Commit 6d01a026b7d3009a418326bdcf313503a314f1ea
Committed by
David S. Miller
1 parent
e3eef534c5
Exists in
master
and in
7 other branches
tcp: fix tcp_defer_accept to consider the timeout
I was trying to use TCP_DEFER_ACCEPT and noticed that if the client does not talk, the connection is never accepted and remains in SYN_RECV state until the retransmits expire, where it finally is deleted. This is bad when some firewall such as netfilter sits between the client and the server because the firewall sees the connection in ESTABLISHED state while the server will finally silently drop it without sending an RST. This behaviour contradicts the man page which says it should wait only for some time : TCP_DEFER_ACCEPT (since Linux 2.4) Allows a listener to be awakened only when data arrives on the socket. Takes an integer value (seconds), this can bound the maximum number of attempts TCP will make to complete the connection. This option should not be used in code intended to be portable. Also, looking at ipv4/tcp.c, a retransmit counter is correctly computed : case TCP_DEFER_ACCEPT: icsk->icsk_accept_queue.rskq_defer_accept = 0; if (val > 0) { /* Translate value in seconds to number of * retransmits */ while (icsk->icsk_accept_queue.rskq_defer_accept < 32 && val > ((TCP_TIMEOUT_INIT / HZ) << icsk->icsk_accept_queue.rskq_defer_accept)) icsk->icsk_accept_queue.rskq_defer_accept++; icsk->icsk_accept_queue.rskq_defer_accept++; } break; ==> rskq_defer_accept is used as a counter of retransmits. But in tcp_minisocks.c, this counter is only checked. And in fact, I have found no location which updates it. So I think that what was intended was to decrease it in tcp_minisocks whenever it is checked, which the trivial patch below does. Signed-off-by: Willy Tarreau <w@1wt.eu> Signed-off-by: David S. Miller <davem@davemloft.net>
Showing 1 changed file with 1 additions and 0 deletions Inline Diff
net/ipv4/tcp_minisocks.c
1 | /* | 1 | /* |
2 | * INET An implementation of the TCP/IP protocol suite for the LINUX | 2 | * INET An implementation of the TCP/IP protocol suite for the LINUX |
3 | * operating system. INET is implemented using the BSD Socket | 3 | * operating system. INET is implemented using the BSD Socket |
4 | * interface as the means of communication with the user level. | 4 | * interface as the means of communication with the user level. |
5 | * | 5 | * |
6 | * Implementation of the Transmission Control Protocol(TCP). | 6 | * Implementation of the Transmission Control Protocol(TCP). |
7 | * | 7 | * |
8 | * Authors: Ross Biro | 8 | * Authors: Ross Biro |
9 | * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> | 9 | * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> |
10 | * Mark Evans, <evansmp@uhura.aston.ac.uk> | 10 | * Mark Evans, <evansmp@uhura.aston.ac.uk> |
11 | * Corey Minyard <wf-rch!minyard@relay.EU.net> | 11 | * Corey Minyard <wf-rch!minyard@relay.EU.net> |
12 | * Florian La Roche, <flla@stud.uni-sb.de> | 12 | * Florian La Roche, <flla@stud.uni-sb.de> |
13 | * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> | 13 | * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> |
14 | * Linus Torvalds, <torvalds@cs.helsinki.fi> | 14 | * Linus Torvalds, <torvalds@cs.helsinki.fi> |
15 | * Alan Cox, <gw4pts@gw4pts.ampr.org> | 15 | * Alan Cox, <gw4pts@gw4pts.ampr.org> |
16 | * Matthew Dillon, <dillon@apollo.west.oic.com> | 16 | * Matthew Dillon, <dillon@apollo.west.oic.com> |
17 | * Arnt Gulbrandsen, <agulbra@nvg.unit.no> | 17 | * Arnt Gulbrandsen, <agulbra@nvg.unit.no> |
18 | * Jorge Cwik, <jorge@laser.satlink.net> | 18 | * Jorge Cwik, <jorge@laser.satlink.net> |
19 | */ | 19 | */ |
20 | 20 | ||
21 | #include <linux/mm.h> | 21 | #include <linux/mm.h> |
22 | #include <linux/module.h> | 22 | #include <linux/module.h> |
23 | #include <linux/sysctl.h> | 23 | #include <linux/sysctl.h> |
24 | #include <linux/workqueue.h> | 24 | #include <linux/workqueue.h> |
25 | #include <net/tcp.h> | 25 | #include <net/tcp.h> |
26 | #include <net/inet_common.h> | 26 | #include <net/inet_common.h> |
27 | #include <net/xfrm.h> | 27 | #include <net/xfrm.h> |
28 | 28 | ||
29 | #ifdef CONFIG_SYSCTL | 29 | #ifdef CONFIG_SYSCTL |
30 | #define SYNC_INIT 0 /* let the user enable it */ | 30 | #define SYNC_INIT 0 /* let the user enable it */ |
31 | #else | 31 | #else |
32 | #define SYNC_INIT 1 | 32 | #define SYNC_INIT 1 |
33 | #endif | 33 | #endif |
34 | 34 | ||
35 | int sysctl_tcp_syncookies __read_mostly = SYNC_INIT; | 35 | int sysctl_tcp_syncookies __read_mostly = SYNC_INIT; |
36 | EXPORT_SYMBOL(sysctl_tcp_syncookies); | 36 | EXPORT_SYMBOL(sysctl_tcp_syncookies); |
37 | 37 | ||
38 | int sysctl_tcp_abort_on_overflow __read_mostly; | 38 | int sysctl_tcp_abort_on_overflow __read_mostly; |
39 | 39 | ||
40 | struct inet_timewait_death_row tcp_death_row = { | 40 | struct inet_timewait_death_row tcp_death_row = { |
41 | .sysctl_max_tw_buckets = NR_FILE * 2, | 41 | .sysctl_max_tw_buckets = NR_FILE * 2, |
42 | .period = TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS, | 42 | .period = TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS, |
43 | .death_lock = __SPIN_LOCK_UNLOCKED(tcp_death_row.death_lock), | 43 | .death_lock = __SPIN_LOCK_UNLOCKED(tcp_death_row.death_lock), |
44 | .hashinfo = &tcp_hashinfo, | 44 | .hashinfo = &tcp_hashinfo, |
45 | .tw_timer = TIMER_INITIALIZER(inet_twdr_hangman, 0, | 45 | .tw_timer = TIMER_INITIALIZER(inet_twdr_hangman, 0, |
46 | (unsigned long)&tcp_death_row), | 46 | (unsigned long)&tcp_death_row), |
47 | .twkill_work = __WORK_INITIALIZER(tcp_death_row.twkill_work, | 47 | .twkill_work = __WORK_INITIALIZER(tcp_death_row.twkill_work, |
48 | inet_twdr_twkill_work), | 48 | inet_twdr_twkill_work), |
49 | /* Short-time timewait calendar */ | 49 | /* Short-time timewait calendar */ |
50 | 50 | ||
51 | .twcal_hand = -1, | 51 | .twcal_hand = -1, |
52 | .twcal_timer = TIMER_INITIALIZER(inet_twdr_twcal_tick, 0, | 52 | .twcal_timer = TIMER_INITIALIZER(inet_twdr_twcal_tick, 0, |
53 | (unsigned long)&tcp_death_row), | 53 | (unsigned long)&tcp_death_row), |
54 | }; | 54 | }; |
55 | 55 | ||
56 | EXPORT_SYMBOL_GPL(tcp_death_row); | 56 | EXPORT_SYMBOL_GPL(tcp_death_row); |
57 | 57 | ||
58 | static __inline__ int tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win) | 58 | static __inline__ int tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win) |
59 | { | 59 | { |
60 | if (seq == s_win) | 60 | if (seq == s_win) |
61 | return 1; | 61 | return 1; |
62 | if (after(end_seq, s_win) && before(seq, e_win)) | 62 | if (after(end_seq, s_win) && before(seq, e_win)) |
63 | return 1; | 63 | return 1; |
64 | return (seq == e_win && seq == end_seq); | 64 | return (seq == e_win && seq == end_seq); |
65 | } | 65 | } |
66 | 66 | ||
67 | /* | 67 | /* |
68 | * * Main purpose of TIME-WAIT state is to close connection gracefully, | 68 | * * Main purpose of TIME-WAIT state is to close connection gracefully, |
