Commit 7aa89746e89fca8fc722485aaf4454f2b636cf4d

Authored by Chuck Ebbert
Committed by Linus Torvalds
1 parent ce63ad78b5

[PATCH] i386: fix stack dump loglevel

Recent changes caused part of stack traces from SysRq-T to print at
KERN_EMERG loglevel.  Also, parts of stack dump during oops were failing to
print at that level when they should.

Signed-off-by: Chuck Ebbert <76306.1226@compuserve.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>

Showing 1 changed file with 39 additions and 18 deletions Inline Diff

arch/i386/kernel/traps.c
1 /* 1 /*
2 * linux/arch/i386/traps.c 2 * linux/arch/i386/traps.c
3 * 3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds 4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * 5 *
6 * Pentium III FXSR, SSE support 6 * Pentium III FXSR, SSE support
7 * Gareth Hughes <gareth@valinux.com>, May 2000 7 * Gareth Hughes <gareth@valinux.com>, May 2000
8 */ 8 */
9 9
10 /* 10 /*
11 * 'Traps.c' handles hardware traps and faults after we have saved some 11 * 'Traps.c' handles hardware traps and faults after we have saved some
12 * state in 'asm.s'. 12 * state in 'asm.s'.
13 */ 13 */
14 #include <linux/config.h> 14 #include <linux/config.h>
15 #include <linux/sched.h> 15 #include <linux/sched.h>
16 #include <linux/kernel.h> 16 #include <linux/kernel.h>
17 #include <linux/string.h> 17 #include <linux/string.h>
18 #include <linux/errno.h> 18 #include <linux/errno.h>
19 #include <linux/timer.h> 19 #include <linux/timer.h>
20 #include <linux/mm.h> 20 #include <linux/mm.h>
21 #include <linux/init.h> 21 #include <linux/init.h>
22 #include <linux/delay.h> 22 #include <linux/delay.h>
23 #include <linux/spinlock.h> 23 #include <linux/spinlock.h>
24 #include <linux/interrupt.h> 24 #include <linux/interrupt.h>
25 #include <linux/highmem.h> 25 #include <linux/highmem.h>
26 #include <linux/kallsyms.h> 26 #include <linux/kallsyms.h>
27 #include <linux/ptrace.h> 27 #include <linux/ptrace.h>
28 #include <linux/utsname.h> 28 #include <linux/utsname.h>
29 #include <linux/kprobes.h> 29 #include <linux/kprobes.h>
30 #include <linux/kexec.h> 30 #include <linux/kexec.h>
31 31
32 #ifdef CONFIG_EISA 32 #ifdef CONFIG_EISA
33 #include <linux/ioport.h> 33 #include <linux/ioport.h>
34 #include <linux/eisa.h> 34 #include <linux/eisa.h>
35 #endif 35 #endif
36 36
37 #ifdef CONFIG_MCA 37 #ifdef CONFIG_MCA
38 #include <linux/mca.h> 38 #include <linux/mca.h>
39 #endif 39 #endif
40 40
41 #include <asm/processor.h> 41 #include <asm/processor.h>
42 #include <asm/system.h> 42 #include <asm/system.h>
43 #include <asm/uaccess.h> 43 #include <asm/uaccess.h>
44 #include <asm/io.h> 44 #include <asm/io.h>
45 #include <asm/atomic.h> 45 #include <asm/atomic.h>
46 #include <asm/debugreg.h> 46 #include <asm/debugreg.h>
47 #include <asm/desc.h> 47 #include <asm/desc.h>
48 #include <asm/i387.h> 48 #include <asm/i387.h>
49 #include <asm/nmi.h> 49 #include <asm/nmi.h>
50 50
51 #include <asm/smp.h> 51 #include <asm/smp.h>
52 #include <asm/arch_hooks.h> 52 #include <asm/arch_hooks.h>
53 #include <asm/kdebug.h> 53 #include <asm/kdebug.h>
54 54
55 #include <linux/module.h> 55 #include <linux/module.h>
56 56
57 #include "mach_traps.h" 57 #include "mach_traps.h"
58 58
59 asmlinkage int system_call(void); 59 asmlinkage int system_call(void);
60 60
61 struct desc_struct default_ldt[] = { { 0, 0 }, { 0, 0 }, { 0, 0 }, 61 struct desc_struct default_ldt[] = { { 0, 0 }, { 0, 0 }, { 0, 0 },
62 { 0, 0 }, { 0, 0 } }; 62 { 0, 0 }, { 0, 0 } };
63 63
64 /* Do we ignore FPU interrupts ? */ 64 /* Do we ignore FPU interrupts ? */
65 char ignore_fpu_irq = 0; 65 char ignore_fpu_irq = 0;
66 66
67 /* 67 /*
68 * The IDT has to be page-aligned to simplify the Pentium 68 * The IDT has to be page-aligned to simplify the Pentium
69 * F0 0F bug workaround.. We have a special link segment 69 * F0 0F bug workaround.. We have a special link segment
70 * for this. 70 * for this.
71 */ 71 */
72 struct desc_struct idt_table[256] __attribute__((__section__(".data.idt"))) = { {0, 0}, }; 72 struct desc_struct idt_table[256] __attribute__((__section__(".data.idt"))) = { {0, 0}, };
73 73
74 asmlinkage void divide_error(void); 74 asmlinkage void divide_error(void);
75 asmlinkage void debug(void); 75 asmlinkage void debug(void);
76 asmlinkage void nmi(void); 76 asmlinkage void nmi(void);
77 asmlinkage void int3(void); 77 asmlinkage void int3(void);
78 asmlinkage void overflow(void); 78 asmlinkage void overflow(void);
79 asmlinkage void bounds(void); 79 asmlinkage void bounds(void);
80 asmlinkage void invalid_op(void); 80 asmlinkage void invalid_op(void);
81 asmlinkage void device_not_available(void); 81 asmlinkage void device_not_available(void);
82 asmlinkage void coprocessor_segment_overrun(void); 82 asmlinkage void coprocessor_segment_overrun(void);
83 asmlinkage void invalid_TSS(void); 83 asmlinkage void invalid_TSS(void);
84 asmlinkage void segment_not_present(void); 84 asmlinkage void segment_not_present(void);
85 asmlinkage void stack_segment(void); 85 asmlinkage void stack_segment(void);
86 asmlinkage void general_protection(void); 86 asmlinkage void general_protection(void);
87 asmlinkage void page_fault(void); 87 asmlinkage void page_fault(void);
88 asmlinkage void coprocessor_error(void); 88 asmlinkage void coprocessor_error(void);
89 asmlinkage void simd_coprocessor_error(void); 89 asmlinkage void simd_coprocessor_error(void);
90 asmlinkage void alignment_check(void); 90 asmlinkage void alignment_check(void);
91 asmlinkage void spurious_interrupt_bug(void); 91 asmlinkage void spurious_interrupt_bug(void);
92 asmlinkage void machine_check(void); 92 asmlinkage void machine_check(void);
93 93
94 static int kstack_depth_to_print = 24; 94 static int kstack_depth_to_print = 24;
95 struct notifier_block *i386die_chain; 95 struct notifier_block *i386die_chain;
96 static DEFINE_SPINLOCK(die_notifier_lock); 96 static DEFINE_SPINLOCK(die_notifier_lock);
97 97
98 int register_die_notifier(struct notifier_block *nb) 98 int register_die_notifier(struct notifier_block *nb)
99 { 99 {
100 int err = 0; 100 int err = 0;
101 unsigned long flags; 101 unsigned long flags;
102 spin_lock_irqsave(&die_notifier_lock, flags); 102 spin_lock_irqsave(&die_notifier_lock, flags);
103 err = notifier_chain_register(&i386die_chain, nb); 103 err = notifier_chain_register(&i386die_chain, nb);
104 spin_unlock_irqrestore(&die_notifier_lock, flags); 104 spin_unlock_irqrestore(&die_notifier_lock, flags);
105 return err; 105 return err;
106 } 106 }
107 EXPORT_SYMBOL(register_die_notifier); 107 EXPORT_SYMBOL(register_die_notifier);
108 108
109 static inline int valid_stack_ptr(struct thread_info *tinfo, void *p) 109 static inline int valid_stack_ptr(struct thread_info *tinfo, void *p)
110 { 110 {
111 return p > (void *)tinfo && 111 return p > (void *)tinfo &&
112 p < (void *)tinfo + THREAD_SIZE - 3; 112 p < (void *)tinfo + THREAD_SIZE - 3;
113 } 113 }
114 114
115 static void print_addr_and_symbol(unsigned long addr, char *log_lvl)
116 {
117 printk(log_lvl);
118 printk(" [<%08lx>] ", addr);
119 print_symbol("%s", addr);
120 printk("\n");
121 }
122
115 static inline unsigned long print_context_stack(struct thread_info *tinfo, 123 static inline unsigned long print_context_stack(struct thread_info *tinfo,
116 unsigned long *stack, unsigned long ebp) 124 unsigned long *stack, unsigned long ebp,
125 char *log_lvl)
117 { 126 {
118 unsigned long addr; 127 unsigned long addr;
119 128
120 #ifdef CONFIG_FRAME_POINTER 129 #ifdef CONFIG_FRAME_POINTER
121 while (valid_stack_ptr(tinfo, (void *)ebp)) { 130 while (valid_stack_ptr(tinfo, (void *)ebp)) {
122 addr = *(unsigned long *)(ebp + 4); 131 addr = *(unsigned long *)(ebp + 4);
123 printk(KERN_EMERG " [<%08lx>] ", addr); 132 print_addr_and_symbol(addr, log_lvl);
124 print_symbol("%s", addr);
125 printk("\n");
126 ebp = *(unsigned long *)ebp; 133 ebp = *(unsigned long *)ebp;
127 } 134 }
128 #else 135 #else
129 while (valid_stack_ptr(tinfo, stack)) { 136 while (valid_stack_ptr(tinfo, stack)) {
130 addr = *stack++; 137 addr = *stack++;
131 if (__kernel_text_address(addr)) { 138 if (__kernel_text_address(addr))
132 printk(KERN_EMERG " [<%08lx>]", addr); 139 print_addr_and_symbol(addr, log_lvl);
133 print_symbol(" %s", addr);
134 printk("\n");
135 }
136 } 140 }
137 #endif 141 #endif
138 return ebp; 142 return ebp;
139 } 143 }
140 144
141 void show_trace(struct task_struct *task, unsigned long * stack) 145 static void show_trace_log_lvl(struct task_struct *task,
146 unsigned long *stack, char *log_lvl)
