Commit 7317c75e66fce0c9f82fbe6f72f7e5256b315422

Authored by Jesse Barnes
Committed by Keith Packard
1 parent c0f372b374

drm/i915: don't set unpin_work if vblank_get fails

This fixes a race where we may try to finish a page flip and decrement
the refcount even if our vblank_get failed and we ended up with a
spurious flip pending interrupt.

Fixes https://bugs.freedesktop.org/show_bug.cgi?id=34211.

Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-off-by: Keith Packard <keithp@keithp.com>

Showing 1 changed file with 7 additions and 5 deletions Inline Diff

drivers/gpu/drm/i915/intel_display.c
1 /* 1 /*
2 * Copyright © 2006-2007 Intel Corporation 2 * Copyright © 2006-2007 Intel Corporation
3 * 3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a 4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"), 5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation 6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the 8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions: 9 * Software is furnished to do so, subject to the following conditions:
10 * 10 *
11 * The above copyright notice and this permission notice (including the next 11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the 12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software. 13 * Software.
14 * 14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE. 21 * DEALINGS IN THE SOFTWARE.
22 * 22 *
23 * Authors: 23 * Authors:
24 * Eric Anholt <eric@anholt.net> 24 * Eric Anholt <eric@anholt.net>
25 */ 25 */
26 26
27 #include <linux/cpufreq.h> 27 #include <linux/cpufreq.h>
28 #include <linux/module.h> 28 #include <linux/module.h>
29 #include <linux/input.h> 29 #include <linux/input.h>
30 #include <linux/i2c.h> 30 #include <linux/i2c.h>
31 #include <linux/kernel.h> 31 #include <linux/kernel.h>
32 #include <linux/slab.h> 32 #include <linux/slab.h>
33 #include <linux/vgaarb.h> 33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h> 34 #include <drm/drm_edid.h>
35 #include "drmP.h" 35 #include "drmP.h"
36 #include "intel_drv.h" 36 #include "intel_drv.h"
37 #include "i915_drm.h" 37 #include "i915_drm.h"
38 #include "i915_drv.h" 38 #include "i915_drv.h"
39 #include "i915_trace.h" 39 #include "i915_trace.h"
40 #include "drm_dp_helper.h" 40 #include "drm_dp_helper.h"
41 #include "drm_crtc_helper.h" 41 #include "drm_crtc_helper.h"
42 #include <linux/dma_remapping.h> 42 #include <linux/dma_remapping.h>
43 43
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) 44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45 45
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type); 46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_update_watermarks(struct drm_device *dev); 47 static void intel_update_watermarks(struct drm_device *dev);
48 static void intel_increase_pllclock(struct drm_crtc *crtc); 48 static void intel_increase_pllclock(struct drm_crtc *crtc);
49 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on); 49 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
50 50
51 typedef struct { 51 typedef struct {
52 /* given values */ 52 /* given values */
53 int n; 53 int n;
54 int m1, m2; 54 int m1, m2;
55 int p1, p2; 55 int p1, p2;
56 /* derived values */ 56 /* derived values */
57 int dot; 57 int dot;
58 int vco; 58 int vco;
59 int m; 59 int m;
60 int p; 60 int p;
61 } intel_clock_t; 61 } intel_clock_t;
62 62
63 typedef struct { 63 typedef struct {
64 int min, max; 64 int min, max;
65 } intel_range_t; 65 } intel_range_t;
66 66
67 typedef struct { 67 typedef struct {
68 int dot_limit; 68 int dot_limit;
69 int p2_slow, p2_fast; 69 int p2_slow, p2_fast;
70 } intel_p2_t; 70 } intel_p2_t;
71 71
72 #define INTEL_P2_NUM 2 72 #define INTEL_P2_NUM 2
73 typedef struct intel_limit intel_limit_t; 73 typedef struct intel_limit intel_limit_t;
74 struct intel_limit { 74 struct intel_limit {
75 intel_range_t dot, vco, n, m, m1, m2, p, p1; 75 intel_range_t dot, vco, n, m, m1, m2, p, p1;
76 intel_p2_t p2; 76 intel_p2_t p2;
77 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *, 77 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
78 int, int, intel_clock_t *); 78 int, int, intel_clock_t *);
79 }; 79 };
80 80
81 /* FDI */ 81 /* FDI */
82 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */ 82 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
83 83
84 static bool 84 static bool
85 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc, 85 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
86 int target, int refclk, intel_clock_t *best_clock); 86 int target, int refclk, intel_clock_t *best_clock);
87 static bool 87 static bool
88 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc, 88 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
89 int target, int refclk, intel_clock_t *best_clock); 89 int target, int refclk, intel_clock_t *best_clock);
90 90
91 static bool 91 static bool
92 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc, 92 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
93 int target, int refclk, intel_clock_t *best_clock); 93 int target, int refclk, intel_clock_t *best_clock);
94 static bool 94 static bool
95 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc, 95 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
96 int target, int refclk, intel_clock_t *best_clock); 96 int target, int refclk, intel_clock_t *best_clock);
97 97
98 static inline u32 /* units of 100MHz */ 98 static inline u32 /* units of 100MHz */
99 intel_fdi_link_freq(struct drm_device *dev) 99 intel_fdi_link_freq(struct drm_device *dev)
100 { 100 {
101 if (IS_GEN5(dev)) { 101 if (IS_GEN5(dev)) {
102 struct drm_i915_private *dev_priv = dev->dev_private; 102 struct drm_i915_private *dev_priv = dev->dev_private;
103 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2; 103 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
104 } else 104 } else
105 return 27; 105 return 27;
106 } 106 }
107 107
108 static const intel_limit_t intel_limits_i8xx_dvo = { 108 static const intel_limit_t intel_limits_i8xx_dvo = {
109 .dot = { .min = 25000, .max = 350000 }, 109 .dot = { .min = 25000, .max = 350000 },
110 .vco = { .min = 930000, .max = 1400000 }, 110 .vco = { .min = 930000, .max = 1400000 },
111 .n = { .min = 3, .max = 16 }, 111 .n = { .min = 3, .max = 16 },
112 .m = { .min = 96, .max = 140 }, 112 .m = { .min = 96, .max = 140 },
113 .m1 = { .min = 18, .max = 26 }, 113 .m1 = { .min = 18, .max = 26 },
114 .m2 = { .min = 6, .max = 16 }, 114 .m2 = { .min = 6, .max = 16 },
115 .p = { .min = 4, .max = 128 }, 115 .p = { .min = 4, .max = 128 },
116 .p1 = { .min = 2, .max = 33 }, 116 .p1 = { .min = 2, .max = 33 },
117 .p2 = { .dot_limit = 165000, 117 .p2 = { .dot_limit = 165000,
118 .p2_slow = 4, .p2_fast = 2 }, 118 .p2_slow = 4, .p2_fast = 2 },
119 .find_pll = intel_find_best_PLL, 119 .find_pll = intel_find_best_PLL,
120 }; 120 };
121 121
122 static const intel_limit_t intel_limits_i8xx_lvds = { 122 static const intel_limit_t intel_limits_i8xx_lvds = {
123 .dot = { .min = 25000, .max = 350000 }, 123 .dot = { .min = 25000, .max = 350000 },
124 .vco = { .min = 930000, .max = 1400000 }, 124 .vco = { .min = 930000, .max = 1400000 },
125 .n = { .min = 3, .max = 16 }, 125 .n = { .min = 3, .max = 16 },
126 .m = { .min = 96, .max = 140 }, 126 .m = { .min = 96, .max = 140 },
127 .m1 = { .min = 18, .max = 26 }, 127 .m1 = { .min = 18, .max = 26 },
128 .m2 = { .min = 6, .max = 16 }, 128 .m2 = { .min = 6, .max = 16 },
129 .p = { .min = 4, .max = 128 }, 129 .p = { .min = 4, .max = 128 },
130 .p1 = { .min = 1, .max = 6 }, 130 .p1 = { .min = 1, .max = 6 },
131 .p2 = { .dot_limit = 165000, 131 .p2 = { .dot_limit = 165000,
132 .p2_slow = 14, .p2_fast = 7 }, 132 .p2_slow = 14, .p2_fast = 7 },
133 .find_pll = intel_find_best_PLL, 133 .find_pll = intel_find_best_PLL,
134 }; 134 };
135 135
136 static const intel_limit_t intel_limits_i9xx_sdvo = { 136 static const intel_limit_t intel_limits_i9xx_sdvo = {
137 .dot = { .min = 20000, .max = 400000 }, 137 .dot = { .min = 20000, .max = 400000 },
138 .vco = { .min = 1400000, .max = 2800000 }, 138 .vco = { .min = 1400000, .max = 2800000 },
139 .n = { .min = 1, .max = 6 }, 139 .n = { .min = 1, .max = 6 },
140 .m = { .min = 70, .max = 120 }, 140 .m = { .min = 70, .max = 120 },
141 .m1 = { .min = 10, .max = 22 }, 141 .m1 = { .min = 10, .max = 22 },
142 .m2 = { .min = 5, .max = 9 }, 142 .m2 = { .min = 5, .max = 9 },
143 .p = { .min = 5, .max = 80 }, 143 .p = { .min = 5, .max = 80 },
144 .p1 = { .min = 1, .max = 8 }, 144 .p1 = { .min = 1, .max = 8 },
145 .p2 = { .dot_limit = 200000, 145 .p2 = { .dot_limit = 200000,
146 .p2_slow = 10, .p2_fast = 5 }, 146 .p2_slow = 10, .p2_fast = 5 },
147 .find_pll = intel_find_best_PLL, 147 .find_pll = intel_find_best_PLL,
148 }; 148 };
149 149
150 static const intel_limit_t intel_limits_i9xx_lvds = { 150 static const intel_limit_t intel_limits_i9xx_lvds = {
151 .dot = { .min = 20000, .max = 400000 }, 151 .dot = { .min = 20000, .max = 400000 },
152 .vco = { .min = 1400000, .max = 2800000 }, 152 .vco = { .min = 1400000, .max = 2800000 },
153 .n = { .min = 1, .max = 6 }, 153 .n = { .min = 1, .max = 6 },
154 .m = { .min = 70, .max = 120 }, 154 .m = { .min = 70, .max = 120 },
155 .m1 = { .min = 10, .max = 22 }, 155 .m1 = { .min = 10, .max = 22 },
156 .m2 = { .min = 5, .max = 9 }, 156 .m2 = { .min = 5, .max = 9 },
157 .p = { .min = 7, .max = 98 }, 157 .p = { .min = 7, .max = 98 },
158 .p1 = { .min = 1, .max = 8 }, 158 .p1 = { .min = 1, .max = 8 },
159 .p2 = { .dot_limit = 112000, 159 .p2 = { .dot_limit = 112000,
160 .p2_slow = 14, .p2_fast = 7 }, 160 .p2_slow = 14, .p2_fast = 7 },
161 .find_pll = intel_find_best_PLL, 161 .find_pll = intel_find_best_PLL,
162 }; 162 };
163 163
164 164
165 static const intel_limit_t intel_limits_g4x_sdvo = { 165 static const intel_limit_t intel_limits_g4x_sdvo = {
166 .dot = { .min = 25000, .max = 270000 }, 166 .dot = { .min = 25000, .max = 270000 },
167 .vco = { .min = 1750000, .max = 3500000}, 167 .vco = { .min = 1750000, .max = 3500000},
168 .n = { .min = 1, .max = 4 }, 168 .n = { .min = 1, .max = 4 },
169 .m = { .min = 104, .max = 138 }, 169 .m = { .min = 104, .max = 138 },
170 .m1 = { .min = 17, .max = 23 }, 170 .m1 = { .min = 17, .max = 23 },
171 .m2 = { .min = 5, .max = 11 }, 171 .m2 = { .min = 5, .max = 11 },
172 .p = { .min = 10, .max = 30 }, 172 .p = { .min = 10, .max = 30 },
173 .p1 = { .min = 1, .max = 3}, 173 .p1 = { .min = 1, .max = 3},
174 .p2 = { .dot_limit = 270000, 174 .p2 = { .dot_limit = 270000,
175 .p2_slow = 10, 175 .p2_slow = 10,
176 .p2_fast = 10 176 .p2_fast = 10
177 }, 177 },
178 .find_pll = intel_g4x_find_best_PLL, 178 .find_pll = intel_g4x_find_best_PLL,
179 }; 179 };
180 180
181 static const intel_limit_t intel_limits_g4x_hdmi = { 181 static const intel_limit_t intel_limits_g4x_hdmi = {
182 .dot = { .min = 22000, .max = 400000 }, 182 .dot = { .min = 22000, .max = 400000 },
183 .vco = { .min = 1750000, .max = 3500000}, 183 .vco = { .min = 1750000, .max = 3500000},
184 .n = { .min = 1, .max = 4 }, 184 .n = { .min = 1, .max = 4 },
185 .m = { .min = 104, .max = 138 }, 185 .m = { .min = 104, .max = 138 },
186 .m1 = { .min = 16, .max = 23 }, 186 .m1 = { .min = 16, .max = 23 },
187 .m2 = { .min = 5, .max = 11 }, 187 .m2 = { .min = 5, .max = 11 },
188 .p = { .min = 5, .max = 80 }, 188 .p = { .min = 5, .max = 80 },
189 .p1 = { .min = 1, .max = 8}, 189 .p1 = { .min = 1, .max = 8},
190 .p2 = { .dot_limit = 165000, 190 .p2 = { .dot_limit = 165000,
191 .p2_slow = 10, .p2_fast = 5 }, 191 .p2_slow = 10, .p2_fast = 5 },
192 .find_pll = intel_g4x_find_best_PLL, 192 .find_pll = intel_g4x_find_best_PLL,
193 }; 193 };
194 194
195 static const intel_limit_t intel_limits_g4x_single_channel_lvds = { 195 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
196 .dot = { .min = 20000, .max = 115000 }, 196 .dot = { .min = 20000, .max = 115000 },
197 .vco = { .min = 1750000, .max = 3500000 }, 197 .vco = { .min = 1750000, .max = 3500000 },
198 .n = { .min = 1, .max = 3 }, 198 .n = { .min = 1, .max = 3 },
199 .m = { .min = 104, .max = 138 }, 199 .m = { .min = 104, .max = 138 },
200 .m1 = { .min = 17, .max = 23 }, 200 .m1 = { .min = 17, .max = 23 },
201 .m2 = { .min = 5, .max = 11 }, 201 .m2 = { .min = 5, .max = 11 },
202 .p = { .min = 28, .max = 112 }, 202 .p = { .min = 28, .max = 112 },
203 .p1 = { .min = 2, .max = 8 }, 203 .p1 = { .min = 2, .max = 8 },
204 .p2 = { .dot_limit = 0, 204 .p2 = { .dot_limit = 0,
205 .p2_slow = 14, .p2_fast = 14 205 .p2_slow = 14, .p2_fast = 14
206 }, 206 },
207 .find_pll = intel_g4x_find_best_PLL, 207 .find_pll = intel_g4x_find_best_PLL,
208 }; 208 };
209 209
210 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = { 210 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
211 .dot = { .min = 80000, .max = 224000 }, 211 .dot = { .min = 80000, .max = 224000 },
212 .vco = { .min = 1750000, .max = 3500000 }, 212 .vco = { .min = 1750000, .max = 3500000 },
213 .n = { .min = 1, .max = 3 }, 213 .n = { .min = 1, .max = 3 },
214 .m = { .min = 104, .max = 138 }, 214 .m = { .min = 104, .max = 138 },
215 .m1 = { .min = 17, .max = 23 }, 215 .m1 = { .min = 17, .max = 23 },
216 .m2 = { .min = 5, .max = 11 }, 216 .m2 = { .min = 5, .max = 11 },
217 .p = { .min = 14, .max = 42 }, 217 .p = { .min = 14, .max = 42 },
218 .p1 = { .min = 2, .max = 6 }, 218 .p1 = { .min = 2, .max = 6 },
219 .p2 = { .dot_limit = 0, 219 .p2 = { .dot_limit = 0,
220 .p2_slow = 7, .p2_fast = 7 220 .p2_slow = 7, .p2_fast = 7
221 }, 221 },
222 .find_pll = intel_g4x_find_best_PLL, 222 .find_pll = intel_g4x_find_best_PLL,
223 }; 223 };
224 224
225 static const intel_limit_t intel_limits_g4x_display_port = { 225 static const intel_limit_t intel_limits_g4x_display_port = {
226 .dot = { .min = 161670, .max = 227000 }, 226 .dot = { .min = 161670, .max = 227000 },
227 .vco = { .min = 1750000, .max = 3500000}, 227 .vco = { .min = 1750000, .max = 3500000},
228 .n = { .min = 1, .max = 2 }, 228 .n = { .min = 1, .max = 2 },
229 .m = { .min = 97, .max = 108 }, 229 .m = { .min = 97, .max = 108 },
230 .m1 = { .min = 0x10, .max = 0x12 }, 230 .m1 = { .min = 0x10, .max = 0x12 },
231 .m2 = { .min = 0x05, .max = 0x06 }, 231 .m2 = { .min = 0x05, .max = 0x06 },
232 .p = { .min = 10, .max = 20 }, 232 .p = { .min = 10, .max = 20 },
233 .p1 = { .min = 1, .max = 2}, 233 .p1 = { .min = 1, .max = 2},
234 .p2 = { .dot_limit = 0, 234 .p2 = { .dot_limit = 0,
235 .p2_slow = 10, .p2_fast = 10 }, 235 .p2_slow = 10, .p2_fast = 10 },
236 .find_pll = intel_find_pll_g4x_dp, 236 .find_pll = intel_find_pll_g4x_dp,
237 }; 237 };
238 238
239 static const intel_limit_t intel_limits_pineview_sdvo = { 239 static const intel_limit_t intel_limits_pineview_sdvo = {
240 .dot = { .min = 20000, .max = 400000}, 240 .dot = { .min = 20000, .max = 400000},
241 .vco = { .min = 1700000, .max = 3500000 }, 241 .vco = { .min = 1700000, .max = 3500000 },
242 /* Pineview's Ncounter is a ring counter */ 242 /* Pineview's Ncounter is a ring counter */
243 .n = { .min = 3, .max = 6 }, 243 .n = { .min = 3, .max = 6 },
244 .m = { .min = 2, .max = 256 }, 244 .m = { .min = 2, .max = 256 },
245 /* Pineview only has one combined m divider, which we treat as m2. */ 245 /* Pineview only has one combined m divider, which we treat as m2. */
246 .m1 = { .min = 0, .max = 0 }, 246 .m1 = { .min = 0, .max = 0 },
247 .m2 = { .min = 0, .max = 254 }, 247 .m2 = { .min = 0, .max = 254 },
248 .p = { .min = 5, .max = 80 }, 248 .p = { .min = 5, .max = 80 },
249 .p1 = { .min = 1, .max = 8 }, 249 .p1 = { .min = 1, .max = 8 },
250 .p2 = { .dot_limit = 200000, 250 .p2 = { .dot_limit = 200000,
251 .p2_slow = 10, .p2_fast = 5 }, 251 .p2_slow = 10, .p2_fast = 5 },
252 .find_pll = intel_find_best_PLL, 252 .find_pll = intel_find_best_PLL,
253 }; 253 };
254 254
255 static const intel_limit_t intel_limits_pineview_lvds = { 255 static const intel_limit_t intel_limits_pineview_lvds = {
256 .dot = { .min = 20000, .max = 400000 }, 256 .dot = { .min = 20000, .max = 400000 },
257 .vco = { .min = 1700000, .max = 3500000 }, 257 .vco = { .min = 1700000, .max = 3500000 },
258 .n = { .min = 3, .max = 6 }, 258 .n = { .min = 3, .max = 6 },
259 .m = { .min = 2, .max = 256 }, 259 .m = { .min = 2, .max = 256 },
260 .m1 = { .min = 0, .max = 0 }, 260 .m1 = { .min = 0, .max = 0 },
261 .m2 = { .min = 0, .max = 254 }, 261 .m2 = { .min = 0, .max = 254 },
262 .p = { .min = 7, .max = 112 }, 262 .p = { .min = 7, .max = 112 },
263 .p1 = { .min = 1, .max = 8 }, 263 .p1 = { .min = 1, .max = 8 },
264 .p2 = { .dot_limit = 112000, 264 .p2 = { .dot_limit = 112000,
265 .p2_slow = 14, .p2_fast = 14 }, 265 .p2_slow = 14, .p2_fast = 14 },
266 .find_pll = intel_find_best_PLL, 266 .find_pll = intel_find_best_PLL,
267 }; 267 };
268 268
269 /* Ironlake / Sandybridge 269 /* Ironlake / Sandybridge
270 * 270 *
271 * We calculate clock using (register_value + 2) for N/M1/M2, so here 271 * We calculate clock using (register_value + 2) for N/M1/M2, so here
272 * the range value for them is (actual_value - 2). 272 * the range value for them is (actual_value - 2).
273 */ 273 */
274 static const intel_limit_t intel_limits_ironlake_dac = { 274 static const intel_limit_t intel_limits_ironlake_dac = {
275 .dot = { .min = 25000, .max = 350000 }, 275 .dot = { .min = 25000, .max = 350000 },
276 .vco = { .min = 1760000, .max = 3510000 }, 276 .vco = { .min = 1760000, .max = 3510000 },
277 .n = { .min = 1, .max = 5 }, 277 .n = { .min = 1, .max = 5 },
278 .m = { .min = 79, .max = 127 }, 278 .m = { .min = 79, .max = 127 },
279 .m1 = { .min = 12, .max = 22 }, 279 .m1 = { .min = 12, .max = 22 },
280 .m2 = { .min = 5, .max = 9 }, 280 .m2 = { .min = 5, .max = 9 },
281 .p = { .min = 5, .max = 80 }, 281 .p = { .min = 5, .max = 80 },
282 .p1 = { .min = 1, .max = 8 }, 282 .p1 = { .min = 1, .max = 8 },
283 .p2 = { .dot_limit = 225000, 283 .p2 = { .dot_limit = 225000,
284 .p2_slow = 10, .p2_fast = 5 }, 284 .p2_slow = 10, .p2_fast = 5 },
285 .find_pll = intel_g4x_find_best_PLL, 285 .find_pll = intel_g4x_find_best_PLL,
286 }; 286 };
287 287
288 static const intel_limit_t intel_limits_ironlake_single_lvds = { 288 static const intel_limit_t intel_limits_ironlake_single_lvds = {
289 .dot = { .min = 25000, .max = 350000 }, 289 .dot = { .min = 25000, .max = 350000 },
290 .vco = { .min = 1760000, .max = 3510000 }, 290 .vco = { .min = 1760000, .max = 3510000 },
291 .n = { .min = 1, .max = 3 }, 291 .n = { .min = 1, .max = 3 },
292 .m = { .min = 79, .max = 118 }, 292 .m = { .min = 79, .max = 118 },
293 .m1 = { .min = 12, .max = 22 }, 293 .m1 = { .min = 12, .max = 22 },
294 .m2 = { .min = 5, .max = 9 }, 294 .m2 = { .min = 5, .max = 9 },
295 .p = { .min = 28, .max = 112 }, 295 .p = { .min = 28, .max = 112 },
296 .p1 = { .min = 2, .max = 8 }, 296 .p1 = { .min = 2, .max = 8 },
297 .p2 = { .dot_limit = 225000, 297 .p2 = { .dot_limit = 225000,
298 .p2_slow = 14, .p2_fast = 14 }, 298 .p2_slow = 14, .p2_fast = 14 },
299 .find_pll = intel_g4x_find_best_PLL, 299 .find_pll = intel_g4x_find_best_PLL,
300 }; 300 };
301 301
302 static const intel_limit_t intel_limits_ironlake_dual_lvds = { 302 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
303 .dot = { .min = 25000, .max = 350000 }, 303 .dot = { .min = 25000, .max = 350000 },
304 .vco = { .min = 1760000, .max = 3510000 }, 304 .vco = { .min = 1760000, .max = 3510000 },
305 .n = { .min = 1, .max = 3 }, 305 .n = { .min = 1, .max = 3 },
306 .m = { .min = 79, .max = 127 }, 306 .m = { .min = 79, .max = 127 },
307 .m1 = { .min = 12, .max = 22 }, 307 .m1 = { .min = 12, .max = 22 },
308 .m2 = { .min = 5, .max = 9 }, 308 .m2 = { .min = 5, .max = 9 },
309 .p = { .min = 14, .max = 56 }, 309 .p = { .min = 14, .max = 56 },
310 .p1 = { .min = 2, .max = 8 }, 310 .p1 = { .min = 2, .max = 8 },
311 .p2 = { .dot_limit = 225000, 311 .p2 = { .dot_limit = 225000,
312 .p2_slow = 7, .p2_fast = 7 }, 312 .p2_slow = 7, .p2_fast = 7 },
313 .find_pll = intel_g4x_find_best_PLL, 313 .find_pll = intel_g4x_find_best_PLL,
314 }; 314 };
315 315
316 /* LVDS 100mhz refclk limits. */ 316 /* LVDS 100mhz refclk limits. */
317 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = { 317 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
318 .dot = { .min = 25000, .max = 350000 }, 318 .dot = { .min = 25000, .max = 350000 },
319 .vco = { .min = 1760000, .max = 3510000 }, 319 .vco = { .min = 1760000, .max = 3510000 },
320 .n = { .min = 1, .max = 2 }, 320 .n = { .min = 1, .max = 2 },
321 .m = { .min = 79, .max = 126 }, 321 .m = { .min = 79, .max = 126 },
322 .m1 = { .min = 12, .max = 22 }, 322 .m1 = { .min = 12, .max = 22 },
323 .m2 = { .min = 5, .max = 9 }, 323 .m2 = { .min = 5, .max = 9 },
324 .p = { .min = 28, .max = 112 }, 324 .p = { .min = 28, .max = 112 },
325 .p1 = { .min = 2, .max = 8 }, 325 .p1 = { .min = 2, .max = 8 },
326 .p2 = { .dot_limit = 225000, 326 .p2 = { .dot_limit = 225000,
327 .p2_slow = 14, .p2_fast = 14 }, 327 .p2_slow = 14, .p2_fast = 14 },
328 .find_pll = intel_g4x_find_best_PLL, 328 .find_pll = intel_g4x_find_best_PLL,
329 }; 329 };
330 330
331 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = { 331 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
332 .dot = { .min = 25000, .max = 350000 }, 332 .dot = { .min = 25000, .max = 350000 },
333 .vco = { .min = 1760000, .max = 3510000 }, 333 .vco = { .min = 1760000, .max = 3510000 },
334 .n = { .min = 1, .max = 3 }, 334 .n = { .min = 1, .max = 3 },
335 .m = { .min = 79, .max = 126 }, 335 .m = { .min = 79, .max = 126 },
336 .m1 = { .min = 12, .max = 22 }, 336 .m1 = { .min = 12, .max = 22 },
337 .m2 = { .min = 5, .max = 9 }, 337 .m2 = { .min = 5, .max = 9 },
338 .p = { .min = 14, .max = 42 }, 338 .p = { .min = 14, .max = 42 },
339 .p1 = { .min = 2, .max = 6 }, 339 .p1 = { .min = 2, .max = 6 },
340 .p2 = { .dot_limit = 225000, 340 .p2 = { .dot_limit = 225000,
341 .p2_slow = 7, .p2_fast = 7 }, 341 .p2_slow = 7, .p2_fast = 7 },
342 .find_pll = intel_g4x_find_best_PLL, 342 .find_pll = intel_g4x_find_best_PLL,
343 }; 343 };
344 344
345 static const intel_limit_t intel_limits_ironlake_display_port = { 345 static const intel_limit_t intel_limits_ironlake_display_port = {
346 .dot = { .min = 25000, .max = 350000 }, 346 .dot = { .min = 25000, .max = 350000 },
347 .vco = { .min = 1760000, .max = 3510000}, 347 .vco = { .min = 1760000, .max = 3510000},
348 .n = { .min = 1, .max = 2 }, 348 .n = { .min = 1, .max = 2 },
349 .m = { .min = 81, .max = 90 }, 349 .m = { .min = 81, .max = 90 },
350 .m1 = { .min = 12, .max = 22 }, 350 .m1 = { .min = 12, .max = 22 },
351 .m2 = { .min = 5, .max = 9 }, 351 .m2 = { .min = 5, .max = 9 },
352 .p = { .min = 10, .max = 20 }, 352 .p = { .min = 10, .max = 20 },
353 .p1 = { .min = 1, .max = 2}, 353 .p1 = { .min = 1, .max = 2},
354 .p2 = { .dot_limit = 0, 354 .p2 = { .dot_limit = 0,
355 .p2_slow = 10, .p2_fast = 10 }, 355 .p2_slow = 10, .p2_fast = 10 },
356 .find_pll = intel_find_pll_ironlake_dp, 356 .find_pll = intel_find_pll_ironlake_dp,
357 }; 357 };
358 358
359 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc, 359 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
360 int refclk) 360 int refclk)
361 { 361 {
362 struct drm_device *dev = crtc->dev; 362 struct drm_device *dev = crtc->dev;
363 struct drm_i915_private *dev_priv = dev->dev_private; 363 struct drm_i915_private *dev_priv = dev->dev_private;
364 const intel_limit_t *limit; 364 const intel_limit_t *limit;
365 365
366 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { 366 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
367 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == 367 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
368 LVDS_CLKB_POWER_UP) { 368 LVDS_CLKB_POWER_UP) {
369 /* LVDS dual channel */ 369 /* LVDS dual channel */
370 if (refclk == 100000) 370 if (refclk == 100000)
371 limit = &intel_limits_ironlake_dual_lvds_100m; 371 limit = &intel_limits_ironlake_dual_lvds_100m;
372 else 372 else
373 limit = &intel_limits_ironlake_dual_lvds; 373 limit = &intel_limits_ironlake_dual_lvds;
374 } else { 374 } else {
375 if (refclk == 100000) 375 if (refclk == 100000)
376 limit = &intel_limits_ironlake_single_lvds_100m; 376 limit = &intel_limits_ironlake_single_lvds_100m;
377 else 377 else
378 limit = &intel_limits_ironlake_single_lvds; 378 limit = &intel_limits_ironlake_single_lvds;
379 } 379 }
380 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) || 380 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
381 HAS_eDP) 381 HAS_eDP)
382 limit = &intel_limits_ironlake_display_port; 382 limit = &intel_limits_ironlake_display_port;
383 else 383 else
384 limit = &intel_limits_ironlake_dac; 384 limit = &intel_limits_ironlake_dac;
385 385
386 return limit; 386 return limit;
387 } 387 }
388 388
389 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc) 389 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
390 { 390 {
391 struct drm_device *dev = crtc->dev; 391 struct drm_device *dev = crtc->dev;
392 struct drm_i915_private *dev_priv = dev->dev_private; 392 struct drm_i915_private *dev_priv = dev->dev_private;
393 const intel_limit_t *limit; 393 const intel_limit_t *limit;
394 394
395 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { 395 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
396 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) == 396 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
397 LVDS_CLKB_POWER_UP) 397 LVDS_CLKB_POWER_UP)
398 /* LVDS with dual channel */ 398 /* LVDS with dual channel */
399 limit = &intel_limits_g4x_dual_channel_lvds; 399 limit = &intel_limits_g4x_dual_channel_lvds;
400 else 400 else
401 /* LVDS with dual channel */ 401 /* LVDS with dual channel */
402 limit = &intel_limits_g4x_single_channel_lvds; 402 limit = &intel_limits_g4x_single_channel_lvds;
403 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) || 403 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
404 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) { 404 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
405 limit = &intel_limits_g4x_hdmi; 405 limit = &intel_limits_g4x_hdmi;
406 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) { 406 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
407 limit = &intel_limits_g4x_sdvo; 407 limit = &intel_limits_g4x_sdvo;
408 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) { 408 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
409 limit = &intel_limits_g4x_display_port; 409 limit = &intel_limits_g4x_display_port;
410 } else /* The option is for other outputs */ 410 } else /* The option is for other outputs */
411 limit = &intel_limits_i9xx_sdvo; 411 limit = &intel_limits_i9xx_sdvo;
412 412
413 return limit; 413 return limit;
414 } 414 }
415 415
416 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk) 416 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
417 { 417 {
418 struct drm_device *dev = crtc->dev; 418 struct drm_device *dev = crtc->dev;
419 const intel_limit_t *limit; 419 const intel_limit_t *limit;
420 420
421 if (HAS_PCH_SPLIT(dev)) 421 if (HAS_PCH_SPLIT(dev))
422 limit = intel_ironlake_limit(crtc, refclk); 422 limit = intel_ironlake_limit(crtc, refclk);
423 else if (IS_G4X(dev)) { 423 else if (IS_G4X(dev)) {
424 limit = intel_g4x_limit(crtc); 424 limit = intel_g4x_limit(crtc);
425 } else if (IS_PINEVIEW(dev)) { 425 } else if (IS_PINEVIEW(dev)) {
426 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) 426 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
427 limit = &intel_limits_pineview_lvds; 427 limit = &intel_limits_pineview_lvds;
428 else 428 else
429 limit = &intel_limits_pineview_sdvo; 429 limit = &intel_limits_pineview_sdvo;
430 } else if (!IS_GEN2(dev)) { 430 } else if (!IS_GEN2(dev)) {
431 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) 431 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
432 limit = &intel_limits_i9xx_lvds; 432 limit = &intel_limits_i9xx_lvds;
433 else 433 else
434 limit = &intel_limits_i9xx_sdvo; 434 limit = &intel_limits_i9xx_sdvo;
435 } else { 435 } else {
436 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) 436 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
437 limit = &intel_limits_i8xx_lvds; 437 limit = &intel_limits_i8xx_lvds;
438 else 438 else
439 limit = &intel_limits_i8xx_dvo; 439 limit = &intel_limits_i8xx_dvo;
440 } 440 }
441 return limit; 441 return limit;
442 } 442 }
443 443
444 /* m1 is reserved as 0 in Pineview, n is a ring counter */ 444 /* m1 is reserved as 0 in Pineview, n is a ring counter */
445 static void pineview_clock(int refclk, intel_clock_t *clock) 445 static void pineview_clock(int refclk, intel_clock_t *clock)
446 { 446 {
447 clock->m = clock->m2 + 2; 447 clock->m = clock->m2 + 2;
448 clock->p = clock->p1 * clock->p2; 448 clock->p = clock->p1 * clock->p2;
449 clock->vco = refclk * clock->m / clock->n; 449 clock->vco = refclk * clock->m / clock->n;
450 clock->dot = clock->vco / clock->p; 450 clock->dot = clock->vco / clock->p;
451 } 451 }
452 452
453 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock) 453 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
454 { 454 {
455 if (IS_PINEVIEW(dev)) { 455 if (IS_PINEVIEW(dev)) {
456 pineview_clock(refclk, clock); 456 pineview_clock(refclk, clock);
457 return; 457 return;
458 } 458 }
459 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2); 459 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
460 clock->p = clock->p1 * clock->p2; 460 clock->p = clock->p1 * clock->p2;
461 clock->vco = refclk * clock->m / (clock->n + 2); 461 clock->vco = refclk * clock->m / (clock->n + 2);
462 clock->dot = clock->vco / clock->p; 462 clock->dot = clock->vco / clock->p;
463 } 463 }
464 464
465 /** 465 /**
466 * Returns whether any output on the specified pipe is of the specified type 466 * Returns whether any output on the specified pipe is of the specified type
467 */ 467 */
468 bool intel_pipe_has_type(struct drm_crtc *crtc, int type) 468 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
469 { 469 {
470 struct drm_device *dev = crtc->dev; 470 struct drm_device *dev = crtc->dev;
471 struct drm_mode_config *mode_config = &dev->mode_config; 471 struct drm_mode_config *mode_config = &dev->mode_config;
472 struct intel_encoder *encoder; 472 struct intel_encoder *encoder;
473 473
474 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) 474 list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
475 if (encoder->base.crtc == crtc && encoder->type == type) 475 if (encoder->base.crtc == crtc && encoder->type == type)
476 return true; 476 return true;
477 477
478 return false; 478 return false;
479 } 479 }
480 480
481 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0) 481 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
482 /** 482 /**
483 * Returns whether the given set of divisors are valid for a given refclk with 483 * Returns whether the given set of divisors are valid for a given refclk with
484 * the given connectors. 484 * the given connectors.
485 */ 485 */
486 486
487 static bool intel_PLL_is_valid(struct drm_device *dev, 487 static bool intel_PLL_is_valid(struct drm_device *dev,
488 const intel_limit_t *limit, 488 const intel_limit_t *limit,
489 const intel_clock_t *clock) 489 const intel_clock_t *clock)
490 { 490 {
491 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1) 491 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
492 INTELPllInvalid("p1 out of range\n"); 492 INTELPllInvalid("p1 out of range\n");
493 if (clock->p < limit->p.min || limit->p.max < clock->p) 493 if (clock->p < limit->p.min || limit->p.max < clock->p)
494 INTELPllInvalid("p out of range\n"); 494 INTELPllInvalid("p out of range\n");
495 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2) 495 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
496 INTELPllInvalid("m2 out of range\n"); 496 INTELPllInvalid("m2 out of range\n");
497 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1) 497 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
498 INTELPllInvalid("m1 out of range\n"); 498 INTELPllInvalid("m1 out of range\n");
499 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev)) 499 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
500 INTELPllInvalid("m1 <= m2\n"); 500 INTELPllInvalid("m1 <= m2\n");
501 if (clock->m < limit->m.min || limit->m.max < clock->m) 501 if (clock->m < limit->m.min || limit->m.max < clock->m)
502 INTELPllInvalid("m out of range\n"); 502 INTELPllInvalid("m out of range\n");
503 if (clock->n < limit->n.min || limit->n.max < clock->n) 503 if (clock->n < limit->n.min || limit->n.max < clock->n)
504 INTELPllInvalid("n out of range\n"); 504 INTELPllInvalid("n out of range\n");
505 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco) 505 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
506 INTELPllInvalid("vco out of range\n"); 506 INTELPllInvalid("vco out of range\n");
507 /* XXX: We may need to be checking "Dot clock" depending on the multiplier, 507 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
508 * connector, etc., rather than just a single range. 508 * connector, etc., rather than just a single range.
509 */ 509 */
510 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot) 510 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
511 INTELPllInvalid("dot out of range\n"); 511 INTELPllInvalid("dot out of range\n");
512 512
513 return true; 513 return true;
514 } 514 }
515 515
516 static bool 516 static bool
517 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc, 517 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
518 int target, int refclk, intel_clock_t *best_clock) 518 int target, int refclk, intel_clock_t *best_clock)
519 519
520 { 520 {
521 struct drm_device *dev = crtc->dev; 521 struct drm_device *dev = crtc->dev;
522 struct drm_i915_private *dev_priv = dev->dev_private; 522 struct drm_i915_private *dev_priv = dev->dev_private;
523 intel_clock_t clock; 523 intel_clock_t clock;
524 int err = target; 524 int err = target;
525 525
526 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) && 526 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
527 (I915_READ(LVDS)) != 0) { 527 (I915_READ(LVDS)) != 0) {
528 /* 528 /*
529 * For LVDS, if the panel is on, just rely on its current 529 * For LVDS, if the panel is on, just rely on its current
530 * settings for dual-channel. We haven't figured out how to 530 * settings for dual-channel. We haven't figured out how to
531 * reliably set up different single/dual channel state, if we 531 * reliably set up different single/dual channel state, if we
532 * even can. 532 * even can.
533 */ 533 */
534 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) == 534 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
535 LVDS_CLKB_POWER_UP) 535 LVDS_CLKB_POWER_UP)
536 clock.p2 = limit->p2.p2_fast; 536 clock.p2 = limit->p2.p2_fast;
537 else 537 else
538 clock.p2 = limit->p2.p2_slow; 538 clock.p2 = limit->p2.p2_slow;
539 } else { 539 } else {
540 if (target < limit->p2.dot_limit) 540 if (target < limit->p2.dot_limit)
541 clock.p2 = limit->p2.p2_slow; 541 clock.p2 = limit->p2.p2_slow;
542 else 542 else
543 clock.p2 = limit->p2.p2_fast; 543 clock.p2 = limit->p2.p2_fast;
544 } 544 }
545 545
546 memset(best_clock, 0, sizeof(*best_clock)); 546 memset(best_clock, 0, sizeof(*best_clock));
547 547
548 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; 548 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
549 clock.m1++) { 549 clock.m1++) {
550 for (clock.m2 = limit->m2.min; 550 for (clock.m2 = limit->m2.min;
551 clock.m2 <= limit->m2.max; clock.m2++) { 551 clock.m2 <= limit->m2.max; clock.m2++) {
552 /* m1 is always 0 in Pineview */ 552 /* m1 is always 0 in Pineview */
553 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev)) 553 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
554 break; 554 break;
555 for (clock.n = limit->n.min; 555 for (clock.n = limit->n.min;
556 clock.n <= limit->n.max; clock.n++) { 556 clock.n <= limit->n.max; clock.n++) {
557 for (clock.p1 = limit->p1.min; 557 for (clock.p1 = limit->p1.min;
558 clock.p1 <= limit->p1.max; clock.p1++) { 558 clock.p1 <= limit->p1.max; clock.p1++) {
559 int this_err; 559 int this_err;
560 560
561 intel_clock(dev, refclk, &clock); 561 intel_clock(dev, refclk, &clock);
562 if (!intel_PLL_is_valid(dev, limit, 562 if (!intel_PLL_is_valid(dev, limit,
563 &clock)) 563 &clock))
564 continue; 564 continue;
565 565
566 this_err = abs(clock.dot - target); 566 this_err = abs(clock.dot - target);
567 if (this_err < err) { 567 if (this_err < err) {
568 *best_clock = clock; 568 *best_clock = clock;
569 err = this_err; 569 err = this_err;
570 } 570 }
571 } 571 }
572 } 572 }
573 } 573 }
574 } 574 }
575 575
576 return (err != target); 576 return (err != target);
577 } 577 }
578 578
579 static bool 579 static bool
580 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc, 580 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
581 int target, int refclk, intel_clock_t *best_clock) 581 int target, int refclk, intel_clock_t *best_clock)
582 { 582 {
583 struct drm_device *dev = crtc->dev; 583 struct drm_device *dev = crtc->dev;
584 struct drm_i915_private *dev_priv = dev->dev_private; 584 struct drm_i915_private *dev_priv = dev->dev_private;
585 intel_clock_t clock; 585 intel_clock_t clock;
586 int max_n; 586 int max_n;
587 bool found; 587 bool found;
588 /* approximately equals target * 0.00585 */ 588 /* approximately equals target * 0.00585 */
589 int err_most = (target >> 8) + (target >> 9); 589 int err_most = (target >> 8) + (target >> 9);
590 found = false; 590 found = false;
591 591
592 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { 592 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
593 int lvds_reg; 593 int lvds_reg;
594 594
595 if (HAS_PCH_SPLIT(dev)) 595 if (HAS_PCH_SPLIT(dev))
596 lvds_reg = PCH_LVDS; 596 lvds_reg = PCH_LVDS;
597 else 597 else
598 lvds_reg = LVDS; 598 lvds_reg = LVDS;
599 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) == 599 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
600 LVDS_CLKB_POWER_UP) 600 LVDS_CLKB_POWER_UP)
601 clock.p2 = limit->p2.p2_fast; 601 clock.p2 = limit->p2.p2_fast;
602 else 602 else
603 clock.p2 = limit->p2.p2_slow; 603 clock.p2 = limit->p2.p2_slow;
604 } else { 604 } else {
605 if (target < limit->p2.dot_limit) 605 if (target < limit->p2.dot_limit)
606 clock.p2 = limit->p2.p2_slow; 606 clock.p2 = limit->p2.p2_slow;
607 else 607 else
608 clock.p2 = limit->p2.p2_fast; 608 clock.p2 = limit->p2.p2_fast;
609 } 609 }
610 610
611 memset(best_clock, 0, sizeof(*best_clock)); 611 memset(best_clock, 0, sizeof(*best_clock));
612 max_n = limit->n.max; 612 max_n = limit->n.max;
613 /* based on hardware requirement, prefer smaller n to precision */ 613 /* based on hardware requirement, prefer smaller n to precision */
614 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { 614 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
615 /* based on hardware requirement, prefere larger m1,m2 */ 615 /* based on hardware requirement, prefere larger m1,m2 */
616 for (clock.m1 = limit->m1.max; 616 for (clock.m1 = limit->m1.max;
617 clock.m1 >= limit->m1.min; clock.m1--) { 617 clock.m1 >= limit->m1.min; clock.m1--) {
618 for (clock.m2 = limit->m2.max; 618 for (clock.m2 = limit->m2.max;
619 clock.m2 >= limit->m2.min; clock.m2--) { 619 clock.m2 >= limit->m2.min; clock.m2--) {
620 for (clock.p1 = limit->p1.max; 620 for (clock.p1 = limit->p1.max;
621 clock.p1 >= limit->p1.min; clock.p1--) { 621 clock.p1 >= limit->p1.min; clock.p1--) {
622 int this_err; 622 int this_err;
623 623
624 intel_clock(dev, refclk, &clock); 624 intel_clock(dev, refclk, &clock);
625 if (!intel_PLL_is_valid(dev, limit, 625 if (!intel_PLL_is_valid(dev, limit,
626 &clock)) 626 &clock))
627 continue; 627 continue;
628 628
629 this_err = abs(clock.dot - target); 629 this_err = abs(clock.dot - target);
630 if (this_err < err_most) { 630 if (this_err < err_most) {
631 *best_clock = clock; 631 *best_clock = clock;
632 err_most = this_err; 632 err_most = this_err;
633 max_n = clock.n; 633 max_n = clock.n;
634 found = true; 634 found = true;
635 } 635 }
636 } 636 }
637 } 637 }
638 } 638 }
639 } 639 }
640 return found; 640 return found;
641 } 641 }
642 642
643 static bool 643 static bool
644 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc, 644 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
645 int target, int refclk, intel_clock_t *best_clock) 645 int target, int refclk, intel_clock_t *best_clock)
646 { 646 {
647 struct drm_device *dev = crtc->dev; 647 struct drm_device *dev = crtc->dev;
648 intel_clock_t clock; 648 intel_clock_t clock;
649 649
650 if (target < 200000) { 650 if (target < 200000) {
651 clock.n = 1; 651 clock.n = 1;
652 clock.p1 = 2; 652 clock.p1 = 2;
653 clock.p2 = 10; 653 clock.p2 = 10;
654 clock.m1 = 12; 654 clock.m1 = 12;
655 clock.m2 = 9; 655 clock.m2 = 9;
656 } else { 656 } else {
657 clock.n = 2; 657 clock.n = 2;
658 clock.p1 = 1; 658 clock.p1 = 1;
659 clock.p2 = 10; 659 clock.p2 = 10;
660 clock.m1 = 14; 660 clock.m1 = 14;
661 clock.m2 = 8; 661 clock.m2 = 8;
662 } 662 }
663 intel_clock(dev, refclk, &clock); 663 intel_clock(dev, refclk, &clock);
664 memcpy(best_clock, &clock, sizeof(intel_clock_t)); 664 memcpy(best_clock, &clock, sizeof(intel_clock_t));
665 return true; 665 return true;
666 } 666 }
667 667
668 /* DisplayPort has only two frequencies, 162MHz and 270MHz */ 668 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
669 static bool 669 static bool
670 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc, 670 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
671 int target, int refclk, intel_clock_t *best_clock) 671 int target, int refclk, intel_clock_t *best_clock)
672 { 672 {
673 intel_clock_t clock; 673 intel_clock_t clock;
674 if (target < 200000) { 674 if (target < 200000) {
675 clock.p1 = 2; 675 clock.p1 = 2;
676 clock.p2 = 10; 676 clock.p2 = 10;
677 clock.n = 2; 677 clock.n = 2;
678 clock.m1 = 23; 678 clock.m1 = 23;
679 clock.m2 = 8; 679 clock.m2 = 8;
680 } else { 680 } else {
681 clock.p1 = 1; 681 clock.p1 = 1;
682 clock.p2 = 10; 682 clock.p2 = 10;
683 clock.n = 1; 683 clock.n = 1;
684 clock.m1 = 14; 684 clock.m1 = 14;
685 clock.m2 = 2; 685 clock.m2 = 2;
686 } 686 }
687 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2); 687 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
688 clock.p = (clock.p1 * clock.p2); 688 clock.p = (clock.p1 * clock.p2);
689 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p; 689 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
690 clock.vco = 0; 690 clock.vco = 0;
691 memcpy(best_clock, &clock, sizeof(intel_clock_t)); 691 memcpy(best_clock, &clock, sizeof(intel_clock_t));
692 return true; 692 return true;
693 } 693 }
694 694
695 /** 695 /**
696 * intel_wait_for_vblank - wait for vblank on a given pipe 696 * intel_wait_for_vblank - wait for vblank on a given pipe
697 * @dev: drm device 697 * @dev: drm device
698 * @pipe: pipe to wait for 698 * @pipe: pipe to wait for
699 * 699 *
700 * Wait for vblank to occur on a given pipe. Needed for various bits of 700 * Wait for vblank to occur on a given pipe. Needed for various bits of
701 * mode setting code. 701 * mode setting code.
702 */ 702 */
703 void intel_wait_for_vblank(struct drm_device *dev, int pipe) 703 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
704 { 704 {
705 struct drm_i915_private *dev_priv = dev->dev_private; 705 struct drm_i915_private *dev_priv = dev->dev_private;
706 int pipestat_reg = PIPESTAT(pipe); 706 int pipestat_reg = PIPESTAT(pipe);
707 707
708 /* Clear existing vblank status. Note this will clear any other 708 /* Clear existing vblank status. Note this will clear any other
709 * sticky status fields as well. 709 * sticky status fields as well.
710 * 710 *
711 * This races with i915_driver_irq_handler() with the result 711 * This races with i915_driver_irq_handler() with the result
712 * that either function could miss a vblank event. Here it is not 712 * that either function could miss a vblank event. Here it is not
713 * fatal, as we will either wait upon the next vblank interrupt or 713 * fatal, as we will either wait upon the next vblank interrupt or
714 * timeout. Generally speaking intel_wait_for_vblank() is only 714 * timeout. Generally speaking intel_wait_for_vblank() is only
715 * called during modeset at which time the GPU should be idle and 715 * called during modeset at which time the GPU should be idle and
716 * should *not* be performing page flips and thus not waiting on 716 * should *not* be performing page flips and thus not waiting on
717 * vblanks... 717 * vblanks...
718 * Currently, the result of us stealing a vblank from the irq 718 * Currently, the result of us stealing a vblank from the irq
719 * handler is that a single frame will be skipped during swapbuffers. 719 * handler is that a single frame will be skipped during swapbuffers.
720 */ 720 */
721 I915_WRITE(pipestat_reg, 721 I915_WRITE(pipestat_reg,
722 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS); 722 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
723 723
724 /* Wait for vblank interrupt bit to set */ 724 /* Wait for vblank interrupt bit to set */
725 if (wait_for(I915_READ(pipestat_reg) & 725 if (wait_for(I915_READ(pipestat_reg) &
726 PIPE_VBLANK_INTERRUPT_STATUS, 726 PIPE_VBLANK_INTERRUPT_STATUS,
727 50)) 727 50))
728 DRM_DEBUG_KMS("vblank wait timed out\n"); 728 DRM_DEBUG_KMS("vblank wait timed out\n");
729 } 729 }
730 730
731 /* 731 /*
732 * intel_wait_for_pipe_off - wait for pipe to turn off 732 * intel_wait_for_pipe_off - wait for pipe to turn off
733 * @dev: drm device 733 * @dev: drm device
734 * @pipe: pipe to wait for 734 * @pipe: pipe to wait for
735 * 735 *
736 * After disabling a pipe, we can't wait for vblank in the usual way, 736 * After disabling a pipe, we can't wait for vblank in the usual way,
737 * spinning on the vblank interrupt status bit, since we won't actually 737 * spinning on the vblank interrupt status bit, since we won't actually
738 * see an interrupt when the pipe is disabled. 738 * see an interrupt when the pipe is disabled.
739 * 739 *
740 * On Gen4 and above: 740 * On Gen4 and above:
741 * wait for the pipe register state bit to turn off 741 * wait for the pipe register state bit to turn off
742 * 742 *
743 * Otherwise: 743 * Otherwise:
744 * wait for the display line value to settle (it usually 744 * wait for the display line value to settle (it usually
745 * ends up stopping at the start of the next frame). 745 * ends up stopping at the start of the next frame).
746 * 746 *
747 */ 747 */
748 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe) 748 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
749 { 749 {
750 struct drm_i915_private *dev_priv = dev->dev_private; 750 struct drm_i915_private *dev_priv = dev->dev_private;
751 751
752 if (INTEL_INFO(dev)->gen >= 4) { 752 if (INTEL_INFO(dev)->gen >= 4) {
753 int reg = PIPECONF(pipe); 753 int reg = PIPECONF(pipe);
754 754
755 /* Wait for the Pipe State to go off */ 755 /* Wait for the Pipe State to go off */
756 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0, 756 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
757 100)) 757 100))
758 DRM_DEBUG_KMS("pipe_off wait timed out\n"); 758 DRM_DEBUG_KMS("pipe_off wait timed out\n");
759 } else { 759 } else {
760 u32 last_line; 760 u32 last_line;
761 int reg = PIPEDSL(pipe); 761 int reg = PIPEDSL(pipe);
762 unsigned long timeout = jiffies + msecs_to_jiffies(100); 762 unsigned long timeout = jiffies + msecs_to_jiffies(100);
763 763
764 /* Wait for the display line to settle */ 764 /* Wait for the display line to settle */
765 do { 765 do {
766 last_line = I915_READ(reg) & DSL_LINEMASK; 766 last_line = I915_READ(reg) & DSL_LINEMASK;
767 mdelay(5); 767 mdelay(5);
768 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) && 768 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
769 time_after(timeout, jiffies)); 769 time_after(timeout, jiffies));
770 if (time_after(jiffies, timeout)) 770 if (time_after(jiffies, timeout))
771 DRM_DEBUG_KMS("pipe_off wait timed out\n"); 771 DRM_DEBUG_KMS("pipe_off wait timed out\n");
772 } 772 }
773 } 773 }
774 774
775 static const char *state_string(bool enabled) 775 static const char *state_string(bool enabled)
776 { 776 {
777 return enabled ? "on" : "off"; 777 return enabled ? "on" : "off";
778 } 778 }
779 779
780 /* Only for pre-ILK configs */ 780 /* Only for pre-ILK configs */
781 static void assert_pll(struct drm_i915_private *dev_priv, 781 static void assert_pll(struct drm_i915_private *dev_priv,
782 enum pipe pipe, bool state) 782 enum pipe pipe, bool state)
783 { 783 {
784 int reg; 784 int reg;
785 u32 val; 785 u32 val;
786 bool cur_state; 786 bool cur_state;
787 787
788 reg = DPLL(pipe); 788 reg = DPLL(pipe);
789 val = I915_READ(reg); 789 val = I915_READ(reg);
790 cur_state = !!(val & DPLL_VCO_ENABLE); 790 cur_state = !!(val & DPLL_VCO_ENABLE);
791 WARN(cur_state != state, 791 WARN(cur_state != state,
792 "PLL state assertion failure (expected %s, current %s)\n", 792 "PLL state assertion failure (expected %s, current %s)\n",
793 state_string(state), state_string(cur_state)); 793 state_string(state), state_string(cur_state));
794 } 794 }
795 #define assert_pll_enabled(d, p) assert_pll(d, p, true) 795 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
796 #define assert_pll_disabled(d, p) assert_pll(d, p, false) 796 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
797 797
798 /* For ILK+ */ 798 /* For ILK+ */
799 static void assert_pch_pll(struct drm_i915_private *dev_priv, 799 static void assert_pch_pll(struct drm_i915_private *dev_priv,
800 enum pipe pipe, bool state) 800 enum pipe pipe, bool state)
801 { 801 {
802 int reg; 802 int reg;
803 u32 val; 803 u32 val;
804 bool cur_state; 804 bool cur_state;
805 805
806 if (HAS_PCH_CPT(dev_priv->dev)) { 806 if (HAS_PCH_CPT(dev_priv->dev)) {
807 u32 pch_dpll; 807 u32 pch_dpll;
808 808
809 pch_dpll = I915_READ(PCH_DPLL_SEL); 809 pch_dpll = I915_READ(PCH_DPLL_SEL);
810 810
811 /* Make sure the selected PLL is enabled to the transcoder */ 811 /* Make sure the selected PLL is enabled to the transcoder */
812 WARN(!((pch_dpll >> (4 * pipe)) & 8), 812 WARN(!((pch_dpll >> (4 * pipe)) & 8),
813 "transcoder %d PLL not enabled\n", pipe); 813 "transcoder %d PLL not enabled\n", pipe);
814 814
815 /* Convert the transcoder pipe number to a pll pipe number */ 815 /* Convert the transcoder pipe number to a pll pipe number */
816 pipe = (pch_dpll >> (4 * pipe)) & 1; 816 pipe = (pch_dpll >> (4 * pipe)) & 1;
817 } 817 }
818 818
819 reg = PCH_DPLL(pipe); 819 reg = PCH_DPLL(pipe);
820 val = I915_READ(reg); 820 val = I915_READ(reg);
821 cur_state = !!(val & DPLL_VCO_ENABLE); 821 cur_state = !!(val & DPLL_VCO_ENABLE);
822 WARN(cur_state != state, 822 WARN(cur_state != state,
823 "PCH PLL state assertion failure (expected %s, current %s)\n", 823 "PCH PLL state assertion failure (expected %s, current %s)\n",
824 state_string(state), state_string(cur_state)); 824 state_string(state), state_string(cur_state));
825 } 825 }
826 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true) 826 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
827 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false) 827 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
828 828
829 static void assert_fdi_tx(struct drm_i915_private *dev_priv, 829 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
830 enum pipe pipe, bool state) 830 enum pipe pipe, bool state)
831 { 831 {
832 int reg; 832 int reg;
833 u32 val; 833 u32 val;
834 bool cur_state; 834 bool cur_state;
835 835
836 reg = FDI_TX_CTL(pipe); 836 reg = FDI_TX_CTL(pipe);
837 val = I915_READ(reg); 837 val = I915_READ(reg);
838 cur_state = !!(val & FDI_TX_ENABLE); 838 cur_state = !!(val & FDI_TX_ENABLE);
839 WARN(cur_state != state, 839 WARN(cur_state != state,
840 "FDI TX state assertion failure (expected %s, current %s)\n", 840 "FDI TX state assertion failure (expected %s, current %s)\n",
841 state_string(state), state_string(cur_state)); 841 state_string(state), state_string(cur_state));
842 } 842 }
843 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true) 843 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
844 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false) 844 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
845 845
846 static void assert_fdi_rx(struct drm_i915_private *dev_priv, 846 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
847 enum pipe pipe, bool state) 847 enum pipe pipe, bool state)
848 { 848 {
849 int reg; 849 int reg;
850 u32 val; 850 u32 val;
851 bool cur_state; 851 bool cur_state;
852 852
853 reg = FDI_RX_CTL(pipe); 853 reg = FDI_RX_CTL(pipe);
854 val = I915_READ(reg); 854 val = I915_READ(reg);
855 cur_state = !!(val & FDI_RX_ENABLE); 855 cur_state = !!(val & FDI_RX_ENABLE);
856 WARN(cur_state != state, 856 WARN(cur_state != state,
857 "FDI RX state assertion failure (expected %s, current %s)\n", 857 "FDI RX state assertion failure (expected %s, current %s)\n",
858 state_string(state), state_string(cur_state)); 858 state_string(state), state_string(cur_state));
859 } 859 }
860 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true) 860 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
861 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false) 861 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
862 862
863 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv, 863 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
864 enum pipe pipe) 864 enum pipe pipe)
865 { 865 {
866 int reg; 866 int reg;
867 u32 val; 867 u32 val;
868 868
869 /* ILK FDI PLL is always enabled */ 869 /* ILK FDI PLL is always enabled */
870 if (dev_priv->info->gen == 5) 870 if (dev_priv->info->gen == 5)
871 return; 871 return;
872 872
873 reg = FDI_TX_CTL(pipe); 873 reg = FDI_TX_CTL(pipe);
874 val = I915_READ(reg); 874 val = I915_READ(reg);
875 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n"); 875 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
876 } 876 }
877 877
878 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv, 878 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
879 enum pipe pipe) 879 enum pipe pipe)
880 { 880 {
881 int reg; 881 int reg;
882 u32 val; 882 u32 val;
883 883
884 reg = FDI_RX_CTL(pipe); 884 reg = FDI_RX_CTL(pipe);
885 val = I915_READ(reg); 885 val = I915_READ(reg);
886 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n"); 886 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
887 } 887 }
888 888
889 static void assert_panel_unlocked(struct drm_i915_private *dev_priv, 889 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
890 enum pipe pipe) 890 enum pipe pipe)
891 { 891 {
892 int pp_reg, lvds_reg; 892 int pp_reg, lvds_reg;
893 u32 val; 893 u32 val;
894 enum pipe panel_pipe = PIPE_A; 894 enum pipe panel_pipe = PIPE_A;
895 bool locked = true; 895 bool locked = true;
896 896
897 if (HAS_PCH_SPLIT(dev_priv->dev)) { 897 if (HAS_PCH_SPLIT(dev_priv->dev)) {
898 pp_reg = PCH_PP_CONTROL; 898 pp_reg = PCH_PP_CONTROL;
899 lvds_reg = PCH_LVDS; 899 lvds_reg = PCH_LVDS;
900 } else { 900 } else {
901 pp_reg = PP_CONTROL; 901 pp_reg = PP_CONTROL;
902 lvds_reg = LVDS; 902 lvds_reg = LVDS;
903 } 903 }
904 904
905 val = I915_READ(pp_reg); 905 val = I915_READ(pp_reg);
906 if (!(val & PANEL_POWER_ON) || 906 if (!(val & PANEL_POWER_ON) ||
907 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS)) 907 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
908 locked = false; 908 locked = false;
909 909
910 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT) 910 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
911 panel_pipe = PIPE_B; 911 panel_pipe = PIPE_B;
912 912
913 WARN(panel_pipe == pipe && locked, 913 WARN(panel_pipe == pipe && locked,
914 "panel assertion failure, pipe %c regs locked\n", 914 "panel assertion failure, pipe %c regs locked\n",
915 pipe_name(pipe)); 915 pipe_name(pipe));
916 } 916 }
917 917
918 static void assert_pipe(struct drm_i915_private *dev_priv, 918 static void assert_pipe(struct drm_i915_private *dev_priv,
919 enum pipe pipe, bool state) 919 enum pipe pipe, bool state)
920 { 920 {
921 int reg; 921 int reg;
922 u32 val; 922 u32 val;
923 bool cur_state; 923 bool cur_state;
924 924
925 reg = PIPECONF(pipe); 925 reg = PIPECONF(pipe);
926 val = I915_READ(reg); 926 val = I915_READ(reg);
927 cur_state = !!(val & PIPECONF_ENABLE); 927 cur_state = !!(val & PIPECONF_ENABLE);
928 WARN(cur_state != state, 928 WARN(cur_state != state,
929 "pipe %c assertion failure (expected %s, current %s)\n", 929 "pipe %c assertion failure (expected %s, current %s)\n",
930 pipe_name(pipe), state_string(state), state_string(cur_state)); 930 pipe_name(pipe), state_string(state), state_string(cur_state));
931 } 931 }
932 #define assert_pipe_enabled(d, p) assert_pipe(d, p, true) 932 #define assert_pipe_enabled(d, p) assert_pipe(d, p, true)
933 #define assert_pipe_disabled(d, p) assert_pipe(d, p, false) 933 #define assert_pipe_disabled(d, p) assert_pipe(d, p, false)
934 934
935 static void assert_plane_enabled(struct drm_i915_private *dev_priv, 935 static void assert_plane_enabled(struct drm_i915_private *dev_priv,
936 enum plane plane) 936 enum plane plane)
937 { 937 {
938 int reg; 938 int reg;
939 u32 val; 939 u32 val;
940 940
941 reg = DSPCNTR(plane); 941 reg = DSPCNTR(plane);
942 val = I915_READ(reg); 942 val = I915_READ(reg);
943 WARN(!(val & DISPLAY_PLANE_ENABLE), 943 WARN(!(val & DISPLAY_PLANE_ENABLE),
944 "plane %c assertion failure, should be active but is disabled\n", 944 "plane %c assertion failure, should be active but is disabled\n",
945 plane_name(plane)); 945 plane_name(plane));
946 } 946 }
947 947
948 static void assert_planes_disabled(struct drm_i915_private *dev_priv, 948 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
949 enum pipe pipe) 949 enum pipe pipe)
950 { 950 {
951 int reg, i; 951 int reg, i;
952 u32 val; 952 u32 val;
953 int cur_pipe; 953 int cur_pipe;
954 954
955 /* Planes are fixed to pipes on ILK+ */ 955 /* Planes are fixed to pipes on ILK+ */
956 if (HAS_PCH_SPLIT(dev_priv->dev)) 956 if (HAS_PCH_SPLIT(dev_priv->dev))
957 return; 957 return;
958 958
959 /* Need to check both planes against the pipe */ 959 /* Need to check both planes against the pipe */
960 for (i = 0; i < 2; i++) { 960 for (i = 0; i < 2; i++) {
961 reg = DSPCNTR(i); 961 reg = DSPCNTR(i);
962 val = I915_READ(reg); 962 val = I915_READ(reg);
963 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >> 963 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
964 DISPPLANE_SEL_PIPE_SHIFT; 964 DISPPLANE_SEL_PIPE_SHIFT;
965 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe, 965 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
966 "plane %c assertion failure, should be off on pipe %c but is still active\n", 966 "plane %c assertion failure, should be off on pipe %c but is still active\n",
967 plane_name(i), pipe_name(pipe)); 967 plane_name(i), pipe_name(pipe));
968 } 968 }
969 } 969 }
970 970
971 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv) 971 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
972 { 972 {
973 u32 val; 973 u32 val;
974 bool enabled; 974 bool enabled;
975 975
976 val = I915_READ(PCH_DREF_CONTROL); 976 val = I915_READ(PCH_DREF_CONTROL);
977 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK | 977 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
978 DREF_SUPERSPREAD_SOURCE_MASK)); 978 DREF_SUPERSPREAD_SOURCE_MASK));
979 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n"); 979 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
980 } 980 }
981 981
982 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv, 982 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
983 enum pipe pipe) 983 enum pipe pipe)
984 { 984 {
985 int reg; 985 int reg;
986 u32 val; 986 u32 val;
987 bool enabled; 987 bool enabled;
988 988
989 reg = TRANSCONF(pipe); 989 reg = TRANSCONF(pipe);
990 val = I915_READ(reg); 990 val = I915_READ(reg);
991 enabled = !!(val & TRANS_ENABLE); 991 enabled = !!(val & TRANS_ENABLE);
992 WARN(enabled, 992 WARN(enabled,
993 "transcoder assertion failed, should be off on pipe %c but is still active\n", 993 "transcoder assertion failed, should be off on pipe %c but is still active\n",
994 pipe_name(pipe)); 994 pipe_name(pipe));
995 } 995 }
996 996
997 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv, 997 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
998 enum pipe pipe, u32 port_sel, u32 val) 998 enum pipe pipe, u32 port_sel, u32 val)
999 { 999 {
1000 if ((val & DP_PORT_EN) == 0) 1000 if ((val & DP_PORT_EN) == 0)
1001 return false; 1001 return false;
1002 1002
1003 if (HAS_PCH_CPT(dev_priv->dev)) { 1003 if (HAS_PCH_CPT(dev_priv->dev)) {
1004 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe); 1004 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1005 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg); 1005 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1006 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel) 1006 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1007 return false; 1007 return false;
1008 } else { 1008 } else {
1009 if ((val & DP_PIPE_MASK) != (pipe << 30)) 1009 if ((val & DP_PIPE_MASK) != (pipe << 30))
1010 return false; 1010 return false;
1011 } 1011 }
1012 return true; 1012 return true;
1013 } 1013 }
1014 1014
1015 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv, 1015 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1016 enum pipe pipe, u32 val) 1016 enum pipe pipe, u32 val)
1017 { 1017 {
1018 if ((val & PORT_ENABLE) == 0) 1018 if ((val & PORT_ENABLE) == 0)
1019 return false; 1019 return false;
1020 1020
1021 if (HAS_PCH_CPT(dev_priv->dev)) { 1021 if (HAS_PCH_CPT(dev_priv->dev)) {
1022 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe)) 1022 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1023 return false; 1023 return false;
1024 } else { 1024 } else {
1025 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe)) 1025 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1026 return false; 1026 return false;
1027 } 1027 }
1028 return true; 1028 return true;
1029 } 1029 }
1030 1030
1031 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv, 1031 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1032 enum pipe pipe, u32 val) 1032 enum pipe pipe, u32 val)
1033 { 1033 {
1034 if ((val & LVDS_PORT_EN) == 0) 1034 if ((val & LVDS_PORT_EN) == 0)
1035 return false; 1035 return false;
1036 1036
1037 if (HAS_PCH_CPT(dev_priv->dev)) { 1037 if (HAS_PCH_CPT(dev_priv->dev)) {
1038 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe)) 1038 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1039 return false; 1039 return false;
1040 } else { 1040 } else {
1041 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe)) 1041 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1042 return false; 1042 return false;
1043 } 1043 }
1044 return true; 1044 return true;
1045 } 1045 }
1046 1046
1047 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv, 1047 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1048 enum pipe pipe, u32 val) 1048 enum pipe pipe, u32 val)
1049 { 1049 {
1050 if ((val & ADPA_DAC_ENABLE) == 0) 1050 if ((val & ADPA_DAC_ENABLE) == 0)
1051 return false; 1051 return false;
1052 if (HAS_PCH_CPT(dev_priv->dev)) { 1052 if (HAS_PCH_CPT(dev_priv->dev)) {
1053 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe)) 1053 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1054 return false; 1054 return false;
1055 } else { 1055 } else {
1056 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe)) 1056 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1057 return false; 1057 return false;
1058 } 1058 }
1059 return true; 1059 return true;
1060 } 1060 }
1061 1061
1062 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv, 1062 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1063 enum pipe pipe, int reg, u32 port_sel) 1063 enum pipe pipe, int reg, u32 port_sel)
1064 { 1064 {
1065 u32 val = I915_READ(reg); 1065 u32 val = I915_READ(reg);
1066 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val), 1066 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1067 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n", 1067 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1068 reg, pipe_name(pipe)); 1068 reg, pipe_name(pipe));
1069 } 1069 }
1070 1070
1071 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv, 1071 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1072 enum pipe pipe, int reg) 1072 enum pipe pipe, int reg)
1073 { 1073 {
1074 u32 val = I915_READ(reg); 1074 u32 val = I915_READ(reg);
1075 WARN(hdmi_pipe_enabled(dev_priv, val, pipe), 1075 WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
1076 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n", 1076 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1077 reg, pipe_name(pipe)); 1077 reg, pipe_name(pipe));
1078 } 1078 }
1079 1079
1080 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv, 1080 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1081 enum pipe pipe) 1081 enum pipe pipe)
1082 { 1082 {
1083 int reg; 1083 int reg;
1084 u32 val; 1084 u32 val;
1085 1085
1086 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B); 1086 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1087 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C); 1087 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1088 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D); 1088 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1089 1089
1090 reg = PCH_ADPA; 1090 reg = PCH_ADPA;
1091 val = I915_READ(reg); 1091 val = I915_READ(reg);
1092 WARN(adpa_pipe_enabled(dev_priv, val, pipe), 1092 WARN(adpa_pipe_enabled(dev_priv, val, pipe),
1093 "PCH VGA enabled on transcoder %c, should be disabled\n", 1093 "PCH VGA enabled on transcoder %c, should be disabled\n",
1094 pipe_name(pipe)); 1094 pipe_name(pipe));
1095 1095
1096 reg = PCH_LVDS; 1096 reg = PCH_LVDS;
1097 val = I915_READ(reg); 1097 val = I915_READ(reg);
1098 WARN(lvds_pipe_enabled(dev_priv, val, pipe), 1098 WARN(lvds_pipe_enabled(dev_priv, val, pipe),
1099 "PCH LVDS enabled on transcoder %c, should be disabled\n", 1099 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1100 pipe_name(pipe)); 1100 pipe_name(pipe));
1101 1101
1102 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB); 1102 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1103 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC); 1103 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1104 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID); 1104 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1105 } 1105 }
1106 1106
1107 /** 1107 /**
1108 * intel_enable_pll - enable a PLL 1108 * intel_enable_pll - enable a PLL
1109 * @dev_priv: i915 private structure 1109 * @dev_priv: i915 private structure
1110 * @pipe: pipe PLL to enable 1110 * @pipe: pipe PLL to enable
1111 * 1111 *
1112 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to 1112 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1113 * make sure the PLL reg is writable first though, since the panel write 1113 * make sure the PLL reg is writable first though, since the panel write
1114 * protect mechanism may be enabled. 1114 * protect mechanism may be enabled.
1115 * 1115 *
1116 * Note! This is for pre-ILK only. 1116 * Note! This is for pre-ILK only.
1117 */ 1117 */
1118 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) 1118 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1119 { 1119 {
1120 int reg; 1120 int reg;
1121 u32 val; 1121 u32 val;
1122 1122
1123 /* No really, not for ILK+ */ 1123 /* No really, not for ILK+ */
1124 BUG_ON(dev_priv->info->gen >= 5); 1124 BUG_ON(dev_priv->info->gen >= 5);
1125 1125
1126 /* PLL is protected by panel, make sure we can write it */ 1126 /* PLL is protected by panel, make sure we can write it */
1127 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev)) 1127 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1128 assert_panel_unlocked(dev_priv, pipe); 1128 assert_panel_unlocked(dev_priv, pipe);
1129 1129
1130 reg = DPLL(pipe); 1130 reg = DPLL(pipe);
1131 val = I915_READ(reg); 1131 val = I915_READ(reg);
1132 val |= DPLL_VCO_ENABLE; 1132 val |= DPLL_VCO_ENABLE;
1133 1133
1134 /* We do this three times for luck */ 1134 /* We do this three times for luck */
1135 I915_WRITE(reg, val); 1135 I915_WRITE(reg, val);
1136 POSTING_READ(reg); 1136 POSTING_READ(reg);
1137 udelay(150); /* wait for warmup */ 1137 udelay(150); /* wait for warmup */
1138 I915_WRITE(reg, val); 1138 I915_WRITE(reg, val);
1139 POSTING_READ(reg); 1139 POSTING_READ(reg);
1140 udelay(150); /* wait for warmup */ 1140 udelay(150); /* wait for warmup */
1141 I915_WRITE(reg, val); 1141 I915_WRITE(reg, val);
1142 POSTING_READ(reg); 1142 POSTING_READ(reg);
1143 udelay(150); /* wait for warmup */ 1143 udelay(150); /* wait for warmup */
1144 } 1144 }
1145 1145
1146 /** 1146 /**
1147 * intel_disable_pll - disable a PLL 1147 * intel_disable_pll - disable a PLL
1148 * @dev_priv: i915 private structure 1148 * @dev_priv: i915 private structure
1149 * @pipe: pipe PLL to disable 1149 * @pipe: pipe PLL to disable
1150 * 1150 *
1151 * Disable the PLL for @pipe, making sure the pipe is off first. 1151 * Disable the PLL for @pipe, making sure the pipe is off first.
