Commit 7d188958bb64708577aa77e6b1ad68abbf0480f5

Authored by Johannes Weiner
Committed by Linus Torvalds
1 parent 0c59b89c81

mm: memcg: only check for PageSwapCache when uncharging anon

Only anon pages that are uncharged at the time of the last page table
mapping vanishing may be in swapcache.

When shmem pages, file pages, swap-freed anon pages, or just migrated
pages are uncharged, they are known for sure to be not in swapcache.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Wanpeng Li <liwp.linux@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>

Showing 1 changed file with 4 additions and 9 deletions Inline Diff

1 /* memcontrol.c - Memory Controller 1 /* memcontrol.c - Memory Controller
2 * 2 *
3 * Copyright IBM Corporation, 2007 3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 * 5 *
6 * Copyright 2007 OpenVZ SWsoft Inc 6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org> 7 * Author: Pavel Emelianov <xemul@openvz.org>
8 * 8 *
9 * Memory thresholds 9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation 10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov 11 * Author: Kirill A. Shutemov
12 * 12 *
13 * This program is free software; you can redistribute it and/or modify 13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by 14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or 15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version. 16 * (at your option) any later version.
17 * 17 *
18 * This program is distributed in the hope that it will be useful, 18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details. 21 * GNU General Public License for more details.
22 */ 22 */
23 23
24 #include <linux/res_counter.h> 24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h> 25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h> 26 #include <linux/cgroup.h>
27 #include <linux/mm.h> 27 #include <linux/mm.h>
28 #include <linux/hugetlb.h> 28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h> 29 #include <linux/pagemap.h>
30 #include <linux/smp.h> 30 #include <linux/smp.h>
31 #include <linux/page-flags.h> 31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h> 32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h> 33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h> 34 #include <linux/rcupdate.h>
35 #include <linux/limits.h> 35 #include <linux/limits.h>
36 #include <linux/export.h> 36 #include <linux/export.h>
37 #include <linux/mutex.h> 37 #include <linux/mutex.h>
38 #include <linux/rbtree.h> 38 #include <linux/rbtree.h>
39 #include <linux/slab.h> 39 #include <linux/slab.h>
40 #include <linux/swap.h> 40 #include <linux/swap.h>
41 #include <linux/swapops.h> 41 #include <linux/swapops.h>
42 #include <linux/spinlock.h> 42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h> 43 #include <linux/eventfd.h>
44 #include <linux/sort.h> 44 #include <linux/sort.h>
45 #include <linux/fs.h> 45 #include <linux/fs.h>
46 #include <linux/seq_file.h> 46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h> 47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h> 48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h> 49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h> 50 #include <linux/cpu.h>
51 #include <linux/oom.h> 51 #include <linux/oom.h>
52 #include "internal.h" 52 #include "internal.h"
53 #include <net/sock.h> 53 #include <net/sock.h>
54 #include <net/tcp_memcontrol.h> 54 #include <net/tcp_memcontrol.h>
55 55
56 #include <asm/uaccess.h> 56 #include <asm/uaccess.h>
57 57
58 #include <trace/events/vmscan.h> 58 #include <trace/events/vmscan.h>
59 59
60 struct cgroup_subsys mem_cgroup_subsys __read_mostly; 60 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61 #define MEM_CGROUP_RECLAIM_RETRIES 5 61 #define MEM_CGROUP_RECLAIM_RETRIES 5
62 static struct mem_cgroup *root_mem_cgroup __read_mostly; 62 static struct mem_cgroup *root_mem_cgroup __read_mostly;
63 63
64 #ifdef CONFIG_MEMCG_SWAP 64 #ifdef CONFIG_MEMCG_SWAP
65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ 65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66 int do_swap_account __read_mostly; 66 int do_swap_account __read_mostly;
67 67
68 /* for remember boot option*/ 68 /* for remember boot option*/
69 #ifdef CONFIG_MEMCG_SWAP_ENABLED 69 #ifdef CONFIG_MEMCG_SWAP_ENABLED
70 static int really_do_swap_account __initdata = 1; 70 static int really_do_swap_account __initdata = 1;
71 #else 71 #else
72 static int really_do_swap_account __initdata = 0; 72 static int really_do_swap_account __initdata = 0;
73 #endif 73 #endif
74 74
75 #else 75 #else
76 #define do_swap_account 0 76 #define do_swap_account 0
77 #endif 77 #endif
78 78
79 79
80 /* 80 /*
81 * Statistics for memory cgroup. 81 * Statistics for memory cgroup.
82 */ 82 */
83 enum mem_cgroup_stat_index { 83 enum mem_cgroup_stat_index {
84 /* 84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. 85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */ 86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ 87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */ 88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */ 89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
90 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */ 90 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
91 MEM_CGROUP_STAT_NSTATS, 91 MEM_CGROUP_STAT_NSTATS,
92 }; 92 };
93 93
94 static const char * const mem_cgroup_stat_names[] = { 94 static const char * const mem_cgroup_stat_names[] = {
95 "cache", 95 "cache",
96 "rss", 96 "rss",
97 "mapped_file", 97 "mapped_file",
98 "swap", 98 "swap",
99 }; 99 };
100 100
101 enum mem_cgroup_events_index { 101 enum mem_cgroup_events_index {
102 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */ 102 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
103 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */ 103 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
104 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */ 104 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
105 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */ 105 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
106 MEM_CGROUP_EVENTS_NSTATS, 106 MEM_CGROUP_EVENTS_NSTATS,
107 }; 107 };
108 108
109 static const char * const mem_cgroup_events_names[] = { 109 static const char * const mem_cgroup_events_names[] = {
110 "pgpgin", 110 "pgpgin",
111 "pgpgout", 111 "pgpgout",
112 "pgfault", 112 "pgfault",
113 "pgmajfault", 113 "pgmajfault",
114 }; 114 };
115 115
116 /* 116 /*
117 * Per memcg event counter is incremented at every pagein/pageout. With THP, 117 * Per memcg event counter is incremented at every pagein/pageout. With THP,
118 * it will be incremated by the number of pages. This counter is used for 118 * it will be incremated by the number of pages. This counter is used for
119 * for trigger some periodic events. This is straightforward and better 119 * for trigger some periodic events. This is straightforward and better
120 * than using jiffies etc. to handle periodic memcg event. 120 * than using jiffies etc. to handle periodic memcg event.
121 */ 121 */
122 enum mem_cgroup_events_target { 122 enum mem_cgroup_events_target {
123 MEM_CGROUP_TARGET_THRESH, 123 MEM_CGROUP_TARGET_THRESH,
124 MEM_CGROUP_TARGET_SOFTLIMIT, 124 MEM_CGROUP_TARGET_SOFTLIMIT,
125 MEM_CGROUP_TARGET_NUMAINFO, 125 MEM_CGROUP_TARGET_NUMAINFO,
126 MEM_CGROUP_NTARGETS, 126 MEM_CGROUP_NTARGETS,
127 }; 127 };
128 #define THRESHOLDS_EVENTS_TARGET 128 128 #define THRESHOLDS_EVENTS_TARGET 128
129 #define SOFTLIMIT_EVENTS_TARGET 1024 129 #define SOFTLIMIT_EVENTS_TARGET 1024
130 #define NUMAINFO_EVENTS_TARGET 1024 130 #define NUMAINFO_EVENTS_TARGET 1024
131 131
132 struct mem_cgroup_stat_cpu { 132 struct mem_cgroup_stat_cpu {
133 long count[MEM_CGROUP_STAT_NSTATS]; 133 long count[MEM_CGROUP_STAT_NSTATS];
134 unsigned long events[MEM_CGROUP_EVENTS_NSTATS]; 134 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
135 unsigned long nr_page_events; 135 unsigned long nr_page_events;
136 unsigned long targets[MEM_CGROUP_NTARGETS]; 136 unsigned long targets[MEM_CGROUP_NTARGETS];
137 }; 137 };
138 138
139 struct mem_cgroup_reclaim_iter { 139 struct mem_cgroup_reclaim_iter {
140 /* css_id of the last scanned hierarchy member */ 140 /* css_id of the last scanned hierarchy member */
141 int position; 141 int position;
142 /* scan generation, increased every round-trip */ 142 /* scan generation, increased every round-trip */
143 unsigned int generation; 143 unsigned int generation;
144 }; 144 };
145 145
146 /* 146 /*
147 * per-zone information in memory controller. 147 * per-zone information in memory controller.
148 */ 148 */
149 struct mem_cgroup_per_zone { 149 struct mem_cgroup_per_zone {
150 struct lruvec lruvec; 150 struct lruvec lruvec;
151 unsigned long lru_size[NR_LRU_LISTS]; 151 unsigned long lru_size[NR_LRU_LISTS];
152 152
153 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1]; 153 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
154 154
155 struct rb_node tree_node; /* RB tree node */ 155 struct rb_node tree_node; /* RB tree node */
156 unsigned long long usage_in_excess;/* Set to the value by which */ 156 unsigned long long usage_in_excess;/* Set to the value by which */
157 /* the soft limit is exceeded*/ 157 /* the soft limit is exceeded*/
158 bool on_tree; 158 bool on_tree;
159 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 159 struct mem_cgroup *memcg; /* Back pointer, we cannot */
160 /* use container_of */ 160 /* use container_of */
161 }; 161 };
162 162
163 struct mem_cgroup_per_node { 163 struct mem_cgroup_per_node {
164 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; 164 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
165 }; 165 };
166 166
167 struct mem_cgroup_lru_info { 167 struct mem_cgroup_lru_info {
168 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES]; 168 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
169 }; 169 };
170 170
171 /* 171 /*
172 * Cgroups above their limits are maintained in a RB-Tree, independent of 172 * Cgroups above their limits are maintained in a RB-Tree, independent of
173 * their hierarchy representation 173 * their hierarchy representation
174 */ 174 */
175 175
176 struct mem_cgroup_tree_per_zone { 176 struct mem_cgroup_tree_per_zone {
177 struct rb_root rb_root; 177 struct rb_root rb_root;
178 spinlock_t lock; 178 spinlock_t lock;
179 }; 179 };
180 180
181 struct mem_cgroup_tree_per_node { 181 struct mem_cgroup_tree_per_node {
182 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; 182 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
183 }; 183 };
184 184
185 struct mem_cgroup_tree { 185 struct mem_cgroup_tree {
186 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 186 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
187 }; 187 };
188 188
189 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 189 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
190 190
191 struct mem_cgroup_threshold { 191 struct mem_cgroup_threshold {
192 struct eventfd_ctx *eventfd; 192 struct eventfd_ctx *eventfd;
193 u64 threshold; 193 u64 threshold;
194 }; 194 };
195 195
196 /* For threshold */ 196 /* For threshold */
197 struct mem_cgroup_threshold_ary { 197 struct mem_cgroup_threshold_ary {
198 /* An array index points to threshold just below or equal to usage. */ 198 /* An array index points to threshold just below or equal to usage. */
199 int current_threshold; 199 int current_threshold;
200 /* Size of entries[] */ 200 /* Size of entries[] */
201 unsigned int size; 201 unsigned int size;
202 /* Array of thresholds */ 202 /* Array of thresholds */
203 struct mem_cgroup_threshold entries[0]; 203 struct mem_cgroup_threshold entries[0];
204 }; 204 };
205 205
206 struct mem_cgroup_thresholds { 206 struct mem_cgroup_thresholds {
207 /* Primary thresholds array */ 207 /* Primary thresholds array */
208 struct mem_cgroup_threshold_ary *primary; 208 struct mem_cgroup_threshold_ary *primary;
209 /* 209 /*
210 * Spare threshold array. 210 * Spare threshold array.
211 * This is needed to make mem_cgroup_unregister_event() "never fail". 211 * This is needed to make mem_cgroup_unregister_event() "never fail".
212 * It must be able to store at least primary->size - 1 entries. 212 * It must be able to store at least primary->size - 1 entries.
213 */ 213 */
214 struct mem_cgroup_threshold_ary *spare; 214 struct mem_cgroup_threshold_ary *spare;
215 }; 215 };
216 216
217 /* for OOM */ 217 /* for OOM */
218 struct mem_cgroup_eventfd_list { 218 struct mem_cgroup_eventfd_list {
219 struct list_head list; 219 struct list_head list;
220 struct eventfd_ctx *eventfd; 220 struct eventfd_ctx *eventfd;
221 }; 221 };
222 222
223 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 223 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
224 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 224 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
225 225
226 /* 226 /*
227 * The memory controller data structure. The memory controller controls both 227 * The memory controller data structure. The memory controller controls both
228 * page cache and RSS per cgroup. We would eventually like to provide 228 * page cache and RSS per cgroup. We would eventually like to provide
229 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 229 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
230 * to help the administrator determine what knobs to tune. 230 * to help the administrator determine what knobs to tune.
231 * 231 *
232 * TODO: Add a water mark for the memory controller. Reclaim will begin when 232 * TODO: Add a water mark for the memory controller. Reclaim will begin when
233 * we hit the water mark. May be even add a low water mark, such that 233 * we hit the water mark. May be even add a low water mark, such that
234 * no reclaim occurs from a cgroup at it's low water mark, this is 234 * no reclaim occurs from a cgroup at it's low water mark, this is
235 * a feature that will be implemented much later in the future. 235 * a feature that will be implemented much later in the future.
236 */ 236 */
237 struct mem_cgroup { 237 struct mem_cgroup {
238 struct cgroup_subsys_state css; 238 struct cgroup_subsys_state css;
239 /* 239 /*
240 * the counter to account for memory usage 240 * the counter to account for memory usage
241 */ 241 */
242 struct res_counter res; 242 struct res_counter res;
243 243
244 union { 244 union {
245 /* 245 /*
246 * the counter to account for mem+swap usage. 246 * the counter to account for mem+swap usage.
247 */ 247 */
248 struct res_counter memsw; 248 struct res_counter memsw;
249 249
250 /* 250 /*
251 * rcu_freeing is used only when freeing struct mem_cgroup, 251 * rcu_freeing is used only when freeing struct mem_cgroup,
252 * so put it into a union to avoid wasting more memory. 252 * so put it into a union to avoid wasting more memory.
253 * It must be disjoint from the css field. It could be 253 * It must be disjoint from the css field. It could be
254 * in a union with the res field, but res plays a much 254 * in a union with the res field, but res plays a much
255 * larger part in mem_cgroup life than memsw, and might 255 * larger part in mem_cgroup life than memsw, and might
256 * be of interest, even at time of free, when debugging. 256 * be of interest, even at time of free, when debugging.
257 * So share rcu_head with the less interesting memsw. 257 * So share rcu_head with the less interesting memsw.
258 */ 258 */
259 struct rcu_head rcu_freeing; 259 struct rcu_head rcu_freeing;
260 /* 260 /*
261 * We also need some space for a worker in deferred freeing. 261 * We also need some space for a worker in deferred freeing.
262 * By the time we call it, rcu_freeing is no longer in use. 262 * By the time we call it, rcu_freeing is no longer in use.
263 */ 263 */
264 struct work_struct work_freeing; 264 struct work_struct work_freeing;
265 }; 265 };
266 266
267 /* 267 /*
268 * Per cgroup active and inactive list, similar to the 268 * Per cgroup active and inactive list, similar to the
269 * per zone LRU lists. 269 * per zone LRU lists.
270 */ 270 */
271 struct mem_cgroup_lru_info info; 271 struct mem_cgroup_lru_info info;
272 int last_scanned_node; 272 int last_scanned_node;
273 #if MAX_NUMNODES > 1 273 #if MAX_NUMNODES > 1
274 nodemask_t scan_nodes; 274 nodemask_t scan_nodes;
275 atomic_t numainfo_events; 275 atomic_t numainfo_events;
276 atomic_t numainfo_updating; 276 atomic_t numainfo_updating;
277 #endif 277 #endif
278 /* 278 /*
279 * Should the accounting and control be hierarchical, per subtree? 279 * Should the accounting and control be hierarchical, per subtree?
280 */ 280 */
281 bool use_hierarchy; 281 bool use_hierarchy;
282 282
283 bool oom_lock; 283 bool oom_lock;
284 atomic_t under_oom; 284 atomic_t under_oom;
285 285
286 atomic_t refcnt; 286 atomic_t refcnt;
287 287
288 int swappiness; 288 int swappiness;
289 /* OOM-Killer disable */ 289 /* OOM-Killer disable */
290 int oom_kill_disable; 290 int oom_kill_disable;
291 291
292 /* set when res.limit == memsw.limit */ 292 /* set when res.limit == memsw.limit */
293 bool memsw_is_minimum; 293 bool memsw_is_minimum;
294 294
295 /* protect arrays of thresholds */ 295 /* protect arrays of thresholds */
296 struct mutex thresholds_lock; 296 struct mutex thresholds_lock;
297 297
298 /* thresholds for memory usage. RCU-protected */ 298 /* thresholds for memory usage. RCU-protected */
299 struct mem_cgroup_thresholds thresholds; 299 struct mem_cgroup_thresholds thresholds;
300 300
301 /* thresholds for mem+swap usage. RCU-protected */ 301 /* thresholds for mem+swap usage. RCU-protected */
302 struct mem_cgroup_thresholds memsw_thresholds; 302 struct mem_cgroup_thresholds memsw_thresholds;
303 303
304 /* For oom notifier event fd */ 304 /* For oom notifier event fd */
305 struct list_head oom_notify; 305 struct list_head oom_notify;
306 306
307 /* 307 /*
308 * Should we move charges of a task when a task is moved into this 308 * Should we move charges of a task when a task is moved into this
309 * mem_cgroup ? And what type of charges should we move ? 309 * mem_cgroup ? And what type of charges should we move ?
310 */ 310 */
311 unsigned long move_charge_at_immigrate; 311 unsigned long move_charge_at_immigrate;
312 /* 312 /*
313 * set > 0 if pages under this cgroup are moving to other cgroup. 313 * set > 0 if pages under this cgroup are moving to other cgroup.
314 */ 314 */
315 atomic_t moving_account; 315 atomic_t moving_account;
316 /* taken only while moving_account > 0 */ 316 /* taken only while moving_account > 0 */
317 spinlock_t move_lock; 317 spinlock_t move_lock;
318 /* 318 /*
319 * percpu counter. 319 * percpu counter.
320 */ 320 */
321 struct mem_cgroup_stat_cpu __percpu *stat; 321 struct mem_cgroup_stat_cpu __percpu *stat;
322 /* 322 /*
323 * used when a cpu is offlined or other synchronizations 323 * used when a cpu is offlined or other synchronizations
324 * See mem_cgroup_read_stat(). 324 * See mem_cgroup_read_stat().
325 */ 325 */
326 struct mem_cgroup_stat_cpu nocpu_base; 326 struct mem_cgroup_stat_cpu nocpu_base;
327 spinlock_t pcp_counter_lock; 327 spinlock_t pcp_counter_lock;
328 328
329 #ifdef CONFIG_INET 329 #ifdef CONFIG_INET
330 struct tcp_memcontrol tcp_mem; 330 struct tcp_memcontrol tcp_mem;
331 #endif 331 #endif
332 }; 332 };
333 333
334 /* Stuffs for move charges at task migration. */ 334 /* Stuffs for move charges at task migration. */
335 /* 335 /*
336 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a 336 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
337 * left-shifted bitmap of these types. 337 * left-shifted bitmap of these types.
338 */ 338 */
339 enum move_type { 339 enum move_type {
340 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */ 340 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
341 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */ 341 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
342 NR_MOVE_TYPE, 342 NR_MOVE_TYPE,
343 }; 343 };
344 344
345 /* "mc" and its members are protected by cgroup_mutex */ 345 /* "mc" and its members are protected by cgroup_mutex */
346 static struct move_charge_struct { 346 static struct move_charge_struct {
347 spinlock_t lock; /* for from, to */ 347 spinlock_t lock; /* for from, to */
348 struct mem_cgroup *from; 348 struct mem_cgroup *from;
349 struct mem_cgroup *to; 349 struct mem_cgroup *to;
350 unsigned long precharge; 350 unsigned long precharge;
351 unsigned long moved_charge; 351 unsigned long moved_charge;
352 unsigned long moved_swap; 352 unsigned long moved_swap;
353 struct task_struct *moving_task; /* a task moving charges */ 353 struct task_struct *moving_task; /* a task moving charges */
354 wait_queue_head_t waitq; /* a waitq for other context */ 354 wait_queue_head_t waitq; /* a waitq for other context */
355 } mc = { 355 } mc = {
356 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 356 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
357 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 357 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
358 }; 358 };
359 359
360 static bool move_anon(void) 360 static bool move_anon(void)
361 { 361 {
362 return test_bit(MOVE_CHARGE_TYPE_ANON, 362 return test_bit(MOVE_CHARGE_TYPE_ANON,
363 &mc.to->move_charge_at_immigrate); 363 &mc.to->move_charge_at_immigrate);
364 } 364 }
365 365
366 static bool move_file(void) 366 static bool move_file(void)
367 { 367 {
368 return test_bit(MOVE_CHARGE_TYPE_FILE, 368 return test_bit(MOVE_CHARGE_TYPE_FILE,
369 &mc.to->move_charge_at_immigrate); 369 &mc.to->move_charge_at_immigrate);
370 } 370 }
371 371
372 /* 372 /*
373 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 373 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
374 * limit reclaim to prevent infinite loops, if they ever occur. 374 * limit reclaim to prevent infinite loops, if they ever occur.
375 */ 375 */
376 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 376 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
377 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 377 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
378 378
379 enum charge_type { 379 enum charge_type {
380 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 380 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
381 MEM_CGROUP_CHARGE_TYPE_ANON, 381 MEM_CGROUP_CHARGE_TYPE_ANON,
382 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */ 382 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
383 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 383 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
384 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 384 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
385 NR_CHARGE_TYPE, 385 NR_CHARGE_TYPE,
386 }; 386 };
387 387
388 /* for encoding cft->private value on file */ 388 /* for encoding cft->private value on file */
389 #define _MEM (0) 389 #define _MEM (0)
390 #define _MEMSWAP (1) 390 #define _MEMSWAP (1)
391 #define _OOM_TYPE (2) 391 #define _OOM_TYPE (2)
392 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 392 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
393 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 393 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
394 #define MEMFILE_ATTR(val) ((val) & 0xffff) 394 #define MEMFILE_ATTR(val) ((val) & 0xffff)
395 /* Used for OOM nofiier */ 395 /* Used for OOM nofiier */
396 #define OOM_CONTROL (0) 396 #define OOM_CONTROL (0)
397 397
398 /* 398 /*
399 * Reclaim flags for mem_cgroup_hierarchical_reclaim 399 * Reclaim flags for mem_cgroup_hierarchical_reclaim
400 */ 400 */
401 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0 401 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
402 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT) 402 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
403 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1 403 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
404 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT) 404 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
405 405
406 static void mem_cgroup_get(struct mem_cgroup *memcg); 406 static void mem_cgroup_get(struct mem_cgroup *memcg);
407 static void mem_cgroup_put(struct mem_cgroup *memcg); 407 static void mem_cgroup_put(struct mem_cgroup *memcg);
408 408
409 /* Writing them here to avoid exposing memcg's inner layout */ 409 /* Writing them here to avoid exposing memcg's inner layout */
410 #ifdef CONFIG_MEMCG_KMEM 410 #ifdef CONFIG_MEMCG_KMEM
411 #include <net/sock.h> 411 #include <net/sock.h>
412 #include <net/ip.h> 412 #include <net/ip.h>
413 413
414 static bool mem_cgroup_is_root(struct mem_cgroup *memcg); 414 static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
415 void sock_update_memcg(struct sock *sk) 415 void sock_update_memcg(struct sock *sk)
416 { 416 {
417 if (mem_cgroup_sockets_enabled) { 417 if (mem_cgroup_sockets_enabled) {
418 struct mem_cgroup *memcg; 418 struct mem_cgroup *memcg;
419 struct cg_proto *cg_proto; 419 struct cg_proto *cg_proto;
420 420
421 BUG_ON(!sk->sk_prot->proto_cgroup); 421 BUG_ON(!sk->sk_prot->proto_cgroup);
422 422
423 /* Socket cloning can throw us here with sk_cgrp already 423 /* Socket cloning can throw us here with sk_cgrp already
424 * filled. It won't however, necessarily happen from 424 * filled. It won't however, necessarily happen from
425 * process context. So the test for root memcg given 425 * process context. So the test for root memcg given
426 * the current task's memcg won't help us in this case. 426 * the current task's memcg won't help us in this case.
427 * 427 *
428 * Respecting the original socket's memcg is a better 428 * Respecting the original socket's memcg is a better
429 * decision in this case. 429 * decision in this case.
430 */ 430 */
431 if (sk->sk_cgrp) { 431 if (sk->sk_cgrp) {
432 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg)); 432 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
433 mem_cgroup_get(sk->sk_cgrp->memcg); 433 mem_cgroup_get(sk->sk_cgrp->memcg);
434 return; 434 return;
435 } 435 }
436 436
437 rcu_read_lock(); 437 rcu_read_lock();
438 memcg = mem_cgroup_from_task(current); 438 memcg = mem_cgroup_from_task(current);
439 cg_proto = sk->sk_prot->proto_cgroup(memcg); 439 cg_proto = sk->sk_prot->proto_cgroup(memcg);
440 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) { 440 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
441 mem_cgroup_get(memcg); 441 mem_cgroup_get(memcg);
442 sk->sk_cgrp = cg_proto; 442 sk->sk_cgrp = cg_proto;
443 } 443 }
444 rcu_read_unlock(); 444 rcu_read_unlock();
445 } 445 }
446 } 446 }
447 EXPORT_SYMBOL(sock_update_memcg); 447 EXPORT_SYMBOL(sock_update_memcg);
448 448
449 void sock_release_memcg(struct sock *sk) 449 void sock_release_memcg(struct sock *sk)
450 { 450 {
451 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 451 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
452 struct mem_cgroup *memcg; 452 struct mem_cgroup *memcg;
453 WARN_ON(!sk->sk_cgrp->memcg); 453 WARN_ON(!sk->sk_cgrp->memcg);
454 memcg = sk->sk_cgrp->memcg; 454 memcg = sk->sk_cgrp->memcg;
455 mem_cgroup_put(memcg); 455 mem_cgroup_put(memcg);
456 } 456 }
457 } 457 }
458 458
459 #ifdef CONFIG_INET 459 #ifdef CONFIG_INET
460 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg) 460 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
461 { 461 {
462 if (!memcg || mem_cgroup_is_root(memcg)) 462 if (!memcg || mem_cgroup_is_root(memcg))
463 return NULL; 463 return NULL;
464 464
465 return &memcg->tcp_mem.cg_proto; 465 return &memcg->tcp_mem.cg_proto;
466 } 466 }
467 EXPORT_SYMBOL(tcp_proto_cgroup); 467 EXPORT_SYMBOL(tcp_proto_cgroup);
468 #endif /* CONFIG_INET */ 468 #endif /* CONFIG_INET */
469 #endif /* CONFIG_MEMCG_KMEM */ 469 #endif /* CONFIG_MEMCG_KMEM */
470 470
471 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) 471 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
472 static void disarm_sock_keys(struct mem_cgroup *memcg) 472 static void disarm_sock_keys(struct mem_cgroup *memcg)
473 { 473 {
474 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto)) 474 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
475 return; 475 return;
476 static_key_slow_dec(&memcg_socket_limit_enabled); 476 static_key_slow_dec(&memcg_socket_limit_enabled);
477 } 477 }
478 #else 478 #else
479 static void disarm_sock_keys(struct mem_cgroup *memcg) 479 static void disarm_sock_keys(struct mem_cgroup *memcg)
480 { 480 {
481 } 481 }
482 #endif 482 #endif
483 483
484 static void drain_all_stock_async(struct mem_cgroup *memcg); 484 static void drain_all_stock_async(struct mem_cgroup *memcg);
485 485
486 static struct mem_cgroup_per_zone * 486 static struct mem_cgroup_per_zone *
487 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid) 487 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
488 { 488 {
489 return &memcg->info.nodeinfo[nid]->zoneinfo[zid]; 489 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
490 } 490 }
491 491
492 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg) 492 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
493 { 493 {
494 return &memcg->css; 494 return &memcg->css;
495 } 495 }
496 496
497 static struct mem_cgroup_per_zone * 497 static struct mem_cgroup_per_zone *
498 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page) 498 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
499 { 499 {
500 int nid = page_to_nid(page); 500 int nid = page_to_nid(page);
501 int zid = page_zonenum(page); 501 int zid = page_zonenum(page);
502 502
503 return mem_cgroup_zoneinfo(memcg, nid, zid); 503 return mem_cgroup_zoneinfo(memcg, nid, zid);
504 } 504 }
505 505
506 static struct mem_cgroup_tree_per_zone * 506 static struct mem_cgroup_tree_per_zone *
507 soft_limit_tree_node_zone(int nid, int zid) 507 soft_limit_tree_node_zone(int nid, int zid)
508 { 508 {
509 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 509 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
510 } 510 }
511 511
512 static struct mem_cgroup_tree_per_zone * 512 static struct mem_cgroup_tree_per_zone *
513 soft_limit_tree_from_page(struct page *page) 513 soft_limit_tree_from_page(struct page *page)
514 { 514 {
515 int nid = page_to_nid(page); 515 int nid = page_to_nid(page);
516 int zid = page_zonenum(page); 516 int zid = page_zonenum(page);
517 517
518 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 518 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
519 } 519 }
520 520
521 static void 521 static void
522 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg, 522 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
523 struct mem_cgroup_per_zone *mz, 523 struct mem_cgroup_per_zone *mz,
524 struct mem_cgroup_tree_per_zone *mctz, 524 struct mem_cgroup_tree_per_zone *mctz,
525 unsigned long long new_usage_in_excess) 525 unsigned long long new_usage_in_excess)
526 { 526 {
527 struct rb_node **p = &mctz->rb_root.rb_node; 527 struct rb_node **p = &mctz->rb_root.rb_node;
528 struct rb_node *parent = NULL; 528 struct rb_node *parent = NULL;
529 struct mem_cgroup_per_zone *mz_node; 529 struct mem_cgroup_per_zone *mz_node;
530 530
531 if (mz->on_tree) 531 if (mz->on_tree)
532 return; 532 return;
533 533
534 mz->usage_in_excess = new_usage_in_excess; 534 mz->usage_in_excess = new_usage_in_excess;
535 if (!mz->usage_in_excess) 535 if (!mz->usage_in_excess)
536 return; 536 return;
537 while (*p) { 537 while (*p) {
538 parent = *p; 538 parent = *p;
539 mz_node = rb_entry(parent, struct mem_cgroup_per_zone, 539 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
540 tree_node); 540 tree_node);
541 if (mz->usage_in_excess < mz_node->usage_in_excess) 541 if (mz->usage_in_excess < mz_node->usage_in_excess)
542 p = &(*p)->rb_left; 542 p = &(*p)->rb_left;
543 /* 543 /*
544 * We can't avoid mem cgroups that are over their soft 544 * We can't avoid mem cgroups that are over their soft
545 * limit by the same amount 545 * limit by the same amount
546 */ 546 */
547 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 547 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
548 p = &(*p)->rb_right; 548 p = &(*p)->rb_right;
549 } 549 }
550 rb_link_node(&mz->tree_node, parent, p); 550 rb_link_node(&mz->tree_node, parent, p);
551 rb_insert_color(&mz->tree_node, &mctz->rb_root); 551 rb_insert_color(&mz->tree_node, &mctz->rb_root);
552 mz->on_tree = true; 552 mz->on_tree = true;
553 } 553 }
554 554
555 static void 555 static void
556 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, 556 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
557 struct mem_cgroup_per_zone *mz, 557 struct mem_cgroup_per_zone *mz,
558 struct mem_cgroup_tree_per_zone *mctz) 558 struct mem_cgroup_tree_per_zone *mctz)
559 { 559 {
560 if (!mz->on_tree) 560 if (!mz->on_tree)
561 return; 561 return;
562 rb_erase(&mz->tree_node, &mctz->rb_root); 562 rb_erase(&mz->tree_node, &mctz->rb_root);
563 mz->on_tree = false; 563 mz->on_tree = false;
564 } 564 }
565 565
566 static void 566 static void
567 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, 567 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
568 struct mem_cgroup_per_zone *mz, 568 struct mem_cgroup_per_zone *mz,
569 struct mem_cgroup_tree_per_zone *mctz) 569 struct mem_cgroup_tree_per_zone *mctz)
570 { 570 {
571 spin_lock(&mctz->lock); 571 spin_lock(&mctz->lock);
572 __mem_cgroup_remove_exceeded(memcg, mz, mctz); 572 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
573 spin_unlock(&mctz->lock); 573 spin_unlock(&mctz->lock);
574 } 574 }
575 575
576 576
577 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 577 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
578 { 578 {
579 unsigned long long excess; 579 unsigned long long excess;
580 struct mem_cgroup_per_zone *mz; 580 struct mem_cgroup_per_zone *mz;
581 struct mem_cgroup_tree_per_zone *mctz; 581 struct mem_cgroup_tree_per_zone *mctz;
582 int nid = page_to_nid(page); 582 int nid = page_to_nid(page);
583 int zid = page_zonenum(page); 583 int zid = page_zonenum(page);
584 mctz = soft_limit_tree_from_page(page); 584 mctz = soft_limit_tree_from_page(page);
585 585
586 /* 586 /*
587 * Necessary to update all ancestors when hierarchy is used. 587 * Necessary to update all ancestors when hierarchy is used.
588 * because their event counter is not touched. 588 * because their event counter is not touched.
589 */ 589 */
590 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 590 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
591 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 591 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
592 excess = res_counter_soft_limit_excess(&memcg->res); 592 excess = res_counter_soft_limit_excess(&memcg->res);
593 /* 593 /*
594 * We have to update the tree if mz is on RB-tree or 594 * We have to update the tree if mz is on RB-tree or
595 * mem is over its softlimit. 595 * mem is over its softlimit.
596 */ 596 */
597 if (excess || mz->on_tree) { 597 if (excess || mz->on_tree) {
598 spin_lock(&mctz->lock); 598 spin_lock(&mctz->lock);
599 /* if on-tree, remove it */ 599 /* if on-tree, remove it */
600 if (mz->on_tree) 600 if (mz->on_tree)
601 __mem_cgroup_remove_exceeded(memcg, mz, mctz); 601 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
602 /* 602 /*
603 * Insert again. mz->usage_in_excess will be updated. 603 * Insert again. mz->usage_in_excess will be updated.
604 * If excess is 0, no tree ops. 604 * If excess is 0, no tree ops.
605 */ 605 */
606 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess); 606 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
607 spin_unlock(&mctz->lock); 607 spin_unlock(&mctz->lock);
608 } 608 }
609 } 609 }
610 } 610 }
611 611
612 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 612 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
613 { 613 {
614 int node, zone; 614 int node, zone;
615 struct mem_cgroup_per_zone *mz; 615 struct mem_cgroup_per_zone *mz;
616 struct mem_cgroup_tree_per_zone *mctz; 616 struct mem_cgroup_tree_per_zone *mctz;
617 617
618 for_each_node(node) { 618 for_each_node(node) {
619 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 619 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
620 mz = mem_cgroup_zoneinfo(memcg, node, zone); 620 mz = mem_cgroup_zoneinfo(memcg, node, zone);
621 mctz = soft_limit_tree_node_zone(node, zone); 621 mctz = soft_limit_tree_node_zone(node, zone);
622 mem_cgroup_remove_exceeded(memcg, mz, mctz); 622 mem_cgroup_remove_exceeded(memcg, mz, mctz);
623 } 623 }
624 } 624 }
625 } 625 }
626 626
627 static struct mem_cgroup_per_zone * 627 static struct mem_cgroup_per_zone *
628 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 628 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
629 { 629 {
630 struct rb_node *rightmost = NULL; 630 struct rb_node *rightmost = NULL;
631 struct mem_cgroup_per_zone *mz; 631 struct mem_cgroup_per_zone *mz;
632 632
633 retry: 633 retry:
634 mz = NULL; 634 mz = NULL;
635 rightmost = rb_last(&mctz->rb_root); 635 rightmost = rb_last(&mctz->rb_root);
636 if (!rightmost) 636 if (!rightmost)
637 goto done; /* Nothing to reclaim from */ 637 goto done; /* Nothing to reclaim from */
638 638
639 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); 639 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
640 /* 640 /*
641 * Remove the node now but someone else can add it back, 641 * Remove the node now but someone else can add it back,
642 * we will to add it back at the end of reclaim to its correct 642 * we will to add it back at the end of reclaim to its correct
643 * position in the tree. 643 * position in the tree.
644 */ 644 */
645 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); 645 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
646 if (!res_counter_soft_limit_excess(&mz->memcg->res) || 646 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
647 !css_tryget(&mz->memcg->css)) 647 !css_tryget(&mz->memcg->css))
648 goto retry; 648 goto retry;
649 done: 649 done:
650 return mz; 650 return mz;
651 } 651 }
652 652
653 static struct mem_cgroup_per_zone * 653 static struct mem_cgroup_per_zone *
654 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 654 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
655 { 655 {
656 struct mem_cgroup_per_zone *mz; 656 struct mem_cgroup_per_zone *mz;
657 657
658 spin_lock(&mctz->lock); 658 spin_lock(&mctz->lock);
659 mz = __mem_cgroup_largest_soft_limit_node(mctz); 659 mz = __mem_cgroup_largest_soft_limit_node(mctz);
660 spin_unlock(&mctz->lock); 660 spin_unlock(&mctz->lock);
661 return mz; 661 return mz;
662 } 662 }
663 663
664 /* 664 /*
665 * Implementation Note: reading percpu statistics for memcg. 665 * Implementation Note: reading percpu statistics for memcg.
666 * 666 *
667 * Both of vmstat[] and percpu_counter has threshold and do periodic 667 * Both of vmstat[] and percpu_counter has threshold and do periodic
668 * synchronization to implement "quick" read. There are trade-off between 668 * synchronization to implement "quick" read. There are trade-off between
669 * reading cost and precision of value. Then, we may have a chance to implement 669 * reading cost and precision of value. Then, we may have a chance to implement
670 * a periodic synchronizion of counter in memcg's counter. 670 * a periodic synchronizion of counter in memcg's counter.
671 * 671 *
672 * But this _read() function is used for user interface now. The user accounts 672 * But this _read() function is used for user interface now. The user accounts
673 * memory usage by memory cgroup and he _always_ requires exact value because 673 * memory usage by memory cgroup and he _always_ requires exact value because
674 * he accounts memory. Even if we provide quick-and-fuzzy read, we always 674 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
675 * have to visit all online cpus and make sum. So, for now, unnecessary 675 * have to visit all online cpus and make sum. So, for now, unnecessary
676 * synchronization is not implemented. (just implemented for cpu hotplug) 676 * synchronization is not implemented. (just implemented for cpu hotplug)
677 * 677 *
678 * If there are kernel internal actions which can make use of some not-exact 678 * If there are kernel internal actions which can make use of some not-exact
679 * value, and reading all cpu value can be performance bottleneck in some 679 * value, and reading all cpu value can be performance bottleneck in some
680 * common workload, threashold and synchonization as vmstat[] should be 680 * common workload, threashold and synchonization as vmstat[] should be
681 * implemented. 681 * implemented.
682 */ 682 */
683 static long mem_cgroup_read_stat(struct mem_cgroup *memcg, 683 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
684 enum mem_cgroup_stat_index idx) 684 enum mem_cgroup_stat_index idx)
685 { 685 {
686 long val = 0; 686 long val = 0;
687 int cpu; 687 int cpu;
688 688
689 get_online_cpus(); 689 get_online_cpus();
690 for_each_online_cpu(cpu) 690 for_each_online_cpu(cpu)
691 val += per_cpu(memcg->stat->count[idx], cpu); 691 val += per_cpu(memcg->stat->count[idx], cpu);
692 #ifdef CONFIG_HOTPLUG_CPU 692 #ifdef CONFIG_HOTPLUG_CPU
693 spin_lock(&memcg->pcp_counter_lock); 693 spin_lock(&memcg->pcp_counter_lock);
694 val += memcg->nocpu_base.count[idx]; 694 val += memcg->nocpu_base.count[idx];
695 spin_unlock(&memcg->pcp_counter_lock); 695 spin_unlock(&memcg->pcp_counter_lock);
696 #endif 696 #endif
697 put_online_cpus(); 697 put_online_cpus();
698 return val; 698 return val;
699 } 699 }
700 700
701 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, 701 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
702 bool charge) 702 bool charge)
703 { 703 {
704 int val = (charge) ? 1 : -1; 704 int val = (charge) ? 1 : -1;
705 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); 705 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
706 } 706 }
707 707
708 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, 708 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
709 enum mem_cgroup_events_index idx) 709 enum mem_cgroup_events_index idx)
710 { 710 {
711 unsigned long val = 0; 711 unsigned long val = 0;
712 int cpu; 712 int cpu;
713 713
714 for_each_online_cpu(cpu) 714 for_each_online_cpu(cpu)
715 val += per_cpu(memcg->stat->events[idx], cpu); 715 val += per_cpu(memcg->stat->events[idx], cpu);
716 #ifdef CONFIG_HOTPLUG_CPU 716 #ifdef CONFIG_HOTPLUG_CPU
717 spin_lock(&memcg->pcp_counter_lock); 717 spin_lock(&memcg->pcp_counter_lock);
718 val += memcg->nocpu_base.events[idx]; 718 val += memcg->nocpu_base.events[idx];
719 spin_unlock(&memcg->pcp_counter_lock); 719 spin_unlock(&memcg->pcp_counter_lock);
720 #endif 720 #endif
721 return val; 721 return val;
722 } 722 }
723 723
724 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 724 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
725 bool anon, int nr_pages) 725 bool anon, int nr_pages)
726 { 726 {
727 preempt_disable(); 727 preempt_disable();
728 728
729 /* 729 /*
730 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 730 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
731 * counted as CACHE even if it's on ANON LRU. 731 * counted as CACHE even if it's on ANON LRU.
