Commit 80b8d5d6bc0000c6e499260883cfc95e645f49d1

Authored by Paul Mackerras
Committed by Jaroslav Kysela
1 parent ac5d1a7d25

[ALSA] Enable stereo line input for TAS codec

Despite what the data sheet says in one place, to get stereo input
from input A (line in), we have to clear the 'input B monaural' bit in
the ACR.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Jaroslav Kysela <perex@suse.cz>

Showing 1 changed file with 9 additions and 4 deletions Inline Diff

sound/aoa/codecs/snd-aoa-codec-tas.c
1 /* 1 /*
2 * Apple Onboard Audio driver for tas codec 2 * Apple Onboard Audio driver for tas codec
3 * 3 *
4 * Copyright 2006 Johannes Berg <johannes@sipsolutions.net> 4 * Copyright 2006 Johannes Berg <johannes@sipsolutions.net>
5 * 5 *
6 * GPL v2, can be found in COPYING. 6 * GPL v2, can be found in COPYING.
7 * 7 *
8 * Open questions: 8 * Open questions:
9 * - How to distinguish between 3004 and versions? 9 * - How to distinguish between 3004 and versions?
10 * 10 *
11 * FIXMEs: 11 * FIXMEs:
12 * - This codec driver doesn't honour the 'connected' 12 * - This codec driver doesn't honour the 'connected'
13 * property of the aoa_codec struct, hence if 13 * property of the aoa_codec struct, hence if
14 * it is used in machines where not everything is 14 * it is used in machines where not everything is
15 * connected it will display wrong mixer elements. 15 * connected it will display wrong mixer elements.
16 * - Driver assumes that the microphone is always 16 * - Driver assumes that the microphone is always
17 * monaureal and connected to the right channel of 17 * monaureal and connected to the right channel of
18 * the input. This should also be a codec-dependent 18 * the input. This should also be a codec-dependent
19 * flag, maybe the codec should have 3 different 19 * flag, maybe the codec should have 3 different
20 * bits for the three different possibilities how 20 * bits for the three different possibilities how
21 * it can be hooked up... 21 * it can be hooked up...
22 * But as long as I don't see any hardware hooked 22 * But as long as I don't see any hardware hooked
23 * up that way... 23 * up that way...
24 * - As Apple notes in their code, the tas3004 seems 24 * - As Apple notes in their code, the tas3004 seems
25 * to delay the right channel by one sample. You can 25 * to delay the right channel by one sample. You can
26 * see this when for example recording stereo in 26 * see this when for example recording stereo in
27 * audacity, or recording the tas output via cable 27 * audacity, or recording the tas output via cable
28 * on another machine (use a sinus generator or so). 28 * on another machine (use a sinus generator or so).
29 * I tried programming the BiQuads but couldn't 29 * I tried programming the BiQuads but couldn't
30 * make the delay work, maybe someone can read the 30 * make the delay work, maybe someone can read the
31 * datasheet and fix it. The relevant Apple comment 31 * datasheet and fix it. The relevant Apple comment
32 * is in AppleTAS3004Audio.cpp lines 1637 ff. Note 32 * is in AppleTAS3004Audio.cpp lines 1637 ff. Note
33 * that their comment describing how they program 33 * that their comment describing how they program
34 * the filters sucks... 34 * the filters sucks...
35 * 35 *
36 * Other things: 36 * Other things:
37 * - this should actually register *two* aoa_codec 37 * - this should actually register *two* aoa_codec
38 * structs since it has two inputs. Then it must 38 * structs since it has two inputs. Then it must
39 * use the prepare callback to forbid running the 39 * use the prepare callback to forbid running the
40 * secondary output on a different clock. 40 * secondary output on a different clock.
41 * Also, whatever bus knows how to do this must 41 * Also, whatever bus knows how to do this must
42 * provide two soundbus_dev devices and the fabric 42 * provide two soundbus_dev devices and the fabric
43 * must be able to link them correctly. 43 * must be able to link them correctly.
44 * 44 *
45 * I don't even know if Apple ever uses the second 45 * I don't even know if Apple ever uses the second
46 * port on the tas3004 though, I don't think their 46 * port on the tas3004 though, I don't think their
47 * i2s controllers can even do it. OTOH, they all 47 * i2s controllers can even do it. OTOH, they all
48 * derive the clocks from common clocks, so it 48 * derive the clocks from common clocks, so it
49 * might just be possible. The framework allows the 49 * might just be possible. The framework allows the
50 * codec to refine the transfer_info items in the 50 * codec to refine the transfer_info items in the
51 * usable callback, so we can simply remove the 51 * usable callback, so we can simply remove the
52 * rates the second instance is not using when it 52 * rates the second instance is not using when it
53 * actually is in use. 53 * actually is in use.
54 * Maybe we'll need to make the sound busses have 54 * Maybe we'll need to make the sound busses have
55 * a 'clock group id' value so the codec can 55 * a 'clock group id' value so the codec can
56 * determine if the two outputs can be driven at 56 * determine if the two outputs can be driven at
57 * the same time. But that is likely overkill, up 57 * the same time. But that is likely overkill, up
58 * to the fabric to not link them up incorrectly, 58 * to the fabric to not link them up incorrectly,
59 * and up to the hardware designer to not wire 59 * and up to the hardware designer to not wire
60 * them up in some weird unusable way. 60 * them up in some weird unusable way.
61 */ 61 */
62 #include <stddef.h> 62 #include <stddef.h>
63 #include <linux/i2c.h> 63 #include <linux/i2c.h>
64 #include <linux/i2c-dev.h> 64 #include <linux/i2c-dev.h>
65 #include <asm/pmac_low_i2c.h> 65 #include <asm/pmac_low_i2c.h>
66 #include <asm/prom.h> 66 #include <asm/prom.h>
67 #include <linux/delay.h> 67 #include <linux/delay.h>
68 #include <linux/module.h> 68 #include <linux/module.h>
69 #include <linux/mutex.h> 69 #include <linux/mutex.h>
70 70
71 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>"); 71 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
72 MODULE_LICENSE("GPL"); 72 MODULE_LICENSE("GPL");
73 MODULE_DESCRIPTION("tas codec driver for snd-aoa"); 73 MODULE_DESCRIPTION("tas codec driver for snd-aoa");
74 74
75 #include "snd-aoa-codec-tas.h" 75 #include "snd-aoa-codec-tas.h"
76 #include "snd-aoa-codec-tas-gain-table.h" 76 #include "snd-aoa-codec-tas-gain-table.h"
77 #include "snd-aoa-codec-tas-basstreble.h" 77 #include "snd-aoa-codec-tas-basstreble.h"
78 #include "../aoa.h" 78 #include "../aoa.h"
79 #include "../soundbus/soundbus.h" 79 #include "../soundbus/soundbus.h"
80 80
81 #define PFX "snd-aoa-codec-tas: " 81 #define PFX "snd-aoa-codec-tas: "
82 82
83 83
84 struct tas { 84 struct tas {
85 struct aoa_codec codec; 85 struct aoa_codec codec;
86 struct i2c_client i2c; 86 struct i2c_client i2c;
87 u32 mute_l:1, mute_r:1 , 87 u32 mute_l:1, mute_r:1 ,
88 controls_created:1 , 88 controls_created:1 ,
89 drc_enabled:1, 89 drc_enabled:1,
90 hw_enabled:1; 90 hw_enabled:1;
91 u8 cached_volume_l, cached_volume_r; 91 u8 cached_volume_l, cached_volume_r;
92 u8 mixer_l[3], mixer_r[3]; 92 u8 mixer_l[3], mixer_r[3];
93 u8 bass, treble; 93 u8 bass, treble;
94 u8 acr; 94 u8 acr;
95 int drc_range; 95 int drc_range;
96 /* protects hardware access against concurrency from 96 /* protects hardware access against concurrency from
97 * userspace when hitting controls and during 97 * userspace when hitting controls and during
98 * codec init/suspend/resume */ 98 * codec init/suspend/resume */
99 struct mutex mtx; 99 struct mutex mtx;
100 }; 100 };
101 101
102 static int tas_reset_init(struct tas *tas); 102 static int tas_reset_init(struct tas *tas);
