Commit 89d9b1c99374997d68910ba49d5b7df80e7f2061

Authored by Linus Walleij
Committed by Samuel Ortiz
1 parent ee487114f0

mfd: db8500-prcmu: Fix irqdomain usage

This fixes two issues with the DB8500 PRCMU irqdomain:
- You have to state the irq base 0 to get a linear domain
  for the DT case from irq_domain_add_simple()
- The irqdomain was not used to translate the initial irq
  request using irq_create_mapping() making the linear
  case fail as it was lacking a proper descriptor.

I took this opportunity to fix two lines of whitespace
errors in related code as I was anyway messing around with
it.

Cc: stable@kernel.org
Acked-by Lee Jones <lee.jones@linaro.org>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>

Showing 1 changed file with 9 additions and 4 deletions Inline Diff

drivers/mfd/db8500-prcmu.c
1 /* 1 /*
2 * Copyright (C) STMicroelectronics 2009 2 * Copyright (C) STMicroelectronics 2009
3 * Copyright (C) ST-Ericsson SA 2010 3 * Copyright (C) ST-Ericsson SA 2010
4 * 4 *
5 * License Terms: GNU General Public License v2 5 * License Terms: GNU General Public License v2
6 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com> 6 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7 * Author: Sundar Iyer <sundar.iyer@stericsson.com> 7 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
8 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com> 8 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9 * 9 *
10 * U8500 PRCM Unit interface driver 10 * U8500 PRCM Unit interface driver
11 * 11 *
12 */ 12 */
13 #include <linux/module.h> 13 #include <linux/module.h>
14 #include <linux/kernel.h> 14 #include <linux/kernel.h>
15 #include <linux/delay.h> 15 #include <linux/delay.h>
16 #include <linux/errno.h> 16 #include <linux/errno.h>
17 #include <linux/err.h> 17 #include <linux/err.h>
18 #include <linux/spinlock.h> 18 #include <linux/spinlock.h>
19 #include <linux/io.h> 19 #include <linux/io.h>
20 #include <linux/slab.h> 20 #include <linux/slab.h>
21 #include <linux/mutex.h> 21 #include <linux/mutex.h>
22 #include <linux/completion.h> 22 #include <linux/completion.h>
23 #include <linux/irq.h> 23 #include <linux/irq.h>
24 #include <linux/jiffies.h> 24 #include <linux/jiffies.h>
25 #include <linux/bitops.h> 25 #include <linux/bitops.h>
26 #include <linux/fs.h> 26 #include <linux/fs.h>
27 #include <linux/platform_device.h> 27 #include <linux/platform_device.h>
28 #include <linux/uaccess.h> 28 #include <linux/uaccess.h>
29 #include <linux/mfd/core.h> 29 #include <linux/mfd/core.h>
30 #include <linux/mfd/dbx500-prcmu.h> 30 #include <linux/mfd/dbx500-prcmu.h>
31 #include <linux/mfd/abx500/ab8500.h> 31 #include <linux/mfd/abx500/ab8500.h>
32 #include <linux/regulator/db8500-prcmu.h> 32 #include <linux/regulator/db8500-prcmu.h>
33 #include <linux/regulator/machine.h> 33 #include <linux/regulator/machine.h>
34 #include <linux/cpufreq.h> 34 #include <linux/cpufreq.h>
35 #include <asm/hardware/gic.h> 35 #include <asm/hardware/gic.h>
36 #include <mach/hardware.h> 36 #include <mach/hardware.h>
37 #include <mach/irqs.h> 37 #include <mach/irqs.h>
38 #include <mach/db8500-regs.h> 38 #include <mach/db8500-regs.h>
39 #include <mach/id.h> 39 #include <mach/id.h>
40 #include "dbx500-prcmu-regs.h" 40 #include "dbx500-prcmu-regs.h"
41 41
42 /* Offset for the firmware version within the TCPM */ 42 /* Offset for the firmware version within the TCPM */
43 #define PRCMU_FW_VERSION_OFFSET 0xA4 43 #define PRCMU_FW_VERSION_OFFSET 0xA4
44 44
45 /* Index of different voltages to be used when accessing AVSData */ 45 /* Index of different voltages to be used when accessing AVSData */
46 #define PRCM_AVS_BASE 0x2FC 46 #define PRCM_AVS_BASE 0x2FC
47 #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0) 47 #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
48 #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1) 48 #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
49 #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2) 49 #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
50 #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3) 50 #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
51 #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4) 51 #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
52 #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5) 52 #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
53 #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6) 53 #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
54 #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7) 54 #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
55 #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8) 55 #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
56 #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9) 56 #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
57 #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA) 57 #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
58 #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB) 58 #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
59 #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC) 59 #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
60 60
61 #define PRCM_AVS_VOLTAGE 0 61 #define PRCM_AVS_VOLTAGE 0
62 #define PRCM_AVS_VOLTAGE_MASK 0x3f 62 #define PRCM_AVS_VOLTAGE_MASK 0x3f
63 #define PRCM_AVS_ISSLOWSTARTUP 6 63 #define PRCM_AVS_ISSLOWSTARTUP 6
64 #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP) 64 #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
65 #define PRCM_AVS_ISMODEENABLE 7 65 #define PRCM_AVS_ISMODEENABLE 7
66 #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE) 66 #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
67 67
68 #define PRCM_BOOT_STATUS 0xFFF 68 #define PRCM_BOOT_STATUS 0xFFF
69 #define PRCM_ROMCODE_A2P 0xFFE 69 #define PRCM_ROMCODE_A2P 0xFFE
70 #define PRCM_ROMCODE_P2A 0xFFD 70 #define PRCM_ROMCODE_P2A 0xFFD
71 #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */ 71 #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
72 72
73 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */ 73 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
74 74
75 #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */ 75 #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
76 #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0) 76 #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
77 #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1) 77 #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
78 #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2) 78 #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
79 #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3) 79 #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
80 #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4) 80 #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
81 #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5) 81 #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
82 #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8) 82 #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
83 83
84 /* Req Mailboxes */ 84 /* Req Mailboxes */
85 #define PRCM_REQ_MB0 0xFDC /* 12 bytes */ 85 #define PRCM_REQ_MB0 0xFDC /* 12 bytes */
86 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */ 86 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
87 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */ 87 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
88 #define PRCM_REQ_MB3 0xE4C /* 372 bytes */ 88 #define PRCM_REQ_MB3 0xE4C /* 372 bytes */
89 #define PRCM_REQ_MB4 0xE48 /* 4 bytes */ 89 #define PRCM_REQ_MB4 0xE48 /* 4 bytes */
90 #define PRCM_REQ_MB5 0xE44 /* 4 bytes */ 90 #define PRCM_REQ_MB5 0xE44 /* 4 bytes */
91 91
92 /* Ack Mailboxes */ 92 /* Ack Mailboxes */
93 #define PRCM_ACK_MB0 0xE08 /* 52 bytes */ 93 #define PRCM_ACK_MB0 0xE08 /* 52 bytes */
94 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */ 94 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
95 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */ 95 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
96 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */ 96 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
97 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */ 97 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
98 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */ 98 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
99 99
100 /* Mailbox 0 headers */ 100 /* Mailbox 0 headers */
101 #define MB0H_POWER_STATE_TRANS 0 101 #define MB0H_POWER_STATE_TRANS 0
102 #define MB0H_CONFIG_WAKEUPS_EXE 1 102 #define MB0H_CONFIG_WAKEUPS_EXE 1
103 #define MB0H_READ_WAKEUP_ACK 3 103 #define MB0H_READ_WAKEUP_ACK 3
104 #define MB0H_CONFIG_WAKEUPS_SLEEP 4 104 #define MB0H_CONFIG_WAKEUPS_SLEEP 4
105 105
106 #define MB0H_WAKEUP_EXE 2 106 #define MB0H_WAKEUP_EXE 2
107 #define MB0H_WAKEUP_SLEEP 5 107 #define MB0H_WAKEUP_SLEEP 5
108 108
109 /* Mailbox 0 REQs */ 109 /* Mailbox 0 REQs */
110 #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0) 110 #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
111 #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1) 111 #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
112 #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2) 112 #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
113 #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3) 113 #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
114 #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4) 114 #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
115 #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8) 115 #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
116 116
117 /* Mailbox 0 ACKs */ 117 /* Mailbox 0 ACKs */
118 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0) 118 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
119 #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1) 119 #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
120 #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4) 120 #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
121 #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8) 121 #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
122 #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C) 122 #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
123 #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20) 123 #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
124 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20 124 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
125 125
126 /* Mailbox 1 headers */ 126 /* Mailbox 1 headers */
127 #define MB1H_ARM_APE_OPP 0x0 127 #define MB1H_ARM_APE_OPP 0x0
128 #define MB1H_RESET_MODEM 0x2 128 #define MB1H_RESET_MODEM 0x2
129 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3 129 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
130 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4 130 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
131 #define MB1H_RELEASE_USB_WAKEUP 0x5 131 #define MB1H_RELEASE_USB_WAKEUP 0x5
132 #define MB1H_PLL_ON_OFF 0x6 132 #define MB1H_PLL_ON_OFF 0x6
133 133
134 /* Mailbox 1 Requests */ 134 /* Mailbox 1 Requests */
135 #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0) 135 #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
136 #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1) 136 #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
137 #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4) 137 #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
138 #define PLL_SOC0_OFF 0x1 138 #define PLL_SOC0_OFF 0x1
139 #define PLL_SOC0_ON 0x2 139 #define PLL_SOC0_ON 0x2
140 #define PLL_SOC1_OFF 0x4 140 #define PLL_SOC1_OFF 0x4
141 #define PLL_SOC1_ON 0x8 141 #define PLL_SOC1_ON 0x8
142 142
143 /* Mailbox 1 ACKs */ 143 /* Mailbox 1 ACKs */
144 #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0) 144 #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
145 #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1) 145 #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
146 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2) 146 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
147 #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3) 147 #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
148 148
149 /* Mailbox 2 headers */ 149 /* Mailbox 2 headers */
150 #define MB2H_DPS 0x0 150 #define MB2H_DPS 0x0
151 #define MB2H_AUTO_PWR 0x1 151 #define MB2H_AUTO_PWR 0x1
152 152
153 /* Mailbox 2 REQs */ 153 /* Mailbox 2 REQs */
154 #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0) 154 #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
155 #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1) 155 #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
156 #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2) 156 #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
157 #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3) 157 #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
158 #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4) 158 #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
159 #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5) 159 #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
160 #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6) 160 #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
161 #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7) 161 #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
162 #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8) 162 #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
163 #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC) 163 #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
164 164
165 /* Mailbox 2 ACKs */ 165 /* Mailbox 2 ACKs */
166 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0) 166 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
167 #define HWACC_PWR_ST_OK 0xFE 167 #define HWACC_PWR_ST_OK 0xFE
168 168
169 /* Mailbox 3 headers */ 169 /* Mailbox 3 headers */
170 #define MB3H_ANC 0x0 170 #define MB3H_ANC 0x0
171 #define MB3H_SIDETONE 0x1 171 #define MB3H_SIDETONE 0x1
172 #define MB3H_SYSCLK 0xE 172 #define MB3H_SYSCLK 0xE
173 173
174 /* Mailbox 3 Requests */ 174 /* Mailbox 3 Requests */
175 #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0) 175 #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
176 #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20) 176 #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
177 #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60) 177 #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
178 #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64) 178 #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
179 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68) 179 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
180 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C) 180 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
181 #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C) 181 #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
182 182
183 /* Mailbox 4 headers */ 183 /* Mailbox 4 headers */
184 #define MB4H_DDR_INIT 0x0 184 #define MB4H_DDR_INIT 0x0
185 #define MB4H_MEM_ST 0x1 185 #define MB4H_MEM_ST 0x1
186 #define MB4H_HOTDOG 0x12 186 #define MB4H_HOTDOG 0x12
187 #define MB4H_HOTMON 0x13 187 #define MB4H_HOTMON 0x13
188 #define MB4H_HOT_PERIOD 0x14 188 #define MB4H_HOT_PERIOD 0x14
189 #define MB4H_A9WDOG_CONF 0x16 189 #define MB4H_A9WDOG_CONF 0x16
190 #define MB4H_A9WDOG_EN 0x17 190 #define MB4H_A9WDOG_EN 0x17
191 #define MB4H_A9WDOG_DIS 0x18 191 #define MB4H_A9WDOG_DIS 0x18
192 #define MB4H_A9WDOG_LOAD 0x19 192 #define MB4H_A9WDOG_LOAD 0x19
193 #define MB4H_A9WDOG_KICK 0x20 193 #define MB4H_A9WDOG_KICK 0x20
194 194
195 /* Mailbox 4 Requests */ 195 /* Mailbox 4 Requests */
196 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0) 196 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
197 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1) 197 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
198 #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3) 198 #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
199 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0) 199 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
200 #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0) 200 #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
201 #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1) 201 #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
202 #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2) 202 #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
203 #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0) 203 #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
204 #define HOTMON_CONFIG_LOW BIT(0) 204 #define HOTMON_CONFIG_LOW BIT(0)
205 #define HOTMON_CONFIG_HIGH BIT(1) 205 #define HOTMON_CONFIG_HIGH BIT(1)
206 #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0) 206 #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
207 #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1) 207 #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
208 #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2) 208 #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
209 #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3) 209 #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
210 #define A9WDOG_AUTO_OFF_EN BIT(7) 210 #define A9WDOG_AUTO_OFF_EN BIT(7)
211 #define A9WDOG_AUTO_OFF_DIS 0 211 #define A9WDOG_AUTO_OFF_DIS 0
212 #define A9WDOG_ID_MASK 0xf 212 #define A9WDOG_ID_MASK 0xf
213 213
214 /* Mailbox 5 Requests */ 214 /* Mailbox 5 Requests */
215 #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0) 215 #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
216 #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1) 216 #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
217 #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2) 217 #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
218 #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3) 218 #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
219 #define PRCMU_I2C_WRITE(slave) \ 219 #define PRCMU_I2C_WRITE(slave) \
220 (((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0)) 220 (((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
221 #define PRCMU_I2C_READ(slave) \ 221 #define PRCMU_I2C_READ(slave) \
222 (((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0)) 222 (((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
223 #define PRCMU_I2C_STOP_EN BIT(3) 223 #define PRCMU_I2C_STOP_EN BIT(3)
224 224
225 /* Mailbox 5 ACKs */ 225 /* Mailbox 5 ACKs */
226 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1) 226 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
227 #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3) 227 #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
228 #define I2C_WR_OK 0x1 228 #define I2C_WR_OK 0x1
229 #define I2C_RD_OK 0x2 229 #define I2C_RD_OK 0x2
230 230
231 #define NUM_MB 8 231 #define NUM_MB 8
232 #define MBOX_BIT BIT 232 #define MBOX_BIT BIT
233 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1) 233 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
234 234
235 /* 235 /*
236 * Wakeups/IRQs 236 * Wakeups/IRQs
237 */ 237 */
238 238
239 #define WAKEUP_BIT_RTC BIT(0) 239 #define WAKEUP_BIT_RTC BIT(0)
240 #define WAKEUP_BIT_RTT0 BIT(1) 240 #define WAKEUP_BIT_RTT0 BIT(1)
241 #define WAKEUP_BIT_RTT1 BIT(2) 241 #define WAKEUP_BIT_RTT1 BIT(2)
242 #define WAKEUP_BIT_HSI0 BIT(3) 242 #define WAKEUP_BIT_HSI0 BIT(3)
243 #define WAKEUP_BIT_HSI1 BIT(4) 243 #define WAKEUP_BIT_HSI1 BIT(4)
244 #define WAKEUP_BIT_CA_WAKE BIT(5) 244 #define WAKEUP_BIT_CA_WAKE BIT(5)
245 #define WAKEUP_BIT_USB BIT(6) 245 #define WAKEUP_BIT_USB BIT(6)
246 #define WAKEUP_BIT_ABB BIT(7) 246 #define WAKEUP_BIT_ABB BIT(7)
247 #define WAKEUP_BIT_ABB_FIFO BIT(8) 247 #define WAKEUP_BIT_ABB_FIFO BIT(8)
248 #define WAKEUP_BIT_SYSCLK_OK BIT(9) 248 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
249 #define WAKEUP_BIT_CA_SLEEP BIT(10) 249 #define WAKEUP_BIT_CA_SLEEP BIT(10)
250 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11) 250 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
251 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12) 251 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
252 #define WAKEUP_BIT_ANC_OK BIT(13) 252 #define WAKEUP_BIT_ANC_OK BIT(13)
253 #define WAKEUP_BIT_SW_ERROR BIT(14) 253 #define WAKEUP_BIT_SW_ERROR BIT(14)
254 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15) 254 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
255 #define WAKEUP_BIT_ARM BIT(17) 255 #define WAKEUP_BIT_ARM BIT(17)
256 #define WAKEUP_BIT_HOTMON_LOW BIT(18) 256 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
257 #define WAKEUP_BIT_HOTMON_HIGH BIT(19) 257 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
258 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20) 258 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
259 #define WAKEUP_BIT_GPIO0 BIT(23) 259 #define WAKEUP_BIT_GPIO0 BIT(23)
260 #define WAKEUP_BIT_GPIO1 BIT(24) 260 #define WAKEUP_BIT_GPIO1 BIT(24)
261 #define WAKEUP_BIT_GPIO2 BIT(25) 261 #define WAKEUP_BIT_GPIO2 BIT(25)
262 #define WAKEUP_BIT_GPIO3 BIT(26) 262 #define WAKEUP_BIT_GPIO3 BIT(26)
263 #define WAKEUP_BIT_GPIO4 BIT(27) 263 #define WAKEUP_BIT_GPIO4 BIT(27)
264 #define WAKEUP_BIT_GPIO5 BIT(28) 264 #define WAKEUP_BIT_GPIO5 BIT(28)
265 #define WAKEUP_BIT_GPIO6 BIT(29) 265 #define WAKEUP_BIT_GPIO6 BIT(29)
266 #define WAKEUP_BIT_GPIO7 BIT(30) 266 #define WAKEUP_BIT_GPIO7 BIT(30)
267 #define WAKEUP_BIT_GPIO8 BIT(31) 267 #define WAKEUP_BIT_GPIO8 BIT(31)
268 268
269 static struct { 269 static struct {
270 bool valid; 270 bool valid;
271 struct prcmu_fw_version version; 271 struct prcmu_fw_version version;
272 } fw_info; 272 } fw_info;
273 273
274 static struct irq_domain *db8500_irq_domain; 274 static struct irq_domain *db8500_irq_domain;
275 275
276 /* 276 /*
277 * This vector maps irq numbers to the bits in the bit field used in 277 * This vector maps irq numbers to the bits in the bit field used in
278 * communication with the PRCMU firmware. 278 * communication with the PRCMU firmware.
279 * 279 *
280 * The reason for having this is to keep the irq numbers contiguous even though 280 * The reason for having this is to keep the irq numbers contiguous even though
281 * the bits in the bit field are not. (The bits also have a tendency to move 281 * the bits in the bit field are not. (The bits also have a tendency to move
282 * around, to further complicate matters.) 282 * around, to further complicate matters.)
283 */ 283 */
284 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE) 284 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
285 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name) 285 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
286 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = { 286 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
287 IRQ_ENTRY(RTC), 287 IRQ_ENTRY(RTC),
288 IRQ_ENTRY(RTT0), 288 IRQ_ENTRY(RTT0),
289 IRQ_ENTRY(RTT1), 289 IRQ_ENTRY(RTT1),
290 IRQ_ENTRY(HSI0), 290 IRQ_ENTRY(HSI0),
291 IRQ_ENTRY(HSI1), 291 IRQ_ENTRY(HSI1),
292 IRQ_ENTRY(CA_WAKE), 292 IRQ_ENTRY(CA_WAKE),
293 IRQ_ENTRY(USB), 293 IRQ_ENTRY(USB),
294 IRQ_ENTRY(ABB), 294 IRQ_ENTRY(ABB),
295 IRQ_ENTRY(ABB_FIFO), 295 IRQ_ENTRY(ABB_FIFO),
296 IRQ_ENTRY(CA_SLEEP), 296 IRQ_ENTRY(CA_SLEEP),
297 IRQ_ENTRY(ARM), 297 IRQ_ENTRY(ARM),
298 IRQ_ENTRY(HOTMON_LOW), 298 IRQ_ENTRY(HOTMON_LOW),
299 IRQ_ENTRY(HOTMON_HIGH), 299 IRQ_ENTRY(HOTMON_HIGH),
300 IRQ_ENTRY(MODEM_SW_RESET_REQ), 300 IRQ_ENTRY(MODEM_SW_RESET_REQ),
301 IRQ_ENTRY(GPIO0), 301 IRQ_ENTRY(GPIO0),
302 IRQ_ENTRY(GPIO1), 302 IRQ_ENTRY(GPIO1),
303 IRQ_ENTRY(GPIO2), 303 IRQ_ENTRY(GPIO2),
304 IRQ_ENTRY(GPIO3), 304 IRQ_ENTRY(GPIO3),
305 IRQ_ENTRY(GPIO4), 305 IRQ_ENTRY(GPIO4),
306 IRQ_ENTRY(GPIO5), 306 IRQ_ENTRY(GPIO5),
307 IRQ_ENTRY(GPIO6), 307 IRQ_ENTRY(GPIO6),
308 IRQ_ENTRY(GPIO7), 308 IRQ_ENTRY(GPIO7),
309 IRQ_ENTRY(GPIO8) 309 IRQ_ENTRY(GPIO8)
310 }; 310 };
311 311
312 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1) 312 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
313 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name) 313 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
314 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = { 314 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
315 WAKEUP_ENTRY(RTC), 315 WAKEUP_ENTRY(RTC),
316 WAKEUP_ENTRY(RTT0), 316 WAKEUP_ENTRY(RTT0),
317 WAKEUP_ENTRY(RTT1), 317 WAKEUP_ENTRY(RTT1),
318 WAKEUP_ENTRY(HSI0), 318 WAKEUP_ENTRY(HSI0),
319 WAKEUP_ENTRY(HSI1), 319 WAKEUP_ENTRY(HSI1),
320 WAKEUP_ENTRY(USB), 320 WAKEUP_ENTRY(USB),
321 WAKEUP_ENTRY(ABB), 321 WAKEUP_ENTRY(ABB),
322 WAKEUP_ENTRY(ABB_FIFO), 322 WAKEUP_ENTRY(ABB_FIFO),
323 WAKEUP_ENTRY(ARM) 323 WAKEUP_ENTRY(ARM)
324 }; 324 };
325 325
326 /* 326 /*
327 * mb0_transfer - state needed for mailbox 0 communication. 327 * mb0_transfer - state needed for mailbox 0 communication.
