Commit 6705a9cc52733cb5cbdbee72be66ab462d8fb46f

Authored by Manjunatha Halli
Committed by Mauro Carvalho Chehab
1 parent 92ce52695c

[media] radio: wl128x: Update registration process with ST

As underlying ST driver registration API's have changed with
latest 2.6.38-rc8 kernel this patch will update the FM driver
accordingly.

Signed-off-by: Manjunatha Halli <manjunatha_halli@ti.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>

Showing 1 changed file with 13 additions and 3 deletions Inline Diff

drivers/media/radio/wl128x/fmdrv_common.c
1 /* 1 /*
2 * FM Driver for Connectivity chip of Texas Instruments. 2 * FM Driver for Connectivity chip of Texas Instruments.
3 * 3 *
4 * This sub-module of FM driver is common for FM RX and TX 4 * This sub-module of FM driver is common for FM RX and TX
5 * functionality. This module is responsible for: 5 * functionality. This module is responsible for:
6 * 1) Forming group of Channel-8 commands to perform particular 6 * 1) Forming group of Channel-8 commands to perform particular
7 * functionality (eg., frequency set require more than 7 * functionality (eg., frequency set require more than
8 * one Channel-8 command to be sent to the chip). 8 * one Channel-8 command to be sent to the chip).
9 * 2) Sending each Channel-8 command to the chip and reading 9 * 2) Sending each Channel-8 command to the chip and reading
10 * response back over Shared Transport. 10 * response back over Shared Transport.
11 * 3) Managing TX and RX Queues and Tasklets. 11 * 3) Managing TX and RX Queues and Tasklets.
12 * 4) Handling FM Interrupt packet and taking appropriate action. 12 * 4) Handling FM Interrupt packet and taking appropriate action.
13 * 5) Loading FM firmware to the chip (common, FM TX, and FM RX 13 * 5) Loading FM firmware to the chip (common, FM TX, and FM RX
14 * firmware files based on mode selection) 14 * firmware files based on mode selection)
15 * 15 *
16 * Copyright (C) 2011 Texas Instruments 16 * Copyright (C) 2011 Texas Instruments
17 * Author: Raja Mani <raja_mani@ti.com> 17 * Author: Raja Mani <raja_mani@ti.com>
18 * Author: Manjunatha Halli <manjunatha_halli@ti.com> 18 * Author: Manjunatha Halli <manjunatha_halli@ti.com>
19 * 19 *
20 * This program is free software; you can redistribute it and/or modify 20 * This program is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License version 2 as 21 * it under the terms of the GNU General Public License version 2 as
22 * published by the Free Software Foundation. 22 * published by the Free Software Foundation.
23 * 23 *
24 * This program is distributed in the hope that it will be useful, 24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of 25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details. 27 * GNU General Public License for more details.
28 * 28 *
29 * You should have received a copy of the GNU General Public License 29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software 30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 31 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
32 * 32 *
33 */ 33 */
34 34
35 #include <linux/module.h> 35 #include <linux/module.h>
36 #include <linux/firmware.h> 36 #include <linux/firmware.h>
37 #include <linux/delay.h> 37 #include <linux/delay.h>
38 #include "fmdrv.h" 38 #include "fmdrv.h"
39 #include "fmdrv_v4l2.h" 39 #include "fmdrv_v4l2.h"
40 #include "fmdrv_common.h" 40 #include "fmdrv_common.h"
41 #include <linux/ti_wilink_st.h> 41 #include <linux/ti_wilink_st.h>
42 #include "fmdrv_rx.h" 42 #include "fmdrv_rx.h"
43 #include "fmdrv_tx.h" 43 #include "fmdrv_tx.h"
44 44
45 /* Region info */ 45 /* Region info */
46 static struct region_info region_configs[] = { 46 static struct region_info region_configs[] = {
47 /* Europe/US */ 47 /* Europe/US */
48 { 48 {
49 .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL, 49 .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
50 .bot_freq = 87500, /* 87.5 MHz */ 50 .bot_freq = 87500, /* 87.5 MHz */
51 .top_freq = 108000, /* 108 MHz */ 51 .top_freq = 108000, /* 108 MHz */
52 .fm_band = 0, 52 .fm_band = 0,
53 }, 53 },
54 /* Japan */ 54 /* Japan */
55 { 55 {
56 .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL, 56 .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
57 .bot_freq = 76000, /* 76 MHz */ 57 .bot_freq = 76000, /* 76 MHz */
58 .top_freq = 90000, /* 90 MHz */ 58 .top_freq = 90000, /* 90 MHz */
59 .fm_band = 1, 59 .fm_band = 1,
60 }, 60 },
61 }; 61 };
62 62
63 /* Band selection */ 63 /* Band selection */
64 static u8 default_radio_region; /* Europe/US */ 64 static u8 default_radio_region; /* Europe/US */
65 module_param(default_radio_region, byte, 0); 65 module_param(default_radio_region, byte, 0);
66 MODULE_PARM_DESC(default_radio_region, "Region: 0=Europe/US, 1=Japan"); 66 MODULE_PARM_DESC(default_radio_region, "Region: 0=Europe/US, 1=Japan");
67 67
68 /* RDS buffer blocks */ 68 /* RDS buffer blocks */
69 static u32 default_rds_buf = 300; 69 static u32 default_rds_buf = 300;
70 module_param(default_rds_buf, uint, 0444); 70 module_param(default_rds_buf, uint, 0444);
71 MODULE_PARM_DESC(rds_buf, "RDS buffer entries"); 71 MODULE_PARM_DESC(rds_buf, "RDS buffer entries");
72 72
73 /* Radio Nr */ 73 /* Radio Nr */
74 static u32 radio_nr = -1; 74 static u32 radio_nr = -1;
75 module_param(radio_nr, int, 0444); 75 module_param(radio_nr, int, 0444);
76 MODULE_PARM_DESC(radio_nr, "Radio Nr"); 76 MODULE_PARM_DESC(radio_nr, "Radio Nr");
77 77
78 /* FM irq handlers forward declaration */ 78 /* FM irq handlers forward declaration */
79 static void fm_irq_send_flag_getcmd(struct fmdev *); 79 static void fm_irq_send_flag_getcmd(struct fmdev *);
80 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *); 80 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *);
81 static void fm_irq_handle_hw_malfunction(struct fmdev *); 81 static void fm_irq_handle_hw_malfunction(struct fmdev *);
82 static void fm_irq_handle_rds_start(struct fmdev *); 82 static void fm_irq_handle_rds_start(struct fmdev *);
83 static void fm_irq_send_rdsdata_getcmd(struct fmdev *); 83 static void fm_irq_send_rdsdata_getcmd(struct fmdev *);
84 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *); 84 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *);
85 static void fm_irq_handle_rds_finish(struct fmdev *); 85 static void fm_irq_handle_rds_finish(struct fmdev *);
86 static void fm_irq_handle_tune_op_ended(struct fmdev *); 86 static void fm_irq_handle_tune_op_ended(struct fmdev *);
87 static void fm_irq_handle_power_enb(struct fmdev *); 87 static void fm_irq_handle_power_enb(struct fmdev *);
88 static void fm_irq_handle_low_rssi_start(struct fmdev *); 88 static void fm_irq_handle_low_rssi_start(struct fmdev *);
89 static void fm_irq_afjump_set_pi(struct fmdev *); 89 static void fm_irq_afjump_set_pi(struct fmdev *);
90 static void fm_irq_handle_set_pi_resp(struct fmdev *); 90 static void fm_irq_handle_set_pi_resp(struct fmdev *);
91 static void fm_irq_afjump_set_pimask(struct fmdev *); 91 static void fm_irq_afjump_set_pimask(struct fmdev *);
92 static void fm_irq_handle_set_pimask_resp(struct fmdev *); 92 static void fm_irq_handle_set_pimask_resp(struct fmdev *);
93 static void fm_irq_afjump_setfreq(struct fmdev *); 93 static void fm_irq_afjump_setfreq(struct fmdev *);
94 static void fm_irq_handle_setfreq_resp(struct fmdev *); 94 static void fm_irq_handle_setfreq_resp(struct fmdev *);
95 static void fm_irq_afjump_enableint(struct fmdev *); 95 static void fm_irq_afjump_enableint(struct fmdev *);
96 static void fm_irq_afjump_enableint_resp(struct fmdev *); 96 static void fm_irq_afjump_enableint_resp(struct fmdev *);
97 static void fm_irq_start_afjump(struct fmdev *); 97 static void fm_irq_start_afjump(struct fmdev *);
98 static void fm_irq_handle_start_afjump_resp(struct fmdev *); 98 static void fm_irq_handle_start_afjump_resp(struct fmdev *);
99 static void fm_irq_afjump_rd_freq(struct fmdev *); 99 static void fm_irq_afjump_rd_freq(struct fmdev *);
100 static void fm_irq_afjump_rd_freq_resp(struct fmdev *); 100 static void fm_irq_afjump_rd_freq_resp(struct fmdev *);
101 static void fm_irq_handle_low_rssi_finish(struct fmdev *); 101 static void fm_irq_handle_low_rssi_finish(struct fmdev *);
102 static void fm_irq_send_intmsk_cmd(struct fmdev *); 102 static void fm_irq_send_intmsk_cmd(struct fmdev *);
103 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *); 103 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *);
104 104
105 /* 105 /*
106 * When FM common module receives interrupt packet, following handlers 106 * When FM common module receives interrupt packet, following handlers
107 * will be executed one after another to service the interrupt(s) 107 * will be executed one after another to service the interrupt(s)
108 */ 108 */
109 enum fmc_irq_handler_index { 109 enum fmc_irq_handler_index {
110 FM_SEND_FLAG_GETCMD_IDX, 110 FM_SEND_FLAG_GETCMD_IDX,
111 FM_HANDLE_FLAG_GETCMD_RESP_IDX, 111 FM_HANDLE_FLAG_GETCMD_RESP_IDX,
112 112
113 /* HW malfunction irq handler */ 113 /* HW malfunction irq handler */
114 FM_HW_MAL_FUNC_IDX, 114 FM_HW_MAL_FUNC_IDX,
115 115
116 /* RDS threshold reached irq handler */ 116 /* RDS threshold reached irq handler */
117 FM_RDS_START_IDX, 117 FM_RDS_START_IDX,
118 FM_RDS_SEND_RDS_GETCMD_IDX, 118 FM_RDS_SEND_RDS_GETCMD_IDX,
119 FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX, 119 FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX,
120 FM_RDS_FINISH_IDX, 120 FM_RDS_FINISH_IDX,
121 121
122 /* Tune operation ended irq handler */ 122 /* Tune operation ended irq handler */
123 FM_HW_TUNE_OP_ENDED_IDX, 123 FM_HW_TUNE_OP_ENDED_IDX,
124 124
125 /* TX power enable irq handler */ 125 /* TX power enable irq handler */
126 FM_HW_POWER_ENB_IDX, 126 FM_HW_POWER_ENB_IDX,
127 127
128 /* Low RSSI irq handler */ 128 /* Low RSSI irq handler */
129 FM_LOW_RSSI_START_IDX, 129 FM_LOW_RSSI_START_IDX,
130 FM_AF_JUMP_SETPI_IDX, 130 FM_AF_JUMP_SETPI_IDX,
131 FM_AF_JUMP_HANDLE_SETPI_RESP_IDX, 131 FM_AF_JUMP_HANDLE_SETPI_RESP_IDX,
132 FM_AF_JUMP_SETPI_MASK_IDX, 132 FM_AF_JUMP_SETPI_MASK_IDX,
133 FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX, 133 FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX,
134 FM_AF_JUMP_SET_AF_FREQ_IDX, 134 FM_AF_JUMP_SET_AF_FREQ_IDX,
135 FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX, 135 FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX,
136 FM_AF_JUMP_ENABLE_INT_IDX, 136 FM_AF_JUMP_ENABLE_INT_IDX,
137 FM_AF_JUMP_ENABLE_INT_RESP_IDX, 137 FM_AF_JUMP_ENABLE_INT_RESP_IDX,
138 FM_AF_JUMP_START_AFJUMP_IDX, 138 FM_AF_JUMP_START_AFJUMP_IDX,
139 FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX, 139 FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX,
140 FM_AF_JUMP_RD_FREQ_IDX, 140 FM_AF_JUMP_RD_FREQ_IDX,
141 FM_AF_JUMP_RD_FREQ_RESP_IDX, 141 FM_AF_JUMP_RD_FREQ_RESP_IDX,
142 FM_LOW_RSSI_FINISH_IDX, 142 FM_LOW_RSSI_FINISH_IDX,
143 143
144 /* Interrupt process post action */ 144 /* Interrupt process post action */
145 FM_SEND_INTMSK_CMD_IDX, 145 FM_SEND_INTMSK_CMD_IDX,
146 FM_HANDLE_INTMSK_CMD_RESP_IDX, 146 FM_HANDLE_INTMSK_CMD_RESP_IDX,
147 }; 147 };
148 148
149 /* FM interrupt handler table */ 149 /* FM interrupt handler table */
150 static int_handler_prototype int_handler_table[] = { 150 static int_handler_prototype int_handler_table[] = {
151 fm_irq_send_flag_getcmd, 151 fm_irq_send_flag_getcmd,
152 fm_irq_handle_flag_getcmd_resp, 152 fm_irq_handle_flag_getcmd_resp,
153 fm_irq_handle_hw_malfunction, 153 fm_irq_handle_hw_malfunction,
154 fm_irq_handle_rds_start, /* RDS threshold reached irq handler */ 154 fm_irq_handle_rds_start, /* RDS threshold reached irq handler */
155 fm_irq_send_rdsdata_getcmd, 155 fm_irq_send_rdsdata_getcmd,
156 fm_irq_handle_rdsdata_getcmd_resp, 156 fm_irq_handle_rdsdata_getcmd_resp,
157 fm_irq_handle_rds_finish, 157 fm_irq_handle_rds_finish,
158 fm_irq_handle_tune_op_ended, 158 fm_irq_handle_tune_op_ended,
159 fm_irq_handle_power_enb, /* TX power enable irq handler */ 159 fm_irq_handle_power_enb, /* TX power enable irq handler */
160 fm_irq_handle_low_rssi_start, 160 fm_irq_handle_low_rssi_start,
161 fm_irq_afjump_set_pi, 161 fm_irq_afjump_set_pi,
162 fm_irq_handle_set_pi_resp, 162 fm_irq_handle_set_pi_resp,
163 fm_irq_afjump_set_pimask, 163 fm_irq_afjump_set_pimask,
164 fm_irq_handle_set_pimask_resp, 164 fm_irq_handle_set_pimask_resp,
165 fm_irq_afjump_setfreq, 165 fm_irq_afjump_setfreq,
166 fm_irq_handle_setfreq_resp, 166 fm_irq_handle_setfreq_resp,
167 fm_irq_afjump_enableint, 167 fm_irq_afjump_enableint,
168 fm_irq_afjump_enableint_resp, 168 fm_irq_afjump_enableint_resp,
169 fm_irq_start_afjump, 169 fm_irq_start_afjump,
170 fm_irq_handle_start_afjump_resp, 170 fm_irq_handle_start_afjump_resp,
171 fm_irq_afjump_rd_freq, 171 fm_irq_afjump_rd_freq,
172 fm_irq_afjump_rd_freq_resp, 172 fm_irq_afjump_rd_freq_resp,
173 fm_irq_handle_low_rssi_finish, 173 fm_irq_handle_low_rssi_finish,
174 fm_irq_send_intmsk_cmd, /* Interrupt process post action */ 174 fm_irq_send_intmsk_cmd, /* Interrupt process post action */
175 fm_irq_handle_intmsk_cmd_resp 175 fm_irq_handle_intmsk_cmd_resp
176 }; 176 };
177 177
178 long (*g_st_write) (struct sk_buff *skb); 178 long (*g_st_write) (struct sk_buff *skb);
179 static struct completion wait_for_fmdrv_reg_comp; 179 static struct completion wait_for_fmdrv_reg_comp;
180 180
181 static inline void fm_irq_call(struct fmdev *fmdev) 181 static inline void fm_irq_call(struct fmdev *fmdev)
182 { 182 {
183 fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev); 183 fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
184 } 184 }
185 185
186 /* Continue next function in interrupt handler table */ 186 /* Continue next function in interrupt handler table */
