file *file, struct page *page) 277 static int ocfs2_readpage(struct file *file, struct page *page)
278 { 278 {
279 struct inode *inode = page->mapping->host; 279 struct inode *inode = page->mapping->host;
280 struct ocfs2_inode_info *oi = OCFS2_I(inode); 280 struct ocfs2_inode_info *oi = OCFS2_I(inode);
281 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT; 281 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
282 int ret, unlock = 1; 282 int ret, unlock = 1;
283 283
284 mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0)); 284 mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
285 285
286 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page); 286 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
287 if (ret != 0) { 287 if (ret != 0) {
288 if (ret == AOP_TRUNCATED_PAGE) 288 if (ret == AOP_TRUNCATED_PAGE)
289 unlock = 0; 289 unlock = 0;
290 mlog_errno(ret); 290 mlog_errno(ret);
291 goto out; 291 goto out;
292 } 292 }
293 293
294 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 294 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
295 ret = AOP_TRUNCATED_PAGE; 295 ret = AOP_TRUNCATED_PAGE;
296 goto out_inode_unlock; 296 goto out_inode_unlock;
297 } 297 }
298 298
299 /* 299 /*
300 * i_size might have just been updated as we grabed the meta lock. We 300 * i_size might have just been updated as we grabed the meta lock. We
301 * might now be discovering a truncate that hit on another node. 301 * might now be discovering a truncate that hit on another node.
302 * block_read_full_page->get_block freaks out if it is asked to read 302 * block_read_full_page->get_block freaks out if it is asked to read
303 * beyond the end of a file, so we check here. Callers 303 * beyond the end of a file, so we check here. Callers
304 * (generic_file_read, vm_ops->fault) are clever enough to check i_size 304 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
305 * and notice that the page they just read isn't needed. 305 * and notice that the page they just read isn't needed.
306 * 306 *
307 * XXX sys_readahead() seems to get that wrong? 307 * XXX sys_readahead() seems to get that wrong?
308 */ 308 */
309 if (start >= i_size_read(inode)) { 309 if (start >= i_size_read(inode)) {
310 zero_user(page, 0, PAGE_SIZE); 310 zero_user(page, 0, PAGE_SIZE);
311 SetPageUptodate(page); 311 SetPageUptodate(page);
312 ret = 0; 312 ret = 0;
313 goto out_alloc; 313 goto out_alloc;
314 } 314 }
315 315
316 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 316 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
317 ret = ocfs2_readpage_inline(inode, page); 317 ret = ocfs2_readpage_inline(inode, page);
318 else 318 else
319 ret = block_read_full_page(page, ocfs2_get_block); 319 ret = block_read_full_page(page, ocfs2_get_block);
320 unlock = 0; 320 unlock = 0;
321 321
322 out_alloc: 322 out_alloc:
323 up_read(&OCFS2_I(inode)->ip_alloc_sem); 323 up_read(&OCFS2_I(inode)->ip_alloc_sem);
324 out_inode_unlock: 324 out_inode_unlock:
325 ocfs2_inode_unlock(inode, 0); 325 ocfs2_inode_unlock(inode, 0);
326 out: 326 out:
327 if (unlock) 327 if (unlock)
328 unlock_page(page); 328 unlock_page(page);
329 mlog_exit(ret); 329 mlog_exit(ret);
330 return ret; 330 return ret;
331 } 331 }
332 332
333 /* 333 /*
334 * This is used only for read-ahead. Failures or difficult to handle 334 * This is used only for read-ahead. Failures or difficult to handle
335 * situations are safe to ignore. 335 * situations are safe to ignore.
336 * 336 *
337 * Right now, we don't bother with BH_Boundary - in-inode extent lists 337 * Right now, we don't bother with BH_Boundary - in-inode extent lists
338 * are quite large (243 extents on 4k blocks), so most inodes don't 338 * are quite large (243 extents on 4k blocks), so most inodes don't
339 * grow out to a tree. If need be, detecting boundary extents could 339 * grow out to a tree. If need be, detecting boundary extents could
340 * trivially be added in a future version of ocfs2_get_block(). 340 * trivially be added in a future version of ocfs2_get_block().
341 */ 341 */
342 static int ocfs2_readpages(struct file *filp, struct address_space *mapping, 342 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
343 struct list_head *pages, unsigned nr_pages) 343 struct list_head *pages, unsigned nr_pages)
344 { 344 {
345 int ret, err = -EIO; 345 int ret, err = -EIO;
346 struct inode *inode = mapping->host; 346 struct inode *inode = mapping->host;
347 struct ocfs2_inode_info *oi = OCFS2_I(inode); 347 struct ocfs2_inode_info *oi = OCFS2_I(inode);
348 loff_t start; 348 loff_t start;
349 struct page *last; 349 struct page *last;
350 350
351 /* 351 /*
352 * Use the nonblocking flag for the dlm code to avoid page 352 * Use the nonblocking flag for the dlm code to avoid page
353 * lock inversion, but don't bother with retrying. 353 * lock inversion, but don't bother with retrying.
354 */ 354 */
355 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK); 355 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
356 if (ret) 356 if (ret)
357 return err; 357 return err;
358 358
359 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 359 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
360 ocfs2_inode_unlock(inode, 0); 360 ocfs2_inode_unlock(inode, 0);
361 return err; 361 return err;
362 } 362 }
363 363
364 /* 364 /*
365 * Don't bother with inline-data. There isn't anything 365 * Don't bother with inline-data. There isn't anything
366 * to read-ahead in that case anyway... 366 * to read-ahead in that case anyway...
367 */ 367 */
368 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 368 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
369 goto out_unlock; 369 goto out_unlock;
370 370
371 /* 371 /*
372 * Check whether a remote node truncated this file - we just 372 * Check whether a remote node truncated this file - we just
373 * drop out in that case as it's not worth handling here. 373 * drop out in that case as it's not worth handling here.
374 */ 374 */
375 last = list_entry(pages->prev, struct page, lru); 375 last = list_entry(pages->prev, struct page, lru);
376 start = (loff_t)last->index << PAGE_CACHE_SHIFT; 376 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
377 if (start >= i_size_read(inode)) 377 if (start >= i_size_read(inode))
378 goto out_unlock; 378 goto out_unlock;
379 379
380 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block); 380 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
381 381
382 out_unlock: 382 out_unlock:
383 up_read(&oi->ip_alloc_sem); 383 up_read(&oi->ip_alloc_sem);
384 ocfs2_inode_unlock(inode, 0); 384 ocfs2_inode_unlock(inode, 0);
385 385
386 return err; 386 return err;
387 } 387 }
388 388
389 /* Note: Because we don't support holes, our allocation has 389 /* Note: Because we don't support holes, our allocation has
390 * already happened (allocation writes zeros to the file data) 390 * already happened (allocation writes zeros to the file data)
391 * so we don't have to worry about ordered writes in 391 * so we don't have to worry about ordered writes in
392 * ocfs2_writepage. 392 * ocfs2_writepage.
393 * 393 *
394 * ->writepage is called during the process of invalidating the page cache 394 * ->writepage is called during the process of invalidating the page cache
395 * during blocked lock processing. It can't block on any cluster locks 395 * during blocked lock processing. It can't block on any cluster locks
396 * to during block mapping. It's relying on the fact that the block 396 * to during block mapping. It's relying on the fact that the block
397 * mapping can't have disappeared under the dirty pages that it is 397 * mapping can't have disappeared under the dirty pages that it is
398 * being asked to write back. 398 * being asked to write back.
399 */ 399 */
400 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc) 400 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
401 { 401 {
402 int ret; 402 int ret;
403 403
404 mlog_entry("(0x%p)\n", page); 404 mlog_entry("(0x%p)\n", page);
405 405
406 ret = block_write_full_page(page, ocfs2_get_block, wbc); 406 ret = block_write_full_page(page, ocfs2_get_block, wbc);
407 407
408 mlog_exit(ret); 408 mlog_exit(ret);
409 409
410 return ret; 410 return ret;
411 } 411 }
412 412
413 /* 413 /*
414 * This is called from ocfs2_write_zero_page() which has handled it's 414 * This is called from ocfs2_write_zero_page() which has handled it's
415 * own cluster locking and has ensured allocation exists for those 415 * own cluster locking and has ensured allocation exists for those
416 * blocks to be written. 416 * blocks to be written.
417 */ 417 */
418 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page, 418 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
419 unsigned from, unsigned to) 419 unsigned from, unsigned to)
420 { 420 {
421 int ret; 421 int ret;
422 422
423 ret = block_prepare_write(page, from, to, ocfs2_get_block); 423 ret = block_prepare_write(page, from, to, ocfs2_get_block);
424 424
425 return ret; 425 return ret;
426 } 426 }
427 427
428 /* Taken from ext3. We don't necessarily need the full blown 428 /* Taken from ext3. We don't necessarily need the full blown
429 * functionality yet, but IMHO it's better to cut and paste the whole 429 * functionality yet, but IMHO it's better to cut and paste the whole
430 * thing so we can avoid introducing our own bugs (and easily pick up 430 * thing so we can avoid introducing our own bugs (and easily pick up
431 * their fixes when they happen) --Mark */ 431 * their fixes when they happen) --Mark */
432 int walk_page_buffers( handle_t *handle, 432 int walk_page_buffers( handle_t *handle,
433 struct buffer_head *head, 433 struct buffer_head *head,
434 unsigned from, 434 unsigned from,
435 unsigned to, 435 unsigned to,
436 int *partial, 436 int *partial,
437 int (*fn)( handle_t *handle, 437 int (*fn)( handle_t *handle,
438 struct buffer_head *bh)) 438 struct buffer_head *bh))
439 { 439 {
440 struct buffer_head *bh; 440 struct buffer_head *bh;
441 unsigned block_start, block_end; 441 unsigned block_start, block_end;
442 unsigned blocksize = head->b_size; 442 unsigned blocksize = head->b_size;
443 int err, ret = 0; 443 int err, ret = 0;
444 struct buffer_head *next; 444 struct buffer_head *next;
445 445
446 for ( bh = head, block_start = 0; 446 for ( bh = head, block_start = 0;
447 ret == 0 && (bh != head || !block_start); 447 ret == 0 && (bh != head || !block_start);
448 block_start = block_end, bh = next) 448 block_start = block_end, bh = next)
449 { 449 {
450 next = bh->b_this_page; 450 next = bh->b_this_page;
451 block_end = block_start + blocksize; 451 block_end = block_start + blocksize;
452 if (block_end <= from || block_start >= to) { 452 if (block_end <= from || block_start >= to) {
453 if (partial && !buffer_uptodate(bh)) 453 if (partial && !buffer_uptodate(bh))
454 *partial = 1; 454 *partial = 1;
455 continue; 455 continue;
456 } 456 }
457 err = (*fn)(handle, bh); 457 err = (*fn)(handle, bh);
458 if (!ret) 458 if (!ret)
459 ret = err; 459 ret = err;
460 } 460 }
461 return ret; 461 return ret;
462 } 462 }
463 463
464 handle_t *ocfs2_start_walk_page_trans(struct inode *inode, 464 handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
465 struct page *page, 465 struct page *page,
466 unsigned from, 466 unsigned from,
467 unsigned to) 467 unsigned to)
468 { 468 {
469 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 469 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
470 handle_t *handle = NULL; 470 handle_t *handle;
471 int ret = 0; 471 int ret = 0;
472 472
473 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 473 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
474 if (!handle) { 474 if (IS_ERR(handle)) {
475 ret = -ENOMEM; 475 ret = -ENOMEM;
476 mlog_errno(ret); 476 mlog_errno(ret);
477 goto out; 477 goto out;
478 } 478 }
479 479
480 if (ocfs2_should_order_data(inode)) { 480 if (ocfs2_should_order_data(inode)) {
481 ret = walk_page_buffers(handle, 481 ret = walk_page_buffers(handle,
482 page_buffers(page), 482 page_buffers(page),
483 from, to, NULL, 483 from, to, NULL,
484 ocfs2_journal_dirty_data); 484 ocfs2_journal_dirty_data);
485 if (ret < 0) 485 if (ret < 0)
486 mlog_errno(ret); 486 mlog_errno(ret);
487 } 487 }
488 out: 488 out:
489 if (ret) { 489 if (ret) {
490 if (handle) 490 if (!IS_ERR(handle))
491 ocfs2_commit_trans(osb, handle); 491 ocfs2_commit_trans(osb, handle);
492 handle = ERR_PTR(ret); 492 handle = ERR_PTR(ret);
493 } 493 }
494 return handle; 494 return handle;
495 } 495 }
496 496
497 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block) 497 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
498 { 498 {
499 sector_t status; 499 sector_t status;
500 u64 p_blkno = 0; 500 u64 p_blkno = 0;
501 int err = 0; 501 int err = 0;
502 struct inode *inode = mapping->host; 502 struct inode *inode = mapping->host;
503 503
504 mlog_entry("(block = %llu)\n", (unsigned long long)block); 504 mlog_entry("(block = %llu)\n", (unsigned long long)block);
505 505
506 /* We don't need to lock journal system files, since they aren't 506 /* We don't need to lock journal system files, since they aren't
507 * accessed concurrently from multiple nodes. 507 * accessed concurrently from multiple nodes.
