Commit 5903417cd66d87a126f5cf27a846fc0985093f06

Authored by Jiri Kosina
1 parent e08dc1325f

sungem: fix compile failure caused by trivial #include consolidation

Only Sparc and PPC actually have the asm/prom.h include and as such they
can't be moved outside of the ifdefs.

Reported-by: James Bottomley <James.Bottomley@HansenPartnership.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>

Showing 1 changed file with 2 additions and 1 deletions Inline Diff

drivers/net/sungem.c
1 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $ 1 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
2 * sungem.c: Sun GEM ethernet driver. 2 * sungem.c: Sun GEM ethernet driver.
3 * 3 *
4 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com) 4 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
5 * 5 *
6 * Support for Apple GMAC and assorted PHYs, WOL, Power Management 6 * Support for Apple GMAC and assorted PHYs, WOL, Power Management
7 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org) 7 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
8 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp. 8 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
9 * 9 *
10 * NAPI and NETPOLL support 10 * NAPI and NETPOLL support
11 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com) 11 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
12 * 12 *
13 */ 13 */
14 14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 16
17 #include <linux/module.h> 17 #include <linux/module.h>
18 #include <linux/kernel.h> 18 #include <linux/kernel.h>
19 #include <linux/types.h> 19 #include <linux/types.h>
20 #include <linux/fcntl.h> 20 #include <linux/fcntl.h>
21 #include <linux/interrupt.h> 21 #include <linux/interrupt.h>
22 #include <linux/ioport.h> 22 #include <linux/ioport.h>
23 #include <linux/in.h> 23 #include <linux/in.h>
24 #include <linux/sched.h> 24 #include <linux/sched.h>
25 #include <linux/string.h> 25 #include <linux/string.h>
26 #include <linux/delay.h> 26 #include <linux/delay.h>
27 #include <linux/init.h> 27 #include <linux/init.h>
28 #include <linux/errno.h> 28 #include <linux/errno.h>
29 #include <linux/pci.h> 29 #include <linux/pci.h>
30 #include <linux/dma-mapping.h> 30 #include <linux/dma-mapping.h>
31 #include <linux/netdevice.h> 31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h> 32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h> 33 #include <linux/skbuff.h>
34 #include <linux/mii.h> 34 #include <linux/mii.h>
35 #include <linux/ethtool.h> 35 #include <linux/ethtool.h>
36 #include <linux/crc32.h> 36 #include <linux/crc32.h>
37 #include <linux/random.h> 37 #include <linux/random.h>
38 #include <linux/workqueue.h> 38 #include <linux/workqueue.h>
39 #include <linux/if_vlan.h> 39 #include <linux/if_vlan.h>
40 #include <linux/bitops.h> 40 #include <linux/bitops.h>
41 #include <linux/mm.h> 41 #include <linux/mm.h>
42 #include <linux/gfp.h> 42 #include <linux/gfp.h>
43 43
44 #include <asm/system.h> 44 #include <asm/system.h>
45 #include <asm/io.h> 45 #include <asm/io.h>
46 #include <asm/byteorder.h> 46 #include <asm/byteorder.h>
47 #include <asm/uaccess.h> 47 #include <asm/uaccess.h>
48 #include <asm/irq.h> 48 #include <asm/irq.h>
49 #include <asm/prom.h>
50 49
51 #ifdef CONFIG_SPARC 50 #ifdef CONFIG_SPARC
52 #include <asm/idprom.h> 51 #include <asm/idprom.h>
52 #include <asm/prom.h>
53 #endif 53 #endif
54 54
55 #ifdef CONFIG_PPC_PMAC 55 #ifdef CONFIG_PPC_PMAC
56 #include <asm/pci-bridge.h> 56 #include <asm/pci-bridge.h>
57 #include <asm/prom.h>
57 #include <asm/machdep.h> 58 #include <asm/machdep.h>
58 #include <asm/pmac_feature.h> 59 #include <asm/pmac_feature.h>
59 #endif 60 #endif
60 61
61 #include "sungem_phy.h" 62 #include "sungem_phy.h"
62 #include "sungem.h" 63 #include "sungem.h"
63 64
64 /* Stripping FCS is causing problems, disabled for now */ 65 /* Stripping FCS is causing problems, disabled for now */
65 #undef STRIP_FCS 66 #undef STRIP_FCS
66 67
67 #define DEFAULT_MSG (NETIF_MSG_DRV | \ 68 #define DEFAULT_MSG (NETIF_MSG_DRV | \
68 NETIF_MSG_PROBE | \ 69 NETIF_MSG_PROBE | \
69 NETIF_MSG_LINK) 70 NETIF_MSG_LINK)
70 71
71 #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \ 72 #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
72 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \ 73 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
73 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \ 74 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
74 SUPPORTED_Pause | SUPPORTED_Autoneg) 75 SUPPORTED_Pause | SUPPORTED_Autoneg)
75 76
76 #define DRV_NAME "sungem" 77 #define DRV_NAME "sungem"
77 #define DRV_VERSION "1.0" 78 #define DRV_VERSION "1.0"
78 #define DRV_AUTHOR "David S. Miller <davem@redhat.com>" 79 #define DRV_AUTHOR "David S. Miller <davem@redhat.com>"
79 80
80 static char version[] __devinitdata = 81 static char version[] __devinitdata =
81 DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n"; 82 DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n";
82 83
83 MODULE_AUTHOR(DRV_AUTHOR); 84 MODULE_AUTHOR(DRV_AUTHOR);
84 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver"); 85 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
85 MODULE_LICENSE("GPL"); 86 MODULE_LICENSE("GPL");
86 87
87 #define GEM_MODULE_NAME "gem" 88 #define GEM_MODULE_NAME "gem"
88 89
89 static DEFINE_PCI_DEVICE_TABLE(gem_pci_tbl) = { 90 static DEFINE_PCI_DEVICE_TABLE(gem_pci_tbl) = {
90 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM, 91 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
91 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 92 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
92 93
93 /* These models only differ from the original GEM in 94 /* These models only differ from the original GEM in
94 * that their tx/rx fifos are of a different size and 95 * that their tx/rx fifos are of a different size and
95 * they only support 10/100 speeds. -DaveM 96 * they only support 10/100 speeds. -DaveM
96 * 97 *
97 * Apple's GMAC does support gigabit on machines with 98 * Apple's GMAC does support gigabit on machines with
98 * the BCM54xx PHYs. -BenH 99 * the BCM54xx PHYs. -BenH
99 */ 100 */
100 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM, 101 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
101 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 102 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
102 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC, 103 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
103 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 104 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
104 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP, 105 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
105 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 106 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
106 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2, 107 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
107 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 108 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
108 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC, 109 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
109 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 110 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
110 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM, 111 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
111 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 112 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
112 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC, 113 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
113 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 114 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
114 {0, } 115 {0, }
115 }; 116 };
116 117
117 MODULE_DEVICE_TABLE(pci, gem_pci_tbl); 118 MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
118 119
119 static u16 __phy_read(struct gem *gp, int phy_addr, int reg) 120 static u16 __phy_read(struct gem *gp, int phy_addr, int reg)
120 { 121 {
121 u32 cmd; 122 u32 cmd;
122 int limit = 10000; 123 int limit = 10000;
123 124
124 cmd = (1 << 30); 125 cmd = (1 << 30);
125 cmd |= (2 << 28); 126 cmd |= (2 << 28);
126 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD; 127 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
127 cmd |= (reg << 18) & MIF_FRAME_REGAD; 128 cmd |= (reg << 18) & MIF_FRAME_REGAD;
128 cmd |= (MIF_FRAME_TAMSB); 129 cmd |= (MIF_FRAME_TAMSB);
129 writel(cmd, gp->regs + MIF_FRAME); 130 writel(cmd, gp->regs + MIF_FRAME);
130 131
131 while (--limit) { 132 while (--limit) {
132 cmd = readl(gp->regs + MIF_FRAME); 133 cmd = readl(gp->regs + MIF_FRAME);
133 if (cmd & MIF_FRAME_TALSB) 134 if (cmd & MIF_FRAME_TALSB)
134 break; 135 break;
135 136
136 udelay(10); 137 udelay(10);
137 } 138 }
138 139
139 if (!limit) 140 if (!limit)
140 cmd = 0xffff; 141 cmd = 0xffff;
141 142
142 return cmd & MIF_FRAME_DATA; 143 return cmd & MIF_FRAME_DATA;
143 } 144 }
144 145
145 static inline int _phy_read(struct net_device *dev, int mii_id, int reg) 146 static inline int _phy_read(struct net_device *dev, int mii_id, int reg)
146 { 147 {
147 struct gem *gp = netdev_priv(dev); 148 struct gem *gp = netdev_priv(dev);
148 return __phy_read(gp, mii_id, reg); 149 return __phy_read(gp, mii_id, reg);
149 } 150 }
150 151
151 static inline u16 phy_read(struct gem *gp, int reg) 152 static inline u16 phy_read(struct gem *gp, int reg)
152 { 153 {
153 return __phy_read(gp, gp->mii_phy_addr, reg); 154 return __phy_read(gp, gp->mii_phy_addr, reg);
154 } 155 }
155 156
156 static void __phy_write(struct gem *gp, int phy_addr, int reg, u16 val) 157 static void __phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
157 { 158 {
158 u32 cmd; 159 u32 cmd;
159 int limit = 10000; 160 int limit = 10000;
160 161
161 cmd = (1 << 30); 162 cmd = (1 << 30);
162 cmd |= (1 << 28); 163 cmd |= (1 << 28);
163 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD; 164 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
164 cmd |= (reg << 18) & MIF_FRAME_REGAD; 165 cmd |= (reg << 18) & MIF_FRAME_REGAD;
165 cmd |= (MIF_FRAME_TAMSB); 166 cmd |= (MIF_FRAME_TAMSB);
166 cmd |= (val & MIF_FRAME_DATA); 167 cmd |= (val & MIF_FRAME_DATA);
167 writel(cmd, gp->regs + MIF_FRAME); 168 writel(cmd, gp->regs + MIF_FRAME);
168 169
169 while (limit--) { 170 while (limit--) {
170 cmd = readl(gp->regs + MIF_FRAME); 171 cmd = readl(gp->regs + MIF_FRAME);
171 if (cmd & MIF_FRAME_TALSB) 172 if (cmd & MIF_FRAME_TALSB)
172 break; 173 break;
173 174
174 udelay(10); 175 udelay(10);
175 } 176 }
176 } 177 }
177 178
178 static inline void _phy_write(struct net_device *dev, int mii_id, int reg, int val) 179 static inline void _phy_write(struct net_device *dev, int mii_id, int reg, int val)
179 { 180 {
180 struct gem *gp = netdev_priv(dev); 181 struct gem *gp = netdev_priv(dev);
181 __phy_write(gp, mii_id, reg, val & 0xffff); 182 __phy_write(gp, mii_id, reg, val & 0xffff);
182 } 183 }
183 184
184 static inline void phy_write(struct gem *gp, int reg, u16 val) 185 static inline void phy_write(struct gem *gp, int reg, u16 val)
185 { 186 {
186 __phy_write(gp, gp->mii_phy_addr, reg, val); 187 __phy_write(gp, gp->mii_phy_addr, reg, val);
187 } 188 }
188 189
189 static inline void gem_enable_ints(struct gem *gp) 190 static inline void gem_enable_ints(struct gem *gp)
190 { 191 {
191 /* Enable all interrupts but TXDONE */ 192 /* Enable all interrupts but TXDONE */
192 writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK); 193 writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
193 } 194 }
194 195
195 static inline void gem_disable_ints(struct gem *gp) 196 static inline void gem_disable_ints(struct gem *gp)
196 { 197 {
197 /* Disable all interrupts, including TXDONE */ 198 /* Disable all interrupts, including TXDONE */
198 writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK); 199 writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
199 (void)readl(gp->regs + GREG_IMASK); /* write posting */ 200 (void)readl(gp->regs + GREG_IMASK); /* write posting */
200 } 201 }
201 202
202 static void gem_get_cell(struct gem *gp) 203 static void gem_get_cell(struct gem *gp)
203 { 204 {
204 BUG_ON(gp->cell_enabled < 0); 205 BUG_ON(gp->cell_enabled < 0);
205 gp->cell_enabled++; 206 gp->cell_enabled++;
206 #ifdef CONFIG_PPC_PMAC 207 #ifdef CONFIG_PPC_PMAC
207 if (gp->cell_enabled == 1) { 208 if (gp->cell_enabled == 1) {
208 mb(); 209 mb();
209 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1); 210 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
210 udelay(10); 211 udelay(10);
211 } 212 }
212 #endif /* CONFIG_PPC_PMAC */ 213 #endif /* CONFIG_PPC_PMAC */
213 } 214 }
214 215
215 /* Turn off the chip's clock */ 216 /* Turn off the chip's clock */
216 static void gem_put_cell(struct gem *gp) 217 static void gem_put_cell(struct gem *gp)
217 { 218 {
218 BUG_ON(gp->cell_enabled <= 0); 219 BUG_ON(gp->cell_enabled <= 0);
219 gp->cell_enabled--; 220 gp->cell_enabled--;
220 #ifdef CONFIG_PPC_PMAC 221 #ifdef CONFIG_PPC_PMAC
221 if (gp->cell_enabled == 0) { 222 if (gp->cell_enabled == 0) {
222 mb(); 223 mb();
223 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0); 224 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
224 udelay(10); 225 udelay(10);
225 } 226 }
226 #endif /* CONFIG_PPC_PMAC */ 227 #endif /* CONFIG_PPC_PMAC */
227 } 228 }
228 229
229 static inline void gem_netif_stop(struct gem *gp) 230 static inline void gem_netif_stop(struct gem *gp)
230 { 231 {
231 gp->dev->trans_start = jiffies; /* prevent tx timeout */ 232 gp->dev->trans_start = jiffies; /* prevent tx timeout */
232 napi_disable(&gp->napi); 233 napi_disable(&gp->napi);
233 netif_tx_disable(gp->dev); 234 netif_tx_disable(gp->dev);
234 } 235 }
235 236
236 static inline void gem_netif_start(struct gem *gp) 237 static inline void gem_netif_start(struct gem *gp)
237 { 238 {
238 /* NOTE: unconditional netif_wake_queue is only 239 /* NOTE: unconditional netif_wake_queue is only
239 * appropriate so long as all callers are assured to 240 * appropriate so long as all callers are assured to
240 * have free tx slots. 241 * have free tx slots.
241 */ 242 */
242 netif_wake_queue(gp->dev); 243 netif_wake_queue(gp->dev);
243 napi_enable(&gp->napi); 244 napi_enable(&gp->napi);
244 } 245 }
245 246
246 static void gem_schedule_reset(struct gem *gp) 247 static void gem_schedule_reset(struct gem *gp)
247 { 248 {
248 gp->reset_task_pending = 1; 249 gp->reset_task_pending = 1;
249 schedule_work(&gp->reset_task); 250 schedule_work(&gp->reset_task);
250 } 251 }
251 252
252 static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits) 253 static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
253 { 254 {
254 if (netif_msg_intr(gp)) 255 if (netif_msg_intr(gp))
255 printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name); 256 printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
256 } 257 }
257 258
258 static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 259 static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
259 { 260 {
260 u32 pcs_istat = readl(gp->regs + PCS_ISTAT); 261 u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
261 u32 pcs_miistat; 262 u32 pcs_miistat;
262 263
263 if (netif_msg_intr(gp)) 264 if (netif_msg_intr(gp))
264 printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n", 265 printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
265 gp->dev->name, pcs_istat); 266 gp->dev->name, pcs_istat);
266 267
267 if (!(pcs_istat & PCS_ISTAT_LSC)) { 268 if (!(pcs_istat & PCS_ISTAT_LSC)) {
268 netdev_err(dev, "PCS irq but no link status change???\n"); 269 netdev_err(dev, "PCS irq but no link status change???\n");
269 return 0; 270 return 0;
270 } 271 }
271 272
272 /* The link status bit latches on zero, so you must 273 /* The link status bit latches on zero, so you must
273 * read it twice in such a case to see a transition 274 * read it twice in such a case to see a transition
274 * to the link being up. 275 * to the link being up.
275 */ 276 */
276 pcs_miistat = readl(gp->regs + PCS_MIISTAT); 277 pcs_miistat = readl(gp->regs + PCS_MIISTAT);
277 if (!(pcs_miistat & PCS_MIISTAT_LS)) 278 if (!(pcs_miistat & PCS_MIISTAT_LS))
278 pcs_miistat |= 279 pcs_miistat |=
279 (readl(gp->regs + PCS_MIISTAT) & 280 (readl(gp->regs + PCS_MIISTAT) &
280 PCS_MIISTAT_LS); 281 PCS_MIISTAT_LS);
281 282
282 if (pcs_miistat & PCS_MIISTAT_ANC) { 283 if (pcs_miistat & PCS_MIISTAT_ANC) {
283 /* The remote-fault indication is only valid 284 /* The remote-fault indication is only valid
284 * when autoneg has completed. 285 * when autoneg has completed.
285 */ 286 */
286 if (pcs_miistat & PCS_MIISTAT_RF) 287 if (pcs_miistat & PCS_MIISTAT_RF)
287 netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n"); 288 netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n");
288 else 289 else
289 netdev_info(dev, "PCS AutoNEG complete\n"); 290 netdev_info(dev, "PCS AutoNEG complete\n");
290 } 291 }
291 292
292 if (pcs_miistat & PCS_MIISTAT_LS) { 293 if (pcs_miistat & PCS_MIISTAT_LS) {
293 netdev_info(dev, "PCS link is now up\n"); 294 netdev_info(dev, "PCS link is now up\n");
294 netif_carrier_on(gp->dev); 295 netif_carrier_on(gp->dev);
295 } else { 296 } else {
296 netdev_info(dev, "PCS link is now down\n"); 297 netdev_info(dev, "PCS link is now down\n");
297 netif_carrier_off(gp->dev); 298 netif_carrier_off(gp->dev);
298 /* If this happens and the link timer is not running, 299 /* If this happens and the link timer is not running,
299 * reset so we re-negotiate. 300 * reset so we re-negotiate.
300 */ 301 */
301 if (!timer_pending(&gp->link_timer)) 302 if (!timer_pending(&gp->link_timer))
302 return 1; 303 return 1;
303 } 304 }
304 305
305 return 0; 306 return 0;
306 } 307 }
307 308
308 static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 309 static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
309 { 310 {
310 u32 txmac_stat = readl(gp->regs + MAC_TXSTAT); 311 u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
311 312
312 if (netif_msg_intr(gp)) 313 if (netif_msg_intr(gp))
313 printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n", 314 printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
314 gp->dev->name, txmac_stat); 315 gp->dev->name, txmac_stat);
315 316
316 /* Defer timer expiration is quite normal, 317 /* Defer timer expiration is quite normal,
317 * don't even log the event. 318 * don't even log the event.
318 */ 319 */
319 if ((txmac_stat & MAC_TXSTAT_DTE) && 320 if ((txmac_stat & MAC_TXSTAT_DTE) &&
320 !(txmac_stat & ~MAC_TXSTAT_DTE)) 321 !(txmac_stat & ~MAC_TXSTAT_DTE))
321 return 0; 322 return 0;
322 323
323 if (txmac_stat & MAC_TXSTAT_URUN) { 324 if (txmac_stat & MAC_TXSTAT_URUN) {
324 netdev_err(dev, "TX MAC xmit underrun\n"); 325 netdev_err(dev, "TX MAC xmit underrun\n");
325 dev->stats.tx_fifo_errors++; 326 dev->stats.tx_fifo_errors++;
326 } 327 }
327 328
328 if (txmac_stat & MAC_TXSTAT_MPE) { 329 if (txmac_stat & MAC_TXSTAT_MPE) {
329 netdev_err(dev, "TX MAC max packet size error\n"); 330 netdev_err(dev, "TX MAC max packet size error\n");
330 dev->stats.tx_errors++; 331 dev->stats.tx_errors++;
331 } 332 }
332 333
333 /* The rest are all cases of one of the 16-bit TX 334 /* The rest are all cases of one of the 16-bit TX
334 * counters expiring. 335 * counters expiring.
335 */ 336 */
336 if (txmac_stat & MAC_TXSTAT_NCE) 337 if (txmac_stat & MAC_TXSTAT_NCE)
337 dev->stats.collisions += 0x10000; 338 dev->stats.collisions += 0x10000;
338 339
339 if (txmac_stat & MAC_TXSTAT_ECE) { 340 if (txmac_stat & MAC_TXSTAT_ECE) {
340 dev->stats.tx_aborted_errors += 0x10000; 341 dev->stats.tx_aborted_errors += 0x10000;
341 dev->stats.collisions += 0x10000; 342 dev->stats.collisions += 0x10000;
342 } 343 }
343 344
344 if (txmac_stat & MAC_TXSTAT_LCE) { 345 if (txmac_stat & MAC_TXSTAT_LCE) {
345 dev->stats.tx_aborted_errors += 0x10000; 346 dev->stats.tx_aborted_errors += 0x10000;
346 dev->stats.collisions += 0x10000; 347 dev->stats.collisions += 0x10000;
347 } 348 }
348 349
349 /* We do not keep track of MAC_TXSTAT_FCE and 350 /* We do not keep track of MAC_TXSTAT_FCE and
350 * MAC_TXSTAT_PCE events. 351 * MAC_TXSTAT_PCE events.
351 */ 352 */
352 return 0; 353 return 0;
353 } 354 }
354 355
355 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung 356 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
356 * so we do the following. 357 * so we do the following.
357 * 358 *
358 * If any part of the reset goes wrong, we return 1 and that causes the 359 * If any part of the reset goes wrong, we return 1 and that causes the
359 * whole chip to be reset. 360 * whole chip to be reset.
