Commit 87c961cb747fa55b664b76abfcb9d44c14ae851f

Authored by Tomohiro Kusumi
Committed by Alasdair G Kergon
1 parent a9c88f2ebc

dm snapshot: persistent use define for disk header chunk size

This patch fixes hard-coded value for the size of a chunk that includes
disk header for persistent snapshot. It should be changed to existing
macro NUM_SNAPSHOT_HDR_CHUNKS instead of using hard-coded value 1.

Signed-off-by: Tomohiro Kusumi <kusumi.tomohiro@jp.fujitsu.com>
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>

Showing 1 changed file with 3 additions and 3 deletions Inline Diff

drivers/md/dm-snap-persistent.c
1 /* 1 /*
2 * Copyright (C) 2001-2002 Sistina Software (UK) Limited. 2 * Copyright (C) 2001-2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2006-2008 Red Hat GmbH 3 * Copyright (C) 2006-2008 Red Hat GmbH
4 * 4 *
5 * This file is released under the GPL. 5 * This file is released under the GPL.
6 */ 6 */
7 7
8 #include "dm-exception-store.h" 8 #include "dm-exception-store.h"
9 9
10 #include <linux/mm.h> 10 #include <linux/mm.h>
11 #include <linux/pagemap.h> 11 #include <linux/pagemap.h>
12 #include <linux/vmalloc.h> 12 #include <linux/vmalloc.h>
13 #include <linux/slab.h> 13 #include <linux/slab.h>
14 #include <linux/dm-io.h> 14 #include <linux/dm-io.h>
15 15
16 #define DM_MSG_PREFIX "persistent snapshot" 16 #define DM_MSG_PREFIX "persistent snapshot"
17 #define DM_CHUNK_SIZE_DEFAULT_SECTORS 32 /* 16KB */ 17 #define DM_CHUNK_SIZE_DEFAULT_SECTORS 32 /* 16KB */
18 18
19 /*----------------------------------------------------------------- 19 /*-----------------------------------------------------------------
20 * Persistent snapshots, by persistent we mean that the snapshot 20 * Persistent snapshots, by persistent we mean that the snapshot
21 * will survive a reboot. 21 * will survive a reboot.
22 *---------------------------------------------------------------*/ 22 *---------------------------------------------------------------*/
23 23
24 /* 24 /*
25 * We need to store a record of which parts of the origin have 25 * We need to store a record of which parts of the origin have
26 * been copied to the snapshot device. The snapshot code 26 * been copied to the snapshot device. The snapshot code
27 * requires that we copy exception chunks to chunk aligned areas 27 * requires that we copy exception chunks to chunk aligned areas
28 * of the COW store. It makes sense therefore, to store the 28 * of the COW store. It makes sense therefore, to store the
29 * metadata in chunk size blocks. 29 * metadata in chunk size blocks.
30 * 30 *
31 * There is no backward or forward compatibility implemented, 31 * There is no backward or forward compatibility implemented,
32 * snapshots with different disk versions than the kernel will 32 * snapshots with different disk versions than the kernel will
33 * not be usable. It is expected that "lvcreate" will blank out 33 * not be usable. It is expected that "lvcreate" will blank out
34 * the start of a fresh COW device before calling the snapshot 34 * the start of a fresh COW device before calling the snapshot
35 * constructor. 35 * constructor.
36 * 36 *
37 * The first chunk of the COW device just contains the header. 37 * The first chunk of the COW device just contains the header.
38 * After this there is a chunk filled with exception metadata, 38 * After this there is a chunk filled with exception metadata,
39 * followed by as many exception chunks as can fit in the 39 * followed by as many exception chunks as can fit in the
40 * metadata areas. 40 * metadata areas.
41 * 41 *
42 * All on disk structures are in little-endian format. The end 42 * All on disk structures are in little-endian format. The end
43 * of the exceptions info is indicated by an exception with a 43 * of the exceptions info is indicated by an exception with a
44 * new_chunk of 0, which is invalid since it would point to the 44 * new_chunk of 0, which is invalid since it would point to the
45 * header chunk. 45 * header chunk.
46 */ 46 */
47 47
48 /* 48 /*
49 * Magic for persistent snapshots: "SnAp" - Feeble isn't it. 49 * Magic for persistent snapshots: "SnAp" - Feeble isn't it.
50 */ 50 */
51 #define SNAP_MAGIC 0x70416e53 51 #define SNAP_MAGIC 0x70416e53
52 52
53 /* 53 /*
54 * The on-disk version of the metadata. 54 * The on-disk version of the metadata.
55 */ 55 */
56 #define SNAPSHOT_DISK_VERSION 1 56 #define SNAPSHOT_DISK_VERSION 1
57 57
58 #define NUM_SNAPSHOT_HDR_CHUNKS 1 58 #define NUM_SNAPSHOT_HDR_CHUNKS 1
59 59
60 struct disk_header { 60 struct disk_header {
61 uint32_t magic; 61 uint32_t magic;
62 62
63 /* 63 /*
64 * Is this snapshot valid. There is no way of recovering 64 * Is this snapshot valid. There is no way of recovering
65 * an invalid snapshot. 65 * an invalid snapshot.
66 */ 66 */
67 uint32_t valid; 67 uint32_t valid;
68 68
69 /* 69 /*
70 * Simple, incrementing version. no backward 70 * Simple, incrementing version. no backward
71 * compatibility. 71 * compatibility.
72 */ 72 */
73 uint32_t version; 73 uint32_t version;
74 74
75 /* In sectors */ 75 /* In sectors */
76 uint32_t chunk_size; 76 uint32_t chunk_size;
77 }; 77 };
78 78
79 struct disk_exception { 79 struct disk_exception {
80 uint64_t old_chunk; 80 uint64_t old_chunk;
81 uint64_t new_chunk; 81 uint64_t new_chunk;
82 }; 82 };
83 83
84 struct commit_callback { 84 struct commit_callback {
85 void (*callback)(void *, int success); 85 void (*callback)(void *, int success);
86 void *context; 86 void *context;
87 }; 87 };
88 88
89 /* 89 /*
90 * The top level structure for a persistent exception store. 90 * The top level structure for a persistent exception store.
91 */ 91 */
92 struct pstore { 92 struct pstore {
93 struct dm_exception_store *store; 93 struct dm_exception_store *store;
94 int version; 94 int version;
95 int valid; 95 int valid;
96 uint32_t exceptions_per_area; 96 uint32_t exceptions_per_area;
97 97
98 /* 98 /*
99 * Now that we have an asynchronous kcopyd there is no 99 * Now that we have an asynchronous kcopyd there is no
100 * need for large chunk sizes, so it wont hurt to have a 100 * need for large chunk sizes, so it wont hurt to have a
101 * whole chunks worth of metadata in memory at once. 101 * whole chunks worth of metadata in memory at once.