732 */ 732 */
733 if (anon) 733 if (anon)
734 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], 734 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
735 nr_pages); 735 nr_pages);
736 else 736 else
737 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], 737 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
738 nr_pages); 738 nr_pages);
739 739
740 /* pagein of a big page is an event. So, ignore page size */ 740 /* pagein of a big page is an event. So, ignore page size */
741 if (nr_pages > 0) 741 if (nr_pages > 0)
742 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); 742 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
743 else { 743 else {
744 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); 744 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
745 nr_pages = -nr_pages; /* for event */ 745 nr_pages = -nr_pages; /* for event */
746 } 746 }
747 747
748 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 748 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
749 749
750 preempt_enable(); 750 preempt_enable();
751 } 751 }
752 752
753 unsigned long 753 unsigned long
754 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 754 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
755 { 755 {
756 struct mem_cgroup_per_zone *mz; 756 struct mem_cgroup_per_zone *mz;
757 757
758 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 758 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
759 return mz->lru_size[lru]; 759 return mz->lru_size[lru];
760 } 760 }
761 761
762 static unsigned long 762 static unsigned long
763 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid, 763 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
764 unsigned int lru_mask) 764 unsigned int lru_mask)
765 { 765 {
766 struct mem_cgroup_per_zone *mz; 766 struct mem_cgroup_per_zone *mz;
767 enum lru_list lru; 767 enum lru_list lru;
768 unsigned long ret = 0; 768 unsigned long ret = 0;
769 769
770 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 770 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
771 771
772 for_each_lru(lru) { 772 for_each_lru(lru) {
773 if (BIT(lru) & lru_mask) 773 if (BIT(lru) & lru_mask)
774 ret += mz->lru_size[lru]; 774 ret += mz->lru_size[lru];
775 } 775 }
776 return ret; 776 return ret;
777 } 777 }
778 778
779 static unsigned long 779 static unsigned long
780 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 780 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
781 int nid, unsigned int lru_mask) 781 int nid, unsigned int lru_mask)
782 { 782 {
783 u64 total = 0; 783 u64 total = 0;
784 int zid; 784 int zid;
785 785
786 for (zid = 0; zid < MAX_NR_ZONES; zid++) 786 for (zid = 0; zid < MAX_NR_ZONES; zid++)
787 total += mem_cgroup_zone_nr_lru_pages(memcg, 787 total += mem_cgroup_zone_nr_lru_pages(memcg,
788 nid, zid, lru_mask); 788 nid, zid, lru_mask);
789 789
790 return total; 790 return total;
791 } 791 }
792 792
793 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 793 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
794 unsigned int lru_mask) 794 unsigned int lru_mask)
795 { 795 {
796 int nid; 796 int nid;
797 u64 total = 0; 797 u64 total = 0;
798 798
799 for_each_node_state(nid, N_HIGH_MEMORY) 799 for_each_node_state(nid, N_HIGH_MEMORY)
800 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 800 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
801 return total; 801 return total;
802 } 802 }
803 803
804 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 804 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
805 enum mem_cgroup_events_target target) 805 enum mem_cgroup_events_target target)
806 { 806 {
807 unsigned long val, next; 807 unsigned long val, next;
808 808
809 val = __this_cpu_read(memcg->stat->nr_page_events); 809 val = __this_cpu_read(memcg->stat->nr_page_events);
810 next = __this_cpu_read(memcg->stat->targets[target]); 810 next = __this_cpu_read(memcg->stat->targets[target]);
811 /* from time_after() in jiffies.h */ 811 /* from time_after() in jiffies.h */
812 if ((long)next - (long)val < 0) { 812 if ((long)next - (long)val < 0) {
813 switch (target) { 813 switch (target) {
814 case MEM_CGROUP_TARGET_THRESH: 814 case MEM_CGROUP_TARGET_THRESH:
815 next = val + THRESHOLDS_EVENTS_TARGET; 815 next = val + THRESHOLDS_EVENTS_TARGET;
816 break; 816 break;
817 case MEM_CGROUP_TARGET_SOFTLIMIT: 817 case MEM_CGROUP_TARGET_SOFTLIMIT:
818 next = val + SOFTLIMIT_EVENTS_TARGET; 818 next = val + SOFTLIMIT_EVENTS_TARGET;
819 break; 819 break;
820 case MEM_CGROUP_TARGET_NUMAINFO: 820 case MEM_CGROUP_TARGET_NUMAINFO:
821 next = val + NUMAINFO_EVENTS_TARGET; 821 next = val + NUMAINFO_EVENTS_TARGET;
822 break; 822 break;
823 default: 823 default:
824 break; 824 break;
825 } 825 }
826 __this_cpu_write(memcg->stat->targets[target], next); 826 __this_cpu_write(memcg->stat->targets[target], next);
827 return true; 827 return true;
828 } 828 }
829 return false; 829 return false;
830 } 830 }
831 831
832 /* 832 /*
833 * Check events in order. 833 * Check events in order.
834 * 834 *
835 */ 835 */
836 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 836 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
837 { 837 {
838 preempt_disable(); 838 preempt_disable();
839 /* threshold event is triggered in finer grain than soft limit */ 839 /* threshold event is triggered in finer grain than soft limit */
840 if (unlikely(mem_cgroup_event_ratelimit(memcg, 840 if (unlikely(mem_cgroup_event_ratelimit(memcg,
841 MEM_CGROUP_TARGET_THRESH))) { 841 MEM_CGROUP_TARGET_THRESH))) {
842 bool do_softlimit; 842 bool do_softlimit;
843 bool do_numainfo __maybe_unused; 843 bool do_numainfo __maybe_unused;
844 844
845 do_softlimit = mem_cgroup_event_ratelimit(memcg, 845 do_softlimit = mem_cgroup_event_ratelimit(memcg,
846 MEM_CGROUP_TARGET_SOFTLIMIT); 846 MEM_CGROUP_TARGET_SOFTLIMIT);
847 #if MAX_NUMNODES > 1 847 #if MAX_NUMNODES > 1
848 do_numainfo = mem_cgroup_event_ratelimit(memcg, 848 do_numainfo = mem_cgroup_event_ratelimit(memcg,
849 MEM_CGROUP_TARGET_NUMAINFO); 849 MEM_CGROUP_TARGET_NUMAINFO);
850 #endif 850 #endif
851 preempt_enable(); 851 preempt_enable();
852 852
853 mem_cgroup_threshold(memcg); 853 mem_cgroup_threshold(memcg);
854 if (unlikely(do_softlimit)) 854 if (unlikely(do_softlimit))
855 mem_cgroup_update_tree(memcg, page); 855 mem_cgroup_update_tree(memcg, page);
856 #if MAX_NUMNODES > 1 856 #if MAX_NUMNODES > 1
857 if (unlikely(do_numainfo)) 857 if (unlikely(do_numainfo))
858 atomic_inc(&memcg->numainfo_events); 858 atomic_inc(&memcg->numainfo_events);
859 #endif 859 #endif
860 } else 860 } else
861 preempt_enable(); 861 preempt_enable();
862 } 862 }
863 863
864 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont) 864 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
865 { 865 {
866 return container_of(cgroup_subsys_state(cont, 866 return container_of(cgroup_subsys_state(cont,
867 mem_cgroup_subsys_id), struct mem_cgroup, 867 mem_cgroup_subsys_id), struct mem_cgroup,
868 css); 868 css);
869 } 869 }
870 870
871 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 871 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
872 { 872 {
873 /* 873 /*
874 * mm_update_next_owner() may clear mm->owner to NULL 874 * mm_update_next_owner() may clear mm->owner to NULL
875 * if it races with swapoff, page migration, etc. 875 * if it races with swapoff, page migration, etc.
876 * So this can be called with p == NULL. 876 * So this can be called with p == NULL.
877 */ 877 */
878 if (unlikely(!p)) 878 if (unlikely(!p))
879 return NULL; 879 return NULL;
880 880
881 return container_of(task_subsys_state(p, mem_cgroup_subsys_id), 881 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
882 struct mem_cgroup, css); 882 struct mem_cgroup, css);
883 } 883 }
884 884
885 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) 885 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
886 { 886 {
887 struct mem_cgroup *memcg = NULL; 887 struct mem_cgroup *memcg = NULL;
888 888
889 if (!mm) 889 if (!mm)
890 return NULL; 890 return NULL;
891 /* 891 /*
892 * Because we have no locks, mm->owner's may be being moved to other 892 * Because we have no locks, mm->owner's may be being moved to other
893 * cgroup. We use css_tryget() here even if this looks 893 * cgroup. We use css_tryget() here even if this looks
894 * pessimistic (rather than adding locks here). 894 * pessimistic (rather than adding locks here).
895 */ 895 */
896 rcu_read_lock(); 896 rcu_read_lock();
897 do { 897 do {
898 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 898 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
899 if (unlikely(!memcg)) 899 if (unlikely(!memcg))
900 break; 900 break;
901 } while (!css_tryget(&memcg->css)); 901 } while (!css_tryget(&memcg->css));
902 rcu_read_unlock(); 902 rcu_read_unlock();
903 return memcg; 903 return memcg;
904 } 904 }
905 905
906 /** 906 /**
907 * mem_cgroup_iter - iterate over memory cgroup hierarchy 907 * mem_cgroup_iter - iterate over memory cgroup hierarchy
908 * @root: hierarchy root 908 * @root: hierarchy root
909 * @prev: previously returned memcg, NULL on first invocation 909 * @prev: previously returned memcg, NULL on first invocation
910 * @reclaim: cookie for shared reclaim walks, NULL for full walks 910 * @reclaim: cookie for shared reclaim walks, NULL for full walks
911 * 911 *
912 * Returns references to children of the hierarchy below @root, or 912 * Returns references to children of the hierarchy below @root, or
913 * @root itself, or %NULL after a full round-trip. 913 * @root itself, or %NULL after a full round-trip.
914 * 914 *
915 * Caller must pass the return value in @prev on subsequent 915 * Caller must pass the return value in @prev on subsequent
916 * invocations for reference counting, or use mem_cgroup_iter_break() 916 * invocations for reference counting, or use mem_cgroup_iter_break()
917 * to cancel a hierarchy walk before the round-trip is complete. 917 * to cancel a hierarchy walk before the round-trip is complete.
918 * 918 *
919 * Reclaimers can specify a zone and a priority level in @reclaim to 919 * Reclaimers can specify a zone and a priority level in @reclaim to
920 * divide up the memcgs in the hierarchy among all concurrent 920 * divide up the memcgs in the hierarchy among all concurrent
921 * reclaimers operating on the same zone and priority. 921 * reclaimers operating on the same zone and priority.
922 */ 922 */
923 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 923 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
924 struct mem_cgroup *prev, 924 struct mem_cgroup *prev,
925 struct mem_cgroup_reclaim_cookie *reclaim) 925 struct mem_cgroup_reclaim_cookie *reclaim)
926 { 926 {
927 struct mem_cgroup *memcg = NULL; 927 struct mem_cgroup *memcg = NULL;
928 int id = 0; 928 int id = 0;
929 929
930 if (mem_cgroup_disabled()) 930 if (mem_cgroup_disabled())
931 return NULL; 931 return NULL;
932 932
933 if (!root) 933 if (!root)
934 root = root_mem_cgroup; 934 root = root_mem_cgroup;
935 935
936 if (prev && !reclaim) 936 if (prev && !reclaim)
937 id = css_id(&prev->css); 937 id = css_id(&prev->css);
938 938
939 if (prev && prev != root) 939 if (prev && prev != root)
940 css_put(&prev->css); 940 css_put(&prev->css);
941 941
942 if (!root->use_hierarchy && root != root_mem_cgroup) { 942 if (!root->use_hierarchy && root != root_mem_cgroup) {
943 if (prev) 943 if (prev)
944 return NULL; 944 return NULL;
945 return root; 945 return root;
946 } 946 }
947 947
948 while (!memcg) { 948 while (!memcg) {
949 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 949 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
950 struct cgroup_subsys_state *css; 950 struct cgroup_subsys_state *css;
951 951
952 if (reclaim) { 952 if (reclaim) {
953 int nid = zone_to_nid(reclaim->zone); 953 int nid = zone_to_nid(reclaim->zone);
954 int zid = zone_idx(reclaim->zone); 954 int zid = zone_idx(reclaim->zone);
955 struct mem_cgroup_per_zone *mz; 955 struct mem_cgroup_per_zone *mz;
956 956
957 mz = mem_cgroup_zoneinfo(root, nid, zid); 957 mz = mem_cgroup_zoneinfo(root, nid, zid);
958 iter = &mz->reclaim_iter[reclaim->priority]; 958 iter = &mz->reclaim_iter[reclaim->priority];
959 if (prev && reclaim->generation != iter->generation) 959 if (prev && reclaim->generation != iter->generation)
960 return NULL; 960 return NULL;
961 id = iter->position; 961 id = iter->position;
962 } 962 }
963 963
964 rcu_read_lock(); 964 rcu_read_lock();
965 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id); 965 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
966 if (css) { 966 if (css) {
967 if (css == &root->css || css_tryget(css)) 967 if (css == &root->css || css_tryget(css))
968 memcg = container_of(css, 968 memcg = container_of(css,
969 struct mem_cgroup, css); 969 struct mem_cgroup, css);
970 } else 970 } else
971 id = 0; 971 id = 0;
972 rcu_read_unlock(); 972 rcu_read_unlock();
973 973
974 if (reclaim) { 974 if (reclaim) {
975 iter->position = id; 975 iter->position = id;
976 if (!css) 976 if (!css)
977 iter->generation++; 977 iter->generation++;
978 else if (!prev && memcg) 978 else if (!prev && memcg)
979 reclaim->generation = iter->generation; 979 reclaim->generation = iter->generation;
980 } 980 }
981 981
982 if (prev && !css) 982 if (prev && !css)
983 return NULL; 983 return NULL;
984 } 984 }
985 return memcg; 985 return memcg;
986 } 986 }
987 987
988 /** 988 /**
989 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 989 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
990 * @root: hierarchy root 990 * @root: hierarchy root
991 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 991 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
992 */ 992 */
993 void mem_cgroup_iter_break(struct mem_cgroup *root, 993 void mem_cgroup_iter_break(struct mem_cgroup *root,
994 struct mem_cgroup *prev) 994 struct mem_cgroup *prev)
995 { 995 {
996 if (!root) 996 if (!root)
997 root = root_mem_cgroup; 997 root = root_mem_cgroup;
998 if (prev && prev != root) 998 if (prev && prev != root)
999 css_put(&prev->css); 999 css_put(&prev->css);
1000 } 1000 }
1001 1001
1002 /* 1002 /*
1003 * Iteration constructs for visiting all cgroups (under a tree). If 1003 * Iteration constructs for visiting all cgroups (under a tree). If
1004 * loops are exited prematurely (break), mem_cgroup_iter_break() must 1004 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1005 * be used for reference counting. 1005 * be used for reference counting.
1006 */ 1006 */
1007 #define for_each_mem_cgroup_tree(iter, root) \ 1007 #define for_each_mem_cgroup_tree(iter, root) \
1008 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 1008 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1009 iter != NULL; \ 1009 iter != NULL; \
1010 iter = mem_cgroup_iter(root, iter, NULL)) 1010 iter = mem_cgroup_iter(root, iter, NULL))
1011 1011
1012 #define for_each_mem_cgroup(iter) \ 1012 #define for_each_mem_cgroup(iter) \
1013 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 1013 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1014 iter != NULL; \ 1014 iter != NULL; \
1015 iter = mem_cgroup_iter(NULL, iter, NULL)) 1015 iter = mem_cgroup_iter(NULL, iter, NULL))
1016 1016
1017 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 1017 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1018 { 1018 {
1019 return (memcg == root_mem_cgroup); 1019 return (memcg == root_mem_cgroup);
1020 } 1020 }
1021 1021
1022 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) 1022 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1023 { 1023 {
1024 struct mem_cgroup *memcg; 1024 struct mem_cgroup *memcg;
1025 1025
1026 if (!mm) 1026 if (!mm)
1027 return; 1027 return;
1028 1028
1029 rcu_read_lock(); 1029 rcu_read_lock();
1030 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1030 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1031 if (unlikely(!memcg)) 1031 if (unlikely(!memcg))
1032 goto out; 1032 goto out;
1033 1033
1034 switch (idx) { 1034 switch (idx) {
1035 case PGFAULT: 1035 case PGFAULT:
1036 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]); 1036 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1037 break; 1037 break;
1038 case PGMAJFAULT: 1038 case PGMAJFAULT:
1039 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]); 1039 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1040 break; 1040 break;
1041 default: 1041 default:
1042 BUG(); 1042 BUG();
1043 } 1043 }
1044 out: 1044 out:
1045 rcu_read_unlock(); 1045 rcu_read_unlock();
1046 } 1046 }
1047 EXPORT_SYMBOL(mem_cgroup_count_vm_event); 1047 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1048 1048
1049 /** 1049 /**
1050 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg 1050 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1051 * @zone: zone of the wanted lruvec 1051 * @zone: zone of the wanted lruvec
1052 * @memcg: memcg of the wanted lruvec 1052 * @memcg: memcg of the wanted lruvec
1053 * 1053 *
1054 * Returns the lru list vector holding pages for the given @zone and 1054 * Returns the lru list vector holding pages for the given @zone and
1055 * @mem. This can be the global zone lruvec, if the memory controller 1055 * @mem. This can be the global zone lruvec, if the memory controller
1056 * is disabled. 1056 * is disabled.
1057 */ 1057 */
1058 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 1058 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1059 struct mem_cgroup *memcg) 1059 struct mem_cgroup *memcg)
1060 { 1060 {
1061 struct mem_cgroup_per_zone *mz; 1061 struct mem_cgroup_per_zone *mz;
1062 1062
1063 if (mem_cgroup_disabled()) 1063 if (mem_cgroup_disabled())
1064 return &zone->lruvec; 1064 return &zone->lruvec;
1065 1065
1066 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone)); 1066 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1067 return &mz->lruvec; 1067 return &mz->lruvec;
1068 } 1068 }
1069 1069
1070 /* 1070 /*
1071 * Following LRU functions are allowed to be used without PCG_LOCK. 1071 * Following LRU functions are allowed to be used without PCG_LOCK.
1072 * Operations are called by routine of global LRU independently from memcg. 1072 * Operations are called by routine of global LRU independently from memcg.
1073 * What we have to take care of here is validness of pc->mem_cgroup. 1073 * What we have to take care of here is validness of pc->mem_cgroup.
1074 * 1074 *
1075 * Changes to pc->mem_cgroup happens when 1075 * Changes to pc->mem_cgroup happens when
1076 * 1. charge 1076 * 1. charge
1077 * 2. moving account 1077 * 2. moving account
1078 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. 1078 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1079 * It is added to LRU before charge. 1079 * It is added to LRU before charge.
1080 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. 1080 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1081 * When moving account, the page is not on LRU. It's isolated. 1081 * When moving account, the page is not on LRU. It's isolated.
1082 */ 1082 */
1083 1083
1084 /** 1084 /**
1085 * mem_cgroup_page_lruvec - return lruvec for adding an lru page 1085 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1086 * @page: the page 1086 * @page: the page
1087 * @zone: zone of the page 1087 * @zone: zone of the page
1088 */ 1088 */
1089 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone) 1089 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1090 { 1090 {
1091 struct mem_cgroup_per_zone *mz; 1091 struct mem_cgroup_per_zone *mz;
1092 struct mem_cgroup *memcg; 1092 struct mem_cgroup *memcg;
1093 struct page_cgroup *pc; 1093 struct page_cgroup *pc;
1094 1094
1095 if (mem_cgroup_disabled()) 1095 if (mem_cgroup_disabled())
1096 return &zone->lruvec; 1096 return &zone->lruvec;
1097 1097
1098 pc = lookup_page_cgroup(page); 1098 pc = lookup_page_cgroup(page);
1099 memcg = pc->mem_cgroup; 1099 memcg = pc->mem_cgroup;
1100 1100
1101 /* 1101 /*
1102 * Surreptitiously switch any uncharged offlist page to root: 1102 * Surreptitiously switch any uncharged offlist page to root:
1103 * an uncharged page off lru does nothing to secure 1103 * an uncharged page off lru does nothing to secure
1104 * its former mem_cgroup from sudden removal. 1104 * its former mem_cgroup from sudden removal.
1105 * 1105 *
1106 * Our caller holds lru_lock, and PageCgroupUsed is updated 1106 * Our caller holds lru_lock, and PageCgroupUsed is updated
1107 * under page_cgroup lock: between them, they make all uses 1107 * under page_cgroup lock: between them, they make all uses
1108 * of pc->mem_cgroup safe. 1108 * of pc->mem_cgroup safe.
1109 */ 1109 */
1110 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup) 1110 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1111 pc->mem_cgroup = memcg = root_mem_cgroup; 1111 pc->mem_cgroup = memcg = root_mem_cgroup;
1112 1112
1113 mz = page_cgroup_zoneinfo(memcg, page); 1113 mz = page_cgroup_zoneinfo(memcg, page);
1114 return &mz->lruvec; 1114 return &mz->lruvec;
1115 } 1115 }
1116 1116
1117 /** 1117 /**
1118 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1118 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1119 * @lruvec: mem_cgroup per zone lru vector 1119 * @lruvec: mem_cgroup per zone lru vector
1120 * @lru: index of lru list the page is sitting on 1120 * @lru: index of lru list the page is sitting on
1121 * @nr_pages: positive when adding or negative when removing 1121 * @nr_pages: positive when adding or negative when removing
1122 * 1122 *
1123 * This function must be called when a page is added to or removed from an 1123 * This function must be called when a page is added to or removed from an
1124 * lru list. 1124 * lru list.
1125 */ 1125 */
1126 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1126 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1127 int nr_pages) 1127 int nr_pages)
1128 { 1128 {
1129 struct mem_cgroup_per_zone *mz; 1129 struct mem_cgroup_per_zone *mz;
1130 unsigned long *lru_size; 1130 unsigned long *lru_size;
1131 1131
1132 if (mem_cgroup_disabled()) 1132 if (mem_cgroup_disabled())
1133 return; 1133 return;
1134 1134
1135 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 1135 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1136 lru_size = mz->lru_size + lru; 1136 lru_size = mz->lru_size + lru;
1137 *lru_size += nr_pages; 1137 *lru_size += nr_pages;
1138 VM_BUG_ON((long)(*lru_size) < 0); 1138 VM_BUG_ON((long)(*lru_size) < 0);
1139 } 1139 }
1140 1140
1141 /* 1141 /*
1142 * Checks whether given mem is same or in the root_mem_cgroup's 1142 * Checks whether given mem is same or in the root_mem_cgroup's
1143 * hierarchy subtree 1143 * hierarchy subtree
1144 */ 1144 */
1145 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1145 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1146 struct mem_cgroup *memcg) 1146 struct mem_cgroup *memcg)
1147 { 1147 {
1148 if (root_memcg == memcg) 1148 if (root_memcg == memcg)
1149 return true; 1149 return true;
1150 if (!root_memcg->use_hierarchy || !memcg) 1150 if (!root_memcg->use_hierarchy || !memcg)
1151 return false; 1151 return false;
1152 return css_is_ancestor(&memcg->css, &root_memcg->css); 1152 return css_is_ancestor(&memcg->css, &root_memcg->css);
1153 } 1153 }
1154 1154
1155 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1155 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1156 struct mem_cgroup *memcg) 1156 struct mem_cgroup *memcg)
1157 { 1157 {
1158 bool ret; 1158 bool ret;
1159 1159
1160 rcu_read_lock(); 1160 rcu_read_lock();
1161 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg); 1161 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1162 rcu_read_unlock(); 1162 rcu_read_unlock();
1163 return ret; 1163 return ret;
1164 } 1164 }
1165 1165
1166 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg) 1166 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1167 { 1167 {
1168 int ret; 1168 int ret;
1169 struct mem_cgroup *curr = NULL; 1169 struct mem_cgroup *curr = NULL;
1170 struct task_struct *p; 1170 struct task_struct *p;
1171 1171
1172 p = find_lock_task_mm(task); 1172 p = find_lock_task_mm(task);
1173 if (p) { 1173 if (p) {
1174 curr = try_get_mem_cgroup_from_mm(p->mm); 1174 curr = try_get_mem_cgroup_from_mm(p->mm);
1175 task_unlock(p); 1175 task_unlock(p);
1176 } else { 1176 } else {
1177 /* 1177 /*
1178 * All threads may have already detached their mm's, but the oom 1178 * All threads may have already detached their mm's, but the oom
1179 * killer still needs to detect if they have already been oom 1179 * killer still needs to detect if they have already been oom
1180 * killed to prevent needlessly killing additional tasks. 1180 * killed to prevent needlessly killing additional tasks.
1181 */ 1181 */
1182 task_lock(task); 1182 task_lock(task);
1183 curr = mem_cgroup_from_task(task); 1183 curr = mem_cgroup_from_task(task);
1184 if (curr) 1184 if (curr)
1185 css_get(&curr->css); 1185 css_get(&curr->css);
1186 task_unlock(task); 1186 task_unlock(task);
1187 } 1187 }
1188 if (!curr) 1188 if (!curr)
1189 return 0; 1189 return 0;
1190 /* 1190 /*
1191 * We should check use_hierarchy of "memcg" not "curr". Because checking 1191 * We should check use_hierarchy of "memcg" not "curr". Because checking
1192 * use_hierarchy of "curr" here make this function true if hierarchy is 1192 * use_hierarchy of "curr" here make this function true if hierarchy is
1193 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup* 1193 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1194 * hierarchy(even if use_hierarchy is disabled in "memcg"). 1194 * hierarchy(even if use_hierarchy is disabled in "memcg").
1195 */ 1195 */
1196 ret = mem_cgroup_same_or_subtree(memcg, curr); 1196 ret = mem_cgroup_same_or_subtree(memcg, curr);
1197 css_put(&curr->css); 1197 css_put(&curr->css);
1198 return ret; 1198 return ret;
1199 } 1199 }
1200 1200
1201 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) 1201 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1202 { 1202 {
1203 unsigned long inactive_ratio; 1203 unsigned long inactive_ratio;
1204 unsigned long inactive; 1204 unsigned long inactive;
1205 unsigned long active; 1205 unsigned long active;
1206 unsigned long gb; 1206 unsigned long gb;
1207 1207
1208 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON); 1208 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1209 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON); 1209 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1210 1210
1211 gb = (inactive + active) >> (30 - PAGE_SHIFT); 1211 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1212 if (gb) 1212 if (gb)
1213 inactive_ratio = int_sqrt(10 * gb); 1213 inactive_ratio = int_sqrt(10 * gb);
1214 else 1214 else
1215 inactive_ratio = 1; 1215 inactive_ratio = 1;
1216 1216
1217 return inactive * inactive_ratio < active; 1217 return inactive * inactive_ratio < active;
1218 } 1218 }
1219 1219
1220 int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec) 1220 int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1221 { 1221 {
1222 unsigned long active; 1222 unsigned long active;
1223 unsigned long inactive; 1223 unsigned long inactive;
1224 1224
1225 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE); 1225 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1226 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE); 1226 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1227 1227
1228 return (active > inactive); 1228 return (active > inactive);
1229 } 1229 }
1230 1230
1231 #define mem_cgroup_from_res_counter(counter, member) \ 1231 #define mem_cgroup_from_res_counter(counter, member) \
1232 container_of(counter, struct mem_cgroup, member) 1232 container_of(counter, struct mem_cgroup, member)
1233 1233
1234 /** 1234 /**
1235 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1235 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1236 * @memcg: the memory cgroup 1236 * @memcg: the memory cgroup
1237 * 1237 *
1238 * Returns the maximum amount of memory @mem can be charged with, in 1238 * Returns the maximum amount of memory @mem can be charged with, in
1239 * pages. 1239 * pages.
1240 */ 1240 */
1241 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1241 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1242 { 1242 {
1243 unsigned long long margin; 1243 unsigned long long margin;
1244 1244
1245 margin = res_counter_margin(&memcg->res); 1245 margin = res_counter_margin(&memcg->res);
1246 if (do_swap_account) 1246 if (do_swap_account)
1247 margin = min(margin, res_counter_margin(&memcg->memsw)); 1247 margin = min(margin, res_counter_margin(&memcg->memsw));
1248 return margin >> PAGE_SHIFT; 1248 return margin >> PAGE_SHIFT;
1249 } 1249 }
1250 1250
1251 int mem_cgroup_swappiness(struct mem_cgroup *memcg) 1251 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1252 { 1252 {
1253 struct cgroup *cgrp = memcg->css.cgroup; 1253 struct cgroup *cgrp = memcg->css.cgroup;
1254 1254
1255 /* root ? */ 1255 /* root ? */
1256 if (cgrp->parent == NULL) 1256 if (cgrp->parent == NULL)
1257 return vm_swappiness; 1257 return vm_swappiness;
1258 1258
1259 return memcg->swappiness; 1259 return memcg->swappiness;
1260 } 1260 }
1261 1261
1262 /* 1262 /*
1263 * memcg->moving_account is used for checking possibility that some thread is 1263 * memcg->moving_account is used for checking possibility that some thread is
1264 * calling move_account(). When a thread on CPU-A starts moving pages under 1264 * calling move_account(). When a thread on CPU-A starts moving pages under
1265 * a memcg, other threads should check memcg->moving_account under 1265 * a memcg, other threads should check memcg->moving_account under
1266 * rcu_read_lock(), like this: 1266 * rcu_read_lock(), like this:
1267 * 1267 *
1268 * CPU-A CPU-B 1268 * CPU-A CPU-B
1269 * rcu_read_lock() 1269 * rcu_read_lock()
1270 * memcg->moving_account+1 if (memcg->mocing_account) 1270 * memcg->moving_account+1 if (memcg->mocing_account)
1271 * take heavy locks. 1271 * take heavy locks.
1272 * synchronize_rcu() update something. 1272 * synchronize_rcu() update something.
1273 * rcu_read_unlock() 1273 * rcu_read_unlock()
1274 * start move here. 1274 * start move here.
1275 */ 1275 */
1276 1276
1277 /* for quick checking without looking up memcg */ 1277 /* for quick checking without looking up memcg */
1278 atomic_t memcg_moving __read_mostly; 1278 atomic_t memcg_moving __read_mostly;
1279 1279
1280 static void mem_cgroup_start_move(struct mem_cgroup *memcg) 1280 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1281 { 1281 {
1282 atomic_inc(&memcg_moving); 1282 atomic_inc(&memcg_moving);
1283 atomic_inc(&memcg->moving_account); 1283 atomic_inc(&memcg->moving_account);
1284 synchronize_rcu(); 1284 synchronize_rcu();
1285 } 1285 }
1286 1286
1287 static void mem_cgroup_end_move(struct mem_cgroup *memcg) 1287 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1288 { 1288 {
1289 /* 1289 /*
1290 * Now, mem_cgroup_clear_mc() may call this function with NULL. 1290 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1291 * We check NULL in callee rather than caller. 1291 * We check NULL in callee rather than caller.
1292 */ 1292 */
1293 if (memcg) { 1293 if (memcg) {
1294 atomic_dec(&memcg_moving); 1294 atomic_dec(&memcg_moving);
1295 atomic_dec(&memcg->moving_account); 1295 atomic_dec(&memcg->moving_account);
1296 } 1296 }
1297 } 1297 }
1298 1298
1299 /* 1299 /*
1300 * 2 routines for checking "mem" is under move_account() or not. 1300 * 2 routines for checking "mem" is under move_account() or not.
1301 * 1301 *
1302 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This 1302 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1303 * is used for avoiding races in accounting. If true, 1303 * is used for avoiding races in accounting. If true,
1304 * pc->mem_cgroup may be overwritten. 1304 * pc->mem_cgroup may be overwritten.
1305 * 1305 *
1306 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or 1306 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1307 * under hierarchy of moving cgroups. This is for 1307 * under hierarchy of moving cgroups. This is for
1308 * waiting at hith-memory prressure caused by "move". 1308 * waiting at hith-memory prressure caused by "move".
1309 */ 1309 */
1310 1310
1311 static bool mem_cgroup_stolen(struct mem_cgroup *memcg) 1311 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1312 { 1312 {
1313 VM_BUG_ON(!rcu_read_lock_held()); 1313 VM_BUG_ON(!rcu_read_lock_held());
1314 return atomic_read(&memcg->moving_account) > 0; 1314 return atomic_read(&memcg->moving_account) > 0;
1315 } 1315 }
1316 1316
1317 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1317 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1318 { 1318 {
1319 struct mem_cgroup *from; 1319 struct mem_cgroup *from;
1320 struct mem_cgroup *to; 1320 struct mem_cgroup *to;
1321 bool ret = false; 1321 bool ret = false;
1322 /* 1322 /*
1323 * Unlike task_move routines, we access mc.to, mc.from not under 1323 * Unlike task_move routines, we access mc.to, mc.from not under
1324 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1324 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1325 */ 1325 */
1326 spin_lock(&mc.lock); 1326 spin_lock(&mc.lock);
1327 from = mc.from; 1327 from = mc.from;
1328 to = mc.to; 1328 to = mc.to;
1329 if (!from) 1329 if (!from)
1330 goto unlock; 1330 goto unlock;
1331 1331
1332 ret = mem_cgroup_same_or_subtree(memcg, from) 1332 ret = mem_cgroup_same_or_subtree(memcg, from)
1333 || mem_cgroup_same_or_subtree(memcg, to); 1333 || mem_cgroup_same_or_subtree(memcg, to);
1334 unlock: 1334 unlock:
1335 spin_unlock(&mc.lock); 1335 spin_unlock(&mc.lock);
1336 return ret; 1336 return ret;
1337 } 1337 }
1338 1338
1339 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1339 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1340 { 1340 {
1341 if (mc.moving_task && current != mc.moving_task) { 1341 if (mc.moving_task && current != mc.moving_task) {
1342 if (mem_cgroup_under_move(memcg)) { 1342 if (mem_cgroup_under_move(memcg)) {
1343 DEFINE_WAIT(wait); 1343 DEFINE_WAIT(wait);
1344 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1344 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1345 /* moving charge context might have finished. */ 1345 /* moving charge context might have finished. */
1346 if (mc.moving_task) 1346 if (mc.moving_task)
1347 schedule(); 1347 schedule();
1348 finish_wait(&mc.waitq, &wait); 1348 finish_wait(&mc.waitq, &wait);
1349 return true; 1349 return true;
1350 } 1350 }
1351 } 1351 }
1352 return false; 1352 return false;
1353 } 1353 }
1354 1354
1355 /* 1355 /*
1356 * Take this lock when 1356 * Take this lock when
1357 * - a code tries to modify page's memcg while it's USED. 1357 * - a code tries to modify page's memcg while it's USED.
1358 * - a code tries to modify page state accounting in a memcg. 1358 * - a code tries to modify page state accounting in a memcg.
1359 * see mem_cgroup_stolen(), too. 1359 * see mem_cgroup_stolen(), too.
1360 */ 1360 */
1361 static void move_lock_mem_cgroup(struct mem_cgroup *memcg, 1361 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1362 unsigned long *flags) 1362 unsigned long *flags)
1363 { 1363 {
1364 spin_lock_irqsave(&memcg->move_lock, *flags); 1364 spin_lock_irqsave(&memcg->move_lock, *flags);
1365 } 1365 }
1366 1366
1367 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg, 1367 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1368 unsigned long *flags) 1368 unsigned long *flags)
1369 { 1369 {
1370 spin_unlock_irqrestore(&memcg->move_lock, *flags); 1370 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1371 } 1371 }
1372 1372
1373 /** 1373 /**
1374 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode. 1374 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1375 * @memcg: The memory cgroup that went over limit 1375 * @memcg: The memory cgroup that went over limit
1376 * @p: Task that is going to be killed 1376 * @p: Task that is going to be killed
1377 * 1377 *
1378 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1378 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1379 * enabled 1379 * enabled
1380 */ 1380 */
1381 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1381 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1382 { 1382 {
1383 struct cgroup *task_cgrp; 1383 struct cgroup *task_cgrp;
1384 struct cgroup *mem_cgrp; 1384 struct cgroup *mem_cgrp;
1385 /* 1385 /*
1386 * Need a buffer in BSS, can't rely on allocations. The code relies 1386 * Need a buffer in BSS, can't rely on allocations. The code relies
1387 * on the assumption that OOM is serialized for memory controller. 1387 * on the assumption that OOM is serialized for memory controller.
1388 * If this assumption is broken, revisit this code. 1388 * If this assumption is broken, revisit this code.
1389 */ 1389 */
1390 static char memcg_name[PATH_MAX]; 1390 static char memcg_name[PATH_MAX];
1391 int ret; 1391 int ret;
1392 1392
1393 if (!memcg || !p) 1393 if (!memcg || !p)
1394 return; 1394 return;
1395 1395
1396 rcu_read_lock(); 1396 rcu_read_lock();
1397 1397
1398 mem_cgrp = memcg->css.cgroup; 1398 mem_cgrp = memcg->css.cgroup;
1399 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id); 1399 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1400 1400
1401 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX); 1401 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1402 if (ret < 0) { 1402 if (ret < 0) {
1403 /* 1403 /*
1404 * Unfortunately, we are unable to convert to a useful name 1404 * Unfortunately, we are unable to convert to a useful name
1405 * But we'll still print out the usage information 1405 * But we'll still print out the usage information
1406 */ 1406 */
1407 rcu_read_unlock(); 1407 rcu_read_unlock();
1408 goto done; 1408 goto done;
1409 } 1409 }
1410 rcu_read_unlock(); 1410 rcu_read_unlock();
1411 1411
1412 printk(KERN_INFO "Task in %s killed", memcg_name); 1412 printk(KERN_INFO "Task in %s killed", memcg_name);
1413 1413
1414 rcu_read_lock(); 1414 rcu_read_lock();
1415 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX); 1415 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1416 if (ret < 0) { 1416 if (ret < 0) {
1417 rcu_read_unlock(); 1417 rcu_read_unlock();
1418 goto done; 1418 goto done;
1419 } 1419 }
1420 rcu_read_unlock(); 1420 rcu_read_unlock();
1421 1421
1422 /* 1422 /*
1423 * Continues from above, so we don't need an KERN_ level 1423 * Continues from above, so we don't need an KERN_ level
1424 */ 1424 */
1425 printk(KERN_CONT " as a result of limit of %s\n", memcg_name); 1425 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1426 done: 1426 done:
1427 1427
1428 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n", 1428 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1429 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, 1429 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1430 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, 1430 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1431 res_counter_read_u64(&memcg->res, RES_FAILCNT)); 1431 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1432 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, " 1432 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1433 "failcnt %llu\n", 1433 "failcnt %llu\n",
1434 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, 1434 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1435 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, 1435 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1436 res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); 1436 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1437 } 1437 }
1438 1438
1439 /* 1439 /*
1440 * This function returns the number of memcg under hierarchy tree. Returns 1440 * This function returns the number of memcg under hierarchy tree. Returns
1441 * 1(self count) if no children. 1441 * 1(self count) if no children.
1442 */ 1442 */
1443 static int mem_cgroup_count_children(struct mem_cgroup *memcg) 1443 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1444 { 1444 {
1445 int num = 0; 1445 int num = 0;
1446 struct mem_cgroup *iter; 1446 struct mem_cgroup *iter;
1447 1447
1448 for_each_mem_cgroup_tree(iter, memcg) 1448 for_each_mem_cgroup_tree(iter, memcg)
1449 num++; 1449 num++;
1450 return num; 1450 return num;
1451 } 1451 }
1452 1452
1453 /* 1453 /*
1454 * Return the memory (and swap, if configured) limit for a memcg. 1454 * Return the memory (and swap, if configured) limit for a memcg.
1455 */ 1455 */
1456 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg) 1456 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1457 { 1457 {
1458 u64 limit; 1458 u64 limit;
1459 u64 memsw; 1459 u64 memsw;
1460 1460
1461 limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 1461 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1462 limit += total_swap_pages << PAGE_SHIFT; 1462 limit += total_swap_pages << PAGE_SHIFT;
1463 1463
1464 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 1464 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1465 /* 1465 /*
1466 * If memsw is finite and limits the amount of swap space available 1466 * If memsw is finite and limits the amount of swap space available
1467 * to this memcg, return that limit. 1467 * to this memcg, return that limit.
1468 */ 1468 */
1469 return min(limit, memsw); 1469 return min(limit, memsw);
1470 } 1470 }
1471 1471
1472 void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1472 void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1473 int order) 1473 int order)
1474 { 1474 {
1475 struct mem_cgroup *iter; 1475 struct mem_cgroup *iter;
1476 unsigned long chosen_points = 0; 1476 unsigned long chosen_points = 0;
1477 unsigned long totalpages; 1477 unsigned long totalpages;
1478 unsigned int points = 0; 1478 unsigned int points = 0;
1479 struct task_struct *chosen = NULL; 1479 struct task_struct *chosen = NULL;
1480 1480
1481 /* 1481 /*
1482 * If current has a pending SIGKILL, then automatically select it. The 1482 * If current has a pending SIGKILL, then automatically select it. The
1483 * goal is to allow it to allocate so that it may quickly exit and free 1483 * goal is to allow it to allocate so that it may quickly exit and free
1484 * its memory. 1484 * its memory.