360 */ 361 */
361 static int gem_rxmac_reset(struct gem *gp) 362 static int gem_rxmac_reset(struct gem *gp)
362 { 363 {
363 struct net_device *dev = gp->dev; 364 struct net_device *dev = gp->dev;
364 int limit, i; 365 int limit, i;
365 u64 desc_dma; 366 u64 desc_dma;
366 u32 val; 367 u32 val;
367 368
368 /* First, reset & disable MAC RX. */ 369 /* First, reset & disable MAC RX. */
369 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST); 370 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
370 for (limit = 0; limit < 5000; limit++) { 371 for (limit = 0; limit < 5000; limit++) {
371 if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD)) 372 if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
372 break; 373 break;
373 udelay(10); 374 udelay(10);
374 } 375 }
375 if (limit == 5000) { 376 if (limit == 5000) {
376 netdev_err(dev, "RX MAC will not reset, resetting whole chip\n"); 377 netdev_err(dev, "RX MAC will not reset, resetting whole chip\n");
377 return 1; 378 return 1;
378 } 379 }
379 380
380 writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB, 381 writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
381 gp->regs + MAC_RXCFG); 382 gp->regs + MAC_RXCFG);
382 for (limit = 0; limit < 5000; limit++) { 383 for (limit = 0; limit < 5000; limit++) {
383 if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB)) 384 if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
384 break; 385 break;
385 udelay(10); 386 udelay(10);
386 } 387 }
387 if (limit == 5000) { 388 if (limit == 5000) {
388 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n"); 389 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
389 return 1; 390 return 1;
390 } 391 }
391 392
392 /* Second, disable RX DMA. */ 393 /* Second, disable RX DMA. */
393 writel(0, gp->regs + RXDMA_CFG); 394 writel(0, gp->regs + RXDMA_CFG);
394 for (limit = 0; limit < 5000; limit++) { 395 for (limit = 0; limit < 5000; limit++) {
395 if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE)) 396 if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
396 break; 397 break;
397 udelay(10); 398 udelay(10);
398 } 399 }
399 if (limit == 5000) { 400 if (limit == 5000) {
400 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n"); 401 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
401 return 1; 402 return 1;
402 } 403 }
403 404
404 udelay(5000); 405 udelay(5000);
405 406
406 /* Execute RX reset command. */ 407 /* Execute RX reset command. */
407 writel(gp->swrst_base | GREG_SWRST_RXRST, 408 writel(gp->swrst_base | GREG_SWRST_RXRST,
408 gp->regs + GREG_SWRST); 409 gp->regs + GREG_SWRST);
409 for (limit = 0; limit < 5000; limit++) { 410 for (limit = 0; limit < 5000; limit++) {
410 if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST)) 411 if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
411 break; 412 break;
412 udelay(10); 413 udelay(10);
413 } 414 }
414 if (limit == 5000) { 415 if (limit == 5000) {
415 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n"); 416 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
416 return 1; 417 return 1;
417 } 418 }
418 419
419 /* Refresh the RX ring. */ 420 /* Refresh the RX ring. */
420 for (i = 0; i < RX_RING_SIZE; i++) { 421 for (i = 0; i < RX_RING_SIZE; i++) {
421 struct gem_rxd *rxd = &gp->init_block->rxd[i]; 422 struct gem_rxd *rxd = &gp->init_block->rxd[i];
422 423
423 if (gp->rx_skbs[i] == NULL) { 424 if (gp->rx_skbs[i] == NULL) {
424 netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n"); 425 netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n");
425 return 1; 426 return 1;
426 } 427 }
427 428
428 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp)); 429 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
429 } 430 }
430 gp->rx_new = gp->rx_old = 0; 431 gp->rx_new = gp->rx_old = 0;
431 432
432 /* Now we must reprogram the rest of RX unit. */ 433 /* Now we must reprogram the rest of RX unit. */
433 desc_dma = (u64) gp->gblock_dvma; 434 desc_dma = (u64) gp->gblock_dvma;
434 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd)); 435 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
435 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI); 436 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
436 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW); 437 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
437 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK); 438 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
438 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) | 439 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
439 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128); 440 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
440 writel(val, gp->regs + RXDMA_CFG); 441 writel(val, gp->regs + RXDMA_CFG);
441 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN) 442 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
442 writel(((5 & RXDMA_BLANK_IPKTS) | 443 writel(((5 & RXDMA_BLANK_IPKTS) |
443 ((8 << 12) & RXDMA_BLANK_ITIME)), 444 ((8 << 12) & RXDMA_BLANK_ITIME)),
444 gp->regs + RXDMA_BLANK); 445 gp->regs + RXDMA_BLANK);
445 else 446 else
446 writel(((5 & RXDMA_BLANK_IPKTS) | 447 writel(((5 & RXDMA_BLANK_IPKTS) |
447 ((4 << 12) & RXDMA_BLANK_ITIME)), 448 ((4 << 12) & RXDMA_BLANK_ITIME)),
448 gp->regs + RXDMA_BLANK); 449 gp->regs + RXDMA_BLANK);
449 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF); 450 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
450 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON); 451 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
451 writel(val, gp->regs + RXDMA_PTHRESH); 452 writel(val, gp->regs + RXDMA_PTHRESH);
452 val = readl(gp->regs + RXDMA_CFG); 453 val = readl(gp->regs + RXDMA_CFG);
453 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG); 454 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
454 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK); 455 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
455 val = readl(gp->regs + MAC_RXCFG); 456 val = readl(gp->regs + MAC_RXCFG);
456 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG); 457 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
457 458
458 return 0; 459 return 0;
459 } 460 }
460 461
461 static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 462 static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
462 { 463 {
463 u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT); 464 u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
464 int ret = 0; 465 int ret = 0;
465 466
466 if (netif_msg_intr(gp)) 467 if (netif_msg_intr(gp))
467 printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n", 468 printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
468 gp->dev->name, rxmac_stat); 469 gp->dev->name, rxmac_stat);
469 470
470 if (rxmac_stat & MAC_RXSTAT_OFLW) { 471 if (rxmac_stat & MAC_RXSTAT_OFLW) {
471 u32 smac = readl(gp->regs + MAC_SMACHINE); 472 u32 smac = readl(gp->regs + MAC_SMACHINE);
472 473
473 netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac); 474 netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac);
474 dev->stats.rx_over_errors++; 475 dev->stats.rx_over_errors++;
475 dev->stats.rx_fifo_errors++; 476 dev->stats.rx_fifo_errors++;
476 477
477 ret = gem_rxmac_reset(gp); 478 ret = gem_rxmac_reset(gp);
478 } 479 }
479 480
480 if (rxmac_stat & MAC_RXSTAT_ACE) 481 if (rxmac_stat & MAC_RXSTAT_ACE)
481 dev->stats.rx_frame_errors += 0x10000; 482 dev->stats.rx_frame_errors += 0x10000;
482 483
483 if (rxmac_stat & MAC_RXSTAT_CCE) 484 if (rxmac_stat & MAC_RXSTAT_CCE)
484 dev->stats.rx_crc_errors += 0x10000; 485 dev->stats.rx_crc_errors += 0x10000;
485 486
486 if (rxmac_stat & MAC_RXSTAT_LCE) 487 if (rxmac_stat & MAC_RXSTAT_LCE)
487 dev->stats.rx_length_errors += 0x10000; 488 dev->stats.rx_length_errors += 0x10000;
488 489
489 /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE 490 /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
490 * events. 491 * events.
491 */ 492 */
492 return ret; 493 return ret;
493 } 494 }
494 495
495 static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 496 static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
496 { 497 {
497 u32 mac_cstat = readl(gp->regs + MAC_CSTAT); 498 u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
498 499
499 if (netif_msg_intr(gp)) 500 if (netif_msg_intr(gp))
500 printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n", 501 printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
501 gp->dev->name, mac_cstat); 502 gp->dev->name, mac_cstat);
502 503
503 /* This interrupt is just for pause frame and pause 504 /* This interrupt is just for pause frame and pause
504 * tracking. It is useful for diagnostics and debug 505 * tracking. It is useful for diagnostics and debug
505 * but probably by default we will mask these events. 506 * but probably by default we will mask these events.
506 */ 507 */
507 if (mac_cstat & MAC_CSTAT_PS) 508 if (mac_cstat & MAC_CSTAT_PS)
508 gp->pause_entered++; 509 gp->pause_entered++;
509 510
510 if (mac_cstat & MAC_CSTAT_PRCV) 511 if (mac_cstat & MAC_CSTAT_PRCV)
511 gp->pause_last_time_recvd = (mac_cstat >> 16); 512 gp->pause_last_time_recvd = (mac_cstat >> 16);
512 513
513 return 0; 514 return 0;
514 } 515 }
515 516
516 static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 517 static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
517 { 518 {
518 u32 mif_status = readl(gp->regs + MIF_STATUS); 519 u32 mif_status = readl(gp->regs + MIF_STATUS);
519 u32 reg_val, changed_bits; 520 u32 reg_val, changed_bits;
520 521
521 reg_val = (mif_status & MIF_STATUS_DATA) >> 16; 522 reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
522 changed_bits = (mif_status & MIF_STATUS_STAT); 523 changed_bits = (mif_status & MIF_STATUS_STAT);
523 524
524 gem_handle_mif_event(gp, reg_val, changed_bits); 525 gem_handle_mif_event(gp, reg_val, changed_bits);
525 526
526 return 0; 527 return 0;
527 } 528 }
528 529
529 static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 530 static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
530 { 531 {
531 u32 pci_estat = readl(gp->regs + GREG_PCIESTAT); 532 u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
532 533
533 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN && 534 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
534 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) { 535 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
535 netdev_err(dev, "PCI error [%04x]", pci_estat); 536 netdev_err(dev, "PCI error [%04x]", pci_estat);
536 537
537 if (pci_estat & GREG_PCIESTAT_BADACK) 538 if (pci_estat & GREG_PCIESTAT_BADACK)
538 pr_cont(" <No ACK64# during ABS64 cycle>"); 539 pr_cont(" <No ACK64# during ABS64 cycle>");
539 if (pci_estat & GREG_PCIESTAT_DTRTO) 540 if (pci_estat & GREG_PCIESTAT_DTRTO)
540 pr_cont(" <Delayed transaction timeout>"); 541 pr_cont(" <Delayed transaction timeout>");
541 if (pci_estat & GREG_PCIESTAT_OTHER) 542 if (pci_estat & GREG_PCIESTAT_OTHER)
542 pr_cont(" <other>"); 543 pr_cont(" <other>");
543 pr_cont("\n"); 544 pr_cont("\n");
544 } else { 545 } else {
545 pci_estat |= GREG_PCIESTAT_OTHER; 546 pci_estat |= GREG_PCIESTAT_OTHER;
546 netdev_err(dev, "PCI error\n"); 547 netdev_err(dev, "PCI error\n");
547 } 548 }
548 549
549 if (pci_estat & GREG_PCIESTAT_OTHER) { 550 if (pci_estat & GREG_PCIESTAT_OTHER) {
550 u16 pci_cfg_stat; 551 u16 pci_cfg_stat;
551 552
552 /* Interrogate PCI config space for the 553 /* Interrogate PCI config space for the
553 * true cause. 554 * true cause.
554 */ 555 */
555 pci_read_config_word(gp->pdev, PCI_STATUS, 556 pci_read_config_word(gp->pdev, PCI_STATUS,
556 &pci_cfg_stat); 557 &pci_cfg_stat);
557 netdev_err(dev, "Read PCI cfg space status [%04x]\n", 558 netdev_err(dev, "Read PCI cfg space status [%04x]\n",
558 pci_cfg_stat); 559 pci_cfg_stat);
559 if (pci_cfg_stat & PCI_STATUS_PARITY) 560 if (pci_cfg_stat & PCI_STATUS_PARITY)
560 netdev_err(dev, "PCI parity error detected\n"); 561 netdev_err(dev, "PCI parity error detected\n");
561 if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT) 562 if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT)
562 netdev_err(dev, "PCI target abort\n"); 563 netdev_err(dev, "PCI target abort\n");
563 if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT) 564 if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT)
564 netdev_err(dev, "PCI master acks target abort\n"); 565 netdev_err(dev, "PCI master acks target abort\n");
565 if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT) 566 if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT)
566 netdev_err(dev, "PCI master abort\n"); 567 netdev_err(dev, "PCI master abort\n");
567 if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR) 568 if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR)
568 netdev_err(dev, "PCI system error SERR#\n"); 569 netdev_err(dev, "PCI system error SERR#\n");
569 if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY) 570 if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY)
570 netdev_err(dev, "PCI parity error\n"); 571 netdev_err(dev, "PCI parity error\n");
571 572
572 /* Write the error bits back to clear them. */ 573 /* Write the error bits back to clear them. */
573 pci_cfg_stat &= (PCI_STATUS_PARITY | 574 pci_cfg_stat &= (PCI_STATUS_PARITY |
574 PCI_STATUS_SIG_TARGET_ABORT | 575 PCI_STATUS_SIG_TARGET_ABORT |
575 PCI_STATUS_REC_TARGET_ABORT | 576 PCI_STATUS_REC_TARGET_ABORT |
576 PCI_STATUS_REC_MASTER_ABORT | 577 PCI_STATUS_REC_MASTER_ABORT |
577 PCI_STATUS_SIG_SYSTEM_ERROR | 578 PCI_STATUS_SIG_SYSTEM_ERROR |
578 PCI_STATUS_DETECTED_PARITY); 579 PCI_STATUS_DETECTED_PARITY);
579 pci_write_config_word(gp->pdev, 580 pci_write_config_word(gp->pdev,
580 PCI_STATUS, pci_cfg_stat); 581 PCI_STATUS, pci_cfg_stat);
581 } 582 }
582 583
583 /* For all PCI errors, we should reset the chip. */ 584 /* For all PCI errors, we should reset the chip. */
584 return 1; 585 return 1;
585 } 586 }
586 587
587 /* All non-normal interrupt conditions get serviced here. 588 /* All non-normal interrupt conditions get serviced here.
588 * Returns non-zero if we should just exit the interrupt 589 * Returns non-zero if we should just exit the interrupt
589 * handler right now (ie. if we reset the card which invalidates 590 * handler right now (ie. if we reset the card which invalidates
590 * all of the other original irq status bits). 591 * all of the other original irq status bits).
591 */ 592 */
592 static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status) 593 static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
593 { 594 {
594 if (gem_status & GREG_STAT_RXNOBUF) { 595 if (gem_status & GREG_STAT_RXNOBUF) {
595 /* Frame arrived, no free RX buffers available. */ 596 /* Frame arrived, no free RX buffers available. */
596 if (netif_msg_rx_err(gp)) 597 if (netif_msg_rx_err(gp))
597 printk(KERN_DEBUG "%s: no buffer for rx frame\n", 598 printk(KERN_DEBUG "%s: no buffer for rx frame\n",
598 gp->dev->name); 599 gp->dev->name);
599 dev->stats.rx_dropped++; 600 dev->stats.rx_dropped++;
600 } 601 }
601 602
602 if (gem_status & GREG_STAT_RXTAGERR) { 603 if (gem_status & GREG_STAT_RXTAGERR) {
603 /* corrupt RX tag framing */ 604 /* corrupt RX tag framing */
604 if (netif_msg_rx_err(gp)) 605 if (netif_msg_rx_err(gp))
605 printk(KERN_DEBUG "%s: corrupt rx tag framing\n", 606 printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
606 gp->dev->name); 607 gp->dev->name);
607 dev->stats.rx_errors++; 608 dev->stats.rx_errors++;
608 609
609 return 1; 610 return 1;
610 } 611 }
611 612
612 if (gem_status & GREG_STAT_PCS) { 613 if (gem_status & GREG_STAT_PCS) {
613 if (gem_pcs_interrupt(dev, gp, gem_status)) 614 if (gem_pcs_interrupt(dev, gp, gem_status))
614 return 1; 615 return 1;
615 } 616 }
616 617
617 if (gem_status & GREG_STAT_TXMAC) { 618 if (gem_status & GREG_STAT_TXMAC) {
618 if (gem_txmac_interrupt(dev, gp, gem_status)) 619 if (gem_txmac_interrupt(dev, gp, gem_status))
619 return 1; 620 return 1;
620 } 621 }
621 622
622 if (gem_status & GREG_STAT_RXMAC) { 623 if (gem_status & GREG_STAT_RXMAC) {
623 if (gem_rxmac_interrupt(dev, gp, gem_status)) 624 if (gem_rxmac_interrupt(dev, gp, gem_status))
624 return 1; 625 return 1;
625 } 626 }
626 627
627 if (gem_status & GREG_STAT_MAC) { 628 if (gem_status & GREG_STAT_MAC) {
628 if (gem_mac_interrupt(dev, gp, gem_status)) 629 if (gem_mac_interrupt(dev, gp, gem_status))
629 return 1; 630 return 1;
630 } 631 }
631 632
632 if (gem_status & GREG_STAT_MIF) { 633 if (gem_status & GREG_STAT_MIF) {
633 if (gem_mif_interrupt(dev, gp, gem_status)) 634 if (gem_mif_interrupt(dev, gp, gem_status))
634 return 1; 635 return 1;
635 } 636 }
636 637
637 if (gem_status & GREG_STAT_PCIERR) { 638 if (gem_status & GREG_STAT_PCIERR) {
638 if (gem_pci_interrupt(dev, gp, gem_status)) 639 if (gem_pci_interrupt(dev, gp, gem_status))
639 return 1; 640 return 1;
640 } 641 }
641 642
642 return 0; 643 return 0;
643 } 644 }
644 645
645 static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status) 646 static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
646 { 647 {
647 int entry, limit; 648 int entry, limit;
648 649
649 entry = gp->tx_old; 650 entry = gp->tx_old;
650 limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT); 651 limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
651 while (entry != limit) { 652 while (entry != limit) {
652 struct sk_buff *skb; 653 struct sk_buff *skb;
653 struct gem_txd *txd; 654 struct gem_txd *txd;
654 dma_addr_t dma_addr; 655 dma_addr_t dma_addr;
655 u32 dma_len; 656 u32 dma_len;
656 int frag; 657 int frag;
657 658
658 if (netif_msg_tx_done(gp)) 659 if (netif_msg_tx_done(gp))
659 printk(KERN_DEBUG "%s: tx done, slot %d\n", 660 printk(KERN_DEBUG "%s: tx done, slot %d\n",
660 gp->dev->name, entry); 661 gp->dev->name, entry);
661 skb = gp->tx_skbs[entry]; 662 skb = gp->tx_skbs[entry];
662 if (skb_shinfo(skb)->nr_frags) { 663 if (skb_shinfo(skb)->nr_frags) {
663 int last = entry + skb_shinfo(skb)->nr_frags; 664 int last = entry + skb_shinfo(skb)->nr_frags;
664 int walk = entry; 665 int walk = entry;
665 int incomplete = 0; 666 int incomplete = 0;
666 667
667 last &= (TX_RING_SIZE - 1); 668 last &= (TX_RING_SIZE - 1);
668 for (;;) { 669 for (;;) {
669 walk = NEXT_TX(walk); 670 walk = NEXT_TX(walk);
670 if (walk == limit) 671 if (walk == limit)
671 incomplete = 1; 672 incomplete = 1;
672 if (walk == last) 673 if (walk == last)
673 break; 674 break;
674 } 675 }
675 if (incomplete) 676 if (incomplete)
676 break; 677 break;
677 } 678 }
678 gp->tx_skbs[entry] = NULL; 679 gp->tx_skbs[entry] = NULL;
679 dev->stats.tx_bytes += skb->len; 680 dev->stats.tx_bytes += skb->len;
680 681
681 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { 682 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
682 txd = &gp->init_block->txd[entry]; 683 txd = &gp->init_block->txd[entry];
683 684
684 dma_addr = le64_to_cpu(txd->buffer); 685 dma_addr = le64_to_cpu(txd->buffer);
685 dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ; 686 dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
686 687
687 pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE); 688 pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
688 entry = NEXT_TX(entry); 689 entry = NEXT_TX(entry);
689 } 690 }
690 691
691 dev->stats.tx_packets++; 692 dev->stats.tx_packets++;
692 dev_kfree_skb(skb); 693 dev_kfree_skb(skb);
693 } 694 }
694 gp->tx_old = entry; 695 gp->tx_old = entry;
695 696
696 /* Need to make the tx_old update visible to gem_start_xmit() 697 /* Need to make the tx_old update visible to gem_start_xmit()
697 * before checking for netif_queue_stopped(). Without the 698 * before checking for netif_queue_stopped(). Without the
698 * memory barrier, there is a small possibility that gem_start_xmit() 699 * memory barrier, there is a small possibility that gem_start_xmit()
699 * will miss it and cause the queue to be stopped forever. 700 * will miss it and cause the queue to be stopped forever.
700 */ 701 */
701 smp_mb(); 702 smp_mb();
702 703
703 if (unlikely(netif_queue_stopped(dev) && 704 if (unlikely(netif_queue_stopped(dev) &&
704 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) { 705 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) {
705 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 706 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
706 707
707 __netif_tx_lock(txq, smp_processor_id()); 708 __netif_tx_lock(txq, smp_processor_id());
708 if (netif_queue_stopped(dev) && 709 if (netif_queue_stopped(dev) &&
709 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1)) 710 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
710 netif_wake_queue(dev); 711 netif_wake_queue(dev);
711 __netif_tx_unlock(txq); 712 __netif_tx_unlock(txq);
712 } 713 }
713 } 714 }
714 715
715 static __inline__ void gem_post_rxds(struct gem *gp, int limit) 716 static __inline__ void gem_post_rxds(struct gem *gp, int limit)
716 { 717 {
717 int cluster_start, curr, count, kick; 718 int cluster_start, curr, count, kick;
718 719
719 cluster_start = curr = (gp->rx_new & ~(4 - 1)); 720 cluster_start = curr = (gp->rx_new & ~(4 - 1));
720 count = 0; 721 count = 0;
721 kick = -1; 722 kick = -1;
722 wmb(); 723 wmb();
723 while (curr != limit) { 724 while (curr != limit) {
724 curr = NEXT_RX(curr); 725 curr = NEXT_RX(curr);
725 if (++count == 4) { 726 if (++count == 4) {
726 struct gem_rxd *rxd = 727 struct gem_rxd *rxd =
727 &gp->init_block->rxd[cluster_start]; 728 &gp->init_block->rxd[cluster_start];
728 for (;;) { 729 for (;;) {
729 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp)); 730 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
730 rxd++; 731 rxd++;
731 cluster_start = NEXT_RX(cluster_start); 732 cluster_start = NEXT_RX(cluster_start);
732 if (cluster_start == curr) 733 if (cluster_start == curr)
733 break; 734 break;
734 } 735 }
735 kick = curr; 736 kick = curr;
736 count = 0; 737 count = 0;
737 } 738 }
738 } 739 }
739 if (kick >= 0) { 740 if (kick >= 0) {
740 mb(); 741 mb();
741 writel(kick, gp->regs + RXDMA_KICK); 742 writel(kick, gp->regs + RXDMA_KICK);
742 } 743 }
743 } 744 }
744 745
745 #define ALIGNED_RX_SKB_ADDR(addr) \ 746 #define ALIGNED_RX_SKB_ADDR(addr) \
746 ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr)) 747 ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr))
747 static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size, 748 static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size,
748 gfp_t gfp_flags) 749 gfp_t gfp_flags)
749 { 750 {
750 struct sk_buff *skb = alloc_skb(size + 64, gfp_flags); 751 struct sk_buff *skb = alloc_skb(size + 64, gfp_flags);
751 752
752 if (likely(skb)) { 753 if (likely(skb)) {
753 unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data); 754 unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data);
754 skb_reserve(skb, offset); 755 skb_reserve(skb, offset);
755 skb->dev = dev; 756 skb->dev = dev;
756 } 757 }
757 return skb; 758 return skb;
758 } 759 }
759 760
760 static int gem_rx(struct gem *gp, int work_to_do) 761 static int gem_rx(struct gem *gp, int work_to_do)
761 { 762 {
762 struct net_device *dev = gp->dev; 763 struct net_device *dev = gp->dev;
763 int entry, drops, work_done = 0; 764 int entry, drops, work_done = 0;
764 u32 done; 765 u32 done;
765 __sum16 csum; 766 __sum16 csum;
766 767
767 if (netif_msg_rx_status(gp)) 768 if (netif_msg_rx_status(gp))
768 printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n", 769 printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
769 gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new); 770 gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
770 771
771 entry = gp->rx_new; 772 entry = gp->rx_new;
772 drops = 0; 773 drops = 0;
773 done = readl(gp->regs + RXDMA_DONE); 774 done = readl(gp->regs + RXDMA_DONE);
774 for (;;) { 775 for (;;) {
775 struct gem_rxd *rxd = &gp->init_block->rxd[entry]; 776 struct gem_rxd *rxd = &gp->init_block->rxd[entry];
776 struct sk_buff *skb; 777 struct sk_buff *skb;
777 u64 status = le64_to_cpu(rxd->status_word); 778 u64 status = le64_to_cpu(rxd->status_word);
778 dma_addr_t dma_addr; 779 dma_addr_t dma_addr;
779 int len; 780 int len;
780 781
781 if ((status & RXDCTRL_OWN) != 0) 782 if ((status & RXDCTRL_OWN) != 0)
782 break; 783 break;
783 784
784 if (work_done >= RX_RING_SIZE || work_done >= work_to_do) 785 if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
785 break; 786 break;
786 787
787 /* When writing back RX descriptor, GEM writes status 788 /* When writing back RX descriptor, GEM writes status
788 * then buffer address, possibly in separate transactions. 789 * then buffer address, possibly in separate transactions.
789 * If we don't wait for the chip to write both, we could 790 * If we don't wait for the chip to write both, we could
790 * post a new buffer to this descriptor then have GEM spam 791 * post a new buffer to this descriptor then have GEM spam
791 * on the buffer address. We sync on the RX completion 792 * on the buffer address. We sync on the RX completion
792 * register to prevent this from happening. 793 * register to prevent this from happening.