508 */ 508 */
509 if (!INODE_JOURNAL(inode)) { 509 if (!INODE_JOURNAL(inode)) {
510 err = ocfs2_inode_lock(inode, NULL, 0); 510 err = ocfs2_inode_lock(inode, NULL, 0);
511 if (err) { 511 if (err) {
512 if (err != -ENOENT) 512 if (err != -ENOENT)
513 mlog_errno(err); 513 mlog_errno(err);
514 goto bail; 514 goto bail;
515 } 515 }
516 down_read(&OCFS2_I(inode)->ip_alloc_sem); 516 down_read(&OCFS2_I(inode)->ip_alloc_sem);
517 } 517 }
518 518
519 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 519 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
520 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, 520 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
521 NULL); 521 NULL);
522 522
523 if (!INODE_JOURNAL(inode)) { 523 if (!INODE_JOURNAL(inode)) {
524 up_read(&OCFS2_I(inode)->ip_alloc_sem); 524 up_read(&OCFS2_I(inode)->ip_alloc_sem);
525 ocfs2_inode_unlock(inode, 0); 525 ocfs2_inode_unlock(inode, 0);
526 } 526 }
527 527
528 if (err) { 528 if (err) {
529 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n", 529 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
530 (unsigned long long)block); 530 (unsigned long long)block);
531 mlog_errno(err); 531 mlog_errno(err);
532 goto bail; 532 goto bail;
533 } 533 }
534 534
535 bail: 535 bail:
536 status = err ? 0 : p_blkno; 536 status = err ? 0 : p_blkno;
537 537
538 mlog_exit((int)status); 538 mlog_exit((int)status);
539 539
540 return status; 540 return status;
541 } 541 }
542 542
543 /* 543 /*
544 * TODO: Make this into a generic get_blocks function. 544 * TODO: Make this into a generic get_blocks function.
545 * 545 *
546 * From do_direct_io in direct-io.c: 546 * From do_direct_io in direct-io.c:
547 * "So what we do is to permit the ->get_blocks function to populate 547 * "So what we do is to permit the ->get_blocks function to populate
548 * bh.b_size with the size of IO which is permitted at this offset and 548 * bh.b_size with the size of IO which is permitted at this offset and
549 * this i_blkbits." 549 * this i_blkbits."
550 * 550 *
551 * This function is called directly from get_more_blocks in direct-io.c. 551 * This function is called directly from get_more_blocks in direct-io.c.
552 * 552 *
553 * called like this: dio->get_blocks(dio->inode, fs_startblk, 553 * called like this: dio->get_blocks(dio->inode, fs_startblk,
554 * fs_count, map_bh, dio->rw == WRITE); 554 * fs_count, map_bh, dio->rw == WRITE);
555 */ 555 */
556 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock, 556 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
557 struct buffer_head *bh_result, int create) 557 struct buffer_head *bh_result, int create)
558 { 558 {
559 int ret; 559 int ret;
560 u64 p_blkno, inode_blocks, contig_blocks; 560 u64 p_blkno, inode_blocks, contig_blocks;
561 unsigned int ext_flags; 561 unsigned int ext_flags;
562 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 562 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
563 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits; 563 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
564 564
565 /* This function won't even be called if the request isn't all 565 /* This function won't even be called if the request isn't all
566 * nicely aligned and of the right size, so there's no need 566 * nicely aligned and of the right size, so there's no need
567 * for us to check any of that. */ 567 * for us to check any of that. */
568 568
569 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 569 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
570 570
571 /* 571 /*
572 * Any write past EOF is not allowed because we'd be extending. 572 * Any write past EOF is not allowed because we'd be extending.
573 */ 573 */
574 if (create && (iblock + max_blocks) > inode_blocks) { 574 if (create && (iblock + max_blocks) > inode_blocks) {
575 ret = -EIO; 575 ret = -EIO;
576 goto bail; 576 goto bail;
577 } 577 }
578 578
579 /* This figures out the size of the next contiguous block, and 579 /* This figures out the size of the next contiguous block, and
580 * our logical offset */ 580 * our logical offset */
581 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, 581 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
582 &contig_blocks, &ext_flags); 582 &contig_blocks, &ext_flags);
583 if (ret) { 583 if (ret) {
584 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n", 584 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
585 (unsigned long long)iblock); 585 (unsigned long long)iblock);
586 ret = -EIO; 586 ret = -EIO;
587 goto bail; 587 goto bail;
588 } 588 }
589 589
590 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno) { 590 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno) {
591 ocfs2_error(inode->i_sb, 591 ocfs2_error(inode->i_sb,
592 "Inode %llu has a hole at block %llu\n", 592 "Inode %llu has a hole at block %llu\n",
593 (unsigned long long)OCFS2_I(inode)->ip_blkno, 593 (unsigned long long)OCFS2_I(inode)->ip_blkno,
594 (unsigned long long)iblock); 594 (unsigned long long)iblock);
595 ret = -EROFS; 595 ret = -EROFS;
596 goto bail; 596 goto bail;
597 } 597 }
598 598
599 /* 599 /*
600 * get_more_blocks() expects us to describe a hole by clearing 600 * get_more_blocks() expects us to describe a hole by clearing
601 * the mapped bit on bh_result(). 601 * the mapped bit on bh_result().
602 * 602 *
603 * Consider an unwritten extent as a hole. 603 * Consider an unwritten extent as a hole.
604 */ 604 */
605 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 605 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
606 map_bh(bh_result, inode->i_sb, p_blkno); 606 map_bh(bh_result, inode->i_sb, p_blkno);
607 else { 607 else {
608 /* 608 /*
609 * ocfs2_prepare_inode_for_write() should have caught 609 * ocfs2_prepare_inode_for_write() should have caught
610 * the case where we'd be filling a hole and triggered 610 * the case where we'd be filling a hole and triggered
611 * a buffered write instead. 611 * a buffered write instead.
612 */ 612 */
613 if (create) { 613 if (create) {
614 ret = -EIO; 614 ret = -EIO;
615 mlog_errno(ret); 615 mlog_errno(ret);
616 goto bail; 616 goto bail;
617 } 617 }
618 618
619 clear_buffer_mapped(bh_result); 619 clear_buffer_mapped(bh_result);
620 } 620 }
621 621
622 /* make sure we don't map more than max_blocks blocks here as 622 /* make sure we don't map more than max_blocks blocks here as
623 that's all the kernel will handle at this point. */ 623 that's all the kernel will handle at this point. */
624 if (max_blocks < contig_blocks) 624 if (max_blocks < contig_blocks)
625 contig_blocks = max_blocks; 625 contig_blocks = max_blocks;
626 bh_result->b_size = contig_blocks << blocksize_bits; 626 bh_result->b_size = contig_blocks << blocksize_bits;
627 bail: 627 bail:
628 return ret; 628 return ret;
629 } 629 }
630 630
631 /* 631 /*
632 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're 632 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
633 * particularly interested in the aio/dio case. Like the core uses 633 * particularly interested in the aio/dio case. Like the core uses
634 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from 634 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
635 * truncation on another. 635 * truncation on another.
636 */ 636 */
637 static void ocfs2_dio_end_io(struct kiocb *iocb, 637 static void ocfs2_dio_end_io(struct kiocb *iocb,
638 loff_t offset, 638 loff_t offset,
639 ssize_t bytes, 639 ssize_t bytes,
640 void *private) 640 void *private)
641 { 641 {
642 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode; 642 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
643 int level; 643 int level;
644 644
645 /* this io's submitter should not have unlocked this before we could */ 645 /* this io's submitter should not have unlocked this before we could */
646 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb)); 646 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
647 647
648 ocfs2_iocb_clear_rw_locked(iocb); 648 ocfs2_iocb_clear_rw_locked(iocb);
649 649
650 level = ocfs2_iocb_rw_locked_level(iocb); 650 level = ocfs2_iocb_rw_locked_level(iocb);
651 if (!level) 651 if (!level)
652 up_read(&inode->i_alloc_sem); 652 up_read(&inode->i_alloc_sem);
653 ocfs2_rw_unlock(inode, level); 653 ocfs2_rw_unlock(inode, level);
654 } 654 }
655 655
656 /* 656 /*
657 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen 657 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
658 * from ext3. PageChecked() bits have been removed as OCFS2 does not 658 * from ext3. PageChecked() bits have been removed as OCFS2 does not
659 * do journalled data. 659 * do journalled data.
660 */ 660 */
661 static void ocfs2_invalidatepage(struct page *page, unsigned long offset) 661 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
662 { 662 {
663 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal; 663 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
664 664
665 journal_invalidatepage(journal, page, offset); 665 journal_invalidatepage(journal, page, offset);
666 } 666 }
667 667
668 static int ocfs2_releasepage(struct page *page, gfp_t wait) 668 static int ocfs2_releasepage(struct page *page, gfp_t wait)
669 { 669 {
670 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal; 670 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
671 671
672 if (!page_has_buffers(page)) 672 if (!page_has_buffers(page))
673 return 0; 673 return 0;
674 return journal_try_to_free_buffers(journal, page, wait); 674 return journal_try_to_free_buffers(journal, page, wait);
675 } 675 }
676 676
677 static ssize_t ocfs2_direct_IO(int rw, 677 static ssize_t ocfs2_direct_IO(int rw,
678 struct kiocb *iocb, 678 struct kiocb *iocb,
679 const struct iovec *iov, 679 const struct iovec *iov,
680 loff_t offset, 680 loff_t offset,
681 unsigned long nr_segs) 681 unsigned long nr_segs)
682 { 682 {
683 struct file *file = iocb->ki_filp; 683 struct file *file = iocb->ki_filp;
684 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host; 684 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
685 int ret; 685 int ret;
686 686
687 mlog_entry_void(); 687 mlog_entry_void();
688 688
689 /* 689 /*
690 * Fallback to buffered I/O if we see an inode without 690 * Fallback to buffered I/O if we see an inode without
691 * extents. 691 * extents.