1485 */ 1485 */
1486 if (fatal_signal_pending(current)) { 1486 if (fatal_signal_pending(current)) {
1487 set_thread_flag(TIF_MEMDIE); 1487 set_thread_flag(TIF_MEMDIE);
1488 return; 1488 return;
1489 } 1489 }
1490 1490
1491 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL); 1491 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1492 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1; 1492 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1493 for_each_mem_cgroup_tree(iter, memcg) { 1493 for_each_mem_cgroup_tree(iter, memcg) {
1494 struct cgroup *cgroup = iter->css.cgroup; 1494 struct cgroup *cgroup = iter->css.cgroup;
1495 struct cgroup_iter it; 1495 struct cgroup_iter it;
1496 struct task_struct *task; 1496 struct task_struct *task;
1497 1497
1498 cgroup_iter_start(cgroup, &it); 1498 cgroup_iter_start(cgroup, &it);
1499 while ((task = cgroup_iter_next(cgroup, &it))) { 1499 while ((task = cgroup_iter_next(cgroup, &it))) {
1500 switch (oom_scan_process_thread(task, totalpages, NULL, 1500 switch (oom_scan_process_thread(task, totalpages, NULL,
1501 false)) { 1501 false)) {
1502 case OOM_SCAN_SELECT: 1502 case OOM_SCAN_SELECT:
1503 if (chosen) 1503 if (chosen)
1504 put_task_struct(chosen); 1504 put_task_struct(chosen);
1505 chosen = task; 1505 chosen = task;
1506 chosen_points = ULONG_MAX; 1506 chosen_points = ULONG_MAX;
1507 get_task_struct(chosen); 1507 get_task_struct(chosen);
1508 /* fall through */ 1508 /* fall through */
1509 case OOM_SCAN_CONTINUE: 1509 case OOM_SCAN_CONTINUE:
1510 continue; 1510 continue;
1511 case OOM_SCAN_ABORT: 1511 case OOM_SCAN_ABORT:
1512 cgroup_iter_end(cgroup, &it); 1512 cgroup_iter_end(cgroup, &it);
1513 mem_cgroup_iter_break(memcg, iter); 1513 mem_cgroup_iter_break(memcg, iter);
1514 if (chosen) 1514 if (chosen)
1515 put_task_struct(chosen); 1515 put_task_struct(chosen);
1516 return; 1516 return;
1517 case OOM_SCAN_OK: 1517 case OOM_SCAN_OK:
1518 break; 1518 break;
1519 }; 1519 };
1520 points = oom_badness(task, memcg, NULL, totalpages); 1520 points = oom_badness(task, memcg, NULL, totalpages);
1521 if (points > chosen_points) { 1521 if (points > chosen_points) {
1522 if (chosen) 1522 if (chosen)
1523 put_task_struct(chosen); 1523 put_task_struct(chosen);
1524 chosen = task; 1524 chosen = task;
1525 chosen_points = points; 1525 chosen_points = points;
1526 get_task_struct(chosen); 1526 get_task_struct(chosen);
1527 } 1527 }
1528 } 1528 }
1529 cgroup_iter_end(cgroup, &it); 1529 cgroup_iter_end(cgroup, &it);
1530 } 1530 }
1531 1531
1532 if (!chosen) 1532 if (!chosen)
1533 return; 1533 return;
1534 points = chosen_points * 1000 / totalpages; 1534 points = chosen_points * 1000 / totalpages;
1535 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg, 1535 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1536 NULL, "Memory cgroup out of memory"); 1536 NULL, "Memory cgroup out of memory");
1537 } 1537 }
1538 1538
1539 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg, 1539 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1540 gfp_t gfp_mask, 1540 gfp_t gfp_mask,
1541 unsigned long flags) 1541 unsigned long flags)
1542 { 1542 {
1543 unsigned long total = 0; 1543 unsigned long total = 0;
1544 bool noswap = false; 1544 bool noswap = false;
1545 int loop; 1545 int loop;
1546 1546
1547 if (flags & MEM_CGROUP_RECLAIM_NOSWAP) 1547 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1548 noswap = true; 1548 noswap = true;
1549 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum) 1549 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1550 noswap = true; 1550 noswap = true;
1551 1551
1552 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) { 1552 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1553 if (loop) 1553 if (loop)
1554 drain_all_stock_async(memcg); 1554 drain_all_stock_async(memcg);
1555 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap); 1555 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1556 /* 1556 /*
1557 * Allow limit shrinkers, which are triggered directly 1557 * Allow limit shrinkers, which are triggered directly
1558 * by userspace, to catch signals and stop reclaim 1558 * by userspace, to catch signals and stop reclaim
1559 * after minimal progress, regardless of the margin. 1559 * after minimal progress, regardless of the margin.
1560 */ 1560 */
1561 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK)) 1561 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1562 break; 1562 break;
1563 if (mem_cgroup_margin(memcg)) 1563 if (mem_cgroup_margin(memcg))
1564 break; 1564 break;
1565 /* 1565 /*
1566 * If nothing was reclaimed after two attempts, there 1566 * If nothing was reclaimed after two attempts, there
1567 * may be no reclaimable pages in this hierarchy. 1567 * may be no reclaimable pages in this hierarchy.
1568 */ 1568 */
1569 if (loop && !total) 1569 if (loop && !total)
1570 break; 1570 break;
1571 } 1571 }
1572 return total; 1572 return total;
1573 } 1573 }
1574 1574
1575 /** 1575 /**
1576 * test_mem_cgroup_node_reclaimable 1576 * test_mem_cgroup_node_reclaimable
1577 * @memcg: the target memcg 1577 * @memcg: the target memcg
1578 * @nid: the node ID to be checked. 1578 * @nid: the node ID to be checked.
1579 * @noswap : specify true here if the user wants flle only information. 1579 * @noswap : specify true here if the user wants flle only information.
1580 * 1580 *
1581 * This function returns whether the specified memcg contains any 1581 * This function returns whether the specified memcg contains any
1582 * reclaimable pages on a node. Returns true if there are any reclaimable 1582 * reclaimable pages on a node. Returns true if there are any reclaimable
1583 * pages in the node. 1583 * pages in the node.
1584 */ 1584 */
1585 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1585 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1586 int nid, bool noswap) 1586 int nid, bool noswap)
1587 { 1587 {
1588 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1588 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1589 return true; 1589 return true;
1590 if (noswap || !total_swap_pages) 1590 if (noswap || !total_swap_pages)
1591 return false; 1591 return false;
1592 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1592 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1593 return true; 1593 return true;
1594 return false; 1594 return false;
1595 1595
1596 } 1596 }
1597 #if MAX_NUMNODES > 1 1597 #if MAX_NUMNODES > 1
1598 1598
1599 /* 1599 /*
1600 * Always updating the nodemask is not very good - even if we have an empty 1600 * Always updating the nodemask is not very good - even if we have an empty
1601 * list or the wrong list here, we can start from some node and traverse all 1601 * list or the wrong list here, we can start from some node and traverse all
1602 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1602 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1603 * 1603 *
1604 */ 1604 */
1605 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1605 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1606 { 1606 {
1607 int nid; 1607 int nid;
1608 /* 1608 /*
1609 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1609 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1610 * pagein/pageout changes since the last update. 1610 * pagein/pageout changes since the last update.
1611 */ 1611 */
1612 if (!atomic_read(&memcg->numainfo_events)) 1612 if (!atomic_read(&memcg->numainfo_events))
1613 return; 1613 return;
1614 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1614 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1615 return; 1615 return;
1616 1616
1617 /* make a nodemask where this memcg uses memory from */ 1617 /* make a nodemask where this memcg uses memory from */
1618 memcg->scan_nodes = node_states[N_HIGH_MEMORY]; 1618 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1619 1619
1620 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) { 1620 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1621 1621
1622 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1622 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1623 node_clear(nid, memcg->scan_nodes); 1623 node_clear(nid, memcg->scan_nodes);
1624 } 1624 }
1625 1625
1626 atomic_set(&memcg->numainfo_events, 0); 1626 atomic_set(&memcg->numainfo_events, 0);
1627 atomic_set(&memcg->numainfo_updating, 0); 1627 atomic_set(&memcg->numainfo_updating, 0);
1628 } 1628 }
1629 1629
1630 /* 1630 /*
1631 * Selecting a node where we start reclaim from. Because what we need is just 1631 * Selecting a node where we start reclaim from. Because what we need is just
1632 * reducing usage counter, start from anywhere is O,K. Considering 1632 * reducing usage counter, start from anywhere is O,K. Considering
1633 * memory reclaim from current node, there are pros. and cons. 1633 * memory reclaim from current node, there are pros. and cons.
1634 * 1634 *
1635 * Freeing memory from current node means freeing memory from a node which 1635 * Freeing memory from current node means freeing memory from a node which
1636 * we'll use or we've used. So, it may make LRU bad. And if several threads 1636 * we'll use or we've used. So, it may make LRU bad. And if several threads
1637 * hit limits, it will see a contention on a node. But freeing from remote 1637 * hit limits, it will see a contention on a node. But freeing from remote
1638 * node means more costs for memory reclaim because of memory latency. 1638 * node means more costs for memory reclaim because of memory latency.
1639 * 1639 *
1640 * Now, we use round-robin. Better algorithm is welcomed. 1640 * Now, we use round-robin. Better algorithm is welcomed.
1641 */ 1641 */
1642 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1642 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1643 { 1643 {
1644 int node; 1644 int node;
1645 1645
1646 mem_cgroup_may_update_nodemask(memcg); 1646 mem_cgroup_may_update_nodemask(memcg);
1647 node = memcg->last_scanned_node; 1647 node = memcg->last_scanned_node;
1648 1648
1649 node = next_node(node, memcg->scan_nodes); 1649 node = next_node(node, memcg->scan_nodes);
1650 if (node == MAX_NUMNODES) 1650 if (node == MAX_NUMNODES)
1651 node = first_node(memcg->scan_nodes); 1651 node = first_node(memcg->scan_nodes);
1652 /* 1652 /*
1653 * We call this when we hit limit, not when pages are added to LRU. 1653 * We call this when we hit limit, not when pages are added to LRU.
1654 * No LRU may hold pages because all pages are UNEVICTABLE or 1654 * No LRU may hold pages because all pages are UNEVICTABLE or
1655 * memcg is too small and all pages are not on LRU. In that case, 1655 * memcg is too small and all pages are not on LRU. In that case,
1656 * we use curret node. 1656 * we use curret node.
1657 */ 1657 */
1658 if (unlikely(node == MAX_NUMNODES)) 1658 if (unlikely(node == MAX_NUMNODES))
1659 node = numa_node_id(); 1659 node = numa_node_id();
1660 1660
1661 memcg->last_scanned_node = node; 1661 memcg->last_scanned_node = node;
1662 return node; 1662 return node;
1663 } 1663 }
1664 1664
1665 /* 1665 /*
1666 * Check all nodes whether it contains reclaimable pages or not. 1666 * Check all nodes whether it contains reclaimable pages or not.
1667 * For quick scan, we make use of scan_nodes. This will allow us to skip 1667 * For quick scan, we make use of scan_nodes. This will allow us to skip
1668 * unused nodes. But scan_nodes is lazily updated and may not cotain 1668 * unused nodes. But scan_nodes is lazily updated and may not cotain
1669 * enough new information. We need to do double check. 1669 * enough new information. We need to do double check.
1670 */ 1670 */
1671 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 1671 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1672 { 1672 {
1673 int nid; 1673 int nid;
1674 1674
1675 /* 1675 /*
1676 * quick check...making use of scan_node. 1676 * quick check...making use of scan_node.
1677 * We can skip unused nodes. 1677 * We can skip unused nodes.
1678 */ 1678 */
1679 if (!nodes_empty(memcg->scan_nodes)) { 1679 if (!nodes_empty(memcg->scan_nodes)) {
1680 for (nid = first_node(memcg->scan_nodes); 1680 for (nid = first_node(memcg->scan_nodes);
1681 nid < MAX_NUMNODES; 1681 nid < MAX_NUMNODES;
1682 nid = next_node(nid, memcg->scan_nodes)) { 1682 nid = next_node(nid, memcg->scan_nodes)) {
1683 1683
1684 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 1684 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1685 return true; 1685 return true;
1686 } 1686 }
1687 } 1687 }
1688 /* 1688 /*
1689 * Check rest of nodes. 1689 * Check rest of nodes.
1690 */ 1690 */
1691 for_each_node_state(nid, N_HIGH_MEMORY) { 1691 for_each_node_state(nid, N_HIGH_MEMORY) {
1692 if (node_isset(nid, memcg->scan_nodes)) 1692 if (node_isset(nid, memcg->scan_nodes))
1693 continue; 1693 continue;
1694 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 1694 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1695 return true; 1695 return true;
1696 } 1696 }
1697 return false; 1697 return false;
1698 } 1698 }
1699 1699
1700 #else 1700 #else
1701 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1701 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1702 { 1702 {
1703 return 0; 1703 return 0;
1704 } 1704 }
1705 1705
1706 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 1706 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1707 { 1707 {
1708 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap); 1708 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1709 } 1709 }
1710 #endif 1710 #endif
1711 1711
1712 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1712 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1713 struct zone *zone, 1713 struct zone *zone,
1714 gfp_t gfp_mask, 1714 gfp_t gfp_mask,
1715 unsigned long *total_scanned) 1715 unsigned long *total_scanned)
1716 { 1716 {
1717 struct mem_cgroup *victim = NULL; 1717 struct mem_cgroup *victim = NULL;
1718 int total = 0; 1718 int total = 0;
1719 int loop = 0; 1719 int loop = 0;
1720 unsigned long excess; 1720 unsigned long excess;
1721 unsigned long nr_scanned; 1721 unsigned long nr_scanned;
1722 struct mem_cgroup_reclaim_cookie reclaim = { 1722 struct mem_cgroup_reclaim_cookie reclaim = {
1723 .zone = zone, 1723 .zone = zone,
1724 .priority = 0, 1724 .priority = 0,
1725 }; 1725 };
1726 1726
1727 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT; 1727 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1728 1728
1729 while (1) { 1729 while (1) {
1730 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1730 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1731 if (!victim) { 1731 if (!victim) {
1732 loop++; 1732 loop++;
1733 if (loop >= 2) { 1733 if (loop >= 2) {
1734 /* 1734 /*
1735 * If we have not been able to reclaim 1735 * If we have not been able to reclaim
1736 * anything, it might because there are 1736 * anything, it might because there are
1737 * no reclaimable pages under this hierarchy 1737 * no reclaimable pages under this hierarchy
1738 */ 1738 */
1739 if (!total) 1739 if (!total)
1740 break; 1740 break;
1741 /* 1741 /*
1742 * We want to do more targeted reclaim. 1742 * We want to do more targeted reclaim.
1743 * excess >> 2 is not to excessive so as to 1743 * excess >> 2 is not to excessive so as to
1744 * reclaim too much, nor too less that we keep 1744 * reclaim too much, nor too less that we keep
1745 * coming back to reclaim from this cgroup 1745 * coming back to reclaim from this cgroup
1746 */ 1746 */
1747 if (total >= (excess >> 2) || 1747 if (total >= (excess >> 2) ||
1748 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1748 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1749 break; 1749 break;
1750 } 1750 }
1751 continue; 1751 continue;
1752 } 1752 }
1753 if (!mem_cgroup_reclaimable(victim, false)) 1753 if (!mem_cgroup_reclaimable(victim, false))
1754 continue; 1754 continue;
1755 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, 1755 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1756 zone, &nr_scanned); 1756 zone, &nr_scanned);
1757 *total_scanned += nr_scanned; 1757 *total_scanned += nr_scanned;
1758 if (!res_counter_soft_limit_excess(&root_memcg->res)) 1758 if (!res_counter_soft_limit_excess(&root_memcg->res))
1759 break; 1759 break;
1760 } 1760 }
1761 mem_cgroup_iter_break(root_memcg, victim); 1761 mem_cgroup_iter_break(root_memcg, victim);
1762 return total; 1762 return total;
1763 } 1763 }
1764 1764
1765 /* 1765 /*
1766 * Check OOM-Killer is already running under our hierarchy. 1766 * Check OOM-Killer is already running under our hierarchy.
1767 * If someone is running, return false. 1767 * If someone is running, return false.
1768 * Has to be called with memcg_oom_lock 1768 * Has to be called with memcg_oom_lock
1769 */ 1769 */
1770 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg) 1770 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1771 { 1771 {
1772 struct mem_cgroup *iter, *failed = NULL; 1772 struct mem_cgroup *iter, *failed = NULL;
1773 1773
1774 for_each_mem_cgroup_tree(iter, memcg) { 1774 for_each_mem_cgroup_tree(iter, memcg) {
1775 if (iter->oom_lock) { 1775 if (iter->oom_lock) {
1776 /* 1776 /*
1777 * this subtree of our hierarchy is already locked 1777 * this subtree of our hierarchy is already locked
1778 * so we cannot give a lock. 1778 * so we cannot give a lock.
1779 */ 1779 */
1780 failed = iter; 1780 failed = iter;
1781 mem_cgroup_iter_break(memcg, iter); 1781 mem_cgroup_iter_break(memcg, iter);
1782 break; 1782 break;
1783 } else 1783 } else
1784 iter->oom_lock = true; 1784 iter->oom_lock = true;
1785 } 1785 }
1786 1786
1787 if (!failed) 1787 if (!failed)
1788 return true; 1788 return true;
1789 1789
1790 /* 1790 /*
1791 * OK, we failed to lock the whole subtree so we have to clean up 1791 * OK, we failed to lock the whole subtree so we have to clean up
1792 * what we set up to the failing subtree 1792 * what we set up to the failing subtree
1793 */ 1793 */
1794 for_each_mem_cgroup_tree(iter, memcg) { 1794 for_each_mem_cgroup_tree(iter, memcg) {
1795 if (iter == failed) { 1795 if (iter == failed) {
1796 mem_cgroup_iter_break(memcg, iter); 1796 mem_cgroup_iter_break(memcg, iter);
1797 break; 1797 break;
1798 } 1798 }
1799 iter->oom_lock = false; 1799 iter->oom_lock = false;
1800 } 1800 }
1801 return false; 1801 return false;
1802 } 1802 }
1803 1803
1804 /* 1804 /*
1805 * Has to be called with memcg_oom_lock 1805 * Has to be called with memcg_oom_lock
1806 */ 1806 */
1807 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1807 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1808 { 1808 {
1809 struct mem_cgroup *iter; 1809 struct mem_cgroup *iter;
1810 1810
1811 for_each_mem_cgroup_tree(iter, memcg) 1811 for_each_mem_cgroup_tree(iter, memcg)
1812 iter->oom_lock = false; 1812 iter->oom_lock = false;
1813 return 0; 1813 return 0;
1814 } 1814 }
1815 1815
1816 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1816 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1817 { 1817 {
1818 struct mem_cgroup *iter; 1818 struct mem_cgroup *iter;
1819 1819
1820 for_each_mem_cgroup_tree(iter, memcg) 1820 for_each_mem_cgroup_tree(iter, memcg)
1821 atomic_inc(&iter->under_oom); 1821 atomic_inc(&iter->under_oom);
1822 } 1822 }
1823 1823
1824 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1824 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1825 { 1825 {
1826 struct mem_cgroup *iter; 1826 struct mem_cgroup *iter;
1827 1827
1828 /* 1828 /*
1829 * When a new child is created while the hierarchy is under oom, 1829 * When a new child is created while the hierarchy is under oom,
1830 * mem_cgroup_oom_lock() may not be called. We have to use 1830 * mem_cgroup_oom_lock() may not be called. We have to use
1831 * atomic_add_unless() here. 1831 * atomic_add_unless() here.
1832 */ 1832 */
1833 for_each_mem_cgroup_tree(iter, memcg) 1833 for_each_mem_cgroup_tree(iter, memcg)
1834 atomic_add_unless(&iter->under_oom, -1, 0); 1834 atomic_add_unless(&iter->under_oom, -1, 0);
1835 } 1835 }
1836 1836
1837 static DEFINE_SPINLOCK(memcg_oom_lock); 1837 static DEFINE_SPINLOCK(memcg_oom_lock);
1838 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1838 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1839 1839
1840 struct oom_wait_info { 1840 struct oom_wait_info {
1841 struct mem_cgroup *memcg; 1841 struct mem_cgroup *memcg;
1842 wait_queue_t wait; 1842 wait_queue_t wait;
1843 }; 1843 };
1844 1844
1845 static int memcg_oom_wake_function(wait_queue_t *wait, 1845 static int memcg_oom_wake_function(wait_queue_t *wait,
1846 unsigned mode, int sync, void *arg) 1846 unsigned mode, int sync, void *arg)
1847 { 1847 {
1848 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1848 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1849 struct mem_cgroup *oom_wait_memcg; 1849 struct mem_cgroup *oom_wait_memcg;
1850 struct oom_wait_info *oom_wait_info; 1850 struct oom_wait_info *oom_wait_info;
1851 1851
1852 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1852 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1853 oom_wait_memcg = oom_wait_info->memcg; 1853 oom_wait_memcg = oom_wait_info->memcg;
1854 1854
1855 /* 1855 /*
1856 * Both of oom_wait_info->memcg and wake_memcg are stable under us. 1856 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1857 * Then we can use css_is_ancestor without taking care of RCU. 1857 * Then we can use css_is_ancestor without taking care of RCU.
1858 */ 1858 */
1859 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg) 1859 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1860 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg)) 1860 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1861 return 0; 1861 return 0;
1862 return autoremove_wake_function(wait, mode, sync, arg); 1862 return autoremove_wake_function(wait, mode, sync, arg);
1863 } 1863 }
1864 1864
1865 static void memcg_wakeup_oom(struct mem_cgroup *memcg) 1865 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1866 { 1866 {
1867 /* for filtering, pass "memcg" as argument. */ 1867 /* for filtering, pass "memcg" as argument. */
1868 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1868 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1869 } 1869 }
1870 1870
1871 static void memcg_oom_recover(struct mem_cgroup *memcg) 1871 static void memcg_oom_recover(struct mem_cgroup *memcg)
1872 { 1872 {
1873 if (memcg && atomic_read(&memcg->under_oom)) 1873 if (memcg && atomic_read(&memcg->under_oom))
1874 memcg_wakeup_oom(memcg); 1874 memcg_wakeup_oom(memcg);
1875 } 1875 }
1876 1876
1877 /* 1877 /*
1878 * try to call OOM killer. returns false if we should exit memory-reclaim loop. 1878 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1879 */ 1879 */
1880 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask, 1880 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1881 int order) 1881 int order)
1882 { 1882 {
1883 struct oom_wait_info owait; 1883 struct oom_wait_info owait;
1884 bool locked, need_to_kill; 1884 bool locked, need_to_kill;
1885 1885
1886 owait.memcg = memcg; 1886 owait.memcg = memcg;
1887 owait.wait.flags = 0; 1887 owait.wait.flags = 0;
1888 owait.wait.func = memcg_oom_wake_function; 1888 owait.wait.func = memcg_oom_wake_function;
1889 owait.wait.private = current; 1889 owait.wait.private = current;
1890 INIT_LIST_HEAD(&owait.wait.task_list); 1890 INIT_LIST_HEAD(&owait.wait.task_list);
1891 need_to_kill = true; 1891 need_to_kill = true;
1892 mem_cgroup_mark_under_oom(memcg); 1892 mem_cgroup_mark_under_oom(memcg);
1893 1893
1894 /* At first, try to OOM lock hierarchy under memcg.*/ 1894 /* At first, try to OOM lock hierarchy under memcg.*/
1895 spin_lock(&memcg_oom_lock); 1895 spin_lock(&memcg_oom_lock);
1896 locked = mem_cgroup_oom_lock(memcg); 1896 locked = mem_cgroup_oom_lock(memcg);
1897 /* 1897 /*
1898 * Even if signal_pending(), we can't quit charge() loop without 1898 * Even if signal_pending(), we can't quit charge() loop without
1899 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL 1899 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1900 * under OOM is always welcomed, use TASK_KILLABLE here. 1900 * under OOM is always welcomed, use TASK_KILLABLE here.
1901 */ 1901 */
1902 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1902 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1903 if (!locked || memcg->oom_kill_disable) 1903 if (!locked || memcg->oom_kill_disable)
1904 need_to_kill = false; 1904 need_to_kill = false;
1905 if (locked) 1905 if (locked)
1906 mem_cgroup_oom_notify(memcg); 1906 mem_cgroup_oom_notify(memcg);
1907 spin_unlock(&memcg_oom_lock); 1907 spin_unlock(&memcg_oom_lock);
1908 1908
1909 if (need_to_kill) { 1909 if (need_to_kill) {
1910 finish_wait(&memcg_oom_waitq, &owait.wait); 1910 finish_wait(&memcg_oom_waitq, &owait.wait);
1911 mem_cgroup_out_of_memory(memcg, mask, order); 1911 mem_cgroup_out_of_memory(memcg, mask, order);
1912 } else { 1912 } else {
1913 schedule(); 1913 schedule();
1914 finish_wait(&memcg_oom_waitq, &owait.wait); 1914 finish_wait(&memcg_oom_waitq, &owait.wait);
1915 } 1915 }
1916 spin_lock(&memcg_oom_lock); 1916 spin_lock(&memcg_oom_lock);
1917 if (locked) 1917 if (locked)
1918 mem_cgroup_oom_unlock(memcg); 1918 mem_cgroup_oom_unlock(memcg);
1919 memcg_wakeup_oom(memcg); 1919 memcg_wakeup_oom(memcg);
1920 spin_unlock(&memcg_oom_lock); 1920 spin_unlock(&memcg_oom_lock);
1921 1921
1922 mem_cgroup_unmark_under_oom(memcg); 1922 mem_cgroup_unmark_under_oom(memcg);
1923 1923
1924 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current)) 1924 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1925 return false; 1925 return false;
1926 /* Give chance to dying process */ 1926 /* Give chance to dying process */
1927 schedule_timeout_uninterruptible(1); 1927 schedule_timeout_uninterruptible(1);
1928 return true; 1928 return true;
1929 } 1929 }
1930 1930
1931 /* 1931 /*
1932 * Currently used to update mapped file statistics, but the routine can be 1932 * Currently used to update mapped file statistics, but the routine can be
1933 * generalized to update other statistics as well. 1933 * generalized to update other statistics as well.
1934 * 1934 *
1935 * Notes: Race condition 1935 * Notes: Race condition
1936 * 1936 *
1937 * We usually use page_cgroup_lock() for accessing page_cgroup member but 1937 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1938 * it tends to be costly. But considering some conditions, we doesn't need 1938 * it tends to be costly. But considering some conditions, we doesn't need
1939 * to do so _always_. 1939 * to do so _always_.
1940 * 1940 *
1941 * Considering "charge", lock_page_cgroup() is not required because all 1941 * Considering "charge", lock_page_cgroup() is not required because all
1942 * file-stat operations happen after a page is attached to radix-tree. There 1942 * file-stat operations happen after a page is attached to radix-tree. There
1943 * are no race with "charge". 1943 * are no race with "charge".
1944 * 1944 *
1945 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup 1945 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1946 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even 1946 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1947 * if there are race with "uncharge". Statistics itself is properly handled 1947 * if there are race with "uncharge". Statistics itself is properly handled
1948 * by flags. 1948 * by flags.
1949 * 1949 *
1950 * Considering "move", this is an only case we see a race. To make the race 1950 * Considering "move", this is an only case we see a race. To make the race
1951 * small, we check mm->moving_account and detect there are possibility of race 1951 * small, we check mm->moving_account and detect there are possibility of race
1952 * If there is, we take a lock. 1952 * If there is, we take a lock.
1953 */ 1953 */
1954 1954
1955 void __mem_cgroup_begin_update_page_stat(struct page *page, 1955 void __mem_cgroup_begin_update_page_stat(struct page *page,
1956 bool *locked, unsigned long *flags) 1956 bool *locked, unsigned long *flags)
1957 { 1957 {
1958 struct mem_cgroup *memcg; 1958 struct mem_cgroup *memcg;
1959 struct page_cgroup *pc; 1959 struct page_cgroup *pc;
1960 1960
1961 pc = lookup_page_cgroup(page); 1961 pc = lookup_page_cgroup(page);
1962 again: 1962 again:
1963 memcg = pc->mem_cgroup; 1963 memcg = pc->mem_cgroup;
1964 if (unlikely(!memcg || !PageCgroupUsed(pc))) 1964 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1965 return; 1965 return;
1966 /* 1966 /*
1967 * If this memory cgroup is not under account moving, we don't 1967 * If this memory cgroup is not under account moving, we don't
1968 * need to take move_lock_mem_cgroup(). Because we already hold 1968 * need to take move_lock_mem_cgroup(). Because we already hold
1969 * rcu_read_lock(), any calls to move_account will be delayed until 1969 * rcu_read_lock(), any calls to move_account will be delayed until
1970 * rcu_read_unlock() if mem_cgroup_stolen() == true. 1970 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1971 */ 1971 */
1972 if (!mem_cgroup_stolen(memcg)) 1972 if (!mem_cgroup_stolen(memcg))
1973 return; 1973 return;
1974 1974
1975 move_lock_mem_cgroup(memcg, flags); 1975 move_lock_mem_cgroup(memcg, flags);
1976 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) { 1976 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1977 move_unlock_mem_cgroup(memcg, flags); 1977 move_unlock_mem_cgroup(memcg, flags);
1978 goto again; 1978 goto again;
1979 } 1979 }
1980 *locked = true; 1980 *locked = true;
1981 } 1981 }
1982 1982
1983 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags) 1983 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1984 { 1984 {
1985 struct page_cgroup *pc = lookup_page_cgroup(page); 1985 struct page_cgroup *pc = lookup_page_cgroup(page);
1986 1986
1987 /* 1987 /*
1988 * It's guaranteed that pc->mem_cgroup never changes while 1988 * It's guaranteed that pc->mem_cgroup never changes while
1989 * lock is held because a routine modifies pc->mem_cgroup 1989 * lock is held because a routine modifies pc->mem_cgroup
1990 * should take move_lock_mem_cgroup(). 1990 * should take move_lock_mem_cgroup().
1991 */ 1991 */
1992 move_unlock_mem_cgroup(pc->mem_cgroup, flags); 1992 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1993 } 1993 }
1994 1994
1995 void mem_cgroup_update_page_stat(struct page *page, 1995 void mem_cgroup_update_page_stat(struct page *page,
1996 enum mem_cgroup_page_stat_item idx, int val) 1996 enum mem_cgroup_page_stat_item idx, int val)
1997 { 1997 {
1998 struct mem_cgroup *memcg; 1998 struct mem_cgroup *memcg;
1999 struct page_cgroup *pc = lookup_page_cgroup(page); 1999 struct page_cgroup *pc = lookup_page_cgroup(page);
2000 unsigned long uninitialized_var(flags); 2000 unsigned long uninitialized_var(flags);
2001 2001
2002 if (mem_cgroup_disabled()) 2002 if (mem_cgroup_disabled())
2003 return; 2003 return;
2004 2004
2005 memcg = pc->mem_cgroup; 2005 memcg = pc->mem_cgroup;
2006 if (unlikely(!memcg || !PageCgroupUsed(pc))) 2006 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2007 return; 2007 return;
2008 2008
2009 switch (idx) { 2009 switch (idx) {
2010 case MEMCG_NR_FILE_MAPPED: 2010 case MEMCG_NR_FILE_MAPPED:
2011 idx = MEM_CGROUP_STAT_FILE_MAPPED; 2011 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2012 break; 2012 break;
2013 default: 2013 default:
2014 BUG(); 2014 BUG();
2015 } 2015 }
2016 2016
2017 this_cpu_add(memcg->stat->count[idx], val); 2017 this_cpu_add(memcg->stat->count[idx], val);
2018 } 2018 }
2019 2019
2020 /* 2020 /*
2021 * size of first charge trial. "32" comes from vmscan.c's magic value. 2021 * size of first charge trial. "32" comes from vmscan.c's magic value.
2022 * TODO: maybe necessary to use big numbers in big irons. 2022 * TODO: maybe necessary to use big numbers in big irons.
2023 */ 2023 */
2024 #define CHARGE_BATCH 32U 2024 #define CHARGE_BATCH 32U
2025 struct memcg_stock_pcp { 2025 struct memcg_stock_pcp {
2026 struct mem_cgroup *cached; /* this never be root cgroup */ 2026 struct mem_cgroup *cached; /* this never be root cgroup */
2027 unsigned int nr_pages; 2027 unsigned int nr_pages;
2028 struct work_struct work; 2028 struct work_struct work;
2029 unsigned long flags; 2029 unsigned long flags;
2030 #define FLUSHING_CACHED_CHARGE 0 2030 #define FLUSHING_CACHED_CHARGE 0
2031 }; 2031 };
2032 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2032 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2033 static DEFINE_MUTEX(percpu_charge_mutex); 2033 static DEFINE_MUTEX(percpu_charge_mutex);
2034 2034
2035 /* 2035 /*
2036 * Try to consume stocked charge on this cpu. If success, one page is consumed 2036 * Try to consume stocked charge on this cpu. If success, one page is consumed
2037 * from local stock and true is returned. If the stock is 0 or charges from a 2037 * from local stock and true is returned. If the stock is 0 or charges from a
2038 * cgroup which is not current target, returns false. This stock will be 2038 * cgroup which is not current target, returns false. This stock will be
2039 * refilled. 2039 * refilled.
2040 */ 2040 */
2041 static bool consume_stock(struct mem_cgroup *memcg) 2041 static bool consume_stock(struct mem_cgroup *memcg)
2042 { 2042 {
2043 struct memcg_stock_pcp *stock; 2043 struct memcg_stock_pcp *stock;
2044 bool ret = true; 2044 bool ret = true;
2045 2045
2046 stock = &get_cpu_var(memcg_stock); 2046 stock = &get_cpu_var(memcg_stock);
2047 if (memcg == stock->cached && stock->nr_pages) 2047 if (memcg == stock->cached && stock->nr_pages)
2048 stock->nr_pages--; 2048 stock->nr_pages--;
2049 else /* need to call res_counter_charge */ 2049 else /* need to call res_counter_charge */
2050 ret = false; 2050 ret = false;
2051 put_cpu_var(memcg_stock); 2051 put_cpu_var(memcg_stock);
2052 return ret; 2052 return ret;
2053 } 2053 }
2054 2054
2055 /* 2055 /*
2056 * Returns stocks cached in percpu to res_counter and reset cached information. 2056 * Returns stocks cached in percpu to res_counter and reset cached information.
2057 */ 2057 */
2058 static void drain_stock(struct memcg_stock_pcp *stock) 2058 static void drain_stock(struct memcg_stock_pcp *stock)
2059 { 2059 {
2060 struct mem_cgroup *old = stock->cached; 2060 struct mem_cgroup *old = stock->cached;
2061 2061
2062 if (stock->nr_pages) { 2062 if (stock->nr_pages) {
2063 unsigned long bytes = stock->nr_pages * PAGE_SIZE; 2063 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2064 2064
2065 res_counter_uncharge(&old->res, bytes); 2065 res_counter_uncharge(&old->res, bytes);
2066 if (do_swap_account) 2066 if (do_swap_account)
2067 res_counter_uncharge(&old->memsw, bytes); 2067 res_counter_uncharge(&old->memsw, bytes);
2068 stock->nr_pages = 0; 2068 stock->nr_pages = 0;
2069 } 2069 }
2070 stock->cached = NULL; 2070 stock->cached = NULL;
2071 } 2071 }
2072 2072
2073 /* 2073 /*
2074 * This must be called under preempt disabled or must be called by 2074 * This must be called under preempt disabled or must be called by
2075 * a thread which is pinned to local cpu. 2075 * a thread which is pinned to local cpu.
2076 */ 2076 */
2077 static void drain_local_stock(struct work_struct *dummy) 2077 static void drain_local_stock(struct work_struct *dummy)
2078 { 2078 {
2079 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock); 2079 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2080 drain_stock(stock); 2080 drain_stock(stock);
2081 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2081 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2082 } 2082 }
2083 2083
2084 /* 2084 /*
2085 * Cache charges(val) which is from res_counter, to local per_cpu area. 2085 * Cache charges(val) which is from res_counter, to local per_cpu area.
2086 * This will be consumed by consume_stock() function, later. 2086 * This will be consumed by consume_stock() function, later.
2087 */ 2087 */
2088 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2088 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2089 { 2089 {
2090 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); 2090 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2091 2091
2092 if (stock->cached != memcg) { /* reset if necessary */ 2092 if (stock->cached != memcg) { /* reset if necessary */
2093 drain_stock(stock); 2093 drain_stock(stock);
2094 stock->cached = memcg; 2094 stock->cached = memcg;
2095 } 2095 }
2096 stock->nr_pages += nr_pages; 2096 stock->nr_pages += nr_pages;
2097 put_cpu_var(memcg_stock); 2097 put_cpu_var(memcg_stock);
2098 } 2098 }
2099 2099
2100 /* 2100 /*
2101 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2101 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2102 * of the hierarchy under it. sync flag says whether we should block 2102 * of the hierarchy under it. sync flag says whether we should block
2103 * until the work is done. 2103 * until the work is done.
2104 */ 2104 */
2105 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync) 2105 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2106 { 2106 {
2107 int cpu, curcpu; 2107 int cpu, curcpu;
2108 2108
2109 /* Notify other cpus that system-wide "drain" is running */ 2109 /* Notify other cpus that system-wide "drain" is running */
2110 get_online_cpus(); 2110 get_online_cpus();
2111 curcpu = get_cpu(); 2111 curcpu = get_cpu();
2112 for_each_online_cpu(cpu) { 2112 for_each_online_cpu(cpu) {
2113 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2113 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2114 struct mem_cgroup *memcg; 2114 struct mem_cgroup *memcg;
2115 2115
2116 memcg = stock->cached; 2116 memcg = stock->cached;
2117 if (!memcg || !stock->nr_pages) 2117 if (!memcg || !stock->nr_pages)
2118 continue; 2118 continue;
2119 if (!mem_cgroup_same_or_subtree(root_memcg, memcg)) 2119 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2120 continue; 2120 continue;
2121 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2121 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2122 if (cpu == curcpu) 2122 if (cpu == curcpu)
2123 drain_local_stock(&stock->work); 2123 drain_local_stock(&stock->work);
2124 else 2124 else
2125 schedule_work_on(cpu, &stock->work); 2125 schedule_work_on(cpu, &stock->work);
2126 } 2126 }
2127 } 2127 }
2128 put_cpu(); 2128 put_cpu();
2129 2129
2130 if (!sync) 2130 if (!sync)
2131 goto out; 2131 goto out;
2132 2132
2133 for_each_online_cpu(cpu) { 2133 for_each_online_cpu(cpu) {
2134 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2134 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2135 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) 2135 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2136 flush_work(&stock->work); 2136 flush_work(&stock->work);
2137 } 2137 }
2138 out: 2138 out:
2139 put_online_cpus(); 2139 put_online_cpus();
2140 } 2140 }
2141 2141
2142 /* 2142 /*
2143 * Tries to drain stocked charges in other cpus. This function is asynchronous 2143 * Tries to drain stocked charges in other cpus. This function is asynchronous
2144 * and just put a work per cpu for draining localy on each cpu. Caller can 2144 * and just put a work per cpu for draining localy on each cpu. Caller can
2145 * expects some charges will be back to res_counter later but cannot wait for 2145 * expects some charges will be back to res_counter later but cannot wait for
2146 * it. 2146 * it.
2147 */ 2147 */
2148 static void drain_all_stock_async(struct mem_cgroup *root_memcg) 2148 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2149 { 2149 {
2150 /* 2150 /*
2151 * If someone calls draining, avoid adding more kworker runs. 2151 * If someone calls draining, avoid adding more kworker runs.
2152 */ 2152 */
2153 if (!mutex_trylock(&percpu_charge_mutex)) 2153 if (!mutex_trylock(&percpu_charge_mutex))
2154 return; 2154 return;
2155 drain_all_stock(root_memcg, false); 2155 drain_all_stock(root_memcg, false);
2156 mutex_unlock(&percpu_charge_mutex); 2156 mutex_unlock(&percpu_charge_mutex);
2157 } 2157 }
2158 2158
2159 /* This is a synchronous drain interface. */ 2159 /* This is a synchronous drain interface. */
2160 static void drain_all_stock_sync(struct mem_cgroup *root_memcg) 2160 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2161 { 2161 {
2162 /* called when force_empty is called */ 2162 /* called when force_empty is called */
2163 mutex_lock(&percpu_charge_mutex); 2163 mutex_lock(&percpu_charge_mutex);
2164 drain_all_stock(root_memcg, true); 2164 drain_all_stock(root_memcg, true);
2165 mutex_unlock(&percpu_charge_mutex); 2165 mutex_unlock(&percpu_charge_mutex);
2166 } 2166 }
2167 2167
2168 /* 2168 /*
2169 * This function drains percpu counter value from DEAD cpu and 2169 * This function drains percpu counter value from DEAD cpu and
2170 * move it to local cpu. Note that this function can be preempted. 2170 * move it to local cpu. Note that this function can be preempted.