793 */ 794 */
794 if (entry == done) { 795 if (entry == done) {
795 done = readl(gp->regs + RXDMA_DONE); 796 done = readl(gp->regs + RXDMA_DONE);
796 if (entry == done) 797 if (entry == done)
797 break; 798 break;
798 } 799 }
799 800
800 /* We can now account for the work we're about to do */ 801 /* We can now account for the work we're about to do */
801 work_done++; 802 work_done++;
802 803
803 skb = gp->rx_skbs[entry]; 804 skb = gp->rx_skbs[entry];
804 805
805 len = (status & RXDCTRL_BUFSZ) >> 16; 806 len = (status & RXDCTRL_BUFSZ) >> 16;
806 if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) { 807 if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
807 dev->stats.rx_errors++; 808 dev->stats.rx_errors++;
808 if (len < ETH_ZLEN) 809 if (len < ETH_ZLEN)
809 dev->stats.rx_length_errors++; 810 dev->stats.rx_length_errors++;
810 if (len & RXDCTRL_BAD) 811 if (len & RXDCTRL_BAD)
811 dev->stats.rx_crc_errors++; 812 dev->stats.rx_crc_errors++;
812 813
813 /* We'll just return it to GEM. */ 814 /* We'll just return it to GEM. */
814 drop_it: 815 drop_it:
815 dev->stats.rx_dropped++; 816 dev->stats.rx_dropped++;
816 goto next; 817 goto next;
817 } 818 }
818 819
819 dma_addr = le64_to_cpu(rxd->buffer); 820 dma_addr = le64_to_cpu(rxd->buffer);
820 if (len > RX_COPY_THRESHOLD) { 821 if (len > RX_COPY_THRESHOLD) {
821 struct sk_buff *new_skb; 822 struct sk_buff *new_skb;
822 823
823 new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC); 824 new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
824 if (new_skb == NULL) { 825 if (new_skb == NULL) {
825 drops++; 826 drops++;
826 goto drop_it; 827 goto drop_it;
827 } 828 }
828 pci_unmap_page(gp->pdev, dma_addr, 829 pci_unmap_page(gp->pdev, dma_addr,
829 RX_BUF_ALLOC_SIZE(gp), 830 RX_BUF_ALLOC_SIZE(gp),
830 PCI_DMA_FROMDEVICE); 831 PCI_DMA_FROMDEVICE);
831 gp->rx_skbs[entry] = new_skb; 832 gp->rx_skbs[entry] = new_skb;
832 skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET)); 833 skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
833 rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev, 834 rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
834 virt_to_page(new_skb->data), 835 virt_to_page(new_skb->data),
835 offset_in_page(new_skb->data), 836 offset_in_page(new_skb->data),
836 RX_BUF_ALLOC_SIZE(gp), 837 RX_BUF_ALLOC_SIZE(gp),
837 PCI_DMA_FROMDEVICE)); 838 PCI_DMA_FROMDEVICE));
838 skb_reserve(new_skb, RX_OFFSET); 839 skb_reserve(new_skb, RX_OFFSET);
839 840
840 /* Trim the original skb for the netif. */ 841 /* Trim the original skb for the netif. */
841 skb_trim(skb, len); 842 skb_trim(skb, len);
842 } else { 843 } else {
843 struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2); 844 struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
844 845
845 if (copy_skb == NULL) { 846 if (copy_skb == NULL) {
846 drops++; 847 drops++;
847 goto drop_it; 848 goto drop_it;
848 } 849 }
849 850
850 skb_reserve(copy_skb, 2); 851 skb_reserve(copy_skb, 2);
851 skb_put(copy_skb, len); 852 skb_put(copy_skb, len);
852 pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE); 853 pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
853 skb_copy_from_linear_data(skb, copy_skb->data, len); 854 skb_copy_from_linear_data(skb, copy_skb->data, len);
854 pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE); 855 pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
855 856
856 /* We'll reuse the original ring buffer. */ 857 /* We'll reuse the original ring buffer. */
857 skb = copy_skb; 858 skb = copy_skb;
858 } 859 }
859 860
860 csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff); 861 csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff);
861 skb->csum = csum_unfold(csum); 862 skb->csum = csum_unfold(csum);
862 skb->ip_summed = CHECKSUM_COMPLETE; 863 skb->ip_summed = CHECKSUM_COMPLETE;
863 skb->protocol = eth_type_trans(skb, gp->dev); 864 skb->protocol = eth_type_trans(skb, gp->dev);
864 865
865 napi_gro_receive(&gp->napi, skb); 866 napi_gro_receive(&gp->napi, skb);
866 867
867 dev->stats.rx_packets++; 868 dev->stats.rx_packets++;
868 dev->stats.rx_bytes += len; 869 dev->stats.rx_bytes += len;
869 870
870 next: 871 next:
871 entry = NEXT_RX(entry); 872 entry = NEXT_RX(entry);
872 } 873 }
873 874
874 gem_post_rxds(gp, entry); 875 gem_post_rxds(gp, entry);
875 876
876 gp->rx_new = entry; 877 gp->rx_new = entry;
877 878
878 if (drops) 879 if (drops)
879 netdev_info(gp->dev, "Memory squeeze, deferring packet\n"); 880 netdev_info(gp->dev, "Memory squeeze, deferring packet\n");
880 881
881 return work_done; 882 return work_done;
882 } 883 }
883 884
884 static int gem_poll(struct napi_struct *napi, int budget) 885 static int gem_poll(struct napi_struct *napi, int budget)
885 { 886 {
886 struct gem *gp = container_of(napi, struct gem, napi); 887 struct gem *gp = container_of(napi, struct gem, napi);
887 struct net_device *dev = gp->dev; 888 struct net_device *dev = gp->dev;
888 int work_done; 889 int work_done;
889 890
890 work_done = 0; 891 work_done = 0;
891 do { 892 do {
892 /* Handle anomalies */ 893 /* Handle anomalies */
893 if (unlikely(gp->status & GREG_STAT_ABNORMAL)) { 894 if (unlikely(gp->status & GREG_STAT_ABNORMAL)) {
894 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 895 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
895 int reset; 896 int reset;
896 897
897 /* We run the abnormal interrupt handling code with 898 /* We run the abnormal interrupt handling code with
898 * the Tx lock. It only resets the Rx portion of the 899 * the Tx lock. It only resets the Rx portion of the
899 * chip, but we need to guard it against DMA being 900 * chip, but we need to guard it against DMA being
900 * restarted by the link poll timer 901 * restarted by the link poll timer
901 */ 902 */
902 __netif_tx_lock(txq, smp_processor_id()); 903 __netif_tx_lock(txq, smp_processor_id());
903 reset = gem_abnormal_irq(dev, gp, gp->status); 904 reset = gem_abnormal_irq(dev, gp, gp->status);
904 __netif_tx_unlock(txq); 905 __netif_tx_unlock(txq);
905 if (reset) { 906 if (reset) {
906 gem_schedule_reset(gp); 907 gem_schedule_reset(gp);
907 napi_complete(napi); 908 napi_complete(napi);
908 return work_done; 909 return work_done;
909 } 910 }
910 } 911 }
911 912
912 /* Run TX completion thread */ 913 /* Run TX completion thread */
913 gem_tx(dev, gp, gp->status); 914 gem_tx(dev, gp, gp->status);
914 915
915 /* Run RX thread. We don't use any locking here, 916 /* Run RX thread. We don't use any locking here,
916 * code willing to do bad things - like cleaning the 917 * code willing to do bad things - like cleaning the
917 * rx ring - must call napi_disable(), which 918 * rx ring - must call napi_disable(), which
918 * schedule_timeout()'s if polling is already disabled. 919 * schedule_timeout()'s if polling is already disabled.
919 */ 920 */
920 work_done += gem_rx(gp, budget - work_done); 921 work_done += gem_rx(gp, budget - work_done);
921 922
922 if (work_done >= budget) 923 if (work_done >= budget)
923 return work_done; 924 return work_done;
924 925
925 gp->status = readl(gp->regs + GREG_STAT); 926 gp->status = readl(gp->regs + GREG_STAT);
926 } while (gp->status & GREG_STAT_NAPI); 927 } while (gp->status & GREG_STAT_NAPI);
927 928
928 napi_complete(napi); 929 napi_complete(napi);
929 gem_enable_ints(gp); 930 gem_enable_ints(gp);
930 931
931 return work_done; 932 return work_done;
932 } 933 }
933 934
934 static irqreturn_t gem_interrupt(int irq, void *dev_id) 935 static irqreturn_t gem_interrupt(int irq, void *dev_id)
935 { 936 {
936 struct net_device *dev = dev_id; 937 struct net_device *dev = dev_id;
937 struct gem *gp = netdev_priv(dev); 938 struct gem *gp = netdev_priv(dev);
938 939
939 if (napi_schedule_prep(&gp->napi)) { 940 if (napi_schedule_prep(&gp->napi)) {
940 u32 gem_status = readl(gp->regs + GREG_STAT); 941 u32 gem_status = readl(gp->regs + GREG_STAT);
941 942
942 if (unlikely(gem_status == 0)) { 943 if (unlikely(gem_status == 0)) {
943 napi_enable(&gp->napi); 944 napi_enable(&gp->napi);
944 return IRQ_NONE; 945 return IRQ_NONE;
945 } 946 }
946 if (netif_msg_intr(gp)) 947 if (netif_msg_intr(gp))
947 printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n", 948 printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n",
948 gp->dev->name, gem_status); 949 gp->dev->name, gem_status);
949 950
950 gp->status = gem_status; 951 gp->status = gem_status;
951 gem_disable_ints(gp); 952 gem_disable_ints(gp);
952 __napi_schedule(&gp->napi); 953 __napi_schedule(&gp->napi);
953 } 954 }
954 955
955 /* If polling was disabled at the time we received that 956 /* If polling was disabled at the time we received that
956 * interrupt, we may return IRQ_HANDLED here while we 957 * interrupt, we may return IRQ_HANDLED here while we
957 * should return IRQ_NONE. No big deal... 958 * should return IRQ_NONE. No big deal...
958 */ 959 */
959 return IRQ_HANDLED; 960 return IRQ_HANDLED;
960 } 961 }
961 962
962 #ifdef CONFIG_NET_POLL_CONTROLLER 963 #ifdef CONFIG_NET_POLL_CONTROLLER
963 static void gem_poll_controller(struct net_device *dev) 964 static void gem_poll_controller(struct net_device *dev)
964 { 965 {
965 struct gem *gp = netdev_priv(dev); 966 struct gem *gp = netdev_priv(dev);
966 967
967 disable_irq(gp->pdev->irq); 968 disable_irq(gp->pdev->irq);
968 gem_interrupt(gp->pdev->irq, dev); 969 gem_interrupt(gp->pdev->irq, dev);
969 enable_irq(gp->pdev->irq); 970 enable_irq(gp->pdev->irq);
970 } 971 }
971 #endif 972 #endif
972 973
973 static void gem_tx_timeout(struct net_device *dev) 974 static void gem_tx_timeout(struct net_device *dev)
974 { 975 {
975 struct gem *gp = netdev_priv(dev); 976 struct gem *gp = netdev_priv(dev);
976 977
977 netdev_err(dev, "transmit timed out, resetting\n"); 978 netdev_err(dev, "transmit timed out, resetting\n");
978 979
979 netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n", 980 netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n",
980 readl(gp->regs + TXDMA_CFG), 981 readl(gp->regs + TXDMA_CFG),
981 readl(gp->regs + MAC_TXSTAT), 982 readl(gp->regs + MAC_TXSTAT),
982 readl(gp->regs + MAC_TXCFG)); 983 readl(gp->regs + MAC_TXCFG));
983 netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n", 984 netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
984 readl(gp->regs + RXDMA_CFG), 985 readl(gp->regs + RXDMA_CFG),
985 readl(gp->regs + MAC_RXSTAT), 986 readl(gp->regs + MAC_RXSTAT),
986 readl(gp->regs + MAC_RXCFG)); 987 readl(gp->regs + MAC_RXCFG));
987 988
988 gem_schedule_reset(gp); 989 gem_schedule_reset(gp);
989 } 990 }
990 991
991 static __inline__ int gem_intme(int entry) 992 static __inline__ int gem_intme(int entry)
992 { 993 {
993 /* Algorithm: IRQ every 1/2 of descriptors. */ 994 /* Algorithm: IRQ every 1/2 of descriptors. */
994 if (!(entry & ((TX_RING_SIZE>>1)-1))) 995 if (!(entry & ((TX_RING_SIZE>>1)-1)))
995 return 1; 996 return 1;
996 997
997 return 0; 998 return 0;
998 } 999 }
999 1000
1000 static netdev_tx_t gem_start_xmit(struct sk_buff *skb, 1001 static netdev_tx_t gem_start_xmit(struct sk_buff *skb,
1001 struct net_device *dev) 1002 struct net_device *dev)
1002 { 1003 {
1003 struct gem *gp = netdev_priv(dev); 1004 struct gem *gp = netdev_priv(dev);
1004 int entry; 1005 int entry;
1005 u64 ctrl; 1006 u64 ctrl;
1006 1007
1007 ctrl = 0; 1008 ctrl = 0;
1008 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1009 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1009 const u64 csum_start_off = skb_checksum_start_offset(skb); 1010 const u64 csum_start_off = skb_checksum_start_offset(skb);
1010 const u64 csum_stuff_off = csum_start_off + skb->csum_offset; 1011 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
1011 1012
1012 ctrl = (TXDCTRL_CENAB | 1013 ctrl = (TXDCTRL_CENAB |
1013 (csum_start_off << 15) | 1014 (csum_start_off << 15) |
1014 (csum_stuff_off << 21)); 1015 (csum_stuff_off << 21));
1015 } 1016 }
1016 1017
1017 if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) { 1018 if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) {
1018 /* This is a hard error, log it. */ 1019 /* This is a hard error, log it. */
1019 if (!netif_queue_stopped(dev)) { 1020 if (!netif_queue_stopped(dev)) {
1020 netif_stop_queue(dev); 1021 netif_stop_queue(dev);
1021 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n"); 1022 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
1022 } 1023 }
1023 return NETDEV_TX_BUSY; 1024 return NETDEV_TX_BUSY;
1024 } 1025 }
1025 1026
1026 entry = gp->tx_new; 1027 entry = gp->tx_new;
1027 gp->tx_skbs[entry] = skb; 1028 gp->tx_skbs[entry] = skb;
1028 1029
1029 if (skb_shinfo(skb)->nr_frags == 0) { 1030 if (skb_shinfo(skb)->nr_frags == 0) {
1030 struct gem_txd *txd = &gp->init_block->txd[entry]; 1031 struct gem_txd *txd = &gp->init_block->txd[entry];
1031 dma_addr_t mapping; 1032 dma_addr_t mapping;
1032 u32 len; 1033 u32 len;
1033 1034
1034 len = skb->len; 1035 len = skb->len;
1035 mapping = pci_map_page(gp->pdev, 1036 mapping = pci_map_page(gp->pdev,
1036 virt_to_page(skb->data), 1037 virt_to_page(skb->data),
1037 offset_in_page(skb->data), 1038 offset_in_page(skb->data),
1038 len, PCI_DMA_TODEVICE); 1039 len, PCI_DMA_TODEVICE);
1039 ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len; 1040 ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
1040 if (gem_intme(entry)) 1041 if (gem_intme(entry))
1041 ctrl |= TXDCTRL_INTME; 1042 ctrl |= TXDCTRL_INTME;
1042 txd->buffer = cpu_to_le64(mapping); 1043 txd->buffer = cpu_to_le64(mapping);
1043 wmb(); 1044 wmb();
1044 txd->control_word = cpu_to_le64(ctrl); 1045 txd->control_word = cpu_to_le64(ctrl);
1045 entry = NEXT_TX(entry); 1046 entry = NEXT_TX(entry);
1046 } else { 1047 } else {
1047 struct gem_txd *txd; 1048 struct gem_txd *txd;
1048 u32 first_len; 1049 u32 first_len;
1049 u64 intme; 1050 u64 intme;
1050 dma_addr_t first_mapping; 1051 dma_addr_t first_mapping;
1051 int frag, first_entry = entry; 1052 int frag, first_entry = entry;
1052 1053
1053 intme = 0; 1054 intme = 0;
1054 if (gem_intme(entry)) 1055 if (gem_intme(entry))
1055 intme |= TXDCTRL_INTME; 1056 intme |= TXDCTRL_INTME;
1056 1057
1057 /* We must give this initial chunk to the device last. 1058 /* We must give this initial chunk to the device last.
1058 * Otherwise we could race with the device. 1059 * Otherwise we could race with the device.
1059 */ 1060 */
1060 first_len = skb_headlen(skb); 1061 first_len = skb_headlen(skb);
1061 first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data), 1062 first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
1062 offset_in_page(skb->data), 1063 offset_in_page(skb->data),
1063 first_len, PCI_DMA_TODEVICE); 1064 first_len, PCI_DMA_TODEVICE);
1064 entry = NEXT_TX(entry); 1065 entry = NEXT_TX(entry);
1065 1066
1066 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) { 1067 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1067 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag]; 1068 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1068 u32 len; 1069 u32 len;
1069 dma_addr_t mapping; 1070 dma_addr_t mapping;
1070 u64 this_ctrl; 1071 u64 this_ctrl;
1071 1072
1072 len = this_frag->size; 1073 len = this_frag->size;
1073 mapping = pci_map_page(gp->pdev, 1074 mapping = pci_map_page(gp->pdev,
1074 this_frag->page, 1075 this_frag->page,
1075 this_frag->page_offset, 1076 this_frag->page_offset,
1076 len, PCI_DMA_TODEVICE); 1077 len, PCI_DMA_TODEVICE);
1077 this_ctrl = ctrl; 1078 this_ctrl = ctrl;
1078 if (frag == skb_shinfo(skb)->nr_frags - 1) 1079 if (frag == skb_shinfo(skb)->nr_frags - 1)
1079 this_ctrl |= TXDCTRL_EOF; 1080 this_ctrl |= TXDCTRL_EOF;
1080 1081
1081 txd = &gp->init_block->txd[entry]; 1082 txd = &gp->init_block->txd[entry];
1082 txd->buffer = cpu_to_le64(mapping); 1083 txd->buffer = cpu_to_le64(mapping);
1083 wmb(); 1084 wmb();
1084 txd->control_word = cpu_to_le64(this_ctrl | len); 1085 txd->control_word = cpu_to_le64(this_ctrl | len);
1085 1086
1086 if (gem_intme(entry)) 1087 if (gem_intme(entry))
1087 intme |= TXDCTRL_INTME; 1088 intme |= TXDCTRL_INTME;
1088 1089
1089 entry = NEXT_TX(entry); 1090 entry = NEXT_TX(entry);
1090 } 1091 }
1091 txd = &gp->init_block->txd[first_entry]; 1092 txd = &gp->init_block->txd[first_entry];
1092 txd->buffer = cpu_to_le64(first_mapping); 1093 txd->buffer = cpu_to_le64(first_mapping);
1093 wmb(); 1094 wmb();
1094 txd->control_word = 1095 txd->control_word =
1095 cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len); 1096 cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
1096 } 1097 }
1097 1098
1098 gp->tx_new = entry; 1099 gp->tx_new = entry;
1099 if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) { 1100 if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) {
1100 netif_stop_queue(dev); 1101 netif_stop_queue(dev);
1101 1102
1102 /* netif_stop_queue() must be done before checking 1103 /* netif_stop_queue() must be done before checking
1103 * checking tx index in TX_BUFFS_AVAIL() below, because 1104 * checking tx index in TX_BUFFS_AVAIL() below, because
1104 * in gem_tx(), we update tx_old before checking for 1105 * in gem_tx(), we update tx_old before checking for
1105 * netif_queue_stopped(). 1106 * netif_queue_stopped().
1106 */ 1107 */
1107 smp_mb(); 1108 smp_mb();
1108 if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1)) 1109 if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
1109 netif_wake_queue(dev); 1110 netif_wake_queue(dev);
1110 } 1111 }
1111 if (netif_msg_tx_queued(gp)) 1112 if (netif_msg_tx_queued(gp))
1112 printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n", 1113 printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
1113 dev->name, entry, skb->len); 1114 dev->name, entry, skb->len);
1114 mb(); 1115 mb();
1115 writel(gp->tx_new, gp->regs + TXDMA_KICK); 1116 writel(gp->tx_new, gp->regs + TXDMA_KICK);
1116 1117
1117 return NETDEV_TX_OK; 1118 return NETDEV_TX_OK;
1118 } 1119 }
1119 1120
1120 static void gem_pcs_reset(struct gem *gp) 1121 static void gem_pcs_reset(struct gem *gp)
1121 { 1122 {
1122 int limit; 1123 int limit;
1123 u32 val; 1124 u32 val;
1124 1125
1125 /* Reset PCS unit. */ 1126 /* Reset PCS unit. */
1126 val = readl(gp->regs + PCS_MIICTRL); 1127 val = readl(gp->regs + PCS_MIICTRL);
1127 val |= PCS_MIICTRL_RST; 1128 val |= PCS_MIICTRL_RST;
1128 writel(val, gp->regs + PCS_MIICTRL); 1129 writel(val, gp->regs + PCS_MIICTRL);
1129 1130
1130 limit = 32; 1131 limit = 32;
1131 while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) { 1132 while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
1132 udelay(100); 1133 udelay(100);
1133 if (limit-- <= 0) 1134 if (limit-- <= 0)
1134 break; 1135 break;
1135 } 1136 }
1136 if (limit < 0) 1137 if (limit < 0)
1137 netdev_warn(gp->dev, "PCS reset bit would not clear\n"); 1138 netdev_warn(gp->dev, "PCS reset bit would not clear\n");
1138 } 1139 }
1139 1140
1140 static void gem_pcs_reinit_adv(struct gem *gp) 1141 static void gem_pcs_reinit_adv(struct gem *gp)
1141 { 1142 {
1142 u32 val; 1143 u32 val;
1143 1144
1144 /* Make sure PCS is disabled while changing advertisement 1145 /* Make sure PCS is disabled while changing advertisement
1145 * configuration. 1146 * configuration.
1146 */ 1147 */
1147 val = readl(gp->regs + PCS_CFG); 1148 val = readl(gp->regs + PCS_CFG);
1148 val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO); 1149 val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
1149 writel(val, gp->regs + PCS_CFG); 1150 writel(val, gp->regs + PCS_CFG);
1150 1151
1151 /* Advertise all capabilities except asymmetric 1152 /* Advertise all capabilities except asymmetric
1152 * pause. 1153 * pause.
1153 */ 1154 */
1154 val = readl(gp->regs + PCS_MIIADV); 1155 val = readl(gp->regs + PCS_MIIADV);
1155 val |= (PCS_MIIADV_FD | PCS_MIIADV_HD | 1156 val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
1156 PCS_MIIADV_SP | PCS_MIIADV_AP); 1157 PCS_MIIADV_SP | PCS_MIIADV_AP);
1157 writel(val, gp->regs + PCS_MIIADV); 1158 writel(val, gp->regs + PCS_MIIADV);
1158 1159
1159 /* Enable and restart auto-negotiation, disable wrapback/loopback, 1160 /* Enable and restart auto-negotiation, disable wrapback/loopback,
1160 * and re-enable PCS. 1161 * and re-enable PCS.
1161 */ 1162 */
1162 val = readl(gp->regs + PCS_MIICTRL); 1163 val = readl(gp->regs + PCS_MIICTRL);
1163 val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE); 1164 val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
1164 val &= ~PCS_MIICTRL_WB; 1165 val &= ~PCS_MIICTRL_WB;
1165 writel(val, gp->regs + PCS_MIICTRL); 1166 writel(val, gp->regs + PCS_MIICTRL);
1166 1167
1167 val = readl(gp->regs + PCS_CFG); 1168 val = readl(gp->regs + PCS_CFG);
1168 val |= PCS_CFG_ENABLE; 1169 val |= PCS_CFG_ENABLE;
1169 writel(val, gp->regs + PCS_CFG); 1170 writel(val, gp->regs + PCS_CFG);
1170 1171
1171 /* Make sure serialink loopback is off. The meaning 1172 /* Make sure serialink loopback is off. The meaning
1172 * of this bit is logically inverted based upon whether 1173 * of this bit is logically inverted based upon whether
1173 * you are in Serialink or SERDES mode. 1174 * you are in Serialink or SERDES mode.
1174 */ 1175 */
1175 val = readl(gp->regs + PCS_SCTRL); 1176 val = readl(gp->regs + PCS_SCTRL);
1176 if (gp->phy_type == phy_serialink) 1177 if (gp->phy_type == phy_serialink)
1177 val &= ~PCS_SCTRL_LOOP; 1178 val &= ~PCS_SCTRL_LOOP;
1178 else 1179 else
1179 val |= PCS_SCTRL_LOOP; 1180 val |= PCS_SCTRL_LOOP;
1180 writel(val, gp->regs + PCS_SCTRL); 1181 writel(val, gp->regs + PCS_SCTRL);
1181 } 1182 }
1182 1183
1183 #define STOP_TRIES 32 1184 #define STOP_TRIES 32
1184 1185
1185 static void gem_reset(struct gem *gp) 1186 static void gem_reset(struct gem *gp)
1186 { 1187 {
1187 int limit; 1188 int limit;
1188 u32 val; 1189 u32 val;
1189 1190
1190 /* Make sure we won't get any more interrupts */ 1191 /* Make sure we won't get any more interrupts */
1191 writel(0xffffffff, gp->regs + GREG_IMASK); 1192 writel(0xffffffff, gp->regs + GREG_IMASK);
1192 1193
1193 /* Reset the chip */ 1194 /* Reset the chip */
1194 writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST, 1195 writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
1195 gp->regs + GREG_SWRST); 1196 gp->regs + GREG_SWRST);
1196 1197
1197 limit = STOP_TRIES; 1198 limit = STOP_TRIES;
1198 1199
1199 do { 1200 do {
1200 udelay(20); 1201 udelay(20);
1201 val = readl(gp->regs + GREG_SWRST); 1202 val = readl(gp->regs + GREG_SWRST);
1202 if (limit-- <= 0) 1203 if (limit-- <= 0)
1203 break; 1204 break;
1204 } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST)); 1205 } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
1205 1206
1206 if (limit < 0) 1207 if (limit < 0)
1207 netdev_err(gp->dev, "SW reset is ghetto\n"); 1208 netdev_err(gp->dev, "SW reset is ghetto\n");
1208 1209
1209 if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes) 1210 if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes)
1210 gem_pcs_reinit_adv(gp); 1211 gem_pcs_reinit_adv(gp);
1211 } 1212 }
1212 1213
1213 static void gem_start_dma(struct gem *gp) 1214 static void gem_start_dma(struct gem *gp)
1214 { 1215 {
1215 u32 val; 1216 u32 val;
1216 1217
1217 /* We are ready to rock, turn everything on. */ 1218 /* We are ready to rock, turn everything on. */
1218 val = readl(gp->regs + TXDMA_CFG); 1219 val = readl(gp->regs + TXDMA_CFG);
1219 writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG); 1220 writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1220 val = readl(gp->regs + RXDMA_CFG); 1221 val = readl(gp->regs + RXDMA_CFG);
1221 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG); 1222 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1222 val = readl(gp->regs + MAC_TXCFG); 1223 val = readl(gp->regs + MAC_TXCFG);
1223 writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG); 1224 writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1224 val = readl(gp->regs + MAC_RXCFG); 1225 val = readl(gp->regs + MAC_RXCFG);
1225 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG); 1226 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1226 1227
1227 (void) readl(gp->regs + MAC_RXCFG); 1228 (void) readl(gp->regs + MAC_RXCFG);
1228 udelay(100); 1229 udelay(100);
1229 1230
1230 gem_enable_ints(gp); 1231 gem_enable_ints(gp);
1231 1232
1232 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK); 1233 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1233 } 1234 }
1234 1235
1235 /* DMA won't be actually stopped before about 4ms tho ... 1236 /* DMA won't be actually stopped before about 4ms tho ...
