Commit 5ddd36b9c59887c6416e21daf984fbdd9b1818df
Committed by
Al Viro
1 parent
206cb63657
Exists in
master
and in
7 other branches
mm: implement access_remote_vm
Provide an alternative to access_process_vm that allows the caller to obtain a reference to the supplied mm_struct. Signed-off-by: Stephen Wilson <wilsons@start.ca> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Showing 2 changed files with 18 additions and 0 deletions Inline Diff
include/linux/mm.h
1 | #ifndef _LINUX_MM_H | 1 | #ifndef _LINUX_MM_H |
2 | #define _LINUX_MM_H | 2 | #define _LINUX_MM_H |
3 | 3 | ||
4 | #include <linux/errno.h> | 4 | #include <linux/errno.h> |
5 | 5 | ||
6 | #ifdef __KERNEL__ | 6 | #ifdef __KERNEL__ |
7 | 7 | ||
8 | #include <linux/gfp.h> | 8 | #include <linux/gfp.h> |
9 | #include <linux/list.h> | 9 | #include <linux/list.h> |
10 | #include <linux/mmzone.h> | 10 | #include <linux/mmzone.h> |
11 | #include <linux/rbtree.h> | 11 | #include <linux/rbtree.h> |
12 | #include <linux/prio_tree.h> | 12 | #include <linux/prio_tree.h> |
13 | #include <linux/debug_locks.h> | 13 | #include <linux/debug_locks.h> |
14 | #include <linux/mm_types.h> | 14 | #include <linux/mm_types.h> |
15 | #include <linux/range.h> | 15 | #include <linux/range.h> |
16 | #include <linux/pfn.h> | 16 | #include <linux/pfn.h> |
17 | #include <linux/bit_spinlock.h> | 17 | #include <linux/bit_spinlock.h> |
18 | 18 | ||
19 | struct mempolicy; | 19 | struct mempolicy; |
20 | struct anon_vma; | 20 | struct anon_vma; |
21 | struct file_ra_state; | 21 | struct file_ra_state; |
22 | struct user_struct; | 22 | struct user_struct; |
23 | struct writeback_control; | 23 | struct writeback_control; |
24 | 24 | ||
25 | #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ | 25 | #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ |
26 | extern unsigned long max_mapnr; | 26 | extern unsigned long max_mapnr; |
27 | #endif | 27 | #endif |
28 | 28 | ||
29 | extern unsigned long num_physpages; | 29 | extern unsigned long num_physpages; |
30 | extern unsigned long totalram_pages; | 30 | extern unsigned long totalram_pages; |
31 | extern void * high_memory; | 31 | extern void * high_memory; |
32 | extern int page_cluster; | 32 | extern int page_cluster; |
33 | 33 | ||
34 | #ifdef CONFIG_SYSCTL | 34 | #ifdef CONFIG_SYSCTL |
35 | extern int sysctl_legacy_va_layout; | 35 | extern int sysctl_legacy_va_layout; |
36 | #else | 36 | #else |
37 | #define sysctl_legacy_va_layout 0 | 37 | #define sysctl_legacy_va_layout 0 |
38 | #endif | 38 | #endif |
39 | 39 | ||
40 | #include <asm/page.h> | 40 | #include <asm/page.h> |
41 | #include <asm/pgtable.h> | 41 | #include <asm/pgtable.h> |
42 | #include <asm/processor.h> | 42 | #include <asm/processor.h> |
43 | 43 | ||
44 | #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) | 44 | #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) |
45 | 45 | ||
46 | /* to align the pointer to the (next) page boundary */ | 46 | /* to align the pointer to the (next) page boundary */ |
47 | #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) | 47 | #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) |
48 | 48 | ||
49 | /* | 49 | /* |
50 | * Linux kernel virtual memory manager primitives. | 50 | * Linux kernel virtual memory manager primitives. |
51 | * The idea being to have a "virtual" mm in the same way | 51 | * The idea being to have a "virtual" mm in the same way |
52 | * we have a virtual fs - giving a cleaner interface to the | 52 | * we have a virtual fs - giving a cleaner interface to the |
53 | * mm details, and allowing different kinds of memory mappings | 53 | * mm details, and allowing different kinds of memory mappings |
54 | * (from shared memory to executable loading to arbitrary | 54 | * (from shared memory to executable loading to arbitrary |
55 | * mmap() functions). | 55 | * mmap() functions). |
56 | */ | 56 | */ |
57 | 57 | ||
58 | extern struct kmem_cache *vm_area_cachep; | 58 | extern struct kmem_cache *vm_area_cachep; |
59 | 59 | ||
60 | #ifndef CONFIG_MMU | 60 | #ifndef CONFIG_MMU |
61 | extern struct rb_root nommu_region_tree; | 61 | extern struct rb_root nommu_region_tree; |
62 | extern struct rw_semaphore nommu_region_sem; | 62 | extern struct rw_semaphore nommu_region_sem; |
63 | 63 | ||
64 | extern unsigned int kobjsize(const void *objp); | 64 | extern unsigned int kobjsize(const void *objp); |
65 | #endif | 65 | #endif |
66 | 66 | ||
67 | /* | 67 | /* |
68 | * vm_flags in vm_area_struct, see mm_types.h. | 68 | * vm_flags in vm_area_struct, see mm_types.h. |
69 | */ | 69 | */ |
70 | #define VM_READ 0x00000001 /* currently active flags */ | 70 | #define VM_READ 0x00000001 /* currently active flags */ |
71 | #define VM_WRITE 0x00000002 | 71 | #define VM_WRITE 0x00000002 |
72 | #define VM_EXEC 0x00000004 | 72 | #define VM_EXEC 0x00000004 |
73 | #define VM_SHARED 0x00000008 | 73 | #define VM_SHARED 0x00000008 |
74 | 74 | ||
75 | /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ | 75 | /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ |
76 | #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ | 76 | #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ |
77 | #define VM_MAYWRITE 0x00000020 | 77 | #define VM_MAYWRITE 0x00000020 |
78 | #define VM_MAYEXEC 0x00000040 | 78 | #define VM_MAYEXEC 0x00000040 |
79 | #define VM_MAYSHARE 0x00000080 | 79 | #define VM_MAYSHARE 0x00000080 |
80 | 80 | ||
81 | #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ | 81 | #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ |
82 | #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) | 82 | #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) |
83 | #define VM_GROWSUP 0x00000200 | 83 | #define VM_GROWSUP 0x00000200 |
84 | #else | 84 | #else |
85 | #define VM_GROWSUP 0x00000000 | 85 | #define VM_GROWSUP 0x00000000 |
86 | #define VM_NOHUGEPAGE 0x00000200 /* MADV_NOHUGEPAGE marked this vma */ | 86 | #define VM_NOHUGEPAGE 0x00000200 /* MADV_NOHUGEPAGE marked this vma */ |
87 | #endif | 87 | #endif |
88 | #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ | 88 | #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ |
89 | #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ | 89 | #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ |
90 | 90 | ||
91 | #define VM_EXECUTABLE 0x00001000 | 91 | #define VM_EXECUTABLE 0x00001000 |
92 | #define VM_LOCKED 0x00002000 | 92 | #define VM_LOCKED 0x00002000 |
93 | #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ | 93 | #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ |
94 | 94 | ||
95 | /* Used by sys_madvise() */ | 95 | /* Used by sys_madvise() */ |
96 | #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ | 96 | #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ |
97 | #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ | 97 | #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ |
98 | 98 | ||
99 | #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ | 99 | #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ |
100 | #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ | 100 | #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ |
101 | #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */ | 101 | #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */ |
102 | #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ | 102 | #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ |
103 | #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ | 103 | #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ |
104 | #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ | 104 | #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ |
105 | #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ | 105 | #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ |
106 | #ifndef CONFIG_TRANSPARENT_HUGEPAGE | 106 | #ifndef CONFIG_TRANSPARENT_HUGEPAGE |
107 | #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ | 107 | #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ |
108 | #else | 108 | #else |
109 | #define VM_HUGEPAGE 0x01000000 /* MADV_HUGEPAGE marked this vma */ | 109 | #define VM_HUGEPAGE 0x01000000 /* MADV_HUGEPAGE marked this vma */ |
110 | #endif | 110 | #endif |
111 | #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */ | 111 | #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */ |
112 | #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */ | 112 | #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */ |
113 | 113 | ||
114 | #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */ | 114 | #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */ |
115 | #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ | 115 | #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ |
116 | #define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */ | 116 | #define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */ |
117 | #define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */ | 117 | #define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */ |
118 | #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ | 118 | #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ |
119 | 119 | ||
120 | /* Bits set in the VMA until the stack is in its final location */ | 120 | /* Bits set in the VMA until the stack is in its final location */ |
121 | #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) | 121 | #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) |
122 | 122 | ||
123 | #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ | 123 | #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ |
124 | #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS | 124 | #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS |
125 | #endif | 125 | #endif |
126 | 126 | ||
127 | #ifdef CONFIG_STACK_GROWSUP | 127 | #ifdef CONFIG_STACK_GROWSUP |
128 | #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) | 128 | #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) |
129 | #else | 129 | #else |
130 | #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) | 130 | #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) |
131 | #endif | 131 | #endif |
132 | 132 | ||
133 | #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) | 133 | #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) |
134 | #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK | 134 | #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK |
135 | #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) | 135 | #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) |
136 | #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) | 136 | #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) |
137 | #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) | 137 | #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) |
138 | 138 | ||
139 | /* | 139 | /* |
140 | * special vmas that are non-mergable, non-mlock()able | 140 | * special vmas that are non-mergable, non-mlock()able |
141 | */ | 141 | */ |
142 | #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP) | 142 | #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP) |
143 | 143 | ||
144 | /* | 144 | /* |
145 | * mapping from the currently active vm_flags protection bits (the | 145 | * mapping from the currently active vm_flags protection bits (the |
146 | * low four bits) to a page protection mask.. | 146 | * low four bits) to a page protection mask.. |
147 | */ | 147 | */ |
148 | extern pgprot_t protection_map[16]; | 148 | extern pgprot_t protection_map[16]; |
149 | 149 | ||
150 | #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ | 150 | #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ |
151 | #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ | 151 | #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ |
152 | #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */ | 152 | #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */ |
153 | #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */ | 153 | #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */ |
154 | 154 | ||
155 | /* | 155 | /* |
156 | * This interface is used by x86 PAT code to identify a pfn mapping that is | 156 | * This interface is used by x86 PAT code to identify a pfn mapping that is |
157 | * linear over entire vma. This is to optimize PAT code that deals with | 157 | * linear over entire vma. This is to optimize PAT code that deals with |
158 | * marking the physical region with a particular prot. This is not for generic | 158 | * marking the physical region with a particular prot. This is not for generic |
159 | * mm use. Note also that this check will not work if the pfn mapping is | 159 | * mm use. Note also that this check will not work if the pfn mapping is |
160 | * linear for a vma starting at physical address 0. In which case PAT code | 160 | * linear for a vma starting at physical address 0. In which case PAT code |
161 | * falls back to slow path of reserving physical range page by page. | 161 | * falls back to slow path of reserving physical range page by page. |
162 | */ | 162 | */ |
163 | static inline int is_linear_pfn_mapping(struct vm_area_struct *vma) | 163 | static inline int is_linear_pfn_mapping(struct vm_area_struct *vma) |
164 | { | 164 | { |
165 | return (vma->vm_flags & VM_PFN_AT_MMAP); | 165 | return (vma->vm_flags & VM_PFN_AT_MMAP); |
166 | } | 166 | } |
167 | 167 | ||
168 | static inline int is_pfn_mapping(struct vm_area_struct *vma) | 168 | static inline int is_pfn_mapping(struct vm_area_struct *vma) |
169 | { | 169 | { |
170 | return (vma->vm_flags & VM_PFNMAP); | 170 | return (vma->vm_flags & VM_PFNMAP); |
171 | } | 171 | } |
172 | 172 | ||
173 | /* | 173 | /* |
174 | * vm_fault is filled by the the pagefault handler and passed to the vma's | 174 | * vm_fault is filled by the the pagefault handler and passed to the vma's |
175 | * ->fault function. The vma's ->fault is responsible for returning a bitmask | 175 | * ->fault function. The vma's ->fault is responsible for returning a bitmask |
176 | * of VM_FAULT_xxx flags that give details about how the fault was handled. | 176 | * of VM_FAULT_xxx flags that give details about how the fault was handled. |
177 | * | 177 | * |
178 | * pgoff should be used in favour of virtual_address, if possible. If pgoff | 178 | * pgoff should be used in favour of virtual_address, if possible. If pgoff |
179 | * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear | 179 | * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear |
180 | * mapping support. | 180 | * mapping support. |
181 | */ | 181 | */ |
182 | struct vm_fault { | 182 | struct vm_fault { |
183 | unsigned int flags; /* FAULT_FLAG_xxx flags */ | 183 | unsigned int flags; /* FAULT_FLAG_xxx flags */ |
184 | pgoff_t pgoff; /* Logical page offset based on vma */ | 184 | pgoff_t pgoff; /* Logical page offset based on vma */ |
185 | void __user *virtual_address; /* Faulting virtual address */ | 185 | void __user *virtual_address; /* Faulting virtual address */ |
186 | 186 | ||
187 | struct page *page; /* ->fault handlers should return a | 187 | struct page *page; /* ->fault handlers should return a |
188 | * page here, unless VM_FAULT_NOPAGE | 188 | * page here, unless VM_FAULT_NOPAGE |
189 | * is set (which is also implied by | 189 | * is set (which is also implied by |
190 | * VM_FAULT_ERROR). | 190 | * VM_FAULT_ERROR). |
191 | */ | 191 | */ |
192 | }; | 192 | }; |
193 | 193 | ||
194 | /* | 194 | /* |
195 | * These are the virtual MM functions - opening of an area, closing and | 195 | * These are the virtual MM functions - opening of an area, closing and |
196 | * unmapping it (needed to keep files on disk up-to-date etc), pointer | 196 | * unmapping it (needed to keep files on disk up-to-date etc), pointer |
197 | * to the functions called when a no-page or a wp-page exception occurs. | 197 | * to the functions called when a no-page or a wp-page exception occurs. |
198 | */ | 198 | */ |
199 | struct vm_operations_struct { | 199 | struct vm_operations_struct { |
200 | void (*open)(struct vm_area_struct * area); | 200 | void (*open)(struct vm_area_struct * area); |
201 | void (*close)(struct vm_area_struct * area); | 201 | void (*close)(struct vm_area_struct * area); |
202 | int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); | 202 | int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); |
203 | 203 | ||
204 | /* notification that a previously read-only page is about to become | 204 | /* notification that a previously read-only page is about to become |
205 | * writable, if an error is returned it will cause a SIGBUS */ | 205 | * writable, if an error is returned it will cause a SIGBUS */ |
206 | int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); | 206 | int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); |
207 | 207 | ||
208 | /* called by access_process_vm when get_user_pages() fails, typically | 208 | /* called by access_process_vm when get_user_pages() fails, typically |
209 | * for use by special VMAs that can switch between memory and hardware | 209 | * for use by special VMAs that can switch between memory and hardware |
210 | */ | 210 | */ |
211 | int (*access)(struct vm_area_struct *vma, unsigned long addr, | 211 | int (*access)(struct vm_area_struct *vma, unsigned long addr, |
212 | void *buf, int len, int write); | 212 | void *buf, int len, int write); |
213 | #ifdef CONFIG_NUMA | 213 | #ifdef CONFIG_NUMA |
214 | /* | 214 | /* |
215 | * set_policy() op must add a reference to any non-NULL @new mempolicy | 215 | * set_policy() op must add a reference to any non-NULL @new mempolicy |
216 | * to hold the policy upon return. Caller should pass NULL @new to | 216 | * to hold the policy upon return. Caller should pass NULL @new to |
217 | * remove a policy and fall back to surrounding context--i.e. do not | 217 | * remove a policy and fall back to surrounding context--i.e. do not |
218 | * install a MPOL_DEFAULT policy, nor the task or system default | 218 | * install a MPOL_DEFAULT policy, nor the task or system default |
219 | * mempolicy. | 219 | * mempolicy. |
220 | */ | 220 | */ |
221 | int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); | 221 | int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); |
222 | 222 | ||
223 | /* | 223 | /* |
224 | * get_policy() op must add reference [mpol_get()] to any policy at | 224 | * get_policy() op must add reference [mpol_get()] to any policy at |
225 | * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure | 225 | * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure |
226 | * in mm/mempolicy.c will do this automatically. | 226 | * in mm/mempolicy.c will do this automatically. |
227 | * get_policy() must NOT add a ref if the policy at (vma,addr) is not | 227 | * get_policy() must NOT add a ref if the policy at (vma,addr) is not |
228 | * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. | 228 | * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. |
229 | * If no [shared/vma] mempolicy exists at the addr, get_policy() op | 229 | * If no [shared/vma] mempolicy exists at the addr, get_policy() op |
230 | * must return NULL--i.e., do not "fallback" to task or system default | 230 | * must return NULL--i.e., do not "fallback" to task or system default |
231 | * policy. | 231 | * policy. |
232 | */ | 232 | */ |
233 | struct mempolicy *(*get_policy)(struct vm_area_struct *vma, | 233 | struct mempolicy *(*get_policy)(struct vm_area_struct *vma, |
234 | unsigned long addr); | 234 | unsigned long addr); |
235 | int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, | 235 | int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, |
236 | const nodemask_t *to, unsigned long flags); | 236 | const nodemask_t *to, unsigned long flags); |
237 | #endif | 237 | #endif |
238 | }; | 238 | }; |
239 | 239 | ||
240 | struct mmu_gather; | 240 | struct mmu_gather; |
241 | struct inode; | 241 | struct inode; |
242 | 242 | ||
243 | #define page_private(page) ((page)->private) | 243 | #define page_private(page) ((page)->private) |
244 | #define set_page_private(page, v) ((page)->private = (v)) | 244 | #define set_page_private(page, v) ((page)->private = (v)) |
245 | 245 | ||
246 | /* | 246 | /* |
247 | * FIXME: take this include out, include page-flags.h in | 247 | * FIXME: take this include out, include page-flags.h in |
248 | * files which need it (119 of them) | 248 | * files which need it (119 of them) |
249 | */ | 249 | */ |
250 | #include <linux/page-flags.h> | 250 | #include <linux/page-flags.h> |
251 | #include <linux/huge_mm.h> | 251 | #include <linux/huge_mm.h> |
252 | 252 | ||
253 | /* | 253 | /* |
254 | * Methods to modify the page usage count. | 254 | * Methods to modify the page usage count. |
255 | * | 255 | * |
256 | * What counts for a page usage: | 256 | * What counts for a page usage: |
257 | * - cache mapping (page->mapping) | 257 | * - cache mapping (page->mapping) |
258 | * - private data (page->private) | 258 | * - private data (page->private) |
259 | * - page mapped in a task's page tables, each mapping | 259 | * - page mapped in a task's page tables, each mapping |
260 | * is counted separately | 260 | * is counted separately |
261 | * | 261 | * |
262 | * Also, many kernel routines increase the page count before a critical | 262 | * Also, many kernel routines increase the page count before a critical |
263 | * routine so they can be sure the page doesn't go away from under them. | 263 | * routine so they can be sure the page doesn't go away from under them. |
264 | */ | 264 | */ |
265 | 265 | ||
266 | /* | 266 | /* |
267 | * Drop a ref, return true if the refcount fell to zero (the page has no users) | 267 | * Drop a ref, return true if the refcount fell to zero (the page has no users) |
268 | */ | 268 | */ |
269 | static inline int put_page_testzero(struct page *page) | 269 | static inline int put_page_testzero(struct page *page) |
270 | { | 270 | { |
271 | VM_BUG_ON(atomic_read(&page->_count) == 0); | 271 | VM_BUG_ON(atomic_read(&page->_count) == 0); |
272 | return atomic_dec_and_test(&page->_count); | 272 | return atomic_dec_and_test(&page->_count); |
273 | } | 273 | } |
274 | 274 | ||
275 | /* | 275 | /* |
276 | * Try to grab a ref unless the page has a refcount of zero, return false if | 276 | * Try to grab a ref unless the page has a refcount of zero, return false if |
277 | * that is the case. | 277 | * that is the case. |
278 | */ | 278 | */ |
279 | static inline int get_page_unless_zero(struct page *page) | 279 | static inline int get_page_unless_zero(struct page *page) |
280 | { | 280 | { |
281 | return atomic_inc_not_zero(&page->_count); | 281 | return atomic_inc_not_zero(&page->_count); |
282 | } | 282 | } |
283 | 283 | ||
284 | extern int page_is_ram(unsigned long pfn); | 284 | extern int page_is_ram(unsigned long pfn); |
285 | 285 | ||
286 | /* Support for virtually mapped pages */ | 286 | /* Support for virtually mapped pages */ |
287 | struct page *vmalloc_to_page(const void *addr); | 287 | struct page *vmalloc_to_page(const void *addr); |
288 | unsigned long vmalloc_to_pfn(const void *addr); | 288 | unsigned long vmalloc_to_pfn(const void *addr); |
289 | 289 | ||
290 | /* | 290 | /* |
291 | * Determine if an address is within the vmalloc range | 291 | * Determine if an address is within the vmalloc range |
292 | * | 292 | * |
293 | * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there | 293 | * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there |
294 | * is no special casing required. | 294 | * is no special casing required. |
295 | */ | 295 | */ |
296 | static inline int is_vmalloc_addr(const void *x) | 296 | static inline int is_vmalloc_addr(const void *x) |
297 | { | 297 | { |
298 | #ifdef CONFIG_MMU | 298 | #ifdef CONFIG_MMU |
299 | unsigned long addr = (unsigned long)x; | 299 | unsigned long addr = (unsigned long)x; |
300 | 300 | ||
301 | return addr >= VMALLOC_START && addr < VMALLOC_END; | 301 | return addr >= VMALLOC_START && addr < VMALLOC_END; |
302 | #else | 302 | #else |
303 | return 0; | 303 | return 0; |
304 | #endif | 304 | #endif |
305 | } | 305 | } |
306 | #ifdef CONFIG_MMU | 306 | #ifdef CONFIG_MMU |
307 | extern int is_vmalloc_or_module_addr(const void *x); | 307 | extern int is_vmalloc_or_module_addr(const void *x); |
308 | #else | 308 | #else |
309 | static inline int is_vmalloc_or_module_addr(const void *x) | 309 | static inline int is_vmalloc_or_module_addr(const void *x) |
310 | { | 310 | { |
311 | return 0; | 311 | return 0; |
312 | } | 312 | } |
313 | #endif | 313 | #endif |
314 | 314 | ||
315 | static inline void compound_lock(struct page *page) | 315 | static inline void compound_lock(struct page *page) |
316 | { | 316 | { |
317 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 317 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
318 | bit_spin_lock(PG_compound_lock, &page->flags); | 318 | bit_spin_lock(PG_compound_lock, &page->flags); |
319 | #endif | 319 | #endif |
320 | } | 320 | } |
321 | 321 | ||
322 | static inline void compound_unlock(struct page *page) | 322 | static inline void compound_unlock(struct page *page) |
323 | { | 323 | { |
324 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 324 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
325 | bit_spin_unlock(PG_compound_lock, &page->flags); | 325 | bit_spin_unlock(PG_compound_lock, &page->flags); |
326 | #endif | 326 | #endif |
327 | } | 327 | } |
328 | 328 | ||
329 | static inline unsigned long compound_lock_irqsave(struct page *page) | 329 | static inline unsigned long compound_lock_irqsave(struct page *page) |
330 | { | 330 | { |
331 | unsigned long uninitialized_var(flags); | 331 | unsigned long uninitialized_var(flags); |
332 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 332 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
333 | local_irq_save(flags); | 333 | local_irq_save(flags); |
334 | compound_lock(page); | 334 | compound_lock(page); |
335 | #endif | 335 | #endif |
336 | return flags; | 336 | return flags; |
337 | } | 337 | } |
338 | 338 | ||
339 | static inline void compound_unlock_irqrestore(struct page *page, | 339 | static inline void compound_unlock_irqrestore(struct page *page, |
340 | unsigned long flags) | 340 | unsigned long flags) |
341 | { | 341 | { |
342 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 342 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
343 | compound_unlock(page); | 343 | compound_unlock(page); |
344 | local_irq_restore(flags); | 344 | local_irq_restore(flags); |
345 | #endif | 345 | #endif |
346 | } | 346 | } |
347 | 347 | ||
348 | static inline struct page *compound_head(struct page *page) | 348 | static inline struct page *compound_head(struct page *page) |
349 | { | 349 | { |
350 | if (unlikely(PageTail(page))) | 350 | if (unlikely(PageTail(page))) |
351 | return page->first_page; | 351 | return page->first_page; |
352 | return page; | 352 | return page; |
353 | } | 353 | } |
354 | 354 | ||
355 | static inline int page_count(struct page *page) | 355 | static inline int page_count(struct page *page) |
356 | { | 356 | { |
357 | return atomic_read(&compound_head(page)->_count); | 357 | return atomic_read(&compound_head(page)->_count); |
358 | } | 358 | } |
359 | 359 | ||
360 | static inline void get_page(struct page *page) | 360 | static inline void get_page(struct page *page) |
361 | { | 361 | { |
362 | /* | 362 | /* |
363 | * Getting a normal page or the head of a compound page | 363 | * Getting a normal page or the head of a compound page |
364 | * requires to already have an elevated page->_count. Only if | 364 | * requires to already have an elevated page->_count. Only if |
365 | * we're getting a tail page, the elevated page->_count is | 365 | * we're getting a tail page, the elevated page->_count is |
366 | * required only in the head page, so for tail pages the | 366 | * required only in the head page, so for tail pages the |
367 | * bugcheck only verifies that the page->_count isn't | 367 | * bugcheck only verifies that the page->_count isn't |
368 | * negative. | 368 | * negative. |
369 | */ | 369 | */ |
370 | VM_BUG_ON(atomic_read(&page->_count) < !PageTail(page)); | 370 | VM_BUG_ON(atomic_read(&page->_count) < !PageTail(page)); |
371 | atomic_inc(&page->_count); | 371 | atomic_inc(&page->_count); |
372 | /* | 372 | /* |
373 | * Getting a tail page will elevate both the head and tail | 373 | * Getting a tail page will elevate both the head and tail |
374 | * page->_count(s). | 374 | * page->_count(s). |
375 | */ | 375 | */ |
376 | if (unlikely(PageTail(page))) { | 376 | if (unlikely(PageTail(page))) { |
377 | /* | 377 | /* |
378 | * This is safe only because | 378 | * This is safe only because |
379 | * __split_huge_page_refcount can't run under | 379 | * __split_huge_page_refcount can't run under |
380 | * get_page(). | 380 | * get_page(). |
381 | */ | 381 | */ |
382 | VM_BUG_ON(atomic_read(&page->first_page->_count) <= 0); | 382 | VM_BUG_ON(atomic_read(&page->first_page->_count) <= 0); |
383 | atomic_inc(&page->first_page->_count); | 383 | atomic_inc(&page->first_page->_count); |
384 | } | 384 | } |
385 | } | 385 | } |
386 | 386 | ||
387 | static inline struct page *virt_to_head_page(const void *x) | 387 | static inline struct page *virt_to_head_page(const void *x) |
388 | { | 388 | { |
389 | struct page *page = virt_to_page(x); | 389 | struct page *page = virt_to_page(x); |
390 | return compound_head(page); | 390 | return compound_head(page); |
391 | } | 391 | } |
392 | 392 | ||
393 | /* | 393 | /* |
394 | * Setup the page count before being freed into the page allocator for | 394 | * Setup the page count before being freed into the page allocator for |
395 | * the first time (boot or memory hotplug) | 395 | * the first time (boot or memory hotplug) |
396 | */ | 396 | */ |
397 | static inline void init_page_count(struct page *page) | 397 | static inline void init_page_count(struct page *page) |
398 | { | 398 | { |
399 | atomic_set(&page->_count, 1); | 399 | atomic_set(&page->_count, 1); |
400 | } | 400 | } |
401 | 401 | ||
402 | /* | 402 | /* |
403 | * PageBuddy() indicate that the page is free and in the buddy system | 403 | * PageBuddy() indicate that the page is free and in the buddy system |
404 | * (see mm/page_alloc.c). | 404 | * (see mm/page_alloc.c). |
405 | * | 405 | * |
406 | * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to | 406 | * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to |
407 | * -2 so that an underflow of the page_mapcount() won't be mistaken | 407 | * -2 so that an underflow of the page_mapcount() won't be mistaken |
408 | * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very | 408 | * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very |
409 | * efficiently by most CPU architectures. | 409 | * efficiently by most CPU architectures. |
410 | */ | 410 | */ |
411 | #define PAGE_BUDDY_MAPCOUNT_VALUE (-128) | 411 | #define PAGE_BUDDY_MAPCOUNT_VALUE (-128) |
412 | 412 | ||
413 | static inline int PageBuddy(struct page *page) | 413 | static inline int PageBuddy(struct page *page) |
414 | { | 414 | { |
415 | return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE; | 415 | return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE; |
416 | } | 416 | } |
417 | 417 | ||
418 | static inline void __SetPageBuddy(struct page *page) | 418 | static inline void __SetPageBuddy(struct page *page) |
419 | { | 419 | { |
420 | VM_BUG_ON(atomic_read(&page->_mapcount) != -1); | 420 | VM_BUG_ON(atomic_read(&page->_mapcount) != -1); |
421 | atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE); | 421 | atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE); |
422 | } | 422 | } |
423 | 423 | ||
424 | static inline void __ClearPageBuddy(struct page *page) | 424 | static inline void __ClearPageBuddy(struct page *page) |
425 | { | 425 | { |
426 | VM_BUG_ON(!PageBuddy(page)); | 426 | VM_BUG_ON(!PageBuddy(page)); |
427 | atomic_set(&page->_mapcount, -1); | 427 | atomic_set(&page->_mapcount, -1); |
428 | } | 428 | } |
429 | 429 | ||
430 | void put_page(struct page *page); | 430 | void put_page(struct page *page); |
431 | void put_pages_list(struct list_head *pages); | 431 | void put_pages_list(struct list_head *pages); |
432 | 432 | ||
433 | void split_page(struct page *page, unsigned int order); | 433 | void split_page(struct page *page, unsigned int order); |
434 | int split_free_page(struct page *page); | 434 | int split_free_page(struct page *page); |
435 | 435 | ||
436 | /* | 436 | /* |
437 | * Compound pages have a destructor function. Provide a | 437 | * Compound pages have a destructor function. Provide a |
438 | * prototype for that function and accessor functions. | 438 | * prototype for that function and accessor functions. |
439 | * These are _only_ valid on the head of a PG_compound page. | 439 | * These are _only_ valid on the head of a PG_compound page. |
440 | */ | 440 | */ |
441 | typedef void compound_page_dtor(struct page *); | 441 | typedef void compound_page_dtor(struct page *); |
442 | 442 | ||
443 | static inline void set_compound_page_dtor(struct page *page, | 443 | static inline void set_compound_page_dtor(struct page *page, |
444 | compound_page_dtor *dtor) | 444 | compound_page_dtor *dtor) |
445 | { | 445 | { |
446 | page[1].lru.next = (void *)dtor; | 446 | page[1].lru.next = (void *)dtor; |
447 | } | 447 | } |
448 | 448 | ||
449 | static inline compound_page_dtor *get_compound_page_dtor(struct page *page) | 449 | static inline compound_page_dtor *get_compound_page_dtor(struct page *page) |
450 | { | 450 | { |
451 | return (compound_page_dtor *)page[1].lru.next; | 451 | return (compound_page_dtor *)page[1].lru.next; |
452 | } | 452 | } |
453 | 453 | ||
454 | static inline int compound_order(struct page *page) | 454 | static inline int compound_order(struct page *page) |
455 | { | 455 | { |
456 | if (!PageHead(page)) | 456 | if (!PageHead(page)) |
457 | return 0; | 457 | return 0; |
458 | return (unsigned long)page[1].lru.prev; | 458 | return (unsigned long)page[1].lru.prev; |
459 | } | 459 | } |
460 | 460 | ||
461 | static inline int compound_trans_order(struct page *page) | 461 | static inline int compound_trans_order(struct page *page) |
462 | { | 462 | { |
463 | int order; | 463 | int order; |
464 | unsigned long flags; | 464 | unsigned long flags; |
465 | 465 | ||
466 | if (!PageHead(page)) | 466 | if (!PageHead(page)) |
467 | return 0; | 467 | return 0; |
468 | 468 | ||
469 | flags = compound_lock_irqsave(page); | 469 | flags = compound_lock_irqsave(page); |
470 | order = compound_order(page); | 470 | order = compound_order(page); |
471 | compound_unlock_irqrestore(page, flags); | 471 | compound_unlock_irqrestore(page, flags); |
472 | return order; | 472 | return order; |
473 | } | 473 | } |
474 | 474 | ||
475 | static inline void set_compound_order(struct page *page, unsigned long order) | 475 | static inline void set_compound_order(struct page *page, unsigned long order) |
476 | { | 476 | { |
477 | page[1].lru.prev = (void *)order; | 477 | page[1].lru.prev = (void *)order; |
478 | } | 478 | } |
479 | 479 | ||
480 | #ifdef CONFIG_MMU | 480 | #ifdef CONFIG_MMU |
481 | /* | 481 | /* |
482 | * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when | 482 | * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when |
483 | * servicing faults for write access. In the normal case, do always want | 483 | * servicing faults for write access. In the normal case, do always want |
484 | * pte_mkwrite. But get_user_pages can cause write faults for mappings | 484 | * pte_mkwrite. But get_user_pages can cause write faults for mappings |
485 | * that do not have writing enabled, when used by access_process_vm. | 485 | * that do not have writing enabled, when used by access_process_vm. |
486 | */ | 486 | */ |
487 | static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) | 487 | static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) |
488 | { | 488 | { |
489 | if (likely(vma->vm_flags & VM_WRITE)) | 489 | if (likely(vma->vm_flags & VM_WRITE)) |
490 | pte = pte_mkwrite(pte); | 490 | pte = pte_mkwrite(pte); |
491 | return pte; | 491 | return pte; |
492 | } | 492 | } |
493 | #endif | 493 | #endif |
494 | 494 | ||
495 | /* | 495 | /* |
496 | * Multiple processes may "see" the same page. E.g. for untouched | 496 | * Multiple processes may "see" the same page. E.g. for untouched |
497 | * mappings of /dev/null, all processes see the same page full of | 497 | * mappings of /dev/null, all processes see the same page full of |
498 | * zeroes, and text pages of executables and shared libraries have | 498 | * zeroes, and text pages of executables and shared libraries have |
499 | * only one copy in memory, at most, normally. | 499 | * only one copy in memory, at most, normally. |
500 | * | 500 | * |
501 | * For the non-reserved pages, page_count(page) denotes a reference count. | 501 | * For the non-reserved pages, page_count(page) denotes a reference count. |
502 | * page_count() == 0 means the page is free. page->lru is then used for | 502 | * page_count() == 0 means the page is free. page->lru is then used for |
503 | * freelist management in the buddy allocator. | 503 | * freelist management in the buddy allocator. |
504 | * page_count() > 0 means the page has been allocated. | 504 | * page_count() > 0 means the page has been allocated. |
505 | * | 505 | * |
506 | * Pages are allocated by the slab allocator in order to provide memory | 506 | * Pages are allocated by the slab allocator in order to provide memory |
507 | * to kmalloc and kmem_cache_alloc. In this case, the management of the | 507 | * to kmalloc and kmem_cache_alloc. In this case, the management of the |
508 | * page, and the fields in 'struct page' are the responsibility of mm/slab.c | 508 | * page, and the fields in 'struct page' are the responsibility of mm/slab.c |
509 | * unless a particular usage is carefully commented. (the responsibility of | 509 | * unless a particular usage is carefully commented. (the responsibility of |
510 | * freeing the kmalloc memory is the caller's, of course). | 510 | * freeing the kmalloc memory is the caller's, of course). |
511 | * | 511 | * |
512 | * A page may be used by anyone else who does a __get_free_page(). | 512 | * A page may be used by anyone else who does a __get_free_page(). |
513 | * In this case, page_count still tracks the references, and should only | 513 | * In this case, page_count still tracks the references, and should only |
514 | * be used through the normal accessor functions. The top bits of page->flags | 514 | * be used through the normal accessor functions. The top bits of page->flags |
515 | * and page->virtual store page management information, but all other fields | 515 | * and page->virtual store page management information, but all other fields |
516 | * are unused and could be used privately, carefully. The management of this | 516 | * are unused and could be used privately, carefully. The management of this |
517 | * page is the responsibility of the one who allocated it, and those who have | 517 | * page is the responsibility of the one who allocated it, and those who have |
518 | * subsequently been given references to it. | 518 | * subsequently been given references to it. |
519 | * | 519 | * |
520 | * The other pages (we may call them "pagecache pages") are completely | 520 | * The other pages (we may call them "pagecache pages") are completely |
521 | * managed by the Linux memory manager: I/O, buffers, swapping etc. | 521 | * managed by the Linux memory manager: I/O, buffers, swapping etc. |
522 | * The following discussion applies only to them. | 522 | * The following discussion applies only to them. |
523 | * | 523 | * |
524 | * A pagecache page contains an opaque `private' member, which belongs to the | 524 | * A pagecache page contains an opaque `private' member, which belongs to the |
525 | * page's address_space. Usually, this is the address of a circular list of | 525 | * page's address_space. Usually, this is the address of a circular list of |
526 | * the page's disk buffers. PG_private must be set to tell the VM to call | 526 | * the page's disk buffers. PG_private must be set to tell the VM to call |
527 | * into the filesystem to release these pages. | 527 | * into the filesystem to release these pages. |
528 | * | 528 | * |
529 | * A page may belong to an inode's memory mapping. In this case, page->mapping | 529 | * A page may belong to an inode's memory mapping. In this case, page->mapping |
530 | * is the pointer to the inode, and page->index is the file offset of the page, | 530 | * is the pointer to the inode, and page->index is the file offset of the page, |
531 | * in units of PAGE_CACHE_SIZE. | 531 | * in units of PAGE_CACHE_SIZE. |
532 | * | 532 | * |
533 | * If pagecache pages are not associated with an inode, they are said to be | 533 | * If pagecache pages are not associated with an inode, they are said to be |
534 | * anonymous pages. These may become associated with the swapcache, and in that | 534 | * anonymous pages. These may become associated with the swapcache, and in that |
535 | * case PG_swapcache is set, and page->private is an offset into the swapcache. | 535 | * case PG_swapcache is set, and page->private is an offset into the swapcache. |
536 | * | 536 | * |
537 | * In either case (swapcache or inode backed), the pagecache itself holds one | 537 | * In either case (swapcache or inode backed), the pagecache itself holds one |
538 | * reference to the page. Setting PG_private should also increment the | 538 | * reference to the page. Setting PG_private should also increment the |
539 | * refcount. The each user mapping also has a reference to the page. | 539 | * refcount. The each user mapping also has a reference to the page. |
540 | * | 540 | * |
541 | * The pagecache pages are stored in a per-mapping radix tree, which is | 541 | * The pagecache pages are stored in a per-mapping radix tree, which is |
542 | * rooted at mapping->page_tree, and indexed by offset. | 542 | * rooted at mapping->page_tree, and indexed by offset. |
543 | * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space | 543 | * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space |
544 | * lists, we instead now tag pages as dirty/writeback in the radix tree. | 544 | * lists, we instead now tag pages as dirty/writeback in the radix tree. |
545 | * | 545 | * |
546 | * All pagecache pages may be subject to I/O: | 546 | * All pagecache pages may be subject to I/O: |
547 | * - inode pages may need to be read from disk, | 547 | * - inode pages may need to be read from disk, |
548 | * - inode pages which have been modified and are MAP_SHARED may need | 548 | * - inode pages which have been modified and are MAP_SHARED may need |
549 | * to be written back to the inode on disk, | 549 | * to be written back to the inode on disk, |
550 | * - anonymous pages (including MAP_PRIVATE file mappings) which have been | 550 | * - anonymous pages (including MAP_PRIVATE file mappings) which have been |
551 | * modified may need to be swapped out to swap space and (later) to be read | 551 | * modified may need to be swapped out to swap space and (later) to be read |
552 | * back into memory. | 552 | * back into memory. |
553 | */ | 553 | */ |
554 | 554 | ||
555 | /* | 555 | /* |
556 | * The zone field is never updated after free_area_init_core() | 556 | * The zone field is never updated after free_area_init_core() |
557 | * sets it, so none of the operations on it need to be atomic. | 557 | * sets it, so none of the operations on it need to be atomic. |
558 | */ | 558 | */ |
559 | 559 | ||
560 | 560 | ||
561 | /* | 561 | /* |
562 | * page->flags layout: | 562 | * page->flags layout: |
563 | * | 563 | * |
564 | * There are three possibilities for how page->flags get | 564 | * There are three possibilities for how page->flags get |
565 | * laid out. The first is for the normal case, without | 565 | * laid out. The first is for the normal case, without |
566 | * sparsemem. The second is for sparsemem when there is | 566 | * sparsemem. The second is for sparsemem when there is |
567 | * plenty of space for node and section. The last is when | 567 | * plenty of space for node and section. The last is when |
568 | * we have run out of space and have to fall back to an | 568 | * we have run out of space and have to fall back to an |
569 | * alternate (slower) way of determining the node. | 569 | * alternate (slower) way of determining the node. |
570 | * | 570 | * |
571 | * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS | | 571 | * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS | |
572 | * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS | | 572 | * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS | |
573 | * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS | | 573 | * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS | |
574 | */ | 574 | */ |
575 | #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) | 575 | #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) |
576 | #define SECTIONS_WIDTH SECTIONS_SHIFT | 576 | #define SECTIONS_WIDTH SECTIONS_SHIFT |
577 | #else | 577 | #else |
578 | #define SECTIONS_WIDTH 0 | 578 | #define SECTIONS_WIDTH 0 |
579 | #endif | 579 | #endif |
580 | 580 | ||
581 | #define ZONES_WIDTH ZONES_SHIFT | 581 | #define ZONES_WIDTH ZONES_SHIFT |
582 | 582 | ||
583 | #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS | 583 | #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS |
584 | #define NODES_WIDTH NODES_SHIFT | 584 | #define NODES_WIDTH NODES_SHIFT |
585 | #else | 585 | #else |
586 | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 586 | #ifdef CONFIG_SPARSEMEM_VMEMMAP |
587 | #error "Vmemmap: No space for nodes field in page flags" | 587 | #error "Vmemmap: No space for nodes field in page flags" |
588 | #endif | 588 | #endif |
589 | #define NODES_WIDTH 0 | 589 | #define NODES_WIDTH 0 |
590 | #endif | 590 | #endif |
591 | 591 | ||
592 | /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ | 592 | /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ |
593 | #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) | 593 | #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) |
594 | #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) | 594 | #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) |
595 | #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) | 595 | #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) |
596 | 596 | ||
597 | /* | 597 | /* |
598 | * We are going to use the flags for the page to node mapping if its in | 598 | * We are going to use the flags for the page to node mapping if its in |
599 | * there. This includes the case where there is no node, so it is implicit. | 599 | * there. This includes the case where there is no node, so it is implicit. |
600 | */ | 600 | */ |
601 | #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0) | 601 | #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0) |
602 | #define NODE_NOT_IN_PAGE_FLAGS | 602 | #define NODE_NOT_IN_PAGE_FLAGS |
603 | #endif | 603 | #endif |
604 | 604 | ||
605 | #ifndef PFN_SECTION_SHIFT | 605 | #ifndef PFN_SECTION_SHIFT |
606 | #define PFN_SECTION_SHIFT 0 | 606 | #define PFN_SECTION_SHIFT 0 |
607 | #endif | 607 | #endif |
608 | 608 | ||
609 | /* | 609 | /* |
610 | * Define the bit shifts to access each section. For non-existant | 610 | * Define the bit shifts to access each section. For non-existant |
611 | * sections we define the shift as 0; that plus a 0 mask ensures | 611 | * sections we define the shift as 0; that plus a 0 mask ensures |
612 | * the compiler will optimise away reference to them. | 612 | * the compiler will optimise away reference to them. |
613 | */ | 613 | */ |
614 | #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) | 614 | #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) |
615 | #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) | 615 | #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) |
616 | #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) | 616 | #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) |
617 | 617 | ||
618 | /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ | 618 | /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ |
619 | #ifdef NODE_NOT_IN_PAGE_FLAGS | 619 | #ifdef NODE_NOT_IN_PAGE_FLAGS |
620 | #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) | 620 | #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) |
621 | #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ | 621 | #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ |
622 | SECTIONS_PGOFF : ZONES_PGOFF) | 622 | SECTIONS_PGOFF : ZONES_PGOFF) |
623 | #else | 623 | #else |
624 | #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) | 624 | #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) |
625 | #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ | 625 | #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ |
626 | NODES_PGOFF : ZONES_PGOFF) | 626 | NODES_PGOFF : ZONES_PGOFF) |
627 | #endif | 627 | #endif |
628 | 628 | ||
629 | #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) | 629 | #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) |
630 | 630 | ||
631 | #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS | 631 | #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS |
632 | #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS | 632 | #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS |
633 | #endif | 633 | #endif |
634 | 634 | ||
635 | #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) | 635 | #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) |
636 | #define NODES_MASK ((1UL << NODES_WIDTH) - 1) | 636 | #define NODES_MASK ((1UL << NODES_WIDTH) - 1) |
637 | #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) | 637 | #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) |
638 | #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) | 638 | #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) |
