Commit 864bdb3b6cbd9911222543fef1cfe36f88183f44

Authored by Al Viro
1 parent 2be7fd55d4

new helper: daemonize_descriptors()

descriptor-related parts of daemonize, done right.  As the
result we simplify the locking rules for ->files - we
hold task_lock in *all* cases when we modify ->files.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>

Showing 3 changed files with 8 additions and 3 deletions Inline Diff

1 /* 1 /*
2 * linux/fs/file.c 2 * linux/fs/file.c
3 * 3 *
4 * Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes 4 * Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
5 * 5 *
6 * Manage the dynamic fd arrays in the process files_struct. 6 * Manage the dynamic fd arrays in the process files_struct.
7 */ 7 */
8 8
9 #include <linux/syscalls.h> 9 #include <linux/syscalls.h>
10 #include <linux/export.h> 10 #include <linux/export.h>
11 #include <linux/fs.h> 11 #include <linux/fs.h>
12 #include <linux/mm.h> 12 #include <linux/mm.h>
13 #include <linux/mmzone.h> 13 #include <linux/mmzone.h>
14 #include <linux/time.h> 14 #include <linux/time.h>
15 #include <linux/sched.h> 15 #include <linux/sched.h>
16 #include <linux/slab.h> 16 #include <linux/slab.h>
17 #include <linux/vmalloc.h> 17 #include <linux/vmalloc.h>
18 #include <linux/file.h> 18 #include <linux/file.h>
19 #include <linux/fdtable.h> 19 #include <linux/fdtable.h>
20 #include <linux/bitops.h> 20 #include <linux/bitops.h>
21 #include <linux/interrupt.h> 21 #include <linux/interrupt.h>
22 #include <linux/spinlock.h> 22 #include <linux/spinlock.h>
23 #include <linux/rcupdate.h> 23 #include <linux/rcupdate.h>
24 #include <linux/workqueue.h> 24 #include <linux/workqueue.h>
25 25
26 struct fdtable_defer { 26 struct fdtable_defer {
27 spinlock_t lock; 27 spinlock_t lock;
28 struct work_struct wq; 28 struct work_struct wq;
29 struct fdtable *next; 29 struct fdtable *next;
30 }; 30 };
31 31
32 int sysctl_nr_open __read_mostly = 1024*1024; 32 int sysctl_nr_open __read_mostly = 1024*1024;
33 int sysctl_nr_open_min = BITS_PER_LONG; 33 int sysctl_nr_open_min = BITS_PER_LONG;
34 int sysctl_nr_open_max = 1024 * 1024; /* raised later */ 34 int sysctl_nr_open_max = 1024 * 1024; /* raised later */
35 35
36 /* 36 /*
37 * We use this list to defer free fdtables that have vmalloced 37 * We use this list to defer free fdtables that have vmalloced
38 * sets/arrays. By keeping a per-cpu list, we avoid having to embed 38 * sets/arrays. By keeping a per-cpu list, we avoid having to embed
39 * the work_struct in fdtable itself which avoids a 64 byte (i386) increase in 39 * the work_struct in fdtable itself which avoids a 64 byte (i386) increase in
40 * this per-task structure. 40 * this per-task structure.
41 */ 41 */
42 static DEFINE_PER_CPU(struct fdtable_defer, fdtable_defer_list); 42 static DEFINE_PER_CPU(struct fdtable_defer, fdtable_defer_list);
43 43
44 static void *alloc_fdmem(size_t size) 44 static void *alloc_fdmem(size_t size)
45 { 45 {
46 /* 46 /*
47 * Very large allocations can stress page reclaim, so fall back to 47 * Very large allocations can stress page reclaim, so fall back to
48 * vmalloc() if the allocation size will be considered "large" by the VM. 48 * vmalloc() if the allocation size will be considered "large" by the VM.
49 */ 49 */
50 if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER)) { 50 if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER)) {
51 void *data = kmalloc(size, GFP_KERNEL|__GFP_NOWARN); 51 void *data = kmalloc(size, GFP_KERNEL|__GFP_NOWARN);
52 if (data != NULL) 52 if (data != NULL)
53 return data; 53 return data;
54 } 54 }
55 return vmalloc(size); 55 return vmalloc(size);
56 } 56 }
57 57
58 static void free_fdmem(void *ptr) 58 static void free_fdmem(void *ptr)
59 { 59 {
60 is_vmalloc_addr(ptr) ? vfree(ptr) : kfree(ptr); 60 is_vmalloc_addr(ptr) ? vfree(ptr) : kfree(ptr);
61 } 61 }
62 62
63 static void __free_fdtable(struct fdtable *fdt) 63 static void __free_fdtable(struct fdtable *fdt)
64 { 64 {
65 free_fdmem(fdt->fd); 65 free_fdmem(fdt->fd);
66 free_fdmem(fdt->open_fds); 66 free_fdmem(fdt->open_fds);
67 kfree(fdt); 67 kfree(fdt);
68 } 68 }
69 69
70 static void free_fdtable_work(struct work_struct *work) 70 static void free_fdtable_work(struct work_struct *work)
71 { 71 {
72 struct fdtable_defer *f = 72 struct fdtable_defer *f =
73 container_of(work, struct fdtable_defer, wq); 73 container_of(work, struct fdtable_defer, wq);
74 struct fdtable *fdt; 74 struct fdtable *fdt;
75 75
76 spin_lock_bh(&f->lock); 76 spin_lock_bh(&f->lock);
77 fdt = f->next; 77 fdt = f->next;
78 f->next = NULL; 78 f->next = NULL;
79 spin_unlock_bh(&f->lock); 79 spin_unlock_bh(&f->lock);
80 while(fdt) { 80 while(fdt) {
81 struct fdtable *next = fdt->next; 81 struct fdtable *next = fdt->next;
82 82
83 __free_fdtable(fdt); 83 __free_fdtable(fdt);
84 fdt = next; 84 fdt = next;
85 } 85 }
86 } 86 }
87 87
88 static void free_fdtable_rcu(struct rcu_head *rcu) 88 static void free_fdtable_rcu(struct rcu_head *rcu)
89 { 89 {
90 struct fdtable *fdt = container_of(rcu, struct fdtable, rcu); 90 struct fdtable *fdt = container_of(rcu, struct fdtable, rcu);
91 struct fdtable_defer *fddef; 91 struct fdtable_defer *fddef;
92 92
93 BUG_ON(!fdt); 93 BUG_ON(!fdt);
94 BUG_ON(fdt->max_fds <= NR_OPEN_DEFAULT); 94 BUG_ON(fdt->max_fds <= NR_OPEN_DEFAULT);
95 95
96 if (!is_vmalloc_addr(fdt->fd) && !is_vmalloc_addr(fdt->open_fds)) { 96 if (!is_vmalloc_addr(fdt->fd) && !is_vmalloc_addr(fdt->open_fds)) {
97 kfree(fdt->fd); 97 kfree(fdt->fd);
98 kfree(fdt->open_fds); 98 kfree(fdt->open_fds);
99 kfree(fdt); 99 kfree(fdt);
100 } else { 100 } else {
101 fddef = &get_cpu_var(fdtable_defer_list); 101 fddef = &get_cpu_var(fdtable_defer_list);
102 spin_lock(&fddef->lock); 102 spin_lock(&fddef->lock);
103 fdt->next = fddef->next; 103 fdt->next = fddef->next;
104 fddef->next = fdt; 104 fddef->next = fdt;
105 /* vmallocs are handled from the workqueue context */ 105 /* vmallocs are handled from the workqueue context */
106 schedule_work(&fddef->wq); 106 schedule_work(&fddef->wq);
107 spin_unlock(&fddef->lock); 107 spin_unlock(&fddef->lock);
108 put_cpu_var(fdtable_defer_list); 108 put_cpu_var(fdtable_defer_list);
109 } 109 }
110 } 110 }
111 111
112 /* 112 /*
113 * Expand the fdset in the files_struct. Called with the files spinlock 113 * Expand the fdset in the files_struct. Called with the files spinlock
114 * held for write. 114 * held for write.
115 */ 115 */
116 static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt) 116 static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt)
117 { 117 {
118 unsigned int cpy, set; 118 unsigned int cpy, set;
119 119
120 BUG_ON(nfdt->max_fds < ofdt->max_fds); 120 BUG_ON(nfdt->max_fds < ofdt->max_fds);
121 121
122 cpy = ofdt->max_fds * sizeof(struct file *); 122 cpy = ofdt->max_fds * sizeof(struct file *);
123 set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *); 123 set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *);
124 memcpy(nfdt->fd, ofdt->fd, cpy); 124 memcpy(nfdt->fd, ofdt->fd, cpy);
125 memset((char *)(nfdt->fd) + cpy, 0, set); 125 memset((char *)(nfdt->fd) + cpy, 0, set);
126 126
127 cpy = ofdt->max_fds / BITS_PER_BYTE; 127 cpy = ofdt->max_fds / BITS_PER_BYTE;
128 set = (nfdt->max_fds - ofdt->max_fds) / BITS_PER_BYTE; 128 set = (nfdt->max_fds - ofdt->max_fds) / BITS_PER_BYTE;
129 memcpy(nfdt->open_fds, ofdt->open_fds, cpy); 129 memcpy(nfdt->open_fds, ofdt->open_fds, cpy);
130 memset((char *)(nfdt->open_fds) + cpy, 0, set); 130 memset((char *)(nfdt->open_fds) + cpy, 0, set);
131 memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy); 131 memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy);
132 memset((char *)(nfdt->close_on_exec) + cpy, 0, set); 132 memset((char *)(nfdt->close_on_exec) + cpy, 0, set);
133 } 133 }
134 134
135 static struct fdtable * alloc_fdtable(unsigned int nr) 135 static struct fdtable * alloc_fdtable(unsigned int nr)
136 { 136 {
137 struct fdtable *fdt; 137 struct fdtable *fdt;
138 void *data; 138 void *data;
139 139
140 /* 140 /*
141 * Figure out how many fds we actually want to support in this fdtable. 141 * Figure out how many fds we actually want to support in this fdtable.
142 * Allocation steps are keyed to the size of the fdarray, since it 142 * Allocation steps are keyed to the size of the fdarray, since it
143 * grows far faster than any of the other dynamic data. We try to fit 143 * grows far faster than any of the other dynamic data. We try to fit
144 * the fdarray into comfortable page-tuned chunks: starting at 1024B 144 * the fdarray into comfortable page-tuned chunks: starting at 1024B
145 * and growing in powers of two from there on. 145 * and growing in powers of two from there on.
146 */ 146 */
147 nr /= (1024 / sizeof(struct file *)); 147 nr /= (1024 / sizeof(struct file *));
148 nr = roundup_pow_of_two(nr + 1); 148 nr = roundup_pow_of_two(nr + 1);
149 nr *= (1024 / sizeof(struct file *)); 149 nr *= (1024 / sizeof(struct file *));
150 /* 150 /*
151 * Note that this can drive nr *below* what we had passed if sysctl_nr_open 151 * Note that this can drive nr *below* what we had passed if sysctl_nr_open
152 * had been set lower between the check in expand_files() and here. Deal 152 * had been set lower between the check in expand_files() and here. Deal
153 * with that in caller, it's cheaper that way. 153 * with that in caller, it's cheaper that way.
154 * 154 *
155 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise 155 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise
156 * bitmaps handling below becomes unpleasant, to put it mildly... 156 * bitmaps handling below becomes unpleasant, to put it mildly...
157 */ 157 */
158 if (unlikely(nr > sysctl_nr_open)) 158 if (unlikely(nr > sysctl_nr_open))
159 nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1; 159 nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1;
160 160
161 fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL); 161 fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL);
162 if (!fdt) 162 if (!fdt)
163 goto out; 163 goto out;
164 fdt->max_fds = nr; 164 fdt->max_fds = nr;
165 data = alloc_fdmem(nr * sizeof(struct file *)); 165 data = alloc_fdmem(nr * sizeof(struct file *));
166 if (!data) 166 if (!data)
167 goto out_fdt; 167 goto out_fdt;
168 fdt->fd = data; 168 fdt->fd = data;
169 169
170 data = alloc_fdmem(max_t(size_t, 170 data = alloc_fdmem(max_t(size_t,
171 2 * nr / BITS_PER_BYTE, L1_CACHE_BYTES)); 171 2 * nr / BITS_PER_BYTE, L1_CACHE_BYTES));
172 if (!data) 172 if (!data)
173 goto out_arr; 173 goto out_arr;
174 fdt->open_fds = data; 174 fdt->open_fds = data;
175 data += nr / BITS_PER_BYTE; 175 data += nr / BITS_PER_BYTE;
176 fdt->close_on_exec = data; 176 fdt->close_on_exec = data;
177 fdt->next = NULL; 177 fdt->next = NULL;
178 178
179 return fdt; 179 return fdt;
180 180
181 out_arr: 181 out_arr:
182 free_fdmem(fdt->fd); 182 free_fdmem(fdt->fd);
183 out_fdt: 183 out_fdt:
184 kfree(fdt); 184 kfree(fdt);
185 out: 185 out:
186 return NULL; 186 return NULL;
187 } 187 }
188 188
189 /* 189 /*
190 * Expand the file descriptor table. 190 * Expand the file descriptor table.
191 * This function will allocate a new fdtable and both fd array and fdset, of 191 * This function will allocate a new fdtable and both fd array and fdset, of
192 * the given size. 192 * the given size.
193 * Return <0 error code on error; 1 on successful completion. 193 * Return <0 error code on error; 1 on successful completion.
194 * The files->file_lock should be held on entry, and will be held on exit. 194 * The files->file_lock should be held on entry, and will be held on exit.
195 */ 195 */
196 static int expand_fdtable(struct files_struct *files, int nr) 196 static int expand_fdtable(struct files_struct *files, int nr)
197 __releases(files->file_lock) 197 __releases(files->file_lock)
198 __acquires(files->file_lock) 198 __acquires(files->file_lock)
199 { 199 {
200 struct fdtable *new_fdt, *cur_fdt; 200 struct fdtable *new_fdt, *cur_fdt;
201 201
202 spin_unlock(&files->file_lock); 202 spin_unlock(&files->file_lock);
203 new_fdt = alloc_fdtable(nr); 203 new_fdt = alloc_fdtable(nr);
204 spin_lock(&files->file_lock); 204 spin_lock(&files->file_lock);
205 if (!new_fdt) 205 if (!new_fdt)
206 return -ENOMEM; 206 return -ENOMEM;
207 /* 207 /*
208 * extremely unlikely race - sysctl_nr_open decreased between the check in 208 * extremely unlikely race - sysctl_nr_open decreased between the check in
209 * caller and alloc_fdtable(). Cheaper to catch it here... 209 * caller and alloc_fdtable(). Cheaper to catch it here...
210 */ 210 */
211 if (unlikely(new_fdt->max_fds <= nr)) { 211 if (unlikely(new_fdt->max_fds <= nr)) {
212 __free_fdtable(new_fdt); 212 __free_fdtable(new_fdt);
213 return -EMFILE; 213 return -EMFILE;
214 } 214 }
215 /* 215 /*
216 * Check again since another task may have expanded the fd table while 216 * Check again since another task may have expanded the fd table while
217 * we dropped the lock 217 * we dropped the lock
218 */ 218 */
219 cur_fdt = files_fdtable(files); 219 cur_fdt = files_fdtable(files);
220 if (nr >= cur_fdt->max_fds) { 220 if (nr >= cur_fdt->max_fds) {
221 /* Continue as planned */ 221 /* Continue as planned */
222 copy_fdtable(new_fdt, cur_fdt); 222 copy_fdtable(new_fdt, cur_fdt);
223 rcu_assign_pointer(files->fdt, new_fdt); 223 rcu_assign_pointer(files->fdt, new_fdt);
224 if (cur_fdt->max_fds > NR_OPEN_DEFAULT) 224 if (cur_fdt->max_fds > NR_OPEN_DEFAULT)
225 call_rcu(&cur_fdt->rcu, free_fdtable_rcu); 225 call_rcu(&cur_fdt->rcu, free_fdtable_rcu);
226 } else { 226 } else {
227 /* Somebody else expanded, so undo our attempt */ 227 /* Somebody else expanded, so undo our attempt */
228 __free_fdtable(new_fdt); 228 __free_fdtable(new_fdt);
229 } 229 }
230 return 1; 230 return 1;
231 } 231 }
232 232
233 /* 233 /*
234 * Expand files. 234 * Expand files.
235 * This function will expand the file structures, if the requested size exceeds 235 * This function will expand the file structures, if the requested size exceeds
236 * the current capacity and there is room for expansion. 236 * the current capacity and there is room for expansion.
237 * Return <0 error code on error; 0 when nothing done; 1 when files were 237 * Return <0 error code on error; 0 when nothing done; 1 when files were
238 * expanded and execution may have blocked. 238 * expanded and execution may have blocked.
239 * The files->file_lock should be held on entry, and will be held on exit. 239 * The files->file_lock should be held on entry, and will be held on exit.
240 */ 240 */
241 static int expand_files(struct files_struct *files, int nr) 241 static int expand_files(struct files_struct *files, int nr)
242 { 242 {
243 struct fdtable *fdt; 243 struct fdtable *fdt;
244 244
245 fdt = files_fdtable(files); 245 fdt = files_fdtable(files);
246 246
247 /* Do we need to expand? */ 247 /* Do we need to expand? */
248 if (nr < fdt->max_fds) 248 if (nr < fdt->max_fds)
249 return 0; 249 return 0;
250 250
251 /* Can we expand? */ 251 /* Can we expand? */
252 if (nr >= sysctl_nr_open) 252 if (nr >= sysctl_nr_open)
253 return -EMFILE; 253 return -EMFILE;
254 254
255 /* All good, so we try */ 255 /* All good, so we try */
256 return expand_fdtable(files, nr); 256 return expand_fdtable(files, nr);
257 } 257 }
258 258
259 static inline void __set_close_on_exec(int fd, struct fdtable *fdt) 259 static inline void __set_close_on_exec(int fd, struct fdtable *fdt)
260 { 260 {
261 __set_bit(fd, fdt->close_on_exec); 261 __set_bit(fd, fdt->close_on_exec);
262 } 262 }
263 263
264 static inline void __clear_close_on_exec(int fd, struct fdtable *fdt) 264 static inline void __clear_close_on_exec(int fd, struct fdtable *fdt)
265 { 265 {
266 __clear_bit(fd, fdt->close_on_exec); 266 __clear_bit(fd, fdt->close_on_exec);
267 } 267 }
268 268
269 static inline void __set_open_fd(int fd, struct fdtable *fdt) 269 static inline void __set_open_fd(int fd, struct fdtable *fdt)
270 { 270 {
271 __set_bit(fd, fdt->open_fds); 271 __set_bit(fd, fdt->open_fds);
272 } 272 }
273 273
274 static inline void __clear_open_fd(int fd, struct fdtable *fdt) 274 static inline void __clear_open_fd(int fd, struct fdtable *fdt)
275 { 275 {
276 __clear_bit(fd, fdt->open_fds); 276 __clear_bit(fd, fdt->open_fds);
277 } 277 }
278 278
279 static int count_open_files(struct fdtable *fdt) 279 static int count_open_files(struct fdtable *fdt)
280 { 280 {
281 int size = fdt->max_fds; 281 int size = fdt->max_fds;
282 int i; 282 int i;
283 283
284 /* Find the last open fd */ 284 /* Find the last open fd */
285 for (i = size / BITS_PER_LONG; i > 0; ) { 285 for (i = size / BITS_PER_LONG; i > 0; ) {
286 if (fdt->open_fds[--i]) 286 if (fdt->open_fds[--i])
287 break; 287 break;
288 } 288 }
289 i = (i + 1) * BITS_PER_LONG; 289 i = (i + 1) * BITS_PER_LONG;
290 return i; 290 return i;
291 } 291 }
292 292
293 /* 293 /*
294 * Allocate a new files structure and copy contents from the 294 * Allocate a new files structure and copy contents from the
295 * passed in files structure. 295 * passed in files structure.
296 * errorp will be valid only when the returned files_struct is NULL. 296 * errorp will be valid only when the returned files_struct is NULL.
297 */ 297 */
298 struct files_struct *dup_fd(struct files_struct *oldf, int *errorp) 298 struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
299 { 299 {
300 struct files_struct *newf; 300 struct files_struct *newf;
301 struct file **old_fds, **new_fds; 301 struct file **old_fds, **new_fds;
302 int open_files, size, i; 302 int open_files, size, i;
303 struct fdtable *old_fdt, *new_fdt; 303 struct fdtable *old_fdt, *new_fdt;
304 304
305 *errorp = -ENOMEM; 305 *errorp = -ENOMEM;
306 newf = kmem_cache_alloc(files_cachep, GFP_KERNEL); 306 newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
307 if (!newf) 307 if (!newf)
308 goto out; 308 goto out;
309 309
310 atomic_set(&newf->count, 1); 310 atomic_set(&newf->count, 1);
311 311
312 spin_lock_init(&newf->file_lock); 312 spin_lock_init(&newf->file_lock);
313 newf->next_fd = 0; 313 newf->next_fd = 0;
314 new_fdt = &newf->fdtab; 314 new_fdt = &newf->fdtab;
315 new_fdt->max_fds = NR_OPEN_DEFAULT; 315 new_fdt->max_fds = NR_OPEN_DEFAULT;
316 new_fdt->close_on_exec = newf->close_on_exec_init; 316 new_fdt->close_on_exec = newf->close_on_exec_init;
317 new_fdt->open_fds = newf->open_fds_init; 317 new_fdt->open_fds = newf->open_fds_init;
318 new_fdt->fd = &newf->fd_array[0]; 318 new_fdt->fd = &newf->fd_array[0];
319 new_fdt->next = NULL; 319 new_fdt->next = NULL;
320 320
321 spin_lock(&oldf->file_lock); 321 spin_lock(&oldf->file_lock);
322 old_fdt = files_fdtable(oldf); 322 old_fdt = files_fdtable(oldf);
323 open_files = count_open_files(old_fdt); 323 open_files = count_open_files(old_fdt);
324 324
325 /* 325 /*
326 * Check whether we need to allocate a larger fd array and fd set. 326 * Check whether we need to allocate a larger fd array and fd set.
