Commit 61469f1d51777fc3b6d8d70da8373ee77ee13349
Committed by
Linus Torvalds
1 parent
6dbf6d3bb9
Exists in
master
and in
7 other branches
memcg: when do_swap's do_wp_page fails
Don't uncharge when do_swap_page's call to do_wp_page fails: the page which was charged for is there in the pagetable, and will be correctly uncharged when that area is unmapped - it was only its COWing which failed. And while we're here, remove earlier XXX comment: yes, OR in do_wp_page's return value (maybe VM_FAULT_WRITE) with do_swap_page's there; but if it fails, mask out success bits, which might confuse some arches e.g. sparc. Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: David Rientjes <rientjes@google.com> Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hirokazu Takahashi <taka@valinux.co.jp> Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp> Cc: Paul Menage <menage@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Showing 1 changed file with 3 additions and 6 deletions Inline Diff
mm/memory.c
1 | /* | 1 | /* |
2 | * linux/mm/memory.c | 2 | * linux/mm/memory.c |
3 | * | 3 | * |
4 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | 4 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
5 | */ | 5 | */ |
6 | 6 | ||
7 | /* | 7 | /* |
8 | * demand-loading started 01.12.91 - seems it is high on the list of | 8 | * demand-loading started 01.12.91 - seems it is high on the list of |
9 | * things wanted, and it should be easy to implement. - Linus | 9 | * things wanted, and it should be easy to implement. - Linus |
10 | */ | 10 | */ |
11 | 11 | ||
12 | /* | 12 | /* |
13 | * Ok, demand-loading was easy, shared pages a little bit tricker. Shared | 13 | * Ok, demand-loading was easy, shared pages a little bit tricker. Shared |
14 | * pages started 02.12.91, seems to work. - Linus. | 14 | * pages started 02.12.91, seems to work. - Linus. |
15 | * | 15 | * |
16 | * Tested sharing by executing about 30 /bin/sh: under the old kernel it | 16 | * Tested sharing by executing about 30 /bin/sh: under the old kernel it |
17 | * would have taken more than the 6M I have free, but it worked well as | 17 | * would have taken more than the 6M I have free, but it worked well as |
18 | * far as I could see. | 18 | * far as I could see. |
19 | * | 19 | * |
20 | * Also corrected some "invalidate()"s - I wasn't doing enough of them. | 20 | * Also corrected some "invalidate()"s - I wasn't doing enough of them. |
21 | */ | 21 | */ |
22 | 22 | ||
23 | /* | 23 | /* |
24 | * Real VM (paging to/from disk) started 18.12.91. Much more work and | 24 | * Real VM (paging to/from disk) started 18.12.91. Much more work and |
25 | * thought has to go into this. Oh, well.. | 25 | * thought has to go into this. Oh, well.. |
26 | * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. | 26 | * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. |
27 | * Found it. Everything seems to work now. | 27 | * Found it. Everything seems to work now. |
28 | * 20.12.91 - Ok, making the swap-device changeable like the root. | 28 | * 20.12.91 - Ok, making the swap-device changeable like the root. |
29 | */ | 29 | */ |
30 | 30 | ||
31 | /* | 31 | /* |
32 | * 05.04.94 - Multi-page memory management added for v1.1. | 32 | * 05.04.94 - Multi-page memory management added for v1.1. |
33 | * Idea by Alex Bligh (alex@cconcepts.co.uk) | 33 | * Idea by Alex Bligh (alex@cconcepts.co.uk) |
34 | * | 34 | * |
35 | * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG | 35 | * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG |
36 | * (Gerhard.Wichert@pdb.siemens.de) | 36 | * (Gerhard.Wichert@pdb.siemens.de) |
37 | * | 37 | * |
38 | * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) | 38 | * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) |
39 | */ | 39 | */ |
40 | 40 | ||
41 | #include <linux/kernel_stat.h> | 41 | #include <linux/kernel_stat.h> |
42 | #include <linux/mm.h> | 42 | #include <linux/mm.h> |
43 | #include <linux/hugetlb.h> | 43 | #include <linux/hugetlb.h> |
44 | #include <linux/mman.h> | 44 | #include <linux/mman.h> |
45 | #include <linux/swap.h> | 45 | #include <linux/swap.h> |
46 | #include <linux/highmem.h> | 46 | #include <linux/highmem.h> |
47 | #include <linux/pagemap.h> | 47 | #include <linux/pagemap.h> |
48 | #include <linux/rmap.h> | 48 | #include <linux/rmap.h> |
49 | #include <linux/module.h> | 49 | #include <linux/module.h> |
50 | #include <linux/delayacct.h> | 50 | #include <linux/delayacct.h> |
51 | #include <linux/init.h> | 51 | #include <linux/init.h> |
52 | #include <linux/writeback.h> | 52 | #include <linux/writeback.h> |
53 | #include <linux/memcontrol.h> | 53 | #include <linux/memcontrol.h> |
54 | 54 | ||
55 | #include <asm/pgalloc.h> | 55 | #include <asm/pgalloc.h> |
56 | #include <asm/uaccess.h> | 56 | #include <asm/uaccess.h> |
57 | #include <asm/tlb.h> | 57 | #include <asm/tlb.h> |
58 | #include <asm/tlbflush.h> | 58 | #include <asm/tlbflush.h> |
59 | #include <asm/pgtable.h> | 59 | #include <asm/pgtable.h> |
60 | 60 | ||
61 | #include <linux/swapops.h> | 61 | #include <linux/swapops.h> |
62 | #include <linux/elf.h> | 62 | #include <linux/elf.h> |
63 | 63 | ||
64 | #ifndef CONFIG_NEED_MULTIPLE_NODES | 64 | #ifndef CONFIG_NEED_MULTIPLE_NODES |
65 | /* use the per-pgdat data instead for discontigmem - mbligh */ | 65 | /* use the per-pgdat data instead for discontigmem - mbligh */ |
66 | unsigned long max_mapnr; | 66 | unsigned long max_mapnr; |
67 | struct page *mem_map; | 67 | struct page *mem_map; |
68 | 68 | ||
69 | EXPORT_SYMBOL(max_mapnr); | 69 | EXPORT_SYMBOL(max_mapnr); |
70 | EXPORT_SYMBOL(mem_map); | 70 | EXPORT_SYMBOL(mem_map); |
71 | #endif | 71 | #endif |
72 | 72 | ||
73 | unsigned long num_physpages; | 73 | unsigned long num_physpages; |
74 | /* | 74 | /* |
75 | * A number of key systems in x86 including ioremap() rely on the assumption | 75 | * A number of key systems in x86 including ioremap() rely on the assumption |
76 | * that high_memory defines the upper bound on direct map memory, then end | 76 | * that high_memory defines the upper bound on direct map memory, then end |
77 | * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and | 77 | * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and |
78 | * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL | 78 | * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL |
79 | * and ZONE_HIGHMEM. | 79 | * and ZONE_HIGHMEM. |
80 | */ | 80 | */ |
81 | void * high_memory; | 81 | void * high_memory; |
82 | 82 | ||
83 | EXPORT_SYMBOL(num_physpages); | 83 | EXPORT_SYMBOL(num_physpages); |
84 | EXPORT_SYMBOL(high_memory); | 84 | EXPORT_SYMBOL(high_memory); |
85 | 85 | ||
86 | /* | 86 | /* |
87 | * Randomize the address space (stacks, mmaps, brk, etc.). | 87 | * Randomize the address space (stacks, mmaps, brk, etc.). |
88 | * | 88 | * |
89 | * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, | 89 | * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, |
90 | * as ancient (libc5 based) binaries can segfault. ) | 90 | * as ancient (libc5 based) binaries can segfault. ) |
91 | */ | 91 | */ |
92 | int randomize_va_space __read_mostly = | 92 | int randomize_va_space __read_mostly = |
93 | #ifdef CONFIG_COMPAT_BRK | 93 | #ifdef CONFIG_COMPAT_BRK |
94 | 1; | 94 | 1; |
95 | #else | 95 | #else |
96 | 2; | 96 | 2; |
97 | #endif | 97 | #endif |
98 | 98 | ||
99 | static int __init disable_randmaps(char *s) | 99 | static int __init disable_randmaps(char *s) |
100 | { | 100 | { |
101 | randomize_va_space = 0; | 101 | randomize_va_space = 0; |
102 | return 1; | 102 | return 1; |
103 | } | 103 | } |
104 | __setup("norandmaps", disable_randmaps); | 104 | __setup("norandmaps", disable_randmaps); |
105 | 105 | ||
106 | 106 | ||
107 | /* | 107 | /* |
108 | * If a p?d_bad entry is found while walking page tables, report | 108 | * If a p?d_bad entry is found while walking page tables, report |
109 | * the error, before resetting entry to p?d_none. Usually (but | 109 | * the error, before resetting entry to p?d_none. Usually (but |
110 | * very seldom) called out from the p?d_none_or_clear_bad macros. | 110 | * very seldom) called out from the p?d_none_or_clear_bad macros. |
111 | */ | 111 | */ |
112 | 112 | ||
113 | void pgd_clear_bad(pgd_t *pgd) | 113 | void pgd_clear_bad(pgd_t *pgd) |
114 | { | 114 | { |
115 | pgd_ERROR(*pgd); | 115 | pgd_ERROR(*pgd); |
116 | pgd_clear(pgd); | 116 | pgd_clear(pgd); |
117 | } | 117 | } |
118 | 118 | ||
119 | void pud_clear_bad(pud_t *pud) | 119 | void pud_clear_bad(pud_t *pud) |
120 | { | 120 | { |
121 | pud_ERROR(*pud); | 121 | pud_ERROR(*pud); |
122 | pud_clear(pud); | 122 | pud_clear(pud); |
123 | } | 123 | } |
124 | 124 | ||
125 | void pmd_clear_bad(pmd_t *pmd) | 125 | void pmd_clear_bad(pmd_t *pmd) |
126 | { | 126 | { |
127 | pmd_ERROR(*pmd); | 127 | pmd_ERROR(*pmd); |
128 | pmd_clear(pmd); | 128 | pmd_clear(pmd); |
129 | } | 129 | } |
130 | 130 | ||
131 | /* | 131 | /* |
132 | * Note: this doesn't free the actual pages themselves. That | 132 | * Note: this doesn't free the actual pages themselves. That |
133 | * has been handled earlier when unmapping all the memory regions. | 133 | * has been handled earlier when unmapping all the memory regions. |
134 | */ | 134 | */ |
135 | static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd) | 135 | static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd) |
136 | { | 136 | { |
137 | pgtable_t token = pmd_pgtable(*pmd); | 137 | pgtable_t token = pmd_pgtable(*pmd); |
138 | pmd_clear(pmd); | 138 | pmd_clear(pmd); |
139 | pte_free_tlb(tlb, token); | 139 | pte_free_tlb(tlb, token); |
140 | tlb->mm->nr_ptes--; | 140 | tlb->mm->nr_ptes--; |
141 | } | 141 | } |
142 | 142 | ||
143 | static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, | 143 | static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, |
144 | unsigned long addr, unsigned long end, | 144 | unsigned long addr, unsigned long end, |
145 | unsigned long floor, unsigned long ceiling) | 145 | unsigned long floor, unsigned long ceiling) |
146 | { | 146 | { |
147 | pmd_t *pmd; | 147 | pmd_t *pmd; |
148 | unsigned long next; | 148 | unsigned long next; |
149 | unsigned long start; | 149 | unsigned long start; |
150 | 150 | ||
151 | start = addr; | 151 | start = addr; |
152 | pmd = pmd_offset(pud, addr); | 152 | pmd = pmd_offset(pud, addr); |
153 | do { | 153 | do { |
154 | next = pmd_addr_end(addr, end); | 154 | next = pmd_addr_end(addr, end); |
155 | if (pmd_none_or_clear_bad(pmd)) | 155 | if (pmd_none_or_clear_bad(pmd)) |
156 | continue; | 156 | continue; |
157 | free_pte_range(tlb, pmd); | 157 | free_pte_range(tlb, pmd); |
158 | } while (pmd++, addr = next, addr != end); | 158 | } while (pmd++, addr = next, addr != end); |
159 | 159 | ||
160 | start &= PUD_MASK; | 160 | start &= PUD_MASK; |
161 | if (start < floor) | 161 | if (start < floor) |
162 | return; | 162 | return; |
163 | if (ceiling) { | 163 | if (ceiling) { |
164 | ceiling &= PUD_MASK; | 164 | ceiling &= PUD_MASK; |
165 | if (!ceiling) | 165 | if (!ceiling) |
166 | return; | 166 | return; |
167 | } | 167 | } |
168 | if (end - 1 > ceiling - 1) | 168 | if (end - 1 > ceiling - 1) |
169 | return; | 169 | return; |
170 | 170 | ||
171 | pmd = pmd_offset(pud, start); | 171 | pmd = pmd_offset(pud, start); |
172 | pud_clear(pud); | 172 | pud_clear(pud); |
173 | pmd_free_tlb(tlb, pmd); | 173 | pmd_free_tlb(tlb, pmd); |
174 | } | 174 | } |
175 | 175 | ||
176 | static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, | 176 | static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, |
177 | unsigned long addr, unsigned long end, | 177 | unsigned long addr, unsigned long end, |
178 | unsigned long floor, unsigned long ceiling) | 178 | unsigned long floor, unsigned long ceiling) |
179 | { | 179 | { |
180 | pud_t *pud; | 180 | pud_t *pud; |
181 | unsigned long next; | 181 | unsigned long next; |
182 | unsigned long start; | 182 | unsigned long start; |
183 | 183 | ||
184 | start = addr; | 184 | start = addr; |
185 | pud = pud_offset(pgd, addr); | 185 | pud = pud_offset(pgd, addr); |
186 | do { | 186 | do { |
187 | next = pud_addr_end(addr, end); | 187 | next = pud_addr_end(addr, end); |
188 | if (pud_none_or_clear_bad(pud)) | 188 | if (pud_none_or_clear_bad(pud)) |
189 | continue; | 189 | continue; |
190 | free_pmd_range(tlb, pud, addr, next, floor, ceiling); | 190 | free_pmd_range(tlb, pud, addr, next, floor, ceiling); |
191 | } while (pud++, addr = next, addr != end); | 191 | } while (pud++, addr = next, addr != end); |
192 | 192 | ||
193 | start &= PGDIR_MASK; | 193 | start &= PGDIR_MASK; |
194 | if (start < floor) | 194 | if (start < floor) |
195 | return; | 195 | return; |
196 | if (ceiling) { | 196 | if (ceiling) { |
197 | ceiling &= PGDIR_MASK; | 197 | ceiling &= PGDIR_MASK; |
198 | if (!ceiling) | 198 | if (!ceiling) |
199 | return; | 199 | return; |
200 | } | 200 | } |
201 | if (end - 1 > ceiling - 1) | 201 | if (end - 1 > ceiling - 1) |
202 | return; | 202 | return; |
203 | 203 | ||
204 | pud = pud_offset(pgd, start); | 204 | pud = pud_offset(pgd, start); |
205 | pgd_clear(pgd); | 205 | pgd_clear(pgd); |
206 | pud_free_tlb(tlb, pud); | 206 | pud_free_tlb(tlb, pud); |
207 | } | 207 | } |
208 | 208 | ||
209 | /* | 209 | /* |
210 | * This function frees user-level page tables of a process. | 210 | * This function frees user-level page tables of a process. |
211 | * | 211 | * |
212 | * Must be called with pagetable lock held. | 212 | * Must be called with pagetable lock held. |
213 | */ | 213 | */ |
214 | void free_pgd_range(struct mmu_gather **tlb, | 214 | void free_pgd_range(struct mmu_gather **tlb, |
215 | unsigned long addr, unsigned long end, | 215 | unsigned long addr, unsigned long end, |
216 | unsigned long floor, unsigned long ceiling) | 216 | unsigned long floor, unsigned long ceiling) |
217 | { | 217 | { |
218 | pgd_t *pgd; | 218 | pgd_t *pgd; |
219 | unsigned long next; | 219 | unsigned long next; |
220 | unsigned long start; | 220 | unsigned long start; |
221 | 221 | ||
222 | /* | 222 | /* |
223 | * The next few lines have given us lots of grief... | 223 | * The next few lines have given us lots of grief... |
224 | * | 224 | * |
225 | * Why are we testing PMD* at this top level? Because often | 225 | * Why are we testing PMD* at this top level? Because often |
226 | * there will be no work to do at all, and we'd prefer not to | 226 | * there will be no work to do at all, and we'd prefer not to |
227 | * go all the way down to the bottom just to discover that. | 227 | * go all the way down to the bottom just to discover that. |
228 | * | 228 | * |
229 | * Why all these "- 1"s? Because 0 represents both the bottom | 229 | * Why all these "- 1"s? Because 0 represents both the bottom |
230 | * of the address space and the top of it (using -1 for the | 230 | * of the address space and the top of it (using -1 for the |
231 | * top wouldn't help much: the masks would do the wrong thing). | 231 | * top wouldn't help much: the masks would do the wrong thing). |
232 | * The rule is that addr 0 and floor 0 refer to the bottom of | 232 | * The rule is that addr 0 and floor 0 refer to the bottom of |
233 | * the address space, but end 0 and ceiling 0 refer to the top | 233 | * the address space, but end 0 and ceiling 0 refer to the top |
234 | * Comparisons need to use "end - 1" and "ceiling - 1" (though | 234 | * Comparisons need to use "end - 1" and "ceiling - 1" (though |
235 | * that end 0 case should be mythical). | 235 | * that end 0 case should be mythical). |
236 | * | 236 | * |
237 | * Wherever addr is brought up or ceiling brought down, we must | 237 | * Wherever addr is brought up or ceiling brought down, we must |
238 | * be careful to reject "the opposite 0" before it confuses the | 238 | * be careful to reject "the opposite 0" before it confuses the |
239 | * subsequent tests. But what about where end is brought down | 239 | * subsequent tests. But what about where end is brought down |
240 | * by PMD_SIZE below? no, end can't go down to 0 there. | 240 | * by PMD_SIZE below? no, end can't go down to 0 there. |
241 | * | 241 | * |
242 | * Whereas we round start (addr) and ceiling down, by different | 242 | * Whereas we round start (addr) and ceiling down, by different |
243 | * masks at different levels, in order to test whether a table | 243 | * masks at different levels, in order to test whether a table |
244 | * now has no other vmas using it, so can be freed, we don't | 244 | * now has no other vmas using it, so can be freed, we don't |
245 | * bother to round floor or end up - the tests don't need that. | 245 | * bother to round floor or end up - the tests don't need that. |
246 | */ | 246 | */ |
247 | 247 | ||
248 | addr &= PMD_MASK; | 248 | addr &= PMD_MASK; |
249 | if (addr < floor) { | 249 | if (addr < floor) { |
250 | addr += PMD_SIZE; | 250 | addr += PMD_SIZE; |
251 | if (!addr) | 251 | if (!addr) |
252 | return; | 252 | return; |
253 | } | 253 | } |
254 | if (ceiling) { | 254 | if (ceiling) { |
255 | ceiling &= PMD_MASK; | 255 | ceiling &= PMD_MASK; |
256 | if (!ceiling) | 256 | if (!ceiling) |
257 | return; | 257 | return; |
258 | } | 258 | } |
259 | if (end - 1 > ceiling - 1) | 259 | if (end - 1 > ceiling - 1) |
260 | end -= PMD_SIZE; | 260 | end -= PMD_SIZE; |
261 | if (addr > end - 1) | 261 | if (addr > end - 1) |
262 | return; | 262 | return; |
263 | 263 | ||
264 | start = addr; | 264 | start = addr; |
265 | pgd = pgd_offset((*tlb)->mm, addr); | 265 | pgd = pgd_offset((*tlb)->mm, addr); |
266 | do { | 266 | do { |
267 | next = pgd_addr_end(addr, end); | 267 | next = pgd_addr_end(addr, end); |
268 | if (pgd_none_or_clear_bad(pgd)) | 268 | if (pgd_none_or_clear_bad(pgd)) |
269 | continue; | 269 | continue; |
270 | free_pud_range(*tlb, pgd, addr, next, floor, ceiling); | 270 | free_pud_range(*tlb, pgd, addr, next, floor, ceiling); |
271 | } while (pgd++, addr = next, addr != end); | 271 | } while (pgd++, addr = next, addr != end); |
272 | } | 272 | } |
273 | 273 | ||
274 | void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma, | 274 | void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma, |
275 | unsigned long floor, unsigned long ceiling) | 275 | unsigned long floor, unsigned long ceiling) |
276 | { | 276 | { |
277 | while (vma) { | 277 | while (vma) { |
278 | struct vm_area_struct *next = vma->vm_next; | 278 | struct vm_area_struct *next = vma->vm_next; |
279 | unsigned long addr = vma->vm_start; | 279 | unsigned long addr = vma->vm_start; |
280 | 280 | ||
281 | /* | 281 | /* |
282 | * Hide vma from rmap and vmtruncate before freeing pgtables | 282 | * Hide vma from rmap and vmtruncate before freeing pgtables |
283 | */ | 283 | */ |
284 | anon_vma_unlink(vma); | 284 | anon_vma_unlink(vma); |
285 | unlink_file_vma(vma); | 285 | unlink_file_vma(vma); |
286 | 286 | ||
287 | if (is_vm_hugetlb_page(vma)) { | 287 | if (is_vm_hugetlb_page(vma)) { |
288 | hugetlb_free_pgd_range(tlb, addr, vma->vm_end, | 288 | hugetlb_free_pgd_range(tlb, addr, vma->vm_end, |
289 | floor, next? next->vm_start: ceiling); | 289 | floor, next? next->vm_start: ceiling); |
290 | } else { | 290 | } else { |
291 | /* | 291 | /* |
292 | * Optimization: gather nearby vmas into one call down | 292 | * Optimization: gather nearby vmas into one call down |
293 | */ | 293 | */ |
294 | while (next && next->vm_start <= vma->vm_end + PMD_SIZE | 294 | while (next && next->vm_start <= vma->vm_end + PMD_SIZE |
295 | && !is_vm_hugetlb_page(next)) { | 295 | && !is_vm_hugetlb_page(next)) { |
296 | vma = next; | 296 | vma = next; |
297 | next = vma->vm_next; | 297 | next = vma->vm_next; |
298 | anon_vma_unlink(vma); | 298 | anon_vma_unlink(vma); |
299 | unlink_file_vma(vma); | 299 | unlink_file_vma(vma); |
300 | } | 300 | } |
301 | free_pgd_range(tlb, addr, vma->vm_end, | 301 | free_pgd_range(tlb, addr, vma->vm_end, |
302 | floor, next? next->vm_start: ceiling); | 302 | floor, next? next->vm_start: ceiling); |
303 | } | 303 | } |
304 | vma = next; | 304 | vma = next; |
305 | } | 305 | } |
306 | } | 306 | } |
307 | 307 | ||
308 | int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) | 308 | int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) |
309 | { | 309 | { |
310 | pgtable_t new = pte_alloc_one(mm, address); | 310 | pgtable_t new = pte_alloc_one(mm, address); |
311 | if (!new) | 311 | if (!new) |
312 | return -ENOMEM; | 312 | return -ENOMEM; |
313 | 313 | ||
314 | spin_lock(&mm->page_table_lock); | 314 | spin_lock(&mm->page_table_lock); |
315 | if (!pmd_present(*pmd)) { /* Has another populated it ? */ | 315 | if (!pmd_present(*pmd)) { /* Has another populated it ? */ |
316 | mm->nr_ptes++; | 316 | mm->nr_ptes++; |
317 | pmd_populate(mm, pmd, new); | 317 | pmd_populate(mm, pmd, new); |
318 | new = NULL; | 318 | new = NULL; |
319 | } | 319 | } |
320 | spin_unlock(&mm->page_table_lock); | 320 | spin_unlock(&mm->page_table_lock); |
321 | if (new) | 321 | if (new) |
322 | pte_free(mm, new); | 322 | pte_free(mm, new); |
323 | return 0; | 323 | return 0; |
324 | } | 324 | } |
325 | 325 | ||
326 | int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) | 326 | int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) |
327 | { | 327 | { |
328 | pte_t *new = pte_alloc_one_kernel(&init_mm, address); | 328 | pte_t *new = pte_alloc_one_kernel(&init_mm, address); |
329 | if (!new) | 329 | if (!new) |
330 | return -ENOMEM; | 330 | return -ENOMEM; |
331 | 331 | ||
332 | spin_lock(&init_mm.page_table_lock); | 332 | spin_lock(&init_mm.page_table_lock); |
333 | if (!pmd_present(*pmd)) { /* Has another populated it ? */ | 333 | if (!pmd_present(*pmd)) { /* Has another populated it ? */ |
334 | pmd_populate_kernel(&init_mm, pmd, new); | 334 | pmd_populate_kernel(&init_mm, pmd, new); |
335 | new = NULL; | 335 | new = NULL; |
336 | } | 336 | } |
337 | spin_unlock(&init_mm.page_table_lock); | 337 | spin_unlock(&init_mm.page_table_lock); |
338 | if (new) | 338 | if (new) |
339 | pte_free_kernel(&init_mm, new); | 339 | pte_free_kernel(&init_mm, new); |
340 | return 0; | 340 | return 0; |
341 | } | 341 | } |
342 | 342 | ||
343 | static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss) | 343 | static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss) |
344 | { | 344 | { |
345 | if (file_rss) | 345 | if (file_rss) |
346 | add_mm_counter(mm, file_rss, file_rss); | 346 | add_mm_counter(mm, file_rss, file_rss); |
347 | if (anon_rss) | 347 | if (anon_rss) |
348 | add_mm_counter(mm, anon_rss, anon_rss); | 348 | add_mm_counter(mm, anon_rss, anon_rss); |
349 | } | 349 | } |
350 | 350 | ||
351 | /* | 351 | /* |
352 | * This function is called to print an error when a bad pte | 352 | * This function is called to print an error when a bad pte |
353 | * is found. For example, we might have a PFN-mapped pte in | 353 | * is found. For example, we might have a PFN-mapped pte in |
354 | * a region that doesn't allow it. | 354 | * a region that doesn't allow it. |
355 | * | 355 | * |
356 | * The calling function must still handle the error. | 356 | * The calling function must still handle the error. |
357 | */ | 357 | */ |
358 | void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr) | 358 | void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr) |
359 | { | 359 | { |