187 static inline void fm_irq_call_stage(struct fmdev *fmdev, u8 stage) 187 static inline void fm_irq_call_stage(struct fmdev *fmdev, u8 stage)
188 { 188 {
189 fmdev->irq_info.stage = stage; 189 fmdev->irq_info.stage = stage;
190 fm_irq_call(fmdev); 190 fm_irq_call(fmdev);
191 } 191 }
192 192
193 static inline void fm_irq_timeout_stage(struct fmdev *fmdev, u8 stage) 193 static inline void fm_irq_timeout_stage(struct fmdev *fmdev, u8 stage)
194 { 194 {
195 fmdev->irq_info.stage = stage; 195 fmdev->irq_info.stage = stage;
196 mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT); 196 mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
197 } 197 }
198 198
199 #ifdef FM_DUMP_TXRX_PKT 199 #ifdef FM_DUMP_TXRX_PKT
200 /* To dump outgoing FM Channel-8 packets */ 200 /* To dump outgoing FM Channel-8 packets */
201 inline void dump_tx_skb_data(struct sk_buff *skb) 201 inline void dump_tx_skb_data(struct sk_buff *skb)
202 { 202 {
203 int len, len_org; 203 int len, len_org;
204 u8 index; 204 u8 index;
205 struct fm_cmd_msg_hdr *cmd_hdr; 205 struct fm_cmd_msg_hdr *cmd_hdr;
206 206
207 cmd_hdr = (struct fm_cmd_msg_hdr *)skb->data; 207 cmd_hdr = (struct fm_cmd_msg_hdr *)skb->data;
208 printk(KERN_INFO "<<%shdr:%02x len:%02x opcode:%02x type:%s dlen:%02x", 208 printk(KERN_INFO "<<%shdr:%02x len:%02x opcode:%02x type:%s dlen:%02x",
209 fm_cb(skb)->completion ? " " : "*", cmd_hdr->hdr, 209 fm_cb(skb)->completion ? " " : "*", cmd_hdr->hdr,
210 cmd_hdr->len, cmd_hdr->op, 210 cmd_hdr->len, cmd_hdr->op,
211 cmd_hdr->rd_wr ? "RD" : "WR", cmd_hdr->dlen); 211 cmd_hdr->rd_wr ? "RD" : "WR", cmd_hdr->dlen);
212 212
213 len_org = skb->len - FM_CMD_MSG_HDR_SIZE; 213 len_org = skb->len - FM_CMD_MSG_HDR_SIZE;
214 if (len_org > 0) { 214 if (len_org > 0) {
215 printk("\n data(%d): ", cmd_hdr->dlen); 215 printk("\n data(%d): ", cmd_hdr->dlen);
216 len = min(len_org, 14); 216 len = min(len_org, 14);
217 for (index = 0; index < len; index++) 217 for (index = 0; index < len; index++)
218 printk("%x ", 218 printk("%x ",
219 skb->data[FM_CMD_MSG_HDR_SIZE + index]); 219 skb->data[FM_CMD_MSG_HDR_SIZE + index]);
220 printk("%s", (len_org > 14) ? ".." : ""); 220 printk("%s", (len_org > 14) ? ".." : "");
221 } 221 }
222 printk("\n"); 222 printk("\n");
223 } 223 }
224 224
225 /* To dump incoming FM Channel-8 packets */ 225 /* To dump incoming FM Channel-8 packets */
226 inline void dump_rx_skb_data(struct sk_buff *skb) 226 inline void dump_rx_skb_data(struct sk_buff *skb)
227 { 227 {
228 int len, len_org; 228 int len, len_org;
229 u8 index; 229 u8 index;
230 struct fm_event_msg_hdr *evt_hdr; 230 struct fm_event_msg_hdr *evt_hdr;
231 231
232 evt_hdr = (struct fm_event_msg_hdr *)skb->data; 232 evt_hdr = (struct fm_event_msg_hdr *)skb->data;
233 printk(KERN_INFO ">> hdr:%02x len:%02x sts:%02x numhci:%02x " 233 printk(KERN_INFO ">> hdr:%02x len:%02x sts:%02x numhci:%02x "
234 "opcode:%02x type:%s dlen:%02x", evt_hdr->hdr, evt_hdr->len, 234 "opcode:%02x type:%s dlen:%02x", evt_hdr->hdr, evt_hdr->len,
235 evt_hdr->status, evt_hdr->num_fm_hci_cmds, evt_hdr->op, 235 evt_hdr->status, evt_hdr->num_fm_hci_cmds, evt_hdr->op,
236 (evt_hdr->rd_wr) ? "RD" : "WR", evt_hdr->dlen); 236 (evt_hdr->rd_wr) ? "RD" : "WR", evt_hdr->dlen);
237 237
238 len_org = skb->len - FM_EVT_MSG_HDR_SIZE; 238 len_org = skb->len - FM_EVT_MSG_HDR_SIZE;
239 if (len_org > 0) { 239 if (len_org > 0) {
240 printk("\n data(%d): ", evt_hdr->dlen); 240 printk("\n data(%d): ", evt_hdr->dlen);
241 len = min(len_org, 14); 241 len = min(len_org, 14);
242 for (index = 0; index < len; index++) 242 for (index = 0; index < len; index++)
243 printk("%x ", 243 printk("%x ",
244 skb->data[FM_EVT_MSG_HDR_SIZE + index]); 244 skb->data[FM_EVT_MSG_HDR_SIZE + index]);
245 printk("%s", (len_org > 14) ? ".." : ""); 245 printk("%s", (len_org > 14) ? ".." : "");
246 } 246 }
247 printk("\n"); 247 printk("\n");
248 } 248 }
249 #endif 249 #endif
250 250
251 void fmc_update_region_info(struct fmdev *fmdev, u8 region_to_set) 251 void fmc_update_region_info(struct fmdev *fmdev, u8 region_to_set)
252 { 252 {
253 fmdev->rx.region = region_configs[region_to_set]; 253 fmdev->rx.region = region_configs[region_to_set];
254 } 254 }
255 255
256 /* 256 /*
257 * FM common sub-module will schedule this tasklet whenever it receives 257 * FM common sub-module will schedule this tasklet whenever it receives
258 * FM packet from ST driver. 258 * FM packet from ST driver.
259 */ 259 */
260 static void recv_tasklet(unsigned long arg) 260 static void recv_tasklet(unsigned long arg)
261 { 261 {
262 struct fmdev *fmdev; 262 struct fmdev *fmdev;
263 struct fm_irq *irq_info; 263 struct fm_irq *irq_info;
264 struct fm_event_msg_hdr *evt_hdr; 264 struct fm_event_msg_hdr *evt_hdr;
265 struct sk_buff *skb; 265 struct sk_buff *skb;
266 u8 num_fm_hci_cmds; 266 u8 num_fm_hci_cmds;
267 unsigned long flags; 267 unsigned long flags;
268 268
269 fmdev = (struct fmdev *)arg; 269 fmdev = (struct fmdev *)arg;
270 irq_info = &fmdev->irq_info; 270 irq_info = &fmdev->irq_info;
271 /* Process all packets in the RX queue */ 271 /* Process all packets in the RX queue */
272 while ((skb = skb_dequeue(&fmdev->rx_q))) { 272 while ((skb = skb_dequeue(&fmdev->rx_q))) {
273 if (skb->len < sizeof(struct fm_event_msg_hdr)) { 273 if (skb->len < sizeof(struct fm_event_msg_hdr)) {
274 fmerr("skb(%p) has only %d bytes, " 274 fmerr("skb(%p) has only %d bytes, "
275 "at least need %zu bytes to decode\n", skb, 275 "at least need %zu bytes to decode\n", skb,
276 skb->len, sizeof(struct fm_event_msg_hdr)); 276 skb->len, sizeof(struct fm_event_msg_hdr));
277 kfree_skb(skb); 277 kfree_skb(skb);
278 continue; 278 continue;
279 } 279 }
280 280
281 evt_hdr = (void *)skb->data; 281 evt_hdr = (void *)skb->data;
282 num_fm_hci_cmds = evt_hdr->num_fm_hci_cmds; 282 num_fm_hci_cmds = evt_hdr->num_fm_hci_cmds;
283 283
284 /* FM interrupt packet? */ 284 /* FM interrupt packet? */
285 if (evt_hdr->op == FM_INTERRUPT) { 285 if (evt_hdr->op == FM_INTERRUPT) {
286 /* FM interrupt handler started already? */ 286 /* FM interrupt handler started already? */
287 if (!test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) { 287 if (!test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
288 set_bit(FM_INTTASK_RUNNING, &fmdev->flag); 288 set_bit(FM_INTTASK_RUNNING, &fmdev->flag);
289 if (irq_info->stage != 0) { 289 if (irq_info->stage != 0) {
290 fmerr("Inval stage resetting to zero\n"); 290 fmerr("Inval stage resetting to zero\n");
291 irq_info->stage = 0; 291 irq_info->stage = 0;
292 } 292 }
293 293
294 /* 294 /*
295 * Execute first function in interrupt handler 295 * Execute first function in interrupt handler
296 * table. 296 * table.
297 */ 297 */
298 irq_info->handlers[irq_info->stage](fmdev); 298 irq_info->handlers[irq_info->stage](fmdev);
299 } else { 299 } else {
300 set_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag); 300 set_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag);
301 } 301 }
302 kfree_skb(skb); 302 kfree_skb(skb);
303 } 303 }
304 /* Anyone waiting for this with completion handler? */ 304 /* Anyone waiting for this with completion handler? */
305 else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp != NULL) { 305 else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp != NULL) {
306 306
307 spin_lock_irqsave(&fmdev->resp_skb_lock, flags); 307 spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
308 fmdev->resp_skb = skb; 308 fmdev->resp_skb = skb;
309 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags); 309 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
310 complete(fmdev->resp_comp); 310 complete(fmdev->resp_comp);
311 311
312 fmdev->resp_comp = NULL; 312 fmdev->resp_comp = NULL;
313 atomic_set(&fmdev->tx_cnt, 1); 313 atomic_set(&fmdev->tx_cnt, 1);
314 } 314 }
315 /* Is this for interrupt handler? */ 315 /* Is this for interrupt handler? */
316 else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp == NULL) { 316 else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp == NULL) {
317 if (fmdev->resp_skb != NULL) 317 if (fmdev->resp_skb != NULL)
318 fmerr("Response SKB ptr not NULL\n"); 318 fmerr("Response SKB ptr not NULL\n");
319 319
320 spin_lock_irqsave(&fmdev->resp_skb_lock, flags); 320 spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
321 fmdev->resp_skb = skb; 321 fmdev->resp_skb = skb;
322 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags); 322 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
323 323
324 /* Execute interrupt handler where state index points */ 324 /* Execute interrupt handler where state index points */
325 irq_info->handlers[irq_info->stage](fmdev); 325 irq_info->handlers[irq_info->stage](fmdev);
326 326
327 kfree_skb(skb); 327 kfree_skb(skb);
328 atomic_set(&fmdev->tx_cnt, 1); 328 atomic_set(&fmdev->tx_cnt, 1);
329 } else { 329 } else {
330 fmerr("Nobody claimed SKB(%p),purging\n", skb); 330 fmerr("Nobody claimed SKB(%p),purging\n", skb);
331 } 331 }
332 332
333 /* 333 /*
334 * Check flow control field. If Num_FM_HCI_Commands field is 334 * Check flow control field. If Num_FM_HCI_Commands field is
335 * not zero, schedule FM TX tasklet. 335 * not zero, schedule FM TX tasklet.
336 */ 336 */
337 if (num_fm_hci_cmds && atomic_read(&fmdev->tx_cnt)) 337 if (num_fm_hci_cmds && atomic_read(&fmdev->tx_cnt))
338 if (!skb_queue_empty(&fmdev->tx_q)) 338 if (!skb_queue_empty(&fmdev->tx_q))
339 tasklet_schedule(&fmdev->tx_task); 339 tasklet_schedule(&fmdev->tx_task);
340 } 340 }
341 } 341 }
342 342
343 /* FM send tasklet: is scheduled when FM packet has to be sent to chip */ 343 /* FM send tasklet: is scheduled when FM packet has to be sent to chip */
344 static void send_tasklet(unsigned long arg) 344 static void send_tasklet(unsigned long arg)
345 { 345 {
346 struct fmdev *fmdev; 346 struct fmdev *fmdev;
347 struct sk_buff *skb; 347 struct sk_buff *skb;
348 int len; 348 int len;
349 349
350 fmdev = (struct fmdev *)arg; 350 fmdev = (struct fmdev *)arg;
351 351
352 if (!atomic_read(&fmdev->tx_cnt)) 352 if (!atomic_read(&fmdev->tx_cnt))
353 return; 353 return;
354 354
355 /* Check, is there any timeout happenned to last transmitted packet */ 355 /* Check, is there any timeout happenned to last transmitted packet */
356 if ((jiffies - fmdev->last_tx_jiffies) > FM_DRV_TX_TIMEOUT) { 356 if ((jiffies - fmdev->last_tx_jiffies) > FM_DRV_TX_TIMEOUT) {
357 fmerr("TX timeout occurred\n"); 357 fmerr("TX timeout occurred\n");
358 atomic_set(&fmdev->tx_cnt, 1); 358 atomic_set(&fmdev->tx_cnt, 1);
359 } 359 }
360 360
361 /* Send queued FM TX packets */ 361 /* Send queued FM TX packets */
362 skb = skb_dequeue(&fmdev->tx_q); 362 skb = skb_dequeue(&fmdev->tx_q);
363 if (!skb) 363 if (!skb)
364 return; 364 return;
365 365
366 atomic_dec(&fmdev->tx_cnt); 366 atomic_dec(&fmdev->tx_cnt);
367 fmdev->pre_op = fm_cb(skb)->fm_op; 367 fmdev->pre_op = fm_cb(skb)->fm_op;
368 368
369 if (fmdev->resp_comp != NULL) 369 if (fmdev->resp_comp != NULL)
370 fmerr("Response completion handler is not NULL\n"); 370 fmerr("Response completion handler is not NULL\n");
371 371
372 fmdev->resp_comp = fm_cb(skb)->completion; 372 fmdev->resp_comp = fm_cb(skb)->completion;
373 373
374 /* Write FM packet to ST driver */ 374 /* Write FM packet to ST driver */
375 len = g_st_write(skb); 375 len = g_st_write(skb);
376 if (len < 0) { 376 if (len < 0) {
377 kfree_skb(skb); 377 kfree_skb(skb);
378 fmdev->resp_comp = NULL; 378 fmdev->resp_comp = NULL;
379 fmerr("TX tasklet failed to send skb(%p)\n", skb); 379 fmerr("TX tasklet failed to send skb(%p)\n", skb);
380 atomic_set(&fmdev->tx_cnt, 1); 380 atomic_set(&fmdev->tx_cnt, 1);
381 } else { 381 } else {
382 fmdev->last_tx_jiffies = jiffies; 382 fmdev->last_tx_jiffies = jiffies;
383 } 383 }
384 } 384 }
385 385
386 /* 386 /*
387 * Queues FM Channel-8 packet to FM TX queue and schedules FM TX tasklet for 387 * Queues FM Channel-8 packet to FM TX queue and schedules FM TX tasklet for
388 * transmission 388 * transmission
389 */ 389 */
390 static u32 fm_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload, 390 static u32 fm_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload,
391 int payload_len, struct completion *wait_completion) 391 int payload_len, struct completion *wait_completion)
392 { 392 {
393 struct sk_buff *skb; 393 struct sk_buff *skb;
394 struct fm_cmd_msg_hdr *hdr; 394 struct fm_cmd_msg_hdr *hdr;
395 int size; 395 int size;
396 396
397 if (fm_op >= FM_INTERRUPT) { 397 if (fm_op >= FM_INTERRUPT) {
398 fmerr("Invalid fm opcode - %d\n", fm_op); 398 fmerr("Invalid fm opcode - %d\n", fm_op);
399 return -EINVAL; 399 return -EINVAL;
400 } 400 }
401 if (test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) && payload == NULL) { 401 if (test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) && payload == NULL) {
402 fmerr("Payload data is NULL during fw download\n"); 402 fmerr("Payload data is NULL during fw download\n");
403 return -EINVAL; 403 return -EINVAL;
404 } 404 }
405 if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag)) 405 if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag))
406 size = 406 size =
407 FM_CMD_MSG_HDR_SIZE + ((payload == NULL) ? 0 : payload_len); 407 FM_CMD_MSG_HDR_SIZE + ((payload == NULL) ? 0 : payload_len);
408 else 408 else
409 size = payload_len; 409 size = payload_len;
410 410
411 skb = alloc_skb(size, GFP_ATOMIC); 411 skb = alloc_skb(size, GFP_ATOMIC);
412 if (!skb) { 412 if (!skb) {
413 fmerr("No memory to create new SKB\n"); 413 fmerr("No memory to create new SKB\n");
414 return -ENOMEM; 414 return -ENOMEM;
415 } 415 }
416 /* 416 /*
417 * Don't fill FM header info for the commands which come from 417 * Don't fill FM header info for the commands which come from
418 * FM firmware file. 418 * FM firmware file.
