Commit 8d34694c1abf29df1f3c7317936b7e3e2e308d9b

Authored by KOSAKI Motohiro
Committed by Linus Torvalds
1 parent 1fb3f8ca0e

revert "mm: mempolicy: Let vma_merge and vma_split handle vma->vm_policy linkages"

Commit 05f144a0d5c2 ("mm: mempolicy: Let vma_merge and vma_split handle
vma->vm_policy linkages") removed vma->vm_policy updates code but it is
the purpose of mbind_range().  Now, mbind_range() is virtually a no-op
and while it does not allow memory corruption it is not the right fix.
This patch is a revert.

[mgorman@suse.de: Edited changelog]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: Josh Boyer <jwboyer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>

Showing 1 changed file with 24 additions and 17 deletions Inline Diff

1 /* 1 /*
2 * Simple NUMA memory policy for the Linux kernel. 2 * Simple NUMA memory policy for the Linux kernel.
3 * 3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2. 6 * Subject to the GNU Public License, version 2.
7 * 7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should 8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated. 9 * be allocated.
10 * 10 *
11 * Support four policies per VMA and per process: 11 * Support four policies per VMA and per process:
12 * 12 *
13 * The VMA policy has priority over the process policy for a page fault. 13 * The VMA policy has priority over the process policy for a page fault.
14 * 14 *
15 * interleave Allocate memory interleaved over a set of nodes, 15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails. 16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the 17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping 18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter 19 * for anonymous memory. For process policy an process counter
20 * is used. 20 * is used.
21 * 21 *
22 * bind Only allocate memory on a specific set of nodes, 22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback. 23 * no fallback.
24 * FIXME: memory is allocated starting with the first node 24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict 25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead 26 * the allocation to memory nodes instead
27 * 27 *
28 * preferred Try a specific node first before normal fallback. 28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation 29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default, 30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default 31 * but useful to set in a VMA when you have a non default
32 * process policy. 32 * process policy.
33 * 33 *
34 * default Allocate on the local node first, or when on a VMA 34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did 35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default. 36 * in a NUMA aware kernel and still does by, ahem, default.
37 * 37 *
38 * The process policy is applied for most non interrupt memory allocations 38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always 39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory 40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM. 41 * allocations for a VMA in the VM.
42 * 42 *
43 * Currently there are a few corner cases in swapping where the policy 43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy 44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins. 45 * is used it is not remembered over swap outs/swap ins.
46 * 46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations 47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that 48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied. 49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations. 50 * Same with GFP_DMA allocations.
51 * 51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped. 53 * all users and remembered even when nobody has memory mapped.
54 */ 54 */
55 55
56 /* Notebook: 56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache 57 fix mmap readahead to honour policy and enable policy for any page cache
58 object 58 object
59 statistics for bigpages 59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires 60 global policy for page cache? currently it uses process policy. Requires
61 first item above. 61 first item above.
62 handle mremap for shared memory (currently ignored for the policy) 62 handle mremap for shared memory (currently ignored for the policy)
63 grows down? 63 grows down?
64 make bind policy root only? It can trigger oom much faster and the 64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that. 65 kernel is not always grateful with that.
66 */ 66 */
67 67
68 #include <linux/mempolicy.h> 68 #include <linux/mempolicy.h>
69 #include <linux/mm.h> 69 #include <linux/mm.h>
70 #include <linux/highmem.h> 70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h> 71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h> 72 #include <linux/kernel.h>
73 #include <linux/sched.h> 73 #include <linux/sched.h>
74 #include <linux/nodemask.h> 74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h> 75 #include <linux/cpuset.h>
76 #include <linux/slab.h> 76 #include <linux/slab.h>
77 #include <linux/string.h> 77 #include <linux/string.h>
78 #include <linux/export.h> 78 #include <linux/export.h>
79 #include <linux/nsproxy.h> 79 #include <linux/nsproxy.h>
80 #include <linux/interrupt.h> 80 #include <linux/interrupt.h>
81 #include <linux/init.h> 81 #include <linux/init.h>
82 #include <linux/compat.h> 82 #include <linux/compat.h>
83 #include <linux/swap.h> 83 #include <linux/swap.h>
84 #include <linux/seq_file.h> 84 #include <linux/seq_file.h>
85 #include <linux/proc_fs.h> 85 #include <linux/proc_fs.h>
86 #include <linux/migrate.h> 86 #include <linux/migrate.h>
87 #include <linux/ksm.h> 87 #include <linux/ksm.h>
88 #include <linux/rmap.h> 88 #include <linux/rmap.h>
89 #include <linux/security.h> 89 #include <linux/security.h>
90 #include <linux/syscalls.h> 90 #include <linux/syscalls.h>
91 #include <linux/ctype.h> 91 #include <linux/ctype.h>
92 #include <linux/mm_inline.h> 92 #include <linux/mm_inline.h>
93 93
94 #include <asm/tlbflush.h> 94 #include <asm/tlbflush.h>
95 #include <asm/uaccess.h> 95 #include <asm/uaccess.h>
96 #include <linux/random.h> 96 #include <linux/random.h>
97 97
98 #include "internal.h" 98 #include "internal.h"
99 99
100 /* Internal flags */ 100 /* Internal flags */
101 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 101 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
102 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 102 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
103 103
104 static struct kmem_cache *policy_cache; 104 static struct kmem_cache *policy_cache;
105 static struct kmem_cache *sn_cache; 105 static struct kmem_cache *sn_cache;
106 106
107 /* Highest zone. An specific allocation for a zone below that is not 107 /* Highest zone. An specific allocation for a zone below that is not
108 policied. */ 108 policied. */
109 enum zone_type policy_zone = 0; 109 enum zone_type policy_zone = 0;
110 110
111 /* 111 /*
112 * run-time system-wide default policy => local allocation 112 * run-time system-wide default policy => local allocation
113 */ 113 */
114 static struct mempolicy default_policy = { 114 static struct mempolicy default_policy = {
115 .refcnt = ATOMIC_INIT(1), /* never free it */ 115 .refcnt = ATOMIC_INIT(1), /* never free it */
116 .mode = MPOL_PREFERRED, 116 .mode = MPOL_PREFERRED,
117 .flags = MPOL_F_LOCAL, 117 .flags = MPOL_F_LOCAL,
118 }; 118 };
119 119
120 static const struct mempolicy_operations { 120 static const struct mempolicy_operations {
121 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 121 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
122 /* 122 /*
123 * If read-side task has no lock to protect task->mempolicy, write-side 123 * If read-side task has no lock to protect task->mempolicy, write-side
124 * task will rebind the task->mempolicy by two step. The first step is 124 * task will rebind the task->mempolicy by two step. The first step is
125 * setting all the newly nodes, and the second step is cleaning all the 125 * setting all the newly nodes, and the second step is cleaning all the
126 * disallowed nodes. In this way, we can avoid finding no node to alloc 126 * disallowed nodes. In this way, we can avoid finding no node to alloc
127 * page. 127 * page.
128 * If we have a lock to protect task->mempolicy in read-side, we do 128 * If we have a lock to protect task->mempolicy in read-side, we do
129 * rebind directly. 129 * rebind directly.
130 * 130 *
131 * step: 131 * step:
132 * MPOL_REBIND_ONCE - do rebind work at once 132 * MPOL_REBIND_ONCE - do rebind work at once
133 * MPOL_REBIND_STEP1 - set all the newly nodes 133 * MPOL_REBIND_STEP1 - set all the newly nodes
134 * MPOL_REBIND_STEP2 - clean all the disallowed nodes 134 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
135 */ 135 */
136 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes, 136 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
137 enum mpol_rebind_step step); 137 enum mpol_rebind_step step);
138 } mpol_ops[MPOL_MAX]; 138 } mpol_ops[MPOL_MAX];
139 139
140 /* Check that the nodemask contains at least one populated zone */ 140 /* Check that the nodemask contains at least one populated zone */
141 static int is_valid_nodemask(const nodemask_t *nodemask) 141 static int is_valid_nodemask(const nodemask_t *nodemask)
142 { 142 {
143 int nd, k; 143 int nd, k;
144 144
145 for_each_node_mask(nd, *nodemask) { 145 for_each_node_mask(nd, *nodemask) {
146 struct zone *z; 146 struct zone *z;
147 147
148 for (k = 0; k <= policy_zone; k++) { 148 for (k = 0; k <= policy_zone; k++) {
149 z = &NODE_DATA(nd)->node_zones[k]; 149 z = &NODE_DATA(nd)->node_zones[k];
150 if (z->present_pages > 0) 150 if (z->present_pages > 0)
151 return 1; 151 return 1;
152 } 152 }
153 } 153 }
154 154
155 return 0; 155 return 0;
156 } 156 }
157 157
158 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 158 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
159 { 159 {
160 return pol->flags & MPOL_MODE_FLAGS; 160 return pol->flags & MPOL_MODE_FLAGS;
161 } 161 }
162 162
163 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 163 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
164 const nodemask_t *rel) 164 const nodemask_t *rel)
165 { 165 {
166 nodemask_t tmp; 166 nodemask_t tmp;
167 nodes_fold(tmp, *orig, nodes_weight(*rel)); 167 nodes_fold(tmp, *orig, nodes_weight(*rel));
168 nodes_onto(*ret, tmp, *rel); 168 nodes_onto(*ret, tmp, *rel);
169 } 169 }
170 170
171 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes) 171 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
172 { 172 {
173 if (nodes_empty(*nodes)) 173 if (nodes_empty(*nodes))
174 return -EINVAL; 174 return -EINVAL;
175 pol->v.nodes = *nodes; 175 pol->v.nodes = *nodes;
176 return 0; 176 return 0;
177 } 177 }
178 178
179 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 179 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
180 { 180 {
181 if (!nodes) 181 if (!nodes)
182 pol->flags |= MPOL_F_LOCAL; /* local allocation */ 182 pol->flags |= MPOL_F_LOCAL; /* local allocation */
183 else if (nodes_empty(*nodes)) 183 else if (nodes_empty(*nodes))
184 return -EINVAL; /* no allowed nodes */ 184 return -EINVAL; /* no allowed nodes */
185 else 185 else
186 pol->v.preferred_node = first_node(*nodes); 186 pol->v.preferred_node = first_node(*nodes);
187 return 0; 187 return 0;
188 } 188 }
189 189
190 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes) 190 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
191 { 191 {
192 if (!is_valid_nodemask(nodes)) 192 if (!is_valid_nodemask(nodes))
193 return -EINVAL; 193 return -EINVAL;
194 pol->v.nodes = *nodes; 194 pol->v.nodes = *nodes;
195 return 0; 195 return 0;
196 } 196 }
197 197
198 /* 198 /*
199 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 199 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
200 * any, for the new policy. mpol_new() has already validated the nodes 200 * any, for the new policy. mpol_new() has already validated the nodes
201 * parameter with respect to the policy mode and flags. But, we need to 201 * parameter with respect to the policy mode and flags. But, we need to
202 * handle an empty nodemask with MPOL_PREFERRED here. 202 * handle an empty nodemask with MPOL_PREFERRED here.