102 */ 102 */
103 void *area; 103 void *area;
104 104
105 /* 105 /*
106 * An area of zeros used to clear the next area. 106 * An area of zeros used to clear the next area.
107 */ 107 */
108 void *zero_area; 108 void *zero_area;
109 109
110 /* 110 /*
111 * An area used for header. The header can be written 111 * An area used for header. The header can be written
112 * concurrently with metadata (when invalidating the snapshot), 112 * concurrently with metadata (when invalidating the snapshot),
113 * so it needs a separate buffer. 113 * so it needs a separate buffer.
114 */ 114 */
115 void *header_area; 115 void *header_area;
116 116
117 /* 117 /*
118 * Used to keep track of which metadata area the data in 118 * Used to keep track of which metadata area the data in
119 * 'chunk' refers to. 119 * 'chunk' refers to.
120 */ 120 */
121 chunk_t current_area; 121 chunk_t current_area;
122 122
123 /* 123 /*
124 * The next free chunk for an exception. 124 * The next free chunk for an exception.
125 * 125 *
126 * When creating exceptions, all the chunks here and above are 126 * When creating exceptions, all the chunks here and above are
127 * free. It holds the next chunk to be allocated. On rare 127 * free. It holds the next chunk to be allocated. On rare
128 * occasions (e.g. after a system crash) holes can be left in 128 * occasions (e.g. after a system crash) holes can be left in
129 * the exception store because chunks can be committed out of 129 * the exception store because chunks can be committed out of
130 * order. 130 * order.
131 * 131 *
132 * When merging exceptions, it does not necessarily mean all the 132 * When merging exceptions, it does not necessarily mean all the
133 * chunks here and above are free. It holds the value it would 133 * chunks here and above are free. It holds the value it would
134 * have held if all chunks had been committed in order of 134 * have held if all chunks had been committed in order of
135 * allocation. Consequently the value may occasionally be 135 * allocation. Consequently the value may occasionally be
136 * slightly too low, but since it's only used for 'status' and 136 * slightly too low, but since it's only used for 'status' and
137 * it can never reach its minimum value too early this doesn't 137 * it can never reach its minimum value too early this doesn't
138 * matter. 138 * matter.
139 */ 139 */
140 140
141 chunk_t next_free; 141 chunk_t next_free;
142 142
143 /* 143 /*
144 * The index of next free exception in the current 144 * The index of next free exception in the current
145 * metadata area. 145 * metadata area.
146 */ 146 */
147 uint32_t current_committed; 147 uint32_t current_committed;
148 148
149 atomic_t pending_count; 149 atomic_t pending_count;
150 uint32_t callback_count; 150 uint32_t callback_count;
151 struct commit_callback *callbacks; 151 struct commit_callback *callbacks;
152 struct dm_io_client *io_client; 152 struct dm_io_client *io_client;
153 153
154 struct workqueue_struct *metadata_wq; 154 struct workqueue_struct *metadata_wq;
155 }; 155 };
156 156
157 static unsigned sectors_to_pages(unsigned sectors) 157 static unsigned sectors_to_pages(unsigned sectors)
158 { 158 {
159 return DIV_ROUND_UP(sectors, PAGE_SIZE >> 9); 159 return DIV_ROUND_UP(sectors, PAGE_SIZE >> 9);
160 } 160 }
161 161
162 static int alloc_area(struct pstore *ps) 162 static int alloc_area(struct pstore *ps)
163 { 163 {
164 int r = -ENOMEM; 164 int r = -ENOMEM;
165 size_t len; 165 size_t len;
166 166
167 len = ps->store->chunk_size << SECTOR_SHIFT; 167 len = ps->store->chunk_size << SECTOR_SHIFT;
168 168
169 /* 169 /*
170 * Allocate the chunk_size block of memory that will hold 170 * Allocate the chunk_size block of memory that will hold
171 * a single metadata area. 171 * a single metadata area.
172 */ 172 */
173 ps->area = vmalloc(len); 173 ps->area = vmalloc(len);
174 if (!ps->area) 174 if (!ps->area)
175 goto err_area; 175 goto err_area;
176 176
177 ps->zero_area = vmalloc(len); 177 ps->zero_area = vmalloc(len);
178 if (!ps->zero_area) 178 if (!ps->zero_area)
179 goto err_zero_area; 179 goto err_zero_area;
180 memset(ps->zero_area, 0, len); 180 memset(ps->zero_area, 0, len);
181 181
182 ps->header_area = vmalloc(len); 182 ps->header_area = vmalloc(len);
183 if (!ps->header_area) 183 if (!ps->header_area)
184 goto err_header_area; 184 goto err_header_area;
185 185
186 return 0; 186 return 0;
187 187
188 err_header_area: 188 err_header_area:
189 vfree(ps->zero_area); 189 vfree(ps->zero_area);
190 190
191 err_zero_area: 191 err_zero_area:
192 vfree(ps->area); 192 vfree(ps->area);
193 193
194 err_area: 194 err_area:
195 return r; 195 return r;
196 } 196 }
197 197
198 static void free_area(struct pstore *ps) 198 static void free_area(struct pstore *ps)
199 { 199 {
200 if (ps->area) 200 if (ps->area)
201 vfree(ps->area); 201 vfree(ps->area);
202 ps->area = NULL; 202 ps->area = NULL;
203 203
204 if (ps->zero_area) 204 if (ps->zero_area)
205 vfree(ps->zero_area); 205 vfree(ps->zero_area);
206 ps->zero_area = NULL; 206 ps->zero_area = NULL;
207 207
208 if (ps->header_area) 208 if (ps->header_area)
209 vfree(ps->header_area); 209 vfree(ps->header_area);
210 ps->header_area = NULL; 210 ps->header_area = NULL;
211 } 211 }
212 212
213 struct mdata_req { 213 struct mdata_req {
214 struct dm_io_region *where; 214 struct dm_io_region *where;
215 struct dm_io_request *io_req; 215 struct dm_io_request *io_req;
216 struct work_struct work; 216 struct work_struct work;
217 int result; 217 int result;
218 }; 218 };
219 219
220 static void do_metadata(struct work_struct *work) 220 static void do_metadata(struct work_struct *work)
221 { 221 {
222 struct mdata_req *req = container_of(work, struct mdata_req, work); 222 struct mdata_req *req = container_of(work, struct mdata_req, work);
223 223
224 req->result = dm_io(req->io_req, 1, req->where, NULL); 224 req->result = dm_io(req->io_req, 1, req->where, NULL);
225 } 225 }
226 226
227 /* 227 /*
228 * Read or write a chunk aligned and sized block of data from a device. 228 * Read or write a chunk aligned and sized block of data from a device.