103 103
104 static struct tas *codec_to_tas(struct aoa_codec *codec) 104 static struct tas *codec_to_tas(struct aoa_codec *codec)
105 { 105 {
106 return container_of(codec, struct tas, codec); 106 return container_of(codec, struct tas, codec);
107 } 107 }
108 108
109 static inline int tas_write_reg(struct tas *tas, u8 reg, u8 len, u8 *data) 109 static inline int tas_write_reg(struct tas *tas, u8 reg, u8 len, u8 *data)
110 { 110 {
111 if (len == 1) 111 if (len == 1)
112 return i2c_smbus_write_byte_data(&tas->i2c, reg, *data); 112 return i2c_smbus_write_byte_data(&tas->i2c, reg, *data);
113 else 113 else
114 return i2c_smbus_write_i2c_block_data(&tas->i2c, reg, len, data); 114 return i2c_smbus_write_i2c_block_data(&tas->i2c, reg, len, data);
115 } 115 }
116 116
117 static void tas3004_set_drc(struct tas *tas) 117 static void tas3004_set_drc(struct tas *tas)
118 { 118 {
119 unsigned char val[6]; 119 unsigned char val[6];
120 120
121 if (tas->drc_enabled) 121 if (tas->drc_enabled)
122 val[0] = 0x50; /* 3:1 above threshold */ 122 val[0] = 0x50; /* 3:1 above threshold */
123 else 123 else
124 val[0] = 0x51; /* disabled */ 124 val[0] = 0x51; /* disabled */
125 val[1] = 0x02; /* 1:1 below threshold */ 125 val[1] = 0x02; /* 1:1 below threshold */
126 if (tas->drc_range > 0xef) 126 if (tas->drc_range > 0xef)
127 val[2] = 0xef; 127 val[2] = 0xef;
128 else if (tas->drc_range < 0) 128 else if (tas->drc_range < 0)
129 val[2] = 0x00; 129 val[2] = 0x00;
130 else 130 else
131 val[2] = tas->drc_range; 131 val[2] = tas->drc_range;
132 val[3] = 0xb0; 132 val[3] = 0xb0;
133 val[4] = 0x60; 133 val[4] = 0x60;
134 val[5] = 0xa0; 134 val[5] = 0xa0;
135 135
136 tas_write_reg(tas, TAS_REG_DRC, 6, val); 136 tas_write_reg(tas, TAS_REG_DRC, 6, val);
137 } 137 }
138 138
139 static void tas_set_treble(struct tas *tas) 139 static void tas_set_treble(struct tas *tas)
140 { 140 {
141 u8 tmp; 141 u8 tmp;
142 142
143 tmp = tas3004_treble(tas->treble); 143 tmp = tas3004_treble(tas->treble);
144 tas_write_reg(tas, TAS_REG_TREBLE, 1, &tmp); 144 tas_write_reg(tas, TAS_REG_TREBLE, 1, &tmp);
145 } 145 }
146 146
147 static void tas_set_bass(struct tas *tas) 147 static void tas_set_bass(struct tas *tas)
148 { 148 {
149 u8 tmp; 149 u8 tmp;
150 150
151 tmp = tas3004_bass(tas->bass); 151 tmp = tas3004_bass(tas->bass);
152 tas_write_reg(tas, TAS_REG_BASS, 1, &tmp); 152 tas_write_reg(tas, TAS_REG_BASS, 1, &tmp);
153 } 153 }
154 154
155 static void tas_set_volume(struct tas *tas) 155 static void tas_set_volume(struct tas *tas)
156 { 156 {
157 u8 block[6]; 157 u8 block[6];
158 int tmp; 158 int tmp;
159 u8 left, right; 159 u8 left, right;
160 160
161 left = tas->cached_volume_l; 161 left = tas->cached_volume_l;
162 right = tas->cached_volume_r; 162 right = tas->cached_volume_r;
163 163
164 if (left > 177) left = 177; 164 if (left > 177) left = 177;
165 if (right > 177) right = 177; 165 if (right > 177) right = 177;
166 166
167 if (tas->mute_l) left = 0; 167 if (tas->mute_l) left = 0;
168 if (tas->mute_r) right = 0; 168 if (tas->mute_r) right = 0;
169 169
170 /* analysing the volume and mixer tables shows 170 /* analysing the volume and mixer tables shows
171 * that they are similar enough when we shift 171 * that they are similar enough when we shift
172 * the mixer table down by 4 bits. The error 172 * the mixer table down by 4 bits. The error
173 * is miniscule, in just one item the error 173 * is miniscule, in just one item the error
174 * is 1, at a value of 0x07f17b (mixer table 174 * is 1, at a value of 0x07f17b (mixer table
175 * value is 0x07f17a) */ 175 * value is 0x07f17a) */
176 tmp = tas_gaintable[left]; 176 tmp = tas_gaintable[left];
177 block[0] = tmp>>20; 177 block[0] = tmp>>20;
178 block[1] = tmp>>12; 178 block[1] = tmp>>12;
179 block[2] = tmp>>4; 179 block[2] = tmp>>4;
180 tmp = tas_gaintable[right]; 180 tmp = tas_gaintable[right];
181 block[3] = tmp>>20; 181 block[3] = tmp>>20;
182 block[4] = tmp>>12; 182 block[4] = tmp>>12;
183 block[5] = tmp>>4; 183 block[5] = tmp>>4;
184 tas_write_reg(tas, TAS_REG_VOL, 6, block); 184 tas_write_reg(tas, TAS_REG_VOL, 6, block);
185 } 185 }
186 186
187 static void tas_set_mixer(struct tas *tas) 187 static void tas_set_mixer(struct tas *tas)
188 { 188 {
189 u8 block[9]; 189 u8 block[9];
190 int tmp, i; 190 int tmp, i;
191 u8 val; 191 u8 val;
192 192
193 for (i=0;i<3;i++) { 193 for (i=0;i<3;i++) {
194 val = tas->mixer_l[i]; 194 val = tas->mixer_l[i];
195 if (val > 177) val = 177; 195 if (val > 177) val = 177;
196 tmp = tas_gaintable[val]; 196 tmp = tas_gaintable[val];
197 block[3*i+0] = tmp>>16; 197 block[3*i+0] = tmp>>16;
198 block[3*i+1] = tmp>>8; 198 block[3*i+1] = tmp>>8;
199 block[3*i+2] = tmp; 199 block[3*i+2] = tmp;
200 } 200 }
201 tas_write_reg(tas, TAS_REG_LMIX, 9, block); 201 tas_write_reg(tas, TAS_REG_LMIX, 9, block);
202 202
203 for (i=0;i<3;i++) { 203 for (i=0;i<3;i++) {
204 val = tas->mixer_r[i]; 204 val = tas->mixer_r[i];
205 if (val > 177) val = 177; 205 if (val > 177) val = 177;
206 tmp = tas_gaintable[val]; 206 tmp = tas_gaintable[val];
207 block[3*i+0] = tmp>>16; 207 block[3*i+0] = tmp>>16;
208 block[3*i+1] = tmp>>8; 208 block[3*i+1] = tmp>>8;
209 block[3*i+2] = tmp; 209 block[3*i+2] = tmp;
210 } 210 }
211 tas_write_reg(tas, TAS_REG_RMIX, 9, block); 211 tas_write_reg(tas, TAS_REG_RMIX, 9, block);
212 } 212 }
213 213
214 /* alsa stuff */ 214 /* alsa stuff */
215 215
216 static int tas_dev_register(struct snd_device *dev) 216 static int tas_dev_register(struct snd_device *dev)
217 { 217 {
218 return 0; 218 return 0;
219 } 219 }
220 220
221 static struct snd_device_ops ops = { 221 static struct snd_device_ops ops = {
222 .dev_register = tas_dev_register, 222 .dev_register = tas_dev_register,
223 }; 223 };
224 224
225 static int tas_snd_vol_info(struct snd_kcontrol *kcontrol, 225 static int tas_snd_vol_info(struct snd_kcontrol *kcontrol,
226 struct snd_ctl_elem_info *uinfo) 226 struct snd_ctl_elem_info *uinfo)
227 { 227 {
228 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 228 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
229 uinfo->count = 2; 229 uinfo->count = 2;
230 uinfo->value.integer.min = 0; 230 uinfo->value.integer.min = 0;
231 uinfo->value.integer.max = 177; 231 uinfo->value.integer.max = 177;
232 return 0; 232 return 0;
233 } 233 }
234 234
235 static int tas_snd_vol_get(struct snd_kcontrol *kcontrol, 235 static int tas_snd_vol_get(struct snd_kcontrol *kcontrol,
236 struct snd_ctl_elem_value *ucontrol) 236 struct snd_ctl_elem_value *ucontrol)
237 { 237 {
238 struct tas *tas = snd_kcontrol_chip(kcontrol); 238 struct tas *tas = snd_kcontrol_chip(kcontrol);
239 239
240 mutex_lock(&tas->mtx); 240 mutex_lock(&tas->mtx);
241 ucontrol->value.integer.value[0] = tas->cached_volume_l; 241 ucontrol->value.integer.value[0] = tas->cached_volume_l;
242 ucontrol->value.integer.value[1] = tas->cached_volume_r; 242 ucontrol->value.integer.value[1] = tas->cached_volume_r;
243 mutex_unlock(&tas->mtx); 243 mutex_unlock(&tas->mtx);
244 return 0; 244 return 0;
245 } 245 }
246 246
247 static int tas_snd_vol_put(struct snd_kcontrol *kcontrol, 247 static int tas_snd_vol_put(struct snd_kcontrol *kcontrol,
248 struct snd_ctl_elem_value *ucontrol) 248 struct snd_ctl_elem_value *ucontrol)
249 { 249 {
250 struct tas *tas = snd_kcontrol_chip(kcontrol); 250 struct tas *tas = snd_kcontrol_chip(kcontrol);
251 251
252 mutex_lock(&tas->mtx); 252 mutex_lock(&tas->mtx);
253 if (tas->cached_volume_l == ucontrol->value.integer.value[0] 253 if (tas->cached_volume_l == ucontrol->value.integer.value[0]
254 && tas->cached_volume_r == ucontrol->value.integer.value[1]) { 254 && tas->cached_volume_r == ucontrol->value.integer.value[1]) {
255 mutex_unlock(&tas->mtx); 255 mutex_unlock(&tas->mtx);