419 */ 419 */
420 if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) || 420 if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) ||
421 test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) { 421 test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
422 /* Fill command header info */ 422 /* Fill command header info */
423 hdr = (struct fm_cmd_msg_hdr *)skb_put(skb, FM_CMD_MSG_HDR_SIZE); 423 hdr = (struct fm_cmd_msg_hdr *)skb_put(skb, FM_CMD_MSG_HDR_SIZE);
424 hdr->hdr = FM_PKT_LOGICAL_CHAN_NUMBER; /* 0x08 */ 424 hdr->hdr = FM_PKT_LOGICAL_CHAN_NUMBER; /* 0x08 */
425 425
426 /* 3 (fm_opcode,rd_wr,dlen) + payload len) */ 426 /* 3 (fm_opcode,rd_wr,dlen) + payload len) */
427 hdr->len = ((payload == NULL) ? 0 : payload_len) + 3; 427 hdr->len = ((payload == NULL) ? 0 : payload_len) + 3;
428 428
429 /* FM opcode */ 429 /* FM opcode */
430 hdr->op = fm_op; 430 hdr->op = fm_op;
431 431
432 /* read/write type */ 432 /* read/write type */
433 hdr->rd_wr = type; 433 hdr->rd_wr = type;
434 hdr->dlen = payload_len; 434 hdr->dlen = payload_len;
435 fm_cb(skb)->fm_op = fm_op; 435 fm_cb(skb)->fm_op = fm_op;
436 436
437 /* 437 /*
438 * If firmware download has finished and the command is 438 * If firmware download has finished and the command is
439 * not a read command then payload is != NULL - a write 439 * not a read command then payload is != NULL - a write
440 * command with u16 payload - convert to be16 440 * command with u16 payload - convert to be16
441 */ 441 */
442 if (payload != NULL) 442 if (payload != NULL)
443 *(u16 *)payload = cpu_to_be16(*(u16 *)payload); 443 *(u16 *)payload = cpu_to_be16(*(u16 *)payload);
444 444
445 } else if (payload != NULL) { 445 } else if (payload != NULL) {
446 fm_cb(skb)->fm_op = *((u8 *)payload + 2); 446 fm_cb(skb)->fm_op = *((u8 *)payload + 2);
447 } 447 }
448 if (payload != NULL) 448 if (payload != NULL)
449 memcpy(skb_put(skb, payload_len), payload, payload_len); 449 memcpy(skb_put(skb, payload_len), payload, payload_len);
450 450
451 fm_cb(skb)->completion = wait_completion; 451 fm_cb(skb)->completion = wait_completion;
452 skb_queue_tail(&fmdev->tx_q, skb); 452 skb_queue_tail(&fmdev->tx_q, skb);
453 tasklet_schedule(&fmdev->tx_task); 453 tasklet_schedule(&fmdev->tx_task);
454 454
455 return 0; 455 return 0;
456 } 456 }
457 457
458 /* Sends FM Channel-8 command to the chip and waits for the response */ 458 /* Sends FM Channel-8 command to the chip and waits for the response */
459 u32 fmc_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload, 459 u32 fmc_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload,
460 unsigned int payload_len, void *response, int *response_len) 460 unsigned int payload_len, void *response, int *response_len)
461 { 461 {
462 struct sk_buff *skb; 462 struct sk_buff *skb;
463 struct fm_event_msg_hdr *evt_hdr; 463 struct fm_event_msg_hdr *evt_hdr;
464 unsigned long flags; 464 unsigned long flags;
465 u32 ret; 465 u32 ret;
466 466
467 init_completion(&fmdev->maintask_comp); 467 init_completion(&fmdev->maintask_comp);
468 ret = fm_send_cmd(fmdev, fm_op, type, payload, payload_len, 468 ret = fm_send_cmd(fmdev, fm_op, type, payload, payload_len,
469 &fmdev->maintask_comp); 469 &fmdev->maintask_comp);
470 if (ret) 470 if (ret)
471 return ret; 471 return ret;
472 472
473 ret = wait_for_completion_timeout(&fmdev->maintask_comp, FM_DRV_TX_TIMEOUT); 473 ret = wait_for_completion_timeout(&fmdev->maintask_comp, FM_DRV_TX_TIMEOUT);
474 if (!ret) { 474 if (!ret) {
475 fmerr("Timeout(%d sec),didn't get reg" 475 fmerr("Timeout(%d sec),didn't get reg"
476 "completion signal from RX tasklet\n", 476 "completion signal from RX tasklet\n",
477 jiffies_to_msecs(FM_DRV_TX_TIMEOUT) / 1000); 477 jiffies_to_msecs(FM_DRV_TX_TIMEOUT) / 1000);
478 return -ETIMEDOUT; 478 return -ETIMEDOUT;
479 } 479 }
480 if (!fmdev->resp_skb) { 480 if (!fmdev->resp_skb) {
481 fmerr("Reponse SKB is missing\n"); 481 fmerr("Reponse SKB is missing\n");
482 return -EFAULT; 482 return -EFAULT;
483 } 483 }
484 spin_lock_irqsave(&fmdev->resp_skb_lock, flags); 484 spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
485 skb = fmdev->resp_skb; 485 skb = fmdev->resp_skb;
486 fmdev->resp_skb = NULL; 486 fmdev->resp_skb = NULL;
487 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags); 487 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
488 488
489 evt_hdr = (void *)skb->data; 489 evt_hdr = (void *)skb->data;
490 if (evt_hdr->status != 0) { 490 if (evt_hdr->status != 0) {
491 fmerr("Received event pkt status(%d) is not zero\n", 491 fmerr("Received event pkt status(%d) is not zero\n",
492 evt_hdr->status); 492 evt_hdr->status);
493 kfree_skb(skb); 493 kfree_skb(skb);
494 return -EIO; 494 return -EIO;
495 } 495 }
496 /* Send response data to caller */ 496 /* Send response data to caller */
497 if (response != NULL && response_len != NULL && evt_hdr->dlen) { 497 if (response != NULL && response_len != NULL && evt_hdr->dlen) {
498 /* Skip header info and copy only response data */ 498 /* Skip header info and copy only response data */
499 skb_pull(skb, sizeof(struct fm_event_msg_hdr)); 499 skb_pull(skb, sizeof(struct fm_event_msg_hdr));
500 memcpy(response, skb->data, evt_hdr->dlen); 500 memcpy(response, skb->data, evt_hdr->dlen);
501 *response_len = evt_hdr->dlen; 501 *response_len = evt_hdr->dlen;
502 } else if (response_len != NULL && evt_hdr->dlen == 0) { 502 } else if (response_len != NULL && evt_hdr->dlen == 0) {
503 *response_len = 0; 503 *response_len = 0;
504 } 504 }
505 kfree_skb(skb); 505 kfree_skb(skb);
506 506
507 return 0; 507 return 0;
508 } 508 }
509 509
510 /* --- Helper functions used in FM interrupt handlers ---*/ 510 /* --- Helper functions used in FM interrupt handlers ---*/
511 static inline u32 check_cmdresp_status(struct fmdev *fmdev, 511 static inline u32 check_cmdresp_status(struct fmdev *fmdev,
512 struct sk_buff **skb) 512 struct sk_buff **skb)
513 { 513 {
514 struct fm_event_msg_hdr *fm_evt_hdr; 514 struct fm_event_msg_hdr *fm_evt_hdr;
515 unsigned long flags; 515 unsigned long flags;
516 516
517 del_timer(&fmdev->irq_info.timer); 517 del_timer(&fmdev->irq_info.timer);
518 518
519 spin_lock_irqsave(&fmdev->resp_skb_lock, flags); 519 spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
520 *skb = fmdev->resp_skb; 520 *skb = fmdev->resp_skb;
521 fmdev->resp_skb = NULL; 521 fmdev->resp_skb = NULL;
522 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags); 522 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
523 523
524 fm_evt_hdr = (void *)(*skb)->data; 524 fm_evt_hdr = (void *)(*skb)->data;
525 if (fm_evt_hdr->status != 0) { 525 if (fm_evt_hdr->status != 0) {
526 fmerr("irq: opcode %x response status is not zero " 526 fmerr("irq: opcode %x response status is not zero "
527 "Initiating irq recovery process\n", 527 "Initiating irq recovery process\n",
528 fm_evt_hdr->op); 528 fm_evt_hdr->op);
529 529
530 mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT); 530 mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
531 return -1; 531 return -1;
532 } 532 }
533 533
534 return 0; 534 return 0;
535 } 535 }
536 536
537 static inline void fm_irq_common_cmd_resp_helper(struct fmdev *fmdev, u8 stage) 537 static inline void fm_irq_common_cmd_resp_helper(struct fmdev *fmdev, u8 stage)
538 { 538 {
539 struct sk_buff *skb; 539 struct sk_buff *skb;
540 540
541 if (!check_cmdresp_status(fmdev, &skb)) 541 if (!check_cmdresp_status(fmdev, &skb))
542 fm_irq_call_stage(fmdev, stage); 542 fm_irq_call_stage(fmdev, stage);
543 } 543 }
544 544
545 /* 545 /*
546 * Interrupt process timeout handler. 546 * Interrupt process timeout handler.
547 * One of the irq handler did not get proper response from the chip. So take 547 * One of the irq handler did not get proper response from the chip. So take
548 * recovery action here. FM interrupts are disabled in the beginning of 548 * recovery action here. FM interrupts are disabled in the beginning of
549 * interrupt process. Therefore reset stage index to re-enable default 549 * interrupt process. Therefore reset stage index to re-enable default
550 * interrupts. So that next interrupt will be processed as usual. 550 * interrupts. So that next interrupt will be processed as usual.
551 */ 551 */
552 static void int_timeout_handler(unsigned long data) 552 static void int_timeout_handler(unsigned long data)
553 { 553 {
554 struct fmdev *fmdev; 554 struct fmdev *fmdev;
555 struct fm_irq *fmirq; 555 struct fm_irq *fmirq;
556 556
557 fmdbg("irq: timeout,trying to re-enable fm interrupts\n"); 557 fmdbg("irq: timeout,trying to re-enable fm interrupts\n");
558 fmdev = (struct fmdev *)data; 558 fmdev = (struct fmdev *)data;
559 fmirq = &fmdev->irq_info; 559 fmirq = &fmdev->irq_info;
560 fmirq->retry++; 560 fmirq->retry++;
561 561
562 if (fmirq->retry > FM_IRQ_TIMEOUT_RETRY_MAX) { 562 if (fmirq->retry > FM_IRQ_TIMEOUT_RETRY_MAX) {
563 /* Stop recovery action (interrupt reenable process) and 563 /* Stop recovery action (interrupt reenable process) and
564 * reset stage index & retry count values */ 564 * reset stage index & retry count values */
565 fmirq->stage = 0; 565 fmirq->stage = 0;
566 fmirq->retry = 0; 566 fmirq->retry = 0;
567 fmerr("Recovery action failed during" 567 fmerr("Recovery action failed during"
568 "irq processing, max retry reached\n"); 568 "irq processing, max retry reached\n");
569 return; 569 return;
570 } 570 }
571 fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX); 571 fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
572 } 572 }
573 573
574 /* --------- FM interrupt handlers ------------*/ 574 /* --------- FM interrupt handlers ------------*/
575 static void fm_irq_send_flag_getcmd(struct fmdev *fmdev) 575 static void fm_irq_send_flag_getcmd(struct fmdev *fmdev)
576 { 576 {
577 u16 flag; 577 u16 flag;
578 578
579 /* Send FLAG_GET command , to know the source of interrupt */ 579 /* Send FLAG_GET command , to know the source of interrupt */
580 if (!fm_send_cmd(fmdev, FLAG_GET, REG_RD, NULL, sizeof(flag), NULL)) 580 if (!fm_send_cmd(fmdev, FLAG_GET, REG_RD, NULL, sizeof(flag), NULL))
581 fm_irq_timeout_stage(fmdev, FM_HANDLE_FLAG_GETCMD_RESP_IDX); 581 fm_irq_timeout_stage(fmdev, FM_HANDLE_FLAG_GETCMD_RESP_IDX);
582 } 582 }
583 583
584 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *fmdev) 584 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *fmdev)
585 { 585 {
586 struct sk_buff *skb; 586 struct sk_buff *skb;
587 struct fm_event_msg_hdr *fm_evt_hdr; 587 struct fm_event_msg_hdr *fm_evt_hdr;
588 588
589 if (check_cmdresp_status(fmdev, &skb)) 589 if (check_cmdresp_status(fmdev, &skb))
590 return; 590 return;
591 591
592 fm_evt_hdr = (void *)skb->data; 592 fm_evt_hdr = (void *)skb->data;
593 593
594 /* Skip header info and copy only response data */ 594 /* Skip header info and copy only response data */
595 skb_pull(skb, sizeof(struct fm_event_msg_hdr)); 595 skb_pull(skb, sizeof(struct fm_event_msg_hdr));
596 memcpy(&fmdev->irq_info.flag, skb->data, fm_evt_hdr->dlen); 596 memcpy(&fmdev->irq_info.flag, skb->data, fm_evt_hdr->dlen);
597 597
598 fmdev->irq_info.flag = be16_to_cpu(fmdev->irq_info.flag); 598 fmdev->irq_info.flag = be16_to_cpu(fmdev->irq_info.flag);
599 fmdbg("irq: flag register(0x%x)\n", fmdev->irq_info.flag); 599 fmdbg("irq: flag register(0x%x)\n", fmdev->irq_info.flag);
600 600
601 /* Continue next function in interrupt handler table */ 601 /* Continue next function in interrupt handler table */
602 fm_irq_call_stage(fmdev, FM_HW_MAL_FUNC_IDX); 602 fm_irq_call_stage(fmdev, FM_HW_MAL_FUNC_IDX);
603 } 603 }
604 604
605 static void fm_irq_handle_hw_malfunction(struct fmdev *fmdev) 605 static void fm_irq_handle_hw_malfunction(struct fmdev *fmdev)
606 { 606 {