1152 * 1152 *
1153 * Note! This is for pre-ILK only. 1153 * Note! This is for pre-ILK only.
1154 */ 1154 */
1155 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) 1155 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1156 { 1156 {
1157 int reg; 1157 int reg;
1158 u32 val; 1158 u32 val;
1159 1159
1160 /* Don't disable pipe A or pipe A PLLs if needed */ 1160 /* Don't disable pipe A or pipe A PLLs if needed */
1161 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE)) 1161 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1162 return; 1162 return;
1163 1163
1164 /* Make sure the pipe isn't still relying on us */ 1164 /* Make sure the pipe isn't still relying on us */
1165 assert_pipe_disabled(dev_priv, pipe); 1165 assert_pipe_disabled(dev_priv, pipe);
1166 1166
1167 reg = DPLL(pipe); 1167 reg = DPLL(pipe);
1168 val = I915_READ(reg); 1168 val = I915_READ(reg);
1169 val &= ~DPLL_VCO_ENABLE; 1169 val &= ~DPLL_VCO_ENABLE;
1170 I915_WRITE(reg, val); 1170 I915_WRITE(reg, val);
1171 POSTING_READ(reg); 1171 POSTING_READ(reg);
1172 } 1172 }
1173 1173
1174 /** 1174 /**
1175 * intel_enable_pch_pll - enable PCH PLL 1175 * intel_enable_pch_pll - enable PCH PLL
1176 * @dev_priv: i915 private structure 1176 * @dev_priv: i915 private structure
1177 * @pipe: pipe PLL to enable 1177 * @pipe: pipe PLL to enable
1178 * 1178 *
1179 * The PCH PLL needs to be enabled before the PCH transcoder, since it 1179 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1180 * drives the transcoder clock. 1180 * drives the transcoder clock.
1181 */ 1181 */
1182 static void intel_enable_pch_pll(struct drm_i915_private *dev_priv, 1182 static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1183 enum pipe pipe) 1183 enum pipe pipe)
1184 { 1184 {
1185 int reg; 1185 int reg;
1186 u32 val; 1186 u32 val;
1187 1187
1188 if (pipe > 1) 1188 if (pipe > 1)
1189 return; 1189 return;
1190 1190
1191 /* PCH only available on ILK+ */ 1191 /* PCH only available on ILK+ */
1192 BUG_ON(dev_priv->info->gen < 5); 1192 BUG_ON(dev_priv->info->gen < 5);
1193 1193
1194 /* PCH refclock must be enabled first */ 1194 /* PCH refclock must be enabled first */
1195 assert_pch_refclk_enabled(dev_priv); 1195 assert_pch_refclk_enabled(dev_priv);
1196 1196
1197 reg = PCH_DPLL(pipe); 1197 reg = PCH_DPLL(pipe);
1198 val = I915_READ(reg); 1198 val = I915_READ(reg);
1199 val |= DPLL_VCO_ENABLE; 1199 val |= DPLL_VCO_ENABLE;
1200 I915_WRITE(reg, val); 1200 I915_WRITE(reg, val);
1201 POSTING_READ(reg); 1201 POSTING_READ(reg);
1202 udelay(200); 1202 udelay(200);
1203 } 1203 }
1204 1204
1205 static void intel_disable_pch_pll(struct drm_i915_private *dev_priv, 1205 static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1206 enum pipe pipe) 1206 enum pipe pipe)
1207 { 1207 {
1208 int reg; 1208 int reg;
1209 u32 val; 1209 u32 val;
1210 1210
1211 if (pipe > 1) 1211 if (pipe > 1)
1212 return; 1212 return;
1213 1213
1214 /* PCH only available on ILK+ */ 1214 /* PCH only available on ILK+ */
1215 BUG_ON(dev_priv->info->gen < 5); 1215 BUG_ON(dev_priv->info->gen < 5);
1216 1216
1217 /* Make sure transcoder isn't still depending on us */ 1217 /* Make sure transcoder isn't still depending on us */
1218 assert_transcoder_disabled(dev_priv, pipe); 1218 assert_transcoder_disabled(dev_priv, pipe);
1219 1219
1220 reg = PCH_DPLL(pipe); 1220 reg = PCH_DPLL(pipe);
1221 val = I915_READ(reg); 1221 val = I915_READ(reg);
1222 val &= ~DPLL_VCO_ENABLE; 1222 val &= ~DPLL_VCO_ENABLE;
1223 I915_WRITE(reg, val); 1223 I915_WRITE(reg, val);
1224 POSTING_READ(reg); 1224 POSTING_READ(reg);
1225 udelay(200); 1225 udelay(200);
1226 } 1226 }
1227 1227
1228 static void intel_enable_transcoder(struct drm_i915_private *dev_priv, 1228 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1229 enum pipe pipe) 1229 enum pipe pipe)
1230 { 1230 {
1231 int reg; 1231 int reg;
1232 u32 val; 1232 u32 val;
1233 1233
1234 /* PCH only available on ILK+ */ 1234 /* PCH only available on ILK+ */
1235 BUG_ON(dev_priv->info->gen < 5); 1235 BUG_ON(dev_priv->info->gen < 5);
1236 1236
1237 /* Make sure PCH DPLL is enabled */ 1237 /* Make sure PCH DPLL is enabled */
1238 assert_pch_pll_enabled(dev_priv, pipe); 1238 assert_pch_pll_enabled(dev_priv, pipe);
1239 1239
1240 /* FDI must be feeding us bits for PCH ports */ 1240 /* FDI must be feeding us bits for PCH ports */
1241 assert_fdi_tx_enabled(dev_priv, pipe); 1241 assert_fdi_tx_enabled(dev_priv, pipe);
1242 assert_fdi_rx_enabled(dev_priv, pipe); 1242 assert_fdi_rx_enabled(dev_priv, pipe);
1243 1243
1244 reg = TRANSCONF(pipe); 1244 reg = TRANSCONF(pipe);
1245 val = I915_READ(reg); 1245 val = I915_READ(reg);
1246 1246
1247 if (HAS_PCH_IBX(dev_priv->dev)) { 1247 if (HAS_PCH_IBX(dev_priv->dev)) {
1248 /* 1248 /*
1249 * make the BPC in transcoder be consistent with 1249 * make the BPC in transcoder be consistent with
1250 * that in pipeconf reg. 1250 * that in pipeconf reg.
1251 */ 1251 */
1252 val &= ~PIPE_BPC_MASK; 1252 val &= ~PIPE_BPC_MASK;
1253 val |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK; 1253 val |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
1254 } 1254 }
1255 I915_WRITE(reg, val | TRANS_ENABLE); 1255 I915_WRITE(reg, val | TRANS_ENABLE);
1256 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100)) 1256 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1257 DRM_ERROR("failed to enable transcoder %d\n", pipe); 1257 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1258 } 1258 }
1259 1259
1260 static void intel_disable_transcoder(struct drm_i915_private *dev_priv, 1260 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1261 enum pipe pipe) 1261 enum pipe pipe)
1262 { 1262 {
1263 int reg; 1263 int reg;
1264 u32 val; 1264 u32 val;
1265 1265
1266 /* FDI relies on the transcoder */ 1266 /* FDI relies on the transcoder */
1267 assert_fdi_tx_disabled(dev_priv, pipe); 1267 assert_fdi_tx_disabled(dev_priv, pipe);
1268 assert_fdi_rx_disabled(dev_priv, pipe); 1268 assert_fdi_rx_disabled(dev_priv, pipe);
1269 1269
1270 /* Ports must be off as well */ 1270 /* Ports must be off as well */
1271 assert_pch_ports_disabled(dev_priv, pipe); 1271 assert_pch_ports_disabled(dev_priv, pipe);
1272 1272
1273 reg = TRANSCONF(pipe); 1273 reg = TRANSCONF(pipe);
1274 val = I915_READ(reg); 1274 val = I915_READ(reg);
1275 val &= ~TRANS_ENABLE; 1275 val &= ~TRANS_ENABLE;
1276 I915_WRITE(reg, val); 1276 I915_WRITE(reg, val);
1277 /* wait for PCH transcoder off, transcoder state */ 1277 /* wait for PCH transcoder off, transcoder state */
1278 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50)) 1278 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1279 DRM_ERROR("failed to disable transcoder %d\n", pipe); 1279 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1280 } 1280 }
1281 1281
1282 /** 1282 /**
1283 * intel_enable_pipe - enable a pipe, asserting requirements 1283 * intel_enable_pipe - enable a pipe, asserting requirements
1284 * @dev_priv: i915 private structure 1284 * @dev_priv: i915 private structure
1285 * @pipe: pipe to enable 1285 * @pipe: pipe to enable
1286 * @pch_port: on ILK+, is this pipe driving a PCH port or not 1286 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1287 * 1287 *
1288 * Enable @pipe, making sure that various hardware specific requirements 1288 * Enable @pipe, making sure that various hardware specific requirements
1289 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc. 1289 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1290 * 1290 *
1291 * @pipe should be %PIPE_A or %PIPE_B. 1291 * @pipe should be %PIPE_A or %PIPE_B.
1292 * 1292 *
1293 * Will wait until the pipe is actually running (i.e. first vblank) before 1293 * Will wait until the pipe is actually running (i.e. first vblank) before
1294 * returning. 1294 * returning.
1295 */ 1295 */
1296 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, 1296 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1297 bool pch_port) 1297 bool pch_port)
1298 { 1298 {
1299 int reg; 1299 int reg;
1300 u32 val; 1300 u32 val;
1301 1301
1302 /* 1302 /*
1303 * A pipe without a PLL won't actually be able to drive bits from 1303 * A pipe without a PLL won't actually be able to drive bits from
1304 * a plane. On ILK+ the pipe PLLs are integrated, so we don't 1304 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1305 * need the check. 1305 * need the check.
1306 */ 1306 */
1307 if (!HAS_PCH_SPLIT(dev_priv->dev)) 1307 if (!HAS_PCH_SPLIT(dev_priv->dev))
1308 assert_pll_enabled(dev_priv, pipe); 1308 assert_pll_enabled(dev_priv, pipe);
1309 else { 1309 else {
1310 if (pch_port) { 1310 if (pch_port) {
1311 /* if driving the PCH, we need FDI enabled */ 1311 /* if driving the PCH, we need FDI enabled */
1312 assert_fdi_rx_pll_enabled(dev_priv, pipe); 1312 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1313 assert_fdi_tx_pll_enabled(dev_priv, pipe); 1313 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1314 } 1314 }
1315 /* FIXME: assert CPU port conditions for SNB+ */ 1315 /* FIXME: assert CPU port conditions for SNB+ */
1316 } 1316 }
1317 1317
1318 reg = PIPECONF(pipe); 1318 reg = PIPECONF(pipe);
1319 val = I915_READ(reg); 1319 val = I915_READ(reg);
1320 if (val & PIPECONF_ENABLE) 1320 if (val & PIPECONF_ENABLE)
1321 return; 1321 return;
1322 1322
1323 I915_WRITE(reg, val | PIPECONF_ENABLE); 1323 I915_WRITE(reg, val | PIPECONF_ENABLE);
1324 intel_wait_for_vblank(dev_priv->dev, pipe); 1324 intel_wait_for_vblank(dev_priv->dev, pipe);
1325 } 1325 }
1326 1326
1327 /** 1327 /**
1328 * intel_disable_pipe - disable a pipe, asserting requirements 1328 * intel_disable_pipe - disable a pipe, asserting requirements
1329 * @dev_priv: i915 private structure 1329 * @dev_priv: i915 private structure
1330 * @pipe: pipe to disable 1330 * @pipe: pipe to disable
1331 * 1331 *
1332 * Disable @pipe, making sure that various hardware specific requirements 1332 * Disable @pipe, making sure that various hardware specific requirements
1333 * are met, if applicable, e.g. plane disabled, panel fitter off, etc. 1333 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1334 * 1334 *
1335 * @pipe should be %PIPE_A or %PIPE_B. 1335 * @pipe should be %PIPE_A or %PIPE_B.
1336 * 1336 *
1337 * Will wait until the pipe has shut down before returning. 1337 * Will wait until the pipe has shut down before returning.
1338 */ 1338 */
1339 static void intel_disable_pipe(struct drm_i915_private *dev_priv, 1339 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1340 enum pipe pipe) 1340 enum pipe pipe)
1341 { 1341 {
1342 int reg; 1342 int reg;
1343 u32 val; 1343 u32 val;
1344 1344
1345 /* 1345 /*
1346 * Make sure planes won't keep trying to pump pixels to us, 1346 * Make sure planes won't keep trying to pump pixels to us,
1347 * or we might hang the display. 1347 * or we might hang the display.
1348 */ 1348 */
1349 assert_planes_disabled(dev_priv, pipe); 1349 assert_planes_disabled(dev_priv, pipe);
1350 1350
1351 /* Don't disable pipe A or pipe A PLLs if needed */ 1351 /* Don't disable pipe A or pipe A PLLs if needed */
1352 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE)) 1352 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1353 return; 1353 return;
1354 1354
1355 reg = PIPECONF(pipe); 1355 reg = PIPECONF(pipe);
1356 val = I915_READ(reg); 1356 val = I915_READ(reg);
1357 if ((val & PIPECONF_ENABLE) == 0) 1357 if ((val & PIPECONF_ENABLE) == 0)
1358 return; 1358 return;
1359 1359
1360 I915_WRITE(reg, val & ~PIPECONF_ENABLE); 1360 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1361 intel_wait_for_pipe_off(dev_priv->dev, pipe); 1361 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1362 } 1362 }
1363 1363
1364 /* 1364 /*
1365 * Plane regs are double buffered, going from enabled->disabled needs a 1365 * Plane regs are double buffered, going from enabled->disabled needs a
1366 * trigger in order to latch. The display address reg provides this. 1366 * trigger in order to latch. The display address reg provides this.
1367 */ 1367 */
1368 static void intel_flush_display_plane(struct drm_i915_private *dev_priv, 1368 static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1369 enum plane plane) 1369 enum plane plane)
1370 { 1370 {
1371 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane))); 1371 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1372 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane))); 1372 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1373 } 1373 }
1374 1374
1375 /** 1375 /**
1376 * intel_enable_plane - enable a display plane on a given pipe 1376 * intel_enable_plane - enable a display plane on a given pipe
1377 * @dev_priv: i915 private structure 1377 * @dev_priv: i915 private structure
1378 * @plane: plane to enable 1378 * @plane: plane to enable
1379 * @pipe: pipe being fed 1379 * @pipe: pipe being fed
1380 * 1380 *
1381 * Enable @plane on @pipe, making sure that @pipe is running first. 1381 * Enable @plane on @pipe, making sure that @pipe is running first.
1382 */ 1382 */
1383 static void intel_enable_plane(struct drm_i915_private *dev_priv, 1383 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1384 enum plane plane, enum pipe pipe) 1384 enum plane plane, enum pipe pipe)
1385 { 1385 {
1386 int reg; 1386 int reg;
1387 u32 val; 1387 u32 val;
1388 1388
1389 /* If the pipe isn't enabled, we can't pump pixels and may hang */ 1389 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1390 assert_pipe_enabled(dev_priv, pipe); 1390 assert_pipe_enabled(dev_priv, pipe);
1391 1391
1392 reg = DSPCNTR(plane); 1392 reg = DSPCNTR(plane);
1393 val = I915_READ(reg); 1393 val = I915_READ(reg);
1394 if (val & DISPLAY_PLANE_ENABLE) 1394 if (val & DISPLAY_PLANE_ENABLE)
1395 return; 1395 return;
1396 1396
1397 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE); 1397 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1398 intel_flush_display_plane(dev_priv, plane); 1398 intel_flush_display_plane(dev_priv, plane);
1399 intel_wait_for_vblank(dev_priv->dev, pipe); 1399 intel_wait_for_vblank(dev_priv->dev, pipe);
1400 } 1400 }
1401 1401
1402 /** 1402 /**
1403 * intel_disable_plane - disable a display plane 1403 * intel_disable_plane - disable a display plane
1404 * @dev_priv: i915 private structure 1404 * @dev_priv: i915 private structure
1405 * @plane: plane to disable 1405 * @plane: plane to disable
1406 * @pipe: pipe consuming the data 1406 * @pipe: pipe consuming the data
1407 * 1407 *
1408 * Disable @plane; should be an independent operation. 1408 * Disable @plane; should be an independent operation.
1409 */ 1409 */
1410 static void intel_disable_plane(struct drm_i915_private *dev_priv, 1410 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1411 enum plane plane, enum pipe pipe) 1411 enum plane plane, enum pipe pipe)
1412 { 1412 {
1413 int reg; 1413 int reg;
1414 u32 val; 1414 u32 val;
1415 1415
1416 reg = DSPCNTR(plane); 1416 reg = DSPCNTR(plane);
1417 val = I915_READ(reg); 1417 val = I915_READ(reg);
1418 if ((val & DISPLAY_PLANE_ENABLE) == 0) 1418 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1419 return; 1419 return;
1420 1420
1421 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE); 1421 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1422 intel_flush_display_plane(dev_priv, plane); 1422 intel_flush_display_plane(dev_priv, plane);
1423 intel_wait_for_vblank(dev_priv->dev, pipe); 1423 intel_wait_for_vblank(dev_priv->dev, pipe);
1424 } 1424 }
1425 1425
1426 static void disable_pch_dp(struct drm_i915_private *dev_priv, 1426 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1427 enum pipe pipe, int reg, u32 port_sel) 1427 enum pipe pipe, int reg, u32 port_sel)
1428 { 1428 {
1429 u32 val = I915_READ(reg); 1429 u32 val = I915_READ(reg);
1430 if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) { 1430 if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
1431 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe); 1431 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
1432 I915_WRITE(reg, val & ~DP_PORT_EN); 1432 I915_WRITE(reg, val & ~DP_PORT_EN);
1433 } 1433 }
1434 } 1434 }
1435 1435
1436 static void disable_pch_hdmi(struct drm_i915_private *dev_priv, 1436 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1437 enum pipe pipe, int reg) 1437 enum pipe pipe, int reg)
1438 { 1438 {
1439 u32 val = I915_READ(reg); 1439 u32 val = I915_READ(reg);
1440 if (hdmi_pipe_enabled(dev_priv, val, pipe)) { 1440 if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
1441 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n", 1441 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1442 reg, pipe); 1442 reg, pipe);
1443 I915_WRITE(reg, val & ~PORT_ENABLE); 1443 I915_WRITE(reg, val & ~PORT_ENABLE);
1444 } 1444 }
1445 } 1445 }
1446 1446
1447 /* Disable any ports connected to this transcoder */ 1447 /* Disable any ports connected to this transcoder */
1448 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv, 1448 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1449 enum pipe pipe) 1449 enum pipe pipe)
1450 { 1450 {
1451 u32 reg, val; 1451 u32 reg, val;
1452 1452
1453 val = I915_READ(PCH_PP_CONTROL); 1453 val = I915_READ(PCH_PP_CONTROL);
1454 I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS); 1454 I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1455 1455
1456 disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B); 1456 disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1457 disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C); 1457 disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1458 disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D); 1458 disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1459 1459
1460 reg = PCH_ADPA; 1460 reg = PCH_ADPA;
1461 val = I915_READ(reg); 1461 val = I915_READ(reg);
1462 if (adpa_pipe_enabled(dev_priv, val, pipe)) 1462 if (adpa_pipe_enabled(dev_priv, val, pipe))
1463 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE); 1463 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1464 1464
1465 reg = PCH_LVDS; 1465 reg = PCH_LVDS;
1466 val = I915_READ(reg); 1466 val = I915_READ(reg);
1467 if (lvds_pipe_enabled(dev_priv, val, pipe)) { 1467 if (lvds_pipe_enabled(dev_priv, val, pipe)) {
1468 DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val); 1468 DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
1469 I915_WRITE(reg, val & ~LVDS_PORT_EN); 1469 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1470 POSTING_READ(reg); 1470 POSTING_READ(reg);
1471 udelay(100); 1471 udelay(100);
1472 } 1472 }
1473 1473
1474 disable_pch_hdmi(dev_priv, pipe, HDMIB); 1474 disable_pch_hdmi(dev_priv, pipe, HDMIB);
1475 disable_pch_hdmi(dev_priv, pipe, HDMIC); 1475 disable_pch_hdmi(dev_priv, pipe, HDMIC);
1476 disable_pch_hdmi(dev_priv, pipe, HDMID); 1476 disable_pch_hdmi(dev_priv, pipe, HDMID);
1477 } 1477 }
1478 1478
1479 static void i8xx_disable_fbc(struct drm_device *dev) 1479 static void i8xx_disable_fbc(struct drm_device *dev)
1480 { 1480 {
1481 struct drm_i915_private *dev_priv = dev->dev_private; 1481 struct drm_i915_private *dev_priv = dev->dev_private;
1482 u32 fbc_ctl; 1482 u32 fbc_ctl;
1483 1483
1484 /* Disable compression */ 1484 /* Disable compression */
1485 fbc_ctl = I915_READ(FBC_CONTROL); 1485 fbc_ctl = I915_READ(FBC_CONTROL);
1486 if ((fbc_ctl & FBC_CTL_EN) == 0) 1486 if ((fbc_ctl & FBC_CTL_EN) == 0)
1487 return; 1487 return;
1488 1488
1489 fbc_ctl &= ~FBC_CTL_EN; 1489 fbc_ctl &= ~FBC_CTL_EN;
1490 I915_WRITE(FBC_CONTROL, fbc_ctl); 1490 I915_WRITE(FBC_CONTROL, fbc_ctl);
1491 1491
1492 /* Wait for compressing bit to clear */ 1492 /* Wait for compressing bit to clear */
1493 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) { 1493 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1494 DRM_DEBUG_KMS("FBC idle timed out\n"); 1494 DRM_DEBUG_KMS("FBC idle timed out\n");
1495 return; 1495 return;
1496 } 1496 }
1497 1497
1498 DRM_DEBUG_KMS("disabled FBC\n"); 1498 DRM_DEBUG_KMS("disabled FBC\n");
1499 } 1499 }
1500 1500
1501 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval) 1501 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1502 { 1502 {
1503 struct drm_device *dev = crtc->dev; 1503 struct drm_device *dev = crtc->dev;
1504 struct drm_i915_private *dev_priv = dev->dev_private; 1504 struct drm_i915_private *dev_priv = dev->dev_private;
1505 struct drm_framebuffer *fb = crtc->fb; 1505 struct drm_framebuffer *fb = crtc->fb;
1506 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 1506 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1507 struct drm_i915_gem_object *obj = intel_fb->obj; 1507 struct drm_i915_gem_object *obj = intel_fb->obj;
1508 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 1508 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1509 int cfb_pitch; 1509 int cfb_pitch;
1510 int plane, i; 1510 int plane, i;
1511 u32 fbc_ctl, fbc_ctl2; 1511 u32 fbc_ctl, fbc_ctl2;
1512 1512
1513 cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE; 1513 cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1514 if (fb->pitch < cfb_pitch) 1514 if (fb->pitch < cfb_pitch)
1515 cfb_pitch = fb->pitch; 1515 cfb_pitch = fb->pitch;
1516 1516
1517 /* FBC_CTL wants 64B units */ 1517 /* FBC_CTL wants 64B units */
1518 cfb_pitch = (cfb_pitch / 64) - 1; 1518 cfb_pitch = (cfb_pitch / 64) - 1;
1519 plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB; 1519 plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1520 1520
1521 /* Clear old tags */ 1521 /* Clear old tags */
1522 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++) 1522 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1523 I915_WRITE(FBC_TAG + (i * 4), 0); 1523 I915_WRITE(FBC_TAG + (i * 4), 0);
1524 1524
1525 /* Set it up... */ 1525 /* Set it up... */
1526 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE; 1526 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
1527 fbc_ctl2 |= plane; 1527 fbc_ctl2 |= plane;
1528 I915_WRITE(FBC_CONTROL2, fbc_ctl2); 1528 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1529 I915_WRITE(FBC_FENCE_OFF, crtc->y); 1529 I915_WRITE(FBC_FENCE_OFF, crtc->y);
1530 1530
1531 /* enable it... */ 1531 /* enable it... */
1532 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC; 1532 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1533 if (IS_I945GM(dev)) 1533 if (IS_I945GM(dev))
1534 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */ 1534 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1535 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT; 1535 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1536 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT; 1536 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1537 fbc_ctl |= obj->fence_reg; 1537 fbc_ctl |= obj->fence_reg;
1538 I915_WRITE(FBC_CONTROL, fbc_ctl); 1538 I915_WRITE(FBC_CONTROL, fbc_ctl);
1539 1539
1540 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ", 1540 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
1541 cfb_pitch, crtc->y, intel_crtc->plane); 1541 cfb_pitch, crtc->y, intel_crtc->plane);
1542 } 1542 }
1543 1543
1544 static bool i8xx_fbc_enabled(struct drm_device *dev) 1544 static bool i8xx_fbc_enabled(struct drm_device *dev)
1545 { 1545 {
1546 struct drm_i915_private *dev_priv = dev->dev_private; 1546 struct drm_i915_private *dev_priv = dev->dev_private;
1547 1547
1548 return I915_READ(FBC_CONTROL) & FBC_CTL_EN; 1548 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1549 } 1549 }
1550 1550
1551 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval) 1551 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1552 { 1552 {
1553 struct drm_device *dev = crtc->dev; 1553 struct drm_device *dev = crtc->dev;
1554 struct drm_i915_private *dev_priv = dev->dev_private; 1554 struct drm_i915_private *dev_priv = dev->dev_private;
1555 struct drm_framebuffer *fb = crtc->fb; 1555 struct drm_framebuffer *fb = crtc->fb;
1556 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 1556 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1557 struct drm_i915_gem_object *obj = intel_fb->obj; 1557 struct drm_i915_gem_object *obj = intel_fb->obj;
1558 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 1558 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1559 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB; 1559 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1560 unsigned long stall_watermark = 200; 1560 unsigned long stall_watermark = 200;
1561 u32 dpfc_ctl; 1561 u32 dpfc_ctl;
1562 1562
1563 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X; 1563 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1564 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg; 1564 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
1565 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY); 1565 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1566 1566
1567 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN | 1567 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1568 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) | 1568 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1569 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT)); 1569 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1570 I915_WRITE(DPFC_FENCE_YOFF, crtc->y); 1570 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1571 1571
1572 /* enable it... */ 1572 /* enable it... */
1573 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN); 1573 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1574 1574
1575 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane); 1575 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1576 } 1576 }
1577 1577
1578 static void g4x_disable_fbc(struct drm_device *dev) 1578 static void g4x_disable_fbc(struct drm_device *dev)
1579 { 1579 {
1580 struct drm_i915_private *dev_priv = dev->dev_private; 1580 struct drm_i915_private *dev_priv = dev->dev_private;
1581 u32 dpfc_ctl; 1581 u32 dpfc_ctl;
1582 1582
1583 /* Disable compression */ 1583 /* Disable compression */
1584 dpfc_ctl = I915_READ(DPFC_CONTROL); 1584 dpfc_ctl = I915_READ(DPFC_CONTROL);
1585 if (dpfc_ctl & DPFC_CTL_EN) { 1585 if (dpfc_ctl & DPFC_CTL_EN) {
1586 dpfc_ctl &= ~DPFC_CTL_EN; 1586 dpfc_ctl &= ~DPFC_CTL_EN;
1587 I915_WRITE(DPFC_CONTROL, dpfc_ctl); 1587 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1588 1588
1589 DRM_DEBUG_KMS("disabled FBC\n"); 1589 DRM_DEBUG_KMS("disabled FBC\n");
1590 } 1590 }
1591 } 1591 }
1592 1592
1593 static bool g4x_fbc_enabled(struct drm_device *dev) 1593 static bool g4x_fbc_enabled(struct drm_device *dev)
1594 { 1594 {
1595 struct drm_i915_private *dev_priv = dev->dev_private; 1595 struct drm_i915_private *dev_priv = dev->dev_private;
1596 1596
1597 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN; 1597 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1598 } 1598 }
1599 1599
1600 static void sandybridge_blit_fbc_update(struct drm_device *dev) 1600 static void sandybridge_blit_fbc_update(struct drm_device *dev)
1601 { 1601 {
1602 struct drm_i915_private *dev_priv = dev->dev_private; 1602 struct drm_i915_private *dev_priv = dev->dev_private;
1603 u32 blt_ecoskpd; 1603 u32 blt_ecoskpd;
1604 1604
1605 /* Make sure blitter notifies FBC of writes */ 1605 /* Make sure blitter notifies FBC of writes */
1606 gen6_gt_force_wake_get(dev_priv); 1606 gen6_gt_force_wake_get(dev_priv);
1607 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD); 1607 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1608 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY << 1608 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1609 GEN6_BLITTER_LOCK_SHIFT; 1609 GEN6_BLITTER_LOCK_SHIFT;
1610 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd); 1610 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1611 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY; 1611 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1612 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd); 1612 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1613 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY << 1613 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1614 GEN6_BLITTER_LOCK_SHIFT); 1614 GEN6_BLITTER_LOCK_SHIFT);
1615 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd); 1615 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1616 POSTING_READ(GEN6_BLITTER_ECOSKPD); 1616 POSTING_READ(GEN6_BLITTER_ECOSKPD);
1617 gen6_gt_force_wake_put(dev_priv); 1617 gen6_gt_force_wake_put(dev_priv);
1618 } 1618 }
1619 1619
1620 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval) 1620 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1621 { 1621 {
1622 struct drm_device *dev = crtc->dev; 1622 struct drm_device *dev = crtc->dev;
1623 struct drm_i915_private *dev_priv = dev->dev_private; 1623 struct drm_i915_private *dev_priv = dev->dev_private;
1624 struct drm_framebuffer *fb = crtc->fb; 1624 struct drm_framebuffer *fb = crtc->fb;
1625 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 1625 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1626 struct drm_i915_gem_object *obj = intel_fb->obj; 1626 struct drm_i915_gem_object *obj = intel_fb->obj;
1627 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 1627 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1628 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB; 1628 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1629 unsigned long stall_watermark = 200; 1629 unsigned long stall_watermark = 200;
1630 u32 dpfc_ctl; 1630 u32 dpfc_ctl;
1631 1631
1632 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL); 1632 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1633 dpfc_ctl &= DPFC_RESERVED; 1633 dpfc_ctl &= DPFC_RESERVED;
1634 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X); 1634 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1635 /* Set persistent mode for front-buffer rendering, ala X. */ 1635 /* Set persistent mode for front-buffer rendering, ala X. */
1636 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE; 1636 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
1637 dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg); 1637 dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
1638 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY); 1638 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1639 1639
1640 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN | 1640 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1641 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) | 1641 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1642 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT)); 1642 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1643 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y); 1643 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1644 I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID); 1644 I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
1645 /* enable it... */ 1645 /* enable it... */
1646 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN); 1646 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1647 1647
1648 if (IS_GEN6(dev)) { 1648 if (IS_GEN6(dev)) {
1649 I915_WRITE(SNB_DPFC_CTL_SA, 1649 I915_WRITE(SNB_DPFC_CTL_SA,
1650 SNB_CPU_FENCE_ENABLE | obj->fence_reg); 1650 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
1651 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y); 1651 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
1652 sandybridge_blit_fbc_update(dev); 1652 sandybridge_blit_fbc_update(dev);
1653 } 1653 }
1654 1654
1655 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane); 1655 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1656 } 1656 }
1657 1657
1658 static void ironlake_disable_fbc(struct drm_device *dev) 1658 static void ironlake_disable_fbc(struct drm_device *dev)
1659 { 1659 {
1660 struct drm_i915_private *dev_priv = dev->dev_private; 1660 struct drm_i915_private *dev_priv = dev->dev_private;
1661 u32 dpfc_ctl; 1661 u32 dpfc_ctl;
1662 1662
1663 /* Disable compression */ 1663 /* Disable compression */
1664 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL); 1664 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1665 if (dpfc_ctl & DPFC_CTL_EN) { 1665 if (dpfc_ctl & DPFC_CTL_EN) {
1666 dpfc_ctl &= ~DPFC_CTL_EN; 1666 dpfc_ctl &= ~DPFC_CTL_EN;
1667 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl); 1667 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1668 1668
1669 DRM_DEBUG_KMS("disabled FBC\n"); 1669 DRM_DEBUG_KMS("disabled FBC\n");
1670 } 1670 }
1671 } 1671 }
1672 1672
1673 static bool ironlake_fbc_enabled(struct drm_device *dev) 1673 static bool ironlake_fbc_enabled(struct drm_device *dev)
1674 { 1674 {
1675 struct drm_i915_private *dev_priv = dev->dev_private; 1675 struct drm_i915_private *dev_priv = dev->dev_private;
1676 1676
1677 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN; 1677 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1678 } 1678 }
1679 1679
1680 bool intel_fbc_enabled(struct drm_device *dev) 1680 bool intel_fbc_enabled(struct drm_device *dev)
1681 { 1681 {
1682 struct drm_i915_private *dev_priv = dev->dev_private; 1682 struct drm_i915_private *dev_priv = dev->dev_private;
1683 1683
1684 if (!dev_priv->display.fbc_enabled) 1684 if (!dev_priv->display.fbc_enabled)
1685 return false; 1685 return false;
1686 1686
1687 return dev_priv->display.fbc_enabled(dev); 1687 return dev_priv->display.fbc_enabled(dev);
1688 } 1688 }
1689 1689
1690 static void intel_fbc_work_fn(struct work_struct *__work) 1690 static void intel_fbc_work_fn(struct work_struct *__work)
1691 { 1691 {
1692 struct intel_fbc_work *work = 1692 struct intel_fbc_work *work =
1693 container_of(to_delayed_work(__work), 1693 container_of(to_delayed_work(__work),
1694 struct intel_fbc_work, work); 1694 struct intel_fbc_work, work);
1695 struct drm_device *dev = work->crtc->dev; 1695 struct drm_device *dev = work->crtc->dev;
1696 struct drm_i915_private *dev_priv = dev->dev_private; 1696 struct drm_i915_private *dev_priv = dev->dev_private;
1697 1697
1698 mutex_lock(&dev->struct_mutex); 1698 mutex_lock(&dev->struct_mutex);
1699 if (work == dev_priv->fbc_work) { 1699 if (work == dev_priv->fbc_work) {
1700 /* Double check that we haven't switched fb without cancelling 1700 /* Double check that we haven't switched fb without cancelling
1701 * the prior work. 1701 * the prior work.
1702 */ 1702 */
1703 if (work->crtc->fb == work->fb) { 1703 if (work->crtc->fb == work->fb) {
1704 dev_priv->display.enable_fbc(work->crtc, 1704 dev_priv->display.enable_fbc(work->crtc,
1705 work->interval); 1705 work->interval);
1706 1706
1707 dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane; 1707 dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
1708 dev_priv->cfb_fb = work->crtc->fb->base.id; 1708 dev_priv->cfb_fb = work->crtc->fb->base.id;
1709 dev_priv->cfb_y = work->crtc->y; 1709 dev_priv->cfb_y = work->crtc->y;
1710 } 1710 }
1711 1711
1712 dev_priv->fbc_work = NULL; 1712 dev_priv->fbc_work = NULL;
1713 } 1713 }
1714 mutex_unlock(&dev->struct_mutex); 1714 mutex_unlock(&dev->struct_mutex);
1715 1715
1716 kfree(work); 1716 kfree(work);
1717 } 1717 }
1718 1718
1719 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv) 1719 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
1720 { 1720 {
1721 if (dev_priv->fbc_work == NULL) 1721 if (dev_priv->fbc_work == NULL)
1722 return; 1722 return;
1723 1723
1724 DRM_DEBUG_KMS("cancelling pending FBC enable\n"); 1724 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
1725 1725
1726 /* Synchronisation is provided by struct_mutex and checking of 1726 /* Synchronisation is provided by struct_mutex and checking of
1727 * dev_priv->fbc_work, so we can perform the cancellation 1727 * dev_priv->fbc_work, so we can perform the cancellation
1728 * entirely asynchronously. 1728 * entirely asynchronously.
1729 */ 1729 */
1730 if (cancel_delayed_work(&dev_priv->fbc_work->work)) 1730 if (cancel_delayed_work(&dev_priv->fbc_work->work))
1731 /* tasklet was killed before being run, clean up */ 1731 /* tasklet was killed before being run, clean up */
1732 kfree(dev_priv->fbc_work); 1732 kfree(dev_priv->fbc_work);
1733 1733
1734 /* Mark the work as no longer wanted so that if it does 1734 /* Mark the work as no longer wanted so that if it does
1735 * wake-up (because the work was already running and waiting 1735 * wake-up (because the work was already running and waiting
1736 * for our mutex), it will discover that is no longer 1736 * for our mutex), it will discover that is no longer
1737 * necessary to run. 1737 * necessary to run.
1738 */ 1738 */
1739 dev_priv->fbc_work = NULL; 1739 dev_priv->fbc_work = NULL;
1740 } 1740 }
1741 1741
1742 static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval) 1742 static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1743 { 1743 {
1744 struct intel_fbc_work *work; 1744 struct intel_fbc_work *work;
1745 struct drm_device *dev = crtc->dev; 1745 struct drm_device *dev = crtc->dev;
1746 struct drm_i915_private *dev_priv = dev->dev_private; 1746 struct drm_i915_private *dev_priv = dev->dev_private;
1747 1747
1748 if (!dev_priv->display.enable_fbc) 1748 if (!dev_priv->display.enable_fbc)
1749 return; 1749 return;
1750 1750
1751 intel_cancel_fbc_work(dev_priv); 1751 intel_cancel_fbc_work(dev_priv);
1752 1752
1753 work = kzalloc(sizeof *work, GFP_KERNEL); 1753 work = kzalloc(sizeof *work, GFP_KERNEL);
1754 if (work == NULL) { 1754 if (work == NULL) {
1755 dev_priv->display.enable_fbc(crtc, interval); 1755 dev_priv->display.enable_fbc(crtc, interval);
1756 return; 1756 return;
1757 } 1757 }
1758 1758
1759 work->crtc = crtc; 1759 work->crtc = crtc;
1760 work->fb = crtc->fb; 1760 work->fb = crtc->fb;
1761 work->interval = interval; 1761 work->interval = interval;
1762 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn); 1762 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
1763 1763
1764 dev_priv->fbc_work = work; 1764 dev_priv->fbc_work = work;
1765 1765
1766 DRM_DEBUG_KMS("scheduling delayed FBC enable\n"); 1766 DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
1767 1767
1768 /* Delay the actual enabling to let pageflipping cease and the 1768 /* Delay the actual enabling to let pageflipping cease and the
1769 * display to settle before starting the compression. Note that 1769 * display to settle before starting the compression. Note that
1770 * this delay also serves a second purpose: it allows for a 1770 * this delay also serves a second purpose: it allows for a
1771 * vblank to pass after disabling the FBC before we attempt 1771 * vblank to pass after disabling the FBC before we attempt
1772 * to modify the control registers. 1772 * to modify the control registers.
1773 * 1773 *
1774 * A more complicated solution would involve tracking vblanks 1774 * A more complicated solution would involve tracking vblanks
1775 * following the termination of the page-flipping sequence 1775 * following the termination of the page-flipping sequence
1776 * and indeed performing the enable as a co-routine and not 1776 * and indeed performing the enable as a co-routine and not
1777 * waiting synchronously upon the vblank. 1777 * waiting synchronously upon the vblank.
1778 */ 1778 */
1779 schedule_delayed_work(&work->work, msecs_to_jiffies(50)); 1779 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
1780 } 1780 }
1781 1781
1782 void intel_disable_fbc(struct drm_device *dev) 1782 void intel_disable_fbc(struct drm_device *dev)
1783 { 1783 {
1784 struct drm_i915_private *dev_priv = dev->dev_private; 1784 struct drm_i915_private *dev_priv = dev->dev_private;
1785 1785
1786 intel_cancel_fbc_work(dev_priv); 1786 intel_cancel_fbc_work(dev_priv);
1787 1787
1788 if (!dev_priv->display.disable_fbc) 1788 if (!dev_priv->display.disable_fbc)
1789 return; 1789 return;
1790 1790
1791 dev_priv->display.disable_fbc(dev); 1791 dev_priv->display.disable_fbc(dev);
1792 dev_priv->cfb_plane = -1; 1792 dev_priv->cfb_plane = -1;
1793 } 1793 }
1794 1794
1795 /** 1795 /**
1796 * intel_update_fbc - enable/disable FBC as needed 1796 * intel_update_fbc - enable/disable FBC as needed
1797 * @dev: the drm_device 1797 * @dev: the drm_device
1798 * 1798 *
1799 * Set up the framebuffer compression hardware at mode set time. We 1799 * Set up the framebuffer compression hardware at mode set time. We
1800 * enable it if possible: 1800 * enable it if possible:
1801 * - plane A only (on pre-965) 1801 * - plane A only (on pre-965)
1802 * - no pixel mulitply/line duplication 1802 * - no pixel mulitply/line duplication
1803 * - no alpha buffer discard 1803 * - no alpha buffer discard
1804 * - no dual wide 1804 * - no dual wide
1805 * - framebuffer <= 2048 in width, 1536 in height 1805 * - framebuffer <= 2048 in width, 1536 in height
1806 * 1806 *
1807 * We can't assume that any compression will take place (worst case), 1807 * We can't assume that any compression will take place (worst case),
1808 * so the compressed buffer has to be the same size as the uncompressed 1808 * so the compressed buffer has to be the same size as the uncompressed
1809 * one. It also must reside (along with the line length buffer) in 1809 * one. It also must reside (along with the line length buffer) in
1810 * stolen memory. 1810 * stolen memory.
1811 * 1811 *
1812 * We need to enable/disable FBC on a global basis. 1812 * We need to enable/disable FBC on a global basis.
1813 */ 1813 */
1814 static void intel_update_fbc(struct drm_device *dev) 1814 static void intel_update_fbc(struct drm_device *dev)
1815 { 1815 {
1816 struct drm_i915_private *dev_priv = dev->dev_private; 1816 struct drm_i915_private *dev_priv = dev->dev_private;
1817 struct drm_crtc *crtc = NULL, *tmp_crtc; 1817 struct drm_crtc *crtc = NULL, *tmp_crtc;
1818 struct intel_crtc *intel_crtc; 1818 struct intel_crtc *intel_crtc;
1819 struct drm_framebuffer *fb; 1819 struct drm_framebuffer *fb;
1820 struct intel_framebuffer *intel_fb; 1820 struct intel_framebuffer *intel_fb;
1821 struct drm_i915_gem_object *obj; 1821 struct drm_i915_gem_object *obj;
1822 int enable_fbc; 1822 int enable_fbc;
1823 1823
1824 DRM_DEBUG_KMS("\n"); 1824 DRM_DEBUG_KMS("\n");
1825 1825
1826 if (!i915_powersave) 1826 if (!i915_powersave)
1827 return; 1827 return;
1828 1828
1829 if (!I915_HAS_FBC(dev)) 1829 if (!I915_HAS_FBC(dev))
1830 return; 1830 return;
1831 1831
1832 /* 1832 /*
1833 * If FBC is already on, we just have to verify that we can 1833 * If FBC is already on, we just have to verify that we can
1834 * keep it that way... 1834 * keep it that way...
1835 * Need to disable if: 1835 * Need to disable if:
1836 * - more than one pipe is active 1836 * - more than one pipe is active
1837 * - changing FBC params (stride, fence, mode) 1837 * - changing FBC params (stride, fence, mode)
1838 * - new fb is too large to fit in compressed buffer 1838 * - new fb is too large to fit in compressed buffer
1839 * - going to an unsupported config (interlace, pixel multiply, etc.) 1839 * - going to an unsupported config (interlace, pixel multiply, etc.)
1840 */ 1840 */
1841 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) { 1841 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1842 if (tmp_crtc->enabled && tmp_crtc->fb) { 1842 if (tmp_crtc->enabled && tmp_crtc->fb) {
1843 if (crtc) { 1843 if (crtc) {
1844 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n"); 1844 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1845 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES; 1845 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1846 goto out_disable; 1846 goto out_disable;
1847 } 1847 }
1848 crtc = tmp_crtc; 1848 crtc = tmp_crtc;
1849 } 1849 }
1850 } 1850 }
1851 1851
1852 if (!crtc || crtc->fb == NULL) { 1852 if (!crtc || crtc->fb == NULL) {
1853 DRM_DEBUG_KMS("no output, disabling\n"); 1853 DRM_DEBUG_KMS("no output, disabling\n");
1854 dev_priv->no_fbc_reason = FBC_NO_OUTPUT; 1854 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1855 goto out_disable; 1855 goto out_disable;
1856 } 1856 }
1857 1857
1858 intel_crtc = to_intel_crtc(crtc); 1858 intel_crtc = to_intel_crtc(crtc);
1859 fb = crtc->fb; 1859 fb = crtc->fb;
1860 intel_fb = to_intel_framebuffer(fb); 1860 intel_fb = to_intel_framebuffer(fb);
1861 obj = intel_fb->obj; 1861 obj = intel_fb->obj;
1862 1862
1863 enable_fbc = i915_enable_fbc; 1863 enable_fbc = i915_enable_fbc;
1864 if (enable_fbc < 0) { 1864 if (enable_fbc < 0) {
1865 DRM_DEBUG_KMS("fbc set to per-chip default\n"); 1865 DRM_DEBUG_KMS("fbc set to per-chip default\n");
1866 enable_fbc = 1; 1866 enable_fbc = 1;
1867 if (INTEL_INFO(dev)->gen <= 5) 1867 if (INTEL_INFO(dev)->gen <= 5)
1868 enable_fbc = 0; 1868 enable_fbc = 0;
1869 } 1869 }
1870 if (!enable_fbc) { 1870 if (!enable_fbc) {
1871 DRM_DEBUG_KMS("fbc disabled per module param\n"); 1871 DRM_DEBUG_KMS("fbc disabled per module param\n");
1872 dev_priv->no_fbc_reason = FBC_MODULE_PARAM; 1872 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
1873 goto out_disable; 1873 goto out_disable;
1874 } 1874 }
1875 if (intel_fb->obj->base.size > dev_priv->cfb_size) { 1875 if (intel_fb->obj->base.size > dev_priv->cfb_size) {
1876 DRM_DEBUG_KMS("framebuffer too large, disabling " 1876 DRM_DEBUG_KMS("framebuffer too large, disabling "
1877 "compression\n"); 1877 "compression\n");
1878 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL; 1878 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1879 goto out_disable; 1879 goto out_disable;
1880 } 1880 }
1881 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) || 1881 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1882 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) { 1882 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1883 DRM_DEBUG_KMS("mode incompatible with compression, " 1883 DRM_DEBUG_KMS("mode incompatible with compression, "
1884 "disabling\n"); 1884 "disabling\n");
1885 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE; 1885 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1886 goto out_disable; 1886 goto out_disable;
1887 } 1887 }
1888 if ((crtc->mode.hdisplay > 2048) || 1888 if ((crtc->mode.hdisplay > 2048) ||
1889 (crtc->mode.vdisplay > 1536)) { 1889 (crtc->mode.vdisplay > 1536)) {
1890 DRM_DEBUG_KMS("mode too large for compression, disabling\n"); 1890 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1891 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE; 1891 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1892 goto out_disable; 1892 goto out_disable;
1893 } 1893 }
1894 if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) { 1894 if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1895 DRM_DEBUG_KMS("plane not 0, disabling compression\n"); 1895 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1896 dev_priv->no_fbc_reason = FBC_BAD_PLANE; 1896 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1897 goto out_disable; 1897 goto out_disable;
1898 } 1898 }
1899 1899
1900 /* The use of a CPU fence is mandatory in order to detect writes 1900 /* The use of a CPU fence is mandatory in order to detect writes
1901 * by the CPU to the scanout and trigger updates to the FBC. 1901 * by the CPU to the scanout and trigger updates to the FBC.
1902 */ 1902 */
1903 if (obj->tiling_mode != I915_TILING_X || 1903 if (obj->tiling_mode != I915_TILING_X ||
1904 obj->fence_reg == I915_FENCE_REG_NONE) { 1904 obj->fence_reg == I915_FENCE_REG_NONE) {
1905 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n"); 1905 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
1906 dev_priv->no_fbc_reason = FBC_NOT_TILED; 1906 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1907 goto out_disable; 1907 goto out_disable;
1908 } 1908 }
1909 1909
1910 /* If the kernel debugger is active, always disable compression */ 1910 /* If the kernel debugger is active, always disable compression */
1911 if (in_dbg_master()) 1911 if (in_dbg_master())
1912 goto out_disable; 1912 goto out_disable;
1913 1913
1914 /* If the scanout has not changed, don't modify the FBC settings. 1914 /* If the scanout has not changed, don't modify the FBC settings.
1915 * Note that we make the fundamental assumption that the fb->obj 1915 * Note that we make the fundamental assumption that the fb->obj
1916 * cannot be unpinned (and have its GTT offset and fence revoked) 1916 * cannot be unpinned (and have its GTT offset and fence revoked)
1917 * without first being decoupled from the scanout and FBC disabled. 1917 * without first being decoupled from the scanout and FBC disabled.
1918 */ 1918 */
1919 if (dev_priv->cfb_plane == intel_crtc->plane && 1919 if (dev_priv->cfb_plane == intel_crtc->plane &&
1920 dev_priv->cfb_fb == fb->base.id && 1920 dev_priv->cfb_fb == fb->base.id &&
1921 dev_priv->cfb_y == crtc->y) 1921 dev_priv->cfb_y == crtc->y)
1922 return; 1922 return;
1923 1923
1924 if (intel_fbc_enabled(dev)) { 1924 if (intel_fbc_enabled(dev)) {
1925 /* We update FBC along two paths, after changing fb/crtc 1925 /* We update FBC along two paths, after changing fb/crtc
1926 * configuration (modeswitching) and after page-flipping 1926 * configuration (modeswitching) and after page-flipping
1927 * finishes. For the latter, we know that not only did 1927 * finishes. For the latter, we know that not only did
1928 * we disable the FBC at the start of the page-flip 1928 * we disable the FBC at the start of the page-flip
1929 * sequence, but also more than one vblank has passed. 1929 * sequence, but also more than one vblank has passed.
1930 * 1930 *
1931 * For the former case of modeswitching, it is possible 1931 * For the former case of modeswitching, it is possible
1932 * to switch between two FBC valid configurations 1932 * to switch between two FBC valid configurations
1933 * instantaneously so we do need to disable the FBC 1933 * instantaneously so we do need to disable the FBC
1934 * before we can modify its control registers. We also 1934 * before we can modify its control registers. We also
1935 * have to wait for the next vblank for that to take 1935 * have to wait for the next vblank for that to take
1936 * effect. However, since we delay enabling FBC we can 1936 * effect. However, since we delay enabling FBC we can
1937 * assume that a vblank has passed since disabling and 1937 * assume that a vblank has passed since disabling and
1938 * that we can safely alter the registers in the deferred 1938 * that we can safely alter the registers in the deferred
1939 * callback. 1939 * callback.
1940 * 1940 *
1941 * In the scenario that we go from a valid to invalid 1941 * In the scenario that we go from a valid to invalid
1942 * and then back to valid FBC configuration we have 1942 * and then back to valid FBC configuration we have
1943 * no strict enforcement that a vblank occurred since 1943 * no strict enforcement that a vblank occurred since
1944 * disabling the FBC. However, along all current pipe 1944 * disabling the FBC. However, along all current pipe
1945 * disabling paths we do need to wait for a vblank at 1945 * disabling paths we do need to wait for a vblank at
1946 * some point. And we wait before enabling FBC anyway. 1946 * some point. And we wait before enabling FBC anyway.
1947 */ 1947 */
1948 DRM_DEBUG_KMS("disabling active FBC for update\n"); 1948 DRM_DEBUG_KMS("disabling active FBC for update\n");
1949 intel_disable_fbc(dev); 1949 intel_disable_fbc(dev);
1950 } 1950 }
1951 1951
1952 intel_enable_fbc(crtc, 500); 1952 intel_enable_fbc(crtc, 500);
1953 return; 1953 return;
1954 1954
1955 out_disable: 1955 out_disable:
1956 /* Multiple disables should be harmless */ 1956 /* Multiple disables should be harmless */
1957 if (intel_fbc_enabled(dev)) { 1957 if (intel_fbc_enabled(dev)) {
1958 DRM_DEBUG_KMS("unsupported config, disabling FBC\n"); 1958 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1959 intel_disable_fbc(dev); 1959 intel_disable_fbc(dev);
1960 } 1960 }
1961 } 1961 }
1962 1962
1963 int 1963 int
1964 intel_pin_and_fence_fb_obj(struct drm_device *dev, 1964 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1965 struct drm_i915_gem_object *obj, 1965 struct drm_i915_gem_object *obj,
1966 struct intel_ring_buffer *pipelined) 1966 struct intel_ring_buffer *pipelined)
1967 { 1967 {
1968 struct drm_i915_private *dev_priv = dev->dev_private; 1968 struct drm_i915_private *dev_priv = dev->dev_private;
1969 u32 alignment; 1969 u32 alignment;
1970 int ret; 1970 int ret;
1971 1971
1972 switch (obj->tiling_mode) { 1972 switch (obj->tiling_mode) {
1973 case I915_TILING_NONE: 1973 case I915_TILING_NONE:
1974 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev)) 1974 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1975 alignment = 128 * 1024; 1975 alignment = 128 * 1024;
1976 else if (INTEL_INFO(dev)->gen >= 4) 1976 else if (INTEL_INFO(dev)->gen >= 4)
1977 alignment = 4 * 1024; 1977 alignment = 4 * 1024;
1978 else 1978 else
1979 alignment = 64 * 1024; 1979 alignment = 64 * 1024;
1980 break; 1980 break;
1981 case I915_TILING_X: 1981 case I915_TILING_X:
1982 /* pin() will align the object as required by fence */ 1982 /* pin() will align the object as required by fence */
1983 alignment = 0; 1983 alignment = 0;
1984 break; 1984 break;
1985 case I915_TILING_Y: 1985 case I915_TILING_Y:
1986 /* FIXME: Is this true? */ 1986 /* FIXME: Is this true? */
1987 DRM_ERROR("Y tiled not allowed for scan out buffers\n"); 1987 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1988 return -EINVAL; 1988 return -EINVAL;
1989 default: 1989 default:
1990 BUG(); 1990 BUG();
1991 } 1991 }
1992 1992
1993 dev_priv->mm.interruptible = false; 1993 dev_priv->mm.interruptible = false;
1994 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined); 1994 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1995 if (ret) 1995 if (ret)
1996 goto err_interruptible; 1996 goto err_interruptible;
1997 1997
1998 /* Install a fence for tiled scan-out. Pre-i965 always needs a 1998 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1999 * fence, whereas 965+ only requires a fence if using 1999 * fence, whereas 965+ only requires a fence if using
2000 * framebuffer compression. For simplicity, we always install 2000 * framebuffer compression. For simplicity, we always install
2001 * a fence as the cost is not that onerous. 2001 * a fence as the cost is not that onerous.
2002 */ 2002 */
2003 if (obj->tiling_mode != I915_TILING_NONE) { 2003 if (obj->tiling_mode != I915_TILING_NONE) {
2004 ret = i915_gem_object_get_fence(obj, pipelined); 2004 ret = i915_gem_object_get_fence(obj, pipelined);
2005 if (ret) 2005 if (ret)
2006 goto err_unpin; 2006 goto err_unpin;
2007 } 2007 }
2008 2008
2009 dev_priv->mm.interruptible = true; 2009 dev_priv->mm.interruptible = true;
2010 return 0; 2010 return 0;
2011 2011
2012 err_unpin: 2012 err_unpin:
2013 i915_gem_object_unpin(obj); 2013 i915_gem_object_unpin(obj);
2014 err_interruptible: 2014 err_interruptible:
2015 dev_priv->mm.interruptible = true; 2015 dev_priv->mm.interruptible = true;
2016 return ret; 2016 return ret;
2017 } 2017 }
2018 2018
2019 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb, 2019 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2020 int x, int y) 2020 int x, int y)
2021 { 2021 {
2022 struct drm_device *dev = crtc->dev; 2022 struct drm_device *dev = crtc->dev;
2023 struct drm_i915_private *dev_priv = dev->dev_private; 2023 struct drm_i915_private *dev_priv = dev->dev_private;
2024 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 2024 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2025 struct intel_framebuffer *intel_fb; 2025 struct intel_framebuffer *intel_fb;
2026 struct drm_i915_gem_object *obj; 2026 struct drm_i915_gem_object *obj;
2027 int plane = intel_crtc->plane; 2027 int plane = intel_crtc->plane;
2028 unsigned long Start, Offset; 2028 unsigned long Start, Offset;
2029 u32 dspcntr; 2029 u32 dspcntr;
2030 u32 reg; 2030 u32 reg;
2031 2031
2032 switch (plane) { 2032 switch (plane) {
2033 case 0: 2033 case 0:
2034 case 1: 2034 case 1:
2035 break; 2035 break;
2036 default: 2036 default:
2037 DRM_ERROR("Can't update plane %d in SAREA\n", plane); 2037 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2038 return -EINVAL; 2038 return -EINVAL;
2039 } 2039 }
2040 2040
2041 intel_fb = to_intel_framebuffer(fb); 2041 intel_fb = to_intel_framebuffer(fb);
2042 obj = intel_fb->obj; 2042 obj = intel_fb->obj;
2043 2043
2044 reg = DSPCNTR(plane); 2044 reg = DSPCNTR(plane);
2045 dspcntr = I915_READ(reg); 2045 dspcntr = I915_READ(reg);
2046 /* Mask out pixel format bits in case we change it */ 2046 /* Mask out pixel format bits in case we change it */
2047 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK; 2047 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2048 switch (fb->bits_per_pixel) { 2048 switch (fb->bits_per_pixel) {
2049 case 8: 2049 case 8:
2050 dspcntr |= DISPPLANE_8BPP; 2050 dspcntr |= DISPPLANE_8BPP;
2051 break; 2051 break;
2052 case 16: 2052 case 16:
2053 if (fb->depth == 15) 2053 if (fb->depth == 15)
2054 dspcntr |= DISPPLANE_15_16BPP; 2054 dspcntr |= DISPPLANE_15_16BPP;
2055 else 2055 else
2056 dspcntr |= DISPPLANE_16BPP; 2056 dspcntr |= DISPPLANE_16BPP;
2057 break; 2057 break;
2058 case 24: 2058 case 24:
2059 case 32: 2059 case 32:
2060 dspcntr |= DISPPLANE_32BPP_NO_ALPHA; 2060 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2061 break; 2061 break;
2062 default: 2062 default:
2063 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel); 2063 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2064 return -EINVAL; 2064 return -EINVAL;
2065 } 2065 }
2066 if (INTEL_INFO(dev)->gen >= 4) { 2066 if (INTEL_INFO(dev)->gen >= 4) {
2067 if (obj->tiling_mode != I915_TILING_NONE) 2067 if (obj->tiling_mode != I915_TILING_NONE)
2068 dspcntr |= DISPPLANE_TILED; 2068 dspcntr |= DISPPLANE_TILED;
2069 else 2069 else
2070 dspcntr &= ~DISPPLANE_TILED; 2070 dspcntr &= ~DISPPLANE_TILED;
2071 } 2071 }
2072 2072
2073 I915_WRITE(reg, dspcntr); 2073 I915_WRITE(reg, dspcntr);
2074 2074
2075 Start = obj->gtt_offset; 2075 Start = obj->gtt_offset;
2076 Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8); 2076 Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
2077 2077
2078 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n", 2078 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2079 Start, Offset, x, y, fb->pitch); 2079 Start, Offset, x, y, fb->pitch);
2080 I915_WRITE(DSPSTRIDE(plane), fb->pitch); 2080 I915_WRITE(DSPSTRIDE(plane), fb->pitch);
2081 if (INTEL_INFO(dev)->gen >= 4) { 2081 if (INTEL_INFO(dev)->gen >= 4) {
2082 I915_WRITE(DSPSURF(plane), Start); 2082 I915_WRITE(DSPSURF(plane), Start);
2083 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x); 2083 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2084 I915_WRITE(DSPADDR(plane), Offset); 2084 I915_WRITE(DSPADDR(plane), Offset);
2085 } else 2085 } else
2086 I915_WRITE(DSPADDR(plane), Start + Offset); 2086 I915_WRITE(DSPADDR(plane), Start + Offset);
2087 POSTING_READ(reg); 2087 POSTING_READ(reg);
2088 2088
2089 return 0; 2089 return 0;
2090 } 2090 }
2091 2091
2092 static int ironlake_update_plane(struct drm_crtc *crtc, 2092 static int ironlake_update_plane(struct drm_crtc *crtc,
2093 struct drm_framebuffer *fb, int x, int y) 2093 struct drm_framebuffer *fb, int x, int y)
2094 { 2094 {
2095 struct drm_device *dev = crtc->dev; 2095 struct drm_device *dev = crtc->dev;
2096 struct drm_i915_private *dev_priv = dev->dev_private; 2096 struct drm_i915_private *dev_priv = dev->dev_private;
2097 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 2097 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2098 struct intel_framebuffer *intel_fb; 2098 struct intel_framebuffer *intel_fb;
2099 struct drm_i915_gem_object *obj; 2099 struct drm_i915_gem_object *obj;
2100 int plane = intel_crtc->plane; 2100 int plane = intel_crtc->plane;
2101 unsigned long Start, Offset; 2101 unsigned long Start, Offset;
2102 u32 dspcntr; 2102 u32 dspcntr;
2103 u32 reg; 2103 u32 reg;
2104 2104
2105 switch (plane) { 2105 switch (plane) {
2106 case 0: 2106 case 0:
2107 case 1: 2107 case 1:
2108 case 2: 2108 case 2:
2109 break; 2109 break;
2110 default: 2110 default:
2111 DRM_ERROR("Can't update plane %d in SAREA\n", plane); 2111 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2112 return -EINVAL; 2112 return -EINVAL;
2113 } 2113 }
2114 2114
2115 intel_fb = to_intel_framebuffer(fb); 2115 intel_fb = to_intel_framebuffer(fb);
2116 obj = intel_fb->obj; 2116 obj = intel_fb->obj;
2117 2117
2118 reg = DSPCNTR(plane); 2118 reg = DSPCNTR(plane);
2119 dspcntr = I915_READ(reg); 2119 dspcntr = I915_READ(reg);
2120 /* Mask out pixel format bits in case we change it */ 2120 /* Mask out pixel format bits in case we change it */
2121 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK; 2121 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2122 switch (fb->bits_per_pixel) { 2122 switch (fb->bits_per_pixel) {
2123 case 8: 2123 case 8:
2124 dspcntr |= DISPPLANE_8BPP; 2124 dspcntr |= DISPPLANE_8BPP;
2125 break; 2125 break;
2126 case 16: 2126 case 16:
2127 if (fb->depth != 16) 2127 if (fb->depth != 16)
2128 return -EINVAL; 2128 return -EINVAL;
2129 2129
2130 dspcntr |= DISPPLANE_16BPP; 2130 dspcntr |= DISPPLANE_16BPP;
2131 break; 2131 break;
2132 case 24: 2132 case 24:
2133 case 32: 2133 case 32:
2134 if (fb->depth == 24) 2134 if (fb->depth == 24)
2135 dspcntr |= DISPPLANE_32BPP_NO_ALPHA; 2135 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2136 else if (fb->depth == 30) 2136 else if (fb->depth == 30)
2137 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA; 2137 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2138 else 2138 else
2139 return -EINVAL; 2139 return -EINVAL;
2140 break; 2140 break;
2141 default: 2141 default:
2142 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel); 2142 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2143 return -EINVAL; 2143 return -EINVAL;
2144 } 2144 }
2145 2145
2146 if (obj->tiling_mode != I915_TILING_NONE) 2146 if (obj->tiling_mode != I915_TILING_NONE)
2147 dspcntr |= DISPPLANE_TILED; 2147 dspcntr |= DISPPLANE_TILED;
2148 else 2148 else
2149 dspcntr &= ~DISPPLANE_TILED; 2149 dspcntr &= ~DISPPLANE_TILED;
2150 2150
2151 /* must disable */ 2151 /* must disable */
2152 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE; 2152 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2153 2153
2154 I915_WRITE(reg, dspcntr); 2154 I915_WRITE(reg, dspcntr);
2155 2155
2156 Start = obj->gtt_offset; 2156 Start = obj->gtt_offset;
2157 Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8); 2157 Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
2158 2158
2159 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n", 2159 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2160 Start, Offset, x, y, fb->pitch); 2160 Start, Offset, x, y, fb->pitch);
2161 I915_WRITE(DSPSTRIDE(plane), fb->pitch); 2161 I915_WRITE(DSPSTRIDE(plane), fb->pitch);
2162 I915_WRITE(DSPSURF(plane), Start); 2162 I915_WRITE(DSPSURF(plane), Start);
2163 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x); 2163 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2164 I915_WRITE(DSPADDR(plane), Offset); 2164 I915_WRITE(DSPADDR(plane), Offset);
2165 POSTING_READ(reg); 2165 POSTING_READ(reg);
2166 2166
2167 return 0; 2167 return 0;
2168 } 2168 }
2169 2169
2170 /* Assume fb object is pinned & idle & fenced and just update base pointers */ 2170 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2171 static int 2171 static int
2172 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb, 2172 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2173 int x, int y, enum mode_set_atomic state) 2173 int x, int y, enum mode_set_atomic state)
2174 { 2174 {
2175 struct drm_device *dev = crtc->dev; 2175 struct drm_device *dev = crtc->dev;
2176 struct drm_i915_private *dev_priv = dev->dev_private; 2176 struct drm_i915_private *dev_priv = dev->dev_private;
2177 int ret; 2177 int ret;
2178 2178
2179 ret = dev_priv->display.update_plane(crtc, fb, x, y); 2179 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2180 if (ret) 2180 if (ret)
2181 return ret; 2181 return ret;
2182 2182
2183 intel_update_fbc(dev); 2183 intel_update_fbc(dev);
2184 intel_increase_pllclock(crtc); 2184 intel_increase_pllclock(crtc);
2185 2185
2186 return 0; 2186 return 0;
2187 } 2187 }
2188 2188
2189 static int 2189 static int
2190 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y, 2190 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2191 struct drm_framebuffer *old_fb) 2191 struct drm_framebuffer *old_fb)
2192 { 2192 {
2193 struct drm_device *dev = crtc->dev; 2193 struct drm_device *dev = crtc->dev;
2194 struct drm_i915_master_private *master_priv; 2194 struct drm_i915_master_private *master_priv;
2195 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 2195 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2196 int ret; 2196 int ret;
2197 2197
2198 /* no fb bound */ 2198 /* no fb bound */
2199 if (!crtc->fb) { 2199 if (!crtc->fb) {
2200 DRM_ERROR("No FB bound\n"); 2200 DRM_ERROR("No FB bound\n");
2201 return 0; 2201 return 0;
2202 } 2202 }
2203 2203
2204 switch (intel_crtc->plane) { 2204 switch (intel_crtc->plane) {
2205 case 0: 2205 case 0:
2206 case 1: 2206 case 1:
2207 break; 2207 break;
2208 case 2: 2208 case 2:
2209 if (IS_IVYBRIDGE(dev)) 2209 if (IS_IVYBRIDGE(dev))
2210 break; 2210 break;
2211 /* fall through otherwise */ 2211 /* fall through otherwise */
2212 default: 2212 default:
2213 DRM_ERROR("no plane for crtc\n"); 2213 DRM_ERROR("no plane for crtc\n");
2214 return -EINVAL; 2214 return -EINVAL;
2215 } 2215 }
2216 2216
2217 mutex_lock(&dev->struct_mutex); 2217 mutex_lock(&dev->struct_mutex);
2218 ret = intel_pin_and_fence_fb_obj(dev, 2218 ret = intel_pin_and_fence_fb_obj(dev,
2219 to_intel_framebuffer(crtc->fb)->obj, 2219 to_intel_framebuffer(crtc->fb)->obj,
2220 NULL); 2220 NULL);
2221 if (ret != 0) { 2221 if (ret != 0) {
2222 mutex_unlock(&dev->struct_mutex); 2222 mutex_unlock(&dev->struct_mutex);
2223 DRM_ERROR("pin & fence failed\n"); 2223 DRM_ERROR("pin & fence failed\n");
2224 return ret; 2224 return ret;
2225 } 2225 }
2226 2226
2227 if (old_fb) { 2227 if (old_fb) {
2228 struct drm_i915_private *dev_priv = dev->dev_private; 2228 struct drm_i915_private *dev_priv = dev->dev_private;
2229 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj; 2229 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2230 2230
2231 wait_event(dev_priv->pending_flip_queue, 2231 wait_event(dev_priv->pending_flip_queue,
2232 atomic_read(&dev_priv->mm.wedged) || 2232 atomic_read(&dev_priv->mm.wedged) ||
2233 atomic_read(&obj->pending_flip) == 0); 2233 atomic_read(&obj->pending_flip) == 0);
2234 2234
2235 /* Big Hammer, we also need to ensure that any pending 2235 /* Big Hammer, we also need to ensure that any pending
2236 * MI_WAIT_FOR_EVENT inside a user batch buffer on the 2236 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2237 * current scanout is retired before unpinning the old 2237 * current scanout is retired before unpinning the old
2238 * framebuffer. 2238 * framebuffer.
2239 * 2239 *
2240 * This should only fail upon a hung GPU, in which case we 2240 * This should only fail upon a hung GPU, in which case we
2241 * can safely continue. 2241 * can safely continue.