1236 */ 1237 */
1237 static void gem_stop_dma(struct gem *gp) 1238 static void gem_stop_dma(struct gem *gp)
1238 { 1239 {
1239 u32 val; 1240 u32 val;
1240 1241
1241 /* We are done rocking, turn everything off. */ 1242 /* We are done rocking, turn everything off. */
1242 val = readl(gp->regs + TXDMA_CFG); 1243 val = readl(gp->regs + TXDMA_CFG);
1243 writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG); 1244 writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1244 val = readl(gp->regs + RXDMA_CFG); 1245 val = readl(gp->regs + RXDMA_CFG);
1245 writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG); 1246 writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1246 val = readl(gp->regs + MAC_TXCFG); 1247 val = readl(gp->regs + MAC_TXCFG);
1247 writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG); 1248 writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1248 val = readl(gp->regs + MAC_RXCFG); 1249 val = readl(gp->regs + MAC_RXCFG);
1249 writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG); 1250 writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1250 1251
1251 (void) readl(gp->regs + MAC_RXCFG); 1252 (void) readl(gp->regs + MAC_RXCFG);
1252 1253
1253 /* Need to wait a bit ... done by the caller */ 1254 /* Need to wait a bit ... done by the caller */
1254 } 1255 }
1255 1256
1256 1257
1257 // XXX dbl check what that function should do when called on PCS PHY 1258 // XXX dbl check what that function should do when called on PCS PHY
1258 static void gem_begin_auto_negotiation(struct gem *gp, struct ethtool_cmd *ep) 1259 static void gem_begin_auto_negotiation(struct gem *gp, struct ethtool_cmd *ep)
1259 { 1260 {
1260 u32 advertise, features; 1261 u32 advertise, features;
1261 int autoneg; 1262 int autoneg;
1262 int speed; 1263 int speed;
1263 int duplex; 1264 int duplex;
1264 1265
1265 if (gp->phy_type != phy_mii_mdio0 && 1266 if (gp->phy_type != phy_mii_mdio0 &&
1266 gp->phy_type != phy_mii_mdio1) 1267 gp->phy_type != phy_mii_mdio1)
1267 goto non_mii; 1268 goto non_mii;
1268 1269
1269 /* Setup advertise */ 1270 /* Setup advertise */
1270 if (found_mii_phy(gp)) 1271 if (found_mii_phy(gp))
1271 features = gp->phy_mii.def->features; 1272 features = gp->phy_mii.def->features;
1272 else 1273 else
1273 features = 0; 1274 features = 0;
1274 1275
1275 advertise = features & ADVERTISE_MASK; 1276 advertise = features & ADVERTISE_MASK;
1276 if (gp->phy_mii.advertising != 0) 1277 if (gp->phy_mii.advertising != 0)
1277 advertise &= gp->phy_mii.advertising; 1278 advertise &= gp->phy_mii.advertising;
1278 1279
1279 autoneg = gp->want_autoneg; 1280 autoneg = gp->want_autoneg;
1280 speed = gp->phy_mii.speed; 1281 speed = gp->phy_mii.speed;
1281 duplex = gp->phy_mii.duplex; 1282 duplex = gp->phy_mii.duplex;
1282 1283
1283 /* Setup link parameters */ 1284 /* Setup link parameters */
1284 if (!ep) 1285 if (!ep)
1285 goto start_aneg; 1286 goto start_aneg;
1286 if (ep->autoneg == AUTONEG_ENABLE) { 1287 if (ep->autoneg == AUTONEG_ENABLE) {
1287 advertise = ep->advertising; 1288 advertise = ep->advertising;
1288 autoneg = 1; 1289 autoneg = 1;
1289 } else { 1290 } else {
1290 autoneg = 0; 1291 autoneg = 0;
1291 speed = ethtool_cmd_speed(ep); 1292 speed = ethtool_cmd_speed(ep);
1292 duplex = ep->duplex; 1293 duplex = ep->duplex;
1293 } 1294 }
1294 1295
1295 start_aneg: 1296 start_aneg:
1296 /* Sanitize settings based on PHY capabilities */ 1297 /* Sanitize settings based on PHY capabilities */
1297 if ((features & SUPPORTED_Autoneg) == 0) 1298 if ((features & SUPPORTED_Autoneg) == 0)
1298 autoneg = 0; 1299 autoneg = 0;
1299 if (speed == SPEED_1000 && 1300 if (speed == SPEED_1000 &&
1300 !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full))) 1301 !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
1301 speed = SPEED_100; 1302 speed = SPEED_100;
1302 if (speed == SPEED_100 && 1303 if (speed == SPEED_100 &&
1303 !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full))) 1304 !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
1304 speed = SPEED_10; 1305 speed = SPEED_10;
1305 if (duplex == DUPLEX_FULL && 1306 if (duplex == DUPLEX_FULL &&
1306 !(features & (SUPPORTED_1000baseT_Full | 1307 !(features & (SUPPORTED_1000baseT_Full |
1307 SUPPORTED_100baseT_Full | 1308 SUPPORTED_100baseT_Full |
1308 SUPPORTED_10baseT_Full))) 1309 SUPPORTED_10baseT_Full)))
1309 duplex = DUPLEX_HALF; 1310 duplex = DUPLEX_HALF;
1310 if (speed == 0) 1311 if (speed == 0)
1311 speed = SPEED_10; 1312 speed = SPEED_10;
1312 1313
1313 /* If we are asleep, we don't try to actually setup the PHY, we 1314 /* If we are asleep, we don't try to actually setup the PHY, we
1314 * just store the settings 1315 * just store the settings
1315 */ 1316 */
1316 if (!netif_device_present(gp->dev)) { 1317 if (!netif_device_present(gp->dev)) {
1317 gp->phy_mii.autoneg = gp->want_autoneg = autoneg; 1318 gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
1318 gp->phy_mii.speed = speed; 1319 gp->phy_mii.speed = speed;
1319 gp->phy_mii.duplex = duplex; 1320 gp->phy_mii.duplex = duplex;
1320 return; 1321 return;
1321 } 1322 }
1322 1323
1323 /* Configure PHY & start aneg */ 1324 /* Configure PHY & start aneg */
1324 gp->want_autoneg = autoneg; 1325 gp->want_autoneg = autoneg;
1325 if (autoneg) { 1326 if (autoneg) {
1326 if (found_mii_phy(gp)) 1327 if (found_mii_phy(gp))
1327 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise); 1328 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
1328 gp->lstate = link_aneg; 1329 gp->lstate = link_aneg;
1329 } else { 1330 } else {
1330 if (found_mii_phy(gp)) 1331 if (found_mii_phy(gp))
1331 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex); 1332 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
1332 gp->lstate = link_force_ok; 1333 gp->lstate = link_force_ok;
1333 } 1334 }
1334 1335
1335 non_mii: 1336 non_mii:
1336 gp->timer_ticks = 0; 1337 gp->timer_ticks = 0;
1337 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10)); 1338 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1338 } 1339 }
1339 1340
1340 /* A link-up condition has occurred, initialize and enable the 1341 /* A link-up condition has occurred, initialize and enable the
1341 * rest of the chip. 1342 * rest of the chip.
1342 */ 1343 */
1343 static int gem_set_link_modes(struct gem *gp) 1344 static int gem_set_link_modes(struct gem *gp)
1344 { 1345 {
1345 struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0); 1346 struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0);
1346 int full_duplex, speed, pause; 1347 int full_duplex, speed, pause;
1347 u32 val; 1348 u32 val;
1348 1349
1349 full_duplex = 0; 1350 full_duplex = 0;
1350 speed = SPEED_10; 1351 speed = SPEED_10;
1351 pause = 0; 1352 pause = 0;
1352 1353
1353 if (found_mii_phy(gp)) { 1354 if (found_mii_phy(gp)) {
1354 if (gp->phy_mii.def->ops->read_link(&gp->phy_mii)) 1355 if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
1355 return 1; 1356 return 1;
1356 full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL); 1357 full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
1357 speed = gp->phy_mii.speed; 1358 speed = gp->phy_mii.speed;
1358 pause = gp->phy_mii.pause; 1359 pause = gp->phy_mii.pause;
1359 } else if (gp->phy_type == phy_serialink || 1360 } else if (gp->phy_type == phy_serialink ||
1360 gp->phy_type == phy_serdes) { 1361 gp->phy_type == phy_serdes) {
1361 u32 pcs_lpa = readl(gp->regs + PCS_MIILP); 1362 u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1362 1363
1363 if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes) 1364 if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes)
1364 full_duplex = 1; 1365 full_duplex = 1;
1365 speed = SPEED_1000; 1366 speed = SPEED_1000;
1366 } 1367 }
1367 1368
1368 netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n", 1369 netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n",
1369 speed, (full_duplex ? "full" : "half")); 1370 speed, (full_duplex ? "full" : "half"));
1370 1371
1371 1372
1372 /* We take the tx queue lock to avoid collisions between 1373 /* We take the tx queue lock to avoid collisions between
1373 * this code, the tx path and the NAPI-driven error path 1374 * this code, the tx path and the NAPI-driven error path
1374 */ 1375 */
1375 __netif_tx_lock(txq, smp_processor_id()); 1376 __netif_tx_lock(txq, smp_processor_id());
1376 1377
1377 val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU); 1378 val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
1378 if (full_duplex) { 1379 if (full_duplex) {
1379 val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL); 1380 val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
1380 } else { 1381 } else {
1381 /* MAC_TXCFG_NBO must be zero. */ 1382 /* MAC_TXCFG_NBO must be zero. */
1382 } 1383 }
1383 writel(val, gp->regs + MAC_TXCFG); 1384 writel(val, gp->regs + MAC_TXCFG);
1384 1385
1385 val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED); 1386 val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
1386 if (!full_duplex && 1387 if (!full_duplex &&
1387 (gp->phy_type == phy_mii_mdio0 || 1388 (gp->phy_type == phy_mii_mdio0 ||
1388 gp->phy_type == phy_mii_mdio1)) { 1389 gp->phy_type == phy_mii_mdio1)) {
1389 val |= MAC_XIFCFG_DISE; 1390 val |= MAC_XIFCFG_DISE;
1390 } else if (full_duplex) { 1391 } else if (full_duplex) {
1391 val |= MAC_XIFCFG_FLED; 1392 val |= MAC_XIFCFG_FLED;
1392 } 1393 }
1393 1394
1394 if (speed == SPEED_1000) 1395 if (speed == SPEED_1000)
1395 val |= (MAC_XIFCFG_GMII); 1396 val |= (MAC_XIFCFG_GMII);
1396 1397
1397 writel(val, gp->regs + MAC_XIFCFG); 1398 writel(val, gp->regs + MAC_XIFCFG);
1398 1399
1399 /* If gigabit and half-duplex, enable carrier extension 1400 /* If gigabit and half-duplex, enable carrier extension
1400 * mode. Else, disable it. 1401 * mode. Else, disable it.
1401 */ 1402 */
1402 if (speed == SPEED_1000 && !full_duplex) { 1403 if (speed == SPEED_1000 && !full_duplex) {
1403 val = readl(gp->regs + MAC_TXCFG); 1404 val = readl(gp->regs + MAC_TXCFG);
1404 writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG); 1405 writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1405 1406
1406 val = readl(gp->regs + MAC_RXCFG); 1407 val = readl(gp->regs + MAC_RXCFG);
1407 writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG); 1408 writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1408 } else { 1409 } else {
1409 val = readl(gp->regs + MAC_TXCFG); 1410 val = readl(gp->regs + MAC_TXCFG);
1410 writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG); 1411 writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1411 1412
1412 val = readl(gp->regs + MAC_RXCFG); 1413 val = readl(gp->regs + MAC_RXCFG);
1413 writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG); 1414 writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1414 } 1415 }
1415 1416
1416 if (gp->phy_type == phy_serialink || 1417 if (gp->phy_type == phy_serialink ||
1417 gp->phy_type == phy_serdes) { 1418 gp->phy_type == phy_serdes) {
1418 u32 pcs_lpa = readl(gp->regs + PCS_MIILP); 1419 u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1419 1420
1420 if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP)) 1421 if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
1421 pause = 1; 1422 pause = 1;
1422 } 1423 }
1423 1424
1424 if (!full_duplex) 1425 if (!full_duplex)
1425 writel(512, gp->regs + MAC_STIME); 1426 writel(512, gp->regs + MAC_STIME);
1426 else 1427 else
1427 writel(64, gp->regs + MAC_STIME); 1428 writel(64, gp->regs + MAC_STIME);
1428 val = readl(gp->regs + MAC_MCCFG); 1429 val = readl(gp->regs + MAC_MCCFG);
1429 if (pause) 1430 if (pause)
1430 val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE); 1431 val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1431 else 1432 else
1432 val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE); 1433 val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1433 writel(val, gp->regs + MAC_MCCFG); 1434 writel(val, gp->regs + MAC_MCCFG);
1434 1435
1435 gem_start_dma(gp); 1436 gem_start_dma(gp);
1436 1437
1437 __netif_tx_unlock(txq); 1438 __netif_tx_unlock(txq);
1438 1439
1439 if (netif_msg_link(gp)) { 1440 if (netif_msg_link(gp)) {
1440 if (pause) { 1441 if (pause) {
1441 netdev_info(gp->dev, 1442 netdev_info(gp->dev,
1442 "Pause is enabled (rxfifo: %d off: %d on: %d)\n", 1443 "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
1443 gp->rx_fifo_sz, 1444 gp->rx_fifo_sz,
1444 gp->rx_pause_off, 1445 gp->rx_pause_off,
1445 gp->rx_pause_on); 1446 gp->rx_pause_on);
1446 } else { 1447 } else {
1447 netdev_info(gp->dev, "Pause is disabled\n"); 1448 netdev_info(gp->dev, "Pause is disabled\n");
1448 } 1449 }
1449 } 1450 }
1450 1451
1451 return 0; 1452 return 0;
1452 } 1453 }
1453 1454
1454 static int gem_mdio_link_not_up(struct gem *gp) 1455 static int gem_mdio_link_not_up(struct gem *gp)
1455 { 1456 {
1456 switch (gp->lstate) { 1457 switch (gp->lstate) {
1457 case link_force_ret: 1458 case link_force_ret:
1458 netif_info(gp, link, gp->dev, 1459 netif_info(gp, link, gp->dev,
1459 "Autoneg failed again, keeping forced mode\n"); 1460 "Autoneg failed again, keeping forced mode\n");
1460 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, 1461 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
1461 gp->last_forced_speed, DUPLEX_HALF); 1462 gp->last_forced_speed, DUPLEX_HALF);
1462 gp->timer_ticks = 5; 1463 gp->timer_ticks = 5;
1463 gp->lstate = link_force_ok; 1464 gp->lstate = link_force_ok;
1464 return 0; 1465 return 0;
1465 case link_aneg: 1466 case link_aneg:
1466 /* We try forced modes after a failed aneg only on PHYs that don't 1467 /* We try forced modes after a failed aneg only on PHYs that don't
1467 * have "magic_aneg" bit set, which means they internally do the 1468 * have "magic_aneg" bit set, which means they internally do the
1468 * while forced-mode thingy. On these, we just restart aneg 1469 * while forced-mode thingy. On these, we just restart aneg
1469 */ 1470 */
1470 if (gp->phy_mii.def->magic_aneg) 1471 if (gp->phy_mii.def->magic_aneg)
1471 return 1; 1472 return 1;
1472 netif_info(gp, link, gp->dev, "switching to forced 100bt\n"); 1473 netif_info(gp, link, gp->dev, "switching to forced 100bt\n");
1473 /* Try forced modes. */ 1474 /* Try forced modes. */
1474 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100, 1475 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
1475 DUPLEX_HALF); 1476 DUPLEX_HALF);
1476 gp->timer_ticks = 5; 1477 gp->timer_ticks = 5;
1477 gp->lstate = link_force_try; 1478 gp->lstate = link_force_try;
1478 return 0; 1479 return 0;
1479 case link_force_try: 1480 case link_force_try:
1480 /* Downgrade from 100 to 10 Mbps if necessary. 1481 /* Downgrade from 100 to 10 Mbps if necessary.
1481 * If already at 10Mbps, warn user about the 1482 * If already at 10Mbps, warn user about the
1482 * situation every 10 ticks. 1483 * situation every 10 ticks.