327 */ 327 */
328 while (unlikely(open_files > new_fdt->max_fds)) { 328 while (unlikely(open_files > new_fdt->max_fds)) {
329 spin_unlock(&oldf->file_lock); 329 spin_unlock(&oldf->file_lock);
330 330
331 if (new_fdt != &newf->fdtab) 331 if (new_fdt != &newf->fdtab)
332 __free_fdtable(new_fdt); 332 __free_fdtable(new_fdt);
333 333
334 new_fdt = alloc_fdtable(open_files - 1); 334 new_fdt = alloc_fdtable(open_files - 1);
335 if (!new_fdt) { 335 if (!new_fdt) {
336 *errorp = -ENOMEM; 336 *errorp = -ENOMEM;
337 goto out_release; 337 goto out_release;
338 } 338 }
339 339
340 /* beyond sysctl_nr_open; nothing to do */ 340 /* beyond sysctl_nr_open; nothing to do */
341 if (unlikely(new_fdt->max_fds < open_files)) { 341 if (unlikely(new_fdt->max_fds < open_files)) {
342 __free_fdtable(new_fdt); 342 __free_fdtable(new_fdt);
343 *errorp = -EMFILE; 343 *errorp = -EMFILE;
344 goto out_release; 344 goto out_release;
345 } 345 }
346 346
347 /* 347 /*
348 * Reacquire the oldf lock and a pointer to its fd table 348 * Reacquire the oldf lock and a pointer to its fd table
349 * who knows it may have a new bigger fd table. We need 349 * who knows it may have a new bigger fd table. We need
350 * the latest pointer. 350 * the latest pointer.
351 */ 351 */
352 spin_lock(&oldf->file_lock); 352 spin_lock(&oldf->file_lock);
353 old_fdt = files_fdtable(oldf); 353 old_fdt = files_fdtable(oldf);
354 open_files = count_open_files(old_fdt); 354 open_files = count_open_files(old_fdt);
355 } 355 }
356 356
357 old_fds = old_fdt->fd; 357 old_fds = old_fdt->fd;
358 new_fds = new_fdt->fd; 358 new_fds = new_fdt->fd;
359 359
360 memcpy(new_fdt->open_fds, old_fdt->open_fds, open_files / 8); 360 memcpy(new_fdt->open_fds, old_fdt->open_fds, open_files / 8);
361 memcpy(new_fdt->close_on_exec, old_fdt->close_on_exec, open_files / 8); 361 memcpy(new_fdt->close_on_exec, old_fdt->close_on_exec, open_files / 8);
362 362
363 for (i = open_files; i != 0; i--) { 363 for (i = open_files; i != 0; i--) {
364 struct file *f = *old_fds++; 364 struct file *f = *old_fds++;
365 if (f) { 365 if (f) {
366 get_file(f); 366 get_file(f);
367 } else { 367 } else {
368 /* 368 /*
369 * The fd may be claimed in the fd bitmap but not yet 369 * The fd may be claimed in the fd bitmap but not yet
370 * instantiated in the files array if a sibling thread 370 * instantiated in the files array if a sibling thread
371 * is partway through open(). So make sure that this 371 * is partway through open(). So make sure that this
372 * fd is available to the new process. 372 * fd is available to the new process.
373 */ 373 */
374 __clear_open_fd(open_files - i, new_fdt); 374 __clear_open_fd(open_files - i, new_fdt);
375 } 375 }
376 rcu_assign_pointer(*new_fds++, f); 376 rcu_assign_pointer(*new_fds++, f);
377 } 377 }
378 spin_unlock(&oldf->file_lock); 378 spin_unlock(&oldf->file_lock);
379 379
380 /* compute the remainder to be cleared */ 380 /* compute the remainder to be cleared */
381 size = (new_fdt->max_fds - open_files) * sizeof(struct file *); 381 size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
382 382
383 /* This is long word aligned thus could use a optimized version */ 383 /* This is long word aligned thus could use a optimized version */
384 memset(new_fds, 0, size); 384 memset(new_fds, 0, size);
385 385
386 if (new_fdt->max_fds > open_files) { 386 if (new_fdt->max_fds > open_files) {
387 int left = (new_fdt->max_fds - open_files) / 8; 387 int left = (new_fdt->max_fds - open_files) / 8;
388 int start = open_files / BITS_PER_LONG; 388 int start = open_files / BITS_PER_LONG;
389 389
390 memset(&new_fdt->open_fds[start], 0, left); 390 memset(&new_fdt->open_fds[start], 0, left);
391 memset(&new_fdt->close_on_exec[start], 0, left); 391 memset(&new_fdt->close_on_exec[start], 0, left);
392 } 392 }
393 393
394 rcu_assign_pointer(newf->fdt, new_fdt); 394 rcu_assign_pointer(newf->fdt, new_fdt);
395 395
396 return newf; 396 return newf;
397 397
398 out_release: 398 out_release:
399 kmem_cache_free(files_cachep, newf); 399 kmem_cache_free(files_cachep, newf);
400 out: 400 out:
401 return NULL; 401 return NULL;
402 } 402 }
403 403
404 static void close_files(struct files_struct * files) 404 static void close_files(struct files_struct * files)
405 { 405 {
406 int i, j; 406 int i, j;
407 struct fdtable *fdt; 407 struct fdtable *fdt;
408 408
409 j = 0; 409 j = 0;
410 410
411 /* 411 /*
412 * It is safe to dereference the fd table without RCU or 412 * It is safe to dereference the fd table without RCU or
413 * ->file_lock because this is the last reference to the 413 * ->file_lock because this is the last reference to the
414 * files structure. But use RCU to shut RCU-lockdep up. 414 * files structure. But use RCU to shut RCU-lockdep up.
415 */ 415 */
416 rcu_read_lock(); 416 rcu_read_lock();
417 fdt = files_fdtable(files); 417 fdt = files_fdtable(files);
418 rcu_read_unlock(); 418 rcu_read_unlock();
419 for (;;) { 419 for (;;) {
420 unsigned long set; 420 unsigned long set;
421 i = j * BITS_PER_LONG; 421 i = j * BITS_PER_LONG;
422 if (i >= fdt->max_fds) 422 if (i >= fdt->max_fds)
423 break; 423 break;
424 set = fdt->open_fds[j++]; 424 set = fdt->open_fds[j++];
425 while (set) { 425 while (set) {
426 if (set & 1) { 426 if (set & 1) {
427 struct file * file = xchg(&fdt->fd[i], NULL); 427 struct file * file = xchg(&fdt->fd[i], NULL);
428 if (file) { 428 if (file) {
429 filp_close(file, files); 429 filp_close(file, files);
430 cond_resched(); 430 cond_resched();
431 } 431 }
432 } 432 }
433 i++; 433 i++;
434 set >>= 1; 434 set >>= 1;
435 } 435 }
436 } 436 }
437 } 437 }
438 438
439 struct files_struct *get_files_struct(struct task_struct *task) 439 struct files_struct *get_files_struct(struct task_struct *task)
440 { 440 {
441 struct files_struct *files; 441 struct files_struct *files;
442 442
443 task_lock(task); 443 task_lock(task);
444 files = task->files; 444 files = task->files;
445 if (files) 445 if (files)
446 atomic_inc(&files->count); 446 atomic_inc(&files->count);
447 task_unlock(task); 447 task_unlock(task);
448 448
449 return files; 449 return files;
450 } 450 }
451 451
452 void put_files_struct(struct files_struct *files) 452 void put_files_struct(struct files_struct *files)
453 { 453 {
454 struct fdtable *fdt; 454 struct fdtable *fdt;
455 455
456 if (atomic_dec_and_test(&files->count)) { 456 if (atomic_dec_and_test(&files->count)) {
457 close_files(files); 457 close_files(files);
458 /* not really needed, since nobody can see us */ 458 /* not really needed, since nobody can see us */
459 rcu_read_lock(); 459 rcu_read_lock();
460 fdt = files_fdtable(files); 460 fdt = files_fdtable(files);
461 rcu_read_unlock(); 461 rcu_read_unlock();
462 /* free the arrays if they are not embedded */ 462 /* free the arrays if they are not embedded */
463 if (fdt != &files->fdtab) 463 if (fdt != &files->fdtab)
464 __free_fdtable(fdt); 464 __free_fdtable(fdt);
465 kmem_cache_free(files_cachep, files); 465 kmem_cache_free(files_cachep, files);
466 } 466 }
467 } 467 }
468 468
469 void reset_files_struct(struct files_struct *files) 469 void reset_files_struct(struct files_struct *files)
470 { 470 {
471 struct task_struct *tsk = current; 471 struct task_struct *tsk = current;
472 struct files_struct *old; 472 struct files_struct *old;
473 473
474 old = tsk->files; 474 old = tsk->files;
475 task_lock(tsk); 475 task_lock(tsk);
476 tsk->files = files; 476 tsk->files = files;
477 task_unlock(tsk); 477 task_unlock(tsk);
478 put_files_struct(old); 478 put_files_struct(old);
479 } 479 }
480 480
481 void exit_files(struct task_struct *tsk) 481 void exit_files(struct task_struct *tsk)
482 { 482 {
483 struct files_struct * files = tsk->files; 483 struct files_struct * files = tsk->files;
484 484
485 if (files) { 485 if (files) {
486 task_lock(tsk); 486 task_lock(tsk);
487 tsk->files = NULL; 487 tsk->files = NULL;
488 task_unlock(tsk); 488 task_unlock(tsk);
489 put_files_struct(files); 489 put_files_struct(files);
490 } 490 }
491 } 491 }
492 492
493 static void __devinit fdtable_defer_list_init(int cpu) 493 static void __devinit fdtable_defer_list_init(int cpu)
494 { 494 {
495 struct fdtable_defer *fddef = &per_cpu(fdtable_defer_list, cpu); 495 struct fdtable_defer *fddef = &per_cpu(fdtable_defer_list, cpu);
496 spin_lock_init(&fddef->lock); 496 spin_lock_init(&fddef->lock);
497 INIT_WORK(&fddef->wq, free_fdtable_work); 497 INIT_WORK(&fddef->wq, free_fdtable_work);
498 fddef->next = NULL; 498 fddef->next = NULL;
499 } 499 }
500 500
501 void __init files_defer_init(void) 501 void __init files_defer_init(void)
502 { 502 {
503 int i; 503 int i;
504 for_each_possible_cpu(i) 504 for_each_possible_cpu(i)
505 fdtable_defer_list_init(i); 505 fdtable_defer_list_init(i);
506 sysctl_nr_open_max = min((size_t)INT_MAX, ~(size_t)0/sizeof(void *)) & 506 sysctl_nr_open_max = min((size_t)INT_MAX, ~(size_t)0/sizeof(void *)) &
507 -BITS_PER_LONG; 507 -BITS_PER_LONG;
508 } 508 }
509 509
510 struct files_struct init_files = { 510 struct files_struct init_files = {
511 .count = ATOMIC_INIT(1), 511 .count = ATOMIC_INIT(1),
512 .fdt = &init_files.fdtab, 512 .fdt = &init_files.fdtab,
513 .fdtab = { 513 .fdtab = {
514 .max_fds = NR_OPEN_DEFAULT, 514 .max_fds = NR_OPEN_DEFAULT,
515 .fd = &init_files.fd_array[0], 515 .fd = &init_files.fd_array[0],
516 .close_on_exec = init_files.close_on_exec_init, 516 .close_on_exec = init_files.close_on_exec_init,
517 .open_fds = init_files.open_fds_init, 517 .open_fds = init_files.open_fds_init,
518 }, 518 },
519 .file_lock = __SPIN_LOCK_UNLOCKED(init_task.file_lock), 519 .file_lock = __SPIN_LOCK_UNLOCKED(init_task.file_lock),
520 }; 520 };
521 521
522 void daemonize_descriptors(void)
523 {
524 atomic_inc(&init_files.count);
525 reset_files_struct(&init_files);
526 }
527
522 /* 528 /*
523 * allocate a file descriptor, mark it busy. 529 * allocate a file descriptor, mark it busy.
524 */ 530 */
525 int __alloc_fd(struct files_struct *files, 531 int __alloc_fd(struct files_struct *files,
526 unsigned start, unsigned end, unsigned flags) 532 unsigned start, unsigned end, unsigned flags)
527 { 533 {
528 unsigned int fd; 534 unsigned int fd;
529 int error; 535 int error;
530 struct fdtable *fdt; 536 struct fdtable *fdt;
531 537
532 spin_lock(&files->file_lock); 538 spin_lock(&files->file_lock);
533 repeat: 539 repeat:
534 fdt = files_fdtable(files); 540 fdt = files_fdtable(files);
535 fd = start; 541 fd = start;
536 if (fd < files->next_fd) 542 if (fd < files->next_fd)
537 fd = files->next_fd; 543 fd = files->next_fd;
538 544
539 if (fd < fdt->max_fds) 545 if (fd < fdt->max_fds)
540 fd = find_next_zero_bit(fdt->open_fds, fdt->max_fds, fd); 546 fd = find_next_zero_bit(fdt->open_fds, fdt->max_fds, fd);
541 547
542 /* 548 /*
543 * N.B. For clone tasks sharing a files structure, this test 549 * N.B. For clone tasks sharing a files structure, this test
544 * will limit the total number of files that can be opened. 550 * will limit the total number of files that can be opened.
545 */ 551 */
546 error = -EMFILE; 552 error = -EMFILE;
547 if (fd >= end) 553 if (fd >= end)
548 goto out; 554 goto out;
549 555
550 error = expand_files(files, fd); 556 error = expand_files(files, fd);
551 if (error < 0) 557 if (error < 0)
552 goto out; 558 goto out;
553 559
554 /* 560 /*
555 * If we needed to expand the fs array we 561 * If we needed to expand the fs array we
556 * might have blocked - try again. 562 * might have blocked - try again.
557 */ 563 */
558 if (error) 564 if (error)
559 goto repeat; 565 goto repeat;
560 566
561 if (start <= files->next_fd) 567 if (start <= files->next_fd)
562 files->next_fd = fd + 1; 568 files->next_fd = fd + 1;
563 569
564 __set_open_fd(fd, fdt); 570 __set_open_fd(fd, fdt);
565 if (flags & O_CLOEXEC) 571 if (flags & O_CLOEXEC)
566 __set_close_on_exec(fd, fdt); 572 __set_close_on_exec(fd, fdt);
567 else 573 else
568 __clear_close_on_exec(fd, fdt); 574 __clear_close_on_exec(fd, fdt);
569 error = fd; 575 error = fd;
570 #if 1 576 #if 1
571 /* Sanity check */ 577 /* Sanity check */
572 if (rcu_dereference_raw(fdt->fd[fd]) != NULL) { 578 if (rcu_dereference_raw(fdt->fd[fd]) != NULL) {
573 printk(KERN_WARNING "alloc_fd: slot %d not NULL!\n", fd); 579 printk(KERN_WARNING "alloc_fd: slot %d not NULL!\n", fd);
574 rcu_assign_pointer(fdt->fd[fd], NULL); 580 rcu_assign_pointer(fdt->fd[fd], NULL);
575 } 581 }
576 #endif 582 #endif
577 583
578 out: 584 out:
579 spin_unlock(&files->file_lock); 585 spin_unlock(&files->file_lock);
580 return error; 586 return error;
581 } 587 }
582 588
583 static int alloc_fd(unsigned start, unsigned flags) 589 static int alloc_fd(unsigned start, unsigned flags)
584 { 590 {
585 return __alloc_fd(current->files, start, rlimit(RLIMIT_NOFILE), flags); 591 return __alloc_fd(current->files, start, rlimit(RLIMIT_NOFILE), flags);
586 } 592 }
587 593
588 int get_unused_fd_flags(unsigned flags) 594 int get_unused_fd_flags(unsigned flags)
589 { 595 {
590 return __alloc_fd(current->files, 0, rlimit(RLIMIT_NOFILE), flags); 596 return __alloc_fd(current->files, 0, rlimit(RLIMIT_NOFILE), flags);
591 } 597 }
592 EXPORT_SYMBOL(get_unused_fd_flags); 598 EXPORT_SYMBOL(get_unused_fd_flags);
593 599
594 static void __put_unused_fd(struct files_struct *files, unsigned int fd) 600 static void __put_unused_fd(struct files_struct *files, unsigned int fd)
595 { 601 {
596 struct fdtable *fdt = files_fdtable(files); 602 struct fdtable *fdt = files_fdtable(files);
597 __clear_open_fd(fd, fdt); 603 __clear_open_fd(fd, fdt);
598 if (fd < files->next_fd) 604 if (fd < files->next_fd)
599 files->next_fd = fd; 605 files->next_fd = fd;
600 } 606 }
601 607
602 void put_unused_fd(unsigned int fd) 608 void put_unused_fd(unsigned int fd)
603 { 609 {
604 struct files_struct *files = current->files; 610 struct files_struct *files = current->files;
605 spin_lock(&files->file_lock); 611 spin_lock(&files->file_lock);
606 __put_unused_fd(files, fd); 612 __put_unused_fd(files, fd);
607 spin_unlock(&files->file_lock); 613 spin_unlock(&files->file_lock);
608 } 614 }
609 615
610 EXPORT_SYMBOL(put_unused_fd); 616 EXPORT_SYMBOL(put_unused_fd);
611 617
612 /* 618 /*
613 * Install a file pointer in the fd array. 619 * Install a file pointer in the fd array.
614 * 620 *
615 * The VFS is full of places where we drop the files lock between 621 * The VFS is full of places where we drop the files lock between
616 * setting the open_fds bitmap and installing the file in the file 622 * setting the open_fds bitmap and installing the file in the file
617 * array. At any such point, we are vulnerable to a dup2() race 623 * array. At any such point, we are vulnerable to a dup2() race
618 * installing a file in the array before us. We need to detect this and 624 * installing a file in the array before us. We need to detect this and
619 * fput() the struct file we are about to overwrite in this case. 625 * fput() the struct file we are about to overwrite in this case.
620 * 626 *
621 * It should never happen - if we allow dup2() do it, _really_ bad things 627 * It should never happen - if we allow dup2() do it, _really_ bad things
622 * will follow. 628 * will follow.
623 * 629 *
624 * NOTE: __fd_install() variant is really, really low-level; don't 630 * NOTE: __fd_install() variant is really, really low-level; don't
625 * use it unless you are forced to by truly lousy API shoved down 631 * use it unless you are forced to by truly lousy API shoved down
626 * your throat. 'files' *MUST* be either current->files or obtained 632 * your throat. 'files' *MUST* be either current->files or obtained
627 * by get_files_struct(current) done by whoever had given it to you, 633 * by get_files_struct(current) done by whoever had given it to you,
628 * or really bad things will happen. Normally you want to use 634 * or really bad things will happen. Normally you want to use
629 * fd_install() instead. 635 * fd_install() instead.
630 */ 636 */
631 637
632 void __fd_install(struct files_struct *files, unsigned int fd, 638 void __fd_install(struct files_struct *files, unsigned int fd,
633 struct file *file) 639 struct file *file)
634 { 640 {
635 struct fdtable *fdt; 641 struct fdtable *fdt;
636 spin_lock(&files->file_lock); 642 spin_lock(&files->file_lock);
637 fdt = files_fdtable(files); 643 fdt = files_fdtable(files);
638 BUG_ON(fdt->fd[fd] != NULL); 644 BUG_ON(fdt->fd[fd] != NULL);
639 rcu_assign_pointer(fdt->fd[fd], file); 645 rcu_assign_pointer(fdt->fd[fd], file);
640 spin_unlock(&files->file_lock); 646 spin_unlock(&files->file_lock);
641 } 647 }
642 648
643 void fd_install(unsigned int fd, struct file *file) 649 void fd_install(unsigned int fd, struct file *file)
644 { 650 {
645 __fd_install(current->files, fd, file); 651 __fd_install(current->files, fd, file);
646 } 652 }
647 653
648 EXPORT_SYMBOL(fd_install); 654 EXPORT_SYMBOL(fd_install);
649 655
650 /* 656 /*
651 * The same warnings as for __alloc_fd()/__fd_install() apply here... 657 * The same warnings as for __alloc_fd()/__fd_install() apply here...