69 | * when one of ends sits in LAST-ACK or CLOSING retransmitting FIN | 69 | * when one of ends sits in LAST-ACK or CLOSING retransmitting FIN |
70 | * (and, probably, tail of data) and one or more our ACKs are lost. | 70 | * (and, probably, tail of data) and one or more our ACKs are lost. |
71 | * * What is TIME-WAIT timeout? It is associated with maximal packet | 71 | * * What is TIME-WAIT timeout? It is associated with maximal packet |
72 | * lifetime in the internet, which results in wrong conclusion, that | 72 | * lifetime in the internet, which results in wrong conclusion, that |
73 | * it is set to catch "old duplicate segments" wandering out of their path. | 73 | * it is set to catch "old duplicate segments" wandering out of their path. |
74 | * It is not quite correct. This timeout is calculated so that it exceeds | 74 | * It is not quite correct. This timeout is calculated so that it exceeds |
75 | * maximal retransmission timeout enough to allow to lose one (or more) | 75 | * maximal retransmission timeout enough to allow to lose one (or more) |
76 | * segments sent by peer and our ACKs. This time may be calculated from RTO. | 76 | * segments sent by peer and our ACKs. This time may be calculated from RTO. |
77 | * * When TIME-WAIT socket receives RST, it means that another end | 77 | * * When TIME-WAIT socket receives RST, it means that another end |
78 | * finally closed and we are allowed to kill TIME-WAIT too. | 78 | * finally closed and we are allowed to kill TIME-WAIT too. |
79 | * * Second purpose of TIME-WAIT is catching old duplicate segments. | 79 | * * Second purpose of TIME-WAIT is catching old duplicate segments. |
80 | * Well, certainly it is pure paranoia, but if we load TIME-WAIT | 80 | * Well, certainly it is pure paranoia, but if we load TIME-WAIT |
81 | * with this semantics, we MUST NOT kill TIME-WAIT state with RSTs. | 81 | * with this semantics, we MUST NOT kill TIME-WAIT state with RSTs. |
82 | * * If we invented some more clever way to catch duplicates | 82 | * * If we invented some more clever way to catch duplicates |
83 | * (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs. | 83 | * (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs. |
84 | * | 84 | * |
85 | * The algorithm below is based on FORMAL INTERPRETATION of RFCs. | 85 | * The algorithm below is based on FORMAL INTERPRETATION of RFCs. |
86 | * When you compare it to RFCs, please, read section SEGMENT ARRIVES | 86 | * When you compare it to RFCs, please, read section SEGMENT ARRIVES |
87 | * from the very beginning. | 87 | * from the very beginning. |
88 | * | 88 | * |
89 | * NOTE. With recycling (and later with fin-wait-2) TW bucket | 89 | * NOTE. With recycling (and later with fin-wait-2) TW bucket |
90 | * is _not_ stateless. It means, that strictly speaking we must | 90 | * is _not_ stateless. It means, that strictly speaking we must |
91 | * spinlock it. I do not want! Well, probability of misbehaviour | 91 | * spinlock it. I do not want! Well, probability of misbehaviour |
92 | * is ridiculously low and, seems, we could use some mb() tricks | 92 | * is ridiculously low and, seems, we could use some mb() tricks |
93 | * to avoid misread sequence numbers, states etc. --ANK | 93 | * to avoid misread sequence numbers, states etc. --ANK |
94 | */ | 94 | */ |
95 | enum tcp_tw_status | 95 | enum tcp_tw_status |
96 | tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb, | 96 | tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb, |
97 | const struct tcphdr *th) | 97 | const struct tcphdr *th) |
98 | { | 98 | { |
99 | struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw); | 99 | struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw); |
100 | struct tcp_options_received tmp_opt; | 100 | struct tcp_options_received tmp_opt; |
101 | int paws_reject = 0; | 101 | int paws_reject = 0; |
102 | 102 | ||
103 | tmp_opt.saw_tstamp = 0; | 103 | tmp_opt.saw_tstamp = 0; |
104 | if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) { | 104 | if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) { |
105 | tcp_parse_options(skb, &tmp_opt, 0); | 105 | tcp_parse_options(skb, &tmp_opt, 0); |
106 | 106 | ||
107 | if (tmp_opt.saw_tstamp) { | 107 | if (tmp_opt.saw_tstamp) { |
108 | tmp_opt.ts_recent = tcptw->tw_ts_recent; | 108 | tmp_opt.ts_recent = tcptw->tw_ts_recent; |
109 | tmp_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp; | 109 | tmp_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp; |
110 | paws_reject = tcp_paws_reject(&tmp_opt, th->rst); | 110 | paws_reject = tcp_paws_reject(&tmp_opt, th->rst); |
111 | } | 111 | } |
112 | } | 112 | } |
113 | 113 | ||
114 | if (tw->tw_substate == TCP_FIN_WAIT2) { | 114 | if (tw->tw_substate == TCP_FIN_WAIT2) { |
115 | /* Just repeat all the checks of tcp_rcv_state_process() */ | 115 | /* Just repeat all the checks of tcp_rcv_state_process() */ |
116 | 116 | ||
117 | /* Out of window, send ACK */ | 117 | /* Out of window, send ACK */ |
118 | if (paws_reject || | 118 | if (paws_reject || |
119 | !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq, | 119 | !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq, |
120 | tcptw->tw_rcv_nxt, | 120 | tcptw->tw_rcv_nxt, |
121 | tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd)) | 121 | tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd)) |
122 | return TCP_TW_ACK; | 122 | return TCP_TW_ACK; |
123 | 123 | ||
124 | if (th->rst) | 124 | if (th->rst) |
125 | goto kill; | 125 | goto kill; |
126 | 126 | ||
127 | if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt)) | 127 | if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt)) |
128 | goto kill_with_rst; | 128 | goto kill_with_rst; |
129 | 129 | ||
130 | /* Dup ACK? */ | 130 | /* Dup ACK? */ |
131 | if (!th->ack || | 131 | if (!th->ack || |
132 | !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) || | 132 | !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) || |
133 | TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) { | 133 | TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) { |
134 | inet_twsk_put(tw); | 134 | inet_twsk_put(tw); |
135 | return TCP_TW_SUCCESS; | 135 | return TCP_TW_SUCCESS; |
136 | } | 136 | } |
137 | 137 | ||
138 | /* New data or FIN. If new data arrive after half-duplex close, | 138 | /* New data or FIN. If new data arrive after half-duplex close, |
139 | * reset. | 139 | * reset. |
140 | */ | 140 | */ |
141 | if (!th->fin || | 141 | if (!th->fin || |
142 | TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) { | 142 | TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) { |
143 | kill_with_rst: | 143 | kill_with_rst: |
144 | inet_twsk_deschedule(tw, &tcp_death_row); | 144 | inet_twsk_deschedule(tw, &tcp_death_row); |
145 | inet_twsk_put(tw); | 145 | inet_twsk_put(tw); |
146 | return TCP_TW_RST; | 146 | return TCP_TW_RST; |
147 | } | 147 | } |