256 return 0; 256 return 0;
257 } 257 }
258 258
259 tas->cached_volume_l = ucontrol->value.integer.value[0]; 259 tas->cached_volume_l = ucontrol->value.integer.value[0];
260 tas->cached_volume_r = ucontrol->value.integer.value[1]; 260 tas->cached_volume_r = ucontrol->value.integer.value[1];
261 if (tas->hw_enabled) 261 if (tas->hw_enabled)
262 tas_set_volume(tas); 262 tas_set_volume(tas);
263 mutex_unlock(&tas->mtx); 263 mutex_unlock(&tas->mtx);
264 return 1; 264 return 1;
265 } 265 }
266 266
267 static struct snd_kcontrol_new volume_control = { 267 static struct snd_kcontrol_new volume_control = {
268 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 268 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
269 .name = "Master Playback Volume", 269 .name = "Master Playback Volume",
270 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 270 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
271 .info = tas_snd_vol_info, 271 .info = tas_snd_vol_info,
272 .get = tas_snd_vol_get, 272 .get = tas_snd_vol_get,
273 .put = tas_snd_vol_put, 273 .put = tas_snd_vol_put,
274 }; 274 };
275 275
276 static int tas_snd_mute_info(struct snd_kcontrol *kcontrol, 276 static int tas_snd_mute_info(struct snd_kcontrol *kcontrol,
277 struct snd_ctl_elem_info *uinfo) 277 struct snd_ctl_elem_info *uinfo)
278 { 278 {
279 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 279 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
280 uinfo->count = 2; 280 uinfo->count = 2;
281 uinfo->value.integer.min = 0; 281 uinfo->value.integer.min = 0;
282 uinfo->value.integer.max = 1; 282 uinfo->value.integer.max = 1;
283 return 0; 283 return 0;
284 } 284 }
285 285
286 static int tas_snd_mute_get(struct snd_kcontrol *kcontrol, 286 static int tas_snd_mute_get(struct snd_kcontrol *kcontrol,
287 struct snd_ctl_elem_value *ucontrol) 287 struct snd_ctl_elem_value *ucontrol)
288 { 288 {
289 struct tas *tas = snd_kcontrol_chip(kcontrol); 289 struct tas *tas = snd_kcontrol_chip(kcontrol);
290 290
291 mutex_lock(&tas->mtx); 291 mutex_lock(&tas->mtx);
292 ucontrol->value.integer.value[0] = !tas->mute_l; 292 ucontrol->value.integer.value[0] = !tas->mute_l;
293 ucontrol->value.integer.value[1] = !tas->mute_r; 293 ucontrol->value.integer.value[1] = !tas->mute_r;
294 mutex_unlock(&tas->mtx); 294 mutex_unlock(&tas->mtx);
295 return 0; 295 return 0;
296 } 296 }
297 297
298 static int tas_snd_mute_put(struct snd_kcontrol *kcontrol, 298 static int tas_snd_mute_put(struct snd_kcontrol *kcontrol,
299 struct snd_ctl_elem_value *ucontrol) 299 struct snd_ctl_elem_value *ucontrol)
300 { 300 {
301 struct tas *tas = snd_kcontrol_chip(kcontrol); 301 struct tas *tas = snd_kcontrol_chip(kcontrol);
302 302
303 mutex_lock(&tas->mtx); 303 mutex_lock(&tas->mtx);
304 if (tas->mute_l == !ucontrol->value.integer.value[0] 304 if (tas->mute_l == !ucontrol->value.integer.value[0]
305 && tas->mute_r == !ucontrol->value.integer.value[1]) { 305 && tas->mute_r == !ucontrol->value.integer.value[1]) {
306 mutex_unlock(&tas->mtx); 306 mutex_unlock(&tas->mtx);
307 return 0; 307 return 0;
308 } 308 }
309 309
310 tas->mute_l = !ucontrol->value.integer.value[0]; 310 tas->mute_l = !ucontrol->value.integer.value[0];
311 tas->mute_r = !ucontrol->value.integer.value[1]; 311 tas->mute_r = !ucontrol->value.integer.value[1];
312 if (tas->hw_enabled) 312 if (tas->hw_enabled)
313 tas_set_volume(tas); 313 tas_set_volume(tas);
314 mutex_unlock(&tas->mtx); 314 mutex_unlock(&tas->mtx);
315 return 1; 315 return 1;
316 } 316 }
317 317
318 static struct snd_kcontrol_new mute_control = { 318 static struct snd_kcontrol_new mute_control = {
319 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 319 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
320 .name = "Master Playback Switch", 320 .name = "Master Playback Switch",
321 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 321 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
322 .info = tas_snd_mute_info, 322 .info = tas_snd_mute_info,
323 .get = tas_snd_mute_get, 323 .get = tas_snd_mute_get,
324 .put = tas_snd_mute_put, 324 .put = tas_snd_mute_put,
325 }; 325 };
326 326
327 static int tas_snd_mixer_info(struct snd_kcontrol *kcontrol, 327 static int tas_snd_mixer_info(struct snd_kcontrol *kcontrol,
328 struct snd_ctl_elem_info *uinfo) 328 struct snd_ctl_elem_info *uinfo)
329 { 329 {
330 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 330 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
331 uinfo->count = 2; 331 uinfo->count = 2;
332 uinfo->value.integer.min = 0; 332 uinfo->value.integer.min = 0;
333 uinfo->value.integer.max = 177; 333 uinfo->value.integer.max = 177;
334 return 0; 334 return 0;
335 } 335 }
336 336
337 static int tas_snd_mixer_get(struct snd_kcontrol *kcontrol, 337 static int tas_snd_mixer_get(struct snd_kcontrol *kcontrol,
338 struct snd_ctl_elem_value *ucontrol) 338 struct snd_ctl_elem_value *ucontrol)
339 { 339 {
340 struct tas *tas = snd_kcontrol_chip(kcontrol); 340 struct tas *tas = snd_kcontrol_chip(kcontrol);
341 int idx = kcontrol->private_value; 341 int idx = kcontrol->private_value;
342 342
343 mutex_lock(&tas->mtx); 343 mutex_lock(&tas->mtx);
344 ucontrol->value.integer.value[0] = tas->mixer_l[idx]; 344 ucontrol->value.integer.value[0] = tas->mixer_l[idx];
345 ucontrol->value.integer.value[1] = tas->mixer_r[idx]; 345 ucontrol->value.integer.value[1] = tas->mixer_r[idx];
346 mutex_unlock(&tas->mtx); 346 mutex_unlock(&tas->mtx);
347 347
348 return 0; 348 return 0;
349 } 349 }
350 350
351 static int tas_snd_mixer_put(struct snd_kcontrol *kcontrol, 351 static int tas_snd_mixer_put(struct snd_kcontrol *kcontrol,
352 struct snd_ctl_elem_value *ucontrol) 352 struct snd_ctl_elem_value *ucontrol)
353 { 353 {
354 struct tas *tas = snd_kcontrol_chip(kcontrol); 354 struct tas *tas = snd_kcontrol_chip(kcontrol);
355 int idx = kcontrol->private_value; 355 int idx = kcontrol->private_value;
356 356
357 mutex_lock(&tas->mtx); 357 mutex_lock(&tas->mtx);
358 if (tas->mixer_l[idx] == ucontrol->value.integer.value[0] 358 if (tas->mixer_l[idx] == ucontrol->value.integer.value[0]
359 && tas->mixer_r[idx] == ucontrol->value.integer.value[1]) { 359 && tas->mixer_r[idx] == ucontrol->value.integer.value[1]) {
360 mutex_unlock(&tas->mtx); 360 mutex_unlock(&tas->mtx);
361 return 0; 361 return 0;
362 } 362 }
363 363
364 tas->mixer_l[idx] = ucontrol->value.integer.value[0]; 364 tas->mixer_l[idx] = ucontrol->value.integer.value[0];
365 tas->mixer_r[idx] = ucontrol->value.integer.value[1]; 365 tas->mixer_r[idx] = ucontrol->value.integer.value[1];
366 366
367 if (tas->hw_enabled) 367 if (tas->hw_enabled)
368 tas_set_mixer(tas); 368 tas_set_mixer(tas);
369 mutex_unlock(&tas->mtx); 369 mutex_unlock(&tas->mtx);
370 return 1; 370 return 1;
371 } 371 }
372 372
373 #define MIXER_CONTROL(n,descr,idx) \ 373 #define MIXER_CONTROL(n,descr,idx) \
374 static struct snd_kcontrol_new n##_control = { \ 374 static struct snd_kcontrol_new n##_control = { \
375 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 375 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
376 .name = descr " Playback Volume", \ 376 .name = descr " Playback Volume", \
377 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \ 377 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \
378 .info = tas_snd_mixer_info, \ 378 .info = tas_snd_mixer_info, \
379 .get = tas_snd_mixer_get, \ 379 .get = tas_snd_mixer_get, \
380 .put = tas_snd_mixer_put, \ 380 .put = tas_snd_mixer_put, \
381 .private_value = idx, \ 381 .private_value = idx, \
382 } 382 }
383 383
384 MIXER_CONTROL(pcm1, "PCM", 0); 384 MIXER_CONTROL(pcm1, "PCM", 0);
385 MIXER_CONTROL(monitor, "Monitor", 2); 385 MIXER_CONTROL(monitor, "Monitor", 2);
386 386
