Commit 812164f8c3f6f5348aa69003a2f81775c2872ac0

Authored by Alex Elder
Committed by Sage Weil
1 parent 4f0dcb10cf

ceph: use ceph_create_snap_context()

Now that we have a library routine to create snap contexts, use it.

This is part of:
    http://tracker.ceph.com/issues/4857

Signed-off-by: Alex Elder <elder@inktank.com>
Reviewed-by: Josh Durgin <josh.durgin@inktank.com>

Showing 2 changed files with 7 additions and 37 deletions Inline Diff

1 /* 1 /*
2 rbd.c -- Export ceph rados objects as a Linux block device 2 rbd.c -- Export ceph rados objects as a Linux block device
3 3
4 4
5 based on drivers/block/osdblk.c: 5 based on drivers/block/osdblk.c:
6 6
7 Copyright 2009 Red Hat, Inc. 7 Copyright 2009 Red Hat, Inc.
8 8
9 This program is free software; you can redistribute it and/or modify 9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by 10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation. 11 the Free Software Foundation.
12 12
13 This program is distributed in the hope that it will be useful, 13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details. 16 GNU General Public License for more details.
17 17
18 You should have received a copy of the GNU General Public License 18 You should have received a copy of the GNU General Public License
19 along with this program; see the file COPYING. If not, write to 19 along with this program; see the file COPYING. If not, write to
20 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 20 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
21 21
22 22
23 23
24 For usage instructions, please refer to: 24 For usage instructions, please refer to:
25 25
26 Documentation/ABI/testing/sysfs-bus-rbd 26 Documentation/ABI/testing/sysfs-bus-rbd
27 27
28 */ 28 */
29 29
30 #include <linux/ceph/libceph.h> 30 #include <linux/ceph/libceph.h>
31 #include <linux/ceph/osd_client.h> 31 #include <linux/ceph/osd_client.h>
32 #include <linux/ceph/mon_client.h> 32 #include <linux/ceph/mon_client.h>
33 #include <linux/ceph/decode.h> 33 #include <linux/ceph/decode.h>
34 #include <linux/parser.h> 34 #include <linux/parser.h>
35 35
36 #include <linux/kernel.h> 36 #include <linux/kernel.h>
37 #include <linux/device.h> 37 #include <linux/device.h>
38 #include <linux/module.h> 38 #include <linux/module.h>
39 #include <linux/fs.h> 39 #include <linux/fs.h>
40 #include <linux/blkdev.h> 40 #include <linux/blkdev.h>
41 41
42 #include "rbd_types.h" 42 #include "rbd_types.h"
43 43
44 #define RBD_DEBUG /* Activate rbd_assert() calls */ 44 #define RBD_DEBUG /* Activate rbd_assert() calls */
45 45
46 /* 46 /*
47 * The basic unit of block I/O is a sector. It is interpreted in a 47 * The basic unit of block I/O is a sector. It is interpreted in a
48 * number of contexts in Linux (blk, bio, genhd), but the default is 48 * number of contexts in Linux (blk, bio, genhd), but the default is
49 * universally 512 bytes. These symbols are just slightly more 49 * universally 512 bytes. These symbols are just slightly more
50 * meaningful than the bare numbers they represent. 50 * meaningful than the bare numbers they represent.
51 */ 51 */
52 #define SECTOR_SHIFT 9 52 #define SECTOR_SHIFT 9
53 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT) 53 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
54 54
55 #define RBD_DRV_NAME "rbd" 55 #define RBD_DRV_NAME "rbd"
56 #define RBD_DRV_NAME_LONG "rbd (rados block device)" 56 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
57 57
58 #define RBD_MINORS_PER_MAJOR 256 /* max minors per blkdev */ 58 #define RBD_MINORS_PER_MAJOR 256 /* max minors per blkdev */
59 59
60 #define RBD_SNAP_DEV_NAME_PREFIX "snap_" 60 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
61 #define RBD_MAX_SNAP_NAME_LEN \ 61 #define RBD_MAX_SNAP_NAME_LEN \
62 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1)) 62 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
63 63
64 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */ 64 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
65 65
66 #define RBD_SNAP_HEAD_NAME "-" 66 #define RBD_SNAP_HEAD_NAME "-"
67 67
68 /* This allows a single page to hold an image name sent by OSD */ 68 /* This allows a single page to hold an image name sent by OSD */
69 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1) 69 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
70 #define RBD_IMAGE_ID_LEN_MAX 64 70 #define RBD_IMAGE_ID_LEN_MAX 64
71 71
72 #define RBD_OBJ_PREFIX_LEN_MAX 64 72 #define RBD_OBJ_PREFIX_LEN_MAX 64
73 73
74 /* Feature bits */ 74 /* Feature bits */
75 75
76 #define RBD_FEATURE_LAYERING (1<<0) 76 #define RBD_FEATURE_LAYERING (1<<0)
77 #define RBD_FEATURE_STRIPINGV2 (1<<1) 77 #define RBD_FEATURE_STRIPINGV2 (1<<1)
78 #define RBD_FEATURES_ALL \ 78 #define RBD_FEATURES_ALL \
79 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2) 79 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
80 80
81 /* Features supported by this (client software) implementation. */ 81 /* Features supported by this (client software) implementation. */
82 82
83 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL) 83 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
84 84
85 /* 85 /*
86 * An RBD device name will be "rbd#", where the "rbd" comes from 86 * An RBD device name will be "rbd#", where the "rbd" comes from
87 * RBD_DRV_NAME above, and # is a unique integer identifier. 87 * RBD_DRV_NAME above, and # is a unique integer identifier.
88 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big 88 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
89 * enough to hold all possible device names. 89 * enough to hold all possible device names.
90 */ 90 */
91 #define DEV_NAME_LEN 32 91 #define DEV_NAME_LEN 32
92 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1) 92 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
93 93
94 /* 94 /*
95 * block device image metadata (in-memory version) 95 * block device image metadata (in-memory version)
96 */ 96 */
97 struct rbd_image_header { 97 struct rbd_image_header {
98 /* These four fields never change for a given rbd image */ 98 /* These four fields never change for a given rbd image */
99 char *object_prefix; 99 char *object_prefix;
100 u64 features; 100 u64 features;
101 __u8 obj_order; 101 __u8 obj_order;
102 __u8 crypt_type; 102 __u8 crypt_type;
103 __u8 comp_type; 103 __u8 comp_type;
104 104
105 /* The remaining fields need to be updated occasionally */ 105 /* The remaining fields need to be updated occasionally */
106 u64 image_size; 106 u64 image_size;
107 struct ceph_snap_context *snapc; 107 struct ceph_snap_context *snapc;
108 char *snap_names; 108 char *snap_names;
109 u64 *snap_sizes; 109 u64 *snap_sizes;
110 110
111 u64 stripe_unit; 111 u64 stripe_unit;
112 u64 stripe_count; 112 u64 stripe_count;
113 113
114 u64 obj_version; 114 u64 obj_version;
115 }; 115 };
116 116
117 /* 117 /*
118 * An rbd image specification. 118 * An rbd image specification.
119 * 119 *
120 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely 120 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
121 * identify an image. Each rbd_dev structure includes a pointer to 121 * identify an image. Each rbd_dev structure includes a pointer to
122 * an rbd_spec structure that encapsulates this identity. 122 * an rbd_spec structure that encapsulates this identity.
123 * 123 *
124 * Each of the id's in an rbd_spec has an associated name. For a 124 * Each of the id's in an rbd_spec has an associated name. For a
125 * user-mapped image, the names are supplied and the id's associated 125 * user-mapped image, the names are supplied and the id's associated
126 * with them are looked up. For a layered image, a parent image is 126 * with them are looked up. For a layered image, a parent image is
127 * defined by the tuple, and the names are looked up. 127 * defined by the tuple, and the names are looked up.
128 * 128 *
129 * An rbd_dev structure contains a parent_spec pointer which is 129 * An rbd_dev structure contains a parent_spec pointer which is
130 * non-null if the image it represents is a child in a layered 130 * non-null if the image it represents is a child in a layered
131 * image. This pointer will refer to the rbd_spec structure used 131 * image. This pointer will refer to the rbd_spec structure used
132 * by the parent rbd_dev for its own identity (i.e., the structure 132 * by the parent rbd_dev for its own identity (i.e., the structure
133 * is shared between the parent and child). 133 * is shared between the parent and child).
134 * 134 *
135 * Since these structures are populated once, during the discovery 135 * Since these structures are populated once, during the discovery
136 * phase of image construction, they are effectively immutable so 136 * phase of image construction, they are effectively immutable so
137 * we make no effort to synchronize access to them. 137 * we make no effort to synchronize access to them.
138 * 138 *
139 * Note that code herein does not assume the image name is known (it 139 * Note that code herein does not assume the image name is known (it
140 * could be a null pointer). 140 * could be a null pointer).
141 */ 141 */
142 struct rbd_spec { 142 struct rbd_spec {
143 u64 pool_id; 143 u64 pool_id;
144 const char *pool_name; 144 const char *pool_name;
145 145
146 const char *image_id; 146 const char *image_id;
147 const char *image_name; 147 const char *image_name;
148 148
149 u64 snap_id; 149 u64 snap_id;
150 const char *snap_name; 150 const char *snap_name;
151 151
152 struct kref kref; 152 struct kref kref;
153 }; 153 };
154 154
155 /* 155 /*
156 * an instance of the client. multiple devices may share an rbd client. 156 * an instance of the client. multiple devices may share an rbd client.
157 */ 157 */
158 struct rbd_client { 158 struct rbd_client {
159 struct ceph_client *client; 159 struct ceph_client *client;
160 struct kref kref; 160 struct kref kref;
161 struct list_head node; 161 struct list_head node;
162 }; 162 };
163 163
164 struct rbd_img_request; 164 struct rbd_img_request;
165 typedef void (*rbd_img_callback_t)(struct rbd_img_request *); 165 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
166 166
167 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */ 167 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
168 168
169 struct rbd_obj_request; 169 struct rbd_obj_request;
170 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *); 170 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
171 171
172 enum obj_request_type { 172 enum obj_request_type {
173 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES 173 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
174 }; 174 };
175 175
176 enum obj_req_flags { 176 enum obj_req_flags {
177 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */ 177 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */
178 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */ 178 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */
179 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */ 179 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */
180 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */ 180 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */
181 }; 181 };
182 182
183 struct rbd_obj_request { 183 struct rbd_obj_request {
184 const char *object_name; 184 const char *object_name;
185 u64 offset; /* object start byte */ 185 u64 offset; /* object start byte */
186 u64 length; /* bytes from offset */ 186 u64 length; /* bytes from offset */
187 unsigned long flags; 187 unsigned long flags;
188 188
189 /* 189 /*
190 * An object request associated with an image will have its 190 * An object request associated with an image will have its
191 * img_data flag set; a standalone object request will not. 191 * img_data flag set; a standalone object request will not.
192 * 192 *
193 * A standalone object request will have which == BAD_WHICH 193 * A standalone object request will have which == BAD_WHICH
194 * and a null obj_request pointer. 194 * and a null obj_request pointer.
195 * 195 *
196 * An object request initiated in support of a layered image 196 * An object request initiated in support of a layered image
197 * object (to check for its existence before a write) will 197 * object (to check for its existence before a write) will
198 * have which == BAD_WHICH and a non-null obj_request pointer. 198 * have which == BAD_WHICH and a non-null obj_request pointer.
199 * 199 *
200 * Finally, an object request for rbd image data will have 200 * Finally, an object request for rbd image data will have
201 * which != BAD_WHICH, and will have a non-null img_request 201 * which != BAD_WHICH, and will have a non-null img_request
202 * pointer. The value of which will be in the range 202 * pointer. The value of which will be in the range
203 * 0..(img_request->obj_request_count-1). 203 * 0..(img_request->obj_request_count-1).
204 */ 204 */
205 union { 205 union {
206 struct rbd_obj_request *obj_request; /* STAT op */ 206 struct rbd_obj_request *obj_request; /* STAT op */
207 struct { 207 struct {
208 struct rbd_img_request *img_request; 208 struct rbd_img_request *img_request;
209 u64 img_offset; 209 u64 img_offset;
210 /* links for img_request->obj_requests list */ 210 /* links for img_request->obj_requests list */
211 struct list_head links; 211 struct list_head links;
212 }; 212 };
213 }; 213 };
214 u32 which; /* posn image request list */ 214 u32 which; /* posn image request list */
215 215
216 enum obj_request_type type; 216 enum obj_request_type type;
217 union { 217 union {
218 struct bio *bio_list; 218 struct bio *bio_list;
219 struct { 219 struct {
220 struct page **pages; 220 struct page **pages;
221 u32 page_count; 221 u32 page_count;
222 }; 222 };
223 }; 223 };
224 struct page **copyup_pages; 224 struct page **copyup_pages;
225 225
226 struct ceph_osd_request *osd_req; 226 struct ceph_osd_request *osd_req;
227 227
228 u64 xferred; /* bytes transferred */ 228 u64 xferred; /* bytes transferred */
229 u64 version; 229 u64 version;
230 int result; 230 int result;
231 231
232 rbd_obj_callback_t callback; 232 rbd_obj_callback_t callback;
233 struct completion completion; 233 struct completion completion;
234 234
235 struct kref kref; 235 struct kref kref;
236 }; 236 };
237 237
238 enum img_req_flags { 238 enum img_req_flags {
239 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */ 239 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */
240 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */ 240 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
241 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */ 241 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
242 }; 242 };
243 243
244 struct rbd_img_request { 244 struct rbd_img_request {
245 struct rbd_device *rbd_dev; 245 struct rbd_device *rbd_dev;
246 u64 offset; /* starting image byte offset */ 246 u64 offset; /* starting image byte offset */
247 u64 length; /* byte count from offset */ 247 u64 length; /* byte count from offset */
248 unsigned long flags; 248 unsigned long flags;
249 union { 249 union {
250 u64 snap_id; /* for reads */ 250 u64 snap_id; /* for reads */
251 struct ceph_snap_context *snapc; /* for writes */ 251 struct ceph_snap_context *snapc; /* for writes */
252 }; 252 };
253 union { 253 union {
254 struct request *rq; /* block request */ 254 struct request *rq; /* block request */
255 struct rbd_obj_request *obj_request; /* obj req initiator */ 255 struct rbd_obj_request *obj_request; /* obj req initiator */
256 }; 256 };
257 struct page **copyup_pages; 257 struct page **copyup_pages;
258 spinlock_t completion_lock;/* protects next_completion */ 258 spinlock_t completion_lock;/* protects next_completion */
259 u32 next_completion; 259 u32 next_completion;
260 rbd_img_callback_t callback; 260 rbd_img_callback_t callback;
261 u64 xferred;/* aggregate bytes transferred */ 261 u64 xferred;/* aggregate bytes transferred */
262 int result; /* first nonzero obj_request result */ 262 int result; /* first nonzero obj_request result */
263 263
264 u32 obj_request_count; 264 u32 obj_request_count;
265 struct list_head obj_requests; /* rbd_obj_request structs */ 265 struct list_head obj_requests; /* rbd_obj_request structs */
266 266
267 struct kref kref; 267 struct kref kref;
268 }; 268 };
269 269
270 #define for_each_obj_request(ireq, oreq) \ 270 #define for_each_obj_request(ireq, oreq) \
271 list_for_each_entry(oreq, &(ireq)->obj_requests, links) 271 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
272 #define for_each_obj_request_from(ireq, oreq) \ 272 #define for_each_obj_request_from(ireq, oreq) \
273 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links) 273 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
274 #define for_each_obj_request_safe(ireq, oreq, n) \ 274 #define for_each_obj_request_safe(ireq, oreq, n) \
275 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links) 275 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
276 276
277 struct rbd_snap { 277 struct rbd_snap {
278 const char *name; 278 const char *name;
279 u64 size; 279 u64 size;
280 struct list_head node; 280 struct list_head node;
281 u64 id; 281 u64 id;
282 u64 features; 282 u64 features;
283 }; 283 };
284 284
285 struct rbd_mapping { 285 struct rbd_mapping {
286 u64 size; 286 u64 size;
287 u64 features; 287 u64 features;
288 bool read_only; 288 bool read_only;
289 }; 289 };
290 290
291 /* 291 /*
292 * a single device 292 * a single device
293 */ 293 */
294 struct rbd_device { 294 struct rbd_device {
295 int dev_id; /* blkdev unique id */ 295 int dev_id; /* blkdev unique id */
296 296
297 int major; /* blkdev assigned major */ 297 int major; /* blkdev assigned major */
298 struct gendisk *disk; /* blkdev's gendisk and rq */ 298 struct gendisk *disk; /* blkdev's gendisk and rq */
299 299
300 u32 image_format; /* Either 1 or 2 */ 300 u32 image_format; /* Either 1 or 2 */
301 struct rbd_client *rbd_client; 301 struct rbd_client *rbd_client;
302 302
303 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */ 303 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
304 304
305 spinlock_t lock; /* queue, flags, open_count */ 305 spinlock_t lock; /* queue, flags, open_count */
306 306
307 struct rbd_image_header header; 307 struct rbd_image_header header;
308 unsigned long flags; /* possibly lock protected */ 308 unsigned long flags; /* possibly lock protected */
309 struct rbd_spec *spec; 309 struct rbd_spec *spec;
310 310
311 char *header_name; 311 char *header_name;
312 312
313 struct ceph_file_layout layout; 313 struct ceph_file_layout layout;
314 314
315 struct ceph_osd_event *watch_event; 315 struct ceph_osd_event *watch_event;
316 struct rbd_obj_request *watch_request; 316 struct rbd_obj_request *watch_request;
317 317
318 struct rbd_spec *parent_spec; 318 struct rbd_spec *parent_spec;
319 u64 parent_overlap; 319 u64 parent_overlap;
320 struct rbd_device *parent; 320 struct rbd_device *parent;
321 321
322 /* protects updating the header */ 322 /* protects updating the header */
323 struct rw_semaphore header_rwsem; 323 struct rw_semaphore header_rwsem;
324 324
325 struct rbd_mapping mapping; 325 struct rbd_mapping mapping;
326 326
327 struct list_head node; 327 struct list_head node;
328 328
329 /* list of snapshots */ 329 /* list of snapshots */
330 struct list_head snaps; 330 struct list_head snaps;
331 331
332 /* sysfs related */ 332 /* sysfs related */
333 struct device dev; 333 struct device dev;
334 unsigned long open_count; /* protected by lock */ 334 unsigned long open_count; /* protected by lock */
335 }; 335 };
336 336
337 /* 337 /*
338 * Flag bits for rbd_dev->flags. If atomicity is required, 338 * Flag bits for rbd_dev->flags. If atomicity is required,
339 * rbd_dev->lock is used to protect access. 339 * rbd_dev->lock is used to protect access.
340 * 340 *
341 * Currently, only the "removing" flag (which is coupled with the 341 * Currently, only the "removing" flag (which is coupled with the
342 * "open_count" field) requires atomic access. 342 * "open_count" field) requires atomic access.
343 */ 343 */
344 enum rbd_dev_flags { 344 enum rbd_dev_flags {
345 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */ 345 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
346 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */ 346 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
347 }; 347 };
348 348
349 static DEFINE_MUTEX(ctl_mutex); /* Serialize open/close/setup/teardown */ 349 static DEFINE_MUTEX(ctl_mutex); /* Serialize open/close/setup/teardown */
350 350
351 static LIST_HEAD(rbd_dev_list); /* devices */ 351 static LIST_HEAD(rbd_dev_list); /* devices */
352 static DEFINE_SPINLOCK(rbd_dev_list_lock); 352 static DEFINE_SPINLOCK(rbd_dev_list_lock);
353 353
354 static LIST_HEAD(rbd_client_list); /* clients */ 354 static LIST_HEAD(rbd_client_list); /* clients */
355 static DEFINE_SPINLOCK(rbd_client_list_lock); 355 static DEFINE_SPINLOCK(rbd_client_list_lock);
356 356
357 static int rbd_img_request_submit(struct rbd_img_request *img_request); 357 static int rbd_img_request_submit(struct rbd_img_request *img_request);
358 358
359 static int rbd_dev_snaps_update(struct rbd_device *rbd_dev); 359 static int rbd_dev_snaps_update(struct rbd_device *rbd_dev);
360 360
361 static void rbd_dev_device_release(struct device *dev); 361 static void rbd_dev_device_release(struct device *dev);
362 static void rbd_snap_destroy(struct rbd_snap *snap); 362 static void rbd_snap_destroy(struct rbd_snap *snap);
363 363
364 static ssize_t rbd_add(struct bus_type *bus, const char *buf, 364 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
365 size_t count); 365 size_t count);
366 static ssize_t rbd_remove(struct bus_type *bus, const char *buf, 366 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
367 size_t count); 367 size_t count);
368 static int rbd_dev_image_probe(struct rbd_device *rbd_dev); 368 static int rbd_dev_image_probe(struct rbd_device *rbd_dev);
369 369
370 static struct bus_attribute rbd_bus_attrs[] = { 370 static struct bus_attribute rbd_bus_attrs[] = {
371 __ATTR(add, S_IWUSR, NULL, rbd_add), 371 __ATTR(add, S_IWUSR, NULL, rbd_add),
372 __ATTR(remove, S_IWUSR, NULL, rbd_remove), 372 __ATTR(remove, S_IWUSR, NULL, rbd_remove),
373 __ATTR_NULL 373 __ATTR_NULL
374 }; 374 };
375 375
376 static struct bus_type rbd_bus_type = { 376 static struct bus_type rbd_bus_type = {
377 .name = "rbd", 377 .name = "rbd",
378 .bus_attrs = rbd_bus_attrs, 378 .bus_attrs = rbd_bus_attrs,
379 }; 379 };
380 380
381 static void rbd_root_dev_release(struct device *dev) 381 static void rbd_root_dev_release(struct device *dev)
382 { 382 {
383 } 383 }
384 384
385 static struct device rbd_root_dev = { 385 static struct device rbd_root_dev = {
386 .init_name = "rbd", 386 .init_name = "rbd",
387 .release = rbd_root_dev_release, 387 .release = rbd_root_dev_release,
388 }; 388 };
389 389
390 static __printf(2, 3) 390 static __printf(2, 3)
391 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...) 391 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
392 { 392 {
393 struct va_format vaf; 393 struct va_format vaf;
394 va_list args; 394 va_list args;
395 395
396 va_start(args, fmt); 396 va_start(args, fmt);
397 vaf.fmt = fmt; 397 vaf.fmt = fmt;
398 vaf.va = &args; 398 vaf.va = &args;
399 399
400 if (!rbd_dev) 400 if (!rbd_dev)
401 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf); 401 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
402 else if (rbd_dev->disk) 402 else if (rbd_dev->disk)
403 printk(KERN_WARNING "%s: %s: %pV\n", 403 printk(KERN_WARNING "%s: %s: %pV\n",
404 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf); 404 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
405 else if (rbd_dev->spec && rbd_dev->spec->image_name) 405 else if (rbd_dev->spec && rbd_dev->spec->image_name)
406 printk(KERN_WARNING "%s: image %s: %pV\n", 406 printk(KERN_WARNING "%s: image %s: %pV\n",
407 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf); 407 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
408 else if (rbd_dev->spec && rbd_dev->spec->image_id) 408 else if (rbd_dev->spec && rbd_dev->spec->image_id)
409 printk(KERN_WARNING "%s: id %s: %pV\n", 409 printk(KERN_WARNING "%s: id %s: %pV\n",
410 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf); 410 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
411 else /* punt */ 411 else /* punt */
412 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n", 412 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
413 RBD_DRV_NAME, rbd_dev, &vaf); 413 RBD_DRV_NAME, rbd_dev, &vaf);
414 va_end(args); 414 va_end(args);
415 } 415 }
416 416
417 #ifdef RBD_DEBUG 417 #ifdef RBD_DEBUG
418 #define rbd_assert(expr) \ 418 #define rbd_assert(expr) \
419 if (unlikely(!(expr))) { \ 419 if (unlikely(!(expr))) { \
420 printk(KERN_ERR "\nAssertion failure in %s() " \ 420 printk(KERN_ERR "\nAssertion failure in %s() " \
421 "at line %d:\n\n" \ 421 "at line %d:\n\n" \
422 "\trbd_assert(%s);\n\n", \ 422 "\trbd_assert(%s);\n\n", \
423 __func__, __LINE__, #expr); \ 423 __func__, __LINE__, #expr); \
424 BUG(); \ 424 BUG(); \
425 } 425 }
426 #else /* !RBD_DEBUG */ 426 #else /* !RBD_DEBUG */
427 # define rbd_assert(expr) ((void) 0) 427 # define rbd_assert(expr) ((void) 0)
428 #endif /* !RBD_DEBUG */ 428 #endif /* !RBD_DEBUG */
429 429
430 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request); 430 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
431 static void rbd_img_parent_read(struct rbd_obj_request *obj_request); 431 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
432 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev); 432 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
433 433
434 static int rbd_dev_refresh(struct rbd_device *rbd_dev, u64 *hver); 434 static int rbd_dev_refresh(struct rbd_device *rbd_dev, u64 *hver);
435 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev, u64 *hver); 435 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev, u64 *hver);
436 436
437 static int rbd_open(struct block_device *bdev, fmode_t mode) 437 static int rbd_open(struct block_device *bdev, fmode_t mode)
438 { 438 {
439 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 439 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
440 bool removing = false; 440 bool removing = false;
441 441
442 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only) 442 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
443 return -EROFS; 443 return -EROFS;
444 444
445 spin_lock_irq(&rbd_dev->lock); 445 spin_lock_irq(&rbd_dev->lock);
446 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) 446 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
447 removing = true; 447 removing = true;
448 else 448 else
449 rbd_dev->open_count++; 449 rbd_dev->open_count++;
450 spin_unlock_irq(&rbd_dev->lock); 450 spin_unlock_irq(&rbd_dev->lock);
451 if (removing) 451 if (removing)
452 return -ENOENT; 452 return -ENOENT;
453 453
454 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 454 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
455 (void) get_device(&rbd_dev->dev); 455 (void) get_device(&rbd_dev->dev);
456 set_device_ro(bdev, rbd_dev->mapping.read_only); 456 set_device_ro(bdev, rbd_dev->mapping.read_only);
457 mutex_unlock(&ctl_mutex); 457 mutex_unlock(&ctl_mutex);
458 458
459 return 0; 459 return 0;
460 } 460 }
461 461
462 static int rbd_release(struct gendisk *disk, fmode_t mode) 462 static int rbd_release(struct gendisk *disk, fmode_t mode)
463 { 463 {
464 struct rbd_device *rbd_dev = disk->private_data; 464 struct rbd_device *rbd_dev = disk->private_data;
465 unsigned long open_count_before; 465 unsigned long open_count_before;
466 466
467 spin_lock_irq(&rbd_dev->lock); 467 spin_lock_irq(&rbd_dev->lock);
468 open_count_before = rbd_dev->open_count--; 468 open_count_before = rbd_dev->open_count--;
469 spin_unlock_irq(&rbd_dev->lock); 469 spin_unlock_irq(&rbd_dev->lock);
470 rbd_assert(open_count_before > 0); 470 rbd_assert(open_count_before > 0);
471 471
472 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 472 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
473 put_device(&rbd_dev->dev); 473 put_device(&rbd_dev->dev);
474 mutex_unlock(&ctl_mutex); 474 mutex_unlock(&ctl_mutex);
475 475
476 return 0; 476 return 0;
477 } 477 }
478 478
479 static const struct block_device_operations rbd_bd_ops = { 479 static const struct block_device_operations rbd_bd_ops = {
480 .owner = THIS_MODULE, 480 .owner = THIS_MODULE,
481 .open = rbd_open, 481 .open = rbd_open,
482 .release = rbd_release, 482 .release = rbd_release,
483 }; 483 };
484 484
485 /* 485 /*
486 * Initialize an rbd client instance. 486 * Initialize an rbd client instance.
487 * We own *ceph_opts. 487 * We own *ceph_opts.
488 */ 488 */
489 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts) 489 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
490 { 490 {
491 struct rbd_client *rbdc; 491 struct rbd_client *rbdc;
492 int ret = -ENOMEM; 492 int ret = -ENOMEM;
493 493
494 dout("%s:\n", __func__); 494 dout("%s:\n", __func__);
495 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL); 495 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
496 if (!rbdc) 496 if (!rbdc)
497 goto out_opt; 497 goto out_opt;
498 498
499 kref_init(&rbdc->kref); 499 kref_init(&rbdc->kref);
500 INIT_LIST_HEAD(&rbdc->node); 500 INIT_LIST_HEAD(&rbdc->node);
501 501
502 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 502 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
503 503
504 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0); 504 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
505 if (IS_ERR(rbdc->client)) 505 if (IS_ERR(rbdc->client))
506 goto out_mutex; 506 goto out_mutex;
507 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */ 507 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
508 508
509 ret = ceph_open_session(rbdc->client); 509 ret = ceph_open_session(rbdc->client);
510 if (ret < 0) 510 if (ret < 0)
511 goto out_err; 511 goto out_err;
512 512
513 spin_lock(&rbd_client_list_lock); 513 spin_lock(&rbd_client_list_lock);
514 list_add_tail(&rbdc->node, &rbd_client_list); 514 list_add_tail(&rbdc->node, &rbd_client_list);
515 spin_unlock(&rbd_client_list_lock); 515 spin_unlock(&rbd_client_list_lock);
516 516
517 mutex_unlock(&ctl_mutex); 517 mutex_unlock(&ctl_mutex);
518 dout("%s: rbdc %p\n", __func__, rbdc); 518 dout("%s: rbdc %p\n", __func__, rbdc);
519 519
520 return rbdc; 520 return rbdc;
521 521
522 out_err: 522 out_err:
523 ceph_destroy_client(rbdc->client); 523 ceph_destroy_client(rbdc->client);
524 out_mutex: 524 out_mutex:
525 mutex_unlock(&ctl_mutex); 525 mutex_unlock(&ctl_mutex);
526 kfree(rbdc); 526 kfree(rbdc);
527 out_opt: 527 out_opt:
528 if (ceph_opts) 528 if (ceph_opts)
529 ceph_destroy_options(ceph_opts); 529 ceph_destroy_options(ceph_opts);
530 dout("%s: error %d\n", __func__, ret); 530 dout("%s: error %d\n", __func__, ret);
531 531
532 return ERR_PTR(ret); 532 return ERR_PTR(ret);
533 } 533 }
534 534
535 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc) 535 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
536 { 536 {
537 kref_get(&rbdc->kref); 537 kref_get(&rbdc->kref);
538 538
539 return rbdc; 539 return rbdc;
540 } 540 }
541 541
542 /* 542 /*
543 * Find a ceph client with specific addr and configuration. If 543 * Find a ceph client with specific addr and configuration. If
544 * found, bump its reference count. 544 * found, bump its reference count.
545 */ 545 */
546 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts) 546 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
547 { 547 {
548 struct rbd_client *client_node; 548 struct rbd_client *client_node;
549 bool found = false; 549 bool found = false;
550 550
551 if (ceph_opts->flags & CEPH_OPT_NOSHARE) 551 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
552 return NULL; 552 return NULL;
553 553
554 spin_lock(&rbd_client_list_lock); 554 spin_lock(&rbd_client_list_lock);
555 list_for_each_entry(client_node, &rbd_client_list, node) { 555 list_for_each_entry(client_node, &rbd_client_list, node) {
556 if (!ceph_compare_options(ceph_opts, client_node->client)) { 556 if (!ceph_compare_options(ceph_opts, client_node->client)) {
557 __rbd_get_client(client_node); 557 __rbd_get_client(client_node);
558 558
559 found = true; 559 found = true;
560 break; 560 break;
561 } 561 }
562 } 562 }
563 spin_unlock(&rbd_client_list_lock); 563 spin_unlock(&rbd_client_list_lock);
564 564
565 return found ? client_node : NULL; 565 return found ? client_node : NULL;
566 } 566 }
567 567
568 /* 568 /*
569 * mount options 569 * mount options
570 */ 570 */
571 enum { 571 enum {
572 Opt_last_int, 572 Opt_last_int,
573 /* int args above */ 573 /* int args above */
574 Opt_last_string, 574 Opt_last_string,
575 /* string args above */ 575 /* string args above */
576 Opt_read_only, 576 Opt_read_only,
577 Opt_read_write, 577 Opt_read_write,
578 /* Boolean args above */ 578 /* Boolean args above */
579 Opt_last_bool, 579 Opt_last_bool,
580 }; 580 };
581 581
582 static match_table_t rbd_opts_tokens = { 582 static match_table_t rbd_opts_tokens = {
583 /* int args above */ 583 /* int args above */
584 /* string args above */ 584 /* string args above */
585 {Opt_read_only, "read_only"}, 585 {Opt_read_only, "read_only"},
586 {Opt_read_only, "ro"}, /* Alternate spelling */ 586 {Opt_read_only, "ro"}, /* Alternate spelling */
587 {Opt_read_write, "read_write"}, 587 {Opt_read_write, "read_write"},
588 {Opt_read_write, "rw"}, /* Alternate spelling */ 588 {Opt_read_write, "rw"}, /* Alternate spelling */
589 /* Boolean args above */ 589 /* Boolean args above */
590 {-1, NULL} 590 {-1, NULL}
591 }; 591 };
592 592
593 struct rbd_options { 593 struct rbd_options {
594 bool read_only; 594 bool read_only;
595 }; 595 };
596 596
597 #define RBD_READ_ONLY_DEFAULT false 597 #define RBD_READ_ONLY_DEFAULT false
598 598
599 static int parse_rbd_opts_token(char *c, void *private) 599 static int parse_rbd_opts_token(char *c, void *private)
600 { 600 {
601 struct rbd_options *rbd_opts = private; 601 struct rbd_options *rbd_opts = private;
602 substring_t argstr[MAX_OPT_ARGS]; 602 substring_t argstr[MAX_OPT_ARGS];
603 int token, intval, ret; 603 int token, intval, ret;
604 604
605 token = match_token(c, rbd_opts_tokens, argstr); 605 token = match_token(c, rbd_opts_tokens, argstr);
606 if (token < 0) 606 if (token < 0)
607 return -EINVAL; 607 return -EINVAL;
608 608
609 if (token < Opt_last_int) { 609 if (token < Opt_last_int) {
610 ret = match_int(&argstr[0], &intval); 610 ret = match_int(&argstr[0], &intval);
611 if (ret < 0) { 611 if (ret < 0) {
612 pr_err("bad mount option arg (not int) " 612 pr_err("bad mount option arg (not int) "
613 "at '%s'\n", c); 613 "at '%s'\n", c);
614 return ret; 614 return ret;
615 } 615 }
616 dout("got int token %d val %d\n", token, intval); 616 dout("got int token %d val %d\n", token, intval);
617 } else if (token > Opt_last_int && token < Opt_last_string) { 617 } else if (token > Opt_last_int && token < Opt_last_string) {
618 dout("got string token %d val %s\n", token, 618 dout("got string token %d val %s\n", token,
619 argstr[0].from); 619 argstr[0].from);
620 } else if (token > Opt_last_string && token < Opt_last_bool) { 620 } else if (token > Opt_last_string && token < Opt_last_bool) {
621 dout("got Boolean token %d\n", token); 621 dout("got Boolean token %d\n", token);
622 } else { 622 } else {
623 dout("got token %d\n", token); 623 dout("got token %d\n", token);
624 } 624 }
625 625
626 switch (token) { 626 switch (token) {
627 case Opt_read_only: 627 case Opt_read_only:
628 rbd_opts->read_only = true; 628 rbd_opts->read_only = true;
629 break; 629 break;
630 case Opt_read_write: 630 case Opt_read_write:
631 rbd_opts->read_only = false; 631 rbd_opts->read_only = false;
632 break; 632 break;
633 default: 633 default:
634 rbd_assert(false); 634 rbd_assert(false);
635 break; 635 break;
636 } 636 }
637 return 0; 637 return 0;
638 } 638 }
639 639
640 /* 640 /*
641 * Get a ceph client with specific addr and configuration, if one does 641 * Get a ceph client with specific addr and configuration, if one does
642 * not exist create it. 642 * not exist create it.
643 */ 643 */
644 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts) 644 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
645 { 645 {
646 struct rbd_client *rbdc; 646 struct rbd_client *rbdc;
647 647
648 rbdc = rbd_client_find(ceph_opts); 648 rbdc = rbd_client_find(ceph_opts);
649 if (rbdc) /* using an existing client */ 649 if (rbdc) /* using an existing client */
650 ceph_destroy_options(ceph_opts); 650 ceph_destroy_options(ceph_opts);
651 else 651 else
652 rbdc = rbd_client_create(ceph_opts); 652 rbdc = rbd_client_create(ceph_opts);
653 653
654 return rbdc; 654 return rbdc;
655 } 655 }
656 656
657 /* 657 /*
658 * Destroy ceph client 658 * Destroy ceph client
659 * 659 *
660 * Caller must hold rbd_client_list_lock. 660 * Caller must hold rbd_client_list_lock.
661 */ 661 */
662 static void rbd_client_release(struct kref *kref) 662 static void rbd_client_release(struct kref *kref)
663 { 663 {
664 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref); 664 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
665 665
666 dout("%s: rbdc %p\n", __func__, rbdc); 666 dout("%s: rbdc %p\n", __func__, rbdc);
667 spin_lock(&rbd_client_list_lock); 667 spin_lock(&rbd_client_list_lock);
668 list_del(&rbdc->node); 668 list_del(&rbdc->node);
669 spin_unlock(&rbd_client_list_lock); 669 spin_unlock(&rbd_client_list_lock);
670 670
671 ceph_destroy_client(rbdc->client); 671 ceph_destroy_client(rbdc->client);
672 kfree(rbdc); 672 kfree(rbdc);
673 } 673 }
674 674
675 /* Caller has to fill in snapc->seq and snapc->snaps[0..snap_count-1] */
676
677 static struct ceph_snap_context *rbd_snap_context_create(u32 snap_count)
678 {
679 struct ceph_snap_context *snapc;
680 size_t size;
681
682 size = sizeof (struct ceph_snap_context);
683 size += snap_count * sizeof (snapc->snaps[0]);
684 snapc = kzalloc(size, GFP_KERNEL);
685 if (!snapc)
686 return NULL;
687
688 atomic_set(&snapc->nref, 1);
689 snapc->num_snaps = snap_count;
690
691 return snapc;
692 }
693
694 static inline void rbd_snap_context_get(struct ceph_snap_context *snapc)
695 {
696 (void)ceph_get_snap_context(snapc);
697 }
698
699 static inline void rbd_snap_context_put(struct ceph_snap_context *snapc)
700 {
701 ceph_put_snap_context(snapc);
702 }
703
704 /* 675 /*
705 * Drop reference to ceph client node. If it's not referenced anymore, release 676 * Drop reference to ceph client node. If it's not referenced anymore, release
706 * it. 677 * it.
707 */ 678 */
708 static void rbd_put_client(struct rbd_client *rbdc) 679 static void rbd_put_client(struct rbd_client *rbdc)
709 { 680 {
710 if (rbdc) 681 if (rbdc)
711 kref_put(&rbdc->kref, rbd_client_release); 682 kref_put(&rbdc->kref, rbd_client_release);
712 } 683 }
713 684
714 static bool rbd_image_format_valid(u32 image_format) 685 static bool rbd_image_format_valid(u32 image_format)
715 { 686 {
716 return image_format == 1 || image_format == 2; 687 return image_format == 1 || image_format == 2;
717 } 688 }
718 689
719 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk) 690 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
720 { 691 {
721 size_t size; 692 size_t size;
722 u32 snap_count; 693 u32 snap_count;
723 694
724 /* The header has to start with the magic rbd header text */ 695 /* The header has to start with the magic rbd header text */
725 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT))) 696 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
726 return false; 697 return false;
727 698
728 /* The bio layer requires at least sector-sized I/O */ 699 /* The bio layer requires at least sector-sized I/O */
729 700
730 if (ondisk->options.order < SECTOR_SHIFT) 701 if (ondisk->options.order < SECTOR_SHIFT)
731 return false; 702 return false;
732 703
733 /* If we use u64 in a few spots we may be able to loosen this */ 704 /* If we use u64 in a few spots we may be able to loosen this */
734 705
735 if (ondisk->options.order > 8 * sizeof (int) - 1) 706 if (ondisk->options.order > 8 * sizeof (int) - 1)
736 return false; 707 return false;
737 708
738 /* 709 /*
739 * The size of a snapshot header has to fit in a size_t, and 710 * The size of a snapshot header has to fit in a size_t, and
740 * that limits the number of snapshots. 711 * that limits the number of snapshots.
741 */ 712 */
742 snap_count = le32_to_cpu(ondisk->snap_count); 713 snap_count = le32_to_cpu(ondisk->snap_count);
743 size = SIZE_MAX - sizeof (struct ceph_snap_context); 714 size = SIZE_MAX - sizeof (struct ceph_snap_context);
744 if (snap_count > size / sizeof (__le64)) 715 if (snap_count > size / sizeof (__le64))
745 return false; 716 return false;
746 717
747 /* 718 /*
748 * Not only that, but the size of the entire the snapshot 719 * Not only that, but the size of the entire the snapshot
749 * header must also be representable in a size_t. 720 * header must also be representable in a size_t.
750 */ 721 */
751 size -= snap_count * sizeof (__le64); 722 size -= snap_count * sizeof (__le64);
752 if ((u64) size < le64_to_cpu(ondisk->snap_names_len)) 723 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
753 return false; 724 return false;
754 725
755 return true; 726 return true;
756 } 727 }
757 728
758 /* 729 /*
759 * Create a new header structure, translate header format from the on-disk 730 * Create a new header structure, translate header format from the on-disk
760 * header. 731 * header.
761 */ 732 */
762 static int rbd_header_from_disk(struct rbd_image_header *header, 733 static int rbd_header_from_disk(struct rbd_image_header *header,
763 struct rbd_image_header_ondisk *ondisk) 734 struct rbd_image_header_ondisk *ondisk)
764 { 735 {
765 u32 snap_count; 736 u32 snap_count;
766 size_t len; 737 size_t len;
767 size_t size; 738 size_t size;
768 u32 i; 739 u32 i;
769 740
770 memset(header, 0, sizeof (*header)); 741 memset(header, 0, sizeof (*header));
771 742
772 snap_count = le32_to_cpu(ondisk->snap_count); 743 snap_count = le32_to_cpu(ondisk->snap_count);
773 744
774 len = strnlen(ondisk->object_prefix, sizeof (ondisk->object_prefix)); 745 len = strnlen(ondisk->object_prefix, sizeof (ondisk->object_prefix));
775 header->object_prefix = kmalloc(len + 1, GFP_KERNEL); 746 header->object_prefix = kmalloc(len + 1, GFP_KERNEL);
776 if (!header->object_prefix) 747 if (!header->object_prefix)
777 return -ENOMEM; 748 return -ENOMEM;
778 memcpy(header->object_prefix, ondisk->object_prefix, len); 749 memcpy(header->object_prefix, ondisk->object_prefix, len);
779 header->object_prefix[len] = '\0'; 750 header->object_prefix[len] = '\0';
780 751
781 if (snap_count) { 752 if (snap_count) {
782 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len); 753 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
783 754
784 /* Save a copy of the snapshot names */ 755 /* Save a copy of the snapshot names */
785 756
786 if (snap_names_len > (u64) SIZE_MAX) 757 if (snap_names_len > (u64) SIZE_MAX)
787 return -EIO; 758 return -EIO;
788 header->snap_names = kmalloc(snap_names_len, GFP_KERNEL); 759 header->snap_names = kmalloc(snap_names_len, GFP_KERNEL);
789 if (!header->snap_names) 760 if (!header->snap_names)
790 goto out_err; 761 goto out_err;
791 /* 762 /*
792 * Note that rbd_dev_v1_header_read() guarantees 763 * Note that rbd_dev_v1_header_read() guarantees
793 * the ondisk buffer we're working with has 764 * the ondisk buffer we're working with has
794 * snap_names_len bytes beyond the end of the 765 * snap_names_len bytes beyond the end of the
795 * snapshot id array, this memcpy() is safe. 766 * snapshot id array, this memcpy() is safe.