229 */ 229 */
230 static int chunk_io(struct pstore *ps, void *area, chunk_t chunk, int rw, 230 static int chunk_io(struct pstore *ps, void *area, chunk_t chunk, int rw,
231 int metadata) 231 int metadata)
232 { 232 {
233 struct dm_io_region where = { 233 struct dm_io_region where = {
234 .bdev = dm_snap_cow(ps->store->snap)->bdev, 234 .bdev = dm_snap_cow(ps->store->snap)->bdev,
235 .sector = ps->store->chunk_size * chunk, 235 .sector = ps->store->chunk_size * chunk,
236 .count = ps->store->chunk_size, 236 .count = ps->store->chunk_size,
237 }; 237 };
238 struct dm_io_request io_req = { 238 struct dm_io_request io_req = {
239 .bi_rw = rw, 239 .bi_rw = rw,
240 .mem.type = DM_IO_VMA, 240 .mem.type = DM_IO_VMA,
241 .mem.ptr.vma = area, 241 .mem.ptr.vma = area,
242 .client = ps->io_client, 242 .client = ps->io_client,
243 .notify.fn = NULL, 243 .notify.fn = NULL,
244 }; 244 };
245 struct mdata_req req; 245 struct mdata_req req;
246 246
247 if (!metadata) 247 if (!metadata)
248 return dm_io(&io_req, 1, &where, NULL); 248 return dm_io(&io_req, 1, &where, NULL);
249 249
250 req.where = &where; 250 req.where = &where;
251 req.io_req = &io_req; 251 req.io_req = &io_req;
252 252
253 /* 253 /*
254 * Issue the synchronous I/O from a different thread 254 * Issue the synchronous I/O from a different thread
255 * to avoid generic_make_request recursion. 255 * to avoid generic_make_request recursion.
256 */ 256 */
257 INIT_WORK_ON_STACK(&req.work, do_metadata); 257 INIT_WORK_ON_STACK(&req.work, do_metadata);
258 queue_work(ps->metadata_wq, &req.work); 258 queue_work(ps->metadata_wq, &req.work);
259 flush_workqueue(ps->metadata_wq); 259 flush_workqueue(ps->metadata_wq);
260 260
261 return req.result; 261 return req.result;
262 } 262 }
263 263
264 /* 264 /*
265 * Convert a metadata area index to a chunk index. 265 * Convert a metadata area index to a chunk index.
266 */ 266 */
267 static chunk_t area_location(struct pstore *ps, chunk_t area) 267 static chunk_t area_location(struct pstore *ps, chunk_t area)
268 { 268 {
269 return 1 + ((ps->exceptions_per_area + 1) * area); 269 return NUM_SNAPSHOT_HDR_CHUNKS + ((ps->exceptions_per_area + 1) * area);
270 } 270 }
271 271
272 /* 272 /*
273 * Read or write a metadata area. Remembering to skip the first 273 * Read or write a metadata area. Remembering to skip the first
274 * chunk which holds the header. 274 * chunk which holds the header.
275 */ 275 */
276 static int area_io(struct pstore *ps, int rw) 276 static int area_io(struct pstore *ps, int rw)
277 { 277 {
278 int r; 278 int r;
279 chunk_t chunk; 279 chunk_t chunk;
280 280
281 chunk = area_location(ps, ps->current_area); 281 chunk = area_location(ps, ps->current_area);
282 282
283 r = chunk_io(ps, ps->area, chunk, rw, 0); 283 r = chunk_io(ps, ps->area, chunk, rw, 0);
284 if (r) 284 if (r)
285 return r; 285 return r;
286 286
287 return 0; 287 return 0;
288 } 288 }
289 289
290 static void zero_memory_area(struct pstore *ps) 290 static void zero_memory_area(struct pstore *ps)
291 { 291 {
292 memset(ps->area, 0, ps->store->chunk_size << SECTOR_SHIFT); 292 memset(ps->area, 0, ps->store->chunk_size << SECTOR_SHIFT);
293 } 293 }
294 294
295 static int zero_disk_area(struct pstore *ps, chunk_t area) 295 static int zero_disk_area(struct pstore *ps, chunk_t area)
296 { 296 {
297 return chunk_io(ps, ps->zero_area, area_location(ps, area), WRITE, 0); 297 return chunk_io(ps, ps->zero_area, area_location(ps, area), WRITE, 0);
298 } 298 }
299 299
300 static int read_header(struct pstore *ps, int *new_snapshot) 300 static int read_header(struct pstore *ps, int *new_snapshot)
301 { 301 {
302 int r; 302 int r;
303 struct disk_header *dh; 303 struct disk_header *dh;
304 unsigned chunk_size; 304 unsigned chunk_size;
305 int chunk_size_supplied = 1; 305 int chunk_size_supplied = 1;
306 char *chunk_err; 306 char *chunk_err;
307 307
308 /* 308 /*
309 * Use default chunk size (or logical_block_size, if larger) 309 * Use default chunk size (or logical_block_size, if larger)
310 * if none supplied 310 * if none supplied
311 */ 311 */
312 if (!ps->store->chunk_size) { 312 if (!ps->store->chunk_size) {
313 ps->store->chunk_size = max(DM_CHUNK_SIZE_DEFAULT_SECTORS, 313 ps->store->chunk_size = max(DM_CHUNK_SIZE_DEFAULT_SECTORS,
314 bdev_logical_block_size(dm_snap_cow(ps->store->snap)-> 314 bdev_logical_block_size(dm_snap_cow(ps->store->snap)->
315 bdev) >> 9); 315 bdev) >> 9);
316 ps->store->chunk_mask = ps->store->chunk_size - 1; 316 ps->store->chunk_mask = ps->store->chunk_size - 1;
317 ps->store->chunk_shift = ffs(ps->store->chunk_size) - 1; 317 ps->store->chunk_shift = ffs(ps->store->chunk_size) - 1;
318 chunk_size_supplied = 0; 318 chunk_size_supplied = 0;
319 } 319 }
320 320
321 ps->io_client = dm_io_client_create(sectors_to_pages(ps->store-> 321 ps->io_client = dm_io_client_create(sectors_to_pages(ps->store->
322 chunk_size)); 322 chunk_size));
323 if (IS_ERR(ps->io_client)) 323 if (IS_ERR(ps->io_client))
324 return PTR_ERR(ps->io_client); 324 return PTR_ERR(ps->io_client);
325 325
326 r = alloc_area(ps); 326 r = alloc_area(ps);
327 if (r) 327 if (r)
328 return r; 328 return r;
329 329
330 r = chunk_io(ps, ps->header_area, 0, READ, 1); 330 r = chunk_io(ps, ps->header_area, 0, READ, 1);
331 if (r) 331 if (r)
332 goto bad; 332 goto bad;
333 333
334 dh = ps->header_area; 334 dh = ps->header_area;
335 335
336 if (le32_to_cpu(dh->magic) == 0) { 336 if (le32_to_cpu(dh->magic) == 0) {