1483 */ 1484 */
1484 if (gp->phy_mii.speed == SPEED_100) { 1485 if (gp->phy_mii.speed == SPEED_100) {
1485 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10, 1486 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
1486 DUPLEX_HALF); 1487 DUPLEX_HALF);
1487 gp->timer_ticks = 5; 1488 gp->timer_ticks = 5;
1488 netif_info(gp, link, gp->dev, 1489 netif_info(gp, link, gp->dev,
1489 "switching to forced 10bt\n"); 1490 "switching to forced 10bt\n");
1490 return 0; 1491 return 0;
1491 } else 1492 } else
1492 return 1; 1493 return 1;
1493 default: 1494 default:
1494 return 0; 1495 return 0;
1495 } 1496 }
1496 } 1497 }
1497 1498
1498 static void gem_link_timer(unsigned long data) 1499 static void gem_link_timer(unsigned long data)
1499 { 1500 {
1500 struct gem *gp = (struct gem *) data; 1501 struct gem *gp = (struct gem *) data;
1501 struct net_device *dev = gp->dev; 1502 struct net_device *dev = gp->dev;
1502 int restart_aneg = 0; 1503 int restart_aneg = 0;
1503 1504
1504 /* There's no point doing anything if we're going to be reset */ 1505 /* There's no point doing anything if we're going to be reset */
1505 if (gp->reset_task_pending) 1506 if (gp->reset_task_pending)
1506 return; 1507 return;
1507 1508
1508 if (gp->phy_type == phy_serialink || 1509 if (gp->phy_type == phy_serialink ||
1509 gp->phy_type == phy_serdes) { 1510 gp->phy_type == phy_serdes) {
1510 u32 val = readl(gp->regs + PCS_MIISTAT); 1511 u32 val = readl(gp->regs + PCS_MIISTAT);
1511 1512
1512 if (!(val & PCS_MIISTAT_LS)) 1513 if (!(val & PCS_MIISTAT_LS))
1513 val = readl(gp->regs + PCS_MIISTAT); 1514 val = readl(gp->regs + PCS_MIISTAT);
1514 1515
1515 if ((val & PCS_MIISTAT_LS) != 0) { 1516 if ((val & PCS_MIISTAT_LS) != 0) {
1516 if (gp->lstate == link_up) 1517 if (gp->lstate == link_up)
1517 goto restart; 1518 goto restart;
1518 1519
1519 gp->lstate = link_up; 1520 gp->lstate = link_up;
1520 netif_carrier_on(dev); 1521 netif_carrier_on(dev);
1521 (void)gem_set_link_modes(gp); 1522 (void)gem_set_link_modes(gp);
1522 } 1523 }
1523 goto restart; 1524 goto restart;
1524 } 1525 }
1525 if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) { 1526 if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
1526 /* Ok, here we got a link. If we had it due to a forced 1527 /* Ok, here we got a link. If we had it due to a forced
1527 * fallback, and we were configured for autoneg, we do 1528 * fallback, and we were configured for autoneg, we do
1528 * retry a short autoneg pass. If you know your hub is 1529 * retry a short autoneg pass. If you know your hub is
1529 * broken, use ethtool ;) 1530 * broken, use ethtool ;)
1530 */ 1531 */
1531 if (gp->lstate == link_force_try && gp->want_autoneg) { 1532 if (gp->lstate == link_force_try && gp->want_autoneg) {
1532 gp->lstate = link_force_ret; 1533 gp->lstate = link_force_ret;
1533 gp->last_forced_speed = gp->phy_mii.speed; 1534 gp->last_forced_speed = gp->phy_mii.speed;
1534 gp->timer_ticks = 5; 1535 gp->timer_ticks = 5;
1535 if (netif_msg_link(gp)) 1536 if (netif_msg_link(gp))
1536 netdev_info(dev, 1537 netdev_info(dev,
1537 "Got link after fallback, retrying autoneg once...\n"); 1538 "Got link after fallback, retrying autoneg once...\n");
1538 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising); 1539 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
1539 } else if (gp->lstate != link_up) { 1540 } else if (gp->lstate != link_up) {
1540 gp->lstate = link_up; 1541 gp->lstate = link_up;
1541 netif_carrier_on(dev); 1542 netif_carrier_on(dev);
1542 if (gem_set_link_modes(gp)) 1543 if (gem_set_link_modes(gp))
1543 restart_aneg = 1; 1544 restart_aneg = 1;
1544 } 1545 }
1545 } else { 1546 } else {
1546 /* If the link was previously up, we restart the 1547 /* If the link was previously up, we restart the
1547 * whole process 1548 * whole process
1548 */ 1549 */
1549 if (gp->lstate == link_up) { 1550 if (gp->lstate == link_up) {
1550 gp->lstate = link_down; 1551 gp->lstate = link_down;
1551 netif_info(gp, link, dev, "Link down\n"); 1552 netif_info(gp, link, dev, "Link down\n");
1552 netif_carrier_off(dev); 1553 netif_carrier_off(dev);
1553 gem_schedule_reset(gp); 1554 gem_schedule_reset(gp);
1554 /* The reset task will restart the timer */ 1555 /* The reset task will restart the timer */
1555 return; 1556 return;
1556 } else if (++gp->timer_ticks > 10) { 1557 } else if (++gp->timer_ticks > 10) {
1557 if (found_mii_phy(gp)) 1558 if (found_mii_phy(gp))
1558 restart_aneg = gem_mdio_link_not_up(gp); 1559 restart_aneg = gem_mdio_link_not_up(gp);
1559 else 1560 else
1560 restart_aneg = 1; 1561 restart_aneg = 1;
1561 } 1562 }
1562 } 1563 }
1563 if (restart_aneg) { 1564 if (restart_aneg) {
1564 gem_begin_auto_negotiation(gp, NULL); 1565 gem_begin_auto_negotiation(gp, NULL);
1565 return; 1566 return;
1566 } 1567 }
1567 restart: 1568 restart:
1568 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10)); 1569 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1569 } 1570 }
1570 1571
1571 static void gem_clean_rings(struct gem *gp) 1572 static void gem_clean_rings(struct gem *gp)
1572 { 1573 {
1573 struct gem_init_block *gb = gp->init_block; 1574 struct gem_init_block *gb = gp->init_block;
1574 struct sk_buff *skb; 1575 struct sk_buff *skb;
1575 int i; 1576 int i;
1576 dma_addr_t dma_addr; 1577 dma_addr_t dma_addr;
1577 1578
1578 for (i = 0; i < RX_RING_SIZE; i++) { 1579 for (i = 0; i < RX_RING_SIZE; i++) {
1579 struct gem_rxd *rxd; 1580 struct gem_rxd *rxd;
1580 1581
1581 rxd = &gb->rxd[i]; 1582 rxd = &gb->rxd[i];
1582 if (gp->rx_skbs[i] != NULL) { 1583 if (gp->rx_skbs[i] != NULL) {
1583 skb = gp->rx_skbs[i]; 1584 skb = gp->rx_skbs[i];
1584 dma_addr = le64_to_cpu(rxd->buffer); 1585 dma_addr = le64_to_cpu(rxd->buffer);
1585 pci_unmap_page(gp->pdev, dma_addr, 1586 pci_unmap_page(gp->pdev, dma_addr,
1586 RX_BUF_ALLOC_SIZE(gp), 1587 RX_BUF_ALLOC_SIZE(gp),
1587 PCI_DMA_FROMDEVICE); 1588 PCI_DMA_FROMDEVICE);
1588 dev_kfree_skb_any(skb); 1589 dev_kfree_skb_any(skb);
1589 gp->rx_skbs[i] = NULL; 1590 gp->rx_skbs[i] = NULL;
1590 } 1591 }
1591 rxd->status_word = 0; 1592 rxd->status_word = 0;
1592 wmb(); 1593 wmb();
1593 rxd->buffer = 0; 1594 rxd->buffer = 0;
1594 } 1595 }
1595 1596
1596 for (i = 0; i < TX_RING_SIZE; i++) { 1597 for (i = 0; i < TX_RING_SIZE; i++) {
1597 if (gp->tx_skbs[i] != NULL) { 1598 if (gp->tx_skbs[i] != NULL) {
1598 struct gem_txd *txd; 1599 struct gem_txd *txd;
1599 int frag; 1600 int frag;
1600 1601
1601 skb = gp->tx_skbs[i]; 1602 skb = gp->tx_skbs[i];
1602 gp->tx_skbs[i] = NULL; 1603 gp->tx_skbs[i] = NULL;
1603 1604
1604 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { 1605 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1605 int ent = i & (TX_RING_SIZE - 1); 1606 int ent = i & (TX_RING_SIZE - 1);
1606 1607
1607 txd = &gb->txd[ent]; 1608 txd = &gb->txd[ent];
1608 dma_addr = le64_to_cpu(txd->buffer); 1609 dma_addr = le64_to_cpu(txd->buffer);
1609 pci_unmap_page(gp->pdev, dma_addr, 1610 pci_unmap_page(gp->pdev, dma_addr,
1610 le64_to_cpu(txd->control_word) & 1611 le64_to_cpu(txd->control_word) &
1611 TXDCTRL_BUFSZ, PCI_DMA_TODEVICE); 1612 TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
1612 1613
1613 if (frag != skb_shinfo(skb)->nr_frags) 1614 if (frag != skb_shinfo(skb)->nr_frags)
1614 i++; 1615 i++;
1615 } 1616 }
1616 dev_kfree_skb_any(skb); 1617 dev_kfree_skb_any(skb);
1617 } 1618 }
1618 } 1619 }
1619 } 1620 }
1620 1621
1621 static void gem_init_rings(struct gem *gp) 1622 static void gem_init_rings(struct gem *gp)
1622 { 1623 {
1623 struct gem_init_block *gb = gp->init_block; 1624 struct gem_init_block *gb = gp->init_block;
1624 struct net_device *dev = gp->dev; 1625 struct net_device *dev = gp->dev;
1625 int i; 1626 int i;
1626 dma_addr_t dma_addr; 1627 dma_addr_t dma_addr;
1627 1628
1628 gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0; 1629 gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
1629 1630
1630 gem_clean_rings(gp); 1631 gem_clean_rings(gp);
1631 1632
1632 gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN, 1633 gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
1633 (unsigned)VLAN_ETH_FRAME_LEN); 1634 (unsigned)VLAN_ETH_FRAME_LEN);
1634 1635
1635 for (i = 0; i < RX_RING_SIZE; i++) { 1636 for (i = 0; i < RX_RING_SIZE; i++) {
1636 struct sk_buff *skb; 1637 struct sk_buff *skb;
1637 struct gem_rxd *rxd = &gb->rxd[i]; 1638 struct gem_rxd *rxd = &gb->rxd[i];
1638 1639
1639 skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL); 1640 skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL);
1640 if (!skb) { 1641 if (!skb) {
1641 rxd->buffer = 0; 1642 rxd->buffer = 0;
1642 rxd->status_word = 0; 1643 rxd->status_word = 0;
1643 continue; 1644 continue;
1644 } 1645 }
1645 1646
1646 gp->rx_skbs[i] = skb; 1647 gp->rx_skbs[i] = skb;
1647 skb_put(skb, (gp->rx_buf_sz + RX_OFFSET)); 1648 skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
1648 dma_addr = pci_map_page(gp->pdev, 1649 dma_addr = pci_map_page(gp->pdev,
1649 virt_to_page(skb->data), 1650 virt_to_page(skb->data),
1650 offset_in_page(skb->data), 1651 offset_in_page(skb->data),
1651 RX_BUF_ALLOC_SIZE(gp), 1652 RX_BUF_ALLOC_SIZE(gp),
1652 PCI_DMA_FROMDEVICE); 1653 PCI_DMA_FROMDEVICE);
1653 rxd->buffer = cpu_to_le64(dma_addr); 1654 rxd->buffer = cpu_to_le64(dma_addr);
1654 wmb(); 1655 wmb();
1655 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp)); 1656 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
1656 skb_reserve(skb, RX_OFFSET); 1657 skb_reserve(skb, RX_OFFSET);
1657 } 1658 }
1658 1659
1659 for (i = 0; i < TX_RING_SIZE; i++) { 1660 for (i = 0; i < TX_RING_SIZE; i++) {
1660 struct gem_txd *txd = &gb->txd[i]; 1661 struct gem_txd *txd = &gb->txd[i];
1661 1662
1662 txd->control_word = 0; 1663 txd->control_word = 0;
1663 wmb(); 1664 wmb();
1664 txd->buffer = 0; 1665 txd->buffer = 0;
1665 } 1666 }
1666 wmb(); 1667 wmb();
1667 } 1668 }
1668 1669
1669 /* Init PHY interface and start link poll state machine */ 1670 /* Init PHY interface and start link poll state machine */
1670 static void gem_init_phy(struct gem *gp) 1671 static void gem_init_phy(struct gem *gp)
1671 { 1672 {
1672 u32 mifcfg; 1673 u32 mifcfg;
1673 1674
1674 /* Revert MIF CFG setting done on stop_phy */ 1675 /* Revert MIF CFG setting done on stop_phy */
1675 mifcfg = readl(gp->regs + MIF_CFG); 1676 mifcfg = readl(gp->regs + MIF_CFG);
1676 mifcfg &= ~MIF_CFG_BBMODE; 1677 mifcfg &= ~MIF_CFG_BBMODE;
1677 writel(mifcfg, gp->regs + MIF_CFG); 1678 writel(mifcfg, gp->regs + MIF_CFG);
1678 1679
1679 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) { 1680 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
1680 int i; 1681 int i;
1681 1682
1682 /* Those delay sucks, the HW seem to love them though, I'll 1683 /* Those delay sucks, the HW seem to love them though, I'll
1683 * serisouly consider breaking some locks here to be able 1684 * serisouly consider breaking some locks here to be able
1684 * to schedule instead 1685 * to schedule instead
1685 */ 1686 */
1686 for (i = 0; i < 3; i++) { 1687 for (i = 0; i < 3; i++) {
1687 #ifdef CONFIG_PPC_PMAC 1688 #ifdef CONFIG_PPC_PMAC
1688 pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0); 1689 pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
1689 msleep(20); 1690 msleep(20);
1690 #endif 1691 #endif
1691 /* Some PHYs used by apple have problem getting back to us, 1692 /* Some PHYs used by apple have problem getting back to us,
1692 * we do an additional reset here 1693 * we do an additional reset here
1693 */ 1694 */
1694 phy_write(gp, MII_BMCR, BMCR_RESET); 1695 phy_write(gp, MII_BMCR, BMCR_RESET);
1695 msleep(20); 1696 msleep(20);
1696 if (phy_read(gp, MII_BMCR) != 0xffff) 1697 if (phy_read(gp, MII_BMCR) != 0xffff)
1697 break; 1698 break;
1698 if (i == 2) 1699 if (i == 2)
1699 netdev_warn(gp->dev, "GMAC PHY not responding !\n"); 1700 netdev_warn(gp->dev, "GMAC PHY not responding !\n");
1700 } 1701 }
1701 } 1702 }
1702 1703
1703 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN && 1704 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
1704 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) { 1705 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
1705 u32 val; 1706 u32 val;
1706 1707
1707 /* Init datapath mode register. */ 1708 /* Init datapath mode register. */
1708 if (gp->phy_type == phy_mii_mdio0 || 1709 if (gp->phy_type == phy_mii_mdio0 ||
1709 gp->phy_type == phy_mii_mdio1) { 1710 gp->phy_type == phy_mii_mdio1) {
1710 val = PCS_DMODE_MGM; 1711 val = PCS_DMODE_MGM;
1711 } else if (gp->phy_type == phy_serialink) { 1712 } else if (gp->phy_type == phy_serialink) {
1712 val = PCS_DMODE_SM | PCS_DMODE_GMOE; 1713 val = PCS_DMODE_SM | PCS_DMODE_GMOE;
1713 } else { 1714 } else {
1714 val = PCS_DMODE_ESM; 1715 val = PCS_DMODE_ESM;
1715 } 1716 }
1716 1717
1717 writel(val, gp->regs + PCS_DMODE); 1718 writel(val, gp->regs + PCS_DMODE);
1718 } 1719 }
1719 1720
1720 if (gp->phy_type == phy_mii_mdio0 || 1721 if (gp->phy_type == phy_mii_mdio0 ||
1721 gp->phy_type == phy_mii_mdio1) { 1722 gp->phy_type == phy_mii_mdio1) {
1722 /* Reset and detect MII PHY */ 1723 /* Reset and detect MII PHY */
1723 mii_phy_probe(&gp->phy_mii, gp->mii_phy_addr); 1724 mii_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
1724 1725
1725 /* Init PHY */ 1726 /* Init PHY */
1726 if (gp->phy_mii.def && gp->phy_mii.def->ops->init) 1727 if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
1727 gp->phy_mii.def->ops->init(&gp->phy_mii); 1728 gp->phy_mii.def->ops->init(&gp->phy_mii);
1728 } else { 1729 } else {
1729 gem_pcs_reset(gp); 1730 gem_pcs_reset(gp);
1730 gem_pcs_reinit_adv(gp); 1731 gem_pcs_reinit_adv(gp);
1731 } 1732 }
1732 1733
1733 /* Default aneg parameters */ 1734 /* Default aneg parameters */
1734 gp->timer_ticks = 0; 1735 gp->timer_ticks = 0;
1735 gp->lstate = link_down; 1736 gp->lstate = link_down;
1736 netif_carrier_off(gp->dev); 1737 netif_carrier_off(gp->dev);
1737 1738
1738 /* Print things out */ 1739 /* Print things out */
1739 if (gp->phy_type == phy_mii_mdio0 || 1740 if (gp->phy_type == phy_mii_mdio0 ||
1740 gp->phy_type == phy_mii_mdio1) 1741 gp->phy_type == phy_mii_mdio1)
1741 netdev_info(gp->dev, "Found %s PHY\n", 1742 netdev_info(gp->dev, "Found %s PHY\n",
1742 gp->phy_mii.def ? gp->phy_mii.def->name : "no"); 1743 gp->phy_mii.def ? gp->phy_mii.def->name : "no");
1743 1744
1744 gem_begin_auto_negotiation(gp, NULL); 1745 gem_begin_auto_negotiation(gp, NULL);
1745 } 1746 }
1746 1747
1747 static void gem_init_dma(struct gem *gp) 1748 static void gem_init_dma(struct gem *gp)
1748 { 1749 {
1749 u64 desc_dma = (u64) gp->gblock_dvma; 1750 u64 desc_dma = (u64) gp->gblock_dvma;
1750 u32 val; 1751 u32 val;
1751 1752
1752 val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE); 1753 val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
1753 writel(val, gp->regs + TXDMA_CFG); 1754 writel(val, gp->regs + TXDMA_CFG);
1754 1755
1755 writel(desc_dma >> 32, gp->regs + TXDMA_DBHI); 1756 writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
1756 writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW); 1757 writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
1757 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd)); 1758 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
1758 1759
1759 writel(0, gp->regs + TXDMA_KICK); 1760 writel(0, gp->regs + TXDMA_KICK);
1760 1761
1761 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) | 1762 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
1762 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128); 1763 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
1763 writel(val, gp->regs + RXDMA_CFG); 1764 writel(val, gp->regs + RXDMA_CFG);
1764 1765
1765 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI); 1766 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
1766 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW); 1767 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
1767 1768
1768 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK); 1769 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1769 1770
1770 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF); 1771 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
1771 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON); 1772 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
1772 writel(val, gp->regs + RXDMA_PTHRESH); 1773 writel(val, gp->regs + RXDMA_PTHRESH);
1773 1774
1774 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN) 1775 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
1775 writel(((5 & RXDMA_BLANK_IPKTS) | 1776 writel(((5 & RXDMA_BLANK_IPKTS) |
1776 ((8 << 12) & RXDMA_BLANK_ITIME)), 1777 ((8 << 12) & RXDMA_BLANK_ITIME)),
1777 gp->regs + RXDMA_BLANK); 1778 gp->regs + RXDMA_BLANK);
1778 else 1779 else
1779 writel(((5 & RXDMA_BLANK_IPKTS) | 1780 writel(((5 & RXDMA_BLANK_IPKTS) |
1780 ((4 << 12) & RXDMA_BLANK_ITIME)), 1781 ((4 << 12) & RXDMA_BLANK_ITIME)),
1781 gp->regs + RXDMA_BLANK); 1782 gp->regs + RXDMA_BLANK);
1782 } 1783 }
1783 1784
1784 static u32 gem_setup_multicast(struct gem *gp) 1785 static u32 gem_setup_multicast(struct gem *gp)
1785 { 1786 {
1786 u32 rxcfg = 0; 1787 u32 rxcfg = 0;
1787 int i; 1788 int i;
1788 1789
1789 if ((gp->dev->flags & IFF_ALLMULTI) || 1790 if ((gp->dev->flags & IFF_ALLMULTI) ||
1790 (netdev_mc_count(gp->dev) > 256)) { 1791 (netdev_mc_count(gp->dev) > 256)) {
1791 for (i=0; i<16; i++) 1792 for (i=0; i<16; i++)
1792 writel(0xffff, gp->regs + MAC_HASH0 + (i << 2)); 1793 writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
1793 rxcfg |= MAC_RXCFG_HFE; 1794 rxcfg |= MAC_RXCFG_HFE;
1794 } else if (gp->dev->flags & IFF_PROMISC) { 1795 } else if (gp->dev->flags & IFF_PROMISC) {
1795 rxcfg |= MAC_RXCFG_PROM; 1796 rxcfg |= MAC_RXCFG_PROM;
1796 } else { 1797 } else {
1797 u16 hash_table[16]; 1798 u16 hash_table[16];
1798 u32 crc; 1799 u32 crc;
1799 struct netdev_hw_addr *ha; 1800 struct netdev_hw_addr *ha;
1800 int i; 1801 int i;
1801 1802
1802 memset(hash_table, 0, sizeof(hash_table)); 1803 memset(hash_table, 0, sizeof(hash_table));
1803 netdev_for_each_mc_addr(ha, gp->dev) { 1804 netdev_for_each_mc_addr(ha, gp->dev) {
1804 crc = ether_crc_le(6, ha->addr); 1805 crc = ether_crc_le(6, ha->addr);
1805 crc >>= 24; 1806 crc >>= 24;
1806 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf)); 1807 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
1807 } 1808 }
1808 for (i=0; i<16; i++) 1809 for (i=0; i<16; i++)
1809 writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2)); 1810 writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
1810 rxcfg |= MAC_RXCFG_HFE; 1811 rxcfg |= MAC_RXCFG_HFE;
1811 } 1812 }
1812 1813
1813 return rxcfg; 1814 return rxcfg;
1814 } 1815 }
1815 1816
1816 static void gem_init_mac(struct gem *gp) 1817 static void gem_init_mac(struct gem *gp)
1817 { 1818 {
1818 unsigned char *e = &gp->dev->dev_addr[0]; 1819 unsigned char *e = &gp->dev->dev_addr[0];
1819 1820
1820 writel(0x1bf0, gp->regs + MAC_SNDPAUSE); 1821 writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
1821 1822
1822 writel(0x00, gp->regs + MAC_IPG0); 1823 writel(0x00, gp->regs + MAC_IPG0);
1823 writel(0x08, gp->regs + MAC_IPG1); 1824 writel(0x08, gp->regs + MAC_IPG1);
1824 writel(0x04, gp->regs + MAC_IPG2); 1825 writel(0x04, gp->regs + MAC_IPG2);
1825 writel(0x40, gp->regs + MAC_STIME); 1826 writel(0x40, gp->regs + MAC_STIME);
1826 writel(0x40, gp->regs + MAC_MINFSZ); 1827 writel(0x40, gp->regs + MAC_MINFSZ);
1827 1828
1828 /* Ethernet payload + header + FCS + optional VLAN tag. */ 1829 /* Ethernet payload + header + FCS + optional VLAN tag. */
1829 writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ); 1830 writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
1830 1831
1831 writel(0x07, gp->regs + MAC_PASIZE); 1832 writel(0x07, gp->regs + MAC_PASIZE);
1832 writel(0x04, gp->regs + MAC_JAMSIZE); 1833 writel(0x04, gp->regs + MAC_JAMSIZE);
1833 writel(0x10, gp->regs + MAC_ATTLIM); 1834 writel(0x10, gp->regs + MAC_ATTLIM);
1834 writel(0x8808, gp->regs + MAC_MCTYPE); 1835 writel(0x8808, gp->regs + MAC_MCTYPE);
1835 1836
1836 writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED); 1837 writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
1837 1838
1838 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0); 1839 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
1839 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1); 1840 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
1840 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2); 1841 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
1841 1842
1842 writel(0, gp->regs + MAC_ADDR3); 1843 writel(0, gp->regs + MAC_ADDR3);
1843 writel(0, gp->regs + MAC_ADDR4); 1844 writel(0, gp->regs + MAC_ADDR4);
1844 writel(0, gp->regs + MAC_ADDR5); 1845 writel(0, gp->regs + MAC_ADDR5);
1845 1846
1846 writel(0x0001, gp->regs + MAC_ADDR6); 1847 writel(0x0001, gp->regs + MAC_ADDR6);
1847 writel(0xc200, gp->regs + MAC_ADDR7); 1848 writel(0xc200, gp->regs + MAC_ADDR7);
1848 writel(0x0180, gp->regs + MAC_ADDR8); 1849 writel(0x0180, gp->regs + MAC_ADDR8);
1849 1850
1850 writel(0, gp->regs + MAC_AFILT0); 1851 writel(0, gp->regs + MAC_AFILT0);
1851 writel(0, gp->regs + MAC_AFILT1); 1852 writel(0, gp->regs + MAC_AFILT1);
1852 writel(0, gp->regs + MAC_AFILT2); 1853 writel(0, gp->regs + MAC_AFILT2);
1853 writel(0, gp->regs + MAC_AF21MSK); 1854 writel(0, gp->regs + MAC_AF21MSK);
1854 writel(0, gp->regs + MAC_AF0MSK); 1855 writel(0, gp->regs + MAC_AF0MSK);
1855 1856
1856 gp->mac_rx_cfg = gem_setup_multicast(gp); 1857 gp->mac_rx_cfg = gem_setup_multicast(gp);
1857 #ifdef STRIP_FCS 1858 #ifdef STRIP_FCS
1858 gp->mac_rx_cfg |= MAC_RXCFG_SFCS; 1859 gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
1859 #endif 1860 #endif
1860 writel(0, gp->regs + MAC_NCOLL); 1861 writel(0, gp->regs + MAC_NCOLL);
1861 writel(0, gp->regs + MAC_FASUCC); 1862 writel(0, gp->regs + MAC_FASUCC);
1862 writel(0, gp->regs + MAC_ECOLL); 1863 writel(0, gp->regs + MAC_ECOLL);
1863 writel(0, gp->regs + MAC_LCOLL); 1864 writel(0, gp->regs + MAC_LCOLL);
1864 writel(0, gp->regs + MAC_DTIMER); 1865 writel(0, gp->regs + MAC_DTIMER);
1865 writel(0, gp->regs + MAC_PATMPS); 1866 writel(0, gp->regs + MAC_PATMPS);
1866 writel(0, gp->regs + MAC_RFCTR); 1867 writel(0, gp->regs + MAC_RFCTR);
1867 writel(0, gp->regs + MAC_LERR); 1868 writel(0, gp->regs + MAC_LERR);
1868 writel(0, gp->regs + MAC_AERR); 1869 writel(0, gp->regs + MAC_AERR);
1869 writel(0, gp->regs + MAC_FCSERR); 1870 writel(0, gp->regs + MAC_FCSERR);
1870 writel(0, gp->regs + MAC_RXCVERR); 1871 writel(0, gp->regs + MAC_RXCVERR);
1871 1872
1872 /* Clear RX/TX/MAC/XIF config, we will set these up and enable 1873 /* Clear RX/TX/MAC/XIF config, we will set these up and enable
1873 * them once a link is established. 1874 * them once a link is established.
1874 */ 1875 */
1875 writel(0, gp->regs + MAC_TXCFG); 1876 writel(0, gp->regs + MAC_TXCFG);
1876 writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG); 1877 writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
1877 writel(0, gp->regs + MAC_MCCFG); 1878 writel(0, gp->regs + MAC_MCCFG);
1878 writel(0, gp->regs + MAC_XIFCFG); 1879 writel(0, gp->regs + MAC_XIFCFG);
1879 1880
1880 /* Setup MAC interrupts. We want to get all of the interesting 1881 /* Setup MAC interrupts. We want to get all of the interesting
1881 * counter expiration events, but we do not want to hear about 1882 * counter expiration events, but we do not want to hear about
1882 * normal rx/tx as the DMA engine tells us that. 1883 * normal rx/tx as the DMA engine tells us that.
1883 */ 1884 */
1884 writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK); 1885 writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
1885 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK); 1886 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
1886 1887
1887 /* Don't enable even the PAUSE interrupts for now, we 1888 /* Don't enable even the PAUSE interrupts for now, we
1888 * make no use of those events other than to record them. 1889 * make no use of those events other than to record them.
1889 */ 1890 */
1890 writel(0xffffffff, gp->regs + MAC_MCMASK); 1891 writel(0xffffffff, gp->regs + MAC_MCMASK);
1891 1892
1892 /* Don't enable GEM's WOL in normal operations 1893 /* Don't enable GEM's WOL in normal operations
1893 */ 1894 */
1894 if (gp->has_wol) 1895 if (gp->has_wol)
1895 writel(0, gp->regs + WOL_WAKECSR); 1896 writel(0, gp->regs + WOL_WAKECSR);
1896 } 1897 }
1897 1898
1898 static void gem_init_pause_thresholds(struct gem *gp) 1899 static void gem_init_pause_thresholds(struct gem *gp)
1899 { 1900 {
1900 u32 cfg; 1901 u32 cfg;
1901 1902
1902 /* Calculate pause thresholds. Setting the OFF threshold to the 1903 /* Calculate pause thresholds. Setting the OFF threshold to the
1903 * full RX fifo size effectively disables PAUSE generation which 1904 * full RX fifo size effectively disables PAUSE generation which
1904 * is what we do for 10/100 only GEMs which have FIFOs too small 1905 * is what we do for 10/100 only GEMs which have FIFOs too small
1905 * to make real gains from PAUSE. 1906 * to make real gains from PAUSE.
1906 */ 1907 */
1907 if (gp->rx_fifo_sz <= (2 * 1024)) { 1908 if (gp->rx_fifo_sz <= (2 * 1024)) {
1908 gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz; 1909 gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
1909 } else { 1910 } else {
1910 int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63; 1911 int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
1911 int off = (gp->rx_fifo_sz - (max_frame * 2)); 1912 int off = (gp->rx_fifo_sz - (max_frame * 2));
1912 int on = off - max_frame; 1913 int on = off - max_frame;
1913 1914
1914 gp->rx_pause_off = off; 1915 gp->rx_pause_off = off;
1915 gp->rx_pause_on = on; 1916 gp->rx_pause_on = on;
1916 } 1917 }
1917 1918
1918 1919
1919 /* Configure the chip "burst" DMA mode & enable some 1920 /* Configure the chip "burst" DMA mode & enable some
1920 * HW bug fixes on Apple version 1921 * HW bug fixes on Apple version
1921 */ 1922 */
1922 cfg = 0; 1923 cfg = 0;
1923 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) 1924 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
1924 cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX; 1925 cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
1925 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA) 1926 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1926 cfg |= GREG_CFG_IBURST; 1927 cfg |= GREG_CFG_IBURST;
1927 #endif 1928 #endif
1928 cfg |= ((31 << 1) & GREG_CFG_TXDMALIM); 1929 cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
1929 cfg |= ((31 << 6) & GREG_CFG_RXDMALIM); 1930 cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
1930 writel(cfg, gp->regs + GREG_CFG); 1931 writel(cfg, gp->regs + GREG_CFG);
1931 1932
1932 /* If Infinite Burst didn't stick, then use different 1933 /* If Infinite Burst didn't stick, then use different
1933 * thresholds (and Apple bug fixes don't exist) 1934 * thresholds (and Apple bug fixes don't exist)
1934 */ 1935 */
1935 if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) { 1936 if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
1936 cfg = ((2 << 1) & GREG_CFG_TXDMALIM); 1937 cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
1937 cfg |= ((8 << 6) & GREG_CFG_RXDMALIM); 1938 cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
1938 writel(cfg, gp->regs + GREG_CFG); 1939 writel(cfg, gp->regs + GREG_CFG);
1939 } 1940 }
1940 } 1941 }
1941 1942
1942 static int gem_check_invariants(struct gem *gp) 1943 static int gem_check_invariants(struct gem *gp)
1943 { 1944 {
1944 struct pci_dev *pdev = gp->pdev; 1945 struct pci_dev *pdev = gp->pdev;
1945 u32 mif_cfg; 1946 u32 mif_cfg;
1946 1947
1947 /* On Apple's sungem, we can't rely on registers as the chip 1948 /* On Apple's sungem, we can't rely on registers as the chip
1948 * was been powered down by the firmware. The PHY is looked 1949 * was been powered down by the firmware. The PHY is looked
1949 * up later on. 1950 * up later on.