639 | 639 | ||
640 | static inline enum zone_type page_zonenum(struct page *page) | 640 | static inline enum zone_type page_zonenum(struct page *page) |
641 | { | 641 | { |
642 | return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; | 642 | return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; |
643 | } | 643 | } |
644 | 644 | ||
645 | /* | 645 | /* |
646 | * The identification function is only used by the buddy allocator for | 646 | * The identification function is only used by the buddy allocator for |
647 | * determining if two pages could be buddies. We are not really | 647 | * determining if two pages could be buddies. We are not really |
648 | * identifying a zone since we could be using a the section number | 648 | * identifying a zone since we could be using a the section number |
649 | * id if we have not node id available in page flags. | 649 | * id if we have not node id available in page flags. |
650 | * We guarantee only that it will return the same value for two | 650 | * We guarantee only that it will return the same value for two |
651 | * combinable pages in a zone. | 651 | * combinable pages in a zone. |
652 | */ | 652 | */ |
653 | static inline int page_zone_id(struct page *page) | 653 | static inline int page_zone_id(struct page *page) |
654 | { | 654 | { |
655 | return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; | 655 | return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; |
656 | } | 656 | } |
657 | 657 | ||
658 | static inline int zone_to_nid(struct zone *zone) | 658 | static inline int zone_to_nid(struct zone *zone) |
659 | { | 659 | { |
660 | #ifdef CONFIG_NUMA | 660 | #ifdef CONFIG_NUMA |
661 | return zone->node; | 661 | return zone->node; |
662 | #else | 662 | #else |
663 | return 0; | 663 | return 0; |
664 | #endif | 664 | #endif |
665 | } | 665 | } |
666 | 666 | ||
667 | #ifdef NODE_NOT_IN_PAGE_FLAGS | 667 | #ifdef NODE_NOT_IN_PAGE_FLAGS |
668 | extern int page_to_nid(struct page *page); | 668 | extern int page_to_nid(struct page *page); |
669 | #else | 669 | #else |
670 | static inline int page_to_nid(struct page *page) | 670 | static inline int page_to_nid(struct page *page) |
671 | { | 671 | { |
672 | return (page->flags >> NODES_PGSHIFT) & NODES_MASK; | 672 | return (page->flags >> NODES_PGSHIFT) & NODES_MASK; |
673 | } | 673 | } |
674 | #endif | 674 | #endif |
675 | 675 | ||
676 | static inline struct zone *page_zone(struct page *page) | 676 | static inline struct zone *page_zone(struct page *page) |
677 | { | 677 | { |
678 | return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; | 678 | return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; |
679 | } | 679 | } |
680 | 680 | ||
681 | #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) | 681 | #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) |
682 | static inline unsigned long page_to_section(struct page *page) | 682 | static inline unsigned long page_to_section(struct page *page) |
683 | { | 683 | { |
684 | return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; | 684 | return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; |
685 | } | 685 | } |
686 | #endif | 686 | #endif |
687 | 687 | ||
688 | static inline void set_page_zone(struct page *page, enum zone_type zone) | 688 | static inline void set_page_zone(struct page *page, enum zone_type zone) |
689 | { | 689 | { |
690 | page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); | 690 | page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); |
691 | page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; | 691 | page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; |
692 | } | 692 | } |
693 | 693 | ||
694 | static inline void set_page_node(struct page *page, unsigned long node) | 694 | static inline void set_page_node(struct page *page, unsigned long node) |
695 | { | 695 | { |
696 | page->flags &= ~(NODES_MASK << NODES_PGSHIFT); | 696 | page->flags &= ~(NODES_MASK << NODES_PGSHIFT); |
697 | page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; | 697 | page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; |
698 | } | 698 | } |
699 | 699 | ||
700 | static inline void set_page_section(struct page *page, unsigned long section) | 700 | static inline void set_page_section(struct page *page, unsigned long section) |
701 | { | 701 | { |
702 | page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); | 702 | page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); |
703 | page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; | 703 | page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; |
704 | } | 704 | } |
705 | 705 | ||
706 | static inline void set_page_links(struct page *page, enum zone_type zone, | 706 | static inline void set_page_links(struct page *page, enum zone_type zone, |
707 | unsigned long node, unsigned long pfn) | 707 | unsigned long node, unsigned long pfn) |
708 | { | 708 | { |
709 | set_page_zone(page, zone); | 709 | set_page_zone(page, zone); |
710 | set_page_node(page, node); | 710 | set_page_node(page, node); |
711 | set_page_section(page, pfn_to_section_nr(pfn)); | 711 | set_page_section(page, pfn_to_section_nr(pfn)); |
712 | } | 712 | } |
713 | 713 | ||
714 | /* | 714 | /* |
715 | * Some inline functions in vmstat.h depend on page_zone() | 715 | * Some inline functions in vmstat.h depend on page_zone() |
716 | */ | 716 | */ |
717 | #include <linux/vmstat.h> | 717 | #include <linux/vmstat.h> |
718 | 718 | ||
719 | static __always_inline void *lowmem_page_address(struct page *page) | 719 | static __always_inline void *lowmem_page_address(struct page *page) |
720 | { | 720 | { |
721 | return __va(PFN_PHYS(page_to_pfn(page))); | 721 | return __va(PFN_PHYS(page_to_pfn(page))); |
722 | } | 722 | } |
723 | 723 | ||
724 | #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) | 724 | #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) |
725 | #define HASHED_PAGE_VIRTUAL | 725 | #define HASHED_PAGE_VIRTUAL |
726 | #endif | 726 | #endif |
727 | 727 | ||
728 | #if defined(WANT_PAGE_VIRTUAL) | 728 | #if defined(WANT_PAGE_VIRTUAL) |
729 | #define page_address(page) ((page)->virtual) | 729 | #define page_address(page) ((page)->virtual) |
730 | #define set_page_address(page, address) \ | 730 | #define set_page_address(page, address) \ |
731 | do { \ | 731 | do { \ |
732 | (page)->virtual = (address); \ | 732 | (page)->virtual = (address); \ |
733 | } while(0) | 733 | } while(0) |
734 | #define page_address_init() do { } while(0) | 734 | #define page_address_init() do { } while(0) |
735 | #endif | 735 | #endif |
736 | 736 | ||
737 | #if defined(HASHED_PAGE_VIRTUAL) | 737 | #if defined(HASHED_PAGE_VIRTUAL) |
738 | void *page_address(struct page *page); | 738 | void *page_address(struct page *page); |
739 | void set_page_address(struct page *page, void *virtual); | 739 | void set_page_address(struct page *page, void *virtual); |
740 | void page_address_init(void); | 740 | void page_address_init(void); |
741 | #endif | 741 | #endif |
742 | 742 | ||
743 | #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) | 743 | #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) |
744 | #define page_address(page) lowmem_page_address(page) | 744 | #define page_address(page) lowmem_page_address(page) |
745 | #define set_page_address(page, address) do { } while(0) | 745 | #define set_page_address(page, address) do { } while(0) |
746 | #define page_address_init() do { } while(0) | 746 | #define page_address_init() do { } while(0) |
747 | #endif | 747 | #endif |
748 | 748 | ||
749 | /* | 749 | /* |
750 | * On an anonymous page mapped into a user virtual memory area, | 750 | * On an anonymous page mapped into a user virtual memory area, |
751 | * page->mapping points to its anon_vma, not to a struct address_space; | 751 | * page->mapping points to its anon_vma, not to a struct address_space; |
752 | * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. | 752 | * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. |
753 | * | 753 | * |
754 | * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, | 754 | * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, |
755 | * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit; | 755 | * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit; |
756 | * and then page->mapping points, not to an anon_vma, but to a private | 756 | * and then page->mapping points, not to an anon_vma, but to a private |
757 | * structure which KSM associates with that merged page. See ksm.h. | 757 | * structure which KSM associates with that merged page. See ksm.h. |
758 | * | 758 | * |
759 | * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used. | 759 | * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used. |
760 | * | 760 | * |
761 | * Please note that, confusingly, "page_mapping" refers to the inode | 761 | * Please note that, confusingly, "page_mapping" refers to the inode |
762 | * address_space which maps the page from disk; whereas "page_mapped" | 762 | * address_space which maps the page from disk; whereas "page_mapped" |
763 | * refers to user virtual address space into which the page is mapped. | 763 | * refers to user virtual address space into which the page is mapped. |
764 | */ | 764 | */ |
765 | #define PAGE_MAPPING_ANON 1 | 765 | #define PAGE_MAPPING_ANON 1 |
766 | #define PAGE_MAPPING_KSM 2 | 766 | #define PAGE_MAPPING_KSM 2 |
767 | #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM) | 767 | #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM) |
768 | 768 | ||
769 | extern struct address_space swapper_space; | 769 | extern struct address_space swapper_space; |
770 | static inline struct address_space *page_mapping(struct page *page) | 770 | static inline struct address_space *page_mapping(struct page *page) |
771 | { | 771 | { |
772 | struct address_space *mapping = page->mapping; | 772 | struct address_space *mapping = page->mapping; |
773 | 773 | ||
774 | VM_BUG_ON(PageSlab(page)); | 774 | VM_BUG_ON(PageSlab(page)); |
775 | if (unlikely(PageSwapCache(page))) | 775 | if (unlikely(PageSwapCache(page))) |
776 | mapping = &swapper_space; | 776 | mapping = &swapper_space; |
777 | else if ((unsigned long)mapping & PAGE_MAPPING_ANON) | 777 | else if ((unsigned long)mapping & PAGE_MAPPING_ANON) |
778 | mapping = NULL; | 778 | mapping = NULL; |
779 | return mapping; | 779 | return mapping; |
780 | } | 780 | } |
781 | 781 | ||
782 | /* Neutral page->mapping pointer to address_space or anon_vma or other */ | 782 | /* Neutral page->mapping pointer to address_space or anon_vma or other */ |
783 | static inline void *page_rmapping(struct page *page) | 783 | static inline void *page_rmapping(struct page *page) |
784 | { | 784 | { |
785 | return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS); | 785 | return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS); |
786 | } | 786 | } |
787 | 787 | ||
788 | static inline int PageAnon(struct page *page) | 788 | static inline int PageAnon(struct page *page) |
789 | { | 789 | { |
790 | return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; | 790 | return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; |
791 | } | 791 | } |
792 | 792 | ||
793 | /* | 793 | /* |
794 | * Return the pagecache index of the passed page. Regular pagecache pages | 794 | * Return the pagecache index of the passed page. Regular pagecache pages |
795 | * use ->index whereas swapcache pages use ->private | 795 | * use ->index whereas swapcache pages use ->private |
796 | */ | 796 | */ |
797 | static inline pgoff_t page_index(struct page *page) | 797 | static inline pgoff_t page_index(struct page *page) |
798 | { | 798 | { |
799 | if (unlikely(PageSwapCache(page))) | 799 | if (unlikely(PageSwapCache(page))) |
800 | return page_private(page); | 800 | return page_private(page); |
801 | return page->index; | 801 | return page->index; |
802 | } | 802 | } |
803 | 803 | ||
804 | /* | 804 | /* |
805 | * The atomic page->_mapcount, like _count, starts from -1: | 805 | * The atomic page->_mapcount, like _count, starts from -1: |
806 | * so that transitions both from it and to it can be tracked, | 806 | * so that transitions both from it and to it can be tracked, |
807 | * using atomic_inc_and_test and atomic_add_negative(-1). | 807 | * using atomic_inc_and_test and atomic_add_negative(-1). |
808 | */ | 808 | */ |
809 | static inline void reset_page_mapcount(struct page *page) | 809 | static inline void reset_page_mapcount(struct page *page) |
810 | { | 810 | { |
811 | atomic_set(&(page)->_mapcount, -1); | 811 | atomic_set(&(page)->_mapcount, -1); |
812 | } | 812 | } |
813 | 813 | ||
814 | static inline int page_mapcount(struct page *page) | 814 | static inline int page_mapcount(struct page *page) |
815 | { | 815 | { |
816 | return atomic_read(&(page)->_mapcount) + 1; | 816 | return atomic_read(&(page)->_mapcount) + 1; |
817 | } | 817 | } |
818 | 818 | ||
819 | /* | 819 | /* |
820 | * Return true if this page is mapped into pagetables. | 820 | * Return true if this page is mapped into pagetables. |
821 | */ | 821 | */ |
822 | static inline int page_mapped(struct page *page) | 822 | static inline int page_mapped(struct page *page) |
823 | { | 823 | { |
824 | return atomic_read(&(page)->_mapcount) >= 0; | 824 | return atomic_read(&(page)->_mapcount) >= 0; |
825 | } | 825 | } |
826 | 826 | ||
827 | /* | 827 | /* |
828 | * Different kinds of faults, as returned by handle_mm_fault(). | 828 | * Different kinds of faults, as returned by handle_mm_fault(). |
829 | * Used to decide whether a process gets delivered SIGBUS or | 829 | * Used to decide whether a process gets delivered SIGBUS or |
830 | * just gets major/minor fault counters bumped up. | 830 | * just gets major/minor fault counters bumped up. |
831 | */ | 831 | */ |
832 | 832 | ||
833 | #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ | 833 | #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ |
834 | 834 | ||
835 | #define VM_FAULT_OOM 0x0001 | 835 | #define VM_FAULT_OOM 0x0001 |
836 | #define VM_FAULT_SIGBUS 0x0002 | 836 | #define VM_FAULT_SIGBUS 0x0002 |
837 | #define VM_FAULT_MAJOR 0x0004 | 837 | #define VM_FAULT_MAJOR 0x0004 |
838 | #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ | 838 | #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ |
839 | #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ | 839 | #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ |
840 | #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ | 840 | #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ |
841 | 841 | ||
842 | #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ | 842 | #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ |
843 | #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ | 843 | #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ |
844 | #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ | 844 | #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ |
845 | 845 | ||
846 | #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ | 846 | #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ |
847 | 847 | ||
848 | #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \ | 848 | #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \ |
849 | VM_FAULT_HWPOISON_LARGE) | 849 | VM_FAULT_HWPOISON_LARGE) |
850 | 850 | ||
851 | /* Encode hstate index for a hwpoisoned large page */ | 851 | /* Encode hstate index for a hwpoisoned large page */ |
852 | #define VM_FAULT_SET_HINDEX(x) ((x) << 12) | 852 | #define VM_FAULT_SET_HINDEX(x) ((x) << 12) |
853 | #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) | 853 | #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) |
854 | 854 | ||
855 | /* | 855 | /* |
856 | * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. | 856 | * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. |
857 | */ | 857 | */ |
858 | extern void pagefault_out_of_memory(void); | 858 | extern void pagefault_out_of_memory(void); |
859 | 859 | ||
860 | #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) | 860 | #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) |
861 | 861 | ||
862 | extern void show_free_areas(void); | 862 | extern void show_free_areas(void); |
863 | 863 | ||
864 | int shmem_lock(struct file *file, int lock, struct user_struct *user); | 864 | int shmem_lock(struct file *file, int lock, struct user_struct *user); |
865 | struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags); | 865 | struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags); |
866 | int shmem_zero_setup(struct vm_area_struct *); | 866 | int shmem_zero_setup(struct vm_area_struct *); |
867 | 867 | ||
868 | #ifndef CONFIG_MMU | 868 | #ifndef CONFIG_MMU |
869 | extern unsigned long shmem_get_unmapped_area(struct file *file, | 869 | extern unsigned long shmem_get_unmapped_area(struct file *file, |
870 | unsigned long addr, | 870 | unsigned long addr, |
871 | unsigned long len, | 871 | unsigned long len, |
872 | unsigned long pgoff, | 872 | unsigned long pgoff, |
873 | unsigned long flags); | 873 | unsigned long flags); |
874 | #endif | 874 | #endif |
875 | 875 | ||
876 | extern int can_do_mlock(void); | 876 | extern int can_do_mlock(void); |
877 | extern int user_shm_lock(size_t, struct user_struct *); | 877 | extern int user_shm_lock(size_t, struct user_struct *); |
878 | extern void user_shm_unlock(size_t, struct user_struct *); | 878 | extern void user_shm_unlock(size_t, struct user_struct *); |
879 | 879 | ||
880 | /* | 880 | /* |
881 | * Parameter block passed down to zap_pte_range in exceptional cases. | 881 | * Parameter block passed down to zap_pte_range in exceptional cases. |
882 | */ | 882 | */ |
883 | struct zap_details { | 883 | struct zap_details { |
884 | struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ | 884 | struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ |
885 | struct address_space *check_mapping; /* Check page->mapping if set */ | 885 | struct address_space *check_mapping; /* Check page->mapping if set */ |
886 | pgoff_t first_index; /* Lowest page->index to unmap */ | 886 | pgoff_t first_index; /* Lowest page->index to unmap */ |
887 | pgoff_t last_index; /* Highest page->index to unmap */ | 887 | pgoff_t last_index; /* Highest page->index to unmap */ |
888 | spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */ | 888 | spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */ |
889 | unsigned long truncate_count; /* Compare vm_truncate_count */ | 889 | unsigned long truncate_count; /* Compare vm_truncate_count */ |
890 | }; | 890 | }; |
891 | 891 | ||
892 | struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, | 892 | struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, |
893 | pte_t pte); | 893 | pte_t pte); |
894 | 894 | ||
895 | int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, | 895 | int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, |
896 | unsigned long size); | 896 | unsigned long size); |
897 | unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, | 897 | unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, |
898 | unsigned long size, struct zap_details *); | 898 | unsigned long size, struct zap_details *); |
899 | unsigned long unmap_vmas(struct mmu_gather **tlb, | 899 | unsigned long unmap_vmas(struct mmu_gather **tlb, |
900 | struct vm_area_struct *start_vma, unsigned long start_addr, | 900 | struct vm_area_struct *start_vma, unsigned long start_addr, |
901 | unsigned long end_addr, unsigned long *nr_accounted, | 901 | unsigned long end_addr, unsigned long *nr_accounted, |
902 | struct zap_details *); | 902 | struct zap_details *); |
903 | 903 | ||
904 | /** | 904 | /** |
905 | * mm_walk - callbacks for walk_page_range | 905 | * mm_walk - callbacks for walk_page_range |
906 | * @pgd_entry: if set, called for each non-empty PGD (top-level) entry | 906 | * @pgd_entry: if set, called for each non-empty PGD (top-level) entry |
907 | * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry | 907 | * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry |
908 | * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry | 908 | * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry |
909 | * @pte_entry: if set, called for each non-empty PTE (4th-level) entry | 909 | * @pte_entry: if set, called for each non-empty PTE (4th-level) entry |
910 | * @pte_hole: if set, called for each hole at all levels | 910 | * @pte_hole: if set, called for each hole at all levels |
911 | * @hugetlb_entry: if set, called for each hugetlb entry | 911 | * @hugetlb_entry: if set, called for each hugetlb entry |
912 | * | 912 | * |
913 | * (see walk_page_range for more details) | 913 | * (see walk_page_range for more details) |
914 | */ | 914 | */ |
915 | struct mm_walk { | 915 | struct mm_walk { |
916 | int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *); | 916 | int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *); |
917 | int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *); | 917 | int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *); |
918 | int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *); | 918 | int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *); |
919 | int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *); | 919 | int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *); |
920 | int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *); | 920 | int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *); |
921 | int (*hugetlb_entry)(pte_t *, unsigned long, | 921 | int (*hugetlb_entry)(pte_t *, unsigned long, |
922 | unsigned long, unsigned long, struct mm_walk *); | 922 | unsigned long, unsigned long, struct mm_walk *); |
923 | struct mm_struct *mm; | 923 | struct mm_struct *mm; |
924 | void *private; | 924 | void *private; |
925 | }; | 925 | }; |
926 | 926 | ||
927 | int walk_page_range(unsigned long addr, unsigned long end, | 927 | int walk_page_range(unsigned long addr, unsigned long end, |
928 | struct mm_walk *walk); | 928 | struct mm_walk *walk); |
929 | void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, | 929 | void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, |
930 | unsigned long end, unsigned long floor, unsigned long ceiling); | 930 | unsigned long end, unsigned long floor, unsigned long ceiling); |
931 | int copy_page_range(struct mm_struct *dst, struct mm_struct *src, | 931 | int copy_page_range(struct mm_struct *dst, struct mm_struct *src, |
932 | struct vm_area_struct *vma); | 932 | struct vm_area_struct *vma); |
933 | void unmap_mapping_range(struct address_space *mapping, | 933 | void unmap_mapping_range(struct address_space *mapping, |
934 | loff_t const holebegin, loff_t const holelen, int even_cows); | 934 | loff_t const holebegin, loff_t const holelen, int even_cows); |
935 | int follow_pfn(struct vm_area_struct *vma, unsigned long address, | 935 | int follow_pfn(struct vm_area_struct *vma, unsigned long address, |
936 | unsigned long *pfn); | 936 | unsigned long *pfn); |
937 | int follow_phys(struct vm_area_struct *vma, unsigned long address, | 937 | int follow_phys(struct vm_area_struct *vma, unsigned long address, |
938 | unsigned int flags, unsigned long *prot, resource_size_t *phys); | 938 | unsigned int flags, unsigned long *prot, resource_size_t *phys); |
939 | int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, | 939 | int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, |
940 | void *buf, int len, int write); | 940 | void *buf, int len, int write); |
941 | 941 | ||
942 | static inline void unmap_shared_mapping_range(struct address_space *mapping, | 942 | static inline void unmap_shared_mapping_range(struct address_space *mapping, |
943 | loff_t const holebegin, loff_t const holelen) | 943 | loff_t const holebegin, loff_t const holelen) |
944 | { | 944 | { |
945 | unmap_mapping_range(mapping, holebegin, holelen, 0); | 945 | unmap_mapping_range(mapping, holebegin, holelen, 0); |
946 | } | 946 | } |
947 | 947 | ||
948 | extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new); | 948 | extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new); |
949 | extern void truncate_setsize(struct inode *inode, loff_t newsize); | 949 | extern void truncate_setsize(struct inode *inode, loff_t newsize); |
950 | extern int vmtruncate(struct inode *inode, loff_t offset); | 950 | extern int vmtruncate(struct inode *inode, loff_t offset); |
951 | extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end); | 951 | extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end); |
952 | 952 | ||
953 | int truncate_inode_page(struct address_space *mapping, struct page *page); | 953 | int truncate_inode_page(struct address_space *mapping, struct page *page); |
954 | int generic_error_remove_page(struct address_space *mapping, struct page *page); | 954 | int generic_error_remove_page(struct address_space *mapping, struct page *page); |
955 | 955 | ||
956 | int invalidate_inode_page(struct page *page); | 956 | int invalidate_inode_page(struct page *page); |
957 | 957 | ||
958 | #ifdef CONFIG_MMU | 958 | #ifdef CONFIG_MMU |
959 | extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, | 959 | extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
960 | unsigned long address, unsigned int flags); | 960 | unsigned long address, unsigned int flags); |
961 | #else | 961 | #else |
962 | static inline int handle_mm_fault(struct mm_struct *mm, | 962 | static inline int handle_mm_fault(struct mm_struct *mm, |
963 | struct vm_area_struct *vma, unsigned long address, | 963 | struct vm_area_struct *vma, unsigned long address, |
964 | unsigned int flags) | 964 | unsigned int flags) |
965 | { | 965 | { |
966 | /* should never happen if there's no MMU */ | 966 | /* should never happen if there's no MMU */ |
967 | BUG(); | 967 | BUG(); |
968 | return VM_FAULT_SIGBUS; | 968 | return VM_FAULT_SIGBUS; |
969 | } | 969 | } |
970 | #endif | 970 | #endif |
971 | 971 | ||
972 | extern int make_pages_present(unsigned long addr, unsigned long end); | 972 | extern int make_pages_present(unsigned long addr, unsigned long end); |
973 | extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); | 973 | extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); |
974 | extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, | ||
975 | void *buf, int len, int write); | ||
974 | 976 | ||
975 | int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | 977 | int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, |
976 | unsigned long start, int len, unsigned int foll_flags, | 978 | unsigned long start, int len, unsigned int foll_flags, |
977 | struct page **pages, struct vm_area_struct **vmas, | 979 | struct page **pages, struct vm_area_struct **vmas, |
978 | int *nonblocking); | 980 | int *nonblocking); |
979 | int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | 981 | int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, |
980 | unsigned long start, int nr_pages, int write, int force, | 982 | unsigned long start, int nr_pages, int write, int force, |
981 | struct page **pages, struct vm_area_struct **vmas); | 983 | struct page **pages, struct vm_area_struct **vmas); |
982 | int get_user_pages_fast(unsigned long start, int nr_pages, int write, | 984 | int get_user_pages_fast(unsigned long start, int nr_pages, int write, |
983 | struct page **pages); | 985 | struct page **pages); |
984 | struct page *get_dump_page(unsigned long addr); | 986 | struct page *get_dump_page(unsigned long addr); |
985 | 987 | ||
986 | extern int try_to_release_page(struct page * page, gfp_t gfp_mask); | 988 | extern int try_to_release_page(struct page * page, gfp_t gfp_mask); |
987 | extern void do_invalidatepage(struct page *page, unsigned long offset); | 989 | extern void do_invalidatepage(struct page *page, unsigned long offset); |
988 | 990 | ||
989 | int __set_page_dirty_nobuffers(struct page *page); | 991 | int __set_page_dirty_nobuffers(struct page *page); |
990 | int __set_page_dirty_no_writeback(struct page *page); | 992 | int __set_page_dirty_no_writeback(struct page *page); |
991 | int redirty_page_for_writepage(struct writeback_control *wbc, | 993 | int redirty_page_for_writepage(struct writeback_control *wbc, |
992 | struct page *page); | 994 | struct page *page); |
993 | void account_page_dirtied(struct page *page, struct address_space *mapping); | 995 | void account_page_dirtied(struct page *page, struct address_space *mapping); |
994 | void account_page_writeback(struct page *page); | 996 | void account_page_writeback(struct page *page); |
995 | int set_page_dirty(struct page *page); | 997 | int set_page_dirty(struct page *page); |
996 | int set_page_dirty_lock(struct page *page); | 998 | int set_page_dirty_lock(struct page *page); |
997 | int clear_page_dirty_for_io(struct page *page); | 999 | int clear_page_dirty_for_io(struct page *page); |
998 | 1000 | ||
999 | /* Is the vma a continuation of the stack vma above it? */ | 1001 | /* Is the vma a continuation of the stack vma above it? */ |
1000 | static inline int vma_stack_continue(struct vm_area_struct *vma, unsigned long addr) | 1002 | static inline int vma_stack_continue(struct vm_area_struct *vma, unsigned long addr) |
1001 | { | 1003 | { |
1002 | return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); | 1004 | return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); |
1003 | } | 1005 | } |
1004 | 1006 | ||
1005 | extern unsigned long move_page_tables(struct vm_area_struct *vma, | 1007 | extern unsigned long move_page_tables(struct vm_area_struct *vma, |
1006 | unsigned long old_addr, struct vm_area_struct *new_vma, | 1008 | unsigned long old_addr, struct vm_area_struct *new_vma, |
1007 | unsigned long new_addr, unsigned long len); | 1009 | unsigned long new_addr, unsigned long len); |
1008 | extern unsigned long do_mremap(unsigned long addr, | 1010 | extern unsigned long do_mremap(unsigned long addr, |
1009 | unsigned long old_len, unsigned long new_len, | 1011 | unsigned long old_len, unsigned long new_len, |
1010 | unsigned long flags, unsigned long new_addr); | 1012 | unsigned long flags, unsigned long new_addr); |
1011 | extern int mprotect_fixup(struct vm_area_struct *vma, | 1013 | extern int mprotect_fixup(struct vm_area_struct *vma, |
1012 | struct vm_area_struct **pprev, unsigned long start, | 1014 | struct vm_area_struct **pprev, unsigned long start, |
1013 | unsigned long end, unsigned long newflags); | 1015 | unsigned long end, unsigned long newflags); |
1014 | 1016 | ||
1015 | /* | 1017 | /* |
1016 | * doesn't attempt to fault and will return short. | 1018 | * doesn't attempt to fault and will return short. |
1017 | */ | 1019 | */ |
1018 | int __get_user_pages_fast(unsigned long start, int nr_pages, int write, | 1020 | int __get_user_pages_fast(unsigned long start, int nr_pages, int write, |
1019 | struct page **pages); | 1021 | struct page **pages); |
1020 | /* | 1022 | /* |
1021 | * per-process(per-mm_struct) statistics. | 1023 | * per-process(per-mm_struct) statistics. |
1022 | */ | 1024 | */ |
1023 | #if defined(SPLIT_RSS_COUNTING) | 1025 | #if defined(SPLIT_RSS_COUNTING) |
1024 | /* | 1026 | /* |
1025 | * The mm counters are not protected by its page_table_lock, | 1027 | * The mm counters are not protected by its page_table_lock, |
1026 | * so must be incremented atomically. | 1028 | * so must be incremented atomically. |
1027 | */ | 1029 | */ |
1028 | static inline void set_mm_counter(struct mm_struct *mm, int member, long value) | 1030 | static inline void set_mm_counter(struct mm_struct *mm, int member, long value) |
1029 | { | 1031 | { |
1030 | atomic_long_set(&mm->rss_stat.count[member], value); | 1032 | atomic_long_set(&mm->rss_stat.count[member], value); |
1031 | } | 1033 | } |
1032 | 1034 | ||
1033 | unsigned long get_mm_counter(struct mm_struct *mm, int member); | 1035 | unsigned long get_mm_counter(struct mm_struct *mm, int member); |
1034 | 1036 | ||
1035 | static inline void add_mm_counter(struct mm_struct *mm, int member, long value) | 1037 | static inline void add_mm_counter(struct mm_struct *mm, int member, long value) |
1036 | { | 1038 | { |
1037 | atomic_long_add(value, &mm->rss_stat.count[member]); | 1039 | atomic_long_add(value, &mm->rss_stat.count[member]); |
1038 | } | 1040 | } |
1039 | 1041 | ||
1040 | static inline void inc_mm_counter(struct mm_struct *mm, int member) | 1042 | static inline void inc_mm_counter(struct mm_struct *mm, int member) |
1041 | { | 1043 | { |
1042 | atomic_long_inc(&mm->rss_stat.count[member]); | 1044 | atomic_long_inc(&mm->rss_stat.count[member]); |
1043 | } | 1045 | } |
1044 | 1046 | ||
1045 | static inline void dec_mm_counter(struct mm_struct *mm, int member) | 1047 | static inline void dec_mm_counter(struct mm_struct *mm, int member) |
1046 | { | 1048 | { |
1047 | atomic_long_dec(&mm->rss_stat.count[member]); | 1049 | atomic_long_dec(&mm->rss_stat.count[member]); |
1048 | } | 1050 | } |
1049 | 1051 | ||
1050 | #else /* !USE_SPLIT_PTLOCKS */ | 1052 | #else /* !USE_SPLIT_PTLOCKS */ |
1051 | /* | 1053 | /* |
1052 | * The mm counters are protected by its page_table_lock, | 1054 | * The mm counters are protected by its page_table_lock, |
1053 | * so can be incremented directly. | 1055 | * so can be incremented directly. |
1054 | */ | 1056 | */ |
1055 | static inline void set_mm_counter(struct mm_struct *mm, int member, long value) | 1057 | static inline void set_mm_counter(struct mm_struct *mm, int member, long value) |
1056 | { | 1058 | { |
1057 | mm->rss_stat.count[member] = value; | 1059 | mm->rss_stat.count[member] = value; |
1058 | } | 1060 | } |
1059 | 1061 | ||
1060 | static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) | 1062 | static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) |
1061 | { | 1063 | { |
1062 | return mm->rss_stat.count[member]; | 1064 | return mm->rss_stat.count[member]; |
1063 | } | 1065 | } |
1064 | 1066 | ||
1065 | static inline void add_mm_counter(struct mm_struct *mm, int member, long value) | 1067 | static inline void add_mm_counter(struct mm_struct *mm, int member, long value) |
1066 | { | 1068 | { |
1067 | mm->rss_stat.count[member] += value; | 1069 | mm->rss_stat.count[member] += value; |
1068 | } | 1070 | } |
1069 | 1071 | ||
1070 | static inline void inc_mm_counter(struct mm_struct *mm, int member) | 1072 | static inline void inc_mm_counter(struct mm_struct *mm, int member) |
1071 | { | 1073 | { |
1072 | mm->rss_stat.count[member]++; | 1074 | mm->rss_stat.count[member]++; |
1073 | } | 1075 | } |
1074 | 1076 | ||
1075 | static inline void dec_mm_counter(struct mm_struct *mm, int member) | 1077 | static inline void dec_mm_counter(struct mm_struct *mm, int member) |
1076 | { | 1078 | { |
1077 | mm->rss_stat.count[member]--; | 1079 | mm->rss_stat.count[member]--; |
1078 | } | 1080 | } |
1079 | 1081 | ||
1080 | #endif /* !USE_SPLIT_PTLOCKS */ | 1082 | #endif /* !USE_SPLIT_PTLOCKS */ |
1081 | 1083 | ||
1082 | static inline unsigned long get_mm_rss(struct mm_struct *mm) | 1084 | static inline unsigned long get_mm_rss(struct mm_struct *mm) |
1083 | { | 1085 | { |
1084 | return get_mm_counter(mm, MM_FILEPAGES) + | 1086 | return get_mm_counter(mm, MM_FILEPAGES) + |
1085 | get_mm_counter(mm, MM_ANONPAGES); | 1087 | get_mm_counter(mm, MM_ANONPAGES); |
1086 | } | 1088 | } |
1087 | 1089 | ||
1088 | static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) | 1090 | static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) |
1089 | { | 1091 | { |
1090 | return max(mm->hiwater_rss, get_mm_rss(mm)); | 1092 | return max(mm->hiwater_rss, get_mm_rss(mm)); |
1091 | } | 1093 | } |
1092 | 1094 | ||
1093 | static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) | 1095 | static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) |
1094 | { | 1096 | { |
1095 | return max(mm->hiwater_vm, mm->total_vm); | 1097 | return max(mm->hiwater_vm, mm->total_vm); |
1096 | } | 1098 | } |
1097 | 1099 | ||
1098 | static inline void update_hiwater_rss(struct mm_struct *mm) | 1100 | static inline void update_hiwater_rss(struct mm_struct *mm) |
1099 | { | 1101 | { |
1100 | unsigned long _rss = get_mm_rss(mm); | 1102 | unsigned long _rss = get_mm_rss(mm); |
1101 | 1103 | ||
1102 | if ((mm)->hiwater_rss < _rss) | 1104 | if ((mm)->hiwater_rss < _rss) |
1103 | (mm)->hiwater_rss = _rss; | 1105 | (mm)->hiwater_rss = _rss; |
1104 | } | 1106 | } |
1105 | 1107 | ||
1106 | static inline void update_hiwater_vm(struct mm_struct *mm) | 1108 | static inline void update_hiwater_vm(struct mm_struct *mm) |
1107 | { | 1109 | { |
1108 | if (mm->hiwater_vm < mm->total_vm) | 1110 | if (mm->hiwater_vm < mm->total_vm) |
1109 | mm->hiwater_vm = mm->total_vm; | 1111 | mm->hiwater_vm = mm->total_vm; |
1110 | } | 1112 | } |
1111 | 1113 | ||
1112 | static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, | 1114 | static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, |
1113 | struct mm_struct *mm) | 1115 | struct mm_struct *mm) |
1114 | { | 1116 | { |
1115 | unsigned long hiwater_rss = get_mm_hiwater_rss(mm); | 1117 | unsigned long hiwater_rss = get_mm_hiwater_rss(mm); |
1116 | 1118 | ||
1117 | if (*maxrss < hiwater_rss) | 1119 | if (*maxrss < hiwater_rss) |
1118 | *maxrss = hiwater_rss; | 1120 | *maxrss = hiwater_rss; |
1119 | } | 1121 | } |
1120 | 1122 | ||
1121 | #if defined(SPLIT_RSS_COUNTING) | 1123 | #if defined(SPLIT_RSS_COUNTING) |
1122 | void sync_mm_rss(struct task_struct *task, struct mm_struct *mm); | 1124 | void sync_mm_rss(struct task_struct *task, struct mm_struct *mm); |
1123 | #else | 1125 | #else |
1124 | static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm) | 1126 | static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm) |
1125 | { | 1127 | { |
1126 | } | 1128 | } |
1127 | #endif | 1129 | #endif |
1128 | 1130 | ||
1129 | /* | 1131 | /* |
1130 | * A callback you can register to apply pressure to ageable caches. | 1132 | * A callback you can register to apply pressure to ageable caches. |
1131 | * | 1133 | * |
1132 | * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should | 1134 | * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should |
1133 | * look through the least-recently-used 'nr_to_scan' entries and | 1135 | * look through the least-recently-used 'nr_to_scan' entries and |
1134 | * attempt to free them up. It should return the number of objects | 1136 | * attempt to free them up. It should return the number of objects |
1135 | * which remain in the cache. If it returns -1, it means it cannot do | 1137 | * which remain in the cache. If it returns -1, it means it cannot do |
1136 | * any scanning at this time (eg. there is a risk of deadlock). | 1138 | * any scanning at this time (eg. there is a risk of deadlock). |
1137 | * | 1139 | * |
1138 | * The 'gfpmask' refers to the allocation we are currently trying to | 1140 | * The 'gfpmask' refers to the allocation we are currently trying to |
1139 | * fulfil. | 1141 | * fulfil. |
1140 | * | 1142 | * |
1141 | * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is | 1143 | * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is |
1142 | * querying the cache size, so a fastpath for that case is appropriate. | 1144 | * querying the cache size, so a fastpath for that case is appropriate. |
1143 | */ | 1145 | */ |
1144 | struct shrinker { | 1146 | struct shrinker { |
1145 | int (*shrink)(struct shrinker *, int nr_to_scan, gfp_t gfp_mask); | 1147 | int (*shrink)(struct shrinker *, int nr_to_scan, gfp_t gfp_mask); |
1146 | int seeks; /* seeks to recreate an obj */ | 1148 | int seeks; /* seeks to recreate an obj */ |
1147 | 1149 | ||
1148 | /* These are for internal use */ | 1150 | /* These are for internal use */ |
1149 | struct list_head list; | 1151 | struct list_head list; |
1150 | long nr; /* objs pending delete */ | 1152 | long nr; /* objs pending delete */ |
1151 | }; | 1153 | }; |
1152 | #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */ | 1154 | #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */ |
1153 | extern void register_shrinker(struct shrinker *); | 1155 | extern void register_shrinker(struct shrinker *); |
1154 | extern void unregister_shrinker(struct shrinker *); | 1156 | extern void unregister_shrinker(struct shrinker *); |
1155 | 1157 | ||
1156 | int vma_wants_writenotify(struct vm_area_struct *vma); | 1158 | int vma_wants_writenotify(struct vm_area_struct *vma); |
1157 | 1159 | ||
1158 | extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, | 1160 | extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, |
1159 | spinlock_t **ptl); | 1161 | spinlock_t **ptl); |
1160 | static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, | 1162 | static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, |
1161 | spinlock_t **ptl) | 1163 | spinlock_t **ptl) |
1162 | { | 1164 | { |
1163 | pte_t *ptep; | 1165 | pte_t *ptep; |
1164 | __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); | 1166 | __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); |
1165 | return ptep; | 1167 | return ptep; |
1166 | } | 1168 | } |
1167 | 1169 | ||
1168 | #ifdef __PAGETABLE_PUD_FOLDED | 1170 | #ifdef __PAGETABLE_PUD_FOLDED |
1169 | static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, | 1171 | static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, |
1170 | unsigned long address) | 1172 | unsigned long address) |
1171 | { | 1173 | { |
1172 | return 0; | 1174 | return 0; |
1173 | } | 1175 | } |
1174 | #else | 1176 | #else |
1175 | int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); | 1177 | int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); |
1176 | #endif | 1178 | #endif |
1177 | 1179 | ||
1178 | #ifdef __PAGETABLE_PMD_FOLDED | 1180 | #ifdef __PAGETABLE_PMD_FOLDED |
1179 | static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, | 1181 | static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, |
1180 | unsigned long address) | 1182 | unsigned long address) |
1181 | { | 1183 | { |
1182 | return 0; | 1184 | return 0; |
1183 | } | 1185 | } |
1184 | #else | 1186 | #else |
1185 | int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); | 1187 | int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); |
1186 | #endif | 1188 | #endif |
1187 | 1189 | ||
1188 | int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, | 1190 | int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, |
1189 | pmd_t *pmd, unsigned long address); | 1191 | pmd_t *pmd, unsigned long address); |
1190 | int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); | 1192 | int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); |
1191 | 1193 | ||
1192 | /* | 1194 | /* |
1193 | * The following ifdef needed to get the 4level-fixup.h header to work. | 1195 | * The following ifdef needed to get the 4level-fixup.h header to work. |
1194 | * Remove it when 4level-fixup.h has been removed. | 1196 | * Remove it when 4level-fixup.h has been removed. |
1195 | */ | 1197 | */ |
1196 | #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) | 1198 | #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) |
1197 | static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) | 1199 | static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) |
1198 | { | 1200 | { |
1199 | return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? | 1201 | return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? |
1200 | NULL: pud_offset(pgd, address); | 1202 | NULL: pud_offset(pgd, address); |
1201 | } | 1203 | } |
1202 | 1204 | ||
1203 | static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) | 1205 | static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) |
1204 | { | 1206 | { |
1205 | return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? | 1207 | return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? |
1206 | NULL: pmd_offset(pud, address); | 1208 | NULL: pmd_offset(pud, address); |
1207 | } | 1209 | } |
1208 | #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ | 1210 | #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ |
1209 | 1211 | ||
1210 | #if USE_SPLIT_PTLOCKS | 1212 | #if USE_SPLIT_PTLOCKS |
1211 | /* | 1213 | /* |
1212 | * We tuck a spinlock to guard each pagetable page into its struct page, | 1214 | * We tuck a spinlock to guard each pagetable page into its struct page, |
1213 | * at page->private, with BUILD_BUG_ON to make sure that this will not | 1215 | * at page->private, with BUILD_BUG_ON to make sure that this will not |
1214 | * overflow into the next struct page (as it might with DEBUG_SPINLOCK). | 1216 | * overflow into the next struct page (as it might with DEBUG_SPINLOCK). |
1215 | * When freeing, reset page->mapping so free_pages_check won't complain. | 1217 | * When freeing, reset page->mapping so free_pages_check won't complain. |
1216 | */ | 1218 | */ |
1217 | #define __pte_lockptr(page) &((page)->ptl) | 1219 | #define __pte_lockptr(page) &((page)->ptl) |
1218 | #define pte_lock_init(_page) do { \ | 1220 | #define pte_lock_init(_page) do { \ |
1219 | spin_lock_init(__pte_lockptr(_page)); \ | 1221 | spin_lock_init(__pte_lockptr(_page)); \ |
1220 | } while (0) | 1222 | } while (0) |
1221 | #define pte_lock_deinit(page) ((page)->mapping = NULL) | 1223 | #define pte_lock_deinit(page) ((page)->mapping = NULL) |
1222 | #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) | 1224 | #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) |
1223 | #else /* !USE_SPLIT_PTLOCKS */ | 1225 | #else /* !USE_SPLIT_PTLOCKS */ |
1224 | /* | 1226 | /* |
1225 | * We use mm->page_table_lock to guard all pagetable pages of the mm. | 1227 | * We use mm->page_table_lock to guard all pagetable pages of the mm. |
1226 | */ | 1228 | */ |
1227 | #define pte_lock_init(page) do {} while (0) | 1229 | #define pte_lock_init(page) do {} while (0) |
1228 | #define pte_lock_deinit(page) do {} while (0) | 1230 | #define pte_lock_deinit(page) do {} while (0) |
1229 | #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) | 1231 | #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) |
1230 | #endif /* USE_SPLIT_PTLOCKS */ | 1232 | #endif /* USE_SPLIT_PTLOCKS */ |
1231 | 1233 | ||
1232 | static inline void pgtable_page_ctor(struct page *page) | 1234 | static inline void pgtable_page_ctor(struct page *page) |
1233 | { | 1235 | { |
1234 | pte_lock_init(page); | 1236 | pte_lock_init(page); |
1235 | inc_zone_page_state(page, NR_PAGETABLE); | 1237 | inc_zone_page_state(page, NR_PAGETABLE); |
1236 | } | 1238 | } |
1237 | 1239 | ||
1238 | static inline void pgtable_page_dtor(struct page *page) | 1240 | static inline void pgtable_page_dtor(struct page *page) |
1239 | { | 1241 | { |
1240 | pte_lock_deinit(page); | 1242 | pte_lock_deinit(page); |
1241 | dec_zone_page_state(page, NR_PAGETABLE); | 1243 | dec_zone_page_state(page, NR_PAGETABLE); |
1242 | } | 1244 | } |
1243 | 1245 | ||
1244 | #define pte_offset_map_lock(mm, pmd, address, ptlp) \ | 1246 | #define pte_offset_map_lock(mm, pmd, address, ptlp) \ |
1245 | ({ \ | 1247 | ({ \ |
1246 | spinlock_t *__ptl = pte_lockptr(mm, pmd); \ | 1248 | spinlock_t *__ptl = pte_lockptr(mm, pmd); \ |
1247 | pte_t *__pte = pte_offset_map(pmd, address); \ | 1249 | pte_t *__pte = pte_offset_map(pmd, address); \ |
1248 | *(ptlp) = __ptl; \ | 1250 | *(ptlp) = __ptl; \ |
1249 | spin_lock(__ptl); \ | 1251 | spin_lock(__ptl); \ |
1250 | __pte; \ | 1252 | __pte; \ |
1251 | }) | 1253 | }) |
1252 | 1254 | ||
1253 | #define pte_unmap_unlock(pte, ptl) do { \ | 1255 | #define pte_unmap_unlock(pte, ptl) do { \ |
1254 | spin_unlock(ptl); \ | 1256 | spin_unlock(ptl); \ |
1255 | pte_unmap(pte); \ | 1257 | pte_unmap(pte); \ |
1256 | } while (0) | 1258 | } while (0) |
1257 | 1259 | ||
1258 | #define pte_alloc_map(mm, vma, pmd, address) \ | 1260 | #define pte_alloc_map(mm, vma, pmd, address) \ |
1259 | ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ | 1261 | ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ |
1260 | pmd, address))? \ | 1262 | pmd, address))? \ |
1261 | NULL: pte_offset_map(pmd, address)) | 1263 | NULL: pte_offset_map(pmd, address)) |
1262 | 1264 | ||
1263 | #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ | 1265 | #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ |
1264 | ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ | 1266 | ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ |
1265 | pmd, address))? \ | 1267 | pmd, address))? \ |
1266 | NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) | 1268 | NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) |
1267 | 1269 | ||
1268 | #define pte_alloc_kernel(pmd, address) \ | 1270 | #define pte_alloc_kernel(pmd, address) \ |
1269 | ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ | 1271 | ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ |
1270 | NULL: pte_offset_kernel(pmd, address)) | 1272 | NULL: pte_offset_kernel(pmd, address)) |
1271 | 1273 | ||
1272 | extern void free_area_init(unsigned long * zones_size); | 1274 | extern void free_area_init(unsigned long * zones_size); |
1273 | extern void free_area_init_node(int nid, unsigned long * zones_size, | 1275 | extern void free_area_init_node(int nid, unsigned long * zones_size, |
1274 | unsigned long zone_start_pfn, unsigned long *zholes_size); | 1276 | unsigned long zone_start_pfn, unsigned long *zholes_size); |
1275 | #ifdef CONFIG_ARCH_POPULATES_NODE_MAP | 1277 | #ifdef CONFIG_ARCH_POPULATES_NODE_MAP |
1276 | /* | 1278 | /* |
1277 | * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its | 1279 | * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its |
1278 | * zones, allocate the backing mem_map and account for memory holes in a more | 1280 | * zones, allocate the backing mem_map and account for memory holes in a more |
1279 | * architecture independent manner. This is a substitute for creating the | 1281 | * architecture independent manner. This is a substitute for creating the |
1280 | * zone_sizes[] and zholes_size[] arrays and passing them to | 1282 | * zone_sizes[] and zholes_size[] arrays and passing them to |
1281 | * free_area_init_node() | 1283 | * free_area_init_node() |
1282 | * | 1284 | * |