652 */ 658 */
653 int __close_fd(struct files_struct *files, unsigned fd) 659 int __close_fd(struct files_struct *files, unsigned fd)
654 { 660 {
655 struct file *file; 661 struct file *file;
656 struct fdtable *fdt; 662 struct fdtable *fdt;
657 663
658 spin_lock(&files->file_lock); 664 spin_lock(&files->file_lock);
659 fdt = files_fdtable(files); 665 fdt = files_fdtable(files);
660 if (fd >= fdt->max_fds) 666 if (fd >= fdt->max_fds)
661 goto out_unlock; 667 goto out_unlock;
662 file = fdt->fd[fd]; 668 file = fdt->fd[fd];
663 if (!file) 669 if (!file)
664 goto out_unlock; 670 goto out_unlock;
665 rcu_assign_pointer(fdt->fd[fd], NULL); 671 rcu_assign_pointer(fdt->fd[fd], NULL);
666 __clear_close_on_exec(fd, fdt); 672 __clear_close_on_exec(fd, fdt);
667 __put_unused_fd(files, fd); 673 __put_unused_fd(files, fd);
668 spin_unlock(&files->file_lock); 674 spin_unlock(&files->file_lock);
669 return filp_close(file, files); 675 return filp_close(file, files);
670 676
671 out_unlock: 677 out_unlock:
672 spin_unlock(&files->file_lock); 678 spin_unlock(&files->file_lock);
673 return -EBADF; 679 return -EBADF;
674 } 680 }
675 681
676 void do_close_on_exec(struct files_struct *files) 682 void do_close_on_exec(struct files_struct *files)
677 { 683 {
678 unsigned i; 684 unsigned i;
679 struct fdtable *fdt; 685 struct fdtable *fdt;
680 686
681 /* exec unshares first */ 687 /* exec unshares first */
682 BUG_ON(atomic_read(&files->count) != 1); 688 BUG_ON(atomic_read(&files->count) != 1);
683 spin_lock(&files->file_lock); 689 spin_lock(&files->file_lock);
684 for (i = 0; ; i++) { 690 for (i = 0; ; i++) {
685 unsigned long set; 691 unsigned long set;
686 unsigned fd = i * BITS_PER_LONG; 692 unsigned fd = i * BITS_PER_LONG;
687 fdt = files_fdtable(files); 693 fdt = files_fdtable(files);
688 if (fd >= fdt->max_fds) 694 if (fd >= fdt->max_fds)
689 break; 695 break;
690 set = fdt->close_on_exec[i]; 696 set = fdt->close_on_exec[i];
691 if (!set) 697 if (!set)
692 continue; 698 continue;
693 fdt->close_on_exec[i] = 0; 699 fdt->close_on_exec[i] = 0;
694 for ( ; set ; fd++, set >>= 1) { 700 for ( ; set ; fd++, set >>= 1) {
695 struct file *file; 701 struct file *file;
696 if (!(set & 1)) 702 if (!(set & 1))
697 continue; 703 continue;
698 file = fdt->fd[fd]; 704 file = fdt->fd[fd];
699 if (!file) 705 if (!file)
700 continue; 706 continue;
701 rcu_assign_pointer(fdt->fd[fd], NULL); 707 rcu_assign_pointer(fdt->fd[fd], NULL);
702 __put_unused_fd(files, fd); 708 __put_unused_fd(files, fd);
703 spin_unlock(&files->file_lock); 709 spin_unlock(&files->file_lock);
704 filp_close(file, files); 710 filp_close(file, files);
705 cond_resched(); 711 cond_resched();
706 spin_lock(&files->file_lock); 712 spin_lock(&files->file_lock);
707 } 713 }
708 714
709 } 715 }
710 spin_unlock(&files->file_lock); 716 spin_unlock(&files->file_lock);
711 } 717 }
712 718
713 struct file *fget(unsigned int fd) 719 struct file *fget(unsigned int fd)
714 { 720 {
715 struct file *file; 721 struct file *file;
716 struct files_struct *files = current->files; 722 struct files_struct *files = current->files;
717 723
718 rcu_read_lock(); 724 rcu_read_lock();
719 file = fcheck_files(files, fd); 725 file = fcheck_files(files, fd);
720 if (file) { 726 if (file) {
721 /* File object ref couldn't be taken */ 727 /* File object ref couldn't be taken */
722 if (file->f_mode & FMODE_PATH || 728 if (file->f_mode & FMODE_PATH ||
723 !atomic_long_inc_not_zero(&file->f_count)) 729 !atomic_long_inc_not_zero(&file->f_count))
724 file = NULL; 730 file = NULL;
725 } 731 }
726 rcu_read_unlock(); 732 rcu_read_unlock();
727 733
728 return file; 734 return file;
729 } 735 }
730 736
731 EXPORT_SYMBOL(fget); 737 EXPORT_SYMBOL(fget);
732 738
733 struct file *fget_raw(unsigned int fd) 739 struct file *fget_raw(unsigned int fd)
734 { 740 {
735 struct file *file; 741 struct file *file;
736 struct files_struct *files = current->files; 742 struct files_struct *files = current->files;
737 743
738 rcu_read_lock(); 744 rcu_read_lock();
739 file = fcheck_files(files, fd); 745 file = fcheck_files(files, fd);
740 if (file) { 746 if (file) {
741 /* File object ref couldn't be taken */ 747 /* File object ref couldn't be taken */
742 if (!atomic_long_inc_not_zero(&file->f_count)) 748 if (!atomic_long_inc_not_zero(&file->f_count))
743 file = NULL; 749 file = NULL;
744 } 750 }
745 rcu_read_unlock(); 751 rcu_read_unlock();
746 752
747 return file; 753 return file;
748 } 754 }
749 755
750 EXPORT_SYMBOL(fget_raw); 756 EXPORT_SYMBOL(fget_raw);
751 757
752 /* 758 /*
753 * Lightweight file lookup - no refcnt increment if fd table isn't shared. 759 * Lightweight file lookup - no refcnt increment if fd table isn't shared.
754 * 760 *
755 * You can use this instead of fget if you satisfy all of the following 761 * You can use this instead of fget if you satisfy all of the following
756 * conditions: 762 * conditions:
757 * 1) You must call fput_light before exiting the syscall and returning control 763 * 1) You must call fput_light before exiting the syscall and returning control
758 * to userspace (i.e. you cannot remember the returned struct file * after 764 * to userspace (i.e. you cannot remember the returned struct file * after
759 * returning to userspace). 765 * returning to userspace).
760 * 2) You must not call filp_close on the returned struct file * in between 766 * 2) You must not call filp_close on the returned struct file * in between
761 * calls to fget_light and fput_light. 767 * calls to fget_light and fput_light.
762 * 3) You must not clone the current task in between the calls to fget_light 768 * 3) You must not clone the current task in between the calls to fget_light
763 * and fput_light. 769 * and fput_light.
764 * 770 *
765 * The fput_needed flag returned by fget_light should be passed to the 771 * The fput_needed flag returned by fget_light should be passed to the
766 * corresponding fput_light. 772 * corresponding fput_light.
767 */ 773 */
768 struct file *fget_light(unsigned int fd, int *fput_needed) 774 struct file *fget_light(unsigned int fd, int *fput_needed)
769 { 775 {
770 struct file *file; 776 struct file *file;
771 struct files_struct *files = current->files; 777 struct files_struct *files = current->files;
772 778
773 *fput_needed = 0; 779 *fput_needed = 0;
774 if (atomic_read(&files->count) == 1) { 780 if (atomic_read(&files->count) == 1) {
775 file = fcheck_files(files, fd); 781 file = fcheck_files(files, fd);
776 if (file && (file->f_mode & FMODE_PATH)) 782 if (file && (file->f_mode & FMODE_PATH))
777 file = NULL; 783 file = NULL;
778 } else { 784 } else {
779 rcu_read_lock(); 785 rcu_read_lock();
780 file = fcheck_files(files, fd); 786 file = fcheck_files(files, fd);
781 if (file) { 787 if (file) {
782 if (!(file->f_mode & FMODE_PATH) && 788 if (!(file->f_mode & FMODE_PATH) &&
783 atomic_long_inc_not_zero(&file->f_count)) 789 atomic_long_inc_not_zero(&file->f_count))
784 *fput_needed = 1; 790 *fput_needed = 1;
785 else 791 else
786 /* Didn't get the reference, someone's freed */ 792 /* Didn't get the reference, someone's freed */
787 file = NULL; 793 file = NULL;
788 } 794 }
789 rcu_read_unlock(); 795 rcu_read_unlock();
790 } 796 }
791 797
792 return file; 798 return file;
793 } 799 }
794 800
795 struct file *fget_raw_light(unsigned int fd, int *fput_needed) 801 struct file *fget_raw_light(unsigned int fd, int *fput_needed)
796 { 802 {
797 struct file *file; 803 struct file *file;
798 struct files_struct *files = current->files; 804 struct files_struct *files = current->files;
799 805
800 *fput_needed = 0; 806 *fput_needed = 0;
801 if (atomic_read(&files->count) == 1) { 807 if (atomic_read(&files->count) == 1) {
802 file = fcheck_files(files, fd); 808 file = fcheck_files(files, fd);
803 } else { 809 } else {
804 rcu_read_lock(); 810 rcu_read_lock();
805 file = fcheck_files(files, fd); 811 file = fcheck_files(files, fd);
806 if (file) { 812 if (file) {
807 if (atomic_long_inc_not_zero(&file->f_count)) 813 if (atomic_long_inc_not_zero(&file->f_count))
808 *fput_needed = 1; 814 *fput_needed = 1;
809 else 815 else
810 /* Didn't get the reference, someone's freed */ 816 /* Didn't get the reference, someone's freed */
811 file = NULL; 817 file = NULL;
812 } 818 }
813 rcu_read_unlock(); 819 rcu_read_unlock();
814 } 820 }
815 821
816 return file; 822 return file;
817 } 823 }
818 824
819 void set_close_on_exec(unsigned int fd, int flag) 825 void set_close_on_exec(unsigned int fd, int flag)
820 { 826 {
821 struct files_struct *files = current->files; 827 struct files_struct *files = current->files;
822 struct fdtable *fdt; 828 struct fdtable *fdt;
823 spin_lock(&files->file_lock); 829 spin_lock(&files->file_lock);
824 fdt = files_fdtable(files); 830 fdt = files_fdtable(files);
825 if (flag) 831 if (flag)
826 __set_close_on_exec(fd, fdt); 832 __set_close_on_exec(fd, fdt);
827 else 833 else
828 __clear_close_on_exec(fd, fdt); 834 __clear_close_on_exec(fd, fdt);
829 spin_unlock(&files->file_lock); 835 spin_unlock(&files->file_lock);
830 } 836 }
831 837
832 bool get_close_on_exec(unsigned int fd) 838 bool get_close_on_exec(unsigned int fd)
833 { 839 {
834 struct files_struct *files = current->files; 840 struct files_struct *files = current->files;
835 struct fdtable *fdt; 841 struct fdtable *fdt;
836 bool res; 842 bool res;
837 rcu_read_lock(); 843 rcu_read_lock();
838 fdt = files_fdtable(files); 844 fdt = files_fdtable(files);
839 res = close_on_exec(fd, fdt); 845 res = close_on_exec(fd, fdt);
840 rcu_read_unlock(); 846 rcu_read_unlock();
841 return res; 847 return res;
842 } 848 }
843 849
844 static int do_dup2(struct files_struct *files, 850 static int do_dup2(struct files_struct *files,
845 struct file *file, unsigned fd, unsigned flags) 851 struct file *file, unsigned fd, unsigned flags)
846 { 852 {
847 struct file *tofree; 853 struct file *tofree;
848 struct fdtable *fdt; 854 struct fdtable *fdt;
849 855
850 /* 856 /*
851 * We need to detect attempts to do dup2() over allocated but still 857 * We need to detect attempts to do dup2() over allocated but still
852 * not finished descriptor. NB: OpenBSD avoids that at the price of 858 * not finished descriptor. NB: OpenBSD avoids that at the price of
853 * extra work in their equivalent of fget() - they insert struct 859 * extra work in their equivalent of fget() - they insert struct
854 * file immediately after grabbing descriptor, mark it larval if 860 * file immediately after grabbing descriptor, mark it larval if
855 * more work (e.g. actual opening) is needed and make sure that 861 * more work (e.g. actual opening) is needed and make sure that
856 * fget() treats larval files as absent. Potentially interesting, 862 * fget() treats larval files as absent. Potentially interesting,
857 * but while extra work in fget() is trivial, locking implications 863 * but while extra work in fget() is trivial, locking implications
858 * and amount of surgery on open()-related paths in VFS are not. 864 * and amount of surgery on open()-related paths in VFS are not.
859 * FreeBSD fails with -EBADF in the same situation, NetBSD "solution" 865 * FreeBSD fails with -EBADF in the same situation, NetBSD "solution"
860 * deadlocks in rather amusing ways, AFAICS. All of that is out of 866 * deadlocks in rather amusing ways, AFAICS. All of that is out of
861 * scope of POSIX or SUS, since neither considers shared descriptor 867 * scope of POSIX or SUS, since neither considers shared descriptor
862 * tables and this condition does not arise without those. 868 * tables and this condition does not arise without those.
863 */ 869 */
864 fdt = files_fdtable(files); 870 fdt = files_fdtable(files);
865 tofree = fdt->fd[fd]; 871 tofree = fdt->fd[fd];
866 if (!tofree && fd_is_open(fd, fdt)) 872 if (!tofree && fd_is_open(fd, fdt))
867 goto Ebusy; 873 goto Ebusy;
868 get_file(file); 874 get_file(file);
869 rcu_assign_pointer(fdt->fd[fd], file); 875 rcu_assign_pointer(fdt->fd[fd], file);
870 __set_open_fd(fd, fdt); 876 __set_open_fd(fd, fdt);
871 if (flags & O_CLOEXEC) 877 if (flags & O_CLOEXEC)
872 __set_close_on_exec(fd, fdt); 878 __set_close_on_exec(fd, fdt);
873 else 879 else
874 __clear_close_on_exec(fd, fdt); 880 __clear_close_on_exec(fd, fdt);
875 spin_unlock(&files->file_lock); 881 spin_unlock(&files->file_lock);
876 882
877 if (tofree) 883 if (tofree)
878 filp_close(tofree, files); 884 filp_close(tofree, files);
879 885
880 return fd; 886 return fd;
881 887
882 Ebusy: 888 Ebusy:
883 spin_unlock(&files->file_lock); 889 spin_unlock(&files->file_lock);
884 return -EBUSY; 890 return -EBUSY;
885 } 891 }
886 892
887 int replace_fd(unsigned fd, struct file *file, unsigned flags) 893 int replace_fd(unsigned fd, struct file *file, unsigned flags)
888 { 894 {
889 int err; 895 int err;
890 struct files_struct *files = current->files; 896 struct files_struct *files = current->files;
891 897
892 if (!file) 898 if (!file)
893 return __close_fd(files, fd); 899 return __close_fd(files, fd);
894 900
895 if (fd >= rlimit(RLIMIT_NOFILE)) 901 if (fd >= rlimit(RLIMIT_NOFILE))
896 return -EMFILE; 902 return -EMFILE;
897 903
898 spin_lock(&files->file_lock); 904 spin_lock(&files->file_lock);
899 err = expand_files(files, fd); 905 err = expand_files(files, fd);
900 if (unlikely(err < 0)) 906 if (unlikely(err < 0))
901 goto out_unlock; 907 goto out_unlock;
902 return do_dup2(files, file, fd, flags); 908 return do_dup2(files, file, fd, flags);
903 909
904 out_unlock: 910 out_unlock:
905 spin_unlock(&files->file_lock); 911 spin_unlock(&files->file_lock);
906 return err; 912 return err;
907 } 913 }
908 914
909 SYSCALL_DEFINE3(dup3, unsigned int, oldfd, unsigned int, newfd, int, flags) 915 SYSCALL_DEFINE3(dup3, unsigned int, oldfd, unsigned int, newfd, int, flags)
910 { 916 {
911 int err = -EBADF; 917 int err = -EBADF;
912 struct file *file; 918 struct file *file;
913 struct files_struct *files = current->files; 919 struct files_struct *files = current->files;
914 920
915 if ((flags & ~O_CLOEXEC) != 0) 921 if ((flags & ~O_CLOEXEC) != 0)
916 return -EINVAL; 922 return -EINVAL;
917 923
918 if (newfd >= rlimit(RLIMIT_NOFILE)) 924 if (newfd >= rlimit(RLIMIT_NOFILE))
919 return -EMFILE; 925 return -EMFILE;
920 926
921 spin_lock(&files->file_lock); 927 spin_lock(&files->file_lock);
922 err = expand_files(files, newfd); 928 err = expand_files(files, newfd);
923 file = fcheck(oldfd); 929 file = fcheck(oldfd);
924 if (unlikely(!file)) 930 if (unlikely(!file))
925 goto Ebadf; 931 goto Ebadf;
926 if (unlikely(err < 0)) { 932 if (unlikely(err < 0)) {
927 if (err == -EMFILE) 933 if (err == -EMFILE)
928 goto Ebadf; 934 goto Ebadf;
929 goto out_unlock; 935 goto out_unlock;
930 } 936 }
931 return do_dup2(files, file, newfd, flags); 937 return do_dup2(files, file, newfd, flags);
932 938
933 Ebadf: 939 Ebadf:
934 err = -EBADF; 940 err = -EBADF;
935 out_unlock: 941 out_unlock:
936 spin_unlock(&files->file_lock); 942 spin_unlock(&files->file_lock);
937 return err; 943 return err;
938 } 944 }
939 945
940 SYSCALL_DEFINE2(dup2, unsigned int, oldfd, unsigned int, newfd) 946 SYSCALL_DEFINE2(dup2, unsigned int, oldfd, unsigned int, newfd)
941 { 947 {
942 if (unlikely(newfd == oldfd)) { /* corner case */ 948 if (unlikely(newfd == oldfd)) { /* corner case */
943 struct files_struct *files = current->files; 949 struct files_struct *files = current->files;
944 int retval = oldfd; 950 int retval = oldfd;
945 951
946 rcu_read_lock(); 952 rcu_read_lock();
947 if (!fcheck_files(files, oldfd)) 953 if (!fcheck_files(files, oldfd))
948 retval = -EBADF; 954 retval = -EBADF;
949 rcu_read_unlock(); 955 rcu_read_unlock();
950 return retval; 956 return retval;
951 } 957 }
952 return sys_dup3(oldfd, newfd, 0); 958 return sys_dup3(oldfd, newfd, 0);
953 } 959 }
954 960
955 SYSCALL_DEFINE1(dup, unsigned int, fildes) 961 SYSCALL_DEFINE1(dup, unsigned int, fildes)
956 { 962 {
957 int ret = -EBADF; 963 int ret = -EBADF;
958 struct file *file = fget_raw(fildes); 964 struct file *file = fget_raw(fildes);
959 965
960 if (file) { 966 if (file) {
961 ret = get_unused_fd(); 967 ret = get_unused_fd();
962 if (ret >= 0) 968 if (ret >= 0)
963 fd_install(ret, file); 969 fd_install(ret, file);
964 else 970 else
965 fput(file); 971 fput(file);
966 } 972 }
967 return ret; 973 return ret;
968 } 974 }
969 975
970 int f_dupfd(unsigned int from, struct file *file, unsigned flags) 976 int f_dupfd(unsigned int from, struct file *file, unsigned flags)
971 { 977 {
972 int err; 978 int err;
973 if (from >= rlimit(RLIMIT_NOFILE)) 979 if (from >= rlimit(RLIMIT_NOFILE))
974 return -EINVAL; 980 return -EINVAL;
975 err = alloc_fd(from, flags); 981 err = alloc_fd(from, flags);
976 if (err >= 0) { 982 if (err >= 0) {
977 get_file(file); 983 get_file(file);
978 fd_install(err, file); 984 fd_install(err, file);
979 } 985 }
980 return err; 986 return err;
981 } 987 }
982 988
983 int iterate_fd(struct files_struct *files, unsigned n, 989 int iterate_fd(struct files_struct *files, unsigned n,
984 int (*f)(const void *, struct file *, unsigned), 990 int (*f)(const void *, struct file *, unsigned),
985 const void *p) 991 const void *p)
986 { 992 {
987 struct fdtable *fdt; 993 struct fdtable *fdt;
988 struct file *file; 994 struct file *file;
989 int res = 0; 995 int res = 0;
990 if (!files) 996 if (!files)
991 return 0; 997 return 0;
992 spin_lock(&files->file_lock); 998 spin_lock(&files->file_lock);
993 fdt = files_fdtable(files); 999 fdt = files_fdtable(files);
994 while (!res && n < fdt->max_fds) { 1000 while (!res && n < fdt->max_fds) {
995 file = rcu_dereference_check_fdtable(files, fdt->fd[n++]); 1001 file = rcu_dereference_check_fdtable(files, fdt->fd[n++]);
996 if (file) 1002 if (file)
997 res = f(p, file, n); 1003 res = f(p, file, n);
998 } 1004 }
999 spin_unlock(&files->file_lock); 1005 spin_unlock(&files->file_lock);
1000 return res; 1006 return res;
1001 } 1007 }
1002 EXPORT_SYMBOL(iterate_fd); 1008 EXPORT_SYMBOL(iterate_fd);
1003 1009
include/linux/fdtable.h
1 /* 1 /*
2 * descriptor table internals; you almost certainly want file.h instead. 2 * descriptor table internals; you almost certainly want file.h instead.
3 */ 3 */
4 4
5 #ifndef __LINUX_FDTABLE_H 5 #ifndef __LINUX_FDTABLE_H
6 #define __LINUX_FDTABLE_H 6 #define __LINUX_FDTABLE_H
7 7
8 #include <linux/posix_types.h> 8 #include <linux/posix_types.h>
9 #include <linux/compiler.h> 9 #include <linux/compiler.h>
10 #include <linux/spinlock.h> 10 #include <linux/spinlock.h>
11 #include <linux/rcupdate.h> 11 #include <linux/rcupdate.h>
12 #include <linux/types.h> 12 #include <linux/types.h>
13 #include <linux/init.h> 13 #include <linux/init.h>
14 #include <linux/fs.h> 14 #include <linux/fs.h>
15 15
16 #include <linux/atomic.h> 16 #include <linux/atomic.h>
17 17
18 /* 18 /*
19 * The default fd array needs to be at least BITS_PER_LONG, 19 * The default fd array needs to be at least BITS_PER_LONG,
20 * as this is the granularity returned by copy_fdset(). 20 * as this is the granularity returned by copy_fdset().
21 */ 21 */
22 #define NR_OPEN_DEFAULT BITS_PER_LONG 22 #define NR_OPEN_DEFAULT BITS_PER_LONG
23 23
24 struct fdtable { 24 struct fdtable {
25 unsigned int max_fds; 25 unsigned int max_fds;
26 struct file __rcu **fd; /* current fd array */ 26 struct file __rcu **fd; /* current fd array */
27 unsigned long *close_on_exec; 27 unsigned long *close_on_exec;
28 unsigned long *open_fds; 28 unsigned long *open_fds;
29 struct rcu_head rcu; 29 struct rcu_head rcu;
30 struct fdtable *next; 30 struct fdtable *next;
31 }; 31 };
32 32
33 static inline bool close_on_exec(int fd, const struct fdtable *fdt) 33 static inline bool close_on_exec(int fd, const struct fdtable *fdt)
34 { 34 {
35 return test_bit(fd, fdt->close_on_exec); 35 return test_bit(fd, fdt->close_on_exec);
36 } 36 }
37 37
38 static inline bool fd_is_open(int fd, const struct fdtable *fdt) 38 static inline bool fd_is_open(int fd, const struct fdtable *fdt)
39 { 39 {
40 return test_bit(fd, fdt->open_fds); 40 return test_bit(fd, fdt->open_fds);
41 } 41 }
42 42
43 /* 43 /*
44 * Open file table structure 44 * Open file table structure
45 */ 45 */
46 struct files_struct { 46 struct files_struct {
47 /* 47 /*
48 * read mostly part 48 * read mostly part
49 */ 49 */
50 atomic_t count; 50 atomic_t count;
51 struct fdtable __rcu *fdt; 51 struct fdtable __rcu *fdt;
52 struct fdtable fdtab; 52 struct fdtable fdtab;
53 /* 53 /*
54 * written part on a separate cache line in SMP 54 * written part on a separate cache line in SMP
55 */ 55 */
56 spinlock_t file_lock ____cacheline_aligned_in_smp; 56 spinlock_t file_lock ____cacheline_aligned_in_smp;
57 int next_fd; 57 int next_fd;
58 unsigned long close_on_exec_init[1]; 58 unsigned long close_on_exec_init[1];
59 unsigned long open_fds_init[1]; 59 unsigned long open_fds_init[1];
60 struct file __rcu * fd_array[NR_OPEN_DEFAULT]; 60 struct file __rcu * fd_array[NR_OPEN_DEFAULT];
61 }; 61 };
62 62
63 #define rcu_dereference_check_fdtable(files, fdtfd) \ 63 #define rcu_dereference_check_fdtable(files, fdtfd) \
64 (rcu_dereference_check((fdtfd), \ 64 (rcu_dereference_check((fdtfd), \
65 lockdep_is_held(&(files)->file_lock) || \ 65 lockdep_is_held(&(files)->file_lock) || \
66 atomic_read(&(files)->count) == 1 || \ 66 atomic_read(&(files)->count) == 1 || \
67 rcu_my_thread_group_empty())) 67 rcu_my_thread_group_empty()))
68 68
69 #define files_fdtable(files) \ 69 #define files_fdtable(files) \
70 (rcu_dereference_check_fdtable((files), (files)->fdt)) 70 (rcu_dereference_check_fdtable((files), (files)->fdt))
71 71
72 struct file_operations; 72 struct file_operations;
73 struct vfsmount; 73 struct vfsmount;
74 struct dentry; 74 struct dentry;
75 75
76 extern void __init files_defer_init(void); 76 extern void __init files_defer_init(void);
77 77
78 static inline struct file * fcheck_files(struct files_struct *files, unsigned int fd) 78 static inline struct file * fcheck_files(struct files_struct *files, unsigned int fd)
79 { 79 {
80 struct file * file = NULL; 80 struct file * file = NULL;
81 struct fdtable *fdt = files_fdtable(files); 81 struct fdtable *fdt = files_fdtable(files);
82 82
83 if (fd < fdt->max_fds) 83 if (fd < fdt->max_fds)
84 file = rcu_dereference_check_fdtable(files, fdt->fd[fd]); 84 file = rcu_dereference_check_fdtable(files, fdt->fd[fd]);
85 return file; 85 return file;
86 } 86 }
87 87
88 /* 88 /*
89 * Check whether the specified fd has an open file. 89 * Check whether the specified fd has an open file.