2242 */ 2242 */
2243 ret = i915_gem_object_finish_gpu(obj); 2243 ret = i915_gem_object_finish_gpu(obj);
2244 (void) ret; 2244 (void) ret;
2245 } 2245 }
2246 2246
2247 ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y, 2247 ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
2248 LEAVE_ATOMIC_MODE_SET); 2248 LEAVE_ATOMIC_MODE_SET);
2249 if (ret) { 2249 if (ret) {
2250 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj); 2250 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
2251 mutex_unlock(&dev->struct_mutex); 2251 mutex_unlock(&dev->struct_mutex);
2252 DRM_ERROR("failed to update base address\n"); 2252 DRM_ERROR("failed to update base address\n");
2253 return ret; 2253 return ret;
2254 } 2254 }
2255 2255
2256 if (old_fb) { 2256 if (old_fb) {
2257 intel_wait_for_vblank(dev, intel_crtc->pipe); 2257 intel_wait_for_vblank(dev, intel_crtc->pipe);
2258 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj); 2258 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
2259 } 2259 }
2260 2260
2261 mutex_unlock(&dev->struct_mutex); 2261 mutex_unlock(&dev->struct_mutex);
2262 2262
2263 if (!dev->primary->master) 2263 if (!dev->primary->master)
2264 return 0; 2264 return 0;
2265 2265
2266 master_priv = dev->primary->master->driver_priv; 2266 master_priv = dev->primary->master->driver_priv;
2267 if (!master_priv->sarea_priv) 2267 if (!master_priv->sarea_priv)
2268 return 0; 2268 return 0;
2269 2269
2270 if (intel_crtc->pipe) { 2270 if (intel_crtc->pipe) {
2271 master_priv->sarea_priv->pipeB_x = x; 2271 master_priv->sarea_priv->pipeB_x = x;
2272 master_priv->sarea_priv->pipeB_y = y; 2272 master_priv->sarea_priv->pipeB_y = y;
2273 } else { 2273 } else {
2274 master_priv->sarea_priv->pipeA_x = x; 2274 master_priv->sarea_priv->pipeA_x = x;
2275 master_priv->sarea_priv->pipeA_y = y; 2275 master_priv->sarea_priv->pipeA_y = y;
2276 } 2276 }
2277 2277
2278 return 0; 2278 return 0;
2279 } 2279 }
2280 2280
2281 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock) 2281 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2282 { 2282 {
2283 struct drm_device *dev = crtc->dev; 2283 struct drm_device *dev = crtc->dev;
2284 struct drm_i915_private *dev_priv = dev->dev_private; 2284 struct drm_i915_private *dev_priv = dev->dev_private;
2285 u32 dpa_ctl; 2285 u32 dpa_ctl;
2286 2286
2287 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock); 2287 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2288 dpa_ctl = I915_READ(DP_A); 2288 dpa_ctl = I915_READ(DP_A);
2289 dpa_ctl &= ~DP_PLL_FREQ_MASK; 2289 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2290 2290
2291 if (clock < 200000) { 2291 if (clock < 200000) {
2292 u32 temp; 2292 u32 temp;
2293 dpa_ctl |= DP_PLL_FREQ_160MHZ; 2293 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2294 /* workaround for 160Mhz: 2294 /* workaround for 160Mhz:
2295 1) program 0x4600c bits 15:0 = 0x8124 2295 1) program 0x4600c bits 15:0 = 0x8124
2296 2) program 0x46010 bit 0 = 1 2296 2) program 0x46010 bit 0 = 1
2297 3) program 0x46034 bit 24 = 1 2297 3) program 0x46034 bit 24 = 1
2298 4) program 0x64000 bit 14 = 1 2298 4) program 0x64000 bit 14 = 1
2299 */ 2299 */
2300 temp = I915_READ(0x4600c); 2300 temp = I915_READ(0x4600c);
2301 temp &= 0xffff0000; 2301 temp &= 0xffff0000;
2302 I915_WRITE(0x4600c, temp | 0x8124); 2302 I915_WRITE(0x4600c, temp | 0x8124);
2303 2303
2304 temp = I915_READ(0x46010); 2304 temp = I915_READ(0x46010);
2305 I915_WRITE(0x46010, temp | 1); 2305 I915_WRITE(0x46010, temp | 1);
2306 2306
2307 temp = I915_READ(0x46034); 2307 temp = I915_READ(0x46034);
2308 I915_WRITE(0x46034, temp | (1 << 24)); 2308 I915_WRITE(0x46034, temp | (1 << 24));
2309 } else { 2309 } else {
2310 dpa_ctl |= DP_PLL_FREQ_270MHZ; 2310 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2311 } 2311 }
2312 I915_WRITE(DP_A, dpa_ctl); 2312 I915_WRITE(DP_A, dpa_ctl);
2313 2313
2314 POSTING_READ(DP_A); 2314 POSTING_READ(DP_A);
2315 udelay(500); 2315 udelay(500);
2316 } 2316 }
2317 2317
2318 static void intel_fdi_normal_train(struct drm_crtc *crtc) 2318 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2319 { 2319 {
2320 struct drm_device *dev = crtc->dev; 2320 struct drm_device *dev = crtc->dev;
2321 struct drm_i915_private *dev_priv = dev->dev_private; 2321 struct drm_i915_private *dev_priv = dev->dev_private;
2322 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 2322 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2323 int pipe = intel_crtc->pipe; 2323 int pipe = intel_crtc->pipe;
2324 u32 reg, temp; 2324 u32 reg, temp;
2325 2325
2326 /* enable normal train */ 2326 /* enable normal train */
2327 reg = FDI_TX_CTL(pipe); 2327 reg = FDI_TX_CTL(pipe);
2328 temp = I915_READ(reg); 2328 temp = I915_READ(reg);
2329 if (IS_IVYBRIDGE(dev)) { 2329 if (IS_IVYBRIDGE(dev)) {
2330 temp &= ~FDI_LINK_TRAIN_NONE_IVB; 2330 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2331 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE; 2331 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2332 } else { 2332 } else {
2333 temp &= ~FDI_LINK_TRAIN_NONE; 2333 temp &= ~FDI_LINK_TRAIN_NONE;
2334 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE; 2334 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2335 } 2335 }
2336 I915_WRITE(reg, temp); 2336 I915_WRITE(reg, temp);
2337 2337
2338 reg = FDI_RX_CTL(pipe); 2338 reg = FDI_RX_CTL(pipe);
2339 temp = I915_READ(reg); 2339 temp = I915_READ(reg);
2340 if (HAS_PCH_CPT(dev)) { 2340 if (HAS_PCH_CPT(dev)) {
2341 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 2341 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2342 temp |= FDI_LINK_TRAIN_NORMAL_CPT; 2342 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2343 } else { 2343 } else {
2344 temp &= ~FDI_LINK_TRAIN_NONE; 2344 temp &= ~FDI_LINK_TRAIN_NONE;
2345 temp |= FDI_LINK_TRAIN_NONE; 2345 temp |= FDI_LINK_TRAIN_NONE;
2346 } 2346 }
2347 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE); 2347 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2348 2348
2349 /* wait one idle pattern time */ 2349 /* wait one idle pattern time */
2350 POSTING_READ(reg); 2350 POSTING_READ(reg);
2351 udelay(1000); 2351 udelay(1000);
2352 2352
2353 /* IVB wants error correction enabled */ 2353 /* IVB wants error correction enabled */
2354 if (IS_IVYBRIDGE(dev)) 2354 if (IS_IVYBRIDGE(dev))
2355 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE | 2355 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2356 FDI_FE_ERRC_ENABLE); 2356 FDI_FE_ERRC_ENABLE);
2357 } 2357 }
2358 2358
2359 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe) 2359 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2360 { 2360 {
2361 struct drm_i915_private *dev_priv = dev->dev_private; 2361 struct drm_i915_private *dev_priv = dev->dev_private;
2362 u32 flags = I915_READ(SOUTH_CHICKEN1); 2362 u32 flags = I915_READ(SOUTH_CHICKEN1);
2363 2363
2364 flags |= FDI_PHASE_SYNC_OVR(pipe); 2364 flags |= FDI_PHASE_SYNC_OVR(pipe);
2365 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */ 2365 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2366 flags |= FDI_PHASE_SYNC_EN(pipe); 2366 flags |= FDI_PHASE_SYNC_EN(pipe);
2367 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */ 2367 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2368 POSTING_READ(SOUTH_CHICKEN1); 2368 POSTING_READ(SOUTH_CHICKEN1);
2369 } 2369 }
2370 2370
2371 /* The FDI link training functions for ILK/Ibexpeak. */ 2371 /* The FDI link training functions for ILK/Ibexpeak. */
2372 static void ironlake_fdi_link_train(struct drm_crtc *crtc) 2372 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2373 { 2373 {
2374 struct drm_device *dev = crtc->dev; 2374 struct drm_device *dev = crtc->dev;
2375 struct drm_i915_private *dev_priv = dev->dev_private; 2375 struct drm_i915_private *dev_priv = dev->dev_private;
2376 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 2376 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2377 int pipe = intel_crtc->pipe; 2377 int pipe = intel_crtc->pipe;
2378 int plane = intel_crtc->plane; 2378 int plane = intel_crtc->plane;
2379 u32 reg, temp, tries; 2379 u32 reg, temp, tries;
2380 2380
2381 /* FDI needs bits from pipe & plane first */ 2381 /* FDI needs bits from pipe & plane first */
2382 assert_pipe_enabled(dev_priv, pipe); 2382 assert_pipe_enabled(dev_priv, pipe);
2383 assert_plane_enabled(dev_priv, plane); 2383 assert_plane_enabled(dev_priv, plane);
2384 2384
2385 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit 2385 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2386 for train result */ 2386 for train result */
2387 reg = FDI_RX_IMR(pipe); 2387 reg = FDI_RX_IMR(pipe);
2388 temp = I915_READ(reg); 2388 temp = I915_READ(reg);
2389 temp &= ~FDI_RX_SYMBOL_LOCK; 2389 temp &= ~FDI_RX_SYMBOL_LOCK;
2390 temp &= ~FDI_RX_BIT_LOCK; 2390 temp &= ~FDI_RX_BIT_LOCK;
2391 I915_WRITE(reg, temp); 2391 I915_WRITE(reg, temp);
2392 I915_READ(reg); 2392 I915_READ(reg);
2393 udelay(150); 2393 udelay(150);
2394 2394
2395 /* enable CPU FDI TX and PCH FDI RX */ 2395 /* enable CPU FDI TX and PCH FDI RX */
2396 reg = FDI_TX_CTL(pipe); 2396 reg = FDI_TX_CTL(pipe);
2397 temp = I915_READ(reg); 2397 temp = I915_READ(reg);
2398 temp &= ~(7 << 19); 2398 temp &= ~(7 << 19);
2399 temp |= (intel_crtc->fdi_lanes - 1) << 19; 2399 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2400 temp &= ~FDI_LINK_TRAIN_NONE; 2400 temp &= ~FDI_LINK_TRAIN_NONE;
2401 temp |= FDI_LINK_TRAIN_PATTERN_1; 2401 temp |= FDI_LINK_TRAIN_PATTERN_1;
2402 I915_WRITE(reg, temp | FDI_TX_ENABLE); 2402 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2403 2403
2404 reg = FDI_RX_CTL(pipe); 2404 reg = FDI_RX_CTL(pipe);
2405 temp = I915_READ(reg); 2405 temp = I915_READ(reg);
2406 temp &= ~FDI_LINK_TRAIN_NONE; 2406 temp &= ~FDI_LINK_TRAIN_NONE;
2407 temp |= FDI_LINK_TRAIN_PATTERN_1; 2407 temp |= FDI_LINK_TRAIN_PATTERN_1;
2408 I915_WRITE(reg, temp | FDI_RX_ENABLE); 2408 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2409 2409
2410 POSTING_READ(reg); 2410 POSTING_READ(reg);
2411 udelay(150); 2411 udelay(150);
2412 2412
2413 /* Ironlake workaround, enable clock pointer after FDI enable*/ 2413 /* Ironlake workaround, enable clock pointer after FDI enable*/
2414 if (HAS_PCH_IBX(dev)) { 2414 if (HAS_PCH_IBX(dev)) {
2415 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR); 2415 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2416 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR | 2416 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2417 FDI_RX_PHASE_SYNC_POINTER_EN); 2417 FDI_RX_PHASE_SYNC_POINTER_EN);
2418 } 2418 }
2419 2419
2420 reg = FDI_RX_IIR(pipe); 2420 reg = FDI_RX_IIR(pipe);
2421 for (tries = 0; tries < 5; tries++) { 2421 for (tries = 0; tries < 5; tries++) {
2422 temp = I915_READ(reg); 2422 temp = I915_READ(reg);
2423 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); 2423 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2424 2424
2425 if ((temp & FDI_RX_BIT_LOCK)) { 2425 if ((temp & FDI_RX_BIT_LOCK)) {
2426 DRM_DEBUG_KMS("FDI train 1 done.\n"); 2426 DRM_DEBUG_KMS("FDI train 1 done.\n");
2427 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK); 2427 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2428 break; 2428 break;
2429 } 2429 }
2430 } 2430 }
2431 if (tries == 5) 2431 if (tries == 5)
2432 DRM_ERROR("FDI train 1 fail!\n"); 2432 DRM_ERROR("FDI train 1 fail!\n");
2433 2433
2434 /* Train 2 */ 2434 /* Train 2 */
2435 reg = FDI_TX_CTL(pipe); 2435 reg = FDI_TX_CTL(pipe);
2436 temp = I915_READ(reg); 2436 temp = I915_READ(reg);
2437 temp &= ~FDI_LINK_TRAIN_NONE; 2437 temp &= ~FDI_LINK_TRAIN_NONE;
2438 temp |= FDI_LINK_TRAIN_PATTERN_2; 2438 temp |= FDI_LINK_TRAIN_PATTERN_2;
2439 I915_WRITE(reg, temp); 2439 I915_WRITE(reg, temp);
2440 2440
2441 reg = FDI_RX_CTL(pipe); 2441 reg = FDI_RX_CTL(pipe);
2442 temp = I915_READ(reg); 2442 temp = I915_READ(reg);
2443 temp &= ~FDI_LINK_TRAIN_NONE; 2443 temp &= ~FDI_LINK_TRAIN_NONE;
2444 temp |= FDI_LINK_TRAIN_PATTERN_2; 2444 temp |= FDI_LINK_TRAIN_PATTERN_2;
2445 I915_WRITE(reg, temp); 2445 I915_WRITE(reg, temp);
2446 2446
2447 POSTING_READ(reg); 2447 POSTING_READ(reg);
2448 udelay(150); 2448 udelay(150);
2449 2449
2450 reg = FDI_RX_IIR(pipe); 2450 reg = FDI_RX_IIR(pipe);
2451 for (tries = 0; tries < 5; tries++) { 2451 for (tries = 0; tries < 5; tries++) {
2452 temp = I915_READ(reg); 2452 temp = I915_READ(reg);
2453 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); 2453 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2454 2454
2455 if (temp & FDI_RX_SYMBOL_LOCK) { 2455 if (temp & FDI_RX_SYMBOL_LOCK) {
2456 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK); 2456 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2457 DRM_DEBUG_KMS("FDI train 2 done.\n"); 2457 DRM_DEBUG_KMS("FDI train 2 done.\n");
2458 break; 2458 break;
2459 } 2459 }
2460 } 2460 }
2461 if (tries == 5) 2461 if (tries == 5)
2462 DRM_ERROR("FDI train 2 fail!\n"); 2462 DRM_ERROR("FDI train 2 fail!\n");
2463 2463
2464 DRM_DEBUG_KMS("FDI train done\n"); 2464 DRM_DEBUG_KMS("FDI train done\n");
2465 2465
2466 } 2466 }
2467 2467
2468 static const int snb_b_fdi_train_param[] = { 2468 static const int snb_b_fdi_train_param[] = {
2469 FDI_LINK_TRAIN_400MV_0DB_SNB_B, 2469 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2470 FDI_LINK_TRAIN_400MV_6DB_SNB_B, 2470 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2471 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B, 2471 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2472 FDI_LINK_TRAIN_800MV_0DB_SNB_B, 2472 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2473 }; 2473 };
2474 2474
2475 /* The FDI link training functions for SNB/Cougarpoint. */ 2475 /* The FDI link training functions for SNB/Cougarpoint. */
2476 static void gen6_fdi_link_train(struct drm_crtc *crtc) 2476 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2477 { 2477 {
2478 struct drm_device *dev = crtc->dev; 2478 struct drm_device *dev = crtc->dev;
2479 struct drm_i915_private *dev_priv = dev->dev_private; 2479 struct drm_i915_private *dev_priv = dev->dev_private;
2480 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 2480 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2481 int pipe = intel_crtc->pipe; 2481 int pipe = intel_crtc->pipe;
2482 u32 reg, temp, i; 2482 u32 reg, temp, i;
2483 2483
2484 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit 2484 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2485 for train result */ 2485 for train result */
2486 reg = FDI_RX_IMR(pipe); 2486 reg = FDI_RX_IMR(pipe);
2487 temp = I915_READ(reg); 2487 temp = I915_READ(reg);
2488 temp &= ~FDI_RX_SYMBOL_LOCK; 2488 temp &= ~FDI_RX_SYMBOL_LOCK;
2489 temp &= ~FDI_RX_BIT_LOCK; 2489 temp &= ~FDI_RX_BIT_LOCK;
2490 I915_WRITE(reg, temp); 2490 I915_WRITE(reg, temp);
2491 2491
2492 POSTING_READ(reg); 2492 POSTING_READ(reg);
2493 udelay(150); 2493 udelay(150);
2494 2494
2495 /* enable CPU FDI TX and PCH FDI RX */ 2495 /* enable CPU FDI TX and PCH FDI RX */
2496 reg = FDI_TX_CTL(pipe); 2496 reg = FDI_TX_CTL(pipe);
2497 temp = I915_READ(reg); 2497 temp = I915_READ(reg);
2498 temp &= ~(7 << 19); 2498 temp &= ~(7 << 19);
2499 temp |= (intel_crtc->fdi_lanes - 1) << 19; 2499 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2500 temp &= ~FDI_LINK_TRAIN_NONE; 2500 temp &= ~FDI_LINK_TRAIN_NONE;
2501 temp |= FDI_LINK_TRAIN_PATTERN_1; 2501 temp |= FDI_LINK_TRAIN_PATTERN_1;
2502 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 2502 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2503 /* SNB-B */ 2503 /* SNB-B */
2504 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; 2504 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2505 I915_WRITE(reg, temp | FDI_TX_ENABLE); 2505 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2506 2506
2507 reg = FDI_RX_CTL(pipe); 2507 reg = FDI_RX_CTL(pipe);
2508 temp = I915_READ(reg); 2508 temp = I915_READ(reg);
2509 if (HAS_PCH_CPT(dev)) { 2509 if (HAS_PCH_CPT(dev)) {
2510 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 2510 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2511 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; 2511 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2512 } else { 2512 } else {
2513 temp &= ~FDI_LINK_TRAIN_NONE; 2513 temp &= ~FDI_LINK_TRAIN_NONE;
2514 temp |= FDI_LINK_TRAIN_PATTERN_1; 2514 temp |= FDI_LINK_TRAIN_PATTERN_1;
2515 } 2515 }
2516 I915_WRITE(reg, temp | FDI_RX_ENABLE); 2516 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2517 2517
2518 POSTING_READ(reg); 2518 POSTING_READ(reg);
2519 udelay(150); 2519 udelay(150);
2520 2520
2521 if (HAS_PCH_CPT(dev)) 2521 if (HAS_PCH_CPT(dev))
2522 cpt_phase_pointer_enable(dev, pipe); 2522 cpt_phase_pointer_enable(dev, pipe);
2523 2523
2524 for (i = 0; i < 4; i++) { 2524 for (i = 0; i < 4; i++) {
2525 reg = FDI_TX_CTL(pipe); 2525 reg = FDI_TX_CTL(pipe);
2526 temp = I915_READ(reg); 2526 temp = I915_READ(reg);
2527 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 2527 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2528 temp |= snb_b_fdi_train_param[i]; 2528 temp |= snb_b_fdi_train_param[i];
2529 I915_WRITE(reg, temp); 2529 I915_WRITE(reg, temp);
2530 2530
2531 POSTING_READ(reg); 2531 POSTING_READ(reg);
2532 udelay(500); 2532 udelay(500);
2533 2533
2534 reg = FDI_RX_IIR(pipe); 2534 reg = FDI_RX_IIR(pipe);
2535 temp = I915_READ(reg); 2535 temp = I915_READ(reg);
2536 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); 2536 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2537 2537
2538 if (temp & FDI_RX_BIT_LOCK) { 2538 if (temp & FDI_RX_BIT_LOCK) {
2539 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK); 2539 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2540 DRM_DEBUG_KMS("FDI train 1 done.\n"); 2540 DRM_DEBUG_KMS("FDI train 1 done.\n");
2541 break; 2541 break;
2542 } 2542 }
2543 } 2543 }
2544 if (i == 4) 2544 if (i == 4)
2545 DRM_ERROR("FDI train 1 fail!\n"); 2545 DRM_ERROR("FDI train 1 fail!\n");
2546 2546
2547 /* Train 2 */ 2547 /* Train 2 */
2548 reg = FDI_TX_CTL(pipe); 2548 reg = FDI_TX_CTL(pipe);
2549 temp = I915_READ(reg); 2549 temp = I915_READ(reg);
2550 temp &= ~FDI_LINK_TRAIN_NONE; 2550 temp &= ~FDI_LINK_TRAIN_NONE;
2551 temp |= FDI_LINK_TRAIN_PATTERN_2; 2551 temp |= FDI_LINK_TRAIN_PATTERN_2;
2552 if (IS_GEN6(dev)) { 2552 if (IS_GEN6(dev)) {
2553 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 2553 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2554 /* SNB-B */ 2554 /* SNB-B */
2555 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; 2555 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2556 } 2556 }
2557 I915_WRITE(reg, temp); 2557 I915_WRITE(reg, temp);
2558 2558
2559 reg = FDI_RX_CTL(pipe); 2559 reg = FDI_RX_CTL(pipe);
2560 temp = I915_READ(reg); 2560 temp = I915_READ(reg);
2561 if (HAS_PCH_CPT(dev)) { 2561 if (HAS_PCH_CPT(dev)) {
2562 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 2562 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2563 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT; 2563 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2564 } else { 2564 } else {
2565 temp &= ~FDI_LINK_TRAIN_NONE; 2565 temp &= ~FDI_LINK_TRAIN_NONE;
2566 temp |= FDI_LINK_TRAIN_PATTERN_2; 2566 temp |= FDI_LINK_TRAIN_PATTERN_2;
2567 } 2567 }
2568 I915_WRITE(reg, temp); 2568 I915_WRITE(reg, temp);
2569 2569
2570 POSTING_READ(reg); 2570 POSTING_READ(reg);
2571 udelay(150); 2571 udelay(150);
2572 2572
2573 for (i = 0; i < 4; i++) { 2573 for (i = 0; i < 4; i++) {
2574 reg = FDI_TX_CTL(pipe); 2574 reg = FDI_TX_CTL(pipe);
2575 temp = I915_READ(reg); 2575 temp = I915_READ(reg);
2576 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 2576 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2577 temp |= snb_b_fdi_train_param[i]; 2577 temp |= snb_b_fdi_train_param[i];
2578 I915_WRITE(reg, temp); 2578 I915_WRITE(reg, temp);
2579 2579
2580 POSTING_READ(reg); 2580 POSTING_READ(reg);
2581 udelay(500); 2581 udelay(500);
2582 2582
2583 reg = FDI_RX_IIR(pipe); 2583 reg = FDI_RX_IIR(pipe);
2584 temp = I915_READ(reg); 2584 temp = I915_READ(reg);
2585 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); 2585 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2586 2586
2587 if (temp & FDI_RX_SYMBOL_LOCK) { 2587 if (temp & FDI_RX_SYMBOL_LOCK) {
2588 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK); 2588 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2589 DRM_DEBUG_KMS("FDI train 2 done.\n"); 2589 DRM_DEBUG_KMS("FDI train 2 done.\n");
2590 break; 2590 break;
2591 } 2591 }
2592 } 2592 }
2593 if (i == 4) 2593 if (i == 4)
2594 DRM_ERROR("FDI train 2 fail!\n"); 2594 DRM_ERROR("FDI train 2 fail!\n");
2595 2595
2596 DRM_DEBUG_KMS("FDI train done.\n"); 2596 DRM_DEBUG_KMS("FDI train done.\n");
2597 } 2597 }
2598 2598
2599 /* Manual link training for Ivy Bridge A0 parts */ 2599 /* Manual link training for Ivy Bridge A0 parts */
2600 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc) 2600 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2601 { 2601 {
2602 struct drm_device *dev = crtc->dev; 2602 struct drm_device *dev = crtc->dev;
2603 struct drm_i915_private *dev_priv = dev->dev_private; 2603 struct drm_i915_private *dev_priv = dev->dev_private;
2604 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 2604 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2605 int pipe = intel_crtc->pipe; 2605 int pipe = intel_crtc->pipe;
2606 u32 reg, temp, i; 2606 u32 reg, temp, i;
2607 2607
2608 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit 2608 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2609 for train result */ 2609 for train result */
2610 reg = FDI_RX_IMR(pipe); 2610 reg = FDI_RX_IMR(pipe);
2611 temp = I915_READ(reg); 2611 temp = I915_READ(reg);
2612 temp &= ~FDI_RX_SYMBOL_LOCK; 2612 temp &= ~FDI_RX_SYMBOL_LOCK;
2613 temp &= ~FDI_RX_BIT_LOCK; 2613 temp &= ~FDI_RX_BIT_LOCK;
2614 I915_WRITE(reg, temp); 2614 I915_WRITE(reg, temp);
2615 2615
2616 POSTING_READ(reg); 2616 POSTING_READ(reg);
2617 udelay(150); 2617 udelay(150);
2618 2618
2619 /* enable CPU FDI TX and PCH FDI RX */ 2619 /* enable CPU FDI TX and PCH FDI RX */
2620 reg = FDI_TX_CTL(pipe); 2620 reg = FDI_TX_CTL(pipe);
2621 temp = I915_READ(reg); 2621 temp = I915_READ(reg);
2622 temp &= ~(7 << 19); 2622 temp &= ~(7 << 19);
2623 temp |= (intel_crtc->fdi_lanes - 1) << 19; 2623 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2624 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB); 2624 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2625 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB; 2625 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2626 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 2626 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2627 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; 2627 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2628 temp |= FDI_COMPOSITE_SYNC; 2628 temp |= FDI_COMPOSITE_SYNC;
2629 I915_WRITE(reg, temp | FDI_TX_ENABLE); 2629 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2630 2630
2631 reg = FDI_RX_CTL(pipe); 2631 reg = FDI_RX_CTL(pipe);
2632 temp = I915_READ(reg); 2632 temp = I915_READ(reg);
2633 temp &= ~FDI_LINK_TRAIN_AUTO; 2633 temp &= ~FDI_LINK_TRAIN_AUTO;
2634 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 2634 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2635 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; 2635 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2636 temp |= FDI_COMPOSITE_SYNC; 2636 temp |= FDI_COMPOSITE_SYNC;
2637 I915_WRITE(reg, temp | FDI_RX_ENABLE); 2637 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2638 2638
2639 POSTING_READ(reg); 2639 POSTING_READ(reg);
2640 udelay(150); 2640 udelay(150);
2641 2641
2642 if (HAS_PCH_CPT(dev)) 2642 if (HAS_PCH_CPT(dev))
2643 cpt_phase_pointer_enable(dev, pipe); 2643 cpt_phase_pointer_enable(dev, pipe);
2644 2644
2645 for (i = 0; i < 4; i++) { 2645 for (i = 0; i < 4; i++) {
2646 reg = FDI_TX_CTL(pipe); 2646 reg = FDI_TX_CTL(pipe);
2647 temp = I915_READ(reg); 2647 temp = I915_READ(reg);
2648 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 2648 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2649 temp |= snb_b_fdi_train_param[i]; 2649 temp |= snb_b_fdi_train_param[i];
2650 I915_WRITE(reg, temp); 2650 I915_WRITE(reg, temp);
2651 2651
2652 POSTING_READ(reg); 2652 POSTING_READ(reg);
2653 udelay(500); 2653 udelay(500);
2654 2654
2655 reg = FDI_RX_IIR(pipe); 2655 reg = FDI_RX_IIR(pipe);
2656 temp = I915_READ(reg); 2656 temp = I915_READ(reg);
2657 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); 2657 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2658 2658
2659 if (temp & FDI_RX_BIT_LOCK || 2659 if (temp & FDI_RX_BIT_LOCK ||
2660 (I915_READ(reg) & FDI_RX_BIT_LOCK)) { 2660 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2661 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK); 2661 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2662 DRM_DEBUG_KMS("FDI train 1 done.\n"); 2662 DRM_DEBUG_KMS("FDI train 1 done.\n");
2663 break; 2663 break;
2664 } 2664 }
2665 } 2665 }
2666 if (i == 4) 2666 if (i == 4)
2667 DRM_ERROR("FDI train 1 fail!\n"); 2667 DRM_ERROR("FDI train 1 fail!\n");
2668 2668
2669 /* Train 2 */ 2669 /* Train 2 */
2670 reg = FDI_TX_CTL(pipe); 2670 reg = FDI_TX_CTL(pipe);
2671 temp = I915_READ(reg); 2671 temp = I915_READ(reg);
2672 temp &= ~FDI_LINK_TRAIN_NONE_IVB; 2672 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2673 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB; 2673 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2674 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 2674 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2675 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; 2675 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2676 I915_WRITE(reg, temp); 2676 I915_WRITE(reg, temp);
2677 2677
2678 reg = FDI_RX_CTL(pipe); 2678 reg = FDI_RX_CTL(pipe);
2679 temp = I915_READ(reg); 2679 temp = I915_READ(reg);
2680 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 2680 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2681 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT; 2681 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2682 I915_WRITE(reg, temp); 2682 I915_WRITE(reg, temp);
2683 2683
2684 POSTING_READ(reg); 2684 POSTING_READ(reg);
2685 udelay(150); 2685 udelay(150);
2686 2686
2687 for (i = 0; i < 4; i++) { 2687 for (i = 0; i < 4; i++) {
2688 reg = FDI_TX_CTL(pipe); 2688 reg = FDI_TX_CTL(pipe);
2689 temp = I915_READ(reg); 2689 temp = I915_READ(reg);
2690 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 2690 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2691 temp |= snb_b_fdi_train_param[i]; 2691 temp |= snb_b_fdi_train_param[i];
2692 I915_WRITE(reg, temp); 2692 I915_WRITE(reg, temp);
2693 2693
2694 POSTING_READ(reg); 2694 POSTING_READ(reg);
2695 udelay(500); 2695 udelay(500);
2696 2696
2697 reg = FDI_RX_IIR(pipe); 2697 reg = FDI_RX_IIR(pipe);
2698 temp = I915_READ(reg); 2698 temp = I915_READ(reg);
2699 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); 2699 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2700 2700
2701 if (temp & FDI_RX_SYMBOL_LOCK) { 2701 if (temp & FDI_RX_SYMBOL_LOCK) {
2702 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK); 2702 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2703 DRM_DEBUG_KMS("FDI train 2 done.\n"); 2703 DRM_DEBUG_KMS("FDI train 2 done.\n");
2704 break; 2704 break;
2705 } 2705 }
2706 } 2706 }
2707 if (i == 4) 2707 if (i == 4)
2708 DRM_ERROR("FDI train 2 fail!\n"); 2708 DRM_ERROR("FDI train 2 fail!\n");
2709 2709
2710 DRM_DEBUG_KMS("FDI train done.\n"); 2710 DRM_DEBUG_KMS("FDI train done.\n");
2711 } 2711 }
2712 2712
2713 static void ironlake_fdi_pll_enable(struct drm_crtc *crtc) 2713 static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2714 { 2714 {
2715 struct drm_device *dev = crtc->dev; 2715 struct drm_device *dev = crtc->dev;
2716 struct drm_i915_private *dev_priv = dev->dev_private; 2716 struct drm_i915_private *dev_priv = dev->dev_private;
2717 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 2717 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2718 int pipe = intel_crtc->pipe; 2718 int pipe = intel_crtc->pipe;
2719 u32 reg, temp; 2719 u32 reg, temp;
2720 2720
2721 /* Write the TU size bits so error detection works */ 2721 /* Write the TU size bits so error detection works */
2722 I915_WRITE(FDI_RX_TUSIZE1(pipe), 2722 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2723 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK); 2723 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2724 2724
2725 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */ 2725 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2726 reg = FDI_RX_CTL(pipe); 2726 reg = FDI_RX_CTL(pipe);
2727 temp = I915_READ(reg); 2727 temp = I915_READ(reg);
2728 temp &= ~((0x7 << 19) | (0x7 << 16)); 2728 temp &= ~((0x7 << 19) | (0x7 << 16));
2729 temp |= (intel_crtc->fdi_lanes - 1) << 19; 2729 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2730 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11; 2730 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2731 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE); 2731 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2732 2732
2733 POSTING_READ(reg); 2733 POSTING_READ(reg);
2734 udelay(200); 2734 udelay(200);
2735 2735
2736 /* Switch from Rawclk to PCDclk */ 2736 /* Switch from Rawclk to PCDclk */
2737 temp = I915_READ(reg); 2737 temp = I915_READ(reg);
2738 I915_WRITE(reg, temp | FDI_PCDCLK); 2738 I915_WRITE(reg, temp | FDI_PCDCLK);
2739 2739
2740 POSTING_READ(reg); 2740 POSTING_READ(reg);
2741 udelay(200); 2741 udelay(200);
2742 2742
2743 /* Enable CPU FDI TX PLL, always on for Ironlake */ 2743 /* Enable CPU FDI TX PLL, always on for Ironlake */
2744 reg = FDI_TX_CTL(pipe); 2744 reg = FDI_TX_CTL(pipe);
2745 temp = I915_READ(reg); 2745 temp = I915_READ(reg);
2746 if ((temp & FDI_TX_PLL_ENABLE) == 0) { 2746 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2747 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE); 2747 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2748 2748
2749 POSTING_READ(reg); 2749 POSTING_READ(reg);
2750 udelay(100); 2750 udelay(100);
2751 } 2751 }
2752 } 2752 }
2753 2753
2754 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe) 2754 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2755 { 2755 {
2756 struct drm_i915_private *dev_priv = dev->dev_private; 2756 struct drm_i915_private *dev_priv = dev->dev_private;
2757 u32 flags = I915_READ(SOUTH_CHICKEN1); 2757 u32 flags = I915_READ(SOUTH_CHICKEN1);
2758 2758
2759 flags &= ~(FDI_PHASE_SYNC_EN(pipe)); 2759 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2760 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */ 2760 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2761 flags &= ~(FDI_PHASE_SYNC_OVR(pipe)); 2761 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2762 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */ 2762 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2763 POSTING_READ(SOUTH_CHICKEN1); 2763 POSTING_READ(SOUTH_CHICKEN1);
2764 } 2764 }
2765 static void ironlake_fdi_disable(struct drm_crtc *crtc) 2765 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2766 { 2766 {
2767 struct drm_device *dev = crtc->dev; 2767 struct drm_device *dev = crtc->dev;
2768 struct drm_i915_private *dev_priv = dev->dev_private; 2768 struct drm_i915_private *dev_priv = dev->dev_private;
2769 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 2769 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2770 int pipe = intel_crtc->pipe; 2770 int pipe = intel_crtc->pipe;
2771 u32 reg, temp; 2771 u32 reg, temp;
2772 2772
2773 /* disable CPU FDI tx and PCH FDI rx */ 2773 /* disable CPU FDI tx and PCH FDI rx */
2774 reg = FDI_TX_CTL(pipe); 2774 reg = FDI_TX_CTL(pipe);
2775 temp = I915_READ(reg); 2775 temp = I915_READ(reg);
2776 I915_WRITE(reg, temp & ~FDI_TX_ENABLE); 2776 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2777 POSTING_READ(reg); 2777 POSTING_READ(reg);
2778 2778
2779 reg = FDI_RX_CTL(pipe); 2779 reg = FDI_RX_CTL(pipe);
2780 temp = I915_READ(reg); 2780 temp = I915_READ(reg);
2781 temp &= ~(0x7 << 16); 2781 temp &= ~(0x7 << 16);
2782 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11; 2782 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2783 I915_WRITE(reg, temp & ~FDI_RX_ENABLE); 2783 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2784 2784
2785 POSTING_READ(reg); 2785 POSTING_READ(reg);
2786 udelay(100); 2786 udelay(100);
2787 2787
2788 /* Ironlake workaround, disable clock pointer after downing FDI */ 2788 /* Ironlake workaround, disable clock pointer after downing FDI */
2789 if (HAS_PCH_IBX(dev)) { 2789 if (HAS_PCH_IBX(dev)) {
2790 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR); 2790 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2791 I915_WRITE(FDI_RX_CHICKEN(pipe), 2791 I915_WRITE(FDI_RX_CHICKEN(pipe),
2792 I915_READ(FDI_RX_CHICKEN(pipe) & 2792 I915_READ(FDI_RX_CHICKEN(pipe) &
2793 ~FDI_RX_PHASE_SYNC_POINTER_EN)); 2793 ~FDI_RX_PHASE_SYNC_POINTER_EN));
2794 } else if (HAS_PCH_CPT(dev)) { 2794 } else if (HAS_PCH_CPT(dev)) {
2795 cpt_phase_pointer_disable(dev, pipe); 2795 cpt_phase_pointer_disable(dev, pipe);
2796 } 2796 }
2797 2797
2798 /* still set train pattern 1 */ 2798 /* still set train pattern 1 */
2799 reg = FDI_TX_CTL(pipe); 2799 reg = FDI_TX_CTL(pipe);
2800 temp = I915_READ(reg); 2800 temp = I915_READ(reg);
2801 temp &= ~FDI_LINK_TRAIN_NONE; 2801 temp &= ~FDI_LINK_TRAIN_NONE;
2802 temp |= FDI_LINK_TRAIN_PATTERN_1; 2802 temp |= FDI_LINK_TRAIN_PATTERN_1;
2803 I915_WRITE(reg, temp); 2803 I915_WRITE(reg, temp);
2804 2804
2805 reg = FDI_RX_CTL(pipe); 2805 reg = FDI_RX_CTL(pipe);
2806 temp = I915_READ(reg); 2806 temp = I915_READ(reg);
2807 if (HAS_PCH_CPT(dev)) { 2807 if (HAS_PCH_CPT(dev)) {
2808 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 2808 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2809 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; 2809 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2810 } else { 2810 } else {
2811 temp &= ~FDI_LINK_TRAIN_NONE; 2811 temp &= ~FDI_LINK_TRAIN_NONE;
2812 temp |= FDI_LINK_TRAIN_PATTERN_1; 2812 temp |= FDI_LINK_TRAIN_PATTERN_1;
2813 } 2813 }
2814 /* BPC in FDI rx is consistent with that in PIPECONF */ 2814 /* BPC in FDI rx is consistent with that in PIPECONF */
2815 temp &= ~(0x07 << 16); 2815 temp &= ~(0x07 << 16);
2816 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11; 2816 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2817 I915_WRITE(reg, temp); 2817 I915_WRITE(reg, temp);
2818 2818
2819 POSTING_READ(reg); 2819 POSTING_READ(reg);
2820 udelay(100); 2820 udelay(100);
2821 } 2821 }
2822 2822
2823 /* 2823 /*
2824 * When we disable a pipe, we need to clear any pending scanline wait events 2824 * When we disable a pipe, we need to clear any pending scanline wait events
2825 * to avoid hanging the ring, which we assume we are waiting on. 2825 * to avoid hanging the ring, which we assume we are waiting on.
2826 */ 2826 */
2827 static void intel_clear_scanline_wait(struct drm_device *dev) 2827 static void intel_clear_scanline_wait(struct drm_device *dev)
2828 { 2828 {
2829 struct drm_i915_private *dev_priv = dev->dev_private; 2829 struct drm_i915_private *dev_priv = dev->dev_private;
2830 struct intel_ring_buffer *ring; 2830 struct intel_ring_buffer *ring;
2831 u32 tmp; 2831 u32 tmp;
2832 2832
2833 if (IS_GEN2(dev)) 2833 if (IS_GEN2(dev))
2834 /* Can't break the hang on i8xx */ 2834 /* Can't break the hang on i8xx */
2835 return; 2835 return;
2836 2836
2837 ring = LP_RING(dev_priv); 2837 ring = LP_RING(dev_priv);
2838 tmp = I915_READ_CTL(ring); 2838 tmp = I915_READ_CTL(ring);
2839 if (tmp & RING_WAIT) 2839 if (tmp & RING_WAIT)
2840 I915_WRITE_CTL(ring, tmp); 2840 I915_WRITE_CTL(ring, tmp);
2841 } 2841 }
2842 2842
2843 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc) 2843 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2844 { 2844 {
2845 struct drm_i915_gem_object *obj; 2845 struct drm_i915_gem_object *obj;
2846 struct drm_i915_private *dev_priv; 2846 struct drm_i915_private *dev_priv;
2847 2847
2848 if (crtc->fb == NULL) 2848 if (crtc->fb == NULL)
2849 return; 2849 return;
2850 2850
2851 obj = to_intel_framebuffer(crtc->fb)->obj; 2851 obj = to_intel_framebuffer(crtc->fb)->obj;
2852 dev_priv = crtc->dev->dev_private; 2852 dev_priv = crtc->dev->dev_private;
2853 wait_event(dev_priv->pending_flip_queue, 2853 wait_event(dev_priv->pending_flip_queue,
2854 atomic_read(&obj->pending_flip) == 0); 2854 atomic_read(&obj->pending_flip) == 0);
2855 } 2855 }
2856 2856
2857 static bool intel_crtc_driving_pch(struct drm_crtc *crtc) 2857 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2858 { 2858 {
2859 struct drm_device *dev = crtc->dev; 2859 struct drm_device *dev = crtc->dev;
2860 struct drm_mode_config *mode_config = &dev->mode_config; 2860 struct drm_mode_config *mode_config = &dev->mode_config;
2861 struct intel_encoder *encoder; 2861 struct intel_encoder *encoder;
2862 2862
2863 /* 2863 /*
2864 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that 2864 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2865 * must be driven by its own crtc; no sharing is possible. 2865 * must be driven by its own crtc; no sharing is possible.
2866 */ 2866 */
2867 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) { 2867 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2868 if (encoder->base.crtc != crtc) 2868 if (encoder->base.crtc != crtc)
2869 continue; 2869 continue;
2870 2870
2871 switch (encoder->type) { 2871 switch (encoder->type) {
2872 case INTEL_OUTPUT_EDP: 2872 case INTEL_OUTPUT_EDP:
2873 if (!intel_encoder_is_pch_edp(&encoder->base)) 2873 if (!intel_encoder_is_pch_edp(&encoder->base))
2874 return false; 2874 return false;
2875 continue; 2875 continue;
2876 } 2876 }
2877 } 2877 }
2878 2878
2879 return true; 2879 return true;
2880 } 2880 }
2881 2881
2882 /* 2882 /*
2883 * Enable PCH resources required for PCH ports: 2883 * Enable PCH resources required for PCH ports:
2884 * - PCH PLLs 2884 * - PCH PLLs
2885 * - FDI training & RX/TX 2885 * - FDI training & RX/TX
2886 * - update transcoder timings 2886 * - update transcoder timings
2887 * - DP transcoding bits 2887 * - DP transcoding bits
2888 * - transcoder 2888 * - transcoder
2889 */ 2889 */
2890 static void ironlake_pch_enable(struct drm_crtc *crtc) 2890 static void ironlake_pch_enable(struct drm_crtc *crtc)
2891 { 2891 {
2892 struct drm_device *dev = crtc->dev; 2892 struct drm_device *dev = crtc->dev;
2893 struct drm_i915_private *dev_priv = dev->dev_private; 2893 struct drm_i915_private *dev_priv = dev->dev_private;
2894 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 2894 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2895 int pipe = intel_crtc->pipe; 2895 int pipe = intel_crtc->pipe;
2896 u32 reg, temp, transc_sel; 2896 u32 reg, temp, transc_sel;
2897 2897
2898 /* For PCH output, training FDI link */ 2898 /* For PCH output, training FDI link */
2899 dev_priv->display.fdi_link_train(crtc); 2899 dev_priv->display.fdi_link_train(crtc);
2900 2900
2901 intel_enable_pch_pll(dev_priv, pipe); 2901 intel_enable_pch_pll(dev_priv, pipe);
2902 2902
2903 if (HAS_PCH_CPT(dev)) { 2903 if (HAS_PCH_CPT(dev)) {
2904 transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL : 2904 transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
2905 TRANSC_DPLLB_SEL; 2905 TRANSC_DPLLB_SEL;
2906 2906
2907 /* Be sure PCH DPLL SEL is set */ 2907 /* Be sure PCH DPLL SEL is set */
2908 temp = I915_READ(PCH_DPLL_SEL); 2908 temp = I915_READ(PCH_DPLL_SEL);
2909 if (pipe == 0) { 2909 if (pipe == 0) {
2910 temp &= ~(TRANSA_DPLLB_SEL); 2910 temp &= ~(TRANSA_DPLLB_SEL);
2911 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL); 2911 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2912 } else if (pipe == 1) { 2912 } else if (pipe == 1) {
2913 temp &= ~(TRANSB_DPLLB_SEL); 2913 temp &= ~(TRANSB_DPLLB_SEL);
2914 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL); 2914 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2915 } else if (pipe == 2) { 2915 } else if (pipe == 2) {
2916 temp &= ~(TRANSC_DPLLB_SEL); 2916 temp &= ~(TRANSC_DPLLB_SEL);
2917 temp |= (TRANSC_DPLL_ENABLE | transc_sel); 2917 temp |= (TRANSC_DPLL_ENABLE | transc_sel);
2918 } 2918 }
2919 I915_WRITE(PCH_DPLL_SEL, temp); 2919 I915_WRITE(PCH_DPLL_SEL, temp);
2920 } 2920 }
2921 2921
2922 /* set transcoder timing, panel must allow it */ 2922 /* set transcoder timing, panel must allow it */
2923 assert_panel_unlocked(dev_priv, pipe); 2923 assert_panel_unlocked(dev_priv, pipe);
2924 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe))); 2924 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2925 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe))); 2925 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2926 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe))); 2926 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
2927 2927
2928 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe))); 2928 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2929 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe))); 2929 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2930 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe))); 2930 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
2931 2931
2932 intel_fdi_normal_train(crtc); 2932 intel_fdi_normal_train(crtc);
2933 2933
2934 /* For PCH DP, enable TRANS_DP_CTL */ 2934 /* For PCH DP, enable TRANS_DP_CTL */
2935 if (HAS_PCH_CPT(dev) && 2935 if (HAS_PCH_CPT(dev) &&
2936 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) || 2936 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
2937 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) { 2937 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2938 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5; 2938 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
2939 reg = TRANS_DP_CTL(pipe); 2939 reg = TRANS_DP_CTL(pipe);
2940 temp = I915_READ(reg); 2940 temp = I915_READ(reg);
2941 temp &= ~(TRANS_DP_PORT_SEL_MASK | 2941 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2942 TRANS_DP_SYNC_MASK | 2942 TRANS_DP_SYNC_MASK |
2943 TRANS_DP_BPC_MASK); 2943 TRANS_DP_BPC_MASK);
2944 temp |= (TRANS_DP_OUTPUT_ENABLE | 2944 temp |= (TRANS_DP_OUTPUT_ENABLE |
2945 TRANS_DP_ENH_FRAMING); 2945 TRANS_DP_ENH_FRAMING);
2946 temp |= bpc << 9; /* same format but at 11:9 */ 2946 temp |= bpc << 9; /* same format but at 11:9 */
2947 2947
2948 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC) 2948 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2949 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH; 2949 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2950 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC) 2950 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2951 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH; 2951 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2952 2952
2953 switch (intel_trans_dp_port_sel(crtc)) { 2953 switch (intel_trans_dp_port_sel(crtc)) {
2954 case PCH_DP_B: 2954 case PCH_DP_B:
2955 temp |= TRANS_DP_PORT_SEL_B; 2955 temp |= TRANS_DP_PORT_SEL_B;
2956 break; 2956 break;
2957 case PCH_DP_C: 2957 case PCH_DP_C:
2958 temp |= TRANS_DP_PORT_SEL_C; 2958 temp |= TRANS_DP_PORT_SEL_C;
2959 break; 2959 break;
2960 case PCH_DP_D: 2960 case PCH_DP_D:
2961 temp |= TRANS_DP_PORT_SEL_D; 2961 temp |= TRANS_DP_PORT_SEL_D;
2962 break; 2962 break;
2963 default: 2963 default:
2964 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n"); 2964 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2965 temp |= TRANS_DP_PORT_SEL_B; 2965 temp |= TRANS_DP_PORT_SEL_B;
2966 break; 2966 break;
2967 } 2967 }
2968 2968
2969 I915_WRITE(reg, temp); 2969 I915_WRITE(reg, temp);
2970 } 2970 }
2971 2971
2972 intel_enable_transcoder(dev_priv, pipe); 2972 intel_enable_transcoder(dev_priv, pipe);
2973 } 2973 }
2974 2974
2975 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe) 2975 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
2976 { 2976 {
2977 struct drm_i915_private *dev_priv = dev->dev_private; 2977 struct drm_i915_private *dev_priv = dev->dev_private;
2978 int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe); 2978 int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
2979 u32 temp; 2979 u32 temp;
2980 2980
2981 temp = I915_READ(dslreg); 2981 temp = I915_READ(dslreg);
2982 udelay(500); 2982 udelay(500);
2983 if (wait_for(I915_READ(dslreg) != temp, 5)) { 2983 if (wait_for(I915_READ(dslreg) != temp, 5)) {
2984 /* Without this, mode sets may fail silently on FDI */ 2984 /* Without this, mode sets may fail silently on FDI */
2985 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS); 2985 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
2986 udelay(250); 2986 udelay(250);
2987 I915_WRITE(tc2reg, 0); 2987 I915_WRITE(tc2reg, 0);
2988 if (wait_for(I915_READ(dslreg) != temp, 5)) 2988 if (wait_for(I915_READ(dslreg) != temp, 5))
2989 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe); 2989 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
2990 } 2990 }
2991 } 2991 }
2992 2992
2993 static void ironlake_crtc_enable(struct drm_crtc *crtc) 2993 static void ironlake_crtc_enable(struct drm_crtc *crtc)
2994 { 2994 {
2995 struct drm_device *dev = crtc->dev; 2995 struct drm_device *dev = crtc->dev;
2996 struct drm_i915_private *dev_priv = dev->dev_private; 2996 struct drm_i915_private *dev_priv = dev->dev_private;
2997 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 2997 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2998 int pipe = intel_crtc->pipe; 2998 int pipe = intel_crtc->pipe;
2999 int plane = intel_crtc->plane; 2999 int plane = intel_crtc->plane;
3000 u32 temp; 3000 u32 temp;
3001 bool is_pch_port; 3001 bool is_pch_port;
3002 3002
3003 if (intel_crtc->active) 3003 if (intel_crtc->active)
3004 return; 3004 return;
3005 3005
3006 intel_crtc->active = true; 3006 intel_crtc->active = true;
3007 intel_update_watermarks(dev); 3007 intel_update_watermarks(dev);
3008 3008
3009 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { 3009 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3010 temp = I915_READ(PCH_LVDS); 3010 temp = I915_READ(PCH_LVDS);
3011 if ((temp & LVDS_PORT_EN) == 0) 3011 if ((temp & LVDS_PORT_EN) == 0)
3012 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN); 3012 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3013 } 3013 }
3014 3014
3015 is_pch_port = intel_crtc_driving_pch(crtc); 3015 is_pch_port = intel_crtc_driving_pch(crtc);
3016 3016
3017 if (is_pch_port) 3017 if (is_pch_port)
3018 ironlake_fdi_pll_enable(crtc); 3018 ironlake_fdi_pll_enable(crtc);
3019 else 3019 else
3020 ironlake_fdi_disable(crtc); 3020 ironlake_fdi_disable(crtc);
3021 3021
3022 /* Enable panel fitting for LVDS */ 3022 /* Enable panel fitting for LVDS */
3023 if (dev_priv->pch_pf_size && 3023 if (dev_priv->pch_pf_size &&
3024 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) { 3024 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3025 /* Force use of hard-coded filter coefficients 3025 /* Force use of hard-coded filter coefficients
3026 * as some pre-programmed values are broken, 3026 * as some pre-programmed values are broken,
3027 * e.g. x201. 3027 * e.g. x201.
3028 */ 3028 */
3029 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3); 3029 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3030 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos); 3030 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3031 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size); 3031 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3032 } 3032 }
3033 3033
3034 /* 3034 /*
3035 * On ILK+ LUT must be loaded before the pipe is running but with 3035 * On ILK+ LUT must be loaded before the pipe is running but with
3036 * clocks enabled 3036 * clocks enabled
3037 */ 3037 */
3038 intel_crtc_load_lut(crtc); 3038 intel_crtc_load_lut(crtc);
3039 3039
3040 intel_enable_pipe(dev_priv, pipe, is_pch_port); 3040 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3041 intel_enable_plane(dev_priv, plane, pipe); 3041 intel_enable_plane(dev_priv, plane, pipe);
3042 3042
3043 if (is_pch_port) 3043 if (is_pch_port)
3044 ironlake_pch_enable(crtc); 3044 ironlake_pch_enable(crtc);
3045 3045
3046 mutex_lock(&dev->struct_mutex); 3046 mutex_lock(&dev->struct_mutex);
3047 intel_update_fbc(dev); 3047 intel_update_fbc(dev);
3048 mutex_unlock(&dev->struct_mutex); 3048 mutex_unlock(&dev->struct_mutex);
3049 3049
3050 intel_crtc_update_cursor(crtc, true); 3050 intel_crtc_update_cursor(crtc, true);
3051 } 3051 }
3052 3052
3053 static void ironlake_crtc_disable(struct drm_crtc *crtc) 3053 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3054 { 3054 {
3055 struct drm_device *dev = crtc->dev; 3055 struct drm_device *dev = crtc->dev;
3056 struct drm_i915_private *dev_priv = dev->dev_private; 3056 struct drm_i915_private *dev_priv = dev->dev_private;
3057 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 3057 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3058 int pipe = intel_crtc->pipe; 3058 int pipe = intel_crtc->pipe;
3059 int plane = intel_crtc->plane; 3059 int plane = intel_crtc->plane;
3060 u32 reg, temp; 3060 u32 reg, temp;
3061 3061
3062 if (!intel_crtc->active) 3062 if (!intel_crtc->active)
3063 return; 3063 return;
3064 3064
3065 intel_crtc_wait_for_pending_flips(crtc); 3065 intel_crtc_wait_for_pending_flips(crtc);
3066 drm_vblank_off(dev, pipe); 3066 drm_vblank_off(dev, pipe);
3067 intel_crtc_update_cursor(crtc, false); 3067 intel_crtc_update_cursor(crtc, false);
3068 3068
3069 intel_disable_plane(dev_priv, plane, pipe); 3069 intel_disable_plane(dev_priv, plane, pipe);
3070 3070
3071 if (dev_priv->cfb_plane == plane) 3071 if (dev_priv->cfb_plane == plane)
3072 intel_disable_fbc(dev); 3072 intel_disable_fbc(dev);
3073 3073
3074 intel_disable_pipe(dev_priv, pipe); 3074 intel_disable_pipe(dev_priv, pipe);
3075 3075
3076 /* Disable PF */ 3076 /* Disable PF */
3077 I915_WRITE(PF_CTL(pipe), 0); 3077 I915_WRITE(PF_CTL(pipe), 0);
3078 I915_WRITE(PF_WIN_SZ(pipe), 0); 3078 I915_WRITE(PF_WIN_SZ(pipe), 0);
3079 3079
3080 ironlake_fdi_disable(crtc); 3080 ironlake_fdi_disable(crtc);
3081 3081
3082 /* This is a horrible layering violation; we should be doing this in 3082 /* This is a horrible layering violation; we should be doing this in
3083 * the connector/encoder ->prepare instead, but we don't always have 3083 * the connector/encoder ->prepare instead, but we don't always have
3084 * enough information there about the config to know whether it will 3084 * enough information there about the config to know whether it will
3085 * actually be necessary or just cause undesired flicker. 3085 * actually be necessary or just cause undesired flicker.
3086 */ 3086 */
3087 intel_disable_pch_ports(dev_priv, pipe); 3087 intel_disable_pch_ports(dev_priv, pipe);
3088 3088
3089 intel_disable_transcoder(dev_priv, pipe); 3089 intel_disable_transcoder(dev_priv, pipe);
3090 3090
3091 if (HAS_PCH_CPT(dev)) { 3091 if (HAS_PCH_CPT(dev)) {
3092 /* disable TRANS_DP_CTL */ 3092 /* disable TRANS_DP_CTL */
3093 reg = TRANS_DP_CTL(pipe); 3093 reg = TRANS_DP_CTL(pipe);
3094 temp = I915_READ(reg); 3094 temp = I915_READ(reg);
3095 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK); 3095 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3096 temp |= TRANS_DP_PORT_SEL_NONE; 3096 temp |= TRANS_DP_PORT_SEL_NONE;
3097 I915_WRITE(reg, temp); 3097 I915_WRITE(reg, temp);
3098 3098
3099 /* disable DPLL_SEL */ 3099 /* disable DPLL_SEL */
3100 temp = I915_READ(PCH_DPLL_SEL); 3100 temp = I915_READ(PCH_DPLL_SEL);
3101 switch (pipe) { 3101 switch (pipe) {
3102 case 0: 3102 case 0:
3103 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL); 3103 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3104 break; 3104 break;
3105 case 1: 3105 case 1:
3106 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL); 3106 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3107 break; 3107 break;
3108 case 2: 3108 case 2:
3109 /* C shares PLL A or B */ 3109 /* C shares PLL A or B */
3110 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL); 3110 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3111 break; 3111 break;
3112 default: 3112 default:
3113 BUG(); /* wtf */ 3113 BUG(); /* wtf */
3114 } 3114 }
3115 I915_WRITE(PCH_DPLL_SEL, temp); 3115 I915_WRITE(PCH_DPLL_SEL, temp);
3116 } 3116 }
3117 3117
3118 /* disable PCH DPLL */ 3118 /* disable PCH DPLL */
3119 if (!intel_crtc->no_pll) 3119 if (!intel_crtc->no_pll)
3120 intel_disable_pch_pll(dev_priv, pipe); 3120 intel_disable_pch_pll(dev_priv, pipe);
3121 3121
3122 /* Switch from PCDclk to Rawclk */ 3122 /* Switch from PCDclk to Rawclk */
3123 reg = FDI_RX_CTL(pipe); 3123 reg = FDI_RX_CTL(pipe);
3124 temp = I915_READ(reg); 3124 temp = I915_READ(reg);
3125 I915_WRITE(reg, temp & ~FDI_PCDCLK); 3125 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3126 3126
3127 /* Disable CPU FDI TX PLL */ 3127 /* Disable CPU FDI TX PLL */
3128 reg = FDI_TX_CTL(pipe); 3128 reg = FDI_TX_CTL(pipe);
3129 temp = I915_READ(reg); 3129 temp = I915_READ(reg);
3130 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE); 3130 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3131 3131
3132 POSTING_READ(reg); 3132 POSTING_READ(reg);
3133 udelay(100); 3133 udelay(100);
3134 3134
3135 reg = FDI_RX_CTL(pipe); 3135 reg = FDI_RX_CTL(pipe);
3136 temp = I915_READ(reg); 3136 temp = I915_READ(reg);
3137 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE); 3137 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3138 3138
3139 /* Wait for the clocks to turn off. */ 3139 /* Wait for the clocks to turn off. */
3140 POSTING_READ(reg); 3140 POSTING_READ(reg);
3141 udelay(100); 3141 udelay(100);
3142 3142
3143 intel_crtc->active = false; 3143 intel_crtc->active = false;
3144 intel_update_watermarks(dev); 3144 intel_update_watermarks(dev);
3145 3145
3146 mutex_lock(&dev->struct_mutex); 3146 mutex_lock(&dev->struct_mutex);
3147 intel_update_fbc(dev); 3147 intel_update_fbc(dev);
3148 intel_clear_scanline_wait(dev); 3148 intel_clear_scanline_wait(dev);
3149 mutex_unlock(&dev->struct_mutex); 3149 mutex_unlock(&dev->struct_mutex);
3150 } 3150 }
3151 3151
3152 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode) 3152 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
3153 { 3153 {
3154 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 3154 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3155 int pipe = intel_crtc->pipe; 3155 int pipe = intel_crtc->pipe;
3156 int plane = intel_crtc->plane; 3156 int plane = intel_crtc->plane;
3157 3157
3158 /* XXX: When our outputs are all unaware of DPMS modes other than off 3158 /* XXX: When our outputs are all unaware of DPMS modes other than off
3159 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC. 3159 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3160 */ 3160 */
3161 switch (mode) { 3161 switch (mode) {
3162 case DRM_MODE_DPMS_ON: 3162 case DRM_MODE_DPMS_ON:
3163 case DRM_MODE_DPMS_STANDBY: 3163 case DRM_MODE_DPMS_STANDBY:
3164 case DRM_MODE_DPMS_SUSPEND: 3164 case DRM_MODE_DPMS_SUSPEND:
3165 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane); 3165 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
3166 ironlake_crtc_enable(crtc); 3166 ironlake_crtc_enable(crtc);
3167 break; 3167 break;
3168 3168
3169 case DRM_MODE_DPMS_OFF: 3169 case DRM_MODE_DPMS_OFF:
3170 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane); 3170 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
3171 ironlake_crtc_disable(crtc); 3171 ironlake_crtc_disable(crtc);
3172 break; 3172 break;
3173 } 3173 }
3174 } 3174 }
3175 3175
3176 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable) 3176 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3177 { 3177 {
3178 if (!enable && intel_crtc->overlay) { 3178 if (!enable && intel_crtc->overlay) {
3179 struct drm_device *dev = intel_crtc->base.dev; 3179 struct drm_device *dev = intel_crtc->base.dev;
3180 struct drm_i915_private *dev_priv = dev->dev_private; 3180 struct drm_i915_private *dev_priv = dev->dev_private;
3181 3181
3182 mutex_lock(&dev->struct_mutex); 3182 mutex_lock(&dev->struct_mutex);
3183 dev_priv->mm.interruptible = false; 3183 dev_priv->mm.interruptible = false;
3184 (void) intel_overlay_switch_off(intel_crtc->overlay); 3184 (void) intel_overlay_switch_off(intel_crtc->overlay);
3185 dev_priv->mm.interruptible = true; 3185 dev_priv->mm.interruptible = true;
3186 mutex_unlock(&dev->struct_mutex); 3186 mutex_unlock(&dev->struct_mutex);
3187 } 3187 }
3188 3188
3189 /* Let userspace switch the overlay on again. In most cases userspace 3189 /* Let userspace switch the overlay on again. In most cases userspace
3190 * has to recompute where to put it anyway. 3190 * has to recompute where to put it anyway.
3191 */ 3191 */
3192 } 3192 }
3193 3193
3194 static void i9xx_crtc_enable(struct drm_crtc *crtc) 3194 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3195 { 3195 {
3196 struct drm_device *dev = crtc->dev; 3196 struct drm_device *dev = crtc->dev;
3197 struct drm_i915_private *dev_priv = dev->dev_private; 3197 struct drm_i915_private *dev_priv = dev->dev_private;
3198 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 3198 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3199 int pipe = intel_crtc->pipe; 3199 int pipe = intel_crtc->pipe;
3200 int plane = intel_crtc->plane; 3200 int plane = intel_crtc->plane;
3201 3201
3202 if (intel_crtc->active) 3202 if (intel_crtc->active)
3203 return; 3203 return;
3204 3204
3205 intel_crtc->active = true; 3205 intel_crtc->active = true;
3206 intel_update_watermarks(dev); 3206 intel_update_watermarks(dev);
3207 3207
3208 intel_enable_pll(dev_priv, pipe); 3208 intel_enable_pll(dev_priv, pipe);
3209 intel_enable_pipe(dev_priv, pipe, false); 3209 intel_enable_pipe(dev_priv, pipe, false);
3210 intel_enable_plane(dev_priv, plane, pipe); 3210 intel_enable_plane(dev_priv, plane, pipe);
3211 3211
3212 intel_crtc_load_lut(crtc); 3212 intel_crtc_load_lut(crtc);
3213 intel_update_fbc(dev); 3213 intel_update_fbc(dev);
3214 3214
3215 /* Give the overlay scaler a chance to enable if it's on this pipe */ 3215 /* Give the overlay scaler a chance to enable if it's on this pipe */
3216 intel_crtc_dpms_overlay(intel_crtc, true); 3216 intel_crtc_dpms_overlay(intel_crtc, true);
3217 intel_crtc_update_cursor(crtc, true); 3217 intel_crtc_update_cursor(crtc, true);
3218 } 3218 }
3219 3219
3220 static void i9xx_crtc_disable(struct drm_crtc *crtc) 3220 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3221 { 3221 {
3222 struct drm_device *dev = crtc->dev; 3222 struct drm_device *dev = crtc->dev;
3223 struct drm_i915_private *dev_priv = dev->dev_private; 3223 struct drm_i915_private *dev_priv = dev->dev_private;
3224 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 3224 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3225 int pipe = intel_crtc->pipe; 3225 int pipe = intel_crtc->pipe;
3226 int plane = intel_crtc->plane; 3226 int plane = intel_crtc->plane;
3227 3227
3228 if (!intel_crtc->active) 3228 if (!intel_crtc->active)
3229 return; 3229 return;
3230 3230
3231 /* Give the overlay scaler a chance to disable if it's on this pipe */ 3231 /* Give the overlay scaler a chance to disable if it's on this pipe */
3232 intel_crtc_wait_for_pending_flips(crtc); 3232 intel_crtc_wait_for_pending_flips(crtc);
3233 drm_vblank_off(dev, pipe); 3233 drm_vblank_off(dev, pipe);
3234 intel_crtc_dpms_overlay(intel_crtc, false); 3234 intel_crtc_dpms_overlay(intel_crtc, false);
3235 intel_crtc_update_cursor(crtc, false); 3235 intel_crtc_update_cursor(crtc, false);
3236 3236
3237 if (dev_priv->cfb_plane == plane) 3237 if (dev_priv->cfb_plane == plane)
3238 intel_disable_fbc(dev); 3238 intel_disable_fbc(dev);
3239 3239
3240 intel_disable_plane(dev_priv, plane, pipe); 3240 intel_disable_plane(dev_priv, plane, pipe);
3241 intel_disable_pipe(dev_priv, pipe); 3241 intel_disable_pipe(dev_priv, pipe);
3242 intel_disable_pll(dev_priv, pipe); 3242 intel_disable_pll(dev_priv, pipe);
3243 3243
3244 intel_crtc->active = false; 3244 intel_crtc->active = false;
3245 intel_update_fbc(dev); 3245 intel_update_fbc(dev);
3246 intel_update_watermarks(dev); 3246 intel_update_watermarks(dev);
3247 intel_clear_scanline_wait(dev); 3247 intel_clear_scanline_wait(dev);
3248 } 3248 }
3249 3249
3250 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode) 3250 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3251 { 3251 {
3252 /* XXX: When our outputs are all unaware of DPMS modes other than off 3252 /* XXX: When our outputs are all unaware of DPMS modes other than off
3253 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC. 3253 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3254 */ 3254 */
3255 switch (mode) { 3255 switch (mode) {
3256 case DRM_MODE_DPMS_ON: 3256 case DRM_MODE_DPMS_ON:
3257 case DRM_MODE_DPMS_STANDBY: 3257 case DRM_MODE_DPMS_STANDBY:
3258 case DRM_MODE_DPMS_SUSPEND: 3258 case DRM_MODE_DPMS_SUSPEND:
3259 i9xx_crtc_enable(crtc); 3259 i9xx_crtc_enable(crtc);
3260 break; 3260 break;
3261 case DRM_MODE_DPMS_OFF: 3261 case DRM_MODE_DPMS_OFF:
3262 i9xx_crtc_disable(crtc); 3262 i9xx_crtc_disable(crtc);
3263 break; 3263 break;
3264 } 3264 }
3265 } 3265 }
3266 3266
3267 /** 3267 /**
3268 * Sets the power management mode of the pipe and plane. 3268 * Sets the power management mode of the pipe and plane.
3269 */ 3269 */
3270 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode) 3270 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3271 { 3271 {
3272 struct drm_device *dev = crtc->dev; 3272 struct drm_device *dev = crtc->dev;
3273 struct drm_i915_private *dev_priv = dev->dev_private; 3273 struct drm_i915_private *dev_priv = dev->dev_private;
3274 struct drm_i915_master_private *master_priv; 3274 struct drm_i915_master_private *master_priv;
3275 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 3275 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3276 int pipe = intel_crtc->pipe; 3276 int pipe = intel_crtc->pipe;
3277 bool enabled; 3277 bool enabled;
3278 3278
3279 if (intel_crtc->dpms_mode == mode) 3279 if (intel_crtc->dpms_mode == mode)
3280 return; 3280 return;
3281 3281
3282 intel_crtc->dpms_mode = mode; 3282 intel_crtc->dpms_mode = mode;
3283 3283
3284 dev_priv->display.dpms(crtc, mode); 3284 dev_priv->display.dpms(crtc, mode);
3285 3285
3286 if (!dev->primary->master) 3286 if (!dev->primary->master)
3287 return; 3287 return;
3288 3288
3289 master_priv = dev->primary->master->driver_priv; 3289 master_priv = dev->primary->master->driver_priv;
3290 if (!master_priv->sarea_priv) 3290 if (!master_priv->sarea_priv)
3291 return; 3291 return;
3292 3292
3293 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF; 3293 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3294 3294
3295 switch (pipe) { 3295 switch (pipe) {
3296 case 0: 3296 case 0:
3297 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0; 3297 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3298 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0; 3298 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3299 break; 3299 break;
3300 case 1: 3300 case 1:
3301 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0; 3301 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3302 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0; 3302 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3303 break; 3303 break;
3304 default: 3304 default:
3305 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe)); 3305 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3306 break; 3306 break;
3307 } 3307 }
3308 } 3308 }
3309 3309
3310 static void intel_crtc_disable(struct drm_crtc *crtc) 3310 static void intel_crtc_disable(struct drm_crtc *crtc)
3311 { 3311 {
3312 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private; 3312 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3313 struct drm_device *dev = crtc->dev; 3313 struct drm_device *dev = crtc->dev;
3314 3314
3315 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF); 3315 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3316 3316
3317 if (crtc->fb) { 3317 if (crtc->fb) {
3318 mutex_lock(&dev->struct_mutex); 3318 mutex_lock(&dev->struct_mutex);
3319 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj); 3319 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
3320 mutex_unlock(&dev->struct_mutex); 3320 mutex_unlock(&dev->struct_mutex);
3321 } 3321 }
3322 } 3322 }
3323 3323
3324 /* Prepare for a mode set. 3324 /* Prepare for a mode set.
3325 * 3325 *
3326 * Note we could be a lot smarter here. We need to figure out which outputs 3326 * Note we could be a lot smarter here. We need to figure out which outputs
3327 * will be enabled, which disabled (in short, how the config will changes) 3327 * will be enabled, which disabled (in short, how the config will changes)
3328 * and perform the minimum necessary steps to accomplish that, e.g. updating 3328 * and perform the minimum necessary steps to accomplish that, e.g. updating
3329 * watermarks, FBC configuration, making sure PLLs are programmed correctly, 3329 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3330 * panel fitting is in the proper state, etc. 3330 * panel fitting is in the proper state, etc.
3331 */ 3331 */
3332 static void i9xx_crtc_prepare(struct drm_crtc *crtc) 3332 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
3333 { 3333 {
3334 i9xx_crtc_disable(crtc); 3334 i9xx_crtc_disable(crtc);
3335 } 3335 }
3336 3336
3337 static void i9xx_crtc_commit(struct drm_crtc *crtc) 3337 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3338 { 3338 {
3339 i9xx_crtc_enable(crtc); 3339 i9xx_crtc_enable(crtc);
3340 } 3340 }
3341 3341
3342 static void ironlake_crtc_prepare(struct drm_crtc *crtc) 3342 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3343 { 3343 {
3344 ironlake_crtc_disable(crtc); 3344 ironlake_crtc_disable(crtc);
3345 } 3345 }
3346 3346
3347 static void ironlake_crtc_commit(struct drm_crtc *crtc) 3347 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3348 { 3348 {
3349 ironlake_crtc_enable(crtc); 3349 ironlake_crtc_enable(crtc);
3350 } 3350 }
3351 3351
3352 void intel_encoder_prepare(struct drm_encoder *encoder) 3352 void intel_encoder_prepare(struct drm_encoder *encoder)
3353 { 3353 {
3354 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private; 3354 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3355 /* lvds has its own version of prepare see intel_lvds_prepare */ 3355 /* lvds has its own version of prepare see intel_lvds_prepare */
3356 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF); 3356 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3357 } 3357 }
3358 3358
3359 void intel_encoder_commit(struct drm_encoder *encoder) 3359 void intel_encoder_commit(struct drm_encoder *encoder)
3360 { 3360 {
3361 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private; 3361 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3362 struct drm_device *dev = encoder->dev; 3362 struct drm_device *dev = encoder->dev;
3363 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 3363 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3364 struct intel_crtc *intel_crtc = to_intel_crtc(intel_encoder->base.crtc); 3364 struct intel_crtc *intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
3365 3365
3366 /* lvds has its own version of commit see intel_lvds_commit */ 3366 /* lvds has its own version of commit see intel_lvds_commit */
3367 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON); 3367 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3368 3368
3369 if (HAS_PCH_CPT(dev)) 3369 if (HAS_PCH_CPT(dev))
3370 intel_cpt_verify_modeset(dev, intel_crtc->pipe); 3370 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3371 } 3371 }
3372 3372
3373 void intel_encoder_destroy(struct drm_encoder *encoder) 3373 void intel_encoder_destroy(struct drm_encoder *encoder)
3374 { 3374 {
3375 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 3375 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3376 3376
3377 drm_encoder_cleanup(encoder); 3377 drm_encoder_cleanup(encoder);
3378 kfree(intel_encoder); 3378 kfree(intel_encoder);
3379 } 3379 }
3380 3380
3381 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc, 3381 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3382 struct drm_display_mode *mode, 3382 struct drm_display_mode *mode,
3383 struct drm_display_mode *adjusted_mode) 3383 struct drm_display_mode *adjusted_mode)
3384 { 3384 {
3385 struct drm_device *dev = crtc->dev; 3385 struct drm_device *dev = crtc->dev;
3386 3386
3387 if (HAS_PCH_SPLIT(dev)) { 3387 if (HAS_PCH_SPLIT(dev)) {
3388 /* FDI link clock is fixed at 2.7G */ 3388 /* FDI link clock is fixed at 2.7G */
3389 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4) 3389 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3390 return false; 3390 return false;
3391 } 3391 }
3392 3392
3393 /* XXX some encoders set the crtcinfo, others don't. 3393 /* XXX some encoders set the crtcinfo, others don't.
3394 * Obviously we need some form of conflict resolution here... 3394 * Obviously we need some form of conflict resolution here...
3395 */ 3395 */
3396 if (adjusted_mode->crtc_htotal == 0) 3396 if (adjusted_mode->crtc_htotal == 0)
3397 drm_mode_set_crtcinfo(adjusted_mode, 0); 3397 drm_mode_set_crtcinfo(adjusted_mode, 0);
3398 3398
3399 return true; 3399 return true;
3400 } 3400 }
3401 3401
3402 static int i945_get_display_clock_speed(struct drm_device *dev) 3402 static int i945_get_display_clock_speed(struct drm_device *dev)
3403 { 3403 {
3404 return 400000; 3404 return 400000;
3405 } 3405 }
3406 3406
3407 static int i915_get_display_clock_speed(struct drm_device *dev) 3407 static int i915_get_display_clock_speed(struct drm_device *dev)
3408 { 3408 {
3409 return 333000; 3409 return 333000;
3410 } 3410 }
3411 3411
3412 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev) 3412 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3413 { 3413 {
3414 return 200000; 3414 return 200000;
3415 } 3415 }
3416 3416
3417 static int i915gm_get_display_clock_speed(struct drm_device *dev) 3417 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3418 { 3418 {
3419 u16 gcfgc = 0; 3419 u16 gcfgc = 0;
3420 3420
3421 pci_read_config_word(dev->pdev, GCFGC, &gcfgc); 3421 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3422 3422
3423 if (gcfgc & GC_LOW_FREQUENCY_ENABLE) 3423 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3424 return 133000; 3424 return 133000;
3425 else { 3425 else {
3426 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) { 3426 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3427 case GC_DISPLAY_CLOCK_333_MHZ: 3427 case GC_DISPLAY_CLOCK_333_MHZ:
3428 return 333000; 3428 return 333000;
3429 default: 3429 default:
3430 case GC_DISPLAY_CLOCK_190_200_MHZ: 3430 case GC_DISPLAY_CLOCK_190_200_MHZ:
3431 return 190000; 3431 return 190000;
3432 } 3432 }
3433 } 3433 }
3434 } 3434 }
3435 3435
3436 static int i865_get_display_clock_speed(struct drm_device *dev) 3436 static int i865_get_display_clock_speed(struct drm_device *dev)
3437 { 3437 {
3438 return 266000; 3438 return 266000;
3439 } 3439 }
3440 3440
3441 static int i855_get_display_clock_speed(struct drm_device *dev) 3441 static int i855_get_display_clock_speed(struct drm_device *dev)
3442 { 3442 {
3443 u16 hpllcc = 0; 3443 u16 hpllcc = 0;
3444 /* Assume that the hardware is in the high speed state. This 3444 /* Assume that the hardware is in the high speed state. This
3445 * should be the default. 3445 * should be the default.