2171 */ 2171 */
2172 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu) 2172 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2173 { 2173 {
2174 int i; 2174 int i;
2175 2175
2176 spin_lock(&memcg->pcp_counter_lock); 2176 spin_lock(&memcg->pcp_counter_lock);
2177 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 2177 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2178 long x = per_cpu(memcg->stat->count[i], cpu); 2178 long x = per_cpu(memcg->stat->count[i], cpu);
2179 2179
2180 per_cpu(memcg->stat->count[i], cpu) = 0; 2180 per_cpu(memcg->stat->count[i], cpu) = 0;
2181 memcg->nocpu_base.count[i] += x; 2181 memcg->nocpu_base.count[i] += x;
2182 } 2182 }
2183 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 2183 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2184 unsigned long x = per_cpu(memcg->stat->events[i], cpu); 2184 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2185 2185
2186 per_cpu(memcg->stat->events[i], cpu) = 0; 2186 per_cpu(memcg->stat->events[i], cpu) = 0;
2187 memcg->nocpu_base.events[i] += x; 2187 memcg->nocpu_base.events[i] += x;
2188 } 2188 }
2189 spin_unlock(&memcg->pcp_counter_lock); 2189 spin_unlock(&memcg->pcp_counter_lock);
2190 } 2190 }
2191 2191
2192 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb, 2192 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2193 unsigned long action, 2193 unsigned long action,
2194 void *hcpu) 2194 void *hcpu)
2195 { 2195 {
2196 int cpu = (unsigned long)hcpu; 2196 int cpu = (unsigned long)hcpu;
2197 struct memcg_stock_pcp *stock; 2197 struct memcg_stock_pcp *stock;
2198 struct mem_cgroup *iter; 2198 struct mem_cgroup *iter;
2199 2199
2200 if (action == CPU_ONLINE) 2200 if (action == CPU_ONLINE)
2201 return NOTIFY_OK; 2201 return NOTIFY_OK;
2202 2202
2203 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 2203 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2204 return NOTIFY_OK; 2204 return NOTIFY_OK;
2205 2205
2206 for_each_mem_cgroup(iter) 2206 for_each_mem_cgroup(iter)
2207 mem_cgroup_drain_pcp_counter(iter, cpu); 2207 mem_cgroup_drain_pcp_counter(iter, cpu);
2208 2208
2209 stock = &per_cpu(memcg_stock, cpu); 2209 stock = &per_cpu(memcg_stock, cpu);
2210 drain_stock(stock); 2210 drain_stock(stock);
2211 return NOTIFY_OK; 2211 return NOTIFY_OK;
2212 } 2212 }
2213 2213
2214 2214
2215 /* See __mem_cgroup_try_charge() for details */ 2215 /* See __mem_cgroup_try_charge() for details */
2216 enum { 2216 enum {
2217 CHARGE_OK, /* success */ 2217 CHARGE_OK, /* success */
2218 CHARGE_RETRY, /* need to retry but retry is not bad */ 2218 CHARGE_RETRY, /* need to retry but retry is not bad */
2219 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */ 2219 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2220 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */ 2220 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2221 CHARGE_OOM_DIE, /* the current is killed because of OOM */ 2221 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2222 }; 2222 };
2223 2223
2224 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2224 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2225 unsigned int nr_pages, bool oom_check) 2225 unsigned int nr_pages, bool oom_check)
2226 { 2226 {
2227 unsigned long csize = nr_pages * PAGE_SIZE; 2227 unsigned long csize = nr_pages * PAGE_SIZE;
2228 struct mem_cgroup *mem_over_limit; 2228 struct mem_cgroup *mem_over_limit;
2229 struct res_counter *fail_res; 2229 struct res_counter *fail_res;
2230 unsigned long flags = 0; 2230 unsigned long flags = 0;
2231 int ret; 2231 int ret;
2232 2232
2233 ret = res_counter_charge(&memcg->res, csize, &fail_res); 2233 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2234 2234
2235 if (likely(!ret)) { 2235 if (likely(!ret)) {
2236 if (!do_swap_account) 2236 if (!do_swap_account)
2237 return CHARGE_OK; 2237 return CHARGE_OK;
2238 ret = res_counter_charge(&memcg->memsw, csize, &fail_res); 2238 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2239 if (likely(!ret)) 2239 if (likely(!ret))
2240 return CHARGE_OK; 2240 return CHARGE_OK;
2241 2241
2242 res_counter_uncharge(&memcg->res, csize); 2242 res_counter_uncharge(&memcg->res, csize);
2243 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw); 2243 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2244 flags |= MEM_CGROUP_RECLAIM_NOSWAP; 2244 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2245 } else 2245 } else
2246 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); 2246 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2247 /* 2247 /*
2248 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch 2248 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2249 * of regular pages (CHARGE_BATCH), or a single regular page (1). 2249 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2250 * 2250 *
2251 * Never reclaim on behalf of optional batching, retry with a 2251 * Never reclaim on behalf of optional batching, retry with a
2252 * single page instead. 2252 * single page instead.
2253 */ 2253 */
2254 if (nr_pages == CHARGE_BATCH) 2254 if (nr_pages == CHARGE_BATCH)
2255 return CHARGE_RETRY; 2255 return CHARGE_RETRY;
2256 2256
2257 if (!(gfp_mask & __GFP_WAIT)) 2257 if (!(gfp_mask & __GFP_WAIT))
2258 return CHARGE_WOULDBLOCK; 2258 return CHARGE_WOULDBLOCK;
2259 2259
2260 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags); 2260 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2261 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2261 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2262 return CHARGE_RETRY; 2262 return CHARGE_RETRY;
2263 /* 2263 /*
2264 * Even though the limit is exceeded at this point, reclaim 2264 * Even though the limit is exceeded at this point, reclaim
2265 * may have been able to free some pages. Retry the charge 2265 * may have been able to free some pages. Retry the charge
2266 * before killing the task. 2266 * before killing the task.
2267 * 2267 *
2268 * Only for regular pages, though: huge pages are rather 2268 * Only for regular pages, though: huge pages are rather
2269 * unlikely to succeed so close to the limit, and we fall back 2269 * unlikely to succeed so close to the limit, and we fall back
2270 * to regular pages anyway in case of failure. 2270 * to regular pages anyway in case of failure.
2271 */ 2271 */
2272 if (nr_pages == 1 && ret) 2272 if (nr_pages == 1 && ret)
2273 return CHARGE_RETRY; 2273 return CHARGE_RETRY;
2274 2274
2275 /* 2275 /*
2276 * At task move, charge accounts can be doubly counted. So, it's 2276 * At task move, charge accounts can be doubly counted. So, it's
2277 * better to wait until the end of task_move if something is going on. 2277 * better to wait until the end of task_move if something is going on.
2278 */ 2278 */
2279 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2279 if (mem_cgroup_wait_acct_move(mem_over_limit))
2280 return CHARGE_RETRY; 2280 return CHARGE_RETRY;
2281 2281
2282 /* If we don't need to call oom-killer at el, return immediately */ 2282 /* If we don't need to call oom-killer at el, return immediately */
2283 if (!oom_check) 2283 if (!oom_check)
2284 return CHARGE_NOMEM; 2284 return CHARGE_NOMEM;
2285 /* check OOM */ 2285 /* check OOM */
2286 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize))) 2286 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2287 return CHARGE_OOM_DIE; 2287 return CHARGE_OOM_DIE;
2288 2288
2289 return CHARGE_RETRY; 2289 return CHARGE_RETRY;
2290 } 2290 }
2291 2291
2292 /* 2292 /*
2293 * __mem_cgroup_try_charge() does 2293 * __mem_cgroup_try_charge() does
2294 * 1. detect memcg to be charged against from passed *mm and *ptr, 2294 * 1. detect memcg to be charged against from passed *mm and *ptr,
2295 * 2. update res_counter 2295 * 2. update res_counter
2296 * 3. call memory reclaim if necessary. 2296 * 3. call memory reclaim if necessary.
2297 * 2297 *
2298 * In some special case, if the task is fatal, fatal_signal_pending() or 2298 * In some special case, if the task is fatal, fatal_signal_pending() or
2299 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup 2299 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2300 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon 2300 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2301 * as possible without any hazards. 2: all pages should have a valid 2301 * as possible without any hazards. 2: all pages should have a valid
2302 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg 2302 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2303 * pointer, that is treated as a charge to root_mem_cgroup. 2303 * pointer, that is treated as a charge to root_mem_cgroup.
2304 * 2304 *
2305 * So __mem_cgroup_try_charge() will return 2305 * So __mem_cgroup_try_charge() will return
2306 * 0 ... on success, filling *ptr with a valid memcg pointer. 2306 * 0 ... on success, filling *ptr with a valid memcg pointer.
2307 * -ENOMEM ... charge failure because of resource limits. 2307 * -ENOMEM ... charge failure because of resource limits.
2308 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup. 2308 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2309 * 2309 *
2310 * Unlike the exported interface, an "oom" parameter is added. if oom==true, 2310 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2311 * the oom-killer can be invoked. 2311 * the oom-killer can be invoked.
2312 */ 2312 */
2313 static int __mem_cgroup_try_charge(struct mm_struct *mm, 2313 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2314 gfp_t gfp_mask, 2314 gfp_t gfp_mask,
2315 unsigned int nr_pages, 2315 unsigned int nr_pages,
2316 struct mem_cgroup **ptr, 2316 struct mem_cgroup **ptr,
2317 bool oom) 2317 bool oom)
2318 { 2318 {
2319 unsigned int batch = max(CHARGE_BATCH, nr_pages); 2319 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2320 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 2320 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2321 struct mem_cgroup *memcg = NULL; 2321 struct mem_cgroup *memcg = NULL;
2322 int ret; 2322 int ret;
2323 2323
2324 /* 2324 /*
2325 * Unlike gloval-vm's OOM-kill, we're not in memory shortage 2325 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2326 * in system level. So, allow to go ahead dying process in addition to 2326 * in system level. So, allow to go ahead dying process in addition to
2327 * MEMDIE process. 2327 * MEMDIE process.
2328 */ 2328 */
2329 if (unlikely(test_thread_flag(TIF_MEMDIE) 2329 if (unlikely(test_thread_flag(TIF_MEMDIE)
2330 || fatal_signal_pending(current))) 2330 || fatal_signal_pending(current)))
2331 goto bypass; 2331 goto bypass;
2332 2332
2333 /* 2333 /*
2334 * We always charge the cgroup the mm_struct belongs to. 2334 * We always charge the cgroup the mm_struct belongs to.
2335 * The mm_struct's mem_cgroup changes on task migration if the 2335 * The mm_struct's mem_cgroup changes on task migration if the
2336 * thread group leader migrates. It's possible that mm is not 2336 * thread group leader migrates. It's possible that mm is not
2337 * set, if so charge the init_mm (happens for pagecache usage). 2337 * set, if so charge the init_mm (happens for pagecache usage).
2338 */ 2338 */
2339 if (!*ptr && !mm) 2339 if (!*ptr && !mm)
2340 *ptr = root_mem_cgroup; 2340 *ptr = root_mem_cgroup;
2341 again: 2341 again:
2342 if (*ptr) { /* css should be a valid one */ 2342 if (*ptr) { /* css should be a valid one */
2343 memcg = *ptr; 2343 memcg = *ptr;
2344 VM_BUG_ON(css_is_removed(&memcg->css)); 2344 VM_BUG_ON(css_is_removed(&memcg->css));
2345 if (mem_cgroup_is_root(memcg)) 2345 if (mem_cgroup_is_root(memcg))
2346 goto done; 2346 goto done;
2347 if (nr_pages == 1 && consume_stock(memcg)) 2347 if (nr_pages == 1 && consume_stock(memcg))
2348 goto done; 2348 goto done;
2349 css_get(&memcg->css); 2349 css_get(&memcg->css);
2350 } else { 2350 } else {
2351 struct task_struct *p; 2351 struct task_struct *p;
2352 2352
2353 rcu_read_lock(); 2353 rcu_read_lock();
2354 p = rcu_dereference(mm->owner); 2354 p = rcu_dereference(mm->owner);
2355 /* 2355 /*
2356 * Because we don't have task_lock(), "p" can exit. 2356 * Because we don't have task_lock(), "p" can exit.
2357 * In that case, "memcg" can point to root or p can be NULL with 2357 * In that case, "memcg" can point to root or p can be NULL with
2358 * race with swapoff. Then, we have small risk of mis-accouning. 2358 * race with swapoff. Then, we have small risk of mis-accouning.
2359 * But such kind of mis-account by race always happens because 2359 * But such kind of mis-account by race always happens because
2360 * we don't have cgroup_mutex(). It's overkill and we allo that 2360 * we don't have cgroup_mutex(). It's overkill and we allo that
2361 * small race, here. 2361 * small race, here.
2362 * (*) swapoff at el will charge against mm-struct not against 2362 * (*) swapoff at el will charge against mm-struct not against
2363 * task-struct. So, mm->owner can be NULL. 2363 * task-struct. So, mm->owner can be NULL.
2364 */ 2364 */
2365 memcg = mem_cgroup_from_task(p); 2365 memcg = mem_cgroup_from_task(p);
2366 if (!memcg) 2366 if (!memcg)
2367 memcg = root_mem_cgroup; 2367 memcg = root_mem_cgroup;
2368 if (mem_cgroup_is_root(memcg)) { 2368 if (mem_cgroup_is_root(memcg)) {
2369 rcu_read_unlock(); 2369 rcu_read_unlock();
2370 goto done; 2370 goto done;
2371 } 2371 }
2372 if (nr_pages == 1 && consume_stock(memcg)) { 2372 if (nr_pages == 1 && consume_stock(memcg)) {
2373 /* 2373 /*
2374 * It seems dagerous to access memcg without css_get(). 2374 * It seems dagerous to access memcg without css_get().
2375 * But considering how consume_stok works, it's not 2375 * But considering how consume_stok works, it's not
2376 * necessary. If consume_stock success, some charges 2376 * necessary. If consume_stock success, some charges
2377 * from this memcg are cached on this cpu. So, we 2377 * from this memcg are cached on this cpu. So, we
2378 * don't need to call css_get()/css_tryget() before 2378 * don't need to call css_get()/css_tryget() before
2379 * calling consume_stock(). 2379 * calling consume_stock().
2380 */ 2380 */
2381 rcu_read_unlock(); 2381 rcu_read_unlock();
2382 goto done; 2382 goto done;
2383 } 2383 }
2384 /* after here, we may be blocked. we need to get refcnt */ 2384 /* after here, we may be blocked. we need to get refcnt */
2385 if (!css_tryget(&memcg->css)) { 2385 if (!css_tryget(&memcg->css)) {
2386 rcu_read_unlock(); 2386 rcu_read_unlock();
2387 goto again; 2387 goto again;
2388 } 2388 }
2389 rcu_read_unlock(); 2389 rcu_read_unlock();
2390 } 2390 }
2391 2391
2392 do { 2392 do {
2393 bool oom_check; 2393 bool oom_check;
2394 2394
2395 /* If killed, bypass charge */ 2395 /* If killed, bypass charge */
2396 if (fatal_signal_pending(current)) { 2396 if (fatal_signal_pending(current)) {
2397 css_put(&memcg->css); 2397 css_put(&memcg->css);
2398 goto bypass; 2398 goto bypass;
2399 } 2399 }
2400 2400
2401 oom_check = false; 2401 oom_check = false;
2402 if (oom && !nr_oom_retries) { 2402 if (oom && !nr_oom_retries) {
2403 oom_check = true; 2403 oom_check = true;
2404 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 2404 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2405 } 2405 }
2406 2406
2407 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check); 2407 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2408 switch (ret) { 2408 switch (ret) {
2409 case CHARGE_OK: 2409 case CHARGE_OK:
2410 break; 2410 break;
2411 case CHARGE_RETRY: /* not in OOM situation but retry */ 2411 case CHARGE_RETRY: /* not in OOM situation but retry */
2412 batch = nr_pages; 2412 batch = nr_pages;
2413 css_put(&memcg->css); 2413 css_put(&memcg->css);
2414 memcg = NULL; 2414 memcg = NULL;
2415 goto again; 2415 goto again;
2416 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */ 2416 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2417 css_put(&memcg->css); 2417 css_put(&memcg->css);
2418 goto nomem; 2418 goto nomem;
2419 case CHARGE_NOMEM: /* OOM routine works */ 2419 case CHARGE_NOMEM: /* OOM routine works */
2420 if (!oom) { 2420 if (!oom) {
2421 css_put(&memcg->css); 2421 css_put(&memcg->css);
2422 goto nomem; 2422 goto nomem;
2423 } 2423 }
2424 /* If oom, we never return -ENOMEM */ 2424 /* If oom, we never return -ENOMEM */
2425 nr_oom_retries--; 2425 nr_oom_retries--;
2426 break; 2426 break;
2427 case CHARGE_OOM_DIE: /* Killed by OOM Killer */ 2427 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2428 css_put(&memcg->css); 2428 css_put(&memcg->css);
2429 goto bypass; 2429 goto bypass;
2430 } 2430 }
2431 } while (ret != CHARGE_OK); 2431 } while (ret != CHARGE_OK);
2432 2432
2433 if (batch > nr_pages) 2433 if (batch > nr_pages)
2434 refill_stock(memcg, batch - nr_pages); 2434 refill_stock(memcg, batch - nr_pages);
2435 css_put(&memcg->css); 2435 css_put(&memcg->css);
2436 done: 2436 done:
2437 *ptr = memcg; 2437 *ptr = memcg;
2438 return 0; 2438 return 0;
2439 nomem: 2439 nomem:
2440 *ptr = NULL; 2440 *ptr = NULL;
2441 return -ENOMEM; 2441 return -ENOMEM;
2442 bypass: 2442 bypass:
2443 *ptr = root_mem_cgroup; 2443 *ptr = root_mem_cgroup;
2444 return -EINTR; 2444 return -EINTR;
2445 } 2445 }
2446 2446
2447 /* 2447 /*
2448 * Somemtimes we have to undo a charge we got by try_charge(). 2448 * Somemtimes we have to undo a charge we got by try_charge().
2449 * This function is for that and do uncharge, put css's refcnt. 2449 * This function is for that and do uncharge, put css's refcnt.
2450 * gotten by try_charge(). 2450 * gotten by try_charge().
2451 */ 2451 */
2452 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg, 2452 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2453 unsigned int nr_pages) 2453 unsigned int nr_pages)
2454 { 2454 {
2455 if (!mem_cgroup_is_root(memcg)) { 2455 if (!mem_cgroup_is_root(memcg)) {
2456 unsigned long bytes = nr_pages * PAGE_SIZE; 2456 unsigned long bytes = nr_pages * PAGE_SIZE;
2457 2457
2458 res_counter_uncharge(&memcg->res, bytes); 2458 res_counter_uncharge(&memcg->res, bytes);
2459 if (do_swap_account) 2459 if (do_swap_account)
2460 res_counter_uncharge(&memcg->memsw, bytes); 2460 res_counter_uncharge(&memcg->memsw, bytes);
2461 } 2461 }
2462 } 2462 }
2463 2463
2464 /* 2464 /*
2465 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup. 2465 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2466 * This is useful when moving usage to parent cgroup. 2466 * This is useful when moving usage to parent cgroup.
2467 */ 2467 */
2468 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg, 2468 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2469 unsigned int nr_pages) 2469 unsigned int nr_pages)
2470 { 2470 {
2471 unsigned long bytes = nr_pages * PAGE_SIZE; 2471 unsigned long bytes = nr_pages * PAGE_SIZE;
2472 2472
2473 if (mem_cgroup_is_root(memcg)) 2473 if (mem_cgroup_is_root(memcg))
2474 return; 2474 return;
2475 2475
2476 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes); 2476 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2477 if (do_swap_account) 2477 if (do_swap_account)
2478 res_counter_uncharge_until(&memcg->memsw, 2478 res_counter_uncharge_until(&memcg->memsw,
2479 memcg->memsw.parent, bytes); 2479 memcg->memsw.parent, bytes);
2480 } 2480 }
2481 2481
2482 /* 2482 /*
2483 * A helper function to get mem_cgroup from ID. must be called under 2483 * A helper function to get mem_cgroup from ID. must be called under
2484 * rcu_read_lock(). The caller must check css_is_removed() or some if 2484 * rcu_read_lock(). The caller must check css_is_removed() or some if
2485 * it's concern. (dropping refcnt from swap can be called against removed 2485 * it's concern. (dropping refcnt from swap can be called against removed
2486 * memcg.) 2486 * memcg.)
2487 */ 2487 */
2488 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) 2488 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2489 { 2489 {
2490 struct cgroup_subsys_state *css; 2490 struct cgroup_subsys_state *css;
2491 2491
2492 /* ID 0 is unused ID */ 2492 /* ID 0 is unused ID */
2493 if (!id) 2493 if (!id)
2494 return NULL; 2494 return NULL;
2495 css = css_lookup(&mem_cgroup_subsys, id); 2495 css = css_lookup(&mem_cgroup_subsys, id);
2496 if (!css) 2496 if (!css)
2497 return NULL; 2497 return NULL;
2498 return container_of(css, struct mem_cgroup, css); 2498 return container_of(css, struct mem_cgroup, css);
2499 } 2499 }
2500 2500
2501 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) 2501 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2502 { 2502 {
2503 struct mem_cgroup *memcg = NULL; 2503 struct mem_cgroup *memcg = NULL;
2504 struct page_cgroup *pc; 2504 struct page_cgroup *pc;
2505 unsigned short id; 2505 unsigned short id;
2506 swp_entry_t ent; 2506 swp_entry_t ent;
2507 2507
2508 VM_BUG_ON(!PageLocked(page)); 2508 VM_BUG_ON(!PageLocked(page));
2509 2509
2510 pc = lookup_page_cgroup(page); 2510 pc = lookup_page_cgroup(page);
2511 lock_page_cgroup(pc); 2511 lock_page_cgroup(pc);
2512 if (PageCgroupUsed(pc)) { 2512 if (PageCgroupUsed(pc)) {
2513 memcg = pc->mem_cgroup; 2513 memcg = pc->mem_cgroup;
2514 if (memcg && !css_tryget(&memcg->css)) 2514 if (memcg && !css_tryget(&memcg->css))
2515 memcg = NULL; 2515 memcg = NULL;
2516 } else if (PageSwapCache(page)) { 2516 } else if (PageSwapCache(page)) {
2517 ent.val = page_private(page); 2517 ent.val = page_private(page);
2518 id = lookup_swap_cgroup_id(ent); 2518 id = lookup_swap_cgroup_id(ent);
2519 rcu_read_lock(); 2519 rcu_read_lock();
2520 memcg = mem_cgroup_lookup(id); 2520 memcg = mem_cgroup_lookup(id);
2521 if (memcg && !css_tryget(&memcg->css)) 2521 if (memcg && !css_tryget(&memcg->css))
2522 memcg = NULL; 2522 memcg = NULL;
2523 rcu_read_unlock(); 2523 rcu_read_unlock();
2524 } 2524 }
2525 unlock_page_cgroup(pc); 2525 unlock_page_cgroup(pc);
2526 return memcg; 2526 return memcg;
2527 } 2527 }
2528 2528
2529 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg, 2529 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2530 struct page *page, 2530 struct page *page,
2531 unsigned int nr_pages, 2531 unsigned int nr_pages,
2532 enum charge_type ctype, 2532 enum charge_type ctype,
2533 bool lrucare) 2533 bool lrucare)
2534 { 2534 {
2535 struct page_cgroup *pc = lookup_page_cgroup(page); 2535 struct page_cgroup *pc = lookup_page_cgroup(page);
2536 struct zone *uninitialized_var(zone); 2536 struct zone *uninitialized_var(zone);
2537 struct lruvec *lruvec; 2537 struct lruvec *lruvec;
2538 bool was_on_lru = false; 2538 bool was_on_lru = false;
2539 bool anon; 2539 bool anon;
2540 2540
2541 lock_page_cgroup(pc); 2541 lock_page_cgroup(pc);
2542 if (unlikely(PageCgroupUsed(pc))) { 2542 if (unlikely(PageCgroupUsed(pc))) {
2543 unlock_page_cgroup(pc); 2543 unlock_page_cgroup(pc);
2544 __mem_cgroup_cancel_charge(memcg, nr_pages); 2544 __mem_cgroup_cancel_charge(memcg, nr_pages);
2545 return; 2545 return;
2546 } 2546 }
2547 /* 2547 /*
2548 * we don't need page_cgroup_lock about tail pages, becase they are not 2548 * we don't need page_cgroup_lock about tail pages, becase they are not
2549 * accessed by any other context at this point. 2549 * accessed by any other context at this point.
2550 */ 2550 */
2551 2551
2552 /* 2552 /*
2553 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2553 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2554 * may already be on some other mem_cgroup's LRU. Take care of it. 2554 * may already be on some other mem_cgroup's LRU. Take care of it.
2555 */ 2555 */
2556 if (lrucare) { 2556 if (lrucare) {
2557 zone = page_zone(page); 2557 zone = page_zone(page);
2558 spin_lock_irq(&zone->lru_lock); 2558 spin_lock_irq(&zone->lru_lock);
2559 if (PageLRU(page)) { 2559 if (PageLRU(page)) {
2560 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); 2560 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2561 ClearPageLRU(page); 2561 ClearPageLRU(page);
2562 del_page_from_lru_list(page, lruvec, page_lru(page)); 2562 del_page_from_lru_list(page, lruvec, page_lru(page));
2563 was_on_lru = true; 2563 was_on_lru = true;
2564 } 2564 }
2565 } 2565 }
2566 2566
2567 pc->mem_cgroup = memcg; 2567 pc->mem_cgroup = memcg;
2568 /* 2568 /*
2569 * We access a page_cgroup asynchronously without lock_page_cgroup(). 2569 * We access a page_cgroup asynchronously without lock_page_cgroup().
2570 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup 2570 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2571 * is accessed after testing USED bit. To make pc->mem_cgroup visible 2571 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2572 * before USED bit, we need memory barrier here. 2572 * before USED bit, we need memory barrier here.
2573 * See mem_cgroup_add_lru_list(), etc. 2573 * See mem_cgroup_add_lru_list(), etc.
2574 */ 2574 */
2575 smp_wmb(); 2575 smp_wmb();
2576 SetPageCgroupUsed(pc); 2576 SetPageCgroupUsed(pc);
2577 2577
2578 if (lrucare) { 2578 if (lrucare) {
2579 if (was_on_lru) { 2579 if (was_on_lru) {
2580 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); 2580 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2581 VM_BUG_ON(PageLRU(page)); 2581 VM_BUG_ON(PageLRU(page));
2582 SetPageLRU(page); 2582 SetPageLRU(page);
2583 add_page_to_lru_list(page, lruvec, page_lru(page)); 2583 add_page_to_lru_list(page, lruvec, page_lru(page));
2584 } 2584 }
2585 spin_unlock_irq(&zone->lru_lock); 2585 spin_unlock_irq(&zone->lru_lock);
2586 } 2586 }
2587 2587
2588 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON) 2588 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2589 anon = true; 2589 anon = true;
2590 else 2590 else
2591 anon = false; 2591 anon = false;
2592 2592
2593 mem_cgroup_charge_statistics(memcg, anon, nr_pages); 2593 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2594 unlock_page_cgroup(pc); 2594 unlock_page_cgroup(pc);
2595 2595
2596 /* 2596 /*
2597 * "charge_statistics" updated event counter. Then, check it. 2597 * "charge_statistics" updated event counter. Then, check it.
2598 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree. 2598 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2599 * if they exceeds softlimit. 2599 * if they exceeds softlimit.
2600 */ 2600 */
2601 memcg_check_events(memcg, page); 2601 memcg_check_events(memcg, page);
2602 } 2602 }
2603 2603
2604 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2604 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2605 2605
2606 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION) 2606 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2607 /* 2607 /*
2608 * Because tail pages are not marked as "used", set it. We're under 2608 * Because tail pages are not marked as "used", set it. We're under
2609 * zone->lru_lock, 'splitting on pmd' and compound_lock. 2609 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2610 * charge/uncharge will be never happen and move_account() is done under 2610 * charge/uncharge will be never happen and move_account() is done under
2611 * compound_lock(), so we don't have to take care of races. 2611 * compound_lock(), so we don't have to take care of races.
2612 */ 2612 */
2613 void mem_cgroup_split_huge_fixup(struct page *head) 2613 void mem_cgroup_split_huge_fixup(struct page *head)
2614 { 2614 {
2615 struct page_cgroup *head_pc = lookup_page_cgroup(head); 2615 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2616 struct page_cgroup *pc; 2616 struct page_cgroup *pc;
2617 int i; 2617 int i;
2618 2618
2619 if (mem_cgroup_disabled()) 2619 if (mem_cgroup_disabled())
2620 return; 2620 return;
2621 for (i = 1; i < HPAGE_PMD_NR; i++) { 2621 for (i = 1; i < HPAGE_PMD_NR; i++) {
2622 pc = head_pc + i; 2622 pc = head_pc + i;
2623 pc->mem_cgroup = head_pc->mem_cgroup; 2623 pc->mem_cgroup = head_pc->mem_cgroup;
2624 smp_wmb();/* see __commit_charge() */ 2624 smp_wmb();/* see __commit_charge() */
2625 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT; 2625 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2626 } 2626 }
2627 } 2627 }
2628 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2628 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2629 2629
2630 /** 2630 /**
2631 * mem_cgroup_move_account - move account of the page 2631 * mem_cgroup_move_account - move account of the page
2632 * @page: the page 2632 * @page: the page
2633 * @nr_pages: number of regular pages (>1 for huge pages) 2633 * @nr_pages: number of regular pages (>1 for huge pages)
2634 * @pc: page_cgroup of the page. 2634 * @pc: page_cgroup of the page.
2635 * @from: mem_cgroup which the page is moved from. 2635 * @from: mem_cgroup which the page is moved from.
2636 * @to: mem_cgroup which the page is moved to. @from != @to. 2636 * @to: mem_cgroup which the page is moved to. @from != @to.
2637 * 2637 *
2638 * The caller must confirm following. 2638 * The caller must confirm following.
2639 * - page is not on LRU (isolate_page() is useful.) 2639 * - page is not on LRU (isolate_page() is useful.)
2640 * - compound_lock is held when nr_pages > 1 2640 * - compound_lock is held when nr_pages > 1
2641 * 2641 *
2642 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 2642 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2643 * from old cgroup. 2643 * from old cgroup.
2644 */ 2644 */
2645 static int mem_cgroup_move_account(struct page *page, 2645 static int mem_cgroup_move_account(struct page *page,
2646 unsigned int nr_pages, 2646 unsigned int nr_pages,
2647 struct page_cgroup *pc, 2647 struct page_cgroup *pc,
2648 struct mem_cgroup *from, 2648 struct mem_cgroup *from,
2649 struct mem_cgroup *to) 2649 struct mem_cgroup *to)
2650 { 2650 {
2651 unsigned long flags; 2651 unsigned long flags;
2652 int ret; 2652 int ret;
2653 bool anon = PageAnon(page); 2653 bool anon = PageAnon(page);
2654 2654
2655 VM_BUG_ON(from == to); 2655 VM_BUG_ON(from == to);
2656 VM_BUG_ON(PageLRU(page)); 2656 VM_BUG_ON(PageLRU(page));
2657 /* 2657 /*
2658 * The page is isolated from LRU. So, collapse function 2658 * The page is isolated from LRU. So, collapse function
2659 * will not handle this page. But page splitting can happen. 2659 * will not handle this page. But page splitting can happen.
2660 * Do this check under compound_page_lock(). The caller should 2660 * Do this check under compound_page_lock(). The caller should
2661 * hold it. 2661 * hold it.
2662 */ 2662 */
2663 ret = -EBUSY; 2663 ret = -EBUSY;
2664 if (nr_pages > 1 && !PageTransHuge(page)) 2664 if (nr_pages > 1 && !PageTransHuge(page))
2665 goto out; 2665 goto out;
2666 2666
2667 lock_page_cgroup(pc); 2667 lock_page_cgroup(pc);
2668 2668
2669 ret = -EINVAL; 2669 ret = -EINVAL;
2670 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from) 2670 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2671 goto unlock; 2671 goto unlock;
2672 2672
2673 move_lock_mem_cgroup(from, &flags); 2673 move_lock_mem_cgroup(from, &flags);
2674 2674
2675 if (!anon && page_mapped(page)) { 2675 if (!anon && page_mapped(page)) {
2676 /* Update mapped_file data for mem_cgroup */ 2676 /* Update mapped_file data for mem_cgroup */
2677 preempt_disable(); 2677 preempt_disable();
2678 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); 2678 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2679 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); 2679 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2680 preempt_enable(); 2680 preempt_enable();
2681 } 2681 }
2682 mem_cgroup_charge_statistics(from, anon, -nr_pages); 2682 mem_cgroup_charge_statistics(from, anon, -nr_pages);
2683 2683
2684 /* caller should have done css_get */ 2684 /* caller should have done css_get */
2685 pc->mem_cgroup = to; 2685 pc->mem_cgroup = to;
2686 mem_cgroup_charge_statistics(to, anon, nr_pages); 2686 mem_cgroup_charge_statistics(to, anon, nr_pages);
2687 /* 2687 /*
2688 * We charges against "to" which may not have any tasks. Then, "to" 2688 * We charges against "to" which may not have any tasks. Then, "to"
2689 * can be under rmdir(). But in current implementation, caller of 2689 * can be under rmdir(). But in current implementation, caller of
2690 * this function is just force_empty() and move charge, so it's 2690 * this function is just force_empty() and move charge, so it's
2691 * guaranteed that "to" is never removed. So, we don't check rmdir 2691 * guaranteed that "to" is never removed. So, we don't check rmdir
2692 * status here. 2692 * status here.
2693 */ 2693 */
2694 move_unlock_mem_cgroup(from, &flags); 2694 move_unlock_mem_cgroup(from, &flags);
2695 ret = 0; 2695 ret = 0;
2696 unlock: 2696 unlock:
2697 unlock_page_cgroup(pc); 2697 unlock_page_cgroup(pc);
2698 /* 2698 /*
2699 * check events 2699 * check events
2700 */ 2700 */
2701 memcg_check_events(to, page); 2701 memcg_check_events(to, page);
2702 memcg_check_events(from, page); 2702 memcg_check_events(from, page);
2703 out: 2703 out:
2704 return ret; 2704 return ret;
2705 } 2705 }
2706 2706
2707 /* 2707 /*
2708 * move charges to its parent. 2708 * move charges to its parent.
2709 */ 2709 */
2710 2710
2711 static int mem_cgroup_move_parent(struct page *page, 2711 static int mem_cgroup_move_parent(struct page *page,
2712 struct page_cgroup *pc, 2712 struct page_cgroup *pc,
2713 struct mem_cgroup *child) 2713 struct mem_cgroup *child)
2714 { 2714 {
2715 struct mem_cgroup *parent; 2715 struct mem_cgroup *parent;
2716 unsigned int nr_pages; 2716 unsigned int nr_pages;
2717 unsigned long uninitialized_var(flags); 2717 unsigned long uninitialized_var(flags);
2718 int ret; 2718 int ret;
2719 2719
2720 /* Is ROOT ? */ 2720 /* Is ROOT ? */
2721 if (mem_cgroup_is_root(child)) 2721 if (mem_cgroup_is_root(child))
2722 return -EINVAL; 2722 return -EINVAL;
2723 2723
2724 ret = -EBUSY; 2724 ret = -EBUSY;
2725 if (!get_page_unless_zero(page)) 2725 if (!get_page_unless_zero(page))
2726 goto out; 2726 goto out;
2727 if (isolate_lru_page(page)) 2727 if (isolate_lru_page(page))
2728 goto put; 2728 goto put;
2729 2729
2730 nr_pages = hpage_nr_pages(page); 2730 nr_pages = hpage_nr_pages(page);
2731 2731
2732 parent = parent_mem_cgroup(child); 2732 parent = parent_mem_cgroup(child);
2733 /* 2733 /*
2734 * If no parent, move charges to root cgroup. 2734 * If no parent, move charges to root cgroup.
2735 */ 2735 */
2736 if (!parent) 2736 if (!parent)
2737 parent = root_mem_cgroup; 2737 parent = root_mem_cgroup;
2738 2738
2739 if (nr_pages > 1) 2739 if (nr_pages > 1)
2740 flags = compound_lock_irqsave(page); 2740 flags = compound_lock_irqsave(page);
2741 2741
2742 ret = mem_cgroup_move_account(page, nr_pages, 2742 ret = mem_cgroup_move_account(page, nr_pages,
2743 pc, child, parent); 2743 pc, child, parent);
2744 if (!ret) 2744 if (!ret)
2745 __mem_cgroup_cancel_local_charge(child, nr_pages); 2745 __mem_cgroup_cancel_local_charge(child, nr_pages);
2746 2746
2747 if (nr_pages > 1) 2747 if (nr_pages > 1)
2748 compound_unlock_irqrestore(page, flags); 2748 compound_unlock_irqrestore(page, flags);
2749 putback_lru_page(page); 2749 putback_lru_page(page);
2750 put: 2750 put:
2751 put_page(page); 2751 put_page(page);
2752 out: 2752 out:
2753 return ret; 2753 return ret;
2754 } 2754 }
2755 2755
2756 /* 2756 /*
2757 * Charge the memory controller for page usage. 2757 * Charge the memory controller for page usage.
2758 * Return 2758 * Return
2759 * 0 if the charge was successful 2759 * 0 if the charge was successful
2760 * < 0 if the cgroup is over its limit 2760 * < 0 if the cgroup is over its limit
2761 */ 2761 */
2762 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, 2762 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2763 gfp_t gfp_mask, enum charge_type ctype) 2763 gfp_t gfp_mask, enum charge_type ctype)
2764 { 2764 {
2765 struct mem_cgroup *memcg = NULL; 2765 struct mem_cgroup *memcg = NULL;
2766 unsigned int nr_pages = 1; 2766 unsigned int nr_pages = 1;
2767 bool oom = true; 2767 bool oom = true;
2768 int ret; 2768 int ret;
2769 2769
2770 if (PageTransHuge(page)) { 2770 if (PageTransHuge(page)) {
2771 nr_pages <<= compound_order(page); 2771 nr_pages <<= compound_order(page);
2772 VM_BUG_ON(!PageTransHuge(page)); 2772 VM_BUG_ON(!PageTransHuge(page));
2773 /* 2773 /*
2774 * Never OOM-kill a process for a huge page. The 2774 * Never OOM-kill a process for a huge page. The
2775 * fault handler will fall back to regular pages. 2775 * fault handler will fall back to regular pages.
2776 */ 2776 */
2777 oom = false; 2777 oom = false;
2778 } 2778 }
2779 2779
2780 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom); 2780 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2781 if (ret == -ENOMEM) 2781 if (ret == -ENOMEM)
2782 return ret; 2782 return ret;
2783 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false); 2783 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2784 return 0; 2784 return 0;
2785 } 2785 }
2786 2786
2787 int mem_cgroup_newpage_charge(struct page *page, 2787 int mem_cgroup_newpage_charge(struct page *page,
2788 struct mm_struct *mm, gfp_t gfp_mask) 2788 struct mm_struct *mm, gfp_t gfp_mask)
2789 { 2789 {
2790 if (mem_cgroup_disabled()) 2790 if (mem_cgroup_disabled())
2791 return 0; 2791 return 0;
2792 VM_BUG_ON(page_mapped(page)); 2792 VM_BUG_ON(page_mapped(page));
2793 VM_BUG_ON(page->mapping && !PageAnon(page)); 2793 VM_BUG_ON(page->mapping && !PageAnon(page));
2794 VM_BUG_ON(!mm); 2794 VM_BUG_ON(!mm);
2795 return mem_cgroup_charge_common(page, mm, gfp_mask, 2795 return mem_cgroup_charge_common(page, mm, gfp_mask,
2796 MEM_CGROUP_CHARGE_TYPE_ANON); 2796 MEM_CGROUP_CHARGE_TYPE_ANON);
2797 } 2797 }
2798 2798
2799 static void 2799 static void
2800 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr, 2800 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2801 enum charge_type ctype); 2801 enum charge_type ctype);
2802 2802
2803 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, 2803 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2804 gfp_t gfp_mask) 2804 gfp_t gfp_mask)
2805 { 2805 {
2806 struct mem_cgroup *memcg = NULL; 2806 struct mem_cgroup *memcg = NULL;
2807 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 2807 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2808 int ret; 2808 int ret;
2809 2809
2810 if (mem_cgroup_disabled()) 2810 if (mem_cgroup_disabled())
2811 return 0; 2811 return 0;
2812 if (PageCompound(page)) 2812 if (PageCompound(page))
2813 return 0; 2813 return 0;
2814 2814
2815 if (unlikely(!mm)) 2815 if (unlikely(!mm))
2816 mm = &init_mm; 2816 mm = &init_mm;
2817 if (!page_is_file_cache(page)) 2817 if (!page_is_file_cache(page))
2818 type = MEM_CGROUP_CHARGE_TYPE_SHMEM; 2818 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2819 2819
2820 if (!PageSwapCache(page)) 2820 if (!PageSwapCache(page))
2821 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type); 2821 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2822 else { /* page is swapcache/shmem */ 2822 else { /* page is swapcache/shmem */
2823 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg); 2823 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2824 if (!ret) 2824 if (!ret)
2825 __mem_cgroup_commit_charge_swapin(page, memcg, type); 2825 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2826 } 2826 }
2827 return ret; 2827 return ret;
2828 } 2828 }
2829 2829
2830 /* 2830 /*
2831 * While swap-in, try_charge -> commit or cancel, the page is locked. 2831 * While swap-in, try_charge -> commit or cancel, the page is locked.
2832 * And when try_charge() successfully returns, one refcnt to memcg without 2832 * And when try_charge() successfully returns, one refcnt to memcg without
2833 * struct page_cgroup is acquired. This refcnt will be consumed by 2833 * struct page_cgroup is acquired. This refcnt will be consumed by
2834 * "commit()" or removed by "cancel()" 2834 * "commit()" or removed by "cancel()"
2835 */ 2835 */
2836 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, 2836 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2837 struct page *page, 2837 struct page *page,
2838 gfp_t mask, struct mem_cgroup **memcgp) 2838 gfp_t mask, struct mem_cgroup **memcgp)
2839 { 2839 {
2840 struct mem_cgroup *memcg; 2840 struct mem_cgroup *memcg;
2841 int ret; 2841 int ret;
2842 2842
2843 *memcgp = NULL; 2843 *memcgp = NULL;
2844 2844
2845 if (mem_cgroup_disabled()) 2845 if (mem_cgroup_disabled())
2846 return 0; 2846 return 0;
2847 2847
2848 if (!do_swap_account) 2848 if (!do_swap_account)
2849 goto charge_cur_mm; 2849 goto charge_cur_mm;
2850 /* 2850 /*
2851 * A racing thread's fault, or swapoff, may have already updated 2851 * A racing thread's fault, or swapoff, may have already updated
2852 * the pte, and even removed page from swap cache: in those cases 2852 * the pte, and even removed page from swap cache: in those cases
2853 * do_swap_page()'s pte_same() test will fail; but there's also a 2853 * do_swap_page()'s pte_same() test will fail; but there's also a
2854 * KSM case which does need to charge the page. 2854 * KSM case which does need to charge the page.
2855 */ 2855 */
2856 if (!PageSwapCache(page)) 2856 if (!PageSwapCache(page))
2857 goto charge_cur_mm; 2857 goto charge_cur_mm;
2858 memcg = try_get_mem_cgroup_from_page(page); 2858 memcg = try_get_mem_cgroup_from_page(page);
2859 if (!memcg) 2859 if (!memcg)
2860 goto charge_cur_mm; 2860 goto charge_cur_mm;
2861 *memcgp = memcg; 2861 *memcgp = memcg;
2862 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true); 2862 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2863 css_put(&memcg->css); 2863 css_put(&memcg->css);
2864 if (ret == -EINTR) 2864 if (ret == -EINTR)
2865 ret = 0; 2865 ret = 0;
2866 return ret; 2866 return ret;
2867 charge_cur_mm: 2867 charge_cur_mm:
2868 if (unlikely(!mm)) 2868 if (unlikely(!mm))
2869 mm = &init_mm; 2869 mm = &init_mm;
2870 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true); 2870 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2871 if (ret == -EINTR) 2871 if (ret == -EINTR)
2872 ret = 0; 2872 ret = 0;
2873 return ret; 2873 return ret;
2874 } 2874 }
2875 2875
2876 static void 2876 static void
2877 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg, 2877 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2878 enum charge_type ctype) 2878 enum charge_type ctype)
2879 { 2879 {
2880 if (mem_cgroup_disabled()) 2880 if (mem_cgroup_disabled())
2881 return; 2881 return;
2882 if (!memcg) 2882 if (!memcg)
2883 return; 2883 return;
2884 cgroup_exclude_rmdir(&memcg->css); 2884 cgroup_exclude_rmdir(&memcg->css);
2885 2885
2886 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true); 2886 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2887 /* 2887 /*
2888 * Now swap is on-memory. This means this page may be 2888 * Now swap is on-memory. This means this page may be
2889 * counted both as mem and swap....double count. 2889 * counted both as mem and swap....double count.