796 */ 767 */
797 memcpy(header->snap_names, &ondisk->snaps[snap_count], 768 memcpy(header->snap_names, &ondisk->snaps[snap_count],
798 snap_names_len); 769 snap_names_len);
799 770
800 /* Record each snapshot's size */ 771 /* Record each snapshot's size */
801 772
802 size = snap_count * sizeof (*header->snap_sizes); 773 size = snap_count * sizeof (*header->snap_sizes);
803 header->snap_sizes = kmalloc(size, GFP_KERNEL); 774 header->snap_sizes = kmalloc(size, GFP_KERNEL);
804 if (!header->snap_sizes) 775 if (!header->snap_sizes)
805 goto out_err; 776 goto out_err;
806 for (i = 0; i < snap_count; i++) 777 for (i = 0; i < snap_count; i++)
807 header->snap_sizes[i] = 778 header->snap_sizes[i] =
808 le64_to_cpu(ondisk->snaps[i].image_size); 779 le64_to_cpu(ondisk->snaps[i].image_size);
809 } else { 780 } else {
810 header->snap_names = NULL; 781 header->snap_names = NULL;
811 header->snap_sizes = NULL; 782 header->snap_sizes = NULL;
812 } 783 }
813 784
814 header->features = 0; /* No features support in v1 images */ 785 header->features = 0; /* No features support in v1 images */
815 header->obj_order = ondisk->options.order; 786 header->obj_order = ondisk->options.order;
816 header->crypt_type = ondisk->options.crypt_type; 787 header->crypt_type = ondisk->options.crypt_type;
817 header->comp_type = ondisk->options.comp_type; 788 header->comp_type = ondisk->options.comp_type;
818 789
819 /* Allocate and fill in the snapshot context */ 790 /* Allocate and fill in the snapshot context */
820 791
821 header->image_size = le64_to_cpu(ondisk->image_size); 792 header->image_size = le64_to_cpu(ondisk->image_size);
822 793
823 header->snapc = rbd_snap_context_create(snap_count); 794 header->snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
824 if (!header->snapc) 795 if (!header->snapc)
825 goto out_err; 796 goto out_err;
826 header->snapc->seq = le64_to_cpu(ondisk->snap_seq); 797 header->snapc->seq = le64_to_cpu(ondisk->snap_seq);
827 for (i = 0; i < snap_count; i++) 798 for (i = 0; i < snap_count; i++)
828 header->snapc->snaps[i] = le64_to_cpu(ondisk->snaps[i].id); 799 header->snapc->snaps[i] = le64_to_cpu(ondisk->snaps[i].id);
829 800
830 return 0; 801 return 0;
831 802
832 out_err: 803 out_err:
833 kfree(header->snap_sizes); 804 kfree(header->snap_sizes);
834 header->snap_sizes = NULL; 805 header->snap_sizes = NULL;
835 kfree(header->snap_names); 806 kfree(header->snap_names);
836 header->snap_names = NULL; 807 header->snap_names = NULL;
837 kfree(header->object_prefix); 808 kfree(header->object_prefix);
838 header->object_prefix = NULL; 809 header->object_prefix = NULL;
839 810
840 return -ENOMEM; 811 return -ENOMEM;
841 } 812 }
842 813
843 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id) 814 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
844 { 815 {
845 struct rbd_snap *snap; 816 struct rbd_snap *snap;
846 817
847 if (snap_id == CEPH_NOSNAP) 818 if (snap_id == CEPH_NOSNAP)
848 return RBD_SNAP_HEAD_NAME; 819 return RBD_SNAP_HEAD_NAME;
849 820
850 list_for_each_entry(snap, &rbd_dev->snaps, node) 821 list_for_each_entry(snap, &rbd_dev->snaps, node)
851 if (snap_id == snap->id) 822 if (snap_id == snap->id)
852 return snap->name; 823 return snap->name;
853 824
854 return NULL; 825 return NULL;
855 } 826 }
856 827
857 static struct rbd_snap *snap_by_name(struct rbd_device *rbd_dev, 828 static struct rbd_snap *snap_by_name(struct rbd_device *rbd_dev,
858 const char *snap_name) 829 const char *snap_name)
859 { 830 {
860 struct rbd_snap *snap; 831 struct rbd_snap *snap;
861 832
862 list_for_each_entry(snap, &rbd_dev->snaps, node) 833 list_for_each_entry(snap, &rbd_dev->snaps, node)
863 if (!strcmp(snap_name, snap->name)) 834 if (!strcmp(snap_name, snap->name))
864 return snap; 835 return snap;
865 836
866 return NULL; 837 return NULL;
867 } 838 }
868 839
869 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev) 840 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
870 { 841 {
871 if (!memcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME, 842 if (!memcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME,
872 sizeof (RBD_SNAP_HEAD_NAME))) { 843 sizeof (RBD_SNAP_HEAD_NAME))) {
873 rbd_dev->mapping.size = rbd_dev->header.image_size; 844 rbd_dev->mapping.size = rbd_dev->header.image_size;
874 rbd_dev->mapping.features = rbd_dev->header.features; 845 rbd_dev->mapping.features = rbd_dev->header.features;
875 } else { 846 } else {
876 struct rbd_snap *snap; 847 struct rbd_snap *snap;
877 848
878 snap = snap_by_name(rbd_dev, rbd_dev->spec->snap_name); 849 snap = snap_by_name(rbd_dev, rbd_dev->spec->snap_name);
879 if (!snap) 850 if (!snap)
880 return -ENOENT; 851 return -ENOENT;
881 rbd_dev->mapping.size = snap->size; 852 rbd_dev->mapping.size = snap->size;
882 rbd_dev->mapping.features = snap->features; 853 rbd_dev->mapping.features = snap->features;
883 rbd_dev->mapping.read_only = true; 854 rbd_dev->mapping.read_only = true;
884 } 855 }
885 856
886 return 0; 857 return 0;
887 } 858 }
888 859
889 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev) 860 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
890 { 861 {
891 rbd_dev->mapping.size = 0; 862 rbd_dev->mapping.size = 0;
892 rbd_dev->mapping.features = 0; 863 rbd_dev->mapping.features = 0;
893 rbd_dev->mapping.read_only = true; 864 rbd_dev->mapping.read_only = true;
894 } 865 }
895 866
896 static void rbd_dev_clear_mapping(struct rbd_device *rbd_dev) 867 static void rbd_dev_clear_mapping(struct rbd_device *rbd_dev)
897 { 868 {
898 rbd_dev->mapping.size = 0; 869 rbd_dev->mapping.size = 0;
899 rbd_dev->mapping.features = 0; 870 rbd_dev->mapping.features = 0;
900 rbd_dev->mapping.read_only = true; 871 rbd_dev->mapping.read_only = true;
901 } 872 }
902 873
903 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset) 874 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
904 { 875 {
905 char *name; 876 char *name;
906 u64 segment; 877 u64 segment;
907 int ret; 878 int ret;
908 879
909 name = kmalloc(MAX_OBJ_NAME_SIZE + 1, GFP_NOIO); 880 name = kmalloc(MAX_OBJ_NAME_SIZE + 1, GFP_NOIO);
910 if (!name) 881 if (!name)
911 return NULL; 882 return NULL;
912 segment = offset >> rbd_dev->header.obj_order; 883 segment = offset >> rbd_dev->header.obj_order;
913 ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, "%s.%012llx", 884 ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, "%s.%012llx",
914 rbd_dev->header.object_prefix, segment); 885 rbd_dev->header.object_prefix, segment);
915 if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) { 886 if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
916 pr_err("error formatting segment name for #%llu (%d)\n", 887 pr_err("error formatting segment name for #%llu (%d)\n",
917 segment, ret); 888 segment, ret);
918 kfree(name); 889 kfree(name);
919 name = NULL; 890 name = NULL;
920 } 891 }
921 892
922 return name; 893 return name;
923 } 894 }
924 895
925 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset) 896 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
926 { 897 {
927 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order; 898 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
928 899
929 return offset & (segment_size - 1); 900 return offset & (segment_size - 1);
930 } 901 }
931 902
932 static u64 rbd_segment_length(struct rbd_device *rbd_dev, 903 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
933 u64 offset, u64 length) 904 u64 offset, u64 length)
934 { 905 {
935 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order; 906 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
936 907
937 offset &= segment_size - 1; 908 offset &= segment_size - 1;
938 909
939 rbd_assert(length <= U64_MAX - offset); 910 rbd_assert(length <= U64_MAX - offset);
940 if (offset + length > segment_size) 911 if (offset + length > segment_size)
941 length = segment_size - offset; 912 length = segment_size - offset;
942 913
943 return length; 914 return length;
944 } 915 }
945 916
946 /* 917 /*
947 * returns the size of an object in the image 918 * returns the size of an object in the image
948 */ 919 */
949 static u64 rbd_obj_bytes(struct rbd_image_header *header) 920 static u64 rbd_obj_bytes(struct rbd_image_header *header)
950 { 921 {
951 return 1 << header->obj_order; 922 return 1 << header->obj_order;
952 } 923 }
953 924
954 /* 925 /*
955 * bio helpers 926 * bio helpers
956 */ 927 */
957 928
958 static void bio_chain_put(struct bio *chain) 929 static void bio_chain_put(struct bio *chain)
959 { 930 {
960 struct bio *tmp; 931 struct bio *tmp;
961 932
962 while (chain) { 933 while (chain) {
963 tmp = chain; 934 tmp = chain;
964 chain = chain->bi_next; 935 chain = chain->bi_next;
965 bio_put(tmp); 936 bio_put(tmp);
966 } 937 }
967 } 938 }
968 939
969 /* 940 /*
970 * zeros a bio chain, starting at specific offset 941 * zeros a bio chain, starting at specific offset
971 */ 942 */
972 static void zero_bio_chain(struct bio *chain, int start_ofs) 943 static void zero_bio_chain(struct bio *chain, int start_ofs)
973 { 944 {
974 struct bio_vec *bv; 945 struct bio_vec *bv;
975 unsigned long flags; 946 unsigned long flags;
976 void *buf; 947 void *buf;
977 int i; 948 int i;
978 int pos = 0; 949 int pos = 0;
979 950
980 while (chain) { 951 while (chain) {
981 bio_for_each_segment(bv, chain, i) { 952 bio_for_each_segment(bv, chain, i) {
982 if (pos + bv->bv_len > start_ofs) { 953 if (pos + bv->bv_len > start_ofs) {
983 int remainder = max(start_ofs - pos, 0); 954 int remainder = max(start_ofs - pos, 0);
984 buf = bvec_kmap_irq(bv, &flags); 955 buf = bvec_kmap_irq(bv, &flags);
985 memset(buf + remainder, 0, 956 memset(buf + remainder, 0,
986 bv->bv_len - remainder); 957 bv->bv_len - remainder);
987 bvec_kunmap_irq(buf, &flags); 958 bvec_kunmap_irq(buf, &flags);
988 } 959 }
989 pos += bv->bv_len; 960 pos += bv->bv_len;
990 } 961 }
991 962
992 chain = chain->bi_next; 963 chain = chain->bi_next;
993 } 964 }
994 } 965 }
995 966
996 /* 967 /*
997 * similar to zero_bio_chain(), zeros data defined by a page array, 968 * similar to zero_bio_chain(), zeros data defined by a page array,
998 * starting at the given byte offset from the start of the array and 969 * starting at the given byte offset from the start of the array and
999 * continuing up to the given end offset. The pages array is 970 * continuing up to the given end offset. The pages array is
1000 * assumed to be big enough to hold all bytes up to the end. 971 * assumed to be big enough to hold all bytes up to the end.
1001 */ 972 */
1002 static void zero_pages(struct page **pages, u64 offset, u64 end) 973 static void zero_pages(struct page **pages, u64 offset, u64 end)
1003 { 974 {
1004 struct page **page = &pages[offset >> PAGE_SHIFT]; 975 struct page **page = &pages[offset >> PAGE_SHIFT];
1005 976
1006 rbd_assert(end > offset); 977 rbd_assert(end > offset);
1007 rbd_assert(end - offset <= (u64)SIZE_MAX); 978 rbd_assert(end - offset <= (u64)SIZE_MAX);
1008 while (offset < end) { 979 while (offset < end) {
1009 size_t page_offset; 980 size_t page_offset;
1010 size_t length; 981 size_t length;
1011 unsigned long flags; 982 unsigned long flags;
1012 void *kaddr; 983 void *kaddr;
1013 984
1014 page_offset = (size_t)(offset & ~PAGE_MASK); 985 page_offset = (size_t)(offset & ~PAGE_MASK);
1015 length = min(PAGE_SIZE - page_offset, (size_t)(end - offset)); 986 length = min(PAGE_SIZE - page_offset, (size_t)(end - offset));
1016 local_irq_save(flags); 987 local_irq_save(flags);
1017 kaddr = kmap_atomic(*page); 988 kaddr = kmap_atomic(*page);
1018 memset(kaddr + page_offset, 0, length); 989 memset(kaddr + page_offset, 0, length);
1019 kunmap_atomic(kaddr); 990 kunmap_atomic(kaddr);
1020 local_irq_restore(flags); 991 local_irq_restore(flags);
1021 992
1022 offset += length; 993 offset += length;
1023 page++; 994 page++;
1024 } 995 }
1025 } 996 }
1026 997
1027 /* 998 /*
1028 * Clone a portion of a bio, starting at the given byte offset 999 * Clone a portion of a bio, starting at the given byte offset
1029 * and continuing for the number of bytes indicated. 1000 * and continuing for the number of bytes indicated.
1030 */ 1001 */
1031 static struct bio *bio_clone_range(struct bio *bio_src, 1002 static struct bio *bio_clone_range(struct bio *bio_src,
1032 unsigned int offset, 1003 unsigned int offset,
1033 unsigned int len, 1004 unsigned int len,
1034 gfp_t gfpmask) 1005 gfp_t gfpmask)
1035 { 1006 {
1036 struct bio_vec *bv; 1007 struct bio_vec *bv;
1037 unsigned int resid; 1008 unsigned int resid;
1038 unsigned short idx; 1009 unsigned short idx;
1039 unsigned int voff; 1010 unsigned int voff;
1040 unsigned short end_idx; 1011 unsigned short end_idx;
1041 unsigned short vcnt; 1012 unsigned short vcnt;
1042 struct bio *bio; 1013 struct bio *bio;
1043 1014
1044 /* Handle the easy case for the caller */ 1015 /* Handle the easy case for the caller */
1045 1016
1046 if (!offset && len == bio_src->bi_size) 1017 if (!offset && len == bio_src->bi_size)
1047 return bio_clone(bio_src, gfpmask); 1018 return bio_clone(bio_src, gfpmask);
1048 1019
1049 if (WARN_ON_ONCE(!len)) 1020 if (WARN_ON_ONCE(!len))
1050 return NULL; 1021 return NULL;
1051 if (WARN_ON_ONCE(len > bio_src->bi_size)) 1022 if (WARN_ON_ONCE(len > bio_src->bi_size))
1052 return NULL; 1023 return NULL;
1053 if (WARN_ON_ONCE(offset > bio_src->bi_size - len)) 1024 if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1054 return NULL; 1025 return NULL;
1055 1026
1056 /* Find first affected segment... */ 1027 /* Find first affected segment... */
1057 1028
1058 resid = offset; 1029 resid = offset;
1059 __bio_for_each_segment(bv, bio_src, idx, 0) { 1030 __bio_for_each_segment(bv, bio_src, idx, 0) {
1060 if (resid < bv->bv_len) 1031 if (resid < bv->bv_len)
1061 break; 1032 break;
1062 resid -= bv->bv_len; 1033 resid -= bv->bv_len;
1063 } 1034 }
1064 voff = resid; 1035 voff = resid;
1065 1036
1066 /* ...and the last affected segment */ 1037 /* ...and the last affected segment */
1067 1038
1068 resid += len; 1039 resid += len;
1069 __bio_for_each_segment(bv, bio_src, end_idx, idx) { 1040 __bio_for_each_segment(bv, bio_src, end_idx, idx) {
1070 if (resid <= bv->bv_len) 1041 if (resid <= bv->bv_len)
1071 break; 1042 break;
1072 resid -= bv->bv_len; 1043 resid -= bv->bv_len;
1073 } 1044 }
1074 vcnt = end_idx - idx + 1; 1045 vcnt = end_idx - idx + 1;
1075 1046
1076 /* Build the clone */ 1047 /* Build the clone */
1077 1048
1078 bio = bio_alloc(gfpmask, (unsigned int) vcnt); 1049 bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1079 if (!bio) 1050 if (!bio)
1080 return NULL; /* ENOMEM */ 1051 return NULL; /* ENOMEM */
1081 1052
1082 bio->bi_bdev = bio_src->bi_bdev; 1053 bio->bi_bdev = bio_src->bi_bdev;
1083 bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT); 1054 bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1084 bio->bi_rw = bio_src->bi_rw; 1055 bio->bi_rw = bio_src->bi_rw;
1085 bio->bi_flags |= 1 << BIO_CLONED; 1056 bio->bi_flags |= 1 << BIO_CLONED;
1086 1057
1087 /* 1058 /*
1088 * Copy over our part of the bio_vec, then update the first 1059 * Copy over our part of the bio_vec, then update the first
1089 * and last (or only) entries. 1060 * and last (or only) entries.
1090 */ 1061 */
1091 memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx], 1062 memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1092 vcnt * sizeof (struct bio_vec)); 1063 vcnt * sizeof (struct bio_vec));
1093 bio->bi_io_vec[0].bv_offset += voff; 1064 bio->bi_io_vec[0].bv_offset += voff;
1094 if (vcnt > 1) { 1065 if (vcnt > 1) {
1095 bio->bi_io_vec[0].bv_len -= voff; 1066 bio->bi_io_vec[0].bv_len -= voff;
1096 bio->bi_io_vec[vcnt - 1].bv_len = resid; 1067 bio->bi_io_vec[vcnt - 1].bv_len = resid;
1097 } else { 1068 } else {
1098 bio->bi_io_vec[0].bv_len = len; 1069 bio->bi_io_vec[0].bv_len = len;
1099 } 1070 }
1100 1071
1101 bio->bi_vcnt = vcnt; 1072 bio->bi_vcnt = vcnt;
1102 bio->bi_size = len; 1073 bio->bi_size = len;
1103 bio->bi_idx = 0; 1074 bio->bi_idx = 0;
1104 1075
1105 return bio; 1076 return bio;
1106 } 1077 }
1107 1078
1108 /* 1079 /*
1109 * Clone a portion of a bio chain, starting at the given byte offset 1080 * Clone a portion of a bio chain, starting at the given byte offset
1110 * into the first bio in the source chain and continuing for the 1081 * into the first bio in the source chain and continuing for the
1111 * number of bytes indicated. The result is another bio chain of 1082 * number of bytes indicated. The result is another bio chain of
1112 * exactly the given length, or a null pointer on error. 1083 * exactly the given length, or a null pointer on error.
1113 * 1084 *
1114 * The bio_src and offset parameters are both in-out. On entry they 1085 * The bio_src and offset parameters are both in-out. On entry they
1115 * refer to the first source bio and the offset into that bio where 1086 * refer to the first source bio and the offset into that bio where
1116 * the start of data to be cloned is located. 1087 * the start of data to be cloned is located.
1117 * 1088 *
1118 * On return, bio_src is updated to refer to the bio in the source 1089 * On return, bio_src is updated to refer to the bio in the source
1119 * chain that contains first un-cloned byte, and *offset will 1090 * chain that contains first un-cloned byte, and *offset will
1120 * contain the offset of that byte within that bio. 1091 * contain the offset of that byte within that bio.
1121 */ 1092 */
1122 static struct bio *bio_chain_clone_range(struct bio **bio_src, 1093 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1123 unsigned int *offset, 1094 unsigned int *offset,
1124 unsigned int len, 1095 unsigned int len,
1125 gfp_t gfpmask) 1096 gfp_t gfpmask)
1126 { 1097 {
1127 struct bio *bi = *bio_src; 1098 struct bio *bi = *bio_src;
1128 unsigned int off = *offset; 1099 unsigned int off = *offset;
1129 struct bio *chain = NULL; 1100 struct bio *chain = NULL;
1130 struct bio **end; 1101 struct bio **end;
1131 1102
1132 /* Build up a chain of clone bios up to the limit */ 1103 /* Build up a chain of clone bios up to the limit */
1133 1104
1134 if (!bi || off >= bi->bi_size || !len) 1105 if (!bi || off >= bi->bi_size || !len)
1135 return NULL; /* Nothing to clone */ 1106 return NULL; /* Nothing to clone */
1136 1107
1137 end = &chain; 1108 end = &chain;
1138 while (len) { 1109 while (len) {
1139 unsigned int bi_size; 1110 unsigned int bi_size;
1140 struct bio *bio; 1111 struct bio *bio;
1141 1112
1142 if (!bi) { 1113 if (!bi) {
1143 rbd_warn(NULL, "bio_chain exhausted with %u left", len); 1114 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1144 goto out_err; /* EINVAL; ran out of bio's */ 1115 goto out_err; /* EINVAL; ran out of bio's */
1145 } 1116 }
1146 bi_size = min_t(unsigned int, bi->bi_size - off, len); 1117 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1147 bio = bio_clone_range(bi, off, bi_size, gfpmask); 1118 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1148 if (!bio) 1119 if (!bio)
1149 goto out_err; /* ENOMEM */ 1120 goto out_err; /* ENOMEM */
1150 1121
1151 *end = bio; 1122 *end = bio;
1152 end = &bio->bi_next; 1123 end = &bio->bi_next;
1153 1124
1154 off += bi_size; 1125 off += bi_size;
1155 if (off == bi->bi_size) { 1126 if (off == bi->bi_size) {
1156 bi = bi->bi_next; 1127 bi = bi->bi_next;
1157 off = 0; 1128 off = 0;
1158 } 1129 }
1159 len -= bi_size; 1130 len -= bi_size;
1160 } 1131 }
1161 *bio_src = bi; 1132 *bio_src = bi;
1162 *offset = off; 1133 *offset = off;
1163 1134
1164 return chain; 1135 return chain;
1165 out_err: 1136 out_err:
1166 bio_chain_put(chain); 1137 bio_chain_put(chain);
1167 1138
1168 return NULL; 1139 return NULL;
1169 } 1140 }
1170 1141
1171 /* 1142 /*
1172 * The default/initial value for all object request flags is 0. For 1143 * The default/initial value for all object request flags is 0. For
1173 * each flag, once its value is set to 1 it is never reset to 0 1144 * each flag, once its value is set to 1 it is never reset to 0
1174 * again. 1145 * again.
1175 */ 1146 */
1176 static void obj_request_img_data_set(struct rbd_obj_request *obj_request) 1147 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1177 { 1148 {
1178 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) { 1149 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1179 struct rbd_device *rbd_dev; 1150 struct rbd_device *rbd_dev;
1180 1151
1181 rbd_dev = obj_request->img_request->rbd_dev; 1152 rbd_dev = obj_request->img_request->rbd_dev;
1182 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n", 1153 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1183 obj_request); 1154 obj_request);
1184 } 1155 }
1185 } 1156 }
1186 1157
1187 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request) 1158 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1188 { 1159 {
1189 smp_mb(); 1160 smp_mb();
1190 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0; 1161 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1191 } 1162 }
1192 1163
1193 static void obj_request_done_set(struct rbd_obj_request *obj_request) 1164 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1194 { 1165 {
1195 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) { 1166 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1196 struct rbd_device *rbd_dev = NULL; 1167 struct rbd_device *rbd_dev = NULL;
1197 1168
1198 if (obj_request_img_data_test(obj_request)) 1169 if (obj_request_img_data_test(obj_request))
1199 rbd_dev = obj_request->img_request->rbd_dev; 1170 rbd_dev = obj_request->img_request->rbd_dev;
1200 rbd_warn(rbd_dev, "obj_request %p already marked done\n", 1171 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1201 obj_request); 1172 obj_request);
1202 } 1173 }
1203 } 1174 }
1204 1175
1205 static bool obj_request_done_test(struct rbd_obj_request *obj_request) 1176 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1206 { 1177 {
1207 smp_mb(); 1178 smp_mb();
1208 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0; 1179 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1209 } 1180 }
1210 1181
1211 /* 1182 /*
1212 * This sets the KNOWN flag after (possibly) setting the EXISTS 1183 * This sets the KNOWN flag after (possibly) setting the EXISTS
1213 * flag. The latter is set based on the "exists" value provided. 1184 * flag. The latter is set based on the "exists" value provided.
1214 * 1185 *
1215 * Note that for our purposes once an object exists it never goes 1186 * Note that for our purposes once an object exists it never goes
1216 * away again. It's possible that the response from two existence 1187 * away again. It's possible that the response from two existence
1217 * checks are separated by the creation of the target object, and 1188 * checks are separated by the creation of the target object, and
1218 * the first ("doesn't exist") response arrives *after* the second 1189 * the first ("doesn't exist") response arrives *after* the second
1219 * ("does exist"). In that case we ignore the second one. 1190 * ("does exist"). In that case we ignore the second one.
1220 */ 1191 */
1221 static void obj_request_existence_set(struct rbd_obj_request *obj_request, 1192 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1222 bool exists) 1193 bool exists)
1223 { 1194 {
1224 if (exists) 1195 if (exists)
1225 set_bit(OBJ_REQ_EXISTS, &obj_request->flags); 1196 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1226 set_bit(OBJ_REQ_KNOWN, &obj_request->flags); 1197 set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1227 smp_mb(); 1198 smp_mb();
1228 } 1199 }
1229 1200
1230 static bool obj_request_known_test(struct rbd_obj_request *obj_request) 1201 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1231 { 1202 {
1232 smp_mb(); 1203 smp_mb();
1233 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0; 1204 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1234 } 1205 }
1235 1206
1236 static bool obj_request_exists_test(struct rbd_obj_request *obj_request) 1207 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1237 { 1208 {
1238 smp_mb(); 1209 smp_mb();
1239 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0; 1210 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1240 } 1211 }
1241 1212
1242 static void rbd_obj_request_get(struct rbd_obj_request *obj_request) 1213 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1243 { 1214 {
1244 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1215 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1245 atomic_read(&obj_request->kref.refcount)); 1216 atomic_read(&obj_request->kref.refcount));
1246 kref_get(&obj_request->kref); 1217 kref_get(&obj_request->kref);
1247 } 1218 }
1248 1219
1249 static void rbd_obj_request_destroy(struct kref *kref); 1220 static void rbd_obj_request_destroy(struct kref *kref);
1250 static void rbd_obj_request_put(struct rbd_obj_request *obj_request) 1221 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1251 { 1222 {
1252 rbd_assert(obj_request != NULL); 1223 rbd_assert(obj_request != NULL);
1253 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1224 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1254 atomic_read(&obj_request->kref.refcount)); 1225 atomic_read(&obj_request->kref.refcount));
1255 kref_put(&obj_request->kref, rbd_obj_request_destroy); 1226 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1256 } 1227 }
1257 1228
1258 static void rbd_img_request_get(struct rbd_img_request *img_request) 1229 static void rbd_img_request_get(struct rbd_img_request *img_request)
1259 { 1230 {
1260 dout("%s: img %p (was %d)\n", __func__, img_request, 1231 dout("%s: img %p (was %d)\n", __func__, img_request,
1261 atomic_read(&img_request->kref.refcount)); 1232 atomic_read(&img_request->kref.refcount));
1262 kref_get(&img_request->kref); 1233 kref_get(&img_request->kref);
1263 } 1234 }
1264 1235
1265 static void rbd_img_request_destroy(struct kref *kref); 1236 static void rbd_img_request_destroy(struct kref *kref);
1266 static void rbd_img_request_put(struct rbd_img_request *img_request) 1237 static void rbd_img_request_put(struct rbd_img_request *img_request)
1267 { 1238 {
1268 rbd_assert(img_request != NULL); 1239 rbd_assert(img_request != NULL);
1269 dout("%s: img %p (was %d)\n", __func__, img_request, 1240 dout("%s: img %p (was %d)\n", __func__, img_request,
1270 atomic_read(&img_request->kref.refcount)); 1241 atomic_read(&img_request->kref.refcount));
1271 kref_put(&img_request->kref, rbd_img_request_destroy); 1242 kref_put(&img_request->kref, rbd_img_request_destroy);
1272 } 1243 }
1273 1244
1274 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request, 1245 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1275 struct rbd_obj_request *obj_request) 1246 struct rbd_obj_request *obj_request)
1276 { 1247 {
1277 rbd_assert(obj_request->img_request == NULL); 1248 rbd_assert(obj_request->img_request == NULL);
1278 1249
1279 /* Image request now owns object's original reference */ 1250 /* Image request now owns object's original reference */
1280 obj_request->img_request = img_request; 1251 obj_request->img_request = img_request;
1281 obj_request->which = img_request->obj_request_count; 1252 obj_request->which = img_request->obj_request_count;
1282 rbd_assert(!obj_request_img_data_test(obj_request)); 1253 rbd_assert(!obj_request_img_data_test(obj_request));
1283 obj_request_img_data_set(obj_request); 1254 obj_request_img_data_set(obj_request);
1284 rbd_assert(obj_request->which != BAD_WHICH); 1255 rbd_assert(obj_request->which != BAD_WHICH);
1285 img_request->obj_request_count++; 1256 img_request->obj_request_count++;
1286 list_add_tail(&obj_request->links, &img_request->obj_requests); 1257 list_add_tail(&obj_request->links, &img_request->obj_requests);
1287 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request, 1258 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1288 obj_request->which); 1259 obj_request->which);
1289 } 1260 }
1290 1261
1291 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request, 1262 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1292 struct rbd_obj_request *obj_request) 1263 struct rbd_obj_request *obj_request)
1293 { 1264 {
1294 rbd_assert(obj_request->which != BAD_WHICH); 1265 rbd_assert(obj_request->which != BAD_WHICH);
1295 1266
1296 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request, 1267 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1297 obj_request->which); 1268 obj_request->which);
1298 list_del(&obj_request->links); 1269 list_del(&obj_request->links);
1299 rbd_assert(img_request->obj_request_count > 0); 1270 rbd_assert(img_request->obj_request_count > 0);
1300 img_request->obj_request_count--; 1271 img_request->obj_request_count--;
1301 rbd_assert(obj_request->which == img_request->obj_request_count); 1272 rbd_assert(obj_request->which == img_request->obj_request_count);
1302 obj_request->which = BAD_WHICH; 1273 obj_request->which = BAD_WHICH;
1303 rbd_assert(obj_request_img_data_test(obj_request)); 1274 rbd_assert(obj_request_img_data_test(obj_request));
1304 rbd_assert(obj_request->img_request == img_request); 1275 rbd_assert(obj_request->img_request == img_request);
1305 obj_request->img_request = NULL; 1276 obj_request->img_request = NULL;
1306 obj_request->callback = NULL; 1277 obj_request->callback = NULL;
1307 rbd_obj_request_put(obj_request); 1278 rbd_obj_request_put(obj_request);
1308 } 1279 }
1309 1280
1310 static bool obj_request_type_valid(enum obj_request_type type) 1281 static bool obj_request_type_valid(enum obj_request_type type)
1311 { 1282 {
1312 switch (type) { 1283 switch (type) {
1313 case OBJ_REQUEST_NODATA: 1284 case OBJ_REQUEST_NODATA:
1314 case OBJ_REQUEST_BIO: 1285 case OBJ_REQUEST_BIO:
1315 case OBJ_REQUEST_PAGES: 1286 case OBJ_REQUEST_PAGES:
1316 return true; 1287 return true;
1317 default: 1288 default:
1318 return false; 1289 return false;
1319 } 1290 }
1320 } 1291 }
1321 1292
1322 static int rbd_obj_request_submit(struct ceph_osd_client *osdc, 1293 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1323 struct rbd_obj_request *obj_request) 1294 struct rbd_obj_request *obj_request)
1324 { 1295 {
1325 dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request); 1296 dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1326 1297
1327 return ceph_osdc_start_request(osdc, obj_request->osd_req, false); 1298 return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1328 } 1299 }
1329 1300
1330 static void rbd_img_request_complete(struct rbd_img_request *img_request) 1301 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1331 { 1302 {
1332 1303
1333 dout("%s: img %p\n", __func__, img_request); 1304 dout("%s: img %p\n", __func__, img_request);
1334 1305
1335 /* 1306 /*
1336 * If no error occurred, compute the aggregate transfer 1307 * If no error occurred, compute the aggregate transfer
1337 * count for the image request. We could instead use 1308 * count for the image request. We could instead use
1338 * atomic64_cmpxchg() to update it as each object request 1309 * atomic64_cmpxchg() to update it as each object request
1339 * completes; not clear which way is better off hand. 1310 * completes; not clear which way is better off hand.
1340 */ 1311 */
1341 if (!img_request->result) { 1312 if (!img_request->result) {
1342 struct rbd_obj_request *obj_request; 1313 struct rbd_obj_request *obj_request;
1343 u64 xferred = 0; 1314 u64 xferred = 0;
1344 1315
1345 for_each_obj_request(img_request, obj_request) 1316 for_each_obj_request(img_request, obj_request)
1346 xferred += obj_request->xferred; 1317 xferred += obj_request->xferred;
1347 img_request->xferred = xferred; 1318 img_request->xferred = xferred;
1348 } 1319 }
1349 1320
1350 if (img_request->callback) 1321 if (img_request->callback)
1351 img_request->callback(img_request); 1322 img_request->callback(img_request);
1352 else 1323 else
1353 rbd_img_request_put(img_request); 1324 rbd_img_request_put(img_request);
1354 } 1325 }
1355 1326
1356 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */ 1327 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1357 1328
1358 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request) 1329 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1359 { 1330 {
1360 dout("%s: obj %p\n", __func__, obj_request); 1331 dout("%s: obj %p\n", __func__, obj_request);
1361 1332
1362 return wait_for_completion_interruptible(&obj_request->completion); 1333 return wait_for_completion_interruptible(&obj_request->completion);
1363 } 1334 }
1364 1335
1365 /* 1336 /*
1366 * The default/initial value for all image request flags is 0. Each 1337 * The default/initial value for all image request flags is 0. Each
1367 * is conditionally set to 1 at image request initialization time 1338 * is conditionally set to 1 at image request initialization time
1368 * and currently never change thereafter. 1339 * and currently never change thereafter.
1369 */ 1340 */
1370 static void img_request_write_set(struct rbd_img_request *img_request) 1341 static void img_request_write_set(struct rbd_img_request *img_request)
1371 { 1342 {
1372 set_bit(IMG_REQ_WRITE, &img_request->flags); 1343 set_bit(IMG_REQ_WRITE, &img_request->flags);
1373 smp_mb(); 1344 smp_mb();
1374 } 1345 }
1375 1346
1376 static bool img_request_write_test(struct rbd_img_request *img_request) 1347 static bool img_request_write_test(struct rbd_img_request *img_request)
1377 { 1348 {
1378 smp_mb(); 1349 smp_mb();
1379 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0; 1350 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1380 } 1351 }
1381 1352
1382 static void img_request_child_set(struct rbd_img_request *img_request) 1353 static void img_request_child_set(struct rbd_img_request *img_request)
1383 { 1354 {
1384 set_bit(IMG_REQ_CHILD, &img_request->flags); 1355 set_bit(IMG_REQ_CHILD, &img_request->flags);
1385 smp_mb(); 1356 smp_mb();
1386 } 1357 }
1387 1358
1388 static bool img_request_child_test(struct rbd_img_request *img_request) 1359 static bool img_request_child_test(struct rbd_img_request *img_request)
1389 { 1360 {
1390 smp_mb(); 1361 smp_mb();
1391 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0; 1362 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1392 } 1363 }
1393 1364
1394 static void img_request_layered_set(struct rbd_img_request *img_request) 1365 static void img_request_layered_set(struct rbd_img_request *img_request)
1395 { 1366 {
1396 set_bit(IMG_REQ_LAYERED, &img_request->flags); 1367 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1397 smp_mb(); 1368 smp_mb();
1398 } 1369 }
1399 1370
1400 static bool img_request_layered_test(struct rbd_img_request *img_request) 1371 static bool img_request_layered_test(struct rbd_img_request *img_request)
1401 { 1372 {
1402 smp_mb(); 1373 smp_mb();
1403 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0; 1374 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1404 } 1375 }
1405 1376
1406 static void 1377 static void
1407 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request) 1378 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1408 { 1379 {
1409 u64 xferred = obj_request->xferred; 1380 u64 xferred = obj_request->xferred;
1410 u64 length = obj_request->length; 1381 u64 length = obj_request->length;
1411 1382
1412 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__, 1383 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1413 obj_request, obj_request->img_request, obj_request->result, 1384 obj_request, obj_request->img_request, obj_request->result,
1414 xferred, length); 1385 xferred, length);
1415 /* 1386 /*
1416 * ENOENT means a hole in the image. We zero-fill the 1387 * ENOENT means a hole in the image. We zero-fill the
1417 * entire length of the request. A short read also implies 1388 * entire length of the request. A short read also implies
1418 * zero-fill to the end of the request. Either way we 1389 * zero-fill to the end of the request. Either way we
1419 * update the xferred count to indicate the whole request 1390 * update the xferred count to indicate the whole request
1420 * was satisfied. 1391 * was satisfied.
1421 */ 1392 */
1422 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA); 1393 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1423 if (obj_request->result == -ENOENT) { 1394 if (obj_request->result == -ENOENT) {
1424 if (obj_request->type == OBJ_REQUEST_BIO) 1395 if (obj_request->type == OBJ_REQUEST_BIO)
1425 zero_bio_chain(obj_request->bio_list, 0); 1396 zero_bio_chain(obj_request->bio_list, 0);
1426 else 1397 else
1427 zero_pages(obj_request->pages, 0, length); 1398 zero_pages(obj_request->pages, 0, length);
1428 obj_request->result = 0; 1399 obj_request->result = 0;
1429 obj_request->xferred = length; 1400 obj_request->xferred = length;
1430 } else if (xferred < length && !obj_request->result) { 1401 } else if (xferred < length && !obj_request->result) {
1431 if (obj_request->type == OBJ_REQUEST_BIO) 1402 if (obj_request->type == OBJ_REQUEST_BIO)
1432 zero_bio_chain(obj_request->bio_list, xferred); 1403 zero_bio_chain(obj_request->bio_list, xferred);
1433 else 1404 else
1434 zero_pages(obj_request->pages, xferred, length); 1405 zero_pages(obj_request->pages, xferred, length);
1435 obj_request->xferred = length; 1406 obj_request->xferred = length;
1436 } 1407 }
1437 obj_request_done_set(obj_request); 1408 obj_request_done_set(obj_request);
1438 } 1409 }
1439 1410
1440 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request) 1411 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1441 { 1412 {
1442 dout("%s: obj %p cb %p\n", __func__, obj_request, 1413 dout("%s: obj %p cb %p\n", __func__, obj_request,
1443 obj_request->callback); 1414 obj_request->callback);
1444 if (obj_request->callback) 1415 if (obj_request->callback)
1445 obj_request->callback(obj_request); 1416 obj_request->callback(obj_request);
1446 else 1417 else
1447 complete_all(&obj_request->completion); 1418 complete_all(&obj_request->completion);
1448 } 1419 }
1449 1420
1450 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request) 1421 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1451 { 1422 {
1452 dout("%s: obj %p\n", __func__, obj_request); 1423 dout("%s: obj %p\n", __func__, obj_request);
1453 obj_request_done_set(obj_request); 1424 obj_request_done_set(obj_request);
1454 } 1425 }
1455 1426
1456 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request) 1427 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1457 { 1428 {
1458 struct rbd_img_request *img_request = NULL; 1429 struct rbd_img_request *img_request = NULL;
1459 struct rbd_device *rbd_dev = NULL; 1430 struct rbd_device *rbd_dev = NULL;
1460 bool layered = false; 1431 bool layered = false;
1461 1432
1462 if (obj_request_img_data_test(obj_request)) { 1433 if (obj_request_img_data_test(obj_request)) {
1463 img_request = obj_request->img_request; 1434 img_request = obj_request->img_request;
1464 layered = img_request && img_request_layered_test(img_request); 1435 layered = img_request && img_request_layered_test(img_request);
1465 rbd_dev = img_request->rbd_dev; 1436 rbd_dev = img_request->rbd_dev;
1466 } 1437 }
1467 1438
1468 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__, 1439 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1469 obj_request, img_request, obj_request->result, 1440 obj_request, img_request, obj_request->result,
1470 obj_request->xferred, obj_request->length); 1441 obj_request->xferred, obj_request->length);
1471 if (layered && obj_request->result == -ENOENT && 1442 if (layered && obj_request->result == -ENOENT &&
1472 obj_request->img_offset < rbd_dev->parent_overlap) 1443 obj_request->img_offset < rbd_dev->parent_overlap)
1473 rbd_img_parent_read(obj_request); 1444 rbd_img_parent_read(obj_request);
1474 else if (img_request) 1445 else if (img_request)
1475 rbd_img_obj_request_read_callback(obj_request); 1446 rbd_img_obj_request_read_callback(obj_request);
1476 else 1447 else
1477 obj_request_done_set(obj_request); 1448 obj_request_done_set(obj_request);
1478 } 1449 }
1479 1450
1480 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request) 1451 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1481 { 1452 {
1482 dout("%s: obj %p result %d %llu\n", __func__, obj_request, 1453 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1483 obj_request->result, obj_request->length); 1454 obj_request->result, obj_request->length);
1484 /* 1455 /*
1485 * There is no such thing as a successful short write. Set 1456 * There is no such thing as a successful short write. Set
1486 * it to our originally-requested length. 1457 * it to our originally-requested length.
1487 */ 1458 */
1488 obj_request->xferred = obj_request->length; 1459 obj_request->xferred = obj_request->length;
1489 obj_request_done_set(obj_request); 1460 obj_request_done_set(obj_request);
1490 } 1461 }
1491 1462
1492 /* 1463 /*
1493 * For a simple stat call there's nothing to do. We'll do more if 1464 * For a simple stat call there's nothing to do. We'll do more if
1494 * this is part of a write sequence for a layered image. 1465 * this is part of a write sequence for a layered image.
1495 */ 1466 */
1496 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request) 1467 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1497 { 1468 {
1498 dout("%s: obj %p\n", __func__, obj_request); 1469 dout("%s: obj %p\n", __func__, obj_request);
1499 obj_request_done_set(obj_request); 1470 obj_request_done_set(obj_request);
1500 } 1471 }
1501 1472
1502 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req, 1473 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1503 struct ceph_msg *msg) 1474 struct ceph_msg *msg)
1504 { 1475 {
1505 struct rbd_obj_request *obj_request = osd_req->r_priv; 1476 struct rbd_obj_request *obj_request = osd_req->r_priv;
1506 u16 opcode; 1477 u16 opcode;
1507 1478
1508 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg); 1479 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1509 rbd_assert(osd_req == obj_request->osd_req); 1480 rbd_assert(osd_req == obj_request->osd_req);
1510 if (obj_request_img_data_test(obj_request)) { 1481 if (obj_request_img_data_test(obj_request)) {
1511 rbd_assert(obj_request->img_request); 1482 rbd_assert(obj_request->img_request);
1512 rbd_assert(obj_request->which != BAD_WHICH); 1483 rbd_assert(obj_request->which != BAD_WHICH);
1513 } else { 1484 } else {
1514 rbd_assert(obj_request->which == BAD_WHICH); 1485 rbd_assert(obj_request->which == BAD_WHICH);
1515 } 1486 }
1516 1487
1517 if (osd_req->r_result < 0) 1488 if (osd_req->r_result < 0)
1518 obj_request->result = osd_req->r_result; 1489 obj_request->result = osd_req->r_result;
1519 obj_request->version = le64_to_cpu(osd_req->r_reassert_version.version); 1490 obj_request->version = le64_to_cpu(osd_req->r_reassert_version.version);
1520 1491
1521 BUG_ON(osd_req->r_num_ops > 2); 1492 BUG_ON(osd_req->r_num_ops > 2);
1522 1493
1523 /* 1494 /*
1524 * We support a 64-bit length, but ultimately it has to be 1495 * We support a 64-bit length, but ultimately it has to be
1525 * passed to blk_end_request(), which takes an unsigned int. 1496 * passed to blk_end_request(), which takes an unsigned int.
1526 */ 1497 */
1527 obj_request->xferred = osd_req->r_reply_op_len[0]; 1498 obj_request->xferred = osd_req->r_reply_op_len[0];
1528 rbd_assert(obj_request->xferred < (u64)UINT_MAX); 1499 rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1529 opcode = osd_req->r_ops[0].op; 1500 opcode = osd_req->r_ops[0].op;
1530 switch (opcode) { 1501 switch (opcode) {
1531 case CEPH_OSD_OP_READ: 1502 case CEPH_OSD_OP_READ:
1532 rbd_osd_read_callback(obj_request); 1503 rbd_osd_read_callback(obj_request);
1533 break; 1504 break;
1534 case CEPH_OSD_OP_WRITE: 1505 case CEPH_OSD_OP_WRITE:
1535 rbd_osd_write_callback(obj_request); 1506 rbd_osd_write_callback(obj_request);
1536 break; 1507 break;
1537 case CEPH_OSD_OP_STAT: 1508 case CEPH_OSD_OP_STAT:
1538 rbd_osd_stat_callback(obj_request); 1509 rbd_osd_stat_callback(obj_request);
1539 break; 1510 break;
1540 case CEPH_OSD_OP_CALL: 1511 case CEPH_OSD_OP_CALL:
1541 case CEPH_OSD_OP_NOTIFY_ACK: 1512 case CEPH_OSD_OP_NOTIFY_ACK:
1542 case CEPH_OSD_OP_WATCH: 1513 case CEPH_OSD_OP_WATCH:
1543 rbd_osd_trivial_callback(obj_request); 1514 rbd_osd_trivial_callback(obj_request);
1544 break; 1515 break;
1545 default: 1516 default:
1546 rbd_warn(NULL, "%s: unsupported op %hu\n", 1517 rbd_warn(NULL, "%s: unsupported op %hu\n",
1547 obj_request->object_name, (unsigned short) opcode); 1518 obj_request->object_name, (unsigned short) opcode);
1548 break; 1519 break;
1549 } 1520 }
1550 1521
1551 if (obj_request_done_test(obj_request)) 1522 if (obj_request_done_test(obj_request))
1552 rbd_obj_request_complete(obj_request); 1523 rbd_obj_request_complete(obj_request);
1553 } 1524 }
1554 1525
1555 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request) 1526 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1556 { 1527 {
1557 struct rbd_img_request *img_request = obj_request->img_request; 1528 struct rbd_img_request *img_request = obj_request->img_request;
1558 struct ceph_osd_request *osd_req = obj_request->osd_req; 1529 struct ceph_osd_request *osd_req = obj_request->osd_req;
1559 u64 snap_id; 1530 u64 snap_id;
1560 1531
1561 rbd_assert(osd_req != NULL); 1532 rbd_assert(osd_req != NULL);
1562 1533
1563 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP; 1534 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1564 ceph_osdc_build_request(osd_req, obj_request->offset, 1535 ceph_osdc_build_request(osd_req, obj_request->offset,
1565 NULL, snap_id, NULL); 1536 NULL, snap_id, NULL);
1566 } 1537 }
1567 1538
1568 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request) 1539 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1569 { 1540 {
1570 struct rbd_img_request *img_request = obj_request->img_request; 1541 struct rbd_img_request *img_request = obj_request->img_request;
1571 struct ceph_osd_request *osd_req = obj_request->osd_req; 1542 struct ceph_osd_request *osd_req = obj_request->osd_req;
1572 struct ceph_snap_context *snapc; 1543 struct ceph_snap_context *snapc;
1573 struct timespec mtime = CURRENT_TIME; 1544 struct timespec mtime = CURRENT_TIME;
1574 1545
1575 rbd_assert(osd_req != NULL); 1546 rbd_assert(osd_req != NULL);
1576 1547
1577 snapc = img_request ? img_request->snapc : NULL; 1548 snapc = img_request ? img_request->snapc : NULL;
1578 ceph_osdc_build_request(osd_req, obj_request->offset, 1549 ceph_osdc_build_request(osd_req, obj_request->offset,
1579 snapc, CEPH_NOSNAP, &mtime); 1550 snapc, CEPH_NOSNAP, &mtime);
1580 } 1551 }
1581 1552
1582 static struct ceph_osd_request *rbd_osd_req_create( 1553 static struct ceph_osd_request *rbd_osd_req_create(
1583 struct rbd_device *rbd_dev, 1554 struct rbd_device *rbd_dev,
1584 bool write_request, 1555 bool write_request,
1585 struct rbd_obj_request *obj_request) 1556 struct rbd_obj_request *obj_request)
1586 { 1557 {
1587 struct ceph_snap_context *snapc = NULL; 1558 struct ceph_snap_context *snapc = NULL;
1588 struct ceph_osd_client *osdc; 1559 struct ceph_osd_client *osdc;
1589 struct ceph_osd_request *osd_req; 1560 struct ceph_osd_request *osd_req;
1590 1561
1591 if (obj_request_img_data_test(obj_request)) { 1562 if (obj_request_img_data_test(obj_request)) {
1592 struct rbd_img_request *img_request = obj_request->img_request; 1563 struct rbd_img_request *img_request = obj_request->img_request;
1593 1564
1594 rbd_assert(write_request == 1565 rbd_assert(write_request ==
1595 img_request_write_test(img_request)); 1566 img_request_write_test(img_request));
1596 if (write_request) 1567 if (write_request)
1597 snapc = img_request->snapc; 1568 snapc = img_request->snapc;
1598 } 1569 }
1599 1570
1600 /* Allocate and initialize the request, for the single op */ 1571 /* Allocate and initialize the request, for the single op */
1601 1572
1602 osdc = &rbd_dev->rbd_client->client->osdc; 1573 osdc = &rbd_dev->rbd_client->client->osdc;
1603 osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC); 1574 osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1604 if (!osd_req) 1575 if (!osd_req)
1605 return NULL; /* ENOMEM */ 1576 return NULL; /* ENOMEM */
1606 1577
1607 if (write_request) 1578 if (write_request)
1608 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK; 1579 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1609 else 1580 else
1610 osd_req->r_flags = CEPH_OSD_FLAG_READ; 1581 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1611 1582
1612 osd_req->r_callback = rbd_osd_req_callback; 1583 osd_req->r_callback = rbd_osd_req_callback;
1613 osd_req->r_priv = obj_request; 1584 osd_req->r_priv = obj_request;
1614 1585
1615 osd_req->r_oid_len = strlen(obj_request->object_name); 1586 osd_req->r_oid_len = strlen(obj_request->object_name);
1616 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid)); 1587 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1617 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len); 1588 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1618 1589
1619 osd_req->r_file_layout = rbd_dev->layout; /* struct */ 1590 osd_req->r_file_layout = rbd_dev->layout; /* struct */
1620 1591
1621 return osd_req; 1592 return osd_req;
1622 } 1593 }
1623 1594
1624 /* 1595 /*
1625 * Create a copyup osd request based on the information in the 1596 * Create a copyup osd request based on the information in the
1626 * object request supplied. A copyup request has two osd ops, 1597 * object request supplied. A copyup request has two osd ops,
1627 * a copyup method call, and a "normal" write request. 1598 * a copyup method call, and a "normal" write request.