3446 */ 3446 */
3447 switch (hpllcc & GC_CLOCK_CONTROL_MASK) { 3447 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3448 case GC_CLOCK_133_200: 3448 case GC_CLOCK_133_200:
3449 case GC_CLOCK_100_200: 3449 case GC_CLOCK_100_200:
3450 return 200000; 3450 return 200000;
3451 case GC_CLOCK_166_250: 3451 case GC_CLOCK_166_250:
3452 return 250000; 3452 return 250000;
3453 case GC_CLOCK_100_133: 3453 case GC_CLOCK_100_133:
3454 return 133000; 3454 return 133000;
3455 } 3455 }
3456 3456
3457 /* Shouldn't happen */ 3457 /* Shouldn't happen */
3458 return 0; 3458 return 0;
3459 } 3459 }
3460 3460
3461 static int i830_get_display_clock_speed(struct drm_device *dev) 3461 static int i830_get_display_clock_speed(struct drm_device *dev)
3462 { 3462 {
3463 return 133000; 3463 return 133000;
3464 } 3464 }
3465 3465
3466 struct fdi_m_n { 3466 struct fdi_m_n {
3467 u32 tu; 3467 u32 tu;
3468 u32 gmch_m; 3468 u32 gmch_m;
3469 u32 gmch_n; 3469 u32 gmch_n;
3470 u32 link_m; 3470 u32 link_m;
3471 u32 link_n; 3471 u32 link_n;
3472 }; 3472 };
3473 3473
3474 static void 3474 static void
3475 fdi_reduce_ratio(u32 *num, u32 *den) 3475 fdi_reduce_ratio(u32 *num, u32 *den)
3476 { 3476 {
3477 while (*num > 0xffffff || *den > 0xffffff) { 3477 while (*num > 0xffffff || *den > 0xffffff) {
3478 *num >>= 1; 3478 *num >>= 1;
3479 *den >>= 1; 3479 *den >>= 1;
3480 } 3480 }
3481 } 3481 }
3482 3482
3483 static void 3483 static void
3484 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock, 3484 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3485 int link_clock, struct fdi_m_n *m_n) 3485 int link_clock, struct fdi_m_n *m_n)
3486 { 3486 {
3487 m_n->tu = 64; /* default size */ 3487 m_n->tu = 64; /* default size */
3488 3488
3489 /* BUG_ON(pixel_clock > INT_MAX / 36); */ 3489 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3490 m_n->gmch_m = bits_per_pixel * pixel_clock; 3490 m_n->gmch_m = bits_per_pixel * pixel_clock;
3491 m_n->gmch_n = link_clock * nlanes * 8; 3491 m_n->gmch_n = link_clock * nlanes * 8;
3492 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n); 3492 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3493 3493
3494 m_n->link_m = pixel_clock; 3494 m_n->link_m = pixel_clock;
3495 m_n->link_n = link_clock; 3495 m_n->link_n = link_clock;
3496 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n); 3496 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3497 } 3497 }
3498 3498
3499 3499
3500 struct intel_watermark_params { 3500 struct intel_watermark_params {
3501 unsigned long fifo_size; 3501 unsigned long fifo_size;
3502 unsigned long max_wm; 3502 unsigned long max_wm;
3503 unsigned long default_wm; 3503 unsigned long default_wm;
3504 unsigned long guard_size; 3504 unsigned long guard_size;
3505 unsigned long cacheline_size; 3505 unsigned long cacheline_size;
3506 }; 3506 };
3507 3507
3508 /* Pineview has different values for various configs */ 3508 /* Pineview has different values for various configs */
3509 static const struct intel_watermark_params pineview_display_wm = { 3509 static const struct intel_watermark_params pineview_display_wm = {
3510 PINEVIEW_DISPLAY_FIFO, 3510 PINEVIEW_DISPLAY_FIFO,
3511 PINEVIEW_MAX_WM, 3511 PINEVIEW_MAX_WM,
3512 PINEVIEW_DFT_WM, 3512 PINEVIEW_DFT_WM,
3513 PINEVIEW_GUARD_WM, 3513 PINEVIEW_GUARD_WM,
3514 PINEVIEW_FIFO_LINE_SIZE 3514 PINEVIEW_FIFO_LINE_SIZE
3515 }; 3515 };
3516 static const struct intel_watermark_params pineview_display_hplloff_wm = { 3516 static const struct intel_watermark_params pineview_display_hplloff_wm = {
3517 PINEVIEW_DISPLAY_FIFO, 3517 PINEVIEW_DISPLAY_FIFO,
3518 PINEVIEW_MAX_WM, 3518 PINEVIEW_MAX_WM,
3519 PINEVIEW_DFT_HPLLOFF_WM, 3519 PINEVIEW_DFT_HPLLOFF_WM,
3520 PINEVIEW_GUARD_WM, 3520 PINEVIEW_GUARD_WM,
3521 PINEVIEW_FIFO_LINE_SIZE 3521 PINEVIEW_FIFO_LINE_SIZE
3522 }; 3522 };
3523 static const struct intel_watermark_params pineview_cursor_wm = { 3523 static const struct intel_watermark_params pineview_cursor_wm = {
3524 PINEVIEW_CURSOR_FIFO, 3524 PINEVIEW_CURSOR_FIFO,
3525 PINEVIEW_CURSOR_MAX_WM, 3525 PINEVIEW_CURSOR_MAX_WM,
3526 PINEVIEW_CURSOR_DFT_WM, 3526 PINEVIEW_CURSOR_DFT_WM,
3527 PINEVIEW_CURSOR_GUARD_WM, 3527 PINEVIEW_CURSOR_GUARD_WM,
3528 PINEVIEW_FIFO_LINE_SIZE, 3528 PINEVIEW_FIFO_LINE_SIZE,
3529 }; 3529 };
3530 static const struct intel_watermark_params pineview_cursor_hplloff_wm = { 3530 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
3531 PINEVIEW_CURSOR_FIFO, 3531 PINEVIEW_CURSOR_FIFO,
3532 PINEVIEW_CURSOR_MAX_WM, 3532 PINEVIEW_CURSOR_MAX_WM,
3533 PINEVIEW_CURSOR_DFT_WM, 3533 PINEVIEW_CURSOR_DFT_WM,
3534 PINEVIEW_CURSOR_GUARD_WM, 3534 PINEVIEW_CURSOR_GUARD_WM,
3535 PINEVIEW_FIFO_LINE_SIZE 3535 PINEVIEW_FIFO_LINE_SIZE
3536 }; 3536 };
3537 static const struct intel_watermark_params g4x_wm_info = { 3537 static const struct intel_watermark_params g4x_wm_info = {
3538 G4X_FIFO_SIZE, 3538 G4X_FIFO_SIZE,
3539 G4X_MAX_WM, 3539 G4X_MAX_WM,
3540 G4X_MAX_WM, 3540 G4X_MAX_WM,
3541 2, 3541 2,
3542 G4X_FIFO_LINE_SIZE, 3542 G4X_FIFO_LINE_SIZE,
3543 }; 3543 };
3544 static const struct intel_watermark_params g4x_cursor_wm_info = { 3544 static const struct intel_watermark_params g4x_cursor_wm_info = {
3545 I965_CURSOR_FIFO, 3545 I965_CURSOR_FIFO,
3546 I965_CURSOR_MAX_WM, 3546 I965_CURSOR_MAX_WM,
3547 I965_CURSOR_DFT_WM, 3547 I965_CURSOR_DFT_WM,
3548 2, 3548 2,
3549 G4X_FIFO_LINE_SIZE, 3549 G4X_FIFO_LINE_SIZE,
3550 }; 3550 };
3551 static const struct intel_watermark_params i965_cursor_wm_info = { 3551 static const struct intel_watermark_params i965_cursor_wm_info = {
3552 I965_CURSOR_FIFO, 3552 I965_CURSOR_FIFO,
3553 I965_CURSOR_MAX_WM, 3553 I965_CURSOR_MAX_WM,
3554 I965_CURSOR_DFT_WM, 3554 I965_CURSOR_DFT_WM,
3555 2, 3555 2,
3556 I915_FIFO_LINE_SIZE, 3556 I915_FIFO_LINE_SIZE,
3557 }; 3557 };
3558 static const struct intel_watermark_params i945_wm_info = { 3558 static const struct intel_watermark_params i945_wm_info = {
3559 I945_FIFO_SIZE, 3559 I945_FIFO_SIZE,
3560 I915_MAX_WM, 3560 I915_MAX_WM,
3561 1, 3561 1,
3562 2, 3562 2,
3563 I915_FIFO_LINE_SIZE 3563 I915_FIFO_LINE_SIZE
3564 }; 3564 };
3565 static const struct intel_watermark_params i915_wm_info = { 3565 static const struct intel_watermark_params i915_wm_info = {
3566 I915_FIFO_SIZE, 3566 I915_FIFO_SIZE,
3567 I915_MAX_WM, 3567 I915_MAX_WM,
3568 1, 3568 1,
3569 2, 3569 2,
3570 I915_FIFO_LINE_SIZE 3570 I915_FIFO_LINE_SIZE
3571 }; 3571 };
3572 static const struct intel_watermark_params i855_wm_info = { 3572 static const struct intel_watermark_params i855_wm_info = {
3573 I855GM_FIFO_SIZE, 3573 I855GM_FIFO_SIZE,
3574 I915_MAX_WM, 3574 I915_MAX_WM,
3575 1, 3575 1,
3576 2, 3576 2,
3577 I830_FIFO_LINE_SIZE 3577 I830_FIFO_LINE_SIZE
3578 }; 3578 };
3579 static const struct intel_watermark_params i830_wm_info = { 3579 static const struct intel_watermark_params i830_wm_info = {
3580 I830_FIFO_SIZE, 3580 I830_FIFO_SIZE,
3581 I915_MAX_WM, 3581 I915_MAX_WM,
3582 1, 3582 1,
3583 2, 3583 2,
3584 I830_FIFO_LINE_SIZE 3584 I830_FIFO_LINE_SIZE
3585 }; 3585 };
3586 3586
3587 static const struct intel_watermark_params ironlake_display_wm_info = { 3587 static const struct intel_watermark_params ironlake_display_wm_info = {
3588 ILK_DISPLAY_FIFO, 3588 ILK_DISPLAY_FIFO,
3589 ILK_DISPLAY_MAXWM, 3589 ILK_DISPLAY_MAXWM,
3590 ILK_DISPLAY_DFTWM, 3590 ILK_DISPLAY_DFTWM,
3591 2, 3591 2,
3592 ILK_FIFO_LINE_SIZE 3592 ILK_FIFO_LINE_SIZE
3593 }; 3593 };
3594 static const struct intel_watermark_params ironlake_cursor_wm_info = { 3594 static const struct intel_watermark_params ironlake_cursor_wm_info = {
3595 ILK_CURSOR_FIFO, 3595 ILK_CURSOR_FIFO,
3596 ILK_CURSOR_MAXWM, 3596 ILK_CURSOR_MAXWM,
3597 ILK_CURSOR_DFTWM, 3597 ILK_CURSOR_DFTWM,
3598 2, 3598 2,
3599 ILK_FIFO_LINE_SIZE 3599 ILK_FIFO_LINE_SIZE
3600 }; 3600 };
3601 static const struct intel_watermark_params ironlake_display_srwm_info = { 3601 static const struct intel_watermark_params ironlake_display_srwm_info = {
3602 ILK_DISPLAY_SR_FIFO, 3602 ILK_DISPLAY_SR_FIFO,
3603 ILK_DISPLAY_MAX_SRWM, 3603 ILK_DISPLAY_MAX_SRWM,
3604 ILK_DISPLAY_DFT_SRWM, 3604 ILK_DISPLAY_DFT_SRWM,
3605 2, 3605 2,
3606 ILK_FIFO_LINE_SIZE 3606 ILK_FIFO_LINE_SIZE
3607 }; 3607 };
3608 static const struct intel_watermark_params ironlake_cursor_srwm_info = { 3608 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
3609 ILK_CURSOR_SR_FIFO, 3609 ILK_CURSOR_SR_FIFO,
3610 ILK_CURSOR_MAX_SRWM, 3610 ILK_CURSOR_MAX_SRWM,
3611 ILK_CURSOR_DFT_SRWM, 3611 ILK_CURSOR_DFT_SRWM,
3612 2, 3612 2,
3613 ILK_FIFO_LINE_SIZE 3613 ILK_FIFO_LINE_SIZE
3614 }; 3614 };
3615 3615
3616 static const struct intel_watermark_params sandybridge_display_wm_info = { 3616 static const struct intel_watermark_params sandybridge_display_wm_info = {
3617 SNB_DISPLAY_FIFO, 3617 SNB_DISPLAY_FIFO,
3618 SNB_DISPLAY_MAXWM, 3618 SNB_DISPLAY_MAXWM,
3619 SNB_DISPLAY_DFTWM, 3619 SNB_DISPLAY_DFTWM,
3620 2, 3620 2,
3621 SNB_FIFO_LINE_SIZE 3621 SNB_FIFO_LINE_SIZE
3622 }; 3622 };
3623 static const struct intel_watermark_params sandybridge_cursor_wm_info = { 3623 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
3624 SNB_CURSOR_FIFO, 3624 SNB_CURSOR_FIFO,
3625 SNB_CURSOR_MAXWM, 3625 SNB_CURSOR_MAXWM,
3626 SNB_CURSOR_DFTWM, 3626 SNB_CURSOR_DFTWM,
3627 2, 3627 2,
3628 SNB_FIFO_LINE_SIZE 3628 SNB_FIFO_LINE_SIZE
3629 }; 3629 };
3630 static const struct intel_watermark_params sandybridge_display_srwm_info = { 3630 static const struct intel_watermark_params sandybridge_display_srwm_info = {
3631 SNB_DISPLAY_SR_FIFO, 3631 SNB_DISPLAY_SR_FIFO,
3632 SNB_DISPLAY_MAX_SRWM, 3632 SNB_DISPLAY_MAX_SRWM,
3633 SNB_DISPLAY_DFT_SRWM, 3633 SNB_DISPLAY_DFT_SRWM,
3634 2, 3634 2,
3635 SNB_FIFO_LINE_SIZE 3635 SNB_FIFO_LINE_SIZE
3636 }; 3636 };
3637 static const struct intel_watermark_params sandybridge_cursor_srwm_info = { 3637 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
3638 SNB_CURSOR_SR_FIFO, 3638 SNB_CURSOR_SR_FIFO,
3639 SNB_CURSOR_MAX_SRWM, 3639 SNB_CURSOR_MAX_SRWM,
3640 SNB_CURSOR_DFT_SRWM, 3640 SNB_CURSOR_DFT_SRWM,
3641 2, 3641 2,
3642 SNB_FIFO_LINE_SIZE 3642 SNB_FIFO_LINE_SIZE
3643 }; 3643 };
3644 3644
3645 3645
3646 /** 3646 /**
3647 * intel_calculate_wm - calculate watermark level 3647 * intel_calculate_wm - calculate watermark level
3648 * @clock_in_khz: pixel clock 3648 * @clock_in_khz: pixel clock
3649 * @wm: chip FIFO params 3649 * @wm: chip FIFO params
3650 * @pixel_size: display pixel size 3650 * @pixel_size: display pixel size
3651 * @latency_ns: memory latency for the platform 3651 * @latency_ns: memory latency for the platform
3652 * 3652 *
3653 * Calculate the watermark level (the level at which the display plane will 3653 * Calculate the watermark level (the level at which the display plane will
3654 * start fetching from memory again). Each chip has a different display 3654 * start fetching from memory again). Each chip has a different display
3655 * FIFO size and allocation, so the caller needs to figure that out and pass 3655 * FIFO size and allocation, so the caller needs to figure that out and pass
3656 * in the correct intel_watermark_params structure. 3656 * in the correct intel_watermark_params structure.
3657 * 3657 *
3658 * As the pixel clock runs, the FIFO will be drained at a rate that depends 3658 * As the pixel clock runs, the FIFO will be drained at a rate that depends
3659 * on the pixel size. When it reaches the watermark level, it'll start 3659 * on the pixel size. When it reaches the watermark level, it'll start
3660 * fetching FIFO line sized based chunks from memory until the FIFO fills 3660 * fetching FIFO line sized based chunks from memory until the FIFO fills
3661 * past the watermark point. If the FIFO drains completely, a FIFO underrun 3661 * past the watermark point. If the FIFO drains completely, a FIFO underrun
3662 * will occur, and a display engine hang could result. 3662 * will occur, and a display engine hang could result.
3663 */ 3663 */
3664 static unsigned long intel_calculate_wm(unsigned long clock_in_khz, 3664 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
3665 const struct intel_watermark_params *wm, 3665 const struct intel_watermark_params *wm,
3666 int fifo_size, 3666 int fifo_size,
3667 int pixel_size, 3667 int pixel_size,
3668 unsigned long latency_ns) 3668 unsigned long latency_ns)
3669 { 3669 {
3670 long entries_required, wm_size; 3670 long entries_required, wm_size;
3671 3671
3672 /* 3672 /*
3673 * Note: we need to make sure we don't overflow for various clock & 3673 * Note: we need to make sure we don't overflow for various clock &
3674 * latency values. 3674 * latency values.
3675 * clocks go from a few thousand to several hundred thousand. 3675 * clocks go from a few thousand to several hundred thousand.
3676 * latency is usually a few thousand 3676 * latency is usually a few thousand
3677 */ 3677 */
3678 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) / 3678 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3679 1000; 3679 1000;
3680 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size); 3680 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
3681 3681
3682 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required); 3682 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
3683 3683
3684 wm_size = fifo_size - (entries_required + wm->guard_size); 3684 wm_size = fifo_size - (entries_required + wm->guard_size);
3685 3685
3686 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size); 3686 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
3687 3687
3688 /* Don't promote wm_size to unsigned... */ 3688 /* Don't promote wm_size to unsigned... */
3689 if (wm_size > (long)wm->max_wm) 3689 if (wm_size > (long)wm->max_wm)
3690 wm_size = wm->max_wm; 3690 wm_size = wm->max_wm;
3691 if (wm_size <= 0) 3691 if (wm_size <= 0)
3692 wm_size = wm->default_wm; 3692 wm_size = wm->default_wm;
3693 return wm_size; 3693 return wm_size;
3694 } 3694 }
3695 3695
3696 struct cxsr_latency { 3696 struct cxsr_latency {
3697 int is_desktop; 3697 int is_desktop;
3698 int is_ddr3; 3698 int is_ddr3;
3699 unsigned long fsb_freq; 3699 unsigned long fsb_freq;
3700 unsigned long mem_freq; 3700 unsigned long mem_freq;
3701 unsigned long display_sr; 3701 unsigned long display_sr;
3702 unsigned long display_hpll_disable; 3702 unsigned long display_hpll_disable;
3703 unsigned long cursor_sr; 3703 unsigned long cursor_sr;
3704 unsigned long cursor_hpll_disable; 3704 unsigned long cursor_hpll_disable;
3705 }; 3705 };
3706 3706
3707 static const struct cxsr_latency cxsr_latency_table[] = { 3707 static const struct cxsr_latency cxsr_latency_table[] = {
3708 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */ 3708 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
3709 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */ 3709 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
3710 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */ 3710 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
3711 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */ 3711 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
3712 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */ 3712 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
3713 3713
3714 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */ 3714 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
3715 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */ 3715 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
3716 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */ 3716 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
3717 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */ 3717 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
3718 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */ 3718 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
3719 3719
3720 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */ 3720 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
3721 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */ 3721 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
3722 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */ 3722 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
3723 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */ 3723 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
3724 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */ 3724 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
3725 3725
3726 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */ 3726 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
3727 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */ 3727 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
3728 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */ 3728 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
3729 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */ 3729 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
3730 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */ 3730 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
3731 3731
3732 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */ 3732 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
3733 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */ 3733 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
3734 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */ 3734 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
3735 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */ 3735 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
3736 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */ 3736 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
3737 3737
3738 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */ 3738 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
3739 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */ 3739 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
3740 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */ 3740 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
3741 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */ 3741 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
3742 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */ 3742 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
3743 }; 3743 };
3744 3744
3745 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, 3745 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3746 int is_ddr3, 3746 int is_ddr3,
3747 int fsb, 3747 int fsb,
3748 int mem) 3748 int mem)
3749 { 3749 {
3750 const struct cxsr_latency *latency; 3750 const struct cxsr_latency *latency;
3751 int i; 3751 int i;
3752 3752
3753 if (fsb == 0 || mem == 0) 3753 if (fsb == 0 || mem == 0)
3754 return NULL; 3754 return NULL;
3755 3755
3756 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) { 3756 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
3757 latency = &cxsr_latency_table[i]; 3757 latency = &cxsr_latency_table[i];
3758 if (is_desktop == latency->is_desktop && 3758 if (is_desktop == latency->is_desktop &&
3759 is_ddr3 == latency->is_ddr3 && 3759 is_ddr3 == latency->is_ddr3 &&
3760 fsb == latency->fsb_freq && mem == latency->mem_freq) 3760 fsb == latency->fsb_freq && mem == latency->mem_freq)
3761 return latency; 3761 return latency;
3762 } 3762 }
3763 3763
3764 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n"); 3764 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3765 3765
3766 return NULL; 3766 return NULL;
3767 } 3767 }
3768 3768
3769 static void pineview_disable_cxsr(struct drm_device *dev) 3769 static void pineview_disable_cxsr(struct drm_device *dev)
3770 { 3770 {
3771 struct drm_i915_private *dev_priv = dev->dev_private; 3771 struct drm_i915_private *dev_priv = dev->dev_private;
3772 3772
3773 /* deactivate cxsr */ 3773 /* deactivate cxsr */
3774 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN); 3774 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
3775 } 3775 }
3776 3776
3777 /* 3777 /*
3778 * Latency for FIFO fetches is dependent on several factors: 3778 * Latency for FIFO fetches is dependent on several factors:
3779 * - memory configuration (speed, channels) 3779 * - memory configuration (speed, channels)
3780 * - chipset 3780 * - chipset
3781 * - current MCH state 3781 * - current MCH state
3782 * It can be fairly high in some situations, so here we assume a fairly 3782 * It can be fairly high in some situations, so here we assume a fairly
3783 * pessimal value. It's a tradeoff between extra memory fetches (if we 3783 * pessimal value. It's a tradeoff between extra memory fetches (if we
3784 * set this value too high, the FIFO will fetch frequently to stay full) 3784 * set this value too high, the FIFO will fetch frequently to stay full)
3785 * and power consumption (set it too low to save power and we might see 3785 * and power consumption (set it too low to save power and we might see
3786 * FIFO underruns and display "flicker"). 3786 * FIFO underruns and display "flicker").
3787 * 3787 *
3788 * A value of 5us seems to be a good balance; safe for very low end 3788 * A value of 5us seems to be a good balance; safe for very low end
3789 * platforms but not overly aggressive on lower latency configs. 3789 * platforms but not overly aggressive on lower latency configs.
3790 */ 3790 */
3791 static const int latency_ns = 5000; 3791 static const int latency_ns = 5000;
3792 3792
3793 static int i9xx_get_fifo_size(struct drm_device *dev, int plane) 3793 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
3794 { 3794 {
3795 struct drm_i915_private *dev_priv = dev->dev_private; 3795 struct drm_i915_private *dev_priv = dev->dev_private;
3796 uint32_t dsparb = I915_READ(DSPARB); 3796 uint32_t dsparb = I915_READ(DSPARB);
3797 int size; 3797 int size;
3798 3798
3799 size = dsparb & 0x7f; 3799 size = dsparb & 0x7f;
3800 if (plane) 3800 if (plane)
3801 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size; 3801 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3802 3802
3803 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb, 3803 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3804 plane ? "B" : "A", size); 3804 plane ? "B" : "A", size);
3805 3805
3806 return size; 3806 return size;
3807 } 3807 }
3808 3808
3809 static int i85x_get_fifo_size(struct drm_device *dev, int plane) 3809 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3810 { 3810 {
3811 struct drm_i915_private *dev_priv = dev->dev_private; 3811 struct drm_i915_private *dev_priv = dev->dev_private;
3812 uint32_t dsparb = I915_READ(DSPARB); 3812 uint32_t dsparb = I915_READ(DSPARB);
3813 int size; 3813 int size;
3814 3814
3815 size = dsparb & 0x1ff; 3815 size = dsparb & 0x1ff;
3816 if (plane) 3816 if (plane)
3817 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size; 3817 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3818 size >>= 1; /* Convert to cachelines */ 3818 size >>= 1; /* Convert to cachelines */
3819 3819
3820 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb, 3820 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3821 plane ? "B" : "A", size); 3821 plane ? "B" : "A", size);
3822 3822
3823 return size; 3823 return size;
3824 } 3824 }
3825 3825
3826 static int i845_get_fifo_size(struct drm_device *dev, int plane) 3826 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3827 { 3827 {
3828 struct drm_i915_private *dev_priv = dev->dev_private; 3828 struct drm_i915_private *dev_priv = dev->dev_private;
3829 uint32_t dsparb = I915_READ(DSPARB); 3829 uint32_t dsparb = I915_READ(DSPARB);
3830 int size; 3830 int size;
3831 3831
3832 size = dsparb & 0x7f; 3832 size = dsparb & 0x7f;
3833 size >>= 2; /* Convert to cachelines */ 3833 size >>= 2; /* Convert to cachelines */
3834 3834
3835 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb, 3835 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3836 plane ? "B" : "A", 3836 plane ? "B" : "A",
3837 size); 3837 size);
3838 3838
3839 return size; 3839 return size;
3840 } 3840 }
3841 3841
3842 static int i830_get_fifo_size(struct drm_device *dev, int plane) 3842 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3843 { 3843 {
3844 struct drm_i915_private *dev_priv = dev->dev_private; 3844 struct drm_i915_private *dev_priv = dev->dev_private;
3845 uint32_t dsparb = I915_READ(DSPARB); 3845 uint32_t dsparb = I915_READ(DSPARB);
3846 int size; 3846 int size;
3847 3847
3848 size = dsparb & 0x7f; 3848 size = dsparb & 0x7f;
3849 size >>= 1; /* Convert to cachelines */ 3849 size >>= 1; /* Convert to cachelines */
3850 3850
3851 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb, 3851 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3852 plane ? "B" : "A", size); 3852 plane ? "B" : "A", size);
3853 3853
3854 return size; 3854 return size;
3855 } 3855 }
3856 3856
3857 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev) 3857 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
3858 { 3858 {
3859 struct drm_crtc *crtc, *enabled = NULL; 3859 struct drm_crtc *crtc, *enabled = NULL;
3860 3860
3861 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 3861 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3862 if (crtc->enabled && crtc->fb) { 3862 if (crtc->enabled && crtc->fb) {
3863 if (enabled) 3863 if (enabled)
3864 return NULL; 3864 return NULL;
3865 enabled = crtc; 3865 enabled = crtc;
3866 } 3866 }
3867 } 3867 }
3868 3868
3869 return enabled; 3869 return enabled;
3870 } 3870 }
3871 3871
3872 static void pineview_update_wm(struct drm_device *dev) 3872 static void pineview_update_wm(struct drm_device *dev)
3873 { 3873 {
3874 struct drm_i915_private *dev_priv = dev->dev_private; 3874 struct drm_i915_private *dev_priv = dev->dev_private;
3875 struct drm_crtc *crtc; 3875 struct drm_crtc *crtc;
3876 const struct cxsr_latency *latency; 3876 const struct cxsr_latency *latency;
3877 u32 reg; 3877 u32 reg;
3878 unsigned long wm; 3878 unsigned long wm;
3879 3879
3880 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3, 3880 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3881 dev_priv->fsb_freq, dev_priv->mem_freq); 3881 dev_priv->fsb_freq, dev_priv->mem_freq);
3882 if (!latency) { 3882 if (!latency) {
3883 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n"); 3883 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3884 pineview_disable_cxsr(dev); 3884 pineview_disable_cxsr(dev);
3885 return; 3885 return;
3886 } 3886 }
3887 3887
3888 crtc = single_enabled_crtc(dev); 3888 crtc = single_enabled_crtc(dev);
3889 if (crtc) { 3889 if (crtc) {
3890 int clock = crtc->mode.clock; 3890 int clock = crtc->mode.clock;
3891 int pixel_size = crtc->fb->bits_per_pixel / 8; 3891 int pixel_size = crtc->fb->bits_per_pixel / 8;
3892 3892
3893 /* Display SR */ 3893 /* Display SR */
3894 wm = intel_calculate_wm(clock, &pineview_display_wm, 3894 wm = intel_calculate_wm(clock, &pineview_display_wm,
3895 pineview_display_wm.fifo_size, 3895 pineview_display_wm.fifo_size,
3896 pixel_size, latency->display_sr); 3896 pixel_size, latency->display_sr);
3897 reg = I915_READ(DSPFW1); 3897 reg = I915_READ(DSPFW1);
3898 reg &= ~DSPFW_SR_MASK; 3898 reg &= ~DSPFW_SR_MASK;
3899 reg |= wm << DSPFW_SR_SHIFT; 3899 reg |= wm << DSPFW_SR_SHIFT;
3900 I915_WRITE(DSPFW1, reg); 3900 I915_WRITE(DSPFW1, reg);
3901 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg); 3901 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3902 3902
3903 /* cursor SR */ 3903 /* cursor SR */
3904 wm = intel_calculate_wm(clock, &pineview_cursor_wm, 3904 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
3905 pineview_display_wm.fifo_size, 3905 pineview_display_wm.fifo_size,
3906 pixel_size, latency->cursor_sr); 3906 pixel_size, latency->cursor_sr);
3907 reg = I915_READ(DSPFW3); 3907 reg = I915_READ(DSPFW3);
3908 reg &= ~DSPFW_CURSOR_SR_MASK; 3908 reg &= ~DSPFW_CURSOR_SR_MASK;
3909 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT; 3909 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3910 I915_WRITE(DSPFW3, reg); 3910 I915_WRITE(DSPFW3, reg);
3911 3911
3912 /* Display HPLL off SR */ 3912 /* Display HPLL off SR */
3913 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm, 3913 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
3914 pineview_display_hplloff_wm.fifo_size, 3914 pineview_display_hplloff_wm.fifo_size,
3915 pixel_size, latency->display_hpll_disable); 3915 pixel_size, latency->display_hpll_disable);
3916 reg = I915_READ(DSPFW3); 3916 reg = I915_READ(DSPFW3);
3917 reg &= ~DSPFW_HPLL_SR_MASK; 3917 reg &= ~DSPFW_HPLL_SR_MASK;
3918 reg |= wm & DSPFW_HPLL_SR_MASK; 3918 reg |= wm & DSPFW_HPLL_SR_MASK;
3919 I915_WRITE(DSPFW3, reg); 3919 I915_WRITE(DSPFW3, reg);
3920 3920
3921 /* cursor HPLL off SR */ 3921 /* cursor HPLL off SR */
3922 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm, 3922 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
3923 pineview_display_hplloff_wm.fifo_size, 3923 pineview_display_hplloff_wm.fifo_size,
3924 pixel_size, latency->cursor_hpll_disable); 3924 pixel_size, latency->cursor_hpll_disable);
3925 reg = I915_READ(DSPFW3); 3925 reg = I915_READ(DSPFW3);
3926 reg &= ~DSPFW_HPLL_CURSOR_MASK; 3926 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3927 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT; 3927 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3928 I915_WRITE(DSPFW3, reg); 3928 I915_WRITE(DSPFW3, reg);
3929 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg); 3929 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3930 3930
3931 /* activate cxsr */ 3931 /* activate cxsr */
3932 I915_WRITE(DSPFW3, 3932 I915_WRITE(DSPFW3,
3933 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN); 3933 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3934 DRM_DEBUG_KMS("Self-refresh is enabled\n"); 3934 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3935 } else { 3935 } else {
3936 pineview_disable_cxsr(dev); 3936 pineview_disable_cxsr(dev);
3937 DRM_DEBUG_KMS("Self-refresh is disabled\n"); 3937 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3938 } 3938 }
3939 } 3939 }
3940 3940
3941 static bool g4x_compute_wm0(struct drm_device *dev, 3941 static bool g4x_compute_wm0(struct drm_device *dev,
3942 int plane, 3942 int plane,
3943 const struct intel_watermark_params *display, 3943 const struct intel_watermark_params *display,
3944 int display_latency_ns, 3944 int display_latency_ns,
3945 const struct intel_watermark_params *cursor, 3945 const struct intel_watermark_params *cursor,
3946 int cursor_latency_ns, 3946 int cursor_latency_ns,
3947 int *plane_wm, 3947 int *plane_wm,
3948 int *cursor_wm) 3948 int *cursor_wm)
3949 { 3949 {
3950 struct drm_crtc *crtc; 3950 struct drm_crtc *crtc;
3951 int htotal, hdisplay, clock, pixel_size; 3951 int htotal, hdisplay, clock, pixel_size;
3952 int line_time_us, line_count; 3952 int line_time_us, line_count;
3953 int entries, tlb_miss; 3953 int entries, tlb_miss;
3954 3954
3955 crtc = intel_get_crtc_for_plane(dev, plane); 3955 crtc = intel_get_crtc_for_plane(dev, plane);
3956 if (crtc->fb == NULL || !crtc->enabled) { 3956 if (crtc->fb == NULL || !crtc->enabled) {
3957 *cursor_wm = cursor->guard_size; 3957 *cursor_wm = cursor->guard_size;
3958 *plane_wm = display->guard_size; 3958 *plane_wm = display->guard_size;
3959 return false; 3959 return false;
3960 } 3960 }
3961 3961
3962 htotal = crtc->mode.htotal; 3962 htotal = crtc->mode.htotal;
3963 hdisplay = crtc->mode.hdisplay; 3963 hdisplay = crtc->mode.hdisplay;
3964 clock = crtc->mode.clock; 3964 clock = crtc->mode.clock;
3965 pixel_size = crtc->fb->bits_per_pixel / 8; 3965 pixel_size = crtc->fb->bits_per_pixel / 8;
3966 3966
3967 /* Use the small buffer method to calculate plane watermark */ 3967 /* Use the small buffer method to calculate plane watermark */
3968 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000; 3968 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
3969 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8; 3969 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
3970 if (tlb_miss > 0) 3970 if (tlb_miss > 0)
3971 entries += tlb_miss; 3971 entries += tlb_miss;
3972 entries = DIV_ROUND_UP(entries, display->cacheline_size); 3972 entries = DIV_ROUND_UP(entries, display->cacheline_size);
3973 *plane_wm = entries + display->guard_size; 3973 *plane_wm = entries + display->guard_size;
3974 if (*plane_wm > (int)display->max_wm) 3974 if (*plane_wm > (int)display->max_wm)
3975 *plane_wm = display->max_wm; 3975 *plane_wm = display->max_wm;
3976 3976
3977 /* Use the large buffer method to calculate cursor watermark */ 3977 /* Use the large buffer method to calculate cursor watermark */
3978 line_time_us = ((htotal * 1000) / clock); 3978 line_time_us = ((htotal * 1000) / clock);
3979 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000; 3979 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
3980 entries = line_count * 64 * pixel_size; 3980 entries = line_count * 64 * pixel_size;
3981 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8; 3981 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
3982 if (tlb_miss > 0) 3982 if (tlb_miss > 0)
3983 entries += tlb_miss; 3983 entries += tlb_miss;
3984 entries = DIV_ROUND_UP(entries, cursor->cacheline_size); 3984 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3985 *cursor_wm = entries + cursor->guard_size; 3985 *cursor_wm = entries + cursor->guard_size;
3986 if (*cursor_wm > (int)cursor->max_wm) 3986 if (*cursor_wm > (int)cursor->max_wm)
3987 *cursor_wm = (int)cursor->max_wm; 3987 *cursor_wm = (int)cursor->max_wm;
3988 3988
3989 return true; 3989 return true;
3990 } 3990 }
3991 3991
3992 /* 3992 /*
3993 * Check the wm result. 3993 * Check the wm result.
3994 * 3994 *
3995 * If any calculated watermark values is larger than the maximum value that 3995 * If any calculated watermark values is larger than the maximum value that
3996 * can be programmed into the associated watermark register, that watermark 3996 * can be programmed into the associated watermark register, that watermark
3997 * must be disabled. 3997 * must be disabled.
3998 */ 3998 */
3999 static bool g4x_check_srwm(struct drm_device *dev, 3999 static bool g4x_check_srwm(struct drm_device *dev,
4000 int display_wm, int cursor_wm, 4000 int display_wm, int cursor_wm,
4001 const struct intel_watermark_params *display, 4001 const struct intel_watermark_params *display,
4002 const struct intel_watermark_params *cursor) 4002 const struct intel_watermark_params *cursor)
4003 { 4003 {
4004 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n", 4004 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
4005 display_wm, cursor_wm); 4005 display_wm, cursor_wm);
4006 4006
4007 if (display_wm > display->max_wm) { 4007 if (display_wm > display->max_wm) {
4008 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n", 4008 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
4009 display_wm, display->max_wm); 4009 display_wm, display->max_wm);
4010 return false; 4010 return false;
4011 } 4011 }
4012 4012
4013 if (cursor_wm > cursor->max_wm) { 4013 if (cursor_wm > cursor->max_wm) {
4014 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n", 4014 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
4015 cursor_wm, cursor->max_wm); 4015 cursor_wm, cursor->max_wm);
4016 return false; 4016 return false;
4017 } 4017 }
4018 4018
4019 if (!(display_wm || cursor_wm)) { 4019 if (!(display_wm || cursor_wm)) {
4020 DRM_DEBUG_KMS("SR latency is 0, disabling\n"); 4020 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
4021 return false; 4021 return false;
4022 } 4022 }
4023 4023
4024 return true; 4024 return true;
4025 } 4025 }
4026 4026
4027 static bool g4x_compute_srwm(struct drm_device *dev, 4027 static bool g4x_compute_srwm(struct drm_device *dev,
4028 int plane, 4028 int plane,
4029 int latency_ns, 4029 int latency_ns,
4030 const struct intel_watermark_params *display, 4030 const struct intel_watermark_params *display,
4031 const struct intel_watermark_params *cursor, 4031 const struct intel_watermark_params *cursor,
4032 int *display_wm, int *cursor_wm) 4032 int *display_wm, int *cursor_wm)
4033 { 4033 {
4034 struct drm_crtc *crtc; 4034 struct drm_crtc *crtc;
4035 int hdisplay, htotal, pixel_size, clock; 4035 int hdisplay, htotal, pixel_size, clock;
4036 unsigned long line_time_us; 4036 unsigned long line_time_us;
4037 int line_count, line_size; 4037 int line_count, line_size;
4038 int small, large; 4038 int small, large;
4039 int entries; 4039 int entries;
4040 4040
4041 if (!latency_ns) { 4041 if (!latency_ns) {
4042 *display_wm = *cursor_wm = 0; 4042 *display_wm = *cursor_wm = 0;
4043 return false; 4043 return false;
4044 } 4044 }
4045 4045
4046 crtc = intel_get_crtc_for_plane(dev, plane); 4046 crtc = intel_get_crtc_for_plane(dev, plane);
4047 hdisplay = crtc->mode.hdisplay; 4047 hdisplay = crtc->mode.hdisplay;
4048 htotal = crtc->mode.htotal; 4048 htotal = crtc->mode.htotal;
4049 clock = crtc->mode.clock; 4049 clock = crtc->mode.clock;
4050 pixel_size = crtc->fb->bits_per_pixel / 8; 4050 pixel_size = crtc->fb->bits_per_pixel / 8;
4051 4051
4052 line_time_us = (htotal * 1000) / clock; 4052 line_time_us = (htotal * 1000) / clock;
4053 line_count = (latency_ns / line_time_us + 1000) / 1000; 4053 line_count = (latency_ns / line_time_us + 1000) / 1000;
4054 line_size = hdisplay * pixel_size; 4054 line_size = hdisplay * pixel_size;
4055 4055
4056 /* Use the minimum of the small and large buffer method for primary */ 4056 /* Use the minimum of the small and large buffer method for primary */
4057 small = ((clock * pixel_size / 1000) * latency_ns) / 1000; 4057 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4058 large = line_count * line_size; 4058 large = line_count * line_size;
4059 4059
4060 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size); 4060 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4061 *display_wm = entries + display->guard_size; 4061 *display_wm = entries + display->guard_size;
4062 4062
4063 /* calculate the self-refresh watermark for display cursor */ 4063 /* calculate the self-refresh watermark for display cursor */
4064 entries = line_count * pixel_size * 64; 4064 entries = line_count * pixel_size * 64;
4065 entries = DIV_ROUND_UP(entries, cursor->cacheline_size); 4065 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4066 *cursor_wm = entries + cursor->guard_size; 4066 *cursor_wm = entries + cursor->guard_size;
4067 4067
4068 return g4x_check_srwm(dev, 4068 return g4x_check_srwm(dev,
4069 *display_wm, *cursor_wm, 4069 *display_wm, *cursor_wm,
4070 display, cursor); 4070 display, cursor);
4071 } 4071 }
4072 4072
4073 #define single_plane_enabled(mask) is_power_of_2(mask) 4073 #define single_plane_enabled(mask) is_power_of_2(mask)
4074 4074
4075 static void g4x_update_wm(struct drm_device *dev) 4075 static void g4x_update_wm(struct drm_device *dev)
4076 { 4076 {
4077 static const int sr_latency_ns = 12000; 4077 static const int sr_latency_ns = 12000;
4078 struct drm_i915_private *dev_priv = dev->dev_private; 4078 struct drm_i915_private *dev_priv = dev->dev_private;
4079 int planea_wm, planeb_wm, cursora_wm, cursorb_wm; 4079 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
4080 int plane_sr, cursor_sr; 4080 int plane_sr, cursor_sr;
4081 unsigned int enabled = 0; 4081 unsigned int enabled = 0;
4082 4082
4083 if (g4x_compute_wm0(dev, 0, 4083 if (g4x_compute_wm0(dev, 0,
4084 &g4x_wm_info, latency_ns, 4084 &g4x_wm_info, latency_ns,
4085 &g4x_cursor_wm_info, latency_ns, 4085 &g4x_cursor_wm_info, latency_ns,
4086 &planea_wm, &cursora_wm)) 4086 &planea_wm, &cursora_wm))
4087 enabled |= 1; 4087 enabled |= 1;
4088 4088
4089 if (g4x_compute_wm0(dev, 1, 4089 if (g4x_compute_wm0(dev, 1,
4090 &g4x_wm_info, latency_ns, 4090 &g4x_wm_info, latency_ns,
4091 &g4x_cursor_wm_info, latency_ns, 4091 &g4x_cursor_wm_info, latency_ns,
4092 &planeb_wm, &cursorb_wm)) 4092 &planeb_wm, &cursorb_wm))
4093 enabled |= 2; 4093 enabled |= 2;
4094 4094
4095 plane_sr = cursor_sr = 0; 4095 plane_sr = cursor_sr = 0;
4096 if (single_plane_enabled(enabled) && 4096 if (single_plane_enabled(enabled) &&
4097 g4x_compute_srwm(dev, ffs(enabled) - 1, 4097 g4x_compute_srwm(dev, ffs(enabled) - 1,
4098 sr_latency_ns, 4098 sr_latency_ns,
4099 &g4x_wm_info, 4099 &g4x_wm_info,
4100 &g4x_cursor_wm_info, 4100 &g4x_cursor_wm_info,
4101 &plane_sr, &cursor_sr)) 4101 &plane_sr, &cursor_sr))
4102 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN); 4102 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4103 else 4103 else
4104 I915_WRITE(FW_BLC_SELF, 4104 I915_WRITE(FW_BLC_SELF,
4105 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN); 4105 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
4106 4106
4107 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n", 4107 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
4108 planea_wm, cursora_wm, 4108 planea_wm, cursora_wm,
4109 planeb_wm, cursorb_wm, 4109 planeb_wm, cursorb_wm,
4110 plane_sr, cursor_sr); 4110 plane_sr, cursor_sr);
4111 4111
4112 I915_WRITE(DSPFW1, 4112 I915_WRITE(DSPFW1,
4113 (plane_sr << DSPFW_SR_SHIFT) | 4113 (plane_sr << DSPFW_SR_SHIFT) |
4114 (cursorb_wm << DSPFW_CURSORB_SHIFT) | 4114 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
4115 (planeb_wm << DSPFW_PLANEB_SHIFT) | 4115 (planeb_wm << DSPFW_PLANEB_SHIFT) |
4116 planea_wm); 4116 planea_wm);
4117 I915_WRITE(DSPFW2, 4117 I915_WRITE(DSPFW2,
4118 (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) | 4118 (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
4119 (cursora_wm << DSPFW_CURSORA_SHIFT)); 4119 (cursora_wm << DSPFW_CURSORA_SHIFT));
4120 /* HPLL off in SR has some issues on G4x... disable it */ 4120 /* HPLL off in SR has some issues on G4x... disable it */
4121 I915_WRITE(DSPFW3, 4121 I915_WRITE(DSPFW3,
4122 (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) | 4122 (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
4123 (cursor_sr << DSPFW_CURSOR_SR_SHIFT)); 4123 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4124 } 4124 }
4125 4125
4126 static void i965_update_wm(struct drm_device *dev) 4126 static void i965_update_wm(struct drm_device *dev)
4127 { 4127 {
4128 struct drm_i915_private *dev_priv = dev->dev_private; 4128 struct drm_i915_private *dev_priv = dev->dev_private;
4129 struct drm_crtc *crtc; 4129 struct drm_crtc *crtc;
4130 int srwm = 1; 4130 int srwm = 1;
4131 int cursor_sr = 16; 4131 int cursor_sr = 16;
4132 4132
4133 /* Calc sr entries for one plane configs */ 4133 /* Calc sr entries for one plane configs */
4134 crtc = single_enabled_crtc(dev); 4134 crtc = single_enabled_crtc(dev);
4135 if (crtc) { 4135 if (crtc) {
4136 /* self-refresh has much higher latency */ 4136 /* self-refresh has much higher latency */
4137 static const int sr_latency_ns = 12000; 4137 static const int sr_latency_ns = 12000;
4138 int clock = crtc->mode.clock; 4138 int clock = crtc->mode.clock;
4139 int htotal = crtc->mode.htotal; 4139 int htotal = crtc->mode.htotal;
4140 int hdisplay = crtc->mode.hdisplay; 4140 int hdisplay = crtc->mode.hdisplay;
4141 int pixel_size = crtc->fb->bits_per_pixel / 8; 4141 int pixel_size = crtc->fb->bits_per_pixel / 8;
4142 unsigned long line_time_us; 4142 unsigned long line_time_us;
4143 int entries; 4143 int entries;
4144 4144
4145 line_time_us = ((htotal * 1000) / clock); 4145 line_time_us = ((htotal * 1000) / clock);
4146 4146
4147 /* Use ns/us then divide to preserve precision */ 4147 /* Use ns/us then divide to preserve precision */
4148 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) * 4148 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4149 pixel_size * hdisplay; 4149 pixel_size * hdisplay;
4150 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE); 4150 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
4151 srwm = I965_FIFO_SIZE - entries; 4151 srwm = I965_FIFO_SIZE - entries;
4152 if (srwm < 0) 4152 if (srwm < 0)
4153 srwm = 1; 4153 srwm = 1;
4154 srwm &= 0x1ff; 4154 srwm &= 0x1ff;
4155 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n", 4155 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
4156 entries, srwm); 4156 entries, srwm);
4157 4157
4158 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) * 4158 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4159 pixel_size * 64; 4159 pixel_size * 64;
4160 entries = DIV_ROUND_UP(entries, 4160 entries = DIV_ROUND_UP(entries,
4161 i965_cursor_wm_info.cacheline_size); 4161 i965_cursor_wm_info.cacheline_size);
4162 cursor_sr = i965_cursor_wm_info.fifo_size - 4162 cursor_sr = i965_cursor_wm_info.fifo_size -
4163 (entries + i965_cursor_wm_info.guard_size); 4163 (entries + i965_cursor_wm_info.guard_size);
4164 4164
4165 if (cursor_sr > i965_cursor_wm_info.max_wm) 4165 if (cursor_sr > i965_cursor_wm_info.max_wm)
4166 cursor_sr = i965_cursor_wm_info.max_wm; 4166 cursor_sr = i965_cursor_wm_info.max_wm;
4167 4167
4168 DRM_DEBUG_KMS("self-refresh watermark: display plane %d " 4168 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
4169 "cursor %d\n", srwm, cursor_sr); 4169 "cursor %d\n", srwm, cursor_sr);
4170 4170
4171 if (IS_CRESTLINE(dev)) 4171 if (IS_CRESTLINE(dev))
4172 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN); 4172 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4173 } else { 4173 } else {
4174 /* Turn off self refresh if both pipes are enabled */ 4174 /* Turn off self refresh if both pipes are enabled */
4175 if (IS_CRESTLINE(dev)) 4175 if (IS_CRESTLINE(dev))
4176 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF) 4176 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
4177 & ~FW_BLC_SELF_EN); 4177 & ~FW_BLC_SELF_EN);
4178 } 4178 }
4179 4179
4180 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n", 4180 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
4181 srwm); 4181 srwm);
4182 4182
4183 /* 965 has limitations... */ 4183 /* 965 has limitations... */
4184 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | 4184 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
4185 (8 << 16) | (8 << 8) | (8 << 0)); 4185 (8 << 16) | (8 << 8) | (8 << 0));
4186 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0)); 4186 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
4187 /* update cursor SR watermark */ 4187 /* update cursor SR watermark */
4188 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT)); 4188 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4189 } 4189 }
4190 4190
4191 static void i9xx_update_wm(struct drm_device *dev) 4191 static void i9xx_update_wm(struct drm_device *dev)
4192 { 4192 {
4193 struct drm_i915_private *dev_priv = dev->dev_private; 4193 struct drm_i915_private *dev_priv = dev->dev_private;
4194 const struct intel_watermark_params *wm_info; 4194 const struct intel_watermark_params *wm_info;
4195 uint32_t fwater_lo; 4195 uint32_t fwater_lo;
4196 uint32_t fwater_hi; 4196 uint32_t fwater_hi;
4197 int cwm, srwm = 1; 4197 int cwm, srwm = 1;
4198 int fifo_size; 4198 int fifo_size;
4199 int planea_wm, planeb_wm; 4199 int planea_wm, planeb_wm;
4200 struct drm_crtc *crtc, *enabled = NULL; 4200 struct drm_crtc *crtc, *enabled = NULL;
4201 4201
4202 if (IS_I945GM(dev)) 4202 if (IS_I945GM(dev))
4203 wm_info = &i945_wm_info; 4203 wm_info = &i945_wm_info;
4204 else if (!IS_GEN2(dev)) 4204 else if (!IS_GEN2(dev))
4205 wm_info = &i915_wm_info; 4205 wm_info = &i915_wm_info;
4206 else 4206 else
4207 wm_info = &i855_wm_info; 4207 wm_info = &i855_wm_info;
4208 4208
4209 fifo_size = dev_priv->display.get_fifo_size(dev, 0); 4209 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
4210 crtc = intel_get_crtc_for_plane(dev, 0); 4210 crtc = intel_get_crtc_for_plane(dev, 0);
4211 if (crtc->enabled && crtc->fb) { 4211 if (crtc->enabled && crtc->fb) {
4212 planea_wm = intel_calculate_wm(crtc->mode.clock, 4212 planea_wm = intel_calculate_wm(crtc->mode.clock,
4213 wm_info, fifo_size, 4213 wm_info, fifo_size,
4214 crtc->fb->bits_per_pixel / 8, 4214 crtc->fb->bits_per_pixel / 8,
4215 latency_ns); 4215 latency_ns);
4216 enabled = crtc; 4216 enabled = crtc;
4217 } else 4217 } else
4218 planea_wm = fifo_size - wm_info->guard_size; 4218 planea_wm = fifo_size - wm_info->guard_size;
4219 4219
4220 fifo_size = dev_priv->display.get_fifo_size(dev, 1); 4220 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
4221 crtc = intel_get_crtc_for_plane(dev, 1); 4221 crtc = intel_get_crtc_for_plane(dev, 1);
4222 if (crtc->enabled && crtc->fb) { 4222 if (crtc->enabled && crtc->fb) {
4223 planeb_wm = intel_calculate_wm(crtc->mode.clock, 4223 planeb_wm = intel_calculate_wm(crtc->mode.clock,
4224 wm_info, fifo_size, 4224 wm_info, fifo_size,
4225 crtc->fb->bits_per_pixel / 8, 4225 crtc->fb->bits_per_pixel / 8,
4226 latency_ns); 4226 latency_ns);
4227 if (enabled == NULL) 4227 if (enabled == NULL)
4228 enabled = crtc; 4228 enabled = crtc;
4229 else 4229 else
4230 enabled = NULL; 4230 enabled = NULL;
4231 } else 4231 } else
4232 planeb_wm = fifo_size - wm_info->guard_size; 4232 planeb_wm = fifo_size - wm_info->guard_size;
4233 4233
4234 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm); 4234 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
4235 4235
4236 /* 4236 /*
4237 * Overlay gets an aggressive default since video jitter is bad. 4237 * Overlay gets an aggressive default since video jitter is bad.
4238 */ 4238 */
4239 cwm = 2; 4239 cwm = 2;
4240 4240
4241 /* Play safe and disable self-refresh before adjusting watermarks. */ 4241 /* Play safe and disable self-refresh before adjusting watermarks. */
4242 if (IS_I945G(dev) || IS_I945GM(dev)) 4242 if (IS_I945G(dev) || IS_I945GM(dev))
4243 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0); 4243 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
4244 else if (IS_I915GM(dev)) 4244 else if (IS_I915GM(dev))
4245 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN); 4245 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
4246 4246
4247 /* Calc sr entries for one plane configs */ 4247 /* Calc sr entries for one plane configs */
4248 if (HAS_FW_BLC(dev) && enabled) { 4248 if (HAS_FW_BLC(dev) && enabled) {
4249 /* self-refresh has much higher latency */ 4249 /* self-refresh has much higher latency */
4250 static const int sr_latency_ns = 6000; 4250 static const int sr_latency_ns = 6000;
4251 int clock = enabled->mode.clock; 4251 int clock = enabled->mode.clock;
4252 int htotal = enabled->mode.htotal; 4252 int htotal = enabled->mode.htotal;
4253 int hdisplay = enabled->mode.hdisplay; 4253 int hdisplay = enabled->mode.hdisplay;
4254 int pixel_size = enabled->fb->bits_per_pixel / 8; 4254 int pixel_size = enabled->fb->bits_per_pixel / 8;
4255 unsigned long line_time_us; 4255 unsigned long line_time_us;
4256 int entries; 4256 int entries;
4257 4257
4258 line_time_us = (htotal * 1000) / clock; 4258 line_time_us = (htotal * 1000) / clock;
4259 4259
4260 /* Use ns/us then divide to preserve precision */ 4260 /* Use ns/us then divide to preserve precision */
4261 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) * 4261 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4262 pixel_size * hdisplay; 4262 pixel_size * hdisplay;
4263 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size); 4263 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
4264 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries); 4264 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
4265 srwm = wm_info->fifo_size - entries; 4265 srwm = wm_info->fifo_size - entries;
4266 if (srwm < 0) 4266 if (srwm < 0)
4267 srwm = 1; 4267 srwm = 1;
4268 4268
4269 if (IS_I945G(dev) || IS_I945GM(dev)) 4269 if (IS_I945G(dev) || IS_I945GM(dev))
4270 I915_WRITE(FW_BLC_SELF, 4270 I915_WRITE(FW_BLC_SELF,
4271 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff)); 4271 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
4272 else if (IS_I915GM(dev)) 4272 else if (IS_I915GM(dev))
4273 I915_WRITE(FW_BLC_SELF, srwm & 0x3f); 4273 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
4274 } 4274 }
4275 4275
4276 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n", 4276 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
4277 planea_wm, planeb_wm, cwm, srwm); 4277 planea_wm, planeb_wm, cwm, srwm);
4278 4278
4279 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f); 4279 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
4280 fwater_hi = (cwm & 0x1f); 4280 fwater_hi = (cwm & 0x1f);
4281 4281
4282 /* Set request length to 8 cachelines per fetch */ 4282 /* Set request length to 8 cachelines per fetch */
4283 fwater_lo = fwater_lo | (1 << 24) | (1 << 8); 4283 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
4284 fwater_hi = fwater_hi | (1 << 8); 4284 fwater_hi = fwater_hi | (1 << 8);
4285 4285
4286 I915_WRITE(FW_BLC, fwater_lo); 4286 I915_WRITE(FW_BLC, fwater_lo);
4287 I915_WRITE(FW_BLC2, fwater_hi); 4287 I915_WRITE(FW_BLC2, fwater_hi);
4288 4288
4289 if (HAS_FW_BLC(dev)) { 4289 if (HAS_FW_BLC(dev)) {
4290 if (enabled) { 4290 if (enabled) {
4291 if (IS_I945G(dev) || IS_I945GM(dev)) 4291 if (IS_I945G(dev) || IS_I945GM(dev))
4292 I915_WRITE(FW_BLC_SELF, 4292 I915_WRITE(FW_BLC_SELF,
4293 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN); 4293 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4294 else if (IS_I915GM(dev)) 4294 else if (IS_I915GM(dev))
4295 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN); 4295 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
4296 DRM_DEBUG_KMS("memory self refresh enabled\n"); 4296 DRM_DEBUG_KMS("memory self refresh enabled\n");
4297 } else 4297 } else
4298 DRM_DEBUG_KMS("memory self refresh disabled\n"); 4298 DRM_DEBUG_KMS("memory self refresh disabled\n");
4299 } 4299 }
4300 } 4300 }
4301 4301
4302 static void i830_update_wm(struct drm_device *dev) 4302 static void i830_update_wm(struct drm_device *dev)
4303 { 4303 {
4304 struct drm_i915_private *dev_priv = dev->dev_private; 4304 struct drm_i915_private *dev_priv = dev->dev_private;
4305 struct drm_crtc *crtc; 4305 struct drm_crtc *crtc;
4306 uint32_t fwater_lo; 4306 uint32_t fwater_lo;
4307 int planea_wm; 4307 int planea_wm;
4308 4308
4309 crtc = single_enabled_crtc(dev); 4309 crtc = single_enabled_crtc(dev);
4310 if (crtc == NULL) 4310 if (crtc == NULL)
4311 return; 4311 return;
4312 4312
4313 planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info, 4313 planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
4314 dev_priv->display.get_fifo_size(dev, 0), 4314 dev_priv->display.get_fifo_size(dev, 0),
4315 crtc->fb->bits_per_pixel / 8, 4315 crtc->fb->bits_per_pixel / 8,
4316 latency_ns); 4316 latency_ns);
4317 fwater_lo = I915_READ(FW_BLC) & ~0xfff; 4317 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
4318 fwater_lo |= (3<<8) | planea_wm; 4318 fwater_lo |= (3<<8) | planea_wm;
4319 4319
4320 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm); 4320 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
4321 4321
4322 I915_WRITE(FW_BLC, fwater_lo); 4322 I915_WRITE(FW_BLC, fwater_lo);
4323 } 4323 }
4324 4324
4325 #define ILK_LP0_PLANE_LATENCY 700 4325 #define ILK_LP0_PLANE_LATENCY 700
4326 #define ILK_LP0_CURSOR_LATENCY 1300 4326 #define ILK_LP0_CURSOR_LATENCY 1300
4327 4327
4328 /* 4328 /*
4329 * Check the wm result. 4329 * Check the wm result.
4330 * 4330 *
4331 * If any calculated watermark values is larger than the maximum value that 4331 * If any calculated watermark values is larger than the maximum value that
4332 * can be programmed into the associated watermark register, that watermark 4332 * can be programmed into the associated watermark register, that watermark
4333 * must be disabled. 4333 * must be disabled.
4334 */ 4334 */
4335 static bool ironlake_check_srwm(struct drm_device *dev, int level, 4335 static bool ironlake_check_srwm(struct drm_device *dev, int level,
4336 int fbc_wm, int display_wm, int cursor_wm, 4336 int fbc_wm, int display_wm, int cursor_wm,
4337 const struct intel_watermark_params *display, 4337 const struct intel_watermark_params *display,
4338 const struct intel_watermark_params *cursor) 4338 const struct intel_watermark_params *cursor)
4339 { 4339 {
4340 struct drm_i915_private *dev_priv = dev->dev_private; 4340 struct drm_i915_private *dev_priv = dev->dev_private;
4341 4341
4342 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d," 4342 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4343 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm); 4343 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
4344 4344
4345 if (fbc_wm > SNB_FBC_MAX_SRWM) { 4345 if (fbc_wm > SNB_FBC_MAX_SRWM) {
4346 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n", 4346 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
4347 fbc_wm, SNB_FBC_MAX_SRWM, level); 4347 fbc_wm, SNB_FBC_MAX_SRWM, level);
4348 4348
4349 /* fbc has it's own way to disable FBC WM */ 4349 /* fbc has it's own way to disable FBC WM */
4350 I915_WRITE(DISP_ARB_CTL, 4350 I915_WRITE(DISP_ARB_CTL,
4351 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS); 4351 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
4352 return false; 4352 return false;
4353 } 4353 }
4354 4354
4355 if (display_wm > display->max_wm) { 4355 if (display_wm > display->max_wm) {
4356 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n", 4356 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
4357 display_wm, SNB_DISPLAY_MAX_SRWM, level); 4357 display_wm, SNB_DISPLAY_MAX_SRWM, level);
4358 return false; 4358 return false;
4359 } 4359 }
4360 4360
4361 if (cursor_wm > cursor->max_wm) { 4361 if (cursor_wm > cursor->max_wm) {
4362 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n", 4362 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
4363 cursor_wm, SNB_CURSOR_MAX_SRWM, level); 4363 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
4364 return false; 4364 return false;
4365 } 4365 }
4366 4366
4367 if (!(fbc_wm || display_wm || cursor_wm)) { 4367 if (!(fbc_wm || display_wm || cursor_wm)) {
4368 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level); 4368 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
4369 return false; 4369 return false;
4370 } 4370 }
4371 4371
4372 return true; 4372 return true;
4373 } 4373 }
4374 4374
4375 /* 4375 /*
4376 * Compute watermark values of WM[1-3], 4376 * Compute watermark values of WM[1-3],
4377 */ 4377 */
4378 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane, 4378 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
4379 int latency_ns, 4379 int latency_ns,
4380 const struct intel_watermark_params *display, 4380 const struct intel_watermark_params *display,
4381 const struct intel_watermark_params *cursor, 4381 const struct intel_watermark_params *cursor,
4382 int *fbc_wm, int *display_wm, int *cursor_wm) 4382 int *fbc_wm, int *display_wm, int *cursor_wm)
4383 { 4383 {
4384 struct drm_crtc *crtc; 4384 struct drm_crtc *crtc;
4385 unsigned long line_time_us; 4385 unsigned long line_time_us;
4386 int hdisplay, htotal, pixel_size, clock; 4386 int hdisplay, htotal, pixel_size, clock;
4387 int line_count, line_size; 4387 int line_count, line_size;
4388 int small, large; 4388 int small, large;
4389 int entries; 4389 int entries;
4390 4390
4391 if (!latency_ns) { 4391 if (!latency_ns) {
4392 *fbc_wm = *display_wm = *cursor_wm = 0; 4392 *fbc_wm = *display_wm = *cursor_wm = 0;
4393 return false; 4393 return false;
4394 } 4394 }
4395 4395
4396 crtc = intel_get_crtc_for_plane(dev, plane); 4396 crtc = intel_get_crtc_for_plane(dev, plane);
4397 hdisplay = crtc->mode.hdisplay; 4397 hdisplay = crtc->mode.hdisplay;
4398 htotal = crtc->mode.htotal; 4398 htotal = crtc->mode.htotal;
4399 clock = crtc->mode.clock; 4399 clock = crtc->mode.clock;
4400 pixel_size = crtc->fb->bits_per_pixel / 8; 4400 pixel_size = crtc->fb->bits_per_pixel / 8;
4401 4401
4402 line_time_us = (htotal * 1000) / clock; 4402 line_time_us = (htotal * 1000) / clock;
4403 line_count = (latency_ns / line_time_us + 1000) / 1000; 4403 line_count = (latency_ns / line_time_us + 1000) / 1000;
4404 line_size = hdisplay * pixel_size; 4404 line_size = hdisplay * pixel_size;
4405 4405
4406 /* Use the minimum of the small and large buffer method for primary */ 4406 /* Use the minimum of the small and large buffer method for primary */
4407 small = ((clock * pixel_size / 1000) * latency_ns) / 1000; 4407 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4408 large = line_count * line_size; 4408 large = line_count * line_size;
4409 4409
4410 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size); 4410 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4411 *display_wm = entries + display->guard_size; 4411 *display_wm = entries + display->guard_size;
4412 4412
4413 /* 4413 /*
4414 * Spec says: 4414 * Spec says:
4415 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2 4415 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4416 */ 4416 */
4417 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2; 4417 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
4418 4418
4419 /* calculate the self-refresh watermark for display cursor */ 4419 /* calculate the self-refresh watermark for display cursor */
4420 entries = line_count * pixel_size * 64; 4420 entries = line_count * pixel_size * 64;
4421 entries = DIV_ROUND_UP(entries, cursor->cacheline_size); 4421 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4422 *cursor_wm = entries + cursor->guard_size; 4422 *cursor_wm = entries + cursor->guard_size;
4423 4423
4424 return ironlake_check_srwm(dev, level, 4424 return ironlake_check_srwm(dev, level,
4425 *fbc_wm, *display_wm, *cursor_wm, 4425 *fbc_wm, *display_wm, *cursor_wm,
4426 display, cursor); 4426 display, cursor);
4427 } 4427 }
4428 4428
4429 static void ironlake_update_wm(struct drm_device *dev) 4429 static void ironlake_update_wm(struct drm_device *dev)
4430 { 4430 {
4431 struct drm_i915_private *dev_priv = dev->dev_private; 4431 struct drm_i915_private *dev_priv = dev->dev_private;
4432 int fbc_wm, plane_wm, cursor_wm; 4432 int fbc_wm, plane_wm, cursor_wm;
4433 unsigned int enabled; 4433 unsigned int enabled;
4434 4434
4435 enabled = 0; 4435 enabled = 0;
4436 if (g4x_compute_wm0(dev, 0, 4436 if (g4x_compute_wm0(dev, 0,
4437 &ironlake_display_wm_info, 4437 &ironlake_display_wm_info,
4438 ILK_LP0_PLANE_LATENCY, 4438 ILK_LP0_PLANE_LATENCY,
4439 &ironlake_cursor_wm_info, 4439 &ironlake_cursor_wm_info,
4440 ILK_LP0_CURSOR_LATENCY, 4440 ILK_LP0_CURSOR_LATENCY,
4441 &plane_wm, &cursor_wm)) { 4441 &plane_wm, &cursor_wm)) {
4442 I915_WRITE(WM0_PIPEA_ILK, 4442 I915_WRITE(WM0_PIPEA_ILK,
4443 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm); 4443 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4444 DRM_DEBUG_KMS("FIFO watermarks For pipe A -" 4444 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4445 " plane %d, " "cursor: %d\n", 4445 " plane %d, " "cursor: %d\n",
4446 plane_wm, cursor_wm); 4446 plane_wm, cursor_wm);
4447 enabled |= 1; 4447 enabled |= 1;
4448 } 4448 }
4449 4449
4450 if (g4x_compute_wm0(dev, 1, 4450 if (g4x_compute_wm0(dev, 1,
4451 &ironlake_display_wm_info, 4451 &ironlake_display_wm_info,
4452 ILK_LP0_PLANE_LATENCY, 4452 ILK_LP0_PLANE_LATENCY,
4453 &ironlake_cursor_wm_info, 4453 &ironlake_cursor_wm_info,
4454 ILK_LP0_CURSOR_LATENCY, 4454 ILK_LP0_CURSOR_LATENCY,
4455 &plane_wm, &cursor_wm)) { 4455 &plane_wm, &cursor_wm)) {
4456 I915_WRITE(WM0_PIPEB_ILK, 4456 I915_WRITE(WM0_PIPEB_ILK,
4457 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm); 4457 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4458 DRM_DEBUG_KMS("FIFO watermarks For pipe B -" 4458 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4459 " plane %d, cursor: %d\n", 4459 " plane %d, cursor: %d\n",
4460 plane_wm, cursor_wm); 4460 plane_wm, cursor_wm);
4461 enabled |= 2; 4461 enabled |= 2;
4462 } 4462 }
4463 4463
4464 /* 4464 /*
4465 * Calculate and update the self-refresh watermark only when one 4465 * Calculate and update the self-refresh watermark only when one
4466 * display plane is used. 4466 * display plane is used.
4467 */ 4467 */
4468 I915_WRITE(WM3_LP_ILK, 0); 4468 I915_WRITE(WM3_LP_ILK, 0);
4469 I915_WRITE(WM2_LP_ILK, 0); 4469 I915_WRITE(WM2_LP_ILK, 0);
4470 I915_WRITE(WM1_LP_ILK, 0); 4470 I915_WRITE(WM1_LP_ILK, 0);
4471 4471
4472 if (!single_plane_enabled(enabled)) 4472 if (!single_plane_enabled(enabled))
4473 return; 4473 return;
4474 enabled = ffs(enabled) - 1; 4474 enabled = ffs(enabled) - 1;
4475 4475
4476 /* WM1 */ 4476 /* WM1 */
4477 if (!ironlake_compute_srwm(dev, 1, enabled, 4477 if (!ironlake_compute_srwm(dev, 1, enabled,
4478 ILK_READ_WM1_LATENCY() * 500, 4478 ILK_READ_WM1_LATENCY() * 500,
4479 &ironlake_display_srwm_info, 4479 &ironlake_display_srwm_info,
4480 &ironlake_cursor_srwm_info, 4480 &ironlake_cursor_srwm_info,
4481 &fbc_wm, &plane_wm, &cursor_wm)) 4481 &fbc_wm, &plane_wm, &cursor_wm))
4482 return; 4482 return;
4483 4483
4484 I915_WRITE(WM1_LP_ILK, 4484 I915_WRITE(WM1_LP_ILK,
4485 WM1_LP_SR_EN | 4485 WM1_LP_SR_EN |
4486 (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) | 4486 (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4487 (fbc_wm << WM1_LP_FBC_SHIFT) | 4487 (fbc_wm << WM1_LP_FBC_SHIFT) |
4488 (plane_wm << WM1_LP_SR_SHIFT) | 4488 (plane_wm << WM1_LP_SR_SHIFT) |
4489 cursor_wm); 4489 cursor_wm);
4490 4490
4491 /* WM2 */ 4491 /* WM2 */
4492 if (!ironlake_compute_srwm(dev, 2, enabled, 4492 if (!ironlake_compute_srwm(dev, 2, enabled,
4493 ILK_READ_WM2_LATENCY() * 500, 4493 ILK_READ_WM2_LATENCY() * 500,
4494 &ironlake_display_srwm_info, 4494 &ironlake_display_srwm_info,
4495 &ironlake_cursor_srwm_info, 4495 &ironlake_cursor_srwm_info,
4496 &fbc_wm, &plane_wm, &cursor_wm)) 4496 &fbc_wm, &plane_wm, &cursor_wm))
4497 return; 4497 return;
4498 4498
4499 I915_WRITE(WM2_LP_ILK, 4499 I915_WRITE(WM2_LP_ILK,
4500 WM2_LP_EN | 4500 WM2_LP_EN |
4501 (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) | 4501 (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4502 (fbc_wm << WM1_LP_FBC_SHIFT) | 4502 (fbc_wm << WM1_LP_FBC_SHIFT) |
4503 (plane_wm << WM1_LP_SR_SHIFT) | 4503 (plane_wm << WM1_LP_SR_SHIFT) |
4504 cursor_wm); 4504 cursor_wm);
4505 4505
4506 /* 4506 /*
4507 * WM3 is unsupported on ILK, probably because we don't have latency 4507 * WM3 is unsupported on ILK, probably because we don't have latency
4508 * data for that power state 4508 * data for that power state
4509 */ 4509 */
4510 } 4510 }
4511 4511
4512 static void sandybridge_update_wm(struct drm_device *dev) 4512 static void sandybridge_update_wm(struct drm_device *dev)
4513 { 4513 {
4514 struct drm_i915_private *dev_priv = dev->dev_private; 4514 struct drm_i915_private *dev_priv = dev->dev_private;
4515 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */ 4515 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
4516 int fbc_wm, plane_wm, cursor_wm; 4516 int fbc_wm, plane_wm, cursor_wm;
4517 unsigned int enabled; 4517 unsigned int enabled;
4518 4518
4519 enabled = 0; 4519 enabled = 0;
4520 if (g4x_compute_wm0(dev, 0, 4520 if (g4x_compute_wm0(dev, 0,
4521 &sandybridge_display_wm_info, latency, 4521 &sandybridge_display_wm_info, latency,
4522 &sandybridge_cursor_wm_info, latency, 4522 &sandybridge_cursor_wm_info, latency,
4523 &plane_wm, &cursor_wm)) { 4523 &plane_wm, &cursor_wm)) {
4524 I915_WRITE(WM0_PIPEA_ILK, 4524 I915_WRITE(WM0_PIPEA_ILK,
4525 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm); 4525 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4526 DRM_DEBUG_KMS("FIFO watermarks For pipe A -" 4526 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4527 " plane %d, " "cursor: %d\n", 4527 " plane %d, " "cursor: %d\n",
4528 plane_wm, cursor_wm); 4528 plane_wm, cursor_wm);
4529 enabled |= 1; 4529 enabled |= 1;
4530 } 4530 }
4531 4531
4532 if (g4x_compute_wm0(dev, 1, 4532 if (g4x_compute_wm0(dev, 1,
4533 &sandybridge_display_wm_info, latency, 4533 &sandybridge_display_wm_info, latency,
4534 &sandybridge_cursor_wm_info, latency, 4534 &sandybridge_cursor_wm_info, latency,
4535 &plane_wm, &cursor_wm)) { 4535 &plane_wm, &cursor_wm)) {
4536 I915_WRITE(WM0_PIPEB_ILK, 4536 I915_WRITE(WM0_PIPEB_ILK,
4537 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm); 4537 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4538 DRM_DEBUG_KMS("FIFO watermarks For pipe B -" 4538 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4539 " plane %d, cursor: %d\n", 4539 " plane %d, cursor: %d\n",
4540 plane_wm, cursor_wm); 4540 plane_wm, cursor_wm);
4541 enabled |= 2; 4541 enabled |= 2;
4542 } 4542 }
4543 4543
4544 /* IVB has 3 pipes */ 4544 /* IVB has 3 pipes */
4545 if (IS_IVYBRIDGE(dev) && 4545 if (IS_IVYBRIDGE(dev) &&
4546 g4x_compute_wm0(dev, 2, 4546 g4x_compute_wm0(dev, 2,
4547 &sandybridge_display_wm_info, latency, 4547 &sandybridge_display_wm_info, latency,
4548 &sandybridge_cursor_wm_info, latency, 4548 &sandybridge_cursor_wm_info, latency,
4549 &plane_wm, &cursor_wm)) { 4549 &plane_wm, &cursor_wm)) {
4550 I915_WRITE(WM0_PIPEC_IVB, 4550 I915_WRITE(WM0_PIPEC_IVB,
4551 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm); 4551 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4552 DRM_DEBUG_KMS("FIFO watermarks For pipe C -" 4552 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
4553 " plane %d, cursor: %d\n", 4553 " plane %d, cursor: %d\n",
4554 plane_wm, cursor_wm); 4554 plane_wm, cursor_wm);
4555 enabled |= 3; 4555 enabled |= 3;
4556 } 4556 }
4557 4557
4558 /* 4558 /*
4559 * Calculate and update the self-refresh watermark only when one 4559 * Calculate and update the self-refresh watermark only when one
4560 * display plane is used. 4560 * display plane is used.
4561 * 4561 *
4562 * SNB support 3 levels of watermark. 4562 * SNB support 3 levels of watermark.