328 * @lock: The transaction lock. 328 * @lock: The transaction lock.
329 * @dbb_events_lock: A lock used to handle concurrent access to (parts of) 329 * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
330 * the request data. 330 * the request data.
331 * @mask_work: Work structure used for (un)masking wakeup interrupts. 331 * @mask_work: Work structure used for (un)masking wakeup interrupts.
332 * @req: Request data that need to persist between requests. 332 * @req: Request data that need to persist between requests.
333 */ 333 */
334 static struct { 334 static struct {
335 spinlock_t lock; 335 spinlock_t lock;
336 spinlock_t dbb_irqs_lock; 336 spinlock_t dbb_irqs_lock;
337 struct work_struct mask_work; 337 struct work_struct mask_work;
338 struct mutex ac_wake_lock; 338 struct mutex ac_wake_lock;
339 struct completion ac_wake_work; 339 struct completion ac_wake_work;
340 struct { 340 struct {
341 u32 dbb_irqs; 341 u32 dbb_irqs;
342 u32 dbb_wakeups; 342 u32 dbb_wakeups;
343 u32 abb_events; 343 u32 abb_events;
344 } req; 344 } req;
345 } mb0_transfer; 345 } mb0_transfer;
346 346
347 /* 347 /*
348 * mb1_transfer - state needed for mailbox 1 communication. 348 * mb1_transfer - state needed for mailbox 1 communication.
349 * @lock: The transaction lock. 349 * @lock: The transaction lock.
350 * @work: The transaction completion structure. 350 * @work: The transaction completion structure.
351 * @ape_opp: The current APE OPP. 351 * @ape_opp: The current APE OPP.
352 * @ack: Reply ("acknowledge") data. 352 * @ack: Reply ("acknowledge") data.
353 */ 353 */
354 static struct { 354 static struct {
355 struct mutex lock; 355 struct mutex lock;
356 struct completion work; 356 struct completion work;
357 u8 ape_opp; 357 u8 ape_opp;
358 struct { 358 struct {
359 u8 header; 359 u8 header;
360 u8 arm_opp; 360 u8 arm_opp;
361 u8 ape_opp; 361 u8 ape_opp;
362 u8 ape_voltage_status; 362 u8 ape_voltage_status;
363 } ack; 363 } ack;
364 } mb1_transfer; 364 } mb1_transfer;
365 365
366 /* 366 /*
367 * mb2_transfer - state needed for mailbox 2 communication. 367 * mb2_transfer - state needed for mailbox 2 communication.
368 * @lock: The transaction lock. 368 * @lock: The transaction lock.
369 * @work: The transaction completion structure. 369 * @work: The transaction completion structure.
370 * @auto_pm_lock: The autonomous power management configuration lock. 370 * @auto_pm_lock: The autonomous power management configuration lock.
371 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled. 371 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
372 * @req: Request data that need to persist between requests. 372 * @req: Request data that need to persist between requests.
373 * @ack: Reply ("acknowledge") data. 373 * @ack: Reply ("acknowledge") data.
374 */ 374 */
375 static struct { 375 static struct {
376 struct mutex lock; 376 struct mutex lock;
377 struct completion work; 377 struct completion work;
378 spinlock_t auto_pm_lock; 378 spinlock_t auto_pm_lock;
379 bool auto_pm_enabled; 379 bool auto_pm_enabled;
380 struct { 380 struct {
381 u8 status; 381 u8 status;
382 } ack; 382 } ack;
383 } mb2_transfer; 383 } mb2_transfer;
384 384
385 /* 385 /*
386 * mb3_transfer - state needed for mailbox 3 communication. 386 * mb3_transfer - state needed for mailbox 3 communication.
387 * @lock: The request lock. 387 * @lock: The request lock.
388 * @sysclk_lock: A lock used to handle concurrent sysclk requests. 388 * @sysclk_lock: A lock used to handle concurrent sysclk requests.
389 * @sysclk_work: Work structure used for sysclk requests. 389 * @sysclk_work: Work structure used for sysclk requests.
390 */ 390 */
391 static struct { 391 static struct {
392 spinlock_t lock; 392 spinlock_t lock;
393 struct mutex sysclk_lock; 393 struct mutex sysclk_lock;
394 struct completion sysclk_work; 394 struct completion sysclk_work;
395 } mb3_transfer; 395 } mb3_transfer;
396 396
397 /* 397 /*
398 * mb4_transfer - state needed for mailbox 4 communication. 398 * mb4_transfer - state needed for mailbox 4 communication.
399 * @lock: The transaction lock. 399 * @lock: The transaction lock.
400 * @work: The transaction completion structure. 400 * @work: The transaction completion structure.
401 */ 401 */
402 static struct { 402 static struct {
403 struct mutex lock; 403 struct mutex lock;
404 struct completion work; 404 struct completion work;
405 } mb4_transfer; 405 } mb4_transfer;
406 406
407 /* 407 /*
408 * mb5_transfer - state needed for mailbox 5 communication. 408 * mb5_transfer - state needed for mailbox 5 communication.
409 * @lock: The transaction lock. 409 * @lock: The transaction lock.
410 * @work: The transaction completion structure. 410 * @work: The transaction completion structure.
411 * @ack: Reply ("acknowledge") data. 411 * @ack: Reply ("acknowledge") data.
412 */ 412 */
413 static struct { 413 static struct {
414 struct mutex lock; 414 struct mutex lock;
415 struct completion work; 415 struct completion work;
416 struct { 416 struct {
417 u8 status; 417 u8 status;
418 u8 value; 418 u8 value;
419 } ack; 419 } ack;
420 } mb5_transfer; 420 } mb5_transfer;
421 421
422 static atomic_t ac_wake_req_state = ATOMIC_INIT(0); 422 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
423 423
424 /* Spinlocks */ 424 /* Spinlocks */
425 static DEFINE_SPINLOCK(prcmu_lock); 425 static DEFINE_SPINLOCK(prcmu_lock);
426 static DEFINE_SPINLOCK(clkout_lock); 426 static DEFINE_SPINLOCK(clkout_lock);
427 427
428 /* Global var to runtime determine TCDM base for v2 or v1 */ 428 /* Global var to runtime determine TCDM base for v2 or v1 */
429 static __iomem void *tcdm_base; 429 static __iomem void *tcdm_base;
430 430
431 struct clk_mgt { 431 struct clk_mgt {
432 void __iomem *reg; 432 void __iomem *reg;
433 u32 pllsw; 433 u32 pllsw;
434 int branch; 434 int branch;
435 bool clk38div; 435 bool clk38div;
436 }; 436 };
437 437
438 enum { 438 enum {
439 PLL_RAW, 439 PLL_RAW,
440 PLL_FIX, 440 PLL_FIX,
441 PLL_DIV 441 PLL_DIV
442 }; 442 };
443 443
444 static DEFINE_SPINLOCK(clk_mgt_lock); 444 static DEFINE_SPINLOCK(clk_mgt_lock);
445 445
446 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \ 446 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
447 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div} 447 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
448 struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = { 448 struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
449 CLK_MGT_ENTRY(SGACLK, PLL_DIV, false), 449 CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
450 CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true), 450 CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
451 CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true), 451 CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
452 CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true), 452 CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
453 CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true), 453 CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
454 CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true), 454 CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
455 CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true), 455 CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
456 CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true), 456 CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
457 CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true), 457 CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
458 CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true), 458 CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
459 CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true), 459 CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
460 CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true), 460 CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
461 CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true), 461 CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
462 CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true), 462 CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
463 CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true), 463 CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
464 CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true), 464 CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
465 CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true), 465 CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
466 CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false), 466 CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
467 CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true), 467 CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
468 CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true), 468 CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
469 CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true), 469 CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
470 CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true), 470 CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
471 CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false), 471 CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
472 CLK_MGT_ENTRY(DMACLK, PLL_DIV, true), 472 CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
473 CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true), 473 CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
474 CLK_MGT_ENTRY(TVCLK, PLL_FIX, true), 474 CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
475 CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true), 475 CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
476 CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true), 476 CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
477 CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false), 477 CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
478 }; 478 };
479 479
480 struct dsiclk { 480 struct dsiclk {
481 u32 divsel_mask; 481 u32 divsel_mask;
482 u32 divsel_shift; 482 u32 divsel_shift;
483 u32 divsel; 483 u32 divsel;
484 }; 484 };
485 485
486 static struct dsiclk dsiclk[2] = { 486 static struct dsiclk dsiclk[2] = {
487 { 487 {
488 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK, 488 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
489 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT, 489 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
490 .divsel = PRCM_DSI_PLLOUT_SEL_PHI, 490 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
491 }, 491 },
492 { 492 {
493 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK, 493 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
494 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT, 494 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
495 .divsel = PRCM_DSI_PLLOUT_SEL_PHI, 495 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
496 } 496 }
497 }; 497 };
498 498
499 struct dsiescclk { 499 struct dsiescclk {
500 u32 en; 500 u32 en;
501 u32 div_mask; 501 u32 div_mask;
502 u32 div_shift; 502 u32 div_shift;
503 }; 503 };
504 504
505 static struct dsiescclk dsiescclk[3] = { 505 static struct dsiescclk dsiescclk[3] = {
506 { 506 {
507 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN, 507 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
508 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK, 508 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
509 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT, 509 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
510 }, 510 },
511 { 511 {
512 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN, 512 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
513 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK, 513 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
514 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT, 514 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
515 }, 515 },
516 { 516 {
517 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN, 517 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
518 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK, 518 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
519 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT, 519 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
520 } 520 }
521 }; 521 };
522 522
523 523
524 /* 524 /*
525 * Used by MCDE to setup all necessary PRCMU registers 525 * Used by MCDE to setup all necessary PRCMU registers
526 */ 526 */
527 #define PRCMU_RESET_DSIPLL 0x00004000 527 #define PRCMU_RESET_DSIPLL 0x00004000
528 #define PRCMU_UNCLAMP_DSIPLL 0x00400800 528 #define PRCMU_UNCLAMP_DSIPLL 0x00400800
529 529
530 #define PRCMU_CLK_PLL_DIV_SHIFT 0 530 #define PRCMU_CLK_PLL_DIV_SHIFT 0
531 #define PRCMU_CLK_PLL_SW_SHIFT 5 531 #define PRCMU_CLK_PLL_SW_SHIFT 5
532 #define PRCMU_CLK_38 (1 << 9) 532 #define PRCMU_CLK_38 (1 << 9)
533 #define PRCMU_CLK_38_SRC (1 << 10) 533 #define PRCMU_CLK_38_SRC (1 << 10)
534 #define PRCMU_CLK_38_DIV (1 << 11) 534 #define PRCMU_CLK_38_DIV (1 << 11)
535 535
536 /* PLLDIV=12, PLLSW=4 (PLLDDR) */ 536 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
537 #define PRCMU_DSI_CLOCK_SETTING 0x0000008C 537 #define PRCMU_DSI_CLOCK_SETTING 0x0000008C
538 538
539 /* DPI 50000000 Hz */ 539 /* DPI 50000000 Hz */
540 #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \ 540 #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
541 (16 << PRCMU_CLK_PLL_DIV_SHIFT)) 541 (16 << PRCMU_CLK_PLL_DIV_SHIFT))
542 #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00 542 #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
543 543
544 /* D=101, N=1, R=4, SELDIV2=0 */ 544 /* D=101, N=1, R=4, SELDIV2=0 */
545 #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165 545 #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
546 546
547 #define PRCMU_ENABLE_PLLDSI 0x00000001 547 #define PRCMU_ENABLE_PLLDSI 0x00000001
548 #define PRCMU_DISABLE_PLLDSI 0x00000000 548 #define PRCMU_DISABLE_PLLDSI 0x00000000
549 #define PRCMU_RELEASE_RESET_DSS 0x0000400C 549 #define PRCMU_RELEASE_RESET_DSS 0x0000400C
550 #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202 550 #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
551 /* ESC clk, div0=1, div1=1, div2=3 */ 551 /* ESC clk, div0=1, div1=1, div2=3 */
552 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101 552 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
553 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101 553 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
554 #define PRCMU_DSI_RESET_SW 0x00000007 554 #define PRCMU_DSI_RESET_SW 0x00000007
555 555
556 #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3 556 #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
557 557
558 int db8500_prcmu_enable_dsipll(void) 558 int db8500_prcmu_enable_dsipll(void)
559 { 559 {
560 int i; 560 int i;
561 561
562 /* Clear DSIPLL_RESETN */ 562 /* Clear DSIPLL_RESETN */
563 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR); 563 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
564 /* Unclamp DSIPLL in/out */ 564 /* Unclamp DSIPLL in/out */
565 writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR); 565 writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
566 566
567 /* Set DSI PLL FREQ */ 567 /* Set DSI PLL FREQ */
568 writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ); 568 writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
569 writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL); 569 writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
570 /* Enable Escape clocks */ 570 /* Enable Escape clocks */
571 writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV); 571 writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
572 572
573 /* Start DSI PLL */ 573 /* Start DSI PLL */
574 writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE); 574 writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
575 /* Reset DSI PLL */ 575 /* Reset DSI PLL */
576 writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET); 576 writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
577 for (i = 0; i < 10; i++) { 577 for (i = 0; i < 10; i++) {
578 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED) 578 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
579 == PRCMU_PLLDSI_LOCKP_LOCKED) 579 == PRCMU_PLLDSI_LOCKP_LOCKED)
580 break; 580 break;
581 udelay(100); 581 udelay(100);
582 } 582 }
583 /* Set DSIPLL_RESETN */ 583 /* Set DSIPLL_RESETN */
584 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET); 584 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
585 return 0; 585 return 0;
586 } 586 }
587 587
588 int db8500_prcmu_disable_dsipll(void) 588 int db8500_prcmu_disable_dsipll(void)
589 { 589 {
590 /* Disable dsi pll */ 590 /* Disable dsi pll */
591 writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE); 591 writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
592 /* Disable escapeclock */ 592 /* Disable escapeclock */
593 writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV); 593 writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
594 return 0; 594 return 0;
595 } 595 }
596 596
597 int db8500_prcmu_set_display_clocks(void) 597 int db8500_prcmu_set_display_clocks(void)
598 { 598 {
599 unsigned long flags; 599 unsigned long flags;
600 600
601 spin_lock_irqsave(&clk_mgt_lock, flags); 601 spin_lock_irqsave(&clk_mgt_lock, flags);
602 602
603 /* Grab the HW semaphore. */ 603 /* Grab the HW semaphore. */
604 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) 604 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
605 cpu_relax(); 605 cpu_relax();
606 606
607 writel(PRCMU_DSI_CLOCK_SETTING, PRCM_HDMICLK_MGT); 607 writel(PRCMU_DSI_CLOCK_SETTING, PRCM_HDMICLK_MGT);
608 writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT); 608 writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT);
609 writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT); 609 writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT);
610 610
611 /* Release the HW semaphore. */ 611 /* Release the HW semaphore. */
612 writel(0, PRCM_SEM); 612 writel(0, PRCM_SEM);
613 613
614 spin_unlock_irqrestore(&clk_mgt_lock, flags); 614 spin_unlock_irqrestore(&clk_mgt_lock, flags);
615 615
616 return 0; 616 return 0;
617 } 617 }
618 618
619 u32 db8500_prcmu_read(unsigned int reg) 619 u32 db8500_prcmu_read(unsigned int reg)
620 { 620 {
621 return readl(_PRCMU_BASE + reg); 621 return readl(_PRCMU_BASE + reg);
622 } 622 }
623 623
624 void db8500_prcmu_write(unsigned int reg, u32 value) 624 void db8500_prcmu_write(unsigned int reg, u32 value)
625 { 625 {
626 unsigned long flags; 626 unsigned long flags;
627 627
628 spin_lock_irqsave(&prcmu_lock, flags); 628 spin_lock_irqsave(&prcmu_lock, flags);
629 writel(value, (_PRCMU_BASE + reg)); 629 writel(value, (_PRCMU_BASE + reg));
630 spin_unlock_irqrestore(&prcmu_lock, flags); 630 spin_unlock_irqrestore(&prcmu_lock, flags);
631 } 631 }
632 632
633 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value) 633 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
634 { 634 {
635 u32 val; 635 u32 val;
636 unsigned long flags; 636 unsigned long flags;
637 637
638 spin_lock_irqsave(&prcmu_lock, flags); 638 spin_lock_irqsave(&prcmu_lock, flags);
639 val = readl(_PRCMU_BASE + reg); 639 val = readl(_PRCMU_BASE + reg);
640 val = ((val & ~mask) | (value & mask)); 640 val = ((val & ~mask) | (value & mask));
641 writel(val, (_PRCMU_BASE + reg)); 641 writel(val, (_PRCMU_BASE + reg));
642 spin_unlock_irqrestore(&prcmu_lock, flags); 642 spin_unlock_irqrestore(&prcmu_lock, flags);
643 } 643 }
644 644
645 struct prcmu_fw_version *prcmu_get_fw_version(void) 645 struct prcmu_fw_version *prcmu_get_fw_version(void)
646 { 646 {
647 return fw_info.valid ? &fw_info.version : NULL; 647 return fw_info.valid ? &fw_info.version : NULL;
648 } 648 }
649 649
650 bool prcmu_has_arm_maxopp(void) 650 bool prcmu_has_arm_maxopp(void)
651 { 651 {
652 return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) & 652 return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
653 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK; 653 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
654 } 654 }
655 655
656 /** 656 /**
657 * prcmu_get_boot_status - PRCMU boot status checking 657 * prcmu_get_boot_status - PRCMU boot status checking
658 * Returns: the current PRCMU boot status 658 * Returns: the current PRCMU boot status
659 */ 659 */
660 int prcmu_get_boot_status(void) 660 int prcmu_get_boot_status(void)
661 { 661 {
662 return readb(tcdm_base + PRCM_BOOT_STATUS); 662 return readb(tcdm_base + PRCM_BOOT_STATUS);
663 } 663 }
664 664
665 /** 665 /**
666 * prcmu_set_rc_a2p - This function is used to run few power state sequences 666 * prcmu_set_rc_a2p - This function is used to run few power state sequences
667 * @val: Value to be set, i.e. transition requested 667 * @val: Value to be set, i.e. transition requested
668 * Returns: 0 on success, -EINVAL on invalid argument 668 * Returns: 0 on success, -EINVAL on invalid argument
669 * 669 *
670 * This function is used to run the following power state sequences - 670 * This function is used to run the following power state sequences -
671 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep 671 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
672 */ 672 */
673 int prcmu_set_rc_a2p(enum romcode_write val) 673 int prcmu_set_rc_a2p(enum romcode_write val)
674 { 674 {
675 if (val < RDY_2_DS || val > RDY_2_XP70_RST) 675 if (val < RDY_2_DS || val > RDY_2_XP70_RST)
676 return -EINVAL; 676 return -EINVAL;
677 writeb(val, (tcdm_base + PRCM_ROMCODE_A2P)); 677 writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
678 return 0; 678 return 0;
679 } 679 }
680 680
681 /** 681 /**
682 * prcmu_get_rc_p2a - This function is used to get power state sequences 682 * prcmu_get_rc_p2a - This function is used to get power state sequences
683 * Returns: the power transition that has last happened 683 * Returns: the power transition that has last happened
684 * 684 *
685 * This function can return the following transitions- 685 * This function can return the following transitions-
686 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep 686 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
687 */ 687 */
688 enum romcode_read prcmu_get_rc_p2a(void) 688 enum romcode_read prcmu_get_rc_p2a(void)
689 { 689 {
690 return readb(tcdm_base + PRCM_ROMCODE_P2A); 690 return readb(tcdm_base + PRCM_ROMCODE_P2A);
691 } 691 }
692 692
693 /** 693 /**
694 * prcmu_get_current_mode - Return the current XP70 power mode 694 * prcmu_get_current_mode - Return the current XP70 power mode
695 * Returns: Returns the current AP(ARM) power mode: init, 695 * Returns: Returns the current AP(ARM) power mode: init,
696 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset 696 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
697 */ 697 */
698 enum ap_pwrst prcmu_get_xp70_current_state(void) 698 enum ap_pwrst prcmu_get_xp70_current_state(void)
699 { 699 {
700 return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE); 700 return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
701 } 701 }
702 702
703 /** 703 /**
704 * prcmu_config_clkout - Configure one of the programmable clock outputs. 704 * prcmu_config_clkout - Configure one of the programmable clock outputs.
705 * @clkout: The CLKOUT number (0 or 1). 705 * @clkout: The CLKOUT number (0 or 1).
706 * @source: The clock to be used (one of the PRCMU_CLKSRC_*). 706 * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
707 * @div: The divider to be applied. 707 * @div: The divider to be applied.
708 * 708 *
709 * Configures one of the programmable clock outputs (CLKOUTs). 709 * Configures one of the programmable clock outputs (CLKOUTs).
710 * @div should be in the range [1,63] to request a configuration, or 0 to 710 * @div should be in the range [1,63] to request a configuration, or 0 to
711 * inform that the configuration is no longer requested. 711 * inform that the configuration is no longer requested.