1950 */ 1951 */
1951 if (pdev->vendor == PCI_VENDOR_ID_APPLE) { 1952 if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
1952 gp->phy_type = phy_mii_mdio0; 1953 gp->phy_type = phy_mii_mdio0;
1953 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64; 1954 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
1954 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64; 1955 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
1955 gp->swrst_base = 0; 1956 gp->swrst_base = 0;
1956 1957
1957 mif_cfg = readl(gp->regs + MIF_CFG); 1958 mif_cfg = readl(gp->regs + MIF_CFG);
1958 mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1); 1959 mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
1959 mif_cfg |= MIF_CFG_MDI0; 1960 mif_cfg |= MIF_CFG_MDI0;
1960 writel(mif_cfg, gp->regs + MIF_CFG); 1961 writel(mif_cfg, gp->regs + MIF_CFG);
1961 writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE); 1962 writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
1962 writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG); 1963 writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
1963 1964
1964 /* We hard-code the PHY address so we can properly bring it out of 1965 /* We hard-code the PHY address so we can properly bring it out of
1965 * reset later on, we can't really probe it at this point, though 1966 * reset later on, we can't really probe it at this point, though
1966 * that isn't an issue. 1967 * that isn't an issue.
1967 */ 1968 */
1968 if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC) 1969 if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
1969 gp->mii_phy_addr = 1; 1970 gp->mii_phy_addr = 1;
1970 else 1971 else
1971 gp->mii_phy_addr = 0; 1972 gp->mii_phy_addr = 0;
1972 1973
1973 return 0; 1974 return 0;
1974 } 1975 }
1975 1976
1976 mif_cfg = readl(gp->regs + MIF_CFG); 1977 mif_cfg = readl(gp->regs + MIF_CFG);
1977 1978
1978 if (pdev->vendor == PCI_VENDOR_ID_SUN && 1979 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
1979 pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) { 1980 pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
1980 /* One of the MII PHYs _must_ be present 1981 /* One of the MII PHYs _must_ be present
1981 * as this chip has no gigabit PHY. 1982 * as this chip has no gigabit PHY.
1982 */ 1983 */
1983 if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) { 1984 if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
1984 pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n", 1985 pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
1985 mif_cfg); 1986 mif_cfg);
1986 return -1; 1987 return -1;
1987 } 1988 }
1988 } 1989 }
1989 1990
1990 /* Determine initial PHY interface type guess. MDIO1 is the 1991 /* Determine initial PHY interface type guess. MDIO1 is the
1991 * external PHY and thus takes precedence over MDIO0. 1992 * external PHY and thus takes precedence over MDIO0.
1992 */ 1993 */
1993 1994
1994 if (mif_cfg & MIF_CFG_MDI1) { 1995 if (mif_cfg & MIF_CFG_MDI1) {
1995 gp->phy_type = phy_mii_mdio1; 1996 gp->phy_type = phy_mii_mdio1;
1996 mif_cfg |= MIF_CFG_PSELECT; 1997 mif_cfg |= MIF_CFG_PSELECT;
1997 writel(mif_cfg, gp->regs + MIF_CFG); 1998 writel(mif_cfg, gp->regs + MIF_CFG);
1998 } else if (mif_cfg & MIF_CFG_MDI0) { 1999 } else if (mif_cfg & MIF_CFG_MDI0) {
1999 gp->phy_type = phy_mii_mdio0; 2000 gp->phy_type = phy_mii_mdio0;
2000 mif_cfg &= ~MIF_CFG_PSELECT; 2001 mif_cfg &= ~MIF_CFG_PSELECT;
2001 writel(mif_cfg, gp->regs + MIF_CFG); 2002 writel(mif_cfg, gp->regs + MIF_CFG);
2002 } else { 2003 } else {
2003 #ifdef CONFIG_SPARC 2004 #ifdef CONFIG_SPARC
2004 const char *p; 2005 const char *p;
2005 2006
2006 p = of_get_property(gp->of_node, "shared-pins", NULL); 2007 p = of_get_property(gp->of_node, "shared-pins", NULL);
2007 if (p && !strcmp(p, "serdes")) 2008 if (p && !strcmp(p, "serdes"))
2008 gp->phy_type = phy_serdes; 2009 gp->phy_type = phy_serdes;
2009 else 2010 else
2010 #endif 2011 #endif
2011 gp->phy_type = phy_serialink; 2012 gp->phy_type = phy_serialink;
2012 } 2013 }
2013 if (gp->phy_type == phy_mii_mdio1 || 2014 if (gp->phy_type == phy_mii_mdio1 ||
2014 gp->phy_type == phy_mii_mdio0) { 2015 gp->phy_type == phy_mii_mdio0) {
2015 int i; 2016 int i;
2016 2017
2017 for (i = 0; i < 32; i++) { 2018 for (i = 0; i < 32; i++) {
2018 gp->mii_phy_addr = i; 2019 gp->mii_phy_addr = i;
2019 if (phy_read(gp, MII_BMCR) != 0xffff) 2020 if (phy_read(gp, MII_BMCR) != 0xffff)
2020 break; 2021 break;
2021 } 2022 }
2022 if (i == 32) { 2023 if (i == 32) {
2023 if (pdev->device != PCI_DEVICE_ID_SUN_GEM) { 2024 if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
2024 pr_err("RIO MII phy will not respond\n"); 2025 pr_err("RIO MII phy will not respond\n");
2025 return -1; 2026 return -1;
2026 } 2027 }
2027 gp->phy_type = phy_serdes; 2028 gp->phy_type = phy_serdes;
2028 } 2029 }
2029 } 2030 }
2030 2031
2031 /* Fetch the FIFO configurations now too. */ 2032 /* Fetch the FIFO configurations now too. */
2032 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64; 2033 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2033 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64; 2034 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2034 2035
2035 if (pdev->vendor == PCI_VENDOR_ID_SUN) { 2036 if (pdev->vendor == PCI_VENDOR_ID_SUN) {
2036 if (pdev->device == PCI_DEVICE_ID_SUN_GEM) { 2037 if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
2037 if (gp->tx_fifo_sz != (9 * 1024) || 2038 if (gp->tx_fifo_sz != (9 * 1024) ||
2038 gp->rx_fifo_sz != (20 * 1024)) { 2039 gp->rx_fifo_sz != (20 * 1024)) {
2039 pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n", 2040 pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2040 gp->tx_fifo_sz, gp->rx_fifo_sz); 2041 gp->tx_fifo_sz, gp->rx_fifo_sz);
2041 return -1; 2042 return -1;
2042 } 2043 }
2043 gp->swrst_base = 0; 2044 gp->swrst_base = 0;
2044 } else { 2045 } else {
2045 if (gp->tx_fifo_sz != (2 * 1024) || 2046 if (gp->tx_fifo_sz != (2 * 1024) ||
2046 gp->rx_fifo_sz != (2 * 1024)) { 2047 gp->rx_fifo_sz != (2 * 1024)) {
2047 pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n", 2048 pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2048 gp->tx_fifo_sz, gp->rx_fifo_sz); 2049 gp->tx_fifo_sz, gp->rx_fifo_sz);
2049 return -1; 2050 return -1;
2050 } 2051 }
2051 gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT; 2052 gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
2052 } 2053 }
2053 } 2054 }
2054 2055
2055 return 0; 2056 return 0;
2056 } 2057 }
2057 2058
2058 static void gem_reinit_chip(struct gem *gp) 2059 static void gem_reinit_chip(struct gem *gp)
2059 { 2060 {
2060 /* Reset the chip */ 2061 /* Reset the chip */
2061 gem_reset(gp); 2062 gem_reset(gp);
2062 2063
2063 /* Make sure ints are disabled */ 2064 /* Make sure ints are disabled */
2064 gem_disable_ints(gp); 2065 gem_disable_ints(gp);
2065 2066
2066 /* Allocate & setup ring buffers */ 2067 /* Allocate & setup ring buffers */
2067 gem_init_rings(gp); 2068 gem_init_rings(gp);
2068 2069
2069 /* Configure pause thresholds */ 2070 /* Configure pause thresholds */
2070 gem_init_pause_thresholds(gp); 2071 gem_init_pause_thresholds(gp);
2071 2072
2072 /* Init DMA & MAC engines */ 2073 /* Init DMA & MAC engines */
2073 gem_init_dma(gp); 2074 gem_init_dma(gp);
2074 gem_init_mac(gp); 2075 gem_init_mac(gp);
2075 } 2076 }
2076 2077
2077 2078
2078 static void gem_stop_phy(struct gem *gp, int wol) 2079 static void gem_stop_phy(struct gem *gp, int wol)
2079 { 2080 {
2080 u32 mifcfg; 2081 u32 mifcfg;
2081 2082
2082 /* Let the chip settle down a bit, it seems that helps 2083 /* Let the chip settle down a bit, it seems that helps
2083 * for sleep mode on some models 2084 * for sleep mode on some models
2084 */ 2085 */
2085 msleep(10); 2086 msleep(10);
2086 2087
2087 /* Make sure we aren't polling PHY status change. We 2088 /* Make sure we aren't polling PHY status change. We
2088 * don't currently use that feature though 2089 * don't currently use that feature though
2089 */ 2090 */
2090 mifcfg = readl(gp->regs + MIF_CFG); 2091 mifcfg = readl(gp->regs + MIF_CFG);
2091 mifcfg &= ~MIF_CFG_POLL; 2092 mifcfg &= ~MIF_CFG_POLL;
2092 writel(mifcfg, gp->regs + MIF_CFG); 2093 writel(mifcfg, gp->regs + MIF_CFG);
2093 2094
2094 if (wol && gp->has_wol) { 2095 if (wol && gp->has_wol) {
2095 unsigned char *e = &gp->dev->dev_addr[0]; 2096 unsigned char *e = &gp->dev->dev_addr[0];
2096 u32 csr; 2097 u32 csr;
2097 2098
2098 /* Setup wake-on-lan for MAGIC packet */ 2099 /* Setup wake-on-lan for MAGIC packet */
2099 writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB, 2100 writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
2100 gp->regs + MAC_RXCFG); 2101 gp->regs + MAC_RXCFG);
2101 writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0); 2102 writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
2102 writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1); 2103 writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
2103 writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2); 2104 writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
2104 2105
2105 writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT); 2106 writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
2106 csr = WOL_WAKECSR_ENABLE; 2107 csr = WOL_WAKECSR_ENABLE;
2107 if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0) 2108 if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
2108 csr |= WOL_WAKECSR_MII; 2109 csr |= WOL_WAKECSR_MII;
2109 writel(csr, gp->regs + WOL_WAKECSR); 2110 writel(csr, gp->regs + WOL_WAKECSR);
2110 } else { 2111 } else {
2111 writel(0, gp->regs + MAC_RXCFG); 2112 writel(0, gp->regs + MAC_RXCFG);
2112 (void)readl(gp->regs + MAC_RXCFG); 2113 (void)readl(gp->regs + MAC_RXCFG);
2113 /* Machine sleep will die in strange ways if we 2114 /* Machine sleep will die in strange ways if we
2114 * dont wait a bit here, looks like the chip takes 2115 * dont wait a bit here, looks like the chip takes
2115 * some time to really shut down 2116 * some time to really shut down
2116 */ 2117 */
2117 msleep(10); 2118 msleep(10);
2118 } 2119 }
2119 2120
2120 writel(0, gp->regs + MAC_TXCFG); 2121 writel(0, gp->regs + MAC_TXCFG);
2121 writel(0, gp->regs + MAC_XIFCFG); 2122 writel(0, gp->regs + MAC_XIFCFG);
2122 writel(0, gp->regs + TXDMA_CFG); 2123 writel(0, gp->regs + TXDMA_CFG);
2123 writel(0, gp->regs + RXDMA_CFG); 2124 writel(0, gp->regs + RXDMA_CFG);
2124 2125
2125 if (!wol) { 2126 if (!wol) {
2126 gem_reset(gp); 2127 gem_reset(gp);
2127 writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST); 2128 writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
2128 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST); 2129 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
2129 2130
2130 if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend) 2131 if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
2131 gp->phy_mii.def->ops->suspend(&gp->phy_mii); 2132 gp->phy_mii.def->ops->suspend(&gp->phy_mii);
2132 2133
2133 /* According to Apple, we must set the MDIO pins to this begnign 2134 /* According to Apple, we must set the MDIO pins to this begnign
2134 * state or we may 1) eat more current, 2) damage some PHYs 2135 * state or we may 1) eat more current, 2) damage some PHYs
2135 */ 2136 */
2136 writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG); 2137 writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
2137 writel(0, gp->regs + MIF_BBCLK); 2138 writel(0, gp->regs + MIF_BBCLK);
2138 writel(0, gp->regs + MIF_BBDATA); 2139 writel(0, gp->regs + MIF_BBDATA);
2139 writel(0, gp->regs + MIF_BBOENAB); 2140 writel(0, gp->regs + MIF_BBOENAB);
2140 writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG); 2141 writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
2141 (void) readl(gp->regs + MAC_XIFCFG); 2142 (void) readl(gp->regs + MAC_XIFCFG);
2142 } 2143 }
2143 } 2144 }
2144 2145
2145 static int gem_do_start(struct net_device *dev) 2146 static int gem_do_start(struct net_device *dev)
2146 { 2147 {
2147 struct gem *gp = netdev_priv(dev); 2148 struct gem *gp = netdev_priv(dev);
2148 int rc; 2149 int rc;
2149 2150
2150 /* Enable the cell */ 2151 /* Enable the cell */
2151 gem_get_cell(gp); 2152 gem_get_cell(gp);
2152 2153
2153 /* Make sure PCI access and bus master are enabled */ 2154 /* Make sure PCI access and bus master are enabled */
2154 rc = pci_enable_device(gp->pdev); 2155 rc = pci_enable_device(gp->pdev);
2155 if (rc) { 2156 if (rc) {
2156 netdev_err(dev, "Failed to enable chip on PCI bus !\n"); 2157 netdev_err(dev, "Failed to enable chip on PCI bus !\n");
2157 2158
2158 /* Put cell and forget it for now, it will be considered as 2159 /* Put cell and forget it for now, it will be considered as
2159 * still asleep, a new sleep cycle may bring it back 2160 * still asleep, a new sleep cycle may bring it back
2160 */ 2161 */
2161 gem_put_cell(gp); 2162 gem_put_cell(gp);
2162 return -ENXIO; 2163 return -ENXIO;
2163 } 2164 }
2164 pci_set_master(gp->pdev); 2165 pci_set_master(gp->pdev);
2165 2166
2166 /* Init & setup chip hardware */ 2167 /* Init & setup chip hardware */
2167 gem_reinit_chip(gp); 2168 gem_reinit_chip(gp);
2168 2169
2169 /* An interrupt might come in handy */ 2170 /* An interrupt might come in handy */
2170 rc = request_irq(gp->pdev->irq, gem_interrupt, 2171 rc = request_irq(gp->pdev->irq, gem_interrupt,
2171 IRQF_SHARED, dev->name, (void *)dev); 2172 IRQF_SHARED, dev->name, (void *)dev);
2172 if (rc) { 2173 if (rc) {
2173 netdev_err(dev, "failed to request irq !\n"); 2174 netdev_err(dev, "failed to request irq !\n");
2174 2175
2175 gem_reset(gp); 2176 gem_reset(gp);
2176 gem_clean_rings(gp); 2177 gem_clean_rings(gp);
2177 gem_put_cell(gp); 2178 gem_put_cell(gp);
2178 return rc; 2179 return rc;
2179 } 2180 }
2180 2181
2181 /* Mark us as attached again if we come from resume(), this has 2182 /* Mark us as attached again if we come from resume(), this has
2182 * no effect if we weren't detatched and needs to be done now. 2183 * no effect if we weren't detatched and needs to be done now.
2183 */ 2184 */
2184 netif_device_attach(dev); 2185 netif_device_attach(dev);
2185 2186
2186 /* Restart NAPI & queues */ 2187 /* Restart NAPI & queues */
2187 gem_netif_start(gp); 2188 gem_netif_start(gp);
2188 2189
2189 /* Detect & init PHY, start autoneg etc... this will 2190 /* Detect & init PHY, start autoneg etc... this will
2190 * eventually result in starting DMA operations when 2191 * eventually result in starting DMA operations when
2191 * the link is up 2192 * the link is up
2192 */ 2193 */
2193 gem_init_phy(gp); 2194 gem_init_phy(gp);
2194 2195
2195 return 0; 2196 return 0;
2196 } 2197 }
2197 2198
2198 static void gem_do_stop(struct net_device *dev, int wol) 2199 static void gem_do_stop(struct net_device *dev, int wol)
2199 { 2200 {
2200 struct gem *gp = netdev_priv(dev); 2201 struct gem *gp = netdev_priv(dev);
2201 2202
2202 /* Stop NAPI and stop tx queue */ 2203 /* Stop NAPI and stop tx queue */
2203 gem_netif_stop(gp); 2204 gem_netif_stop(gp);
2204 2205
2205 /* Make sure ints are disabled. We don't care about 2206 /* Make sure ints are disabled. We don't care about
2206 * synchronizing as NAPI is disabled, thus a stray 2207 * synchronizing as NAPI is disabled, thus a stray
2207 * interrupt will do nothing bad (our irq handler 2208 * interrupt will do nothing bad (our irq handler
2208 * just schedules NAPI) 2209 * just schedules NAPI)
2209 */ 2210 */
2210 gem_disable_ints(gp); 2211 gem_disable_ints(gp);
2211 2212
2212 /* Stop the link timer */ 2213 /* Stop the link timer */
2213 del_timer_sync(&gp->link_timer); 2214 del_timer_sync(&gp->link_timer);
2214 2215
2215 /* We cannot cancel the reset task while holding the 2216 /* We cannot cancel the reset task while holding the
2216 * rtnl lock, we'd get an A->B / B->A deadlock stituation 2217 * rtnl lock, we'd get an A->B / B->A deadlock stituation
2217 * if we did. This is not an issue however as the reset 2218 * if we did. This is not an issue however as the reset
2218 * task is synchronized vs. us (rtnl_lock) and will do 2219 * task is synchronized vs. us (rtnl_lock) and will do
2219 * nothing if the device is down or suspended. We do 2220 * nothing if the device is down or suspended. We do
2220 * still clear reset_task_pending to avoid a spurrious 2221 * still clear reset_task_pending to avoid a spurrious
2221 * reset later on in case we do resume before it gets 2222 * reset later on in case we do resume before it gets
2222 * scheduled. 2223 * scheduled.
2223 */ 2224 */
2224 gp->reset_task_pending = 0; 2225 gp->reset_task_pending = 0;
2225 2226
2226 /* If we are going to sleep with WOL */ 2227 /* If we are going to sleep with WOL */
2227 gem_stop_dma(gp); 2228 gem_stop_dma(gp);
2228 msleep(10); 2229 msleep(10);
2229 if (!wol) 2230 if (!wol)
2230 gem_reset(gp); 2231 gem_reset(gp);
2231 msleep(10); 2232 msleep(10);
2232 2233
2233 /* Get rid of rings */ 2234 /* Get rid of rings */
2234 gem_clean_rings(gp); 2235 gem_clean_rings(gp);
2235 2236
2236 /* No irq needed anymore */ 2237 /* No irq needed anymore */
2237 free_irq(gp->pdev->irq, (void *) dev); 2238 free_irq(gp->pdev->irq, (void *) dev);
2238 2239
2239 /* Shut the PHY down eventually and setup WOL */ 2240 /* Shut the PHY down eventually and setup WOL */
2240 gem_stop_phy(gp, wol); 2241 gem_stop_phy(gp, wol);
2241 2242
2242 /* Make sure bus master is disabled */ 2243 /* Make sure bus master is disabled */
2243 pci_disable_device(gp->pdev); 2244 pci_disable_device(gp->pdev);
2244 2245
2245 /* Cell not needed neither if no WOL */ 2246 /* Cell not needed neither if no WOL */
2246 if (!wol) 2247 if (!wol)
2247 gem_put_cell(gp); 2248 gem_put_cell(gp);
2248 } 2249 }
2249 2250
2250 static void gem_reset_task(struct work_struct *work) 2251 static void gem_reset_task(struct work_struct *work)
2251 { 2252 {
2252 struct gem *gp = container_of(work, struct gem, reset_task); 2253 struct gem *gp = container_of(work, struct gem, reset_task);
2253 2254
2254 /* Lock out the network stack (essentially shield ourselves 2255 /* Lock out the network stack (essentially shield ourselves
2255 * against a racing open, close, control call, or suspend 2256 * against a racing open, close, control call, or suspend
2256 */ 2257 */
2257 rtnl_lock(); 2258 rtnl_lock();
2258 2259
2259 /* Skip the reset task if suspended or closed, or if it's 2260 /* Skip the reset task if suspended or closed, or if it's
2260 * been cancelled by gem_do_stop (see comment there) 2261 * been cancelled by gem_do_stop (see comment there)
2261 */ 2262 */
2262 if (!netif_device_present(gp->dev) || 2263 if (!netif_device_present(gp->dev) ||
2263 !netif_running(gp->dev) || 2264 !netif_running(gp->dev) ||
2264 !gp->reset_task_pending) { 2265 !gp->reset_task_pending) {
2265 rtnl_unlock(); 2266 rtnl_unlock();
2266 return; 2267 return;
2267 } 2268 }
2268 2269
2269 /* Stop the link timer */ 2270 /* Stop the link timer */
2270 del_timer_sync(&gp->link_timer); 2271 del_timer_sync(&gp->link_timer);
2271 2272
2272 /* Stop NAPI and tx */ 2273 /* Stop NAPI and tx */
2273 gem_netif_stop(gp); 2274 gem_netif_stop(gp);
2274 2275
2275 /* Reset the chip & rings */ 2276 /* Reset the chip & rings */
2276 gem_reinit_chip(gp); 2277 gem_reinit_chip(gp);
2277 if (gp->lstate == link_up) 2278 if (gp->lstate == link_up)
2278 gem_set_link_modes(gp); 2279 gem_set_link_modes(gp);
2279 2280
2280 /* Restart NAPI and Tx */ 2281 /* Restart NAPI and Tx */
2281 gem_netif_start(gp); 2282 gem_netif_start(gp);
2282 2283
2283 /* We are back ! */ 2284 /* We are back ! */
2284 gp->reset_task_pending = 0; 2285 gp->reset_task_pending = 0;
2285 2286
2286 /* If the link is not up, restart autoneg, else restart the 2287 /* If the link is not up, restart autoneg, else restart the
2287 * polling timer 2288 * polling timer
2288 */ 2289 */
2289 if (gp->lstate != link_up) 2290 if (gp->lstate != link_up)
2290 gem_begin_auto_negotiation(gp, NULL); 2291 gem_begin_auto_negotiation(gp, NULL);
2291 else 2292 else
2292 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10)); 2293 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
2293 2294
2294 rtnl_unlock(); 2295 rtnl_unlock();
2295 } 2296 }
2296 2297
2297 static int gem_open(struct net_device *dev) 2298 static int gem_open(struct net_device *dev)
2298 { 2299 {
2299 /* We allow open while suspended, we just do nothing, 2300 /* We allow open while suspended, we just do nothing,
2300 * the chip will be initialized in resume() 2301 * the chip will be initialized in resume()
2301 */ 2302 */
2302 if (netif_device_present(dev)) 2303 if (netif_device_present(dev))
2303 return gem_do_start(dev); 2304 return gem_do_start(dev);
2304 return 0; 2305 return 0;
2305 } 2306 }
2306 2307
2307 static int gem_close(struct net_device *dev) 2308 static int gem_close(struct net_device *dev)
2308 { 2309 {
2309 if (netif_device_present(dev)) 2310 if (netif_device_present(dev))
2310 gem_do_stop(dev, 0); 2311 gem_do_stop(dev, 0);
2311 2312
2312 return 0; 2313 return 0;
2313 } 2314 }
2314 2315
2315 #ifdef CONFIG_PM 2316 #ifdef CONFIG_PM
2316 static int gem_suspend(struct pci_dev *pdev, pm_message_t state) 2317 static int gem_suspend(struct pci_dev *pdev, pm_message_t state)
2317 { 2318 {
2318 struct net_device *dev = pci_get_drvdata(pdev); 2319 struct net_device *dev = pci_get_drvdata(pdev);
2319 struct gem *gp = netdev_priv(dev); 2320 struct gem *gp = netdev_priv(dev);
2320 2321
2321 /* Lock the network stack first to avoid racing with open/close, 2322 /* Lock the network stack first to avoid racing with open/close,
2322 * reset task and setting calls 2323 * reset task and setting calls
2323 */ 2324 */
2324 rtnl_lock(); 2325 rtnl_lock();
2325 2326
2326 /* Not running, mark ourselves non-present, no need for 2327 /* Not running, mark ourselves non-present, no need for
2327 * a lock here 2328 * a lock here
2328 */ 2329 */
2329 if (!netif_running(dev)) { 2330 if (!netif_running(dev)) {
2330 netif_device_detach(dev); 2331 netif_device_detach(dev);
2331 rtnl_unlock(); 2332 rtnl_unlock();
2332 return 0; 2333 return 0;
2333 } 2334 }
2334 netdev_info(dev, "suspending, WakeOnLan %s\n", 2335 netdev_info(dev, "suspending, WakeOnLan %s\n",
2335 (gp->wake_on_lan && netif_running(dev)) ? 2336 (gp->wake_on_lan && netif_running(dev)) ?