148 | 148 | ||
149 | /* FIN arrived, enter true time-wait state. */ | 149 | /* FIN arrived, enter true time-wait state. */ |
150 | tw->tw_substate = TCP_TIME_WAIT; | 150 | tw->tw_substate = TCP_TIME_WAIT; |
151 | tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq; | 151 | tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq; |
152 | if (tmp_opt.saw_tstamp) { | 152 | if (tmp_opt.saw_tstamp) { |
153 | tcptw->tw_ts_recent_stamp = get_seconds(); | 153 | tcptw->tw_ts_recent_stamp = get_seconds(); |
154 | tcptw->tw_ts_recent = tmp_opt.rcv_tsval; | 154 | tcptw->tw_ts_recent = tmp_opt.rcv_tsval; |
155 | } | 155 | } |
156 | 156 | ||
157 | /* I am shamed, but failed to make it more elegant. | 157 | /* I am shamed, but failed to make it more elegant. |
158 | * Yes, it is direct reference to IP, which is impossible | 158 | * Yes, it is direct reference to IP, which is impossible |
159 | * to generalize to IPv6. Taking into account that IPv6 | 159 | * to generalize to IPv6. Taking into account that IPv6 |
160 | * do not understand recycling in any case, it not | 160 | * do not understand recycling in any case, it not |
161 | * a big problem in practice. --ANK */ | 161 | * a big problem in practice. --ANK */ |
162 | if (tw->tw_family == AF_INET && | 162 | if (tw->tw_family == AF_INET && |
163 | tcp_death_row.sysctl_tw_recycle && tcptw->tw_ts_recent_stamp && | 163 | tcp_death_row.sysctl_tw_recycle && tcptw->tw_ts_recent_stamp && |
164 | tcp_v4_tw_remember_stamp(tw)) | 164 | tcp_v4_tw_remember_stamp(tw)) |
165 | inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout, | 165 | inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout, |
166 | TCP_TIMEWAIT_LEN); | 166 | TCP_TIMEWAIT_LEN); |
167 | else | 167 | else |
168 | inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN, | 168 | inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN, |
169 | TCP_TIMEWAIT_LEN); | 169 | TCP_TIMEWAIT_LEN); |
170 | return TCP_TW_ACK; | 170 | return TCP_TW_ACK; |
171 | } | 171 | } |
172 | 172 | ||
173 | /* | 173 | /* |
174 | * Now real TIME-WAIT state. | 174 | * Now real TIME-WAIT state. |
175 | * | 175 | * |
176 | * RFC 1122: | 176 | * RFC 1122: |
177 | * "When a connection is [...] on TIME-WAIT state [...] | 177 | * "When a connection is [...] on TIME-WAIT state [...] |
178 | * [a TCP] MAY accept a new SYN from the remote TCP to | 178 | * [a TCP] MAY accept a new SYN from the remote TCP to |
179 | * reopen the connection directly, if it: | 179 | * reopen the connection directly, if it: |
180 | * | 180 | * |
181 | * (1) assigns its initial sequence number for the new | 181 | * (1) assigns its initial sequence number for the new |
182 | * connection to be larger than the largest sequence | 182 | * connection to be larger than the largest sequence |
183 | * number it used on the previous connection incarnation, | 183 | * number it used on the previous connection incarnation, |
184 | * and | 184 | * and |
185 | * | 185 | * |
186 | * (2) returns to TIME-WAIT state if the SYN turns out | 186 | * (2) returns to TIME-WAIT state if the SYN turns out |
187 | * to be an old duplicate". | 187 | * to be an old duplicate". |
188 | */ | 188 | */ |
189 | 189 | ||
190 | if (!paws_reject && | 190 | if (!paws_reject && |
191 | (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt && | 191 | (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt && |
192 | (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) { | 192 | (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) { |
193 | /* In window segment, it may be only reset or bare ack. */ | 193 | /* In window segment, it may be only reset or bare ack. */ |
194 | 194 | ||
195 | if (th->rst) { | 195 | if (th->rst) { |
196 | /* This is TIME_WAIT assassination, in two flavors. | 196 | /* This is TIME_WAIT assassination, in two flavors. |
197 | * Oh well... nobody has a sufficient solution to this | 197 | * Oh well... nobody has a sufficient solution to this |
198 | * protocol bug yet. | 198 | * protocol bug yet. |
199 | */ | 199 | */ |
200 | if (sysctl_tcp_rfc1337 == 0) { | 200 | if (sysctl_tcp_rfc1337 == 0) { |
201 | kill: | 201 | kill: |
202 | inet_twsk_deschedule(tw, &tcp_death_row); | 202 | inet_twsk_deschedule(tw, &tcp_death_row); |
203 | inet_twsk_put(tw); | 203 | inet_twsk_put(tw); |
204 | return TCP_TW_SUCCESS; | 204 | return TCP_TW_SUCCESS; |
205 | } | 205 | } |
206 | } | 206 | } |
207 | inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN, | 207 | inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN, |
208 | TCP_TIMEWAIT_LEN); | 208 | TCP_TIMEWAIT_LEN); |
209 | 209 | ||
210 | if (tmp_opt.saw_tstamp) { | 210 | if (tmp_opt.saw_tstamp) { |
211 | tcptw->tw_ts_recent = tmp_opt.rcv_tsval; | 211 | tcptw->tw_ts_recent = tmp_opt.rcv_tsval; |
212 | tcptw->tw_ts_recent_stamp = get_seconds(); | 212 | tcptw->tw_ts_recent_stamp = get_seconds(); |
213 | } | 213 | } |
214 | 214 | ||
215 | inet_twsk_put(tw); | 215 | inet_twsk_put(tw); |
216 | return TCP_TW_SUCCESS; | 216 | return TCP_TW_SUCCESS; |
217 | } | 217 | } |
218 | 218 | ||
219 | /* Out of window segment. | 219 | /* Out of window segment. |
220 | 220 | ||
221 | All the segments are ACKed immediately. | 221 | All the segments are ACKed immediately. |
222 | 222 | ||
223 | The only exception is new SYN. We accept it, if it is | 223 | The only exception is new SYN. We accept it, if it is |
224 | not old duplicate and we are not in danger to be killed | 224 | not old duplicate and we are not in danger to be killed |
225 | by delayed old duplicates. RFC check is that it has | 225 | by delayed old duplicates. RFC check is that it has |
226 | newer sequence number works at rates <40Mbit/sec. | 226 | newer sequence number works at rates <40Mbit/sec. |
227 | However, if paws works, it is reliable AND even more, | 227 | However, if paws works, it is reliable AND even more, |
228 | we even may relax silly seq space cutoff. | 228 | we even may relax silly seq space cutoff. |
229 | 229 | ||
230 | RED-PEN: we violate main RFC requirement, if this SYN will appear | 230 | RED-PEN: we violate main RFC requirement, if this SYN will appear |
231 | old duplicate (i.e. we receive RST in reply to SYN-ACK), | 231 | old duplicate (i.e. we receive RST in reply to SYN-ACK), |
232 | we must return socket to time-wait state. It is not good, | 232 | we must return socket to time-wait state. It is not good, |
233 | but not fatal yet. | 233 | but not fatal yet. |
234 | */ | 234 | */ |
235 | 235 | ||
236 | if (th->syn && !th->rst && !th->ack && !paws_reject && | 236 | if (th->syn && !th->rst && !th->ack && !paws_reject && |
237 | (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) || | 237 | (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) || |
238 | (tmp_opt.saw_tstamp && | 238 | (tmp_opt.saw_tstamp && |
239 | (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) { | 239 | (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) { |