203 * 203 *
204 * Must be called holding task's alloc_lock to protect task's mems_allowed 204 * Must be called holding task's alloc_lock to protect task's mems_allowed
205 * and mempolicy. May also be called holding the mmap_semaphore for write. 205 * and mempolicy. May also be called holding the mmap_semaphore for write.
206 */ 206 */
207 static int mpol_set_nodemask(struct mempolicy *pol, 207 static int mpol_set_nodemask(struct mempolicy *pol,
208 const nodemask_t *nodes, struct nodemask_scratch *nsc) 208 const nodemask_t *nodes, struct nodemask_scratch *nsc)
209 { 209 {
210 int ret; 210 int ret;
211 211
212 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */ 212 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
213 if (pol == NULL) 213 if (pol == NULL)
214 return 0; 214 return 0;
215 /* Check N_HIGH_MEMORY */ 215 /* Check N_HIGH_MEMORY */
216 nodes_and(nsc->mask1, 216 nodes_and(nsc->mask1,
217 cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]); 217 cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]);
218 218
219 VM_BUG_ON(!nodes); 219 VM_BUG_ON(!nodes);
220 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes)) 220 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
221 nodes = NULL; /* explicit local allocation */ 221 nodes = NULL; /* explicit local allocation */
222 else { 222 else {
223 if (pol->flags & MPOL_F_RELATIVE_NODES) 223 if (pol->flags & MPOL_F_RELATIVE_NODES)
224 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1); 224 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
225 else 225 else
226 nodes_and(nsc->mask2, *nodes, nsc->mask1); 226 nodes_and(nsc->mask2, *nodes, nsc->mask1);
227 227
228 if (mpol_store_user_nodemask(pol)) 228 if (mpol_store_user_nodemask(pol))
229 pol->w.user_nodemask = *nodes; 229 pol->w.user_nodemask = *nodes;
230 else 230 else
231 pol->w.cpuset_mems_allowed = 231 pol->w.cpuset_mems_allowed =
232 cpuset_current_mems_allowed; 232 cpuset_current_mems_allowed;
233 } 233 }
234 234
235 if (nodes) 235 if (nodes)
236 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 236 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
237 else 237 else
238 ret = mpol_ops[pol->mode].create(pol, NULL); 238 ret = mpol_ops[pol->mode].create(pol, NULL);
239 return ret; 239 return ret;
240 } 240 }
241 241
242 /* 242 /*
243 * This function just creates a new policy, does some check and simple 243 * This function just creates a new policy, does some check and simple
244 * initialization. You must invoke mpol_set_nodemask() to set nodes. 244 * initialization. You must invoke mpol_set_nodemask() to set nodes.
245 */ 245 */
246 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 246 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
247 nodemask_t *nodes) 247 nodemask_t *nodes)
248 { 248 {
249 struct mempolicy *policy; 249 struct mempolicy *policy;
250 250
251 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 251 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
252 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1); 252 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
253 253
254 if (mode == MPOL_DEFAULT) { 254 if (mode == MPOL_DEFAULT) {
255 if (nodes && !nodes_empty(*nodes)) 255 if (nodes && !nodes_empty(*nodes))
256 return ERR_PTR(-EINVAL); 256 return ERR_PTR(-EINVAL);
257 return NULL; /* simply delete any existing policy */ 257 return NULL; /* simply delete any existing policy */
258 } 258 }
259 VM_BUG_ON(!nodes); 259 VM_BUG_ON(!nodes);
260 260
261 /* 261 /*
262 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 262 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
263 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 263 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
264 * All other modes require a valid pointer to a non-empty nodemask. 264 * All other modes require a valid pointer to a non-empty nodemask.
265 */ 265 */
266 if (mode == MPOL_PREFERRED) { 266 if (mode == MPOL_PREFERRED) {
267 if (nodes_empty(*nodes)) { 267 if (nodes_empty(*nodes)) {
268 if (((flags & MPOL_F_STATIC_NODES) || 268 if (((flags & MPOL_F_STATIC_NODES) ||
269 (flags & MPOL_F_RELATIVE_NODES))) 269 (flags & MPOL_F_RELATIVE_NODES)))
270 return ERR_PTR(-EINVAL); 270 return ERR_PTR(-EINVAL);
271 } 271 }
272 } else if (nodes_empty(*nodes)) 272 } else if (nodes_empty(*nodes))
273 return ERR_PTR(-EINVAL); 273 return ERR_PTR(-EINVAL);
274 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 274 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
275 if (!policy) 275 if (!policy)
276 return ERR_PTR(-ENOMEM); 276 return ERR_PTR(-ENOMEM);
277 atomic_set(&policy->refcnt, 1); 277 atomic_set(&policy->refcnt, 1);
278 policy->mode = mode; 278 policy->mode = mode;
279 policy->flags = flags; 279 policy->flags = flags;
280 280
281 return policy; 281 return policy;
282 } 282 }
283 283
284 /* Slow path of a mpol destructor. */ 284 /* Slow path of a mpol destructor. */
285 void __mpol_put(struct mempolicy *p) 285 void __mpol_put(struct mempolicy *p)
286 { 286 {
287 if (!atomic_dec_and_test(&p->refcnt)) 287 if (!atomic_dec_and_test(&p->refcnt))
288 return; 288 return;
289 kmem_cache_free(policy_cache, p); 289 kmem_cache_free(policy_cache, p);
290 } 290 }
291 291
292 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes, 292 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
293 enum mpol_rebind_step step) 293 enum mpol_rebind_step step)
294 { 294 {
295 } 295 }
296 296
297 /* 297 /*
298 * step: 298 * step:
299 * MPOL_REBIND_ONCE - do rebind work at once 299 * MPOL_REBIND_ONCE - do rebind work at once
300 * MPOL_REBIND_STEP1 - set all the newly nodes 300 * MPOL_REBIND_STEP1 - set all the newly nodes
301 * MPOL_REBIND_STEP2 - clean all the disallowed nodes 301 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
302 */ 302 */
303 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes, 303 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
304 enum mpol_rebind_step step) 304 enum mpol_rebind_step step)
305 { 305 {
306 nodemask_t tmp; 306 nodemask_t tmp;
307 307
308 if (pol->flags & MPOL_F_STATIC_NODES) 308 if (pol->flags & MPOL_F_STATIC_NODES)
309 nodes_and(tmp, pol->w.user_nodemask, *nodes); 309 nodes_and(tmp, pol->w.user_nodemask, *nodes);
310 else if (pol->flags & MPOL_F_RELATIVE_NODES) 310 else if (pol->flags & MPOL_F_RELATIVE_NODES)
311 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 311 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
312 else { 312 else {
313 /* 313 /*
314 * if step == 1, we use ->w.cpuset_mems_allowed to cache the 314 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
315 * result 315 * result
316 */ 316 */
317 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) { 317 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
318 nodes_remap(tmp, pol->v.nodes, 318 nodes_remap(tmp, pol->v.nodes,
319 pol->w.cpuset_mems_allowed, *nodes); 319 pol->w.cpuset_mems_allowed, *nodes);
320 pol->w.cpuset_mems_allowed = step ? tmp : *nodes; 320 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
321 } else if (step == MPOL_REBIND_STEP2) { 321 } else if (step == MPOL_REBIND_STEP2) {
322 tmp = pol->w.cpuset_mems_allowed; 322 tmp = pol->w.cpuset_mems_allowed;
323 pol->w.cpuset_mems_allowed = *nodes; 323 pol->w.cpuset_mems_allowed = *nodes;
324 } else 324 } else
325 BUG(); 325 BUG();
326 } 326 }
327 327
328 if (nodes_empty(tmp)) 328 if (nodes_empty(tmp))
329 tmp = *nodes; 329 tmp = *nodes;
330 330
331 if (step == MPOL_REBIND_STEP1) 331 if (step == MPOL_REBIND_STEP1)
332 nodes_or(pol->v.nodes, pol->v.nodes, tmp); 332 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
333 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2) 333 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
334 pol->v.nodes = tmp; 334 pol->v.nodes = tmp;
335 else 335 else
336 BUG(); 336 BUG();
337 337
338 if (!node_isset(current->il_next, tmp)) { 338 if (!node_isset(current->il_next, tmp)) {
339 current->il_next = next_node(current->il_next, tmp); 339 current->il_next = next_node(current->il_next, tmp);
340 if (current->il_next >= MAX_NUMNODES) 340 if (current->il_next >= MAX_NUMNODES)
341 current->il_next = first_node(tmp); 341 current->il_next = first_node(tmp);
342 if (current->il_next >= MAX_NUMNODES) 342 if (current->il_next >= MAX_NUMNODES)
343 current->il_next = numa_node_id(); 343 current->il_next = numa_node_id();
344 } 344 }
345 } 345 }
346 346
347 static void mpol_rebind_preferred(struct mempolicy *pol, 347 static void mpol_rebind_preferred(struct mempolicy *pol,
348 const nodemask_t *nodes, 348 const nodemask_t *nodes,
349 enum mpol_rebind_step step) 349 enum mpol_rebind_step step)
350 { 350 {
351 nodemask_t tmp; 351 nodemask_t tmp;
352 352
353 if (pol->flags & MPOL_F_STATIC_NODES) { 353 if (pol->flags & MPOL_F_STATIC_NODES) {
354 int node = first_node(pol->w.user_nodemask); 354 int node = first_node(pol->w.user_nodemask);
355 355
356 if (node_isset(node, *nodes)) { 356 if (node_isset(node, *nodes)) {
357 pol->v.preferred_node = node; 357 pol->v.preferred_node = node;
358 pol->flags &= ~MPOL_F_LOCAL; 358 pol->flags &= ~MPOL_F_LOCAL;
359 } else 359 } else
360 pol->flags |= MPOL_F_LOCAL; 360 pol->flags |= MPOL_F_LOCAL;
361 } else if (pol->flags & MPOL_F_RELATIVE_NODES) { 361 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
362 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 362 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
363 pol->v.preferred_node = first_node(tmp); 363 pol->v.preferred_node = first_node(tmp);
364 } else if (!(pol->flags & MPOL_F_LOCAL)) { 364 } else if (!(pol->flags & MPOL_F_LOCAL)) {
365 pol->v.preferred_node = node_remap(pol->v.preferred_node, 365 pol->v.preferred_node = node_remap(pol->v.preferred_node,
366 pol->w.cpuset_mems_allowed, 366 pol->w.cpuset_mems_allowed,
367 *nodes); 367 *nodes);
368 pol->w.cpuset_mems_allowed = *nodes; 368 pol->w.cpuset_mems_allowed = *nodes;
369 } 369 }
370 } 370 }
371 371
372 /* 372 /*
373 * mpol_rebind_policy - Migrate a policy to a different set of nodes 373 * mpol_rebind_policy - Migrate a policy to a different set of nodes
374 * 374 *
375 * If read-side task has no lock to protect task->mempolicy, write-side 375 * If read-side task has no lock to protect task->mempolicy, write-side
376 * task will rebind the task->mempolicy by two step. The first step is 376 * task will rebind the task->mempolicy by two step. The first step is
377 * setting all the newly nodes, and the second step is cleaning all the 377 * setting all the newly nodes, and the second step is cleaning all the
378 * disallowed nodes. In this way, we can avoid finding no node to alloc 378 * disallowed nodes. In this way, we can avoid finding no node to alloc
379 * page. 379 * page.