360 | printk(KERN_ERR "Bad pte = %08llx, process = %s, " | 360 | printk(KERN_ERR "Bad pte = %08llx, process = %s, " |
361 | "vm_flags = %lx, vaddr = %lx\n", | 361 | "vm_flags = %lx, vaddr = %lx\n", |
362 | (long long)pte_val(pte), | 362 | (long long)pte_val(pte), |
363 | (vma->vm_mm == current->mm ? current->comm : "???"), | 363 | (vma->vm_mm == current->mm ? current->comm : "???"), |
364 | vma->vm_flags, vaddr); | 364 | vma->vm_flags, vaddr); |
365 | dump_stack(); | 365 | dump_stack(); |
366 | } | 366 | } |
367 | 367 | ||
368 | static inline int is_cow_mapping(unsigned int flags) | 368 | static inline int is_cow_mapping(unsigned int flags) |
369 | { | 369 | { |
370 | return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; | 370 | return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; |
371 | } | 371 | } |
372 | 372 | ||
373 | /* | 373 | /* |
374 | * This function gets the "struct page" associated with a pte. | 374 | * This function gets the "struct page" associated with a pte. |
375 | * | 375 | * |
376 | * NOTE! Some mappings do not have "struct pages". A raw PFN mapping | 376 | * NOTE! Some mappings do not have "struct pages". A raw PFN mapping |
377 | * will have each page table entry just pointing to a raw page frame | 377 | * will have each page table entry just pointing to a raw page frame |
378 | * number, and as far as the VM layer is concerned, those do not have | 378 | * number, and as far as the VM layer is concerned, those do not have |
379 | * pages associated with them - even if the PFN might point to memory | 379 | * pages associated with them - even if the PFN might point to memory |
380 | * that otherwise is perfectly fine and has a "struct page". | 380 | * that otherwise is perfectly fine and has a "struct page". |
381 | * | 381 | * |
382 | * The way we recognize those mappings is through the rules set up | 382 | * The way we recognize those mappings is through the rules set up |
383 | * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set, | 383 | * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set, |
384 | * and the vm_pgoff will point to the first PFN mapped: thus every | 384 | * and the vm_pgoff will point to the first PFN mapped: thus every |
385 | * page that is a raw mapping will always honor the rule | 385 | * page that is a raw mapping will always honor the rule |
386 | * | 386 | * |
387 | * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) | 387 | * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) |
388 | * | 388 | * |
389 | * and if that isn't true, the page has been COW'ed (in which case it | 389 | * and if that isn't true, the page has been COW'ed (in which case it |
390 | * _does_ have a "struct page" associated with it even if it is in a | 390 | * _does_ have a "struct page" associated with it even if it is in a |
391 | * VM_PFNMAP range). | 391 | * VM_PFNMAP range). |
392 | */ | 392 | */ |
393 | struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte) | 393 | struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte) |
394 | { | 394 | { |
395 | unsigned long pfn = pte_pfn(pte); | 395 | unsigned long pfn = pte_pfn(pte); |
396 | 396 | ||
397 | if (unlikely(vma->vm_flags & VM_PFNMAP)) { | 397 | if (unlikely(vma->vm_flags & VM_PFNMAP)) { |
398 | unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT; | 398 | unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT; |
399 | if (pfn == vma->vm_pgoff + off) | 399 | if (pfn == vma->vm_pgoff + off) |
400 | return NULL; | 400 | return NULL; |
401 | if (!is_cow_mapping(vma->vm_flags)) | 401 | if (!is_cow_mapping(vma->vm_flags)) |
402 | return NULL; | 402 | return NULL; |
403 | } | 403 | } |
404 | 404 | ||
405 | #ifdef CONFIG_DEBUG_VM | 405 | #ifdef CONFIG_DEBUG_VM |
406 | /* | 406 | /* |
407 | * Add some anal sanity checks for now. Eventually, | 407 | * Add some anal sanity checks for now. Eventually, |
408 | * we should just do "return pfn_to_page(pfn)", but | 408 | * we should just do "return pfn_to_page(pfn)", but |
409 | * in the meantime we check that we get a valid pfn, | 409 | * in the meantime we check that we get a valid pfn, |
410 | * and that the resulting page looks ok. | 410 | * and that the resulting page looks ok. |
411 | */ | 411 | */ |
412 | if (unlikely(!pfn_valid(pfn))) { | 412 | if (unlikely(!pfn_valid(pfn))) { |
413 | print_bad_pte(vma, pte, addr); | 413 | print_bad_pte(vma, pte, addr); |
414 | return NULL; | 414 | return NULL; |
415 | } | 415 | } |
416 | #endif | 416 | #endif |
417 | 417 | ||
418 | /* | 418 | /* |
419 | * NOTE! We still have PageReserved() pages in the page | 419 | * NOTE! We still have PageReserved() pages in the page |
420 | * tables. | 420 | * tables. |
421 | * | 421 | * |
422 | * The PAGE_ZERO() pages and various VDSO mappings can | 422 | * The PAGE_ZERO() pages and various VDSO mappings can |
423 | * cause them to exist. | 423 | * cause them to exist. |
424 | */ | 424 | */ |
425 | return pfn_to_page(pfn); | 425 | return pfn_to_page(pfn); |
426 | } | 426 | } |
427 | 427 | ||
428 | /* | 428 | /* |
429 | * copy one vm_area from one task to the other. Assumes the page tables | 429 | * copy one vm_area from one task to the other. Assumes the page tables |
430 | * already present in the new task to be cleared in the whole range | 430 | * already present in the new task to be cleared in the whole range |
431 | * covered by this vma. | 431 | * covered by this vma. |
432 | */ | 432 | */ |
433 | 433 | ||
434 | static inline void | 434 | static inline void |
435 | copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 435 | copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
436 | pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, | 436 | pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, |
437 | unsigned long addr, int *rss) | 437 | unsigned long addr, int *rss) |
438 | { | 438 | { |
439 | unsigned long vm_flags = vma->vm_flags; | 439 | unsigned long vm_flags = vma->vm_flags; |
440 | pte_t pte = *src_pte; | 440 | pte_t pte = *src_pte; |
441 | struct page *page; | 441 | struct page *page; |
442 | 442 | ||
443 | /* pte contains position in swap or file, so copy. */ | 443 | /* pte contains position in swap or file, so copy. */ |
444 | if (unlikely(!pte_present(pte))) { | 444 | if (unlikely(!pte_present(pte))) { |
445 | if (!pte_file(pte)) { | 445 | if (!pte_file(pte)) { |
446 | swp_entry_t entry = pte_to_swp_entry(pte); | 446 | swp_entry_t entry = pte_to_swp_entry(pte); |
447 | 447 | ||
448 | swap_duplicate(entry); | 448 | swap_duplicate(entry); |
449 | /* make sure dst_mm is on swapoff's mmlist. */ | 449 | /* make sure dst_mm is on swapoff's mmlist. */ |
450 | if (unlikely(list_empty(&dst_mm->mmlist))) { | 450 | if (unlikely(list_empty(&dst_mm->mmlist))) { |
451 | spin_lock(&mmlist_lock); | 451 | spin_lock(&mmlist_lock); |
452 | if (list_empty(&dst_mm->mmlist)) | 452 | if (list_empty(&dst_mm->mmlist)) |
453 | list_add(&dst_mm->mmlist, | 453 | list_add(&dst_mm->mmlist, |
454 | &src_mm->mmlist); | 454 | &src_mm->mmlist); |
455 | spin_unlock(&mmlist_lock); | 455 | spin_unlock(&mmlist_lock); |
456 | } | 456 | } |
457 | if (is_write_migration_entry(entry) && | 457 | if (is_write_migration_entry(entry) && |
458 | is_cow_mapping(vm_flags)) { | 458 | is_cow_mapping(vm_flags)) { |
459 | /* | 459 | /* |
460 | * COW mappings require pages in both parent | 460 | * COW mappings require pages in both parent |
461 | * and child to be set to read. | 461 | * and child to be set to read. |
462 | */ | 462 | */ |
463 | make_migration_entry_read(&entry); | 463 | make_migration_entry_read(&entry); |
464 | pte = swp_entry_to_pte(entry); | 464 | pte = swp_entry_to_pte(entry); |
465 | set_pte_at(src_mm, addr, src_pte, pte); | 465 | set_pte_at(src_mm, addr, src_pte, pte); |
466 | } | 466 | } |
467 | } | 467 | } |
468 | goto out_set_pte; | 468 | goto out_set_pte; |
469 | } | 469 | } |
470 | 470 | ||
471 | /* | 471 | /* |
472 | * If it's a COW mapping, write protect it both | 472 | * If it's a COW mapping, write protect it both |
473 | * in the parent and the child | 473 | * in the parent and the child |
474 | */ | 474 | */ |
475 | if (is_cow_mapping(vm_flags)) { | 475 | if (is_cow_mapping(vm_flags)) { |
476 | ptep_set_wrprotect(src_mm, addr, src_pte); | 476 | ptep_set_wrprotect(src_mm, addr, src_pte); |
477 | pte = pte_wrprotect(pte); | 477 | pte = pte_wrprotect(pte); |
478 | } | 478 | } |
479 | 479 | ||
480 | /* | 480 | /* |
481 | * If it's a shared mapping, mark it clean in | 481 | * If it's a shared mapping, mark it clean in |
482 | * the child | 482 | * the child |
483 | */ | 483 | */ |
484 | if (vm_flags & VM_SHARED) | 484 | if (vm_flags & VM_SHARED) |
485 | pte = pte_mkclean(pte); | 485 | pte = pte_mkclean(pte); |
486 | pte = pte_mkold(pte); | 486 | pte = pte_mkold(pte); |
487 | 487 | ||
488 | page = vm_normal_page(vma, addr, pte); | 488 | page = vm_normal_page(vma, addr, pte); |
489 | if (page) { | 489 | if (page) { |
490 | get_page(page); | 490 | get_page(page); |
491 | page_dup_rmap(page, vma, addr); | 491 | page_dup_rmap(page, vma, addr); |
492 | rss[!!PageAnon(page)]++; | 492 | rss[!!PageAnon(page)]++; |
493 | } | 493 | } |
494 | 494 | ||
495 | out_set_pte: | 495 | out_set_pte: |
496 | set_pte_at(dst_mm, addr, dst_pte, pte); | 496 | set_pte_at(dst_mm, addr, dst_pte, pte); |
497 | } | 497 | } |
498 | 498 | ||
499 | static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 499 | static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
500 | pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, | 500 | pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, |
501 | unsigned long addr, unsigned long end) | 501 | unsigned long addr, unsigned long end) |
502 | { | 502 | { |
503 | pte_t *src_pte, *dst_pte; | 503 | pte_t *src_pte, *dst_pte; |
504 | spinlock_t *src_ptl, *dst_ptl; | 504 | spinlock_t *src_ptl, *dst_ptl; |
505 | int progress = 0; | 505 | int progress = 0; |
506 | int rss[2]; | 506 | int rss[2]; |
507 | 507 | ||
508 | again: | 508 | again: |
509 | rss[1] = rss[0] = 0; | 509 | rss[1] = rss[0] = 0; |
510 | dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); | 510 | dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); |
511 | if (!dst_pte) | 511 | if (!dst_pte) |
512 | return -ENOMEM; | 512 | return -ENOMEM; |
513 | src_pte = pte_offset_map_nested(src_pmd, addr); | 513 | src_pte = pte_offset_map_nested(src_pmd, addr); |
514 | src_ptl = pte_lockptr(src_mm, src_pmd); | 514 | src_ptl = pte_lockptr(src_mm, src_pmd); |
515 | spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); | 515 | spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); |
516 | arch_enter_lazy_mmu_mode(); | 516 | arch_enter_lazy_mmu_mode(); |
517 | 517 | ||
518 | do { | 518 | do { |
519 | /* | 519 | /* |
520 | * We are holding two locks at this point - either of them | 520 | * We are holding two locks at this point - either of them |
521 | * could generate latencies in another task on another CPU. | 521 | * could generate latencies in another task on another CPU. |
522 | */ | 522 | */ |
523 | if (progress >= 32) { | 523 | if (progress >= 32) { |
524 | progress = 0; | 524 | progress = 0; |
525 | if (need_resched() || | 525 | if (need_resched() || |
526 | spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) | 526 | spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) |
527 | break; | 527 | break; |
528 | } | 528 | } |
529 | if (pte_none(*src_pte)) { | 529 | if (pte_none(*src_pte)) { |
530 | progress++; | 530 | progress++; |
531 | continue; | 531 | continue; |
532 | } | 532 | } |
533 | copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss); | 533 | copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss); |
534 | progress += 8; | 534 | progress += 8; |
535 | } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); | 535 | } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); |
536 | 536 | ||
537 | arch_leave_lazy_mmu_mode(); | 537 | arch_leave_lazy_mmu_mode(); |
538 | spin_unlock(src_ptl); | 538 | spin_unlock(src_ptl); |
539 | pte_unmap_nested(src_pte - 1); | 539 | pte_unmap_nested(src_pte - 1); |
540 | add_mm_rss(dst_mm, rss[0], rss[1]); | 540 | add_mm_rss(dst_mm, rss[0], rss[1]); |
541 | pte_unmap_unlock(dst_pte - 1, dst_ptl); | 541 | pte_unmap_unlock(dst_pte - 1, dst_ptl); |
542 | cond_resched(); | 542 | cond_resched(); |
543 | if (addr != end) | 543 | if (addr != end) |
544 | goto again; | 544 | goto again; |
545 | return 0; | 545 | return 0; |
546 | } | 546 | } |
547 | 547 | ||
548 | static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 548 | static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
549 | pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, | 549 | pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, |
550 | unsigned long addr, unsigned long end) | 550 | unsigned long addr, unsigned long end) |
551 | { | 551 | { |
552 | pmd_t *src_pmd, *dst_pmd; | 552 | pmd_t *src_pmd, *dst_pmd; |
553 | unsigned long next; | 553 | unsigned long next; |
554 | 554 | ||
555 | dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); | 555 | dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); |
556 | if (!dst_pmd) | 556 | if (!dst_pmd) |
557 | return -ENOMEM; | 557 | return -ENOMEM; |
558 | src_pmd = pmd_offset(src_pud, addr); | 558 | src_pmd = pmd_offset(src_pud, addr); |
559 | do { | 559 | do { |
560 | next = pmd_addr_end(addr, end); | 560 | next = pmd_addr_end(addr, end); |
561 | if (pmd_none_or_clear_bad(src_pmd)) | 561 | if (pmd_none_or_clear_bad(src_pmd)) |
562 | continue; | 562 | continue; |
563 | if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, | 563 | if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, |
564 | vma, addr, next)) | 564 | vma, addr, next)) |
565 | return -ENOMEM; | 565 | return -ENOMEM; |
566 | } while (dst_pmd++, src_pmd++, addr = next, addr != end); | 566 | } while (dst_pmd++, src_pmd++, addr = next, addr != end); |
567 | return 0; | 567 | return 0; |
568 | } | 568 | } |
569 | 569 | ||
570 | static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 570 | static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
571 | pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, | 571 | pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, |
572 | unsigned long addr, unsigned long end) | 572 | unsigned long addr, unsigned long end) |
573 | { | 573 | { |
574 | pud_t *src_pud, *dst_pud; | 574 | pud_t *src_pud, *dst_pud; |
575 | unsigned long next; | 575 | unsigned long next; |
576 | 576 | ||
577 | dst_pud = pud_alloc(dst_mm, dst_pgd, addr); | 577 | dst_pud = pud_alloc(dst_mm, dst_pgd, addr); |
578 | if (!dst_pud) | 578 | if (!dst_pud) |
579 | return -ENOMEM; | 579 | return -ENOMEM; |
580 | src_pud = pud_offset(src_pgd, addr); | 580 | src_pud = pud_offset(src_pgd, addr); |
581 | do { | 581 | do { |
582 | next = pud_addr_end(addr, end); | 582 | next = pud_addr_end(addr, end); |
583 | if (pud_none_or_clear_bad(src_pud)) | 583 | if (pud_none_or_clear_bad(src_pud)) |
584 | continue; | 584 | continue; |
585 | if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, | 585 | if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, |
586 | vma, addr, next)) | 586 | vma, addr, next)) |
587 | return -ENOMEM; | 587 | return -ENOMEM; |
588 | } while (dst_pud++, src_pud++, addr = next, addr != end); | 588 | } while (dst_pud++, src_pud++, addr = next, addr != end); |
589 | return 0; | 589 | return 0; |
590 | } | 590 | } |
591 | 591 | ||
592 | int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 592 | int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
593 | struct vm_area_struct *vma) | 593 | struct vm_area_struct *vma) |
594 | { | 594 | { |
595 | pgd_t *src_pgd, *dst_pgd; | 595 | pgd_t *src_pgd, *dst_pgd; |
596 | unsigned long next; | 596 | unsigned long next; |
597 | unsigned long addr = vma->vm_start; | 597 | unsigned long addr = vma->vm_start; |
598 | unsigned long end = vma->vm_end; | 598 | unsigned long end = vma->vm_end; |
599 | 599 | ||
600 | /* | 600 | /* |
601 | * Don't copy ptes where a page fault will fill them correctly. | 601 | * Don't copy ptes where a page fault will fill them correctly. |
602 | * Fork becomes much lighter when there are big shared or private | 602 | * Fork becomes much lighter when there are big shared or private |
603 | * readonly mappings. The tradeoff is that copy_page_range is more | 603 | * readonly mappings. The tradeoff is that copy_page_range is more |
604 | * efficient than faulting. | 604 | * efficient than faulting. |
605 | */ | 605 | */ |
606 | if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { | 606 | if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { |
607 | if (!vma->anon_vma) | 607 | if (!vma->anon_vma) |
608 | return 0; | 608 | return 0; |
609 | } | 609 | } |
610 | 610 | ||
611 | if (is_vm_hugetlb_page(vma)) | 611 | if (is_vm_hugetlb_page(vma)) |
612 | return copy_hugetlb_page_range(dst_mm, src_mm, vma); | 612 | return copy_hugetlb_page_range(dst_mm, src_mm, vma); |
613 | 613 | ||
614 | dst_pgd = pgd_offset(dst_mm, addr); | 614 | dst_pgd = pgd_offset(dst_mm, addr); |
615 | src_pgd = pgd_offset(src_mm, addr); | 615 | src_pgd = pgd_offset(src_mm, addr); |
616 | do { | 616 | do { |
617 | next = pgd_addr_end(addr, end); | 617 | next = pgd_addr_end(addr, end); |
618 | if (pgd_none_or_clear_bad(src_pgd)) | 618 | if (pgd_none_or_clear_bad(src_pgd)) |
619 | continue; | 619 | continue; |
620 | if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, | 620 | if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, |
621 | vma, addr, next)) | 621 | vma, addr, next)) |
622 | return -ENOMEM; | 622 | return -ENOMEM; |
623 | } while (dst_pgd++, src_pgd++, addr = next, addr != end); | 623 | } while (dst_pgd++, src_pgd++, addr = next, addr != end); |
624 | return 0; | 624 | return 0; |
625 | } | 625 | } |
626 | 626 | ||
627 | static unsigned long zap_pte_range(struct mmu_gather *tlb, | 627 | static unsigned long zap_pte_range(struct mmu_gather *tlb, |
628 | struct vm_area_struct *vma, pmd_t *pmd, | 628 | struct vm_area_struct *vma, pmd_t *pmd, |
629 | unsigned long addr, unsigned long end, | 629 | unsigned long addr, unsigned long end, |
630 | long *zap_work, struct zap_details *details) | 630 | long *zap_work, struct zap_details *details) |
631 | { | 631 | { |
632 | struct mm_struct *mm = tlb->mm; | 632 | struct mm_struct *mm = tlb->mm; |
633 | pte_t *pte; | 633 | pte_t *pte; |
634 | spinlock_t *ptl; | 634 | spinlock_t *ptl; |
635 | int file_rss = 0; | 635 | int file_rss = 0; |
636 | int anon_rss = 0; | 636 | int anon_rss = 0; |
637 | 637 | ||
638 | pte = pte_offset_map_lock(mm, pmd, addr, &ptl); | 638 | pte = pte_offset_map_lock(mm, pmd, addr, &ptl); |
639 | arch_enter_lazy_mmu_mode(); | 639 | arch_enter_lazy_mmu_mode(); |
640 | do { | 640 | do { |
641 | pte_t ptent = *pte; | 641 | pte_t ptent = *pte; |
642 | if (pte_none(ptent)) { | 642 | if (pte_none(ptent)) { |
643 | (*zap_work)--; | 643 | (*zap_work)--; |
644 | continue; | 644 | continue; |
645 | } | 645 | } |
646 | 646 | ||
647 | (*zap_work) -= PAGE_SIZE; | 647 | (*zap_work) -= PAGE_SIZE; |
648 | 648 | ||
649 | if (pte_present(ptent)) { | 649 | if (pte_present(ptent)) { |
650 | struct page *page; | 650 | struct page *page; |
651 | 651 | ||
652 | page = vm_normal_page(vma, addr, ptent); | 652 | page = vm_normal_page(vma, addr, ptent); |
653 | if (unlikely(details) && page) { | 653 | if (unlikely(details) && page) { |
654 | /* | 654 | /* |
655 | * unmap_shared_mapping_pages() wants to | 655 | * unmap_shared_mapping_pages() wants to |
656 | * invalidate cache without truncating: | 656 | * invalidate cache without truncating: |
657 | * unmap shared but keep private pages. | 657 | * unmap shared but keep private pages. |
658 | */ | 658 | */ |
659 | if (details->check_mapping && | 659 | if (details->check_mapping && |
660 | details->check_mapping != page->mapping) | 660 | details->check_mapping != page->mapping) |
661 | continue; | 661 | continue; |
662 | /* | 662 | /* |
663 | * Each page->index must be checked when | 663 | * Each page->index must be checked when |
664 | * invalidating or truncating nonlinear. | 664 | * invalidating or truncating nonlinear. |
665 | */ | 665 | */ |
666 | if (details->nonlinear_vma && | 666 | if (details->nonlinear_vma && |
667 | (page->index < details->first_index || | 667 | (page->index < details->first_index || |
668 | page->index > details->last_index)) | 668 | page->index > details->last_index)) |
669 | continue; | 669 | continue; |
670 | } | 670 | } |
671 | ptent = ptep_get_and_clear_full(mm, addr, pte, | 671 | ptent = ptep_get_and_clear_full(mm, addr, pte, |
672 | tlb->fullmm); | 672 | tlb->fullmm); |
673 | tlb_remove_tlb_entry(tlb, pte, addr); | 673 | tlb_remove_tlb_entry(tlb, pte, addr); |
674 | if (unlikely(!page)) | 674 | if (unlikely(!page)) |
675 | continue; | 675 | continue; |
676 | if (unlikely(details) && details->nonlinear_vma | 676 | if (unlikely(details) && details->nonlinear_vma |
677 | && linear_page_index(details->nonlinear_vma, | 677 | && linear_page_index(details->nonlinear_vma, |
678 | addr) != page->index) | 678 | addr) != page->index) |
679 | set_pte_at(mm, addr, pte, | 679 | set_pte_at(mm, addr, pte, |
680 | pgoff_to_pte(page->index)); | 680 | pgoff_to_pte(page->index)); |
681 | if (PageAnon(page)) | 681 | if (PageAnon(page)) |
682 | anon_rss--; | 682 | anon_rss--; |
683 | else { | 683 | else { |
684 | if (pte_dirty(ptent)) | 684 | if (pte_dirty(ptent)) |
685 | set_page_dirty(page); | 685 | set_page_dirty(page); |
686 | if (pte_young(ptent)) | 686 | if (pte_young(ptent)) |
687 | SetPageReferenced(page); | 687 | SetPageReferenced(page); |
688 | file_rss--; | 688 | file_rss--; |
689 | } | 689 | } |
690 | page_remove_rmap(page, vma); | 690 | page_remove_rmap(page, vma); |
691 | tlb_remove_page(tlb, page); | 691 | tlb_remove_page(tlb, page); |
692 | continue; | 692 | continue; |
693 | } | 693 | } |
694 | /* | 694 | /* |
695 | * If details->check_mapping, we leave swap entries; | 695 | * If details->check_mapping, we leave swap entries; |
696 | * if details->nonlinear_vma, we leave file entries. | 696 | * if details->nonlinear_vma, we leave file entries. |
697 | */ | 697 | */ |
698 | if (unlikely(details)) | 698 | if (unlikely(details)) |
699 | continue; | 699 | continue; |
700 | if (!pte_file(ptent)) | 700 | if (!pte_file(ptent)) |
701 | free_swap_and_cache(pte_to_swp_entry(ptent)); | 701 | free_swap_and_cache(pte_to_swp_entry(ptent)); |
702 | pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); | 702 | pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); |
703 | } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); | 703 | } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); |
704 | 704 | ||
705 | add_mm_rss(mm, file_rss, anon_rss); | 705 | add_mm_rss(mm, file_rss, anon_rss); |
706 | arch_leave_lazy_mmu_mode(); | 706 | arch_leave_lazy_mmu_mode(); |
707 | pte_unmap_unlock(pte - 1, ptl); | 707 | pte_unmap_unlock(pte - 1, ptl); |
708 | 708 | ||
709 | return addr; | 709 | return addr; |
710 | } | 710 | } |
711 | 711 | ||
712 | static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, | 712 | static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, |
713 | struct vm_area_struct *vma, pud_t *pud, | 713 | struct vm_area_struct *vma, pud_t *pud, |
714 | unsigned long addr, unsigned long end, | 714 | unsigned long addr, unsigned long end, |