2890 * Fix it by uncharging from memsw. Basically, this SwapCache is stable 2890 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2891 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() 2891 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2892 * may call delete_from_swap_cache() before reach here. 2892 * may call delete_from_swap_cache() before reach here.
2893 */ 2893 */
2894 if (do_swap_account && PageSwapCache(page)) { 2894 if (do_swap_account && PageSwapCache(page)) {
2895 swp_entry_t ent = {.val = page_private(page)}; 2895 swp_entry_t ent = {.val = page_private(page)};
2896 mem_cgroup_uncharge_swap(ent); 2896 mem_cgroup_uncharge_swap(ent);
2897 } 2897 }
2898 /* 2898 /*
2899 * At swapin, we may charge account against cgroup which has no tasks. 2899 * At swapin, we may charge account against cgroup which has no tasks.
2900 * So, rmdir()->pre_destroy() can be called while we do this charge. 2900 * So, rmdir()->pre_destroy() can be called while we do this charge.
2901 * In that case, we need to call pre_destroy() again. check it here. 2901 * In that case, we need to call pre_destroy() again. check it here.
2902 */ 2902 */
2903 cgroup_release_and_wakeup_rmdir(&memcg->css); 2903 cgroup_release_and_wakeup_rmdir(&memcg->css);
2904 } 2904 }
2905 2905
2906 void mem_cgroup_commit_charge_swapin(struct page *page, 2906 void mem_cgroup_commit_charge_swapin(struct page *page,
2907 struct mem_cgroup *memcg) 2907 struct mem_cgroup *memcg)
2908 { 2908 {
2909 __mem_cgroup_commit_charge_swapin(page, memcg, 2909 __mem_cgroup_commit_charge_swapin(page, memcg,
2910 MEM_CGROUP_CHARGE_TYPE_ANON); 2910 MEM_CGROUP_CHARGE_TYPE_ANON);
2911 } 2911 }
2912 2912
2913 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg) 2913 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2914 { 2914 {
2915 if (mem_cgroup_disabled()) 2915 if (mem_cgroup_disabled())
2916 return; 2916 return;
2917 if (!memcg) 2917 if (!memcg)
2918 return; 2918 return;
2919 __mem_cgroup_cancel_charge(memcg, 1); 2919 __mem_cgroup_cancel_charge(memcg, 1);
2920 } 2920 }
2921 2921
2922 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg, 2922 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2923 unsigned int nr_pages, 2923 unsigned int nr_pages,
2924 const enum charge_type ctype) 2924 const enum charge_type ctype)
2925 { 2925 {
2926 struct memcg_batch_info *batch = NULL; 2926 struct memcg_batch_info *batch = NULL;
2927 bool uncharge_memsw = true; 2927 bool uncharge_memsw = true;
2928 2928
2929 /* If swapout, usage of swap doesn't decrease */ 2929 /* If swapout, usage of swap doesn't decrease */
2930 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) 2930 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2931 uncharge_memsw = false; 2931 uncharge_memsw = false;
2932 2932
2933 batch = &current->memcg_batch; 2933 batch = &current->memcg_batch;
2934 /* 2934 /*
2935 * In usual, we do css_get() when we remember memcg pointer. 2935 * In usual, we do css_get() when we remember memcg pointer.
2936 * But in this case, we keep res->usage until end of a series of 2936 * But in this case, we keep res->usage until end of a series of
2937 * uncharges. Then, it's ok to ignore memcg's refcnt. 2937 * uncharges. Then, it's ok to ignore memcg's refcnt.
2938 */ 2938 */
2939 if (!batch->memcg) 2939 if (!batch->memcg)
2940 batch->memcg = memcg; 2940 batch->memcg = memcg;
2941 /* 2941 /*
2942 * do_batch > 0 when unmapping pages or inode invalidate/truncate. 2942 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2943 * In those cases, all pages freed continuously can be expected to be in 2943 * In those cases, all pages freed continuously can be expected to be in
2944 * the same cgroup and we have chance to coalesce uncharges. 2944 * the same cgroup and we have chance to coalesce uncharges.
2945 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE) 2945 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2946 * because we want to do uncharge as soon as possible. 2946 * because we want to do uncharge as soon as possible.
2947 */ 2947 */
2948 2948
2949 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE)) 2949 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2950 goto direct_uncharge; 2950 goto direct_uncharge;
2951 2951
2952 if (nr_pages > 1) 2952 if (nr_pages > 1)
2953 goto direct_uncharge; 2953 goto direct_uncharge;
2954 2954
2955 /* 2955 /*
2956 * In typical case, batch->memcg == mem. This means we can 2956 * In typical case, batch->memcg == mem. This means we can
2957 * merge a series of uncharges to an uncharge of res_counter. 2957 * merge a series of uncharges to an uncharge of res_counter.
2958 * If not, we uncharge res_counter ony by one. 2958 * If not, we uncharge res_counter ony by one.
2959 */ 2959 */
2960 if (batch->memcg != memcg) 2960 if (batch->memcg != memcg)
2961 goto direct_uncharge; 2961 goto direct_uncharge;
2962 /* remember freed charge and uncharge it later */ 2962 /* remember freed charge and uncharge it later */
2963 batch->nr_pages++; 2963 batch->nr_pages++;
2964 if (uncharge_memsw) 2964 if (uncharge_memsw)
2965 batch->memsw_nr_pages++; 2965 batch->memsw_nr_pages++;
2966 return; 2966 return;
2967 direct_uncharge: 2967 direct_uncharge:
2968 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE); 2968 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2969 if (uncharge_memsw) 2969 if (uncharge_memsw)
2970 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE); 2970 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2971 if (unlikely(batch->memcg != memcg)) 2971 if (unlikely(batch->memcg != memcg))
2972 memcg_oom_recover(memcg); 2972 memcg_oom_recover(memcg);
2973 } 2973 }
2974 2974
2975 /* 2975 /*
2976 * uncharge if !page_mapped(page) 2976 * uncharge if !page_mapped(page)
2977 */ 2977 */
2978 static struct mem_cgroup * 2978 static struct mem_cgroup *
2979 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype, 2979 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
2980 bool end_migration) 2980 bool end_migration)
2981 { 2981 {
2982 struct mem_cgroup *memcg = NULL; 2982 struct mem_cgroup *memcg = NULL;
2983 unsigned int nr_pages = 1; 2983 unsigned int nr_pages = 1;
2984 struct page_cgroup *pc; 2984 struct page_cgroup *pc;
2985 bool anon; 2985 bool anon;
2986 2986
2987 if (mem_cgroup_disabled()) 2987 if (mem_cgroup_disabled())
2988 return NULL; 2988 return NULL;
2989 2989
2990 VM_BUG_ON(PageSwapCache(page)); 2990 VM_BUG_ON(PageSwapCache(page));
2991 2991
2992 if (PageTransHuge(page)) { 2992 if (PageTransHuge(page)) {
2993 nr_pages <<= compound_order(page); 2993 nr_pages <<= compound_order(page);
2994 VM_BUG_ON(!PageTransHuge(page)); 2994 VM_BUG_ON(!PageTransHuge(page));
2995 } 2995 }
2996 /* 2996 /*
2997 * Check if our page_cgroup is valid 2997 * Check if our page_cgroup is valid
2998 */ 2998 */
2999 pc = lookup_page_cgroup(page); 2999 pc = lookup_page_cgroup(page);
3000 if (unlikely(!PageCgroupUsed(pc))) 3000 if (unlikely(!PageCgroupUsed(pc)))
3001 return NULL; 3001 return NULL;
3002 3002
3003 lock_page_cgroup(pc); 3003 lock_page_cgroup(pc);
3004 3004
3005 memcg = pc->mem_cgroup; 3005 memcg = pc->mem_cgroup;
3006 3006
3007 if (!PageCgroupUsed(pc)) 3007 if (!PageCgroupUsed(pc))
3008 goto unlock_out; 3008 goto unlock_out;
3009 3009
3010 anon = PageAnon(page); 3010 anon = PageAnon(page);
3011 3011
3012 switch (ctype) { 3012 switch (ctype) {
3013 case MEM_CGROUP_CHARGE_TYPE_ANON: 3013 case MEM_CGROUP_CHARGE_TYPE_ANON:
3014 /* 3014 /*
3015 * Generally PageAnon tells if it's the anon statistics to be 3015 * Generally PageAnon tells if it's the anon statistics to be
3016 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is 3016 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3017 * used before page reached the stage of being marked PageAnon. 3017 * used before page reached the stage of being marked PageAnon.
3018 */ 3018 */
3019 anon = true; 3019 anon = true;
3020 /* fallthrough */ 3020 /* fallthrough */
3021 case MEM_CGROUP_CHARGE_TYPE_DROP: 3021 case MEM_CGROUP_CHARGE_TYPE_DROP:
3022 /* See mem_cgroup_prepare_migration() */ 3022 /* See mem_cgroup_prepare_migration() */
3023 if (page_mapped(page)) 3023 if (page_mapped(page))
3024 goto unlock_out; 3024 goto unlock_out;
3025 /* 3025 /*
3026 * Pages under migration may not be uncharged. But 3026 * Pages under migration may not be uncharged. But
3027 * end_migration() /must/ be the one uncharging the 3027 * end_migration() /must/ be the one uncharging the
3028 * unused post-migration page and so it has to call 3028 * unused post-migration page and so it has to call
3029 * here with the migration bit still set. See the 3029 * here with the migration bit still set. See the
3030 * res_counter handling below. 3030 * res_counter handling below.
3031 */ 3031 */
3032 if (!end_migration && PageCgroupMigration(pc)) 3032 if (!end_migration && PageCgroupMigration(pc))
3033 goto unlock_out; 3033 goto unlock_out;
3034 break; 3034 break;
3035 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: 3035 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3036 if (!PageAnon(page)) { /* Shared memory */ 3036 if (!PageAnon(page)) { /* Shared memory */
3037 if (page->mapping && !page_is_file_cache(page)) 3037 if (page->mapping && !page_is_file_cache(page))
3038 goto unlock_out; 3038 goto unlock_out;
3039 } else if (page_mapped(page)) /* Anon */ 3039 } else if (page_mapped(page)) /* Anon */
3040 goto unlock_out; 3040 goto unlock_out;
3041 break; 3041 break;
3042 default: 3042 default:
3043 break; 3043 break;
3044 } 3044 }
3045 3045
3046 mem_cgroup_charge_statistics(memcg, anon, -nr_pages); 3046 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
3047 3047
3048 ClearPageCgroupUsed(pc); 3048 ClearPageCgroupUsed(pc);
3049 /* 3049 /*
3050 * pc->mem_cgroup is not cleared here. It will be accessed when it's 3050 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3051 * freed from LRU. This is safe because uncharged page is expected not 3051 * freed from LRU. This is safe because uncharged page is expected not
3052 * to be reused (freed soon). Exception is SwapCache, it's handled by 3052 * to be reused (freed soon). Exception is SwapCache, it's handled by
3053 * special functions. 3053 * special functions.
3054 */ 3054 */
3055 3055
3056 unlock_page_cgroup(pc); 3056 unlock_page_cgroup(pc);
3057 /* 3057 /*
3058 * even after unlock, we have memcg->res.usage here and this memcg 3058 * even after unlock, we have memcg->res.usage here and this memcg
3059 * will never be freed. 3059 * will never be freed.
3060 */ 3060 */
3061 memcg_check_events(memcg, page); 3061 memcg_check_events(memcg, page);
3062 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { 3062 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3063 mem_cgroup_swap_statistics(memcg, true); 3063 mem_cgroup_swap_statistics(memcg, true);
3064 mem_cgroup_get(memcg); 3064 mem_cgroup_get(memcg);
3065 } 3065 }
3066 /* 3066 /*
3067 * Migration does not charge the res_counter for the 3067 * Migration does not charge the res_counter for the
3068 * replacement page, so leave it alone when phasing out the 3068 * replacement page, so leave it alone when phasing out the
3069 * page that is unused after the migration. 3069 * page that is unused after the migration.
3070 */ 3070 */
3071 if (!end_migration && !mem_cgroup_is_root(memcg)) 3071 if (!end_migration && !mem_cgroup_is_root(memcg))
3072 mem_cgroup_do_uncharge(memcg, nr_pages, ctype); 3072 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3073 3073
3074 return memcg; 3074 return memcg;
3075 3075
3076 unlock_out: 3076 unlock_out:
3077 unlock_page_cgroup(pc); 3077 unlock_page_cgroup(pc);
3078 return NULL; 3078 return NULL;
3079 } 3079 }
3080 3080
3081 void mem_cgroup_uncharge_page(struct page *page) 3081 void mem_cgroup_uncharge_page(struct page *page)
3082 { 3082 {
3083 /* early check. */ 3083 /* early check. */
3084 if (page_mapped(page)) 3084 if (page_mapped(page))
3085 return; 3085 return;
3086 VM_BUG_ON(page->mapping && !PageAnon(page)); 3086 VM_BUG_ON(page->mapping && !PageAnon(page));
3087 if (PageSwapCache(page)) 3087 if (PageSwapCache(page))
3088 return; 3088 return;
3089 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false); 3089 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
3090 } 3090 }
3091 3091
3092 void mem_cgroup_uncharge_cache_page(struct page *page) 3092 void mem_cgroup_uncharge_cache_page(struct page *page)
3093 { 3093 {
3094 VM_BUG_ON(page_mapped(page)); 3094 VM_BUG_ON(page_mapped(page));
3095 VM_BUG_ON(page->mapping); 3095 VM_BUG_ON(page->mapping);
3096 if (PageSwapCache(page))
3097 return;
3098 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false); 3096 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
3099 } 3097 }
3100 3098
3101 /* 3099 /*
3102 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate. 3100 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3103 * In that cases, pages are freed continuously and we can expect pages 3101 * In that cases, pages are freed continuously and we can expect pages
3104 * are in the same memcg. All these calls itself limits the number of 3102 * are in the same memcg. All these calls itself limits the number of
3105 * pages freed at once, then uncharge_start/end() is called properly. 3103 * pages freed at once, then uncharge_start/end() is called properly.
3106 * This may be called prural(2) times in a context, 3104 * This may be called prural(2) times in a context,
3107 */ 3105 */
3108 3106
3109 void mem_cgroup_uncharge_start(void) 3107 void mem_cgroup_uncharge_start(void)
3110 { 3108 {
3111 current->memcg_batch.do_batch++; 3109 current->memcg_batch.do_batch++;
3112 /* We can do nest. */ 3110 /* We can do nest. */
3113 if (current->memcg_batch.do_batch == 1) { 3111 if (current->memcg_batch.do_batch == 1) {
3114 current->memcg_batch.memcg = NULL; 3112 current->memcg_batch.memcg = NULL;
3115 current->memcg_batch.nr_pages = 0; 3113 current->memcg_batch.nr_pages = 0;
3116 current->memcg_batch.memsw_nr_pages = 0; 3114 current->memcg_batch.memsw_nr_pages = 0;
3117 } 3115 }
3118 } 3116 }
3119 3117
3120 void mem_cgroup_uncharge_end(void) 3118 void mem_cgroup_uncharge_end(void)
3121 { 3119 {
3122 struct memcg_batch_info *batch = &current->memcg_batch; 3120 struct memcg_batch_info *batch = &current->memcg_batch;
3123 3121
3124 if (!batch->do_batch) 3122 if (!batch->do_batch)
3125 return; 3123 return;
3126 3124
3127 batch->do_batch--; 3125 batch->do_batch--;
3128 if (batch->do_batch) /* If stacked, do nothing. */ 3126 if (batch->do_batch) /* If stacked, do nothing. */
3129 return; 3127 return;
3130 3128
3131 if (!batch->memcg) 3129 if (!batch->memcg)
3132 return; 3130 return;
3133 /* 3131 /*
3134 * This "batch->memcg" is valid without any css_get/put etc... 3132 * This "batch->memcg" is valid without any css_get/put etc...
3135 * bacause we hide charges behind us. 3133 * bacause we hide charges behind us.
3136 */ 3134 */
3137 if (batch->nr_pages) 3135 if (batch->nr_pages)
3138 res_counter_uncharge(&batch->memcg->res, 3136 res_counter_uncharge(&batch->memcg->res,
3139 batch->nr_pages * PAGE_SIZE); 3137 batch->nr_pages * PAGE_SIZE);
3140 if (batch->memsw_nr_pages) 3138 if (batch->memsw_nr_pages)
3141 res_counter_uncharge(&batch->memcg->memsw, 3139 res_counter_uncharge(&batch->memcg->memsw,
3142 batch->memsw_nr_pages * PAGE_SIZE); 3140 batch->memsw_nr_pages * PAGE_SIZE);
3143 memcg_oom_recover(batch->memcg); 3141 memcg_oom_recover(batch->memcg);
3144 /* forget this pointer (for sanity check) */ 3142 /* forget this pointer (for sanity check) */
3145 batch->memcg = NULL; 3143 batch->memcg = NULL;
3146 } 3144 }
3147 3145
3148 #ifdef CONFIG_SWAP 3146 #ifdef CONFIG_SWAP
3149 /* 3147 /*
3150 * called after __delete_from_swap_cache() and drop "page" account. 3148 * called after __delete_from_swap_cache() and drop "page" account.
3151 * memcg information is recorded to swap_cgroup of "ent" 3149 * memcg information is recorded to swap_cgroup of "ent"
3152 */ 3150 */
3153 void 3151 void
3154 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) 3152 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3155 { 3153 {
3156 struct mem_cgroup *memcg; 3154 struct mem_cgroup *memcg;
3157 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT; 3155 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3158 3156
3159 if (!swapout) /* this was a swap cache but the swap is unused ! */ 3157 if (!swapout) /* this was a swap cache but the swap is unused ! */
3160 ctype = MEM_CGROUP_CHARGE_TYPE_DROP; 3158 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3161 3159
3162 if (PageSwapCache(page))
3163 return;
3164 memcg = __mem_cgroup_uncharge_common(page, ctype, false); 3160 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
3165 3161
3166 /* 3162 /*
3167 * record memcg information, if swapout && memcg != NULL, 3163 * record memcg information, if swapout && memcg != NULL,
3168 * mem_cgroup_get() was called in uncharge(). 3164 * mem_cgroup_get() was called in uncharge().
3169 */ 3165 */
3170 if (do_swap_account && swapout && memcg) 3166 if (do_swap_account && swapout && memcg)
3171 swap_cgroup_record(ent, css_id(&memcg->css)); 3167 swap_cgroup_record(ent, css_id(&memcg->css));
3172 } 3168 }
3173 #endif 3169 #endif
3174 3170
3175 #ifdef CONFIG_MEMCG_SWAP 3171 #ifdef CONFIG_MEMCG_SWAP
3176 /* 3172 /*
3177 * called from swap_entry_free(). remove record in swap_cgroup and 3173 * called from swap_entry_free(). remove record in swap_cgroup and
3178 * uncharge "memsw" account. 3174 * uncharge "memsw" account.
3179 */ 3175 */
3180 void mem_cgroup_uncharge_swap(swp_entry_t ent) 3176 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3181 { 3177 {
3182 struct mem_cgroup *memcg; 3178 struct mem_cgroup *memcg;
3183 unsigned short id; 3179 unsigned short id;
3184 3180
3185 if (!do_swap_account) 3181 if (!do_swap_account)
3186 return; 3182 return;
3187 3183
3188 id = swap_cgroup_record(ent, 0); 3184 id = swap_cgroup_record(ent, 0);
3189 rcu_read_lock(); 3185 rcu_read_lock();
3190 memcg = mem_cgroup_lookup(id); 3186 memcg = mem_cgroup_lookup(id);
3191 if (memcg) { 3187 if (memcg) {
3192 /* 3188 /*
3193 * We uncharge this because swap is freed. 3189 * We uncharge this because swap is freed.
3194 * This memcg can be obsolete one. We avoid calling css_tryget 3190 * This memcg can be obsolete one. We avoid calling css_tryget
3195 */ 3191 */
3196 if (!mem_cgroup_is_root(memcg)) 3192 if (!mem_cgroup_is_root(memcg))
3197 res_counter_uncharge(&memcg->memsw, PAGE_SIZE); 3193 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3198 mem_cgroup_swap_statistics(memcg, false); 3194 mem_cgroup_swap_statistics(memcg, false);
3199 mem_cgroup_put(memcg); 3195 mem_cgroup_put(memcg);
3200 } 3196 }
3201 rcu_read_unlock(); 3197 rcu_read_unlock();
3202 } 3198 }
3203 3199
3204 /** 3200 /**
3205 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3201 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3206 * @entry: swap entry to be moved 3202 * @entry: swap entry to be moved
3207 * @from: mem_cgroup which the entry is moved from 3203 * @from: mem_cgroup which the entry is moved from
3208 * @to: mem_cgroup which the entry is moved to 3204 * @to: mem_cgroup which the entry is moved to
3209 * 3205 *
3210 * It succeeds only when the swap_cgroup's record for this entry is the same 3206 * It succeeds only when the swap_cgroup's record for this entry is the same
3211 * as the mem_cgroup's id of @from. 3207 * as the mem_cgroup's id of @from.
3212 * 3208 *
3213 * Returns 0 on success, -EINVAL on failure. 3209 * Returns 0 on success, -EINVAL on failure.
3214 * 3210 *
3215 * The caller must have charged to @to, IOW, called res_counter_charge() about 3211 * The caller must have charged to @to, IOW, called res_counter_charge() about
3216 * both res and memsw, and called css_get(). 3212 * both res and memsw, and called css_get().
3217 */ 3213 */
3218 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3214 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3219 struct mem_cgroup *from, struct mem_cgroup *to) 3215 struct mem_cgroup *from, struct mem_cgroup *to)
3220 { 3216 {
3221 unsigned short old_id, new_id; 3217 unsigned short old_id, new_id;
3222 3218
3223 old_id = css_id(&from->css); 3219 old_id = css_id(&from->css);
3224 new_id = css_id(&to->css); 3220 new_id = css_id(&to->css);
3225 3221
3226 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3222 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3227 mem_cgroup_swap_statistics(from, false); 3223 mem_cgroup_swap_statistics(from, false);
3228 mem_cgroup_swap_statistics(to, true); 3224 mem_cgroup_swap_statistics(to, true);
3229 /* 3225 /*
3230 * This function is only called from task migration context now. 3226 * This function is only called from task migration context now.
3231 * It postpones res_counter and refcount handling till the end 3227 * It postpones res_counter and refcount handling till the end
3232 * of task migration(mem_cgroup_clear_mc()) for performance 3228 * of task migration(mem_cgroup_clear_mc()) for performance
3233 * improvement. But we cannot postpone mem_cgroup_get(to) 3229 * improvement. But we cannot postpone mem_cgroup_get(to)
3234 * because if the process that has been moved to @to does 3230 * because if the process that has been moved to @to does
3235 * swap-in, the refcount of @to might be decreased to 0. 3231 * swap-in, the refcount of @to might be decreased to 0.
3236 */ 3232 */
3237 mem_cgroup_get(to); 3233 mem_cgroup_get(to);
3238 return 0; 3234 return 0;
3239 } 3235 }
3240 return -EINVAL; 3236 return -EINVAL;
3241 } 3237 }
3242 #else 3238 #else
3243 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3239 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3244 struct mem_cgroup *from, struct mem_cgroup *to) 3240 struct mem_cgroup *from, struct mem_cgroup *to)
3245 { 3241 {
3246 return -EINVAL; 3242 return -EINVAL;
3247 } 3243 }
3248 #endif 3244 #endif
3249 3245
3250 /* 3246 /*
3251 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old 3247 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3252 * page belongs to. 3248 * page belongs to.
3253 */ 3249 */
3254 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage, 3250 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
3255 struct mem_cgroup **memcgp) 3251 struct mem_cgroup **memcgp)
3256 { 3252 {
3257 struct mem_cgroup *memcg = NULL; 3253 struct mem_cgroup *memcg = NULL;
3258 struct page_cgroup *pc; 3254 struct page_cgroup *pc;
3259 enum charge_type ctype; 3255 enum charge_type ctype;
3260 3256
3261 *memcgp = NULL; 3257 *memcgp = NULL;
3262 3258
3263 VM_BUG_ON(PageTransHuge(page)); 3259 VM_BUG_ON(PageTransHuge(page));
3264 if (mem_cgroup_disabled()) 3260 if (mem_cgroup_disabled())
3265 return; 3261 return;
3266 3262
3267 pc = lookup_page_cgroup(page); 3263 pc = lookup_page_cgroup(page);
3268 lock_page_cgroup(pc); 3264 lock_page_cgroup(pc);
3269 if (PageCgroupUsed(pc)) { 3265 if (PageCgroupUsed(pc)) {
3270 memcg = pc->mem_cgroup; 3266 memcg = pc->mem_cgroup;
3271 css_get(&memcg->css); 3267 css_get(&memcg->css);
3272 /* 3268 /*
3273 * At migrating an anonymous page, its mapcount goes down 3269 * At migrating an anonymous page, its mapcount goes down
3274 * to 0 and uncharge() will be called. But, even if it's fully 3270 * to 0 and uncharge() will be called. But, even if it's fully
3275 * unmapped, migration may fail and this page has to be 3271 * unmapped, migration may fail and this page has to be
3276 * charged again. We set MIGRATION flag here and delay uncharge 3272 * charged again. We set MIGRATION flag here and delay uncharge
3277 * until end_migration() is called 3273 * until end_migration() is called
3278 * 3274 *
3279 * Corner Case Thinking 3275 * Corner Case Thinking
3280 * A) 3276 * A)
3281 * When the old page was mapped as Anon and it's unmap-and-freed 3277 * When the old page was mapped as Anon and it's unmap-and-freed
3282 * while migration was ongoing. 3278 * while migration was ongoing.
3283 * If unmap finds the old page, uncharge() of it will be delayed 3279 * If unmap finds the old page, uncharge() of it will be delayed
3284 * until end_migration(). If unmap finds a new page, it's 3280 * until end_migration(). If unmap finds a new page, it's
3285 * uncharged when it make mapcount to be 1->0. If unmap code 3281 * uncharged when it make mapcount to be 1->0. If unmap code
3286 * finds swap_migration_entry, the new page will not be mapped 3282 * finds swap_migration_entry, the new page will not be mapped
3287 * and end_migration() will find it(mapcount==0). 3283 * and end_migration() will find it(mapcount==0).
3288 * 3284 *
3289 * B) 3285 * B)
3290 * When the old page was mapped but migraion fails, the kernel 3286 * When the old page was mapped but migraion fails, the kernel
3291 * remaps it. A charge for it is kept by MIGRATION flag even 3287 * remaps it. A charge for it is kept by MIGRATION flag even
3292 * if mapcount goes down to 0. We can do remap successfully 3288 * if mapcount goes down to 0. We can do remap successfully
3293 * without charging it again. 3289 * without charging it again.
3294 * 3290 *
3295 * C) 3291 * C)
3296 * The "old" page is under lock_page() until the end of 3292 * The "old" page is under lock_page() until the end of
3297 * migration, so, the old page itself will not be swapped-out. 3293 * migration, so, the old page itself will not be swapped-out.
3298 * If the new page is swapped out before end_migraton, our 3294 * If the new page is swapped out before end_migraton, our
3299 * hook to usual swap-out path will catch the event. 3295 * hook to usual swap-out path will catch the event.
3300 */ 3296 */
3301 if (PageAnon(page)) 3297 if (PageAnon(page))
3302 SetPageCgroupMigration(pc); 3298 SetPageCgroupMigration(pc);
3303 } 3299 }
3304 unlock_page_cgroup(pc); 3300 unlock_page_cgroup(pc);
3305 /* 3301 /*
3306 * If the page is not charged at this point, 3302 * If the page is not charged at this point,
3307 * we return here. 3303 * we return here.
3308 */ 3304 */
3309 if (!memcg) 3305 if (!memcg)
3310 return; 3306 return;
3311 3307
3312 *memcgp = memcg; 3308 *memcgp = memcg;
3313 /* 3309 /*
3314 * We charge new page before it's used/mapped. So, even if unlock_page() 3310 * We charge new page before it's used/mapped. So, even if unlock_page()
3315 * is called before end_migration, we can catch all events on this new 3311 * is called before end_migration, we can catch all events on this new
3316 * page. In the case new page is migrated but not remapped, new page's 3312 * page. In the case new page is migrated but not remapped, new page's
3317 * mapcount will be finally 0 and we call uncharge in end_migration(). 3313 * mapcount will be finally 0 and we call uncharge in end_migration().
3318 */ 3314 */
3319 if (PageAnon(page)) 3315 if (PageAnon(page))
3320 ctype = MEM_CGROUP_CHARGE_TYPE_ANON; 3316 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
3321 else if (page_is_file_cache(page)) 3317 else if (page_is_file_cache(page))
3322 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; 3318 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3323 else 3319 else
3324 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM; 3320 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3325 /* 3321 /*
3326 * The page is committed to the memcg, but it's not actually 3322 * The page is committed to the memcg, but it's not actually
3327 * charged to the res_counter since we plan on replacing the 3323 * charged to the res_counter since we plan on replacing the
3328 * old one and only one page is going to be left afterwards. 3324 * old one and only one page is going to be left afterwards.
3329 */ 3325 */
3330 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false); 3326 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3331 } 3327 }
3332 3328
3333 /* remove redundant charge if migration failed*/ 3329 /* remove redundant charge if migration failed*/
3334 void mem_cgroup_end_migration(struct mem_cgroup *memcg, 3330 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3335 struct page *oldpage, struct page *newpage, bool migration_ok) 3331 struct page *oldpage, struct page *newpage, bool migration_ok)
3336 { 3332 {
3337 struct page *used, *unused; 3333 struct page *used, *unused;
3338 struct page_cgroup *pc; 3334 struct page_cgroup *pc;
3339 bool anon; 3335 bool anon;
3340 3336
3341 if (!memcg) 3337 if (!memcg)
3342 return; 3338 return;
3343 /* blocks rmdir() */ 3339 /* blocks rmdir() */
3344 cgroup_exclude_rmdir(&memcg->css); 3340 cgroup_exclude_rmdir(&memcg->css);
3345 if (!migration_ok) { 3341 if (!migration_ok) {
3346 used = oldpage; 3342 used = oldpage;
3347 unused = newpage; 3343 unused = newpage;
3348 } else { 3344 } else {
3349 used = newpage; 3345 used = newpage;
3350 unused = oldpage; 3346 unused = oldpage;
3351 } 3347 }
3352 anon = PageAnon(used); 3348 anon = PageAnon(used);
3353 if (!PageSwapCache(unused)) 3349 __mem_cgroup_uncharge_common(unused,
3354 __mem_cgroup_uncharge_common(unused, 3350 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
3355 anon ? MEM_CGROUP_CHARGE_TYPE_ANON 3351 : MEM_CGROUP_CHARGE_TYPE_CACHE,
3356 : MEM_CGROUP_CHARGE_TYPE_CACHE, 3352 true);
3357 true);
3358 css_put(&memcg->css); 3353 css_put(&memcg->css);
3359 /* 3354 /*
3360 * We disallowed uncharge of pages under migration because mapcount 3355 * We disallowed uncharge of pages under migration because mapcount
3361 * of the page goes down to zero, temporarly. 3356 * of the page goes down to zero, temporarly.
3362 * Clear the flag and check the page should be charged. 3357 * Clear the flag and check the page should be charged.
3363 */ 3358 */
3364 pc = lookup_page_cgroup(oldpage); 3359 pc = lookup_page_cgroup(oldpage);
3365 lock_page_cgroup(pc); 3360 lock_page_cgroup(pc);
3366 ClearPageCgroupMigration(pc); 3361 ClearPageCgroupMigration(pc);
3367 unlock_page_cgroup(pc); 3362 unlock_page_cgroup(pc);
3368 3363
3369 /* 3364 /*
3370 * If a page is a file cache, radix-tree replacement is very atomic 3365 * If a page is a file cache, radix-tree replacement is very atomic
3371 * and we can skip this check. When it was an Anon page, its mapcount 3366 * and we can skip this check. When it was an Anon page, its mapcount
3372 * goes down to 0. But because we added MIGRATION flage, it's not 3367 * goes down to 0. But because we added MIGRATION flage, it's not
3373 * uncharged yet. There are several case but page->mapcount check 3368 * uncharged yet. There are several case but page->mapcount check
3374 * and USED bit check in mem_cgroup_uncharge_page() will do enough 3369 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3375 * check. (see prepare_charge() also) 3370 * check. (see prepare_charge() also)
3376 */ 3371 */
3377 if (anon) 3372 if (anon)
3378 mem_cgroup_uncharge_page(used); 3373 mem_cgroup_uncharge_page(used);
3379 /* 3374 /*
3380 * At migration, we may charge account against cgroup which has no 3375 * At migration, we may charge account against cgroup which has no
3381 * tasks. 3376 * tasks.
3382 * So, rmdir()->pre_destroy() can be called while we do this charge. 3377 * So, rmdir()->pre_destroy() can be called while we do this charge.
3383 * In that case, we need to call pre_destroy() again. check it here. 3378 * In that case, we need to call pre_destroy() again. check it here.
3384 */ 3379 */
3385 cgroup_release_and_wakeup_rmdir(&memcg->css); 3380 cgroup_release_and_wakeup_rmdir(&memcg->css);
3386 } 3381 }
3387 3382
3388 /* 3383 /*
3389 * At replace page cache, newpage is not under any memcg but it's on 3384 * At replace page cache, newpage is not under any memcg but it's on
3390 * LRU. So, this function doesn't touch res_counter but handles LRU 3385 * LRU. So, this function doesn't touch res_counter but handles LRU
3391 * in correct way. Both pages are locked so we cannot race with uncharge. 3386 * in correct way. Both pages are locked so we cannot race with uncharge.
3392 */ 3387 */
3393 void mem_cgroup_replace_page_cache(struct page *oldpage, 3388 void mem_cgroup_replace_page_cache(struct page *oldpage,
3394 struct page *newpage) 3389 struct page *newpage)
3395 { 3390 {
3396 struct mem_cgroup *memcg = NULL; 3391 struct mem_cgroup *memcg = NULL;
3397 struct page_cgroup *pc; 3392 struct page_cgroup *pc;
3398 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 3393 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3399 3394
3400 if (mem_cgroup_disabled()) 3395 if (mem_cgroup_disabled())
3401 return; 3396 return;
3402 3397
3403 pc = lookup_page_cgroup(oldpage); 3398 pc = lookup_page_cgroup(oldpage);
3404 /* fix accounting on old pages */ 3399 /* fix accounting on old pages */
3405 lock_page_cgroup(pc); 3400 lock_page_cgroup(pc);
3406 if (PageCgroupUsed(pc)) { 3401 if (PageCgroupUsed(pc)) {
3407 memcg = pc->mem_cgroup; 3402 memcg = pc->mem_cgroup;
3408 mem_cgroup_charge_statistics(memcg, false, -1); 3403 mem_cgroup_charge_statistics(memcg, false, -1);
3409 ClearPageCgroupUsed(pc); 3404 ClearPageCgroupUsed(pc);
3410 } 3405 }
3411 unlock_page_cgroup(pc); 3406 unlock_page_cgroup(pc);
3412 3407
3413 /* 3408 /*
3414 * When called from shmem_replace_page(), in some cases the 3409 * When called from shmem_replace_page(), in some cases the
3415 * oldpage has already been charged, and in some cases not. 3410 * oldpage has already been charged, and in some cases not.
3416 */ 3411 */
3417 if (!memcg) 3412 if (!memcg)
3418 return; 3413 return;
3419 3414
3420 if (PageSwapBacked(oldpage)) 3415 if (PageSwapBacked(oldpage))
3421 type = MEM_CGROUP_CHARGE_TYPE_SHMEM; 3416 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3422 3417
3423 /* 3418 /*
3424 * Even if newpage->mapping was NULL before starting replacement, 3419 * Even if newpage->mapping was NULL before starting replacement,
3425 * the newpage may be on LRU(or pagevec for LRU) already. We lock 3420 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3426 * LRU while we overwrite pc->mem_cgroup. 3421 * LRU while we overwrite pc->mem_cgroup.
3427 */ 3422 */
3428 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true); 3423 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3429 } 3424 }
3430 3425
3431 #ifdef CONFIG_DEBUG_VM 3426 #ifdef CONFIG_DEBUG_VM
3432 static struct page_cgroup *lookup_page_cgroup_used(struct page *page) 3427 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3433 { 3428 {
3434 struct page_cgroup *pc; 3429 struct page_cgroup *pc;
3435 3430
3436 pc = lookup_page_cgroup(page); 3431 pc = lookup_page_cgroup(page);
3437 /* 3432 /*
3438 * Can be NULL while feeding pages into the page allocator for 3433 * Can be NULL while feeding pages into the page allocator for
3439 * the first time, i.e. during boot or memory hotplug; 3434 * the first time, i.e. during boot or memory hotplug;
3440 * or when mem_cgroup_disabled(). 3435 * or when mem_cgroup_disabled().
3441 */ 3436 */
3442 if (likely(pc) && PageCgroupUsed(pc)) 3437 if (likely(pc) && PageCgroupUsed(pc))
3443 return pc; 3438 return pc;
3444 return NULL; 3439 return NULL;
3445 } 3440 }
3446 3441
3447 bool mem_cgroup_bad_page_check(struct page *page) 3442 bool mem_cgroup_bad_page_check(struct page *page)
3448 { 3443 {
3449 if (mem_cgroup_disabled()) 3444 if (mem_cgroup_disabled())
3450 return false; 3445 return false;
3451 3446
3452 return lookup_page_cgroup_used(page) != NULL; 3447 return lookup_page_cgroup_used(page) != NULL;
3453 } 3448 }
3454 3449
3455 void mem_cgroup_print_bad_page(struct page *page) 3450 void mem_cgroup_print_bad_page(struct page *page)
3456 { 3451 {
3457 struct page_cgroup *pc; 3452 struct page_cgroup *pc;
3458 3453
3459 pc = lookup_page_cgroup_used(page); 3454 pc = lookup_page_cgroup_used(page);
3460 if (pc) { 3455 if (pc) {
3461 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n", 3456 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3462 pc, pc->flags, pc->mem_cgroup); 3457 pc, pc->flags, pc->mem_cgroup);
3463 } 3458 }
3464 } 3459 }
3465 #endif 3460 #endif
3466 3461
3467 static DEFINE_MUTEX(set_limit_mutex); 3462 static DEFINE_MUTEX(set_limit_mutex);
3468 3463
3469 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 3464 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3470 unsigned long long val) 3465 unsigned long long val)
3471 { 3466 {
3472 int retry_count; 3467 int retry_count;
3473 u64 memswlimit, memlimit; 3468 u64 memswlimit, memlimit;
3474 int ret = 0; 3469 int ret = 0;
3475 int children = mem_cgroup_count_children(memcg); 3470 int children = mem_cgroup_count_children(memcg);
3476 u64 curusage, oldusage; 3471 u64 curusage, oldusage;
3477 int enlarge; 3472 int enlarge;
3478 3473
3479 /* 3474 /*
3480 * For keeping hierarchical_reclaim simple, how long we should retry 3475 * For keeping hierarchical_reclaim simple, how long we should retry
3481 * is depends on callers. We set our retry-count to be function 3476 * is depends on callers. We set our retry-count to be function
3482 * of # of children which we should visit in this loop. 3477 * of # of children which we should visit in this loop.
3483 */ 3478 */
3484 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; 3479 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3485 3480
3486 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); 3481 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3487 3482
3488 enlarge = 0; 3483 enlarge = 0;
3489 while (retry_count) { 3484 while (retry_count) {
3490 if (signal_pending(current)) { 3485 if (signal_pending(current)) {
3491 ret = -EINTR; 3486 ret = -EINTR;
3492 break; 3487 break;
3493 } 3488 }
3494 /* 3489 /*
3495 * Rather than hide all in some function, I do this in 3490 * Rather than hide all in some function, I do this in
3496 * open coded manner. You see what this really does. 3491 * open coded manner. You see what this really does.