4563 * 4563 *
4564 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order, 4564 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4565 * and disabled in the descending order 4565 * and disabled in the descending order
4566 * 4566 *
4567 */ 4567 */
4568 I915_WRITE(WM3_LP_ILK, 0); 4568 I915_WRITE(WM3_LP_ILK, 0);
4569 I915_WRITE(WM2_LP_ILK, 0); 4569 I915_WRITE(WM2_LP_ILK, 0);
4570 I915_WRITE(WM1_LP_ILK, 0); 4570 I915_WRITE(WM1_LP_ILK, 0);
4571 4571
4572 if (!single_plane_enabled(enabled)) 4572 if (!single_plane_enabled(enabled))
4573 return; 4573 return;
4574 enabled = ffs(enabled) - 1; 4574 enabled = ffs(enabled) - 1;
4575 4575
4576 /* WM1 */ 4576 /* WM1 */
4577 if (!ironlake_compute_srwm(dev, 1, enabled, 4577 if (!ironlake_compute_srwm(dev, 1, enabled,
4578 SNB_READ_WM1_LATENCY() * 500, 4578 SNB_READ_WM1_LATENCY() * 500,
4579 &sandybridge_display_srwm_info, 4579 &sandybridge_display_srwm_info,
4580 &sandybridge_cursor_srwm_info, 4580 &sandybridge_cursor_srwm_info,
4581 &fbc_wm, &plane_wm, &cursor_wm)) 4581 &fbc_wm, &plane_wm, &cursor_wm))
4582 return; 4582 return;
4583 4583
4584 I915_WRITE(WM1_LP_ILK, 4584 I915_WRITE(WM1_LP_ILK,
4585 WM1_LP_SR_EN | 4585 WM1_LP_SR_EN |
4586 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) | 4586 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4587 (fbc_wm << WM1_LP_FBC_SHIFT) | 4587 (fbc_wm << WM1_LP_FBC_SHIFT) |
4588 (plane_wm << WM1_LP_SR_SHIFT) | 4588 (plane_wm << WM1_LP_SR_SHIFT) |
4589 cursor_wm); 4589 cursor_wm);
4590 4590
4591 /* WM2 */ 4591 /* WM2 */
4592 if (!ironlake_compute_srwm(dev, 2, enabled, 4592 if (!ironlake_compute_srwm(dev, 2, enabled,
4593 SNB_READ_WM2_LATENCY() * 500, 4593 SNB_READ_WM2_LATENCY() * 500,
4594 &sandybridge_display_srwm_info, 4594 &sandybridge_display_srwm_info,
4595 &sandybridge_cursor_srwm_info, 4595 &sandybridge_cursor_srwm_info,
4596 &fbc_wm, &plane_wm, &cursor_wm)) 4596 &fbc_wm, &plane_wm, &cursor_wm))
4597 return; 4597 return;
4598 4598
4599 I915_WRITE(WM2_LP_ILK, 4599 I915_WRITE(WM2_LP_ILK,
4600 WM2_LP_EN | 4600 WM2_LP_EN |
4601 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) | 4601 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4602 (fbc_wm << WM1_LP_FBC_SHIFT) | 4602 (fbc_wm << WM1_LP_FBC_SHIFT) |
4603 (plane_wm << WM1_LP_SR_SHIFT) | 4603 (plane_wm << WM1_LP_SR_SHIFT) |
4604 cursor_wm); 4604 cursor_wm);
4605 4605
4606 /* WM3 */ 4606 /* WM3 */
4607 if (!ironlake_compute_srwm(dev, 3, enabled, 4607 if (!ironlake_compute_srwm(dev, 3, enabled,
4608 SNB_READ_WM3_LATENCY() * 500, 4608 SNB_READ_WM3_LATENCY() * 500,
4609 &sandybridge_display_srwm_info, 4609 &sandybridge_display_srwm_info,
4610 &sandybridge_cursor_srwm_info, 4610 &sandybridge_cursor_srwm_info,
4611 &fbc_wm, &plane_wm, &cursor_wm)) 4611 &fbc_wm, &plane_wm, &cursor_wm))
4612 return; 4612 return;
4613 4613
4614 I915_WRITE(WM3_LP_ILK, 4614 I915_WRITE(WM3_LP_ILK,
4615 WM3_LP_EN | 4615 WM3_LP_EN |
4616 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) | 4616 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4617 (fbc_wm << WM1_LP_FBC_SHIFT) | 4617 (fbc_wm << WM1_LP_FBC_SHIFT) |
4618 (plane_wm << WM1_LP_SR_SHIFT) | 4618 (plane_wm << WM1_LP_SR_SHIFT) |
4619 cursor_wm); 4619 cursor_wm);
4620 } 4620 }
4621 4621
4622 /** 4622 /**
4623 * intel_update_watermarks - update FIFO watermark values based on current modes 4623 * intel_update_watermarks - update FIFO watermark values based on current modes
4624 * 4624 *
4625 * Calculate watermark values for the various WM regs based on current mode 4625 * Calculate watermark values for the various WM regs based on current mode
4626 * and plane configuration. 4626 * and plane configuration.
4627 * 4627 *
4628 * There are several cases to deal with here: 4628 * There are several cases to deal with here:
4629 * - normal (i.e. non-self-refresh) 4629 * - normal (i.e. non-self-refresh)
4630 * - self-refresh (SR) mode 4630 * - self-refresh (SR) mode
4631 * - lines are large relative to FIFO size (buffer can hold up to 2) 4631 * - lines are large relative to FIFO size (buffer can hold up to 2)
4632 * - lines are small relative to FIFO size (buffer can hold more than 2 4632 * - lines are small relative to FIFO size (buffer can hold more than 2
4633 * lines), so need to account for TLB latency 4633 * lines), so need to account for TLB latency
4634 * 4634 *
4635 * The normal calculation is: 4635 * The normal calculation is:
4636 * watermark = dotclock * bytes per pixel * latency 4636 * watermark = dotclock * bytes per pixel * latency
4637 * where latency is platform & configuration dependent (we assume pessimal 4637 * where latency is platform & configuration dependent (we assume pessimal
4638 * values here). 4638 * values here).
4639 * 4639 *
4640 * The SR calculation is: 4640 * The SR calculation is:
4641 * watermark = (trunc(latency/line time)+1) * surface width * 4641 * watermark = (trunc(latency/line time)+1) * surface width *
4642 * bytes per pixel 4642 * bytes per pixel
4643 * where 4643 * where
4644 * line time = htotal / dotclock 4644 * line time = htotal / dotclock
4645 * surface width = hdisplay for normal plane and 64 for cursor 4645 * surface width = hdisplay for normal plane and 64 for cursor
4646 * and latency is assumed to be high, as above. 4646 * and latency is assumed to be high, as above.
4647 * 4647 *
4648 * The final value programmed to the register should always be rounded up, 4648 * The final value programmed to the register should always be rounded up,
4649 * and include an extra 2 entries to account for clock crossings. 4649 * and include an extra 2 entries to account for clock crossings.
4650 * 4650 *
4651 * We don't use the sprite, so we can ignore that. And on Crestline we have 4651 * We don't use the sprite, so we can ignore that. And on Crestline we have
4652 * to set the non-SR watermarks to 8. 4652 * to set the non-SR watermarks to 8.
4653 */ 4653 */
4654 static void intel_update_watermarks(struct drm_device *dev) 4654 static void intel_update_watermarks(struct drm_device *dev)
4655 { 4655 {
4656 struct drm_i915_private *dev_priv = dev->dev_private; 4656 struct drm_i915_private *dev_priv = dev->dev_private;
4657 4657
4658 if (dev_priv->display.update_wm) 4658 if (dev_priv->display.update_wm)
4659 dev_priv->display.update_wm(dev); 4659 dev_priv->display.update_wm(dev);
4660 } 4660 }
4661 4661
4662 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv) 4662 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4663 { 4663 {
4664 if (i915_panel_use_ssc >= 0) 4664 if (i915_panel_use_ssc >= 0)
4665 return i915_panel_use_ssc != 0; 4665 return i915_panel_use_ssc != 0;
4666 return dev_priv->lvds_use_ssc 4666 return dev_priv->lvds_use_ssc
4667 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE); 4667 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4668 } 4668 }
4669 4669
4670 /** 4670 /**
4671 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send 4671 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4672 * @crtc: CRTC structure 4672 * @crtc: CRTC structure
4673 * 4673 *
4674 * A pipe may be connected to one or more outputs. Based on the depth of the 4674 * A pipe may be connected to one or more outputs. Based on the depth of the
4675 * attached framebuffer, choose a good color depth to use on the pipe. 4675 * attached framebuffer, choose a good color depth to use on the pipe.
4676 * 4676 *
4677 * If possible, match the pipe depth to the fb depth. In some cases, this 4677 * If possible, match the pipe depth to the fb depth. In some cases, this
4678 * isn't ideal, because the connected output supports a lesser or restricted 4678 * isn't ideal, because the connected output supports a lesser or restricted
4679 * set of depths. Resolve that here: 4679 * set of depths. Resolve that here:
4680 * LVDS typically supports only 6bpc, so clamp down in that case 4680 * LVDS typically supports only 6bpc, so clamp down in that case
4681 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc 4681 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4682 * Displays may support a restricted set as well, check EDID and clamp as 4682 * Displays may support a restricted set as well, check EDID and clamp as
4683 * appropriate. 4683 * appropriate.
4684 * 4684 *
4685 * RETURNS: 4685 * RETURNS:
4686 * Dithering requirement (i.e. false if display bpc and pipe bpc match, 4686 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4687 * true if they don't match). 4687 * true if they don't match).
4688 */ 4688 */
4689 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc, 4689 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4690 unsigned int *pipe_bpp) 4690 unsigned int *pipe_bpp)
4691 { 4691 {
4692 struct drm_device *dev = crtc->dev; 4692 struct drm_device *dev = crtc->dev;
4693 struct drm_i915_private *dev_priv = dev->dev_private; 4693 struct drm_i915_private *dev_priv = dev->dev_private;
4694 struct drm_encoder *encoder; 4694 struct drm_encoder *encoder;
4695 struct drm_connector *connector; 4695 struct drm_connector *connector;
4696 unsigned int display_bpc = UINT_MAX, bpc; 4696 unsigned int display_bpc = UINT_MAX, bpc;
4697 4697
4698 /* Walk the encoders & connectors on this crtc, get min bpc */ 4698 /* Walk the encoders & connectors on this crtc, get min bpc */
4699 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { 4699 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4700 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 4700 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4701 4701
4702 if (encoder->crtc != crtc) 4702 if (encoder->crtc != crtc)
4703 continue; 4703 continue;
4704 4704
4705 if (intel_encoder->type == INTEL_OUTPUT_LVDS) { 4705 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4706 unsigned int lvds_bpc; 4706 unsigned int lvds_bpc;
4707 4707
4708 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) == 4708 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4709 LVDS_A3_POWER_UP) 4709 LVDS_A3_POWER_UP)
4710 lvds_bpc = 8; 4710 lvds_bpc = 8;
4711 else 4711 else
4712 lvds_bpc = 6; 4712 lvds_bpc = 6;
4713 4713
4714 if (lvds_bpc < display_bpc) { 4714 if (lvds_bpc < display_bpc) {
4715 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc); 4715 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4716 display_bpc = lvds_bpc; 4716 display_bpc = lvds_bpc;
4717 } 4717 }
4718 continue; 4718 continue;
4719 } 4719 }
4720 4720
4721 if (intel_encoder->type == INTEL_OUTPUT_EDP) { 4721 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
4722 /* Use VBT settings if we have an eDP panel */ 4722 /* Use VBT settings if we have an eDP panel */
4723 unsigned int edp_bpc = dev_priv->edp.bpp / 3; 4723 unsigned int edp_bpc = dev_priv->edp.bpp / 3;
4724 4724
4725 if (edp_bpc < display_bpc) { 4725 if (edp_bpc < display_bpc) {
4726 DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc); 4726 DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
4727 display_bpc = edp_bpc; 4727 display_bpc = edp_bpc;
4728 } 4728 }
4729 continue; 4729 continue;
4730 } 4730 }
4731 4731
4732 /* Not one of the known troublemakers, check the EDID */ 4732 /* Not one of the known troublemakers, check the EDID */
4733 list_for_each_entry(connector, &dev->mode_config.connector_list, 4733 list_for_each_entry(connector, &dev->mode_config.connector_list,
4734 head) { 4734 head) {
4735 if (connector->encoder != encoder) 4735 if (connector->encoder != encoder)
4736 continue; 4736 continue;
4737 4737
4738 /* Don't use an invalid EDID bpc value */ 4738 /* Don't use an invalid EDID bpc value */
4739 if (connector->display_info.bpc && 4739 if (connector->display_info.bpc &&
4740 connector->display_info.bpc < display_bpc) { 4740 connector->display_info.bpc < display_bpc) {
4741 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc); 4741 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4742 display_bpc = connector->display_info.bpc; 4742 display_bpc = connector->display_info.bpc;
4743 } 4743 }
4744 } 4744 }
4745 4745
4746 /* 4746 /*
4747 * HDMI is either 12 or 8, so if the display lets 10bpc sneak 4747 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4748 * through, clamp it down. (Note: >12bpc will be caught below.) 4748 * through, clamp it down. (Note: >12bpc will be caught below.)
4749 */ 4749 */
4750 if (intel_encoder->type == INTEL_OUTPUT_HDMI) { 4750 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4751 if (display_bpc > 8 && display_bpc < 12) { 4751 if (display_bpc > 8 && display_bpc < 12) {
4752 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n"); 4752 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4753 display_bpc = 12; 4753 display_bpc = 12;
4754 } else { 4754 } else {
4755 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n"); 4755 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4756 display_bpc = 8; 4756 display_bpc = 8;
4757 } 4757 }
4758 } 4758 }
4759 } 4759 }
4760 4760
4761 /* 4761 /*
4762 * We could just drive the pipe at the highest bpc all the time and 4762 * We could just drive the pipe at the highest bpc all the time and
4763 * enable dithering as needed, but that costs bandwidth. So choose 4763 * enable dithering as needed, but that costs bandwidth. So choose
4764 * the minimum value that expresses the full color range of the fb but 4764 * the minimum value that expresses the full color range of the fb but
4765 * also stays within the max display bpc discovered above. 4765 * also stays within the max display bpc discovered above.
4766 */ 4766 */
4767 4767
4768 switch (crtc->fb->depth) { 4768 switch (crtc->fb->depth) {
4769 case 8: 4769 case 8:
4770 bpc = 8; /* since we go through a colormap */ 4770 bpc = 8; /* since we go through a colormap */
4771 break; 4771 break;
4772 case 15: 4772 case 15:
4773 case 16: 4773 case 16:
4774 bpc = 6; /* min is 18bpp */ 4774 bpc = 6; /* min is 18bpp */
4775 break; 4775 break;
4776 case 24: 4776 case 24:
4777 bpc = 8; 4777 bpc = 8;
4778 break; 4778 break;
4779 case 30: 4779 case 30:
4780 bpc = 10; 4780 bpc = 10;
4781 break; 4781 break;
4782 case 48: 4782 case 48:
4783 bpc = 12; 4783 bpc = 12;
4784 break; 4784 break;
4785 default: 4785 default:
4786 DRM_DEBUG("unsupported depth, assuming 24 bits\n"); 4786 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4787 bpc = min((unsigned int)8, display_bpc); 4787 bpc = min((unsigned int)8, display_bpc);
4788 break; 4788 break;
4789 } 4789 }
4790 4790
4791 display_bpc = min(display_bpc, bpc); 4791 display_bpc = min(display_bpc, bpc);
4792 4792
4793 DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n", 4793 DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4794 bpc, display_bpc); 4794 bpc, display_bpc);
4795 4795
4796 *pipe_bpp = display_bpc * 3; 4796 *pipe_bpp = display_bpc * 3;
4797 4797
4798 return display_bpc != bpc; 4798 return display_bpc != bpc;
4799 } 4799 }
4800 4800
4801 static int i9xx_crtc_mode_set(struct drm_crtc *crtc, 4801 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4802 struct drm_display_mode *mode, 4802 struct drm_display_mode *mode,
4803 struct drm_display_mode *adjusted_mode, 4803 struct drm_display_mode *adjusted_mode,
4804 int x, int y, 4804 int x, int y,
4805 struct drm_framebuffer *old_fb) 4805 struct drm_framebuffer *old_fb)
4806 { 4806 {
4807 struct drm_device *dev = crtc->dev; 4807 struct drm_device *dev = crtc->dev;
4808 struct drm_i915_private *dev_priv = dev->dev_private; 4808 struct drm_i915_private *dev_priv = dev->dev_private;
4809 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 4809 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4810 int pipe = intel_crtc->pipe; 4810 int pipe = intel_crtc->pipe;
4811 int plane = intel_crtc->plane; 4811 int plane = intel_crtc->plane;
4812 int refclk, num_connectors = 0; 4812 int refclk, num_connectors = 0;
4813 intel_clock_t clock, reduced_clock; 4813 intel_clock_t clock, reduced_clock;
4814 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf; 4814 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4815 bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false; 4815 bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
4816 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false; 4816 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4817 struct drm_mode_config *mode_config = &dev->mode_config; 4817 struct drm_mode_config *mode_config = &dev->mode_config;
4818 struct intel_encoder *encoder; 4818 struct intel_encoder *encoder;
4819 const intel_limit_t *limit; 4819 const intel_limit_t *limit;
4820 int ret; 4820 int ret;
4821 u32 temp; 4821 u32 temp;
4822 u32 lvds_sync = 0; 4822 u32 lvds_sync = 0;
4823 4823
4824 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) { 4824 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4825 if (encoder->base.crtc != crtc) 4825 if (encoder->base.crtc != crtc)
4826 continue; 4826 continue;
4827 4827
4828 switch (encoder->type) { 4828 switch (encoder->type) {
4829 case INTEL_OUTPUT_LVDS: 4829 case INTEL_OUTPUT_LVDS:
4830 is_lvds = true; 4830 is_lvds = true;
4831 break; 4831 break;
4832 case INTEL_OUTPUT_SDVO: 4832 case INTEL_OUTPUT_SDVO:
4833 case INTEL_OUTPUT_HDMI: 4833 case INTEL_OUTPUT_HDMI:
4834 is_sdvo = true; 4834 is_sdvo = true;
4835 if (encoder->needs_tv_clock) 4835 if (encoder->needs_tv_clock)
4836 is_tv = true; 4836 is_tv = true;
4837 break; 4837 break;
4838 case INTEL_OUTPUT_DVO: 4838 case INTEL_OUTPUT_DVO:
4839 is_dvo = true; 4839 is_dvo = true;
4840 break; 4840 break;
4841 case INTEL_OUTPUT_TVOUT: 4841 case INTEL_OUTPUT_TVOUT:
4842 is_tv = true; 4842 is_tv = true;
4843 break; 4843 break;
4844 case INTEL_OUTPUT_ANALOG: 4844 case INTEL_OUTPUT_ANALOG:
4845 is_crt = true; 4845 is_crt = true;
4846 break; 4846 break;
4847 case INTEL_OUTPUT_DISPLAYPORT: 4847 case INTEL_OUTPUT_DISPLAYPORT:
4848 is_dp = true; 4848 is_dp = true;
4849 break; 4849 break;
4850 } 4850 }
4851 4851
4852 num_connectors++; 4852 num_connectors++;
4853 } 4853 }
4854 4854
4855 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) { 4855 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4856 refclk = dev_priv->lvds_ssc_freq * 1000; 4856 refclk = dev_priv->lvds_ssc_freq * 1000;
4857 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n", 4857 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4858 refclk / 1000); 4858 refclk / 1000);
4859 } else if (!IS_GEN2(dev)) { 4859 } else if (!IS_GEN2(dev)) {
4860 refclk = 96000; 4860 refclk = 96000;
4861 } else { 4861 } else {
4862 refclk = 48000; 4862 refclk = 48000;
4863 } 4863 }
4864 4864
4865 /* 4865 /*
4866 * Returns a set of divisors for the desired target clock with the given 4866 * Returns a set of divisors for the desired target clock with the given
4867 * refclk, or FALSE. The returned values represent the clock equation: 4867 * refclk, or FALSE. The returned values represent the clock equation:
4868 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 4868 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4869 */ 4869 */
4870 limit = intel_limit(crtc, refclk); 4870 limit = intel_limit(crtc, refclk);
4871 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock); 4871 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
4872 if (!ok) { 4872 if (!ok) {
4873 DRM_ERROR("Couldn't find PLL settings for mode!\n"); 4873 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4874 return -EINVAL; 4874 return -EINVAL;
4875 } 4875 }
4876 4876
4877 /* Ensure that the cursor is valid for the new mode before changing... */ 4877 /* Ensure that the cursor is valid for the new mode before changing... */
4878 intel_crtc_update_cursor(crtc, true); 4878 intel_crtc_update_cursor(crtc, true);
4879 4879
4880 if (is_lvds && dev_priv->lvds_downclock_avail) { 4880 if (is_lvds && dev_priv->lvds_downclock_avail) {
4881 has_reduced_clock = limit->find_pll(limit, crtc, 4881 has_reduced_clock = limit->find_pll(limit, crtc,
4882 dev_priv->lvds_downclock, 4882 dev_priv->lvds_downclock,
4883 refclk, 4883 refclk,
4884 &reduced_clock); 4884 &reduced_clock);
4885 if (has_reduced_clock && (clock.p != reduced_clock.p)) { 4885 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
4886 /* 4886 /*
4887 * If the different P is found, it means that we can't 4887 * If the different P is found, it means that we can't
4888 * switch the display clock by using the FP0/FP1. 4888 * switch the display clock by using the FP0/FP1.
4889 * In such case we will disable the LVDS downclock 4889 * In such case we will disable the LVDS downclock
4890 * feature. 4890 * feature.
4891 */ 4891 */
4892 DRM_DEBUG_KMS("Different P is found for " 4892 DRM_DEBUG_KMS("Different P is found for "
4893 "LVDS clock/downclock\n"); 4893 "LVDS clock/downclock\n");
4894 has_reduced_clock = 0; 4894 has_reduced_clock = 0;
4895 } 4895 }
4896 } 4896 }
4897 /* SDVO TV has fixed PLL values depend on its clock range, 4897 /* SDVO TV has fixed PLL values depend on its clock range,
4898 this mirrors vbios setting. */ 4898 this mirrors vbios setting. */
4899 if (is_sdvo && is_tv) { 4899 if (is_sdvo && is_tv) {
4900 if (adjusted_mode->clock >= 100000 4900 if (adjusted_mode->clock >= 100000
4901 && adjusted_mode->clock < 140500) { 4901 && adjusted_mode->clock < 140500) {
4902 clock.p1 = 2; 4902 clock.p1 = 2;
4903 clock.p2 = 10; 4903 clock.p2 = 10;
4904 clock.n = 3; 4904 clock.n = 3;
4905 clock.m1 = 16; 4905 clock.m1 = 16;
4906 clock.m2 = 8; 4906 clock.m2 = 8;
4907 } else if (adjusted_mode->clock >= 140500 4907 } else if (adjusted_mode->clock >= 140500
4908 && adjusted_mode->clock <= 200000) { 4908 && adjusted_mode->clock <= 200000) {
4909 clock.p1 = 1; 4909 clock.p1 = 1;
4910 clock.p2 = 10; 4910 clock.p2 = 10;
4911 clock.n = 6; 4911 clock.n = 6;
4912 clock.m1 = 12; 4912 clock.m1 = 12;
4913 clock.m2 = 8; 4913 clock.m2 = 8;
4914 } 4914 }
4915 } 4915 }
4916 4916
4917 if (IS_PINEVIEW(dev)) { 4917 if (IS_PINEVIEW(dev)) {
4918 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2; 4918 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
4919 if (has_reduced_clock) 4919 if (has_reduced_clock)
4920 fp2 = (1 << reduced_clock.n) << 16 | 4920 fp2 = (1 << reduced_clock.n) << 16 |
4921 reduced_clock.m1 << 8 | reduced_clock.m2; 4921 reduced_clock.m1 << 8 | reduced_clock.m2;
4922 } else { 4922 } else {
4923 fp = clock.n << 16 | clock.m1 << 8 | clock.m2; 4923 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4924 if (has_reduced_clock) 4924 if (has_reduced_clock)
4925 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 | 4925 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4926 reduced_clock.m2; 4926 reduced_clock.m2;
4927 } 4927 }
4928 4928
4929 dpll = DPLL_VGA_MODE_DIS; 4929 dpll = DPLL_VGA_MODE_DIS;
4930 4930
4931 if (!IS_GEN2(dev)) { 4931 if (!IS_GEN2(dev)) {
4932 if (is_lvds) 4932 if (is_lvds)
4933 dpll |= DPLLB_MODE_LVDS; 4933 dpll |= DPLLB_MODE_LVDS;
4934 else 4934 else
4935 dpll |= DPLLB_MODE_DAC_SERIAL; 4935 dpll |= DPLLB_MODE_DAC_SERIAL;
4936 if (is_sdvo) { 4936 if (is_sdvo) {
4937 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode); 4937 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4938 if (pixel_multiplier > 1) { 4938 if (pixel_multiplier > 1) {
4939 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) 4939 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4940 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES; 4940 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4941 } 4941 }
4942 dpll |= DPLL_DVO_HIGH_SPEED; 4942 dpll |= DPLL_DVO_HIGH_SPEED;
4943 } 4943 }
4944 if (is_dp) 4944 if (is_dp)
4945 dpll |= DPLL_DVO_HIGH_SPEED; 4945 dpll |= DPLL_DVO_HIGH_SPEED;
4946 4946
4947 /* compute bitmask from p1 value */ 4947 /* compute bitmask from p1 value */
4948 if (IS_PINEVIEW(dev)) 4948 if (IS_PINEVIEW(dev))
4949 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW; 4949 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4950 else { 4950 else {
4951 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 4951 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4952 if (IS_G4X(dev) && has_reduced_clock) 4952 if (IS_G4X(dev) && has_reduced_clock)
4953 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; 4953 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4954 } 4954 }
4955 switch (clock.p2) { 4955 switch (clock.p2) {
4956 case 5: 4956 case 5:
4957 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; 4957 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4958 break; 4958 break;
4959 case 7: 4959 case 7:
4960 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; 4960 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4961 break; 4961 break;
4962 case 10: 4962 case 10:
4963 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; 4963 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4964 break; 4964 break;
4965 case 14: 4965 case 14:
4966 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; 4966 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4967 break; 4967 break;
4968 } 4968 }
4969 if (INTEL_INFO(dev)->gen >= 4) 4969 if (INTEL_INFO(dev)->gen >= 4)
4970 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT); 4970 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4971 } else { 4971 } else {
4972 if (is_lvds) { 4972 if (is_lvds) {
4973 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 4973 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4974 } else { 4974 } else {
4975 if (clock.p1 == 2) 4975 if (clock.p1 == 2)
4976 dpll |= PLL_P1_DIVIDE_BY_TWO; 4976 dpll |= PLL_P1_DIVIDE_BY_TWO;
4977 else 4977 else
4978 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT; 4978 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4979 if (clock.p2 == 4) 4979 if (clock.p2 == 4)
4980 dpll |= PLL_P2_DIVIDE_BY_4; 4980 dpll |= PLL_P2_DIVIDE_BY_4;
4981 } 4981 }
4982 } 4982 }
4983 4983
4984 if (is_sdvo && is_tv) 4984 if (is_sdvo && is_tv)
4985 dpll |= PLL_REF_INPUT_TVCLKINBC; 4985 dpll |= PLL_REF_INPUT_TVCLKINBC;
4986 else if (is_tv) 4986 else if (is_tv)
4987 /* XXX: just matching BIOS for now */ 4987 /* XXX: just matching BIOS for now */
4988 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */ 4988 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4989 dpll |= 3; 4989 dpll |= 3;
4990 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) 4990 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4991 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 4991 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4992 else 4992 else
4993 dpll |= PLL_REF_INPUT_DREFCLK; 4993 dpll |= PLL_REF_INPUT_DREFCLK;
4994 4994
4995 /* setup pipeconf */ 4995 /* setup pipeconf */
4996 pipeconf = I915_READ(PIPECONF(pipe)); 4996 pipeconf = I915_READ(PIPECONF(pipe));
4997 4997
4998 /* Set up the display plane register */ 4998 /* Set up the display plane register */
4999 dspcntr = DISPPLANE_GAMMA_ENABLE; 4999 dspcntr = DISPPLANE_GAMMA_ENABLE;
5000 5000
5001 /* Ironlake's plane is forced to pipe, bit 24 is to 5001 /* Ironlake's plane is forced to pipe, bit 24 is to
5002 enable color space conversion */ 5002 enable color space conversion */
5003 if (pipe == 0) 5003 if (pipe == 0)
5004 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK; 5004 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5005 else 5005 else
5006 dspcntr |= DISPPLANE_SEL_PIPE_B; 5006 dspcntr |= DISPPLANE_SEL_PIPE_B;
5007 5007
5008 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) { 5008 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
5009 /* Enable pixel doubling when the dot clock is > 90% of the (display) 5009 /* Enable pixel doubling when the dot clock is > 90% of the (display)
5010 * core speed. 5010 * core speed.
5011 * 5011 *
5012 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the 5012 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
5013 * pipe == 0 check? 5013 * pipe == 0 check?
5014 */ 5014 */
5015 if (mode->clock > 5015 if (mode->clock >
5016 dev_priv->display.get_display_clock_speed(dev) * 9 / 10) 5016 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
5017 pipeconf |= PIPECONF_DOUBLE_WIDE; 5017 pipeconf |= PIPECONF_DOUBLE_WIDE;
5018 else 5018 else
5019 pipeconf &= ~PIPECONF_DOUBLE_WIDE; 5019 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
5020 } 5020 }
5021 5021
5022 dpll |= DPLL_VCO_ENABLE; 5022 dpll |= DPLL_VCO_ENABLE;
5023 5023
5024 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B'); 5024 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
5025 drm_mode_debug_printmodeline(mode); 5025 drm_mode_debug_printmodeline(mode);
5026 5026
5027 I915_WRITE(FP0(pipe), fp); 5027 I915_WRITE(FP0(pipe), fp);
5028 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE); 5028 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5029 5029
5030 POSTING_READ(DPLL(pipe)); 5030 POSTING_READ(DPLL(pipe));
5031 udelay(150); 5031 udelay(150);
5032 5032
5033 /* The LVDS pin pair needs to be on before the DPLLs are enabled. 5033 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5034 * This is an exception to the general rule that mode_set doesn't turn 5034 * This is an exception to the general rule that mode_set doesn't turn
5035 * things on. 5035 * things on.
5036 */ 5036 */
5037 if (is_lvds) { 5037 if (is_lvds) {
5038 temp = I915_READ(LVDS); 5038 temp = I915_READ(LVDS);
5039 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP; 5039 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5040 if (pipe == 1) { 5040 if (pipe == 1) {
5041 temp |= LVDS_PIPEB_SELECT; 5041 temp |= LVDS_PIPEB_SELECT;
5042 } else { 5042 } else {
5043 temp &= ~LVDS_PIPEB_SELECT; 5043 temp &= ~LVDS_PIPEB_SELECT;
5044 } 5044 }
5045 /* set the corresponsding LVDS_BORDER bit */ 5045 /* set the corresponsding LVDS_BORDER bit */
5046 temp |= dev_priv->lvds_border_bits; 5046 temp |= dev_priv->lvds_border_bits;
5047 /* Set the B0-B3 data pairs corresponding to whether we're going to 5047 /* Set the B0-B3 data pairs corresponding to whether we're going to
5048 * set the DPLLs for dual-channel mode or not. 5048 * set the DPLLs for dual-channel mode or not.
5049 */ 5049 */
5050 if (clock.p2 == 7) 5050 if (clock.p2 == 7)
5051 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP; 5051 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5052 else 5052 else
5053 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP); 5053 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5054 5054
5055 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP) 5055 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5056 * appropriately here, but we need to look more thoroughly into how 5056 * appropriately here, but we need to look more thoroughly into how
5057 * panels behave in the two modes. 5057 * panels behave in the two modes.
5058 */ 5058 */
5059 /* set the dithering flag on LVDS as needed */ 5059 /* set the dithering flag on LVDS as needed */
5060 if (INTEL_INFO(dev)->gen >= 4) { 5060 if (INTEL_INFO(dev)->gen >= 4) {
5061 if (dev_priv->lvds_dither) 5061 if (dev_priv->lvds_dither)
5062 temp |= LVDS_ENABLE_DITHER; 5062 temp |= LVDS_ENABLE_DITHER;
5063 else 5063 else
5064 temp &= ~LVDS_ENABLE_DITHER; 5064 temp &= ~LVDS_ENABLE_DITHER;
5065 } 5065 }
5066 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC) 5066 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5067 lvds_sync |= LVDS_HSYNC_POLARITY; 5067 lvds_sync |= LVDS_HSYNC_POLARITY;
5068 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC) 5068 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5069 lvds_sync |= LVDS_VSYNC_POLARITY; 5069 lvds_sync |= LVDS_VSYNC_POLARITY;
5070 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY)) 5070 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5071 != lvds_sync) { 5071 != lvds_sync) {
5072 char flags[2] = "-+"; 5072 char flags[2] = "-+";
5073 DRM_INFO("Changing LVDS panel from " 5073 DRM_INFO("Changing LVDS panel from "
5074 "(%chsync, %cvsync) to (%chsync, %cvsync)\n", 5074 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5075 flags[!(temp & LVDS_HSYNC_POLARITY)], 5075 flags[!(temp & LVDS_HSYNC_POLARITY)],
5076 flags[!(temp & LVDS_VSYNC_POLARITY)], 5076 flags[!(temp & LVDS_VSYNC_POLARITY)],
5077 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)], 5077 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5078 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]); 5078 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5079 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY); 5079 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5080 temp |= lvds_sync; 5080 temp |= lvds_sync;
5081 } 5081 }
5082 I915_WRITE(LVDS, temp); 5082 I915_WRITE(LVDS, temp);
5083 } 5083 }
5084 5084
5085 if (is_dp) { 5085 if (is_dp) {
5086 intel_dp_set_m_n(crtc, mode, adjusted_mode); 5086 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5087 } 5087 }
5088 5088
5089 I915_WRITE(DPLL(pipe), dpll); 5089 I915_WRITE(DPLL(pipe), dpll);
5090 5090
5091 /* Wait for the clocks to stabilize. */ 5091 /* Wait for the clocks to stabilize. */
5092 POSTING_READ(DPLL(pipe)); 5092 POSTING_READ(DPLL(pipe));
5093 udelay(150); 5093 udelay(150);
5094 5094
5095 if (INTEL_INFO(dev)->gen >= 4) { 5095 if (INTEL_INFO(dev)->gen >= 4) {
5096 temp = 0; 5096 temp = 0;
5097 if (is_sdvo) { 5097 if (is_sdvo) {
5098 temp = intel_mode_get_pixel_multiplier(adjusted_mode); 5098 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
5099 if (temp > 1) 5099 if (temp > 1)
5100 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; 5100 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5101 else 5101 else
5102 temp = 0; 5102 temp = 0;
5103 } 5103 }
5104 I915_WRITE(DPLL_MD(pipe), temp); 5104 I915_WRITE(DPLL_MD(pipe), temp);
5105 } else { 5105 } else {
5106 /* The pixel multiplier can only be updated once the 5106 /* The pixel multiplier can only be updated once the
5107 * DPLL is enabled and the clocks are stable. 5107 * DPLL is enabled and the clocks are stable.
5108 * 5108 *
5109 * So write it again. 5109 * So write it again.
5110 */ 5110 */
5111 I915_WRITE(DPLL(pipe), dpll); 5111 I915_WRITE(DPLL(pipe), dpll);
5112 } 5112 }
5113 5113
5114 intel_crtc->lowfreq_avail = false; 5114 intel_crtc->lowfreq_avail = false;
5115 if (is_lvds && has_reduced_clock && i915_powersave) { 5115 if (is_lvds && has_reduced_clock && i915_powersave) {
5116 I915_WRITE(FP1(pipe), fp2); 5116 I915_WRITE(FP1(pipe), fp2);
5117 intel_crtc->lowfreq_avail = true; 5117 intel_crtc->lowfreq_avail = true;
5118 if (HAS_PIPE_CXSR(dev)) { 5118 if (HAS_PIPE_CXSR(dev)) {
5119 DRM_DEBUG_KMS("enabling CxSR downclocking\n"); 5119 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5120 pipeconf |= PIPECONF_CXSR_DOWNCLOCK; 5120 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5121 } 5121 }
5122 } else { 5122 } else {
5123 I915_WRITE(FP1(pipe), fp); 5123 I915_WRITE(FP1(pipe), fp);
5124 if (HAS_PIPE_CXSR(dev)) { 5124 if (HAS_PIPE_CXSR(dev)) {
5125 DRM_DEBUG_KMS("disabling CxSR downclocking\n"); 5125 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5126 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK; 5126 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5127 } 5127 }
5128 } 5128 }
5129 5129
5130 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { 5130 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5131 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION; 5131 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5132 /* the chip adds 2 halflines automatically */ 5132 /* the chip adds 2 halflines automatically */
5133 adjusted_mode->crtc_vdisplay -= 1; 5133 adjusted_mode->crtc_vdisplay -= 1;
5134 adjusted_mode->crtc_vtotal -= 1; 5134 adjusted_mode->crtc_vtotal -= 1;
5135 adjusted_mode->crtc_vblank_start -= 1; 5135 adjusted_mode->crtc_vblank_start -= 1;
5136 adjusted_mode->crtc_vblank_end -= 1; 5136 adjusted_mode->crtc_vblank_end -= 1;
5137 adjusted_mode->crtc_vsync_end -= 1; 5137 adjusted_mode->crtc_vsync_end -= 1;
5138 adjusted_mode->crtc_vsync_start -= 1; 5138 adjusted_mode->crtc_vsync_start -= 1;
5139 } else 5139 } else
5140 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */ 5140 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
5141 5141
5142 I915_WRITE(HTOTAL(pipe), 5142 I915_WRITE(HTOTAL(pipe),
5143 (adjusted_mode->crtc_hdisplay - 1) | 5143 (adjusted_mode->crtc_hdisplay - 1) |
5144 ((adjusted_mode->crtc_htotal - 1) << 16)); 5144 ((adjusted_mode->crtc_htotal - 1) << 16));
5145 I915_WRITE(HBLANK(pipe), 5145 I915_WRITE(HBLANK(pipe),
5146 (adjusted_mode->crtc_hblank_start - 1) | 5146 (adjusted_mode->crtc_hblank_start - 1) |
5147 ((adjusted_mode->crtc_hblank_end - 1) << 16)); 5147 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5148 I915_WRITE(HSYNC(pipe), 5148 I915_WRITE(HSYNC(pipe),
5149 (adjusted_mode->crtc_hsync_start - 1) | 5149 (adjusted_mode->crtc_hsync_start - 1) |
5150 ((adjusted_mode->crtc_hsync_end - 1) << 16)); 5150 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5151 5151
5152 I915_WRITE(VTOTAL(pipe), 5152 I915_WRITE(VTOTAL(pipe),
5153 (adjusted_mode->crtc_vdisplay - 1) | 5153 (adjusted_mode->crtc_vdisplay - 1) |
5154 ((adjusted_mode->crtc_vtotal - 1) << 16)); 5154 ((adjusted_mode->crtc_vtotal - 1) << 16));
5155 I915_WRITE(VBLANK(pipe), 5155 I915_WRITE(VBLANK(pipe),
5156 (adjusted_mode->crtc_vblank_start - 1) | 5156 (adjusted_mode->crtc_vblank_start - 1) |
5157 ((adjusted_mode->crtc_vblank_end - 1) << 16)); 5157 ((adjusted_mode->crtc_vblank_end - 1) << 16));
5158 I915_WRITE(VSYNC(pipe), 5158 I915_WRITE(VSYNC(pipe),
5159 (adjusted_mode->crtc_vsync_start - 1) | 5159 (adjusted_mode->crtc_vsync_start - 1) |
5160 ((adjusted_mode->crtc_vsync_end - 1) << 16)); 5160 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5161 5161
5162 /* pipesrc and dspsize control the size that is scaled from, 5162 /* pipesrc and dspsize control the size that is scaled from,
5163 * which should always be the user's requested size. 5163 * which should always be the user's requested size.
5164 */ 5164 */
5165 I915_WRITE(DSPSIZE(plane), 5165 I915_WRITE(DSPSIZE(plane),
5166 ((mode->vdisplay - 1) << 16) | 5166 ((mode->vdisplay - 1) << 16) |
5167 (mode->hdisplay - 1)); 5167 (mode->hdisplay - 1));
5168 I915_WRITE(DSPPOS(plane), 0); 5168 I915_WRITE(DSPPOS(plane), 0);
5169 I915_WRITE(PIPESRC(pipe), 5169 I915_WRITE(PIPESRC(pipe),
5170 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1)); 5170 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5171 5171
5172 I915_WRITE(PIPECONF(pipe), pipeconf); 5172 I915_WRITE(PIPECONF(pipe), pipeconf);
5173 POSTING_READ(PIPECONF(pipe)); 5173 POSTING_READ(PIPECONF(pipe));
5174 intel_enable_pipe(dev_priv, pipe, false); 5174 intel_enable_pipe(dev_priv, pipe, false);
5175 5175
5176 intel_wait_for_vblank(dev, pipe); 5176 intel_wait_for_vblank(dev, pipe);
5177 5177
5178 I915_WRITE(DSPCNTR(plane), dspcntr); 5178 I915_WRITE(DSPCNTR(plane), dspcntr);
5179 POSTING_READ(DSPCNTR(plane)); 5179 POSTING_READ(DSPCNTR(plane));
5180 intel_enable_plane(dev_priv, plane, pipe); 5180 intel_enable_plane(dev_priv, plane, pipe);
5181 5181
5182 ret = intel_pipe_set_base(crtc, x, y, old_fb); 5182 ret = intel_pipe_set_base(crtc, x, y, old_fb);
5183 5183
5184 intel_update_watermarks(dev); 5184 intel_update_watermarks(dev);
5185 5185
5186 return ret; 5186 return ret;
5187 } 5187 }
5188 5188
5189 /* 5189 /*
5190 * Initialize reference clocks when the driver loads 5190 * Initialize reference clocks when the driver loads
5191 */ 5191 */
5192 void ironlake_init_pch_refclk(struct drm_device *dev) 5192 void ironlake_init_pch_refclk(struct drm_device *dev)
5193 { 5193 {
5194 struct drm_i915_private *dev_priv = dev->dev_private; 5194 struct drm_i915_private *dev_priv = dev->dev_private;
5195 struct drm_mode_config *mode_config = &dev->mode_config; 5195 struct drm_mode_config *mode_config = &dev->mode_config;
5196 struct intel_encoder *encoder; 5196 struct intel_encoder *encoder;
5197 u32 temp; 5197 u32 temp;
5198 bool has_lvds = false; 5198 bool has_lvds = false;
5199 bool has_cpu_edp = false; 5199 bool has_cpu_edp = false;
5200 bool has_pch_edp = false; 5200 bool has_pch_edp = false;
5201 bool has_panel = false; 5201 bool has_panel = false;
5202 bool has_ck505 = false; 5202 bool has_ck505 = false;
5203 bool can_ssc = false; 5203 bool can_ssc = false;
5204 5204
5205 /* We need to take the global config into account */ 5205 /* We need to take the global config into account */
5206 list_for_each_entry(encoder, &mode_config->encoder_list, 5206 list_for_each_entry(encoder, &mode_config->encoder_list,
5207 base.head) { 5207 base.head) {
5208 switch (encoder->type) { 5208 switch (encoder->type) {
5209 case INTEL_OUTPUT_LVDS: 5209 case INTEL_OUTPUT_LVDS:
5210 has_panel = true; 5210 has_panel = true;
5211 has_lvds = true; 5211 has_lvds = true;
5212 break; 5212 break;
5213 case INTEL_OUTPUT_EDP: 5213 case INTEL_OUTPUT_EDP:
5214 has_panel = true; 5214 has_panel = true;
5215 if (intel_encoder_is_pch_edp(&encoder->base)) 5215 if (intel_encoder_is_pch_edp(&encoder->base))
5216 has_pch_edp = true; 5216 has_pch_edp = true;
5217 else 5217 else
5218 has_cpu_edp = true; 5218 has_cpu_edp = true;
5219 break; 5219 break;
5220 } 5220 }
5221 } 5221 }
5222 5222
5223 if (HAS_PCH_IBX(dev)) { 5223 if (HAS_PCH_IBX(dev)) {
5224 has_ck505 = dev_priv->display_clock_mode; 5224 has_ck505 = dev_priv->display_clock_mode;
5225 can_ssc = has_ck505; 5225 can_ssc = has_ck505;
5226 } else { 5226 } else {
5227 has_ck505 = false; 5227 has_ck505 = false;
5228 can_ssc = true; 5228 can_ssc = true;
5229 } 5229 }
5230 5230
5231 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n", 5231 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
5232 has_panel, has_lvds, has_pch_edp, has_cpu_edp, 5232 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
5233 has_ck505); 5233 has_ck505);
5234 5234
5235 /* Ironlake: try to setup display ref clock before DPLL 5235 /* Ironlake: try to setup display ref clock before DPLL
5236 * enabling. This is only under driver's control after 5236 * enabling. This is only under driver's control after
5237 * PCH B stepping, previous chipset stepping should be 5237 * PCH B stepping, previous chipset stepping should be
5238 * ignoring this setting. 5238 * ignoring this setting.
5239 */ 5239 */
5240 temp = I915_READ(PCH_DREF_CONTROL); 5240 temp = I915_READ(PCH_DREF_CONTROL);
5241 /* Always enable nonspread source */ 5241 /* Always enable nonspread source */
5242 temp &= ~DREF_NONSPREAD_SOURCE_MASK; 5242 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
5243 5243
5244 if (has_ck505) 5244 if (has_ck505)
5245 temp |= DREF_NONSPREAD_CK505_ENABLE; 5245 temp |= DREF_NONSPREAD_CK505_ENABLE;
5246 else 5246 else
5247 temp |= DREF_NONSPREAD_SOURCE_ENABLE; 5247 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
5248 5248
5249 if (has_panel) { 5249 if (has_panel) {
5250 temp &= ~DREF_SSC_SOURCE_MASK; 5250 temp &= ~DREF_SSC_SOURCE_MASK;
5251 temp |= DREF_SSC_SOURCE_ENABLE; 5251 temp |= DREF_SSC_SOURCE_ENABLE;
5252 5252
5253 /* SSC must be turned on before enabling the CPU output */ 5253 /* SSC must be turned on before enabling the CPU output */
5254 if (intel_panel_use_ssc(dev_priv) && can_ssc) { 5254 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5255 DRM_DEBUG_KMS("Using SSC on panel\n"); 5255 DRM_DEBUG_KMS("Using SSC on panel\n");
5256 temp |= DREF_SSC1_ENABLE; 5256 temp |= DREF_SSC1_ENABLE;
5257 } 5257 }
5258 5258
5259 /* Get SSC going before enabling the outputs */ 5259 /* Get SSC going before enabling the outputs */
5260 I915_WRITE(PCH_DREF_CONTROL, temp); 5260 I915_WRITE(PCH_DREF_CONTROL, temp);
5261 POSTING_READ(PCH_DREF_CONTROL); 5261 POSTING_READ(PCH_DREF_CONTROL);
5262 udelay(200); 5262 udelay(200);
5263 5263
5264 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 5264 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5265 5265
5266 /* Enable CPU source on CPU attached eDP */ 5266 /* Enable CPU source on CPU attached eDP */
5267 if (has_cpu_edp) { 5267 if (has_cpu_edp) {
5268 if (intel_panel_use_ssc(dev_priv) && can_ssc) { 5268 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5269 DRM_DEBUG_KMS("Using SSC on eDP\n"); 5269 DRM_DEBUG_KMS("Using SSC on eDP\n");
5270 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; 5270 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5271 } 5271 }
5272 else 5272 else
5273 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; 5273 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5274 } else 5274 } else
5275 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 5275 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5276 5276
5277 I915_WRITE(PCH_DREF_CONTROL, temp); 5277 I915_WRITE(PCH_DREF_CONTROL, temp);
5278 POSTING_READ(PCH_DREF_CONTROL); 5278 POSTING_READ(PCH_DREF_CONTROL);
5279 udelay(200); 5279 udelay(200);
5280 } else { 5280 } else {
5281 DRM_DEBUG_KMS("Disabling SSC entirely\n"); 5281 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5282 5282
5283 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 5283 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5284 5284
5285 /* Turn off CPU output */ 5285 /* Turn off CPU output */
5286 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 5286 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5287 5287
5288 I915_WRITE(PCH_DREF_CONTROL, temp); 5288 I915_WRITE(PCH_DREF_CONTROL, temp);
5289 POSTING_READ(PCH_DREF_CONTROL); 5289 POSTING_READ(PCH_DREF_CONTROL);
5290 udelay(200); 5290 udelay(200);
5291 5291
5292 /* Turn off the SSC source */ 5292 /* Turn off the SSC source */
5293 temp &= ~DREF_SSC_SOURCE_MASK; 5293 temp &= ~DREF_SSC_SOURCE_MASK;
5294 temp |= DREF_SSC_SOURCE_DISABLE; 5294 temp |= DREF_SSC_SOURCE_DISABLE;
5295 5295
5296 /* Turn off SSC1 */ 5296 /* Turn off SSC1 */
5297 temp &= ~ DREF_SSC1_ENABLE; 5297 temp &= ~ DREF_SSC1_ENABLE;
5298 5298
5299 I915_WRITE(PCH_DREF_CONTROL, temp); 5299 I915_WRITE(PCH_DREF_CONTROL, temp);
5300 POSTING_READ(PCH_DREF_CONTROL); 5300 POSTING_READ(PCH_DREF_CONTROL);
5301 udelay(200); 5301 udelay(200);
5302 } 5302 }
5303 } 5303 }
5304 5304
5305 static int ironlake_get_refclk(struct drm_crtc *crtc) 5305 static int ironlake_get_refclk(struct drm_crtc *crtc)
5306 { 5306 {
5307 struct drm_device *dev = crtc->dev; 5307 struct drm_device *dev = crtc->dev;
5308 struct drm_i915_private *dev_priv = dev->dev_private; 5308 struct drm_i915_private *dev_priv = dev->dev_private;
5309 struct intel_encoder *encoder; 5309 struct intel_encoder *encoder;
5310 struct drm_mode_config *mode_config = &dev->mode_config; 5310 struct drm_mode_config *mode_config = &dev->mode_config;
5311 struct intel_encoder *edp_encoder = NULL; 5311 struct intel_encoder *edp_encoder = NULL;
5312 int num_connectors = 0; 5312 int num_connectors = 0;
5313 bool is_lvds = false; 5313 bool is_lvds = false;
5314 5314
5315 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) { 5315 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5316 if (encoder->base.crtc != crtc) 5316 if (encoder->base.crtc != crtc)
5317 continue; 5317 continue;
5318 5318
5319 switch (encoder->type) { 5319 switch (encoder->type) {
5320 case INTEL_OUTPUT_LVDS: 5320 case INTEL_OUTPUT_LVDS:
5321 is_lvds = true; 5321 is_lvds = true;
5322 break; 5322 break;
5323 case INTEL_OUTPUT_EDP: 5323 case INTEL_OUTPUT_EDP:
5324 edp_encoder = encoder; 5324 edp_encoder = encoder;
5325 break; 5325 break;
5326 } 5326 }
5327 num_connectors++; 5327 num_connectors++;
5328 } 5328 }
5329 5329
5330 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) { 5330 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5331 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n", 5331 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5332 dev_priv->lvds_ssc_freq); 5332 dev_priv->lvds_ssc_freq);
5333 return dev_priv->lvds_ssc_freq * 1000; 5333 return dev_priv->lvds_ssc_freq * 1000;
5334 } 5334 }
5335 5335
5336 return 120000; 5336 return 120000;
5337 } 5337 }
5338 5338
5339 static int ironlake_crtc_mode_set(struct drm_crtc *crtc, 5339 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5340 struct drm_display_mode *mode, 5340 struct drm_display_mode *mode,
5341 struct drm_display_mode *adjusted_mode, 5341 struct drm_display_mode *adjusted_mode,
5342 int x, int y, 5342 int x, int y,
5343 struct drm_framebuffer *old_fb) 5343 struct drm_framebuffer *old_fb)
5344 { 5344 {
5345 struct drm_device *dev = crtc->dev; 5345 struct drm_device *dev = crtc->dev;
5346 struct drm_i915_private *dev_priv = dev->dev_private; 5346 struct drm_i915_private *dev_priv = dev->dev_private;
5347 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 5347 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5348 int pipe = intel_crtc->pipe; 5348 int pipe = intel_crtc->pipe;
5349 int plane = intel_crtc->plane; 5349 int plane = intel_crtc->plane;
5350 int refclk, num_connectors = 0; 5350 int refclk, num_connectors = 0;
5351 intel_clock_t clock, reduced_clock; 5351 intel_clock_t clock, reduced_clock;
5352 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf; 5352 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
5353 bool ok, has_reduced_clock = false, is_sdvo = false; 5353 bool ok, has_reduced_clock = false, is_sdvo = false;
5354 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false; 5354 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
5355 struct intel_encoder *has_edp_encoder = NULL; 5355 struct intel_encoder *has_edp_encoder = NULL;
5356 struct drm_mode_config *mode_config = &dev->mode_config; 5356 struct drm_mode_config *mode_config = &dev->mode_config;
5357 struct intel_encoder *encoder; 5357 struct intel_encoder *encoder;
5358 const intel_limit_t *limit; 5358 const intel_limit_t *limit;
5359 int ret; 5359 int ret;
5360 struct fdi_m_n m_n = {0}; 5360 struct fdi_m_n m_n = {0};
5361 u32 temp; 5361 u32 temp;
5362 u32 lvds_sync = 0; 5362 u32 lvds_sync = 0;
5363 int target_clock, pixel_multiplier, lane, link_bw, factor; 5363 int target_clock, pixel_multiplier, lane, link_bw, factor;
5364 unsigned int pipe_bpp; 5364 unsigned int pipe_bpp;
5365 bool dither; 5365 bool dither;
5366 5366
5367 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) { 5367 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5368 if (encoder->base.crtc != crtc) 5368 if (encoder->base.crtc != crtc)
5369 continue; 5369 continue;
5370 5370
5371 switch (encoder->type) { 5371 switch (encoder->type) {
5372 case INTEL_OUTPUT_LVDS: 5372 case INTEL_OUTPUT_LVDS:
5373 is_lvds = true; 5373 is_lvds = true;
5374 break; 5374 break;
5375 case INTEL_OUTPUT_SDVO: 5375 case INTEL_OUTPUT_SDVO:
5376 case INTEL_OUTPUT_HDMI: 5376 case INTEL_OUTPUT_HDMI:
5377 is_sdvo = true; 5377 is_sdvo = true;
5378 if (encoder->needs_tv_clock) 5378 if (encoder->needs_tv_clock)
5379 is_tv = true; 5379 is_tv = true;
5380 break; 5380 break;
5381 case INTEL_OUTPUT_TVOUT: 5381 case INTEL_OUTPUT_TVOUT:
5382 is_tv = true; 5382 is_tv = true;
5383 break; 5383 break;
5384 case INTEL_OUTPUT_ANALOG: 5384 case INTEL_OUTPUT_ANALOG:
5385 is_crt = true; 5385 is_crt = true;
5386 break; 5386 break;
5387 case INTEL_OUTPUT_DISPLAYPORT: 5387 case INTEL_OUTPUT_DISPLAYPORT:
5388 is_dp = true; 5388 is_dp = true;
5389 break; 5389 break;
5390 case INTEL_OUTPUT_EDP: 5390 case INTEL_OUTPUT_EDP:
5391 has_edp_encoder = encoder; 5391 has_edp_encoder = encoder;
5392 break; 5392 break;
5393 } 5393 }
5394 5394
5395 num_connectors++; 5395 num_connectors++;
5396 } 5396 }
5397 5397
5398 refclk = ironlake_get_refclk(crtc); 5398 refclk = ironlake_get_refclk(crtc);
5399 5399
5400 /* 5400 /*
5401 * Returns a set of divisors for the desired target clock with the given 5401 * Returns a set of divisors for the desired target clock with the given
5402 * refclk, or FALSE. The returned values represent the clock equation: 5402 * refclk, or FALSE. The returned values represent the clock equation:
5403 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 5403 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5404 */ 5404 */
5405 limit = intel_limit(crtc, refclk); 5405 limit = intel_limit(crtc, refclk);
5406 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock); 5406 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
5407 if (!ok) { 5407 if (!ok) {
5408 DRM_ERROR("Couldn't find PLL settings for mode!\n"); 5408 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5409 return -EINVAL; 5409 return -EINVAL;
5410 } 5410 }
5411 5411
5412 /* Ensure that the cursor is valid for the new mode before changing... */ 5412 /* Ensure that the cursor is valid for the new mode before changing... */
5413 intel_crtc_update_cursor(crtc, true); 5413 intel_crtc_update_cursor(crtc, true);
5414 5414
5415 if (is_lvds && dev_priv->lvds_downclock_avail) { 5415 if (is_lvds && dev_priv->lvds_downclock_avail) {
5416 has_reduced_clock = limit->find_pll(limit, crtc, 5416 has_reduced_clock = limit->find_pll(limit, crtc,
5417 dev_priv->lvds_downclock, 5417 dev_priv->lvds_downclock,
5418 refclk, 5418 refclk,
5419 &reduced_clock); 5419 &reduced_clock);
5420 if (has_reduced_clock && (clock.p != reduced_clock.p)) { 5420 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
5421 /* 5421 /*
5422 * If the different P is found, it means that we can't 5422 * If the different P is found, it means that we can't
5423 * switch the display clock by using the FP0/FP1. 5423 * switch the display clock by using the FP0/FP1.
5424 * In such case we will disable the LVDS downclock 5424 * In such case we will disable the LVDS downclock
5425 * feature. 5425 * feature.
5426 */ 5426 */
5427 DRM_DEBUG_KMS("Different P is found for " 5427 DRM_DEBUG_KMS("Different P is found for "
5428 "LVDS clock/downclock\n"); 5428 "LVDS clock/downclock\n");
5429 has_reduced_clock = 0; 5429 has_reduced_clock = 0;
5430 } 5430 }
5431 } 5431 }
5432 /* SDVO TV has fixed PLL values depend on its clock range, 5432 /* SDVO TV has fixed PLL values depend on its clock range,
5433 this mirrors vbios setting. */ 5433 this mirrors vbios setting. */
5434 if (is_sdvo && is_tv) { 5434 if (is_sdvo && is_tv) {
5435 if (adjusted_mode->clock >= 100000 5435 if (adjusted_mode->clock >= 100000
5436 && adjusted_mode->clock < 140500) { 5436 && adjusted_mode->clock < 140500) {
5437 clock.p1 = 2; 5437 clock.p1 = 2;
5438 clock.p2 = 10; 5438 clock.p2 = 10;
5439 clock.n = 3; 5439 clock.n = 3;
5440 clock.m1 = 16; 5440 clock.m1 = 16;
5441 clock.m2 = 8; 5441 clock.m2 = 8;
5442 } else if (adjusted_mode->clock >= 140500 5442 } else if (adjusted_mode->clock >= 140500
5443 && adjusted_mode->clock <= 200000) { 5443 && adjusted_mode->clock <= 200000) {
5444 clock.p1 = 1; 5444 clock.p1 = 1;
5445 clock.p2 = 10; 5445 clock.p2 = 10;
5446 clock.n = 6; 5446 clock.n = 6;
5447 clock.m1 = 12; 5447 clock.m1 = 12;
5448 clock.m2 = 8; 5448 clock.m2 = 8;
5449 } 5449 }
5450 } 5450 }
5451 5451
5452 /* FDI link */ 5452 /* FDI link */
5453 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode); 5453 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5454 lane = 0; 5454 lane = 0;
5455 /* CPU eDP doesn't require FDI link, so just set DP M/N 5455 /* CPU eDP doesn't require FDI link, so just set DP M/N
5456 according to current link config */ 5456 according to current link config */
5457 if (has_edp_encoder && 5457 if (has_edp_encoder &&
5458 !intel_encoder_is_pch_edp(&has_edp_encoder->base)) { 5458 !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5459 target_clock = mode->clock; 5459 target_clock = mode->clock;
5460 intel_edp_link_config(has_edp_encoder, 5460 intel_edp_link_config(has_edp_encoder,
5461 &lane, &link_bw); 5461 &lane, &link_bw);
5462 } else { 5462 } else {
5463 /* [e]DP over FDI requires target mode clock 5463 /* [e]DP over FDI requires target mode clock
5464 instead of link clock */ 5464 instead of link clock */
5465 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) 5465 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5466 target_clock = mode->clock; 5466 target_clock = mode->clock;
5467 else 5467 else
5468 target_clock = adjusted_mode->clock; 5468 target_clock = adjusted_mode->clock;
5469 5469
5470 /* FDI is a binary signal running at ~2.7GHz, encoding 5470 /* FDI is a binary signal running at ~2.7GHz, encoding
5471 * each output octet as 10 bits. The actual frequency 5471 * each output octet as 10 bits. The actual frequency
5472 * is stored as a divider into a 100MHz clock, and the 5472 * is stored as a divider into a 100MHz clock, and the
5473 * mode pixel clock is stored in units of 1KHz. 5473 * mode pixel clock is stored in units of 1KHz.
5474 * Hence the bw of each lane in terms of the mode signal 5474 * Hence the bw of each lane in terms of the mode signal
5475 * is: 5475 * is:
5476 */ 5476 */
5477 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10; 5477 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5478 } 5478 }
5479 5479
5480 /* determine panel color depth */ 5480 /* determine panel color depth */
5481 temp = I915_READ(PIPECONF(pipe)); 5481 temp = I915_READ(PIPECONF(pipe));
5482 temp &= ~PIPE_BPC_MASK; 5482 temp &= ~PIPE_BPC_MASK;
5483 dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp); 5483 dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp);
5484 switch (pipe_bpp) { 5484 switch (pipe_bpp) {
5485 case 18: 5485 case 18:
5486 temp |= PIPE_6BPC; 5486 temp |= PIPE_6BPC;
5487 break; 5487 break;
5488 case 24: 5488 case 24:
5489 temp |= PIPE_8BPC; 5489 temp |= PIPE_8BPC;
5490 break; 5490 break;
5491 case 30: 5491 case 30:
5492 temp |= PIPE_10BPC; 5492 temp |= PIPE_10BPC;
5493 break; 5493 break;
5494 case 36: 5494 case 36:
5495 temp |= PIPE_12BPC; 5495 temp |= PIPE_12BPC;
5496 break; 5496 break;
5497 default: 5497 default:
5498 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n", 5498 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
5499 pipe_bpp); 5499 pipe_bpp);
5500 temp |= PIPE_8BPC; 5500 temp |= PIPE_8BPC;
5501 pipe_bpp = 24; 5501 pipe_bpp = 24;
5502 break; 5502 break;
5503 } 5503 }
5504 5504
5505 intel_crtc->bpp = pipe_bpp; 5505 intel_crtc->bpp = pipe_bpp;
5506 I915_WRITE(PIPECONF(pipe), temp); 5506 I915_WRITE(PIPECONF(pipe), temp);
5507 5507
5508 if (!lane) { 5508 if (!lane) {
5509 /* 5509 /*
5510 * Account for spread spectrum to avoid 5510 * Account for spread spectrum to avoid
5511 * oversubscribing the link. Max center spread 5511 * oversubscribing the link. Max center spread
5512 * is 2.5%; use 5% for safety's sake. 5512 * is 2.5%; use 5% for safety's sake.
5513 */ 5513 */
5514 u32 bps = target_clock * intel_crtc->bpp * 21 / 20; 5514 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5515 lane = bps / (link_bw * 8) + 1; 5515 lane = bps / (link_bw * 8) + 1;
5516 } 5516 }
5517 5517
5518 intel_crtc->fdi_lanes = lane; 5518 intel_crtc->fdi_lanes = lane;
5519 5519
5520 if (pixel_multiplier > 1) 5520 if (pixel_multiplier > 1)
5521 link_bw *= pixel_multiplier; 5521 link_bw *= pixel_multiplier;
5522 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw, 5522 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5523 &m_n); 5523 &m_n);
5524 5524
5525 fp = clock.n << 16 | clock.m1 << 8 | clock.m2; 5525 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5526 if (has_reduced_clock) 5526 if (has_reduced_clock)
5527 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 | 5527 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5528 reduced_clock.m2; 5528 reduced_clock.m2;
5529 5529
5530 /* Enable autotuning of the PLL clock (if permissible) */ 5530 /* Enable autotuning of the PLL clock (if permissible) */
5531 factor = 21; 5531 factor = 21;
5532 if (is_lvds) { 5532 if (is_lvds) {
5533 if ((intel_panel_use_ssc(dev_priv) && 5533 if ((intel_panel_use_ssc(dev_priv) &&
5534 dev_priv->lvds_ssc_freq == 100) || 5534 dev_priv->lvds_ssc_freq == 100) ||
5535 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP) 5535 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5536 factor = 25; 5536 factor = 25;
5537 } else if (is_sdvo && is_tv) 5537 } else if (is_sdvo && is_tv)
5538 factor = 20; 5538 factor = 20;
5539 5539
5540 if (clock.m < factor * clock.n) 5540 if (clock.m < factor * clock.n)
5541 fp |= FP_CB_TUNE; 5541 fp |= FP_CB_TUNE;
5542 5542
5543 dpll = 0; 5543 dpll = 0;
5544 5544
5545 if (is_lvds) 5545 if (is_lvds)
5546 dpll |= DPLLB_MODE_LVDS; 5546 dpll |= DPLLB_MODE_LVDS;
5547 else 5547 else
5548 dpll |= DPLLB_MODE_DAC_SERIAL; 5548 dpll |= DPLLB_MODE_DAC_SERIAL;
5549 if (is_sdvo) { 5549 if (is_sdvo) {
5550 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode); 5550 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5551 if (pixel_multiplier > 1) { 5551 if (pixel_multiplier > 1) {
5552 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT; 5552 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5553 } 5553 }
5554 dpll |= DPLL_DVO_HIGH_SPEED; 5554 dpll |= DPLL_DVO_HIGH_SPEED;
5555 } 5555 }
5556 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) 5556 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5557 dpll |= DPLL_DVO_HIGH_SPEED; 5557 dpll |= DPLL_DVO_HIGH_SPEED;
5558 5558
5559 /* compute bitmask from p1 value */ 5559 /* compute bitmask from p1 value */
5560 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 5560 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5561 /* also FPA1 */ 5561 /* also FPA1 */
5562 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; 5562 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5563 5563
5564 switch (clock.p2) { 5564 switch (clock.p2) {
5565 case 5: 5565 case 5:
5566 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; 5566 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5567 break; 5567 break;
5568 case 7: 5568 case 7:
5569 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; 5569 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5570 break; 5570 break;
5571 case 10: 5571 case 10:
5572 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; 5572 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5573 break; 5573 break;
5574 case 14: 5574 case 14:
5575 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; 5575 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5576 break; 5576 break;
5577 } 5577 }
5578 5578
5579 if (is_sdvo && is_tv) 5579 if (is_sdvo && is_tv)
5580 dpll |= PLL_REF_INPUT_TVCLKINBC; 5580 dpll |= PLL_REF_INPUT_TVCLKINBC;
5581 else if (is_tv) 5581 else if (is_tv)
5582 /* XXX: just matching BIOS for now */ 5582 /* XXX: just matching BIOS for now */
5583 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */ 5583 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
5584 dpll |= 3; 5584 dpll |= 3;
5585 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) 5585 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5586 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 5586 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5587 else 5587 else
5588 dpll |= PLL_REF_INPUT_DREFCLK; 5588 dpll |= PLL_REF_INPUT_DREFCLK;
5589 5589
5590 /* setup pipeconf */ 5590 /* setup pipeconf */
5591 pipeconf = I915_READ(PIPECONF(pipe)); 5591 pipeconf = I915_READ(PIPECONF(pipe));
5592 5592
5593 /* Set up the display plane register */ 5593 /* Set up the display plane register */
5594 dspcntr = DISPPLANE_GAMMA_ENABLE; 5594 dspcntr = DISPPLANE_GAMMA_ENABLE;
5595 5595
5596 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe); 5596 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5597 drm_mode_debug_printmodeline(mode); 5597 drm_mode_debug_printmodeline(mode);
5598 5598
5599 /* PCH eDP needs FDI, but CPU eDP does not */ 5599 /* PCH eDP needs FDI, but CPU eDP does not */
5600 if (!intel_crtc->no_pll) { 5600 if (!intel_crtc->no_pll) {
5601 if (!has_edp_encoder || 5601 if (!has_edp_encoder ||
5602 intel_encoder_is_pch_edp(&has_edp_encoder->base)) { 5602 intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5603 I915_WRITE(PCH_FP0(pipe), fp); 5603 I915_WRITE(PCH_FP0(pipe), fp);
5604 I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE); 5604 I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5605 5605
5606 POSTING_READ(PCH_DPLL(pipe)); 5606 POSTING_READ(PCH_DPLL(pipe));
5607 udelay(150); 5607 udelay(150);
5608 } 5608 }
5609 } else { 5609 } else {
5610 if (dpll == (I915_READ(PCH_DPLL(0)) & 0x7fffffff) && 5610 if (dpll == (I915_READ(PCH_DPLL(0)) & 0x7fffffff) &&
5611 fp == I915_READ(PCH_FP0(0))) { 5611 fp == I915_READ(PCH_FP0(0))) {
5612 intel_crtc->use_pll_a = true; 5612 intel_crtc->use_pll_a = true;
5613 DRM_DEBUG_KMS("using pipe a dpll\n"); 5613 DRM_DEBUG_KMS("using pipe a dpll\n");
5614 } else if (dpll == (I915_READ(PCH_DPLL(1)) & 0x7fffffff) && 5614 } else if (dpll == (I915_READ(PCH_DPLL(1)) & 0x7fffffff) &&
5615 fp == I915_READ(PCH_FP0(1))) { 5615 fp == I915_READ(PCH_FP0(1))) {
5616 intel_crtc->use_pll_a = false; 5616 intel_crtc->use_pll_a = false;
5617 DRM_DEBUG_KMS("using pipe b dpll\n"); 5617 DRM_DEBUG_KMS("using pipe b dpll\n");
5618 } else { 5618 } else {
5619 DRM_DEBUG_KMS("no matching PLL configuration for pipe 2\n"); 5619 DRM_DEBUG_KMS("no matching PLL configuration for pipe 2\n");
5620 return -EINVAL; 5620 return -EINVAL;
5621 } 5621 }
5622 } 5622 }
5623 5623
5624 /* The LVDS pin pair needs to be on before the DPLLs are enabled. 5624 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5625 * This is an exception to the general rule that mode_set doesn't turn 5625 * This is an exception to the general rule that mode_set doesn't turn
5626 * things on. 5626 * things on.
5627 */ 5627 */
5628 if (is_lvds) { 5628 if (is_lvds) {
5629 temp = I915_READ(PCH_LVDS); 5629 temp = I915_READ(PCH_LVDS);
5630 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP; 5630 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5631 if (HAS_PCH_CPT(dev)) 5631 if (HAS_PCH_CPT(dev))
5632 temp |= PORT_TRANS_SEL_CPT(pipe); 5632 temp |= PORT_TRANS_SEL_CPT(pipe);
5633 else if (pipe == 1) 5633 else if (pipe == 1)
5634 temp |= LVDS_PIPEB_SELECT; 5634 temp |= LVDS_PIPEB_SELECT;
5635 else 5635 else
5636 temp &= ~LVDS_PIPEB_SELECT; 5636 temp &= ~LVDS_PIPEB_SELECT;
5637 5637
5638 /* set the corresponsding LVDS_BORDER bit */ 5638 /* set the corresponsding LVDS_BORDER bit */
5639 temp |= dev_priv->lvds_border_bits; 5639 temp |= dev_priv->lvds_border_bits;
5640 /* Set the B0-B3 data pairs corresponding to whether we're going to 5640 /* Set the B0-B3 data pairs corresponding to whether we're going to
5641 * set the DPLLs for dual-channel mode or not. 5641 * set the DPLLs for dual-channel mode or not.
5642 */ 5642 */
5643 if (clock.p2 == 7) 5643 if (clock.p2 == 7)
5644 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP; 5644 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5645 else 5645 else
5646 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP); 5646 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5647 5647
5648 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP) 5648 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5649 * appropriately here, but we need to look more thoroughly into how 5649 * appropriately here, but we need to look more thoroughly into how
5650 * panels behave in the two modes. 5650 * panels behave in the two modes.
5651 */ 5651 */
5652 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC) 5652 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5653 lvds_sync |= LVDS_HSYNC_POLARITY; 5653 lvds_sync |= LVDS_HSYNC_POLARITY;
5654 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC) 5654 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5655 lvds_sync |= LVDS_VSYNC_POLARITY; 5655 lvds_sync |= LVDS_VSYNC_POLARITY;
5656 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY)) 5656 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5657 != lvds_sync) { 5657 != lvds_sync) {
5658 char flags[2] = "-+"; 5658 char flags[2] = "-+";
5659 DRM_INFO("Changing LVDS panel from " 5659 DRM_INFO("Changing LVDS panel from "
5660 "(%chsync, %cvsync) to (%chsync, %cvsync)\n", 5660 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5661 flags[!(temp & LVDS_HSYNC_POLARITY)], 5661 flags[!(temp & LVDS_HSYNC_POLARITY)],
5662 flags[!(temp & LVDS_VSYNC_POLARITY)], 5662 flags[!(temp & LVDS_VSYNC_POLARITY)],
5663 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)], 5663 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5664 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]); 5664 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5665 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY); 5665 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5666 temp |= lvds_sync; 5666 temp |= lvds_sync;
5667 } 5667 }
5668 I915_WRITE(PCH_LVDS, temp); 5668 I915_WRITE(PCH_LVDS, temp);
5669 } 5669 }
5670 5670
5671 pipeconf &= ~PIPECONF_DITHER_EN; 5671 pipeconf &= ~PIPECONF_DITHER_EN;
5672 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK; 5672 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
5673 if ((is_lvds && dev_priv->lvds_dither) || dither) { 5673 if ((is_lvds && dev_priv->lvds_dither) || dither) {
5674 pipeconf |= PIPECONF_DITHER_EN; 5674 pipeconf |= PIPECONF_DITHER_EN;
5675 pipeconf |= PIPECONF_DITHER_TYPE_SP; 5675 pipeconf |= PIPECONF_DITHER_TYPE_SP;
5676 } 5676 }
5677 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) { 5677 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5678 intel_dp_set_m_n(crtc, mode, adjusted_mode); 5678 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5679 } else { 5679 } else {
5680 /* For non-DP output, clear any trans DP clock recovery setting.*/ 5680 /* For non-DP output, clear any trans DP clock recovery setting.*/
5681 I915_WRITE(TRANSDATA_M1(pipe), 0); 5681 I915_WRITE(TRANSDATA_M1(pipe), 0);
5682 I915_WRITE(TRANSDATA_N1(pipe), 0); 5682 I915_WRITE(TRANSDATA_N1(pipe), 0);
5683 I915_WRITE(TRANSDPLINK_M1(pipe), 0); 5683 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5684 I915_WRITE(TRANSDPLINK_N1(pipe), 0); 5684 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5685 } 5685 }
5686 5686
5687 if (!intel_crtc->no_pll && 5687 if (!intel_crtc->no_pll &&
5688 (!has_edp_encoder || 5688 (!has_edp_encoder ||
5689 intel_encoder_is_pch_edp(&has_edp_encoder->base))) { 5689 intel_encoder_is_pch_edp(&has_edp_encoder->base))) {
5690 I915_WRITE(PCH_DPLL(pipe), dpll); 5690 I915_WRITE(PCH_DPLL(pipe), dpll);
5691 5691
5692 /* Wait for the clocks to stabilize. */ 5692 /* Wait for the clocks to stabilize. */
5693 POSTING_READ(PCH_DPLL(pipe)); 5693 POSTING_READ(PCH_DPLL(pipe));
5694 udelay(150); 5694 udelay(150);
5695 5695
5696 /* The pixel multiplier can only be updated once the 5696 /* The pixel multiplier can only be updated once the
5697 * DPLL is enabled and the clocks are stable. 5697 * DPLL is enabled and the clocks are stable.
5698 * 5698 *
5699 * So write it again. 5699 * So write it again.