715 | long *zap_work, struct zap_details *details) | 715 | long *zap_work, struct zap_details *details) |
716 | { | 716 | { |
717 | pmd_t *pmd; | 717 | pmd_t *pmd; |
718 | unsigned long next; | 718 | unsigned long next; |
719 | 719 | ||
720 | pmd = pmd_offset(pud, addr); | 720 | pmd = pmd_offset(pud, addr); |
721 | do { | 721 | do { |
722 | next = pmd_addr_end(addr, end); | 722 | next = pmd_addr_end(addr, end); |
723 | if (pmd_none_or_clear_bad(pmd)) { | 723 | if (pmd_none_or_clear_bad(pmd)) { |
724 | (*zap_work)--; | 724 | (*zap_work)--; |
725 | continue; | 725 | continue; |
726 | } | 726 | } |
727 | next = zap_pte_range(tlb, vma, pmd, addr, next, | 727 | next = zap_pte_range(tlb, vma, pmd, addr, next, |
728 | zap_work, details); | 728 | zap_work, details); |
729 | } while (pmd++, addr = next, (addr != end && *zap_work > 0)); | 729 | } while (pmd++, addr = next, (addr != end && *zap_work > 0)); |
730 | 730 | ||
731 | return addr; | 731 | return addr; |
732 | } | 732 | } |
733 | 733 | ||
734 | static inline unsigned long zap_pud_range(struct mmu_gather *tlb, | 734 | static inline unsigned long zap_pud_range(struct mmu_gather *tlb, |
735 | struct vm_area_struct *vma, pgd_t *pgd, | 735 | struct vm_area_struct *vma, pgd_t *pgd, |
736 | unsigned long addr, unsigned long end, | 736 | unsigned long addr, unsigned long end, |
737 | long *zap_work, struct zap_details *details) | 737 | long *zap_work, struct zap_details *details) |
738 | { | 738 | { |
739 | pud_t *pud; | 739 | pud_t *pud; |
740 | unsigned long next; | 740 | unsigned long next; |
741 | 741 | ||
742 | pud = pud_offset(pgd, addr); | 742 | pud = pud_offset(pgd, addr); |
743 | do { | 743 | do { |
744 | next = pud_addr_end(addr, end); | 744 | next = pud_addr_end(addr, end); |
745 | if (pud_none_or_clear_bad(pud)) { | 745 | if (pud_none_or_clear_bad(pud)) { |
746 | (*zap_work)--; | 746 | (*zap_work)--; |
747 | continue; | 747 | continue; |
748 | } | 748 | } |
749 | next = zap_pmd_range(tlb, vma, pud, addr, next, | 749 | next = zap_pmd_range(tlb, vma, pud, addr, next, |
750 | zap_work, details); | 750 | zap_work, details); |
751 | } while (pud++, addr = next, (addr != end && *zap_work > 0)); | 751 | } while (pud++, addr = next, (addr != end && *zap_work > 0)); |
752 | 752 | ||
753 | return addr; | 753 | return addr; |
754 | } | 754 | } |
755 | 755 | ||
756 | static unsigned long unmap_page_range(struct mmu_gather *tlb, | 756 | static unsigned long unmap_page_range(struct mmu_gather *tlb, |
757 | struct vm_area_struct *vma, | 757 | struct vm_area_struct *vma, |
758 | unsigned long addr, unsigned long end, | 758 | unsigned long addr, unsigned long end, |
759 | long *zap_work, struct zap_details *details) | 759 | long *zap_work, struct zap_details *details) |
760 | { | 760 | { |
761 | pgd_t *pgd; | 761 | pgd_t *pgd; |
762 | unsigned long next; | 762 | unsigned long next; |
763 | 763 | ||
764 | if (details && !details->check_mapping && !details->nonlinear_vma) | 764 | if (details && !details->check_mapping && !details->nonlinear_vma) |
765 | details = NULL; | 765 | details = NULL; |
766 | 766 | ||
767 | BUG_ON(addr >= end); | 767 | BUG_ON(addr >= end); |
768 | tlb_start_vma(tlb, vma); | 768 | tlb_start_vma(tlb, vma); |
769 | pgd = pgd_offset(vma->vm_mm, addr); | 769 | pgd = pgd_offset(vma->vm_mm, addr); |
770 | do { | 770 | do { |
771 | next = pgd_addr_end(addr, end); | 771 | next = pgd_addr_end(addr, end); |
772 | if (pgd_none_or_clear_bad(pgd)) { | 772 | if (pgd_none_or_clear_bad(pgd)) { |
773 | (*zap_work)--; | 773 | (*zap_work)--; |
774 | continue; | 774 | continue; |
775 | } | 775 | } |
776 | next = zap_pud_range(tlb, vma, pgd, addr, next, | 776 | next = zap_pud_range(tlb, vma, pgd, addr, next, |
777 | zap_work, details); | 777 | zap_work, details); |
778 | } while (pgd++, addr = next, (addr != end && *zap_work > 0)); | 778 | } while (pgd++, addr = next, (addr != end && *zap_work > 0)); |
779 | tlb_end_vma(tlb, vma); | 779 | tlb_end_vma(tlb, vma); |
780 | 780 | ||
781 | return addr; | 781 | return addr; |
782 | } | 782 | } |
783 | 783 | ||
784 | #ifdef CONFIG_PREEMPT | 784 | #ifdef CONFIG_PREEMPT |
785 | # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) | 785 | # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) |
786 | #else | 786 | #else |
787 | /* No preempt: go for improved straight-line efficiency */ | 787 | /* No preempt: go for improved straight-line efficiency */ |
788 | # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) | 788 | # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) |
789 | #endif | 789 | #endif |
790 | 790 | ||
791 | /** | 791 | /** |
792 | * unmap_vmas - unmap a range of memory covered by a list of vma's | 792 | * unmap_vmas - unmap a range of memory covered by a list of vma's |
793 | * @tlbp: address of the caller's struct mmu_gather | 793 | * @tlbp: address of the caller's struct mmu_gather |
794 | * @vma: the starting vma | 794 | * @vma: the starting vma |
795 | * @start_addr: virtual address at which to start unmapping | 795 | * @start_addr: virtual address at which to start unmapping |
796 | * @end_addr: virtual address at which to end unmapping | 796 | * @end_addr: virtual address at which to end unmapping |
797 | * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here | 797 | * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here |
798 | * @details: details of nonlinear truncation or shared cache invalidation | 798 | * @details: details of nonlinear truncation or shared cache invalidation |
799 | * | 799 | * |
800 | * Returns the end address of the unmapping (restart addr if interrupted). | 800 | * Returns the end address of the unmapping (restart addr if interrupted). |
801 | * | 801 | * |
802 | * Unmap all pages in the vma list. | 802 | * Unmap all pages in the vma list. |
803 | * | 803 | * |
804 | * We aim to not hold locks for too long (for scheduling latency reasons). | 804 | * We aim to not hold locks for too long (for scheduling latency reasons). |
805 | * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to | 805 | * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to |
806 | * return the ending mmu_gather to the caller. | 806 | * return the ending mmu_gather to the caller. |
807 | * | 807 | * |
808 | * Only addresses between `start' and `end' will be unmapped. | 808 | * Only addresses between `start' and `end' will be unmapped. |
809 | * | 809 | * |
810 | * The VMA list must be sorted in ascending virtual address order. | 810 | * The VMA list must be sorted in ascending virtual address order. |
811 | * | 811 | * |
812 | * unmap_vmas() assumes that the caller will flush the whole unmapped address | 812 | * unmap_vmas() assumes that the caller will flush the whole unmapped address |
813 | * range after unmap_vmas() returns. So the only responsibility here is to | 813 | * range after unmap_vmas() returns. So the only responsibility here is to |
814 | * ensure that any thus-far unmapped pages are flushed before unmap_vmas() | 814 | * ensure that any thus-far unmapped pages are flushed before unmap_vmas() |
815 | * drops the lock and schedules. | 815 | * drops the lock and schedules. |
816 | */ | 816 | */ |
817 | unsigned long unmap_vmas(struct mmu_gather **tlbp, | 817 | unsigned long unmap_vmas(struct mmu_gather **tlbp, |
818 | struct vm_area_struct *vma, unsigned long start_addr, | 818 | struct vm_area_struct *vma, unsigned long start_addr, |
819 | unsigned long end_addr, unsigned long *nr_accounted, | 819 | unsigned long end_addr, unsigned long *nr_accounted, |
820 | struct zap_details *details) | 820 | struct zap_details *details) |
821 | { | 821 | { |
822 | long zap_work = ZAP_BLOCK_SIZE; | 822 | long zap_work = ZAP_BLOCK_SIZE; |
823 | unsigned long tlb_start = 0; /* For tlb_finish_mmu */ | 823 | unsigned long tlb_start = 0; /* For tlb_finish_mmu */ |
824 | int tlb_start_valid = 0; | 824 | int tlb_start_valid = 0; |
825 | unsigned long start = start_addr; | 825 | unsigned long start = start_addr; |
826 | spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; | 826 | spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; |
827 | int fullmm = (*tlbp)->fullmm; | 827 | int fullmm = (*tlbp)->fullmm; |
828 | 828 | ||
829 | for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { | 829 | for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { |
830 | unsigned long end; | 830 | unsigned long end; |
831 | 831 | ||
832 | start = max(vma->vm_start, start_addr); | 832 | start = max(vma->vm_start, start_addr); |
833 | if (start >= vma->vm_end) | 833 | if (start >= vma->vm_end) |
834 | continue; | 834 | continue; |
835 | end = min(vma->vm_end, end_addr); | 835 | end = min(vma->vm_end, end_addr); |
836 | if (end <= vma->vm_start) | 836 | if (end <= vma->vm_start) |
837 | continue; | 837 | continue; |
838 | 838 | ||
839 | if (vma->vm_flags & VM_ACCOUNT) | 839 | if (vma->vm_flags & VM_ACCOUNT) |
840 | *nr_accounted += (end - start) >> PAGE_SHIFT; | 840 | *nr_accounted += (end - start) >> PAGE_SHIFT; |
841 | 841 | ||
842 | while (start != end) { | 842 | while (start != end) { |
843 | if (!tlb_start_valid) { | 843 | if (!tlb_start_valid) { |
844 | tlb_start = start; | 844 | tlb_start = start; |
845 | tlb_start_valid = 1; | 845 | tlb_start_valid = 1; |
846 | } | 846 | } |
847 | 847 | ||
848 | if (unlikely(is_vm_hugetlb_page(vma))) { | 848 | if (unlikely(is_vm_hugetlb_page(vma))) { |
849 | unmap_hugepage_range(vma, start, end); | 849 | unmap_hugepage_range(vma, start, end); |
850 | zap_work -= (end - start) / | 850 | zap_work -= (end - start) / |
851 | (HPAGE_SIZE / PAGE_SIZE); | 851 | (HPAGE_SIZE / PAGE_SIZE); |
852 | start = end; | 852 | start = end; |
853 | } else | 853 | } else |
854 | start = unmap_page_range(*tlbp, vma, | 854 | start = unmap_page_range(*tlbp, vma, |
855 | start, end, &zap_work, details); | 855 | start, end, &zap_work, details); |
856 | 856 | ||
857 | if (zap_work > 0) { | 857 | if (zap_work > 0) { |
858 | BUG_ON(start != end); | 858 | BUG_ON(start != end); |
859 | break; | 859 | break; |
860 | } | 860 | } |
861 | 861 | ||
862 | tlb_finish_mmu(*tlbp, tlb_start, start); | 862 | tlb_finish_mmu(*tlbp, tlb_start, start); |
863 | 863 | ||
864 | if (need_resched() || | 864 | if (need_resched() || |
865 | (i_mmap_lock && spin_needbreak(i_mmap_lock))) { | 865 | (i_mmap_lock && spin_needbreak(i_mmap_lock))) { |
866 | if (i_mmap_lock) { | 866 | if (i_mmap_lock) { |
867 | *tlbp = NULL; | 867 | *tlbp = NULL; |
868 | goto out; | 868 | goto out; |
869 | } | 869 | } |
870 | cond_resched(); | 870 | cond_resched(); |
871 | } | 871 | } |
872 | 872 | ||
873 | *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); | 873 | *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); |
874 | tlb_start_valid = 0; | 874 | tlb_start_valid = 0; |
875 | zap_work = ZAP_BLOCK_SIZE; | 875 | zap_work = ZAP_BLOCK_SIZE; |
876 | } | 876 | } |
877 | } | 877 | } |
878 | out: | 878 | out: |
879 | return start; /* which is now the end (or restart) address */ | 879 | return start; /* which is now the end (or restart) address */ |
880 | } | 880 | } |
881 | 881 | ||
882 | /** | 882 | /** |
883 | * zap_page_range - remove user pages in a given range | 883 | * zap_page_range - remove user pages in a given range |
884 | * @vma: vm_area_struct holding the applicable pages | 884 | * @vma: vm_area_struct holding the applicable pages |
885 | * @address: starting address of pages to zap | 885 | * @address: starting address of pages to zap |
886 | * @size: number of bytes to zap | 886 | * @size: number of bytes to zap |
887 | * @details: details of nonlinear truncation or shared cache invalidation | 887 | * @details: details of nonlinear truncation or shared cache invalidation |
888 | */ | 888 | */ |
889 | unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, | 889 | unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, |
890 | unsigned long size, struct zap_details *details) | 890 | unsigned long size, struct zap_details *details) |
891 | { | 891 | { |
892 | struct mm_struct *mm = vma->vm_mm; | 892 | struct mm_struct *mm = vma->vm_mm; |
893 | struct mmu_gather *tlb; | 893 | struct mmu_gather *tlb; |
894 | unsigned long end = address + size; | 894 | unsigned long end = address + size; |
895 | unsigned long nr_accounted = 0; | 895 | unsigned long nr_accounted = 0; |
896 | 896 | ||
897 | lru_add_drain(); | 897 | lru_add_drain(); |
898 | tlb = tlb_gather_mmu(mm, 0); | 898 | tlb = tlb_gather_mmu(mm, 0); |
899 | update_hiwater_rss(mm); | 899 | update_hiwater_rss(mm); |
900 | end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); | 900 | end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); |
901 | if (tlb) | 901 | if (tlb) |
902 | tlb_finish_mmu(tlb, address, end); | 902 | tlb_finish_mmu(tlb, address, end); |
903 | return end; | 903 | return end; |
904 | } | 904 | } |
905 | 905 | ||
906 | /* | 906 | /* |
907 | * Do a quick page-table lookup for a single page. | 907 | * Do a quick page-table lookup for a single page. |
908 | */ | 908 | */ |
909 | struct page *follow_page(struct vm_area_struct *vma, unsigned long address, | 909 | struct page *follow_page(struct vm_area_struct *vma, unsigned long address, |
910 | unsigned int flags) | 910 | unsigned int flags) |
911 | { | 911 | { |
912 | pgd_t *pgd; | 912 | pgd_t *pgd; |
913 | pud_t *pud; | 913 | pud_t *pud; |
914 | pmd_t *pmd; | 914 | pmd_t *pmd; |
915 | pte_t *ptep, pte; | 915 | pte_t *ptep, pte; |
916 | spinlock_t *ptl; | 916 | spinlock_t *ptl; |
917 | struct page *page; | 917 | struct page *page; |
918 | struct mm_struct *mm = vma->vm_mm; | 918 | struct mm_struct *mm = vma->vm_mm; |
919 | 919 | ||
920 | page = follow_huge_addr(mm, address, flags & FOLL_WRITE); | 920 | page = follow_huge_addr(mm, address, flags & FOLL_WRITE); |
921 | if (!IS_ERR(page)) { | 921 | if (!IS_ERR(page)) { |
922 | BUG_ON(flags & FOLL_GET); | 922 | BUG_ON(flags & FOLL_GET); |
923 | goto out; | 923 | goto out; |
924 | } | 924 | } |
925 | 925 | ||
926 | page = NULL; | 926 | page = NULL; |
927 | pgd = pgd_offset(mm, address); | 927 | pgd = pgd_offset(mm, address); |
928 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | 928 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) |
929 | goto no_page_table; | 929 | goto no_page_table; |
930 | 930 | ||
931 | pud = pud_offset(pgd, address); | 931 | pud = pud_offset(pgd, address); |
932 | if (pud_none(*pud) || unlikely(pud_bad(*pud))) | 932 | if (pud_none(*pud) || unlikely(pud_bad(*pud))) |
933 | goto no_page_table; | 933 | goto no_page_table; |
934 | 934 | ||
935 | pmd = pmd_offset(pud, address); | 935 | pmd = pmd_offset(pud, address); |
936 | if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) | 936 | if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) |
937 | goto no_page_table; | 937 | goto no_page_table; |
938 | 938 | ||
939 | if (pmd_huge(*pmd)) { | 939 | if (pmd_huge(*pmd)) { |
940 | BUG_ON(flags & FOLL_GET); | 940 | BUG_ON(flags & FOLL_GET); |
941 | page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); | 941 | page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); |
942 | goto out; | 942 | goto out; |
943 | } | 943 | } |
944 | 944 | ||
945 | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); | 945 | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); |
946 | if (!ptep) | 946 | if (!ptep) |
947 | goto out; | 947 | goto out; |
948 | 948 | ||
949 | pte = *ptep; | 949 | pte = *ptep; |
950 | if (!pte_present(pte)) | 950 | if (!pte_present(pte)) |
951 | goto unlock; | 951 | goto unlock; |
952 | if ((flags & FOLL_WRITE) && !pte_write(pte)) | 952 | if ((flags & FOLL_WRITE) && !pte_write(pte)) |
953 | goto unlock; | 953 | goto unlock; |
954 | page = vm_normal_page(vma, address, pte); | 954 | page = vm_normal_page(vma, address, pte); |
955 | if (unlikely(!page)) | 955 | if (unlikely(!page)) |
956 | goto unlock; | 956 | goto unlock; |
957 | 957 | ||
958 | if (flags & FOLL_GET) | 958 | if (flags & FOLL_GET) |
959 | get_page(page); | 959 | get_page(page); |
960 | if (flags & FOLL_TOUCH) { | 960 | if (flags & FOLL_TOUCH) { |
961 | if ((flags & FOLL_WRITE) && | 961 | if ((flags & FOLL_WRITE) && |
962 | !pte_dirty(pte) && !PageDirty(page)) | 962 | !pte_dirty(pte) && !PageDirty(page)) |
963 | set_page_dirty(page); | 963 | set_page_dirty(page); |
964 | mark_page_accessed(page); | 964 | mark_page_accessed(page); |
965 | } | 965 | } |
966 | unlock: | 966 | unlock: |
967 | pte_unmap_unlock(ptep, ptl); | 967 | pte_unmap_unlock(ptep, ptl); |
968 | out: | 968 | out: |
969 | return page; | 969 | return page; |
970 | 970 | ||
971 | no_page_table: | 971 | no_page_table: |
972 | /* | 972 | /* |
973 | * When core dumping an enormous anonymous area that nobody | 973 | * When core dumping an enormous anonymous area that nobody |
974 | * has touched so far, we don't want to allocate page tables. | 974 | * has touched so far, we don't want to allocate page tables. |
975 | */ | 975 | */ |
976 | if (flags & FOLL_ANON) { | 976 | if (flags & FOLL_ANON) { |
977 | page = ZERO_PAGE(0); | 977 | page = ZERO_PAGE(0); |
978 | if (flags & FOLL_GET) | 978 | if (flags & FOLL_GET) |
979 | get_page(page); | 979 | get_page(page); |
980 | BUG_ON(flags & FOLL_WRITE); | 980 | BUG_ON(flags & FOLL_WRITE); |
981 | } | 981 | } |
982 | return page; | 982 | return page; |
983 | } | 983 | } |
984 | 984 | ||
985 | int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | 985 | int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, |
986 | unsigned long start, int len, int write, int force, | 986 | unsigned long start, int len, int write, int force, |
987 | struct page **pages, struct vm_area_struct **vmas) | 987 | struct page **pages, struct vm_area_struct **vmas) |
988 | { | 988 | { |
989 | int i; | 989 | int i; |
990 | unsigned int vm_flags; | 990 | unsigned int vm_flags; |
991 | 991 | ||
992 | if (len <= 0) | 992 | if (len <= 0) |
993 | return 0; | 993 | return 0; |
994 | /* | 994 | /* |
995 | * Require read or write permissions. | 995 | * Require read or write permissions. |
996 | * If 'force' is set, we only require the "MAY" flags. | 996 | * If 'force' is set, we only require the "MAY" flags. |
997 | */ | 997 | */ |
998 | vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); | 998 | vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); |
999 | vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); | 999 | vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); |
1000 | i = 0; | 1000 | i = 0; |
1001 | 1001 | ||
1002 | do { | 1002 | do { |
1003 | struct vm_area_struct *vma; | 1003 | struct vm_area_struct *vma; |
1004 | unsigned int foll_flags; | 1004 | unsigned int foll_flags; |
1005 | 1005 | ||
1006 | vma = find_extend_vma(mm, start); | 1006 | vma = find_extend_vma(mm, start); |
1007 | if (!vma && in_gate_area(tsk, start)) { | 1007 | if (!vma && in_gate_area(tsk, start)) { |
1008 | unsigned long pg = start & PAGE_MASK; | 1008 | unsigned long pg = start & PAGE_MASK; |
1009 | struct vm_area_struct *gate_vma = get_gate_vma(tsk); | 1009 | struct vm_area_struct *gate_vma = get_gate_vma(tsk); |
1010 | pgd_t *pgd; | 1010 | pgd_t *pgd; |
1011 | pud_t *pud; | 1011 | pud_t *pud; |
1012 | pmd_t *pmd; | 1012 | pmd_t *pmd; |
1013 | pte_t *pte; | 1013 | pte_t *pte; |
1014 | if (write) /* user gate pages are read-only */ | 1014 | if (write) /* user gate pages are read-only */ |
1015 | return i ? : -EFAULT; | 1015 | return i ? : -EFAULT; |
1016 | if (pg > TASK_SIZE) | 1016 | if (pg > TASK_SIZE) |
1017 | pgd = pgd_offset_k(pg); | 1017 | pgd = pgd_offset_k(pg); |
1018 | else | 1018 | else |
1019 | pgd = pgd_offset_gate(mm, pg); | 1019 | pgd = pgd_offset_gate(mm, pg); |
1020 | BUG_ON(pgd_none(*pgd)); | 1020 | BUG_ON(pgd_none(*pgd)); |
1021 | pud = pud_offset(pgd, pg); | 1021 | pud = pud_offset(pgd, pg); |
1022 | BUG_ON(pud_none(*pud)); | 1022 | BUG_ON(pud_none(*pud)); |
1023 | pmd = pmd_offset(pud, pg); | 1023 | pmd = pmd_offset(pud, pg); |
1024 | if (pmd_none(*pmd)) | 1024 | if (pmd_none(*pmd)) |
1025 | return i ? : -EFAULT; | 1025 | return i ? : -EFAULT; |
1026 | pte = pte_offset_map(pmd, pg); | 1026 | pte = pte_offset_map(pmd, pg); |
1027 | if (pte_none(*pte)) { | 1027 | if (pte_none(*pte)) { |
1028 | pte_unmap(pte); | 1028 | pte_unmap(pte); |
1029 | return i ? : -EFAULT; | 1029 | return i ? : -EFAULT; |
1030 | } | 1030 | } |
1031 | if (pages) { | 1031 | if (pages) { |
1032 | struct page *page = vm_normal_page(gate_vma, start, *pte); | 1032 | struct page *page = vm_normal_page(gate_vma, start, *pte); |
1033 | pages[i] = page; | 1033 | pages[i] = page; |
1034 | if (page) | 1034 | if (page) |
1035 | get_page(page); | 1035 | get_page(page); |
1036 | } | 1036 | } |
1037 | pte_unmap(pte); | 1037 | pte_unmap(pte); |
1038 | if (vmas) | 1038 | if (vmas) |
1039 | vmas[i] = gate_vma; | 1039 | vmas[i] = gate_vma; |
1040 | i++; | 1040 | i++; |
1041 | start += PAGE_SIZE; | 1041 | start += PAGE_SIZE; |
1042 | len--; | 1042 | len--; |
1043 | continue; | 1043 | continue; |
1044 | } | 1044 | } |
1045 | 1045 | ||
1046 | if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP)) | 1046 | if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP)) |
1047 | || !(vm_flags & vma->vm_flags)) | 1047 | || !(vm_flags & vma->vm_flags)) |
1048 | return i ? : -EFAULT; | 1048 | return i ? : -EFAULT; |
1049 | 1049 | ||
1050 | if (is_vm_hugetlb_page(vma)) { | 1050 | if (is_vm_hugetlb_page(vma)) { |
1051 | i = follow_hugetlb_page(mm, vma, pages, vmas, | 1051 | i = follow_hugetlb_page(mm, vma, pages, vmas, |
1052 | &start, &len, i, write); | 1052 | &start, &len, i, write); |
1053 | continue; | 1053 | continue; |
1054 | } | 1054 | } |
1055 | 1055 | ||
1056 | foll_flags = FOLL_TOUCH; | 1056 | foll_flags = FOLL_TOUCH; |
1057 | if (pages) | 1057 | if (pages) |
1058 | foll_flags |= FOLL_GET; | 1058 | foll_flags |= FOLL_GET; |
1059 | if (!write && !(vma->vm_flags & VM_LOCKED) && | 1059 | if (!write && !(vma->vm_flags & VM_LOCKED) && |
1060 | (!vma->vm_ops || (!vma->vm_ops->nopage && | 1060 | (!vma->vm_ops || (!vma->vm_ops->nopage && |
1061 | !vma->vm_ops->fault))) | 1061 | !vma->vm_ops->fault))) |
1062 | foll_flags |= FOLL_ANON; | 1062 | foll_flags |= FOLL_ANON; |
1063 | 1063 | ||
1064 | do { | 1064 | do { |
1065 | struct page *page; | 1065 | struct page *page; |
1066 | 1066 | ||
1067 | /* | 1067 | /* |
1068 | * If tsk is ooming, cut off its access to large memory | 1068 | * If tsk is ooming, cut off its access to large memory |
1069 | * allocations. It has a pending SIGKILL, but it can't | 1069 | * allocations. It has a pending SIGKILL, but it can't |
1070 | * be processed until returning to user space. | 1070 | * be processed until returning to user space. |
1071 | */ | 1071 | */ |
1072 | if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE))) | 1072 | if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE))) |
1073 | return -ENOMEM; | 1073 | return -ENOMEM; |
1074 | 1074 | ||
1075 | if (write) | 1075 | if (write) |
1076 | foll_flags |= FOLL_WRITE; | 1076 | foll_flags |= FOLL_WRITE; |
1077 | 1077 | ||
1078 | cond_resched(); | 1078 | cond_resched(); |
1079 | while (!(page = follow_page(vma, start, foll_flags))) { | 1079 | while (!(page = follow_page(vma, start, foll_flags))) { |
1080 | int ret; | 1080 | int ret; |
1081 | ret = handle_mm_fault(mm, vma, start, | 1081 | ret = handle_mm_fault(mm, vma, start, |