3497 * We have to guarantee memcg->res.limit <= memcg->memsw.limit. 3492 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3498 */ 3493 */
3499 mutex_lock(&set_limit_mutex); 3494 mutex_lock(&set_limit_mutex);
3500 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 3495 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3501 if (memswlimit < val) { 3496 if (memswlimit < val) {
3502 ret = -EINVAL; 3497 ret = -EINVAL;
3503 mutex_unlock(&set_limit_mutex); 3498 mutex_unlock(&set_limit_mutex);
3504 break; 3499 break;
3505 } 3500 }
3506 3501
3507 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 3502 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3508 if (memlimit < val) 3503 if (memlimit < val)
3509 enlarge = 1; 3504 enlarge = 1;
3510 3505
3511 ret = res_counter_set_limit(&memcg->res, val); 3506 ret = res_counter_set_limit(&memcg->res, val);
3512 if (!ret) { 3507 if (!ret) {
3513 if (memswlimit == val) 3508 if (memswlimit == val)
3514 memcg->memsw_is_minimum = true; 3509 memcg->memsw_is_minimum = true;
3515 else 3510 else
3516 memcg->memsw_is_minimum = false; 3511 memcg->memsw_is_minimum = false;
3517 } 3512 }
3518 mutex_unlock(&set_limit_mutex); 3513 mutex_unlock(&set_limit_mutex);
3519 3514
3520 if (!ret) 3515 if (!ret)
3521 break; 3516 break;
3522 3517
3523 mem_cgroup_reclaim(memcg, GFP_KERNEL, 3518 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3524 MEM_CGROUP_RECLAIM_SHRINK); 3519 MEM_CGROUP_RECLAIM_SHRINK);
3525 curusage = res_counter_read_u64(&memcg->res, RES_USAGE); 3520 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3526 /* Usage is reduced ? */ 3521 /* Usage is reduced ? */
3527 if (curusage >= oldusage) 3522 if (curusage >= oldusage)
3528 retry_count--; 3523 retry_count--;
3529 else 3524 else
3530 oldusage = curusage; 3525 oldusage = curusage;
3531 } 3526 }
3532 if (!ret && enlarge) 3527 if (!ret && enlarge)
3533 memcg_oom_recover(memcg); 3528 memcg_oom_recover(memcg);
3534 3529
3535 return ret; 3530 return ret;
3536 } 3531 }
3537 3532
3538 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 3533 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3539 unsigned long long val) 3534 unsigned long long val)
3540 { 3535 {
3541 int retry_count; 3536 int retry_count;
3542 u64 memlimit, memswlimit, oldusage, curusage; 3537 u64 memlimit, memswlimit, oldusage, curusage;
3543 int children = mem_cgroup_count_children(memcg); 3538 int children = mem_cgroup_count_children(memcg);
3544 int ret = -EBUSY; 3539 int ret = -EBUSY;
3545 int enlarge = 0; 3540 int enlarge = 0;
3546 3541
3547 /* see mem_cgroup_resize_res_limit */ 3542 /* see mem_cgroup_resize_res_limit */
3548 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; 3543 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3549 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 3544 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3550 while (retry_count) { 3545 while (retry_count) {
3551 if (signal_pending(current)) { 3546 if (signal_pending(current)) {
3552 ret = -EINTR; 3547 ret = -EINTR;
3553 break; 3548 break;
3554 } 3549 }
3555 /* 3550 /*
3556 * Rather than hide all in some function, I do this in 3551 * Rather than hide all in some function, I do this in
3557 * open coded manner. You see what this really does. 3552 * open coded manner. You see what this really does.
3558 * We have to guarantee memcg->res.limit <= memcg->memsw.limit. 3553 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3559 */ 3554 */
3560 mutex_lock(&set_limit_mutex); 3555 mutex_lock(&set_limit_mutex);
3561 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 3556 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3562 if (memlimit > val) { 3557 if (memlimit > val) {
3563 ret = -EINVAL; 3558 ret = -EINVAL;
3564 mutex_unlock(&set_limit_mutex); 3559 mutex_unlock(&set_limit_mutex);
3565 break; 3560 break;
3566 } 3561 }
3567 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 3562 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3568 if (memswlimit < val) 3563 if (memswlimit < val)
3569 enlarge = 1; 3564 enlarge = 1;
3570 ret = res_counter_set_limit(&memcg->memsw, val); 3565 ret = res_counter_set_limit(&memcg->memsw, val);
3571 if (!ret) { 3566 if (!ret) {
3572 if (memlimit == val) 3567 if (memlimit == val)
3573 memcg->memsw_is_minimum = true; 3568 memcg->memsw_is_minimum = true;
3574 else 3569 else
3575 memcg->memsw_is_minimum = false; 3570 memcg->memsw_is_minimum = false;
3576 } 3571 }
3577 mutex_unlock(&set_limit_mutex); 3572 mutex_unlock(&set_limit_mutex);
3578 3573
3579 if (!ret) 3574 if (!ret)
3580 break; 3575 break;
3581 3576
3582 mem_cgroup_reclaim(memcg, GFP_KERNEL, 3577 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3583 MEM_CGROUP_RECLAIM_NOSWAP | 3578 MEM_CGROUP_RECLAIM_NOSWAP |
3584 MEM_CGROUP_RECLAIM_SHRINK); 3579 MEM_CGROUP_RECLAIM_SHRINK);
3585 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 3580 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3586 /* Usage is reduced ? */ 3581 /* Usage is reduced ? */
3587 if (curusage >= oldusage) 3582 if (curusage >= oldusage)
3588 retry_count--; 3583 retry_count--;
3589 else 3584 else
3590 oldusage = curusage; 3585 oldusage = curusage;
3591 } 3586 }
3592 if (!ret && enlarge) 3587 if (!ret && enlarge)
3593 memcg_oom_recover(memcg); 3588 memcg_oom_recover(memcg);
3594 return ret; 3589 return ret;
3595 } 3590 }
3596 3591
3597 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 3592 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3598 gfp_t gfp_mask, 3593 gfp_t gfp_mask,
3599 unsigned long *total_scanned) 3594 unsigned long *total_scanned)
3600 { 3595 {
3601 unsigned long nr_reclaimed = 0; 3596 unsigned long nr_reclaimed = 0;
3602 struct mem_cgroup_per_zone *mz, *next_mz = NULL; 3597 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3603 unsigned long reclaimed; 3598 unsigned long reclaimed;
3604 int loop = 0; 3599 int loop = 0;
3605 struct mem_cgroup_tree_per_zone *mctz; 3600 struct mem_cgroup_tree_per_zone *mctz;
3606 unsigned long long excess; 3601 unsigned long long excess;
3607 unsigned long nr_scanned; 3602 unsigned long nr_scanned;
3608 3603
3609 if (order > 0) 3604 if (order > 0)
3610 return 0; 3605 return 0;
3611 3606
3612 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); 3607 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3613 /* 3608 /*
3614 * This loop can run a while, specially if mem_cgroup's continuously 3609 * This loop can run a while, specially if mem_cgroup's continuously
3615 * keep exceeding their soft limit and putting the system under 3610 * keep exceeding their soft limit and putting the system under
3616 * pressure 3611 * pressure
3617 */ 3612 */
3618 do { 3613 do {
3619 if (next_mz) 3614 if (next_mz)
3620 mz = next_mz; 3615 mz = next_mz;
3621 else 3616 else
3622 mz = mem_cgroup_largest_soft_limit_node(mctz); 3617 mz = mem_cgroup_largest_soft_limit_node(mctz);
3623 if (!mz) 3618 if (!mz)
3624 break; 3619 break;
3625 3620
3626 nr_scanned = 0; 3621 nr_scanned = 0;
3627 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, 3622 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3628 gfp_mask, &nr_scanned); 3623 gfp_mask, &nr_scanned);
3629 nr_reclaimed += reclaimed; 3624 nr_reclaimed += reclaimed;
3630 *total_scanned += nr_scanned; 3625 *total_scanned += nr_scanned;
3631 spin_lock(&mctz->lock); 3626 spin_lock(&mctz->lock);
3632 3627
3633 /* 3628 /*
3634 * If we failed to reclaim anything from this memory cgroup 3629 * If we failed to reclaim anything from this memory cgroup
3635 * it is time to move on to the next cgroup 3630 * it is time to move on to the next cgroup
3636 */ 3631 */
3637 next_mz = NULL; 3632 next_mz = NULL;
3638 if (!reclaimed) { 3633 if (!reclaimed) {
3639 do { 3634 do {
3640 /* 3635 /*
3641 * Loop until we find yet another one. 3636 * Loop until we find yet another one.
3642 * 3637 *
3643 * By the time we get the soft_limit lock 3638 * By the time we get the soft_limit lock
3644 * again, someone might have aded the 3639 * again, someone might have aded the
3645 * group back on the RB tree. Iterate to 3640 * group back on the RB tree. Iterate to
3646 * make sure we get a different mem. 3641 * make sure we get a different mem.
3647 * mem_cgroup_largest_soft_limit_node returns 3642 * mem_cgroup_largest_soft_limit_node returns
3648 * NULL if no other cgroup is present on 3643 * NULL if no other cgroup is present on
3649 * the tree 3644 * the tree
3650 */ 3645 */
3651 next_mz = 3646 next_mz =
3652 __mem_cgroup_largest_soft_limit_node(mctz); 3647 __mem_cgroup_largest_soft_limit_node(mctz);
3653 if (next_mz == mz) 3648 if (next_mz == mz)
3654 css_put(&next_mz->memcg->css); 3649 css_put(&next_mz->memcg->css);
3655 else /* next_mz == NULL or other memcg */ 3650 else /* next_mz == NULL or other memcg */
3656 break; 3651 break;
3657 } while (1); 3652 } while (1);
3658 } 3653 }
3659 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); 3654 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3660 excess = res_counter_soft_limit_excess(&mz->memcg->res); 3655 excess = res_counter_soft_limit_excess(&mz->memcg->res);
3661 /* 3656 /*
3662 * One school of thought says that we should not add 3657 * One school of thought says that we should not add
3663 * back the node to the tree if reclaim returns 0. 3658 * back the node to the tree if reclaim returns 0.
3664 * But our reclaim could return 0, simply because due 3659 * But our reclaim could return 0, simply because due
3665 * to priority we are exposing a smaller subset of 3660 * to priority we are exposing a smaller subset of
3666 * memory to reclaim from. Consider this as a longer 3661 * memory to reclaim from. Consider this as a longer
3667 * term TODO. 3662 * term TODO.
3668 */ 3663 */
3669 /* If excess == 0, no tree ops */ 3664 /* If excess == 0, no tree ops */
3670 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess); 3665 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3671 spin_unlock(&mctz->lock); 3666 spin_unlock(&mctz->lock);
3672 css_put(&mz->memcg->css); 3667 css_put(&mz->memcg->css);
3673 loop++; 3668 loop++;
3674 /* 3669 /*
3675 * Could not reclaim anything and there are no more 3670 * Could not reclaim anything and there are no more
3676 * mem cgroups to try or we seem to be looping without 3671 * mem cgroups to try or we seem to be looping without
3677 * reclaiming anything. 3672 * reclaiming anything.
3678 */ 3673 */
3679 if (!nr_reclaimed && 3674 if (!nr_reclaimed &&
3680 (next_mz == NULL || 3675 (next_mz == NULL ||
3681 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3676 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3682 break; 3677 break;
3683 } while (!nr_reclaimed); 3678 } while (!nr_reclaimed);
3684 if (next_mz) 3679 if (next_mz)
3685 css_put(&next_mz->memcg->css); 3680 css_put(&next_mz->memcg->css);
3686 return nr_reclaimed; 3681 return nr_reclaimed;
3687 } 3682 }
3688 3683
3689 /* 3684 /*
3690 * Traverse a specified page_cgroup list and try to drop them all. This doesn't 3685 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
3691 * reclaim the pages page themselves - it just removes the page_cgroups. 3686 * reclaim the pages page themselves - it just removes the page_cgroups.
3692 * Returns true if some page_cgroups were not freed, indicating that the caller 3687 * Returns true if some page_cgroups were not freed, indicating that the caller
3693 * must retry this operation. 3688 * must retry this operation.
3694 */ 3689 */
3695 static bool mem_cgroup_force_empty_list(struct mem_cgroup *memcg, 3690 static bool mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3696 int node, int zid, enum lru_list lru) 3691 int node, int zid, enum lru_list lru)
3697 { 3692 {
3698 struct mem_cgroup_per_zone *mz; 3693 struct mem_cgroup_per_zone *mz;
3699 unsigned long flags, loop; 3694 unsigned long flags, loop;
3700 struct list_head *list; 3695 struct list_head *list;
3701 struct page *busy; 3696 struct page *busy;
3702 struct zone *zone; 3697 struct zone *zone;
3703 3698
3704 zone = &NODE_DATA(node)->node_zones[zid]; 3699 zone = &NODE_DATA(node)->node_zones[zid];
3705 mz = mem_cgroup_zoneinfo(memcg, node, zid); 3700 mz = mem_cgroup_zoneinfo(memcg, node, zid);
3706 list = &mz->lruvec.lists[lru]; 3701 list = &mz->lruvec.lists[lru];
3707 3702
3708 loop = mz->lru_size[lru]; 3703 loop = mz->lru_size[lru];
3709 /* give some margin against EBUSY etc...*/ 3704 /* give some margin against EBUSY etc...*/
3710 loop += 256; 3705 loop += 256;
3711 busy = NULL; 3706 busy = NULL;
3712 while (loop--) { 3707 while (loop--) {
3713 struct page_cgroup *pc; 3708 struct page_cgroup *pc;
3714 struct page *page; 3709 struct page *page;
3715 3710
3716 spin_lock_irqsave(&zone->lru_lock, flags); 3711 spin_lock_irqsave(&zone->lru_lock, flags);
3717 if (list_empty(list)) { 3712 if (list_empty(list)) {
3718 spin_unlock_irqrestore(&zone->lru_lock, flags); 3713 spin_unlock_irqrestore(&zone->lru_lock, flags);
3719 break; 3714 break;
3720 } 3715 }
3721 page = list_entry(list->prev, struct page, lru); 3716 page = list_entry(list->prev, struct page, lru);
3722 if (busy == page) { 3717 if (busy == page) {
3723 list_move(&page->lru, list); 3718 list_move(&page->lru, list);
3724 busy = NULL; 3719 busy = NULL;
3725 spin_unlock_irqrestore(&zone->lru_lock, flags); 3720 spin_unlock_irqrestore(&zone->lru_lock, flags);
3726 continue; 3721 continue;
3727 } 3722 }
3728 spin_unlock_irqrestore(&zone->lru_lock, flags); 3723 spin_unlock_irqrestore(&zone->lru_lock, flags);
3729 3724
3730 pc = lookup_page_cgroup(page); 3725 pc = lookup_page_cgroup(page);
3731 3726
3732 if (mem_cgroup_move_parent(page, pc, memcg)) { 3727 if (mem_cgroup_move_parent(page, pc, memcg)) {
3733 /* found lock contention or "pc" is obsolete. */ 3728 /* found lock contention or "pc" is obsolete. */
3734 busy = page; 3729 busy = page;
3735 cond_resched(); 3730 cond_resched();
3736 } else 3731 } else
3737 busy = NULL; 3732 busy = NULL;
3738 } 3733 }
3739 return !list_empty(list); 3734 return !list_empty(list);
3740 } 3735 }
3741 3736
3742 /* 3737 /*
3743 * make mem_cgroup's charge to be 0 if there is no task. 3738 * make mem_cgroup's charge to be 0 if there is no task.
3744 * This enables deleting this mem_cgroup. 3739 * This enables deleting this mem_cgroup.
3745 */ 3740 */
3746 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all) 3741 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3747 { 3742 {
3748 int ret; 3743 int ret;
3749 int node, zid, shrink; 3744 int node, zid, shrink;
3750 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 3745 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3751 struct cgroup *cgrp = memcg->css.cgroup; 3746 struct cgroup *cgrp = memcg->css.cgroup;
3752 3747
3753 css_get(&memcg->css); 3748 css_get(&memcg->css);
3754 3749
3755 shrink = 0; 3750 shrink = 0;
3756 /* should free all ? */ 3751 /* should free all ? */
3757 if (free_all) 3752 if (free_all)
3758 goto try_to_free; 3753 goto try_to_free;
3759 move_account: 3754 move_account:
3760 do { 3755 do {
3761 ret = -EBUSY; 3756 ret = -EBUSY;
3762 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) 3757 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3763 goto out; 3758 goto out;
3764 /* This is for making all *used* pages to be on LRU. */ 3759 /* This is for making all *used* pages to be on LRU. */
3765 lru_add_drain_all(); 3760 lru_add_drain_all();
3766 drain_all_stock_sync(memcg); 3761 drain_all_stock_sync(memcg);
3767 ret = 0; 3762 ret = 0;
3768 mem_cgroup_start_move(memcg); 3763 mem_cgroup_start_move(memcg);
3769 for_each_node_state(node, N_HIGH_MEMORY) { 3764 for_each_node_state(node, N_HIGH_MEMORY) {
3770 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) { 3765 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3771 enum lru_list lru; 3766 enum lru_list lru;
3772 for_each_lru(lru) { 3767 for_each_lru(lru) {
3773 ret = mem_cgroup_force_empty_list(memcg, 3768 ret = mem_cgroup_force_empty_list(memcg,
3774 node, zid, lru); 3769 node, zid, lru);
3775 if (ret) 3770 if (ret)
3776 break; 3771 break;
3777 } 3772 }
3778 } 3773 }
3779 if (ret) 3774 if (ret)
3780 break; 3775 break;
3781 } 3776 }
3782 mem_cgroup_end_move(memcg); 3777 mem_cgroup_end_move(memcg);
3783 memcg_oom_recover(memcg); 3778 memcg_oom_recover(memcg);
3784 cond_resched(); 3779 cond_resched();
3785 /* "ret" should also be checked to ensure all lists are empty. */ 3780 /* "ret" should also be checked to ensure all lists are empty. */
3786 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret); 3781 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3787 out: 3782 out:
3788 css_put(&memcg->css); 3783 css_put(&memcg->css);
3789 return ret; 3784 return ret;
3790 3785
3791 try_to_free: 3786 try_to_free:
3792 /* returns EBUSY if there is a task or if we come here twice. */ 3787 /* returns EBUSY if there is a task or if we come here twice. */
3793 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) { 3788 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3794 ret = -EBUSY; 3789 ret = -EBUSY;
3795 goto out; 3790 goto out;
3796 } 3791 }
3797 /* we call try-to-free pages for make this cgroup empty */ 3792 /* we call try-to-free pages for make this cgroup empty */
3798 lru_add_drain_all(); 3793 lru_add_drain_all();
3799 /* try to free all pages in this cgroup */ 3794 /* try to free all pages in this cgroup */
3800 shrink = 1; 3795 shrink = 1;
3801 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) { 3796 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3802 int progress; 3797 int progress;
3803 3798
3804 if (signal_pending(current)) { 3799 if (signal_pending(current)) {
3805 ret = -EINTR; 3800 ret = -EINTR;
3806 goto out; 3801 goto out;
3807 } 3802 }
3808 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, 3803 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3809 false); 3804 false);
3810 if (!progress) { 3805 if (!progress) {
3811 nr_retries--; 3806 nr_retries--;
3812 /* maybe some writeback is necessary */ 3807 /* maybe some writeback is necessary */
3813 congestion_wait(BLK_RW_ASYNC, HZ/10); 3808 congestion_wait(BLK_RW_ASYNC, HZ/10);
3814 } 3809 }
3815 3810
3816 } 3811 }
3817 lru_add_drain(); 3812 lru_add_drain();
3818 /* try move_account...there may be some *locked* pages. */ 3813 /* try move_account...there may be some *locked* pages. */
3819 goto move_account; 3814 goto move_account;
3820 } 3815 }
3821 3816
3822 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event) 3817 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3823 { 3818 {
3824 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true); 3819 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3825 } 3820 }
3826 3821
3827 3822
3828 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft) 3823 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3829 { 3824 {
3830 return mem_cgroup_from_cont(cont)->use_hierarchy; 3825 return mem_cgroup_from_cont(cont)->use_hierarchy;
3831 } 3826 }
3832 3827
3833 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft, 3828 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3834 u64 val) 3829 u64 val)
3835 { 3830 {
3836 int retval = 0; 3831 int retval = 0;
3837 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 3832 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3838 struct cgroup *parent = cont->parent; 3833 struct cgroup *parent = cont->parent;
3839 struct mem_cgroup *parent_memcg = NULL; 3834 struct mem_cgroup *parent_memcg = NULL;
3840 3835
3841 if (parent) 3836 if (parent)
3842 parent_memcg = mem_cgroup_from_cont(parent); 3837 parent_memcg = mem_cgroup_from_cont(parent);
3843 3838
3844 cgroup_lock(); 3839 cgroup_lock();
3845 3840
3846 if (memcg->use_hierarchy == val) 3841 if (memcg->use_hierarchy == val)
3847 goto out; 3842 goto out;
3848 3843
3849 /* 3844 /*
3850 * If parent's use_hierarchy is set, we can't make any modifications 3845 * If parent's use_hierarchy is set, we can't make any modifications
3851 * in the child subtrees. If it is unset, then the change can 3846 * in the child subtrees. If it is unset, then the change can
3852 * occur, provided the current cgroup has no children. 3847 * occur, provided the current cgroup has no children.
3853 * 3848 *
3854 * For the root cgroup, parent_mem is NULL, we allow value to be 3849 * For the root cgroup, parent_mem is NULL, we allow value to be
3855 * set if there are no children. 3850 * set if there are no children.
3856 */ 3851 */
3857 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 3852 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3858 (val == 1 || val == 0)) { 3853 (val == 1 || val == 0)) {
3859 if (list_empty(&cont->children)) 3854 if (list_empty(&cont->children))
3860 memcg->use_hierarchy = val; 3855 memcg->use_hierarchy = val;
3861 else 3856 else
3862 retval = -EBUSY; 3857 retval = -EBUSY;
3863 } else 3858 } else
3864 retval = -EINVAL; 3859 retval = -EINVAL;
3865 3860
3866 out: 3861 out:
3867 cgroup_unlock(); 3862 cgroup_unlock();
3868 3863
3869 return retval; 3864 return retval;
3870 } 3865 }
3871 3866
3872 3867
3873 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg, 3868 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3874 enum mem_cgroup_stat_index idx) 3869 enum mem_cgroup_stat_index idx)
3875 { 3870 {
3876 struct mem_cgroup *iter; 3871 struct mem_cgroup *iter;
3877 long val = 0; 3872 long val = 0;
3878 3873
3879 /* Per-cpu values can be negative, use a signed accumulator */ 3874 /* Per-cpu values can be negative, use a signed accumulator */
3880 for_each_mem_cgroup_tree(iter, memcg) 3875 for_each_mem_cgroup_tree(iter, memcg)
3881 val += mem_cgroup_read_stat(iter, idx); 3876 val += mem_cgroup_read_stat(iter, idx);
3882 3877
3883 if (val < 0) /* race ? */ 3878 if (val < 0) /* race ? */
3884 val = 0; 3879 val = 0;
3885 return val; 3880 return val;
3886 } 3881 }
3887 3882
3888 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3883 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3889 { 3884 {
3890 u64 val; 3885 u64 val;
3891 3886
3892 if (!mem_cgroup_is_root(memcg)) { 3887 if (!mem_cgroup_is_root(memcg)) {
3893 if (!swap) 3888 if (!swap)
3894 return res_counter_read_u64(&memcg->res, RES_USAGE); 3889 return res_counter_read_u64(&memcg->res, RES_USAGE);
3895 else 3890 else
3896 return res_counter_read_u64(&memcg->memsw, RES_USAGE); 3891 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3897 } 3892 }
3898 3893
3899 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE); 3894 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3900 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS); 3895 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3901 3896
3902 if (swap) 3897 if (swap)
3903 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP); 3898 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
3904 3899
3905 return val << PAGE_SHIFT; 3900 return val << PAGE_SHIFT;
3906 } 3901 }
3907 3902
3908 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft, 3903 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3909 struct file *file, char __user *buf, 3904 struct file *file, char __user *buf,
3910 size_t nbytes, loff_t *ppos) 3905 size_t nbytes, loff_t *ppos)
3911 { 3906 {
3912 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 3907 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3913 char str[64]; 3908 char str[64];
3914 u64 val; 3909 u64 val;
3915 int type, name, len; 3910 int type, name, len;
3916 3911
3917 type = MEMFILE_TYPE(cft->private); 3912 type = MEMFILE_TYPE(cft->private);
3918 name = MEMFILE_ATTR(cft->private); 3913 name = MEMFILE_ATTR(cft->private);
3919 3914
3920 if (!do_swap_account && type == _MEMSWAP) 3915 if (!do_swap_account && type == _MEMSWAP)
3921 return -EOPNOTSUPP; 3916 return -EOPNOTSUPP;
3922 3917
3923 switch (type) { 3918 switch (type) {
3924 case _MEM: 3919 case _MEM:
3925 if (name == RES_USAGE) 3920 if (name == RES_USAGE)
3926 val = mem_cgroup_usage(memcg, false); 3921 val = mem_cgroup_usage(memcg, false);
3927 else 3922 else
3928 val = res_counter_read_u64(&memcg->res, name); 3923 val = res_counter_read_u64(&memcg->res, name);
3929 break; 3924 break;
3930 case _MEMSWAP: 3925 case _MEMSWAP:
3931 if (name == RES_USAGE) 3926 if (name == RES_USAGE)
3932 val = mem_cgroup_usage(memcg, true); 3927 val = mem_cgroup_usage(memcg, true);
3933 else 3928 else
3934 val = res_counter_read_u64(&memcg->memsw, name); 3929 val = res_counter_read_u64(&memcg->memsw, name);
3935 break; 3930 break;
3936 default: 3931 default:
3937 BUG(); 3932 BUG();
3938 } 3933 }
3939 3934
3940 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val); 3935 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3941 return simple_read_from_buffer(buf, nbytes, ppos, str, len); 3936 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
3942 } 3937 }
3943 /* 3938 /*
3944 * The user of this function is... 3939 * The user of this function is...
3945 * RES_LIMIT. 3940 * RES_LIMIT.
3946 */ 3941 */
3947 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, 3942 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3948 const char *buffer) 3943 const char *buffer)
3949 { 3944 {
3950 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 3945 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3951 int type, name; 3946 int type, name;
3952 unsigned long long val; 3947 unsigned long long val;
3953 int ret; 3948 int ret;
3954 3949
3955 type = MEMFILE_TYPE(cft->private); 3950 type = MEMFILE_TYPE(cft->private);
3956 name = MEMFILE_ATTR(cft->private); 3951 name = MEMFILE_ATTR(cft->private);
3957 3952
3958 if (!do_swap_account && type == _MEMSWAP) 3953 if (!do_swap_account && type == _MEMSWAP)
3959 return -EOPNOTSUPP; 3954 return -EOPNOTSUPP;
3960 3955
3961 switch (name) { 3956 switch (name) {
3962 case RES_LIMIT: 3957 case RES_LIMIT:
3963 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3958 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3964 ret = -EINVAL; 3959 ret = -EINVAL;
3965 break; 3960 break;
3966 } 3961 }
3967 /* This function does all necessary parse...reuse it */ 3962 /* This function does all necessary parse...reuse it */
3968 ret = res_counter_memparse_write_strategy(buffer, &val); 3963 ret = res_counter_memparse_write_strategy(buffer, &val);
3969 if (ret) 3964 if (ret)
3970 break; 3965 break;
3971 if (type == _MEM) 3966 if (type == _MEM)
3972 ret = mem_cgroup_resize_limit(memcg, val); 3967 ret = mem_cgroup_resize_limit(memcg, val);
3973 else 3968 else
3974 ret = mem_cgroup_resize_memsw_limit(memcg, val); 3969 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3975 break; 3970 break;
3976 case RES_SOFT_LIMIT: 3971 case RES_SOFT_LIMIT:
3977 ret = res_counter_memparse_write_strategy(buffer, &val); 3972 ret = res_counter_memparse_write_strategy(buffer, &val);
3978 if (ret) 3973 if (ret)
3979 break; 3974 break;
3980 /* 3975 /*
3981 * For memsw, soft limits are hard to implement in terms 3976 * For memsw, soft limits are hard to implement in terms
3982 * of semantics, for now, we support soft limits for 3977 * of semantics, for now, we support soft limits for
3983 * control without swap 3978 * control without swap
3984 */ 3979 */
3985 if (type == _MEM) 3980 if (type == _MEM)
3986 ret = res_counter_set_soft_limit(&memcg->res, val); 3981 ret = res_counter_set_soft_limit(&memcg->res, val);
3987 else 3982 else
3988 ret = -EINVAL; 3983 ret = -EINVAL;
3989 break; 3984 break;
3990 default: 3985 default:
3991 ret = -EINVAL; /* should be BUG() ? */ 3986 ret = -EINVAL; /* should be BUG() ? */
3992 break; 3987 break;
3993 } 3988 }
3994 return ret; 3989 return ret;
3995 } 3990 }
3996 3991
3997 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, 3992 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3998 unsigned long long *mem_limit, unsigned long long *memsw_limit) 3993 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3999 { 3994 {
4000 struct cgroup *cgroup; 3995 struct cgroup *cgroup;
4001 unsigned long long min_limit, min_memsw_limit, tmp; 3996 unsigned long long min_limit, min_memsw_limit, tmp;
4002 3997
4003 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 3998 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4004 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 3999 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4005 cgroup = memcg->css.cgroup; 4000 cgroup = memcg->css.cgroup;
4006 if (!memcg->use_hierarchy) 4001 if (!memcg->use_hierarchy)
4007 goto out; 4002 goto out;
4008 4003
4009 while (cgroup->parent) { 4004 while (cgroup->parent) {
4010 cgroup = cgroup->parent; 4005 cgroup = cgroup->parent;
4011 memcg = mem_cgroup_from_cont(cgroup); 4006 memcg = mem_cgroup_from_cont(cgroup);
4012 if (!memcg->use_hierarchy) 4007 if (!memcg->use_hierarchy)
4013 break; 4008 break;
4014 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); 4009 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4015 min_limit = min(min_limit, tmp); 4010 min_limit = min(min_limit, tmp);
4016 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 4011 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4017 min_memsw_limit = min(min_memsw_limit, tmp); 4012 min_memsw_limit = min(min_memsw_limit, tmp);
4018 } 4013 }
4019 out: 4014 out:
4020 *mem_limit = min_limit; 4015 *mem_limit = min_limit;
4021 *memsw_limit = min_memsw_limit; 4016 *memsw_limit = min_memsw_limit;
4022 } 4017 }
4023 4018
4024 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) 4019 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4025 { 4020 {
4026 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 4021 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4027 int type, name; 4022 int type, name;
4028 4023
4029 type = MEMFILE_TYPE(event); 4024 type = MEMFILE_TYPE(event);
4030 name = MEMFILE_ATTR(event); 4025 name = MEMFILE_ATTR(event);
4031 4026
4032 if (!do_swap_account && type == _MEMSWAP) 4027 if (!do_swap_account && type == _MEMSWAP)
4033 return -EOPNOTSUPP; 4028 return -EOPNOTSUPP;
4034 4029
4035 switch (name) { 4030 switch (name) {
4036 case RES_MAX_USAGE: 4031 case RES_MAX_USAGE:
4037 if (type == _MEM) 4032 if (type == _MEM)
4038 res_counter_reset_max(&memcg->res); 4033 res_counter_reset_max(&memcg->res);
4039 else 4034 else
4040 res_counter_reset_max(&memcg->memsw); 4035 res_counter_reset_max(&memcg->memsw);
4041 break; 4036 break;
4042 case RES_FAILCNT: 4037 case RES_FAILCNT:
4043 if (type == _MEM) 4038 if (type == _MEM)
4044 res_counter_reset_failcnt(&memcg->res); 4039 res_counter_reset_failcnt(&memcg->res);
4045 else 4040 else
4046 res_counter_reset_failcnt(&memcg->memsw); 4041 res_counter_reset_failcnt(&memcg->memsw);
4047 break; 4042 break;
4048 } 4043 }
4049 4044
4050 return 0; 4045 return 0;
4051 } 4046 }
4052 4047
4053 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp, 4048 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4054 struct cftype *cft) 4049 struct cftype *cft)
4055 { 4050 {
4056 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate; 4051 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4057 } 4052 }
4058 4053
4059 #ifdef CONFIG_MMU 4054 #ifdef CONFIG_MMU
4060 static int mem_cgroup_move_charge_write(struct cgroup *cgrp, 4055 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4061 struct cftype *cft, u64 val) 4056 struct cftype *cft, u64 val)
4062 { 4057 {
4063 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4058 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4064 4059
4065 if (val >= (1 << NR_MOVE_TYPE)) 4060 if (val >= (1 << NR_MOVE_TYPE))
4066 return -EINVAL; 4061 return -EINVAL;
4067 /* 4062 /*
4068 * We check this value several times in both in can_attach() and 4063 * We check this value several times in both in can_attach() and
4069 * attach(), so we need cgroup lock to prevent this value from being 4064 * attach(), so we need cgroup lock to prevent this value from being
4070 * inconsistent. 4065 * inconsistent.
4071 */ 4066 */
4072 cgroup_lock(); 4067 cgroup_lock();
4073 memcg->move_charge_at_immigrate = val; 4068 memcg->move_charge_at_immigrate = val;
4074 cgroup_unlock(); 4069 cgroup_unlock();
4075 4070
4076 return 0; 4071 return 0;
4077 } 4072 }
4078 #else 4073 #else
4079 static int mem_cgroup_move_charge_write(struct cgroup *cgrp, 4074 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4080 struct cftype *cft, u64 val) 4075 struct cftype *cft, u64 val)
4081 { 4076 {
4082 return -ENOSYS; 4077 return -ENOSYS;
4083 } 4078 }
4084 #endif 4079 #endif
4085 4080
4086 #ifdef CONFIG_NUMA 4081 #ifdef CONFIG_NUMA
4087 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft, 4082 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4088 struct seq_file *m) 4083 struct seq_file *m)
4089 { 4084 {
4090 int nid; 4085 int nid;
4091 unsigned long total_nr, file_nr, anon_nr, unevictable_nr; 4086 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4092 unsigned long node_nr; 4087 unsigned long node_nr;
4093 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 4088 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4094 4089
4095 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL); 4090 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4096 seq_printf(m, "total=%lu", total_nr); 4091 seq_printf(m, "total=%lu", total_nr);
4097 for_each_node_state(nid, N_HIGH_MEMORY) { 4092 for_each_node_state(nid, N_HIGH_MEMORY) {
4098 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL); 4093 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4099 seq_printf(m, " N%d=%lu", nid, node_nr); 4094 seq_printf(m, " N%d=%lu", nid, node_nr);
4100 } 4095 }
4101 seq_putc(m, '\n'); 4096 seq_putc(m, '\n');
4102 4097
4103 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE); 4098 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4104 seq_printf(m, "file=%lu", file_nr); 4099 seq_printf(m, "file=%lu", file_nr);
4105 for_each_node_state(nid, N_HIGH_MEMORY) { 4100 for_each_node_state(nid, N_HIGH_MEMORY) {
4106 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 4101 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4107 LRU_ALL_FILE); 4102 LRU_ALL_FILE);
4108 seq_printf(m, " N%d=%lu", nid, node_nr); 4103 seq_printf(m, " N%d=%lu", nid, node_nr);
4109 } 4104 }
4110 seq_putc(m, '\n'); 4105 seq_putc(m, '\n');
4111 4106
4112 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON); 4107 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4113 seq_printf(m, "anon=%lu", anon_nr); 4108 seq_printf(m, "anon=%lu", anon_nr);
4114 for_each_node_state(nid, N_HIGH_MEMORY) { 4109 for_each_node_state(nid, N_HIGH_MEMORY) {
4115 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 4110 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4116 LRU_ALL_ANON); 4111 LRU_ALL_ANON);
4117 seq_printf(m, " N%d=%lu", nid, node_nr); 4112 seq_printf(m, " N%d=%lu", nid, node_nr);
4118 } 4113 }
4119 seq_putc(m, '\n'); 4114 seq_putc(m, '\n');
4120 4115
4121 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE)); 4116 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4122 seq_printf(m, "unevictable=%lu", unevictable_nr); 4117 seq_printf(m, "unevictable=%lu", unevictable_nr);
4123 for_each_node_state(nid, N_HIGH_MEMORY) { 4118 for_each_node_state(nid, N_HIGH_MEMORY) {
4124 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 4119 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4125 BIT(LRU_UNEVICTABLE)); 4120 BIT(LRU_UNEVICTABLE));
4126 seq_printf(m, " N%d=%lu", nid, node_nr); 4121 seq_printf(m, " N%d=%lu", nid, node_nr);
4127 } 4122 }
4128 seq_putc(m, '\n'); 4123 seq_putc(m, '\n');
4129 return 0; 4124 return 0;
4130 } 4125 }
4131 #endif /* CONFIG_NUMA */ 4126 #endif /* CONFIG_NUMA */
4132 4127
4133 static const char * const mem_cgroup_lru_names[] = { 4128 static const char * const mem_cgroup_lru_names[] = {
4134 "inactive_anon", 4129 "inactive_anon",
4135 "active_anon", 4130 "active_anon",
4136 "inactive_file", 4131 "inactive_file",
4137 "active_file", 4132 "active_file",
4138 "unevictable", 4133 "unevictable",
4139 }; 4134 };
4140 4135
4141 static inline void mem_cgroup_lru_names_not_uptodate(void) 4136 static inline void mem_cgroup_lru_names_not_uptodate(void)
4142 { 4137 {
4143 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 4138 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4144 } 4139 }
4145 4140
4146 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft, 4141 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
4147 struct seq_file *m) 4142 struct seq_file *m)
4148 { 4143 {
4149 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 4144 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4150 struct mem_cgroup *mi; 4145 struct mem_cgroup *mi;
4151 unsigned int i; 4146 unsigned int i;
4152 4147
4153 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 4148 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4154 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 4149 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4155 continue; 4150 continue;
4156 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i], 4151 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4157 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); 4152 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4158 } 4153 }
4159 4154
4160 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) 4155 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4161 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], 4156 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4162 mem_cgroup_read_events(memcg, i)); 4157 mem_cgroup_read_events(memcg, i));
4163 4158
4164 for (i = 0; i < NR_LRU_LISTS; i++) 4159 for (i = 0; i < NR_LRU_LISTS; i++)
4165 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 4160 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4166 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); 4161 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4167 4162
4168 /* Hierarchical information */ 4163 /* Hierarchical information */
4169 { 4164 {
4170 unsigned long long limit, memsw_limit; 4165 unsigned long long limit, memsw_limit;
4171 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit); 4166 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4172 seq_printf(m, "hierarchical_memory_limit %llu\n", limit); 4167 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4173 if (do_swap_account) 4168 if (do_swap_account)
4174 seq_printf(m, "hierarchical_memsw_limit %llu\n", 4169 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4175 memsw_limit); 4170 memsw_limit);
4176 } 4171 }
4177 4172
4178 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 4173 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4179 long long val = 0; 4174 long long val = 0;
4180 4175
4181 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 4176 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4182 continue; 4177 continue;
4183 for_each_mem_cgroup_tree(mi, memcg) 4178 for_each_mem_cgroup_tree(mi, memcg)
4184 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; 4179 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4185 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val); 4180 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4186 } 4181 }
4187 4182
4188 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 4183 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4189 unsigned long long val = 0; 4184 unsigned long long val = 0;
4190 4185
4191 for_each_mem_cgroup_tree(mi, memcg) 4186 for_each_mem_cgroup_tree(mi, memcg)
4192 val += mem_cgroup_read_events(mi, i); 4187 val += mem_cgroup_read_events(mi, i);
4193 seq_printf(m, "total_%s %llu\n", 4188 seq_printf(m, "total_%s %llu\n",
4194 mem_cgroup_events_names[i], val); 4189 mem_cgroup_events_names[i], val);
4195 } 4190 }
4196 4191
4197 for (i = 0; i < NR_LRU_LISTS; i++) { 4192 for (i = 0; i < NR_LRU_LISTS; i++) {
4198 unsigned long long val = 0; 4193 unsigned long long val = 0;
4199 4194
4200 for_each_mem_cgroup_tree(mi, memcg) 4195 for_each_mem_cgroup_tree(mi, memcg)
4201 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; 4196 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4202 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); 4197 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4203 } 4198 }
4204 4199
4205 #ifdef CONFIG_DEBUG_VM 4200 #ifdef CONFIG_DEBUG_VM
4206 { 4201 {
4207 int nid, zid; 4202 int nid, zid;
4208 struct mem_cgroup_per_zone *mz; 4203 struct mem_cgroup_per_zone *mz;
4209 struct zone_reclaim_stat *rstat; 4204 struct zone_reclaim_stat *rstat;
4210 unsigned long recent_rotated[2] = {0, 0}; 4205 unsigned long recent_rotated[2] = {0, 0};
4211 unsigned long recent_scanned[2] = {0, 0}; 4206 unsigned long recent_scanned[2] = {0, 0};
4212 4207
4213 for_each_online_node(nid) 4208 for_each_online_node(nid)
4214 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 4209 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4215 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 4210 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4216 rstat = &mz->lruvec.reclaim_stat; 4211 rstat = &mz->lruvec.reclaim_stat;
4217 4212
4218 recent_rotated[0] += rstat->recent_rotated[0]; 4213 recent_rotated[0] += rstat->recent_rotated[0];
4219 recent_rotated[1] += rstat->recent_rotated[1]; 4214 recent_rotated[1] += rstat->recent_rotated[1];
4220 recent_scanned[0] += rstat->recent_scanned[0]; 4215 recent_scanned[0] += rstat->recent_scanned[0];
4221 recent_scanned[1] += rstat->recent_scanned[1]; 4216 recent_scanned[1] += rstat->recent_scanned[1];
4222 } 4217 }
4223 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 4218 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4224 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 4219 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4225 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 4220 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4226 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 4221 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
4227 } 4222 }
4228 #endif 4223 #endif
4229 4224
4230 return 0; 4225 return 0;
4231 } 4226 }
4232 4227
4233 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft) 4228 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4234 { 4229 {
4235 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4230 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4236 4231
4237 return mem_cgroup_swappiness(memcg); 4232 return mem_cgroup_swappiness(memcg);
4238 } 4233 }
4239 4234
4240 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft, 4235 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4241 u64 val) 4236 u64 val)
4242 { 4237 {
4243 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4238 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4244 struct mem_cgroup *parent; 4239 struct mem_cgroup *parent;
4245 4240
4246 if (val > 100) 4241 if (val > 100)
4247 return -EINVAL; 4242 return -EINVAL;
4248 4243
4249 if (cgrp->parent == NULL) 4244 if (cgrp->parent == NULL)
4250 return -EINVAL; 4245 return -EINVAL;
4251 4246
4252 parent = mem_cgroup_from_cont(cgrp->parent); 4247 parent = mem_cgroup_from_cont(cgrp->parent);
4253 4248
4254 cgroup_lock(); 4249 cgroup_lock();
4255 4250
4256 /* If under hierarchy, only empty-root can set this value */ 4251 /* If under hierarchy, only empty-root can set this value */
4257 if ((parent->use_hierarchy) || 4252 if ((parent->use_hierarchy) ||
4258 (memcg->use_hierarchy && !list_empty(&cgrp->children))) { 4253 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4259 cgroup_unlock(); 4254 cgroup_unlock();
4260 return -EINVAL; 4255 return -EINVAL;
4261 } 4256 }
4262 4257
4263 memcg->swappiness = val; 4258 memcg->swappiness = val;
4264 4259
4265 cgroup_unlock(); 4260 cgroup_unlock();
4266 4261
4267 return 0; 4262 return 0;
4268 } 4263 }
4269 4264
4270 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 4265 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4271 { 4266 {
4272 struct mem_cgroup_threshold_ary *t; 4267 struct mem_cgroup_threshold_ary *t;
4273 u64 usage; 4268 u64 usage;
4274 int i; 4269 int i;
4275 4270
4276 rcu_read_lock(); 4271 rcu_read_lock();
4277 if (!swap) 4272 if (!swap)
4278 t = rcu_dereference(memcg->thresholds.primary); 4273 t = rcu_dereference(memcg->thresholds.primary);
4279 else 4274 else
4280 t = rcu_dereference(memcg->memsw_thresholds.primary); 4275 t = rcu_dereference(memcg->memsw_thresholds.primary);
4281 4276
4282 if (!t) 4277 if (!t)
4283 goto unlock; 4278 goto unlock;
4284 4279
4285 usage = mem_cgroup_usage(memcg, swap); 4280 usage = mem_cgroup_usage(memcg, swap);
4286 4281
4287 /* 4282 /*
4288 * current_threshold points to threshold just below or equal to usage. 4283 * current_threshold points to threshold just below or equal to usage.