142 { 147 {
143 unsigned long ebp; 148 unsigned long ebp;
144 149
145 if (!task) 150 if (!task)
146 task = current; 151 task = current;
147 152
148 if (task == current) { 153 if (task == current) {
149 /* Grab ebp right from our regs */ 154 /* Grab ebp right from our regs */
150 asm ("movl %%ebp, %0" : "=r" (ebp) : ); 155 asm ("movl %%ebp, %0" : "=r" (ebp) : );
151 } else { 156 } else {
152 /* ebp is the last reg pushed by switch_to */ 157 /* ebp is the last reg pushed by switch_to */
153 ebp = *(unsigned long *) task->thread.esp; 158 ebp = *(unsigned long *) task->thread.esp;
154 } 159 }
155 160
156 while (1) { 161 while (1) {
157 struct thread_info *context; 162 struct thread_info *context;
158 context = (struct thread_info *) 163 context = (struct thread_info *)
159 ((unsigned long)stack & (~(THREAD_SIZE - 1))); 164 ((unsigned long)stack & (~(THREAD_SIZE - 1)));
160 ebp = print_context_stack(context, stack, ebp); 165 ebp = print_context_stack(context, stack, ebp, log_lvl);
161 stack = (unsigned long*)context->previous_esp; 166 stack = (unsigned long*)context->previous_esp;
162 if (!stack) 167 if (!stack)
163 break; 168 break;
164 printk(KERN_EMERG " =======================\n"); 169 printk(KERN_EMERG " =======================\n");
165 } 170 }
166 } 171 }
167 172
168 void show_stack(struct task_struct *task, unsigned long *esp) 173 void show_trace(struct task_struct *task, unsigned long * stack)
169 { 174 {
175 show_trace_log_lvl(task, stack, "");
176 }
177
178 static void show_stack_log_lvl(struct task_struct *task, unsigned long *esp,
179 char *log_lvl)
180 {
170 unsigned long *stack; 181 unsigned long *stack;
171 int i; 182 int i;
172 183
173 if (esp == NULL) { 184 if (esp == NULL) {
174 if (task) 185 if (task)
175 esp = (unsigned long*)task->thread.esp; 186 esp = (unsigned long*)task->thread.esp;
176 else 187 else
177 esp = (unsigned long *)&esp; 188 esp = (unsigned long *)&esp;
178 } 189 }
179 190
180 stack = esp; 191 stack = esp;
181 printk(KERN_EMERG); 192 printk(log_lvl);
182 for(i = 0; i < kstack_depth_to_print; i++) { 193 for(i = 0; i < kstack_depth_to_print; i++) {
183 if (kstack_end(stack)) 194 if (kstack_end(stack))
184 break; 195 break;
185 if (i && ((i % 8) == 0)) 196 if (i && ((i % 8) == 0)) {
186 printk("\n" KERN_EMERG " "); 197 printk("\n");
198 printk(log_lvl);
199 printk(" ");
200 }
187 printk("%08lx ", *stack++); 201 printk("%08lx ", *stack++);
188 } 202 }
189 printk("\n" KERN_EMERG "Call Trace:\n"); 203 printk("\n");
190 show_trace(task, esp); 204 printk(log_lvl);
205 printk("Call Trace:\n");
206 show_trace_log_lvl(task, esp, log_lvl);
191 } 207 }
192 208
209 void show_stack(struct task_struct *task, unsigned long *esp)
210 {
211 show_stack_log_lvl(task, esp, "");
212 }
213
193 /* 214 /*
194 * The architecture-independent dump_stack generator 215 * The architecture-independent dump_stack generator
195 */ 216 */
196 void dump_stack(void) 217 void dump_stack(void)
197 { 218 {
198 unsigned long stack; 219 unsigned long stack;
199 220
200 show_trace(current, &stack); 221 show_trace(current, &stack);
201 } 222 }
202 223
203 EXPORT_SYMBOL(dump_stack); 224 EXPORT_SYMBOL(dump_stack);
204 225
205 void show_registers(struct pt_regs *regs) 226 void show_registers(struct pt_regs *regs)
206 { 227 {
207 int i; 228 int i;
208 int in_kernel = 1; 229 int in_kernel = 1;
209 unsigned long esp; 230 unsigned long esp;
210 unsigned short ss; 231 unsigned short ss;
211 232
212 esp = (unsigned long) (&regs->esp); 233 esp = (unsigned long) (&regs->esp);
213 savesegment(ss, ss); 234 savesegment(ss, ss);
214 if (user_mode(regs)) { 235 if (user_mode(regs)) {
215 in_kernel = 0; 236 in_kernel = 0;
216 esp = regs->esp; 237 esp = regs->esp;
217 ss = regs->xss & 0xffff; 238 ss = regs->xss & 0xffff;
218 } 239 }
219 print_modules(); 240 print_modules();
220 printk(KERN_EMERG "CPU: %d\nEIP: %04x:[<%08lx>] %s VLI\n" 241 printk(KERN_EMERG "CPU: %d\nEIP: %04x:[<%08lx>] %s VLI\n"
221 "EFLAGS: %08lx (%s) \n", 242 "EFLAGS: %08lx (%s) \n",
222 smp_processor_id(), 0xffff & regs->xcs, regs->eip, 243 smp_processor_id(), 0xffff & regs->xcs, regs->eip,
223 print_tainted(), regs->eflags, system_utsname.release); 244 print_tainted(), regs->eflags, system_utsname.release);
224 print_symbol(KERN_EMERG "EIP is at %s\n", regs->eip); 245 print_symbol(KERN_EMERG "EIP is at %s\n", regs->eip);
225 printk(KERN_EMERG "eax: %08lx ebx: %08lx ecx: %08lx edx: %08lx\n", 246 printk(KERN_EMERG "eax: %08lx ebx: %08lx ecx: %08lx edx: %08lx\n",
226 regs->eax, regs->ebx, regs->ecx, regs->edx); 247 regs->eax, regs->ebx, regs->ecx, regs->edx);
227 printk(KERN_EMERG "esi: %08lx edi: %08lx ebp: %08lx esp: %08lx\n", 248 printk(KERN_EMERG "esi: %08lx edi: %08lx ebp: %08lx esp: %08lx\n",
228 regs->esi, regs->edi, regs->ebp, esp); 249 regs->esi, regs->edi, regs->ebp, esp);
229 printk(KERN_EMERG "ds: %04x es: %04x ss: %04x\n", 250 printk(KERN_EMERG "ds: %04x es: %04x ss: %04x\n",
230 regs->xds & 0xffff, regs->xes & 0xffff, ss); 251 regs->xds & 0xffff, regs->xes & 0xffff, ss);
231 printk(KERN_EMERG "Process %s (pid: %d, threadinfo=%p task=%p)", 252 printk(KERN_EMERG "Process %s (pid: %d, threadinfo=%p task=%p)",
232 current->comm, current->pid, current_thread_info(), current); 253 current->comm, current->pid, current_thread_info(), current);
233 /* 254 /*
234 * When in-kernel, we also print out the stack and code at the 255 * When in-kernel, we also print out the stack and code at the
235 * time of the fault.. 256 * time of the fault..
236 */ 257 */
237 if (in_kernel) { 258 if (in_kernel) {
238 u8 __user *eip; 259 u8 __user *eip;
239 260
240 printk("\n" KERN_EMERG "Stack: "); 261 printk("\n" KERN_EMERG "Stack: ");
241 show_stack(NULL, (unsigned long*)esp); 262 show_stack_log_lvl(NULL, (unsigned long *)esp, KERN_EMERG);
242 263
243 printk(KERN_EMERG "Code: "); 264 printk(KERN_EMERG "Code: ");
244 265
245 eip = (u8 __user *)regs->eip - 43; 266 eip = (u8 __user *)regs->eip - 43;
246 for (i = 0; i < 64; i++, eip++) { 267 for (i = 0; i < 64; i++, eip++) {
247 unsigned char c; 268 unsigned char c;
248 269
249 if (eip < (u8 __user *)PAGE_OFFSET || __get_user(c, eip)) { 270 if (eip < (u8 __user *)PAGE_OFFSET || __get_user(c, eip)) {
250 printk(" Bad EIP value."); 271 printk(" Bad EIP value.");
251 break; 272 break;
252 } 273 }
253 if (eip == (u8 __user *)regs->eip) 274 if (eip == (u8 __user *)regs->eip)
254 printk("<%02x> ", c); 275 printk("<%02x> ", c);
255 else 276 else
256 printk("%02x ", c); 277 printk("%02x ", c);
257 } 278 }
258 } 279 }
259 printk("\n"); 280 printk("\n");
260 } 281 }
261 282
262 static void handle_BUG(struct pt_regs *regs) 283 static void handle_BUG(struct pt_regs *regs)
263 { 284 {
264 unsigned short ud2; 285 unsigned short ud2;
265 unsigned short line; 286 unsigned short line;
266 char *file; 287 char *file;
267 char c; 288 char c;
268 unsigned long eip; 289 unsigned long eip;
269 290
270 eip = regs->eip; 291 eip = regs->eip;
271 292
272 if (eip < PAGE_OFFSET) 293 if (eip < PAGE_OFFSET)
273 goto no_bug; 294 goto no_bug;
274 if (__get_user(ud2, (unsigned short __user *)eip)) 295 if (__get_user(ud2, (unsigned short __user *)eip))
275 goto no_bug; 296 goto no_bug;
276 if (ud2 != 0x0b0f) 297 if (ud2 != 0x0b0f)
277 goto no_bug; 298 goto no_bug;
278 if (__get_user(line, (unsigned short __user *)(eip + 2))) 299 if (__get_user(line, (unsigned short __user *)(eip + 2)))
279 goto bug; 300 goto bug;
280 if (__get_user(file, (char * __user *)(eip + 4)) || 301 if (__get_user(file, (char * __user *)(eip + 4)) ||
281 (unsigned long)file < PAGE_OFFSET || __get_user(c, file)) 302 (unsigned long)file < PAGE_OFFSET || __get_user(c, file))
282 file = "<bad filename>"; 303 file = "<bad filename>";
283 304
284 printk(KERN_EMERG "------------[ cut here ]------------\n"); 305 printk(KERN_EMERG "------------[ cut here ]------------\n");
285 printk(KERN_EMERG "kernel BUG at %s:%d!\n", file, line); 306 printk(KERN_EMERG "kernel BUG at %s:%d!\n", file, line);
286 307
287 no_bug: 308 no_bug:
288 return; 309 return;
289 310
290 /* Here we know it was a BUG but file-n-line is unavailable */ 311 /* Here we know it was a BUG but file-n-line is unavailable */
291 bug: 312 bug:
292 printk(KERN_EMERG "Kernel BUG\n"); 313 printk(KERN_EMERG "Kernel BUG\n");
293 } 314 }
294 315
295 /* This is gone through when something in the kernel 316 /* This is gone through when something in the kernel
296 * has done something bad and is about to be terminated. 317 * has done something bad and is about to be terminated.