1082 | foll_flags & FOLL_WRITE); | 1082 | foll_flags & FOLL_WRITE); |
1083 | if (ret & VM_FAULT_ERROR) { | 1083 | if (ret & VM_FAULT_ERROR) { |
1084 | if (ret & VM_FAULT_OOM) | 1084 | if (ret & VM_FAULT_OOM) |
1085 | return i ? i : -ENOMEM; | 1085 | return i ? i : -ENOMEM; |
1086 | else if (ret & VM_FAULT_SIGBUS) | 1086 | else if (ret & VM_FAULT_SIGBUS) |
1087 | return i ? i : -EFAULT; | 1087 | return i ? i : -EFAULT; |
1088 | BUG(); | 1088 | BUG(); |
1089 | } | 1089 | } |
1090 | if (ret & VM_FAULT_MAJOR) | 1090 | if (ret & VM_FAULT_MAJOR) |
1091 | tsk->maj_flt++; | 1091 | tsk->maj_flt++; |
1092 | else | 1092 | else |
1093 | tsk->min_flt++; | 1093 | tsk->min_flt++; |
1094 | 1094 | ||
1095 | /* | 1095 | /* |
1096 | * The VM_FAULT_WRITE bit tells us that | 1096 | * The VM_FAULT_WRITE bit tells us that |
1097 | * do_wp_page has broken COW when necessary, | 1097 | * do_wp_page has broken COW when necessary, |
1098 | * even if maybe_mkwrite decided not to set | 1098 | * even if maybe_mkwrite decided not to set |
1099 | * pte_write. We can thus safely do subsequent | 1099 | * pte_write. We can thus safely do subsequent |
1100 | * page lookups as if they were reads. | 1100 | * page lookups as if they were reads. |
1101 | */ | 1101 | */ |
1102 | if (ret & VM_FAULT_WRITE) | 1102 | if (ret & VM_FAULT_WRITE) |
1103 | foll_flags &= ~FOLL_WRITE; | 1103 | foll_flags &= ~FOLL_WRITE; |
1104 | 1104 | ||
1105 | cond_resched(); | 1105 | cond_resched(); |
1106 | } | 1106 | } |
1107 | if (pages) { | 1107 | if (pages) { |
1108 | pages[i] = page; | 1108 | pages[i] = page; |
1109 | 1109 | ||
1110 | flush_anon_page(vma, page, start); | 1110 | flush_anon_page(vma, page, start); |
1111 | flush_dcache_page(page); | 1111 | flush_dcache_page(page); |
1112 | } | 1112 | } |
1113 | if (vmas) | 1113 | if (vmas) |
1114 | vmas[i] = vma; | 1114 | vmas[i] = vma; |
1115 | i++; | 1115 | i++; |
1116 | start += PAGE_SIZE; | 1116 | start += PAGE_SIZE; |
1117 | len--; | 1117 | len--; |
1118 | } while (len && start < vma->vm_end); | 1118 | } while (len && start < vma->vm_end); |
1119 | } while (len); | 1119 | } while (len); |
1120 | return i; | 1120 | return i; |
1121 | } | 1121 | } |
1122 | EXPORT_SYMBOL(get_user_pages); | 1122 | EXPORT_SYMBOL(get_user_pages); |
1123 | 1123 | ||
1124 | pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, | 1124 | pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, |
1125 | spinlock_t **ptl) | 1125 | spinlock_t **ptl) |
1126 | { | 1126 | { |
1127 | pgd_t * pgd = pgd_offset(mm, addr); | 1127 | pgd_t * pgd = pgd_offset(mm, addr); |
1128 | pud_t * pud = pud_alloc(mm, pgd, addr); | 1128 | pud_t * pud = pud_alloc(mm, pgd, addr); |
1129 | if (pud) { | 1129 | if (pud) { |
1130 | pmd_t * pmd = pmd_alloc(mm, pud, addr); | 1130 | pmd_t * pmd = pmd_alloc(mm, pud, addr); |
1131 | if (pmd) | 1131 | if (pmd) |
1132 | return pte_alloc_map_lock(mm, pmd, addr, ptl); | 1132 | return pte_alloc_map_lock(mm, pmd, addr, ptl); |
1133 | } | 1133 | } |
1134 | return NULL; | 1134 | return NULL; |
1135 | } | 1135 | } |
1136 | 1136 | ||
1137 | /* | 1137 | /* |
1138 | * This is the old fallback for page remapping. | 1138 | * This is the old fallback for page remapping. |
1139 | * | 1139 | * |
1140 | * For historical reasons, it only allows reserved pages. Only | 1140 | * For historical reasons, it only allows reserved pages. Only |
1141 | * old drivers should use this, and they needed to mark their | 1141 | * old drivers should use this, and they needed to mark their |
1142 | * pages reserved for the old functions anyway. | 1142 | * pages reserved for the old functions anyway. |
1143 | */ | 1143 | */ |
1144 | static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot) | 1144 | static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot) |
1145 | { | 1145 | { |
1146 | int retval; | 1146 | int retval; |
1147 | pte_t *pte; | 1147 | pte_t *pte; |
1148 | spinlock_t *ptl; | 1148 | spinlock_t *ptl; |
1149 | 1149 | ||
1150 | retval = mem_cgroup_charge(page, mm, GFP_KERNEL); | 1150 | retval = mem_cgroup_charge(page, mm, GFP_KERNEL); |
1151 | if (retval) | 1151 | if (retval) |
1152 | goto out; | 1152 | goto out; |
1153 | 1153 | ||
1154 | retval = -EINVAL; | 1154 | retval = -EINVAL; |
1155 | if (PageAnon(page)) | 1155 | if (PageAnon(page)) |
1156 | goto out_uncharge; | 1156 | goto out_uncharge; |
1157 | retval = -ENOMEM; | 1157 | retval = -ENOMEM; |
1158 | flush_dcache_page(page); | 1158 | flush_dcache_page(page); |
1159 | pte = get_locked_pte(mm, addr, &ptl); | 1159 | pte = get_locked_pte(mm, addr, &ptl); |
1160 | if (!pte) | 1160 | if (!pte) |
1161 | goto out_uncharge; | 1161 | goto out_uncharge; |
1162 | retval = -EBUSY; | 1162 | retval = -EBUSY; |
1163 | if (!pte_none(*pte)) | 1163 | if (!pte_none(*pte)) |
1164 | goto out_unlock; | 1164 | goto out_unlock; |
1165 | 1165 | ||
1166 | /* Ok, finally just insert the thing.. */ | 1166 | /* Ok, finally just insert the thing.. */ |
1167 | get_page(page); | 1167 | get_page(page); |
1168 | inc_mm_counter(mm, file_rss); | 1168 | inc_mm_counter(mm, file_rss); |
1169 | page_add_file_rmap(page); | 1169 | page_add_file_rmap(page); |
1170 | set_pte_at(mm, addr, pte, mk_pte(page, prot)); | 1170 | set_pte_at(mm, addr, pte, mk_pte(page, prot)); |
1171 | 1171 | ||
1172 | retval = 0; | 1172 | retval = 0; |
1173 | pte_unmap_unlock(pte, ptl); | 1173 | pte_unmap_unlock(pte, ptl); |
1174 | return retval; | 1174 | return retval; |
1175 | out_unlock: | 1175 | out_unlock: |
1176 | pte_unmap_unlock(pte, ptl); | 1176 | pte_unmap_unlock(pte, ptl); |
1177 | out_uncharge: | 1177 | out_uncharge: |
1178 | mem_cgroup_uncharge_page(page); | 1178 | mem_cgroup_uncharge_page(page); |
1179 | out: | 1179 | out: |
1180 | return retval; | 1180 | return retval; |
1181 | } | 1181 | } |
1182 | 1182 | ||
1183 | /** | 1183 | /** |
1184 | * vm_insert_page - insert single page into user vma | 1184 | * vm_insert_page - insert single page into user vma |
1185 | * @vma: user vma to map to | 1185 | * @vma: user vma to map to |
1186 | * @addr: target user address of this page | 1186 | * @addr: target user address of this page |
1187 | * @page: source kernel page | 1187 | * @page: source kernel page |
1188 | * | 1188 | * |
1189 | * This allows drivers to insert individual pages they've allocated | 1189 | * This allows drivers to insert individual pages they've allocated |
1190 | * into a user vma. | 1190 | * into a user vma. |
1191 | * | 1191 | * |
1192 | * The page has to be a nice clean _individual_ kernel allocation. | 1192 | * The page has to be a nice clean _individual_ kernel allocation. |
1193 | * If you allocate a compound page, you need to have marked it as | 1193 | * If you allocate a compound page, you need to have marked it as |
1194 | * such (__GFP_COMP), or manually just split the page up yourself | 1194 | * such (__GFP_COMP), or manually just split the page up yourself |
1195 | * (see split_page()). | 1195 | * (see split_page()). |
1196 | * | 1196 | * |
1197 | * NOTE! Traditionally this was done with "remap_pfn_range()" which | 1197 | * NOTE! Traditionally this was done with "remap_pfn_range()" which |
1198 | * took an arbitrary page protection parameter. This doesn't allow | 1198 | * took an arbitrary page protection parameter. This doesn't allow |
1199 | * that. Your vma protection will have to be set up correctly, which | 1199 | * that. Your vma protection will have to be set up correctly, which |
1200 | * means that if you want a shared writable mapping, you'd better | 1200 | * means that if you want a shared writable mapping, you'd better |
1201 | * ask for a shared writable mapping! | 1201 | * ask for a shared writable mapping! |
1202 | * | 1202 | * |
1203 | * The page does not need to be reserved. | 1203 | * The page does not need to be reserved. |
1204 | */ | 1204 | */ |
1205 | int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page) | 1205 | int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page) |
1206 | { | 1206 | { |
1207 | if (addr < vma->vm_start || addr >= vma->vm_end) | 1207 | if (addr < vma->vm_start || addr >= vma->vm_end) |
1208 | return -EFAULT; | 1208 | return -EFAULT; |
1209 | if (!page_count(page)) | 1209 | if (!page_count(page)) |
1210 | return -EINVAL; | 1210 | return -EINVAL; |
1211 | vma->vm_flags |= VM_INSERTPAGE; | 1211 | vma->vm_flags |= VM_INSERTPAGE; |
1212 | return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot); | 1212 | return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot); |
1213 | } | 1213 | } |
1214 | EXPORT_SYMBOL(vm_insert_page); | 1214 | EXPORT_SYMBOL(vm_insert_page); |
1215 | 1215 | ||
1216 | /** | 1216 | /** |
1217 | * vm_insert_pfn - insert single pfn into user vma | 1217 | * vm_insert_pfn - insert single pfn into user vma |
1218 | * @vma: user vma to map to | 1218 | * @vma: user vma to map to |
1219 | * @addr: target user address of this page | 1219 | * @addr: target user address of this page |
1220 | * @pfn: source kernel pfn | 1220 | * @pfn: source kernel pfn |
1221 | * | 1221 | * |
1222 | * Similar to vm_inert_page, this allows drivers to insert individual pages | 1222 | * Similar to vm_inert_page, this allows drivers to insert individual pages |
1223 | * they've allocated into a user vma. Same comments apply. | 1223 | * they've allocated into a user vma. Same comments apply. |
1224 | * | 1224 | * |
1225 | * This function should only be called from a vm_ops->fault handler, and | 1225 | * This function should only be called from a vm_ops->fault handler, and |
1226 | * in that case the handler should return NULL. | 1226 | * in that case the handler should return NULL. |
1227 | */ | 1227 | */ |
1228 | int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, | 1228 | int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, |
1229 | unsigned long pfn) | 1229 | unsigned long pfn) |
1230 | { | 1230 | { |
1231 | struct mm_struct *mm = vma->vm_mm; | 1231 | struct mm_struct *mm = vma->vm_mm; |
1232 | int retval; | 1232 | int retval; |
1233 | pte_t *pte, entry; | 1233 | pte_t *pte, entry; |
1234 | spinlock_t *ptl; | 1234 | spinlock_t *ptl; |
1235 | 1235 | ||
1236 | BUG_ON(!(vma->vm_flags & VM_PFNMAP)); | 1236 | BUG_ON(!(vma->vm_flags & VM_PFNMAP)); |
1237 | BUG_ON(is_cow_mapping(vma->vm_flags)); | 1237 | BUG_ON(is_cow_mapping(vma->vm_flags)); |
1238 | 1238 | ||
1239 | retval = -ENOMEM; | 1239 | retval = -ENOMEM; |
1240 | pte = get_locked_pte(mm, addr, &ptl); | 1240 | pte = get_locked_pte(mm, addr, &ptl); |
1241 | if (!pte) | 1241 | if (!pte) |
1242 | goto out; | 1242 | goto out; |
1243 | retval = -EBUSY; | 1243 | retval = -EBUSY; |
1244 | if (!pte_none(*pte)) | 1244 | if (!pte_none(*pte)) |
1245 | goto out_unlock; | 1245 | goto out_unlock; |
1246 | 1246 | ||
1247 | /* Ok, finally just insert the thing.. */ | 1247 | /* Ok, finally just insert the thing.. */ |
1248 | entry = pfn_pte(pfn, vma->vm_page_prot); | 1248 | entry = pfn_pte(pfn, vma->vm_page_prot); |
1249 | set_pte_at(mm, addr, pte, entry); | 1249 | set_pte_at(mm, addr, pte, entry); |
1250 | update_mmu_cache(vma, addr, entry); | 1250 | update_mmu_cache(vma, addr, entry); |
1251 | 1251 | ||
1252 | retval = 0; | 1252 | retval = 0; |
1253 | out_unlock: | 1253 | out_unlock: |
1254 | pte_unmap_unlock(pte, ptl); | 1254 | pte_unmap_unlock(pte, ptl); |
1255 | 1255 | ||
1256 | out: | 1256 | out: |
1257 | return retval; | 1257 | return retval; |
1258 | } | 1258 | } |
1259 | EXPORT_SYMBOL(vm_insert_pfn); | 1259 | EXPORT_SYMBOL(vm_insert_pfn); |
1260 | 1260 | ||
1261 | /* | 1261 | /* |
1262 | * maps a range of physical memory into the requested pages. the old | 1262 | * maps a range of physical memory into the requested pages. the old |
1263 | * mappings are removed. any references to nonexistent pages results | 1263 | * mappings are removed. any references to nonexistent pages results |
1264 | * in null mappings (currently treated as "copy-on-access") | 1264 | * in null mappings (currently treated as "copy-on-access") |
1265 | */ | 1265 | */ |
1266 | static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, | 1266 | static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, |
1267 | unsigned long addr, unsigned long end, | 1267 | unsigned long addr, unsigned long end, |
1268 | unsigned long pfn, pgprot_t prot) | 1268 | unsigned long pfn, pgprot_t prot) |
1269 | { | 1269 | { |
1270 | pte_t *pte; | 1270 | pte_t *pte; |
1271 | spinlock_t *ptl; | 1271 | spinlock_t *ptl; |
1272 | 1272 | ||
1273 | pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); | 1273 | pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); |
1274 | if (!pte) | 1274 | if (!pte) |
1275 | return -ENOMEM; | 1275 | return -ENOMEM; |
1276 | arch_enter_lazy_mmu_mode(); | 1276 | arch_enter_lazy_mmu_mode(); |
1277 | do { | 1277 | do { |
1278 | BUG_ON(!pte_none(*pte)); | 1278 | BUG_ON(!pte_none(*pte)); |
1279 | set_pte_at(mm, addr, pte, pfn_pte(pfn, prot)); | 1279 | set_pte_at(mm, addr, pte, pfn_pte(pfn, prot)); |
1280 | pfn++; | 1280 | pfn++; |
1281 | } while (pte++, addr += PAGE_SIZE, addr != end); | 1281 | } while (pte++, addr += PAGE_SIZE, addr != end); |
1282 | arch_leave_lazy_mmu_mode(); | 1282 | arch_leave_lazy_mmu_mode(); |
1283 | pte_unmap_unlock(pte - 1, ptl); | 1283 | pte_unmap_unlock(pte - 1, ptl); |
1284 | return 0; | 1284 | return 0; |
1285 | } | 1285 | } |
1286 | 1286 | ||
1287 | static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, | 1287 | static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, |
1288 | unsigned long addr, unsigned long end, | 1288 | unsigned long addr, unsigned long end, |
1289 | unsigned long pfn, pgprot_t prot) | 1289 | unsigned long pfn, pgprot_t prot) |
1290 | { | 1290 | { |
1291 | pmd_t *pmd; | 1291 | pmd_t *pmd; |
1292 | unsigned long next; | 1292 | unsigned long next; |
1293 | 1293 | ||
1294 | pfn -= addr >> PAGE_SHIFT; | 1294 | pfn -= addr >> PAGE_SHIFT; |
1295 | pmd = pmd_alloc(mm, pud, addr); | 1295 | pmd = pmd_alloc(mm, pud, addr); |
1296 | if (!pmd) | 1296 | if (!pmd) |
1297 | return -ENOMEM; | 1297 | return -ENOMEM; |
1298 | do { | 1298 | do { |
1299 | next = pmd_addr_end(addr, end); | 1299 | next = pmd_addr_end(addr, end); |
1300 | if (remap_pte_range(mm, pmd, addr, next, | 1300 | if (remap_pte_range(mm, pmd, addr, next, |
1301 | pfn + (addr >> PAGE_SHIFT), prot)) | 1301 | pfn + (addr >> PAGE_SHIFT), prot)) |
1302 | return -ENOMEM; | 1302 | return -ENOMEM; |
1303 | } while (pmd++, addr = next, addr != end); | 1303 | } while (pmd++, addr = next, addr != end); |
1304 | return 0; | 1304 | return 0; |
1305 | } | 1305 | } |
1306 | 1306 | ||
1307 | static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, | 1307 | static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, |
1308 | unsigned long addr, unsigned long end, | 1308 | unsigned long addr, unsigned long end, |
1309 | unsigned long pfn, pgprot_t prot) | 1309 | unsigned long pfn, pgprot_t prot) |
1310 | { | 1310 | { |
1311 | pud_t *pud; | 1311 | pud_t *pud; |
1312 | unsigned long next; | 1312 | unsigned long next; |
1313 | 1313 | ||
1314 | pfn -= addr >> PAGE_SHIFT; | 1314 | pfn -= addr >> PAGE_SHIFT; |
1315 | pud = pud_alloc(mm, pgd, addr); | 1315 | pud = pud_alloc(mm, pgd, addr); |
1316 | if (!pud) | 1316 | if (!pud) |
1317 | return -ENOMEM; | 1317 | return -ENOMEM; |
1318 | do { | 1318 | do { |
1319 | next = pud_addr_end(addr, end); | 1319 | next = pud_addr_end(addr, end); |
1320 | if (remap_pmd_range(mm, pud, addr, next, | 1320 | if (remap_pmd_range(mm, pud, addr, next, |
1321 | pfn + (addr >> PAGE_SHIFT), prot)) | 1321 | pfn + (addr >> PAGE_SHIFT), prot)) |
1322 | return -ENOMEM; | 1322 | return -ENOMEM; |
1323 | } while (pud++, addr = next, addr != end); | 1323 | } while (pud++, addr = next, addr != end); |
1324 | return 0; | 1324 | return 0; |
1325 | } | 1325 | } |
1326 | 1326 | ||
1327 | /** | 1327 | /** |
1328 | * remap_pfn_range - remap kernel memory to userspace | 1328 | * remap_pfn_range - remap kernel memory to userspace |
1329 | * @vma: user vma to map to | 1329 | * @vma: user vma to map to |
1330 | * @addr: target user address to start at | 1330 | * @addr: target user address to start at |
1331 | * @pfn: physical address of kernel memory | 1331 | * @pfn: physical address of kernel memory |
1332 | * @size: size of map area | 1332 | * @size: size of map area |
1333 | * @prot: page protection flags for this mapping | 1333 | * @prot: page protection flags for this mapping |
1334 | * | 1334 | * |
1335 | * Note: this is only safe if the mm semaphore is held when called. | 1335 | * Note: this is only safe if the mm semaphore is held when called. |
1336 | */ | 1336 | */ |
1337 | int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, | 1337 | int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, |
1338 | unsigned long pfn, unsigned long size, pgprot_t prot) | 1338 | unsigned long pfn, unsigned long size, pgprot_t prot) |
1339 | { | 1339 | { |
1340 | pgd_t *pgd; | 1340 | pgd_t *pgd; |
1341 | unsigned long next; | 1341 | unsigned long next; |
1342 | unsigned long end = addr + PAGE_ALIGN(size); | 1342 | unsigned long end = addr + PAGE_ALIGN(size); |
1343 | struct mm_struct *mm = vma->vm_mm; | 1343 | struct mm_struct *mm = vma->vm_mm; |
1344 | int err; | 1344 | int err; |
1345 | 1345 | ||
1346 | /* | 1346 | /* |
1347 | * Physically remapped pages are special. Tell the | 1347 | * Physically remapped pages are special. Tell the |
1348 | * rest of the world about it: | 1348 | * rest of the world about it: |
1349 | * VM_IO tells people not to look at these pages | 1349 | * VM_IO tells people not to look at these pages |
1350 | * (accesses can have side effects). | 1350 | * (accesses can have side effects). |
1351 | * VM_RESERVED is specified all over the place, because | 1351 | * VM_RESERVED is specified all over the place, because |
1352 | * in 2.4 it kept swapout's vma scan off this vma; but | 1352 | * in 2.4 it kept swapout's vma scan off this vma; but |
1353 | * in 2.6 the LRU scan won't even find its pages, so this | 1353 | * in 2.6 the LRU scan won't even find its pages, so this |
1354 | * flag means no more than count its pages in reserved_vm, | 1354 | * flag means no more than count its pages in reserved_vm, |
1355 | * and omit it from core dump, even when VM_IO turned off. | 1355 | * and omit it from core dump, even when VM_IO turned off. |
1356 | * VM_PFNMAP tells the core MM that the base pages are just | 1356 | * VM_PFNMAP tells the core MM that the base pages are just |
1357 | * raw PFN mappings, and do not have a "struct page" associated | 1357 | * raw PFN mappings, and do not have a "struct page" associated |
1358 | * with them. | 1358 | * with them. |
1359 | * | 1359 | * |
1360 | * There's a horrible special case to handle copy-on-write | 1360 | * There's a horrible special case to handle copy-on-write |
1361 | * behaviour that some programs depend on. We mark the "original" | 1361 | * behaviour that some programs depend on. We mark the "original" |
1362 | * un-COW'ed pages by matching them up with "vma->vm_pgoff". | 1362 | * un-COW'ed pages by matching them up with "vma->vm_pgoff". |
1363 | */ | 1363 | */ |
1364 | if (is_cow_mapping(vma->vm_flags)) { | 1364 | if (is_cow_mapping(vma->vm_flags)) { |
1365 | if (addr != vma->vm_start || end != vma->vm_end) | 1365 | if (addr != vma->vm_start || end != vma->vm_end) |
1366 | return -EINVAL; | 1366 | return -EINVAL; |
1367 | vma->vm_pgoff = pfn; | 1367 | vma->vm_pgoff = pfn; |
1368 | } | 1368 | } |
1369 | 1369 | ||
1370 | vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; | 1370 | vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; |
1371 | 1371 | ||
1372 | BUG_ON(addr >= end); | 1372 | BUG_ON(addr >= end); |
1373 | pfn -= addr >> PAGE_SHIFT; | 1373 | pfn -= addr >> PAGE_SHIFT; |
1374 | pgd = pgd_offset(mm, addr); | 1374 | pgd = pgd_offset(mm, addr); |
1375 | flush_cache_range(vma, addr, end); | 1375 | flush_cache_range(vma, addr, end); |
1376 | do { | 1376 | do { |
1377 | next = pgd_addr_end(addr, end); | 1377 | next = pgd_addr_end(addr, end); |
1378 | err = remap_pud_range(mm, pgd, addr, next, | 1378 | err = remap_pud_range(mm, pgd, addr, next, |
1379 | pfn + (addr >> PAGE_SHIFT), prot); | 1379 | pfn + (addr >> PAGE_SHIFT), prot); |
1380 | if (err) | 1380 | if (err) |
1381 | break; | 1381 | break; |
1382 | } while (pgd++, addr = next, addr != end); | 1382 | } while (pgd++, addr = next, addr != end); |
1383 | return err; | 1383 | return err; |
1384 | } | 1384 | } |
1385 | EXPORT_SYMBOL(remap_pfn_range); | 1385 | EXPORT_SYMBOL(remap_pfn_range); |
1386 | 1386 | ||
1387 | static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, | 1387 | static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, |
1388 | unsigned long addr, unsigned long end, | 1388 | unsigned long addr, unsigned long end, |
1389 | pte_fn_t fn, void *data) | 1389 | pte_fn_t fn, void *data) |
1390 | { | 1390 | { |
1391 | pte_t *pte; | 1391 | pte_t *pte; |
1392 | int err; | 1392 | int err; |
1393 | pgtable_t token; | 1393 | pgtable_t token; |
1394 | spinlock_t *uninitialized_var(ptl); | 1394 | spinlock_t *uninitialized_var(ptl); |
1395 | 1395 | ||
1396 | pte = (mm == &init_mm) ? | 1396 | pte = (mm == &init_mm) ? |
1397 | pte_alloc_kernel(pmd, addr) : | 1397 | pte_alloc_kernel(pmd, addr) : |
1398 | pte_alloc_map_lock(mm, pmd, addr, &ptl); | 1398 | pte_alloc_map_lock(mm, pmd, addr, &ptl); |
1399 | if (!pte) | 1399 | if (!pte) |
1400 | return -ENOMEM; | 1400 | return -ENOMEM; |
1401 | 1401 | ||
1402 | BUG_ON(pmd_huge(*pmd)); | 1402 | BUG_ON(pmd_huge(*pmd)); |
1403 | 1403 | ||
1404 | token = pmd_pgtable(*pmd); | 1404 | token = pmd_pgtable(*pmd); |
1405 | 1405 | ||
1406 | do { | 1406 | do { |
1407 | err = fn(pte, token, addr, data); | 1407 | err = fn(pte, token, addr, data); |
1408 | if (err) | 1408 | if (err) |
1409 | break; | 1409 | break; |
1410 | } while (pte++, addr += PAGE_SIZE, addr != end); | 1410 | } while (pte++, addr += PAGE_SIZE, addr != end); |
1411 | 1411 | ||
1412 | if (mm != &init_mm) | 1412 | if (mm != &init_mm) |
1413 | pte_unmap_unlock(pte-1, ptl); | 1413 | pte_unmap_unlock(pte-1, ptl); |
1414 | return err; | 1414 | return err; |
1415 | } | 1415 | } |
1416 | 1416 | ||
1417 | static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, | 1417 | static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, |
1418 | unsigned long addr, unsigned long end, | 1418 | unsigned long addr, unsigned long end, |
1419 | pte_fn_t fn, void *data) | 1419 | pte_fn_t fn, void *data) |
1420 | { | 1420 | { |
1421 | pmd_t *pmd; | 1421 | pmd_t *pmd; |
1422 | unsigned long next; | 1422 | unsigned long next; |
1423 | int err; | 1423 | int err; |
1424 | 1424 | ||
1425 | pmd = pmd_alloc(mm, pud, addr); | 1425 | pmd = pmd_alloc(mm, pud, addr); |
1426 | if (!pmd) | 1426 | if (!pmd) |
1427 | return -ENOMEM; | 1427 | return -ENOMEM; |
1428 | do { | 1428 | do { |
1429 | next = pmd_addr_end(addr, end); | 1429 | next = pmd_addr_end(addr, end); |
1430 | err = apply_to_pte_range(mm, pmd, addr, next, fn, data); | 1430 | err = apply_to_pte_range(mm, pmd, addr, next, fn, data); |
1431 | if (err) | 1431 | if (err) |
1432 | break; | 1432 | break; |
1433 | } while (pmd++, addr = next, addr != end); | 1433 | } while (pmd++, addr = next, addr != end); |
1434 | return err; | 1434 | return err; |
1435 | } | 1435 | } |