1283 | * An architecture is expected to register range of page frames backed by | 1285 | * An architecture is expected to register range of page frames backed by |
1284 | * physical memory with add_active_range() before calling | 1286 | * physical memory with add_active_range() before calling |
1285 | * free_area_init_nodes() passing in the PFN each zone ends at. At a basic | 1287 | * free_area_init_nodes() passing in the PFN each zone ends at. At a basic |
1286 | * usage, an architecture is expected to do something like | 1288 | * usage, an architecture is expected to do something like |
1287 | * | 1289 | * |
1288 | * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, | 1290 | * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, |
1289 | * max_highmem_pfn}; | 1291 | * max_highmem_pfn}; |
1290 | * for_each_valid_physical_page_range() | 1292 | * for_each_valid_physical_page_range() |
1291 | * add_active_range(node_id, start_pfn, end_pfn) | 1293 | * add_active_range(node_id, start_pfn, end_pfn) |
1292 | * free_area_init_nodes(max_zone_pfns); | 1294 | * free_area_init_nodes(max_zone_pfns); |
1293 | * | 1295 | * |
1294 | * If the architecture guarantees that there are no holes in the ranges | 1296 | * If the architecture guarantees that there are no holes in the ranges |
1295 | * registered with add_active_range(), free_bootmem_active_regions() | 1297 | * registered with add_active_range(), free_bootmem_active_regions() |
1296 | * will call free_bootmem_node() for each registered physical page range. | 1298 | * will call free_bootmem_node() for each registered physical page range. |
1297 | * Similarly sparse_memory_present_with_active_regions() calls | 1299 | * Similarly sparse_memory_present_with_active_regions() calls |
1298 | * memory_present() for each range when SPARSEMEM is enabled. | 1300 | * memory_present() for each range when SPARSEMEM is enabled. |
1299 | * | 1301 | * |
1300 | * See mm/page_alloc.c for more information on each function exposed by | 1302 | * See mm/page_alloc.c for more information on each function exposed by |
1301 | * CONFIG_ARCH_POPULATES_NODE_MAP | 1303 | * CONFIG_ARCH_POPULATES_NODE_MAP |
1302 | */ | 1304 | */ |
1303 | extern void free_area_init_nodes(unsigned long *max_zone_pfn); | 1305 | extern void free_area_init_nodes(unsigned long *max_zone_pfn); |
1304 | extern void add_active_range(unsigned int nid, unsigned long start_pfn, | 1306 | extern void add_active_range(unsigned int nid, unsigned long start_pfn, |
1305 | unsigned long end_pfn); | 1307 | unsigned long end_pfn); |
1306 | extern void remove_active_range(unsigned int nid, unsigned long start_pfn, | 1308 | extern void remove_active_range(unsigned int nid, unsigned long start_pfn, |
1307 | unsigned long end_pfn); | 1309 | unsigned long end_pfn); |
1308 | extern void remove_all_active_ranges(void); | 1310 | extern void remove_all_active_ranges(void); |
1309 | void sort_node_map(void); | 1311 | void sort_node_map(void); |
1310 | unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, | 1312 | unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, |
1311 | unsigned long end_pfn); | 1313 | unsigned long end_pfn); |
1312 | extern unsigned long absent_pages_in_range(unsigned long start_pfn, | 1314 | extern unsigned long absent_pages_in_range(unsigned long start_pfn, |
1313 | unsigned long end_pfn); | 1315 | unsigned long end_pfn); |
1314 | extern void get_pfn_range_for_nid(unsigned int nid, | 1316 | extern void get_pfn_range_for_nid(unsigned int nid, |
1315 | unsigned long *start_pfn, unsigned long *end_pfn); | 1317 | unsigned long *start_pfn, unsigned long *end_pfn); |
1316 | extern unsigned long find_min_pfn_with_active_regions(void); | 1318 | extern unsigned long find_min_pfn_with_active_regions(void); |
1317 | extern void free_bootmem_with_active_regions(int nid, | 1319 | extern void free_bootmem_with_active_regions(int nid, |
1318 | unsigned long max_low_pfn); | 1320 | unsigned long max_low_pfn); |
1319 | int add_from_early_node_map(struct range *range, int az, | 1321 | int add_from_early_node_map(struct range *range, int az, |
1320 | int nr_range, int nid); | 1322 | int nr_range, int nid); |
1321 | u64 __init find_memory_core_early(int nid, u64 size, u64 align, | 1323 | u64 __init find_memory_core_early(int nid, u64 size, u64 align, |
1322 | u64 goal, u64 limit); | 1324 | u64 goal, u64 limit); |
1323 | typedef int (*work_fn_t)(unsigned long, unsigned long, void *); | 1325 | typedef int (*work_fn_t)(unsigned long, unsigned long, void *); |
1324 | extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data); | 1326 | extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data); |
1325 | extern void sparse_memory_present_with_active_regions(int nid); | 1327 | extern void sparse_memory_present_with_active_regions(int nid); |
1326 | #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ | 1328 | #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ |
1327 | 1329 | ||
1328 | #if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \ | 1330 | #if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \ |
1329 | !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) | 1331 | !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) |
1330 | static inline int __early_pfn_to_nid(unsigned long pfn) | 1332 | static inline int __early_pfn_to_nid(unsigned long pfn) |
1331 | { | 1333 | { |
1332 | return 0; | 1334 | return 0; |
1333 | } | 1335 | } |
1334 | #else | 1336 | #else |
1335 | /* please see mm/page_alloc.c */ | 1337 | /* please see mm/page_alloc.c */ |
1336 | extern int __meminit early_pfn_to_nid(unsigned long pfn); | 1338 | extern int __meminit early_pfn_to_nid(unsigned long pfn); |
1337 | #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID | 1339 | #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID |
1338 | /* there is a per-arch backend function. */ | 1340 | /* there is a per-arch backend function. */ |
1339 | extern int __meminit __early_pfn_to_nid(unsigned long pfn); | 1341 | extern int __meminit __early_pfn_to_nid(unsigned long pfn); |
1340 | #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ | 1342 | #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ |
1341 | #endif | 1343 | #endif |
1342 | 1344 | ||
1343 | extern void set_dma_reserve(unsigned long new_dma_reserve); | 1345 | extern void set_dma_reserve(unsigned long new_dma_reserve); |
1344 | extern void memmap_init_zone(unsigned long, int, unsigned long, | 1346 | extern void memmap_init_zone(unsigned long, int, unsigned long, |
1345 | unsigned long, enum memmap_context); | 1347 | unsigned long, enum memmap_context); |
1346 | extern void setup_per_zone_wmarks(void); | 1348 | extern void setup_per_zone_wmarks(void); |
1347 | extern void calculate_zone_inactive_ratio(struct zone *zone); | 1349 | extern void calculate_zone_inactive_ratio(struct zone *zone); |
1348 | extern void mem_init(void); | 1350 | extern void mem_init(void); |
1349 | extern void __init mmap_init(void); | 1351 | extern void __init mmap_init(void); |
1350 | extern void show_mem(void); | 1352 | extern void show_mem(void); |
1351 | extern void si_meminfo(struct sysinfo * val); | 1353 | extern void si_meminfo(struct sysinfo * val); |
1352 | extern void si_meminfo_node(struct sysinfo *val, int nid); | 1354 | extern void si_meminfo_node(struct sysinfo *val, int nid); |
1353 | extern int after_bootmem; | 1355 | extern int after_bootmem; |
1354 | 1356 | ||
1355 | extern void setup_per_cpu_pageset(void); | 1357 | extern void setup_per_cpu_pageset(void); |
1356 | 1358 | ||
1357 | extern void zone_pcp_update(struct zone *zone); | 1359 | extern void zone_pcp_update(struct zone *zone); |
1358 | 1360 | ||
1359 | /* nommu.c */ | 1361 | /* nommu.c */ |
1360 | extern atomic_long_t mmap_pages_allocated; | 1362 | extern atomic_long_t mmap_pages_allocated; |
1361 | extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); | 1363 | extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); |
1362 | 1364 | ||
1363 | /* prio_tree.c */ | 1365 | /* prio_tree.c */ |
1364 | void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); | 1366 | void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); |
1365 | void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); | 1367 | void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); |
1366 | void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); | 1368 | void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); |
1367 | struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, | 1369 | struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, |
1368 | struct prio_tree_iter *iter); | 1370 | struct prio_tree_iter *iter); |
1369 | 1371 | ||
1370 | #define vma_prio_tree_foreach(vma, iter, root, begin, end) \ | 1372 | #define vma_prio_tree_foreach(vma, iter, root, begin, end) \ |
1371 | for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ | 1373 | for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ |
1372 | (vma = vma_prio_tree_next(vma, iter)); ) | 1374 | (vma = vma_prio_tree_next(vma, iter)); ) |
1373 | 1375 | ||
1374 | static inline void vma_nonlinear_insert(struct vm_area_struct *vma, | 1376 | static inline void vma_nonlinear_insert(struct vm_area_struct *vma, |
1375 | struct list_head *list) | 1377 | struct list_head *list) |
1376 | { | 1378 | { |
1377 | vma->shared.vm_set.parent = NULL; | 1379 | vma->shared.vm_set.parent = NULL; |
1378 | list_add_tail(&vma->shared.vm_set.list, list); | 1380 | list_add_tail(&vma->shared.vm_set.list, list); |
1379 | } | 1381 | } |
1380 | 1382 | ||
1381 | /* mmap.c */ | 1383 | /* mmap.c */ |
1382 | extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); | 1384 | extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); |
1383 | extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, | 1385 | extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, |
1384 | unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); | 1386 | unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); |
1385 | extern struct vm_area_struct *vma_merge(struct mm_struct *, | 1387 | extern struct vm_area_struct *vma_merge(struct mm_struct *, |
1386 | struct vm_area_struct *prev, unsigned long addr, unsigned long end, | 1388 | struct vm_area_struct *prev, unsigned long addr, unsigned long end, |
1387 | unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, | 1389 | unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, |
1388 | struct mempolicy *); | 1390 | struct mempolicy *); |
1389 | extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); | 1391 | extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); |
1390 | extern int split_vma(struct mm_struct *, | 1392 | extern int split_vma(struct mm_struct *, |
1391 | struct vm_area_struct *, unsigned long addr, int new_below); | 1393 | struct vm_area_struct *, unsigned long addr, int new_below); |
1392 | extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); | 1394 | extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); |
1393 | extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, | 1395 | extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, |
1394 | struct rb_node **, struct rb_node *); | 1396 | struct rb_node **, struct rb_node *); |
1395 | extern void unlink_file_vma(struct vm_area_struct *); | 1397 | extern void unlink_file_vma(struct vm_area_struct *); |
1396 | extern struct vm_area_struct *copy_vma(struct vm_area_struct **, | 1398 | extern struct vm_area_struct *copy_vma(struct vm_area_struct **, |
1397 | unsigned long addr, unsigned long len, pgoff_t pgoff); | 1399 | unsigned long addr, unsigned long len, pgoff_t pgoff); |
1398 | extern void exit_mmap(struct mm_struct *); | 1400 | extern void exit_mmap(struct mm_struct *); |
1399 | 1401 | ||
1400 | extern int mm_take_all_locks(struct mm_struct *mm); | 1402 | extern int mm_take_all_locks(struct mm_struct *mm); |
1401 | extern void mm_drop_all_locks(struct mm_struct *mm); | 1403 | extern void mm_drop_all_locks(struct mm_struct *mm); |
1402 | 1404 | ||
1403 | #ifdef CONFIG_PROC_FS | 1405 | #ifdef CONFIG_PROC_FS |
1404 | /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */ | 1406 | /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */ |
1405 | extern void added_exe_file_vma(struct mm_struct *mm); | 1407 | extern void added_exe_file_vma(struct mm_struct *mm); |
1406 | extern void removed_exe_file_vma(struct mm_struct *mm); | 1408 | extern void removed_exe_file_vma(struct mm_struct *mm); |
1407 | #else | 1409 | #else |
1408 | static inline void added_exe_file_vma(struct mm_struct *mm) | 1410 | static inline void added_exe_file_vma(struct mm_struct *mm) |
1409 | {} | 1411 | {} |
1410 | 1412 | ||
1411 | static inline void removed_exe_file_vma(struct mm_struct *mm) | 1413 | static inline void removed_exe_file_vma(struct mm_struct *mm) |
1412 | {} | 1414 | {} |
1413 | #endif /* CONFIG_PROC_FS */ | 1415 | #endif /* CONFIG_PROC_FS */ |
1414 | 1416 | ||
1415 | extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); | 1417 | extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); |
1416 | extern int install_special_mapping(struct mm_struct *mm, | 1418 | extern int install_special_mapping(struct mm_struct *mm, |
1417 | unsigned long addr, unsigned long len, | 1419 | unsigned long addr, unsigned long len, |
1418 | unsigned long flags, struct page **pages); | 1420 | unsigned long flags, struct page **pages); |
1419 | 1421 | ||
1420 | extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); | 1422 | extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); |
1421 | 1423 | ||
1422 | extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, | 1424 | extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, |
1423 | unsigned long len, unsigned long prot, | 1425 | unsigned long len, unsigned long prot, |
1424 | unsigned long flag, unsigned long pgoff); | 1426 | unsigned long flag, unsigned long pgoff); |
1425 | extern unsigned long mmap_region(struct file *file, unsigned long addr, | 1427 | extern unsigned long mmap_region(struct file *file, unsigned long addr, |
1426 | unsigned long len, unsigned long flags, | 1428 | unsigned long len, unsigned long flags, |
1427 | unsigned int vm_flags, unsigned long pgoff); | 1429 | unsigned int vm_flags, unsigned long pgoff); |
1428 | 1430 | ||
1429 | static inline unsigned long do_mmap(struct file *file, unsigned long addr, | 1431 | static inline unsigned long do_mmap(struct file *file, unsigned long addr, |
1430 | unsigned long len, unsigned long prot, | 1432 | unsigned long len, unsigned long prot, |
1431 | unsigned long flag, unsigned long offset) | 1433 | unsigned long flag, unsigned long offset) |
1432 | { | 1434 | { |
1433 | unsigned long ret = -EINVAL; | 1435 | unsigned long ret = -EINVAL; |
1434 | if ((offset + PAGE_ALIGN(len)) < offset) | 1436 | if ((offset + PAGE_ALIGN(len)) < offset) |
1435 | goto out; | 1437 | goto out; |
1436 | if (!(offset & ~PAGE_MASK)) | 1438 | if (!(offset & ~PAGE_MASK)) |
1437 | ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); | 1439 | ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); |
1438 | out: | 1440 | out: |
1439 | return ret; | 1441 | return ret; |
1440 | } | 1442 | } |
1441 | 1443 | ||
1442 | extern int do_munmap(struct mm_struct *, unsigned long, size_t); | 1444 | extern int do_munmap(struct mm_struct *, unsigned long, size_t); |
1443 | 1445 | ||
1444 | extern unsigned long do_brk(unsigned long, unsigned long); | 1446 | extern unsigned long do_brk(unsigned long, unsigned long); |
1445 | 1447 | ||
1446 | /* filemap.c */ | 1448 | /* filemap.c */ |
1447 | extern unsigned long page_unuse(struct page *); | 1449 | extern unsigned long page_unuse(struct page *); |
1448 | extern void truncate_inode_pages(struct address_space *, loff_t); | 1450 | extern void truncate_inode_pages(struct address_space *, loff_t); |
1449 | extern void truncate_inode_pages_range(struct address_space *, | 1451 | extern void truncate_inode_pages_range(struct address_space *, |
1450 | loff_t lstart, loff_t lend); | 1452 | loff_t lstart, loff_t lend); |
1451 | 1453 | ||
1452 | /* generic vm_area_ops exported for stackable file systems */ | 1454 | /* generic vm_area_ops exported for stackable file systems */ |
1453 | extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); | 1455 | extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); |
1454 | 1456 | ||
1455 | /* mm/page-writeback.c */ | 1457 | /* mm/page-writeback.c */ |
1456 | int write_one_page(struct page *page, int wait); | 1458 | int write_one_page(struct page *page, int wait); |
1457 | void task_dirty_inc(struct task_struct *tsk); | 1459 | void task_dirty_inc(struct task_struct *tsk); |
1458 | 1460 | ||
1459 | /* readahead.c */ | 1461 | /* readahead.c */ |
1460 | #define VM_MAX_READAHEAD 128 /* kbytes */ | 1462 | #define VM_MAX_READAHEAD 128 /* kbytes */ |
1461 | #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ | 1463 | #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ |
1462 | 1464 | ||
1463 | int force_page_cache_readahead(struct address_space *mapping, struct file *filp, | 1465 | int force_page_cache_readahead(struct address_space *mapping, struct file *filp, |
1464 | pgoff_t offset, unsigned long nr_to_read); | 1466 | pgoff_t offset, unsigned long nr_to_read); |
1465 | 1467 | ||
1466 | void page_cache_sync_readahead(struct address_space *mapping, | 1468 | void page_cache_sync_readahead(struct address_space *mapping, |
1467 | struct file_ra_state *ra, | 1469 | struct file_ra_state *ra, |
1468 | struct file *filp, | 1470 | struct file *filp, |
1469 | pgoff_t offset, | 1471 | pgoff_t offset, |
1470 | unsigned long size); | 1472 | unsigned long size); |
1471 | 1473 | ||
1472 | void page_cache_async_readahead(struct address_space *mapping, | 1474 | void page_cache_async_readahead(struct address_space *mapping, |
1473 | struct file_ra_state *ra, | 1475 | struct file_ra_state *ra, |
1474 | struct file *filp, | 1476 | struct file *filp, |
1475 | struct page *pg, | 1477 | struct page *pg, |
1476 | pgoff_t offset, | 1478 | pgoff_t offset, |
1477 | unsigned long size); | 1479 | unsigned long size); |
1478 | 1480 | ||
1479 | unsigned long max_sane_readahead(unsigned long nr); | 1481 | unsigned long max_sane_readahead(unsigned long nr); |
1480 | unsigned long ra_submit(struct file_ra_state *ra, | 1482 | unsigned long ra_submit(struct file_ra_state *ra, |
1481 | struct address_space *mapping, | 1483 | struct address_space *mapping, |
1482 | struct file *filp); | 1484 | struct file *filp); |
1483 | 1485 | ||
1484 | /* Do stack extension */ | 1486 | /* Do stack extension */ |
1485 | extern int expand_stack(struct vm_area_struct *vma, unsigned long address); | 1487 | extern int expand_stack(struct vm_area_struct *vma, unsigned long address); |
1486 | #if VM_GROWSUP | 1488 | #if VM_GROWSUP |
1487 | extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); | 1489 | extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); |
1488 | #else | 1490 | #else |
1489 | #define expand_upwards(vma, address) do { } while (0) | 1491 | #define expand_upwards(vma, address) do { } while (0) |
1490 | #endif | 1492 | #endif |
1491 | extern int expand_stack_downwards(struct vm_area_struct *vma, | 1493 | extern int expand_stack_downwards(struct vm_area_struct *vma, |
1492 | unsigned long address); | 1494 | unsigned long address); |
1493 | 1495 | ||
1494 | /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ | 1496 | /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ |
1495 | extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); | 1497 | extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); |
1496 | extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, | 1498 | extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, |
1497 | struct vm_area_struct **pprev); | 1499 | struct vm_area_struct **pprev); |
1498 | 1500 | ||
1499 | /* Look up the first VMA which intersects the interval start_addr..end_addr-1, | 1501 | /* Look up the first VMA which intersects the interval start_addr..end_addr-1, |
1500 | NULL if none. Assume start_addr < end_addr. */ | 1502 | NULL if none. Assume start_addr < end_addr. */ |
1501 | static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) | 1503 | static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) |
1502 | { | 1504 | { |
1503 | struct vm_area_struct * vma = find_vma(mm,start_addr); | 1505 | struct vm_area_struct * vma = find_vma(mm,start_addr); |
1504 | 1506 | ||
1505 | if (vma && end_addr <= vma->vm_start) | 1507 | if (vma && end_addr <= vma->vm_start) |
1506 | vma = NULL; | 1508 | vma = NULL; |
1507 | return vma; | 1509 | return vma; |
1508 | } | 1510 | } |
1509 | 1511 | ||
1510 | static inline unsigned long vma_pages(struct vm_area_struct *vma) | 1512 | static inline unsigned long vma_pages(struct vm_area_struct *vma) |
1511 | { | 1513 | { |
1512 | return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; | 1514 | return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; |
1513 | } | 1515 | } |
1514 | 1516 | ||
1515 | #ifdef CONFIG_MMU | 1517 | #ifdef CONFIG_MMU |
1516 | pgprot_t vm_get_page_prot(unsigned long vm_flags); | 1518 | pgprot_t vm_get_page_prot(unsigned long vm_flags); |
1517 | #else | 1519 | #else |
1518 | static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) | 1520 | static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) |
1519 | { | 1521 | { |
1520 | return __pgprot(0); | 1522 | return __pgprot(0); |
1521 | } | 1523 | } |
1522 | #endif | 1524 | #endif |
1523 | 1525 | ||
1524 | struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); | 1526 | struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); |
1525 | int remap_pfn_range(struct vm_area_struct *, unsigned long addr, | 1527 | int remap_pfn_range(struct vm_area_struct *, unsigned long addr, |
1526 | unsigned long pfn, unsigned long size, pgprot_t); | 1528 | unsigned long pfn, unsigned long size, pgprot_t); |
1527 | int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); | 1529 | int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); |
1528 | int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, | 1530 | int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, |
1529 | unsigned long pfn); | 1531 | unsigned long pfn); |
1530 | int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, | 1532 | int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, |
1531 | unsigned long pfn); | 1533 | unsigned long pfn); |
1532 | 1534 | ||
1533 | struct page *follow_page(struct vm_area_struct *, unsigned long address, | 1535 | struct page *follow_page(struct vm_area_struct *, unsigned long address, |
1534 | unsigned int foll_flags); | 1536 | unsigned int foll_flags); |
1535 | #define FOLL_WRITE 0x01 /* check pte is writable */ | 1537 | #define FOLL_WRITE 0x01 /* check pte is writable */ |
1536 | #define FOLL_TOUCH 0x02 /* mark page accessed */ | 1538 | #define FOLL_TOUCH 0x02 /* mark page accessed */ |
1537 | #define FOLL_GET 0x04 /* do get_page on page */ | 1539 | #define FOLL_GET 0x04 /* do get_page on page */ |
1538 | #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ | 1540 | #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ |
1539 | #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ | 1541 | #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ |
1540 | #define FOLL_MLOCK 0x40 /* mark page as mlocked */ | 1542 | #define FOLL_MLOCK 0x40 /* mark page as mlocked */ |
1541 | #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ | 1543 | #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ |
1542 | #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ | 1544 | #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ |
1543 | 1545 | ||
1544 | typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, | 1546 | typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, |
1545 | void *data); | 1547 | void *data); |
1546 | extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, | 1548 | extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, |
1547 | unsigned long size, pte_fn_t fn, void *data); | 1549 | unsigned long size, pte_fn_t fn, void *data); |
1548 | 1550 | ||
1549 | #ifdef CONFIG_PROC_FS | 1551 | #ifdef CONFIG_PROC_FS |
1550 | void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); | 1552 | void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); |
1551 | #else | 1553 | #else |
1552 | static inline void vm_stat_account(struct mm_struct *mm, | 1554 | static inline void vm_stat_account(struct mm_struct *mm, |
1553 | unsigned long flags, struct file *file, long pages) | 1555 | unsigned long flags, struct file *file, long pages) |
1554 | { | 1556 | { |
1555 | } | 1557 | } |
1556 | #endif /* CONFIG_PROC_FS */ | 1558 | #endif /* CONFIG_PROC_FS */ |
1557 | 1559 | ||
1558 | #ifdef CONFIG_DEBUG_PAGEALLOC | 1560 | #ifdef CONFIG_DEBUG_PAGEALLOC |
1559 | extern int debug_pagealloc_enabled; | 1561 | extern int debug_pagealloc_enabled; |
1560 | 1562 | ||
1561 | extern void kernel_map_pages(struct page *page, int numpages, int enable); | 1563 | extern void kernel_map_pages(struct page *page, int numpages, int enable); |
1562 | 1564 | ||
1563 | static inline void enable_debug_pagealloc(void) | 1565 | static inline void enable_debug_pagealloc(void) |
1564 | { | 1566 | { |
1565 | debug_pagealloc_enabled = 1; | 1567 | debug_pagealloc_enabled = 1; |
1566 | } | 1568 | } |
1567 | #ifdef CONFIG_HIBERNATION | 1569 | #ifdef CONFIG_HIBERNATION |
1568 | extern bool kernel_page_present(struct page *page); | 1570 | extern bool kernel_page_present(struct page *page); |
1569 | #endif /* CONFIG_HIBERNATION */ | 1571 | #endif /* CONFIG_HIBERNATION */ |
1570 | #else | 1572 | #else |
1571 | static inline void | 1573 | static inline void |
1572 | kernel_map_pages(struct page *page, int numpages, int enable) {} | 1574 | kernel_map_pages(struct page *page, int numpages, int enable) {} |
1573 | static inline void enable_debug_pagealloc(void) | 1575 | static inline void enable_debug_pagealloc(void) |
1574 | { | 1576 | { |
1575 | } | 1577 | } |
1576 | #ifdef CONFIG_HIBERNATION | 1578 | #ifdef CONFIG_HIBERNATION |
1577 | static inline bool kernel_page_present(struct page *page) { return true; } | 1579 | static inline bool kernel_page_present(struct page *page) { return true; } |
1578 | #endif /* CONFIG_HIBERNATION */ | 1580 | #endif /* CONFIG_HIBERNATION */ |
1579 | #endif | 1581 | #endif |
1580 | 1582 | ||
1581 | extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); | 1583 | extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); |
1582 | #ifdef __HAVE_ARCH_GATE_AREA | 1584 | #ifdef __HAVE_ARCH_GATE_AREA |
1583 | int in_gate_area_no_mm(unsigned long addr); | 1585 | int in_gate_area_no_mm(unsigned long addr); |
1584 | int in_gate_area(struct mm_struct *mm, unsigned long addr); | 1586 | int in_gate_area(struct mm_struct *mm, unsigned long addr); |
1585 | #else | 1587 | #else |
1586 | int in_gate_area_no_mm(unsigned long addr); | 1588 | int in_gate_area_no_mm(unsigned long addr); |
1587 | #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);}) | 1589 | #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);}) |
1588 | #endif /* __HAVE_ARCH_GATE_AREA */ | 1590 | #endif /* __HAVE_ARCH_GATE_AREA */ |
1589 | 1591 | ||
1590 | int drop_caches_sysctl_handler(struct ctl_table *, int, | 1592 | int drop_caches_sysctl_handler(struct ctl_table *, int, |
1591 | void __user *, size_t *, loff_t *); | 1593 | void __user *, size_t *, loff_t *); |
1592 | unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, | 1594 | unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, |
1593 | unsigned long lru_pages); | 1595 | unsigned long lru_pages); |
1594 | 1596 | ||
1595 | #ifndef CONFIG_MMU | 1597 | #ifndef CONFIG_MMU |
1596 | #define randomize_va_space 0 | 1598 | #define randomize_va_space 0 |
1597 | #else | 1599 | #else |
1598 | extern int randomize_va_space; | 1600 | extern int randomize_va_space; |
1599 | #endif | 1601 | #endif |
1600 | 1602 | ||
1601 | const char * arch_vma_name(struct vm_area_struct *vma); | 1603 | const char * arch_vma_name(struct vm_area_struct *vma); |
1602 | void print_vma_addr(char *prefix, unsigned long rip); | 1604 | void print_vma_addr(char *prefix, unsigned long rip); |
1603 | 1605 | ||
1604 | void sparse_mem_maps_populate_node(struct page **map_map, | 1606 | void sparse_mem_maps_populate_node(struct page **map_map, |
1605 | unsigned long pnum_begin, | 1607 | unsigned long pnum_begin, |
1606 | unsigned long pnum_end, | 1608 | unsigned long pnum_end, |
1607 | unsigned long map_count, | 1609 | unsigned long map_count, |
1608 | int nodeid); | 1610 | int nodeid); |
1609 | 1611 | ||
1610 | struct page *sparse_mem_map_populate(unsigned long pnum, int nid); | 1612 | struct page *sparse_mem_map_populate(unsigned long pnum, int nid); |
1611 | pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); | 1613 | pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); |
1612 | pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); | 1614 | pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); |
1613 | pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); | 1615 | pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); |
1614 | pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); | 1616 | pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); |
1615 | void *vmemmap_alloc_block(unsigned long size, int node); | 1617 | void *vmemmap_alloc_block(unsigned long size, int node); |
1616 | void *vmemmap_alloc_block_buf(unsigned long size, int node); | 1618 | void *vmemmap_alloc_block_buf(unsigned long size, int node); |
1617 | void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); | 1619 | void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); |
1618 | int vmemmap_populate_basepages(struct page *start_page, | 1620 | int vmemmap_populate_basepages(struct page *start_page, |
1619 | unsigned long pages, int node); | 1621 | unsigned long pages, int node); |
1620 | int vmemmap_populate(struct page *start_page, unsigned long pages, int node); | 1622 | int vmemmap_populate(struct page *start_page, unsigned long pages, int node); |
1621 | void vmemmap_populate_print_last(void); | 1623 | void vmemmap_populate_print_last(void); |
1622 | 1624 | ||
1623 | 1625 | ||
1624 | enum mf_flags { | 1626 | enum mf_flags { |
1625 | MF_COUNT_INCREASED = 1 << 0, | 1627 | MF_COUNT_INCREASED = 1 << 0, |
1626 | }; | 1628 | }; |
1627 | extern void memory_failure(unsigned long pfn, int trapno); | 1629 | extern void memory_failure(unsigned long pfn, int trapno); |
1628 | extern int __memory_failure(unsigned long pfn, int trapno, int flags); | 1630 | extern int __memory_failure(unsigned long pfn, int trapno, int flags); |
1629 | extern int unpoison_memory(unsigned long pfn); | 1631 | extern int unpoison_memory(unsigned long pfn); |
1630 | extern int sysctl_memory_failure_early_kill; | 1632 | extern int sysctl_memory_failure_early_kill; |
1631 | extern int sysctl_memory_failure_recovery; | 1633 | extern int sysctl_memory_failure_recovery; |
1632 | extern void shake_page(struct page *p, int access); | 1634 | extern void shake_page(struct page *p, int access); |
1633 | extern atomic_long_t mce_bad_pages; | 1635 | extern atomic_long_t mce_bad_pages; |
1634 | extern int soft_offline_page(struct page *page, int flags); | 1636 | extern int soft_offline_page(struct page *page, int flags); |
1635 | 1637 | ||
1636 | extern void dump_page(struct page *page); | 1638 | extern void dump_page(struct page *page); |
1637 | 1639 | ||
1638 | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) | 1640 | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) |
1639 | extern void clear_huge_page(struct page *page, | 1641 | extern void clear_huge_page(struct page *page, |
1640 | unsigned long addr, | 1642 | unsigned long addr, |
1641 | unsigned int pages_per_huge_page); | 1643 | unsigned int pages_per_huge_page); |
1642 | extern void copy_user_huge_page(struct page *dst, struct page *src, | 1644 | extern void copy_user_huge_page(struct page *dst, struct page *src, |
1643 | unsigned long addr, struct vm_area_struct *vma, | 1645 | unsigned long addr, struct vm_area_struct *vma, |
1644 | unsigned int pages_per_huge_page); | 1646 | unsigned int pages_per_huge_page); |
1645 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ | 1647 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ |
1646 | 1648 | ||
1647 | #endif /* __KERNEL__ */ | 1649 | #endif /* __KERNEL__ */ |
1648 | #endif /* _LINUX_MM_H */ | 1650 | #endif /* _LINUX_MM_H */ |
1649 | 1651 |
mm/memory.c
1 | /* | 1 | /* |
2 | * linux/mm/memory.c | 2 | * linux/mm/memory.c |
3 | * | 3 | * |
4 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | 4 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
5 | */ | 5 | */ |
6 | 6 | ||
7 | /* | 7 | /* |
8 | * demand-loading started 01.12.91 - seems it is high on the list of | 8 | * demand-loading started 01.12.91 - seems it is high on the list of |
9 | * things wanted, and it should be easy to implement. - Linus | 9 | * things wanted, and it should be easy to implement. - Linus |
10 | */ | 10 | */ |
11 | 11 | ||
12 | /* | 12 | /* |
13 | * Ok, demand-loading was easy, shared pages a little bit tricker. Shared | 13 | * Ok, demand-loading was easy, shared pages a little bit tricker. Shared |
14 | * pages started 02.12.91, seems to work. - Linus. | 14 | * pages started 02.12.91, seems to work. - Linus. |
15 | * | 15 | * |
16 | * Tested sharing by executing about 30 /bin/sh: under the old kernel it | 16 | * Tested sharing by executing about 30 /bin/sh: under the old kernel it |
17 | * would have taken more than the 6M I have free, but it worked well as | 17 | * would have taken more than the 6M I have free, but it worked well as |
18 | * far as I could see. | 18 | * far as I could see. |
19 | * | 19 | * |
20 | * Also corrected some "invalidate()"s - I wasn't doing enough of them. | 20 | * Also corrected some "invalidate()"s - I wasn't doing enough of them. |
21 | */ | 21 | */ |
22 | 22 | ||
23 | /* | 23 | /* |
24 | * Real VM (paging to/from disk) started 18.12.91. Much more work and | 24 | * Real VM (paging to/from disk) started 18.12.91. Much more work and |
25 | * thought has to go into this. Oh, well.. | 25 | * thought has to go into this. Oh, well.. |
26 | * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. | 26 | * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. |
27 | * Found it. Everything seems to work now. | 27 | * Found it. Everything seems to work now. |
28 | * 20.12.91 - Ok, making the swap-device changeable like the root. | 28 | * 20.12.91 - Ok, making the swap-device changeable like the root. |
29 | */ | 29 | */ |
30 | 30 | ||
31 | /* | 31 | /* |
32 | * 05.04.94 - Multi-page memory management added for v1.1. | 32 | * 05.04.94 - Multi-page memory management added for v1.1. |
33 | * Idea by Alex Bligh (alex@cconcepts.co.uk) | 33 | * Idea by Alex Bligh (alex@cconcepts.co.uk) |
34 | * | 34 | * |
35 | * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG | 35 | * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG |
36 | * (Gerhard.Wichert@pdb.siemens.de) | 36 | * (Gerhard.Wichert@pdb.siemens.de) |
37 | * | 37 | * |
38 | * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) | 38 | * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) |
39 | */ | 39 | */ |
40 | 40 | ||
41 | #include <linux/kernel_stat.h> | 41 | #include <linux/kernel_stat.h> |
42 | #include <linux/mm.h> | 42 | #include <linux/mm.h> |
43 | #include <linux/hugetlb.h> | 43 | #include <linux/hugetlb.h> |
44 | #include <linux/mman.h> | 44 | #include <linux/mman.h> |
45 | #include <linux/swap.h> | 45 | #include <linux/swap.h> |
46 | #include <linux/highmem.h> | 46 | #include <linux/highmem.h> |
47 | #include <linux/pagemap.h> | 47 | #include <linux/pagemap.h> |
48 | #include <linux/ksm.h> | 48 | #include <linux/ksm.h> |
49 | #include <linux/rmap.h> | 49 | #include <linux/rmap.h> |
50 | #include <linux/module.h> | 50 | #include <linux/module.h> |
51 | #include <linux/delayacct.h> | 51 | #include <linux/delayacct.h> |
52 | #include <linux/init.h> | 52 | #include <linux/init.h> |
53 | #include <linux/writeback.h> | 53 | #include <linux/writeback.h> |
54 | #include <linux/memcontrol.h> | 54 | #include <linux/memcontrol.h> |
55 | #include <linux/mmu_notifier.h> | 55 | #include <linux/mmu_notifier.h> |
56 | #include <linux/kallsyms.h> | 56 | #include <linux/kallsyms.h> |
57 | #include <linux/swapops.h> | 57 | #include <linux/swapops.h> |
58 | #include <linux/elf.h> | 58 | #include <linux/elf.h> |
59 | #include <linux/gfp.h> | 59 | #include <linux/gfp.h> |
60 | 60 | ||
61 | #include <asm/io.h> | 61 | #include <asm/io.h> |
62 | #include <asm/pgalloc.h> | 62 | #include <asm/pgalloc.h> |
63 | #include <asm/uaccess.h> | 63 | #include <asm/uaccess.h> |
64 | #include <asm/tlb.h> | 64 | #include <asm/tlb.h> |
65 | #include <asm/tlbflush.h> | 65 | #include <asm/tlbflush.h> |
66 | #include <asm/pgtable.h> | 66 | #include <asm/pgtable.h> |
67 | 67 | ||
68 | #include "internal.h" | 68 | #include "internal.h" |
69 | 69 | ||
70 | #ifndef CONFIG_NEED_MULTIPLE_NODES | 70 | #ifndef CONFIG_NEED_MULTIPLE_NODES |
71 | /* use the per-pgdat data instead for discontigmem - mbligh */ | 71 | /* use the per-pgdat data instead for discontigmem - mbligh */ |
72 | unsigned long max_mapnr; | 72 | unsigned long max_mapnr; |
73 | struct page *mem_map; | 73 | struct page *mem_map; |
74 | 74 | ||
75 | EXPORT_SYMBOL(max_mapnr); | 75 | EXPORT_SYMBOL(max_mapnr); |
76 | EXPORT_SYMBOL(mem_map); | 76 | EXPORT_SYMBOL(mem_map); |
77 | #endif | 77 | #endif |
78 | 78 | ||
79 | unsigned long num_physpages; | 79 | unsigned long num_physpages; |
80 | /* | 80 | /* |
81 | * A number of key systems in x86 including ioremap() rely on the assumption | 81 | * A number of key systems in x86 including ioremap() rely on the assumption |
82 | * that high_memory defines the upper bound on direct map memory, then end | 82 | * that high_memory defines the upper bound on direct map memory, then end |
83 | * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and | 83 | * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and |
84 | * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL | 84 | * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL |
85 | * and ZONE_HIGHMEM. | 85 | * and ZONE_HIGHMEM. |
86 | */ | 86 | */ |
87 | void * high_memory; | 87 | void * high_memory; |
88 | 88 | ||
89 | EXPORT_SYMBOL(num_physpages); | 89 | EXPORT_SYMBOL(num_physpages); |
90 | EXPORT_SYMBOL(high_memory); | 90 | EXPORT_SYMBOL(high_memory); |
91 | 91 | ||
92 | /* | 92 | /* |
93 | * Randomize the address space (stacks, mmaps, brk, etc.). | 93 | * Randomize the address space (stacks, mmaps, brk, etc.). |
94 | * | 94 | * |
95 | * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, | 95 | * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, |
96 | * as ancient (libc5 based) binaries can segfault. ) | 96 | * as ancient (libc5 based) binaries can segfault. ) |
97 | */ | 97 | */ |
98 | int randomize_va_space __read_mostly = | 98 | int randomize_va_space __read_mostly = |
99 | #ifdef CONFIG_COMPAT_BRK | 99 | #ifdef CONFIG_COMPAT_BRK |
100 | 1; | 100 | 1; |
101 | #else | 101 | #else |
102 | 2; | 102 | 2; |
103 | #endif | 103 | #endif |
104 | 104 | ||
105 | static int __init disable_randmaps(char *s) | 105 | static int __init disable_randmaps(char *s) |
106 | { | 106 | { |
107 | randomize_va_space = 0; | 107 | randomize_va_space = 0; |
108 | return 1; | 108 | return 1; |
109 | } | 109 | } |
110 | __setup("norandmaps", disable_randmaps); | 110 | __setup("norandmaps", disable_randmaps); |
111 | 111 | ||
112 | unsigned long zero_pfn __read_mostly; | 112 | unsigned long zero_pfn __read_mostly; |
113 | unsigned long highest_memmap_pfn __read_mostly; | 113 | unsigned long highest_memmap_pfn __read_mostly; |
114 | 114 | ||
115 | /* | 115 | /* |
116 | * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() | 116 | * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() |
117 | */ | 117 | */ |
118 | static int __init init_zero_pfn(void) | 118 | static int __init init_zero_pfn(void) |
119 | { | 119 | { |
120 | zero_pfn = page_to_pfn(ZERO_PAGE(0)); | 120 | zero_pfn = page_to_pfn(ZERO_PAGE(0)); |
121 | return 0; | 121 | return 0; |
122 | } | 122 | } |
123 | core_initcall(init_zero_pfn); | 123 | core_initcall(init_zero_pfn); |
124 | 124 | ||
125 | 125 | ||
126 | #if defined(SPLIT_RSS_COUNTING) | 126 | #if defined(SPLIT_RSS_COUNTING) |
127 | 127 | ||
128 | static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm) | 128 | static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm) |
129 | { | 129 | { |
130 | int i; | 130 | int i; |
131 | 131 | ||
132 | for (i = 0; i < NR_MM_COUNTERS; i++) { | 132 | for (i = 0; i < NR_MM_COUNTERS; i++) { |
133 | if (task->rss_stat.count[i]) { | 133 | if (task->rss_stat.count[i]) { |
134 | add_mm_counter(mm, i, task->rss_stat.count[i]); | 134 | add_mm_counter(mm, i, task->rss_stat.count[i]); |
135 | task->rss_stat.count[i] = 0; | 135 | task->rss_stat.count[i] = 0; |
136 | } | 136 | } |
137 | } | 137 | } |
138 | task->rss_stat.events = 0; | 138 | task->rss_stat.events = 0; |
139 | } | 139 | } |
140 | 140 | ||
141 | static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) | 141 | static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) |
142 | { | 142 | { |
143 | struct task_struct *task = current; | 143 | struct task_struct *task = current; |
144 | 144 | ||
145 | if (likely(task->mm == mm)) | 145 | if (likely(task->mm == mm)) |
146 | task->rss_stat.count[member] += val; | 146 | task->rss_stat.count[member] += val; |
147 | else | 147 | else |
148 | add_mm_counter(mm, member, val); | 148 | add_mm_counter(mm, member, val); |
149 | } | 149 | } |
150 | #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) | 150 | #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) |
151 | #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) | 151 | #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) |
152 | 152 | ||
153 | /* sync counter once per 64 page faults */ | 153 | /* sync counter once per 64 page faults */ |
154 | #define TASK_RSS_EVENTS_THRESH (64) | 154 | #define TASK_RSS_EVENTS_THRESH (64) |
155 | static void check_sync_rss_stat(struct task_struct *task) | 155 | static void check_sync_rss_stat(struct task_struct *task) |
156 | { | 156 | { |
157 | if (unlikely(task != current)) | 157 | if (unlikely(task != current)) |
158 | return; | 158 | return; |
159 | if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) | 159 | if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) |
160 | __sync_task_rss_stat(task, task->mm); | 160 | __sync_task_rss_stat(task, task->mm); |
161 | } | 161 | } |
162 | 162 | ||
163 | unsigned long get_mm_counter(struct mm_struct *mm, int member) | 163 | unsigned long get_mm_counter(struct mm_struct *mm, int member) |
164 | { | 164 | { |
165 | long val = 0; | 165 | long val = 0; |
166 | 166 | ||
167 | /* | 167 | /* |
168 | * Don't use task->mm here...for avoiding to use task_get_mm().. | 168 | * Don't use task->mm here...for avoiding to use task_get_mm().. |
169 | * The caller must guarantee task->mm is not invalid. | 169 | * The caller must guarantee task->mm is not invalid. |
170 | */ | 170 | */ |
171 | val = atomic_long_read(&mm->rss_stat.count[member]); | 171 | val = atomic_long_read(&mm->rss_stat.count[member]); |
172 | /* | 172 | /* |
173 | * counter is updated in asynchronous manner and may go to minus. | 173 | * counter is updated in asynchronous manner and may go to minus. |
174 | * But it's never be expected number for users. | 174 | * But it's never be expected number for users. |
175 | */ | 175 | */ |
176 | if (val < 0) | 176 | if (val < 0) |
177 | return 0; | 177 | return 0; |
178 | return (unsigned long)val; | 178 | return (unsigned long)val; |
179 | } | 179 | } |
180 | 180 | ||
181 | void sync_mm_rss(struct task_struct *task, struct mm_struct *mm) | 181 | void sync_mm_rss(struct task_struct *task, struct mm_struct *mm) |
182 | { | 182 | { |
183 | __sync_task_rss_stat(task, mm); | 183 | __sync_task_rss_stat(task, mm); |
184 | } | 184 | } |
185 | #else | 185 | #else |
186 | 186 | ||
187 | #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) | 187 | #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) |
188 | #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) | 188 | #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) |
189 | 189 | ||
190 | static void check_sync_rss_stat(struct task_struct *task) | 190 | static void check_sync_rss_stat(struct task_struct *task) |
191 | { | 191 | { |
192 | } | 192 | } |
193 | 193 | ||
194 | #endif | 194 | #endif |
195 | 195 | ||
196 | /* | 196 | /* |
197 | * If a p?d_bad entry is found while walking page tables, report | 197 | * If a p?d_bad entry is found while walking page tables, report |
198 | * the error, before resetting entry to p?d_none. Usually (but | 198 | * the error, before resetting entry to p?d_none. Usually (but |
199 | * very seldom) called out from the p?d_none_or_clear_bad macros. | 199 | * very seldom) called out from the p?d_none_or_clear_bad macros. |
200 | */ | 200 | */ |
201 | 201 | ||
202 | void pgd_clear_bad(pgd_t *pgd) | 202 | void pgd_clear_bad(pgd_t *pgd) |
203 | { | 203 | { |
204 | pgd_ERROR(*pgd); | 204 | pgd_ERROR(*pgd); |
205 | pgd_clear(pgd); | 205 | pgd_clear(pgd); |
206 | } | 206 | } |
207 | 207 | ||
208 | void pud_clear_bad(pud_t *pud) | 208 | void pud_clear_bad(pud_t *pud) |
209 | { | 209 | { |
210 | pud_ERROR(*pud); | 210 | pud_ERROR(*pud); |
211 | pud_clear(pud); | 211 | pud_clear(pud); |
212 | } | 212 | } |
213 | 213 | ||
214 | void pmd_clear_bad(pmd_t *pmd) | 214 | void pmd_clear_bad(pmd_t *pmd) |
215 | { | 215 | { |
216 | pmd_ERROR(*pmd); | 216 | pmd_ERROR(*pmd); |
217 | pmd_clear(pmd); | 217 | pmd_clear(pmd); |
218 | } | 218 | } |
219 | 219 | ||
220 | /* | 220 | /* |
221 | * Note: this doesn't free the actual pages themselves. That | 221 | * Note: this doesn't free the actual pages themselves. That |
222 | * has been handled earlier when unmapping all the memory regions. | 222 | * has been handled earlier when unmapping all the memory regions. |
223 | */ | 223 | */ |
224 | static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, | 224 | static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, |
225 | unsigned long addr) | 225 | unsigned long addr) |
226 | { | 226 | { |
227 | pgtable_t token = pmd_pgtable(*pmd); | 227 | pgtable_t token = pmd_pgtable(*pmd); |
228 | pmd_clear(pmd); | 228 | pmd_clear(pmd); |
229 | pte_free_tlb(tlb, token, addr); | 229 | pte_free_tlb(tlb, token, addr); |
230 | tlb->mm->nr_ptes--; | 230 | tlb->mm->nr_ptes--; |
231 | } | 231 | } |
232 | 232 | ||
233 | static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, | 233 | static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, |
234 | unsigned long addr, unsigned long end, | 234 | unsigned long addr, unsigned long end, |
235 | unsigned long floor, unsigned long ceiling) | 235 | unsigned long floor, unsigned long ceiling) |
236 | { | 236 | { |
237 | pmd_t *pmd; | 237 | pmd_t *pmd; |
238 | unsigned long next; | 238 | unsigned long next; |
239 | unsigned long start; | 239 | unsigned long start; |
240 | 240 | ||
241 | start = addr; | 241 | start = addr; |
242 | pmd = pmd_offset(pud, addr); | 242 | pmd = pmd_offset(pud, addr); |
243 | do { | 243 | do { |
244 | next = pmd_addr_end(addr, end); | 244 | next = pmd_addr_end(addr, end); |
245 | if (pmd_none_or_clear_bad(pmd)) | 245 | if (pmd_none_or_clear_bad(pmd)) |
246 | continue; | 246 | continue; |
247 | free_pte_range(tlb, pmd, addr); | 247 | free_pte_range(tlb, pmd, addr); |
248 | } while (pmd++, addr = next, addr != end); | 248 | } while (pmd++, addr = next, addr != end); |
249 | 249 | ||
250 | start &= PUD_MASK; | 250 | start &= PUD_MASK; |
251 | if (start < floor) | 251 | if (start < floor) |
252 | return; | 252 | return; |
253 | if (ceiling) { | 253 | if (ceiling) { |
254 | ceiling &= PUD_MASK; | 254 | ceiling &= PUD_MASK; |
255 | if (!ceiling) | 255 | if (!ceiling) |
256 | return; | 256 | return; |
257 | } | 257 | } |
258 | if (end - 1 > ceiling - 1) | 258 | if (end - 1 > ceiling - 1) |
259 | return; | 259 | return; |
260 | 260 | ||
261 | pmd = pmd_offset(pud, start); | 261 | pmd = pmd_offset(pud, start); |
262 | pud_clear(pud); | 262 | pud_clear(pud); |
263 | pmd_free_tlb(tlb, pmd, start); | 263 | pmd_free_tlb(tlb, pmd, start); |
264 | } | 264 | } |
265 | 265 | ||
266 | static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, | 266 | static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, |
267 | unsigned long addr, unsigned long end, | 267 | unsigned long addr, unsigned long end, |
268 | unsigned long floor, unsigned long ceiling) | 268 | unsigned long floor, unsigned long ceiling) |
269 | { | 269 | { |
270 | pud_t *pud; | 270 | pud_t *pud; |
271 | unsigned long next; | 271 | unsigned long next; |
272 | unsigned long start; | 272 | unsigned long start; |
273 | 273 | ||
274 | start = addr; | 274 | start = addr; |
275 | pud = pud_offset(pgd, addr); | 275 | pud = pud_offset(pgd, addr); |
276 | do { | 276 | do { |
277 | next = pud_addr_end(addr, end); | 277 | next = pud_addr_end(addr, end); |
278 | if (pud_none_or_clear_bad(pud)) | 278 | if (pud_none_or_clear_bad(pud)) |
279 | continue; | 279 | continue; |
280 | free_pmd_range(tlb, pud, addr, next, floor, ceiling); | 280 | free_pmd_range(tlb, pud, addr, next, floor, ceiling); |
281 | } while (pud++, addr = next, addr != end); | 281 | } while (pud++, addr = next, addr != end); |
282 | 282 | ||
283 | start &= PGDIR_MASK; | 283 | start &= PGDIR_MASK; |
284 | if (start < floor) | 284 | if (start < floor) |
285 | return; | 285 | return; |
286 | if (ceiling) { | 286 | if (ceiling) { |
287 | ceiling &= PGDIR_MASK; | 287 | ceiling &= PGDIR_MASK; |
288 | if (!ceiling) | 288 | if (!ceiling) |
289 | return; | 289 | return; |
290 | } | 290 | } |
291 | if (end - 1 > ceiling - 1) | 291 | if (end - 1 > ceiling - 1) |
292 | return; | 292 | return; |
293 | 293 | ||
294 | pud = pud_offset(pgd, start); | 294 | pud = pud_offset(pgd, start); |
295 | pgd_clear(pgd); | 295 | pgd_clear(pgd); |