4289 * If it's not true, a threshold was crossed after last 4284 * If it's not true, a threshold was crossed after last
4290 * call of __mem_cgroup_threshold(). 4285 * call of __mem_cgroup_threshold().
4291 */ 4286 */
4292 i = t->current_threshold; 4287 i = t->current_threshold;
4293 4288
4294 /* 4289 /*
4295 * Iterate backward over array of thresholds starting from 4290 * Iterate backward over array of thresholds starting from
4296 * current_threshold and check if a threshold is crossed. 4291 * current_threshold and check if a threshold is crossed.
4297 * If none of thresholds below usage is crossed, we read 4292 * If none of thresholds below usage is crossed, we read
4298 * only one element of the array here. 4293 * only one element of the array here.
4299 */ 4294 */
4300 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 4295 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4301 eventfd_signal(t->entries[i].eventfd, 1); 4296 eventfd_signal(t->entries[i].eventfd, 1);
4302 4297
4303 /* i = current_threshold + 1 */ 4298 /* i = current_threshold + 1 */
4304 i++; 4299 i++;
4305 4300
4306 /* 4301 /*
4307 * Iterate forward over array of thresholds starting from 4302 * Iterate forward over array of thresholds starting from
4308 * current_threshold+1 and check if a threshold is crossed. 4303 * current_threshold+1 and check if a threshold is crossed.
4309 * If none of thresholds above usage is crossed, we read 4304 * If none of thresholds above usage is crossed, we read
4310 * only one element of the array here. 4305 * only one element of the array here.
4311 */ 4306 */
4312 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 4307 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4313 eventfd_signal(t->entries[i].eventfd, 1); 4308 eventfd_signal(t->entries[i].eventfd, 1);
4314 4309
4315 /* Update current_threshold */ 4310 /* Update current_threshold */
4316 t->current_threshold = i - 1; 4311 t->current_threshold = i - 1;
4317 unlock: 4312 unlock:
4318 rcu_read_unlock(); 4313 rcu_read_unlock();
4319 } 4314 }
4320 4315
4321 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 4316 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4322 { 4317 {
4323 while (memcg) { 4318 while (memcg) {
4324 __mem_cgroup_threshold(memcg, false); 4319 __mem_cgroup_threshold(memcg, false);
4325 if (do_swap_account) 4320 if (do_swap_account)
4326 __mem_cgroup_threshold(memcg, true); 4321 __mem_cgroup_threshold(memcg, true);
4327 4322
4328 memcg = parent_mem_cgroup(memcg); 4323 memcg = parent_mem_cgroup(memcg);
4329 } 4324 }
4330 } 4325 }
4331 4326
4332 static int compare_thresholds(const void *a, const void *b) 4327 static int compare_thresholds(const void *a, const void *b)
4333 { 4328 {
4334 const struct mem_cgroup_threshold *_a = a; 4329 const struct mem_cgroup_threshold *_a = a;
4335 const struct mem_cgroup_threshold *_b = b; 4330 const struct mem_cgroup_threshold *_b = b;
4336 4331
4337 return _a->threshold - _b->threshold; 4332 return _a->threshold - _b->threshold;
4338 } 4333 }
4339 4334
4340 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 4335 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4341 { 4336 {
4342 struct mem_cgroup_eventfd_list *ev; 4337 struct mem_cgroup_eventfd_list *ev;
4343 4338
4344 list_for_each_entry(ev, &memcg->oom_notify, list) 4339 list_for_each_entry(ev, &memcg->oom_notify, list)
4345 eventfd_signal(ev->eventfd, 1); 4340 eventfd_signal(ev->eventfd, 1);
4346 return 0; 4341 return 0;
4347 } 4342 }
4348 4343
4349 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 4344 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4350 { 4345 {
4351 struct mem_cgroup *iter; 4346 struct mem_cgroup *iter;
4352 4347
4353 for_each_mem_cgroup_tree(iter, memcg) 4348 for_each_mem_cgroup_tree(iter, memcg)
4354 mem_cgroup_oom_notify_cb(iter); 4349 mem_cgroup_oom_notify_cb(iter);
4355 } 4350 }
4356 4351
4357 static int mem_cgroup_usage_register_event(struct cgroup *cgrp, 4352 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4358 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 4353 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4359 { 4354 {
4360 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4355 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4361 struct mem_cgroup_thresholds *thresholds; 4356 struct mem_cgroup_thresholds *thresholds;
4362 struct mem_cgroup_threshold_ary *new; 4357 struct mem_cgroup_threshold_ary *new;
4363 int type = MEMFILE_TYPE(cft->private); 4358 int type = MEMFILE_TYPE(cft->private);
4364 u64 threshold, usage; 4359 u64 threshold, usage;
4365 int i, size, ret; 4360 int i, size, ret;
4366 4361
4367 ret = res_counter_memparse_write_strategy(args, &threshold); 4362 ret = res_counter_memparse_write_strategy(args, &threshold);
4368 if (ret) 4363 if (ret)
4369 return ret; 4364 return ret;
4370 4365
4371 mutex_lock(&memcg->thresholds_lock); 4366 mutex_lock(&memcg->thresholds_lock);
4372 4367
4373 if (type == _MEM) 4368 if (type == _MEM)
4374 thresholds = &memcg->thresholds; 4369 thresholds = &memcg->thresholds;
4375 else if (type == _MEMSWAP) 4370 else if (type == _MEMSWAP)
4376 thresholds = &memcg->memsw_thresholds; 4371 thresholds = &memcg->memsw_thresholds;
4377 else 4372 else
4378 BUG(); 4373 BUG();
4379 4374
4380 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 4375 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4381 4376
4382 /* Check if a threshold crossed before adding a new one */ 4377 /* Check if a threshold crossed before adding a new one */
4383 if (thresholds->primary) 4378 if (thresholds->primary)
4384 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4379 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4385 4380
4386 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4381 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4387 4382
4388 /* Allocate memory for new array of thresholds */ 4383 /* Allocate memory for new array of thresholds */
4389 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 4384 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4390 GFP_KERNEL); 4385 GFP_KERNEL);
4391 if (!new) { 4386 if (!new) {
4392 ret = -ENOMEM; 4387 ret = -ENOMEM;
4393 goto unlock; 4388 goto unlock;
4394 } 4389 }
4395 new->size = size; 4390 new->size = size;
4396 4391
4397 /* Copy thresholds (if any) to new array */ 4392 /* Copy thresholds (if any) to new array */
4398 if (thresholds->primary) { 4393 if (thresholds->primary) {
4399 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 4394 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4400 sizeof(struct mem_cgroup_threshold)); 4395 sizeof(struct mem_cgroup_threshold));
4401 } 4396 }
4402 4397
4403 /* Add new threshold */ 4398 /* Add new threshold */
4404 new->entries[size - 1].eventfd = eventfd; 4399 new->entries[size - 1].eventfd = eventfd;
4405 new->entries[size - 1].threshold = threshold; 4400 new->entries[size - 1].threshold = threshold;
4406 4401
4407 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4402 /* Sort thresholds. Registering of new threshold isn't time-critical */
4408 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 4403 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4409 compare_thresholds, NULL); 4404 compare_thresholds, NULL);
4410 4405
4411 /* Find current threshold */ 4406 /* Find current threshold */
4412 new->current_threshold = -1; 4407 new->current_threshold = -1;
4413 for (i = 0; i < size; i++) { 4408 for (i = 0; i < size; i++) {
4414 if (new->entries[i].threshold <= usage) { 4409 if (new->entries[i].threshold <= usage) {
4415 /* 4410 /*
4416 * new->current_threshold will not be used until 4411 * new->current_threshold will not be used until
4417 * rcu_assign_pointer(), so it's safe to increment 4412 * rcu_assign_pointer(), so it's safe to increment
4418 * it here. 4413 * it here.
4419 */ 4414 */
4420 ++new->current_threshold; 4415 ++new->current_threshold;
4421 } else 4416 } else
4422 break; 4417 break;
4423 } 4418 }
4424 4419
4425 /* Free old spare buffer and save old primary buffer as spare */ 4420 /* Free old spare buffer and save old primary buffer as spare */
4426 kfree(thresholds->spare); 4421 kfree(thresholds->spare);
4427 thresholds->spare = thresholds->primary; 4422 thresholds->spare = thresholds->primary;
4428 4423
4429 rcu_assign_pointer(thresholds->primary, new); 4424 rcu_assign_pointer(thresholds->primary, new);
4430 4425
4431 /* To be sure that nobody uses thresholds */ 4426 /* To be sure that nobody uses thresholds */
4432 synchronize_rcu(); 4427 synchronize_rcu();
4433 4428
4434 unlock: 4429 unlock:
4435 mutex_unlock(&memcg->thresholds_lock); 4430 mutex_unlock(&memcg->thresholds_lock);
4436 4431
4437 return ret; 4432 return ret;
4438 } 4433 }
4439 4434
4440 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp, 4435 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4441 struct cftype *cft, struct eventfd_ctx *eventfd) 4436 struct cftype *cft, struct eventfd_ctx *eventfd)
4442 { 4437 {
4443 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4438 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4444 struct mem_cgroup_thresholds *thresholds; 4439 struct mem_cgroup_thresholds *thresholds;
4445 struct mem_cgroup_threshold_ary *new; 4440 struct mem_cgroup_threshold_ary *new;
4446 int type = MEMFILE_TYPE(cft->private); 4441 int type = MEMFILE_TYPE(cft->private);
4447 u64 usage; 4442 u64 usage;
4448 int i, j, size; 4443 int i, j, size;
4449 4444
4450 mutex_lock(&memcg->thresholds_lock); 4445 mutex_lock(&memcg->thresholds_lock);
4451 if (type == _MEM) 4446 if (type == _MEM)
4452 thresholds = &memcg->thresholds; 4447 thresholds = &memcg->thresholds;
4453 else if (type == _MEMSWAP) 4448 else if (type == _MEMSWAP)
4454 thresholds = &memcg->memsw_thresholds; 4449 thresholds = &memcg->memsw_thresholds;
4455 else 4450 else
4456 BUG(); 4451 BUG();
4457 4452
4458 if (!thresholds->primary) 4453 if (!thresholds->primary)
4459 goto unlock; 4454 goto unlock;
4460 4455
4461 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 4456 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4462 4457
4463 /* Check if a threshold crossed before removing */ 4458 /* Check if a threshold crossed before removing */
4464 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4459 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4465 4460
4466 /* Calculate new number of threshold */ 4461 /* Calculate new number of threshold */
4467 size = 0; 4462 size = 0;
4468 for (i = 0; i < thresholds->primary->size; i++) { 4463 for (i = 0; i < thresholds->primary->size; i++) {
4469 if (thresholds->primary->entries[i].eventfd != eventfd) 4464 if (thresholds->primary->entries[i].eventfd != eventfd)
4470 size++; 4465 size++;
4471 } 4466 }
4472 4467
4473 new = thresholds->spare; 4468 new = thresholds->spare;
4474 4469
4475 /* Set thresholds array to NULL if we don't have thresholds */ 4470 /* Set thresholds array to NULL if we don't have thresholds */
4476 if (!size) { 4471 if (!size) {
4477 kfree(new); 4472 kfree(new);
4478 new = NULL; 4473 new = NULL;
4479 goto swap_buffers; 4474 goto swap_buffers;
4480 } 4475 }
4481 4476
4482 new->size = size; 4477 new->size = size;
4483 4478
4484 /* Copy thresholds and find current threshold */ 4479 /* Copy thresholds and find current threshold */
4485 new->current_threshold = -1; 4480 new->current_threshold = -1;
4486 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4481 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4487 if (thresholds->primary->entries[i].eventfd == eventfd) 4482 if (thresholds->primary->entries[i].eventfd == eventfd)
4488 continue; 4483 continue;
4489 4484
4490 new->entries[j] = thresholds->primary->entries[i]; 4485 new->entries[j] = thresholds->primary->entries[i];
4491 if (new->entries[j].threshold <= usage) { 4486 if (new->entries[j].threshold <= usage) {
4492 /* 4487 /*
4493 * new->current_threshold will not be used 4488 * new->current_threshold will not be used
4494 * until rcu_assign_pointer(), so it's safe to increment 4489 * until rcu_assign_pointer(), so it's safe to increment
4495 * it here. 4490 * it here.
4496 */ 4491 */
4497 ++new->current_threshold; 4492 ++new->current_threshold;
4498 } 4493 }
4499 j++; 4494 j++;
4500 } 4495 }
4501 4496
4502 swap_buffers: 4497 swap_buffers:
4503 /* Swap primary and spare array */ 4498 /* Swap primary and spare array */
4504 thresholds->spare = thresholds->primary; 4499 thresholds->spare = thresholds->primary;
4505 /* If all events are unregistered, free the spare array */ 4500 /* If all events are unregistered, free the spare array */
4506 if (!new) { 4501 if (!new) {
4507 kfree(thresholds->spare); 4502 kfree(thresholds->spare);
4508 thresholds->spare = NULL; 4503 thresholds->spare = NULL;
4509 } 4504 }
4510 4505
4511 rcu_assign_pointer(thresholds->primary, new); 4506 rcu_assign_pointer(thresholds->primary, new);
4512 4507
4513 /* To be sure that nobody uses thresholds */ 4508 /* To be sure that nobody uses thresholds */
4514 synchronize_rcu(); 4509 synchronize_rcu();
4515 unlock: 4510 unlock:
4516 mutex_unlock(&memcg->thresholds_lock); 4511 mutex_unlock(&memcg->thresholds_lock);
4517 } 4512 }
4518 4513
4519 static int mem_cgroup_oom_register_event(struct cgroup *cgrp, 4514 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4520 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 4515 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4521 { 4516 {
4522 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4517 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4523 struct mem_cgroup_eventfd_list *event; 4518 struct mem_cgroup_eventfd_list *event;
4524 int type = MEMFILE_TYPE(cft->private); 4519 int type = MEMFILE_TYPE(cft->private);
4525 4520
4526 BUG_ON(type != _OOM_TYPE); 4521 BUG_ON(type != _OOM_TYPE);
4527 event = kmalloc(sizeof(*event), GFP_KERNEL); 4522 event = kmalloc(sizeof(*event), GFP_KERNEL);
4528 if (!event) 4523 if (!event)
4529 return -ENOMEM; 4524 return -ENOMEM;
4530 4525
4531 spin_lock(&memcg_oom_lock); 4526 spin_lock(&memcg_oom_lock);
4532 4527
4533 event->eventfd = eventfd; 4528 event->eventfd = eventfd;
4534 list_add(&event->list, &memcg->oom_notify); 4529 list_add(&event->list, &memcg->oom_notify);
4535 4530
4536 /* already in OOM ? */ 4531 /* already in OOM ? */
4537 if (atomic_read(&memcg->under_oom)) 4532 if (atomic_read(&memcg->under_oom))
4538 eventfd_signal(eventfd, 1); 4533 eventfd_signal(eventfd, 1);
4539 spin_unlock(&memcg_oom_lock); 4534 spin_unlock(&memcg_oom_lock);
4540 4535
4541 return 0; 4536 return 0;
4542 } 4537 }
4543 4538
4544 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp, 4539 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4545 struct cftype *cft, struct eventfd_ctx *eventfd) 4540 struct cftype *cft, struct eventfd_ctx *eventfd)
4546 { 4541 {
4547 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4542 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4548 struct mem_cgroup_eventfd_list *ev, *tmp; 4543 struct mem_cgroup_eventfd_list *ev, *tmp;
4549 int type = MEMFILE_TYPE(cft->private); 4544 int type = MEMFILE_TYPE(cft->private);
4550 4545
4551 BUG_ON(type != _OOM_TYPE); 4546 BUG_ON(type != _OOM_TYPE);
4552 4547
4553 spin_lock(&memcg_oom_lock); 4548 spin_lock(&memcg_oom_lock);
4554 4549
4555 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4550 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4556 if (ev->eventfd == eventfd) { 4551 if (ev->eventfd == eventfd) {
4557 list_del(&ev->list); 4552 list_del(&ev->list);
4558 kfree(ev); 4553 kfree(ev);
4559 } 4554 }
4560 } 4555 }
4561 4556
4562 spin_unlock(&memcg_oom_lock); 4557 spin_unlock(&memcg_oom_lock);
4563 } 4558 }
4564 4559
4565 static int mem_cgroup_oom_control_read(struct cgroup *cgrp, 4560 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4566 struct cftype *cft, struct cgroup_map_cb *cb) 4561 struct cftype *cft, struct cgroup_map_cb *cb)
4567 { 4562 {
4568 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4563 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4569 4564
4570 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable); 4565 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4571 4566
4572 if (atomic_read(&memcg->under_oom)) 4567 if (atomic_read(&memcg->under_oom))
4573 cb->fill(cb, "under_oom", 1); 4568 cb->fill(cb, "under_oom", 1);
4574 else 4569 else
4575 cb->fill(cb, "under_oom", 0); 4570 cb->fill(cb, "under_oom", 0);
4576 return 0; 4571 return 0;
4577 } 4572 }
4578 4573
4579 static int mem_cgroup_oom_control_write(struct cgroup *cgrp, 4574 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4580 struct cftype *cft, u64 val) 4575 struct cftype *cft, u64 val)
4581 { 4576 {
4582 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4577 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4583 struct mem_cgroup *parent; 4578 struct mem_cgroup *parent;
4584 4579
4585 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4580 /* cannot set to root cgroup and only 0 and 1 are allowed */
4586 if (!cgrp->parent || !((val == 0) || (val == 1))) 4581 if (!cgrp->parent || !((val == 0) || (val == 1)))
4587 return -EINVAL; 4582 return -EINVAL;
4588 4583
4589 parent = mem_cgroup_from_cont(cgrp->parent); 4584 parent = mem_cgroup_from_cont(cgrp->parent);
4590 4585
4591 cgroup_lock(); 4586 cgroup_lock();
4592 /* oom-kill-disable is a flag for subhierarchy. */ 4587 /* oom-kill-disable is a flag for subhierarchy. */
4593 if ((parent->use_hierarchy) || 4588 if ((parent->use_hierarchy) ||
4594 (memcg->use_hierarchy && !list_empty(&cgrp->children))) { 4589 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4595 cgroup_unlock(); 4590 cgroup_unlock();
4596 return -EINVAL; 4591 return -EINVAL;
4597 } 4592 }
4598 memcg->oom_kill_disable = val; 4593 memcg->oom_kill_disable = val;
4599 if (!val) 4594 if (!val)
4600 memcg_oom_recover(memcg); 4595 memcg_oom_recover(memcg);
4601 cgroup_unlock(); 4596 cgroup_unlock();
4602 return 0; 4597 return 0;
4603 } 4598 }
4604 4599
4605 #ifdef CONFIG_MEMCG_KMEM 4600 #ifdef CONFIG_MEMCG_KMEM
4606 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 4601 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4607 { 4602 {
4608 return mem_cgroup_sockets_init(memcg, ss); 4603 return mem_cgroup_sockets_init(memcg, ss);
4609 }; 4604 };
4610 4605
4611 static void kmem_cgroup_destroy(struct mem_cgroup *memcg) 4606 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4612 { 4607 {
4613 mem_cgroup_sockets_destroy(memcg); 4608 mem_cgroup_sockets_destroy(memcg);
4614 } 4609 }
4615 #else 4610 #else
4616 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 4611 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4617 { 4612 {
4618 return 0; 4613 return 0;
4619 } 4614 }
4620 4615
4621 static void kmem_cgroup_destroy(struct mem_cgroup *memcg) 4616 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4622 { 4617 {
4623 } 4618 }
4624 #endif 4619 #endif
4625 4620
4626 static struct cftype mem_cgroup_files[] = { 4621 static struct cftype mem_cgroup_files[] = {
4627 { 4622 {
4628 .name = "usage_in_bytes", 4623 .name = "usage_in_bytes",
4629 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4624 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4630 .read = mem_cgroup_read, 4625 .read = mem_cgroup_read,
4631 .register_event = mem_cgroup_usage_register_event, 4626 .register_event = mem_cgroup_usage_register_event,
4632 .unregister_event = mem_cgroup_usage_unregister_event, 4627 .unregister_event = mem_cgroup_usage_unregister_event,
4633 }, 4628 },
4634 { 4629 {
4635 .name = "max_usage_in_bytes", 4630 .name = "max_usage_in_bytes",
4636 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4631 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4637 .trigger = mem_cgroup_reset, 4632 .trigger = mem_cgroup_reset,
4638 .read = mem_cgroup_read, 4633 .read = mem_cgroup_read,
4639 }, 4634 },
4640 { 4635 {
4641 .name = "limit_in_bytes", 4636 .name = "limit_in_bytes",
4642 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4637 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4643 .write_string = mem_cgroup_write, 4638 .write_string = mem_cgroup_write,
4644 .read = mem_cgroup_read, 4639 .read = mem_cgroup_read,
4645 }, 4640 },
4646 { 4641 {
4647 .name = "soft_limit_in_bytes", 4642 .name = "soft_limit_in_bytes",
4648 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4643 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4649 .write_string = mem_cgroup_write, 4644 .write_string = mem_cgroup_write,
4650 .read = mem_cgroup_read, 4645 .read = mem_cgroup_read,
4651 }, 4646 },
4652 { 4647 {
4653 .name = "failcnt", 4648 .name = "failcnt",
4654 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4649 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4655 .trigger = mem_cgroup_reset, 4650 .trigger = mem_cgroup_reset,
4656 .read = mem_cgroup_read, 4651 .read = mem_cgroup_read,
4657 }, 4652 },
4658 { 4653 {
4659 .name = "stat", 4654 .name = "stat",
4660 .read_seq_string = memcg_stat_show, 4655 .read_seq_string = memcg_stat_show,
4661 }, 4656 },
4662 { 4657 {
4663 .name = "force_empty", 4658 .name = "force_empty",
4664 .trigger = mem_cgroup_force_empty_write, 4659 .trigger = mem_cgroup_force_empty_write,
4665 }, 4660 },
4666 { 4661 {
4667 .name = "use_hierarchy", 4662 .name = "use_hierarchy",
4668 .write_u64 = mem_cgroup_hierarchy_write, 4663 .write_u64 = mem_cgroup_hierarchy_write,
4669 .read_u64 = mem_cgroup_hierarchy_read, 4664 .read_u64 = mem_cgroup_hierarchy_read,
4670 }, 4665 },
4671 { 4666 {
4672 .name = "swappiness", 4667 .name = "swappiness",
4673 .read_u64 = mem_cgroup_swappiness_read, 4668 .read_u64 = mem_cgroup_swappiness_read,
4674 .write_u64 = mem_cgroup_swappiness_write, 4669 .write_u64 = mem_cgroup_swappiness_write,
4675 }, 4670 },
4676 { 4671 {
4677 .name = "move_charge_at_immigrate", 4672 .name = "move_charge_at_immigrate",
4678 .read_u64 = mem_cgroup_move_charge_read, 4673 .read_u64 = mem_cgroup_move_charge_read,
4679 .write_u64 = mem_cgroup_move_charge_write, 4674 .write_u64 = mem_cgroup_move_charge_write,
4680 }, 4675 },
4681 { 4676 {
4682 .name = "oom_control", 4677 .name = "oom_control",
4683 .read_map = mem_cgroup_oom_control_read, 4678 .read_map = mem_cgroup_oom_control_read,
4684 .write_u64 = mem_cgroup_oom_control_write, 4679 .write_u64 = mem_cgroup_oom_control_write,
4685 .register_event = mem_cgroup_oom_register_event, 4680 .register_event = mem_cgroup_oom_register_event,
4686 .unregister_event = mem_cgroup_oom_unregister_event, 4681 .unregister_event = mem_cgroup_oom_unregister_event,
4687 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4682 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4688 }, 4683 },
4689 #ifdef CONFIG_NUMA 4684 #ifdef CONFIG_NUMA
4690 { 4685 {
4691 .name = "numa_stat", 4686 .name = "numa_stat",
4692 .read_seq_string = memcg_numa_stat_show, 4687 .read_seq_string = memcg_numa_stat_show,
4693 }, 4688 },
4694 #endif 4689 #endif
4695 #ifdef CONFIG_MEMCG_SWAP 4690 #ifdef CONFIG_MEMCG_SWAP
4696 { 4691 {
4697 .name = "memsw.usage_in_bytes", 4692 .name = "memsw.usage_in_bytes",
4698 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 4693 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4699 .read = mem_cgroup_read, 4694 .read = mem_cgroup_read,
4700 .register_event = mem_cgroup_usage_register_event, 4695 .register_event = mem_cgroup_usage_register_event,
4701 .unregister_event = mem_cgroup_usage_unregister_event, 4696 .unregister_event = mem_cgroup_usage_unregister_event,
4702 }, 4697 },
4703 { 4698 {
4704 .name = "memsw.max_usage_in_bytes", 4699 .name = "memsw.max_usage_in_bytes",
4705 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 4700 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4706 .trigger = mem_cgroup_reset, 4701 .trigger = mem_cgroup_reset,
4707 .read = mem_cgroup_read, 4702 .read = mem_cgroup_read,
4708 }, 4703 },
4709 { 4704 {
4710 .name = "memsw.limit_in_bytes", 4705 .name = "memsw.limit_in_bytes",
4711 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 4706 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4712 .write_string = mem_cgroup_write, 4707 .write_string = mem_cgroup_write,
4713 .read = mem_cgroup_read, 4708 .read = mem_cgroup_read,
4714 }, 4709 },
4715 { 4710 {
4716 .name = "memsw.failcnt", 4711 .name = "memsw.failcnt",
4717 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 4712 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4718 .trigger = mem_cgroup_reset, 4713 .trigger = mem_cgroup_reset,
4719 .read = mem_cgroup_read, 4714 .read = mem_cgroup_read,
4720 }, 4715 },
4721 #endif 4716 #endif
4722 { }, /* terminate */ 4717 { }, /* terminate */
4723 }; 4718 };
4724 4719
4725 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 4720 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4726 { 4721 {
4727 struct mem_cgroup_per_node *pn; 4722 struct mem_cgroup_per_node *pn;
4728 struct mem_cgroup_per_zone *mz; 4723 struct mem_cgroup_per_zone *mz;
4729 int zone, tmp = node; 4724 int zone, tmp = node;
4730 /* 4725 /*
4731 * This routine is called against possible nodes. 4726 * This routine is called against possible nodes.
4732 * But it's BUG to call kmalloc() against offline node. 4727 * But it's BUG to call kmalloc() against offline node.
4733 * 4728 *
4734 * TODO: this routine can waste much memory for nodes which will 4729 * TODO: this routine can waste much memory for nodes which will
4735 * never be onlined. It's better to use memory hotplug callback 4730 * never be onlined. It's better to use memory hotplug callback
4736 * function. 4731 * function.
4737 */ 4732 */
4738 if (!node_state(node, N_NORMAL_MEMORY)) 4733 if (!node_state(node, N_NORMAL_MEMORY))
4739 tmp = -1; 4734 tmp = -1;
4740 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4735 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4741 if (!pn) 4736 if (!pn)
4742 return 1; 4737 return 1;
4743 4738
4744 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4739 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4745 mz = &pn->zoneinfo[zone]; 4740 mz = &pn->zoneinfo[zone];
4746 lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]); 4741 lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
4747 mz->usage_in_excess = 0; 4742 mz->usage_in_excess = 0;
4748 mz->on_tree = false; 4743 mz->on_tree = false;
4749 mz->memcg = memcg; 4744 mz->memcg = memcg;
4750 } 4745 }
4751 memcg->info.nodeinfo[node] = pn; 4746 memcg->info.nodeinfo[node] = pn;
4752 return 0; 4747 return 0;
4753 } 4748 }
4754 4749
4755 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 4750 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4756 { 4751 {
4757 kfree(memcg->info.nodeinfo[node]); 4752 kfree(memcg->info.nodeinfo[node]);
4758 } 4753 }
4759 4754
4760 static struct mem_cgroup *mem_cgroup_alloc(void) 4755 static struct mem_cgroup *mem_cgroup_alloc(void)
4761 { 4756 {
4762 struct mem_cgroup *memcg; 4757 struct mem_cgroup *memcg;
4763 int size = sizeof(struct mem_cgroup); 4758 int size = sizeof(struct mem_cgroup);
4764 4759
4765 /* Can be very big if MAX_NUMNODES is very big */ 4760 /* Can be very big if MAX_NUMNODES is very big */
4766 if (size < PAGE_SIZE) 4761 if (size < PAGE_SIZE)
4767 memcg = kzalloc(size, GFP_KERNEL); 4762 memcg = kzalloc(size, GFP_KERNEL);
4768 else 4763 else
4769 memcg = vzalloc(size); 4764 memcg = vzalloc(size);
4770 4765
4771 if (!memcg) 4766 if (!memcg)
4772 return NULL; 4767 return NULL;
4773 4768
4774 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); 4769 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4775 if (!memcg->stat) 4770 if (!memcg->stat)
4776 goto out_free; 4771 goto out_free;
4777 spin_lock_init(&memcg->pcp_counter_lock); 4772 spin_lock_init(&memcg->pcp_counter_lock);
4778 return memcg; 4773 return memcg;
4779 4774
4780 out_free: 4775 out_free:
4781 if (size < PAGE_SIZE) 4776 if (size < PAGE_SIZE)
4782 kfree(memcg); 4777 kfree(memcg);
4783 else 4778 else
4784 vfree(memcg); 4779 vfree(memcg);
4785 return NULL; 4780 return NULL;
4786 } 4781 }
4787 4782
4788 /* 4783 /*
4789 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU, 4784 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
4790 * but in process context. The work_freeing structure is overlaid 4785 * but in process context. The work_freeing structure is overlaid
4791 * on the rcu_freeing structure, which itself is overlaid on memsw. 4786 * on the rcu_freeing structure, which itself is overlaid on memsw.
4792 */ 4787 */
4793 static void free_work(struct work_struct *work) 4788 static void free_work(struct work_struct *work)
4794 { 4789 {
4795 struct mem_cgroup *memcg; 4790 struct mem_cgroup *memcg;
4796 int size = sizeof(struct mem_cgroup); 4791 int size = sizeof(struct mem_cgroup);
4797 4792
4798 memcg = container_of(work, struct mem_cgroup, work_freeing); 4793 memcg = container_of(work, struct mem_cgroup, work_freeing);
4799 /* 4794 /*
4800 * We need to make sure that (at least for now), the jump label 4795 * We need to make sure that (at least for now), the jump label
4801 * destruction code runs outside of the cgroup lock. This is because 4796 * destruction code runs outside of the cgroup lock. This is because
4802 * get_online_cpus(), which is called from the static_branch update, 4797 * get_online_cpus(), which is called from the static_branch update,
4803 * can't be called inside the cgroup_lock. cpusets are the ones 4798 * can't be called inside the cgroup_lock. cpusets are the ones
4804 * enforcing this dependency, so if they ever change, we might as well. 4799 * enforcing this dependency, so if they ever change, we might as well.
4805 * 4800 *
4806 * schedule_work() will guarantee this happens. Be careful if you need 4801 * schedule_work() will guarantee this happens. Be careful if you need
4807 * to move this code around, and make sure it is outside 4802 * to move this code around, and make sure it is outside
4808 * the cgroup_lock. 4803 * the cgroup_lock.
4809 */ 4804 */
4810 disarm_sock_keys(memcg); 4805 disarm_sock_keys(memcg);
4811 if (size < PAGE_SIZE) 4806 if (size < PAGE_SIZE)
4812 kfree(memcg); 4807 kfree(memcg);
4813 else 4808 else
4814 vfree(memcg); 4809 vfree(memcg);
4815 } 4810 }
4816 4811
4817 static void free_rcu(struct rcu_head *rcu_head) 4812 static void free_rcu(struct rcu_head *rcu_head)
4818 { 4813 {
4819 struct mem_cgroup *memcg; 4814 struct mem_cgroup *memcg;
4820 4815
4821 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing); 4816 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4822 INIT_WORK(&memcg->work_freeing, free_work); 4817 INIT_WORK(&memcg->work_freeing, free_work);
4823 schedule_work(&memcg->work_freeing); 4818 schedule_work(&memcg->work_freeing);
4824 } 4819 }
4825 4820
4826 /* 4821 /*
4827 * At destroying mem_cgroup, references from swap_cgroup can remain. 4822 * At destroying mem_cgroup, references from swap_cgroup can remain.
4828 * (scanning all at force_empty is too costly...) 4823 * (scanning all at force_empty is too costly...)
4829 * 4824 *
4830 * Instead of clearing all references at force_empty, we remember 4825 * Instead of clearing all references at force_empty, we remember
4831 * the number of reference from swap_cgroup and free mem_cgroup when 4826 * the number of reference from swap_cgroup and free mem_cgroup when
4832 * it goes down to 0. 4827 * it goes down to 0.
4833 * 4828 *
4834 * Removal of cgroup itself succeeds regardless of refs from swap. 4829 * Removal of cgroup itself succeeds regardless of refs from swap.
4835 */ 4830 */
4836 4831
4837 static void __mem_cgroup_free(struct mem_cgroup *memcg) 4832 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4838 { 4833 {
4839 int node; 4834 int node;
4840 4835
4841 mem_cgroup_remove_from_trees(memcg); 4836 mem_cgroup_remove_from_trees(memcg);
4842 free_css_id(&mem_cgroup_subsys, &memcg->css); 4837 free_css_id(&mem_cgroup_subsys, &memcg->css);
4843 4838
4844 for_each_node(node) 4839 for_each_node(node)
4845 free_mem_cgroup_per_zone_info(memcg, node); 4840 free_mem_cgroup_per_zone_info(memcg, node);
4846 4841
4847 free_percpu(memcg->stat); 4842 free_percpu(memcg->stat);
4848 call_rcu(&memcg->rcu_freeing, free_rcu); 4843 call_rcu(&memcg->rcu_freeing, free_rcu);
4849 } 4844 }
4850 4845
4851 static void mem_cgroup_get(struct mem_cgroup *memcg) 4846 static void mem_cgroup_get(struct mem_cgroup *memcg)
4852 { 4847 {
4853 atomic_inc(&memcg->refcnt); 4848 atomic_inc(&memcg->refcnt);
4854 } 4849 }
4855 4850
4856 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count) 4851 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4857 { 4852 {
4858 if (atomic_sub_and_test(count, &memcg->refcnt)) { 4853 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4859 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 4854 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4860 __mem_cgroup_free(memcg); 4855 __mem_cgroup_free(memcg);
4861 if (parent) 4856 if (parent)
4862 mem_cgroup_put(parent); 4857 mem_cgroup_put(parent);
4863 } 4858 }
4864 } 4859 }
4865 4860
4866 static void mem_cgroup_put(struct mem_cgroup *memcg) 4861 static void mem_cgroup_put(struct mem_cgroup *memcg)
4867 { 4862 {
4868 __mem_cgroup_put(memcg, 1); 4863 __mem_cgroup_put(memcg, 1);
4869 } 4864 }
4870 4865
4871 /* 4866 /*
4872 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. 4867 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4873 */ 4868 */
4874 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 4869 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4875 { 4870 {
4876 if (!memcg->res.parent) 4871 if (!memcg->res.parent)
4877 return NULL; 4872 return NULL;
4878 return mem_cgroup_from_res_counter(memcg->res.parent, res); 4873 return mem_cgroup_from_res_counter(memcg->res.parent, res);
4879 } 4874 }
4880 EXPORT_SYMBOL(parent_mem_cgroup); 4875 EXPORT_SYMBOL(parent_mem_cgroup);
4881 4876
4882 #ifdef CONFIG_MEMCG_SWAP 4877 #ifdef CONFIG_MEMCG_SWAP
4883 static void __init enable_swap_cgroup(void) 4878 static void __init enable_swap_cgroup(void)
4884 { 4879 {
4885 if (!mem_cgroup_disabled() && really_do_swap_account) 4880 if (!mem_cgroup_disabled() && really_do_swap_account)
4886 do_swap_account = 1; 4881 do_swap_account = 1;
4887 } 4882 }
4888 #else 4883 #else
4889 static void __init enable_swap_cgroup(void) 4884 static void __init enable_swap_cgroup(void)
4890 { 4885 {
4891 } 4886 }
4892 #endif 4887 #endif
4893 4888
4894 static int mem_cgroup_soft_limit_tree_init(void) 4889 static int mem_cgroup_soft_limit_tree_init(void)
4895 { 4890 {
4896 struct mem_cgroup_tree_per_node *rtpn; 4891 struct mem_cgroup_tree_per_node *rtpn;
4897 struct mem_cgroup_tree_per_zone *rtpz; 4892 struct mem_cgroup_tree_per_zone *rtpz;
4898 int tmp, node, zone; 4893 int tmp, node, zone;
4899 4894
4900 for_each_node(node) { 4895 for_each_node(node) {
4901 tmp = node; 4896 tmp = node;
4902 if (!node_state(node, N_NORMAL_MEMORY)) 4897 if (!node_state(node, N_NORMAL_MEMORY))
4903 tmp = -1; 4898 tmp = -1;
4904 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp); 4899 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4905 if (!rtpn) 4900 if (!rtpn)
4906 goto err_cleanup; 4901 goto err_cleanup;
4907 4902
4908 soft_limit_tree.rb_tree_per_node[node] = rtpn; 4903 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4909 4904
4910 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4905 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4911 rtpz = &rtpn->rb_tree_per_zone[zone]; 4906 rtpz = &rtpn->rb_tree_per_zone[zone];
4912 rtpz->rb_root = RB_ROOT; 4907 rtpz->rb_root = RB_ROOT;
4913 spin_lock_init(&rtpz->lock); 4908 spin_lock_init(&rtpz->lock);
4914 } 4909 }
4915 } 4910 }
4916 return 0; 4911 return 0;
4917 4912
4918 err_cleanup: 4913 err_cleanup:
4919 for_each_node(node) { 4914 for_each_node(node) {
4920 if (!soft_limit_tree.rb_tree_per_node[node]) 4915 if (!soft_limit_tree.rb_tree_per_node[node])
4921 break; 4916 break;
4922 kfree(soft_limit_tree.rb_tree_per_node[node]); 4917 kfree(soft_limit_tree.rb_tree_per_node[node]);
4923 soft_limit_tree.rb_tree_per_node[node] = NULL; 4918 soft_limit_tree.rb_tree_per_node[node] = NULL;
4924 } 4919 }
4925 return 1; 4920 return 1;
4926 4921
4927 } 4922 }
4928 4923
4929 static struct cgroup_subsys_state * __ref 4924 static struct cgroup_subsys_state * __ref
4930 mem_cgroup_create(struct cgroup *cont) 4925 mem_cgroup_create(struct cgroup *cont)
4931 { 4926 {
4932 struct mem_cgroup *memcg, *parent; 4927 struct mem_cgroup *memcg, *parent;
4933 long error = -ENOMEM; 4928 long error = -ENOMEM;
4934 int node; 4929 int node;
4935 4930
4936 memcg = mem_cgroup_alloc(); 4931 memcg = mem_cgroup_alloc();
4937 if (!memcg) 4932 if (!memcg)
4938 return ERR_PTR(error); 4933 return ERR_PTR(error);
4939 4934
4940 for_each_node(node) 4935 for_each_node(node)
4941 if (alloc_mem_cgroup_per_zone_info(memcg, node)) 4936 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4942 goto free_out; 4937 goto free_out;
4943 4938
4944 /* root ? */ 4939 /* root ? */
4945 if (cont->parent == NULL) { 4940 if (cont->parent == NULL) {
4946 int cpu; 4941 int cpu;
4947 enable_swap_cgroup(); 4942 enable_swap_cgroup();
4948 parent = NULL; 4943 parent = NULL;
4949 if (mem_cgroup_soft_limit_tree_init()) 4944 if (mem_cgroup_soft_limit_tree_init())
4950 goto free_out; 4945 goto free_out;
4951 root_mem_cgroup = memcg; 4946 root_mem_cgroup = memcg;
4952 for_each_possible_cpu(cpu) { 4947 for_each_possible_cpu(cpu) {
4953 struct memcg_stock_pcp *stock = 4948 struct memcg_stock_pcp *stock =
4954 &per_cpu(memcg_stock, cpu); 4949 &per_cpu(memcg_stock, cpu);
4955 INIT_WORK(&stock->work, drain_local_stock); 4950 INIT_WORK(&stock->work, drain_local_stock);
4956 } 4951 }
4957 hotcpu_notifier(memcg_cpu_hotplug_callback, 0); 4952 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4958 } else { 4953 } else {
4959 parent = mem_cgroup_from_cont(cont->parent); 4954 parent = mem_cgroup_from_cont(cont->parent);
4960 memcg->use_hierarchy = parent->use_hierarchy; 4955 memcg->use_hierarchy = parent->use_hierarchy;
4961 memcg->oom_kill_disable = parent->oom_kill_disable; 4956 memcg->oom_kill_disable = parent->oom_kill_disable;
4962 } 4957 }
4963 4958
4964 if (parent && parent->use_hierarchy) { 4959 if (parent && parent->use_hierarchy) {
4965 res_counter_init(&memcg->res, &parent->res); 4960 res_counter_init(&memcg->res, &parent->res);
4966 res_counter_init(&memcg->memsw, &parent->memsw); 4961 res_counter_init(&memcg->memsw, &parent->memsw);
4967 /* 4962 /*
4968 * We increment refcnt of the parent to ensure that we can 4963 * We increment refcnt of the parent to ensure that we can
4969 * safely access it on res_counter_charge/uncharge. 4964 * safely access it on res_counter_charge/uncharge.