1436 | 1436 | ||
1437 | static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, | 1437 | static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, |
1438 | unsigned long addr, unsigned long end, | 1438 | unsigned long addr, unsigned long end, |
1439 | pte_fn_t fn, void *data) | 1439 | pte_fn_t fn, void *data) |
1440 | { | 1440 | { |
1441 | pud_t *pud; | 1441 | pud_t *pud; |
1442 | unsigned long next; | 1442 | unsigned long next; |
1443 | int err; | 1443 | int err; |
1444 | 1444 | ||
1445 | pud = pud_alloc(mm, pgd, addr); | 1445 | pud = pud_alloc(mm, pgd, addr); |
1446 | if (!pud) | 1446 | if (!pud) |
1447 | return -ENOMEM; | 1447 | return -ENOMEM; |
1448 | do { | 1448 | do { |
1449 | next = pud_addr_end(addr, end); | 1449 | next = pud_addr_end(addr, end); |
1450 | err = apply_to_pmd_range(mm, pud, addr, next, fn, data); | 1450 | err = apply_to_pmd_range(mm, pud, addr, next, fn, data); |
1451 | if (err) | 1451 | if (err) |
1452 | break; | 1452 | break; |
1453 | } while (pud++, addr = next, addr != end); | 1453 | } while (pud++, addr = next, addr != end); |
1454 | return err; | 1454 | return err; |
1455 | } | 1455 | } |
1456 | 1456 | ||
1457 | /* | 1457 | /* |
1458 | * Scan a region of virtual memory, filling in page tables as necessary | 1458 | * Scan a region of virtual memory, filling in page tables as necessary |
1459 | * and calling a provided function on each leaf page table. | 1459 | * and calling a provided function on each leaf page table. |
1460 | */ | 1460 | */ |
1461 | int apply_to_page_range(struct mm_struct *mm, unsigned long addr, | 1461 | int apply_to_page_range(struct mm_struct *mm, unsigned long addr, |
1462 | unsigned long size, pte_fn_t fn, void *data) | 1462 | unsigned long size, pte_fn_t fn, void *data) |
1463 | { | 1463 | { |
1464 | pgd_t *pgd; | 1464 | pgd_t *pgd; |
1465 | unsigned long next; | 1465 | unsigned long next; |
1466 | unsigned long end = addr + size; | 1466 | unsigned long end = addr + size; |
1467 | int err; | 1467 | int err; |
1468 | 1468 | ||
1469 | BUG_ON(addr >= end); | 1469 | BUG_ON(addr >= end); |
1470 | pgd = pgd_offset(mm, addr); | 1470 | pgd = pgd_offset(mm, addr); |
1471 | do { | 1471 | do { |
1472 | next = pgd_addr_end(addr, end); | 1472 | next = pgd_addr_end(addr, end); |
1473 | err = apply_to_pud_range(mm, pgd, addr, next, fn, data); | 1473 | err = apply_to_pud_range(mm, pgd, addr, next, fn, data); |
1474 | if (err) | 1474 | if (err) |
1475 | break; | 1475 | break; |
1476 | } while (pgd++, addr = next, addr != end); | 1476 | } while (pgd++, addr = next, addr != end); |
1477 | return err; | 1477 | return err; |
1478 | } | 1478 | } |
1479 | EXPORT_SYMBOL_GPL(apply_to_page_range); | 1479 | EXPORT_SYMBOL_GPL(apply_to_page_range); |
1480 | 1480 | ||
1481 | /* | 1481 | /* |
1482 | * handle_pte_fault chooses page fault handler according to an entry | 1482 | * handle_pte_fault chooses page fault handler according to an entry |
1483 | * which was read non-atomically. Before making any commitment, on | 1483 | * which was read non-atomically. Before making any commitment, on |
1484 | * those architectures or configurations (e.g. i386 with PAE) which | 1484 | * those architectures or configurations (e.g. i386 with PAE) which |
1485 | * might give a mix of unmatched parts, do_swap_page and do_file_page | 1485 | * might give a mix of unmatched parts, do_swap_page and do_file_page |
1486 | * must check under lock before unmapping the pte and proceeding | 1486 | * must check under lock before unmapping the pte and proceeding |
1487 | * (but do_wp_page is only called after already making such a check; | 1487 | * (but do_wp_page is only called after already making such a check; |
1488 | * and do_anonymous_page and do_no_page can safely check later on). | 1488 | * and do_anonymous_page and do_no_page can safely check later on). |
1489 | */ | 1489 | */ |
1490 | static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, | 1490 | static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, |
1491 | pte_t *page_table, pte_t orig_pte) | 1491 | pte_t *page_table, pte_t orig_pte) |
1492 | { | 1492 | { |
1493 | int same = 1; | 1493 | int same = 1; |
1494 | #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) | 1494 | #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) |
1495 | if (sizeof(pte_t) > sizeof(unsigned long)) { | 1495 | if (sizeof(pte_t) > sizeof(unsigned long)) { |
1496 | spinlock_t *ptl = pte_lockptr(mm, pmd); | 1496 | spinlock_t *ptl = pte_lockptr(mm, pmd); |
1497 | spin_lock(ptl); | 1497 | spin_lock(ptl); |
1498 | same = pte_same(*page_table, orig_pte); | 1498 | same = pte_same(*page_table, orig_pte); |
1499 | spin_unlock(ptl); | 1499 | spin_unlock(ptl); |
1500 | } | 1500 | } |
1501 | #endif | 1501 | #endif |
1502 | pte_unmap(page_table); | 1502 | pte_unmap(page_table); |
1503 | return same; | 1503 | return same; |
1504 | } | 1504 | } |
1505 | 1505 | ||
1506 | /* | 1506 | /* |
1507 | * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when | 1507 | * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when |
1508 | * servicing faults for write access. In the normal case, do always want | 1508 | * servicing faults for write access. In the normal case, do always want |
1509 | * pte_mkwrite. But get_user_pages can cause write faults for mappings | 1509 | * pte_mkwrite. But get_user_pages can cause write faults for mappings |
1510 | * that do not have writing enabled, when used by access_process_vm. | 1510 | * that do not have writing enabled, when used by access_process_vm. |
1511 | */ | 1511 | */ |
1512 | static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) | 1512 | static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) |
1513 | { | 1513 | { |
1514 | if (likely(vma->vm_flags & VM_WRITE)) | 1514 | if (likely(vma->vm_flags & VM_WRITE)) |
1515 | pte = pte_mkwrite(pte); | 1515 | pte = pte_mkwrite(pte); |
1516 | return pte; | 1516 | return pte; |
1517 | } | 1517 | } |
1518 | 1518 | ||
1519 | static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) | 1519 | static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) |
1520 | { | 1520 | { |
1521 | /* | 1521 | /* |
1522 | * If the source page was a PFN mapping, we don't have | 1522 | * If the source page was a PFN mapping, we don't have |
1523 | * a "struct page" for it. We do a best-effort copy by | 1523 | * a "struct page" for it. We do a best-effort copy by |
1524 | * just copying from the original user address. If that | 1524 | * just copying from the original user address. If that |
1525 | * fails, we just zero-fill it. Live with it. | 1525 | * fails, we just zero-fill it. Live with it. |
1526 | */ | 1526 | */ |
1527 | if (unlikely(!src)) { | 1527 | if (unlikely(!src)) { |
1528 | void *kaddr = kmap_atomic(dst, KM_USER0); | 1528 | void *kaddr = kmap_atomic(dst, KM_USER0); |
1529 | void __user *uaddr = (void __user *)(va & PAGE_MASK); | 1529 | void __user *uaddr = (void __user *)(va & PAGE_MASK); |
1530 | 1530 | ||
1531 | /* | 1531 | /* |
1532 | * This really shouldn't fail, because the page is there | 1532 | * This really shouldn't fail, because the page is there |
1533 | * in the page tables. But it might just be unreadable, | 1533 | * in the page tables. But it might just be unreadable, |
1534 | * in which case we just give up and fill the result with | 1534 | * in which case we just give up and fill the result with |
1535 | * zeroes. | 1535 | * zeroes. |
1536 | */ | 1536 | */ |
1537 | if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) | 1537 | if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) |
1538 | memset(kaddr, 0, PAGE_SIZE); | 1538 | memset(kaddr, 0, PAGE_SIZE); |
1539 | kunmap_atomic(kaddr, KM_USER0); | 1539 | kunmap_atomic(kaddr, KM_USER0); |
1540 | flush_dcache_page(dst); | 1540 | flush_dcache_page(dst); |
1541 | } else | 1541 | } else |
1542 | copy_user_highpage(dst, src, va, vma); | 1542 | copy_user_highpage(dst, src, va, vma); |
1543 | } | 1543 | } |
1544 | 1544 | ||
1545 | /* | 1545 | /* |
1546 | * This routine handles present pages, when users try to write | 1546 | * This routine handles present pages, when users try to write |
1547 | * to a shared page. It is done by copying the page to a new address | 1547 | * to a shared page. It is done by copying the page to a new address |
1548 | * and decrementing the shared-page counter for the old page. | 1548 | * and decrementing the shared-page counter for the old page. |
1549 | * | 1549 | * |
1550 | * Note that this routine assumes that the protection checks have been | 1550 | * Note that this routine assumes that the protection checks have been |
1551 | * done by the caller (the low-level page fault routine in most cases). | 1551 | * done by the caller (the low-level page fault routine in most cases). |
1552 | * Thus we can safely just mark it writable once we've done any necessary | 1552 | * Thus we can safely just mark it writable once we've done any necessary |
1553 | * COW. | 1553 | * COW. |
1554 | * | 1554 | * |
1555 | * We also mark the page dirty at this point even though the page will | 1555 | * We also mark the page dirty at this point even though the page will |
1556 | * change only once the write actually happens. This avoids a few races, | 1556 | * change only once the write actually happens. This avoids a few races, |
1557 | * and potentially makes it more efficient. | 1557 | * and potentially makes it more efficient. |
1558 | * | 1558 | * |
1559 | * We enter with non-exclusive mmap_sem (to exclude vma changes, | 1559 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
1560 | * but allow concurrent faults), with pte both mapped and locked. | 1560 | * but allow concurrent faults), with pte both mapped and locked. |
1561 | * We return with mmap_sem still held, but pte unmapped and unlocked. | 1561 | * We return with mmap_sem still held, but pte unmapped and unlocked. |
1562 | */ | 1562 | */ |
1563 | static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, | 1563 | static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, |
1564 | unsigned long address, pte_t *page_table, pmd_t *pmd, | 1564 | unsigned long address, pte_t *page_table, pmd_t *pmd, |
1565 | spinlock_t *ptl, pte_t orig_pte) | 1565 | spinlock_t *ptl, pte_t orig_pte) |
1566 | { | 1566 | { |
1567 | struct page *old_page, *new_page; | 1567 | struct page *old_page, *new_page; |
1568 | pte_t entry; | 1568 | pte_t entry; |
1569 | int reuse = 0, ret = 0; | 1569 | int reuse = 0, ret = 0; |
1570 | int page_mkwrite = 0; | 1570 | int page_mkwrite = 0; |
1571 | struct page *dirty_page = NULL; | 1571 | struct page *dirty_page = NULL; |
1572 | 1572 | ||
1573 | old_page = vm_normal_page(vma, address, orig_pte); | 1573 | old_page = vm_normal_page(vma, address, orig_pte); |
1574 | if (!old_page) | 1574 | if (!old_page) |
1575 | goto gotten; | 1575 | goto gotten; |
1576 | 1576 | ||
1577 | /* | 1577 | /* |
1578 | * Take out anonymous pages first, anonymous shared vmas are | 1578 | * Take out anonymous pages first, anonymous shared vmas are |
1579 | * not dirty accountable. | 1579 | * not dirty accountable. |
1580 | */ | 1580 | */ |
1581 | if (PageAnon(old_page)) { | 1581 | if (PageAnon(old_page)) { |
1582 | if (!TestSetPageLocked(old_page)) { | 1582 | if (!TestSetPageLocked(old_page)) { |
1583 | reuse = can_share_swap_page(old_page); | 1583 | reuse = can_share_swap_page(old_page); |
1584 | unlock_page(old_page); | 1584 | unlock_page(old_page); |
1585 | } | 1585 | } |
1586 | } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == | 1586 | } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == |
1587 | (VM_WRITE|VM_SHARED))) { | 1587 | (VM_WRITE|VM_SHARED))) { |
1588 | /* | 1588 | /* |
1589 | * Only catch write-faults on shared writable pages, | 1589 | * Only catch write-faults on shared writable pages, |
1590 | * read-only shared pages can get COWed by | 1590 | * read-only shared pages can get COWed by |
1591 | * get_user_pages(.write=1, .force=1). | 1591 | * get_user_pages(.write=1, .force=1). |
1592 | */ | 1592 | */ |
1593 | if (vma->vm_ops && vma->vm_ops->page_mkwrite) { | 1593 | if (vma->vm_ops && vma->vm_ops->page_mkwrite) { |
1594 | /* | 1594 | /* |
1595 | * Notify the address space that the page is about to | 1595 | * Notify the address space that the page is about to |
1596 | * become writable so that it can prohibit this or wait | 1596 | * become writable so that it can prohibit this or wait |
1597 | * for the page to get into an appropriate state. | 1597 | * for the page to get into an appropriate state. |
1598 | * | 1598 | * |
1599 | * We do this without the lock held, so that it can | 1599 | * We do this without the lock held, so that it can |
1600 | * sleep if it needs to. | 1600 | * sleep if it needs to. |
1601 | */ | 1601 | */ |
1602 | page_cache_get(old_page); | 1602 | page_cache_get(old_page); |
1603 | pte_unmap_unlock(page_table, ptl); | 1603 | pte_unmap_unlock(page_table, ptl); |
1604 | 1604 | ||
1605 | if (vma->vm_ops->page_mkwrite(vma, old_page) < 0) | 1605 | if (vma->vm_ops->page_mkwrite(vma, old_page) < 0) |
1606 | goto unwritable_page; | 1606 | goto unwritable_page; |
1607 | 1607 | ||
1608 | /* | 1608 | /* |
1609 | * Since we dropped the lock we need to revalidate | 1609 | * Since we dropped the lock we need to revalidate |
1610 | * the PTE as someone else may have changed it. If | 1610 | * the PTE as someone else may have changed it. If |
1611 | * they did, we just return, as we can count on the | 1611 | * they did, we just return, as we can count on the |
1612 | * MMU to tell us if they didn't also make it writable. | 1612 | * MMU to tell us if they didn't also make it writable. |
1613 | */ | 1613 | */ |
1614 | page_table = pte_offset_map_lock(mm, pmd, address, | 1614 | page_table = pte_offset_map_lock(mm, pmd, address, |
1615 | &ptl); | 1615 | &ptl); |
1616 | page_cache_release(old_page); | 1616 | page_cache_release(old_page); |
1617 | if (!pte_same(*page_table, orig_pte)) | 1617 | if (!pte_same(*page_table, orig_pte)) |
1618 | goto unlock; | 1618 | goto unlock; |
1619 | 1619 | ||
1620 | page_mkwrite = 1; | 1620 | page_mkwrite = 1; |
1621 | } | 1621 | } |
1622 | dirty_page = old_page; | 1622 | dirty_page = old_page; |
1623 | get_page(dirty_page); | 1623 | get_page(dirty_page); |
1624 | reuse = 1; | 1624 | reuse = 1; |
1625 | } | 1625 | } |
1626 | 1626 | ||
1627 | if (reuse) { | 1627 | if (reuse) { |
1628 | flush_cache_page(vma, address, pte_pfn(orig_pte)); | 1628 | flush_cache_page(vma, address, pte_pfn(orig_pte)); |
1629 | entry = pte_mkyoung(orig_pte); | 1629 | entry = pte_mkyoung(orig_pte); |
1630 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | 1630 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); |
1631 | if (ptep_set_access_flags(vma, address, page_table, entry,1)) | 1631 | if (ptep_set_access_flags(vma, address, page_table, entry,1)) |
1632 | update_mmu_cache(vma, address, entry); | 1632 | update_mmu_cache(vma, address, entry); |
1633 | ret |= VM_FAULT_WRITE; | 1633 | ret |= VM_FAULT_WRITE; |
1634 | goto unlock; | 1634 | goto unlock; |
1635 | } | 1635 | } |
1636 | 1636 | ||
1637 | /* | 1637 | /* |
1638 | * Ok, we need to copy. Oh, well.. | 1638 | * Ok, we need to copy. Oh, well.. |
1639 | */ | 1639 | */ |
1640 | page_cache_get(old_page); | 1640 | page_cache_get(old_page); |
1641 | gotten: | 1641 | gotten: |
1642 | pte_unmap_unlock(page_table, ptl); | 1642 | pte_unmap_unlock(page_table, ptl); |
1643 | 1643 | ||
1644 | if (unlikely(anon_vma_prepare(vma))) | 1644 | if (unlikely(anon_vma_prepare(vma))) |
1645 | goto oom; | 1645 | goto oom; |
1646 | VM_BUG_ON(old_page == ZERO_PAGE(0)); | 1646 | VM_BUG_ON(old_page == ZERO_PAGE(0)); |
1647 | new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); | 1647 | new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); |
1648 | if (!new_page) | 1648 | if (!new_page) |
1649 | goto oom; | 1649 | goto oom; |
1650 | cow_user_page(new_page, old_page, address, vma); | 1650 | cow_user_page(new_page, old_page, address, vma); |
1651 | __SetPageUptodate(new_page); | 1651 | __SetPageUptodate(new_page); |
1652 | 1652 | ||
1653 | if (mem_cgroup_charge(new_page, mm, GFP_KERNEL)) | 1653 | if (mem_cgroup_charge(new_page, mm, GFP_KERNEL)) |
1654 | goto oom_free_new; | 1654 | goto oom_free_new; |
1655 | 1655 | ||
1656 | /* | 1656 | /* |
1657 | * Re-check the pte - we dropped the lock | 1657 | * Re-check the pte - we dropped the lock |
1658 | */ | 1658 | */ |
1659 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | 1659 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
1660 | if (likely(pte_same(*page_table, orig_pte))) { | 1660 | if (likely(pte_same(*page_table, orig_pte))) { |
1661 | if (old_page) { | 1661 | if (old_page) { |
1662 | page_remove_rmap(old_page, vma); | 1662 | page_remove_rmap(old_page, vma); |
1663 | if (!PageAnon(old_page)) { | 1663 | if (!PageAnon(old_page)) { |
1664 | dec_mm_counter(mm, file_rss); | 1664 | dec_mm_counter(mm, file_rss); |
1665 | inc_mm_counter(mm, anon_rss); | 1665 | inc_mm_counter(mm, anon_rss); |
1666 | } | 1666 | } |
1667 | } else | 1667 | } else |
1668 | inc_mm_counter(mm, anon_rss); | 1668 | inc_mm_counter(mm, anon_rss); |
1669 | flush_cache_page(vma, address, pte_pfn(orig_pte)); | 1669 | flush_cache_page(vma, address, pte_pfn(orig_pte)); |
1670 | entry = mk_pte(new_page, vma->vm_page_prot); | 1670 | entry = mk_pte(new_page, vma->vm_page_prot); |
1671 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | 1671 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); |
1672 | /* | 1672 | /* |
1673 | * Clear the pte entry and flush it first, before updating the | 1673 | * Clear the pte entry and flush it first, before updating the |
1674 | * pte with the new entry. This will avoid a race condition | 1674 | * pte with the new entry. This will avoid a race condition |
1675 | * seen in the presence of one thread doing SMC and another | 1675 | * seen in the presence of one thread doing SMC and another |
1676 | * thread doing COW. | 1676 | * thread doing COW. |
1677 | */ | 1677 | */ |
1678 | ptep_clear_flush(vma, address, page_table); | 1678 | ptep_clear_flush(vma, address, page_table); |
1679 | set_pte_at(mm, address, page_table, entry); | 1679 | set_pte_at(mm, address, page_table, entry); |
1680 | update_mmu_cache(vma, address, entry); | 1680 | update_mmu_cache(vma, address, entry); |
1681 | lru_cache_add_active(new_page); | 1681 | lru_cache_add_active(new_page); |
1682 | page_add_new_anon_rmap(new_page, vma, address); | 1682 | page_add_new_anon_rmap(new_page, vma, address); |
1683 | 1683 | ||
1684 | /* Free the old page.. */ | 1684 | /* Free the old page.. */ |
1685 | new_page = old_page; | 1685 | new_page = old_page; |
1686 | ret |= VM_FAULT_WRITE; | 1686 | ret |= VM_FAULT_WRITE; |
1687 | } else | 1687 | } else |
1688 | mem_cgroup_uncharge_page(new_page); | 1688 | mem_cgroup_uncharge_page(new_page); |
1689 | 1689 | ||
1690 | if (new_page) | 1690 | if (new_page) |
1691 | page_cache_release(new_page); | 1691 | page_cache_release(new_page); |
1692 | if (old_page) | 1692 | if (old_page) |
1693 | page_cache_release(old_page); | 1693 | page_cache_release(old_page); |
1694 | unlock: | 1694 | unlock: |
1695 | pte_unmap_unlock(page_table, ptl); | 1695 | pte_unmap_unlock(page_table, ptl); |
1696 | if (dirty_page) { | 1696 | if (dirty_page) { |
1697 | if (vma->vm_file) | 1697 | if (vma->vm_file) |
1698 | file_update_time(vma->vm_file); | 1698 | file_update_time(vma->vm_file); |
1699 | 1699 | ||
1700 | /* | 1700 | /* |
1701 | * Yes, Virginia, this is actually required to prevent a race | 1701 | * Yes, Virginia, this is actually required to prevent a race |
1702 | * with clear_page_dirty_for_io() from clearing the page dirty | 1702 | * with clear_page_dirty_for_io() from clearing the page dirty |
1703 | * bit after it clear all dirty ptes, but before a racing | 1703 | * bit after it clear all dirty ptes, but before a racing |
1704 | * do_wp_page installs a dirty pte. | 1704 | * do_wp_page installs a dirty pte. |
1705 | * | 1705 | * |
1706 | * do_no_page is protected similarly. | 1706 | * do_no_page is protected similarly. |
1707 | */ | 1707 | */ |
1708 | wait_on_page_locked(dirty_page); | 1708 | wait_on_page_locked(dirty_page); |
1709 | set_page_dirty_balance(dirty_page, page_mkwrite); | 1709 | set_page_dirty_balance(dirty_page, page_mkwrite); |
1710 | put_page(dirty_page); | 1710 | put_page(dirty_page); |
1711 | } | 1711 | } |
1712 | return ret; | 1712 | return ret; |
1713 | oom_free_new: | 1713 | oom_free_new: |
1714 | page_cache_release(new_page); | 1714 | page_cache_release(new_page); |
1715 | oom: | 1715 | oom: |
1716 | if (old_page) | 1716 | if (old_page) |
1717 | page_cache_release(old_page); | 1717 | page_cache_release(old_page); |
1718 | return VM_FAULT_OOM; | 1718 | return VM_FAULT_OOM; |
1719 | 1719 | ||
1720 | unwritable_page: | 1720 | unwritable_page: |
1721 | page_cache_release(old_page); | 1721 | page_cache_release(old_page); |
1722 | return VM_FAULT_SIGBUS; | 1722 | return VM_FAULT_SIGBUS; |
1723 | } | 1723 | } |
1724 | 1724 | ||
1725 | /* | 1725 | /* |
1726 | * Helper functions for unmap_mapping_range(). | 1726 | * Helper functions for unmap_mapping_range(). |
1727 | * | 1727 | * |
1728 | * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ | 1728 | * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ |
1729 | * | 1729 | * |
1730 | * We have to restart searching the prio_tree whenever we drop the lock, | 1730 | * We have to restart searching the prio_tree whenever we drop the lock, |
1731 | * since the iterator is only valid while the lock is held, and anyway | 1731 | * since the iterator is only valid while the lock is held, and anyway |
1732 | * a later vma might be split and reinserted earlier while lock dropped. | 1732 | * a later vma might be split and reinserted earlier while lock dropped. |
1733 | * | 1733 | * |
1734 | * The list of nonlinear vmas could be handled more efficiently, using | 1734 | * The list of nonlinear vmas could be handled more efficiently, using |
1735 | * a placeholder, but handle it in the same way until a need is shown. | 1735 | * a placeholder, but handle it in the same way until a need is shown. |
1736 | * It is important to search the prio_tree before nonlinear list: a vma | 1736 | * It is important to search the prio_tree before nonlinear list: a vma |
1737 | * may become nonlinear and be shifted from prio_tree to nonlinear list | 1737 | * may become nonlinear and be shifted from prio_tree to nonlinear list |
1738 | * while the lock is dropped; but never shifted from list to prio_tree. | 1738 | * while the lock is dropped; but never shifted from list to prio_tree. |
1739 | * | 1739 | * |
1740 | * In order to make forward progress despite restarting the search, | 1740 | * In order to make forward progress despite restarting the search, |
1741 | * vm_truncate_count is used to mark a vma as now dealt with, so we can | 1741 | * vm_truncate_count is used to mark a vma as now dealt with, so we can |
1742 | * quickly skip it next time around. Since the prio_tree search only | 1742 | * quickly skip it next time around. Since the prio_tree search only |
1743 | * shows us those vmas affected by unmapping the range in question, we | 1743 | * shows us those vmas affected by unmapping the range in question, we |