387 static int tas_snd_drc_range_info(struct snd_kcontrol *kcontrol, 387 static int tas_snd_drc_range_info(struct snd_kcontrol *kcontrol,
388 struct snd_ctl_elem_info *uinfo) 388 struct snd_ctl_elem_info *uinfo)
389 { 389 {
390 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 390 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
391 uinfo->count = 1; 391 uinfo->count = 1;
392 uinfo->value.integer.min = 0; 392 uinfo->value.integer.min = 0;
393 uinfo->value.integer.max = TAS3004_DRC_MAX; 393 uinfo->value.integer.max = TAS3004_DRC_MAX;
394 return 0; 394 return 0;
395 } 395 }
396 396
397 static int tas_snd_drc_range_get(struct snd_kcontrol *kcontrol, 397 static int tas_snd_drc_range_get(struct snd_kcontrol *kcontrol,
398 struct snd_ctl_elem_value *ucontrol) 398 struct snd_ctl_elem_value *ucontrol)
399 { 399 {
400 struct tas *tas = snd_kcontrol_chip(kcontrol); 400 struct tas *tas = snd_kcontrol_chip(kcontrol);
401 401
402 mutex_lock(&tas->mtx); 402 mutex_lock(&tas->mtx);
403 ucontrol->value.integer.value[0] = tas->drc_range; 403 ucontrol->value.integer.value[0] = tas->drc_range;
404 mutex_unlock(&tas->mtx); 404 mutex_unlock(&tas->mtx);
405 return 0; 405 return 0;
406 } 406 }
407 407
408 static int tas_snd_drc_range_put(struct snd_kcontrol *kcontrol, 408 static int tas_snd_drc_range_put(struct snd_kcontrol *kcontrol,
409 struct snd_ctl_elem_value *ucontrol) 409 struct snd_ctl_elem_value *ucontrol)
410 { 410 {
411 struct tas *tas = snd_kcontrol_chip(kcontrol); 411 struct tas *tas = snd_kcontrol_chip(kcontrol);
412 412
413 mutex_lock(&tas->mtx); 413 mutex_lock(&tas->mtx);
414 if (tas->drc_range == ucontrol->value.integer.value[0]) { 414 if (tas->drc_range == ucontrol->value.integer.value[0]) {
415 mutex_unlock(&tas->mtx); 415 mutex_unlock(&tas->mtx);
416 return 0; 416 return 0;
417 } 417 }
418 418
419 tas->drc_range = ucontrol->value.integer.value[0]; 419 tas->drc_range = ucontrol->value.integer.value[0];
420 if (tas->hw_enabled) 420 if (tas->hw_enabled)
421 tas3004_set_drc(tas); 421 tas3004_set_drc(tas);
422 mutex_unlock(&tas->mtx); 422 mutex_unlock(&tas->mtx);
423 return 1; 423 return 1;
424 } 424 }
425 425
426 static struct snd_kcontrol_new drc_range_control = { 426 static struct snd_kcontrol_new drc_range_control = {
427 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 427 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
428 .name = "DRC Range", 428 .name = "DRC Range",
429 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 429 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
430 .info = tas_snd_drc_range_info, 430 .info = tas_snd_drc_range_info,
431 .get = tas_snd_drc_range_get, 431 .get = tas_snd_drc_range_get,
432 .put = tas_snd_drc_range_put, 432 .put = tas_snd_drc_range_put,
433 }; 433 };
434 434
435 static int tas_snd_drc_switch_info(struct snd_kcontrol *kcontrol, 435 static int tas_snd_drc_switch_info(struct snd_kcontrol *kcontrol,
436 struct snd_ctl_elem_info *uinfo) 436 struct snd_ctl_elem_info *uinfo)
437 { 437 {
438 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 438 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
439 uinfo->count = 1; 439 uinfo->count = 1;
440 uinfo->value.integer.min = 0; 440 uinfo->value.integer.min = 0;
441 uinfo->value.integer.max = 1; 441 uinfo->value.integer.max = 1;
442 return 0; 442 return 0;
443 } 443 }
444 444
445 static int tas_snd_drc_switch_get(struct snd_kcontrol *kcontrol, 445 static int tas_snd_drc_switch_get(struct snd_kcontrol *kcontrol,
446 struct snd_ctl_elem_value *ucontrol) 446 struct snd_ctl_elem_value *ucontrol)
447 { 447 {
448 struct tas *tas = snd_kcontrol_chip(kcontrol); 448 struct tas *tas = snd_kcontrol_chip(kcontrol);
449 449
450 mutex_lock(&tas->mtx); 450 mutex_lock(&tas->mtx);
451 ucontrol->value.integer.value[0] = tas->drc_enabled; 451 ucontrol->value.integer.value[0] = tas->drc_enabled;
452 mutex_unlock(&tas->mtx); 452 mutex_unlock(&tas->mtx);
453 return 0; 453 return 0;
454 } 454 }
455 455
456 static int tas_snd_drc_switch_put(struct snd_kcontrol *kcontrol, 456 static int tas_snd_drc_switch_put(struct snd_kcontrol *kcontrol,
457 struct snd_ctl_elem_value *ucontrol) 457 struct snd_ctl_elem_value *ucontrol)
458 { 458 {
459 struct tas *tas = snd_kcontrol_chip(kcontrol); 459 struct tas *tas = snd_kcontrol_chip(kcontrol);
460 460
461 mutex_lock(&tas->mtx); 461 mutex_lock(&tas->mtx);
462 if (tas->drc_enabled == ucontrol->value.integer.value[0]) { 462 if (tas->drc_enabled == ucontrol->value.integer.value[0]) {
463 mutex_unlock(&tas->mtx); 463 mutex_unlock(&tas->mtx);
464 return 0; 464 return 0;
465 } 465 }
466 466
467 tas->drc_enabled = ucontrol->value.integer.value[0]; 467 tas->drc_enabled = ucontrol->value.integer.value[0];
468 if (tas->hw_enabled) 468 if (tas->hw_enabled)
469 tas3004_set_drc(tas); 469 tas3004_set_drc(tas);
470 mutex_unlock(&tas->mtx); 470 mutex_unlock(&tas->mtx);
471 return 1; 471 return 1;
472 } 472 }
473 473
474 static struct snd_kcontrol_new drc_switch_control = { 474 static struct snd_kcontrol_new drc_switch_control = {
475 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 475 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
476 .name = "DRC Range Switch", 476 .name = "DRC Range Switch",
477 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 477 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
478 .info = tas_snd_drc_switch_info, 478 .info = tas_snd_drc_switch_info,
479 .get = tas_snd_drc_switch_get, 479 .get = tas_snd_drc_switch_get,
480 .put = tas_snd_drc_switch_put, 480 .put = tas_snd_drc_switch_put,
481 }; 481 };
482 482
483 static int tas_snd_capture_source_info(struct snd_kcontrol *kcontrol, 483 static int tas_snd_capture_source_info(struct snd_kcontrol *kcontrol,
484 struct snd_ctl_elem_info *uinfo) 484 struct snd_ctl_elem_info *uinfo)
485 { 485 {
486 static char *texts[] = { "Line-In", "Microphone" }; 486 static char *texts[] = { "Line-In", "Microphone" };
487 487
488 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 488 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
489 uinfo->count = 1; 489 uinfo->count = 1;
490 uinfo->value.enumerated.items = 2; 490 uinfo->value.enumerated.items = 2;
491 if (uinfo->value.enumerated.item > 1) 491 if (uinfo->value.enumerated.item > 1)
492 uinfo->value.enumerated.item = 1; 492 uinfo->value.enumerated.item = 1;
493 strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]); 493 strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
494 return 0; 494 return 0;
495 } 495 }
496 496
497 static int tas_snd_capture_source_get(struct snd_kcontrol *kcontrol, 497 static int tas_snd_capture_source_get(struct snd_kcontrol *kcontrol,
498 struct snd_ctl_elem_value *ucontrol) 498 struct snd_ctl_elem_value *ucontrol)
499 { 499 {
500 struct tas *tas = snd_kcontrol_chip(kcontrol); 500 struct tas *tas = snd_kcontrol_chip(kcontrol);
501 501
502 mutex_lock(&tas->mtx); 502 mutex_lock(&tas->mtx);
503 ucontrol->value.enumerated.item[0] = !!(tas->acr & TAS_ACR_INPUT_B); 503 ucontrol->value.enumerated.item[0] = !!(tas->acr & TAS_ACR_INPUT_B);
504 mutex_unlock(&tas->mtx); 504 mutex_unlock(&tas->mtx);
505 return 0; 505 return 0;
506 } 506 }
507 507
508 static int tas_snd_capture_source_put(struct snd_kcontrol *kcontrol, 508 static int tas_snd_capture_source_put(struct snd_kcontrol *kcontrol,
509 struct snd_ctl_elem_value *ucontrol) 509 struct snd_ctl_elem_value *ucontrol)
510 { 510 {
511 struct tas *tas = snd_kcontrol_chip(kcontrol); 511 struct tas *tas = snd_kcontrol_chip(kcontrol);
512 int oldacr; 512 int oldacr;
513 513
514 mutex_lock(&tas->mtx); 514 mutex_lock(&tas->mtx);
515 oldacr = tas->acr; 515 oldacr = tas->acr;
516 516
517 tas->acr &= ~TAS_ACR_INPUT_B; 517 /*
518 * Despite what the data sheet says in one place, the
519 * TAS_ACR_B_MONAUREAL bit forces mono output even when
520 * input A (line in) is selected.