692 */ 692 */
693 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 693 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
694 return 0; 694 return 0;
695 695
696 ret = blockdev_direct_IO_no_locking(rw, iocb, inode, 696 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
697 inode->i_sb->s_bdev, iov, offset, 697 inode->i_sb->s_bdev, iov, offset,
698 nr_segs, 698 nr_segs,
699 ocfs2_direct_IO_get_blocks, 699 ocfs2_direct_IO_get_blocks,
700 ocfs2_dio_end_io); 700 ocfs2_dio_end_io);
701 701
702 mlog_exit(ret); 702 mlog_exit(ret);
703 return ret; 703 return ret;
704 } 704 }
705 705
706 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb, 706 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
707 u32 cpos, 707 u32 cpos,
708 unsigned int *start, 708 unsigned int *start,
709 unsigned int *end) 709 unsigned int *end)
710 { 710 {
711 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE; 711 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
712 712
713 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) { 713 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
714 unsigned int cpp; 714 unsigned int cpp;
715 715
716 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits); 716 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
717 717
718 cluster_start = cpos % cpp; 718 cluster_start = cpos % cpp;
719 cluster_start = cluster_start << osb->s_clustersize_bits; 719 cluster_start = cluster_start << osb->s_clustersize_bits;
720 720
721 cluster_end = cluster_start + osb->s_clustersize; 721 cluster_end = cluster_start + osb->s_clustersize;
722 } 722 }
723 723
724 BUG_ON(cluster_start > PAGE_SIZE); 724 BUG_ON(cluster_start > PAGE_SIZE);
725 BUG_ON(cluster_end > PAGE_SIZE); 725 BUG_ON(cluster_end > PAGE_SIZE);
726 726
727 if (start) 727 if (start)
728 *start = cluster_start; 728 *start = cluster_start;
729 if (end) 729 if (end)
730 *end = cluster_end; 730 *end = cluster_end;
731 } 731 }
732 732
733 /* 733 /*
734 * 'from' and 'to' are the region in the page to avoid zeroing. 734 * 'from' and 'to' are the region in the page to avoid zeroing.
735 * 735 *
736 * If pagesize > clustersize, this function will avoid zeroing outside 736 * If pagesize > clustersize, this function will avoid zeroing outside
737 * of the cluster boundary. 737 * of the cluster boundary.
738 * 738 *
739 * from == to == 0 is code for "zero the entire cluster region" 739 * from == to == 0 is code for "zero the entire cluster region"
740 */ 740 */
741 static void ocfs2_clear_page_regions(struct page *page, 741 static void ocfs2_clear_page_regions(struct page *page,
742 struct ocfs2_super *osb, u32 cpos, 742 struct ocfs2_super *osb, u32 cpos,
743 unsigned from, unsigned to) 743 unsigned from, unsigned to)
744 { 744 {
745 void *kaddr; 745 void *kaddr;
746 unsigned int cluster_start, cluster_end; 746 unsigned int cluster_start, cluster_end;
747 747
748 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end); 748 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
749 749
750 kaddr = kmap_atomic(page, KM_USER0); 750 kaddr = kmap_atomic(page, KM_USER0);
751 751
752 if (from || to) { 752 if (from || to) {
753 if (from > cluster_start) 753 if (from > cluster_start)
754 memset(kaddr + cluster_start, 0, from - cluster_start); 754 memset(kaddr + cluster_start, 0, from - cluster_start);
755 if (to < cluster_end) 755 if (to < cluster_end)
756 memset(kaddr + to, 0, cluster_end - to); 756 memset(kaddr + to, 0, cluster_end - to);
757 } else { 757 } else {
758 memset(kaddr + cluster_start, 0, cluster_end - cluster_start); 758 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
759 } 759 }
760 760
761 kunmap_atomic(kaddr, KM_USER0); 761 kunmap_atomic(kaddr, KM_USER0);
762 } 762 }
763 763
764 /* 764 /*
765 * Nonsparse file systems fully allocate before we get to the write 765 * Nonsparse file systems fully allocate before we get to the write
766 * code. This prevents ocfs2_write() from tagging the write as an 766 * code. This prevents ocfs2_write() from tagging the write as an
767 * allocating one, which means ocfs2_map_page_blocks() might try to 767 * allocating one, which means ocfs2_map_page_blocks() might try to
768 * read-in the blocks at the tail of our file. Avoid reading them by 768 * read-in the blocks at the tail of our file. Avoid reading them by
769 * testing i_size against each block offset. 769 * testing i_size against each block offset.
770 */ 770 */
771 static int ocfs2_should_read_blk(struct inode *inode, struct page *page, 771 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
772 unsigned int block_start) 772 unsigned int block_start)
773 { 773 {
774 u64 offset = page_offset(page) + block_start; 774 u64 offset = page_offset(page) + block_start;
775 775
776 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 776 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
777 return 1; 777 return 1;
778 778
779 if (i_size_read(inode) > offset) 779 if (i_size_read(inode) > offset)
780 return 1; 780 return 1;
781 781
782 return 0; 782 return 0;
783 } 783 }
784 784
785 /* 785 /*
786 * Some of this taken from block_prepare_write(). We already have our 786 * Some of this taken from block_prepare_write(). We already have our
787 * mapping by now though, and the entire write will be allocating or 787 * mapping by now though, and the entire write will be allocating or
788 * it won't, so not much need to use BH_New. 788 * it won't, so not much need to use BH_New.
789 * 789 *
790 * This will also skip zeroing, which is handled externally. 790 * This will also skip zeroing, which is handled externally.
791 */ 791 */
792 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno, 792 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
793 struct inode *inode, unsigned int from, 793 struct inode *inode, unsigned int from,
794 unsigned int to, int new) 794 unsigned int to, int new)
795 { 795 {
796 int ret = 0; 796 int ret = 0;
797 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait; 797 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
798 unsigned int block_end, block_start; 798 unsigned int block_end, block_start;
799 unsigned int bsize = 1 << inode->i_blkbits; 799 unsigned int bsize = 1 << inode->i_blkbits;
800 800
801 if (!page_has_buffers(page)) 801 if (!page_has_buffers(page))
802 create_empty_buffers(page, bsize, 0); 802 create_empty_buffers(page, bsize, 0);
803 803
804 head = page_buffers(page); 804 head = page_buffers(page);
805 for (bh = head, block_start = 0; bh != head || !block_start; 805 for (bh = head, block_start = 0; bh != head || !block_start;
806 bh = bh->b_this_page, block_start += bsize) { 806 bh = bh->b_this_page, block_start += bsize) {
807 block_end = block_start + bsize; 807 block_end = block_start + bsize;
808 808
809 clear_buffer_new(bh); 809 clear_buffer_new(bh);
810 810
811 /* 811 /*
812 * Ignore blocks outside of our i/o range - 812 * Ignore blocks outside of our i/o range -
813 * they may belong to unallocated clusters. 813 * they may belong to unallocated clusters.
814 */ 814 */
815 if (block_start >= to || block_end <= from) { 815 if (block_start >= to || block_end <= from) {
816 if (PageUptodate(page)) 816 if (PageUptodate(page))
817 set_buffer_uptodate(bh); 817 set_buffer_uptodate(bh);
818 continue; 818 continue;
819 } 819 }
820 820
821 /* 821 /*
822 * For an allocating write with cluster size >= page 822 * For an allocating write with cluster size >= page
823 * size, we always write the entire page. 823 * size, we always write the entire page.
824 */ 824 */
825 if (new) 825 if (new)
826 set_buffer_new(bh); 826 set_buffer_new(bh);
827 827
828 if (!buffer_mapped(bh)) { 828 if (!buffer_mapped(bh)) {
829 map_bh(bh, inode->i_sb, *p_blkno); 829 map_bh(bh, inode->i_sb, *p_blkno);
830 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 830 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
831 } 831 }
832 832
833 if (PageUptodate(page)) { 833 if (PageUptodate(page)) {
834 if (!buffer_uptodate(bh)) 834 if (!buffer_uptodate(bh))
835 set_buffer_uptodate(bh); 835 set_buffer_uptodate(bh);
836 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) && 836 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
837 !buffer_new(bh) && 837 !buffer_new(bh) &&
838 ocfs2_should_read_blk(inode, page, block_start) && 838 ocfs2_should_read_blk(inode, page, block_start) &&
839 (block_start < from || block_end > to)) { 839 (block_start < from || block_end > to)) {
840 ll_rw_block(READ, 1, &bh); 840 ll_rw_block(READ, 1, &bh);
841 *wait_bh++=bh; 841 *wait_bh++=bh;
842 } 842 }
843 843
844 *p_blkno = *p_blkno + 1; 844 *p_blkno = *p_blkno + 1;
845 } 845 }
846 846
847 /* 847 /*
848 * If we issued read requests - let them complete. 848 * If we issued read requests - let them complete.
849 */ 849 */
850 while(wait_bh > wait) { 850 while(wait_bh > wait) {
851 wait_on_buffer(*--wait_bh); 851 wait_on_buffer(*--wait_bh);
852 if (!buffer_uptodate(*wait_bh)) 852 if (!buffer_uptodate(*wait_bh))
853 ret = -EIO; 853 ret = -EIO;
854 } 854 }
855 855
856 if (ret == 0 || !new) 856 if (ret == 0 || !new)
857 return ret; 857 return ret;
858 858
859 /* 859 /*
860 * If we get -EIO above, zero out any newly allocated blocks 860 * If we get -EIO above, zero out any newly allocated blocks
861 * to avoid exposing stale data. 861 * to avoid exposing stale data.
862 */ 862 */
863 bh = head; 863 bh = head;
864 block_start = 0; 864 block_start = 0;
865 do { 865 do {
866 block_end = block_start + bsize; 866 block_end = block_start + bsize;
867 if (block_end <= from) 867 if (block_end <= from)
868 goto next_bh; 868 goto next_bh;
869 if (block_start >= to) 869 if (block_start >= to)
870 break; 870 break;
871 871
872 zero_user(page, block_start, bh->b_size); 872 zero_user(page, block_start, bh->b_size);
873 set_buffer_uptodate(bh); 873 set_buffer_uptodate(bh);
874 mark_buffer_dirty(bh); 874 mark_buffer_dirty(bh);
875 875
876 next_bh: 876 next_bh:
877 block_start = block_end; 877 block_start = block_end;
878 bh = bh->b_this_page; 878 bh = bh->b_this_page;
879 } while (bh != head); 879 } while (bh != head);
880 880
881 return ret; 881 return ret;
882 } 882 }
883 883
884 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE) 884 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
885 #define OCFS2_MAX_CTXT_PAGES 1 885 #define OCFS2_MAX_CTXT_PAGES 1
886 #else 886 #else
887 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE) 887 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
888 #endif 888 #endif
889 889
890 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE) 890 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
891 891
892 /* 892 /*
893 * Describe the state of a single cluster to be written to. 893 * Describe the state of a single cluster to be written to.
894 */ 894 */
895 struct ocfs2_write_cluster_desc { 895 struct ocfs2_write_cluster_desc {
896 u32 c_cpos; 896 u32 c_cpos;
897 u32 c_phys; 897 u32 c_phys;
898 /* 898 /*
899 * Give this a unique field because c_phys eventually gets 899 * Give this a unique field because c_phys eventually gets
900 * filled. 900 * filled.
901 */ 901 */
902 unsigned c_new; 902 unsigned c_new;
903 unsigned c_unwritten; 903 unsigned c_unwritten;
904 }; 904 };
905 905
906 static inline int ocfs2_should_zero_cluster(struct ocfs2_write_cluster_desc *d) 906 static inline int ocfs2_should_zero_cluster(struct ocfs2_write_cluster_desc *d)
907 { 907 {
908 return d->c_new || d->c_unwritten; 908 return d->c_new || d->c_unwritten;
909 } 909 }
910 910
911 struct ocfs2_write_ctxt { 911 struct ocfs2_write_ctxt {
912 /* Logical cluster position / len of write */ 912 /* Logical cluster position / len of write */
913 u32 w_cpos; 913 u32 w_cpos;
914 u32 w_clen; 914 u32 w_clen;
915 915
916 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE]; 916 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
917 917
918 /* 918 /*
919 * This is true if page_size > cluster_size. 919 * This is true if page_size > cluster_size.
920 * 920 *
921 * It triggers a set of special cases during write which might 921 * It triggers a set of special cases during write which might
922 * have to deal with allocating writes to partial pages. 922 * have to deal with allocating writes to partial pages.
923 */ 923 */
924 unsigned int w_large_pages; 924 unsigned int w_large_pages;
925 925
926 /* 926 /*
927 * Pages involved in this write. 927 * Pages involved in this write.
928 * 928 *
929 * w_target_page is the page being written to by the user. 929 * w_target_page is the page being written to by the user.