296 | pud_free_tlb(tlb, pud, start); | 296 | pud_free_tlb(tlb, pud, start); |
297 | } | 297 | } |
298 | 298 | ||
299 | /* | 299 | /* |
300 | * This function frees user-level page tables of a process. | 300 | * This function frees user-level page tables of a process. |
301 | * | 301 | * |
302 | * Must be called with pagetable lock held. | 302 | * Must be called with pagetable lock held. |
303 | */ | 303 | */ |
304 | void free_pgd_range(struct mmu_gather *tlb, | 304 | void free_pgd_range(struct mmu_gather *tlb, |
305 | unsigned long addr, unsigned long end, | 305 | unsigned long addr, unsigned long end, |
306 | unsigned long floor, unsigned long ceiling) | 306 | unsigned long floor, unsigned long ceiling) |
307 | { | 307 | { |
308 | pgd_t *pgd; | 308 | pgd_t *pgd; |
309 | unsigned long next; | 309 | unsigned long next; |
310 | 310 | ||
311 | /* | 311 | /* |
312 | * The next few lines have given us lots of grief... | 312 | * The next few lines have given us lots of grief... |
313 | * | 313 | * |
314 | * Why are we testing PMD* at this top level? Because often | 314 | * Why are we testing PMD* at this top level? Because often |
315 | * there will be no work to do at all, and we'd prefer not to | 315 | * there will be no work to do at all, and we'd prefer not to |
316 | * go all the way down to the bottom just to discover that. | 316 | * go all the way down to the bottom just to discover that. |
317 | * | 317 | * |
318 | * Why all these "- 1"s? Because 0 represents both the bottom | 318 | * Why all these "- 1"s? Because 0 represents both the bottom |
319 | * of the address space and the top of it (using -1 for the | 319 | * of the address space and the top of it (using -1 for the |
320 | * top wouldn't help much: the masks would do the wrong thing). | 320 | * top wouldn't help much: the masks would do the wrong thing). |
321 | * The rule is that addr 0 and floor 0 refer to the bottom of | 321 | * The rule is that addr 0 and floor 0 refer to the bottom of |
322 | * the address space, but end 0 and ceiling 0 refer to the top | 322 | * the address space, but end 0 and ceiling 0 refer to the top |
323 | * Comparisons need to use "end - 1" and "ceiling - 1" (though | 323 | * Comparisons need to use "end - 1" and "ceiling - 1" (though |
324 | * that end 0 case should be mythical). | 324 | * that end 0 case should be mythical). |
325 | * | 325 | * |
326 | * Wherever addr is brought up or ceiling brought down, we must | 326 | * Wherever addr is brought up or ceiling brought down, we must |
327 | * be careful to reject "the opposite 0" before it confuses the | 327 | * be careful to reject "the opposite 0" before it confuses the |
328 | * subsequent tests. But what about where end is brought down | 328 | * subsequent tests. But what about where end is brought down |
329 | * by PMD_SIZE below? no, end can't go down to 0 there. | 329 | * by PMD_SIZE below? no, end can't go down to 0 there. |
330 | * | 330 | * |
331 | * Whereas we round start (addr) and ceiling down, by different | 331 | * Whereas we round start (addr) and ceiling down, by different |
332 | * masks at different levels, in order to test whether a table | 332 | * masks at different levels, in order to test whether a table |
333 | * now has no other vmas using it, so can be freed, we don't | 333 | * now has no other vmas using it, so can be freed, we don't |
334 | * bother to round floor or end up - the tests don't need that. | 334 | * bother to round floor or end up - the tests don't need that. |
335 | */ | 335 | */ |
336 | 336 | ||
337 | addr &= PMD_MASK; | 337 | addr &= PMD_MASK; |
338 | if (addr < floor) { | 338 | if (addr < floor) { |
339 | addr += PMD_SIZE; | 339 | addr += PMD_SIZE; |
340 | if (!addr) | 340 | if (!addr) |
341 | return; | 341 | return; |
342 | } | 342 | } |
343 | if (ceiling) { | 343 | if (ceiling) { |
344 | ceiling &= PMD_MASK; | 344 | ceiling &= PMD_MASK; |
345 | if (!ceiling) | 345 | if (!ceiling) |
346 | return; | 346 | return; |
347 | } | 347 | } |
348 | if (end - 1 > ceiling - 1) | 348 | if (end - 1 > ceiling - 1) |
349 | end -= PMD_SIZE; | 349 | end -= PMD_SIZE; |
350 | if (addr > end - 1) | 350 | if (addr > end - 1) |
351 | return; | 351 | return; |
352 | 352 | ||
353 | pgd = pgd_offset(tlb->mm, addr); | 353 | pgd = pgd_offset(tlb->mm, addr); |
354 | do { | 354 | do { |
355 | next = pgd_addr_end(addr, end); | 355 | next = pgd_addr_end(addr, end); |
356 | if (pgd_none_or_clear_bad(pgd)) | 356 | if (pgd_none_or_clear_bad(pgd)) |
357 | continue; | 357 | continue; |
358 | free_pud_range(tlb, pgd, addr, next, floor, ceiling); | 358 | free_pud_range(tlb, pgd, addr, next, floor, ceiling); |
359 | } while (pgd++, addr = next, addr != end); | 359 | } while (pgd++, addr = next, addr != end); |
360 | } | 360 | } |
361 | 361 | ||
362 | void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, | 362 | void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, |
363 | unsigned long floor, unsigned long ceiling) | 363 | unsigned long floor, unsigned long ceiling) |
364 | { | 364 | { |
365 | while (vma) { | 365 | while (vma) { |
366 | struct vm_area_struct *next = vma->vm_next; | 366 | struct vm_area_struct *next = vma->vm_next; |
367 | unsigned long addr = vma->vm_start; | 367 | unsigned long addr = vma->vm_start; |
368 | 368 | ||
369 | /* | 369 | /* |
370 | * Hide vma from rmap and truncate_pagecache before freeing | 370 | * Hide vma from rmap and truncate_pagecache before freeing |
371 | * pgtables | 371 | * pgtables |
372 | */ | 372 | */ |
373 | unlink_anon_vmas(vma); | 373 | unlink_anon_vmas(vma); |
374 | unlink_file_vma(vma); | 374 | unlink_file_vma(vma); |
375 | 375 | ||
376 | if (is_vm_hugetlb_page(vma)) { | 376 | if (is_vm_hugetlb_page(vma)) { |
377 | hugetlb_free_pgd_range(tlb, addr, vma->vm_end, | 377 | hugetlb_free_pgd_range(tlb, addr, vma->vm_end, |
378 | floor, next? next->vm_start: ceiling); | 378 | floor, next? next->vm_start: ceiling); |
379 | } else { | 379 | } else { |
380 | /* | 380 | /* |
381 | * Optimization: gather nearby vmas into one call down | 381 | * Optimization: gather nearby vmas into one call down |
382 | */ | 382 | */ |
383 | while (next && next->vm_start <= vma->vm_end + PMD_SIZE | 383 | while (next && next->vm_start <= vma->vm_end + PMD_SIZE |
384 | && !is_vm_hugetlb_page(next)) { | 384 | && !is_vm_hugetlb_page(next)) { |
385 | vma = next; | 385 | vma = next; |
386 | next = vma->vm_next; | 386 | next = vma->vm_next; |
387 | unlink_anon_vmas(vma); | 387 | unlink_anon_vmas(vma); |
388 | unlink_file_vma(vma); | 388 | unlink_file_vma(vma); |
389 | } | 389 | } |
390 | free_pgd_range(tlb, addr, vma->vm_end, | 390 | free_pgd_range(tlb, addr, vma->vm_end, |
391 | floor, next? next->vm_start: ceiling); | 391 | floor, next? next->vm_start: ceiling); |
392 | } | 392 | } |
393 | vma = next; | 393 | vma = next; |
394 | } | 394 | } |
395 | } | 395 | } |
396 | 396 | ||
397 | int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, | 397 | int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, |
398 | pmd_t *pmd, unsigned long address) | 398 | pmd_t *pmd, unsigned long address) |
399 | { | 399 | { |
400 | pgtable_t new = pte_alloc_one(mm, address); | 400 | pgtable_t new = pte_alloc_one(mm, address); |
401 | int wait_split_huge_page; | 401 | int wait_split_huge_page; |
402 | if (!new) | 402 | if (!new) |
403 | return -ENOMEM; | 403 | return -ENOMEM; |
404 | 404 | ||
405 | /* | 405 | /* |
406 | * Ensure all pte setup (eg. pte page lock and page clearing) are | 406 | * Ensure all pte setup (eg. pte page lock and page clearing) are |
407 | * visible before the pte is made visible to other CPUs by being | 407 | * visible before the pte is made visible to other CPUs by being |
408 | * put into page tables. | 408 | * put into page tables. |
409 | * | 409 | * |
410 | * The other side of the story is the pointer chasing in the page | 410 | * The other side of the story is the pointer chasing in the page |
411 | * table walking code (when walking the page table without locking; | 411 | * table walking code (when walking the page table without locking; |
412 | * ie. most of the time). Fortunately, these data accesses consist | 412 | * ie. most of the time). Fortunately, these data accesses consist |
413 | * of a chain of data-dependent loads, meaning most CPUs (alpha | 413 | * of a chain of data-dependent loads, meaning most CPUs (alpha |
414 | * being the notable exception) will already guarantee loads are | 414 | * being the notable exception) will already guarantee loads are |
415 | * seen in-order. See the alpha page table accessors for the | 415 | * seen in-order. See the alpha page table accessors for the |
416 | * smp_read_barrier_depends() barriers in page table walking code. | 416 | * smp_read_barrier_depends() barriers in page table walking code. |
417 | */ | 417 | */ |
418 | smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ | 418 | smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ |
419 | 419 | ||
420 | spin_lock(&mm->page_table_lock); | 420 | spin_lock(&mm->page_table_lock); |
421 | wait_split_huge_page = 0; | 421 | wait_split_huge_page = 0; |
422 | if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ | 422 | if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ |
423 | mm->nr_ptes++; | 423 | mm->nr_ptes++; |
424 | pmd_populate(mm, pmd, new); | 424 | pmd_populate(mm, pmd, new); |
425 | new = NULL; | 425 | new = NULL; |
426 | } else if (unlikely(pmd_trans_splitting(*pmd))) | 426 | } else if (unlikely(pmd_trans_splitting(*pmd))) |
427 | wait_split_huge_page = 1; | 427 | wait_split_huge_page = 1; |
428 | spin_unlock(&mm->page_table_lock); | 428 | spin_unlock(&mm->page_table_lock); |
429 | if (new) | 429 | if (new) |
430 | pte_free(mm, new); | 430 | pte_free(mm, new); |
431 | if (wait_split_huge_page) | 431 | if (wait_split_huge_page) |
432 | wait_split_huge_page(vma->anon_vma, pmd); | 432 | wait_split_huge_page(vma->anon_vma, pmd); |
433 | return 0; | 433 | return 0; |
434 | } | 434 | } |
435 | 435 | ||
436 | int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) | 436 | int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) |
437 | { | 437 | { |
438 | pte_t *new = pte_alloc_one_kernel(&init_mm, address); | 438 | pte_t *new = pte_alloc_one_kernel(&init_mm, address); |
439 | if (!new) | 439 | if (!new) |
440 | return -ENOMEM; | 440 | return -ENOMEM; |
441 | 441 | ||
442 | smp_wmb(); /* See comment in __pte_alloc */ | 442 | smp_wmb(); /* See comment in __pte_alloc */ |
443 | 443 | ||
444 | spin_lock(&init_mm.page_table_lock); | 444 | spin_lock(&init_mm.page_table_lock); |
445 | if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ | 445 | if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ |
446 | pmd_populate_kernel(&init_mm, pmd, new); | 446 | pmd_populate_kernel(&init_mm, pmd, new); |
447 | new = NULL; | 447 | new = NULL; |
448 | } else | 448 | } else |
449 | VM_BUG_ON(pmd_trans_splitting(*pmd)); | 449 | VM_BUG_ON(pmd_trans_splitting(*pmd)); |
450 | spin_unlock(&init_mm.page_table_lock); | 450 | spin_unlock(&init_mm.page_table_lock); |
451 | if (new) | 451 | if (new) |
452 | pte_free_kernel(&init_mm, new); | 452 | pte_free_kernel(&init_mm, new); |
453 | return 0; | 453 | return 0; |
454 | } | 454 | } |
455 | 455 | ||
456 | static inline void init_rss_vec(int *rss) | 456 | static inline void init_rss_vec(int *rss) |
457 | { | 457 | { |
458 | memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); | 458 | memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); |
459 | } | 459 | } |
460 | 460 | ||
461 | static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) | 461 | static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) |
462 | { | 462 | { |
463 | int i; | 463 | int i; |
464 | 464 | ||
465 | if (current->mm == mm) | 465 | if (current->mm == mm) |
466 | sync_mm_rss(current, mm); | 466 | sync_mm_rss(current, mm); |
467 | for (i = 0; i < NR_MM_COUNTERS; i++) | 467 | for (i = 0; i < NR_MM_COUNTERS; i++) |
468 | if (rss[i]) | 468 | if (rss[i]) |
469 | add_mm_counter(mm, i, rss[i]); | 469 | add_mm_counter(mm, i, rss[i]); |
470 | } | 470 | } |
471 | 471 | ||
472 | /* | 472 | /* |
473 | * This function is called to print an error when a bad pte | 473 | * This function is called to print an error when a bad pte |
474 | * is found. For example, we might have a PFN-mapped pte in | 474 | * is found. For example, we might have a PFN-mapped pte in |
475 | * a region that doesn't allow it. | 475 | * a region that doesn't allow it. |
476 | * | 476 | * |
477 | * The calling function must still handle the error. | 477 | * The calling function must still handle the error. |
478 | */ | 478 | */ |
479 | static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, | 479 | static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, |
480 | pte_t pte, struct page *page) | 480 | pte_t pte, struct page *page) |
481 | { | 481 | { |
482 | pgd_t *pgd = pgd_offset(vma->vm_mm, addr); | 482 | pgd_t *pgd = pgd_offset(vma->vm_mm, addr); |
483 | pud_t *pud = pud_offset(pgd, addr); | 483 | pud_t *pud = pud_offset(pgd, addr); |
484 | pmd_t *pmd = pmd_offset(pud, addr); | 484 | pmd_t *pmd = pmd_offset(pud, addr); |
485 | struct address_space *mapping; | 485 | struct address_space *mapping; |
486 | pgoff_t index; | 486 | pgoff_t index; |
487 | static unsigned long resume; | 487 | static unsigned long resume; |
488 | static unsigned long nr_shown; | 488 | static unsigned long nr_shown; |
489 | static unsigned long nr_unshown; | 489 | static unsigned long nr_unshown; |
490 | 490 | ||
491 | /* | 491 | /* |
492 | * Allow a burst of 60 reports, then keep quiet for that minute; | 492 | * Allow a burst of 60 reports, then keep quiet for that minute; |
493 | * or allow a steady drip of one report per second. | 493 | * or allow a steady drip of one report per second. |
494 | */ | 494 | */ |
495 | if (nr_shown == 60) { | 495 | if (nr_shown == 60) { |
496 | if (time_before(jiffies, resume)) { | 496 | if (time_before(jiffies, resume)) { |
497 | nr_unshown++; | 497 | nr_unshown++; |
498 | return; | 498 | return; |
499 | } | 499 | } |
500 | if (nr_unshown) { | 500 | if (nr_unshown) { |
501 | printk(KERN_ALERT | 501 | printk(KERN_ALERT |
502 | "BUG: Bad page map: %lu messages suppressed\n", | 502 | "BUG: Bad page map: %lu messages suppressed\n", |
503 | nr_unshown); | 503 | nr_unshown); |
504 | nr_unshown = 0; | 504 | nr_unshown = 0; |
505 | } | 505 | } |
506 | nr_shown = 0; | 506 | nr_shown = 0; |
507 | } | 507 | } |
508 | if (nr_shown++ == 0) | 508 | if (nr_shown++ == 0) |
509 | resume = jiffies + 60 * HZ; | 509 | resume = jiffies + 60 * HZ; |
510 | 510 | ||
511 | mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; | 511 | mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; |
512 | index = linear_page_index(vma, addr); | 512 | index = linear_page_index(vma, addr); |
513 | 513 | ||
514 | printk(KERN_ALERT | 514 | printk(KERN_ALERT |
515 | "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", | 515 | "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", |
516 | current->comm, | 516 | current->comm, |
517 | (long long)pte_val(pte), (long long)pmd_val(*pmd)); | 517 | (long long)pte_val(pte), (long long)pmd_val(*pmd)); |
518 | if (page) | 518 | if (page) |
519 | dump_page(page); | 519 | dump_page(page); |
520 | printk(KERN_ALERT | 520 | printk(KERN_ALERT |
521 | "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", | 521 | "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", |
522 | (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); | 522 | (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); |
523 | /* | 523 | /* |
524 | * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y | 524 | * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y |
525 | */ | 525 | */ |
526 | if (vma->vm_ops) | 526 | if (vma->vm_ops) |
527 | print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n", | 527 | print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n", |
528 | (unsigned long)vma->vm_ops->fault); | 528 | (unsigned long)vma->vm_ops->fault); |
529 | if (vma->vm_file && vma->vm_file->f_op) | 529 | if (vma->vm_file && vma->vm_file->f_op) |
530 | print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n", | 530 | print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n", |
531 | (unsigned long)vma->vm_file->f_op->mmap); | 531 | (unsigned long)vma->vm_file->f_op->mmap); |
532 | dump_stack(); | 532 | dump_stack(); |
533 | add_taint(TAINT_BAD_PAGE); | 533 | add_taint(TAINT_BAD_PAGE); |
534 | } | 534 | } |
535 | 535 | ||
536 | static inline int is_cow_mapping(unsigned int flags) | 536 | static inline int is_cow_mapping(unsigned int flags) |
537 | { | 537 | { |
538 | return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; | 538 | return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; |
539 | } | 539 | } |
540 | 540 | ||
541 | #ifndef is_zero_pfn | 541 | #ifndef is_zero_pfn |
542 | static inline int is_zero_pfn(unsigned long pfn) | 542 | static inline int is_zero_pfn(unsigned long pfn) |
543 | { | 543 | { |
544 | return pfn == zero_pfn; | 544 | return pfn == zero_pfn; |
545 | } | 545 | } |
546 | #endif | 546 | #endif |
547 | 547 | ||
548 | #ifndef my_zero_pfn | 548 | #ifndef my_zero_pfn |
549 | static inline unsigned long my_zero_pfn(unsigned long addr) | 549 | static inline unsigned long my_zero_pfn(unsigned long addr) |
550 | { | 550 | { |
551 | return zero_pfn; | 551 | return zero_pfn; |
552 | } | 552 | } |
553 | #endif | 553 | #endif |
554 | 554 | ||
555 | /* | 555 | /* |
556 | * vm_normal_page -- This function gets the "struct page" associated with a pte. | 556 | * vm_normal_page -- This function gets the "struct page" associated with a pte. |
557 | * | 557 | * |
558 | * "Special" mappings do not wish to be associated with a "struct page" (either | 558 | * "Special" mappings do not wish to be associated with a "struct page" (either |
559 | * it doesn't exist, or it exists but they don't want to touch it). In this | 559 | * it doesn't exist, or it exists but they don't want to touch it). In this |
560 | * case, NULL is returned here. "Normal" mappings do have a struct page. | 560 | * case, NULL is returned here. "Normal" mappings do have a struct page. |
561 | * | 561 | * |
562 | * There are 2 broad cases. Firstly, an architecture may define a pte_special() | 562 | * There are 2 broad cases. Firstly, an architecture may define a pte_special() |
563 | * pte bit, in which case this function is trivial. Secondly, an architecture | 563 | * pte bit, in which case this function is trivial. Secondly, an architecture |
564 | * may not have a spare pte bit, which requires a more complicated scheme, | 564 | * may not have a spare pte bit, which requires a more complicated scheme, |
565 | * described below. | 565 | * described below. |
566 | * | 566 | * |
567 | * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a | 567 | * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a |
568 | * special mapping (even if there are underlying and valid "struct pages"). | 568 | * special mapping (even if there are underlying and valid "struct pages"). |
569 | * COWed pages of a VM_PFNMAP are always normal. | 569 | * COWed pages of a VM_PFNMAP are always normal. |
570 | * | 570 | * |
571 | * The way we recognize COWed pages within VM_PFNMAP mappings is through the | 571 | * The way we recognize COWed pages within VM_PFNMAP mappings is through the |
572 | * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit | 572 | * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit |
573 | * set, and the vm_pgoff will point to the first PFN mapped: thus every special | 573 | * set, and the vm_pgoff will point to the first PFN mapped: thus every special |
574 | * mapping will always honor the rule | 574 | * mapping will always honor the rule |
575 | * | 575 | * |
576 | * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) | 576 | * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) |
577 | * | 577 | * |
578 | * And for normal mappings this is false. | 578 | * And for normal mappings this is false. |
579 | * | 579 | * |
580 | * This restricts such mappings to be a linear translation from virtual address | 580 | * This restricts such mappings to be a linear translation from virtual address |
581 | * to pfn. To get around this restriction, we allow arbitrary mappings so long | 581 | * to pfn. To get around this restriction, we allow arbitrary mappings so long |
582 | * as the vma is not a COW mapping; in that case, we know that all ptes are | 582 | * as the vma is not a COW mapping; in that case, we know that all ptes are |
583 | * special (because none can have been COWed). | 583 | * special (because none can have been COWed). |
584 | * | 584 | * |
585 | * | 585 | * |
586 | * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. | 586 | * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. |
587 | * | 587 | * |
588 | * VM_MIXEDMAP mappings can likewise contain memory with or without "struct | 588 | * VM_MIXEDMAP mappings can likewise contain memory with or without "struct |
589 | * page" backing, however the difference is that _all_ pages with a struct | 589 | * page" backing, however the difference is that _all_ pages with a struct |
590 | * page (that is, those where pfn_valid is true) are refcounted and considered | 590 | * page (that is, those where pfn_valid is true) are refcounted and considered |
591 | * normal pages by the VM. The disadvantage is that pages are refcounted | 591 | * normal pages by the VM. The disadvantage is that pages are refcounted |
592 | * (which can be slower and simply not an option for some PFNMAP users). The | 592 | * (which can be slower and simply not an option for some PFNMAP users). The |
593 | * advantage is that we don't have to follow the strict linearity rule of | 593 | * advantage is that we don't have to follow the strict linearity rule of |
594 | * PFNMAP mappings in order to support COWable mappings. | 594 | * PFNMAP mappings in order to support COWable mappings. |
595 | * | 595 | * |
596 | */ | 596 | */ |
597 | #ifdef __HAVE_ARCH_PTE_SPECIAL | 597 | #ifdef __HAVE_ARCH_PTE_SPECIAL |
598 | # define HAVE_PTE_SPECIAL 1 | 598 | # define HAVE_PTE_SPECIAL 1 |
599 | #else | 599 | #else |
600 | # define HAVE_PTE_SPECIAL 0 | 600 | # define HAVE_PTE_SPECIAL 0 |
601 | #endif | 601 | #endif |
602 | struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, | 602 | struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, |
603 | pte_t pte) | 603 | pte_t pte) |
604 | { | 604 | { |
605 | unsigned long pfn = pte_pfn(pte); | 605 | unsigned long pfn = pte_pfn(pte); |
606 | 606 | ||
607 | if (HAVE_PTE_SPECIAL) { | 607 | if (HAVE_PTE_SPECIAL) { |
608 | if (likely(!pte_special(pte))) | 608 | if (likely(!pte_special(pte))) |
609 | goto check_pfn; | 609 | goto check_pfn; |
610 | if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) | 610 | if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) |
611 | return NULL; | 611 | return NULL; |
612 | if (!is_zero_pfn(pfn)) | 612 | if (!is_zero_pfn(pfn)) |
613 | print_bad_pte(vma, addr, pte, NULL); | 613 | print_bad_pte(vma, addr, pte, NULL); |
614 | return NULL; | 614 | return NULL; |
615 | } | 615 | } |
616 | 616 | ||
617 | /* !HAVE_PTE_SPECIAL case follows: */ | 617 | /* !HAVE_PTE_SPECIAL case follows: */ |
618 | 618 | ||
619 | if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { | 619 | if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { |
620 | if (vma->vm_flags & VM_MIXEDMAP) { | 620 | if (vma->vm_flags & VM_MIXEDMAP) { |
621 | if (!pfn_valid(pfn)) | 621 | if (!pfn_valid(pfn)) |
622 | return NULL; | 622 | return NULL; |
623 | goto out; | 623 | goto out; |
624 | } else { | 624 | } else { |
625 | unsigned long off; | 625 | unsigned long off; |
626 | off = (addr - vma->vm_start) >> PAGE_SHIFT; | 626 | off = (addr - vma->vm_start) >> PAGE_SHIFT; |
627 | if (pfn == vma->vm_pgoff + off) | 627 | if (pfn == vma->vm_pgoff + off) |
628 | return NULL; | 628 | return NULL; |
629 | if (!is_cow_mapping(vma->vm_flags)) | 629 | if (!is_cow_mapping(vma->vm_flags)) |
630 | return NULL; | 630 | return NULL; |
631 | } | 631 | } |
632 | } | 632 | } |
633 | 633 | ||
634 | if (is_zero_pfn(pfn)) | 634 | if (is_zero_pfn(pfn)) |
635 | return NULL; | 635 | return NULL; |
636 | check_pfn: | 636 | check_pfn: |
637 | if (unlikely(pfn > highest_memmap_pfn)) { | 637 | if (unlikely(pfn > highest_memmap_pfn)) { |
638 | print_bad_pte(vma, addr, pte, NULL); | 638 | print_bad_pte(vma, addr, pte, NULL); |
639 | return NULL; | 639 | return NULL; |
640 | } | 640 | } |
641 | 641 | ||
642 | /* | 642 | /* |
643 | * NOTE! We still have PageReserved() pages in the page tables. | 643 | * NOTE! We still have PageReserved() pages in the page tables. |
644 | * eg. VDSO mappings can cause them to exist. | 644 | * eg. VDSO mappings can cause them to exist. |
645 | */ | 645 | */ |
646 | out: | 646 | out: |
647 | return pfn_to_page(pfn); | 647 | return pfn_to_page(pfn); |
648 | } | 648 | } |
649 | 649 | ||
650 | /* | 650 | /* |
651 | * copy one vm_area from one task to the other. Assumes the page tables | 651 | * copy one vm_area from one task to the other. Assumes the page tables |
652 | * already present in the new task to be cleared in the whole range | 652 | * already present in the new task to be cleared in the whole range |
653 | * covered by this vma. | 653 | * covered by this vma. |
654 | */ | 654 | */ |
655 | 655 | ||
656 | static inline unsigned long | 656 | static inline unsigned long |
657 | copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 657 | copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
658 | pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, | 658 | pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, |
659 | unsigned long addr, int *rss) | 659 | unsigned long addr, int *rss) |
660 | { | 660 | { |
661 | unsigned long vm_flags = vma->vm_flags; | 661 | unsigned long vm_flags = vma->vm_flags; |
662 | pte_t pte = *src_pte; | 662 | pte_t pte = *src_pte; |
663 | struct page *page; | 663 | struct page *page; |
664 | 664 | ||
665 | /* pte contains position in swap or file, so copy. */ | 665 | /* pte contains position in swap or file, so copy. */ |
666 | if (unlikely(!pte_present(pte))) { | 666 | if (unlikely(!pte_present(pte))) { |
667 | if (!pte_file(pte)) { | 667 | if (!pte_file(pte)) { |
668 | swp_entry_t entry = pte_to_swp_entry(pte); | 668 | swp_entry_t entry = pte_to_swp_entry(pte); |
669 | 669 | ||
670 | if (swap_duplicate(entry) < 0) | 670 | if (swap_duplicate(entry) < 0) |
671 | return entry.val; | 671 | return entry.val; |
672 | 672 | ||
673 | /* make sure dst_mm is on swapoff's mmlist. */ | 673 | /* make sure dst_mm is on swapoff's mmlist. */ |
674 | if (unlikely(list_empty(&dst_mm->mmlist))) { | 674 | if (unlikely(list_empty(&dst_mm->mmlist))) { |
675 | spin_lock(&mmlist_lock); | 675 | spin_lock(&mmlist_lock); |
676 | if (list_empty(&dst_mm->mmlist)) | 676 | if (list_empty(&dst_mm->mmlist)) |
677 | list_add(&dst_mm->mmlist, | 677 | list_add(&dst_mm->mmlist, |
678 | &src_mm->mmlist); | 678 | &src_mm->mmlist); |
679 | spin_unlock(&mmlist_lock); | 679 | spin_unlock(&mmlist_lock); |
680 | } | 680 | } |
681 | if (likely(!non_swap_entry(entry))) | 681 | if (likely(!non_swap_entry(entry))) |
682 | rss[MM_SWAPENTS]++; | 682 | rss[MM_SWAPENTS]++; |
683 | else if (is_write_migration_entry(entry) && | 683 | else if (is_write_migration_entry(entry) && |
684 | is_cow_mapping(vm_flags)) { | 684 | is_cow_mapping(vm_flags)) { |
685 | /* | 685 | /* |
686 | * COW mappings require pages in both parent | 686 | * COW mappings require pages in both parent |
687 | * and child to be set to read. | 687 | * and child to be set to read. |
688 | */ | 688 | */ |
689 | make_migration_entry_read(&entry); | 689 | make_migration_entry_read(&entry); |
690 | pte = swp_entry_to_pte(entry); | 690 | pte = swp_entry_to_pte(entry); |
691 | set_pte_at(src_mm, addr, src_pte, pte); | 691 | set_pte_at(src_mm, addr, src_pte, pte); |
692 | } | 692 | } |
693 | } | 693 | } |
694 | goto out_set_pte; | 694 | goto out_set_pte; |
695 | } | 695 | } |
696 | 696 | ||
697 | /* | 697 | /* |
698 | * If it's a COW mapping, write protect it both | 698 | * If it's a COW mapping, write protect it both |
699 | * in the parent and the child | 699 | * in the parent and the child |
700 | */ | 700 | */ |
701 | if (is_cow_mapping(vm_flags)) { | 701 | if (is_cow_mapping(vm_flags)) { |
702 | ptep_set_wrprotect(src_mm, addr, src_pte); | 702 | ptep_set_wrprotect(src_mm, addr, src_pte); |
703 | pte = pte_wrprotect(pte); | 703 | pte = pte_wrprotect(pte); |
704 | } | 704 | } |
705 | 705 | ||
706 | /* | 706 | /* |
707 | * If it's a shared mapping, mark it clean in | 707 | * If it's a shared mapping, mark it clean in |
708 | * the child | 708 | * the child |
709 | */ | 709 | */ |
710 | if (vm_flags & VM_SHARED) | 710 | if (vm_flags & VM_SHARED) |
711 | pte = pte_mkclean(pte); | 711 | pte = pte_mkclean(pte); |
712 | pte = pte_mkold(pte); | 712 | pte = pte_mkold(pte); |
713 | 713 | ||
714 | page = vm_normal_page(vma, addr, pte); | 714 | page = vm_normal_page(vma, addr, pte); |
715 | if (page) { | 715 | if (page) { |
716 | get_page(page); | 716 | get_page(page); |
717 | page_dup_rmap(page); | 717 | page_dup_rmap(page); |
718 | if (PageAnon(page)) | 718 | if (PageAnon(page)) |
719 | rss[MM_ANONPAGES]++; | 719 | rss[MM_ANONPAGES]++; |
720 | else | 720 | else |
721 | rss[MM_FILEPAGES]++; | 721 | rss[MM_FILEPAGES]++; |
722 | } | 722 | } |
723 | 723 | ||
724 | out_set_pte: | 724 | out_set_pte: |
725 | set_pte_at(dst_mm, addr, dst_pte, pte); | 725 | set_pte_at(dst_mm, addr, dst_pte, pte); |
726 | return 0; | 726 | return 0; |
727 | } | 727 | } |
728 | 728 | ||
729 | int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 729 | int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
730 | pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, | 730 | pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, |
731 | unsigned long addr, unsigned long end) | 731 | unsigned long addr, unsigned long end) |
732 | { | 732 | { |
733 | pte_t *orig_src_pte, *orig_dst_pte; | 733 | pte_t *orig_src_pte, *orig_dst_pte; |
734 | pte_t *src_pte, *dst_pte; | 734 | pte_t *src_pte, *dst_pte; |
735 | spinlock_t *src_ptl, *dst_ptl; | 735 | spinlock_t *src_ptl, *dst_ptl; |
736 | int progress = 0; | 736 | int progress = 0; |
737 | int rss[NR_MM_COUNTERS]; | 737 | int rss[NR_MM_COUNTERS]; |
738 | swp_entry_t entry = (swp_entry_t){0}; | 738 | swp_entry_t entry = (swp_entry_t){0}; |
739 | 739 | ||
740 | again: | 740 | again: |
741 | init_rss_vec(rss); | 741 | init_rss_vec(rss); |
742 | 742 | ||
743 | dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); | 743 | dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); |
744 | if (!dst_pte) | 744 | if (!dst_pte) |
745 | return -ENOMEM; | 745 | return -ENOMEM; |
746 | src_pte = pte_offset_map(src_pmd, addr); | 746 | src_pte = pte_offset_map(src_pmd, addr); |
747 | src_ptl = pte_lockptr(src_mm, src_pmd); | 747 | src_ptl = pte_lockptr(src_mm, src_pmd); |
748 | spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); | 748 | spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); |
749 | orig_src_pte = src_pte; | 749 | orig_src_pte = src_pte; |
750 | orig_dst_pte = dst_pte; | 750 | orig_dst_pte = dst_pte; |
751 | arch_enter_lazy_mmu_mode(); | 751 | arch_enter_lazy_mmu_mode(); |
752 | 752 | ||
753 | do { | 753 | do { |
754 | /* | 754 | /* |
755 | * We are holding two locks at this point - either of them | 755 | * We are holding two locks at this point - either of them |
756 | * could generate latencies in another task on another CPU. | 756 | * could generate latencies in another task on another CPU. |
757 | */ | 757 | */ |
758 | if (progress >= 32) { | 758 | if (progress >= 32) { |
759 | progress = 0; | 759 | progress = 0; |
760 | if (need_resched() || | 760 | if (need_resched() || |
761 | spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) | 761 | spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) |
762 | break; | 762 | break; |
763 | } | 763 | } |
764 | if (pte_none(*src_pte)) { | 764 | if (pte_none(*src_pte)) { |
765 | progress++; | 765 | progress++; |
766 | continue; | 766 | continue; |
767 | } | 767 | } |
768 | entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, | 768 | entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, |
769 | vma, addr, rss); | 769 | vma, addr, rss); |
770 | if (entry.val) | 770 | if (entry.val) |
771 | break; | 771 | break; |
772 | progress += 8; | 772 | progress += 8; |
773 | } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); | 773 | } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); |
774 | 774 | ||
775 | arch_leave_lazy_mmu_mode(); | 775 | arch_leave_lazy_mmu_mode(); |
776 | spin_unlock(src_ptl); | 776 | spin_unlock(src_ptl); |
777 | pte_unmap(orig_src_pte); | 777 | pte_unmap(orig_src_pte); |
778 | add_mm_rss_vec(dst_mm, rss); | 778 | add_mm_rss_vec(dst_mm, rss); |
779 | pte_unmap_unlock(orig_dst_pte, dst_ptl); | 779 | pte_unmap_unlock(orig_dst_pte, dst_ptl); |
780 | cond_resched(); | 780 | cond_resched(); |
781 | 781 | ||
782 | if (entry.val) { | 782 | if (entry.val) { |
783 | if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) | 783 | if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) |
784 | return -ENOMEM; | 784 | return -ENOMEM; |
785 | progress = 0; | 785 | progress = 0; |
786 | } | 786 | } |
787 | if (addr != end) | 787 | if (addr != end) |
788 | goto again; | 788 | goto again; |
789 | return 0; | 789 | return 0; |
790 | } | 790 | } |
791 | 791 | ||
792 | static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 792 | static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
793 | pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, | 793 | pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, |
794 | unsigned long addr, unsigned long end) | 794 | unsigned long addr, unsigned long end) |
795 | { | 795 | { |
796 | pmd_t *src_pmd, *dst_pmd; | 796 | pmd_t *src_pmd, *dst_pmd; |
797 | unsigned long next; | 797 | unsigned long next; |
798 | 798 | ||
799 | dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); | 799 | dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); |
800 | if (!dst_pmd) | 800 | if (!dst_pmd) |
801 | return -ENOMEM; | 801 | return -ENOMEM; |
802 | src_pmd = pmd_offset(src_pud, addr); | 802 | src_pmd = pmd_offset(src_pud, addr); |
803 | do { | 803 | do { |
804 | next = pmd_addr_end(addr, end); | 804 | next = pmd_addr_end(addr, end); |
805 | if (pmd_trans_huge(*src_pmd)) { | 805 | if (pmd_trans_huge(*src_pmd)) { |
806 | int err; | 806 | int err; |
807 | VM_BUG_ON(next-addr != HPAGE_PMD_SIZE); | 807 | VM_BUG_ON(next-addr != HPAGE_PMD_SIZE); |
808 | err = copy_huge_pmd(dst_mm, src_mm, | 808 | err = copy_huge_pmd(dst_mm, src_mm, |
809 | dst_pmd, src_pmd, addr, vma); | 809 | dst_pmd, src_pmd, addr, vma); |
810 | if (err == -ENOMEM) | 810 | if (err == -ENOMEM) |
811 | return -ENOMEM; | 811 | return -ENOMEM; |
812 | if (!err) | 812 | if (!err) |
813 | continue; | 813 | continue; |
814 | /* fall through */ | 814 | /* fall through */ |
815 | } | 815 | } |
816 | if (pmd_none_or_clear_bad(src_pmd)) | 816 | if (pmd_none_or_clear_bad(src_pmd)) |
817 | continue; | 817 | continue; |
818 | if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, | 818 | if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, |
819 | vma, addr, next)) | 819 | vma, addr, next)) |
820 | return -ENOMEM; | 820 | return -ENOMEM; |
821 | } while (dst_pmd++, src_pmd++, addr = next, addr != end); | 821 | } while (dst_pmd++, src_pmd++, addr = next, addr != end); |
822 | return 0; | 822 | return 0; |
823 | } | 823 | } |
824 | 824 | ||
825 | static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 825 | static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
826 | pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, | 826 | pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, |
827 | unsigned long addr, unsigned long end) | 827 | unsigned long addr, unsigned long end) |
828 | { | 828 | { |
829 | pud_t *src_pud, *dst_pud; | 829 | pud_t *src_pud, *dst_pud; |
830 | unsigned long next; | 830 | unsigned long next; |
831 | 831 | ||
832 | dst_pud = pud_alloc(dst_mm, dst_pgd, addr); | 832 | dst_pud = pud_alloc(dst_mm, dst_pgd, addr); |
833 | if (!dst_pud) | 833 | if (!dst_pud) |
834 | return -ENOMEM; | 834 | return -ENOMEM; |
835 | src_pud = pud_offset(src_pgd, addr); | 835 | src_pud = pud_offset(src_pgd, addr); |
836 | do { | 836 | do { |
837 | next = pud_addr_end(addr, end); | 837 | next = pud_addr_end(addr, end); |
838 | if (pud_none_or_clear_bad(src_pud)) | 838 | if (pud_none_or_clear_bad(src_pud)) |
839 | continue; | 839 | continue; |
840 | if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, | 840 | if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, |
841 | vma, addr, next)) | 841 | vma, addr, next)) |
842 | return -ENOMEM; | 842 | return -ENOMEM; |
843 | } while (dst_pud++, src_pud++, addr = next, addr != end); | 843 | } while (dst_pud++, src_pud++, addr = next, addr != end); |
844 | return 0; | 844 | return 0; |
845 | } | 845 | } |
846 | 846 | ||
847 | int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 847 | int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
848 | struct vm_area_struct *vma) | 848 | struct vm_area_struct *vma) |
849 | { | 849 | { |
850 | pgd_t *src_pgd, *dst_pgd; | 850 | pgd_t *src_pgd, *dst_pgd; |
851 | unsigned long next; | 851 | unsigned long next; |
852 | unsigned long addr = vma->vm_start; | 852 | unsigned long addr = vma->vm_start; |
853 | unsigned long end = vma->vm_end; | 853 | unsigned long end = vma->vm_end; |
854 | int ret; | 854 | int ret; |
855 | 855 | ||
856 | /* | 856 | /* |
857 | * Don't copy ptes where a page fault will fill them correctly. | 857 | * Don't copy ptes where a page fault will fill them correctly. |
858 | * Fork becomes much lighter when there are big shared or private | 858 | * Fork becomes much lighter when there are big shared or private |
859 | * readonly mappings. The tradeoff is that copy_page_range is more | 859 | * readonly mappings. The tradeoff is that copy_page_range is more |
860 | * efficient than faulting. | 860 | * efficient than faulting. |
861 | */ | 861 | */ |
862 | if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { | 862 | if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { |
863 | if (!vma->anon_vma) | 863 | if (!vma->anon_vma) |
864 | return 0; | 864 | return 0; |
865 | } | 865 | } |
866 | 866 | ||
867 | if (is_vm_hugetlb_page(vma)) | 867 | if (is_vm_hugetlb_page(vma)) |
868 | return copy_hugetlb_page_range(dst_mm, src_mm, vma); | 868 | return copy_hugetlb_page_range(dst_mm, src_mm, vma); |
869 | 869 | ||
870 | if (unlikely(is_pfn_mapping(vma))) { | 870 | if (unlikely(is_pfn_mapping(vma))) { |
871 | /* | 871 | /* |
872 | * We do not free on error cases below as remove_vma | 872 | * We do not free on error cases below as remove_vma |
873 | * gets called on error from higher level routine | 873 | * gets called on error from higher level routine |
874 | */ | 874 | */ |
875 | ret = track_pfn_vma_copy(vma); | 875 | ret = track_pfn_vma_copy(vma); |
876 | if (ret) | 876 | if (ret) |
877 | return ret; | 877 | return ret; |
878 | } | 878 | } |
879 | 879 | ||
880 | /* | 880 | /* |
881 | * We need to invalidate the secondary MMU mappings only when | 881 | * We need to invalidate the secondary MMU mappings only when |
882 | * there could be a permission downgrade on the ptes of the | 882 | * there could be a permission downgrade on the ptes of the |
883 | * parent mm. And a permission downgrade will only happen if | 883 | * parent mm. And a permission downgrade will only happen if |
884 | * is_cow_mapping() returns true. | 884 | * is_cow_mapping() returns true. |
885 | */ | 885 | */ |
886 | if (is_cow_mapping(vma->vm_flags)) | 886 | if (is_cow_mapping(vma->vm_flags)) |
887 | mmu_notifier_invalidate_range_start(src_mm, addr, end); | 887 | mmu_notifier_invalidate_range_start(src_mm, addr, end); |
888 | 888 | ||
889 | ret = 0; | 889 | ret = 0; |
890 | dst_pgd = pgd_offset(dst_mm, addr); | 890 | dst_pgd = pgd_offset(dst_mm, addr); |
891 | src_pgd = pgd_offset(src_mm, addr); | 891 | src_pgd = pgd_offset(src_mm, addr); |
892 | do { | 892 | do { |
893 | next = pgd_addr_end(addr, end); | 893 | next = pgd_addr_end(addr, end); |
894 | if (pgd_none_or_clear_bad(src_pgd)) | 894 | if (pgd_none_or_clear_bad(src_pgd)) |
895 | continue; | 895 | continue; |
896 | if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, | 896 | if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, |
897 | vma, addr, next))) { | 897 | vma, addr, next))) { |
898 | ret = -ENOMEM; | 898 | ret = -ENOMEM; |
899 | break; | 899 | break; |
900 | } | 900 | } |
901 | } while (dst_pgd++, src_pgd++, addr = next, addr != end); | 901 | } while (dst_pgd++, src_pgd++, addr = next, addr != end); |
902 | 902 | ||
903 | if (is_cow_mapping(vma->vm_flags)) | 903 | if (is_cow_mapping(vma->vm_flags)) |
904 | mmu_notifier_invalidate_range_end(src_mm, | 904 | mmu_notifier_invalidate_range_end(src_mm, |
905 | vma->vm_start, end); | 905 | vma->vm_start, end); |
906 | return ret; | 906 | return ret; |
907 | } | 907 | } |
908 | 908 | ||
909 | static unsigned long zap_pte_range(struct mmu_gather *tlb, | 909 | static unsigned long zap_pte_range(struct mmu_gather *tlb, |
910 | struct vm_area_struct *vma, pmd_t *pmd, | 910 | struct vm_area_struct *vma, pmd_t *pmd, |
911 | unsigned long addr, unsigned long end, | 911 | unsigned long addr, unsigned long end, |
912 | long *zap_work, struct zap_details *details) | 912 | long *zap_work, struct zap_details *details) |
913 | { | 913 | { |
914 | struct mm_struct *mm = tlb->mm; | 914 | struct mm_struct *mm = tlb->mm; |
915 | pte_t *pte; | 915 | pte_t *pte; |
916 | spinlock_t *ptl; | 916 | spinlock_t *ptl; |
917 | int rss[NR_MM_COUNTERS]; | 917 | int rss[NR_MM_COUNTERS]; |
918 | 918 | ||
919 | init_rss_vec(rss); | 919 | init_rss_vec(rss); |
920 | 920 | ||
921 | pte = pte_offset_map_lock(mm, pmd, addr, &ptl); | 921 | pte = pte_offset_map_lock(mm, pmd, addr, &ptl); |
922 | arch_enter_lazy_mmu_mode(); | 922 | arch_enter_lazy_mmu_mode(); |
923 | do { | 923 | do { |
924 | pte_t ptent = *pte; | 924 | pte_t ptent = *pte; |
925 | if (pte_none(ptent)) { | 925 | if (pte_none(ptent)) { |
926 | (*zap_work)--; | 926 | (*zap_work)--; |
927 | continue; | 927 | continue; |
928 | } | 928 | } |
929 | 929 | ||
930 | (*zap_work) -= PAGE_SIZE; | 930 | (*zap_work) -= PAGE_SIZE; |
931 | 931 | ||
932 | if (pte_present(ptent)) { | 932 | if (pte_present(ptent)) { |
933 | struct page *page; | 933 | struct page *page; |
934 | 934 | ||
935 | page = vm_normal_page(vma, addr, ptent); | 935 | page = vm_normal_page(vma, addr, ptent); |
936 | if (unlikely(details) && page) { | 936 | if (unlikely(details) && page) { |
937 | /* | 937 | /* |
938 | * unmap_shared_mapping_pages() wants to | 938 | * unmap_shared_mapping_pages() wants to |
939 | * invalidate cache without truncating: | 939 | * invalidate cache without truncating: |
940 | * unmap shared but keep private pages. | 940 | * unmap shared but keep private pages. |
941 | */ | 941 | */ |
942 | if (details->check_mapping && | 942 | if (details->check_mapping && |
943 | details->check_mapping != page->mapping) | 943 | details->check_mapping != page->mapping) |
944 | continue; | 944 | continue; |
945 | /* | 945 | /* |
946 | * Each page->index must be checked when | 946 | * Each page->index must be checked when |
947 | * invalidating or truncating nonlinear. | 947 | * invalidating or truncating nonlinear. |
948 | */ | 948 | */ |
949 | if (details->nonlinear_vma && | 949 | if (details->nonlinear_vma && |
950 | (page->index < details->first_index || | 950 | (page->index < details->first_index || |
951 | page->index > details->last_index)) | 951 | page->index > details->last_index)) |
952 | continue; | 952 | continue; |
953 | } | 953 | } |
954 | ptent = ptep_get_and_clear_full(mm, addr, pte, | 954 | ptent = ptep_get_and_clear_full(mm, addr, pte, |
955 | tlb->fullmm); | 955 | tlb->fullmm); |
956 | tlb_remove_tlb_entry(tlb, pte, addr); | 956 | tlb_remove_tlb_entry(tlb, pte, addr); |
957 | if (unlikely(!page)) | 957 | if (unlikely(!page)) |
958 | continue; | 958 | continue; |
959 | if (unlikely(details) && details->nonlinear_vma | 959 | if (unlikely(details) && details->nonlinear_vma |
960 | && linear_page_index(details->nonlinear_vma, | 960 | && linear_page_index(details->nonlinear_vma, |
961 | addr) != page->index) | 961 | addr) != page->index) |
962 | set_pte_at(mm, addr, pte, | 962 | set_pte_at(mm, addr, pte, |
963 | pgoff_to_pte(page->index)); | 963 | pgoff_to_pte(page->index)); |
964 | if (PageAnon(page)) | 964 | if (PageAnon(page)) |
965 | rss[MM_ANONPAGES]--; | 965 | rss[MM_ANONPAGES]--; |
966 | else { | 966 | else { |
967 | if (pte_dirty(ptent)) | 967 | if (pte_dirty(ptent)) |
968 | set_page_dirty(page); | 968 | set_page_dirty(page); |
969 | if (pte_young(ptent) && | 969 | if (pte_young(ptent) && |
970 | likely(!VM_SequentialReadHint(vma))) | 970 | likely(!VM_SequentialReadHint(vma))) |
971 | mark_page_accessed(page); | 971 | mark_page_accessed(page); |
972 | rss[MM_FILEPAGES]--; | 972 | rss[MM_FILEPAGES]--; |
973 | } | 973 | } |
974 | page_remove_rmap(page); | 974 | page_remove_rmap(page); |
975 | if (unlikely(page_mapcount(page) < 0)) | 975 | if (unlikely(page_mapcount(page) < 0)) |
976 | print_bad_pte(vma, addr, ptent, page); | 976 | print_bad_pte(vma, addr, ptent, page); |
977 | tlb_remove_page(tlb, page); | 977 | tlb_remove_page(tlb, page); |
978 | continue; | 978 | continue; |
979 | } | 979 | } |
980 | /* | 980 | /* |
981 | * If details->check_mapping, we leave swap entries; | 981 | * If details->check_mapping, we leave swap entries; |
982 | * if details->nonlinear_vma, we leave file entries. | 982 | * if details->nonlinear_vma, we leave file entries. |
983 | */ | 983 | */ |
984 | if (unlikely(details)) | 984 | if (unlikely(details)) |
985 | continue; | 985 | continue; |
986 | if (pte_file(ptent)) { | 986 | if (pte_file(ptent)) { |
987 | if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) | 987 | if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) |
988 | print_bad_pte(vma, addr, ptent, NULL); | 988 | print_bad_pte(vma, addr, ptent, NULL); |
989 | } else { | 989 | } else { |
990 | swp_entry_t entry = pte_to_swp_entry(ptent); | 990 | swp_entry_t entry = pte_to_swp_entry(ptent); |
991 | 991 | ||
992 | if (!non_swap_entry(entry)) | 992 | if (!non_swap_entry(entry)) |
993 | rss[MM_SWAPENTS]--; | 993 | rss[MM_SWAPENTS]--; |
994 | if (unlikely(!free_swap_and_cache(entry))) | 994 | if (unlikely(!free_swap_and_cache(entry))) |
995 | print_bad_pte(vma, addr, ptent, NULL); | 995 | print_bad_pte(vma, addr, ptent, NULL); |
996 | } | 996 | } |
997 | pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); | 997 | pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); |
998 | } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); | 998 | } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); |
999 | 999 | ||
1000 | add_mm_rss_vec(mm, rss); | 1000 | add_mm_rss_vec(mm, rss); |
1001 | arch_leave_lazy_mmu_mode(); | 1001 | arch_leave_lazy_mmu_mode(); |
1002 | pte_unmap_unlock(pte - 1, ptl); | 1002 | pte_unmap_unlock(pte - 1, ptl); |
1003 | 1003 | ||
1004 | return addr; | 1004 | return addr; |
1005 | } | 1005 | } |
1006 | 1006 | ||
1007 | static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, | 1007 | static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, |
1008 | struct vm_area_struct *vma, pud_t *pud, | 1008 | struct vm_area_struct *vma, pud_t *pud, |
1009 | unsigned long addr, unsigned long end, | 1009 | unsigned long addr, unsigned long end, |
1010 | long *zap_work, struct zap_details *details) | 1010 | long *zap_work, struct zap_details *details) |
1011 | { | 1011 | { |
1012 | pmd_t *pmd; | 1012 | pmd_t *pmd; |
1013 | unsigned long next; | 1013 | unsigned long next; |
1014 | 1014 | ||
1015 | pmd = pmd_offset(pud, addr); | 1015 | pmd = pmd_offset(pud, addr); |
1016 | do { | 1016 | do { |
1017 | next = pmd_addr_end(addr, end); | 1017 | next = pmd_addr_end(addr, end); |
1018 | if (pmd_trans_huge(*pmd)) { | 1018 | if (pmd_trans_huge(*pmd)) { |
1019 | if (next-addr != HPAGE_PMD_SIZE) { | 1019 | if (next-addr != HPAGE_PMD_SIZE) { |
1020 | VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem)); | 1020 | VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem)); |
1021 | split_huge_page_pmd(vma->vm_mm, pmd); | 1021 | split_huge_page_pmd(vma->vm_mm, pmd); |
1022 | } else if (zap_huge_pmd(tlb, vma, pmd)) { | 1022 | } else if (zap_huge_pmd(tlb, vma, pmd)) { |
1023 | (*zap_work)--; | 1023 | (*zap_work)--; |
1024 | continue; | 1024 | continue; |
1025 | } | 1025 | } |
1026 | /* fall through */ | 1026 | /* fall through */ |
1027 | } | 1027 | } |
1028 | if (pmd_none_or_clear_bad(pmd)) { | 1028 | if (pmd_none_or_clear_bad(pmd)) { |
1029 | (*zap_work)--; | 1029 | (*zap_work)--; |
1030 | continue; | 1030 | continue; |
1031 | } | 1031 | } |
1032 | next = zap_pte_range(tlb, vma, pmd, addr, next, | 1032 | next = zap_pte_range(tlb, vma, pmd, addr, next, |
1033 | zap_work, details); | 1033 | zap_work, details); |
1034 | } while (pmd++, addr = next, (addr != end && *zap_work > 0)); | 1034 | } while (pmd++, addr = next, (addr != end && *zap_work > 0)); |
1035 | 1035 | ||
1036 | return addr; | 1036 | return addr; |
1037 | } | 1037 | } |
1038 | 1038 | ||
1039 | static inline unsigned long zap_pud_range(struct mmu_gather *tlb, | 1039 | static inline unsigned long zap_pud_range(struct mmu_gather *tlb, |
1040 | struct vm_area_struct *vma, pgd_t *pgd, | 1040 | struct vm_area_struct *vma, pgd_t *pgd, |
1041 | unsigned long addr, unsigned long end, | 1041 | unsigned long addr, unsigned long end, |
1042 | long *zap_work, struct zap_details *details) | 1042 | long *zap_work, struct zap_details *details) |
1043 | { | 1043 | { |
1044 | pud_t *pud; | 1044 | pud_t *pud; |
1045 | unsigned long next; | 1045 | unsigned long next; |
1046 | 1046 | ||