240 | u32 isn = tcptw->tw_snd_nxt + 65535 + 2; | 240 | u32 isn = tcptw->tw_snd_nxt + 65535 + 2; |
241 | if (isn == 0) | 241 | if (isn == 0) |
242 | isn++; | 242 | isn++; |
243 | TCP_SKB_CB(skb)->when = isn; | 243 | TCP_SKB_CB(skb)->when = isn; |
244 | return TCP_TW_SYN; | 244 | return TCP_TW_SYN; |
245 | } | 245 | } |
246 | 246 | ||
247 | if (paws_reject) | 247 | if (paws_reject) |
248 | NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED); | 248 | NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED); |
249 | 249 | ||
250 | if (!th->rst) { | 250 | if (!th->rst) { |
251 | /* In this case we must reset the TIMEWAIT timer. | 251 | /* In this case we must reset the TIMEWAIT timer. |
252 | * | 252 | * |
253 | * If it is ACKless SYN it may be both old duplicate | 253 | * If it is ACKless SYN it may be both old duplicate |
254 | * and new good SYN with random sequence number <rcv_nxt. | 254 | * and new good SYN with random sequence number <rcv_nxt. |
255 | * Do not reschedule in the last case. | 255 | * Do not reschedule in the last case. |
256 | */ | 256 | */ |
257 | if (paws_reject || th->ack) | 257 | if (paws_reject || th->ack) |
258 | inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN, | 258 | inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN, |
259 | TCP_TIMEWAIT_LEN); | 259 | TCP_TIMEWAIT_LEN); |
260 | 260 | ||
261 | /* Send ACK. Note, we do not put the bucket, | 261 | /* Send ACK. Note, we do not put the bucket, |
262 | * it will be released by caller. | 262 | * it will be released by caller. |
263 | */ | 263 | */ |
264 | return TCP_TW_ACK; | 264 | return TCP_TW_ACK; |
265 | } | 265 | } |
266 | inet_twsk_put(tw); | 266 | inet_twsk_put(tw); |
267 | return TCP_TW_SUCCESS; | 267 | return TCP_TW_SUCCESS; |
268 | } | 268 | } |
269 | 269 | ||
270 | /* | 270 | /* |
271 | * Move a socket to time-wait or dead fin-wait-2 state. | 271 | * Move a socket to time-wait or dead fin-wait-2 state. |
272 | */ | 272 | */ |
273 | void tcp_time_wait(struct sock *sk, int state, int timeo) | 273 | void tcp_time_wait(struct sock *sk, int state, int timeo) |
274 | { | 274 | { |
275 | struct inet_timewait_sock *tw = NULL; | 275 | struct inet_timewait_sock *tw = NULL; |
276 | const struct inet_connection_sock *icsk = inet_csk(sk); | 276 | const struct inet_connection_sock *icsk = inet_csk(sk); |
277 | const struct tcp_sock *tp = tcp_sk(sk); | 277 | const struct tcp_sock *tp = tcp_sk(sk); |
278 | int recycle_ok = 0; | 278 | int recycle_ok = 0; |
279 | 279 | ||
280 | if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp) | 280 | if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp) |
281 | recycle_ok = icsk->icsk_af_ops->remember_stamp(sk); | 281 | recycle_ok = icsk->icsk_af_ops->remember_stamp(sk); |
282 | 282 | ||
283 | if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets) | 283 | if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets) |
284 | tw = inet_twsk_alloc(sk, state); | 284 | tw = inet_twsk_alloc(sk, state); |
285 | 285 | ||
286 | if (tw != NULL) { | 286 | if (tw != NULL) { |
287 | struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw); | 287 | struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw); |
288 | const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1); | 288 | const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1); |
289 | 289 | ||
290 | tw->tw_rcv_wscale = tp->rx_opt.rcv_wscale; | 290 | tw->tw_rcv_wscale = tp->rx_opt.rcv_wscale; |
291 | tcptw->tw_rcv_nxt = tp->rcv_nxt; | 291 | tcptw->tw_rcv_nxt = tp->rcv_nxt; |
292 | tcptw->tw_snd_nxt = tp->snd_nxt; | 292 | tcptw->tw_snd_nxt = tp->snd_nxt; |
293 | tcptw->tw_rcv_wnd = tcp_receive_window(tp); | 293 | tcptw->tw_rcv_wnd = tcp_receive_window(tp); |
294 | tcptw->tw_ts_recent = tp->rx_opt.ts_recent; | 294 | tcptw->tw_ts_recent = tp->rx_opt.ts_recent; |
295 | tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp; | 295 | tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp; |
296 | 296 | ||
297 | #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) | 297 | #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) |
298 | if (tw->tw_family == PF_INET6) { | 298 | if (tw->tw_family == PF_INET6) { |
299 | struct ipv6_pinfo *np = inet6_sk(sk); | 299 | struct ipv6_pinfo *np = inet6_sk(sk); |
300 | struct inet6_timewait_sock *tw6; | 300 | struct inet6_timewait_sock *tw6; |
301 | 301 | ||
302 | tw->tw_ipv6_offset = inet6_tw_offset(sk->sk_prot); | 302 | tw->tw_ipv6_offset = inet6_tw_offset(sk->sk_prot); |
303 | tw6 = inet6_twsk((struct sock *)tw); | 303 | tw6 = inet6_twsk((struct sock *)tw); |
304 | ipv6_addr_copy(&tw6->tw_v6_daddr, &np->daddr); | 304 | ipv6_addr_copy(&tw6->tw_v6_daddr, &np->daddr); |
305 | ipv6_addr_copy(&tw6->tw_v6_rcv_saddr, &np->rcv_saddr); | 305 | ipv6_addr_copy(&tw6->tw_v6_rcv_saddr, &np->rcv_saddr); |
306 | tw->tw_ipv6only = np->ipv6only; | 306 | tw->tw_ipv6only = np->ipv6only; |
307 | } | 307 | } |
308 | #endif | 308 | #endif |
309 | 309 | ||
310 | #ifdef CONFIG_TCP_MD5SIG | 310 | #ifdef CONFIG_TCP_MD5SIG |
311 | /* | 311 | /* |
312 | * The timewait bucket does not have the key DB from the | 312 | * The timewait bucket does not have the key DB from the |
313 | * sock structure. We just make a quick copy of the | 313 | * sock structure. We just make a quick copy of the |
314 | * md5 key being used (if indeed we are using one) | 314 | * md5 key being used (if indeed we are using one) |
315 | * so the timewait ack generating code has the key. | 315 | * so the timewait ack generating code has the key. |
316 | */ | 316 | */ |
317 | do { | 317 | do { |
318 | struct tcp_md5sig_key *key; | 318 | struct tcp_md5sig_key *key; |
319 | memset(tcptw->tw_md5_key, 0, sizeof(tcptw->tw_md5_key)); | 319 | memset(tcptw->tw_md5_key, 0, sizeof(tcptw->tw_md5_key)); |
320 | tcptw->tw_md5_keylen = 0; | 320 | tcptw->tw_md5_keylen = 0; |
321 | key = tp->af_specific->md5_lookup(sk, sk); | 321 | key = tp->af_specific->md5_lookup(sk, sk); |
322 | if (key != NULL) { | 322 | if (key != NULL) { |
323 | memcpy(&tcptw->tw_md5_key, key->key, key->keylen); | 323 | memcpy(&tcptw->tw_md5_key, key->key, key->keylen); |
324 | tcptw->tw_md5_keylen = key->keylen; | 324 | tcptw->tw_md5_keylen = key->keylen; |
325 | if (tcp_alloc_md5sig_pool(sk) == NULL) | 325 | if (tcp_alloc_md5sig_pool(sk) == NULL) |
326 | BUG(); | 326 | BUG(); |
327 | } | 327 | } |
328 | } while (0); | 328 | } while (0); |
329 | #endif | 329 | #endif |
330 | 330 | ||
331 | /* Linkage updates. */ | 331 | /* Linkage updates. */ |
332 | __inet_twsk_hashdance(tw, sk, &tcp_hashinfo); | 332 | __inet_twsk_hashdance(tw, sk, &tcp_hashinfo); |
333 | 333 | ||
334 | /* Get the TIME_WAIT timeout firing. */ | 334 | /* Get the TIME_WAIT timeout firing. */ |
335 | if (timeo < rto) | 335 | if (timeo < rto) |
336 | timeo = rto; | 336 | timeo = rto; |
337 | 337 | ||
338 | if (recycle_ok) { | 338 | if (recycle_ok) { |