90 */ 90 */
91 #define fcheck(fd) fcheck_files(current->files, fd) 91 #define fcheck(fd) fcheck_files(current->files, fd)
92 92
93 struct task_struct; 93 struct task_struct;
94 94
95 struct files_struct *get_files_struct(struct task_struct *); 95 struct files_struct *get_files_struct(struct task_struct *);
96 void put_files_struct(struct files_struct *fs); 96 void put_files_struct(struct files_struct *fs);
97 void reset_files_struct(struct files_struct *); 97 void reset_files_struct(struct files_struct *);
98 void daemonize_descriptors(void);
98 int unshare_files(struct files_struct **); 99 int unshare_files(struct files_struct **);
99 struct files_struct *dup_fd(struct files_struct *, int *); 100 struct files_struct *dup_fd(struct files_struct *, int *);
100 void do_close_on_exec(struct files_struct *); 101 void do_close_on_exec(struct files_struct *);
101 int iterate_fd(struct files_struct *, unsigned, 102 int iterate_fd(struct files_struct *, unsigned,
102 int (*)(const void *, struct file *, unsigned), 103 int (*)(const void *, struct file *, unsigned),
103 const void *); 104 const void *);
104 105
105 extern int __alloc_fd(struct files_struct *files, 106 extern int __alloc_fd(struct files_struct *files,
106 unsigned start, unsigned end, unsigned flags); 107 unsigned start, unsigned end, unsigned flags);
107 extern void __fd_install(struct files_struct *files, 108 extern void __fd_install(struct files_struct *files,
108 unsigned int fd, struct file *file); 109 unsigned int fd, struct file *file);
109 extern int __close_fd(struct files_struct *files, 110 extern int __close_fd(struct files_struct *files,
110 unsigned int fd); 111 unsigned int fd);
111 112
112 extern struct kmem_cache *files_cachep; 113 extern struct kmem_cache *files_cachep;
113 114
114 #endif /* __LINUX_FDTABLE_H */ 115 #endif /* __LINUX_FDTABLE_H */
115 116
1 /* 1 /*
2 * linux/kernel/exit.c 2 * linux/kernel/exit.c
3 * 3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds 4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */ 5 */
6 6
7 #include <linux/mm.h> 7 #include <linux/mm.h>
8 #include <linux/slab.h> 8 #include <linux/slab.h>
9 #include <linux/interrupt.h> 9 #include <linux/interrupt.h>
10 #include <linux/module.h> 10 #include <linux/module.h>
11 #include <linux/capability.h> 11 #include <linux/capability.h>
12 #include <linux/completion.h> 12 #include <linux/completion.h>
13 #include <linux/personality.h> 13 #include <linux/personality.h>
14 #include <linux/tty.h> 14 #include <linux/tty.h>
15 #include <linux/iocontext.h> 15 #include <linux/iocontext.h>
16 #include <linux/key.h> 16 #include <linux/key.h>
17 #include <linux/security.h> 17 #include <linux/security.h>
18 #include <linux/cpu.h> 18 #include <linux/cpu.h>
19 #include <linux/acct.h> 19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h> 20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h> 21 #include <linux/file.h>
22 #include <linux/fdtable.h> 22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h> 23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h> 24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h> 25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h> 26 #include <linux/ptrace.h>
27 #include <linux/profile.h> 27 #include <linux/profile.h>
28 #include <linux/mount.h> 28 #include <linux/mount.h>
29 #include <linux/proc_fs.h> 29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h> 30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h> 31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h> 32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h> 33 #include <linux/delayacct.h>
34 #include <linux/freezer.h> 34 #include <linux/freezer.h>
35 #include <linux/cgroup.h> 35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h> 36 #include <linux/syscalls.h>
37 #include <linux/signal.h> 37 #include <linux/signal.h>
38 #include <linux/posix-timers.h> 38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h> 39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h> 40 #include <linux/mutex.h>
41 #include <linux/futex.h> 41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h> 42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */ 43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h> 44 #include <linux/resource.h>
45 #include <linux/blkdev.h> 45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h> 46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h> 47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h> 48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h> 49 #include <linux/init_task.h>
50 #include <linux/perf_event.h> 50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h> 51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h> 52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h> 53 #include <linux/oom.h>
54 #include <linux/writeback.h> 54 #include <linux/writeback.h>
55 #include <linux/shm.h> 55 #include <linux/shm.h>
56 56
57 #include <asm/uaccess.h> 57 #include <asm/uaccess.h>
58 #include <asm/unistd.h> 58 #include <asm/unistd.h>
59 #include <asm/pgtable.h> 59 #include <asm/pgtable.h>
60 #include <asm/mmu_context.h> 60 #include <asm/mmu_context.h>
61 61
62 static void exit_mm(struct task_struct * tsk); 62 static void exit_mm(struct task_struct * tsk);
63 63
64 static void __unhash_process(struct task_struct *p, bool group_dead) 64 static void __unhash_process(struct task_struct *p, bool group_dead)
65 { 65 {
66 nr_threads--; 66 nr_threads--;
67 detach_pid(p, PIDTYPE_PID); 67 detach_pid(p, PIDTYPE_PID);
68 if (group_dead) { 68 if (group_dead) {
69 detach_pid(p, PIDTYPE_PGID); 69 detach_pid(p, PIDTYPE_PGID);
70 detach_pid(p, PIDTYPE_SID); 70 detach_pid(p, PIDTYPE_SID);
71 71
72 list_del_rcu(&p->tasks); 72 list_del_rcu(&p->tasks);
73 list_del_init(&p->sibling); 73 list_del_init(&p->sibling);
74 __this_cpu_dec(process_counts); 74 __this_cpu_dec(process_counts);
75 /* 75 /*
76 * If we are the last child process in a pid namespace to be 76 * If we are the last child process in a pid namespace to be
77 * reaped, notify the reaper sleeping zap_pid_ns_processes(). 77 * reaped, notify the reaper sleeping zap_pid_ns_processes().
78 */ 78 */
79 if (IS_ENABLED(CONFIG_PID_NS)) { 79 if (IS_ENABLED(CONFIG_PID_NS)) {
80 struct task_struct *parent = p->real_parent; 80 struct task_struct *parent = p->real_parent;
81 81
82 if ((task_active_pid_ns(parent)->child_reaper == parent) && 82 if ((task_active_pid_ns(parent)->child_reaper == parent) &&
83 list_empty(&parent->children) && 83 list_empty(&parent->children) &&
84 (parent->flags & PF_EXITING)) 84 (parent->flags & PF_EXITING))
85 wake_up_process(parent); 85 wake_up_process(parent);
86 } 86 }
87 } 87 }
88 list_del_rcu(&p->thread_group); 88 list_del_rcu(&p->thread_group);
89 } 89 }
90 90
91 /* 91 /*
92 * This function expects the tasklist_lock write-locked. 92 * This function expects the tasklist_lock write-locked.
93 */ 93 */
94 static void __exit_signal(struct task_struct *tsk) 94 static void __exit_signal(struct task_struct *tsk)
95 { 95 {
96 struct signal_struct *sig = tsk->signal; 96 struct signal_struct *sig = tsk->signal;
97 bool group_dead = thread_group_leader(tsk); 97 bool group_dead = thread_group_leader(tsk);
98 struct sighand_struct *sighand; 98 struct sighand_struct *sighand;
99 struct tty_struct *uninitialized_var(tty); 99 struct tty_struct *uninitialized_var(tty);
100 100
101 sighand = rcu_dereference_check(tsk->sighand, 101 sighand = rcu_dereference_check(tsk->sighand,
102 lockdep_tasklist_lock_is_held()); 102 lockdep_tasklist_lock_is_held());
103 spin_lock(&sighand->siglock); 103 spin_lock(&sighand->siglock);
104 104
105 posix_cpu_timers_exit(tsk); 105 posix_cpu_timers_exit(tsk);
106 if (group_dead) { 106 if (group_dead) {
107 posix_cpu_timers_exit_group(tsk); 107 posix_cpu_timers_exit_group(tsk);
108 tty = sig->tty; 108 tty = sig->tty;
109 sig->tty = NULL; 109 sig->tty = NULL;
110 } else { 110 } else {
111 /* 111 /*
112 * This can only happen if the caller is de_thread(). 112 * This can only happen if the caller is de_thread().
113 * FIXME: this is the temporary hack, we should teach 113 * FIXME: this is the temporary hack, we should teach
114 * posix-cpu-timers to handle this case correctly. 114 * posix-cpu-timers to handle this case correctly.
115 */ 115 */
116 if (unlikely(has_group_leader_pid(tsk))) 116 if (unlikely(has_group_leader_pid(tsk)))
117 posix_cpu_timers_exit_group(tsk); 117 posix_cpu_timers_exit_group(tsk);
118 118
119 /* 119 /*
120 * If there is any task waiting for the group exit 120 * If there is any task waiting for the group exit
121 * then notify it: 121 * then notify it:
122 */ 122 */
123 if (sig->notify_count > 0 && !--sig->notify_count) 123 if (sig->notify_count > 0 && !--sig->notify_count)
124 wake_up_process(sig->group_exit_task); 124 wake_up_process(sig->group_exit_task);
125 125
126 if (tsk == sig->curr_target) 126 if (tsk == sig->curr_target)
127 sig->curr_target = next_thread(tsk); 127 sig->curr_target = next_thread(tsk);
128 /* 128 /*
129 * Accumulate here the counters for all threads but the 129 * Accumulate here the counters for all threads but the
130 * group leader as they die, so they can be added into 130 * group leader as they die, so they can be added into
131 * the process-wide totals when those are taken. 131 * the process-wide totals when those are taken.
132 * The group leader stays around as a zombie as long 132 * The group leader stays around as a zombie as long
133 * as there are other threads. When it gets reaped, 133 * as there are other threads. When it gets reaped,
134 * the exit.c code will add its counts into these totals. 134 * the exit.c code will add its counts into these totals.
135 * We won't ever get here for the group leader, since it 135 * We won't ever get here for the group leader, since it
136 * will have been the last reference on the signal_struct. 136 * will have been the last reference on the signal_struct.
137 */ 137 */
138 sig->utime += tsk->utime; 138 sig->utime += tsk->utime;
139 sig->stime += tsk->stime; 139 sig->stime += tsk->stime;
140 sig->gtime += tsk->gtime; 140 sig->gtime += tsk->gtime;
141 sig->min_flt += tsk->min_flt; 141 sig->min_flt += tsk->min_flt;
142 sig->maj_flt += tsk->maj_flt; 142 sig->maj_flt += tsk->maj_flt;
143 sig->nvcsw += tsk->nvcsw; 143 sig->nvcsw += tsk->nvcsw;
144 sig->nivcsw += tsk->nivcsw; 144 sig->nivcsw += tsk->nivcsw;
145 sig->inblock += task_io_get_inblock(tsk); 145 sig->inblock += task_io_get_inblock(tsk);
146 sig->oublock += task_io_get_oublock(tsk); 146 sig->oublock += task_io_get_oublock(tsk);
147 task_io_accounting_add(&sig->ioac, &tsk->ioac); 147 task_io_accounting_add(&sig->ioac, &tsk->ioac);
148 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 148 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
149 } 149 }
150 150
151 sig->nr_threads--; 151 sig->nr_threads--;
152 __unhash_process(tsk, group_dead); 152 __unhash_process(tsk, group_dead);
153 153
154 /* 154 /*
155 * Do this under ->siglock, we can race with another thread 155 * Do this under ->siglock, we can race with another thread
156 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 156 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
157 */ 157 */
158 flush_sigqueue(&tsk->pending); 158 flush_sigqueue(&tsk->pending);
159 tsk->sighand = NULL; 159 tsk->sighand = NULL;
160 spin_unlock(&sighand->siglock); 160 spin_unlock(&sighand->siglock);
161 161
162 __cleanup_sighand(sighand); 162 __cleanup_sighand(sighand);
163 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 163 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
164 if (group_dead) { 164 if (group_dead) {
165 flush_sigqueue(&sig->shared_pending); 165 flush_sigqueue(&sig->shared_pending);
166 tty_kref_put(tty); 166 tty_kref_put(tty);
167 } 167 }
168 } 168 }
169 169
170 static void delayed_put_task_struct(struct rcu_head *rhp) 170 static void delayed_put_task_struct(struct rcu_head *rhp)
171 { 171 {
172 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 172 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
173 173
174 perf_event_delayed_put(tsk); 174 perf_event_delayed_put(tsk);
175 trace_sched_process_free(tsk); 175 trace_sched_process_free(tsk);
176 put_task_struct(tsk); 176 put_task_struct(tsk);
177 } 177 }
178 178
179 179
180 void release_task(struct task_struct * p) 180 void release_task(struct task_struct * p)
181 { 181 {
182 struct task_struct *leader; 182 struct task_struct *leader;
183 int zap_leader; 183 int zap_leader;
184 repeat: 184 repeat:
185 /* don't need to get the RCU readlock here - the process is dead and 185 /* don't need to get the RCU readlock here - the process is dead and
186 * can't be modifying its own credentials. But shut RCU-lockdep up */ 186 * can't be modifying its own credentials. But shut RCU-lockdep up */
187 rcu_read_lock(); 187 rcu_read_lock();
188 atomic_dec(&__task_cred(p)->user->processes); 188 atomic_dec(&__task_cred(p)->user->processes);
189 rcu_read_unlock(); 189 rcu_read_unlock();
190 190
191 proc_flush_task(p); 191 proc_flush_task(p);
192 192
193 write_lock_irq(&tasklist_lock); 193 write_lock_irq(&tasklist_lock);
194 ptrace_release_task(p); 194 ptrace_release_task(p);
195 __exit_signal(p); 195 __exit_signal(p);
196 196
197 /* 197 /*
198 * If we are the last non-leader member of the thread 198 * If we are the last non-leader member of the thread
199 * group, and the leader is zombie, then notify the 199 * group, and the leader is zombie, then notify the
200 * group leader's parent process. (if it wants notification.) 200 * group leader's parent process. (if it wants notification.)
201 */ 201 */
202 zap_leader = 0; 202 zap_leader = 0;
203 leader = p->group_leader; 203 leader = p->group_leader;
204 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 204 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
205 /* 205 /*
206 * If we were the last child thread and the leader has 206 * If we were the last child thread and the leader has
207 * exited already, and the leader's parent ignores SIGCHLD, 207 * exited already, and the leader's parent ignores SIGCHLD,
208 * then we are the one who should release the leader. 208 * then we are the one who should release the leader.
209 */ 209 */
210 zap_leader = do_notify_parent(leader, leader->exit_signal); 210 zap_leader = do_notify_parent(leader, leader->exit_signal);
211 if (zap_leader) 211 if (zap_leader)
212 leader->exit_state = EXIT_DEAD; 212 leader->exit_state = EXIT_DEAD;
213 } 213 }
214 214
215 write_unlock_irq(&tasklist_lock); 215 write_unlock_irq(&tasklist_lock);
216 release_thread(p); 216 release_thread(p);
217 call_rcu(&p->rcu, delayed_put_task_struct); 217 call_rcu(&p->rcu, delayed_put_task_struct);
218 218
219 p = leader; 219 p = leader;
220 if (unlikely(zap_leader)) 220 if (unlikely(zap_leader))
221 goto repeat; 221 goto repeat;
222 } 222 }
223 223
224 /* 224 /*
225 * This checks not only the pgrp, but falls back on the pid if no 225 * This checks not only the pgrp, but falls back on the pid if no
226 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 226 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
227 * without this... 227 * without this...
228 * 228 *
229 * The caller must hold rcu lock or the tasklist lock. 229 * The caller must hold rcu lock or the tasklist lock.
230 */ 230 */
231 struct pid *session_of_pgrp(struct pid *pgrp) 231 struct pid *session_of_pgrp(struct pid *pgrp)
232 { 232 {
233 struct task_struct *p; 233 struct task_struct *p;
234 struct pid *sid = NULL; 234 struct pid *sid = NULL;
235 235
236 p = pid_task(pgrp, PIDTYPE_PGID); 236 p = pid_task(pgrp, PIDTYPE_PGID);
237 if (p == NULL) 237 if (p == NULL)
238 p = pid_task(pgrp, PIDTYPE_PID); 238 p = pid_task(pgrp, PIDTYPE_PID);
239 if (p != NULL) 239 if (p != NULL)
240 sid = task_session(p); 240 sid = task_session(p);
241 241
242 return sid; 242 return sid;
243 } 243 }
244 244
245 /* 245 /*
246 * Determine if a process group is "orphaned", according to the POSIX 246 * Determine if a process group is "orphaned", according to the POSIX
247 * definition in 2.2.2.52. Orphaned process groups are not to be affected 247 * definition in 2.2.2.52. Orphaned process groups are not to be affected
248 * by terminal-generated stop signals. Newly orphaned process groups are 248 * by terminal-generated stop signals. Newly orphaned process groups are
249 * to receive a SIGHUP and a SIGCONT. 249 * to receive a SIGHUP and a SIGCONT.
250 * 250 *
251 * "I ask you, have you ever known what it is to be an orphan?" 251 * "I ask you, have you ever known what it is to be an orphan?"
252 */ 252 */
253 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 253 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
254 { 254 {
255 struct task_struct *p; 255 struct task_struct *p;
256 256
257 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 257 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
258 if ((p == ignored_task) || 258 if ((p == ignored_task) ||
259 (p->exit_state && thread_group_empty(p)) || 259 (p->exit_state && thread_group_empty(p)) ||
260 is_global_init(p->real_parent)) 260 is_global_init(p->real_parent))
261 continue; 261 continue;
262 262
263 if (task_pgrp(p->real_parent) != pgrp && 263 if (task_pgrp(p->real_parent) != pgrp &&
264 task_session(p->real_parent) == task_session(p)) 264 task_session(p->real_parent) == task_session(p))
265 return 0; 265 return 0;
266 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 266 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
267 267
268 return 1; 268 return 1;
269 } 269 }
270 270
271 int is_current_pgrp_orphaned(void) 271 int is_current_pgrp_orphaned(void)
272 { 272 {
273 int retval; 273 int retval;
274 274
275 read_lock(&tasklist_lock); 275 read_lock(&tasklist_lock);
276 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 276 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
277 read_unlock(&tasklist_lock); 277 read_unlock(&tasklist_lock);
278 278
279 return retval; 279 return retval;
280 } 280 }
281 281
282 static bool has_stopped_jobs(struct pid *pgrp) 282 static bool has_stopped_jobs(struct pid *pgrp)
283 { 283 {
284 struct task_struct *p; 284 struct task_struct *p;
285 285
286 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 286 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
287 if (p->signal->flags & SIGNAL_STOP_STOPPED) 287 if (p->signal->flags & SIGNAL_STOP_STOPPED)
288 return true; 288 return true;
289 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 289 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
290 290
291 return false; 291 return false;
292 } 292 }
293 293
294 /* 294 /*
295 * Check to see if any process groups have become orphaned as 295 * Check to see if any process groups have become orphaned as
296 * a result of our exiting, and if they have any stopped jobs, 296 * a result of our exiting, and if they have any stopped jobs,
297 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 297 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
298 */ 298 */
299 static void 299 static void
300 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 300 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
301 { 301 {
302 struct pid *pgrp = task_pgrp(tsk); 302 struct pid *pgrp = task_pgrp(tsk);
303 struct task_struct *ignored_task = tsk; 303 struct task_struct *ignored_task = tsk;
304 304
305 if (!parent) 305 if (!parent)
306 /* exit: our father is in a different pgrp than 306 /* exit: our father is in a different pgrp than
307 * we are and we were the only connection outside. 307 * we are and we were the only connection outside.
308 */ 308 */
309 parent = tsk->real_parent; 309 parent = tsk->real_parent;
310 else 310 else
311 /* reparent: our child is in a different pgrp than 311 /* reparent: our child is in a different pgrp than
312 * we are, and it was the only connection outside. 312 * we are, and it was the only connection outside.
313 */ 313 */
314 ignored_task = NULL; 314 ignored_task = NULL;
315 315
316 if (task_pgrp(parent) != pgrp && 316 if (task_pgrp(parent) != pgrp &&
317 task_session(parent) == task_session(tsk) && 317 task_session(parent) == task_session(tsk) &&
318 will_become_orphaned_pgrp(pgrp, ignored_task) && 318 will_become_orphaned_pgrp(pgrp, ignored_task) &&
319 has_stopped_jobs(pgrp)) { 319 has_stopped_jobs(pgrp)) {
320 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 320 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
321 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 321 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
322 } 322 }
323 } 323 }
324 324
325 /** 325 /**
326 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd 326 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
327 * 327 *
328 * If a kernel thread is launched as a result of a system call, or if 328 * If a kernel thread is launched as a result of a system call, or if
329 * it ever exits, it should generally reparent itself to kthreadd so it 329 * it ever exits, it should generally reparent itself to kthreadd so it
330 * isn't in the way of other processes and is correctly cleaned up on exit. 330 * isn't in the way of other processes and is correctly cleaned up on exit.
331 * 331 *
332 * The various task state such as scheduling policy and priority may have 332 * The various task state such as scheduling policy and priority may have
333 * been inherited from a user process, so we reset them to sane values here. 333 * been inherited from a user process, so we reset them to sane values here.