337 *new_snapshot = 1; 337 *new_snapshot = 1;
338 return 0; 338 return 0;
339 } 339 }
340 340
341 if (le32_to_cpu(dh->magic) != SNAP_MAGIC) { 341 if (le32_to_cpu(dh->magic) != SNAP_MAGIC) {
342 DMWARN("Invalid or corrupt snapshot"); 342 DMWARN("Invalid or corrupt snapshot");
343 r = -ENXIO; 343 r = -ENXIO;
344 goto bad; 344 goto bad;
345 } 345 }
346 346
347 *new_snapshot = 0; 347 *new_snapshot = 0;
348 ps->valid = le32_to_cpu(dh->valid); 348 ps->valid = le32_to_cpu(dh->valid);
349 ps->version = le32_to_cpu(dh->version); 349 ps->version = le32_to_cpu(dh->version);
350 chunk_size = le32_to_cpu(dh->chunk_size); 350 chunk_size = le32_to_cpu(dh->chunk_size);
351 351
352 if (ps->store->chunk_size == chunk_size) 352 if (ps->store->chunk_size == chunk_size)
353 return 0; 353 return 0;
354 354
355 if (chunk_size_supplied) 355 if (chunk_size_supplied)
356 DMWARN("chunk size %u in device metadata overrides " 356 DMWARN("chunk size %u in device metadata overrides "
357 "table chunk size of %u.", 357 "table chunk size of %u.",
358 chunk_size, ps->store->chunk_size); 358 chunk_size, ps->store->chunk_size);
359 359
360 /* We had a bogus chunk_size. Fix stuff up. */ 360 /* We had a bogus chunk_size. Fix stuff up. */
361 free_area(ps); 361 free_area(ps);
362 362
363 r = dm_exception_store_set_chunk_size(ps->store, chunk_size, 363 r = dm_exception_store_set_chunk_size(ps->store, chunk_size,
364 &chunk_err); 364 &chunk_err);
365 if (r) { 365 if (r) {
366 DMERR("invalid on-disk chunk size %u: %s.", 366 DMERR("invalid on-disk chunk size %u: %s.",
367 chunk_size, chunk_err); 367 chunk_size, chunk_err);
368 return r; 368 return r;
369 } 369 }
370 370
371 r = dm_io_client_resize(sectors_to_pages(ps->store->chunk_size), 371 r = dm_io_client_resize(sectors_to_pages(ps->store->chunk_size),
372 ps->io_client); 372 ps->io_client);
373 if (r) 373 if (r)
374 return r; 374 return r;
375 375
376 r = alloc_area(ps); 376 r = alloc_area(ps);
377 return r; 377 return r;
378 378
379 bad: 379 bad:
380 free_area(ps); 380 free_area(ps);
381 return r; 381 return r;
382 } 382 }
383 383
384 static int write_header(struct pstore *ps) 384 static int write_header(struct pstore *ps)
385 { 385 {
386 struct disk_header *dh; 386 struct disk_header *dh;
387 387
388 memset(ps->header_area, 0, ps->store->chunk_size << SECTOR_SHIFT); 388 memset(ps->header_area, 0, ps->store->chunk_size << SECTOR_SHIFT);
389 389
390 dh = ps->header_area; 390 dh = ps->header_area;
391 dh->magic = cpu_to_le32(SNAP_MAGIC); 391 dh->magic = cpu_to_le32(SNAP_MAGIC);
392 dh->valid = cpu_to_le32(ps->valid); 392 dh->valid = cpu_to_le32(ps->valid);
393 dh->version = cpu_to_le32(ps->version); 393 dh->version = cpu_to_le32(ps->version);
394 dh->chunk_size = cpu_to_le32(ps->store->chunk_size); 394 dh->chunk_size = cpu_to_le32(ps->store->chunk_size);
395 395
396 return chunk_io(ps, ps->header_area, 0, WRITE, 1); 396 return chunk_io(ps, ps->header_area, 0, WRITE, 1);
397 } 397 }
398 398
399 /* 399 /*
400 * Access functions for the disk exceptions, these do the endian conversions. 400 * Access functions for the disk exceptions, these do the endian conversions.
401 */ 401 */
402 static struct disk_exception *get_exception(struct pstore *ps, uint32_t index) 402 static struct disk_exception *get_exception(struct pstore *ps, uint32_t index)
403 { 403 {
404 BUG_ON(index >= ps->exceptions_per_area); 404 BUG_ON(index >= ps->exceptions_per_area);
405 405
406 return ((struct disk_exception *) ps->area) + index; 406 return ((struct disk_exception *) ps->area) + index;
407 } 407 }
408 408
409 static void read_exception(struct pstore *ps, 409 static void read_exception(struct pstore *ps,
410 uint32_t index, struct disk_exception *result) 410 uint32_t index, struct disk_exception *result)
411 { 411 {
412 struct disk_exception *e = get_exception(ps, index); 412 struct disk_exception *e = get_exception(ps, index);
413 413
414 /* copy it */ 414 /* copy it */
415 result->old_chunk = le64_to_cpu(e->old_chunk); 415 result->old_chunk = le64_to_cpu(e->old_chunk);
416 result->new_chunk = le64_to_cpu(e->new_chunk); 416 result->new_chunk = le64_to_cpu(e->new_chunk);
417 } 417 }
418 418
419 static void write_exception(struct pstore *ps, 419 static void write_exception(struct pstore *ps,
420 uint32_t index, struct disk_exception *de) 420 uint32_t index, struct disk_exception *de)
421 { 421 {
422 struct disk_exception *e = get_exception(ps, index); 422 struct disk_exception *e = get_exception(ps, index);
423 423
424 /* copy it */ 424 /* copy it */
425 e->old_chunk = cpu_to_le64(de->old_chunk); 425 e->old_chunk = cpu_to_le64(de->old_chunk);
426 e->new_chunk = cpu_to_le64(de->new_chunk); 426 e->new_chunk = cpu_to_le64(de->new_chunk);
427 } 427 }
428 428
429 static void clear_exception(struct pstore *ps, uint32_t index) 429 static void clear_exception(struct pstore *ps, uint32_t index)
430 { 430 {
431 struct disk_exception *e = get_exception(ps, index); 431 struct disk_exception *e = get_exception(ps, index);
432 432
433 /* clear it */ 433 /* clear it */
434 e->old_chunk = 0; 434 e->old_chunk = 0;
435 e->new_chunk = 0; 435 e->new_chunk = 0;
436 } 436 }
437 437
438 /* 438 /*
439 * Registers the exceptions that are present in the current area. 439 * Registers the exceptions that are present in the current area.
440 * 'full' is filled in to indicate if the area has been 440 * 'full' is filled in to indicate if the area has been
441 * filled. 441 * filled.