380 * If we have a lock to protect task->mempolicy in read-side, we do 380 * If we have a lock to protect task->mempolicy in read-side, we do
381 * rebind directly. 381 * rebind directly.
382 * 382 *
383 * step: 383 * step:
384 * MPOL_REBIND_ONCE - do rebind work at once 384 * MPOL_REBIND_ONCE - do rebind work at once
385 * MPOL_REBIND_STEP1 - set all the newly nodes 385 * MPOL_REBIND_STEP1 - set all the newly nodes
386 * MPOL_REBIND_STEP2 - clean all the disallowed nodes 386 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
387 */ 387 */
388 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask, 388 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
389 enum mpol_rebind_step step) 389 enum mpol_rebind_step step)
390 { 390 {
391 if (!pol) 391 if (!pol)
392 return; 392 return;
393 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE && 393 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
394 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 394 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
395 return; 395 return;
396 396
397 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING)) 397 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
398 return; 398 return;
399 399
400 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING)) 400 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
401 BUG(); 401 BUG();
402 402
403 if (step == MPOL_REBIND_STEP1) 403 if (step == MPOL_REBIND_STEP1)
404 pol->flags |= MPOL_F_REBINDING; 404 pol->flags |= MPOL_F_REBINDING;
405 else if (step == MPOL_REBIND_STEP2) 405 else if (step == MPOL_REBIND_STEP2)
406 pol->flags &= ~MPOL_F_REBINDING; 406 pol->flags &= ~MPOL_F_REBINDING;
407 else if (step >= MPOL_REBIND_NSTEP) 407 else if (step >= MPOL_REBIND_NSTEP)
408 BUG(); 408 BUG();
409 409
410 mpol_ops[pol->mode].rebind(pol, newmask, step); 410 mpol_ops[pol->mode].rebind(pol, newmask, step);
411 } 411 }
412 412
413 /* 413 /*
414 * Wrapper for mpol_rebind_policy() that just requires task 414 * Wrapper for mpol_rebind_policy() that just requires task
415 * pointer, and updates task mempolicy. 415 * pointer, and updates task mempolicy.
416 * 416 *
417 * Called with task's alloc_lock held. 417 * Called with task's alloc_lock held.
418 */ 418 */
419 419
420 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new, 420 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
421 enum mpol_rebind_step step) 421 enum mpol_rebind_step step)
422 { 422 {
423 mpol_rebind_policy(tsk->mempolicy, new, step); 423 mpol_rebind_policy(tsk->mempolicy, new, step);
424 } 424 }
425 425
426 /* 426 /*
427 * Rebind each vma in mm to new nodemask. 427 * Rebind each vma in mm to new nodemask.
428 * 428 *
429 * Call holding a reference to mm. Takes mm->mmap_sem during call. 429 * Call holding a reference to mm. Takes mm->mmap_sem during call.
430 */ 430 */
431 431
432 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 432 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
433 { 433 {
434 struct vm_area_struct *vma; 434 struct vm_area_struct *vma;
435 435
436 down_write(&mm->mmap_sem); 436 down_write(&mm->mmap_sem);
437 for (vma = mm->mmap; vma; vma = vma->vm_next) 437 for (vma = mm->mmap; vma; vma = vma->vm_next)
438 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE); 438 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
439 up_write(&mm->mmap_sem); 439 up_write(&mm->mmap_sem);
440 } 440 }
441 441
442 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 442 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
443 [MPOL_DEFAULT] = { 443 [MPOL_DEFAULT] = {
444 .rebind = mpol_rebind_default, 444 .rebind = mpol_rebind_default,
445 }, 445 },
446 [MPOL_INTERLEAVE] = { 446 [MPOL_INTERLEAVE] = {
447 .create = mpol_new_interleave, 447 .create = mpol_new_interleave,
448 .rebind = mpol_rebind_nodemask, 448 .rebind = mpol_rebind_nodemask,
449 }, 449 },
450 [MPOL_PREFERRED] = { 450 [MPOL_PREFERRED] = {
451 .create = mpol_new_preferred, 451 .create = mpol_new_preferred,
452 .rebind = mpol_rebind_preferred, 452 .rebind = mpol_rebind_preferred,
453 }, 453 },
454 [MPOL_BIND] = { 454 [MPOL_BIND] = {
455 .create = mpol_new_bind, 455 .create = mpol_new_bind,
456 .rebind = mpol_rebind_nodemask, 456 .rebind = mpol_rebind_nodemask,
457 }, 457 },
458 }; 458 };
459 459
460 static void migrate_page_add(struct page *page, struct list_head *pagelist, 460 static void migrate_page_add(struct page *page, struct list_head *pagelist,
461 unsigned long flags); 461 unsigned long flags);
462 462
463 /* Scan through pages checking if pages follow certain conditions. */ 463 /* Scan through pages checking if pages follow certain conditions. */
464 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 464 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
465 unsigned long addr, unsigned long end, 465 unsigned long addr, unsigned long end,
466 const nodemask_t *nodes, unsigned long flags, 466 const nodemask_t *nodes, unsigned long flags,
467 void *private) 467 void *private)
468 { 468 {
469 pte_t *orig_pte; 469 pte_t *orig_pte;
470 pte_t *pte; 470 pte_t *pte;
471 spinlock_t *ptl; 471 spinlock_t *ptl;
472 472
473 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 473 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
474 do { 474 do {
475 struct page *page; 475 struct page *page;
476 int nid; 476 int nid;
477 477
478 if (!pte_present(*pte)) 478 if (!pte_present(*pte))
479 continue; 479 continue;
480 page = vm_normal_page(vma, addr, *pte); 480 page = vm_normal_page(vma, addr, *pte);
481 if (!page) 481 if (!page)
482 continue; 482 continue;
483 /* 483 /*
484 * vm_normal_page() filters out zero pages, but there might 484 * vm_normal_page() filters out zero pages, but there might
485 * still be PageReserved pages to skip, perhaps in a VDSO. 485 * still be PageReserved pages to skip, perhaps in a VDSO.
486 * And we cannot move PageKsm pages sensibly or safely yet. 486 * And we cannot move PageKsm pages sensibly or safely yet.
487 */ 487 */
488 if (PageReserved(page) || PageKsm(page)) 488 if (PageReserved(page) || PageKsm(page))
489 continue; 489 continue;
490 nid = page_to_nid(page); 490 nid = page_to_nid(page);
491 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT)) 491 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
492 continue; 492 continue;
493 493
494 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 494 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
495 migrate_page_add(page, private, flags); 495 migrate_page_add(page, private, flags);
496 else 496 else
497 break; 497 break;
498 } while (pte++, addr += PAGE_SIZE, addr != end); 498 } while (pte++, addr += PAGE_SIZE, addr != end);
499 pte_unmap_unlock(orig_pte, ptl); 499 pte_unmap_unlock(orig_pte, ptl);
500 return addr != end; 500 return addr != end;
501 } 501 }
502 502
503 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud, 503 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
504 unsigned long addr, unsigned long end, 504 unsigned long addr, unsigned long end,
505 const nodemask_t *nodes, unsigned long flags, 505 const nodemask_t *nodes, unsigned long flags,
506 void *private) 506 void *private)
507 { 507 {
508 pmd_t *pmd; 508 pmd_t *pmd;
509 unsigned long next; 509 unsigned long next;
510 510
511 pmd = pmd_offset(pud, addr); 511 pmd = pmd_offset(pud, addr);
512 do { 512 do {
513 next = pmd_addr_end(addr, end); 513 next = pmd_addr_end(addr, end);
514 split_huge_page_pmd(vma->vm_mm, pmd); 514 split_huge_page_pmd(vma->vm_mm, pmd);
515 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 515 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
516 continue; 516 continue;
517 if (check_pte_range(vma, pmd, addr, next, nodes, 517 if (check_pte_range(vma, pmd, addr, next, nodes,
518 flags, private)) 518 flags, private))
519 return -EIO; 519 return -EIO;
520 } while (pmd++, addr = next, addr != end); 520 } while (pmd++, addr = next, addr != end);
521 return 0; 521 return 0;
522 } 522 }
523 523
524 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 524 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
525 unsigned long addr, unsigned long end, 525 unsigned long addr, unsigned long end,
526 const nodemask_t *nodes, unsigned long flags, 526 const nodemask_t *nodes, unsigned long flags,
527 void *private) 527 void *private)
528 { 528 {
529 pud_t *pud; 529 pud_t *pud;
530 unsigned long next; 530 unsigned long next;
531 531
532 pud = pud_offset(pgd, addr); 532 pud = pud_offset(pgd, addr);
533 do { 533 do {
534 next = pud_addr_end(addr, end); 534 next = pud_addr_end(addr, end);
535 if (pud_none_or_clear_bad(pud)) 535 if (pud_none_or_clear_bad(pud))
536 continue; 536 continue;
537 if (check_pmd_range(vma, pud, addr, next, nodes, 537 if (check_pmd_range(vma, pud, addr, next, nodes,
538 flags, private)) 538 flags, private))
539 return -EIO; 539 return -EIO;
540 } while (pud++, addr = next, addr != end); 540 } while (pud++, addr = next, addr != end);
541 return 0; 541 return 0;
542 } 542 }
543 543
544 static inline int check_pgd_range(struct vm_area_struct *vma, 544 static inline int check_pgd_range(struct vm_area_struct *vma,
545 unsigned long addr, unsigned long end, 545 unsigned long addr, unsigned long end,
546 const nodemask_t *nodes, unsigned long flags, 546 const nodemask_t *nodes, unsigned long flags,
547 void *private) 547 void *private)
548 { 548 {
549 pgd_t *pgd; 549 pgd_t *pgd;
550 unsigned long next; 550 unsigned long next;
551 551
552 pgd = pgd_offset(vma->vm_mm, addr); 552 pgd = pgd_offset(vma->vm_mm, addr);
553 do { 553 do {
554 next = pgd_addr_end(addr, end); 554 next = pgd_addr_end(addr, end);
555 if (pgd_none_or_clear_bad(pgd)) 555 if (pgd_none_or_clear_bad(pgd))
556 continue; 556 continue;
557 if (check_pud_range(vma, pgd, addr, next, nodes, 557 if (check_pud_range(vma, pgd, addr, next, nodes,
558 flags, private)) 558 flags, private))
559 return -EIO; 559 return -EIO;
560 } while (pgd++, addr = next, addr != end); 560 } while (pgd++, addr = next, addr != end);
561 return 0; 561 return 0;
562 } 562 }
563 563
564 /* 564 /*
565 * Check if all pages in a range are on a set of nodes. 565 * Check if all pages in a range are on a set of nodes.