521 */
522 tas->acr &= ~(TAS_ACR_INPUT_B | TAS_ACR_B_MONAUREAL);
518 if (ucontrol->value.enumerated.item[0]) 523 if (ucontrol->value.enumerated.item[0])
519 tas->acr |= TAS_ACR_INPUT_B; 524 tas->acr |= TAS_ACR_INPUT_B | TAS_ACR_B_MONAUREAL |
525 TAS_ACR_B_MON_SEL_RIGHT;
520 if (oldacr == tas->acr) { 526 if (oldacr == tas->acr) {
521 mutex_unlock(&tas->mtx); 527 mutex_unlock(&tas->mtx);
522 return 0; 528 return 0;
523 } 529 }
524 if (tas->hw_enabled) 530 if (tas->hw_enabled)
525 tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr); 531 tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr);
526 mutex_unlock(&tas->mtx); 532 mutex_unlock(&tas->mtx);
527 return 1; 533 return 1;
528 } 534 }
529 535
530 static struct snd_kcontrol_new capture_source_control = { 536 static struct snd_kcontrol_new capture_source_control = {
531 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 537 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
532 /* If we name this 'Input Source', it properly shows up in 538 /* If we name this 'Input Source', it properly shows up in
533 * alsamixer as a selection, * but it's shown under the 539 * alsamixer as a selection, * but it's shown under the
534 * 'Playback' category. 540 * 'Playback' category.
535 * If I name it 'Capture Source', it shows up in strange 541 * If I name it 'Capture Source', it shows up in strange
536 * ways (two bools of which one can be selected at a 542 * ways (two bools of which one can be selected at a
537 * time) but at least it's shown in the 'Capture' 543 * time) but at least it's shown in the 'Capture'
538 * category. 544 * category.
539 * I was told that this was due to backward compatibility, 545 * I was told that this was due to backward compatibility,
540 * but I don't understand then why the mangling is *not* 546 * but I don't understand then why the mangling is *not*
541 * done when I name it "Input Source"..... 547 * done when I name it "Input Source".....
542 */ 548 */
543 .name = "Capture Source", 549 .name = "Capture Source",
544 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 550 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
545 .info = tas_snd_capture_source_info, 551 .info = tas_snd_capture_source_info,
546 .get = tas_snd_capture_source_get, 552 .get = tas_snd_capture_source_get,
547 .put = tas_snd_capture_source_put, 553 .put = tas_snd_capture_source_put,
548 }; 554 };
549 555
550 static int tas_snd_treble_info(struct snd_kcontrol *kcontrol, 556 static int tas_snd_treble_info(struct snd_kcontrol *kcontrol,
551 struct snd_ctl_elem_info *uinfo) 557 struct snd_ctl_elem_info *uinfo)
552 { 558 {
553 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 559 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
554 uinfo->count = 1; 560 uinfo->count = 1;
555 uinfo->value.integer.min = TAS3004_TREBLE_MIN; 561 uinfo->value.integer.min = TAS3004_TREBLE_MIN;
556 uinfo->value.integer.max = TAS3004_TREBLE_MAX; 562 uinfo->value.integer.max = TAS3004_TREBLE_MAX;
557 return 0; 563 return 0;
558 } 564 }
559 565
560 static int tas_snd_treble_get(struct snd_kcontrol *kcontrol, 566 static int tas_snd_treble_get(struct snd_kcontrol *kcontrol,
561 struct snd_ctl_elem_value *ucontrol) 567 struct snd_ctl_elem_value *ucontrol)
562 { 568 {
563 struct tas *tas = snd_kcontrol_chip(kcontrol); 569 struct tas *tas = snd_kcontrol_chip(kcontrol);
564 570
565 mutex_lock(&tas->mtx); 571 mutex_lock(&tas->mtx);
566 ucontrol->value.integer.value[0] = tas->treble; 572 ucontrol->value.integer.value[0] = tas->treble;
567 mutex_unlock(&tas->mtx); 573 mutex_unlock(&tas->mtx);
568 return 0; 574 return 0;
569 } 575 }
570 576
571 static int tas_snd_treble_put(struct snd_kcontrol *kcontrol, 577 static int tas_snd_treble_put(struct snd_kcontrol *kcontrol,
572 struct snd_ctl_elem_value *ucontrol) 578 struct snd_ctl_elem_value *ucontrol)
573 { 579 {
574 struct tas *tas = snd_kcontrol_chip(kcontrol); 580 struct tas *tas = snd_kcontrol_chip(kcontrol);
575 581
576 mutex_lock(&tas->mtx); 582 mutex_lock(&tas->mtx);
577 if (tas->treble == ucontrol->value.integer.value[0]) { 583 if (tas->treble == ucontrol->value.integer.value[0]) {
578 mutex_unlock(&tas->mtx); 584 mutex_unlock(&tas->mtx);
579 return 0; 585 return 0;
580 } 586 }
581 587
582 tas->treble = ucontrol->value.integer.value[0]; 588 tas->treble = ucontrol->value.integer.value[0];
583 if (tas->hw_enabled) 589 if (tas->hw_enabled)
584 tas_set_treble(tas); 590 tas_set_treble(tas);
585 mutex_unlock(&tas->mtx); 591 mutex_unlock(&tas->mtx);
586 return 1; 592 return 1;
587 } 593 }
588 594
589 static struct snd_kcontrol_new treble_control = { 595 static struct snd_kcontrol_new treble_control = {
590 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 596 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
591 .name = "Treble", 597 .name = "Treble",
592 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 598 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
593 .info = tas_snd_treble_info, 599 .info = tas_snd_treble_info,
594 .get = tas_snd_treble_get, 600 .get = tas_snd_treble_get,
595 .put = tas_snd_treble_put, 601 .put = tas_snd_treble_put,
596 }; 602 };
597 603
598 static int tas_snd_bass_info(struct snd_kcontrol *kcontrol, 604 static int tas_snd_bass_info(struct snd_kcontrol *kcontrol,
599 struct snd_ctl_elem_info *uinfo) 605 struct snd_ctl_elem_info *uinfo)
600 { 606 {
601 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 607 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
602 uinfo->count = 1; 608 uinfo->count = 1;
603 uinfo->value.integer.min = TAS3004_BASS_MIN; 609 uinfo->value.integer.min = TAS3004_BASS_MIN;
604 uinfo->value.integer.max = TAS3004_BASS_MAX; 610 uinfo->value.integer.max = TAS3004_BASS_MAX;
605 return 0; 611 return 0;
606 } 612 }
607 613
608 static int tas_snd_bass_get(struct snd_kcontrol *kcontrol, 614 static int tas_snd_bass_get(struct snd_kcontrol *kcontrol,
609 struct snd_ctl_elem_value *ucontrol) 615 struct snd_ctl_elem_value *ucontrol)
610 { 616 {
611 struct tas *tas = snd_kcontrol_chip(kcontrol); 617 struct tas *tas = snd_kcontrol_chip(kcontrol);
612 618
613 mutex_lock(&tas->mtx); 619 mutex_lock(&tas->mtx);
614 ucontrol->value.integer.value[0] = tas->bass; 620 ucontrol->value.integer.value[0] = tas->bass;
615 mutex_unlock(&tas->mtx); 621 mutex_unlock(&tas->mtx);
616 return 0; 622 return 0;
617 } 623 }
618 624
619 static int tas_snd_bass_put(struct snd_kcontrol *kcontrol, 625 static int tas_snd_bass_put(struct snd_kcontrol *kcontrol,
620 struct snd_ctl_elem_value *ucontrol) 626 struct snd_ctl_elem_value *ucontrol)
621 { 627 {
622 struct tas *tas = snd_kcontrol_chip(kcontrol); 628 struct tas *tas = snd_kcontrol_chip(kcontrol);
623 629
624 mutex_lock(&tas->mtx); 630 mutex_lock(&tas->mtx);
625 if (tas->bass == ucontrol->value.integer.value[0]) { 631 if (tas->bass == ucontrol->value.integer.value[0]) {
626 mutex_unlock(&tas->mtx); 632 mutex_unlock(&tas->mtx);
627 return 0; 633 return 0;
628 } 634 }
629 635
630 tas->bass = ucontrol->value.integer.value[0]; 636 tas->bass = ucontrol->value.integer.value[0];
631 if (tas->hw_enabled) 637 if (tas->hw_enabled)
632 tas_set_bass(tas); 638 tas_set_bass(tas);
633 mutex_unlock(&tas->mtx); 639 mutex_unlock(&tas->mtx);
634 return 1; 640 return 1;
635 } 641 }
636 642
637 static struct snd_kcontrol_new bass_control = { 643 static struct snd_kcontrol_new bass_control = {
638 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 644 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
639 .name = "Bass", 645 .name = "Bass",
640 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 646 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