1628 */ 1599 */
1629 static struct ceph_osd_request * 1600 static struct ceph_osd_request *
1630 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request) 1601 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1631 { 1602 {
1632 struct rbd_img_request *img_request; 1603 struct rbd_img_request *img_request;
1633 struct ceph_snap_context *snapc; 1604 struct ceph_snap_context *snapc;
1634 struct rbd_device *rbd_dev; 1605 struct rbd_device *rbd_dev;
1635 struct ceph_osd_client *osdc; 1606 struct ceph_osd_client *osdc;
1636 struct ceph_osd_request *osd_req; 1607 struct ceph_osd_request *osd_req;
1637 1608
1638 rbd_assert(obj_request_img_data_test(obj_request)); 1609 rbd_assert(obj_request_img_data_test(obj_request));
1639 img_request = obj_request->img_request; 1610 img_request = obj_request->img_request;
1640 rbd_assert(img_request); 1611 rbd_assert(img_request);
1641 rbd_assert(img_request_write_test(img_request)); 1612 rbd_assert(img_request_write_test(img_request));
1642 1613
1643 /* Allocate and initialize the request, for the two ops */ 1614 /* Allocate and initialize the request, for the two ops */
1644 1615
1645 snapc = img_request->snapc; 1616 snapc = img_request->snapc;
1646 rbd_dev = img_request->rbd_dev; 1617 rbd_dev = img_request->rbd_dev;
1647 osdc = &rbd_dev->rbd_client->client->osdc; 1618 osdc = &rbd_dev->rbd_client->client->osdc;
1648 osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC); 1619 osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1649 if (!osd_req) 1620 if (!osd_req)
1650 return NULL; /* ENOMEM */ 1621 return NULL; /* ENOMEM */
1651 1622
1652 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK; 1623 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1653 osd_req->r_callback = rbd_osd_req_callback; 1624 osd_req->r_callback = rbd_osd_req_callback;
1654 osd_req->r_priv = obj_request; 1625 osd_req->r_priv = obj_request;
1655 1626
1656 osd_req->r_oid_len = strlen(obj_request->object_name); 1627 osd_req->r_oid_len = strlen(obj_request->object_name);
1657 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid)); 1628 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1658 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len); 1629 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1659 1630
1660 osd_req->r_file_layout = rbd_dev->layout; /* struct */ 1631 osd_req->r_file_layout = rbd_dev->layout; /* struct */
1661 1632
1662 return osd_req; 1633 return osd_req;
1663 } 1634 }
1664 1635
1665 1636
1666 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req) 1637 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1667 { 1638 {
1668 ceph_osdc_put_request(osd_req); 1639 ceph_osdc_put_request(osd_req);
1669 } 1640 }
1670 1641
1671 /* object_name is assumed to be a non-null pointer and NUL-terminated */ 1642 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1672 1643
1673 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name, 1644 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1674 u64 offset, u64 length, 1645 u64 offset, u64 length,
1675 enum obj_request_type type) 1646 enum obj_request_type type)
1676 { 1647 {
1677 struct rbd_obj_request *obj_request; 1648 struct rbd_obj_request *obj_request;
1678 size_t size; 1649 size_t size;
1679 char *name; 1650 char *name;
1680 1651
1681 rbd_assert(obj_request_type_valid(type)); 1652 rbd_assert(obj_request_type_valid(type));
1682 1653
1683 size = strlen(object_name) + 1; 1654 size = strlen(object_name) + 1;
1684 obj_request = kzalloc(sizeof (*obj_request) + size, GFP_KERNEL); 1655 obj_request = kzalloc(sizeof (*obj_request) + size, GFP_KERNEL);
1685 if (!obj_request) 1656 if (!obj_request)
1686 return NULL; 1657 return NULL;
1687 1658
1688 name = (char *)(obj_request + 1); 1659 name = (char *)(obj_request + 1);
1689 obj_request->object_name = memcpy(name, object_name, size); 1660 obj_request->object_name = memcpy(name, object_name, size);
1690 obj_request->offset = offset; 1661 obj_request->offset = offset;
1691 obj_request->length = length; 1662 obj_request->length = length;
1692 obj_request->flags = 0; 1663 obj_request->flags = 0;
1693 obj_request->which = BAD_WHICH; 1664 obj_request->which = BAD_WHICH;
1694 obj_request->type = type; 1665 obj_request->type = type;
1695 INIT_LIST_HEAD(&obj_request->links); 1666 INIT_LIST_HEAD(&obj_request->links);
1696 init_completion(&obj_request->completion); 1667 init_completion(&obj_request->completion);
1697 kref_init(&obj_request->kref); 1668 kref_init(&obj_request->kref);
1698 1669
1699 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name, 1670 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1700 offset, length, (int)type, obj_request); 1671 offset, length, (int)type, obj_request);
1701 1672
1702 return obj_request; 1673 return obj_request;
1703 } 1674 }
1704 1675
1705 static void rbd_obj_request_destroy(struct kref *kref) 1676 static void rbd_obj_request_destroy(struct kref *kref)
1706 { 1677 {
1707 struct rbd_obj_request *obj_request; 1678 struct rbd_obj_request *obj_request;
1708 1679
1709 obj_request = container_of(kref, struct rbd_obj_request, kref); 1680 obj_request = container_of(kref, struct rbd_obj_request, kref);
1710 1681
1711 dout("%s: obj %p\n", __func__, obj_request); 1682 dout("%s: obj %p\n", __func__, obj_request);
1712 1683
1713 rbd_assert(obj_request->img_request == NULL); 1684 rbd_assert(obj_request->img_request == NULL);
1714 rbd_assert(obj_request->which == BAD_WHICH); 1685 rbd_assert(obj_request->which == BAD_WHICH);
1715 1686
1716 if (obj_request->osd_req) 1687 if (obj_request->osd_req)
1717 rbd_osd_req_destroy(obj_request->osd_req); 1688 rbd_osd_req_destroy(obj_request->osd_req);
1718 1689
1719 rbd_assert(obj_request_type_valid(obj_request->type)); 1690 rbd_assert(obj_request_type_valid(obj_request->type));
1720 switch (obj_request->type) { 1691 switch (obj_request->type) {
1721 case OBJ_REQUEST_NODATA: 1692 case OBJ_REQUEST_NODATA:
1722 break; /* Nothing to do */ 1693 break; /* Nothing to do */
1723 case OBJ_REQUEST_BIO: 1694 case OBJ_REQUEST_BIO:
1724 if (obj_request->bio_list) 1695 if (obj_request->bio_list)
1725 bio_chain_put(obj_request->bio_list); 1696 bio_chain_put(obj_request->bio_list);
1726 break; 1697 break;
1727 case OBJ_REQUEST_PAGES: 1698 case OBJ_REQUEST_PAGES:
1728 if (obj_request->pages) 1699 if (obj_request->pages)
1729 ceph_release_page_vector(obj_request->pages, 1700 ceph_release_page_vector(obj_request->pages,
1730 obj_request->page_count); 1701 obj_request->page_count);
1731 break; 1702 break;
1732 } 1703 }
1733 1704
1734 kfree(obj_request); 1705 kfree(obj_request);
1735 } 1706 }
1736 1707
1737 /* 1708 /*
1738 * Caller is responsible for filling in the list of object requests 1709 * Caller is responsible for filling in the list of object requests
1739 * that comprises the image request, and the Linux request pointer 1710 * that comprises the image request, and the Linux request pointer
1740 * (if there is one). 1711 * (if there is one).
1741 */ 1712 */
1742 static struct rbd_img_request *rbd_img_request_create( 1713 static struct rbd_img_request *rbd_img_request_create(
1743 struct rbd_device *rbd_dev, 1714 struct rbd_device *rbd_dev,
1744 u64 offset, u64 length, 1715 u64 offset, u64 length,
1745 bool write_request, 1716 bool write_request,
1746 bool child_request) 1717 bool child_request)
1747 { 1718 {
1748 struct rbd_img_request *img_request; 1719 struct rbd_img_request *img_request;
1749 1720
1750 img_request = kmalloc(sizeof (*img_request), GFP_ATOMIC); 1721 img_request = kmalloc(sizeof (*img_request), GFP_ATOMIC);
1751 if (!img_request) 1722 if (!img_request)
1752 return NULL; 1723 return NULL;
1753 1724
1754 if (write_request) { 1725 if (write_request) {
1755 down_read(&rbd_dev->header_rwsem); 1726 down_read(&rbd_dev->header_rwsem);
1756 rbd_snap_context_get(rbd_dev->header.snapc); 1727 ceph_get_snap_context(rbd_dev->header.snapc);
1757 up_read(&rbd_dev->header_rwsem); 1728 up_read(&rbd_dev->header_rwsem);
1758 } 1729 }
1759 1730
1760 img_request->rq = NULL; 1731 img_request->rq = NULL;
1761 img_request->rbd_dev = rbd_dev; 1732 img_request->rbd_dev = rbd_dev;
1762 img_request->offset = offset; 1733 img_request->offset = offset;
1763 img_request->length = length; 1734 img_request->length = length;
1764 img_request->flags = 0; 1735 img_request->flags = 0;
1765 if (write_request) { 1736 if (write_request) {
1766 img_request_write_set(img_request); 1737 img_request_write_set(img_request);
1767 img_request->snapc = rbd_dev->header.snapc; 1738 img_request->snapc = rbd_dev->header.snapc;
1768 } else { 1739 } else {
1769 img_request->snap_id = rbd_dev->spec->snap_id; 1740 img_request->snap_id = rbd_dev->spec->snap_id;
1770 } 1741 }
1771 if (child_request) 1742 if (child_request)
1772 img_request_child_set(img_request); 1743 img_request_child_set(img_request);
1773 if (rbd_dev->parent_spec) 1744 if (rbd_dev->parent_spec)
1774 img_request_layered_set(img_request); 1745 img_request_layered_set(img_request);
1775 spin_lock_init(&img_request->completion_lock); 1746 spin_lock_init(&img_request->completion_lock);
1776 img_request->next_completion = 0; 1747 img_request->next_completion = 0;
1777 img_request->callback = NULL; 1748 img_request->callback = NULL;
1778 img_request->result = 0; 1749 img_request->result = 0;
1779 img_request->obj_request_count = 0; 1750 img_request->obj_request_count = 0;
1780 INIT_LIST_HEAD(&img_request->obj_requests); 1751 INIT_LIST_HEAD(&img_request->obj_requests);
1781 kref_init(&img_request->kref); 1752 kref_init(&img_request->kref);
1782 1753
1783 rbd_img_request_get(img_request); /* Avoid a warning */ 1754 rbd_img_request_get(img_request); /* Avoid a warning */
1784 rbd_img_request_put(img_request); /* TEMPORARY */ 1755 rbd_img_request_put(img_request); /* TEMPORARY */
1785 1756
1786 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev, 1757 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
1787 write_request ? "write" : "read", offset, length, 1758 write_request ? "write" : "read", offset, length,
1788 img_request); 1759 img_request);
1789 1760
1790 return img_request; 1761 return img_request;
1791 } 1762 }
1792 1763
1793 static void rbd_img_request_destroy(struct kref *kref) 1764 static void rbd_img_request_destroy(struct kref *kref)
1794 { 1765 {
1795 struct rbd_img_request *img_request; 1766 struct rbd_img_request *img_request;
1796 struct rbd_obj_request *obj_request; 1767 struct rbd_obj_request *obj_request;
1797 struct rbd_obj_request *next_obj_request; 1768 struct rbd_obj_request *next_obj_request;
1798 1769
1799 img_request = container_of(kref, struct rbd_img_request, kref); 1770 img_request = container_of(kref, struct rbd_img_request, kref);
1800 1771
1801 dout("%s: img %p\n", __func__, img_request); 1772 dout("%s: img %p\n", __func__, img_request);
1802 1773
1803 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 1774 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1804 rbd_img_obj_request_del(img_request, obj_request); 1775 rbd_img_obj_request_del(img_request, obj_request);
1805 rbd_assert(img_request->obj_request_count == 0); 1776 rbd_assert(img_request->obj_request_count == 0);
1806 1777
1807 if (img_request_write_test(img_request)) 1778 if (img_request_write_test(img_request))
1808 rbd_snap_context_put(img_request->snapc); 1779 ceph_put_snap_context(img_request->snapc);
1809 1780
1810 if (img_request_child_test(img_request)) 1781 if (img_request_child_test(img_request))
1811 rbd_obj_request_put(img_request->obj_request); 1782 rbd_obj_request_put(img_request->obj_request);
1812 1783
1813 kfree(img_request); 1784 kfree(img_request);
1814 } 1785 }
1815 1786
1816 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request) 1787 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
1817 { 1788 {
1818 struct rbd_img_request *img_request; 1789 struct rbd_img_request *img_request;
1819 unsigned int xferred; 1790 unsigned int xferred;
1820 int result; 1791 int result;
1821 bool more; 1792 bool more;
1822 1793
1823 rbd_assert(obj_request_img_data_test(obj_request)); 1794 rbd_assert(obj_request_img_data_test(obj_request));
1824 img_request = obj_request->img_request; 1795 img_request = obj_request->img_request;
1825 1796
1826 rbd_assert(obj_request->xferred <= (u64)UINT_MAX); 1797 rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
1827 xferred = (unsigned int)obj_request->xferred; 1798 xferred = (unsigned int)obj_request->xferred;
1828 result = obj_request->result; 1799 result = obj_request->result;
1829 if (result) { 1800 if (result) {
1830 struct rbd_device *rbd_dev = img_request->rbd_dev; 1801 struct rbd_device *rbd_dev = img_request->rbd_dev;
1831 1802
1832 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n", 1803 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
1833 img_request_write_test(img_request) ? "write" : "read", 1804 img_request_write_test(img_request) ? "write" : "read",
1834 obj_request->length, obj_request->img_offset, 1805 obj_request->length, obj_request->img_offset,
1835 obj_request->offset); 1806 obj_request->offset);
1836 rbd_warn(rbd_dev, " result %d xferred %x\n", 1807 rbd_warn(rbd_dev, " result %d xferred %x\n",
1837 result, xferred); 1808 result, xferred);
1838 if (!img_request->result) 1809 if (!img_request->result)
1839 img_request->result = result; 1810 img_request->result = result;
1840 } 1811 }
1841 1812
1842 /* Image object requests don't own their page array */ 1813 /* Image object requests don't own their page array */
1843 1814
1844 if (obj_request->type == OBJ_REQUEST_PAGES) { 1815 if (obj_request->type == OBJ_REQUEST_PAGES) {
1845 obj_request->pages = NULL; 1816 obj_request->pages = NULL;
1846 obj_request->page_count = 0; 1817 obj_request->page_count = 0;
1847 } 1818 }
1848 1819
1849 if (img_request_child_test(img_request)) { 1820 if (img_request_child_test(img_request)) {
1850 rbd_assert(img_request->obj_request != NULL); 1821 rbd_assert(img_request->obj_request != NULL);
1851 more = obj_request->which < img_request->obj_request_count - 1; 1822 more = obj_request->which < img_request->obj_request_count - 1;
1852 } else { 1823 } else {
1853 rbd_assert(img_request->rq != NULL); 1824 rbd_assert(img_request->rq != NULL);
1854 more = blk_end_request(img_request->rq, result, xferred); 1825 more = blk_end_request(img_request->rq, result, xferred);
1855 } 1826 }
1856 1827
1857 return more; 1828 return more;
1858 } 1829 }
1859 1830
1860 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request) 1831 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
1861 { 1832 {
1862 struct rbd_img_request *img_request; 1833 struct rbd_img_request *img_request;
1863 u32 which = obj_request->which; 1834 u32 which = obj_request->which;
1864 bool more = true; 1835 bool more = true;
1865 1836
1866 rbd_assert(obj_request_img_data_test(obj_request)); 1837 rbd_assert(obj_request_img_data_test(obj_request));
1867 img_request = obj_request->img_request; 1838 img_request = obj_request->img_request;
1868 1839
1869 dout("%s: img %p obj %p\n", __func__, img_request, obj_request); 1840 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1870 rbd_assert(img_request != NULL); 1841 rbd_assert(img_request != NULL);
1871 rbd_assert(img_request->obj_request_count > 0); 1842 rbd_assert(img_request->obj_request_count > 0);
1872 rbd_assert(which != BAD_WHICH); 1843 rbd_assert(which != BAD_WHICH);
1873 rbd_assert(which < img_request->obj_request_count); 1844 rbd_assert(which < img_request->obj_request_count);
1874 rbd_assert(which >= img_request->next_completion); 1845 rbd_assert(which >= img_request->next_completion);
1875 1846
1876 spin_lock_irq(&img_request->completion_lock); 1847 spin_lock_irq(&img_request->completion_lock);
1877 if (which != img_request->next_completion) 1848 if (which != img_request->next_completion)
1878 goto out; 1849 goto out;
1879 1850
1880 for_each_obj_request_from(img_request, obj_request) { 1851 for_each_obj_request_from(img_request, obj_request) {
1881 rbd_assert(more); 1852 rbd_assert(more);
1882 rbd_assert(which < img_request->obj_request_count); 1853 rbd_assert(which < img_request->obj_request_count);
1883 1854
1884 if (!obj_request_done_test(obj_request)) 1855 if (!obj_request_done_test(obj_request))
1885 break; 1856 break;
1886 more = rbd_img_obj_end_request(obj_request); 1857 more = rbd_img_obj_end_request(obj_request);
1887 which++; 1858 which++;
1888 } 1859 }
1889 1860
1890 rbd_assert(more ^ (which == img_request->obj_request_count)); 1861 rbd_assert(more ^ (which == img_request->obj_request_count));
1891 img_request->next_completion = which; 1862 img_request->next_completion = which;
1892 out: 1863 out:
1893 spin_unlock_irq(&img_request->completion_lock); 1864 spin_unlock_irq(&img_request->completion_lock);
1894 1865
1895 if (!more) 1866 if (!more)
1896 rbd_img_request_complete(img_request); 1867 rbd_img_request_complete(img_request);
1897 } 1868 }
1898 1869
1899 /* 1870 /*
1900 * Split up an image request into one or more object requests, each 1871 * Split up an image request into one or more object requests, each
1901 * to a different object. The "type" parameter indicates whether 1872 * to a different object. The "type" parameter indicates whether
1902 * "data_desc" is the pointer to the head of a list of bio 1873 * "data_desc" is the pointer to the head of a list of bio
1903 * structures, or the base of a page array. In either case this 1874 * structures, or the base of a page array. In either case this
1904 * function assumes data_desc describes memory sufficient to hold 1875 * function assumes data_desc describes memory sufficient to hold
1905 * all data described by the image request. 1876 * all data described by the image request.
1906 */ 1877 */
1907 static int rbd_img_request_fill(struct rbd_img_request *img_request, 1878 static int rbd_img_request_fill(struct rbd_img_request *img_request,
1908 enum obj_request_type type, 1879 enum obj_request_type type,
1909 void *data_desc) 1880 void *data_desc)
1910 { 1881 {
1911 struct rbd_device *rbd_dev = img_request->rbd_dev; 1882 struct rbd_device *rbd_dev = img_request->rbd_dev;
1912 struct rbd_obj_request *obj_request = NULL; 1883 struct rbd_obj_request *obj_request = NULL;
1913 struct rbd_obj_request *next_obj_request; 1884 struct rbd_obj_request *next_obj_request;
1914 bool write_request = img_request_write_test(img_request); 1885 bool write_request = img_request_write_test(img_request);
1915 struct bio *bio_list; 1886 struct bio *bio_list;
1916 unsigned int bio_offset = 0; 1887 unsigned int bio_offset = 0;
1917 struct page **pages; 1888 struct page **pages;
1918 u64 img_offset; 1889 u64 img_offset;
1919 u64 resid; 1890 u64 resid;
1920 u16 opcode; 1891 u16 opcode;
1921 1892
1922 dout("%s: img %p type %d data_desc %p\n", __func__, img_request, 1893 dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
1923 (int)type, data_desc); 1894 (int)type, data_desc);
1924 1895
1925 opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ; 1896 opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
1926 img_offset = img_request->offset; 1897 img_offset = img_request->offset;
1927 resid = img_request->length; 1898 resid = img_request->length;
1928 rbd_assert(resid > 0); 1899 rbd_assert(resid > 0);
1929 1900
1930 if (type == OBJ_REQUEST_BIO) { 1901 if (type == OBJ_REQUEST_BIO) {
1931 bio_list = data_desc; 1902 bio_list = data_desc;
1932 rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT); 1903 rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
1933 } else { 1904 } else {
1934 rbd_assert(type == OBJ_REQUEST_PAGES); 1905 rbd_assert(type == OBJ_REQUEST_PAGES);
1935 pages = data_desc; 1906 pages = data_desc;
1936 } 1907 }
1937 1908
1938 while (resid) { 1909 while (resid) {
1939 struct ceph_osd_request *osd_req; 1910 struct ceph_osd_request *osd_req;
1940 const char *object_name; 1911 const char *object_name;
1941 u64 offset; 1912 u64 offset;
1942 u64 length; 1913 u64 length;
1943 1914
1944 object_name = rbd_segment_name(rbd_dev, img_offset); 1915 object_name = rbd_segment_name(rbd_dev, img_offset);
1945 if (!object_name) 1916 if (!object_name)
1946 goto out_unwind; 1917 goto out_unwind;
1947 offset = rbd_segment_offset(rbd_dev, img_offset); 1918 offset = rbd_segment_offset(rbd_dev, img_offset);
1948 length = rbd_segment_length(rbd_dev, img_offset, resid); 1919 length = rbd_segment_length(rbd_dev, img_offset, resid);
1949 obj_request = rbd_obj_request_create(object_name, 1920 obj_request = rbd_obj_request_create(object_name,
1950 offset, length, type); 1921 offset, length, type);
1951 kfree(object_name); /* object request has its own copy */ 1922 kfree(object_name); /* object request has its own copy */
1952 if (!obj_request) 1923 if (!obj_request)
1953 goto out_unwind; 1924 goto out_unwind;
1954 1925
1955 if (type == OBJ_REQUEST_BIO) { 1926 if (type == OBJ_REQUEST_BIO) {
1956 unsigned int clone_size; 1927 unsigned int clone_size;
1957 1928
1958 rbd_assert(length <= (u64)UINT_MAX); 1929 rbd_assert(length <= (u64)UINT_MAX);
1959 clone_size = (unsigned int)length; 1930 clone_size = (unsigned int)length;
1960 obj_request->bio_list = 1931 obj_request->bio_list =
1961 bio_chain_clone_range(&bio_list, 1932 bio_chain_clone_range(&bio_list,
1962 &bio_offset, 1933 &bio_offset,
1963 clone_size, 1934 clone_size,
1964 GFP_ATOMIC); 1935 GFP_ATOMIC);
1965 if (!obj_request->bio_list) 1936 if (!obj_request->bio_list)
1966 goto out_partial; 1937 goto out_partial;
1967 } else { 1938 } else {
1968 unsigned int page_count; 1939 unsigned int page_count;
1969 1940
1970 obj_request->pages = pages; 1941 obj_request->pages = pages;
1971 page_count = (u32)calc_pages_for(offset, length); 1942 page_count = (u32)calc_pages_for(offset, length);
1972 obj_request->page_count = page_count; 1943 obj_request->page_count = page_count;
1973 if ((offset + length) & ~PAGE_MASK) 1944 if ((offset + length) & ~PAGE_MASK)
1974 page_count--; /* more on last page */ 1945 page_count--; /* more on last page */
1975 pages += page_count; 1946 pages += page_count;
1976 } 1947 }
1977 1948
1978 osd_req = rbd_osd_req_create(rbd_dev, write_request, 1949 osd_req = rbd_osd_req_create(rbd_dev, write_request,
1979 obj_request); 1950 obj_request);
1980 if (!osd_req) 1951 if (!osd_req)
1981 goto out_partial; 1952 goto out_partial;
1982 obj_request->osd_req = osd_req; 1953 obj_request->osd_req = osd_req;
1983 obj_request->callback = rbd_img_obj_callback; 1954 obj_request->callback = rbd_img_obj_callback;
1984 1955
1985 osd_req_op_extent_init(osd_req, 0, opcode, offset, length, 1956 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
1986 0, 0); 1957 0, 0);
1987 if (type == OBJ_REQUEST_BIO) 1958 if (type == OBJ_REQUEST_BIO)
1988 osd_req_op_extent_osd_data_bio(osd_req, 0, 1959 osd_req_op_extent_osd_data_bio(osd_req, 0,
1989 obj_request->bio_list, length); 1960 obj_request->bio_list, length);
1990 else 1961 else
1991 osd_req_op_extent_osd_data_pages(osd_req, 0, 1962 osd_req_op_extent_osd_data_pages(osd_req, 0,
1992 obj_request->pages, length, 1963 obj_request->pages, length,
1993 offset & ~PAGE_MASK, false, false); 1964 offset & ~PAGE_MASK, false, false);
1994 1965
1995 if (write_request) 1966 if (write_request)
1996 rbd_osd_req_format_write(obj_request); 1967 rbd_osd_req_format_write(obj_request);
1997 else 1968 else
1998 rbd_osd_req_format_read(obj_request); 1969 rbd_osd_req_format_read(obj_request);
1999 1970
2000 obj_request->img_offset = img_offset; 1971 obj_request->img_offset = img_offset;
2001 rbd_img_obj_request_add(img_request, obj_request); 1972 rbd_img_obj_request_add(img_request, obj_request);
2002 1973
2003 img_offset += length; 1974 img_offset += length;
2004 resid -= length; 1975 resid -= length;
2005 } 1976 }
2006 1977
2007 return 0; 1978 return 0;
2008 1979
2009 out_partial: 1980 out_partial:
2010 rbd_obj_request_put(obj_request); 1981 rbd_obj_request_put(obj_request);
2011 out_unwind: 1982 out_unwind:
2012 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 1983 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2013 rbd_obj_request_put(obj_request); 1984 rbd_obj_request_put(obj_request);
2014 1985
2015 return -ENOMEM; 1986 return -ENOMEM;
2016 } 1987 }
2017 1988
2018 static void 1989 static void
2019 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request) 1990 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2020 { 1991 {
2021 struct rbd_img_request *img_request; 1992 struct rbd_img_request *img_request;
2022 struct rbd_device *rbd_dev; 1993 struct rbd_device *rbd_dev;
2023 u64 length; 1994 u64 length;
2024 u32 page_count; 1995 u32 page_count;
2025 1996
2026 rbd_assert(obj_request->type == OBJ_REQUEST_BIO); 1997 rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2027 rbd_assert(obj_request_img_data_test(obj_request)); 1998 rbd_assert(obj_request_img_data_test(obj_request));
2028 img_request = obj_request->img_request; 1999 img_request = obj_request->img_request;
2029 rbd_assert(img_request); 2000 rbd_assert(img_request);
2030 2001
2031 rbd_dev = img_request->rbd_dev; 2002 rbd_dev = img_request->rbd_dev;
2032 rbd_assert(rbd_dev); 2003 rbd_assert(rbd_dev);
2033 length = (u64)1 << rbd_dev->header.obj_order; 2004 length = (u64)1 << rbd_dev->header.obj_order;
2034 page_count = (u32)calc_pages_for(0, length); 2005 page_count = (u32)calc_pages_for(0, length);
2035 2006
2036 rbd_assert(obj_request->copyup_pages); 2007 rbd_assert(obj_request->copyup_pages);
2037 ceph_release_page_vector(obj_request->copyup_pages, page_count); 2008 ceph_release_page_vector(obj_request->copyup_pages, page_count);
2038 obj_request->copyup_pages = NULL; 2009 obj_request->copyup_pages = NULL;
2039 2010
2040 /* 2011 /*
2041 * We want the transfer count to reflect the size of the 2012 * We want the transfer count to reflect the size of the
2042 * original write request. There is no such thing as a 2013 * original write request. There is no such thing as a
2043 * successful short write, so if the request was successful 2014 * successful short write, so if the request was successful
2044 * we can just set it to the originally-requested length. 2015 * we can just set it to the originally-requested length.
2045 */ 2016 */
2046 if (!obj_request->result) 2017 if (!obj_request->result)
2047 obj_request->xferred = obj_request->length; 2018 obj_request->xferred = obj_request->length;
2048 2019
2049 /* Finish up with the normal image object callback */ 2020 /* Finish up with the normal image object callback */
2050 2021
2051 rbd_img_obj_callback(obj_request); 2022 rbd_img_obj_callback(obj_request);
2052 } 2023 }
2053 2024
2054 static void 2025 static void
2055 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request) 2026 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2056 { 2027 {
2057 struct rbd_obj_request *orig_request; 2028 struct rbd_obj_request *orig_request;
2058 struct ceph_osd_request *osd_req; 2029 struct ceph_osd_request *osd_req;
2059 struct ceph_osd_client *osdc; 2030 struct ceph_osd_client *osdc;
2060 struct rbd_device *rbd_dev; 2031 struct rbd_device *rbd_dev;
2061 struct page **pages; 2032 struct page **pages;
2062 int result; 2033 int result;
2063 u64 obj_size; 2034 u64 obj_size;
2064 u64 xferred; 2035 u64 xferred;
2065 2036
2066 rbd_assert(img_request_child_test(img_request)); 2037 rbd_assert(img_request_child_test(img_request));
2067 2038
2068 /* First get what we need from the image request */ 2039 /* First get what we need from the image request */
2069 2040
2070 pages = img_request->copyup_pages; 2041 pages = img_request->copyup_pages;
2071 rbd_assert(pages != NULL); 2042 rbd_assert(pages != NULL);
2072 img_request->copyup_pages = NULL; 2043 img_request->copyup_pages = NULL;
2073 2044
2074 orig_request = img_request->obj_request; 2045 orig_request = img_request->obj_request;
2075 rbd_assert(orig_request != NULL); 2046 rbd_assert(orig_request != NULL);
2076 rbd_assert(orig_request->type == OBJ_REQUEST_BIO); 2047 rbd_assert(orig_request->type == OBJ_REQUEST_BIO);
2077 result = img_request->result; 2048 result = img_request->result;
2078 obj_size = img_request->length; 2049 obj_size = img_request->length;
2079 xferred = img_request->xferred; 2050 xferred = img_request->xferred;
2080 2051
2081 rbd_dev = img_request->rbd_dev; 2052 rbd_dev = img_request->rbd_dev;
2082 rbd_assert(rbd_dev); 2053 rbd_assert(rbd_dev);
2083 rbd_assert(obj_size == (u64)1 << rbd_dev->header.obj_order); 2054 rbd_assert(obj_size == (u64)1 << rbd_dev->header.obj_order);
2084 2055
2085 rbd_img_request_put(img_request); 2056 rbd_img_request_put(img_request);
2086 2057
2087 if (result) 2058 if (result)
2088 goto out_err; 2059 goto out_err;
2089 2060
2090 /* Allocate the new copyup osd request for the original request */ 2061 /* Allocate the new copyup osd request for the original request */
2091 2062
2092 result = -ENOMEM; 2063 result = -ENOMEM;
2093 rbd_assert(!orig_request->osd_req); 2064 rbd_assert(!orig_request->osd_req);
2094 osd_req = rbd_osd_req_create_copyup(orig_request); 2065 osd_req = rbd_osd_req_create_copyup(orig_request);
2095 if (!osd_req) 2066 if (!osd_req)
2096 goto out_err; 2067 goto out_err;
2097 orig_request->osd_req = osd_req; 2068 orig_request->osd_req = osd_req;
2098 orig_request->copyup_pages = pages; 2069 orig_request->copyup_pages = pages;
2099 2070
2100 /* Initialize the copyup op */ 2071 /* Initialize the copyup op */
2101 2072
2102 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup"); 2073 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2103 osd_req_op_cls_request_data_pages(osd_req, 0, pages, obj_size, 0, 2074 osd_req_op_cls_request_data_pages(osd_req, 0, pages, obj_size, 0,
2104 false, false); 2075 false, false);
2105 2076
2106 /* Then the original write request op */ 2077 /* Then the original write request op */
2107 2078
2108 osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE, 2079 osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2109 orig_request->offset, 2080 orig_request->offset,
2110 orig_request->length, 0, 0); 2081 orig_request->length, 0, 0);
2111 osd_req_op_extent_osd_data_bio(osd_req, 1, orig_request->bio_list, 2082 osd_req_op_extent_osd_data_bio(osd_req, 1, orig_request->bio_list,
2112 orig_request->length); 2083 orig_request->length);
2113 2084
2114 rbd_osd_req_format_write(orig_request); 2085 rbd_osd_req_format_write(orig_request);
2115 2086
2116 /* All set, send it off. */ 2087 /* All set, send it off. */
2117 2088
2118 orig_request->callback = rbd_img_obj_copyup_callback; 2089 orig_request->callback = rbd_img_obj_copyup_callback;
2119 osdc = &rbd_dev->rbd_client->client->osdc; 2090 osdc = &rbd_dev->rbd_client->client->osdc;
2120 result = rbd_obj_request_submit(osdc, orig_request); 2091 result = rbd_obj_request_submit(osdc, orig_request);
2121 if (!result) 2092 if (!result)
2122 return; 2093 return;
2123 out_err: 2094 out_err:
2124 /* Record the error code and complete the request */ 2095 /* Record the error code and complete the request */
2125 2096
2126 orig_request->result = result; 2097 orig_request->result = result;
2127 orig_request->xferred = 0; 2098 orig_request->xferred = 0;
2128 obj_request_done_set(orig_request); 2099 obj_request_done_set(orig_request);
2129 rbd_obj_request_complete(orig_request); 2100 rbd_obj_request_complete(orig_request);
2130 } 2101 }
2131 2102
2132 /* 2103 /*
2133 * Read from the parent image the range of data that covers the 2104 * Read from the parent image the range of data that covers the
2134 * entire target of the given object request. This is used for 2105 * entire target of the given object request. This is used for
2135 * satisfying a layered image write request when the target of an 2106 * satisfying a layered image write request when the target of an
2136 * object request from the image request does not exist. 2107 * object request from the image request does not exist.
2137 * 2108 *
2138 * A page array big enough to hold the returned data is allocated 2109 * A page array big enough to hold the returned data is allocated
2139 * and supplied to rbd_img_request_fill() as the "data descriptor." 2110 * and supplied to rbd_img_request_fill() as the "data descriptor."
2140 * When the read completes, this page array will be transferred to 2111 * When the read completes, this page array will be transferred to
2141 * the original object request for the copyup operation. 2112 * the original object request for the copyup operation.
2142 * 2113 *
2143 * If an error occurs, record it as the result of the original 2114 * If an error occurs, record it as the result of the original
2144 * object request and mark it done so it gets completed. 2115 * object request and mark it done so it gets completed.
2145 */ 2116 */
2146 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request) 2117 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2147 { 2118 {
2148 struct rbd_img_request *img_request = NULL; 2119 struct rbd_img_request *img_request = NULL;
2149 struct rbd_img_request *parent_request = NULL; 2120 struct rbd_img_request *parent_request = NULL;
2150 struct rbd_device *rbd_dev; 2121 struct rbd_device *rbd_dev;
2151 u64 img_offset; 2122 u64 img_offset;
2152 u64 length; 2123 u64 length;
2153 struct page **pages = NULL; 2124 struct page **pages = NULL;
2154 u32 page_count; 2125 u32 page_count;
2155 int result; 2126 int result;
2156 2127
2157 rbd_assert(obj_request_img_data_test(obj_request)); 2128 rbd_assert(obj_request_img_data_test(obj_request));
2158 rbd_assert(obj_request->type == OBJ_REQUEST_BIO); 2129 rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2159 2130
2160 img_request = obj_request->img_request; 2131 img_request = obj_request->img_request;
2161 rbd_assert(img_request != NULL); 2132 rbd_assert(img_request != NULL);
2162 rbd_dev = img_request->rbd_dev; 2133 rbd_dev = img_request->rbd_dev;
2163 rbd_assert(rbd_dev->parent != NULL); 2134 rbd_assert(rbd_dev->parent != NULL);
2164 2135
2165 /* 2136 /*
2166 * First things first. The original osd request is of no 2137 * First things first. The original osd request is of no
2167 * use to use any more, we'll need a new one that can hold 2138 * use to use any more, we'll need a new one that can hold
2168 * the two ops in a copyup request. We'll get that later, 2139 * the two ops in a copyup request. We'll get that later,
2169 * but for now we can release the old one. 2140 * but for now we can release the old one.
2170 */ 2141 */
2171 rbd_osd_req_destroy(obj_request->osd_req); 2142 rbd_osd_req_destroy(obj_request->osd_req);
2172 obj_request->osd_req = NULL; 2143 obj_request->osd_req = NULL;
2173 2144
2174 /* 2145 /*
2175 * Determine the byte range covered by the object in the 2146 * Determine the byte range covered by the object in the
2176 * child image to which the original request was to be sent. 2147 * child image to which the original request was to be sent.
2177 */ 2148 */
2178 img_offset = obj_request->img_offset - obj_request->offset; 2149 img_offset = obj_request->img_offset - obj_request->offset;
2179 length = (u64)1 << rbd_dev->header.obj_order; 2150 length = (u64)1 << rbd_dev->header.obj_order;
2180 2151
2181 /* 2152 /*
2182 * There is no defined parent data beyond the parent 2153 * There is no defined parent data beyond the parent
2183 * overlap, so limit what we read at that boundary if 2154 * overlap, so limit what we read at that boundary if
2184 * necessary. 2155 * necessary.
2185 */ 2156 */
2186 if (img_offset + length > rbd_dev->parent_overlap) { 2157 if (img_offset + length > rbd_dev->parent_overlap) {
2187 rbd_assert(img_offset < rbd_dev->parent_overlap); 2158 rbd_assert(img_offset < rbd_dev->parent_overlap);
2188 length = rbd_dev->parent_overlap - img_offset; 2159 length = rbd_dev->parent_overlap - img_offset;
2189 } 2160 }
2190 2161
2191 /* 2162 /*
2192 * Allocate a page array big enough to receive the data read 2163 * Allocate a page array big enough to receive the data read
2193 * from the parent. 2164 * from the parent.
2194 */ 2165 */
2195 page_count = (u32)calc_pages_for(0, length); 2166 page_count = (u32)calc_pages_for(0, length);
2196 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 2167 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2197 if (IS_ERR(pages)) { 2168 if (IS_ERR(pages)) {
2198 result = PTR_ERR(pages); 2169 result = PTR_ERR(pages);
2199 pages = NULL; 2170 pages = NULL;
2200 goto out_err; 2171 goto out_err;
2201 } 2172 }
2202 2173
2203 result = -ENOMEM; 2174 result = -ENOMEM;
2204 parent_request = rbd_img_request_create(rbd_dev->parent, 2175 parent_request = rbd_img_request_create(rbd_dev->parent,
2205 img_offset, length, 2176 img_offset, length,
2206 false, true); 2177 false, true);
2207 if (!parent_request) 2178 if (!parent_request)
2208 goto out_err; 2179 goto out_err;
2209 rbd_obj_request_get(obj_request); 2180 rbd_obj_request_get(obj_request);
2210 parent_request->obj_request = obj_request; 2181 parent_request->obj_request = obj_request;
2211 2182
2212 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages); 2183 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2213 if (result) 2184 if (result)
2214 goto out_err; 2185 goto out_err;
2215 parent_request->copyup_pages = pages; 2186 parent_request->copyup_pages = pages;
2216 2187
2217 parent_request->callback = rbd_img_obj_parent_read_full_callback; 2188 parent_request->callback = rbd_img_obj_parent_read_full_callback;
2218 result = rbd_img_request_submit(parent_request); 2189 result = rbd_img_request_submit(parent_request);
2219 if (!result) 2190 if (!result)
2220 return 0; 2191 return 0;
2221 2192
2222 parent_request->copyup_pages = NULL; 2193 parent_request->copyup_pages = NULL;
2223 parent_request->obj_request = NULL; 2194 parent_request->obj_request = NULL;
2224 rbd_obj_request_put(obj_request); 2195 rbd_obj_request_put(obj_request);
2225 out_err: 2196 out_err:
2226 if (pages) 2197 if (pages)
2227 ceph_release_page_vector(pages, page_count); 2198 ceph_release_page_vector(pages, page_count);
2228 if (parent_request) 2199 if (parent_request)
2229 rbd_img_request_put(parent_request); 2200 rbd_img_request_put(parent_request);
2230 obj_request->result = result; 2201 obj_request->result = result;
2231 obj_request->xferred = 0; 2202 obj_request->xferred = 0;
2232 obj_request_done_set(obj_request); 2203 obj_request_done_set(obj_request);
2233 2204
2234 return result; 2205 return result;
2235 } 2206 }
2236 2207
2237 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request) 2208 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2238 { 2209 {
2239 struct rbd_obj_request *orig_request; 2210 struct rbd_obj_request *orig_request;
2240 int result; 2211 int result;
2241 2212
2242 rbd_assert(!obj_request_img_data_test(obj_request)); 2213 rbd_assert(!obj_request_img_data_test(obj_request));
2243 2214
2244 /* 2215 /*
2245 * All we need from the object request is the original 2216 * All we need from the object request is the original
2246 * request and the result of the STAT op. Grab those, then 2217 * request and the result of the STAT op. Grab those, then
2247 * we're done with the request. 2218 * we're done with the request.
2248 */ 2219 */
2249 orig_request = obj_request->obj_request; 2220 orig_request = obj_request->obj_request;
2250 obj_request->obj_request = NULL; 2221 obj_request->obj_request = NULL;
2251 rbd_assert(orig_request); 2222 rbd_assert(orig_request);
2252 rbd_assert(orig_request->img_request); 2223 rbd_assert(orig_request->img_request);
2253 2224
2254 result = obj_request->result; 2225 result = obj_request->result;
2255 obj_request->result = 0; 2226 obj_request->result = 0;
2256 2227
2257 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__, 2228 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2258 obj_request, orig_request, result, 2229 obj_request, orig_request, result,
2259 obj_request->xferred, obj_request->length); 2230 obj_request->xferred, obj_request->length);
2260 rbd_obj_request_put(obj_request); 2231 rbd_obj_request_put(obj_request);
2261 2232
2262 rbd_assert(orig_request); 2233 rbd_assert(orig_request);
2263 rbd_assert(orig_request->img_request); 2234 rbd_assert(orig_request->img_request);
2264 2235
2265 /* 2236 /*
2266 * Our only purpose here is to determine whether the object 2237 * Our only purpose here is to determine whether the object
2267 * exists, and we don't want to treat the non-existence as 2238 * exists, and we don't want to treat the non-existence as
2268 * an error. If something else comes back, transfer the 2239 * an error. If something else comes back, transfer the
2269 * error to the original request and complete it now. 2240 * error to the original request and complete it now.
2270 */ 2241 */
2271 if (!result) { 2242 if (!result) {
2272 obj_request_existence_set(orig_request, true); 2243 obj_request_existence_set(orig_request, true);
2273 } else if (result == -ENOENT) { 2244 } else if (result == -ENOENT) {
2274 obj_request_existence_set(orig_request, false); 2245 obj_request_existence_set(orig_request, false);
2275 } else if (result) { 2246 } else if (result) {
2276 orig_request->result = result; 2247 orig_request->result = result;
2277 goto out; 2248 goto out;
2278 } 2249 }
2279 2250
2280 /* 2251 /*
2281 * Resubmit the original request now that we have recorded 2252 * Resubmit the original request now that we have recorded
2282 * whether the target object exists. 2253 * whether the target object exists.
2283 */ 2254 */
2284 orig_request->result = rbd_img_obj_request_submit(orig_request); 2255 orig_request->result = rbd_img_obj_request_submit(orig_request);
2285 out: 2256 out:
2286 if (orig_request->result) 2257 if (orig_request->result)
2287 rbd_obj_request_complete(orig_request); 2258 rbd_obj_request_complete(orig_request);
2288 rbd_obj_request_put(orig_request); 2259 rbd_obj_request_put(orig_request);
2289 } 2260 }
2290 2261
2291 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request) 2262 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2292 { 2263 {
2293 struct rbd_obj_request *stat_request; 2264 struct rbd_obj_request *stat_request;
2294 struct rbd_device *rbd_dev; 2265 struct rbd_device *rbd_dev;
2295 struct ceph_osd_client *osdc; 2266 struct ceph_osd_client *osdc;
2296 struct page **pages = NULL; 2267 struct page **pages = NULL;
2297 u32 page_count; 2268 u32 page_count;
2298 size_t size; 2269 size_t size;
2299 int ret; 2270 int ret;
2300 2271
2301 /* 2272 /*
2302 * The response data for a STAT call consists of: 2273 * The response data for a STAT call consists of:
2303 * le64 length; 2274 * le64 length;
2304 * struct { 2275 * struct {
2305 * le32 tv_sec; 2276 * le32 tv_sec;
2306 * le32 tv_nsec; 2277 * le32 tv_nsec;
2307 * } mtime; 2278 * } mtime;
2308 */ 2279 */
2309 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32); 2280 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2310 page_count = (u32)calc_pages_for(0, size); 2281 page_count = (u32)calc_pages_for(0, size);
2311 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 2282 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2312 if (IS_ERR(pages)) 2283 if (IS_ERR(pages))
2313 return PTR_ERR(pages); 2284 return PTR_ERR(pages);
2314 2285
2315 ret = -ENOMEM; 2286 ret = -ENOMEM;
2316 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0, 2287 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2317 OBJ_REQUEST_PAGES); 2288 OBJ_REQUEST_PAGES);
2318 if (!stat_request) 2289 if (!stat_request)
2319 goto out; 2290 goto out;
2320 2291
2321 rbd_obj_request_get(obj_request); 2292 rbd_obj_request_get(obj_request);
2322 stat_request->obj_request = obj_request; 2293 stat_request->obj_request = obj_request;
2323 stat_request->pages = pages; 2294 stat_request->pages = pages;
2324 stat_request->page_count = page_count; 2295 stat_request->page_count = page_count;
2325 2296
2326 rbd_assert(obj_request->img_request); 2297 rbd_assert(obj_request->img_request);
2327 rbd_dev = obj_request->img_request->rbd_dev; 2298 rbd_dev = obj_request->img_request->rbd_dev;
2328 stat_request->osd_req = rbd_osd_req_create(rbd_dev, false, 2299 stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2329 stat_request); 2300 stat_request);
2330 if (!stat_request->osd_req) 2301 if (!stat_request->osd_req)
2331 goto out; 2302 goto out;
2332 stat_request->callback = rbd_img_obj_exists_callback; 2303 stat_request->callback = rbd_img_obj_exists_callback;
2333 2304
2334 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT); 2305 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2335 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0, 2306 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2336 false, false); 2307 false, false);
2337 rbd_osd_req_format_read(stat_request); 2308 rbd_osd_req_format_read(stat_request);
2338 2309
2339 osdc = &rbd_dev->rbd_client->client->osdc; 2310 osdc = &rbd_dev->rbd_client->client->osdc;
2340 ret = rbd_obj_request_submit(osdc, stat_request); 2311 ret = rbd_obj_request_submit(osdc, stat_request);
2341 out: 2312 out:
2342 if (ret) 2313 if (ret)
2343 rbd_obj_request_put(obj_request); 2314 rbd_obj_request_put(obj_request);
2344 2315
2345 return ret; 2316 return ret;
2346 } 2317 }
2347 2318
2348 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request) 2319 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2349 { 2320 {
2350 struct rbd_img_request *img_request; 2321 struct rbd_img_request *img_request;
2351 struct rbd_device *rbd_dev; 2322 struct rbd_device *rbd_dev;
2352 bool known; 2323 bool known;
2353 2324
2354 rbd_assert(obj_request_img_data_test(obj_request)); 2325 rbd_assert(obj_request_img_data_test(obj_request));
2355 2326
2356 img_request = obj_request->img_request; 2327 img_request = obj_request->img_request;
2357 rbd_assert(img_request); 2328 rbd_assert(img_request);
2358 rbd_dev = img_request->rbd_dev; 2329 rbd_dev = img_request->rbd_dev;
2359 2330
2360 /* 2331 /*
2361 * Only writes to layered images need special handling. 2332 * Only writes to layered images need special handling.
2362 * Reads and non-layered writes are simple object requests. 2333 * Reads and non-layered writes are simple object requests.
2363 * Layered writes that start beyond the end of the overlap 2334 * Layered writes that start beyond the end of the overlap
2364 * with the parent have no parent data, so they too are 2335 * with the parent have no parent data, so they too are
2365 * simple object requests. Finally, if the target object is 2336 * simple object requests. Finally, if the target object is
2366 * known to already exist, its parent data has already been 2337 * known to already exist, its parent data has already been
2367 * copied, so a write to the object can also be handled as a 2338 * copied, so a write to the object can also be handled as a
2368 * simple object request. 2339 * simple object request.