1744 | * can't efficiently keep all vmas in step with mapping->truncate_count: | 1744 | * can't efficiently keep all vmas in step with mapping->truncate_count: |
1745 | * so instead reset them all whenever it wraps back to 0 (then go to 1). | 1745 | * so instead reset them all whenever it wraps back to 0 (then go to 1). |
1746 | * mapping->truncate_count and vma->vm_truncate_count are protected by | 1746 | * mapping->truncate_count and vma->vm_truncate_count are protected by |
1747 | * i_mmap_lock. | 1747 | * i_mmap_lock. |
1748 | * | 1748 | * |
1749 | * In order to make forward progress despite repeatedly restarting some | 1749 | * In order to make forward progress despite repeatedly restarting some |
1750 | * large vma, note the restart_addr from unmap_vmas when it breaks out: | 1750 | * large vma, note the restart_addr from unmap_vmas when it breaks out: |
1751 | * and restart from that address when we reach that vma again. It might | 1751 | * and restart from that address when we reach that vma again. It might |
1752 | * have been split or merged, shrunk or extended, but never shifted: so | 1752 | * have been split or merged, shrunk or extended, but never shifted: so |
1753 | * restart_addr remains valid so long as it remains in the vma's range. | 1753 | * restart_addr remains valid so long as it remains in the vma's range. |
1754 | * unmap_mapping_range forces truncate_count to leap over page-aligned | 1754 | * unmap_mapping_range forces truncate_count to leap over page-aligned |
1755 | * values so we can save vma's restart_addr in its truncate_count field. | 1755 | * values so we can save vma's restart_addr in its truncate_count field. |
1756 | */ | 1756 | */ |
1757 | #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) | 1757 | #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) |
1758 | 1758 | ||
1759 | static void reset_vma_truncate_counts(struct address_space *mapping) | 1759 | static void reset_vma_truncate_counts(struct address_space *mapping) |
1760 | { | 1760 | { |
1761 | struct vm_area_struct *vma; | 1761 | struct vm_area_struct *vma; |
1762 | struct prio_tree_iter iter; | 1762 | struct prio_tree_iter iter; |
1763 | 1763 | ||
1764 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) | 1764 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) |
1765 | vma->vm_truncate_count = 0; | 1765 | vma->vm_truncate_count = 0; |
1766 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) | 1766 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) |
1767 | vma->vm_truncate_count = 0; | 1767 | vma->vm_truncate_count = 0; |
1768 | } | 1768 | } |
1769 | 1769 | ||
1770 | static int unmap_mapping_range_vma(struct vm_area_struct *vma, | 1770 | static int unmap_mapping_range_vma(struct vm_area_struct *vma, |
1771 | unsigned long start_addr, unsigned long end_addr, | 1771 | unsigned long start_addr, unsigned long end_addr, |
1772 | struct zap_details *details) | 1772 | struct zap_details *details) |
1773 | { | 1773 | { |
1774 | unsigned long restart_addr; | 1774 | unsigned long restart_addr; |
1775 | int need_break; | 1775 | int need_break; |
1776 | 1776 | ||
1777 | /* | 1777 | /* |
1778 | * files that support invalidating or truncating portions of the | 1778 | * files that support invalidating or truncating portions of the |
1779 | * file from under mmaped areas must have their ->fault function | 1779 | * file from under mmaped areas must have their ->fault function |
1780 | * return a locked page (and set VM_FAULT_LOCKED in the return). | 1780 | * return a locked page (and set VM_FAULT_LOCKED in the return). |
1781 | * This provides synchronisation against concurrent unmapping here. | 1781 | * This provides synchronisation against concurrent unmapping here. |
1782 | */ | 1782 | */ |
1783 | 1783 | ||
1784 | again: | 1784 | again: |
1785 | restart_addr = vma->vm_truncate_count; | 1785 | restart_addr = vma->vm_truncate_count; |
1786 | if (is_restart_addr(restart_addr) && start_addr < restart_addr) { | 1786 | if (is_restart_addr(restart_addr) && start_addr < restart_addr) { |
1787 | start_addr = restart_addr; | 1787 | start_addr = restart_addr; |
1788 | if (start_addr >= end_addr) { | 1788 | if (start_addr >= end_addr) { |
1789 | /* Top of vma has been split off since last time */ | 1789 | /* Top of vma has been split off since last time */ |
1790 | vma->vm_truncate_count = details->truncate_count; | 1790 | vma->vm_truncate_count = details->truncate_count; |
1791 | return 0; | 1791 | return 0; |
1792 | } | 1792 | } |
1793 | } | 1793 | } |
1794 | 1794 | ||
1795 | restart_addr = zap_page_range(vma, start_addr, | 1795 | restart_addr = zap_page_range(vma, start_addr, |
1796 | end_addr - start_addr, details); | 1796 | end_addr - start_addr, details); |
1797 | need_break = need_resched() || spin_needbreak(details->i_mmap_lock); | 1797 | need_break = need_resched() || spin_needbreak(details->i_mmap_lock); |
1798 | 1798 | ||
1799 | if (restart_addr >= end_addr) { | 1799 | if (restart_addr >= end_addr) { |
1800 | /* We have now completed this vma: mark it so */ | 1800 | /* We have now completed this vma: mark it so */ |
1801 | vma->vm_truncate_count = details->truncate_count; | 1801 | vma->vm_truncate_count = details->truncate_count; |
1802 | if (!need_break) | 1802 | if (!need_break) |
1803 | return 0; | 1803 | return 0; |
1804 | } else { | 1804 | } else { |
1805 | /* Note restart_addr in vma's truncate_count field */ | 1805 | /* Note restart_addr in vma's truncate_count field */ |
1806 | vma->vm_truncate_count = restart_addr; | 1806 | vma->vm_truncate_count = restart_addr; |
1807 | if (!need_break) | 1807 | if (!need_break) |
1808 | goto again; | 1808 | goto again; |
1809 | } | 1809 | } |
1810 | 1810 | ||
1811 | spin_unlock(details->i_mmap_lock); | 1811 | spin_unlock(details->i_mmap_lock); |
1812 | cond_resched(); | 1812 | cond_resched(); |
1813 | spin_lock(details->i_mmap_lock); | 1813 | spin_lock(details->i_mmap_lock); |
1814 | return -EINTR; | 1814 | return -EINTR; |
1815 | } | 1815 | } |
1816 | 1816 | ||
1817 | static inline void unmap_mapping_range_tree(struct prio_tree_root *root, | 1817 | static inline void unmap_mapping_range_tree(struct prio_tree_root *root, |
1818 | struct zap_details *details) | 1818 | struct zap_details *details) |
1819 | { | 1819 | { |
1820 | struct vm_area_struct *vma; | 1820 | struct vm_area_struct *vma; |
1821 | struct prio_tree_iter iter; | 1821 | struct prio_tree_iter iter; |
1822 | pgoff_t vba, vea, zba, zea; | 1822 | pgoff_t vba, vea, zba, zea; |
1823 | 1823 | ||
1824 | restart: | 1824 | restart: |
1825 | vma_prio_tree_foreach(vma, &iter, root, | 1825 | vma_prio_tree_foreach(vma, &iter, root, |
1826 | details->first_index, details->last_index) { | 1826 | details->first_index, details->last_index) { |
1827 | /* Skip quickly over those we have already dealt with */ | 1827 | /* Skip quickly over those we have already dealt with */ |
1828 | if (vma->vm_truncate_count == details->truncate_count) | 1828 | if (vma->vm_truncate_count == details->truncate_count) |
1829 | continue; | 1829 | continue; |
1830 | 1830 | ||
1831 | vba = vma->vm_pgoff; | 1831 | vba = vma->vm_pgoff; |
1832 | vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; | 1832 | vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; |
1833 | /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ | 1833 | /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ |
1834 | zba = details->first_index; | 1834 | zba = details->first_index; |
1835 | if (zba < vba) | 1835 | if (zba < vba) |
1836 | zba = vba; | 1836 | zba = vba; |
1837 | zea = details->last_index; | 1837 | zea = details->last_index; |
1838 | if (zea > vea) | 1838 | if (zea > vea) |
1839 | zea = vea; | 1839 | zea = vea; |
1840 | 1840 | ||
1841 | if (unmap_mapping_range_vma(vma, | 1841 | if (unmap_mapping_range_vma(vma, |
1842 | ((zba - vba) << PAGE_SHIFT) + vma->vm_start, | 1842 | ((zba - vba) << PAGE_SHIFT) + vma->vm_start, |
1843 | ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, | 1843 | ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, |
1844 | details) < 0) | 1844 | details) < 0) |
1845 | goto restart; | 1845 | goto restart; |
1846 | } | 1846 | } |
1847 | } | 1847 | } |
1848 | 1848 | ||
1849 | static inline void unmap_mapping_range_list(struct list_head *head, | 1849 | static inline void unmap_mapping_range_list(struct list_head *head, |
1850 | struct zap_details *details) | 1850 | struct zap_details *details) |
1851 | { | 1851 | { |
1852 | struct vm_area_struct *vma; | 1852 | struct vm_area_struct *vma; |
1853 | 1853 | ||
1854 | /* | 1854 | /* |
1855 | * In nonlinear VMAs there is no correspondence between virtual address | 1855 | * In nonlinear VMAs there is no correspondence between virtual address |
1856 | * offset and file offset. So we must perform an exhaustive search | 1856 | * offset and file offset. So we must perform an exhaustive search |
1857 | * across *all* the pages in each nonlinear VMA, not just the pages | 1857 | * across *all* the pages in each nonlinear VMA, not just the pages |
1858 | * whose virtual address lies outside the file truncation point. | 1858 | * whose virtual address lies outside the file truncation point. |
1859 | */ | 1859 | */ |
1860 | restart: | 1860 | restart: |
1861 | list_for_each_entry(vma, head, shared.vm_set.list) { | 1861 | list_for_each_entry(vma, head, shared.vm_set.list) { |
1862 | /* Skip quickly over those we have already dealt with */ | 1862 | /* Skip quickly over those we have already dealt with */ |
1863 | if (vma->vm_truncate_count == details->truncate_count) | 1863 | if (vma->vm_truncate_count == details->truncate_count) |
1864 | continue; | 1864 | continue; |
1865 | details->nonlinear_vma = vma; | 1865 | details->nonlinear_vma = vma; |
1866 | if (unmap_mapping_range_vma(vma, vma->vm_start, | 1866 | if (unmap_mapping_range_vma(vma, vma->vm_start, |
1867 | vma->vm_end, details) < 0) | 1867 | vma->vm_end, details) < 0) |
1868 | goto restart; | 1868 | goto restart; |
1869 | } | 1869 | } |
1870 | } | 1870 | } |
1871 | 1871 | ||
1872 | /** | 1872 | /** |
1873 | * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. | 1873 | * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. |
1874 | * @mapping: the address space containing mmaps to be unmapped. | 1874 | * @mapping: the address space containing mmaps to be unmapped. |
1875 | * @holebegin: byte in first page to unmap, relative to the start of | 1875 | * @holebegin: byte in first page to unmap, relative to the start of |
1876 | * the underlying file. This will be rounded down to a PAGE_SIZE | 1876 | * the underlying file. This will be rounded down to a PAGE_SIZE |
1877 | * boundary. Note that this is different from vmtruncate(), which | 1877 | * boundary. Note that this is different from vmtruncate(), which |
1878 | * must keep the partial page. In contrast, we must get rid of | 1878 | * must keep the partial page. In contrast, we must get rid of |
1879 | * partial pages. | 1879 | * partial pages. |
1880 | * @holelen: size of prospective hole in bytes. This will be rounded | 1880 | * @holelen: size of prospective hole in bytes. This will be rounded |
1881 | * up to a PAGE_SIZE boundary. A holelen of zero truncates to the | 1881 | * up to a PAGE_SIZE boundary. A holelen of zero truncates to the |
1882 | * end of the file. | 1882 | * end of the file. |
1883 | * @even_cows: 1 when truncating a file, unmap even private COWed pages; | 1883 | * @even_cows: 1 when truncating a file, unmap even private COWed pages; |
1884 | * but 0 when invalidating pagecache, don't throw away private data. | 1884 | * but 0 when invalidating pagecache, don't throw away private data. |
1885 | */ | 1885 | */ |
1886 | void unmap_mapping_range(struct address_space *mapping, | 1886 | void unmap_mapping_range(struct address_space *mapping, |
1887 | loff_t const holebegin, loff_t const holelen, int even_cows) | 1887 | loff_t const holebegin, loff_t const holelen, int even_cows) |
1888 | { | 1888 | { |
1889 | struct zap_details details; | 1889 | struct zap_details details; |
1890 | pgoff_t hba = holebegin >> PAGE_SHIFT; | 1890 | pgoff_t hba = holebegin >> PAGE_SHIFT; |
1891 | pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | 1891 | pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; |
1892 | 1892 | ||
1893 | /* Check for overflow. */ | 1893 | /* Check for overflow. */ |
1894 | if (sizeof(holelen) > sizeof(hlen)) { | 1894 | if (sizeof(holelen) > sizeof(hlen)) { |
1895 | long long holeend = | 1895 | long long holeend = |
1896 | (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | 1896 | (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; |
1897 | if (holeend & ~(long long)ULONG_MAX) | 1897 | if (holeend & ~(long long)ULONG_MAX) |
1898 | hlen = ULONG_MAX - hba + 1; | 1898 | hlen = ULONG_MAX - hba + 1; |
1899 | } | 1899 | } |
1900 | 1900 | ||
1901 | details.check_mapping = even_cows? NULL: mapping; | 1901 | details.check_mapping = even_cows? NULL: mapping; |
1902 | details.nonlinear_vma = NULL; | 1902 | details.nonlinear_vma = NULL; |
1903 | details.first_index = hba; | 1903 | details.first_index = hba; |
1904 | details.last_index = hba + hlen - 1; | 1904 | details.last_index = hba + hlen - 1; |
1905 | if (details.last_index < details.first_index) | 1905 | if (details.last_index < details.first_index) |
1906 | details.last_index = ULONG_MAX; | 1906 | details.last_index = ULONG_MAX; |
1907 | details.i_mmap_lock = &mapping->i_mmap_lock; | 1907 | details.i_mmap_lock = &mapping->i_mmap_lock; |
1908 | 1908 | ||
1909 | spin_lock(&mapping->i_mmap_lock); | 1909 | spin_lock(&mapping->i_mmap_lock); |
1910 | 1910 | ||
1911 | /* Protect against endless unmapping loops */ | 1911 | /* Protect against endless unmapping loops */ |
1912 | mapping->truncate_count++; | 1912 | mapping->truncate_count++; |
1913 | if (unlikely(is_restart_addr(mapping->truncate_count))) { | 1913 | if (unlikely(is_restart_addr(mapping->truncate_count))) { |
1914 | if (mapping->truncate_count == 0) | 1914 | if (mapping->truncate_count == 0) |
1915 | reset_vma_truncate_counts(mapping); | 1915 | reset_vma_truncate_counts(mapping); |
1916 | mapping->truncate_count++; | 1916 | mapping->truncate_count++; |
1917 | } | 1917 | } |
1918 | details.truncate_count = mapping->truncate_count; | 1918 | details.truncate_count = mapping->truncate_count; |
1919 | 1919 | ||
1920 | if (unlikely(!prio_tree_empty(&mapping->i_mmap))) | 1920 | if (unlikely(!prio_tree_empty(&mapping->i_mmap))) |
1921 | unmap_mapping_range_tree(&mapping->i_mmap, &details); | 1921 | unmap_mapping_range_tree(&mapping->i_mmap, &details); |
1922 | if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) | 1922 | if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) |
1923 | unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); | 1923 | unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); |
1924 | spin_unlock(&mapping->i_mmap_lock); | 1924 | spin_unlock(&mapping->i_mmap_lock); |
1925 | } | 1925 | } |
1926 | EXPORT_SYMBOL(unmap_mapping_range); | 1926 | EXPORT_SYMBOL(unmap_mapping_range); |
1927 | 1927 | ||
1928 | /** | 1928 | /** |
1929 | * vmtruncate - unmap mappings "freed" by truncate() syscall | 1929 | * vmtruncate - unmap mappings "freed" by truncate() syscall |
1930 | * @inode: inode of the file used | 1930 | * @inode: inode of the file used |
1931 | * @offset: file offset to start truncating | 1931 | * @offset: file offset to start truncating |
1932 | * | 1932 | * |
1933 | * NOTE! We have to be ready to update the memory sharing | 1933 | * NOTE! We have to be ready to update the memory sharing |
1934 | * between the file and the memory map for a potential last | 1934 | * between the file and the memory map for a potential last |
1935 | * incomplete page. Ugly, but necessary. | 1935 | * incomplete page. Ugly, but necessary. |
1936 | */ | 1936 | */ |
1937 | int vmtruncate(struct inode * inode, loff_t offset) | 1937 | int vmtruncate(struct inode * inode, loff_t offset) |
1938 | { | 1938 | { |
1939 | if (inode->i_size < offset) { | 1939 | if (inode->i_size < offset) { |
1940 | unsigned long limit; | 1940 | unsigned long limit; |
1941 | 1941 | ||
1942 | limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; | 1942 | limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; |
1943 | if (limit != RLIM_INFINITY && offset > limit) | 1943 | if (limit != RLIM_INFINITY && offset > limit) |
1944 | goto out_sig; | 1944 | goto out_sig; |
1945 | if (offset > inode->i_sb->s_maxbytes) | 1945 | if (offset > inode->i_sb->s_maxbytes) |
1946 | goto out_big; | 1946 | goto out_big; |
1947 | i_size_write(inode, offset); | 1947 | i_size_write(inode, offset); |
1948 | } else { | 1948 | } else { |
1949 | struct address_space *mapping = inode->i_mapping; | 1949 | struct address_space *mapping = inode->i_mapping; |
1950 | 1950 | ||
1951 | /* | 1951 | /* |
1952 | * truncation of in-use swapfiles is disallowed - it would | 1952 | * truncation of in-use swapfiles is disallowed - it would |
1953 | * cause subsequent swapout to scribble on the now-freed | 1953 | * cause subsequent swapout to scribble on the now-freed |
1954 | * blocks. | 1954 | * blocks. |
1955 | */ | 1955 | */ |
1956 | if (IS_SWAPFILE(inode)) | 1956 | if (IS_SWAPFILE(inode)) |
1957 | return -ETXTBSY; | 1957 | return -ETXTBSY; |
1958 | i_size_write(inode, offset); | 1958 | i_size_write(inode, offset); |
1959 | 1959 | ||
1960 | /* | 1960 | /* |
1961 | * unmap_mapping_range is called twice, first simply for | 1961 | * unmap_mapping_range is called twice, first simply for |
1962 | * efficiency so that truncate_inode_pages does fewer | 1962 | * efficiency so that truncate_inode_pages does fewer |
1963 | * single-page unmaps. However after this first call, and | 1963 | * single-page unmaps. However after this first call, and |
1964 | * before truncate_inode_pages finishes, it is possible for | 1964 | * before truncate_inode_pages finishes, it is possible for |
1965 | * private pages to be COWed, which remain after | 1965 | * private pages to be COWed, which remain after |
1966 | * truncate_inode_pages finishes, hence the second | 1966 | * truncate_inode_pages finishes, hence the second |
1967 | * unmap_mapping_range call must be made for correctness. | 1967 | * unmap_mapping_range call must be made for correctness. |
1968 | */ | 1968 | */ |
1969 | unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); | 1969 | unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); |
1970 | truncate_inode_pages(mapping, offset); | 1970 | truncate_inode_pages(mapping, offset); |
1971 | unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); | 1971 | unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); |
1972 | } | 1972 | } |
1973 | 1973 | ||
1974 | if (inode->i_op && inode->i_op->truncate) | 1974 | if (inode->i_op && inode->i_op->truncate) |
1975 | inode->i_op->truncate(inode); | 1975 | inode->i_op->truncate(inode); |
1976 | return 0; | 1976 | return 0; |
1977 | 1977 | ||
1978 | out_sig: | 1978 | out_sig: |
1979 | send_sig(SIGXFSZ, current, 0); | 1979 | send_sig(SIGXFSZ, current, 0); |
1980 | out_big: | 1980 | out_big: |
1981 | return -EFBIG; | 1981 | return -EFBIG; |
1982 | } | 1982 | } |
1983 | EXPORT_SYMBOL(vmtruncate); | 1983 | EXPORT_SYMBOL(vmtruncate); |
1984 | 1984 | ||
1985 | int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) | 1985 | int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) |
1986 | { | 1986 | { |
1987 | struct address_space *mapping = inode->i_mapping; | 1987 | struct address_space *mapping = inode->i_mapping; |
1988 | 1988 | ||
1989 | /* | 1989 | /* |
1990 | * If the underlying filesystem is not going to provide | 1990 | * If the underlying filesystem is not going to provide |
1991 | * a way to truncate a range of blocks (punch a hole) - | 1991 | * a way to truncate a range of blocks (punch a hole) - |
1992 | * we should return failure right now. | 1992 | * we should return failure right now. |
1993 | */ | 1993 | */ |
1994 | if (!inode->i_op || !inode->i_op->truncate_range) | 1994 | if (!inode->i_op || !inode->i_op->truncate_range) |
1995 | return -ENOSYS; | 1995 | return -ENOSYS; |
1996 | 1996 | ||
1997 | mutex_lock(&inode->i_mutex); | 1997 | mutex_lock(&inode->i_mutex); |
1998 | down_write(&inode->i_alloc_sem); | 1998 | down_write(&inode->i_alloc_sem); |
1999 | unmap_mapping_range(mapping, offset, (end - offset), 1); | 1999 | unmap_mapping_range(mapping, offset, (end - offset), 1); |
2000 | truncate_inode_pages_range(mapping, offset, end); | 2000 | truncate_inode_pages_range(mapping, offset, end); |
2001 | unmap_mapping_range(mapping, offset, (end - offset), 1); | 2001 | unmap_mapping_range(mapping, offset, (end - offset), 1); |
2002 | inode->i_op->truncate_range(inode, offset, end); | 2002 | inode->i_op->truncate_range(inode, offset, end); |
2003 | up_write(&inode->i_alloc_sem); | 2003 | up_write(&inode->i_alloc_sem); |
2004 | mutex_unlock(&inode->i_mutex); | 2004 | mutex_unlock(&inode->i_mutex); |
2005 | 2005 | ||
2006 | return 0; | 2006 | return 0; |
2007 | } | 2007 | } |
2008 | 2008 | ||
2009 | /* | 2009 | /* |
2010 | * We enter with non-exclusive mmap_sem (to exclude vma changes, | 2010 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2011 | * but allow concurrent faults), and pte mapped but not yet locked. | 2011 | * but allow concurrent faults), and pte mapped but not yet locked. |
2012 | * We return with mmap_sem still held, but pte unmapped and unlocked. | 2012 | * We return with mmap_sem still held, but pte unmapped and unlocked. |
2013 | */ | 2013 | */ |
2014 | static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, | 2014 | static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, |
2015 | unsigned long address, pte_t *page_table, pmd_t *pmd, | 2015 | unsigned long address, pte_t *page_table, pmd_t *pmd, |
2016 | int write_access, pte_t orig_pte) | 2016 | int write_access, pte_t orig_pte) |
2017 | { | 2017 | { |
2018 | spinlock_t *ptl; | 2018 | spinlock_t *ptl; |
2019 | struct page *page; | 2019 | struct page *page; |
2020 | swp_entry_t entry; | 2020 | swp_entry_t entry; |
2021 | pte_t pte; | 2021 | pte_t pte; |
2022 | int ret = 0; | 2022 | int ret = 0; |
2023 | 2023 | ||
2024 | if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) | 2024 | if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) |
2025 | goto out; | 2025 | goto out; |
2026 | 2026 | ||
2027 | entry = pte_to_swp_entry(orig_pte); | 2027 | entry = pte_to_swp_entry(orig_pte); |
2028 | if (is_migration_entry(entry)) { | 2028 | if (is_migration_entry(entry)) { |
2029 | migration_entry_wait(mm, pmd, address); | 2029 | migration_entry_wait(mm, pmd, address); |
2030 | goto out; | 2030 | goto out; |
2031 | } | 2031 | } |
2032 | delayacct_set_flag(DELAYACCT_PF_SWAPIN); | 2032 | delayacct_set_flag(DELAYACCT_PF_SWAPIN); |
2033 | page = lookup_swap_cache(entry); | 2033 | page = lookup_swap_cache(entry); |
2034 | if (!page) { | 2034 | if (!page) { |
2035 | grab_swap_token(); /* Contend for token _before_ read-in */ | 2035 | grab_swap_token(); /* Contend for token _before_ read-in */ |
2036 | page = swapin_readahead(entry, | 2036 | page = swapin_readahead(entry, |
2037 | GFP_HIGHUSER_MOVABLE, vma, address); | 2037 | GFP_HIGHUSER_MOVABLE, vma, address); |
2038 | if (!page) { | 2038 | if (!page) { |
2039 | /* | 2039 | /* |
