Commit 6d8133919bac4270883b24328500875a49e71b36

Authored by Paul E. McKenney
Committed by Paul E. McKenney
1 parent dabb8aa960

rcu: Document why rcu_blocking_is_gp() is safe

The rcu_blocking_is_gp() function tests to see if there is only one
online CPU, and if so, synchronize_sched() and friends become no-ops.
However, for larger systems, num_online_cpus() scans a large vector,
and might be preempted while doing so.  While preempted, any number
of CPUs might come online and go offline, potentially resulting in
num_online_cpus() returning 1 when there never had only been one
CPU online.  This could result in a too-short RCU grace period, which
could in turn result in total failure, except that the only way that
the grace period is too short is if there is an RCU read-side critical
section spanning it.  For RCU-sched and RCU-bh (which are the only
cases using rcu_blocking_is_gp()), RCU read-side critical sections
have either preemption or bh disabled, which prevents CPUs from going
offline.  This in turn prevents actual failures from occurring.

This commit therefore adds a large block comment to rcu_blocking_is_gp()
documenting why it is safe.  This commit also moves rcu_blocking_is_gp()
into kernel/rcutree.c, which should help prevent unwary developers from
mistaking it for a generally useful function.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>

Showing 2 changed files with 32 additions and 7 deletions Inline Diff

include/linux/rcutree.h
1 /* 1 /*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * 3 *
4 * This program is free software; you can redistribute it and/or modify 4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by 5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or 6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version. 7 * (at your option) any later version.
8 * 8 *
9 * This program is distributed in the hope that it will be useful, 9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details. 12 * GNU General Public License for more details.
13 * 13 *
14 * You should have received a copy of the GNU General Public License 14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software 15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 * 17 *
18 * Copyright IBM Corporation, 2008 18 * Copyright IBM Corporation, 2008
19 * 19 *
20 * Author: Dipankar Sarma <dipankar@in.ibm.com> 20 * Author: Dipankar Sarma <dipankar@in.ibm.com>
21 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical algorithm 21 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical algorithm
22 * 22 *
23 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 23 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
24 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 24 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
25 * 25 *
26 * For detailed explanation of Read-Copy Update mechanism see - 26 * For detailed explanation of Read-Copy Update mechanism see -
27 * Documentation/RCU 27 * Documentation/RCU
28 */ 28 */
29 29
30 #ifndef __LINUX_RCUTREE_H 30 #ifndef __LINUX_RCUTREE_H
31 #define __LINUX_RCUTREE_H 31 #define __LINUX_RCUTREE_H
32 32
33 extern void rcu_init(void); 33 extern void rcu_init(void);
34 extern void rcu_note_context_switch(int cpu); 34 extern void rcu_note_context_switch(int cpu);
35 extern int rcu_needs_cpu(int cpu); 35 extern int rcu_needs_cpu(int cpu);
36 extern void rcu_cpu_stall_reset(void); 36 extern void rcu_cpu_stall_reset(void);
37 37
38 /* 38 /*
39 * Note a virtualization-based context switch. This is simply a 39 * Note a virtualization-based context switch. This is simply a
40 * wrapper around rcu_note_context_switch(), which allows TINY_RCU 40 * wrapper around rcu_note_context_switch(), which allows TINY_RCU
41 * to save a few bytes. 41 * to save a few bytes.
42 */ 42 */
43 static inline void rcu_virt_note_context_switch(int cpu) 43 static inline void rcu_virt_note_context_switch(int cpu)
44 { 44 {
45 rcu_note_context_switch(cpu); 45 rcu_note_context_switch(cpu);
46 } 46 }
47 47
48 #ifdef CONFIG_TREE_PREEMPT_RCU 48 #ifdef CONFIG_TREE_PREEMPT_RCU
49 49
50 extern void exit_rcu(void); 50 extern void exit_rcu(void);
51 51
52 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 52 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
53 53
54 static inline void exit_rcu(void) 54 static inline void exit_rcu(void)
55 { 55 {
56 } 56 }
57 57
58 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */ 58 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
59 59
60 extern void synchronize_rcu_bh(void); 60 extern void synchronize_rcu_bh(void);
61 extern void synchronize_sched_expedited(void); 61 extern void synchronize_sched_expedited(void);
62 extern void synchronize_rcu_expedited(void); 62 extern void synchronize_rcu_expedited(void);
63 63
64 void kfree_call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu)); 64 void kfree_call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu));
65 65
66 /** 66 /**
67 * synchronize_rcu_bh_expedited - Brute-force RCU-bh grace period 67 * synchronize_rcu_bh_expedited - Brute-force RCU-bh grace period
68 * 68 *
69 * Wait for an RCU-bh grace period to elapse, but use a "big hammer" 69 * Wait for an RCU-bh grace period to elapse, but use a "big hammer"
70 * approach to force the grace period to end quickly. This consumes 70 * approach to force the grace period to end quickly. This consumes
71 * significant time on all CPUs and is unfriendly to real-time workloads, 71 * significant time on all CPUs and is unfriendly to real-time workloads,
72 * so is thus not recommended for any sort of common-case code. In fact, 72 * so is thus not recommended for any sort of common-case code. In fact,
73 * if you are using synchronize_rcu_bh_expedited() in a loop, please 73 * if you are using synchronize_rcu_bh_expedited() in a loop, please
74 * restructure your code to batch your updates, and then use a single 74 * restructure your code to batch your updates, and then use a single
75 * synchronize_rcu_bh() instead. 75 * synchronize_rcu_bh() instead.
76 * 76 *
77 * Note that it is illegal to call this function while holding any lock 77 * Note that it is illegal to call this function while holding any lock
78 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal 78 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
79 * to call this function from a CPU-hotplug notifier. Failing to observe 79 * to call this function from a CPU-hotplug notifier. Failing to observe
80 * these restriction will result in deadlock. 80 * these restriction will result in deadlock.
81 */ 81 */
82 static inline void synchronize_rcu_bh_expedited(void) 82 static inline void synchronize_rcu_bh_expedited(void)
83 { 83 {
84 synchronize_sched_expedited(); 84 synchronize_sched_expedited();
85 } 85 }
86 86
87 extern void rcu_barrier(void); 87 extern void rcu_barrier(void);
88 extern void rcu_barrier_bh(void); 88 extern void rcu_barrier_bh(void);
89 extern void rcu_barrier_sched(void); 89 extern void rcu_barrier_sched(void);
90 90
91 extern unsigned long rcutorture_testseq; 91 extern unsigned long rcutorture_testseq;
92 extern unsigned long rcutorture_vernum; 92 extern unsigned long rcutorture_vernum;
93 extern long rcu_batches_completed(void); 93 extern long rcu_batches_completed(void);
94 extern long rcu_batches_completed_bh(void); 94 extern long rcu_batches_completed_bh(void);
95 extern long rcu_batches_completed_sched(void); 95 extern long rcu_batches_completed_sched(void);
96 96
97 extern void rcu_force_quiescent_state(void); 97 extern void rcu_force_quiescent_state(void);
98 extern void rcu_bh_force_quiescent_state(void); 98 extern void rcu_bh_force_quiescent_state(void);
99 extern void rcu_sched_force_quiescent_state(void); 99 extern void rcu_sched_force_quiescent_state(void);
100 100
101 /* A context switch is a grace period for RCU-sched and RCU-bh. */
102 static inline int rcu_blocking_is_gp(void)
103 {
104 might_sleep(); /* Check for RCU read-side critical section. */
105 return num_online_cpus() == 1;
106 }
107
108 extern void rcu_scheduler_starting(void); 101 extern void rcu_scheduler_starting(void);
109 extern int rcu_scheduler_active __read_mostly; 102 extern int rcu_scheduler_active __read_mostly;
110 103
111 #endif /* __LINUX_RCUTREE_H */ 104 #endif /* __LINUX_RCUTREE_H */
112 105
1 /* 1 /*
2 * Read-Copy Update mechanism for mutual exclusion 2 * Read-Copy Update mechanism for mutual exclusion
3 * 3 *
4 * This program is free software; you can redistribute it and/or modify 4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by 5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or 6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version. 7 * (at your option) any later version.
8 * 8 *
9 * This program is distributed in the hope that it will be useful, 9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details. 12 * GNU General Public License for more details.
13 * 13 *
14 * You should have received a copy of the GNU General Public License 14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software 15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 * 17 *
18 * Copyright IBM Corporation, 2008 18 * Copyright IBM Corporation, 2008
19 * 19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com> 21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version 22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 * 23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 * 26 *
27 * For detailed explanation of Read-Copy Update mechanism see - 27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU 28 * Documentation/RCU
29 */ 29 */
30 #include <linux/types.h> 30 #include <linux/types.h>
31 #include <linux/kernel.h> 31 #include <linux/kernel.h>
32 #include <linux/init.h> 32 #include <linux/init.h>
33 #include <linux/spinlock.h> 33 #include <linux/spinlock.h>
34 #include <linux/smp.h> 34 #include <linux/smp.h>
35 #include <linux/rcupdate.h> 35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h> 36 #include <linux/interrupt.h>
37 #include <linux/sched.h> 37 #include <linux/sched.h>
38 #include <linux/nmi.h> 38 #include <linux/nmi.h>
39 #include <linux/atomic.h> 39 #include <linux/atomic.h>
40 #include <linux/bitops.h> 40 #include <linux/bitops.h>
41 #include <linux/export.h> 41 #include <linux/export.h>
42 #include <linux/completion.h> 42 #include <linux/completion.h>
43 #include <linux/moduleparam.h> 43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h> 44 #include <linux/percpu.h>
45 #include <linux/notifier.h> 45 #include <linux/notifier.h>
46 #include <linux/cpu.h> 46 #include <linux/cpu.h>
47 #include <linux/mutex.h> 47 #include <linux/mutex.h>
48 #include <linux/time.h> 48 #include <linux/time.h>
49 #include <linux/kernel_stat.h> 49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h> 50 #include <linux/wait.h>
51 #include <linux/kthread.h> 51 #include <linux/kthread.h>
52 #include <linux/prefetch.h> 52 #include <linux/prefetch.h>
53 #include <linux/delay.h> 53 #include <linux/delay.h>
54 #include <linux/stop_machine.h> 54 #include <linux/stop_machine.h>
55 55
56 #include "rcutree.h" 56 #include "rcutree.h"
57 #include <trace/events/rcu.h> 57 #include <trace/events/rcu.h>
58 58
59 #include "rcu.h" 59 #include "rcu.h"
60 60
61 /* Data structures. */ 61 /* Data structures. */
62 62
63 static struct lock_class_key rcu_node_class[NUM_RCU_LVLS]; 63 static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
64 64
65 #define RCU_STATE_INITIALIZER(structname) { \ 65 #define RCU_STATE_INITIALIZER(structname) { \
66 .level = { &structname##_state.node[0] }, \ 66 .level = { &structname##_state.node[0] }, \
67 .levelcnt = { \ 67 .levelcnt = { \
68 NUM_RCU_LVL_0, /* root of hierarchy. */ \ 68 NUM_RCU_LVL_0, /* root of hierarchy. */ \
69 NUM_RCU_LVL_1, \ 69 NUM_RCU_LVL_1, \
70 NUM_RCU_LVL_2, \ 70 NUM_RCU_LVL_2, \
71 NUM_RCU_LVL_3, \ 71 NUM_RCU_LVL_3, \
72 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \ 72 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
73 }, \ 73 }, \
74 .fqs_state = RCU_GP_IDLE, \ 74 .fqs_state = RCU_GP_IDLE, \
75 .gpnum = -300, \ 75 .gpnum = -300, \
76 .completed = -300, \ 76 .completed = -300, \
77 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \ 77 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \
78 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \ 78 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \
79 .n_force_qs = 0, \ 79 .n_force_qs = 0, \
80 .n_force_qs_ngp = 0, \ 80 .n_force_qs_ngp = 0, \
81 .name = #structname, \ 81 .name = #structname, \
82 } 82 }
83 83
84 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched); 84 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched);
85 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data); 85 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
86 86
87 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh); 87 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh);
88 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data); 88 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
89 89
90 static struct rcu_state *rcu_state; 90 static struct rcu_state *rcu_state;
91 91
92 /* 92 /*
93 * The rcu_scheduler_active variable transitions from zero to one just 93 * The rcu_scheduler_active variable transitions from zero to one just
94 * before the first task is spawned. So when this variable is zero, RCU 94 * before the first task is spawned. So when this variable is zero, RCU
95 * can assume that there is but one task, allowing RCU to (for example) 95 * can assume that there is but one task, allowing RCU to (for example)
96 * optimized synchronize_sched() to a simple barrier(). When this variable 96 * optimized synchronize_sched() to a simple barrier(). When this variable
97 * is one, RCU must actually do all the hard work required to detect real 97 * is one, RCU must actually do all the hard work required to detect real
98 * grace periods. This variable is also used to suppress boot-time false 98 * grace periods. This variable is also used to suppress boot-time false
99 * positives from lockdep-RCU error checking. 99 * positives from lockdep-RCU error checking.
100 */ 100 */
101 int rcu_scheduler_active __read_mostly; 101 int rcu_scheduler_active __read_mostly;
102 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 102 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
103 103
104 /* 104 /*
105 * The rcu_scheduler_fully_active variable transitions from zero to one 105 * The rcu_scheduler_fully_active variable transitions from zero to one
106 * during the early_initcall() processing, which is after the scheduler 106 * during the early_initcall() processing, which is after the scheduler
107 * is capable of creating new tasks. So RCU processing (for example, 107 * is capable of creating new tasks. So RCU processing (for example,
108 * creating tasks for RCU priority boosting) must be delayed until after 108 * creating tasks for RCU priority boosting) must be delayed until after
109 * rcu_scheduler_fully_active transitions from zero to one. We also 109 * rcu_scheduler_fully_active transitions from zero to one. We also
110 * currently delay invocation of any RCU callbacks until after this point. 110 * currently delay invocation of any RCU callbacks until after this point.
111 * 111 *
112 * It might later prove better for people registering RCU callbacks during 112 * It might later prove better for people registering RCU callbacks during
113 * early boot to take responsibility for these callbacks, but one step at 113 * early boot to take responsibility for these callbacks, but one step at
114 * a time. 114 * a time.
115 */ 115 */
116 static int rcu_scheduler_fully_active __read_mostly; 116 static int rcu_scheduler_fully_active __read_mostly;
117 117
118 #ifdef CONFIG_RCU_BOOST 118 #ifdef CONFIG_RCU_BOOST
119 119
120 /* 120 /*
121 * Control variables for per-CPU and per-rcu_node kthreads. These 121 * Control variables for per-CPU and per-rcu_node kthreads. These
122 * handle all flavors of RCU. 122 * handle all flavors of RCU.
123 */ 123 */
124 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task); 124 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
125 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status); 125 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
126 DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu); 126 DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
127 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops); 127 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
128 DEFINE_PER_CPU(char, rcu_cpu_has_work); 128 DEFINE_PER_CPU(char, rcu_cpu_has_work);
129 129
130 #endif /* #ifdef CONFIG_RCU_BOOST */ 130 #endif /* #ifdef CONFIG_RCU_BOOST */
131 131
132 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 132 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
133 static void invoke_rcu_core(void); 133 static void invoke_rcu_core(void);
134 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp); 134 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
135 135
136 /* 136 /*
137 * Track the rcutorture test sequence number and the update version 137 * Track the rcutorture test sequence number and the update version
138 * number within a given test. The rcutorture_testseq is incremented 138 * number within a given test. The rcutorture_testseq is incremented
139 * on every rcutorture module load and unload, so has an odd value 139 * on every rcutorture module load and unload, so has an odd value
140 * when a test is running. The rcutorture_vernum is set to zero 140 * when a test is running. The rcutorture_vernum is set to zero
141 * when rcutorture starts and is incremented on each rcutorture update. 141 * when rcutorture starts and is incremented on each rcutorture update.
142 * These variables enable correlating rcutorture output with the 142 * These variables enable correlating rcutorture output with the
143 * RCU tracing information. 143 * RCU tracing information.
144 */ 144 */
145 unsigned long rcutorture_testseq; 145 unsigned long rcutorture_testseq;
146 unsigned long rcutorture_vernum; 146 unsigned long rcutorture_vernum;
147 147
148 /* 148 /*
149 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s 149 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
150 * permit this function to be invoked without holding the root rcu_node 150 * permit this function to be invoked without holding the root rcu_node
151 * structure's ->lock, but of course results can be subject to change. 151 * structure's ->lock, but of course results can be subject to change.
152 */ 152 */
153 static int rcu_gp_in_progress(struct rcu_state *rsp) 153 static int rcu_gp_in_progress(struct rcu_state *rsp)
154 { 154 {
155 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum); 155 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
156 } 156 }
157 157
158 /* 158 /*
159 * Note a quiescent state. Because we do not need to know 159 * Note a quiescent state. Because we do not need to know
160 * how many quiescent states passed, just if there was at least 160 * how many quiescent states passed, just if there was at least
161 * one since the start of the grace period, this just sets a flag. 161 * one since the start of the grace period, this just sets a flag.
162 * The caller must have disabled preemption. 162 * The caller must have disabled preemption.
163 */ 163 */
164 void rcu_sched_qs(int cpu) 164 void rcu_sched_qs(int cpu)
165 { 165 {
166 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu); 166 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
167 167
168 rdp->passed_quiesce_gpnum = rdp->gpnum; 168 rdp->passed_quiesce_gpnum = rdp->gpnum;
169 barrier(); 169 barrier();
170 if (rdp->passed_quiesce == 0) 170 if (rdp->passed_quiesce == 0)
171 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs"); 171 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
172 rdp->passed_quiesce = 1; 172 rdp->passed_quiesce = 1;
173 } 173 }
174 174
175 void rcu_bh_qs(int cpu) 175 void rcu_bh_qs(int cpu)
176 { 176 {
177 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu); 177 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
178 178
179 rdp->passed_quiesce_gpnum = rdp->gpnum; 179 rdp->passed_quiesce_gpnum = rdp->gpnum;
180 barrier(); 180 barrier();
181 if (rdp->passed_quiesce == 0) 181 if (rdp->passed_quiesce == 0)
182 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs"); 182 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
183 rdp->passed_quiesce = 1; 183 rdp->passed_quiesce = 1;
184 } 184 }
185 185
186 /* 186 /*
187 * Note a context switch. This is a quiescent state for RCU-sched, 187 * Note a context switch. This is a quiescent state for RCU-sched,
188 * and requires special handling for preemptible RCU. 188 * and requires special handling for preemptible RCU.
189 * The caller must have disabled preemption. 189 * The caller must have disabled preemption.
190 */ 190 */
191 void rcu_note_context_switch(int cpu) 191 void rcu_note_context_switch(int cpu)
192 { 192 {
193 trace_rcu_utilization("Start context switch"); 193 trace_rcu_utilization("Start context switch");
194 rcu_sched_qs(cpu); 194 rcu_sched_qs(cpu);
195 rcu_preempt_note_context_switch(cpu); 195 rcu_preempt_note_context_switch(cpu);
196 trace_rcu_utilization("End context switch"); 196 trace_rcu_utilization("End context switch");
197 } 197 }
198 EXPORT_SYMBOL_GPL(rcu_note_context_switch); 198 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
199 199
200 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = { 200 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
201 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE, 201 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
202 .dynticks = ATOMIC_INIT(1), 202 .dynticks = ATOMIC_INIT(1),
203 }; 203 };
204 204
205 static int blimit = 10; /* Maximum callbacks per rcu_do_batch. */ 205 static int blimit = 10; /* Maximum callbacks per rcu_do_batch. */
206 static int qhimark = 10000; /* If this many pending, ignore blimit. */ 206 static int qhimark = 10000; /* If this many pending, ignore blimit. */
207 static int qlowmark = 100; /* Once only this many pending, use blimit. */ 207 static int qlowmark = 100; /* Once only this many pending, use blimit. */
208 208
209 module_param(blimit, int, 0); 209 module_param(blimit, int, 0);
210 module_param(qhimark, int, 0); 210 module_param(qhimark, int, 0);
211 module_param(qlowmark, int, 0); 211 module_param(qlowmark, int, 0);
212 212
213 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */ 213 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
214 int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT; 214 int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
215 215
216 module_param(rcu_cpu_stall_suppress, int, 0644); 216 module_param(rcu_cpu_stall_suppress, int, 0644);
217 module_param(rcu_cpu_stall_timeout, int, 0644); 217 module_param(rcu_cpu_stall_timeout, int, 0644);
218 218
219 static void force_quiescent_state(struct rcu_state *rsp, int relaxed); 219 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
220 static int rcu_pending(int cpu); 220 static int rcu_pending(int cpu);
221 221
222 /* 222 /*
223 * Return the number of RCU-sched batches processed thus far for debug & stats. 223 * Return the number of RCU-sched batches processed thus far for debug & stats.
224 */ 224 */
225 long rcu_batches_completed_sched(void) 225 long rcu_batches_completed_sched(void)
226 { 226 {
227 return rcu_sched_state.completed; 227 return rcu_sched_state.completed;
228 } 228 }
229 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched); 229 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
230 230
231 /* 231 /*
232 * Return the number of RCU BH batches processed thus far for debug & stats. 232 * Return the number of RCU BH batches processed thus far for debug & stats.
233 */ 233 */
234 long rcu_batches_completed_bh(void) 234 long rcu_batches_completed_bh(void)
235 { 235 {
236 return rcu_bh_state.completed; 236 return rcu_bh_state.completed;
237 } 237 }
238 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh); 238 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
239 239
240 /* 240 /*
241 * Force a quiescent state for RCU BH. 241 * Force a quiescent state for RCU BH.