5700 */ 5700 */
5701 I915_WRITE(PCH_DPLL(pipe), dpll); 5701 I915_WRITE(PCH_DPLL(pipe), dpll);
5702 } 5702 }
5703 5703
5704 intel_crtc->lowfreq_avail = false; 5704 intel_crtc->lowfreq_avail = false;
5705 if (!intel_crtc->no_pll) { 5705 if (!intel_crtc->no_pll) {
5706 if (is_lvds && has_reduced_clock && i915_powersave) { 5706 if (is_lvds && has_reduced_clock && i915_powersave) {
5707 I915_WRITE(PCH_FP1(pipe), fp2); 5707 I915_WRITE(PCH_FP1(pipe), fp2);
5708 intel_crtc->lowfreq_avail = true; 5708 intel_crtc->lowfreq_avail = true;
5709 if (HAS_PIPE_CXSR(dev)) { 5709 if (HAS_PIPE_CXSR(dev)) {
5710 DRM_DEBUG_KMS("enabling CxSR downclocking\n"); 5710 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5711 pipeconf |= PIPECONF_CXSR_DOWNCLOCK; 5711 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5712 } 5712 }
5713 } else { 5713 } else {
5714 I915_WRITE(PCH_FP1(pipe), fp); 5714 I915_WRITE(PCH_FP1(pipe), fp);
5715 if (HAS_PIPE_CXSR(dev)) { 5715 if (HAS_PIPE_CXSR(dev)) {
5716 DRM_DEBUG_KMS("disabling CxSR downclocking\n"); 5716 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5717 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK; 5717 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5718 } 5718 }
5719 } 5719 }
5720 } 5720 }
5721 5721
5722 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { 5722 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5723 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION; 5723 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5724 /* the chip adds 2 halflines automatically */ 5724 /* the chip adds 2 halflines automatically */
5725 adjusted_mode->crtc_vdisplay -= 1; 5725 adjusted_mode->crtc_vdisplay -= 1;
5726 adjusted_mode->crtc_vtotal -= 1; 5726 adjusted_mode->crtc_vtotal -= 1;
5727 adjusted_mode->crtc_vblank_start -= 1; 5727 adjusted_mode->crtc_vblank_start -= 1;
5728 adjusted_mode->crtc_vblank_end -= 1; 5728 adjusted_mode->crtc_vblank_end -= 1;
5729 adjusted_mode->crtc_vsync_end -= 1; 5729 adjusted_mode->crtc_vsync_end -= 1;
5730 adjusted_mode->crtc_vsync_start -= 1; 5730 adjusted_mode->crtc_vsync_start -= 1;
5731 } else 5731 } else
5732 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */ 5732 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
5733 5733
5734 I915_WRITE(HTOTAL(pipe), 5734 I915_WRITE(HTOTAL(pipe),
5735 (adjusted_mode->crtc_hdisplay - 1) | 5735 (adjusted_mode->crtc_hdisplay - 1) |
5736 ((adjusted_mode->crtc_htotal - 1) << 16)); 5736 ((adjusted_mode->crtc_htotal - 1) << 16));
5737 I915_WRITE(HBLANK(pipe), 5737 I915_WRITE(HBLANK(pipe),
5738 (adjusted_mode->crtc_hblank_start - 1) | 5738 (adjusted_mode->crtc_hblank_start - 1) |
5739 ((adjusted_mode->crtc_hblank_end - 1) << 16)); 5739 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5740 I915_WRITE(HSYNC(pipe), 5740 I915_WRITE(HSYNC(pipe),
5741 (adjusted_mode->crtc_hsync_start - 1) | 5741 (adjusted_mode->crtc_hsync_start - 1) |
5742 ((adjusted_mode->crtc_hsync_end - 1) << 16)); 5742 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5743 5743
5744 I915_WRITE(VTOTAL(pipe), 5744 I915_WRITE(VTOTAL(pipe),
5745 (adjusted_mode->crtc_vdisplay - 1) | 5745 (adjusted_mode->crtc_vdisplay - 1) |
5746 ((adjusted_mode->crtc_vtotal - 1) << 16)); 5746 ((adjusted_mode->crtc_vtotal - 1) << 16));
5747 I915_WRITE(VBLANK(pipe), 5747 I915_WRITE(VBLANK(pipe),
5748 (adjusted_mode->crtc_vblank_start - 1) | 5748 (adjusted_mode->crtc_vblank_start - 1) |
5749 ((adjusted_mode->crtc_vblank_end - 1) << 16)); 5749 ((adjusted_mode->crtc_vblank_end - 1) << 16));
5750 I915_WRITE(VSYNC(pipe), 5750 I915_WRITE(VSYNC(pipe),
5751 (adjusted_mode->crtc_vsync_start - 1) | 5751 (adjusted_mode->crtc_vsync_start - 1) |
5752 ((adjusted_mode->crtc_vsync_end - 1) << 16)); 5752 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5753 5753
5754 /* pipesrc controls the size that is scaled from, which should 5754 /* pipesrc controls the size that is scaled from, which should
5755 * always be the user's requested size. 5755 * always be the user's requested size.
5756 */ 5756 */
5757 I915_WRITE(PIPESRC(pipe), 5757 I915_WRITE(PIPESRC(pipe),
5758 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1)); 5758 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5759 5759
5760 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m); 5760 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
5761 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n); 5761 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
5762 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m); 5762 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
5763 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n); 5763 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
5764 5764
5765 if (has_edp_encoder && 5765 if (has_edp_encoder &&
5766 !intel_encoder_is_pch_edp(&has_edp_encoder->base)) { 5766 !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5767 ironlake_set_pll_edp(crtc, adjusted_mode->clock); 5767 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5768 } 5768 }
5769 5769
5770 I915_WRITE(PIPECONF(pipe), pipeconf); 5770 I915_WRITE(PIPECONF(pipe), pipeconf);
5771 POSTING_READ(PIPECONF(pipe)); 5771 POSTING_READ(PIPECONF(pipe));
5772 5772
5773 intel_wait_for_vblank(dev, pipe); 5773 intel_wait_for_vblank(dev, pipe);
5774 5774
5775 if (IS_GEN5(dev)) { 5775 if (IS_GEN5(dev)) {
5776 /* enable address swizzle for tiling buffer */ 5776 /* enable address swizzle for tiling buffer */
5777 temp = I915_READ(DISP_ARB_CTL); 5777 temp = I915_READ(DISP_ARB_CTL);
5778 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING); 5778 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
5779 } 5779 }
5780 5780
5781 I915_WRITE(DSPCNTR(plane), dspcntr); 5781 I915_WRITE(DSPCNTR(plane), dspcntr);
5782 POSTING_READ(DSPCNTR(plane)); 5782 POSTING_READ(DSPCNTR(plane));
5783 5783
5784 ret = intel_pipe_set_base(crtc, x, y, old_fb); 5784 ret = intel_pipe_set_base(crtc, x, y, old_fb);
5785 5785
5786 intel_update_watermarks(dev); 5786 intel_update_watermarks(dev);
5787 5787
5788 return ret; 5788 return ret;
5789 } 5789 }
5790 5790
5791 static int intel_crtc_mode_set(struct drm_crtc *crtc, 5791 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5792 struct drm_display_mode *mode, 5792 struct drm_display_mode *mode,
5793 struct drm_display_mode *adjusted_mode, 5793 struct drm_display_mode *adjusted_mode,
5794 int x, int y, 5794 int x, int y,
5795 struct drm_framebuffer *old_fb) 5795 struct drm_framebuffer *old_fb)
5796 { 5796 {
5797 struct drm_device *dev = crtc->dev; 5797 struct drm_device *dev = crtc->dev;
5798 struct drm_i915_private *dev_priv = dev->dev_private; 5798 struct drm_i915_private *dev_priv = dev->dev_private;
5799 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 5799 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5800 int pipe = intel_crtc->pipe; 5800 int pipe = intel_crtc->pipe;
5801 int ret; 5801 int ret;
5802 5802
5803 drm_vblank_pre_modeset(dev, pipe); 5803 drm_vblank_pre_modeset(dev, pipe);
5804 5804
5805 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode, 5805 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5806 x, y, old_fb); 5806 x, y, old_fb);
5807 5807
5808 drm_vblank_post_modeset(dev, pipe); 5808 drm_vblank_post_modeset(dev, pipe);
5809 5809
5810 intel_crtc->dpms_mode = DRM_MODE_DPMS_ON; 5810 intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
5811 5811
5812 return ret; 5812 return ret;
5813 } 5813 }
5814 5814
5815 static void g4x_write_eld(struct drm_connector *connector, 5815 static void g4x_write_eld(struct drm_connector *connector,
5816 struct drm_crtc *crtc) 5816 struct drm_crtc *crtc)
5817 { 5817 {
5818 struct drm_i915_private *dev_priv = connector->dev->dev_private; 5818 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5819 uint8_t *eld = connector->eld; 5819 uint8_t *eld = connector->eld;
5820 uint32_t eldv; 5820 uint32_t eldv;
5821 uint32_t len; 5821 uint32_t len;
5822 uint32_t i; 5822 uint32_t i;
5823 5823
5824 i = I915_READ(G4X_AUD_VID_DID); 5824 i = I915_READ(G4X_AUD_VID_DID);
5825 5825
5826 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL) 5826 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5827 eldv = G4X_ELDV_DEVCL_DEVBLC; 5827 eldv = G4X_ELDV_DEVCL_DEVBLC;
5828 else 5828 else
5829 eldv = G4X_ELDV_DEVCTG; 5829 eldv = G4X_ELDV_DEVCTG;
5830 5830
5831 i = I915_READ(G4X_AUD_CNTL_ST); 5831 i = I915_READ(G4X_AUD_CNTL_ST);
5832 i &= ~(eldv | G4X_ELD_ADDR); 5832 i &= ~(eldv | G4X_ELD_ADDR);
5833 len = (i >> 9) & 0x1f; /* ELD buffer size */ 5833 len = (i >> 9) & 0x1f; /* ELD buffer size */
5834 I915_WRITE(G4X_AUD_CNTL_ST, i); 5834 I915_WRITE(G4X_AUD_CNTL_ST, i);
5835 5835
5836 if (!eld[0]) 5836 if (!eld[0])
5837 return; 5837 return;
5838 5838
5839 len = min_t(uint8_t, eld[2], len); 5839 len = min_t(uint8_t, eld[2], len);
5840 DRM_DEBUG_DRIVER("ELD size %d\n", len); 5840 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5841 for (i = 0; i < len; i++) 5841 for (i = 0; i < len; i++)
5842 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i)); 5842 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5843 5843
5844 i = I915_READ(G4X_AUD_CNTL_ST); 5844 i = I915_READ(G4X_AUD_CNTL_ST);
5845 i |= eldv; 5845 i |= eldv;
5846 I915_WRITE(G4X_AUD_CNTL_ST, i); 5846 I915_WRITE(G4X_AUD_CNTL_ST, i);
5847 } 5847 }
5848 5848
5849 static void ironlake_write_eld(struct drm_connector *connector, 5849 static void ironlake_write_eld(struct drm_connector *connector,
5850 struct drm_crtc *crtc) 5850 struct drm_crtc *crtc)
5851 { 5851 {
5852 struct drm_i915_private *dev_priv = connector->dev->dev_private; 5852 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5853 uint8_t *eld = connector->eld; 5853 uint8_t *eld = connector->eld;
5854 uint32_t eldv; 5854 uint32_t eldv;
5855 uint32_t i; 5855 uint32_t i;
5856 int len; 5856 int len;
5857 int hdmiw_hdmiedid; 5857 int hdmiw_hdmiedid;
5858 int aud_cntl_st; 5858 int aud_cntl_st;
5859 int aud_cntrl_st2; 5859 int aud_cntrl_st2;
5860 5860
5861 if (IS_IVYBRIDGE(connector->dev)) { 5861 if (IS_IVYBRIDGE(connector->dev)) {
5862 hdmiw_hdmiedid = GEN7_HDMIW_HDMIEDID_A; 5862 hdmiw_hdmiedid = GEN7_HDMIW_HDMIEDID_A;
5863 aud_cntl_st = GEN7_AUD_CNTRL_ST_A; 5863 aud_cntl_st = GEN7_AUD_CNTRL_ST_A;
5864 aud_cntrl_st2 = GEN7_AUD_CNTRL_ST2; 5864 aud_cntrl_st2 = GEN7_AUD_CNTRL_ST2;
5865 } else { 5865 } else {
5866 hdmiw_hdmiedid = GEN5_HDMIW_HDMIEDID_A; 5866 hdmiw_hdmiedid = GEN5_HDMIW_HDMIEDID_A;
5867 aud_cntl_st = GEN5_AUD_CNTL_ST_A; 5867 aud_cntl_st = GEN5_AUD_CNTL_ST_A;
5868 aud_cntrl_st2 = GEN5_AUD_CNTL_ST2; 5868 aud_cntrl_st2 = GEN5_AUD_CNTL_ST2;
5869 } 5869 }
5870 5870
5871 i = to_intel_crtc(crtc)->pipe; 5871 i = to_intel_crtc(crtc)->pipe;
5872 hdmiw_hdmiedid += i * 0x100; 5872 hdmiw_hdmiedid += i * 0x100;
5873 aud_cntl_st += i * 0x100; 5873 aud_cntl_st += i * 0x100;
5874 5874
5875 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i)); 5875 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
5876 5876
5877 i = I915_READ(aud_cntl_st); 5877 i = I915_READ(aud_cntl_st);
5878 i = (i >> 29) & 0x3; /* DIP_Port_Select, 0x1 = PortB */ 5878 i = (i >> 29) & 0x3; /* DIP_Port_Select, 0x1 = PortB */
5879 if (!i) { 5879 if (!i) {
5880 DRM_DEBUG_DRIVER("Audio directed to unknown port\n"); 5880 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5881 /* operate blindly on all ports */ 5881 /* operate blindly on all ports */
5882 eldv = GEN5_ELD_VALIDB; 5882 eldv = GEN5_ELD_VALIDB;
5883 eldv |= GEN5_ELD_VALIDB << 4; 5883 eldv |= GEN5_ELD_VALIDB << 4;
5884 eldv |= GEN5_ELD_VALIDB << 8; 5884 eldv |= GEN5_ELD_VALIDB << 8;
5885 } else { 5885 } else {
5886 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i); 5886 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
5887 eldv = GEN5_ELD_VALIDB << ((i - 1) * 4); 5887 eldv = GEN5_ELD_VALIDB << ((i - 1) * 4);
5888 } 5888 }
5889 5889
5890 i = I915_READ(aud_cntrl_st2); 5890 i = I915_READ(aud_cntrl_st2);
5891 i &= ~eldv; 5891 i &= ~eldv;
5892 I915_WRITE(aud_cntrl_st2, i); 5892 I915_WRITE(aud_cntrl_st2, i);
5893 5893
5894 if (!eld[0]) 5894 if (!eld[0])
5895 return; 5895 return;
5896 5896
5897 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) { 5897 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5898 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n"); 5898 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5899 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */ 5899 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
5900 } 5900 }
5901 5901
5902 i = I915_READ(aud_cntl_st); 5902 i = I915_READ(aud_cntl_st);
5903 i &= ~GEN5_ELD_ADDRESS; 5903 i &= ~GEN5_ELD_ADDRESS;
5904 I915_WRITE(aud_cntl_st, i); 5904 I915_WRITE(aud_cntl_st, i);
5905 5905
5906 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */ 5906 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5907 DRM_DEBUG_DRIVER("ELD size %d\n", len); 5907 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5908 for (i = 0; i < len; i++) 5908 for (i = 0; i < len; i++)
5909 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i)); 5909 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5910 5910
5911 i = I915_READ(aud_cntrl_st2); 5911 i = I915_READ(aud_cntrl_st2);
5912 i |= eldv; 5912 i |= eldv;
5913 I915_WRITE(aud_cntrl_st2, i); 5913 I915_WRITE(aud_cntrl_st2, i);
5914 } 5914 }
5915 5915
5916 void intel_write_eld(struct drm_encoder *encoder, 5916 void intel_write_eld(struct drm_encoder *encoder,
5917 struct drm_display_mode *mode) 5917 struct drm_display_mode *mode)
5918 { 5918 {
5919 struct drm_crtc *crtc = encoder->crtc; 5919 struct drm_crtc *crtc = encoder->crtc;
5920 struct drm_connector *connector; 5920 struct drm_connector *connector;
5921 struct drm_device *dev = encoder->dev; 5921 struct drm_device *dev = encoder->dev;
5922 struct drm_i915_private *dev_priv = dev->dev_private; 5922 struct drm_i915_private *dev_priv = dev->dev_private;
5923 5923
5924 connector = drm_select_eld(encoder, mode); 5924 connector = drm_select_eld(encoder, mode);
5925 if (!connector) 5925 if (!connector)
5926 return; 5926 return;
5927 5927
5928 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", 5928 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5929 connector->base.id, 5929 connector->base.id,
5930 drm_get_connector_name(connector), 5930 drm_get_connector_name(connector),
5931 connector->encoder->base.id, 5931 connector->encoder->base.id,
5932 drm_get_encoder_name(connector->encoder)); 5932 drm_get_encoder_name(connector->encoder));
5933 5933
5934 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2; 5934 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
5935 5935
5936 if (dev_priv->display.write_eld) 5936 if (dev_priv->display.write_eld)
5937 dev_priv->display.write_eld(connector, crtc); 5937 dev_priv->display.write_eld(connector, crtc);
5938 } 5938 }
5939 5939
5940 /** Loads the palette/gamma unit for the CRTC with the prepared values */ 5940 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5941 void intel_crtc_load_lut(struct drm_crtc *crtc) 5941 void intel_crtc_load_lut(struct drm_crtc *crtc)
5942 { 5942 {
5943 struct drm_device *dev = crtc->dev; 5943 struct drm_device *dev = crtc->dev;
5944 struct drm_i915_private *dev_priv = dev->dev_private; 5944 struct drm_i915_private *dev_priv = dev->dev_private;
5945 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 5945 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5946 int palreg = PALETTE(intel_crtc->pipe); 5946 int palreg = PALETTE(intel_crtc->pipe);
5947 int i; 5947 int i;
5948 5948
5949 /* The clocks have to be on to load the palette. */ 5949 /* The clocks have to be on to load the palette. */
5950 if (!crtc->enabled) 5950 if (!crtc->enabled)
5951 return; 5951 return;
5952 5952
5953 /* use legacy palette for Ironlake */ 5953 /* use legacy palette for Ironlake */
5954 if (HAS_PCH_SPLIT(dev)) 5954 if (HAS_PCH_SPLIT(dev))
5955 palreg = LGC_PALETTE(intel_crtc->pipe); 5955 palreg = LGC_PALETTE(intel_crtc->pipe);
5956 5956
5957 for (i = 0; i < 256; i++) { 5957 for (i = 0; i < 256; i++) {
5958 I915_WRITE(palreg + 4 * i, 5958 I915_WRITE(palreg + 4 * i,
5959 (intel_crtc->lut_r[i] << 16) | 5959 (intel_crtc->lut_r[i] << 16) |
5960 (intel_crtc->lut_g[i] << 8) | 5960 (intel_crtc->lut_g[i] << 8) |
5961 intel_crtc->lut_b[i]); 5961 intel_crtc->lut_b[i]);
5962 } 5962 }
5963 } 5963 }
5964 5964
5965 static void i845_update_cursor(struct drm_crtc *crtc, u32 base) 5965 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5966 { 5966 {
5967 struct drm_device *dev = crtc->dev; 5967 struct drm_device *dev = crtc->dev;
5968 struct drm_i915_private *dev_priv = dev->dev_private; 5968 struct drm_i915_private *dev_priv = dev->dev_private;
5969 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 5969 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5970 bool visible = base != 0; 5970 bool visible = base != 0;
5971 u32 cntl; 5971 u32 cntl;
5972 5972
5973 if (intel_crtc->cursor_visible == visible) 5973 if (intel_crtc->cursor_visible == visible)
5974 return; 5974 return;
5975 5975
5976 cntl = I915_READ(_CURACNTR); 5976 cntl = I915_READ(_CURACNTR);
5977 if (visible) { 5977 if (visible) {
5978 /* On these chipsets we can only modify the base whilst 5978 /* On these chipsets we can only modify the base whilst
5979 * the cursor is disabled. 5979 * the cursor is disabled.
5980 */ 5980 */
5981 I915_WRITE(_CURABASE, base); 5981 I915_WRITE(_CURABASE, base);
5982 5982
5983 cntl &= ~(CURSOR_FORMAT_MASK); 5983 cntl &= ~(CURSOR_FORMAT_MASK);
5984 /* XXX width must be 64, stride 256 => 0x00 << 28 */ 5984 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5985 cntl |= CURSOR_ENABLE | 5985 cntl |= CURSOR_ENABLE |
5986 CURSOR_GAMMA_ENABLE | 5986 CURSOR_GAMMA_ENABLE |
5987 CURSOR_FORMAT_ARGB; 5987 CURSOR_FORMAT_ARGB;
5988 } else 5988 } else
5989 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE); 5989 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
5990 I915_WRITE(_CURACNTR, cntl); 5990 I915_WRITE(_CURACNTR, cntl);
5991 5991
5992 intel_crtc->cursor_visible = visible; 5992 intel_crtc->cursor_visible = visible;
5993 } 5993 }
5994 5994
5995 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base) 5995 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5996 { 5996 {
5997 struct drm_device *dev = crtc->dev; 5997 struct drm_device *dev = crtc->dev;
5998 struct drm_i915_private *dev_priv = dev->dev_private; 5998 struct drm_i915_private *dev_priv = dev->dev_private;
5999 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 5999 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6000 int pipe = intel_crtc->pipe; 6000 int pipe = intel_crtc->pipe;
6001 bool visible = base != 0; 6001 bool visible = base != 0;
6002 6002
6003 if (intel_crtc->cursor_visible != visible) { 6003 if (intel_crtc->cursor_visible != visible) {
6004 uint32_t cntl = I915_READ(CURCNTR(pipe)); 6004 uint32_t cntl = I915_READ(CURCNTR(pipe));
6005 if (base) { 6005 if (base) {
6006 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT); 6006 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6007 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE; 6007 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6008 cntl |= pipe << 28; /* Connect to correct pipe */ 6008 cntl |= pipe << 28; /* Connect to correct pipe */
6009 } else { 6009 } else {
6010 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE); 6010 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6011 cntl |= CURSOR_MODE_DISABLE; 6011 cntl |= CURSOR_MODE_DISABLE;
6012 } 6012 }
6013 I915_WRITE(CURCNTR(pipe), cntl); 6013 I915_WRITE(CURCNTR(pipe), cntl);
6014 6014
6015 intel_crtc->cursor_visible = visible; 6015 intel_crtc->cursor_visible = visible;
6016 } 6016 }
6017 /* and commit changes on next vblank */ 6017 /* and commit changes on next vblank */
6018 I915_WRITE(CURBASE(pipe), base); 6018 I915_WRITE(CURBASE(pipe), base);
6019 } 6019 }
6020 6020
6021 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base) 6021 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6022 { 6022 {
6023 struct drm_device *dev = crtc->dev; 6023 struct drm_device *dev = crtc->dev;
6024 struct drm_i915_private *dev_priv = dev->dev_private; 6024 struct drm_i915_private *dev_priv = dev->dev_private;
6025 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 6025 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6026 int pipe = intel_crtc->pipe; 6026 int pipe = intel_crtc->pipe;
6027 bool visible = base != 0; 6027 bool visible = base != 0;
6028 6028
6029 if (intel_crtc->cursor_visible != visible) { 6029 if (intel_crtc->cursor_visible != visible) {
6030 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe)); 6030 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6031 if (base) { 6031 if (base) {
6032 cntl &= ~CURSOR_MODE; 6032 cntl &= ~CURSOR_MODE;
6033 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE; 6033 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6034 } else { 6034 } else {
6035 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE); 6035 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6036 cntl |= CURSOR_MODE_DISABLE; 6036 cntl |= CURSOR_MODE_DISABLE;
6037 } 6037 }
6038 I915_WRITE(CURCNTR_IVB(pipe), cntl); 6038 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6039 6039
6040 intel_crtc->cursor_visible = visible; 6040 intel_crtc->cursor_visible = visible;
6041 } 6041 }
6042 /* and commit changes on next vblank */ 6042 /* and commit changes on next vblank */
6043 I915_WRITE(CURBASE_IVB(pipe), base); 6043 I915_WRITE(CURBASE_IVB(pipe), base);
6044 } 6044 }
6045 6045
6046 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */ 6046 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6047 static void intel_crtc_update_cursor(struct drm_crtc *crtc, 6047 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6048 bool on) 6048 bool on)
6049 { 6049 {
6050 struct drm_device *dev = crtc->dev; 6050 struct drm_device *dev = crtc->dev;
6051 struct drm_i915_private *dev_priv = dev->dev_private; 6051 struct drm_i915_private *dev_priv = dev->dev_private;
6052 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 6052 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6053 int pipe = intel_crtc->pipe; 6053 int pipe = intel_crtc->pipe;
6054 int x = intel_crtc->cursor_x; 6054 int x = intel_crtc->cursor_x;
6055 int y = intel_crtc->cursor_y; 6055 int y = intel_crtc->cursor_y;
6056 u32 base, pos; 6056 u32 base, pos;
6057 bool visible; 6057 bool visible;
6058 6058
6059 pos = 0; 6059 pos = 0;
6060 6060
6061 if (on && crtc->enabled && crtc->fb) { 6061 if (on && crtc->enabled && crtc->fb) {
6062 base = intel_crtc->cursor_addr; 6062 base = intel_crtc->cursor_addr;
6063 if (x > (int) crtc->fb->width) 6063 if (x > (int) crtc->fb->width)
6064 base = 0; 6064 base = 0;
6065 6065
6066 if (y > (int) crtc->fb->height) 6066 if (y > (int) crtc->fb->height)
6067 base = 0; 6067 base = 0;
6068 } else 6068 } else
6069 base = 0; 6069 base = 0;
6070 6070
6071 if (x < 0) { 6071 if (x < 0) {
6072 if (x + intel_crtc->cursor_width < 0) 6072 if (x + intel_crtc->cursor_width < 0)
6073 base = 0; 6073 base = 0;
6074 6074
6075 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT; 6075 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6076 x = -x; 6076 x = -x;
6077 } 6077 }
6078 pos |= x << CURSOR_X_SHIFT; 6078 pos |= x << CURSOR_X_SHIFT;
6079 6079
6080 if (y < 0) { 6080 if (y < 0) {
6081 if (y + intel_crtc->cursor_height < 0) 6081 if (y + intel_crtc->cursor_height < 0)
6082 base = 0; 6082 base = 0;
6083 6083
6084 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT; 6084 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6085 y = -y; 6085 y = -y;
6086 } 6086 }
6087 pos |= y << CURSOR_Y_SHIFT; 6087 pos |= y << CURSOR_Y_SHIFT;
6088 6088
6089 visible = base != 0; 6089 visible = base != 0;
6090 if (!visible && !intel_crtc->cursor_visible) 6090 if (!visible && !intel_crtc->cursor_visible)
6091 return; 6091 return;
6092 6092
6093 if (IS_IVYBRIDGE(dev)) { 6093 if (IS_IVYBRIDGE(dev)) {
6094 I915_WRITE(CURPOS_IVB(pipe), pos); 6094 I915_WRITE(CURPOS_IVB(pipe), pos);
6095 ivb_update_cursor(crtc, base); 6095 ivb_update_cursor(crtc, base);
6096 } else { 6096 } else {
6097 I915_WRITE(CURPOS(pipe), pos); 6097 I915_WRITE(CURPOS(pipe), pos);
6098 if (IS_845G(dev) || IS_I865G(dev)) 6098 if (IS_845G(dev) || IS_I865G(dev))
6099 i845_update_cursor(crtc, base); 6099 i845_update_cursor(crtc, base);
6100 else 6100 else
6101 i9xx_update_cursor(crtc, base); 6101 i9xx_update_cursor(crtc, base);
6102 } 6102 }
6103 6103
6104 if (visible) 6104 if (visible)
6105 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj); 6105 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
6106 } 6106 }
6107 6107
6108 static int intel_crtc_cursor_set(struct drm_crtc *crtc, 6108 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6109 struct drm_file *file, 6109 struct drm_file *file,
6110 uint32_t handle, 6110 uint32_t handle,
6111 uint32_t width, uint32_t height) 6111 uint32_t width, uint32_t height)
6112 { 6112 {
6113 struct drm_device *dev = crtc->dev; 6113 struct drm_device *dev = crtc->dev;
6114 struct drm_i915_private *dev_priv = dev->dev_private; 6114 struct drm_i915_private *dev_priv = dev->dev_private;
6115 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 6115 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6116 struct drm_i915_gem_object *obj; 6116 struct drm_i915_gem_object *obj;
6117 uint32_t addr; 6117 uint32_t addr;
6118 int ret; 6118 int ret;
6119 6119
6120 DRM_DEBUG_KMS("\n"); 6120 DRM_DEBUG_KMS("\n");
6121 6121
6122 /* if we want to turn off the cursor ignore width and height */ 6122 /* if we want to turn off the cursor ignore width and height */
6123 if (!handle) { 6123 if (!handle) {
6124 DRM_DEBUG_KMS("cursor off\n"); 6124 DRM_DEBUG_KMS("cursor off\n");
6125 addr = 0; 6125 addr = 0;
6126 obj = NULL; 6126 obj = NULL;
6127 mutex_lock(&dev->struct_mutex); 6127 mutex_lock(&dev->struct_mutex);
6128 goto finish; 6128 goto finish;
6129 } 6129 }
6130 6130
6131 /* Currently we only support 64x64 cursors */ 6131 /* Currently we only support 64x64 cursors */
6132 if (width != 64 || height != 64) { 6132 if (width != 64 || height != 64) {
6133 DRM_ERROR("we currently only support 64x64 cursors\n"); 6133 DRM_ERROR("we currently only support 64x64 cursors\n");
6134 return -EINVAL; 6134 return -EINVAL;
6135 } 6135 }
6136 6136
6137 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle)); 6137 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6138 if (&obj->base == NULL) 6138 if (&obj->base == NULL)
6139 return -ENOENT; 6139 return -ENOENT;
6140 6140
6141 if (obj->base.size < width * height * 4) { 6141 if (obj->base.size < width * height * 4) {
6142 DRM_ERROR("buffer is to small\n"); 6142 DRM_ERROR("buffer is to small\n");
6143 ret = -ENOMEM; 6143 ret = -ENOMEM;
6144 goto fail; 6144 goto fail;
6145 } 6145 }
6146 6146
6147 /* we only need to pin inside GTT if cursor is non-phy */ 6147 /* we only need to pin inside GTT if cursor is non-phy */
6148 mutex_lock(&dev->struct_mutex); 6148 mutex_lock(&dev->struct_mutex);
6149 if (!dev_priv->info->cursor_needs_physical) { 6149 if (!dev_priv->info->cursor_needs_physical) {
6150 if (obj->tiling_mode) { 6150 if (obj->tiling_mode) {
6151 DRM_ERROR("cursor cannot be tiled\n"); 6151 DRM_ERROR("cursor cannot be tiled\n");
6152 ret = -EINVAL; 6152 ret = -EINVAL;
6153 goto fail_locked; 6153 goto fail_locked;
6154 } 6154 }
6155 6155
6156 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL); 6156 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6157 if (ret) { 6157 if (ret) {
6158 DRM_ERROR("failed to move cursor bo into the GTT\n"); 6158 DRM_ERROR("failed to move cursor bo into the GTT\n");
6159 goto fail_locked; 6159 goto fail_locked;
6160 } 6160 }
6161 6161
6162 ret = i915_gem_object_put_fence(obj); 6162 ret = i915_gem_object_put_fence(obj);
6163 if (ret) { 6163 if (ret) {
6164 DRM_ERROR("failed to release fence for cursor"); 6164 DRM_ERROR("failed to release fence for cursor");
6165 goto fail_unpin; 6165 goto fail_unpin;
6166 } 6166 }
6167 6167
6168 addr = obj->gtt_offset; 6168 addr = obj->gtt_offset;
6169 } else { 6169 } else {
6170 int align = IS_I830(dev) ? 16 * 1024 : 256; 6170 int align = IS_I830(dev) ? 16 * 1024 : 256;
6171 ret = i915_gem_attach_phys_object(dev, obj, 6171 ret = i915_gem_attach_phys_object(dev, obj,
6172 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1, 6172 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6173 align); 6173 align);
6174 if (ret) { 6174 if (ret) {
6175 DRM_ERROR("failed to attach phys object\n"); 6175 DRM_ERROR("failed to attach phys object\n");
6176 goto fail_locked; 6176 goto fail_locked;
6177 } 6177 }
6178 addr = obj->phys_obj->handle->busaddr; 6178 addr = obj->phys_obj->handle->busaddr;
6179 } 6179 }
6180 6180
6181 if (IS_GEN2(dev)) 6181 if (IS_GEN2(dev))
6182 I915_WRITE(CURSIZE, (height << 12) | width); 6182 I915_WRITE(CURSIZE, (height << 12) | width);
6183 6183
6184 finish: 6184 finish:
6185 if (intel_crtc->cursor_bo) { 6185 if (intel_crtc->cursor_bo) {
6186 if (dev_priv->info->cursor_needs_physical) { 6186 if (dev_priv->info->cursor_needs_physical) {
6187 if (intel_crtc->cursor_bo != obj) 6187 if (intel_crtc->cursor_bo != obj)
6188 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo); 6188 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6189 } else 6189 } else
6190 i915_gem_object_unpin(intel_crtc->cursor_bo); 6190 i915_gem_object_unpin(intel_crtc->cursor_bo);
6191 drm_gem_object_unreference(&intel_crtc->cursor_bo->base); 6191 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6192 } 6192 }
6193 6193
6194 mutex_unlock(&dev->struct_mutex); 6194 mutex_unlock(&dev->struct_mutex);
6195 6195
6196 intel_crtc->cursor_addr = addr; 6196 intel_crtc->cursor_addr = addr;
6197 intel_crtc->cursor_bo = obj; 6197 intel_crtc->cursor_bo = obj;
6198 intel_crtc->cursor_width = width; 6198 intel_crtc->cursor_width = width;
6199 intel_crtc->cursor_height = height; 6199 intel_crtc->cursor_height = height;
6200 6200
6201 intel_crtc_update_cursor(crtc, true); 6201 intel_crtc_update_cursor(crtc, true);
6202 6202
6203 return 0; 6203 return 0;
6204 fail_unpin: 6204 fail_unpin:
6205 i915_gem_object_unpin(obj); 6205 i915_gem_object_unpin(obj);
6206 fail_locked: 6206 fail_locked:
6207 mutex_unlock(&dev->struct_mutex); 6207 mutex_unlock(&dev->struct_mutex);
6208 fail: 6208 fail:
6209 drm_gem_object_unreference_unlocked(&obj->base); 6209 drm_gem_object_unreference_unlocked(&obj->base);
6210 return ret; 6210 return ret;
6211 } 6211 }
6212 6212
6213 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y) 6213 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6214 { 6214 {
6215 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 6215 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6216 6216
6217 intel_crtc->cursor_x = x; 6217 intel_crtc->cursor_x = x;
6218 intel_crtc->cursor_y = y; 6218 intel_crtc->cursor_y = y;
6219 6219
6220 intel_crtc_update_cursor(crtc, true); 6220 intel_crtc_update_cursor(crtc, true);
6221 6221
6222 return 0; 6222 return 0;
6223 } 6223 }
6224 6224
6225 /** Sets the color ramps on behalf of RandR */ 6225 /** Sets the color ramps on behalf of RandR */
6226 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green, 6226 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6227 u16 blue, int regno) 6227 u16 blue, int regno)
6228 { 6228 {
6229 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 6229 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6230 6230
6231 intel_crtc->lut_r[regno] = red >> 8; 6231 intel_crtc->lut_r[regno] = red >> 8;
6232 intel_crtc->lut_g[regno] = green >> 8; 6232 intel_crtc->lut_g[regno] = green >> 8;
6233 intel_crtc->lut_b[regno] = blue >> 8; 6233 intel_crtc->lut_b[regno] = blue >> 8;
6234 } 6234 }
6235 6235
6236 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green, 6236 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6237 u16 *blue, int regno) 6237 u16 *blue, int regno)
6238 { 6238 {
6239 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 6239 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6240 6240
6241 *red = intel_crtc->lut_r[regno] << 8; 6241 *red = intel_crtc->lut_r[regno] << 8;
6242 *green = intel_crtc->lut_g[regno] << 8; 6242 *green = intel_crtc->lut_g[regno] << 8;
6243 *blue = intel_crtc->lut_b[regno] << 8; 6243 *blue = intel_crtc->lut_b[regno] << 8;
6244 } 6244 }
6245 6245
6246 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green, 6246 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6247 u16 *blue, uint32_t start, uint32_t size) 6247 u16 *blue, uint32_t start, uint32_t size)
6248 { 6248 {
6249 int end = (start + size > 256) ? 256 : start + size, i; 6249 int end = (start + size > 256) ? 256 : start + size, i;
6250 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 6250 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6251 6251
6252 for (i = start; i < end; i++) { 6252 for (i = start; i < end; i++) {
6253 intel_crtc->lut_r[i] = red[i] >> 8; 6253 intel_crtc->lut_r[i] = red[i] >> 8;
6254 intel_crtc->lut_g[i] = green[i] >> 8; 6254 intel_crtc->lut_g[i] = green[i] >> 8;
6255 intel_crtc->lut_b[i] = blue[i] >> 8; 6255 intel_crtc->lut_b[i] = blue[i] >> 8;
6256 } 6256 }
6257 6257
6258 intel_crtc_load_lut(crtc); 6258 intel_crtc_load_lut(crtc);
6259 } 6259 }
6260 6260
6261 /** 6261 /**
6262 * Get a pipe with a simple mode set on it for doing load-based monitor 6262 * Get a pipe with a simple mode set on it for doing load-based monitor
6263 * detection. 6263 * detection.
6264 * 6264 *
6265 * It will be up to the load-detect code to adjust the pipe as appropriate for 6265 * It will be up to the load-detect code to adjust the pipe as appropriate for
6266 * its requirements. The pipe will be connected to no other encoders. 6266 * its requirements. The pipe will be connected to no other encoders.
6267 * 6267 *
6268 * Currently this code will only succeed if there is a pipe with no encoders 6268 * Currently this code will only succeed if there is a pipe with no encoders
6269 * configured for it. In the future, it could choose to temporarily disable 6269 * configured for it. In the future, it could choose to temporarily disable
6270 * some outputs to free up a pipe for its use. 6270 * some outputs to free up a pipe for its use.
6271 * 6271 *
6272 * \return crtc, or NULL if no pipes are available. 6272 * \return crtc, or NULL if no pipes are available.
6273 */ 6273 */
6274 6274
6275 /* VESA 640x480x72Hz mode to set on the pipe */ 6275 /* VESA 640x480x72Hz mode to set on the pipe */
6276 static struct drm_display_mode load_detect_mode = { 6276 static struct drm_display_mode load_detect_mode = {
6277 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664, 6277 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6278 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 6278 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6279 }; 6279 };
6280 6280
6281 static struct drm_framebuffer * 6281 static struct drm_framebuffer *
6282 intel_framebuffer_create(struct drm_device *dev, 6282 intel_framebuffer_create(struct drm_device *dev,
6283 struct drm_mode_fb_cmd *mode_cmd, 6283 struct drm_mode_fb_cmd *mode_cmd,
6284 struct drm_i915_gem_object *obj) 6284 struct drm_i915_gem_object *obj)
6285 { 6285 {
6286 struct intel_framebuffer *intel_fb; 6286 struct intel_framebuffer *intel_fb;
6287 int ret; 6287 int ret;
6288 6288
6289 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); 6289 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6290 if (!intel_fb) { 6290 if (!intel_fb) {
6291 drm_gem_object_unreference_unlocked(&obj->base); 6291 drm_gem_object_unreference_unlocked(&obj->base);
6292 return ERR_PTR(-ENOMEM); 6292 return ERR_PTR(-ENOMEM);
6293 } 6293 }
6294 6294
6295 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj); 6295 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6296 if (ret) { 6296 if (ret) {
6297 drm_gem_object_unreference_unlocked(&obj->base); 6297 drm_gem_object_unreference_unlocked(&obj->base);
6298 kfree(intel_fb); 6298 kfree(intel_fb);
6299 return ERR_PTR(ret); 6299 return ERR_PTR(ret);
6300 } 6300 }
6301 6301
6302 return &intel_fb->base; 6302 return &intel_fb->base;
6303 } 6303 }
6304 6304
6305 static u32 6305 static u32
6306 intel_framebuffer_pitch_for_width(int width, int bpp) 6306 intel_framebuffer_pitch_for_width(int width, int bpp)
6307 { 6307 {
6308 u32 pitch = DIV_ROUND_UP(width * bpp, 8); 6308 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6309 return ALIGN(pitch, 64); 6309 return ALIGN(pitch, 64);
6310 } 6310 }
6311 6311
6312 static u32 6312 static u32
6313 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp) 6313 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6314 { 6314 {
6315 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp); 6315 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6316 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE); 6316 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6317 } 6317 }
6318 6318
6319 static struct drm_framebuffer * 6319 static struct drm_framebuffer *
6320 intel_framebuffer_create_for_mode(struct drm_device *dev, 6320 intel_framebuffer_create_for_mode(struct drm_device *dev,
6321 struct drm_display_mode *mode, 6321 struct drm_display_mode *mode,
6322 int depth, int bpp) 6322 int depth, int bpp)
6323 { 6323 {
6324 struct drm_i915_gem_object *obj; 6324 struct drm_i915_gem_object *obj;
6325 struct drm_mode_fb_cmd mode_cmd; 6325 struct drm_mode_fb_cmd mode_cmd;
6326 6326
6327 obj = i915_gem_alloc_object(dev, 6327 obj = i915_gem_alloc_object(dev,
6328 intel_framebuffer_size_for_mode(mode, bpp)); 6328 intel_framebuffer_size_for_mode(mode, bpp));
6329 if (obj == NULL) 6329 if (obj == NULL)
6330 return ERR_PTR(-ENOMEM); 6330 return ERR_PTR(-ENOMEM);
6331 6331
6332 mode_cmd.width = mode->hdisplay; 6332 mode_cmd.width = mode->hdisplay;
6333 mode_cmd.height = mode->vdisplay; 6333 mode_cmd.height = mode->vdisplay;
6334 mode_cmd.depth = depth; 6334 mode_cmd.depth = depth;
6335 mode_cmd.bpp = bpp; 6335 mode_cmd.bpp = bpp;
6336 mode_cmd.pitch = intel_framebuffer_pitch_for_width(mode_cmd.width, bpp); 6336 mode_cmd.pitch = intel_framebuffer_pitch_for_width(mode_cmd.width, bpp);
6337 6337
6338 return intel_framebuffer_create(dev, &mode_cmd, obj); 6338 return intel_framebuffer_create(dev, &mode_cmd, obj);
6339 } 6339 }
6340 6340
6341 static struct drm_framebuffer * 6341 static struct drm_framebuffer *
6342 mode_fits_in_fbdev(struct drm_device *dev, 6342 mode_fits_in_fbdev(struct drm_device *dev,
6343 struct drm_display_mode *mode) 6343 struct drm_display_mode *mode)
6344 { 6344 {
6345 struct drm_i915_private *dev_priv = dev->dev_private; 6345 struct drm_i915_private *dev_priv = dev->dev_private;
6346 struct drm_i915_gem_object *obj; 6346 struct drm_i915_gem_object *obj;
6347 struct drm_framebuffer *fb; 6347 struct drm_framebuffer *fb;
6348 6348
6349 if (dev_priv->fbdev == NULL) 6349 if (dev_priv->fbdev == NULL)
6350 return NULL; 6350 return NULL;
6351 6351
6352 obj = dev_priv->fbdev->ifb.obj; 6352 obj = dev_priv->fbdev->ifb.obj;
6353 if (obj == NULL) 6353 if (obj == NULL)
6354 return NULL; 6354 return NULL;
6355 6355
6356 fb = &dev_priv->fbdev->ifb.base; 6356 fb = &dev_priv->fbdev->ifb.base;
6357 if (fb->pitch < intel_framebuffer_pitch_for_width(mode->hdisplay, 6357 if (fb->pitch < intel_framebuffer_pitch_for_width(mode->hdisplay,
6358 fb->bits_per_pixel)) 6358 fb->bits_per_pixel))
6359 return NULL; 6359 return NULL;
6360 6360
6361 if (obj->base.size < mode->vdisplay * fb->pitch) 6361 if (obj->base.size < mode->vdisplay * fb->pitch)
6362 return NULL; 6362 return NULL;
6363 6363
6364 return fb; 6364 return fb;
6365 } 6365 }
6366 6366
6367 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder, 6367 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
6368 struct drm_connector *connector, 6368 struct drm_connector *connector,
6369 struct drm_display_mode *mode, 6369 struct drm_display_mode *mode,
6370 struct intel_load_detect_pipe *old) 6370 struct intel_load_detect_pipe *old)
6371 { 6371 {
6372 struct intel_crtc *intel_crtc; 6372 struct intel_crtc *intel_crtc;
6373 struct drm_crtc *possible_crtc; 6373 struct drm_crtc *possible_crtc;
6374 struct drm_encoder *encoder = &intel_encoder->base; 6374 struct drm_encoder *encoder = &intel_encoder->base;
6375 struct drm_crtc *crtc = NULL; 6375 struct drm_crtc *crtc = NULL;
6376 struct drm_device *dev = encoder->dev; 6376 struct drm_device *dev = encoder->dev;
6377 struct drm_framebuffer *old_fb; 6377 struct drm_framebuffer *old_fb;
6378 int i = -1; 6378 int i = -1;
6379 6379
6380 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", 6380 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6381 connector->base.id, drm_get_connector_name(connector), 6381 connector->base.id, drm_get_connector_name(connector),
6382 encoder->base.id, drm_get_encoder_name(encoder)); 6382 encoder->base.id, drm_get_encoder_name(encoder));
6383 6383
6384 /* 6384 /*
6385 * Algorithm gets a little messy: 6385 * Algorithm gets a little messy:
6386 * 6386 *
6387 * - if the connector already has an assigned crtc, use it (but make 6387 * - if the connector already has an assigned crtc, use it (but make
6388 * sure it's on first) 6388 * sure it's on first)
6389 * 6389 *
6390 * - try to find the first unused crtc that can drive this connector, 6390 * - try to find the first unused crtc that can drive this connector,
6391 * and use that if we find one 6391 * and use that if we find one
6392 */ 6392 */
6393 6393
6394 /* See if we already have a CRTC for this connector */ 6394 /* See if we already have a CRTC for this connector */
6395 if (encoder->crtc) { 6395 if (encoder->crtc) {
6396 crtc = encoder->crtc; 6396 crtc = encoder->crtc;
6397 6397
6398 intel_crtc = to_intel_crtc(crtc); 6398 intel_crtc = to_intel_crtc(crtc);
6399 old->dpms_mode = intel_crtc->dpms_mode; 6399 old->dpms_mode = intel_crtc->dpms_mode;
6400 old->load_detect_temp = false; 6400 old->load_detect_temp = false;
6401 6401
6402 /* Make sure the crtc and connector are running */ 6402 /* Make sure the crtc and connector are running */
6403 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) { 6403 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
6404 struct drm_encoder_helper_funcs *encoder_funcs; 6404 struct drm_encoder_helper_funcs *encoder_funcs;
6405 struct drm_crtc_helper_funcs *crtc_funcs; 6405 struct drm_crtc_helper_funcs *crtc_funcs;
6406 6406
6407 crtc_funcs = crtc->helper_private; 6407 crtc_funcs = crtc->helper_private;
6408 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON); 6408 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
6409 6409
6410 encoder_funcs = encoder->helper_private; 6410 encoder_funcs = encoder->helper_private;
6411 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON); 6411 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
6412 } 6412 }
6413 6413
6414 return true; 6414 return true;
6415 } 6415 }
6416 6416
6417 /* Find an unused one (if possible) */ 6417 /* Find an unused one (if possible) */
6418 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) { 6418 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6419 i++; 6419 i++;
6420 if (!(encoder->possible_crtcs & (1 << i))) 6420 if (!(encoder->possible_crtcs & (1 << i)))
6421 continue; 6421 continue;
6422 if (!possible_crtc->enabled) { 6422 if (!possible_crtc->enabled) {
6423 crtc = possible_crtc; 6423 crtc = possible_crtc;
6424 break; 6424 break;
6425 } 6425 }
6426 } 6426 }
6427 6427
6428 /* 6428 /*
6429 * If we didn't find an unused CRTC, don't use any. 6429 * If we didn't find an unused CRTC, don't use any.
6430 */ 6430 */
6431 if (!crtc) { 6431 if (!crtc) {
6432 DRM_DEBUG_KMS("no pipe available for load-detect\n"); 6432 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6433 return false; 6433 return false;
6434 } 6434 }
6435 6435
6436 encoder->crtc = crtc; 6436 encoder->crtc = crtc;
6437 connector->encoder = encoder; 6437 connector->encoder = encoder;
6438 6438
6439 intel_crtc = to_intel_crtc(crtc); 6439 intel_crtc = to_intel_crtc(crtc);
6440 old->dpms_mode = intel_crtc->dpms_mode; 6440 old->dpms_mode = intel_crtc->dpms_mode;
6441 old->load_detect_temp = true; 6441 old->load_detect_temp = true;
6442 old->release_fb = NULL; 6442 old->release_fb = NULL;
6443 6443
6444 if (!mode) 6444 if (!mode)
6445 mode = &load_detect_mode; 6445 mode = &load_detect_mode;
6446 6446
6447 old_fb = crtc->fb; 6447 old_fb = crtc->fb;
6448 6448
6449 /* We need a framebuffer large enough to accommodate all accesses 6449 /* We need a framebuffer large enough to accommodate all accesses
6450 * that the plane may generate whilst we perform load detection. 6450 * that the plane may generate whilst we perform load detection.
6451 * We can not rely on the fbcon either being present (we get called 6451 * We can not rely on the fbcon either being present (we get called
6452 * during its initialisation to detect all boot displays, or it may 6452 * during its initialisation to detect all boot displays, or it may
6453 * not even exist) or that it is large enough to satisfy the 6453 * not even exist) or that it is large enough to satisfy the
6454 * requested mode. 6454 * requested mode.
6455 */ 6455 */
6456 crtc->fb = mode_fits_in_fbdev(dev, mode); 6456 crtc->fb = mode_fits_in_fbdev(dev, mode);
6457 if (crtc->fb == NULL) { 6457 if (crtc->fb == NULL) {
6458 DRM_DEBUG_KMS("creating tmp fb for load-detection\n"); 6458 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6459 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32); 6459 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6460 old->release_fb = crtc->fb; 6460 old->release_fb = crtc->fb;
6461 } else 6461 } else
6462 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n"); 6462 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6463 if (IS_ERR(crtc->fb)) { 6463 if (IS_ERR(crtc->fb)) {
6464 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n"); 6464 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6465 crtc->fb = old_fb; 6465 crtc->fb = old_fb;
6466 return false; 6466 return false;
6467 } 6467 }
6468 6468
6469 if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) { 6469 if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
6470 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n"); 6470 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6471 if (old->release_fb) 6471 if (old->release_fb)
6472 old->release_fb->funcs->destroy(old->release_fb); 6472 old->release_fb->funcs->destroy(old->release_fb);
6473 crtc->fb = old_fb; 6473 crtc->fb = old_fb;
6474 return false; 6474 return false;
6475 } 6475 }
6476 6476
6477 /* let the connector get through one full cycle before testing */ 6477 /* let the connector get through one full cycle before testing */
6478 intel_wait_for_vblank(dev, intel_crtc->pipe); 6478 intel_wait_for_vblank(dev, intel_crtc->pipe);
6479 6479
6480 return true; 6480 return true;
6481 } 6481 }
6482 6482
6483 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder, 6483 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
6484 struct drm_connector *connector, 6484 struct drm_connector *connector,
6485 struct intel_load_detect_pipe *old) 6485 struct intel_load_detect_pipe *old)
6486 { 6486 {
6487 struct drm_encoder *encoder = &intel_encoder->base; 6487 struct drm_encoder *encoder = &intel_encoder->base;
6488 struct drm_device *dev = encoder->dev; 6488 struct drm_device *dev = encoder->dev;
6489 struct drm_crtc *crtc = encoder->crtc; 6489 struct drm_crtc *crtc = encoder->crtc;
6490 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private; 6490 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
6491 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private; 6491 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
6492 6492
6493 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", 6493 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6494 connector->base.id, drm_get_connector_name(connector), 6494 connector->base.id, drm_get_connector_name(connector),
6495 encoder->base.id, drm_get_encoder_name(encoder)); 6495 encoder->base.id, drm_get_encoder_name(encoder));
6496 6496
6497 if (old->load_detect_temp) { 6497 if (old->load_detect_temp) {
6498 connector->encoder = NULL; 6498 connector->encoder = NULL;
6499 drm_helper_disable_unused_functions(dev); 6499 drm_helper_disable_unused_functions(dev);
6500 6500
6501 if (old->release_fb) 6501 if (old->release_fb)
6502 old->release_fb->funcs->destroy(old->release_fb); 6502 old->release_fb->funcs->destroy(old->release_fb);
6503 6503
6504 return; 6504 return;
6505 } 6505 }
6506 6506
6507 /* Switch crtc and encoder back off if necessary */ 6507 /* Switch crtc and encoder back off if necessary */
6508 if (old->dpms_mode != DRM_MODE_DPMS_ON) { 6508 if (old->dpms_mode != DRM_MODE_DPMS_ON) {
6509 encoder_funcs->dpms(encoder, old->dpms_mode); 6509 encoder_funcs->dpms(encoder, old->dpms_mode);
6510 crtc_funcs->dpms(crtc, old->dpms_mode); 6510 crtc_funcs->dpms(crtc, old->dpms_mode);
6511 } 6511 }
6512 } 6512 }
6513 6513
6514 /* Returns the clock of the currently programmed mode of the given pipe. */ 6514 /* Returns the clock of the currently programmed mode of the given pipe. */
6515 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc) 6515 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6516 { 6516 {
6517 struct drm_i915_private *dev_priv = dev->dev_private; 6517 struct drm_i915_private *dev_priv = dev->dev_private;
6518 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 6518 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6519 int pipe = intel_crtc->pipe; 6519 int pipe = intel_crtc->pipe;
6520 u32 dpll = I915_READ(DPLL(pipe)); 6520 u32 dpll = I915_READ(DPLL(pipe));
6521 u32 fp; 6521 u32 fp;
6522 intel_clock_t clock; 6522 intel_clock_t clock;
6523 6523
6524 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) 6524 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6525 fp = I915_READ(FP0(pipe)); 6525 fp = I915_READ(FP0(pipe));
6526 else 6526 else
6527 fp = I915_READ(FP1(pipe)); 6527 fp = I915_READ(FP1(pipe));
6528 6528
6529 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; 6529 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6530 if (IS_PINEVIEW(dev)) { 6530 if (IS_PINEVIEW(dev)) {
6531 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1; 6531 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6532 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT; 6532 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6533 } else { 6533 } else {
6534 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; 6534 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6535 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; 6535 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6536 } 6536 }
6537 6537
6538 if (!IS_GEN2(dev)) { 6538 if (!IS_GEN2(dev)) {
6539 if (IS_PINEVIEW(dev)) 6539 if (IS_PINEVIEW(dev))
6540 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >> 6540 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6541 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW); 6541 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6542 else 6542 else
6543 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >> 6543 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6544 DPLL_FPA01_P1_POST_DIV_SHIFT); 6544 DPLL_FPA01_P1_POST_DIV_SHIFT);
6545 6545
6546 switch (dpll & DPLL_MODE_MASK) { 6546 switch (dpll & DPLL_MODE_MASK) {
6547 case DPLLB_MODE_DAC_SERIAL: 6547 case DPLLB_MODE_DAC_SERIAL:
6548 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ? 6548 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6549 5 : 10; 6549 5 : 10;
6550 break; 6550 break;
6551 case DPLLB_MODE_LVDS: 6551 case DPLLB_MODE_LVDS:
6552 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ? 6552 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6553 7 : 14; 6553 7 : 14;
6554 break; 6554 break;
6555 default: 6555 default:
6556 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed " 6556 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6557 "mode\n", (int)(dpll & DPLL_MODE_MASK)); 6557 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6558 return 0; 6558 return 0;
6559 } 6559 }
6560 6560
6561 /* XXX: Handle the 100Mhz refclk */ 6561 /* XXX: Handle the 100Mhz refclk */
6562 intel_clock(dev, 96000, &clock); 6562 intel_clock(dev, 96000, &clock);
6563 } else { 6563 } else {
6564 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN); 6564 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6565 6565
6566 if (is_lvds) { 6566 if (is_lvds) {
6567 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> 6567 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6568 DPLL_FPA01_P1_POST_DIV_SHIFT); 6568 DPLL_FPA01_P1_POST_DIV_SHIFT);
6569 clock.p2 = 14; 6569 clock.p2 = 14;
6570 6570
6571 if ((dpll & PLL_REF_INPUT_MASK) == 6571 if ((dpll & PLL_REF_INPUT_MASK) ==
6572 PLLB_REF_INPUT_SPREADSPECTRUMIN) { 6572 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6573 /* XXX: might not be 66MHz */ 6573 /* XXX: might not be 66MHz */
6574 intel_clock(dev, 66000, &clock); 6574 intel_clock(dev, 66000, &clock);
6575 } else 6575 } else
6576 intel_clock(dev, 48000, &clock); 6576 intel_clock(dev, 48000, &clock);
6577 } else { 6577 } else {
6578 if (dpll & PLL_P1_DIVIDE_BY_TWO) 6578 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6579 clock.p1 = 2; 6579 clock.p1 = 2;
6580 else { 6580 else {
6581 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >> 6581 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6582 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; 6582 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6583 } 6583 }
6584 if (dpll & PLL_P2_DIVIDE_BY_4) 6584 if (dpll & PLL_P2_DIVIDE_BY_4)
6585 clock.p2 = 4; 6585 clock.p2 = 4;
6586 else 6586 else
6587 clock.p2 = 2; 6587 clock.p2 = 2;
6588 6588
6589 intel_clock(dev, 48000, &clock); 6589 intel_clock(dev, 48000, &clock);
6590 } 6590 }
6591 } 6591 }
6592 6592
6593 /* XXX: It would be nice to validate the clocks, but we can't reuse 6593 /* XXX: It would be nice to validate the clocks, but we can't reuse
6594 * i830PllIsValid() because it relies on the xf86_config connector 6594 * i830PllIsValid() because it relies on the xf86_config connector
6595 * configuration being accurate, which it isn't necessarily. 6595 * configuration being accurate, which it isn't necessarily.
6596 */ 6596 */
6597 6597
6598 return clock.dot; 6598 return clock.dot;
6599 } 6599 }
6600 6600
6601 /** Returns the currently programmed mode of the given pipe. */ 6601 /** Returns the currently programmed mode of the given pipe. */
6602 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev, 6602 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6603 struct drm_crtc *crtc) 6603 struct drm_crtc *crtc)
6604 { 6604 {
6605 struct drm_i915_private *dev_priv = dev->dev_private; 6605 struct drm_i915_private *dev_priv = dev->dev_private;
6606 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 6606 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6607 int pipe = intel_crtc->pipe; 6607 int pipe = intel_crtc->pipe;
6608 struct drm_display_mode *mode; 6608 struct drm_display_mode *mode;
6609 int htot = I915_READ(HTOTAL(pipe)); 6609 int htot = I915_READ(HTOTAL(pipe));
6610 int hsync = I915_READ(HSYNC(pipe)); 6610 int hsync = I915_READ(HSYNC(pipe));
6611 int vtot = I915_READ(VTOTAL(pipe)); 6611 int vtot = I915_READ(VTOTAL(pipe));
6612 int vsync = I915_READ(VSYNC(pipe)); 6612 int vsync = I915_READ(VSYNC(pipe));
6613 6613
6614 mode = kzalloc(sizeof(*mode), GFP_KERNEL); 6614 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6615 if (!mode) 6615 if (!mode)
6616 return NULL; 6616 return NULL;
6617 6617
6618 mode->clock = intel_crtc_clock_get(dev, crtc); 6618 mode->clock = intel_crtc_clock_get(dev, crtc);
6619 mode->hdisplay = (htot & 0xffff) + 1; 6619 mode->hdisplay = (htot & 0xffff) + 1;
6620 mode->htotal = ((htot & 0xffff0000) >> 16) + 1; 6620 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6621 mode->hsync_start = (hsync & 0xffff) + 1; 6621 mode->hsync_start = (hsync & 0xffff) + 1;
6622 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1; 6622 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6623 mode->vdisplay = (vtot & 0xffff) + 1; 6623 mode->vdisplay = (vtot & 0xffff) + 1;
6624 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1; 6624 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6625 mode->vsync_start = (vsync & 0xffff) + 1; 6625 mode->vsync_start = (vsync & 0xffff) + 1;
6626 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1; 6626 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6627 6627
6628 drm_mode_set_name(mode); 6628 drm_mode_set_name(mode);
6629 drm_mode_set_crtcinfo(mode, 0); 6629 drm_mode_set_crtcinfo(mode, 0);
6630 6630
6631 return mode; 6631 return mode;
6632 } 6632 }
6633 6633
6634 #define GPU_IDLE_TIMEOUT 500 /* ms */ 6634 #define GPU_IDLE_TIMEOUT 500 /* ms */
6635 6635
6636 /* When this timer fires, we've been idle for awhile */ 6636 /* When this timer fires, we've been idle for awhile */
6637 static void intel_gpu_idle_timer(unsigned long arg) 6637 static void intel_gpu_idle_timer(unsigned long arg)
6638 { 6638 {
6639 struct drm_device *dev = (struct drm_device *)arg; 6639 struct drm_device *dev = (struct drm_device *)arg;
6640 drm_i915_private_t *dev_priv = dev->dev_private; 6640 drm_i915_private_t *dev_priv = dev->dev_private;
6641 6641
6642 if (!list_empty(&dev_priv->mm.active_list)) { 6642 if (!list_empty(&dev_priv->mm.active_list)) {
6643 /* Still processing requests, so just re-arm the timer. */ 6643 /* Still processing requests, so just re-arm the timer. */
6644 mod_timer(&dev_priv->idle_timer, jiffies + 6644 mod_timer(&dev_priv->idle_timer, jiffies +
6645 msecs_to_jiffies(GPU_IDLE_TIMEOUT)); 6645 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6646 return; 6646 return;
6647 } 6647 }
6648 6648
6649 dev_priv->busy = false; 6649 dev_priv->busy = false;
6650 queue_work(dev_priv->wq, &dev_priv->idle_work); 6650 queue_work(dev_priv->wq, &dev_priv->idle_work);
6651 } 6651 }
6652 6652
6653 #define CRTC_IDLE_TIMEOUT 1000 /* ms */ 6653 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
6654 6654
6655 static void intel_crtc_idle_timer(unsigned long arg) 6655 static void intel_crtc_idle_timer(unsigned long arg)
6656 { 6656 {
6657 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg; 6657 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
6658 struct drm_crtc *crtc = &intel_crtc->base; 6658 struct drm_crtc *crtc = &intel_crtc->base;
6659 drm_i915_private_t *dev_priv = crtc->dev->dev_private; 6659 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
6660 struct intel_framebuffer *intel_fb; 6660 struct intel_framebuffer *intel_fb;
6661 6661
6662 intel_fb = to_intel_framebuffer(crtc->fb); 6662 intel_fb = to_intel_framebuffer(crtc->fb);
6663 if (intel_fb && intel_fb->obj->active) { 6663 if (intel_fb && intel_fb->obj->active) {
6664 /* The framebuffer is still being accessed by the GPU. */ 6664 /* The framebuffer is still being accessed by the GPU. */
6665 mod_timer(&intel_crtc->idle_timer, jiffies + 6665 mod_timer(&intel_crtc->idle_timer, jiffies +
6666 msecs_to_jiffies(CRTC_IDLE_TIMEOUT)); 6666 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6667 return; 6667 return;
6668 } 6668 }
6669 6669
6670 intel_crtc->busy = false; 6670 intel_crtc->busy = false;
6671 queue_work(dev_priv->wq, &dev_priv->idle_work); 6671 queue_work(dev_priv->wq, &dev_priv->idle_work);
6672 } 6672 }
6673 6673
6674 static void intel_increase_pllclock(struct drm_crtc *crtc) 6674 static void intel_increase_pllclock(struct drm_crtc *crtc)
6675 { 6675 {
6676 struct drm_device *dev = crtc->dev; 6676 struct drm_device *dev = crtc->dev;
6677 drm_i915_private_t *dev_priv = dev->dev_private; 6677 drm_i915_private_t *dev_priv = dev->dev_private;
6678 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 6678 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6679 int pipe = intel_crtc->pipe; 6679 int pipe = intel_crtc->pipe;
6680 int dpll_reg = DPLL(pipe); 6680 int dpll_reg = DPLL(pipe);
6681 int dpll; 6681 int dpll;
6682 6682
6683 if (HAS_PCH_SPLIT(dev)) 6683 if (HAS_PCH_SPLIT(dev))
6684 return; 6684 return;
6685 6685
6686 if (!dev_priv->lvds_downclock_avail) 6686 if (!dev_priv->lvds_downclock_avail)
6687 return; 6687 return;
6688 6688
6689 dpll = I915_READ(dpll_reg); 6689 dpll = I915_READ(dpll_reg);
6690 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) { 6690 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6691 DRM_DEBUG_DRIVER("upclocking LVDS\n"); 6691 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6692 6692
6693 /* Unlock panel regs */ 6693 /* Unlock panel regs */
6694 I915_WRITE(PP_CONTROL, 6694 I915_WRITE(PP_CONTROL,
6695 I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS); 6695 I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
6696 6696
6697 dpll &= ~DISPLAY_RATE_SELECT_FPA1; 6697 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6698 I915_WRITE(dpll_reg, dpll); 6698 I915_WRITE(dpll_reg, dpll);
6699 intel_wait_for_vblank(dev, pipe); 6699 intel_wait_for_vblank(dev, pipe);
6700 6700
6701 dpll = I915_READ(dpll_reg); 6701 dpll = I915_READ(dpll_reg);
6702 if (dpll & DISPLAY_RATE_SELECT_FPA1) 6702 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6703 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n"); 6703 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6704 6704
6705 /* ...and lock them again */ 6705 /* ...and lock them again */
6706 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3); 6706 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6707 } 6707 }
6708 6708
6709 /* Schedule downclock */ 6709 /* Schedule downclock */
6710 mod_timer(&intel_crtc->idle_timer, jiffies + 6710 mod_timer(&intel_crtc->idle_timer, jiffies +
6711 msecs_to_jiffies(CRTC_IDLE_TIMEOUT)); 6711 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6712 } 6712 }
6713 6713
6714 static void intel_decrease_pllclock(struct drm_crtc *crtc) 6714 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6715 { 6715 {
6716 struct drm_device *dev = crtc->dev; 6716 struct drm_device *dev = crtc->dev;
6717 drm_i915_private_t *dev_priv = dev->dev_private; 6717 drm_i915_private_t *dev_priv = dev->dev_private;
6718 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 6718 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6719 int pipe = intel_crtc->pipe; 6719 int pipe = intel_crtc->pipe;
6720 int dpll_reg = DPLL(pipe); 6720 int dpll_reg = DPLL(pipe);
6721 int dpll = I915_READ(dpll_reg); 6721 int dpll = I915_READ(dpll_reg);
6722 6722
6723 if (HAS_PCH_SPLIT(dev)) 6723 if (HAS_PCH_SPLIT(dev))
6724 return; 6724 return;
6725 6725
6726 if (!dev_priv->lvds_downclock_avail) 6726 if (!dev_priv->lvds_downclock_avail)
6727 return; 6727 return;
6728 6728
6729 /* 6729 /*
6730 * Since this is called by a timer, we should never get here in 6730 * Since this is called by a timer, we should never get here in
6731 * the manual case. 6731 * the manual case.
6732 */ 6732 */
6733 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) { 6733 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6734 DRM_DEBUG_DRIVER("downclocking LVDS\n"); 6734 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6735 6735
6736 /* Unlock panel regs */ 6736 /* Unlock panel regs */
6737 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | 6737 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
6738 PANEL_UNLOCK_REGS); 6738 PANEL_UNLOCK_REGS);
6739 6739
6740 dpll |= DISPLAY_RATE_SELECT_FPA1; 6740 dpll |= DISPLAY_RATE_SELECT_FPA1;
6741 I915_WRITE(dpll_reg, dpll); 6741 I915_WRITE(dpll_reg, dpll);
6742 intel_wait_for_vblank(dev, pipe); 6742 intel_wait_for_vblank(dev, pipe);
6743 dpll = I915_READ(dpll_reg); 6743 dpll = I915_READ(dpll_reg);
6744 if (!(dpll & DISPLAY_RATE_SELECT_FPA1)) 6744 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6745 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n"); 6745 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6746 6746
6747 /* ...and lock them again */ 6747 /* ...and lock them again */
6748 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3); 6748 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6749 } 6749 }
6750 6750
6751 } 6751 }
6752 6752
6753 /** 6753 /**
6754 * intel_idle_update - adjust clocks for idleness 6754 * intel_idle_update - adjust clocks for idleness
6755 * @work: work struct 6755 * @work: work struct
6756 * 6756 *
6757 * Either the GPU or display (or both) went idle. Check the busy status 6757 * Either the GPU or display (or both) went idle. Check the busy status
6758 * here and adjust the CRTC and GPU clocks as necessary. 6758 * here and adjust the CRTC and GPU clocks as necessary.
6759 */ 6759 */
6760 static void intel_idle_update(struct work_struct *work) 6760 static void intel_idle_update(struct work_struct *work)
6761 { 6761 {
6762 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t, 6762 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
6763 idle_work); 6763 idle_work);
6764 struct drm_device *dev = dev_priv->dev; 6764 struct drm_device *dev = dev_priv->dev;
6765 struct drm_crtc *crtc; 6765 struct drm_crtc *crtc;
6766 struct intel_crtc *intel_crtc; 6766 struct intel_crtc *intel_crtc;
6767 6767
6768 if (!i915_powersave) 6768 if (!i915_powersave)
6769 return; 6769 return;
6770 6770
6771 mutex_lock(&dev->struct_mutex); 6771 mutex_lock(&dev->struct_mutex);
6772 6772
6773 i915_update_gfx_val(dev_priv); 6773 i915_update_gfx_val(dev_priv);
6774 6774
6775 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 6775 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6776 /* Skip inactive CRTCs */ 6776 /* Skip inactive CRTCs */
6777 if (!crtc->fb) 6777 if (!crtc->fb)
6778 continue; 6778 continue;
6779 6779
6780 intel_crtc = to_intel_crtc(crtc); 6780 intel_crtc = to_intel_crtc(crtc);
6781 if (!intel_crtc->busy) 6781 if (!intel_crtc->busy)
6782 intel_decrease_pllclock(crtc); 6782 intel_decrease_pllclock(crtc);
6783 } 6783 }
6784 6784
6785 6785
6786 mutex_unlock(&dev->struct_mutex); 6786 mutex_unlock(&dev->struct_mutex);
6787 } 6787 }
6788 6788
6789 /** 6789 /**
6790 * intel_mark_busy - mark the GPU and possibly the display busy 6790 * intel_mark_busy - mark the GPU and possibly the display busy
6791 * @dev: drm device 6791 * @dev: drm device
6792 * @obj: object we're operating on 6792 * @obj: object we're operating on
6793 * 6793 *
6794 * Callers can use this function to indicate that the GPU is busy processing 6794 * Callers can use this function to indicate that the GPU is busy processing
6795 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout 6795 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
6796 * buffer), we'll also mark the display as busy, so we know to increase its 6796 * buffer), we'll also mark the display as busy, so we know to increase its
6797 * clock frequency. 6797 * clock frequency.