2040 | * Back out if somebody else faulted in this pte | 2040 | * Back out if somebody else faulted in this pte |
2041 | * while we released the pte lock. | 2041 | * while we released the pte lock. |
2042 | */ | 2042 | */ |
2043 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | 2043 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
2044 | if (likely(pte_same(*page_table, orig_pte))) | 2044 | if (likely(pte_same(*page_table, orig_pte))) |
2045 | ret = VM_FAULT_OOM; | 2045 | ret = VM_FAULT_OOM; |
2046 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); | 2046 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); |
2047 | goto unlock; | 2047 | goto unlock; |
2048 | } | 2048 | } |
2049 | 2049 | ||
2050 | /* Had to read the page from swap area: Major fault */ | 2050 | /* Had to read the page from swap area: Major fault */ |
2051 | ret = VM_FAULT_MAJOR; | 2051 | ret = VM_FAULT_MAJOR; |
2052 | count_vm_event(PGMAJFAULT); | 2052 | count_vm_event(PGMAJFAULT); |
2053 | } | 2053 | } |
2054 | 2054 | ||
2055 | if (mem_cgroup_charge(page, mm, GFP_KERNEL)) { | 2055 | if (mem_cgroup_charge(page, mm, GFP_KERNEL)) { |
2056 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); | 2056 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); |
2057 | ret = VM_FAULT_OOM; | 2057 | ret = VM_FAULT_OOM; |
2058 | goto out; | 2058 | goto out; |
2059 | } | 2059 | } |
2060 | 2060 | ||
2061 | mark_page_accessed(page); | 2061 | mark_page_accessed(page); |
2062 | lock_page(page); | 2062 | lock_page(page); |
2063 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); | 2063 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); |
2064 | 2064 | ||
2065 | /* | 2065 | /* |
2066 | * Back out if somebody else already faulted in this pte. | 2066 | * Back out if somebody else already faulted in this pte. |
2067 | */ | 2067 | */ |
2068 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | 2068 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
2069 | if (unlikely(!pte_same(*page_table, orig_pte))) | 2069 | if (unlikely(!pte_same(*page_table, orig_pte))) |
2070 | goto out_nomap; | 2070 | goto out_nomap; |
2071 | 2071 | ||
2072 | if (unlikely(!PageUptodate(page))) { | 2072 | if (unlikely(!PageUptodate(page))) { |
2073 | ret = VM_FAULT_SIGBUS; | 2073 | ret = VM_FAULT_SIGBUS; |
2074 | goto out_nomap; | 2074 | goto out_nomap; |
2075 | } | 2075 | } |
2076 | 2076 | ||
2077 | /* The page isn't present yet, go ahead with the fault. */ | 2077 | /* The page isn't present yet, go ahead with the fault. */ |
2078 | 2078 | ||
2079 | inc_mm_counter(mm, anon_rss); | 2079 | inc_mm_counter(mm, anon_rss); |
2080 | pte = mk_pte(page, vma->vm_page_prot); | 2080 | pte = mk_pte(page, vma->vm_page_prot); |
2081 | if (write_access && can_share_swap_page(page)) { | 2081 | if (write_access && can_share_swap_page(page)) { |
2082 | pte = maybe_mkwrite(pte_mkdirty(pte), vma); | 2082 | pte = maybe_mkwrite(pte_mkdirty(pte), vma); |
2083 | write_access = 0; | 2083 | write_access = 0; |
2084 | } | 2084 | } |
2085 | 2085 | ||
2086 | flush_icache_page(vma, page); | 2086 | flush_icache_page(vma, page); |
2087 | set_pte_at(mm, address, page_table, pte); | 2087 | set_pte_at(mm, address, page_table, pte); |
2088 | page_add_anon_rmap(page, vma, address); | 2088 | page_add_anon_rmap(page, vma, address); |
2089 | 2089 | ||
2090 | swap_free(entry); | 2090 | swap_free(entry); |
2091 | if (vm_swap_full()) | 2091 | if (vm_swap_full()) |
2092 | remove_exclusive_swap_page(page); | 2092 | remove_exclusive_swap_page(page); |
2093 | unlock_page(page); | 2093 | unlock_page(page); |
2094 | 2094 | ||
2095 | if (write_access) { | 2095 | if (write_access) { |
2096 | /* XXX: We could OR the do_wp_page code with this one? */ | 2096 | ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); |
2097 | if (do_wp_page(mm, vma, address, | 2097 | if (ret & VM_FAULT_ERROR) |
2098 | page_table, pmd, ptl, pte) & VM_FAULT_OOM) { | 2098 | ret &= VM_FAULT_ERROR; |
2099 | mem_cgroup_uncharge_page(page); | ||
2100 | ret = VM_FAULT_OOM; | ||
2101 | } | ||
2102 | goto out; | 2099 | goto out; |
2103 | } | 2100 | } |
2104 | 2101 | ||
2105 | /* No need to invalidate - it was non-present before */ | 2102 | /* No need to invalidate - it was non-present before */ |
2106 | update_mmu_cache(vma, address, pte); | 2103 | update_mmu_cache(vma, address, pte); |
2107 | unlock: | 2104 | unlock: |
2108 | pte_unmap_unlock(page_table, ptl); | 2105 | pte_unmap_unlock(page_table, ptl); |
2109 | out: | 2106 | out: |
2110 | return ret; | 2107 | return ret; |
2111 | out_nomap: | 2108 | out_nomap: |
2112 | mem_cgroup_uncharge_page(page); | 2109 | mem_cgroup_uncharge_page(page); |
2113 | pte_unmap_unlock(page_table, ptl); | 2110 | pte_unmap_unlock(page_table, ptl); |
2114 | unlock_page(page); | 2111 | unlock_page(page); |
2115 | page_cache_release(page); | 2112 | page_cache_release(page); |
2116 | return ret; | 2113 | return ret; |
2117 | } | 2114 | } |
2118 | 2115 | ||
2119 | /* | 2116 | /* |
2120 | * We enter with non-exclusive mmap_sem (to exclude vma changes, | 2117 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2121 | * but allow concurrent faults), and pte mapped but not yet locked. | 2118 | * but allow concurrent faults), and pte mapped but not yet locked. |
2122 | * We return with mmap_sem still held, but pte unmapped and unlocked. | 2119 | * We return with mmap_sem still held, but pte unmapped and unlocked. |
2123 | */ | 2120 | */ |
2124 | static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, | 2121 | static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, |
2125 | unsigned long address, pte_t *page_table, pmd_t *pmd, | 2122 | unsigned long address, pte_t *page_table, pmd_t *pmd, |
2126 | int write_access) | 2123 | int write_access) |
2127 | { | 2124 | { |
2128 | struct page *page; | 2125 | struct page *page; |
2129 | spinlock_t *ptl; | 2126 | spinlock_t *ptl; |
2130 | pte_t entry; | 2127 | pte_t entry; |
2131 | 2128 | ||
2132 | /* Allocate our own private page. */ | 2129 | /* Allocate our own private page. */ |
2133 | pte_unmap(page_table); | 2130 | pte_unmap(page_table); |
2134 | 2131 | ||
2135 | if (unlikely(anon_vma_prepare(vma))) | 2132 | if (unlikely(anon_vma_prepare(vma))) |
2136 | goto oom; | 2133 | goto oom; |
2137 | page = alloc_zeroed_user_highpage_movable(vma, address); | 2134 | page = alloc_zeroed_user_highpage_movable(vma, address); |
2138 | if (!page) | 2135 | if (!page) |
2139 | goto oom; | 2136 | goto oom; |
2140 | __SetPageUptodate(page); | 2137 | __SetPageUptodate(page); |
2141 | 2138 | ||
2142 | if (mem_cgroup_charge(page, mm, GFP_KERNEL)) | 2139 | if (mem_cgroup_charge(page, mm, GFP_KERNEL)) |
2143 | goto oom_free_page; | 2140 | goto oom_free_page; |
2144 | 2141 | ||
2145 | entry = mk_pte(page, vma->vm_page_prot); | 2142 | entry = mk_pte(page, vma->vm_page_prot); |
2146 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | 2143 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); |
2147 | 2144 | ||
2148 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | 2145 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
2149 | if (!pte_none(*page_table)) | 2146 | if (!pte_none(*page_table)) |
2150 | goto release; | 2147 | goto release; |
2151 | inc_mm_counter(mm, anon_rss); | 2148 | inc_mm_counter(mm, anon_rss); |
2152 | lru_cache_add_active(page); | 2149 | lru_cache_add_active(page); |
2153 | page_add_new_anon_rmap(page, vma, address); | 2150 | page_add_new_anon_rmap(page, vma, address); |
2154 | set_pte_at(mm, address, page_table, entry); | 2151 | set_pte_at(mm, address, page_table, entry); |
2155 | 2152 | ||
2156 | /* No need to invalidate - it was non-present before */ | 2153 | /* No need to invalidate - it was non-present before */ |
2157 | update_mmu_cache(vma, address, entry); | 2154 | update_mmu_cache(vma, address, entry); |
2158 | unlock: | 2155 | unlock: |
2159 | pte_unmap_unlock(page_table, ptl); | 2156 | pte_unmap_unlock(page_table, ptl); |
2160 | return 0; | 2157 | return 0; |
2161 | release: | 2158 | release: |
2162 | mem_cgroup_uncharge_page(page); | 2159 | mem_cgroup_uncharge_page(page); |
2163 | page_cache_release(page); | 2160 | page_cache_release(page); |
2164 | goto unlock; | 2161 | goto unlock; |
2165 | oom_free_page: | 2162 | oom_free_page: |
2166 | page_cache_release(page); | 2163 | page_cache_release(page); |
2167 | oom: | 2164 | oom: |
2168 | return VM_FAULT_OOM; | 2165 | return VM_FAULT_OOM; |
2169 | } | 2166 | } |
2170 | 2167 | ||
2171 | /* | 2168 | /* |
2172 | * __do_fault() tries to create a new page mapping. It aggressively | 2169 | * __do_fault() tries to create a new page mapping. It aggressively |
2173 | * tries to share with existing pages, but makes a separate copy if | 2170 | * tries to share with existing pages, but makes a separate copy if |
2174 | * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid | 2171 | * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid |
2175 | * the next page fault. | 2172 | * the next page fault. |
2176 | * | 2173 | * |
2177 | * As this is called only for pages that do not currently exist, we | 2174 | * As this is called only for pages that do not currently exist, we |
2178 | * do not need to flush old virtual caches or the TLB. | 2175 | * do not need to flush old virtual caches or the TLB. |
2179 | * | 2176 | * |
2180 | * We enter with non-exclusive mmap_sem (to exclude vma changes, | 2177 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2181 | * but allow concurrent faults), and pte neither mapped nor locked. | 2178 | * but allow concurrent faults), and pte neither mapped nor locked. |
2182 | * We return with mmap_sem still held, but pte unmapped and unlocked. | 2179 | * We return with mmap_sem still held, but pte unmapped and unlocked. |
2183 | */ | 2180 | */ |
2184 | static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, | 2181 | static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
2185 | unsigned long address, pmd_t *pmd, | 2182 | unsigned long address, pmd_t *pmd, |
2186 | pgoff_t pgoff, unsigned int flags, pte_t orig_pte) | 2183 | pgoff_t pgoff, unsigned int flags, pte_t orig_pte) |
2187 | { | 2184 | { |
2188 | pte_t *page_table; | 2185 | pte_t *page_table; |
2189 | spinlock_t *ptl; | 2186 | spinlock_t *ptl; |
2190 | struct page *page; | 2187 | struct page *page; |
2191 | pte_t entry; | 2188 | pte_t entry; |
2192 | int anon = 0; | 2189 | int anon = 0; |
2193 | struct page *dirty_page = NULL; | 2190 | struct page *dirty_page = NULL; |
2194 | struct vm_fault vmf; | 2191 | struct vm_fault vmf; |
2195 | int ret; | 2192 | int ret; |
2196 | int page_mkwrite = 0; | 2193 | int page_mkwrite = 0; |
2197 | 2194 | ||
2198 | vmf.virtual_address = (void __user *)(address & PAGE_MASK); | 2195 | vmf.virtual_address = (void __user *)(address & PAGE_MASK); |
2199 | vmf.pgoff = pgoff; | 2196 | vmf.pgoff = pgoff; |
2200 | vmf.flags = flags; | 2197 | vmf.flags = flags; |
2201 | vmf.page = NULL; | 2198 | vmf.page = NULL; |
2202 | 2199 | ||
2203 | BUG_ON(vma->vm_flags & VM_PFNMAP); | 2200 | BUG_ON(vma->vm_flags & VM_PFNMAP); |
2204 | 2201 | ||
2205 | if (likely(vma->vm_ops->fault)) { | 2202 | if (likely(vma->vm_ops->fault)) { |
2206 | ret = vma->vm_ops->fault(vma, &vmf); | 2203 | ret = vma->vm_ops->fault(vma, &vmf); |
2207 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) | 2204 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) |
2208 | return ret; | 2205 | return ret; |
2209 | } else { | 2206 | } else { |
2210 | /* Legacy ->nopage path */ | 2207 | /* Legacy ->nopage path */ |
2211 | ret = 0; | 2208 | ret = 0; |
2212 | vmf.page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret); | 2209 | vmf.page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret); |
2213 | /* no page was available -- either SIGBUS or OOM */ | 2210 | /* no page was available -- either SIGBUS or OOM */ |
2214 | if (unlikely(vmf.page == NOPAGE_SIGBUS)) | 2211 | if (unlikely(vmf.page == NOPAGE_SIGBUS)) |
2215 | return VM_FAULT_SIGBUS; | 2212 | return VM_FAULT_SIGBUS; |
2216 | else if (unlikely(vmf.page == NOPAGE_OOM)) | 2213 | else if (unlikely(vmf.page == NOPAGE_OOM)) |
2217 | return VM_FAULT_OOM; | 2214 | return VM_FAULT_OOM; |
2218 | } | 2215 | } |
2219 | 2216 | ||
2220 | /* | 2217 | /* |
2221 | * For consistency in subsequent calls, make the faulted page always | 2218 | * For consistency in subsequent calls, make the faulted page always |
2222 | * locked. | 2219 | * locked. |
2223 | */ | 2220 | */ |
2224 | if (unlikely(!(ret & VM_FAULT_LOCKED))) | 2221 | if (unlikely(!(ret & VM_FAULT_LOCKED))) |
2225 | lock_page(vmf.page); | 2222 | lock_page(vmf.page); |
2226 | else | 2223 | else |
2227 | VM_BUG_ON(!PageLocked(vmf.page)); | 2224 | VM_BUG_ON(!PageLocked(vmf.page)); |
2228 | 2225 | ||
2229 | /* | 2226 | /* |
2230 | * Should we do an early C-O-W break? | 2227 | * Should we do an early C-O-W break? |
2231 | */ | 2228 | */ |
2232 | page = vmf.page; | 2229 | page = vmf.page; |
2233 | if (flags & FAULT_FLAG_WRITE) { | 2230 | if (flags & FAULT_FLAG_WRITE) { |
2234 | if (!(vma->vm_flags & VM_SHARED)) { | 2231 | if (!(vma->vm_flags & VM_SHARED)) { |
2235 | anon = 1; | 2232 | anon = 1; |
2236 | if (unlikely(anon_vma_prepare(vma))) { | 2233 | if (unlikely(anon_vma_prepare(vma))) { |
2237 | ret = VM_FAULT_OOM; | 2234 | ret = VM_FAULT_OOM; |
2238 | goto out; | 2235 | goto out; |
2239 | } | 2236 | } |
2240 | page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, | 2237 | page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, |
2241 | vma, address); | 2238 | vma, address); |
2242 | if (!page) { | 2239 | if (!page) { |
2243 | ret = VM_FAULT_OOM; | 2240 | ret = VM_FAULT_OOM; |
2244 | goto out; | 2241 | goto out; |
2245 | } | 2242 | } |
2246 | copy_user_highpage(page, vmf.page, address, vma); | 2243 | copy_user_highpage(page, vmf.page, address, vma); |
2247 | __SetPageUptodate(page); | 2244 | __SetPageUptodate(page); |
2248 | } else { | 2245 | } else { |
2249 | /* | 2246 | /* |
2250 | * If the page will be shareable, see if the backing | 2247 | * If the page will be shareable, see if the backing |
2251 | * address space wants to know that the page is about | 2248 | * address space wants to know that the page is about |
2252 | * to become writable | 2249 | * to become writable |
2253 | */ | 2250 | */ |
2254 | if (vma->vm_ops->page_mkwrite) { | 2251 | if (vma->vm_ops->page_mkwrite) { |
2255 | unlock_page(page); | 2252 | unlock_page(page); |
2256 | if (vma->vm_ops->page_mkwrite(vma, page) < 0) { | 2253 | if (vma->vm_ops->page_mkwrite(vma, page) < 0) { |
2257 | ret = VM_FAULT_SIGBUS; | 2254 | ret = VM_FAULT_SIGBUS; |
2258 | anon = 1; /* no anon but release vmf.page */ | 2255 | anon = 1; /* no anon but release vmf.page */ |
2259 | goto out_unlocked; | 2256 | goto out_unlocked; |
2260 | } | 2257 | } |
2261 | lock_page(page); | 2258 | lock_page(page); |
2262 | /* | 2259 | /* |
2263 | * XXX: this is not quite right (racy vs | 2260 | * XXX: this is not quite right (racy vs |
2264 | * invalidate) to unlock and relock the page | 2261 | * invalidate) to unlock and relock the page |
2265 | * like this, however a better fix requires | 2262 | * like this, however a better fix requires |
2266 | * reworking page_mkwrite locking API, which | 2263 | * reworking page_mkwrite locking API, which |
2267 | * is better done later. | 2264 | * is better done later. |
2268 | */ | 2265 | */ |
2269 | if (!page->mapping) { | 2266 | if (!page->mapping) { |
2270 | ret = 0; | 2267 | ret = 0; |
2271 | anon = 1; /* no anon but release vmf.page */ | 2268 | anon = 1; /* no anon but release vmf.page */ |
2272 | goto out; | 2269 | goto out; |
2273 | } | 2270 | } |
2274 | page_mkwrite = 1; | 2271 | page_mkwrite = 1; |
2275 | } | 2272 | } |
2276 | } | 2273 | } |
2277 | 2274 | ||
2278 | } | 2275 | } |
2279 | 2276 | ||
2280 | if (mem_cgroup_charge(page, mm, GFP_KERNEL)) { | 2277 | if (mem_cgroup_charge(page, mm, GFP_KERNEL)) { |
2281 | ret = VM_FAULT_OOM; | 2278 | ret = VM_FAULT_OOM; |
2282 | goto out; | 2279 | goto out; |
2283 | } | 2280 | } |
2284 | 2281 | ||
2285 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | 2282 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
2286 | 2283 | ||
2287 | /* | 2284 | /* |
2288 | * This silly early PAGE_DIRTY setting removes a race | 2285 | * This silly early PAGE_DIRTY setting removes a race |
2289 | * due to the bad i386 page protection. But it's valid | 2286 | * due to the bad i386 page protection. But it's valid |
2290 | * for other architectures too. | 2287 | * for other architectures too. |
2291 | * | 2288 | * |
2292 | * Note that if write_access is true, we either now have | 2289 | * Note that if write_access is true, we either now have |
2293 | * an exclusive copy of the page, or this is a shared mapping, | 2290 | * an exclusive copy of the page, or this is a shared mapping, |
2294 | * so we can make it writable and dirty to avoid having to | 2291 | * so we can make it writable and dirty to avoid having to |
2295 | * handle that later. | 2292 | * handle that later. |
2296 | */ | 2293 | */ |
2297 | /* Only go through if we didn't race with anybody else... */ | 2294 | /* Only go through if we didn't race with anybody else... */ |
2298 | if (likely(pte_same(*page_table, orig_pte))) { | 2295 | if (likely(pte_same(*page_table, orig_pte))) { |
2299 | flush_icache_page(vma, page); | 2296 | flush_icache_page(vma, page); |
2300 | entry = mk_pte(page, vma->vm_page_prot); | 2297 | entry = mk_pte(page, vma->vm_page_prot); |
2301 | if (flags & FAULT_FLAG_WRITE) | 2298 | if (flags & FAULT_FLAG_WRITE) |
2302 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | 2299 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); |
2303 | set_pte_at(mm, address, page_table, entry); | 2300 | set_pte_at(mm, address, page_table, entry); |
2304 | if (anon) { | 2301 | if (anon) { |
2305 | inc_mm_counter(mm, anon_rss); | 2302 | inc_mm_counter(mm, anon_rss); |
2306 | lru_cache_add_active(page); | 2303 | lru_cache_add_active(page); |
2307 | page_add_new_anon_rmap(page, vma, address); | 2304 | page_add_new_anon_rmap(page, vma, address); |
2308 | } else { | 2305 | } else { |
2309 | inc_mm_counter(mm, file_rss); | 2306 | inc_mm_counter(mm, file_rss); |
2310 | page_add_file_rmap(page); | 2307 | page_add_file_rmap(page); |
2311 | if (flags & FAULT_FLAG_WRITE) { | 2308 | if (flags & FAULT_FLAG_WRITE) { |
2312 | dirty_page = page; | 2309 | dirty_page = page; |
2313 | get_page(dirty_page); | 2310 | get_page(dirty_page); |
2314 | } | 2311 | } |
2315 | } | 2312 | } |
2316 | 2313 | ||
2317 | /* no need to invalidate: a not-present page won't be cached */ | 2314 | /* no need to invalidate: a not-present page won't be cached */ |
2318 | update_mmu_cache(vma, address, entry); | 2315 | update_mmu_cache(vma, address, entry); |
2319 | } else { | 2316 | } else { |
2320 | mem_cgroup_uncharge_page(page); | 2317 | mem_cgroup_uncharge_page(page); |
2321 | if (anon) | 2318 | if (anon) |
2322 | page_cache_release(page); | 2319 | page_cache_release(page); |
2323 | else | 2320 | else |
2324 | anon = 1; /* no anon but release faulted_page */ | 2321 | anon = 1; /* no anon but release faulted_page */ |
2325 | } | 2322 | } |
2326 | 2323 | ||
2327 | pte_unmap_unlock(page_table, ptl); | 2324 | pte_unmap_unlock(page_table, ptl); |
2328 | 2325 | ||
2329 | out: | 2326 | out: |
2330 | unlock_page(vmf.page); | 2327 | unlock_page(vmf.page); |
2331 | out_unlocked: | 2328 | out_unlocked: |
2332 | if (anon) | 2329 | if (anon) |
2333 | page_cache_release(vmf.page); | 2330 | page_cache_release(vmf.page); |
2334 | else if (dirty_page) { | 2331 | else if (dirty_page) { |
2335 | if (vma->vm_file) | 2332 | if (vma->vm_file) |
2336 | file_update_time(vma->vm_file); | 2333 | file_update_time(vma->vm_file); |
2337 | 2334 | ||
2338 | set_page_dirty_balance(dirty_page, page_mkwrite); | 2335 | set_page_dirty_balance(dirty_page, page_mkwrite); |
2339 | put_page(dirty_page); | 2336 | put_page(dirty_page); |
2340 | } | 2337 | } |
2341 | 2338 | ||
2342 | return ret; | 2339 | return ret; |
2343 | } | 2340 | } |
2344 | 2341 | ||
2345 | static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, | 2342 | static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
2346 | unsigned long address, pte_t *page_table, pmd_t *pmd, | 2343 | unsigned long address, pte_t *page_table, pmd_t *pmd, |
2347 | int write_access, pte_t orig_pte) | 2344 | int write_access, pte_t orig_pte) |
2348 | { | 2345 | { |
2349 | pgoff_t pgoff = (((address & PAGE_MASK) | 2346 | pgoff_t pgoff = (((address & PAGE_MASK) |
2350 | - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; | 2347 | - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; |
2351 | unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0); | 2348 | unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0); |
2352 | 2349 | ||
2353 | pte_unmap(page_table); | 2350 | pte_unmap(page_table); |
2354 | return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); | 2351 | return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); |
2355 | } | 2352 | } |
2356 | 2353 | ||
2357 | 2354 | ||
2358 | /* | 2355 | /* |
2359 | * do_no_pfn() tries to create a new page mapping for a page without | 2356 | * do_no_pfn() tries to create a new page mapping for a page without |
2360 | * a struct_page backing it | 2357 | * a struct_page backing it |
2361 | * | 2358 | * |
2362 | * As this is called only for pages that do not currently exist, we | 2359 | * As this is called only for pages that do not currently exist, we |
2363 | * do not need to flush old virtual caches or the TLB. | 2360 | * do not need to flush old virtual caches or the TLB. |
2364 | * | 2361 | * |
2365 | * We enter with non-exclusive mmap_sem (to exclude vma changes, | 2362 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2366 | * but allow concurrent faults), and pte mapped but not yet locked. | 2363 | * but allow concurrent faults), and pte mapped but not yet locked. |
2367 | * We return with mmap_sem still held, but pte unmapped and unlocked. | 2364 | * We return with mmap_sem still held, but pte unmapped and unlocked. |
2368 | * | 2365 | * |
2369 | * It is expected that the ->nopfn handler always returns the same pfn | 2366 | * It is expected that the ->nopfn handler always returns the same pfn |
2370 | * for a given virtual mapping. | 2367 | * for a given virtual mapping. |
2371 | * | 2368 | * |
2372 | * Mark this `noinline' to prevent it from bloating the main pagefault code. | 2369 | * Mark this `noinline' to prevent it from bloating the main pagefault code. |
2373 | */ | 2370 | */ |
2374 | static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma, | 2371 | static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma, |
2375 | unsigned long address, pte_t *page_table, pmd_t *pmd, | 2372 | unsigned long address, pte_t *page_table, pmd_t *pmd, |
2376 | int write_access) | 2373 | int write_access) |
2377 | { | 2374 | { |
2378 | spinlock_t *ptl; | 2375 | spinlock_t *ptl; |
2379 | pte_t entry; | 2376 | pte_t entry; |
2380 | unsigned long pfn; | 2377 | unsigned long pfn; |
2381 | 2378 | ||
2382 | pte_unmap(page_table); | 2379 | pte_unmap(page_table); |
2383 | BUG_ON(!(vma->vm_flags & VM_PFNMAP)); | 2380 | BUG_ON(!(vma->vm_flags & VM_PFNMAP)); |
2384 | BUG_ON(is_cow_mapping(vma->vm_flags)); | 2381 | BUG_ON(is_cow_mapping(vma->vm_flags)); |