930 * 930 *
931 * w_pages is an array of pages which always contains 931 * w_pages is an array of pages which always contains
932 * w_target_page, and in the case of an allocating write with 932 * w_target_page, and in the case of an allocating write with
933 * page_size < cluster size, it will contain zero'd and mapped 933 * page_size < cluster size, it will contain zero'd and mapped
934 * pages adjacent to w_target_page which need to be written 934 * pages adjacent to w_target_page which need to be written
935 * out in so that future reads from that region will get 935 * out in so that future reads from that region will get
936 * zero's. 936 * zero's.
937 */ 937 */
938 struct page *w_pages[OCFS2_MAX_CTXT_PAGES]; 938 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
939 unsigned int w_num_pages; 939 unsigned int w_num_pages;
940 struct page *w_target_page; 940 struct page *w_target_page;
941 941
942 /* 942 /*
943 * ocfs2_write_end() uses this to know what the real range to 943 * ocfs2_write_end() uses this to know what the real range to
944 * write in the target should be. 944 * write in the target should be.
945 */ 945 */
946 unsigned int w_target_from; 946 unsigned int w_target_from;
947 unsigned int w_target_to; 947 unsigned int w_target_to;
948 948
949 /* 949 /*
950 * We could use journal_current_handle() but this is cleaner, 950 * We could use journal_current_handle() but this is cleaner,
951 * IMHO -Mark 951 * IMHO -Mark
952 */ 952 */
953 handle_t *w_handle; 953 handle_t *w_handle;
954 954
955 struct buffer_head *w_di_bh; 955 struct buffer_head *w_di_bh;
956 956
957 struct ocfs2_cached_dealloc_ctxt w_dealloc; 957 struct ocfs2_cached_dealloc_ctxt w_dealloc;
958 }; 958 };
959 959
960 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages) 960 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
961 { 961 {
962 int i; 962 int i;
963 963
964 for(i = 0; i < num_pages; i++) { 964 for(i = 0; i < num_pages; i++) {
965 if (pages[i]) { 965 if (pages[i]) {
966 unlock_page(pages[i]); 966 unlock_page(pages[i]);
967 mark_page_accessed(pages[i]); 967 mark_page_accessed(pages[i]);
968 page_cache_release(pages[i]); 968 page_cache_release(pages[i]);
969 } 969 }
970 } 970 }
971 } 971 }
972 972
973 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc) 973 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
974 { 974 {
975 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages); 975 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
976 976
977 brelse(wc->w_di_bh); 977 brelse(wc->w_di_bh);
978 kfree(wc); 978 kfree(wc);
979 } 979 }
980 980
981 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp, 981 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
982 struct ocfs2_super *osb, loff_t pos, 982 struct ocfs2_super *osb, loff_t pos,
983 unsigned len, struct buffer_head *di_bh) 983 unsigned len, struct buffer_head *di_bh)
984 { 984 {
985 u32 cend; 985 u32 cend;
986 struct ocfs2_write_ctxt *wc; 986 struct ocfs2_write_ctxt *wc;
987 987
988 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS); 988 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
989 if (!wc) 989 if (!wc)
990 return -ENOMEM; 990 return -ENOMEM;
991 991
992 wc->w_cpos = pos >> osb->s_clustersize_bits; 992 wc->w_cpos = pos >> osb->s_clustersize_bits;
993 cend = (pos + len - 1) >> osb->s_clustersize_bits; 993 cend = (pos + len - 1) >> osb->s_clustersize_bits;
994 wc->w_clen = cend - wc->w_cpos + 1; 994 wc->w_clen = cend - wc->w_cpos + 1;
995 get_bh(di_bh); 995 get_bh(di_bh);
996 wc->w_di_bh = di_bh; 996 wc->w_di_bh = di_bh;
997 997
998 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) 998 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
999 wc->w_large_pages = 1; 999 wc->w_large_pages = 1;
1000 else 1000 else
1001 wc->w_large_pages = 0; 1001 wc->w_large_pages = 0;
1002 1002
1003 ocfs2_init_dealloc_ctxt(&wc->w_dealloc); 1003 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1004 1004
1005 *wcp = wc; 1005 *wcp = wc;
1006 1006
1007 return 0; 1007 return 0;
1008 } 1008 }
1009 1009
1010 /* 1010 /*
1011 * If a page has any new buffers, zero them out here, and mark them uptodate 1011 * If a page has any new buffers, zero them out here, and mark them uptodate
1012 * and dirty so they'll be written out (in order to prevent uninitialised 1012 * and dirty so they'll be written out (in order to prevent uninitialised
1013 * block data from leaking). And clear the new bit. 1013 * block data from leaking). And clear the new bit.
1014 */ 1014 */
1015 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1015 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1016 { 1016 {
1017 unsigned int block_start, block_end; 1017 unsigned int block_start, block_end;
1018 struct buffer_head *head, *bh; 1018 struct buffer_head *head, *bh;
1019 1019
1020 BUG_ON(!PageLocked(page)); 1020 BUG_ON(!PageLocked(page));
1021 if (!page_has_buffers(page)) 1021 if (!page_has_buffers(page))
1022 return; 1022 return;
1023 1023
1024 bh = head = page_buffers(page); 1024 bh = head = page_buffers(page);
1025 block_start = 0; 1025 block_start = 0;
1026 do { 1026 do {
1027 block_end = block_start + bh->b_size; 1027 block_end = block_start + bh->b_size;
1028 1028
1029 if (buffer_new(bh)) { 1029 if (buffer_new(bh)) {
1030 if (block_end > from && block_start < to) { 1030 if (block_end > from && block_start < to) {
1031 if (!PageUptodate(page)) { 1031 if (!PageUptodate(page)) {
1032 unsigned start, end; 1032 unsigned start, end;
1033 1033
1034 start = max(from, block_start); 1034 start = max(from, block_start);
1035 end = min(to, block_end); 1035 end = min(to, block_end);
1036 1036
1037 zero_user_segment(page, start, end); 1037 zero_user_segment(page, start, end);
1038 set_buffer_uptodate(bh); 1038 set_buffer_uptodate(bh);
1039 } 1039 }
1040 1040
1041 clear_buffer_new(bh); 1041 clear_buffer_new(bh);
1042 mark_buffer_dirty(bh); 1042 mark_buffer_dirty(bh);
1043 } 1043 }
1044 } 1044 }
1045 1045
1046 block_start = block_end; 1046 block_start = block_end;
1047 bh = bh->b_this_page; 1047 bh = bh->b_this_page;
1048 } while (bh != head); 1048 } while (bh != head);
1049 } 1049 }
1050 1050
1051 /* 1051 /*
1052 * Only called when we have a failure during allocating write to write 1052 * Only called when we have a failure during allocating write to write
1053 * zero's to the newly allocated region. 1053 * zero's to the newly allocated region.
1054 */ 1054 */
1055 static void ocfs2_write_failure(struct inode *inode, 1055 static void ocfs2_write_failure(struct inode *inode,
1056 struct ocfs2_write_ctxt *wc, 1056 struct ocfs2_write_ctxt *wc,
1057 loff_t user_pos, unsigned user_len) 1057 loff_t user_pos, unsigned user_len)
1058 { 1058 {
1059 int i; 1059 int i;
1060 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1), 1060 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1061 to = user_pos + user_len; 1061 to = user_pos + user_len;
1062 struct page *tmppage; 1062 struct page *tmppage;
1063 1063
1064 ocfs2_zero_new_buffers(wc->w_target_page, from, to); 1064 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1065 1065
1066 for(i = 0; i < wc->w_num_pages; i++) { 1066 for(i = 0; i < wc->w_num_pages; i++) {
1067 tmppage = wc->w_pages[i]; 1067 tmppage = wc->w_pages[i];
1068 1068
1069 if (ocfs2_should_order_data(inode)) 1069 if (ocfs2_should_order_data(inode))
1070 walk_page_buffers(wc->w_handle, page_buffers(tmppage), 1070 walk_page_buffers(wc->w_handle, page_buffers(tmppage),
1071 from, to, NULL, 1071 from, to, NULL,
1072 ocfs2_journal_dirty_data); 1072 ocfs2_journal_dirty_data);
1073 1073
1074 block_commit_write(tmppage, from, to); 1074 block_commit_write(tmppage, from, to);
1075 } 1075 }
1076 } 1076 }
1077 1077
1078 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno, 1078 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1079 struct ocfs2_write_ctxt *wc, 1079 struct ocfs2_write_ctxt *wc,
1080 struct page *page, u32 cpos, 1080 struct page *page, u32 cpos,
1081 loff_t user_pos, unsigned user_len, 1081 loff_t user_pos, unsigned user_len,
1082 int new) 1082 int new)
1083 { 1083 {
1084 int ret; 1084 int ret;
1085 unsigned int map_from = 0, map_to = 0; 1085 unsigned int map_from = 0, map_to = 0;
1086 unsigned int cluster_start, cluster_end; 1086 unsigned int cluster_start, cluster_end;
1087 unsigned int user_data_from = 0, user_data_to = 0; 1087 unsigned int user_data_from = 0, user_data_to = 0;
1088 1088
1089 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos, 1089 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1090 &cluster_start, &cluster_end); 1090 &cluster_start, &cluster_end);
1091 1091
1092 if (page == wc->w_target_page) { 1092 if (page == wc->w_target_page) {
1093 map_from = user_pos & (PAGE_CACHE_SIZE - 1); 1093 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1094 map_to = map_from + user_len; 1094 map_to = map_from + user_len;
1095 1095
1096 if (new) 1096 if (new)
1097 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1097 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1098 cluster_start, cluster_end, 1098 cluster_start, cluster_end,
1099 new); 1099 new);
1100 else 1100 else
1101 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1101 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1102 map_from, map_to, new); 1102 map_from, map_to, new);
1103 if (ret) { 1103 if (ret) {
1104 mlog_errno(ret); 1104 mlog_errno(ret);
1105 goto out; 1105 goto out;
1106 } 1106 }
1107 1107
1108 user_data_from = map_from; 1108 user_data_from = map_from;
1109 user_data_to = map_to; 1109 user_data_to = map_to;
1110 if (new) { 1110 if (new) {
1111 map_from = cluster_start; 1111 map_from = cluster_start;
1112 map_to = cluster_end; 1112 map_to = cluster_end;
1113 } 1113 }
1114 } else { 1114 } else {
1115 /* 1115 /*
1116 * If we haven't allocated the new page yet, we 1116 * If we haven't allocated the new page yet, we
1117 * shouldn't be writing it out without copying user 1117 * shouldn't be writing it out without copying user
1118 * data. This is likely a math error from the caller. 1118 * data. This is likely a math error from the caller.
1119 */ 1119 */
1120 BUG_ON(!new); 1120 BUG_ON(!new);
1121 1121
1122 map_from = cluster_start; 1122 map_from = cluster_start;
1123 map_to = cluster_end; 1123 map_to = cluster_end;
1124 1124
1125 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1125 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1126 cluster_start, cluster_end, new); 1126 cluster_start, cluster_end, new);
1127 if (ret) { 1127 if (ret) {
1128 mlog_errno(ret); 1128 mlog_errno(ret);
1129 goto out; 1129 goto out;
1130 } 1130 }
1131 } 1131 }
1132 1132
1133 /* 1133 /*
1134 * Parts of newly allocated pages need to be zero'd. 1134 * Parts of newly allocated pages need to be zero'd.
1135 * 1135 *
1136 * Above, we have also rewritten 'to' and 'from' - as far as 1136 * Above, we have also rewritten 'to' and 'from' - as far as
1137 * the rest of the function is concerned, the entire cluster 1137 * the rest of the function is concerned, the entire cluster
1138 * range inside of a page needs to be written. 1138 * range inside of a page needs to be written.
1139 * 1139 *
1140 * We can skip this if the page is up to date - it's already 1140 * We can skip this if the page is up to date - it's already
1141 * been zero'd from being read in as a hole. 1141 * been zero'd from being read in as a hole.