242 */ 242 */
243 void rcu_bh_force_quiescent_state(void) 243 void rcu_bh_force_quiescent_state(void)
244 { 244 {
245 force_quiescent_state(&rcu_bh_state, 0); 245 force_quiescent_state(&rcu_bh_state, 0);
246 } 246 }
247 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state); 247 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
248 248
249 /* 249 /*
250 * Record the number of times rcutorture tests have been initiated and 250 * Record the number of times rcutorture tests have been initiated and
251 * terminated. This information allows the debugfs tracing stats to be 251 * terminated. This information allows the debugfs tracing stats to be
252 * correlated to the rcutorture messages, even when the rcutorture module 252 * correlated to the rcutorture messages, even when the rcutorture module
253 * is being repeatedly loaded and unloaded. In other words, we cannot 253 * is being repeatedly loaded and unloaded. In other words, we cannot
254 * store this state in rcutorture itself. 254 * store this state in rcutorture itself.
255 */ 255 */
256 void rcutorture_record_test_transition(void) 256 void rcutorture_record_test_transition(void)
257 { 257 {
258 rcutorture_testseq++; 258 rcutorture_testseq++;
259 rcutorture_vernum = 0; 259 rcutorture_vernum = 0;
260 } 260 }
261 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition); 261 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
262 262
263 /* 263 /*
264 * Record the number of writer passes through the current rcutorture test. 264 * Record the number of writer passes through the current rcutorture test.
265 * This is also used to correlate debugfs tracing stats with the rcutorture 265 * This is also used to correlate debugfs tracing stats with the rcutorture
266 * messages. 266 * messages.
267 */ 267 */
268 void rcutorture_record_progress(unsigned long vernum) 268 void rcutorture_record_progress(unsigned long vernum)
269 { 269 {
270 rcutorture_vernum++; 270 rcutorture_vernum++;
271 } 271 }
272 EXPORT_SYMBOL_GPL(rcutorture_record_progress); 272 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
273 273
274 /* 274 /*
275 * Force a quiescent state for RCU-sched. 275 * Force a quiescent state for RCU-sched.
276 */ 276 */
277 void rcu_sched_force_quiescent_state(void) 277 void rcu_sched_force_quiescent_state(void)
278 { 278 {
279 force_quiescent_state(&rcu_sched_state, 0); 279 force_quiescent_state(&rcu_sched_state, 0);
280 } 280 }
281 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state); 281 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
282 282
283 /* 283 /*
284 * Does the CPU have callbacks ready to be invoked? 284 * Does the CPU have callbacks ready to be invoked?
285 */ 285 */
286 static int 286 static int
287 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp) 287 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
288 { 288 {
289 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL]; 289 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
290 } 290 }
291 291
292 /* 292 /*
293 * Does the current CPU require a yet-as-unscheduled grace period? 293 * Does the current CPU require a yet-as-unscheduled grace period?
294 */ 294 */
295 static int 295 static int
296 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp) 296 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
297 { 297 {
298 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp); 298 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
299 } 299 }
300 300
301 /* 301 /*
302 * Return the root node of the specified rcu_state structure. 302 * Return the root node of the specified rcu_state structure.
303 */ 303 */
304 static struct rcu_node *rcu_get_root(struct rcu_state *rsp) 304 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
305 { 305 {
306 return &rsp->node[0]; 306 return &rsp->node[0];
307 } 307 }
308 308
309 /* 309 /*
310 * If the specified CPU is offline, tell the caller that it is in 310 * If the specified CPU is offline, tell the caller that it is in
311 * a quiescent state. Otherwise, whack it with a reschedule IPI. 311 * a quiescent state. Otherwise, whack it with a reschedule IPI.
312 * Grace periods can end up waiting on an offline CPU when that 312 * Grace periods can end up waiting on an offline CPU when that
313 * CPU is in the process of coming online -- it will be added to the 313 * CPU is in the process of coming online -- it will be added to the
314 * rcu_node bitmasks before it actually makes it online. The same thing 314 * rcu_node bitmasks before it actually makes it online. The same thing
315 * can happen while a CPU is in the process of coming online. Because this 315 * can happen while a CPU is in the process of coming online. Because this
316 * race is quite rare, we check for it after detecting that the grace 316 * race is quite rare, we check for it after detecting that the grace
317 * period has been delayed rather than checking each and every CPU 317 * period has been delayed rather than checking each and every CPU
318 * each and every time we start a new grace period. 318 * each and every time we start a new grace period.
319 */ 319 */
320 static int rcu_implicit_offline_qs(struct rcu_data *rdp) 320 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
321 { 321 {
322 /* 322 /*
323 * If the CPU is offline for more than a jiffy, it is in a quiescent 323 * If the CPU is offline for more than a jiffy, it is in a quiescent
324 * state. We can trust its state not to change because interrupts 324 * state. We can trust its state not to change because interrupts
325 * are disabled. The reason for the jiffy's worth of slack is to 325 * are disabled. The reason for the jiffy's worth of slack is to
326 * handle CPUs initializing on the way up and finding their way 326 * handle CPUs initializing on the way up and finding their way
327 * to the idle loop on the way down. 327 * to the idle loop on the way down.
328 */ 328 */
329 if (cpu_is_offline(rdp->cpu) && 329 if (cpu_is_offline(rdp->cpu) &&
330 ULONG_CMP_LT(rdp->rsp->gp_start + 2, jiffies)) { 330 ULONG_CMP_LT(rdp->rsp->gp_start + 2, jiffies)) {
331 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl"); 331 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
332 rdp->offline_fqs++; 332 rdp->offline_fqs++;
333 return 1; 333 return 1;
334 } 334 }
335 return 0; 335 return 0;
336 } 336 }
337 337
338 /* 338 /*
339 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle 339 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
340 * 340 *
341 * If the new value of the ->dynticks_nesting counter now is zero, 341 * If the new value of the ->dynticks_nesting counter now is zero,
342 * we really have entered idle, and must do the appropriate accounting. 342 * we really have entered idle, and must do the appropriate accounting.
343 * The caller must have disabled interrupts. 343 * The caller must have disabled interrupts.
344 */ 344 */
345 static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval) 345 static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
346 { 346 {
347 trace_rcu_dyntick("Start", oldval, 0); 347 trace_rcu_dyntick("Start", oldval, 0);
348 if (!is_idle_task(current)) { 348 if (!is_idle_task(current)) {
349 struct task_struct *idle = idle_task(smp_processor_id()); 349 struct task_struct *idle = idle_task(smp_processor_id());
350 350
351 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0); 351 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
352 ftrace_dump(DUMP_ALL); 352 ftrace_dump(DUMP_ALL);
353 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", 353 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
354 current->pid, current->comm, 354 current->pid, current->comm,
355 idle->pid, idle->comm); /* must be idle task! */ 355 idle->pid, idle->comm); /* must be idle task! */
356 } 356 }
357 rcu_prepare_for_idle(smp_processor_id()); 357 rcu_prepare_for_idle(smp_processor_id());
358 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */ 358 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
359 smp_mb__before_atomic_inc(); /* See above. */ 359 smp_mb__before_atomic_inc(); /* See above. */
360 atomic_inc(&rdtp->dynticks); 360 atomic_inc(&rdtp->dynticks);
361 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */ 361 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
362 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1); 362 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
363 363
364 /* 364 /*
365 * The idle task is not permitted to enter the idle loop while 365 * The idle task is not permitted to enter the idle loop while
366 * in an RCU read-side critical section. 366 * in an RCU read-side critical section.
367 */ 367 */
368 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map), 368 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
369 "Illegal idle entry in RCU read-side critical section."); 369 "Illegal idle entry in RCU read-side critical section.");
370 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), 370 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
371 "Illegal idle entry in RCU-bh read-side critical section."); 371 "Illegal idle entry in RCU-bh read-side critical section.");
372 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), 372 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
373 "Illegal idle entry in RCU-sched read-side critical section."); 373 "Illegal idle entry in RCU-sched read-side critical section.");
374 } 374 }
375 375
376 /** 376 /**
377 * rcu_idle_enter - inform RCU that current CPU is entering idle 377 * rcu_idle_enter - inform RCU that current CPU is entering idle
378 * 378 *
379 * Enter idle mode, in other words, -leave- the mode in which RCU 379 * Enter idle mode, in other words, -leave- the mode in which RCU
380 * read-side critical sections can occur. (Though RCU read-side 380 * read-side critical sections can occur. (Though RCU read-side
381 * critical sections can occur in irq handlers in idle, a possibility 381 * critical sections can occur in irq handlers in idle, a possibility
382 * handled by irq_enter() and irq_exit().) 382 * handled by irq_enter() and irq_exit().)
383 * 383 *
384 * We crowbar the ->dynticks_nesting field to zero to allow for 384 * We crowbar the ->dynticks_nesting field to zero to allow for
385 * the possibility of usermode upcalls having messed up our count 385 * the possibility of usermode upcalls having messed up our count
386 * of interrupt nesting level during the prior busy period. 386 * of interrupt nesting level during the prior busy period.
387 */ 387 */
388 void rcu_idle_enter(void) 388 void rcu_idle_enter(void)
389 { 389 {
390 unsigned long flags; 390 unsigned long flags;
391 long long oldval; 391 long long oldval;
392 struct rcu_dynticks *rdtp; 392 struct rcu_dynticks *rdtp;
393 393
394 local_irq_save(flags); 394 local_irq_save(flags);
395 rdtp = &__get_cpu_var(rcu_dynticks); 395 rdtp = &__get_cpu_var(rcu_dynticks);
396 oldval = rdtp->dynticks_nesting; 396 oldval = rdtp->dynticks_nesting;
397 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0); 397 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
398 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) 398 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
399 rdtp->dynticks_nesting = 0; 399 rdtp->dynticks_nesting = 0;
400 else 400 else
401 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE; 401 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
402 rcu_idle_enter_common(rdtp, oldval); 402 rcu_idle_enter_common(rdtp, oldval);
403 local_irq_restore(flags); 403 local_irq_restore(flags);
404 } 404 }
405 EXPORT_SYMBOL_GPL(rcu_idle_enter); 405 EXPORT_SYMBOL_GPL(rcu_idle_enter);
406 406
407 /** 407 /**
408 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle 408 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
409 * 409 *
410 * Exit from an interrupt handler, which might possibly result in entering 410 * Exit from an interrupt handler, which might possibly result in entering
411 * idle mode, in other words, leaving the mode in which read-side critical 411 * idle mode, in other words, leaving the mode in which read-side critical
412 * sections can occur. 412 * sections can occur.
413 * 413 *
414 * This code assumes that the idle loop never does anything that might 414 * This code assumes that the idle loop never does anything that might
415 * result in unbalanced calls to irq_enter() and irq_exit(). If your 415 * result in unbalanced calls to irq_enter() and irq_exit(). If your
416 * architecture violates this assumption, RCU will give you what you 416 * architecture violates this assumption, RCU will give you what you
417 * deserve, good and hard. But very infrequently and irreproducibly. 417 * deserve, good and hard. But very infrequently and irreproducibly.
418 * 418 *
419 * Use things like work queues to work around this limitation. 419 * Use things like work queues to work around this limitation.
420 * 420 *
421 * You have been warned. 421 * You have been warned.
422 */ 422 */
423 void rcu_irq_exit(void) 423 void rcu_irq_exit(void)
424 { 424 {
425 unsigned long flags; 425 unsigned long flags;
426 long long oldval; 426 long long oldval;
427 struct rcu_dynticks *rdtp; 427 struct rcu_dynticks *rdtp;
428 428
429 local_irq_save(flags); 429 local_irq_save(flags);
430 rdtp = &__get_cpu_var(rcu_dynticks); 430 rdtp = &__get_cpu_var(rcu_dynticks);
431 oldval = rdtp->dynticks_nesting; 431 oldval = rdtp->dynticks_nesting;
432 rdtp->dynticks_nesting--; 432 rdtp->dynticks_nesting--;
433 WARN_ON_ONCE(rdtp->dynticks_nesting < 0); 433 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
434 if (rdtp->dynticks_nesting) 434 if (rdtp->dynticks_nesting)
435 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting); 435 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
436 else 436 else
437 rcu_idle_enter_common(rdtp, oldval); 437 rcu_idle_enter_common(rdtp, oldval);
438 local_irq_restore(flags); 438 local_irq_restore(flags);
439 } 439 }
440 440
441 /* 441 /*
442 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle 442 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
443 * 443 *
444 * If the new value of the ->dynticks_nesting counter was previously zero, 444 * If the new value of the ->dynticks_nesting counter was previously zero,
445 * we really have exited idle, and must do the appropriate accounting. 445 * we really have exited idle, and must do the appropriate accounting.
446 * The caller must have disabled interrupts. 446 * The caller must have disabled interrupts.
447 */ 447 */
448 static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval) 448 static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
449 { 449 {
450 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */ 450 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
451 atomic_inc(&rdtp->dynticks); 451 atomic_inc(&rdtp->dynticks);
452 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */ 452 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
453 smp_mb__after_atomic_inc(); /* See above. */ 453 smp_mb__after_atomic_inc(); /* See above. */
454 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1)); 454 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
455 rcu_cleanup_after_idle(smp_processor_id()); 455 rcu_cleanup_after_idle(smp_processor_id());
456 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting); 456 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
457 if (!is_idle_task(current)) { 457 if (!is_idle_task(current)) {
458 struct task_struct *idle = idle_task(smp_processor_id()); 458 struct task_struct *idle = idle_task(smp_processor_id());
459 459
460 trace_rcu_dyntick("Error on exit: not idle task", 460 trace_rcu_dyntick("Error on exit: not idle task",
461 oldval, rdtp->dynticks_nesting); 461 oldval, rdtp->dynticks_nesting);
462 ftrace_dump(DUMP_ALL); 462 ftrace_dump(DUMP_ALL);
463 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", 463 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
464 current->pid, current->comm, 464 current->pid, current->comm,
465 idle->pid, idle->comm); /* must be idle task! */ 465 idle->pid, idle->comm); /* must be idle task! */
466 } 466 }
467 } 467 }
468 468
469 /** 469 /**
470 * rcu_idle_exit - inform RCU that current CPU is leaving idle 470 * rcu_idle_exit - inform RCU that current CPU is leaving idle
471 * 471 *
472 * Exit idle mode, in other words, -enter- the mode in which RCU 472 * Exit idle mode, in other words, -enter- the mode in which RCU
473 * read-side critical sections can occur. 473 * read-side critical sections can occur.
474 * 474 *
475 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to 475 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
476 * allow for the possibility of usermode upcalls messing up our count 476 * allow for the possibility of usermode upcalls messing up our count
477 * of interrupt nesting level during the busy period that is just 477 * of interrupt nesting level during the busy period that is just
478 * now starting. 478 * now starting.
479 */ 479 */
480 void rcu_idle_exit(void) 480 void rcu_idle_exit(void)
481 { 481 {
482 unsigned long flags; 482 unsigned long flags;
483 struct rcu_dynticks *rdtp; 483 struct rcu_dynticks *rdtp;
484 long long oldval; 484 long long oldval;
485 485
486 local_irq_save(flags); 486 local_irq_save(flags);
487 rdtp = &__get_cpu_var(rcu_dynticks); 487 rdtp = &__get_cpu_var(rcu_dynticks);
488 oldval = rdtp->dynticks_nesting; 488 oldval = rdtp->dynticks_nesting;
489 WARN_ON_ONCE(oldval < 0); 489 WARN_ON_ONCE(oldval < 0);
490 if (oldval & DYNTICK_TASK_NEST_MASK) 490 if (oldval & DYNTICK_TASK_NEST_MASK)
491 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE; 491 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
492 else 492 else
493 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; 493 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
494 rcu_idle_exit_common(rdtp, oldval); 494 rcu_idle_exit_common(rdtp, oldval);
495 local_irq_restore(flags); 495 local_irq_restore(flags);
496 } 496 }
497 EXPORT_SYMBOL_GPL(rcu_idle_exit); 497 EXPORT_SYMBOL_GPL(rcu_idle_exit);
498 498
499 /** 499 /**
500 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle 500 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
501 * 501 *
502 * Enter an interrupt handler, which might possibly result in exiting 502 * Enter an interrupt handler, which might possibly result in exiting
503 * idle mode, in other words, entering the mode in which read-side critical 503 * idle mode, in other words, entering the mode in which read-side critical
504 * sections can occur. 504 * sections can occur.
505 * 505 *
506 * Note that the Linux kernel is fully capable of entering an interrupt 506 * Note that the Linux kernel is fully capable of entering an interrupt
507 * handler that it never exits, for example when doing upcalls to 507 * handler that it never exits, for example when doing upcalls to
508 * user mode! This code assumes that the idle loop never does upcalls to 508 * user mode! This code assumes that the idle loop never does upcalls to
509 * user mode. If your architecture does do upcalls from the idle loop (or 509 * user mode. If your architecture does do upcalls from the idle loop (or
510 * does anything else that results in unbalanced calls to the irq_enter() 510 * does anything else that results in unbalanced calls to the irq_enter()
511 * and irq_exit() functions), RCU will give you what you deserve, good 511 * and irq_exit() functions), RCU will give you what you deserve, good
512 * and hard. But very infrequently and irreproducibly. 512 * and hard. But very infrequently and irreproducibly.
513 * 513 *
514 * Use things like work queues to work around this limitation. 514 * Use things like work queues to work around this limitation.
515 * 515 *
516 * You have been warned. 516 * You have been warned.
517 */ 517 */
518 void rcu_irq_enter(void) 518 void rcu_irq_enter(void)
519 { 519 {
520 unsigned long flags; 520 unsigned long flags;
521 struct rcu_dynticks *rdtp; 521 struct rcu_dynticks *rdtp;
522 long long oldval; 522 long long oldval;
523 523
524 local_irq_save(flags); 524 local_irq_save(flags);
525 rdtp = &__get_cpu_var(rcu_dynticks); 525 rdtp = &__get_cpu_var(rcu_dynticks);
526 oldval = rdtp->dynticks_nesting; 526 oldval = rdtp->dynticks_nesting;
527 rdtp->dynticks_nesting++; 527 rdtp->dynticks_nesting++;
528 WARN_ON_ONCE(rdtp->dynticks_nesting == 0); 528 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
529 if (oldval) 529 if (oldval)
530 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting); 530 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
531 else 531 else
532 rcu_idle_exit_common(rdtp, oldval); 532 rcu_idle_exit_common(rdtp, oldval);
533 local_irq_restore(flags); 533 local_irq_restore(flags);
534 } 534 }
535 535
536 /** 536 /**
537 * rcu_nmi_enter - inform RCU of entry to NMI context 537 * rcu_nmi_enter - inform RCU of entry to NMI context
538 * 538 *
539 * If the CPU was idle with dynamic ticks active, and there is no 539 * If the CPU was idle with dynamic ticks active, and there is no
540 * irq handler running, this updates rdtp->dynticks_nmi to let the 540 * irq handler running, this updates rdtp->dynticks_nmi to let the
541 * RCU grace-period handling know that the CPU is active. 541 * RCU grace-period handling know that the CPU is active.
542 */ 542 */
543 void rcu_nmi_enter(void) 543 void rcu_nmi_enter(void)
544 { 544 {
545 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks); 545 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
546 546
547 if (rdtp->dynticks_nmi_nesting == 0 && 547 if (rdtp->dynticks_nmi_nesting == 0 &&
548 (atomic_read(&rdtp->dynticks) & 0x1)) 548 (atomic_read(&rdtp->dynticks) & 0x1))
549 return; 549 return;
550 rdtp->dynticks_nmi_nesting++; 550 rdtp->dynticks_nmi_nesting++;
551 smp_mb__before_atomic_inc(); /* Force delay from prior write. */ 551 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
552 atomic_inc(&rdtp->dynticks); 552 atomic_inc(&rdtp->dynticks);
553 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */ 553 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
554 smp_mb__after_atomic_inc(); /* See above. */ 554 smp_mb__after_atomic_inc(); /* See above. */
555 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1)); 555 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
556 } 556 }
557 557
558 /** 558 /**
559 * rcu_nmi_exit - inform RCU of exit from NMI context 559 * rcu_nmi_exit - inform RCU of exit from NMI context
560 * 560 *
561 * If the CPU was idle with dynamic ticks active, and there is no 561 * If the CPU was idle with dynamic ticks active, and there is no
562 * irq handler running, this updates rdtp->dynticks_nmi to let the 562 * irq handler running, this updates rdtp->dynticks_nmi to let the
563 * RCU grace-period handling know that the CPU is no longer active. 563 * RCU grace-period handling know that the CPU is no longer active.
564 */ 564 */
565 void rcu_nmi_exit(void) 565 void rcu_nmi_exit(void)
566 { 566 {
567 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks); 567 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
568 568
569 if (rdtp->dynticks_nmi_nesting == 0 || 569 if (rdtp->dynticks_nmi_nesting == 0 ||
570 --rdtp->dynticks_nmi_nesting != 0) 570 --rdtp->dynticks_nmi_nesting != 0)
571 return; 571 return;
572 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */ 572 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
573 smp_mb__before_atomic_inc(); /* See above. */ 573 smp_mb__before_atomic_inc(); /* See above. */
574 atomic_inc(&rdtp->dynticks); 574 atomic_inc(&rdtp->dynticks);
575 smp_mb__after_atomic_inc(); /* Force delay to next write. */ 575 smp_mb__after_atomic_inc(); /* Force delay to next write. */
576 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1); 576 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
577 } 577 }
578 578
579 #ifdef CONFIG_PROVE_RCU 579 #ifdef CONFIG_PROVE_RCU
580 580
581 /** 581 /**
582 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle 582 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
583 * 583 *
584 * If the current CPU is in its idle loop and is neither in an interrupt 584 * If the current CPU is in its idle loop and is neither in an interrupt
585 * or NMI handler, return true. 585 * or NMI handler, return true.
586 */ 586 */
587 int rcu_is_cpu_idle(void) 587 int rcu_is_cpu_idle(void)
588 { 588 {
589 int ret; 589 int ret;
590 590
591 preempt_disable(); 591 preempt_disable();
592 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0; 592 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
593 preempt_enable(); 593 preempt_enable();
594 return ret; 594 return ret;
595 } 595 }
596 EXPORT_SYMBOL(rcu_is_cpu_idle); 596 EXPORT_SYMBOL(rcu_is_cpu_idle);
597 597
598 #ifdef CONFIG_HOTPLUG_CPU 598 #ifdef CONFIG_HOTPLUG_CPU
599 599
600 /* 600 /*
601 * Is the current CPU online? Disable preemption to avoid false positives 601 * Is the current CPU online? Disable preemption to avoid false positives
602 * that could otherwise happen due to the current CPU number being sampled, 602 * that could otherwise happen due to the current CPU number being sampled,
603 * this task being preempted, its old CPU being taken offline, resuming 603 * this task being preempted, its old CPU being taken offline, resuming
604 * on some other CPU, then determining that its old CPU is now offline. 604 * on some other CPU, then determining that its old CPU is now offline.