2369 */ 2340 */
2370 if (!img_request_write_test(img_request) || 2341 if (!img_request_write_test(img_request) ||
2371 !img_request_layered_test(img_request) || 2342 !img_request_layered_test(img_request) ||
2372 rbd_dev->parent_overlap <= obj_request->img_offset || 2343 rbd_dev->parent_overlap <= obj_request->img_offset ||
2373 ((known = obj_request_known_test(obj_request)) && 2344 ((known = obj_request_known_test(obj_request)) &&
2374 obj_request_exists_test(obj_request))) { 2345 obj_request_exists_test(obj_request))) {
2375 2346
2376 struct rbd_device *rbd_dev; 2347 struct rbd_device *rbd_dev;
2377 struct ceph_osd_client *osdc; 2348 struct ceph_osd_client *osdc;
2378 2349
2379 rbd_dev = obj_request->img_request->rbd_dev; 2350 rbd_dev = obj_request->img_request->rbd_dev;
2380 osdc = &rbd_dev->rbd_client->client->osdc; 2351 osdc = &rbd_dev->rbd_client->client->osdc;
2381 2352
2382 return rbd_obj_request_submit(osdc, obj_request); 2353 return rbd_obj_request_submit(osdc, obj_request);
2383 } 2354 }
2384 2355
2385 /* 2356 /*
2386 * It's a layered write. The target object might exist but 2357 * It's a layered write. The target object might exist but
2387 * we may not know that yet. If we know it doesn't exist, 2358 * we may not know that yet. If we know it doesn't exist,
2388 * start by reading the data for the full target object from 2359 * start by reading the data for the full target object from
2389 * the parent so we can use it for a copyup to the target. 2360 * the parent so we can use it for a copyup to the target.
2390 */ 2361 */
2391 if (known) 2362 if (known)
2392 return rbd_img_obj_parent_read_full(obj_request); 2363 return rbd_img_obj_parent_read_full(obj_request);
2393 2364
2394 /* We don't know whether the target exists. Go find out. */ 2365 /* We don't know whether the target exists. Go find out. */
2395 2366
2396 return rbd_img_obj_exists_submit(obj_request); 2367 return rbd_img_obj_exists_submit(obj_request);
2397 } 2368 }
2398 2369
2399 static int rbd_img_request_submit(struct rbd_img_request *img_request) 2370 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2400 { 2371 {
2401 struct rbd_obj_request *obj_request; 2372 struct rbd_obj_request *obj_request;
2402 struct rbd_obj_request *next_obj_request; 2373 struct rbd_obj_request *next_obj_request;
2403 2374
2404 dout("%s: img %p\n", __func__, img_request); 2375 dout("%s: img %p\n", __func__, img_request);
2405 for_each_obj_request_safe(img_request, obj_request, next_obj_request) { 2376 for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2406 int ret; 2377 int ret;
2407 2378
2408 ret = rbd_img_obj_request_submit(obj_request); 2379 ret = rbd_img_obj_request_submit(obj_request);
2409 if (ret) 2380 if (ret)
2410 return ret; 2381 return ret;
2411 } 2382 }
2412 2383
2413 return 0; 2384 return 0;
2414 } 2385 }
2415 2386
2416 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request) 2387 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2417 { 2388 {
2418 struct rbd_obj_request *obj_request; 2389 struct rbd_obj_request *obj_request;
2419 struct rbd_device *rbd_dev; 2390 struct rbd_device *rbd_dev;
2420 u64 obj_end; 2391 u64 obj_end;
2421 2392
2422 rbd_assert(img_request_child_test(img_request)); 2393 rbd_assert(img_request_child_test(img_request));
2423 2394
2424 obj_request = img_request->obj_request; 2395 obj_request = img_request->obj_request;
2425 rbd_assert(obj_request); 2396 rbd_assert(obj_request);
2426 rbd_assert(obj_request->img_request); 2397 rbd_assert(obj_request->img_request);
2427 2398
2428 obj_request->result = img_request->result; 2399 obj_request->result = img_request->result;
2429 if (obj_request->result) 2400 if (obj_request->result)
2430 goto out; 2401 goto out;
2431 2402
2432 /* 2403 /*
2433 * We need to zero anything beyond the parent overlap 2404 * We need to zero anything beyond the parent overlap
2434 * boundary. Since rbd_img_obj_request_read_callback() 2405 * boundary. Since rbd_img_obj_request_read_callback()
2435 * will zero anything beyond the end of a short read, an 2406 * will zero anything beyond the end of a short read, an
2436 * easy way to do this is to pretend the data from the 2407 * easy way to do this is to pretend the data from the
2437 * parent came up short--ending at the overlap boundary. 2408 * parent came up short--ending at the overlap boundary.
2438 */ 2409 */
2439 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length); 2410 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2440 obj_end = obj_request->img_offset + obj_request->length; 2411 obj_end = obj_request->img_offset + obj_request->length;
2441 rbd_dev = obj_request->img_request->rbd_dev; 2412 rbd_dev = obj_request->img_request->rbd_dev;
2442 if (obj_end > rbd_dev->parent_overlap) { 2413 if (obj_end > rbd_dev->parent_overlap) {
2443 u64 xferred = 0; 2414 u64 xferred = 0;
2444 2415
2445 if (obj_request->img_offset < rbd_dev->parent_overlap) 2416 if (obj_request->img_offset < rbd_dev->parent_overlap)
2446 xferred = rbd_dev->parent_overlap - 2417 xferred = rbd_dev->parent_overlap -
2447 obj_request->img_offset; 2418 obj_request->img_offset;
2448 2419
2449 obj_request->xferred = min(img_request->xferred, xferred); 2420 obj_request->xferred = min(img_request->xferred, xferred);
2450 } else { 2421 } else {
2451 obj_request->xferred = img_request->xferred; 2422 obj_request->xferred = img_request->xferred;
2452 } 2423 }
2453 out: 2424 out:
2454 rbd_img_obj_request_read_callback(obj_request); 2425 rbd_img_obj_request_read_callback(obj_request);
2455 rbd_obj_request_complete(obj_request); 2426 rbd_obj_request_complete(obj_request);
2456 } 2427 }
2457 2428
2458 static void rbd_img_parent_read(struct rbd_obj_request *obj_request) 2429 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2459 { 2430 {
2460 struct rbd_device *rbd_dev; 2431 struct rbd_device *rbd_dev;
2461 struct rbd_img_request *img_request; 2432 struct rbd_img_request *img_request;
2462 int result; 2433 int result;
2463 2434
2464 rbd_assert(obj_request_img_data_test(obj_request)); 2435 rbd_assert(obj_request_img_data_test(obj_request));
2465 rbd_assert(obj_request->img_request != NULL); 2436 rbd_assert(obj_request->img_request != NULL);
2466 rbd_assert(obj_request->result == (s32) -ENOENT); 2437 rbd_assert(obj_request->result == (s32) -ENOENT);
2467 rbd_assert(obj_request->type == OBJ_REQUEST_BIO); 2438 rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2468 2439
2469 rbd_dev = obj_request->img_request->rbd_dev; 2440 rbd_dev = obj_request->img_request->rbd_dev;
2470 rbd_assert(rbd_dev->parent != NULL); 2441 rbd_assert(rbd_dev->parent != NULL);
2471 /* rbd_read_finish(obj_request, obj_request->length); */ 2442 /* rbd_read_finish(obj_request, obj_request->length); */
2472 img_request = rbd_img_request_create(rbd_dev->parent, 2443 img_request = rbd_img_request_create(rbd_dev->parent,
2473 obj_request->img_offset, 2444 obj_request->img_offset,
2474 obj_request->length, 2445 obj_request->length,
2475 false, true); 2446 false, true);
2476 result = -ENOMEM; 2447 result = -ENOMEM;
2477 if (!img_request) 2448 if (!img_request)
2478 goto out_err; 2449 goto out_err;
2479 2450
2480 rbd_obj_request_get(obj_request); 2451 rbd_obj_request_get(obj_request);
2481 img_request->obj_request = obj_request; 2452 img_request->obj_request = obj_request;
2482 2453
2483 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO, 2454 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2484 obj_request->bio_list); 2455 obj_request->bio_list);
2485 if (result) 2456 if (result)
2486 goto out_err; 2457 goto out_err;
2487 2458
2488 img_request->callback = rbd_img_parent_read_callback; 2459 img_request->callback = rbd_img_parent_read_callback;
2489 result = rbd_img_request_submit(img_request); 2460 result = rbd_img_request_submit(img_request);
2490 if (result) 2461 if (result)
2491 goto out_err; 2462 goto out_err;
2492 2463
2493 return; 2464 return;
2494 out_err: 2465 out_err:
2495 if (img_request) 2466 if (img_request)
2496 rbd_img_request_put(img_request); 2467 rbd_img_request_put(img_request);
2497 obj_request->result = result; 2468 obj_request->result = result;
2498 obj_request->xferred = 0; 2469 obj_request->xferred = 0;
2499 obj_request_done_set(obj_request); 2470 obj_request_done_set(obj_request);
2500 } 2471 }
2501 2472
2502 static int rbd_obj_notify_ack(struct rbd_device *rbd_dev, 2473 static int rbd_obj_notify_ack(struct rbd_device *rbd_dev,
2503 u64 ver, u64 notify_id) 2474 u64 ver, u64 notify_id)
2504 { 2475 {
2505 struct rbd_obj_request *obj_request; 2476 struct rbd_obj_request *obj_request;
2506 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 2477 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2507 int ret; 2478 int ret;
2508 2479
2509 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0, 2480 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2510 OBJ_REQUEST_NODATA); 2481 OBJ_REQUEST_NODATA);
2511 if (!obj_request) 2482 if (!obj_request)
2512 return -ENOMEM; 2483 return -ENOMEM;
2513 2484
2514 ret = -ENOMEM; 2485 ret = -ENOMEM;
2515 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request); 2486 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2516 if (!obj_request->osd_req) 2487 if (!obj_request->osd_req)
2517 goto out; 2488 goto out;
2518 obj_request->callback = rbd_obj_request_put; 2489 obj_request->callback = rbd_obj_request_put;
2519 2490
2520 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK, 2491 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2521 notify_id, ver, 0); 2492 notify_id, ver, 0);
2522 rbd_osd_req_format_read(obj_request); 2493 rbd_osd_req_format_read(obj_request);
2523 2494
2524 ret = rbd_obj_request_submit(osdc, obj_request); 2495 ret = rbd_obj_request_submit(osdc, obj_request);
2525 out: 2496 out:
2526 if (ret) 2497 if (ret)
2527 rbd_obj_request_put(obj_request); 2498 rbd_obj_request_put(obj_request);
2528 2499
2529 return ret; 2500 return ret;
2530 } 2501 }
2531 2502
2532 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data) 2503 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2533 { 2504 {
2534 struct rbd_device *rbd_dev = (struct rbd_device *)data; 2505 struct rbd_device *rbd_dev = (struct rbd_device *)data;
2535 u64 hver; 2506 u64 hver;
2536 2507
2537 if (!rbd_dev) 2508 if (!rbd_dev)
2538 return; 2509 return;
2539 2510
2540 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__, 2511 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2541 rbd_dev->header_name, (unsigned long long) notify_id, 2512 rbd_dev->header_name, (unsigned long long) notify_id,
2542 (unsigned int) opcode); 2513 (unsigned int) opcode);
2543 (void)rbd_dev_refresh(rbd_dev, &hver); 2514 (void)rbd_dev_refresh(rbd_dev, &hver);
2544 2515
2545 rbd_obj_notify_ack(rbd_dev, hver, notify_id); 2516 rbd_obj_notify_ack(rbd_dev, hver, notify_id);
2546 } 2517 }
2547 2518
2548 /* 2519 /*
2549 * Request sync osd watch/unwatch. The value of "start" determines 2520 * Request sync osd watch/unwatch. The value of "start" determines
2550 * whether a watch request is being initiated or torn down. 2521 * whether a watch request is being initiated or torn down.
2551 */ 2522 */
2552 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, int start) 2523 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, int start)
2553 { 2524 {
2554 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 2525 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2555 struct rbd_obj_request *obj_request; 2526 struct rbd_obj_request *obj_request;
2556 int ret; 2527 int ret;
2557 2528
2558 rbd_assert(start ^ !!rbd_dev->watch_event); 2529 rbd_assert(start ^ !!rbd_dev->watch_event);
2559 rbd_assert(start ^ !!rbd_dev->watch_request); 2530 rbd_assert(start ^ !!rbd_dev->watch_request);
2560 2531
2561 if (start) { 2532 if (start) {
2562 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev, 2533 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2563 &rbd_dev->watch_event); 2534 &rbd_dev->watch_event);
2564 if (ret < 0) 2535 if (ret < 0)
2565 return ret; 2536 return ret;
2566 rbd_assert(rbd_dev->watch_event != NULL); 2537 rbd_assert(rbd_dev->watch_event != NULL);
2567 } 2538 }
2568 2539
2569 ret = -ENOMEM; 2540 ret = -ENOMEM;
2570 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0, 2541 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2571 OBJ_REQUEST_NODATA); 2542 OBJ_REQUEST_NODATA);
2572 if (!obj_request) 2543 if (!obj_request)
2573 goto out_cancel; 2544 goto out_cancel;
2574 2545
2575 obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request); 2546 obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2576 if (!obj_request->osd_req) 2547 if (!obj_request->osd_req)
2577 goto out_cancel; 2548 goto out_cancel;
2578 2549
2579 if (start) 2550 if (start)
2580 ceph_osdc_set_request_linger(osdc, obj_request->osd_req); 2551 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2581 else 2552 else
2582 ceph_osdc_unregister_linger_request(osdc, 2553 ceph_osdc_unregister_linger_request(osdc,
2583 rbd_dev->watch_request->osd_req); 2554 rbd_dev->watch_request->osd_req);
2584 2555
2585 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH, 2556 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2586 rbd_dev->watch_event->cookie, 2557 rbd_dev->watch_event->cookie,
2587 rbd_dev->header.obj_version, start); 2558 rbd_dev->header.obj_version, start);
2588 rbd_osd_req_format_write(obj_request); 2559 rbd_osd_req_format_write(obj_request);
2589 2560
2590 ret = rbd_obj_request_submit(osdc, obj_request); 2561 ret = rbd_obj_request_submit(osdc, obj_request);
2591 if (ret) 2562 if (ret)
2592 goto out_cancel; 2563 goto out_cancel;
2593 ret = rbd_obj_request_wait(obj_request); 2564 ret = rbd_obj_request_wait(obj_request);
2594 if (ret) 2565 if (ret)
2595 goto out_cancel; 2566 goto out_cancel;
2596 ret = obj_request->result; 2567 ret = obj_request->result;
2597 if (ret) 2568 if (ret)
2598 goto out_cancel; 2569 goto out_cancel;
2599 2570
2600 /* 2571 /*
2601 * A watch request is set to linger, so the underlying osd 2572 * A watch request is set to linger, so the underlying osd
2602 * request won't go away until we unregister it. We retain 2573 * request won't go away until we unregister it. We retain
2603 * a pointer to the object request during that time (in 2574 * a pointer to the object request during that time (in
2604 * rbd_dev->watch_request), so we'll keep a reference to 2575 * rbd_dev->watch_request), so we'll keep a reference to
2605 * it. We'll drop that reference (below) after we've 2576 * it. We'll drop that reference (below) after we've
2606 * unregistered it. 2577 * unregistered it.
2607 */ 2578 */
2608 if (start) { 2579 if (start) {
2609 rbd_dev->watch_request = obj_request; 2580 rbd_dev->watch_request = obj_request;
2610 2581
2611 return 0; 2582 return 0;
2612 } 2583 }
2613 2584
2614 /* We have successfully torn down the watch request */ 2585 /* We have successfully torn down the watch request */
2615 2586
2616 rbd_obj_request_put(rbd_dev->watch_request); 2587 rbd_obj_request_put(rbd_dev->watch_request);
2617 rbd_dev->watch_request = NULL; 2588 rbd_dev->watch_request = NULL;
2618 out_cancel: 2589 out_cancel:
2619 /* Cancel the event if we're tearing down, or on error */ 2590 /* Cancel the event if we're tearing down, or on error */
2620 ceph_osdc_cancel_event(rbd_dev->watch_event); 2591 ceph_osdc_cancel_event(rbd_dev->watch_event);
2621 rbd_dev->watch_event = NULL; 2592 rbd_dev->watch_event = NULL;
2622 if (obj_request) 2593 if (obj_request)
2623 rbd_obj_request_put(obj_request); 2594 rbd_obj_request_put(obj_request);
2624 2595
2625 return ret; 2596 return ret;
2626 } 2597 }
2627 2598
2628 /* 2599 /*
2629 * Synchronous osd object method call. Returns the number of bytes 2600 * Synchronous osd object method call. Returns the number of bytes
2630 * returned in the outbound buffer, or a negative error code. 2601 * returned in the outbound buffer, or a negative error code.
2631 */ 2602 */
2632 static int rbd_obj_method_sync(struct rbd_device *rbd_dev, 2603 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2633 const char *object_name, 2604 const char *object_name,
2634 const char *class_name, 2605 const char *class_name,
2635 const char *method_name, 2606 const char *method_name,
2636 const void *outbound, 2607 const void *outbound,
2637 size_t outbound_size, 2608 size_t outbound_size,
2638 void *inbound, 2609 void *inbound,
2639 size_t inbound_size, 2610 size_t inbound_size,
2640 u64 *version) 2611 u64 *version)
2641 { 2612 {
2642 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 2613 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2643 struct rbd_obj_request *obj_request; 2614 struct rbd_obj_request *obj_request;
2644 struct page **pages; 2615 struct page **pages;
2645 u32 page_count; 2616 u32 page_count;
2646 int ret; 2617 int ret;
2647 2618
2648 /* 2619 /*
2649 * Method calls are ultimately read operations. The result 2620 * Method calls are ultimately read operations. The result
2650 * should placed into the inbound buffer provided. They 2621 * should placed into the inbound buffer provided. They
2651 * also supply outbound data--parameters for the object 2622 * also supply outbound data--parameters for the object
2652 * method. Currently if this is present it will be a 2623 * method. Currently if this is present it will be a
2653 * snapshot id. 2624 * snapshot id.
2654 */ 2625 */
2655 page_count = (u32)calc_pages_for(0, inbound_size); 2626 page_count = (u32)calc_pages_for(0, inbound_size);
2656 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 2627 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2657 if (IS_ERR(pages)) 2628 if (IS_ERR(pages))
2658 return PTR_ERR(pages); 2629 return PTR_ERR(pages);
2659 2630
2660 ret = -ENOMEM; 2631 ret = -ENOMEM;
2661 obj_request = rbd_obj_request_create(object_name, 0, inbound_size, 2632 obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2662 OBJ_REQUEST_PAGES); 2633 OBJ_REQUEST_PAGES);
2663 if (!obj_request) 2634 if (!obj_request)
2664 goto out; 2635 goto out;
2665 2636
2666 obj_request->pages = pages; 2637 obj_request->pages = pages;
2667 obj_request->page_count = page_count; 2638 obj_request->page_count = page_count;
2668 2639
2669 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request); 2640 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2670 if (!obj_request->osd_req) 2641 if (!obj_request->osd_req)
2671 goto out; 2642 goto out;
2672 2643
2673 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL, 2644 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
2674 class_name, method_name); 2645 class_name, method_name);
2675 if (outbound_size) { 2646 if (outbound_size) {
2676 struct ceph_pagelist *pagelist; 2647 struct ceph_pagelist *pagelist;
2677 2648
2678 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS); 2649 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
2679 if (!pagelist) 2650 if (!pagelist)
2680 goto out; 2651 goto out;
2681 2652
2682 ceph_pagelist_init(pagelist); 2653 ceph_pagelist_init(pagelist);
2683 ceph_pagelist_append(pagelist, outbound, outbound_size); 2654 ceph_pagelist_append(pagelist, outbound, outbound_size);
2684 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0, 2655 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
2685 pagelist); 2656 pagelist);
2686 } 2657 }
2687 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0, 2658 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
2688 obj_request->pages, inbound_size, 2659 obj_request->pages, inbound_size,
2689 0, false, false); 2660 0, false, false);
2690 rbd_osd_req_format_read(obj_request); 2661 rbd_osd_req_format_read(obj_request);
2691 2662
2692 ret = rbd_obj_request_submit(osdc, obj_request); 2663 ret = rbd_obj_request_submit(osdc, obj_request);
2693 if (ret) 2664 if (ret)
2694 goto out; 2665 goto out;
2695 ret = rbd_obj_request_wait(obj_request); 2666 ret = rbd_obj_request_wait(obj_request);
2696 if (ret) 2667 if (ret)
2697 goto out; 2668 goto out;
2698 2669
2699 ret = obj_request->result; 2670 ret = obj_request->result;
2700 if (ret < 0) 2671 if (ret < 0)
2701 goto out; 2672 goto out;
2702 2673
2703 rbd_assert(obj_request->xferred < (u64)INT_MAX); 2674 rbd_assert(obj_request->xferred < (u64)INT_MAX);
2704 ret = (int)obj_request->xferred; 2675 ret = (int)obj_request->xferred;
2705 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred); 2676 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
2706 if (version) 2677 if (version)
2707 *version = obj_request->version; 2678 *version = obj_request->version;
2708 out: 2679 out:
2709 if (obj_request) 2680 if (obj_request)
2710 rbd_obj_request_put(obj_request); 2681 rbd_obj_request_put(obj_request);
2711 else 2682 else
2712 ceph_release_page_vector(pages, page_count); 2683 ceph_release_page_vector(pages, page_count);
2713 2684
2714 return ret; 2685 return ret;
2715 } 2686 }
2716 2687
2717 static void rbd_request_fn(struct request_queue *q) 2688 static void rbd_request_fn(struct request_queue *q)
2718 __releases(q->queue_lock) __acquires(q->queue_lock) 2689 __releases(q->queue_lock) __acquires(q->queue_lock)
2719 { 2690 {
2720 struct rbd_device *rbd_dev = q->queuedata; 2691 struct rbd_device *rbd_dev = q->queuedata;
2721 bool read_only = rbd_dev->mapping.read_only; 2692 bool read_only = rbd_dev->mapping.read_only;
2722 struct request *rq; 2693 struct request *rq;
2723 int result; 2694 int result;
2724 2695
2725 while ((rq = blk_fetch_request(q))) { 2696 while ((rq = blk_fetch_request(q))) {
2726 bool write_request = rq_data_dir(rq) == WRITE; 2697 bool write_request = rq_data_dir(rq) == WRITE;
2727 struct rbd_img_request *img_request; 2698 struct rbd_img_request *img_request;
2728 u64 offset; 2699 u64 offset;
2729 u64 length; 2700 u64 length;
2730 2701
2731 /* Ignore any non-FS requests that filter through. */ 2702 /* Ignore any non-FS requests that filter through. */
2732 2703
2733 if (rq->cmd_type != REQ_TYPE_FS) { 2704 if (rq->cmd_type != REQ_TYPE_FS) {
2734 dout("%s: non-fs request type %d\n", __func__, 2705 dout("%s: non-fs request type %d\n", __func__,
2735 (int) rq->cmd_type); 2706 (int) rq->cmd_type);
2736 __blk_end_request_all(rq, 0); 2707 __blk_end_request_all(rq, 0);
2737 continue; 2708 continue;
2738 } 2709 }
2739 2710
2740 /* Ignore/skip any zero-length requests */ 2711 /* Ignore/skip any zero-length requests */
2741 2712
2742 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT; 2713 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
2743 length = (u64) blk_rq_bytes(rq); 2714 length = (u64) blk_rq_bytes(rq);
2744 2715
2745 if (!length) { 2716 if (!length) {
2746 dout("%s: zero-length request\n", __func__); 2717 dout("%s: zero-length request\n", __func__);
2747 __blk_end_request_all(rq, 0); 2718 __blk_end_request_all(rq, 0);
2748 continue; 2719 continue;
2749 } 2720 }
2750 2721
2751 spin_unlock_irq(q->queue_lock); 2722 spin_unlock_irq(q->queue_lock);
2752 2723
2753 /* Disallow writes to a read-only device */ 2724 /* Disallow writes to a read-only device */
2754 2725
2755 if (write_request) { 2726 if (write_request) {
2756 result = -EROFS; 2727 result = -EROFS;
2757 if (read_only) 2728 if (read_only)
2758 goto end_request; 2729 goto end_request;
2759 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP); 2730 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
2760 } 2731 }
2761 2732
2762 /* 2733 /*
2763 * Quit early if the mapped snapshot no longer 2734 * Quit early if the mapped snapshot no longer
2764 * exists. It's still possible the snapshot will 2735 * exists. It's still possible the snapshot will
2765 * have disappeared by the time our request arrives 2736 * have disappeared by the time our request arrives
2766 * at the osd, but there's no sense in sending it if 2737 * at the osd, but there's no sense in sending it if
2767 * we already know. 2738 * we already know.
2768 */ 2739 */
2769 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) { 2740 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
2770 dout("request for non-existent snapshot"); 2741 dout("request for non-existent snapshot");
2771 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP); 2742 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
2772 result = -ENXIO; 2743 result = -ENXIO;
2773 goto end_request; 2744 goto end_request;
2774 } 2745 }
2775 2746
2776 result = -EINVAL; 2747 result = -EINVAL;
2777 if (offset && length > U64_MAX - offset + 1) { 2748 if (offset && length > U64_MAX - offset + 1) {
2778 rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n", 2749 rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
2779 offset, length); 2750 offset, length);
2780 goto end_request; /* Shouldn't happen */ 2751 goto end_request; /* Shouldn't happen */
2781 } 2752 }
2782 2753
2783 result = -ENOMEM; 2754 result = -ENOMEM;
2784 img_request = rbd_img_request_create(rbd_dev, offset, length, 2755 img_request = rbd_img_request_create(rbd_dev, offset, length,
2785 write_request, false); 2756 write_request, false);
2786 if (!img_request) 2757 if (!img_request)
2787 goto end_request; 2758 goto end_request;
2788 2759
2789 img_request->rq = rq; 2760 img_request->rq = rq;
2790 2761
2791 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO, 2762 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2792 rq->bio); 2763 rq->bio);
2793 if (!result) 2764 if (!result)
2794 result = rbd_img_request_submit(img_request); 2765 result = rbd_img_request_submit(img_request);
2795 if (result) 2766 if (result)
2796 rbd_img_request_put(img_request); 2767 rbd_img_request_put(img_request);
2797 end_request: 2768 end_request:
2798 spin_lock_irq(q->queue_lock); 2769 spin_lock_irq(q->queue_lock);
2799 if (result < 0) { 2770 if (result < 0) {
2800 rbd_warn(rbd_dev, "%s %llx at %llx result %d\n", 2771 rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
2801 write_request ? "write" : "read", 2772 write_request ? "write" : "read",
2802 length, offset, result); 2773 length, offset, result);
2803 2774
2804 __blk_end_request_all(rq, result); 2775 __blk_end_request_all(rq, result);
2805 } 2776 }
2806 } 2777 }
2807 } 2778 }
2808 2779
2809 /* 2780 /*
2810 * a queue callback. Makes sure that we don't create a bio that spans across 2781 * a queue callback. Makes sure that we don't create a bio that spans across
2811 * multiple osd objects. One exception would be with a single page bios, 2782 * multiple osd objects. One exception would be with a single page bios,
2812 * which we handle later at bio_chain_clone_range() 2783 * which we handle later at bio_chain_clone_range()
2813 */ 2784 */
2814 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd, 2785 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2815 struct bio_vec *bvec) 2786 struct bio_vec *bvec)
2816 { 2787 {
2817 struct rbd_device *rbd_dev = q->queuedata; 2788 struct rbd_device *rbd_dev = q->queuedata;
2818 sector_t sector_offset; 2789 sector_t sector_offset;
2819 sector_t sectors_per_obj; 2790 sector_t sectors_per_obj;
2820 sector_t obj_sector_offset; 2791 sector_t obj_sector_offset;
2821 int ret; 2792 int ret;
2822 2793
2823 /* 2794 /*
2824 * Find how far into its rbd object the partition-relative 2795 * Find how far into its rbd object the partition-relative
2825 * bio start sector is to offset relative to the enclosing 2796 * bio start sector is to offset relative to the enclosing
2826 * device. 2797 * device.
2827 */ 2798 */
2828 sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector; 2799 sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
2829 sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT); 2800 sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
2830 obj_sector_offset = sector_offset & (sectors_per_obj - 1); 2801 obj_sector_offset = sector_offset & (sectors_per_obj - 1);
2831 2802
2832 /* 2803 /*
2833 * Compute the number of bytes from that offset to the end 2804 * Compute the number of bytes from that offset to the end
2834 * of the object. Account for what's already used by the bio. 2805 * of the object. Account for what's already used by the bio.
2835 */ 2806 */
2836 ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT; 2807 ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
2837 if (ret > bmd->bi_size) 2808 if (ret > bmd->bi_size)
2838 ret -= bmd->bi_size; 2809 ret -= bmd->bi_size;
2839 else 2810 else
2840 ret = 0; 2811 ret = 0;
2841 2812
2842 /* 2813 /*
2843 * Don't send back more than was asked for. And if the bio 2814 * Don't send back more than was asked for. And if the bio
2844 * was empty, let the whole thing through because: "Note 2815 * was empty, let the whole thing through because: "Note
2845 * that a block device *must* allow a single page to be 2816 * that a block device *must* allow a single page to be
2846 * added to an empty bio." 2817 * added to an empty bio."
2847 */ 2818 */
2848 rbd_assert(bvec->bv_len <= PAGE_SIZE); 2819 rbd_assert(bvec->bv_len <= PAGE_SIZE);
2849 if (ret > (int) bvec->bv_len || !bmd->bi_size) 2820 if (ret > (int) bvec->bv_len || !bmd->bi_size)
2850 ret = (int) bvec->bv_len; 2821 ret = (int) bvec->bv_len;
2851 2822
2852 return ret; 2823 return ret;
2853 } 2824 }
2854 2825
2855 static void rbd_free_disk(struct rbd_device *rbd_dev) 2826 static void rbd_free_disk(struct rbd_device *rbd_dev)
2856 { 2827 {
2857 struct gendisk *disk = rbd_dev->disk; 2828 struct gendisk *disk = rbd_dev->disk;
2858 2829
2859 if (!disk) 2830 if (!disk)
2860 return; 2831 return;
2861 2832
2862 rbd_dev->disk = NULL; 2833 rbd_dev->disk = NULL;
2863 if (disk->flags & GENHD_FL_UP) { 2834 if (disk->flags & GENHD_FL_UP) {
2864 del_gendisk(disk); 2835 del_gendisk(disk);
2865 if (disk->queue) 2836 if (disk->queue)
2866 blk_cleanup_queue(disk->queue); 2837 blk_cleanup_queue(disk->queue);
2867 } 2838 }
2868 put_disk(disk); 2839 put_disk(disk);
2869 } 2840 }
2870 2841
2871 static int rbd_obj_read_sync(struct rbd_device *rbd_dev, 2842 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
2872 const char *object_name, 2843 const char *object_name,
2873 u64 offset, u64 length, 2844 u64 offset, u64 length,
2874 void *buf, u64 *version) 2845 void *buf, u64 *version)
2875 2846
2876 { 2847 {
2877 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 2848 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2878 struct rbd_obj_request *obj_request; 2849 struct rbd_obj_request *obj_request;
2879 struct page **pages = NULL; 2850 struct page **pages = NULL;
2880 u32 page_count; 2851 u32 page_count;
2881 size_t size; 2852 size_t size;
2882 int ret; 2853 int ret;
2883 2854
2884 page_count = (u32) calc_pages_for(offset, length); 2855 page_count = (u32) calc_pages_for(offset, length);
2885 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 2856 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2886 if (IS_ERR(pages)) 2857 if (IS_ERR(pages))
2887 ret = PTR_ERR(pages); 2858 ret = PTR_ERR(pages);
2888 2859
2889 ret = -ENOMEM; 2860 ret = -ENOMEM;
2890 obj_request = rbd_obj_request_create(object_name, offset, length, 2861 obj_request = rbd_obj_request_create(object_name, offset, length,
2891 OBJ_REQUEST_PAGES); 2862 OBJ_REQUEST_PAGES);
2892 if (!obj_request) 2863 if (!obj_request)
2893 goto out; 2864 goto out;
2894 2865
2895 obj_request->pages = pages; 2866 obj_request->pages = pages;
2896 obj_request->page_count = page_count; 2867 obj_request->page_count = page_count;
2897 2868
2898 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request); 2869 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2899 if (!obj_request->osd_req) 2870 if (!obj_request->osd_req)
2900 goto out; 2871 goto out;
2901 2872
2902 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ, 2873 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
2903 offset, length, 0, 0); 2874 offset, length, 0, 0);
2904 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0, 2875 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
2905 obj_request->pages, 2876 obj_request->pages,
2906 obj_request->length, 2877 obj_request->length,
2907 obj_request->offset & ~PAGE_MASK, 2878 obj_request->offset & ~PAGE_MASK,
2908 false, false); 2879 false, false);
2909 rbd_osd_req_format_read(obj_request); 2880 rbd_osd_req_format_read(obj_request);
2910 2881
2911 ret = rbd_obj_request_submit(osdc, obj_request); 2882 ret = rbd_obj_request_submit(osdc, obj_request);
2912 if (ret) 2883 if (ret)
2913 goto out; 2884 goto out;
2914 ret = rbd_obj_request_wait(obj_request); 2885 ret = rbd_obj_request_wait(obj_request);
2915 if (ret) 2886 if (ret)
2916 goto out; 2887 goto out;
2917 2888
2918 ret = obj_request->result; 2889 ret = obj_request->result;
2919 if (ret < 0) 2890 if (ret < 0)
2920 goto out; 2891 goto out;
2921 2892
2922 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX); 2893 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
2923 size = (size_t) obj_request->xferred; 2894 size = (size_t) obj_request->xferred;
2924 ceph_copy_from_page_vector(pages, buf, 0, size); 2895 ceph_copy_from_page_vector(pages, buf, 0, size);
2925 rbd_assert(size <= (size_t) INT_MAX); 2896 rbd_assert(size <= (size_t) INT_MAX);
2926 ret = (int) size; 2897 ret = (int) size;
2927 if (version) 2898 if (version)
2928 *version = obj_request->version; 2899 *version = obj_request->version;
2929 out: 2900 out:
2930 if (obj_request) 2901 if (obj_request)
2931 rbd_obj_request_put(obj_request); 2902 rbd_obj_request_put(obj_request);
2932 else 2903 else
2933 ceph_release_page_vector(pages, page_count); 2904 ceph_release_page_vector(pages, page_count);
2934 2905
2935 return ret; 2906 return ret;
2936 } 2907 }
2937 2908
2938 /* 2909 /*
2939 * Read the complete header for the given rbd device. 2910 * Read the complete header for the given rbd device.
2940 * 2911 *
2941 * Returns a pointer to a dynamically-allocated buffer containing 2912 * Returns a pointer to a dynamically-allocated buffer containing
2942 * the complete and validated header. Caller can pass the address 2913 * the complete and validated header. Caller can pass the address
2943 * of a variable that will be filled in with the version of the 2914 * of a variable that will be filled in with the version of the
2944 * header object at the time it was read. 2915 * header object at the time it was read.
2945 * 2916 *
2946 * Returns a pointer-coded errno if a failure occurs. 2917 * Returns a pointer-coded errno if a failure occurs.
2947 */ 2918 */
2948 static struct rbd_image_header_ondisk * 2919 static struct rbd_image_header_ondisk *
2949 rbd_dev_v1_header_read(struct rbd_device *rbd_dev, u64 *version) 2920 rbd_dev_v1_header_read(struct rbd_device *rbd_dev, u64 *version)
2950 { 2921 {
2951 struct rbd_image_header_ondisk *ondisk = NULL; 2922 struct rbd_image_header_ondisk *ondisk = NULL;
2952 u32 snap_count = 0; 2923 u32 snap_count = 0;
2953 u64 names_size = 0; 2924 u64 names_size = 0;
2954 u32 want_count; 2925 u32 want_count;
2955 int ret; 2926 int ret;
2956 2927
2957 /* 2928 /*
2958 * The complete header will include an array of its 64-bit 2929 * The complete header will include an array of its 64-bit
2959 * snapshot ids, followed by the names of those snapshots as 2930 * snapshot ids, followed by the names of those snapshots as
2960 * a contiguous block of NUL-terminated strings. Note that 2931 * a contiguous block of NUL-terminated strings. Note that
2961 * the number of snapshots could change by the time we read 2932 * the number of snapshots could change by the time we read
2962 * it in, in which case we re-read it. 2933 * it in, in which case we re-read it.
2963 */ 2934 */
2964 do { 2935 do {
2965 size_t size; 2936 size_t size;
2966 2937
2967 kfree(ondisk); 2938 kfree(ondisk);
2968 2939
2969 size = sizeof (*ondisk); 2940 size = sizeof (*ondisk);
2970 size += snap_count * sizeof (struct rbd_image_snap_ondisk); 2941 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
2971 size += names_size; 2942 size += names_size;
2972 ondisk = kmalloc(size, GFP_KERNEL); 2943 ondisk = kmalloc(size, GFP_KERNEL);
2973 if (!ondisk) 2944 if (!ondisk)
2974 return ERR_PTR(-ENOMEM); 2945 return ERR_PTR(-ENOMEM);
2975 2946
2976 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name, 2947 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
2977 0, size, ondisk, version); 2948 0, size, ondisk, version);
2978 if (ret < 0) 2949 if (ret < 0)
2979 goto out_err; 2950 goto out_err;
2980 if ((size_t)ret < size) { 2951 if ((size_t)ret < size) {
2981 ret = -ENXIO; 2952 ret = -ENXIO;
2982 rbd_warn(rbd_dev, "short header read (want %zd got %d)", 2953 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
2983 size, ret); 2954 size, ret);
2984 goto out_err; 2955 goto out_err;
2985 } 2956 }
2986 if (!rbd_dev_ondisk_valid(ondisk)) { 2957 if (!rbd_dev_ondisk_valid(ondisk)) {
2987 ret = -ENXIO; 2958 ret = -ENXIO;
2988 rbd_warn(rbd_dev, "invalid header"); 2959 rbd_warn(rbd_dev, "invalid header");
2989 goto out_err; 2960 goto out_err;
2990 } 2961 }
2991 2962
2992 names_size = le64_to_cpu(ondisk->snap_names_len); 2963 names_size = le64_to_cpu(ondisk->snap_names_len);
2993 want_count = snap_count; 2964 want_count = snap_count;
2994 snap_count = le32_to_cpu(ondisk->snap_count); 2965 snap_count = le32_to_cpu(ondisk->snap_count);
2995 } while (snap_count != want_count); 2966 } while (snap_count != want_count);
2996 2967
2997 return ondisk; 2968 return ondisk;
2998 2969
2999 out_err: 2970 out_err:
3000 kfree(ondisk); 2971 kfree(ondisk);
3001 2972
3002 return ERR_PTR(ret); 2973 return ERR_PTR(ret);
3003 } 2974 }
3004 2975
3005 /* 2976 /*
3006 * reload the ondisk the header 2977 * reload the ondisk the header
3007 */ 2978 */
3008 static int rbd_read_header(struct rbd_device *rbd_dev, 2979 static int rbd_read_header(struct rbd_device *rbd_dev,
3009 struct rbd_image_header *header) 2980 struct rbd_image_header *header)
3010 { 2981 {
3011 struct rbd_image_header_ondisk *ondisk; 2982 struct rbd_image_header_ondisk *ondisk;
3012 u64 ver = 0; 2983 u64 ver = 0;
3013 int ret; 2984 int ret;
3014 2985
3015 ondisk = rbd_dev_v1_header_read(rbd_dev, &ver); 2986 ondisk = rbd_dev_v1_header_read(rbd_dev, &ver);
3016 if (IS_ERR(ondisk)) 2987 if (IS_ERR(ondisk))
3017 return PTR_ERR(ondisk); 2988 return PTR_ERR(ondisk);
3018 ret = rbd_header_from_disk(header, ondisk); 2989 ret = rbd_header_from_disk(header, ondisk);
3019 if (ret >= 0) 2990 if (ret >= 0)
3020 header->obj_version = ver; 2991 header->obj_version = ver;
3021 kfree(ondisk); 2992 kfree(ondisk);
3022 2993
3023 return ret; 2994 return ret;
3024 } 2995 }
3025 2996
3026 static void rbd_remove_all_snaps(struct rbd_device *rbd_dev) 2997 static void rbd_remove_all_snaps(struct rbd_device *rbd_dev)
3027 { 2998 {
3028 struct rbd_snap *snap; 2999 struct rbd_snap *snap;
3029 struct rbd_snap *next; 3000 struct rbd_snap *next;
3030 3001
3031 list_for_each_entry_safe(snap, next, &rbd_dev->snaps, node) { 3002 list_for_each_entry_safe(snap, next, &rbd_dev->snaps, node) {
3032 list_del(&snap->node); 3003 list_del(&snap->node);
3033 rbd_snap_destroy(snap); 3004 rbd_snap_destroy(snap);
3034 } 3005 }
3035 } 3006 }
3036 3007
3037 static void rbd_update_mapping_size(struct rbd_device *rbd_dev) 3008 static void rbd_update_mapping_size(struct rbd_device *rbd_dev)
3038 { 3009 {
3039 if (rbd_dev->spec->snap_id != CEPH_NOSNAP) 3010 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
3040 return; 3011 return;
3041 3012
3042 if (rbd_dev->mapping.size != rbd_dev->header.image_size) { 3013 if (rbd_dev->mapping.size != rbd_dev->header.image_size) {
3043 sector_t size; 3014 sector_t size;
3044 3015
3045 rbd_dev->mapping.size = rbd_dev->header.image_size; 3016 rbd_dev->mapping.size = rbd_dev->header.image_size;
3046 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE; 3017 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3047 dout("setting size to %llu sectors", (unsigned long long)size); 3018 dout("setting size to %llu sectors", (unsigned long long)size);
3048 set_capacity(rbd_dev->disk, size); 3019 set_capacity(rbd_dev->disk, size);
3049 } 3020 }
3050 } 3021 }
3051 3022
3052 /* 3023 /*
3053 * only read the first part of the ondisk header, without the snaps info 3024 * only read the first part of the ondisk header, without the snaps info
3054 */ 3025 */
3055 static int rbd_dev_v1_refresh(struct rbd_device *rbd_dev, u64 *hver) 3026 static int rbd_dev_v1_refresh(struct rbd_device *rbd_dev, u64 *hver)
3056 { 3027 {
3057 int ret; 3028 int ret;
3058 struct rbd_image_header h; 3029 struct rbd_image_header h;
3059 3030
3060 ret = rbd_read_header(rbd_dev, &h); 3031 ret = rbd_read_header(rbd_dev, &h);
3061 if (ret < 0) 3032 if (ret < 0)
3062 return ret; 3033 return ret;
3063 3034
3064 down_write(&rbd_dev->header_rwsem); 3035 down_write(&rbd_dev->header_rwsem);
3065 3036
3066 /* Update image size, and check for resize of mapped image */ 3037 /* Update image size, and check for resize of mapped image */
3067 rbd_dev->header.image_size = h.image_size; 3038 rbd_dev->header.image_size = h.image_size;
3068 rbd_update_mapping_size(rbd_dev); 3039 rbd_update_mapping_size(rbd_dev);
3069 3040
3070 /* rbd_dev->header.object_prefix shouldn't change */ 3041 /* rbd_dev->header.object_prefix shouldn't change */
3071 kfree(rbd_dev->header.snap_sizes); 3042 kfree(rbd_dev->header.snap_sizes);
3072 kfree(rbd_dev->header.snap_names); 3043 kfree(rbd_dev->header.snap_names);
3073 /* osd requests may still refer to snapc */ 3044 /* osd requests may still refer to snapc */
3074 rbd_snap_context_put(rbd_dev->header.snapc); 3045 ceph_put_snap_context(rbd_dev->header.snapc);
3075 3046
3076 if (hver) 3047 if (hver)
3077 *hver = h.obj_version; 3048 *hver = h.obj_version;
3078 rbd_dev->header.obj_version = h.obj_version; 3049 rbd_dev->header.obj_version = h.obj_version;
3079 rbd_dev->header.image_size = h.image_size; 3050 rbd_dev->header.image_size = h.image_size;
3080 rbd_dev->header.snapc = h.snapc; 3051 rbd_dev->header.snapc = h.snapc;
3081 rbd_dev->header.snap_names = h.snap_names; 3052 rbd_dev->header.snap_names = h.snap_names;
3082 rbd_dev->header.snap_sizes = h.snap_sizes; 3053 rbd_dev->header.snap_sizes = h.snap_sizes;
3083 /* Free the extra copy of the object prefix */ 3054 /* Free the extra copy of the object prefix */
3084 if (strcmp(rbd_dev->header.object_prefix, h.object_prefix)) 3055 if (strcmp(rbd_dev->header.object_prefix, h.object_prefix))
3085 rbd_warn(rbd_dev, "object prefix changed (ignoring)"); 3056 rbd_warn(rbd_dev, "object prefix changed (ignoring)");
3086 kfree(h.object_prefix); 3057 kfree(h.object_prefix);
3087 3058
3088 ret = rbd_dev_snaps_update(rbd_dev); 3059 ret = rbd_dev_snaps_update(rbd_dev);
3089 3060
3090 up_write(&rbd_dev->header_rwsem); 3061 up_write(&rbd_dev->header_rwsem);
3091 3062
3092 return ret; 3063 return ret;
3093 } 3064 }
3094 3065
3095 static int rbd_dev_refresh(struct rbd_device *rbd_dev, u64 *hver) 3066 static int rbd_dev_refresh(struct rbd_device *rbd_dev, u64 *hver)
3096 { 3067 {
3097 int ret; 3068 int ret;
3098 3069
3099 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 3070 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3100 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 3071 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3101 if (rbd_dev->image_format == 1) 3072 if (rbd_dev->image_format == 1)
3102 ret = rbd_dev_v1_refresh(rbd_dev, hver); 3073 ret = rbd_dev_v1_refresh(rbd_dev, hver);
3103 else 3074 else
3104 ret = rbd_dev_v2_refresh(rbd_dev, hver); 3075 ret = rbd_dev_v2_refresh(rbd_dev, hver);
3105 mutex_unlock(&ctl_mutex); 3076 mutex_unlock(&ctl_mutex);
3106 revalidate_disk(rbd_dev->disk); 3077 revalidate_disk(rbd_dev->disk);
3107 if (ret) 3078 if (ret)
3108 rbd_warn(rbd_dev, "got notification but failed to " 3079 rbd_warn(rbd_dev, "got notification but failed to "
3109 " update snaps: %d\n", ret); 3080 " update snaps: %d\n", ret);
3110 3081
3111 return ret; 3082 return ret;
3112 } 3083 }
3113 3084
3114 static int rbd_init_disk(struct rbd_device *rbd_dev) 3085 static int rbd_init_disk(struct rbd_device *rbd_dev)
3115 { 3086 {
3116 struct gendisk *disk; 3087 struct gendisk *disk;
3117 struct request_queue *q; 3088 struct request_queue *q;
3118 u64 segment_size; 3089 u64 segment_size;
3119 3090
3120 /* create gendisk info */ 3091 /* create gendisk info */
3121 disk = alloc_disk(RBD_MINORS_PER_MAJOR); 3092 disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3122 if (!disk) 3093 if (!disk)
3123 return -ENOMEM; 3094 return -ENOMEM;
3124 3095
3125 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d", 3096 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3126 rbd_dev->dev_id); 3097 rbd_dev->dev_id);
3127 disk->major = rbd_dev->major; 3098 disk->major = rbd_dev->major;
3128 disk->first_minor = 0; 3099 disk->first_minor = 0;
3129 disk->fops = &rbd_bd_ops; 3100 disk->fops = &rbd_bd_ops;
3130 disk->private_data = rbd_dev; 3101 disk->private_data = rbd_dev;
3131 3102
3132 q = blk_init_queue(rbd_request_fn, &rbd_dev->lock); 3103 q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3133 if (!q) 3104 if (!q)
3134 goto out_disk; 3105 goto out_disk;
3135 3106
3136 /* We use the default size, but let's be explicit about it. */ 3107 /* We use the default size, but let's be explicit about it. */
3137 blk_queue_physical_block_size(q, SECTOR_SIZE); 3108 blk_queue_physical_block_size(q, SECTOR_SIZE);
3138 3109
3139 /* set io sizes to object size */ 3110 /* set io sizes to object size */
3140 segment_size = rbd_obj_bytes(&rbd_dev->header); 3111 segment_size = rbd_obj_bytes(&rbd_dev->header);
3141 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE); 3112 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3142 blk_queue_max_segment_size(q, segment_size); 3113 blk_queue_max_segment_size(q, segment_size);
3143 blk_queue_io_min(q, segment_size); 3114 blk_queue_io_min(q, segment_size);
3144 blk_queue_io_opt(q, segment_size); 3115 blk_queue_io_opt(q, segment_size);
3145 3116
3146 blk_queue_merge_bvec(q, rbd_merge_bvec); 3117 blk_queue_merge_bvec(q, rbd_merge_bvec);
3147 disk->queue = q; 3118 disk->queue = q;
3148 3119
3149 q->queuedata = rbd_dev; 3120 q->queuedata = rbd_dev;
3150 3121
3151 rbd_dev->disk = disk; 3122 rbd_dev->disk = disk;
3152 3123
3153 return 0; 3124 return 0;
3154 out_disk: 3125 out_disk:
3155 put_disk(disk); 3126 put_disk(disk);
3156 3127
3157 return -ENOMEM; 3128 return -ENOMEM;
3158 } 3129 }
3159 3130
3160 /* 3131 /*
3161 sysfs 3132 sysfs
3162 */ 3133 */
3163 3134
3164 static struct rbd_device *dev_to_rbd_dev(struct device *dev) 3135 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3165 { 3136 {
3166 return container_of(dev, struct rbd_device, dev); 3137 return container_of(dev, struct rbd_device, dev);
3167 } 3138 }
3168 3139
3169 static ssize_t rbd_size_show(struct device *dev, 3140 static ssize_t rbd_size_show(struct device *dev,
3170 struct device_attribute *attr, char *buf) 3141 struct device_attribute *attr, char *buf)
3171 { 3142 {
3172 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3143 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3173 3144
3174 return sprintf(buf, "%llu\n", 3145 return sprintf(buf, "%llu\n",
3175 (unsigned long long)rbd_dev->mapping.size); 3146 (unsigned long long)rbd_dev->mapping.size);
3176 } 3147 }
3177 3148
3178 /* 3149 /*
3179 * Note this shows the features for whatever's mapped, which is not 3150 * Note this shows the features for whatever's mapped, which is not
3180 * necessarily the base image. 3151 * necessarily the base image.