566 * If pagelist != NULL then isolate pages from the LRU and 566 * If pagelist != NULL then isolate pages from the LRU and
567 * put them on the pagelist. 567 * put them on the pagelist.
568 */ 568 */
569 static struct vm_area_struct * 569 static struct vm_area_struct *
570 check_range(struct mm_struct *mm, unsigned long start, unsigned long end, 570 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
571 const nodemask_t *nodes, unsigned long flags, void *private) 571 const nodemask_t *nodes, unsigned long flags, void *private)
572 { 572 {
573 int err; 573 int err;
574 struct vm_area_struct *first, *vma, *prev; 574 struct vm_area_struct *first, *vma, *prev;
575 575
576 576
577 first = find_vma(mm, start); 577 first = find_vma(mm, start);
578 if (!first) 578 if (!first)
579 return ERR_PTR(-EFAULT); 579 return ERR_PTR(-EFAULT);
580 prev = NULL; 580 prev = NULL;
581 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) { 581 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
582 if (!(flags & MPOL_MF_DISCONTIG_OK)) { 582 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
583 if (!vma->vm_next && vma->vm_end < end) 583 if (!vma->vm_next && vma->vm_end < end)
584 return ERR_PTR(-EFAULT); 584 return ERR_PTR(-EFAULT);
585 if (prev && prev->vm_end < vma->vm_start) 585 if (prev && prev->vm_end < vma->vm_start)
586 return ERR_PTR(-EFAULT); 586 return ERR_PTR(-EFAULT);
587 } 587 }
588 if (!is_vm_hugetlb_page(vma) && 588 if (!is_vm_hugetlb_page(vma) &&
589 ((flags & MPOL_MF_STRICT) || 589 ((flags & MPOL_MF_STRICT) ||
590 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) && 590 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
591 vma_migratable(vma)))) { 591 vma_migratable(vma)))) {
592 unsigned long endvma = vma->vm_end; 592 unsigned long endvma = vma->vm_end;
593 593
594 if (endvma > end) 594 if (endvma > end)
595 endvma = end; 595 endvma = end;
596 if (vma->vm_start > start) 596 if (vma->vm_start > start)
597 start = vma->vm_start; 597 start = vma->vm_start;
598 err = check_pgd_range(vma, start, endvma, nodes, 598 err = check_pgd_range(vma, start, endvma, nodes,
599 flags, private); 599 flags, private);
600 if (err) { 600 if (err) {
601 first = ERR_PTR(err); 601 first = ERR_PTR(err);
602 break; 602 break;
603 } 603 }
604 } 604 }
605 prev = vma; 605 prev = vma;
606 } 606 }
607 return first; 607 return first;
608 } 608 }
609 609
610 /* Apply policy to a single VMA */
611 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
612 {
613 int err = 0;
614 struct mempolicy *old = vma->vm_policy;
615
616 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
617 vma->vm_start, vma->vm_end, vma->vm_pgoff,
618 vma->vm_ops, vma->vm_file,
619 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
620
621 if (vma->vm_ops && vma->vm_ops->set_policy)
622 err = vma->vm_ops->set_policy(vma, new);
623 if (!err) {
624 mpol_get(new);
625 vma->vm_policy = new;
626 mpol_put(old);
627 }
628 return err;
629 }
630
610 /* Step 2: apply policy to a range and do splits. */ 631 /* Step 2: apply policy to a range and do splits. */
611 static int mbind_range(struct mm_struct *mm, unsigned long start, 632 static int mbind_range(struct mm_struct *mm, unsigned long start,
612 unsigned long end, struct mempolicy *new_pol) 633 unsigned long end, struct mempolicy *new_pol)
613 { 634 {
614 struct vm_area_struct *next; 635 struct vm_area_struct *next;
615 struct vm_area_struct *prev; 636 struct vm_area_struct *prev;
616 struct vm_area_struct *vma; 637 struct vm_area_struct *vma;
617 int err = 0; 638 int err = 0;
618 pgoff_t pgoff; 639 pgoff_t pgoff;
619 unsigned long vmstart; 640 unsigned long vmstart;
620 unsigned long vmend; 641 unsigned long vmend;
621 642
622 vma = find_vma(mm, start); 643 vma = find_vma(mm, start);
623 if (!vma || vma->vm_start > start) 644 if (!vma || vma->vm_start > start)
624 return -EFAULT; 645 return -EFAULT;
625 646
626 prev = vma->vm_prev; 647 prev = vma->vm_prev;
627 if (start > vma->vm_start) 648 if (start > vma->vm_start)
628 prev = vma; 649 prev = vma;
629 650
630 for (; vma && vma->vm_start < end; prev = vma, vma = next) { 651 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
631 next = vma->vm_next; 652 next = vma->vm_next;
632 vmstart = max(start, vma->vm_start); 653 vmstart = max(start, vma->vm_start);
633 vmend = min(end, vma->vm_end); 654 vmend = min(end, vma->vm_end);
634 655
635 if (mpol_equal(vma_policy(vma), new_pol)) 656 if (mpol_equal(vma_policy(vma), new_pol))
636 continue; 657 continue;
637 658
638 pgoff = vma->vm_pgoff + 659 pgoff = vma->vm_pgoff +
639 ((vmstart - vma->vm_start) >> PAGE_SHIFT); 660 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
640 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags, 661 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
641 vma->anon_vma, vma->vm_file, pgoff, 662 vma->anon_vma, vma->vm_file, pgoff,
642 new_pol); 663 new_pol);
643 if (prev) { 664 if (prev) {
644 vma = prev; 665 vma = prev;
645 next = vma->vm_next; 666 next = vma->vm_next;
646 continue; 667 continue;
647 } 668 }
648 if (vma->vm_start != vmstart) { 669 if (vma->vm_start != vmstart) {
649 err = split_vma(vma->vm_mm, vma, vmstart, 1); 670 err = split_vma(vma->vm_mm, vma, vmstart, 1);
650 if (err) 671 if (err)
651 goto out; 672 goto out;
652 } 673 }
653 if (vma->vm_end != vmend) { 674 if (vma->vm_end != vmend) {
654 err = split_vma(vma->vm_mm, vma, vmend, 0); 675 err = split_vma(vma->vm_mm, vma, vmend, 0);
655 if (err) 676 if (err)
656 goto out; 677 goto out;
657 } 678 }
658 679 err = policy_vma(vma, new_pol);
659 /* 680 if (err)
660 * Apply policy to a single VMA. The reference counting of 681 goto out;
661 * policy for vma_policy linkages has already been handled by
662 * vma_merge and split_vma as necessary. If this is a shared
663 * policy then ->set_policy will increment the reference count
664 * for an sp node.
665 */
666 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
667 vma->vm_start, vma->vm_end, vma->vm_pgoff,
668 vma->vm_ops, vma->vm_file,
669 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
670 if (vma->vm_ops && vma->vm_ops->set_policy) {
671 err = vma->vm_ops->set_policy(vma, new_pol);
672 if (err)
673 goto out;
674 }
675 } 682 }
676 683
677 out: 684 out:
678 return err; 685 return err;
679 } 686 }
680 687
681 /* 688 /*
682 * Update task->flags PF_MEMPOLICY bit: set iff non-default 689 * Update task->flags PF_MEMPOLICY bit: set iff non-default
683 * mempolicy. Allows more rapid checking of this (combined perhaps 690 * mempolicy. Allows more rapid checking of this (combined perhaps
684 * with other PF_* flag bits) on memory allocation hot code paths. 691 * with other PF_* flag bits) on memory allocation hot code paths.
685 * 692 *
686 * If called from outside this file, the task 'p' should -only- be 693 * If called from outside this file, the task 'p' should -only- be
687 * a newly forked child not yet visible on the task list, because 694 * a newly forked child not yet visible on the task list, because
688 * manipulating the task flags of a visible task is not safe. 695 * manipulating the task flags of a visible task is not safe.
689 * 696 *
690 * The above limitation is why this routine has the funny name 697 * The above limitation is why this routine has the funny name
691 * mpol_fix_fork_child_flag(). 698 * mpol_fix_fork_child_flag().
692 * 699 *
693 * It is also safe to call this with a task pointer of current, 700 * It is also safe to call this with a task pointer of current,
694 * which the static wrapper mpol_set_task_struct_flag() does, 701 * which the static wrapper mpol_set_task_struct_flag() does,
695 * for use within this file. 702 * for use within this file.
696 */ 703 */
697 704
698 void mpol_fix_fork_child_flag(struct task_struct *p) 705 void mpol_fix_fork_child_flag(struct task_struct *p)
699 { 706 {
700 if (p->mempolicy) 707 if (p->mempolicy)
701 p->flags |= PF_MEMPOLICY; 708 p->flags |= PF_MEMPOLICY;
702 else 709 else
703 p->flags &= ~PF_MEMPOLICY; 710 p->flags &= ~PF_MEMPOLICY;
704 } 711 }
705 712
706 static void mpol_set_task_struct_flag(void) 713 static void mpol_set_task_struct_flag(void)
707 { 714 {
708 mpol_fix_fork_child_flag(current); 715 mpol_fix_fork_child_flag(current);
709 } 716 }
710 717
711 /* Set the process memory policy */ 718 /* Set the process memory policy */
712 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 719 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
713 nodemask_t *nodes) 720 nodemask_t *nodes)
714 { 721 {
715 struct mempolicy *new, *old; 722 struct mempolicy *new, *old;
716 struct mm_struct *mm = current->mm; 723 struct mm_struct *mm = current->mm;
717 NODEMASK_SCRATCH(scratch); 724 NODEMASK_SCRATCH(scratch);
718 int ret; 725 int ret;
719 726
720 if (!scratch) 727 if (!scratch)
721 return -ENOMEM; 728 return -ENOMEM;
722 729
723 new = mpol_new(mode, flags, nodes); 730 new = mpol_new(mode, flags, nodes);
724 if (IS_ERR(new)) { 731 if (IS_ERR(new)) {
725 ret = PTR_ERR(new); 732 ret = PTR_ERR(new);
726 goto out; 733 goto out;
727 } 734 }
728 /* 735 /*
729 * prevent changing our mempolicy while show_numa_maps() 736 * prevent changing our mempolicy while show_numa_maps()
730 * is using it. 737 * is using it.