1142 */ 1142 */
1143 if (new && !PageUptodate(page)) 1143 if (new && !PageUptodate(page))
1144 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb), 1144 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1145 cpos, user_data_from, user_data_to); 1145 cpos, user_data_from, user_data_to);
1146 1146
1147 flush_dcache_page(page); 1147 flush_dcache_page(page);
1148 1148
1149 out: 1149 out:
1150 return ret; 1150 return ret;
1151 } 1151 }
1152 1152
1153 /* 1153 /*
1154 * This function will only grab one clusters worth of pages. 1154 * This function will only grab one clusters worth of pages.
1155 */ 1155 */
1156 static int ocfs2_grab_pages_for_write(struct address_space *mapping, 1156 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1157 struct ocfs2_write_ctxt *wc, 1157 struct ocfs2_write_ctxt *wc,
1158 u32 cpos, loff_t user_pos, int new, 1158 u32 cpos, loff_t user_pos, int new,
1159 struct page *mmap_page) 1159 struct page *mmap_page)
1160 { 1160 {
1161 int ret = 0, i; 1161 int ret = 0, i;
1162 unsigned long start, target_index, index; 1162 unsigned long start, target_index, index;
1163 struct inode *inode = mapping->host; 1163 struct inode *inode = mapping->host;
1164 1164
1165 target_index = user_pos >> PAGE_CACHE_SHIFT; 1165 target_index = user_pos >> PAGE_CACHE_SHIFT;
1166 1166
1167 /* 1167 /*
1168 * Figure out how many pages we'll be manipulating here. For 1168 * Figure out how many pages we'll be manipulating here. For
1169 * non allocating write, we just change the one 1169 * non allocating write, we just change the one
1170 * page. Otherwise, we'll need a whole clusters worth. 1170 * page. Otherwise, we'll need a whole clusters worth.
1171 */ 1171 */
1172 if (new) { 1172 if (new) {
1173 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb); 1173 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1174 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos); 1174 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1175 } else { 1175 } else {
1176 wc->w_num_pages = 1; 1176 wc->w_num_pages = 1;
1177 start = target_index; 1177 start = target_index;
1178 } 1178 }
1179 1179
1180 for(i = 0; i < wc->w_num_pages; i++) { 1180 for(i = 0; i < wc->w_num_pages; i++) {
1181 index = start + i; 1181 index = start + i;
1182 1182
1183 if (index == target_index && mmap_page) { 1183 if (index == target_index && mmap_page) {
1184 /* 1184 /*
1185 * ocfs2_pagemkwrite() is a little different 1185 * ocfs2_pagemkwrite() is a little different
1186 * and wants us to directly use the page 1186 * and wants us to directly use the page
1187 * passed in. 1187 * passed in.
1188 */ 1188 */
1189 lock_page(mmap_page); 1189 lock_page(mmap_page);
1190 1190
1191 if (mmap_page->mapping != mapping) { 1191 if (mmap_page->mapping != mapping) {
1192 unlock_page(mmap_page); 1192 unlock_page(mmap_page);
1193 /* 1193 /*
1194 * Sanity check - the locking in 1194 * Sanity check - the locking in
1195 * ocfs2_pagemkwrite() should ensure 1195 * ocfs2_pagemkwrite() should ensure
1196 * that this code doesn't trigger. 1196 * that this code doesn't trigger.
1197 */ 1197 */
1198 ret = -EINVAL; 1198 ret = -EINVAL;
1199 mlog_errno(ret); 1199 mlog_errno(ret);
1200 goto out; 1200 goto out;
1201 } 1201 }
1202 1202
1203 page_cache_get(mmap_page); 1203 page_cache_get(mmap_page);
1204 wc->w_pages[i] = mmap_page; 1204 wc->w_pages[i] = mmap_page;
1205 } else { 1205 } else {
1206 wc->w_pages[i] = find_or_create_page(mapping, index, 1206 wc->w_pages[i] = find_or_create_page(mapping, index,
1207 GFP_NOFS); 1207 GFP_NOFS);
1208 if (!wc->w_pages[i]) { 1208 if (!wc->w_pages[i]) {
1209 ret = -ENOMEM; 1209 ret = -ENOMEM;
1210 mlog_errno(ret); 1210 mlog_errno(ret);
1211 goto out; 1211 goto out;
1212 } 1212 }
1213 } 1213 }
1214 1214
1215 if (index == target_index) 1215 if (index == target_index)
1216 wc->w_target_page = wc->w_pages[i]; 1216 wc->w_target_page = wc->w_pages[i];
1217 } 1217 }
1218 out: 1218 out:
1219 return ret; 1219 return ret;
1220 } 1220 }
1221 1221
1222 /* 1222 /*
1223 * Prepare a single cluster for write one cluster into the file. 1223 * Prepare a single cluster for write one cluster into the file.
1224 */ 1224 */
1225 static int ocfs2_write_cluster(struct address_space *mapping, 1225 static int ocfs2_write_cluster(struct address_space *mapping,
1226 u32 phys, unsigned int unwritten, 1226 u32 phys, unsigned int unwritten,
1227 struct ocfs2_alloc_context *data_ac, 1227 struct ocfs2_alloc_context *data_ac,
1228 struct ocfs2_alloc_context *meta_ac, 1228 struct ocfs2_alloc_context *meta_ac,
1229 struct ocfs2_write_ctxt *wc, u32 cpos, 1229 struct ocfs2_write_ctxt *wc, u32 cpos,
1230 loff_t user_pos, unsigned user_len) 1230 loff_t user_pos, unsigned user_len)
1231 { 1231 {
1232 int ret, i, new, should_zero = 0; 1232 int ret, i, new, should_zero = 0;
1233 u64 v_blkno, p_blkno; 1233 u64 v_blkno, p_blkno;
1234 struct inode *inode = mapping->host; 1234 struct inode *inode = mapping->host;
1235 1235
1236 new = phys == 0 ? 1 : 0; 1236 new = phys == 0 ? 1 : 0;
1237 if (new || unwritten) 1237 if (new || unwritten)
1238 should_zero = 1; 1238 should_zero = 1;
1239 1239
1240 if (new) { 1240 if (new) {
1241 u32 tmp_pos; 1241 u32 tmp_pos;
1242 1242
1243 /* 1243 /*
1244 * This is safe to call with the page locks - it won't take 1244 * This is safe to call with the page locks - it won't take
1245 * any additional semaphores or cluster locks. 1245 * any additional semaphores or cluster locks.
1246 */ 1246 */
1247 tmp_pos = cpos; 1247 tmp_pos = cpos;
1248 ret = ocfs2_do_extend_allocation(OCFS2_SB(inode->i_sb), inode, 1248 ret = ocfs2_do_extend_allocation(OCFS2_SB(inode->i_sb), inode,
1249 &tmp_pos, 1, 0, wc->w_di_bh, 1249 &tmp_pos, 1, 0, wc->w_di_bh,
1250 wc->w_handle, data_ac, 1250 wc->w_handle, data_ac,
1251 meta_ac, NULL); 1251 meta_ac, NULL);
1252 /* 1252 /*
1253 * This shouldn't happen because we must have already 1253 * This shouldn't happen because we must have already
1254 * calculated the correct meta data allocation required. The 1254 * calculated the correct meta data allocation required. The
1255 * internal tree allocation code should know how to increase 1255 * internal tree allocation code should know how to increase
1256 * transaction credits itself. 1256 * transaction credits itself.
1257 * 1257 *
1258 * If need be, we could handle -EAGAIN for a 1258 * If need be, we could handle -EAGAIN for a
1259 * RESTART_TRANS here. 1259 * RESTART_TRANS here.
1260 */ 1260 */
1261 mlog_bug_on_msg(ret == -EAGAIN, 1261 mlog_bug_on_msg(ret == -EAGAIN,
1262 "Inode %llu: EAGAIN return during allocation.\n", 1262 "Inode %llu: EAGAIN return during allocation.\n",
1263 (unsigned long long)OCFS2_I(inode)->ip_blkno); 1263 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1264 if (ret < 0) { 1264 if (ret < 0) {
1265 mlog_errno(ret); 1265 mlog_errno(ret);
1266 goto out; 1266 goto out;
1267 } 1267 }
1268 } else if (unwritten) { 1268 } else if (unwritten) {
1269 ret = ocfs2_mark_extent_written(inode, wc->w_di_bh, 1269 ret = ocfs2_mark_extent_written(inode, wc->w_di_bh,
1270 wc->w_handle, cpos, 1, phys, 1270 wc->w_handle, cpos, 1, phys,
1271 meta_ac, &wc->w_dealloc); 1271 meta_ac, &wc->w_dealloc);
1272 if (ret < 0) { 1272 if (ret < 0) {
1273 mlog_errno(ret); 1273 mlog_errno(ret);
1274 goto out; 1274 goto out;
1275 } 1275 }
1276 } 1276 }
1277 1277
1278 if (should_zero) 1278 if (should_zero)
1279 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos); 1279 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1280 else 1280 else
1281 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits; 1281 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1282 1282
1283 /* 1283 /*
1284 * The only reason this should fail is due to an inability to 1284 * The only reason this should fail is due to an inability to
1285 * find the extent added. 1285 * find the extent added.
1286 */ 1286 */
1287 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL, 1287 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1288 NULL); 1288 NULL);
1289 if (ret < 0) { 1289 if (ret < 0) {
1290 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, " 1290 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1291 "at logical block %llu", 1291 "at logical block %llu",
1292 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1292 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1293 (unsigned long long)v_blkno); 1293 (unsigned long long)v_blkno);
1294 goto out; 1294 goto out;
1295 } 1295 }
1296 1296
1297 BUG_ON(p_blkno == 0); 1297 BUG_ON(p_blkno == 0);
1298 1298
1299 for(i = 0; i < wc->w_num_pages; i++) { 1299 for(i = 0; i < wc->w_num_pages; i++) {
1300 int tmpret; 1300 int tmpret;
1301 1301
1302 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc, 1302 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1303 wc->w_pages[i], cpos, 1303 wc->w_pages[i], cpos,
1304 user_pos, user_len, 1304 user_pos, user_len,
1305 should_zero); 1305 should_zero);
1306 if (tmpret) { 1306 if (tmpret) {
1307 mlog_errno(tmpret); 1307 mlog_errno(tmpret);
1308 if (ret == 0) 1308 if (ret == 0)
1309 tmpret = ret; 1309 tmpret = ret;
1310 } 1310 }
1311 } 1311 }
1312 1312
1313 /* 1313 /*
1314 * We only have cleanup to do in case of allocating write. 1314 * We only have cleanup to do in case of allocating write.
1315 */ 1315 */
1316 if (ret && new) 1316 if (ret && new)
1317 ocfs2_write_failure(inode, wc, user_pos, user_len); 1317 ocfs2_write_failure(inode, wc, user_pos, user_len);
1318 1318
1319 out: 1319 out:
1320 1320
1321 return ret; 1321 return ret;
1322 } 1322 }
1323 1323
1324 static int ocfs2_write_cluster_by_desc(struct address_space *mapping, 1324 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1325 struct ocfs2_alloc_context *data_ac, 1325 struct ocfs2_alloc_context *data_ac,
1326 struct ocfs2_alloc_context *meta_ac, 1326 struct ocfs2_alloc_context *meta_ac,
1327 struct ocfs2_write_ctxt *wc, 1327 struct ocfs2_write_ctxt *wc,
1328 loff_t pos, unsigned len) 1328 loff_t pos, unsigned len)
1329 { 1329 {
1330 int ret, i; 1330 int ret, i;
1331 loff_t cluster_off; 1331 loff_t cluster_off;
1332 unsigned int local_len = len; 1332 unsigned int local_len = len;
1333 struct ocfs2_write_cluster_desc *desc; 1333 struct ocfs2_write_cluster_desc *desc;
1334 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb); 1334 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1335 1335
1336 for (i = 0; i < wc->w_clen; i++) { 1336 for (i = 0; i < wc->w_clen; i++) {
1337 desc = &wc->w_desc[i]; 1337 desc = &wc->w_desc[i];
1338 1338
1339 /* 1339 /*
1340 * We have to make sure that the total write passed in 1340 * We have to make sure that the total write passed in
1341 * doesn't extend past a single cluster. 1341 * doesn't extend past a single cluster.