641 .info = tas_snd_bass_info, 647 .info = tas_snd_bass_info,
642 .get = tas_snd_bass_get, 648 .get = tas_snd_bass_get,
643 .put = tas_snd_bass_put, 649 .put = tas_snd_bass_put,
644 }; 650 };
645 651
646 static struct transfer_info tas_transfers[] = { 652 static struct transfer_info tas_transfers[] = {
647 { 653 {
648 /* input */ 654 /* input */
649 .formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_BE | 655 .formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_BE |
650 SNDRV_PCM_FMTBIT_S24_BE | SNDRV_PCM_FMTBIT_S24_BE, 656 SNDRV_PCM_FMTBIT_S24_BE | SNDRV_PCM_FMTBIT_S24_BE,
651 .rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000, 657 .rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
652 .transfer_in = 1, 658 .transfer_in = 1,
653 }, 659 },
654 { 660 {
655 /* output */ 661 /* output */
656 .formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_BE | 662 .formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_BE |
657 SNDRV_PCM_FMTBIT_S24_BE | SNDRV_PCM_FMTBIT_S24_BE, 663 SNDRV_PCM_FMTBIT_S24_BE | SNDRV_PCM_FMTBIT_S24_BE,
658 .rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000, 664 .rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
659 .transfer_in = 0, 665 .transfer_in = 0,
660 }, 666 },
661 {} 667 {}
662 }; 668 };
663 669
664 static int tas_usable(struct codec_info_item *cii, 670 static int tas_usable(struct codec_info_item *cii,
665 struct transfer_info *ti, 671 struct transfer_info *ti,
666 struct transfer_info *out) 672 struct transfer_info *out)
667 { 673 {
668 return 1; 674 return 1;
669 } 675 }
670 676
671 static int tas_reset_init(struct tas *tas) 677 static int tas_reset_init(struct tas *tas)
672 { 678 {
673 u8 tmp; 679 u8 tmp;
674 680
675 tas->codec.gpio->methods->all_amps_off(tas->codec.gpio); 681 tas->codec.gpio->methods->all_amps_off(tas->codec.gpio);
676 msleep(5); 682 msleep(5);
677 tas->codec.gpio->methods->set_hw_reset(tas->codec.gpio, 0); 683 tas->codec.gpio->methods->set_hw_reset(tas->codec.gpio, 0);
678 msleep(5); 684 msleep(5);
679 tas->codec.gpio->methods->set_hw_reset(tas->codec.gpio, 1); 685 tas->codec.gpio->methods->set_hw_reset(tas->codec.gpio, 1);
680 msleep(20); 686 msleep(20);
681 tas->codec.gpio->methods->set_hw_reset(tas->codec.gpio, 0); 687 tas->codec.gpio->methods->set_hw_reset(tas->codec.gpio, 0);
682 msleep(10); 688 msleep(10);
683 tas->codec.gpio->methods->all_amps_restore(tas->codec.gpio); 689 tas->codec.gpio->methods->all_amps_restore(tas->codec.gpio);
684 690
685 tmp = TAS_MCS_SCLK64 | TAS_MCS_SPORT_MODE_I2S | TAS_MCS_SPORT_WL_24BIT; 691 tmp = TAS_MCS_SCLK64 | TAS_MCS_SPORT_MODE_I2S | TAS_MCS_SPORT_WL_24BIT;
686 if (tas_write_reg(tas, TAS_REG_MCS, 1, &tmp)) 692 if (tas_write_reg(tas, TAS_REG_MCS, 1, &tmp))
687 goto outerr; 693 goto outerr;
688 694
689 tas->acr |= TAS_ACR_ANALOG_PDOWN | TAS_ACR_B_MONAUREAL | 695 tas->acr |= TAS_ACR_ANALOG_PDOWN;
690 TAS_ACR_B_MON_SEL_RIGHT;
691 if (tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr)) 696 if (tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr))
692 goto outerr; 697 goto outerr;
693 698
694 tmp = 0; 699 tmp = 0;
695 if (tas_write_reg(tas, TAS_REG_MCS2, 1, &tmp)) 700 if (tas_write_reg(tas, TAS_REG_MCS2, 1, &tmp))
696 goto outerr; 701 goto outerr;
697 702
698 tas3004_set_drc(tas); 703 tas3004_set_drc(tas);
699 704
700 /* Set treble & bass to 0dB */ 705 /* Set treble & bass to 0dB */
701 tas->treble = TAS3004_TREBLE_ZERO; 706 tas->treble = TAS3004_TREBLE_ZERO;
702 tas->bass = TAS3004_BASS_ZERO; 707 tas->bass = TAS3004_BASS_ZERO;
703 tas_set_treble(tas); 708 tas_set_treble(tas);
704 tas_set_bass(tas); 709 tas_set_bass(tas);
705 710
706 tas->acr &= ~TAS_ACR_ANALOG_PDOWN; 711 tas->acr &= ~TAS_ACR_ANALOG_PDOWN;
707 if (tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr)) 712 if (tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr))
708 goto outerr; 713 goto outerr;
709 714
710 return 0; 715 return 0;
711 outerr: 716 outerr:
712 return -ENODEV; 717 return -ENODEV;
713 } 718 }
714 719
715 static int tas_switch_clock(struct codec_info_item *cii, enum clock_switch clock) 720 static int tas_switch_clock(struct codec_info_item *cii, enum clock_switch clock)
716 { 721 {
717 struct tas *tas = cii->codec_data; 722 struct tas *tas = cii->codec_data;
718 723
719 switch(clock) { 724 switch(clock) {
720 case CLOCK_SWITCH_PREPARE_SLAVE: 725 case CLOCK_SWITCH_PREPARE_SLAVE:
721 /* Clocks are going away, mute mute mute */ 726 /* Clocks are going away, mute mute mute */
722 tas->codec.gpio->methods->all_amps_off(tas->codec.gpio); 727 tas->codec.gpio->methods->all_amps_off(tas->codec.gpio);
723 tas->hw_enabled = 0; 728 tas->hw_enabled = 0;
724 break; 729 break;
725 case CLOCK_SWITCH_SLAVE: 730 case CLOCK_SWITCH_SLAVE:
726 /* Clocks are back, re-init the codec */ 731 /* Clocks are back, re-init the codec */
727 mutex_lock(&tas->mtx); 732 mutex_lock(&tas->mtx);
728 tas_reset_init(tas); 733 tas_reset_init(tas);
729 tas_set_volume(tas); 734 tas_set_volume(tas);
730 tas_set_mixer(tas); 735 tas_set_mixer(tas);
731 tas->hw_enabled = 1; 736 tas->hw_enabled = 1;
732 tas->codec.gpio->methods->all_amps_restore(tas->codec.gpio); 737 tas->codec.gpio->methods->all_amps_restore(tas->codec.gpio);
733 mutex_unlock(&tas->mtx); 738 mutex_unlock(&tas->mtx);
734 break; 739 break;
735 default: 740 default:
736 /* doesn't happen as of now */ 741 /* doesn't happen as of now */
737 return -EINVAL; 742 return -EINVAL;
738 } 743 }
739 return 0; 744 return 0;
740 } 745 }
741 746
742 /* we are controlled via i2c and assume that is always up 747 /* we are controlled via i2c and assume that is always up
743 * If that wasn't the case, we'd have to suspend once 748 * If that wasn't the case, we'd have to suspend once
744 * our i2c device is suspended, and then take note of that! */ 749 * our i2c device is suspended, and then take note of that! */
745 static int tas_suspend(struct tas *tas) 750 static int tas_suspend(struct tas *tas)
746 { 751 {
747 mutex_lock(&tas->mtx); 752 mutex_lock(&tas->mtx);
748 tas->hw_enabled = 0; 753 tas->hw_enabled = 0;
749 tas->acr |= TAS_ACR_ANALOG_PDOWN; 754 tas->acr |= TAS_ACR_ANALOG_PDOWN;
750 tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr); 755 tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr);
751 mutex_unlock(&tas->mtx); 756 mutex_unlock(&tas->mtx);
752 return 0; 757 return 0;
753 } 758 }
754 759
755 static int tas_resume(struct tas *tas) 760 static int tas_resume(struct tas *tas)
756 { 761 {
757 /* reset codec */ 762 /* reset codec */
758 mutex_lock(&tas->mtx); 763 mutex_lock(&tas->mtx);
759 tas_reset_init(tas); 764 tas_reset_init(tas);
760 tas_set_volume(tas); 765 tas_set_volume(tas);
761 tas_set_mixer(tas); 766 tas_set_mixer(tas);
762 tas->hw_enabled = 1; 767 tas->hw_enabled = 1;
763 mutex_unlock(&tas->mtx); 768 mutex_unlock(&tas->mtx);
764 return 0; 769 return 0;
765 } 770 }
766 771
767 #ifdef CONFIG_PM 772 #ifdef CONFIG_PM
768 static int _tas_suspend(struct codec_info_item *cii, pm_message_t state) 773 static int _tas_suspend(struct codec_info_item *cii, pm_message_t state)
769 { 774 {
770 return tas_suspend(cii->codec_data); 775 return tas_suspend(cii->codec_data);
771 } 776 }
772 777
773 static int _tas_resume(struct codec_info_item *cii) 778 static int _tas_resume(struct codec_info_item *cii)
774 { 779 {
775 return tas_resume(cii->codec_data); 780 return tas_resume(cii->codec_data);
776 } 781 }
777 #endif 782 #endif
778 783
779 static struct codec_info tas_codec_info = { 784 static struct codec_info tas_codec_info = {
780 .transfers = tas_transfers, 785 .transfers = tas_transfers,
781 /* in theory, we can drive it at 512 too... 786 /* in theory, we can drive it at 512 too...