731 * Note: do_set_mempolicy() can be called at init time 738 * Note: do_set_mempolicy() can be called at init time
732 * with no 'mm'. 739 * with no 'mm'.
733 */ 740 */
734 if (mm) 741 if (mm)
735 down_write(&mm->mmap_sem); 742 down_write(&mm->mmap_sem);
736 task_lock(current); 743 task_lock(current);
737 ret = mpol_set_nodemask(new, nodes, scratch); 744 ret = mpol_set_nodemask(new, nodes, scratch);
738 if (ret) { 745 if (ret) {
739 task_unlock(current); 746 task_unlock(current);
740 if (mm) 747 if (mm)
741 up_write(&mm->mmap_sem); 748 up_write(&mm->mmap_sem);
742 mpol_put(new); 749 mpol_put(new);
743 goto out; 750 goto out;
744 } 751 }
745 old = current->mempolicy; 752 old = current->mempolicy;
746 current->mempolicy = new; 753 current->mempolicy = new;
747 mpol_set_task_struct_flag(); 754 mpol_set_task_struct_flag();
748 if (new && new->mode == MPOL_INTERLEAVE && 755 if (new && new->mode == MPOL_INTERLEAVE &&
749 nodes_weight(new->v.nodes)) 756 nodes_weight(new->v.nodes))
750 current->il_next = first_node(new->v.nodes); 757 current->il_next = first_node(new->v.nodes);
751 task_unlock(current); 758 task_unlock(current);
752 if (mm) 759 if (mm)
753 up_write(&mm->mmap_sem); 760 up_write(&mm->mmap_sem);
754 761
755 mpol_put(old); 762 mpol_put(old);
756 ret = 0; 763 ret = 0;
757 out: 764 out:
758 NODEMASK_SCRATCH_FREE(scratch); 765 NODEMASK_SCRATCH_FREE(scratch);
759 return ret; 766 return ret;
760 } 767 }
761 768
762 /* 769 /*
763 * Return nodemask for policy for get_mempolicy() query 770 * Return nodemask for policy for get_mempolicy() query
764 * 771 *
765 * Called with task's alloc_lock held 772 * Called with task's alloc_lock held
766 */ 773 */
767 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 774 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
768 { 775 {
769 nodes_clear(*nodes); 776 nodes_clear(*nodes);
770 if (p == &default_policy) 777 if (p == &default_policy)
771 return; 778 return;
772 779
773 switch (p->mode) { 780 switch (p->mode) {
774 case MPOL_BIND: 781 case MPOL_BIND:
775 /* Fall through */ 782 /* Fall through */
776 case MPOL_INTERLEAVE: 783 case MPOL_INTERLEAVE:
777 *nodes = p->v.nodes; 784 *nodes = p->v.nodes;
778 break; 785 break;
779 case MPOL_PREFERRED: 786 case MPOL_PREFERRED:
780 if (!(p->flags & MPOL_F_LOCAL)) 787 if (!(p->flags & MPOL_F_LOCAL))
781 node_set(p->v.preferred_node, *nodes); 788 node_set(p->v.preferred_node, *nodes);
782 /* else return empty node mask for local allocation */ 789 /* else return empty node mask for local allocation */
783 break; 790 break;
784 default: 791 default:
785 BUG(); 792 BUG();
786 } 793 }
787 } 794 }
788 795
789 static int lookup_node(struct mm_struct *mm, unsigned long addr) 796 static int lookup_node(struct mm_struct *mm, unsigned long addr)
790 { 797 {
791 struct page *p; 798 struct page *p;
792 int err; 799 int err;
793 800
794 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL); 801 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
795 if (err >= 0) { 802 if (err >= 0) {
796 err = page_to_nid(p); 803 err = page_to_nid(p);
797 put_page(p); 804 put_page(p);
798 } 805 }
799 return err; 806 return err;
800 } 807 }
801 808
802 /* Retrieve NUMA policy */ 809 /* Retrieve NUMA policy */
803 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 810 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
804 unsigned long addr, unsigned long flags) 811 unsigned long addr, unsigned long flags)
805 { 812 {
806 int err; 813 int err;
807 struct mm_struct *mm = current->mm; 814 struct mm_struct *mm = current->mm;
808 struct vm_area_struct *vma = NULL; 815 struct vm_area_struct *vma = NULL;
809 struct mempolicy *pol = current->mempolicy; 816 struct mempolicy *pol = current->mempolicy;
810 817
811 if (flags & 818 if (flags &
812 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 819 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
813 return -EINVAL; 820 return -EINVAL;
814 821
815 if (flags & MPOL_F_MEMS_ALLOWED) { 822 if (flags & MPOL_F_MEMS_ALLOWED) {
816 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 823 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
817 return -EINVAL; 824 return -EINVAL;
818 *policy = 0; /* just so it's initialized */ 825 *policy = 0; /* just so it's initialized */
819 task_lock(current); 826 task_lock(current);
820 *nmask = cpuset_current_mems_allowed; 827 *nmask = cpuset_current_mems_allowed;
821 task_unlock(current); 828 task_unlock(current);
822 return 0; 829 return 0;
823 } 830 }
824 831
825 if (flags & MPOL_F_ADDR) { 832 if (flags & MPOL_F_ADDR) {
826 /* 833 /*
827 * Do NOT fall back to task policy if the 834 * Do NOT fall back to task policy if the
828 * vma/shared policy at addr is NULL. We 835 * vma/shared policy at addr is NULL. We
829 * want to return MPOL_DEFAULT in this case. 836 * want to return MPOL_DEFAULT in this case.
830 */ 837 */
831 down_read(&mm->mmap_sem); 838 down_read(&mm->mmap_sem);
832 vma = find_vma_intersection(mm, addr, addr+1); 839 vma = find_vma_intersection(mm, addr, addr+1);
833 if (!vma) { 840 if (!vma) {
834 up_read(&mm->mmap_sem); 841 up_read(&mm->mmap_sem);
835 return -EFAULT; 842 return -EFAULT;
836 } 843 }
837 if (vma->vm_ops && vma->vm_ops->get_policy) 844 if (vma->vm_ops && vma->vm_ops->get_policy)
838 pol = vma->vm_ops->get_policy(vma, addr); 845 pol = vma->vm_ops->get_policy(vma, addr);
839 else 846 else
840 pol = vma->vm_policy; 847 pol = vma->vm_policy;
841 } else if (addr) 848 } else if (addr)
842 return -EINVAL; 849 return -EINVAL;
843 850
844 if (!pol) 851 if (!pol)
845 pol = &default_policy; /* indicates default behavior */ 852 pol = &default_policy; /* indicates default behavior */
846 853
847 if (flags & MPOL_F_NODE) { 854 if (flags & MPOL_F_NODE) {
848 if (flags & MPOL_F_ADDR) { 855 if (flags & MPOL_F_ADDR) {
849 err = lookup_node(mm, addr); 856 err = lookup_node(mm, addr);
850 if (err < 0) 857 if (err < 0)
851 goto out; 858 goto out;
852 *policy = err; 859 *policy = err;
853 } else if (pol == current->mempolicy && 860 } else if (pol == current->mempolicy &&
854 pol->mode == MPOL_INTERLEAVE) { 861 pol->mode == MPOL_INTERLEAVE) {
855 *policy = current->il_next; 862 *policy = current->il_next;
856 } else { 863 } else {
857 err = -EINVAL; 864 err = -EINVAL;
858 goto out; 865 goto out;
859 } 866 }
860 } else { 867 } else {
861 *policy = pol == &default_policy ? MPOL_DEFAULT : 868 *policy = pol == &default_policy ? MPOL_DEFAULT :
862 pol->mode; 869 pol->mode;
863 /* 870 /*
864 * Internal mempolicy flags must be masked off before exposing 871 * Internal mempolicy flags must be masked off before exposing
865 * the policy to userspace. 872 * the policy to userspace.
866 */ 873 */
867 *policy |= (pol->flags & MPOL_MODE_FLAGS); 874 *policy |= (pol->flags & MPOL_MODE_FLAGS);
868 } 875 }
869 876
870 if (vma) { 877 if (vma) {
871 up_read(&current->mm->mmap_sem); 878 up_read(&current->mm->mmap_sem);
872 vma = NULL; 879 vma = NULL;
873 } 880 }
874 881
875 err = 0; 882 err = 0;
876 if (nmask) { 883 if (nmask) {
877 if (mpol_store_user_nodemask(pol)) { 884 if (mpol_store_user_nodemask(pol)) {
878 *nmask = pol->w.user_nodemask; 885 *nmask = pol->w.user_nodemask;
879 } else { 886 } else {
880 task_lock(current); 887 task_lock(current);
881 get_policy_nodemask(pol, nmask); 888 get_policy_nodemask(pol, nmask);
882 task_unlock(current); 889 task_unlock(current);
883 } 890 }
884 } 891 }
885 892
886 out: 893 out:
887 mpol_cond_put(pol); 894 mpol_cond_put(pol);
888 if (vma) 895 if (vma)
889 up_read(&current->mm->mmap_sem); 896 up_read(&current->mm->mmap_sem);
890 return err; 897 return err;
891 } 898 }
892 899
893 #ifdef CONFIG_MIGRATION 900 #ifdef CONFIG_MIGRATION
894 /* 901 /*
895 * page migration 902 * page migration
896 */ 903 */
897 static void migrate_page_add(struct page *page, struct list_head *pagelist, 904 static void migrate_page_add(struct page *page, struct list_head *pagelist,
898 unsigned long flags) 905 unsigned long flags)
899 { 906 {
900 /* 907 /*
901 * Avoid migrating a page that is shared with others. 908 * Avoid migrating a page that is shared with others.
902 */ 909 */
903 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) { 910 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
904 if (!isolate_lru_page(page)) { 911 if (!isolate_lru_page(page)) {
905 list_add_tail(&page->lru, pagelist); 912 list_add_tail(&page->lru, pagelist);
906 inc_zone_page_state(page, NR_ISOLATED_ANON + 913 inc_zone_page_state(page, NR_ISOLATED_ANON +
907 page_is_file_cache(page)); 914 page_is_file_cache(page));
908 } 915 }
909 } 916 }
910 } 917 }
911 918
912 static struct page *new_node_page(struct page *page, unsigned long node, int **x) 919 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
913 { 920 {
914 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0); 921 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
915 } 922 }
916 923
917 /* 924 /*
918 * Migrate pages from one node to a target node. 925 * Migrate pages from one node to a target node.