605 * It is OK to use RCU on an offline processor during initial boot, hence 605 * It is OK to use RCU on an offline processor during initial boot, hence
606 * the check for rcu_scheduler_fully_active. Note also that it is OK 606 * the check for rcu_scheduler_fully_active. Note also that it is OK
607 * for a CPU coming online to use RCU for one jiffy prior to marking itself 607 * for a CPU coming online to use RCU for one jiffy prior to marking itself
608 * online in the cpu_online_mask. Similarly, it is OK for a CPU going 608 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
609 * offline to continue to use RCU for one jiffy after marking itself 609 * offline to continue to use RCU for one jiffy after marking itself
610 * offline in the cpu_online_mask. This leniency is necessary given the 610 * offline in the cpu_online_mask. This leniency is necessary given the
611 * non-atomic nature of the online and offline processing, for example, 611 * non-atomic nature of the online and offline processing, for example,
612 * the fact that a CPU enters the scheduler after completing the CPU_DYING 612 * the fact that a CPU enters the scheduler after completing the CPU_DYING
613 * notifiers. 613 * notifiers.
614 * 614 *
615 * This is also why RCU internally marks CPUs online during the 615 * This is also why RCU internally marks CPUs online during the
616 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase. 616 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
617 * 617 *
618 * Disable checking if in an NMI handler because we cannot safely report 618 * Disable checking if in an NMI handler because we cannot safely report
619 * errors from NMI handlers anyway. 619 * errors from NMI handlers anyway.
620 */ 620 */
621 bool rcu_lockdep_current_cpu_online(void) 621 bool rcu_lockdep_current_cpu_online(void)
622 { 622 {
623 struct rcu_data *rdp; 623 struct rcu_data *rdp;
624 struct rcu_node *rnp; 624 struct rcu_node *rnp;
625 bool ret; 625 bool ret;
626 626
627 if (in_nmi()) 627 if (in_nmi())
628 return 1; 628 return 1;
629 preempt_disable(); 629 preempt_disable();
630 rdp = &__get_cpu_var(rcu_sched_data); 630 rdp = &__get_cpu_var(rcu_sched_data);
631 rnp = rdp->mynode; 631 rnp = rdp->mynode;
632 ret = (rdp->grpmask & rnp->qsmaskinit) || 632 ret = (rdp->grpmask & rnp->qsmaskinit) ||
633 !rcu_scheduler_fully_active; 633 !rcu_scheduler_fully_active;
634 preempt_enable(); 634 preempt_enable();
635 return ret; 635 return ret;
636 } 636 }
637 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 637 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
638 638
639 #endif /* #ifdef CONFIG_HOTPLUG_CPU */ 639 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
640 640
641 #endif /* #ifdef CONFIG_PROVE_RCU */ 641 #endif /* #ifdef CONFIG_PROVE_RCU */
642 642
643 /** 643 /**
644 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle 644 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
645 * 645 *
646 * If the current CPU is idle or running at a first-level (not nested) 646 * If the current CPU is idle or running at a first-level (not nested)
647 * interrupt from idle, return true. The caller must have at least 647 * interrupt from idle, return true. The caller must have at least
648 * disabled preemption. 648 * disabled preemption.
649 */ 649 */
650 int rcu_is_cpu_rrupt_from_idle(void) 650 int rcu_is_cpu_rrupt_from_idle(void)
651 { 651 {
652 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1; 652 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
653 } 653 }
654 654
655 /* 655 /*
656 * Snapshot the specified CPU's dynticks counter so that we can later 656 * Snapshot the specified CPU's dynticks counter so that we can later
657 * credit them with an implicit quiescent state. Return 1 if this CPU 657 * credit them with an implicit quiescent state. Return 1 if this CPU
658 * is in dynticks idle mode, which is an extended quiescent state. 658 * is in dynticks idle mode, which is an extended quiescent state.
659 */ 659 */
660 static int dyntick_save_progress_counter(struct rcu_data *rdp) 660 static int dyntick_save_progress_counter(struct rcu_data *rdp)
661 { 661 {
662 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks); 662 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
663 return (rdp->dynticks_snap & 0x1) == 0; 663 return (rdp->dynticks_snap & 0x1) == 0;
664 } 664 }
665 665
666 /* 666 /*
667 * Return true if the specified CPU has passed through a quiescent 667 * Return true if the specified CPU has passed through a quiescent
668 * state by virtue of being in or having passed through an dynticks 668 * state by virtue of being in or having passed through an dynticks
669 * idle state since the last call to dyntick_save_progress_counter() 669 * idle state since the last call to dyntick_save_progress_counter()
670 * for this same CPU. 670 * for this same CPU.
671 */ 671 */
672 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) 672 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
673 { 673 {
674 unsigned int curr; 674 unsigned int curr;
675 unsigned int snap; 675 unsigned int snap;
676 676
677 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks); 677 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
678 snap = (unsigned int)rdp->dynticks_snap; 678 snap = (unsigned int)rdp->dynticks_snap;
679 679
680 /* 680 /*
681 * If the CPU passed through or entered a dynticks idle phase with 681 * If the CPU passed through or entered a dynticks idle phase with
682 * no active irq/NMI handlers, then we can safely pretend that the CPU 682 * no active irq/NMI handlers, then we can safely pretend that the CPU
683 * already acknowledged the request to pass through a quiescent 683 * already acknowledged the request to pass through a quiescent
684 * state. Either way, that CPU cannot possibly be in an RCU 684 * state. Either way, that CPU cannot possibly be in an RCU
685 * read-side critical section that started before the beginning 685 * read-side critical section that started before the beginning
686 * of the current RCU grace period. 686 * of the current RCU grace period.
687 */ 687 */
688 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) { 688 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
689 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti"); 689 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
690 rdp->dynticks_fqs++; 690 rdp->dynticks_fqs++;
691 return 1; 691 return 1;
692 } 692 }
693 693
694 /* Go check for the CPU being offline. */ 694 /* Go check for the CPU being offline. */
695 return rcu_implicit_offline_qs(rdp); 695 return rcu_implicit_offline_qs(rdp);
696 } 696 }
697 697
698 static int jiffies_till_stall_check(void) 698 static int jiffies_till_stall_check(void)
699 { 699 {
700 int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout); 700 int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
701 701
702 /* 702 /*
703 * Limit check must be consistent with the Kconfig limits 703 * Limit check must be consistent with the Kconfig limits
704 * for CONFIG_RCU_CPU_STALL_TIMEOUT. 704 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
705 */ 705 */
706 if (till_stall_check < 3) { 706 if (till_stall_check < 3) {
707 ACCESS_ONCE(rcu_cpu_stall_timeout) = 3; 707 ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
708 till_stall_check = 3; 708 till_stall_check = 3;
709 } else if (till_stall_check > 300) { 709 } else if (till_stall_check > 300) {
710 ACCESS_ONCE(rcu_cpu_stall_timeout) = 300; 710 ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
711 till_stall_check = 300; 711 till_stall_check = 300;
712 } 712 }
713 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA; 713 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
714 } 714 }
715 715
716 static void record_gp_stall_check_time(struct rcu_state *rsp) 716 static void record_gp_stall_check_time(struct rcu_state *rsp)
717 { 717 {
718 rsp->gp_start = jiffies; 718 rsp->gp_start = jiffies;
719 rsp->jiffies_stall = jiffies + jiffies_till_stall_check(); 719 rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
720 } 720 }
721 721
722 static void print_other_cpu_stall(struct rcu_state *rsp) 722 static void print_other_cpu_stall(struct rcu_state *rsp)
723 { 723 {
724 int cpu; 724 int cpu;
725 long delta; 725 long delta;
726 unsigned long flags; 726 unsigned long flags;
727 int ndetected; 727 int ndetected;
728 struct rcu_node *rnp = rcu_get_root(rsp); 728 struct rcu_node *rnp = rcu_get_root(rsp);
729 729
730 /* Only let one CPU complain about others per time interval. */ 730 /* Only let one CPU complain about others per time interval. */
731 731
732 raw_spin_lock_irqsave(&rnp->lock, flags); 732 raw_spin_lock_irqsave(&rnp->lock, flags);
733 delta = jiffies - rsp->jiffies_stall; 733 delta = jiffies - rsp->jiffies_stall;
734 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) { 734 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
735 raw_spin_unlock_irqrestore(&rnp->lock, flags); 735 raw_spin_unlock_irqrestore(&rnp->lock, flags);
736 return; 736 return;
737 } 737 }
738 rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3; 738 rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
739 raw_spin_unlock_irqrestore(&rnp->lock, flags); 739 raw_spin_unlock_irqrestore(&rnp->lock, flags);
740 740
741 /* 741 /*
742 * OK, time to rat on our buddy... 742 * OK, time to rat on our buddy...
743 * See Documentation/RCU/stallwarn.txt for info on how to debug 743 * See Documentation/RCU/stallwarn.txt for info on how to debug
744 * RCU CPU stall warnings. 744 * RCU CPU stall warnings.
745 */ 745 */
746 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:", 746 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
747 rsp->name); 747 rsp->name);
748 print_cpu_stall_info_begin(); 748 print_cpu_stall_info_begin();
749 rcu_for_each_leaf_node(rsp, rnp) { 749 rcu_for_each_leaf_node(rsp, rnp) {
750 raw_spin_lock_irqsave(&rnp->lock, flags); 750 raw_spin_lock_irqsave(&rnp->lock, flags);
751 ndetected += rcu_print_task_stall(rnp); 751 ndetected += rcu_print_task_stall(rnp);
752 raw_spin_unlock_irqrestore(&rnp->lock, flags); 752 raw_spin_unlock_irqrestore(&rnp->lock, flags);
753 if (rnp->qsmask == 0) 753 if (rnp->qsmask == 0)
754 continue; 754 continue;
755 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++) 755 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
756 if (rnp->qsmask & (1UL << cpu)) { 756 if (rnp->qsmask & (1UL << cpu)) {
757 print_cpu_stall_info(rsp, rnp->grplo + cpu); 757 print_cpu_stall_info(rsp, rnp->grplo + cpu);
758 ndetected++; 758 ndetected++;
759 } 759 }
760 } 760 }
761 761
762 /* 762 /*
763 * Now rat on any tasks that got kicked up to the root rcu_node 763 * Now rat on any tasks that got kicked up to the root rcu_node
764 * due to CPU offlining. 764 * due to CPU offlining.
765 */ 765 */
766 rnp = rcu_get_root(rsp); 766 rnp = rcu_get_root(rsp);
767 raw_spin_lock_irqsave(&rnp->lock, flags); 767 raw_spin_lock_irqsave(&rnp->lock, flags);
768 ndetected = rcu_print_task_stall(rnp); 768 ndetected = rcu_print_task_stall(rnp);
769 raw_spin_unlock_irqrestore(&rnp->lock, flags); 769 raw_spin_unlock_irqrestore(&rnp->lock, flags);
770 770
771 print_cpu_stall_info_end(); 771 print_cpu_stall_info_end();
772 printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n", 772 printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
773 smp_processor_id(), (long)(jiffies - rsp->gp_start)); 773 smp_processor_id(), (long)(jiffies - rsp->gp_start));
774 if (ndetected == 0) 774 if (ndetected == 0)
775 printk(KERN_ERR "INFO: Stall ended before state dump start\n"); 775 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
776 else if (!trigger_all_cpu_backtrace()) 776 else if (!trigger_all_cpu_backtrace())
777 dump_stack(); 777 dump_stack();
778 778
779 /* If so configured, complain about tasks blocking the grace period. */ 779 /* If so configured, complain about tasks blocking the grace period. */
780 780
781 rcu_print_detail_task_stall(rsp); 781 rcu_print_detail_task_stall(rsp);
782 782
783 force_quiescent_state(rsp, 0); /* Kick them all. */ 783 force_quiescent_state(rsp, 0); /* Kick them all. */
784 } 784 }
785 785
786 static void print_cpu_stall(struct rcu_state *rsp) 786 static void print_cpu_stall(struct rcu_state *rsp)
787 { 787 {
788 unsigned long flags; 788 unsigned long flags;
789 struct rcu_node *rnp = rcu_get_root(rsp); 789 struct rcu_node *rnp = rcu_get_root(rsp);
790 790
791 /* 791 /*
792 * OK, time to rat on ourselves... 792 * OK, time to rat on ourselves...
793 * See Documentation/RCU/stallwarn.txt for info on how to debug 793 * See Documentation/RCU/stallwarn.txt for info on how to debug
794 * RCU CPU stall warnings. 794 * RCU CPU stall warnings.
795 */ 795 */
796 printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name); 796 printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
797 print_cpu_stall_info_begin(); 797 print_cpu_stall_info_begin();
798 print_cpu_stall_info(rsp, smp_processor_id()); 798 print_cpu_stall_info(rsp, smp_processor_id());
799 print_cpu_stall_info_end(); 799 print_cpu_stall_info_end();
800 printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start); 800 printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
801 if (!trigger_all_cpu_backtrace()) 801 if (!trigger_all_cpu_backtrace())
802 dump_stack(); 802 dump_stack();
803 803
804 raw_spin_lock_irqsave(&rnp->lock, flags); 804 raw_spin_lock_irqsave(&rnp->lock, flags);
805 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall)) 805 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
806 rsp->jiffies_stall = jiffies + 806 rsp->jiffies_stall = jiffies +
807 3 * jiffies_till_stall_check() + 3; 807 3 * jiffies_till_stall_check() + 3;
808 raw_spin_unlock_irqrestore(&rnp->lock, flags); 808 raw_spin_unlock_irqrestore(&rnp->lock, flags);
809 809
810 set_need_resched(); /* kick ourselves to get things going. */ 810 set_need_resched(); /* kick ourselves to get things going. */
811 } 811 }
812 812
813 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) 813 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
814 { 814 {
815 unsigned long j; 815 unsigned long j;
816 unsigned long js; 816 unsigned long js;
817 struct rcu_node *rnp; 817 struct rcu_node *rnp;
818 818
819 if (rcu_cpu_stall_suppress) 819 if (rcu_cpu_stall_suppress)
820 return; 820 return;
821 j = ACCESS_ONCE(jiffies); 821 j = ACCESS_ONCE(jiffies);
822 js = ACCESS_ONCE(rsp->jiffies_stall); 822 js = ACCESS_ONCE(rsp->jiffies_stall);
823 rnp = rdp->mynode; 823 rnp = rdp->mynode;
824 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) { 824 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
825 825
826 /* We haven't checked in, so go dump stack. */ 826 /* We haven't checked in, so go dump stack. */
827 print_cpu_stall(rsp); 827 print_cpu_stall(rsp);
828 828
829 } else if (rcu_gp_in_progress(rsp) && 829 } else if (rcu_gp_in_progress(rsp) &&
830 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) { 830 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
831 831
832 /* They had a few time units to dump stack, so complain. */ 832 /* They had a few time units to dump stack, so complain. */
833 print_other_cpu_stall(rsp); 833 print_other_cpu_stall(rsp);
834 } 834 }
835 } 835 }
836 836
837 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr) 837 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
838 { 838 {
839 rcu_cpu_stall_suppress = 1; 839 rcu_cpu_stall_suppress = 1;
840 return NOTIFY_DONE; 840 return NOTIFY_DONE;
841 } 841 }
842 842
843 /** 843 /**
844 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period 844 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
845 * 845 *
846 * Set the stall-warning timeout way off into the future, thus preventing 846 * Set the stall-warning timeout way off into the future, thus preventing
847 * any RCU CPU stall-warning messages from appearing in the current set of 847 * any RCU CPU stall-warning messages from appearing in the current set of
848 * RCU grace periods. 848 * RCU grace periods.
849 * 849 *
850 * The caller must disable hard irqs. 850 * The caller must disable hard irqs.
851 */ 851 */
852 void rcu_cpu_stall_reset(void) 852 void rcu_cpu_stall_reset(void)
853 { 853 {
854 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2; 854 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
855 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2; 855 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
856 rcu_preempt_stall_reset(); 856 rcu_preempt_stall_reset();
857 } 857 }
858 858
859 static struct notifier_block rcu_panic_block = { 859 static struct notifier_block rcu_panic_block = {
860 .notifier_call = rcu_panic, 860 .notifier_call = rcu_panic,
861 }; 861 };
862 862
863 static void __init check_cpu_stall_init(void) 863 static void __init check_cpu_stall_init(void)
864 { 864 {
865 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block); 865 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
866 } 866 }
867 867
868 /* 868 /*
869 * Update CPU-local rcu_data state to record the newly noticed grace period. 869 * Update CPU-local rcu_data state to record the newly noticed grace period.
870 * This is used both when we started the grace period and when we notice 870 * This is used both when we started the grace period and when we notice
871 * that someone else started the grace period. The caller must hold the 871 * that someone else started the grace period. The caller must hold the
872 * ->lock of the leaf rcu_node structure corresponding to the current CPU, 872 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
873 * and must have irqs disabled. 873 * and must have irqs disabled.
874 */ 874 */
875 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp) 875 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
876 { 876 {
877 if (rdp->gpnum != rnp->gpnum) { 877 if (rdp->gpnum != rnp->gpnum) {
878 /* 878 /*
879 * If the current grace period is waiting for this CPU, 879 * If the current grace period is waiting for this CPU,
880 * set up to detect a quiescent state, otherwise don't 880 * set up to detect a quiescent state, otherwise don't
881 * go looking for one. 881 * go looking for one.
882 */ 882 */
883 rdp->gpnum = rnp->gpnum; 883 rdp->gpnum = rnp->gpnum;
884 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart"); 884 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
885 if (rnp->qsmask & rdp->grpmask) { 885 if (rnp->qsmask & rdp->grpmask) {
886 rdp->qs_pending = 1; 886 rdp->qs_pending = 1;
887 rdp->passed_quiesce = 0; 887 rdp->passed_quiesce = 0;
888 } else 888 } else
889 rdp->qs_pending = 0; 889 rdp->qs_pending = 0;
890 zero_cpu_stall_ticks(rdp); 890 zero_cpu_stall_ticks(rdp);
891 } 891 }
892 } 892 }
893 893
894 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp) 894 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
895 { 895 {
896 unsigned long flags; 896 unsigned long flags;
897 struct rcu_node *rnp; 897 struct rcu_node *rnp;
898 898
899 local_irq_save(flags); 899 local_irq_save(flags);
900 rnp = rdp->mynode; 900 rnp = rdp->mynode;
901 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */ 901 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
902 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */ 902 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
903 local_irq_restore(flags); 903 local_irq_restore(flags);
904 return; 904 return;
905 } 905 }
906 __note_new_gpnum(rsp, rnp, rdp); 906 __note_new_gpnum(rsp, rnp, rdp);
907 raw_spin_unlock_irqrestore(&rnp->lock, flags); 907 raw_spin_unlock_irqrestore(&rnp->lock, flags);
908 } 908 }
909 909
910 /* 910 /*
911 * Did someone else start a new RCU grace period start since we last 911 * Did someone else start a new RCU grace period start since we last
912 * checked? Update local state appropriately if so. Must be called 912 * checked? Update local state appropriately if so. Must be called
913 * on the CPU corresponding to rdp. 913 * on the CPU corresponding to rdp.
914 */ 914 */
915 static int 915 static int
916 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp) 916 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
917 { 917 {
918 unsigned long flags; 918 unsigned long flags;
919 int ret = 0; 919 int ret = 0;
920 920
921 local_irq_save(flags); 921 local_irq_save(flags);
922 if (rdp->gpnum != rsp->gpnum) { 922 if (rdp->gpnum != rsp->gpnum) {
923 note_new_gpnum(rsp, rdp); 923 note_new_gpnum(rsp, rdp);
924 ret = 1; 924 ret = 1;
925 } 925 }
926 local_irq_restore(flags); 926 local_irq_restore(flags);
927 return ret; 927 return ret;
928 } 928 }
929 929
930 /* 930 /*
931 * Advance this CPU's callbacks, but only if the current grace period 931 * Advance this CPU's callbacks, but only if the current grace period
932 * has ended. This may be called only from the CPU to whom the rdp 932 * has ended. This may be called only from the CPU to whom the rdp
933 * belongs. In addition, the corresponding leaf rcu_node structure's 933 * belongs. In addition, the corresponding leaf rcu_node structure's
934 * ->lock must be held by the caller, with irqs disabled. 934 * ->lock must be held by the caller, with irqs disabled.
935 */ 935 */
936 static void 936 static void
937 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp) 937 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
938 { 938 {
939 /* Did another grace period end? */ 939 /* Did another grace period end? */
940 if (rdp->completed != rnp->completed) { 940 if (rdp->completed != rnp->completed) {
941 941
942 /* Advance callbacks. No harm if list empty. */ 942 /* Advance callbacks. No harm if list empty. */
943 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL]; 943 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
944 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL]; 944 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
945 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; 945 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
946 946
947 /* Remember that we saw this grace-period completion. */ 947 /* Remember that we saw this grace-period completion. */
948 rdp->completed = rnp->completed; 948 rdp->completed = rnp->completed;
949 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend"); 949 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
950 950
951 /* 951 /*
952 * If we were in an extended quiescent state, we may have 952 * If we were in an extended quiescent state, we may have
953 * missed some grace periods that others CPUs handled on 953 * missed some grace periods that others CPUs handled on
954 * our behalf. Catch up with this state to avoid noting 954 * our behalf. Catch up with this state to avoid noting
955 * spurious new grace periods. If another grace period 955 * spurious new grace periods. If another grace period
956 * has started, then rnp->gpnum will have advanced, so 956 * has started, then rnp->gpnum will have advanced, so
957 * we will detect this later on. 957 * we will detect this later on.