712 */ 712 */
713 int prcmu_config_clkout(u8 clkout, u8 source, u8 div) 713 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
714 { 714 {
715 static int requests[2]; 715 static int requests[2];
716 int r = 0; 716 int r = 0;
717 unsigned long flags; 717 unsigned long flags;
718 u32 val; 718 u32 val;
719 u32 bits; 719 u32 bits;
720 u32 mask; 720 u32 mask;
721 u32 div_mask; 721 u32 div_mask;
722 722
723 BUG_ON(clkout > 1); 723 BUG_ON(clkout > 1);
724 BUG_ON(div > 63); 724 BUG_ON(div > 63);
725 BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009)); 725 BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
726 726
727 if (!div && !requests[clkout]) 727 if (!div && !requests[clkout])
728 return -EINVAL; 728 return -EINVAL;
729 729
730 switch (clkout) { 730 switch (clkout) {
731 case 0: 731 case 0:
732 div_mask = PRCM_CLKOCR_CLKODIV0_MASK; 732 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
733 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK); 733 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
734 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) | 734 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
735 (div << PRCM_CLKOCR_CLKODIV0_SHIFT)); 735 (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
736 break; 736 break;
737 case 1: 737 case 1:
738 div_mask = PRCM_CLKOCR_CLKODIV1_MASK; 738 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
739 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK | 739 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
740 PRCM_CLKOCR_CLK1TYPE); 740 PRCM_CLKOCR_CLK1TYPE);
741 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) | 741 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
742 (div << PRCM_CLKOCR_CLKODIV1_SHIFT)); 742 (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
743 break; 743 break;
744 } 744 }
745 bits &= mask; 745 bits &= mask;
746 746
747 spin_lock_irqsave(&clkout_lock, flags); 747 spin_lock_irqsave(&clkout_lock, flags);
748 748
749 val = readl(PRCM_CLKOCR); 749 val = readl(PRCM_CLKOCR);
750 if (val & div_mask) { 750 if (val & div_mask) {
751 if (div) { 751 if (div) {
752 if ((val & mask) != bits) { 752 if ((val & mask) != bits) {
753 r = -EBUSY; 753 r = -EBUSY;
754 goto unlock_and_return; 754 goto unlock_and_return;
755 } 755 }
756 } else { 756 } else {
757 if ((val & mask & ~div_mask) != bits) { 757 if ((val & mask & ~div_mask) != bits) {
758 r = -EINVAL; 758 r = -EINVAL;
759 goto unlock_and_return; 759 goto unlock_and_return;
760 } 760 }
761 } 761 }
762 } 762 }
763 writel((bits | (val & ~mask)), PRCM_CLKOCR); 763 writel((bits | (val & ~mask)), PRCM_CLKOCR);
764 requests[clkout] += (div ? 1 : -1); 764 requests[clkout] += (div ? 1 : -1);
765 765
766 unlock_and_return: 766 unlock_and_return:
767 spin_unlock_irqrestore(&clkout_lock, flags); 767 spin_unlock_irqrestore(&clkout_lock, flags);
768 768
769 return r; 769 return r;
770 } 770 }
771 771
772 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll) 772 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
773 { 773 {
774 unsigned long flags; 774 unsigned long flags;
775 775
776 BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state)); 776 BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
777 777
778 spin_lock_irqsave(&mb0_transfer.lock, flags); 778 spin_lock_irqsave(&mb0_transfer.lock, flags);
779 779
780 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0)) 780 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
781 cpu_relax(); 781 cpu_relax();
782 782
783 writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0)); 783 writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
784 writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE)); 784 writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
785 writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE)); 785 writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
786 writeb((keep_ulp_clk ? 1 : 0), 786 writeb((keep_ulp_clk ? 1 : 0),
787 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE)); 787 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
788 writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI)); 788 writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
789 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET); 789 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
790 790
791 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 791 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
792 792
793 return 0; 793 return 0;
794 } 794 }
795 795
796 u8 db8500_prcmu_get_power_state_result(void) 796 u8 db8500_prcmu_get_power_state_result(void)
797 { 797 {
798 return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS); 798 return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
799 } 799 }
800 800
801 /* This function decouple the gic from the prcmu */ 801 /* This function decouple the gic from the prcmu */
802 int db8500_prcmu_gic_decouple(void) 802 int db8500_prcmu_gic_decouple(void)
803 { 803 {
804 u32 val = readl(PRCM_A9_MASK_REQ); 804 u32 val = readl(PRCM_A9_MASK_REQ);
805 805
806 /* Set bit 0 register value to 1 */ 806 /* Set bit 0 register value to 1 */
807 writel(val | PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ, 807 writel(val | PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ,
808 PRCM_A9_MASK_REQ); 808 PRCM_A9_MASK_REQ);
809 809
810 /* Make sure the register is updated */ 810 /* Make sure the register is updated */
811 readl(PRCM_A9_MASK_REQ); 811 readl(PRCM_A9_MASK_REQ);
812 812
813 /* Wait a few cycles for the gic mask completion */ 813 /* Wait a few cycles for the gic mask completion */
814 udelay(1); 814 udelay(1);
815 815
816 return 0; 816 return 0;
817 } 817 }
818 818
819 /* This function recouple the gic with the prcmu */ 819 /* This function recouple the gic with the prcmu */
820 int db8500_prcmu_gic_recouple(void) 820 int db8500_prcmu_gic_recouple(void)
821 { 821 {
822 u32 val = readl(PRCM_A9_MASK_REQ); 822 u32 val = readl(PRCM_A9_MASK_REQ);
823 823
824 /* Set bit 0 register value to 0 */ 824 /* Set bit 0 register value to 0 */
825 writel(val & ~PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ, PRCM_A9_MASK_REQ); 825 writel(val & ~PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ, PRCM_A9_MASK_REQ);
826 826
827 return 0; 827 return 0;
828 } 828 }
829 829
830 #define PRCMU_GIC_NUMBER_REGS 5 830 #define PRCMU_GIC_NUMBER_REGS 5
831 831
832 /* 832 /*
833 * This function checks if there are pending irq on the gic. It only 833 * This function checks if there are pending irq on the gic. It only
834 * makes sense if the gic has been decoupled before with the 834 * makes sense if the gic has been decoupled before with the
835 * db8500_prcmu_gic_decouple function. Disabling an interrupt only 835 * db8500_prcmu_gic_decouple function. Disabling an interrupt only
836 * disables the forwarding of the interrupt to any CPU interface. It 836 * disables the forwarding of the interrupt to any CPU interface. It
837 * does not prevent the interrupt from changing state, for example 837 * does not prevent the interrupt from changing state, for example
838 * becoming pending, or active and pending if it is already 838 * becoming pending, or active and pending if it is already
839 * active. Hence, we have to check the interrupt is pending *and* is 839 * active. Hence, we have to check the interrupt is pending *and* is
840 * active. 840 * active.
841 */ 841 */
842 bool db8500_prcmu_gic_pending_irq(void) 842 bool db8500_prcmu_gic_pending_irq(void)
843 { 843 {
844 u32 pr; /* Pending register */ 844 u32 pr; /* Pending register */
845 u32 er; /* Enable register */ 845 u32 er; /* Enable register */
846 void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE); 846 void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
847 int i; 847 int i;
848 848
849 /* 5 registers. STI & PPI not skipped */ 849 /* 5 registers. STI & PPI not skipped */
850 for (i = 0; i < PRCMU_GIC_NUMBER_REGS; i++) { 850 for (i = 0; i < PRCMU_GIC_NUMBER_REGS; i++) {
851 851
852 pr = readl_relaxed(dist_base + GIC_DIST_PENDING_SET + i * 4); 852 pr = readl_relaxed(dist_base + GIC_DIST_PENDING_SET + i * 4);
853 er = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4); 853 er = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
854 854
855 if (pr & er) 855 if (pr & er)
856 return true; /* There is a pending interrupt */ 856 return true; /* There is a pending interrupt */
857 } 857 }
858 858
859 return false; 859 return false;
860 } 860 }
861 861
862 /* 862 /*
863 * This function checks if there are pending interrupt on the 863 * This function checks if there are pending interrupt on the
864 * prcmu which has been delegated to monitor the irqs with the 864 * prcmu which has been delegated to monitor the irqs with the
865 * db8500_prcmu_copy_gic_settings function. 865 * db8500_prcmu_copy_gic_settings function.
866 */ 866 */
867 bool db8500_prcmu_pending_irq(void) 867 bool db8500_prcmu_pending_irq(void)
868 { 868 {
869 u32 it, im; 869 u32 it, im;
870 int i; 870 int i;
871 871
872 for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) { 872 for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
873 it = readl(PRCM_ARMITVAL31TO0 + i * 4); 873 it = readl(PRCM_ARMITVAL31TO0 + i * 4);
874 im = readl(PRCM_ARMITMSK31TO0 + i * 4); 874 im = readl(PRCM_ARMITMSK31TO0 + i * 4);
875 if (it & im) 875 if (it & im)
876 return true; /* There is a pending interrupt */ 876 return true; /* There is a pending interrupt */
877 } 877 }
878 878
879 return false; 879 return false;
880 } 880 }
881 881
882 /* 882 /*
883 * This function checks if the specified cpu is in in WFI. It's usage 883 * This function checks if the specified cpu is in in WFI. It's usage
884 * makes sense only if the gic is decoupled with the db8500_prcmu_gic_decouple 884 * makes sense only if the gic is decoupled with the db8500_prcmu_gic_decouple
885 * function. Of course passing smp_processor_id() to this function will 885 * function. Of course passing smp_processor_id() to this function will
886 * always return false... 886 * always return false...
887 */ 887 */
888 bool db8500_prcmu_is_cpu_in_wfi(int cpu) 888 bool db8500_prcmu_is_cpu_in_wfi(int cpu)
889 { 889 {
890 return readl(PRCM_ARM_WFI_STANDBY) & cpu ? PRCM_ARM_WFI_STANDBY_WFI1 : 890 return readl(PRCM_ARM_WFI_STANDBY) & cpu ? PRCM_ARM_WFI_STANDBY_WFI1 :
891 PRCM_ARM_WFI_STANDBY_WFI0; 891 PRCM_ARM_WFI_STANDBY_WFI0;
892 } 892 }
893 893
894 /* 894 /*
895 * This function copies the gic SPI settings to the prcmu in order to 895 * This function copies the gic SPI settings to the prcmu in order to
896 * monitor them and abort/finish the retention/off sequence or state. 896 * monitor them and abort/finish the retention/off sequence or state.
897 */ 897 */
898 int db8500_prcmu_copy_gic_settings(void) 898 int db8500_prcmu_copy_gic_settings(void)
899 { 899 {
900 u32 er; /* Enable register */ 900 u32 er; /* Enable register */
901 void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE); 901 void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
902 int i; 902 int i;
903 903
904 /* We skip the STI and PPI */ 904 /* We skip the STI and PPI */
905 for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) { 905 for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
906 er = readl_relaxed(dist_base + 906 er = readl_relaxed(dist_base +
907 GIC_DIST_ENABLE_SET + (i + 1) * 4); 907 GIC_DIST_ENABLE_SET + (i + 1) * 4);
908 writel(er, PRCM_ARMITMSK31TO0 + i * 4); 908 writel(er, PRCM_ARMITMSK31TO0 + i * 4);
909 } 909 }
910 910
911 return 0; 911 return 0;
912 } 912 }
913 913
914 /* This function should only be called while mb0_transfer.lock is held. */ 914 /* This function should only be called while mb0_transfer.lock is held. */
915 static void config_wakeups(void) 915 static void config_wakeups(void)
916 { 916 {
917 const u8 header[2] = { 917 const u8 header[2] = {
918 MB0H_CONFIG_WAKEUPS_EXE, 918 MB0H_CONFIG_WAKEUPS_EXE,
919 MB0H_CONFIG_WAKEUPS_SLEEP 919 MB0H_CONFIG_WAKEUPS_SLEEP
920 }; 920 };
921 static u32 last_dbb_events; 921 static u32 last_dbb_events;
922 static u32 last_abb_events; 922 static u32 last_abb_events;
923 u32 dbb_events; 923 u32 dbb_events;
924 u32 abb_events; 924 u32 abb_events;
925 unsigned int i; 925 unsigned int i;
926 926
927 dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups; 927 dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
928 dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK); 928 dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
929 929
930 abb_events = mb0_transfer.req.abb_events; 930 abb_events = mb0_transfer.req.abb_events;
931 931
932 if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events)) 932 if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
933 return; 933 return;
934 934
935 for (i = 0; i < 2; i++) { 935 for (i = 0; i < 2; i++) {
936 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0)) 936 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
937 cpu_relax(); 937 cpu_relax();
938 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500)); 938 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
939 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500)); 939 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
940 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0)); 940 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
941 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET); 941 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
942 } 942 }
943 last_dbb_events = dbb_events; 943 last_dbb_events = dbb_events;
944 last_abb_events = abb_events; 944 last_abb_events = abb_events;
945 } 945 }
946 946
947 void db8500_prcmu_enable_wakeups(u32 wakeups) 947 void db8500_prcmu_enable_wakeups(u32 wakeups)
948 { 948 {
949 unsigned long flags; 949 unsigned long flags;
950 u32 bits; 950 u32 bits;
951 int i; 951 int i;
952 952
953 BUG_ON(wakeups != (wakeups & VALID_WAKEUPS)); 953 BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
954 954
955 for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) { 955 for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
956 if (wakeups & BIT(i)) 956 if (wakeups & BIT(i))
957 bits |= prcmu_wakeup_bit[i]; 957 bits |= prcmu_wakeup_bit[i];
958 } 958 }
959 959
960 spin_lock_irqsave(&mb0_transfer.lock, flags); 960 spin_lock_irqsave(&mb0_transfer.lock, flags);
961 961
962 mb0_transfer.req.dbb_wakeups = bits; 962 mb0_transfer.req.dbb_wakeups = bits;
963 config_wakeups(); 963 config_wakeups();
964 964
965 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 965 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
966 } 966 }
967 967
968 void db8500_prcmu_config_abb_event_readout(u32 abb_events) 968 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
969 { 969 {
970 unsigned long flags; 970 unsigned long flags;
971 971
972 spin_lock_irqsave(&mb0_transfer.lock, flags); 972 spin_lock_irqsave(&mb0_transfer.lock, flags);
973 973
974 mb0_transfer.req.abb_events = abb_events; 974 mb0_transfer.req.abb_events = abb_events;
975 config_wakeups(); 975 config_wakeups();
976 976
977 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 977 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
978 } 978 }
979 979
980 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf) 980 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
981 { 981 {
982 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1) 982 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
983 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500); 983 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
984 else 984 else
985 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500); 985 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
986 } 986 }
987 987
988 /** 988 /**
989 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP 989 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
990 * @opp: The new ARM operating point to which transition is to be made 990 * @opp: The new ARM operating point to which transition is to be made
991 * Returns: 0 on success, non-zero on failure 991 * Returns: 0 on success, non-zero on failure
992 * 992 *
993 * This function sets the the operating point of the ARM. 993 * This function sets the the operating point of the ARM.
994 */ 994 */
995 int db8500_prcmu_set_arm_opp(u8 opp) 995 int db8500_prcmu_set_arm_opp(u8 opp)
996 { 996 {
997 int r; 997 int r;
998 998
999 if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK) 999 if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
1000 return -EINVAL; 1000 return -EINVAL;
1001 1001
1002 r = 0; 1002 r = 0;
1003 1003
1004 mutex_lock(&mb1_transfer.lock); 1004 mutex_lock(&mb1_transfer.lock);
1005 1005
1006 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 1006 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1007 cpu_relax(); 1007 cpu_relax();
1008 1008
1009 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 1009 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1010 writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP)); 1010 writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1011 writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP)); 1011 writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1012 1012
1013 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 1013 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1014 wait_for_completion(&mb1_transfer.work); 1014 wait_for_completion(&mb1_transfer.work);
1015 1015
1016 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) || 1016 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1017 (mb1_transfer.ack.arm_opp != opp)) 1017 (mb1_transfer.ack.arm_opp != opp))
1018 r = -EIO; 1018 r = -EIO;
1019 1019
1020 mutex_unlock(&mb1_transfer.lock); 1020 mutex_unlock(&mb1_transfer.lock);
1021 1021
1022 return r; 1022 return r;
1023 } 1023 }
1024 1024
1025 /** 1025 /**
1026 * db8500_prcmu_get_arm_opp - get the current ARM OPP 1026 * db8500_prcmu_get_arm_opp - get the current ARM OPP
1027 * 1027 *
1028 * Returns: the current ARM OPP 1028 * Returns: the current ARM OPP
1029 */ 1029 */
1030 int db8500_prcmu_get_arm_opp(void) 1030 int db8500_prcmu_get_arm_opp(void)
1031 { 1031 {
1032 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP); 1032 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
1033 } 1033 }
1034 1034
1035 /** 1035 /**
1036 * db8500_prcmu_get_ddr_opp - get the current DDR OPP 1036 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
1037 * 1037 *
1038 * Returns: the current DDR OPP 1038 * Returns: the current DDR OPP
1039 */ 1039 */
1040 int db8500_prcmu_get_ddr_opp(void) 1040 int db8500_prcmu_get_ddr_opp(void)
1041 { 1041 {
1042 return readb(PRCM_DDR_SUBSYS_APE_MINBW); 1042 return readb(PRCM_DDR_SUBSYS_APE_MINBW);
1043 } 1043 }
1044 1044
1045 /** 1045 /**
1046 * db8500_set_ddr_opp - set the appropriate DDR OPP 1046 * db8500_set_ddr_opp - set the appropriate DDR OPP
1047 * @opp: The new DDR operating point to which transition is to be made 1047 * @opp: The new DDR operating point to which transition is to be made
1048 * Returns: 0 on success, non-zero on failure 1048 * Returns: 0 on success, non-zero on failure
1049 * 1049 *
1050 * This function sets the operating point of the DDR. 1050 * This function sets the operating point of the DDR.
1051 */ 1051 */
1052 int db8500_prcmu_set_ddr_opp(u8 opp) 1052 int db8500_prcmu_set_ddr_opp(u8 opp)
1053 { 1053 {
1054 if (opp < DDR_100_OPP || opp > DDR_25_OPP) 1054 if (opp < DDR_100_OPP || opp > DDR_25_OPP)
1055 return -EINVAL; 1055 return -EINVAL;
1056 /* Changing the DDR OPP can hang the hardware pre-v21 */ 1056 /* Changing the DDR OPP can hang the hardware pre-v21 */
1057 if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20()) 1057 if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
1058 writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW); 1058 writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
1059 1059
1060 return 0; 1060 return 0;
1061 } 1061 }
1062 1062
1063 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */ 1063 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
1064 static void request_even_slower_clocks(bool enable) 1064 static void request_even_slower_clocks(bool enable)
1065 { 1065 {
1066 void __iomem *clock_reg[] = { 1066 void __iomem *clock_reg[] = {
1067 PRCM_ACLK_MGT, 1067 PRCM_ACLK_MGT,
1068 PRCM_DMACLK_MGT 1068 PRCM_DMACLK_MGT
1069 }; 1069 };
1070 unsigned long flags; 1070 unsigned long flags;
1071 unsigned int i; 1071 unsigned int i;
1072 1072
1073 spin_lock_irqsave(&clk_mgt_lock, flags); 1073 spin_lock_irqsave(&clk_mgt_lock, flags);
1074 1074
1075 /* Grab the HW semaphore. */ 1075 /* Grab the HW semaphore. */
1076 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) 1076 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1077 cpu_relax(); 1077 cpu_relax();
1078 1078
1079 for (i = 0; i < ARRAY_SIZE(clock_reg); i++) { 1079 for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
1080 u32 val; 1080 u32 val;
1081 u32 div; 1081 u32 div;
1082 1082
1083 val = readl(clock_reg[i]); 1083 val = readl(clock_reg[i]);
1084 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK); 1084 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
1085 if (enable) { 1085 if (enable) {
1086 if ((div <= 1) || (div > 15)) { 1086 if ((div <= 1) || (div > 15)) {
1087 pr_err("prcmu: Bad clock divider %d in %s\n", 1087 pr_err("prcmu: Bad clock divider %d in %s\n",
1088 div, __func__); 1088 div, __func__);
1089 goto unlock_and_return; 1089 goto unlock_and_return;
1090 } 1090 }
1091 div <<= 1; 1091 div <<= 1;
1092 } else { 1092 } else {
1093 if (div <= 2) 1093 if (div <= 2)
1094 goto unlock_and_return; 1094 goto unlock_and_return;
1095 div >>= 1; 1095 div >>= 1;
1096 } 1096 }
1097 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) | 1097 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
1098 (div & PRCM_CLK_MGT_CLKPLLDIV_MASK)); 1098 (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
1099 writel(val, clock_reg[i]); 1099 writel(val, clock_reg[i]);
1100 } 1100 }
1101 1101
1102 unlock_and_return: 1102 unlock_and_return:
1103 /* Release the HW semaphore. */ 1103 /* Release the HW semaphore. */
1104 writel(0, PRCM_SEM); 1104 writel(0, PRCM_SEM);
1105 1105
1106 spin_unlock_irqrestore(&clk_mgt_lock, flags); 1106 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1107 } 1107 }
1108 1108
1109 /** 1109 /**
1110 * db8500_set_ape_opp - set the appropriate APE OPP 1110 * db8500_set_ape_opp - set the appropriate APE OPP
1111 * @opp: The new APE operating point to which transition is to be made 1111 * @opp: The new APE operating point to which transition is to be made
1112 * Returns: 0 on success, non-zero on failure 1112 * Returns: 0 on success, non-zero on failure
1113 * 1113 *
1114 * This function sets the operating point of the APE. 1114 * This function sets the operating point of the APE.
1115 */ 1115 */
1116 int db8500_prcmu_set_ape_opp(u8 opp) 1116 int db8500_prcmu_set_ape_opp(u8 opp)
1117 { 1117 {
1118 int r = 0; 1118 int r = 0;
1119 1119
1120 if (opp == mb1_transfer.ape_opp) 1120 if (opp == mb1_transfer.ape_opp)
1121 return 0; 1121 return 0;
1122 1122
1123 mutex_lock(&mb1_transfer.lock); 1123 mutex_lock(&mb1_transfer.lock);
1124 1124
1125 if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP) 1125 if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1126 request_even_slower_clocks(false); 1126 request_even_slower_clocks(false);
1127 1127
1128 if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP)) 1128 if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1129 goto skip_message; 1129 goto skip_message;
1130 1130
1131 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 1131 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1132 cpu_relax(); 1132 cpu_relax();
1133 1133
1134 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 1134 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1135 writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP)); 1135 writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1136 writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp), 1136 writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1137 (tcdm_base + PRCM_REQ_MB1_APE_OPP)); 1137 (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1138 1138
1139 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 1139 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1140 wait_for_completion(&mb1_transfer.work); 1140 wait_for_completion(&mb1_transfer.work);
1141 1141
1142 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) || 1142 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1143 (mb1_transfer.ack.ape_opp != opp)) 1143 (mb1_transfer.ack.ape_opp != opp))
1144 r = -EIO; 1144 r = -EIO;
1145 1145
1146 skip_message: 1146 skip_message:
1147 if ((!r && (opp == APE_50_PARTLY_25_OPP)) || 1147 if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1148 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP))) 1148 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1149 request_even_slower_clocks(true); 1149 request_even_slower_clocks(true);
1150 if (!r) 1150 if (!r)
1151 mb1_transfer.ape_opp = opp; 1151 mb1_transfer.ape_opp = opp;
1152 1152
1153 mutex_unlock(&mb1_transfer.lock); 1153 mutex_unlock(&mb1_transfer.lock);
1154 1154
1155 return r; 1155 return r;
1156 } 1156 }
1157 1157
1158 /** 1158 /**
1159 * db8500_prcmu_get_ape_opp - get the current APE OPP 1159 * db8500_prcmu_get_ape_opp - get the current APE OPP
1160 * 1160 *
1161 * Returns: the current APE OPP 1161 * Returns: the current APE OPP
1162 */ 1162 */
1163 int db8500_prcmu_get_ape_opp(void) 1163 int db8500_prcmu_get_ape_opp(void)
1164 { 1164 {
1165 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP); 1165 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1166 } 1166 }
1167 1167
1168 /** 1168 /**
1169 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage 1169 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1170 * @enable: true to request the higher voltage, false to drop a request. 1170 * @enable: true to request the higher voltage, false to drop a request.