334 * 334 *
335 * NOTE that reparent_to_kthreadd() gives the caller full capabilities. 335 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
336 */ 336 */
337 static void reparent_to_kthreadd(void) 337 static void reparent_to_kthreadd(void)
338 { 338 {
339 write_lock_irq(&tasklist_lock); 339 write_lock_irq(&tasklist_lock);
340 340
341 ptrace_unlink(current); 341 ptrace_unlink(current);
342 /* Reparent to init */ 342 /* Reparent to init */
343 current->real_parent = current->parent = kthreadd_task; 343 current->real_parent = current->parent = kthreadd_task;
344 list_move_tail(&current->sibling, &current->real_parent->children); 344 list_move_tail(&current->sibling, &current->real_parent->children);
345 345
346 /* Set the exit signal to SIGCHLD so we signal init on exit */ 346 /* Set the exit signal to SIGCHLD so we signal init on exit */
347 current->exit_signal = SIGCHLD; 347 current->exit_signal = SIGCHLD;
348 348
349 if (task_nice(current) < 0) 349 if (task_nice(current) < 0)
350 set_user_nice(current, 0); 350 set_user_nice(current, 0);
351 /* cpus_allowed? */ 351 /* cpus_allowed? */
352 /* rt_priority? */ 352 /* rt_priority? */
353 /* signals? */ 353 /* signals? */
354 memcpy(current->signal->rlim, init_task.signal->rlim, 354 memcpy(current->signal->rlim, init_task.signal->rlim,
355 sizeof(current->signal->rlim)); 355 sizeof(current->signal->rlim));
356 356
357 atomic_inc(&init_cred.usage); 357 atomic_inc(&init_cred.usage);
358 commit_creds(&init_cred); 358 commit_creds(&init_cred);
359 write_unlock_irq(&tasklist_lock); 359 write_unlock_irq(&tasklist_lock);
360 } 360 }
361 361
362 void __set_special_pids(struct pid *pid) 362 void __set_special_pids(struct pid *pid)
363 { 363 {
364 struct task_struct *curr = current->group_leader; 364 struct task_struct *curr = current->group_leader;
365 365
366 if (task_session(curr) != pid) 366 if (task_session(curr) != pid)
367 change_pid(curr, PIDTYPE_SID, pid); 367 change_pid(curr, PIDTYPE_SID, pid);
368 368
369 if (task_pgrp(curr) != pid) 369 if (task_pgrp(curr) != pid)
370 change_pid(curr, PIDTYPE_PGID, pid); 370 change_pid(curr, PIDTYPE_PGID, pid);
371 } 371 }
372 372
373 static void set_special_pids(struct pid *pid) 373 static void set_special_pids(struct pid *pid)
374 { 374 {
375 write_lock_irq(&tasklist_lock); 375 write_lock_irq(&tasklist_lock);
376 __set_special_pids(pid); 376 __set_special_pids(pid);
377 write_unlock_irq(&tasklist_lock); 377 write_unlock_irq(&tasklist_lock);
378 } 378 }
379 379
380 /* 380 /*
381 * Let kernel threads use this to say that they allow a certain signal. 381 * Let kernel threads use this to say that they allow a certain signal.
382 * Must not be used if kthread was cloned with CLONE_SIGHAND. 382 * Must not be used if kthread was cloned with CLONE_SIGHAND.
383 */ 383 */
384 int allow_signal(int sig) 384 int allow_signal(int sig)
385 { 385 {
386 if (!valid_signal(sig) || sig < 1) 386 if (!valid_signal(sig) || sig < 1)
387 return -EINVAL; 387 return -EINVAL;
388 388
389 spin_lock_irq(&current->sighand->siglock); 389 spin_lock_irq(&current->sighand->siglock);
390 /* This is only needed for daemonize()'ed kthreads */ 390 /* This is only needed for daemonize()'ed kthreads */
391 sigdelset(&current->blocked, sig); 391 sigdelset(&current->blocked, sig);
392 /* 392 /*
393 * Kernel threads handle their own signals. Let the signal code 393 * Kernel threads handle their own signals. Let the signal code
394 * know it'll be handled, so that they don't get converted to 394 * know it'll be handled, so that they don't get converted to
395 * SIGKILL or just silently dropped. 395 * SIGKILL or just silently dropped.
396 */ 396 */
397 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 397 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
398 recalc_sigpending(); 398 recalc_sigpending();
399 spin_unlock_irq(&current->sighand->siglock); 399 spin_unlock_irq(&current->sighand->siglock);
400 return 0; 400 return 0;
401 } 401 }
402 402
403 EXPORT_SYMBOL(allow_signal); 403 EXPORT_SYMBOL(allow_signal);
404 404
405 int disallow_signal(int sig) 405 int disallow_signal(int sig)
406 { 406 {
407 if (!valid_signal(sig) || sig < 1) 407 if (!valid_signal(sig) || sig < 1)
408 return -EINVAL; 408 return -EINVAL;
409 409
410 spin_lock_irq(&current->sighand->siglock); 410 spin_lock_irq(&current->sighand->siglock);
411 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; 411 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
412 recalc_sigpending(); 412 recalc_sigpending();
413 spin_unlock_irq(&current->sighand->siglock); 413 spin_unlock_irq(&current->sighand->siglock);
414 return 0; 414 return 0;
415 } 415 }
416 416
417 EXPORT_SYMBOL(disallow_signal); 417 EXPORT_SYMBOL(disallow_signal);
418 418
419 /* 419 /*
420 * Put all the gunge required to become a kernel thread without 420 * Put all the gunge required to become a kernel thread without
421 * attached user resources in one place where it belongs. 421 * attached user resources in one place where it belongs.
422 */ 422 */
423 423
424 void daemonize(const char *name, ...) 424 void daemonize(const char *name, ...)
425 { 425 {
426 va_list args; 426 va_list args;
427 sigset_t blocked; 427 sigset_t blocked;
428 428
429 va_start(args, name); 429 va_start(args, name);
430 vsnprintf(current->comm, sizeof(current->comm), name, args); 430 vsnprintf(current->comm, sizeof(current->comm), name, args);
431 va_end(args); 431 va_end(args);
432 432
433 /* 433 /*
434 * If we were started as result of loading a module, close all of the 434 * If we were started as result of loading a module, close all of the
435 * user space pages. We don't need them, and if we didn't close them 435 * user space pages. We don't need them, and if we didn't close them
436 * they would be locked into memory. 436 * they would be locked into memory.
437 */ 437 */
438 exit_mm(current); 438 exit_mm(current);
439 /* 439 /*
440 * We don't want to get frozen, in case system-wide hibernation 440 * We don't want to get frozen, in case system-wide hibernation
441 * or suspend transition begins right now. 441 * or suspend transition begins right now.
442 */ 442 */
443 current->flags |= (PF_NOFREEZE | PF_KTHREAD); 443 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
444 444
445 if (current->nsproxy != &init_nsproxy) { 445 if (current->nsproxy != &init_nsproxy) {
446 get_nsproxy(&init_nsproxy); 446 get_nsproxy(&init_nsproxy);
447 switch_task_namespaces(current, &init_nsproxy); 447 switch_task_namespaces(current, &init_nsproxy);
448 } 448 }
449 set_special_pids(&init_struct_pid); 449 set_special_pids(&init_struct_pid);
450 proc_clear_tty(current); 450 proc_clear_tty(current);
451 451
452 /* Block and flush all signals */ 452 /* Block and flush all signals */
453 sigfillset(&blocked); 453 sigfillset(&blocked);
454 sigprocmask(SIG_BLOCK, &blocked, NULL); 454 sigprocmask(SIG_BLOCK, &blocked, NULL);
455 flush_signals(current); 455 flush_signals(current);
456 456
457 /* Become as one with the init task */ 457 /* Become as one with the init task */
458 458
459 daemonize_fs_struct(); 459 daemonize_fs_struct();
460 exit_files(current); 460 daemonize_descriptors();
461 current->files = init_task.files;
462 atomic_inc(&current->files->count);
463 461
464 reparent_to_kthreadd(); 462 reparent_to_kthreadd();
465 } 463 }
466 464
467 EXPORT_SYMBOL(daemonize); 465 EXPORT_SYMBOL(daemonize);
468 466
469 #ifdef CONFIG_MM_OWNER 467 #ifdef CONFIG_MM_OWNER
470 /* 468 /*
471 * A task is exiting. If it owned this mm, find a new owner for the mm. 469 * A task is exiting. If it owned this mm, find a new owner for the mm.
472 */ 470 */
473 void mm_update_next_owner(struct mm_struct *mm) 471 void mm_update_next_owner(struct mm_struct *mm)
474 { 472 {
475 struct task_struct *c, *g, *p = current; 473 struct task_struct *c, *g, *p = current;
476 474
477 retry: 475 retry:
478 /* 476 /*
479 * If the exiting or execing task is not the owner, it's 477 * If the exiting or execing task is not the owner, it's
480 * someone else's problem. 478 * someone else's problem.
481 */ 479 */
482 if (mm->owner != p) 480 if (mm->owner != p)
483 return; 481 return;
484 /* 482 /*
485 * The current owner is exiting/execing and there are no other 483 * The current owner is exiting/execing and there are no other
486 * candidates. Do not leave the mm pointing to a possibly 484 * candidates. Do not leave the mm pointing to a possibly
487 * freed task structure. 485 * freed task structure.
488 */ 486 */
489 if (atomic_read(&mm->mm_users) <= 1) { 487 if (atomic_read(&mm->mm_users) <= 1) {
490 mm->owner = NULL; 488 mm->owner = NULL;
491 return; 489 return;
492 } 490 }
493 491
494 read_lock(&tasklist_lock); 492 read_lock(&tasklist_lock);
495 /* 493 /*
496 * Search in the children 494 * Search in the children
497 */ 495 */
498 list_for_each_entry(c, &p->children, sibling) { 496 list_for_each_entry(c, &p->children, sibling) {
499 if (c->mm == mm) 497 if (c->mm == mm)
500 goto assign_new_owner; 498 goto assign_new_owner;
501 } 499 }
502 500
503 /* 501 /*
504 * Search in the siblings 502 * Search in the siblings
505 */ 503 */
506 list_for_each_entry(c, &p->real_parent->children, sibling) { 504 list_for_each_entry(c, &p->real_parent->children, sibling) {
507 if (c->mm == mm) 505 if (c->mm == mm)
508 goto assign_new_owner; 506 goto assign_new_owner;
509 } 507 }
510 508
511 /* 509 /*
512 * Search through everything else. We should not get 510 * Search through everything else. We should not get
513 * here often 511 * here often
514 */ 512 */
515 do_each_thread(g, c) { 513 do_each_thread(g, c) {
516 if (c->mm == mm) 514 if (c->mm == mm)
517 goto assign_new_owner; 515 goto assign_new_owner;
518 } while_each_thread(g, c); 516 } while_each_thread(g, c);
519 517
520 read_unlock(&tasklist_lock); 518 read_unlock(&tasklist_lock);
521 /* 519 /*
522 * We found no owner yet mm_users > 1: this implies that we are 520 * We found no owner yet mm_users > 1: this implies that we are
523 * most likely racing with swapoff (try_to_unuse()) or /proc or 521 * most likely racing with swapoff (try_to_unuse()) or /proc or
524 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 522 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
525 */ 523 */
526 mm->owner = NULL; 524 mm->owner = NULL;
527 return; 525 return;
528 526
529 assign_new_owner: 527 assign_new_owner:
530 BUG_ON(c == p); 528 BUG_ON(c == p);
531 get_task_struct(c); 529 get_task_struct(c);
532 /* 530 /*
533 * The task_lock protects c->mm from changing. 531 * The task_lock protects c->mm from changing.
534 * We always want mm->owner->mm == mm 532 * We always want mm->owner->mm == mm
535 */ 533 */
536 task_lock(c); 534 task_lock(c);
537 /* 535 /*
538 * Delay read_unlock() till we have the task_lock() 536 * Delay read_unlock() till we have the task_lock()
539 * to ensure that c does not slip away underneath us 537 * to ensure that c does not slip away underneath us
540 */ 538 */
541 read_unlock(&tasklist_lock); 539 read_unlock(&tasklist_lock);
542 if (c->mm != mm) { 540 if (c->mm != mm) {
543 task_unlock(c); 541 task_unlock(c);
544 put_task_struct(c); 542 put_task_struct(c);
545 goto retry; 543 goto retry;
546 } 544 }
547 mm->owner = c; 545 mm->owner = c;
548 task_unlock(c); 546 task_unlock(c);
549 put_task_struct(c); 547 put_task_struct(c);
550 } 548 }
551 #endif /* CONFIG_MM_OWNER */ 549 #endif /* CONFIG_MM_OWNER */
552 550
553 /* 551 /*
554 * Turn us into a lazy TLB process if we 552 * Turn us into a lazy TLB process if we
555 * aren't already.. 553 * aren't already..
556 */ 554 */
557 static void exit_mm(struct task_struct * tsk) 555 static void exit_mm(struct task_struct * tsk)
558 { 556 {
559 struct mm_struct *mm = tsk->mm; 557 struct mm_struct *mm = tsk->mm;
560 struct core_state *core_state; 558 struct core_state *core_state;
561 559
562 mm_release(tsk, mm); 560 mm_release(tsk, mm);
563 if (!mm) 561 if (!mm)
564 return; 562 return;
565 sync_mm_rss(mm); 563 sync_mm_rss(mm);
566 /* 564 /*
567 * Serialize with any possible pending coredump. 565 * Serialize with any possible pending coredump.
568 * We must hold mmap_sem around checking core_state 566 * We must hold mmap_sem around checking core_state
569 * and clearing tsk->mm. The core-inducing thread 567 * and clearing tsk->mm. The core-inducing thread
570 * will increment ->nr_threads for each thread in the 568 * will increment ->nr_threads for each thread in the
571 * group with ->mm != NULL. 569 * group with ->mm != NULL.
572 */ 570 */
573 down_read(&mm->mmap_sem); 571 down_read(&mm->mmap_sem);
574 core_state = mm->core_state; 572 core_state = mm->core_state;
575 if (core_state) { 573 if (core_state) {
576 struct core_thread self; 574 struct core_thread self;
577 up_read(&mm->mmap_sem); 575 up_read(&mm->mmap_sem);
578 576
579 self.task = tsk; 577 self.task = tsk;
580 self.next = xchg(&core_state->dumper.next, &self); 578 self.next = xchg(&core_state->dumper.next, &self);
581 /* 579 /*
582 * Implies mb(), the result of xchg() must be visible 580 * Implies mb(), the result of xchg() must be visible
583 * to core_state->dumper. 581 * to core_state->dumper.
584 */ 582 */
585 if (atomic_dec_and_test(&core_state->nr_threads)) 583 if (atomic_dec_and_test(&core_state->nr_threads))
586 complete(&core_state->startup); 584 complete(&core_state->startup);
587 585
588 for (;;) { 586 for (;;) {
589 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 587 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
590 if (!self.task) /* see coredump_finish() */ 588 if (!self.task) /* see coredump_finish() */
591 break; 589 break;
592 schedule(); 590 schedule();
593 } 591 }
594 __set_task_state(tsk, TASK_RUNNING); 592 __set_task_state(tsk, TASK_RUNNING);
595 down_read(&mm->mmap_sem); 593 down_read(&mm->mmap_sem);
596 } 594 }
597 atomic_inc(&mm->mm_count); 595 atomic_inc(&mm->mm_count);
598 BUG_ON(mm != tsk->active_mm); 596 BUG_ON(mm != tsk->active_mm);
599 /* more a memory barrier than a real lock */ 597 /* more a memory barrier than a real lock */
600 task_lock(tsk); 598 task_lock(tsk);
601 tsk->mm = NULL; 599 tsk->mm = NULL;
602 up_read(&mm->mmap_sem); 600 up_read(&mm->mmap_sem);
603 enter_lazy_tlb(mm, current); 601 enter_lazy_tlb(mm, current);
604 task_unlock(tsk); 602 task_unlock(tsk);
605 mm_update_next_owner(mm); 603 mm_update_next_owner(mm);
606 mmput(mm); 604 mmput(mm);
607 } 605 }
608 606
609 /* 607 /*
610 * When we die, we re-parent all our children, and try to: 608 * When we die, we re-parent all our children, and try to:
611 * 1. give them to another thread in our thread group, if such a member exists 609 * 1. give them to another thread in our thread group, if such a member exists
612 * 2. give it to the first ancestor process which prctl'd itself as a 610 * 2. give it to the first ancestor process which prctl'd itself as a
613 * child_subreaper for its children (like a service manager) 611 * child_subreaper for its children (like a service manager)
614 * 3. give it to the init process (PID 1) in our pid namespace 612 * 3. give it to the init process (PID 1) in our pid namespace
615 */ 613 */
616 static struct task_struct *find_new_reaper(struct task_struct *father) 614 static struct task_struct *find_new_reaper(struct task_struct *father)
617 __releases(&tasklist_lock) 615 __releases(&tasklist_lock)
618 __acquires(&tasklist_lock) 616 __acquires(&tasklist_lock)
619 { 617 {
620 struct pid_namespace *pid_ns = task_active_pid_ns(father); 618 struct pid_namespace *pid_ns = task_active_pid_ns(father);
621 struct task_struct *thread; 619 struct task_struct *thread;
622 620
623 thread = father; 621 thread = father;
624 while_each_thread(father, thread) { 622 while_each_thread(father, thread) {
625 if (thread->flags & PF_EXITING) 623 if (thread->flags & PF_EXITING)
626 continue; 624 continue;
627 if (unlikely(pid_ns->child_reaper == father)) 625 if (unlikely(pid_ns->child_reaper == father))
628 pid_ns->child_reaper = thread; 626 pid_ns->child_reaper = thread;
629 return thread; 627 return thread;
630 } 628 }
631 629
632 if (unlikely(pid_ns->child_reaper == father)) { 630 if (unlikely(pid_ns->child_reaper == father)) {
633 write_unlock_irq(&tasklist_lock); 631 write_unlock_irq(&tasklist_lock);
634 if (unlikely(pid_ns == &init_pid_ns)) { 632 if (unlikely(pid_ns == &init_pid_ns)) {
635 panic("Attempted to kill init! exitcode=0x%08x\n", 633 panic("Attempted to kill init! exitcode=0x%08x\n",
636 father->signal->group_exit_code ?: 634 father->signal->group_exit_code ?:
637 father->exit_code); 635 father->exit_code);
638 } 636 }
639 637
640 zap_pid_ns_processes(pid_ns); 638 zap_pid_ns_processes(pid_ns);
641 write_lock_irq(&tasklist_lock); 639 write_lock_irq(&tasklist_lock);
642 } else if (father->signal->has_child_subreaper) { 640 } else if (father->signal->has_child_subreaper) {
643 struct task_struct *reaper; 641 struct task_struct *reaper;
644 642
645 /* 643 /*
646 * Find the first ancestor marked as child_subreaper. 644 * Find the first ancestor marked as child_subreaper.
647 * Note that the code below checks same_thread_group(reaper, 645 * Note that the code below checks same_thread_group(reaper,
648 * pid_ns->child_reaper). This is what we need to DTRT in a 646 * pid_ns->child_reaper). This is what we need to DTRT in a
649 * PID namespace. However we still need the check above, see 647 * PID namespace. However we still need the check above, see
650 * http://marc.info/?l=linux-kernel&m=131385460420380 648 * http://marc.info/?l=linux-kernel&m=131385460420380
651 */ 649 */
652 for (reaper = father->real_parent; 650 for (reaper = father->real_parent;
653 reaper != &init_task; 651 reaper != &init_task;
654 reaper = reaper->real_parent) { 652 reaper = reaper->real_parent) {
655 if (same_thread_group(reaper, pid_ns->child_reaper)) 653 if (same_thread_group(reaper, pid_ns->child_reaper))
656 break; 654 break;
657 if (!reaper->signal->is_child_subreaper) 655 if (!reaper->signal->is_child_subreaper)
658 continue; 656 continue;
659 thread = reaper; 657 thread = reaper;
660 do { 658 do {
661 if (!(thread->flags & PF_EXITING)) 659 if (!(thread->flags & PF_EXITING))
662 return reaper; 660 return reaper;
663 } while_each_thread(reaper, thread); 661 } while_each_thread(reaper, thread);
664 } 662 }
665 } 663 }
666 664
667 return pid_ns->child_reaper; 665 return pid_ns->child_reaper;
668 } 666 }
669 667
670 /* 668 /*
671 * Any that need to be release_task'd are put on the @dead list. 669 * Any that need to be release_task'd are put on the @dead list.
672 */ 670 */
673 static void reparent_leader(struct task_struct *father, struct task_struct *p, 671 static void reparent_leader(struct task_struct *father, struct task_struct *p,
674 struct list_head *dead) 672 struct list_head *dead)
675 { 673 {
676 list_move_tail(&p->sibling, &p->real_parent->children); 674 list_move_tail(&p->sibling, &p->real_parent->children);
677 675
678 if (p->exit_state == EXIT_DEAD) 676 if (p->exit_state == EXIT_DEAD)
679 return; 677 return;
680 /* 678 /*
681 * If this is a threaded reparent there is no need to 679 * If this is a threaded reparent there is no need to
682 * notify anyone anything has happened. 680 * notify anyone anything has happened.
683 */ 681 */
684 if (same_thread_group(p->real_parent, father)) 682 if (same_thread_group(p->real_parent, father))
685 return; 683 return;
686 684
687 /* We don't want people slaying init. */ 685 /* We don't want people slaying init. */
688 p->exit_signal = SIGCHLD; 686 p->exit_signal = SIGCHLD;
689 687
690 /* If it has exited notify the new parent about this child's death. */ 688 /* If it has exited notify the new parent about this child's death. */
691 if (!p->ptrace && 689 if (!p->ptrace &&
692 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 690 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
693 if (do_notify_parent(p, p->exit_signal)) { 691 if (do_notify_parent(p, p->exit_signal)) {
694 p->exit_state = EXIT_DEAD; 692 p->exit_state = EXIT_DEAD;
695 list_move_tail(&p->sibling, dead); 693 list_move_tail(&p->sibling, dead);
696 } 694 }
697 } 695 }
698 696
699 kill_orphaned_pgrp(p, father); 697 kill_orphaned_pgrp(p, father);
700 } 698 }
701 699
702 static void forget_original_parent(struct task_struct *father) 700 static void forget_original_parent(struct task_struct *father)
703 { 701 {
704 struct task_struct *p, *n, *reaper; 702 struct task_struct *p, *n, *reaper;
705 LIST_HEAD(dead_children); 703 LIST_HEAD(dead_children);
706 704
707 write_lock_irq(&tasklist_lock); 705 write_lock_irq(&tasklist_lock);
708 /* 706 /*
709 * Note that exit_ptrace() and find_new_reaper() might 707 * Note that exit_ptrace() and find_new_reaper() might
710 * drop tasklist_lock and reacquire it. 708 * drop tasklist_lock and reacquire it.