339 | tw->tw_timeout = rto; | 339 | tw->tw_timeout = rto; |
340 | } else { | 340 | } else { |
341 | tw->tw_timeout = TCP_TIMEWAIT_LEN; | 341 | tw->tw_timeout = TCP_TIMEWAIT_LEN; |
342 | if (state == TCP_TIME_WAIT) | 342 | if (state == TCP_TIME_WAIT) |
343 | timeo = TCP_TIMEWAIT_LEN; | 343 | timeo = TCP_TIMEWAIT_LEN; |
344 | } | 344 | } |
345 | 345 | ||
346 | inet_twsk_schedule(tw, &tcp_death_row, timeo, | 346 | inet_twsk_schedule(tw, &tcp_death_row, timeo, |
347 | TCP_TIMEWAIT_LEN); | 347 | TCP_TIMEWAIT_LEN); |
348 | inet_twsk_put(tw); | 348 | inet_twsk_put(tw); |
349 | } else { | 349 | } else { |
350 | /* Sorry, if we're out of memory, just CLOSE this | 350 | /* Sorry, if we're out of memory, just CLOSE this |
351 | * socket up. We've got bigger problems than | 351 | * socket up. We've got bigger problems than |
352 | * non-graceful socket closings. | 352 | * non-graceful socket closings. |
353 | */ | 353 | */ |
354 | LIMIT_NETDEBUG(KERN_INFO "TCP: time wait bucket table overflow\n"); | 354 | LIMIT_NETDEBUG(KERN_INFO "TCP: time wait bucket table overflow\n"); |
355 | } | 355 | } |
356 | 356 | ||
357 | tcp_update_metrics(sk); | 357 | tcp_update_metrics(sk); |
358 | tcp_done(sk); | 358 | tcp_done(sk); |
359 | } | 359 | } |
360 | 360 | ||
361 | void tcp_twsk_destructor(struct sock *sk) | 361 | void tcp_twsk_destructor(struct sock *sk) |
362 | { | 362 | { |
363 | #ifdef CONFIG_TCP_MD5SIG | 363 | #ifdef CONFIG_TCP_MD5SIG |
364 | struct tcp_timewait_sock *twsk = tcp_twsk(sk); | 364 | struct tcp_timewait_sock *twsk = tcp_twsk(sk); |
365 | if (twsk->tw_md5_keylen) | 365 | if (twsk->tw_md5_keylen) |
366 | tcp_free_md5sig_pool(); | 366 | tcp_free_md5sig_pool(); |
367 | #endif | 367 | #endif |
368 | } | 368 | } |
369 | 369 | ||
370 | EXPORT_SYMBOL_GPL(tcp_twsk_destructor); | 370 | EXPORT_SYMBOL_GPL(tcp_twsk_destructor); |
371 | 371 | ||
372 | static inline void TCP_ECN_openreq_child(struct tcp_sock *tp, | 372 | static inline void TCP_ECN_openreq_child(struct tcp_sock *tp, |
373 | struct request_sock *req) | 373 | struct request_sock *req) |
374 | { | 374 | { |
375 | tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0; | 375 | tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0; |
376 | } | 376 | } |
377 | 377 | ||
378 | /* This is not only more efficient than what we used to do, it eliminates | 378 | /* This is not only more efficient than what we used to do, it eliminates |
379 | * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM | 379 | * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM |
380 | * | 380 | * |
381 | * Actually, we could lots of memory writes here. tp of listening | 381 | * Actually, we could lots of memory writes here. tp of listening |
382 | * socket contains all necessary default parameters. | 382 | * socket contains all necessary default parameters. |
383 | */ | 383 | */ |
384 | struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb) | 384 | struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb) |
385 | { | 385 | { |
386 | struct sock *newsk = inet_csk_clone(sk, req, GFP_ATOMIC); | 386 | struct sock *newsk = inet_csk_clone(sk, req, GFP_ATOMIC); |
387 | 387 | ||
388 | if (newsk != NULL) { | 388 | if (newsk != NULL) { |
389 | const struct inet_request_sock *ireq = inet_rsk(req); | 389 | const struct inet_request_sock *ireq = inet_rsk(req); |
390 | struct tcp_request_sock *treq = tcp_rsk(req); | 390 | struct tcp_request_sock *treq = tcp_rsk(req); |
391 | struct inet_connection_sock *newicsk = inet_csk(newsk); | 391 | struct inet_connection_sock *newicsk = inet_csk(newsk); |
392 | struct tcp_sock *newtp; | 392 | struct tcp_sock *newtp; |
393 | 393 | ||
394 | /* Now setup tcp_sock */ | 394 | /* Now setup tcp_sock */ |
395 | newtp = tcp_sk(newsk); | 395 | newtp = tcp_sk(newsk); |
396 | newtp->pred_flags = 0; | 396 | newtp->pred_flags = 0; |
397 | newtp->rcv_wup = newtp->copied_seq = newtp->rcv_nxt = treq->rcv_isn + 1; | 397 | newtp->rcv_wup = newtp->copied_seq = newtp->rcv_nxt = treq->rcv_isn + 1; |
398 | newtp->snd_sml = newtp->snd_una = newtp->snd_nxt = treq->snt_isn + 1; | 398 | newtp->snd_sml = newtp->snd_una = newtp->snd_nxt = treq->snt_isn + 1; |
399 | newtp->snd_up = treq->snt_isn + 1; | 399 | newtp->snd_up = treq->snt_isn + 1; |
400 | 400 | ||
401 | tcp_prequeue_init(newtp); | 401 | tcp_prequeue_init(newtp); |
402 | 402 | ||
403 | tcp_init_wl(newtp, treq->rcv_isn); | 403 | tcp_init_wl(newtp, treq->rcv_isn); |
404 | 404 | ||
405 | newtp->srtt = 0; | 405 | newtp->srtt = 0; |
406 | newtp->mdev = TCP_TIMEOUT_INIT; | 406 | newtp->mdev = TCP_TIMEOUT_INIT; |
407 | newicsk->icsk_rto = TCP_TIMEOUT_INIT; | 407 | newicsk->icsk_rto = TCP_TIMEOUT_INIT; |
408 | 408 | ||
409 | newtp->packets_out = 0; | 409 | newtp->packets_out = 0; |
410 | newtp->retrans_out = 0; | 410 | newtp->retrans_out = 0; |
411 | newtp->sacked_out = 0; | 411 | newtp->sacked_out = 0; |
412 | newtp->fackets_out = 0; | 412 | newtp->fackets_out = 0; |
413 | newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH; | 413 | newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH; |
414 | 414 | ||
415 | /* So many TCP implementations out there (incorrectly) count the | 415 | /* So many TCP implementations out there (incorrectly) count the |
416 | * initial SYN frame in their delayed-ACK and congestion control | 416 | * initial SYN frame in their delayed-ACK and congestion control |
417 | * algorithms that we must have the following bandaid to talk | 417 | * algorithms that we must have the following bandaid to talk |
418 | * efficiently to them. -DaveM | 418 | * efficiently to them. -DaveM |
419 | */ | 419 | */ |
420 | newtp->snd_cwnd = 2; | 420 | newtp->snd_cwnd = 2; |
421 | newtp->snd_cwnd_cnt = 0; | 421 | newtp->snd_cwnd_cnt = 0; |
422 | newtp->bytes_acked = 0; | 422 | newtp->bytes_acked = 0; |
423 | 423 | ||
424 | newtp->frto_counter = 0; | 424 | newtp->frto_counter = 0; |
425 | newtp->frto_highmark = 0; | 425 | newtp->frto_highmark = 0; |
426 | 426 | ||
427 | newicsk->icsk_ca_ops = &tcp_init_congestion_ops; | 427 | newicsk->icsk_ca_ops = &tcp_init_congestion_ops; |
428 | 428 | ||
429 | tcp_set_ca_state(newsk, TCP_CA_Open); | 429 | tcp_set_ca_state(newsk, TCP_CA_Open); |
430 | tcp_init_xmit_timers(newsk); | 430 | tcp_init_xmit_timers(newsk); |
431 | skb_queue_head_init(&newtp->out_of_order_queue); | 431 | skb_queue_head_init(&newtp->out_of_order_queue); |
432 | newtp->write_seq = treq->snt_isn + 1; | 432 | newtp->write_seq = treq->snt_isn + 1; |
433 | newtp->pushed_seq = newtp->write_seq; | 433 | newtp->pushed_seq = newtp->write_seq; |
434 | 434 | ||
435 | newtp->rx_opt.saw_tstamp = 0; | 435 | newtp->rx_opt.saw_tstamp = 0; |
436 | 436 | ||
437 | newtp->rx_opt.dsack = 0; | 437 | newtp->rx_opt.dsack = 0; |
438 | newtp->rx_opt.num_sacks = 0; | 438 | newtp->rx_opt.num_sacks = 0; |
439 | 439 | ||
440 | newtp->urg_data = 0; | 440 | newtp->urg_data = 0; |
441 | 441 | ||