1171 * 1171 *
1172 * Calls to this function to enable and disable requests must be balanced. 1172 * Calls to this function to enable and disable requests must be balanced.
1173 */ 1173 */
1174 int db8500_prcmu_request_ape_opp_100_voltage(bool enable) 1174 int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
1175 { 1175 {
1176 int r = 0; 1176 int r = 0;
1177 u8 header; 1177 u8 header;
1178 static unsigned int requests; 1178 static unsigned int requests;
1179 1179
1180 mutex_lock(&mb1_transfer.lock); 1180 mutex_lock(&mb1_transfer.lock);
1181 1181
1182 if (enable) { 1182 if (enable) {
1183 if (0 != requests++) 1183 if (0 != requests++)
1184 goto unlock_and_return; 1184 goto unlock_and_return;
1185 header = MB1H_REQUEST_APE_OPP_100_VOLT; 1185 header = MB1H_REQUEST_APE_OPP_100_VOLT;
1186 } else { 1186 } else {
1187 if (requests == 0) { 1187 if (requests == 0) {
1188 r = -EIO; 1188 r = -EIO;
1189 goto unlock_and_return; 1189 goto unlock_and_return;
1190 } else if (1 != requests--) { 1190 } else if (1 != requests--) {
1191 goto unlock_and_return; 1191 goto unlock_and_return;
1192 } 1192 }
1193 header = MB1H_RELEASE_APE_OPP_100_VOLT; 1193 header = MB1H_RELEASE_APE_OPP_100_VOLT;
1194 } 1194 }
1195 1195
1196 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 1196 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1197 cpu_relax(); 1197 cpu_relax();
1198 1198
1199 writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 1199 writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1200 1200
1201 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 1201 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1202 wait_for_completion(&mb1_transfer.work); 1202 wait_for_completion(&mb1_transfer.work);
1203 1203
1204 if ((mb1_transfer.ack.header != header) || 1204 if ((mb1_transfer.ack.header != header) ||
1205 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0)) 1205 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1206 r = -EIO; 1206 r = -EIO;
1207 1207
1208 unlock_and_return: 1208 unlock_and_return:
1209 mutex_unlock(&mb1_transfer.lock); 1209 mutex_unlock(&mb1_transfer.lock);
1210 1210
1211 return r; 1211 return r;
1212 } 1212 }
1213 1213
1214 /** 1214 /**
1215 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup 1215 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1216 * 1216 *
1217 * This function releases the power state requirements of a USB wakeup. 1217 * This function releases the power state requirements of a USB wakeup.
1218 */ 1218 */
1219 int prcmu_release_usb_wakeup_state(void) 1219 int prcmu_release_usb_wakeup_state(void)
1220 { 1220 {
1221 int r = 0; 1221 int r = 0;
1222 1222
1223 mutex_lock(&mb1_transfer.lock); 1223 mutex_lock(&mb1_transfer.lock);
1224 1224
1225 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 1225 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1226 cpu_relax(); 1226 cpu_relax();
1227 1227
1228 writeb(MB1H_RELEASE_USB_WAKEUP, 1228 writeb(MB1H_RELEASE_USB_WAKEUP,
1229 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 1229 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1230 1230
1231 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 1231 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1232 wait_for_completion(&mb1_transfer.work); 1232 wait_for_completion(&mb1_transfer.work);
1233 1233
1234 if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) || 1234 if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1235 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0)) 1235 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1236 r = -EIO; 1236 r = -EIO;
1237 1237
1238 mutex_unlock(&mb1_transfer.lock); 1238 mutex_unlock(&mb1_transfer.lock);
1239 1239
1240 return r; 1240 return r;
1241 } 1241 }
1242 1242
1243 static int request_pll(u8 clock, bool enable) 1243 static int request_pll(u8 clock, bool enable)
1244 { 1244 {
1245 int r = 0; 1245 int r = 0;
1246 1246
1247 if (clock == PRCMU_PLLSOC0) 1247 if (clock == PRCMU_PLLSOC0)
1248 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF); 1248 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1249 else if (clock == PRCMU_PLLSOC1) 1249 else if (clock == PRCMU_PLLSOC1)
1250 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF); 1250 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1251 else 1251 else
1252 return -EINVAL; 1252 return -EINVAL;
1253 1253
1254 mutex_lock(&mb1_transfer.lock); 1254 mutex_lock(&mb1_transfer.lock);
1255 1255
1256 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 1256 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1257 cpu_relax(); 1257 cpu_relax();
1258 1258
1259 writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 1259 writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1260 writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF)); 1260 writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1261 1261
1262 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 1262 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1263 wait_for_completion(&mb1_transfer.work); 1263 wait_for_completion(&mb1_transfer.work);
1264 1264
1265 if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF) 1265 if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1266 r = -EIO; 1266 r = -EIO;
1267 1267
1268 mutex_unlock(&mb1_transfer.lock); 1268 mutex_unlock(&mb1_transfer.lock);
1269 1269
1270 return r; 1270 return r;
1271 } 1271 }
1272 1272
1273 /** 1273 /**
1274 * db8500_prcmu_set_epod - set the state of a EPOD (power domain) 1274 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1275 * @epod_id: The EPOD to set 1275 * @epod_id: The EPOD to set
1276 * @epod_state: The new EPOD state 1276 * @epod_state: The new EPOD state
1277 * 1277 *
1278 * This function sets the state of a EPOD (power domain). It may not be called 1278 * This function sets the state of a EPOD (power domain). It may not be called
1279 * from interrupt context. 1279 * from interrupt context.
1280 */ 1280 */
1281 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state) 1281 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1282 { 1282 {
1283 int r = 0; 1283 int r = 0;
1284 bool ram_retention = false; 1284 bool ram_retention = false;
1285 int i; 1285 int i;
1286 1286
1287 /* check argument */ 1287 /* check argument */
1288 BUG_ON(epod_id >= NUM_EPOD_ID); 1288 BUG_ON(epod_id >= NUM_EPOD_ID);
1289 1289
1290 /* set flag if retention is possible */ 1290 /* set flag if retention is possible */
1291 switch (epod_id) { 1291 switch (epod_id) {
1292 case EPOD_ID_SVAMMDSP: 1292 case EPOD_ID_SVAMMDSP:
1293 case EPOD_ID_SIAMMDSP: 1293 case EPOD_ID_SIAMMDSP:
1294 case EPOD_ID_ESRAM12: 1294 case EPOD_ID_ESRAM12:
1295 case EPOD_ID_ESRAM34: 1295 case EPOD_ID_ESRAM34:
1296 ram_retention = true; 1296 ram_retention = true;
1297 break; 1297 break;
1298 } 1298 }
1299 1299
1300 /* check argument */ 1300 /* check argument */
1301 BUG_ON(epod_state > EPOD_STATE_ON); 1301 BUG_ON(epod_state > EPOD_STATE_ON);
1302 BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention); 1302 BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1303 1303
1304 /* get lock */ 1304 /* get lock */
1305 mutex_lock(&mb2_transfer.lock); 1305 mutex_lock(&mb2_transfer.lock);
1306 1306
1307 /* wait for mailbox */ 1307 /* wait for mailbox */
1308 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2)) 1308 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1309 cpu_relax(); 1309 cpu_relax();
1310 1310
1311 /* fill in mailbox */ 1311 /* fill in mailbox */
1312 for (i = 0; i < NUM_EPOD_ID; i++) 1312 for (i = 0; i < NUM_EPOD_ID; i++)
1313 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i)); 1313 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1314 writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id)); 1314 writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1315 1315
1316 writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2)); 1316 writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1317 1317
1318 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET); 1318 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1319 1319
1320 /* 1320 /*
1321 * The current firmware version does not handle errors correctly, 1321 * The current firmware version does not handle errors correctly,
1322 * and we cannot recover if there is an error. 1322 * and we cannot recover if there is an error.
1323 * This is expected to change when the firmware is updated. 1323 * This is expected to change when the firmware is updated.
1324 */ 1324 */
1325 if (!wait_for_completion_timeout(&mb2_transfer.work, 1325 if (!wait_for_completion_timeout(&mb2_transfer.work,
1326 msecs_to_jiffies(20000))) { 1326 msecs_to_jiffies(20000))) {
1327 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", 1327 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1328 __func__); 1328 __func__);
1329 r = -EIO; 1329 r = -EIO;
1330 goto unlock_and_return; 1330 goto unlock_and_return;
1331 } 1331 }
1332 1332
1333 if (mb2_transfer.ack.status != HWACC_PWR_ST_OK) 1333 if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1334 r = -EIO; 1334 r = -EIO;
1335 1335
1336 unlock_and_return: 1336 unlock_and_return:
1337 mutex_unlock(&mb2_transfer.lock); 1337 mutex_unlock(&mb2_transfer.lock);
1338 return r; 1338 return r;
1339 } 1339 }
1340 1340
1341 /** 1341 /**
1342 * prcmu_configure_auto_pm - Configure autonomous power management. 1342 * prcmu_configure_auto_pm - Configure autonomous power management.
1343 * @sleep: Configuration for ApSleep. 1343 * @sleep: Configuration for ApSleep.
1344 * @idle: Configuration for ApIdle. 1344 * @idle: Configuration for ApIdle.
1345 */ 1345 */
1346 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep, 1346 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1347 struct prcmu_auto_pm_config *idle) 1347 struct prcmu_auto_pm_config *idle)
1348 { 1348 {
1349 u32 sleep_cfg; 1349 u32 sleep_cfg;
1350 u32 idle_cfg; 1350 u32 idle_cfg;
1351 unsigned long flags; 1351 unsigned long flags;
1352 1352
1353 BUG_ON((sleep == NULL) || (idle == NULL)); 1353 BUG_ON((sleep == NULL) || (idle == NULL));
1354 1354
1355 sleep_cfg = (sleep->sva_auto_pm_enable & 0xF); 1355 sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1356 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF)); 1356 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1357 sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF)); 1357 sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1358 sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF)); 1358 sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1359 sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF)); 1359 sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1360 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF)); 1360 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1361 1361
1362 idle_cfg = (idle->sva_auto_pm_enable & 0xF); 1362 idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1363 idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF)); 1363 idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1364 idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF)); 1364 idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1365 idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF)); 1365 idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1366 idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF)); 1366 idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1367 idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF)); 1367 idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1368 1368
1369 spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags); 1369 spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1370 1370
1371 /* 1371 /*
1372 * The autonomous power management configuration is done through 1372 * The autonomous power management configuration is done through
1373 * fields in mailbox 2, but these fields are only used as shared 1373 * fields in mailbox 2, but these fields are only used as shared
1374 * variables - i.e. there is no need to send a message. 1374 * variables - i.e. there is no need to send a message.
1375 */ 1375 */
1376 writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP)); 1376 writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1377 writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE)); 1377 writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1378 1378
1379 mb2_transfer.auto_pm_enabled = 1379 mb2_transfer.auto_pm_enabled =
1380 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) || 1380 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1381 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) || 1381 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1382 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) || 1382 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1383 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON)); 1383 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1384 1384
1385 spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags); 1385 spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1386 } 1386 }
1387 EXPORT_SYMBOL(prcmu_configure_auto_pm); 1387 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1388 1388
1389 bool prcmu_is_auto_pm_enabled(void) 1389 bool prcmu_is_auto_pm_enabled(void)
1390 { 1390 {
1391 return mb2_transfer.auto_pm_enabled; 1391 return mb2_transfer.auto_pm_enabled;
1392 } 1392 }
1393 1393
1394 static int request_sysclk(bool enable) 1394 static int request_sysclk(bool enable)
1395 { 1395 {
1396 int r; 1396 int r;
1397 unsigned long flags; 1397 unsigned long flags;
1398 1398
1399 r = 0; 1399 r = 0;
1400 1400
1401 mutex_lock(&mb3_transfer.sysclk_lock); 1401 mutex_lock(&mb3_transfer.sysclk_lock);
1402 1402
1403 spin_lock_irqsave(&mb3_transfer.lock, flags); 1403 spin_lock_irqsave(&mb3_transfer.lock, flags);
1404 1404
1405 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3)) 1405 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1406 cpu_relax(); 1406 cpu_relax();
1407 1407
1408 writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT)); 1408 writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1409 1409
1410 writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3)); 1410 writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1411 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET); 1411 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1412 1412
1413 spin_unlock_irqrestore(&mb3_transfer.lock, flags); 1413 spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1414 1414
1415 /* 1415 /*
1416 * The firmware only sends an ACK if we want to enable the 1416 * The firmware only sends an ACK if we want to enable the
1417 * SysClk, and it succeeds. 1417 * SysClk, and it succeeds.
1418 */ 1418 */
1419 if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work, 1419 if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1420 msecs_to_jiffies(20000))) { 1420 msecs_to_jiffies(20000))) {
1421 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", 1421 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1422 __func__); 1422 __func__);
1423 r = -EIO; 1423 r = -EIO;
1424 } 1424 }
1425 1425
1426 mutex_unlock(&mb3_transfer.sysclk_lock); 1426 mutex_unlock(&mb3_transfer.sysclk_lock);
1427 1427
1428 return r; 1428 return r;
1429 } 1429 }
1430 1430
1431 static int request_timclk(bool enable) 1431 static int request_timclk(bool enable)
1432 { 1432 {
1433 u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK); 1433 u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1434 1434
1435 if (!enable) 1435 if (!enable)
1436 val |= PRCM_TCR_STOP_TIMERS; 1436 val |= PRCM_TCR_STOP_TIMERS;
1437 writel(val, PRCM_TCR); 1437 writel(val, PRCM_TCR);
1438 1438
1439 return 0; 1439 return 0;
1440 } 1440 }
1441 1441
1442 static int request_clock(u8 clock, bool enable) 1442 static int request_clock(u8 clock, bool enable)
1443 { 1443 {
1444 u32 val; 1444 u32 val;
1445 unsigned long flags; 1445 unsigned long flags;
1446 1446
1447 spin_lock_irqsave(&clk_mgt_lock, flags); 1447 spin_lock_irqsave(&clk_mgt_lock, flags);
1448 1448
1449 /* Grab the HW semaphore. */ 1449 /* Grab the HW semaphore. */
1450 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) 1450 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1451 cpu_relax(); 1451 cpu_relax();
1452 1452
1453 val = readl(clk_mgt[clock].reg); 1453 val = readl(clk_mgt[clock].reg);
1454 if (enable) { 1454 if (enable) {
1455 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw); 1455 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1456 } else { 1456 } else {
1457 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK); 1457 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1458 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK); 1458 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1459 } 1459 }
1460 writel(val, clk_mgt[clock].reg); 1460 writel(val, clk_mgt[clock].reg);
1461 1461
1462 /* Release the HW semaphore. */ 1462 /* Release the HW semaphore. */
1463 writel(0, PRCM_SEM); 1463 writel(0, PRCM_SEM);
1464 1464
1465 spin_unlock_irqrestore(&clk_mgt_lock, flags); 1465 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1466 1466
1467 return 0; 1467 return 0;
1468 } 1468 }
1469 1469
1470 static int request_sga_clock(u8 clock, bool enable) 1470 static int request_sga_clock(u8 clock, bool enable)
1471 { 1471 {
1472 u32 val; 1472 u32 val;
1473 int ret; 1473 int ret;
1474 1474
1475 if (enable) { 1475 if (enable) {
1476 val = readl(PRCM_CGATING_BYPASS); 1476 val = readl(PRCM_CGATING_BYPASS);
1477 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS); 1477 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1478 } 1478 }
1479 1479
1480 ret = request_clock(clock, enable); 1480 ret = request_clock(clock, enable);
1481 1481
1482 if (!ret && !enable) { 1482 if (!ret && !enable) {
1483 val = readl(PRCM_CGATING_BYPASS); 1483 val = readl(PRCM_CGATING_BYPASS);
1484 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS); 1484 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1485 } 1485 }
1486 1486
1487 return ret; 1487 return ret;
1488 } 1488 }
1489 1489
1490 static inline bool plldsi_locked(void) 1490 static inline bool plldsi_locked(void)
1491 { 1491 {
1492 return (readl(PRCM_PLLDSI_LOCKP) & 1492 return (readl(PRCM_PLLDSI_LOCKP) &
1493 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 | 1493 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1494 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) == 1494 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1495 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 | 1495 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1496 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3); 1496 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1497 } 1497 }
1498 1498
1499 static int request_plldsi(bool enable) 1499 static int request_plldsi(bool enable)
1500 { 1500 {
1501 int r = 0; 1501 int r = 0;
1502 u32 val; 1502 u32 val;
1503 1503
1504 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP | 1504 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1505 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ? 1505 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1506 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET)); 1506 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1507 1507
1508 val = readl(PRCM_PLLDSI_ENABLE); 1508 val = readl(PRCM_PLLDSI_ENABLE);
1509 if (enable) 1509 if (enable)
1510 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE; 1510 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1511 else 1511 else
1512 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE; 1512 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1513 writel(val, PRCM_PLLDSI_ENABLE); 1513 writel(val, PRCM_PLLDSI_ENABLE);
1514 1514
1515 if (enable) { 1515 if (enable) {
1516 unsigned int i; 1516 unsigned int i;
1517 bool locked = plldsi_locked(); 1517 bool locked = plldsi_locked();
1518 1518
1519 for (i = 10; !locked && (i > 0); --i) { 1519 for (i = 10; !locked && (i > 0); --i) {
1520 udelay(100); 1520 udelay(100);
1521 locked = plldsi_locked(); 1521 locked = plldsi_locked();
1522 } 1522 }
1523 if (locked) { 1523 if (locked) {
1524 writel(PRCM_APE_RESETN_DSIPLL_RESETN, 1524 writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1525 PRCM_APE_RESETN_SET); 1525 PRCM_APE_RESETN_SET);
1526 } else { 1526 } else {
1527 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP | 1527 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1528 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), 1528 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1529 PRCM_MMIP_LS_CLAMP_SET); 1529 PRCM_MMIP_LS_CLAMP_SET);
1530 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE; 1530 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1531 writel(val, PRCM_PLLDSI_ENABLE); 1531 writel(val, PRCM_PLLDSI_ENABLE);
1532 r = -EAGAIN; 1532 r = -EAGAIN;
1533 } 1533 }
1534 } else { 1534 } else {
1535 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR); 1535 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1536 } 1536 }
1537 return r; 1537 return r;
1538 } 1538 }
1539 1539
1540 static int request_dsiclk(u8 n, bool enable) 1540 static int request_dsiclk(u8 n, bool enable)
1541 { 1541 {
1542 u32 val; 1542 u32 val;
1543 1543
1544 val = readl(PRCM_DSI_PLLOUT_SEL); 1544 val = readl(PRCM_DSI_PLLOUT_SEL);
1545 val &= ~dsiclk[n].divsel_mask; 1545 val &= ~dsiclk[n].divsel_mask;
1546 val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) << 1546 val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1547 dsiclk[n].divsel_shift); 1547 dsiclk[n].divsel_shift);
1548 writel(val, PRCM_DSI_PLLOUT_SEL); 1548 writel(val, PRCM_DSI_PLLOUT_SEL);
1549 return 0; 1549 return 0;
1550 } 1550 }
1551 1551
1552 static int request_dsiescclk(u8 n, bool enable) 1552 static int request_dsiescclk(u8 n, bool enable)
1553 { 1553 {
1554 u32 val; 1554 u32 val;
1555 1555
1556 val = readl(PRCM_DSITVCLK_DIV); 1556 val = readl(PRCM_DSITVCLK_DIV);
1557 enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en); 1557 enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1558 writel(val, PRCM_DSITVCLK_DIV); 1558 writel(val, PRCM_DSITVCLK_DIV);
1559 return 0; 1559 return 0;
1560 } 1560 }
1561 1561
1562 /** 1562 /**
1563 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled. 1563 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1564 * @clock: The clock for which the request is made. 1564 * @clock: The clock for which the request is made.
1565 * @enable: Whether the clock should be enabled (true) or disabled (false). 1565 * @enable: Whether the clock should be enabled (true) or disabled (false).
1566 * 1566 *
1567 * This function should only be used by the clock implementation. 1567 * This function should only be used by the clock implementation.
1568 * Do not use it from any other place! 1568 * Do not use it from any other place!