3181 */ 3152 */
3182 static ssize_t rbd_features_show(struct device *dev, 3153 static ssize_t rbd_features_show(struct device *dev,
3183 struct device_attribute *attr, char *buf) 3154 struct device_attribute *attr, char *buf)
3184 { 3155 {
3185 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3156 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3186 3157
3187 return sprintf(buf, "0x%016llx\n", 3158 return sprintf(buf, "0x%016llx\n",
3188 (unsigned long long)rbd_dev->mapping.features); 3159 (unsigned long long)rbd_dev->mapping.features);
3189 } 3160 }
3190 3161
3191 static ssize_t rbd_major_show(struct device *dev, 3162 static ssize_t rbd_major_show(struct device *dev,
3192 struct device_attribute *attr, char *buf) 3163 struct device_attribute *attr, char *buf)
3193 { 3164 {
3194 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3165 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3195 3166
3196 if (rbd_dev->major) 3167 if (rbd_dev->major)
3197 return sprintf(buf, "%d\n", rbd_dev->major); 3168 return sprintf(buf, "%d\n", rbd_dev->major);
3198 3169
3199 return sprintf(buf, "(none)\n"); 3170 return sprintf(buf, "(none)\n");
3200 3171
3201 } 3172 }
3202 3173
3203 static ssize_t rbd_client_id_show(struct device *dev, 3174 static ssize_t rbd_client_id_show(struct device *dev,
3204 struct device_attribute *attr, char *buf) 3175 struct device_attribute *attr, char *buf)
3205 { 3176 {
3206 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3177 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3207 3178
3208 return sprintf(buf, "client%lld\n", 3179 return sprintf(buf, "client%lld\n",
3209 ceph_client_id(rbd_dev->rbd_client->client)); 3180 ceph_client_id(rbd_dev->rbd_client->client));
3210 } 3181 }
3211 3182
3212 static ssize_t rbd_pool_show(struct device *dev, 3183 static ssize_t rbd_pool_show(struct device *dev,
3213 struct device_attribute *attr, char *buf) 3184 struct device_attribute *attr, char *buf)
3214 { 3185 {
3215 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3186 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3216 3187
3217 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name); 3188 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3218 } 3189 }
3219 3190
3220 static ssize_t rbd_pool_id_show(struct device *dev, 3191 static ssize_t rbd_pool_id_show(struct device *dev,
3221 struct device_attribute *attr, char *buf) 3192 struct device_attribute *attr, char *buf)
3222 { 3193 {
3223 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3194 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3224 3195
3225 return sprintf(buf, "%llu\n", 3196 return sprintf(buf, "%llu\n",
3226 (unsigned long long) rbd_dev->spec->pool_id); 3197 (unsigned long long) rbd_dev->spec->pool_id);
3227 } 3198 }
3228 3199
3229 static ssize_t rbd_name_show(struct device *dev, 3200 static ssize_t rbd_name_show(struct device *dev,
3230 struct device_attribute *attr, char *buf) 3201 struct device_attribute *attr, char *buf)
3231 { 3202 {
3232 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3203 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3233 3204
3234 if (rbd_dev->spec->image_name) 3205 if (rbd_dev->spec->image_name)
3235 return sprintf(buf, "%s\n", rbd_dev->spec->image_name); 3206 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3236 3207
3237 return sprintf(buf, "(unknown)\n"); 3208 return sprintf(buf, "(unknown)\n");
3238 } 3209 }
3239 3210
3240 static ssize_t rbd_image_id_show(struct device *dev, 3211 static ssize_t rbd_image_id_show(struct device *dev,
3241 struct device_attribute *attr, char *buf) 3212 struct device_attribute *attr, char *buf)
3242 { 3213 {
3243 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3214 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3244 3215
3245 return sprintf(buf, "%s\n", rbd_dev->spec->image_id); 3216 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3246 } 3217 }
3247 3218
3248 /* 3219 /*
3249 * Shows the name of the currently-mapped snapshot (or 3220 * Shows the name of the currently-mapped snapshot (or
3250 * RBD_SNAP_HEAD_NAME for the base image). 3221 * RBD_SNAP_HEAD_NAME for the base image).
3251 */ 3222 */
3252 static ssize_t rbd_snap_show(struct device *dev, 3223 static ssize_t rbd_snap_show(struct device *dev,
3253 struct device_attribute *attr, 3224 struct device_attribute *attr,
3254 char *buf) 3225 char *buf)
3255 { 3226 {
3256 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3227 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3257 3228
3258 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name); 3229 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3259 } 3230 }
3260 3231
3261 /* 3232 /*
3262 * For an rbd v2 image, shows the pool id, image id, and snapshot id 3233 * For an rbd v2 image, shows the pool id, image id, and snapshot id
3263 * for the parent image. If there is no parent, simply shows 3234 * for the parent image. If there is no parent, simply shows
3264 * "(no parent image)". 3235 * "(no parent image)".
3265 */ 3236 */
3266 static ssize_t rbd_parent_show(struct device *dev, 3237 static ssize_t rbd_parent_show(struct device *dev,
3267 struct device_attribute *attr, 3238 struct device_attribute *attr,
3268 char *buf) 3239 char *buf)
3269 { 3240 {
3270 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3241 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3271 struct rbd_spec *spec = rbd_dev->parent_spec; 3242 struct rbd_spec *spec = rbd_dev->parent_spec;
3272 int count; 3243 int count;
3273 char *bufp = buf; 3244 char *bufp = buf;
3274 3245
3275 if (!spec) 3246 if (!spec)
3276 return sprintf(buf, "(no parent image)\n"); 3247 return sprintf(buf, "(no parent image)\n");
3277 3248
3278 count = sprintf(bufp, "pool_id %llu\npool_name %s\n", 3249 count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3279 (unsigned long long) spec->pool_id, spec->pool_name); 3250 (unsigned long long) spec->pool_id, spec->pool_name);
3280 if (count < 0) 3251 if (count < 0)
3281 return count; 3252 return count;
3282 bufp += count; 3253 bufp += count;
3283 3254
3284 count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id, 3255 count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3285 spec->image_name ? spec->image_name : "(unknown)"); 3256 spec->image_name ? spec->image_name : "(unknown)");
3286 if (count < 0) 3257 if (count < 0)
3287 return count; 3258 return count;
3288 bufp += count; 3259 bufp += count;
3289 3260
3290 count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n", 3261 count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3291 (unsigned long long) spec->snap_id, spec->snap_name); 3262 (unsigned long long) spec->snap_id, spec->snap_name);
3292 if (count < 0) 3263 if (count < 0)
3293 return count; 3264 return count;
3294 bufp += count; 3265 bufp += count;
3295 3266
3296 count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap); 3267 count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3297 if (count < 0) 3268 if (count < 0)
3298 return count; 3269 return count;
3299 bufp += count; 3270 bufp += count;
3300 3271
3301 return (ssize_t) (bufp - buf); 3272 return (ssize_t) (bufp - buf);
3302 } 3273 }
3303 3274
3304 static ssize_t rbd_image_refresh(struct device *dev, 3275 static ssize_t rbd_image_refresh(struct device *dev,
3305 struct device_attribute *attr, 3276 struct device_attribute *attr,
3306 const char *buf, 3277 const char *buf,
3307 size_t size) 3278 size_t size)
3308 { 3279 {
3309 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3280 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3310 int ret; 3281 int ret;
3311 3282
3312 ret = rbd_dev_refresh(rbd_dev, NULL); 3283 ret = rbd_dev_refresh(rbd_dev, NULL);
3313 3284
3314 return ret < 0 ? ret : size; 3285 return ret < 0 ? ret : size;
3315 } 3286 }
3316 3287
3317 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL); 3288 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3318 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL); 3289 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3319 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL); 3290 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3320 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL); 3291 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3321 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL); 3292 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3322 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL); 3293 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3323 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL); 3294 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3324 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL); 3295 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3325 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh); 3296 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3326 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL); 3297 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3327 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL); 3298 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3328 3299
3329 static struct attribute *rbd_attrs[] = { 3300 static struct attribute *rbd_attrs[] = {
3330 &dev_attr_size.attr, 3301 &dev_attr_size.attr,
3331 &dev_attr_features.attr, 3302 &dev_attr_features.attr,
3332 &dev_attr_major.attr, 3303 &dev_attr_major.attr,
3333 &dev_attr_client_id.attr, 3304 &dev_attr_client_id.attr,
3334 &dev_attr_pool.attr, 3305 &dev_attr_pool.attr,
3335 &dev_attr_pool_id.attr, 3306 &dev_attr_pool_id.attr,
3336 &dev_attr_name.attr, 3307 &dev_attr_name.attr,
3337 &dev_attr_image_id.attr, 3308 &dev_attr_image_id.attr,
3338 &dev_attr_current_snap.attr, 3309 &dev_attr_current_snap.attr,
3339 &dev_attr_parent.attr, 3310 &dev_attr_parent.attr,
3340 &dev_attr_refresh.attr, 3311 &dev_attr_refresh.attr,
3341 NULL 3312 NULL
3342 }; 3313 };
3343 3314
3344 static struct attribute_group rbd_attr_group = { 3315 static struct attribute_group rbd_attr_group = {
3345 .attrs = rbd_attrs, 3316 .attrs = rbd_attrs,
3346 }; 3317 };
3347 3318
3348 static const struct attribute_group *rbd_attr_groups[] = { 3319 static const struct attribute_group *rbd_attr_groups[] = {
3349 &rbd_attr_group, 3320 &rbd_attr_group,
3350 NULL 3321 NULL
3351 }; 3322 };
3352 3323
3353 static void rbd_sysfs_dev_release(struct device *dev) 3324 static void rbd_sysfs_dev_release(struct device *dev)
3354 { 3325 {
3355 } 3326 }
3356 3327
3357 static struct device_type rbd_device_type = { 3328 static struct device_type rbd_device_type = {
3358 .name = "rbd", 3329 .name = "rbd",
3359 .groups = rbd_attr_groups, 3330 .groups = rbd_attr_groups,
3360 .release = rbd_sysfs_dev_release, 3331 .release = rbd_sysfs_dev_release,
3361 }; 3332 };
3362 3333
3363 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec) 3334 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3364 { 3335 {
3365 kref_get(&spec->kref); 3336 kref_get(&spec->kref);
3366 3337
3367 return spec; 3338 return spec;
3368 } 3339 }
3369 3340
3370 static void rbd_spec_free(struct kref *kref); 3341 static void rbd_spec_free(struct kref *kref);
3371 static void rbd_spec_put(struct rbd_spec *spec) 3342 static void rbd_spec_put(struct rbd_spec *spec)
3372 { 3343 {
3373 if (spec) 3344 if (spec)
3374 kref_put(&spec->kref, rbd_spec_free); 3345 kref_put(&spec->kref, rbd_spec_free);
3375 } 3346 }
3376 3347
3377 static struct rbd_spec *rbd_spec_alloc(void) 3348 static struct rbd_spec *rbd_spec_alloc(void)
3378 { 3349 {
3379 struct rbd_spec *spec; 3350 struct rbd_spec *spec;
3380 3351
3381 spec = kzalloc(sizeof (*spec), GFP_KERNEL); 3352 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3382 if (!spec) 3353 if (!spec)
3383 return NULL; 3354 return NULL;
3384 kref_init(&spec->kref); 3355 kref_init(&spec->kref);
3385 3356
3386 return spec; 3357 return spec;
3387 } 3358 }
3388 3359
3389 static void rbd_spec_free(struct kref *kref) 3360 static void rbd_spec_free(struct kref *kref)
3390 { 3361 {
3391 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref); 3362 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3392 3363
3393 kfree(spec->pool_name); 3364 kfree(spec->pool_name);
3394 kfree(spec->image_id); 3365 kfree(spec->image_id);
3395 kfree(spec->image_name); 3366 kfree(spec->image_name);
3396 kfree(spec->snap_name); 3367 kfree(spec->snap_name);
3397 kfree(spec); 3368 kfree(spec);
3398 } 3369 }
3399 3370
3400 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc, 3371 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3401 struct rbd_spec *spec) 3372 struct rbd_spec *spec)
3402 { 3373 {
3403 struct rbd_device *rbd_dev; 3374 struct rbd_device *rbd_dev;
3404 3375
3405 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL); 3376 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3406 if (!rbd_dev) 3377 if (!rbd_dev)
3407 return NULL; 3378 return NULL;
3408 3379
3409 spin_lock_init(&rbd_dev->lock); 3380 spin_lock_init(&rbd_dev->lock);
3410 rbd_dev->flags = 0; 3381 rbd_dev->flags = 0;
3411 INIT_LIST_HEAD(&rbd_dev->node); 3382 INIT_LIST_HEAD(&rbd_dev->node);
3412 INIT_LIST_HEAD(&rbd_dev->snaps); 3383 INIT_LIST_HEAD(&rbd_dev->snaps);
3413 init_rwsem(&rbd_dev->header_rwsem); 3384 init_rwsem(&rbd_dev->header_rwsem);
3414 3385
3415 rbd_dev->spec = spec; 3386 rbd_dev->spec = spec;
3416 rbd_dev->rbd_client = rbdc; 3387 rbd_dev->rbd_client = rbdc;
3417 3388
3418 /* Initialize the layout used for all rbd requests */ 3389 /* Initialize the layout used for all rbd requests */
3419 3390
3420 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER); 3391 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3421 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1); 3392 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3422 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER); 3393 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3423 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id); 3394 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3424 3395
3425 return rbd_dev; 3396 return rbd_dev;
3426 } 3397 }
3427 3398
3428 static void rbd_dev_destroy(struct rbd_device *rbd_dev) 3399 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3429 { 3400 {
3430 rbd_put_client(rbd_dev->rbd_client); 3401 rbd_put_client(rbd_dev->rbd_client);
3431 rbd_spec_put(rbd_dev->spec); 3402 rbd_spec_put(rbd_dev->spec);
3432 kfree(rbd_dev); 3403 kfree(rbd_dev);
3433 } 3404 }
3434 3405
3435 static void rbd_snap_destroy(struct rbd_snap *snap) 3406 static void rbd_snap_destroy(struct rbd_snap *snap)
3436 { 3407 {
3437 kfree(snap->name); 3408 kfree(snap->name);
3438 kfree(snap); 3409 kfree(snap);
3439 } 3410 }
3440 3411
3441 static struct rbd_snap *rbd_snap_create(struct rbd_device *rbd_dev, 3412 static struct rbd_snap *rbd_snap_create(struct rbd_device *rbd_dev,
3442 const char *snap_name, 3413 const char *snap_name,
3443 u64 snap_id, u64 snap_size, 3414 u64 snap_id, u64 snap_size,
3444 u64 snap_features) 3415 u64 snap_features)
3445 { 3416 {
3446 struct rbd_snap *snap; 3417 struct rbd_snap *snap;
3447 3418
3448 snap = kzalloc(sizeof (*snap), GFP_KERNEL); 3419 snap = kzalloc(sizeof (*snap), GFP_KERNEL);
3449 if (!snap) 3420 if (!snap)
3450 return ERR_PTR(-ENOMEM); 3421 return ERR_PTR(-ENOMEM);
3451 3422
3452 snap->name = snap_name; 3423 snap->name = snap_name;
3453 snap->id = snap_id; 3424 snap->id = snap_id;
3454 snap->size = snap_size; 3425 snap->size = snap_size;
3455 snap->features = snap_features; 3426 snap->features = snap_features;
3456 3427
3457 return snap; 3428 return snap;
3458 } 3429 }
3459 3430
3460 /* 3431 /*
3461 * Returns a dynamically-allocated snapshot name if successful, or a 3432 * Returns a dynamically-allocated snapshot name if successful, or a
3462 * pointer-coded error otherwise. 3433 * pointer-coded error otherwise.
3463 */ 3434 */
3464 static char *rbd_dev_v1_snap_info(struct rbd_device *rbd_dev, u32 which, 3435 static char *rbd_dev_v1_snap_info(struct rbd_device *rbd_dev, u32 which,
3465 u64 *snap_size, u64 *snap_features) 3436 u64 *snap_size, u64 *snap_features)
3466 { 3437 {
3467 char *snap_name; 3438 char *snap_name;
3468 int i; 3439 int i;
3469 3440
3470 rbd_assert(which < rbd_dev->header.snapc->num_snaps); 3441 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
3471 3442
3472 /* Skip over names until we find the one we are looking for */ 3443 /* Skip over names until we find the one we are looking for */
3473 3444
3474 snap_name = rbd_dev->header.snap_names; 3445 snap_name = rbd_dev->header.snap_names;
3475 for (i = 0; i < which; i++) 3446 for (i = 0; i < which; i++)
3476 snap_name += strlen(snap_name) + 1; 3447 snap_name += strlen(snap_name) + 1;
3477 3448
3478 snap_name = kstrdup(snap_name, GFP_KERNEL); 3449 snap_name = kstrdup(snap_name, GFP_KERNEL);
3479 if (!snap_name) 3450 if (!snap_name)
3480 return ERR_PTR(-ENOMEM); 3451 return ERR_PTR(-ENOMEM);
3481 3452
3482 *snap_size = rbd_dev->header.snap_sizes[which]; 3453 *snap_size = rbd_dev->header.snap_sizes[which];
3483 *snap_features = 0; /* No features for v1 */ 3454 *snap_features = 0; /* No features for v1 */
3484 3455
3485 return snap_name; 3456 return snap_name;
3486 } 3457 }
3487 3458
3488 /* 3459 /*
3489 * Get the size and object order for an image snapshot, or if 3460 * Get the size and object order for an image snapshot, or if
3490 * snap_id is CEPH_NOSNAP, gets this information for the base 3461 * snap_id is CEPH_NOSNAP, gets this information for the base
3491 * image. 3462 * image.
3492 */ 3463 */
3493 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 3464 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3494 u8 *order, u64 *snap_size) 3465 u8 *order, u64 *snap_size)
3495 { 3466 {
3496 __le64 snapid = cpu_to_le64(snap_id); 3467 __le64 snapid = cpu_to_le64(snap_id);
3497 int ret; 3468 int ret;
3498 struct { 3469 struct {
3499 u8 order; 3470 u8 order;
3500 __le64 size; 3471 __le64 size;
3501 } __attribute__ ((packed)) size_buf = { 0 }; 3472 } __attribute__ ((packed)) size_buf = { 0 };
3502 3473
3503 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 3474 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3504 "rbd", "get_size", 3475 "rbd", "get_size",
3505 &snapid, sizeof (snapid), 3476 &snapid, sizeof (snapid),
3506 &size_buf, sizeof (size_buf), NULL); 3477 &size_buf, sizeof (size_buf), NULL);
3507 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 3478 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3508 if (ret < 0) 3479 if (ret < 0)
3509 return ret; 3480 return ret;
3510 if (ret < sizeof (size_buf)) 3481 if (ret < sizeof (size_buf))
3511 return -ERANGE; 3482 return -ERANGE;
3512 3483
3513 if (order) 3484 if (order)
3514 *order = size_buf.order; 3485 *order = size_buf.order;
3515 *snap_size = le64_to_cpu(size_buf.size); 3486 *snap_size = le64_to_cpu(size_buf.size);
3516 3487
3517 dout(" snap_id 0x%016llx order = %u, snap_size = %llu\n", 3488 dout(" snap_id 0x%016llx order = %u, snap_size = %llu\n",
3518 (unsigned long long)snap_id, (unsigned int)*order, 3489 (unsigned long long)snap_id, (unsigned int)*order,
3519 (unsigned long long)*snap_size); 3490 (unsigned long long)*snap_size);
3520 3491
3521 return 0; 3492 return 0;
3522 } 3493 }
3523 3494
3524 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev) 3495 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3525 { 3496 {
3526 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP, 3497 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3527 &rbd_dev->header.obj_order, 3498 &rbd_dev->header.obj_order,
3528 &rbd_dev->header.image_size); 3499 &rbd_dev->header.image_size);
3529 } 3500 }
3530 3501
3531 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev) 3502 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3532 { 3503 {
3533 void *reply_buf; 3504 void *reply_buf;
3534 int ret; 3505 int ret;
3535 void *p; 3506 void *p;
3536 3507
3537 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL); 3508 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3538 if (!reply_buf) 3509 if (!reply_buf)
3539 return -ENOMEM; 3510 return -ENOMEM;
3540 3511
3541 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 3512 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3542 "rbd", "get_object_prefix", NULL, 0, 3513 "rbd", "get_object_prefix", NULL, 0,
3543 reply_buf, RBD_OBJ_PREFIX_LEN_MAX, NULL); 3514 reply_buf, RBD_OBJ_PREFIX_LEN_MAX, NULL);
3544 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 3515 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3545 if (ret < 0) 3516 if (ret < 0)
3546 goto out; 3517 goto out;
3547 3518
3548 p = reply_buf; 3519 p = reply_buf;
3549 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p, 3520 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3550 p + ret, NULL, GFP_NOIO); 3521 p + ret, NULL, GFP_NOIO);
3551 ret = 0; 3522 ret = 0;
3552 3523
3553 if (IS_ERR(rbd_dev->header.object_prefix)) { 3524 if (IS_ERR(rbd_dev->header.object_prefix)) {
3554 ret = PTR_ERR(rbd_dev->header.object_prefix); 3525 ret = PTR_ERR(rbd_dev->header.object_prefix);
3555 rbd_dev->header.object_prefix = NULL; 3526 rbd_dev->header.object_prefix = NULL;
3556 } else { 3527 } else {
3557 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix); 3528 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
3558 } 3529 }
3559 out: 3530 out:
3560 kfree(reply_buf); 3531 kfree(reply_buf);
3561 3532
3562 return ret; 3533 return ret;
3563 } 3534 }
3564 3535
3565 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 3536 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3566 u64 *snap_features) 3537 u64 *snap_features)
3567 { 3538 {
3568 __le64 snapid = cpu_to_le64(snap_id); 3539 __le64 snapid = cpu_to_le64(snap_id);
3569 struct { 3540 struct {
3570 __le64 features; 3541 __le64 features;
3571 __le64 incompat; 3542 __le64 incompat;
3572 } __attribute__ ((packed)) features_buf = { 0 }; 3543 } __attribute__ ((packed)) features_buf = { 0 };
3573 u64 incompat; 3544 u64 incompat;
3574 int ret; 3545 int ret;
3575 3546
3576 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 3547 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3577 "rbd", "get_features", 3548 "rbd", "get_features",
3578 &snapid, sizeof (snapid), 3549 &snapid, sizeof (snapid),
3579 &features_buf, sizeof (features_buf), NULL); 3550 &features_buf, sizeof (features_buf), NULL);
3580 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 3551 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3581 if (ret < 0) 3552 if (ret < 0)
3582 return ret; 3553 return ret;
3583 if (ret < sizeof (features_buf)) 3554 if (ret < sizeof (features_buf))
3584 return -ERANGE; 3555 return -ERANGE;
3585 3556
3586 incompat = le64_to_cpu(features_buf.incompat); 3557 incompat = le64_to_cpu(features_buf.incompat);
3587 if (incompat & ~RBD_FEATURES_SUPPORTED) 3558 if (incompat & ~RBD_FEATURES_SUPPORTED)
3588 return -ENXIO; 3559 return -ENXIO;
3589 3560
3590 *snap_features = le64_to_cpu(features_buf.features); 3561 *snap_features = le64_to_cpu(features_buf.features);
3591 3562
3592 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n", 3563 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3593 (unsigned long long)snap_id, 3564 (unsigned long long)snap_id,
3594 (unsigned long long)*snap_features, 3565 (unsigned long long)*snap_features,
3595 (unsigned long long)le64_to_cpu(features_buf.incompat)); 3566 (unsigned long long)le64_to_cpu(features_buf.incompat));
3596 3567
3597 return 0; 3568 return 0;
3598 } 3569 }
3599 3570
3600 static int rbd_dev_v2_features(struct rbd_device *rbd_dev) 3571 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3601 { 3572 {
3602 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP, 3573 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3603 &rbd_dev->header.features); 3574 &rbd_dev->header.features);
3604 } 3575 }
3605 3576
3606 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev) 3577 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3607 { 3578 {
3608 struct rbd_spec *parent_spec; 3579 struct rbd_spec *parent_spec;
3609 size_t size; 3580 size_t size;
3610 void *reply_buf = NULL; 3581 void *reply_buf = NULL;
3611 __le64 snapid; 3582 __le64 snapid;
3612 void *p; 3583 void *p;
3613 void *end; 3584 void *end;
3614 char *image_id; 3585 char *image_id;
3615 u64 overlap; 3586 u64 overlap;
3616 int ret; 3587 int ret;
3617 3588
3618 parent_spec = rbd_spec_alloc(); 3589 parent_spec = rbd_spec_alloc();
3619 if (!parent_spec) 3590 if (!parent_spec)
3620 return -ENOMEM; 3591 return -ENOMEM;
3621 3592
3622 size = sizeof (__le64) + /* pool_id */ 3593 size = sizeof (__le64) + /* pool_id */
3623 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */ 3594 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
3624 sizeof (__le64) + /* snap_id */ 3595 sizeof (__le64) + /* snap_id */
3625 sizeof (__le64); /* overlap */ 3596 sizeof (__le64); /* overlap */
3626 reply_buf = kmalloc(size, GFP_KERNEL); 3597 reply_buf = kmalloc(size, GFP_KERNEL);
3627 if (!reply_buf) { 3598 if (!reply_buf) {
3628 ret = -ENOMEM; 3599 ret = -ENOMEM;
3629 goto out_err; 3600 goto out_err;
3630 } 3601 }
3631 3602
3632 snapid = cpu_to_le64(CEPH_NOSNAP); 3603 snapid = cpu_to_le64(CEPH_NOSNAP);
3633 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 3604 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3634 "rbd", "get_parent", 3605 "rbd", "get_parent",
3635 &snapid, sizeof (snapid), 3606 &snapid, sizeof (snapid),
3636 reply_buf, size, NULL); 3607 reply_buf, size, NULL);
3637 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 3608 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3638 if (ret < 0) 3609 if (ret < 0)
3639 goto out_err; 3610 goto out_err;
3640 3611
3641 p = reply_buf; 3612 p = reply_buf;
3642 end = reply_buf + ret; 3613 end = reply_buf + ret;
3643 ret = -ERANGE; 3614 ret = -ERANGE;
3644 ceph_decode_64_safe(&p, end, parent_spec->pool_id, out_err); 3615 ceph_decode_64_safe(&p, end, parent_spec->pool_id, out_err);
3645 if (parent_spec->pool_id == CEPH_NOPOOL) 3616 if (parent_spec->pool_id == CEPH_NOPOOL)
3646 goto out; /* No parent? No problem. */ 3617 goto out; /* No parent? No problem. */
3647 3618
3648 /* The ceph file layout needs to fit pool id in 32 bits */ 3619 /* The ceph file layout needs to fit pool id in 32 bits */
3649 3620
3650 ret = -EIO; 3621 ret = -EIO;
3651 if (parent_spec->pool_id > (u64)U32_MAX) { 3622 if (parent_spec->pool_id > (u64)U32_MAX) {
3652 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n", 3623 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3653 (unsigned long long)parent_spec->pool_id, U32_MAX); 3624 (unsigned long long)parent_spec->pool_id, U32_MAX);
3654 goto out_err; 3625 goto out_err;
3655 } 3626 }
3656 3627
3657 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 3628 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3658 if (IS_ERR(image_id)) { 3629 if (IS_ERR(image_id)) {
3659 ret = PTR_ERR(image_id); 3630 ret = PTR_ERR(image_id);
3660 goto out_err; 3631 goto out_err;
3661 } 3632 }
3662 parent_spec->image_id = image_id; 3633 parent_spec->image_id = image_id;
3663 ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err); 3634 ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err);
3664 ceph_decode_64_safe(&p, end, overlap, out_err); 3635 ceph_decode_64_safe(&p, end, overlap, out_err);
3665 3636
3666 rbd_dev->parent_overlap = overlap; 3637 rbd_dev->parent_overlap = overlap;
3667 rbd_dev->parent_spec = parent_spec; 3638 rbd_dev->parent_spec = parent_spec;
3668 parent_spec = NULL; /* rbd_dev now owns this */ 3639 parent_spec = NULL; /* rbd_dev now owns this */
3669 out: 3640 out:
3670 ret = 0; 3641 ret = 0;
3671 out_err: 3642 out_err:
3672 kfree(reply_buf); 3643 kfree(reply_buf);
3673 rbd_spec_put(parent_spec); 3644 rbd_spec_put(parent_spec);
3674 3645
3675 return ret; 3646 return ret;
3676 } 3647 }
3677 3648
3678 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev) 3649 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3679 { 3650 {
3680 struct { 3651 struct {
3681 __le64 stripe_unit; 3652 __le64 stripe_unit;
3682 __le64 stripe_count; 3653 __le64 stripe_count;
3683 } __attribute__ ((packed)) striping_info_buf = { 0 }; 3654 } __attribute__ ((packed)) striping_info_buf = { 0 };
3684 size_t size = sizeof (striping_info_buf); 3655 size_t size = sizeof (striping_info_buf);
3685 void *p; 3656 void *p;
3686 u64 obj_size; 3657 u64 obj_size;
3687 u64 stripe_unit; 3658 u64 stripe_unit;
3688 u64 stripe_count; 3659 u64 stripe_count;
3689 int ret; 3660 int ret;
3690 3661
3691 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 3662 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3692 "rbd", "get_stripe_unit_count", NULL, 0, 3663 "rbd", "get_stripe_unit_count", NULL, 0,
3693 (char *)&striping_info_buf, size, NULL); 3664 (char *)&striping_info_buf, size, NULL);
3694 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 3665 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3695 if (ret < 0) 3666 if (ret < 0)
3696 return ret; 3667 return ret;
3697 if (ret < size) 3668 if (ret < size)
3698 return -ERANGE; 3669 return -ERANGE;
3699 3670
3700 /* 3671 /*
3701 * We don't actually support the "fancy striping" feature 3672 * We don't actually support the "fancy striping" feature
3702 * (STRIPINGV2) yet, but if the striping sizes are the 3673 * (STRIPINGV2) yet, but if the striping sizes are the
3703 * defaults the behavior is the same as before. So find 3674 * defaults the behavior is the same as before. So find
3704 * out, and only fail if the image has non-default values. 3675 * out, and only fail if the image has non-default values.
3705 */ 3676 */
3706 ret = -EINVAL; 3677 ret = -EINVAL;
3707 obj_size = (u64)1 << rbd_dev->header.obj_order; 3678 obj_size = (u64)1 << rbd_dev->header.obj_order;
3708 p = &striping_info_buf; 3679 p = &striping_info_buf;
3709 stripe_unit = ceph_decode_64(&p); 3680 stripe_unit = ceph_decode_64(&p);
3710 if (stripe_unit != obj_size) { 3681 if (stripe_unit != obj_size) {
3711 rbd_warn(rbd_dev, "unsupported stripe unit " 3682 rbd_warn(rbd_dev, "unsupported stripe unit "
3712 "(got %llu want %llu)", 3683 "(got %llu want %llu)",
3713 stripe_unit, obj_size); 3684 stripe_unit, obj_size);
3714 return -EINVAL; 3685 return -EINVAL;
3715 } 3686 }
3716 stripe_count = ceph_decode_64(&p); 3687 stripe_count = ceph_decode_64(&p);
3717 if (stripe_count != 1) { 3688 if (stripe_count != 1) {
3718 rbd_warn(rbd_dev, "unsupported stripe count " 3689 rbd_warn(rbd_dev, "unsupported stripe count "
3719 "(got %llu want 1)", stripe_count); 3690 "(got %llu want 1)", stripe_count);
3720 return -EINVAL; 3691 return -EINVAL;
3721 } 3692 }
3722 rbd_dev->header.stripe_unit = stripe_unit; 3693 rbd_dev->header.stripe_unit = stripe_unit;
3723 rbd_dev->header.stripe_count = stripe_count; 3694 rbd_dev->header.stripe_count = stripe_count;
3724 3695
3725 return 0; 3696 return 0;
3726 } 3697 }
3727 3698
3728 static char *rbd_dev_image_name(struct rbd_device *rbd_dev) 3699 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
3729 { 3700 {
3730 size_t image_id_size; 3701 size_t image_id_size;
3731 char *image_id; 3702 char *image_id;
3732 void *p; 3703 void *p;
3733 void *end; 3704 void *end;
3734 size_t size; 3705 size_t size;
3735 void *reply_buf = NULL; 3706 void *reply_buf = NULL;
3736 size_t len = 0; 3707 size_t len = 0;
3737 char *image_name = NULL; 3708 char *image_name = NULL;
3738 int ret; 3709 int ret;
3739 3710
3740 rbd_assert(!rbd_dev->spec->image_name); 3711 rbd_assert(!rbd_dev->spec->image_name);
3741 3712
3742 len = strlen(rbd_dev->spec->image_id); 3713 len = strlen(rbd_dev->spec->image_id);
3743 image_id_size = sizeof (__le32) + len; 3714 image_id_size = sizeof (__le32) + len;
3744 image_id = kmalloc(image_id_size, GFP_KERNEL); 3715 image_id = kmalloc(image_id_size, GFP_KERNEL);
3745 if (!image_id) 3716 if (!image_id)
3746 return NULL; 3717 return NULL;
3747 3718
3748 p = image_id; 3719 p = image_id;
3749 end = image_id + image_id_size; 3720 end = image_id + image_id_size;
3750 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len); 3721 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
3751 3722
3752 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX; 3723 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
3753 reply_buf = kmalloc(size, GFP_KERNEL); 3724 reply_buf = kmalloc(size, GFP_KERNEL);
3754 if (!reply_buf) 3725 if (!reply_buf)
3755 goto out; 3726 goto out;
3756 3727
3757 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY, 3728 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
3758 "rbd", "dir_get_name", 3729 "rbd", "dir_get_name",
3759 image_id, image_id_size, 3730 image_id, image_id_size,
3760 reply_buf, size, NULL); 3731 reply_buf, size, NULL);
3761 if (ret < 0) 3732 if (ret < 0)
3762 goto out; 3733 goto out;
3763 p = reply_buf; 3734 p = reply_buf;
3764 end = reply_buf + ret; 3735 end = reply_buf + ret;
3765 3736
3766 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL); 3737 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
3767 if (IS_ERR(image_name)) 3738 if (IS_ERR(image_name))
3768 image_name = NULL; 3739 image_name = NULL;
3769 else 3740 else
3770 dout("%s: name is %s len is %zd\n", __func__, image_name, len); 3741 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
3771 out: 3742 out:
3772 kfree(reply_buf); 3743 kfree(reply_buf);
3773 kfree(image_id); 3744 kfree(image_id);
3774 3745
3775 return image_name; 3746 return image_name;
3776 } 3747 }
3777 3748
3778 /* 3749 /*
3779 * When an rbd image has a parent image, it is identified by the 3750 * When an rbd image has a parent image, it is identified by the
3780 * pool, image, and snapshot ids (not names). This function fills 3751 * pool, image, and snapshot ids (not names). This function fills
3781 * in the names for those ids. (It's OK if we can't figure out the 3752 * in the names for those ids. (It's OK if we can't figure out the
3782 * name for an image id, but the pool and snapshot ids should always 3753 * name for an image id, but the pool and snapshot ids should always
3783 * exist and have names.) All names in an rbd spec are dynamically 3754 * exist and have names.) All names in an rbd spec are dynamically
3784 * allocated. 3755 * allocated.
3785 * 3756 *
3786 * When an image being mapped (not a parent) is probed, we have the 3757 * When an image being mapped (not a parent) is probed, we have the
3787 * pool name and pool id, image name and image id, and the snapshot 3758 * pool name and pool id, image name and image id, and the snapshot
3788 * name. The only thing we're missing is the snapshot id. 3759 * name. The only thing we're missing is the snapshot id.
3789 * 3760 *
3790 * The set of snapshots for an image is not known until they have 3761 * The set of snapshots for an image is not known until they have
3791 * been read by rbd_dev_snaps_update(), so we can't completely fill 3762 * been read by rbd_dev_snaps_update(), so we can't completely fill
3792 * in this information until after that has been called. 3763 * in this information until after that has been called.
3793 */ 3764 */
3794 static int rbd_dev_spec_update(struct rbd_device *rbd_dev) 3765 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
3795 { 3766 {
3796 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3767 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3797 struct rbd_spec *spec = rbd_dev->spec; 3768 struct rbd_spec *spec = rbd_dev->spec;
3798 const char *pool_name; 3769 const char *pool_name;
3799 const char *image_name; 3770 const char *image_name;
3800 const char *snap_name; 3771 const char *snap_name;
3801 int ret; 3772 int ret;
3802 3773
3803 /* 3774 /*
3804 * An image being mapped will have the pool name (etc.), but 3775 * An image being mapped will have the pool name (etc.), but
3805 * we need to look up the snapshot id. 3776 * we need to look up the snapshot id.
3806 */ 3777 */
3807 if (spec->pool_name) { 3778 if (spec->pool_name) {
3808 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) { 3779 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
3809 struct rbd_snap *snap; 3780 struct rbd_snap *snap;
3810 3781
3811 snap = snap_by_name(rbd_dev, spec->snap_name); 3782 snap = snap_by_name(rbd_dev, spec->snap_name);
3812 if (!snap) 3783 if (!snap)
3813 return -ENOENT; 3784 return -ENOENT;
3814 spec->snap_id = snap->id; 3785 spec->snap_id = snap->id;
3815 } else { 3786 } else {
3816 spec->snap_id = CEPH_NOSNAP; 3787 spec->snap_id = CEPH_NOSNAP;
3817 } 3788 }
3818 3789
3819 return 0; 3790 return 0;
3820 } 3791 }
3821 3792
3822 /* Get the pool name; we have to make our own copy of this */ 3793 /* Get the pool name; we have to make our own copy of this */
3823 3794
3824 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id); 3795 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
3825 if (!pool_name) { 3796 if (!pool_name) {
3826 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id); 3797 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
3827 return -EIO; 3798 return -EIO;
3828 } 3799 }
3829 pool_name = kstrdup(pool_name, GFP_KERNEL); 3800 pool_name = kstrdup(pool_name, GFP_KERNEL);
3830 if (!pool_name) 3801 if (!pool_name)
3831 return -ENOMEM; 3802 return -ENOMEM;
3832 3803
3833 /* Fetch the image name; tolerate failure here */ 3804 /* Fetch the image name; tolerate failure here */
3834 3805
3835 image_name = rbd_dev_image_name(rbd_dev); 3806 image_name = rbd_dev_image_name(rbd_dev);
3836 if (!image_name) 3807 if (!image_name)
3837 rbd_warn(rbd_dev, "unable to get image name"); 3808 rbd_warn(rbd_dev, "unable to get image name");
3838 3809
3839 /* Look up the snapshot name, and make a copy */ 3810 /* Look up the snapshot name, and make a copy */
3840 3811
3841 snap_name = rbd_snap_name(rbd_dev, spec->snap_id); 3812 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
3842 if (!snap_name) { 3813 if (!snap_name) {
3843 rbd_warn(rbd_dev, "no snapshot with id %llu", spec->snap_id); 3814 rbd_warn(rbd_dev, "no snapshot with id %llu", spec->snap_id);
3844 ret = -EIO; 3815 ret = -EIO;
3845 goto out_err; 3816 goto out_err;
3846 } 3817 }
3847 snap_name = kstrdup(snap_name, GFP_KERNEL); 3818 snap_name = kstrdup(snap_name, GFP_KERNEL);
3848 if (!snap_name) { 3819 if (!snap_name) {
3849 ret = -ENOMEM; 3820 ret = -ENOMEM;
3850 goto out_err; 3821 goto out_err;
3851 } 3822 }
3852 3823
3853 spec->pool_name = pool_name; 3824 spec->pool_name = pool_name;
3854 spec->image_name = image_name; 3825 spec->image_name = image_name;
3855 spec->snap_name = snap_name; 3826 spec->snap_name = snap_name;
3856 3827
3857 return 0; 3828 return 0;
3858 out_err: 3829 out_err:
3859 kfree(image_name); 3830 kfree(image_name);
3860 kfree(pool_name); 3831 kfree(pool_name);
3861 3832
3862 return ret; 3833 return ret;
3863 } 3834 }
3864 3835
3865 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev, u64 *ver) 3836 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev, u64 *ver)
3866 { 3837 {
3867 size_t size; 3838 size_t size;
3868 int ret; 3839 int ret;
3869 void *reply_buf; 3840 void *reply_buf;
3870 void *p; 3841 void *p;
3871 void *end; 3842 void *end;
3872 u64 seq; 3843 u64 seq;
3873 u32 snap_count; 3844 u32 snap_count;
3874 struct ceph_snap_context *snapc; 3845 struct ceph_snap_context *snapc;
3875 u32 i; 3846 u32 i;
3876 3847
3877 /* 3848 /*
3878 * We'll need room for the seq value (maximum snapshot id), 3849 * We'll need room for the seq value (maximum snapshot id),
3879 * snapshot count, and array of that many snapshot ids. 3850 * snapshot count, and array of that many snapshot ids.
3880 * For now we have a fixed upper limit on the number we're 3851 * For now we have a fixed upper limit on the number we're
3881 * prepared to receive. 3852 * prepared to receive.
3882 */ 3853 */
3883 size = sizeof (__le64) + sizeof (__le32) + 3854 size = sizeof (__le64) + sizeof (__le32) +
3884 RBD_MAX_SNAP_COUNT * sizeof (__le64); 3855 RBD_MAX_SNAP_COUNT * sizeof (__le64);
3885 reply_buf = kzalloc(size, GFP_KERNEL); 3856 reply_buf = kzalloc(size, GFP_KERNEL);
3886 if (!reply_buf) 3857 if (!reply_buf)
3887 return -ENOMEM; 3858 return -ENOMEM;
3888 3859
3889 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 3860 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3890 "rbd", "get_snapcontext", NULL, 0, 3861 "rbd", "get_snapcontext", NULL, 0,
3891 reply_buf, size, ver); 3862 reply_buf, size, ver);
3892 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 3863 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3893 if (ret < 0) 3864 if (ret < 0)
3894 goto out; 3865 goto out;
3895 3866
3896 p = reply_buf; 3867 p = reply_buf;
3897 end = reply_buf + ret; 3868 end = reply_buf + ret;
3898 ret = -ERANGE; 3869 ret = -ERANGE;
3899 ceph_decode_64_safe(&p, end, seq, out); 3870 ceph_decode_64_safe(&p, end, seq, out);
3900 ceph_decode_32_safe(&p, end, snap_count, out); 3871 ceph_decode_32_safe(&p, end, snap_count, out);
3901 3872
3902 /* 3873 /*
3903 * Make sure the reported number of snapshot ids wouldn't go 3874 * Make sure the reported number of snapshot ids wouldn't go
3904 * beyond the end of our buffer. But before checking that, 3875 * beyond the end of our buffer. But before checking that,
3905 * make sure the computed size of the snapshot context we 3876 * make sure the computed size of the snapshot context we
3906 * allocate is representable in a size_t. 3877 * allocate is representable in a size_t.