958 */ 958 */
959 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed)) 959 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
960 rdp->gpnum = rdp->completed; 960 rdp->gpnum = rdp->completed;
961 961
962 /* 962 /*
963 * If RCU does not need a quiescent state from this CPU, 963 * If RCU does not need a quiescent state from this CPU,
964 * then make sure that this CPU doesn't go looking for one. 964 * then make sure that this CPU doesn't go looking for one.
965 */ 965 */
966 if ((rnp->qsmask & rdp->grpmask) == 0) 966 if ((rnp->qsmask & rdp->grpmask) == 0)
967 rdp->qs_pending = 0; 967 rdp->qs_pending = 0;
968 } 968 }
969 } 969 }
970 970
971 /* 971 /*
972 * Advance this CPU's callbacks, but only if the current grace period 972 * Advance this CPU's callbacks, but only if the current grace period
973 * has ended. This may be called only from the CPU to whom the rdp 973 * has ended. This may be called only from the CPU to whom the rdp
974 * belongs. 974 * belongs.
975 */ 975 */
976 static void 976 static void
977 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp) 977 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
978 { 978 {
979 unsigned long flags; 979 unsigned long flags;
980 struct rcu_node *rnp; 980 struct rcu_node *rnp;
981 981
982 local_irq_save(flags); 982 local_irq_save(flags);
983 rnp = rdp->mynode; 983 rnp = rdp->mynode;
984 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */ 984 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
985 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */ 985 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
986 local_irq_restore(flags); 986 local_irq_restore(flags);
987 return; 987 return;
988 } 988 }
989 __rcu_process_gp_end(rsp, rnp, rdp); 989 __rcu_process_gp_end(rsp, rnp, rdp);
990 raw_spin_unlock_irqrestore(&rnp->lock, flags); 990 raw_spin_unlock_irqrestore(&rnp->lock, flags);
991 } 991 }
992 992
993 /* 993 /*
994 * Do per-CPU grace-period initialization for running CPU. The caller 994 * Do per-CPU grace-period initialization for running CPU. The caller
995 * must hold the lock of the leaf rcu_node structure corresponding to 995 * must hold the lock of the leaf rcu_node structure corresponding to
996 * this CPU. 996 * this CPU.
997 */ 997 */
998 static void 998 static void
999 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp) 999 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1000 { 1000 {
1001 /* Prior grace period ended, so advance callbacks for current CPU. */ 1001 /* Prior grace period ended, so advance callbacks for current CPU. */
1002 __rcu_process_gp_end(rsp, rnp, rdp); 1002 __rcu_process_gp_end(rsp, rnp, rdp);
1003 1003
1004 /* 1004 /*
1005 * Because this CPU just now started the new grace period, we know 1005 * Because this CPU just now started the new grace period, we know
1006 * that all of its callbacks will be covered by this upcoming grace 1006 * that all of its callbacks will be covered by this upcoming grace
1007 * period, even the ones that were registered arbitrarily recently. 1007 * period, even the ones that were registered arbitrarily recently.
1008 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL. 1008 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
1009 * 1009 *
1010 * Other CPUs cannot be sure exactly when the grace period started. 1010 * Other CPUs cannot be sure exactly when the grace period started.
1011 * Therefore, their recently registered callbacks must pass through 1011 * Therefore, their recently registered callbacks must pass through
1012 * an additional RCU_NEXT_READY stage, so that they will be handled 1012 * an additional RCU_NEXT_READY stage, so that they will be handled
1013 * by the next RCU grace period. 1013 * by the next RCU grace period.
1014 */ 1014 */
1015 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; 1015 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1016 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; 1016 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1017 1017
1018 /* Set state so that this CPU will detect the next quiescent state. */ 1018 /* Set state so that this CPU will detect the next quiescent state. */
1019 __note_new_gpnum(rsp, rnp, rdp); 1019 __note_new_gpnum(rsp, rnp, rdp);
1020 } 1020 }
1021 1021
1022 /* 1022 /*
1023 * Start a new RCU grace period if warranted, re-initializing the hierarchy 1023 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1024 * in preparation for detecting the next grace period. The caller must hold 1024 * in preparation for detecting the next grace period. The caller must hold
1025 * the root node's ->lock, which is released before return. Hard irqs must 1025 * the root node's ->lock, which is released before return. Hard irqs must
1026 * be disabled. 1026 * be disabled.
1027 * 1027 *
1028 * Note that it is legal for a dying CPU (which is marked as offline) to 1028 * Note that it is legal for a dying CPU (which is marked as offline) to
1029 * invoke this function. This can happen when the dying CPU reports its 1029 * invoke this function. This can happen when the dying CPU reports its
1030 * quiescent state. 1030 * quiescent state.
1031 */ 1031 */
1032 static void 1032 static void
1033 rcu_start_gp(struct rcu_state *rsp, unsigned long flags) 1033 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
1034 __releases(rcu_get_root(rsp)->lock) 1034 __releases(rcu_get_root(rsp)->lock)
1035 { 1035 {
1036 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 1036 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1037 struct rcu_node *rnp = rcu_get_root(rsp); 1037 struct rcu_node *rnp = rcu_get_root(rsp);
1038 1038
1039 if (!rcu_scheduler_fully_active || 1039 if (!rcu_scheduler_fully_active ||
1040 !cpu_needs_another_gp(rsp, rdp)) { 1040 !cpu_needs_another_gp(rsp, rdp)) {
1041 /* 1041 /*
1042 * Either the scheduler hasn't yet spawned the first 1042 * Either the scheduler hasn't yet spawned the first
1043 * non-idle task or this CPU does not need another 1043 * non-idle task or this CPU does not need another
1044 * grace period. Either way, don't start a new grace 1044 * grace period. Either way, don't start a new grace
1045 * period. 1045 * period.
1046 */ 1046 */
1047 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1047 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1048 return; 1048 return;
1049 } 1049 }
1050 1050
1051 if (rsp->fqs_active) { 1051 if (rsp->fqs_active) {
1052 /* 1052 /*
1053 * This CPU needs a grace period, but force_quiescent_state() 1053 * This CPU needs a grace period, but force_quiescent_state()
1054 * is running. Tell it to start one on this CPU's behalf. 1054 * is running. Tell it to start one on this CPU's behalf.
1055 */ 1055 */
1056 rsp->fqs_need_gp = 1; 1056 rsp->fqs_need_gp = 1;
1057 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1057 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1058 return; 1058 return;
1059 } 1059 }
1060 1060
1061 /* Advance to a new grace period and initialize state. */ 1061 /* Advance to a new grace period and initialize state. */
1062 rsp->gpnum++; 1062 rsp->gpnum++;
1063 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start"); 1063 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
1064 WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT); 1064 WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
1065 rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */ 1065 rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
1066 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS; 1066 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1067 record_gp_stall_check_time(rsp); 1067 record_gp_stall_check_time(rsp);
1068 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */ 1068 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
1069 1069
1070 /* Exclude any concurrent CPU-hotplug operations. */ 1070 /* Exclude any concurrent CPU-hotplug operations. */
1071 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */ 1071 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
1072 1072
1073 /* 1073 /*
1074 * Set the quiescent-state-needed bits in all the rcu_node 1074 * Set the quiescent-state-needed bits in all the rcu_node
1075 * structures for all currently online CPUs in breadth-first 1075 * structures for all currently online CPUs in breadth-first
1076 * order, starting from the root rcu_node structure. This 1076 * order, starting from the root rcu_node structure. This
1077 * operation relies on the layout of the hierarchy within the 1077 * operation relies on the layout of the hierarchy within the
1078 * rsp->node[] array. Note that other CPUs will access only 1078 * rsp->node[] array. Note that other CPUs will access only
1079 * the leaves of the hierarchy, which still indicate that no 1079 * the leaves of the hierarchy, which still indicate that no
1080 * grace period is in progress, at least until the corresponding 1080 * grace period is in progress, at least until the corresponding
1081 * leaf node has been initialized. In addition, we have excluded 1081 * leaf node has been initialized. In addition, we have excluded
1082 * CPU-hotplug operations. 1082 * CPU-hotplug operations.
1083 * 1083 *
1084 * Note that the grace period cannot complete until we finish 1084 * Note that the grace period cannot complete until we finish
1085 * the initialization process, as there will be at least one 1085 * the initialization process, as there will be at least one
1086 * qsmask bit set in the root node until that time, namely the 1086 * qsmask bit set in the root node until that time, namely the
1087 * one corresponding to this CPU, due to the fact that we have 1087 * one corresponding to this CPU, due to the fact that we have
1088 * irqs disabled. 1088 * irqs disabled.
1089 */ 1089 */
1090 rcu_for_each_node_breadth_first(rsp, rnp) { 1090 rcu_for_each_node_breadth_first(rsp, rnp) {
1091 raw_spin_lock(&rnp->lock); /* irqs already disabled. */ 1091 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1092 rcu_preempt_check_blocked_tasks(rnp); 1092 rcu_preempt_check_blocked_tasks(rnp);
1093 rnp->qsmask = rnp->qsmaskinit; 1093 rnp->qsmask = rnp->qsmaskinit;
1094 rnp->gpnum = rsp->gpnum; 1094 rnp->gpnum = rsp->gpnum;
1095 rnp->completed = rsp->completed; 1095 rnp->completed = rsp->completed;
1096 if (rnp == rdp->mynode) 1096 if (rnp == rdp->mynode)
1097 rcu_start_gp_per_cpu(rsp, rnp, rdp); 1097 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1098 rcu_preempt_boost_start_gp(rnp); 1098 rcu_preempt_boost_start_gp(rnp);
1099 trace_rcu_grace_period_init(rsp->name, rnp->gpnum, 1099 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1100 rnp->level, rnp->grplo, 1100 rnp->level, rnp->grplo,
1101 rnp->grphi, rnp->qsmask); 1101 rnp->grphi, rnp->qsmask);
1102 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 1102 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1103 } 1103 }
1104 1104
1105 rnp = rcu_get_root(rsp); 1105 rnp = rcu_get_root(rsp);
1106 raw_spin_lock(&rnp->lock); /* irqs already disabled. */ 1106 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1107 rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */ 1107 rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
1108 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 1108 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1109 raw_spin_unlock_irqrestore(&rsp->onofflock, flags); 1109 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1110 } 1110 }
1111 1111
1112 /* 1112 /*
1113 * Report a full set of quiescent states to the specified rcu_state 1113 * Report a full set of quiescent states to the specified rcu_state
1114 * data structure. This involves cleaning up after the prior grace 1114 * data structure. This involves cleaning up after the prior grace
1115 * period and letting rcu_start_gp() start up the next grace period 1115 * period and letting rcu_start_gp() start up the next grace period
1116 * if one is needed. Note that the caller must hold rnp->lock, as 1116 * if one is needed. Note that the caller must hold rnp->lock, as
1117 * required by rcu_start_gp(), which will release it. 1117 * required by rcu_start_gp(), which will release it.
1118 */ 1118 */
1119 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags) 1119 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1120 __releases(rcu_get_root(rsp)->lock) 1120 __releases(rcu_get_root(rsp)->lock)
1121 { 1121 {
1122 unsigned long gp_duration; 1122 unsigned long gp_duration;
1123 struct rcu_node *rnp = rcu_get_root(rsp); 1123 struct rcu_node *rnp = rcu_get_root(rsp);
1124 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 1124 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1125 1125
1126 WARN_ON_ONCE(!rcu_gp_in_progress(rsp)); 1126 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1127 1127
1128 /* 1128 /*
1129 * Ensure that all grace-period and pre-grace-period activity 1129 * Ensure that all grace-period and pre-grace-period activity
1130 * is seen before the assignment to rsp->completed. 1130 * is seen before the assignment to rsp->completed.
1131 */ 1131 */
1132 smp_mb(); /* See above block comment. */ 1132 smp_mb(); /* See above block comment. */
1133 gp_duration = jiffies - rsp->gp_start; 1133 gp_duration = jiffies - rsp->gp_start;
1134 if (gp_duration > rsp->gp_max) 1134 if (gp_duration > rsp->gp_max)
1135 rsp->gp_max = gp_duration; 1135 rsp->gp_max = gp_duration;
1136 1136
1137 /* 1137 /*
1138 * We know the grace period is complete, but to everyone else 1138 * We know the grace period is complete, but to everyone else
1139 * it appears to still be ongoing. But it is also the case 1139 * it appears to still be ongoing. But it is also the case
1140 * that to everyone else it looks like there is nothing that 1140 * that to everyone else it looks like there is nothing that
1141 * they can do to advance the grace period. It is therefore 1141 * they can do to advance the grace period. It is therefore
1142 * safe for us to drop the lock in order to mark the grace 1142 * safe for us to drop the lock in order to mark the grace
1143 * period as completed in all of the rcu_node structures. 1143 * period as completed in all of the rcu_node structures.
1144 * 1144 *
1145 * But if this CPU needs another grace period, it will take 1145 * But if this CPU needs another grace period, it will take
1146 * care of this while initializing the next grace period. 1146 * care of this while initializing the next grace period.
1147 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL 1147 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
1148 * because the callbacks have not yet been advanced: Those 1148 * because the callbacks have not yet been advanced: Those
1149 * callbacks are waiting on the grace period that just now 1149 * callbacks are waiting on the grace period that just now
1150 * completed. 1150 * completed.
1151 */ 1151 */
1152 if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) { 1152 if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
1153 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 1153 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1154 1154
1155 /* 1155 /*
1156 * Propagate new ->completed value to rcu_node structures 1156 * Propagate new ->completed value to rcu_node structures
1157 * so that other CPUs don't have to wait until the start 1157 * so that other CPUs don't have to wait until the start
1158 * of the next grace period to process their callbacks. 1158 * of the next grace period to process their callbacks.
1159 */ 1159 */
1160 rcu_for_each_node_breadth_first(rsp, rnp) { 1160 rcu_for_each_node_breadth_first(rsp, rnp) {
1161 raw_spin_lock(&rnp->lock); /* irqs already disabled. */ 1161 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1162 rnp->completed = rsp->gpnum; 1162 rnp->completed = rsp->gpnum;
1163 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 1163 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1164 } 1164 }
1165 rnp = rcu_get_root(rsp); 1165 rnp = rcu_get_root(rsp);
1166 raw_spin_lock(&rnp->lock); /* irqs already disabled. */ 1166 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1167 } 1167 }
1168 1168
1169 rsp->completed = rsp->gpnum; /* Declare the grace period complete. */ 1169 rsp->completed = rsp->gpnum; /* Declare the grace period complete. */
1170 trace_rcu_grace_period(rsp->name, rsp->completed, "end"); 1170 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1171 rsp->fqs_state = RCU_GP_IDLE; 1171 rsp->fqs_state = RCU_GP_IDLE;
1172 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */ 1172 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
1173 } 1173 }
1174 1174
1175 /* 1175 /*
1176 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 1176 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1177 * Allows quiescent states for a group of CPUs to be reported at one go 1177 * Allows quiescent states for a group of CPUs to be reported at one go
1178 * to the specified rcu_node structure, though all the CPUs in the group 1178 * to the specified rcu_node structure, though all the CPUs in the group
1179 * must be represented by the same rcu_node structure (which need not be 1179 * must be represented by the same rcu_node structure (which need not be
1180 * a leaf rcu_node structure, though it often will be). That structure's 1180 * a leaf rcu_node structure, though it often will be). That structure's
1181 * lock must be held upon entry, and it is released before return. 1181 * lock must be held upon entry, and it is released before return.
1182 */ 1182 */
1183 static void 1183 static void
1184 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp, 1184 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1185 struct rcu_node *rnp, unsigned long flags) 1185 struct rcu_node *rnp, unsigned long flags)
1186 __releases(rnp->lock) 1186 __releases(rnp->lock)
1187 { 1187 {
1188 struct rcu_node *rnp_c; 1188 struct rcu_node *rnp_c;
1189 1189
1190 /* Walk up the rcu_node hierarchy. */ 1190 /* Walk up the rcu_node hierarchy. */
1191 for (;;) { 1191 for (;;) {
1192 if (!(rnp->qsmask & mask)) { 1192 if (!(rnp->qsmask & mask)) {
1193 1193
1194 /* Our bit has already been cleared, so done. */ 1194 /* Our bit has already been cleared, so done. */
1195 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1195 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1196 return; 1196 return;
1197 } 1197 }
1198 rnp->qsmask &= ~mask; 1198 rnp->qsmask &= ~mask;
1199 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum, 1199 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1200 mask, rnp->qsmask, rnp->level, 1200 mask, rnp->qsmask, rnp->level,
1201 rnp->grplo, rnp->grphi, 1201 rnp->grplo, rnp->grphi,
1202 !!rnp->gp_tasks); 1202 !!rnp->gp_tasks);
1203 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 1203 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1204 1204
1205 /* Other bits still set at this level, so done. */ 1205 /* Other bits still set at this level, so done. */
1206 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1206 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1207 return; 1207 return;
1208 } 1208 }
1209 mask = rnp->grpmask; 1209 mask = rnp->grpmask;
1210 if (rnp->parent == NULL) { 1210 if (rnp->parent == NULL) {
1211 1211
1212 /* No more levels. Exit loop holding root lock. */ 1212 /* No more levels. Exit loop holding root lock. */
1213 1213
1214 break; 1214 break;
1215 } 1215 }
1216 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1216 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1217 rnp_c = rnp; 1217 rnp_c = rnp;
1218 rnp = rnp->parent; 1218 rnp = rnp->parent;
1219 raw_spin_lock_irqsave(&rnp->lock, flags); 1219 raw_spin_lock_irqsave(&rnp->lock, flags);
1220 WARN_ON_ONCE(rnp_c->qsmask); 1220 WARN_ON_ONCE(rnp_c->qsmask);
1221 } 1221 }
1222 1222
1223 /* 1223 /*
1224 * Get here if we are the last CPU to pass through a quiescent 1224 * Get here if we are the last CPU to pass through a quiescent
1225 * state for this grace period. Invoke rcu_report_qs_rsp() 1225 * state for this grace period. Invoke rcu_report_qs_rsp()
1226 * to clean up and start the next grace period if one is needed. 1226 * to clean up and start the next grace period if one is needed.
1227 */ 1227 */
1228 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */ 1228 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1229 } 1229 }
1230 1230
1231 /* 1231 /*
1232 * Record a quiescent state for the specified CPU to that CPU's rcu_data 1232 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1233 * structure. This must be either called from the specified CPU, or 1233 * structure. This must be either called from the specified CPU, or
1234 * called when the specified CPU is known to be offline (and when it is 1234 * called when the specified CPU is known to be offline (and when it is
1235 * also known that no other CPU is concurrently trying to help the offline 1235 * also known that no other CPU is concurrently trying to help the offline
1236 * CPU). The lastcomp argument is used to make sure we are still in the 1236 * CPU). The lastcomp argument is used to make sure we are still in the
1237 * grace period of interest. We don't want to end the current grace period 1237 * grace period of interest. We don't want to end the current grace period
1238 * based on quiescent states detected in an earlier grace period! 1238 * based on quiescent states detected in an earlier grace period!
1239 */ 1239 */
1240 static void 1240 static void
1241 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp) 1241 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
1242 { 1242 {
1243 unsigned long flags; 1243 unsigned long flags;
1244 unsigned long mask; 1244 unsigned long mask;
1245 struct rcu_node *rnp; 1245 struct rcu_node *rnp;
1246 1246
1247 rnp = rdp->mynode; 1247 rnp = rdp->mynode;
1248 raw_spin_lock_irqsave(&rnp->lock, flags); 1248 raw_spin_lock_irqsave(&rnp->lock, flags);
1249 if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) { 1249 if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
1250 1250
1251 /* 1251 /*
1252 * The grace period in which this quiescent state was 1252 * The grace period in which this quiescent state was
1253 * recorded has ended, so don't report it upwards. 1253 * recorded has ended, so don't report it upwards.
1254 * We will instead need a new quiescent state that lies 1254 * We will instead need a new quiescent state that lies
1255 * within the current grace period. 1255 * within the current grace period.
1256 */ 1256 */
1257 rdp->passed_quiesce = 0; /* need qs for new gp. */ 1257 rdp->passed_quiesce = 0; /* need qs for new gp. */
1258 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1258 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1259 return; 1259 return;
1260 } 1260 }
1261 mask = rdp->grpmask; 1261 mask = rdp->grpmask;
1262 if ((rnp->qsmask & mask) == 0) { 1262 if ((rnp->qsmask & mask) == 0) {
1263 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1263 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1264 } else { 1264 } else {
1265 rdp->qs_pending = 0; 1265 rdp->qs_pending = 0;
1266 1266
1267 /* 1267 /*
1268 * This GP can't end until cpu checks in, so all of our 1268 * This GP can't end until cpu checks in, so all of our
1269 * callbacks can be processed during the next GP. 1269 * callbacks can be processed during the next GP.
1270 */ 1270 */
1271 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; 1271 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1272 1272
1273 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */ 1273 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1274 } 1274 }
1275 } 1275 }
1276 1276
1277 /* 1277 /*
1278 * Check to see if there is a new grace period of which this CPU 1278 * Check to see if there is a new grace period of which this CPU
1279 * is not yet aware, and if so, set up local rcu_data state for it. 1279 * is not yet aware, and if so, set up local rcu_data state for it.
1280 * Otherwise, see if this CPU has just passed through its first 1280 * Otherwise, see if this CPU has just passed through its first
1281 * quiescent state for this grace period, and record that fact if so. 1281 * quiescent state for this grace period, and record that fact if so.
1282 */ 1282 */
1283 static void 1283 static void
1284 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp) 1284 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1285 { 1285 {
1286 /* If there is now a new grace period, record and return. */ 1286 /* If there is now a new grace period, record and return. */
1287 if (check_for_new_grace_period(rsp, rdp)) 1287 if (check_for_new_grace_period(rsp, rdp))
1288 return; 1288 return;
1289 1289
1290 /* 1290 /*
1291 * Does this CPU still need to do its part for current grace period? 1291 * Does this CPU still need to do its part for current grace period?
1292 * If no, return and let the other CPUs do their part as well. 1292 * If no, return and let the other CPUs do their part as well.