1047 | pud = pud_offset(pgd, addr); | 1047 | pud = pud_offset(pgd, addr); |
1048 | do { | 1048 | do { |
1049 | next = pud_addr_end(addr, end); | 1049 | next = pud_addr_end(addr, end); |
1050 | if (pud_none_or_clear_bad(pud)) { | 1050 | if (pud_none_or_clear_bad(pud)) { |
1051 | (*zap_work)--; | 1051 | (*zap_work)--; |
1052 | continue; | 1052 | continue; |
1053 | } | 1053 | } |
1054 | next = zap_pmd_range(tlb, vma, pud, addr, next, | 1054 | next = zap_pmd_range(tlb, vma, pud, addr, next, |
1055 | zap_work, details); | 1055 | zap_work, details); |
1056 | } while (pud++, addr = next, (addr != end && *zap_work > 0)); | 1056 | } while (pud++, addr = next, (addr != end && *zap_work > 0)); |
1057 | 1057 | ||
1058 | return addr; | 1058 | return addr; |
1059 | } | 1059 | } |
1060 | 1060 | ||
1061 | static unsigned long unmap_page_range(struct mmu_gather *tlb, | 1061 | static unsigned long unmap_page_range(struct mmu_gather *tlb, |
1062 | struct vm_area_struct *vma, | 1062 | struct vm_area_struct *vma, |
1063 | unsigned long addr, unsigned long end, | 1063 | unsigned long addr, unsigned long end, |
1064 | long *zap_work, struct zap_details *details) | 1064 | long *zap_work, struct zap_details *details) |
1065 | { | 1065 | { |
1066 | pgd_t *pgd; | 1066 | pgd_t *pgd; |
1067 | unsigned long next; | 1067 | unsigned long next; |
1068 | 1068 | ||
1069 | if (details && !details->check_mapping && !details->nonlinear_vma) | 1069 | if (details && !details->check_mapping && !details->nonlinear_vma) |
1070 | details = NULL; | 1070 | details = NULL; |
1071 | 1071 | ||
1072 | BUG_ON(addr >= end); | 1072 | BUG_ON(addr >= end); |
1073 | mem_cgroup_uncharge_start(); | 1073 | mem_cgroup_uncharge_start(); |
1074 | tlb_start_vma(tlb, vma); | 1074 | tlb_start_vma(tlb, vma); |
1075 | pgd = pgd_offset(vma->vm_mm, addr); | 1075 | pgd = pgd_offset(vma->vm_mm, addr); |
1076 | do { | 1076 | do { |
1077 | next = pgd_addr_end(addr, end); | 1077 | next = pgd_addr_end(addr, end); |
1078 | if (pgd_none_or_clear_bad(pgd)) { | 1078 | if (pgd_none_or_clear_bad(pgd)) { |
1079 | (*zap_work)--; | 1079 | (*zap_work)--; |
1080 | continue; | 1080 | continue; |
1081 | } | 1081 | } |
1082 | next = zap_pud_range(tlb, vma, pgd, addr, next, | 1082 | next = zap_pud_range(tlb, vma, pgd, addr, next, |
1083 | zap_work, details); | 1083 | zap_work, details); |
1084 | } while (pgd++, addr = next, (addr != end && *zap_work > 0)); | 1084 | } while (pgd++, addr = next, (addr != end && *zap_work > 0)); |
1085 | tlb_end_vma(tlb, vma); | 1085 | tlb_end_vma(tlb, vma); |
1086 | mem_cgroup_uncharge_end(); | 1086 | mem_cgroup_uncharge_end(); |
1087 | 1087 | ||
1088 | return addr; | 1088 | return addr; |
1089 | } | 1089 | } |
1090 | 1090 | ||
1091 | #ifdef CONFIG_PREEMPT | 1091 | #ifdef CONFIG_PREEMPT |
1092 | # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) | 1092 | # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) |
1093 | #else | 1093 | #else |
1094 | /* No preempt: go for improved straight-line efficiency */ | 1094 | /* No preempt: go for improved straight-line efficiency */ |
1095 | # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) | 1095 | # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) |
1096 | #endif | 1096 | #endif |
1097 | 1097 | ||
1098 | /** | 1098 | /** |
1099 | * unmap_vmas - unmap a range of memory covered by a list of vma's | 1099 | * unmap_vmas - unmap a range of memory covered by a list of vma's |
1100 | * @tlbp: address of the caller's struct mmu_gather | 1100 | * @tlbp: address of the caller's struct mmu_gather |
1101 | * @vma: the starting vma | 1101 | * @vma: the starting vma |
1102 | * @start_addr: virtual address at which to start unmapping | 1102 | * @start_addr: virtual address at which to start unmapping |
1103 | * @end_addr: virtual address at which to end unmapping | 1103 | * @end_addr: virtual address at which to end unmapping |
1104 | * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here | 1104 | * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here |
1105 | * @details: details of nonlinear truncation or shared cache invalidation | 1105 | * @details: details of nonlinear truncation or shared cache invalidation |
1106 | * | 1106 | * |
1107 | * Returns the end address of the unmapping (restart addr if interrupted). | 1107 | * Returns the end address of the unmapping (restart addr if interrupted). |
1108 | * | 1108 | * |
1109 | * Unmap all pages in the vma list. | 1109 | * Unmap all pages in the vma list. |
1110 | * | 1110 | * |
1111 | * We aim to not hold locks for too long (for scheduling latency reasons). | 1111 | * We aim to not hold locks for too long (for scheduling latency reasons). |
1112 | * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to | 1112 | * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to |
1113 | * return the ending mmu_gather to the caller. | 1113 | * return the ending mmu_gather to the caller. |
1114 | * | 1114 | * |
1115 | * Only addresses between `start' and `end' will be unmapped. | 1115 | * Only addresses between `start' and `end' will be unmapped. |
1116 | * | 1116 | * |
1117 | * The VMA list must be sorted in ascending virtual address order. | 1117 | * The VMA list must be sorted in ascending virtual address order. |
1118 | * | 1118 | * |
1119 | * unmap_vmas() assumes that the caller will flush the whole unmapped address | 1119 | * unmap_vmas() assumes that the caller will flush the whole unmapped address |
1120 | * range after unmap_vmas() returns. So the only responsibility here is to | 1120 | * range after unmap_vmas() returns. So the only responsibility here is to |
1121 | * ensure that any thus-far unmapped pages are flushed before unmap_vmas() | 1121 | * ensure that any thus-far unmapped pages are flushed before unmap_vmas() |
1122 | * drops the lock and schedules. | 1122 | * drops the lock and schedules. |
1123 | */ | 1123 | */ |
1124 | unsigned long unmap_vmas(struct mmu_gather **tlbp, | 1124 | unsigned long unmap_vmas(struct mmu_gather **tlbp, |
1125 | struct vm_area_struct *vma, unsigned long start_addr, | 1125 | struct vm_area_struct *vma, unsigned long start_addr, |
1126 | unsigned long end_addr, unsigned long *nr_accounted, | 1126 | unsigned long end_addr, unsigned long *nr_accounted, |
1127 | struct zap_details *details) | 1127 | struct zap_details *details) |
1128 | { | 1128 | { |
1129 | long zap_work = ZAP_BLOCK_SIZE; | 1129 | long zap_work = ZAP_BLOCK_SIZE; |
1130 | unsigned long tlb_start = 0; /* For tlb_finish_mmu */ | 1130 | unsigned long tlb_start = 0; /* For tlb_finish_mmu */ |
1131 | int tlb_start_valid = 0; | 1131 | int tlb_start_valid = 0; |
1132 | unsigned long start = start_addr; | 1132 | unsigned long start = start_addr; |
1133 | spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; | 1133 | spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; |
1134 | int fullmm = (*tlbp)->fullmm; | 1134 | int fullmm = (*tlbp)->fullmm; |
1135 | struct mm_struct *mm = vma->vm_mm; | 1135 | struct mm_struct *mm = vma->vm_mm; |
1136 | 1136 | ||
1137 | mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); | 1137 | mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); |
1138 | for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { | 1138 | for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { |
1139 | unsigned long end; | 1139 | unsigned long end; |
1140 | 1140 | ||
1141 | start = max(vma->vm_start, start_addr); | 1141 | start = max(vma->vm_start, start_addr); |
1142 | if (start >= vma->vm_end) | 1142 | if (start >= vma->vm_end) |
1143 | continue; | 1143 | continue; |
1144 | end = min(vma->vm_end, end_addr); | 1144 | end = min(vma->vm_end, end_addr); |
1145 | if (end <= vma->vm_start) | 1145 | if (end <= vma->vm_start) |
1146 | continue; | 1146 | continue; |
1147 | 1147 | ||
1148 | if (vma->vm_flags & VM_ACCOUNT) | 1148 | if (vma->vm_flags & VM_ACCOUNT) |
1149 | *nr_accounted += (end - start) >> PAGE_SHIFT; | 1149 | *nr_accounted += (end - start) >> PAGE_SHIFT; |
1150 | 1150 | ||
1151 | if (unlikely(is_pfn_mapping(vma))) | 1151 | if (unlikely(is_pfn_mapping(vma))) |
1152 | untrack_pfn_vma(vma, 0, 0); | 1152 | untrack_pfn_vma(vma, 0, 0); |
1153 | 1153 | ||
1154 | while (start != end) { | 1154 | while (start != end) { |
1155 | if (!tlb_start_valid) { | 1155 | if (!tlb_start_valid) { |
1156 | tlb_start = start; | 1156 | tlb_start = start; |
1157 | tlb_start_valid = 1; | 1157 | tlb_start_valid = 1; |
1158 | } | 1158 | } |
1159 | 1159 | ||
1160 | if (unlikely(is_vm_hugetlb_page(vma))) { | 1160 | if (unlikely(is_vm_hugetlb_page(vma))) { |
1161 | /* | 1161 | /* |
1162 | * It is undesirable to test vma->vm_file as it | 1162 | * It is undesirable to test vma->vm_file as it |
1163 | * should be non-null for valid hugetlb area. | 1163 | * should be non-null for valid hugetlb area. |
1164 | * However, vm_file will be NULL in the error | 1164 | * However, vm_file will be NULL in the error |
1165 | * cleanup path of do_mmap_pgoff. When | 1165 | * cleanup path of do_mmap_pgoff. When |
1166 | * hugetlbfs ->mmap method fails, | 1166 | * hugetlbfs ->mmap method fails, |
1167 | * do_mmap_pgoff() nullifies vma->vm_file | 1167 | * do_mmap_pgoff() nullifies vma->vm_file |
1168 | * before calling this function to clean up. | 1168 | * before calling this function to clean up. |
1169 | * Since no pte has actually been setup, it is | 1169 | * Since no pte has actually been setup, it is |
1170 | * safe to do nothing in this case. | 1170 | * safe to do nothing in this case. |
1171 | */ | 1171 | */ |
1172 | if (vma->vm_file) { | 1172 | if (vma->vm_file) { |
1173 | unmap_hugepage_range(vma, start, end, NULL); | 1173 | unmap_hugepage_range(vma, start, end, NULL); |
1174 | zap_work -= (end - start) / | 1174 | zap_work -= (end - start) / |
1175 | pages_per_huge_page(hstate_vma(vma)); | 1175 | pages_per_huge_page(hstate_vma(vma)); |
1176 | } | 1176 | } |
1177 | 1177 | ||
1178 | start = end; | 1178 | start = end; |
1179 | } else | 1179 | } else |
1180 | start = unmap_page_range(*tlbp, vma, | 1180 | start = unmap_page_range(*tlbp, vma, |
1181 | start, end, &zap_work, details); | 1181 | start, end, &zap_work, details); |
1182 | 1182 | ||
1183 | if (zap_work > 0) { | 1183 | if (zap_work > 0) { |
1184 | BUG_ON(start != end); | 1184 | BUG_ON(start != end); |
1185 | break; | 1185 | break; |
1186 | } | 1186 | } |
1187 | 1187 | ||
1188 | tlb_finish_mmu(*tlbp, tlb_start, start); | 1188 | tlb_finish_mmu(*tlbp, tlb_start, start); |
1189 | 1189 | ||
1190 | if (need_resched() || | 1190 | if (need_resched() || |
1191 | (i_mmap_lock && spin_needbreak(i_mmap_lock))) { | 1191 | (i_mmap_lock && spin_needbreak(i_mmap_lock))) { |
1192 | if (i_mmap_lock) { | 1192 | if (i_mmap_lock) { |
1193 | *tlbp = NULL; | 1193 | *tlbp = NULL; |
1194 | goto out; | 1194 | goto out; |
1195 | } | 1195 | } |
1196 | cond_resched(); | 1196 | cond_resched(); |
1197 | } | 1197 | } |
1198 | 1198 | ||
1199 | *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); | 1199 | *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); |
1200 | tlb_start_valid = 0; | 1200 | tlb_start_valid = 0; |
1201 | zap_work = ZAP_BLOCK_SIZE; | 1201 | zap_work = ZAP_BLOCK_SIZE; |
1202 | } | 1202 | } |
1203 | } | 1203 | } |
1204 | out: | 1204 | out: |
1205 | mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); | 1205 | mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); |
1206 | return start; /* which is now the end (or restart) address */ | 1206 | return start; /* which is now the end (or restart) address */ |
1207 | } | 1207 | } |
1208 | 1208 | ||
1209 | /** | 1209 | /** |
1210 | * zap_page_range - remove user pages in a given range | 1210 | * zap_page_range - remove user pages in a given range |
1211 | * @vma: vm_area_struct holding the applicable pages | 1211 | * @vma: vm_area_struct holding the applicable pages |
1212 | * @address: starting address of pages to zap | 1212 | * @address: starting address of pages to zap |
1213 | * @size: number of bytes to zap | 1213 | * @size: number of bytes to zap |
1214 | * @details: details of nonlinear truncation or shared cache invalidation | 1214 | * @details: details of nonlinear truncation or shared cache invalidation |
1215 | */ | 1215 | */ |
1216 | unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, | 1216 | unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, |
1217 | unsigned long size, struct zap_details *details) | 1217 | unsigned long size, struct zap_details *details) |
1218 | { | 1218 | { |
1219 | struct mm_struct *mm = vma->vm_mm; | 1219 | struct mm_struct *mm = vma->vm_mm; |
1220 | struct mmu_gather *tlb; | 1220 | struct mmu_gather *tlb; |
1221 | unsigned long end = address + size; | 1221 | unsigned long end = address + size; |
1222 | unsigned long nr_accounted = 0; | 1222 | unsigned long nr_accounted = 0; |
1223 | 1223 | ||
1224 | lru_add_drain(); | 1224 | lru_add_drain(); |
1225 | tlb = tlb_gather_mmu(mm, 0); | 1225 | tlb = tlb_gather_mmu(mm, 0); |
1226 | update_hiwater_rss(mm); | 1226 | update_hiwater_rss(mm); |
1227 | end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); | 1227 | end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); |
1228 | if (tlb) | 1228 | if (tlb) |
1229 | tlb_finish_mmu(tlb, address, end); | 1229 | tlb_finish_mmu(tlb, address, end); |
1230 | return end; | 1230 | return end; |
1231 | } | 1231 | } |
1232 | 1232 | ||
1233 | /** | 1233 | /** |
1234 | * zap_vma_ptes - remove ptes mapping the vma | 1234 | * zap_vma_ptes - remove ptes mapping the vma |
1235 | * @vma: vm_area_struct holding ptes to be zapped | 1235 | * @vma: vm_area_struct holding ptes to be zapped |
1236 | * @address: starting address of pages to zap | 1236 | * @address: starting address of pages to zap |
1237 | * @size: number of bytes to zap | 1237 | * @size: number of bytes to zap |
1238 | * | 1238 | * |
1239 | * This function only unmaps ptes assigned to VM_PFNMAP vmas. | 1239 | * This function only unmaps ptes assigned to VM_PFNMAP vmas. |
1240 | * | 1240 | * |
1241 | * The entire address range must be fully contained within the vma. | 1241 | * The entire address range must be fully contained within the vma. |
1242 | * | 1242 | * |
1243 | * Returns 0 if successful. | 1243 | * Returns 0 if successful. |
1244 | */ | 1244 | */ |
1245 | int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, | 1245 | int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, |
1246 | unsigned long size) | 1246 | unsigned long size) |
1247 | { | 1247 | { |
1248 | if (address < vma->vm_start || address + size > vma->vm_end || | 1248 | if (address < vma->vm_start || address + size > vma->vm_end || |
1249 | !(vma->vm_flags & VM_PFNMAP)) | 1249 | !(vma->vm_flags & VM_PFNMAP)) |
1250 | return -1; | 1250 | return -1; |
1251 | zap_page_range(vma, address, size, NULL); | 1251 | zap_page_range(vma, address, size, NULL); |
1252 | return 0; | 1252 | return 0; |
1253 | } | 1253 | } |
1254 | EXPORT_SYMBOL_GPL(zap_vma_ptes); | 1254 | EXPORT_SYMBOL_GPL(zap_vma_ptes); |
1255 | 1255 | ||
1256 | /** | 1256 | /** |
1257 | * follow_page - look up a page descriptor from a user-virtual address | 1257 | * follow_page - look up a page descriptor from a user-virtual address |
1258 | * @vma: vm_area_struct mapping @address | 1258 | * @vma: vm_area_struct mapping @address |
1259 | * @address: virtual address to look up | 1259 | * @address: virtual address to look up |
1260 | * @flags: flags modifying lookup behaviour | 1260 | * @flags: flags modifying lookup behaviour |
1261 | * | 1261 | * |
1262 | * @flags can have FOLL_ flags set, defined in <linux/mm.h> | 1262 | * @flags can have FOLL_ flags set, defined in <linux/mm.h> |
1263 | * | 1263 | * |
1264 | * Returns the mapped (struct page *), %NULL if no mapping exists, or | 1264 | * Returns the mapped (struct page *), %NULL if no mapping exists, or |
1265 | * an error pointer if there is a mapping to something not represented | 1265 | * an error pointer if there is a mapping to something not represented |
1266 | * by a page descriptor (see also vm_normal_page()). | 1266 | * by a page descriptor (see also vm_normal_page()). |
1267 | */ | 1267 | */ |
1268 | struct page *follow_page(struct vm_area_struct *vma, unsigned long address, | 1268 | struct page *follow_page(struct vm_area_struct *vma, unsigned long address, |
1269 | unsigned int flags) | 1269 | unsigned int flags) |
1270 | { | 1270 | { |
1271 | pgd_t *pgd; | 1271 | pgd_t *pgd; |
1272 | pud_t *pud; | 1272 | pud_t *pud; |
1273 | pmd_t *pmd; | 1273 | pmd_t *pmd; |
1274 | pte_t *ptep, pte; | 1274 | pte_t *ptep, pte; |
1275 | spinlock_t *ptl; | 1275 | spinlock_t *ptl; |
1276 | struct page *page; | 1276 | struct page *page; |
1277 | struct mm_struct *mm = vma->vm_mm; | 1277 | struct mm_struct *mm = vma->vm_mm; |
1278 | 1278 | ||
1279 | page = follow_huge_addr(mm, address, flags & FOLL_WRITE); | 1279 | page = follow_huge_addr(mm, address, flags & FOLL_WRITE); |
1280 | if (!IS_ERR(page)) { | 1280 | if (!IS_ERR(page)) { |
1281 | BUG_ON(flags & FOLL_GET); | 1281 | BUG_ON(flags & FOLL_GET); |
1282 | goto out; | 1282 | goto out; |
1283 | } | 1283 | } |
1284 | 1284 | ||
1285 | page = NULL; | 1285 | page = NULL; |
1286 | pgd = pgd_offset(mm, address); | 1286 | pgd = pgd_offset(mm, address); |
1287 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | 1287 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) |
1288 | goto no_page_table; | 1288 | goto no_page_table; |
1289 | 1289 | ||
1290 | pud = pud_offset(pgd, address); | 1290 | pud = pud_offset(pgd, address); |
1291 | if (pud_none(*pud)) | 1291 | if (pud_none(*pud)) |
1292 | goto no_page_table; | 1292 | goto no_page_table; |
1293 | if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { | 1293 | if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { |
1294 | BUG_ON(flags & FOLL_GET); | 1294 | BUG_ON(flags & FOLL_GET); |
1295 | page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); | 1295 | page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); |
1296 | goto out; | 1296 | goto out; |
1297 | } | 1297 | } |
1298 | if (unlikely(pud_bad(*pud))) | 1298 | if (unlikely(pud_bad(*pud))) |
1299 | goto no_page_table; | 1299 | goto no_page_table; |
1300 | 1300 | ||
1301 | pmd = pmd_offset(pud, address); | 1301 | pmd = pmd_offset(pud, address); |
1302 | if (pmd_none(*pmd)) | 1302 | if (pmd_none(*pmd)) |
1303 | goto no_page_table; | 1303 | goto no_page_table; |
1304 | if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) { | 1304 | if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) { |
1305 | BUG_ON(flags & FOLL_GET); | 1305 | BUG_ON(flags & FOLL_GET); |
1306 | page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); | 1306 | page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); |
1307 | goto out; | 1307 | goto out; |
1308 | } | 1308 | } |
1309 | if (pmd_trans_huge(*pmd)) { | 1309 | if (pmd_trans_huge(*pmd)) { |
1310 | if (flags & FOLL_SPLIT) { | 1310 | if (flags & FOLL_SPLIT) { |
1311 | split_huge_page_pmd(mm, pmd); | 1311 | split_huge_page_pmd(mm, pmd); |
1312 | goto split_fallthrough; | 1312 | goto split_fallthrough; |
1313 | } | 1313 | } |
1314 | spin_lock(&mm->page_table_lock); | 1314 | spin_lock(&mm->page_table_lock); |
1315 | if (likely(pmd_trans_huge(*pmd))) { | 1315 | if (likely(pmd_trans_huge(*pmd))) { |
1316 | if (unlikely(pmd_trans_splitting(*pmd))) { | 1316 | if (unlikely(pmd_trans_splitting(*pmd))) { |
1317 | spin_unlock(&mm->page_table_lock); | 1317 | spin_unlock(&mm->page_table_lock); |
1318 | wait_split_huge_page(vma->anon_vma, pmd); | 1318 | wait_split_huge_page(vma->anon_vma, pmd); |
1319 | } else { | 1319 | } else { |
1320 | page = follow_trans_huge_pmd(mm, address, | 1320 | page = follow_trans_huge_pmd(mm, address, |
1321 | pmd, flags); | 1321 | pmd, flags); |
1322 | spin_unlock(&mm->page_table_lock); | 1322 | spin_unlock(&mm->page_table_lock); |
1323 | goto out; | 1323 | goto out; |
1324 | } | 1324 | } |
1325 | } else | 1325 | } else |
1326 | spin_unlock(&mm->page_table_lock); | 1326 | spin_unlock(&mm->page_table_lock); |
1327 | /* fall through */ | 1327 | /* fall through */ |
1328 | } | 1328 | } |
1329 | split_fallthrough: | 1329 | split_fallthrough: |
1330 | if (unlikely(pmd_bad(*pmd))) | 1330 | if (unlikely(pmd_bad(*pmd))) |
1331 | goto no_page_table; | 1331 | goto no_page_table; |
1332 | 1332 | ||
1333 | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); | 1333 | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); |
1334 | 1334 | ||
1335 | pte = *ptep; | 1335 | pte = *ptep; |
1336 | if (!pte_present(pte)) | 1336 | if (!pte_present(pte)) |
1337 | goto no_page; | 1337 | goto no_page; |
1338 | if ((flags & FOLL_WRITE) && !pte_write(pte)) | 1338 | if ((flags & FOLL_WRITE) && !pte_write(pte)) |
1339 | goto unlock; | 1339 | goto unlock; |
1340 | 1340 | ||
1341 | page = vm_normal_page(vma, address, pte); | 1341 | page = vm_normal_page(vma, address, pte); |
1342 | if (unlikely(!page)) { | 1342 | if (unlikely(!page)) { |
1343 | if ((flags & FOLL_DUMP) || | 1343 | if ((flags & FOLL_DUMP) || |
1344 | !is_zero_pfn(pte_pfn(pte))) | 1344 | !is_zero_pfn(pte_pfn(pte))) |
1345 | goto bad_page; | 1345 | goto bad_page; |
1346 | page = pte_page(pte); | 1346 | page = pte_page(pte); |
1347 | } | 1347 | } |
1348 | 1348 | ||
1349 | if (flags & FOLL_GET) | 1349 | if (flags & FOLL_GET) |
1350 | get_page(page); | 1350 | get_page(page); |
1351 | if (flags & FOLL_TOUCH) { | 1351 | if (flags & FOLL_TOUCH) { |
1352 | if ((flags & FOLL_WRITE) && | 1352 | if ((flags & FOLL_WRITE) && |
1353 | !pte_dirty(pte) && !PageDirty(page)) | 1353 | !pte_dirty(pte) && !PageDirty(page)) |
1354 | set_page_dirty(page); | 1354 | set_page_dirty(page); |
1355 | /* | 1355 | /* |
1356 | * pte_mkyoung() would be more correct here, but atomic care | 1356 | * pte_mkyoung() would be more correct here, but atomic care |
1357 | * is needed to avoid losing the dirty bit: it is easier to use | 1357 | * is needed to avoid losing the dirty bit: it is easier to use |
1358 | * mark_page_accessed(). | 1358 | * mark_page_accessed(). |
1359 | */ | 1359 | */ |
1360 | mark_page_accessed(page); | 1360 | mark_page_accessed(page); |
1361 | } | 1361 | } |
1362 | if (flags & FOLL_MLOCK) { | 1362 | if (flags & FOLL_MLOCK) { |
1363 | /* | 1363 | /* |
1364 | * The preliminary mapping check is mainly to avoid the | 1364 | * The preliminary mapping check is mainly to avoid the |
1365 | * pointless overhead of lock_page on the ZERO_PAGE | 1365 | * pointless overhead of lock_page on the ZERO_PAGE |
1366 | * which might bounce very badly if there is contention. | 1366 | * which might bounce very badly if there is contention. |
1367 | * | 1367 | * |
1368 | * If the page is already locked, we don't need to | 1368 | * If the page is already locked, we don't need to |
1369 | * handle it now - vmscan will handle it later if and | 1369 | * handle it now - vmscan will handle it later if and |
1370 | * when it attempts to reclaim the page. | 1370 | * when it attempts to reclaim the page. |
1371 | */ | 1371 | */ |
1372 | if (page->mapping && trylock_page(page)) { | 1372 | if (page->mapping && trylock_page(page)) { |
1373 | lru_add_drain(); /* push cached pages to LRU */ | 1373 | lru_add_drain(); /* push cached pages to LRU */ |
1374 | /* | 1374 | /* |
1375 | * Because we lock page here and migration is | 1375 | * Because we lock page here and migration is |
1376 | * blocked by the pte's page reference, we need | 1376 | * blocked by the pte's page reference, we need |
1377 | * only check for file-cache page truncation. | 1377 | * only check for file-cache page truncation. |
1378 | */ | 1378 | */ |
1379 | if (page->mapping) | 1379 | if (page->mapping) |
1380 | mlock_vma_page(page); | 1380 | mlock_vma_page(page); |
1381 | unlock_page(page); | 1381 | unlock_page(page); |
1382 | } | 1382 | } |
1383 | } | 1383 | } |
1384 | unlock: | 1384 | unlock: |
1385 | pte_unmap_unlock(ptep, ptl); | 1385 | pte_unmap_unlock(ptep, ptl); |
1386 | out: | 1386 | out: |
1387 | return page; | 1387 | return page; |
1388 | 1388 | ||
1389 | bad_page: | 1389 | bad_page: |
1390 | pte_unmap_unlock(ptep, ptl); | 1390 | pte_unmap_unlock(ptep, ptl); |
1391 | return ERR_PTR(-EFAULT); | 1391 | return ERR_PTR(-EFAULT); |
1392 | 1392 | ||
1393 | no_page: | 1393 | no_page: |
1394 | pte_unmap_unlock(ptep, ptl); | 1394 | pte_unmap_unlock(ptep, ptl); |
1395 | if (!pte_none(pte)) | 1395 | if (!pte_none(pte)) |
1396 | return page; | 1396 | return page; |
1397 | 1397 | ||
1398 | no_page_table: | 1398 | no_page_table: |
1399 | /* | 1399 | /* |
1400 | * When core dumping an enormous anonymous area that nobody | 1400 | * When core dumping an enormous anonymous area that nobody |
1401 | * has touched so far, we don't want to allocate unnecessary pages or | 1401 | * has touched so far, we don't want to allocate unnecessary pages or |
1402 | * page tables. Return error instead of NULL to skip handle_mm_fault, | 1402 | * page tables. Return error instead of NULL to skip handle_mm_fault, |
1403 | * then get_dump_page() will return NULL to leave a hole in the dump. | 1403 | * then get_dump_page() will return NULL to leave a hole in the dump. |
1404 | * But we can only make this optimization where a hole would surely | 1404 | * But we can only make this optimization where a hole would surely |
1405 | * be zero-filled if handle_mm_fault() actually did handle it. | 1405 | * be zero-filled if handle_mm_fault() actually did handle it. |
1406 | */ | 1406 | */ |
1407 | if ((flags & FOLL_DUMP) && | 1407 | if ((flags & FOLL_DUMP) && |
1408 | (!vma->vm_ops || !vma->vm_ops->fault)) | 1408 | (!vma->vm_ops || !vma->vm_ops->fault)) |
1409 | return ERR_PTR(-EFAULT); | 1409 | return ERR_PTR(-EFAULT); |
1410 | return page; | 1410 | return page; |
1411 | } | 1411 | } |
1412 | 1412 | ||
1413 | /** | 1413 | /** |
1414 | * __get_user_pages() - pin user pages in memory | 1414 | * __get_user_pages() - pin user pages in memory |
1415 | * @tsk: task_struct of target task | 1415 | * @tsk: task_struct of target task |
1416 | * @mm: mm_struct of target mm | 1416 | * @mm: mm_struct of target mm |
1417 | * @start: starting user address | 1417 | * @start: starting user address |
1418 | * @nr_pages: number of pages from start to pin | 1418 | * @nr_pages: number of pages from start to pin |
1419 | * @gup_flags: flags modifying pin behaviour | 1419 | * @gup_flags: flags modifying pin behaviour |
1420 | * @pages: array that receives pointers to the pages pinned. | 1420 | * @pages: array that receives pointers to the pages pinned. |
1421 | * Should be at least nr_pages long. Or NULL, if caller | 1421 | * Should be at least nr_pages long. Or NULL, if caller |
1422 | * only intends to ensure the pages are faulted in. | 1422 | * only intends to ensure the pages are faulted in. |
1423 | * @vmas: array of pointers to vmas corresponding to each page. | 1423 | * @vmas: array of pointers to vmas corresponding to each page. |
1424 | * Or NULL if the caller does not require them. | 1424 | * Or NULL if the caller does not require them. |
1425 | * @nonblocking: whether waiting for disk IO or mmap_sem contention | 1425 | * @nonblocking: whether waiting for disk IO or mmap_sem contention |
1426 | * | 1426 | * |
1427 | * Returns number of pages pinned. This may be fewer than the number | 1427 | * Returns number of pages pinned. This may be fewer than the number |
1428 | * requested. If nr_pages is 0 or negative, returns 0. If no pages | 1428 | * requested. If nr_pages is 0 or negative, returns 0. If no pages |
1429 | * were pinned, returns -errno. Each page returned must be released | 1429 | * were pinned, returns -errno. Each page returned must be released |
1430 | * with a put_page() call when it is finished with. vmas will only | 1430 | * with a put_page() call when it is finished with. vmas will only |
1431 | * remain valid while mmap_sem is held. | 1431 | * remain valid while mmap_sem is held. |
1432 | * | 1432 | * |
1433 | * Must be called with mmap_sem held for read or write. | 1433 | * Must be called with mmap_sem held for read or write. |
1434 | * | 1434 | * |
1435 | * __get_user_pages walks a process's page tables and takes a reference to | 1435 | * __get_user_pages walks a process's page tables and takes a reference to |
1436 | * each struct page that each user address corresponds to at a given | 1436 | * each struct page that each user address corresponds to at a given |
1437 | * instant. That is, it takes the page that would be accessed if a user | 1437 | * instant. That is, it takes the page that would be accessed if a user |
1438 | * thread accesses the given user virtual address at that instant. | 1438 | * thread accesses the given user virtual address at that instant. |
1439 | * | 1439 | * |
1440 | * This does not guarantee that the page exists in the user mappings when | 1440 | * This does not guarantee that the page exists in the user mappings when |
1441 | * __get_user_pages returns, and there may even be a completely different | 1441 | * __get_user_pages returns, and there may even be a completely different |
1442 | * page there in some cases (eg. if mmapped pagecache has been invalidated | 1442 | * page there in some cases (eg. if mmapped pagecache has been invalidated |
1443 | * and subsequently re faulted). However it does guarantee that the page | 1443 | * and subsequently re faulted). However it does guarantee that the page |
1444 | * won't be freed completely. And mostly callers simply care that the page | 1444 | * won't be freed completely. And mostly callers simply care that the page |
1445 | * contains data that was valid *at some point in time*. Typically, an IO | 1445 | * contains data that was valid *at some point in time*. Typically, an IO |
1446 | * or similar operation cannot guarantee anything stronger anyway because | 1446 | * or similar operation cannot guarantee anything stronger anyway because |
1447 | * locks can't be held over the syscall boundary. | 1447 | * locks can't be held over the syscall boundary. |
1448 | * | 1448 | * |
1449 | * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If | 1449 | * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If |
1450 | * the page is written to, set_page_dirty (or set_page_dirty_lock, as | 1450 | * the page is written to, set_page_dirty (or set_page_dirty_lock, as |
1451 | * appropriate) must be called after the page is finished with, and | 1451 | * appropriate) must be called after the page is finished with, and |
1452 | * before put_page is called. | 1452 | * before put_page is called. |
1453 | * | 1453 | * |
1454 | * If @nonblocking != NULL, __get_user_pages will not wait for disk IO | 1454 | * If @nonblocking != NULL, __get_user_pages will not wait for disk IO |
1455 | * or mmap_sem contention, and if waiting is needed to pin all pages, | 1455 | * or mmap_sem contention, and if waiting is needed to pin all pages, |
1456 | * *@nonblocking will be set to 0. | 1456 | * *@nonblocking will be set to 0. |
1457 | * | 1457 | * |
1458 | * In most cases, get_user_pages or get_user_pages_fast should be used | 1458 | * In most cases, get_user_pages or get_user_pages_fast should be used |
1459 | * instead of __get_user_pages. __get_user_pages should be used only if | 1459 | * instead of __get_user_pages. __get_user_pages should be used only if |
1460 | * you need some special @gup_flags. | 1460 | * you need some special @gup_flags. |
1461 | */ | 1461 | */ |
1462 | int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | 1462 | int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, |
1463 | unsigned long start, int nr_pages, unsigned int gup_flags, | 1463 | unsigned long start, int nr_pages, unsigned int gup_flags, |
1464 | struct page **pages, struct vm_area_struct **vmas, | 1464 | struct page **pages, struct vm_area_struct **vmas, |
1465 | int *nonblocking) | 1465 | int *nonblocking) |
1466 | { | 1466 | { |
1467 | int i; | 1467 | int i; |
1468 | unsigned long vm_flags; | 1468 | unsigned long vm_flags; |
1469 | 1469 | ||
1470 | if (nr_pages <= 0) | 1470 | if (nr_pages <= 0) |
1471 | return 0; | 1471 | return 0; |
1472 | 1472 | ||
1473 | VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); | 1473 | VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); |
1474 | 1474 | ||
1475 | /* | 1475 | /* |
1476 | * Require read or write permissions. | 1476 | * Require read or write permissions. |
1477 | * If FOLL_FORCE is set, we only require the "MAY" flags. | 1477 | * If FOLL_FORCE is set, we only require the "MAY" flags. |
1478 | */ | 1478 | */ |
1479 | vm_flags = (gup_flags & FOLL_WRITE) ? | 1479 | vm_flags = (gup_flags & FOLL_WRITE) ? |
1480 | (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); | 1480 | (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); |
1481 | vm_flags &= (gup_flags & FOLL_FORCE) ? | 1481 | vm_flags &= (gup_flags & FOLL_FORCE) ? |
1482 | (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); | 1482 | (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); |
1483 | i = 0; | 1483 | i = 0; |
1484 | 1484 | ||
1485 | do { | 1485 | do { |
1486 | struct vm_area_struct *vma; | 1486 | struct vm_area_struct *vma; |
1487 | 1487 | ||
1488 | vma = find_extend_vma(mm, start); | 1488 | vma = find_extend_vma(mm, start); |
1489 | if (!vma && in_gate_area(mm, start)) { | 1489 | if (!vma && in_gate_area(mm, start)) { |
1490 | unsigned long pg = start & PAGE_MASK; | 1490 | unsigned long pg = start & PAGE_MASK; |
1491 | struct vm_area_struct *gate_vma = get_gate_vma(mm); | 1491 | struct vm_area_struct *gate_vma = get_gate_vma(mm); |
1492 | pgd_t *pgd; | 1492 | pgd_t *pgd; |
1493 | pud_t *pud; | 1493 | pud_t *pud; |
1494 | pmd_t *pmd; | 1494 | pmd_t *pmd; |
1495 | pte_t *pte; | 1495 | pte_t *pte; |
1496 | 1496 | ||
1497 | /* user gate pages are read-only */ | 1497 | /* user gate pages are read-only */ |
1498 | if (gup_flags & FOLL_WRITE) | 1498 | if (gup_flags & FOLL_WRITE) |
1499 | return i ? : -EFAULT; | 1499 | return i ? : -EFAULT; |
1500 | if (pg > TASK_SIZE) | 1500 | if (pg > TASK_SIZE) |
1501 | pgd = pgd_offset_k(pg); | 1501 | pgd = pgd_offset_k(pg); |
1502 | else | 1502 | else |
1503 | pgd = pgd_offset_gate(mm, pg); | 1503 | pgd = pgd_offset_gate(mm, pg); |
1504 | BUG_ON(pgd_none(*pgd)); | 1504 | BUG_ON(pgd_none(*pgd)); |
1505 | pud = pud_offset(pgd, pg); | 1505 | pud = pud_offset(pgd, pg); |
1506 | BUG_ON(pud_none(*pud)); | 1506 | BUG_ON(pud_none(*pud)); |
1507 | pmd = pmd_offset(pud, pg); | 1507 | pmd = pmd_offset(pud, pg); |
1508 | if (pmd_none(*pmd)) | 1508 | if (pmd_none(*pmd)) |
1509 | return i ? : -EFAULT; | 1509 | return i ? : -EFAULT; |
1510 | VM_BUG_ON(pmd_trans_huge(*pmd)); | 1510 | VM_BUG_ON(pmd_trans_huge(*pmd)); |
1511 | pte = pte_offset_map(pmd, pg); | 1511 | pte = pte_offset_map(pmd, pg); |
1512 | if (pte_none(*pte)) { | 1512 | if (pte_none(*pte)) { |
1513 | pte_unmap(pte); | 1513 | pte_unmap(pte); |
1514 | return i ? : -EFAULT; | 1514 | return i ? : -EFAULT; |
1515 | } | 1515 | } |
1516 | if (pages) { | 1516 | if (pages) { |
1517 | struct page *page; | 1517 | struct page *page; |
1518 | 1518 | ||
1519 | page = vm_normal_page(gate_vma, start, *pte); | 1519 | page = vm_normal_page(gate_vma, start, *pte); |
1520 | if (!page) { | 1520 | if (!page) { |
1521 | if (!(gup_flags & FOLL_DUMP) && | 1521 | if (!(gup_flags & FOLL_DUMP) && |
1522 | is_zero_pfn(pte_pfn(*pte))) | 1522 | is_zero_pfn(pte_pfn(*pte))) |
1523 | page = pte_page(*pte); | 1523 | page = pte_page(*pte); |
1524 | else { | 1524 | else { |
1525 | pte_unmap(pte); | 1525 | pte_unmap(pte); |
1526 | return i ? : -EFAULT; | 1526 | return i ? : -EFAULT; |
1527 | } | 1527 | } |
1528 | } | 1528 | } |
1529 | pages[i] = page; | 1529 | pages[i] = page; |
1530 | get_page(page); | 1530 | get_page(page); |
1531 | } | 1531 | } |
1532 | pte_unmap(pte); | 1532 | pte_unmap(pte); |
1533 | if (vmas) | 1533 | if (vmas) |
1534 | vmas[i] = gate_vma; | 1534 | vmas[i] = gate_vma; |
1535 | i++; | 1535 | i++; |
1536 | start += PAGE_SIZE; | 1536 | start += PAGE_SIZE; |
1537 | nr_pages--; | 1537 | nr_pages--; |
1538 | continue; | 1538 | continue; |
1539 | } | 1539 | } |
1540 | 1540 | ||
1541 | if (!vma || | 1541 | if (!vma || |
1542 | (vma->vm_flags & (VM_IO | VM_PFNMAP)) || | 1542 | (vma->vm_flags & (VM_IO | VM_PFNMAP)) || |
1543 | !(vm_flags & vma->vm_flags)) | 1543 | !(vm_flags & vma->vm_flags)) |
1544 | return i ? : -EFAULT; | 1544 | return i ? : -EFAULT; |
1545 | 1545 | ||
1546 | if (is_vm_hugetlb_page(vma)) { | 1546 | if (is_vm_hugetlb_page(vma)) { |
1547 | i = follow_hugetlb_page(mm, vma, pages, vmas, | 1547 | i = follow_hugetlb_page(mm, vma, pages, vmas, |
1548 | &start, &nr_pages, i, gup_flags); | 1548 | &start, &nr_pages, i, gup_flags); |
1549 | continue; | 1549 | continue; |
1550 | } | 1550 | } |
1551 | 1551 | ||
1552 | do { | 1552 | do { |
1553 | struct page *page; | 1553 | struct page *page; |
1554 | unsigned int foll_flags = gup_flags; | 1554 | unsigned int foll_flags = gup_flags; |
1555 | 1555 | ||
1556 | /* | 1556 | /* |
1557 | * If we have a pending SIGKILL, don't keep faulting | 1557 | * If we have a pending SIGKILL, don't keep faulting |
1558 | * pages and potentially allocating memory. | 1558 | * pages and potentially allocating memory. |
1559 | */ | 1559 | */ |
1560 | if (unlikely(fatal_signal_pending(current))) | 1560 | if (unlikely(fatal_signal_pending(current))) |
1561 | return i ? i : -ERESTARTSYS; | 1561 | return i ? i : -ERESTARTSYS; |
1562 | 1562 | ||
1563 | cond_resched(); | 1563 | cond_resched(); |
1564 | while (!(page = follow_page(vma, start, foll_flags))) { | 1564 | while (!(page = follow_page(vma, start, foll_flags))) { |
1565 | int ret; | 1565 | int ret; |
1566 | unsigned int fault_flags = 0; | 1566 | unsigned int fault_flags = 0; |
1567 | 1567 | ||
1568 | if (foll_flags & FOLL_WRITE) | 1568 | if (foll_flags & FOLL_WRITE) |
1569 | fault_flags |= FAULT_FLAG_WRITE; | 1569 | fault_flags |= FAULT_FLAG_WRITE; |
1570 | if (nonblocking) | 1570 | if (nonblocking) |
1571 | fault_flags |= FAULT_FLAG_ALLOW_RETRY; | 1571 | fault_flags |= FAULT_FLAG_ALLOW_RETRY; |
1572 | 1572 | ||
1573 | ret = handle_mm_fault(mm, vma, start, | 1573 | ret = handle_mm_fault(mm, vma, start, |
1574 | fault_flags); | 1574 | fault_flags); |
1575 | 1575 | ||
1576 | if (ret & VM_FAULT_ERROR) { | 1576 | if (ret & VM_FAULT_ERROR) { |
1577 | if (ret & VM_FAULT_OOM) | 1577 | if (ret & VM_FAULT_OOM) |
1578 | return i ? i : -ENOMEM; | 1578 | return i ? i : -ENOMEM; |
1579 | if (ret & (VM_FAULT_HWPOISON | | 1579 | if (ret & (VM_FAULT_HWPOISON | |
1580 | VM_FAULT_HWPOISON_LARGE)) { | 1580 | VM_FAULT_HWPOISON_LARGE)) { |
1581 | if (i) | 1581 | if (i) |
1582 | return i; | 1582 | return i; |
1583 | else if (gup_flags & FOLL_HWPOISON) | 1583 | else if (gup_flags & FOLL_HWPOISON) |
1584 | return -EHWPOISON; | 1584 | return -EHWPOISON; |
1585 | else | 1585 | else |
1586 | return -EFAULT; | 1586 | return -EFAULT; |
1587 | } | 1587 | } |
1588 | if (ret & VM_FAULT_SIGBUS) | 1588 | if (ret & VM_FAULT_SIGBUS) |
1589 | return i ? i : -EFAULT; | 1589 | return i ? i : -EFAULT; |
1590 | BUG(); | 1590 | BUG(); |
1591 | } | 1591 | } |
1592 | 1592 | ||
1593 | if (tsk) { | 1593 | if (tsk) { |
1594 | if (ret & VM_FAULT_MAJOR) | 1594 | if (ret & VM_FAULT_MAJOR) |
1595 | tsk->maj_flt++; | 1595 | tsk->maj_flt++; |
1596 | else | 1596 | else |
1597 | tsk->min_flt++; | 1597 | tsk->min_flt++; |
1598 | } | 1598 | } |
1599 | 1599 | ||
1600 | if (ret & VM_FAULT_RETRY) { | 1600 | if (ret & VM_FAULT_RETRY) { |
1601 | *nonblocking = 0; | 1601 | *nonblocking = 0; |
1602 | return i; | 1602 | return i; |
1603 | } | 1603 | } |
1604 | 1604 | ||
1605 | /* | 1605 | /* |
1606 | * The VM_FAULT_WRITE bit tells us that | 1606 | * The VM_FAULT_WRITE bit tells us that |
1607 | * do_wp_page has broken COW when necessary, | 1607 | * do_wp_page has broken COW when necessary, |
1608 | * even if maybe_mkwrite decided not to set | 1608 | * even if maybe_mkwrite decided not to set |
1609 | * pte_write. We can thus safely do subsequent | 1609 | * pte_write. We can thus safely do subsequent |
1610 | * page lookups as if they were reads. But only | 1610 | * page lookups as if they were reads. But only |
1611 | * do so when looping for pte_write is futile: | 1611 | * do so when looping for pte_write is futile: |
1612 | * in some cases userspace may also be wanting | 1612 | * in some cases userspace may also be wanting |
1613 | * to write to the gotten user page, which a | 1613 | * to write to the gotten user page, which a |
1614 | * read fault here might prevent (a readonly | 1614 | * read fault here might prevent (a readonly |
1615 | * page might get reCOWed by userspace write). | 1615 | * page might get reCOWed by userspace write). |
1616 | */ | 1616 | */ |
1617 | if ((ret & VM_FAULT_WRITE) && | 1617 | if ((ret & VM_FAULT_WRITE) && |
1618 | !(vma->vm_flags & VM_WRITE)) | 1618 | !(vma->vm_flags & VM_WRITE)) |
1619 | foll_flags &= ~FOLL_WRITE; | 1619 | foll_flags &= ~FOLL_WRITE; |
1620 | 1620 | ||
1621 | cond_resched(); | 1621 | cond_resched(); |
1622 | } | 1622 | } |
1623 | if (IS_ERR(page)) | 1623 | if (IS_ERR(page)) |
1624 | return i ? i : PTR_ERR(page); | 1624 | return i ? i : PTR_ERR(page); |
1625 | if (pages) { | 1625 | if (pages) { |
1626 | pages[i] = page; | 1626 | pages[i] = page; |
1627 | 1627 | ||
1628 | flush_anon_page(vma, page, start); | 1628 | flush_anon_page(vma, page, start); |
1629 | flush_dcache_page(page); | 1629 | flush_dcache_page(page); |
1630 | } | 1630 | } |
1631 | if (vmas) | 1631 | if (vmas) |
1632 | vmas[i] = vma; | 1632 | vmas[i] = vma; |
1633 | i++; | 1633 | i++; |
1634 | start += PAGE_SIZE; | 1634 | start += PAGE_SIZE; |
1635 | nr_pages--; | 1635 | nr_pages--; |
1636 | } while (nr_pages && start < vma->vm_end); | 1636 | } while (nr_pages && start < vma->vm_end); |
1637 | } while (nr_pages); | 1637 | } while (nr_pages); |
1638 | return i; | 1638 | return i; |
1639 | } | 1639 | } |
1640 | EXPORT_SYMBOL(__get_user_pages); | 1640 | EXPORT_SYMBOL(__get_user_pages); |
1641 | 1641 | ||
1642 | /** | 1642 | /** |
1643 | * get_user_pages() - pin user pages in memory | 1643 | * get_user_pages() - pin user pages in memory |
1644 | * @tsk: the task_struct to use for page fault accounting, or | 1644 | * @tsk: the task_struct to use for page fault accounting, or |
1645 | * NULL if faults are not to be recorded. | 1645 | * NULL if faults are not to be recorded. |
1646 | * @mm: mm_struct of target mm | 1646 | * @mm: mm_struct of target mm |
1647 | * @start: starting user address | 1647 | * @start: starting user address |
1648 | * @nr_pages: number of pages from start to pin | 1648 | * @nr_pages: number of pages from start to pin |
1649 | * @write: whether pages will be written to by the caller | 1649 | * @write: whether pages will be written to by the caller |
1650 | * @force: whether to force write access even if user mapping is | 1650 | * @force: whether to force write access even if user mapping is |
1651 | * readonly. This will result in the page being COWed even | 1651 | * readonly. This will result in the page being COWed even |
1652 | * in MAP_SHARED mappings. You do not want this. | 1652 | * in MAP_SHARED mappings. You do not want this. |
1653 | * @pages: array that receives pointers to the pages pinned. | 1653 | * @pages: array that receives pointers to the pages pinned. |
1654 | * Should be at least nr_pages long. Or NULL, if caller | 1654 | * Should be at least nr_pages long. Or NULL, if caller |
1655 | * only intends to ensure the pages are faulted in. | 1655 | * only intends to ensure the pages are faulted in. |
1656 | * @vmas: array of pointers to vmas corresponding to each page. | 1656 | * @vmas: array of pointers to vmas corresponding to each page. |
1657 | * Or NULL if the caller does not require them. | 1657 | * Or NULL if the caller does not require them. |
1658 | * | 1658 | * |
1659 | * Returns number of pages pinned. This may be fewer than the number | 1659 | * Returns number of pages pinned. This may be fewer than the number |
1660 | * requested. If nr_pages is 0 or negative, returns 0. If no pages | 1660 | * requested. If nr_pages is 0 or negative, returns 0. If no pages |
1661 | * were pinned, returns -errno. Each page returned must be released | 1661 | * were pinned, returns -errno. Each page returned must be released |
1662 | * with a put_page() call when it is finished with. vmas will only | 1662 | * with a put_page() call when it is finished with. vmas will only |
1663 | * remain valid while mmap_sem is held. | 1663 | * remain valid while mmap_sem is held. |
1664 | * | 1664 | * |
1665 | * Must be called with mmap_sem held for read or write. | 1665 | * Must be called with mmap_sem held for read or write. |
1666 | * | 1666 | * |
1667 | * get_user_pages walks a process's page tables and takes a reference to | 1667 | * get_user_pages walks a process's page tables and takes a reference to |
1668 | * each struct page that each user address corresponds to at a given | 1668 | * each struct page that each user address corresponds to at a given |
1669 | * instant. That is, it takes the page that would be accessed if a user | 1669 | * instant. That is, it takes the page that would be accessed if a user |
1670 | * thread accesses the given user virtual address at that instant. | 1670 | * thread accesses the given user virtual address at that instant. |
1671 | * | 1671 | * |
1672 | * This does not guarantee that the page exists in the user mappings when | 1672 | * This does not guarantee that the page exists in the user mappings when |
1673 | * get_user_pages returns, and there may even be a completely different | 1673 | * get_user_pages returns, and there may even be a completely different |
1674 | * page there in some cases (eg. if mmapped pagecache has been invalidated | 1674 | * page there in some cases (eg. if mmapped pagecache has been invalidated |
1675 | * and subsequently re faulted). However it does guarantee that the page | 1675 | * and subsequently re faulted). However it does guarantee that the page |
1676 | * won't be freed completely. And mostly callers simply care that the page | 1676 | * won't be freed completely. And mostly callers simply care that the page |
1677 | * contains data that was valid *at some point in time*. Typically, an IO | 1677 | * contains data that was valid *at some point in time*. Typically, an IO |
1678 | * or similar operation cannot guarantee anything stronger anyway because | 1678 | * or similar operation cannot guarantee anything stronger anyway because |
1679 | * locks can't be held over the syscall boundary. | 1679 | * locks can't be held over the syscall boundary. |
1680 | * | 1680 | * |
1681 | * If write=0, the page must not be written to. If the page is written to, | 1681 | * If write=0, the page must not be written to. If the page is written to, |
1682 | * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called | 1682 | * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called |
1683 | * after the page is finished with, and before put_page is called. | 1683 | * after the page is finished with, and before put_page is called. |
1684 | * | 1684 | * |
1685 | * get_user_pages is typically used for fewer-copy IO operations, to get a | 1685 | * get_user_pages is typically used for fewer-copy IO operations, to get a |
1686 | * handle on the memory by some means other than accesses via the user virtual | 1686 | * handle on the memory by some means other than accesses via the user virtual |
1687 | * addresses. The pages may be submitted for DMA to devices or accessed via | 1687 | * addresses. The pages may be submitted for DMA to devices or accessed via |
1688 | * their kernel linear mapping (via the kmap APIs). Care should be taken to | 1688 | * their kernel linear mapping (via the kmap APIs). Care should be taken to |
1689 | * use the correct cache flushing APIs. | 1689 | * use the correct cache flushing APIs. |
1690 | * | 1690 | * |
1691 | * See also get_user_pages_fast, for performance critical applications. | 1691 | * See also get_user_pages_fast, for performance critical applications. |
1692 | */ | 1692 | */ |
1693 | int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | 1693 | int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, |
1694 | unsigned long start, int nr_pages, int write, int force, | 1694 | unsigned long start, int nr_pages, int write, int force, |
1695 | struct page **pages, struct vm_area_struct **vmas) | 1695 | struct page **pages, struct vm_area_struct **vmas) |
1696 | { | 1696 | { |
1697 | int flags = FOLL_TOUCH; | 1697 | int flags = FOLL_TOUCH; |
1698 | 1698 | ||
1699 | if (pages) | 1699 | if (pages) |
1700 | flags |= FOLL_GET; | 1700 | flags |= FOLL_GET; |
1701 | if (write) | 1701 | if (write) |
1702 | flags |= FOLL_WRITE; | 1702 | flags |= FOLL_WRITE; |
1703 | if (force) | 1703 | if (force) |
1704 | flags |= FOLL_FORCE; | 1704 | flags |= FOLL_FORCE; |
1705 | 1705 | ||
1706 | return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas, | 1706 | return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas, |
1707 | NULL); | 1707 | NULL); |
1708 | } | 1708 | } |
1709 | EXPORT_SYMBOL(get_user_pages); | 1709 | EXPORT_SYMBOL(get_user_pages); |
1710 | 1710 | ||
1711 | /** | 1711 | /** |
1712 | * get_dump_page() - pin user page in memory while writing it to core dump | 1712 | * get_dump_page() - pin user page in memory while writing it to core dump |
1713 | * @addr: user address | 1713 | * @addr: user address |
1714 | * | 1714 | * |
1715 | * Returns struct page pointer of user page pinned for dump, | 1715 | * Returns struct page pointer of user page pinned for dump, |
1716 | * to be freed afterwards by page_cache_release() or put_page(). | 1716 | * to be freed afterwards by page_cache_release() or put_page(). |
1717 | * | 1717 | * |
1718 | * Returns NULL on any kind of failure - a hole must then be inserted into | 1718 | * Returns NULL on any kind of failure - a hole must then be inserted into |
1719 | * the corefile, to preserve alignment with its headers; and also returns | 1719 | * the corefile, to preserve alignment with its headers; and also returns |
1720 | * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - | 1720 | * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - |
1721 | * allowing a hole to be left in the corefile to save diskspace. | 1721 | * allowing a hole to be left in the corefile to save diskspace. |
1722 | * | 1722 | * |
1723 | * Called without mmap_sem, but after all other threads have been killed. | 1723 | * Called without mmap_sem, but after all other threads have been killed. |
1724 | */ | 1724 | */ |
1725 | #ifdef CONFIG_ELF_CORE | 1725 | #ifdef CONFIG_ELF_CORE |
1726 | struct page *get_dump_page(unsigned long addr) | 1726 | struct page *get_dump_page(unsigned long addr) |
1727 | { | 1727 | { |
1728 | struct vm_area_struct *vma; | 1728 | struct vm_area_struct *vma; |
1729 | struct page *page; | 1729 | struct page *page; |
1730 | 1730 | ||
1731 | if (__get_user_pages(current, current->mm, addr, 1, | 1731 | if (__get_user_pages(current, current->mm, addr, 1, |
1732 | FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, | 1732 | FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, |
1733 | NULL) < 1) | 1733 | NULL) < 1) |
1734 | return NULL; | 1734 | return NULL; |
1735 | flush_cache_page(vma, addr, page_to_pfn(page)); | 1735 | flush_cache_page(vma, addr, page_to_pfn(page)); |
1736 | return page; | 1736 | return page; |
1737 | } | 1737 | } |
1738 | #endif /* CONFIG_ELF_CORE */ | 1738 | #endif /* CONFIG_ELF_CORE */ |
1739 | 1739 | ||
1740 | pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, | 1740 | pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, |
1741 | spinlock_t **ptl) | 1741 | spinlock_t **ptl) |
1742 | { | 1742 | { |
1743 | pgd_t * pgd = pgd_offset(mm, addr); | 1743 | pgd_t * pgd = pgd_offset(mm, addr); |
1744 | pud_t * pud = pud_alloc(mm, pgd, addr); | 1744 | pud_t * pud = pud_alloc(mm, pgd, addr); |
1745 | if (pud) { | 1745 | if (pud) { |
1746 | pmd_t * pmd = pmd_alloc(mm, pud, addr); | 1746 | pmd_t * pmd = pmd_alloc(mm, pud, addr); |
1747 | if (pmd) { | 1747 | if (pmd) { |
1748 | VM_BUG_ON(pmd_trans_huge(*pmd)); | 1748 | VM_BUG_ON(pmd_trans_huge(*pmd)); |
1749 | return pte_alloc_map_lock(mm, pmd, addr, ptl); | 1749 | return pte_alloc_map_lock(mm, pmd, addr, ptl); |
1750 | } | 1750 | } |
1751 | } | 1751 | } |
1752 | return NULL; | 1752 | return NULL; |
1753 | } | 1753 | } |
1754 | 1754 | ||
1755 | /* | 1755 | /* |
1756 | * This is the old fallback for page remapping. | 1756 | * This is the old fallback for page remapping. |
1757 | * | 1757 | * |
1758 | * For historical reasons, it only allows reserved pages. Only | 1758 | * For historical reasons, it only allows reserved pages. Only |
1759 | * old drivers should use this, and they needed to mark their | 1759 | * old drivers should use this, and they needed to mark their |
1760 | * pages reserved for the old functions anyway. | 1760 | * pages reserved for the old functions anyway. |
1761 | */ | 1761 | */ |
1762 | static int insert_page(struct vm_area_struct *vma, unsigned long addr, | 1762 | static int insert_page(struct vm_area_struct *vma, unsigned long addr, |
1763 | struct page *page, pgprot_t prot) | 1763 | struct page *page, pgprot_t prot) |
1764 | { | 1764 | { |
1765 | struct mm_struct *mm = vma->vm_mm; | 1765 | struct mm_struct *mm = vma->vm_mm; |
1766 | int retval; | 1766 | int retval; |
1767 | pte_t *pte; | 1767 | pte_t *pte; |
1768 | spinlock_t *ptl; | 1768 | spinlock_t *ptl; |
1769 | 1769 | ||
1770 | retval = -EINVAL; | 1770 | retval = -EINVAL; |
1771 | if (PageAnon(page)) | 1771 | if (PageAnon(page)) |
1772 | goto out; | 1772 | goto out; |
1773 | retval = -ENOMEM; | 1773 | retval = -ENOMEM; |
1774 | flush_dcache_page(page); | 1774 | flush_dcache_page(page); |
1775 | pte = get_locked_pte(mm, addr, &ptl); | 1775 | pte = get_locked_pte(mm, addr, &ptl); |
1776 | if (!pte) | 1776 | if (!pte) |
1777 | goto out; | 1777 | goto out; |
1778 | retval = -EBUSY; | 1778 | retval = -EBUSY; |
1779 | if (!pte_none(*pte)) | 1779 | if (!pte_none(*pte)) |
1780 | goto out_unlock; | 1780 | goto out_unlock; |
1781 | 1781 | ||
1782 | /* Ok, finally just insert the thing.. */ | 1782 | /* Ok, finally just insert the thing.. */ |
1783 | get_page(page); | 1783 | get_page(page); |
1784 | inc_mm_counter_fast(mm, MM_FILEPAGES); | 1784 | inc_mm_counter_fast(mm, MM_FILEPAGES); |
1785 | page_add_file_rmap(page); | 1785 | page_add_file_rmap(page); |
1786 | set_pte_at(mm, addr, pte, mk_pte(page, prot)); | 1786 | set_pte_at(mm, addr, pte, mk_pte(page, prot)); |
1787 | 1787 | ||
1788 | retval = 0; | 1788 | retval = 0; |
1789 | pte_unmap_unlock(pte, ptl); | 1789 | pte_unmap_unlock(pte, ptl); |
1790 | return retval; | 1790 | return retval; |
1791 | out_unlock: | 1791 | out_unlock: |
1792 | pte_unmap_unlock(pte, ptl); | 1792 | pte_unmap_unlock(pte, ptl); |
1793 | out: | 1793 | out: |
1794 | return retval; | 1794 | return retval; |
1795 | } | 1795 | } |
1796 | 1796 | ||
1797 | /** | 1797 | /** |
1798 | * vm_insert_page - insert single page into user vma | 1798 | * vm_insert_page - insert single page into user vma |
1799 | * @vma: user vma to map to | 1799 | * @vma: user vma to map to |
1800 | * @addr: target user address of this page | 1800 | * @addr: target user address of this page |
1801 | * @page: source kernel page | 1801 | * @page: source kernel page |
1802 | * | 1802 | * |
1803 | * This allows drivers to insert individual pages they've allocated | 1803 | * This allows drivers to insert individual pages they've allocated |
1804 | * into a user vma. | 1804 | * into a user vma. |
1805 | * | 1805 | * |
1806 | * The page has to be a nice clean _individual_ kernel allocation. | 1806 | * The page has to be a nice clean _individual_ kernel allocation. |
1807 | * If you allocate a compound page, you need to have marked it as | 1807 | * If you allocate a compound page, you need to have marked it as |
1808 | * such (__GFP_COMP), or manually just split the page up yourself | 1808 | * such (__GFP_COMP), or manually just split the page up yourself |
1809 | * (see split_page()). | 1809 | * (see split_page()). |
1810 | * | 1810 | * |
1811 | * NOTE! Traditionally this was done with "remap_pfn_range()" which | 1811 | * NOTE! Traditionally this was done with "remap_pfn_range()" which |
1812 | * took an arbitrary page protection parameter. This doesn't allow | 1812 | * took an arbitrary page protection parameter. This doesn't allow |
1813 | * that. Your vma protection will have to be set up correctly, which | 1813 | * that. Your vma protection will have to be set up correctly, which |
1814 | * means that if you want a shared writable mapping, you'd better | 1814 | * means that if you want a shared writable mapping, you'd better |
1815 | * ask for a shared writable mapping! | 1815 | * ask for a shared writable mapping! |
1816 | * | 1816 | * |
1817 | * The page does not need to be reserved. | 1817 | * The page does not need to be reserved. |
1818 | */ | 1818 | */ |
1819 | int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, | 1819 | int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, |
1820 | struct page *page) | 1820 | struct page *page) |
1821 | { | 1821 | { |
1822 | if (addr < vma->vm_start || addr >= vma->vm_end) | 1822 | if (addr < vma->vm_start || addr >= vma->vm_end) |
1823 | return -EFAULT; | 1823 | return -EFAULT; |
1824 | if (!page_count(page)) | 1824 | if (!page_count(page)) |
1825 | return -EINVAL; | 1825 | return -EINVAL; |
1826 | vma->vm_flags |= VM_INSERTPAGE; | 1826 | vma->vm_flags |= VM_INSERTPAGE; |
1827 | return insert_page(vma, addr, page, vma->vm_page_prot); | 1827 | return insert_page(vma, addr, page, vma->vm_page_prot); |
1828 | } | 1828 | } |
1829 | EXPORT_SYMBOL(vm_insert_page); | 1829 | EXPORT_SYMBOL(vm_insert_page); |
1830 | 1830 | ||
1831 | static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, | 1831 | static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, |
1832 | unsigned long pfn, pgprot_t prot) | 1832 | unsigned long pfn, pgprot_t prot) |
1833 | { | 1833 | { |
1834 | struct mm_struct *mm = vma->vm_mm; | 1834 | struct mm_struct *mm = vma->vm_mm; |
1835 | int retval; | 1835 | int retval; |
1836 | pte_t *pte, entry; | 1836 | pte_t *pte, entry; |
1837 | spinlock_t *ptl; | 1837 | spinlock_t *ptl; |
1838 | 1838 | ||
1839 | retval = -ENOMEM; | 1839 | retval = -ENOMEM; |
1840 | pte = get_locked_pte(mm, addr, &ptl); | 1840 | pte = get_locked_pte(mm, addr, &ptl); |
1841 | if (!pte) | 1841 | if (!pte) |
1842 | goto out; | 1842 | goto out; |
1843 | retval = -EBUSY; | 1843 | retval = -EBUSY; |
1844 | if (!pte_none(*pte)) | 1844 | if (!pte_none(*pte)) |
1845 | goto out_unlock; | 1845 | goto out_unlock; |
1846 | 1846 | ||
1847 | /* Ok, finally just insert the thing.. */ | 1847 | /* Ok, finally just insert the thing.. */ |
1848 | entry = pte_mkspecial(pfn_pte(pfn, prot)); | 1848 | entry = pte_mkspecial(pfn_pte(pfn, prot)); |
1849 | set_pte_at(mm, addr, pte, entry); | 1849 | set_pte_at(mm, addr, pte, entry); |
1850 | update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ | 1850 | update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ |
1851 | 1851 | ||
1852 | retval = 0; | 1852 | retval = 0; |
1853 | out_unlock: | 1853 | out_unlock: |
1854 | pte_unmap_unlock(pte, ptl); | 1854 | pte_unmap_unlock(pte, ptl); |
1855 | out: | 1855 | out: |
1856 | return retval; | 1856 | return retval; |
1857 | } | 1857 | } |
1858 | 1858 | ||
1859 | /** | 1859 | /** |
1860 | * vm_insert_pfn - insert single pfn into user vma | 1860 | * vm_insert_pfn - insert single pfn into user vma |
1861 | * @vma: user vma to map to | 1861 | * @vma: user vma to map to |
1862 | * @addr: target user address of this page | 1862 | * @addr: target user address of this page |
1863 | * @pfn: source kernel pfn | 1863 | * @pfn: source kernel pfn |
1864 | * | 1864 | * |
1865 | * Similar to vm_inert_page, this allows drivers to insert individual pages | 1865 | * Similar to vm_inert_page, this allows drivers to insert individual pages |
1866 | * they've allocated into a user vma. Same comments apply. | 1866 | * they've allocated into a user vma. Same comments apply. |
1867 | * | 1867 | * |
1868 | * This function should only be called from a vm_ops->fault handler, and | 1868 | * This function should only be called from a vm_ops->fault handler, and |
1869 | * in that case the handler should return NULL. | 1869 | * in that case the handler should return NULL. |
1870 | * | 1870 | * |
1871 | * vma cannot be a COW mapping. | 1871 | * vma cannot be a COW mapping. |
1872 | * | 1872 | * |
1873 | * As this is called only for pages that do not currently exist, we | 1873 | * As this is called only for pages that do not currently exist, we |
1874 | * do not need to flush old virtual caches or the TLB. | 1874 | * do not need to flush old virtual caches or the TLB. |
1875 | */ | 1875 | */ |
1876 | int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, | 1876 | int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, |
1877 | unsigned long pfn) | 1877 | unsigned long pfn) |
1878 | { | 1878 | { |
1879 | int ret; | 1879 | int ret; |
1880 | pgprot_t pgprot = vma->vm_page_prot; | 1880 | pgprot_t pgprot = vma->vm_page_prot; |
1881 | /* | 1881 | /* |
1882 | * Technically, architectures with pte_special can avoid all these | 1882 | * Technically, architectures with pte_special can avoid all these |
1883 | * restrictions (same for remap_pfn_range). However we would like | 1883 | * restrictions (same for remap_pfn_range). However we would like |
1884 | * consistency in testing and feature parity among all, so we should | 1884 | * consistency in testing and feature parity among all, so we should |
1885 | * try to keep these invariants in place for everybody. | 1885 | * try to keep these invariants in place for everybody. |
1886 | */ | 1886 | */ |
1887 | BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); | 1887 | BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); |
1888 | BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == | 1888 | BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == |
1889 | (VM_PFNMAP|VM_MIXEDMAP)); | 1889 | (VM_PFNMAP|VM_MIXEDMAP)); |
1890 | BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); | 1890 | BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); |
1891 | BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); | 1891 | BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); |
1892 | 1892 | ||
1893 | if (addr < vma->vm_start || addr >= vma->vm_end) | 1893 | if (addr < vma->vm_start || addr >= vma->vm_end) |
1894 | return -EFAULT; | 1894 | return -EFAULT; |
1895 | if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE)) | 1895 | if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE)) |
1896 | return -EINVAL; | 1896 | return -EINVAL; |
1897 | 1897 | ||
1898 | ret = insert_pfn(vma, addr, pfn, pgprot); | 1898 | ret = insert_pfn(vma, addr, pfn, pgprot); |
1899 | 1899 | ||
1900 | if (ret) | 1900 | if (ret) |
1901 | untrack_pfn_vma(vma, pfn, PAGE_SIZE); | 1901 | untrack_pfn_vma(vma, pfn, PAGE_SIZE); |
1902 | 1902 | ||
1903 | return ret; | 1903 | return ret; |
1904 | } | 1904 | } |
1905 | EXPORT_SYMBOL(vm_insert_pfn); | 1905 | EXPORT_SYMBOL(vm_insert_pfn); |
1906 | 1906 | ||
1907 | int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, | 1907 | int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, |
1908 | unsigned long pfn) | 1908 | unsigned long pfn) |
1909 | { | 1909 | { |
1910 | BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); | 1910 | BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); |
1911 | 1911 | ||
1912 | if (addr < vma->vm_start || addr >= vma->vm_end) | 1912 | if (addr < vma->vm_start || addr >= vma->vm_end) |
1913 | return -EFAULT; | 1913 | return -EFAULT; |
1914 | 1914 | ||
1915 | /* | 1915 | /* |
1916 | * If we don't have pte special, then we have to use the pfn_valid() | 1916 | * If we don't have pte special, then we have to use the pfn_valid() |
1917 | * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* | 1917 | * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* |
1918 | * refcount the page if pfn_valid is true (hence insert_page rather | 1918 | * refcount the page if pfn_valid is true (hence insert_page rather |
1919 | * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP | 1919 | * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP |
1920 | * without pte special, it would there be refcounted as a normal page. | 1920 | * without pte special, it would there be refcounted as a normal page. |
1921 | */ | 1921 | */ |
1922 | if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { | 1922 | if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { |
1923 | struct page *page; | 1923 | struct page *page; |
1924 | 1924 | ||
1925 | page = pfn_to_page(pfn); | 1925 | page = pfn_to_page(pfn); |
1926 | return insert_page(vma, addr, page, vma->vm_page_prot); | 1926 | return insert_page(vma, addr, page, vma->vm_page_prot); |
1927 | } | 1927 | } |
1928 | return insert_pfn(vma, addr, pfn, vma->vm_page_prot); | 1928 | return insert_pfn(vma, addr, pfn, vma->vm_page_prot); |
1929 | } | 1929 | } |
1930 | EXPORT_SYMBOL(vm_insert_mixed); | 1930 | EXPORT_SYMBOL(vm_insert_mixed); |
1931 | 1931 | ||
1932 | /* | 1932 | /* |
1933 | * maps a range of physical memory into the requested pages. the old | 1933 | * maps a range of physical memory into the requested pages. the old |
1934 | * mappings are removed. any references to nonexistent pages results | 1934 | * mappings are removed. any references to nonexistent pages results |
1935 | * in null mappings (currently treated as "copy-on-access") | 1935 | * in null mappings (currently treated as "copy-on-access") |
1936 | */ | 1936 | */ |
1937 | static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, | 1937 | static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, |
1938 | unsigned long addr, unsigned long end, | 1938 | unsigned long addr, unsigned long end, |
1939 | unsigned long pfn, pgprot_t prot) | 1939 | unsigned long pfn, pgprot_t prot) |
1940 | { | 1940 | { |
1941 | pte_t *pte; | 1941 | pte_t *pte; |
1942 | spinlock_t *ptl; | 1942 | spinlock_t *ptl; |
1943 | 1943 | ||
1944 | pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); | 1944 | pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); |
1945 | if (!pte) | 1945 | if (!pte) |
1946 | return -ENOMEM; | 1946 | return -ENOMEM; |
1947 | arch_enter_lazy_mmu_mode(); | 1947 | arch_enter_lazy_mmu_mode(); |
1948 | do { | 1948 | do { |
1949 | BUG_ON(!pte_none(*pte)); | 1949 | BUG_ON(!pte_none(*pte)); |
1950 | set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); | 1950 | set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); |
1951 | pfn++; | 1951 | pfn++; |
1952 | } while (pte++, addr += PAGE_SIZE, addr != end); | 1952 | } while (pte++, addr += PAGE_SIZE, addr != end); |
1953 | arch_leave_lazy_mmu_mode(); | 1953 | arch_leave_lazy_mmu_mode(); |
1954 | pte_unmap_unlock(pte - 1, ptl); | 1954 | pte_unmap_unlock(pte - 1, ptl); |
1955 | return 0; | 1955 | return 0; |
1956 | } | 1956 | } |
1957 | 1957 | ||
1958 | static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, | 1958 | static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, |
1959 | unsigned long addr, unsigned long end, | 1959 | unsigned long addr, unsigned long end, |
1960 | unsigned long pfn, pgprot_t prot) | 1960 | unsigned long pfn, pgprot_t prot) |
1961 | { | 1961 | { |
1962 | pmd_t *pmd; | 1962 | pmd_t *pmd; |
1963 | unsigned long next; | 1963 | unsigned long next; |
1964 | 1964 | ||
1965 | pfn -= addr >> PAGE_SHIFT; | 1965 | pfn -= addr >> PAGE_SHIFT; |
1966 | pmd = pmd_alloc(mm, pud, addr); | 1966 | pmd = pmd_alloc(mm, pud, addr); |
1967 | if (!pmd) | 1967 | if (!pmd) |
1968 | return -ENOMEM; | 1968 | return -ENOMEM; |
1969 | VM_BUG_ON(pmd_trans_huge(*pmd)); | 1969 | VM_BUG_ON(pmd_trans_huge(*pmd)); |
1970 | do { | 1970 | do { |
1971 | next = pmd_addr_end(addr, end); | 1971 | next = pmd_addr_end(addr, end); |
1972 | if (remap_pte_range(mm, pmd, addr, next, | 1972 | if (remap_pte_range(mm, pmd, addr, next, |
1973 | pfn + (addr >> PAGE_SHIFT), prot)) | 1973 | pfn + (addr >> PAGE_SHIFT), prot)) |
1974 | return -ENOMEM; | 1974 | return -ENOMEM; |
1975 | } while (pmd++, addr = next, addr != end); | 1975 | } while (pmd++, addr = next, addr != end); |
1976 | return 0; | 1976 | return 0; |
1977 | } | 1977 | } |
1978 | 1978 | ||
1979 | static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, | 1979 | static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, |
1980 | unsigned long addr, unsigned long end, | 1980 | unsigned long addr, unsigned long end, |
1981 | unsigned long pfn, pgprot_t prot) | 1981 | unsigned long pfn, pgprot_t prot) |
1982 | { | 1982 | { |
1983 | pud_t *pud; | 1983 | pud_t *pud; |
1984 | unsigned long next; | 1984 | unsigned long next; |
1985 | 1985 | ||
1986 | pfn -= addr >> PAGE_SHIFT; | 1986 | pfn -= addr >> PAGE_SHIFT; |
1987 | pud = pud_alloc(mm, pgd, addr); | 1987 | pud = pud_alloc(mm, pgd, addr); |
1988 | if (!pud) | 1988 | if (!pud) |
1989 | return -ENOMEM; | 1989 | return -ENOMEM; |
1990 | do { | 1990 | do { |
1991 | next = pud_addr_end(addr, end); | 1991 | next = pud_addr_end(addr, end); |
1992 | if (remap_pmd_range(mm, pud, addr, next, | 1992 | if (remap_pmd_range(mm, pud, addr, next, |
1993 | pfn + (addr >> PAGE_SHIFT), prot)) | 1993 | pfn + (addr >> PAGE_SHIFT), prot)) |
1994 | return -ENOMEM; | 1994 | return -ENOMEM; |
1995 | } while (pud++, addr = next, addr != end); | 1995 | } while (pud++, addr = next, addr != end); |
1996 | return 0; | 1996 | return 0; |
1997 | } | 1997 | } |
1998 | 1998 | ||
1999 | /** | 1999 | /** |
2000 | * remap_pfn_range - remap kernel memory to userspace | 2000 | * remap_pfn_range - remap kernel memory to userspace |
2001 | * @vma: user vma to map to | 2001 | * @vma: user vma to map to |
2002 | * @addr: target user address to start at | 2002 | * @addr: target user address to start at |
2003 | * @pfn: physical address of kernel memory | 2003 | * @pfn: physical address of kernel memory |
2004 | * @size: size of map area | 2004 | * @size: size of map area |
2005 | * @prot: page protection flags for this mapping | 2005 | * @prot: page protection flags for this mapping |
2006 | * | 2006 | * |
2007 | * Note: this is only safe if the mm semaphore is held when called. | 2007 | * Note: this is only safe if the mm semaphore is held when called. |
2008 | */ | 2008 | */ |
2009 | int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, | 2009 | int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, |
2010 | unsigned long pfn, unsigned long size, pgprot_t prot) | 2010 | unsigned long pfn, unsigned long size, pgprot_t prot) |
2011 | { | 2011 | { |
2012 | pgd_t *pgd; | 2012 | pgd_t *pgd; |
2013 | unsigned long next; | 2013 | unsigned long next; |
2014 | unsigned long end = addr + PAGE_ALIGN(size); | 2014 | unsigned long end = addr + PAGE_ALIGN(size); |
2015 | struct mm_struct *mm = vma->vm_mm; | 2015 | struct mm_struct *mm = vma->vm_mm; |
2016 | int err; | 2016 | int err; |
2017 | 2017 | ||
2018 | /* | 2018 | /* |
2019 | * Physically remapped pages are special. Tell the | 2019 | * Physically remapped pages are special. Tell the |
2020 | * rest of the world about it: | 2020 | * rest of the world about it: |
2021 | * VM_IO tells people not to look at these pages | 2021 | * VM_IO tells people not to look at these pages |
2022 | * (accesses can have side effects). | 2022 | * (accesses can have side effects). |
2023 | * VM_RESERVED is specified all over the place, because | 2023 | * VM_RESERVED is specified all over the place, because |
2024 | * in 2.4 it kept swapout's vma scan off this vma; but | 2024 | * in 2.4 it kept swapout's vma scan off this vma; but |
2025 | * in 2.6 the LRU scan won't even find its pages, so this | 2025 | * in 2.6 the LRU scan won't even find its pages, so this |
2026 | * flag means no more than count its pages in reserved_vm, | 2026 | * flag means no more than count its pages in reserved_vm, |
2027 | * and omit it from core dump, even when VM_IO turned off. | 2027 | * and omit it from core dump, even when VM_IO turned off. |
2028 | * VM_PFNMAP tells the core MM that the base pages are just | 2028 | * VM_PFNMAP tells the core MM that the base pages are just |
2029 | * raw PFN mappings, and do not have a "struct page" associated | 2029 | * raw PFN mappings, and do not have a "struct page" associated |
2030 | * with them. | 2030 | * with them. |
2031 | * | 2031 | * |
2032 | * There's a horrible special case to handle copy-on-write | 2032 | * There's a horrible special case to handle copy-on-write |
2033 | * behaviour that some programs depend on. We mark the "original" | 2033 | * behaviour that some programs depend on. We mark the "original" |
2034 | * un-COW'ed pages by matching them up with "vma->vm_pgoff". | 2034 | * un-COW'ed pages by matching them up with "vma->vm_pgoff". |
2035 | */ | 2035 | */ |
2036 | if (addr == vma->vm_start && end == vma->vm_end) { | 2036 | if (addr == vma->vm_start && end == vma->vm_end) { |
2037 | vma->vm_pgoff = pfn; | 2037 | vma->vm_pgoff = pfn; |
2038 | vma->vm_flags |= VM_PFN_AT_MMAP; | 2038 | vma->vm_flags |= VM_PFN_AT_MMAP; |
2039 | } else if (is_cow_mapping(vma->vm_flags)) | 2039 | } else if (is_cow_mapping(vma->vm_flags)) |
2040 | return -EINVAL; | 2040 | return -EINVAL; |
2041 | 2041 | ||
2042 | vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; | 2042 | vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; |
2043 | 2043 | ||
2044 | err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size)); | 2044 | err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size)); |
2045 | if (err) { | 2045 | if (err) { |
2046 | /* | 2046 | /* |
2047 | * To indicate that track_pfn related cleanup is not | 2047 | * To indicate that track_pfn related cleanup is not |
2048 | * needed from higher level routine calling unmap_vmas | 2048 | * needed from higher level routine calling unmap_vmas |
2049 | */ | 2049 | */ |
2050 | vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP); | 2050 | vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP); |
2051 | vma->vm_flags &= ~VM_PFN_AT_MMAP; | 2051 | vma->vm_flags &= ~VM_PFN_AT_MMAP; |
2052 | return -EINVAL; | 2052 | return -EINVAL; |
2053 | } | 2053 | } |
2054 | 2054 | ||
2055 | BUG_ON(addr >= end); | 2055 | BUG_ON(addr >= end); |
2056 | pfn -= addr >> PAGE_SHIFT; | 2056 | pfn -= addr >> PAGE_SHIFT; |
2057 | pgd = pgd_offset(mm, addr); | 2057 | pgd = pgd_offset(mm, addr); |
2058 | flush_cache_range(vma, addr, end); | 2058 | flush_cache_range(vma, addr, end); |
2059 | do { | 2059 | do { |
2060 | next = pgd_addr_end(addr, end); | 2060 | next = pgd_addr_end(addr, end); |
2061 | err = remap_pud_range(mm, pgd, addr, next, | 2061 | err = remap_pud_range(mm, pgd, addr, next, |
2062 | pfn + (addr >> PAGE_SHIFT), prot); | 2062 | pfn + (addr >> PAGE_SHIFT), prot); |
2063 | if (err) | 2063 | if (err) |
2064 | break; | 2064 | break; |
2065 | } while (pgd++, addr = next, addr != end); | 2065 | } while (pgd++, addr = next, addr != end); |
2066 | 2066 | ||
2067 | if (err) | 2067 | if (err) |
2068 | untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size)); | 2068 | untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size)); |
2069 | 2069 | ||
2070 | return err; | 2070 | return err; |
2071 | } | 2071 | } |
2072 | EXPORT_SYMBOL(remap_pfn_range); | 2072 | EXPORT_SYMBOL(remap_pfn_range); |
2073 | 2073 | ||
2074 | static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, | 2074 | static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, |
2075 | unsigned long addr, unsigned long end, | 2075 | unsigned long addr, unsigned long end, |
2076 | pte_fn_t fn, void *data) | 2076 | pte_fn_t fn, void *data) |
2077 | { | 2077 | { |
2078 | pte_t *pte; | 2078 | pte_t *pte; |
2079 | int err; | 2079 | int err; |
2080 | pgtable_t token; | 2080 | pgtable_t token; |
2081 | spinlock_t *uninitialized_var(ptl); | 2081 | spinlock_t *uninitialized_var(ptl); |
2082 | 2082 | ||
2083 | pte = (mm == &init_mm) ? | 2083 | pte = (mm == &init_mm) ? |
2084 | pte_alloc_kernel(pmd, addr) : | 2084 | pte_alloc_kernel(pmd, addr) : |
2085 | pte_alloc_map_lock(mm, pmd, addr, &ptl); | 2085 | pte_alloc_map_lock(mm, pmd, addr, &ptl); |
2086 | if (!pte) | 2086 | if (!pte) |
2087 | return -ENOMEM; | 2087 | return -ENOMEM; |
2088 | 2088 | ||
2089 | BUG_ON(pmd_huge(*pmd)); | 2089 | BUG_ON(pmd_huge(*pmd)); |
2090 | 2090 | ||
2091 | arch_enter_lazy_mmu_mode(); | 2091 | arch_enter_lazy_mmu_mode(); |
2092 | 2092 | ||
2093 | token = pmd_pgtable(*pmd); | 2093 | token = pmd_pgtable(*pmd); |
2094 | 2094 | ||
2095 | do { | 2095 | do { |
2096 | err = fn(pte++, token, addr, data); | 2096 | err = fn(pte++, token, addr, data); |
2097 | if (err) | 2097 | if (err) |
2098 | break; | 2098 | break; |
2099 | } while (addr += PAGE_SIZE, addr != end); | 2099 | } while (addr += PAGE_SIZE, addr != end); |
2100 | 2100 | ||
2101 | arch_leave_lazy_mmu_mode(); | 2101 | arch_leave_lazy_mmu_mode(); |
2102 | 2102 | ||
2103 | if (mm != &init_mm) | 2103 | if (mm != &init_mm) |
2104 | pte_unmap_unlock(pte-1, ptl); | 2104 | pte_unmap_unlock(pte-1, ptl); |
2105 | return err; | 2105 | return err; |
2106 | } | 2106 | } |
2107 | 2107 | ||
2108 | static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, | 2108 | static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, |
2109 | unsigned long addr, unsigned long end, | 2109 | unsigned long addr, unsigned long end, |
2110 | pte_fn_t fn, void *data) | 2110 | pte_fn_t fn, void *data) |
2111 | { | 2111 | { |
2112 | pmd_t *pmd; | 2112 | pmd_t *pmd; |
2113 | unsigned long next; | 2113 | unsigned long next; |
2114 | int err; | 2114 | int err; |
2115 | 2115 | ||
2116 | BUG_ON(pud_huge(*pud)); | 2116 | BUG_ON(pud_huge(*pud)); |
2117 | 2117 | ||
2118 | pmd = pmd_alloc(mm, pud, addr); | 2118 | pmd = pmd_alloc(mm, pud, addr); |
2119 | if (!pmd) | 2119 | if (!pmd) |
2120 | return -ENOMEM; | 2120 | return -ENOMEM; |
2121 | do { | 2121 | do { |
2122 | next = pmd_addr_end(addr, end); | 2122 | next = pmd_addr_end(addr, end); |
2123 | err = apply_to_pte_range(mm, pmd, addr, next, fn, data); | 2123 | err = apply_to_pte_range(mm, pmd, addr, next, fn, data); |
2124 | if (err) | 2124 | if (err) |
2125 | break; | 2125 | break; |
2126 | } while (pmd++, addr = next, addr != end); | 2126 | } while (pmd++, addr = next, addr != end); |
2127 | return err; | 2127 | return err; |
2128 | } | 2128 | } |
2129 | 2129 | ||
2130 | static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, | 2130 | static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, |
2131 | unsigned long addr, unsigned long end, | 2131 | unsigned long addr, unsigned long end, |
2132 | pte_fn_t fn, void *data) | 2132 | pte_fn_t fn, void *data) |
2133 | { | 2133 | { |
2134 | pud_t *pud; | 2134 | pud_t *pud; |
2135 | unsigned long next; | 2135 | unsigned long next; |
2136 | int err; | 2136 | int err; |
2137 | 2137 | ||
2138 | pud = pud_alloc(mm, pgd, addr); | 2138 | pud = pud_alloc(mm, pgd, addr); |
2139 | if (!pud) | 2139 | if (!pud) |
2140 | return -ENOMEM; | 2140 | return -ENOMEM; |
2141 | do { | 2141 | do { |
2142 | next = pud_addr_end(addr, end); | 2142 | next = pud_addr_end(addr, end); |
2143 | err = apply_to_pmd_range(mm, pud, addr, next, fn, data); | 2143 | err = apply_to_pmd_range(mm, pud, addr, next, fn, data); |
2144 | if (err) | 2144 | if (err) |
2145 | break; | 2145 | break; |
2146 | } while (pud++, addr = next, addr != end); | 2146 | } while (pud++, addr = next, addr != end); |
2147 | return err; | 2147 | return err; |
2148 | } | 2148 | } |
2149 | 2149 | ||
2150 | /* | 2150 | /* |
2151 | * Scan a region of virtual memory, filling in page tables as necessary | 2151 | * Scan a region of virtual memory, filling in page tables as necessary |
2152 | * and calling a provided function on each leaf page table. | 2152 | * and calling a provided function on each leaf page table. |
2153 | */ | 2153 | */ |
2154 | int apply_to_page_range(struct mm_struct *mm, unsigned long addr, | 2154 | int apply_to_page_range(struct mm_struct *mm, unsigned long addr, |
2155 | unsigned long size, pte_fn_t fn, void *data) | 2155 | unsigned long size, pte_fn_t fn, void *data) |
2156 | { | 2156 | { |
2157 | pgd_t *pgd; | 2157 | pgd_t *pgd; |
2158 | unsigned long next; | 2158 | unsigned long next; |
2159 | unsigned long end = addr + size; | 2159 | unsigned long end = addr + size; |
2160 | int err; | 2160 | int err; |
2161 | 2161 | ||
2162 | BUG_ON(addr >= end); | 2162 | BUG_ON(addr >= end); |
2163 | pgd = pgd_offset(mm, addr); | 2163 | pgd = pgd_offset(mm, addr); |
2164 | do { | 2164 | do { |
2165 | next = pgd_addr_end(addr, end); | 2165 | next = pgd_addr_end(addr, end); |
2166 | err = apply_to_pud_range(mm, pgd, addr, next, fn, data); | 2166 | err = apply_to_pud_range(mm, pgd, addr, next, fn, data); |
2167 | if (err) | 2167 | if (err) |
2168 | break; | 2168 | break; |
2169 | } while (pgd++, addr = next, addr != end); | 2169 | } while (pgd++, addr = next, addr != end); |
2170 | 2170 | ||
2171 | return err; | 2171 | return err; |
2172 | } | 2172 | } |
2173 | EXPORT_SYMBOL_GPL(apply_to_page_range); | 2173 | EXPORT_SYMBOL_GPL(apply_to_page_range); |
2174 | 2174 | ||
2175 | /* | 2175 | /* |
2176 | * handle_pte_fault chooses page fault handler according to an entry | 2176 | * handle_pte_fault chooses page fault handler according to an entry |
2177 | * which was read non-atomically. Before making any commitment, on | 2177 | * which was read non-atomically. Before making any commitment, on |
2178 | * those architectures or configurations (e.g. i386 with PAE) which | 2178 | * those architectures or configurations (e.g. i386 with PAE) which |
2179 | * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault | 2179 | * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault |
2180 | * must check under lock before unmapping the pte and proceeding | 2180 | * must check under lock before unmapping the pte and proceeding |
2181 | * (but do_wp_page is only called after already making such a check; | 2181 | * (but do_wp_page is only called after already making such a check; |
2182 | * and do_anonymous_page can safely check later on). | 2182 | * and do_anonymous_page can safely check later on). |
2183 | */ | 2183 | */ |
2184 | static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, | 2184 | static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, |
2185 | pte_t *page_table, pte_t orig_pte) | 2185 | pte_t *page_table, pte_t orig_pte) |
2186 | { | 2186 | { |
2187 | int same = 1; | 2187 | int same = 1; |
2188 | #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) | 2188 | #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) |
2189 | if (sizeof(pte_t) > sizeof(unsigned long)) { | 2189 | if (sizeof(pte_t) > sizeof(unsigned long)) { |
2190 | spinlock_t *ptl = pte_lockptr(mm, pmd); | 2190 | spinlock_t *ptl = pte_lockptr(mm, pmd); |
2191 | spin_lock(ptl); | 2191 | spin_lock(ptl); |
2192 | same = pte_same(*page_table, orig_pte); | 2192 | same = pte_same(*page_table, orig_pte); |
2193 | spin_unlock(ptl); | 2193 | spin_unlock(ptl); |
2194 | } | 2194 | } |
2195 | #endif | 2195 | #endif |
2196 | pte_unmap(page_table); | 2196 | pte_unmap(page_table); |
2197 | return same; | 2197 | return same; |
2198 | } | 2198 | } |
2199 | 2199 | ||
2200 | static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) | 2200 | static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) |
2201 | { | 2201 | { |
2202 | /* | 2202 | /* |
2203 | * If the source page was a PFN mapping, we don't have | 2203 | * If the source page was a PFN mapping, we don't have |
2204 | * a "struct page" for it. We do a best-effort copy by | 2204 | * a "struct page" for it. We do a best-effort copy by |
2205 | * just copying from the original user address. If that | 2205 | * just copying from the original user address. If that |
2206 | * fails, we just zero-fill it. Live with it. | 2206 | * fails, we just zero-fill it. Live with it. |
2207 | */ | 2207 | */ |
2208 | if (unlikely(!src)) { | 2208 | if (unlikely(!src)) { |
2209 | void *kaddr = kmap_atomic(dst, KM_USER0); | 2209 | void *kaddr = kmap_atomic(dst, KM_USER0); |
2210 | void __user *uaddr = (void __user *)(va & PAGE_MASK); | 2210 | void __user *uaddr = (void __user *)(va & PAGE_MASK); |
2211 | 2211 | ||
2212 | /* | 2212 | /* |
2213 | * This really shouldn't fail, because the page is there | 2213 | * This really shouldn't fail, because the page is there |
2214 | * in the page tables. But it might just be unreadable, | 2214 | * in the page tables. But it might just be unreadable, |
2215 | * in which case we just give up and fill the result with | 2215 | * in which case we just give up and fill the result with |
2216 | * zeroes. | 2216 | * zeroes. |
2217 | */ | 2217 | */ |
2218 | if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) | 2218 | if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) |
2219 | clear_page(kaddr); | 2219 | clear_page(kaddr); |
2220 | kunmap_atomic(kaddr, KM_USER0); | 2220 | kunmap_atomic(kaddr, KM_USER0); |
2221 | flush_dcache_page(dst); | 2221 | flush_dcache_page(dst); |
2222 | } else | 2222 | } else |
2223 | copy_user_highpage(dst, src, va, vma); | 2223 | copy_user_highpage(dst, src, va, vma); |
2224 | } | 2224 | } |
2225 | 2225 | ||
2226 | /* | 2226 | /* |
2227 | * This routine handles present pages, when users try to write | 2227 | * This routine handles present pages, when users try to write |
2228 | * to a shared page. It is done by copying the page to a new address | 2228 | * to a shared page. It is done by copying the page to a new address |
2229 | * and decrementing the shared-page counter for the old page. | 2229 | * and decrementing the shared-page counter for the old page. |
2230 | * | 2230 | * |
2231 | * Note that this routine assumes that the protection checks have been | 2231 | * Note that this routine assumes that the protection checks have been |
2232 | * done by the caller (the low-level page fault routine in most cases). | 2232 | * done by the caller (the low-level page fault routine in most cases). |
2233 | * Thus we can safely just mark it writable once we've done any necessary | 2233 | * Thus we can safely just mark it writable once we've done any necessary |
2234 | * COW. | 2234 | * COW. |
2235 | * | 2235 | * |
2236 | * We also mark the page dirty at this point even though the page will | 2236 | * We also mark the page dirty at this point even though the page will |
2237 | * change only once the write actually happens. This avoids a few races, | 2237 | * change only once the write actually happens. This avoids a few races, |
2238 | * and potentially makes it more efficient. | 2238 | * and potentially makes it more efficient. |
2239 | * | 2239 | * |
2240 | * We enter with non-exclusive mmap_sem (to exclude vma changes, | 2240 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2241 | * but allow concurrent faults), with pte both mapped and locked. | 2241 | * but allow concurrent faults), with pte both mapped and locked. |
2242 | * We return with mmap_sem still held, but pte unmapped and unlocked. | 2242 | * We return with mmap_sem still held, but pte unmapped and unlocked. |
2243 | */ | 2243 | */ |
2244 | static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, | 2244 | static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, |
2245 | unsigned long address, pte_t *page_table, pmd_t *pmd, | 2245 | unsigned long address, pte_t *page_table, pmd_t *pmd, |
2246 | spinlock_t *ptl, pte_t orig_pte) | 2246 | spinlock_t *ptl, pte_t orig_pte) |
2247 | __releases(ptl) | 2247 | __releases(ptl) |
2248 | { | 2248 | { |
2249 | struct page *old_page, *new_page; | 2249 | struct page *old_page, *new_page; |
2250 | pte_t entry; | 2250 | pte_t entry; |
2251 | int ret = 0; | 2251 | int ret = 0; |
2252 | int page_mkwrite = 0; | 2252 | int page_mkwrite = 0; |
2253 | struct page *dirty_page = NULL; | 2253 | struct page *dirty_page = NULL; |
2254 | 2254 | ||
2255 | old_page = vm_normal_page(vma, address, orig_pte); | 2255 | old_page = vm_normal_page(vma, address, orig_pte); |
2256 | if (!old_page) { | 2256 | if (!old_page) { |
2257 | /* | 2257 | /* |
2258 | * VM_MIXEDMAP !pfn_valid() case | 2258 | * VM_MIXEDMAP !pfn_valid() case |
2259 | * | 2259 | * |
2260 | * We should not cow pages in a shared writeable mapping. | 2260 | * We should not cow pages in a shared writeable mapping. |
2261 | * Just mark the pages writable as we can't do any dirty | 2261 | * Just mark the pages writable as we can't do any dirty |
2262 | * accounting on raw pfn maps. | 2262 | * accounting on raw pfn maps. |
2263 | */ | 2263 | */ |
2264 | if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == | 2264 | if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == |
2265 | (VM_WRITE|VM_SHARED)) | 2265 | (VM_WRITE|VM_SHARED)) |
2266 | goto reuse; | 2266 | goto reuse; |
2267 | goto gotten; | 2267 | goto gotten; |
2268 | } | 2268 | } |
2269 | 2269 | ||
2270 | /* | 2270 | /* |
2271 | * Take out anonymous pages first, anonymous shared vmas are | 2271 | * Take out anonymous pages first, anonymous shared vmas are |
2272 | * not dirty accountable. | 2272 | * not dirty accountable. |
2273 | */ | 2273 | */ |
2274 | if (PageAnon(old_page) && !PageKsm(old_page)) { | 2274 | if (PageAnon(old_page) && !PageKsm(old_page)) { |
2275 | if (!trylock_page(old_page)) { | 2275 | if (!trylock_page(old_page)) { |
2276 | page_cache_get(old_page); | 2276 | page_cache_get(old_page); |
2277 | pte_unmap_unlock(page_table, ptl); | 2277 | pte_unmap_unlock(page_table, ptl); |
2278 | lock_page(old_page); | 2278 | lock_page(old_page); |
2279 | page_table = pte_offset_map_lock(mm, pmd, address, | 2279 | page_table = pte_offset_map_lock(mm, pmd, address, |
2280 | &ptl); | 2280 | &ptl); |
2281 | if (!pte_same(*page_table, orig_pte)) { | 2281 | if (!pte_same(*page_table, orig_pte)) { |
2282 | unlock_page(old_page); | 2282 | unlock_page(old_page); |
2283 | goto unlock; | 2283 | goto unlock; |
2284 | } | 2284 | } |
2285 | page_cache_release(old_page); | 2285 | page_cache_release(old_page); |
2286 | } | 2286 | } |
2287 | if (reuse_swap_page(old_page)) { | 2287 | if (reuse_swap_page(old_page)) { |
2288 | /* | 2288 | /* |
2289 | * The page is all ours. Move it to our anon_vma so | 2289 | * The page is all ours. Move it to our anon_vma so |
2290 | * the rmap code will not search our parent or siblings. | 2290 | * the rmap code will not search our parent or siblings. |
2291 | * Protected against the rmap code by the page lock. | 2291 | * Protected against the rmap code by the page lock. |
2292 | */ | 2292 | */ |
2293 | page_move_anon_rmap(old_page, vma, address); | 2293 | page_move_anon_rmap(old_page, vma, address); |
2294 | unlock_page(old_page); | 2294 | unlock_page(old_page); |
2295 | goto reuse; | 2295 | goto reuse; |
2296 | } | 2296 | } |
2297 | unlock_page(old_page); | 2297 | unlock_page(old_page); |
2298 | } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == | 2298 | } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == |
2299 | (VM_WRITE|VM_SHARED))) { | 2299 | (VM_WRITE|VM_SHARED))) { |
2300 | /* | 2300 | /* |
2301 | * Only catch write-faults on shared writable pages, | 2301 | * Only catch write-faults on shared writable pages, |
2302 | * read-only shared pages can get COWed by | 2302 | * read-only shared pages can get COWed by |
2303 | * get_user_pages(.write=1, .force=1). | 2303 | * get_user_pages(.write=1, .force=1). |
2304 | */ | 2304 | */ |
2305 | if (vma->vm_ops && vma->vm_ops->page_mkwrite) { | 2305 | if (vma->vm_ops && vma->vm_ops->page_mkwrite) { |
2306 | struct vm_fault vmf; | 2306 | struct vm_fault vmf; |
2307 | int tmp; | 2307 | int tmp; |
2308 | 2308 | ||
2309 | vmf.virtual_address = (void __user *)(address & | 2309 | vmf.virtual_address = (void __user *)(address & |
2310 | PAGE_MASK); | 2310 | PAGE_MASK); |
2311 | vmf.pgoff = old_page->index; | 2311 | vmf.pgoff = old_page->index; |
2312 | vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; | 2312 | vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; |
2313 | vmf.page = old_page; | 2313 | vmf.page = old_page; |
2314 | 2314 | ||
2315 | /* | 2315 | /* |
2316 | * Notify the address space that the page is about to | 2316 | * Notify the address space that the page is about to |
2317 | * become writable so that it can prohibit this or wait | 2317 | * become writable so that it can prohibit this or wait |
2318 | * for the page to get into an appropriate state. | 2318 | * for the page to get into an appropriate state. |
2319 | * | 2319 | * |
2320 | * We do this without the lock held, so that it can | 2320 | * We do this without the lock held, so that it can |
2321 | * sleep if it needs to. | 2321 | * sleep if it needs to. |
2322 | */ | 2322 | */ |
2323 | page_cache_get(old_page); | 2323 | page_cache_get(old_page); |
2324 | pte_unmap_unlock(page_table, ptl); | 2324 | pte_unmap_unlock(page_table, ptl); |
2325 | 2325 | ||
2326 | tmp = vma->vm_ops->page_mkwrite(vma, &vmf); | 2326 | tmp = vma->vm_ops->page_mkwrite(vma, &vmf); |
2327 | if (unlikely(tmp & | 2327 | if (unlikely(tmp & |
2328 | (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { | 2328 | (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { |
2329 | ret = tmp; | 2329 | ret = tmp; |
2330 | goto unwritable_page; | 2330 | goto unwritable_page; |
2331 | } | 2331 | } |
2332 | if (unlikely(!(tmp & VM_FAULT_LOCKED))) { | 2332 | if (unlikely(!(tmp & VM_FAULT_LOCKED))) { |
2333 | lock_page(old_page); | 2333 | lock_page(old_page); |
2334 | if (!old_page->mapping) { | 2334 | if (!old_page->mapping) { |
2335 | ret = 0; /* retry the fault */ | 2335 | ret = 0; /* retry the fault */ |
2336 | unlock_page(old_page); | 2336 | unlock_page(old_page); |
2337 | goto unwritable_page; | 2337 | goto unwritable_page; |
2338 | } | 2338 | } |
2339 | } else | 2339 | } else |
2340 | VM_BUG_ON(!PageLocked(old_page)); | 2340 | VM_BUG_ON(!PageLocked(old_page)); |
2341 | 2341 | ||
2342 | /* | 2342 | /* |
2343 | * Since we dropped the lock we need to revalidate | 2343 | * Since we dropped the lock we need to revalidate |
2344 | * the PTE as someone else may have changed it. If | 2344 | * the PTE as someone else may have changed it. If |
2345 | * they did, we just return, as we can count on the | 2345 | * they did, we just return, as we can count on the |
2346 | * MMU to tell us if they didn't also make it writable. | 2346 | * MMU to tell us if they didn't also make it writable. |
2347 | */ | 2347 | */ |
2348 | page_table = pte_offset_map_lock(mm, pmd, address, | 2348 | page_table = pte_offset_map_lock(mm, pmd, address, |
2349 | &ptl); | 2349 | &ptl); |
2350 | if (!pte_same(*page_table, orig_pte)) { | 2350 | if (!pte_same(*page_table, orig_pte)) { |
2351 | unlock_page(old_page); | 2351 | unlock_page(old_page); |
2352 | goto unlock; | 2352 | goto unlock; |
2353 | } | 2353 | } |
2354 | 2354 | ||
2355 | page_mkwrite = 1; | 2355 | page_mkwrite = 1; |
2356 | } | 2356 | } |
2357 | dirty_page = old_page; | 2357 | dirty_page = old_page; |
2358 | get_page(dirty_page); | 2358 | get_page(dirty_page); |
2359 | 2359 | ||
2360 | reuse: | 2360 | reuse: |
2361 | flush_cache_page(vma, address, pte_pfn(orig_pte)); | 2361 | flush_cache_page(vma, address, pte_pfn(orig_pte)); |
2362 | entry = pte_mkyoung(orig_pte); | 2362 | entry = pte_mkyoung(orig_pte); |
2363 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | 2363 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); |
2364 | if (ptep_set_access_flags(vma, address, page_table, entry,1)) | 2364 | if (ptep_set_access_flags(vma, address, page_table, entry,1)) |
2365 | update_mmu_cache(vma, address, page_table); | 2365 | update_mmu_cache(vma, address, page_table); |
2366 | pte_unmap_unlock(page_table, ptl); | 2366 | pte_unmap_unlock(page_table, ptl); |
2367 | ret |= VM_FAULT_WRITE; | 2367 | ret |= VM_FAULT_WRITE; |
2368 | 2368 | ||
2369 | if (!dirty_page) | 2369 | if (!dirty_page) |
2370 | return ret; | 2370 | return ret; |
2371 | 2371 | ||
2372 | /* | 2372 | /* |
2373 | * Yes, Virginia, this is actually required to prevent a race | 2373 | * Yes, Virginia, this is actually required to prevent a race |
2374 | * with clear_page_dirty_for_io() from clearing the page dirty | 2374 | * with clear_page_dirty_for_io() from clearing the page dirty |
2375 | * bit after it clear all dirty ptes, but before a racing | 2375 | * bit after it clear all dirty ptes, but before a racing |
2376 | * do_wp_page installs a dirty pte. | 2376 | * do_wp_page installs a dirty pte. |
2377 | * | 2377 | * |
2378 | * __do_fault is protected similarly. | 2378 | * __do_fault is protected similarly. |
2379 | */ | 2379 | */ |
2380 | if (!page_mkwrite) { | 2380 | if (!page_mkwrite) { |
2381 | wait_on_page_locked(dirty_page); | 2381 | wait_on_page_locked(dirty_page); |
2382 | set_page_dirty_balance(dirty_page, page_mkwrite); | 2382 | set_page_dirty_balance(dirty_page, page_mkwrite); |
2383 | } | 2383 | } |
2384 | put_page(dirty_page); | 2384 | put_page(dirty_page); |
2385 | if (page_mkwrite) { | 2385 | if (page_mkwrite) { |
2386 | struct address_space *mapping = dirty_page->mapping; | 2386 | struct address_space *mapping = dirty_page->mapping; |
2387 | 2387 | ||
2388 | set_page_dirty(dirty_page); | 2388 | set_page_dirty(dirty_page); |
2389 | unlock_page(dirty_page); | 2389 | unlock_page(dirty_page); |
2390 | page_cache_release(dirty_page); | 2390 | page_cache_release(dirty_page); |
2391 | if (mapping) { | 2391 | if (mapping) { |
2392 | /* | 2392 | /* |
2393 | * Some device drivers do not set page.mapping | 2393 | * Some device drivers do not set page.mapping |
2394 | * but still dirty their pages | 2394 | * but still dirty their pages |
2395 | */ | 2395 | */ |
2396 | balance_dirty_pages_ratelimited(mapping); | 2396 | balance_dirty_pages_ratelimited(mapping); |
2397 | } | 2397 | } |
2398 | } | 2398 | } |
2399 | 2399 | ||
2400 | /* file_update_time outside page_lock */ | 2400 | /* file_update_time outside page_lock */ |
2401 | if (vma->vm_file) | 2401 | if (vma->vm_file) |
2402 | file_update_time(vma->vm_file); | 2402 | file_update_time(vma->vm_file); |
2403 | 2403 | ||
2404 | return ret; | 2404 | return ret; |
2405 | } | 2405 | } |
2406 | 2406 | ||
2407 | /* | 2407 | /* |
2408 | * Ok, we need to copy. Oh, well.. | 2408 | * Ok, we need to copy. Oh, well.. |
2409 | */ | 2409 | */ |
2410 | page_cache_get(old_page); | 2410 | page_cache_get(old_page); |
2411 | gotten: | 2411 | gotten: |
2412 | pte_unmap_unlock(page_table, ptl); | 2412 | pte_unmap_unlock(page_table, ptl); |
2413 | 2413 | ||
2414 | if (unlikely(anon_vma_prepare(vma))) | 2414 | if (unlikely(anon_vma_prepare(vma))) |
2415 | goto oom; | 2415 | goto oom; |
2416 | 2416 | ||
2417 | if (is_zero_pfn(pte_pfn(orig_pte))) { | 2417 | if (is_zero_pfn(pte_pfn(orig_pte))) { |
2418 | new_page = alloc_zeroed_user_highpage_movable(vma, address); | 2418 | new_page = alloc_zeroed_user_highpage_movable(vma, address); |
2419 | if (!new_page) | 2419 | if (!new_page) |
2420 | goto oom; | 2420 | goto oom; |
2421 | } else { | 2421 | } else { |
2422 | new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); | 2422 | new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); |
2423 | if (!new_page) | 2423 | if (!new_page) |
2424 | goto oom; | 2424 | goto oom; |
2425 | cow_user_page(new_page, old_page, address, vma); | 2425 | cow_user_page(new_page, old_page, address, vma); |
2426 | } | 2426 | } |
2427 | __SetPageUptodate(new_page); | 2427 | __SetPageUptodate(new_page); |
2428 | 2428 | ||
2429 | if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)) | 2429 | if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)) |
2430 | goto oom_free_new; | 2430 | goto oom_free_new; |
2431 | 2431 | ||
2432 | /* | 2432 | /* |
2433 | * Re-check the pte - we dropped the lock | 2433 | * Re-check the pte - we dropped the lock |
2434 | */ | 2434 | */ |
2435 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | 2435 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
2436 | if (likely(pte_same(*page_table, orig_pte))) { | 2436 | if (likely(pte_same(*page_table, orig_pte))) { |
2437 | if (old_page) { | 2437 | if (old_page) { |
2438 | if (!PageAnon(old_page)) { | 2438 | if (!PageAnon(old_page)) { |