607 if (fmdev->irq_info.flag & FM_MAL_EVENT & fmdev->irq_info.mask) 607 if (fmdev->irq_info.flag & FM_MAL_EVENT & fmdev->irq_info.mask)
608 fmerr("irq: HW MAL int received - do nothing\n"); 608 fmerr("irq: HW MAL int received - do nothing\n");
609 609
610 /* Continue next function in interrupt handler table */ 610 /* Continue next function in interrupt handler table */
611 fm_irq_call_stage(fmdev, FM_RDS_START_IDX); 611 fm_irq_call_stage(fmdev, FM_RDS_START_IDX);
612 } 612 }
613 613
614 static void fm_irq_handle_rds_start(struct fmdev *fmdev) 614 static void fm_irq_handle_rds_start(struct fmdev *fmdev)
615 { 615 {
616 if (fmdev->irq_info.flag & FM_RDS_EVENT & fmdev->irq_info.mask) { 616 if (fmdev->irq_info.flag & FM_RDS_EVENT & fmdev->irq_info.mask) {
617 fmdbg("irq: rds threshold reached\n"); 617 fmdbg("irq: rds threshold reached\n");
618 fmdev->irq_info.stage = FM_RDS_SEND_RDS_GETCMD_IDX; 618 fmdev->irq_info.stage = FM_RDS_SEND_RDS_GETCMD_IDX;
619 } else { 619 } else {
620 /* Continue next function in interrupt handler table */ 620 /* Continue next function in interrupt handler table */
621 fmdev->irq_info.stage = FM_HW_TUNE_OP_ENDED_IDX; 621 fmdev->irq_info.stage = FM_HW_TUNE_OP_ENDED_IDX;
622 } 622 }
623 623
624 fm_irq_call(fmdev); 624 fm_irq_call(fmdev);
625 } 625 }
626 626
627 static void fm_irq_send_rdsdata_getcmd(struct fmdev *fmdev) 627 static void fm_irq_send_rdsdata_getcmd(struct fmdev *fmdev)
628 { 628 {
629 /* Send the command to read RDS data from the chip */ 629 /* Send the command to read RDS data from the chip */
630 if (!fm_send_cmd(fmdev, RDS_DATA_GET, REG_RD, NULL, 630 if (!fm_send_cmd(fmdev, RDS_DATA_GET, REG_RD, NULL,
631 (FM_RX_RDS_FIFO_THRESHOLD * 3), NULL)) 631 (FM_RX_RDS_FIFO_THRESHOLD * 3), NULL))
632 fm_irq_timeout_stage(fmdev, FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX); 632 fm_irq_timeout_stage(fmdev, FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX);
633 } 633 }
634 634
635 /* Keeps track of current RX channel AF (Alternate Frequency) */ 635 /* Keeps track of current RX channel AF (Alternate Frequency) */
636 static void fm_rx_update_af_cache(struct fmdev *fmdev, u8 af) 636 static void fm_rx_update_af_cache(struct fmdev *fmdev, u8 af)
637 { 637 {
638 struct tuned_station_info *stat_info = &fmdev->rx.stat_info; 638 struct tuned_station_info *stat_info = &fmdev->rx.stat_info;
639 u8 reg_idx = fmdev->rx.region.fm_band; 639 u8 reg_idx = fmdev->rx.region.fm_band;
640 u8 index; 640 u8 index;
641 u32 freq; 641 u32 freq;
642 642
643 /* First AF indicates the number of AF follows. Reset the list */ 643 /* First AF indicates the number of AF follows. Reset the list */
644 if ((af >= FM_RDS_1_AF_FOLLOWS) && (af <= FM_RDS_25_AF_FOLLOWS)) { 644 if ((af >= FM_RDS_1_AF_FOLLOWS) && (af <= FM_RDS_25_AF_FOLLOWS)) {
645 fmdev->rx.stat_info.af_list_max = (af - FM_RDS_1_AF_FOLLOWS + 1); 645 fmdev->rx.stat_info.af_list_max = (af - FM_RDS_1_AF_FOLLOWS + 1);
646 fmdev->rx.stat_info.afcache_size = 0; 646 fmdev->rx.stat_info.afcache_size = 0;
647 fmdbg("No of expected AF : %d\n", fmdev->rx.stat_info.af_list_max); 647 fmdbg("No of expected AF : %d\n", fmdev->rx.stat_info.af_list_max);
648 return; 648 return;
649 } 649 }
650 650
651 if (af < FM_RDS_MIN_AF) 651 if (af < FM_RDS_MIN_AF)
652 return; 652 return;
653 if (reg_idx == FM_BAND_EUROPE_US && af > FM_RDS_MAX_AF) 653 if (reg_idx == FM_BAND_EUROPE_US && af > FM_RDS_MAX_AF)
654 return; 654 return;
655 if (reg_idx == FM_BAND_JAPAN && af > FM_RDS_MAX_AF_JAPAN) 655 if (reg_idx == FM_BAND_JAPAN && af > FM_RDS_MAX_AF_JAPAN)
656 return; 656 return;
657 657
658 freq = fmdev->rx.region.bot_freq + (af * 100); 658 freq = fmdev->rx.region.bot_freq + (af * 100);
659 if (freq == fmdev->rx.freq) { 659 if (freq == fmdev->rx.freq) {
660 fmdbg("Current freq(%d) is matching with received AF(%d)\n", 660 fmdbg("Current freq(%d) is matching with received AF(%d)\n",
661 fmdev->rx.freq, freq); 661 fmdev->rx.freq, freq);
662 return; 662 return;
663 } 663 }
664 /* Do check in AF cache */ 664 /* Do check in AF cache */
665 for (index = 0; index < stat_info->afcache_size; index++) { 665 for (index = 0; index < stat_info->afcache_size; index++) {
666 if (stat_info->af_cache[index] == freq) 666 if (stat_info->af_cache[index] == freq)
667 break; 667 break;
668 } 668 }
669 /* Reached the limit of the list - ignore the next AF */ 669 /* Reached the limit of the list - ignore the next AF */
670 if (index == stat_info->af_list_max) { 670 if (index == stat_info->af_list_max) {
671 fmdbg("AF cache is full\n"); 671 fmdbg("AF cache is full\n");
672 return; 672 return;
673 } 673 }
674 /* 674 /*
675 * If we reached the end of the list then this AF is not 675 * If we reached the end of the list then this AF is not
676 * in the list - add it. 676 * in the list - add it.
677 */ 677 */
678 if (index == stat_info->afcache_size) { 678 if (index == stat_info->afcache_size) {
679 fmdbg("Storing AF %d to cache index %d\n", freq, index); 679 fmdbg("Storing AF %d to cache index %d\n", freq, index);
680 stat_info->af_cache[index] = freq; 680 stat_info->af_cache[index] = freq;
681 stat_info->afcache_size++; 681 stat_info->afcache_size++;
682 } 682 }
683 } 683 }
684 684
685 /* 685 /*
686 * Converts RDS buffer data from big endian format 686 * Converts RDS buffer data from big endian format
687 * to little endian format. 687 * to little endian format.
688 */ 688 */
689 static void fm_rdsparse_swapbytes(struct fmdev *fmdev, 689 static void fm_rdsparse_swapbytes(struct fmdev *fmdev,
690 struct fm_rdsdata_format *rds_format) 690 struct fm_rdsdata_format *rds_format)
691 { 691 {
692 u8 byte1; 692 u8 byte1;
693 u8 index = 0; 693 u8 index = 0;
694 u8 *rds_buff; 694 u8 *rds_buff;
695 695
696 /* 696 /*
697 * Since in Orca the 2 RDS Data bytes are in little endian and 697 * Since in Orca the 2 RDS Data bytes are in little endian and
698 * in Dolphin they are in big endian, the parsing of the RDS data 698 * in Dolphin they are in big endian, the parsing of the RDS data
699 * is chip dependent 699 * is chip dependent
700 */ 700 */
701 if (fmdev->asci_id != 0x6350) { 701 if (fmdev->asci_id != 0x6350) {
702 rds_buff = &rds_format->data.groupdatabuff.buff[0]; 702 rds_buff = &rds_format->data.groupdatabuff.buff[0];
703 while (index + 1 < FM_RX_RDS_INFO_FIELD_MAX) { 703 while (index + 1 < FM_RX_RDS_INFO_FIELD_MAX) {
704 byte1 = rds_buff[index]; 704 byte1 = rds_buff[index];
705 rds_buff[index] = rds_buff[index + 1]; 705 rds_buff[index] = rds_buff[index + 1];
706 rds_buff[index + 1] = byte1; 706 rds_buff[index + 1] = byte1;
707 index += 2; 707 index += 2;
708 } 708 }
709 } 709 }
710 } 710 }
711 711
712 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *fmdev) 712 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *fmdev)
713 { 713 {
714 struct sk_buff *skb; 714 struct sk_buff *skb;
715 struct fm_rdsdata_format rds_fmt; 715 struct fm_rdsdata_format rds_fmt;
716 struct fm_rds *rds = &fmdev->rx.rds; 716 struct fm_rds *rds = &fmdev->rx.rds;
717 unsigned long group_idx, flags; 717 unsigned long group_idx, flags;
718 u8 *rds_data, meta_data, tmpbuf[3]; 718 u8 *rds_data, meta_data, tmpbuf[3];
719 u8 type, blk_idx; 719 u8 type, blk_idx;
720 u16 cur_picode; 720 u16 cur_picode;
721 u32 rds_len; 721 u32 rds_len;
722 722
723 if (check_cmdresp_status(fmdev, &skb)) 723 if (check_cmdresp_status(fmdev, &skb))
724 return; 724 return;
725 725
726 /* Skip header info */ 726 /* Skip header info */
727 skb_pull(skb, sizeof(struct fm_event_msg_hdr)); 727 skb_pull(skb, sizeof(struct fm_event_msg_hdr));
728 rds_data = skb->data; 728 rds_data = skb->data;
729 rds_len = skb->len; 729 rds_len = skb->len;
730 730
731 /* Parse the RDS data */ 731 /* Parse the RDS data */
732 while (rds_len >= FM_RDS_BLK_SIZE) { 732 while (rds_len >= FM_RDS_BLK_SIZE) {
733 meta_data = rds_data[2]; 733 meta_data = rds_data[2];
734 /* Get the type: 0=A, 1=B, 2=C, 3=C', 4=D, 5=E */ 734 /* Get the type: 0=A, 1=B, 2=C, 3=C', 4=D, 5=E */
735 type = (meta_data & 0x07); 735 type = (meta_data & 0x07);
736 736
737 /* Transform the blk type into index sequence (0, 1, 2, 3, 4) */ 737 /* Transform the blk type into index sequence (0, 1, 2, 3, 4) */
738 blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1)); 738 blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
739 fmdbg("Block index:%d(%s)\n", blk_idx, 739 fmdbg("Block index:%d(%s)\n", blk_idx,
740 (meta_data & FM_RDS_STATUS_ERR_MASK) ? "Bad" : "Ok"); 740 (meta_data & FM_RDS_STATUS_ERR_MASK) ? "Bad" : "Ok");
741 741
742 if ((meta_data & FM_RDS_STATUS_ERR_MASK) != 0) 742 if ((meta_data & FM_RDS_STATUS_ERR_MASK) != 0)
743 break; 743 break;
744 744
745 if (blk_idx < FM_RDS_BLK_IDX_A || blk_idx > FM_RDS_BLK_IDX_D) { 745 if (blk_idx < FM_RDS_BLK_IDX_A || blk_idx > FM_RDS_BLK_IDX_D) {
746 fmdbg("Block sequence mismatch\n"); 746 fmdbg("Block sequence mismatch\n");
747 rds->last_blk_idx = -1; 747 rds->last_blk_idx = -1;
748 break; 748 break;
749 } 749 }
750 750
751 /* Skip checkword (control) byte and copy only data byte */ 751 /* Skip checkword (control) byte and copy only data byte */
752 memcpy(&rds_fmt.data.groupdatabuff. 752 memcpy(&rds_fmt.data.groupdatabuff.
753 buff[blk_idx * (FM_RDS_BLK_SIZE - 1)], 753 buff[blk_idx * (FM_RDS_BLK_SIZE - 1)],
754 rds_data, (FM_RDS_BLK_SIZE - 1)); 754 rds_data, (FM_RDS_BLK_SIZE - 1));
755 755
756 rds->last_blk_idx = blk_idx; 756 rds->last_blk_idx = blk_idx;
757 757
758 /* If completed a whole group then handle it */ 758 /* If completed a whole group then handle it */
759 if (blk_idx == FM_RDS_BLK_IDX_D) { 759 if (blk_idx == FM_RDS_BLK_IDX_D) {
760 fmdbg("Good block received\n"); 760 fmdbg("Good block received\n");
761 fm_rdsparse_swapbytes(fmdev, &rds_fmt); 761 fm_rdsparse_swapbytes(fmdev, &rds_fmt);
762 762
763 /* 763 /*
764 * Extract PI code and store in local cache. 764 * Extract PI code and store in local cache.
765 * We need this during AF switch processing. 765 * We need this during AF switch processing.
766 */ 766 */
767 cur_picode = be16_to_cpu(rds_fmt.data.groupgeneral.pidata); 767 cur_picode = be16_to_cpu(rds_fmt.data.groupgeneral.pidata);
768 if (fmdev->rx.stat_info.picode != cur_picode) 768 if (fmdev->rx.stat_info.picode != cur_picode)
769 fmdev->rx.stat_info.picode = cur_picode; 769 fmdev->rx.stat_info.picode = cur_picode;
770 770
771 fmdbg("picode:%d\n", cur_picode); 771 fmdbg("picode:%d\n", cur_picode);
772 772
773 group_idx = (rds_fmt.data.groupgeneral.blk_b[0] >> 3); 773 group_idx = (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
774 fmdbg("(fmdrv):Group:%ld%s\n", group_idx/2, 774 fmdbg("(fmdrv):Group:%ld%s\n", group_idx/2,
775 (group_idx % 2) ? "B" : "A"); 775 (group_idx % 2) ? "B" : "A");
776 776
777 group_idx = 1 << (rds_fmt.data.groupgeneral.blk_b[0] >> 3); 777 group_idx = 1 << (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
778 if (group_idx == FM_RDS_GROUP_TYPE_MASK_0A) { 778 if (group_idx == FM_RDS_GROUP_TYPE_MASK_0A) {
779 fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[0]); 779 fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[0]);
780 fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[1]); 780 fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[1]);
781 } 781 }
782 } 782 }
783 rds_len -= FM_RDS_BLK_SIZE; 783 rds_len -= FM_RDS_BLK_SIZE;
784 rds_data += FM_RDS_BLK_SIZE; 784 rds_data += FM_RDS_BLK_SIZE;
785 } 785 }
786 786
787 /* Copy raw rds data to internal rds buffer */ 787 /* Copy raw rds data to internal rds buffer */
788 rds_data = skb->data; 788 rds_data = skb->data;
789 rds_len = skb->len; 789 rds_len = skb->len;
790 790
791 spin_lock_irqsave(&fmdev->rds_buff_lock, flags); 791 spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
792 while (rds_len > 0) { 792 while (rds_len > 0) {
793 /* 793 /*
794 * Fill RDS buffer as per V4L2 specification. 794 * Fill RDS buffer as per V4L2 specification.