1293 */ 1293 */
1294 if (!rdp->qs_pending) 1294 if (!rdp->qs_pending)
1295 return; 1295 return;
1296 1296
1297 /* 1297 /*
1298 * Was there a quiescent state since the beginning of the grace 1298 * Was there a quiescent state since the beginning of the grace
1299 * period? If no, then exit and wait for the next call. 1299 * period? If no, then exit and wait for the next call.
1300 */ 1300 */
1301 if (!rdp->passed_quiesce) 1301 if (!rdp->passed_quiesce)
1302 return; 1302 return;
1303 1303
1304 /* 1304 /*
1305 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 1305 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1306 * judge of that). 1306 * judge of that).
1307 */ 1307 */
1308 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum); 1308 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
1309 } 1309 }
1310 1310
1311 #ifdef CONFIG_HOTPLUG_CPU 1311 #ifdef CONFIG_HOTPLUG_CPU
1312 1312
1313 /* 1313 /*
1314 * Move a dying CPU's RCU callbacks to online CPU's callback list. 1314 * Move a dying CPU's RCU callbacks to online CPU's callback list.
1315 * Also record a quiescent state for this CPU for the current grace period. 1315 * Also record a quiescent state for this CPU for the current grace period.
1316 * Synchronization and interrupt disabling are not required because 1316 * Synchronization and interrupt disabling are not required because
1317 * this function executes in stop_machine() context. Therefore, cleanup 1317 * this function executes in stop_machine() context. Therefore, cleanup
1318 * operations that might block must be done later from the CPU_DEAD 1318 * operations that might block must be done later from the CPU_DEAD
1319 * notifier. 1319 * notifier.
1320 * 1320 *
1321 * Note that the outgoing CPU's bit has already been cleared in the 1321 * Note that the outgoing CPU's bit has already been cleared in the
1322 * cpu_online_mask. This allows us to randomly pick a callback 1322 * cpu_online_mask. This allows us to randomly pick a callback
1323 * destination from the bits set in that mask. 1323 * destination from the bits set in that mask.
1324 */ 1324 */
1325 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp) 1325 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1326 { 1326 {
1327 int i; 1327 int i;
1328 unsigned long mask; 1328 unsigned long mask;
1329 int receive_cpu = cpumask_any(cpu_online_mask); 1329 int receive_cpu = cpumask_any(cpu_online_mask);
1330 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 1330 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1331 struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu); 1331 struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1332 RCU_TRACE(struct rcu_node *rnp = rdp->mynode); /* For dying CPU. */ 1332 RCU_TRACE(struct rcu_node *rnp = rdp->mynode); /* For dying CPU. */
1333 1333
1334 /* First, adjust the counts. */ 1334 /* First, adjust the counts. */
1335 if (rdp->nxtlist != NULL) { 1335 if (rdp->nxtlist != NULL) {
1336 receive_rdp->qlen_lazy += rdp->qlen_lazy; 1336 receive_rdp->qlen_lazy += rdp->qlen_lazy;
1337 receive_rdp->qlen += rdp->qlen; 1337 receive_rdp->qlen += rdp->qlen;
1338 rdp->qlen_lazy = 0; 1338 rdp->qlen_lazy = 0;
1339 rdp->qlen = 0; 1339 rdp->qlen = 0;
1340 } 1340 }
1341 1341
1342 /* 1342 /*
1343 * Next, move ready-to-invoke callbacks to be invoked on some 1343 * Next, move ready-to-invoke callbacks to be invoked on some
1344 * other CPU. These will not be required to pass through another 1344 * other CPU. These will not be required to pass through another
1345 * grace period: They are done, regardless of CPU. 1345 * grace period: They are done, regardless of CPU.
1346 */ 1346 */
1347 if (rdp->nxtlist != NULL && 1347 if (rdp->nxtlist != NULL &&
1348 rdp->nxttail[RCU_DONE_TAIL] != &rdp->nxtlist) { 1348 rdp->nxttail[RCU_DONE_TAIL] != &rdp->nxtlist) {
1349 struct rcu_head *oldhead; 1349 struct rcu_head *oldhead;
1350 struct rcu_head **oldtail; 1350 struct rcu_head **oldtail;
1351 struct rcu_head **newtail; 1351 struct rcu_head **newtail;
1352 1352
1353 oldhead = rdp->nxtlist; 1353 oldhead = rdp->nxtlist;
1354 oldtail = receive_rdp->nxttail[RCU_DONE_TAIL]; 1354 oldtail = receive_rdp->nxttail[RCU_DONE_TAIL];
1355 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL]; 1355 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1356 *rdp->nxttail[RCU_DONE_TAIL] = *oldtail; 1356 *rdp->nxttail[RCU_DONE_TAIL] = *oldtail;
1357 *receive_rdp->nxttail[RCU_DONE_TAIL] = oldhead; 1357 *receive_rdp->nxttail[RCU_DONE_TAIL] = oldhead;
1358 newtail = rdp->nxttail[RCU_DONE_TAIL]; 1358 newtail = rdp->nxttail[RCU_DONE_TAIL];
1359 for (i = RCU_DONE_TAIL; i < RCU_NEXT_SIZE; i++) { 1359 for (i = RCU_DONE_TAIL; i < RCU_NEXT_SIZE; i++) {
1360 if (receive_rdp->nxttail[i] == oldtail) 1360 if (receive_rdp->nxttail[i] == oldtail)
1361 receive_rdp->nxttail[i] = newtail; 1361 receive_rdp->nxttail[i] = newtail;
1362 if (rdp->nxttail[i] == newtail) 1362 if (rdp->nxttail[i] == newtail)
1363 rdp->nxttail[i] = &rdp->nxtlist; 1363 rdp->nxttail[i] = &rdp->nxtlist;
1364 } 1364 }
1365 } 1365 }
1366 1366
1367 /* 1367 /*
1368 * Finally, put the rest of the callbacks at the end of the list. 1368 * Finally, put the rest of the callbacks at the end of the list.
1369 * The ones that made it partway through get to start over: We 1369 * The ones that made it partway through get to start over: We
1370 * cannot assume that grace periods are synchronized across CPUs. 1370 * cannot assume that grace periods are synchronized across CPUs.
1371 * (We could splice RCU_WAIT_TAIL into RCU_NEXT_READY_TAIL, but 1371 * (We could splice RCU_WAIT_TAIL into RCU_NEXT_READY_TAIL, but
1372 * this does not seem compelling. Not yet, anyway.) 1372 * this does not seem compelling. Not yet, anyway.)
1373 */ 1373 */
1374 if (rdp->nxtlist != NULL) { 1374 if (rdp->nxtlist != NULL) {
1375 *receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist; 1375 *receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
1376 receive_rdp->nxttail[RCU_NEXT_TAIL] = 1376 receive_rdp->nxttail[RCU_NEXT_TAIL] =
1377 rdp->nxttail[RCU_NEXT_TAIL]; 1377 rdp->nxttail[RCU_NEXT_TAIL];
1378 receive_rdp->n_cbs_adopted += rdp->qlen; 1378 receive_rdp->n_cbs_adopted += rdp->qlen;
1379 rdp->n_cbs_orphaned += rdp->qlen; 1379 rdp->n_cbs_orphaned += rdp->qlen;
1380 1380
1381 rdp->nxtlist = NULL; 1381 rdp->nxtlist = NULL;
1382 for (i = 0; i < RCU_NEXT_SIZE; i++) 1382 for (i = 0; i < RCU_NEXT_SIZE; i++)
1383 rdp->nxttail[i] = &rdp->nxtlist; 1383 rdp->nxttail[i] = &rdp->nxtlist;
1384 } 1384 }
1385 1385
1386 /* 1386 /*
1387 * Record a quiescent state for the dying CPU. This is safe 1387 * Record a quiescent state for the dying CPU. This is safe
1388 * only because we have already cleared out the callbacks. 1388 * only because we have already cleared out the callbacks.
1389 * (Otherwise, the RCU core might try to schedule the invocation 1389 * (Otherwise, the RCU core might try to schedule the invocation
1390 * of callbacks on this now-offline CPU, which would be bad.) 1390 * of callbacks on this now-offline CPU, which would be bad.)
1391 */ 1391 */
1392 mask = rdp->grpmask; /* rnp->grplo is constant. */ 1392 mask = rdp->grpmask; /* rnp->grplo is constant. */
1393 trace_rcu_grace_period(rsp->name, 1393 trace_rcu_grace_period(rsp->name,
1394 rnp->gpnum + 1 - !!(rnp->qsmask & mask), 1394 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1395 "cpuofl"); 1395 "cpuofl");
1396 rcu_report_qs_rdp(smp_processor_id(), rsp, rdp, rsp->gpnum); 1396 rcu_report_qs_rdp(smp_processor_id(), rsp, rdp, rsp->gpnum);
1397 /* Note that rcu_report_qs_rdp() might call trace_rcu_grace_period(). */ 1397 /* Note that rcu_report_qs_rdp() might call trace_rcu_grace_period(). */
1398 } 1398 }
1399 1399
1400 /* 1400 /*
1401 * The CPU has been completely removed, and some other CPU is reporting 1401 * The CPU has been completely removed, and some other CPU is reporting
1402 * this fact from process context. Do the remainder of the cleanup. 1402 * this fact from process context. Do the remainder of the cleanup.
1403 * There can only be one CPU hotplug operation at a time, so no other 1403 * There can only be one CPU hotplug operation at a time, so no other
1404 * CPU can be attempting to update rcu_cpu_kthread_task. 1404 * CPU can be attempting to update rcu_cpu_kthread_task.
1405 */ 1405 */
1406 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp) 1406 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1407 { 1407 {
1408 unsigned long flags; 1408 unsigned long flags;
1409 unsigned long mask; 1409 unsigned long mask;
1410 int need_report = 0; 1410 int need_report = 0;
1411 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 1411 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1412 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rnp. */ 1412 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rnp. */
1413 1413
1414 /* Adjust any no-longer-needed kthreads. */ 1414 /* Adjust any no-longer-needed kthreads. */
1415 rcu_stop_cpu_kthread(cpu); 1415 rcu_stop_cpu_kthread(cpu);
1416 rcu_node_kthread_setaffinity(rnp, -1); 1416 rcu_node_kthread_setaffinity(rnp, -1);
1417 1417
1418 /* Remove the dying CPU from the bitmasks in the rcu_node hierarchy. */ 1418 /* Remove the dying CPU from the bitmasks in the rcu_node hierarchy. */
1419 1419
1420 /* Exclude any attempts to start a new grace period. */ 1420 /* Exclude any attempts to start a new grace period. */
1421 raw_spin_lock_irqsave(&rsp->onofflock, flags); 1421 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1422 1422
1423 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */ 1423 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1424 mask = rdp->grpmask; /* rnp->grplo is constant. */ 1424 mask = rdp->grpmask; /* rnp->grplo is constant. */
1425 do { 1425 do {
1426 raw_spin_lock(&rnp->lock); /* irqs already disabled. */ 1426 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1427 rnp->qsmaskinit &= ~mask; 1427 rnp->qsmaskinit &= ~mask;
1428 if (rnp->qsmaskinit != 0) { 1428 if (rnp->qsmaskinit != 0) {
1429 if (rnp != rdp->mynode) 1429 if (rnp != rdp->mynode)
1430 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 1430 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1431 break; 1431 break;
1432 } 1432 }
1433 if (rnp == rdp->mynode) 1433 if (rnp == rdp->mynode)
1434 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp); 1434 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1435 else 1435 else
1436 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 1436 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1437 mask = rnp->grpmask; 1437 mask = rnp->grpmask;
1438 rnp = rnp->parent; 1438 rnp = rnp->parent;
1439 } while (rnp != NULL); 1439 } while (rnp != NULL);
1440 1440
1441 /* 1441 /*
1442 * We still hold the leaf rcu_node structure lock here, and 1442 * We still hold the leaf rcu_node structure lock here, and
1443 * irqs are still disabled. The reason for this subterfuge is 1443 * irqs are still disabled. The reason for this subterfuge is
1444 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock 1444 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1445 * held leads to deadlock. 1445 * held leads to deadlock.
1446 */ 1446 */
1447 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */ 1447 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1448 rnp = rdp->mynode; 1448 rnp = rdp->mynode;
1449 if (need_report & RCU_OFL_TASKS_NORM_GP) 1449 if (need_report & RCU_OFL_TASKS_NORM_GP)
1450 rcu_report_unblock_qs_rnp(rnp, flags); 1450 rcu_report_unblock_qs_rnp(rnp, flags);
1451 else 1451 else
1452 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1452 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1453 if (need_report & RCU_OFL_TASKS_EXP_GP) 1453 if (need_report & RCU_OFL_TASKS_EXP_GP)
1454 rcu_report_exp_rnp(rsp, rnp, true); 1454 rcu_report_exp_rnp(rsp, rnp, true);
1455 } 1455 }
1456 1456
1457 #else /* #ifdef CONFIG_HOTPLUG_CPU */ 1457 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1458 1458
1459 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp) 1459 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1460 { 1460 {
1461 } 1461 }
1462 1462
1463 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp) 1463 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1464 { 1464 {
1465 } 1465 }
1466 1466
1467 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */ 1467 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1468 1468
1469 /* 1469 /*
1470 * Invoke any RCU callbacks that have made it to the end of their grace 1470 * Invoke any RCU callbacks that have made it to the end of their grace
1471 * period. Thottle as specified by rdp->blimit. 1471 * period. Thottle as specified by rdp->blimit.
1472 */ 1472 */
1473 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp) 1473 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1474 { 1474 {
1475 unsigned long flags; 1475 unsigned long flags;
1476 struct rcu_head *next, *list, **tail; 1476 struct rcu_head *next, *list, **tail;
1477 int bl, count, count_lazy; 1477 int bl, count, count_lazy;
1478 1478
1479 /* If no callbacks are ready, just return.*/ 1479 /* If no callbacks are ready, just return.*/
1480 if (!cpu_has_callbacks_ready_to_invoke(rdp)) { 1480 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1481 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0); 1481 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1482 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist), 1482 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1483 need_resched(), is_idle_task(current), 1483 need_resched(), is_idle_task(current),
1484 rcu_is_callbacks_kthread()); 1484 rcu_is_callbacks_kthread());
1485 return; 1485 return;
1486 } 1486 }
1487 1487
1488 /* 1488 /*
1489 * Extract the list of ready callbacks, disabling to prevent 1489 * Extract the list of ready callbacks, disabling to prevent
1490 * races with call_rcu() from interrupt handlers. 1490 * races with call_rcu() from interrupt handlers.
1491 */ 1491 */
1492 local_irq_save(flags); 1492 local_irq_save(flags);
1493 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 1493 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1494 bl = rdp->blimit; 1494 bl = rdp->blimit;
1495 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl); 1495 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1496 list = rdp->nxtlist; 1496 list = rdp->nxtlist;
1497 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL]; 1497 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1498 *rdp->nxttail[RCU_DONE_TAIL] = NULL; 1498 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1499 tail = rdp->nxttail[RCU_DONE_TAIL]; 1499 tail = rdp->nxttail[RCU_DONE_TAIL];
1500 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--) 1500 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1501 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL]) 1501 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1502 rdp->nxttail[count] = &rdp->nxtlist; 1502 rdp->nxttail[count] = &rdp->nxtlist;
1503 local_irq_restore(flags); 1503 local_irq_restore(flags);
1504 1504
1505 /* Invoke callbacks. */ 1505 /* Invoke callbacks. */
1506 count = count_lazy = 0; 1506 count = count_lazy = 0;
1507 while (list) { 1507 while (list) {
1508 next = list->next; 1508 next = list->next;
1509 prefetch(next); 1509 prefetch(next);
1510 debug_rcu_head_unqueue(list); 1510 debug_rcu_head_unqueue(list);
1511 if (__rcu_reclaim(rsp->name, list)) 1511 if (__rcu_reclaim(rsp->name, list))
1512 count_lazy++; 1512 count_lazy++;
1513 list = next; 1513 list = next;
1514 /* Stop only if limit reached and CPU has something to do. */ 1514 /* Stop only if limit reached and CPU has something to do. */
1515 if (++count >= bl && 1515 if (++count >= bl &&
1516 (need_resched() || 1516 (need_resched() ||
1517 (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) 1517 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1518 break; 1518 break;
1519 } 1519 }
1520 1520
1521 local_irq_save(flags); 1521 local_irq_save(flags);
1522 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(), 1522 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1523 is_idle_task(current), 1523 is_idle_task(current),
1524 rcu_is_callbacks_kthread()); 1524 rcu_is_callbacks_kthread());
1525 1525
1526 /* Update count, and requeue any remaining callbacks. */ 1526 /* Update count, and requeue any remaining callbacks. */
1527 rdp->qlen_lazy -= count_lazy; 1527 rdp->qlen_lazy -= count_lazy;
1528 rdp->qlen -= count; 1528 rdp->qlen -= count;
1529 rdp->n_cbs_invoked += count; 1529 rdp->n_cbs_invoked += count;
1530 if (list != NULL) { 1530 if (list != NULL) {
1531 *tail = rdp->nxtlist; 1531 *tail = rdp->nxtlist;
1532 rdp->nxtlist = list; 1532 rdp->nxtlist = list;
1533 for (count = 0; count < RCU_NEXT_SIZE; count++) 1533 for (count = 0; count < RCU_NEXT_SIZE; count++)
1534 if (&rdp->nxtlist == rdp->nxttail[count]) 1534 if (&rdp->nxtlist == rdp->nxttail[count])
1535 rdp->nxttail[count] = tail; 1535 rdp->nxttail[count] = tail;
1536 else 1536 else
1537 break; 1537 break;
1538 } 1538 }
1539 1539
1540 /* Reinstate batch limit if we have worked down the excess. */ 1540 /* Reinstate batch limit if we have worked down the excess. */
1541 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark) 1541 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1542 rdp->blimit = blimit; 1542 rdp->blimit = blimit;
1543 1543
1544 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 1544 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1545 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) { 1545 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1546 rdp->qlen_last_fqs_check = 0; 1546 rdp->qlen_last_fqs_check = 0;
1547 rdp->n_force_qs_snap = rsp->n_force_qs; 1547 rdp->n_force_qs_snap = rsp->n_force_qs;
1548 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark) 1548 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1549 rdp->qlen_last_fqs_check = rdp->qlen; 1549 rdp->qlen_last_fqs_check = rdp->qlen;
1550 1550
1551 local_irq_restore(flags); 1551 local_irq_restore(flags);
1552 1552
1553 /* Re-invoke RCU core processing if there are callbacks remaining. */ 1553 /* Re-invoke RCU core processing if there are callbacks remaining. */
1554 if (cpu_has_callbacks_ready_to_invoke(rdp)) 1554 if (cpu_has_callbacks_ready_to_invoke(rdp))
1555 invoke_rcu_core(); 1555 invoke_rcu_core();
1556 } 1556 }
1557 1557
1558 /* 1558 /*
1559 * Check to see if this CPU is in a non-context-switch quiescent state 1559 * Check to see if this CPU is in a non-context-switch quiescent state
1560 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh). 1560 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1561 * Also schedule RCU core processing. 1561 * Also schedule RCU core processing.
1562 * 1562 *
1563 * This function must be called from hardirq context. It is normally 1563 * This function must be called from hardirq context. It is normally
1564 * invoked from the scheduling-clock interrupt. If rcu_pending returns 1564 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1565 * false, there is no point in invoking rcu_check_callbacks(). 1565 * false, there is no point in invoking rcu_check_callbacks().
1566 */ 1566 */
1567 void rcu_check_callbacks(int cpu, int user) 1567 void rcu_check_callbacks(int cpu, int user)
1568 { 1568 {
1569 trace_rcu_utilization("Start scheduler-tick"); 1569 trace_rcu_utilization("Start scheduler-tick");
1570 increment_cpu_stall_ticks(); 1570 increment_cpu_stall_ticks();
1571 if (user || rcu_is_cpu_rrupt_from_idle()) { 1571 if (user || rcu_is_cpu_rrupt_from_idle()) {
1572 1572
1573 /* 1573 /*
1574 * Get here if this CPU took its interrupt from user 1574 * Get here if this CPU took its interrupt from user
1575 * mode or from the idle loop, and if this is not a 1575 * mode or from the idle loop, and if this is not a
1576 * nested interrupt. In this case, the CPU is in 1576 * nested interrupt. In this case, the CPU is in
1577 * a quiescent state, so note it. 1577 * a quiescent state, so note it.
1578 * 1578 *
1579 * No memory barrier is required here because both 1579 * No memory barrier is required here because both
1580 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local 1580 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1581 * variables that other CPUs neither access nor modify, 1581 * variables that other CPUs neither access nor modify,
1582 * at least not while the corresponding CPU is online. 1582 * at least not while the corresponding CPU is online.
1583 */ 1583 */
1584 1584
1585 rcu_sched_qs(cpu); 1585 rcu_sched_qs(cpu);
1586 rcu_bh_qs(cpu); 1586 rcu_bh_qs(cpu);
1587 1587
1588 } else if (!in_softirq()) { 1588 } else if (!in_softirq()) {
1589 1589
1590 /* 1590 /*
1591 * Get here if this CPU did not take its interrupt from 1591 * Get here if this CPU did not take its interrupt from
1592 * softirq, in other words, if it is not interrupting 1592 * softirq, in other words, if it is not interrupting
1593 * a rcu_bh read-side critical section. This is an _bh 1593 * a rcu_bh read-side critical section. This is an _bh
1594 * critical section, so note it. 1594 * critical section, so note it.
1595 */ 1595 */
1596 1596
1597 rcu_bh_qs(cpu); 1597 rcu_bh_qs(cpu);
1598 } 1598 }
1599 rcu_preempt_check_callbacks(cpu); 1599 rcu_preempt_check_callbacks(cpu);
1600 if (rcu_pending(cpu)) 1600 if (rcu_pending(cpu))
1601 invoke_rcu_core(); 1601 invoke_rcu_core();
1602 trace_rcu_utilization("End scheduler-tick"); 1602 trace_rcu_utilization("End scheduler-tick");
1603 } 1603 }
1604 1604
1605 /* 1605 /*
1606 * Scan the leaf rcu_node structures, processing dyntick state for any that 1606 * Scan the leaf rcu_node structures, processing dyntick state for any that
1607 * have not yet encountered a quiescent state, using the function specified. 1607 * have not yet encountered a quiescent state, using the function specified.