782 * but so far the framework doesn't allow 787 * but so far the framework doesn't allow
783 * for that and I don't see much point in it. */ 788 * for that and I don't see much point in it. */
784 .sysclock_factor = 256, 789 .sysclock_factor = 256,
785 /* same here, could be 32 for just one 16 bit format */ 790 /* same here, could be 32 for just one 16 bit format */
786 .bus_factor = 64, 791 .bus_factor = 64,
787 .owner = THIS_MODULE, 792 .owner = THIS_MODULE,
788 .usable = tas_usable, 793 .usable = tas_usable,
789 .switch_clock = tas_switch_clock, 794 .switch_clock = tas_switch_clock,
790 #ifdef CONFIG_PM 795 #ifdef CONFIG_PM
791 .suspend = _tas_suspend, 796 .suspend = _tas_suspend,
792 .resume = _tas_resume, 797 .resume = _tas_resume,
793 #endif 798 #endif
794 }; 799 };
795 800
796 static int tas_init_codec(struct aoa_codec *codec) 801 static int tas_init_codec(struct aoa_codec *codec)
797 { 802 {
798 struct tas *tas = codec_to_tas(codec); 803 struct tas *tas = codec_to_tas(codec);
799 int err; 804 int err;
800 805
801 if (!tas->codec.gpio || !tas->codec.gpio->methods) { 806 if (!tas->codec.gpio || !tas->codec.gpio->methods) {
802 printk(KERN_ERR PFX "gpios not assigned!!\n"); 807 printk(KERN_ERR PFX "gpios not assigned!!\n");
803 return -EINVAL; 808 return -EINVAL;
804 } 809 }
805 810
806 mutex_lock(&tas->mtx); 811 mutex_lock(&tas->mtx);
807 if (tas_reset_init(tas)) { 812 if (tas_reset_init(tas)) {
808 printk(KERN_ERR PFX "tas failed to initialise\n"); 813 printk(KERN_ERR PFX "tas failed to initialise\n");
809 mutex_unlock(&tas->mtx); 814 mutex_unlock(&tas->mtx);
810 return -ENXIO; 815 return -ENXIO;
811 } 816 }
812 tas->hw_enabled = 1; 817 tas->hw_enabled = 1;
813 mutex_unlock(&tas->mtx); 818 mutex_unlock(&tas->mtx);
814 819
815 if (tas->codec.soundbus_dev->attach_codec(tas->codec.soundbus_dev, 820 if (tas->codec.soundbus_dev->attach_codec(tas->codec.soundbus_dev,
816 aoa_get_card(), 821 aoa_get_card(),
817 &tas_codec_info, tas)) { 822 &tas_codec_info, tas)) {
818 printk(KERN_ERR PFX "error attaching tas to soundbus\n"); 823 printk(KERN_ERR PFX "error attaching tas to soundbus\n");
819 return -ENODEV; 824 return -ENODEV;
820 } 825 }
821 826
822 if (aoa_snd_device_new(SNDRV_DEV_LOWLEVEL, tas, &ops)) { 827 if (aoa_snd_device_new(SNDRV_DEV_LOWLEVEL, tas, &ops)) {
823 printk(KERN_ERR PFX "failed to create tas snd device!\n"); 828 printk(KERN_ERR PFX "failed to create tas snd device!\n");
824 return -ENODEV; 829 return -ENODEV;
825 } 830 }
826 err = aoa_snd_ctl_add(snd_ctl_new1(&volume_control, tas)); 831 err = aoa_snd_ctl_add(snd_ctl_new1(&volume_control, tas));
827 if (err) 832 if (err)
828 goto error; 833 goto error;
829 834
830 err = aoa_snd_ctl_add(snd_ctl_new1(&mute_control, tas)); 835 err = aoa_snd_ctl_add(snd_ctl_new1(&mute_control, tas));
831 if (err) 836 if (err)
832 goto error; 837 goto error;
833 838
834 err = aoa_snd_ctl_add(snd_ctl_new1(&pcm1_control, tas)); 839 err = aoa_snd_ctl_add(snd_ctl_new1(&pcm1_control, tas));
835 if (err) 840 if (err)
836 goto error; 841 goto error;
837 842
838 err = aoa_snd_ctl_add(snd_ctl_new1(&monitor_control, tas)); 843 err = aoa_snd_ctl_add(snd_ctl_new1(&monitor_control, tas));
839 if (err) 844 if (err)
840 goto error; 845 goto error;
841 846
842 err = aoa_snd_ctl_add(snd_ctl_new1(&capture_source_control, tas)); 847 err = aoa_snd_ctl_add(snd_ctl_new1(&capture_source_control, tas));
843 if (err) 848 if (err)
844 goto error; 849 goto error;
845 850
846 err = aoa_snd_ctl_add(snd_ctl_new1(&drc_range_control, tas)); 851 err = aoa_snd_ctl_add(snd_ctl_new1(&drc_range_control, tas));
847 if (err) 852 if (err)
848 goto error; 853 goto error;
849 854
850 err = aoa_snd_ctl_add(snd_ctl_new1(&drc_switch_control, tas)); 855 err = aoa_snd_ctl_add(snd_ctl_new1(&drc_switch_control, tas));
851 if (err) 856 if (err)
852 goto error; 857 goto error;
853 858
854 err = aoa_snd_ctl_add(snd_ctl_new1(&treble_control, tas)); 859 err = aoa_snd_ctl_add(snd_ctl_new1(&treble_control, tas));
855 if (err) 860 if (err)
856 goto error; 861 goto error;
857 862
858 err = aoa_snd_ctl_add(snd_ctl_new1(&bass_control, tas)); 863 err = aoa_snd_ctl_add(snd_ctl_new1(&bass_control, tas));
859 if (err) 864 if (err)
860 goto error; 865 goto error;
861 866
862 return 0; 867 return 0;
863 error: 868 error:
864 tas->codec.soundbus_dev->detach_codec(tas->codec.soundbus_dev, tas); 869 tas->codec.soundbus_dev->detach_codec(tas->codec.soundbus_dev, tas);
865 snd_device_free(aoa_get_card(), tas); 870 snd_device_free(aoa_get_card(), tas);
866 return err; 871 return err;
867 } 872 }
868 873
869 static void tas_exit_codec(struct aoa_codec *codec) 874 static void tas_exit_codec(struct aoa_codec *codec)
870 { 875 {
871 struct tas *tas = codec_to_tas(codec); 876 struct tas *tas = codec_to_tas(codec);
872 877
873 if (!tas->codec.soundbus_dev) 878 if (!tas->codec.soundbus_dev)
874 return; 879 return;
875 tas->codec.soundbus_dev->detach_codec(tas->codec.soundbus_dev, tas); 880 tas->codec.soundbus_dev->detach_codec(tas->codec.soundbus_dev, tas);
876 } 881 }
877 882
878 883
879 static struct i2c_driver tas_driver; 884 static struct i2c_driver tas_driver;
880 885
881 static int tas_create(struct i2c_adapter *adapter, 886 static int tas_create(struct i2c_adapter *adapter,
882 struct device_node *node, 887 struct device_node *node,
883 int addr) 888 int addr)
884 { 889 {
885 struct tas *tas; 890 struct tas *tas;
886 891
887 tas = kzalloc(sizeof(struct tas), GFP_KERNEL); 892 tas = kzalloc(sizeof(struct tas), GFP_KERNEL);
888 893
889 if (!tas) 894 if (!tas)
890 return -ENOMEM; 895 return -ENOMEM;
891 896
892 mutex_init(&tas->mtx); 897 mutex_init(&tas->mtx);
893 tas->i2c.driver = &tas_driver; 898 tas->i2c.driver = &tas_driver;
894 tas->i2c.adapter = adapter; 899 tas->i2c.adapter = adapter;
895 tas->i2c.addr = addr; 900 tas->i2c.addr = addr;
896 /* seems that half is a saner default */ 901 /* seems that half is a saner default */