795 * Store control byte 795 * Store control byte
796 */ 796 */
797 type = (rds_data[2] & 0x07); 797 type = (rds_data[2] & 0x07);
798 blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1)); 798 blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
799 tmpbuf[2] = blk_idx; /* Offset name */ 799 tmpbuf[2] = blk_idx; /* Offset name */
800 tmpbuf[2] |= blk_idx << 3; /* Received offset */ 800 tmpbuf[2] |= blk_idx << 3; /* Received offset */
801 801
802 /* Store data byte */ 802 /* Store data byte */
803 tmpbuf[0] = rds_data[0]; 803 tmpbuf[0] = rds_data[0];
804 tmpbuf[1] = rds_data[1]; 804 tmpbuf[1] = rds_data[1];
805 805
806 memcpy(&rds->buff[rds->wr_idx], &tmpbuf, FM_RDS_BLK_SIZE); 806 memcpy(&rds->buff[rds->wr_idx], &tmpbuf, FM_RDS_BLK_SIZE);
807 rds->wr_idx = (rds->wr_idx + FM_RDS_BLK_SIZE) % rds->buf_size; 807 rds->wr_idx = (rds->wr_idx + FM_RDS_BLK_SIZE) % rds->buf_size;
808 808
809 /* Check for overflow & start over */ 809 /* Check for overflow & start over */
810 if (rds->wr_idx == rds->rd_idx) { 810 if (rds->wr_idx == rds->rd_idx) {
811 fmdbg("RDS buffer overflow\n"); 811 fmdbg("RDS buffer overflow\n");
812 rds->wr_idx = 0; 812 rds->wr_idx = 0;
813 rds->rd_idx = 0; 813 rds->rd_idx = 0;
814 break; 814 break;
815 } 815 }
816 rds_len -= FM_RDS_BLK_SIZE; 816 rds_len -= FM_RDS_BLK_SIZE;
817 rds_data += FM_RDS_BLK_SIZE; 817 rds_data += FM_RDS_BLK_SIZE;
818 } 818 }
819 spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags); 819 spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
820 820
821 /* Wakeup read queue */ 821 /* Wakeup read queue */
822 if (rds->wr_idx != rds->rd_idx) 822 if (rds->wr_idx != rds->rd_idx)
823 wake_up_interruptible(&rds->read_queue); 823 wake_up_interruptible(&rds->read_queue);
824 824
825 fm_irq_call_stage(fmdev, FM_RDS_FINISH_IDX); 825 fm_irq_call_stage(fmdev, FM_RDS_FINISH_IDX);
826 } 826 }
827 827
828 static void fm_irq_handle_rds_finish(struct fmdev *fmdev) 828 static void fm_irq_handle_rds_finish(struct fmdev *fmdev)
829 { 829 {
830 fm_irq_call_stage(fmdev, FM_HW_TUNE_OP_ENDED_IDX); 830 fm_irq_call_stage(fmdev, FM_HW_TUNE_OP_ENDED_IDX);
831 } 831 }
832 832
833 static void fm_irq_handle_tune_op_ended(struct fmdev *fmdev) 833 static void fm_irq_handle_tune_op_ended(struct fmdev *fmdev)
834 { 834 {
835 if (fmdev->irq_info.flag & (FM_FR_EVENT | FM_BL_EVENT) & fmdev-> 835 if (fmdev->irq_info.flag & (FM_FR_EVENT | FM_BL_EVENT) & fmdev->
836 irq_info.mask) { 836 irq_info.mask) {
837 fmdbg("irq: tune ended/bandlimit reached\n"); 837 fmdbg("irq: tune ended/bandlimit reached\n");
838 if (test_and_clear_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag)) { 838 if (test_and_clear_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag)) {
839 fmdev->irq_info.stage = FM_AF_JUMP_RD_FREQ_IDX; 839 fmdev->irq_info.stage = FM_AF_JUMP_RD_FREQ_IDX;
840 } else { 840 } else {
841 complete(&fmdev->maintask_comp); 841 complete(&fmdev->maintask_comp);
842 fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX; 842 fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
843 } 843 }
844 } else 844 } else
845 fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX; 845 fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
846 846
847 fm_irq_call(fmdev); 847 fm_irq_call(fmdev);
848 } 848 }
849 849
850 static void fm_irq_handle_power_enb(struct fmdev *fmdev) 850 static void fm_irq_handle_power_enb(struct fmdev *fmdev)
851 { 851 {
852 if (fmdev->irq_info.flag & FM_POW_ENB_EVENT) { 852 if (fmdev->irq_info.flag & FM_POW_ENB_EVENT) {
853 fmdbg("irq: Power Enabled/Disabled\n"); 853 fmdbg("irq: Power Enabled/Disabled\n");
854 complete(&fmdev->maintask_comp); 854 complete(&fmdev->maintask_comp);
855 } 855 }
856 856
857 fm_irq_call_stage(fmdev, FM_LOW_RSSI_START_IDX); 857 fm_irq_call_stage(fmdev, FM_LOW_RSSI_START_IDX);
858 } 858 }
859 859
860 static void fm_irq_handle_low_rssi_start(struct fmdev *fmdev) 860 static void fm_irq_handle_low_rssi_start(struct fmdev *fmdev)
861 { 861 {
862 if ((fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON) && 862 if ((fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON) &&
863 (fmdev->irq_info.flag & FM_LEV_EVENT & fmdev->irq_info.mask) && 863 (fmdev->irq_info.flag & FM_LEV_EVENT & fmdev->irq_info.mask) &&
864 (fmdev->rx.freq != FM_UNDEFINED_FREQ) && 864 (fmdev->rx.freq != FM_UNDEFINED_FREQ) &&
865 (fmdev->rx.stat_info.afcache_size != 0)) { 865 (fmdev->rx.stat_info.afcache_size != 0)) {
866 fmdbg("irq: rssi level has fallen below threshold level\n"); 866 fmdbg("irq: rssi level has fallen below threshold level\n");
867 867
868 /* Disable further low RSSI interrupts */ 868 /* Disable further low RSSI interrupts */
869 fmdev->irq_info.mask &= ~FM_LEV_EVENT; 869 fmdev->irq_info.mask &= ~FM_LEV_EVENT;
870 870
871 fmdev->rx.afjump_idx = 0; 871 fmdev->rx.afjump_idx = 0;
872 fmdev->rx.freq_before_jump = fmdev->rx.freq; 872 fmdev->rx.freq_before_jump = fmdev->rx.freq;
873 fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX; 873 fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
874 } else { 874 } else {
875 /* Continue next function in interrupt handler table */ 875 /* Continue next function in interrupt handler table */
876 fmdev->irq_info.stage = FM_SEND_INTMSK_CMD_IDX; 876 fmdev->irq_info.stage = FM_SEND_INTMSK_CMD_IDX;
877 } 877 }
878 878
879 fm_irq_call(fmdev); 879 fm_irq_call(fmdev);
880 } 880 }
881 881
882 static void fm_irq_afjump_set_pi(struct fmdev *fmdev) 882 static void fm_irq_afjump_set_pi(struct fmdev *fmdev)
883 { 883 {
884 u16 payload; 884 u16 payload;
885 885
886 /* Set PI code - must be updated if the AF list is not empty */ 886 /* Set PI code - must be updated if the AF list is not empty */
887 payload = fmdev->rx.stat_info.picode; 887 payload = fmdev->rx.stat_info.picode;
888 if (!fm_send_cmd(fmdev, RDS_PI_SET, REG_WR, &payload, sizeof(payload), NULL)) 888 if (!fm_send_cmd(fmdev, RDS_PI_SET, REG_WR, &payload, sizeof(payload), NULL))
889 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_RESP_IDX); 889 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_RESP_IDX);
890 } 890 }
891 891
892 static void fm_irq_handle_set_pi_resp(struct fmdev *fmdev) 892 static void fm_irq_handle_set_pi_resp(struct fmdev *fmdev)
893 { 893 {
894 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SETPI_MASK_IDX); 894 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SETPI_MASK_IDX);
895 } 895 }
896 896
897 /* 897 /*
898 * Set PI mask. 898 * Set PI mask.
899 * 0xFFFF = Enable PI code matching 899 * 0xFFFF = Enable PI code matching
900 * 0x0000 = Disable PI code matching 900 * 0x0000 = Disable PI code matching
901 */ 901 */
902 static void fm_irq_afjump_set_pimask(struct fmdev *fmdev) 902 static void fm_irq_afjump_set_pimask(struct fmdev *fmdev)
903 { 903 {
904 u16 payload; 904 u16 payload;
905 905
906 payload = 0x0000; 906 payload = 0x0000;
907 if (!fm_send_cmd(fmdev, RDS_PI_MASK_SET, REG_WR, &payload, sizeof(payload), NULL)) 907 if (!fm_send_cmd(fmdev, RDS_PI_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
908 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX); 908 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX);
909 } 909 }
910 910
911 static void fm_irq_handle_set_pimask_resp(struct fmdev *fmdev) 911 static void fm_irq_handle_set_pimask_resp(struct fmdev *fmdev)
912 { 912 {
913 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SET_AF_FREQ_IDX); 913 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SET_AF_FREQ_IDX);
914 } 914 }
915 915
916 static void fm_irq_afjump_setfreq(struct fmdev *fmdev) 916 static void fm_irq_afjump_setfreq(struct fmdev *fmdev)
917 { 917 {
918 u16 frq_index; 918 u16 frq_index;
919 u16 payload; 919 u16 payload;
920 920
921 fmdbg("Swtich to %d KHz\n", fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx]); 921 fmdbg("Swtich to %d KHz\n", fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx]);
922 frq_index = (fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx] - 922 frq_index = (fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx] -
923 fmdev->rx.region.bot_freq) / FM_FREQ_MUL; 923 fmdev->rx.region.bot_freq) / FM_FREQ_MUL;
924 924
925 payload = frq_index; 925 payload = frq_index;
926 if (!fm_send_cmd(fmdev, AF_FREQ_SET, REG_WR, &payload, sizeof(payload), NULL)) 926 if (!fm_send_cmd(fmdev, AF_FREQ_SET, REG_WR, &payload, sizeof(payload), NULL))
927 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX); 927 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX);
928 } 928 }
929 929
930 static void fm_irq_handle_setfreq_resp(struct fmdev *fmdev) 930 static void fm_irq_handle_setfreq_resp(struct fmdev *fmdev)
931 { 931 {
932 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_ENABLE_INT_IDX); 932 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_ENABLE_INT_IDX);
933 } 933 }
934 934
935 static void fm_irq_afjump_enableint(struct fmdev *fmdev) 935 static void fm_irq_afjump_enableint(struct fmdev *fmdev)
936 { 936 {
937 u16 payload; 937 u16 payload;
938 938
939 /* Enable FR (tuning operation ended) interrupt */ 939 /* Enable FR (tuning operation ended) interrupt */
940 payload = FM_FR_EVENT; 940 payload = FM_FR_EVENT;
941 if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload, sizeof(payload), NULL)) 941 if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
942 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_ENABLE_INT_RESP_IDX); 942 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_ENABLE_INT_RESP_IDX);
943 } 943 }
944 944
945 static void fm_irq_afjump_enableint_resp(struct fmdev *fmdev) 945 static void fm_irq_afjump_enableint_resp(struct fmdev *fmdev)
946 { 946 {
947 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_START_AFJUMP_IDX); 947 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_START_AFJUMP_IDX);
948 } 948 }
949 949
950 static void fm_irq_start_afjump(struct fmdev *fmdev) 950 static void fm_irq_start_afjump(struct fmdev *fmdev)
951 { 951 {
952 u16 payload; 952 u16 payload;
953 953
954 payload = FM_TUNER_AF_JUMP_MODE; 954 payload = FM_TUNER_AF_JUMP_MODE;
955 if (!fm_send_cmd(fmdev, TUNER_MODE_SET, REG_WR, &payload, 955 if (!fm_send_cmd(fmdev, TUNER_MODE_SET, REG_WR, &payload,
956 sizeof(payload), NULL)) 956 sizeof(payload), NULL))
957 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX); 957 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX);
958 } 958 }
959 959
960 static void fm_irq_handle_start_afjump_resp(struct fmdev *fmdev) 960 static void fm_irq_handle_start_afjump_resp(struct fmdev *fmdev)
961 { 961 {
962 struct sk_buff *skb; 962 struct sk_buff *skb;
963 963
964 if (check_cmdresp_status(fmdev, &skb)) 964 if (check_cmdresp_status(fmdev, &skb))
965 return; 965 return;
966 966
967 fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX; 967 fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
968 set_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag); 968 set_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag);
969 clear_bit(FM_INTTASK_RUNNING, &fmdev->flag); 969 clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
970 } 970 }
971 971
972 static void fm_irq_afjump_rd_freq(struct fmdev *fmdev) 972 static void fm_irq_afjump_rd_freq(struct fmdev *fmdev)
973 { 973 {
974 u16 payload; 974 u16 payload;
975 975
976 if (!fm_send_cmd(fmdev, FREQ_SET, REG_RD, NULL, sizeof(payload), NULL)) 976 if (!fm_send_cmd(fmdev, FREQ_SET, REG_RD, NULL, sizeof(payload), NULL))
977 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_RD_FREQ_RESP_IDX); 977 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_RD_FREQ_RESP_IDX);
978 } 978 }
979 979
980 static void fm_irq_afjump_rd_freq_resp(struct fmdev *fmdev) 980 static void fm_irq_afjump_rd_freq_resp(struct fmdev *fmdev)
981 { 981 {
982 struct sk_buff *skb; 982 struct sk_buff *skb;
983 u16 read_freq; 983 u16 read_freq;
984 u32 curr_freq, jumped_freq; 984 u32 curr_freq, jumped_freq;
985 985
986 if (check_cmdresp_status(fmdev, &skb)) 986 if (check_cmdresp_status(fmdev, &skb))
987 return; 987 return;
988 988
989 /* Skip header info and copy only response data */ 989 /* Skip header info and copy only response data */
990 skb_pull(skb, sizeof(struct fm_event_msg_hdr)); 990 skb_pull(skb, sizeof(struct fm_event_msg_hdr));
991 memcpy(&read_freq, skb->data, sizeof(read_freq)); 991 memcpy(&read_freq, skb->data, sizeof(read_freq));
992 read_freq = be16_to_cpu(read_freq); 992 read_freq = be16_to_cpu(read_freq);
993 curr_freq = fmdev->rx.region.bot_freq + ((u32)read_freq * FM_FREQ_MUL); 993 curr_freq = fmdev->rx.region.bot_freq + ((u32)read_freq * FM_FREQ_MUL);
994 994
995 jumped_freq = fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx]; 995 jumped_freq = fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx];
996 996
997 /* If the frequency was changed the jump succeeded */ 997 /* If the frequency was changed the jump succeeded */
998 if ((curr_freq != fmdev->rx.freq_before_jump) && (curr_freq == jumped_freq)) { 998 if ((curr_freq != fmdev->rx.freq_before_jump) && (curr_freq == jumped_freq)) {
999 fmdbg("Successfully switched to alternate freq %d\n", curr_freq); 999 fmdbg("Successfully switched to alternate freq %d\n", curr_freq);
1000 fmdev->rx.freq = curr_freq; 1000 fmdev->rx.freq = curr_freq;
1001 fm_rx_reset_rds_cache(fmdev); 1001 fm_rx_reset_rds_cache(fmdev);
1002 1002
1003 /* AF feature is on, enable low level RSSI interrupt */ 1003 /* AF feature is on, enable low level RSSI interrupt */
1004 if (fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON) 1004 if (fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON)
1005 fmdev->irq_info.mask |= FM_LEV_EVENT; 1005 fmdev->irq_info.mask |= FM_LEV_EVENT;
1006 1006
1007 fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX; 1007 fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
1008 } else { /* jump to the next freq in the AF list */ 1008 } else { /* jump to the next freq in the AF list */
1009 fmdev->rx.afjump_idx++; 1009 fmdev->rx.afjump_idx++;
1010 1010
1011 /* If we reached the end of the list - stop searching */ 1011 /* If we reached the end of the list - stop searching */
1012 if (fmdev->rx.afjump_idx >= fmdev->rx.stat_info.afcache_size) { 1012 if (fmdev->rx.afjump_idx >= fmdev->rx.stat_info.afcache_size) {
1013 fmdbg("AF switch processing failed\n"); 1013 fmdbg("AF switch processing failed\n");
1014 fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX; 1014 fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
1015 } else { /* AF List is not over - try next one */ 1015 } else { /* AF List is not over - try next one */
1016 1016
1017 fmdbg("Trying next freq in AF cache\n"); 1017 fmdbg("Trying next freq in AF cache\n");
1018 fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX; 1018 fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
1019 } 1019 }
1020 } 1020 }
1021 fm_irq_call(fmdev); 1021 fm_irq_call(fmdev);
1022 } 1022 }
1023 1023
1024 static void fm_irq_handle_low_rssi_finish(struct fmdev *fmdev) 1024 static void fm_irq_handle_low_rssi_finish(struct fmdev *fmdev)
1025 { 1025 {
1026 fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX); 1026 fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
1027 } 1027 }
1028 1028
1029 static void fm_irq_send_intmsk_cmd(struct fmdev *fmdev) 1029 static void fm_irq_send_intmsk_cmd(struct fmdev *fmdev)
1030 { 1030 {
1031 u16 payload; 1031 u16 payload;
1032 1032
1033 /* Re-enable FM interrupts */ 1033 /* Re-enable FM interrupts */
1034 payload = fmdev->irq_info.mask; 1034 payload = fmdev->irq_info.mask;
1035 1035
1036 if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload, 1036 if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload,
1037 sizeof(payload), NULL)) 1037 sizeof(payload), NULL))
1038 fm_irq_timeout_stage(fmdev, FM_HANDLE_INTMSK_CMD_RESP_IDX); 1038 fm_irq_timeout_stage(fmdev, FM_HANDLE_INTMSK_CMD_RESP_IDX);
1039 } 1039 }
1040 1040
1041 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *fmdev) 1041 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *fmdev)
1042 { 1042 {
1043 struct sk_buff *skb; 1043 struct sk_buff *skb;
1044 1044
1045 if (check_cmdresp_status(fmdev, &skb)) 1045 if (check_cmdresp_status(fmdev, &skb))
1046 return; 1046 return;
1047 /* 1047 /*
1048 * This is last function in interrupt table to be executed. 1048 * This is last function in interrupt table to be executed.