1608 * Also initiate boosting for any threads blocked on the root rcu_node. 1608 * Also initiate boosting for any threads blocked on the root rcu_node.
1609 * 1609 *
1610 * The caller must have suppressed start of new grace periods. 1610 * The caller must have suppressed start of new grace periods.
1611 */ 1611 */
1612 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *)) 1612 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1613 { 1613 {
1614 unsigned long bit; 1614 unsigned long bit;
1615 int cpu; 1615 int cpu;
1616 unsigned long flags; 1616 unsigned long flags;
1617 unsigned long mask; 1617 unsigned long mask;
1618 struct rcu_node *rnp; 1618 struct rcu_node *rnp;
1619 1619
1620 rcu_for_each_leaf_node(rsp, rnp) { 1620 rcu_for_each_leaf_node(rsp, rnp) {
1621 mask = 0; 1621 mask = 0;
1622 raw_spin_lock_irqsave(&rnp->lock, flags); 1622 raw_spin_lock_irqsave(&rnp->lock, flags);
1623 if (!rcu_gp_in_progress(rsp)) { 1623 if (!rcu_gp_in_progress(rsp)) {
1624 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1624 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1625 return; 1625 return;
1626 } 1626 }
1627 if (rnp->qsmask == 0) { 1627 if (rnp->qsmask == 0) {
1628 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */ 1628 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1629 continue; 1629 continue;
1630 } 1630 }
1631 cpu = rnp->grplo; 1631 cpu = rnp->grplo;
1632 bit = 1; 1632 bit = 1;
1633 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) { 1633 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1634 if ((rnp->qsmask & bit) != 0 && 1634 if ((rnp->qsmask & bit) != 0 &&
1635 f(per_cpu_ptr(rsp->rda, cpu))) 1635 f(per_cpu_ptr(rsp->rda, cpu)))
1636 mask |= bit; 1636 mask |= bit;
1637 } 1637 }
1638 if (mask != 0) { 1638 if (mask != 0) {
1639 1639
1640 /* rcu_report_qs_rnp() releases rnp->lock. */ 1640 /* rcu_report_qs_rnp() releases rnp->lock. */
1641 rcu_report_qs_rnp(mask, rsp, rnp, flags); 1641 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1642 continue; 1642 continue;
1643 } 1643 }
1644 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1644 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1645 } 1645 }
1646 rnp = rcu_get_root(rsp); 1646 rnp = rcu_get_root(rsp);
1647 if (rnp->qsmask == 0) { 1647 if (rnp->qsmask == 0) {
1648 raw_spin_lock_irqsave(&rnp->lock, flags); 1648 raw_spin_lock_irqsave(&rnp->lock, flags);
1649 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */ 1649 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1650 } 1650 }
1651 } 1651 }
1652 1652
1653 /* 1653 /*
1654 * Force quiescent states on reluctant CPUs, and also detect which 1654 * Force quiescent states on reluctant CPUs, and also detect which
1655 * CPUs are in dyntick-idle mode. 1655 * CPUs are in dyntick-idle mode.
1656 */ 1656 */
1657 static void force_quiescent_state(struct rcu_state *rsp, int relaxed) 1657 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1658 { 1658 {
1659 unsigned long flags; 1659 unsigned long flags;
1660 struct rcu_node *rnp = rcu_get_root(rsp); 1660 struct rcu_node *rnp = rcu_get_root(rsp);
1661 1661
1662 trace_rcu_utilization("Start fqs"); 1662 trace_rcu_utilization("Start fqs");
1663 if (!rcu_gp_in_progress(rsp)) { 1663 if (!rcu_gp_in_progress(rsp)) {
1664 trace_rcu_utilization("End fqs"); 1664 trace_rcu_utilization("End fqs");
1665 return; /* No grace period in progress, nothing to force. */ 1665 return; /* No grace period in progress, nothing to force. */
1666 } 1666 }
1667 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) { 1667 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1668 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */ 1668 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1669 trace_rcu_utilization("End fqs"); 1669 trace_rcu_utilization("End fqs");
1670 return; /* Someone else is already on the job. */ 1670 return; /* Someone else is already on the job. */
1671 } 1671 }
1672 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies)) 1672 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1673 goto unlock_fqs_ret; /* no emergency and done recently. */ 1673 goto unlock_fqs_ret; /* no emergency and done recently. */
1674 rsp->n_force_qs++; 1674 rsp->n_force_qs++;
1675 raw_spin_lock(&rnp->lock); /* irqs already disabled */ 1675 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1676 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS; 1676 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1677 if(!rcu_gp_in_progress(rsp)) { 1677 if(!rcu_gp_in_progress(rsp)) {
1678 rsp->n_force_qs_ngp++; 1678 rsp->n_force_qs_ngp++;
1679 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */ 1679 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1680 goto unlock_fqs_ret; /* no GP in progress, time updated. */ 1680 goto unlock_fqs_ret; /* no GP in progress, time updated. */
1681 } 1681 }
1682 rsp->fqs_active = 1; 1682 rsp->fqs_active = 1;
1683 switch (rsp->fqs_state) { 1683 switch (rsp->fqs_state) {
1684 case RCU_GP_IDLE: 1684 case RCU_GP_IDLE:
1685 case RCU_GP_INIT: 1685 case RCU_GP_INIT:
1686 1686
1687 break; /* grace period idle or initializing, ignore. */ 1687 break; /* grace period idle or initializing, ignore. */
1688 1688
1689 case RCU_SAVE_DYNTICK: 1689 case RCU_SAVE_DYNTICK:
1690 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK) 1690 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1691 break; /* So gcc recognizes the dead code. */ 1691 break; /* So gcc recognizes the dead code. */
1692 1692
1693 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */ 1693 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1694 1694
1695 /* Record dyntick-idle state. */ 1695 /* Record dyntick-idle state. */
1696 force_qs_rnp(rsp, dyntick_save_progress_counter); 1696 force_qs_rnp(rsp, dyntick_save_progress_counter);
1697 raw_spin_lock(&rnp->lock); /* irqs already disabled */ 1697 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1698 if (rcu_gp_in_progress(rsp)) 1698 if (rcu_gp_in_progress(rsp))
1699 rsp->fqs_state = RCU_FORCE_QS; 1699 rsp->fqs_state = RCU_FORCE_QS;
1700 break; 1700 break;
1701 1701
1702 case RCU_FORCE_QS: 1702 case RCU_FORCE_QS:
1703 1703
1704 /* Check dyntick-idle state, send IPI to laggarts. */ 1704 /* Check dyntick-idle state, send IPI to laggarts. */
1705 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */ 1705 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1706 force_qs_rnp(rsp, rcu_implicit_dynticks_qs); 1706 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1707 1707
1708 /* Leave state in case more forcing is required. */ 1708 /* Leave state in case more forcing is required. */
1709 1709
1710 raw_spin_lock(&rnp->lock); /* irqs already disabled */ 1710 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1711 break; 1711 break;
1712 } 1712 }
1713 rsp->fqs_active = 0; 1713 rsp->fqs_active = 0;
1714 if (rsp->fqs_need_gp) { 1714 if (rsp->fqs_need_gp) {
1715 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */ 1715 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1716 rsp->fqs_need_gp = 0; 1716 rsp->fqs_need_gp = 0;
1717 rcu_start_gp(rsp, flags); /* releases rnp->lock */ 1717 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1718 trace_rcu_utilization("End fqs"); 1718 trace_rcu_utilization("End fqs");
1719 return; 1719 return;
1720 } 1720 }
1721 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */ 1721 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1722 unlock_fqs_ret: 1722 unlock_fqs_ret:
1723 raw_spin_unlock_irqrestore(&rsp->fqslock, flags); 1723 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1724 trace_rcu_utilization("End fqs"); 1724 trace_rcu_utilization("End fqs");
1725 } 1725 }
1726 1726
1727 /* 1727 /*
1728 * This does the RCU core processing work for the specified rcu_state 1728 * This does the RCU core processing work for the specified rcu_state
1729 * and rcu_data structures. This may be called only from the CPU to 1729 * and rcu_data structures. This may be called only from the CPU to
1730 * whom the rdp belongs. 1730 * whom the rdp belongs.
1731 */ 1731 */
1732 static void 1732 static void
1733 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp) 1733 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1734 { 1734 {
1735 unsigned long flags; 1735 unsigned long flags;
1736 1736
1737 WARN_ON_ONCE(rdp->beenonline == 0); 1737 WARN_ON_ONCE(rdp->beenonline == 0);
1738 1738
1739 /* 1739 /*
1740 * If an RCU GP has gone long enough, go check for dyntick 1740 * If an RCU GP has gone long enough, go check for dyntick
1741 * idle CPUs and, if needed, send resched IPIs. 1741 * idle CPUs and, if needed, send resched IPIs.
1742 */ 1742 */
1743 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) 1743 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1744 force_quiescent_state(rsp, 1); 1744 force_quiescent_state(rsp, 1);
1745 1745
1746 /* 1746 /*
1747 * Advance callbacks in response to end of earlier grace 1747 * Advance callbacks in response to end of earlier grace
1748 * period that some other CPU ended. 1748 * period that some other CPU ended.
1749 */ 1749 */
1750 rcu_process_gp_end(rsp, rdp); 1750 rcu_process_gp_end(rsp, rdp);
1751 1751
1752 /* Update RCU state based on any recent quiescent states. */ 1752 /* Update RCU state based on any recent quiescent states. */
1753 rcu_check_quiescent_state(rsp, rdp); 1753 rcu_check_quiescent_state(rsp, rdp);
1754 1754
1755 /* Does this CPU require a not-yet-started grace period? */ 1755 /* Does this CPU require a not-yet-started grace period? */
1756 if (cpu_needs_another_gp(rsp, rdp)) { 1756 if (cpu_needs_another_gp(rsp, rdp)) {
1757 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags); 1757 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1758 rcu_start_gp(rsp, flags); /* releases above lock */ 1758 rcu_start_gp(rsp, flags); /* releases above lock */
1759 } 1759 }
1760 1760
1761 /* If there are callbacks ready, invoke them. */ 1761 /* If there are callbacks ready, invoke them. */
1762 if (cpu_has_callbacks_ready_to_invoke(rdp)) 1762 if (cpu_has_callbacks_ready_to_invoke(rdp))
1763 invoke_rcu_callbacks(rsp, rdp); 1763 invoke_rcu_callbacks(rsp, rdp);
1764 } 1764 }
1765 1765
1766 /* 1766 /*
1767 * Do RCU core processing for the current CPU. 1767 * Do RCU core processing for the current CPU.
1768 */ 1768 */
1769 static void rcu_process_callbacks(struct softirq_action *unused) 1769 static void rcu_process_callbacks(struct softirq_action *unused)
1770 { 1770 {
1771 trace_rcu_utilization("Start RCU core"); 1771 trace_rcu_utilization("Start RCU core");
1772 __rcu_process_callbacks(&rcu_sched_state, 1772 __rcu_process_callbacks(&rcu_sched_state,
1773 &__get_cpu_var(rcu_sched_data)); 1773 &__get_cpu_var(rcu_sched_data));
1774 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data)); 1774 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1775 rcu_preempt_process_callbacks(); 1775 rcu_preempt_process_callbacks();
1776 trace_rcu_utilization("End RCU core"); 1776 trace_rcu_utilization("End RCU core");
1777 } 1777 }
1778 1778
1779 /* 1779 /*
1780 * Schedule RCU callback invocation. If the specified type of RCU 1780 * Schedule RCU callback invocation. If the specified type of RCU
1781 * does not support RCU priority boosting, just do a direct call, 1781 * does not support RCU priority boosting, just do a direct call,
1782 * otherwise wake up the per-CPU kernel kthread. Note that because we 1782 * otherwise wake up the per-CPU kernel kthread. Note that because we
1783 * are running on the current CPU with interrupts disabled, the 1783 * are running on the current CPU with interrupts disabled, the
1784 * rcu_cpu_kthread_task cannot disappear out from under us. 1784 * rcu_cpu_kthread_task cannot disappear out from under us.
1785 */ 1785 */
1786 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp) 1786 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1787 { 1787 {
1788 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active))) 1788 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1789 return; 1789 return;
1790 if (likely(!rsp->boost)) { 1790 if (likely(!rsp->boost)) {
1791 rcu_do_batch(rsp, rdp); 1791 rcu_do_batch(rsp, rdp);
1792 return; 1792 return;
1793 } 1793 }
1794 invoke_rcu_callbacks_kthread(); 1794 invoke_rcu_callbacks_kthread();
1795 } 1795 }
1796 1796
1797 static void invoke_rcu_core(void) 1797 static void invoke_rcu_core(void)
1798 { 1798 {
1799 raise_softirq(RCU_SOFTIRQ); 1799 raise_softirq(RCU_SOFTIRQ);
1800 } 1800 }
1801 1801
1802 static void 1802 static void
1803 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu), 1803 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1804 struct rcu_state *rsp, bool lazy) 1804 struct rcu_state *rsp, bool lazy)
1805 { 1805 {
1806 unsigned long flags; 1806 unsigned long flags;
1807 struct rcu_data *rdp; 1807 struct rcu_data *rdp;
1808 1808
1809 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */ 1809 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
1810 debug_rcu_head_queue(head); 1810 debug_rcu_head_queue(head);
1811 head->func = func; 1811 head->func = func;
1812 head->next = NULL; 1812 head->next = NULL;
1813 1813
1814 smp_mb(); /* Ensure RCU update seen before callback registry. */ 1814 smp_mb(); /* Ensure RCU update seen before callback registry. */
1815 1815
1816 /* 1816 /*
1817 * Opportunistically note grace-period endings and beginnings. 1817 * Opportunistically note grace-period endings and beginnings.
1818 * Note that we might see a beginning right after we see an 1818 * Note that we might see a beginning right after we see an
1819 * end, but never vice versa, since this CPU has to pass through 1819 * end, but never vice versa, since this CPU has to pass through
1820 * a quiescent state betweentimes. 1820 * a quiescent state betweentimes.
1821 */ 1821 */
1822 local_irq_save(flags); 1822 local_irq_save(flags);
1823 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 1823 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1824 rdp = this_cpu_ptr(rsp->rda); 1824 rdp = this_cpu_ptr(rsp->rda);
1825 1825
1826 /* Add the callback to our list. */ 1826 /* Add the callback to our list. */
1827 *rdp->nxttail[RCU_NEXT_TAIL] = head; 1827 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1828 rdp->nxttail[RCU_NEXT_TAIL] = &head->next; 1828 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1829 rdp->qlen++; 1829 rdp->qlen++;
1830 if (lazy) 1830 if (lazy)
1831 rdp->qlen_lazy++; 1831 rdp->qlen_lazy++;
1832 1832
1833 if (__is_kfree_rcu_offset((unsigned long)func)) 1833 if (__is_kfree_rcu_offset((unsigned long)func))
1834 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func, 1834 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
1835 rdp->qlen_lazy, rdp->qlen); 1835 rdp->qlen_lazy, rdp->qlen);
1836 else 1836 else
1837 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen); 1837 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
1838 1838
1839 /* If interrupts were disabled, don't dive into RCU core. */ 1839 /* If interrupts were disabled, don't dive into RCU core. */
1840 if (irqs_disabled_flags(flags)) { 1840 if (irqs_disabled_flags(flags)) {
1841 local_irq_restore(flags); 1841 local_irq_restore(flags);
1842 return; 1842 return;
1843 } 1843 }
1844 1844
1845 /* 1845 /*
1846 * Force the grace period if too many callbacks or too long waiting. 1846 * Force the grace period if too many callbacks or too long waiting.
1847 * Enforce hysteresis, and don't invoke force_quiescent_state() 1847 * Enforce hysteresis, and don't invoke force_quiescent_state()
1848 * if some other CPU has recently done so. Also, don't bother 1848 * if some other CPU has recently done so. Also, don't bother
1849 * invoking force_quiescent_state() if the newly enqueued callback 1849 * invoking force_quiescent_state() if the newly enqueued callback
1850 * is the only one waiting for a grace period to complete. 1850 * is the only one waiting for a grace period to complete.
1851 */ 1851 */
1852 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) { 1852 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1853 1853
1854 /* Are we ignoring a completed grace period? */ 1854 /* Are we ignoring a completed grace period? */
1855 rcu_process_gp_end(rsp, rdp); 1855 rcu_process_gp_end(rsp, rdp);
1856 check_for_new_grace_period(rsp, rdp); 1856 check_for_new_grace_period(rsp, rdp);
1857 1857
1858 /* Start a new grace period if one not already started. */ 1858 /* Start a new grace period if one not already started. */
1859 if (!rcu_gp_in_progress(rsp)) { 1859 if (!rcu_gp_in_progress(rsp)) {
1860 unsigned long nestflag; 1860 unsigned long nestflag;
1861 struct rcu_node *rnp_root = rcu_get_root(rsp); 1861 struct rcu_node *rnp_root = rcu_get_root(rsp);
1862 1862
1863 raw_spin_lock_irqsave(&rnp_root->lock, nestflag); 1863 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1864 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */ 1864 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1865 } else { 1865 } else {
1866 /* Give the grace period a kick. */ 1866 /* Give the grace period a kick. */
1867 rdp->blimit = LONG_MAX; 1867 rdp->blimit = LONG_MAX;
1868 if (rsp->n_force_qs == rdp->n_force_qs_snap && 1868 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1869 *rdp->nxttail[RCU_DONE_TAIL] != head) 1869 *rdp->nxttail[RCU_DONE_TAIL] != head)
1870 force_quiescent_state(rsp, 0); 1870 force_quiescent_state(rsp, 0);
1871 rdp->n_force_qs_snap = rsp->n_force_qs; 1871 rdp->n_force_qs_snap = rsp->n_force_qs;
1872 rdp->qlen_last_fqs_check = rdp->qlen; 1872 rdp->qlen_last_fqs_check = rdp->qlen;
1873 } 1873 }
1874 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) 1874 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1875 force_quiescent_state(rsp, 1); 1875 force_quiescent_state(rsp, 1);
1876 local_irq_restore(flags); 1876 local_irq_restore(flags);
1877 } 1877 }
1878 1878
1879 /* 1879 /*
1880 * Queue an RCU-sched callback for invocation after a grace period. 1880 * Queue an RCU-sched callback for invocation after a grace period.
1881 */ 1881 */
1882 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) 1882 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1883 { 1883 {
1884 __call_rcu(head, func, &rcu_sched_state, 0); 1884 __call_rcu(head, func, &rcu_sched_state, 0);
1885 } 1885 }
1886 EXPORT_SYMBOL_GPL(call_rcu_sched); 1886 EXPORT_SYMBOL_GPL(call_rcu_sched);
1887 1887
1888 /* 1888 /*
1889 * Queue an RCU callback for invocation after a quicker grace period. 1889 * Queue an RCU callback for invocation after a quicker grace period.
1890 */ 1890 */
1891 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) 1891 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1892 { 1892 {
1893 __call_rcu(head, func, &rcu_bh_state, 0); 1893 __call_rcu(head, func, &rcu_bh_state, 0);
1894 } 1894 }
1895 EXPORT_SYMBOL_GPL(call_rcu_bh); 1895 EXPORT_SYMBOL_GPL(call_rcu_bh);
1896 1896
1897 /*
1898 * Because a context switch is a grace period for RCU-sched and RCU-bh,
1899 * any blocking grace-period wait automatically implies a grace period
1900 * if there is only one CPU online at any point time during execution
1901 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
1902 * occasionally incorrectly indicate that there are multiple CPUs online
1903 * when there was in fact only one the whole time, as this just adds
1904 * some overhead: RCU still operates correctly.
1905 *
1906 * Of course, sampling num_online_cpus() with preemption enabled can
1907 * give erroneous results if there are concurrent CPU-hotplug operations.
1908 * For example, given a demonic sequence of preemptions in num_online_cpus()
1909 * and CPU-hotplug operations, there could be two or more CPUs online at
1910 * all times, but num_online_cpus() might well return one (or even zero).
1911 *
1912 * However, all such demonic sequences require at least one CPU-offline
1913 * operation. Furthermore, rcu_blocking_is_gp() giving the wrong answer
1914 * is only a problem if there is an RCU read-side critical section executing
1915 * throughout. But RCU-sched and RCU-bh read-side critical sections
1916 * disable either preemption or bh, which prevents a CPU from going offline.
1917 * Therefore, the only way that rcu_blocking_is_gp() can incorrectly return
1918 * that there is only one CPU when in fact there was more than one throughout
1919 * is when there were no RCU readers in the system. If there are no
1920 * RCU readers, the grace period by definition can be of zero length,
1921 * regardless of the number of online CPUs.
1922 */
1923 static inline int rcu_blocking_is_gp(void)
1924 {
1925 might_sleep(); /* Check for RCU read-side critical section. */
1926 return num_online_cpus() <= 1;
1927 }
1928
1897 /** 1929 /**
1898 * synchronize_sched - wait until an rcu-sched grace period has elapsed. 1930 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1899 * 1931 *
1900 * Control will return to the caller some time after a full rcu-sched 1932 * Control will return to the caller some time after a full rcu-sched
1901 * grace period has elapsed, in other words after all currently executing 1933 * grace period has elapsed, in other words after all currently executing
1902 * rcu-sched read-side critical sections have completed. These read-side 1934 * rcu-sched read-side critical sections have completed. These read-side
1903 * critical sections are delimited by rcu_read_lock_sched() and 1935 * critical sections are delimited by rcu_read_lock_sched() and
1904 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(), 1936 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1905 * local_irq_disable(), and so on may be used in place of 1937 * local_irq_disable(), and so on may be used in place of
1906 * rcu_read_lock_sched(). 1938 * rcu_read_lock_sched().