297 */ 318 */
298 void die(const char * str, struct pt_regs * regs, long err) 319 void die(const char * str, struct pt_regs * regs, long err)
299 { 320 {
300 static struct { 321 static struct {
301 spinlock_t lock; 322 spinlock_t lock;
302 u32 lock_owner; 323 u32 lock_owner;
303 int lock_owner_depth; 324 int lock_owner_depth;
304 } die = { 325 } die = {
305 .lock = SPIN_LOCK_UNLOCKED, 326 .lock = SPIN_LOCK_UNLOCKED,
306 .lock_owner = -1, 327 .lock_owner = -1,
307 .lock_owner_depth = 0 328 .lock_owner_depth = 0
308 }; 329 };
309 static int die_counter; 330 static int die_counter;
310 unsigned long flags; 331 unsigned long flags;
311 332
312 if (die.lock_owner != raw_smp_processor_id()) { 333 if (die.lock_owner != raw_smp_processor_id()) {
313 console_verbose(); 334 console_verbose();
314 spin_lock_irqsave(&die.lock, flags); 335 spin_lock_irqsave(&die.lock, flags);
315 die.lock_owner = smp_processor_id(); 336 die.lock_owner = smp_processor_id();
316 die.lock_owner_depth = 0; 337 die.lock_owner_depth = 0;
317 bust_spinlocks(1); 338 bust_spinlocks(1);
318 } 339 }
319 else 340 else
320 local_save_flags(flags); 341 local_save_flags(flags);
321 342
322 if (++die.lock_owner_depth < 3) { 343 if (++die.lock_owner_depth < 3) {
323 int nl = 0; 344 int nl = 0;
324 handle_BUG(regs); 345 handle_BUG(regs);
325 printk(KERN_EMERG "%s: %04lx [#%d]\n", str, err & 0xffff, ++die_counter); 346 printk(KERN_EMERG "%s: %04lx [#%d]\n", str, err & 0xffff, ++die_counter);
326 #ifdef CONFIG_PREEMPT 347 #ifdef CONFIG_PREEMPT
327 printk(KERN_EMERG "PREEMPT "); 348 printk(KERN_EMERG "PREEMPT ");
328 nl = 1; 349 nl = 1;
329 #endif 350 #endif
330 #ifdef CONFIG_SMP 351 #ifdef CONFIG_SMP
331 if (!nl) 352 if (!nl)
332 printk(KERN_EMERG); 353 printk(KERN_EMERG);
333 printk("SMP "); 354 printk("SMP ");
334 nl = 1; 355 nl = 1;
335 #endif 356 #endif
336 #ifdef CONFIG_DEBUG_PAGEALLOC 357 #ifdef CONFIG_DEBUG_PAGEALLOC
337 if (!nl) 358 if (!nl)
338 printk(KERN_EMERG); 359 printk(KERN_EMERG);
339 printk("DEBUG_PAGEALLOC"); 360 printk("DEBUG_PAGEALLOC");
340 nl = 1; 361 nl = 1;
341 #endif 362 #endif
342 if (nl) 363 if (nl)
343 printk("\n"); 364 printk("\n");
344 notify_die(DIE_OOPS, (char *)str, regs, err, 255, SIGSEGV); 365 notify_die(DIE_OOPS, (char *)str, regs, err, 255, SIGSEGV);
345 show_registers(regs); 366 show_registers(regs);
346 } else 367 } else
347 printk(KERN_EMERG "Recursive die() failure, output suppressed\n"); 368 printk(KERN_EMERG "Recursive die() failure, output suppressed\n");
348 369
349 bust_spinlocks(0); 370 bust_spinlocks(0);
350 die.lock_owner = -1; 371 die.lock_owner = -1;
351 spin_unlock_irqrestore(&die.lock, flags); 372 spin_unlock_irqrestore(&die.lock, flags);
352 373
353 if (kexec_should_crash(current)) 374 if (kexec_should_crash(current))
354 crash_kexec(regs); 375 crash_kexec(regs);
355 376
356 if (in_interrupt()) 377 if (in_interrupt())
357 panic("Fatal exception in interrupt"); 378 panic("Fatal exception in interrupt");
358 379
359 if (panic_on_oops) { 380 if (panic_on_oops) {
360 printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n"); 381 printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n");
361 ssleep(5); 382 ssleep(5);
362 panic("Fatal exception"); 383 panic("Fatal exception");
363 } 384 }
364 do_exit(SIGSEGV); 385 do_exit(SIGSEGV);
365 } 386 }
366 387
367 static inline void die_if_kernel(const char * str, struct pt_regs * regs, long err) 388 static inline void die_if_kernel(const char * str, struct pt_regs * regs, long err)
368 { 389 {
369 if (!user_mode_vm(regs)) 390 if (!user_mode_vm(regs))
370 die(str, regs, err); 391 die(str, regs, err);
371 } 392 }
372 393
373 static void __kprobes do_trap(int trapnr, int signr, char *str, int vm86, 394 static void __kprobes do_trap(int trapnr, int signr, char *str, int vm86,
374 struct pt_regs * regs, long error_code, 395 struct pt_regs * regs, long error_code,
375 siginfo_t *info) 396 siginfo_t *info)
376 { 397 {
377 struct task_struct *tsk = current; 398 struct task_struct *tsk = current;
378 tsk->thread.error_code = error_code; 399 tsk->thread.error_code = error_code;
379 tsk->thread.trap_no = trapnr; 400 tsk->thread.trap_no = trapnr;
380 401
381 if (regs->eflags & VM_MASK) { 402 if (regs->eflags & VM_MASK) {
382 if (vm86) 403 if (vm86)
383 goto vm86_trap; 404 goto vm86_trap;
384 goto trap_signal; 405 goto trap_signal;
385 } 406 }
386 407
387 if (!user_mode(regs)) 408 if (!user_mode(regs))
388 goto kernel_trap; 409 goto kernel_trap;
389 410
390 trap_signal: { 411 trap_signal: {
391 if (info) 412 if (info)
392 force_sig_info(signr, info, tsk); 413 force_sig_info(signr, info, tsk);
393 else 414 else
394 force_sig(signr, tsk); 415 force_sig(signr, tsk);
395 return; 416 return;
396 } 417 }
397 418
398 kernel_trap: { 419 kernel_trap: {
399 if (!fixup_exception(regs)) 420 if (!fixup_exception(regs))
400 die(str, regs, error_code); 421 die(str, regs, error_code);
401 return; 422 return;
402 } 423 }
403 424
404 vm86_trap: { 425 vm86_trap: {
405 int ret = handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, trapnr); 426 int ret = handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, trapnr);
406 if (ret) goto trap_signal; 427 if (ret) goto trap_signal;
407 return; 428 return;
408 } 429 }
409 } 430 }
410 431
411 #define DO_ERROR(trapnr, signr, str, name) \ 432 #define DO_ERROR(trapnr, signr, str, name) \
412 fastcall void do_##name(struct pt_regs * regs, long error_code) \ 433 fastcall void do_##name(struct pt_regs * regs, long error_code) \
413 { \ 434 { \
414 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \ 435 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
415 == NOTIFY_STOP) \ 436 == NOTIFY_STOP) \
416 return; \ 437 return; \
417 do_trap(trapnr, signr, str, 0, regs, error_code, NULL); \ 438 do_trap(trapnr, signr, str, 0, regs, error_code, NULL); \
418 } 439 }
419 440
420 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \ 441 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
421 fastcall void do_##name(struct pt_regs * regs, long error_code) \ 442 fastcall void do_##name(struct pt_regs * regs, long error_code) \
422 { \ 443 { \
423 siginfo_t info; \ 444 siginfo_t info; \
424 info.si_signo = signr; \ 445 info.si_signo = signr; \
425 info.si_errno = 0; \ 446 info.si_errno = 0; \
426 info.si_code = sicode; \ 447 info.si_code = sicode; \
427 info.si_addr = (void __user *)siaddr; \ 448 info.si_addr = (void __user *)siaddr; \
428 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \ 449 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
429 == NOTIFY_STOP) \ 450 == NOTIFY_STOP) \
430 return; \ 451 return; \
431 do_trap(trapnr, signr, str, 0, regs, error_code, &info); \ 452 do_trap(trapnr, signr, str, 0, regs, error_code, &info); \
432 } 453 }
433 454
434 #define DO_VM86_ERROR(trapnr, signr, str, name) \ 455 #define DO_VM86_ERROR(trapnr, signr, str, name) \
435 fastcall void do_##name(struct pt_regs * regs, long error_code) \ 456 fastcall void do_##name(struct pt_regs * regs, long error_code) \
436 { \ 457 { \
437 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \ 458 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
438 == NOTIFY_STOP) \ 459 == NOTIFY_STOP) \
439 return; \ 460 return; \
440 do_trap(trapnr, signr, str, 1, regs, error_code, NULL); \ 461 do_trap(trapnr, signr, str, 1, regs, error_code, NULL); \
441 } 462 }
442 463
443 #define DO_VM86_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \ 464 #define DO_VM86_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
444 fastcall void do_##name(struct pt_regs * regs, long error_code) \ 465 fastcall void do_##name(struct pt_regs * regs, long error_code) \
445 { \ 466 { \
446 siginfo_t info; \ 467 siginfo_t info; \
447 info.si_signo = signr; \ 468 info.si_signo = signr; \
448 info.si_errno = 0; \ 469 info.si_errno = 0; \
449 info.si_code = sicode; \ 470 info.si_code = sicode; \
450 info.si_addr = (void __user *)siaddr; \ 471 info.si_addr = (void __user *)siaddr; \
451 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \ 472 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
452 == NOTIFY_STOP) \ 473 == NOTIFY_STOP) \
453 return; \ 474 return; \
454 do_trap(trapnr, signr, str, 1, regs, error_code, &info); \ 475 do_trap(trapnr, signr, str, 1, regs, error_code, &info); \
455 } 476 }
456 477
457 DO_VM86_ERROR_INFO( 0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->eip) 478 DO_VM86_ERROR_INFO( 0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->eip)