711 */ 709 */
712 exit_ptrace(father); 710 exit_ptrace(father);
713 reaper = find_new_reaper(father); 711 reaper = find_new_reaper(father);
714 712
715 list_for_each_entry_safe(p, n, &father->children, sibling) { 713 list_for_each_entry_safe(p, n, &father->children, sibling) {
716 struct task_struct *t = p; 714 struct task_struct *t = p;
717 do { 715 do {
718 t->real_parent = reaper; 716 t->real_parent = reaper;
719 if (t->parent == father) { 717 if (t->parent == father) {
720 BUG_ON(t->ptrace); 718 BUG_ON(t->ptrace);
721 t->parent = t->real_parent; 719 t->parent = t->real_parent;
722 } 720 }
723 if (t->pdeath_signal) 721 if (t->pdeath_signal)
724 group_send_sig_info(t->pdeath_signal, 722 group_send_sig_info(t->pdeath_signal,
725 SEND_SIG_NOINFO, t); 723 SEND_SIG_NOINFO, t);
726 } while_each_thread(p, t); 724 } while_each_thread(p, t);
727 reparent_leader(father, p, &dead_children); 725 reparent_leader(father, p, &dead_children);
728 } 726 }
729 write_unlock_irq(&tasklist_lock); 727 write_unlock_irq(&tasklist_lock);
730 728
731 BUG_ON(!list_empty(&father->children)); 729 BUG_ON(!list_empty(&father->children));
732 730
733 list_for_each_entry_safe(p, n, &dead_children, sibling) { 731 list_for_each_entry_safe(p, n, &dead_children, sibling) {
734 list_del_init(&p->sibling); 732 list_del_init(&p->sibling);
735 release_task(p); 733 release_task(p);
736 } 734 }
737 } 735 }
738 736
739 /* 737 /*
740 * Send signals to all our closest relatives so that they know 738 * Send signals to all our closest relatives so that they know
741 * to properly mourn us.. 739 * to properly mourn us..
742 */ 740 */
743 static void exit_notify(struct task_struct *tsk, int group_dead) 741 static void exit_notify(struct task_struct *tsk, int group_dead)
744 { 742 {
745 bool autoreap; 743 bool autoreap;
746 744
747 /* 745 /*
748 * This does two things: 746 * This does two things:
749 * 747 *
750 * A. Make init inherit all the child processes 748 * A. Make init inherit all the child processes
751 * B. Check to see if any process groups have become orphaned 749 * B. Check to see if any process groups have become orphaned
752 * as a result of our exiting, and if they have any stopped 750 * as a result of our exiting, and if they have any stopped
753 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 751 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
754 */ 752 */
755 forget_original_parent(tsk); 753 forget_original_parent(tsk);
756 exit_task_namespaces(tsk); 754 exit_task_namespaces(tsk);
757 755
758 write_lock_irq(&tasklist_lock); 756 write_lock_irq(&tasklist_lock);
759 if (group_dead) 757 if (group_dead)
760 kill_orphaned_pgrp(tsk->group_leader, NULL); 758 kill_orphaned_pgrp(tsk->group_leader, NULL);
761 759
762 if (unlikely(tsk->ptrace)) { 760 if (unlikely(tsk->ptrace)) {
763 int sig = thread_group_leader(tsk) && 761 int sig = thread_group_leader(tsk) &&
764 thread_group_empty(tsk) && 762 thread_group_empty(tsk) &&
765 !ptrace_reparented(tsk) ? 763 !ptrace_reparented(tsk) ?
766 tsk->exit_signal : SIGCHLD; 764 tsk->exit_signal : SIGCHLD;
767 autoreap = do_notify_parent(tsk, sig); 765 autoreap = do_notify_parent(tsk, sig);
768 } else if (thread_group_leader(tsk)) { 766 } else if (thread_group_leader(tsk)) {
769 autoreap = thread_group_empty(tsk) && 767 autoreap = thread_group_empty(tsk) &&
770 do_notify_parent(tsk, tsk->exit_signal); 768 do_notify_parent(tsk, tsk->exit_signal);
771 } else { 769 } else {
772 autoreap = true; 770 autoreap = true;
773 } 771 }
774 772
775 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE; 773 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
776 774
777 /* mt-exec, de_thread() is waiting for group leader */ 775 /* mt-exec, de_thread() is waiting for group leader */
778 if (unlikely(tsk->signal->notify_count < 0)) 776 if (unlikely(tsk->signal->notify_count < 0))
779 wake_up_process(tsk->signal->group_exit_task); 777 wake_up_process(tsk->signal->group_exit_task);
780 write_unlock_irq(&tasklist_lock); 778 write_unlock_irq(&tasklist_lock);
781 779
782 /* If the process is dead, release it - nobody will wait for it */ 780 /* If the process is dead, release it - nobody will wait for it */
783 if (autoreap) 781 if (autoreap)
784 release_task(tsk); 782 release_task(tsk);
785 } 783 }
786 784
787 #ifdef CONFIG_DEBUG_STACK_USAGE 785 #ifdef CONFIG_DEBUG_STACK_USAGE
788 static void check_stack_usage(void) 786 static void check_stack_usage(void)
789 { 787 {
790 static DEFINE_SPINLOCK(low_water_lock); 788 static DEFINE_SPINLOCK(low_water_lock);
791 static int lowest_to_date = THREAD_SIZE; 789 static int lowest_to_date = THREAD_SIZE;
792 unsigned long free; 790 unsigned long free;
793 791
794 free = stack_not_used(current); 792 free = stack_not_used(current);
795 793
796 if (free >= lowest_to_date) 794 if (free >= lowest_to_date)
797 return; 795 return;
798 796
799 spin_lock(&low_water_lock); 797 spin_lock(&low_water_lock);
800 if (free < lowest_to_date) { 798 if (free < lowest_to_date) {
801 printk(KERN_WARNING "%s (%d) used greatest stack depth: " 799 printk(KERN_WARNING "%s (%d) used greatest stack depth: "
802 "%lu bytes left\n", 800 "%lu bytes left\n",
803 current->comm, task_pid_nr(current), free); 801 current->comm, task_pid_nr(current), free);
804 lowest_to_date = free; 802 lowest_to_date = free;
805 } 803 }
806 spin_unlock(&low_water_lock); 804 spin_unlock(&low_water_lock);
807 } 805 }
808 #else 806 #else
809 static inline void check_stack_usage(void) {} 807 static inline void check_stack_usage(void) {}
810 #endif 808 #endif
811 809
812 void do_exit(long code) 810 void do_exit(long code)
813 { 811 {
814 struct task_struct *tsk = current; 812 struct task_struct *tsk = current;
815 int group_dead; 813 int group_dead;
816 814
817 profile_task_exit(tsk); 815 profile_task_exit(tsk);
818 816
819 WARN_ON(blk_needs_flush_plug(tsk)); 817 WARN_ON(blk_needs_flush_plug(tsk));
820 818
821 if (unlikely(in_interrupt())) 819 if (unlikely(in_interrupt()))
822 panic("Aiee, killing interrupt handler!"); 820 panic("Aiee, killing interrupt handler!");
823 if (unlikely(!tsk->pid)) 821 if (unlikely(!tsk->pid))
824 panic("Attempted to kill the idle task!"); 822 panic("Attempted to kill the idle task!");
825 823
826 /* 824 /*
827 * If do_exit is called because this processes oopsed, it's possible 825 * If do_exit is called because this processes oopsed, it's possible
828 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before 826 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
829 * continuing. Amongst other possible reasons, this is to prevent 827 * continuing. Amongst other possible reasons, this is to prevent
830 * mm_release()->clear_child_tid() from writing to a user-controlled 828 * mm_release()->clear_child_tid() from writing to a user-controlled
831 * kernel address. 829 * kernel address.
832 */ 830 */
833 set_fs(USER_DS); 831 set_fs(USER_DS);
834 832
835 ptrace_event(PTRACE_EVENT_EXIT, code); 833 ptrace_event(PTRACE_EVENT_EXIT, code);
836 834
837 validate_creds_for_do_exit(tsk); 835 validate_creds_for_do_exit(tsk);
838 836
839 /* 837 /*
840 * We're taking recursive faults here in do_exit. Safest is to just 838 * We're taking recursive faults here in do_exit. Safest is to just
841 * leave this task alone and wait for reboot. 839 * leave this task alone and wait for reboot.
842 */ 840 */
843 if (unlikely(tsk->flags & PF_EXITING)) { 841 if (unlikely(tsk->flags & PF_EXITING)) {
844 printk(KERN_ALERT 842 printk(KERN_ALERT
845 "Fixing recursive fault but reboot is needed!\n"); 843 "Fixing recursive fault but reboot is needed!\n");
846 /* 844 /*
847 * We can do this unlocked here. The futex code uses 845 * We can do this unlocked here. The futex code uses
848 * this flag just to verify whether the pi state 846 * this flag just to verify whether the pi state
849 * cleanup has been done or not. In the worst case it 847 * cleanup has been done or not. In the worst case it
850 * loops once more. We pretend that the cleanup was 848 * loops once more. We pretend that the cleanup was
851 * done as there is no way to return. Either the 849 * done as there is no way to return. Either the
852 * OWNER_DIED bit is set by now or we push the blocked 850 * OWNER_DIED bit is set by now or we push the blocked
853 * task into the wait for ever nirwana as well. 851 * task into the wait for ever nirwana as well.
854 */ 852 */
855 tsk->flags |= PF_EXITPIDONE; 853 tsk->flags |= PF_EXITPIDONE;
856 set_current_state(TASK_UNINTERRUPTIBLE); 854 set_current_state(TASK_UNINTERRUPTIBLE);
857 schedule(); 855 schedule();
858 } 856 }
859 857
860 exit_signals(tsk); /* sets PF_EXITING */ 858 exit_signals(tsk); /* sets PF_EXITING */
861 /* 859 /*
862 * tsk->flags are checked in the futex code to protect against 860 * tsk->flags are checked in the futex code to protect against
863 * an exiting task cleaning up the robust pi futexes. 861 * an exiting task cleaning up the robust pi futexes.
864 */ 862 */
865 smp_mb(); 863 smp_mb();
866 raw_spin_unlock_wait(&tsk->pi_lock); 864 raw_spin_unlock_wait(&tsk->pi_lock);
867 865
868 if (unlikely(in_atomic())) 866 if (unlikely(in_atomic()))
869 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 867 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
870 current->comm, task_pid_nr(current), 868 current->comm, task_pid_nr(current),
871 preempt_count()); 869 preempt_count());
872 870
873 acct_update_integrals(tsk); 871 acct_update_integrals(tsk);
874 /* sync mm's RSS info before statistics gathering */ 872 /* sync mm's RSS info before statistics gathering */
875 if (tsk->mm) 873 if (tsk->mm)
876 sync_mm_rss(tsk->mm); 874 sync_mm_rss(tsk->mm);
877 group_dead = atomic_dec_and_test(&tsk->signal->live); 875 group_dead = atomic_dec_and_test(&tsk->signal->live);
878 if (group_dead) { 876 if (group_dead) {
879 hrtimer_cancel(&tsk->signal->real_timer); 877 hrtimer_cancel(&tsk->signal->real_timer);
880 exit_itimers(tsk->signal); 878 exit_itimers(tsk->signal);
881 if (tsk->mm) 879 if (tsk->mm)
882 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 880 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
883 } 881 }
884 acct_collect(code, group_dead); 882 acct_collect(code, group_dead);
885 if (group_dead) 883 if (group_dead)
886 tty_audit_exit(); 884 tty_audit_exit();
887 audit_free(tsk); 885 audit_free(tsk);
888 886
889 tsk->exit_code = code; 887 tsk->exit_code = code;
890 taskstats_exit(tsk, group_dead); 888 taskstats_exit(tsk, group_dead);
891 889
892 exit_mm(tsk); 890 exit_mm(tsk);
893 891
894 if (group_dead) 892 if (group_dead)
895 acct_process(); 893 acct_process();
896 trace_sched_process_exit(tsk); 894 trace_sched_process_exit(tsk);
897 895
898 exit_sem(tsk); 896 exit_sem(tsk);
899 exit_shm(tsk); 897 exit_shm(tsk);
900 exit_files(tsk); 898 exit_files(tsk);
901 exit_fs(tsk); 899 exit_fs(tsk);
902 exit_task_work(tsk); 900 exit_task_work(tsk);
903 check_stack_usage(); 901 check_stack_usage();
904 exit_thread(); 902 exit_thread();
905 903
906 /* 904 /*
907 * Flush inherited counters to the parent - before the parent 905 * Flush inherited counters to the parent - before the parent
908 * gets woken up by child-exit notifications. 906 * gets woken up by child-exit notifications.
909 * 907 *
910 * because of cgroup mode, must be called before cgroup_exit() 908 * because of cgroup mode, must be called before cgroup_exit()
911 */ 909 */
912 perf_event_exit_task(tsk); 910 perf_event_exit_task(tsk);
913 911
914 cgroup_exit(tsk, 1); 912 cgroup_exit(tsk, 1);
915 913
916 if (group_dead) 914 if (group_dead)
917 disassociate_ctty(1); 915 disassociate_ctty(1);
918 916
919 module_put(task_thread_info(tsk)->exec_domain->module); 917 module_put(task_thread_info(tsk)->exec_domain->module);
920 918
921 proc_exit_connector(tsk); 919 proc_exit_connector(tsk);
922 920
923 /* 921 /*
924 * FIXME: do that only when needed, using sched_exit tracepoint 922 * FIXME: do that only when needed, using sched_exit tracepoint
925 */ 923 */
926 ptrace_put_breakpoints(tsk); 924 ptrace_put_breakpoints(tsk);
927 925
928 exit_notify(tsk, group_dead); 926 exit_notify(tsk, group_dead);
929 #ifdef CONFIG_NUMA 927 #ifdef CONFIG_NUMA
930 task_lock(tsk); 928 task_lock(tsk);
931 mpol_put(tsk->mempolicy); 929 mpol_put(tsk->mempolicy);
932 tsk->mempolicy = NULL; 930 tsk->mempolicy = NULL;
933 task_unlock(tsk); 931 task_unlock(tsk);
934 #endif 932 #endif
935 #ifdef CONFIG_FUTEX 933 #ifdef CONFIG_FUTEX
936 if (unlikely(current->pi_state_cache)) 934 if (unlikely(current->pi_state_cache))
937 kfree(current->pi_state_cache); 935 kfree(current->pi_state_cache);
938 #endif 936 #endif
939 /* 937 /*
940 * Make sure we are holding no locks: 938 * Make sure we are holding no locks:
941 */ 939 */
942 debug_check_no_locks_held(tsk); 940 debug_check_no_locks_held(tsk);
943 /* 941 /*
944 * We can do this unlocked here. The futex code uses this flag 942 * We can do this unlocked here. The futex code uses this flag
945 * just to verify whether the pi state cleanup has been done 943 * just to verify whether the pi state cleanup has been done
946 * or not. In the worst case it loops once more. 944 * or not. In the worst case it loops once more.
947 */ 945 */
948 tsk->flags |= PF_EXITPIDONE; 946 tsk->flags |= PF_EXITPIDONE;
949 947
950 if (tsk->io_context) 948 if (tsk->io_context)
951 exit_io_context(tsk); 949 exit_io_context(tsk);
952 950
953 if (tsk->splice_pipe) 951 if (tsk->splice_pipe)
954 __free_pipe_info(tsk->splice_pipe); 952 __free_pipe_info(tsk->splice_pipe);
955 953
956 validate_creds_for_do_exit(tsk); 954 validate_creds_for_do_exit(tsk);
957 955
958 preempt_disable(); 956 preempt_disable();
959 if (tsk->nr_dirtied) 957 if (tsk->nr_dirtied)
960 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 958 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
961 exit_rcu(); 959 exit_rcu();
962 960
963 /* 961 /*
964 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed 962 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
965 * when the following two conditions become true. 963 * when the following two conditions become true.
966 * - There is race condition of mmap_sem (It is acquired by 964 * - There is race condition of mmap_sem (It is acquired by
967 * exit_mm()), and 965 * exit_mm()), and
968 * - SMI occurs before setting TASK_RUNINNG. 966 * - SMI occurs before setting TASK_RUNINNG.
969 * (or hypervisor of virtual machine switches to other guest) 967 * (or hypervisor of virtual machine switches to other guest)
970 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD 968 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
971 * 969 *
972 * To avoid it, we have to wait for releasing tsk->pi_lock which 970 * To avoid it, we have to wait for releasing tsk->pi_lock which
973 * is held by try_to_wake_up() 971 * is held by try_to_wake_up()
974 */ 972 */
975 smp_mb(); 973 smp_mb();
976 raw_spin_unlock_wait(&tsk->pi_lock); 974 raw_spin_unlock_wait(&tsk->pi_lock);
977 975
978 /* causes final put_task_struct in finish_task_switch(). */ 976 /* causes final put_task_struct in finish_task_switch(). */
979 tsk->state = TASK_DEAD; 977 tsk->state = TASK_DEAD;
980 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */ 978 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
981 schedule(); 979 schedule();
982 BUG(); 980 BUG();
983 /* Avoid "noreturn function does return". */ 981 /* Avoid "noreturn function does return". */
984 for (;;) 982 for (;;)
985 cpu_relax(); /* For when BUG is null */ 983 cpu_relax(); /* For when BUG is null */
986 } 984 }
987 985
988 EXPORT_SYMBOL_GPL(do_exit); 986 EXPORT_SYMBOL_GPL(do_exit);
989 987
990 void complete_and_exit(struct completion *comp, long code) 988 void complete_and_exit(struct completion *comp, long code)
991 { 989 {
992 if (comp) 990 if (comp)
993 complete(comp); 991 complete(comp);
994 992
995 do_exit(code); 993 do_exit(code);
996 } 994 }
997 995
998 EXPORT_SYMBOL(complete_and_exit); 996 EXPORT_SYMBOL(complete_and_exit);
999 997
1000 SYSCALL_DEFINE1(exit, int, error_code) 998 SYSCALL_DEFINE1(exit, int, error_code)
1001 { 999 {
1002 do_exit((error_code&0xff)<<8); 1000 do_exit((error_code&0xff)<<8);
1003 } 1001 }
1004 1002
1005 /* 1003 /*
1006 * Take down every thread in the group. This is called by fatal signals 1004 * Take down every thread in the group. This is called by fatal signals
1007 * as well as by sys_exit_group (below). 1005 * as well as by sys_exit_group (below).
1008 */ 1006 */
1009 void 1007 void
1010 do_group_exit(int exit_code) 1008 do_group_exit(int exit_code)
1011 { 1009 {
1012 struct signal_struct *sig = current->signal; 1010 struct signal_struct *sig = current->signal;
1013 1011
1014 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 1012 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1015 1013
1016 if (signal_group_exit(sig)) 1014 if (signal_group_exit(sig))
1017 exit_code = sig->group_exit_code; 1015 exit_code = sig->group_exit_code;
1018 else if (!thread_group_empty(current)) { 1016 else if (!thread_group_empty(current)) {
1019 struct sighand_struct *const sighand = current->sighand; 1017 struct sighand_struct *const sighand = current->sighand;
1020 spin_lock_irq(&sighand->siglock); 1018 spin_lock_irq(&sighand->siglock);
1021 if (signal_group_exit(sig)) 1019 if (signal_group_exit(sig))
1022 /* Another thread got here before we took the lock. */ 1020 /* Another thread got here before we took the lock. */
1023 exit_code = sig->group_exit_code; 1021 exit_code = sig->group_exit_code;
1024 else { 1022 else {
1025 sig->group_exit_code = exit_code; 1023 sig->group_exit_code = exit_code;
1026 sig->flags = SIGNAL_GROUP_EXIT; 1024 sig->flags = SIGNAL_GROUP_EXIT;
1027 zap_other_threads(current); 1025 zap_other_threads(current);
1028 } 1026 }
1029 spin_unlock_irq(&sighand->siglock); 1027 spin_unlock_irq(&sighand->siglock);
1030 } 1028 }
1031 1029
1032 do_exit(exit_code); 1030 do_exit(exit_code);
1033 /* NOTREACHED */ 1031 /* NOTREACHED */
1034 } 1032 }
1035 1033
1036 /* 1034 /*
1037 * this kills every thread in the thread group. Note that any externally 1035 * this kills every thread in the thread group. Note that any externally
1038 * wait4()-ing process will get the correct exit code - even if this 1036 * wait4()-ing process will get the correct exit code - even if this
1039 * thread is not the thread group leader. 1037 * thread is not the thread group leader.