1049 * So, reset stage index to 0. 1049 * So, reset stage index to 0.
1050 */ 1050 */
1051 fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX; 1051 fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
1052 1052
1053 /* Start processing any pending interrupt */ 1053 /* Start processing any pending interrupt */
1054 if (test_and_clear_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag)) 1054 if (test_and_clear_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag))
1055 fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev); 1055 fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
1056 else 1056 else
1057 clear_bit(FM_INTTASK_RUNNING, &fmdev->flag); 1057 clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
1058 } 1058 }
1059 1059
1060 /* Returns availability of RDS data in internel buffer */ 1060 /* Returns availability of RDS data in internel buffer */
1061 u32 fmc_is_rds_data_available(struct fmdev *fmdev, struct file *file, 1061 u32 fmc_is_rds_data_available(struct fmdev *fmdev, struct file *file,
1062 struct poll_table_struct *pts) 1062 struct poll_table_struct *pts)
1063 { 1063 {
1064 poll_wait(file, &fmdev->rx.rds.read_queue, pts); 1064 poll_wait(file, &fmdev->rx.rds.read_queue, pts);
1065 if (fmdev->rx.rds.rd_idx != fmdev->rx.rds.wr_idx) 1065 if (fmdev->rx.rds.rd_idx != fmdev->rx.rds.wr_idx)
1066 return 0; 1066 return 0;
1067 1067
1068 return -EAGAIN; 1068 return -EAGAIN;
1069 } 1069 }
1070 1070
1071 /* Copies RDS data from internal buffer to user buffer */ 1071 /* Copies RDS data from internal buffer to user buffer */
1072 u32 fmc_transfer_rds_from_internal_buff(struct fmdev *fmdev, struct file *file, 1072 u32 fmc_transfer_rds_from_internal_buff(struct fmdev *fmdev, struct file *file,
1073 u8 __user *buf, size_t count) 1073 u8 __user *buf, size_t count)
1074 { 1074 {
1075 u32 block_count; 1075 u32 block_count;
1076 unsigned long flags; 1076 unsigned long flags;
1077 int ret; 1077 int ret;
1078 1078
1079 if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) { 1079 if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
1080 if (file->f_flags & O_NONBLOCK) 1080 if (file->f_flags & O_NONBLOCK)
1081 return -EWOULDBLOCK; 1081 return -EWOULDBLOCK;
1082 1082
1083 ret = wait_event_interruptible(fmdev->rx.rds.read_queue, 1083 ret = wait_event_interruptible(fmdev->rx.rds.read_queue,
1084 (fmdev->rx.rds.wr_idx != fmdev->rx.rds.rd_idx)); 1084 (fmdev->rx.rds.wr_idx != fmdev->rx.rds.rd_idx));
1085 if (ret) 1085 if (ret)
1086 return -EINTR; 1086 return -EINTR;
1087 } 1087 }
1088 1088
1089 /* Calculate block count from byte count */ 1089 /* Calculate block count from byte count */
1090 count /= 3; 1090 count /= 3;
1091 block_count = 0; 1091 block_count = 0;
1092 ret = 0; 1092 ret = 0;
1093 1093
1094 spin_lock_irqsave(&fmdev->rds_buff_lock, flags); 1094 spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
1095 1095
1096 while (block_count < count) { 1096 while (block_count < count) {
1097 if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) 1097 if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx)
1098 break; 1098 break;
1099 1099
1100 if (copy_to_user(buf, &fmdev->rx.rds.buff[fmdev->rx.rds.rd_idx], 1100 if (copy_to_user(buf, &fmdev->rx.rds.buff[fmdev->rx.rds.rd_idx],
1101 FM_RDS_BLK_SIZE)) 1101 FM_RDS_BLK_SIZE))
1102 break; 1102 break;
1103 1103
1104 fmdev->rx.rds.rd_idx += FM_RDS_BLK_SIZE; 1104 fmdev->rx.rds.rd_idx += FM_RDS_BLK_SIZE;
1105 if (fmdev->rx.rds.rd_idx >= fmdev->rx.rds.buf_size) 1105 if (fmdev->rx.rds.rd_idx >= fmdev->rx.rds.buf_size)
1106 fmdev->rx.rds.rd_idx = 0; 1106 fmdev->rx.rds.rd_idx = 0;
1107 1107
1108 block_count++; 1108 block_count++;
1109 buf += FM_RDS_BLK_SIZE; 1109 buf += FM_RDS_BLK_SIZE;
1110 ret += FM_RDS_BLK_SIZE; 1110 ret += FM_RDS_BLK_SIZE;
1111 } 1111 }
1112 spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags); 1112 spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
1113 return ret; 1113 return ret;
1114 } 1114 }
1115 1115
1116 u32 fmc_set_freq(struct fmdev *fmdev, u32 freq_to_set) 1116 u32 fmc_set_freq(struct fmdev *fmdev, u32 freq_to_set)
1117 { 1117 {
1118 switch (fmdev->curr_fmmode) { 1118 switch (fmdev->curr_fmmode) {
1119 case FM_MODE_RX: 1119 case FM_MODE_RX:
1120 return fm_rx_set_freq(fmdev, freq_to_set); 1120 return fm_rx_set_freq(fmdev, freq_to_set);
1121 1121
1122 case FM_MODE_TX: 1122 case FM_MODE_TX:
1123 return fm_tx_set_freq(fmdev, freq_to_set); 1123 return fm_tx_set_freq(fmdev, freq_to_set);
1124 1124
1125 default: 1125 default:
1126 return -EINVAL; 1126 return -EINVAL;
1127 } 1127 }
1128 } 1128 }
1129 1129
1130 u32 fmc_get_freq(struct fmdev *fmdev, u32 *cur_tuned_frq) 1130 u32 fmc_get_freq(struct fmdev *fmdev, u32 *cur_tuned_frq)
1131 { 1131 {
1132 if (fmdev->rx.freq == FM_UNDEFINED_FREQ) { 1132 if (fmdev->rx.freq == FM_UNDEFINED_FREQ) {
1133 fmerr("RX frequency is not set\n"); 1133 fmerr("RX frequency is not set\n");
1134 return -EPERM; 1134 return -EPERM;
1135 } 1135 }
1136 if (cur_tuned_frq == NULL) { 1136 if (cur_tuned_frq == NULL) {
1137 fmerr("Invalid memory\n"); 1137 fmerr("Invalid memory\n");
1138 return -ENOMEM; 1138 return -ENOMEM;
1139 } 1139 }
1140 1140
1141 switch (fmdev->curr_fmmode) { 1141 switch (fmdev->curr_fmmode) {
1142 case FM_MODE_RX: 1142 case FM_MODE_RX:
1143 *cur_tuned_frq = fmdev->rx.freq; 1143 *cur_tuned_frq = fmdev->rx.freq;
1144 return 0; 1144 return 0;
1145 1145
1146 case FM_MODE_TX: 1146 case FM_MODE_TX:
1147 *cur_tuned_frq = 0; /* TODO : Change this later */ 1147 *cur_tuned_frq = 0; /* TODO : Change this later */
1148 return 0; 1148 return 0;
1149 1149
1150 default: 1150 default:
1151 return -EINVAL; 1151 return -EINVAL;
1152 } 1152 }
1153 1153
1154 } 1154 }
1155 1155
1156 u32 fmc_set_region(struct fmdev *fmdev, u8 region_to_set) 1156 u32 fmc_set_region(struct fmdev *fmdev, u8 region_to_set)
1157 { 1157 {
1158 switch (fmdev->curr_fmmode) { 1158 switch (fmdev->curr_fmmode) {
1159 case FM_MODE_RX: 1159 case FM_MODE_RX:
1160 return fm_rx_set_region(fmdev, region_to_set); 1160 return fm_rx_set_region(fmdev, region_to_set);
1161 1161
1162 case FM_MODE_TX: 1162 case FM_MODE_TX:
1163 return fm_tx_set_region(fmdev, region_to_set); 1163 return fm_tx_set_region(fmdev, region_to_set);
1164 1164
1165 default: 1165 default:
1166 return -EINVAL; 1166 return -EINVAL;
1167 } 1167 }
1168 } 1168 }
1169 1169
1170 u32 fmc_set_mute_mode(struct fmdev *fmdev, u8 mute_mode_toset) 1170 u32 fmc_set_mute_mode(struct fmdev *fmdev, u8 mute_mode_toset)
1171 { 1171 {
1172 switch (fmdev->curr_fmmode) { 1172 switch (fmdev->curr_fmmode) {
1173 case FM_MODE_RX: 1173 case FM_MODE_RX:
1174 return fm_rx_set_mute_mode(fmdev, mute_mode_toset); 1174 return fm_rx_set_mute_mode(fmdev, mute_mode_toset);
1175 1175
1176 case FM_MODE_TX: 1176 case FM_MODE_TX:
1177 return fm_tx_set_mute_mode(fmdev, mute_mode_toset); 1177 return fm_tx_set_mute_mode(fmdev, mute_mode_toset);
1178 1178
1179 default: 1179 default:
1180 return -EINVAL; 1180 return -EINVAL;
1181 } 1181 }
1182 } 1182 }
1183 1183
1184 u32 fmc_set_stereo_mono(struct fmdev *fmdev, u16 mode) 1184 u32 fmc_set_stereo_mono(struct fmdev *fmdev, u16 mode)
1185 { 1185 {
1186 switch (fmdev->curr_fmmode) { 1186 switch (fmdev->curr_fmmode) {
1187 case FM_MODE_RX: 1187 case FM_MODE_RX:
1188 return fm_rx_set_stereo_mono(fmdev, mode); 1188 return fm_rx_set_stereo_mono(fmdev, mode);
1189 1189
1190 case FM_MODE_TX: 1190 case FM_MODE_TX:
1191 return fm_tx_set_stereo_mono(fmdev, mode); 1191 return fm_tx_set_stereo_mono(fmdev, mode);
1192 1192
1193 default: 1193 default:
1194 return -EINVAL; 1194 return -EINVAL;
1195 } 1195 }
1196 } 1196 }
1197 1197
1198 u32 fmc_set_rds_mode(struct fmdev *fmdev, u8 rds_en_dis) 1198 u32 fmc_set_rds_mode(struct fmdev *fmdev, u8 rds_en_dis)
1199 { 1199 {
1200 switch (fmdev->curr_fmmode) { 1200 switch (fmdev->curr_fmmode) {
1201 case FM_MODE_RX: 1201 case FM_MODE_RX:
1202 return fm_rx_set_rds_mode(fmdev, rds_en_dis); 1202 return fm_rx_set_rds_mode(fmdev, rds_en_dis);
1203 1203
1204 case FM_MODE_TX: 1204 case FM_MODE_TX:
1205 return fm_tx_set_rds_mode(fmdev, rds_en_dis); 1205 return fm_tx_set_rds_mode(fmdev, rds_en_dis);
1206 1206
1207 default: 1207 default:
1208 return -EINVAL; 1208 return -EINVAL;
1209 } 1209 }
1210 } 1210 }
1211 1211
1212 /* Sends power off command to the chip */ 1212 /* Sends power off command to the chip */
1213 static u32 fm_power_down(struct fmdev *fmdev) 1213 static u32 fm_power_down(struct fmdev *fmdev)
1214 { 1214 {
1215 u16 payload; 1215 u16 payload;
1216 u32 ret; 1216 u32 ret;
1217 1217
1218 if (!test_bit(FM_CORE_READY, &fmdev->flag)) { 1218 if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1219 fmerr("FM core is not ready\n"); 1219 fmerr("FM core is not ready\n");
1220 return -EPERM; 1220 return -EPERM;
1221 } 1221 }
1222 if (fmdev->curr_fmmode == FM_MODE_OFF) { 1222 if (fmdev->curr_fmmode == FM_MODE_OFF) {
1223 fmdbg("FM chip is already in OFF state\n"); 1223 fmdbg("FM chip is already in OFF state\n");
1224 return 0; 1224 return 0;
1225 } 1225 }
1226 1226
1227 payload = 0x0; 1227 payload = 0x0;
1228 ret = fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload, 1228 ret = fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1229 sizeof(payload), NULL, NULL); 1229 sizeof(payload), NULL, NULL);
1230 if (ret < 0) 1230 if (ret < 0)
1231 return ret; 1231 return ret;
1232 1232
1233 return fmc_release(fmdev); 1233 return fmc_release(fmdev);
1234 } 1234 }
1235 1235
1236 /* Reads init command from FM firmware file and loads to the chip */ 1236 /* Reads init command from FM firmware file and loads to the chip */
1237 static u32 fm_download_firmware(struct fmdev *fmdev, const u8 *fw_name) 1237 static u32 fm_download_firmware(struct fmdev *fmdev, const u8 *fw_name)
1238 { 1238 {
1239 const struct firmware *fw_entry; 1239 const struct firmware *fw_entry;
1240 struct bts_header *fw_header; 1240 struct bts_header *fw_header;
1241 struct bts_action *action; 1241 struct bts_action *action;
1242 struct bts_action_delay *delay; 1242 struct bts_action_delay *delay;
1243 u8 *fw_data; 1243 u8 *fw_data;
1244 int ret, fw_len, cmd_cnt; 1244 int ret, fw_len, cmd_cnt;
1245 1245
1246 cmd_cnt = 0; 1246 cmd_cnt = 0;
1247 set_bit(FM_FW_DW_INPROGRESS, &fmdev->flag); 1247 set_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1248 1248
1249 ret = request_firmware(&fw_entry, fw_name, 1249 ret = request_firmware(&fw_entry, fw_name,
1250 &fmdev->radio_dev->dev); 1250 &fmdev->radio_dev->dev);
1251 if (ret < 0) { 1251 if (ret < 0) {
1252 fmerr("Unable to read firmware(%s) content\n", fw_name); 1252 fmerr("Unable to read firmware(%s) content\n", fw_name);
1253 return ret; 1253 return ret;
1254 } 1254 }
1255 fmdbg("Firmware(%s) length : %d bytes\n", fw_name, fw_entry->size); 1255 fmdbg("Firmware(%s) length : %d bytes\n", fw_name, fw_entry->size);
1256 1256
1257 fw_data = (void *)fw_entry->data; 1257 fw_data = (void *)fw_entry->data;
1258 fw_len = fw_entry->size; 1258 fw_len = fw_entry->size;
1259 1259
1260 fw_header = (struct bts_header *)fw_data; 1260 fw_header = (struct bts_header *)fw_data;
1261 if (fw_header->magic != FM_FW_FILE_HEADER_MAGIC) { 1261 if (fw_header->magic != FM_FW_FILE_HEADER_MAGIC) {
1262 fmerr("%s not a legal TI firmware file\n", fw_name); 1262 fmerr("%s not a legal TI firmware file\n", fw_name);
1263 ret = -EINVAL; 1263 ret = -EINVAL;
1264 goto rel_fw; 1264 goto rel_fw;
1265 } 1265 }
1266 fmdbg("FW(%s) magic number : 0x%x\n", fw_name, fw_header->magic); 1266 fmdbg("FW(%s) magic number : 0x%x\n", fw_name, fw_header->magic);
1267 1267
1268 /* Skip file header info , we already verified it */ 1268 /* Skip file header info , we already verified it */
1269 fw_data += sizeof(struct bts_header); 1269 fw_data += sizeof(struct bts_header);
1270 fw_len -= sizeof(struct bts_header); 1270 fw_len -= sizeof(struct bts_header);
1271 1271
1272 while (fw_data && fw_len > 0) { 1272 while (fw_data && fw_len > 0) {
1273 action = (struct bts_action *)fw_data; 1273 action = (struct bts_action *)fw_data;
1274 1274
1275 switch (action->type) { 1275 switch (action->type) {
1276 case ACTION_SEND_COMMAND: /* Send */ 1276 case ACTION_SEND_COMMAND: /* Send */
1277 if (fmc_send_cmd(fmdev, 0, 0, action->data, 1277 if (fmc_send_cmd(fmdev, 0, 0, action->data,
1278 action->size, NULL, NULL)) 1278 action->size, NULL, NULL))
1279 goto rel_fw; 1279 goto rel_fw;
1280 1280
1281 cmd_cnt++; 1281 cmd_cnt++;
1282 break; 1282 break;
1283 1283
1284 case ACTION_DELAY: /* Delay */ 1284 case ACTION_DELAY: /* Delay */
1285 delay = (struct bts_action_delay *)action->data; 1285 delay = (struct bts_action_delay *)action->data;
1286 mdelay(delay->msec); 1286 mdelay(delay->msec);
1287 break; 1287 break;
1288 } 1288 }
1289 1289
1290 fw_data += (sizeof(struct bts_action) + (action->size)); 1290 fw_data += (sizeof(struct bts_action) + (action->size));
1291 fw_len -= (sizeof(struct bts_action) + (action->size)); 1291 fw_len -= (sizeof(struct bts_action) + (action->size));
1292 } 1292 }
1293 fmdbg("Firmware commands(%d) loaded to chip\n", cmd_cnt); 1293 fmdbg("Firmware commands(%d) loaded to chip\n", cmd_cnt);
1294 rel_fw: 1294 rel_fw:
1295 release_firmware(fw_entry); 1295 release_firmware(fw_entry);
1296 clear_bit(FM_FW_DW_INPROGRESS, &fmdev->flag); 1296 clear_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1297 1297
1298 return ret; 1298 return ret;
1299 } 1299 }
1300 1300
1301 /* Loads default RX configuration to the chip */ 1301 /* Loads default RX configuration to the chip */
1302 static u32 load_default_rx_configuration(struct fmdev *fmdev) 1302 static u32 load_default_rx_configuration(struct fmdev *fmdev)
1303 { 1303 {
1304 int ret; 1304 int ret;
1305 1305
1306 ret = fm_rx_set_volume(fmdev, FM_DEFAULT_RX_VOLUME); 1306 ret = fm_rx_set_volume(fmdev, FM_DEFAULT_RX_VOLUME);
1307 if (ret < 0) 1307 if (ret < 0)
1308 return ret; 1308 return ret;
1309 1309
1310 return fm_rx_set_rssi_threshold(fmdev, FM_DEFAULT_RSSI_THRESHOLD); 1310 return fm_rx_set_rssi_threshold(fmdev, FM_DEFAULT_RSSI_THRESHOLD);
1311 } 1311 }
1312 1312
1313 /* Does FM power on sequence */ 1313 /* Does FM power on sequence */
1314 static u32 fm_power_up(struct fmdev *fmdev, u8 mode) 1314 static u32 fm_power_up(struct fmdev *fmdev, u8 mode)
1315 { 1315 {
1316 u16 payload, asic_id, asic_ver; 1316 u16 payload, asic_id, asic_ver;
1317 int resp_len, ret; 1317 int resp_len, ret;
1318 u8 fw_name[50]; 1318 u8 fw_name[50];
1319 1319
1320 if (mode >= FM_MODE_ENTRY_MAX) { 1320 if (mode >= FM_MODE_ENTRY_MAX) {
1321 fmerr("Invalid firmware download option\n"); 1321 fmerr("Invalid firmware download option\n");
1322 return -EINVAL; 1322 return -EINVAL;
1323 } 1323 }
1324 1324
1325 /* 1325 /*
1326 * Initialize FM common module. FM GPIO toggling is 1326 * Initialize FM common module. FM GPIO toggling is
1327 * taken care in Shared Transport driver. 1327 * taken care in Shared Transport driver.