458 #ifndef CONFIG_KPROBES 479 #ifndef CONFIG_KPROBES
459 DO_VM86_ERROR( 3, SIGTRAP, "int3", int3) 480 DO_VM86_ERROR( 3, SIGTRAP, "int3", int3)
460 #endif 481 #endif
461 DO_VM86_ERROR( 4, SIGSEGV, "overflow", overflow) 482 DO_VM86_ERROR( 4, SIGSEGV, "overflow", overflow)
462 DO_VM86_ERROR( 5, SIGSEGV, "bounds", bounds) 483 DO_VM86_ERROR( 5, SIGSEGV, "bounds", bounds)
463 DO_ERROR_INFO( 6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->eip) 484 DO_ERROR_INFO( 6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->eip)
464 DO_ERROR( 9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun) 485 DO_ERROR( 9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
465 DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS) 486 DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
466 DO_ERROR(11, SIGBUS, "segment not present", segment_not_present) 487 DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
467 DO_ERROR(12, SIGBUS, "stack segment", stack_segment) 488 DO_ERROR(12, SIGBUS, "stack segment", stack_segment)
468 DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0) 489 DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0)
469 DO_ERROR_INFO(32, SIGSEGV, "iret exception", iret_error, ILL_BADSTK, 0) 490 DO_ERROR_INFO(32, SIGSEGV, "iret exception", iret_error, ILL_BADSTK, 0)
470 491
471 fastcall void __kprobes do_general_protection(struct pt_regs * regs, 492 fastcall void __kprobes do_general_protection(struct pt_regs * regs,
472 long error_code) 493 long error_code)
473 { 494 {
474 int cpu = get_cpu(); 495 int cpu = get_cpu();
475 struct tss_struct *tss = &per_cpu(init_tss, cpu); 496 struct tss_struct *tss = &per_cpu(init_tss, cpu);
476 struct thread_struct *thread = &current->thread; 497 struct thread_struct *thread = &current->thread;
477 498
478 /* 499 /*
479 * Perform the lazy TSS's I/O bitmap copy. If the TSS has an 500 * Perform the lazy TSS's I/O bitmap copy. If the TSS has an
480 * invalid offset set (the LAZY one) and the faulting thread has 501 * invalid offset set (the LAZY one) and the faulting thread has
481 * a valid I/O bitmap pointer, we copy the I/O bitmap in the TSS 502 * a valid I/O bitmap pointer, we copy the I/O bitmap in the TSS
482 * and we set the offset field correctly. Then we let the CPU to 503 * and we set the offset field correctly. Then we let the CPU to
483 * restart the faulting instruction. 504 * restart the faulting instruction.
484 */ 505 */
485 if (tss->io_bitmap_base == INVALID_IO_BITMAP_OFFSET_LAZY && 506 if (tss->io_bitmap_base == INVALID_IO_BITMAP_OFFSET_LAZY &&
486 thread->io_bitmap_ptr) { 507 thread->io_bitmap_ptr) {
487 memcpy(tss->io_bitmap, thread->io_bitmap_ptr, 508 memcpy(tss->io_bitmap, thread->io_bitmap_ptr,
488 thread->io_bitmap_max); 509 thread->io_bitmap_max);
489 /* 510 /*
490 * If the previously set map was extending to higher ports 511 * If the previously set map was extending to higher ports
491 * than the current one, pad extra space with 0xff (no access). 512 * than the current one, pad extra space with 0xff (no access).
492 */ 513 */
493 if (thread->io_bitmap_max < tss->io_bitmap_max) 514 if (thread->io_bitmap_max < tss->io_bitmap_max)
494 memset((char *) tss->io_bitmap + 515 memset((char *) tss->io_bitmap +
495 thread->io_bitmap_max, 0xff, 516 thread->io_bitmap_max, 0xff,
496 tss->io_bitmap_max - thread->io_bitmap_max); 517 tss->io_bitmap_max - thread->io_bitmap_max);
497 tss->io_bitmap_max = thread->io_bitmap_max; 518 tss->io_bitmap_max = thread->io_bitmap_max;
498 tss->io_bitmap_base = IO_BITMAP_OFFSET; 519 tss->io_bitmap_base = IO_BITMAP_OFFSET;
499 tss->io_bitmap_owner = thread; 520 tss->io_bitmap_owner = thread;
500 put_cpu(); 521 put_cpu();
501 return; 522 return;
502 } 523 }
503 put_cpu(); 524 put_cpu();
504 525
505 current->thread.error_code = error_code; 526 current->thread.error_code = error_code;
506 current->thread.trap_no = 13; 527 current->thread.trap_no = 13;
507 528
508 if (regs->eflags & VM_MASK) 529 if (regs->eflags & VM_MASK)
509 goto gp_in_vm86; 530 goto gp_in_vm86;
510 531
511 if (!user_mode(regs)) 532 if (!user_mode(regs))
512 goto gp_in_kernel; 533 goto gp_in_kernel;
513 534
514 current->thread.error_code = error_code; 535 current->thread.error_code = error_code;
515 current->thread.trap_no = 13; 536 current->thread.trap_no = 13;
516 force_sig(SIGSEGV, current); 537 force_sig(SIGSEGV, current);
517 return; 538 return;
518 539
519 gp_in_vm86: 540 gp_in_vm86:
520 local_irq_enable(); 541 local_irq_enable();
521 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code); 542 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
522 return; 543 return;
523 544
524 gp_in_kernel: 545 gp_in_kernel:
525 if (!fixup_exception(regs)) { 546 if (!fixup_exception(regs)) {
526 if (notify_die(DIE_GPF, "general protection fault", regs, 547 if (notify_die(DIE_GPF, "general protection fault", regs,
527 error_code, 13, SIGSEGV) == NOTIFY_STOP) 548 error_code, 13, SIGSEGV) == NOTIFY_STOP)
528 return; 549 return;
529 die("general protection fault", regs, error_code); 550 die("general protection fault", regs, error_code);
530 } 551 }
531 } 552 }
532 553
533 static void mem_parity_error(unsigned char reason, struct pt_regs * regs) 554 static void mem_parity_error(unsigned char reason, struct pt_regs * regs)
534 { 555 {
535 printk(KERN_EMERG "Uhhuh. NMI received. Dazed and confused, but trying " 556 printk(KERN_EMERG "Uhhuh. NMI received. Dazed and confused, but trying "
536 "to continue\n"); 557 "to continue\n");
537 printk(KERN_EMERG "You probably have a hardware problem with your RAM " 558 printk(KERN_EMERG "You probably have a hardware problem with your RAM "
538 "chips\n"); 559 "chips\n");
539 560
540 /* Clear and disable the memory parity error line. */ 561 /* Clear and disable the memory parity error line. */
541 clear_mem_error(reason); 562 clear_mem_error(reason);
542 } 563 }
543 564
544 static void io_check_error(unsigned char reason, struct pt_regs * regs) 565 static void io_check_error(unsigned char reason, struct pt_regs * regs)
545 { 566 {
546 unsigned long i; 567 unsigned long i;
547 568
548 printk(KERN_EMERG "NMI: IOCK error (debug interrupt?)\n"); 569 printk(KERN_EMERG "NMI: IOCK error (debug interrupt?)\n");
549 show_registers(regs); 570 show_registers(regs);
550 571
551 /* Re-enable the IOCK line, wait for a few seconds */ 572 /* Re-enable the IOCK line, wait for a few seconds */
552 reason = (reason & 0xf) | 8; 573 reason = (reason & 0xf) | 8;
553 outb(reason, 0x61); 574 outb(reason, 0x61);
554 i = 2000; 575 i = 2000;
555 while (--i) udelay(1000); 576 while (--i) udelay(1000);
556 reason &= ~8; 577 reason &= ~8;
557 outb(reason, 0x61); 578 outb(reason, 0x61);
558 } 579 }
559 580
560 static void unknown_nmi_error(unsigned char reason, struct pt_regs * regs) 581 static void unknown_nmi_error(unsigned char reason, struct pt_regs * regs)
561 { 582 {
562 #ifdef CONFIG_MCA 583 #ifdef CONFIG_MCA
563 /* Might actually be able to figure out what the guilty party 584 /* Might actually be able to figure out what the guilty party
564 * is. */ 585 * is. */
565 if( MCA_bus ) { 586 if( MCA_bus ) {
566 mca_handle_nmi(); 587 mca_handle_nmi();
567 return; 588 return;
568 } 589 }
569 #endif 590 #endif
570 printk("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n", 591 printk("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
571 reason, smp_processor_id()); 592 reason, smp_processor_id());
572 printk("Dazed and confused, but trying to continue\n"); 593 printk("Dazed and confused, but trying to continue\n");
573 printk("Do you have a strange power saving mode enabled?\n"); 594 printk("Do you have a strange power saving mode enabled?\n");
574 } 595 }
575 596
576 static DEFINE_SPINLOCK(nmi_print_lock); 597 static DEFINE_SPINLOCK(nmi_print_lock);
577 598
578 void die_nmi (struct pt_regs *regs, const char *msg) 599 void die_nmi (struct pt_regs *regs, const char *msg)
579 { 600 {
580 if (notify_die(DIE_NMIWATCHDOG, msg, regs, 0, 0, SIGINT) == 601 if (notify_die(DIE_NMIWATCHDOG, msg, regs, 0, 0, SIGINT) ==
581 NOTIFY_STOP) 602 NOTIFY_STOP)
582 return; 603 return;
583 604
584 spin_lock(&nmi_print_lock); 605 spin_lock(&nmi_print_lock);
585 /* 606 /*
586 * We are in trouble anyway, lets at least try 607 * We are in trouble anyway, lets at least try
587 * to get a message out. 608 * to get a message out.