1569 */ 1569 */
1570 int db8500_prcmu_request_clock(u8 clock, bool enable) 1570 int db8500_prcmu_request_clock(u8 clock, bool enable)
1571 { 1571 {
1572 if (clock == PRCMU_SGACLK) 1572 if (clock == PRCMU_SGACLK)
1573 return request_sga_clock(clock, enable); 1573 return request_sga_clock(clock, enable);
1574 else if (clock < PRCMU_NUM_REG_CLOCKS) 1574 else if (clock < PRCMU_NUM_REG_CLOCKS)
1575 return request_clock(clock, enable); 1575 return request_clock(clock, enable);
1576 else if (clock == PRCMU_TIMCLK) 1576 else if (clock == PRCMU_TIMCLK)
1577 return request_timclk(enable); 1577 return request_timclk(enable);
1578 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) 1578 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1579 return request_dsiclk((clock - PRCMU_DSI0CLK), enable); 1579 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1580 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) 1580 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1581 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable); 1581 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1582 else if (clock == PRCMU_PLLDSI) 1582 else if (clock == PRCMU_PLLDSI)
1583 return request_plldsi(enable); 1583 return request_plldsi(enable);
1584 else if (clock == PRCMU_SYSCLK) 1584 else if (clock == PRCMU_SYSCLK)
1585 return request_sysclk(enable); 1585 return request_sysclk(enable);
1586 else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1)) 1586 else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1587 return request_pll(clock, enable); 1587 return request_pll(clock, enable);
1588 else 1588 else
1589 return -EINVAL; 1589 return -EINVAL;
1590 } 1590 }
1591 1591
1592 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate, 1592 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1593 int branch) 1593 int branch)
1594 { 1594 {
1595 u64 rate; 1595 u64 rate;
1596 u32 val; 1596 u32 val;
1597 u32 d; 1597 u32 d;
1598 u32 div = 1; 1598 u32 div = 1;
1599 1599
1600 val = readl(reg); 1600 val = readl(reg);
1601 1601
1602 rate = src_rate; 1602 rate = src_rate;
1603 rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT); 1603 rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1604 1604
1605 d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT); 1605 d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1606 if (d > 1) 1606 if (d > 1)
1607 div *= d; 1607 div *= d;
1608 1608
1609 d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT); 1609 d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1610 if (d > 1) 1610 if (d > 1)
1611 div *= d; 1611 div *= d;
1612 1612
1613 if (val & PRCM_PLL_FREQ_SELDIV2) 1613 if (val & PRCM_PLL_FREQ_SELDIV2)
1614 div *= 2; 1614 div *= 2;
1615 1615
1616 if ((branch == PLL_FIX) || ((branch == PLL_DIV) && 1616 if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1617 (val & PRCM_PLL_FREQ_DIV2EN) && 1617 (val & PRCM_PLL_FREQ_DIV2EN) &&
1618 ((reg == PRCM_PLLSOC0_FREQ) || 1618 ((reg == PRCM_PLLSOC0_FREQ) ||
1619 (reg == PRCM_PLLARM_FREQ) || 1619 (reg == PRCM_PLLARM_FREQ) ||
1620 (reg == PRCM_PLLDDR_FREQ)))) 1620 (reg == PRCM_PLLDDR_FREQ))))
1621 div *= 2; 1621 div *= 2;
1622 1622
1623 (void)do_div(rate, div); 1623 (void)do_div(rate, div);
1624 1624
1625 return (unsigned long)rate; 1625 return (unsigned long)rate;
1626 } 1626 }
1627 1627
1628 #define ROOT_CLOCK_RATE 38400000 1628 #define ROOT_CLOCK_RATE 38400000
1629 1629
1630 static unsigned long clock_rate(u8 clock) 1630 static unsigned long clock_rate(u8 clock)
1631 { 1631 {
1632 u32 val; 1632 u32 val;
1633 u32 pllsw; 1633 u32 pllsw;
1634 unsigned long rate = ROOT_CLOCK_RATE; 1634 unsigned long rate = ROOT_CLOCK_RATE;
1635 1635
1636 val = readl(clk_mgt[clock].reg); 1636 val = readl(clk_mgt[clock].reg);
1637 1637
1638 if (val & PRCM_CLK_MGT_CLK38) { 1638 if (val & PRCM_CLK_MGT_CLK38) {
1639 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV)) 1639 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1640 rate /= 2; 1640 rate /= 2;
1641 return rate; 1641 return rate;
1642 } 1642 }
1643 1643
1644 val |= clk_mgt[clock].pllsw; 1644 val |= clk_mgt[clock].pllsw;
1645 pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK); 1645 pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1646 1646
1647 if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0) 1647 if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1648 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch); 1648 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1649 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1) 1649 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1650 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch); 1650 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1651 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR) 1651 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1652 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch); 1652 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1653 else 1653 else
1654 return 0; 1654 return 0;
1655 1655
1656 if ((clock == PRCMU_SGACLK) && 1656 if ((clock == PRCMU_SGACLK) &&
1657 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) { 1657 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1658 u64 r = (rate * 10); 1658 u64 r = (rate * 10);
1659 1659
1660 (void)do_div(r, 25); 1660 (void)do_div(r, 25);
1661 return (unsigned long)r; 1661 return (unsigned long)r;
1662 } 1662 }
1663 val &= PRCM_CLK_MGT_CLKPLLDIV_MASK; 1663 val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1664 if (val) 1664 if (val)
1665 return rate / val; 1665 return rate / val;
1666 else 1666 else
1667 return 0; 1667 return 0;
1668 } 1668 }
1669 1669
1670 static unsigned long armss_rate(void) 1670 static unsigned long armss_rate(void)
1671 { 1671 {
1672 u32 r; 1672 u32 r;
1673 unsigned long rate; 1673 unsigned long rate;
1674 1674
1675 r = readl(PRCM_ARM_CHGCLKREQ); 1675 r = readl(PRCM_ARM_CHGCLKREQ);
1676 1676
1677 if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) { 1677 if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1678 /* External ARMCLKFIX clock */ 1678 /* External ARMCLKFIX clock */
1679 1679
1680 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX); 1680 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1681 1681
1682 /* Check PRCM_ARM_CHGCLKREQ divider */ 1682 /* Check PRCM_ARM_CHGCLKREQ divider */
1683 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL)) 1683 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1684 rate /= 2; 1684 rate /= 2;
1685 1685
1686 /* Check PRCM_ARMCLKFIX_MGT divider */ 1686 /* Check PRCM_ARMCLKFIX_MGT divider */
1687 r = readl(PRCM_ARMCLKFIX_MGT); 1687 r = readl(PRCM_ARMCLKFIX_MGT);
1688 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK; 1688 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1689 rate /= r; 1689 rate /= r;
1690 1690
1691 } else {/* ARM PLL */ 1691 } else {/* ARM PLL */
1692 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV); 1692 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1693 } 1693 }
1694 1694
1695 return rate; 1695 return rate;
1696 } 1696 }
1697 1697
1698 static unsigned long dsiclk_rate(u8 n) 1698 static unsigned long dsiclk_rate(u8 n)
1699 { 1699 {
1700 u32 divsel; 1700 u32 divsel;
1701 u32 div = 1; 1701 u32 div = 1;
1702 1702
1703 divsel = readl(PRCM_DSI_PLLOUT_SEL); 1703 divsel = readl(PRCM_DSI_PLLOUT_SEL);
1704 divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift); 1704 divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1705 1705
1706 if (divsel == PRCM_DSI_PLLOUT_SEL_OFF) 1706 if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1707 divsel = dsiclk[n].divsel; 1707 divsel = dsiclk[n].divsel;
1708 1708
1709 switch (divsel) { 1709 switch (divsel) {
1710 case PRCM_DSI_PLLOUT_SEL_PHI_4: 1710 case PRCM_DSI_PLLOUT_SEL_PHI_4:
1711 div *= 2; 1711 div *= 2;
1712 case PRCM_DSI_PLLOUT_SEL_PHI_2: 1712 case PRCM_DSI_PLLOUT_SEL_PHI_2:
1713 div *= 2; 1713 div *= 2;
1714 case PRCM_DSI_PLLOUT_SEL_PHI: 1714 case PRCM_DSI_PLLOUT_SEL_PHI:
1715 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK), 1715 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1716 PLL_RAW) / div; 1716 PLL_RAW) / div;
1717 default: 1717 default:
1718 return 0; 1718 return 0;
1719 } 1719 }
1720 } 1720 }
1721 1721
1722 static unsigned long dsiescclk_rate(u8 n) 1722 static unsigned long dsiescclk_rate(u8 n)
1723 { 1723 {
1724 u32 div; 1724 u32 div;
1725 1725
1726 div = readl(PRCM_DSITVCLK_DIV); 1726 div = readl(PRCM_DSITVCLK_DIV);
1727 div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift)); 1727 div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1728 return clock_rate(PRCMU_TVCLK) / max((u32)1, div); 1728 return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1729 } 1729 }
1730 1730
1731 unsigned long prcmu_clock_rate(u8 clock) 1731 unsigned long prcmu_clock_rate(u8 clock)
1732 { 1732 {
1733 if (clock < PRCMU_NUM_REG_CLOCKS) 1733 if (clock < PRCMU_NUM_REG_CLOCKS)
1734 return clock_rate(clock); 1734 return clock_rate(clock);
1735 else if (clock == PRCMU_TIMCLK) 1735 else if (clock == PRCMU_TIMCLK)
1736 return ROOT_CLOCK_RATE / 16; 1736 return ROOT_CLOCK_RATE / 16;
1737 else if (clock == PRCMU_SYSCLK) 1737 else if (clock == PRCMU_SYSCLK)
1738 return ROOT_CLOCK_RATE; 1738 return ROOT_CLOCK_RATE;
1739 else if (clock == PRCMU_PLLSOC0) 1739 else if (clock == PRCMU_PLLSOC0)
1740 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW); 1740 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1741 else if (clock == PRCMU_PLLSOC1) 1741 else if (clock == PRCMU_PLLSOC1)
1742 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW); 1742 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1743 else if (clock == PRCMU_ARMSS) 1743 else if (clock == PRCMU_ARMSS)
1744 return armss_rate(); 1744 return armss_rate();
1745 else if (clock == PRCMU_PLLDDR) 1745 else if (clock == PRCMU_PLLDDR)
1746 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW); 1746 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1747 else if (clock == PRCMU_PLLDSI) 1747 else if (clock == PRCMU_PLLDSI)
1748 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK), 1748 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1749 PLL_RAW); 1749 PLL_RAW);
1750 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) 1750 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1751 return dsiclk_rate(clock - PRCMU_DSI0CLK); 1751 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1752 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) 1752 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1753 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK); 1753 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1754 else 1754 else
1755 return 0; 1755 return 0;
1756 } 1756 }
1757 1757
1758 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch) 1758 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1759 { 1759 {
1760 if (clk_mgt_val & PRCM_CLK_MGT_CLK38) 1760 if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1761 return ROOT_CLOCK_RATE; 1761 return ROOT_CLOCK_RATE;
1762 clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK; 1762 clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1763 if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0) 1763 if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1764 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch); 1764 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1765 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1) 1765 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1766 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch); 1766 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1767 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR) 1767 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1768 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch); 1768 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1769 else 1769 else
1770 return 0; 1770 return 0;
1771 } 1771 }
1772 1772
1773 static u32 clock_divider(unsigned long src_rate, unsigned long rate) 1773 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1774 { 1774 {
1775 u32 div; 1775 u32 div;
1776 1776
1777 div = (src_rate / rate); 1777 div = (src_rate / rate);
1778 if (div == 0) 1778 if (div == 0)
1779 return 1; 1779 return 1;
1780 if (rate < (src_rate / div)) 1780 if (rate < (src_rate / div))
1781 div++; 1781 div++;
1782 return div; 1782 return div;
1783 } 1783 }
1784 1784
1785 static long round_clock_rate(u8 clock, unsigned long rate) 1785 static long round_clock_rate(u8 clock, unsigned long rate)
1786 { 1786 {
1787 u32 val; 1787 u32 val;
1788 u32 div; 1788 u32 div;
1789 unsigned long src_rate; 1789 unsigned long src_rate;
1790 long rounded_rate; 1790 long rounded_rate;
1791 1791
1792 val = readl(clk_mgt[clock].reg); 1792 val = readl(clk_mgt[clock].reg);
1793 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw), 1793 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1794 clk_mgt[clock].branch); 1794 clk_mgt[clock].branch);
1795 div = clock_divider(src_rate, rate); 1795 div = clock_divider(src_rate, rate);
1796 if (val & PRCM_CLK_MGT_CLK38) { 1796 if (val & PRCM_CLK_MGT_CLK38) {
1797 if (clk_mgt[clock].clk38div) { 1797 if (clk_mgt[clock].clk38div) {
1798 if (div > 2) 1798 if (div > 2)
1799 div = 2; 1799 div = 2;
1800 } else { 1800 } else {
1801 div = 1; 1801 div = 1;
1802 } 1802 }
1803 } else if ((clock == PRCMU_SGACLK) && (div == 3)) { 1803 } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1804 u64 r = (src_rate * 10); 1804 u64 r = (src_rate * 10);
1805 1805
1806 (void)do_div(r, 25); 1806 (void)do_div(r, 25);
1807 if (r <= rate) 1807 if (r <= rate)
1808 return (unsigned long)r; 1808 return (unsigned long)r;
1809 } 1809 }
1810 rounded_rate = (src_rate / min(div, (u32)31)); 1810 rounded_rate = (src_rate / min(div, (u32)31));
1811 1811
1812 return rounded_rate; 1812 return rounded_rate;
1813 } 1813 }
1814 1814
1815 /* CPU FREQ table, may be changed due to if MAX_OPP is supported. */ 1815 /* CPU FREQ table, may be changed due to if MAX_OPP is supported. */
1816 static struct cpufreq_frequency_table db8500_cpufreq_table[] = { 1816 static struct cpufreq_frequency_table db8500_cpufreq_table[] = {
1817 { .frequency = 200000, .index = ARM_EXTCLK,}, 1817 { .frequency = 200000, .index = ARM_EXTCLK,},
1818 { .frequency = 400000, .index = ARM_50_OPP,}, 1818 { .frequency = 400000, .index = ARM_50_OPP,},
1819 { .frequency = 800000, .index = ARM_100_OPP,}, 1819 { .frequency = 800000, .index = ARM_100_OPP,},
1820 { .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */ 1820 { .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */
1821 { .frequency = CPUFREQ_TABLE_END,}, 1821 { .frequency = CPUFREQ_TABLE_END,},
1822 }; 1822 };
1823 1823
1824 static long round_armss_rate(unsigned long rate) 1824 static long round_armss_rate(unsigned long rate)
1825 { 1825 {
1826 long freq = 0; 1826 long freq = 0;
1827 int i = 0; 1827 int i = 0;
1828 1828
1829 /* cpufreq table frequencies is in KHz. */ 1829 /* cpufreq table frequencies is in KHz. */
1830 rate = rate / 1000; 1830 rate = rate / 1000;
1831 1831
1832 /* Find the corresponding arm opp from the cpufreq table. */ 1832 /* Find the corresponding arm opp from the cpufreq table. */
1833 while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) { 1833 while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
1834 freq = db8500_cpufreq_table[i].frequency; 1834 freq = db8500_cpufreq_table[i].frequency;
1835 if (freq == rate) 1835 if (freq == rate)
1836 break; 1836 break;
1837 i++; 1837 i++;
1838 } 1838 }
1839 1839
1840 /* Return the last valid value, even if a match was not found. */ 1840 /* Return the last valid value, even if a match was not found. */
1841 return freq * 1000; 1841 return freq * 1000;
1842 } 1842 }
1843 1843
1844 #define MIN_PLL_VCO_RATE 600000000ULL 1844 #define MIN_PLL_VCO_RATE 600000000ULL
1845 #define MAX_PLL_VCO_RATE 1680640000ULL 1845 #define MAX_PLL_VCO_RATE 1680640000ULL
1846 1846
1847 static long round_plldsi_rate(unsigned long rate) 1847 static long round_plldsi_rate(unsigned long rate)
1848 { 1848 {
1849 long rounded_rate = 0; 1849 long rounded_rate = 0;
1850 unsigned long src_rate; 1850 unsigned long src_rate;
1851 unsigned long rem; 1851 unsigned long rem;
1852 u32 r; 1852 u32 r;
1853 1853
1854 src_rate = clock_rate(PRCMU_HDMICLK); 1854 src_rate = clock_rate(PRCMU_HDMICLK);
1855 rem = rate; 1855 rem = rate;
1856 1856
1857 for (r = 7; (rem > 0) && (r > 0); r--) { 1857 for (r = 7; (rem > 0) && (r > 0); r--) {
1858 u64 d; 1858 u64 d;
1859 1859
1860 d = (r * rate); 1860 d = (r * rate);
1861 (void)do_div(d, src_rate); 1861 (void)do_div(d, src_rate);
1862 if (d < 6) 1862 if (d < 6)
1863 d = 6; 1863 d = 6;
1864 else if (d > 255) 1864 else if (d > 255)
1865 d = 255; 1865 d = 255;
1866 d *= src_rate; 1866 d *= src_rate;
1867 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) || 1867 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1868 ((r * MAX_PLL_VCO_RATE) < (2 * d))) 1868 ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1869 continue; 1869 continue;
1870 (void)do_div(d, r); 1870 (void)do_div(d, r);
1871 if (rate < d) { 1871 if (rate < d) {
1872 if (rounded_rate == 0) 1872 if (rounded_rate == 0)
1873 rounded_rate = (long)d; 1873 rounded_rate = (long)d;
1874 break; 1874 break;
1875 } 1875 }
1876 if ((rate - d) < rem) { 1876 if ((rate - d) < rem) {
1877 rem = (rate - d); 1877 rem = (rate - d);
1878 rounded_rate = (long)d; 1878 rounded_rate = (long)d;
1879 } 1879 }
1880 } 1880 }
1881 return rounded_rate; 1881 return rounded_rate;
1882 } 1882 }
1883 1883
1884 static long round_dsiclk_rate(unsigned long rate) 1884 static long round_dsiclk_rate(unsigned long rate)
1885 { 1885 {
1886 u32 div; 1886 u32 div;
1887 unsigned long src_rate; 1887 unsigned long src_rate;
1888 long rounded_rate; 1888 long rounded_rate;
1889 1889
1890 src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK), 1890 src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1891 PLL_RAW); 1891 PLL_RAW);
1892 div = clock_divider(src_rate, rate); 1892 div = clock_divider(src_rate, rate);
1893 rounded_rate = (src_rate / ((div > 2) ? 4 : div)); 1893 rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1894 1894
1895 return rounded_rate; 1895 return rounded_rate;
1896 } 1896 }
1897 1897
1898 static long round_dsiescclk_rate(unsigned long rate) 1898 static long round_dsiescclk_rate(unsigned long rate)
1899 { 1899 {
1900 u32 div; 1900 u32 div;
1901 unsigned long src_rate; 1901 unsigned long src_rate;
1902 long rounded_rate; 1902 long rounded_rate;
1903 1903
1904 src_rate = clock_rate(PRCMU_TVCLK); 1904 src_rate = clock_rate(PRCMU_TVCLK);
1905 div = clock_divider(src_rate, rate); 1905 div = clock_divider(src_rate, rate);
1906 rounded_rate = (src_rate / min(div, (u32)255)); 1906 rounded_rate = (src_rate / min(div, (u32)255));
1907 1907
1908 return rounded_rate; 1908 return rounded_rate;
1909 } 1909 }
1910 1910
1911 long prcmu_round_clock_rate(u8 clock, unsigned long rate) 1911 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1912 { 1912 {
1913 if (clock < PRCMU_NUM_REG_CLOCKS) 1913 if (clock < PRCMU_NUM_REG_CLOCKS)
1914 return round_clock_rate(clock, rate); 1914 return round_clock_rate(clock, rate);
1915 else if (clock == PRCMU_ARMSS) 1915 else if (clock == PRCMU_ARMSS)
1916 return round_armss_rate(rate); 1916 return round_armss_rate(rate);
1917 else if (clock == PRCMU_PLLDSI) 1917 else if (clock == PRCMU_PLLDSI)
1918 return round_plldsi_rate(rate); 1918 return round_plldsi_rate(rate);
1919 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) 1919 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1920 return round_dsiclk_rate(rate); 1920 return round_dsiclk_rate(rate);
1921 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) 1921 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1922 return round_dsiescclk_rate(rate); 1922 return round_dsiescclk_rate(rate);
1923 else 1923 else
1924 return (long)prcmu_clock_rate(clock); 1924 return (long)prcmu_clock_rate(clock);
1925 } 1925 }
1926 1926
1927 static void set_clock_rate(u8 clock, unsigned long rate) 1927 static void set_clock_rate(u8 clock, unsigned long rate)
1928 { 1928 {
1929 u32 val; 1929 u32 val;
1930 u32 div; 1930 u32 div;
1931 unsigned long src_rate; 1931 unsigned long src_rate;
1932 unsigned long flags; 1932 unsigned long flags;
1933 1933
1934 spin_lock_irqsave(&clk_mgt_lock, flags); 1934 spin_lock_irqsave(&clk_mgt_lock, flags);
1935 1935
1936 /* Grab the HW semaphore. */ 1936 /* Grab the HW semaphore. */
1937 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) 1937 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1938 cpu_relax(); 1938 cpu_relax();
1939 1939
1940 val = readl(clk_mgt[clock].reg); 1940 val = readl(clk_mgt[clock].reg);
1941 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw), 1941 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1942 clk_mgt[clock].branch); 1942 clk_mgt[clock].branch);
1943 div = clock_divider(src_rate, rate); 1943 div = clock_divider(src_rate, rate);
1944 if (val & PRCM_CLK_MGT_CLK38) { 1944 if (val & PRCM_CLK_MGT_CLK38) {
1945 if (clk_mgt[clock].clk38div) { 1945 if (clk_mgt[clock].clk38div) {
1946 if (div > 1) 1946 if (div > 1)
1947 val |= PRCM_CLK_MGT_CLK38DIV; 1947 val |= PRCM_CLK_MGT_CLK38DIV;
1948 else 1948 else
1949 val &= ~PRCM_CLK_MGT_CLK38DIV; 1949 val &= ~PRCM_CLK_MGT_CLK38DIV;
1950 } 1950 }
1951 } else if (clock == PRCMU_SGACLK) { 1951 } else if (clock == PRCMU_SGACLK) {
1952 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK | 1952 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1953 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN); 1953 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1954 if (div == 3) { 1954 if (div == 3) {
1955 u64 r = (src_rate * 10); 1955 u64 r = (src_rate * 10);
1956 1956
1957 (void)do_div(r, 25); 1957 (void)do_div(r, 25);
1958 if (r <= rate) { 1958 if (r <= rate) {
1959 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN; 1959 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1960 div = 0; 1960 div = 0;
1961 } 1961 }
1962 } 1962 }
1963 val |= min(div, (u32)31); 1963 val |= min(div, (u32)31);
1964 } else { 1964 } else {
1965 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK; 1965 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1966 val |= min(div, (u32)31); 1966 val |= min(div, (u32)31);
1967 } 1967 }
1968 writel(val, clk_mgt[clock].reg); 1968 writel(val, clk_mgt[clock].reg);
1969 1969
1970 /* Release the HW semaphore. */ 1970 /* Release the HW semaphore. */
1971 writel(0, PRCM_SEM); 1971 writel(0, PRCM_SEM);
1972 1972
1973 spin_unlock_irqrestore(&clk_mgt_lock, flags); 1973 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1974 } 1974 }
1975 1975
1976 static int set_armss_rate(unsigned long rate) 1976 static int set_armss_rate(unsigned long rate)
1977 { 1977 {
1978 int i = 0; 1978 int i = 0;
1979 1979
1980 /* cpufreq table frequencies is in KHz. */ 1980 /* cpufreq table frequencies is in KHz. */
1981 rate = rate / 1000; 1981 rate = rate / 1000;
1982 1982
1983 /* Find the corresponding arm opp from the cpufreq table. */ 1983 /* Find the corresponding arm opp from the cpufreq table. */
1984 while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) { 1984 while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
1985 if (db8500_cpufreq_table[i].frequency == rate) 1985 if (db8500_cpufreq_table[i].frequency == rate)
1986 break; 1986 break;
1987 i++; 1987 i++;
1988 } 1988 }
1989 1989
1990 if (db8500_cpufreq_table[i].frequency != rate) 1990 if (db8500_cpufreq_table[i].frequency != rate)
1991 return -EINVAL; 1991 return -EINVAL;
1992 1992
1993 /* Set the new arm opp. */ 1993 /* Set the new arm opp. */
1994 return db8500_prcmu_set_arm_opp(db8500_cpufreq_table[i].index); 1994 return db8500_prcmu_set_arm_opp(db8500_cpufreq_table[i].index);
1995 } 1995 }
1996 1996
1997 static int set_plldsi_rate(unsigned long rate) 1997 static int set_plldsi_rate(unsigned long rate)
1998 { 1998 {
1999 unsigned long src_rate; 1999 unsigned long src_rate;
2000 unsigned long rem; 2000 unsigned long rem;
2001 u32 pll_freq = 0; 2001 u32 pll_freq = 0;
2002 u32 r; 2002 u32 r;
2003 2003
2004 src_rate = clock_rate(PRCMU_HDMICLK); 2004 src_rate = clock_rate(PRCMU_HDMICLK);
2005 rem = rate; 2005 rem = rate;
2006 2006
2007 for (r = 7; (rem > 0) && (r > 0); r--) { 2007 for (r = 7; (rem > 0) && (r > 0); r--) {
2008 u64 d; 2008 u64 d;
2009 u64 hwrate; 2009 u64 hwrate;
2010 2010
2011 d = (r * rate); 2011 d = (r * rate);
2012 (void)do_div(d, src_rate); 2012 (void)do_div(d, src_rate);
2013 if (d < 6) 2013 if (d < 6)
2014 d = 6; 2014 d = 6;
2015 else if (d > 255) 2015 else if (d > 255)
2016 d = 255; 2016 d = 255;
2017 hwrate = (d * src_rate); 2017 hwrate = (d * src_rate);
2018 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) || 2018 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
2019 ((r * MAX_PLL_VCO_RATE) < (2 * hwrate))) 2019 ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
2020 continue; 2020 continue;
2021 (void)do_div(hwrate, r); 2021 (void)do_div(hwrate, r);
2022 if (rate < hwrate) { 2022 if (rate < hwrate) {
2023 if (pll_freq == 0) 2023 if (pll_freq == 0)