1907 * 1939 *
1908 * This means that all preempt_disable code sequences, including NMI and 1940 * This means that all preempt_disable code sequences, including NMI and
1909 * hardware-interrupt handlers, in progress on entry will have completed 1941 * hardware-interrupt handlers, in progress on entry will have completed
1910 * before this primitive returns. However, this does not guarantee that 1942 * before this primitive returns. However, this does not guarantee that
1911 * softirq handlers will have completed, since in some kernels, these 1943 * softirq handlers will have completed, since in some kernels, these
1912 * handlers can run in process context, and can block. 1944 * handlers can run in process context, and can block.
1913 * 1945 *
1914 * This primitive provides the guarantees made by the (now removed) 1946 * This primitive provides the guarantees made by the (now removed)
1915 * synchronize_kernel() API. In contrast, synchronize_rcu() only 1947 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1916 * guarantees that rcu_read_lock() sections will have completed. 1948 * guarantees that rcu_read_lock() sections will have completed.
1917 * In "classic RCU", these two guarantees happen to be one and 1949 * In "classic RCU", these two guarantees happen to be one and
1918 * the same, but can differ in realtime RCU implementations. 1950 * the same, but can differ in realtime RCU implementations.
1919 */ 1951 */
1920 void synchronize_sched(void) 1952 void synchronize_sched(void)
1921 { 1953 {
1922 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) && 1954 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
1923 !lock_is_held(&rcu_lock_map) && 1955 !lock_is_held(&rcu_lock_map) &&
1924 !lock_is_held(&rcu_sched_lock_map), 1956 !lock_is_held(&rcu_sched_lock_map),
1925 "Illegal synchronize_sched() in RCU-sched read-side critical section"); 1957 "Illegal synchronize_sched() in RCU-sched read-side critical section");
1926 if (rcu_blocking_is_gp()) 1958 if (rcu_blocking_is_gp())
1927 return; 1959 return;
1928 wait_rcu_gp(call_rcu_sched); 1960 wait_rcu_gp(call_rcu_sched);
1929 } 1961 }
1930 EXPORT_SYMBOL_GPL(synchronize_sched); 1962 EXPORT_SYMBOL_GPL(synchronize_sched);
1931 1963
1932 /** 1964 /**
1933 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed. 1965 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1934 * 1966 *
1935 * Control will return to the caller some time after a full rcu_bh grace 1967 * Control will return to the caller some time after a full rcu_bh grace
1936 * period has elapsed, in other words after all currently executing rcu_bh 1968 * period has elapsed, in other words after all currently executing rcu_bh
1937 * read-side critical sections have completed. RCU read-side critical 1969 * read-side critical sections have completed. RCU read-side critical
1938 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(), 1970 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1939 * and may be nested. 1971 * and may be nested.
1940 */ 1972 */
1941 void synchronize_rcu_bh(void) 1973 void synchronize_rcu_bh(void)
1942 { 1974 {
1943 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) && 1975 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
1944 !lock_is_held(&rcu_lock_map) && 1976 !lock_is_held(&rcu_lock_map) &&
1945 !lock_is_held(&rcu_sched_lock_map), 1977 !lock_is_held(&rcu_sched_lock_map),
1946 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section"); 1978 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
1947 if (rcu_blocking_is_gp()) 1979 if (rcu_blocking_is_gp())
1948 return; 1980 return;
1949 wait_rcu_gp(call_rcu_bh); 1981 wait_rcu_gp(call_rcu_bh);
1950 } 1982 }
1951 EXPORT_SYMBOL_GPL(synchronize_rcu_bh); 1983 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1952 1984
1953 static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0); 1985 static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
1954 static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0); 1986 static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
1955 1987
1956 static int synchronize_sched_expedited_cpu_stop(void *data) 1988 static int synchronize_sched_expedited_cpu_stop(void *data)
1957 { 1989 {
1958 /* 1990 /*
1959 * There must be a full memory barrier on each affected CPU 1991 * There must be a full memory barrier on each affected CPU
1960 * between the time that try_stop_cpus() is called and the 1992 * between the time that try_stop_cpus() is called and the
1961 * time that it returns. 1993 * time that it returns.
1962 * 1994 *
1963 * In the current initial implementation of cpu_stop, the 1995 * In the current initial implementation of cpu_stop, the
1964 * above condition is already met when the control reaches 1996 * above condition is already met when the control reaches
1965 * this point and the following smp_mb() is not strictly 1997 * this point and the following smp_mb() is not strictly
1966 * necessary. Do smp_mb() anyway for documentation and 1998 * necessary. Do smp_mb() anyway for documentation and
1967 * robustness against future implementation changes. 1999 * robustness against future implementation changes.
1968 */ 2000 */
1969 smp_mb(); /* See above comment block. */ 2001 smp_mb(); /* See above comment block. */
1970 return 0; 2002 return 0;
1971 } 2003 }
1972 2004
1973 /** 2005 /**
1974 * synchronize_sched_expedited - Brute-force RCU-sched grace period 2006 * synchronize_sched_expedited - Brute-force RCU-sched grace period
1975 * 2007 *
1976 * Wait for an RCU-sched grace period to elapse, but use a "big hammer" 2008 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
1977 * approach to force the grace period to end quickly. This consumes 2009 * approach to force the grace period to end quickly. This consumes
1978 * significant time on all CPUs and is unfriendly to real-time workloads, 2010 * significant time on all CPUs and is unfriendly to real-time workloads,
1979 * so is thus not recommended for any sort of common-case code. In fact, 2011 * so is thus not recommended for any sort of common-case code. In fact,
1980 * if you are using synchronize_sched_expedited() in a loop, please 2012 * if you are using synchronize_sched_expedited() in a loop, please
1981 * restructure your code to batch your updates, and then use a single 2013 * restructure your code to batch your updates, and then use a single
1982 * synchronize_sched() instead. 2014 * synchronize_sched() instead.
1983 * 2015 *
1984 * Note that it is illegal to call this function while holding any lock 2016 * Note that it is illegal to call this function while holding any lock
1985 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal 2017 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
1986 * to call this function from a CPU-hotplug notifier. Failing to observe 2018 * to call this function from a CPU-hotplug notifier. Failing to observe
1987 * these restriction will result in deadlock. 2019 * these restriction will result in deadlock.
1988 * 2020 *
1989 * This implementation can be thought of as an application of ticket 2021 * This implementation can be thought of as an application of ticket
1990 * locking to RCU, with sync_sched_expedited_started and 2022 * locking to RCU, with sync_sched_expedited_started and
1991 * sync_sched_expedited_done taking on the roles of the halves 2023 * sync_sched_expedited_done taking on the roles of the halves
1992 * of the ticket-lock word. Each task atomically increments 2024 * of the ticket-lock word. Each task atomically increments
1993 * sync_sched_expedited_started upon entry, snapshotting the old value, 2025 * sync_sched_expedited_started upon entry, snapshotting the old value,
1994 * then attempts to stop all the CPUs. If this succeeds, then each 2026 * then attempts to stop all the CPUs. If this succeeds, then each
1995 * CPU will have executed a context switch, resulting in an RCU-sched 2027 * CPU will have executed a context switch, resulting in an RCU-sched
1996 * grace period. We are then done, so we use atomic_cmpxchg() to 2028 * grace period. We are then done, so we use atomic_cmpxchg() to
1997 * update sync_sched_expedited_done to match our snapshot -- but 2029 * update sync_sched_expedited_done to match our snapshot -- but
1998 * only if someone else has not already advanced past our snapshot. 2030 * only if someone else has not already advanced past our snapshot.
1999 * 2031 *
2000 * On the other hand, if try_stop_cpus() fails, we check the value 2032 * On the other hand, if try_stop_cpus() fails, we check the value
2001 * of sync_sched_expedited_done. If it has advanced past our 2033 * of sync_sched_expedited_done. If it has advanced past our
2002 * initial snapshot, then someone else must have forced a grace period 2034 * initial snapshot, then someone else must have forced a grace period
2003 * some time after we took our snapshot. In this case, our work is 2035 * some time after we took our snapshot. In this case, our work is
2004 * done for us, and we can simply return. Otherwise, we try again, 2036 * done for us, and we can simply return. Otherwise, we try again,
2005 * but keep our initial snapshot for purposes of checking for someone 2037 * but keep our initial snapshot for purposes of checking for someone
2006 * doing our work for us. 2038 * doing our work for us.
2007 * 2039 *
2008 * If we fail too many times in a row, we fall back to synchronize_sched(). 2040 * If we fail too many times in a row, we fall back to synchronize_sched().
2009 */ 2041 */
2010 void synchronize_sched_expedited(void) 2042 void synchronize_sched_expedited(void)
2011 { 2043 {
2012 int firstsnap, s, snap, trycount = 0; 2044 int firstsnap, s, snap, trycount = 0;
2013 2045
2014 /* Note that atomic_inc_return() implies full memory barrier. */ 2046 /* Note that atomic_inc_return() implies full memory barrier. */
2015 firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started); 2047 firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
2016 get_online_cpus(); 2048 get_online_cpus();
2017 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id())); 2049 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2018 2050
2019 /* 2051 /*
2020 * Each pass through the following loop attempts to force a 2052 * Each pass through the following loop attempts to force a
2021 * context switch on each CPU. 2053 * context switch on each CPU.
2022 */ 2054 */
2023 while (try_stop_cpus(cpu_online_mask, 2055 while (try_stop_cpus(cpu_online_mask,
2024 synchronize_sched_expedited_cpu_stop, 2056 synchronize_sched_expedited_cpu_stop,
2025 NULL) == -EAGAIN) { 2057 NULL) == -EAGAIN) {
2026 put_online_cpus(); 2058 put_online_cpus();
2027 2059
2028 /* No joy, try again later. Or just synchronize_sched(). */ 2060 /* No joy, try again later. Or just synchronize_sched(). */
2029 if (trycount++ < 10) 2061 if (trycount++ < 10)
2030 udelay(trycount * num_online_cpus()); 2062 udelay(trycount * num_online_cpus());
2031 else { 2063 else {
2032 synchronize_sched(); 2064 synchronize_sched();
2033 return; 2065 return;
2034 } 2066 }
2035 2067
2036 /* Check to see if someone else did our work for us. */ 2068 /* Check to see if someone else did our work for us. */
2037 s = atomic_read(&sync_sched_expedited_done); 2069 s = atomic_read(&sync_sched_expedited_done);
2038 if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) { 2070 if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
2039 smp_mb(); /* ensure test happens before caller kfree */ 2071 smp_mb(); /* ensure test happens before caller kfree */
2040 return; 2072 return;
2041 } 2073 }
2042 2074
2043 /* 2075 /*
2044 * Refetching sync_sched_expedited_started allows later 2076 * Refetching sync_sched_expedited_started allows later
2045 * callers to piggyback on our grace period. We subtract 2077 * callers to piggyback on our grace period. We subtract
2046 * 1 to get the same token that the last incrementer got. 2078 * 1 to get the same token that the last incrementer got.
2047 * We retry after they started, so our grace period works 2079 * We retry after they started, so our grace period works
2048 * for them, and they started after our first try, so their 2080 * for them, and they started after our first try, so their
2049 * grace period works for us. 2081 * grace period works for us.
2050 */ 2082 */
2051 get_online_cpus(); 2083 get_online_cpus();
2052 snap = atomic_read(&sync_sched_expedited_started); 2084 snap = atomic_read(&sync_sched_expedited_started);
2053 smp_mb(); /* ensure read is before try_stop_cpus(). */ 2085 smp_mb(); /* ensure read is before try_stop_cpus(). */
2054 } 2086 }
2055 2087
2056 /* 2088 /*
2057 * Everyone up to our most recent fetch is covered by our grace 2089 * Everyone up to our most recent fetch is covered by our grace
2058 * period. Update the counter, but only if our work is still 2090 * period. Update the counter, but only if our work is still
2059 * relevant -- which it won't be if someone who started later 2091 * relevant -- which it won't be if someone who started later
2060 * than we did beat us to the punch. 2092 * than we did beat us to the punch.
2061 */ 2093 */
2062 do { 2094 do {
2063 s = atomic_read(&sync_sched_expedited_done); 2095 s = atomic_read(&sync_sched_expedited_done);
2064 if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) { 2096 if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
2065 smp_mb(); /* ensure test happens before caller kfree */ 2097 smp_mb(); /* ensure test happens before caller kfree */
2066 break; 2098 break;
2067 } 2099 }
2068 } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s); 2100 } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);
2069 2101
2070 put_online_cpus(); 2102 put_online_cpus();
2071 } 2103 }
2072 EXPORT_SYMBOL_GPL(synchronize_sched_expedited); 2104 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2073 2105
2074 /* 2106 /*
2075 * Check to see if there is any immediate RCU-related work to be done 2107 * Check to see if there is any immediate RCU-related work to be done
2076 * by the current CPU, for the specified type of RCU, returning 1 if so. 2108 * by the current CPU, for the specified type of RCU, returning 1 if so.
2077 * The checks are in order of increasing expense: checks that can be 2109 * The checks are in order of increasing expense: checks that can be
2078 * carried out against CPU-local state are performed first. However, 2110 * carried out against CPU-local state are performed first. However,
2079 * we must check for CPU stalls first, else we might not get a chance. 2111 * we must check for CPU stalls first, else we might not get a chance.
2080 */ 2112 */
2081 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp) 2113 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2082 { 2114 {
2083 struct rcu_node *rnp = rdp->mynode; 2115 struct rcu_node *rnp = rdp->mynode;
2084 2116
2085 rdp->n_rcu_pending++; 2117 rdp->n_rcu_pending++;
2086 2118
2087 /* Check for CPU stalls, if enabled. */ 2119 /* Check for CPU stalls, if enabled. */
2088 check_cpu_stall(rsp, rdp); 2120 check_cpu_stall(rsp, rdp);
2089 2121
2090 /* Is the RCU core waiting for a quiescent state from this CPU? */ 2122 /* Is the RCU core waiting for a quiescent state from this CPU? */
2091 if (rcu_scheduler_fully_active && 2123 if (rcu_scheduler_fully_active &&
2092 rdp->qs_pending && !rdp->passed_quiesce) { 2124 rdp->qs_pending && !rdp->passed_quiesce) {
2093 2125
2094 /* 2126 /*
2095 * If force_quiescent_state() coming soon and this CPU 2127 * If force_quiescent_state() coming soon and this CPU
2096 * needs a quiescent state, and this is either RCU-sched 2128 * needs a quiescent state, and this is either RCU-sched
2097 * or RCU-bh, force a local reschedule. 2129 * or RCU-bh, force a local reschedule.
2098 */ 2130 */
2099 rdp->n_rp_qs_pending++; 2131 rdp->n_rp_qs_pending++;
2100 if (!rdp->preemptible && 2132 if (!rdp->preemptible &&
2101 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1, 2133 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
2102 jiffies)) 2134 jiffies))
2103 set_need_resched(); 2135 set_need_resched();
2104 } else if (rdp->qs_pending && rdp->passed_quiesce) { 2136 } else if (rdp->qs_pending && rdp->passed_quiesce) {
2105 rdp->n_rp_report_qs++; 2137 rdp->n_rp_report_qs++;
2106 return 1; 2138 return 1;
2107 } 2139 }
2108 2140
2109 /* Does this CPU have callbacks ready to invoke? */ 2141 /* Does this CPU have callbacks ready to invoke? */
2110 if (cpu_has_callbacks_ready_to_invoke(rdp)) { 2142 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2111 rdp->n_rp_cb_ready++; 2143 rdp->n_rp_cb_ready++;
2112 return 1; 2144 return 1;
2113 } 2145 }
2114 2146
2115 /* Has RCU gone idle with this CPU needing another grace period? */ 2147 /* Has RCU gone idle with this CPU needing another grace period? */
2116 if (cpu_needs_another_gp(rsp, rdp)) { 2148 if (cpu_needs_another_gp(rsp, rdp)) {
2117 rdp->n_rp_cpu_needs_gp++; 2149 rdp->n_rp_cpu_needs_gp++;
2118 return 1; 2150 return 1;
2119 } 2151 }
2120 2152
2121 /* Has another RCU grace period completed? */ 2153 /* Has another RCU grace period completed? */
2122 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */ 2154 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2123 rdp->n_rp_gp_completed++; 2155 rdp->n_rp_gp_completed++;
2124 return 1; 2156 return 1;
2125 } 2157 }
2126 2158
2127 /* Has a new RCU grace period started? */ 2159 /* Has a new RCU grace period started? */
2128 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */ 2160 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2129 rdp->n_rp_gp_started++; 2161 rdp->n_rp_gp_started++;
2130 return 1; 2162 return 1;
2131 } 2163 }
2132 2164
2133 /* Has an RCU GP gone long enough to send resched IPIs &c? */ 2165 /* Has an RCU GP gone long enough to send resched IPIs &c? */
2134 if (rcu_gp_in_progress(rsp) && 2166 if (rcu_gp_in_progress(rsp) &&
2135 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) { 2167 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
2136 rdp->n_rp_need_fqs++; 2168 rdp->n_rp_need_fqs++;
2137 return 1; 2169 return 1;
2138 } 2170 }
2139 2171
2140 /* nothing to do */ 2172 /* nothing to do */
2141 rdp->n_rp_need_nothing++; 2173 rdp->n_rp_need_nothing++;
2142 return 0; 2174 return 0;
2143 } 2175 }
2144 2176
2145 /* 2177 /*
2146 * Check to see if there is any immediate RCU-related work to be done 2178 * Check to see if there is any immediate RCU-related work to be done
2147 * by the current CPU, returning 1 if so. This function is part of the 2179 * by the current CPU, returning 1 if so. This function is part of the
2148 * RCU implementation; it is -not- an exported member of the RCU API. 2180 * RCU implementation; it is -not- an exported member of the RCU API.
2149 */ 2181 */
2150 static int rcu_pending(int cpu) 2182 static int rcu_pending(int cpu)
2151 { 2183 {
2152 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) || 2184 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
2153 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) || 2185 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
2154 rcu_preempt_pending(cpu); 2186 rcu_preempt_pending(cpu);
2155 } 2187 }
2156 2188
2157 /* 2189 /*
2158 * Check to see if any future RCU-related work will need to be done 2190 * Check to see if any future RCU-related work will need to be done
2159 * by the current CPU, even if none need be done immediately, returning 2191 * by the current CPU, even if none need be done immediately, returning
2160 * 1 if so. 2192 * 1 if so.
2161 */ 2193 */
2162 static int rcu_cpu_has_callbacks(int cpu) 2194 static int rcu_cpu_has_callbacks(int cpu)
2163 { 2195 {
2164 /* RCU callbacks either ready or pending? */ 2196 /* RCU callbacks either ready or pending? */
2165 return per_cpu(rcu_sched_data, cpu).nxtlist || 2197 return per_cpu(rcu_sched_data, cpu).nxtlist ||
2166 per_cpu(rcu_bh_data, cpu).nxtlist || 2198 per_cpu(rcu_bh_data, cpu).nxtlist ||
2167 rcu_preempt_cpu_has_callbacks(cpu); 2199 rcu_preempt_cpu_has_callbacks(cpu);
2168 } 2200 }
2169 2201
2170 static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL}; 2202 static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
2171 static atomic_t rcu_barrier_cpu_count; 2203 static atomic_t rcu_barrier_cpu_count;
2172 static DEFINE_MUTEX(rcu_barrier_mutex); 2204 static DEFINE_MUTEX(rcu_barrier_mutex);
2173 static struct completion rcu_barrier_completion; 2205 static struct completion rcu_barrier_completion;
2174 2206
2175 static void rcu_barrier_callback(struct rcu_head *notused) 2207 static void rcu_barrier_callback(struct rcu_head *notused)
2176 { 2208 {
2177 if (atomic_dec_and_test(&rcu_barrier_cpu_count)) 2209 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2178 complete(&rcu_barrier_completion); 2210 complete(&rcu_barrier_completion);
2179 } 2211 }
2180 2212
2181 /* 2213 /*
2182 * Called with preemption disabled, and from cross-cpu IRQ context. 2214 * Called with preemption disabled, and from cross-cpu IRQ context.
2183 */ 2215 */
2184 static void rcu_barrier_func(void *type) 2216 static void rcu_barrier_func(void *type)
2185 { 2217 {
2186 int cpu = smp_processor_id(); 2218 int cpu = smp_processor_id();
2187 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu); 2219 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
2188 void (*call_rcu_func)(struct rcu_head *head, 2220 void (*call_rcu_func)(struct rcu_head *head,
2189 void (*func)(struct rcu_head *head)); 2221 void (*func)(struct rcu_head *head));
2190 2222
2191 atomic_inc(&rcu_barrier_cpu_count); 2223 atomic_inc(&rcu_barrier_cpu_count);
2192 call_rcu_func = type; 2224 call_rcu_func = type;
2193 call_rcu_func(head, rcu_barrier_callback); 2225 call_rcu_func(head, rcu_barrier_callback);
2194 } 2226 }
2195 2227
2196 /* 2228 /*
2197 * Orchestrate the specified type of RCU barrier, waiting for all 2229 * Orchestrate the specified type of RCU barrier, waiting for all
2198 * RCU callbacks of the specified type to complete. 2230 * RCU callbacks of the specified type to complete.