588 */ 609 */
589 bust_spinlocks(1); 610 bust_spinlocks(1);
590 printk(KERN_EMERG "%s", msg); 611 printk(KERN_EMERG "%s", msg);
591 printk(" on CPU%d, eip %08lx, registers:\n", 612 printk(" on CPU%d, eip %08lx, registers:\n",
592 smp_processor_id(), regs->eip); 613 smp_processor_id(), regs->eip);
593 show_registers(regs); 614 show_registers(regs);
594 printk(KERN_EMERG "console shuts up ...\n"); 615 printk(KERN_EMERG "console shuts up ...\n");
595 console_silent(); 616 console_silent();
596 spin_unlock(&nmi_print_lock); 617 spin_unlock(&nmi_print_lock);
597 bust_spinlocks(0); 618 bust_spinlocks(0);
598 619
599 /* If we are in kernel we are probably nested up pretty bad 620 /* If we are in kernel we are probably nested up pretty bad
600 * and might aswell get out now while we still can. 621 * and might aswell get out now while we still can.
601 */ 622 */
602 if (!user_mode(regs)) { 623 if (!user_mode(regs)) {
603 current->thread.trap_no = 2; 624 current->thread.trap_no = 2;
604 crash_kexec(regs); 625 crash_kexec(regs);
605 } 626 }
606 627
607 do_exit(SIGSEGV); 628 do_exit(SIGSEGV);
608 } 629 }
609 630
610 static void default_do_nmi(struct pt_regs * regs) 631 static void default_do_nmi(struct pt_regs * regs)
611 { 632 {
612 unsigned char reason = 0; 633 unsigned char reason = 0;
613 634
614 /* Only the BSP gets external NMIs from the system. */ 635 /* Only the BSP gets external NMIs from the system. */
615 if (!smp_processor_id()) 636 if (!smp_processor_id())
616 reason = get_nmi_reason(); 637 reason = get_nmi_reason();
617 638
618 if (!(reason & 0xc0)) { 639 if (!(reason & 0xc0)) {
619 if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 0, SIGINT) 640 if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 0, SIGINT)
620 == NOTIFY_STOP) 641 == NOTIFY_STOP)
621 return; 642 return;
622 #ifdef CONFIG_X86_LOCAL_APIC 643 #ifdef CONFIG_X86_LOCAL_APIC
623 /* 644 /*
624 * Ok, so this is none of the documented NMI sources, 645 * Ok, so this is none of the documented NMI sources,
625 * so it must be the NMI watchdog. 646 * so it must be the NMI watchdog.
626 */ 647 */
627 if (nmi_watchdog) { 648 if (nmi_watchdog) {
628 nmi_watchdog_tick(regs); 649 nmi_watchdog_tick(regs);
629 return; 650 return;
630 } 651 }
631 #endif 652 #endif
632 unknown_nmi_error(reason, regs); 653 unknown_nmi_error(reason, regs);
633 return; 654 return;
634 } 655 }
635 if (notify_die(DIE_NMI, "nmi", regs, reason, 0, SIGINT) == NOTIFY_STOP) 656 if (notify_die(DIE_NMI, "nmi", regs, reason, 0, SIGINT) == NOTIFY_STOP)
636 return; 657 return;
637 if (reason & 0x80) 658 if (reason & 0x80)
638 mem_parity_error(reason, regs); 659 mem_parity_error(reason, regs);
639 if (reason & 0x40) 660 if (reason & 0x40)
640 io_check_error(reason, regs); 661 io_check_error(reason, regs);
641 /* 662 /*
642 * Reassert NMI in case it became active meanwhile 663 * Reassert NMI in case it became active meanwhile
643 * as it's edge-triggered. 664 * as it's edge-triggered.
644 */ 665 */
645 reassert_nmi(); 666 reassert_nmi();
646 } 667 }
647 668
648 static int dummy_nmi_callback(struct pt_regs * regs, int cpu) 669 static int dummy_nmi_callback(struct pt_regs * regs, int cpu)
649 { 670 {
650 return 0; 671 return 0;
651 } 672 }
652 673
653 static nmi_callback_t nmi_callback = dummy_nmi_callback; 674 static nmi_callback_t nmi_callback = dummy_nmi_callback;
654 675
655 fastcall void do_nmi(struct pt_regs * regs, long error_code) 676 fastcall void do_nmi(struct pt_regs * regs, long error_code)
656 { 677 {
657 int cpu; 678 int cpu;
658 679
659 nmi_enter(); 680 nmi_enter();
660 681
661 cpu = smp_processor_id(); 682 cpu = smp_processor_id();
662 683
663 ++nmi_count(cpu); 684 ++nmi_count(cpu);
664 685
665 if (!rcu_dereference(nmi_callback)(regs, cpu)) 686 if (!rcu_dereference(nmi_callback)(regs, cpu))
666 default_do_nmi(regs); 687 default_do_nmi(regs);
667 688
668 nmi_exit(); 689 nmi_exit();
669 } 690 }
670 691
671 void set_nmi_callback(nmi_callback_t callback) 692 void set_nmi_callback(nmi_callback_t callback)
672 { 693 {
673 rcu_assign_pointer(nmi_callback, callback); 694 rcu_assign_pointer(nmi_callback, callback);
674 } 695 }
675 EXPORT_SYMBOL_GPL(set_nmi_callback); 696 EXPORT_SYMBOL_GPL(set_nmi_callback);
676 697
677 void unset_nmi_callback(void) 698 void unset_nmi_callback(void)
678 { 699 {
679 nmi_callback = dummy_nmi_callback; 700 nmi_callback = dummy_nmi_callback;
680 } 701 }
681 EXPORT_SYMBOL_GPL(unset_nmi_callback); 702 EXPORT_SYMBOL_GPL(unset_nmi_callback);
682 703
683 #ifdef CONFIG_KPROBES 704 #ifdef CONFIG_KPROBES
684 fastcall void __kprobes do_int3(struct pt_regs *regs, long error_code) 705 fastcall void __kprobes do_int3(struct pt_regs *regs, long error_code)
685 { 706 {
686 if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP) 707 if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
687 == NOTIFY_STOP) 708 == NOTIFY_STOP)
688 return; 709 return;
689 /* This is an interrupt gate, because kprobes wants interrupts 710 /* This is an interrupt gate, because kprobes wants interrupts
690 disabled. Normal trap handlers don't. */ 711 disabled. Normal trap handlers don't. */
691 restore_interrupts(regs); 712 restore_interrupts(regs);
692 do_trap(3, SIGTRAP, "int3", 1, regs, error_code, NULL); 713 do_trap(3, SIGTRAP, "int3", 1, regs, error_code, NULL);
693 } 714 }
694 #endif 715 #endif
695 716
696 /* 717 /*
697 * Our handling of the processor debug registers is non-trivial. 718 * Our handling of the processor debug registers is non-trivial.
698 * We do not clear them on entry and exit from the kernel. Therefore 719 * We do not clear them on entry and exit from the kernel. Therefore
699 * it is possible to get a watchpoint trap here from inside the kernel. 720 * it is possible to get a watchpoint trap here from inside the kernel.
700 * However, the code in ./ptrace.c has ensured that the user can 721 * However, the code in ./ptrace.c has ensured that the user can
701 * only set watchpoints on userspace addresses. Therefore the in-kernel 722 * only set watchpoints on userspace addresses. Therefore the in-kernel
702 * watchpoint trap can only occur in code which is reading/writing 723 * watchpoint trap can only occur in code which is reading/writing
703 * from user space. Such code must not hold kernel locks (since it 724 * from user space. Such code must not hold kernel locks (since it
704 * can equally take a page fault), therefore it is safe to call 725 * can equally take a page fault), therefore it is safe to call
705 * force_sig_info even though that claims and releases locks. 726 * force_sig_info even though that claims and releases locks.
706 * 727 *
707 * Code in ./signal.c ensures that the debug control register 728 * Code in ./signal.c ensures that the debug control register
708 * is restored before we deliver any signal, and therefore that 729 * is restored before we deliver any signal, and therefore that
709 * user code runs with the correct debug control register even though 730 * user code runs with the correct debug control register even though
710 * we clear it here. 731 * we clear it here.
711 * 732 *
712 * Being careful here means that we don't have to be as careful in a 733 * Being careful here means that we don't have to be as careful in a
713 * lot of more complicated places (task switching can be a bit lazy 734 * lot of more complicated places (task switching can be a bit lazy
714 * about restoring all the debug state, and ptrace doesn't have to 735 * about restoring all the debug state, and ptrace doesn't have to
715 * find every occurrence of the TF bit that could be saved away even 736 * find every occurrence of the TF bit that could be saved away even
716 * by user code) 737 * by user code)
717 */ 738 */
718 fastcall void __kprobes do_debug(struct pt_regs * regs, long error_code) 739 fastcall void __kprobes do_debug(struct pt_regs * regs, long error_code)
719 { 740 {
720 unsigned int condition; 741 unsigned int condition;
721 struct task_struct *tsk = current; 742 struct task_struct *tsk = current;
722 743
723 get_debugreg(condition, 6); 744 get_debugreg(condition, 6);
724 745
725 if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code, 746 if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code,
726 SIGTRAP) == NOTIFY_STOP) 747 SIGTRAP) == NOTIFY_STOP)
727 return; 748 return;
728 /* It's safe to allow irq's after DR6 has been saved */ 749 /* It's safe to allow irq's after DR6 has been saved */
729 if (regs->eflags & X86_EFLAGS_IF) 750 if (regs->eflags & X86_EFLAGS_IF)
730 local_irq_enable(); 751 local_irq_enable();
731 752
732 /* Mask out spurious debug traps due to lazy DR7 setting */ 753 /* Mask out spurious debug traps due to lazy DR7 setting */
733 if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) { 754 if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) {
734 if (!tsk->thread.debugreg[7]) 755 if (!tsk->thread.debugreg[7])
735 goto clear_dr7; 756 goto clear_dr7;
736 } 757 }
737 758
738 if (regs->eflags & VM_MASK) 759 if (regs->eflags & VM_MASK)
739 goto debug_vm86; 760 goto debug_vm86;
740 761
741 /* Save debug status register where ptrace can see it */ 762 /* Save debug status register where ptrace can see it */
742 tsk->thread.debugreg[6] = condition; 763 tsk->thread.debugreg[6] = condition;
743 764
744 /* 765 /*
745 * Single-stepping through TF: make sure we ignore any events in 766 * Single-stepping through TF: make sure we ignore any events in
746 * kernel space (but re-enable TF when returning to user mode). 767 * kernel space (but re-enable TF when returning to user mode).