442 */ 442 */
443 static int insert_exceptions(struct pstore *ps, 443 static int insert_exceptions(struct pstore *ps,
444 int (*callback)(void *callback_context, 444 int (*callback)(void *callback_context,
445 chunk_t old, chunk_t new), 445 chunk_t old, chunk_t new),
446 void *callback_context, 446 void *callback_context,
447 int *full) 447 int *full)
448 { 448 {
449 int r; 449 int r;
450 unsigned int i; 450 unsigned int i;
451 struct disk_exception de; 451 struct disk_exception de;
452 452
453 /* presume the area is full */ 453 /* presume the area is full */
454 *full = 1; 454 *full = 1;
455 455
456 for (i = 0; i < ps->exceptions_per_area; i++) { 456 for (i = 0; i < ps->exceptions_per_area; i++) {
457 read_exception(ps, i, &de); 457 read_exception(ps, i, &de);
458 458
459 /* 459 /*
460 * If the new_chunk is pointing at the start of 460 * If the new_chunk is pointing at the start of
461 * the COW device, where the first metadata area 461 * the COW device, where the first metadata area
462 * is we know that we've hit the end of the 462 * is we know that we've hit the end of the
463 * exceptions. Therefore the area is not full. 463 * exceptions. Therefore the area is not full.
464 */ 464 */
465 if (de.new_chunk == 0LL) { 465 if (de.new_chunk == 0LL) {
466 ps->current_committed = i; 466 ps->current_committed = i;
467 *full = 0; 467 *full = 0;
468 break; 468 break;
469 } 469 }
470 470
471 /* 471 /*
472 * Keep track of the start of the free chunks. 472 * Keep track of the start of the free chunks.
473 */ 473 */
474 if (ps->next_free <= de.new_chunk) 474 if (ps->next_free <= de.new_chunk)
475 ps->next_free = de.new_chunk + 1; 475 ps->next_free = de.new_chunk + 1;
476 476
477 /* 477 /*
478 * Otherwise we add the exception to the snapshot. 478 * Otherwise we add the exception to the snapshot.
479 */ 479 */
480 r = callback(callback_context, de.old_chunk, de.new_chunk); 480 r = callback(callback_context, de.old_chunk, de.new_chunk);
481 if (r) 481 if (r)
482 return r; 482 return r;
483 } 483 }
484 484
485 return 0; 485 return 0;
486 } 486 }
487 487
488 static int read_exceptions(struct pstore *ps, 488 static int read_exceptions(struct pstore *ps,
489 int (*callback)(void *callback_context, chunk_t old, 489 int (*callback)(void *callback_context, chunk_t old,
490 chunk_t new), 490 chunk_t new),
491 void *callback_context) 491 void *callback_context)
492 { 492 {
493 int r, full = 1; 493 int r, full = 1;
494 494
495 /* 495 /*
496 * Keeping reading chunks and inserting exceptions until 496 * Keeping reading chunks and inserting exceptions until
497 * we find a partially full area. 497 * we find a partially full area.
498 */ 498 */
499 for (ps->current_area = 0; full; ps->current_area++) { 499 for (ps->current_area = 0; full; ps->current_area++) {
500 r = area_io(ps, READ); 500 r = area_io(ps, READ);
501 if (r) 501 if (r)
502 return r; 502 return r;
503 503
504 r = insert_exceptions(ps, callback, callback_context, &full); 504 r = insert_exceptions(ps, callback, callback_context, &full);
505 if (r) 505 if (r)
506 return r; 506 return r;
507 } 507 }
508 508
509 ps->current_area--; 509 ps->current_area--;
510 510
511 return 0; 511 return 0;
512 } 512 }
513 513
514 static struct pstore *get_info(struct dm_exception_store *store) 514 static struct pstore *get_info(struct dm_exception_store *store)
515 { 515 {
516 return (struct pstore *) store->context; 516 return (struct pstore *) store->context;
517 } 517 }
518 518
519 static void persistent_usage(struct dm_exception_store *store, 519 static void persistent_usage(struct dm_exception_store *store,
520 sector_t *total_sectors, 520 sector_t *total_sectors,
521 sector_t *sectors_allocated, 521 sector_t *sectors_allocated,
522 sector_t *metadata_sectors) 522 sector_t *metadata_sectors)
523 { 523 {
524 struct pstore *ps = get_info(store); 524 struct pstore *ps = get_info(store);
525 525
526 *sectors_allocated = ps->next_free * store->chunk_size; 526 *sectors_allocated = ps->next_free * store->chunk_size;
527 *total_sectors = get_dev_size(dm_snap_cow(store->snap)->bdev); 527 *total_sectors = get_dev_size(dm_snap_cow(store->snap)->bdev);
528 528
529 /* 529 /*
530 * First chunk is the fixed header. 530 * First chunk is the fixed header.
531 * Then there are (ps->current_area + 1) metadata chunks, each one 531 * Then there are (ps->current_area + 1) metadata chunks, each one
532 * separated from the next by ps->exceptions_per_area data chunks. 532 * separated from the next by ps->exceptions_per_area data chunks.
533 */ 533 */
534 *metadata_sectors = (ps->current_area + 1 + NUM_SNAPSHOT_HDR_CHUNKS) * 534 *metadata_sectors = (ps->current_area + 1 + NUM_SNAPSHOT_HDR_CHUNKS) *
535 store->chunk_size; 535 store->chunk_size;
536 } 536 }
537 537
538 static void persistent_dtr(struct dm_exception_store *store) 538 static void persistent_dtr(struct dm_exception_store *store)
539 { 539 {
540 struct pstore *ps = get_info(store); 540 struct pstore *ps = get_info(store);
541 541
542 destroy_workqueue(ps->metadata_wq); 542 destroy_workqueue(ps->metadata_wq);
543 543
544 /* Created in read_header */ 544 /* Created in read_header */
545 if (ps->io_client) 545 if (ps->io_client)
546 dm_io_client_destroy(ps->io_client); 546 dm_io_client_destroy(ps->io_client);
547 free_area(ps); 547 free_area(ps);
548 548
549 /* Allocated in persistent_read_metadata */ 549 /* Allocated in persistent_read_metadata */
550 if (ps->callbacks) 550 if (ps->callbacks)
551 vfree(ps->callbacks); 551 vfree(ps->callbacks);
552 552
553 kfree(ps); 553 kfree(ps);
554 } 554 }
555 555
556 static int persistent_read_metadata(struct dm_exception_store *store, 556 static int persistent_read_metadata(struct dm_exception_store *store,
557 int (*callback)(void *callback_context, 557 int (*callback)(void *callback_context,
558 chunk_t old, chunk_t new), 558 chunk_t old, chunk_t new),
559 void *callback_context) 559 void *callback_context)
560 { 560 {
561 int r, uninitialized_var(new_snapshot); 561 int r, uninitialized_var(new_snapshot);
562 struct pstore *ps = get_info(store); 562 struct pstore *ps = get_info(store);
563 563
564 /* 564 /*
565 * Read the snapshot header. 565 * Read the snapshot header.
566 */ 566 */
567 r = read_header(ps, &new_snapshot); 567 r = read_header(ps, &new_snapshot);
568 if (r) 568 if (r)
569 return r; 569 return r;
570 570
571 /* 571 /*
572 * Now we know correct chunk_size, complete the initialisation. 572 * Now we know correct chunk_size, complete the initialisation.