1342 */ 1342 */
1343 local_len = len; 1343 local_len = len;
1344 cluster_off = pos & (osb->s_clustersize - 1); 1344 cluster_off = pos & (osb->s_clustersize - 1);
1345 if ((cluster_off + local_len) > osb->s_clustersize) 1345 if ((cluster_off + local_len) > osb->s_clustersize)
1346 local_len = osb->s_clustersize - cluster_off; 1346 local_len = osb->s_clustersize - cluster_off;
1347 1347
1348 ret = ocfs2_write_cluster(mapping, desc->c_phys, 1348 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1349 desc->c_unwritten, data_ac, meta_ac, 1349 desc->c_unwritten, data_ac, meta_ac,
1350 wc, desc->c_cpos, pos, local_len); 1350 wc, desc->c_cpos, pos, local_len);
1351 if (ret) { 1351 if (ret) {
1352 mlog_errno(ret); 1352 mlog_errno(ret);
1353 goto out; 1353 goto out;
1354 } 1354 }
1355 1355
1356 len -= local_len; 1356 len -= local_len;
1357 pos += local_len; 1357 pos += local_len;
1358 } 1358 }
1359 1359
1360 ret = 0; 1360 ret = 0;
1361 out: 1361 out:
1362 return ret; 1362 return ret;
1363 } 1363 }
1364 1364
1365 /* 1365 /*
1366 * ocfs2_write_end() wants to know which parts of the target page it 1366 * ocfs2_write_end() wants to know which parts of the target page it
1367 * should complete the write on. It's easiest to compute them ahead of 1367 * should complete the write on. It's easiest to compute them ahead of
1368 * time when a more complete view of the write is available. 1368 * time when a more complete view of the write is available.
1369 */ 1369 */
1370 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb, 1370 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1371 struct ocfs2_write_ctxt *wc, 1371 struct ocfs2_write_ctxt *wc,
1372 loff_t pos, unsigned len, int alloc) 1372 loff_t pos, unsigned len, int alloc)
1373 { 1373 {
1374 struct ocfs2_write_cluster_desc *desc; 1374 struct ocfs2_write_cluster_desc *desc;
1375 1375
1376 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1); 1376 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1377 wc->w_target_to = wc->w_target_from + len; 1377 wc->w_target_to = wc->w_target_from + len;
1378 1378
1379 if (alloc == 0) 1379 if (alloc == 0)
1380 return; 1380 return;
1381 1381
1382 /* 1382 /*
1383 * Allocating write - we may have different boundaries based 1383 * Allocating write - we may have different boundaries based
1384 * on page size and cluster size. 1384 * on page size and cluster size.
1385 * 1385 *
1386 * NOTE: We can no longer compute one value from the other as 1386 * NOTE: We can no longer compute one value from the other as
1387 * the actual write length and user provided length may be 1387 * the actual write length and user provided length may be
1388 * different. 1388 * different.
1389 */ 1389 */
1390 1390
1391 if (wc->w_large_pages) { 1391 if (wc->w_large_pages) {
1392 /* 1392 /*
1393 * We only care about the 1st and last cluster within 1393 * We only care about the 1st and last cluster within
1394 * our range and whether they should be zero'd or not. Either 1394 * our range and whether they should be zero'd or not. Either
1395 * value may be extended out to the start/end of a 1395 * value may be extended out to the start/end of a
1396 * newly allocated cluster. 1396 * newly allocated cluster.
1397 */ 1397 */
1398 desc = &wc->w_desc[0]; 1398 desc = &wc->w_desc[0];
1399 if (ocfs2_should_zero_cluster(desc)) 1399 if (ocfs2_should_zero_cluster(desc))
1400 ocfs2_figure_cluster_boundaries(osb, 1400 ocfs2_figure_cluster_boundaries(osb,
1401 desc->c_cpos, 1401 desc->c_cpos,
1402 &wc->w_target_from, 1402 &wc->w_target_from,
1403 NULL); 1403 NULL);
1404 1404
1405 desc = &wc->w_desc[wc->w_clen - 1]; 1405 desc = &wc->w_desc[wc->w_clen - 1];
1406 if (ocfs2_should_zero_cluster(desc)) 1406 if (ocfs2_should_zero_cluster(desc))
1407 ocfs2_figure_cluster_boundaries(osb, 1407 ocfs2_figure_cluster_boundaries(osb,
1408 desc->c_cpos, 1408 desc->c_cpos,
1409 NULL, 1409 NULL,
1410 &wc->w_target_to); 1410 &wc->w_target_to);
1411 } else { 1411 } else {
1412 wc->w_target_from = 0; 1412 wc->w_target_from = 0;
1413 wc->w_target_to = PAGE_CACHE_SIZE; 1413 wc->w_target_to = PAGE_CACHE_SIZE;
1414 } 1414 }
1415 } 1415 }
1416 1416
1417 /* 1417 /*
1418 * Populate each single-cluster write descriptor in the write context 1418 * Populate each single-cluster write descriptor in the write context
1419 * with information about the i/o to be done. 1419 * with information about the i/o to be done.
1420 * 1420 *
1421 * Returns the number of clusters that will have to be allocated, as 1421 * Returns the number of clusters that will have to be allocated, as
1422 * well as a worst case estimate of the number of extent records that 1422 * well as a worst case estimate of the number of extent records that
1423 * would have to be created during a write to an unwritten region. 1423 * would have to be created during a write to an unwritten region.
1424 */ 1424 */
1425 static int ocfs2_populate_write_desc(struct inode *inode, 1425 static int ocfs2_populate_write_desc(struct inode *inode,
1426 struct ocfs2_write_ctxt *wc, 1426 struct ocfs2_write_ctxt *wc,
1427 unsigned int *clusters_to_alloc, 1427 unsigned int *clusters_to_alloc,
1428 unsigned int *extents_to_split) 1428 unsigned int *extents_to_split)
1429 { 1429 {
1430 int ret; 1430 int ret;
1431 struct ocfs2_write_cluster_desc *desc; 1431 struct ocfs2_write_cluster_desc *desc;
1432 unsigned int num_clusters = 0; 1432 unsigned int num_clusters = 0;
1433 unsigned int ext_flags = 0; 1433 unsigned int ext_flags = 0;
1434 u32 phys = 0; 1434 u32 phys = 0;
1435 int i; 1435 int i;
1436 1436
1437 *clusters_to_alloc = 0; 1437 *clusters_to_alloc = 0;
1438 *extents_to_split = 0; 1438 *extents_to_split = 0;
1439 1439
1440 for (i = 0; i < wc->w_clen; i++) { 1440 for (i = 0; i < wc->w_clen; i++) {
1441 desc = &wc->w_desc[i]; 1441 desc = &wc->w_desc[i];
1442 desc->c_cpos = wc->w_cpos + i; 1442 desc->c_cpos = wc->w_cpos + i;
1443 1443
1444 if (num_clusters == 0) { 1444 if (num_clusters == 0) {
1445 /* 1445 /*
1446 * Need to look up the next extent record. 1446 * Need to look up the next extent record.
1447 */ 1447 */
1448 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys, 1448 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1449 &num_clusters, &ext_flags); 1449 &num_clusters, &ext_flags);
1450 if (ret) { 1450 if (ret) {
1451 mlog_errno(ret); 1451 mlog_errno(ret);
1452 goto out; 1452 goto out;
1453 } 1453 }
1454 1454
1455 /* 1455 /*
1456 * Assume worst case - that we're writing in 1456 * Assume worst case - that we're writing in
1457 * the middle of the extent. 1457 * the middle of the extent.
1458 * 1458 *
1459 * We can assume that the write proceeds from 1459 * We can assume that the write proceeds from
1460 * left to right, in which case the extent 1460 * left to right, in which case the extent
1461 * insert code is smart enough to coalesce the 1461 * insert code is smart enough to coalesce the
1462 * next splits into the previous records created. 1462 * next splits into the previous records created.
1463 */ 1463 */
1464 if (ext_flags & OCFS2_EXT_UNWRITTEN) 1464 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1465 *extents_to_split = *extents_to_split + 2; 1465 *extents_to_split = *extents_to_split + 2;
1466 } else if (phys) { 1466 } else if (phys) {
1467 /* 1467 /*
1468 * Only increment phys if it doesn't describe 1468 * Only increment phys if it doesn't describe
1469 * a hole. 1469 * a hole.
1470 */ 1470 */
1471 phys++; 1471 phys++;
1472 } 1472 }
1473 1473
1474 desc->c_phys = phys; 1474 desc->c_phys = phys;
1475 if (phys == 0) { 1475 if (phys == 0) {
1476 desc->c_new = 1; 1476 desc->c_new = 1;
1477 *clusters_to_alloc = *clusters_to_alloc + 1; 1477 *clusters_to_alloc = *clusters_to_alloc + 1;
1478 } 1478 }
1479 if (ext_flags & OCFS2_EXT_UNWRITTEN) 1479 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1480 desc->c_unwritten = 1; 1480 desc->c_unwritten = 1;
1481 1481
1482 num_clusters--; 1482 num_clusters--;
1483 } 1483 }
1484 1484
1485 ret = 0; 1485 ret = 0;
1486 out: 1486 out:
1487 return ret; 1487 return ret;
1488 } 1488 }
1489 1489
1490 static int ocfs2_write_begin_inline(struct address_space *mapping, 1490 static int ocfs2_write_begin_inline(struct address_space *mapping,
1491 struct inode *inode, 1491 struct inode *inode,
1492 struct ocfs2_write_ctxt *wc) 1492 struct ocfs2_write_ctxt *wc)
1493 { 1493 {
1494 int ret; 1494 int ret;
1495 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1495 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1496 struct page *page; 1496 struct page *page;
1497 handle_t *handle; 1497 handle_t *handle;
1498 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1498 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1499 1499
1500 page = find_or_create_page(mapping, 0, GFP_NOFS); 1500 page = find_or_create_page(mapping, 0, GFP_NOFS);
1501 if (!page) { 1501 if (!page) {
1502 ret = -ENOMEM; 1502 ret = -ENOMEM;
1503 mlog_errno(ret); 1503 mlog_errno(ret);
1504 goto out; 1504 goto out;
1505 } 1505 }
1506 /* 1506 /*
1507 * If we don't set w_num_pages then this page won't get unlocked 1507 * If we don't set w_num_pages then this page won't get unlocked
1508 * and freed on cleanup of the write context. 1508 * and freed on cleanup of the write context.
1509 */ 1509 */
1510 wc->w_pages[0] = wc->w_target_page = page; 1510 wc->w_pages[0] = wc->w_target_page = page;
1511 wc->w_num_pages = 1; 1511 wc->w_num_pages = 1;
1512 1512
1513 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1513 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1514 if (IS_ERR(handle)) { 1514 if (IS_ERR(handle)) {
1515 ret = PTR_ERR(handle); 1515 ret = PTR_ERR(handle);
1516 mlog_errno(ret); 1516 mlog_errno(ret);
1517 goto out; 1517 goto out;
1518 } 1518 }
1519 1519
1520 ret = ocfs2_journal_access(handle, inode, wc->w_di_bh, 1520 ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1521 OCFS2_JOURNAL_ACCESS_WRITE); 1521 OCFS2_JOURNAL_ACCESS_WRITE);
1522 if (ret) { 1522 if (ret) {
1523 ocfs2_commit_trans(osb, handle); 1523 ocfs2_commit_trans(osb, handle);
1524 1524
1525 mlog_errno(ret); 1525 mlog_errno(ret);
1526 goto out; 1526 goto out;
1527 } 1527 }
1528 1528
1529 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1529 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1530 ocfs2_set_inode_data_inline(inode, di); 1530 ocfs2_set_inode_data_inline(inode, di);
1531 1531
1532 if (!PageUptodate(page)) { 1532 if (!PageUptodate(page)) {
1533 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh); 1533 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1534 if (ret) { 1534 if (ret) {
1535 ocfs2_commit_trans(osb, handle); 1535 ocfs2_commit_trans(osb, handle);
1536 1536
1537 goto out; 1537 goto out;
1538 } 1538 }
1539 } 1539 }
1540 1540
1541 wc->w_handle = handle; 1541 wc->w_handle = handle;
1542 out: 1542 out:
1543 return ret; 1543 return ret;
1544 } 1544 }
1545 1545
1546 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size) 1546 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1547 { 1547 {
1548 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1548 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1549 1549
1550 if (new_size <= le16_to_cpu(di->id2.i_data.id_count)) 1550 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1551 return 1; 1551 return 1;
1552 return 0; 1552 return 0;
1553 } 1553 }
1554 1554
1555 static int ocfs2_try_to_write_inline_data(struct address_space *mapping, 1555 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1556 struct inode *inode, loff_t pos, 1556 struct inode *inode, loff_t pos,
1557 unsigned len, struct page *mmap_page, 1557 unsigned len, struct page *mmap_page,
1558 struct ocfs2_write_ctxt *wc) 1558 struct ocfs2_write_ctxt *wc)
1559 { 1559 {
1560 int ret, written = 0; 1560 int ret, written = 0;
1561 loff_t end = pos + len; 1561 loff_t end = pos + len;
1562 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1562 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1563 1563
1564 mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n", 1564 mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1565 (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos, 1565 (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1566 oi->ip_dyn_features); 1566 oi->ip_dyn_features);
1567 1567
1568 /* 1568 /*
1569 * Handle inodes which already have inline data 1st. 1569 * Handle inodes which already have inline data 1st.