747 */ 768 */
748 if (condition & DR_STEP) { 769 if (condition & DR_STEP) {
749 /* 770 /*
750 * We already checked v86 mode above, so we can 771 * We already checked v86 mode above, so we can
751 * check for kernel mode by just checking the CPL 772 * check for kernel mode by just checking the CPL
752 * of CS. 773 * of CS.
753 */ 774 */
754 if (!user_mode(regs)) 775 if (!user_mode(regs))
755 goto clear_TF_reenable; 776 goto clear_TF_reenable;
756 } 777 }
757 778
758 /* Ok, finally something we can handle */ 779 /* Ok, finally something we can handle */
759 send_sigtrap(tsk, regs, error_code); 780 send_sigtrap(tsk, regs, error_code);
760 781
761 /* Disable additional traps. They'll be re-enabled when 782 /* Disable additional traps. They'll be re-enabled when
762 * the signal is delivered. 783 * the signal is delivered.
763 */ 784 */
764 clear_dr7: 785 clear_dr7:
765 set_debugreg(0, 7); 786 set_debugreg(0, 7);
766 return; 787 return;
767 788
768 debug_vm86: 789 debug_vm86:
769 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 1); 790 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 1);
770 return; 791 return;
771 792
772 clear_TF_reenable: 793 clear_TF_reenable:
773 set_tsk_thread_flag(tsk, TIF_SINGLESTEP); 794 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
774 regs->eflags &= ~TF_MASK; 795 regs->eflags &= ~TF_MASK;
775 return; 796 return;
776 } 797 }
777 798
778 /* 799 /*
779 * Note that we play around with the 'TS' bit in an attempt to get 800 * Note that we play around with the 'TS' bit in an attempt to get
780 * the correct behaviour even in the presence of the asynchronous 801 * the correct behaviour even in the presence of the asynchronous
781 * IRQ13 behaviour 802 * IRQ13 behaviour
782 */ 803 */
783 void math_error(void __user *eip) 804 void math_error(void __user *eip)
784 { 805 {
785 struct task_struct * task; 806 struct task_struct * task;
786 siginfo_t info; 807 siginfo_t info;
787 unsigned short cwd, swd; 808 unsigned short cwd, swd;
788 809
789 /* 810 /*
790 * Save the info for the exception handler and clear the error. 811 * Save the info for the exception handler and clear the error.
791 */ 812 */
792 task = current; 813 task = current;
793 save_init_fpu(task); 814 save_init_fpu(task);
794 task->thread.trap_no = 16; 815 task->thread.trap_no = 16;
795 task->thread.error_code = 0; 816 task->thread.error_code = 0;
796 info.si_signo = SIGFPE; 817 info.si_signo = SIGFPE;
797 info.si_errno = 0; 818 info.si_errno = 0;
798 info.si_code = __SI_FAULT; 819 info.si_code = __SI_FAULT;
799 info.si_addr = eip; 820 info.si_addr = eip;
800 /* 821 /*
801 * (~cwd & swd) will mask out exceptions that are not set to unmasked 822 * (~cwd & swd) will mask out exceptions that are not set to unmasked
802 * status. 0x3f is the exception bits in these regs, 0x200 is the 823 * status. 0x3f is the exception bits in these regs, 0x200 is the
803 * C1 reg you need in case of a stack fault, 0x040 is the stack 824 * C1 reg you need in case of a stack fault, 0x040 is the stack
804 * fault bit. We should only be taking one exception at a time, 825 * fault bit. We should only be taking one exception at a time,
805 * so if this combination doesn't produce any single exception, 826 * so if this combination doesn't produce any single exception,
806 * then we have a bad program that isn't syncronizing its FPU usage 827 * then we have a bad program that isn't syncronizing its FPU usage
807 * and it will suffer the consequences since we won't be able to 828 * and it will suffer the consequences since we won't be able to
808 * fully reproduce the context of the exception 829 * fully reproduce the context of the exception
809 */ 830 */
810 cwd = get_fpu_cwd(task); 831 cwd = get_fpu_cwd(task);
811 swd = get_fpu_swd(task); 832 swd = get_fpu_swd(task);
812 switch (swd & ~cwd & 0x3f) { 833 switch (swd & ~cwd & 0x3f) {
813 case 0x000: /* No unmasked exception */ 834 case 0x000: /* No unmasked exception */
814 return; 835 return;
815 default: /* Multiple exceptions */ 836 default: /* Multiple exceptions */
816 break; 837 break;
817 case 0x001: /* Invalid Op */ 838 case 0x001: /* Invalid Op */
818 /* 839 /*
819 * swd & 0x240 == 0x040: Stack Underflow 840 * swd & 0x240 == 0x040: Stack Underflow
820 * swd & 0x240 == 0x240: Stack Overflow 841 * swd & 0x240 == 0x240: Stack Overflow
821 * User must clear the SF bit (0x40) if set 842 * User must clear the SF bit (0x40) if set
822 */ 843 */
823 info.si_code = FPE_FLTINV; 844 info.si_code = FPE_FLTINV;
824 break; 845 break;
825 case 0x002: /* Denormalize */ 846 case 0x002: /* Denormalize */
826 case 0x010: /* Underflow */ 847 case 0x010: /* Underflow */
827 info.si_code = FPE_FLTUND; 848 info.si_code = FPE_FLTUND;
828 break; 849 break;
829 case 0x004: /* Zero Divide */ 850 case 0x004: /* Zero Divide */
830 info.si_code = FPE_FLTDIV; 851 info.si_code = FPE_FLTDIV;
831 break; 852 break;
832 case 0x008: /* Overflow */ 853 case 0x008: /* Overflow */
833 info.si_code = FPE_FLTOVF; 854 info.si_code = FPE_FLTOVF;
834 break; 855 break;
835 case 0x020: /* Precision */ 856 case 0x020: /* Precision */
836 info.si_code = FPE_FLTRES; 857 info.si_code = FPE_FLTRES;
837 break; 858 break;
838 } 859 }
839 force_sig_info(SIGFPE, &info, task); 860 force_sig_info(SIGFPE, &info, task);
840 } 861 }
841 862
842 fastcall void do_coprocessor_error(struct pt_regs * regs, long error_code) 863 fastcall void do_coprocessor_error(struct pt_regs * regs, long error_code)
843 { 864 {
844 ignore_fpu_irq = 1; 865 ignore_fpu_irq = 1;
845 math_error((void __user *)regs->eip); 866 math_error((void __user *)regs->eip);
846 } 867 }
847 868
848 static void simd_math_error(void __user *eip) 869 static void simd_math_error(void __user *eip)
849 { 870 {
850 struct task_struct * task; 871 struct task_struct * task;
851 siginfo_t info; 872 siginfo_t info;
852 unsigned short mxcsr; 873 unsigned short mxcsr;
853 874
854 /* 875 /*
855 * Save the info for the exception handler and clear the error. 876 * Save the info for the exception handler and clear the error.
856 */ 877 */
857 task = current; 878 task = current;
858 save_init_fpu(task); 879 save_init_fpu(task);
859 task->thread.trap_no = 19; 880 task->thread.trap_no = 19;
860 task->thread.error_code = 0; 881 task->thread.error_code = 0;
861 info.si_signo = SIGFPE; 882 info.si_signo = SIGFPE;
862 info.si_errno = 0; 883 info.si_errno = 0;
863 info.si_code = __SI_FAULT; 884 info.si_code = __SI_FAULT;
864 info.si_addr = eip; 885 info.si_addr = eip;
865 /* 886 /*
866 * The SIMD FPU exceptions are handled a little differently, as there 887 * The SIMD FPU exceptions are handled a little differently, as there
867 * is only a single status/control register. Thus, to determine which 888 * is only a single status/control register. Thus, to determine which
868 * unmasked exception was caught we must mask the exception mask bits 889 * unmasked exception was caught we must mask the exception mask bits
869 * at 0x1f80, and then use these to mask the exception bits at 0x3f. 890 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
870 */ 891 */
871 mxcsr = get_fpu_mxcsr(task); 892 mxcsr = get_fpu_mxcsr(task);
872 switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) { 893 switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) {
873 case 0x000: 894 case 0x000:
874 default: 895 default:
875 break; 896 break;
876 case 0x001: /* Invalid Op */ 897 case 0x001: /* Invalid Op */
877 info.si_code = FPE_FLTINV; 898 info.si_code = FPE_FLTINV;
878 break; 899 break;
879 case 0x002: /* Denormalize */ 900 case 0x002: /* Denormalize */
880 case 0x010: /* Underflow */ 901 case 0x010: /* Underflow */
881 info.si_code = FPE_FLTUND; 902 info.si_code = FPE_FLTUND;
882 break; 903 break;
883 case 0x004: /* Zero Divide */ 904 case 0x004: /* Zero Divide */
884 info.si_code = FPE_FLTDIV; 905 info.si_code = FPE_FLTDIV;
885 break; 906 break;
886 case 0x008: /* Overflow */ 907 case 0x008: /* Overflow */
887 info.si_code = FPE_FLTOVF; 908 info.si_code = FPE_FLTOVF;
888 break; 909 break;
889 case 0x020: /* Precision */ 910 case 0x020: /* Precision */
890 info.si_code = FPE_FLTRES; 911 info.si_code = FPE_FLTRES;
891 break; 912 break;
892 } 913 }
893 force_sig_info(SIGFPE, &info, task); 914 force_sig_info(SIGFPE, &info, task);
894 } 915 }
895 916
896 fastcall void do_simd_coprocessor_error(struct pt_regs * regs, 917 fastcall void do_simd_coprocessor_error(struct pt_regs * regs,
897 long error_code) 918 long error_code)
898 { 919 {
899 if (cpu_has_xmm) { 920 if (cpu_has_xmm) {
900 /* Handle SIMD FPU exceptions on PIII+ processors. */ 921 /* Handle SIMD FPU exceptions on PIII+ processors. */
901 ignore_fpu_irq = 1; 922 ignore_fpu_irq = 1;
902 simd_math_error((void __user *)regs->eip); 923 simd_math_error((void __user *)regs->eip);
903 } else { 924 } else {
904 /* 925 /*
905 * Handle strange cache flush from user space exception 926 * Handle strange cache flush from user space exception
906 * in all other cases. This is undocumented behaviour. 927 * in all other cases. This is undocumented behaviour.