2336 "enabled" : "disabled"); 2337 "enabled" : "disabled");
2337 2338
2338 /* Tell the network stack we're gone. gem_do_stop() below will 2339 /* Tell the network stack we're gone. gem_do_stop() below will
2339 * synchronize with TX, stop NAPI etc... 2340 * synchronize with TX, stop NAPI etc...
2340 */ 2341 */
2341 netif_device_detach(dev); 2342 netif_device_detach(dev);
2342 2343
2343 /* Switch off chip, remember WOL setting */ 2344 /* Switch off chip, remember WOL setting */
2344 gp->asleep_wol = gp->wake_on_lan; 2345 gp->asleep_wol = gp->wake_on_lan;
2345 gem_do_stop(dev, gp->asleep_wol); 2346 gem_do_stop(dev, gp->asleep_wol);
2346 2347
2347 /* Unlock the network stack */ 2348 /* Unlock the network stack */
2348 rtnl_unlock(); 2349 rtnl_unlock();
2349 2350
2350 return 0; 2351 return 0;
2351 } 2352 }
2352 2353
2353 static int gem_resume(struct pci_dev *pdev) 2354 static int gem_resume(struct pci_dev *pdev)
2354 { 2355 {
2355 struct net_device *dev = pci_get_drvdata(pdev); 2356 struct net_device *dev = pci_get_drvdata(pdev);
2356 struct gem *gp = netdev_priv(dev); 2357 struct gem *gp = netdev_priv(dev);
2357 2358
2358 /* See locking comment in gem_suspend */ 2359 /* See locking comment in gem_suspend */
2359 rtnl_lock(); 2360 rtnl_lock();
2360 2361
2361 /* Not running, mark ourselves present, no need for 2362 /* Not running, mark ourselves present, no need for
2362 * a lock here 2363 * a lock here
2363 */ 2364 */
2364 if (!netif_running(dev)) { 2365 if (!netif_running(dev)) {
2365 netif_device_attach(dev); 2366 netif_device_attach(dev);
2366 rtnl_unlock(); 2367 rtnl_unlock();
2367 return 0; 2368 return 0;
2368 } 2369 }
2369 2370
2370 /* Restart chip. If that fails there isn't much we can do, we 2371 /* Restart chip. If that fails there isn't much we can do, we
2371 * leave things stopped. 2372 * leave things stopped.
2372 */ 2373 */
2373 gem_do_start(dev); 2374 gem_do_start(dev);
2374 2375
2375 /* If we had WOL enabled, the cell clock was never turned off during 2376 /* If we had WOL enabled, the cell clock was never turned off during
2376 * sleep, so we end up beeing unbalanced. Fix that here 2377 * sleep, so we end up beeing unbalanced. Fix that here
2377 */ 2378 */
2378 if (gp->asleep_wol) 2379 if (gp->asleep_wol)
2379 gem_put_cell(gp); 2380 gem_put_cell(gp);
2380 2381
2381 /* Unlock the network stack */ 2382 /* Unlock the network stack */
2382 rtnl_unlock(); 2383 rtnl_unlock();
2383 2384
2384 return 0; 2385 return 0;
2385 } 2386 }
2386 #endif /* CONFIG_PM */ 2387 #endif /* CONFIG_PM */
2387 2388
2388 static struct net_device_stats *gem_get_stats(struct net_device *dev) 2389 static struct net_device_stats *gem_get_stats(struct net_device *dev)
2389 { 2390 {
2390 struct gem *gp = netdev_priv(dev); 2391 struct gem *gp = netdev_priv(dev);
2391 2392
2392 /* I have seen this being called while the PM was in progress, 2393 /* I have seen this being called while the PM was in progress,
2393 * so we shield against this. Let's also not poke at registers 2394 * so we shield against this. Let's also not poke at registers
2394 * while the reset task is going on. 2395 * while the reset task is going on.
2395 * 2396 *
2396 * TODO: Move stats collection elsewhere (link timer ?) and 2397 * TODO: Move stats collection elsewhere (link timer ?) and
2397 * make this a nop to avoid all those synchro issues 2398 * make this a nop to avoid all those synchro issues
2398 */ 2399 */
2399 if (!netif_device_present(dev) || !netif_running(dev)) 2400 if (!netif_device_present(dev) || !netif_running(dev))
2400 goto bail; 2401 goto bail;
2401 2402
2402 /* Better safe than sorry... */ 2403 /* Better safe than sorry... */
2403 if (WARN_ON(!gp->cell_enabled)) 2404 if (WARN_ON(!gp->cell_enabled))
2404 goto bail; 2405 goto bail;
2405 2406
2406 dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR); 2407 dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR);
2407 writel(0, gp->regs + MAC_FCSERR); 2408 writel(0, gp->regs + MAC_FCSERR);
2408 2409
2409 dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR); 2410 dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR);
2410 writel(0, gp->regs + MAC_AERR); 2411 writel(0, gp->regs + MAC_AERR);
2411 2412
2412 dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR); 2413 dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR);
2413 writel(0, gp->regs + MAC_LERR); 2414 writel(0, gp->regs + MAC_LERR);
2414 2415
2415 dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL); 2416 dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
2416 dev->stats.collisions += 2417 dev->stats.collisions +=
2417 (readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL)); 2418 (readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL));
2418 writel(0, gp->regs + MAC_ECOLL); 2419 writel(0, gp->regs + MAC_ECOLL);
2419 writel(0, gp->regs + MAC_LCOLL); 2420 writel(0, gp->regs + MAC_LCOLL);
2420 bail: 2421 bail:
2421 return &dev->stats; 2422 return &dev->stats;
2422 } 2423 }
2423 2424
2424 static int gem_set_mac_address(struct net_device *dev, void *addr) 2425 static int gem_set_mac_address(struct net_device *dev, void *addr)
2425 { 2426 {
2426 struct sockaddr *macaddr = (struct sockaddr *) addr; 2427 struct sockaddr *macaddr = (struct sockaddr *) addr;
2427 struct gem *gp = netdev_priv(dev); 2428 struct gem *gp = netdev_priv(dev);
2428 unsigned char *e = &dev->dev_addr[0]; 2429 unsigned char *e = &dev->dev_addr[0];
2429 2430
2430 if (!is_valid_ether_addr(macaddr->sa_data)) 2431 if (!is_valid_ether_addr(macaddr->sa_data))
2431 return -EADDRNOTAVAIL; 2432 return -EADDRNOTAVAIL;
2432 2433
2433 memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len); 2434 memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
2434 2435
2435 /* We'll just catch it later when the device is up'd or resumed */ 2436 /* We'll just catch it later when the device is up'd or resumed */
2436 if (!netif_running(dev) || !netif_device_present(dev)) 2437 if (!netif_running(dev) || !netif_device_present(dev))
2437 return 0; 2438 return 0;
2438 2439
2439 /* Better safe than sorry... */ 2440 /* Better safe than sorry... */
2440 if (WARN_ON(!gp->cell_enabled)) 2441 if (WARN_ON(!gp->cell_enabled))
2441 return 0; 2442 return 0;
2442 2443
2443 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0); 2444 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
2444 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1); 2445 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
2445 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2); 2446 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
2446 2447
2447 return 0; 2448 return 0;
2448 } 2449 }
2449 2450
2450 static void gem_set_multicast(struct net_device *dev) 2451 static void gem_set_multicast(struct net_device *dev)
2451 { 2452 {
2452 struct gem *gp = netdev_priv(dev); 2453 struct gem *gp = netdev_priv(dev);
2453 u32 rxcfg, rxcfg_new; 2454 u32 rxcfg, rxcfg_new;
2454 int limit = 10000; 2455 int limit = 10000;
2455 2456
2456 if (!netif_running(dev) || !netif_device_present(dev)) 2457 if (!netif_running(dev) || !netif_device_present(dev))
2457 return; 2458 return;
2458 2459
2459 /* Better safe than sorry... */ 2460 /* Better safe than sorry... */
2460 if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled)) 2461 if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled))
2461 return; 2462 return;
2462 2463
2463 rxcfg = readl(gp->regs + MAC_RXCFG); 2464 rxcfg = readl(gp->regs + MAC_RXCFG);
2464 rxcfg_new = gem_setup_multicast(gp); 2465 rxcfg_new = gem_setup_multicast(gp);
2465 #ifdef STRIP_FCS 2466 #ifdef STRIP_FCS
2466 rxcfg_new |= MAC_RXCFG_SFCS; 2467 rxcfg_new |= MAC_RXCFG_SFCS;
2467 #endif 2468 #endif
2468 gp->mac_rx_cfg = rxcfg_new; 2469 gp->mac_rx_cfg = rxcfg_new;
2469 2470
2470 writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG); 2471 writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
2471 while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) { 2472 while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
2472 if (!limit--) 2473 if (!limit--)
2473 break; 2474 break;
2474 udelay(10); 2475 udelay(10);
2475 } 2476 }
2476 2477
2477 rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE); 2478 rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
2478 rxcfg |= rxcfg_new; 2479 rxcfg |= rxcfg_new;
2479 2480
2480 writel(rxcfg, gp->regs + MAC_RXCFG); 2481 writel(rxcfg, gp->regs + MAC_RXCFG);
2481 } 2482 }
2482 2483
2483 /* Jumbo-grams don't seem to work :-( */ 2484 /* Jumbo-grams don't seem to work :-( */
2484 #define GEM_MIN_MTU 68 2485 #define GEM_MIN_MTU 68
2485 #if 1 2486 #if 1
2486 #define GEM_MAX_MTU 1500 2487 #define GEM_MAX_MTU 1500
2487 #else 2488 #else
2488 #define GEM_MAX_MTU 9000 2489 #define GEM_MAX_MTU 9000
2489 #endif 2490 #endif
2490 2491
2491 static int gem_change_mtu(struct net_device *dev, int new_mtu) 2492 static int gem_change_mtu(struct net_device *dev, int new_mtu)
2492 { 2493 {
2493 struct gem *gp = netdev_priv(dev); 2494 struct gem *gp = netdev_priv(dev);
2494 2495
2495 if (new_mtu < GEM_MIN_MTU || new_mtu > GEM_MAX_MTU) 2496 if (new_mtu < GEM_MIN_MTU || new_mtu > GEM_MAX_MTU)
2496 return -EINVAL; 2497 return -EINVAL;
2497 2498
2498 dev->mtu = new_mtu; 2499 dev->mtu = new_mtu;
2499 2500
2500 /* We'll just catch it later when the device is up'd or resumed */ 2501 /* We'll just catch it later when the device is up'd or resumed */
2501 if (!netif_running(dev) || !netif_device_present(dev)) 2502 if (!netif_running(dev) || !netif_device_present(dev))
2502 return 0; 2503 return 0;
2503 2504
2504 /* Better safe than sorry... */ 2505 /* Better safe than sorry... */
2505 if (WARN_ON(!gp->cell_enabled)) 2506 if (WARN_ON(!gp->cell_enabled))
2506 return 0; 2507 return 0;
2507 2508
2508 gem_netif_stop(gp); 2509 gem_netif_stop(gp);
2509 gem_reinit_chip(gp); 2510 gem_reinit_chip(gp);
2510 if (gp->lstate == link_up) 2511 if (gp->lstate == link_up)
2511 gem_set_link_modes(gp); 2512 gem_set_link_modes(gp);
2512 gem_netif_start(gp); 2513 gem_netif_start(gp);
2513 2514
2514 return 0; 2515 return 0;
2515 } 2516 }
2516 2517
2517 static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 2518 static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2518 { 2519 {
2519 struct gem *gp = netdev_priv(dev); 2520 struct gem *gp = netdev_priv(dev);
2520 2521
2521 strcpy(info->driver, DRV_NAME); 2522 strcpy(info->driver, DRV_NAME);
2522 strcpy(info->version, DRV_VERSION); 2523 strcpy(info->version, DRV_VERSION);
2523 strcpy(info->bus_info, pci_name(gp->pdev)); 2524 strcpy(info->bus_info, pci_name(gp->pdev));
2524 } 2525 }
2525 2526
2526 static int gem_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2527 static int gem_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2527 { 2528 {
2528 struct gem *gp = netdev_priv(dev); 2529 struct gem *gp = netdev_priv(dev);
2529 2530
2530 if (gp->phy_type == phy_mii_mdio0 || 2531 if (gp->phy_type == phy_mii_mdio0 ||
2531 gp->phy_type == phy_mii_mdio1) { 2532 gp->phy_type == phy_mii_mdio1) {
2532 if (gp->phy_mii.def) 2533 if (gp->phy_mii.def)
2533 cmd->supported = gp->phy_mii.def->features; 2534 cmd->supported = gp->phy_mii.def->features;
2534 else 2535 else
2535 cmd->supported = (SUPPORTED_10baseT_Half | 2536 cmd->supported = (SUPPORTED_10baseT_Half |
2536 SUPPORTED_10baseT_Full); 2537 SUPPORTED_10baseT_Full);
2537 2538
2538 /* XXX hardcoded stuff for now */ 2539 /* XXX hardcoded stuff for now */
2539 cmd->port = PORT_MII; 2540 cmd->port = PORT_MII;
2540 cmd->transceiver = XCVR_EXTERNAL; 2541 cmd->transceiver = XCVR_EXTERNAL;
2541 cmd->phy_address = 0; /* XXX fixed PHYAD */ 2542 cmd->phy_address = 0; /* XXX fixed PHYAD */
2542 2543
2543 /* Return current PHY settings */ 2544 /* Return current PHY settings */
2544 cmd->autoneg = gp->want_autoneg; 2545 cmd->autoneg = gp->want_autoneg;
2545 ethtool_cmd_speed_set(cmd, gp->phy_mii.speed); 2546 ethtool_cmd_speed_set(cmd, gp->phy_mii.speed);
2546 cmd->duplex = gp->phy_mii.duplex; 2547 cmd->duplex = gp->phy_mii.duplex;
2547 cmd->advertising = gp->phy_mii.advertising; 2548 cmd->advertising = gp->phy_mii.advertising;
2548 2549
2549 /* If we started with a forced mode, we don't have a default 2550 /* If we started with a forced mode, we don't have a default
2550 * advertise set, we need to return something sensible so 2551 * advertise set, we need to return something sensible so
2551 * userland can re-enable autoneg properly. 2552 * userland can re-enable autoneg properly.
2552 */ 2553 */
2553 if (cmd->advertising == 0) 2554 if (cmd->advertising == 0)
2554 cmd->advertising = cmd->supported; 2555 cmd->advertising = cmd->supported;
2555 } else { // XXX PCS ? 2556 } else { // XXX PCS ?
2556 cmd->supported = 2557 cmd->supported =
2557 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | 2558 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2558 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | 2559 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2559 SUPPORTED_Autoneg); 2560 SUPPORTED_Autoneg);
2560 cmd->advertising = cmd->supported; 2561 cmd->advertising = cmd->supported;
2561 ethtool_cmd_speed_set(cmd, 0); 2562 ethtool_cmd_speed_set(cmd, 0);
2562 cmd->duplex = cmd->port = cmd->phy_address = 2563 cmd->duplex = cmd->port = cmd->phy_address =
2563 cmd->transceiver = cmd->autoneg = 0; 2564 cmd->transceiver = cmd->autoneg = 0;
2564 2565
2565 /* serdes means usually a Fibre connector, with most fixed */ 2566 /* serdes means usually a Fibre connector, with most fixed */
2566 if (gp->phy_type == phy_serdes) { 2567 if (gp->phy_type == phy_serdes) {
2567 cmd->port = PORT_FIBRE; 2568 cmd->port = PORT_FIBRE;
2568 cmd->supported = (SUPPORTED_1000baseT_Half | 2569 cmd->supported = (SUPPORTED_1000baseT_Half |
2569 SUPPORTED_1000baseT_Full | 2570 SUPPORTED_1000baseT_Full |
2570 SUPPORTED_FIBRE | SUPPORTED_Autoneg | 2571 SUPPORTED_FIBRE | SUPPORTED_Autoneg |
2571 SUPPORTED_Pause | SUPPORTED_Asym_Pause); 2572 SUPPORTED_Pause | SUPPORTED_Asym_Pause);
2572 cmd->advertising = cmd->supported; 2573 cmd->advertising = cmd->supported;
2573 cmd->transceiver = XCVR_INTERNAL; 2574 cmd->transceiver = XCVR_INTERNAL;
2574 if (gp->lstate == link_up) 2575 if (gp->lstate == link_up)
2575 ethtool_cmd_speed_set(cmd, SPEED_1000); 2576 ethtool_cmd_speed_set(cmd, SPEED_1000);
2576 cmd->duplex = DUPLEX_FULL; 2577 cmd->duplex = DUPLEX_FULL;
2577 cmd->autoneg = 1; 2578 cmd->autoneg = 1;
2578 } 2579 }
2579 } 2580 }
2580 cmd->maxtxpkt = cmd->maxrxpkt = 0; 2581 cmd->maxtxpkt = cmd->maxrxpkt = 0;
2581 2582
2582 return 0; 2583 return 0;
2583 } 2584 }
2584 2585
2585 static int gem_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2586 static int gem_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2586 { 2587 {
2587 struct gem *gp = netdev_priv(dev); 2588 struct gem *gp = netdev_priv(dev);
2588 u32 speed = ethtool_cmd_speed(cmd); 2589 u32 speed = ethtool_cmd_speed(cmd);
2589 2590
2590 /* Verify the settings we care about. */ 2591 /* Verify the settings we care about. */
2591 if (cmd->autoneg != AUTONEG_ENABLE && 2592 if (cmd->autoneg != AUTONEG_ENABLE &&
2592 cmd->autoneg != AUTONEG_DISABLE) 2593 cmd->autoneg != AUTONEG_DISABLE)
2593 return -EINVAL; 2594 return -EINVAL;
2594 2595
2595 if (cmd->autoneg == AUTONEG_ENABLE && 2596 if (cmd->autoneg == AUTONEG_ENABLE &&
2596 cmd->advertising == 0) 2597 cmd->advertising == 0)
2597 return -EINVAL; 2598 return -EINVAL;
2598 2599
2599 if (cmd->autoneg == AUTONEG_DISABLE && 2600 if (cmd->autoneg == AUTONEG_DISABLE &&
2600 ((speed != SPEED_1000 && 2601 ((speed != SPEED_1000 &&
2601 speed != SPEED_100 && 2602 speed != SPEED_100 &&
2602 speed != SPEED_10) || 2603 speed != SPEED_10) ||
2603 (cmd->duplex != DUPLEX_HALF && 2604 (cmd->duplex != DUPLEX_HALF &&
2604 cmd->duplex != DUPLEX_FULL))) 2605 cmd->duplex != DUPLEX_FULL)))
2605 return -EINVAL; 2606 return -EINVAL;
2606 2607
2607 /* Apply settings and restart link process. */ 2608 /* Apply settings and restart link process. */
2608 if (netif_device_present(gp->dev)) { 2609 if (netif_device_present(gp->dev)) {
2609 del_timer_sync(&gp->link_timer); 2610 del_timer_sync(&gp->link_timer);
2610 gem_begin_auto_negotiation(gp, cmd); 2611 gem_begin_auto_negotiation(gp, cmd);
2611 } 2612 }
2612 2613
2613 return 0; 2614 return 0;
2614 } 2615 }
2615 2616
2616 static int gem_nway_reset(struct net_device *dev) 2617 static int gem_nway_reset(struct net_device *dev)
2617 { 2618 {
2618 struct gem *gp = netdev_priv(dev); 2619 struct gem *gp = netdev_priv(dev);
2619 2620
2620 if (!gp->want_autoneg) 2621 if (!gp->want_autoneg)
2621 return -EINVAL; 2622 return -EINVAL;
2622 2623
2623 /* Restart link process */ 2624 /* Restart link process */
2624 if (netif_device_present(gp->dev)) { 2625 if (netif_device_present(gp->dev)) {
2625 del_timer_sync(&gp->link_timer); 2626 del_timer_sync(&gp->link_timer);
2626 gem_begin_auto_negotiation(gp, NULL); 2627 gem_begin_auto_negotiation(gp, NULL);
2627 } 2628 }
2628 2629
2629 return 0; 2630 return 0;
2630 } 2631 }
2631 2632
2632 static u32 gem_get_msglevel(struct net_device *dev) 2633 static u32 gem_get_msglevel(struct net_device *dev)
2633 { 2634 {
2634 struct gem *gp = netdev_priv(dev); 2635 struct gem *gp = netdev_priv(dev);
2635 return gp->msg_enable; 2636 return gp->msg_enable;
2636 } 2637 }
2637 2638
2638 static void gem_set_msglevel(struct net_device *dev, u32 value) 2639 static void gem_set_msglevel(struct net_device *dev, u32 value)
2639 { 2640 {
2640 struct gem *gp = netdev_priv(dev); 2641 struct gem *gp = netdev_priv(dev);
2641 gp->msg_enable = value; 2642 gp->msg_enable = value;
2642 } 2643 }
2643 2644
2644 2645
2645 /* Add more when I understand how to program the chip */ 2646 /* Add more when I understand how to program the chip */
2646 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */ 2647 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2647 2648
2648 #define WOL_SUPPORTED_MASK (WAKE_MAGIC) 2649 #define WOL_SUPPORTED_MASK (WAKE_MAGIC)
2649 2650
2650 static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2651 static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2651 { 2652 {
2652 struct gem *gp = netdev_priv(dev); 2653 struct gem *gp = netdev_priv(dev);
2653 2654
2654 /* Add more when I understand how to program the chip */ 2655 /* Add more when I understand how to program the chip */
2655 if (gp->has_wol) { 2656 if (gp->has_wol) {
2656 wol->supported = WOL_SUPPORTED_MASK; 2657 wol->supported = WOL_SUPPORTED_MASK;
2657 wol->wolopts = gp->wake_on_lan; 2658 wol->wolopts = gp->wake_on_lan;
2658 } else { 2659 } else {
2659 wol->supported = 0; 2660 wol->supported = 0;
2660 wol->wolopts = 0; 2661 wol->wolopts = 0;
2661 } 2662 }
2662 } 2663 }
2663 2664
2664 static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2665 static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2665 { 2666 {
2666 struct gem *gp = netdev_priv(dev); 2667 struct gem *gp = netdev_priv(dev);
2667 2668
2668 if (!gp->has_wol) 2669 if (!gp->has_wol)
2669 return -EOPNOTSUPP; 2670 return -EOPNOTSUPP;
2670 gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK; 2671 gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
2671 return 0; 2672 return 0;
2672 } 2673 }
2673 2674
2674 static const struct ethtool_ops gem_ethtool_ops = { 2675 static const struct ethtool_ops gem_ethtool_ops = {
2675 .get_drvinfo = gem_get_drvinfo, 2676 .get_drvinfo = gem_get_drvinfo,
2676 .get_link = ethtool_op_get_link, 2677 .get_link = ethtool_op_get_link,
2677 .get_settings = gem_get_settings, 2678 .get_settings = gem_get_settings,
2678 .set_settings = gem_set_settings, 2679 .set_settings = gem_set_settings,
2679 .nway_reset = gem_nway_reset, 2680 .nway_reset = gem_nway_reset,
2680 .get_msglevel = gem_get_msglevel, 2681 .get_msglevel = gem_get_msglevel,
2681 .set_msglevel = gem_set_msglevel, 2682 .set_msglevel = gem_set_msglevel,
2682 .get_wol = gem_get_wol, 2683 .get_wol = gem_get_wol,
2683 .set_wol = gem_set_wol, 2684 .set_wol = gem_set_wol,
2684 }; 2685 };
2685 2686
2686 static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 2687 static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2687 { 2688 {