2199 */ 2231 */
2200 static void _rcu_barrier(struct rcu_state *rsp, 2232 static void _rcu_barrier(struct rcu_state *rsp,
2201 void (*call_rcu_func)(struct rcu_head *head, 2233 void (*call_rcu_func)(struct rcu_head *head,
2202 void (*func)(struct rcu_head *head))) 2234 void (*func)(struct rcu_head *head)))
2203 { 2235 {
2204 BUG_ON(in_interrupt()); 2236 BUG_ON(in_interrupt());
2205 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 2237 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2206 mutex_lock(&rcu_barrier_mutex); 2238 mutex_lock(&rcu_barrier_mutex);
2207 init_completion(&rcu_barrier_completion); 2239 init_completion(&rcu_barrier_completion);
2208 /* 2240 /*
2209 * Initialize rcu_barrier_cpu_count to 1, then invoke 2241 * Initialize rcu_barrier_cpu_count to 1, then invoke
2210 * rcu_barrier_func() on each CPU, so that each CPU also has 2242 * rcu_barrier_func() on each CPU, so that each CPU also has
2211 * incremented rcu_barrier_cpu_count. Only then is it safe to 2243 * incremented rcu_barrier_cpu_count. Only then is it safe to
2212 * decrement rcu_barrier_cpu_count -- otherwise the first CPU 2244 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
2213 * might complete its grace period before all of the other CPUs 2245 * might complete its grace period before all of the other CPUs
2214 * did their increment, causing this function to return too 2246 * did their increment, causing this function to return too
2215 * early. Note that on_each_cpu() disables irqs, which prevents 2247 * early. Note that on_each_cpu() disables irqs, which prevents
2216 * any CPUs from coming online or going offline until each online 2248 * any CPUs from coming online or going offline until each online
2217 * CPU has queued its RCU-barrier callback. 2249 * CPU has queued its RCU-barrier callback.
2218 */ 2250 */
2219 atomic_set(&rcu_barrier_cpu_count, 1); 2251 atomic_set(&rcu_barrier_cpu_count, 1);
2220 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1); 2252 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
2221 if (atomic_dec_and_test(&rcu_barrier_cpu_count)) 2253 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2222 complete(&rcu_barrier_completion); 2254 complete(&rcu_barrier_completion);
2223 wait_for_completion(&rcu_barrier_completion); 2255 wait_for_completion(&rcu_barrier_completion);
2224 mutex_unlock(&rcu_barrier_mutex); 2256 mutex_unlock(&rcu_barrier_mutex);
2225 } 2257 }
2226 2258
2227 /** 2259 /**
2228 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete. 2260 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2229 */ 2261 */
2230 void rcu_barrier_bh(void) 2262 void rcu_barrier_bh(void)
2231 { 2263 {
2232 _rcu_barrier(&rcu_bh_state, call_rcu_bh); 2264 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
2233 } 2265 }
2234 EXPORT_SYMBOL_GPL(rcu_barrier_bh); 2266 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2235 2267
2236 /** 2268 /**
2237 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks. 2269 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2238 */ 2270 */
2239 void rcu_barrier_sched(void) 2271 void rcu_barrier_sched(void)
2240 { 2272 {
2241 _rcu_barrier(&rcu_sched_state, call_rcu_sched); 2273 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
2242 } 2274 }
2243 EXPORT_SYMBOL_GPL(rcu_barrier_sched); 2275 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2244 2276
2245 /* 2277 /*
2246 * Do boot-time initialization of a CPU's per-CPU RCU data. 2278 * Do boot-time initialization of a CPU's per-CPU RCU data.
2247 */ 2279 */
2248 static void __init 2280 static void __init
2249 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp) 2281 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2250 { 2282 {
2251 unsigned long flags; 2283 unsigned long flags;
2252 int i; 2284 int i;
2253 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 2285 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2254 struct rcu_node *rnp = rcu_get_root(rsp); 2286 struct rcu_node *rnp = rcu_get_root(rsp);
2255 2287
2256 /* Set up local state, ensuring consistent view of global state. */ 2288 /* Set up local state, ensuring consistent view of global state. */
2257 raw_spin_lock_irqsave(&rnp->lock, flags); 2289 raw_spin_lock_irqsave(&rnp->lock, flags);
2258 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo); 2290 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2259 rdp->nxtlist = NULL; 2291 rdp->nxtlist = NULL;
2260 for (i = 0; i < RCU_NEXT_SIZE; i++) 2292 for (i = 0; i < RCU_NEXT_SIZE; i++)
2261 rdp->nxttail[i] = &rdp->nxtlist; 2293 rdp->nxttail[i] = &rdp->nxtlist;
2262 rdp->qlen_lazy = 0; 2294 rdp->qlen_lazy = 0;
2263 rdp->qlen = 0; 2295 rdp->qlen = 0;
2264 rdp->dynticks = &per_cpu(rcu_dynticks, cpu); 2296 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2265 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE); 2297 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
2266 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1); 2298 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2267 rdp->cpu = cpu; 2299 rdp->cpu = cpu;
2268 rdp->rsp = rsp; 2300 rdp->rsp = rsp;
2269 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2301 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2270 } 2302 }
2271 2303
2272 /* 2304 /*
2273 * Initialize a CPU's per-CPU RCU data. Note that only one online or 2305 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2274 * offline event can be happening at a given time. Note also that we 2306 * offline event can be happening at a given time. Note also that we
2275 * can accept some slop in the rsp->completed access due to the fact 2307 * can accept some slop in the rsp->completed access due to the fact
2276 * that this CPU cannot possibly have any RCU callbacks in flight yet. 2308 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2277 */ 2309 */
2278 static void __cpuinit 2310 static void __cpuinit
2279 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible) 2311 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2280 { 2312 {
2281 unsigned long flags; 2313 unsigned long flags;
2282 unsigned long mask; 2314 unsigned long mask;
2283 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 2315 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2284 struct rcu_node *rnp = rcu_get_root(rsp); 2316 struct rcu_node *rnp = rcu_get_root(rsp);
2285 2317
2286 /* Set up local state, ensuring consistent view of global state. */ 2318 /* Set up local state, ensuring consistent view of global state. */
2287 raw_spin_lock_irqsave(&rnp->lock, flags); 2319 raw_spin_lock_irqsave(&rnp->lock, flags);
2288 rdp->beenonline = 1; /* We have now been online. */ 2320 rdp->beenonline = 1; /* We have now been online. */
2289 rdp->preemptible = preemptible; 2321 rdp->preemptible = preemptible;
2290 rdp->qlen_last_fqs_check = 0; 2322 rdp->qlen_last_fqs_check = 0;
2291 rdp->n_force_qs_snap = rsp->n_force_qs; 2323 rdp->n_force_qs_snap = rsp->n_force_qs;
2292 rdp->blimit = blimit; 2324 rdp->blimit = blimit;
2293 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; 2325 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2294 atomic_set(&rdp->dynticks->dynticks, 2326 atomic_set(&rdp->dynticks->dynticks,
2295 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1); 2327 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2296 rcu_prepare_for_idle_init(cpu); 2328 rcu_prepare_for_idle_init(cpu);
2297 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 2329 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2298 2330
2299 /* 2331 /*
2300 * A new grace period might start here. If so, we won't be part 2332 * A new grace period might start here. If so, we won't be part
2301 * of it, but that is OK, as we are currently in a quiescent state. 2333 * of it, but that is OK, as we are currently in a quiescent state.
2302 */ 2334 */
2303 2335
2304 /* Exclude any attempts to start a new GP on large systems. */ 2336 /* Exclude any attempts to start a new GP on large systems. */
2305 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */ 2337 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
2306 2338
2307 /* Add CPU to rcu_node bitmasks. */ 2339 /* Add CPU to rcu_node bitmasks. */
2308 rnp = rdp->mynode; 2340 rnp = rdp->mynode;
2309 mask = rdp->grpmask; 2341 mask = rdp->grpmask;
2310 do { 2342 do {
2311 /* Exclude any attempts to start a new GP on small systems. */ 2343 /* Exclude any attempts to start a new GP on small systems. */
2312 raw_spin_lock(&rnp->lock); /* irqs already disabled. */ 2344 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2313 rnp->qsmaskinit |= mask; 2345 rnp->qsmaskinit |= mask;
2314 mask = rnp->grpmask; 2346 mask = rnp->grpmask;
2315 if (rnp == rdp->mynode) { 2347 if (rnp == rdp->mynode) {
2316 /* 2348 /*
2317 * If there is a grace period in progress, we will 2349 * If there is a grace period in progress, we will
2318 * set up to wait for it next time we run the 2350 * set up to wait for it next time we run the
2319 * RCU core code. 2351 * RCU core code.
2320 */ 2352 */
2321 rdp->gpnum = rnp->completed; 2353 rdp->gpnum = rnp->completed;
2322 rdp->completed = rnp->completed; 2354 rdp->completed = rnp->completed;
2323 rdp->passed_quiesce = 0; 2355 rdp->passed_quiesce = 0;
2324 rdp->qs_pending = 0; 2356 rdp->qs_pending = 0;
2325 rdp->passed_quiesce_gpnum = rnp->gpnum - 1; 2357 rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
2326 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl"); 2358 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2327 } 2359 }
2328 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */ 2360 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2329 rnp = rnp->parent; 2361 rnp = rnp->parent;
2330 } while (rnp != NULL && !(rnp->qsmaskinit & mask)); 2362 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2331 2363
2332 raw_spin_unlock_irqrestore(&rsp->onofflock, flags); 2364 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2333 } 2365 }
2334 2366
2335 static void __cpuinit rcu_prepare_cpu(int cpu) 2367 static void __cpuinit rcu_prepare_cpu(int cpu)
2336 { 2368 {
2337 rcu_init_percpu_data(cpu, &rcu_sched_state, 0); 2369 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
2338 rcu_init_percpu_data(cpu, &rcu_bh_state, 0); 2370 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
2339 rcu_preempt_init_percpu_data(cpu); 2371 rcu_preempt_init_percpu_data(cpu);
2340 } 2372 }
2341 2373
2342 /* 2374 /*
2343 * Handle CPU online/offline notification events. 2375 * Handle CPU online/offline notification events.
2344 */ 2376 */
2345 static int __cpuinit rcu_cpu_notify(struct notifier_block *self, 2377 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2346 unsigned long action, void *hcpu) 2378 unsigned long action, void *hcpu)
2347 { 2379 {
2348 long cpu = (long)hcpu; 2380 long cpu = (long)hcpu;
2349 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu); 2381 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2350 struct rcu_node *rnp = rdp->mynode; 2382 struct rcu_node *rnp = rdp->mynode;
2351 2383
2352 trace_rcu_utilization("Start CPU hotplug"); 2384 trace_rcu_utilization("Start CPU hotplug");
2353 switch (action) { 2385 switch (action) {
2354 case CPU_UP_PREPARE: 2386 case CPU_UP_PREPARE:
2355 case CPU_UP_PREPARE_FROZEN: 2387 case CPU_UP_PREPARE_FROZEN:
2356 rcu_prepare_cpu(cpu); 2388 rcu_prepare_cpu(cpu);
2357 rcu_prepare_kthreads(cpu); 2389 rcu_prepare_kthreads(cpu);
2358 break; 2390 break;
2359 case CPU_ONLINE: 2391 case CPU_ONLINE:
2360 case CPU_DOWN_FAILED: 2392 case CPU_DOWN_FAILED:
2361 rcu_node_kthread_setaffinity(rnp, -1); 2393 rcu_node_kthread_setaffinity(rnp, -1);
2362 rcu_cpu_kthread_setrt(cpu, 1); 2394 rcu_cpu_kthread_setrt(cpu, 1);
2363 break; 2395 break;
2364 case CPU_DOWN_PREPARE: 2396 case CPU_DOWN_PREPARE:
2365 rcu_node_kthread_setaffinity(rnp, cpu); 2397 rcu_node_kthread_setaffinity(rnp, cpu);
2366 rcu_cpu_kthread_setrt(cpu, 0); 2398 rcu_cpu_kthread_setrt(cpu, 0);
2367 break; 2399 break;
2368 case CPU_DYING: 2400 case CPU_DYING:
2369 case CPU_DYING_FROZEN: 2401 case CPU_DYING_FROZEN:
2370 /* 2402 /*
2371 * The whole machine is "stopped" except this CPU, so we can 2403 * The whole machine is "stopped" except this CPU, so we can
2372 * touch any data without introducing corruption. We send the 2404 * touch any data without introducing corruption. We send the
2373 * dying CPU's callbacks to an arbitrarily chosen online CPU. 2405 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2374 */ 2406 */
2375 rcu_cleanup_dying_cpu(&rcu_bh_state); 2407 rcu_cleanup_dying_cpu(&rcu_bh_state);
2376 rcu_cleanup_dying_cpu(&rcu_sched_state); 2408 rcu_cleanup_dying_cpu(&rcu_sched_state);
2377 rcu_preempt_cleanup_dying_cpu(); 2409 rcu_preempt_cleanup_dying_cpu();
2378 rcu_cleanup_after_idle(cpu); 2410 rcu_cleanup_after_idle(cpu);
2379 break; 2411 break;
2380 case CPU_DEAD: 2412 case CPU_DEAD:
2381 case CPU_DEAD_FROZEN: 2413 case CPU_DEAD_FROZEN:
2382 case CPU_UP_CANCELED: 2414 case CPU_UP_CANCELED:
2383 case CPU_UP_CANCELED_FROZEN: 2415 case CPU_UP_CANCELED_FROZEN:
2384 rcu_cleanup_dead_cpu(cpu, &rcu_bh_state); 2416 rcu_cleanup_dead_cpu(cpu, &rcu_bh_state);
2385 rcu_cleanup_dead_cpu(cpu, &rcu_sched_state); 2417 rcu_cleanup_dead_cpu(cpu, &rcu_sched_state);
2386 rcu_preempt_cleanup_dead_cpu(cpu); 2418 rcu_preempt_cleanup_dead_cpu(cpu);
2387 break; 2419 break;
2388 default: 2420 default:
2389 break; 2421 break;
2390 } 2422 }
2391 trace_rcu_utilization("End CPU hotplug"); 2423 trace_rcu_utilization("End CPU hotplug");
2392 return NOTIFY_OK; 2424 return NOTIFY_OK;
2393 } 2425 }
2394 2426
2395 /* 2427 /*
2396 * This function is invoked towards the end of the scheduler's initialization 2428 * This function is invoked towards the end of the scheduler's initialization
2397 * process. Before this is called, the idle task might contain 2429 * process. Before this is called, the idle task might contain
2398 * RCU read-side critical sections (during which time, this idle 2430 * RCU read-side critical sections (during which time, this idle
2399 * task is booting the system). After this function is called, the 2431 * task is booting the system). After this function is called, the
2400 * idle tasks are prohibited from containing RCU read-side critical 2432 * idle tasks are prohibited from containing RCU read-side critical
2401 * sections. This function also enables RCU lockdep checking. 2433 * sections. This function also enables RCU lockdep checking.
2402 */ 2434 */
2403 void rcu_scheduler_starting(void) 2435 void rcu_scheduler_starting(void)
2404 { 2436 {
2405 WARN_ON(num_online_cpus() != 1); 2437 WARN_ON(num_online_cpus() != 1);
2406 WARN_ON(nr_context_switches() > 0); 2438 WARN_ON(nr_context_switches() > 0);
2407 rcu_scheduler_active = 1; 2439 rcu_scheduler_active = 1;
2408 } 2440 }
2409 2441
2410 /* 2442 /*
2411 * Compute the per-level fanout, either using the exact fanout specified 2443 * Compute the per-level fanout, either using the exact fanout specified
2412 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT. 2444 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2413 */ 2445 */
2414 #ifdef CONFIG_RCU_FANOUT_EXACT 2446 #ifdef CONFIG_RCU_FANOUT_EXACT
2415 static void __init rcu_init_levelspread(struct rcu_state *rsp) 2447 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2416 { 2448 {
2417 int i; 2449 int i;
2418 2450
2419 for (i = NUM_RCU_LVLS - 1; i > 0; i--) 2451 for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2420 rsp->levelspread[i] = CONFIG_RCU_FANOUT; 2452 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2421 rsp->levelspread[0] = CONFIG_RCU_FANOUT_LEAF; 2453 rsp->levelspread[0] = CONFIG_RCU_FANOUT_LEAF;
2422 } 2454 }
2423 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */ 2455 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2424 static void __init rcu_init_levelspread(struct rcu_state *rsp) 2456 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2425 { 2457 {
2426 int ccur; 2458 int ccur;
2427 int cprv; 2459 int cprv;
2428 int i; 2460 int i;
2429 2461
2430 cprv = NR_CPUS; 2462 cprv = NR_CPUS;
2431 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) { 2463 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2432 ccur = rsp->levelcnt[i]; 2464 ccur = rsp->levelcnt[i];
2433 rsp->levelspread[i] = (cprv + ccur - 1) / ccur; 2465 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2434 cprv = ccur; 2466 cprv = ccur;
2435 } 2467 }
2436 } 2468 }
2437 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */ 2469 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2438 2470
2439 /* 2471 /*
2440 * Helper function for rcu_init() that initializes one rcu_state structure. 2472 * Helper function for rcu_init() that initializes one rcu_state structure.
2441 */ 2473 */
2442 static void __init rcu_init_one(struct rcu_state *rsp, 2474 static void __init rcu_init_one(struct rcu_state *rsp,
2443 struct rcu_data __percpu *rda) 2475 struct rcu_data __percpu *rda)
2444 { 2476 {
2445 static char *buf[] = { "rcu_node_level_0", 2477 static char *buf[] = { "rcu_node_level_0",
2446 "rcu_node_level_1", 2478 "rcu_node_level_1",
2447 "rcu_node_level_2", 2479 "rcu_node_level_2",
2448 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */ 2480 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
2449 int cpustride = 1; 2481 int cpustride = 1;
2450 int i; 2482 int i;
2451 int j; 2483 int j;
2452 struct rcu_node *rnp; 2484 struct rcu_node *rnp;
2453 2485
2454 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 2486 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2455 2487
2456 /* Initialize the level-tracking arrays. */ 2488 /* Initialize the level-tracking arrays. */
2457 2489
2458 for (i = 1; i < NUM_RCU_LVLS; i++) 2490 for (i = 1; i < NUM_RCU_LVLS; i++)
2459 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1]; 2491 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2460 rcu_init_levelspread(rsp); 2492 rcu_init_levelspread(rsp);
2461 2493
2462 /* Initialize the elements themselves, starting from the leaves. */ 2494 /* Initialize the elements themselves, starting from the leaves. */
2463 2495
2464 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) { 2496 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2465 cpustride *= rsp->levelspread[i]; 2497 cpustride *= rsp->levelspread[i];
2466 rnp = rsp->level[i]; 2498 rnp = rsp->level[i];
2467 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) { 2499 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2468 raw_spin_lock_init(&rnp->lock); 2500 raw_spin_lock_init(&rnp->lock);
2469 lockdep_set_class_and_name(&rnp->lock, 2501 lockdep_set_class_and_name(&rnp->lock,
2470 &rcu_node_class[i], buf[i]); 2502 &rcu_node_class[i], buf[i]);
2471 rnp->gpnum = 0; 2503 rnp->gpnum = 0;
2472 rnp->qsmask = 0; 2504 rnp->qsmask = 0;
2473 rnp->qsmaskinit = 0; 2505 rnp->qsmaskinit = 0;
2474 rnp->grplo = j * cpustride; 2506 rnp->grplo = j * cpustride;
2475 rnp->grphi = (j + 1) * cpustride - 1; 2507 rnp->grphi = (j + 1) * cpustride - 1;
2476 if (rnp->grphi >= NR_CPUS) 2508 if (rnp->grphi >= NR_CPUS)
2477 rnp->grphi = NR_CPUS - 1; 2509 rnp->grphi = NR_CPUS - 1;
2478 if (i == 0) { 2510 if (i == 0) {
2479 rnp->grpnum = 0; 2511 rnp->grpnum = 0;
2480 rnp->grpmask = 0; 2512 rnp->grpmask = 0;
2481 rnp->parent = NULL; 2513 rnp->parent = NULL;
2482 } else { 2514 } else {
2483 rnp->grpnum = j % rsp->levelspread[i - 1]; 2515 rnp->grpnum = j % rsp->levelspread[i - 1];
2484 rnp->grpmask = 1UL << rnp->grpnum; 2516 rnp->grpmask = 1UL << rnp->grpnum;
2485 rnp->parent = rsp->level[i - 1] + 2517 rnp->parent = rsp->level[i - 1] +
2486 j / rsp->levelspread[i - 1]; 2518 j / rsp->levelspread[i - 1];
2487 } 2519 }
2488 rnp->level = i; 2520 rnp->level = i;
2489 INIT_LIST_HEAD(&rnp->blkd_tasks); 2521 INIT_LIST_HEAD(&rnp->blkd_tasks);
2490 } 2522 }
2491 } 2523 }
2492 2524
2493 rsp->rda = rda; 2525 rsp->rda = rda;
2494 rnp = rsp->level[NUM_RCU_LVLS - 1]; 2526 rnp = rsp->level[NUM_RCU_LVLS - 1];
2495 for_each_possible_cpu(i) { 2527 for_each_possible_cpu(i) {
2496 while (i > rnp->grphi) 2528 while (i > rnp->grphi)
2497 rnp++; 2529 rnp++;
2498 per_cpu_ptr(rsp->rda, i)->mynode = rnp; 2530 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2499 rcu_boot_init_percpu_data(i, rsp); 2531 rcu_boot_init_percpu_data(i, rsp);
2500 } 2532 }
2501 } 2533 }
2502 2534
2503 void __init rcu_init(void) 2535 void __init rcu_init(void)
2504 { 2536 {
2505 int cpu; 2537 int cpu;
2506 2538
2507 rcu_bootup_announce(); 2539 rcu_bootup_announce();
2508 rcu_init_one(&rcu_sched_state, &rcu_sched_data); 2540 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2509 rcu_init_one(&rcu_bh_state, &rcu_bh_data); 2541 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2510 __rcu_init_preempt(); 2542 __rcu_init_preempt();
2511 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); 2543 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2512 2544
2513 /* 2545 /*
2514 * We don't need protection against CPU-hotplug here because 2546 * We don't need protection against CPU-hotplug here because
2515 * this is called early in boot, before either interrupts 2547 * this is called early in boot, before either interrupts
2516 * or the scheduler are operational. 2548 * or the scheduler are operational.
2517 */ 2549 */
2518 cpu_notifier(rcu_cpu_notify, 0); 2550 cpu_notifier(rcu_cpu_notify, 0);
2519 for_each_online_cpu(cpu) 2551 for_each_online_cpu(cpu)
2520 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu); 2552 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2521 check_cpu_stall_init(); 2553 check_cpu_stall_init();
2522 } 2554 }
2523 2555
2524 #include "rcutree_plugin.h" 2556 #include "rcutree_plugin.h"
2525 2557