6798 */ 6798 */
6799 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj) 6799 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
6800 { 6800 {
6801 drm_i915_private_t *dev_priv = dev->dev_private; 6801 drm_i915_private_t *dev_priv = dev->dev_private;
6802 struct drm_crtc *crtc = NULL; 6802 struct drm_crtc *crtc = NULL;
6803 struct intel_framebuffer *intel_fb; 6803 struct intel_framebuffer *intel_fb;
6804 struct intel_crtc *intel_crtc; 6804 struct intel_crtc *intel_crtc;
6805 6805
6806 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 6806 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6807 return; 6807 return;
6808 6808
6809 if (!dev_priv->busy) 6809 if (!dev_priv->busy)
6810 dev_priv->busy = true; 6810 dev_priv->busy = true;
6811 else 6811 else
6812 mod_timer(&dev_priv->idle_timer, jiffies + 6812 mod_timer(&dev_priv->idle_timer, jiffies +
6813 msecs_to_jiffies(GPU_IDLE_TIMEOUT)); 6813 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6814 6814
6815 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 6815 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6816 if (!crtc->fb) 6816 if (!crtc->fb)
6817 continue; 6817 continue;
6818 6818
6819 intel_crtc = to_intel_crtc(crtc); 6819 intel_crtc = to_intel_crtc(crtc);
6820 intel_fb = to_intel_framebuffer(crtc->fb); 6820 intel_fb = to_intel_framebuffer(crtc->fb);
6821 if (intel_fb->obj == obj) { 6821 if (intel_fb->obj == obj) {
6822 if (!intel_crtc->busy) { 6822 if (!intel_crtc->busy) {
6823 /* Non-busy -> busy, upclock */ 6823 /* Non-busy -> busy, upclock */
6824 intel_increase_pllclock(crtc); 6824 intel_increase_pllclock(crtc);
6825 intel_crtc->busy = true; 6825 intel_crtc->busy = true;
6826 } else { 6826 } else {
6827 /* Busy -> busy, put off timer */ 6827 /* Busy -> busy, put off timer */
6828 mod_timer(&intel_crtc->idle_timer, jiffies + 6828 mod_timer(&intel_crtc->idle_timer, jiffies +
6829 msecs_to_jiffies(CRTC_IDLE_TIMEOUT)); 6829 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6830 } 6830 }
6831 } 6831 }
6832 } 6832 }
6833 } 6833 }
6834 6834
6835 static void intel_crtc_destroy(struct drm_crtc *crtc) 6835 static void intel_crtc_destroy(struct drm_crtc *crtc)
6836 { 6836 {
6837 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 6837 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6838 struct drm_device *dev = crtc->dev; 6838 struct drm_device *dev = crtc->dev;
6839 struct intel_unpin_work *work; 6839 struct intel_unpin_work *work;
6840 unsigned long flags; 6840 unsigned long flags;
6841 6841
6842 spin_lock_irqsave(&dev->event_lock, flags); 6842 spin_lock_irqsave(&dev->event_lock, flags);
6843 work = intel_crtc->unpin_work; 6843 work = intel_crtc->unpin_work;
6844 intel_crtc->unpin_work = NULL; 6844 intel_crtc->unpin_work = NULL;
6845 spin_unlock_irqrestore(&dev->event_lock, flags); 6845 spin_unlock_irqrestore(&dev->event_lock, flags);
6846 6846
6847 if (work) { 6847 if (work) {
6848 cancel_work_sync(&work->work); 6848 cancel_work_sync(&work->work);
6849 kfree(work); 6849 kfree(work);
6850 } 6850 }
6851 6851
6852 drm_crtc_cleanup(crtc); 6852 drm_crtc_cleanup(crtc);
6853 6853
6854 kfree(intel_crtc); 6854 kfree(intel_crtc);
6855 } 6855 }
6856 6856
6857 static void intel_unpin_work_fn(struct work_struct *__work) 6857 static void intel_unpin_work_fn(struct work_struct *__work)
6858 { 6858 {
6859 struct intel_unpin_work *work = 6859 struct intel_unpin_work *work =
6860 container_of(__work, struct intel_unpin_work, work); 6860 container_of(__work, struct intel_unpin_work, work);
6861 6861
6862 mutex_lock(&work->dev->struct_mutex); 6862 mutex_lock(&work->dev->struct_mutex);
6863 i915_gem_object_unpin(work->old_fb_obj); 6863 i915_gem_object_unpin(work->old_fb_obj);
6864 drm_gem_object_unreference(&work->pending_flip_obj->base); 6864 drm_gem_object_unreference(&work->pending_flip_obj->base);
6865 drm_gem_object_unreference(&work->old_fb_obj->base); 6865 drm_gem_object_unreference(&work->old_fb_obj->base);
6866 6866
6867 intel_update_fbc(work->dev); 6867 intel_update_fbc(work->dev);
6868 mutex_unlock(&work->dev->struct_mutex); 6868 mutex_unlock(&work->dev->struct_mutex);
6869 kfree(work); 6869 kfree(work);
6870 } 6870 }
6871 6871
6872 static void do_intel_finish_page_flip(struct drm_device *dev, 6872 static void do_intel_finish_page_flip(struct drm_device *dev,
6873 struct drm_crtc *crtc) 6873 struct drm_crtc *crtc)
6874 { 6874 {
6875 drm_i915_private_t *dev_priv = dev->dev_private; 6875 drm_i915_private_t *dev_priv = dev->dev_private;
6876 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 6876 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6877 struct intel_unpin_work *work; 6877 struct intel_unpin_work *work;
6878 struct drm_i915_gem_object *obj; 6878 struct drm_i915_gem_object *obj;
6879 struct drm_pending_vblank_event *e; 6879 struct drm_pending_vblank_event *e;
6880 struct timeval tnow, tvbl; 6880 struct timeval tnow, tvbl;
6881 unsigned long flags; 6881 unsigned long flags;
6882 6882
6883 /* Ignore early vblank irqs */ 6883 /* Ignore early vblank irqs */
6884 if (intel_crtc == NULL) 6884 if (intel_crtc == NULL)
6885 return; 6885 return;
6886 6886
6887 do_gettimeofday(&tnow); 6887 do_gettimeofday(&tnow);
6888 6888
6889 spin_lock_irqsave(&dev->event_lock, flags); 6889 spin_lock_irqsave(&dev->event_lock, flags);
6890 work = intel_crtc->unpin_work; 6890 work = intel_crtc->unpin_work;
6891 if (work == NULL || !work->pending) { 6891 if (work == NULL || !work->pending) {
6892 spin_unlock_irqrestore(&dev->event_lock, flags); 6892 spin_unlock_irqrestore(&dev->event_lock, flags);
6893 return; 6893 return;
6894 } 6894 }
6895 6895
6896 intel_crtc->unpin_work = NULL; 6896 intel_crtc->unpin_work = NULL;
6897 6897
6898 if (work->event) { 6898 if (work->event) {
6899 e = work->event; 6899 e = work->event;
6900 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl); 6900 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6901 6901
6902 /* Called before vblank count and timestamps have 6902 /* Called before vblank count and timestamps have
6903 * been updated for the vblank interval of flip 6903 * been updated for the vblank interval of flip
6904 * completion? Need to increment vblank count and 6904 * completion? Need to increment vblank count and
6905 * add one videorefresh duration to returned timestamp 6905 * add one videorefresh duration to returned timestamp
6906 * to account for this. We assume this happened if we 6906 * to account for this. We assume this happened if we
6907 * get called over 0.9 frame durations after the last 6907 * get called over 0.9 frame durations after the last
6908 * timestamped vblank. 6908 * timestamped vblank.
6909 * 6909 *
6910 * This calculation can not be used with vrefresh rates 6910 * This calculation can not be used with vrefresh rates
6911 * below 5Hz (10Hz to be on the safe side) without 6911 * below 5Hz (10Hz to be on the safe side) without
6912 * promoting to 64 integers. 6912 * promoting to 64 integers.
6913 */ 6913 */
6914 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) > 6914 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
6915 9 * crtc->framedur_ns) { 6915 9 * crtc->framedur_ns) {
6916 e->event.sequence++; 6916 e->event.sequence++;
6917 tvbl = ns_to_timeval(timeval_to_ns(&tvbl) + 6917 tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
6918 crtc->framedur_ns); 6918 crtc->framedur_ns);
6919 } 6919 }
6920 6920
6921 e->event.tv_sec = tvbl.tv_sec; 6921 e->event.tv_sec = tvbl.tv_sec;
6922 e->event.tv_usec = tvbl.tv_usec; 6922 e->event.tv_usec = tvbl.tv_usec;
6923 6923
6924 list_add_tail(&e->base.link, 6924 list_add_tail(&e->base.link,
6925 &e->base.file_priv->event_list); 6925 &e->base.file_priv->event_list);
6926 wake_up_interruptible(&e->base.file_priv->event_wait); 6926 wake_up_interruptible(&e->base.file_priv->event_wait);
6927 } 6927 }
6928 6928
6929 drm_vblank_put(dev, intel_crtc->pipe); 6929 drm_vblank_put(dev, intel_crtc->pipe);
6930 6930
6931 spin_unlock_irqrestore(&dev->event_lock, flags); 6931 spin_unlock_irqrestore(&dev->event_lock, flags);
6932 6932
6933 obj = work->old_fb_obj; 6933 obj = work->old_fb_obj;
6934 6934
6935 atomic_clear_mask(1 << intel_crtc->plane, 6935 atomic_clear_mask(1 << intel_crtc->plane,
6936 &obj->pending_flip.counter); 6936 &obj->pending_flip.counter);
6937 if (atomic_read(&obj->pending_flip) == 0) 6937 if (atomic_read(&obj->pending_flip) == 0)
6938 wake_up(&dev_priv->pending_flip_queue); 6938 wake_up(&dev_priv->pending_flip_queue);
6939 6939
6940 schedule_work(&work->work); 6940 schedule_work(&work->work);
6941 6941
6942 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj); 6942 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6943 } 6943 }
6944 6944
6945 void intel_finish_page_flip(struct drm_device *dev, int pipe) 6945 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6946 { 6946 {
6947 drm_i915_private_t *dev_priv = dev->dev_private; 6947 drm_i915_private_t *dev_priv = dev->dev_private;
6948 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; 6948 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6949 6949
6950 do_intel_finish_page_flip(dev, crtc); 6950 do_intel_finish_page_flip(dev, crtc);
6951 } 6951 }
6952 6952
6953 void intel_finish_page_flip_plane(struct drm_device *dev, int plane) 6953 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6954 { 6954 {
6955 drm_i915_private_t *dev_priv = dev->dev_private; 6955 drm_i915_private_t *dev_priv = dev->dev_private;
6956 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane]; 6956 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6957 6957
6958 do_intel_finish_page_flip(dev, crtc); 6958 do_intel_finish_page_flip(dev, crtc);
6959 } 6959 }
6960 6960
6961 void intel_prepare_page_flip(struct drm_device *dev, int plane) 6961 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6962 { 6962 {
6963 drm_i915_private_t *dev_priv = dev->dev_private; 6963 drm_i915_private_t *dev_priv = dev->dev_private;
6964 struct intel_crtc *intel_crtc = 6964 struct intel_crtc *intel_crtc =
6965 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]); 6965 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6966 unsigned long flags; 6966 unsigned long flags;
6967 6967
6968 spin_lock_irqsave(&dev->event_lock, flags); 6968 spin_lock_irqsave(&dev->event_lock, flags);
6969 if (intel_crtc->unpin_work) { 6969 if (intel_crtc->unpin_work) {
6970 if ((++intel_crtc->unpin_work->pending) > 1) 6970 if ((++intel_crtc->unpin_work->pending) > 1)
6971 DRM_ERROR("Prepared flip multiple times\n"); 6971 DRM_ERROR("Prepared flip multiple times\n");
6972 } else { 6972 } else {
6973 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n"); 6973 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6974 } 6974 }
6975 spin_unlock_irqrestore(&dev->event_lock, flags); 6975 spin_unlock_irqrestore(&dev->event_lock, flags);
6976 } 6976 }
6977 6977
6978 static int intel_gen2_queue_flip(struct drm_device *dev, 6978 static int intel_gen2_queue_flip(struct drm_device *dev,
6979 struct drm_crtc *crtc, 6979 struct drm_crtc *crtc,
6980 struct drm_framebuffer *fb, 6980 struct drm_framebuffer *fb,
6981 struct drm_i915_gem_object *obj) 6981 struct drm_i915_gem_object *obj)
6982 { 6982 {
6983 struct drm_i915_private *dev_priv = dev->dev_private; 6983 struct drm_i915_private *dev_priv = dev->dev_private;
6984 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 6984 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6985 unsigned long offset; 6985 unsigned long offset;
6986 u32 flip_mask; 6986 u32 flip_mask;
6987 int ret; 6987 int ret;
6988 6988
6989 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv)); 6989 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6990 if (ret) 6990 if (ret)
6991 goto out; 6991 goto out;
6992 6992
6993 /* Offset into the new buffer for cases of shared fbs between CRTCs */ 6993 /* Offset into the new buffer for cases of shared fbs between CRTCs */
6994 offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8; 6994 offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
6995 6995
6996 ret = BEGIN_LP_RING(6); 6996 ret = BEGIN_LP_RING(6);
6997 if (ret) 6997 if (ret)
6998 goto out; 6998 goto out;
6999 6999
7000 /* Can't queue multiple flips, so wait for the previous 7000 /* Can't queue multiple flips, so wait for the previous
7001 * one to finish before executing the next. 7001 * one to finish before executing the next.
7002 */ 7002 */
7003 if (intel_crtc->plane) 7003 if (intel_crtc->plane)
7004 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP; 7004 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7005 else 7005 else
7006 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP; 7006 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7007 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask); 7007 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7008 OUT_RING(MI_NOOP); 7008 OUT_RING(MI_NOOP);
7009 OUT_RING(MI_DISPLAY_FLIP | 7009 OUT_RING(MI_DISPLAY_FLIP |
7010 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane)); 7010 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7011 OUT_RING(fb->pitch); 7011 OUT_RING(fb->pitch);
7012 OUT_RING(obj->gtt_offset + offset); 7012 OUT_RING(obj->gtt_offset + offset);
7013 OUT_RING(MI_NOOP); 7013 OUT_RING(MI_NOOP);
7014 ADVANCE_LP_RING(); 7014 ADVANCE_LP_RING();
7015 out: 7015 out:
7016 return ret; 7016 return ret;
7017 } 7017 }
7018 7018
7019 static int intel_gen3_queue_flip(struct drm_device *dev, 7019 static int intel_gen3_queue_flip(struct drm_device *dev,
7020 struct drm_crtc *crtc, 7020 struct drm_crtc *crtc,
7021 struct drm_framebuffer *fb, 7021 struct drm_framebuffer *fb,
7022 struct drm_i915_gem_object *obj) 7022 struct drm_i915_gem_object *obj)
7023 { 7023 {
7024 struct drm_i915_private *dev_priv = dev->dev_private; 7024 struct drm_i915_private *dev_priv = dev->dev_private;
7025 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 7025 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7026 unsigned long offset; 7026 unsigned long offset;
7027 u32 flip_mask; 7027 u32 flip_mask;
7028 int ret; 7028 int ret;
7029 7029
7030 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv)); 7030 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7031 if (ret) 7031 if (ret)
7032 goto out; 7032 goto out;
7033 7033
7034 /* Offset into the new buffer for cases of shared fbs between CRTCs */ 7034 /* Offset into the new buffer for cases of shared fbs between CRTCs */
7035 offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8; 7035 offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
7036 7036
7037 ret = BEGIN_LP_RING(6); 7037 ret = BEGIN_LP_RING(6);
7038 if (ret) 7038 if (ret)
7039 goto out; 7039 goto out;
7040 7040
7041 if (intel_crtc->plane) 7041 if (intel_crtc->plane)
7042 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP; 7042 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7043 else 7043 else
7044 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP; 7044 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7045 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask); 7045 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7046 OUT_RING(MI_NOOP); 7046 OUT_RING(MI_NOOP);
7047 OUT_RING(MI_DISPLAY_FLIP_I915 | 7047 OUT_RING(MI_DISPLAY_FLIP_I915 |
7048 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane)); 7048 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7049 OUT_RING(fb->pitch); 7049 OUT_RING(fb->pitch);
7050 OUT_RING(obj->gtt_offset + offset); 7050 OUT_RING(obj->gtt_offset + offset);
7051 OUT_RING(MI_NOOP); 7051 OUT_RING(MI_NOOP);
7052 7052
7053 ADVANCE_LP_RING(); 7053 ADVANCE_LP_RING();
7054 out: 7054 out:
7055 return ret; 7055 return ret;
7056 } 7056 }
7057 7057
7058 static int intel_gen4_queue_flip(struct drm_device *dev, 7058 static int intel_gen4_queue_flip(struct drm_device *dev,
7059 struct drm_crtc *crtc, 7059 struct drm_crtc *crtc,
7060 struct drm_framebuffer *fb, 7060 struct drm_framebuffer *fb,
7061 struct drm_i915_gem_object *obj) 7061 struct drm_i915_gem_object *obj)
7062 { 7062 {
7063 struct drm_i915_private *dev_priv = dev->dev_private; 7063 struct drm_i915_private *dev_priv = dev->dev_private;
7064 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 7064 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7065 uint32_t pf, pipesrc; 7065 uint32_t pf, pipesrc;
7066 int ret; 7066 int ret;
7067 7067
7068 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv)); 7068 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7069 if (ret) 7069 if (ret)
7070 goto out; 7070 goto out;
7071 7071
7072 ret = BEGIN_LP_RING(4); 7072 ret = BEGIN_LP_RING(4);
7073 if (ret) 7073 if (ret)
7074 goto out; 7074 goto out;
7075 7075
7076 /* i965+ uses the linear or tiled offsets from the 7076 /* i965+ uses the linear or tiled offsets from the
7077 * Display Registers (which do not change across a page-flip) 7077 * Display Registers (which do not change across a page-flip)
7078 * so we need only reprogram the base address. 7078 * so we need only reprogram the base address.
7079 */ 7079 */
7080 OUT_RING(MI_DISPLAY_FLIP | 7080 OUT_RING(MI_DISPLAY_FLIP |
7081 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane)); 7081 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7082 OUT_RING(fb->pitch); 7082 OUT_RING(fb->pitch);
7083 OUT_RING(obj->gtt_offset | obj->tiling_mode); 7083 OUT_RING(obj->gtt_offset | obj->tiling_mode);
7084 7084
7085 /* XXX Enabling the panel-fitter across page-flip is so far 7085 /* XXX Enabling the panel-fitter across page-flip is so far
7086 * untested on non-native modes, so ignore it for now. 7086 * untested on non-native modes, so ignore it for now.
7087 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE; 7087 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7088 */ 7088 */
7089 pf = 0; 7089 pf = 0;
7090 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff; 7090 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7091 OUT_RING(pf | pipesrc); 7091 OUT_RING(pf | pipesrc);
7092 ADVANCE_LP_RING(); 7092 ADVANCE_LP_RING();
7093 out: 7093 out:
7094 return ret; 7094 return ret;
7095 } 7095 }
7096 7096
7097 static int intel_gen6_queue_flip(struct drm_device *dev, 7097 static int intel_gen6_queue_flip(struct drm_device *dev,
7098 struct drm_crtc *crtc, 7098 struct drm_crtc *crtc,
7099 struct drm_framebuffer *fb, 7099 struct drm_framebuffer *fb,
7100 struct drm_i915_gem_object *obj) 7100 struct drm_i915_gem_object *obj)
7101 { 7101 {
7102 struct drm_i915_private *dev_priv = dev->dev_private; 7102 struct drm_i915_private *dev_priv = dev->dev_private;
7103 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 7103 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7104 uint32_t pf, pipesrc; 7104 uint32_t pf, pipesrc;
7105 int ret; 7105 int ret;
7106 7106
7107 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv)); 7107 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7108 if (ret) 7108 if (ret)
7109 goto out; 7109 goto out;
7110 7110
7111 ret = BEGIN_LP_RING(4); 7111 ret = BEGIN_LP_RING(4);
7112 if (ret) 7112 if (ret)
7113 goto out; 7113 goto out;
7114 7114
7115 OUT_RING(MI_DISPLAY_FLIP | 7115 OUT_RING(MI_DISPLAY_FLIP |
7116 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane)); 7116 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7117 OUT_RING(fb->pitch | obj->tiling_mode); 7117 OUT_RING(fb->pitch | obj->tiling_mode);
7118 OUT_RING(obj->gtt_offset); 7118 OUT_RING(obj->gtt_offset);
7119 7119
7120 pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE; 7120 pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7121 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff; 7121 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7122 OUT_RING(pf | pipesrc); 7122 OUT_RING(pf | pipesrc);
7123 ADVANCE_LP_RING(); 7123 ADVANCE_LP_RING();
7124 out: 7124 out:
7125 return ret; 7125 return ret;
7126 } 7126 }
7127 7127
7128 /* 7128 /*
7129 * On gen7 we currently use the blit ring because (in early silicon at least) 7129 * On gen7 we currently use the blit ring because (in early silicon at least)
7130 * the render ring doesn't give us interrpts for page flip completion, which 7130 * the render ring doesn't give us interrpts for page flip completion, which
7131 * means clients will hang after the first flip is queued. Fortunately the 7131 * means clients will hang after the first flip is queued. Fortunately the
7132 * blit ring generates interrupts properly, so use it instead. 7132 * blit ring generates interrupts properly, so use it instead.
7133 */ 7133 */
7134 static int intel_gen7_queue_flip(struct drm_device *dev, 7134 static int intel_gen7_queue_flip(struct drm_device *dev,
7135 struct drm_crtc *crtc, 7135 struct drm_crtc *crtc,
7136 struct drm_framebuffer *fb, 7136 struct drm_framebuffer *fb,
7137 struct drm_i915_gem_object *obj) 7137 struct drm_i915_gem_object *obj)
7138 { 7138 {
7139 struct drm_i915_private *dev_priv = dev->dev_private; 7139 struct drm_i915_private *dev_priv = dev->dev_private;
7140 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 7140 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7141 struct intel_ring_buffer *ring = &dev_priv->ring[BCS]; 7141 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7142 int ret; 7142 int ret;
7143 7143
7144 ret = intel_pin_and_fence_fb_obj(dev, obj, ring); 7144 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7145 if (ret) 7145 if (ret)
7146 goto out; 7146 goto out;
7147 7147
7148 ret = intel_ring_begin(ring, 4); 7148 ret = intel_ring_begin(ring, 4);
7149 if (ret) 7149 if (ret)
7150 goto out; 7150 goto out;
7151 7151
7152 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19)); 7152 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
7153 intel_ring_emit(ring, (fb->pitch | obj->tiling_mode)); 7153 intel_ring_emit(ring, (fb->pitch | obj->tiling_mode));
7154 intel_ring_emit(ring, (obj->gtt_offset)); 7154 intel_ring_emit(ring, (obj->gtt_offset));
7155 intel_ring_emit(ring, (MI_NOOP)); 7155 intel_ring_emit(ring, (MI_NOOP));
7156 intel_ring_advance(ring); 7156 intel_ring_advance(ring);
7157 out: 7157 out:
7158 return ret; 7158 return ret;
7159 } 7159 }
7160 7160
7161 static int intel_default_queue_flip(struct drm_device *dev, 7161 static int intel_default_queue_flip(struct drm_device *dev,
7162 struct drm_crtc *crtc, 7162 struct drm_crtc *crtc,
7163 struct drm_framebuffer *fb, 7163 struct drm_framebuffer *fb,
7164 struct drm_i915_gem_object *obj) 7164 struct drm_i915_gem_object *obj)
7165 { 7165 {
7166 return -ENODEV; 7166 return -ENODEV;
7167 } 7167 }
7168 7168
7169 static int intel_crtc_page_flip(struct drm_crtc *crtc, 7169 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7170 struct drm_framebuffer *fb, 7170 struct drm_framebuffer *fb,
7171 struct drm_pending_vblank_event *event) 7171 struct drm_pending_vblank_event *event)
7172 { 7172 {
7173 struct drm_device *dev = crtc->dev; 7173 struct drm_device *dev = crtc->dev;
7174 struct drm_i915_private *dev_priv = dev->dev_private; 7174 struct drm_i915_private *dev_priv = dev->dev_private;
7175 struct intel_framebuffer *intel_fb; 7175 struct intel_framebuffer *intel_fb;
7176 struct drm_i915_gem_object *obj; 7176 struct drm_i915_gem_object *obj;
7177 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 7177 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7178 struct intel_unpin_work *work; 7178 struct intel_unpin_work *work;
7179 unsigned long flags; 7179 unsigned long flags;
7180 int ret; 7180 int ret;
7181 7181
7182 work = kzalloc(sizeof *work, GFP_KERNEL); 7182 work = kzalloc(sizeof *work, GFP_KERNEL);
7183 if (work == NULL) 7183 if (work == NULL)
7184 return -ENOMEM; 7184 return -ENOMEM;
7185 7185
7186 work->event = event; 7186 work->event = event;
7187 work->dev = crtc->dev; 7187 work->dev = crtc->dev;
7188 intel_fb = to_intel_framebuffer(crtc->fb); 7188 intel_fb = to_intel_framebuffer(crtc->fb);
7189 work->old_fb_obj = intel_fb->obj; 7189 work->old_fb_obj = intel_fb->obj;
7190 INIT_WORK(&work->work, intel_unpin_work_fn); 7190 INIT_WORK(&work->work, intel_unpin_work_fn);
7191 7191
7192 ret = drm_vblank_get(dev, intel_crtc->pipe);
7193 if (ret)
7194 goto free_work;
7195
7192 /* We borrow the event spin lock for protecting unpin_work */ 7196 /* We borrow the event spin lock for protecting unpin_work */
7193 spin_lock_irqsave(&dev->event_lock, flags); 7197 spin_lock_irqsave(&dev->event_lock, flags);
7194 if (intel_crtc->unpin_work) { 7198 if (intel_crtc->unpin_work) {
7195 spin_unlock_irqrestore(&dev->event_lock, flags); 7199 spin_unlock_irqrestore(&dev->event_lock, flags);
7196 kfree(work); 7200 kfree(work);
7201 drm_vblank_put(dev, intel_crtc->pipe);
7197 7202
7198 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n"); 7203 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7199 return -EBUSY; 7204 return -EBUSY;
7200 } 7205 }
7201 intel_crtc->unpin_work = work; 7206 intel_crtc->unpin_work = work;
7202 spin_unlock_irqrestore(&dev->event_lock, flags); 7207 spin_unlock_irqrestore(&dev->event_lock, flags);
7203 7208
7204 intel_fb = to_intel_framebuffer(fb); 7209 intel_fb = to_intel_framebuffer(fb);
7205 obj = intel_fb->obj; 7210 obj = intel_fb->obj;
7206 7211
7207 mutex_lock(&dev->struct_mutex); 7212 mutex_lock(&dev->struct_mutex);
7208 7213
7209 /* Reference the objects for the scheduled work. */ 7214 /* Reference the objects for the scheduled work. */
7210 drm_gem_object_reference(&work->old_fb_obj->base); 7215 drm_gem_object_reference(&work->old_fb_obj->base);
7211 drm_gem_object_reference(&obj->base); 7216 drm_gem_object_reference(&obj->base);
7212 7217
7213 crtc->fb = fb; 7218 crtc->fb = fb;
7214 7219
7215 ret = drm_vblank_get(dev, intel_crtc->pipe);
7216 if (ret)
7217 goto cleanup_objs;
7218
7219 work->pending_flip_obj = obj; 7220 work->pending_flip_obj = obj;
7220 7221
7221 work->enable_stall_check = true; 7222 work->enable_stall_check = true;
7222 7223
7223 /* Block clients from rendering to the new back buffer until 7224 /* Block clients from rendering to the new back buffer until
7224 * the flip occurs and the object is no longer visible. 7225 * the flip occurs and the object is no longer visible.
7225 */ 7226 */
7226 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip); 7227 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7227 7228
7228 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj); 7229 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7229 if (ret) 7230 if (ret)
7230 goto cleanup_pending; 7231 goto cleanup_pending;
7231 7232
7232 intel_disable_fbc(dev); 7233 intel_disable_fbc(dev);
7233 mutex_unlock(&dev->struct_mutex); 7234 mutex_unlock(&dev->struct_mutex);
7234 7235
7235 trace_i915_flip_request(intel_crtc->plane, obj); 7236 trace_i915_flip_request(intel_crtc->plane, obj);
7236 7237
7237 return 0; 7238 return 0;
7238 7239
7239 cleanup_pending: 7240 cleanup_pending:
7240 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip); 7241 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7241 cleanup_objs:
7242 drm_gem_object_unreference(&work->old_fb_obj->base); 7242 drm_gem_object_unreference(&work->old_fb_obj->base);
7243 drm_gem_object_unreference(&obj->base); 7243 drm_gem_object_unreference(&obj->base);
7244 mutex_unlock(&dev->struct_mutex); 7244 mutex_unlock(&dev->struct_mutex);
7245 7245
7246 spin_lock_irqsave(&dev->event_lock, flags); 7246 spin_lock_irqsave(&dev->event_lock, flags);
7247 intel_crtc->unpin_work = NULL; 7247 intel_crtc->unpin_work = NULL;
7248 spin_unlock_irqrestore(&dev->event_lock, flags); 7248 spin_unlock_irqrestore(&dev->event_lock, flags);
7249 7249
7250 drm_vblank_put(dev, intel_crtc->pipe);
7251 free_work:
7250 kfree(work); 7252 kfree(work);
7251 7253
7252 return ret; 7254 return ret;
7253 } 7255 }
7254 7256
7255 static void intel_sanitize_modesetting(struct drm_device *dev, 7257 static void intel_sanitize_modesetting(struct drm_device *dev,
7256 int pipe, int plane) 7258 int pipe, int plane)
7257 { 7259 {
7258 struct drm_i915_private *dev_priv = dev->dev_private; 7260 struct drm_i915_private *dev_priv = dev->dev_private;
7259 u32 reg, val; 7261 u32 reg, val;
7260 7262
7261 if (HAS_PCH_SPLIT(dev)) 7263 if (HAS_PCH_SPLIT(dev))
7262 return; 7264 return;
7263 7265
7264 /* Who knows what state these registers were left in by the BIOS or 7266 /* Who knows what state these registers were left in by the BIOS or
7265 * grub? 7267 * grub?
7266 * 7268 *
7267 * If we leave the registers in a conflicting state (e.g. with the 7269 * If we leave the registers in a conflicting state (e.g. with the
7268 * display plane reading from the other pipe than the one we intend 7270 * display plane reading from the other pipe than the one we intend
7269 * to use) then when we attempt to teardown the active mode, we will 7271 * to use) then when we attempt to teardown the active mode, we will
7270 * not disable the pipes and planes in the correct order -- leaving 7272 * not disable the pipes and planes in the correct order -- leaving
7271 * a plane reading from a disabled pipe and possibly leading to 7273 * a plane reading from a disabled pipe and possibly leading to
7272 * undefined behaviour. 7274 * undefined behaviour.
7273 */ 7275 */
7274 7276
7275 reg = DSPCNTR(plane); 7277 reg = DSPCNTR(plane);
7276 val = I915_READ(reg); 7278 val = I915_READ(reg);
7277 7279
7278 if ((val & DISPLAY_PLANE_ENABLE) == 0) 7280 if ((val & DISPLAY_PLANE_ENABLE) == 0)
7279 return; 7281 return;
7280 if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe) 7282 if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
7281 return; 7283 return;
7282 7284
7283 /* This display plane is active and attached to the other CPU pipe. */ 7285 /* This display plane is active and attached to the other CPU pipe. */
7284 pipe = !pipe; 7286 pipe = !pipe;
7285 7287
7286 /* Disable the plane and wait for it to stop reading from the pipe. */ 7288 /* Disable the plane and wait for it to stop reading from the pipe. */
7287 intel_disable_plane(dev_priv, plane, pipe); 7289 intel_disable_plane(dev_priv, plane, pipe);
7288 intel_disable_pipe(dev_priv, pipe); 7290 intel_disable_pipe(dev_priv, pipe);
7289 } 7291 }
7290 7292
7291 static void intel_crtc_reset(struct drm_crtc *crtc) 7293 static void intel_crtc_reset(struct drm_crtc *crtc)
7292 { 7294 {
7293 struct drm_device *dev = crtc->dev; 7295 struct drm_device *dev = crtc->dev;
7294 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 7296 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7295 7297
7296 /* Reset flags back to the 'unknown' status so that they 7298 /* Reset flags back to the 'unknown' status so that they
7297 * will be correctly set on the initial modeset. 7299 * will be correctly set on the initial modeset.
7298 */ 7300 */
7299 intel_crtc->dpms_mode = -1; 7301 intel_crtc->dpms_mode = -1;
7300 7302
7301 /* We need to fix up any BIOS configuration that conflicts with 7303 /* We need to fix up any BIOS configuration that conflicts with
7302 * our expectations. 7304 * our expectations.
7303 */ 7305 */
7304 intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane); 7306 intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
7305 } 7307 }
7306 7308
7307 static struct drm_crtc_helper_funcs intel_helper_funcs = { 7309 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7308 .dpms = intel_crtc_dpms, 7310 .dpms = intel_crtc_dpms,
7309 .mode_fixup = intel_crtc_mode_fixup, 7311 .mode_fixup = intel_crtc_mode_fixup,
7310 .mode_set = intel_crtc_mode_set, 7312 .mode_set = intel_crtc_mode_set,
7311 .mode_set_base = intel_pipe_set_base, 7313 .mode_set_base = intel_pipe_set_base,
7312 .mode_set_base_atomic = intel_pipe_set_base_atomic, 7314 .mode_set_base_atomic = intel_pipe_set_base_atomic,
7313 .load_lut = intel_crtc_load_lut, 7315 .load_lut = intel_crtc_load_lut,
7314 .disable = intel_crtc_disable, 7316 .disable = intel_crtc_disable,
7315 }; 7317 };
7316 7318
7317 static const struct drm_crtc_funcs intel_crtc_funcs = { 7319 static const struct drm_crtc_funcs intel_crtc_funcs = {
7318 .reset = intel_crtc_reset, 7320 .reset = intel_crtc_reset,
7319 .cursor_set = intel_crtc_cursor_set, 7321 .cursor_set = intel_crtc_cursor_set,
7320 .cursor_move = intel_crtc_cursor_move, 7322 .cursor_move = intel_crtc_cursor_move,
7321 .gamma_set = intel_crtc_gamma_set, 7323 .gamma_set = intel_crtc_gamma_set,
7322 .set_config = drm_crtc_helper_set_config, 7324 .set_config = drm_crtc_helper_set_config,
7323 .destroy = intel_crtc_destroy, 7325 .destroy = intel_crtc_destroy,
7324 .page_flip = intel_crtc_page_flip, 7326 .page_flip = intel_crtc_page_flip,
7325 }; 7327 };
7326 7328
7327 static void intel_crtc_init(struct drm_device *dev, int pipe) 7329 static void intel_crtc_init(struct drm_device *dev, int pipe)
7328 { 7330 {
7329 drm_i915_private_t *dev_priv = dev->dev_private; 7331 drm_i915_private_t *dev_priv = dev->dev_private;
7330 struct intel_crtc *intel_crtc; 7332 struct intel_crtc *intel_crtc;
7331 int i; 7333 int i;
7332 7334
7333 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL); 7335 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
7334 if (intel_crtc == NULL) 7336 if (intel_crtc == NULL)
7335 return; 7337 return;
7336 7338
7337 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs); 7339 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7338 7340
7339 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256); 7341 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
7340 for (i = 0; i < 256; i++) { 7342 for (i = 0; i < 256; i++) {
7341 intel_crtc->lut_r[i] = i; 7343 intel_crtc->lut_r[i] = i;
7342 intel_crtc->lut_g[i] = i; 7344 intel_crtc->lut_g[i] = i;
7343 intel_crtc->lut_b[i] = i; 7345 intel_crtc->lut_b[i] = i;
7344 } 7346 }
7345 7347
7346 /* Swap pipes & planes for FBC on pre-965 */ 7348 /* Swap pipes & planes for FBC on pre-965 */
7347 intel_crtc->pipe = pipe; 7349 intel_crtc->pipe = pipe;
7348 intel_crtc->plane = pipe; 7350 intel_crtc->plane = pipe;
7349 if (IS_MOBILE(dev) && IS_GEN3(dev)) { 7351 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
7350 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n"); 7352 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
7351 intel_crtc->plane = !pipe; 7353 intel_crtc->plane = !pipe;
7352 } 7354 }
7353 7355
7354 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) || 7356 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
7355 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL); 7357 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
7356 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base; 7358 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7357 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base; 7359 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7358 7360
7359 intel_crtc_reset(&intel_crtc->base); 7361 intel_crtc_reset(&intel_crtc->base);
7360 intel_crtc->active = true; /* force the pipe off on setup_init_config */ 7362 intel_crtc->active = true; /* force the pipe off on setup_init_config */
7361 intel_crtc->bpp = 24; /* default for pre-Ironlake */ 7363 intel_crtc->bpp = 24; /* default for pre-Ironlake */
7362 7364
7363 if (HAS_PCH_SPLIT(dev)) { 7365 if (HAS_PCH_SPLIT(dev)) {
7364 if (pipe == 2 && IS_IVYBRIDGE(dev)) 7366 if (pipe == 2 && IS_IVYBRIDGE(dev))
7365 intel_crtc->no_pll = true; 7367 intel_crtc->no_pll = true;
7366 intel_helper_funcs.prepare = ironlake_crtc_prepare; 7368 intel_helper_funcs.prepare = ironlake_crtc_prepare;
7367 intel_helper_funcs.commit = ironlake_crtc_commit; 7369 intel_helper_funcs.commit = ironlake_crtc_commit;
7368 } else { 7370 } else {
7369 intel_helper_funcs.prepare = i9xx_crtc_prepare; 7371 intel_helper_funcs.prepare = i9xx_crtc_prepare;
7370 intel_helper_funcs.commit = i9xx_crtc_commit; 7372 intel_helper_funcs.commit = i9xx_crtc_commit;
7371 } 7373 }
7372 7374
7373 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs); 7375 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
7374 7376
7375 intel_crtc->busy = false; 7377 intel_crtc->busy = false;
7376 7378
7377 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer, 7379 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
7378 (unsigned long)intel_crtc); 7380 (unsigned long)intel_crtc);
7379 } 7381 }
7380 7382
7381 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data, 7383 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
7382 struct drm_file *file) 7384 struct drm_file *file)
7383 { 7385 {
7384 drm_i915_private_t *dev_priv = dev->dev_private; 7386 drm_i915_private_t *dev_priv = dev->dev_private;
7385 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data; 7387 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7386 struct drm_mode_object *drmmode_obj; 7388 struct drm_mode_object *drmmode_obj;
7387 struct intel_crtc *crtc; 7389 struct intel_crtc *crtc;
7388 7390
7389 if (!dev_priv) { 7391 if (!dev_priv) {
7390 DRM_ERROR("called with no initialization\n"); 7392 DRM_ERROR("called with no initialization\n");
7391 return -EINVAL; 7393 return -EINVAL;
7392 } 7394 }
7393 7395
7394 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id, 7396 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7395 DRM_MODE_OBJECT_CRTC); 7397 DRM_MODE_OBJECT_CRTC);
7396 7398
7397 if (!drmmode_obj) { 7399 if (!drmmode_obj) {
7398 DRM_ERROR("no such CRTC id\n"); 7400 DRM_ERROR("no such CRTC id\n");
7399 return -EINVAL; 7401 return -EINVAL;
7400 } 7402 }
7401 7403
7402 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj)); 7404 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7403 pipe_from_crtc_id->pipe = crtc->pipe; 7405 pipe_from_crtc_id->pipe = crtc->pipe;
7404 7406
7405 return 0; 7407 return 0;
7406 } 7408 }
7407 7409
7408 static int intel_encoder_clones(struct drm_device *dev, int type_mask) 7410 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
7409 { 7411 {
7410 struct intel_encoder *encoder; 7412 struct intel_encoder *encoder;
7411 int index_mask = 0; 7413 int index_mask = 0;
7412 int entry = 0; 7414 int entry = 0;
7413 7415
7414 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) { 7416 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7415 if (type_mask & encoder->clone_mask) 7417 if (type_mask & encoder->clone_mask)
7416 index_mask |= (1 << entry); 7418 index_mask |= (1 << entry);
7417 entry++; 7419 entry++;
7418 } 7420 }
7419 7421
7420 return index_mask; 7422 return index_mask;
7421 } 7423 }
7422 7424
7423 static bool has_edp_a(struct drm_device *dev) 7425 static bool has_edp_a(struct drm_device *dev)
7424 { 7426 {
7425 struct drm_i915_private *dev_priv = dev->dev_private; 7427 struct drm_i915_private *dev_priv = dev->dev_private;
7426 7428
7427 if (!IS_MOBILE(dev)) 7429 if (!IS_MOBILE(dev))
7428 return false; 7430 return false;
7429 7431
7430 if ((I915_READ(DP_A) & DP_DETECTED) == 0) 7432 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
7431 return false; 7433 return false;
7432 7434
7433 if (IS_GEN5(dev) && 7435 if (IS_GEN5(dev) &&
7434 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE)) 7436 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
7435 return false; 7437 return false;
7436 7438
7437 return true; 7439 return true;
7438 } 7440 }
7439 7441
7440 static void intel_setup_outputs(struct drm_device *dev) 7442 static void intel_setup_outputs(struct drm_device *dev)
7441 { 7443 {
7442 struct drm_i915_private *dev_priv = dev->dev_private; 7444 struct drm_i915_private *dev_priv = dev->dev_private;
7443 struct intel_encoder *encoder; 7445 struct intel_encoder *encoder;
7444 bool dpd_is_edp = false; 7446 bool dpd_is_edp = false;
7445 bool has_lvds = false; 7447 bool has_lvds = false;
7446 7448
7447 if (IS_MOBILE(dev) && !IS_I830(dev)) 7449 if (IS_MOBILE(dev) && !IS_I830(dev))
7448 has_lvds = intel_lvds_init(dev); 7450 has_lvds = intel_lvds_init(dev);
7449 if (!has_lvds && !HAS_PCH_SPLIT(dev)) { 7451 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
7450 /* disable the panel fitter on everything but LVDS */ 7452 /* disable the panel fitter on everything but LVDS */
7451 I915_WRITE(PFIT_CONTROL, 0); 7453 I915_WRITE(PFIT_CONTROL, 0);
7452 } 7454 }
7453 7455
7454 if (HAS_PCH_SPLIT(dev)) { 7456 if (HAS_PCH_SPLIT(dev)) {
7455 dpd_is_edp = intel_dpd_is_edp(dev); 7457 dpd_is_edp = intel_dpd_is_edp(dev);
7456 7458
7457 if (has_edp_a(dev)) 7459 if (has_edp_a(dev))
7458 intel_dp_init(dev, DP_A); 7460 intel_dp_init(dev, DP_A);
7459 7461
7460 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED)) 7462 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7461 intel_dp_init(dev, PCH_DP_D); 7463 intel_dp_init(dev, PCH_DP_D);
7462 } 7464 }
7463 7465
7464 intel_crt_init(dev); 7466 intel_crt_init(dev);
7465 7467
7466 if (HAS_PCH_SPLIT(dev)) { 7468 if (HAS_PCH_SPLIT(dev)) {
7467 int found; 7469 int found;
7468 7470
7469 if (I915_READ(HDMIB) & PORT_DETECTED) { 7471 if (I915_READ(HDMIB) & PORT_DETECTED) {
7470 /* PCH SDVOB multiplex with HDMIB */ 7472 /* PCH SDVOB multiplex with HDMIB */
7471 found = intel_sdvo_init(dev, PCH_SDVOB); 7473 found = intel_sdvo_init(dev, PCH_SDVOB);
7472 if (!found) 7474 if (!found)
7473 intel_hdmi_init(dev, HDMIB); 7475 intel_hdmi_init(dev, HDMIB);
7474 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED)) 7476 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
7475 intel_dp_init(dev, PCH_DP_B); 7477 intel_dp_init(dev, PCH_DP_B);
7476 } 7478 }
7477 7479
7478 if (I915_READ(HDMIC) & PORT_DETECTED) 7480 if (I915_READ(HDMIC) & PORT_DETECTED)
7479 intel_hdmi_init(dev, HDMIC); 7481 intel_hdmi_init(dev, HDMIC);
7480 7482
7481 if (I915_READ(HDMID) & PORT_DETECTED) 7483 if (I915_READ(HDMID) & PORT_DETECTED)
7482 intel_hdmi_init(dev, HDMID); 7484 intel_hdmi_init(dev, HDMID);
7483 7485
7484 if (I915_READ(PCH_DP_C) & DP_DETECTED) 7486 if (I915_READ(PCH_DP_C) & DP_DETECTED)
7485 intel_dp_init(dev, PCH_DP_C); 7487 intel_dp_init(dev, PCH_DP_C);
7486 7488
7487 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED)) 7489 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7488 intel_dp_init(dev, PCH_DP_D); 7490 intel_dp_init(dev, PCH_DP_D);
7489 7491
7490 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) { 7492 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
7491 bool found = false; 7493 bool found = false;
7492 7494
7493 if (I915_READ(SDVOB) & SDVO_DETECTED) { 7495 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7494 DRM_DEBUG_KMS("probing SDVOB\n"); 7496 DRM_DEBUG_KMS("probing SDVOB\n");
7495 found = intel_sdvo_init(dev, SDVOB); 7497 found = intel_sdvo_init(dev, SDVOB);
7496 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) { 7498 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
7497 DRM_DEBUG_KMS("probing HDMI on SDVOB\n"); 7499 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
7498 intel_hdmi_init(dev, SDVOB); 7500 intel_hdmi_init(dev, SDVOB);
7499 } 7501 }
7500 7502
7501 if (!found && SUPPORTS_INTEGRATED_DP(dev)) { 7503 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
7502 DRM_DEBUG_KMS("probing DP_B\n"); 7504 DRM_DEBUG_KMS("probing DP_B\n");
7503 intel_dp_init(dev, DP_B); 7505 intel_dp_init(dev, DP_B);
7504 } 7506 }
7505 } 7507 }
7506 7508
7507 /* Before G4X SDVOC doesn't have its own detect register */ 7509 /* Before G4X SDVOC doesn't have its own detect register */
7508 7510
7509 if (I915_READ(SDVOB) & SDVO_DETECTED) { 7511 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7510 DRM_DEBUG_KMS("probing SDVOC\n"); 7512 DRM_DEBUG_KMS("probing SDVOC\n");
7511 found = intel_sdvo_init(dev, SDVOC); 7513 found = intel_sdvo_init(dev, SDVOC);
7512 } 7514 }
7513 7515
7514 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) { 7516 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
7515 7517
7516 if (SUPPORTS_INTEGRATED_HDMI(dev)) { 7518 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
7517 DRM_DEBUG_KMS("probing HDMI on SDVOC\n"); 7519 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
7518 intel_hdmi_init(dev, SDVOC); 7520 intel_hdmi_init(dev, SDVOC);
7519 } 7521 }
7520 if (SUPPORTS_INTEGRATED_DP(dev)) { 7522 if (SUPPORTS_INTEGRATED_DP(dev)) {
7521 DRM_DEBUG_KMS("probing DP_C\n"); 7523 DRM_DEBUG_KMS("probing DP_C\n");
7522 intel_dp_init(dev, DP_C); 7524 intel_dp_init(dev, DP_C);
7523 } 7525 }
7524 } 7526 }
7525 7527
7526 if (SUPPORTS_INTEGRATED_DP(dev) && 7528 if (SUPPORTS_INTEGRATED_DP(dev) &&
7527 (I915_READ(DP_D) & DP_DETECTED)) { 7529 (I915_READ(DP_D) & DP_DETECTED)) {
7528 DRM_DEBUG_KMS("probing DP_D\n"); 7530 DRM_DEBUG_KMS("probing DP_D\n");
7529 intel_dp_init(dev, DP_D); 7531 intel_dp_init(dev, DP_D);
7530 } 7532 }
7531 } else if (IS_GEN2(dev)) 7533 } else if (IS_GEN2(dev))
7532 intel_dvo_init(dev); 7534 intel_dvo_init(dev);
7533 7535
7534 if (SUPPORTS_TV(dev)) 7536 if (SUPPORTS_TV(dev))
7535 intel_tv_init(dev); 7537 intel_tv_init(dev);
7536 7538
7537 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) { 7539 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7538 encoder->base.possible_crtcs = encoder->crtc_mask; 7540 encoder->base.possible_crtcs = encoder->crtc_mask;
7539 encoder->base.possible_clones = 7541 encoder->base.possible_clones =
7540 intel_encoder_clones(dev, encoder->clone_mask); 7542 intel_encoder_clones(dev, encoder->clone_mask);
7541 } 7543 }
7542 7544
7543 /* disable all the possible outputs/crtcs before entering KMS mode */ 7545 /* disable all the possible outputs/crtcs before entering KMS mode */
7544 drm_helper_disable_unused_functions(dev); 7546 drm_helper_disable_unused_functions(dev);
7545 7547
7546 if (HAS_PCH_SPLIT(dev)) 7548 if (HAS_PCH_SPLIT(dev))
7547 ironlake_init_pch_refclk(dev); 7549 ironlake_init_pch_refclk(dev);
7548 } 7550 }
7549 7551
7550 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb) 7552 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
7551 { 7553 {
7552 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 7554 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7553 7555
7554 drm_framebuffer_cleanup(fb); 7556 drm_framebuffer_cleanup(fb);
7555 drm_gem_object_unreference_unlocked(&intel_fb->obj->base); 7557 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
7556 7558
7557 kfree(intel_fb); 7559 kfree(intel_fb);
7558 } 7560 }
7559 7561
7560 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb, 7562 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
7561 struct drm_file *file, 7563 struct drm_file *file,
7562 unsigned int *handle) 7564 unsigned int *handle)
7563 { 7565 {
7564 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 7566 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7565 struct drm_i915_gem_object *obj = intel_fb->obj; 7567 struct drm_i915_gem_object *obj = intel_fb->obj;
7566 7568
7567 return drm_gem_handle_create(file, &obj->base, handle); 7569 return drm_gem_handle_create(file, &obj->base, handle);
7568 } 7570 }
7569 7571
7570 static const struct drm_framebuffer_funcs intel_fb_funcs = { 7572 static const struct drm_framebuffer_funcs intel_fb_funcs = {
7571 .destroy = intel_user_framebuffer_destroy, 7573 .destroy = intel_user_framebuffer_destroy,
7572 .create_handle = intel_user_framebuffer_create_handle, 7574 .create_handle = intel_user_framebuffer_create_handle,
7573 }; 7575 };
7574 7576
7575 int intel_framebuffer_init(struct drm_device *dev, 7577 int intel_framebuffer_init(struct drm_device *dev,
7576 struct intel_framebuffer *intel_fb, 7578 struct intel_framebuffer *intel_fb,
7577 struct drm_mode_fb_cmd *mode_cmd, 7579 struct drm_mode_fb_cmd *mode_cmd,
7578 struct drm_i915_gem_object *obj) 7580 struct drm_i915_gem_object *obj)
7579 { 7581 {
7580 int ret; 7582 int ret;
7581 7583
7582 if (obj->tiling_mode == I915_TILING_Y) 7584 if (obj->tiling_mode == I915_TILING_Y)
7583 return -EINVAL; 7585 return -EINVAL;
7584 7586
7585 if (mode_cmd->pitch & 63) 7587 if (mode_cmd->pitch & 63)
7586 return -EINVAL; 7588 return -EINVAL;
7587 7589
7588 switch (mode_cmd->bpp) { 7590 switch (mode_cmd->bpp) {
7589 case 8: 7591 case 8:
7590 case 16: 7592 case 16:
7591 /* Only pre-ILK can handle 5:5:5 */ 7593 /* Only pre-ILK can handle 5:5:5 */
7592 if (mode_cmd->depth == 15 && !HAS_PCH_SPLIT(dev)) 7594 if (mode_cmd->depth == 15 && !HAS_PCH_SPLIT(dev))
7593 return -EINVAL; 7595 return -EINVAL;
7594 break; 7596 break;
7595 7597
7596 case 24: 7598 case 24:
7597 case 32: 7599 case 32:
7598 break; 7600 break;
7599 default: 7601 default:
7600 return -EINVAL; 7602 return -EINVAL;
7601 } 7603 }
7602 7604
7603 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs); 7605 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
7604 if (ret) { 7606 if (ret) {
7605 DRM_ERROR("framebuffer init failed %d\n", ret); 7607 DRM_ERROR("framebuffer init failed %d\n", ret);
7606 return ret; 7608 return ret;
7607 } 7609 }
7608 7610
7609 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd); 7611 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
7610 intel_fb->obj = obj; 7612 intel_fb->obj = obj;
7611 return 0; 7613 return 0;
7612 } 7614 }
7613 7615
7614 static struct drm_framebuffer * 7616 static struct drm_framebuffer *
7615 intel_user_framebuffer_create(struct drm_device *dev, 7617 intel_user_framebuffer_create(struct drm_device *dev,
7616 struct drm_file *filp, 7618 struct drm_file *filp,
7617 struct drm_mode_fb_cmd *mode_cmd) 7619 struct drm_mode_fb_cmd *mode_cmd)
7618 { 7620 {
7619 struct drm_i915_gem_object *obj; 7621 struct drm_i915_gem_object *obj;
7620 7622
7621 obj = to_intel_bo(drm_gem_object_lookup(dev, filp, mode_cmd->handle)); 7623 obj = to_intel_bo(drm_gem_object_lookup(dev, filp, mode_cmd->handle));
7622 if (&obj->base == NULL) 7624 if (&obj->base == NULL)
7623 return ERR_PTR(-ENOENT); 7625 return ERR_PTR(-ENOENT);
7624 7626
7625 return intel_framebuffer_create(dev, mode_cmd, obj); 7627 return intel_framebuffer_create(dev, mode_cmd, obj);
7626 } 7628 }
7627 7629
7628 static const struct drm_mode_config_funcs intel_mode_funcs = { 7630 static const struct drm_mode_config_funcs intel_mode_funcs = {
7629 .fb_create = intel_user_framebuffer_create, 7631 .fb_create = intel_user_framebuffer_create,
7630 .output_poll_changed = intel_fb_output_poll_changed, 7632 .output_poll_changed = intel_fb_output_poll_changed,
7631 }; 7633 };
7632 7634
7633 static struct drm_i915_gem_object * 7635 static struct drm_i915_gem_object *
7634 intel_alloc_context_page(struct drm_device *dev) 7636 intel_alloc_context_page(struct drm_device *dev)
7635 { 7637 {
7636 struct drm_i915_gem_object *ctx; 7638 struct drm_i915_gem_object *ctx;
7637 int ret; 7639 int ret;
7638 7640
7639 WARN_ON(!mutex_is_locked(&dev->struct_mutex)); 7641 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
7640 7642
7641 ctx = i915_gem_alloc_object(dev, 4096); 7643 ctx = i915_gem_alloc_object(dev, 4096);
7642 if (!ctx) { 7644 if (!ctx) {
7643 DRM_DEBUG("failed to alloc power context, RC6 disabled\n"); 7645 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
7644 return NULL; 7646 return NULL;
7645 } 7647 }
7646 7648
7647 ret = i915_gem_object_pin(ctx, 4096, true); 7649 ret = i915_gem_object_pin(ctx, 4096, true);
7648 if (ret) { 7650 if (ret) {
7649 DRM_ERROR("failed to pin power context: %d\n", ret); 7651 DRM_ERROR("failed to pin power context: %d\n", ret);
7650 goto err_unref; 7652 goto err_unref;
7651 } 7653 }
7652 7654
7653 ret = i915_gem_object_set_to_gtt_domain(ctx, 1); 7655 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
7654 if (ret) { 7656 if (ret) {
7655 DRM_ERROR("failed to set-domain on power context: %d\n", ret); 7657 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
7656 goto err_unpin; 7658 goto err_unpin;
7657 } 7659 }
7658 7660
7659 return ctx; 7661 return ctx;
7660 7662
7661 err_unpin: 7663 err_unpin:
7662 i915_gem_object_unpin(ctx); 7664 i915_gem_object_unpin(ctx);
7663 err_unref: 7665 err_unref:
7664 drm_gem_object_unreference(&ctx->base); 7666 drm_gem_object_unreference(&ctx->base);
7665 mutex_unlock(&dev->struct_mutex); 7667 mutex_unlock(&dev->struct_mutex);
7666 return NULL; 7668 return NULL;
7667 } 7669 }
7668 7670
7669 bool ironlake_set_drps(struct drm_device *dev, u8 val) 7671 bool ironlake_set_drps(struct drm_device *dev, u8 val)
7670 { 7672 {
7671 struct drm_i915_private *dev_priv = dev->dev_private; 7673 struct drm_i915_private *dev_priv = dev->dev_private;
7672 u16 rgvswctl; 7674 u16 rgvswctl;
7673 7675
7674 rgvswctl = I915_READ16(MEMSWCTL); 7676 rgvswctl = I915_READ16(MEMSWCTL);
7675 if (rgvswctl & MEMCTL_CMD_STS) { 7677 if (rgvswctl & MEMCTL_CMD_STS) {
7676 DRM_DEBUG("gpu busy, RCS change rejected\n"); 7678 DRM_DEBUG("gpu busy, RCS change rejected\n");
7677 return false; /* still busy with another command */ 7679 return false; /* still busy with another command */
7678 } 7680 }
7679 7681
7680 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) | 7682 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
7681 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM; 7683 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
7682 I915_WRITE16(MEMSWCTL, rgvswctl); 7684 I915_WRITE16(MEMSWCTL, rgvswctl);
7683 POSTING_READ16(MEMSWCTL); 7685 POSTING_READ16(MEMSWCTL);
7684 7686
7685 rgvswctl |= MEMCTL_CMD_STS; 7687 rgvswctl |= MEMCTL_CMD_STS;
7686 I915_WRITE16(MEMSWCTL, rgvswctl); 7688 I915_WRITE16(MEMSWCTL, rgvswctl);
7687 7689
7688 return true; 7690 return true;
7689 } 7691 }
7690 7692
7691 void ironlake_enable_drps(struct drm_device *dev) 7693 void ironlake_enable_drps(struct drm_device *dev)
7692 { 7694 {
7693 struct drm_i915_private *dev_priv = dev->dev_private; 7695 struct drm_i915_private *dev_priv = dev->dev_private;
7694 u32 rgvmodectl = I915_READ(MEMMODECTL); 7696 u32 rgvmodectl = I915_READ(MEMMODECTL);
7695 u8 fmax, fmin, fstart, vstart; 7697 u8 fmax, fmin, fstart, vstart;
7696 7698
7697 /* Enable temp reporting */ 7699 /* Enable temp reporting */
7698 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN); 7700 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
7699 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE); 7701 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
7700 7702
7701 /* 100ms RC evaluation intervals */ 7703 /* 100ms RC evaluation intervals */
7702 I915_WRITE(RCUPEI, 100000); 7704 I915_WRITE(RCUPEI, 100000);
7703 I915_WRITE(RCDNEI, 100000); 7705 I915_WRITE(RCDNEI, 100000);
7704 7706
7705 /* Set max/min thresholds to 90ms and 80ms respectively */ 7707 /* Set max/min thresholds to 90ms and 80ms respectively */
7706 I915_WRITE(RCBMAXAVG, 90000); 7708 I915_WRITE(RCBMAXAVG, 90000);
7707 I915_WRITE(RCBMINAVG, 80000); 7709 I915_WRITE(RCBMINAVG, 80000);
7708 7710
7709 I915_WRITE(MEMIHYST, 1); 7711 I915_WRITE(MEMIHYST, 1);
7710 7712
7711 /* Set up min, max, and cur for interrupt handling */ 7713 /* Set up min, max, and cur for interrupt handling */
7712 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT; 7714 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
7713 fmin = (rgvmodectl & MEMMODE_FMIN_MASK); 7715 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
7714 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >> 7716 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
7715 MEMMODE_FSTART_SHIFT; 7717 MEMMODE_FSTART_SHIFT;
7716 7718
7717 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >> 7719 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
7718 PXVFREQ_PX_SHIFT; 7720 PXVFREQ_PX_SHIFT;
7719 7721
7720 dev_priv->fmax = fmax; /* IPS callback will increase this */ 7722 dev_priv->fmax = fmax; /* IPS callback will increase this */
7721 dev_priv->fstart = fstart; 7723 dev_priv->fstart = fstart;
7722 7724
7723 dev_priv->max_delay = fstart; 7725 dev_priv->max_delay = fstart;
7724 dev_priv->min_delay = fmin; 7726 dev_priv->min_delay = fmin;
7725 dev_priv->cur_delay = fstart; 7727 dev_priv->cur_delay = fstart;
7726 7728
7727 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n", 7729 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
7728 fmax, fmin, fstart); 7730 fmax, fmin, fstart);
7729 7731
7730 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN); 7732 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
7731 7733
7732 /* 7734 /*
7733 * Interrupts will be enabled in ironlake_irq_postinstall 7735 * Interrupts will be enabled in ironlake_irq_postinstall
7734 */ 7736 */
7735 7737
7736 I915_WRITE(VIDSTART, vstart); 7738 I915_WRITE(VIDSTART, vstart);
7737 POSTING_READ(VIDSTART); 7739 POSTING_READ(VIDSTART);
7738 7740
7739 rgvmodectl |= MEMMODE_SWMODE_EN; 7741 rgvmodectl |= MEMMODE_SWMODE_EN;
7740 I915_WRITE(MEMMODECTL, rgvmodectl); 7742 I915_WRITE(MEMMODECTL, rgvmodectl);
7741 7743
7742 if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10)) 7744 if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
7743 DRM_ERROR("stuck trying to change perf mode\n"); 7745 DRM_ERROR("stuck trying to change perf mode\n");
7744 msleep(1); 7746 msleep(1);
7745 7747
7746 ironlake_set_drps(dev, fstart); 7748 ironlake_set_drps(dev, fstart);
7747 7749
7748 dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) + 7750 dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
7749 I915_READ(0x112e0); 7751 I915_READ(0x112e0);
7750 dev_priv->last_time1 = jiffies_to_msecs(jiffies); 7752 dev_priv->last_time1 = jiffies_to_msecs(jiffies);
7751 dev_priv->last_count2 = I915_READ(0x112f4); 7753 dev_priv->last_count2 = I915_READ(0x112f4);
7752 getrawmonotonic(&dev_priv->last_time2); 7754 getrawmonotonic(&dev_priv->last_time2);
7753 } 7755 }
7754 7756
7755 void ironlake_disable_drps(struct drm_device *dev) 7757 void ironlake_disable_drps(struct drm_device *dev)
7756 { 7758 {
7757 struct drm_i915_private *dev_priv = dev->dev_private; 7759 struct drm_i915_private *dev_priv = dev->dev_private;
7758 u16 rgvswctl = I915_READ16(MEMSWCTL); 7760 u16 rgvswctl = I915_READ16(MEMSWCTL);
7759 7761
7760 /* Ack interrupts, disable EFC interrupt */ 7762 /* Ack interrupts, disable EFC interrupt */
7761 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN); 7763 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
7762 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG); 7764 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
7763 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT); 7765 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
7764 I915_WRITE(DEIIR, DE_PCU_EVENT); 7766 I915_WRITE(DEIIR, DE_PCU_EVENT);
7765 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT); 7767 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
7766 7768
7767 /* Go back to the starting frequency */ 7769 /* Go back to the starting frequency */
7768 ironlake_set_drps(dev, dev_priv->fstart); 7770 ironlake_set_drps(dev, dev_priv->fstart);
7769 msleep(1); 7771 msleep(1);
7770 rgvswctl |= MEMCTL_CMD_STS; 7772 rgvswctl |= MEMCTL_CMD_STS;
7771 I915_WRITE(MEMSWCTL, rgvswctl); 7773 I915_WRITE(MEMSWCTL, rgvswctl);
7772 msleep(1); 7774 msleep(1);
7773 7775
7774 } 7776 }
7775 7777
7776 void gen6_set_rps(struct drm_device *dev, u8 val) 7778 void gen6_set_rps(struct drm_device *dev, u8 val)
7777 { 7779 {
7778 struct drm_i915_private *dev_priv = dev->dev_private; 7780 struct drm_i915_private *dev_priv = dev->dev_private;
7779 u32 swreq; 7781 u32 swreq;
7780 7782
7781 swreq = (val & 0x3ff) << 25; 7783 swreq = (val & 0x3ff) << 25;
7782 I915_WRITE(GEN6_RPNSWREQ, swreq); 7784 I915_WRITE(GEN6_RPNSWREQ, swreq);
7783 } 7785 }
7784 7786
7785 void gen6_disable_rps(struct drm_device *dev) 7787 void gen6_disable_rps(struct drm_device *dev)
7786 { 7788 {
7787 struct drm_i915_private *dev_priv = dev->dev_private; 7789 struct drm_i915_private *dev_priv = dev->dev_private;
7788 7790
7789 I915_WRITE(GEN6_RPNSWREQ, 1 << 31); 7791 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
7790 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff); 7792 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
7791 I915_WRITE(GEN6_PMIER, 0); 7793 I915_WRITE(GEN6_PMIER, 0);
7792 /* Complete PM interrupt masking here doesn't race with the rps work 7794 /* Complete PM interrupt masking here doesn't race with the rps work
7793 * item again unmasking PM interrupts because that is using a different 7795 * item again unmasking PM interrupts because that is using a different
7794 * register (PMIMR) to mask PM interrupts. The only risk is in leaving 7796 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
7795 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */ 7797 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
7796 7798
7797 spin_lock_irq(&dev_priv->rps_lock); 7799 spin_lock_irq(&dev_priv->rps_lock);
7798 dev_priv->pm_iir = 0; 7800 dev_priv->pm_iir = 0;
7799 spin_unlock_irq(&dev_priv->rps_lock); 7801 spin_unlock_irq(&dev_priv->rps_lock);
7800 7802
7801 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR)); 7803 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
7802 } 7804 }
7803 7805
7804 static unsigned long intel_pxfreq(u32 vidfreq) 7806 static unsigned long intel_pxfreq(u32 vidfreq)
7805 { 7807 {
7806 unsigned long freq; 7808 unsigned long freq;
7807 int div = (vidfreq & 0x3f0000) >> 16; 7809 int div = (vidfreq & 0x3f0000) >> 16;
7808 int post = (vidfreq & 0x3000) >> 12; 7810 int post = (vidfreq & 0x3000) >> 12;
7809 int pre = (vidfreq & 0x7); 7811 int pre = (vidfreq & 0x7);
7810 7812
7811 if (!pre) 7813 if (!pre)
7812 return 0; 7814 return 0;
7813 7815
7814 freq = ((div * 133333) / ((1<<post) * pre)); 7816 freq = ((div * 133333) / ((1<<post) * pre));
7815 7817
7816 return freq; 7818 return freq;
7817 } 7819 }
7818 7820
7819 void intel_init_emon(struct drm_device *dev) 7821 void intel_init_emon(struct drm_device *dev)
7820 { 7822 {
7821 struct drm_i915_private *dev_priv = dev->dev_private; 7823 struct drm_i915_private *dev_priv = dev->dev_private;
7822 u32 lcfuse; 7824 u32 lcfuse;
7823 u8 pxw[16]; 7825 u8 pxw[16];
7824 int i; 7826 int i;
7825 7827
7826 /* Disable to program */ 7828 /* Disable to program */
7827 I915_WRITE(ECR, 0); 7829 I915_WRITE(ECR, 0);
7828 POSTING_READ(ECR); 7830 POSTING_READ(ECR);
7829 7831
7830 /* Program energy weights for various events */ 7832 /* Program energy weights for various events */
7831 I915_WRITE(SDEW, 0x15040d00); 7833 I915_WRITE(SDEW, 0x15040d00);
7832 I915_WRITE(CSIEW0, 0x007f0000); 7834 I915_WRITE(CSIEW0, 0x007f0000);
7833 I915_WRITE(CSIEW1, 0x1e220004); 7835 I915_WRITE(CSIEW1, 0x1e220004);
7834 I915_WRITE(CSIEW2, 0x04000004); 7836 I915_WRITE(CSIEW2, 0x04000004);
7835 7837
7836 for (i = 0; i < 5; i++) 7838 for (i = 0; i < 5; i++)
7837 I915_WRITE(PEW + (i * 4), 0); 7839 I915_WRITE(PEW + (i * 4), 0);
7838 for (i = 0; i < 3; i++) 7840 for (i = 0; i < 3; i++)
7839 I915_WRITE(DEW + (i * 4), 0); 7841 I915_WRITE(DEW + (i * 4), 0);
7840 7842
7841 /* Program P-state weights to account for frequency power adjustment */ 7843 /* Program P-state weights to account for frequency power adjustment */
7842 for (i = 0; i < 16; i++) { 7844 for (i = 0; i < 16; i++) {
7843 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4)); 7845 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
7844 unsigned long freq = intel_pxfreq(pxvidfreq); 7846 unsigned long freq = intel_pxfreq(pxvidfreq);
7845 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >> 7847 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
7846 PXVFREQ_PX_SHIFT; 7848 PXVFREQ_PX_SHIFT;
7847 unsigned long val; 7849 unsigned long val;
7848 7850
7849 val = vid * vid; 7851 val = vid * vid;
7850 val *= (freq / 1000); 7852 val *= (freq / 1000);
7851 val *= 255; 7853 val *= 255;
7852 val /= (127*127*900); 7854 val /= (127*127*900);
7853 if (val > 0xff) 7855 if (val > 0xff)
7854 DRM_ERROR("bad pxval: %ld\n", val); 7856 DRM_ERROR("bad pxval: %ld\n", val);
7855 pxw[i] = val; 7857 pxw[i] = val;
7856 } 7858 }
7857 /* Render standby states get 0 weight */ 7859 /* Render standby states get 0 weight */
7858 pxw[14] = 0; 7860 pxw[14] = 0;
7859 pxw[15] = 0; 7861 pxw[15] = 0;
7860 7862
7861 for (i = 0; i < 4; i++) { 7863 for (i = 0; i < 4; i++) {
7862 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) | 7864 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
7863 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]); 7865 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7864 I915_WRITE(PXW + (i * 4), val); 7866 I915_WRITE(PXW + (i * 4), val);
7865 } 7867 }
7866 7868
7867 /* Adjust magic regs to magic values (more experimental results) */ 7869 /* Adjust magic regs to magic values (more experimental results) */
7868 I915_WRITE(OGW0, 0); 7870 I915_WRITE(OGW0, 0);
7869 I915_WRITE(OGW1, 0); 7871 I915_WRITE(OGW1, 0);
7870 I915_WRITE(EG0, 0x00007f00); 7872 I915_WRITE(EG0, 0x00007f00);
7871 I915_WRITE(EG1, 0x0000000e); 7873 I915_WRITE(EG1, 0x0000000e);
7872 I915_WRITE(EG2, 0x000e0000); 7874 I915_WRITE(EG2, 0x000e0000);
7873 I915_WRITE(EG3, 0x68000300); 7875 I915_WRITE(EG3, 0x68000300);
7874 I915_WRITE(EG4, 0x42000000); 7876 I915_WRITE(EG4, 0x42000000);
7875 I915_WRITE(EG5, 0x00140031); 7877 I915_WRITE(EG5, 0x00140031);
7876 I915_WRITE(EG6, 0); 7878 I915_WRITE(EG6, 0);
7877 I915_WRITE(EG7, 0); 7879 I915_WRITE(EG7, 0);
7878 7880
7879 for (i = 0; i < 8; i++) 7881 for (i = 0; i < 8; i++)
7880 I915_WRITE(PXWL + (i * 4), 0); 7882 I915_WRITE(PXWL + (i * 4), 0);
7881 7883
7882 /* Enable PMON + select events */ 7884 /* Enable PMON + select events */
7883 I915_WRITE(ECR, 0x80000019); 7885 I915_WRITE(ECR, 0x80000019);
7884 7886
7885 lcfuse = I915_READ(LCFUSE02); 7887 lcfuse = I915_READ(LCFUSE02);
7886 7888
7887 dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK); 7889 dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
7888 } 7890 }
7889 7891
7890 static bool intel_enable_rc6(struct drm_device *dev) 7892 static bool intel_enable_rc6(struct drm_device *dev)
7891 { 7893 {
7892 /* 7894 /*
7893 * Respect the kernel parameter if it is set 7895 * Respect the kernel parameter if it is set
7894 */ 7896 */
7895 if (i915_enable_rc6 >= 0) 7897 if (i915_enable_rc6 >= 0)
7896 return i915_enable_rc6; 7898 return i915_enable_rc6;
7897 7899
7898 /* 7900 /*
7899 * Disable RC6 on Ironlake 7901 * Disable RC6 on Ironlake
7900 */ 7902 */
7901 if (INTEL_INFO(dev)->gen == 5) 7903 if (INTEL_INFO(dev)->gen == 5)
7902 return 0; 7904 return 0;
7903 7905
7904 /* 7906 /*
7905 * Enable rc6 on Sandybridge if DMA remapping is disabled 7907 * Enable rc6 on Sandybridge if DMA remapping is disabled
7906 */ 7908 */
7907 if (INTEL_INFO(dev)->gen == 6) { 7909 if (INTEL_INFO(dev)->gen == 6) {
7908 DRM_DEBUG_DRIVER("Sandybridge: intel_iommu_enabled %s -- RC6 %sabled\n", 7910 DRM_DEBUG_DRIVER("Sandybridge: intel_iommu_enabled %s -- RC6 %sabled\n",
7909 intel_iommu_enabled ? "true" : "false", 7911 intel_iommu_enabled ? "true" : "false",
7910 !intel_iommu_enabled ? "en" : "dis"); 7912 !intel_iommu_enabled ? "en" : "dis");
7911 return !intel_iommu_enabled; 7913 return !intel_iommu_enabled;
7912 } 7914 }
7913 DRM_DEBUG_DRIVER("RC6 enabled\n"); 7915 DRM_DEBUG_DRIVER("RC6 enabled\n");
7914 return 1; 7916 return 1;
7915 } 7917 }
7916 7918
7917 void gen6_enable_rps(struct drm_i915_private *dev_priv) 7919 void gen6_enable_rps(struct drm_i915_private *dev_priv)
7918 { 7920 {
7919 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP); 7921 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
7920 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS); 7922 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
7921 u32 pcu_mbox, rc6_mask = 0; 7923 u32 pcu_mbox, rc6_mask = 0;
7922 int cur_freq, min_freq, max_freq; 7924 int cur_freq, min_freq, max_freq;
7923 int i; 7925 int i;
7924 7926
7925 /* Here begins a magic sequence of register writes to enable 7927 /* Here begins a magic sequence of register writes to enable
7926 * auto-downclocking. 7928 * auto-downclocking.
7927 * 7929 *
7928 * Perhaps there might be some value in exposing these to 7930 * Perhaps there might be some value in exposing these to
7929 * userspace... 7931 * userspace...