2439 | dec_mm_counter_fast(mm, MM_FILEPAGES); | 2439 | dec_mm_counter_fast(mm, MM_FILEPAGES); |
2440 | inc_mm_counter_fast(mm, MM_ANONPAGES); | 2440 | inc_mm_counter_fast(mm, MM_ANONPAGES); |
2441 | } | 2441 | } |
2442 | } else | 2442 | } else |
2443 | inc_mm_counter_fast(mm, MM_ANONPAGES); | 2443 | inc_mm_counter_fast(mm, MM_ANONPAGES); |
2444 | flush_cache_page(vma, address, pte_pfn(orig_pte)); | 2444 | flush_cache_page(vma, address, pte_pfn(orig_pte)); |
2445 | entry = mk_pte(new_page, vma->vm_page_prot); | 2445 | entry = mk_pte(new_page, vma->vm_page_prot); |
2446 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | 2446 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); |
2447 | /* | 2447 | /* |
2448 | * Clear the pte entry and flush it first, before updating the | 2448 | * Clear the pte entry and flush it first, before updating the |
2449 | * pte with the new entry. This will avoid a race condition | 2449 | * pte with the new entry. This will avoid a race condition |
2450 | * seen in the presence of one thread doing SMC and another | 2450 | * seen in the presence of one thread doing SMC and another |
2451 | * thread doing COW. | 2451 | * thread doing COW. |
2452 | */ | 2452 | */ |
2453 | ptep_clear_flush(vma, address, page_table); | 2453 | ptep_clear_flush(vma, address, page_table); |
2454 | page_add_new_anon_rmap(new_page, vma, address); | 2454 | page_add_new_anon_rmap(new_page, vma, address); |
2455 | /* | 2455 | /* |
2456 | * We call the notify macro here because, when using secondary | 2456 | * We call the notify macro here because, when using secondary |
2457 | * mmu page tables (such as kvm shadow page tables), we want the | 2457 | * mmu page tables (such as kvm shadow page tables), we want the |
2458 | * new page to be mapped directly into the secondary page table. | 2458 | * new page to be mapped directly into the secondary page table. |
2459 | */ | 2459 | */ |
2460 | set_pte_at_notify(mm, address, page_table, entry); | 2460 | set_pte_at_notify(mm, address, page_table, entry); |
2461 | update_mmu_cache(vma, address, page_table); | 2461 | update_mmu_cache(vma, address, page_table); |
2462 | if (old_page) { | 2462 | if (old_page) { |
2463 | /* | 2463 | /* |
2464 | * Only after switching the pte to the new page may | 2464 | * Only after switching the pte to the new page may |
2465 | * we remove the mapcount here. Otherwise another | 2465 | * we remove the mapcount here. Otherwise another |
2466 | * process may come and find the rmap count decremented | 2466 | * process may come and find the rmap count decremented |
2467 | * before the pte is switched to the new page, and | 2467 | * before the pte is switched to the new page, and |
2468 | * "reuse" the old page writing into it while our pte | 2468 | * "reuse" the old page writing into it while our pte |
2469 | * here still points into it and can be read by other | 2469 | * here still points into it and can be read by other |
2470 | * threads. | 2470 | * threads. |
2471 | * | 2471 | * |
2472 | * The critical issue is to order this | 2472 | * The critical issue is to order this |
2473 | * page_remove_rmap with the ptp_clear_flush above. | 2473 | * page_remove_rmap with the ptp_clear_flush above. |
2474 | * Those stores are ordered by (if nothing else,) | 2474 | * Those stores are ordered by (if nothing else,) |
2475 | * the barrier present in the atomic_add_negative | 2475 | * the barrier present in the atomic_add_negative |
2476 | * in page_remove_rmap. | 2476 | * in page_remove_rmap. |
2477 | * | 2477 | * |
2478 | * Then the TLB flush in ptep_clear_flush ensures that | 2478 | * Then the TLB flush in ptep_clear_flush ensures that |
2479 | * no process can access the old page before the | 2479 | * no process can access the old page before the |
2480 | * decremented mapcount is visible. And the old page | 2480 | * decremented mapcount is visible. And the old page |
2481 | * cannot be reused until after the decremented | 2481 | * cannot be reused until after the decremented |
2482 | * mapcount is visible. So transitively, TLBs to | 2482 | * mapcount is visible. So transitively, TLBs to |
2483 | * old page will be flushed before it can be reused. | 2483 | * old page will be flushed before it can be reused. |
2484 | */ | 2484 | */ |
2485 | page_remove_rmap(old_page); | 2485 | page_remove_rmap(old_page); |
2486 | } | 2486 | } |
2487 | 2487 | ||
2488 | /* Free the old page.. */ | 2488 | /* Free the old page.. */ |
2489 | new_page = old_page; | 2489 | new_page = old_page; |
2490 | ret |= VM_FAULT_WRITE; | 2490 | ret |= VM_FAULT_WRITE; |
2491 | } else | 2491 | } else |
2492 | mem_cgroup_uncharge_page(new_page); | 2492 | mem_cgroup_uncharge_page(new_page); |
2493 | 2493 | ||
2494 | if (new_page) | 2494 | if (new_page) |
2495 | page_cache_release(new_page); | 2495 | page_cache_release(new_page); |
2496 | unlock: | 2496 | unlock: |
2497 | pte_unmap_unlock(page_table, ptl); | 2497 | pte_unmap_unlock(page_table, ptl); |
2498 | if (old_page) { | 2498 | if (old_page) { |
2499 | /* | 2499 | /* |
2500 | * Don't let another task, with possibly unlocked vma, | 2500 | * Don't let another task, with possibly unlocked vma, |
2501 | * keep the mlocked page. | 2501 | * keep the mlocked page. |
2502 | */ | 2502 | */ |
2503 | if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) { | 2503 | if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) { |
2504 | lock_page(old_page); /* LRU manipulation */ | 2504 | lock_page(old_page); /* LRU manipulation */ |
2505 | munlock_vma_page(old_page); | 2505 | munlock_vma_page(old_page); |
2506 | unlock_page(old_page); | 2506 | unlock_page(old_page); |
2507 | } | 2507 | } |
2508 | page_cache_release(old_page); | 2508 | page_cache_release(old_page); |
2509 | } | 2509 | } |
2510 | return ret; | 2510 | return ret; |
2511 | oom_free_new: | 2511 | oom_free_new: |
2512 | page_cache_release(new_page); | 2512 | page_cache_release(new_page); |
2513 | oom: | 2513 | oom: |
2514 | if (old_page) { | 2514 | if (old_page) { |
2515 | if (page_mkwrite) { | 2515 | if (page_mkwrite) { |
2516 | unlock_page(old_page); | 2516 | unlock_page(old_page); |
2517 | page_cache_release(old_page); | 2517 | page_cache_release(old_page); |
2518 | } | 2518 | } |
2519 | page_cache_release(old_page); | 2519 | page_cache_release(old_page); |
2520 | } | 2520 | } |
2521 | return VM_FAULT_OOM; | 2521 | return VM_FAULT_OOM; |
2522 | 2522 | ||
2523 | unwritable_page: | 2523 | unwritable_page: |
2524 | page_cache_release(old_page); | 2524 | page_cache_release(old_page); |
2525 | return ret; | 2525 | return ret; |
2526 | } | 2526 | } |
2527 | 2527 | ||
2528 | /* | 2528 | /* |
2529 | * Helper functions for unmap_mapping_range(). | 2529 | * Helper functions for unmap_mapping_range(). |
2530 | * | 2530 | * |
2531 | * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ | 2531 | * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ |
2532 | * | 2532 | * |
2533 | * We have to restart searching the prio_tree whenever we drop the lock, | 2533 | * We have to restart searching the prio_tree whenever we drop the lock, |
2534 | * since the iterator is only valid while the lock is held, and anyway | 2534 | * since the iterator is only valid while the lock is held, and anyway |
2535 | * a later vma might be split and reinserted earlier while lock dropped. | 2535 | * a later vma might be split and reinserted earlier while lock dropped. |
2536 | * | 2536 | * |
2537 | * The list of nonlinear vmas could be handled more efficiently, using | 2537 | * The list of nonlinear vmas could be handled more efficiently, using |
2538 | * a placeholder, but handle it in the same way until a need is shown. | 2538 | * a placeholder, but handle it in the same way until a need is shown. |
2539 | * It is important to search the prio_tree before nonlinear list: a vma | 2539 | * It is important to search the prio_tree before nonlinear list: a vma |
2540 | * may become nonlinear and be shifted from prio_tree to nonlinear list | 2540 | * may become nonlinear and be shifted from prio_tree to nonlinear list |
2541 | * while the lock is dropped; but never shifted from list to prio_tree. | 2541 | * while the lock is dropped; but never shifted from list to prio_tree. |
2542 | * | 2542 | * |
2543 | * In order to make forward progress despite restarting the search, | 2543 | * In order to make forward progress despite restarting the search, |
2544 | * vm_truncate_count is used to mark a vma as now dealt with, so we can | 2544 | * vm_truncate_count is used to mark a vma as now dealt with, so we can |
2545 | * quickly skip it next time around. Since the prio_tree search only | 2545 | * quickly skip it next time around. Since the prio_tree search only |
2546 | * shows us those vmas affected by unmapping the range in question, we | 2546 | * shows us those vmas affected by unmapping the range in question, we |
2547 | * can't efficiently keep all vmas in step with mapping->truncate_count: | 2547 | * can't efficiently keep all vmas in step with mapping->truncate_count: |
2548 | * so instead reset them all whenever it wraps back to 0 (then go to 1). | 2548 | * so instead reset them all whenever it wraps back to 0 (then go to 1). |
2549 | * mapping->truncate_count and vma->vm_truncate_count are protected by | 2549 | * mapping->truncate_count and vma->vm_truncate_count are protected by |
2550 | * i_mmap_lock. | 2550 | * i_mmap_lock. |
2551 | * | 2551 | * |
2552 | * In order to make forward progress despite repeatedly restarting some | 2552 | * In order to make forward progress despite repeatedly restarting some |
2553 | * large vma, note the restart_addr from unmap_vmas when it breaks out: | 2553 | * large vma, note the restart_addr from unmap_vmas when it breaks out: |
2554 | * and restart from that address when we reach that vma again. It might | 2554 | * and restart from that address when we reach that vma again. It might |
2555 | * have been split or merged, shrunk or extended, but never shifted: so | 2555 | * have been split or merged, shrunk or extended, but never shifted: so |
2556 | * restart_addr remains valid so long as it remains in the vma's range. | 2556 | * restart_addr remains valid so long as it remains in the vma's range. |
2557 | * unmap_mapping_range forces truncate_count to leap over page-aligned | 2557 | * unmap_mapping_range forces truncate_count to leap over page-aligned |
2558 | * values so we can save vma's restart_addr in its truncate_count field. | 2558 | * values so we can save vma's restart_addr in its truncate_count field. |
2559 | */ | 2559 | */ |
2560 | #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) | 2560 | #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) |
2561 | 2561 | ||
2562 | static void reset_vma_truncate_counts(struct address_space *mapping) | 2562 | static void reset_vma_truncate_counts(struct address_space *mapping) |
2563 | { | 2563 | { |
2564 | struct vm_area_struct *vma; | 2564 | struct vm_area_struct *vma; |
2565 | struct prio_tree_iter iter; | 2565 | struct prio_tree_iter iter; |
2566 | 2566 | ||
2567 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) | 2567 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) |
2568 | vma->vm_truncate_count = 0; | 2568 | vma->vm_truncate_count = 0; |
2569 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) | 2569 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) |
2570 | vma->vm_truncate_count = 0; | 2570 | vma->vm_truncate_count = 0; |
2571 | } | 2571 | } |
2572 | 2572 | ||
2573 | static int unmap_mapping_range_vma(struct vm_area_struct *vma, | 2573 | static int unmap_mapping_range_vma(struct vm_area_struct *vma, |
2574 | unsigned long start_addr, unsigned long end_addr, | 2574 | unsigned long start_addr, unsigned long end_addr, |
2575 | struct zap_details *details) | 2575 | struct zap_details *details) |
2576 | { | 2576 | { |
2577 | unsigned long restart_addr; | 2577 | unsigned long restart_addr; |
2578 | int need_break; | 2578 | int need_break; |
2579 | 2579 | ||
2580 | /* | 2580 | /* |
2581 | * files that support invalidating or truncating portions of the | 2581 | * files that support invalidating or truncating portions of the |
2582 | * file from under mmaped areas must have their ->fault function | 2582 | * file from under mmaped areas must have their ->fault function |
2583 | * return a locked page (and set VM_FAULT_LOCKED in the return). | 2583 | * return a locked page (and set VM_FAULT_LOCKED in the return). |
2584 | * This provides synchronisation against concurrent unmapping here. | 2584 | * This provides synchronisation against concurrent unmapping here. |
2585 | */ | 2585 | */ |
2586 | 2586 | ||
2587 | again: | 2587 | again: |
2588 | restart_addr = vma->vm_truncate_count; | 2588 | restart_addr = vma->vm_truncate_count; |
2589 | if (is_restart_addr(restart_addr) && start_addr < restart_addr) { | 2589 | if (is_restart_addr(restart_addr) && start_addr < restart_addr) { |
2590 | start_addr = restart_addr; | 2590 | start_addr = restart_addr; |
2591 | if (start_addr >= end_addr) { | 2591 | if (start_addr >= end_addr) { |
2592 | /* Top of vma has been split off since last time */ | 2592 | /* Top of vma has been split off since last time */ |
2593 | vma->vm_truncate_count = details->truncate_count; | 2593 | vma->vm_truncate_count = details->truncate_count; |
2594 | return 0; | 2594 | return 0; |
2595 | } | 2595 | } |
2596 | } | 2596 | } |
2597 | 2597 | ||
2598 | restart_addr = zap_page_range(vma, start_addr, | 2598 | restart_addr = zap_page_range(vma, start_addr, |
2599 | end_addr - start_addr, details); | 2599 | end_addr - start_addr, details); |
2600 | need_break = need_resched() || spin_needbreak(details->i_mmap_lock); | 2600 | need_break = need_resched() || spin_needbreak(details->i_mmap_lock); |
2601 | 2601 | ||
2602 | if (restart_addr >= end_addr) { | 2602 | if (restart_addr >= end_addr) { |
2603 | /* We have now completed this vma: mark it so */ | 2603 | /* We have now completed this vma: mark it so */ |
2604 | vma->vm_truncate_count = details->truncate_count; | 2604 | vma->vm_truncate_count = details->truncate_count; |
2605 | if (!need_break) | 2605 | if (!need_break) |
2606 | return 0; | 2606 | return 0; |
2607 | } else { | 2607 | } else { |
2608 | /* Note restart_addr in vma's truncate_count field */ | 2608 | /* Note restart_addr in vma's truncate_count field */ |
2609 | vma->vm_truncate_count = restart_addr; | 2609 | vma->vm_truncate_count = restart_addr; |
2610 | if (!need_break) | 2610 | if (!need_break) |
2611 | goto again; | 2611 | goto again; |
2612 | } | 2612 | } |
2613 | 2613 | ||
2614 | spin_unlock(details->i_mmap_lock); | 2614 | spin_unlock(details->i_mmap_lock); |
2615 | cond_resched(); | 2615 | cond_resched(); |
2616 | spin_lock(details->i_mmap_lock); | 2616 | spin_lock(details->i_mmap_lock); |
2617 | return -EINTR; | 2617 | return -EINTR; |
2618 | } | 2618 | } |
2619 | 2619 | ||
2620 | static inline void unmap_mapping_range_tree(struct prio_tree_root *root, | 2620 | static inline void unmap_mapping_range_tree(struct prio_tree_root *root, |
2621 | struct zap_details *details) | 2621 | struct zap_details *details) |
2622 | { | 2622 | { |
2623 | struct vm_area_struct *vma; | 2623 | struct vm_area_struct *vma; |
2624 | struct prio_tree_iter iter; | 2624 | struct prio_tree_iter iter; |
2625 | pgoff_t vba, vea, zba, zea; | 2625 | pgoff_t vba, vea, zba, zea; |
2626 | 2626 | ||
2627 | restart: | 2627 | restart: |
2628 | vma_prio_tree_foreach(vma, &iter, root, | 2628 | vma_prio_tree_foreach(vma, &iter, root, |
2629 | details->first_index, details->last_index) { | 2629 | details->first_index, details->last_index) { |
2630 | /* Skip quickly over those we have already dealt with */ | 2630 | /* Skip quickly over those we have already dealt with */ |
2631 | if (vma->vm_truncate_count == details->truncate_count) | 2631 | if (vma->vm_truncate_count == details->truncate_count) |
2632 | continue; | 2632 | continue; |
2633 | 2633 | ||
2634 | vba = vma->vm_pgoff; | 2634 | vba = vma->vm_pgoff; |
2635 | vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; | 2635 | vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; |
2636 | /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ | 2636 | /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ |
2637 | zba = details->first_index; | 2637 | zba = details->first_index; |
2638 | if (zba < vba) | 2638 | if (zba < vba) |
2639 | zba = vba; | 2639 | zba = vba; |
2640 | zea = details->last_index; | 2640 | zea = details->last_index; |
2641 | if (zea > vea) | 2641 | if (zea > vea) |
2642 | zea = vea; | 2642 | zea = vea; |
2643 | 2643 | ||
2644 | if (unmap_mapping_range_vma(vma, | 2644 | if (unmap_mapping_range_vma(vma, |
2645 | ((zba - vba) << PAGE_SHIFT) + vma->vm_start, | 2645 | ((zba - vba) << PAGE_SHIFT) + vma->vm_start, |
2646 | ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, | 2646 | ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, |
2647 | details) < 0) | 2647 | details) < 0) |
2648 | goto restart; | 2648 | goto restart; |
2649 | } | 2649 | } |
2650 | } | 2650 | } |
2651 | 2651 | ||
2652 | static inline void unmap_mapping_range_list(struct list_head *head, | 2652 | static inline void unmap_mapping_range_list(struct list_head *head, |
2653 | struct zap_details *details) | 2653 | struct zap_details *details) |
2654 | { | 2654 | { |
2655 | struct vm_area_struct *vma; | 2655 | struct vm_area_struct *vma; |
2656 | 2656 | ||
2657 | /* | 2657 | /* |
2658 | * In nonlinear VMAs there is no correspondence between virtual address | 2658 | * In nonlinear VMAs there is no correspondence between virtual address |
2659 | * offset and file offset. So we must perform an exhaustive search | 2659 | * offset and file offset. So we must perform an exhaustive search |
2660 | * across *all* the pages in each nonlinear VMA, not just the pages | 2660 | * across *all* the pages in each nonlinear VMA, not just the pages |
2661 | * whose virtual address lies outside the file truncation point. | 2661 | * whose virtual address lies outside the file truncation point. |
2662 | */ | 2662 | */ |
2663 | restart: | 2663 | restart: |
2664 | list_for_each_entry(vma, head, shared.vm_set.list) { | 2664 | list_for_each_entry(vma, head, shared.vm_set.list) { |
2665 | /* Skip quickly over those we have already dealt with */ | 2665 | /* Skip quickly over those we have already dealt with */ |
2666 | if (vma->vm_truncate_count == details->truncate_count) | 2666 | if (vma->vm_truncate_count == details->truncate_count) |
2667 | continue; | 2667 | continue; |
2668 | details->nonlinear_vma = vma; | 2668 | details->nonlinear_vma = vma; |
2669 | if (unmap_mapping_range_vma(vma, vma->vm_start, | 2669 | if (unmap_mapping_range_vma(vma, vma->vm_start, |
2670 | vma->vm_end, details) < 0) | 2670 | vma->vm_end, details) < 0) |
2671 | goto restart; | 2671 | goto restart; |
2672 | } | 2672 | } |
2673 | } | 2673 | } |
2674 | 2674 | ||
2675 | /** | 2675 | /** |
2676 | * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. | 2676 | * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. |
2677 | * @mapping: the address space containing mmaps to be unmapped. | 2677 | * @mapping: the address space containing mmaps to be unmapped. |
2678 | * @holebegin: byte in first page to unmap, relative to the start of | 2678 | * @holebegin: byte in first page to unmap, relative to the start of |
2679 | * the underlying file. This will be rounded down to a PAGE_SIZE | 2679 | * the underlying file. This will be rounded down to a PAGE_SIZE |
2680 | * boundary. Note that this is different from truncate_pagecache(), which | 2680 | * boundary. Note that this is different from truncate_pagecache(), which |
2681 | * must keep the partial page. In contrast, we must get rid of | 2681 | * must keep the partial page. In contrast, we must get rid of |
2682 | * partial pages. | 2682 | * partial pages. |
2683 | * @holelen: size of prospective hole in bytes. This will be rounded | 2683 | * @holelen: size of prospective hole in bytes. This will be rounded |
2684 | * up to a PAGE_SIZE boundary. A holelen of zero truncates to the | 2684 | * up to a PAGE_SIZE boundary. A holelen of zero truncates to the |
2685 | * end of the file. | 2685 | * end of the file. |
2686 | * @even_cows: 1 when truncating a file, unmap even private COWed pages; | 2686 | * @even_cows: 1 when truncating a file, unmap even private COWed pages; |
2687 | * but 0 when invalidating pagecache, don't throw away private data. | 2687 | * but 0 when invalidating pagecache, don't throw away private data. |
2688 | */ | 2688 | */ |
2689 | void unmap_mapping_range(struct address_space *mapping, | 2689 | void unmap_mapping_range(struct address_space *mapping, |
2690 | loff_t const holebegin, loff_t const holelen, int even_cows) | 2690 | loff_t const holebegin, loff_t const holelen, int even_cows) |
2691 | { | 2691 | { |
2692 | struct zap_details details; | 2692 | struct zap_details details; |
2693 | pgoff_t hba = holebegin >> PAGE_SHIFT; | 2693 | pgoff_t hba = holebegin >> PAGE_SHIFT; |
2694 | pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | 2694 | pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; |
2695 | 2695 | ||
2696 | /* Check for overflow. */ | 2696 | /* Check for overflow. */ |
2697 | if (sizeof(holelen) > sizeof(hlen)) { | 2697 | if (sizeof(holelen) > sizeof(hlen)) { |
2698 | long long holeend = | 2698 | long long holeend = |
2699 | (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | 2699 | (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; |
2700 | if (holeend & ~(long long)ULONG_MAX) | 2700 | if (holeend & ~(long long)ULONG_MAX) |
2701 | hlen = ULONG_MAX - hba + 1; | 2701 | hlen = ULONG_MAX - hba + 1; |
2702 | } | 2702 | } |
2703 | 2703 | ||
2704 | details.check_mapping = even_cows? NULL: mapping; | 2704 | details.check_mapping = even_cows? NULL: mapping; |
2705 | details.nonlinear_vma = NULL; | 2705 | details.nonlinear_vma = NULL; |
2706 | details.first_index = hba; | 2706 | details.first_index = hba; |
2707 | details.last_index = hba + hlen - 1; | 2707 | details.last_index = hba + hlen - 1; |
2708 | if (details.last_index < details.first_index) | 2708 | if (details.last_index < details.first_index) |
2709 | details.last_index = ULONG_MAX; | 2709 | details.last_index = ULONG_MAX; |
2710 | details.i_mmap_lock = &mapping->i_mmap_lock; | 2710 | details.i_mmap_lock = &mapping->i_mmap_lock; |
2711 | 2711 | ||
2712 | mutex_lock(&mapping->unmap_mutex); | 2712 | mutex_lock(&mapping->unmap_mutex); |
2713 | spin_lock(&mapping->i_mmap_lock); | 2713 | spin_lock(&mapping->i_mmap_lock); |
2714 | 2714 | ||
2715 | /* Protect against endless unmapping loops */ | 2715 | /* Protect against endless unmapping loops */ |
2716 | mapping->truncate_count++; | 2716 | mapping->truncate_count++; |
2717 | if (unlikely(is_restart_addr(mapping->truncate_count))) { | 2717 | if (unlikely(is_restart_addr(mapping->truncate_count))) { |
2718 | if (mapping->truncate_count == 0) | 2718 | if (mapping->truncate_count == 0) |
2719 | reset_vma_truncate_counts(mapping); | 2719 | reset_vma_truncate_counts(mapping); |
2720 | mapping->truncate_count++; | 2720 | mapping->truncate_count++; |
2721 | } | 2721 | } |
2722 | details.truncate_count = mapping->truncate_count; | 2722 | details.truncate_count = mapping->truncate_count; |
2723 | 2723 | ||
2724 | if (unlikely(!prio_tree_empty(&mapping->i_mmap))) | 2724 | if (unlikely(!prio_tree_empty(&mapping->i_mmap))) |
2725 | unmap_mapping_range_tree(&mapping->i_mmap, &details); | 2725 | unmap_mapping_range_tree(&mapping->i_mmap, &details); |
2726 | if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) | 2726 | if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) |
2727 | unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); | 2727 | unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); |
2728 | spin_unlock(&mapping->i_mmap_lock); | 2728 | spin_unlock(&mapping->i_mmap_lock); |
2729 | mutex_unlock(&mapping->unmap_mutex); | 2729 | mutex_unlock(&mapping->unmap_mutex); |
2730 | } | 2730 | } |
2731 | EXPORT_SYMBOL(unmap_mapping_range); | 2731 | EXPORT_SYMBOL(unmap_mapping_range); |
2732 | 2732 | ||
2733 | int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) | 2733 | int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) |
2734 | { | 2734 | { |
2735 | struct address_space *mapping = inode->i_mapping; | 2735 | struct address_space *mapping = inode->i_mapping; |
2736 | 2736 | ||
2737 | /* | 2737 | /* |
2738 | * If the underlying filesystem is not going to provide | 2738 | * If the underlying filesystem is not going to provide |
2739 | * a way to truncate a range of blocks (punch a hole) - | 2739 | * a way to truncate a range of blocks (punch a hole) - |
2740 | * we should return failure right now. | 2740 | * we should return failure right now. |
2741 | */ | 2741 | */ |
2742 | if (!inode->i_op->truncate_range) | 2742 | if (!inode->i_op->truncate_range) |
2743 | return -ENOSYS; | 2743 | return -ENOSYS; |
2744 | 2744 | ||
2745 | mutex_lock(&inode->i_mutex); | 2745 | mutex_lock(&inode->i_mutex); |
2746 | down_write(&inode->i_alloc_sem); | 2746 | down_write(&inode->i_alloc_sem); |
2747 | unmap_mapping_range(mapping, offset, (end - offset), 1); | 2747 | unmap_mapping_range(mapping, offset, (end - offset), 1); |
2748 | truncate_inode_pages_range(mapping, offset, end); | 2748 | truncate_inode_pages_range(mapping, offset, end); |
2749 | unmap_mapping_range(mapping, offset, (end - offset), 1); | 2749 | unmap_mapping_range(mapping, offset, (end - offset), 1); |
2750 | inode->i_op->truncate_range(inode, offset, end); | 2750 | inode->i_op->truncate_range(inode, offset, end); |
2751 | up_write(&inode->i_alloc_sem); | 2751 | up_write(&inode->i_alloc_sem); |
2752 | mutex_unlock(&inode->i_mutex); | 2752 | mutex_unlock(&inode->i_mutex); |
2753 | 2753 | ||
2754 | return 0; | 2754 | return 0; |
2755 | } | 2755 | } |
2756 | 2756 | ||
2757 | /* | 2757 | /* |
2758 | * We enter with non-exclusive mmap_sem (to exclude vma changes, | 2758 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2759 | * but allow concurrent faults), and pte mapped but not yet locked. | 2759 | * but allow concurrent faults), and pte mapped but not yet locked. |
2760 | * We return with mmap_sem still held, but pte unmapped and unlocked. | 2760 | * We return with mmap_sem still held, but pte unmapped and unlocked. |
2761 | */ | 2761 | */ |
2762 | static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, | 2762 | static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, |
2763 | unsigned long address, pte_t *page_table, pmd_t *pmd, | 2763 | unsigned long address, pte_t *page_table, pmd_t *pmd, |
2764 | unsigned int flags, pte_t orig_pte) | 2764 | unsigned int flags, pte_t orig_pte) |
2765 | { | 2765 | { |
2766 | spinlock_t *ptl; | 2766 | spinlock_t *ptl; |
2767 | struct page *page, *swapcache = NULL; | 2767 | struct page *page, *swapcache = NULL; |
2768 | swp_entry_t entry; | 2768 | swp_entry_t entry; |
2769 | pte_t pte; | 2769 | pte_t pte; |
2770 | int locked; | 2770 | int locked; |
2771 | struct mem_cgroup *ptr = NULL; | 2771 | struct mem_cgroup *ptr = NULL; |
2772 | int exclusive = 0; | 2772 | int exclusive = 0; |
2773 | int ret = 0; | 2773 | int ret = 0; |
2774 | 2774 | ||
2775 | if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) | 2775 | if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) |
2776 | goto out; | 2776 | goto out; |
2777 | 2777 | ||
2778 | entry = pte_to_swp_entry(orig_pte); | 2778 | entry = pte_to_swp_entry(orig_pte); |
2779 | if (unlikely(non_swap_entry(entry))) { | 2779 | if (unlikely(non_swap_entry(entry))) { |
2780 | if (is_migration_entry(entry)) { | 2780 | if (is_migration_entry(entry)) { |
2781 | migration_entry_wait(mm, pmd, address); | 2781 | migration_entry_wait(mm, pmd, address); |
2782 | } else if (is_hwpoison_entry(entry)) { | 2782 | } else if (is_hwpoison_entry(entry)) { |
2783 | ret = VM_FAULT_HWPOISON; | 2783 | ret = VM_FAULT_HWPOISON; |
2784 | } else { | 2784 | } else { |
2785 | print_bad_pte(vma, address, orig_pte, NULL); | 2785 | print_bad_pte(vma, address, orig_pte, NULL); |
2786 | ret = VM_FAULT_SIGBUS; | 2786 | ret = VM_FAULT_SIGBUS; |
2787 | } | 2787 | } |
2788 | goto out; | 2788 | goto out; |
2789 | } | 2789 | } |
2790 | delayacct_set_flag(DELAYACCT_PF_SWAPIN); | 2790 | delayacct_set_flag(DELAYACCT_PF_SWAPIN); |
2791 | page = lookup_swap_cache(entry); | 2791 | page = lookup_swap_cache(entry); |
2792 | if (!page) { | 2792 | if (!page) { |
2793 | grab_swap_token(mm); /* Contend for token _before_ read-in */ | 2793 | grab_swap_token(mm); /* Contend for token _before_ read-in */ |
2794 | page = swapin_readahead(entry, | 2794 | page = swapin_readahead(entry, |
2795 | GFP_HIGHUSER_MOVABLE, vma, address); | 2795 | GFP_HIGHUSER_MOVABLE, vma, address); |
2796 | if (!page) { | 2796 | if (!page) { |
2797 | /* | 2797 | /* |
2798 | * Back out if somebody else faulted in this pte | 2798 | * Back out if somebody else faulted in this pte |
2799 | * while we released the pte lock. | 2799 | * while we released the pte lock. |
2800 | */ | 2800 | */ |
2801 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | 2801 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
2802 | if (likely(pte_same(*page_table, orig_pte))) | 2802 | if (likely(pte_same(*page_table, orig_pte))) |
2803 | ret = VM_FAULT_OOM; | 2803 | ret = VM_FAULT_OOM; |
2804 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); | 2804 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); |
2805 | goto unlock; | 2805 | goto unlock; |
2806 | } | 2806 | } |
2807 | 2807 | ||
2808 | /* Had to read the page from swap area: Major fault */ | 2808 | /* Had to read the page from swap area: Major fault */ |
2809 | ret = VM_FAULT_MAJOR; | 2809 | ret = VM_FAULT_MAJOR; |
2810 | count_vm_event(PGMAJFAULT); | 2810 | count_vm_event(PGMAJFAULT); |
2811 | } else if (PageHWPoison(page)) { | 2811 | } else if (PageHWPoison(page)) { |
2812 | /* | 2812 | /* |
2813 | * hwpoisoned dirty swapcache pages are kept for killing | 2813 | * hwpoisoned dirty swapcache pages are kept for killing |
2814 | * owner processes (which may be unknown at hwpoison time) | 2814 | * owner processes (which may be unknown at hwpoison time) |
2815 | */ | 2815 | */ |
2816 | ret = VM_FAULT_HWPOISON; | 2816 | ret = VM_FAULT_HWPOISON; |
2817 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); | 2817 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); |
2818 | goto out_release; | 2818 | goto out_release; |
2819 | } | 2819 | } |
2820 | 2820 | ||
2821 | locked = lock_page_or_retry(page, mm, flags); | 2821 | locked = lock_page_or_retry(page, mm, flags); |
2822 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); | 2822 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); |
2823 | if (!locked) { | 2823 | if (!locked) { |
2824 | ret |= VM_FAULT_RETRY; | 2824 | ret |= VM_FAULT_RETRY; |
2825 | goto out_release; | 2825 | goto out_release; |
2826 | } | 2826 | } |
2827 | 2827 | ||
2828 | /* | 2828 | /* |
2829 | * Make sure try_to_free_swap or reuse_swap_page or swapoff did not | 2829 | * Make sure try_to_free_swap or reuse_swap_page or swapoff did not |
2830 | * release the swapcache from under us. The page pin, and pte_same | 2830 | * release the swapcache from under us. The page pin, and pte_same |
2831 | * test below, are not enough to exclude that. Even if it is still | 2831 | * test below, are not enough to exclude that. Even if it is still |
2832 | * swapcache, we need to check that the page's swap has not changed. | 2832 | * swapcache, we need to check that the page's swap has not changed. |
2833 | */ | 2833 | */ |
2834 | if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) | 2834 | if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) |
2835 | goto out_page; | 2835 | goto out_page; |
2836 | 2836 | ||
2837 | if (ksm_might_need_to_copy(page, vma, address)) { | 2837 | if (ksm_might_need_to_copy(page, vma, address)) { |
2838 | swapcache = page; | 2838 | swapcache = page; |
2839 | page = ksm_does_need_to_copy(page, vma, address); | 2839 | page = ksm_does_need_to_copy(page, vma, address); |
2840 | 2840 | ||
2841 | if (unlikely(!page)) { | 2841 | if (unlikely(!page)) { |
2842 | ret = VM_FAULT_OOM; | 2842 | ret = VM_FAULT_OOM; |
2843 | page = swapcache; | 2843 | page = swapcache; |
2844 | swapcache = NULL; | 2844 | swapcache = NULL; |
2845 | goto out_page; | 2845 | goto out_page; |
2846 | } | 2846 | } |
2847 | } | 2847 | } |
2848 | 2848 | ||
2849 | if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) { | 2849 | if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) { |
2850 | ret = VM_FAULT_OOM; | 2850 | ret = VM_FAULT_OOM; |
2851 | goto out_page; | 2851 | goto out_page; |
2852 | } | 2852 | } |
2853 | 2853 | ||
2854 | /* | 2854 | /* |
2855 | * Back out if somebody else already faulted in this pte. | 2855 | * Back out if somebody else already faulted in this pte. |
2856 | */ | 2856 | */ |
2857 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | 2857 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
2858 | if (unlikely(!pte_same(*page_table, orig_pte))) | 2858 | if (unlikely(!pte_same(*page_table, orig_pte))) |
2859 | goto out_nomap; | 2859 | goto out_nomap; |
2860 | 2860 | ||
2861 | if (unlikely(!PageUptodate(page))) { | 2861 | if (unlikely(!PageUptodate(page))) { |
2862 | ret = VM_FAULT_SIGBUS; | 2862 | ret = VM_FAULT_SIGBUS; |
2863 | goto out_nomap; | 2863 | goto out_nomap; |
2864 | } | 2864 | } |
2865 | 2865 | ||
2866 | /* | 2866 | /* |
2867 | * The page isn't present yet, go ahead with the fault. | 2867 | * The page isn't present yet, go ahead with the fault. |
2868 | * | 2868 | * |
2869 | * Be careful about the sequence of operations here. | 2869 | * Be careful about the sequence of operations here. |
2870 | * To get its accounting right, reuse_swap_page() must be called | 2870 | * To get its accounting right, reuse_swap_page() must be called |
2871 | * while the page is counted on swap but not yet in mapcount i.e. | 2871 | * while the page is counted on swap but not yet in mapcount i.e. |
2872 | * before page_add_anon_rmap() and swap_free(); try_to_free_swap() | 2872 | * before page_add_anon_rmap() and swap_free(); try_to_free_swap() |
2873 | * must be called after the swap_free(), or it will never succeed. | 2873 | * must be called after the swap_free(), or it will never succeed. |
2874 | * Because delete_from_swap_page() may be called by reuse_swap_page(), | 2874 | * Because delete_from_swap_page() may be called by reuse_swap_page(), |
2875 | * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry | 2875 | * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry |
2876 | * in page->private. In this case, a record in swap_cgroup is silently | 2876 | * in page->private. In this case, a record in swap_cgroup is silently |
2877 | * discarded at swap_free(). | 2877 | * discarded at swap_free(). |
2878 | */ | 2878 | */ |
2879 | 2879 | ||
2880 | inc_mm_counter_fast(mm, MM_ANONPAGES); | 2880 | inc_mm_counter_fast(mm, MM_ANONPAGES); |
2881 | dec_mm_counter_fast(mm, MM_SWAPENTS); | 2881 | dec_mm_counter_fast(mm, MM_SWAPENTS); |
2882 | pte = mk_pte(page, vma->vm_page_prot); | 2882 | pte = mk_pte(page, vma->vm_page_prot); |
2883 | if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { | 2883 | if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { |
2884 | pte = maybe_mkwrite(pte_mkdirty(pte), vma); | 2884 | pte = maybe_mkwrite(pte_mkdirty(pte), vma); |
2885 | flags &= ~FAULT_FLAG_WRITE; | 2885 | flags &= ~FAULT_FLAG_WRITE; |
2886 | ret |= VM_FAULT_WRITE; | 2886 | ret |= VM_FAULT_WRITE; |
2887 | exclusive = 1; | 2887 | exclusive = 1; |
2888 | } | 2888 | } |
2889 | flush_icache_page(vma, page); | 2889 | flush_icache_page(vma, page); |
2890 | set_pte_at(mm, address, page_table, pte); | 2890 | set_pte_at(mm, address, page_table, pte); |
2891 | do_page_add_anon_rmap(page, vma, address, exclusive); | 2891 | do_page_add_anon_rmap(page, vma, address, exclusive); |
2892 | /* It's better to call commit-charge after rmap is established */ | 2892 | /* It's better to call commit-charge after rmap is established */ |
2893 | mem_cgroup_commit_charge_swapin(page, ptr); | 2893 | mem_cgroup_commit_charge_swapin(page, ptr); |
2894 | 2894 | ||
2895 | swap_free(entry); | 2895 | swap_free(entry); |
2896 | if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) | 2896 | if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) |
2897 | try_to_free_swap(page); | 2897 | try_to_free_swap(page); |
2898 | unlock_page(page); | 2898 | unlock_page(page); |
2899 | if (swapcache) { | 2899 | if (swapcache) { |
2900 | /* | 2900 | /* |
2901 | * Hold the lock to avoid the swap entry to be reused | 2901 | * Hold the lock to avoid the swap entry to be reused |
2902 | * until we take the PT lock for the pte_same() check | 2902 | * until we take the PT lock for the pte_same() check |
2903 | * (to avoid false positives from pte_same). For | 2903 | * (to avoid false positives from pte_same). For |
2904 | * further safety release the lock after the swap_free | 2904 | * further safety release the lock after the swap_free |
2905 | * so that the swap count won't change under a | 2905 | * so that the swap count won't change under a |
2906 | * parallel locked swapcache. | 2906 | * parallel locked swapcache. |
2907 | */ | 2907 | */ |
2908 | unlock_page(swapcache); | 2908 | unlock_page(swapcache); |
2909 | page_cache_release(swapcache); | 2909 | page_cache_release(swapcache); |
2910 | } | 2910 | } |
2911 | 2911 | ||
2912 | if (flags & FAULT_FLAG_WRITE) { | 2912 | if (flags & FAULT_FLAG_WRITE) { |
2913 | ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); | 2913 | ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); |
2914 | if (ret & VM_FAULT_ERROR) | 2914 | if (ret & VM_FAULT_ERROR) |
2915 | ret &= VM_FAULT_ERROR; | 2915 | ret &= VM_FAULT_ERROR; |
2916 | goto out; | 2916 | goto out; |
2917 | } | 2917 | } |
2918 | 2918 | ||
2919 | /* No need to invalidate - it was non-present before */ | 2919 | /* No need to invalidate - it was non-present before */ |
2920 | update_mmu_cache(vma, address, page_table); | 2920 | update_mmu_cache(vma, address, page_table); |
2921 | unlock: | 2921 | unlock: |
2922 | pte_unmap_unlock(page_table, ptl); | 2922 | pte_unmap_unlock(page_table, ptl); |
2923 | out: | 2923 | out: |
2924 | return ret; | 2924 | return ret; |
2925 | out_nomap: | 2925 | out_nomap: |
2926 | mem_cgroup_cancel_charge_swapin(ptr); | 2926 | mem_cgroup_cancel_charge_swapin(ptr); |
2927 | pte_unmap_unlock(page_table, ptl); | 2927 | pte_unmap_unlock(page_table, ptl); |
2928 | out_page: | 2928 | out_page: |
2929 | unlock_page(page); | 2929 | unlock_page(page); |
2930 | out_release: | 2930 | out_release: |
2931 | page_cache_release(page); | 2931 | page_cache_release(page); |
2932 | if (swapcache) { | 2932 | if (swapcache) { |
2933 | unlock_page(swapcache); | 2933 | unlock_page(swapcache); |
2934 | page_cache_release(swapcache); | 2934 | page_cache_release(swapcache); |
2935 | } | 2935 | } |
2936 | return ret; | 2936 | return ret; |
2937 | } | 2937 | } |
2938 | 2938 | ||
2939 | /* | 2939 | /* |
2940 | * This is like a special single-page "expand_{down|up}wards()", | 2940 | * This is like a special single-page "expand_{down|up}wards()", |
2941 | * except we must first make sure that 'address{-|+}PAGE_SIZE' | 2941 | * except we must first make sure that 'address{-|+}PAGE_SIZE' |
2942 | * doesn't hit another vma. | 2942 | * doesn't hit another vma. |
2943 | */ | 2943 | */ |
2944 | static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) | 2944 | static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) |
2945 | { | 2945 | { |
2946 | address &= PAGE_MASK; | 2946 | address &= PAGE_MASK; |
2947 | if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { | 2947 | if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { |
2948 | struct vm_area_struct *prev = vma->vm_prev; | 2948 | struct vm_area_struct *prev = vma->vm_prev; |
2949 | 2949 | ||
2950 | /* | 2950 | /* |
2951 | * Is there a mapping abutting this one below? | 2951 | * Is there a mapping abutting this one below? |
2952 | * | 2952 | * |
2953 | * That's only ok if it's the same stack mapping | 2953 | * That's only ok if it's the same stack mapping |
2954 | * that has gotten split.. | 2954 | * that has gotten split.. |
2955 | */ | 2955 | */ |
2956 | if (prev && prev->vm_end == address) | 2956 | if (prev && prev->vm_end == address) |
2957 | return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; | 2957 | return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; |
2958 | 2958 | ||
2959 | expand_stack(vma, address - PAGE_SIZE); | 2959 | expand_stack(vma, address - PAGE_SIZE); |
2960 | } | 2960 | } |
2961 | if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { | 2961 | if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { |
2962 | struct vm_area_struct *next = vma->vm_next; | 2962 | struct vm_area_struct *next = vma->vm_next; |
2963 | 2963 | ||
2964 | /* As VM_GROWSDOWN but s/below/above/ */ | 2964 | /* As VM_GROWSDOWN but s/below/above/ */ |
2965 | if (next && next->vm_start == address + PAGE_SIZE) | 2965 | if (next && next->vm_start == address + PAGE_SIZE) |
2966 | return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; | 2966 | return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; |
2967 | 2967 | ||
2968 | expand_upwards(vma, address + PAGE_SIZE); | 2968 | expand_upwards(vma, address + PAGE_SIZE); |
2969 | } | 2969 | } |
2970 | return 0; | 2970 | return 0; |
2971 | } | 2971 | } |
2972 | 2972 | ||
2973 | /* | 2973 | /* |
2974 | * We enter with non-exclusive mmap_sem (to exclude vma changes, | 2974 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2975 | * but allow concurrent faults), and pte mapped but not yet locked. | 2975 | * but allow concurrent faults), and pte mapped but not yet locked. |
2976 | * We return with mmap_sem still held, but pte unmapped and unlocked. | 2976 | * We return with mmap_sem still held, but pte unmapped and unlocked. |
2977 | */ | 2977 | */ |
2978 | static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, | 2978 | static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, |
2979 | unsigned long address, pte_t *page_table, pmd_t *pmd, | 2979 | unsigned long address, pte_t *page_table, pmd_t *pmd, |
2980 | unsigned int flags) | 2980 | unsigned int flags) |
2981 | { | 2981 | { |
2982 | struct page *page; | 2982 | struct page *page; |
2983 | spinlock_t *ptl; | 2983 | spinlock_t *ptl; |
2984 | pte_t entry; | 2984 | pte_t entry; |
2985 | 2985 | ||
2986 | pte_unmap(page_table); | 2986 | pte_unmap(page_table); |
2987 | 2987 | ||
2988 | /* Check if we need to add a guard page to the stack */ | 2988 | /* Check if we need to add a guard page to the stack */ |
2989 | if (check_stack_guard_page(vma, address) < 0) | 2989 | if (check_stack_guard_page(vma, address) < 0) |
2990 | return VM_FAULT_SIGBUS; | 2990 | return VM_FAULT_SIGBUS; |
2991 | 2991 | ||
2992 | /* Use the zero-page for reads */ | 2992 | /* Use the zero-page for reads */ |
2993 | if (!(flags & FAULT_FLAG_WRITE)) { | 2993 | if (!(flags & FAULT_FLAG_WRITE)) { |
2994 | entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), | 2994 | entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), |
2995 | vma->vm_page_prot)); | 2995 | vma->vm_page_prot)); |
2996 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | 2996 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
2997 | if (!pte_none(*page_table)) | 2997 | if (!pte_none(*page_table)) |
2998 | goto unlock; | 2998 | goto unlock; |
2999 | goto setpte; | 2999 | goto setpte; |
3000 | } | 3000 | } |
3001 | 3001 | ||
3002 | /* Allocate our own private page. */ | 3002 | /* Allocate our own private page. */ |
3003 | if (unlikely(anon_vma_prepare(vma))) | 3003 | if (unlikely(anon_vma_prepare(vma))) |
3004 | goto oom; | 3004 | goto oom; |
3005 | page = alloc_zeroed_user_highpage_movable(vma, address); | 3005 | page = alloc_zeroed_user_highpage_movable(vma, address); |
3006 | if (!page) | 3006 | if (!page) |
3007 | goto oom; | 3007 | goto oom; |
3008 | __SetPageUptodate(page); | 3008 | __SetPageUptodate(page); |
3009 | 3009 | ||
3010 | if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) | 3010 | if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) |
3011 | goto oom_free_page; | 3011 | goto oom_free_page; |
3012 | 3012 | ||
3013 | entry = mk_pte(page, vma->vm_page_prot); | 3013 | entry = mk_pte(page, vma->vm_page_prot); |
3014 | if (vma->vm_flags & VM_WRITE) | 3014 | if (vma->vm_flags & VM_WRITE) |
3015 | entry = pte_mkwrite(pte_mkdirty(entry)); | 3015 | entry = pte_mkwrite(pte_mkdirty(entry)); |
3016 | 3016 | ||
3017 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | 3017 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
3018 | if (!pte_none(*page_table)) | 3018 | if (!pte_none(*page_table)) |
3019 | goto release; | 3019 | goto release; |
3020 | 3020 | ||
3021 | inc_mm_counter_fast(mm, MM_ANONPAGES); | 3021 | inc_mm_counter_fast(mm, MM_ANONPAGES); |
3022 | page_add_new_anon_rmap(page, vma, address); | 3022 | page_add_new_anon_rmap(page, vma, address); |
3023 | setpte: | 3023 | setpte: |
3024 | set_pte_at(mm, address, page_table, entry); | 3024 | set_pte_at(mm, address, page_table, entry); |
3025 | 3025 | ||
3026 | /* No need to invalidate - it was non-present before */ | 3026 | /* No need to invalidate - it was non-present before */ |
3027 | update_mmu_cache(vma, address, page_table); | 3027 | update_mmu_cache(vma, address, page_table); |
3028 | unlock: | 3028 | unlock: |
3029 | pte_unmap_unlock(page_table, ptl); | 3029 | pte_unmap_unlock(page_table, ptl); |
3030 | return 0; | 3030 | return 0; |
3031 | release: | 3031 | release: |
3032 | mem_cgroup_uncharge_page(page); | 3032 | mem_cgroup_uncharge_page(page); |
3033 | page_cache_release(page); | 3033 | page_cache_release(page); |
3034 | goto unlock; | 3034 | goto unlock; |
3035 | oom_free_page: | 3035 | oom_free_page: |
3036 | page_cache_release(page); | 3036 | page_cache_release(page); |
3037 | oom: | 3037 | oom: |
3038 | return VM_FAULT_OOM; | 3038 | return VM_FAULT_OOM; |
3039 | } | 3039 | } |
3040 | 3040 | ||
3041 | /* | 3041 | /* |
3042 | * __do_fault() tries to create a new page mapping. It aggressively | 3042 | * __do_fault() tries to create a new page mapping. It aggressively |
3043 | * tries to share with existing pages, but makes a separate copy if | 3043 | * tries to share with existing pages, but makes a separate copy if |
3044 | * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid | 3044 | * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid |
3045 | * the next page fault. | 3045 | * the next page fault. |
3046 | * | 3046 | * |
3047 | * As this is called only for pages that do not currently exist, we | 3047 | * As this is called only for pages that do not currently exist, we |
3048 | * do not need to flush old virtual caches or the TLB. | 3048 | * do not need to flush old virtual caches or the TLB. |
3049 | * | 3049 | * |
3050 | * We enter with non-exclusive mmap_sem (to exclude vma changes, | 3050 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
3051 | * but allow concurrent faults), and pte neither mapped nor locked. | 3051 | * but allow concurrent faults), and pte neither mapped nor locked. |
3052 | * We return with mmap_sem still held, but pte unmapped and unlocked. | 3052 | * We return with mmap_sem still held, but pte unmapped and unlocked. |
3053 | */ | 3053 | */ |
3054 | static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, | 3054 | static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
3055 | unsigned long address, pmd_t *pmd, | 3055 | unsigned long address, pmd_t *pmd, |
3056 | pgoff_t pgoff, unsigned int flags, pte_t orig_pte) | 3056 | pgoff_t pgoff, unsigned int flags, pte_t orig_pte) |
3057 | { | 3057 | { |
3058 | pte_t *page_table; | 3058 | pte_t *page_table; |
3059 | spinlock_t *ptl; | 3059 | spinlock_t *ptl; |
3060 | struct page *page; | 3060 | struct page *page; |
3061 | pte_t entry; | 3061 | pte_t entry; |
3062 | int anon = 0; | 3062 | int anon = 0; |
3063 | int charged = 0; | 3063 | int charged = 0; |
3064 | struct page *dirty_page = NULL; | 3064 | struct page *dirty_page = NULL; |
3065 | struct vm_fault vmf; | 3065 | struct vm_fault vmf; |
3066 | int ret; | 3066 | int ret; |
3067 | int page_mkwrite = 0; | 3067 | int page_mkwrite = 0; |
3068 | 3068 | ||
3069 | vmf.virtual_address = (void __user *)(address & PAGE_MASK); | 3069 | vmf.virtual_address = (void __user *)(address & PAGE_MASK); |
3070 | vmf.pgoff = pgoff; | 3070 | vmf.pgoff = pgoff; |
3071 | vmf.flags = flags; | 3071 | vmf.flags = flags; |
3072 | vmf.page = NULL; | 3072 | vmf.page = NULL; |
3073 | 3073 | ||
3074 | ret = vma->vm_ops->fault(vma, &vmf); | 3074 | ret = vma->vm_ops->fault(vma, &vmf); |
3075 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | | 3075 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | |
3076 | VM_FAULT_RETRY))) | 3076 | VM_FAULT_RETRY))) |
3077 | return ret; | 3077 | return ret; |
3078 | 3078 | ||
3079 | if (unlikely(PageHWPoison(vmf.page))) { | 3079 | if (unlikely(PageHWPoison(vmf.page))) { |
3080 | if (ret & VM_FAULT_LOCKED) | 3080 | if (ret & VM_FAULT_LOCKED) |
3081 | unlock_page(vmf.page); | 3081 | unlock_page(vmf.page); |
3082 | return VM_FAULT_HWPOISON; | 3082 | return VM_FAULT_HWPOISON; |
3083 | } | 3083 | } |
3084 | 3084 | ||
3085 | /* | 3085 | /* |
3086 | * For consistency in subsequent calls, make the faulted page always | 3086 | * For consistency in subsequent calls, make the faulted page always |
3087 | * locked. | 3087 | * locked. |
3088 | */ | 3088 | */ |
3089 | if (unlikely(!(ret & VM_FAULT_LOCKED))) | 3089 | if (unlikely(!(ret & VM_FAULT_LOCKED))) |
3090 | lock_page(vmf.page); | 3090 | lock_page(vmf.page); |
3091 | else | 3091 | else |
3092 | VM_BUG_ON(!PageLocked(vmf.page)); | 3092 | VM_BUG_ON(!PageLocked(vmf.page)); |
3093 | 3093 | ||
3094 | /* | 3094 | /* |
3095 | * Should we do an early C-O-W break? | 3095 | * Should we do an early C-O-W break? |
3096 | */ | 3096 | */ |
3097 | page = vmf.page; | 3097 | page = vmf.page; |