919 * Returns error or the number of pages not migrated. 926 * Returns error or the number of pages not migrated.
920 */ 927 */
921 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 928 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
922 int flags) 929 int flags)
923 { 930 {
924 nodemask_t nmask; 931 nodemask_t nmask;
925 LIST_HEAD(pagelist); 932 LIST_HEAD(pagelist);
926 int err = 0; 933 int err = 0;
927 struct vm_area_struct *vma; 934 struct vm_area_struct *vma;
928 935
929 nodes_clear(nmask); 936 nodes_clear(nmask);
930 node_set(source, nmask); 937 node_set(source, nmask);
931 938
932 vma = check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask, 939 vma = check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
933 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 940 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
934 if (IS_ERR(vma)) 941 if (IS_ERR(vma))
935 return PTR_ERR(vma); 942 return PTR_ERR(vma);
936 943
937 if (!list_empty(&pagelist)) { 944 if (!list_empty(&pagelist)) {
938 err = migrate_pages(&pagelist, new_node_page, dest, 945 err = migrate_pages(&pagelist, new_node_page, dest,
939 false, MIGRATE_SYNC); 946 false, MIGRATE_SYNC);
940 if (err) 947 if (err)
941 putback_lru_pages(&pagelist); 948 putback_lru_pages(&pagelist);
942 } 949 }
943 950
944 return err; 951 return err;
945 } 952 }
946 953
947 /* 954 /*
948 * Move pages between the two nodesets so as to preserve the physical 955 * Move pages between the two nodesets so as to preserve the physical
949 * layout as much as possible. 956 * layout as much as possible.
950 * 957 *
951 * Returns the number of page that could not be moved. 958 * Returns the number of page that could not be moved.
952 */ 959 */
953 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 960 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
954 const nodemask_t *to, int flags) 961 const nodemask_t *to, int flags)
955 { 962 {
956 int busy = 0; 963 int busy = 0;
957 int err; 964 int err;
958 nodemask_t tmp; 965 nodemask_t tmp;
959 966
960 err = migrate_prep(); 967 err = migrate_prep();
961 if (err) 968 if (err)
962 return err; 969 return err;
963 970
964 down_read(&mm->mmap_sem); 971 down_read(&mm->mmap_sem);
965 972
966 err = migrate_vmas(mm, from, to, flags); 973 err = migrate_vmas(mm, from, to, flags);
967 if (err) 974 if (err)
968 goto out; 975 goto out;
969 976
970 /* 977 /*
971 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 978 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
972 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 979 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
973 * bit in 'tmp', and return that <source, dest> pair for migration. 980 * bit in 'tmp', and return that <source, dest> pair for migration.
974 * The pair of nodemasks 'to' and 'from' define the map. 981 * The pair of nodemasks 'to' and 'from' define the map.
975 * 982 *
976 * If no pair of bits is found that way, fallback to picking some 983 * If no pair of bits is found that way, fallback to picking some
977 * pair of 'source' and 'dest' bits that are not the same. If the 984 * pair of 'source' and 'dest' bits that are not the same. If the
978 * 'source' and 'dest' bits are the same, this represents a node 985 * 'source' and 'dest' bits are the same, this represents a node
979 * that will be migrating to itself, so no pages need move. 986 * that will be migrating to itself, so no pages need move.
980 * 987 *
981 * If no bits are left in 'tmp', or if all remaining bits left 988 * If no bits are left in 'tmp', or if all remaining bits left
982 * in 'tmp' correspond to the same bit in 'to', return false 989 * in 'tmp' correspond to the same bit in 'to', return false
983 * (nothing left to migrate). 990 * (nothing left to migrate).
984 * 991 *
985 * This lets us pick a pair of nodes to migrate between, such that 992 * This lets us pick a pair of nodes to migrate between, such that
986 * if possible the dest node is not already occupied by some other 993 * if possible the dest node is not already occupied by some other
987 * source node, minimizing the risk of overloading the memory on a 994 * source node, minimizing the risk of overloading the memory on a
988 * node that would happen if we migrated incoming memory to a node 995 * node that would happen if we migrated incoming memory to a node
989 * before migrating outgoing memory source that same node. 996 * before migrating outgoing memory source that same node.
990 * 997 *
991 * A single scan of tmp is sufficient. As we go, we remember the 998 * A single scan of tmp is sufficient. As we go, we remember the
992 * most recent <s, d> pair that moved (s != d). If we find a pair 999 * most recent <s, d> pair that moved (s != d). If we find a pair
993 * that not only moved, but what's better, moved to an empty slot 1000 * that not only moved, but what's better, moved to an empty slot
994 * (d is not set in tmp), then we break out then, with that pair. 1001 * (d is not set in tmp), then we break out then, with that pair.
995 * Otherwise when we finish scanning from_tmp, we at least have the 1002 * Otherwise when we finish scanning from_tmp, we at least have the
996 * most recent <s, d> pair that moved. If we get all the way through 1003 * most recent <s, d> pair that moved. If we get all the way through
997 * the scan of tmp without finding any node that moved, much less 1004 * the scan of tmp without finding any node that moved, much less
998 * moved to an empty node, then there is nothing left worth migrating. 1005 * moved to an empty node, then there is nothing left worth migrating.
999 */ 1006 */
1000 1007
1001 tmp = *from; 1008 tmp = *from;
1002 while (!nodes_empty(tmp)) { 1009 while (!nodes_empty(tmp)) {
1003 int s,d; 1010 int s,d;
1004 int source = -1; 1011 int source = -1;
1005 int dest = 0; 1012 int dest = 0;
1006 1013
1007 for_each_node_mask(s, tmp) { 1014 for_each_node_mask(s, tmp) {
1008 1015
1009 /* 1016 /*
1010 * do_migrate_pages() tries to maintain the relative 1017 * do_migrate_pages() tries to maintain the relative
1011 * node relationship of the pages established between 1018 * node relationship of the pages established between
1012 * threads and memory areas. 1019 * threads and memory areas.
1013 * 1020 *
1014 * However if the number of source nodes is not equal to 1021 * However if the number of source nodes is not equal to
1015 * the number of destination nodes we can not preserve 1022 * the number of destination nodes we can not preserve
1016 * this node relative relationship. In that case, skip 1023 * this node relative relationship. In that case, skip
1017 * copying memory from a node that is in the destination 1024 * copying memory from a node that is in the destination
1018 * mask. 1025 * mask.
1019 * 1026 *
1020 * Example: [2,3,4] -> [3,4,5] moves everything. 1027 * Example: [2,3,4] -> [3,4,5] moves everything.
1021 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1028 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1022 */ 1029 */
1023 1030
1024 if ((nodes_weight(*from) != nodes_weight(*to)) && 1031 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1025 (node_isset(s, *to))) 1032 (node_isset(s, *to)))
1026 continue; 1033 continue;
1027 1034
1028 d = node_remap(s, *from, *to); 1035 d = node_remap(s, *from, *to);
1029 if (s == d) 1036 if (s == d)
1030 continue; 1037 continue;
1031 1038
1032 source = s; /* Node moved. Memorize */ 1039 source = s; /* Node moved. Memorize */
1033 dest = d; 1040 dest = d;
1034 1041
1035 /* dest not in remaining from nodes? */ 1042 /* dest not in remaining from nodes? */
1036 if (!node_isset(dest, tmp)) 1043 if (!node_isset(dest, tmp))
1037 break; 1044 break;
1038 } 1045 }
1039 if (source == -1) 1046 if (source == -1)
1040 break; 1047 break;
1041 1048
1042 node_clear(source, tmp); 1049 node_clear(source, tmp);
1043 err = migrate_to_node(mm, source, dest, flags); 1050 err = migrate_to_node(mm, source, dest, flags);
1044 if (err > 0) 1051 if (err > 0)
1045 busy += err; 1052 busy += err;
1046 if (err < 0) 1053 if (err < 0)
1047 break; 1054 break;
1048 } 1055 }
1049 out: 1056 out:
1050 up_read(&mm->mmap_sem); 1057 up_read(&mm->mmap_sem);
1051 if (err < 0) 1058 if (err < 0)
1052 return err; 1059 return err;
1053 return busy; 1060 return busy;
1054 1061
1055 } 1062 }
1056 1063
1057 /* 1064 /*
1058 * Allocate a new page for page migration based on vma policy. 1065 * Allocate a new page for page migration based on vma policy.
1059 * Start assuming that page is mapped by vma pointed to by @private. 1066 * Start assuming that page is mapped by vma pointed to by @private.
1060 * Search forward from there, if not. N.B., this assumes that the 1067 * Search forward from there, if not. N.B., this assumes that the
1061 * list of pages handed to migrate_pages()--which is how we get here-- 1068 * list of pages handed to migrate_pages()--which is how we get here--
1062 * is in virtual address order. 1069 * is in virtual address order.