3907 */ 3878 */
3908 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context)) 3879 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
3909 / sizeof (u64)) { 3880 / sizeof (u64)) {
3910 ret = -EINVAL; 3881 ret = -EINVAL;
3911 goto out; 3882 goto out;
3912 } 3883 }
3913 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64))) 3884 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
3914 goto out; 3885 goto out;
3915 ret = 0; 3886 ret = 0;
3916 3887
3917 snapc = rbd_snap_context_create(snap_count); 3888 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
3918 if (!snapc) { 3889 if (!snapc) {
3919 ret = -ENOMEM; 3890 ret = -ENOMEM;
3920 goto out; 3891 goto out;
3921 } 3892 }
3922 snapc->seq = seq; 3893 snapc->seq = seq;
3923 for (i = 0; i < snap_count; i++) 3894 for (i = 0; i < snap_count; i++)
3924 snapc->snaps[i] = ceph_decode_64(&p); 3895 snapc->snaps[i] = ceph_decode_64(&p);
3925 3896
3926 rbd_dev->header.snapc = snapc; 3897 rbd_dev->header.snapc = snapc;
3927 3898
3928 dout(" snap context seq = %llu, snap_count = %u\n", 3899 dout(" snap context seq = %llu, snap_count = %u\n",
3929 (unsigned long long)seq, (unsigned int)snap_count); 3900 (unsigned long long)seq, (unsigned int)snap_count);
3930 out: 3901 out:
3931 kfree(reply_buf); 3902 kfree(reply_buf);
3932 3903
3933 return ret; 3904 return ret;
3934 } 3905 }
3935 3906
3936 static char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, u32 which) 3907 static char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, u32 which)
3937 { 3908 {
3938 size_t size; 3909 size_t size;
3939 void *reply_buf; 3910 void *reply_buf;
3940 __le64 snap_id; 3911 __le64 snap_id;
3941 int ret; 3912 int ret;
3942 void *p; 3913 void *p;
3943 void *end; 3914 void *end;
3944 char *snap_name; 3915 char *snap_name;
3945 3916
3946 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN; 3917 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
3947 reply_buf = kmalloc(size, GFP_KERNEL); 3918 reply_buf = kmalloc(size, GFP_KERNEL);
3948 if (!reply_buf) 3919 if (!reply_buf)
3949 return ERR_PTR(-ENOMEM); 3920 return ERR_PTR(-ENOMEM);
3950 3921
3951 rbd_assert(which < rbd_dev->header.snapc->num_snaps); 3922 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
3952 snap_id = cpu_to_le64(rbd_dev->header.snapc->snaps[which]); 3923 snap_id = cpu_to_le64(rbd_dev->header.snapc->snaps[which]);
3953 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 3924 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3954 "rbd", "get_snapshot_name", 3925 "rbd", "get_snapshot_name",
3955 &snap_id, sizeof (snap_id), 3926 &snap_id, sizeof (snap_id),
3956 reply_buf, size, NULL); 3927 reply_buf, size, NULL);
3957 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 3928 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3958 if (ret < 0) { 3929 if (ret < 0) {
3959 snap_name = ERR_PTR(ret); 3930 snap_name = ERR_PTR(ret);
3960 goto out; 3931 goto out;
3961 } 3932 }
3962 3933
3963 p = reply_buf; 3934 p = reply_buf;
3964 end = reply_buf + ret; 3935 end = reply_buf + ret;
3965 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 3936 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3966 if (IS_ERR(snap_name)) 3937 if (IS_ERR(snap_name))
3967 goto out; 3938 goto out;
3968 3939
3969 dout(" snap_id 0x%016llx snap_name = %s\n", 3940 dout(" snap_id 0x%016llx snap_name = %s\n",
3970 (unsigned long long)le64_to_cpu(snap_id), snap_name); 3941 (unsigned long long)le64_to_cpu(snap_id), snap_name);
3971 out: 3942 out:
3972 kfree(reply_buf); 3943 kfree(reply_buf);
3973 3944
3974 return snap_name; 3945 return snap_name;
3975 } 3946 }
3976 3947
3977 static char *rbd_dev_v2_snap_info(struct rbd_device *rbd_dev, u32 which, 3948 static char *rbd_dev_v2_snap_info(struct rbd_device *rbd_dev, u32 which,
3978 u64 *snap_size, u64 *snap_features) 3949 u64 *snap_size, u64 *snap_features)
3979 { 3950 {
3980 u64 snap_id; 3951 u64 snap_id;
3981 u64 size; 3952 u64 size;
3982 u64 features; 3953 u64 features;
3983 char *snap_name; 3954 char *snap_name;
3984 int ret; 3955 int ret;
3985 3956
3986 rbd_assert(which < rbd_dev->header.snapc->num_snaps); 3957 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
3987 snap_id = rbd_dev->header.snapc->snaps[which]; 3958 snap_id = rbd_dev->header.snapc->snaps[which];
3988 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size); 3959 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
3989 if (ret) 3960 if (ret)
3990 goto out_err; 3961 goto out_err;
3991 3962
3992 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features); 3963 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
3993 if (ret) 3964 if (ret)
3994 goto out_err; 3965 goto out_err;
3995 3966
3996 snap_name = rbd_dev_v2_snap_name(rbd_dev, which); 3967 snap_name = rbd_dev_v2_snap_name(rbd_dev, which);
3997 if (!IS_ERR(snap_name)) { 3968 if (!IS_ERR(snap_name)) {
3998 *snap_size = size; 3969 *snap_size = size;
3999 *snap_features = features; 3970 *snap_features = features;
4000 } 3971 }
4001 3972
4002 return snap_name; 3973 return snap_name;
4003 out_err: 3974 out_err:
4004 return ERR_PTR(ret); 3975 return ERR_PTR(ret);
4005 } 3976 }
4006 3977
4007 static char *rbd_dev_snap_info(struct rbd_device *rbd_dev, u32 which, 3978 static char *rbd_dev_snap_info(struct rbd_device *rbd_dev, u32 which,
4008 u64 *snap_size, u64 *snap_features) 3979 u64 *snap_size, u64 *snap_features)
4009 { 3980 {
4010 if (rbd_dev->image_format == 1) 3981 if (rbd_dev->image_format == 1)
4011 return rbd_dev_v1_snap_info(rbd_dev, which, 3982 return rbd_dev_v1_snap_info(rbd_dev, which,
4012 snap_size, snap_features); 3983 snap_size, snap_features);
4013 if (rbd_dev->image_format == 2) 3984 if (rbd_dev->image_format == 2)
4014 return rbd_dev_v2_snap_info(rbd_dev, which, 3985 return rbd_dev_v2_snap_info(rbd_dev, which,
4015 snap_size, snap_features); 3986 snap_size, snap_features);
4016 return ERR_PTR(-EINVAL); 3987 return ERR_PTR(-EINVAL);
4017 } 3988 }
4018 3989
4019 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev, u64 *hver) 3990 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev, u64 *hver)
4020 { 3991 {
4021 int ret; 3992 int ret;
4022 3993
4023 down_write(&rbd_dev->header_rwsem); 3994 down_write(&rbd_dev->header_rwsem);
4024 3995
4025 ret = rbd_dev_v2_image_size(rbd_dev); 3996 ret = rbd_dev_v2_image_size(rbd_dev);
4026 if (ret) 3997 if (ret)
4027 goto out; 3998 goto out;
4028 rbd_update_mapping_size(rbd_dev); 3999 rbd_update_mapping_size(rbd_dev);
4029 4000
4030 ret = rbd_dev_v2_snap_context(rbd_dev, hver); 4001 ret = rbd_dev_v2_snap_context(rbd_dev, hver);
4031 dout("rbd_dev_v2_snap_context returned %d\n", ret); 4002 dout("rbd_dev_v2_snap_context returned %d\n", ret);
4032 if (ret) 4003 if (ret)
4033 goto out; 4004 goto out;
4034 ret = rbd_dev_snaps_update(rbd_dev); 4005 ret = rbd_dev_snaps_update(rbd_dev);
4035 dout("rbd_dev_snaps_update returned %d\n", ret); 4006 dout("rbd_dev_snaps_update returned %d\n", ret);
4036 if (ret) 4007 if (ret)
4037 goto out; 4008 goto out;
4038 out: 4009 out:
4039 up_write(&rbd_dev->header_rwsem); 4010 up_write(&rbd_dev->header_rwsem);
4040 4011
4041 return ret; 4012 return ret;
4042 } 4013 }
4043 4014
4044 /* 4015 /*
4045 * Scan the rbd device's current snapshot list and compare it to the 4016 * Scan the rbd device's current snapshot list and compare it to the
4046 * newly-received snapshot context. Remove any existing snapshots 4017 * newly-received snapshot context. Remove any existing snapshots
4047 * not present in the new snapshot context. Add a new snapshot for 4018 * not present in the new snapshot context. Add a new snapshot for
4048 * any snaphots in the snapshot context not in the current list. 4019 * any snaphots in the snapshot context not in the current list.
4049 * And verify there are no changes to snapshots we already know 4020 * And verify there are no changes to snapshots we already know
4050 * about. 4021 * about.
4051 * 4022 *
4052 * Assumes the snapshots in the snapshot context are sorted by 4023 * Assumes the snapshots in the snapshot context are sorted by
4053 * snapshot id, highest id first. (Snapshots in the rbd_dev's list 4024 * snapshot id, highest id first. (Snapshots in the rbd_dev's list
4054 * are also maintained in that order.) 4025 * are also maintained in that order.)
4055 * 4026 *
4056 * Note that any error occurs while updating the snapshot list 4027 * Note that any error occurs while updating the snapshot list
4057 * aborts the update, and the entire list is cleared. The snapshot 4028 * aborts the update, and the entire list is cleared. The snapshot
4058 * list becomes inconsistent at that point anyway, so it might as 4029 * list becomes inconsistent at that point anyway, so it might as
4059 * well be empty. 4030 * well be empty.
4060 */ 4031 */
4061 static int rbd_dev_snaps_update(struct rbd_device *rbd_dev) 4032 static int rbd_dev_snaps_update(struct rbd_device *rbd_dev)
4062 { 4033 {
4063 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 4034 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4064 const u32 snap_count = snapc->num_snaps; 4035 const u32 snap_count = snapc->num_snaps;
4065 struct list_head *head = &rbd_dev->snaps; 4036 struct list_head *head = &rbd_dev->snaps;
4066 struct list_head *links = head->next; 4037 struct list_head *links = head->next;
4067 u32 index = 0; 4038 u32 index = 0;
4068 int ret = 0; 4039 int ret = 0;
4069 4040
4070 dout("%s: snap count is %u\n", __func__, (unsigned int)snap_count); 4041 dout("%s: snap count is %u\n", __func__, (unsigned int)snap_count);
4071 while (index < snap_count || links != head) { 4042 while (index < snap_count || links != head) {
4072 u64 snap_id; 4043 u64 snap_id;
4073 struct rbd_snap *snap; 4044 struct rbd_snap *snap;
4074 char *snap_name; 4045 char *snap_name;
4075 u64 snap_size = 0; 4046 u64 snap_size = 0;
4076 u64 snap_features = 0; 4047 u64 snap_features = 0;
4077 4048
4078 snap_id = index < snap_count ? snapc->snaps[index] 4049 snap_id = index < snap_count ? snapc->snaps[index]
4079 : CEPH_NOSNAP; 4050 : CEPH_NOSNAP;
4080 snap = links != head ? list_entry(links, struct rbd_snap, node) 4051 snap = links != head ? list_entry(links, struct rbd_snap, node)
4081 : NULL; 4052 : NULL;
4082 rbd_assert(!snap || snap->id != CEPH_NOSNAP); 4053 rbd_assert(!snap || snap->id != CEPH_NOSNAP);
4083 4054
4084 if (snap_id == CEPH_NOSNAP || (snap && snap->id > snap_id)) { 4055 if (snap_id == CEPH_NOSNAP || (snap && snap->id > snap_id)) {
4085 struct list_head *next = links->next; 4056 struct list_head *next = links->next;
4086 4057
4087 /* 4058 /*
4088 * A previously-existing snapshot is not in 4059 * A previously-existing snapshot is not in
4089 * the new snap context. 4060 * the new snap context.
4090 * 4061 *
4091 * If the now-missing snapshot is the one 4062 * If the now-missing snapshot is the one
4092 * the image represents, clear its existence 4063 * the image represents, clear its existence
4093 * flag so we can avoid sending any more 4064 * flag so we can avoid sending any more
4094 * requests to it. 4065 * requests to it.
4095 */ 4066 */
4096 if (rbd_dev->spec->snap_id == snap->id) 4067 if (rbd_dev->spec->snap_id == snap->id)
4097 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 4068 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4098 dout("removing %ssnap id %llu\n", 4069 dout("removing %ssnap id %llu\n",
4099 rbd_dev->spec->snap_id == snap->id ? 4070 rbd_dev->spec->snap_id == snap->id ?
4100 "mapped " : "", 4071 "mapped " : "",
4101 (unsigned long long)snap->id); 4072 (unsigned long long)snap->id);
4102 4073
4103 list_del(&snap->node); 4074 list_del(&snap->node);
4104 rbd_snap_destroy(snap); 4075 rbd_snap_destroy(snap);
4105 4076
4106 /* Done with this list entry; advance */ 4077 /* Done with this list entry; advance */
4107 4078
4108 links = next; 4079 links = next;
4109 continue; 4080 continue;
4110 } 4081 }
4111 4082
4112 snap_name = rbd_dev_snap_info(rbd_dev, index, 4083 snap_name = rbd_dev_snap_info(rbd_dev, index,
4113 &snap_size, &snap_features); 4084 &snap_size, &snap_features);
4114 if (IS_ERR(snap_name)) { 4085 if (IS_ERR(snap_name)) {
4115 ret = PTR_ERR(snap_name); 4086 ret = PTR_ERR(snap_name);
4116 dout("failed to get snap info, error %d\n", ret); 4087 dout("failed to get snap info, error %d\n", ret);
4117 goto out_err; 4088 goto out_err;
4118 } 4089 }
4119 4090
4120 dout("entry %u: snap_id = %llu\n", (unsigned int)snap_count, 4091 dout("entry %u: snap_id = %llu\n", (unsigned int)snap_count,
4121 (unsigned long long)snap_id); 4092 (unsigned long long)snap_id);
4122 if (!snap || (snap_id != CEPH_NOSNAP && snap->id < snap_id)) { 4093 if (!snap || (snap_id != CEPH_NOSNAP && snap->id < snap_id)) {
4123 struct rbd_snap *new_snap; 4094 struct rbd_snap *new_snap;
4124 4095
4125 /* We haven't seen this snapshot before */ 4096 /* We haven't seen this snapshot before */
4126 4097
4127 new_snap = rbd_snap_create(rbd_dev, snap_name, 4098 new_snap = rbd_snap_create(rbd_dev, snap_name,
4128 snap_id, snap_size, snap_features); 4099 snap_id, snap_size, snap_features);
4129 if (IS_ERR(new_snap)) { 4100 if (IS_ERR(new_snap)) {
4130 ret = PTR_ERR(new_snap); 4101 ret = PTR_ERR(new_snap);
4131 dout(" failed to add dev, error %d\n", ret); 4102 dout(" failed to add dev, error %d\n", ret);
4132 goto out_err; 4103 goto out_err;
4133 } 4104 }
4134 4105
4135 /* New goes before existing, or at end of list */ 4106 /* New goes before existing, or at end of list */
4136 4107
4137 dout(" added dev%s\n", snap ? "" : " at end\n"); 4108 dout(" added dev%s\n", snap ? "" : " at end\n");
4138 if (snap) 4109 if (snap)
4139 list_add_tail(&new_snap->node, &snap->node); 4110 list_add_tail(&new_snap->node, &snap->node);
4140 else 4111 else
4141 list_add_tail(&new_snap->node, head); 4112 list_add_tail(&new_snap->node, head);
4142 } else { 4113 } else {
4143 /* Already have this one */ 4114 /* Already have this one */
4144 4115
4145 dout(" already present\n"); 4116 dout(" already present\n");
4146 4117
4147 rbd_assert(snap->size == snap_size); 4118 rbd_assert(snap->size == snap_size);
4148 rbd_assert(!strcmp(snap->name, snap_name)); 4119 rbd_assert(!strcmp(snap->name, snap_name));
4149 rbd_assert(snap->features == snap_features); 4120 rbd_assert(snap->features == snap_features);
4150 4121
4151 /* Done with this list entry; advance */ 4122 /* Done with this list entry; advance */
4152 4123
4153 links = links->next; 4124 links = links->next;
4154 } 4125 }
4155 4126
4156 /* Advance to the next entry in the snapshot context */ 4127 /* Advance to the next entry in the snapshot context */
4157 4128
4158 index++; 4129 index++;
4159 } 4130 }
4160 dout("%s: done\n", __func__); 4131 dout("%s: done\n", __func__);
4161 4132
4162 return 0; 4133 return 0;
4163 out_err: 4134 out_err:
4164 rbd_remove_all_snaps(rbd_dev); 4135 rbd_remove_all_snaps(rbd_dev);
4165 4136
4166 return ret; 4137 return ret;
4167 } 4138 }
4168 4139
4169 static int rbd_bus_add_dev(struct rbd_device *rbd_dev) 4140 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4170 { 4141 {
4171 struct device *dev; 4142 struct device *dev;
4172 int ret; 4143 int ret;
4173 4144
4174 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 4145 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4175 4146
4176 dev = &rbd_dev->dev; 4147 dev = &rbd_dev->dev;
4177 dev->bus = &rbd_bus_type; 4148 dev->bus = &rbd_bus_type;
4178 dev->type = &rbd_device_type; 4149 dev->type = &rbd_device_type;
4179 dev->parent = &rbd_root_dev; 4150 dev->parent = &rbd_root_dev;
4180 dev->release = rbd_dev_device_release; 4151 dev->release = rbd_dev_device_release;
4181 dev_set_name(dev, "%d", rbd_dev->dev_id); 4152 dev_set_name(dev, "%d", rbd_dev->dev_id);
4182 ret = device_register(dev); 4153 ret = device_register(dev);
4183 4154
4184 mutex_unlock(&ctl_mutex); 4155 mutex_unlock(&ctl_mutex);
4185 4156
4186 return ret; 4157 return ret;
4187 } 4158 }
4188 4159
4189 static void rbd_bus_del_dev(struct rbd_device *rbd_dev) 4160 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4190 { 4161 {
4191 device_unregister(&rbd_dev->dev); 4162 device_unregister(&rbd_dev->dev);
4192 } 4163 }
4193 4164
4194 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0); 4165 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4195 4166
4196 /* 4167 /*
4197 * Get a unique rbd identifier for the given new rbd_dev, and add 4168 * Get a unique rbd identifier for the given new rbd_dev, and add
4198 * the rbd_dev to the global list. The minimum rbd id is 1. 4169 * the rbd_dev to the global list. The minimum rbd id is 1.
4199 */ 4170 */
4200 static void rbd_dev_id_get(struct rbd_device *rbd_dev) 4171 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4201 { 4172 {
4202 rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max); 4173 rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4203 4174
4204 spin_lock(&rbd_dev_list_lock); 4175 spin_lock(&rbd_dev_list_lock);
4205 list_add_tail(&rbd_dev->node, &rbd_dev_list); 4176 list_add_tail(&rbd_dev->node, &rbd_dev_list);
4206 spin_unlock(&rbd_dev_list_lock); 4177 spin_unlock(&rbd_dev_list_lock);
4207 dout("rbd_dev %p given dev id %llu\n", rbd_dev, 4178 dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4208 (unsigned long long) rbd_dev->dev_id); 4179 (unsigned long long) rbd_dev->dev_id);
4209 } 4180 }
4210 4181
4211 /* 4182 /*
4212 * Remove an rbd_dev from the global list, and record that its 4183 * Remove an rbd_dev from the global list, and record that its
4213 * identifier is no longer in use. 4184 * identifier is no longer in use.
4214 */ 4185 */
4215 static void rbd_dev_id_put(struct rbd_device *rbd_dev) 4186 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4216 { 4187 {
4217 struct list_head *tmp; 4188 struct list_head *tmp;
4218 int rbd_id = rbd_dev->dev_id; 4189 int rbd_id = rbd_dev->dev_id;
4219 int max_id; 4190 int max_id;
4220 4191
4221 rbd_assert(rbd_id > 0); 4192 rbd_assert(rbd_id > 0);
4222 4193
4223 dout("rbd_dev %p released dev id %llu\n", rbd_dev, 4194 dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4224 (unsigned long long) rbd_dev->dev_id); 4195 (unsigned long long) rbd_dev->dev_id);
4225 spin_lock(&rbd_dev_list_lock); 4196 spin_lock(&rbd_dev_list_lock);
4226 list_del_init(&rbd_dev->node); 4197 list_del_init(&rbd_dev->node);
4227 4198
4228 /* 4199 /*
4229 * If the id being "put" is not the current maximum, there 4200 * If the id being "put" is not the current maximum, there
4230 * is nothing special we need to do. 4201 * is nothing special we need to do.
4231 */ 4202 */
4232 if (rbd_id != atomic64_read(&rbd_dev_id_max)) { 4203 if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4233 spin_unlock(&rbd_dev_list_lock); 4204 spin_unlock(&rbd_dev_list_lock);
4234 return; 4205 return;
4235 } 4206 }
4236 4207
4237 /* 4208 /*
4238 * We need to update the current maximum id. Search the 4209 * We need to update the current maximum id. Search the
4239 * list to find out what it is. We're more likely to find 4210 * list to find out what it is. We're more likely to find
4240 * the maximum at the end, so search the list backward. 4211 * the maximum at the end, so search the list backward.
4241 */ 4212 */
4242 max_id = 0; 4213 max_id = 0;
4243 list_for_each_prev(tmp, &rbd_dev_list) { 4214 list_for_each_prev(tmp, &rbd_dev_list) {
4244 struct rbd_device *rbd_dev; 4215 struct rbd_device *rbd_dev;
4245 4216
4246 rbd_dev = list_entry(tmp, struct rbd_device, node); 4217 rbd_dev = list_entry(tmp, struct rbd_device, node);
4247 if (rbd_dev->dev_id > max_id) 4218 if (rbd_dev->dev_id > max_id)
4248 max_id = rbd_dev->dev_id; 4219 max_id = rbd_dev->dev_id;
4249 } 4220 }
4250 spin_unlock(&rbd_dev_list_lock); 4221 spin_unlock(&rbd_dev_list_lock);
4251 4222
4252 /* 4223 /*
4253 * The max id could have been updated by rbd_dev_id_get(), in 4224 * The max id could have been updated by rbd_dev_id_get(), in
4254 * which case it now accurately reflects the new maximum. 4225 * which case it now accurately reflects the new maximum.
4255 * Be careful not to overwrite the maximum value in that 4226 * Be careful not to overwrite the maximum value in that
4256 * case. 4227 * case.
4257 */ 4228 */
4258 atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id); 4229 atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4259 dout(" max dev id has been reset\n"); 4230 dout(" max dev id has been reset\n");
4260 } 4231 }
4261 4232
4262 /* 4233 /*
4263 * Skips over white space at *buf, and updates *buf to point to the 4234 * Skips over white space at *buf, and updates *buf to point to the
4264 * first found non-space character (if any). Returns the length of 4235 * first found non-space character (if any). Returns the length of
4265 * the token (string of non-white space characters) found. Note 4236 * the token (string of non-white space characters) found. Note
4266 * that *buf must be terminated with '\0'. 4237 * that *buf must be terminated with '\0'.
4267 */ 4238 */
4268 static inline size_t next_token(const char **buf) 4239 static inline size_t next_token(const char **buf)
4269 { 4240 {
4270 /* 4241 /*
4271 * These are the characters that produce nonzero for 4242 * These are the characters that produce nonzero for
4272 * isspace() in the "C" and "POSIX" locales. 4243 * isspace() in the "C" and "POSIX" locales.
4273 */ 4244 */
4274 const char *spaces = " \f\n\r\t\v"; 4245 const char *spaces = " \f\n\r\t\v";
4275 4246
4276 *buf += strspn(*buf, spaces); /* Find start of token */ 4247 *buf += strspn(*buf, spaces); /* Find start of token */
4277 4248
4278 return strcspn(*buf, spaces); /* Return token length */ 4249 return strcspn(*buf, spaces); /* Return token length */
4279 } 4250 }
4280 4251
4281 /* 4252 /*
4282 * Finds the next token in *buf, and if the provided token buffer is 4253 * Finds the next token in *buf, and if the provided token buffer is
4283 * big enough, copies the found token into it. The result, if 4254 * big enough, copies the found token into it. The result, if
4284 * copied, is guaranteed to be terminated with '\0'. Note that *buf 4255 * copied, is guaranteed to be terminated with '\0'. Note that *buf
4285 * must be terminated with '\0' on entry. 4256 * must be terminated with '\0' on entry.
4286 * 4257 *
4287 * Returns the length of the token found (not including the '\0'). 4258 * Returns the length of the token found (not including the '\0').
4288 * Return value will be 0 if no token is found, and it will be >= 4259 * Return value will be 0 if no token is found, and it will be >=
4289 * token_size if the token would not fit. 4260 * token_size if the token would not fit.
4290 * 4261 *
4291 * The *buf pointer will be updated to point beyond the end of the 4262 * The *buf pointer will be updated to point beyond the end of the
4292 * found token. Note that this occurs even if the token buffer is 4263 * found token. Note that this occurs even if the token buffer is
4293 * too small to hold it. 4264 * too small to hold it.
4294 */ 4265 */
4295 static inline size_t copy_token(const char **buf, 4266 static inline size_t copy_token(const char **buf,
4296 char *token, 4267 char *token,
4297 size_t token_size) 4268 size_t token_size)
4298 { 4269 {
4299 size_t len; 4270 size_t len;
4300 4271
4301 len = next_token(buf); 4272 len = next_token(buf);
4302 if (len < token_size) { 4273 if (len < token_size) {
4303 memcpy(token, *buf, len); 4274 memcpy(token, *buf, len);
4304 *(token + len) = '\0'; 4275 *(token + len) = '\0';
4305 } 4276 }
4306 *buf += len; 4277 *buf += len;
4307 4278
4308 return len; 4279 return len;
4309 } 4280 }
4310 4281
4311 /* 4282 /*
4312 * Finds the next token in *buf, dynamically allocates a buffer big 4283 * Finds the next token in *buf, dynamically allocates a buffer big
4313 * enough to hold a copy of it, and copies the token into the new 4284 * enough to hold a copy of it, and copies the token into the new
4314 * buffer. The copy is guaranteed to be terminated with '\0'. Note 4285 * buffer. The copy is guaranteed to be terminated with '\0'. Note
4315 * that a duplicate buffer is created even for a zero-length token. 4286 * that a duplicate buffer is created even for a zero-length token.
4316 * 4287 *
4317 * Returns a pointer to the newly-allocated duplicate, or a null 4288 * Returns a pointer to the newly-allocated duplicate, or a null
4318 * pointer if memory for the duplicate was not available. If 4289 * pointer if memory for the duplicate was not available. If
4319 * the lenp argument is a non-null pointer, the length of the token 4290 * the lenp argument is a non-null pointer, the length of the token
4320 * (not including the '\0') is returned in *lenp. 4291 * (not including the '\0') is returned in *lenp.
4321 * 4292 *
4322 * If successful, the *buf pointer will be updated to point beyond 4293 * If successful, the *buf pointer will be updated to point beyond
4323 * the end of the found token. 4294 * the end of the found token.
4324 * 4295 *
4325 * Note: uses GFP_KERNEL for allocation. 4296 * Note: uses GFP_KERNEL for allocation.
4326 */ 4297 */
4327 static inline char *dup_token(const char **buf, size_t *lenp) 4298 static inline char *dup_token(const char **buf, size_t *lenp)
4328 { 4299 {
4329 char *dup; 4300 char *dup;
4330 size_t len; 4301 size_t len;
4331 4302
4332 len = next_token(buf); 4303 len = next_token(buf);
4333 dup = kmemdup(*buf, len + 1, GFP_KERNEL); 4304 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4334 if (!dup) 4305 if (!dup)
4335 return NULL; 4306 return NULL;
4336 *(dup + len) = '\0'; 4307 *(dup + len) = '\0';
4337 *buf += len; 4308 *buf += len;
4338 4309
4339 if (lenp) 4310 if (lenp)
4340 *lenp = len; 4311 *lenp = len;
4341 4312
4342 return dup; 4313 return dup;
4343 } 4314 }
4344 4315
4345 /* 4316 /*
4346 * Parse the options provided for an "rbd add" (i.e., rbd image 4317 * Parse the options provided for an "rbd add" (i.e., rbd image
4347 * mapping) request. These arrive via a write to /sys/bus/rbd/add, 4318 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
4348 * and the data written is passed here via a NUL-terminated buffer. 4319 * and the data written is passed here via a NUL-terminated buffer.
4349 * Returns 0 if successful or an error code otherwise. 4320 * Returns 0 if successful or an error code otherwise.
4350 * 4321 *
4351 * The information extracted from these options is recorded in 4322 * The information extracted from these options is recorded in
4352 * the other parameters which return dynamically-allocated 4323 * the other parameters which return dynamically-allocated
4353 * structures: 4324 * structures:
4354 * ceph_opts 4325 * ceph_opts
4355 * The address of a pointer that will refer to a ceph options 4326 * The address of a pointer that will refer to a ceph options
4356 * structure. Caller must release the returned pointer using 4327 * structure. Caller must release the returned pointer using
4357 * ceph_destroy_options() when it is no longer needed. 4328 * ceph_destroy_options() when it is no longer needed.
4358 * rbd_opts 4329 * rbd_opts
4359 * Address of an rbd options pointer. Fully initialized by 4330 * Address of an rbd options pointer. Fully initialized by
4360 * this function; caller must release with kfree(). 4331 * this function; caller must release with kfree().
4361 * spec 4332 * spec
4362 * Address of an rbd image specification pointer. Fully 4333 * Address of an rbd image specification pointer. Fully
4363 * initialized by this function based on parsed options. 4334 * initialized by this function based on parsed options.
4364 * Caller must release with rbd_spec_put(). 4335 * Caller must release with rbd_spec_put().
4365 * 4336 *
4366 * The options passed take this form: 4337 * The options passed take this form:
4367 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>] 4338 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4368 * where: 4339 * where:
4369 * <mon_addrs> 4340 * <mon_addrs>
4370 * A comma-separated list of one or more monitor addresses. 4341 * A comma-separated list of one or more monitor addresses.
4371 * A monitor address is an ip address, optionally followed 4342 * A monitor address is an ip address, optionally followed
4372 * by a port number (separated by a colon). 4343 * by a port number (separated by a colon).
4373 * I.e.: ip1[:port1][,ip2[:port2]...] 4344 * I.e.: ip1[:port1][,ip2[:port2]...]
4374 * <options> 4345 * <options>
4375 * A comma-separated list of ceph and/or rbd options. 4346 * A comma-separated list of ceph and/or rbd options.
4376 * <pool_name> 4347 * <pool_name>
4377 * The name of the rados pool containing the rbd image. 4348 * The name of the rados pool containing the rbd image.
4378 * <image_name> 4349 * <image_name>
4379 * The name of the image in that pool to map. 4350 * The name of the image in that pool to map.
4380 * <snap_id> 4351 * <snap_id>
4381 * An optional snapshot id. If provided, the mapping will 4352 * An optional snapshot id. If provided, the mapping will
4382 * present data from the image at the time that snapshot was 4353 * present data from the image at the time that snapshot was
4383 * created. The image head is used if no snapshot id is 4354 * created. The image head is used if no snapshot id is
4384 * provided. Snapshot mappings are always read-only. 4355 * provided. Snapshot mappings are always read-only.
4385 */ 4356 */
4386 static int rbd_add_parse_args(const char *buf, 4357 static int rbd_add_parse_args(const char *buf,
4387 struct ceph_options **ceph_opts, 4358 struct ceph_options **ceph_opts,
4388 struct rbd_options **opts, 4359 struct rbd_options **opts,
4389 struct rbd_spec **rbd_spec) 4360 struct rbd_spec **rbd_spec)
4390 { 4361 {
4391 size_t len; 4362 size_t len;
4392 char *options; 4363 char *options;
4393 const char *mon_addrs; 4364 const char *mon_addrs;
4394 char *snap_name; 4365 char *snap_name;
4395 size_t mon_addrs_size; 4366 size_t mon_addrs_size;
4396 struct rbd_spec *spec = NULL; 4367 struct rbd_spec *spec = NULL;
4397 struct rbd_options *rbd_opts = NULL; 4368 struct rbd_options *rbd_opts = NULL;
4398 struct ceph_options *copts; 4369 struct ceph_options *copts;
4399 int ret; 4370 int ret;
4400 4371
4401 /* The first four tokens are required */ 4372 /* The first four tokens are required */
4402 4373
4403 len = next_token(&buf); 4374 len = next_token(&buf);
4404 if (!len) { 4375 if (!len) {
4405 rbd_warn(NULL, "no monitor address(es) provided"); 4376 rbd_warn(NULL, "no monitor address(es) provided");
4406 return -EINVAL; 4377 return -EINVAL;
4407 } 4378 }
4408 mon_addrs = buf; 4379 mon_addrs = buf;
4409 mon_addrs_size = len + 1; 4380 mon_addrs_size = len + 1;
4410 buf += len; 4381 buf += len;
4411 4382
4412 ret = -EINVAL; 4383 ret = -EINVAL;
4413 options = dup_token(&buf, NULL); 4384 options = dup_token(&buf, NULL);
4414 if (!options) 4385 if (!options)
4415 return -ENOMEM; 4386 return -ENOMEM;
4416 if (!*options) { 4387 if (!*options) {
4417 rbd_warn(NULL, "no options provided"); 4388 rbd_warn(NULL, "no options provided");
4418 goto out_err; 4389 goto out_err;
4419 } 4390 }
4420 4391
4421 spec = rbd_spec_alloc(); 4392 spec = rbd_spec_alloc();
4422 if (!spec) 4393 if (!spec)
4423 goto out_mem; 4394 goto out_mem;
4424 4395
4425 spec->pool_name = dup_token(&buf, NULL); 4396 spec->pool_name = dup_token(&buf, NULL);
4426 if (!spec->pool_name) 4397 if (!spec->pool_name)
4427 goto out_mem; 4398 goto out_mem;
4428 if (!*spec->pool_name) { 4399 if (!*spec->pool_name) {
4429 rbd_warn(NULL, "no pool name provided"); 4400 rbd_warn(NULL, "no pool name provided");
4430 goto out_err; 4401 goto out_err;
4431 } 4402 }
4432 4403
4433 spec->image_name = dup_token(&buf, NULL); 4404 spec->image_name = dup_token(&buf, NULL);
4434 if (!spec->image_name) 4405 if (!spec->image_name)
4435 goto out_mem; 4406 goto out_mem;
4436 if (!*spec->image_name) { 4407 if (!*spec->image_name) {
4437 rbd_warn(NULL, "no image name provided"); 4408 rbd_warn(NULL, "no image name provided");
4438 goto out_err; 4409 goto out_err;
4439 } 4410 }
4440 4411
4441 /* 4412 /*
4442 * Snapshot name is optional; default is to use "-" 4413 * Snapshot name is optional; default is to use "-"
4443 * (indicating the head/no snapshot). 4414 * (indicating the head/no snapshot).
4444 */ 4415 */
4445 len = next_token(&buf); 4416 len = next_token(&buf);
4446 if (!len) { 4417 if (!len) {
4447 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */ 4418 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4448 len = sizeof (RBD_SNAP_HEAD_NAME) - 1; 4419 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4449 } else if (len > RBD_MAX_SNAP_NAME_LEN) { 4420 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4450 ret = -ENAMETOOLONG; 4421 ret = -ENAMETOOLONG;
4451 goto out_err; 4422 goto out_err;
4452 } 4423 }
4453 snap_name = kmemdup(buf, len + 1, GFP_KERNEL); 4424 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4454 if (!snap_name) 4425 if (!snap_name)
4455 goto out_mem; 4426 goto out_mem;
4456 *(snap_name + len) = '\0'; 4427 *(snap_name + len) = '\0';
4457 spec->snap_name = snap_name; 4428 spec->snap_name = snap_name;
4458 4429
4459 /* Initialize all rbd options to the defaults */ 4430 /* Initialize all rbd options to the defaults */
4460 4431
4461 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL); 4432 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4462 if (!rbd_opts) 4433 if (!rbd_opts)
4463 goto out_mem; 4434 goto out_mem;
4464 4435
4465 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT; 4436 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4466 4437
4467 copts = ceph_parse_options(options, mon_addrs, 4438 copts = ceph_parse_options(options, mon_addrs,
4468 mon_addrs + mon_addrs_size - 1, 4439 mon_addrs + mon_addrs_size - 1,
4469 parse_rbd_opts_token, rbd_opts); 4440 parse_rbd_opts_token, rbd_opts);
4470 if (IS_ERR(copts)) { 4441 if (IS_ERR(copts)) {
4471 ret = PTR_ERR(copts); 4442 ret = PTR_ERR(copts);
4472 goto out_err; 4443 goto out_err;
4473 } 4444 }
4474 kfree(options); 4445 kfree(options);
4475 4446
4476 *ceph_opts = copts; 4447 *ceph_opts = copts;
4477 *opts = rbd_opts; 4448 *opts = rbd_opts;
4478 *rbd_spec = spec; 4449 *rbd_spec = spec;
4479 4450
4480 return 0; 4451 return 0;
4481 out_mem: 4452 out_mem:
4482 ret = -ENOMEM; 4453 ret = -ENOMEM;
4483 out_err: 4454 out_err:
4484 kfree(rbd_opts); 4455 kfree(rbd_opts);
4485 rbd_spec_put(spec); 4456 rbd_spec_put(spec);
4486 kfree(options); 4457 kfree(options);
4487 4458
4488 return ret; 4459 return ret;
4489 } 4460 }
4490 4461
4491 /* 4462 /*
4492 * An rbd format 2 image has a unique identifier, distinct from the 4463 * An rbd format 2 image has a unique identifier, distinct from the
4493 * name given to it by the user. Internally, that identifier is 4464 * name given to it by the user. Internally, that identifier is
4494 * what's used to specify the names of objects related to the image. 4465 * what's used to specify the names of objects related to the image.
4495 * 4466 *
4496 * A special "rbd id" object is used to map an rbd image name to its 4467 * A special "rbd id" object is used to map an rbd image name to its
4497 * id. If that object doesn't exist, then there is no v2 rbd image 4468 * id. If that object doesn't exist, then there is no v2 rbd image
4498 * with the supplied name. 4469 * with the supplied name.
4499 * 4470 *
4500 * This function will record the given rbd_dev's image_id field if 4471 * This function will record the given rbd_dev's image_id field if
4501 * it can be determined, and in that case will return 0. If any 4472 * it can be determined, and in that case will return 0. If any
4502 * errors occur a negative errno will be returned and the rbd_dev's 4473 * errors occur a negative errno will be returned and the rbd_dev's
4503 * image_id field will be unchanged (and should be NULL). 4474 * image_id field will be unchanged (and should be NULL).
4504 */ 4475 */
4505 static int rbd_dev_image_id(struct rbd_device *rbd_dev) 4476 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4506 { 4477 {
4507 int ret; 4478 int ret;
4508 size_t size; 4479 size_t size;
4509 char *object_name; 4480 char *object_name;
4510 void *response; 4481 void *response;
4511 char *image_id; 4482 char *image_id;
4512 4483
4513 /* 4484 /*
4514 * When probing a parent image, the image id is already 4485 * When probing a parent image, the image id is already
4515 * known (and the image name likely is not). There's no 4486 * known (and the image name likely is not). There's no
4516 * need to fetch the image id again in this case. We 4487 * need to fetch the image id again in this case. We
4517 * do still need to set the image format though. 4488 * do still need to set the image format though.
4518 */ 4489 */
4519 if (rbd_dev->spec->image_id) { 4490 if (rbd_dev->spec->image_id) {
4520 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1; 4491 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4521 4492
4522 return 0; 4493 return 0;
4523 } 4494 }
4524 4495
4525 /* 4496 /*
4526 * First, see if the format 2 image id file exists, and if 4497 * First, see if the format 2 image id file exists, and if
4527 * so, get the image's persistent id from it. 4498 * so, get the image's persistent id from it.
4528 */ 4499 */
4529 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name); 4500 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4530 object_name = kmalloc(size, GFP_NOIO); 4501 object_name = kmalloc(size, GFP_NOIO);
4531 if (!object_name) 4502 if (!object_name)
4532 return -ENOMEM; 4503 return -ENOMEM;
4533 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name); 4504 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4534 dout("rbd id object name is %s\n", object_name); 4505 dout("rbd id object name is %s\n", object_name);
4535 4506
4536 /* Response will be an encoded string, which includes a length */ 4507 /* Response will be an encoded string, which includes a length */
4537 4508
4538 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX; 4509 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4539 response = kzalloc(size, GFP_NOIO); 4510 response = kzalloc(size, GFP_NOIO);
4540 if (!response) { 4511 if (!response) {
4541 ret = -ENOMEM; 4512 ret = -ENOMEM;
4542 goto out; 4513 goto out;
4543 } 4514 }
4544 4515
4545 /* If it doesn't exist we'll assume it's a format 1 image */ 4516 /* If it doesn't exist we'll assume it's a format 1 image */
4546 4517
4547 ret = rbd_obj_method_sync(rbd_dev, object_name, 4518 ret = rbd_obj_method_sync(rbd_dev, object_name,
4548 "rbd", "get_id", NULL, 0, 4519 "rbd", "get_id", NULL, 0,
4549 response, RBD_IMAGE_ID_LEN_MAX, NULL); 4520 response, RBD_IMAGE_ID_LEN_MAX, NULL);
4550 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4521 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4551 if (ret == -ENOENT) { 4522 if (ret == -ENOENT) {
4552 image_id = kstrdup("", GFP_KERNEL); 4523 image_id = kstrdup("", GFP_KERNEL);
4553 ret = image_id ? 0 : -ENOMEM; 4524 ret = image_id ? 0 : -ENOMEM;
4554 if (!ret) 4525 if (!ret)
4555 rbd_dev->image_format = 1; 4526 rbd_dev->image_format = 1;
4556 } else if (ret > sizeof (__le32)) { 4527 } else if (ret > sizeof (__le32)) {
4557 void *p = response; 4528 void *p = response;
4558 4529
4559 image_id = ceph_extract_encoded_string(&p, p + ret, 4530 image_id = ceph_extract_encoded_string(&p, p + ret,
4560 NULL, GFP_NOIO); 4531 NULL, GFP_NOIO);
4561 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0; 4532 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4562 if (!ret) 4533 if (!ret)
4563 rbd_dev->image_format = 2; 4534 rbd_dev->image_format = 2;
4564 } else { 4535 } else {
4565 ret = -EINVAL; 4536 ret = -EINVAL;
4566 } 4537 }
4567 4538
4568 if (!ret) { 4539 if (!ret) {
4569 rbd_dev->spec->image_id = image_id; 4540 rbd_dev->spec->image_id = image_id;
4570 dout("image_id is %s\n", image_id); 4541 dout("image_id is %s\n", image_id);
4571 } 4542 }
4572 out: 4543 out:
4573 kfree(response); 4544 kfree(response);
4574 kfree(object_name); 4545 kfree(object_name);
4575 4546
4576 return ret; 4547 return ret;
4577 } 4548 }
4578 4549
4579 /* Undo whatever state changes are made by v1 or v2 image probe */ 4550 /* Undo whatever state changes are made by v1 or v2 image probe */
4580 4551
4581 static void rbd_dev_unprobe(struct rbd_device *rbd_dev) 4552 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4582 { 4553 {
4583 struct rbd_image_header *header; 4554 struct rbd_image_header *header;
4584 4555
4585 rbd_dev_remove_parent(rbd_dev); 4556 rbd_dev_remove_parent(rbd_dev);
4586 rbd_spec_put(rbd_dev->parent_spec); 4557 rbd_spec_put(rbd_dev->parent_spec);
4587 rbd_dev->parent_spec = NULL; 4558 rbd_dev->parent_spec = NULL;
4588 rbd_dev->parent_overlap = 0; 4559 rbd_dev->parent_overlap = 0;
4589 4560
4590 /* Free dynamic fields from the header, then zero it out */ 4561 /* Free dynamic fields from the header, then zero it out */
4591 4562
4592 header = &rbd_dev->header; 4563 header = &rbd_dev->header;
4593 rbd_snap_context_put(header->snapc); 4564 ceph_put_snap_context(header->snapc);
4594 kfree(header->snap_sizes); 4565 kfree(header->snap_sizes);
4595 kfree(header->snap_names); 4566 kfree(header->snap_names);
4596 kfree(header->object_prefix); 4567 kfree(header->object_prefix);
4597 memset(header, 0, sizeof (*header)); 4568 memset(header, 0, sizeof (*header));
4598 } 4569 }
4599 4570
4600 static int rbd_dev_v1_probe(struct rbd_device *rbd_dev) 4571 static int rbd_dev_v1_probe(struct rbd_device *rbd_dev)
4601 { 4572 {
4602 int ret; 4573 int ret;
4603 4574
4604 /* Populate rbd image metadata */ 4575 /* Populate rbd image metadata */
4605 4576
4606 ret = rbd_read_header(rbd_dev, &rbd_dev->header); 4577 ret = rbd_read_header(rbd_dev, &rbd_dev->header);
4607 if (ret < 0) 4578 if (ret < 0)
4608 goto out_err; 4579 goto out_err;
4609 4580
4610 /* Version 1 images have no parent (no layering) */ 4581 /* Version 1 images have no parent (no layering) */
4611 4582
4612 rbd_dev->parent_spec = NULL; 4583 rbd_dev->parent_spec = NULL;
4613 rbd_dev->parent_overlap = 0; 4584 rbd_dev->parent_overlap = 0;
4614 4585
4615 dout("discovered version 1 image, header name is %s\n", 4586 dout("discovered version 1 image, header name is %s\n",
4616 rbd_dev->header_name); 4587 rbd_dev->header_name);
4617 4588
4618 return 0; 4589 return 0;
4619 4590
4620 out_err: 4591 out_err:
4621 kfree(rbd_dev->header_name); 4592 kfree(rbd_dev->header_name);
4622 rbd_dev->header_name = NULL; 4593 rbd_dev->header_name = NULL;
4623 kfree(rbd_dev->spec->image_id); 4594 kfree(rbd_dev->spec->image_id);
4624 rbd_dev->spec->image_id = NULL; 4595 rbd_dev->spec->image_id = NULL;
4625 4596
4626 return ret; 4597 return ret;
4627 } 4598 }
4628 4599
4629 static int rbd_dev_v2_probe(struct rbd_device *rbd_dev) 4600 static int rbd_dev_v2_probe(struct rbd_device *rbd_dev)
4630 { 4601 {
4631 int ret; 4602 int ret;
4632 u64 ver = 0; 4603 u64 ver = 0;
4633 4604
4634 ret = rbd_dev_v2_image_size(rbd_dev); 4605 ret = rbd_dev_v2_image_size(rbd_dev);
4635 if (ret) 4606 if (ret)
4636 goto out_err; 4607 goto out_err;
4637 4608
4638 /* Get the object prefix (a.k.a. block_name) for the image */ 4609 /* Get the object prefix (a.k.a. block_name) for the image */
4639 4610
4640 ret = rbd_dev_v2_object_prefix(rbd_dev); 4611 ret = rbd_dev_v2_object_prefix(rbd_dev);
4641 if (ret) 4612 if (ret)
4642 goto out_err; 4613 goto out_err;
4643 4614
4644 /* Get the and check features for the image */ 4615 /* Get the and check features for the image */
4645 4616
4646 ret = rbd_dev_v2_features(rbd_dev); 4617 ret = rbd_dev_v2_features(rbd_dev);
4647 if (ret) 4618 if (ret)
4648 goto out_err; 4619 goto out_err;
4649 4620
4650 /* If the image supports layering, get the parent info */ 4621 /* If the image supports layering, get the parent info */
4651 4622
4652 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) { 4623 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
4653 ret = rbd_dev_v2_parent_info(rbd_dev); 4624 ret = rbd_dev_v2_parent_info(rbd_dev);
4654 if (ret) 4625 if (ret)
4655 goto out_err; 4626 goto out_err;
4656 rbd_warn(rbd_dev, "WARNING: kernel support for " 4627 rbd_warn(rbd_dev, "WARNING: kernel support for "
4657 "layered rbd images is EXPERIMENTAL!"); 4628 "layered rbd images is EXPERIMENTAL!");
4658 } 4629 }
4659 4630
4660 /* If the image supports fancy striping, get its parameters */ 4631 /* If the image supports fancy striping, get its parameters */
4661 4632
4662 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) { 4633 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4663 ret = rbd_dev_v2_striping_info(rbd_dev); 4634 ret = rbd_dev_v2_striping_info(rbd_dev);
4664 if (ret < 0) 4635 if (ret < 0)
4665 goto out_err; 4636 goto out_err;
4666 } 4637 }
4667 4638
4668 /* crypto and compression type aren't (yet) supported for v2 images */ 4639 /* crypto and compression type aren't (yet) supported for v2 images */
4669 4640
4670 rbd_dev->header.crypt_type = 0; 4641 rbd_dev->header.crypt_type = 0;
4671 rbd_dev->header.comp_type = 0; 4642 rbd_dev->header.comp_type = 0;
4672 4643
4673 /* Get the snapshot context, plus the header version */ 4644 /* Get the snapshot context, plus the header version */
4674 4645
4675 ret = rbd_dev_v2_snap_context(rbd_dev, &ver); 4646 ret = rbd_dev_v2_snap_context(rbd_dev, &ver);
4676 if (ret) 4647 if (ret)
4677 goto out_err; 4648 goto out_err;
4678 rbd_dev->header.obj_version = ver; 4649 rbd_dev->header.obj_version = ver;
4679 4650
4680 dout("discovered version 2 image, header name is %s\n", 4651 dout("discovered version 2 image, header name is %s\n",
4681 rbd_dev->header_name); 4652 rbd_dev->header_name);
4682 4653
4683 return 0; 4654 return 0;
4684 out_err: 4655 out_err:
4685 rbd_dev->parent_overlap = 0; 4656 rbd_dev->parent_overlap = 0;
4686 rbd_spec_put(rbd_dev->parent_spec); 4657 rbd_spec_put(rbd_dev->parent_spec);
4687 rbd_dev->parent_spec = NULL; 4658 rbd_dev->parent_spec = NULL;
4688 kfree(rbd_dev->header_name); 4659 kfree(rbd_dev->header_name);
4689 rbd_dev->header_name = NULL; 4660 rbd_dev->header_name = NULL;
4690 kfree(rbd_dev->header.object_prefix); 4661 kfree(rbd_dev->header.object_prefix);
4691 rbd_dev->header.object_prefix = NULL; 4662 rbd_dev->header.object_prefix = NULL;
4692 4663
4693 return ret; 4664 return ret;
4694 } 4665 }
4695 4666
4696 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev) 4667 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4697 { 4668 {
4698 struct rbd_device *parent = NULL; 4669 struct rbd_device *parent = NULL;
4699 struct rbd_spec *parent_spec; 4670 struct rbd_spec *parent_spec;
4700 struct rbd_client *rbdc; 4671 struct rbd_client *rbdc;
4701 int ret; 4672 int ret;
4702 4673
4703 if (!rbd_dev->parent_spec) 4674 if (!rbd_dev->parent_spec)
4704 return 0; 4675 return 0;
4705 /* 4676 /*
4706 * We need to pass a reference to the client and the parent 4677 * We need to pass a reference to the client and the parent
4707 * spec when creating the parent rbd_dev. Images related by 4678 * spec when creating the parent rbd_dev. Images related by
4708 * parent/child relationships always share both. 4679 * parent/child relationships always share both.