442 | if (sock_flag(newsk, SOCK_KEEPOPEN)) | 442 | if (sock_flag(newsk, SOCK_KEEPOPEN)) |
443 | inet_csk_reset_keepalive_timer(newsk, | 443 | inet_csk_reset_keepalive_timer(newsk, |
444 | keepalive_time_when(newtp)); | 444 | keepalive_time_when(newtp)); |
445 | 445 | ||
446 | newtp->rx_opt.tstamp_ok = ireq->tstamp_ok; | 446 | newtp->rx_opt.tstamp_ok = ireq->tstamp_ok; |
447 | if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) { | 447 | if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) { |
448 | if (sysctl_tcp_fack) | 448 | if (sysctl_tcp_fack) |
449 | tcp_enable_fack(newtp); | 449 | tcp_enable_fack(newtp); |
450 | } | 450 | } |
451 | newtp->window_clamp = req->window_clamp; | 451 | newtp->window_clamp = req->window_clamp; |
452 | newtp->rcv_ssthresh = req->rcv_wnd; | 452 | newtp->rcv_ssthresh = req->rcv_wnd; |
453 | newtp->rcv_wnd = req->rcv_wnd; | 453 | newtp->rcv_wnd = req->rcv_wnd; |
454 | newtp->rx_opt.wscale_ok = ireq->wscale_ok; | 454 | newtp->rx_opt.wscale_ok = ireq->wscale_ok; |
455 | if (newtp->rx_opt.wscale_ok) { | 455 | if (newtp->rx_opt.wscale_ok) { |
456 | newtp->rx_opt.snd_wscale = ireq->snd_wscale; | 456 | newtp->rx_opt.snd_wscale = ireq->snd_wscale; |
457 | newtp->rx_opt.rcv_wscale = ireq->rcv_wscale; | 457 | newtp->rx_opt.rcv_wscale = ireq->rcv_wscale; |
458 | } else { | 458 | } else { |
459 | newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0; | 459 | newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0; |
460 | newtp->window_clamp = min(newtp->window_clamp, 65535U); | 460 | newtp->window_clamp = min(newtp->window_clamp, 65535U); |
461 | } | 461 | } |
462 | newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) << | 462 | newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) << |
463 | newtp->rx_opt.snd_wscale); | 463 | newtp->rx_opt.snd_wscale); |
464 | newtp->max_window = newtp->snd_wnd; | 464 | newtp->max_window = newtp->snd_wnd; |
465 | 465 | ||
466 | if (newtp->rx_opt.tstamp_ok) { | 466 | if (newtp->rx_opt.tstamp_ok) { |
467 | newtp->rx_opt.ts_recent = req->ts_recent; | 467 | newtp->rx_opt.ts_recent = req->ts_recent; |
468 | newtp->rx_opt.ts_recent_stamp = get_seconds(); | 468 | newtp->rx_opt.ts_recent_stamp = get_seconds(); |
469 | newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; | 469 | newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; |
470 | } else { | 470 | } else { |
471 | newtp->rx_opt.ts_recent_stamp = 0; | 471 | newtp->rx_opt.ts_recent_stamp = 0; |
472 | newtp->tcp_header_len = sizeof(struct tcphdr); | 472 | newtp->tcp_header_len = sizeof(struct tcphdr); |
473 | } | 473 | } |
474 | #ifdef CONFIG_TCP_MD5SIG | 474 | #ifdef CONFIG_TCP_MD5SIG |
475 | newtp->md5sig_info = NULL; /*XXX*/ | 475 | newtp->md5sig_info = NULL; /*XXX*/ |
476 | if (newtp->af_specific->md5_lookup(sk, newsk)) | 476 | if (newtp->af_specific->md5_lookup(sk, newsk)) |
477 | newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; | 477 | newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; |
478 | #endif | 478 | #endif |
479 | if (skb->len >= TCP_MIN_RCVMSS+newtp->tcp_header_len) | 479 | if (skb->len >= TCP_MIN_RCVMSS+newtp->tcp_header_len) |
480 | newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len; | 480 | newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len; |
481 | newtp->rx_opt.mss_clamp = req->mss; | 481 | newtp->rx_opt.mss_clamp = req->mss; |
482 | TCP_ECN_openreq_child(newtp, req); | 482 | TCP_ECN_openreq_child(newtp, req); |
483 | 483 | ||
484 | TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS); | 484 | TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS); |
485 | } | 485 | } |
486 | return newsk; | 486 | return newsk; |
487 | } | 487 | } |
488 | 488 | ||
489 | /* | 489 | /* |
490 | * Process an incoming packet for SYN_RECV sockets represented | 490 | * Process an incoming packet for SYN_RECV sockets represented |
491 | * as a request_sock. | 491 | * as a request_sock. |
492 | */ | 492 | */ |
493 | 493 | ||
494 | struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb, | 494 | struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb, |
495 | struct request_sock *req, | 495 | struct request_sock *req, |
496 | struct request_sock **prev) | 496 | struct request_sock **prev) |
497 | { | 497 | { |
498 | const struct tcphdr *th = tcp_hdr(skb); | 498 | const struct tcphdr *th = tcp_hdr(skb); |
499 | __be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK); | 499 | __be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK); |
500 | int paws_reject = 0; | 500 | int paws_reject = 0; |
501 | struct tcp_options_received tmp_opt; | 501 | struct tcp_options_received tmp_opt; |
502 | struct sock *child; | 502 | struct sock *child; |
503 | 503 | ||
504 | tmp_opt.saw_tstamp = 0; | 504 | tmp_opt.saw_tstamp = 0; |
505 | if (th->doff > (sizeof(struct tcphdr)>>2)) { | 505 | if (th->doff > (sizeof(struct tcphdr)>>2)) { |
506 | tcp_parse_options(skb, &tmp_opt, 0); | 506 | tcp_parse_options(skb, &tmp_opt, 0); |
507 | 507 | ||
508 | if (tmp_opt.saw_tstamp) { | 508 | if (tmp_opt.saw_tstamp) { |
509 | tmp_opt.ts_recent = req->ts_recent; | 509 | tmp_opt.ts_recent = req->ts_recent; |
510 | /* We do not store true stamp, but it is not required, | 510 | /* We do not store true stamp, but it is not required, |
511 | * it can be estimated (approximately) | 511 | * it can be estimated (approximately) |
512 | * from another data. | 512 | * from another data. |
513 | */ | 513 | */ |
514 | tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans); | 514 | tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans); |
515 | paws_reject = tcp_paws_reject(&tmp_opt, th->rst); | 515 | paws_reject = tcp_paws_reject(&tmp_opt, th->rst); |
516 | } | 516 | } |
517 | } | 517 | } |
518 | 518 | ||
519 | /* Check for pure retransmitted SYN. */ | 519 | /* Check for pure retransmitted SYN. */ |
520 | if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn && | 520 | if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn && |
521 | flg == TCP_FLAG_SYN && | 521 | flg == TCP_FLAG_SYN && |
522 | !paws_reject) { | 522 | !paws_reject) { |
523 | /* | 523 | /* |
524 | * RFC793 draws (Incorrectly! It was fixed in RFC1122) | 524 | * RFC793 draws (Incorrectly! It was fixed in RFC1122) |
525 | * this case on figure 6 and figure 8, but formal | 525 | * this case on figure 6 and figure 8, but formal |
526 | * protocol description says NOTHING. | 526 | * protocol description says NOTHING. |
527 | * To be more exact, it says that we should send ACK, | 527 | * To be more exact, it says that we should send ACK, |
528 | * because this segment (at least, if it has no data) | 528 | * because this segment (at least, if it has no data) |
529 | * is out of window. | 529 | * is out of window. |
530 | * | 530 | * |
531 | * CONCLUSION: RFC793 (even with RFC1122) DOES NOT | 531 | * CONCLUSION: RFC793 (even with RFC1122) DOES NOT |
532 | * describe SYN-RECV state. All the description | 532 | * describe SYN-RECV state. All the description |