4970 * This refcnt will be decremented when freeing this 4965 * This refcnt will be decremented when freeing this
4971 * mem_cgroup(see mem_cgroup_put). 4966 * mem_cgroup(see mem_cgroup_put).
4972 */ 4967 */
4973 mem_cgroup_get(parent); 4968 mem_cgroup_get(parent);
4974 } else { 4969 } else {
4975 res_counter_init(&memcg->res, NULL); 4970 res_counter_init(&memcg->res, NULL);
4976 res_counter_init(&memcg->memsw, NULL); 4971 res_counter_init(&memcg->memsw, NULL);
4977 } 4972 }
4978 memcg->last_scanned_node = MAX_NUMNODES; 4973 memcg->last_scanned_node = MAX_NUMNODES;
4979 INIT_LIST_HEAD(&memcg->oom_notify); 4974 INIT_LIST_HEAD(&memcg->oom_notify);
4980 4975
4981 if (parent) 4976 if (parent)
4982 memcg->swappiness = mem_cgroup_swappiness(parent); 4977 memcg->swappiness = mem_cgroup_swappiness(parent);
4983 atomic_set(&memcg->refcnt, 1); 4978 atomic_set(&memcg->refcnt, 1);
4984 memcg->move_charge_at_immigrate = 0; 4979 memcg->move_charge_at_immigrate = 0;
4985 mutex_init(&memcg->thresholds_lock); 4980 mutex_init(&memcg->thresholds_lock);
4986 spin_lock_init(&memcg->move_lock); 4981 spin_lock_init(&memcg->move_lock);
4987 4982
4988 error = memcg_init_kmem(memcg, &mem_cgroup_subsys); 4983 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
4989 if (error) { 4984 if (error) {
4990 /* 4985 /*
4991 * We call put now because our (and parent's) refcnts 4986 * We call put now because our (and parent's) refcnts
4992 * are already in place. mem_cgroup_put() will internally 4987 * are already in place. mem_cgroup_put() will internally
4993 * call __mem_cgroup_free, so return directly 4988 * call __mem_cgroup_free, so return directly
4994 */ 4989 */
4995 mem_cgroup_put(memcg); 4990 mem_cgroup_put(memcg);
4996 return ERR_PTR(error); 4991 return ERR_PTR(error);
4997 } 4992 }
4998 return &memcg->css; 4993 return &memcg->css;
4999 free_out: 4994 free_out:
5000 __mem_cgroup_free(memcg); 4995 __mem_cgroup_free(memcg);
5001 return ERR_PTR(error); 4996 return ERR_PTR(error);
5002 } 4997 }
5003 4998
5004 static int mem_cgroup_pre_destroy(struct cgroup *cont) 4999 static int mem_cgroup_pre_destroy(struct cgroup *cont)
5005 { 5000 {
5006 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 5001 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5007 5002
5008 return mem_cgroup_force_empty(memcg, false); 5003 return mem_cgroup_force_empty(memcg, false);
5009 } 5004 }
5010 5005
5011 static void mem_cgroup_destroy(struct cgroup *cont) 5006 static void mem_cgroup_destroy(struct cgroup *cont)
5012 { 5007 {
5013 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 5008 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5014 5009
5015 kmem_cgroup_destroy(memcg); 5010 kmem_cgroup_destroy(memcg);
5016 5011
5017 mem_cgroup_put(memcg); 5012 mem_cgroup_put(memcg);
5018 } 5013 }
5019 5014
5020 #ifdef CONFIG_MMU 5015 #ifdef CONFIG_MMU
5021 /* Handlers for move charge at task migration. */ 5016 /* Handlers for move charge at task migration. */
5022 #define PRECHARGE_COUNT_AT_ONCE 256 5017 #define PRECHARGE_COUNT_AT_ONCE 256
5023 static int mem_cgroup_do_precharge(unsigned long count) 5018 static int mem_cgroup_do_precharge(unsigned long count)
5024 { 5019 {
5025 int ret = 0; 5020 int ret = 0;
5026 int batch_count = PRECHARGE_COUNT_AT_ONCE; 5021 int batch_count = PRECHARGE_COUNT_AT_ONCE;
5027 struct mem_cgroup *memcg = mc.to; 5022 struct mem_cgroup *memcg = mc.to;
5028 5023
5029 if (mem_cgroup_is_root(memcg)) { 5024 if (mem_cgroup_is_root(memcg)) {
5030 mc.precharge += count; 5025 mc.precharge += count;
5031 /* we don't need css_get for root */ 5026 /* we don't need css_get for root */
5032 return ret; 5027 return ret;
5033 } 5028 }
5034 /* try to charge at once */ 5029 /* try to charge at once */
5035 if (count > 1) { 5030 if (count > 1) {
5036 struct res_counter *dummy; 5031 struct res_counter *dummy;
5037 /* 5032 /*
5038 * "memcg" cannot be under rmdir() because we've already checked 5033 * "memcg" cannot be under rmdir() because we've already checked
5039 * by cgroup_lock_live_cgroup() that it is not removed and we 5034 * by cgroup_lock_live_cgroup() that it is not removed and we
5040 * are still under the same cgroup_mutex. So we can postpone 5035 * are still under the same cgroup_mutex. So we can postpone
5041 * css_get(). 5036 * css_get().
5042 */ 5037 */
5043 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy)) 5038 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5044 goto one_by_one; 5039 goto one_by_one;
5045 if (do_swap_account && res_counter_charge(&memcg->memsw, 5040 if (do_swap_account && res_counter_charge(&memcg->memsw,
5046 PAGE_SIZE * count, &dummy)) { 5041 PAGE_SIZE * count, &dummy)) {
5047 res_counter_uncharge(&memcg->res, PAGE_SIZE * count); 5042 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5048 goto one_by_one; 5043 goto one_by_one;
5049 } 5044 }
5050 mc.precharge += count; 5045 mc.precharge += count;
5051 return ret; 5046 return ret;
5052 } 5047 }
5053 one_by_one: 5048 one_by_one:
5054 /* fall back to one by one charge */ 5049 /* fall back to one by one charge */
5055 while (count--) { 5050 while (count--) {
5056 if (signal_pending(current)) { 5051 if (signal_pending(current)) {
5057 ret = -EINTR; 5052 ret = -EINTR;
5058 break; 5053 break;
5059 } 5054 }
5060 if (!batch_count--) { 5055 if (!batch_count--) {
5061 batch_count = PRECHARGE_COUNT_AT_ONCE; 5056 batch_count = PRECHARGE_COUNT_AT_ONCE;
5062 cond_resched(); 5057 cond_resched();
5063 } 5058 }
5064 ret = __mem_cgroup_try_charge(NULL, 5059 ret = __mem_cgroup_try_charge(NULL,
5065 GFP_KERNEL, 1, &memcg, false); 5060 GFP_KERNEL, 1, &memcg, false);
5066 if (ret) 5061 if (ret)
5067 /* mem_cgroup_clear_mc() will do uncharge later */ 5062 /* mem_cgroup_clear_mc() will do uncharge later */
5068 return ret; 5063 return ret;
5069 mc.precharge++; 5064 mc.precharge++;
5070 } 5065 }
5071 return ret; 5066 return ret;
5072 } 5067 }
5073 5068
5074 /** 5069 /**
5075 * get_mctgt_type - get target type of moving charge 5070 * get_mctgt_type - get target type of moving charge
5076 * @vma: the vma the pte to be checked belongs 5071 * @vma: the vma the pte to be checked belongs
5077 * @addr: the address corresponding to the pte to be checked 5072 * @addr: the address corresponding to the pte to be checked
5078 * @ptent: the pte to be checked 5073 * @ptent: the pte to be checked
5079 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5074 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5080 * 5075 *
5081 * Returns 5076 * Returns
5082 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5077 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5083 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5078 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5084 * move charge. if @target is not NULL, the page is stored in target->page 5079 * move charge. if @target is not NULL, the page is stored in target->page
5085 * with extra refcnt got(Callers should handle it). 5080 * with extra refcnt got(Callers should handle it).
5086 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5081 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5087 * target for charge migration. if @target is not NULL, the entry is stored 5082 * target for charge migration. if @target is not NULL, the entry is stored
5088 * in target->ent. 5083 * in target->ent.
5089 * 5084 *
5090 * Called with pte lock held. 5085 * Called with pte lock held.
5091 */ 5086 */
5092 union mc_target { 5087 union mc_target {
5093 struct page *page; 5088 struct page *page;
5094 swp_entry_t ent; 5089 swp_entry_t ent;
5095 }; 5090 };
5096 5091
5097 enum mc_target_type { 5092 enum mc_target_type {
5098 MC_TARGET_NONE = 0, 5093 MC_TARGET_NONE = 0,
5099 MC_TARGET_PAGE, 5094 MC_TARGET_PAGE,
5100 MC_TARGET_SWAP, 5095 MC_TARGET_SWAP,
5101 }; 5096 };
5102 5097
5103 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5098 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5104 unsigned long addr, pte_t ptent) 5099 unsigned long addr, pte_t ptent)
5105 { 5100 {
5106 struct page *page = vm_normal_page(vma, addr, ptent); 5101 struct page *page = vm_normal_page(vma, addr, ptent);
5107 5102
5108 if (!page || !page_mapped(page)) 5103 if (!page || !page_mapped(page))
5109 return NULL; 5104 return NULL;
5110 if (PageAnon(page)) { 5105 if (PageAnon(page)) {
5111 /* we don't move shared anon */ 5106 /* we don't move shared anon */
5112 if (!move_anon()) 5107 if (!move_anon())
5113 return NULL; 5108 return NULL;
5114 } else if (!move_file()) 5109 } else if (!move_file())
5115 /* we ignore mapcount for file pages */ 5110 /* we ignore mapcount for file pages */
5116 return NULL; 5111 return NULL;
5117 if (!get_page_unless_zero(page)) 5112 if (!get_page_unless_zero(page))
5118 return NULL; 5113 return NULL;
5119 5114
5120 return page; 5115 return page;
5121 } 5116 }
5122 5117
5123 #ifdef CONFIG_SWAP 5118 #ifdef CONFIG_SWAP
5124 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5119 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5125 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5120 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5126 { 5121 {
5127 struct page *page = NULL; 5122 struct page *page = NULL;
5128 swp_entry_t ent = pte_to_swp_entry(ptent); 5123 swp_entry_t ent = pte_to_swp_entry(ptent);
5129 5124
5130 if (!move_anon() || non_swap_entry(ent)) 5125 if (!move_anon() || non_swap_entry(ent))
5131 return NULL; 5126 return NULL;
5132 /* 5127 /*
5133 * Because lookup_swap_cache() updates some statistics counter, 5128 * Because lookup_swap_cache() updates some statistics counter,
5134 * we call find_get_page() with swapper_space directly. 5129 * we call find_get_page() with swapper_space directly.
5135 */ 5130 */
5136 page = find_get_page(&swapper_space, ent.val); 5131 page = find_get_page(&swapper_space, ent.val);
5137 if (do_swap_account) 5132 if (do_swap_account)
5138 entry->val = ent.val; 5133 entry->val = ent.val;
5139 5134
5140 return page; 5135 return page;
5141 } 5136 }
5142 #else 5137 #else
5143 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5138 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5144 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5139 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5145 { 5140 {
5146 return NULL; 5141 return NULL;
5147 } 5142 }
5148 #endif 5143 #endif
5149 5144
5150 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5145 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5151 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5146 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5152 { 5147 {
5153 struct page *page = NULL; 5148 struct page *page = NULL;
5154 struct address_space *mapping; 5149 struct address_space *mapping;
5155 pgoff_t pgoff; 5150 pgoff_t pgoff;
5156 5151
5157 if (!vma->vm_file) /* anonymous vma */ 5152 if (!vma->vm_file) /* anonymous vma */
5158 return NULL; 5153 return NULL;
5159 if (!move_file()) 5154 if (!move_file())
5160 return NULL; 5155 return NULL;
5161 5156
5162 mapping = vma->vm_file->f_mapping; 5157 mapping = vma->vm_file->f_mapping;
5163 if (pte_none(ptent)) 5158 if (pte_none(ptent))
5164 pgoff = linear_page_index(vma, addr); 5159 pgoff = linear_page_index(vma, addr);
5165 else /* pte_file(ptent) is true */ 5160 else /* pte_file(ptent) is true */
5166 pgoff = pte_to_pgoff(ptent); 5161 pgoff = pte_to_pgoff(ptent);
5167 5162
5168 /* page is moved even if it's not RSS of this task(page-faulted). */ 5163 /* page is moved even if it's not RSS of this task(page-faulted). */
5169 page = find_get_page(mapping, pgoff); 5164 page = find_get_page(mapping, pgoff);
5170 5165
5171 #ifdef CONFIG_SWAP 5166 #ifdef CONFIG_SWAP
5172 /* shmem/tmpfs may report page out on swap: account for that too. */ 5167 /* shmem/tmpfs may report page out on swap: account for that too. */
5173 if (radix_tree_exceptional_entry(page)) { 5168 if (radix_tree_exceptional_entry(page)) {
5174 swp_entry_t swap = radix_to_swp_entry(page); 5169 swp_entry_t swap = radix_to_swp_entry(page);
5175 if (do_swap_account) 5170 if (do_swap_account)
5176 *entry = swap; 5171 *entry = swap;
5177 page = find_get_page(&swapper_space, swap.val); 5172 page = find_get_page(&swapper_space, swap.val);
5178 } 5173 }
5179 #endif 5174 #endif
5180 return page; 5175 return page;
5181 } 5176 }
5182 5177
5183 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5178 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5184 unsigned long addr, pte_t ptent, union mc_target *target) 5179 unsigned long addr, pte_t ptent, union mc_target *target)
5185 { 5180 {
5186 struct page *page = NULL; 5181 struct page *page = NULL;
5187 struct page_cgroup *pc; 5182 struct page_cgroup *pc;
5188 enum mc_target_type ret = MC_TARGET_NONE; 5183 enum mc_target_type ret = MC_TARGET_NONE;
5189 swp_entry_t ent = { .val = 0 }; 5184 swp_entry_t ent = { .val = 0 };
5190 5185
5191 if (pte_present(ptent)) 5186 if (pte_present(ptent))
5192 page = mc_handle_present_pte(vma, addr, ptent); 5187 page = mc_handle_present_pte(vma, addr, ptent);
5193 else if (is_swap_pte(ptent)) 5188 else if (is_swap_pte(ptent))
5194 page = mc_handle_swap_pte(vma, addr, ptent, &ent); 5189 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5195 else if (pte_none(ptent) || pte_file(ptent)) 5190 else if (pte_none(ptent) || pte_file(ptent))
5196 page = mc_handle_file_pte(vma, addr, ptent, &ent); 5191 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5197 5192
5198 if (!page && !ent.val) 5193 if (!page && !ent.val)
5199 return ret; 5194 return ret;
5200 if (page) { 5195 if (page) {
5201 pc = lookup_page_cgroup(page); 5196 pc = lookup_page_cgroup(page);
5202 /* 5197 /*
5203 * Do only loose check w/o page_cgroup lock. 5198 * Do only loose check w/o page_cgroup lock.
5204 * mem_cgroup_move_account() checks the pc is valid or not under 5199 * mem_cgroup_move_account() checks the pc is valid or not under
5205 * the lock. 5200 * the lock.
5206 */ 5201 */
5207 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 5202 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5208 ret = MC_TARGET_PAGE; 5203 ret = MC_TARGET_PAGE;
5209 if (target) 5204 if (target)
5210 target->page = page; 5205 target->page = page;
5211 } 5206 }
5212 if (!ret || !target) 5207 if (!ret || !target)
5213 put_page(page); 5208 put_page(page);
5214 } 5209 }
5215 /* There is a swap entry and a page doesn't exist or isn't charged */ 5210 /* There is a swap entry and a page doesn't exist or isn't charged */
5216 if (ent.val && !ret && 5211 if (ent.val && !ret &&
5217 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) { 5212 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5218 ret = MC_TARGET_SWAP; 5213 ret = MC_TARGET_SWAP;
5219 if (target) 5214 if (target)
5220 target->ent = ent; 5215 target->ent = ent;
5221 } 5216 }
5222 return ret; 5217 return ret;
5223 } 5218 }
5224 5219
5225 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5220 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5226 /* 5221 /*
5227 * We don't consider swapping or file mapped pages because THP does not 5222 * We don't consider swapping or file mapped pages because THP does not
5228 * support them for now. 5223 * support them for now.
5229 * Caller should make sure that pmd_trans_huge(pmd) is true. 5224 * Caller should make sure that pmd_trans_huge(pmd) is true.
5230 */ 5225 */
5231 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5226 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5232 unsigned long addr, pmd_t pmd, union mc_target *target) 5227 unsigned long addr, pmd_t pmd, union mc_target *target)
5233 { 5228 {
5234 struct page *page = NULL; 5229 struct page *page = NULL;
5235 struct page_cgroup *pc; 5230 struct page_cgroup *pc;
5236 enum mc_target_type ret = MC_TARGET_NONE; 5231 enum mc_target_type ret = MC_TARGET_NONE;
5237 5232
5238 page = pmd_page(pmd); 5233 page = pmd_page(pmd);
5239 VM_BUG_ON(!page || !PageHead(page)); 5234 VM_BUG_ON(!page || !PageHead(page));
5240 if (!move_anon()) 5235 if (!move_anon())
5241 return ret; 5236 return ret;
5242 pc = lookup_page_cgroup(page); 5237 pc = lookup_page_cgroup(page);
5243 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 5238 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5244 ret = MC_TARGET_PAGE; 5239 ret = MC_TARGET_PAGE;
5245 if (target) { 5240 if (target) {
5246 get_page(page); 5241 get_page(page);
5247 target->page = page; 5242 target->page = page;
5248 } 5243 }
5249 } 5244 }
5250 return ret; 5245 return ret;
5251 } 5246 }
5252 #else 5247 #else
5253 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5248 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5254 unsigned long addr, pmd_t pmd, union mc_target *target) 5249 unsigned long addr, pmd_t pmd, union mc_target *target)
5255 { 5250 {
5256 return MC_TARGET_NONE; 5251 return MC_TARGET_NONE;
5257 } 5252 }
5258 #endif 5253 #endif
5259 5254
5260 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5255 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5261 unsigned long addr, unsigned long end, 5256 unsigned long addr, unsigned long end,
5262 struct mm_walk *walk) 5257 struct mm_walk *walk)
5263 { 5258 {
5264 struct vm_area_struct *vma = walk->private; 5259 struct vm_area_struct *vma = walk->private;
5265 pte_t *pte; 5260 pte_t *pte;
5266 spinlock_t *ptl; 5261 spinlock_t *ptl;
5267 5262
5268 if (pmd_trans_huge_lock(pmd, vma) == 1) { 5263 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5269 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5264 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5270 mc.precharge += HPAGE_PMD_NR; 5265 mc.precharge += HPAGE_PMD_NR;
5271 spin_unlock(&vma->vm_mm->page_table_lock); 5266 spin_unlock(&vma->vm_mm->page_table_lock);
5272 return 0; 5267 return 0;
5273 } 5268 }
5274 5269
5275 if (pmd_trans_unstable(pmd)) 5270 if (pmd_trans_unstable(pmd))
5276 return 0; 5271 return 0;
5277 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5272 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5278 for (; addr != end; pte++, addr += PAGE_SIZE) 5273 for (; addr != end; pte++, addr += PAGE_SIZE)
5279 if (get_mctgt_type(vma, addr, *pte, NULL)) 5274 if (get_mctgt_type(vma, addr, *pte, NULL))
5280 mc.precharge++; /* increment precharge temporarily */ 5275 mc.precharge++; /* increment precharge temporarily */
5281 pte_unmap_unlock(pte - 1, ptl); 5276 pte_unmap_unlock(pte - 1, ptl);
5282 cond_resched(); 5277 cond_resched();
5283 5278
5284 return 0; 5279 return 0;
5285 } 5280 }
5286 5281
5287 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5282 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5288 { 5283 {
5289 unsigned long precharge; 5284 unsigned long precharge;
5290 struct vm_area_struct *vma; 5285 struct vm_area_struct *vma;
5291 5286
5292 down_read(&mm->mmap_sem); 5287 down_read(&mm->mmap_sem);
5293 for (vma = mm->mmap; vma; vma = vma->vm_next) { 5288 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5294 struct mm_walk mem_cgroup_count_precharge_walk = { 5289 struct mm_walk mem_cgroup_count_precharge_walk = {
5295 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5290 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5296 .mm = mm, 5291 .mm = mm,
5297 .private = vma, 5292 .private = vma,
5298 }; 5293 };
5299 if (is_vm_hugetlb_page(vma)) 5294 if (is_vm_hugetlb_page(vma))
5300 continue; 5295 continue;
5301 walk_page_range(vma->vm_start, vma->vm_end, 5296 walk_page_range(vma->vm_start, vma->vm_end,
5302 &mem_cgroup_count_precharge_walk); 5297 &mem_cgroup_count_precharge_walk);
5303 } 5298 }
5304 up_read(&mm->mmap_sem); 5299 up_read(&mm->mmap_sem);
5305 5300
5306 precharge = mc.precharge; 5301 precharge = mc.precharge;
5307 mc.precharge = 0; 5302 mc.precharge = 0;
5308 5303
5309 return precharge; 5304 return precharge;
5310 } 5305 }
5311 5306
5312 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5307 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5313 { 5308 {
5314 unsigned long precharge = mem_cgroup_count_precharge(mm); 5309 unsigned long precharge = mem_cgroup_count_precharge(mm);
5315 5310
5316 VM_BUG_ON(mc.moving_task); 5311 VM_BUG_ON(mc.moving_task);
5317 mc.moving_task = current; 5312 mc.moving_task = current;
5318 return mem_cgroup_do_precharge(precharge); 5313 return mem_cgroup_do_precharge(precharge);
5319 } 5314 }
5320 5315
5321 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5316 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5322 static void __mem_cgroup_clear_mc(void) 5317 static void __mem_cgroup_clear_mc(void)
5323 { 5318 {
5324 struct mem_cgroup *from = mc.from; 5319 struct mem_cgroup *from = mc.from;
5325 struct mem_cgroup *to = mc.to; 5320 struct mem_cgroup *to = mc.to;
5326 5321
5327 /* we must uncharge all the leftover precharges from mc.to */ 5322 /* we must uncharge all the leftover precharges from mc.to */
5328 if (mc.precharge) { 5323 if (mc.precharge) {
5329 __mem_cgroup_cancel_charge(mc.to, mc.precharge); 5324 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5330 mc.precharge = 0; 5325 mc.precharge = 0;
5331 } 5326 }
5332 /* 5327 /*
5333 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5328 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5334 * we must uncharge here. 5329 * we must uncharge here.
5335 */ 5330 */
5336 if (mc.moved_charge) { 5331 if (mc.moved_charge) {
5337 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge); 5332 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5338 mc.moved_charge = 0; 5333 mc.moved_charge = 0;
5339 } 5334 }
5340 /* we must fixup refcnts and charges */ 5335 /* we must fixup refcnts and charges */
5341 if (mc.moved_swap) { 5336 if (mc.moved_swap) {
5342 /* uncharge swap account from the old cgroup */ 5337 /* uncharge swap account from the old cgroup */
5343 if (!mem_cgroup_is_root(mc.from)) 5338 if (!mem_cgroup_is_root(mc.from))
5344 res_counter_uncharge(&mc.from->memsw, 5339 res_counter_uncharge(&mc.from->memsw,
5345 PAGE_SIZE * mc.moved_swap); 5340 PAGE_SIZE * mc.moved_swap);
5346 __mem_cgroup_put(mc.from, mc.moved_swap); 5341 __mem_cgroup_put(mc.from, mc.moved_swap);
5347 5342
5348 if (!mem_cgroup_is_root(mc.to)) { 5343 if (!mem_cgroup_is_root(mc.to)) {
5349 /* 5344 /*
5350 * we charged both to->res and to->memsw, so we should 5345 * we charged both to->res and to->memsw, so we should
5351 * uncharge to->res. 5346 * uncharge to->res.
5352 */ 5347 */
5353 res_counter_uncharge(&mc.to->res, 5348 res_counter_uncharge(&mc.to->res,
5354 PAGE_SIZE * mc.moved_swap); 5349 PAGE_SIZE * mc.moved_swap);
5355 } 5350 }
5356 /* we've already done mem_cgroup_get(mc.to) */ 5351 /* we've already done mem_cgroup_get(mc.to) */
5357 mc.moved_swap = 0; 5352 mc.moved_swap = 0;
5358 } 5353 }
5359 memcg_oom_recover(from); 5354 memcg_oom_recover(from);
5360 memcg_oom_recover(to); 5355 memcg_oom_recover(to);
5361 wake_up_all(&mc.waitq); 5356 wake_up_all(&mc.waitq);
5362 } 5357 }
5363 5358
5364 static void mem_cgroup_clear_mc(void) 5359 static void mem_cgroup_clear_mc(void)
5365 { 5360 {
5366 struct mem_cgroup *from = mc.from; 5361 struct mem_cgroup *from = mc.from;
5367 5362
5368 /* 5363 /*
5369 * we must clear moving_task before waking up waiters at the end of 5364 * we must clear moving_task before waking up waiters at the end of
5370 * task migration. 5365 * task migration.
5371 */ 5366 */
5372 mc.moving_task = NULL; 5367 mc.moving_task = NULL;
5373 __mem_cgroup_clear_mc(); 5368 __mem_cgroup_clear_mc();
5374 spin_lock(&mc.lock); 5369 spin_lock(&mc.lock);
5375 mc.from = NULL; 5370 mc.from = NULL;
5376 mc.to = NULL; 5371 mc.to = NULL;
5377 spin_unlock(&mc.lock); 5372 spin_unlock(&mc.lock);
5378 mem_cgroup_end_move(from); 5373 mem_cgroup_end_move(from);
5379 } 5374 }
5380 5375
5381 static int mem_cgroup_can_attach(struct cgroup *cgroup, 5376 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5382 struct cgroup_taskset *tset) 5377 struct cgroup_taskset *tset)
5383 { 5378 {
5384 struct task_struct *p = cgroup_taskset_first(tset); 5379 struct task_struct *p = cgroup_taskset_first(tset);
5385 int ret = 0; 5380 int ret = 0;
5386 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup); 5381 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5387 5382
5388 if (memcg->move_charge_at_immigrate) { 5383 if (memcg->move_charge_at_immigrate) {
5389 struct mm_struct *mm; 5384 struct mm_struct *mm;
5390 struct mem_cgroup *from = mem_cgroup_from_task(p); 5385 struct mem_cgroup *from = mem_cgroup_from_task(p);
5391 5386
5392 VM_BUG_ON(from == memcg); 5387 VM_BUG_ON(from == memcg);
5393 5388
5394 mm = get_task_mm(p); 5389 mm = get_task_mm(p);
5395 if (!mm) 5390 if (!mm)
5396 return 0; 5391 return 0;
5397 /* We move charges only when we move a owner of the mm */ 5392 /* We move charges only when we move a owner of the mm */
5398 if (mm->owner == p) { 5393 if (mm->owner == p) {
5399 VM_BUG_ON(mc.from); 5394 VM_BUG_ON(mc.from);
5400 VM_BUG_ON(mc.to); 5395 VM_BUG_ON(mc.to);
5401 VM_BUG_ON(mc.precharge); 5396 VM_BUG_ON(mc.precharge);
5402 VM_BUG_ON(mc.moved_charge); 5397 VM_BUG_ON(mc.moved_charge);
5403 VM_BUG_ON(mc.moved_swap); 5398 VM_BUG_ON(mc.moved_swap);
5404 mem_cgroup_start_move(from); 5399 mem_cgroup_start_move(from);
5405 spin_lock(&mc.lock); 5400 spin_lock(&mc.lock);
5406 mc.from = from; 5401 mc.from = from;
5407 mc.to = memcg; 5402 mc.to = memcg;
5408 spin_unlock(&mc.lock); 5403 spin_unlock(&mc.lock);
5409 /* We set mc.moving_task later */ 5404 /* We set mc.moving_task later */
5410 5405
5411 ret = mem_cgroup_precharge_mc(mm); 5406 ret = mem_cgroup_precharge_mc(mm);
5412 if (ret) 5407 if (ret)
5413 mem_cgroup_clear_mc(); 5408 mem_cgroup_clear_mc();
5414 } 5409 }
5415 mmput(mm); 5410 mmput(mm);
5416 } 5411 }
5417 return ret; 5412 return ret;
5418 } 5413 }
5419 5414
5420 static void mem_cgroup_cancel_attach(struct cgroup *cgroup, 5415 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5421 struct cgroup_taskset *tset) 5416 struct cgroup_taskset *tset)
5422 { 5417 {
5423 mem_cgroup_clear_mc(); 5418 mem_cgroup_clear_mc();
5424 } 5419 }
5425 5420
5426 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 5421 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5427 unsigned long addr, unsigned long end, 5422 unsigned long addr, unsigned long end,
5428 struct mm_walk *walk) 5423 struct mm_walk *walk)
5429 { 5424 {
5430 int ret = 0; 5425 int ret = 0;
5431 struct vm_area_struct *vma = walk->private; 5426 struct vm_area_struct *vma = walk->private;
5432 pte_t *pte; 5427 pte_t *pte;
5433 spinlock_t *ptl; 5428 spinlock_t *ptl;
5434 enum mc_target_type target_type; 5429 enum mc_target_type target_type;
5435 union mc_target target; 5430 union mc_target target;
5436 struct page *page; 5431 struct page *page;
5437 struct page_cgroup *pc; 5432 struct page_cgroup *pc;
5438 5433
5439 /* 5434 /*
5440 * We don't take compound_lock() here but no race with splitting thp 5435 * We don't take compound_lock() here but no race with splitting thp
5441 * happens because: 5436 * happens because:
5442 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not 5437 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5443 * under splitting, which means there's no concurrent thp split, 5438 * under splitting, which means there's no concurrent thp split,
5444 * - if another thread runs into split_huge_page() just after we 5439 * - if another thread runs into split_huge_page() just after we
5445 * entered this if-block, the thread must wait for page table lock 5440 * entered this if-block, the thread must wait for page table lock
5446 * to be unlocked in __split_huge_page_splitting(), where the main 5441 * to be unlocked in __split_huge_page_splitting(), where the main
5447 * part of thp split is not executed yet. 5442 * part of thp split is not executed yet.
5448 */ 5443 */
5449 if (pmd_trans_huge_lock(pmd, vma) == 1) { 5444 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5450 if (mc.precharge < HPAGE_PMD_NR) { 5445 if (mc.precharge < HPAGE_PMD_NR) {
5451 spin_unlock(&vma->vm_mm->page_table_lock); 5446 spin_unlock(&vma->vm_mm->page_table_lock);
5452 return 0; 5447 return 0;
5453 } 5448 }
5454 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 5449 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5455 if (target_type == MC_TARGET_PAGE) { 5450 if (target_type == MC_TARGET_PAGE) {
5456 page = target.page; 5451 page = target.page;
5457 if (!isolate_lru_page(page)) { 5452 if (!isolate_lru_page(page)) {
5458 pc = lookup_page_cgroup(page); 5453 pc = lookup_page_cgroup(page);
5459 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR, 5454 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5460 pc, mc.from, mc.to)) { 5455 pc, mc.from, mc.to)) {
5461 mc.precharge -= HPAGE_PMD_NR; 5456 mc.precharge -= HPAGE_PMD_NR;
5462 mc.moved_charge += HPAGE_PMD_NR; 5457 mc.moved_charge += HPAGE_PMD_NR;
5463 } 5458 }
5464 putback_lru_page(page); 5459 putback_lru_page(page);
5465 } 5460 }
5466 put_page(page); 5461 put_page(page);
5467 } 5462 }
5468 spin_unlock(&vma->vm_mm->page_table_lock); 5463 spin_unlock(&vma->vm_mm->page_table_lock);
5469 return 0; 5464 return 0;
5470 } 5465 }
5471 5466
5472 if (pmd_trans_unstable(pmd)) 5467 if (pmd_trans_unstable(pmd))
5473 return 0; 5468 return 0;
5474 retry: 5469 retry:
5475 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5470 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5476 for (; addr != end; addr += PAGE_SIZE) { 5471 for (; addr != end; addr += PAGE_SIZE) {
5477 pte_t ptent = *(pte++); 5472 pte_t ptent = *(pte++);
5478 swp_entry_t ent; 5473 swp_entry_t ent;
5479 5474
5480 if (!mc.precharge) 5475 if (!mc.precharge)
5481 break; 5476 break;
5482 5477
5483 switch (get_mctgt_type(vma, addr, ptent, &target)) { 5478 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5484 case MC_TARGET_PAGE: 5479 case MC_TARGET_PAGE:
5485 page = target.page; 5480 page = target.page;
5486 if (isolate_lru_page(page)) 5481 if (isolate_lru_page(page))
5487 goto put; 5482 goto put;
5488 pc = lookup_page_cgroup(page); 5483 pc = lookup_page_cgroup(page);
5489 if (!mem_cgroup_move_account(page, 1, pc, 5484 if (!mem_cgroup_move_account(page, 1, pc,
5490 mc.from, mc.to)) { 5485 mc.from, mc.to)) {
5491 mc.precharge--; 5486 mc.precharge--;
5492 /* we uncharge from mc.from later. */ 5487 /* we uncharge from mc.from later. */
5493 mc.moved_charge++; 5488 mc.moved_charge++;
5494 } 5489 }
5495 putback_lru_page(page); 5490 putback_lru_page(page);
5496 put: /* get_mctgt_type() gets the page */ 5491 put: /* get_mctgt_type() gets the page */
5497 put_page(page); 5492 put_page(page);
5498 break; 5493 break;
5499 case MC_TARGET_SWAP: 5494 case MC_TARGET_SWAP:
5500 ent = target.ent; 5495 ent = target.ent;
5501 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 5496 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5502 mc.precharge--; 5497 mc.precharge--;
5503 /* we fixup refcnts and charges later. */ 5498 /* we fixup refcnts and charges later. */
5504 mc.moved_swap++; 5499 mc.moved_swap++;
5505 } 5500 }
5506 break; 5501 break;
5507 default: 5502 default:
5508 break; 5503 break;
5509 } 5504 }
5510 } 5505 }
5511 pte_unmap_unlock(pte - 1, ptl); 5506 pte_unmap_unlock(pte - 1, ptl);
5512 cond_resched(); 5507 cond_resched();
5513 5508
5514 if (addr != end) { 5509 if (addr != end) {
5515 /* 5510 /*
5516 * We have consumed all precharges we got in can_attach(). 5511 * We have consumed all precharges we got in can_attach().
5517 * We try charge one by one, but don't do any additional 5512 * We try charge one by one, but don't do any additional
5518 * charges to mc.to if we have failed in charge once in attach() 5513 * charges to mc.to if we have failed in charge once in attach()
5519 * phase. 5514 * phase.
5520 */ 5515 */
5521 ret = mem_cgroup_do_precharge(1); 5516 ret = mem_cgroup_do_precharge(1);
5522 if (!ret) 5517 if (!ret)
5523 goto retry; 5518 goto retry;
5524 } 5519 }
5525 5520
5526 return ret; 5521 return ret;
5527 } 5522 }
5528 5523
5529 static void mem_cgroup_move_charge(struct mm_struct *mm) 5524 static void mem_cgroup_move_charge(struct mm_struct *mm)
5530 { 5525 {
5531 struct vm_area_struct *vma; 5526 struct vm_area_struct *vma;
5532 5527
5533 lru_add_drain_all(); 5528 lru_add_drain_all();
5534 retry: 5529 retry:
5535 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 5530 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5536 /* 5531 /*
5537 * Someone who are holding the mmap_sem might be waiting in 5532 * Someone who are holding the mmap_sem might be waiting in
5538 * waitq. So we cancel all extra charges, wake up all waiters, 5533 * waitq. So we cancel all extra charges, wake up all waiters,
5539 * and retry. Because we cancel precharges, we might not be able 5534 * and retry. Because we cancel precharges, we might not be able
5540 * to move enough charges, but moving charge is a best-effort 5535 * to move enough charges, but moving charge is a best-effort
5541 * feature anyway, so it wouldn't be a big problem. 5536 * feature anyway, so it wouldn't be a big problem.
5542 */ 5537 */
5543 __mem_cgroup_clear_mc(); 5538 __mem_cgroup_clear_mc();
5544 cond_resched(); 5539 cond_resched();
5545 goto retry; 5540 goto retry;
5546 } 5541 }
5547 for (vma = mm->mmap; vma; vma = vma->vm_next) { 5542 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5548 int ret; 5543 int ret;
5549 struct mm_walk mem_cgroup_move_charge_walk = { 5544 struct mm_walk mem_cgroup_move_charge_walk = {
5550 .pmd_entry = mem_cgroup_move_charge_pte_range, 5545 .pmd_entry = mem_cgroup_move_charge_pte_range,
5551 .mm = mm, 5546 .mm = mm,
5552 .private = vma, 5547 .private = vma,
5553 }; 5548 };
5554 if (is_vm_hugetlb_page(vma)) 5549 if (is_vm_hugetlb_page(vma))
5555 continue; 5550 continue;
5556 ret = walk_page_range(vma->vm_start, vma->vm_end, 5551 ret = walk_page_range(vma->vm_start, vma->vm_end,
5557 &mem_cgroup_move_charge_walk); 5552 &mem_cgroup_move_charge_walk);
5558 if (ret) 5553 if (ret)
5559 /* 5554 /*
5560 * means we have consumed all precharges and failed in 5555 * means we have consumed all precharges and failed in
5561 * doing additional charge. Just abandon here. 5556 * doing additional charge. Just abandon here.
5562 */ 5557 */
5563 break; 5558 break;
5564 } 5559 }
5565 up_read(&mm->mmap_sem); 5560 up_read(&mm->mmap_sem);
5566 } 5561 }
5567 5562
5568 static void mem_cgroup_move_task(struct cgroup *cont, 5563 static void mem_cgroup_move_task(struct cgroup *cont,
5569 struct cgroup_taskset *tset) 5564 struct cgroup_taskset *tset)
5570 { 5565 {
5571 struct task_struct *p = cgroup_taskset_first(tset); 5566 struct task_struct *p = cgroup_taskset_first(tset);
5572 struct mm_struct *mm = get_task_mm(p); 5567 struct mm_struct *mm = get_task_mm(p);
5573 5568
5574 if (mm) { 5569 if (mm) {
5575 if (mc.to) 5570 if (mc.to)
5576 mem_cgroup_move_charge(mm); 5571 mem_cgroup_move_charge(mm);
5577 mmput(mm); 5572 mmput(mm);
5578 } 5573 }
5579 if (mc.to) 5574 if (mc.to)
5580 mem_cgroup_clear_mc(); 5575 mem_cgroup_clear_mc();
5581 } 5576 }
5582 #else /* !CONFIG_MMU */ 5577 #else /* !CONFIG_MMU */
5583 static int mem_cgroup_can_attach(struct cgroup *cgroup, 5578 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5584 struct cgroup_taskset *tset) 5579 struct cgroup_taskset *tset)
5585 { 5580 {
5586 return 0; 5581 return 0;
5587 } 5582 }
5588 static void mem_cgroup_cancel_attach(struct cgroup *cgroup, 5583 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5589 struct cgroup_taskset *tset) 5584 struct cgroup_taskset *tset)
5590 { 5585 {
5591 } 5586 }
5592 static void mem_cgroup_move_task(struct cgroup *cont, 5587 static void mem_cgroup_move_task(struct cgroup *cont,
5593 struct cgroup_taskset *tset) 5588 struct cgroup_taskset *tset)
5594 { 5589 {
5595 } 5590 }
5596 #endif 5591 #endif
5597 5592
5598 struct cgroup_subsys mem_cgroup_subsys = { 5593 struct cgroup_subsys mem_cgroup_subsys = {
5599 .name = "memory", 5594 .name = "memory",
5600 .subsys_id = mem_cgroup_subsys_id, 5595 .subsys_id = mem_cgroup_subsys_id,
5601 .create = mem_cgroup_create, 5596 .create = mem_cgroup_create,
5602 .pre_destroy = mem_cgroup_pre_destroy, 5597 .pre_destroy = mem_cgroup_pre_destroy,
5603 .destroy = mem_cgroup_destroy, 5598 .destroy = mem_cgroup_destroy,
5604 .can_attach = mem_cgroup_can_attach, 5599 .can_attach = mem_cgroup_can_attach,
5605 .cancel_attach = mem_cgroup_cancel_attach, 5600 .cancel_attach = mem_cgroup_cancel_attach,
5606 .attach = mem_cgroup_move_task, 5601 .attach = mem_cgroup_move_task,
5607 .base_cftypes = mem_cgroup_files, 5602 .base_cftypes = mem_cgroup_files,
5608 .early_init = 0, 5603 .early_init = 0,
5609 .use_id = 1, 5604 .use_id = 1,
5610 .__DEPRECATED_clear_css_refs = true, 5605 .__DEPRECATED_clear_css_refs = true,
5611 }; 5606 };
5612 5607
5613 #ifdef CONFIG_MEMCG_SWAP 5608 #ifdef CONFIG_MEMCG_SWAP
5614 static int __init enable_swap_account(char *s) 5609 static int __init enable_swap_account(char *s)
5615 { 5610 {
5616 /* consider enabled if no parameter or 1 is given */ 5611 /* consider enabled if no parameter or 1 is given */
5617 if (!strcmp(s, "1")) 5612 if (!strcmp(s, "1"))
5618 really_do_swap_account = 1; 5613 really_do_swap_account = 1;
5619 else if (!strcmp(s, "0")) 5614 else if (!strcmp(s, "0"))
5620 really_do_swap_account = 0; 5615 really_do_swap_account = 0;
5621 return 1; 5616 return 1;
5622 } 5617 }
5623 __setup("swapaccount=", enable_swap_account); 5618 __setup("swapaccount=", enable_swap_account);
5624 5619
5625 #endif 5620 #endif
5626 5621