2024 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) | 2024 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
2025 (r << PRCM_PLL_FREQ_R_SHIFT)); 2025 (r << PRCM_PLL_FREQ_R_SHIFT));
2026 break; 2026 break;
2027 } 2027 }
2028 if ((rate - hwrate) < rem) { 2028 if ((rate - hwrate) < rem) {
2029 rem = (rate - hwrate); 2029 rem = (rate - hwrate);
2030 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) | 2030 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
2031 (r << PRCM_PLL_FREQ_R_SHIFT)); 2031 (r << PRCM_PLL_FREQ_R_SHIFT));
2032 } 2032 }
2033 } 2033 }
2034 if (pll_freq == 0) 2034 if (pll_freq == 0)
2035 return -EINVAL; 2035 return -EINVAL;
2036 2036
2037 pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT); 2037 pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
2038 writel(pll_freq, PRCM_PLLDSI_FREQ); 2038 writel(pll_freq, PRCM_PLLDSI_FREQ);
2039 2039
2040 return 0; 2040 return 0;
2041 } 2041 }
2042 2042
2043 static void set_dsiclk_rate(u8 n, unsigned long rate) 2043 static void set_dsiclk_rate(u8 n, unsigned long rate)
2044 { 2044 {
2045 u32 val; 2045 u32 val;
2046 u32 div; 2046 u32 div;
2047 2047
2048 div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ, 2048 div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
2049 clock_rate(PRCMU_HDMICLK), PLL_RAW), rate); 2049 clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
2050 2050
2051 dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI : 2051 dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
2052 (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 : 2052 (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
2053 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4; 2053 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
2054 2054
2055 val = readl(PRCM_DSI_PLLOUT_SEL); 2055 val = readl(PRCM_DSI_PLLOUT_SEL);
2056 val &= ~dsiclk[n].divsel_mask; 2056 val &= ~dsiclk[n].divsel_mask;
2057 val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift); 2057 val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
2058 writel(val, PRCM_DSI_PLLOUT_SEL); 2058 writel(val, PRCM_DSI_PLLOUT_SEL);
2059 } 2059 }
2060 2060
2061 static void set_dsiescclk_rate(u8 n, unsigned long rate) 2061 static void set_dsiescclk_rate(u8 n, unsigned long rate)
2062 { 2062 {
2063 u32 val; 2063 u32 val;
2064 u32 div; 2064 u32 div;
2065 2065
2066 div = clock_divider(clock_rate(PRCMU_TVCLK), rate); 2066 div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
2067 val = readl(PRCM_DSITVCLK_DIV); 2067 val = readl(PRCM_DSITVCLK_DIV);
2068 val &= ~dsiescclk[n].div_mask; 2068 val &= ~dsiescclk[n].div_mask;
2069 val |= (min(div, (u32)255) << dsiescclk[n].div_shift); 2069 val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
2070 writel(val, PRCM_DSITVCLK_DIV); 2070 writel(val, PRCM_DSITVCLK_DIV);
2071 } 2071 }
2072 2072
2073 int prcmu_set_clock_rate(u8 clock, unsigned long rate) 2073 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
2074 { 2074 {
2075 if (clock < PRCMU_NUM_REG_CLOCKS) 2075 if (clock < PRCMU_NUM_REG_CLOCKS)
2076 set_clock_rate(clock, rate); 2076 set_clock_rate(clock, rate);
2077 else if (clock == PRCMU_ARMSS) 2077 else if (clock == PRCMU_ARMSS)
2078 return set_armss_rate(rate); 2078 return set_armss_rate(rate);
2079 else if (clock == PRCMU_PLLDSI) 2079 else if (clock == PRCMU_PLLDSI)
2080 return set_plldsi_rate(rate); 2080 return set_plldsi_rate(rate);
2081 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) 2081 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
2082 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate); 2082 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
2083 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) 2083 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
2084 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate); 2084 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
2085 return 0; 2085 return 0;
2086 } 2086 }
2087 2087
2088 int db8500_prcmu_config_esram0_deep_sleep(u8 state) 2088 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
2089 { 2089 {
2090 if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) || 2090 if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
2091 (state < ESRAM0_DEEP_SLEEP_STATE_OFF)) 2091 (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
2092 return -EINVAL; 2092 return -EINVAL;
2093 2093
2094 mutex_lock(&mb4_transfer.lock); 2094 mutex_lock(&mb4_transfer.lock);
2095 2095
2096 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 2096 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2097 cpu_relax(); 2097 cpu_relax();
2098 2098
2099 writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 2099 writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2100 writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON), 2100 writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
2101 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE)); 2101 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
2102 writeb(DDR_PWR_STATE_ON, 2102 writeb(DDR_PWR_STATE_ON,
2103 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE)); 2103 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2104 writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST)); 2104 writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2105 2105
2106 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 2106 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2107 wait_for_completion(&mb4_transfer.work); 2107 wait_for_completion(&mb4_transfer.work);
2108 2108
2109 mutex_unlock(&mb4_transfer.lock); 2109 mutex_unlock(&mb4_transfer.lock);
2110 2110
2111 return 0; 2111 return 0;
2112 } 2112 }
2113 2113
2114 int db8500_prcmu_config_hotdog(u8 threshold) 2114 int db8500_prcmu_config_hotdog(u8 threshold)
2115 { 2115 {
2116 mutex_lock(&mb4_transfer.lock); 2116 mutex_lock(&mb4_transfer.lock);
2117 2117
2118 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 2118 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2119 cpu_relax(); 2119 cpu_relax();
2120 2120
2121 writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD)); 2121 writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2122 writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 2122 writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2123 2123
2124 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 2124 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2125 wait_for_completion(&mb4_transfer.work); 2125 wait_for_completion(&mb4_transfer.work);
2126 2126
2127 mutex_unlock(&mb4_transfer.lock); 2127 mutex_unlock(&mb4_transfer.lock);
2128 2128
2129 return 0; 2129 return 0;
2130 } 2130 }
2131 2131
2132 int db8500_prcmu_config_hotmon(u8 low, u8 high) 2132 int db8500_prcmu_config_hotmon(u8 low, u8 high)
2133 { 2133 {
2134 mutex_lock(&mb4_transfer.lock); 2134 mutex_lock(&mb4_transfer.lock);
2135 2135
2136 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 2136 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2137 cpu_relax(); 2137 cpu_relax();
2138 2138
2139 writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW)); 2139 writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2140 writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH)); 2140 writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2141 writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH), 2141 writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2142 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG)); 2142 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2143 writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 2143 writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2144 2144
2145 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 2145 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2146 wait_for_completion(&mb4_transfer.work); 2146 wait_for_completion(&mb4_transfer.work);
2147 2147
2148 mutex_unlock(&mb4_transfer.lock); 2148 mutex_unlock(&mb4_transfer.lock);
2149 2149
2150 return 0; 2150 return 0;
2151 } 2151 }
2152 2152
2153 static int config_hot_period(u16 val) 2153 static int config_hot_period(u16 val)
2154 { 2154 {
2155 mutex_lock(&mb4_transfer.lock); 2155 mutex_lock(&mb4_transfer.lock);
2156 2156
2157 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 2157 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2158 cpu_relax(); 2158 cpu_relax();
2159 2159
2160 writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD)); 2160 writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2161 writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 2161 writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2162 2162
2163 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 2163 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2164 wait_for_completion(&mb4_transfer.work); 2164 wait_for_completion(&mb4_transfer.work);
2165 2165
2166 mutex_unlock(&mb4_transfer.lock); 2166 mutex_unlock(&mb4_transfer.lock);
2167 2167
2168 return 0; 2168 return 0;
2169 } 2169 }
2170 2170
2171 int db8500_prcmu_start_temp_sense(u16 cycles32k) 2171 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2172 { 2172 {
2173 if (cycles32k == 0xFFFF) 2173 if (cycles32k == 0xFFFF)
2174 return -EINVAL; 2174 return -EINVAL;
2175 2175
2176 return config_hot_period(cycles32k); 2176 return config_hot_period(cycles32k);
2177 } 2177 }
2178 2178
2179 int db8500_prcmu_stop_temp_sense(void) 2179 int db8500_prcmu_stop_temp_sense(void)
2180 { 2180 {
2181 return config_hot_period(0xFFFF); 2181 return config_hot_period(0xFFFF);
2182 } 2182 }
2183 2183
2184 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3) 2184 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2185 { 2185 {
2186 2186
2187 mutex_lock(&mb4_transfer.lock); 2187 mutex_lock(&mb4_transfer.lock);
2188 2188
2189 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 2189 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2190 cpu_relax(); 2190 cpu_relax();
2191 2191
2192 writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0)); 2192 writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2193 writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1)); 2193 writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2194 writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2)); 2194 writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2195 writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3)); 2195 writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2196 2196
2197 writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 2197 writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2198 2198
2199 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 2199 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2200 wait_for_completion(&mb4_transfer.work); 2200 wait_for_completion(&mb4_transfer.work);
2201 2201
2202 mutex_unlock(&mb4_transfer.lock); 2202 mutex_unlock(&mb4_transfer.lock);
2203 2203
2204 return 0; 2204 return 0;
2205 2205
2206 } 2206 }
2207 2207
2208 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off) 2208 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2209 { 2209 {
2210 BUG_ON(num == 0 || num > 0xf); 2210 BUG_ON(num == 0 || num > 0xf);
2211 return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0, 2211 return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2212 sleep_auto_off ? A9WDOG_AUTO_OFF_EN : 2212 sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2213 A9WDOG_AUTO_OFF_DIS); 2213 A9WDOG_AUTO_OFF_DIS);
2214 } 2214 }
2215 2215
2216 int db8500_prcmu_enable_a9wdog(u8 id) 2216 int db8500_prcmu_enable_a9wdog(u8 id)
2217 { 2217 {
2218 return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0); 2218 return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2219 } 2219 }
2220 2220
2221 int db8500_prcmu_disable_a9wdog(u8 id) 2221 int db8500_prcmu_disable_a9wdog(u8 id)
2222 { 2222 {
2223 return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0); 2223 return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2224 } 2224 }
2225 2225
2226 int db8500_prcmu_kick_a9wdog(u8 id) 2226 int db8500_prcmu_kick_a9wdog(u8 id)
2227 { 2227 {
2228 return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0); 2228 return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2229 } 2229 }
2230 2230
2231 /* 2231 /*
2232 * timeout is 28 bit, in ms. 2232 * timeout is 28 bit, in ms.
2233 */ 2233 */
2234 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout) 2234 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2235 { 2235 {
2236 return prcmu_a9wdog(MB4H_A9WDOG_LOAD, 2236 return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2237 (id & A9WDOG_ID_MASK) | 2237 (id & A9WDOG_ID_MASK) |
2238 /* 2238 /*
2239 * Put the lowest 28 bits of timeout at 2239 * Put the lowest 28 bits of timeout at
2240 * offset 4. Four first bits are used for id. 2240 * offset 4. Four first bits are used for id.
2241 */ 2241 */
2242 (u8)((timeout << 4) & 0xf0), 2242 (u8)((timeout << 4) & 0xf0),
2243 (u8)((timeout >> 4) & 0xff), 2243 (u8)((timeout >> 4) & 0xff),
2244 (u8)((timeout >> 12) & 0xff), 2244 (u8)((timeout >> 12) & 0xff),
2245 (u8)((timeout >> 20) & 0xff)); 2245 (u8)((timeout >> 20) & 0xff));
2246 } 2246 }
2247 2247
2248 /** 2248 /**
2249 * prcmu_abb_read() - Read register value(s) from the ABB. 2249 * prcmu_abb_read() - Read register value(s) from the ABB.
2250 * @slave: The I2C slave address. 2250 * @slave: The I2C slave address.
2251 * @reg: The (start) register address. 2251 * @reg: The (start) register address.
2252 * @value: The read out value(s). 2252 * @value: The read out value(s).
2253 * @size: The number of registers to read. 2253 * @size: The number of registers to read.
2254 * 2254 *
2255 * Reads register value(s) from the ABB. 2255 * Reads register value(s) from the ABB.
2256 * @size has to be 1 for the current firmware version. 2256 * @size has to be 1 for the current firmware version.
2257 */ 2257 */
2258 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size) 2258 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2259 { 2259 {
2260 int r; 2260 int r;
2261 2261
2262 if (size != 1) 2262 if (size != 1)
2263 return -EINVAL; 2263 return -EINVAL;
2264 2264
2265 mutex_lock(&mb5_transfer.lock); 2265 mutex_lock(&mb5_transfer.lock);
2266 2266
2267 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5)) 2267 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2268 cpu_relax(); 2268 cpu_relax();
2269 2269
2270 writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5)); 2270 writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2271 writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP)); 2271 writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2272 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS)); 2272 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2273 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG)); 2273 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2274 writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL)); 2274 writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2275 2275
2276 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET); 2276 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2277 2277
2278 if (!wait_for_completion_timeout(&mb5_transfer.work, 2278 if (!wait_for_completion_timeout(&mb5_transfer.work,
2279 msecs_to_jiffies(20000))) { 2279 msecs_to_jiffies(20000))) {
2280 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", 2280 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2281 __func__); 2281 __func__);
2282 r = -EIO; 2282 r = -EIO;
2283 } else { 2283 } else {
2284 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO); 2284 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2285 } 2285 }
2286 2286
2287 if (!r) 2287 if (!r)
2288 *value = mb5_transfer.ack.value; 2288 *value = mb5_transfer.ack.value;
2289 2289
2290 mutex_unlock(&mb5_transfer.lock); 2290 mutex_unlock(&mb5_transfer.lock);
2291 2291
2292 return r; 2292 return r;
2293 } 2293 }
2294 2294
2295 /** 2295 /**
2296 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB. 2296 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2297 * @slave: The I2C slave address. 2297 * @slave: The I2C slave address.
2298 * @reg: The (start) register address. 2298 * @reg: The (start) register address.
2299 * @value: The value(s) to write. 2299 * @value: The value(s) to write.
2300 * @mask: The mask(s) to use. 2300 * @mask: The mask(s) to use.
2301 * @size: The number of registers to write. 2301 * @size: The number of registers to write.
2302 * 2302 *
2303 * Writes masked register value(s) to the ABB. 2303 * Writes masked register value(s) to the ABB.
2304 * For each @value, only the bits set to 1 in the corresponding @mask 2304 * For each @value, only the bits set to 1 in the corresponding @mask
2305 * will be written. The other bits are not changed. 2305 * will be written. The other bits are not changed.
2306 * @size has to be 1 for the current firmware version. 2306 * @size has to be 1 for the current firmware version.
2307 */ 2307 */
2308 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size) 2308 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2309 { 2309 {
2310 int r; 2310 int r;
2311 2311
2312 if (size != 1) 2312 if (size != 1)
2313 return -EINVAL; 2313 return -EINVAL;
2314 2314
2315 mutex_lock(&mb5_transfer.lock); 2315 mutex_lock(&mb5_transfer.lock);
2316 2316
2317 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5)) 2317 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2318 cpu_relax(); 2318 cpu_relax();
2319 2319
2320 writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5)); 2320 writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2321 writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP)); 2321 writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2322 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS)); 2322 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2323 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG)); 2323 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2324 writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL)); 2324 writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2325 2325
2326 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET); 2326 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2327 2327
2328 if (!wait_for_completion_timeout(&mb5_transfer.work, 2328 if (!wait_for_completion_timeout(&mb5_transfer.work,
2329 msecs_to_jiffies(20000))) { 2329 msecs_to_jiffies(20000))) {
2330 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", 2330 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2331 __func__); 2331 __func__);
2332 r = -EIO; 2332 r = -EIO;
2333 } else { 2333 } else {
2334 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO); 2334 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2335 } 2335 }
2336 2336
2337 mutex_unlock(&mb5_transfer.lock); 2337 mutex_unlock(&mb5_transfer.lock);
2338 2338
2339 return r; 2339 return r;
2340 } 2340 }
2341 2341
2342 /** 2342 /**
2343 * prcmu_abb_write() - Write register value(s) to the ABB. 2343 * prcmu_abb_write() - Write register value(s) to the ABB.
2344 * @slave: The I2C slave address. 2344 * @slave: The I2C slave address.
2345 * @reg: The (start) register address. 2345 * @reg: The (start) register address.
2346 * @value: The value(s) to write. 2346 * @value: The value(s) to write.
2347 * @size: The number of registers to write. 2347 * @size: The number of registers to write.
2348 * 2348 *
2349 * Writes register value(s) to the ABB. 2349 * Writes register value(s) to the ABB.
2350 * @size has to be 1 for the current firmware version. 2350 * @size has to be 1 for the current firmware version.
2351 */ 2351 */
2352 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size) 2352 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2353 { 2353 {
2354 u8 mask = ~0; 2354 u8 mask = ~0;
2355 2355
2356 return prcmu_abb_write_masked(slave, reg, value, &mask, size); 2356 return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2357 } 2357 }
2358 2358
2359 /** 2359 /**
2360 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem 2360 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2361 */ 2361 */
2362 int prcmu_ac_wake_req(void) 2362 int prcmu_ac_wake_req(void)
2363 { 2363 {
2364 u32 val; 2364 u32 val;
2365 int ret = 0; 2365 int ret = 0;
2366 2366
2367 mutex_lock(&mb0_transfer.ac_wake_lock); 2367 mutex_lock(&mb0_transfer.ac_wake_lock);
2368 2368
2369 val = readl(PRCM_HOSTACCESS_REQ); 2369 val = readl(PRCM_HOSTACCESS_REQ);
2370 if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ) 2370 if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2371 goto unlock_and_return; 2371 goto unlock_and_return;
2372 2372
2373 atomic_set(&ac_wake_req_state, 1); 2373 atomic_set(&ac_wake_req_state, 1);
2374 2374
2375 /* 2375 /*
2376 * Force Modem Wake-up before hostaccess_req ping-pong. 2376 * Force Modem Wake-up before hostaccess_req ping-pong.
2377 * It prevents Modem to enter in Sleep while acking the hostaccess 2377 * It prevents Modem to enter in Sleep while acking the hostaccess
2378 * request. The 31us delay has been calculated by HWI. 2378 * request. The 31us delay has been calculated by HWI.
2379 */ 2379 */
2380 val |= PRCM_HOSTACCESS_REQ_WAKE_REQ; 2380 val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2381 writel(val, PRCM_HOSTACCESS_REQ); 2381 writel(val, PRCM_HOSTACCESS_REQ);
2382 2382
2383 udelay(31); 2383 udelay(31);
2384 2384
2385 val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ; 2385 val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2386 writel(val, PRCM_HOSTACCESS_REQ); 2386 writel(val, PRCM_HOSTACCESS_REQ);
2387 2387
2388 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work, 2388 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2389 msecs_to_jiffies(5000))) { 2389 msecs_to_jiffies(5000))) {
2390 #if defined(CONFIG_DBX500_PRCMU_DEBUG) 2390 #if defined(CONFIG_DBX500_PRCMU_DEBUG)
2391 db8500_prcmu_debug_dump(__func__, true, true); 2391 db8500_prcmu_debug_dump(__func__, true, true);
2392 #endif 2392 #endif
2393 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n", 2393 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2394 __func__); 2394 __func__);
2395 ret = -EFAULT; 2395 ret = -EFAULT;
2396 } 2396 }
2397 2397
2398 unlock_and_return: 2398 unlock_and_return:
2399 mutex_unlock(&mb0_transfer.ac_wake_lock); 2399 mutex_unlock(&mb0_transfer.ac_wake_lock);
2400 return ret; 2400 return ret;
2401 } 2401 }
2402 2402
2403 /** 2403 /**
2404 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem 2404 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2405 */ 2405 */
2406 void prcmu_ac_sleep_req() 2406 void prcmu_ac_sleep_req()
2407 { 2407 {
2408 u32 val; 2408 u32 val;
2409 2409
2410 mutex_lock(&mb0_transfer.ac_wake_lock); 2410 mutex_lock(&mb0_transfer.ac_wake_lock);
2411 2411
2412 val = readl(PRCM_HOSTACCESS_REQ); 2412 val = readl(PRCM_HOSTACCESS_REQ);
2413 if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)) 2413 if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2414 goto unlock_and_return; 2414 goto unlock_and_return;
2415 2415
2416 writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ), 2416 writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2417 PRCM_HOSTACCESS_REQ); 2417 PRCM_HOSTACCESS_REQ);
2418 2418
2419 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work, 2419 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2420 msecs_to_jiffies(5000))) { 2420 msecs_to_jiffies(5000))) {
2421 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n", 2421 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2422 __func__); 2422 __func__);
2423 } 2423 }
2424 2424
2425 atomic_set(&ac_wake_req_state, 0); 2425 atomic_set(&ac_wake_req_state, 0);
2426 2426
2427 unlock_and_return: 2427 unlock_and_return:
2428 mutex_unlock(&mb0_transfer.ac_wake_lock); 2428 mutex_unlock(&mb0_transfer.ac_wake_lock);
2429 } 2429 }
2430 2430
2431 bool db8500_prcmu_is_ac_wake_requested(void) 2431 bool db8500_prcmu_is_ac_wake_requested(void)
2432 { 2432 {
2433 return (atomic_read(&ac_wake_req_state) != 0); 2433 return (atomic_read(&ac_wake_req_state) != 0);
2434 } 2434 }
2435 2435
2436 /** 2436 /**
2437 * db8500_prcmu_system_reset - System reset 2437 * db8500_prcmu_system_reset - System reset
2438 * 2438 *
2439 * Saves the reset reason code and then sets the APE_SOFTRST register which 2439 * Saves the reset reason code and then sets the APE_SOFTRST register which
2440 * fires interrupt to fw 2440 * fires interrupt to fw
2441 */ 2441 */
2442 void db8500_prcmu_system_reset(u16 reset_code) 2442 void db8500_prcmu_system_reset(u16 reset_code)
2443 { 2443 {
2444 writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON)); 2444 writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2445 writel(1, PRCM_APE_SOFTRST); 2445 writel(1, PRCM_APE_SOFTRST);
2446 } 2446 }
2447 2447
2448 /** 2448 /**
2449 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code 2449 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2450 * 2450 *
2451 * Retrieves the reset reason code stored by prcmu_system_reset() before 2451 * Retrieves the reset reason code stored by prcmu_system_reset() before
2452 * last restart. 2452 * last restart.