1040 */ 1038 */
1041 SYSCALL_DEFINE1(exit_group, int, error_code) 1039 SYSCALL_DEFINE1(exit_group, int, error_code)
1042 { 1040 {
1043 do_group_exit((error_code & 0xff) << 8); 1041 do_group_exit((error_code & 0xff) << 8);
1044 /* NOTREACHED */ 1042 /* NOTREACHED */
1045 return 0; 1043 return 0;
1046 } 1044 }
1047 1045
1048 struct wait_opts { 1046 struct wait_opts {
1049 enum pid_type wo_type; 1047 enum pid_type wo_type;
1050 int wo_flags; 1048 int wo_flags;
1051 struct pid *wo_pid; 1049 struct pid *wo_pid;
1052 1050
1053 struct siginfo __user *wo_info; 1051 struct siginfo __user *wo_info;
1054 int __user *wo_stat; 1052 int __user *wo_stat;
1055 struct rusage __user *wo_rusage; 1053 struct rusage __user *wo_rusage;
1056 1054
1057 wait_queue_t child_wait; 1055 wait_queue_t child_wait;
1058 int notask_error; 1056 int notask_error;
1059 }; 1057 };
1060 1058
1061 static inline 1059 static inline
1062 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 1060 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1063 { 1061 {
1064 if (type != PIDTYPE_PID) 1062 if (type != PIDTYPE_PID)
1065 task = task->group_leader; 1063 task = task->group_leader;
1066 return task->pids[type].pid; 1064 return task->pids[type].pid;
1067 } 1065 }
1068 1066
1069 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 1067 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1070 { 1068 {
1071 return wo->wo_type == PIDTYPE_MAX || 1069 return wo->wo_type == PIDTYPE_MAX ||
1072 task_pid_type(p, wo->wo_type) == wo->wo_pid; 1070 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1073 } 1071 }
1074 1072
1075 static int eligible_child(struct wait_opts *wo, struct task_struct *p) 1073 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1076 { 1074 {
1077 if (!eligible_pid(wo, p)) 1075 if (!eligible_pid(wo, p))
1078 return 0; 1076 return 0;
1079 /* Wait for all children (clone and not) if __WALL is set; 1077 /* Wait for all children (clone and not) if __WALL is set;
1080 * otherwise, wait for clone children *only* if __WCLONE is 1078 * otherwise, wait for clone children *only* if __WCLONE is
1081 * set; otherwise, wait for non-clone children *only*. (Note: 1079 * set; otherwise, wait for non-clone children *only*. (Note:
1082 * A "clone" child here is one that reports to its parent 1080 * A "clone" child here is one that reports to its parent
1083 * using a signal other than SIGCHLD.) */ 1081 * using a signal other than SIGCHLD.) */
1084 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1082 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1085 && !(wo->wo_flags & __WALL)) 1083 && !(wo->wo_flags & __WALL))
1086 return 0; 1084 return 0;
1087 1085
1088 return 1; 1086 return 1;
1089 } 1087 }
1090 1088
1091 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, 1089 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1092 pid_t pid, uid_t uid, int why, int status) 1090 pid_t pid, uid_t uid, int why, int status)
1093 { 1091 {
1094 struct siginfo __user *infop; 1092 struct siginfo __user *infop;
1095 int retval = wo->wo_rusage 1093 int retval = wo->wo_rusage
1096 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1094 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1097 1095
1098 put_task_struct(p); 1096 put_task_struct(p);
1099 infop = wo->wo_info; 1097 infop = wo->wo_info;
1100 if (infop) { 1098 if (infop) {
1101 if (!retval) 1099 if (!retval)
1102 retval = put_user(SIGCHLD, &infop->si_signo); 1100 retval = put_user(SIGCHLD, &infop->si_signo);
1103 if (!retval) 1101 if (!retval)
1104 retval = put_user(0, &infop->si_errno); 1102 retval = put_user(0, &infop->si_errno);
1105 if (!retval) 1103 if (!retval)
1106 retval = put_user((short)why, &infop->si_code); 1104 retval = put_user((short)why, &infop->si_code);
1107 if (!retval) 1105 if (!retval)
1108 retval = put_user(pid, &infop->si_pid); 1106 retval = put_user(pid, &infop->si_pid);
1109 if (!retval) 1107 if (!retval)
1110 retval = put_user(uid, &infop->si_uid); 1108 retval = put_user(uid, &infop->si_uid);
1111 if (!retval) 1109 if (!retval)
1112 retval = put_user(status, &infop->si_status); 1110 retval = put_user(status, &infop->si_status);
1113 } 1111 }
1114 if (!retval) 1112 if (!retval)
1115 retval = pid; 1113 retval = pid;
1116 return retval; 1114 return retval;
1117 } 1115 }
1118 1116
1119 /* 1117 /*
1120 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1118 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1121 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1119 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1122 * the lock and this task is uninteresting. If we return nonzero, we have 1120 * the lock and this task is uninteresting. If we return nonzero, we have
1123 * released the lock and the system call should return. 1121 * released the lock and the system call should return.
1124 */ 1122 */
1125 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1123 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1126 { 1124 {
1127 unsigned long state; 1125 unsigned long state;
1128 int retval, status, traced; 1126 int retval, status, traced;
1129 pid_t pid = task_pid_vnr(p); 1127 pid_t pid = task_pid_vnr(p);
1130 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1128 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1131 struct siginfo __user *infop; 1129 struct siginfo __user *infop;
1132 1130
1133 if (!likely(wo->wo_flags & WEXITED)) 1131 if (!likely(wo->wo_flags & WEXITED))
1134 return 0; 1132 return 0;
1135 1133
1136 if (unlikely(wo->wo_flags & WNOWAIT)) { 1134 if (unlikely(wo->wo_flags & WNOWAIT)) {
1137 int exit_code = p->exit_code; 1135 int exit_code = p->exit_code;
1138 int why; 1136 int why;
1139 1137
1140 get_task_struct(p); 1138 get_task_struct(p);
1141 read_unlock(&tasklist_lock); 1139 read_unlock(&tasklist_lock);
1142 if ((exit_code & 0x7f) == 0) { 1140 if ((exit_code & 0x7f) == 0) {
1143 why = CLD_EXITED; 1141 why = CLD_EXITED;
1144 status = exit_code >> 8; 1142 status = exit_code >> 8;
1145 } else { 1143 } else {
1146 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1144 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1147 status = exit_code & 0x7f; 1145 status = exit_code & 0x7f;
1148 } 1146 }
1149 return wait_noreap_copyout(wo, p, pid, uid, why, status); 1147 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1150 } 1148 }
1151 1149
1152 /* 1150 /*
1153 * Try to move the task's state to DEAD 1151 * Try to move the task's state to DEAD
1154 * only one thread is allowed to do this: 1152 * only one thread is allowed to do this:
1155 */ 1153 */
1156 state = xchg(&p->exit_state, EXIT_DEAD); 1154 state = xchg(&p->exit_state, EXIT_DEAD);
1157 if (state != EXIT_ZOMBIE) { 1155 if (state != EXIT_ZOMBIE) {
1158 BUG_ON(state != EXIT_DEAD); 1156 BUG_ON(state != EXIT_DEAD);
1159 return 0; 1157 return 0;
1160 } 1158 }
1161 1159
1162 traced = ptrace_reparented(p); 1160 traced = ptrace_reparented(p);
1163 /* 1161 /*
1164 * It can be ptraced but not reparented, check 1162 * It can be ptraced but not reparented, check
1165 * thread_group_leader() to filter out sub-threads. 1163 * thread_group_leader() to filter out sub-threads.
1166 */ 1164 */
1167 if (likely(!traced) && thread_group_leader(p)) { 1165 if (likely(!traced) && thread_group_leader(p)) {
1168 struct signal_struct *psig; 1166 struct signal_struct *psig;
1169 struct signal_struct *sig; 1167 struct signal_struct *sig;
1170 unsigned long maxrss; 1168 unsigned long maxrss;
1171 cputime_t tgutime, tgstime; 1169 cputime_t tgutime, tgstime;
1172 1170
1173 /* 1171 /*
1174 * The resource counters for the group leader are in its 1172 * The resource counters for the group leader are in its
1175 * own task_struct. Those for dead threads in the group 1173 * own task_struct. Those for dead threads in the group
1176 * are in its signal_struct, as are those for the child 1174 * are in its signal_struct, as are those for the child
1177 * processes it has previously reaped. All these 1175 * processes it has previously reaped. All these
1178 * accumulate in the parent's signal_struct c* fields. 1176 * accumulate in the parent's signal_struct c* fields.
1179 * 1177 *
1180 * We don't bother to take a lock here to protect these 1178 * We don't bother to take a lock here to protect these
1181 * p->signal fields, because they are only touched by 1179 * p->signal fields, because they are only touched by
1182 * __exit_signal, which runs with tasklist_lock 1180 * __exit_signal, which runs with tasklist_lock
1183 * write-locked anyway, and so is excluded here. We do 1181 * write-locked anyway, and so is excluded here. We do
1184 * need to protect the access to parent->signal fields, 1182 * need to protect the access to parent->signal fields,
1185 * as other threads in the parent group can be right 1183 * as other threads in the parent group can be right
1186 * here reaping other children at the same time. 1184 * here reaping other children at the same time.
1187 * 1185 *
1188 * We use thread_group_times() to get times for the thread 1186 * We use thread_group_times() to get times for the thread
1189 * group, which consolidates times for all threads in the 1187 * group, which consolidates times for all threads in the
1190 * group including the group leader. 1188 * group including the group leader.
1191 */ 1189 */
1192 thread_group_times(p, &tgutime, &tgstime); 1190 thread_group_times(p, &tgutime, &tgstime);
1193 spin_lock_irq(&p->real_parent->sighand->siglock); 1191 spin_lock_irq(&p->real_parent->sighand->siglock);
1194 psig = p->real_parent->signal; 1192 psig = p->real_parent->signal;
1195 sig = p->signal; 1193 sig = p->signal;
1196 psig->cutime += tgutime + sig->cutime; 1194 psig->cutime += tgutime + sig->cutime;
1197 psig->cstime += tgstime + sig->cstime; 1195 psig->cstime += tgstime + sig->cstime;
1198 psig->cgtime += p->gtime + sig->gtime + sig->cgtime; 1196 psig->cgtime += p->gtime + sig->gtime + sig->cgtime;
1199 psig->cmin_flt += 1197 psig->cmin_flt +=
1200 p->min_flt + sig->min_flt + sig->cmin_flt; 1198 p->min_flt + sig->min_flt + sig->cmin_flt;
1201 psig->cmaj_flt += 1199 psig->cmaj_flt +=
1202 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1200 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1203 psig->cnvcsw += 1201 psig->cnvcsw +=
1204 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1202 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1205 psig->cnivcsw += 1203 psig->cnivcsw +=
1206 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1204 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1207 psig->cinblock += 1205 psig->cinblock +=
1208 task_io_get_inblock(p) + 1206 task_io_get_inblock(p) +
1209 sig->inblock + sig->cinblock; 1207 sig->inblock + sig->cinblock;
1210 psig->coublock += 1208 psig->coublock +=
1211 task_io_get_oublock(p) + 1209 task_io_get_oublock(p) +
1212 sig->oublock + sig->coublock; 1210 sig->oublock + sig->coublock;
1213 maxrss = max(sig->maxrss, sig->cmaxrss); 1211 maxrss = max(sig->maxrss, sig->cmaxrss);
1214 if (psig->cmaxrss < maxrss) 1212 if (psig->cmaxrss < maxrss)
1215 psig->cmaxrss = maxrss; 1213 psig->cmaxrss = maxrss;
1216 task_io_accounting_add(&psig->ioac, &p->ioac); 1214 task_io_accounting_add(&psig->ioac, &p->ioac);
1217 task_io_accounting_add(&psig->ioac, &sig->ioac); 1215 task_io_accounting_add(&psig->ioac, &sig->ioac);
1218 spin_unlock_irq(&p->real_parent->sighand->siglock); 1216 spin_unlock_irq(&p->real_parent->sighand->siglock);
1219 } 1217 }
1220 1218
1221 /* 1219 /*
1222 * Now we are sure this task is interesting, and no other 1220 * Now we are sure this task is interesting, and no other
1223 * thread can reap it because we set its state to EXIT_DEAD. 1221 * thread can reap it because we set its state to EXIT_DEAD.
1224 */ 1222 */
1225 read_unlock(&tasklist_lock); 1223 read_unlock(&tasklist_lock);
1226 1224
1227 retval = wo->wo_rusage 1225 retval = wo->wo_rusage
1228 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1226 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1229 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1227 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1230 ? p->signal->group_exit_code : p->exit_code; 1228 ? p->signal->group_exit_code : p->exit_code;
1231 if (!retval && wo->wo_stat) 1229 if (!retval && wo->wo_stat)
1232 retval = put_user(status, wo->wo_stat); 1230 retval = put_user(status, wo->wo_stat);
1233 1231
1234 infop = wo->wo_info; 1232 infop = wo->wo_info;
1235 if (!retval && infop) 1233 if (!retval && infop)
1236 retval = put_user(SIGCHLD, &infop->si_signo); 1234 retval = put_user(SIGCHLD, &infop->si_signo);
1237 if (!retval && infop) 1235 if (!retval && infop)
1238 retval = put_user(0, &infop->si_errno); 1236 retval = put_user(0, &infop->si_errno);
1239 if (!retval && infop) { 1237 if (!retval && infop) {
1240 int why; 1238 int why;
1241 1239
1242 if ((status & 0x7f) == 0) { 1240 if ((status & 0x7f) == 0) {
1243 why = CLD_EXITED; 1241 why = CLD_EXITED;
1244 status >>= 8; 1242 status >>= 8;
1245 } else { 1243 } else {
1246 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1244 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1247 status &= 0x7f; 1245 status &= 0x7f;
1248 } 1246 }
1249 retval = put_user((short)why, &infop->si_code); 1247 retval = put_user((short)why, &infop->si_code);
1250 if (!retval) 1248 if (!retval)
1251 retval = put_user(status, &infop->si_status); 1249 retval = put_user(status, &infop->si_status);
1252 } 1250 }
1253 if (!retval && infop) 1251 if (!retval && infop)
1254 retval = put_user(pid, &infop->si_pid); 1252 retval = put_user(pid, &infop->si_pid);
1255 if (!retval && infop) 1253 if (!retval && infop)
1256 retval = put_user(uid, &infop->si_uid); 1254 retval = put_user(uid, &infop->si_uid);
1257 if (!retval) 1255 if (!retval)
1258 retval = pid; 1256 retval = pid;
1259 1257
1260 if (traced) { 1258 if (traced) {
1261 write_lock_irq(&tasklist_lock); 1259 write_lock_irq(&tasklist_lock);
1262 /* We dropped tasklist, ptracer could die and untrace */ 1260 /* We dropped tasklist, ptracer could die and untrace */
1263 ptrace_unlink(p); 1261 ptrace_unlink(p);
1264 /* 1262 /*
1265 * If this is not a sub-thread, notify the parent. 1263 * If this is not a sub-thread, notify the parent.
1266 * If parent wants a zombie, don't release it now. 1264 * If parent wants a zombie, don't release it now.
1267 */ 1265 */
1268 if (thread_group_leader(p) && 1266 if (thread_group_leader(p) &&
1269 !do_notify_parent(p, p->exit_signal)) { 1267 !do_notify_parent(p, p->exit_signal)) {
1270 p->exit_state = EXIT_ZOMBIE; 1268 p->exit_state = EXIT_ZOMBIE;
1271 p = NULL; 1269 p = NULL;
1272 } 1270 }
1273 write_unlock_irq(&tasklist_lock); 1271 write_unlock_irq(&tasklist_lock);
1274 } 1272 }
1275 if (p != NULL) 1273 if (p != NULL)
1276 release_task(p); 1274 release_task(p);
1277 1275
1278 return retval; 1276 return retval;
1279 } 1277 }
1280 1278
1281 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1279 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1282 { 1280 {
1283 if (ptrace) { 1281 if (ptrace) {
1284 if (task_is_stopped_or_traced(p) && 1282 if (task_is_stopped_or_traced(p) &&
1285 !(p->jobctl & JOBCTL_LISTENING)) 1283 !(p->jobctl & JOBCTL_LISTENING))
1286 return &p->exit_code; 1284 return &p->exit_code;
1287 } else { 1285 } else {
1288 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1286 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1289 return &p->signal->group_exit_code; 1287 return &p->signal->group_exit_code;
1290 } 1288 }
1291 return NULL; 1289 return NULL;
1292 } 1290 }
1293 1291
1294 /** 1292 /**
1295 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1293 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1296 * @wo: wait options 1294 * @wo: wait options
1297 * @ptrace: is the wait for ptrace 1295 * @ptrace: is the wait for ptrace
1298 * @p: task to wait for 1296 * @p: task to wait for
1299 * 1297 *
1300 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1298 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1301 * 1299 *
1302 * CONTEXT: 1300 * CONTEXT:
1303 * read_lock(&tasklist_lock), which is released if return value is 1301 * read_lock(&tasklist_lock), which is released if return value is
1304 * non-zero. Also, grabs and releases @p->sighand->siglock. 1302 * non-zero. Also, grabs and releases @p->sighand->siglock.
1305 * 1303 *
1306 * RETURNS: 1304 * RETURNS:
1307 * 0 if wait condition didn't exist and search for other wait conditions 1305 * 0 if wait condition didn't exist and search for other wait conditions
1308 * should continue. Non-zero return, -errno on failure and @p's pid on 1306 * should continue. Non-zero return, -errno on failure and @p's pid on
1309 * success, implies that tasklist_lock is released and wait condition 1307 * success, implies that tasklist_lock is released and wait condition
1310 * search should terminate. 1308 * search should terminate.
1311 */ 1309 */
1312 static int wait_task_stopped(struct wait_opts *wo, 1310 static int wait_task_stopped(struct wait_opts *wo,
1313 int ptrace, struct task_struct *p) 1311 int ptrace, struct task_struct *p)
1314 { 1312 {
1315 struct siginfo __user *infop; 1313 struct siginfo __user *infop;
1316 int retval, exit_code, *p_code, why; 1314 int retval, exit_code, *p_code, why;
1317 uid_t uid = 0; /* unneeded, required by compiler */ 1315 uid_t uid = 0; /* unneeded, required by compiler */
1318 pid_t pid; 1316 pid_t pid;
1319 1317
1320 /* 1318 /*
1321 * Traditionally we see ptrace'd stopped tasks regardless of options. 1319 * Traditionally we see ptrace'd stopped tasks regardless of options.
1322 */ 1320 */
1323 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1321 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1324 return 0; 1322 return 0;
1325 1323
1326 if (!task_stopped_code(p, ptrace)) 1324 if (!task_stopped_code(p, ptrace))
1327 return 0; 1325 return 0;
1328 1326
1329 exit_code = 0; 1327 exit_code = 0;
1330 spin_lock_irq(&p->sighand->siglock); 1328 spin_lock_irq(&p->sighand->siglock);
1331 1329
1332 p_code = task_stopped_code(p, ptrace); 1330 p_code = task_stopped_code(p, ptrace);
1333 if (unlikely(!p_code)) 1331 if (unlikely(!p_code))
1334 goto unlock_sig; 1332 goto unlock_sig;
1335 1333
1336 exit_code = *p_code; 1334 exit_code = *p_code;
1337 if (!exit_code) 1335 if (!exit_code)
1338 goto unlock_sig; 1336 goto unlock_sig;
1339 1337
1340 if (!unlikely(wo->wo_flags & WNOWAIT)) 1338 if (!unlikely(wo->wo_flags & WNOWAIT))
1341 *p_code = 0; 1339 *p_code = 0;
1342 1340
1343 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1341 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1344 unlock_sig: 1342 unlock_sig:
1345 spin_unlock_irq(&p->sighand->siglock); 1343 spin_unlock_irq(&p->sighand->siglock);
1346 if (!exit_code) 1344 if (!exit_code)
1347 return 0; 1345 return 0;
1348 1346
1349 /* 1347 /*
1350 * Now we are pretty sure this task is interesting. 1348 * Now we are pretty sure this task is interesting.
1351 * Make sure it doesn't get reaped out from under us while we 1349 * Make sure it doesn't get reaped out from under us while we
1352 * give up the lock and then examine it below. We don't want to 1350 * give up the lock and then examine it below. We don't want to
1353 * keep holding onto the tasklist_lock while we call getrusage and 1351 * keep holding onto the tasklist_lock while we call getrusage and
1354 * possibly take page faults for user memory. 1352 * possibly take page faults for user memory.
1355 */ 1353 */
1356 get_task_struct(p); 1354 get_task_struct(p);
1357 pid = task_pid_vnr(p); 1355 pid = task_pid_vnr(p);
1358 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1356 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1359 read_unlock(&tasklist_lock); 1357 read_unlock(&tasklist_lock);
1360 1358
1361 if (unlikely(wo->wo_flags & WNOWAIT)) 1359 if (unlikely(wo->wo_flags & WNOWAIT))
1362 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); 1360 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1363 1361
1364 retval = wo->wo_rusage 1362 retval = wo->wo_rusage
1365 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1363 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1366 if (!retval && wo->wo_stat) 1364 if (!retval && wo->wo_stat)
1367 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); 1365 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1368 1366
1369 infop = wo->wo_info; 1367 infop = wo->wo_info;
1370 if (!retval && infop) 1368 if (!retval && infop)
1371 retval = put_user(SIGCHLD, &infop->si_signo); 1369 retval = put_user(SIGCHLD, &infop->si_signo);
1372 if (!retval && infop) 1370 if (!retval && infop)
1373 retval = put_user(0, &infop->si_errno); 1371 retval = put_user(0, &infop->si_errno);
1374 if (!retval && infop) 1372 if (!retval && infop)
1375 retval = put_user((short)why, &infop->si_code); 1373 retval = put_user((short)why, &infop->si_code);
1376 if (!retval && infop) 1374 if (!retval && infop)
1377 retval = put_user(exit_code, &infop->si_status); 1375 retval = put_user(exit_code, &infop->si_status);
1378 if (!retval && infop) 1376 if (!retval && infop)
1379 retval = put_user(pid, &infop->si_pid); 1377 retval = put_user(pid, &infop->si_pid);
1380 if (!retval && infop) 1378 if (!retval && infop)
1381 retval = put_user(uid, &infop->si_uid); 1379 retval = put_user(uid, &infop->si_uid);
1382 if (!retval) 1380 if (!retval)
1383 retval = pid; 1381 retval = pid;
1384 put_task_struct(p); 1382 put_task_struct(p);
1385 1383
1386 BUG_ON(!retval); 1384 BUG_ON(!retval);
1387 return retval; 1385 return retval;
1388 } 1386 }
1389 1387
1390 /* 1388 /*
1391 * Handle do_wait work for one task in a live, non-stopped state. 1389 * Handle do_wait work for one task in a live, non-stopped state.
1392 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1390 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1393 * the lock and this task is uninteresting. If we return nonzero, we have 1391 * the lock and this task is uninteresting. If we return nonzero, we have
1394 * released the lock and the system call should return. 1392 * released the lock and the system call should return.