2385 | 2382 | ||
2386 | pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK); | 2383 | pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK); |
2387 | if (unlikely(pfn == NOPFN_OOM)) | 2384 | if (unlikely(pfn == NOPFN_OOM)) |
2388 | return VM_FAULT_OOM; | 2385 | return VM_FAULT_OOM; |
2389 | else if (unlikely(pfn == NOPFN_SIGBUS)) | 2386 | else if (unlikely(pfn == NOPFN_SIGBUS)) |
2390 | return VM_FAULT_SIGBUS; | 2387 | return VM_FAULT_SIGBUS; |
2391 | else if (unlikely(pfn == NOPFN_REFAULT)) | 2388 | else if (unlikely(pfn == NOPFN_REFAULT)) |
2392 | return 0; | 2389 | return 0; |
2393 | 2390 | ||
2394 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | 2391 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
2395 | 2392 | ||
2396 | /* Only go through if we didn't race with anybody else... */ | 2393 | /* Only go through if we didn't race with anybody else... */ |
2397 | if (pte_none(*page_table)) { | 2394 | if (pte_none(*page_table)) { |
2398 | entry = pfn_pte(pfn, vma->vm_page_prot); | 2395 | entry = pfn_pte(pfn, vma->vm_page_prot); |
2399 | if (write_access) | 2396 | if (write_access) |
2400 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | 2397 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); |
2401 | set_pte_at(mm, address, page_table, entry); | 2398 | set_pte_at(mm, address, page_table, entry); |
2402 | } | 2399 | } |
2403 | pte_unmap_unlock(page_table, ptl); | 2400 | pte_unmap_unlock(page_table, ptl); |
2404 | return 0; | 2401 | return 0; |
2405 | } | 2402 | } |
2406 | 2403 | ||
2407 | /* | 2404 | /* |
2408 | * Fault of a previously existing named mapping. Repopulate the pte | 2405 | * Fault of a previously existing named mapping. Repopulate the pte |
2409 | * from the encoded file_pte if possible. This enables swappable | 2406 | * from the encoded file_pte if possible. This enables swappable |
2410 | * nonlinear vmas. | 2407 | * nonlinear vmas. |
2411 | * | 2408 | * |
2412 | * We enter with non-exclusive mmap_sem (to exclude vma changes, | 2409 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2413 | * but allow concurrent faults), and pte mapped but not yet locked. | 2410 | * but allow concurrent faults), and pte mapped but not yet locked. |
2414 | * We return with mmap_sem still held, but pte unmapped and unlocked. | 2411 | * We return with mmap_sem still held, but pte unmapped and unlocked. |
2415 | */ | 2412 | */ |
2416 | static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, | 2413 | static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
2417 | unsigned long address, pte_t *page_table, pmd_t *pmd, | 2414 | unsigned long address, pte_t *page_table, pmd_t *pmd, |
2418 | int write_access, pte_t orig_pte) | 2415 | int write_access, pte_t orig_pte) |
2419 | { | 2416 | { |
2420 | unsigned int flags = FAULT_FLAG_NONLINEAR | | 2417 | unsigned int flags = FAULT_FLAG_NONLINEAR | |
2421 | (write_access ? FAULT_FLAG_WRITE : 0); | 2418 | (write_access ? FAULT_FLAG_WRITE : 0); |
2422 | pgoff_t pgoff; | 2419 | pgoff_t pgoff; |
2423 | 2420 | ||
2424 | if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) | 2421 | if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) |
2425 | return 0; | 2422 | return 0; |
2426 | 2423 | ||
2427 | if (unlikely(!(vma->vm_flags & VM_NONLINEAR) || | 2424 | if (unlikely(!(vma->vm_flags & VM_NONLINEAR) || |
2428 | !(vma->vm_flags & VM_CAN_NONLINEAR))) { | 2425 | !(vma->vm_flags & VM_CAN_NONLINEAR))) { |
2429 | /* | 2426 | /* |
2430 | * Page table corrupted: show pte and kill process. | 2427 | * Page table corrupted: show pte and kill process. |
2431 | */ | 2428 | */ |
2432 | print_bad_pte(vma, orig_pte, address); | 2429 | print_bad_pte(vma, orig_pte, address); |
2433 | return VM_FAULT_OOM; | 2430 | return VM_FAULT_OOM; |
2434 | } | 2431 | } |
2435 | 2432 | ||
2436 | pgoff = pte_to_pgoff(orig_pte); | 2433 | pgoff = pte_to_pgoff(orig_pte); |
2437 | return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); | 2434 | return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); |
2438 | } | 2435 | } |
2439 | 2436 | ||
2440 | /* | 2437 | /* |
2441 | * These routines also need to handle stuff like marking pages dirty | 2438 | * These routines also need to handle stuff like marking pages dirty |
2442 | * and/or accessed for architectures that don't do it in hardware (most | 2439 | * and/or accessed for architectures that don't do it in hardware (most |
2443 | * RISC architectures). The early dirtying is also good on the i386. | 2440 | * RISC architectures). The early dirtying is also good on the i386. |
2444 | * | 2441 | * |
2445 | * There is also a hook called "update_mmu_cache()" that architectures | 2442 | * There is also a hook called "update_mmu_cache()" that architectures |
2446 | * with external mmu caches can use to update those (ie the Sparc or | 2443 | * with external mmu caches can use to update those (ie the Sparc or |
2447 | * PowerPC hashed page tables that act as extended TLBs). | 2444 | * PowerPC hashed page tables that act as extended TLBs). |
2448 | * | 2445 | * |
2449 | * We enter with non-exclusive mmap_sem (to exclude vma changes, | 2446 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2450 | * but allow concurrent faults), and pte mapped but not yet locked. | 2447 | * but allow concurrent faults), and pte mapped but not yet locked. |
2451 | * We return with mmap_sem still held, but pte unmapped and unlocked. | 2448 | * We return with mmap_sem still held, but pte unmapped and unlocked. |
2452 | */ | 2449 | */ |
2453 | static inline int handle_pte_fault(struct mm_struct *mm, | 2450 | static inline int handle_pte_fault(struct mm_struct *mm, |
2454 | struct vm_area_struct *vma, unsigned long address, | 2451 | struct vm_area_struct *vma, unsigned long address, |
2455 | pte_t *pte, pmd_t *pmd, int write_access) | 2452 | pte_t *pte, pmd_t *pmd, int write_access) |
2456 | { | 2453 | { |
2457 | pte_t entry; | 2454 | pte_t entry; |
2458 | spinlock_t *ptl; | 2455 | spinlock_t *ptl; |
2459 | 2456 | ||
2460 | entry = *pte; | 2457 | entry = *pte; |
2461 | if (!pte_present(entry)) { | 2458 | if (!pte_present(entry)) { |
2462 | if (pte_none(entry)) { | 2459 | if (pte_none(entry)) { |
2463 | if (vma->vm_ops) { | 2460 | if (vma->vm_ops) { |
2464 | if (vma->vm_ops->fault || vma->vm_ops->nopage) | 2461 | if (vma->vm_ops->fault || vma->vm_ops->nopage) |
2465 | return do_linear_fault(mm, vma, address, | 2462 | return do_linear_fault(mm, vma, address, |
2466 | pte, pmd, write_access, entry); | 2463 | pte, pmd, write_access, entry); |
2467 | if (unlikely(vma->vm_ops->nopfn)) | 2464 | if (unlikely(vma->vm_ops->nopfn)) |
2468 | return do_no_pfn(mm, vma, address, pte, | 2465 | return do_no_pfn(mm, vma, address, pte, |
2469 | pmd, write_access); | 2466 | pmd, write_access); |
2470 | } | 2467 | } |
2471 | return do_anonymous_page(mm, vma, address, | 2468 | return do_anonymous_page(mm, vma, address, |
2472 | pte, pmd, write_access); | 2469 | pte, pmd, write_access); |
2473 | } | 2470 | } |
2474 | if (pte_file(entry)) | 2471 | if (pte_file(entry)) |
2475 | return do_nonlinear_fault(mm, vma, address, | 2472 | return do_nonlinear_fault(mm, vma, address, |
2476 | pte, pmd, write_access, entry); | 2473 | pte, pmd, write_access, entry); |
2477 | return do_swap_page(mm, vma, address, | 2474 | return do_swap_page(mm, vma, address, |
2478 | pte, pmd, write_access, entry); | 2475 | pte, pmd, write_access, entry); |
2479 | } | 2476 | } |
2480 | 2477 | ||
2481 | ptl = pte_lockptr(mm, pmd); | 2478 | ptl = pte_lockptr(mm, pmd); |
2482 | spin_lock(ptl); | 2479 | spin_lock(ptl); |
2483 | if (unlikely(!pte_same(*pte, entry))) | 2480 | if (unlikely(!pte_same(*pte, entry))) |
2484 | goto unlock; | 2481 | goto unlock; |
2485 | if (write_access) { | 2482 | if (write_access) { |
2486 | if (!pte_write(entry)) | 2483 | if (!pte_write(entry)) |
2487 | return do_wp_page(mm, vma, address, | 2484 | return do_wp_page(mm, vma, address, |
2488 | pte, pmd, ptl, entry); | 2485 | pte, pmd, ptl, entry); |
2489 | entry = pte_mkdirty(entry); | 2486 | entry = pte_mkdirty(entry); |
2490 | } | 2487 | } |
2491 | entry = pte_mkyoung(entry); | 2488 | entry = pte_mkyoung(entry); |
2492 | if (ptep_set_access_flags(vma, address, pte, entry, write_access)) { | 2489 | if (ptep_set_access_flags(vma, address, pte, entry, write_access)) { |
2493 | update_mmu_cache(vma, address, entry); | 2490 | update_mmu_cache(vma, address, entry); |
2494 | } else { | 2491 | } else { |
2495 | /* | 2492 | /* |
2496 | * This is needed only for protection faults but the arch code | 2493 | * This is needed only for protection faults but the arch code |
2497 | * is not yet telling us if this is a protection fault or not. | 2494 | * is not yet telling us if this is a protection fault or not. |
2498 | * This still avoids useless tlb flushes for .text page faults | 2495 | * This still avoids useless tlb flushes for .text page faults |
2499 | * with threads. | 2496 | * with threads. |
2500 | */ | 2497 | */ |
2501 | if (write_access) | 2498 | if (write_access) |
2502 | flush_tlb_page(vma, address); | 2499 | flush_tlb_page(vma, address); |
2503 | } | 2500 | } |
2504 | unlock: | 2501 | unlock: |
2505 | pte_unmap_unlock(pte, ptl); | 2502 | pte_unmap_unlock(pte, ptl); |
2506 | return 0; | 2503 | return 0; |
2507 | } | 2504 | } |
2508 | 2505 | ||
2509 | /* | 2506 | /* |
2510 | * By the time we get here, we already hold the mm semaphore | 2507 | * By the time we get here, we already hold the mm semaphore |
2511 | */ | 2508 | */ |
2512 | int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, | 2509 | int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
2513 | unsigned long address, int write_access) | 2510 | unsigned long address, int write_access) |
2514 | { | 2511 | { |
2515 | pgd_t *pgd; | 2512 | pgd_t *pgd; |
2516 | pud_t *pud; | 2513 | pud_t *pud; |
2517 | pmd_t *pmd; | 2514 | pmd_t *pmd; |
2518 | pte_t *pte; | 2515 | pte_t *pte; |
2519 | 2516 | ||
2520 | __set_current_state(TASK_RUNNING); | 2517 | __set_current_state(TASK_RUNNING); |
2521 | 2518 | ||
2522 | count_vm_event(PGFAULT); | 2519 | count_vm_event(PGFAULT); |
2523 | 2520 | ||
2524 | if (unlikely(is_vm_hugetlb_page(vma))) | 2521 | if (unlikely(is_vm_hugetlb_page(vma))) |
2525 | return hugetlb_fault(mm, vma, address, write_access); | 2522 | return hugetlb_fault(mm, vma, address, write_access); |
2526 | 2523 | ||
2527 | pgd = pgd_offset(mm, address); | 2524 | pgd = pgd_offset(mm, address); |
2528 | pud = pud_alloc(mm, pgd, address); | 2525 | pud = pud_alloc(mm, pgd, address); |
2529 | if (!pud) | 2526 | if (!pud) |
2530 | return VM_FAULT_OOM; | 2527 | return VM_FAULT_OOM; |
2531 | pmd = pmd_alloc(mm, pud, address); | 2528 | pmd = pmd_alloc(mm, pud, address); |
2532 | if (!pmd) | 2529 | if (!pmd) |
2533 | return VM_FAULT_OOM; | 2530 | return VM_FAULT_OOM; |
2534 | pte = pte_alloc_map(mm, pmd, address); | 2531 | pte = pte_alloc_map(mm, pmd, address); |
2535 | if (!pte) | 2532 | if (!pte) |
2536 | return VM_FAULT_OOM; | 2533 | return VM_FAULT_OOM; |
2537 | 2534 | ||
2538 | return handle_pte_fault(mm, vma, address, pte, pmd, write_access); | 2535 | return handle_pte_fault(mm, vma, address, pte, pmd, write_access); |
2539 | } | 2536 | } |
2540 | 2537 | ||
2541 | #ifndef __PAGETABLE_PUD_FOLDED | 2538 | #ifndef __PAGETABLE_PUD_FOLDED |
2542 | /* | 2539 | /* |
2543 | * Allocate page upper directory. | 2540 | * Allocate page upper directory. |
2544 | * We've already handled the fast-path in-line. | 2541 | * We've already handled the fast-path in-line. |
2545 | */ | 2542 | */ |
2546 | int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) | 2543 | int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) |
2547 | { | 2544 | { |
2548 | pud_t *new = pud_alloc_one(mm, address); | 2545 | pud_t *new = pud_alloc_one(mm, address); |
2549 | if (!new) | 2546 | if (!new) |
2550 | return -ENOMEM; | 2547 | return -ENOMEM; |
2551 | 2548 | ||
2552 | spin_lock(&mm->page_table_lock); | 2549 | spin_lock(&mm->page_table_lock); |
2553 | if (pgd_present(*pgd)) /* Another has populated it */ | 2550 | if (pgd_present(*pgd)) /* Another has populated it */ |
2554 | pud_free(mm, new); | 2551 | pud_free(mm, new); |
2555 | else | 2552 | else |
2556 | pgd_populate(mm, pgd, new); | 2553 | pgd_populate(mm, pgd, new); |
2557 | spin_unlock(&mm->page_table_lock); | 2554 | spin_unlock(&mm->page_table_lock); |
2558 | return 0; | 2555 | return 0; |
2559 | } | 2556 | } |
2560 | #endif /* __PAGETABLE_PUD_FOLDED */ | 2557 | #endif /* __PAGETABLE_PUD_FOLDED */ |
2561 | 2558 | ||
2562 | #ifndef __PAGETABLE_PMD_FOLDED | 2559 | #ifndef __PAGETABLE_PMD_FOLDED |
2563 | /* | 2560 | /* |
2564 | * Allocate page middle directory. | 2561 | * Allocate page middle directory. |
2565 | * We've already handled the fast-path in-line. | 2562 | * We've already handled the fast-path in-line. |
2566 | */ | 2563 | */ |
2567 | int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) | 2564 | int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) |
2568 | { | 2565 | { |
2569 | pmd_t *new = pmd_alloc_one(mm, address); | 2566 | pmd_t *new = pmd_alloc_one(mm, address); |
2570 | if (!new) | 2567 | if (!new) |
2571 | return -ENOMEM; | 2568 | return -ENOMEM; |
2572 | 2569 | ||
2573 | spin_lock(&mm->page_table_lock); | 2570 | spin_lock(&mm->page_table_lock); |
2574 | #ifndef __ARCH_HAS_4LEVEL_HACK | 2571 | #ifndef __ARCH_HAS_4LEVEL_HACK |
2575 | if (pud_present(*pud)) /* Another has populated it */ | 2572 | if (pud_present(*pud)) /* Another has populated it */ |
2576 | pmd_free(mm, new); | 2573 | pmd_free(mm, new); |
2577 | else | 2574 | else |
2578 | pud_populate(mm, pud, new); | 2575 | pud_populate(mm, pud, new); |
2579 | #else | 2576 | #else |
2580 | if (pgd_present(*pud)) /* Another has populated it */ | 2577 | if (pgd_present(*pud)) /* Another has populated it */ |
2581 | pmd_free(mm, new); | 2578 | pmd_free(mm, new); |
2582 | else | 2579 | else |
2583 | pgd_populate(mm, pud, new); | 2580 | pgd_populate(mm, pud, new); |
2584 | #endif /* __ARCH_HAS_4LEVEL_HACK */ | 2581 | #endif /* __ARCH_HAS_4LEVEL_HACK */ |
2585 | spin_unlock(&mm->page_table_lock); | 2582 | spin_unlock(&mm->page_table_lock); |
2586 | return 0; | 2583 | return 0; |
2587 | } | 2584 | } |
2588 | #endif /* __PAGETABLE_PMD_FOLDED */ | 2585 | #endif /* __PAGETABLE_PMD_FOLDED */ |
2589 | 2586 | ||
2590 | int make_pages_present(unsigned long addr, unsigned long end) | 2587 | int make_pages_present(unsigned long addr, unsigned long end) |
2591 | { | 2588 | { |
2592 | int ret, len, write; | 2589 | int ret, len, write; |
2593 | struct vm_area_struct * vma; | 2590 | struct vm_area_struct * vma; |
2594 | 2591 | ||
2595 | vma = find_vma(current->mm, addr); | 2592 | vma = find_vma(current->mm, addr); |
2596 | if (!vma) | 2593 | if (!vma) |
2597 | return -1; | 2594 | return -1; |
2598 | write = (vma->vm_flags & VM_WRITE) != 0; | 2595 | write = (vma->vm_flags & VM_WRITE) != 0; |
2599 | BUG_ON(addr >= end); | 2596 | BUG_ON(addr >= end); |
2600 | BUG_ON(end > vma->vm_end); | 2597 | BUG_ON(end > vma->vm_end); |
2601 | len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; | 2598 | len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; |
2602 | ret = get_user_pages(current, current->mm, addr, | 2599 | ret = get_user_pages(current, current->mm, addr, |
2603 | len, write, 0, NULL, NULL); | 2600 | len, write, 0, NULL, NULL); |
2604 | if (ret < 0) | 2601 | if (ret < 0) |
2605 | return ret; | 2602 | return ret; |
2606 | return ret == len ? 0 : -1; | 2603 | return ret == len ? 0 : -1; |
2607 | } | 2604 | } |
2608 | 2605 | ||
2609 | #if !defined(__HAVE_ARCH_GATE_AREA) | 2606 | #if !defined(__HAVE_ARCH_GATE_AREA) |
2610 | 2607 | ||
2611 | #if defined(AT_SYSINFO_EHDR) | 2608 | #if defined(AT_SYSINFO_EHDR) |
2612 | static struct vm_area_struct gate_vma; | 2609 | static struct vm_area_struct gate_vma; |
2613 | 2610 | ||
2614 | static int __init gate_vma_init(void) | 2611 | static int __init gate_vma_init(void) |
2615 | { | 2612 | { |
2616 | gate_vma.vm_mm = NULL; | 2613 | gate_vma.vm_mm = NULL; |
2617 | gate_vma.vm_start = FIXADDR_USER_START; | 2614 | gate_vma.vm_start = FIXADDR_USER_START; |
2618 | gate_vma.vm_end = FIXADDR_USER_END; | 2615 | gate_vma.vm_end = FIXADDR_USER_END; |
2619 | gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; | 2616 | gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; |
2620 | gate_vma.vm_page_prot = __P101; | 2617 | gate_vma.vm_page_prot = __P101; |
2621 | /* | 2618 | /* |
2622 | * Make sure the vDSO gets into every core dump. | 2619 | * Make sure the vDSO gets into every core dump. |
2623 | * Dumping its contents makes post-mortem fully interpretable later | 2620 | * Dumping its contents makes post-mortem fully interpretable later |
2624 | * without matching up the same kernel and hardware config to see | 2621 | * without matching up the same kernel and hardware config to see |
2625 | * what PC values meant. | 2622 | * what PC values meant. |
2626 | */ | 2623 | */ |
2627 | gate_vma.vm_flags |= VM_ALWAYSDUMP; | 2624 | gate_vma.vm_flags |= VM_ALWAYSDUMP; |
2628 | return 0; | 2625 | return 0; |
2629 | } | 2626 | } |
2630 | __initcall(gate_vma_init); | 2627 | __initcall(gate_vma_init); |
2631 | #endif | 2628 | #endif |
2632 | 2629 | ||
2633 | struct vm_area_struct *get_gate_vma(struct task_struct *tsk) | 2630 | struct vm_area_struct *get_gate_vma(struct task_struct *tsk) |
2634 | { | 2631 | { |
2635 | #ifdef AT_SYSINFO_EHDR | 2632 | #ifdef AT_SYSINFO_EHDR |
2636 | return &gate_vma; | 2633 | return &gate_vma; |
2637 | #else | 2634 | #else |
2638 | return NULL; | 2635 | return NULL; |
2639 | #endif | 2636 | #endif |
2640 | } | 2637 | } |
2641 | 2638 | ||
2642 | int in_gate_area_no_task(unsigned long addr) | 2639 | int in_gate_area_no_task(unsigned long addr) |
2643 | { | 2640 | { |
2644 | #ifdef AT_SYSINFO_EHDR | 2641 | #ifdef AT_SYSINFO_EHDR |
2645 | if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) | 2642 | if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) |
2646 | return 1; | 2643 | return 1; |
2647 | #endif | 2644 | #endif |
2648 | return 0; | 2645 | return 0; |
2649 | } | 2646 | } |
2650 | 2647 | ||
2651 | #endif /* __HAVE_ARCH_GATE_AREA */ | 2648 | #endif /* __HAVE_ARCH_GATE_AREA */ |
2652 | 2649 | ||
2653 | /* | 2650 | /* |
2654 | * Access another process' address space. | 2651 | * Access another process' address space. |
2655 | * Source/target buffer must be kernel space, | 2652 | * Source/target buffer must be kernel space, |
2656 | * Do not walk the page table directly, use get_user_pages | 2653 | * Do not walk the page table directly, use get_user_pages |
2657 | */ | 2654 | */ |
2658 | int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) | 2655 | int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) |
2659 | { | 2656 | { |
2660 | struct mm_struct *mm; | 2657 | struct mm_struct *mm; |
2661 | struct vm_area_struct *vma; | 2658 | struct vm_area_struct *vma; |
2662 | struct page *page; | 2659 | struct page *page; |
2663 | void *old_buf = buf; | 2660 | void *old_buf = buf; |
2664 | 2661 | ||
2665 | mm = get_task_mm(tsk); | 2662 | mm = get_task_mm(tsk); |
2666 | if (!mm) | 2663 | if (!mm) |
2667 | return 0; | 2664 | return 0; |
2668 | 2665 | ||
2669 | down_read(&mm->mmap_sem); | 2666 | down_read(&mm->mmap_sem); |
2670 | /* ignore errors, just check how much was successfully transferred */ | 2667 | /* ignore errors, just check how much was successfully transferred */ |
2671 | while (len) { | 2668 | while (len) { |
2672 | int bytes, ret, offset; | 2669 | int bytes, ret, offset; |
2673 | void *maddr; | 2670 | void *maddr; |
2674 | 2671 | ||
2675 | ret = get_user_pages(tsk, mm, addr, 1, | 2672 | ret = get_user_pages(tsk, mm, addr, 1, |
2676 | write, 1, &page, &vma); | 2673 | write, 1, &page, &vma); |
2677 | if (ret <= 0) | 2674 | if (ret <= 0) |
2678 | break; | 2675 | break; |
2679 | 2676 | ||
2680 | bytes = len; | 2677 | bytes = len; |
2681 | offset = addr & (PAGE_SIZE-1); | 2678 | offset = addr & (PAGE_SIZE-1); |
2682 | if (bytes > PAGE_SIZE-offset) | 2679 | if (bytes > PAGE_SIZE-offset) |
2683 | bytes = PAGE_SIZE-offset; | 2680 | bytes = PAGE_SIZE-offset; |
2684 | 2681 | ||
2685 | maddr = kmap(page); | 2682 | maddr = kmap(page); |
2686 | if (write) { | 2683 | if (write) { |
2687 | copy_to_user_page(vma, page, addr, | 2684 | copy_to_user_page(vma, page, addr, |
2688 | maddr + offset, buf, bytes); | 2685 | maddr + offset, buf, bytes); |
2689 | set_page_dirty_lock(page); | 2686 | set_page_dirty_lock(page); |
2690 | } else { | 2687 | } else { |
2691 | copy_from_user_page(vma, page, addr, | 2688 | copy_from_user_page(vma, page, addr, |
2692 | buf, maddr + offset, bytes); | 2689 | buf, maddr + offset, bytes); |
2693 | } | 2690 | } |
2694 | kunmap(page); | 2691 | kunmap(page); |
2695 | page_cache_release(page); | 2692 | page_cache_release(page); |
2696 | len -= bytes; | 2693 | len -= bytes; |
2697 | buf += bytes; | 2694 | buf += bytes; |
2698 | addr += bytes; | 2695 | addr += bytes; |
2699 | } | 2696 | } |
2700 | up_read(&mm->mmap_sem); | 2697 | up_read(&mm->mmap_sem); |
2701 | mmput(mm); | 2698 | mmput(mm); |
2702 | 2699 | ||
2703 | return buf - old_buf; | 2700 | return buf - old_buf; |
2704 | } | 2701 | } |
2705 | 2702 | ||
2706 | /* | 2703 | /* |
2707 | * Print the name of a VMA. | 2704 | * Print the name of a VMA. |
2708 | */ | 2705 | */ |
2709 | void print_vma_addr(char *prefix, unsigned long ip) | 2706 | void print_vma_addr(char *prefix, unsigned long ip) |
2710 | { | 2707 | { |
2711 | struct mm_struct *mm = current->mm; | 2708 | struct mm_struct *mm = current->mm; |
2712 | struct vm_area_struct *vma; | 2709 | struct vm_area_struct *vma; |
2713 | 2710 | ||
2714 | /* | 2711 | /* |
2715 | * Do not print if we are in atomic | 2712 | * Do not print if we are in atomic |
2716 | * contexts (in exception stacks, etc.): | 2713 | * contexts (in exception stacks, etc.): |
2717 | */ | 2714 | */ |
2718 | if (preempt_count()) | 2715 | if (preempt_count()) |
2719 | return; | 2716 | return; |
2720 | 2717 | ||
2721 | down_read(&mm->mmap_sem); | 2718 | down_read(&mm->mmap_sem); |
2722 | vma = find_vma(mm, ip); | 2719 | vma = find_vma(mm, ip); |
2723 | if (vma && vma->vm_file) { | 2720 | if (vma && vma->vm_file) { |
2724 | struct file *f = vma->vm_file; | 2721 | struct file *f = vma->vm_file; |
2725 | char *buf = (char *)__get_free_page(GFP_KERNEL); | 2722 | char *buf = (char *)__get_free_page(GFP_KERNEL); |
2726 | if (buf) { | 2723 | if (buf) { |
2727 | char *p, *s; | 2724 | char *p, *s; |
2728 | 2725 | ||
2729 | p = d_path(&f->f_path, buf, PAGE_SIZE); | 2726 | p = d_path(&f->f_path, buf, PAGE_SIZE); |
2730 | if (IS_ERR(p)) | 2727 | if (IS_ERR(p)) |
2731 | p = "?"; | 2728 | p = "?"; |
2732 | s = strrchr(p, '/'); | 2729 | s = strrchr(p, '/'); |
2733 | if (s) | 2730 | if (s) |
2734 | p = s+1; | 2731 | p = s+1; |
2735 | printk("%s%s[%lx+%lx]", prefix, p, | 2732 | printk("%s%s[%lx+%lx]", prefix, p, |
2736 | vma->vm_start, | 2733 | vma->vm_start, |
2737 | vma->vm_end - vma->vm_start); | 2734 | vma->vm_end - vma->vm_start); |
2738 | free_page((unsigned long)buf); | 2735 | free_page((unsigned long)buf); |
2739 | } | 2736 | } |
2740 | } | 2737 | } |
2741 | up_read(¤t->mm->mmap_sem); | 2738 | up_read(¤t->mm->mmap_sem); |
2742 | } | 2739 | } |
2743 | 2740 |