2453 */ 2453 */
2454 u16 db8500_prcmu_get_reset_code(void) 2454 u16 db8500_prcmu_get_reset_code(void)
2455 { 2455 {
2456 return readw(tcdm_base + PRCM_SW_RST_REASON); 2456 return readw(tcdm_base + PRCM_SW_RST_REASON);
2457 } 2457 }
2458 2458
2459 /** 2459 /**
2460 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem 2460 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2461 */ 2461 */
2462 void db8500_prcmu_modem_reset(void) 2462 void db8500_prcmu_modem_reset(void)
2463 { 2463 {
2464 mutex_lock(&mb1_transfer.lock); 2464 mutex_lock(&mb1_transfer.lock);
2465 2465
2466 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 2466 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2467 cpu_relax(); 2467 cpu_relax();
2468 2468
2469 writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 2469 writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2470 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 2470 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2471 wait_for_completion(&mb1_transfer.work); 2471 wait_for_completion(&mb1_transfer.work);
2472 2472
2473 /* 2473 /*
2474 * No need to check return from PRCMU as modem should go in reset state 2474 * No need to check return from PRCMU as modem should go in reset state
2475 * This state is already managed by upper layer 2475 * This state is already managed by upper layer
2476 */ 2476 */
2477 2477
2478 mutex_unlock(&mb1_transfer.lock); 2478 mutex_unlock(&mb1_transfer.lock);
2479 } 2479 }
2480 2480
2481 static void ack_dbb_wakeup(void) 2481 static void ack_dbb_wakeup(void)
2482 { 2482 {
2483 unsigned long flags; 2483 unsigned long flags;
2484 2484
2485 spin_lock_irqsave(&mb0_transfer.lock, flags); 2485 spin_lock_irqsave(&mb0_transfer.lock, flags);
2486 2486
2487 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0)) 2487 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2488 cpu_relax(); 2488 cpu_relax();
2489 2489
2490 writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0)); 2490 writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2491 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET); 2491 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2492 2492
2493 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 2493 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2494 } 2494 }
2495 2495
2496 static inline void print_unknown_header_warning(u8 n, u8 header) 2496 static inline void print_unknown_header_warning(u8 n, u8 header)
2497 { 2497 {
2498 pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n", 2498 pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2499 header, n); 2499 header, n);
2500 } 2500 }
2501 2501
2502 static bool read_mailbox_0(void) 2502 static bool read_mailbox_0(void)
2503 { 2503 {
2504 bool r; 2504 bool r;
2505 u32 ev; 2505 u32 ev;
2506 unsigned int n; 2506 unsigned int n;
2507 u8 header; 2507 u8 header;
2508 2508
2509 header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0); 2509 header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2510 switch (header) { 2510 switch (header) {
2511 case MB0H_WAKEUP_EXE: 2511 case MB0H_WAKEUP_EXE:
2512 case MB0H_WAKEUP_SLEEP: 2512 case MB0H_WAKEUP_SLEEP:
2513 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1) 2513 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2514 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500); 2514 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2515 else 2515 else
2516 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500); 2516 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2517 2517
2518 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK)) 2518 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2519 complete(&mb0_transfer.ac_wake_work); 2519 complete(&mb0_transfer.ac_wake_work);
2520 if (ev & WAKEUP_BIT_SYSCLK_OK) 2520 if (ev & WAKEUP_BIT_SYSCLK_OK)
2521 complete(&mb3_transfer.sysclk_work); 2521 complete(&mb3_transfer.sysclk_work);
2522 2522
2523 ev &= mb0_transfer.req.dbb_irqs; 2523 ev &= mb0_transfer.req.dbb_irqs;
2524 2524
2525 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) { 2525 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2526 if (ev & prcmu_irq_bit[n]) 2526 if (ev & prcmu_irq_bit[n])
2527 generic_handle_irq(IRQ_PRCMU_BASE + n); 2527 generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
2528 } 2528 }
2529 r = true; 2529 r = true;
2530 break; 2530 break;
2531 default: 2531 default:
2532 print_unknown_header_warning(0, header); 2532 print_unknown_header_warning(0, header);
2533 r = false; 2533 r = false;
2534 break; 2534 break;
2535 } 2535 }
2536 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR); 2536 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2537 return r; 2537 return r;
2538 } 2538 }
2539 2539
2540 static bool read_mailbox_1(void) 2540 static bool read_mailbox_1(void)
2541 { 2541 {
2542 mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1); 2542 mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2543 mb1_transfer.ack.arm_opp = readb(tcdm_base + 2543 mb1_transfer.ack.arm_opp = readb(tcdm_base +
2544 PRCM_ACK_MB1_CURRENT_ARM_OPP); 2544 PRCM_ACK_MB1_CURRENT_ARM_OPP);
2545 mb1_transfer.ack.ape_opp = readb(tcdm_base + 2545 mb1_transfer.ack.ape_opp = readb(tcdm_base +
2546 PRCM_ACK_MB1_CURRENT_APE_OPP); 2546 PRCM_ACK_MB1_CURRENT_APE_OPP);
2547 mb1_transfer.ack.ape_voltage_status = readb(tcdm_base + 2547 mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2548 PRCM_ACK_MB1_APE_VOLTAGE_STATUS); 2548 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2549 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR); 2549 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2550 complete(&mb1_transfer.work); 2550 complete(&mb1_transfer.work);
2551 return false; 2551 return false;
2552 } 2552 }
2553 2553
2554 static bool read_mailbox_2(void) 2554 static bool read_mailbox_2(void)
2555 { 2555 {
2556 mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS); 2556 mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2557 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR); 2557 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2558 complete(&mb2_transfer.work); 2558 complete(&mb2_transfer.work);
2559 return false; 2559 return false;
2560 } 2560 }
2561 2561
2562 static bool read_mailbox_3(void) 2562 static bool read_mailbox_3(void)
2563 { 2563 {
2564 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR); 2564 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2565 return false; 2565 return false;
2566 } 2566 }
2567 2567
2568 static bool read_mailbox_4(void) 2568 static bool read_mailbox_4(void)
2569 { 2569 {
2570 u8 header; 2570 u8 header;
2571 bool do_complete = true; 2571 bool do_complete = true;
2572 2572
2573 header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4); 2573 header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2574 switch (header) { 2574 switch (header) {
2575 case MB4H_MEM_ST: 2575 case MB4H_MEM_ST:
2576 case MB4H_HOTDOG: 2576 case MB4H_HOTDOG:
2577 case MB4H_HOTMON: 2577 case MB4H_HOTMON:
2578 case MB4H_HOT_PERIOD: 2578 case MB4H_HOT_PERIOD:
2579 case MB4H_A9WDOG_CONF: 2579 case MB4H_A9WDOG_CONF:
2580 case MB4H_A9WDOG_EN: 2580 case MB4H_A9WDOG_EN:
2581 case MB4H_A9WDOG_DIS: 2581 case MB4H_A9WDOG_DIS:
2582 case MB4H_A9WDOG_LOAD: 2582 case MB4H_A9WDOG_LOAD:
2583 case MB4H_A9WDOG_KICK: 2583 case MB4H_A9WDOG_KICK:
2584 break; 2584 break;
2585 default: 2585 default:
2586 print_unknown_header_warning(4, header); 2586 print_unknown_header_warning(4, header);
2587 do_complete = false; 2587 do_complete = false;
2588 break; 2588 break;
2589 } 2589 }
2590 2590
2591 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR); 2591 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2592 2592
2593 if (do_complete) 2593 if (do_complete)
2594 complete(&mb4_transfer.work); 2594 complete(&mb4_transfer.work);
2595 2595
2596 return false; 2596 return false;
2597 } 2597 }
2598 2598
2599 static bool read_mailbox_5(void) 2599 static bool read_mailbox_5(void)
2600 { 2600 {
2601 mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS); 2601 mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2602 mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL); 2602 mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2603 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR); 2603 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2604 complete(&mb5_transfer.work); 2604 complete(&mb5_transfer.work);
2605 return false; 2605 return false;
2606 } 2606 }
2607 2607
2608 static bool read_mailbox_6(void) 2608 static bool read_mailbox_6(void)
2609 { 2609 {
2610 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR); 2610 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2611 return false; 2611 return false;
2612 } 2612 }
2613 2613
2614 static bool read_mailbox_7(void) 2614 static bool read_mailbox_7(void)
2615 { 2615 {
2616 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR); 2616 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2617 return false; 2617 return false;
2618 } 2618 }
2619 2619
2620 static bool (* const read_mailbox[NUM_MB])(void) = { 2620 static bool (* const read_mailbox[NUM_MB])(void) = {
2621 read_mailbox_0, 2621 read_mailbox_0,
2622 read_mailbox_1, 2622 read_mailbox_1,
2623 read_mailbox_2, 2623 read_mailbox_2,
2624 read_mailbox_3, 2624 read_mailbox_3,
2625 read_mailbox_4, 2625 read_mailbox_4,
2626 read_mailbox_5, 2626 read_mailbox_5,
2627 read_mailbox_6, 2627 read_mailbox_6,
2628 read_mailbox_7 2628 read_mailbox_7
2629 }; 2629 };
2630 2630
2631 static irqreturn_t prcmu_irq_handler(int irq, void *data) 2631 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2632 { 2632 {
2633 u32 bits; 2633 u32 bits;
2634 u8 n; 2634 u8 n;
2635 irqreturn_t r; 2635 irqreturn_t r;
2636 2636
2637 bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS); 2637 bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2638 if (unlikely(!bits)) 2638 if (unlikely(!bits))
2639 return IRQ_NONE; 2639 return IRQ_NONE;
2640 2640
2641 r = IRQ_HANDLED; 2641 r = IRQ_HANDLED;
2642 for (n = 0; bits; n++) { 2642 for (n = 0; bits; n++) {
2643 if (bits & MBOX_BIT(n)) { 2643 if (bits & MBOX_BIT(n)) {
2644 bits -= MBOX_BIT(n); 2644 bits -= MBOX_BIT(n);
2645 if (read_mailbox[n]()) 2645 if (read_mailbox[n]())
2646 r = IRQ_WAKE_THREAD; 2646 r = IRQ_WAKE_THREAD;
2647 } 2647 }
2648 } 2648 }
2649 return r; 2649 return r;
2650 } 2650 }
2651 2651
2652 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data) 2652 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2653 { 2653 {
2654 ack_dbb_wakeup(); 2654 ack_dbb_wakeup();
2655 return IRQ_HANDLED; 2655 return IRQ_HANDLED;
2656 } 2656 }
2657 2657
2658 static void prcmu_mask_work(struct work_struct *work) 2658 static void prcmu_mask_work(struct work_struct *work)
2659 { 2659 {
2660 unsigned long flags; 2660 unsigned long flags;
2661 2661
2662 spin_lock_irqsave(&mb0_transfer.lock, flags); 2662 spin_lock_irqsave(&mb0_transfer.lock, flags);
2663 2663
2664 config_wakeups(); 2664 config_wakeups();
2665 2665
2666 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 2666 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2667 } 2667 }
2668 2668
2669 static void prcmu_irq_mask(struct irq_data *d) 2669 static void prcmu_irq_mask(struct irq_data *d)
2670 { 2670 {
2671 unsigned long flags; 2671 unsigned long flags;
2672 2672
2673 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags); 2673 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2674 2674
2675 mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq]; 2675 mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2676 2676
2677 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags); 2677 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2678 2678
2679 if (d->irq != IRQ_PRCMU_CA_SLEEP) 2679 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2680 schedule_work(&mb0_transfer.mask_work); 2680 schedule_work(&mb0_transfer.mask_work);
2681 } 2681 }
2682 2682
2683 static void prcmu_irq_unmask(struct irq_data *d) 2683 static void prcmu_irq_unmask(struct irq_data *d)
2684 { 2684 {
2685 unsigned long flags; 2685 unsigned long flags;
2686 2686
2687 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags); 2687 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2688 2688
2689 mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq]; 2689 mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2690 2690
2691 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags); 2691 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2692 2692
2693 if (d->irq != IRQ_PRCMU_CA_SLEEP) 2693 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2694 schedule_work(&mb0_transfer.mask_work); 2694 schedule_work(&mb0_transfer.mask_work);
2695 } 2695 }
2696 2696
2697 static void noop(struct irq_data *d) 2697 static void noop(struct irq_data *d)
2698 { 2698 {
2699 } 2699 }
2700 2700
2701 static struct irq_chip prcmu_irq_chip = { 2701 static struct irq_chip prcmu_irq_chip = {
2702 .name = "prcmu", 2702 .name = "prcmu",
2703 .irq_disable = prcmu_irq_mask, 2703 .irq_disable = prcmu_irq_mask,
2704 .irq_ack = noop, 2704 .irq_ack = noop,
2705 .irq_mask = prcmu_irq_mask, 2705 .irq_mask = prcmu_irq_mask,
2706 .irq_unmask = prcmu_irq_unmask, 2706 .irq_unmask = prcmu_irq_unmask,
2707 }; 2707 };
2708 2708
2709 static char *fw_project_name(u8 project) 2709 static char *fw_project_name(u8 project)
2710 { 2710 {
2711 switch (project) { 2711 switch (project) {
2712 case PRCMU_FW_PROJECT_U8500: 2712 case PRCMU_FW_PROJECT_U8500:
2713 return "U8500"; 2713 return "U8500";
2714 case PRCMU_FW_PROJECT_U8500_C2: 2714 case PRCMU_FW_PROJECT_U8500_C2:
2715 return "U8500 C2"; 2715 return "U8500 C2";
2716 case PRCMU_FW_PROJECT_U9500: 2716 case PRCMU_FW_PROJECT_U9500:
2717 return "U9500"; 2717 return "U9500";
2718 case PRCMU_FW_PROJECT_U9500_C2: 2718 case PRCMU_FW_PROJECT_U9500_C2:
2719 return "U9500 C2"; 2719 return "U9500 C2";
2720 case PRCMU_FW_PROJECT_U8520: 2720 case PRCMU_FW_PROJECT_U8520:
2721 return "U8520"; 2721 return "U8520";
2722 case PRCMU_FW_PROJECT_U8420: 2722 case PRCMU_FW_PROJECT_U8420:
2723 return "U8420"; 2723 return "U8420";
2724 default: 2724 default:
2725 return "Unknown"; 2725 return "Unknown";
2726 } 2726 }
2727 } 2727 }
2728 2728
2729 static int db8500_irq_map(struct irq_domain *d, unsigned int virq, 2729 static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2730 irq_hw_number_t hwirq) 2730 irq_hw_number_t hwirq)
2731 { 2731 {
2732 irq_set_chip_and_handler(virq, &prcmu_irq_chip, 2732 irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2733 handle_simple_irq); 2733 handle_simple_irq);
2734 set_irq_flags(virq, IRQF_VALID); 2734 set_irq_flags(virq, IRQF_VALID);
2735 2735
2736 return 0; 2736 return 0;
2737 } 2737 }
2738 2738
2739 static struct irq_domain_ops db8500_irq_ops = { 2739 static struct irq_domain_ops db8500_irq_ops = {
2740 .map = db8500_irq_map, 2740 .map = db8500_irq_map,
2741 .xlate = irq_domain_xlate_twocell, 2741 .xlate = irq_domain_xlate_twocell,
2742 }; 2742 };
2743 2743
2744 static int db8500_irq_init(struct device_node *np) 2744 static int db8500_irq_init(struct device_node *np)
2745 { 2745 {
2746 int irq_base = -1; 2746 int irq_base = 0;
2747 int i;
2747 2748
2748 /* In the device tree case, just take some IRQs */ 2749 /* In the device tree case, just take some IRQs */
2749 if (!np) 2750 if (!np)
2750 irq_base = IRQ_PRCMU_BASE; 2751 irq_base = IRQ_PRCMU_BASE;
2751 2752
2752 db8500_irq_domain = irq_domain_add_simple( 2753 db8500_irq_domain = irq_domain_add_simple(
2753 np, NUM_PRCMU_WAKEUPS, irq_base, 2754 np, NUM_PRCMU_WAKEUPS, irq_base,
2754 &db8500_irq_ops, NULL); 2755 &db8500_irq_ops, NULL);
2755 2756
2756 if (!db8500_irq_domain) { 2757 if (!db8500_irq_domain) {
2757 pr_err("Failed to create irqdomain\n"); 2758 pr_err("Failed to create irqdomain\n");
2758 return -ENOSYS; 2759 return -ENOSYS;
2759 } 2760 }
2761
2762 /* All wakeups will be used, so create mappings for all */
2763 for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2764 irq_create_mapping(db8500_irq_domain, i);
2760 2765
2761 return 0; 2766 return 0;
2762 } 2767 }
2763 2768
2764 void __init db8500_prcmu_early_init(void) 2769 void __init db8500_prcmu_early_init(void)
2765 { 2770 {
2766 if (cpu_is_u8500v2() || cpu_is_u9540()) { 2771 if (cpu_is_u8500v2() || cpu_is_u9540()) {
2767 void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K); 2772 void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K);
2768 2773
2769 if (tcpm_base != NULL) { 2774 if (tcpm_base != NULL) {
2770 u32 version; 2775 u32 version;
2771 version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET); 2776 version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET);
2772 fw_info.version.project = version & 0xFF; 2777 fw_info.version.project = version & 0xFF;
2773 fw_info.version.api_version = (version >> 8) & 0xFF; 2778 fw_info.version.api_version = (version >> 8) & 0xFF;
2774 fw_info.version.func_version = (version >> 16) & 0xFF; 2779 fw_info.version.func_version = (version >> 16) & 0xFF;
2775 fw_info.version.errata = (version >> 24) & 0xFF; 2780 fw_info.version.errata = (version >> 24) & 0xFF;
2776 fw_info.valid = true; 2781 fw_info.valid = true;
2777 pr_info("PRCMU firmware: %s, version %d.%d.%d\n", 2782 pr_info("PRCMU firmware: %s, version %d.%d.%d\n",
2778 fw_project_name(fw_info.version.project), 2783 fw_project_name(fw_info.version.project),
2779 (version >> 8) & 0xFF, (version >> 16) & 0xFF, 2784 (version >> 8) & 0xFF, (version >> 16) & 0xFF,
2780 (version >> 24) & 0xFF); 2785 (version >> 24) & 0xFF);
2781 iounmap(tcpm_base); 2786 iounmap(tcpm_base);
2782 } 2787 }
2783 2788
2784 if (cpu_is_u9540()) 2789 if (cpu_is_u9540())
2785 tcdm_base = ioremap_nocache(U8500_PRCMU_TCDM_BASE, 2790 tcdm_base = ioremap_nocache(U8500_PRCMU_TCDM_BASE,
2786 SZ_4K + SZ_8K) + SZ_8K; 2791 SZ_4K + SZ_8K) + SZ_8K;
2787 else 2792 else
2788 tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE); 2793 tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
2789 } else { 2794 } else {
2790 pr_err("prcmu: Unsupported chip version\n"); 2795 pr_err("prcmu: Unsupported chip version\n");
2791 BUG(); 2796 BUG();
2792 } 2797 }
2793 2798
2794 spin_lock_init(&mb0_transfer.lock); 2799 spin_lock_init(&mb0_transfer.lock);
2795 spin_lock_init(&mb0_transfer.dbb_irqs_lock); 2800 spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2796 mutex_init(&mb0_transfer.ac_wake_lock); 2801 mutex_init(&mb0_transfer.ac_wake_lock);
2797 init_completion(&mb0_transfer.ac_wake_work); 2802 init_completion(&mb0_transfer.ac_wake_work);
2798 mutex_init(&mb1_transfer.lock); 2803 mutex_init(&mb1_transfer.lock);
2799 init_completion(&mb1_transfer.work); 2804 init_completion(&mb1_transfer.work);
2800 mb1_transfer.ape_opp = APE_NO_CHANGE; 2805 mb1_transfer.ape_opp = APE_NO_CHANGE;
2801 mutex_init(&mb2_transfer.lock); 2806 mutex_init(&mb2_transfer.lock);
2802 init_completion(&mb2_transfer.work); 2807 init_completion(&mb2_transfer.work);
2803 spin_lock_init(&mb2_transfer.auto_pm_lock); 2808 spin_lock_init(&mb2_transfer.auto_pm_lock);
2804 spin_lock_init(&mb3_transfer.lock); 2809 spin_lock_init(&mb3_transfer.lock);
2805 mutex_init(&mb3_transfer.sysclk_lock); 2810 mutex_init(&mb3_transfer.sysclk_lock);
2806 init_completion(&mb3_transfer.sysclk_work); 2811 init_completion(&mb3_transfer.sysclk_work);
2807 mutex_init(&mb4_transfer.lock); 2812 mutex_init(&mb4_transfer.lock);
2808 init_completion(&mb4_transfer.work); 2813 init_completion(&mb4_transfer.work);
2809 mutex_init(&mb5_transfer.lock); 2814 mutex_init(&mb5_transfer.lock);
2810 init_completion(&mb5_transfer.work); 2815 init_completion(&mb5_transfer.work);
2811 2816
2812 INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work); 2817 INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2813 } 2818 }
2814 2819
2815 static void __init init_prcm_registers(void) 2820 static void __init init_prcm_registers(void)
2816 { 2821 {
2817 u32 val; 2822 u32 val;
2818 2823
2819 val = readl(PRCM_A9PL_FORCE_CLKEN); 2824 val = readl(PRCM_A9PL_FORCE_CLKEN);
2820 val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN | 2825 val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2821 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN); 2826 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2822 writel(val, (PRCM_A9PL_FORCE_CLKEN)); 2827 writel(val, (PRCM_A9PL_FORCE_CLKEN));
2823 } 2828 }
2824 2829
2825 /* 2830 /*
2826 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC 2831 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2827 */ 2832 */
2828 static struct regulator_consumer_supply db8500_vape_consumers[] = { 2833 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2829 REGULATOR_SUPPLY("v-ape", NULL), 2834 REGULATOR_SUPPLY("v-ape", NULL),
2830 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"), 2835 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2831 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"), 2836 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2832 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"), 2837 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2833 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"), 2838 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2834 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"), 2839 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2835 /* "v-mmc" changed to "vcore" in the mainline kernel */ 2840 /* "v-mmc" changed to "vcore" in the mainline kernel */
2836 REGULATOR_SUPPLY("vcore", "sdi0"), 2841 REGULATOR_SUPPLY("vcore", "sdi0"),
2837 REGULATOR_SUPPLY("vcore", "sdi1"), 2842 REGULATOR_SUPPLY("vcore", "sdi1"),
2838 REGULATOR_SUPPLY("vcore", "sdi2"), 2843 REGULATOR_SUPPLY("vcore", "sdi2"),
2839 REGULATOR_SUPPLY("vcore", "sdi3"), 2844 REGULATOR_SUPPLY("vcore", "sdi3"),