1328 */ 1328 */
1329 ret = fmc_prepare(fmdev); 1329 ret = fmc_prepare(fmdev);
1330 if (ret < 0) { 1330 if (ret < 0) {
1331 fmerr("Unable to prepare FM Common\n"); 1331 fmerr("Unable to prepare FM Common\n");
1332 return ret; 1332 return ret;
1333 } 1333 }
1334 1334
1335 payload = FM_ENABLE; 1335 payload = FM_ENABLE;
1336 if (fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload, 1336 if (fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1337 sizeof(payload), NULL, NULL)) 1337 sizeof(payload), NULL, NULL))
1338 goto rel; 1338 goto rel;
1339 1339
1340 /* Allow the chip to settle down in Channel-8 mode */ 1340 /* Allow the chip to settle down in Channel-8 mode */
1341 msleep(20); 1341 msleep(20);
1342 1342
1343 if (fmc_send_cmd(fmdev, ASIC_ID_GET, REG_RD, NULL, 1343 if (fmc_send_cmd(fmdev, ASIC_ID_GET, REG_RD, NULL,
1344 sizeof(asic_id), &asic_id, &resp_len)) 1344 sizeof(asic_id), &asic_id, &resp_len))
1345 goto rel; 1345 goto rel;
1346 1346
1347 if (fmc_send_cmd(fmdev, ASIC_VER_GET, REG_RD, NULL, 1347 if (fmc_send_cmd(fmdev, ASIC_VER_GET, REG_RD, NULL,
1348 sizeof(asic_ver), &asic_ver, &resp_len)) 1348 sizeof(asic_ver), &asic_ver, &resp_len))
1349 goto rel; 1349 goto rel;
1350 1350
1351 fmdbg("ASIC ID: 0x%x , ASIC Version: %d\n", 1351 fmdbg("ASIC ID: 0x%x , ASIC Version: %d\n",
1352 be16_to_cpu(asic_id), be16_to_cpu(asic_ver)); 1352 be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1353 1353
1354 sprintf(fw_name, "%s_%x.%d.bts", FM_FMC_FW_FILE_START, 1354 sprintf(fw_name, "%s_%x.%d.bts", FM_FMC_FW_FILE_START,
1355 be16_to_cpu(asic_id), be16_to_cpu(asic_ver)); 1355 be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1356 1356
1357 ret = fm_download_firmware(fmdev, fw_name); 1357 ret = fm_download_firmware(fmdev, fw_name);
1358 if (ret < 0) { 1358 if (ret < 0) {
1359 fmdbg("Failed to download firmware file %s\n", fw_name); 1359 fmdbg("Failed to download firmware file %s\n", fw_name);
1360 goto rel; 1360 goto rel;
1361 } 1361 }
1362 sprintf(fw_name, "%s_%x.%d.bts", (mode == FM_MODE_RX) ? 1362 sprintf(fw_name, "%s_%x.%d.bts", (mode == FM_MODE_RX) ?
1363 FM_RX_FW_FILE_START : FM_TX_FW_FILE_START, 1363 FM_RX_FW_FILE_START : FM_TX_FW_FILE_START,
1364 be16_to_cpu(asic_id), be16_to_cpu(asic_ver)); 1364 be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1365 1365
1366 ret = fm_download_firmware(fmdev, fw_name); 1366 ret = fm_download_firmware(fmdev, fw_name);
1367 if (ret < 0) { 1367 if (ret < 0) {
1368 fmdbg("Failed to download firmware file %s\n", fw_name); 1368 fmdbg("Failed to download firmware file %s\n", fw_name);
1369 goto rel; 1369 goto rel;
1370 } else 1370 } else
1371 return ret; 1371 return ret;
1372 rel: 1372 rel:
1373 return fmc_release(fmdev); 1373 return fmc_release(fmdev);
1374 } 1374 }
1375 1375
1376 /* Set FM Modes(TX, RX, OFF) */ 1376 /* Set FM Modes(TX, RX, OFF) */
1377 u32 fmc_set_mode(struct fmdev *fmdev, u8 fm_mode) 1377 u32 fmc_set_mode(struct fmdev *fmdev, u8 fm_mode)
1378 { 1378 {
1379 int ret = 0; 1379 int ret = 0;
1380 1380
1381 if (fm_mode >= FM_MODE_ENTRY_MAX) { 1381 if (fm_mode >= FM_MODE_ENTRY_MAX) {
1382 fmerr("Invalid FM mode\n"); 1382 fmerr("Invalid FM mode\n");
1383 return -EINVAL; 1383 return -EINVAL;
1384 } 1384 }
1385 if (fmdev->curr_fmmode == fm_mode) { 1385 if (fmdev->curr_fmmode == fm_mode) {
1386 fmdbg("Already fm is in mode(%d)\n", fm_mode); 1386 fmdbg("Already fm is in mode(%d)\n", fm_mode);
1387 return ret; 1387 return ret;
1388 } 1388 }
1389 1389
1390 switch (fm_mode) { 1390 switch (fm_mode) {
1391 case FM_MODE_OFF: /* OFF Mode */ 1391 case FM_MODE_OFF: /* OFF Mode */
1392 ret = fm_power_down(fmdev); 1392 ret = fm_power_down(fmdev);
1393 if (ret < 0) { 1393 if (ret < 0) {
1394 fmerr("Failed to set OFF mode\n"); 1394 fmerr("Failed to set OFF mode\n");
1395 return ret; 1395 return ret;
1396 } 1396 }
1397 break; 1397 break;
1398 1398
1399 case FM_MODE_TX: /* TX Mode */ 1399 case FM_MODE_TX: /* TX Mode */
1400 case FM_MODE_RX: /* RX Mode */ 1400 case FM_MODE_RX: /* RX Mode */
1401 /* Power down before switching to TX or RX mode */ 1401 /* Power down before switching to TX or RX mode */
1402 if (fmdev->curr_fmmode != FM_MODE_OFF) { 1402 if (fmdev->curr_fmmode != FM_MODE_OFF) {
1403 ret = fm_power_down(fmdev); 1403 ret = fm_power_down(fmdev);
1404 if (ret < 0) { 1404 if (ret < 0) {
1405 fmerr("Failed to set OFF mode\n"); 1405 fmerr("Failed to set OFF mode\n");
1406 return ret; 1406 return ret;
1407 } 1407 }
1408 msleep(30); 1408 msleep(30);
1409 } 1409 }
1410 ret = fm_power_up(fmdev, fm_mode); 1410 ret = fm_power_up(fmdev, fm_mode);
1411 if (ret < 0) { 1411 if (ret < 0) {
1412 fmerr("Failed to load firmware\n"); 1412 fmerr("Failed to load firmware\n");
1413 return ret; 1413 return ret;
1414 } 1414 }
1415 } 1415 }
1416 fmdev->curr_fmmode = fm_mode; 1416 fmdev->curr_fmmode = fm_mode;
1417 1417
1418 /* Set default configuration */ 1418 /* Set default configuration */
1419 if (fmdev->curr_fmmode == FM_MODE_RX) { 1419 if (fmdev->curr_fmmode == FM_MODE_RX) {
1420 fmdbg("Loading default rx configuration..\n"); 1420 fmdbg("Loading default rx configuration..\n");
1421 ret = load_default_rx_configuration(fmdev); 1421 ret = load_default_rx_configuration(fmdev);
1422 if (ret < 0) 1422 if (ret < 0)
1423 fmerr("Failed to load default values\n"); 1423 fmerr("Failed to load default values\n");
1424 } 1424 }
1425 1425
1426 return ret; 1426 return ret;
1427 } 1427 }
1428 1428
1429 /* Returns current FM mode (TX, RX, OFF) */ 1429 /* Returns current FM mode (TX, RX, OFF) */
1430 u32 fmc_get_mode(struct fmdev *fmdev, u8 *fmmode) 1430 u32 fmc_get_mode(struct fmdev *fmdev, u8 *fmmode)
1431 { 1431 {
1432 if (!test_bit(FM_CORE_READY, &fmdev->flag)) { 1432 if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1433 fmerr("FM core is not ready\n"); 1433 fmerr("FM core is not ready\n");
1434 return -EPERM; 1434 return -EPERM;
1435 } 1435 }
1436 if (fmmode == NULL) { 1436 if (fmmode == NULL) {
1437 fmerr("Invalid memory\n"); 1437 fmerr("Invalid memory\n");
1438 return -ENOMEM; 1438 return -ENOMEM;
1439 } 1439 }
1440 1440
1441 *fmmode = fmdev->curr_fmmode; 1441 *fmmode = fmdev->curr_fmmode;
1442 return 0; 1442 return 0;
1443 } 1443 }
1444 1444
1445 /* Called by ST layer when FM packet is available */ 1445 /* Called by ST layer when FM packet is available */
1446 static long fm_st_receive(void *arg, struct sk_buff *skb) 1446 static long fm_st_receive(void *arg, struct sk_buff *skb)
1447 { 1447 {
1448 struct fmdev *fmdev; 1448 struct fmdev *fmdev;
1449 1449
1450 fmdev = (struct fmdev *)arg; 1450 fmdev = (struct fmdev *)arg;
1451 1451
1452 if (skb == NULL) { 1452 if (skb == NULL) {
1453 fmerr("Invalid SKB received from ST\n"); 1453 fmerr("Invalid SKB received from ST\n");
1454 return -EFAULT; 1454 return -EFAULT;
1455 } 1455 }
1456 1456
1457 if (skb->cb[0] != FM_PKT_LOGICAL_CHAN_NUMBER) { 1457 if (skb->cb[0] != FM_PKT_LOGICAL_CHAN_NUMBER) {
1458 fmerr("Received SKB (%p) is not FM Channel 8 pkt\n", skb); 1458 fmerr("Received SKB (%p) is not FM Channel 8 pkt\n", skb);
1459 return -EINVAL; 1459 return -EINVAL;
1460 } 1460 }
1461 1461
1462 memcpy(skb_push(skb, 1), &skb->cb[0], 1); 1462 memcpy(skb_push(skb, 1), &skb->cb[0], 1);
1463 skb_queue_tail(&fmdev->rx_q, skb); 1463 skb_queue_tail(&fmdev->rx_q, skb);
1464 tasklet_schedule(&fmdev->rx_task); 1464 tasklet_schedule(&fmdev->rx_task);
1465 1465
1466 return 0; 1466 return 0;
1467 } 1467 }
1468 1468
1469 /* 1469 /*
1470 * Called by ST layer to indicate protocol registration completion 1470 * Called by ST layer to indicate protocol registration completion
1471 * status. 1471 * status.
1472 */ 1472 */
1473 static void fm_st_reg_comp_cb(void *arg, char data) 1473 static void fm_st_reg_comp_cb(void *arg, char data)
1474 { 1474 {
1475 struct fmdev *fmdev; 1475 struct fmdev *fmdev;
1476 1476
1477 fmdev = (struct fmdev *)arg; 1477 fmdev = (struct fmdev *)arg;
1478 fmdev->streg_cbdata = data; 1478 fmdev->streg_cbdata = data;
1479 complete(&wait_for_fmdrv_reg_comp); 1479 complete(&wait_for_fmdrv_reg_comp);
1480 } 1480 }
1481 1481
1482 /* 1482 /*
1483 * This function will be called from FM V4L2 open function. 1483 * This function will be called from FM V4L2 open function.
1484 * Register with ST driver and initialize driver data. 1484 * Register with ST driver and initialize driver data.