907 */ 928 */
908 if (regs->eflags & VM_MASK) { 929 if (regs->eflags & VM_MASK) {
909 handle_vm86_fault((struct kernel_vm86_regs *)regs, 930 handle_vm86_fault((struct kernel_vm86_regs *)regs,
910 error_code); 931 error_code);
911 return; 932 return;
912 } 933 }
913 current->thread.trap_no = 19; 934 current->thread.trap_no = 19;
914 current->thread.error_code = error_code; 935 current->thread.error_code = error_code;
915 die_if_kernel("cache flush denied", regs, error_code); 936 die_if_kernel("cache flush denied", regs, error_code);
916 force_sig(SIGSEGV, current); 937 force_sig(SIGSEGV, current);
917 } 938 }
918 } 939 }
919 940
920 fastcall void do_spurious_interrupt_bug(struct pt_regs * regs, 941 fastcall void do_spurious_interrupt_bug(struct pt_regs * regs,
921 long error_code) 942 long error_code)
922 { 943 {
923 #if 0 944 #if 0
924 /* No need to warn about this any longer. */ 945 /* No need to warn about this any longer. */
925 printk("Ignoring P6 Local APIC Spurious Interrupt Bug...\n"); 946 printk("Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
926 #endif 947 #endif
927 } 948 }
928 949
929 fastcall void setup_x86_bogus_stack(unsigned char * stk) 950 fastcall void setup_x86_bogus_stack(unsigned char * stk)
930 { 951 {
931 unsigned long *switch16_ptr, *switch32_ptr; 952 unsigned long *switch16_ptr, *switch32_ptr;
932 struct pt_regs *regs; 953 struct pt_regs *regs;
933 unsigned long stack_top, stack_bot; 954 unsigned long stack_top, stack_bot;
934 unsigned short iret_frame16_off; 955 unsigned short iret_frame16_off;
935 int cpu = smp_processor_id(); 956 int cpu = smp_processor_id();
936 /* reserve the space on 32bit stack for the magic switch16 pointer */ 957 /* reserve the space on 32bit stack for the magic switch16 pointer */
937 memmove(stk, stk + 8, sizeof(struct pt_regs)); 958 memmove(stk, stk + 8, sizeof(struct pt_regs));
938 switch16_ptr = (unsigned long *)(stk + sizeof(struct pt_regs)); 959 switch16_ptr = (unsigned long *)(stk + sizeof(struct pt_regs));
939 regs = (struct pt_regs *)stk; 960 regs = (struct pt_regs *)stk;
940 /* now the switch32 on 16bit stack */ 961 /* now the switch32 on 16bit stack */
941 stack_bot = (unsigned long)&per_cpu(cpu_16bit_stack, cpu); 962 stack_bot = (unsigned long)&per_cpu(cpu_16bit_stack, cpu);
942 stack_top = stack_bot + CPU_16BIT_STACK_SIZE; 963 stack_top = stack_bot + CPU_16BIT_STACK_SIZE;
943 switch32_ptr = (unsigned long *)(stack_top - 8); 964 switch32_ptr = (unsigned long *)(stack_top - 8);
944 iret_frame16_off = CPU_16BIT_STACK_SIZE - 8 - 20; 965 iret_frame16_off = CPU_16BIT_STACK_SIZE - 8 - 20;
945 /* copy iret frame on 16bit stack */ 966 /* copy iret frame on 16bit stack */
946 memcpy((void *)(stack_bot + iret_frame16_off), &regs->eip, 20); 967 memcpy((void *)(stack_bot + iret_frame16_off), &regs->eip, 20);
947 /* fill in the switch pointers */ 968 /* fill in the switch pointers */
948 switch16_ptr[0] = (regs->esp & 0xffff0000) | iret_frame16_off; 969 switch16_ptr[0] = (regs->esp & 0xffff0000) | iret_frame16_off;
949 switch16_ptr[1] = __ESPFIX_SS; 970 switch16_ptr[1] = __ESPFIX_SS;
950 switch32_ptr[0] = (unsigned long)stk + sizeof(struct pt_regs) + 971 switch32_ptr[0] = (unsigned long)stk + sizeof(struct pt_regs) +
951 8 - CPU_16BIT_STACK_SIZE; 972 8 - CPU_16BIT_STACK_SIZE;
952 switch32_ptr[1] = __KERNEL_DS; 973 switch32_ptr[1] = __KERNEL_DS;
953 } 974 }
954 975
955 fastcall unsigned char * fixup_x86_bogus_stack(unsigned short sp) 976 fastcall unsigned char * fixup_x86_bogus_stack(unsigned short sp)
956 { 977 {
957 unsigned long *switch32_ptr; 978 unsigned long *switch32_ptr;
958 unsigned char *stack16, *stack32; 979 unsigned char *stack16, *stack32;
959 unsigned long stack_top, stack_bot; 980 unsigned long stack_top, stack_bot;
960 int len; 981 int len;
961 int cpu = smp_processor_id(); 982 int cpu = smp_processor_id();
962 stack_bot = (unsigned long)&per_cpu(cpu_16bit_stack, cpu); 983 stack_bot = (unsigned long)&per_cpu(cpu_16bit_stack, cpu);
963 stack_top = stack_bot + CPU_16BIT_STACK_SIZE; 984 stack_top = stack_bot + CPU_16BIT_STACK_SIZE;
964 switch32_ptr = (unsigned long *)(stack_top - 8); 985 switch32_ptr = (unsigned long *)(stack_top - 8);
965 /* copy the data from 16bit stack to 32bit stack */ 986 /* copy the data from 16bit stack to 32bit stack */
966 len = CPU_16BIT_STACK_SIZE - 8 - sp; 987 len = CPU_16BIT_STACK_SIZE - 8 - sp;
967 stack16 = (unsigned char *)(stack_bot + sp); 988 stack16 = (unsigned char *)(stack_bot + sp);
968 stack32 = (unsigned char *) 989 stack32 = (unsigned char *)
969 (switch32_ptr[0] + CPU_16BIT_STACK_SIZE - 8 - len); 990 (switch32_ptr[0] + CPU_16BIT_STACK_SIZE - 8 - len);
970 memcpy(stack32, stack16, len); 991 memcpy(stack32, stack16, len);
971 return stack32; 992 return stack32;
972 } 993 }
973 994
974 /* 995 /*
975 * 'math_state_restore()' saves the current math information in the 996 * 'math_state_restore()' saves the current math information in the
976 * old math state array, and gets the new ones from the current task 997 * old math state array, and gets the new ones from the current task
977 * 998 *
978 * Careful.. There are problems with IBM-designed IRQ13 behaviour. 999 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
979 * Don't touch unless you *really* know how it works. 1000 * Don't touch unless you *really* know how it works.
980 * 1001 *
981 * Must be called with kernel preemption disabled (in this case, 1002 * Must be called with kernel preemption disabled (in this case,
982 * local interrupts are disabled at the call-site in entry.S). 1003 * local interrupts are disabled at the call-site in entry.S).
983 */ 1004 */
984 asmlinkage void math_state_restore(struct pt_regs regs) 1005 asmlinkage void math_state_restore(struct pt_regs regs)
985 { 1006 {
986 struct thread_info *thread = current_thread_info(); 1007 struct thread_info *thread = current_thread_info();
987 struct task_struct *tsk = thread->task; 1008 struct task_struct *tsk = thread->task;
988 1009
989 clts(); /* Allow maths ops (or we recurse) */ 1010 clts(); /* Allow maths ops (or we recurse) */
990 if (!tsk_used_math(tsk)) 1011 if (!tsk_used_math(tsk))
991 init_fpu(tsk); 1012 init_fpu(tsk);
992 restore_fpu(tsk); 1013 restore_fpu(tsk);
993 thread->status |= TS_USEDFPU; /* So we fnsave on switch_to() */ 1014 thread->status |= TS_USEDFPU; /* So we fnsave on switch_to() */
994 } 1015 }
995 1016
996 #ifndef CONFIG_MATH_EMULATION 1017 #ifndef CONFIG_MATH_EMULATION
997 1018
998 asmlinkage void math_emulate(long arg) 1019 asmlinkage void math_emulate(long arg)
999 { 1020 {
1000 printk(KERN_EMERG "math-emulation not enabled and no coprocessor found.\n"); 1021 printk(KERN_EMERG "math-emulation not enabled and no coprocessor found.\n");
1001 printk(KERN_EMERG "killing %s.\n",current->comm); 1022 printk(KERN_EMERG "killing %s.\n",current->comm);
1002 force_sig(SIGFPE,current); 1023 force_sig(SIGFPE,current);
1003 schedule(); 1024 schedule();
1004 } 1025 }
1005 1026
1006 #endif /* CONFIG_MATH_EMULATION */ 1027 #endif /* CONFIG_MATH_EMULATION */
1007 1028
1008 #ifdef CONFIG_X86_F00F_BUG 1029 #ifdef CONFIG_X86_F00F_BUG
1009 void __init trap_init_f00f_bug(void) 1030 void __init trap_init_f00f_bug(void)
1010 { 1031 {
1011 __set_fixmap(FIX_F00F_IDT, __pa(&idt_table), PAGE_KERNEL_RO); 1032 __set_fixmap(FIX_F00F_IDT, __pa(&idt_table), PAGE_KERNEL_RO);
1012 1033
1013 /* 1034 /*
1014 * Update the IDT descriptor and reload the IDT so that 1035 * Update the IDT descriptor and reload the IDT so that
1015 * it uses the read-only mapped virtual address. 1036 * it uses the read-only mapped virtual address.