573 */ 573 */
574 ps->exceptions_per_area = (ps->store->chunk_size << SECTOR_SHIFT) / 574 ps->exceptions_per_area = (ps->store->chunk_size << SECTOR_SHIFT) /
575 sizeof(struct disk_exception); 575 sizeof(struct disk_exception);
576 ps->callbacks = dm_vcalloc(ps->exceptions_per_area, 576 ps->callbacks = dm_vcalloc(ps->exceptions_per_area,
577 sizeof(*ps->callbacks)); 577 sizeof(*ps->callbacks));
578 if (!ps->callbacks) 578 if (!ps->callbacks)
579 return -ENOMEM; 579 return -ENOMEM;
580 580
581 /* 581 /*
582 * Do we need to setup a new snapshot ? 582 * Do we need to setup a new snapshot ?
583 */ 583 */
584 if (new_snapshot) { 584 if (new_snapshot) {
585 r = write_header(ps); 585 r = write_header(ps);
586 if (r) { 586 if (r) {
587 DMWARN("write_header failed"); 587 DMWARN("write_header failed");
588 return r; 588 return r;
589 } 589 }
590 590
591 ps->current_area = 0; 591 ps->current_area = 0;
592 zero_memory_area(ps); 592 zero_memory_area(ps);
593 r = zero_disk_area(ps, 0); 593 r = zero_disk_area(ps, 0);
594 if (r) 594 if (r)
595 DMWARN("zero_disk_area(0) failed"); 595 DMWARN("zero_disk_area(0) failed");
596 return r; 596 return r;
597 } 597 }
598 /* 598 /*
599 * Sanity checks. 599 * Sanity checks.
600 */ 600 */
601 if (ps->version != SNAPSHOT_DISK_VERSION) { 601 if (ps->version != SNAPSHOT_DISK_VERSION) {
602 DMWARN("unable to handle snapshot disk version %d", 602 DMWARN("unable to handle snapshot disk version %d",
603 ps->version); 603 ps->version);
604 return -EINVAL; 604 return -EINVAL;
605 } 605 }
606 606
607 /* 607 /*
608 * Metadata are valid, but snapshot is invalidated 608 * Metadata are valid, but snapshot is invalidated
609 */ 609 */
610 if (!ps->valid) 610 if (!ps->valid)
611 return 1; 611 return 1;
612 612
613 /* 613 /*
614 * Read the metadata. 614 * Read the metadata.
615 */ 615 */
616 r = read_exceptions(ps, callback, callback_context); 616 r = read_exceptions(ps, callback, callback_context);
617 617
618 return r; 618 return r;
619 } 619 }
620 620
621 static int persistent_prepare_exception(struct dm_exception_store *store, 621 static int persistent_prepare_exception(struct dm_exception_store *store,
622 struct dm_exception *e) 622 struct dm_exception *e)
623 { 623 {
624 struct pstore *ps = get_info(store); 624 struct pstore *ps = get_info(store);
625 uint32_t stride; 625 uint32_t stride;
626 chunk_t next_free; 626 chunk_t next_free;
627 sector_t size = get_dev_size(dm_snap_cow(store->snap)->bdev); 627 sector_t size = get_dev_size(dm_snap_cow(store->snap)->bdev);
628 628
629 /* Is there enough room ? */ 629 /* Is there enough room ? */
630 if (size < ((ps->next_free + 1) * store->chunk_size)) 630 if (size < ((ps->next_free + 1) * store->chunk_size))
631 return -ENOSPC; 631 return -ENOSPC;
632 632
633 e->new_chunk = ps->next_free; 633 e->new_chunk = ps->next_free;
634 634
635 /* 635 /*
636 * Move onto the next free pending, making sure to take 636 * Move onto the next free pending, making sure to take
637 * into account the location of the metadata chunks. 637 * into account the location of the metadata chunks.
638 */ 638 */
639 stride = (ps->exceptions_per_area + 1); 639 stride = (ps->exceptions_per_area + 1);
640 next_free = ++ps->next_free; 640 next_free = ++ps->next_free;
641 if (sector_div(next_free, stride) == 1) 641 if (sector_div(next_free, stride) == 1)
642 ps->next_free++; 642 ps->next_free++;
643 643
644 atomic_inc(&ps->pending_count); 644 atomic_inc(&ps->pending_count);
645 return 0; 645 return 0;
646 } 646 }
647 647
648 static void persistent_commit_exception(struct dm_exception_store *store, 648 static void persistent_commit_exception(struct dm_exception_store *store,
649 struct dm_exception *e, 649 struct dm_exception *e,
650 void (*callback) (void *, int success), 650 void (*callback) (void *, int success),
651 void *callback_context) 651 void *callback_context)
652 { 652 {
653 unsigned int i; 653 unsigned int i;
654 struct pstore *ps = get_info(store); 654 struct pstore *ps = get_info(store);
655 struct disk_exception de; 655 struct disk_exception de;
656 struct commit_callback *cb; 656 struct commit_callback *cb;
657 657
658 de.old_chunk = e->old_chunk; 658 de.old_chunk = e->old_chunk;
659 de.new_chunk = e->new_chunk; 659 de.new_chunk = e->new_chunk;
660 write_exception(ps, ps->current_committed++, &de); 660 write_exception(ps, ps->current_committed++, &de);
661 661
662 /* 662 /*
663 * Add the callback to the back of the array. This code 663 * Add the callback to the back of the array. This code
664 * is the only place where the callback array is 664 * is the only place where the callback array is
665 * manipulated, and we know that it will never be called 665 * manipulated, and we know that it will never be called
666 * multiple times concurrently. 666 * multiple times concurrently.
667 */ 667 */
668 cb = ps->callbacks + ps->callback_count++; 668 cb = ps->callbacks + ps->callback_count++;
669 cb->callback = callback; 669 cb->callback = callback;
670 cb->context = callback_context; 670 cb->context = callback_context;
671 671
672 /* 672 /*
673 * If there are exceptions in flight and we have not yet 673 * If there are exceptions in flight and we have not yet
674 * filled this metadata area there's nothing more to do. 674 * filled this metadata area there's nothing more to do.
675 */ 675 */
676 if (!atomic_dec_and_test(&ps->pending_count) && 676 if (!atomic_dec_and_test(&ps->pending_count) &&
677 (ps->current_committed != ps->exceptions_per_area)) 677 (ps->current_committed != ps->exceptions_per_area))
678 return; 678 return;
679 679
680 /* 680 /*
681 * If we completely filled the current area, then wipe the next one. 681 * If we completely filled the current area, then wipe the next one.
682 */ 682 */
683 if ((ps->current_committed == ps->exceptions_per_area) && 683 if ((ps->current_committed == ps->exceptions_per_area) &&
684 zero_disk_area(ps, ps->current_area + 1)) 684 zero_disk_area(ps, ps->current_area + 1))
685 ps->valid = 0; 685 ps->valid = 0;
686 686
687 /* 687 /*
688 * Commit exceptions to disk. 688 * Commit exceptions to disk.