1485 */ 1485 */
1486 u32 fmc_prepare(struct fmdev *fmdev) 1486 u32 fmc_prepare(struct fmdev *fmdev)
1487 { 1487 {
1488 static struct st_proto_s fm_st_proto; 1488 static struct st_proto_s fm_st_proto;
1489 u32 ret; 1489 u32 ret;
1490 1490
1491 if (test_bit(FM_CORE_READY, &fmdev->flag)) { 1491 if (test_bit(FM_CORE_READY, &fmdev->flag)) {
1492 fmdbg("FM Core is already up\n"); 1492 fmdbg("FM Core is already up\n");
1493 return 0; 1493 return 0;
1494 } 1494 }
1495 1495
1496 memset(&fm_st_proto, 0, sizeof(fm_st_proto)); 1496 memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1497 fm_st_proto.type = ST_FM;
1498 fm_st_proto.recv = fm_st_receive; 1497 fm_st_proto.recv = fm_st_receive;
1499 fm_st_proto.match_packet = NULL; 1498 fm_st_proto.match_packet = NULL;
1500 fm_st_proto.reg_complete_cb = fm_st_reg_comp_cb; 1499 fm_st_proto.reg_complete_cb = fm_st_reg_comp_cb;
1501 fm_st_proto.write = NULL; /* TI ST driver will fill write pointer */ 1500 fm_st_proto.write = NULL; /* TI ST driver will fill write pointer */
1502 fm_st_proto.priv_data = fmdev; 1501 fm_st_proto.priv_data = fmdev;
1502 fm_st_proto.chnl_id = 0x08;
1503 fm_st_proto.max_frame_size = 0xff;
1504 fm_st_proto.hdr_len = 1;
1505 fm_st_proto.offset_len_in_hdr = 0;
1506 fm_st_proto.len_size = 1;
1507 fm_st_proto.reserve = 1;
1503 1508
1504 ret = st_register(&fm_st_proto); 1509 ret = st_register(&fm_st_proto);
1505 if (ret == -EINPROGRESS) { 1510 if (ret == -EINPROGRESS) {
1506 init_completion(&wait_for_fmdrv_reg_comp); 1511 init_completion(&wait_for_fmdrv_reg_comp);
1507 fmdev->streg_cbdata = -EINPROGRESS; 1512 fmdev->streg_cbdata = -EINPROGRESS;
1508 fmdbg("%s waiting for ST reg completion signal\n", __func__); 1513 fmdbg("%s waiting for ST reg completion signal\n", __func__);
1509 1514
1510 ret = wait_for_completion_timeout(&wait_for_fmdrv_reg_comp, 1515 ret = wait_for_completion_timeout(&wait_for_fmdrv_reg_comp,
1511 FM_ST_REG_TIMEOUT); 1516 FM_ST_REG_TIMEOUT);
1512 1517
1513 if (!ret) { 1518 if (!ret) {
1514 fmerr("Timeout(%d sec), didn't get reg " 1519 fmerr("Timeout(%d sec), didn't get reg "
1515 "completion signal from ST\n", 1520 "completion signal from ST\n",
1516 jiffies_to_msecs(FM_ST_REG_TIMEOUT) / 1000); 1521 jiffies_to_msecs(FM_ST_REG_TIMEOUT) / 1000);
1517 return -ETIMEDOUT; 1522 return -ETIMEDOUT;
1518 } 1523 }
1519 if (fmdev->streg_cbdata != 0) { 1524 if (fmdev->streg_cbdata != 0) {
1520 fmerr("ST reg comp CB called with error " 1525 fmerr("ST reg comp CB called with error "
1521 "status %d\n", fmdev->streg_cbdata); 1526 "status %d\n", fmdev->streg_cbdata);
1522 return -EAGAIN; 1527 return -EAGAIN;
1523 } 1528 }
1524 1529
1525 ret = 0; 1530 ret = 0;
1526 } else if (ret == -1) { 1531 } else if (ret == -1) {
1527 fmerr("st_register failed %d\n", ret); 1532 fmerr("st_register failed %d\n", ret);
1528 return -EAGAIN; 1533 return -EAGAIN;
1529 } 1534 }
1530 1535
1531 if (fm_st_proto.write != NULL) { 1536 if (fm_st_proto.write != NULL) {
1532 g_st_write = fm_st_proto.write; 1537 g_st_write = fm_st_proto.write;
1533 } else { 1538 } else {
1534 fmerr("Failed to get ST write func pointer\n"); 1539 fmerr("Failed to get ST write func pointer\n");
1535 ret = st_unregister(ST_FM); 1540 ret = st_unregister(&fm_st_proto);
1536 if (ret < 0) 1541 if (ret < 0)
1537 fmerr("st_unregister failed %d\n", ret); 1542 fmerr("st_unregister failed %d\n", ret);
1538 return -EAGAIN; 1543 return -EAGAIN;
1539 } 1544 }
1540 1545
1541 spin_lock_init(&fmdev->rds_buff_lock); 1546 spin_lock_init(&fmdev->rds_buff_lock);
1542 spin_lock_init(&fmdev->resp_skb_lock); 1547 spin_lock_init(&fmdev->resp_skb_lock);
1543 1548
1544 /* Initialize TX queue and TX tasklet */ 1549 /* Initialize TX queue and TX tasklet */
1545 skb_queue_head_init(&fmdev->tx_q); 1550 skb_queue_head_init(&fmdev->tx_q);
1546 tasklet_init(&fmdev->tx_task, send_tasklet, (unsigned long)fmdev); 1551 tasklet_init(&fmdev->tx_task, send_tasklet, (unsigned long)fmdev);
1547 1552
1548 /* Initialize RX Queue and RX tasklet */ 1553 /* Initialize RX Queue and RX tasklet */
1549 skb_queue_head_init(&fmdev->rx_q); 1554 skb_queue_head_init(&fmdev->rx_q);
1550 tasklet_init(&fmdev->rx_task, recv_tasklet, (unsigned long)fmdev); 1555 tasklet_init(&fmdev->rx_task, recv_tasklet, (unsigned long)fmdev);
1551 1556
1552 fmdev->irq_info.stage = 0; 1557 fmdev->irq_info.stage = 0;
1553 atomic_set(&fmdev->tx_cnt, 1); 1558 atomic_set(&fmdev->tx_cnt, 1);
1554 fmdev->resp_comp = NULL; 1559 fmdev->resp_comp = NULL;
1555 1560
1556 init_timer(&fmdev->irq_info.timer); 1561 init_timer(&fmdev->irq_info.timer);
1557 fmdev->irq_info.timer.function = &int_timeout_handler; 1562 fmdev->irq_info.timer.function = &int_timeout_handler;
1558 fmdev->irq_info.timer.data = (unsigned long)fmdev; 1563 fmdev->irq_info.timer.data = (unsigned long)fmdev;
1559 /*TODO: add FM_STIC_EVENT later */ 1564 /*TODO: add FM_STIC_EVENT later */
1560 fmdev->irq_info.mask = FM_MAL_EVENT; 1565 fmdev->irq_info.mask = FM_MAL_EVENT;
1561 1566
1562 /* Region info */ 1567 /* Region info */
1563 memcpy(&fmdev->rx.region, &region_configs[default_radio_region], 1568 memcpy(&fmdev->rx.region, &region_configs[default_radio_region],
1564 sizeof(struct region_info)); 1569 sizeof(struct region_info));
1565 1570
1566 fmdev->rx.mute_mode = FM_MUTE_OFF; 1571 fmdev->rx.mute_mode = FM_MUTE_OFF;
1567 fmdev->rx.rf_depend_mute = FM_RX_RF_DEPENDENT_MUTE_OFF; 1572 fmdev->rx.rf_depend_mute = FM_RX_RF_DEPENDENT_MUTE_OFF;
1568 fmdev->rx.rds.flag = FM_RDS_DISABLE; 1573 fmdev->rx.rds.flag = FM_RDS_DISABLE;
1569 fmdev->rx.freq = FM_UNDEFINED_FREQ; 1574 fmdev->rx.freq = FM_UNDEFINED_FREQ;
1570 fmdev->rx.rds_mode = FM_RDS_SYSTEM_RDS; 1575 fmdev->rx.rds_mode = FM_RDS_SYSTEM_RDS;
1571 fmdev->rx.af_mode = FM_RX_RDS_AF_SWITCH_MODE_OFF; 1576 fmdev->rx.af_mode = FM_RX_RDS_AF_SWITCH_MODE_OFF;
1572 fmdev->irq_info.retry = 0; 1577 fmdev->irq_info.retry = 0;
1573 1578
1574 fm_rx_reset_rds_cache(fmdev); 1579 fm_rx_reset_rds_cache(fmdev);
1575 init_waitqueue_head(&fmdev->rx.rds.read_queue); 1580 init_waitqueue_head(&fmdev->rx.rds.read_queue);
1576 1581
1577 fm_rx_reset_station_info(fmdev); 1582 fm_rx_reset_station_info(fmdev);
1578 set_bit(FM_CORE_READY, &fmdev->flag); 1583 set_bit(FM_CORE_READY, &fmdev->flag);
1579 1584
1580 return ret; 1585 return ret;
1581 } 1586 }
1582 1587
1583 /* 1588 /*
1584 * This function will be called from FM V4L2 release function. 1589 * This function will be called from FM V4L2 release function.
1585 * Unregister from ST driver. 1590 * Unregister from ST driver.
1586 */ 1591 */
1587 u32 fmc_release(struct fmdev *fmdev) 1592 u32 fmc_release(struct fmdev *fmdev)
1588 { 1593 {
1594 static struct st_proto_s fm_st_proto;
1589 u32 ret; 1595 u32 ret;
1590 1596
1591 if (!test_bit(FM_CORE_READY, &fmdev->flag)) { 1597 if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1592 fmdbg("FM Core is already down\n"); 1598 fmdbg("FM Core is already down\n");
1593 return 0; 1599 return 0;
1594 } 1600 }
1595 /* Sevice pending read */ 1601 /* Sevice pending read */
1596 wake_up_interruptible(&fmdev->rx.rds.read_queue); 1602 wake_up_interruptible(&fmdev->rx.rds.read_queue);
1597 1603
1598 tasklet_kill(&fmdev->tx_task); 1604 tasklet_kill(&fmdev->tx_task);
1599 tasklet_kill(&fmdev->rx_task); 1605 tasklet_kill(&fmdev->rx_task);
1600 1606
1601 skb_queue_purge(&fmdev->tx_q); 1607 skb_queue_purge(&fmdev->tx_q);
1602 skb_queue_purge(&fmdev->rx_q); 1608 skb_queue_purge(&fmdev->rx_q);
1603 1609
1604 fmdev->resp_comp = NULL; 1610 fmdev->resp_comp = NULL;
1605 fmdev->rx.freq = 0; 1611 fmdev->rx.freq = 0;
1606 1612
1607 ret = st_unregister(ST_FM); 1613 memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1614 fm_st_proto.chnl_id = 0x08;
1615
1616 ret = st_unregister(&fm_st_proto);
1617
1608 if (ret < 0) 1618 if (ret < 0)
1609 fmerr("Failed to de-register FM from ST %d\n", ret); 1619 fmerr("Failed to de-register FM from ST %d\n", ret);
1610 else 1620 else
1611 fmdbg("Successfully unregistered from ST\n"); 1621 fmdbg("Successfully unregistered from ST\n");
1612 1622
1613 clear_bit(FM_CORE_READY, &fmdev->flag); 1623 clear_bit(FM_CORE_READY, &fmdev->flag);
1614 return ret; 1624 return ret;
1615 } 1625 }
1616 1626
1617 /* 1627 /*
1618 * Module init function. Ask FM V4L module to register video device. 1628 * Module init function. Ask FM V4L module to register video device.
1619 * Allocate memory for FM driver context and RX RDS buffer. 1629 * Allocate memory for FM driver context and RX RDS buffer.
1620 */ 1630 */
1621 static int __init fm_drv_init(void) 1631 static int __init fm_drv_init(void)
1622 { 1632 {
1623 struct fmdev *fmdev = NULL; 1633 struct fmdev *fmdev = NULL;
1624 u32 ret = -ENOMEM; 1634 u32 ret = -ENOMEM;
1625 1635
1626 fmdbg("FM driver version %s\n", FM_DRV_VERSION); 1636 fmdbg("FM driver version %s\n", FM_DRV_VERSION);
1627 1637
1628 fmdev = kzalloc(sizeof(struct fmdev), GFP_KERNEL); 1638 fmdev = kzalloc(sizeof(struct fmdev), GFP_KERNEL);
1629 if (NULL == fmdev) { 1639 if (NULL == fmdev) {
1630 fmerr("Can't allocate operation structure memory\n"); 1640 fmerr("Can't allocate operation structure memory\n");
1631 return ret; 1641 return ret;
1632 } 1642 }
1633 fmdev->rx.rds.buf_size = default_rds_buf * FM_RDS_BLK_SIZE; 1643 fmdev->rx.rds.buf_size = default_rds_buf * FM_RDS_BLK_SIZE;
1634 fmdev->rx.rds.buff = kzalloc(fmdev->rx.rds.buf_size, GFP_KERNEL); 1644 fmdev->rx.rds.buff = kzalloc(fmdev->rx.rds.buf_size, GFP_KERNEL);
1635 if (NULL == fmdev->rx.rds.buff) { 1645 if (NULL == fmdev->rx.rds.buff) {
1636 fmerr("Can't allocate rds ring buffer\n"); 1646 fmerr("Can't allocate rds ring buffer\n");
1637 goto rel_dev; 1647 goto rel_dev;
1638 } 1648 }
1639 1649
1640 ret = fm_v4l2_init_video_device(fmdev, radio_nr); 1650 ret = fm_v4l2_init_video_device(fmdev, radio_nr);
1641 if (ret < 0) 1651 if (ret < 0)
1642 goto rel_rdsbuf; 1652 goto rel_rdsbuf;
1643 1653
1644 fmdev->irq_info.handlers = int_handler_table; 1654 fmdev->irq_info.handlers = int_handler_table;
1645 fmdev->curr_fmmode = FM_MODE_OFF; 1655 fmdev->curr_fmmode = FM_MODE_OFF;
1646 fmdev->tx_data.pwr_lvl = FM_PWR_LVL_DEF; 1656 fmdev->tx_data.pwr_lvl = FM_PWR_LVL_DEF;
1647 fmdev->tx_data.preemph = FM_TX_PREEMPH_50US; 1657 fmdev->tx_data.preemph = FM_TX_PREEMPH_50US;
1648 return ret; 1658 return ret;
1649 1659
1650 rel_rdsbuf: 1660 rel_rdsbuf:
1651 kfree(fmdev->rx.rds.buff); 1661 kfree(fmdev->rx.rds.buff);
1652 rel_dev: 1662 rel_dev:
1653 kfree(fmdev); 1663 kfree(fmdev);
1654 1664
1655 return ret; 1665 return ret;
1656 } 1666 }
1657 1667
1658 /* Module exit function. Ask FM V4L module to unregister video device */ 1668 /* Module exit function. Ask FM V4L module to unregister video device */
1659 static void __exit fm_drv_exit(void) 1669 static void __exit fm_drv_exit(void)
1660 { 1670 {
1661 struct fmdev *fmdev = NULL; 1671 struct fmdev *fmdev = NULL;
1662 1672
1663 fmdev = fm_v4l2_deinit_video_device(); 1673 fmdev = fm_v4l2_deinit_video_device();
1664 if (fmdev != NULL) { 1674 if (fmdev != NULL) {
1665 kfree(fmdev->rx.rds.buff); 1675 kfree(fmdev->rx.rds.buff);
1666 kfree(fmdev); 1676 kfree(fmdev);
1667 } 1677 }
1668 } 1678 }
1669 1679
1670 module_init(fm_drv_init); 1680 module_init(fm_drv_init);
1671 module_exit(fm_drv_exit); 1681 module_exit(fm_drv_exit);
1672 1682
1673 /* ------------- Module Info ------------- */ 1683 /* ------------- Module Info ------------- */
1674 MODULE_AUTHOR("Manjunatha Halli <manjunatha_halli@ti.com>"); 1684 MODULE_AUTHOR("Manjunatha Halli <manjunatha_halli@ti.com>");
1675 MODULE_DESCRIPTION("FM Driver for TI's Connectivity chip. " FM_DRV_VERSION); 1685 MODULE_DESCRIPTION("FM Driver for TI's Connectivity chip. " FM_DRV_VERSION);
1676 MODULE_VERSION(FM_DRV_VERSION); 1686 MODULE_VERSION(FM_DRV_VERSION);
1677 MODULE_LICENSE("GPL"); 1687 MODULE_LICENSE("GPL");