1395 */ 1393 */
1396 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1394 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1397 { 1395 {
1398 int retval; 1396 int retval;
1399 pid_t pid; 1397 pid_t pid;
1400 uid_t uid; 1398 uid_t uid;
1401 1399
1402 if (!unlikely(wo->wo_flags & WCONTINUED)) 1400 if (!unlikely(wo->wo_flags & WCONTINUED))
1403 return 0; 1401 return 0;
1404 1402
1405 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1403 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1406 return 0; 1404 return 0;
1407 1405
1408 spin_lock_irq(&p->sighand->siglock); 1406 spin_lock_irq(&p->sighand->siglock);
1409 /* Re-check with the lock held. */ 1407 /* Re-check with the lock held. */
1410 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1408 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1411 spin_unlock_irq(&p->sighand->siglock); 1409 spin_unlock_irq(&p->sighand->siglock);
1412 return 0; 1410 return 0;
1413 } 1411 }
1414 if (!unlikely(wo->wo_flags & WNOWAIT)) 1412 if (!unlikely(wo->wo_flags & WNOWAIT))
1415 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1413 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1416 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1414 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1417 spin_unlock_irq(&p->sighand->siglock); 1415 spin_unlock_irq(&p->sighand->siglock);
1418 1416
1419 pid = task_pid_vnr(p); 1417 pid = task_pid_vnr(p);
1420 get_task_struct(p); 1418 get_task_struct(p);
1421 read_unlock(&tasklist_lock); 1419 read_unlock(&tasklist_lock);
1422 1420
1423 if (!wo->wo_info) { 1421 if (!wo->wo_info) {
1424 retval = wo->wo_rusage 1422 retval = wo->wo_rusage
1425 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1423 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1426 put_task_struct(p); 1424 put_task_struct(p);
1427 if (!retval && wo->wo_stat) 1425 if (!retval && wo->wo_stat)
1428 retval = put_user(0xffff, wo->wo_stat); 1426 retval = put_user(0xffff, wo->wo_stat);
1429 if (!retval) 1427 if (!retval)
1430 retval = pid; 1428 retval = pid;
1431 } else { 1429 } else {
1432 retval = wait_noreap_copyout(wo, p, pid, uid, 1430 retval = wait_noreap_copyout(wo, p, pid, uid,
1433 CLD_CONTINUED, SIGCONT); 1431 CLD_CONTINUED, SIGCONT);
1434 BUG_ON(retval == 0); 1432 BUG_ON(retval == 0);
1435 } 1433 }
1436 1434
1437 return retval; 1435 return retval;
1438 } 1436 }
1439 1437
1440 /* 1438 /*
1441 * Consider @p for a wait by @parent. 1439 * Consider @p for a wait by @parent.
1442 * 1440 *
1443 * -ECHILD should be in ->notask_error before the first call. 1441 * -ECHILD should be in ->notask_error before the first call.
1444 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1442 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1445 * Returns zero if the search for a child should continue; 1443 * Returns zero if the search for a child should continue;
1446 * then ->notask_error is 0 if @p is an eligible child, 1444 * then ->notask_error is 0 if @p is an eligible child,
1447 * or another error from security_task_wait(), or still -ECHILD. 1445 * or another error from security_task_wait(), or still -ECHILD.
1448 */ 1446 */
1449 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1447 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1450 struct task_struct *p) 1448 struct task_struct *p)
1451 { 1449 {
1452 int ret = eligible_child(wo, p); 1450 int ret = eligible_child(wo, p);
1453 if (!ret) 1451 if (!ret)
1454 return ret; 1452 return ret;
1455 1453
1456 ret = security_task_wait(p); 1454 ret = security_task_wait(p);
1457 if (unlikely(ret < 0)) { 1455 if (unlikely(ret < 0)) {
1458 /* 1456 /*
1459 * If we have not yet seen any eligible child, 1457 * If we have not yet seen any eligible child,
1460 * then let this error code replace -ECHILD. 1458 * then let this error code replace -ECHILD.
1461 * A permission error will give the user a clue 1459 * A permission error will give the user a clue
1462 * to look for security policy problems, rather 1460 * to look for security policy problems, rather
1463 * than for mysterious wait bugs. 1461 * than for mysterious wait bugs.
1464 */ 1462 */
1465 if (wo->notask_error) 1463 if (wo->notask_error)
1466 wo->notask_error = ret; 1464 wo->notask_error = ret;
1467 return 0; 1465 return 0;
1468 } 1466 }
1469 1467
1470 /* dead body doesn't have much to contribute */ 1468 /* dead body doesn't have much to contribute */
1471 if (unlikely(p->exit_state == EXIT_DEAD)) { 1469 if (unlikely(p->exit_state == EXIT_DEAD)) {
1472 /* 1470 /*
1473 * But do not ignore this task until the tracer does 1471 * But do not ignore this task until the tracer does
1474 * wait_task_zombie()->do_notify_parent(). 1472 * wait_task_zombie()->do_notify_parent().
1475 */ 1473 */
1476 if (likely(!ptrace) && unlikely(ptrace_reparented(p))) 1474 if (likely(!ptrace) && unlikely(ptrace_reparented(p)))
1477 wo->notask_error = 0; 1475 wo->notask_error = 0;
1478 return 0; 1476 return 0;
1479 } 1477 }
1480 1478
1481 /* slay zombie? */ 1479 /* slay zombie? */
1482 if (p->exit_state == EXIT_ZOMBIE) { 1480 if (p->exit_state == EXIT_ZOMBIE) {
1483 /* 1481 /*
1484 * A zombie ptracee is only visible to its ptracer. 1482 * A zombie ptracee is only visible to its ptracer.
1485 * Notification and reaping will be cascaded to the real 1483 * Notification and reaping will be cascaded to the real
1486 * parent when the ptracer detaches. 1484 * parent when the ptracer detaches.
1487 */ 1485 */
1488 if (likely(!ptrace) && unlikely(p->ptrace)) { 1486 if (likely(!ptrace) && unlikely(p->ptrace)) {
1489 /* it will become visible, clear notask_error */ 1487 /* it will become visible, clear notask_error */
1490 wo->notask_error = 0; 1488 wo->notask_error = 0;
1491 return 0; 1489 return 0;
1492 } 1490 }
1493 1491
1494 /* we don't reap group leaders with subthreads */ 1492 /* we don't reap group leaders with subthreads */
1495 if (!delay_group_leader(p)) 1493 if (!delay_group_leader(p))
1496 return wait_task_zombie(wo, p); 1494 return wait_task_zombie(wo, p);
1497 1495
1498 /* 1496 /*
1499 * Allow access to stopped/continued state via zombie by 1497 * Allow access to stopped/continued state via zombie by
1500 * falling through. Clearing of notask_error is complex. 1498 * falling through. Clearing of notask_error is complex.
1501 * 1499 *
1502 * When !@ptrace: 1500 * When !@ptrace:
1503 * 1501 *
1504 * If WEXITED is set, notask_error should naturally be 1502 * If WEXITED is set, notask_error should naturally be
1505 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1503 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1506 * so, if there are live subthreads, there are events to 1504 * so, if there are live subthreads, there are events to
1507 * wait for. If all subthreads are dead, it's still safe 1505 * wait for. If all subthreads are dead, it's still safe
1508 * to clear - this function will be called again in finite 1506 * to clear - this function will be called again in finite
1509 * amount time once all the subthreads are released and 1507 * amount time once all the subthreads are released and
1510 * will then return without clearing. 1508 * will then return without clearing.
1511 * 1509 *
1512 * When @ptrace: 1510 * When @ptrace:
1513 * 1511 *
1514 * Stopped state is per-task and thus can't change once the 1512 * Stopped state is per-task and thus can't change once the
1515 * target task dies. Only continued and exited can happen. 1513 * target task dies. Only continued and exited can happen.
1516 * Clear notask_error if WCONTINUED | WEXITED. 1514 * Clear notask_error if WCONTINUED | WEXITED.
1517 */ 1515 */
1518 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1516 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1519 wo->notask_error = 0; 1517 wo->notask_error = 0;
1520 } else { 1518 } else {
1521 /* 1519 /*
1522 * If @p is ptraced by a task in its real parent's group, 1520 * If @p is ptraced by a task in its real parent's group,
1523 * hide group stop/continued state when looking at @p as 1521 * hide group stop/continued state when looking at @p as
1524 * the real parent; otherwise, a single stop can be 1522 * the real parent; otherwise, a single stop can be
1525 * reported twice as group and ptrace stops. 1523 * reported twice as group and ptrace stops.
1526 * 1524 *
1527 * If a ptracer wants to distinguish the two events for its 1525 * If a ptracer wants to distinguish the two events for its
1528 * own children, it should create a separate process which 1526 * own children, it should create a separate process which
1529 * takes the role of real parent. 1527 * takes the role of real parent.
1530 */ 1528 */
1531 if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p)) 1529 if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p))
1532 return 0; 1530 return 0;
1533 1531
1534 /* 1532 /*
1535 * @p is alive and it's gonna stop, continue or exit, so 1533 * @p is alive and it's gonna stop, continue or exit, so
1536 * there always is something to wait for. 1534 * there always is something to wait for.
1537 */ 1535 */
1538 wo->notask_error = 0; 1536 wo->notask_error = 0;
1539 } 1537 }
1540 1538
1541 /* 1539 /*
1542 * Wait for stopped. Depending on @ptrace, different stopped state 1540 * Wait for stopped. Depending on @ptrace, different stopped state
1543 * is used and the two don't interact with each other. 1541 * is used and the two don't interact with each other.
1544 */ 1542 */
1545 ret = wait_task_stopped(wo, ptrace, p); 1543 ret = wait_task_stopped(wo, ptrace, p);
1546 if (ret) 1544 if (ret)
1547 return ret; 1545 return ret;
1548 1546
1549 /* 1547 /*
1550 * Wait for continued. There's only one continued state and the 1548 * Wait for continued. There's only one continued state and the
1551 * ptracer can consume it which can confuse the real parent. Don't 1549 * ptracer can consume it which can confuse the real parent. Don't
1552 * use WCONTINUED from ptracer. You don't need or want it. 1550 * use WCONTINUED from ptracer. You don't need or want it.
1553 */ 1551 */
1554 return wait_task_continued(wo, p); 1552 return wait_task_continued(wo, p);
1555 } 1553 }
1556 1554
1557 /* 1555 /*
1558 * Do the work of do_wait() for one thread in the group, @tsk. 1556 * Do the work of do_wait() for one thread in the group, @tsk.
1559 * 1557 *
1560 * -ECHILD should be in ->notask_error before the first call. 1558 * -ECHILD should be in ->notask_error before the first call.
1561 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1559 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1562 * Returns zero if the search for a child should continue; then 1560 * Returns zero if the search for a child should continue; then
1563 * ->notask_error is 0 if there were any eligible children, 1561 * ->notask_error is 0 if there were any eligible children,
1564 * or another error from security_task_wait(), or still -ECHILD. 1562 * or another error from security_task_wait(), or still -ECHILD.
1565 */ 1563 */
1566 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1564 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1567 { 1565 {
1568 struct task_struct *p; 1566 struct task_struct *p;
1569 1567
1570 list_for_each_entry(p, &tsk->children, sibling) { 1568 list_for_each_entry(p, &tsk->children, sibling) {
1571 int ret = wait_consider_task(wo, 0, p); 1569 int ret = wait_consider_task(wo, 0, p);
1572 if (ret) 1570 if (ret)
1573 return ret; 1571 return ret;
1574 } 1572 }
1575 1573
1576 return 0; 1574 return 0;
1577 } 1575 }
1578 1576
1579 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1577 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1580 { 1578 {
1581 struct task_struct *p; 1579 struct task_struct *p;
1582 1580
1583 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1581 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1584 int ret = wait_consider_task(wo, 1, p); 1582 int ret = wait_consider_task(wo, 1, p);
1585 if (ret) 1583 if (ret)
1586 return ret; 1584 return ret;
1587 } 1585 }
1588 1586
1589 return 0; 1587 return 0;
1590 } 1588 }
1591 1589
1592 static int child_wait_callback(wait_queue_t *wait, unsigned mode, 1590 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1593 int sync, void *key) 1591 int sync, void *key)
1594 { 1592 {
1595 struct wait_opts *wo = container_of(wait, struct wait_opts, 1593 struct wait_opts *wo = container_of(wait, struct wait_opts,
1596 child_wait); 1594 child_wait);
1597 struct task_struct *p = key; 1595 struct task_struct *p = key;
1598 1596
1599 if (!eligible_pid(wo, p)) 1597 if (!eligible_pid(wo, p))
1600 return 0; 1598 return 0;
1601 1599
1602 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1600 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1603 return 0; 1601 return 0;
1604 1602
1605 return default_wake_function(wait, mode, sync, key); 1603 return default_wake_function(wait, mode, sync, key);
1606 } 1604 }
1607 1605
1608 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1606 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1609 { 1607 {
1610 __wake_up_sync_key(&parent->signal->wait_chldexit, 1608 __wake_up_sync_key(&parent->signal->wait_chldexit,
1611 TASK_INTERRUPTIBLE, 1, p); 1609 TASK_INTERRUPTIBLE, 1, p);
1612 } 1610 }
1613 1611
1614 static long do_wait(struct wait_opts *wo) 1612 static long do_wait(struct wait_opts *wo)
1615 { 1613 {
1616 struct task_struct *tsk; 1614 struct task_struct *tsk;
1617 int retval; 1615 int retval;
1618 1616
1619 trace_sched_process_wait(wo->wo_pid); 1617 trace_sched_process_wait(wo->wo_pid);
1620 1618
1621 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1619 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1622 wo->child_wait.private = current; 1620 wo->child_wait.private = current;
1623 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait); 1621 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1624 repeat: 1622 repeat:
1625 /* 1623 /*
1626 * If there is nothing that can match our critiera just get out. 1624 * If there is nothing that can match our critiera just get out.
1627 * We will clear ->notask_error to zero if we see any child that 1625 * We will clear ->notask_error to zero if we see any child that
1628 * might later match our criteria, even if we are not able to reap 1626 * might later match our criteria, even if we are not able to reap
1629 * it yet. 1627 * it yet.
1630 */ 1628 */
1631 wo->notask_error = -ECHILD; 1629 wo->notask_error = -ECHILD;
1632 if ((wo->wo_type < PIDTYPE_MAX) && 1630 if ((wo->wo_type < PIDTYPE_MAX) &&
1633 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) 1631 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1634 goto notask; 1632 goto notask;
1635 1633
1636 set_current_state(TASK_INTERRUPTIBLE); 1634 set_current_state(TASK_INTERRUPTIBLE);
1637 read_lock(&tasklist_lock); 1635 read_lock(&tasklist_lock);
1638 tsk = current; 1636 tsk = current;
1639 do { 1637 do {
1640 retval = do_wait_thread(wo, tsk); 1638 retval = do_wait_thread(wo, tsk);
1641 if (retval) 1639 if (retval)
1642 goto end; 1640 goto end;
1643 1641
1644 retval = ptrace_do_wait(wo, tsk); 1642 retval = ptrace_do_wait(wo, tsk);
1645 if (retval) 1643 if (retval)
1646 goto end; 1644 goto end;
1647 1645
1648 if (wo->wo_flags & __WNOTHREAD) 1646 if (wo->wo_flags & __WNOTHREAD)
1649 break; 1647 break;
1650 } while_each_thread(current, tsk); 1648 } while_each_thread(current, tsk);
1651 read_unlock(&tasklist_lock); 1649 read_unlock(&tasklist_lock);
1652 1650
1653 notask: 1651 notask:
1654 retval = wo->notask_error; 1652 retval = wo->notask_error;
1655 if (!retval && !(wo->wo_flags & WNOHANG)) { 1653 if (!retval && !(wo->wo_flags & WNOHANG)) {
1656 retval = -ERESTARTSYS; 1654 retval = -ERESTARTSYS;
1657 if (!signal_pending(current)) { 1655 if (!signal_pending(current)) {
1658 schedule(); 1656 schedule();
1659 goto repeat; 1657 goto repeat;
1660 } 1658 }
1661 } 1659 }
1662 end: 1660 end:
1663 __set_current_state(TASK_RUNNING); 1661 __set_current_state(TASK_RUNNING);
1664 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait); 1662 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1665 return retval; 1663 return retval;
1666 } 1664 }
1667 1665
1668 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1666 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1669 infop, int, options, struct rusage __user *, ru) 1667 infop, int, options, struct rusage __user *, ru)
1670 { 1668 {
1671 struct wait_opts wo; 1669 struct wait_opts wo;
1672 struct pid *pid = NULL; 1670 struct pid *pid = NULL;
1673 enum pid_type type; 1671 enum pid_type type;
1674 long ret; 1672 long ret;
1675 1673
1676 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1674 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1677 return -EINVAL; 1675 return -EINVAL;
1678 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1676 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1679 return -EINVAL; 1677 return -EINVAL;
1680 1678
1681 switch (which) { 1679 switch (which) {
1682 case P_ALL: 1680 case P_ALL:
1683 type = PIDTYPE_MAX; 1681 type = PIDTYPE_MAX;
1684 break; 1682 break;
1685 case P_PID: 1683 case P_PID:
1686 type = PIDTYPE_PID; 1684 type = PIDTYPE_PID;
1687 if (upid <= 0) 1685 if (upid <= 0)
1688 return -EINVAL; 1686 return -EINVAL;
1689 break; 1687 break;
1690 case P_PGID: 1688 case P_PGID:
1691 type = PIDTYPE_PGID; 1689 type = PIDTYPE_PGID;
1692 if (upid <= 0) 1690 if (upid <= 0)
1693 return -EINVAL; 1691 return -EINVAL;
1694 break; 1692 break;
1695 default: 1693 default:
1696 return -EINVAL; 1694 return -EINVAL;
1697 } 1695 }
1698 1696
1699 if (type < PIDTYPE_MAX) 1697 if (type < PIDTYPE_MAX)
1700 pid = find_get_pid(upid); 1698 pid = find_get_pid(upid);
1701 1699
1702 wo.wo_type = type; 1700 wo.wo_type = type;
1703 wo.wo_pid = pid; 1701 wo.wo_pid = pid;
1704 wo.wo_flags = options; 1702 wo.wo_flags = options;
1705 wo.wo_info = infop; 1703 wo.wo_info = infop;
1706 wo.wo_stat = NULL; 1704 wo.wo_stat = NULL;
1707 wo.wo_rusage = ru; 1705 wo.wo_rusage = ru;
1708 ret = do_wait(&wo); 1706 ret = do_wait(&wo);
1709 1707
1710 if (ret > 0) { 1708 if (ret > 0) {
1711 ret = 0; 1709 ret = 0;
1712 } else if (infop) { 1710 } else if (infop) {
1713 /* 1711 /*
1714 * For a WNOHANG return, clear out all the fields 1712 * For a WNOHANG return, clear out all the fields
1715 * we would set so the user can easily tell the 1713 * we would set so the user can easily tell the
1716 * difference. 1714 * difference.
1717 */ 1715 */
1718 if (!ret) 1716 if (!ret)
1719 ret = put_user(0, &infop->si_signo); 1717 ret = put_user(0, &infop->si_signo);
1720 if (!ret) 1718 if (!ret)
1721 ret = put_user(0, &infop->si_errno); 1719 ret = put_user(0, &infop->si_errno);
1722 if (!ret) 1720 if (!ret)
1723 ret = put_user(0, &infop->si_code); 1721 ret = put_user(0, &infop->si_code);
1724 if (!ret) 1722 if (!ret)
1725 ret = put_user(0, &infop->si_pid); 1723 ret = put_user(0, &infop->si_pid);
1726 if (!ret) 1724 if (!ret)
1727 ret = put_user(0, &infop->si_uid); 1725 ret = put_user(0, &infop->si_uid);
1728 if (!ret) 1726 if (!ret)
1729 ret = put_user(0, &infop->si_status); 1727 ret = put_user(0, &infop->si_status);
1730 } 1728 }
1731 1729
1732 put_pid(pid); 1730 put_pid(pid);
1733 1731
1734 /* avoid REGPARM breakage on x86: */ 1732 /* avoid REGPARM breakage on x86: */
1735 asmlinkage_protect(5, ret, which, upid, infop, options, ru); 1733 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1736 return ret; 1734 return ret;
1737 } 1735 }
1738 1736
1739 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1737 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1740 int, options, struct rusage __user *, ru) 1738 int, options, struct rusage __user *, ru)
1741 { 1739 {
1742 struct wait_opts wo; 1740 struct wait_opts wo;
1743 struct pid *pid = NULL; 1741 struct pid *pid = NULL;
1744 enum pid_type type; 1742 enum pid_type type;
1745 long ret; 1743 long ret;
1746 1744
1747 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1745 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1748 __WNOTHREAD|__WCLONE|__WALL)) 1746 __WNOTHREAD|__WCLONE|__WALL))
1749 return -EINVAL; 1747 return -EINVAL;
1750 1748
1751 if (upid == -1) 1749 if (upid == -1)
1752 type = PIDTYPE_MAX; 1750 type = PIDTYPE_MAX;
1753 else if (upid < 0) { 1751 else if (upid < 0) {
1754 type = PIDTYPE_PGID; 1752 type = PIDTYPE_PGID;
1755 pid = find_get_pid(-upid); 1753 pid = find_get_pid(-upid);
1756 } else if (upid == 0) { 1754 } else if (upid == 0) {
1757 type = PIDTYPE_PGID; 1755 type = PIDTYPE_PGID;
1758 pid = get_task_pid(current, PIDTYPE_PGID); 1756 pid = get_task_pid(current, PIDTYPE_PGID);
1759 } else /* upid > 0 */ { 1757 } else /* upid > 0 */ {
1760 type = PIDTYPE_PID; 1758 type = PIDTYPE_PID;
1761 pid = find_get_pid(upid); 1759 pid = find_get_pid(upid);
1762 } 1760 }
1763 1761
1764 wo.wo_type = type; 1762 wo.wo_type = type;
1765 wo.wo_pid = pid; 1763 wo.wo_pid = pid;
1766 wo.wo_flags = options | WEXITED; 1764 wo.wo_flags = options | WEXITED;
1767 wo.wo_info = NULL; 1765 wo.wo_info = NULL;
1768 wo.wo_stat = stat_addr; 1766 wo.wo_stat = stat_addr;
1769 wo.wo_rusage = ru; 1767 wo.wo_rusage = ru;
1770 ret = do_wait(&wo); 1768 ret = do_wait(&wo);
1771 put_pid(pid); 1769 put_pid(pid);
1772 1770
1773 /* avoid REGPARM breakage on x86: */ 1771 /* avoid REGPARM breakage on x86: */
1774 asmlinkage_protect(4, ret, upid, stat_addr, options, ru); 1772 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1775 return ret; 1773 return ret;
1776 } 1774 }
1777 1775
1778 #ifdef __ARCH_WANT_SYS_WAITPID 1776 #ifdef __ARCH_WANT_SYS_WAITPID
1779 1777
1780 /* 1778 /*
1781 * sys_waitpid() remains for compatibility. waitpid() should be 1779 * sys_waitpid() remains for compatibility. waitpid() should be
1782 * implemented by calling sys_wait4() from libc.a. 1780 * implemented by calling sys_wait4() from libc.a.
1783 */ 1781 */
1784 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1782 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1785 { 1783 {
1786 return sys_wait4(pid, stat_addr, options, NULL); 1784 return sys_wait4(pid, stat_addr, options, NULL);
1787 } 1785 }
1788 1786
1789 #endif 1787 #endif
1790 1788