689 */ 689 */
690 if (ps->valid && area_io(ps, WRITE_BARRIER)) 690 if (ps->valid && area_io(ps, WRITE_BARRIER))
691 ps->valid = 0; 691 ps->valid = 0;
692 692
693 /* 693 /*
694 * Advance to the next area if this one is full. 694 * Advance to the next area if this one is full.
695 */ 695 */
696 if (ps->current_committed == ps->exceptions_per_area) { 696 if (ps->current_committed == ps->exceptions_per_area) {
697 ps->current_committed = 0; 697 ps->current_committed = 0;
698 ps->current_area++; 698 ps->current_area++;
699 zero_memory_area(ps); 699 zero_memory_area(ps);
700 } 700 }
701 701
702 for (i = 0; i < ps->callback_count; i++) { 702 for (i = 0; i < ps->callback_count; i++) {
703 cb = ps->callbacks + i; 703 cb = ps->callbacks + i;
704 cb->callback(cb->context, ps->valid); 704 cb->callback(cb->context, ps->valid);
705 } 705 }
706 706
707 ps->callback_count = 0; 707 ps->callback_count = 0;
708 } 708 }
709 709
710 static int persistent_prepare_merge(struct dm_exception_store *store, 710 static int persistent_prepare_merge(struct dm_exception_store *store,
711 chunk_t *last_old_chunk, 711 chunk_t *last_old_chunk,
712 chunk_t *last_new_chunk) 712 chunk_t *last_new_chunk)
713 { 713 {
714 struct pstore *ps = get_info(store); 714 struct pstore *ps = get_info(store);
715 struct disk_exception de; 715 struct disk_exception de;
716 int nr_consecutive; 716 int nr_consecutive;
717 int r; 717 int r;
718 718
719 /* 719 /*
720 * When current area is empty, move back to preceding area. 720 * When current area is empty, move back to preceding area.
721 */ 721 */
722 if (!ps->current_committed) { 722 if (!ps->current_committed) {
723 /* 723 /*
724 * Have we finished? 724 * Have we finished?
725 */ 725 */
726 if (!ps->current_area) 726 if (!ps->current_area)
727 return 0; 727 return 0;
728 728
729 ps->current_area--; 729 ps->current_area--;
730 r = area_io(ps, READ); 730 r = area_io(ps, READ);
731 if (r < 0) 731 if (r < 0)
732 return r; 732 return r;
733 ps->current_committed = ps->exceptions_per_area; 733 ps->current_committed = ps->exceptions_per_area;
734 } 734 }
735 735
736 read_exception(ps, ps->current_committed - 1, &de); 736 read_exception(ps, ps->current_committed - 1, &de);
737 *last_old_chunk = de.old_chunk; 737 *last_old_chunk = de.old_chunk;
738 *last_new_chunk = de.new_chunk; 738 *last_new_chunk = de.new_chunk;
739 739
740 /* 740 /*
741 * Find number of consecutive chunks within the current area, 741 * Find number of consecutive chunks within the current area,
742 * working backwards. 742 * working backwards.
743 */ 743 */
744 for (nr_consecutive = 1; nr_consecutive < ps->current_committed; 744 for (nr_consecutive = 1; nr_consecutive < ps->current_committed;
745 nr_consecutive++) { 745 nr_consecutive++) {
746 read_exception(ps, ps->current_committed - 1 - nr_consecutive, 746 read_exception(ps, ps->current_committed - 1 - nr_consecutive,
747 &de); 747 &de);
748 if (de.old_chunk != *last_old_chunk - nr_consecutive || 748 if (de.old_chunk != *last_old_chunk - nr_consecutive ||
749 de.new_chunk != *last_new_chunk - nr_consecutive) 749 de.new_chunk != *last_new_chunk - nr_consecutive)
750 break; 750 break;
751 } 751 }
752 752
753 return nr_consecutive; 753 return nr_consecutive;
754 } 754 }
755 755
756 static int persistent_commit_merge(struct dm_exception_store *store, 756 static int persistent_commit_merge(struct dm_exception_store *store,
757 int nr_merged) 757 int nr_merged)
758 { 758 {
759 int r, i; 759 int r, i;
760 struct pstore *ps = get_info(store); 760 struct pstore *ps = get_info(store);
761 761
762 BUG_ON(nr_merged > ps->current_committed); 762 BUG_ON(nr_merged > ps->current_committed);
763 763
764 for (i = 0; i < nr_merged; i++) 764 for (i = 0; i < nr_merged; i++)
765 clear_exception(ps, ps->current_committed - 1 - i); 765 clear_exception(ps, ps->current_committed - 1 - i);
766 766
767 r = area_io(ps, WRITE); 767 r = area_io(ps, WRITE);
768 if (r < 0) 768 if (r < 0)
769 return r; 769 return r;
770 770
771 ps->current_committed -= nr_merged; 771 ps->current_committed -= nr_merged;
772 772
773 /* 773 /*
774 * At this stage, only persistent_usage() uses ps->next_free, so 774 * At this stage, only persistent_usage() uses ps->next_free, so
775 * we make no attempt to keep ps->next_free strictly accurate 775 * we make no attempt to keep ps->next_free strictly accurate
776 * as exceptions may have been committed out-of-order originally. 776 * as exceptions may have been committed out-of-order originally.
777 * Once a snapshot has become merging, we set it to the value it 777 * Once a snapshot has become merging, we set it to the value it
778 * would have held had all the exceptions been committed in order. 778 * would have held had all the exceptions been committed in order.
779 * 779 *
780 * ps->current_area does not get reduced by prepare_merge() until 780 * ps->current_area does not get reduced by prepare_merge() until
781 * after commit_merge() has removed the nr_merged previous exceptions. 781 * after commit_merge() has removed the nr_merged previous exceptions.