533 | * is wrong, we cannot believe to it and should | 533 | * is wrong, we cannot believe to it and should |
534 | * rely only on common sense and implementation | 534 | * rely only on common sense and implementation |
535 | * experience. | 535 | * experience. |
536 | * | 536 | * |
537 | * Enforce "SYN-ACK" according to figure 8, figure 6 | 537 | * Enforce "SYN-ACK" according to figure 8, figure 6 |
538 | * of RFC793, fixed by RFC1122. | 538 | * of RFC793, fixed by RFC1122. |
539 | */ | 539 | */ |
540 | req->rsk_ops->rtx_syn_ack(sk, req); | 540 | req->rsk_ops->rtx_syn_ack(sk, req); |
541 | return NULL; | 541 | return NULL; |
542 | } | 542 | } |
543 | 543 | ||
544 | /* Further reproduces section "SEGMENT ARRIVES" | 544 | /* Further reproduces section "SEGMENT ARRIVES" |
545 | for state SYN-RECEIVED of RFC793. | 545 | for state SYN-RECEIVED of RFC793. |
546 | It is broken, however, it does not work only | 546 | It is broken, however, it does not work only |
547 | when SYNs are crossed. | 547 | when SYNs are crossed. |
548 | 548 | ||
549 | You would think that SYN crossing is impossible here, since | 549 | You would think that SYN crossing is impossible here, since |
550 | we should have a SYN_SENT socket (from connect()) on our end, | 550 | we should have a SYN_SENT socket (from connect()) on our end, |
551 | but this is not true if the crossed SYNs were sent to both | 551 | but this is not true if the crossed SYNs were sent to both |
552 | ends by a malicious third party. We must defend against this, | 552 | ends by a malicious third party. We must defend against this, |
553 | and to do that we first verify the ACK (as per RFC793, page | 553 | and to do that we first verify the ACK (as per RFC793, page |
554 | 36) and reset if it is invalid. Is this a true full defense? | 554 | 36) and reset if it is invalid. Is this a true full defense? |
555 | To convince ourselves, let us consider a way in which the ACK | 555 | To convince ourselves, let us consider a way in which the ACK |
556 | test can still pass in this 'malicious crossed SYNs' case. | 556 | test can still pass in this 'malicious crossed SYNs' case. |
557 | Malicious sender sends identical SYNs (and thus identical sequence | 557 | Malicious sender sends identical SYNs (and thus identical sequence |
558 | numbers) to both A and B: | 558 | numbers) to both A and B: |
559 | 559 | ||
560 | A: gets SYN, seq=7 | 560 | A: gets SYN, seq=7 |
561 | B: gets SYN, seq=7 | 561 | B: gets SYN, seq=7 |
562 | 562 | ||
563 | By our good fortune, both A and B select the same initial | 563 | By our good fortune, both A and B select the same initial |
564 | send sequence number of seven :-) | 564 | send sequence number of seven :-) |
565 | 565 | ||
566 | A: sends SYN|ACK, seq=7, ack_seq=8 | 566 | A: sends SYN|ACK, seq=7, ack_seq=8 |
567 | B: sends SYN|ACK, seq=7, ack_seq=8 | 567 | B: sends SYN|ACK, seq=7, ack_seq=8 |
568 | 568 | ||
569 | So we are now A eating this SYN|ACK, ACK test passes. So | 569 | So we are now A eating this SYN|ACK, ACK test passes. So |
570 | does sequence test, SYN is truncated, and thus we consider | 570 | does sequence test, SYN is truncated, and thus we consider |
571 | it a bare ACK. | 571 | it a bare ACK. |
572 | 572 | ||
573 | If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this | 573 | If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this |
574 | bare ACK. Otherwise, we create an established connection. Both | 574 | bare ACK. Otherwise, we create an established connection. Both |
575 | ends (listening sockets) accept the new incoming connection and try | 575 | ends (listening sockets) accept the new incoming connection and try |
576 | to talk to each other. 8-) | 576 | to talk to each other. 8-) |
577 | 577 | ||
578 | Note: This case is both harmless, and rare. Possibility is about the | 578 | Note: This case is both harmless, and rare. Possibility is about the |
579 | same as us discovering intelligent life on another plant tomorrow. | 579 | same as us discovering intelligent life on another plant tomorrow. |
580 | 580 | ||
581 | But generally, we should (RFC lies!) to accept ACK | 581 | But generally, we should (RFC lies!) to accept ACK |
582 | from SYNACK both here and in tcp_rcv_state_process(). | 582 | from SYNACK both here and in tcp_rcv_state_process(). |
583 | tcp_rcv_state_process() does not, hence, we do not too. | 583 | tcp_rcv_state_process() does not, hence, we do not too. |
584 | 584 | ||
585 | Note that the case is absolutely generic: | 585 | Note that the case is absolutely generic: |
586 | we cannot optimize anything here without | 586 | we cannot optimize anything here without |
587 | violating protocol. All the checks must be made | 587 | violating protocol. All the checks must be made |
588 | before attempt to create socket. | 588 | before attempt to create socket. |
589 | */ | 589 | */ |
590 | 590 | ||
591 | /* RFC793 page 36: "If the connection is in any non-synchronized state ... | 591 | /* RFC793 page 36: "If the connection is in any non-synchronized state ... |
592 | * and the incoming segment acknowledges something not yet | 592 | * and the incoming segment acknowledges something not yet |
593 | * sent (the segment carries an unacceptable ACK) ... | 593 | * sent (the segment carries an unacceptable ACK) ... |
594 | * a reset is sent." | 594 | * a reset is sent." |
595 | * | 595 | * |
596 | * Invalid ACK: reset will be sent by listening socket | 596 | * Invalid ACK: reset will be sent by listening socket |
597 | */ | 597 | */ |
598 | if ((flg & TCP_FLAG_ACK) && | 598 | if ((flg & TCP_FLAG_ACK) && |
599 | (TCP_SKB_CB(skb)->ack_seq != tcp_rsk(req)->snt_isn + 1)) | 599 | (TCP_SKB_CB(skb)->ack_seq != tcp_rsk(req)->snt_isn + 1)) |
600 | return sk; | 600 | return sk; |
601 | 601 | ||
602 | /* Also, it would be not so bad idea to check rcv_tsecr, which | 602 | /* Also, it would be not so bad idea to check rcv_tsecr, which |
603 | * is essentially ACK extension and too early or too late values | 603 | * is essentially ACK extension and too early or too late values |
604 | * should cause reset in unsynchronized states. | 604 | * should cause reset in unsynchronized states. |
605 | */ | 605 | */ |
606 | 606 | ||
607 | /* RFC793: "first check sequence number". */ | 607 | /* RFC793: "first check sequence number". */ |
608 | 608 | ||
609 | if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq, | 609 | if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq, |
610 | tcp_rsk(req)->rcv_isn + 1, tcp_rsk(req)->rcv_isn + 1 + req->rcv_wnd)) { | 610 | tcp_rsk(req)->rcv_isn + 1, tcp_rsk(req)->rcv_isn + 1 + req->rcv_wnd)) { |
611 | /* Out of window: send ACK and drop. */ | 611 | /* Out of window: send ACK and drop. */ |
612 | if (!(flg & TCP_FLAG_RST)) | 612 | if (!(flg & TCP_FLAG_RST)) |
613 | req->rsk_ops->send_ack(sk, skb, req); | 613 | req->rsk_ops->send_ack(sk, skb, req); |