3098 | if (flags & FAULT_FLAG_WRITE) { | 3098 | if (flags & FAULT_FLAG_WRITE) { |
3099 | if (!(vma->vm_flags & VM_SHARED)) { | 3099 | if (!(vma->vm_flags & VM_SHARED)) { |
3100 | anon = 1; | 3100 | anon = 1; |
3101 | if (unlikely(anon_vma_prepare(vma))) { | 3101 | if (unlikely(anon_vma_prepare(vma))) { |
3102 | ret = VM_FAULT_OOM; | 3102 | ret = VM_FAULT_OOM; |
3103 | goto out; | 3103 | goto out; |
3104 | } | 3104 | } |
3105 | page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, | 3105 | page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, |
3106 | vma, address); | 3106 | vma, address); |
3107 | if (!page) { | 3107 | if (!page) { |
3108 | ret = VM_FAULT_OOM; | 3108 | ret = VM_FAULT_OOM; |
3109 | goto out; | 3109 | goto out; |
3110 | } | 3110 | } |
3111 | if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) { | 3111 | if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) { |
3112 | ret = VM_FAULT_OOM; | 3112 | ret = VM_FAULT_OOM; |
3113 | page_cache_release(page); | 3113 | page_cache_release(page); |
3114 | goto out; | 3114 | goto out; |
3115 | } | 3115 | } |
3116 | charged = 1; | 3116 | charged = 1; |
3117 | copy_user_highpage(page, vmf.page, address, vma); | 3117 | copy_user_highpage(page, vmf.page, address, vma); |
3118 | __SetPageUptodate(page); | 3118 | __SetPageUptodate(page); |
3119 | } else { | 3119 | } else { |
3120 | /* | 3120 | /* |
3121 | * If the page will be shareable, see if the backing | 3121 | * If the page will be shareable, see if the backing |
3122 | * address space wants to know that the page is about | 3122 | * address space wants to know that the page is about |
3123 | * to become writable | 3123 | * to become writable |
3124 | */ | 3124 | */ |
3125 | if (vma->vm_ops->page_mkwrite) { | 3125 | if (vma->vm_ops->page_mkwrite) { |
3126 | int tmp; | 3126 | int tmp; |
3127 | 3127 | ||
3128 | unlock_page(page); | 3128 | unlock_page(page); |
3129 | vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; | 3129 | vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; |
3130 | tmp = vma->vm_ops->page_mkwrite(vma, &vmf); | 3130 | tmp = vma->vm_ops->page_mkwrite(vma, &vmf); |
3131 | if (unlikely(tmp & | 3131 | if (unlikely(tmp & |
3132 | (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { | 3132 | (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { |
3133 | ret = tmp; | 3133 | ret = tmp; |
3134 | goto unwritable_page; | 3134 | goto unwritable_page; |
3135 | } | 3135 | } |
3136 | if (unlikely(!(tmp & VM_FAULT_LOCKED))) { | 3136 | if (unlikely(!(tmp & VM_FAULT_LOCKED))) { |
3137 | lock_page(page); | 3137 | lock_page(page); |
3138 | if (!page->mapping) { | 3138 | if (!page->mapping) { |
3139 | ret = 0; /* retry the fault */ | 3139 | ret = 0; /* retry the fault */ |
3140 | unlock_page(page); | 3140 | unlock_page(page); |
3141 | goto unwritable_page; | 3141 | goto unwritable_page; |
3142 | } | 3142 | } |
3143 | } else | 3143 | } else |
3144 | VM_BUG_ON(!PageLocked(page)); | 3144 | VM_BUG_ON(!PageLocked(page)); |
3145 | page_mkwrite = 1; | 3145 | page_mkwrite = 1; |
3146 | } | 3146 | } |
3147 | } | 3147 | } |
3148 | 3148 | ||
3149 | } | 3149 | } |
3150 | 3150 | ||
3151 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | 3151 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
3152 | 3152 | ||
3153 | /* | 3153 | /* |
3154 | * This silly early PAGE_DIRTY setting removes a race | 3154 | * This silly early PAGE_DIRTY setting removes a race |
3155 | * due to the bad i386 page protection. But it's valid | 3155 | * due to the bad i386 page protection. But it's valid |
3156 | * for other architectures too. | 3156 | * for other architectures too. |
3157 | * | 3157 | * |
3158 | * Note that if FAULT_FLAG_WRITE is set, we either now have | 3158 | * Note that if FAULT_FLAG_WRITE is set, we either now have |
3159 | * an exclusive copy of the page, or this is a shared mapping, | 3159 | * an exclusive copy of the page, or this is a shared mapping, |
3160 | * so we can make it writable and dirty to avoid having to | 3160 | * so we can make it writable and dirty to avoid having to |
3161 | * handle that later. | 3161 | * handle that later. |
3162 | */ | 3162 | */ |
3163 | /* Only go through if we didn't race with anybody else... */ | 3163 | /* Only go through if we didn't race with anybody else... */ |
3164 | if (likely(pte_same(*page_table, orig_pte))) { | 3164 | if (likely(pte_same(*page_table, orig_pte))) { |
3165 | flush_icache_page(vma, page); | 3165 | flush_icache_page(vma, page); |
3166 | entry = mk_pte(page, vma->vm_page_prot); | 3166 | entry = mk_pte(page, vma->vm_page_prot); |
3167 | if (flags & FAULT_FLAG_WRITE) | 3167 | if (flags & FAULT_FLAG_WRITE) |
3168 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | 3168 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); |
3169 | if (anon) { | 3169 | if (anon) { |
3170 | inc_mm_counter_fast(mm, MM_ANONPAGES); | 3170 | inc_mm_counter_fast(mm, MM_ANONPAGES); |
3171 | page_add_new_anon_rmap(page, vma, address); | 3171 | page_add_new_anon_rmap(page, vma, address); |
3172 | } else { | 3172 | } else { |
3173 | inc_mm_counter_fast(mm, MM_FILEPAGES); | 3173 | inc_mm_counter_fast(mm, MM_FILEPAGES); |
3174 | page_add_file_rmap(page); | 3174 | page_add_file_rmap(page); |
3175 | if (flags & FAULT_FLAG_WRITE) { | 3175 | if (flags & FAULT_FLAG_WRITE) { |
3176 | dirty_page = page; | 3176 | dirty_page = page; |
3177 | get_page(dirty_page); | 3177 | get_page(dirty_page); |
3178 | } | 3178 | } |
3179 | } | 3179 | } |
3180 | set_pte_at(mm, address, page_table, entry); | 3180 | set_pte_at(mm, address, page_table, entry); |
3181 | 3181 | ||
3182 | /* no need to invalidate: a not-present page won't be cached */ | 3182 | /* no need to invalidate: a not-present page won't be cached */ |
3183 | update_mmu_cache(vma, address, page_table); | 3183 | update_mmu_cache(vma, address, page_table); |
3184 | } else { | 3184 | } else { |
3185 | if (charged) | 3185 | if (charged) |
3186 | mem_cgroup_uncharge_page(page); | 3186 | mem_cgroup_uncharge_page(page); |
3187 | if (anon) | 3187 | if (anon) |
3188 | page_cache_release(page); | 3188 | page_cache_release(page); |
3189 | else | 3189 | else |
3190 | anon = 1; /* no anon but release faulted_page */ | 3190 | anon = 1; /* no anon but release faulted_page */ |
3191 | } | 3191 | } |
3192 | 3192 | ||
3193 | pte_unmap_unlock(page_table, ptl); | 3193 | pte_unmap_unlock(page_table, ptl); |
3194 | 3194 | ||
3195 | out: | 3195 | out: |
3196 | if (dirty_page) { | 3196 | if (dirty_page) { |
3197 | struct address_space *mapping = page->mapping; | 3197 | struct address_space *mapping = page->mapping; |
3198 | 3198 | ||
3199 | if (set_page_dirty(dirty_page)) | 3199 | if (set_page_dirty(dirty_page)) |
3200 | page_mkwrite = 1; | 3200 | page_mkwrite = 1; |
3201 | unlock_page(dirty_page); | 3201 | unlock_page(dirty_page); |
3202 | put_page(dirty_page); | 3202 | put_page(dirty_page); |
3203 | if (page_mkwrite && mapping) { | 3203 | if (page_mkwrite && mapping) { |
3204 | /* | 3204 | /* |
3205 | * Some device drivers do not set page.mapping but still | 3205 | * Some device drivers do not set page.mapping but still |
3206 | * dirty their pages | 3206 | * dirty their pages |
3207 | */ | 3207 | */ |
3208 | balance_dirty_pages_ratelimited(mapping); | 3208 | balance_dirty_pages_ratelimited(mapping); |
3209 | } | 3209 | } |
3210 | 3210 | ||
3211 | /* file_update_time outside page_lock */ | 3211 | /* file_update_time outside page_lock */ |
3212 | if (vma->vm_file) | 3212 | if (vma->vm_file) |
3213 | file_update_time(vma->vm_file); | 3213 | file_update_time(vma->vm_file); |
3214 | } else { | 3214 | } else { |
3215 | unlock_page(vmf.page); | 3215 | unlock_page(vmf.page); |
3216 | if (anon) | 3216 | if (anon) |
3217 | page_cache_release(vmf.page); | 3217 | page_cache_release(vmf.page); |
3218 | } | 3218 | } |
3219 | 3219 | ||
3220 | return ret; | 3220 | return ret; |
3221 | 3221 | ||
3222 | unwritable_page: | 3222 | unwritable_page: |
3223 | page_cache_release(page); | 3223 | page_cache_release(page); |
3224 | return ret; | 3224 | return ret; |
3225 | } | 3225 | } |
3226 | 3226 | ||
3227 | static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, | 3227 | static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
3228 | unsigned long address, pte_t *page_table, pmd_t *pmd, | 3228 | unsigned long address, pte_t *page_table, pmd_t *pmd, |
3229 | unsigned int flags, pte_t orig_pte) | 3229 | unsigned int flags, pte_t orig_pte) |
3230 | { | 3230 | { |
3231 | pgoff_t pgoff = (((address & PAGE_MASK) | 3231 | pgoff_t pgoff = (((address & PAGE_MASK) |
3232 | - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; | 3232 | - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; |
3233 | 3233 | ||
3234 | pte_unmap(page_table); | 3234 | pte_unmap(page_table); |
3235 | return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); | 3235 | return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); |
3236 | } | 3236 | } |
3237 | 3237 | ||
3238 | /* | 3238 | /* |
3239 | * Fault of a previously existing named mapping. Repopulate the pte | 3239 | * Fault of a previously existing named mapping. Repopulate the pte |
3240 | * from the encoded file_pte if possible. This enables swappable | 3240 | * from the encoded file_pte if possible. This enables swappable |
3241 | * nonlinear vmas. | 3241 | * nonlinear vmas. |
3242 | * | 3242 | * |
3243 | * We enter with non-exclusive mmap_sem (to exclude vma changes, | 3243 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
3244 | * but allow concurrent faults), and pte mapped but not yet locked. | 3244 | * but allow concurrent faults), and pte mapped but not yet locked. |
3245 | * We return with mmap_sem still held, but pte unmapped and unlocked. | 3245 | * We return with mmap_sem still held, but pte unmapped and unlocked. |
3246 | */ | 3246 | */ |
3247 | static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, | 3247 | static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
3248 | unsigned long address, pte_t *page_table, pmd_t *pmd, | 3248 | unsigned long address, pte_t *page_table, pmd_t *pmd, |
3249 | unsigned int flags, pte_t orig_pte) | 3249 | unsigned int flags, pte_t orig_pte) |
3250 | { | 3250 | { |
3251 | pgoff_t pgoff; | 3251 | pgoff_t pgoff; |
3252 | 3252 | ||
3253 | flags |= FAULT_FLAG_NONLINEAR; | 3253 | flags |= FAULT_FLAG_NONLINEAR; |
3254 | 3254 | ||
3255 | if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) | 3255 | if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) |
3256 | return 0; | 3256 | return 0; |
3257 | 3257 | ||
3258 | if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { | 3258 | if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { |
3259 | /* | 3259 | /* |
3260 | * Page table corrupted: show pte and kill process. | 3260 | * Page table corrupted: show pte and kill process. |
3261 | */ | 3261 | */ |
3262 | print_bad_pte(vma, address, orig_pte, NULL); | 3262 | print_bad_pte(vma, address, orig_pte, NULL); |
3263 | return VM_FAULT_SIGBUS; | 3263 | return VM_FAULT_SIGBUS; |
3264 | } | 3264 | } |
3265 | 3265 | ||
3266 | pgoff = pte_to_pgoff(orig_pte); | 3266 | pgoff = pte_to_pgoff(orig_pte); |
3267 | return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); | 3267 | return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); |
3268 | } | 3268 | } |
3269 | 3269 | ||
3270 | /* | 3270 | /* |
3271 | * These routines also need to handle stuff like marking pages dirty | 3271 | * These routines also need to handle stuff like marking pages dirty |
3272 | * and/or accessed for architectures that don't do it in hardware (most | 3272 | * and/or accessed for architectures that don't do it in hardware (most |
3273 | * RISC architectures). The early dirtying is also good on the i386. | 3273 | * RISC architectures). The early dirtying is also good on the i386. |
3274 | * | 3274 | * |
3275 | * There is also a hook called "update_mmu_cache()" that architectures | 3275 | * There is also a hook called "update_mmu_cache()" that architectures |
3276 | * with external mmu caches can use to update those (ie the Sparc or | 3276 | * with external mmu caches can use to update those (ie the Sparc or |
3277 | * PowerPC hashed page tables that act as extended TLBs). | 3277 | * PowerPC hashed page tables that act as extended TLBs). |
3278 | * | 3278 | * |
3279 | * We enter with non-exclusive mmap_sem (to exclude vma changes, | 3279 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
3280 | * but allow concurrent faults), and pte mapped but not yet locked. | 3280 | * but allow concurrent faults), and pte mapped but not yet locked. |
3281 | * We return with mmap_sem still held, but pte unmapped and unlocked. | 3281 | * We return with mmap_sem still held, but pte unmapped and unlocked. |
3282 | */ | 3282 | */ |
3283 | int handle_pte_fault(struct mm_struct *mm, | 3283 | int handle_pte_fault(struct mm_struct *mm, |
3284 | struct vm_area_struct *vma, unsigned long address, | 3284 | struct vm_area_struct *vma, unsigned long address, |
3285 | pte_t *pte, pmd_t *pmd, unsigned int flags) | 3285 | pte_t *pte, pmd_t *pmd, unsigned int flags) |
3286 | { | 3286 | { |
3287 | pte_t entry; | 3287 | pte_t entry; |
3288 | spinlock_t *ptl; | 3288 | spinlock_t *ptl; |
3289 | 3289 | ||
3290 | entry = *pte; | 3290 | entry = *pte; |
3291 | if (!pte_present(entry)) { | 3291 | if (!pte_present(entry)) { |
3292 | if (pte_none(entry)) { | 3292 | if (pte_none(entry)) { |
3293 | if (vma->vm_ops) { | 3293 | if (vma->vm_ops) { |
3294 | if (likely(vma->vm_ops->fault)) | 3294 | if (likely(vma->vm_ops->fault)) |
3295 | return do_linear_fault(mm, vma, address, | 3295 | return do_linear_fault(mm, vma, address, |
3296 | pte, pmd, flags, entry); | 3296 | pte, pmd, flags, entry); |
3297 | } | 3297 | } |
3298 | return do_anonymous_page(mm, vma, address, | 3298 | return do_anonymous_page(mm, vma, address, |
3299 | pte, pmd, flags); | 3299 | pte, pmd, flags); |
3300 | } | 3300 | } |
3301 | if (pte_file(entry)) | 3301 | if (pte_file(entry)) |
3302 | return do_nonlinear_fault(mm, vma, address, | 3302 | return do_nonlinear_fault(mm, vma, address, |
3303 | pte, pmd, flags, entry); | 3303 | pte, pmd, flags, entry); |
3304 | return do_swap_page(mm, vma, address, | 3304 | return do_swap_page(mm, vma, address, |
3305 | pte, pmd, flags, entry); | 3305 | pte, pmd, flags, entry); |
3306 | } | 3306 | } |
3307 | 3307 | ||
3308 | ptl = pte_lockptr(mm, pmd); | 3308 | ptl = pte_lockptr(mm, pmd); |
3309 | spin_lock(ptl); | 3309 | spin_lock(ptl); |
3310 | if (unlikely(!pte_same(*pte, entry))) | 3310 | if (unlikely(!pte_same(*pte, entry))) |
3311 | goto unlock; | 3311 | goto unlock; |
3312 | if (flags & FAULT_FLAG_WRITE) { | 3312 | if (flags & FAULT_FLAG_WRITE) { |
3313 | if (!pte_write(entry)) | 3313 | if (!pte_write(entry)) |
3314 | return do_wp_page(mm, vma, address, | 3314 | return do_wp_page(mm, vma, address, |
3315 | pte, pmd, ptl, entry); | 3315 | pte, pmd, ptl, entry); |
3316 | entry = pte_mkdirty(entry); | 3316 | entry = pte_mkdirty(entry); |
3317 | } | 3317 | } |
3318 | entry = pte_mkyoung(entry); | 3318 | entry = pte_mkyoung(entry); |
3319 | if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { | 3319 | if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { |
3320 | update_mmu_cache(vma, address, pte); | 3320 | update_mmu_cache(vma, address, pte); |
3321 | } else { | 3321 | } else { |
3322 | /* | 3322 | /* |
3323 | * This is needed only for protection faults but the arch code | 3323 | * This is needed only for protection faults but the arch code |
3324 | * is not yet telling us if this is a protection fault or not. | 3324 | * is not yet telling us if this is a protection fault or not. |
3325 | * This still avoids useless tlb flushes for .text page faults | 3325 | * This still avoids useless tlb flushes for .text page faults |
3326 | * with threads. | 3326 | * with threads. |
3327 | */ | 3327 | */ |
3328 | if (flags & FAULT_FLAG_WRITE) | 3328 | if (flags & FAULT_FLAG_WRITE) |
3329 | flush_tlb_fix_spurious_fault(vma, address); | 3329 | flush_tlb_fix_spurious_fault(vma, address); |
3330 | } | 3330 | } |
3331 | unlock: | 3331 | unlock: |
3332 | pte_unmap_unlock(pte, ptl); | 3332 | pte_unmap_unlock(pte, ptl); |
3333 | return 0; | 3333 | return 0; |
3334 | } | 3334 | } |
3335 | 3335 | ||
3336 | /* | 3336 | /* |
3337 | * By the time we get here, we already hold the mm semaphore | 3337 | * By the time we get here, we already hold the mm semaphore |
3338 | */ | 3338 | */ |
3339 | int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, | 3339 | int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
3340 | unsigned long address, unsigned int flags) | 3340 | unsigned long address, unsigned int flags) |
3341 | { | 3341 | { |
3342 | pgd_t *pgd; | 3342 | pgd_t *pgd; |
3343 | pud_t *pud; | 3343 | pud_t *pud; |
3344 | pmd_t *pmd; | 3344 | pmd_t *pmd; |
3345 | pte_t *pte; | 3345 | pte_t *pte; |
3346 | 3346 | ||
3347 | __set_current_state(TASK_RUNNING); | 3347 | __set_current_state(TASK_RUNNING); |
3348 | 3348 | ||
3349 | count_vm_event(PGFAULT); | 3349 | count_vm_event(PGFAULT); |
3350 | 3350 | ||
3351 | /* do counter updates before entering really critical section. */ | 3351 | /* do counter updates before entering really critical section. */ |
3352 | check_sync_rss_stat(current); | 3352 | check_sync_rss_stat(current); |
3353 | 3353 | ||
3354 | if (unlikely(is_vm_hugetlb_page(vma))) | 3354 | if (unlikely(is_vm_hugetlb_page(vma))) |
3355 | return hugetlb_fault(mm, vma, address, flags); | 3355 | return hugetlb_fault(mm, vma, address, flags); |
3356 | 3356 | ||
3357 | pgd = pgd_offset(mm, address); | 3357 | pgd = pgd_offset(mm, address); |
3358 | pud = pud_alloc(mm, pgd, address); | 3358 | pud = pud_alloc(mm, pgd, address); |
3359 | if (!pud) | 3359 | if (!pud) |
3360 | return VM_FAULT_OOM; | 3360 | return VM_FAULT_OOM; |
3361 | pmd = pmd_alloc(mm, pud, address); | 3361 | pmd = pmd_alloc(mm, pud, address); |
3362 | if (!pmd) | 3362 | if (!pmd) |
3363 | return VM_FAULT_OOM; | 3363 | return VM_FAULT_OOM; |
3364 | if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) { | 3364 | if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) { |
3365 | if (!vma->vm_ops) | 3365 | if (!vma->vm_ops) |
3366 | return do_huge_pmd_anonymous_page(mm, vma, address, | 3366 | return do_huge_pmd_anonymous_page(mm, vma, address, |
3367 | pmd, flags); | 3367 | pmd, flags); |
3368 | } else { | 3368 | } else { |
3369 | pmd_t orig_pmd = *pmd; | 3369 | pmd_t orig_pmd = *pmd; |
3370 | barrier(); | 3370 | barrier(); |
3371 | if (pmd_trans_huge(orig_pmd)) { | 3371 | if (pmd_trans_huge(orig_pmd)) { |
3372 | if (flags & FAULT_FLAG_WRITE && | 3372 | if (flags & FAULT_FLAG_WRITE && |
3373 | !pmd_write(orig_pmd) && | 3373 | !pmd_write(orig_pmd) && |
3374 | !pmd_trans_splitting(orig_pmd)) | 3374 | !pmd_trans_splitting(orig_pmd)) |
3375 | return do_huge_pmd_wp_page(mm, vma, address, | 3375 | return do_huge_pmd_wp_page(mm, vma, address, |
3376 | pmd, orig_pmd); | 3376 | pmd, orig_pmd); |
3377 | return 0; | 3377 | return 0; |
3378 | } | 3378 | } |
3379 | } | 3379 | } |
3380 | 3380 | ||
3381 | /* | 3381 | /* |
3382 | * Use __pte_alloc instead of pte_alloc_map, because we can't | 3382 | * Use __pte_alloc instead of pte_alloc_map, because we can't |
3383 | * run pte_offset_map on the pmd, if an huge pmd could | 3383 | * run pte_offset_map on the pmd, if an huge pmd could |
3384 | * materialize from under us from a different thread. | 3384 | * materialize from under us from a different thread. |
3385 | */ | 3385 | */ |
3386 | if (unlikely(__pte_alloc(mm, vma, pmd, address))) | 3386 | if (unlikely(__pte_alloc(mm, vma, pmd, address))) |
3387 | return VM_FAULT_OOM; | 3387 | return VM_FAULT_OOM; |
3388 | /* if an huge pmd materialized from under us just retry later */ | 3388 | /* if an huge pmd materialized from under us just retry later */ |
3389 | if (unlikely(pmd_trans_huge(*pmd))) | 3389 | if (unlikely(pmd_trans_huge(*pmd))) |
3390 | return 0; | 3390 | return 0; |
3391 | /* | 3391 | /* |
3392 | * A regular pmd is established and it can't morph into a huge pmd | 3392 | * A regular pmd is established and it can't morph into a huge pmd |
3393 | * from under us anymore at this point because we hold the mmap_sem | 3393 | * from under us anymore at this point because we hold the mmap_sem |
3394 | * read mode and khugepaged takes it in write mode. So now it's | 3394 | * read mode and khugepaged takes it in write mode. So now it's |
3395 | * safe to run pte_offset_map(). | 3395 | * safe to run pte_offset_map(). |
3396 | */ | 3396 | */ |
3397 | pte = pte_offset_map(pmd, address); | 3397 | pte = pte_offset_map(pmd, address); |
3398 | 3398 | ||
3399 | return handle_pte_fault(mm, vma, address, pte, pmd, flags); | 3399 | return handle_pte_fault(mm, vma, address, pte, pmd, flags); |
3400 | } | 3400 | } |
3401 | 3401 | ||
3402 | #ifndef __PAGETABLE_PUD_FOLDED | 3402 | #ifndef __PAGETABLE_PUD_FOLDED |
3403 | /* | 3403 | /* |
3404 | * Allocate page upper directory. | 3404 | * Allocate page upper directory. |
3405 | * We've already handled the fast-path in-line. | 3405 | * We've already handled the fast-path in-line. |
3406 | */ | 3406 | */ |
3407 | int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) | 3407 | int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) |
3408 | { | 3408 | { |
3409 | pud_t *new = pud_alloc_one(mm, address); | 3409 | pud_t *new = pud_alloc_one(mm, address); |
3410 | if (!new) | 3410 | if (!new) |
3411 | return -ENOMEM; | 3411 | return -ENOMEM; |
3412 | 3412 | ||
3413 | smp_wmb(); /* See comment in __pte_alloc */ | 3413 | smp_wmb(); /* See comment in __pte_alloc */ |
3414 | 3414 | ||
3415 | spin_lock(&mm->page_table_lock); | 3415 | spin_lock(&mm->page_table_lock); |
3416 | if (pgd_present(*pgd)) /* Another has populated it */ | 3416 | if (pgd_present(*pgd)) /* Another has populated it */ |
3417 | pud_free(mm, new); | 3417 | pud_free(mm, new); |
3418 | else | 3418 | else |
3419 | pgd_populate(mm, pgd, new); | 3419 | pgd_populate(mm, pgd, new); |
3420 | spin_unlock(&mm->page_table_lock); | 3420 | spin_unlock(&mm->page_table_lock); |
3421 | return 0; | 3421 | return 0; |
3422 | } | 3422 | } |
3423 | #endif /* __PAGETABLE_PUD_FOLDED */ | 3423 | #endif /* __PAGETABLE_PUD_FOLDED */ |
3424 | 3424 | ||
3425 | #ifndef __PAGETABLE_PMD_FOLDED | 3425 | #ifndef __PAGETABLE_PMD_FOLDED |
3426 | /* | 3426 | /* |
3427 | * Allocate page middle directory. | 3427 | * Allocate page middle directory. |
3428 | * We've already handled the fast-path in-line. | 3428 | * We've already handled the fast-path in-line. |
3429 | */ | 3429 | */ |
3430 | int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) | 3430 | int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) |
3431 | { | 3431 | { |
3432 | pmd_t *new = pmd_alloc_one(mm, address); | 3432 | pmd_t *new = pmd_alloc_one(mm, address); |
3433 | if (!new) | 3433 | if (!new) |
3434 | return -ENOMEM; | 3434 | return -ENOMEM; |
3435 | 3435 | ||
3436 | smp_wmb(); /* See comment in __pte_alloc */ | 3436 | smp_wmb(); /* See comment in __pte_alloc */ |
3437 | 3437 | ||
3438 | spin_lock(&mm->page_table_lock); | 3438 | spin_lock(&mm->page_table_lock); |
3439 | #ifndef __ARCH_HAS_4LEVEL_HACK | 3439 | #ifndef __ARCH_HAS_4LEVEL_HACK |
3440 | if (pud_present(*pud)) /* Another has populated it */ | 3440 | if (pud_present(*pud)) /* Another has populated it */ |
3441 | pmd_free(mm, new); | 3441 | pmd_free(mm, new); |
3442 | else | 3442 | else |
3443 | pud_populate(mm, pud, new); | 3443 | pud_populate(mm, pud, new); |
3444 | #else | 3444 | #else |
3445 | if (pgd_present(*pud)) /* Another has populated it */ | 3445 | if (pgd_present(*pud)) /* Another has populated it */ |
3446 | pmd_free(mm, new); | 3446 | pmd_free(mm, new); |
3447 | else | 3447 | else |
3448 | pgd_populate(mm, pud, new); | 3448 | pgd_populate(mm, pud, new); |
3449 | #endif /* __ARCH_HAS_4LEVEL_HACK */ | 3449 | #endif /* __ARCH_HAS_4LEVEL_HACK */ |
3450 | spin_unlock(&mm->page_table_lock); | 3450 | spin_unlock(&mm->page_table_lock); |
3451 | return 0; | 3451 | return 0; |
3452 | } | 3452 | } |
3453 | #endif /* __PAGETABLE_PMD_FOLDED */ | 3453 | #endif /* __PAGETABLE_PMD_FOLDED */ |
3454 | 3454 | ||
3455 | int make_pages_present(unsigned long addr, unsigned long end) | 3455 | int make_pages_present(unsigned long addr, unsigned long end) |
3456 | { | 3456 | { |
3457 | int ret, len, write; | 3457 | int ret, len, write; |
3458 | struct vm_area_struct * vma; | 3458 | struct vm_area_struct * vma; |
3459 | 3459 | ||
3460 | vma = find_vma(current->mm, addr); | 3460 | vma = find_vma(current->mm, addr); |
3461 | if (!vma) | 3461 | if (!vma) |
3462 | return -ENOMEM; | 3462 | return -ENOMEM; |
3463 | /* | 3463 | /* |
3464 | * We want to touch writable mappings with a write fault in order | 3464 | * We want to touch writable mappings with a write fault in order |
3465 | * to break COW, except for shared mappings because these don't COW | 3465 | * to break COW, except for shared mappings because these don't COW |
3466 | * and we would not want to dirty them for nothing. | 3466 | * and we would not want to dirty them for nothing. |
3467 | */ | 3467 | */ |
3468 | write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE; | 3468 | write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE; |
3469 | BUG_ON(addr >= end); | 3469 | BUG_ON(addr >= end); |
3470 | BUG_ON(end > vma->vm_end); | 3470 | BUG_ON(end > vma->vm_end); |
3471 | len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; | 3471 | len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; |
3472 | ret = get_user_pages(current, current->mm, addr, | 3472 | ret = get_user_pages(current, current->mm, addr, |
3473 | len, write, 0, NULL, NULL); | 3473 | len, write, 0, NULL, NULL); |
3474 | if (ret < 0) | 3474 | if (ret < 0) |
3475 | return ret; | 3475 | return ret; |
3476 | return ret == len ? 0 : -EFAULT; | 3476 | return ret == len ? 0 : -EFAULT; |
3477 | } | 3477 | } |
3478 | 3478 | ||
3479 | #if !defined(__HAVE_ARCH_GATE_AREA) | 3479 | #if !defined(__HAVE_ARCH_GATE_AREA) |
3480 | 3480 | ||
3481 | #if defined(AT_SYSINFO_EHDR) | 3481 | #if defined(AT_SYSINFO_EHDR) |
3482 | static struct vm_area_struct gate_vma; | 3482 | static struct vm_area_struct gate_vma; |
3483 | 3483 | ||
3484 | static int __init gate_vma_init(void) | 3484 | static int __init gate_vma_init(void) |
3485 | { | 3485 | { |
3486 | gate_vma.vm_mm = NULL; | 3486 | gate_vma.vm_mm = NULL; |
3487 | gate_vma.vm_start = FIXADDR_USER_START; | 3487 | gate_vma.vm_start = FIXADDR_USER_START; |
3488 | gate_vma.vm_end = FIXADDR_USER_END; | 3488 | gate_vma.vm_end = FIXADDR_USER_END; |
3489 | gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; | 3489 | gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; |
3490 | gate_vma.vm_page_prot = __P101; | 3490 | gate_vma.vm_page_prot = __P101; |
3491 | /* | 3491 | /* |
3492 | * Make sure the vDSO gets into every core dump. | 3492 | * Make sure the vDSO gets into every core dump. |
3493 | * Dumping its contents makes post-mortem fully interpretable later | 3493 | * Dumping its contents makes post-mortem fully interpretable later |
3494 | * without matching up the same kernel and hardware config to see | 3494 | * without matching up the same kernel and hardware config to see |
3495 | * what PC values meant. | 3495 | * what PC values meant. |
3496 | */ | 3496 | */ |
3497 | gate_vma.vm_flags |= VM_ALWAYSDUMP; | 3497 | gate_vma.vm_flags |= VM_ALWAYSDUMP; |
3498 | return 0; | 3498 | return 0; |
3499 | } | 3499 | } |
3500 | __initcall(gate_vma_init); | 3500 | __initcall(gate_vma_init); |
3501 | #endif | 3501 | #endif |
3502 | 3502 | ||
3503 | struct vm_area_struct *get_gate_vma(struct mm_struct *mm) | 3503 | struct vm_area_struct *get_gate_vma(struct mm_struct *mm) |
3504 | { | 3504 | { |
3505 | #ifdef AT_SYSINFO_EHDR | 3505 | #ifdef AT_SYSINFO_EHDR |
3506 | return &gate_vma; | 3506 | return &gate_vma; |
3507 | #else | 3507 | #else |
3508 | return NULL; | 3508 | return NULL; |
3509 | #endif | 3509 | #endif |
3510 | } | 3510 | } |
3511 | 3511 | ||
3512 | int in_gate_area_no_mm(unsigned long addr) | 3512 | int in_gate_area_no_mm(unsigned long addr) |
3513 | { | 3513 | { |
3514 | #ifdef AT_SYSINFO_EHDR | 3514 | #ifdef AT_SYSINFO_EHDR |
3515 | if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) | 3515 | if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) |
3516 | return 1; | 3516 | return 1; |
3517 | #endif | 3517 | #endif |
3518 | return 0; | 3518 | return 0; |
3519 | } | 3519 | } |
3520 | 3520 | ||
3521 | #endif /* __HAVE_ARCH_GATE_AREA */ | 3521 | #endif /* __HAVE_ARCH_GATE_AREA */ |
3522 | 3522 | ||
3523 | static int __follow_pte(struct mm_struct *mm, unsigned long address, | 3523 | static int __follow_pte(struct mm_struct *mm, unsigned long address, |
3524 | pte_t **ptepp, spinlock_t **ptlp) | 3524 | pte_t **ptepp, spinlock_t **ptlp) |
3525 | { | 3525 | { |
3526 | pgd_t *pgd; | 3526 | pgd_t *pgd; |
3527 | pud_t *pud; | 3527 | pud_t *pud; |
3528 | pmd_t *pmd; | 3528 | pmd_t *pmd; |
3529 | pte_t *ptep; | 3529 | pte_t *ptep; |
3530 | 3530 | ||
3531 | pgd = pgd_offset(mm, address); | 3531 | pgd = pgd_offset(mm, address); |
3532 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | 3532 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) |
3533 | goto out; | 3533 | goto out; |
3534 | 3534 | ||
3535 | pud = pud_offset(pgd, address); | 3535 | pud = pud_offset(pgd, address); |
3536 | if (pud_none(*pud) || unlikely(pud_bad(*pud))) | 3536 | if (pud_none(*pud) || unlikely(pud_bad(*pud))) |
3537 | goto out; | 3537 | goto out; |
3538 | 3538 | ||
3539 | pmd = pmd_offset(pud, address); | 3539 | pmd = pmd_offset(pud, address); |
3540 | VM_BUG_ON(pmd_trans_huge(*pmd)); | 3540 | VM_BUG_ON(pmd_trans_huge(*pmd)); |
3541 | if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) | 3541 | if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) |
3542 | goto out; | 3542 | goto out; |
3543 | 3543 | ||
3544 | /* We cannot handle huge page PFN maps. Luckily they don't exist. */ | 3544 | /* We cannot handle huge page PFN maps. Luckily they don't exist. */ |
3545 | if (pmd_huge(*pmd)) | 3545 | if (pmd_huge(*pmd)) |
3546 | goto out; | 3546 | goto out; |
3547 | 3547 | ||
3548 | ptep = pte_offset_map_lock(mm, pmd, address, ptlp); | 3548 | ptep = pte_offset_map_lock(mm, pmd, address, ptlp); |
3549 | if (!ptep) | 3549 | if (!ptep) |
3550 | goto out; | 3550 | goto out; |
3551 | if (!pte_present(*ptep)) | 3551 | if (!pte_present(*ptep)) |
3552 | goto unlock; | 3552 | goto unlock; |
3553 | *ptepp = ptep; | 3553 | *ptepp = ptep; |
3554 | return 0; | 3554 | return 0; |
3555 | unlock: | 3555 | unlock: |
3556 | pte_unmap_unlock(ptep, *ptlp); | 3556 | pte_unmap_unlock(ptep, *ptlp); |
3557 | out: | 3557 | out: |
3558 | return -EINVAL; | 3558 | return -EINVAL; |
3559 | } | 3559 | } |
3560 | 3560 | ||
3561 | static inline int follow_pte(struct mm_struct *mm, unsigned long address, | 3561 | static inline int follow_pte(struct mm_struct *mm, unsigned long address, |
3562 | pte_t **ptepp, spinlock_t **ptlp) | 3562 | pte_t **ptepp, spinlock_t **ptlp) |
3563 | { | 3563 | { |
3564 | int res; | 3564 | int res; |
3565 | 3565 | ||
3566 | /* (void) is needed to make gcc happy */ | 3566 | /* (void) is needed to make gcc happy */ |
3567 | (void) __cond_lock(*ptlp, | 3567 | (void) __cond_lock(*ptlp, |
3568 | !(res = __follow_pte(mm, address, ptepp, ptlp))); | 3568 | !(res = __follow_pte(mm, address, ptepp, ptlp))); |
3569 | return res; | 3569 | return res; |
3570 | } | 3570 | } |
3571 | 3571 | ||
3572 | /** | 3572 | /** |
3573 | * follow_pfn - look up PFN at a user virtual address | 3573 | * follow_pfn - look up PFN at a user virtual address |
3574 | * @vma: memory mapping | 3574 | * @vma: memory mapping |
3575 | * @address: user virtual address | 3575 | * @address: user virtual address |
3576 | * @pfn: location to store found PFN | 3576 | * @pfn: location to store found PFN |
3577 | * | 3577 | * |
3578 | * Only IO mappings and raw PFN mappings are allowed. | 3578 | * Only IO mappings and raw PFN mappings are allowed. |
3579 | * | 3579 | * |
3580 | * Returns zero and the pfn at @pfn on success, -ve otherwise. | 3580 | * Returns zero and the pfn at @pfn on success, -ve otherwise. |
3581 | */ | 3581 | */ |
3582 | int follow_pfn(struct vm_area_struct *vma, unsigned long address, | 3582 | int follow_pfn(struct vm_area_struct *vma, unsigned long address, |
3583 | unsigned long *pfn) | 3583 | unsigned long *pfn) |
3584 | { | 3584 | { |
3585 | int ret = -EINVAL; | 3585 | int ret = -EINVAL; |
3586 | spinlock_t *ptl; | 3586 | spinlock_t *ptl; |
3587 | pte_t *ptep; | 3587 | pte_t *ptep; |
3588 | 3588 | ||
3589 | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) | 3589 | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) |
3590 | return ret; | 3590 | return ret; |
3591 | 3591 | ||
3592 | ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); | 3592 | ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); |
3593 | if (ret) | 3593 | if (ret) |
3594 | return ret; | 3594 | return ret; |
3595 | *pfn = pte_pfn(*ptep); | 3595 | *pfn = pte_pfn(*ptep); |
3596 | pte_unmap_unlock(ptep, ptl); | 3596 | pte_unmap_unlock(ptep, ptl); |
3597 | return 0; | 3597 | return 0; |
3598 | } | 3598 | } |
3599 | EXPORT_SYMBOL(follow_pfn); | 3599 | EXPORT_SYMBOL(follow_pfn); |
3600 | 3600 | ||
3601 | #ifdef CONFIG_HAVE_IOREMAP_PROT | 3601 | #ifdef CONFIG_HAVE_IOREMAP_PROT |
3602 | int follow_phys(struct vm_area_struct *vma, | 3602 | int follow_phys(struct vm_area_struct *vma, |
3603 | unsigned long address, unsigned int flags, | 3603 | unsigned long address, unsigned int flags, |
3604 | unsigned long *prot, resource_size_t *phys) | 3604 | unsigned long *prot, resource_size_t *phys) |
3605 | { | 3605 | { |
3606 | int ret = -EINVAL; | 3606 | int ret = -EINVAL; |
3607 | pte_t *ptep, pte; | 3607 | pte_t *ptep, pte; |
3608 | spinlock_t *ptl; | 3608 | spinlock_t *ptl; |
3609 | 3609 | ||
3610 | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) | 3610 | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) |
3611 | goto out; | 3611 | goto out; |
3612 | 3612 | ||
3613 | if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) | 3613 | if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) |
3614 | goto out; | 3614 | goto out; |
3615 | pte = *ptep; | 3615 | pte = *ptep; |
3616 | 3616 | ||
3617 | if ((flags & FOLL_WRITE) && !pte_write(pte)) | 3617 | if ((flags & FOLL_WRITE) && !pte_write(pte)) |
3618 | goto unlock; | 3618 | goto unlock; |
3619 | 3619 | ||
3620 | *prot = pgprot_val(pte_pgprot(pte)); | 3620 | *prot = pgprot_val(pte_pgprot(pte)); |
3621 | *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; | 3621 | *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; |
3622 | 3622 | ||
3623 | ret = 0; | 3623 | ret = 0; |
3624 | unlock: | 3624 | unlock: |
3625 | pte_unmap_unlock(ptep, ptl); | 3625 | pte_unmap_unlock(ptep, ptl); |
3626 | out: | 3626 | out: |
3627 | return ret; | 3627 | return ret; |
3628 | } | 3628 | } |
3629 | 3629 | ||
3630 | int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, | 3630 | int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, |
3631 | void *buf, int len, int write) | 3631 | void *buf, int len, int write) |
3632 | { | 3632 | { |
3633 | resource_size_t phys_addr; | 3633 | resource_size_t phys_addr; |
3634 | unsigned long prot = 0; | 3634 | unsigned long prot = 0; |
3635 | void __iomem *maddr; | 3635 | void __iomem *maddr; |
3636 | int offset = addr & (PAGE_SIZE-1); | 3636 | int offset = addr & (PAGE_SIZE-1); |
3637 | 3637 | ||
3638 | if (follow_phys(vma, addr, write, &prot, &phys_addr)) | 3638 | if (follow_phys(vma, addr, write, &prot, &phys_addr)) |
3639 | return -EINVAL; | 3639 | return -EINVAL; |
3640 | 3640 | ||
3641 | maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); | 3641 | maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); |
3642 | if (write) | 3642 | if (write) |
3643 | memcpy_toio(maddr + offset, buf, len); | 3643 | memcpy_toio(maddr + offset, buf, len); |
3644 | else | 3644 | else |
3645 | memcpy_fromio(buf, maddr + offset, len); | 3645 | memcpy_fromio(buf, maddr + offset, len); |
3646 | iounmap(maddr); | 3646 | iounmap(maddr); |
3647 | 3647 | ||
3648 | return len; | 3648 | return len; |
3649 | } | 3649 | } |
3650 | #endif | 3650 | #endif |
3651 | 3651 | ||
3652 | /* | 3652 | /* |
3653 | * Access another process' address space as given in mm. If non-NULL, use the | 3653 | * Access another process' address space as given in mm. If non-NULL, use the |
3654 | * given task for page fault accounting. | 3654 | * given task for page fault accounting. |
3655 | */ | 3655 | */ |
3656 | static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, | 3656 | static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, |
3657 | unsigned long addr, void *buf, int len, int write) | 3657 | unsigned long addr, void *buf, int len, int write) |
3658 | { | 3658 | { |
3659 | struct vm_area_struct *vma; | 3659 | struct vm_area_struct *vma; |
3660 | void *old_buf = buf; | 3660 | void *old_buf = buf; |
3661 | 3661 | ||
3662 | down_read(&mm->mmap_sem); | 3662 | down_read(&mm->mmap_sem); |
3663 | /* ignore errors, just check how much was successfully transferred */ | 3663 | /* ignore errors, just check how much was successfully transferred */ |
3664 | while (len) { | 3664 | while (len) { |
3665 | int bytes, ret, offset; | 3665 | int bytes, ret, offset; |
3666 | void *maddr; | 3666 | void *maddr; |
3667 | struct page *page = NULL; | 3667 | struct page *page = NULL; |
3668 | 3668 | ||
3669 | ret = get_user_pages(tsk, mm, addr, 1, | 3669 | ret = get_user_pages(tsk, mm, addr, 1, |
3670 | write, 1, &page, &vma); | 3670 | write, 1, &page, &vma); |
3671 | if (ret <= 0) { | 3671 | if (ret <= 0) { |
3672 | /* | 3672 | /* |
3673 | * Check if this is a VM_IO | VM_PFNMAP VMA, which | 3673 | * Check if this is a VM_IO | VM_PFNMAP VMA, which |
3674 | * we can access using slightly different code. | 3674 | * we can access using slightly different code. |
3675 | */ | 3675 | */ |
3676 | #ifdef CONFIG_HAVE_IOREMAP_PROT | 3676 | #ifdef CONFIG_HAVE_IOREMAP_PROT |
3677 | vma = find_vma(mm, addr); | 3677 | vma = find_vma(mm, addr); |
3678 | if (!vma) | 3678 | if (!vma) |
3679 | break; | 3679 | break; |
3680 | if (vma->vm_ops && vma->vm_ops->access) | 3680 | if (vma->vm_ops && vma->vm_ops->access) |
3681 | ret = vma->vm_ops->access(vma, addr, buf, | 3681 | ret = vma->vm_ops->access(vma, addr, buf, |
3682 | len, write); | 3682 | len, write); |
3683 | if (ret <= 0) | 3683 | if (ret <= 0) |
3684 | #endif | 3684 | #endif |
3685 | break; | 3685 | break; |
3686 | bytes = ret; | 3686 | bytes = ret; |
3687 | } else { | 3687 | } else { |
3688 | bytes = len; | 3688 | bytes = len; |
3689 | offset = addr & (PAGE_SIZE-1); | 3689 | offset = addr & (PAGE_SIZE-1); |
3690 | if (bytes > PAGE_SIZE-offset) | 3690 | if (bytes > PAGE_SIZE-offset) |
3691 | bytes = PAGE_SIZE-offset; | 3691 | bytes = PAGE_SIZE-offset; |
3692 | 3692 | ||
3693 | maddr = kmap(page); | 3693 | maddr = kmap(page); |
3694 | if (write) { | 3694 | if (write) { |
3695 | copy_to_user_page(vma, page, addr, | 3695 | copy_to_user_page(vma, page, addr, |
3696 | maddr + offset, buf, bytes); | 3696 | maddr + offset, buf, bytes); |
3697 | set_page_dirty_lock(page); | 3697 | set_page_dirty_lock(page); |
3698 | } else { | 3698 | } else { |
3699 | copy_from_user_page(vma, page, addr, | 3699 | copy_from_user_page(vma, page, addr, |
3700 | buf, maddr + offset, bytes); | 3700 | buf, maddr + offset, bytes); |
3701 | } | 3701 | } |
3702 | kunmap(page); | 3702 | kunmap(page); |
3703 | page_cache_release(page); | 3703 | page_cache_release(page); |
3704 | } | 3704 | } |
3705 | len -= bytes; | 3705 | len -= bytes; |
3706 | buf += bytes; | 3706 | buf += bytes; |
3707 | addr += bytes; | 3707 | addr += bytes; |
3708 | } | 3708 | } |
3709 | up_read(&mm->mmap_sem); | 3709 | up_read(&mm->mmap_sem); |
3710 | 3710 | ||
3711 | return buf - old_buf; | 3711 | return buf - old_buf; |
3712 | } | 3712 | } |
3713 | 3713 | ||
3714 | /** | ||
3715 | * @access_remote_vm - access another process' address space | ||
3716 | * @mm: the mm_struct of the target address space | ||
3717 | * @addr: start address to access | ||
3718 | * @buf: source or destination buffer | ||
3719 | * @len: number of bytes to transfer | ||
3720 | * @write: whether the access is a write | ||
3721 | * | ||
3722 | * The caller must hold a reference on @mm. | ||
3723 | */ | ||
3724 | int access_remote_vm(struct mm_struct *mm, unsigned long addr, | ||
3725 | void *buf, int len, int write) | ||
3726 | { | ||
3727 | return __access_remote_vm(NULL, mm, addr, buf, len, write); | ||
3728 | } | ||
3729 | |||
3714 | /* | 3730 | /* |
3715 | * Access another process' address space. | 3731 | * Access another process' address space. |
3716 | * Source/target buffer must be kernel space, | 3732 | * Source/target buffer must be kernel space, |
3717 | * Do not walk the page table directly, use get_user_pages | 3733 | * Do not walk the page table directly, use get_user_pages |
3718 | */ | 3734 | */ |
3719 | int access_process_vm(struct task_struct *tsk, unsigned long addr, | 3735 | int access_process_vm(struct task_struct *tsk, unsigned long addr, |
3720 | void *buf, int len, int write) | 3736 | void *buf, int len, int write) |
3721 | { | 3737 | { |
3722 | struct mm_struct *mm; | 3738 | struct mm_struct *mm; |
3723 | int ret; | 3739 | int ret; |
3724 | 3740 | ||
3725 | mm = get_task_mm(tsk); | 3741 | mm = get_task_mm(tsk); |
3726 | if (!mm) | 3742 | if (!mm) |
3727 | return 0; | 3743 | return 0; |
3728 | 3744 | ||
3729 | ret = __access_remote_vm(tsk, mm, addr, buf, len, write); | 3745 | ret = __access_remote_vm(tsk, mm, addr, buf, len, write); |
3730 | mmput(mm); | 3746 | mmput(mm); |
3731 | 3747 | ||
3732 | return ret; | 3748 | return ret; |
3733 | } | 3749 | } |
3734 | 3750 | ||
3735 | /* | 3751 | /* |
3736 | * Print the name of a VMA. | 3752 | * Print the name of a VMA. |
3737 | */ | 3753 | */ |
3738 | void print_vma_addr(char *prefix, unsigned long ip) | 3754 | void print_vma_addr(char *prefix, unsigned long ip) |
3739 | { | 3755 | { |
3740 | struct mm_struct *mm = current->mm; | 3756 | struct mm_struct *mm = current->mm; |
3741 | struct vm_area_struct *vma; | 3757 | struct vm_area_struct *vma; |
3742 | 3758 | ||
3743 | /* | 3759 | /* |
3744 | * Do not print if we are in atomic | 3760 | * Do not print if we are in atomic |
3745 | * contexts (in exception stacks, etc.): | 3761 | * contexts (in exception stacks, etc.): |
3746 | */ | 3762 | */ |
3747 | if (preempt_count()) | 3763 | if (preempt_count()) |
3748 | return; | 3764 | return; |
3749 | 3765 | ||
3750 | down_read(&mm->mmap_sem); | 3766 | down_read(&mm->mmap_sem); |
3751 | vma = find_vma(mm, ip); | 3767 | vma = find_vma(mm, ip); |
3752 | if (vma && vma->vm_file) { | 3768 | if (vma && vma->vm_file) { |
3753 | struct file *f = vma->vm_file; | 3769 | struct file *f = vma->vm_file; |
3754 | char *buf = (char *)__get_free_page(GFP_KERNEL); | 3770 | char *buf = (char *)__get_free_page(GFP_KERNEL); |
3755 | if (buf) { | 3771 | if (buf) { |
3756 | char *p, *s; | 3772 | char *p, *s; |
3757 | 3773 | ||
3758 | p = d_path(&f->f_path, buf, PAGE_SIZE); | 3774 | p = d_path(&f->f_path, buf, PAGE_SIZE); |
3759 | if (IS_ERR(p)) | 3775 | if (IS_ERR(p)) |
3760 | p = "?"; | 3776 | p = "?"; |
3761 | s = strrchr(p, '/'); | 3777 | s = strrchr(p, '/'); |
3762 | if (s) | 3778 | if (s) |
3763 | p = s+1; | 3779 | p = s+1; |
3764 | printk("%s%s[%lx+%lx]", prefix, p, | 3780 | printk("%s%s[%lx+%lx]", prefix, p, |
3765 | vma->vm_start, | 3781 | vma->vm_start, |
3766 | vma->vm_end - vma->vm_start); | 3782 | vma->vm_end - vma->vm_start); |
3767 | free_page((unsigned long)buf); | 3783 | free_page((unsigned long)buf); |
3768 | } | 3784 | } |
3769 | } | 3785 | } |
3770 | up_read(¤t->mm->mmap_sem); | 3786 | up_read(¤t->mm->mmap_sem); |
3771 | } | 3787 | } |
3772 | 3788 | ||
3773 | #ifdef CONFIG_PROVE_LOCKING | 3789 | #ifdef CONFIG_PROVE_LOCKING |
3774 | void might_fault(void) | 3790 | void might_fault(void) |
3775 | { | 3791 | { |
3776 | /* | 3792 | /* |
3777 | * Some code (nfs/sunrpc) uses socket ops on kernel memory while | 3793 | * Some code (nfs/sunrpc) uses socket ops on kernel memory while |
3778 | * holding the mmap_sem, this is safe because kernel memory doesn't | 3794 | * holding the mmap_sem, this is safe because kernel memory doesn't |
3779 | * get paged out, therefore we'll never actually fault, and the | 3795 | * get paged out, therefore we'll never actually fault, and the |
3780 | * below annotations will generate false positives. | 3796 | * below annotations will generate false positives. |
3781 | */ | 3797 | */ |
3782 | if (segment_eq(get_fs(), KERNEL_DS)) | 3798 | if (segment_eq(get_fs(), KERNEL_DS)) |
3783 | return; | 3799 | return; |
3784 | 3800 | ||
3785 | might_sleep(); | 3801 | might_sleep(); |
3786 | /* | 3802 | /* |
3787 | * it would be nicer only to annotate paths which are not under | 3803 | * it would be nicer only to annotate paths which are not under |
3788 | * pagefault_disable, however that requires a larger audit and | 3804 | * pagefault_disable, however that requires a larger audit and |
3789 | * providing helpers like get_user_atomic. | 3805 | * providing helpers like get_user_atomic. |
3790 | */ | 3806 | */ |
3791 | if (!in_atomic() && current->mm) | 3807 | if (!in_atomic() && current->mm) |
3792 | might_lock_read(¤t->mm->mmap_sem); | 3808 | might_lock_read(¤t->mm->mmap_sem); |
3793 | } | 3809 | } |
3794 | EXPORT_SYMBOL(might_fault); | 3810 | EXPORT_SYMBOL(might_fault); |
3795 | #endif | 3811 | #endif |
3796 | 3812 | ||
3797 | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) | 3813 | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) |
3798 | static void clear_gigantic_page(struct page *page, | 3814 | static void clear_gigantic_page(struct page *page, |
3799 | unsigned long addr, | 3815 | unsigned long addr, |
3800 | unsigned int pages_per_huge_page) | 3816 | unsigned int pages_per_huge_page) |
3801 | { | 3817 | { |
3802 | int i; | 3818 | int i; |
3803 | struct page *p = page; | 3819 | struct page *p = page; |
3804 | 3820 | ||
3805 | might_sleep(); | 3821 | might_sleep(); |
3806 | for (i = 0; i < pages_per_huge_page; | 3822 | for (i = 0; i < pages_per_huge_page; |
3807 | i++, p = mem_map_next(p, page, i)) { | 3823 | i++, p = mem_map_next(p, page, i)) { |
3808 | cond_resched(); | 3824 | cond_resched(); |
3809 | clear_user_highpage(p, addr + i * PAGE_SIZE); | 3825 | clear_user_highpage(p, addr + i * PAGE_SIZE); |
3810 | } | 3826 | } |
3811 | } | 3827 | } |
3812 | void clear_huge_page(struct page *page, | 3828 | void clear_huge_page(struct page *page, |
3813 | unsigned long addr, unsigned int pages_per_huge_page) | 3829 | unsigned long addr, unsigned int pages_per_huge_page) |
3814 | { | 3830 | { |
3815 | int i; | 3831 | int i; |
3816 | 3832 | ||
3817 | if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { | 3833 | if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { |
3818 | clear_gigantic_page(page, addr, pages_per_huge_page); | 3834 | clear_gigantic_page(page, addr, pages_per_huge_page); |
3819 | return; | 3835 | return; |
3820 | } | 3836 | } |
3821 | 3837 | ||
3822 | might_sleep(); | 3838 | might_sleep(); |
3823 | for (i = 0; i < pages_per_huge_page; i++) { | 3839 | for (i = 0; i < pages_per_huge_page; i++) { |
3824 | cond_resched(); | 3840 | cond_resched(); |
3825 | clear_user_highpage(page + i, addr + i * PAGE_SIZE); | 3841 | clear_user_highpage(page + i, addr + i * PAGE_SIZE); |
3826 | } | 3842 | } |
3827 | } | 3843 | } |
3828 | 3844 | ||
3829 | static void copy_user_gigantic_page(struct page *dst, struct page *src, | 3845 | static void copy_user_gigantic_page(struct page *dst, struct page *src, |
3830 | unsigned long addr, | 3846 | unsigned long addr, |
3831 | struct vm_area_struct *vma, | 3847 | struct vm_area_struct *vma, |
3832 | unsigned int pages_per_huge_page) | 3848 | unsigned int pages_per_huge_page) |
3833 | { | 3849 | { |
3834 | int i; | 3850 | int i; |
3835 | struct page *dst_base = dst; | 3851 | struct page *dst_base = dst; |
3836 | struct page *src_base = src; | 3852 | struct page *src_base = src; |
3837 | 3853 | ||
3838 | for (i = 0; i < pages_per_huge_page; ) { | 3854 | for (i = 0; i < pages_per_huge_page; ) { |
3839 | cond_resched(); | 3855 | cond_resched(); |
3840 | copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); | 3856 | copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); |
3841 | 3857 | ||
3842 | i++; | 3858 | i++; |
3843 | dst = mem_map_next(dst, dst_base, i); | 3859 | dst = mem_map_next(dst, dst_base, i); |
3844 | src = mem_map_next(src, src_base, i); | 3860 | src = mem_map_next(src, src_base, i); |
3845 | } | 3861 | } |
3846 | } | 3862 | } |
3847 | 3863 | ||
3848 | void copy_user_huge_page(struct page *dst, struct page *src, | 3864 | void copy_user_huge_page(struct page *dst, struct page *src, |
3849 | unsigned long addr, struct vm_area_struct *vma, | 3865 | unsigned long addr, struct vm_area_struct *vma, |
3850 | unsigned int pages_per_huge_page) | 3866 | unsigned int pages_per_huge_page) |
3851 | { | 3867 | { |
3852 | int i; | 3868 | int i; |
3853 | 3869 | ||
3854 | if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { | 3870 | if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { |
3855 | copy_user_gigantic_page(dst, src, addr, vma, | 3871 | copy_user_gigantic_page(dst, src, addr, vma, |
3856 | pages_per_huge_page); | 3872 | pages_per_huge_page); |
3857 | return; | 3873 | return; |
3858 | } | 3874 | } |
3859 | 3875 | ||
3860 | might_sleep(); | 3876 | might_sleep(); |
3861 | for (i = 0; i < pages_per_huge_page; i++) { | 3877 | for (i = 0; i < pages_per_huge_page; i++) { |
3862 | cond_resched(); | 3878 | cond_resched(); |
3863 | copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); | 3879 | copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); |
3864 | } | 3880 | } |
3865 | } | 3881 | } |
3866 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ | 3882 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ |
3867 | 3883 |