7930 */ 7932 */
7931 I915_WRITE(GEN6_RC_STATE, 0); 7933 I915_WRITE(GEN6_RC_STATE, 0);
7932 mutex_lock(&dev_priv->dev->struct_mutex); 7934 mutex_lock(&dev_priv->dev->struct_mutex);
7933 gen6_gt_force_wake_get(dev_priv); 7935 gen6_gt_force_wake_get(dev_priv);
7934 7936
7935 /* disable the counters and set deterministic thresholds */ 7937 /* disable the counters and set deterministic thresholds */
7936 I915_WRITE(GEN6_RC_CONTROL, 0); 7938 I915_WRITE(GEN6_RC_CONTROL, 0);
7937 7939
7938 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16); 7940 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
7939 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30); 7941 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
7940 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30); 7942 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
7941 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); 7943 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7942 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); 7944 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7943 7945
7944 for (i = 0; i < I915_NUM_RINGS; i++) 7946 for (i = 0; i < I915_NUM_RINGS; i++)
7945 I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10); 7947 I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
7946 7948
7947 I915_WRITE(GEN6_RC_SLEEP, 0); 7949 I915_WRITE(GEN6_RC_SLEEP, 0);
7948 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000); 7950 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7949 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); 7951 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7950 I915_WRITE(GEN6_RC6p_THRESHOLD, 100000); 7952 I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
7951 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */ 7953 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
7952 7954
7953 if (intel_enable_rc6(dev_priv->dev)) 7955 if (intel_enable_rc6(dev_priv->dev))
7954 rc6_mask = GEN6_RC_CTL_RC6p_ENABLE | 7956 rc6_mask = GEN6_RC_CTL_RC6p_ENABLE |
7955 GEN6_RC_CTL_RC6_ENABLE; 7957 GEN6_RC_CTL_RC6_ENABLE;
7956 7958
7957 I915_WRITE(GEN6_RC_CONTROL, 7959 I915_WRITE(GEN6_RC_CONTROL,
7958 rc6_mask | 7960 rc6_mask |
7959 GEN6_RC_CTL_EI_MODE(1) | 7961 GEN6_RC_CTL_EI_MODE(1) |
7960 GEN6_RC_CTL_HW_ENABLE); 7962 GEN6_RC_CTL_HW_ENABLE);
7961 7963
7962 I915_WRITE(GEN6_RPNSWREQ, 7964 I915_WRITE(GEN6_RPNSWREQ,
7963 GEN6_FREQUENCY(10) | 7965 GEN6_FREQUENCY(10) |
7964 GEN6_OFFSET(0) | 7966 GEN6_OFFSET(0) |
7965 GEN6_AGGRESSIVE_TURBO); 7967 GEN6_AGGRESSIVE_TURBO);
7966 I915_WRITE(GEN6_RC_VIDEO_FREQ, 7968 I915_WRITE(GEN6_RC_VIDEO_FREQ,
7967 GEN6_FREQUENCY(12)); 7969 GEN6_FREQUENCY(12));
7968 7970
7969 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000); 7971 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7970 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, 7972 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7971 18 << 24 | 7973 18 << 24 |
7972 6 << 16); 7974 6 << 16);
7973 I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000); 7975 I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
7974 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000); 7976 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
7975 I915_WRITE(GEN6_RP_UP_EI, 100000); 7977 I915_WRITE(GEN6_RP_UP_EI, 100000);
7976 I915_WRITE(GEN6_RP_DOWN_EI, 5000000); 7978 I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
7977 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10); 7979 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7978 I915_WRITE(GEN6_RP_CONTROL, 7980 I915_WRITE(GEN6_RP_CONTROL,
7979 GEN6_RP_MEDIA_TURBO | 7981 GEN6_RP_MEDIA_TURBO |
7980 GEN6_RP_USE_NORMAL_FREQ | 7982 GEN6_RP_USE_NORMAL_FREQ |
7981 GEN6_RP_MEDIA_IS_GFX | 7983 GEN6_RP_MEDIA_IS_GFX |
7982 GEN6_RP_ENABLE | 7984 GEN6_RP_ENABLE |
7983 GEN6_RP_UP_BUSY_AVG | 7985 GEN6_RP_UP_BUSY_AVG |
7984 GEN6_RP_DOWN_IDLE_CONT); 7986 GEN6_RP_DOWN_IDLE_CONT);
7985 7987
7986 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0, 7988 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7987 500)) 7989 500))
7988 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n"); 7990 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7989 7991
7990 I915_WRITE(GEN6_PCODE_DATA, 0); 7992 I915_WRITE(GEN6_PCODE_DATA, 0);
7991 I915_WRITE(GEN6_PCODE_MAILBOX, 7993 I915_WRITE(GEN6_PCODE_MAILBOX,
7992 GEN6_PCODE_READY | 7994 GEN6_PCODE_READY |
7993 GEN6_PCODE_WRITE_MIN_FREQ_TABLE); 7995 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
7994 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0, 7996 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7995 500)) 7997 500))
7996 DRM_ERROR("timeout waiting for pcode mailbox to finish\n"); 7998 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7997 7999
7998 min_freq = (rp_state_cap & 0xff0000) >> 16; 8000 min_freq = (rp_state_cap & 0xff0000) >> 16;
7999 max_freq = rp_state_cap & 0xff; 8001 max_freq = rp_state_cap & 0xff;
8000 cur_freq = (gt_perf_status & 0xff00) >> 8; 8002 cur_freq = (gt_perf_status & 0xff00) >> 8;
8001 8003
8002 /* Check for overclock support */ 8004 /* Check for overclock support */
8003 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0, 8005 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8004 500)) 8006 500))
8005 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n"); 8007 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
8006 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS); 8008 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
8007 pcu_mbox = I915_READ(GEN6_PCODE_DATA); 8009 pcu_mbox = I915_READ(GEN6_PCODE_DATA);
8008 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0, 8010 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8009 500)) 8011 500))
8010 DRM_ERROR("timeout waiting for pcode mailbox to finish\n"); 8012 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
8011 if (pcu_mbox & (1<<31)) { /* OC supported */ 8013 if (pcu_mbox & (1<<31)) { /* OC supported */
8012 max_freq = pcu_mbox & 0xff; 8014 max_freq = pcu_mbox & 0xff;
8013 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50); 8015 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
8014 } 8016 }
8015 8017
8016 /* In units of 100MHz */ 8018 /* In units of 100MHz */
8017 dev_priv->max_delay = max_freq; 8019 dev_priv->max_delay = max_freq;
8018 dev_priv->min_delay = min_freq; 8020 dev_priv->min_delay = min_freq;
8019 dev_priv->cur_delay = cur_freq; 8021 dev_priv->cur_delay = cur_freq;
8020 8022
8021 /* requires MSI enabled */ 8023 /* requires MSI enabled */
8022 I915_WRITE(GEN6_PMIER, 8024 I915_WRITE(GEN6_PMIER,
8023 GEN6_PM_MBOX_EVENT | 8025 GEN6_PM_MBOX_EVENT |
8024 GEN6_PM_THERMAL_EVENT | 8026 GEN6_PM_THERMAL_EVENT |
8025 GEN6_PM_RP_DOWN_TIMEOUT | 8027 GEN6_PM_RP_DOWN_TIMEOUT |
8026 GEN6_PM_RP_UP_THRESHOLD | 8028 GEN6_PM_RP_UP_THRESHOLD |
8027 GEN6_PM_RP_DOWN_THRESHOLD | 8029 GEN6_PM_RP_DOWN_THRESHOLD |
8028 GEN6_PM_RP_UP_EI_EXPIRED | 8030 GEN6_PM_RP_UP_EI_EXPIRED |
8029 GEN6_PM_RP_DOWN_EI_EXPIRED); 8031 GEN6_PM_RP_DOWN_EI_EXPIRED);
8030 spin_lock_irq(&dev_priv->rps_lock); 8032 spin_lock_irq(&dev_priv->rps_lock);
8031 WARN_ON(dev_priv->pm_iir != 0); 8033 WARN_ON(dev_priv->pm_iir != 0);
8032 I915_WRITE(GEN6_PMIMR, 0); 8034 I915_WRITE(GEN6_PMIMR, 0);
8033 spin_unlock_irq(&dev_priv->rps_lock); 8035 spin_unlock_irq(&dev_priv->rps_lock);
8034 /* enable all PM interrupts */ 8036 /* enable all PM interrupts */
8035 I915_WRITE(GEN6_PMINTRMSK, 0); 8037 I915_WRITE(GEN6_PMINTRMSK, 0);
8036 8038
8037 gen6_gt_force_wake_put(dev_priv); 8039 gen6_gt_force_wake_put(dev_priv);
8038 mutex_unlock(&dev_priv->dev->struct_mutex); 8040 mutex_unlock(&dev_priv->dev->struct_mutex);
8039 } 8041 }
8040 8042
8041 void gen6_update_ring_freq(struct drm_i915_private *dev_priv) 8043 void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
8042 { 8044 {
8043 int min_freq = 15; 8045 int min_freq = 15;
8044 int gpu_freq, ia_freq, max_ia_freq; 8046 int gpu_freq, ia_freq, max_ia_freq;
8045 int scaling_factor = 180; 8047 int scaling_factor = 180;
8046 8048
8047 max_ia_freq = cpufreq_quick_get_max(0); 8049 max_ia_freq = cpufreq_quick_get_max(0);
8048 /* 8050 /*
8049 * Default to measured freq if none found, PCU will ensure we don't go 8051 * Default to measured freq if none found, PCU will ensure we don't go
8050 * over 8052 * over
8051 */ 8053 */
8052 if (!max_ia_freq) 8054 if (!max_ia_freq)
8053 max_ia_freq = tsc_khz; 8055 max_ia_freq = tsc_khz;
8054 8056
8055 /* Convert from kHz to MHz */ 8057 /* Convert from kHz to MHz */
8056 max_ia_freq /= 1000; 8058 max_ia_freq /= 1000;
8057 8059
8058 mutex_lock(&dev_priv->dev->struct_mutex); 8060 mutex_lock(&dev_priv->dev->struct_mutex);
8059 8061
8060 /* 8062 /*
8061 * For each potential GPU frequency, load a ring frequency we'd like 8063 * For each potential GPU frequency, load a ring frequency we'd like
8062 * to use for memory access. We do this by specifying the IA frequency 8064 * to use for memory access. We do this by specifying the IA frequency
8063 * the PCU should use as a reference to determine the ring frequency. 8065 * the PCU should use as a reference to determine the ring frequency.
8064 */ 8066 */
8065 for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay; 8067 for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
8066 gpu_freq--) { 8068 gpu_freq--) {
8067 int diff = dev_priv->max_delay - gpu_freq; 8069 int diff = dev_priv->max_delay - gpu_freq;
8068 8070
8069 /* 8071 /*
8070 * For GPU frequencies less than 750MHz, just use the lowest 8072 * For GPU frequencies less than 750MHz, just use the lowest
8071 * ring freq. 8073 * ring freq.
8072 */ 8074 */
8073 if (gpu_freq < min_freq) 8075 if (gpu_freq < min_freq)
8074 ia_freq = 800; 8076 ia_freq = 800;
8075 else 8077 else
8076 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2); 8078 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
8077 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100); 8079 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
8078 8080
8079 I915_WRITE(GEN6_PCODE_DATA, 8081 I915_WRITE(GEN6_PCODE_DATA,
8080 (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) | 8082 (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
8081 gpu_freq); 8083 gpu_freq);
8082 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | 8084 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
8083 GEN6_PCODE_WRITE_MIN_FREQ_TABLE); 8085 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8084 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & 8086 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
8085 GEN6_PCODE_READY) == 0, 10)) { 8087 GEN6_PCODE_READY) == 0, 10)) {
8086 DRM_ERROR("pcode write of freq table timed out\n"); 8088 DRM_ERROR("pcode write of freq table timed out\n");
8087 continue; 8089 continue;
8088 } 8090 }
8089 } 8091 }
8090 8092
8091 mutex_unlock(&dev_priv->dev->struct_mutex); 8093 mutex_unlock(&dev_priv->dev->struct_mutex);
8092 } 8094 }
8093 8095
8094 static void ironlake_init_clock_gating(struct drm_device *dev) 8096 static void ironlake_init_clock_gating(struct drm_device *dev)
8095 { 8097 {
8096 struct drm_i915_private *dev_priv = dev->dev_private; 8098 struct drm_i915_private *dev_priv = dev->dev_private;
8097 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE; 8099 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8098 8100
8099 /* Required for FBC */ 8101 /* Required for FBC */
8100 dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE | 8102 dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
8101 DPFCRUNIT_CLOCK_GATE_DISABLE | 8103 DPFCRUNIT_CLOCK_GATE_DISABLE |
8102 DPFDUNIT_CLOCK_GATE_DISABLE; 8104 DPFDUNIT_CLOCK_GATE_DISABLE;
8103 /* Required for CxSR */ 8105 /* Required for CxSR */
8104 dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE; 8106 dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
8105 8107
8106 I915_WRITE(PCH_3DCGDIS0, 8108 I915_WRITE(PCH_3DCGDIS0,
8107 MARIUNIT_CLOCK_GATE_DISABLE | 8109 MARIUNIT_CLOCK_GATE_DISABLE |
8108 SVSMUNIT_CLOCK_GATE_DISABLE); 8110 SVSMUNIT_CLOCK_GATE_DISABLE);
8109 I915_WRITE(PCH_3DCGDIS1, 8111 I915_WRITE(PCH_3DCGDIS1,
8110 VFMUNIT_CLOCK_GATE_DISABLE); 8112 VFMUNIT_CLOCK_GATE_DISABLE);
8111 8113
8112 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate); 8114 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8113 8115
8114 /* 8116 /*
8115 * According to the spec the following bits should be set in 8117 * According to the spec the following bits should be set in
8116 * order to enable memory self-refresh 8118 * order to enable memory self-refresh
8117 * The bit 22/21 of 0x42004 8119 * The bit 22/21 of 0x42004
8118 * The bit 5 of 0x42020 8120 * The bit 5 of 0x42020
8119 * The bit 15 of 0x45000 8121 * The bit 15 of 0x45000
8120 */ 8122 */
8121 I915_WRITE(ILK_DISPLAY_CHICKEN2, 8123 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8122 (I915_READ(ILK_DISPLAY_CHICKEN2) | 8124 (I915_READ(ILK_DISPLAY_CHICKEN2) |
8123 ILK_DPARB_GATE | ILK_VSDPFD_FULL)); 8125 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8124 I915_WRITE(ILK_DSPCLK_GATE, 8126 I915_WRITE(ILK_DSPCLK_GATE,
8125 (I915_READ(ILK_DSPCLK_GATE) | 8127 (I915_READ(ILK_DSPCLK_GATE) |
8126 ILK_DPARB_CLK_GATE)); 8128 ILK_DPARB_CLK_GATE));
8127 I915_WRITE(DISP_ARB_CTL, 8129 I915_WRITE(DISP_ARB_CTL,
8128 (I915_READ(DISP_ARB_CTL) | 8130 (I915_READ(DISP_ARB_CTL) |
8129 DISP_FBC_WM_DIS)); 8131 DISP_FBC_WM_DIS));
8130 I915_WRITE(WM3_LP_ILK, 0); 8132 I915_WRITE(WM3_LP_ILK, 0);
8131 I915_WRITE(WM2_LP_ILK, 0); 8133 I915_WRITE(WM2_LP_ILK, 0);
8132 I915_WRITE(WM1_LP_ILK, 0); 8134 I915_WRITE(WM1_LP_ILK, 0);
8133 8135
8134 /* 8136 /*
8135 * Based on the document from hardware guys the following bits 8137 * Based on the document from hardware guys the following bits
8136 * should be set unconditionally in order to enable FBC. 8138 * should be set unconditionally in order to enable FBC.
8137 * The bit 22 of 0x42000 8139 * The bit 22 of 0x42000
8138 * The bit 22 of 0x42004 8140 * The bit 22 of 0x42004
8139 * The bit 7,8,9 of 0x42020. 8141 * The bit 7,8,9 of 0x42020.
8140 */ 8142 */
8141 if (IS_IRONLAKE_M(dev)) { 8143 if (IS_IRONLAKE_M(dev)) {
8142 I915_WRITE(ILK_DISPLAY_CHICKEN1, 8144 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8143 I915_READ(ILK_DISPLAY_CHICKEN1) | 8145 I915_READ(ILK_DISPLAY_CHICKEN1) |
8144 ILK_FBCQ_DIS); 8146 ILK_FBCQ_DIS);
8145 I915_WRITE(ILK_DISPLAY_CHICKEN2, 8147 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8146 I915_READ(ILK_DISPLAY_CHICKEN2) | 8148 I915_READ(ILK_DISPLAY_CHICKEN2) |
8147 ILK_DPARB_GATE); 8149 ILK_DPARB_GATE);
8148 I915_WRITE(ILK_DSPCLK_GATE, 8150 I915_WRITE(ILK_DSPCLK_GATE,
8149 I915_READ(ILK_DSPCLK_GATE) | 8151 I915_READ(ILK_DSPCLK_GATE) |
8150 ILK_DPFC_DIS1 | 8152 ILK_DPFC_DIS1 |
8151 ILK_DPFC_DIS2 | 8153 ILK_DPFC_DIS2 |
8152 ILK_CLK_FBC); 8154 ILK_CLK_FBC);
8153 } 8155 }
8154 8156
8155 I915_WRITE(ILK_DISPLAY_CHICKEN2, 8157 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8156 I915_READ(ILK_DISPLAY_CHICKEN2) | 8158 I915_READ(ILK_DISPLAY_CHICKEN2) |
8157 ILK_ELPIN_409_SELECT); 8159 ILK_ELPIN_409_SELECT);
8158 I915_WRITE(_3D_CHICKEN2, 8160 I915_WRITE(_3D_CHICKEN2,
8159 _3D_CHICKEN2_WM_READ_PIPELINED << 16 | 8161 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8160 _3D_CHICKEN2_WM_READ_PIPELINED); 8162 _3D_CHICKEN2_WM_READ_PIPELINED);
8161 } 8163 }
8162 8164
8163 static void gen6_init_clock_gating(struct drm_device *dev) 8165 static void gen6_init_clock_gating(struct drm_device *dev)
8164 { 8166 {
8165 struct drm_i915_private *dev_priv = dev->dev_private; 8167 struct drm_i915_private *dev_priv = dev->dev_private;
8166 int pipe; 8168 int pipe;
8167 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE; 8169 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8168 8170
8169 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate); 8171 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8170 8172
8171 I915_WRITE(ILK_DISPLAY_CHICKEN2, 8173 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8172 I915_READ(ILK_DISPLAY_CHICKEN2) | 8174 I915_READ(ILK_DISPLAY_CHICKEN2) |
8173 ILK_ELPIN_409_SELECT); 8175 ILK_ELPIN_409_SELECT);
8174 8176
8175 I915_WRITE(WM3_LP_ILK, 0); 8177 I915_WRITE(WM3_LP_ILK, 0);
8176 I915_WRITE(WM2_LP_ILK, 0); 8178 I915_WRITE(WM2_LP_ILK, 0);
8177 I915_WRITE(WM1_LP_ILK, 0); 8179 I915_WRITE(WM1_LP_ILK, 0);
8178 8180
8179 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock 8181 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8180 * gating disable must be set. Failure to set it results in 8182 * gating disable must be set. Failure to set it results in
8181 * flickering pixels due to Z write ordering failures after 8183 * flickering pixels due to Z write ordering failures after
8182 * some amount of runtime in the Mesa "fire" demo, and Unigine 8184 * some amount of runtime in the Mesa "fire" demo, and Unigine
8183 * Sanctuary and Tropics, and apparently anything else with 8185 * Sanctuary and Tropics, and apparently anything else with
8184 * alpha test or pixel discard. 8186 * alpha test or pixel discard.
8185 * 8187 *
8186 * According to the spec, bit 11 (RCCUNIT) must also be set, 8188 * According to the spec, bit 11 (RCCUNIT) must also be set,
8187 * but we didn't debug actual testcases to find it out. 8189 * but we didn't debug actual testcases to find it out.
8188 */ 8190 */
8189 I915_WRITE(GEN6_UCGCTL2, 8191 I915_WRITE(GEN6_UCGCTL2,
8190 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE | 8192 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8191 GEN6_RCCUNIT_CLOCK_GATE_DISABLE); 8193 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
8192 8194
8193 /* 8195 /*
8194 * According to the spec the following bits should be 8196 * According to the spec the following bits should be
8195 * set in order to enable memory self-refresh and fbc: 8197 * set in order to enable memory self-refresh and fbc:
8196 * The bit21 and bit22 of 0x42000 8198 * The bit21 and bit22 of 0x42000
8197 * The bit21 and bit22 of 0x42004 8199 * The bit21 and bit22 of 0x42004
8198 * The bit5 and bit7 of 0x42020 8200 * The bit5 and bit7 of 0x42020
8199 * The bit14 of 0x70180 8201 * The bit14 of 0x70180
8200 * The bit14 of 0x71180 8202 * The bit14 of 0x71180
8201 */ 8203 */
8202 I915_WRITE(ILK_DISPLAY_CHICKEN1, 8204 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8203 I915_READ(ILK_DISPLAY_CHICKEN1) | 8205 I915_READ(ILK_DISPLAY_CHICKEN1) |
8204 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS); 8206 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8205 I915_WRITE(ILK_DISPLAY_CHICKEN2, 8207 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8206 I915_READ(ILK_DISPLAY_CHICKEN2) | 8208 I915_READ(ILK_DISPLAY_CHICKEN2) |
8207 ILK_DPARB_GATE | ILK_VSDPFD_FULL); 8209 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8208 I915_WRITE(ILK_DSPCLK_GATE, 8210 I915_WRITE(ILK_DSPCLK_GATE,
8209 I915_READ(ILK_DSPCLK_GATE) | 8211 I915_READ(ILK_DSPCLK_GATE) |
8210 ILK_DPARB_CLK_GATE | 8212 ILK_DPARB_CLK_GATE |
8211 ILK_DPFD_CLK_GATE); 8213 ILK_DPFD_CLK_GATE);
8212 8214
8213 for_each_pipe(pipe) { 8215 for_each_pipe(pipe) {
8214 I915_WRITE(DSPCNTR(pipe), 8216 I915_WRITE(DSPCNTR(pipe),
8215 I915_READ(DSPCNTR(pipe)) | 8217 I915_READ(DSPCNTR(pipe)) |
8216 DISPPLANE_TRICKLE_FEED_DISABLE); 8218 DISPPLANE_TRICKLE_FEED_DISABLE);
8217 intel_flush_display_plane(dev_priv, pipe); 8219 intel_flush_display_plane(dev_priv, pipe);
8218 } 8220 }
8219 } 8221 }
8220 8222
8221 static void ivybridge_init_clock_gating(struct drm_device *dev) 8223 static void ivybridge_init_clock_gating(struct drm_device *dev)
8222 { 8224 {
8223 struct drm_i915_private *dev_priv = dev->dev_private; 8225 struct drm_i915_private *dev_priv = dev->dev_private;
8224 int pipe; 8226 int pipe;
8225 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE; 8227 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8226 8228
8227 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate); 8229 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8228 8230
8229 I915_WRITE(WM3_LP_ILK, 0); 8231 I915_WRITE(WM3_LP_ILK, 0);
8230 I915_WRITE(WM2_LP_ILK, 0); 8232 I915_WRITE(WM2_LP_ILK, 0);
8231 I915_WRITE(WM1_LP_ILK, 0); 8233 I915_WRITE(WM1_LP_ILK, 0);
8232 8234
8233 I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE); 8235 I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
8234 8236
8235 for_each_pipe(pipe) { 8237 for_each_pipe(pipe) {
8236 I915_WRITE(DSPCNTR(pipe), 8238 I915_WRITE(DSPCNTR(pipe),
8237 I915_READ(DSPCNTR(pipe)) | 8239 I915_READ(DSPCNTR(pipe)) |
8238 DISPPLANE_TRICKLE_FEED_DISABLE); 8240 DISPPLANE_TRICKLE_FEED_DISABLE);
8239 intel_flush_display_plane(dev_priv, pipe); 8241 intel_flush_display_plane(dev_priv, pipe);
8240 } 8242 }
8241 } 8243 }
8242 8244
8243 static void g4x_init_clock_gating(struct drm_device *dev) 8245 static void g4x_init_clock_gating(struct drm_device *dev)
8244 { 8246 {
8245 struct drm_i915_private *dev_priv = dev->dev_private; 8247 struct drm_i915_private *dev_priv = dev->dev_private;
8246 uint32_t dspclk_gate; 8248 uint32_t dspclk_gate;
8247 8249
8248 I915_WRITE(RENCLK_GATE_D1, 0); 8250 I915_WRITE(RENCLK_GATE_D1, 0);
8249 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE | 8251 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
8250 GS_UNIT_CLOCK_GATE_DISABLE | 8252 GS_UNIT_CLOCK_GATE_DISABLE |
8251 CL_UNIT_CLOCK_GATE_DISABLE); 8253 CL_UNIT_CLOCK_GATE_DISABLE);
8252 I915_WRITE(RAMCLK_GATE_D, 0); 8254 I915_WRITE(RAMCLK_GATE_D, 0);
8253 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE | 8255 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
8254 OVRUNIT_CLOCK_GATE_DISABLE | 8256 OVRUNIT_CLOCK_GATE_DISABLE |
8255 OVCUNIT_CLOCK_GATE_DISABLE; 8257 OVCUNIT_CLOCK_GATE_DISABLE;
8256 if (IS_GM45(dev)) 8258 if (IS_GM45(dev))
8257 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE; 8259 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
8258 I915_WRITE(DSPCLK_GATE_D, dspclk_gate); 8260 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8259 } 8261 }
8260 8262
8261 static void crestline_init_clock_gating(struct drm_device *dev) 8263 static void crestline_init_clock_gating(struct drm_device *dev)
8262 { 8264 {
8263 struct drm_i915_private *dev_priv = dev->dev_private; 8265 struct drm_i915_private *dev_priv = dev->dev_private;
8264 8266
8265 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE); 8267 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
8266 I915_WRITE(RENCLK_GATE_D2, 0); 8268 I915_WRITE(RENCLK_GATE_D2, 0);
8267 I915_WRITE(DSPCLK_GATE_D, 0); 8269 I915_WRITE(DSPCLK_GATE_D, 0);
8268 I915_WRITE(RAMCLK_GATE_D, 0); 8270 I915_WRITE(RAMCLK_GATE_D, 0);
8269 I915_WRITE16(DEUC, 0); 8271 I915_WRITE16(DEUC, 0);
8270 } 8272 }
8271 8273
8272 static void broadwater_init_clock_gating(struct drm_device *dev) 8274 static void broadwater_init_clock_gating(struct drm_device *dev)
8273 { 8275 {
8274 struct drm_i915_private *dev_priv = dev->dev_private; 8276 struct drm_i915_private *dev_priv = dev->dev_private;
8275 8277
8276 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE | 8278 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
8277 I965_RCC_CLOCK_GATE_DISABLE | 8279 I965_RCC_CLOCK_GATE_DISABLE |
8278 I965_RCPB_CLOCK_GATE_DISABLE | 8280 I965_RCPB_CLOCK_GATE_DISABLE |
8279 I965_ISC_CLOCK_GATE_DISABLE | 8281 I965_ISC_CLOCK_GATE_DISABLE |
8280 I965_FBC_CLOCK_GATE_DISABLE); 8282 I965_FBC_CLOCK_GATE_DISABLE);
8281 I915_WRITE(RENCLK_GATE_D2, 0); 8283 I915_WRITE(RENCLK_GATE_D2, 0);
8282 } 8284 }
8283 8285
8284 static void gen3_init_clock_gating(struct drm_device *dev) 8286 static void gen3_init_clock_gating(struct drm_device *dev)
8285 { 8287 {
8286 struct drm_i915_private *dev_priv = dev->dev_private; 8288 struct drm_i915_private *dev_priv = dev->dev_private;
8287 u32 dstate = I915_READ(D_STATE); 8289 u32 dstate = I915_READ(D_STATE);
8288 8290
8289 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING | 8291 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
8290 DSTATE_DOT_CLOCK_GATING; 8292 DSTATE_DOT_CLOCK_GATING;
8291 I915_WRITE(D_STATE, dstate); 8293 I915_WRITE(D_STATE, dstate);
8292 } 8294 }
8293 8295
8294 static void i85x_init_clock_gating(struct drm_device *dev) 8296 static void i85x_init_clock_gating(struct drm_device *dev)
8295 { 8297 {
8296 struct drm_i915_private *dev_priv = dev->dev_private; 8298 struct drm_i915_private *dev_priv = dev->dev_private;
8297 8299
8298 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE); 8300 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
8299 } 8301 }
8300 8302
8301 static void i830_init_clock_gating(struct drm_device *dev) 8303 static void i830_init_clock_gating(struct drm_device *dev)
8302 { 8304 {
8303 struct drm_i915_private *dev_priv = dev->dev_private; 8305 struct drm_i915_private *dev_priv = dev->dev_private;
8304 8306
8305 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE); 8307 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
8306 } 8308 }
8307 8309
8308 static void ibx_init_clock_gating(struct drm_device *dev) 8310 static void ibx_init_clock_gating(struct drm_device *dev)
8309 { 8311 {
8310 struct drm_i915_private *dev_priv = dev->dev_private; 8312 struct drm_i915_private *dev_priv = dev->dev_private;
8311 8313
8312 /* 8314 /*
8313 * On Ibex Peak and Cougar Point, we need to disable clock 8315 * On Ibex Peak and Cougar Point, we need to disable clock
8314 * gating for the panel power sequencer or it will fail to 8316 * gating for the panel power sequencer or it will fail to
8315 * start up when no ports are active. 8317 * start up when no ports are active.
8316 */ 8318 */
8317 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE); 8319 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8318 } 8320 }
8319 8321
8320 static void cpt_init_clock_gating(struct drm_device *dev) 8322 static void cpt_init_clock_gating(struct drm_device *dev)
8321 { 8323 {
8322 struct drm_i915_private *dev_priv = dev->dev_private; 8324 struct drm_i915_private *dev_priv = dev->dev_private;
8323 int pipe; 8325 int pipe;
8324 8326
8325 /* 8327 /*
8326 * On Ibex Peak and Cougar Point, we need to disable clock 8328 * On Ibex Peak and Cougar Point, we need to disable clock
8327 * gating for the panel power sequencer or it will fail to 8329 * gating for the panel power sequencer or it will fail to
8328 * start up when no ports are active. 8330 * start up when no ports are active.
8329 */ 8331 */
8330 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE); 8332 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8331 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) | 8333 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8332 DPLS_EDP_PPS_FIX_DIS); 8334 DPLS_EDP_PPS_FIX_DIS);
8333 /* Without this, mode sets may fail silently on FDI */ 8335 /* Without this, mode sets may fail silently on FDI */
8334 for_each_pipe(pipe) 8336 for_each_pipe(pipe)
8335 I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS); 8337 I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
8336 } 8338 }
8337 8339
8338 static void ironlake_teardown_rc6(struct drm_device *dev) 8340 static void ironlake_teardown_rc6(struct drm_device *dev)
8339 { 8341 {
8340 struct drm_i915_private *dev_priv = dev->dev_private; 8342 struct drm_i915_private *dev_priv = dev->dev_private;
8341 8343
8342 if (dev_priv->renderctx) { 8344 if (dev_priv->renderctx) {
8343 i915_gem_object_unpin(dev_priv->renderctx); 8345 i915_gem_object_unpin(dev_priv->renderctx);
8344 drm_gem_object_unreference(&dev_priv->renderctx->base); 8346 drm_gem_object_unreference(&dev_priv->renderctx->base);
8345 dev_priv->renderctx = NULL; 8347 dev_priv->renderctx = NULL;
8346 } 8348 }
8347 8349
8348 if (dev_priv->pwrctx) { 8350 if (dev_priv->pwrctx) {
8349 i915_gem_object_unpin(dev_priv->pwrctx); 8351 i915_gem_object_unpin(dev_priv->pwrctx);
8350 drm_gem_object_unreference(&dev_priv->pwrctx->base); 8352 drm_gem_object_unreference(&dev_priv->pwrctx->base);
8351 dev_priv->pwrctx = NULL; 8353 dev_priv->pwrctx = NULL;
8352 } 8354 }
8353 } 8355 }
8354 8356
8355 static void ironlake_disable_rc6(struct drm_device *dev) 8357 static void ironlake_disable_rc6(struct drm_device *dev)
8356 { 8358 {
8357 struct drm_i915_private *dev_priv = dev->dev_private; 8359 struct drm_i915_private *dev_priv = dev->dev_private;
8358 8360
8359 if (I915_READ(PWRCTXA)) { 8361 if (I915_READ(PWRCTXA)) {
8360 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */ 8362 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
8361 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT); 8363 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
8362 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON), 8364 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
8363 50); 8365 50);
8364 8366
8365 I915_WRITE(PWRCTXA, 0); 8367 I915_WRITE(PWRCTXA, 0);
8366 POSTING_READ(PWRCTXA); 8368 POSTING_READ(PWRCTXA);
8367 8369
8368 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT); 8370 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8369 POSTING_READ(RSTDBYCTL); 8371 POSTING_READ(RSTDBYCTL);
8370 } 8372 }
8371 8373
8372 ironlake_teardown_rc6(dev); 8374 ironlake_teardown_rc6(dev);
8373 } 8375 }
8374 8376
8375 static int ironlake_setup_rc6(struct drm_device *dev) 8377 static int ironlake_setup_rc6(struct drm_device *dev)
8376 { 8378 {
8377 struct drm_i915_private *dev_priv = dev->dev_private; 8379 struct drm_i915_private *dev_priv = dev->dev_private;
8378 8380
8379 if (dev_priv->renderctx == NULL) 8381 if (dev_priv->renderctx == NULL)
8380 dev_priv->renderctx = intel_alloc_context_page(dev); 8382 dev_priv->renderctx = intel_alloc_context_page(dev);
8381 if (!dev_priv->renderctx) 8383 if (!dev_priv->renderctx)
8382 return -ENOMEM; 8384 return -ENOMEM;
8383 8385
8384 if (dev_priv->pwrctx == NULL) 8386 if (dev_priv->pwrctx == NULL)
8385 dev_priv->pwrctx = intel_alloc_context_page(dev); 8387 dev_priv->pwrctx = intel_alloc_context_page(dev);
8386 if (!dev_priv->pwrctx) { 8388 if (!dev_priv->pwrctx) {
8387 ironlake_teardown_rc6(dev); 8389 ironlake_teardown_rc6(dev);
8388 return -ENOMEM; 8390 return -ENOMEM;
8389 } 8391 }
8390 8392
8391 return 0; 8393 return 0;
8392 } 8394 }
8393 8395
8394 void ironlake_enable_rc6(struct drm_device *dev) 8396 void ironlake_enable_rc6(struct drm_device *dev)
8395 { 8397 {
8396 struct drm_i915_private *dev_priv = dev->dev_private; 8398 struct drm_i915_private *dev_priv = dev->dev_private;
8397 int ret; 8399 int ret;
8398 8400
8399 /* rc6 disabled by default due to repeated reports of hanging during 8401 /* rc6 disabled by default due to repeated reports of hanging during
8400 * boot and resume. 8402 * boot and resume.
8401 */ 8403 */
8402 if (!intel_enable_rc6(dev)) 8404 if (!intel_enable_rc6(dev))
8403 return; 8405 return;
8404 8406
8405 mutex_lock(&dev->struct_mutex); 8407 mutex_lock(&dev->struct_mutex);
8406 ret = ironlake_setup_rc6(dev); 8408 ret = ironlake_setup_rc6(dev);
8407 if (ret) { 8409 if (ret) {
8408 mutex_unlock(&dev->struct_mutex); 8410 mutex_unlock(&dev->struct_mutex);
8409 return; 8411 return;
8410 } 8412 }
8411 8413
8412 /* 8414 /*
8413 * GPU can automatically power down the render unit if given a page 8415 * GPU can automatically power down the render unit if given a page
8414 * to save state. 8416 * to save state.
8415 */ 8417 */
8416 ret = BEGIN_LP_RING(6); 8418 ret = BEGIN_LP_RING(6);
8417 if (ret) { 8419 if (ret) {
8418 ironlake_teardown_rc6(dev); 8420 ironlake_teardown_rc6(dev);
8419 mutex_unlock(&dev->struct_mutex); 8421 mutex_unlock(&dev->struct_mutex);
8420 return; 8422 return;
8421 } 8423 }
8422 8424
8423 OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN); 8425 OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
8424 OUT_RING(MI_SET_CONTEXT); 8426 OUT_RING(MI_SET_CONTEXT);
8425 OUT_RING(dev_priv->renderctx->gtt_offset | 8427 OUT_RING(dev_priv->renderctx->gtt_offset |
8426 MI_MM_SPACE_GTT | 8428 MI_MM_SPACE_GTT |
8427 MI_SAVE_EXT_STATE_EN | 8429 MI_SAVE_EXT_STATE_EN |
8428 MI_RESTORE_EXT_STATE_EN | 8430 MI_RESTORE_EXT_STATE_EN |
8429 MI_RESTORE_INHIBIT); 8431 MI_RESTORE_INHIBIT);
8430 OUT_RING(MI_SUSPEND_FLUSH); 8432 OUT_RING(MI_SUSPEND_FLUSH);
8431 OUT_RING(MI_NOOP); 8433 OUT_RING(MI_NOOP);
8432 OUT_RING(MI_FLUSH); 8434 OUT_RING(MI_FLUSH);
8433 ADVANCE_LP_RING(); 8435 ADVANCE_LP_RING();
8434 8436
8435 /* 8437 /*
8436 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW 8438 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
8437 * does an implicit flush, combined with MI_FLUSH above, it should be 8439 * does an implicit flush, combined with MI_FLUSH above, it should be
8438 * safe to assume that renderctx is valid 8440 * safe to assume that renderctx is valid
8439 */ 8441 */
8440 ret = intel_wait_ring_idle(LP_RING(dev_priv)); 8442 ret = intel_wait_ring_idle(LP_RING(dev_priv));
8441 if (ret) { 8443 if (ret) {
8442 DRM_ERROR("failed to enable ironlake power power savings\n"); 8444 DRM_ERROR("failed to enable ironlake power power savings\n");
8443 ironlake_teardown_rc6(dev); 8445 ironlake_teardown_rc6(dev);
8444 mutex_unlock(&dev->struct_mutex); 8446 mutex_unlock(&dev->struct_mutex);
8445 return; 8447 return;
8446 } 8448 }
8447 8449
8448 I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN); 8450 I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
8449 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT); 8451 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8450 mutex_unlock(&dev->struct_mutex); 8452 mutex_unlock(&dev->struct_mutex);
8451 } 8453 }
8452 8454
8453 void intel_init_clock_gating(struct drm_device *dev) 8455 void intel_init_clock_gating(struct drm_device *dev)
8454 { 8456 {
8455 struct drm_i915_private *dev_priv = dev->dev_private; 8457 struct drm_i915_private *dev_priv = dev->dev_private;
8456 8458
8457 dev_priv->display.init_clock_gating(dev); 8459 dev_priv->display.init_clock_gating(dev);
8458 8460
8459 if (dev_priv->display.init_pch_clock_gating) 8461 if (dev_priv->display.init_pch_clock_gating)
8460 dev_priv->display.init_pch_clock_gating(dev); 8462 dev_priv->display.init_pch_clock_gating(dev);
8461 } 8463 }
8462 8464
8463 /* Set up chip specific display functions */ 8465 /* Set up chip specific display functions */
8464 static void intel_init_display(struct drm_device *dev) 8466 static void intel_init_display(struct drm_device *dev)
8465 { 8467 {
8466 struct drm_i915_private *dev_priv = dev->dev_private; 8468 struct drm_i915_private *dev_priv = dev->dev_private;
8467 8469
8468 /* We always want a DPMS function */ 8470 /* We always want a DPMS function */
8469 if (HAS_PCH_SPLIT(dev)) { 8471 if (HAS_PCH_SPLIT(dev)) {
8470 dev_priv->display.dpms = ironlake_crtc_dpms; 8472 dev_priv->display.dpms = ironlake_crtc_dpms;
8471 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set; 8473 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8472 dev_priv->display.update_plane = ironlake_update_plane; 8474 dev_priv->display.update_plane = ironlake_update_plane;
8473 } else { 8475 } else {
8474 dev_priv->display.dpms = i9xx_crtc_dpms; 8476 dev_priv->display.dpms = i9xx_crtc_dpms;
8475 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set; 8477 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8476 dev_priv->display.update_plane = i9xx_update_plane; 8478 dev_priv->display.update_plane = i9xx_update_plane;
8477 } 8479 }
8478 8480
8479 if (I915_HAS_FBC(dev)) { 8481 if (I915_HAS_FBC(dev)) {
8480 if (HAS_PCH_SPLIT(dev)) { 8482 if (HAS_PCH_SPLIT(dev)) {
8481 dev_priv->display.fbc_enabled = ironlake_fbc_enabled; 8483 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
8482 dev_priv->display.enable_fbc = ironlake_enable_fbc; 8484 dev_priv->display.enable_fbc = ironlake_enable_fbc;
8483 dev_priv->display.disable_fbc = ironlake_disable_fbc; 8485 dev_priv->display.disable_fbc = ironlake_disable_fbc;
8484 } else if (IS_GM45(dev)) { 8486 } else if (IS_GM45(dev)) {
8485 dev_priv->display.fbc_enabled = g4x_fbc_enabled; 8487 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
8486 dev_priv->display.enable_fbc = g4x_enable_fbc; 8488 dev_priv->display.enable_fbc = g4x_enable_fbc;
8487 dev_priv->display.disable_fbc = g4x_disable_fbc; 8489 dev_priv->display.disable_fbc = g4x_disable_fbc;
8488 } else if (IS_CRESTLINE(dev)) { 8490 } else if (IS_CRESTLINE(dev)) {
8489 dev_priv->display.fbc_enabled = i8xx_fbc_enabled; 8491 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
8490 dev_priv->display.enable_fbc = i8xx_enable_fbc; 8492 dev_priv->display.enable_fbc = i8xx_enable_fbc;
8491 dev_priv->display.disable_fbc = i8xx_disable_fbc; 8493 dev_priv->display.disable_fbc = i8xx_disable_fbc;
8492 } 8494 }
8493 /* 855GM needs testing */ 8495 /* 855GM needs testing */
8494 } 8496 }
8495 8497
8496 /* Returns the core display clock speed */ 8498 /* Returns the core display clock speed */
8497 if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev))) 8499 if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8498 dev_priv->display.get_display_clock_speed = 8500 dev_priv->display.get_display_clock_speed =
8499 i945_get_display_clock_speed; 8501 i945_get_display_clock_speed;
8500 else if (IS_I915G(dev)) 8502 else if (IS_I915G(dev))
8501 dev_priv->display.get_display_clock_speed = 8503 dev_priv->display.get_display_clock_speed =
8502 i915_get_display_clock_speed; 8504 i915_get_display_clock_speed;
8503 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev)) 8505 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8504 dev_priv->display.get_display_clock_speed = 8506 dev_priv->display.get_display_clock_speed =
8505 i9xx_misc_get_display_clock_speed; 8507 i9xx_misc_get_display_clock_speed;
8506 else if (IS_I915GM(dev)) 8508 else if (IS_I915GM(dev))
8507 dev_priv->display.get_display_clock_speed = 8509 dev_priv->display.get_display_clock_speed =
8508 i915gm_get_display_clock_speed; 8510 i915gm_get_display_clock_speed;
8509 else if (IS_I865G(dev)) 8511 else if (IS_I865G(dev))
8510 dev_priv->display.get_display_clock_speed = 8512 dev_priv->display.get_display_clock_speed =
8511 i865_get_display_clock_speed; 8513 i865_get_display_clock_speed;
8512 else if (IS_I85X(dev)) 8514 else if (IS_I85X(dev))
8513 dev_priv->display.get_display_clock_speed = 8515 dev_priv->display.get_display_clock_speed =
8514 i855_get_display_clock_speed; 8516 i855_get_display_clock_speed;
8515 else /* 852, 830 */ 8517 else /* 852, 830 */
8516 dev_priv->display.get_display_clock_speed = 8518 dev_priv->display.get_display_clock_speed =
8517 i830_get_display_clock_speed; 8519 i830_get_display_clock_speed;
8518 8520
8519 /* For FIFO watermark updates */ 8521 /* For FIFO watermark updates */
8520 if (HAS_PCH_SPLIT(dev)) { 8522 if (HAS_PCH_SPLIT(dev)) {
8521 dev_priv->display.force_wake_get = __gen6_gt_force_wake_get; 8523 dev_priv->display.force_wake_get = __gen6_gt_force_wake_get;
8522 dev_priv->display.force_wake_put = __gen6_gt_force_wake_put; 8524 dev_priv->display.force_wake_put = __gen6_gt_force_wake_put;
8523 8525
8524 /* IVB configs may use multi-threaded forcewake */ 8526 /* IVB configs may use multi-threaded forcewake */
8525 if (IS_IVYBRIDGE(dev)) { 8527 if (IS_IVYBRIDGE(dev)) {
8526 u32 ecobus; 8528 u32 ecobus;
8527 8529
8528 mutex_lock(&dev->struct_mutex); 8530 mutex_lock(&dev->struct_mutex);
8529 __gen6_gt_force_wake_mt_get(dev_priv); 8531 __gen6_gt_force_wake_mt_get(dev_priv);
8530 ecobus = I915_READ(ECOBUS); 8532 ecobus = I915_READ(ECOBUS);
8531 __gen6_gt_force_wake_mt_put(dev_priv); 8533 __gen6_gt_force_wake_mt_put(dev_priv);
8532 mutex_unlock(&dev->struct_mutex); 8534 mutex_unlock(&dev->struct_mutex);
8533 8535
8534 if (ecobus & FORCEWAKE_MT_ENABLE) { 8536 if (ecobus & FORCEWAKE_MT_ENABLE) {
8535 DRM_DEBUG_KMS("Using MT version of forcewake\n"); 8537 DRM_DEBUG_KMS("Using MT version of forcewake\n");
8536 dev_priv->display.force_wake_get = 8538 dev_priv->display.force_wake_get =
8537 __gen6_gt_force_wake_mt_get; 8539 __gen6_gt_force_wake_mt_get;
8538 dev_priv->display.force_wake_put = 8540 dev_priv->display.force_wake_put =
8539 __gen6_gt_force_wake_mt_put; 8541 __gen6_gt_force_wake_mt_put;
8540 } 8542 }
8541 } 8543 }
8542 8544
8543 if (HAS_PCH_IBX(dev)) 8545 if (HAS_PCH_IBX(dev))
8544 dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating; 8546 dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
8545 else if (HAS_PCH_CPT(dev)) 8547 else if (HAS_PCH_CPT(dev))
8546 dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating; 8548 dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
8547 8549
8548 if (IS_GEN5(dev)) { 8550 if (IS_GEN5(dev)) {
8549 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK) 8551 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
8550 dev_priv->display.update_wm = ironlake_update_wm; 8552 dev_priv->display.update_wm = ironlake_update_wm;
8551 else { 8553 else {
8552 DRM_DEBUG_KMS("Failed to get proper latency. " 8554 DRM_DEBUG_KMS("Failed to get proper latency. "
8553 "Disable CxSR\n"); 8555 "Disable CxSR\n");
8554 dev_priv->display.update_wm = NULL; 8556 dev_priv->display.update_wm = NULL;
8555 } 8557 }
8556 dev_priv->display.fdi_link_train = ironlake_fdi_link_train; 8558 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8557 dev_priv->display.init_clock_gating = ironlake_init_clock_gating; 8559 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
8558 dev_priv->display.write_eld = ironlake_write_eld; 8560 dev_priv->display.write_eld = ironlake_write_eld;
8559 } else if (IS_GEN6(dev)) { 8561 } else if (IS_GEN6(dev)) {
8560 if (SNB_READ_WM0_LATENCY()) { 8562 if (SNB_READ_WM0_LATENCY()) {
8561 dev_priv->display.update_wm = sandybridge_update_wm; 8563 dev_priv->display.update_wm = sandybridge_update_wm;
8562 } else { 8564 } else {
8563 DRM_DEBUG_KMS("Failed to read display plane latency. " 8565 DRM_DEBUG_KMS("Failed to read display plane latency. "
8564 "Disable CxSR\n"); 8566 "Disable CxSR\n");
8565 dev_priv->display.update_wm = NULL; 8567 dev_priv->display.update_wm = NULL;
8566 } 8568 }
8567 dev_priv->display.fdi_link_train = gen6_fdi_link_train; 8569 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8568 dev_priv->display.init_clock_gating = gen6_init_clock_gating; 8570 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
8569 dev_priv->display.write_eld = ironlake_write_eld; 8571 dev_priv->display.write_eld = ironlake_write_eld;
8570 } else if (IS_IVYBRIDGE(dev)) { 8572 } else if (IS_IVYBRIDGE(dev)) {
8571 /* FIXME: detect B0+ stepping and use auto training */ 8573 /* FIXME: detect B0+ stepping and use auto training */
8572 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train; 8574 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8573 if (SNB_READ_WM0_LATENCY()) { 8575 if (SNB_READ_WM0_LATENCY()) {
8574 dev_priv->display.update_wm = sandybridge_update_wm; 8576 dev_priv->display.update_wm = sandybridge_update_wm;
8575 } else { 8577 } else {
8576 DRM_DEBUG_KMS("Failed to read display plane latency. " 8578 DRM_DEBUG_KMS("Failed to read display plane latency. "
8577 "Disable CxSR\n"); 8579 "Disable CxSR\n");
8578 dev_priv->display.update_wm = NULL; 8580 dev_priv->display.update_wm = NULL;
8579 } 8581 }
8580 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating; 8582 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
8581 dev_priv->display.write_eld = ironlake_write_eld; 8583 dev_priv->display.write_eld = ironlake_write_eld;
8582 } else 8584 } else
8583 dev_priv->display.update_wm = NULL; 8585 dev_priv->display.update_wm = NULL;
8584 } else if (IS_PINEVIEW(dev)) { 8586 } else if (IS_PINEVIEW(dev)) {
8585 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev), 8587 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
8586 dev_priv->is_ddr3, 8588 dev_priv->is_ddr3,
8587 dev_priv->fsb_freq, 8589 dev_priv->fsb_freq,
8588 dev_priv->mem_freq)) { 8590 dev_priv->mem_freq)) {
8589 DRM_INFO("failed to find known CxSR latency " 8591 DRM_INFO("failed to find known CxSR latency "
8590 "(found ddr%s fsb freq %d, mem freq %d), " 8592 "(found ddr%s fsb freq %d, mem freq %d), "
8591 "disabling CxSR\n", 8593 "disabling CxSR\n",
8592 (dev_priv->is_ddr3 == 1) ? "3" : "2", 8594 (dev_priv->is_ddr3 == 1) ? "3" : "2",
8593 dev_priv->fsb_freq, dev_priv->mem_freq); 8595 dev_priv->fsb_freq, dev_priv->mem_freq);
8594 /* Disable CxSR and never update its watermark again */ 8596 /* Disable CxSR and never update its watermark again */
8595 pineview_disable_cxsr(dev); 8597 pineview_disable_cxsr(dev);
8596 dev_priv->display.update_wm = NULL; 8598 dev_priv->display.update_wm = NULL;
8597 } else 8599 } else
8598 dev_priv->display.update_wm = pineview_update_wm; 8600 dev_priv->display.update_wm = pineview_update_wm;
8599 dev_priv->display.init_clock_gating = gen3_init_clock_gating; 8601 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8600 } else if (IS_G4X(dev)) { 8602 } else if (IS_G4X(dev)) {
8601 dev_priv->display.write_eld = g4x_write_eld; 8603 dev_priv->display.write_eld = g4x_write_eld;
8602 dev_priv->display.update_wm = g4x_update_wm; 8604 dev_priv->display.update_wm = g4x_update_wm;
8603 dev_priv->display.init_clock_gating = g4x_init_clock_gating; 8605 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
8604 } else if (IS_GEN4(dev)) { 8606 } else if (IS_GEN4(dev)) {
8605 dev_priv->display.update_wm = i965_update_wm; 8607 dev_priv->display.update_wm = i965_update_wm;
8606 if (IS_CRESTLINE(dev)) 8608 if (IS_CRESTLINE(dev))
8607 dev_priv->display.init_clock_gating = crestline_init_clock_gating; 8609 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
8608 else if (IS_BROADWATER(dev)) 8610 else if (IS_BROADWATER(dev))
8609 dev_priv->display.init_clock_gating = broadwater_init_clock_gating; 8611 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
8610 } else if (IS_GEN3(dev)) { 8612 } else if (IS_GEN3(dev)) {
8611 dev_priv->display.update_wm = i9xx_update_wm; 8613 dev_priv->display.update_wm = i9xx_update_wm;
8612 dev_priv->display.get_fifo_size = i9xx_get_fifo_size; 8614 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
8613 dev_priv->display.init_clock_gating = gen3_init_clock_gating; 8615 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8614 } else if (IS_I865G(dev)) { 8616 } else if (IS_I865G(dev)) {
8615 dev_priv->display.update_wm = i830_update_wm; 8617 dev_priv->display.update_wm = i830_update_wm;
8616 dev_priv->display.init_clock_gating = i85x_init_clock_gating; 8618 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8617 dev_priv->display.get_fifo_size = i830_get_fifo_size; 8619 dev_priv->display.get_fifo_size = i830_get_fifo_size;
8618 } else if (IS_I85X(dev)) { 8620 } else if (IS_I85X(dev)) {
8619 dev_priv->display.update_wm = i9xx_update_wm; 8621 dev_priv->display.update_wm = i9xx_update_wm;
8620 dev_priv->display.get_fifo_size = i85x_get_fifo_size; 8622 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
8621 dev_priv->display.init_clock_gating = i85x_init_clock_gating; 8623 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8622 } else { 8624 } else {
8623 dev_priv->display.update_wm = i830_update_wm; 8625 dev_priv->display.update_wm = i830_update_wm;
8624 dev_priv->display.init_clock_gating = i830_init_clock_gating; 8626 dev_priv->display.init_clock_gating = i830_init_clock_gating;
8625 if (IS_845G(dev)) 8627 if (IS_845G(dev))
8626 dev_priv->display.get_fifo_size = i845_get_fifo_size; 8628 dev_priv->display.get_fifo_size = i845_get_fifo_size;
8627 else 8629 else
8628 dev_priv->display.get_fifo_size = i830_get_fifo_size; 8630 dev_priv->display.get_fifo_size = i830_get_fifo_size;
8629 } 8631 }
8630 8632
8631 /* Default just returns -ENODEV to indicate unsupported */ 8633 /* Default just returns -ENODEV to indicate unsupported */
8632 dev_priv->display.queue_flip = intel_default_queue_flip; 8634 dev_priv->display.queue_flip = intel_default_queue_flip;
8633 8635
8634 switch (INTEL_INFO(dev)->gen) { 8636 switch (INTEL_INFO(dev)->gen) {
8635 case 2: 8637 case 2:
8636 dev_priv->display.queue_flip = intel_gen2_queue_flip; 8638 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8637 break; 8639 break;
8638 8640
8639 case 3: 8641 case 3:
8640 dev_priv->display.queue_flip = intel_gen3_queue_flip; 8642 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8641 break; 8643 break;
8642 8644
8643 case 4: 8645 case 4:
8644 case 5: 8646 case 5:
8645 dev_priv->display.queue_flip = intel_gen4_queue_flip; 8647 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8646 break; 8648 break;
8647 8649
8648 case 6: 8650 case 6:
8649 dev_priv->display.queue_flip = intel_gen6_queue_flip; 8651 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8650 break; 8652 break;
8651 case 7: 8653 case 7:
8652 dev_priv->display.queue_flip = intel_gen7_queue_flip; 8654 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8653 break; 8655 break;
8654 } 8656 }
8655 } 8657 }
8656 8658
8657 /* 8659 /*
8658 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend, 8660 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8659 * resume, or other times. This quirk makes sure that's the case for 8661 * resume, or other times. This quirk makes sure that's the case for
8660 * affected systems. 8662 * affected systems.
8661 */ 8663 */
8662 static void quirk_pipea_force(struct drm_device *dev) 8664 static void quirk_pipea_force(struct drm_device *dev)
8663 { 8665 {
8664 struct drm_i915_private *dev_priv = dev->dev_private; 8666 struct drm_i915_private *dev_priv = dev->dev_private;
8665 8667
8666 dev_priv->quirks |= QUIRK_PIPEA_FORCE; 8668 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8667 DRM_DEBUG_DRIVER("applying pipe a force quirk\n"); 8669 DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
8668 } 8670 }
8669 8671
8670 /* 8672 /*
8671 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason 8673 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8672 */ 8674 */
8673 static void quirk_ssc_force_disable(struct drm_device *dev) 8675 static void quirk_ssc_force_disable(struct drm_device *dev)
8674 { 8676 {
8675 struct drm_i915_private *dev_priv = dev->dev_private; 8677 struct drm_i915_private *dev_priv = dev->dev_private;
8676 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE; 8678 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8677 } 8679 }
8678 8680
8679 struct intel_quirk { 8681 struct intel_quirk {
8680 int device; 8682 int device;
8681 int subsystem_vendor; 8683 int subsystem_vendor;
8682 int subsystem_device; 8684 int subsystem_device;
8683 void (*hook)(struct drm_device *dev); 8685 void (*hook)(struct drm_device *dev);
8684 }; 8686 };
8685 8687
8686 struct intel_quirk intel_quirks[] = { 8688 struct intel_quirk intel_quirks[] = {
8687 /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */ 8689 /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
8688 { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force }, 8690 { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
8689 /* HP Mini needs pipe A force quirk (LP: #322104) */ 8691 /* HP Mini needs pipe A force quirk (LP: #322104) */
8690 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force }, 8692 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8691 8693
8692 /* Thinkpad R31 needs pipe A force quirk */ 8694 /* Thinkpad R31 needs pipe A force quirk */
8693 { 0x3577, 0x1014, 0x0505, quirk_pipea_force }, 8695 { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
8694 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */ 8696 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8695 { 0x2592, 0x1179, 0x0001, quirk_pipea_force }, 8697 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8696 8698
8697 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */ 8699 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
8698 { 0x3577, 0x1014, 0x0513, quirk_pipea_force }, 8700 { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
8699 /* ThinkPad X40 needs pipe A force quirk */ 8701 /* ThinkPad X40 needs pipe A force quirk */
8700 8702
8701 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */ 8703 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8702 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force }, 8704 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8703 8705
8704 /* 855 & before need to leave pipe A & dpll A up */ 8706 /* 855 & before need to leave pipe A & dpll A up */
8705 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force }, 8707 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8706 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force }, 8708 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8707 8709
8708 /* Lenovo U160 cannot use SSC on LVDS */ 8710 /* Lenovo U160 cannot use SSC on LVDS */
8709 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable }, 8711 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8710 8712
8711 /* Sony Vaio Y cannot use SSC on LVDS */ 8713 /* Sony Vaio Y cannot use SSC on LVDS */
8712 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable }, 8714 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8713 }; 8715 };
8714 8716
8715 static void intel_init_quirks(struct drm_device *dev) 8717 static void intel_init_quirks(struct drm_device *dev)
8716 { 8718 {
8717 struct pci_dev *d = dev->pdev; 8719 struct pci_dev *d = dev->pdev;
8718 int i; 8720 int i;
8719 8721
8720 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) { 8722 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8721 struct intel_quirk *q = &intel_quirks[i]; 8723 struct intel_quirk *q = &intel_quirks[i];
8722 8724
8723 if (d->device == q->device && 8725 if (d->device == q->device &&
8724 (d->subsystem_vendor == q->subsystem_vendor || 8726 (d->subsystem_vendor == q->subsystem_vendor ||
8725 q->subsystem_vendor == PCI_ANY_ID) && 8727 q->subsystem_vendor == PCI_ANY_ID) &&
8726 (d->subsystem_device == q->subsystem_device || 8728 (d->subsystem_device == q->subsystem_device ||
8727 q->subsystem_device == PCI_ANY_ID)) 8729 q->subsystem_device == PCI_ANY_ID))
8728 q->hook(dev); 8730 q->hook(dev);
8729 } 8731 }
8730 } 8732 }
8731 8733
8732 /* Disable the VGA plane that we never use */ 8734 /* Disable the VGA plane that we never use */
8733 static void i915_disable_vga(struct drm_device *dev) 8735 static void i915_disable_vga(struct drm_device *dev)
8734 { 8736 {
8735 struct drm_i915_private *dev_priv = dev->dev_private; 8737 struct drm_i915_private *dev_priv = dev->dev_private;
8736 u8 sr1; 8738 u8 sr1;
8737 u32 vga_reg; 8739 u32 vga_reg;
8738 8740
8739 if (HAS_PCH_SPLIT(dev)) 8741 if (HAS_PCH_SPLIT(dev))
8740 vga_reg = CPU_VGACNTRL; 8742 vga_reg = CPU_VGACNTRL;
8741 else 8743 else
8742 vga_reg = VGACNTRL; 8744 vga_reg = VGACNTRL;
8743 8745
8744 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO); 8746 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8745 outb(1, VGA_SR_INDEX); 8747 outb(1, VGA_SR_INDEX);
8746 sr1 = inb(VGA_SR_DATA); 8748 sr1 = inb(VGA_SR_DATA);
8747 outb(sr1 | 1<<5, VGA_SR_DATA); 8749 outb(sr1 | 1<<5, VGA_SR_DATA);
8748 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO); 8750 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8749 udelay(300); 8751 udelay(300);
8750 8752
8751 I915_WRITE(vga_reg, VGA_DISP_DISABLE); 8753 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8752 POSTING_READ(vga_reg); 8754 POSTING_READ(vga_reg);
8753 } 8755 }
8754 8756
8755 void intel_modeset_init(struct drm_device *dev) 8757 void intel_modeset_init(struct drm_device *dev)
8756 { 8758 {
8757 struct drm_i915_private *dev_priv = dev->dev_private; 8759 struct drm_i915_private *dev_priv = dev->dev_private;
8758 int i; 8760 int i;
8759 8761
8760 drm_mode_config_init(dev); 8762 drm_mode_config_init(dev);
8761 8763
8762 dev->mode_config.min_width = 0; 8764 dev->mode_config.min_width = 0;
8763 dev->mode_config.min_height = 0; 8765 dev->mode_config.min_height = 0;
8764 8766
8765 dev->mode_config.funcs = (void *)&intel_mode_funcs; 8767 dev->mode_config.funcs = (void *)&intel_mode_funcs;
8766 8768
8767 intel_init_quirks(dev); 8769 intel_init_quirks(dev);
8768 8770
8769 intel_init_display(dev); 8771 intel_init_display(dev);
8770 8772
8771 if (IS_GEN2(dev)) { 8773 if (IS_GEN2(dev)) {
8772 dev->mode_config.max_width = 2048; 8774 dev->mode_config.max_width = 2048;
8773 dev->mode_config.max_height = 2048; 8775 dev->mode_config.max_height = 2048;
8774 } else if (IS_GEN3(dev)) { 8776 } else if (IS_GEN3(dev)) {
8775 dev->mode_config.max_width = 4096; 8777 dev->mode_config.max_width = 4096;
8776 dev->mode_config.max_height = 4096; 8778 dev->mode_config.max_height = 4096;
8777 } else { 8779 } else {
8778 dev->mode_config.max_width = 8192; 8780 dev->mode_config.max_width = 8192;
8779 dev->mode_config.max_height = 8192; 8781 dev->mode_config.max_height = 8192;
8780 } 8782 }
8781 dev->mode_config.fb_base = dev->agp->base; 8783 dev->mode_config.fb_base = dev->agp->base;
8782 8784
8783 DRM_DEBUG_KMS("%d display pipe%s available.\n", 8785 DRM_DEBUG_KMS("%d display pipe%s available.\n",
8784 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : ""); 8786 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8785 8787
8786 for (i = 0; i < dev_priv->num_pipe; i++) { 8788 for (i = 0; i < dev_priv->num_pipe; i++) {
8787 intel_crtc_init(dev, i); 8789 intel_crtc_init(dev, i);
8788 } 8790 }
8789 8791
8790 /* Just disable it once at startup */ 8792 /* Just disable it once at startup */
8791 i915_disable_vga(dev); 8793 i915_disable_vga(dev);
8792 intel_setup_outputs(dev); 8794 intel_setup_outputs(dev);
8793 8795
8794 intel_init_clock_gating(dev); 8796 intel_init_clock_gating(dev);
8795 8797
8796 if (IS_IRONLAKE_M(dev)) { 8798 if (IS_IRONLAKE_M(dev)) {
8797 ironlake_enable_drps(dev); 8799 ironlake_enable_drps(dev);
8798 intel_init_emon(dev); 8800 intel_init_emon(dev);
8799 } 8801 }
8800 8802
8801 if (IS_GEN6(dev) || IS_GEN7(dev)) { 8803 if (IS_GEN6(dev) || IS_GEN7(dev)) {
8802 gen6_enable_rps(dev_priv); 8804 gen6_enable_rps(dev_priv);
8803 gen6_update_ring_freq(dev_priv); 8805 gen6_update_ring_freq(dev_priv);
8804 } 8806 }
8805 8807
8806 INIT_WORK(&dev_priv->idle_work, intel_idle_update); 8808 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
8807 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer, 8809 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
8808 (unsigned long)dev); 8810 (unsigned long)dev);
8809 } 8811 }
8810 8812
8811 void intel_modeset_gem_init(struct drm_device *dev) 8813 void intel_modeset_gem_init(struct drm_device *dev)
8812 { 8814 {
8813 if (IS_IRONLAKE_M(dev)) 8815 if (IS_IRONLAKE_M(dev))
8814 ironlake_enable_rc6(dev); 8816 ironlake_enable_rc6(dev);
8815 8817
8816 intel_setup_overlay(dev); 8818 intel_setup_overlay(dev);
8817 } 8819 }
8818 8820
8819 void intel_modeset_cleanup(struct drm_device *dev) 8821 void intel_modeset_cleanup(struct drm_device *dev)
8820 { 8822 {
8821 struct drm_i915_private *dev_priv = dev->dev_private; 8823 struct drm_i915_private *dev_priv = dev->dev_private;
8822 struct drm_crtc *crtc; 8824 struct drm_crtc *crtc;
8823 struct intel_crtc *intel_crtc; 8825 struct intel_crtc *intel_crtc;
8824 8826
8825 drm_kms_helper_poll_fini(dev); 8827 drm_kms_helper_poll_fini(dev);
8826 mutex_lock(&dev->struct_mutex); 8828 mutex_lock(&dev->struct_mutex);
8827 8829
8828 intel_unregister_dsm_handler(); 8830 intel_unregister_dsm_handler();
8829 8831
8830 8832
8831 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 8833 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8832 /* Skip inactive CRTCs */ 8834 /* Skip inactive CRTCs */
8833 if (!crtc->fb) 8835 if (!crtc->fb)
8834 continue; 8836 continue;
8835 8837
8836 intel_crtc = to_intel_crtc(crtc); 8838 intel_crtc = to_intel_crtc(crtc);
8837 intel_increase_pllclock(crtc); 8839 intel_increase_pllclock(crtc);
8838 } 8840 }
8839 8841
8840 intel_disable_fbc(dev); 8842 intel_disable_fbc(dev);
8841 8843
8842 if (IS_IRONLAKE_M(dev)) 8844 if (IS_IRONLAKE_M(dev))
8843 ironlake_disable_drps(dev); 8845 ironlake_disable_drps(dev);
8844 if (IS_GEN6(dev) || IS_GEN7(dev)) 8846 if (IS_GEN6(dev) || IS_GEN7(dev))
8845 gen6_disable_rps(dev); 8847 gen6_disable_rps(dev);
8846 8848
8847 if (IS_IRONLAKE_M(dev)) 8849 if (IS_IRONLAKE_M(dev))
8848 ironlake_disable_rc6(dev); 8850 ironlake_disable_rc6(dev);
8849 8851
8850 mutex_unlock(&dev->struct_mutex); 8852 mutex_unlock(&dev->struct_mutex);
8851 8853
8852 /* Disable the irq before mode object teardown, for the irq might 8854 /* Disable the irq before mode object teardown, for the irq might
8853 * enqueue unpin/hotplug work. */ 8855 * enqueue unpin/hotplug work. */
8854 drm_irq_uninstall(dev); 8856 drm_irq_uninstall(dev);
8855 cancel_work_sync(&dev_priv->hotplug_work); 8857 cancel_work_sync(&dev_priv->hotplug_work);
8856 cancel_work_sync(&dev_priv->rps_work); 8858 cancel_work_sync(&dev_priv->rps_work);
8857 8859
8858 /* flush any delayed tasks or pending work */ 8860 /* flush any delayed tasks or pending work */
8859 flush_scheduled_work(); 8861 flush_scheduled_work();
8860 8862
8861 /* Shut off idle work before the crtcs get freed. */ 8863 /* Shut off idle work before the crtcs get freed. */
8862 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 8864 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8863 intel_crtc = to_intel_crtc(crtc); 8865 intel_crtc = to_intel_crtc(crtc);
8864 del_timer_sync(&intel_crtc->idle_timer); 8866 del_timer_sync(&intel_crtc->idle_timer);
8865 } 8867 }
8866 del_timer_sync(&dev_priv->idle_timer); 8868 del_timer_sync(&dev_priv->idle_timer);
8867 cancel_work_sync(&dev_priv->idle_work); 8869 cancel_work_sync(&dev_priv->idle_work);
8868 8870
8869 drm_mode_config_cleanup(dev); 8871 drm_mode_config_cleanup(dev);
8870 } 8872 }
8871 8873
8872 /* 8874 /*
8873 * Return which encoder is currently attached for connector. 8875 * Return which encoder is currently attached for connector.
8874 */ 8876 */
8875 struct drm_encoder *intel_best_encoder(struct drm_connector *connector) 8877 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
8876 { 8878 {
8877 return &intel_attached_encoder(connector)->base; 8879 return &intel_attached_encoder(connector)->base;
8878 } 8880 }
8879 8881
8880 void intel_connector_attach_encoder(struct intel_connector *connector, 8882 void intel_connector_attach_encoder(struct intel_connector *connector,
8881 struct intel_encoder *encoder) 8883 struct intel_encoder *encoder)
8882 { 8884 {
8883 connector->encoder = encoder; 8885 connector->encoder = encoder;
8884 drm_mode_connector_attach_encoder(&connector->base, 8886 drm_mode_connector_attach_encoder(&connector->base,
8885 &encoder->base); 8887 &encoder->base);
8886 } 8888 }
8887 8889
8888 /* 8890 /*
8889 * set vga decode state - true == enable VGA decode 8891 * set vga decode state - true == enable VGA decode
8890 */ 8892 */
8891 int intel_modeset_vga_set_state(struct drm_device *dev, bool state) 8893 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
8892 { 8894 {
8893 struct drm_i915_private *dev_priv = dev->dev_private; 8895 struct drm_i915_private *dev_priv = dev->dev_private;
8894 u16 gmch_ctrl; 8896 u16 gmch_ctrl;
8895 8897
8896 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl); 8898 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
8897 if (state) 8899 if (state)
8898 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE; 8900 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
8899 else 8901 else
8900 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE; 8902 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
8901 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl); 8903 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
8902 return 0; 8904 return 0;
8903 } 8905 }
8904 8906
8905 #ifdef CONFIG_DEBUG_FS 8907 #ifdef CONFIG_DEBUG_FS
8906 #include <linux/seq_file.h> 8908 #include <linux/seq_file.h>
8907 8909
8908 struct intel_display_error_state { 8910 struct intel_display_error_state {
8909 struct intel_cursor_error_state { 8911 struct intel_cursor_error_state {
8910 u32 control; 8912 u32 control;
8911 u32 position; 8913 u32 position;
8912 u32 base; 8914 u32 base;
8913 u32 size; 8915 u32 size;
8914 } cursor[2]; 8916 } cursor[2];
8915 8917
8916 struct intel_pipe_error_state { 8918 struct intel_pipe_error_state {
8917 u32 conf; 8919 u32 conf;
8918 u32 source; 8920 u32 source;
8919 8921
8920 u32 htotal; 8922 u32 htotal;
8921 u32 hblank; 8923 u32 hblank;
8922 u32 hsync; 8924 u32 hsync;
8923 u32 vtotal; 8925 u32 vtotal;
8924 u32 vblank; 8926 u32 vblank;
8925 u32 vsync; 8927 u32 vsync;
8926 } pipe[2]; 8928 } pipe[2];
8927 8929
8928 struct intel_plane_error_state { 8930 struct intel_plane_error_state {
8929 u32 control; 8931 u32 control;
8930 u32 stride; 8932 u32 stride;
8931 u32 size; 8933 u32 size;
8932 u32 pos; 8934 u32 pos;
8933 u32 addr; 8935 u32 addr;
8934 u32 surface; 8936 u32 surface;
8935 u32 tile_offset; 8937 u32 tile_offset;
8936 } plane[2]; 8938 } plane[2];
8937 }; 8939 };
8938 8940
8939 struct intel_display_error_state * 8941 struct intel_display_error_state *
8940 intel_display_capture_error_state(struct drm_device *dev) 8942 intel_display_capture_error_state(struct drm_device *dev)
8941 { 8943 {
8942 drm_i915_private_t *dev_priv = dev->dev_private; 8944 drm_i915_private_t *dev_priv = dev->dev_private;
8943 struct intel_display_error_state *error; 8945 struct intel_display_error_state *error;
8944 int i; 8946 int i;
8945 8947
8946 error = kmalloc(sizeof(*error), GFP_ATOMIC); 8948 error = kmalloc(sizeof(*error), GFP_ATOMIC);
8947 if (error == NULL) 8949 if (error == NULL)
8948 return NULL; 8950 return NULL;
8949 8951
8950 for (i = 0; i < 2; i++) { 8952 for (i = 0; i < 2; i++) {
8951 error->cursor[i].control = I915_READ(CURCNTR(i)); 8953 error->cursor[i].control = I915_READ(CURCNTR(i));
8952 error->cursor[i].position = I915_READ(CURPOS(i)); 8954 error->cursor[i].position = I915_READ(CURPOS(i));
8953 error->cursor[i].base = I915_READ(CURBASE(i)); 8955 error->cursor[i].base = I915_READ(CURBASE(i));
8954 8956
8955 error->plane[i].control = I915_READ(DSPCNTR(i)); 8957 error->plane[i].control = I915_READ(DSPCNTR(i));
8956 error->plane[i].stride = I915_READ(DSPSTRIDE(i)); 8958 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
8957 error->plane[i].size = I915_READ(DSPSIZE(i)); 8959 error->plane[i].size = I915_READ(DSPSIZE(i));
8958 error->plane[i].pos = I915_READ(DSPPOS(i)); 8960 error->plane[i].pos = I915_READ(DSPPOS(i));
8959 error->plane[i].addr = I915_READ(DSPADDR(i)); 8961 error->plane[i].addr = I915_READ(DSPADDR(i));
8960 if (INTEL_INFO(dev)->gen >= 4) { 8962 if (INTEL_INFO(dev)->gen >= 4) {
8961 error->plane[i].surface = I915_READ(DSPSURF(i)); 8963 error->plane[i].surface = I915_READ(DSPSURF(i));
8962 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i)); 8964 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
8963 } 8965 }
8964 8966
8965 error->pipe[i].conf = I915_READ(PIPECONF(i)); 8967 error->pipe[i].conf = I915_READ(PIPECONF(i));
8966 error->pipe[i].source = I915_READ(PIPESRC(i)); 8968 error->pipe[i].source = I915_READ(PIPESRC(i));
8967 error->pipe[i].htotal = I915_READ(HTOTAL(i)); 8969 error->pipe[i].htotal = I915_READ(HTOTAL(i));
8968 error->pipe[i].hblank = I915_READ(HBLANK(i)); 8970 error->pipe[i].hblank = I915_READ(HBLANK(i));
8969 error->pipe[i].hsync = I915_READ(HSYNC(i)); 8971 error->pipe[i].hsync = I915_READ(HSYNC(i));
8970 error->pipe[i].vtotal = I915_READ(VTOTAL(i)); 8972 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
8971 error->pipe[i].vblank = I915_READ(VBLANK(i)); 8973 error->pipe[i].vblank = I915_READ(VBLANK(i));
8972 error->pipe[i].vsync = I915_READ(VSYNC(i)); 8974 error->pipe[i].vsync = I915_READ(VSYNC(i));
8973 } 8975 }
8974 8976
8975 return error; 8977 return error;
8976 } 8978 }
8977 8979
8978 void 8980 void
8979 intel_display_print_error_state(struct seq_file *m, 8981 intel_display_print_error_state(struct seq_file *m,
8980 struct drm_device *dev, 8982 struct drm_device *dev,
8981 struct intel_display_error_state *error) 8983 struct intel_display_error_state *error)
8982 { 8984 {
8983 int i; 8985 int i;
8984 8986
8985 for (i = 0; i < 2; i++) { 8987 for (i = 0; i < 2; i++) {
8986 seq_printf(m, "Pipe [%d]:\n", i); 8988 seq_printf(m, "Pipe [%d]:\n", i);
8987 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf); 8989 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
8988 seq_printf(m, " SRC: %08x\n", error->pipe[i].source); 8990 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
8989 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal); 8991 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
8990 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank); 8992 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
8991 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync); 8993 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
8992 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal); 8994 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
8993 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank); 8995 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
8994 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync); 8996 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
8995 8997
8996 seq_printf(m, "Plane [%d]:\n", i); 8998 seq_printf(m, "Plane [%d]:\n", i);
8997 seq_printf(m, " CNTR: %08x\n", error->plane[i].control); 8999 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
8998 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride); 9000 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
8999 seq_printf(m, " SIZE: %08x\n", error->plane[i].size); 9001 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
9000 seq_printf(m, " POS: %08x\n", error->plane[i].pos); 9002 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
9001 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr); 9003 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
9002 if (INTEL_INFO(dev)->gen >= 4) { 9004 if (INTEL_INFO(dev)->gen >= 4) {
9003 seq_printf(m, " SURF: %08x\n", error->plane[i].surface); 9005 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
9004 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset); 9006 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
9005 } 9007 }
9006 9008
9007 seq_printf(m, "Cursor [%d]:\n", i); 9009 seq_printf(m, "Cursor [%d]:\n", i);
9008 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control); 9010 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
9009 seq_printf(m, " POS: %08x\n", error->cursor[i].position); 9011 seq_printf(m, " POS: %08x\n", error->cursor[i].position);