4709 */ 4680 */
4710 parent_spec = rbd_spec_get(rbd_dev->parent_spec); 4681 parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4711 rbdc = __rbd_get_client(rbd_dev->rbd_client); 4682 rbdc = __rbd_get_client(rbd_dev->rbd_client);
4712 4683
4713 ret = -ENOMEM; 4684 ret = -ENOMEM;
4714 parent = rbd_dev_create(rbdc, parent_spec); 4685 parent = rbd_dev_create(rbdc, parent_spec);
4715 if (!parent) 4686 if (!parent)
4716 goto out_err; 4687 goto out_err;
4717 4688
4718 ret = rbd_dev_image_probe(parent); 4689 ret = rbd_dev_image_probe(parent);
4719 if (ret < 0) 4690 if (ret < 0)
4720 goto out_err; 4691 goto out_err;
4721 rbd_dev->parent = parent; 4692 rbd_dev->parent = parent;
4722 4693
4723 return 0; 4694 return 0;
4724 out_err: 4695 out_err:
4725 if (parent) { 4696 if (parent) {
4726 rbd_spec_put(rbd_dev->parent_spec); 4697 rbd_spec_put(rbd_dev->parent_spec);
4727 kfree(rbd_dev->header_name); 4698 kfree(rbd_dev->header_name);
4728 rbd_dev_destroy(parent); 4699 rbd_dev_destroy(parent);
4729 } else { 4700 } else {
4730 rbd_put_client(rbdc); 4701 rbd_put_client(rbdc);
4731 rbd_spec_put(parent_spec); 4702 rbd_spec_put(parent_spec);
4732 } 4703 }
4733 4704
4734 return ret; 4705 return ret;
4735 } 4706 }
4736 4707
4737 static int rbd_dev_device_setup(struct rbd_device *rbd_dev) 4708 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4738 { 4709 {
4739 int ret; 4710 int ret;
4740 4711
4741 ret = rbd_dev_mapping_set(rbd_dev); 4712 ret = rbd_dev_mapping_set(rbd_dev);
4742 if (ret) 4713 if (ret)
4743 return ret; 4714 return ret;
4744 4715
4745 /* generate unique id: find highest unique id, add one */ 4716 /* generate unique id: find highest unique id, add one */
4746 rbd_dev_id_get(rbd_dev); 4717 rbd_dev_id_get(rbd_dev);
4747 4718
4748 /* Fill in the device name, now that we have its id. */ 4719 /* Fill in the device name, now that we have its id. */
4749 BUILD_BUG_ON(DEV_NAME_LEN 4720 BUILD_BUG_ON(DEV_NAME_LEN
4750 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH); 4721 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4751 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id); 4722 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4752 4723
4753 /* Get our block major device number. */ 4724 /* Get our block major device number. */
4754 4725
4755 ret = register_blkdev(0, rbd_dev->name); 4726 ret = register_blkdev(0, rbd_dev->name);
4756 if (ret < 0) 4727 if (ret < 0)
4757 goto err_out_id; 4728 goto err_out_id;
4758 rbd_dev->major = ret; 4729 rbd_dev->major = ret;
4759 4730
4760 /* Set up the blkdev mapping. */ 4731 /* Set up the blkdev mapping. */
4761 4732
4762 ret = rbd_init_disk(rbd_dev); 4733 ret = rbd_init_disk(rbd_dev);
4763 if (ret) 4734 if (ret)
4764 goto err_out_blkdev; 4735 goto err_out_blkdev;
4765 4736
4766 ret = rbd_bus_add_dev(rbd_dev); 4737 ret = rbd_bus_add_dev(rbd_dev);
4767 if (ret) 4738 if (ret)
4768 goto err_out_disk; 4739 goto err_out_disk;
4769 4740
4770 /* Everything's ready. Announce the disk to the world. */ 4741 /* Everything's ready. Announce the disk to the world. */
4771 4742
4772 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE); 4743 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4773 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 4744 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4774 add_disk(rbd_dev->disk); 4745 add_disk(rbd_dev->disk);
4775 4746
4776 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name, 4747 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4777 (unsigned long long) rbd_dev->mapping.size); 4748 (unsigned long long) rbd_dev->mapping.size);
4778 4749
4779 return ret; 4750 return ret;
4780 4751
4781 err_out_disk: 4752 err_out_disk:
4782 rbd_free_disk(rbd_dev); 4753 rbd_free_disk(rbd_dev);
4783 err_out_blkdev: 4754 err_out_blkdev:
4784 unregister_blkdev(rbd_dev->major, rbd_dev->name); 4755 unregister_blkdev(rbd_dev->major, rbd_dev->name);
4785 err_out_id: 4756 err_out_id:
4786 rbd_dev_id_put(rbd_dev); 4757 rbd_dev_id_put(rbd_dev);
4787 rbd_dev_mapping_clear(rbd_dev); 4758 rbd_dev_mapping_clear(rbd_dev);
4788 4759
4789 return ret; 4760 return ret;
4790 } 4761 }
4791 4762
4792 static int rbd_dev_header_name(struct rbd_device *rbd_dev) 4763 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4793 { 4764 {
4794 struct rbd_spec *spec = rbd_dev->spec; 4765 struct rbd_spec *spec = rbd_dev->spec;
4795 size_t size; 4766 size_t size;
4796 4767
4797 /* Record the header object name for this rbd image. */ 4768 /* Record the header object name for this rbd image. */
4798 4769
4799 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 4770 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4800 4771
4801 if (rbd_dev->image_format == 1) 4772 if (rbd_dev->image_format == 1)
4802 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX); 4773 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4803 else 4774 else
4804 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id); 4775 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4805 4776
4806 rbd_dev->header_name = kmalloc(size, GFP_KERNEL); 4777 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4807 if (!rbd_dev->header_name) 4778 if (!rbd_dev->header_name)
4808 return -ENOMEM; 4779 return -ENOMEM;
4809 4780
4810 if (rbd_dev->image_format == 1) 4781 if (rbd_dev->image_format == 1)
4811 sprintf(rbd_dev->header_name, "%s%s", 4782 sprintf(rbd_dev->header_name, "%s%s",
4812 spec->image_name, RBD_SUFFIX); 4783 spec->image_name, RBD_SUFFIX);
4813 else 4784 else
4814 sprintf(rbd_dev->header_name, "%s%s", 4785 sprintf(rbd_dev->header_name, "%s%s",
4815 RBD_HEADER_PREFIX, spec->image_id); 4786 RBD_HEADER_PREFIX, spec->image_id);
4816 return 0; 4787 return 0;
4817 } 4788 }
4818 4789
4819 static void rbd_dev_image_release(struct rbd_device *rbd_dev) 4790 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4820 { 4791 {
4821 int ret; 4792 int ret;
4822 4793
4823 rbd_remove_all_snaps(rbd_dev); 4794 rbd_remove_all_snaps(rbd_dev);
4824 rbd_dev_unprobe(rbd_dev); 4795 rbd_dev_unprobe(rbd_dev);
4825 ret = rbd_dev_header_watch_sync(rbd_dev, 0); 4796 ret = rbd_dev_header_watch_sync(rbd_dev, 0);
4826 if (ret) 4797 if (ret)
4827 rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret); 4798 rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret);
4828 kfree(rbd_dev->header_name); 4799 kfree(rbd_dev->header_name);
4829 rbd_dev->header_name = NULL; 4800 rbd_dev->header_name = NULL;
4830 rbd_dev->image_format = 0; 4801 rbd_dev->image_format = 0;
4831 kfree(rbd_dev->spec->image_id); 4802 kfree(rbd_dev->spec->image_id);
4832 rbd_dev->spec->image_id = NULL; 4803 rbd_dev->spec->image_id = NULL;
4833 4804
4834 rbd_dev_destroy(rbd_dev); 4805 rbd_dev_destroy(rbd_dev);
4835 } 4806 }
4836 4807
4837 /* 4808 /*
4838 * Probe for the existence of the header object for the given rbd 4809 * Probe for the existence of the header object for the given rbd
4839 * device. For format 2 images this includes determining the image 4810 * device. For format 2 images this includes determining the image
4840 * id. 4811 * id.
4841 */ 4812 */
4842 static int rbd_dev_image_probe(struct rbd_device *rbd_dev) 4813 static int rbd_dev_image_probe(struct rbd_device *rbd_dev)
4843 { 4814 {
4844 int ret; 4815 int ret;
4845 int tmp; 4816 int tmp;
4846 4817
4847 /* 4818 /*
4848 * Get the id from the image id object. If it's not a 4819 * Get the id from the image id object. If it's not a
4849 * format 2 image, we'll get ENOENT back, and we'll assume 4820 * format 2 image, we'll get ENOENT back, and we'll assume
4850 * it's a format 1 image. 4821 * it's a format 1 image.
4851 */ 4822 */
4852 ret = rbd_dev_image_id(rbd_dev); 4823 ret = rbd_dev_image_id(rbd_dev);
4853 if (ret) 4824 if (ret)
4854 return ret; 4825 return ret;
4855 rbd_assert(rbd_dev->spec->image_id); 4826 rbd_assert(rbd_dev->spec->image_id);
4856 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 4827 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4857 4828
4858 ret = rbd_dev_header_name(rbd_dev); 4829 ret = rbd_dev_header_name(rbd_dev);
4859 if (ret) 4830 if (ret)
4860 goto err_out_format; 4831 goto err_out_format;
4861 4832
4862 ret = rbd_dev_header_watch_sync(rbd_dev, 1); 4833 ret = rbd_dev_header_watch_sync(rbd_dev, 1);
4863 if (ret) 4834 if (ret)
4864 goto out_header_name; 4835 goto out_header_name;
4865 4836
4866 if (rbd_dev->image_format == 1) 4837 if (rbd_dev->image_format == 1)
4867 ret = rbd_dev_v1_probe(rbd_dev); 4838 ret = rbd_dev_v1_probe(rbd_dev);
4868 else 4839 else
4869 ret = rbd_dev_v2_probe(rbd_dev); 4840 ret = rbd_dev_v2_probe(rbd_dev);
4870 if (ret) 4841 if (ret)
4871 goto err_out_watch; 4842 goto err_out_watch;
4872 4843
4873 ret = rbd_dev_snaps_update(rbd_dev); 4844 ret = rbd_dev_snaps_update(rbd_dev);
4874 if (ret) 4845 if (ret)
4875 goto err_out_probe; 4846 goto err_out_probe;
4876 4847
4877 ret = rbd_dev_spec_update(rbd_dev); 4848 ret = rbd_dev_spec_update(rbd_dev);
4878 if (ret) 4849 if (ret)
4879 goto err_out_snaps; 4850 goto err_out_snaps;
4880 4851
4881 ret = rbd_dev_probe_parent(rbd_dev); 4852 ret = rbd_dev_probe_parent(rbd_dev);
4882 if (!ret) 4853 if (!ret)
4883 return 0; 4854 return 0;
4884 4855
4885 err_out_snaps: 4856 err_out_snaps:
4886 rbd_remove_all_snaps(rbd_dev); 4857 rbd_remove_all_snaps(rbd_dev);
4887 err_out_probe: 4858 err_out_probe:
4888 rbd_dev_unprobe(rbd_dev); 4859 rbd_dev_unprobe(rbd_dev);
4889 err_out_watch: 4860 err_out_watch:
4890 tmp = rbd_dev_header_watch_sync(rbd_dev, 0); 4861 tmp = rbd_dev_header_watch_sync(rbd_dev, 0);
4891 if (tmp) 4862 if (tmp)
4892 rbd_warn(rbd_dev, "unable to tear down watch request\n"); 4863 rbd_warn(rbd_dev, "unable to tear down watch request\n");
4893 out_header_name: 4864 out_header_name:
4894 kfree(rbd_dev->header_name); 4865 kfree(rbd_dev->header_name);
4895 rbd_dev->header_name = NULL; 4866 rbd_dev->header_name = NULL;
4896 err_out_format: 4867 err_out_format:
4897 rbd_dev->image_format = 0; 4868 rbd_dev->image_format = 0;
4898 kfree(rbd_dev->spec->image_id); 4869 kfree(rbd_dev->spec->image_id);
4899 rbd_dev->spec->image_id = NULL; 4870 rbd_dev->spec->image_id = NULL;
4900 4871
4901 dout("probe failed, returning %d\n", ret); 4872 dout("probe failed, returning %d\n", ret);
4902 4873
4903 return ret; 4874 return ret;
4904 } 4875 }
4905 4876
4906 static ssize_t rbd_add(struct bus_type *bus, 4877 static ssize_t rbd_add(struct bus_type *bus,
4907 const char *buf, 4878 const char *buf,
4908 size_t count) 4879 size_t count)
4909 { 4880 {
4910 struct rbd_device *rbd_dev = NULL; 4881 struct rbd_device *rbd_dev = NULL;
4911 struct ceph_options *ceph_opts = NULL; 4882 struct ceph_options *ceph_opts = NULL;
4912 struct rbd_options *rbd_opts = NULL; 4883 struct rbd_options *rbd_opts = NULL;
4913 struct rbd_spec *spec = NULL; 4884 struct rbd_spec *spec = NULL;
4914 struct rbd_client *rbdc; 4885 struct rbd_client *rbdc;
4915 struct ceph_osd_client *osdc; 4886 struct ceph_osd_client *osdc;
4916 int rc = -ENOMEM; 4887 int rc = -ENOMEM;
4917 4888
4918 if (!try_module_get(THIS_MODULE)) 4889 if (!try_module_get(THIS_MODULE))
4919 return -ENODEV; 4890 return -ENODEV;
4920 4891
4921 /* parse add command */ 4892 /* parse add command */
4922 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec); 4893 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
4923 if (rc < 0) 4894 if (rc < 0)
4924 goto err_out_module; 4895 goto err_out_module;
4925 4896
4926 rbdc = rbd_get_client(ceph_opts); 4897 rbdc = rbd_get_client(ceph_opts);
4927 if (IS_ERR(rbdc)) { 4898 if (IS_ERR(rbdc)) {
4928 rc = PTR_ERR(rbdc); 4899 rc = PTR_ERR(rbdc);
4929 goto err_out_args; 4900 goto err_out_args;
4930 } 4901 }
4931 ceph_opts = NULL; /* rbd_dev client now owns this */ 4902 ceph_opts = NULL; /* rbd_dev client now owns this */
4932 4903
4933 /* pick the pool */ 4904 /* pick the pool */
4934 osdc = &rbdc->client->osdc; 4905 osdc = &rbdc->client->osdc;
4935 rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name); 4906 rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
4936 if (rc < 0) 4907 if (rc < 0)
4937 goto err_out_client; 4908 goto err_out_client;
4938 spec->pool_id = (u64)rc; 4909 spec->pool_id = (u64)rc;
4939 4910
4940 /* The ceph file layout needs to fit pool id in 32 bits */ 4911 /* The ceph file layout needs to fit pool id in 32 bits */
4941 4912
4942 if (spec->pool_id > (u64)U32_MAX) { 4913 if (spec->pool_id > (u64)U32_MAX) {
4943 rbd_warn(NULL, "pool id too large (%llu > %u)\n", 4914 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
4944 (unsigned long long)spec->pool_id, U32_MAX); 4915 (unsigned long long)spec->pool_id, U32_MAX);
4945 rc = -EIO; 4916 rc = -EIO;
4946 goto err_out_client; 4917 goto err_out_client;
4947 } 4918 }
4948 4919
4949 rbd_dev = rbd_dev_create(rbdc, spec); 4920 rbd_dev = rbd_dev_create(rbdc, spec);
4950 if (!rbd_dev) 4921 if (!rbd_dev)
4951 goto err_out_client; 4922 goto err_out_client;
4952 rbdc = NULL; /* rbd_dev now owns this */ 4923 rbdc = NULL; /* rbd_dev now owns this */
4953 spec = NULL; /* rbd_dev now owns this */ 4924 spec = NULL; /* rbd_dev now owns this */
4954 4925
4955 rbd_dev->mapping.read_only = rbd_opts->read_only; 4926 rbd_dev->mapping.read_only = rbd_opts->read_only;
4956 kfree(rbd_opts); 4927 kfree(rbd_opts);
4957 rbd_opts = NULL; /* done with this */ 4928 rbd_opts = NULL; /* done with this */
4958 4929
4959 rc = rbd_dev_image_probe(rbd_dev); 4930 rc = rbd_dev_image_probe(rbd_dev);
4960 if (rc < 0) 4931 if (rc < 0)
4961 goto err_out_rbd_dev; 4932 goto err_out_rbd_dev;
4962 4933
4963 rc = rbd_dev_device_setup(rbd_dev); 4934 rc = rbd_dev_device_setup(rbd_dev);
4964 if (!rc) 4935 if (!rc)
4965 return count; 4936 return count;
4966 4937
4967 rbd_dev_image_release(rbd_dev); 4938 rbd_dev_image_release(rbd_dev);
4968 err_out_rbd_dev: 4939 err_out_rbd_dev:
4969 rbd_dev_destroy(rbd_dev); 4940 rbd_dev_destroy(rbd_dev);
4970 err_out_client: 4941 err_out_client:
4971 rbd_put_client(rbdc); 4942 rbd_put_client(rbdc);
4972 err_out_args: 4943 err_out_args:
4973 if (ceph_opts) 4944 if (ceph_opts)
4974 ceph_destroy_options(ceph_opts); 4945 ceph_destroy_options(ceph_opts);
4975 kfree(rbd_opts); 4946 kfree(rbd_opts);
4976 rbd_spec_put(spec); 4947 rbd_spec_put(spec);
4977 err_out_module: 4948 err_out_module:
4978 module_put(THIS_MODULE); 4949 module_put(THIS_MODULE);
4979 4950
4980 dout("Error adding device %s\n", buf); 4951 dout("Error adding device %s\n", buf);
4981 4952
4982 return (ssize_t)rc; 4953 return (ssize_t)rc;
4983 } 4954 }
4984 4955
4985 static struct rbd_device *__rbd_get_dev(unsigned long dev_id) 4956 static struct rbd_device *__rbd_get_dev(unsigned long dev_id)
4986 { 4957 {
4987 struct list_head *tmp; 4958 struct list_head *tmp;
4988 struct rbd_device *rbd_dev; 4959 struct rbd_device *rbd_dev;
4989 4960
4990 spin_lock(&rbd_dev_list_lock); 4961 spin_lock(&rbd_dev_list_lock);
4991 list_for_each(tmp, &rbd_dev_list) { 4962 list_for_each(tmp, &rbd_dev_list) {
4992 rbd_dev = list_entry(tmp, struct rbd_device, node); 4963 rbd_dev = list_entry(tmp, struct rbd_device, node);
4993 if (rbd_dev->dev_id == dev_id) { 4964 if (rbd_dev->dev_id == dev_id) {
4994 spin_unlock(&rbd_dev_list_lock); 4965 spin_unlock(&rbd_dev_list_lock);
4995 return rbd_dev; 4966 return rbd_dev;
4996 } 4967 }
4997 } 4968 }
4998 spin_unlock(&rbd_dev_list_lock); 4969 spin_unlock(&rbd_dev_list_lock);
4999 return NULL; 4970 return NULL;
5000 } 4971 }
5001 4972
5002 static void rbd_dev_device_release(struct device *dev) 4973 static void rbd_dev_device_release(struct device *dev)
5003 { 4974 {
5004 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4975 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5005 4976
5006 rbd_free_disk(rbd_dev); 4977 rbd_free_disk(rbd_dev);
5007 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 4978 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5008 rbd_dev_clear_mapping(rbd_dev); 4979 rbd_dev_clear_mapping(rbd_dev);
5009 unregister_blkdev(rbd_dev->major, rbd_dev->name); 4980 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5010 rbd_dev->major = 0; 4981 rbd_dev->major = 0;
5011 rbd_dev_id_put(rbd_dev); 4982 rbd_dev_id_put(rbd_dev);
5012 rbd_dev_mapping_clear(rbd_dev); 4983 rbd_dev_mapping_clear(rbd_dev);
5013 } 4984 }
5014 4985
5015 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev) 4986 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5016 { 4987 {
5017 while (rbd_dev->parent) { 4988 while (rbd_dev->parent) {
5018 struct rbd_device *first = rbd_dev; 4989 struct rbd_device *first = rbd_dev;
5019 struct rbd_device *second = first->parent; 4990 struct rbd_device *second = first->parent;
5020 struct rbd_device *third; 4991 struct rbd_device *third;
5021 4992
5022 /* 4993 /*
5023 * Follow to the parent with no grandparent and 4994 * Follow to the parent with no grandparent and
5024 * remove it. 4995 * remove it.
5025 */ 4996 */
5026 while (second && (third = second->parent)) { 4997 while (second && (third = second->parent)) {
5027 first = second; 4998 first = second;
5028 second = third; 4999 second = third;
5029 } 5000 }
5030 rbd_assert(second); 5001 rbd_assert(second);
5031 rbd_dev_image_release(second); 5002 rbd_dev_image_release(second);
5032 first->parent = NULL; 5003 first->parent = NULL;
5033 first->parent_overlap = 0; 5004 first->parent_overlap = 0;
5034 5005
5035 rbd_assert(first->parent_spec); 5006 rbd_assert(first->parent_spec);
5036 rbd_spec_put(first->parent_spec); 5007 rbd_spec_put(first->parent_spec);
5037 first->parent_spec = NULL; 5008 first->parent_spec = NULL;
5038 } 5009 }
5039 } 5010 }
5040 5011
5041 static ssize_t rbd_remove(struct bus_type *bus, 5012 static ssize_t rbd_remove(struct bus_type *bus,
5042 const char *buf, 5013 const char *buf,
5043 size_t count) 5014 size_t count)
5044 { 5015 {
5045 struct rbd_device *rbd_dev = NULL; 5016 struct rbd_device *rbd_dev = NULL;
5046 int target_id; 5017 int target_id;
5047 unsigned long ul; 5018 unsigned long ul;
5048 int ret; 5019 int ret;
5049 5020
5050 ret = strict_strtoul(buf, 10, &ul); 5021 ret = strict_strtoul(buf, 10, &ul);
5051 if (ret) 5022 if (ret)
5052 return ret; 5023 return ret;
5053 5024
5054 /* convert to int; abort if we lost anything in the conversion */ 5025 /* convert to int; abort if we lost anything in the conversion */
5055 target_id = (int) ul; 5026 target_id = (int) ul;
5056 if (target_id != ul) 5027 if (target_id != ul)
5057 return -EINVAL; 5028 return -EINVAL;
5058 5029
5059 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 5030 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
5060 5031
5061 rbd_dev = __rbd_get_dev(target_id); 5032 rbd_dev = __rbd_get_dev(target_id);
5062 if (!rbd_dev) { 5033 if (!rbd_dev) {
5063 ret = -ENOENT; 5034 ret = -ENOENT;
5064 goto done; 5035 goto done;
5065 } 5036 }
5066 5037
5067 spin_lock_irq(&rbd_dev->lock); 5038 spin_lock_irq(&rbd_dev->lock);
5068 if (rbd_dev->open_count) 5039 if (rbd_dev->open_count)
5069 ret = -EBUSY; 5040 ret = -EBUSY;
5070 else 5041 else
5071 set_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags); 5042 set_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
5072 spin_unlock_irq(&rbd_dev->lock); 5043 spin_unlock_irq(&rbd_dev->lock);
5073 if (ret < 0) 5044 if (ret < 0)
5074 goto done; 5045 goto done;
5075 ret = count; 5046 ret = count;
5076 rbd_bus_del_dev(rbd_dev); 5047 rbd_bus_del_dev(rbd_dev);
5077 rbd_dev_image_release(rbd_dev); 5048 rbd_dev_image_release(rbd_dev);
5078 module_put(THIS_MODULE); 5049 module_put(THIS_MODULE);
5079 done: 5050 done:
5080 mutex_unlock(&ctl_mutex); 5051 mutex_unlock(&ctl_mutex);
5081 5052
5082 return ret; 5053 return ret;
5083 } 5054 }
5084 5055
5085 /* 5056 /*
5086 * create control files in sysfs 5057 * create control files in sysfs
5087 * /sys/bus/rbd/... 5058 * /sys/bus/rbd/...
5088 */ 5059 */
5089 static int rbd_sysfs_init(void) 5060 static int rbd_sysfs_init(void)
5090 { 5061 {
5091 int ret; 5062 int ret;
5092 5063
5093 ret = device_register(&rbd_root_dev); 5064 ret = device_register(&rbd_root_dev);
5094 if (ret < 0) 5065 if (ret < 0)
5095 return ret; 5066 return ret;
5096 5067
5097 ret = bus_register(&rbd_bus_type); 5068 ret = bus_register(&rbd_bus_type);
5098 if (ret < 0) 5069 if (ret < 0)
5099 device_unregister(&rbd_root_dev); 5070 device_unregister(&rbd_root_dev);
5100 5071
5101 return ret; 5072 return ret;
5102 } 5073 }
5103 5074
5104 static void rbd_sysfs_cleanup(void) 5075 static void rbd_sysfs_cleanup(void)
5105 { 5076 {
5106 bus_unregister(&rbd_bus_type); 5077 bus_unregister(&rbd_bus_type);
5107 device_unregister(&rbd_root_dev); 5078 device_unregister(&rbd_root_dev);
5108 } 5079 }
5109 5080
5110 static int __init rbd_init(void) 5081 static int __init rbd_init(void)
5111 { 5082 {
5112 int rc; 5083 int rc;
5113 5084
5114 if (!libceph_compatible(NULL)) { 5085 if (!libceph_compatible(NULL)) {
5115 rbd_warn(NULL, "libceph incompatibility (quitting)"); 5086 rbd_warn(NULL, "libceph incompatibility (quitting)");
5116 5087
5117 return -EINVAL; 5088 return -EINVAL;
5118 } 5089 }
5119 rc = rbd_sysfs_init(); 5090 rc = rbd_sysfs_init();
5120 if (rc) 5091 if (rc)
5121 return rc; 5092 return rc;
5122 pr_info("loaded " RBD_DRV_NAME_LONG "\n"); 5093 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
5123 return 0; 5094 return 0;
5124 } 5095 }
5125 5096
5126 static void __exit rbd_exit(void) 5097 static void __exit rbd_exit(void)
5127 { 5098 {
5128 rbd_sysfs_cleanup(); 5099 rbd_sysfs_cleanup();
5129 } 5100 }
5130 5101
5131 module_init(rbd_init); 5102 module_init(rbd_init);
5132 module_exit(rbd_exit); 5103 module_exit(rbd_exit);
5133 5104
5134 MODULE_AUTHOR("Sage Weil <sage@newdream.net>"); 5105 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5135 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>"); 5106 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5136 MODULE_DESCRIPTION("rados block device"); 5107 MODULE_DESCRIPTION("rados block device");
5137 5108
5138 /* following authorship retained from original osdblk.c */ 5109 /* following authorship retained from original osdblk.c */
5139 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>"); 5110 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5140 5111
5141 MODULE_LICENSE("GPL"); 5112 MODULE_LICENSE("GPL");
5142 5113
1 #include <linux/ceph/ceph_debug.h> 1 #include <linux/ceph/ceph_debug.h>
2 2
3 #include <linux/sort.h> 3 #include <linux/sort.h>
4 #include <linux/slab.h> 4 #include <linux/slab.h>
5 5
6 #include "super.h" 6 #include "super.h"
7 #include "mds_client.h" 7 #include "mds_client.h"
8 8
9 #include <linux/ceph/decode.h> 9 #include <linux/ceph/decode.h>
10 10
11 /* 11 /*
12 * Snapshots in ceph are driven in large part by cooperation from the 12 * Snapshots in ceph are driven in large part by cooperation from the
13 * client. In contrast to local file systems or file servers that 13 * client. In contrast to local file systems or file servers that
14 * implement snapshots at a single point in the system, ceph's 14 * implement snapshots at a single point in the system, ceph's
15 * distributed access to storage requires clients to help decide 15 * distributed access to storage requires clients to help decide
16 * whether a write logically occurs before or after a recently created 16 * whether a write logically occurs before or after a recently created
17 * snapshot. 17 * snapshot.
18 * 18 *
19 * This provides a perfect instantanous client-wide snapshot. Between 19 * This provides a perfect instantanous client-wide snapshot. Between
20 * clients, however, snapshots may appear to be applied at slightly 20 * clients, however, snapshots may appear to be applied at slightly
21 * different points in time, depending on delays in delivering the 21 * different points in time, depending on delays in delivering the
22 * snapshot notification. 22 * snapshot notification.
23 * 23 *
24 * Snapshots are _not_ file system-wide. Instead, each snapshot 24 * Snapshots are _not_ file system-wide. Instead, each snapshot
25 * applies to the subdirectory nested beneath some directory. This 25 * applies to the subdirectory nested beneath some directory. This
26 * effectively divides the hierarchy into multiple "realms," where all 26 * effectively divides the hierarchy into multiple "realms," where all
27 * of the files contained by each realm share the same set of 27 * of the files contained by each realm share the same set of
28 * snapshots. An individual realm's snap set contains snapshots 28 * snapshots. An individual realm's snap set contains snapshots
29 * explicitly created on that realm, as well as any snaps in its 29 * explicitly created on that realm, as well as any snaps in its
30 * parent's snap set _after_ the point at which the parent became it's 30 * parent's snap set _after_ the point at which the parent became it's
31 * parent (due to, say, a rename). Similarly, snaps from prior parents 31 * parent (due to, say, a rename). Similarly, snaps from prior parents
32 * during the time intervals during which they were the parent are included. 32 * during the time intervals during which they were the parent are included.
33 * 33 *
34 * The client is spared most of this detail, fortunately... it must only 34 * The client is spared most of this detail, fortunately... it must only
35 * maintains a hierarchy of realms reflecting the current parent/child 35 * maintains a hierarchy of realms reflecting the current parent/child
36 * realm relationship, and for each realm has an explicit list of snaps 36 * realm relationship, and for each realm has an explicit list of snaps
37 * inherited from prior parents. 37 * inherited from prior parents.
38 * 38 *
39 * A snap_realm struct is maintained for realms containing every inode 39 * A snap_realm struct is maintained for realms containing every inode
40 * with an open cap in the system. (The needed snap realm information is 40 * with an open cap in the system. (The needed snap realm information is
41 * provided by the MDS whenever a cap is issued, i.e., on open.) A 'seq' 41 * provided by the MDS whenever a cap is issued, i.e., on open.) A 'seq'
42 * version number is used to ensure that as realm parameters change (new 42 * version number is used to ensure that as realm parameters change (new
43 * snapshot, new parent, etc.) the client's realm hierarchy is updated. 43 * snapshot, new parent, etc.) the client's realm hierarchy is updated.
44 * 44 *
45 * The realm hierarchy drives the generation of a 'snap context' for each 45 * The realm hierarchy drives the generation of a 'snap context' for each
46 * realm, which simply lists the resulting set of snaps for the realm. This 46 * realm, which simply lists the resulting set of snaps for the realm. This
47 * is attached to any writes sent to OSDs. 47 * is attached to any writes sent to OSDs.
48 */ 48 */
49 /* 49 /*
50 * Unfortunately error handling is a bit mixed here. If we get a snap 50 * Unfortunately error handling is a bit mixed here. If we get a snap
51 * update, but don't have enough memory to update our realm hierarchy, 51 * update, but don't have enough memory to update our realm hierarchy,
52 * it's not clear what we can do about it (besides complaining to the 52 * it's not clear what we can do about it (besides complaining to the
53 * console). 53 * console).
54 */ 54 */
55 55
56 56
57 /* 57 /*
58 * increase ref count for the realm 58 * increase ref count for the realm
59 * 59 *
60 * caller must hold snap_rwsem for write. 60 * caller must hold snap_rwsem for write.
61 */ 61 */
62 void ceph_get_snap_realm(struct ceph_mds_client *mdsc, 62 void ceph_get_snap_realm(struct ceph_mds_client *mdsc,
63 struct ceph_snap_realm *realm) 63 struct ceph_snap_realm *realm)
64 { 64 {
65 dout("get_realm %p %d -> %d\n", realm, 65 dout("get_realm %p %d -> %d\n", realm,
66 atomic_read(&realm->nref), atomic_read(&realm->nref)+1); 66 atomic_read(&realm->nref), atomic_read(&realm->nref)+1);
67 /* 67 /*
68 * since we _only_ increment realm refs or empty the empty 68 * since we _only_ increment realm refs or empty the empty
69 * list with snap_rwsem held, adjusting the empty list here is 69 * list with snap_rwsem held, adjusting the empty list here is
70 * safe. we do need to protect against concurrent empty list 70 * safe. we do need to protect against concurrent empty list
71 * additions, however. 71 * additions, however.
72 */ 72 */
73 if (atomic_read(&realm->nref) == 0) { 73 if (atomic_read(&realm->nref) == 0) {
74 spin_lock(&mdsc->snap_empty_lock); 74 spin_lock(&mdsc->snap_empty_lock);
75 list_del_init(&realm->empty_item); 75 list_del_init(&realm->empty_item);
76 spin_unlock(&mdsc->snap_empty_lock); 76 spin_unlock(&mdsc->snap_empty_lock);
77 } 77 }
78 78
79 atomic_inc(&realm->nref); 79 atomic_inc(&realm->nref);
80 } 80 }
81 81
82 static void __insert_snap_realm(struct rb_root *root, 82 static void __insert_snap_realm(struct rb_root *root,
83 struct ceph_snap_realm *new) 83 struct ceph_snap_realm *new)
84 { 84 {
85 struct rb_node **p = &root->rb_node; 85 struct rb_node **p = &root->rb_node;
86 struct rb_node *parent = NULL; 86 struct rb_node *parent = NULL;
87 struct ceph_snap_realm *r = NULL; 87 struct ceph_snap_realm *r = NULL;
88 88
89 while (*p) { 89 while (*p) {
90 parent = *p; 90 parent = *p;
91 r = rb_entry(parent, struct ceph_snap_realm, node); 91 r = rb_entry(parent, struct ceph_snap_realm, node);
92 if (new->ino < r->ino) 92 if (new->ino < r->ino)
93 p = &(*p)->rb_left; 93 p = &(*p)->rb_left;
94 else if (new->ino > r->ino) 94 else if (new->ino > r->ino)
95 p = &(*p)->rb_right; 95 p = &(*p)->rb_right;
96 else 96 else
97 BUG(); 97 BUG();
98 } 98 }
99 99
100 rb_link_node(&new->node, parent, p); 100 rb_link_node(&new->node, parent, p);
101 rb_insert_color(&new->node, root); 101 rb_insert_color(&new->node, root);
102 } 102 }
103 103
104 /* 104 /*
105 * create and get the realm rooted at @ino and bump its ref count. 105 * create and get the realm rooted at @ino and bump its ref count.
106 * 106 *
107 * caller must hold snap_rwsem for write. 107 * caller must hold snap_rwsem for write.
108 */ 108 */
109 static struct ceph_snap_realm *ceph_create_snap_realm( 109 static struct ceph_snap_realm *ceph_create_snap_realm(
110 struct ceph_mds_client *mdsc, 110 struct ceph_mds_client *mdsc,
111 u64 ino) 111 u64 ino)
112 { 112 {
113 struct ceph_snap_realm *realm; 113 struct ceph_snap_realm *realm;
114 114
115 realm = kzalloc(sizeof(*realm), GFP_NOFS); 115 realm = kzalloc(sizeof(*realm), GFP_NOFS);
116 if (!realm) 116 if (!realm)
117 return ERR_PTR(-ENOMEM); 117 return ERR_PTR(-ENOMEM);
118 118
119 atomic_set(&realm->nref, 0); /* tree does not take a ref */ 119 atomic_set(&realm->nref, 0); /* tree does not take a ref */
120 realm->ino = ino; 120 realm->ino = ino;
121 INIT_LIST_HEAD(&realm->children); 121 INIT_LIST_HEAD(&realm->children);
122 INIT_LIST_HEAD(&realm->child_item); 122 INIT_LIST_HEAD(&realm->child_item);
123 INIT_LIST_HEAD(&realm->empty_item); 123 INIT_LIST_HEAD(&realm->empty_item);
124 INIT_LIST_HEAD(&realm->dirty_item); 124 INIT_LIST_HEAD(&realm->dirty_item);
125 INIT_LIST_HEAD(&realm->inodes_with_caps); 125 INIT_LIST_HEAD(&realm->inodes_with_caps);
126 spin_lock_init(&realm->inodes_with_caps_lock); 126 spin_lock_init(&realm->inodes_with_caps_lock);
127 __insert_snap_realm(&mdsc->snap_realms, realm); 127 __insert_snap_realm(&mdsc->snap_realms, realm);
128 dout("create_snap_realm %llx %p\n", realm->ino, realm); 128 dout("create_snap_realm %llx %p\n", realm->ino, realm);
129 return realm; 129 return realm;
130 } 130 }
131 131
132 /* 132 /*
133 * lookup the realm rooted at @ino. 133 * lookup the realm rooted at @ino.
134 * 134 *
135 * caller must hold snap_rwsem for write. 135 * caller must hold snap_rwsem for write.
136 */ 136 */
137 struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc, 137 struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc,
138 u64 ino) 138 u64 ino)
139 { 139 {
140 struct rb_node *n = mdsc->snap_realms.rb_node; 140 struct rb_node *n = mdsc->snap_realms.rb_node;
141 struct ceph_snap_realm *r; 141 struct ceph_snap_realm *r;
142 142
143 while (n) { 143 while (n) {
144 r = rb_entry(n, struct ceph_snap_realm, node); 144 r = rb_entry(n, struct ceph_snap_realm, node);
145 if (ino < r->ino) 145 if (ino < r->ino)
146 n = n->rb_left; 146 n = n->rb_left;
147 else if (ino > r->ino) 147 else if (ino > r->ino)
148 n = n->rb_right; 148 n = n->rb_right;
149 else { 149 else {
150 dout("lookup_snap_realm %llx %p\n", r->ino, r); 150 dout("lookup_snap_realm %llx %p\n", r->ino, r);
151 return r; 151 return r;
152 } 152 }
153 } 153 }
154 return NULL; 154 return NULL;
155 } 155 }
156 156
157 static void __put_snap_realm(struct ceph_mds_client *mdsc, 157 static void __put_snap_realm(struct ceph_mds_client *mdsc,
158 struct ceph_snap_realm *realm); 158 struct ceph_snap_realm *realm);
159 159
160 /* 160 /*
161 * called with snap_rwsem (write) 161 * called with snap_rwsem (write)
162 */ 162 */
163 static void __destroy_snap_realm(struct ceph_mds_client *mdsc, 163 static void __destroy_snap_realm(struct ceph_mds_client *mdsc,
164 struct ceph_snap_realm *realm) 164 struct ceph_snap_realm *realm)
165 { 165 {
166 dout("__destroy_snap_realm %p %llx\n", realm, realm->ino); 166 dout("__destroy_snap_realm %p %llx\n", realm, realm->ino);
167 167
168 rb_erase(&realm->node, &mdsc->snap_realms); 168 rb_erase(&realm->node, &mdsc->snap_realms);
169 169
170 if (realm->parent) { 170 if (realm->parent) {
171 list_del_init(&realm->child_item); 171 list_del_init(&realm->child_item);
172 __put_snap_realm(mdsc, realm->parent); 172 __put_snap_realm(mdsc, realm->parent);
173 } 173 }
174 174
175 kfree(realm->prior_parent_snaps); 175 kfree(realm->prior_parent_snaps);
176 kfree(realm->snaps); 176 kfree(realm->snaps);
177 ceph_put_snap_context(realm->cached_context); 177 ceph_put_snap_context(realm->cached_context);
178 kfree(realm); 178 kfree(realm);
179 } 179 }
180 180
181 /* 181 /*
182 * caller holds snap_rwsem (write) 182 * caller holds snap_rwsem (write)
183 */ 183 */
184 static void __put_snap_realm(struct ceph_mds_client *mdsc, 184 static void __put_snap_realm(struct ceph_mds_client *mdsc,
185 struct ceph_snap_realm *realm) 185 struct ceph_snap_realm *realm)
186 { 186 {
187 dout("__put_snap_realm %llx %p %d -> %d\n", realm->ino, realm, 187 dout("__put_snap_realm %llx %p %d -> %d\n", realm->ino, realm,
188 atomic_read(&realm->nref), atomic_read(&realm->nref)-1); 188 atomic_read(&realm->nref), atomic_read(&realm->nref)-1);
189 if (atomic_dec_and_test(&realm->nref)) 189 if (atomic_dec_and_test(&realm->nref))
190 __destroy_snap_realm(mdsc, realm); 190 __destroy_snap_realm(mdsc, realm);
191 } 191 }
192 192
193 /* 193 /*
194 * caller needn't hold any locks 194 * caller needn't hold any locks
195 */ 195 */
196 void ceph_put_snap_realm(struct ceph_mds_client *mdsc, 196 void ceph_put_snap_realm(struct ceph_mds_client *mdsc,
197 struct ceph_snap_realm *realm) 197 struct ceph_snap_realm *realm)
198 { 198 {
199 dout("put_snap_realm %llx %p %d -> %d\n", realm->ino, realm, 199 dout("put_snap_realm %llx %p %d -> %d\n", realm->ino, realm,
200 atomic_read(&realm->nref), atomic_read(&realm->nref)-1); 200 atomic_read(&realm->nref), atomic_read(&realm->nref)-1);
201 if (!atomic_dec_and_test(&realm->nref)) 201 if (!atomic_dec_and_test(&realm->nref))
202 return; 202 return;
203 203
204 if (down_write_trylock(&mdsc->snap_rwsem)) { 204 if (down_write_trylock(&mdsc->snap_rwsem)) {
205 __destroy_snap_realm(mdsc, realm); 205 __destroy_snap_realm(mdsc, realm);
206 up_write(&mdsc->snap_rwsem); 206 up_write(&mdsc->snap_rwsem);
207 } else { 207 } else {
208 spin_lock(&mdsc->snap_empty_lock); 208 spin_lock(&mdsc->snap_empty_lock);
209 list_add(&realm->empty_item, &mdsc->snap_empty); 209 list_add(&realm->empty_item, &mdsc->snap_empty);
210 spin_unlock(&mdsc->snap_empty_lock); 210 spin_unlock(&mdsc->snap_empty_lock);
211 } 211 }
212 } 212 }
213 213
214 /* 214 /*
215 * Clean up any realms whose ref counts have dropped to zero. Note 215 * Clean up any realms whose ref counts have dropped to zero. Note
216 * that this does not include realms who were created but not yet 216 * that this does not include realms who were created but not yet
217 * used. 217 * used.
218 * 218 *
219 * Called under snap_rwsem (write) 219 * Called under snap_rwsem (write)
220 */ 220 */
221 static void __cleanup_empty_realms(struct ceph_mds_client *mdsc) 221 static void __cleanup_empty_realms(struct ceph_mds_client *mdsc)
222 { 222 {
223 struct ceph_snap_realm *realm; 223 struct ceph_snap_realm *realm;
224 224
225 spin_lock(&mdsc->snap_empty_lock); 225 spin_lock(&mdsc->snap_empty_lock);
226 while (!list_empty(&mdsc->snap_empty)) { 226 while (!list_empty(&mdsc->snap_empty)) {
227 realm = list_first_entry(&mdsc->snap_empty, 227 realm = list_first_entry(&mdsc->snap_empty,
228 struct ceph_snap_realm, empty_item); 228 struct ceph_snap_realm, empty_item);
229 list_del(&realm->empty_item); 229 list_del(&realm->empty_item);
230 spin_unlock(&mdsc->snap_empty_lock); 230 spin_unlock(&mdsc->snap_empty_lock);
231 __destroy_snap_realm(mdsc, realm); 231 __destroy_snap_realm(mdsc, realm);
232 spin_lock(&mdsc->snap_empty_lock); 232 spin_lock(&mdsc->snap_empty_lock);
233 } 233 }
234 spin_unlock(&mdsc->snap_empty_lock); 234 spin_unlock(&mdsc->snap_empty_lock);
235 } 235 }
236 236
237 void ceph_cleanup_empty_realms(struct ceph_mds_client *mdsc) 237 void ceph_cleanup_empty_realms(struct ceph_mds_client *mdsc)
238 { 238 {
239 down_write(&mdsc->snap_rwsem); 239 down_write(&mdsc->snap_rwsem);
240 __cleanup_empty_realms(mdsc); 240 __cleanup_empty_realms(mdsc);
241 up_write(&mdsc->snap_rwsem); 241 up_write(&mdsc->snap_rwsem);
242 } 242 }
243 243
244 /* 244 /*
245 * adjust the parent realm of a given @realm. adjust child list, and parent 245 * adjust the parent realm of a given @realm. adjust child list, and parent
246 * pointers, and ref counts appropriately. 246 * pointers, and ref counts appropriately.
247 * 247 *
248 * return true if parent was changed, 0 if unchanged, <0 on error. 248 * return true if parent was changed, 0 if unchanged, <0 on error.
249 * 249 *
250 * caller must hold snap_rwsem for write. 250 * caller must hold snap_rwsem for write.
251 */ 251 */
252 static int adjust_snap_realm_parent(struct ceph_mds_client *mdsc, 252 static int adjust_snap_realm_parent(struct ceph_mds_client *mdsc,
253 struct ceph_snap_realm *realm, 253 struct ceph_snap_realm *realm,
254 u64 parentino) 254 u64 parentino)
255 { 255 {
256 struct ceph_snap_realm *parent; 256 struct ceph_snap_realm *parent;
257 257
258 if (realm->parent_ino == parentino) 258 if (realm->parent_ino == parentino)
259 return 0; 259 return 0;
260 260
261 parent = ceph_lookup_snap_realm(mdsc, parentino); 261 parent = ceph_lookup_snap_realm(mdsc, parentino);
262 if (!parent) { 262 if (!parent) {
263 parent = ceph_create_snap_realm(mdsc, parentino); 263 parent = ceph_create_snap_realm(mdsc, parentino);
264 if (IS_ERR(parent)) 264 if (IS_ERR(parent))
265 return PTR_ERR(parent); 265 return PTR_ERR(parent);
266 } 266 }
267 dout("adjust_snap_realm_parent %llx %p: %llx %p -> %llx %p\n", 267 dout("adjust_snap_realm_parent %llx %p: %llx %p -> %llx %p\n",
268 realm->ino, realm, realm->parent_ino, realm->parent, 268 realm->ino, realm, realm->parent_ino, realm->parent,
269 parentino, parent); 269 parentino, parent);
270 if (realm->parent) { 270 if (realm->parent) {
271 list_del_init(&realm->child_item); 271 list_del_init(&realm->child_item);
272 ceph_put_snap_realm(mdsc, realm->parent); 272 ceph_put_snap_realm(mdsc, realm->parent);
273 } 273 }
274 realm->parent_ino = parentino; 274 realm->parent_ino = parentino;
275 realm->parent = parent; 275 realm->parent = parent;
276 ceph_get_snap_realm(mdsc, parent); 276 ceph_get_snap_realm(mdsc, parent);
277 list_add(&realm->child_item, &parent->children); 277 list_add(&realm->child_item, &parent->children);
278 return 1; 278 return 1;
279 } 279 }
280 280
281 281
282 static int cmpu64_rev(const void *a, const void *b) 282 static int cmpu64_rev(const void *a, const void *b)
283 { 283 {
284 if (*(u64 *)a < *(u64 *)b) 284 if (*(u64 *)a < *(u64 *)b)
285 return 1; 285 return 1;
286 if (*(u64 *)a > *(u64 *)b) 286 if (*(u64 *)a > *(u64 *)b)
287 return -1; 287 return -1;
288 return 0; 288 return 0;
289 } 289 }
290 290
291 /* 291 /*
292 * build the snap context for a given realm. 292 * build the snap context for a given realm.