1570 */ 1570 */
1571 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1571 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1572 if (mmap_page == NULL && 1572 if (mmap_page == NULL &&
1573 ocfs2_size_fits_inline_data(wc->w_di_bh, end)) 1573 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1574 goto do_inline_write; 1574 goto do_inline_write;
1575 1575
1576 /* 1576 /*
1577 * The write won't fit - we have to give this inode an 1577 * The write won't fit - we have to give this inode an
1578 * inline extent list now. 1578 * inline extent list now.
1579 */ 1579 */
1580 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh); 1580 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1581 if (ret) 1581 if (ret)
1582 mlog_errno(ret); 1582 mlog_errno(ret);
1583 goto out; 1583 goto out;
1584 } 1584 }
1585 1585
1586 /* 1586 /*
1587 * Check whether the inode can accept inline data. 1587 * Check whether the inode can accept inline data.
1588 */ 1588 */
1589 if (oi->ip_clusters != 0 || i_size_read(inode) != 0) 1589 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1590 return 0; 1590 return 0;
1591 1591
1592 /* 1592 /*
1593 * Check whether the write can fit. 1593 * Check whether the write can fit.
1594 */ 1594 */
1595 if (mmap_page || end > ocfs2_max_inline_data(inode->i_sb)) 1595 if (mmap_page || end > ocfs2_max_inline_data(inode->i_sb))
1596 return 0; 1596 return 0;
1597 1597
1598 do_inline_write: 1598 do_inline_write:
1599 ret = ocfs2_write_begin_inline(mapping, inode, wc); 1599 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1600 if (ret) { 1600 if (ret) {
1601 mlog_errno(ret); 1601 mlog_errno(ret);
1602 goto out; 1602 goto out;
1603 } 1603 }
1604 1604
1605 /* 1605 /*
1606 * This signals to the caller that the data can be written 1606 * This signals to the caller that the data can be written
1607 * inline. 1607 * inline.
1608 */ 1608 */
1609 written = 1; 1609 written = 1;
1610 out: 1610 out:
1611 return written ? written : ret; 1611 return written ? written : ret;
1612 } 1612 }
1613 1613
1614 /* 1614 /*
1615 * This function only does anything for file systems which can't 1615 * This function only does anything for file systems which can't
1616 * handle sparse files. 1616 * handle sparse files.
1617 * 1617 *
1618 * What we want to do here is fill in any hole between the current end 1618 * What we want to do here is fill in any hole between the current end
1619 * of allocation and the end of our write. That way the rest of the 1619 * of allocation and the end of our write. That way the rest of the
1620 * write path can treat it as an non-allocating write, which has no 1620 * write path can treat it as an non-allocating write, which has no
1621 * special case code for sparse/nonsparse files. 1621 * special case code for sparse/nonsparse files.
1622 */ 1622 */
1623 static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos, 1623 static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos,
1624 unsigned len, 1624 unsigned len,
1625 struct ocfs2_write_ctxt *wc) 1625 struct ocfs2_write_ctxt *wc)
1626 { 1626 {
1627 int ret; 1627 int ret;
1628 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1628 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1629 loff_t newsize = pos + len; 1629 loff_t newsize = pos + len;
1630 1630
1631 if (ocfs2_sparse_alloc(osb)) 1631 if (ocfs2_sparse_alloc(osb))
1632 return 0; 1632 return 0;
1633 1633
1634 if (newsize <= i_size_read(inode)) 1634 if (newsize <= i_size_read(inode))
1635 return 0; 1635 return 0;
1636 1636
1637 ret = ocfs2_extend_no_holes(inode, newsize, newsize - len); 1637 ret = ocfs2_extend_no_holes(inode, newsize, newsize - len);
1638 if (ret) 1638 if (ret)
1639 mlog_errno(ret); 1639 mlog_errno(ret);
1640 1640
1641 return ret; 1641 return ret;
1642 } 1642 }
1643 1643
1644 int ocfs2_write_begin_nolock(struct address_space *mapping, 1644 int ocfs2_write_begin_nolock(struct address_space *mapping,
1645 loff_t pos, unsigned len, unsigned flags, 1645 loff_t pos, unsigned len, unsigned flags,
1646 struct page **pagep, void **fsdata, 1646 struct page **pagep, void **fsdata,
1647 struct buffer_head *di_bh, struct page *mmap_page) 1647 struct buffer_head *di_bh, struct page *mmap_page)
1648 { 1648 {
1649 int ret, credits = OCFS2_INODE_UPDATE_CREDITS; 1649 int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
1650 unsigned int clusters_to_alloc, extents_to_split; 1650 unsigned int clusters_to_alloc, extents_to_split;
1651 struct ocfs2_write_ctxt *wc; 1651 struct ocfs2_write_ctxt *wc;
1652 struct inode *inode = mapping->host; 1652 struct inode *inode = mapping->host;
1653 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1653 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1654 struct ocfs2_dinode *di; 1654 struct ocfs2_dinode *di;
1655 struct ocfs2_alloc_context *data_ac = NULL; 1655 struct ocfs2_alloc_context *data_ac = NULL;
1656 struct ocfs2_alloc_context *meta_ac = NULL; 1656 struct ocfs2_alloc_context *meta_ac = NULL;
1657 handle_t *handle; 1657 handle_t *handle;
1658 1658
1659 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh); 1659 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1660 if (ret) { 1660 if (ret) {
1661 mlog_errno(ret); 1661 mlog_errno(ret);
1662 return ret; 1662 return ret;
1663 } 1663 }
1664 1664
1665 if (ocfs2_supports_inline_data(osb)) { 1665 if (ocfs2_supports_inline_data(osb)) {
1666 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len, 1666 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1667 mmap_page, wc); 1667 mmap_page, wc);
1668 if (ret == 1) { 1668 if (ret == 1) {
1669 ret = 0; 1669 ret = 0;
1670 goto success; 1670 goto success;
1671 } 1671 }
1672 if (ret < 0) { 1672 if (ret < 0) {
1673 mlog_errno(ret); 1673 mlog_errno(ret);
1674 goto out; 1674 goto out;
1675 } 1675 }
1676 } 1676 }
1677 1677
1678 ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc); 1678 ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc);
1679 if (ret) { 1679 if (ret) {
1680 mlog_errno(ret); 1680 mlog_errno(ret);
1681 goto out; 1681 goto out;
1682 } 1682 }
1683 1683
1684 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc, 1684 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1685 &extents_to_split); 1685 &extents_to_split);
1686 if (ret) { 1686 if (ret) {
1687 mlog_errno(ret); 1687 mlog_errno(ret);
1688 goto out; 1688 goto out;
1689 } 1689 }
1690 1690
1691 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1691 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1692 1692
1693 /* 1693 /*
1694 * We set w_target_from, w_target_to here so that 1694 * We set w_target_from, w_target_to here so that
1695 * ocfs2_write_end() knows which range in the target page to 1695 * ocfs2_write_end() knows which range in the target page to
1696 * write out. An allocation requires that we write the entire 1696 * write out. An allocation requires that we write the entire
1697 * cluster range. 1697 * cluster range.
1698 */ 1698 */
1699 if (clusters_to_alloc || extents_to_split) { 1699 if (clusters_to_alloc || extents_to_split) {
1700 /* 1700 /*
1701 * XXX: We are stretching the limits of 1701 * XXX: We are stretching the limits of
1702 * ocfs2_lock_allocators(). It greatly over-estimates 1702 * ocfs2_lock_allocators(). It greatly over-estimates
1703 * the work to be done. 1703 * the work to be done.
1704 */ 1704 */
1705 ret = ocfs2_lock_allocators(inode, di, clusters_to_alloc, 1705 ret = ocfs2_lock_allocators(inode, di, clusters_to_alloc,
1706 extents_to_split, &data_ac, &meta_ac); 1706 extents_to_split, &data_ac, &meta_ac);
1707 if (ret) { 1707 if (ret) {
1708 mlog_errno(ret); 1708 mlog_errno(ret);
1709 goto out; 1709 goto out;
1710 } 1710 }
1711 1711
1712 credits = ocfs2_calc_extend_credits(inode->i_sb, di, 1712 credits = ocfs2_calc_extend_credits(inode->i_sb, di,
1713 clusters_to_alloc); 1713 clusters_to_alloc);
1714 1714
1715 } 1715 }
1716 1716
1717 ocfs2_set_target_boundaries(osb, wc, pos, len, 1717 ocfs2_set_target_boundaries(osb, wc, pos, len,
1718 clusters_to_alloc + extents_to_split); 1718 clusters_to_alloc + extents_to_split);
1719 1719
1720 handle = ocfs2_start_trans(osb, credits); 1720 handle = ocfs2_start_trans(osb, credits);
1721 if (IS_ERR(handle)) { 1721 if (IS_ERR(handle)) {
1722 ret = PTR_ERR(handle); 1722 ret = PTR_ERR(handle);
1723 mlog_errno(ret); 1723 mlog_errno(ret);
1724 goto out; 1724 goto out;
1725 } 1725 }
1726 1726
1727 wc->w_handle = handle; 1727 wc->w_handle = handle;
1728 1728
1729 /* 1729 /*
1730 * We don't want this to fail in ocfs2_write_end(), so do it 1730 * We don't want this to fail in ocfs2_write_end(), so do it
1731 * here. 1731 * here.
1732 */ 1732 */
1733 ret = ocfs2_journal_access(handle, inode, wc->w_di_bh, 1733 ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1734 OCFS2_JOURNAL_ACCESS_WRITE); 1734 OCFS2_JOURNAL_ACCESS_WRITE);
1735 if (ret) { 1735 if (ret) {
1736 mlog_errno(ret); 1736 mlog_errno(ret);
1737 goto out_commit; 1737 goto out_commit;
1738 } 1738 }
1739 1739
1740 /* 1740 /*
1741 * Fill our page array first. That way we've grabbed enough so 1741 * Fill our page array first. That way we've grabbed enough so
1742 * that we can zero and flush if we error after adding the 1742 * that we can zero and flush if we error after adding the
1743 * extent. 1743 * extent.