1063 */ 1070 */
1064 static struct page *new_vma_page(struct page *page, unsigned long private, int **x) 1071 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1065 { 1072 {
1066 struct vm_area_struct *vma = (struct vm_area_struct *)private; 1073 struct vm_area_struct *vma = (struct vm_area_struct *)private;
1067 unsigned long uninitialized_var(address); 1074 unsigned long uninitialized_var(address);
1068 1075
1069 while (vma) { 1076 while (vma) {
1070 address = page_address_in_vma(page, vma); 1077 address = page_address_in_vma(page, vma);
1071 if (address != -EFAULT) 1078 if (address != -EFAULT)
1072 break; 1079 break;
1073 vma = vma->vm_next; 1080 vma = vma->vm_next;
1074 } 1081 }
1075 1082
1076 /* 1083 /*
1077 * if !vma, alloc_page_vma() will use task or system default policy 1084 * if !vma, alloc_page_vma() will use task or system default policy
1078 */ 1085 */
1079 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 1086 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1080 } 1087 }
1081 #else 1088 #else
1082 1089
1083 static void migrate_page_add(struct page *page, struct list_head *pagelist, 1090 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1084 unsigned long flags) 1091 unsigned long flags)
1085 { 1092 {
1086 } 1093 }
1087 1094
1088 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1095 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1089 const nodemask_t *to, int flags) 1096 const nodemask_t *to, int flags)
1090 { 1097 {
1091 return -ENOSYS; 1098 return -ENOSYS;
1092 } 1099 }
1093 1100
1094 static struct page *new_vma_page(struct page *page, unsigned long private, int **x) 1101 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1095 { 1102 {
1096 return NULL; 1103 return NULL;
1097 } 1104 }
1098 #endif 1105 #endif
1099 1106
1100 static long do_mbind(unsigned long start, unsigned long len, 1107 static long do_mbind(unsigned long start, unsigned long len,
1101 unsigned short mode, unsigned short mode_flags, 1108 unsigned short mode, unsigned short mode_flags,
1102 nodemask_t *nmask, unsigned long flags) 1109 nodemask_t *nmask, unsigned long flags)
1103 { 1110 {
1104 struct vm_area_struct *vma; 1111 struct vm_area_struct *vma;
1105 struct mm_struct *mm = current->mm; 1112 struct mm_struct *mm = current->mm;
1106 struct mempolicy *new; 1113 struct mempolicy *new;
1107 unsigned long end; 1114 unsigned long end;
1108 int err; 1115 int err;
1109 LIST_HEAD(pagelist); 1116 LIST_HEAD(pagelist);
1110 1117
1111 if (flags & ~(unsigned long)(MPOL_MF_STRICT | 1118 if (flags & ~(unsigned long)(MPOL_MF_STRICT |
1112 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 1119 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1113 return -EINVAL; 1120 return -EINVAL;
1114 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1121 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1115 return -EPERM; 1122 return -EPERM;
1116 1123
1117 if (start & ~PAGE_MASK) 1124 if (start & ~PAGE_MASK)
1118 return -EINVAL; 1125 return -EINVAL;
1119 1126
1120 if (mode == MPOL_DEFAULT) 1127 if (mode == MPOL_DEFAULT)
1121 flags &= ~MPOL_MF_STRICT; 1128 flags &= ~MPOL_MF_STRICT;
1122 1129
1123 len = (len + PAGE_SIZE - 1) & PAGE_MASK; 1130 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1124 end = start + len; 1131 end = start + len;
1125 1132
1126 if (end < start) 1133 if (end < start)
1127 return -EINVAL; 1134 return -EINVAL;
1128 if (end == start) 1135 if (end == start)
1129 return 0; 1136 return 0;
1130 1137
1131 new = mpol_new(mode, mode_flags, nmask); 1138 new = mpol_new(mode, mode_flags, nmask);
1132 if (IS_ERR(new)) 1139 if (IS_ERR(new))
1133 return PTR_ERR(new); 1140 return PTR_ERR(new);
1134 1141
1135 /* 1142 /*
1136 * If we are using the default policy then operation 1143 * If we are using the default policy then operation
1137 * on discontinuous address spaces is okay after all 1144 * on discontinuous address spaces is okay after all
1138 */ 1145 */
1139 if (!new) 1146 if (!new)
1140 flags |= MPOL_MF_DISCONTIG_OK; 1147 flags |= MPOL_MF_DISCONTIG_OK;
1141 1148
1142 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 1149 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1143 start, start + len, mode, mode_flags, 1150 start, start + len, mode, mode_flags,
1144 nmask ? nodes_addr(*nmask)[0] : -1); 1151 nmask ? nodes_addr(*nmask)[0] : -1);
1145 1152
1146 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 1153 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1147 1154
1148 err = migrate_prep(); 1155 err = migrate_prep();
1149 if (err) 1156 if (err)
1150 goto mpol_out; 1157 goto mpol_out;
1151 } 1158 }
1152 { 1159 {
1153 NODEMASK_SCRATCH(scratch); 1160 NODEMASK_SCRATCH(scratch);
1154 if (scratch) { 1161 if (scratch) {
1155 down_write(&mm->mmap_sem); 1162 down_write(&mm->mmap_sem);
1156 task_lock(current); 1163 task_lock(current);
1157 err = mpol_set_nodemask(new, nmask, scratch); 1164 err = mpol_set_nodemask(new, nmask, scratch);
1158 task_unlock(current); 1165 task_unlock(current);
1159 if (err) 1166 if (err)
1160 up_write(&mm->mmap_sem); 1167 up_write(&mm->mmap_sem);
1161 } else 1168 } else
1162 err = -ENOMEM; 1169 err = -ENOMEM;
1163 NODEMASK_SCRATCH_FREE(scratch); 1170 NODEMASK_SCRATCH_FREE(scratch);
1164 } 1171 }
1165 if (err) 1172 if (err)
1166 goto mpol_out; 1173 goto mpol_out;
1167 1174
1168 vma = check_range(mm, start, end, nmask, 1175 vma = check_range(mm, start, end, nmask,
1169 flags | MPOL_MF_INVERT, &pagelist); 1176 flags | MPOL_MF_INVERT, &pagelist);
1170 1177
1171 err = PTR_ERR(vma); 1178 err = PTR_ERR(vma);
1172 if (!IS_ERR(vma)) { 1179 if (!IS_ERR(vma)) {
1173 int nr_failed = 0; 1180 int nr_failed = 0;
1174 1181
1175 err = mbind_range(mm, start, end, new); 1182 err = mbind_range(mm, start, end, new);
1176 1183
1177 if (!list_empty(&pagelist)) { 1184 if (!list_empty(&pagelist)) {
1178 nr_failed = migrate_pages(&pagelist, new_vma_page, 1185 nr_failed = migrate_pages(&pagelist, new_vma_page,
1179 (unsigned long)vma, 1186 (unsigned long)vma,
1180 false, MIGRATE_SYNC); 1187 false, MIGRATE_SYNC);
1181 if (nr_failed) 1188 if (nr_failed)
1182 putback_lru_pages(&pagelist); 1189 putback_lru_pages(&pagelist);
1183 } 1190 }
1184 1191
1185 if (!err && nr_failed && (flags & MPOL_MF_STRICT)) 1192 if (!err && nr_failed && (flags & MPOL_MF_STRICT))
1186 err = -EIO; 1193 err = -EIO;
1187 } else 1194 } else
1188 putback_lru_pages(&pagelist); 1195 putback_lru_pages(&pagelist);
1189 1196
1190 up_write(&mm->mmap_sem); 1197 up_write(&mm->mmap_sem);
1191 mpol_out: 1198 mpol_out:
1192 mpol_put(new); 1199 mpol_put(new);
1193 return err; 1200 return err;
1194 } 1201 }
1195 1202
1196 /* 1203 /*
1197 * User space interface with variable sized bitmaps for nodelists. 1204 * User space interface with variable sized bitmaps for nodelists.
1198 */ 1205 */
1199 1206
1200 /* Copy a node mask from user space. */ 1207 /* Copy a node mask from user space. */
1201 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1208 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1202 unsigned long maxnode) 1209 unsigned long maxnode)
1203 { 1210 {
1204 unsigned long k; 1211 unsigned long k;
1205 unsigned long nlongs; 1212 unsigned long nlongs;
1206 unsigned long endmask; 1213 unsigned long endmask;
1207 1214
1208 --maxnode; 1215 --maxnode;
1209 nodes_clear(*nodes); 1216 nodes_clear(*nodes);
1210 if (maxnode == 0 || !nmask) 1217 if (maxnode == 0 || !nmask)
1211 return 0; 1218 return 0;
1212 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1219 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1213 return -EINVAL; 1220 return -EINVAL;
1214 1221
1215 nlongs = BITS_TO_LONGS(maxnode); 1222 nlongs = BITS_TO_LONGS(maxnode);
1216 if ((maxnode % BITS_PER_LONG) == 0) 1223 if ((maxnode % BITS_PER_LONG) == 0)
1217 endmask = ~0UL; 1224 endmask = ~0UL;
1218 else 1225 else
1219 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1; 1226 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1220 1227
1221 /* When the user specified more nodes than supported just check 1228 /* When the user specified more nodes than supported just check
1222 if the non supported part is all zero. */ 1229 if the non supported part is all zero. */
1223 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) { 1230 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1224 if (nlongs > PAGE_SIZE/sizeof(long)) 1231 if (nlongs > PAGE_SIZE/sizeof(long))
1225 return -EINVAL; 1232 return -EINVAL;
1226 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) { 1233 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1227 unsigned long t; 1234 unsigned long t;
1228 if (get_user(t, nmask + k)) 1235 if (get_user(t, nmask + k))
1229 return -EFAULT; 1236 return -EFAULT;
1230 if (k == nlongs - 1) { 1237 if (k == nlongs - 1) {
1231 if (t & endmask) 1238 if (t & endmask)
1232 return -EINVAL; 1239 return -EINVAL;
1233 } else if (t) 1240 } else if (t)
1234 return -EINVAL; 1241 return -EINVAL;
1235 } 1242 }
1236 nlongs = BITS_TO_LONGS(MAX_NUMNODES); 1243 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1237 endmask = ~0UL; 1244 endmask = ~0UL;
1238 } 1245 }
1239 1246
1240 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long))) 1247 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1241 return -EFAULT; 1248 return -EFAULT;
1242 nodes_addr(*nodes)[nlongs-1] &= endmask; 1249 nodes_addr(*nodes)[nlongs-1] &= endmask;
1243 return 0; 1250 return 0;
1244 } 1251 }
1245 1252
1246 /* Copy a kernel node mask to user space */ 1253 /* Copy a kernel node mask to user space */
1247 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1254 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1248 nodemask_t *nodes) 1255 nodemask_t *nodes)
1249 { 1256 {
1250 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1257 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1251 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long); 1258 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1252 1259
1253 if (copy > nbytes) { 1260 if (copy > nbytes) {
1254 if (copy > PAGE_SIZE) 1261 if (copy > PAGE_SIZE)
1255 return -EINVAL; 1262 return -EINVAL;
1256 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1263 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1257 return -EFAULT; 1264 return -EFAULT;
1258 copy = nbytes; 1265 copy = nbytes;
1259 } 1266 }
1260 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1267 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1261 } 1268 }
1262 1269
1263 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1270 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1264 unsigned long, mode, unsigned long __user *, nmask, 1271 unsigned long, mode, unsigned long __user *, nmask,