614 | if (paws_reject) | 614 | if (paws_reject) |
615 | NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); | 615 | NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); |
616 | return NULL; | 616 | return NULL; |
617 | } | 617 | } |
618 | 618 | ||
619 | /* In sequence, PAWS is OK. */ | 619 | /* In sequence, PAWS is OK. */ |
620 | 620 | ||
621 | if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_isn + 1)) | 621 | if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_isn + 1)) |
622 | req->ts_recent = tmp_opt.rcv_tsval; | 622 | req->ts_recent = tmp_opt.rcv_tsval; |
623 | 623 | ||
624 | if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) { | 624 | if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) { |
625 | /* Truncate SYN, it is out of window starting | 625 | /* Truncate SYN, it is out of window starting |
626 | at tcp_rsk(req)->rcv_isn + 1. */ | 626 | at tcp_rsk(req)->rcv_isn + 1. */ |
627 | flg &= ~TCP_FLAG_SYN; | 627 | flg &= ~TCP_FLAG_SYN; |
628 | } | 628 | } |
629 | 629 | ||
630 | /* RFC793: "second check the RST bit" and | 630 | /* RFC793: "second check the RST bit" and |
631 | * "fourth, check the SYN bit" | 631 | * "fourth, check the SYN bit" |
632 | */ | 632 | */ |
633 | if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) { | 633 | if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) { |
634 | TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS); | 634 | TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS); |
635 | goto embryonic_reset; | 635 | goto embryonic_reset; |
636 | } | 636 | } |
637 | 637 | ||
638 | /* ACK sequence verified above, just make sure ACK is | 638 | /* ACK sequence verified above, just make sure ACK is |
639 | * set. If ACK not set, just silently drop the packet. | 639 | * set. If ACK not set, just silently drop the packet. |
640 | */ | 640 | */ |
641 | if (!(flg & TCP_FLAG_ACK)) | 641 | if (!(flg & TCP_FLAG_ACK)) |
642 | return NULL; | 642 | return NULL; |
643 | 643 | ||
644 | /* If TCP_DEFER_ACCEPT is set, drop bare ACK. */ | 644 | /* If TCP_DEFER_ACCEPT is set, drop bare ACK. */ |
645 | if (inet_csk(sk)->icsk_accept_queue.rskq_defer_accept && | 645 | if (inet_csk(sk)->icsk_accept_queue.rskq_defer_accept && |
646 | TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) { | 646 | TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) { |
647 | inet_csk(sk)->icsk_accept_queue.rskq_defer_accept--; | ||
647 | inet_rsk(req)->acked = 1; | 648 | inet_rsk(req)->acked = 1; |
648 | return NULL; | 649 | return NULL; |
649 | } | 650 | } |
650 | 651 | ||
651 | /* OK, ACK is valid, create big socket and | 652 | /* OK, ACK is valid, create big socket and |
652 | * feed this segment to it. It will repeat all | 653 | * feed this segment to it. It will repeat all |
653 | * the tests. THIS SEGMENT MUST MOVE SOCKET TO | 654 | * the tests. THIS SEGMENT MUST MOVE SOCKET TO |
654 | * ESTABLISHED STATE. If it will be dropped after | 655 | * ESTABLISHED STATE. If it will be dropped after |
655 | * socket is created, wait for troubles. | 656 | * socket is created, wait for troubles. |
656 | */ | 657 | */ |
657 | child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL); | 658 | child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL); |
658 | if (child == NULL) | 659 | if (child == NULL) |
659 | goto listen_overflow; | 660 | goto listen_overflow; |
660 | 661 | ||
661 | inet_csk_reqsk_queue_unlink(sk, req, prev); | 662 | inet_csk_reqsk_queue_unlink(sk, req, prev); |
662 | inet_csk_reqsk_queue_removed(sk, req); | 663 | inet_csk_reqsk_queue_removed(sk, req); |
663 | 664 | ||
664 | inet_csk_reqsk_queue_add(sk, req, child); | 665 | inet_csk_reqsk_queue_add(sk, req, child); |
665 | return child; | 666 | return child; |
666 | 667 | ||
667 | listen_overflow: | 668 | listen_overflow: |
668 | if (!sysctl_tcp_abort_on_overflow) { | 669 | if (!sysctl_tcp_abort_on_overflow) { |
669 | inet_rsk(req)->acked = 1; | 670 | inet_rsk(req)->acked = 1; |
670 | return NULL; | 671 | return NULL; |
671 | } | 672 | } |
672 | 673 | ||
673 | embryonic_reset: | 674 | embryonic_reset: |
674 | NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS); | 675 | NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS); |
675 | if (!(flg & TCP_FLAG_RST)) | 676 | if (!(flg & TCP_FLAG_RST)) |
676 | req->rsk_ops->send_reset(sk, skb); | 677 | req->rsk_ops->send_reset(sk, skb); |
677 | 678 | ||
678 | inet_csk_reqsk_queue_drop(sk, req, prev); | 679 | inet_csk_reqsk_queue_drop(sk, req, prev); |
679 | return NULL; | 680 | return NULL; |
680 | } | 681 | } |
681 | 682 | ||
682 | /* | 683 | /* |
683 | * Queue segment on the new socket if the new socket is active, | 684 | * Queue segment on the new socket if the new socket is active, |
684 | * otherwise we just shortcircuit this and continue with | 685 | * otherwise we just shortcircuit this and continue with |
685 | * the new socket. | 686 | * the new socket. |
686 | */ | 687 | */ |
687 | 688 | ||
688 | int tcp_child_process(struct sock *parent, struct sock *child, | 689 | int tcp_child_process(struct sock *parent, struct sock *child, |
689 | struct sk_buff *skb) | 690 | struct sk_buff *skb) |
690 | { | 691 | { |
691 | int ret = 0; | 692 | int ret = 0; |
692 | int state = child->sk_state; | 693 | int state = child->sk_state; |
693 | 694 | ||
694 | if (!sock_owned_by_user(child)) { | 695 | if (!sock_owned_by_user(child)) { |
695 | ret = tcp_rcv_state_process(child, skb, tcp_hdr(skb), | 696 | ret = tcp_rcv_state_process(child, skb, tcp_hdr(skb), |
696 | skb->len); | 697 | skb->len); |
697 | /* Wakeup parent, send SIGIO */ | 698 | /* Wakeup parent, send SIGIO */ |
698 | if (state == TCP_SYN_RECV && child->sk_state != state) | 699 | if (state == TCP_SYN_RECV && child->sk_state != state) |
699 | parent->sk_data_ready(parent, 0); | 700 | parent->sk_data_ready(parent, 0); |
700 | } else { | 701 | } else { |
701 | /* Alas, it is possible again, because we do lookup | 702 | /* Alas, it is possible again, because we do lookup |
702 | * in main socket hash table and lock on listening | 703 | * in main socket hash table and lock on listening |
703 | * socket does not protect us more. | 704 | * socket does not protect us more. |
704 | */ | 705 | */ |
705 | sk_add_backlog(child, skb); | 706 | sk_add_backlog(child, skb); |
706 | } | 707 | } |
707 | 708 | ||
708 | bh_unlock_sock(child); | 709 | bh_unlock_sock(child); |
709 | sock_put(child); | 710 | sock_put(child); |
710 | return ret; | 711 | return ret; |
711 | } | 712 | } |
712 | 713 | ||
713 | EXPORT_SYMBOL(tcp_check_req); | 714 | EXPORT_SYMBOL(tcp_check_req); |
714 | EXPORT_SYMBOL(tcp_child_process); | 715 | EXPORT_SYMBOL(tcp_child_process); |
715 | EXPORT_SYMBOL(tcp_create_openreq_child); | 716 | EXPORT_SYMBOL(tcp_create_openreq_child); |
716 | EXPORT_SYMBOL(tcp_timewait_state_process); | 717 | EXPORT_SYMBOL(tcp_timewait_state_process); |
717 | 718 |