1744 */ 1744 */
1745 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, 1745 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
1746 clusters_to_alloc + extents_to_split, 1746 clusters_to_alloc + extents_to_split,
1747 mmap_page); 1747 mmap_page);
1748 if (ret) { 1748 if (ret) {
1749 mlog_errno(ret); 1749 mlog_errno(ret);
1750 goto out_commit; 1750 goto out_commit;
1751 } 1751 }
1752 1752
1753 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos, 1753 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1754 len); 1754 len);
1755 if (ret) { 1755 if (ret) {
1756 mlog_errno(ret); 1756 mlog_errno(ret);
1757 goto out_commit; 1757 goto out_commit;
1758 } 1758 }
1759 1759
1760 if (data_ac) 1760 if (data_ac)
1761 ocfs2_free_alloc_context(data_ac); 1761 ocfs2_free_alloc_context(data_ac);
1762 if (meta_ac) 1762 if (meta_ac)
1763 ocfs2_free_alloc_context(meta_ac); 1763 ocfs2_free_alloc_context(meta_ac);
1764 1764
1765 success: 1765 success:
1766 *pagep = wc->w_target_page; 1766 *pagep = wc->w_target_page;
1767 *fsdata = wc; 1767 *fsdata = wc;
1768 return 0; 1768 return 0;
1769 out_commit: 1769 out_commit:
1770 ocfs2_commit_trans(osb, handle); 1770 ocfs2_commit_trans(osb, handle);
1771 1771
1772 out: 1772 out:
1773 ocfs2_free_write_ctxt(wc); 1773 ocfs2_free_write_ctxt(wc);
1774 1774
1775 if (data_ac) 1775 if (data_ac)
1776 ocfs2_free_alloc_context(data_ac); 1776 ocfs2_free_alloc_context(data_ac);
1777 if (meta_ac) 1777 if (meta_ac)
1778 ocfs2_free_alloc_context(meta_ac); 1778 ocfs2_free_alloc_context(meta_ac);
1779 return ret; 1779 return ret;
1780 } 1780 }
1781 1781
1782 static int ocfs2_write_begin(struct file *file, struct address_space *mapping, 1782 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1783 loff_t pos, unsigned len, unsigned flags, 1783 loff_t pos, unsigned len, unsigned flags,
1784 struct page **pagep, void **fsdata) 1784 struct page **pagep, void **fsdata)
1785 { 1785 {
1786 int ret; 1786 int ret;
1787 struct buffer_head *di_bh = NULL; 1787 struct buffer_head *di_bh = NULL;
1788 struct inode *inode = mapping->host; 1788 struct inode *inode = mapping->host;
1789 1789
1790 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1790 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1791 if (ret) { 1791 if (ret) {
1792 mlog_errno(ret); 1792 mlog_errno(ret);
1793 return ret; 1793 return ret;
1794 } 1794 }
1795 1795
1796 /* 1796 /*
1797 * Take alloc sem here to prevent concurrent lookups. That way 1797 * Take alloc sem here to prevent concurrent lookups. That way
1798 * the mapping, zeroing and tree manipulation within 1798 * the mapping, zeroing and tree manipulation within
1799 * ocfs2_write() will be safe against ->readpage(). This 1799 * ocfs2_write() will be safe against ->readpage(). This
1800 * should also serve to lock out allocation from a shared 1800 * should also serve to lock out allocation from a shared
1801 * writeable region. 1801 * writeable region.
1802 */ 1802 */
1803 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1803 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1804 1804
1805 ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep, 1805 ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
1806 fsdata, di_bh, NULL); 1806 fsdata, di_bh, NULL);
1807 if (ret) { 1807 if (ret) {
1808 mlog_errno(ret); 1808 mlog_errno(ret);
1809 goto out_fail; 1809 goto out_fail;
1810 } 1810 }
1811 1811
1812 brelse(di_bh); 1812 brelse(di_bh);
1813 1813
1814 return 0; 1814 return 0;
1815 1815
1816 out_fail: 1816 out_fail:
1817 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1817 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1818 1818
1819 brelse(di_bh); 1819 brelse(di_bh);
1820 ocfs2_inode_unlock(inode, 1); 1820 ocfs2_inode_unlock(inode, 1);
1821 1821
1822 return ret; 1822 return ret;
1823 } 1823 }
1824 1824
1825 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos, 1825 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1826 unsigned len, unsigned *copied, 1826 unsigned len, unsigned *copied,
1827 struct ocfs2_dinode *di, 1827 struct ocfs2_dinode *di,
1828 struct ocfs2_write_ctxt *wc) 1828 struct ocfs2_write_ctxt *wc)
1829 { 1829 {
1830 void *kaddr; 1830 void *kaddr;
1831 1831
1832 if (unlikely(*copied < len)) { 1832 if (unlikely(*copied < len)) {
1833 if (!PageUptodate(wc->w_target_page)) { 1833 if (!PageUptodate(wc->w_target_page)) {
1834 *copied = 0; 1834 *copied = 0;
1835 return; 1835 return;
1836 } 1836 }
1837 } 1837 }
1838 1838
1839 kaddr = kmap_atomic(wc->w_target_page, KM_USER0); 1839 kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1840 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied); 1840 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1841 kunmap_atomic(kaddr, KM_USER0); 1841 kunmap_atomic(kaddr, KM_USER0);
1842 1842
1843 mlog(0, "Data written to inode at offset %llu. " 1843 mlog(0, "Data written to inode at offset %llu. "
1844 "id_count = %u, copied = %u, i_dyn_features = 0x%x\n", 1844 "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1845 (unsigned long long)pos, *copied, 1845 (unsigned long long)pos, *copied,
1846 le16_to_cpu(di->id2.i_data.id_count), 1846 le16_to_cpu(di->id2.i_data.id_count),
1847 le16_to_cpu(di->i_dyn_features)); 1847 le16_to_cpu(di->i_dyn_features));
1848 } 1848 }
1849 1849
1850 int ocfs2_write_end_nolock(struct address_space *mapping, 1850 int ocfs2_write_end_nolock(struct address_space *mapping,
1851 loff_t pos, unsigned len, unsigned copied, 1851 loff_t pos, unsigned len, unsigned copied,
1852 struct page *page, void *fsdata) 1852 struct page *page, void *fsdata)
1853 { 1853 {
1854 int i; 1854 int i;
1855 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1); 1855 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1856 struct inode *inode = mapping->host; 1856 struct inode *inode = mapping->host;
1857 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1857 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1858 struct ocfs2_write_ctxt *wc = fsdata; 1858 struct ocfs2_write_ctxt *wc = fsdata;
1859 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1859 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1860 handle_t *handle = wc->w_handle; 1860 handle_t *handle = wc->w_handle;
1861 struct page *tmppage; 1861 struct page *tmppage;
1862 1862
1863 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1863 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1864 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc); 1864 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1865 goto out_write_size; 1865 goto out_write_size;
1866 } 1866 }
1867 1867
1868 if (unlikely(copied < len)) { 1868 if (unlikely(copied < len)) {
1869 if (!PageUptodate(wc->w_target_page)) 1869 if (!PageUptodate(wc->w_target_page))
1870 copied = 0; 1870 copied = 0;
1871 1871
1872 ocfs2_zero_new_buffers(wc->w_target_page, start+copied, 1872 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1873 start+len); 1873 start+len);
1874 } 1874 }
1875 flush_dcache_page(wc->w_target_page); 1875 flush_dcache_page(wc->w_target_page);
1876 1876
1877 for(i = 0; i < wc->w_num_pages; i++) { 1877 for(i = 0; i < wc->w_num_pages; i++) {
1878 tmppage = wc->w_pages[i]; 1878 tmppage = wc->w_pages[i];
1879 1879
1880 if (tmppage == wc->w_target_page) { 1880 if (tmppage == wc->w_target_page) {
1881 from = wc->w_target_from; 1881 from = wc->w_target_from;
1882 to = wc->w_target_to; 1882 to = wc->w_target_to;
1883 1883
1884 BUG_ON(from > PAGE_CACHE_SIZE || 1884 BUG_ON(from > PAGE_CACHE_SIZE ||
1885 to > PAGE_CACHE_SIZE || 1885 to > PAGE_CACHE_SIZE ||
1886 to < from); 1886 to < from);
1887 } else { 1887 } else {
1888 /* 1888 /*
1889 * Pages adjacent to the target (if any) imply 1889 * Pages adjacent to the target (if any) imply
1890 * a hole-filling write in which case we want 1890 * a hole-filling write in which case we want
1891 * to flush their entire range. 1891 * to flush their entire range.
1892 */ 1892 */
1893 from = 0; 1893 from = 0;
1894 to = PAGE_CACHE_SIZE; 1894 to = PAGE_CACHE_SIZE;
1895 } 1895 }
1896 1896
1897 if (ocfs2_should_order_data(inode)) 1897 if (ocfs2_should_order_data(inode))
1898 walk_page_buffers(wc->w_handle, page_buffers(tmppage), 1898 walk_page_buffers(wc->w_handle, page_buffers(tmppage),
1899 from, to, NULL, 1899 from, to, NULL,
1900 ocfs2_journal_dirty_data); 1900 ocfs2_journal_dirty_data);
1901 1901
1902 block_commit_write(tmppage, from, to); 1902 block_commit_write(tmppage, from, to);
1903 } 1903 }
1904 1904
1905 out_write_size: 1905 out_write_size:
1906 pos += copied; 1906 pos += copied;
1907 if (pos > inode->i_size) { 1907 if (pos > inode->i_size) {
1908 i_size_write(inode, pos); 1908 i_size_write(inode, pos);
1909 mark_inode_dirty(inode); 1909 mark_inode_dirty(inode);
1910 } 1910 }
1911 inode->i_blocks = ocfs2_inode_sector_count(inode); 1911 inode->i_blocks = ocfs2_inode_sector_count(inode);
1912 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 1912 di->i_size = cpu_to_le64((u64)i_size_read(inode));
1913 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 1913 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1914 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 1914 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1915 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 1915 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1916 ocfs2_journal_dirty(handle, wc->w_di_bh); 1916 ocfs2_journal_dirty(handle, wc->w_di_bh);
1917 1917
1918 ocfs2_commit_trans(osb, handle); 1918 ocfs2_commit_trans(osb, handle);
1919 1919
1920 ocfs2_run_deallocs(osb, &wc->w_dealloc); 1920 ocfs2_run_deallocs(osb, &wc->w_dealloc);
1921 1921
1922 ocfs2_free_write_ctxt(wc); 1922 ocfs2_free_write_ctxt(wc);
1923 1923
1924 return copied; 1924 return copied;
1925 } 1925 }
1926 1926
1927 static int ocfs2_write_end(struct file *file, struct address_space *mapping, 1927 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1928 loff_t pos, unsigned len, unsigned copied, 1928 loff_t pos, unsigned len, unsigned copied,
1929 struct page *page, void *fsdata) 1929 struct page *page, void *fsdata)
1930 { 1930 {
1931 int ret; 1931 int ret;
1932 struct inode *inode = mapping->host; 1932 struct inode *inode = mapping->host;
1933 1933
1934 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata); 1934 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1935 1935
1936 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1936 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1937 ocfs2_inode_unlock(inode, 1); 1937 ocfs2_inode_unlock(inode, 1);
1938 1938
1939 return ret; 1939 return ret;
1940 } 1940 }
1941 1941
1942 const struct address_space_operations ocfs2_aops = { 1942 const struct address_space_operations ocfs2_aops = {
1943 .readpage = ocfs2_readpage, 1943 .readpage = ocfs2_readpage,
1944 .readpages = ocfs2_readpages, 1944 .readpages = ocfs2_readpages,
1945 .writepage = ocfs2_writepage, 1945 .writepage = ocfs2_writepage,
1946 .write_begin = ocfs2_write_begin, 1946 .write_begin = ocfs2_write_begin,
1947 .write_end = ocfs2_write_end, 1947 .write_end = ocfs2_write_end,
1948 .bmap = ocfs2_bmap, 1948 .bmap = ocfs2_bmap,
1949 .sync_page = block_sync_page, 1949 .sync_page = block_sync_page,
1950 .direct_IO = ocfs2_direct_IO, 1950 .direct_IO = ocfs2_direct_IO,
1951 .invalidatepage = ocfs2_invalidatepage, 1951 .invalidatepage = ocfs2_invalidatepage,
1952 .releasepage = ocfs2_releasepage, 1952 .releasepage = ocfs2_releasepage,
1953 .migratepage = buffer_migrate_page, 1953 .migratepage = buffer_migrate_page,
1954 }; 1954 };
1955 1955