2840 REGULATOR_SUPPLY("vcore", "sdi4"), 2845 REGULATOR_SUPPLY("vcore", "sdi4"),
2841 REGULATOR_SUPPLY("v-dma", "dma40.0"), 2846 REGULATOR_SUPPLY("v-dma", "dma40.0"),
2842 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"), 2847 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2843 /* "v-uart" changed to "vcore" in the mainline kernel */ 2848 /* "v-uart" changed to "vcore" in the mainline kernel */
2844 REGULATOR_SUPPLY("vcore", "uart0"), 2849 REGULATOR_SUPPLY("vcore", "uart0"),
2845 REGULATOR_SUPPLY("vcore", "uart1"), 2850 REGULATOR_SUPPLY("vcore", "uart1"),
2846 REGULATOR_SUPPLY("vcore", "uart2"), 2851 REGULATOR_SUPPLY("vcore", "uart2"),
2847 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"), 2852 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2848 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"), 2853 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2849 REGULATOR_SUPPLY("vddvario", "smsc911x.0"), 2854 REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2850 }; 2855 };
2851 2856
2852 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = { 2857 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2853 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"), 2858 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2854 /* AV8100 regulator */ 2859 /* AV8100 regulator */
2855 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"), 2860 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2856 }; 2861 };
2857 2862
2858 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = { 2863 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2859 REGULATOR_SUPPLY("vsupply", "b2r2_bus"), 2864 REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2860 REGULATOR_SUPPLY("vsupply", "mcde"), 2865 REGULATOR_SUPPLY("vsupply", "mcde"),
2861 }; 2866 };
2862 2867
2863 /* SVA MMDSP regulator switch */ 2868 /* SVA MMDSP regulator switch */
2864 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = { 2869 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2865 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"), 2870 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2866 }; 2871 };
2867 2872
2868 /* SVA pipe regulator switch */ 2873 /* SVA pipe regulator switch */
2869 static struct regulator_consumer_supply db8500_svapipe_consumers[] = { 2874 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2870 REGULATOR_SUPPLY("sva-pipe", "cm_control"), 2875 REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2871 }; 2876 };
2872 2877
2873 /* SIA MMDSP regulator switch */ 2878 /* SIA MMDSP regulator switch */
2874 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = { 2879 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2875 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"), 2880 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2876 }; 2881 };
2877 2882
2878 /* SIA pipe regulator switch */ 2883 /* SIA pipe regulator switch */
2879 static struct regulator_consumer_supply db8500_siapipe_consumers[] = { 2884 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2880 REGULATOR_SUPPLY("sia-pipe", "cm_control"), 2885 REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2881 }; 2886 };
2882 2887
2883 static struct regulator_consumer_supply db8500_sga_consumers[] = { 2888 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2884 REGULATOR_SUPPLY("v-mali", NULL), 2889 REGULATOR_SUPPLY("v-mali", NULL),
2885 }; 2890 };
2886 2891
2887 /* ESRAM1 and 2 regulator switch */ 2892 /* ESRAM1 and 2 regulator switch */
2888 static struct regulator_consumer_supply db8500_esram12_consumers[] = { 2893 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2889 REGULATOR_SUPPLY("esram12", "cm_control"), 2894 REGULATOR_SUPPLY("esram12", "cm_control"),
2890 }; 2895 };
2891 2896
2892 /* ESRAM3 and 4 regulator switch */ 2897 /* ESRAM3 and 4 regulator switch */
2893 static struct regulator_consumer_supply db8500_esram34_consumers[] = { 2898 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2894 REGULATOR_SUPPLY("v-esram34", "mcde"), 2899 REGULATOR_SUPPLY("v-esram34", "mcde"),
2895 REGULATOR_SUPPLY("esram34", "cm_control"), 2900 REGULATOR_SUPPLY("esram34", "cm_control"),
2896 REGULATOR_SUPPLY("lcla_esram", "dma40.0"), 2901 REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2897 }; 2902 };
2898 2903
2899 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = { 2904 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2900 [DB8500_REGULATOR_VAPE] = { 2905 [DB8500_REGULATOR_VAPE] = {
2901 .constraints = { 2906 .constraints = {
2902 .name = "db8500-vape", 2907 .name = "db8500-vape",
2903 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2908 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2904 .always_on = true, 2909 .always_on = true,
2905 }, 2910 },
2906 .consumer_supplies = db8500_vape_consumers, 2911 .consumer_supplies = db8500_vape_consumers,
2907 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers), 2912 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2908 }, 2913 },
2909 [DB8500_REGULATOR_VARM] = { 2914 [DB8500_REGULATOR_VARM] = {
2910 .constraints = { 2915 .constraints = {
2911 .name = "db8500-varm", 2916 .name = "db8500-varm",
2912 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2917 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2913 }, 2918 },
2914 }, 2919 },
2915 [DB8500_REGULATOR_VMODEM] = { 2920 [DB8500_REGULATOR_VMODEM] = {
2916 .constraints = { 2921 .constraints = {
2917 .name = "db8500-vmodem", 2922 .name = "db8500-vmodem",
2918 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2923 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2919 }, 2924 },
2920 }, 2925 },
2921 [DB8500_REGULATOR_VPLL] = { 2926 [DB8500_REGULATOR_VPLL] = {
2922 .constraints = { 2927 .constraints = {
2923 .name = "db8500-vpll", 2928 .name = "db8500-vpll",
2924 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2929 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2925 }, 2930 },
2926 }, 2931 },
2927 [DB8500_REGULATOR_VSMPS1] = { 2932 [DB8500_REGULATOR_VSMPS1] = {
2928 .constraints = { 2933 .constraints = {
2929 .name = "db8500-vsmps1", 2934 .name = "db8500-vsmps1",
2930 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2935 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2931 }, 2936 },
2932 }, 2937 },
2933 [DB8500_REGULATOR_VSMPS2] = { 2938 [DB8500_REGULATOR_VSMPS2] = {
2934 .constraints = { 2939 .constraints = {
2935 .name = "db8500-vsmps2", 2940 .name = "db8500-vsmps2",
2936 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2941 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2937 }, 2942 },
2938 .consumer_supplies = db8500_vsmps2_consumers, 2943 .consumer_supplies = db8500_vsmps2_consumers,
2939 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers), 2944 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2940 }, 2945 },
2941 [DB8500_REGULATOR_VSMPS3] = { 2946 [DB8500_REGULATOR_VSMPS3] = {
2942 .constraints = { 2947 .constraints = {
2943 .name = "db8500-vsmps3", 2948 .name = "db8500-vsmps3",
2944 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2949 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2945 }, 2950 },
2946 }, 2951 },
2947 [DB8500_REGULATOR_VRF1] = { 2952 [DB8500_REGULATOR_VRF1] = {
2948 .constraints = { 2953 .constraints = {
2949 .name = "db8500-vrf1", 2954 .name = "db8500-vrf1",
2950 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2955 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2951 }, 2956 },
2952 }, 2957 },
2953 [DB8500_REGULATOR_SWITCH_SVAMMDSP] = { 2958 [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2954 /* dependency to u8500-vape is handled outside regulator framework */ 2959 /* dependency to u8500-vape is handled outside regulator framework */
2955 .constraints = { 2960 .constraints = {
2956 .name = "db8500-sva-mmdsp", 2961 .name = "db8500-sva-mmdsp",
2957 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2962 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2958 }, 2963 },
2959 .consumer_supplies = db8500_svammdsp_consumers, 2964 .consumer_supplies = db8500_svammdsp_consumers,
2960 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers), 2965 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2961 }, 2966 },
2962 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = { 2967 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2963 .constraints = { 2968 .constraints = {
2964 /* "ret" means "retention" */ 2969 /* "ret" means "retention" */
2965 .name = "db8500-sva-mmdsp-ret", 2970 .name = "db8500-sva-mmdsp-ret",
2966 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2971 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2967 }, 2972 },
2968 }, 2973 },
2969 [DB8500_REGULATOR_SWITCH_SVAPIPE] = { 2974 [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2970 /* dependency to u8500-vape is handled outside regulator framework */ 2975 /* dependency to u8500-vape is handled outside regulator framework */
2971 .constraints = { 2976 .constraints = {
2972 .name = "db8500-sva-pipe", 2977 .name = "db8500-sva-pipe",
2973 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2978 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2974 }, 2979 },
2975 .consumer_supplies = db8500_svapipe_consumers, 2980 .consumer_supplies = db8500_svapipe_consumers,
2976 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers), 2981 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2977 }, 2982 },
2978 [DB8500_REGULATOR_SWITCH_SIAMMDSP] = { 2983 [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2979 /* dependency to u8500-vape is handled outside regulator framework */ 2984 /* dependency to u8500-vape is handled outside regulator framework */
2980 .constraints = { 2985 .constraints = {
2981 .name = "db8500-sia-mmdsp", 2986 .name = "db8500-sia-mmdsp",
2982 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2987 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2983 }, 2988 },
2984 .consumer_supplies = db8500_siammdsp_consumers, 2989 .consumer_supplies = db8500_siammdsp_consumers,
2985 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers), 2990 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2986 }, 2991 },
2987 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = { 2992 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2988 .constraints = { 2993 .constraints = {
2989 .name = "db8500-sia-mmdsp-ret", 2994 .name = "db8500-sia-mmdsp-ret",
2990 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2995 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2991 }, 2996 },
2992 }, 2997 },
2993 [DB8500_REGULATOR_SWITCH_SIAPIPE] = { 2998 [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2994 /* dependency to u8500-vape is handled outside regulator framework */ 2999 /* dependency to u8500-vape is handled outside regulator framework */
2995 .constraints = { 3000 .constraints = {
2996 .name = "db8500-sia-pipe", 3001 .name = "db8500-sia-pipe",
2997 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 3002 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2998 }, 3003 },
2999 .consumer_supplies = db8500_siapipe_consumers, 3004 .consumer_supplies = db8500_siapipe_consumers,
3000 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers), 3005 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
3001 }, 3006 },
3002 [DB8500_REGULATOR_SWITCH_SGA] = { 3007 [DB8500_REGULATOR_SWITCH_SGA] = {
3003 .supply_regulator = "db8500-vape", 3008 .supply_regulator = "db8500-vape",
3004 .constraints = { 3009 .constraints = {
3005 .name = "db8500-sga", 3010 .name = "db8500-sga",
3006 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 3011 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3007 }, 3012 },
3008 .consumer_supplies = db8500_sga_consumers, 3013 .consumer_supplies = db8500_sga_consumers,
3009 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers), 3014 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
3010 3015
3011 }, 3016 },
3012 [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = { 3017 [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
3013 .supply_regulator = "db8500-vape", 3018 .supply_regulator = "db8500-vape",
3014 .constraints = { 3019 .constraints = {
3015 .name = "db8500-b2r2-mcde", 3020 .name = "db8500-b2r2-mcde",
3016 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 3021 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3017 }, 3022 },
3018 .consumer_supplies = db8500_b2r2_mcde_consumers, 3023 .consumer_supplies = db8500_b2r2_mcde_consumers,
3019 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers), 3024 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
3020 }, 3025 },
3021 [DB8500_REGULATOR_SWITCH_ESRAM12] = { 3026 [DB8500_REGULATOR_SWITCH_ESRAM12] = {
3022 /* 3027 /*
3023 * esram12 is set in retention and supplied by Vsafe when Vape is off, 3028 * esram12 is set in retention and supplied by Vsafe when Vape is off,
3024 * no need to hold Vape 3029 * no need to hold Vape
3025 */ 3030 */
3026 .constraints = { 3031 .constraints = {
3027 .name = "db8500-esram12", 3032 .name = "db8500-esram12",
3028 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 3033 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3029 }, 3034 },
3030 .consumer_supplies = db8500_esram12_consumers, 3035 .consumer_supplies = db8500_esram12_consumers,
3031 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers), 3036 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
3032 }, 3037 },
3033 [DB8500_REGULATOR_SWITCH_ESRAM12RET] = { 3038 [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
3034 .constraints = { 3039 .constraints = {
3035 .name = "db8500-esram12-ret", 3040 .name = "db8500-esram12-ret",
3036 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 3041 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3037 }, 3042 },
3038 }, 3043 },
3039 [DB8500_REGULATOR_SWITCH_ESRAM34] = { 3044 [DB8500_REGULATOR_SWITCH_ESRAM34] = {
3040 /* 3045 /*
3041 * esram34 is set in retention and supplied by Vsafe when Vape is off, 3046 * esram34 is set in retention and supplied by Vsafe when Vape is off,
3042 * no need to hold Vape 3047 * no need to hold Vape
3043 */ 3048 */
3044 .constraints = { 3049 .constraints = {
3045 .name = "db8500-esram34", 3050 .name = "db8500-esram34",
3046 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 3051 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3047 }, 3052 },
3048 .consumer_supplies = db8500_esram34_consumers, 3053 .consumer_supplies = db8500_esram34_consumers,
3049 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers), 3054 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
3050 }, 3055 },
3051 [DB8500_REGULATOR_SWITCH_ESRAM34RET] = { 3056 [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
3052 .constraints = { 3057 .constraints = {
3053 .name = "db8500-esram34-ret", 3058 .name = "db8500-esram34-ret",
3054 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 3059 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3055 }, 3060 },
3056 }, 3061 },
3057 }; 3062 };
3058 3063
3059 static struct resource ab8500_resources[] = { 3064 static struct resource ab8500_resources[] = {
3060 [0] = { 3065 [0] = {
3061 .start = IRQ_DB8500_AB8500, 3066 .start = IRQ_DB8500_AB8500,
3062 .end = IRQ_DB8500_AB8500, 3067 .end = IRQ_DB8500_AB8500,
3063 .flags = IORESOURCE_IRQ 3068 .flags = IORESOURCE_IRQ
3064 } 3069 }
3065 }; 3070 };
3066 3071
3067 static struct mfd_cell db8500_prcmu_devs[] = { 3072 static struct mfd_cell db8500_prcmu_devs[] = {
3068 { 3073 {
3069 .name = "db8500-prcmu-regulators", 3074 .name = "db8500-prcmu-regulators",
3070 .of_compatible = "stericsson,db8500-prcmu-regulator", 3075 .of_compatible = "stericsson,db8500-prcmu-regulator",
3071 .platform_data = &db8500_regulators, 3076 .platform_data = &db8500_regulators,
3072 .pdata_size = sizeof(db8500_regulators), 3077 .pdata_size = sizeof(db8500_regulators),
3073 }, 3078 },
3074 { 3079 {
3075 .name = "cpufreq-u8500", 3080 .name = "cpufreq-u8500",
3076 .of_compatible = "stericsson,cpufreq-u8500", 3081 .of_compatible = "stericsson,cpufreq-u8500",
3077 .platform_data = &db8500_cpufreq_table, 3082 .platform_data = &db8500_cpufreq_table,
3078 .pdata_size = sizeof(db8500_cpufreq_table), 3083 .pdata_size = sizeof(db8500_cpufreq_table),
3079 }, 3084 },
3080 { 3085 {
3081 .name = "ab8500-core", 3086 .name = "ab8500-core",
3082 .of_compatible = "stericsson,ab8500", 3087 .of_compatible = "stericsson,ab8500",
3083 .num_resources = ARRAY_SIZE(ab8500_resources), 3088 .num_resources = ARRAY_SIZE(ab8500_resources),
3084 .resources = ab8500_resources, 3089 .resources = ab8500_resources,
3085 .id = AB8500_VERSION_AB8500, 3090 .id = AB8500_VERSION_AB8500,
3086 }, 3091 },
3087 }; 3092 };
3088 3093
3089 static void db8500_prcmu_update_cpufreq(void) 3094 static void db8500_prcmu_update_cpufreq(void)
3090 { 3095 {
3091 if (prcmu_has_arm_maxopp()) { 3096 if (prcmu_has_arm_maxopp()) {
3092 db8500_cpufreq_table[3].frequency = 1000000; 3097 db8500_cpufreq_table[3].frequency = 1000000;
3093 db8500_cpufreq_table[3].index = ARM_MAX_OPP; 3098 db8500_cpufreq_table[3].index = ARM_MAX_OPP;
3094 } 3099 }
3095 } 3100 }
3096 3101
3097 /** 3102 /**
3098 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic 3103 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3099 * 3104 *
3100 */ 3105 */
3101 static int db8500_prcmu_probe(struct platform_device *pdev) 3106 static int db8500_prcmu_probe(struct platform_device *pdev)
3102 { 3107 {
3103 struct ab8500_platform_data *ab8500_platdata = pdev->dev.platform_data; 3108 struct ab8500_platform_data *ab8500_platdata = pdev->dev.platform_data;
3104 struct device_node *np = pdev->dev.of_node; 3109 struct device_node *np = pdev->dev.of_node;
3105 int irq = 0, err = 0, i; 3110 int irq = 0, err = 0, i;
3106 3111
3107 if (ux500_is_svp()) 3112 if (ux500_is_svp())
3108 return -ENODEV; 3113 return -ENODEV;
3109 3114
3110 init_prcm_registers(); 3115 init_prcm_registers();
3111 3116
3112 /* Clean up the mailbox interrupts after pre-kernel code. */ 3117 /* Clean up the mailbox interrupts after pre-kernel code. */
3113 writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR); 3118 writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3114 3119
3115 if (np) 3120 if (np)
3116 irq = platform_get_irq(pdev, 0); 3121 irq = platform_get_irq(pdev, 0);
3117 3122
3118 if (!np || irq <= 0) 3123 if (!np || irq <= 0)
3119 irq = IRQ_DB8500_PRCMU1; 3124 irq = IRQ_DB8500_PRCMU1;
3120 3125
3121 err = request_threaded_irq(irq, prcmu_irq_handler, 3126 err = request_threaded_irq(irq, prcmu_irq_handler,
3122 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL); 3127 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3123 if (err < 0) { 3128 if (err < 0) {
3124 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n"); 3129 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3125 err = -EBUSY; 3130 err = -EBUSY;
3126 goto no_irq_return; 3131 goto no_irq_return;
3127 } 3132 }
3128 3133
3129 db8500_irq_init(np); 3134 db8500_irq_init(np);
3130 3135
3131 for (i = 0; i < ARRAY_SIZE(db8500_prcmu_devs); i++) { 3136 for (i = 0; i < ARRAY_SIZE(db8500_prcmu_devs); i++) {
3132 if (!strcmp(db8500_prcmu_devs[i].name, "ab8500-core")) { 3137 if (!strcmp(db8500_prcmu_devs[i].name, "ab8500-core")) {
3133 db8500_prcmu_devs[i].platform_data = ab8500_platdata; 3138 db8500_prcmu_devs[i].platform_data = ab8500_platdata;
3134 db8500_prcmu_devs[i].pdata_size = sizeof(struct ab8500_platform_data); 3139 db8500_prcmu_devs[i].pdata_size = sizeof(struct ab8500_platform_data);
3135 } 3140 }
3136 } 3141 }
3137 3142
3138 if (cpu_is_u8500v20_or_later()) 3143 if (cpu_is_u8500v20_or_later())
3139 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET); 3144 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3140 3145
3141 db8500_prcmu_update_cpufreq(); 3146 db8500_prcmu_update_cpufreq();
3142 3147
3143 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs, 3148 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3144 ARRAY_SIZE(db8500_prcmu_devs), NULL, 0, NULL); 3149 ARRAY_SIZE(db8500_prcmu_devs), NULL, 0, NULL);
3145 if (err) { 3150 if (err) {
3146 pr_err("prcmu: Failed to add subdevices\n"); 3151 pr_err("prcmu: Failed to add subdevices\n");
3147 return err; 3152 return err;
3148 } 3153 }
3149 3154
3150 pr_info("DB8500 PRCMU initialized\n"); 3155 pr_info("DB8500 PRCMU initialized\n");
3151 3156
3152 no_irq_return: 3157 no_irq_return:
3153 return err; 3158 return err;
3154 } 3159 }
3155 static const struct of_device_id db8500_prcmu_match[] = { 3160 static const struct of_device_id db8500_prcmu_match[] = {
3156 { .compatible = "stericsson,db8500-prcmu"}, 3161 { .compatible = "stericsson,db8500-prcmu"},
3157 { }, 3162 { },
3158 }; 3163 };
3159 3164
3160 static struct platform_driver db8500_prcmu_driver = { 3165 static struct platform_driver db8500_prcmu_driver = {
3161 .driver = { 3166 .driver = {
3162 .name = "db8500-prcmu", 3167 .name = "db8500-prcmu",
3163 .owner = THIS_MODULE, 3168 .owner = THIS_MODULE,
3164 .of_match_table = db8500_prcmu_match, 3169 .of_match_table = db8500_prcmu_match,
3165 }, 3170 },
3166 .probe = db8500_prcmu_probe, 3171 .probe = db8500_prcmu_probe,
3167 }; 3172 };
3168 3173
3169 static int __init db8500_prcmu_init(void) 3174 static int __init db8500_prcmu_init(void)
3170 { 3175 {
3171 return platform_driver_register(&db8500_prcmu_driver); 3176 return platform_driver_register(&db8500_prcmu_driver);
3172 } 3177 }
3173 3178
3174 core_initcall(db8500_prcmu_init); 3179 core_initcall(db8500_prcmu_init);
3175 3180
3176 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>"); 3181 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3177 MODULE_DESCRIPTION("DB8500 PRCM Unit driver"); 3182 MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3178 MODULE_LICENSE("GPL v2"); 3183 MODULE_LICENSE("GPL v2");
3179 3184