782 */ 782 */
783 ps->next_free = (area_location(ps, ps->current_area) - 1) + 783 ps->next_free = area_location(ps, ps->current_area) +
784 (ps->current_committed + 1) + NUM_SNAPSHOT_HDR_CHUNKS; 784 ps->current_committed + 1;
785 785
786 return 0; 786 return 0;
787 } 787 }
788 788
789 static void persistent_drop_snapshot(struct dm_exception_store *store) 789 static void persistent_drop_snapshot(struct dm_exception_store *store)
790 { 790 {
791 struct pstore *ps = get_info(store); 791 struct pstore *ps = get_info(store);
792 792
793 ps->valid = 0; 793 ps->valid = 0;
794 if (write_header(ps)) 794 if (write_header(ps))
795 DMWARN("write header failed"); 795 DMWARN("write header failed");
796 } 796 }
797 797
798 static int persistent_ctr(struct dm_exception_store *store, 798 static int persistent_ctr(struct dm_exception_store *store,
799 unsigned argc, char **argv) 799 unsigned argc, char **argv)
800 { 800 {
801 struct pstore *ps; 801 struct pstore *ps;
802 802
803 /* allocate the pstore */ 803 /* allocate the pstore */
804 ps = kzalloc(sizeof(*ps), GFP_KERNEL); 804 ps = kzalloc(sizeof(*ps), GFP_KERNEL);
805 if (!ps) 805 if (!ps)
806 return -ENOMEM; 806 return -ENOMEM;
807 807
808 ps->store = store; 808 ps->store = store;
809 ps->valid = 1; 809 ps->valid = 1;
810 ps->version = SNAPSHOT_DISK_VERSION; 810 ps->version = SNAPSHOT_DISK_VERSION;
811 ps->area = NULL; 811 ps->area = NULL;
812 ps->zero_area = NULL; 812 ps->zero_area = NULL;
813 ps->header_area = NULL; 813 ps->header_area = NULL;
814 ps->next_free = NUM_SNAPSHOT_HDR_CHUNKS + 1; /* header and 1st area */ 814 ps->next_free = NUM_SNAPSHOT_HDR_CHUNKS + 1; /* header and 1st area */
815 ps->current_committed = 0; 815 ps->current_committed = 0;
816 816
817 ps->callback_count = 0; 817 ps->callback_count = 0;
818 atomic_set(&ps->pending_count, 0); 818 atomic_set(&ps->pending_count, 0);
819 ps->callbacks = NULL; 819 ps->callbacks = NULL;
820 820
821 ps->metadata_wq = create_singlethread_workqueue("ksnaphd"); 821 ps->metadata_wq = create_singlethread_workqueue("ksnaphd");
822 if (!ps->metadata_wq) { 822 if (!ps->metadata_wq) {
823 kfree(ps); 823 kfree(ps);
824 DMERR("couldn't start header metadata update thread"); 824 DMERR("couldn't start header metadata update thread");
825 return -ENOMEM; 825 return -ENOMEM;
826 } 826 }
827 827
828 store->context = ps; 828 store->context = ps;
829 829
830 return 0; 830 return 0;
831 } 831 }
832 832
833 static unsigned persistent_status(struct dm_exception_store *store, 833 static unsigned persistent_status(struct dm_exception_store *store,
834 status_type_t status, char *result, 834 status_type_t status, char *result,
835 unsigned maxlen) 835 unsigned maxlen)
836 { 836 {
837 unsigned sz = 0; 837 unsigned sz = 0;
838 838
839 switch (status) { 839 switch (status) {
840 case STATUSTYPE_INFO: 840 case STATUSTYPE_INFO:
841 break; 841 break;
842 case STATUSTYPE_TABLE: 842 case STATUSTYPE_TABLE:
843 DMEMIT(" P %llu", (unsigned long long)store->chunk_size); 843 DMEMIT(" P %llu", (unsigned long long)store->chunk_size);
844 } 844 }
845 845
846 return sz; 846 return sz;
847 } 847 }
848 848
849 static struct dm_exception_store_type _persistent_type = { 849 static struct dm_exception_store_type _persistent_type = {
850 .name = "persistent", 850 .name = "persistent",
851 .module = THIS_MODULE, 851 .module = THIS_MODULE,
852 .ctr = persistent_ctr, 852 .ctr = persistent_ctr,
853 .dtr = persistent_dtr, 853 .dtr = persistent_dtr,
854 .read_metadata = persistent_read_metadata, 854 .read_metadata = persistent_read_metadata,
855 .prepare_exception = persistent_prepare_exception, 855 .prepare_exception = persistent_prepare_exception,
856 .commit_exception = persistent_commit_exception, 856 .commit_exception = persistent_commit_exception,
857 .prepare_merge = persistent_prepare_merge, 857 .prepare_merge = persistent_prepare_merge,
858 .commit_merge = persistent_commit_merge, 858 .commit_merge = persistent_commit_merge,
859 .drop_snapshot = persistent_drop_snapshot, 859 .drop_snapshot = persistent_drop_snapshot,
860 .usage = persistent_usage, 860 .usage = persistent_usage,
861 .status = persistent_status, 861 .status = persistent_status,
862 }; 862 };
863 863
864 static struct dm_exception_store_type _persistent_compat_type = { 864 static struct dm_exception_store_type _persistent_compat_type = {
865 .name = "P", 865 .name = "P",
866 .module = THIS_MODULE, 866 .module = THIS_MODULE,
867 .ctr = persistent_ctr, 867 .ctr = persistent_ctr,
868 .dtr = persistent_dtr, 868 .dtr = persistent_dtr,
869 .read_metadata = persistent_read_metadata, 869 .read_metadata = persistent_read_metadata,
870 .prepare_exception = persistent_prepare_exception, 870 .prepare_exception = persistent_prepare_exception,
871 .commit_exception = persistent_commit_exception, 871 .commit_exception = persistent_commit_exception,
872 .prepare_merge = persistent_prepare_merge, 872 .prepare_merge = persistent_prepare_merge,
873 .commit_merge = persistent_commit_merge, 873 .commit_merge = persistent_commit_merge,
874 .drop_snapshot = persistent_drop_snapshot, 874 .drop_snapshot = persistent_drop_snapshot,
875 .usage = persistent_usage, 875 .usage = persistent_usage,
876 .status = persistent_status, 876 .status = persistent_status,
877 }; 877 };
878 878
879 int dm_persistent_snapshot_init(void) 879 int dm_persistent_snapshot_init(void)
880 { 880 {
881 int r; 881 int r;
882 882
883 r = dm_exception_store_type_register(&_persistent_type); 883 r = dm_exception_store_type_register(&_persistent_type);
884 if (r) { 884 if (r) {
885 DMERR("Unable to register persistent exception store type"); 885 DMERR("Unable to register persistent exception store type");
886 return r; 886 return r;
887 } 887 }
888 888
889 r = dm_exception_store_type_register(&_persistent_compat_type); 889 r = dm_exception_store_type_register(&_persistent_compat_type);
890 if (r) { 890 if (r) {
891 DMERR("Unable to register old-style persistent exception " 891 DMERR("Unable to register old-style persistent exception "
892 "store type"); 892 "store type");
893 dm_exception_store_type_unregister(&_persistent_type); 893 dm_exception_store_type_unregister(&_persistent_type);
894 return r; 894 return r;
895 } 895 }
896 896
897 return r; 897 return r;
898 } 898 }
899 899
900 void dm_persistent_snapshot_exit(void) 900 void dm_persistent_snapshot_exit(void)
901 { 901 {
902 dm_exception_store_type_unregister(&_persistent_type); 902 dm_exception_store_type_unregister(&_persistent_type);
903 dm_exception_store_type_unregister(&_persistent_compat_type); 903 dm_exception_store_type_unregister(&_persistent_compat_type);
904 } 904 }
905 905