1016 */ 1037 */
1017 idt_descr.address = fix_to_virt(FIX_F00F_IDT); 1038 idt_descr.address = fix_to_virt(FIX_F00F_IDT);
1018 load_idt(&idt_descr); 1039 load_idt(&idt_descr);
1019 } 1040 }
1020 #endif 1041 #endif
1021 1042
1022 #define _set_gate(gate_addr,type,dpl,addr,seg) \ 1043 #define _set_gate(gate_addr,type,dpl,addr,seg) \
1023 do { \ 1044 do { \
1024 int __d0, __d1; \ 1045 int __d0, __d1; \
1025 __asm__ __volatile__ ("movw %%dx,%%ax\n\t" \ 1046 __asm__ __volatile__ ("movw %%dx,%%ax\n\t" \
1026 "movw %4,%%dx\n\t" \ 1047 "movw %4,%%dx\n\t" \
1027 "movl %%eax,%0\n\t" \ 1048 "movl %%eax,%0\n\t" \
1028 "movl %%edx,%1" \ 1049 "movl %%edx,%1" \
1029 :"=m" (*((long *) (gate_addr))), \ 1050 :"=m" (*((long *) (gate_addr))), \
1030 "=m" (*(1+(long *) (gate_addr))), "=&a" (__d0), "=&d" (__d1) \ 1051 "=m" (*(1+(long *) (gate_addr))), "=&a" (__d0), "=&d" (__d1) \
1031 :"i" ((short) (0x8000+(dpl<<13)+(type<<8))), \ 1052 :"i" ((short) (0x8000+(dpl<<13)+(type<<8))), \
1032 "3" ((char *) (addr)),"2" ((seg) << 16)); \ 1053 "3" ((char *) (addr)),"2" ((seg) << 16)); \
1033 } while (0) 1054 } while (0)
1034 1055
1035 1056
1036 /* 1057 /*
1037 * This needs to use 'idt_table' rather than 'idt', and 1058 * This needs to use 'idt_table' rather than 'idt', and
1038 * thus use the _nonmapped_ version of the IDT, as the 1059 * thus use the _nonmapped_ version of the IDT, as the
1039 * Pentium F0 0F bugfix can have resulted in the mapped 1060 * Pentium F0 0F bugfix can have resulted in the mapped
1040 * IDT being write-protected. 1061 * IDT being write-protected.
1041 */ 1062 */
1042 void set_intr_gate(unsigned int n, void *addr) 1063 void set_intr_gate(unsigned int n, void *addr)
1043 { 1064 {
1044 _set_gate(idt_table+n,14,0,addr,__KERNEL_CS); 1065 _set_gate(idt_table+n,14,0,addr,__KERNEL_CS);
1045 } 1066 }
1046 1067
1047 /* 1068 /*
1048 * This routine sets up an interrupt gate at directory privilege level 3. 1069 * This routine sets up an interrupt gate at directory privilege level 3.
1049 */ 1070 */
1050 static inline void set_system_intr_gate(unsigned int n, void *addr) 1071 static inline void set_system_intr_gate(unsigned int n, void *addr)
1051 { 1072 {
1052 _set_gate(idt_table+n, 14, 3, addr, __KERNEL_CS); 1073 _set_gate(idt_table+n, 14, 3, addr, __KERNEL_CS);
1053 } 1074 }
1054 1075
1055 static void __init set_trap_gate(unsigned int n, void *addr) 1076 static void __init set_trap_gate(unsigned int n, void *addr)
1056 { 1077 {
1057 _set_gate(idt_table+n,15,0,addr,__KERNEL_CS); 1078 _set_gate(idt_table+n,15,0,addr,__KERNEL_CS);
1058 } 1079 }
1059 1080
1060 static void __init set_system_gate(unsigned int n, void *addr) 1081 static void __init set_system_gate(unsigned int n, void *addr)
1061 { 1082 {
1062 _set_gate(idt_table+n,15,3,addr,__KERNEL_CS); 1083 _set_gate(idt_table+n,15,3,addr,__KERNEL_CS);
1063 } 1084 }
1064 1085
1065 static void __init set_task_gate(unsigned int n, unsigned int gdt_entry) 1086 static void __init set_task_gate(unsigned int n, unsigned int gdt_entry)
1066 { 1087 {
1067 _set_gate(idt_table+n,5,0,0,(gdt_entry<<3)); 1088 _set_gate(idt_table+n,5,0,0,(gdt_entry<<3));
1068 } 1089 }
1069 1090
1070 1091
1071 void __init trap_init(void) 1092 void __init trap_init(void)
1072 { 1093 {
1073 #ifdef CONFIG_EISA 1094 #ifdef CONFIG_EISA
1074 void __iomem *p = ioremap(0x0FFFD9, 4); 1095 void __iomem *p = ioremap(0x0FFFD9, 4);
1075 if (readl(p) == 'E'+('I'<<8)+('S'<<16)+('A'<<24)) { 1096 if (readl(p) == 'E'+('I'<<8)+('S'<<16)+('A'<<24)) {
1076 EISA_bus = 1; 1097 EISA_bus = 1;
1077 } 1098 }
1078 iounmap(p); 1099 iounmap(p);
1079 #endif 1100 #endif
1080 1101
1081 #ifdef CONFIG_X86_LOCAL_APIC 1102 #ifdef CONFIG_X86_LOCAL_APIC
1082 init_apic_mappings(); 1103 init_apic_mappings();
1083 #endif 1104 #endif
1084 1105
1085 set_trap_gate(0,&divide_error); 1106 set_trap_gate(0,&divide_error);
1086 set_intr_gate(1,&debug); 1107 set_intr_gate(1,&debug);
1087 set_intr_gate(2,&nmi); 1108 set_intr_gate(2,&nmi);
1088 set_system_intr_gate(3, &int3); /* int3/4 can be called from all */ 1109 set_system_intr_gate(3, &int3); /* int3/4 can be called from all */
1089 set_system_gate(4,&overflow); 1110 set_system_gate(4,&overflow);
1090 set_trap_gate(5,&bounds); 1111 set_trap_gate(5,&bounds);
1091 set_trap_gate(6,&invalid_op); 1112 set_trap_gate(6,&invalid_op);
1092 set_trap_gate(7,&device_not_available); 1113 set_trap_gate(7,&device_not_available);
1093 set_task_gate(8,GDT_ENTRY_DOUBLEFAULT_TSS); 1114 set_task_gate(8,GDT_ENTRY_DOUBLEFAULT_TSS);
1094 set_trap_gate(9,&coprocessor_segment_overrun); 1115 set_trap_gate(9,&coprocessor_segment_overrun);
1095 set_trap_gate(10,&invalid_TSS); 1116 set_trap_gate(10,&invalid_TSS);
1096 set_trap_gate(11,&segment_not_present); 1117 set_trap_gate(11,&segment_not_present);
1097 set_trap_gate(12,&stack_segment); 1118 set_trap_gate(12,&stack_segment);
1098 set_trap_gate(13,&general_protection); 1119 set_trap_gate(13,&general_protection);
1099 set_intr_gate(14,&page_fault); 1120 set_intr_gate(14,&page_fault);
1100 set_trap_gate(15,&spurious_interrupt_bug); 1121 set_trap_gate(15,&spurious_interrupt_bug);
1101 set_trap_gate(16,&coprocessor_error); 1122 set_trap_gate(16,&coprocessor_error);
1102 set_trap_gate(17,&alignment_check); 1123 set_trap_gate(17,&alignment_check);
1103 #ifdef CONFIG_X86_MCE 1124 #ifdef CONFIG_X86_MCE
1104 set_trap_gate(18,&machine_check); 1125 set_trap_gate(18,&machine_check);
1105 #endif 1126 #endif
1106 set_trap_gate(19,&simd_coprocessor_error); 1127 set_trap_gate(19,&simd_coprocessor_error);
1107 1128
1108 if (cpu_has_fxsr) { 1129 if (cpu_has_fxsr) {
1109 /* 1130 /*
1110 * Verify that the FXSAVE/FXRSTOR data will be 16-byte aligned. 1131 * Verify that the FXSAVE/FXRSTOR data will be 16-byte aligned.
1111 * Generates a compile-time "error: zero width for bit-field" if 1132 * Generates a compile-time "error: zero width for bit-field" if
1112 * the alignment is wrong. 1133 * the alignment is wrong.
1113 */ 1134 */
1114 struct fxsrAlignAssert { 1135 struct fxsrAlignAssert {
1115 int _:!(offsetof(struct task_struct, 1136 int _:!(offsetof(struct task_struct,
1116 thread.i387.fxsave) & 15); 1137 thread.i387.fxsave) & 15);
1117 }; 1138 };
1118 1139
1119 printk(KERN_INFO "Enabling fast FPU save and restore... "); 1140 printk(KERN_INFO "Enabling fast FPU save and restore... ");
1120 set_in_cr4(X86_CR4_OSFXSR); 1141 set_in_cr4(X86_CR4_OSFXSR);
1121 printk("done.\n"); 1142 printk("done.\n");
1122 } 1143 }
1123 if (cpu_has_xmm) { 1144 if (cpu_has_xmm) {
1124 printk(KERN_INFO "Enabling unmasked SIMD FPU exception " 1145 printk(KERN_INFO "Enabling unmasked SIMD FPU exception "
1125 "support... "); 1146 "support... ");
1126 set_in_cr4(X86_CR4_OSXMMEXCPT); 1147 set_in_cr4(X86_CR4_OSXMMEXCPT);
1127 printk("done.\n"); 1148 printk("done.\n");
1128 } 1149 }
1129 1150
1130 set_system_gate(SYSCALL_VECTOR,&system_call); 1151 set_system_gate(SYSCALL_VECTOR,&system_call);
1131 1152
1132 /* 1153 /*
1133 * Should be a barrier for any external CPU state. 1154 * Should be a barrier for any external CPU state.
1134 */ 1155 */
1135 cpu_init(); 1156 cpu_init();
1136 1157
1137 trap_init_hook(); 1158 trap_init_hook();
1138 } 1159 }
1139 1160
1140 static int __init kstack_setup(char *s) 1161 static int __init kstack_setup(char *s)
1141 { 1162 {