897 tas->drc_range = TAS3004_DRC_MAX / 2; 902 tas->drc_range = TAS3004_DRC_MAX / 2;
898 strlcpy(tas->i2c.name, "tas audio codec", I2C_NAME_SIZE-1); 903 strlcpy(tas->i2c.name, "tas audio codec", I2C_NAME_SIZE-1);
899 904
900 if (i2c_attach_client(&tas->i2c)) { 905 if (i2c_attach_client(&tas->i2c)) {
901 printk(KERN_ERR PFX "failed to attach to i2c\n"); 906 printk(KERN_ERR PFX "failed to attach to i2c\n");
902 goto fail; 907 goto fail;
903 } 908 }
904 909
905 strlcpy(tas->codec.name, "tas", MAX_CODEC_NAME_LEN-1); 910 strlcpy(tas->codec.name, "tas", MAX_CODEC_NAME_LEN-1);
906 tas->codec.owner = THIS_MODULE; 911 tas->codec.owner = THIS_MODULE;
907 tas->codec.init = tas_init_codec; 912 tas->codec.init = tas_init_codec;
908 tas->codec.exit = tas_exit_codec; 913 tas->codec.exit = tas_exit_codec;
909 tas->codec.node = of_node_get(node); 914 tas->codec.node = of_node_get(node);
910 915
911 if (aoa_codec_register(&tas->codec)) { 916 if (aoa_codec_register(&tas->codec)) {
912 goto detach; 917 goto detach;
913 } 918 }
914 printk(KERN_DEBUG 919 printk(KERN_DEBUG
915 "snd-aoa-codec-tas: tas found, addr 0x%02x on %s\n", 920 "snd-aoa-codec-tas: tas found, addr 0x%02x on %s\n",
916 addr, node->full_name); 921 addr, node->full_name);
917 return 0; 922 return 0;
918 detach: 923 detach:
919 i2c_detach_client(&tas->i2c); 924 i2c_detach_client(&tas->i2c);
920 fail: 925 fail:
921 mutex_destroy(&tas->mtx); 926 mutex_destroy(&tas->mtx);
922 kfree(tas); 927 kfree(tas);
923 return -EINVAL; 928 return -EINVAL;
924 } 929 }
925 930
926 static int tas_i2c_attach(struct i2c_adapter *adapter) 931 static int tas_i2c_attach(struct i2c_adapter *adapter)
927 { 932 {
928 struct device_node *busnode, *dev = NULL; 933 struct device_node *busnode, *dev = NULL;
929 struct pmac_i2c_bus *bus; 934 struct pmac_i2c_bus *bus;
930 935
931 bus = pmac_i2c_adapter_to_bus(adapter); 936 bus = pmac_i2c_adapter_to_bus(adapter);
932 if (bus == NULL) 937 if (bus == NULL)
933 return -ENODEV; 938 return -ENODEV;
934 busnode = pmac_i2c_get_bus_node(bus); 939 busnode = pmac_i2c_get_bus_node(bus);
935 940
936 while ((dev = of_get_next_child(busnode, dev)) != NULL) { 941 while ((dev = of_get_next_child(busnode, dev)) != NULL) {
937 if (device_is_compatible(dev, "tas3004")) { 942 if (device_is_compatible(dev, "tas3004")) {
938 u32 *addr; 943 u32 *addr;
939 printk(KERN_DEBUG PFX "found tas3004\n"); 944 printk(KERN_DEBUG PFX "found tas3004\n");
940 addr = (u32 *) get_property(dev, "reg", NULL); 945 addr = (u32 *) get_property(dev, "reg", NULL);
941 if (!addr) 946 if (!addr)
942 continue; 947 continue;
943 return tas_create(adapter, dev, ((*addr) >> 1) & 0x7f); 948 return tas_create(adapter, dev, ((*addr) >> 1) & 0x7f);
944 } 949 }
945 /* older machines have no 'codec' node with a 'compatible' 950 /* older machines have no 'codec' node with a 'compatible'
946 * property that says 'tas3004', they just have a 'deq' 951 * property that says 'tas3004', they just have a 'deq'
947 * node without any such property... */ 952 * node without any such property... */
948 if (strcmp(dev->name, "deq") == 0) { 953 if (strcmp(dev->name, "deq") == 0) {
949 u32 *_addr, addr; 954 u32 *_addr, addr;
950 printk(KERN_DEBUG PFX "found 'deq' node\n"); 955 printk(KERN_DEBUG PFX "found 'deq' node\n");
951 _addr = (u32 *) get_property(dev, "i2c-address", NULL); 956 _addr = (u32 *) get_property(dev, "i2c-address", NULL);
952 if (!_addr) 957 if (!_addr)
953 continue; 958 continue;
954 addr = ((*_addr) >> 1) & 0x7f; 959 addr = ((*_addr) >> 1) & 0x7f;
955 /* now, if the address doesn't match any of the two 960 /* now, if the address doesn't match any of the two
956 * that a tas3004 can have, we cannot handle this. 961 * that a tas3004 can have, we cannot handle this.
957 * I doubt it ever happens but hey. */ 962 * I doubt it ever happens but hey. */
958 if (addr != 0x34 && addr != 0x35) 963 if (addr != 0x34 && addr != 0x35)
959 continue; 964 continue;
960 return tas_create(adapter, dev, addr); 965 return tas_create(adapter, dev, addr);
961 } 966 }
962 } 967 }
963 return -ENODEV; 968 return -ENODEV;
964 } 969 }
965 970
966 static int tas_i2c_detach(struct i2c_client *client) 971 static int tas_i2c_detach(struct i2c_client *client)
967 { 972 {
968 struct tas *tas = container_of(client, struct tas, i2c); 973 struct tas *tas = container_of(client, struct tas, i2c);
969 int err; 974 int err;
970 u8 tmp = TAS_ACR_ANALOG_PDOWN; 975 u8 tmp = TAS_ACR_ANALOG_PDOWN;
971 976
972 if ((err = i2c_detach_client(client))) 977 if ((err = i2c_detach_client(client)))
973 return err; 978 return err;
974 aoa_codec_unregister(&tas->codec); 979 aoa_codec_unregister(&tas->codec);
975 of_node_put(tas->codec.node); 980 of_node_put(tas->codec.node);
976 981
977 /* power down codec chip */ 982 /* power down codec chip */
978 tas_write_reg(tas, TAS_REG_ACR, 1, &tmp); 983 tas_write_reg(tas, TAS_REG_ACR, 1, &tmp);
979 984
980 mutex_destroy(&tas->mtx); 985 mutex_destroy(&tas->mtx);
981 kfree(tas); 986 kfree(tas);
982 return 0; 987 return 0;
983 } 988 }
984 989
985 static struct i2c_driver tas_driver = { 990 static struct i2c_driver tas_driver = {
986 .driver = { 991 .driver = {
987 .name = "aoa_codec_tas", 992 .name = "aoa_codec_tas",
988 .owner = THIS_MODULE, 993 .owner = THIS_MODULE,
989 }, 994 },
990 .attach_adapter = tas_i2c_attach, 995 .attach_adapter = tas_i2c_attach,
991 .detach_client = tas_i2c_detach, 996 .detach_client = tas_i2c_detach,
992 }; 997 };
993 998
994 static int __init tas_init(void) 999 static int __init tas_init(void)
995 { 1000 {
996 return i2c_add_driver(&tas_driver); 1001 return i2c_add_driver(&tas_driver);
997 } 1002 }
998 1003
999 static void __exit tas_exit(void) 1004 static void __exit tas_exit(void)
1000 { 1005 {
1001 i2c_del_driver(&tas_driver); 1006 i2c_del_driver(&tas_driver);
1002 } 1007 }
1003 1008
1004 module_init(tas_init); 1009 module_init(tas_init);
1005 module_exit(tas_exit); 1010 module_exit(tas_exit);