2688 struct gem *gp = netdev_priv(dev); 2689 struct gem *gp = netdev_priv(dev);
2689 struct mii_ioctl_data *data = if_mii(ifr); 2690 struct mii_ioctl_data *data = if_mii(ifr);
2690 int rc = -EOPNOTSUPP; 2691 int rc = -EOPNOTSUPP;
2691 2692
2692 /* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that 2693 /* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that
2693 * netif_device_present() is true and holds rtnl_lock for us 2694 * netif_device_present() is true and holds rtnl_lock for us
2694 * so we have nothing to worry about 2695 * so we have nothing to worry about
2695 */ 2696 */
2696 2697
2697 switch (cmd) { 2698 switch (cmd) {
2698 case SIOCGMIIPHY: /* Get address of MII PHY in use. */ 2699 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2699 data->phy_id = gp->mii_phy_addr; 2700 data->phy_id = gp->mii_phy_addr;
2700 /* Fallthrough... */ 2701 /* Fallthrough... */
2701 2702
2702 case SIOCGMIIREG: /* Read MII PHY register. */ 2703 case SIOCGMIIREG: /* Read MII PHY register. */
2703 data->val_out = __phy_read(gp, data->phy_id & 0x1f, 2704 data->val_out = __phy_read(gp, data->phy_id & 0x1f,
2704 data->reg_num & 0x1f); 2705 data->reg_num & 0x1f);
2705 rc = 0; 2706 rc = 0;
2706 break; 2707 break;
2707 2708
2708 case SIOCSMIIREG: /* Write MII PHY register. */ 2709 case SIOCSMIIREG: /* Write MII PHY register. */
2709 __phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f, 2710 __phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
2710 data->val_in); 2711 data->val_in);
2711 rc = 0; 2712 rc = 0;
2712 break; 2713 break;
2713 } 2714 }
2714 return rc; 2715 return rc;
2715 } 2716 }
2716 2717
2717 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC)) 2718 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2718 /* Fetch MAC address from vital product data of PCI ROM. */ 2719 /* Fetch MAC address from vital product data of PCI ROM. */
2719 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr) 2720 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
2720 { 2721 {
2721 int this_offset; 2722 int this_offset;
2722 2723
2723 for (this_offset = 0x20; this_offset < len; this_offset++) { 2724 for (this_offset = 0x20; this_offset < len; this_offset++) {
2724 void __iomem *p = rom_base + this_offset; 2725 void __iomem *p = rom_base + this_offset;
2725 int i; 2726 int i;
2726 2727
2727 if (readb(p + 0) != 0x90 || 2728 if (readb(p + 0) != 0x90 ||
2728 readb(p + 1) != 0x00 || 2729 readb(p + 1) != 0x00 ||
2729 readb(p + 2) != 0x09 || 2730 readb(p + 2) != 0x09 ||
2730 readb(p + 3) != 0x4e || 2731 readb(p + 3) != 0x4e ||
2731 readb(p + 4) != 0x41 || 2732 readb(p + 4) != 0x41 ||
2732 readb(p + 5) != 0x06) 2733 readb(p + 5) != 0x06)
2733 continue; 2734 continue;
2734 2735
2735 this_offset += 6; 2736 this_offset += 6;
2736 p += 6; 2737 p += 6;
2737 2738
2738 for (i = 0; i < 6; i++) 2739 for (i = 0; i < 6; i++)
2739 dev_addr[i] = readb(p + i); 2740 dev_addr[i] = readb(p + i);
2740 return 1; 2741 return 1;
2741 } 2742 }
2742 return 0; 2743 return 0;
2743 } 2744 }
2744 2745
2745 static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr) 2746 static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
2746 { 2747 {
2747 size_t size; 2748 size_t size;
2748 void __iomem *p = pci_map_rom(pdev, &size); 2749 void __iomem *p = pci_map_rom(pdev, &size);
2749 2750
2750 if (p) { 2751 if (p) {
2751 int found; 2752 int found;
2752 2753
2753 found = readb(p) == 0x55 && 2754 found = readb(p) == 0x55 &&
2754 readb(p + 1) == 0xaa && 2755 readb(p + 1) == 0xaa &&
2755 find_eth_addr_in_vpd(p, (64 * 1024), dev_addr); 2756 find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
2756 pci_unmap_rom(pdev, p); 2757 pci_unmap_rom(pdev, p);
2757 if (found) 2758 if (found)
2758 return; 2759 return;
2759 } 2760 }
2760 2761
2761 /* Sun MAC prefix then 3 random bytes. */ 2762 /* Sun MAC prefix then 3 random bytes. */
2762 dev_addr[0] = 0x08; 2763 dev_addr[0] = 0x08;
2763 dev_addr[1] = 0x00; 2764 dev_addr[1] = 0x00;
2764 dev_addr[2] = 0x20; 2765 dev_addr[2] = 0x20;
2765 get_random_bytes(dev_addr + 3, 3); 2766 get_random_bytes(dev_addr + 3, 3);
2766 } 2767 }
2767 #endif /* not Sparc and not PPC */ 2768 #endif /* not Sparc and not PPC */
2768 2769
2769 static int __devinit gem_get_device_address(struct gem *gp) 2770 static int __devinit gem_get_device_address(struct gem *gp)
2770 { 2771 {
2771 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC) 2772 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2772 struct net_device *dev = gp->dev; 2773 struct net_device *dev = gp->dev;
2773 const unsigned char *addr; 2774 const unsigned char *addr;
2774 2775
2775 addr = of_get_property(gp->of_node, "local-mac-address", NULL); 2776 addr = of_get_property(gp->of_node, "local-mac-address", NULL);
2776 if (addr == NULL) { 2777 if (addr == NULL) {
2777 #ifdef CONFIG_SPARC 2778 #ifdef CONFIG_SPARC
2778 addr = idprom->id_ethaddr; 2779 addr = idprom->id_ethaddr;
2779 #else 2780 #else
2780 printk("\n"); 2781 printk("\n");
2781 pr_err("%s: can't get mac-address\n", dev->name); 2782 pr_err("%s: can't get mac-address\n", dev->name);
2782 return -1; 2783 return -1;
2783 #endif 2784 #endif
2784 } 2785 }
2785 memcpy(dev->dev_addr, addr, 6); 2786 memcpy(dev->dev_addr, addr, 6);
2786 #else 2787 #else
2787 get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr); 2788 get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
2788 #endif 2789 #endif
2789 return 0; 2790 return 0;
2790 } 2791 }
2791 2792
2792 static void gem_remove_one(struct pci_dev *pdev) 2793 static void gem_remove_one(struct pci_dev *pdev)
2793 { 2794 {
2794 struct net_device *dev = pci_get_drvdata(pdev); 2795 struct net_device *dev = pci_get_drvdata(pdev);
2795 2796
2796 if (dev) { 2797 if (dev) {
2797 struct gem *gp = netdev_priv(dev); 2798 struct gem *gp = netdev_priv(dev);
2798 2799
2799 unregister_netdev(dev); 2800 unregister_netdev(dev);
2800 2801
2801 /* Ensure reset task is truely gone */ 2802 /* Ensure reset task is truely gone */
2802 cancel_work_sync(&gp->reset_task); 2803 cancel_work_sync(&gp->reset_task);
2803 2804
2804 /* Free resources */ 2805 /* Free resources */
2805 pci_free_consistent(pdev, 2806 pci_free_consistent(pdev,
2806 sizeof(struct gem_init_block), 2807 sizeof(struct gem_init_block),
2807 gp->init_block, 2808 gp->init_block,
2808 gp->gblock_dvma); 2809 gp->gblock_dvma);
2809 iounmap(gp->regs); 2810 iounmap(gp->regs);
2810 pci_release_regions(pdev); 2811 pci_release_regions(pdev);
2811 free_netdev(dev); 2812 free_netdev(dev);
2812 2813
2813 pci_set_drvdata(pdev, NULL); 2814 pci_set_drvdata(pdev, NULL);
2814 } 2815 }
2815 } 2816 }
2816 2817
2817 static const struct net_device_ops gem_netdev_ops = { 2818 static const struct net_device_ops gem_netdev_ops = {
2818 .ndo_open = gem_open, 2819 .ndo_open = gem_open,
2819 .ndo_stop = gem_close, 2820 .ndo_stop = gem_close,
2820 .ndo_start_xmit = gem_start_xmit, 2821 .ndo_start_xmit = gem_start_xmit,
2821 .ndo_get_stats = gem_get_stats, 2822 .ndo_get_stats = gem_get_stats,
2822 .ndo_set_multicast_list = gem_set_multicast, 2823 .ndo_set_multicast_list = gem_set_multicast,
2823 .ndo_do_ioctl = gem_ioctl, 2824 .ndo_do_ioctl = gem_ioctl,
2824 .ndo_tx_timeout = gem_tx_timeout, 2825 .ndo_tx_timeout = gem_tx_timeout,
2825 .ndo_change_mtu = gem_change_mtu, 2826 .ndo_change_mtu = gem_change_mtu,
2826 .ndo_validate_addr = eth_validate_addr, 2827 .ndo_validate_addr = eth_validate_addr,
2827 .ndo_set_mac_address = gem_set_mac_address, 2828 .ndo_set_mac_address = gem_set_mac_address,
2828 #ifdef CONFIG_NET_POLL_CONTROLLER 2829 #ifdef CONFIG_NET_POLL_CONTROLLER
2829 .ndo_poll_controller = gem_poll_controller, 2830 .ndo_poll_controller = gem_poll_controller,
2830 #endif 2831 #endif
2831 }; 2832 };
2832 2833
2833 static int __devinit gem_init_one(struct pci_dev *pdev, 2834 static int __devinit gem_init_one(struct pci_dev *pdev,
2834 const struct pci_device_id *ent) 2835 const struct pci_device_id *ent)
2835 { 2836 {
2836 unsigned long gemreg_base, gemreg_len; 2837 unsigned long gemreg_base, gemreg_len;
2837 struct net_device *dev; 2838 struct net_device *dev;
2838 struct gem *gp; 2839 struct gem *gp;
2839 int err, pci_using_dac; 2840 int err, pci_using_dac;
2840 2841
2841 printk_once(KERN_INFO "%s", version); 2842 printk_once(KERN_INFO "%s", version);
2842 2843
2843 /* Apple gmac note: during probe, the chip is powered up by 2844 /* Apple gmac note: during probe, the chip is powered up by
2844 * the arch code to allow the code below to work (and to let 2845 * the arch code to allow the code below to work (and to let
2845 * the chip be probed on the config space. It won't stay powered 2846 * the chip be probed on the config space. It won't stay powered
2846 * up until the interface is brought up however, so we can't rely 2847 * up until the interface is brought up however, so we can't rely
2847 * on register configuration done at this point. 2848 * on register configuration done at this point.
2848 */ 2849 */
2849 err = pci_enable_device(pdev); 2850 err = pci_enable_device(pdev);
2850 if (err) { 2851 if (err) {
2851 pr_err("Cannot enable MMIO operation, aborting\n"); 2852 pr_err("Cannot enable MMIO operation, aborting\n");
2852 return err; 2853 return err;
2853 } 2854 }
2854 pci_set_master(pdev); 2855 pci_set_master(pdev);
2855 2856
2856 /* Configure DMA attributes. */ 2857 /* Configure DMA attributes. */
2857 2858
2858 /* All of the GEM documentation states that 64-bit DMA addressing 2859 /* All of the GEM documentation states that 64-bit DMA addressing
2859 * is fully supported and should work just fine. However the 2860 * is fully supported and should work just fine. However the
2860 * front end for RIO based GEMs is different and only supports 2861 * front end for RIO based GEMs is different and only supports
2861 * 32-bit addressing. 2862 * 32-bit addressing.
2862 * 2863 *
2863 * For now we assume the various PPC GEMs are 32-bit only as well. 2864 * For now we assume the various PPC GEMs are 32-bit only as well.
2864 */ 2865 */
2865 if (pdev->vendor == PCI_VENDOR_ID_SUN && 2866 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2866 pdev->device == PCI_DEVICE_ID_SUN_GEM && 2867 pdev->device == PCI_DEVICE_ID_SUN_GEM &&
2867 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 2868 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
2868 pci_using_dac = 1; 2869 pci_using_dac = 1;
2869 } else { 2870 } else {
2870 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 2871 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2871 if (err) { 2872 if (err) {
2872 pr_err("No usable DMA configuration, aborting\n"); 2873 pr_err("No usable DMA configuration, aborting\n");
2873 goto err_disable_device; 2874 goto err_disable_device;
2874 } 2875 }
2875 pci_using_dac = 0; 2876 pci_using_dac = 0;
2876 } 2877 }
2877 2878
2878 gemreg_base = pci_resource_start(pdev, 0); 2879 gemreg_base = pci_resource_start(pdev, 0);
2879 gemreg_len = pci_resource_len(pdev, 0); 2880 gemreg_len = pci_resource_len(pdev, 0);
2880 2881
2881 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) { 2882 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
2882 pr_err("Cannot find proper PCI device base address, aborting\n"); 2883 pr_err("Cannot find proper PCI device base address, aborting\n");
2883 err = -ENODEV; 2884 err = -ENODEV;
2884 goto err_disable_device; 2885 goto err_disable_device;
2885 } 2886 }
2886 2887
2887 dev = alloc_etherdev(sizeof(*gp)); 2888 dev = alloc_etherdev(sizeof(*gp));
2888 if (!dev) { 2889 if (!dev) {
2889 pr_err("Etherdev alloc failed, aborting\n"); 2890 pr_err("Etherdev alloc failed, aborting\n");
2890 err = -ENOMEM; 2891 err = -ENOMEM;
2891 goto err_disable_device; 2892 goto err_disable_device;
2892 } 2893 }
2893 SET_NETDEV_DEV(dev, &pdev->dev); 2894 SET_NETDEV_DEV(dev, &pdev->dev);
2894 2895
2895 gp = netdev_priv(dev); 2896 gp = netdev_priv(dev);
2896 2897
2897 err = pci_request_regions(pdev, DRV_NAME); 2898 err = pci_request_regions(pdev, DRV_NAME);
2898 if (err) { 2899 if (err) {
2899 pr_err("Cannot obtain PCI resources, aborting\n"); 2900 pr_err("Cannot obtain PCI resources, aborting\n");
2900 goto err_out_free_netdev; 2901 goto err_out_free_netdev;
2901 } 2902 }
2902 2903
2903 gp->pdev = pdev; 2904 gp->pdev = pdev;
2904 dev->base_addr = (long) pdev; 2905 dev->base_addr = (long) pdev;
2905 gp->dev = dev; 2906 gp->dev = dev;
2906 2907
2907 gp->msg_enable = DEFAULT_MSG; 2908 gp->msg_enable = DEFAULT_MSG;
2908 2909
2909 init_timer(&gp->link_timer); 2910 init_timer(&gp->link_timer);
2910 gp->link_timer.function = gem_link_timer; 2911 gp->link_timer.function = gem_link_timer;
2911 gp->link_timer.data = (unsigned long) gp; 2912 gp->link_timer.data = (unsigned long) gp;
2912 2913
2913 INIT_WORK(&gp->reset_task, gem_reset_task); 2914 INIT_WORK(&gp->reset_task, gem_reset_task);
2914 2915
2915 gp->lstate = link_down; 2916 gp->lstate = link_down;
2916 gp->timer_ticks = 0; 2917 gp->timer_ticks = 0;
2917 netif_carrier_off(dev); 2918 netif_carrier_off(dev);
2918 2919
2919 gp->regs = ioremap(gemreg_base, gemreg_len); 2920 gp->regs = ioremap(gemreg_base, gemreg_len);
2920 if (!gp->regs) { 2921 if (!gp->regs) {
2921 pr_err("Cannot map device registers, aborting\n"); 2922 pr_err("Cannot map device registers, aborting\n");
2922 err = -EIO; 2923 err = -EIO;
2923 goto err_out_free_res; 2924 goto err_out_free_res;
2924 } 2925 }
2925 2926
2926 /* On Apple, we want a reference to the Open Firmware device-tree 2927 /* On Apple, we want a reference to the Open Firmware device-tree
2927 * node. We use it for clock control. 2928 * node. We use it for clock control.
2928 */ 2929 */
2929 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC) 2930 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
2930 gp->of_node = pci_device_to_OF_node(pdev); 2931 gp->of_node = pci_device_to_OF_node(pdev);
2931 #endif 2932 #endif
2932 2933
2933 /* Only Apple version supports WOL afaik */ 2934 /* Only Apple version supports WOL afaik */
2934 if (pdev->vendor == PCI_VENDOR_ID_APPLE) 2935 if (pdev->vendor == PCI_VENDOR_ID_APPLE)
2935 gp->has_wol = 1; 2936 gp->has_wol = 1;
2936 2937
2937 /* Make sure cell is enabled */ 2938 /* Make sure cell is enabled */
2938 gem_get_cell(gp); 2939 gem_get_cell(gp);
2939 2940
2940 /* Make sure everything is stopped and in init state */ 2941 /* Make sure everything is stopped and in init state */
2941 gem_reset(gp); 2942 gem_reset(gp);
2942 2943
2943 /* Fill up the mii_phy structure (even if we won't use it) */ 2944 /* Fill up the mii_phy structure (even if we won't use it) */
2944 gp->phy_mii.dev = dev; 2945 gp->phy_mii.dev = dev;
2945 gp->phy_mii.mdio_read = _phy_read; 2946 gp->phy_mii.mdio_read = _phy_read;
2946 gp->phy_mii.mdio_write = _phy_write; 2947 gp->phy_mii.mdio_write = _phy_write;
2947 #ifdef CONFIG_PPC_PMAC 2948 #ifdef CONFIG_PPC_PMAC
2948 gp->phy_mii.platform_data = gp->of_node; 2949 gp->phy_mii.platform_data = gp->of_node;
2949 #endif 2950 #endif
2950 /* By default, we start with autoneg */ 2951 /* By default, we start with autoneg */
2951 gp->want_autoneg = 1; 2952 gp->want_autoneg = 1;
2952 2953
2953 /* Check fifo sizes, PHY type, etc... */ 2954 /* Check fifo sizes, PHY type, etc... */
2954 if (gem_check_invariants(gp)) { 2955 if (gem_check_invariants(gp)) {
2955 err = -ENODEV; 2956 err = -ENODEV;
2956 goto err_out_iounmap; 2957 goto err_out_iounmap;
2957 } 2958 }
2958 2959
2959 /* It is guaranteed that the returned buffer will be at least 2960 /* It is guaranteed that the returned buffer will be at least
2960 * PAGE_SIZE aligned. 2961 * PAGE_SIZE aligned.
2961 */ 2962 */
2962 gp->init_block = (struct gem_init_block *) 2963 gp->init_block = (struct gem_init_block *)
2963 pci_alloc_consistent(pdev, sizeof(struct gem_init_block), 2964 pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
2964 &gp->gblock_dvma); 2965 &gp->gblock_dvma);
2965 if (!gp->init_block) { 2966 if (!gp->init_block) {
2966 pr_err("Cannot allocate init block, aborting\n"); 2967 pr_err("Cannot allocate init block, aborting\n");
2967 err = -ENOMEM; 2968 err = -ENOMEM;
2968 goto err_out_iounmap; 2969 goto err_out_iounmap;
2969 } 2970 }
2970 2971
2971 if (gem_get_device_address(gp)) 2972 if (gem_get_device_address(gp))
2972 goto err_out_free_consistent; 2973 goto err_out_free_consistent;
2973 2974
2974 dev->netdev_ops = &gem_netdev_ops; 2975 dev->netdev_ops = &gem_netdev_ops;
2975 netif_napi_add(dev, &gp->napi, gem_poll, 64); 2976 netif_napi_add(dev, &gp->napi, gem_poll, 64);
2976 dev->ethtool_ops = &gem_ethtool_ops; 2977 dev->ethtool_ops = &gem_ethtool_ops;
2977 dev->watchdog_timeo = 5 * HZ; 2978 dev->watchdog_timeo = 5 * HZ;
2978 dev->irq = pdev->irq; 2979 dev->irq = pdev->irq;
2979 dev->dma = 0; 2980 dev->dma = 0;
2980 2981
2981 /* Set that now, in case PM kicks in now */ 2982 /* Set that now, in case PM kicks in now */
2982 pci_set_drvdata(pdev, dev); 2983 pci_set_drvdata(pdev, dev);
2983 2984
2984 /* We can do scatter/gather and HW checksum */ 2985 /* We can do scatter/gather and HW checksum */
2985 dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM; 2986 dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
2986 dev->features |= dev->hw_features | NETIF_F_RXCSUM; 2987 dev->features |= dev->hw_features | NETIF_F_RXCSUM;
2987 if (pci_using_dac) 2988 if (pci_using_dac)
2988 dev->features |= NETIF_F_HIGHDMA; 2989 dev->features |= NETIF_F_HIGHDMA;
2989 2990
2990 /* Register with kernel */ 2991 /* Register with kernel */
2991 if (register_netdev(dev)) { 2992 if (register_netdev(dev)) {
2992 pr_err("Cannot register net device, aborting\n"); 2993 pr_err("Cannot register net device, aborting\n");
2993 err = -ENOMEM; 2994 err = -ENOMEM;
2994 goto err_out_free_consistent; 2995 goto err_out_free_consistent;
2995 } 2996 }
2996 2997
2997 /* Undo the get_cell with appropriate locking (we could use 2998 /* Undo the get_cell with appropriate locking (we could use
2998 * ndo_init/uninit but that would be even more clumsy imho) 2999 * ndo_init/uninit but that would be even more clumsy imho)
2999 */ 3000 */
3000 rtnl_lock(); 3001 rtnl_lock();
3001 gem_put_cell(gp); 3002 gem_put_cell(gp);
3002 rtnl_unlock(); 3003 rtnl_unlock();
3003 3004
3004 netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n", 3005 netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
3005 dev->dev_addr); 3006 dev->dev_addr);
3006 return 0; 3007 return 0;
3007 3008
3008 err_out_free_consistent: 3009 err_out_free_consistent:
3009 gem_remove_one(pdev); 3010 gem_remove_one(pdev);
3010 err_out_iounmap: 3011 err_out_iounmap:
3011 gem_put_cell(gp); 3012 gem_put_cell(gp);
3012 iounmap(gp->regs); 3013 iounmap(gp->regs);
3013 3014
3014 err_out_free_res: 3015 err_out_free_res:
3015 pci_release_regions(pdev); 3016 pci_release_regions(pdev);
3016 3017
3017 err_out_free_netdev: 3018 err_out_free_netdev:
3018 free_netdev(dev); 3019 free_netdev(dev);
3019 err_disable_device: 3020 err_disable_device:
3020 pci_disable_device(pdev); 3021 pci_disable_device(pdev);
3021 return err; 3022 return err;
3022 3023
3023 } 3024 }
3024 3025
3025 3026
3026 static struct pci_driver gem_driver = { 3027 static struct pci_driver gem_driver = {
3027 .name = GEM_MODULE_NAME, 3028 .name = GEM_MODULE_NAME,
3028 .id_table = gem_pci_tbl, 3029 .id_table = gem_pci_tbl,
3029 .probe = gem_init_one, 3030 .probe = gem_init_one,
3030 .remove = gem_remove_one, 3031 .remove = gem_remove_one,
3031 #ifdef CONFIG_PM 3032 #ifdef CONFIG_PM
3032 .suspend = gem_suspend, 3033 .suspend = gem_suspend,
3033 .resume = gem_resume, 3034 .resume = gem_resume,
3034 #endif /* CONFIG_PM */ 3035 #endif /* CONFIG_PM */
3035 }; 3036 };
3036 3037
3037 static int __init gem_init(void) 3038 static int __init gem_init(void)
3038 { 3039 {
3039 return pci_register_driver(&gem_driver); 3040 return pci_register_driver(&gem_driver);
3040 } 3041 }
3041 3042
3042 static void __exit gem_cleanup(void) 3043 static void __exit gem_cleanup(void)
3043 { 3044 {
3044 pci_unregister_driver(&gem_driver); 3045 pci_unregister_driver(&gem_driver);
3045 } 3046 }
3046 3047
3047 module_init(gem_init); 3048 module_init(gem_init);
3048 module_exit(gem_cleanup); 3049 module_exit(gem_cleanup);