293 */ 293 */
294 static int build_snap_context(struct ceph_snap_realm *realm) 294 static int build_snap_context(struct ceph_snap_realm *realm)
295 { 295 {
296 struct ceph_snap_realm *parent = realm->parent; 296 struct ceph_snap_realm *parent = realm->parent;
297 struct ceph_snap_context *snapc; 297 struct ceph_snap_context *snapc;
298 int err = 0; 298 int err = 0;
299 u32 num = realm->num_prior_parent_snaps + realm->num_snaps; 299 u32 num = realm->num_prior_parent_snaps + realm->num_snaps;
300 300
301 /* 301 /*
302 * build parent context, if it hasn't been built. 302 * build parent context, if it hasn't been built.
303 * conservatively estimate that all parent snaps might be 303 * conservatively estimate that all parent snaps might be
304 * included by us. 304 * included by us.
305 */ 305 */
306 if (parent) { 306 if (parent) {
307 if (!parent->cached_context) { 307 if (!parent->cached_context) {
308 err = build_snap_context(parent); 308 err = build_snap_context(parent);
309 if (err) 309 if (err)
310 goto fail; 310 goto fail;
311 } 311 }
312 num += parent->cached_context->num_snaps; 312 num += parent->cached_context->num_snaps;
313 } 313 }
314 314
315 /* do i actually need to update? not if my context seq 315 /* do i actually need to update? not if my context seq
316 matches realm seq, and my parents' does to. (this works 316 matches realm seq, and my parents' does to. (this works
317 because we rebuild_snap_realms() works _downward_ in 317 because we rebuild_snap_realms() works _downward_ in
318 hierarchy after each update.) */ 318 hierarchy after each update.) */
319 if (realm->cached_context && 319 if (realm->cached_context &&
320 realm->cached_context->seq == realm->seq && 320 realm->cached_context->seq == realm->seq &&
321 (!parent || 321 (!parent ||
322 realm->cached_context->seq >= parent->cached_context->seq)) { 322 realm->cached_context->seq >= parent->cached_context->seq)) {
323 dout("build_snap_context %llx %p: %p seq %lld (%u snaps)" 323 dout("build_snap_context %llx %p: %p seq %lld (%u snaps)"
324 " (unchanged)\n", 324 " (unchanged)\n",
325 realm->ino, realm, realm->cached_context, 325 realm->ino, realm, realm->cached_context,
326 realm->cached_context->seq, 326 realm->cached_context->seq,
327 (unsigned int) realm->cached_context->num_snaps); 327 (unsigned int) realm->cached_context->num_snaps);
328 return 0; 328 return 0;
329 } 329 }
330 330
331 /* alloc new snap context */ 331 /* alloc new snap context */
332 err = -ENOMEM; 332 err = -ENOMEM;
333 if (num > (SIZE_MAX - sizeof(*snapc)) / sizeof(u64)) 333 if (num > (SIZE_MAX - sizeof(*snapc)) / sizeof(u64))
334 goto fail; 334 goto fail;
335 snapc = kzalloc(sizeof(*snapc) + num*sizeof(u64), GFP_NOFS); 335 snapc = ceph_create_snap_context(num, GFP_NOFS);
336 if (!snapc) 336 if (!snapc)
337 goto fail; 337 goto fail;
338 atomic_set(&snapc->nref, 1);
339 338
340 /* build (reverse sorted) snap vector */ 339 /* build (reverse sorted) snap vector */
341 num = 0; 340 num = 0;
342 snapc->seq = realm->seq; 341 snapc->seq = realm->seq;
343 if (parent) { 342 if (parent) {
344 u32 i; 343 u32 i;
345 344
346 /* include any of parent's snaps occurring _after_ my 345 /* include any of parent's snaps occurring _after_ my
347 parent became my parent */ 346 parent became my parent */
348 for (i = 0; i < parent->cached_context->num_snaps; i++) 347 for (i = 0; i < parent->cached_context->num_snaps; i++)
349 if (parent->cached_context->snaps[i] >= 348 if (parent->cached_context->snaps[i] >=
350 realm->parent_since) 349 realm->parent_since)
351 snapc->snaps[num++] = 350 snapc->snaps[num++] =
352 parent->cached_context->snaps[i]; 351 parent->cached_context->snaps[i];
353 if (parent->cached_context->seq > snapc->seq) 352 if (parent->cached_context->seq > snapc->seq)
354 snapc->seq = parent->cached_context->seq; 353 snapc->seq = parent->cached_context->seq;
355 } 354 }
356 memcpy(snapc->snaps + num, realm->snaps, 355 memcpy(snapc->snaps + num, realm->snaps,
357 sizeof(u64)*realm->num_snaps); 356 sizeof(u64)*realm->num_snaps);
358 num += realm->num_snaps; 357 num += realm->num_snaps;
359 memcpy(snapc->snaps + num, realm->prior_parent_snaps, 358 memcpy(snapc->snaps + num, realm->prior_parent_snaps,
360 sizeof(u64)*realm->num_prior_parent_snaps); 359 sizeof(u64)*realm->num_prior_parent_snaps);
361 num += realm->num_prior_parent_snaps; 360 num += realm->num_prior_parent_snaps;
362 361
363 sort(snapc->snaps, num, sizeof(u64), cmpu64_rev, NULL); 362 sort(snapc->snaps, num, sizeof(u64), cmpu64_rev, NULL);
364 snapc->num_snaps = num; 363 snapc->num_snaps = num;
365 dout("build_snap_context %llx %p: %p seq %lld (%u snaps)\n", 364 dout("build_snap_context %llx %p: %p seq %lld (%u snaps)\n",
366 realm->ino, realm, snapc, snapc->seq, 365 realm->ino, realm, snapc, snapc->seq,
367 (unsigned int) snapc->num_snaps); 366 (unsigned int) snapc->num_snaps);
368 367
369 if (realm->cached_context) 368 if (realm->cached_context)
370 ceph_put_snap_context(realm->cached_context); 369 ceph_put_snap_context(realm->cached_context);
371 realm->cached_context = snapc; 370 realm->cached_context = snapc;
372 return 0; 371 return 0;
373 372
374 fail: 373 fail:
375 /* 374 /*
376 * if we fail, clear old (incorrect) cached_context... hopefully 375 * if we fail, clear old (incorrect) cached_context... hopefully
377 * we'll have better luck building it later 376 * we'll have better luck building it later
378 */ 377 */
379 if (realm->cached_context) { 378 if (realm->cached_context) {
380 ceph_put_snap_context(realm->cached_context); 379 ceph_put_snap_context(realm->cached_context);
381 realm->cached_context = NULL; 380 realm->cached_context = NULL;
382 } 381 }
383 pr_err("build_snap_context %llx %p fail %d\n", realm->ino, 382 pr_err("build_snap_context %llx %p fail %d\n", realm->ino,
384 realm, err); 383 realm, err);
385 return err; 384 return err;
386 } 385 }
387 386
388 /* 387 /*
389 * rebuild snap context for the given realm and all of its children. 388 * rebuild snap context for the given realm and all of its children.
390 */ 389 */
391 static void rebuild_snap_realms(struct ceph_snap_realm *realm) 390 static void rebuild_snap_realms(struct ceph_snap_realm *realm)
392 { 391 {
393 struct ceph_snap_realm *child; 392 struct ceph_snap_realm *child;
394 393
395 dout("rebuild_snap_realms %llx %p\n", realm->ino, realm); 394 dout("rebuild_snap_realms %llx %p\n", realm->ino, realm);
396 build_snap_context(realm); 395 build_snap_context(realm);
397 396
398 list_for_each_entry(child, &realm->children, child_item) 397 list_for_each_entry(child, &realm->children, child_item)
399 rebuild_snap_realms(child); 398 rebuild_snap_realms(child);
400 } 399 }
401 400
402 401
403 /* 402 /*
404 * helper to allocate and decode an array of snapids. free prior 403 * helper to allocate and decode an array of snapids. free prior
405 * instance, if any. 404 * instance, if any.
406 */ 405 */
407 static int dup_array(u64 **dst, __le64 *src, u32 num) 406 static int dup_array(u64 **dst, __le64 *src, u32 num)
408 { 407 {
409 u32 i; 408 u32 i;
410 409
411 kfree(*dst); 410 kfree(*dst);
412 if (num) { 411 if (num) {
413 *dst = kcalloc(num, sizeof(u64), GFP_NOFS); 412 *dst = kcalloc(num, sizeof(u64), GFP_NOFS);
414 if (!*dst) 413 if (!*dst)
415 return -ENOMEM; 414 return -ENOMEM;
416 for (i = 0; i < num; i++) 415 for (i = 0; i < num; i++)
417 (*dst)[i] = get_unaligned_le64(src + i); 416 (*dst)[i] = get_unaligned_le64(src + i);
418 } else { 417 } else {
419 *dst = NULL; 418 *dst = NULL;
420 } 419 }
421 return 0; 420 return 0;
422 } 421 }
423 422
424 423
425 /* 424 /*
426 * When a snapshot is applied, the size/mtime inode metadata is queued 425 * When a snapshot is applied, the size/mtime inode metadata is queued
427 * in a ceph_cap_snap (one for each snapshot) until writeback 426 * in a ceph_cap_snap (one for each snapshot) until writeback
428 * completes and the metadata can be flushed back to the MDS. 427 * completes and the metadata can be flushed back to the MDS.
429 * 428 *
430 * However, if a (sync) write is currently in-progress when we apply 429 * However, if a (sync) write is currently in-progress when we apply
431 * the snapshot, we have to wait until the write succeeds or fails 430 * the snapshot, we have to wait until the write succeeds or fails
432 * (and a final size/mtime is known). In this case the 431 * (and a final size/mtime is known). In this case the
433 * cap_snap->writing = 1, and is said to be "pending." When the write 432 * cap_snap->writing = 1, and is said to be "pending." When the write
434 * finishes, we __ceph_finish_cap_snap(). 433 * finishes, we __ceph_finish_cap_snap().
435 * 434 *
436 * Caller must hold snap_rwsem for read (i.e., the realm topology won't 435 * Caller must hold snap_rwsem for read (i.e., the realm topology won't
437 * change). 436 * change).
438 */ 437 */
439 void ceph_queue_cap_snap(struct ceph_inode_info *ci) 438 void ceph_queue_cap_snap(struct ceph_inode_info *ci)
440 { 439 {
441 struct inode *inode = &ci->vfs_inode; 440 struct inode *inode = &ci->vfs_inode;
442 struct ceph_cap_snap *capsnap; 441 struct ceph_cap_snap *capsnap;
443 int used, dirty; 442 int used, dirty;
444 443
445 capsnap = kzalloc(sizeof(*capsnap), GFP_NOFS); 444 capsnap = kzalloc(sizeof(*capsnap), GFP_NOFS);
446 if (!capsnap) { 445 if (!capsnap) {
447 pr_err("ENOMEM allocating ceph_cap_snap on %p\n", inode); 446 pr_err("ENOMEM allocating ceph_cap_snap on %p\n", inode);
448 return; 447 return;
449 } 448 }
450 449
451 spin_lock(&ci->i_ceph_lock); 450 spin_lock(&ci->i_ceph_lock);
452 used = __ceph_caps_used(ci); 451 used = __ceph_caps_used(ci);
453 dirty = __ceph_caps_dirty(ci); 452 dirty = __ceph_caps_dirty(ci);
454 453
455 /* 454 /*
456 * If there is a write in progress, treat that as a dirty Fw, 455 * If there is a write in progress, treat that as a dirty Fw,
457 * even though it hasn't completed yet; by the time we finish 456 * even though it hasn't completed yet; by the time we finish
458 * up this capsnap it will be. 457 * up this capsnap it will be.
459 */ 458 */
460 if (used & CEPH_CAP_FILE_WR) 459 if (used & CEPH_CAP_FILE_WR)
461 dirty |= CEPH_CAP_FILE_WR; 460 dirty |= CEPH_CAP_FILE_WR;
462 461
463 if (__ceph_have_pending_cap_snap(ci)) { 462 if (__ceph_have_pending_cap_snap(ci)) {
464 /* there is no point in queuing multiple "pending" cap_snaps, 463 /* there is no point in queuing multiple "pending" cap_snaps,
465 as no new writes are allowed to start when pending, so any 464 as no new writes are allowed to start when pending, so any
466 writes in progress now were started before the previous 465 writes in progress now were started before the previous
467 cap_snap. lucky us. */ 466 cap_snap. lucky us. */
468 dout("queue_cap_snap %p already pending\n", inode); 467 dout("queue_cap_snap %p already pending\n", inode);
469 kfree(capsnap); 468 kfree(capsnap);
470 } else if (dirty & (CEPH_CAP_AUTH_EXCL|CEPH_CAP_XATTR_EXCL| 469 } else if (dirty & (CEPH_CAP_AUTH_EXCL|CEPH_CAP_XATTR_EXCL|
471 CEPH_CAP_FILE_EXCL|CEPH_CAP_FILE_WR)) { 470 CEPH_CAP_FILE_EXCL|CEPH_CAP_FILE_WR)) {
472 struct ceph_snap_context *snapc = ci->i_head_snapc; 471 struct ceph_snap_context *snapc = ci->i_head_snapc;
473 472
474 /* 473 /*
475 * if we are a sync write, we may need to go to the snaprealm 474 * if we are a sync write, we may need to go to the snaprealm
476 * to get the current snapc. 475 * to get the current snapc.
477 */ 476 */
478 if (!snapc) 477 if (!snapc)
479 snapc = ci->i_snap_realm->cached_context; 478 snapc = ci->i_snap_realm->cached_context;
480 479
481 dout("queue_cap_snap %p cap_snap %p queuing under %p %s\n", 480 dout("queue_cap_snap %p cap_snap %p queuing under %p %s\n",
482 inode, capsnap, snapc, ceph_cap_string(dirty)); 481 inode, capsnap, snapc, ceph_cap_string(dirty));
483 ihold(inode); 482 ihold(inode);
484 483
485 atomic_set(&capsnap->nref, 1); 484 atomic_set(&capsnap->nref, 1);
486 capsnap->ci = ci; 485 capsnap->ci = ci;
487 INIT_LIST_HEAD(&capsnap->ci_item); 486 INIT_LIST_HEAD(&capsnap->ci_item);
488 INIT_LIST_HEAD(&capsnap->flushing_item); 487 INIT_LIST_HEAD(&capsnap->flushing_item);
489 488
490 capsnap->follows = snapc->seq; 489 capsnap->follows = snapc->seq;
491 capsnap->issued = __ceph_caps_issued(ci, NULL); 490 capsnap->issued = __ceph_caps_issued(ci, NULL);
492 capsnap->dirty = dirty; 491 capsnap->dirty = dirty;
493 492
494 capsnap->mode = inode->i_mode; 493 capsnap->mode = inode->i_mode;
495 capsnap->uid = inode->i_uid; 494 capsnap->uid = inode->i_uid;
496 capsnap->gid = inode->i_gid; 495 capsnap->gid = inode->i_gid;
497 496
498 if (dirty & CEPH_CAP_XATTR_EXCL) { 497 if (dirty & CEPH_CAP_XATTR_EXCL) {
499 __ceph_build_xattrs_blob(ci); 498 __ceph_build_xattrs_blob(ci);
500 capsnap->xattr_blob = 499 capsnap->xattr_blob =
501 ceph_buffer_get(ci->i_xattrs.blob); 500 ceph_buffer_get(ci->i_xattrs.blob);
502 capsnap->xattr_version = ci->i_xattrs.version; 501 capsnap->xattr_version = ci->i_xattrs.version;
503 } else { 502 } else {
504 capsnap->xattr_blob = NULL; 503 capsnap->xattr_blob = NULL;
505 capsnap->xattr_version = 0; 504 capsnap->xattr_version = 0;
506 } 505 }
507 506
508 /* dirty page count moved from _head to this cap_snap; 507 /* dirty page count moved from _head to this cap_snap;
509 all subsequent writes page dirties occur _after_ this 508 all subsequent writes page dirties occur _after_ this
510 snapshot. */ 509 snapshot. */
511 capsnap->dirty_pages = ci->i_wrbuffer_ref_head; 510 capsnap->dirty_pages = ci->i_wrbuffer_ref_head;
512 ci->i_wrbuffer_ref_head = 0; 511 ci->i_wrbuffer_ref_head = 0;
513 capsnap->context = snapc; 512 capsnap->context = snapc;
514 ci->i_head_snapc = 513 ci->i_head_snapc =
515 ceph_get_snap_context(ci->i_snap_realm->cached_context); 514 ceph_get_snap_context(ci->i_snap_realm->cached_context);
516 dout(" new snapc is %p\n", ci->i_head_snapc); 515 dout(" new snapc is %p\n", ci->i_head_snapc);
517 list_add_tail(&capsnap->ci_item, &ci->i_cap_snaps); 516 list_add_tail(&capsnap->ci_item, &ci->i_cap_snaps);
518 517
519 if (used & CEPH_CAP_FILE_WR) { 518 if (used & CEPH_CAP_FILE_WR) {
520 dout("queue_cap_snap %p cap_snap %p snapc %p" 519 dout("queue_cap_snap %p cap_snap %p snapc %p"
521 " seq %llu used WR, now pending\n", inode, 520 " seq %llu used WR, now pending\n", inode,
522 capsnap, snapc, snapc->seq); 521 capsnap, snapc, snapc->seq);
523 capsnap->writing = 1; 522 capsnap->writing = 1;
524 } else { 523 } else {
525 /* note mtime, size NOW. */ 524 /* note mtime, size NOW. */
526 __ceph_finish_cap_snap(ci, capsnap); 525 __ceph_finish_cap_snap(ci, capsnap);
527 } 526 }
528 } else { 527 } else {
529 dout("queue_cap_snap %p nothing dirty|writing\n", inode); 528 dout("queue_cap_snap %p nothing dirty|writing\n", inode);
530 kfree(capsnap); 529 kfree(capsnap);
531 } 530 }
532 531
533 spin_unlock(&ci->i_ceph_lock); 532 spin_unlock(&ci->i_ceph_lock);
534 } 533 }
535 534
536 /* 535 /*
537 * Finalize the size, mtime for a cap_snap.. that is, settle on final values 536 * Finalize the size, mtime for a cap_snap.. that is, settle on final values
538 * to be used for the snapshot, to be flushed back to the mds. 537 * to be used for the snapshot, to be flushed back to the mds.
539 * 538 *
540 * If capsnap can now be flushed, add to snap_flush list, and return 1. 539 * If capsnap can now be flushed, add to snap_flush list, and return 1.
541 * 540 *
542 * Caller must hold i_ceph_lock. 541 * Caller must hold i_ceph_lock.
543 */ 542 */
544 int __ceph_finish_cap_snap(struct ceph_inode_info *ci, 543 int __ceph_finish_cap_snap(struct ceph_inode_info *ci,
545 struct ceph_cap_snap *capsnap) 544 struct ceph_cap_snap *capsnap)
546 { 545 {
547 struct inode *inode = &ci->vfs_inode; 546 struct inode *inode = &ci->vfs_inode;
548 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 547 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
549 548
550 BUG_ON(capsnap->writing); 549 BUG_ON(capsnap->writing);
551 capsnap->size = inode->i_size; 550 capsnap->size = inode->i_size;
552 capsnap->mtime = inode->i_mtime; 551 capsnap->mtime = inode->i_mtime;
553 capsnap->atime = inode->i_atime; 552 capsnap->atime = inode->i_atime;
554 capsnap->ctime = inode->i_ctime; 553 capsnap->ctime = inode->i_ctime;
555 capsnap->time_warp_seq = ci->i_time_warp_seq; 554 capsnap->time_warp_seq = ci->i_time_warp_seq;
556 if (capsnap->dirty_pages) { 555 if (capsnap->dirty_pages) {
557 dout("finish_cap_snap %p cap_snap %p snapc %p %llu %s s=%llu " 556 dout("finish_cap_snap %p cap_snap %p snapc %p %llu %s s=%llu "
558 "still has %d dirty pages\n", inode, capsnap, 557 "still has %d dirty pages\n", inode, capsnap,
559 capsnap->context, capsnap->context->seq, 558 capsnap->context, capsnap->context->seq,
560 ceph_cap_string(capsnap->dirty), capsnap->size, 559 ceph_cap_string(capsnap->dirty), capsnap->size,
561 capsnap->dirty_pages); 560 capsnap->dirty_pages);
562 return 0; 561 return 0;
563 } 562 }
564 dout("finish_cap_snap %p cap_snap %p snapc %p %llu %s s=%llu\n", 563 dout("finish_cap_snap %p cap_snap %p snapc %p %llu %s s=%llu\n",
565 inode, capsnap, capsnap->context, 564 inode, capsnap, capsnap->context,
566 capsnap->context->seq, ceph_cap_string(capsnap->dirty), 565 capsnap->context->seq, ceph_cap_string(capsnap->dirty),
567 capsnap->size); 566 capsnap->size);
568 567
569 spin_lock(&mdsc->snap_flush_lock); 568 spin_lock(&mdsc->snap_flush_lock);
570 list_add_tail(&ci->i_snap_flush_item, &mdsc->snap_flush_list); 569 list_add_tail(&ci->i_snap_flush_item, &mdsc->snap_flush_list);
571 spin_unlock(&mdsc->snap_flush_lock); 570 spin_unlock(&mdsc->snap_flush_lock);
572 return 1; /* caller may want to ceph_flush_snaps */ 571 return 1; /* caller may want to ceph_flush_snaps */
573 } 572 }
574 573
575 /* 574 /*
576 * Queue cap_snaps for snap writeback for this realm and its children. 575 * Queue cap_snaps for snap writeback for this realm and its children.
577 * Called under snap_rwsem, so realm topology won't change. 576 * Called under snap_rwsem, so realm topology won't change.
578 */ 577 */
579 static void queue_realm_cap_snaps(struct ceph_snap_realm *realm) 578 static void queue_realm_cap_snaps(struct ceph_snap_realm *realm)
580 { 579 {
581 struct ceph_inode_info *ci; 580 struct ceph_inode_info *ci;
582 struct inode *lastinode = NULL; 581 struct inode *lastinode = NULL;
583 struct ceph_snap_realm *child; 582 struct ceph_snap_realm *child;
584 583
585 dout("queue_realm_cap_snaps %p %llx inodes\n", realm, realm->ino); 584 dout("queue_realm_cap_snaps %p %llx inodes\n", realm, realm->ino);
586 585
587 spin_lock(&realm->inodes_with_caps_lock); 586 spin_lock(&realm->inodes_with_caps_lock);
588 list_for_each_entry(ci, &realm->inodes_with_caps, 587 list_for_each_entry(ci, &realm->inodes_with_caps,
589 i_snap_realm_item) { 588 i_snap_realm_item) {
590 struct inode *inode = igrab(&ci->vfs_inode); 589 struct inode *inode = igrab(&ci->vfs_inode);
591 if (!inode) 590 if (!inode)
592 continue; 591 continue;
593 spin_unlock(&realm->inodes_with_caps_lock); 592 spin_unlock(&realm->inodes_with_caps_lock);
594 if (lastinode) 593 if (lastinode)
595 iput(lastinode); 594 iput(lastinode);
596 lastinode = inode; 595 lastinode = inode;
597 ceph_queue_cap_snap(ci); 596 ceph_queue_cap_snap(ci);
598 spin_lock(&realm->inodes_with_caps_lock); 597 spin_lock(&realm->inodes_with_caps_lock);
599 } 598 }
600 spin_unlock(&realm->inodes_with_caps_lock); 599 spin_unlock(&realm->inodes_with_caps_lock);
601 if (lastinode) 600 if (lastinode)
602 iput(lastinode); 601 iput(lastinode);
603 602
604 list_for_each_entry(child, &realm->children, child_item) { 603 list_for_each_entry(child, &realm->children, child_item) {
605 dout("queue_realm_cap_snaps %p %llx queue child %p %llx\n", 604 dout("queue_realm_cap_snaps %p %llx queue child %p %llx\n",
606 realm, realm->ino, child, child->ino); 605 realm, realm->ino, child, child->ino);
607 list_del_init(&child->dirty_item); 606 list_del_init(&child->dirty_item);
608 list_add(&child->dirty_item, &realm->dirty_item); 607 list_add(&child->dirty_item, &realm->dirty_item);
609 } 608 }
610 609
611 list_del_init(&realm->dirty_item); 610 list_del_init(&realm->dirty_item);
612 dout("queue_realm_cap_snaps %p %llx done\n", realm, realm->ino); 611 dout("queue_realm_cap_snaps %p %llx done\n", realm, realm->ino);
613 } 612 }
614 613
615 /* 614 /*
616 * Parse and apply a snapblob "snap trace" from the MDS. This specifies 615 * Parse and apply a snapblob "snap trace" from the MDS. This specifies
617 * the snap realm parameters from a given realm and all of its ancestors, 616 * the snap realm parameters from a given realm and all of its ancestors,
618 * up to the root. 617 * up to the root.
619 * 618 *
620 * Caller must hold snap_rwsem for write. 619 * Caller must hold snap_rwsem for write.
621 */ 620 */
622 int ceph_update_snap_trace(struct ceph_mds_client *mdsc, 621 int ceph_update_snap_trace(struct ceph_mds_client *mdsc,
623 void *p, void *e, bool deletion) 622 void *p, void *e, bool deletion)
624 { 623 {
625 struct ceph_mds_snap_realm *ri; /* encoded */ 624 struct ceph_mds_snap_realm *ri; /* encoded */
626 __le64 *snaps; /* encoded */ 625 __le64 *snaps; /* encoded */
627 __le64 *prior_parent_snaps; /* encoded */ 626 __le64 *prior_parent_snaps; /* encoded */
628 struct ceph_snap_realm *realm; 627 struct ceph_snap_realm *realm;
629 int invalidate = 0; 628 int invalidate = 0;
630 int err = -ENOMEM; 629 int err = -ENOMEM;
631 LIST_HEAD(dirty_realms); 630 LIST_HEAD(dirty_realms);
632 631
633 dout("update_snap_trace deletion=%d\n", deletion); 632 dout("update_snap_trace deletion=%d\n", deletion);
634 more: 633 more:
635 ceph_decode_need(&p, e, sizeof(*ri), bad); 634 ceph_decode_need(&p, e, sizeof(*ri), bad);
636 ri = p; 635 ri = p;
637 p += sizeof(*ri); 636 p += sizeof(*ri);
638 ceph_decode_need(&p, e, sizeof(u64)*(le32_to_cpu(ri->num_snaps) + 637 ceph_decode_need(&p, e, sizeof(u64)*(le32_to_cpu(ri->num_snaps) +
639 le32_to_cpu(ri->num_prior_parent_snaps)), bad); 638 le32_to_cpu(ri->num_prior_parent_snaps)), bad);
640 snaps = p; 639 snaps = p;
641 p += sizeof(u64) * le32_to_cpu(ri->num_snaps); 640 p += sizeof(u64) * le32_to_cpu(ri->num_snaps);
642 prior_parent_snaps = p; 641 prior_parent_snaps = p;
643 p += sizeof(u64) * le32_to_cpu(ri->num_prior_parent_snaps); 642 p += sizeof(u64) * le32_to_cpu(ri->num_prior_parent_snaps);
644 643
645 realm = ceph_lookup_snap_realm(mdsc, le64_to_cpu(ri->ino)); 644 realm = ceph_lookup_snap_realm(mdsc, le64_to_cpu(ri->ino));
646 if (!realm) { 645 if (!realm) {
647 realm = ceph_create_snap_realm(mdsc, le64_to_cpu(ri->ino)); 646 realm = ceph_create_snap_realm(mdsc, le64_to_cpu(ri->ino));
648 if (IS_ERR(realm)) { 647 if (IS_ERR(realm)) {
649 err = PTR_ERR(realm); 648 err = PTR_ERR(realm);
650 goto fail; 649 goto fail;
651 } 650 }
652 } 651 }
653 652
654 /* ensure the parent is correct */ 653 /* ensure the parent is correct */
655 err = adjust_snap_realm_parent(mdsc, realm, le64_to_cpu(ri->parent)); 654 err = adjust_snap_realm_parent(mdsc, realm, le64_to_cpu(ri->parent));
656 if (err < 0) 655 if (err < 0)
657 goto fail; 656 goto fail;
658 invalidate += err; 657 invalidate += err;
659 658
660 if (le64_to_cpu(ri->seq) > realm->seq) { 659 if (le64_to_cpu(ri->seq) > realm->seq) {
661 dout("update_snap_trace updating %llx %p %lld -> %lld\n", 660 dout("update_snap_trace updating %llx %p %lld -> %lld\n",
662 realm->ino, realm, realm->seq, le64_to_cpu(ri->seq)); 661 realm->ino, realm, realm->seq, le64_to_cpu(ri->seq));
663 /* update realm parameters, snap lists */ 662 /* update realm parameters, snap lists */
664 realm->seq = le64_to_cpu(ri->seq); 663 realm->seq = le64_to_cpu(ri->seq);
665 realm->created = le64_to_cpu(ri->created); 664 realm->created = le64_to_cpu(ri->created);
666 realm->parent_since = le64_to_cpu(ri->parent_since); 665 realm->parent_since = le64_to_cpu(ri->parent_since);
667 666
668 realm->num_snaps = le32_to_cpu(ri->num_snaps); 667 realm->num_snaps = le32_to_cpu(ri->num_snaps);
669 err = dup_array(&realm->snaps, snaps, realm->num_snaps); 668 err = dup_array(&realm->snaps, snaps, realm->num_snaps);
670 if (err < 0) 669 if (err < 0)
671 goto fail; 670 goto fail;
672 671
673 realm->num_prior_parent_snaps = 672 realm->num_prior_parent_snaps =
674 le32_to_cpu(ri->num_prior_parent_snaps); 673 le32_to_cpu(ri->num_prior_parent_snaps);
675 err = dup_array(&realm->prior_parent_snaps, prior_parent_snaps, 674 err = dup_array(&realm->prior_parent_snaps, prior_parent_snaps,
676 realm->num_prior_parent_snaps); 675 realm->num_prior_parent_snaps);
677 if (err < 0) 676 if (err < 0)
678 goto fail; 677 goto fail;
679 678
680 /* queue realm for cap_snap creation */ 679 /* queue realm for cap_snap creation */
681 list_add(&realm->dirty_item, &dirty_realms); 680 list_add(&realm->dirty_item, &dirty_realms);
682 681
683 invalidate = 1; 682 invalidate = 1;
684 } else if (!realm->cached_context) { 683 } else if (!realm->cached_context) {
685 dout("update_snap_trace %llx %p seq %lld new\n", 684 dout("update_snap_trace %llx %p seq %lld new\n",
686 realm->ino, realm, realm->seq); 685 realm->ino, realm, realm->seq);
687 invalidate = 1; 686 invalidate = 1;
688 } else { 687 } else {
689 dout("update_snap_trace %llx %p seq %lld unchanged\n", 688 dout("update_snap_trace %llx %p seq %lld unchanged\n",
690 realm->ino, realm, realm->seq); 689 realm->ino, realm, realm->seq);
691 } 690 }
692 691
693 dout("done with %llx %p, invalidated=%d, %p %p\n", realm->ino, 692 dout("done with %llx %p, invalidated=%d, %p %p\n", realm->ino,
694 realm, invalidate, p, e); 693 realm, invalidate, p, e);
695 694
696 if (p < e) 695 if (p < e)
697 goto more; 696 goto more;
698 697
699 /* invalidate when we reach the _end_ (root) of the trace */ 698 /* invalidate when we reach the _end_ (root) of the trace */
700 if (invalidate) 699 if (invalidate)
701 rebuild_snap_realms(realm); 700 rebuild_snap_realms(realm);
702 701
703 /* 702 /*
704 * queue cap snaps _after_ we've built the new snap contexts, 703 * queue cap snaps _after_ we've built the new snap contexts,
705 * so that i_head_snapc can be set appropriately. 704 * so that i_head_snapc can be set appropriately.
706 */ 705 */
707 while (!list_empty(&dirty_realms)) { 706 while (!list_empty(&dirty_realms)) {
708 realm = list_first_entry(&dirty_realms, struct ceph_snap_realm, 707 realm = list_first_entry(&dirty_realms, struct ceph_snap_realm,
709 dirty_item); 708 dirty_item);
710 queue_realm_cap_snaps(realm); 709 queue_realm_cap_snaps(realm);
711 } 710 }
712 711
713 __cleanup_empty_realms(mdsc); 712 __cleanup_empty_realms(mdsc);
714 return 0; 713 return 0;
715 714
716 bad: 715 bad:
717 err = -EINVAL; 716 err = -EINVAL;
718 fail: 717 fail:
719 pr_err("update_snap_trace error %d\n", err); 718 pr_err("update_snap_trace error %d\n", err);
720 return err; 719 return err;
721 } 720 }
722 721
723 722
724 /* 723 /*
725 * Send any cap_snaps that are queued for flush. Try to carry 724 * Send any cap_snaps that are queued for flush. Try to carry
726 * s_mutex across multiple snap flushes to avoid locking overhead. 725 * s_mutex across multiple snap flushes to avoid locking overhead.
727 * 726 *
728 * Caller holds no locks. 727 * Caller holds no locks.
729 */ 728 */
730 static void flush_snaps(struct ceph_mds_client *mdsc) 729 static void flush_snaps(struct ceph_mds_client *mdsc)
731 { 730 {
732 struct ceph_inode_info *ci; 731 struct ceph_inode_info *ci;
733 struct inode *inode; 732 struct inode *inode;
734 struct ceph_mds_session *session = NULL; 733 struct ceph_mds_session *session = NULL;
735 734
736 dout("flush_snaps\n"); 735 dout("flush_snaps\n");
737 spin_lock(&mdsc->snap_flush_lock); 736 spin_lock(&mdsc->snap_flush_lock);
738 while (!list_empty(&mdsc->snap_flush_list)) { 737 while (!list_empty(&mdsc->snap_flush_list)) {
739 ci = list_first_entry(&mdsc->snap_flush_list, 738 ci = list_first_entry(&mdsc->snap_flush_list,
740 struct ceph_inode_info, i_snap_flush_item); 739 struct ceph_inode_info, i_snap_flush_item);
741 inode = &ci->vfs_inode; 740 inode = &ci->vfs_inode;
742 ihold(inode); 741 ihold(inode);
743 spin_unlock(&mdsc->snap_flush_lock); 742 spin_unlock(&mdsc->snap_flush_lock);
744 spin_lock(&ci->i_ceph_lock); 743 spin_lock(&ci->i_ceph_lock);
745 __ceph_flush_snaps(ci, &session, 0); 744 __ceph_flush_snaps(ci, &session, 0);
746 spin_unlock(&ci->i_ceph_lock); 745 spin_unlock(&ci->i_ceph_lock);
747 iput(inode); 746 iput(inode);
748 spin_lock(&mdsc->snap_flush_lock); 747 spin_lock(&mdsc->snap_flush_lock);
749 } 748 }
750 spin_unlock(&mdsc->snap_flush_lock); 749 spin_unlock(&mdsc->snap_flush_lock);
751 750
752 if (session) { 751 if (session) {
753 mutex_unlock(&session->s_mutex); 752 mutex_unlock(&session->s_mutex);
754 ceph_put_mds_session(session); 753 ceph_put_mds_session(session);
755 } 754 }
756 dout("flush_snaps done\n"); 755 dout("flush_snaps done\n");
757 } 756 }
758 757
759 758
760 /* 759 /*
761 * Handle a snap notification from the MDS. 760 * Handle a snap notification from the MDS.
762 * 761 *
763 * This can take two basic forms: the simplest is just a snap creation 762 * This can take two basic forms: the simplest is just a snap creation
764 * or deletion notification on an existing realm. This should update the 763 * or deletion notification on an existing realm. This should update the
765 * realm and its children. 764 * realm and its children.
766 * 765 *
767 * The more difficult case is realm creation, due to snap creation at a 766 * The more difficult case is realm creation, due to snap creation at a
768 * new point in the file hierarchy, or due to a rename that moves a file or 767 * new point in the file hierarchy, or due to a rename that moves a file or
769 * directory into another realm. 768 * directory into another realm.
770 */ 769 */
771 void ceph_handle_snap(struct ceph_mds_client *mdsc, 770 void ceph_handle_snap(struct ceph_mds_client *mdsc,
772 struct ceph_mds_session *session, 771 struct ceph_mds_session *session,
773 struct ceph_msg *msg) 772 struct ceph_msg *msg)
774 { 773 {
775 struct super_block *sb = mdsc->fsc->sb; 774 struct super_block *sb = mdsc->fsc->sb;
776 int mds = session->s_mds; 775 int mds = session->s_mds;
777 u64 split; 776 u64 split;
778 int op; 777 int op;
779 int trace_len; 778 int trace_len;
780 struct ceph_snap_realm *realm = NULL; 779 struct ceph_snap_realm *realm = NULL;
781 void *p = msg->front.iov_base; 780 void *p = msg->front.iov_base;
782 void *e = p + msg->front.iov_len; 781 void *e = p + msg->front.iov_len;
783 struct ceph_mds_snap_head *h; 782 struct ceph_mds_snap_head *h;
784 int num_split_inos, num_split_realms; 783 int num_split_inos, num_split_realms;
785 __le64 *split_inos = NULL, *split_realms = NULL; 784 __le64 *split_inos = NULL, *split_realms = NULL;
786 int i; 785 int i;
787 int locked_rwsem = 0; 786 int locked_rwsem = 0;
788 787
789 /* decode */ 788 /* decode */
790 if (msg->front.iov_len < sizeof(*h)) 789 if (msg->front.iov_len < sizeof(*h))
791 goto bad; 790 goto bad;
792 h = p; 791 h = p;
793 op = le32_to_cpu(h->op); 792 op = le32_to_cpu(h->op);
794 split = le64_to_cpu(h->split); /* non-zero if we are splitting an 793 split = le64_to_cpu(h->split); /* non-zero if we are splitting an
795 * existing realm */ 794 * existing realm */
796 num_split_inos = le32_to_cpu(h->num_split_inos); 795 num_split_inos = le32_to_cpu(h->num_split_inos);
797 num_split_realms = le32_to_cpu(h->num_split_realms); 796 num_split_realms = le32_to_cpu(h->num_split_realms);
798 trace_len = le32_to_cpu(h->trace_len); 797 trace_len = le32_to_cpu(h->trace_len);
799 p += sizeof(*h); 798 p += sizeof(*h);
800 799
801 dout("handle_snap from mds%d op %s split %llx tracelen %d\n", mds, 800 dout("handle_snap from mds%d op %s split %llx tracelen %d\n", mds,
802 ceph_snap_op_name(op), split, trace_len); 801 ceph_snap_op_name(op), split, trace_len);
803 802
804 mutex_lock(&session->s_mutex); 803 mutex_lock(&session->s_mutex);
805 session->s_seq++; 804 session->s_seq++;
806 mutex_unlock(&session->s_mutex); 805 mutex_unlock(&session->s_mutex);
807 806
808 down_write(&mdsc->snap_rwsem); 807 down_write(&mdsc->snap_rwsem);
809 locked_rwsem = 1; 808 locked_rwsem = 1;
810 809
811 if (op == CEPH_SNAP_OP_SPLIT) { 810 if (op == CEPH_SNAP_OP_SPLIT) {
812 struct ceph_mds_snap_realm *ri; 811 struct ceph_mds_snap_realm *ri;
813 812
814 /* 813 /*
815 * A "split" breaks part of an existing realm off into 814 * A "split" breaks part of an existing realm off into
816 * a new realm. The MDS provides a list of inodes 815 * a new realm. The MDS provides a list of inodes
817 * (with caps) and child realms that belong to the new 816 * (with caps) and child realms that belong to the new
818 * child. 817 * child.
819 */ 818 */
820 split_inos = p; 819 split_inos = p;
821 p += sizeof(u64) * num_split_inos; 820 p += sizeof(u64) * num_split_inos;
822 split_realms = p; 821 split_realms = p;
823 p += sizeof(u64) * num_split_realms; 822 p += sizeof(u64) * num_split_realms;
824 ceph_decode_need(&p, e, sizeof(*ri), bad); 823 ceph_decode_need(&p, e, sizeof(*ri), bad);
825 /* we will peek at realm info here, but will _not_ 824 /* we will peek at realm info here, but will _not_
826 * advance p, as the realm update will occur below in 825 * advance p, as the realm update will occur below in
827 * ceph_update_snap_trace. */ 826 * ceph_update_snap_trace. */
828 ri = p; 827 ri = p;
829 828
830 realm = ceph_lookup_snap_realm(mdsc, split); 829 realm = ceph_lookup_snap_realm(mdsc, split);
831 if (!realm) { 830 if (!realm) {
832 realm = ceph_create_snap_realm(mdsc, split); 831 realm = ceph_create_snap_realm(mdsc, split);
833 if (IS_ERR(realm)) 832 if (IS_ERR(realm))
834 goto out; 833 goto out;
835 } 834 }
836 ceph_get_snap_realm(mdsc, realm); 835 ceph_get_snap_realm(mdsc, realm);
837 836
838 dout("splitting snap_realm %llx %p\n", realm->ino, realm); 837 dout("splitting snap_realm %llx %p\n", realm->ino, realm);
839 for (i = 0; i < num_split_inos; i++) { 838 for (i = 0; i < num_split_inos; i++) {
840 struct ceph_vino vino = { 839 struct ceph_vino vino = {
841 .ino = le64_to_cpu(split_inos[i]), 840 .ino = le64_to_cpu(split_inos[i]),
842 .snap = CEPH_NOSNAP, 841 .snap = CEPH_NOSNAP,
843 }; 842 };
844 struct inode *inode = ceph_find_inode(sb, vino); 843 struct inode *inode = ceph_find_inode(sb, vino);
845 struct ceph_inode_info *ci; 844 struct ceph_inode_info *ci;
846 struct ceph_snap_realm *oldrealm; 845 struct ceph_snap_realm *oldrealm;
847 846
848 if (!inode) 847 if (!inode)
849 continue; 848 continue;
850 ci = ceph_inode(inode); 849 ci = ceph_inode(inode);
851 850
852 spin_lock(&ci->i_ceph_lock); 851 spin_lock(&ci->i_ceph_lock);
853 if (!ci->i_snap_realm) 852 if (!ci->i_snap_realm)
854 goto skip_inode; 853 goto skip_inode;
855 /* 854 /*
856 * If this inode belongs to a realm that was 855 * If this inode belongs to a realm that was
857 * created after our new realm, we experienced 856 * created after our new realm, we experienced
858 * a race (due to another split notifications 857 * a race (due to another split notifications
859 * arriving from a different MDS). So skip 858 * arriving from a different MDS). So skip
860 * this inode. 859 * this inode.
861 */ 860 */
862 if (ci->i_snap_realm->created > 861 if (ci->i_snap_realm->created >
863 le64_to_cpu(ri->created)) { 862 le64_to_cpu(ri->created)) {
864 dout(" leaving %p in newer realm %llx %p\n", 863 dout(" leaving %p in newer realm %llx %p\n",
865 inode, ci->i_snap_realm->ino, 864 inode, ci->i_snap_realm->ino,
866 ci->i_snap_realm); 865 ci->i_snap_realm);
867 goto skip_inode; 866 goto skip_inode;
868 } 867 }
869 dout(" will move %p to split realm %llx %p\n", 868 dout(" will move %p to split realm %llx %p\n",
870 inode, realm->ino, realm); 869 inode, realm->ino, realm);
871 /* 870 /*
872 * Move the inode to the new realm 871 * Move the inode to the new realm
873 */ 872 */
874 spin_lock(&realm->inodes_with_caps_lock); 873 spin_lock(&realm->inodes_with_caps_lock);
875 list_del_init(&ci->i_snap_realm_item); 874 list_del_init(&ci->i_snap_realm_item);
876 list_add(&ci->i_snap_realm_item, 875 list_add(&ci->i_snap_realm_item,
877 &realm->inodes_with_caps); 876 &realm->inodes_with_caps);
878 oldrealm = ci->i_snap_realm; 877 oldrealm = ci->i_snap_realm;
879 ci->i_snap_realm = realm; 878 ci->i_snap_realm = realm;
880 spin_unlock(&realm->inodes_with_caps_lock); 879 spin_unlock(&realm->inodes_with_caps_lock);
881 spin_unlock(&ci->i_ceph_lock); 880 spin_unlock(&ci->i_ceph_lock);
882 881
883 ceph_get_snap_realm(mdsc, realm); 882 ceph_get_snap_realm(mdsc, realm);
884 ceph_put_snap_realm(mdsc, oldrealm); 883 ceph_put_snap_realm(mdsc, oldrealm);
885 884
886 iput(inode); 885 iput(inode);
887 continue; 886 continue;
888 887
889 skip_inode: 888 skip_inode:
890 spin_unlock(&ci->i_ceph_lock); 889 spin_unlock(&ci->i_ceph_lock);
891 iput(inode); 890 iput(inode);
892 } 891 }
893 892
894 /* we may have taken some of the old realm's children. */ 893 /* we may have taken some of the old realm's children. */
895 for (i = 0; i < num_split_realms; i++) { 894 for (i = 0; i < num_split_realms; i++) {
896 struct ceph_snap_realm *child = 895 struct ceph_snap_realm *child =
897 ceph_lookup_snap_realm(mdsc, 896 ceph_lookup_snap_realm(mdsc,
898 le64_to_cpu(split_realms[i])); 897 le64_to_cpu(split_realms[i]));
899 if (!child) 898 if (!child)
900 continue; 899 continue;
901 adjust_snap_realm_parent(mdsc, child, realm->ino); 900 adjust_snap_realm_parent(mdsc, child, realm->ino);
902 } 901 }
903 } 902 }
904 903
905 /* 904 /*
906 * update using the provided snap trace. if we are deleting a 905 * update using the provided snap trace. if we are deleting a
907 * snap, we can avoid queueing cap_snaps. 906 * snap, we can avoid queueing cap_snaps.
908 */ 907 */
909 ceph_update_snap_trace(mdsc, p, e, 908 ceph_update_snap_trace(mdsc, p, e,
910 op == CEPH_SNAP_OP_DESTROY); 909 op == CEPH_SNAP_OP_DESTROY);
911 910
912 if (op == CEPH_SNAP_OP_SPLIT) 911 if (op == CEPH_SNAP_OP_SPLIT)
913 /* we took a reference when we created the realm, above */ 912 /* we took a reference when we created the realm, above */
914 ceph_put_snap_realm(mdsc, realm); 913 ceph_put_snap_realm(mdsc, realm);
915 914
916 __cleanup_empty_realms(mdsc); 915 __cleanup_empty_realms(mdsc);
917 916
918 up_write(&mdsc->snap_rwsem); 917 up_write(&mdsc->snap_rwsem);
919 918
920 flush_snaps(mdsc); 919 flush_snaps(mdsc);
921 return; 920 return;
922 921
923 bad: 922 bad:
924 pr_err("corrupt snap message from mds%d\n", mds); 923 pr_err("corrupt snap message from mds%d\n", mds);
925 ceph_msg_dump(msg); 924 ceph_msg_dump(msg);
926 out: 925 out:
927 if (locked_rwsem) 926 if (locked_rwsem)
928 up_write(&mdsc->snap_rwsem); 927 up_write(&mdsc->snap_rwsem);
929 return; 928 return;
930 } 929 }
931 930
932 931
933 932
934 933