1265 unsigned long, maxnode, unsigned, flags) 1272 unsigned long, maxnode, unsigned, flags)
1266 { 1273 {
1267 nodemask_t nodes; 1274 nodemask_t nodes;
1268 int err; 1275 int err;
1269 unsigned short mode_flags; 1276 unsigned short mode_flags;
1270 1277
1271 mode_flags = mode & MPOL_MODE_FLAGS; 1278 mode_flags = mode & MPOL_MODE_FLAGS;
1272 mode &= ~MPOL_MODE_FLAGS; 1279 mode &= ~MPOL_MODE_FLAGS;
1273 if (mode >= MPOL_MAX) 1280 if (mode >= MPOL_MAX)
1274 return -EINVAL; 1281 return -EINVAL;
1275 if ((mode_flags & MPOL_F_STATIC_NODES) && 1282 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1276 (mode_flags & MPOL_F_RELATIVE_NODES)) 1283 (mode_flags & MPOL_F_RELATIVE_NODES))
1277 return -EINVAL; 1284 return -EINVAL;
1278 err = get_nodes(&nodes, nmask, maxnode); 1285 err = get_nodes(&nodes, nmask, maxnode);
1279 if (err) 1286 if (err)
1280 return err; 1287 return err;
1281 return do_mbind(start, len, mode, mode_flags, &nodes, flags); 1288 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1282 } 1289 }
1283 1290
1284 /* Set the process memory policy */ 1291 /* Set the process memory policy */
1285 SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask, 1292 SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1286 unsigned long, maxnode) 1293 unsigned long, maxnode)
1287 { 1294 {
1288 int err; 1295 int err;
1289 nodemask_t nodes; 1296 nodemask_t nodes;
1290 unsigned short flags; 1297 unsigned short flags;
1291 1298
1292 flags = mode & MPOL_MODE_FLAGS; 1299 flags = mode & MPOL_MODE_FLAGS;
1293 mode &= ~MPOL_MODE_FLAGS; 1300 mode &= ~MPOL_MODE_FLAGS;
1294 if ((unsigned int)mode >= MPOL_MAX) 1301 if ((unsigned int)mode >= MPOL_MAX)
1295 return -EINVAL; 1302 return -EINVAL;
1296 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES)) 1303 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1297 return -EINVAL; 1304 return -EINVAL;
1298 err = get_nodes(&nodes, nmask, maxnode); 1305 err = get_nodes(&nodes, nmask, maxnode);
1299 if (err) 1306 if (err)
1300 return err; 1307 return err;
1301 return do_set_mempolicy(mode, flags, &nodes); 1308 return do_set_mempolicy(mode, flags, &nodes);
1302 } 1309 }
1303 1310
1304 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1311 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1305 const unsigned long __user *, old_nodes, 1312 const unsigned long __user *, old_nodes,
1306 const unsigned long __user *, new_nodes) 1313 const unsigned long __user *, new_nodes)
1307 { 1314 {
1308 const struct cred *cred = current_cred(), *tcred; 1315 const struct cred *cred = current_cred(), *tcred;
1309 struct mm_struct *mm = NULL; 1316 struct mm_struct *mm = NULL;
1310 struct task_struct *task; 1317 struct task_struct *task;
1311 nodemask_t task_nodes; 1318 nodemask_t task_nodes;
1312 int err; 1319 int err;
1313 nodemask_t *old; 1320 nodemask_t *old;
1314 nodemask_t *new; 1321 nodemask_t *new;
1315 NODEMASK_SCRATCH(scratch); 1322 NODEMASK_SCRATCH(scratch);
1316 1323
1317 if (!scratch) 1324 if (!scratch)
1318 return -ENOMEM; 1325 return -ENOMEM;
1319 1326
1320 old = &scratch->mask1; 1327 old = &scratch->mask1;
1321 new = &scratch->mask2; 1328 new = &scratch->mask2;
1322 1329
1323 err = get_nodes(old, old_nodes, maxnode); 1330 err = get_nodes(old, old_nodes, maxnode);
1324 if (err) 1331 if (err)
1325 goto out; 1332 goto out;
1326 1333
1327 err = get_nodes(new, new_nodes, maxnode); 1334 err = get_nodes(new, new_nodes, maxnode);
1328 if (err) 1335 if (err)
1329 goto out; 1336 goto out;
1330 1337
1331 /* Find the mm_struct */ 1338 /* Find the mm_struct */
1332 rcu_read_lock(); 1339 rcu_read_lock();
1333 task = pid ? find_task_by_vpid(pid) : current; 1340 task = pid ? find_task_by_vpid(pid) : current;
1334 if (!task) { 1341 if (!task) {
1335 rcu_read_unlock(); 1342 rcu_read_unlock();
1336 err = -ESRCH; 1343 err = -ESRCH;
1337 goto out; 1344 goto out;
1338 } 1345 }
1339 get_task_struct(task); 1346 get_task_struct(task);
1340 1347
1341 err = -EINVAL; 1348 err = -EINVAL;
1342 1349
1343 /* 1350 /*
1344 * Check if this process has the right to modify the specified 1351 * Check if this process has the right to modify the specified
1345 * process. The right exists if the process has administrative 1352 * process. The right exists if the process has administrative
1346 * capabilities, superuser privileges or the same 1353 * capabilities, superuser privileges or the same
1347 * userid as the target process. 1354 * userid as the target process.
1348 */ 1355 */
1349 tcred = __task_cred(task); 1356 tcred = __task_cred(task);
1350 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) && 1357 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1351 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) && 1358 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1352 !capable(CAP_SYS_NICE)) { 1359 !capable(CAP_SYS_NICE)) {
1353 rcu_read_unlock(); 1360 rcu_read_unlock();
1354 err = -EPERM; 1361 err = -EPERM;
1355 goto out_put; 1362 goto out_put;
1356 } 1363 }
1357 rcu_read_unlock(); 1364 rcu_read_unlock();
1358 1365
1359 task_nodes = cpuset_mems_allowed(task); 1366 task_nodes = cpuset_mems_allowed(task);
1360 /* Is the user allowed to access the target nodes? */ 1367 /* Is the user allowed to access the target nodes? */
1361 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1368 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1362 err = -EPERM; 1369 err = -EPERM;
1363 goto out_put; 1370 goto out_put;
1364 } 1371 }
1365 1372
1366 if (!nodes_subset(*new, node_states[N_HIGH_MEMORY])) { 1373 if (!nodes_subset(*new, node_states[N_HIGH_MEMORY])) {
1367 err = -EINVAL; 1374 err = -EINVAL;
1368 goto out_put; 1375 goto out_put;
1369 } 1376 }
1370 1377
1371 err = security_task_movememory(task); 1378 err = security_task_movememory(task);
1372 if (err) 1379 if (err)
1373 goto out_put; 1380 goto out_put;
1374 1381
1375 mm = get_task_mm(task); 1382 mm = get_task_mm(task);
1376 put_task_struct(task); 1383 put_task_struct(task);
1377 1384
1378 if (!mm) { 1385 if (!mm) {
1379 err = -EINVAL; 1386 err = -EINVAL;
1380 goto out; 1387 goto out;
1381 } 1388 }
1382 1389
1383 err = do_migrate_pages(mm, old, new, 1390 err = do_migrate_pages(mm, old, new,
1384 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1391 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1385 1392
1386 mmput(mm); 1393 mmput(mm);
1387 out: 1394 out:
1388 NODEMASK_SCRATCH_FREE(scratch); 1395 NODEMASK_SCRATCH_FREE(scratch);
1389 1396
1390 return err; 1397 return err;
1391 1398
1392 out_put: 1399 out_put:
1393 put_task_struct(task); 1400 put_task_struct(task);
1394 goto out; 1401 goto out;
1395 1402
1396 } 1403 }
1397 1404
1398 1405
1399 /* Retrieve NUMA policy */ 1406 /* Retrieve NUMA policy */
1400 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1407 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1401 unsigned long __user *, nmask, unsigned long, maxnode, 1408 unsigned long __user *, nmask, unsigned long, maxnode,
1402 unsigned long, addr, unsigned long, flags) 1409 unsigned long, addr, unsigned long, flags)
1403 { 1410 {
1404 int err; 1411 int err;
1405 int uninitialized_var(pval); 1412 int uninitialized_var(pval);
1406 nodemask_t nodes; 1413 nodemask_t nodes;
1407 1414
1408 if (nmask != NULL && maxnode < MAX_NUMNODES) 1415 if (nmask != NULL && maxnode < MAX_NUMNODES)
1409 return -EINVAL; 1416 return -EINVAL;
1410 1417
1411 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1418 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1412 1419
1413 if (err) 1420 if (err)
1414 return err; 1421 return err;
1415 1422
1416 if (policy && put_user(pval, policy)) 1423 if (policy && put_user(pval, policy))
1417 return -EFAULT; 1424 return -EFAULT;
1418 1425
1419 if (nmask) 1426 if (nmask)
1420 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1427 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1421 1428
1422 return err; 1429 return err;
1423 } 1430 }
1424 1431
1425 #ifdef CONFIG_COMPAT 1432 #ifdef CONFIG_COMPAT
1426 1433
1427 asmlinkage long compat_sys_get_mempolicy(int __user *policy, 1434 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1428 compat_ulong_t __user *nmask, 1435 compat_ulong_t __user *nmask,
1429 compat_ulong_t maxnode, 1436 compat_ulong_t maxnode,
1430 compat_ulong_t addr, compat_ulong_t flags) 1437 compat_ulong_t addr, compat_ulong_t flags)
1431 { 1438 {
1432 long err; 1439 long err;
1433 unsigned long __user *nm = NULL; 1440 unsigned long __user *nm = NULL;
1434 unsigned long nr_bits, alloc_size; 1441 unsigned long nr_bits, alloc_size;
1435 DECLARE_BITMAP(bm, MAX_NUMNODES); 1442 DECLARE_BITMAP(bm, MAX_NUMNODES);
1436 1443
1437 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1444 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1438 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1445 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1439 1446
1440 if (nmask) 1447 if (nmask)
1441 nm = compat_alloc_user_space(alloc_size); 1448 nm = compat_alloc_user_space(alloc_size);
1442 1449
1443 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags); 1450 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1444 1451
1445 if (!err && nmask) { 1452 if (!err && nmask) {
1446 unsigned long copy_size; 1453 unsigned long copy_size;
1447 copy_size = min_t(unsigned long, sizeof(bm), alloc_size); 1454 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1448 err = copy_from_user(bm, nm, copy_size); 1455 err = copy_from_user(bm, nm, copy_size);
1449 /* ensure entire bitmap is zeroed */ 1456 /* ensure entire bitmap is zeroed */
1450 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8); 1457 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1451 err |= compat_put_bitmap(nmask, bm, nr_bits); 1458 err |= compat_put_bitmap(nmask, bm, nr_bits);
1452 } 1459 }
1453 1460
1454 return err; 1461 return err;
1455 } 1462 }
1456 1463
1457 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask, 1464 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1458 compat_ulong_t maxnode) 1465 compat_ulong_t maxnode)
1459 { 1466 {
1460 long err = 0; 1467 long err = 0;
1461 unsigned long __user *nm = NULL; 1468 unsigned long __user *nm = NULL;
1462 unsigned long nr_bits, alloc_size; 1469 unsigned long nr_bits, alloc_size;
1463 DECLARE_BITMAP(bm, MAX_NUMNODES); 1470 DECLARE_BITMAP(bm, MAX_NUMNODES);
1464 1471
1465 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1472 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1466 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1473 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1467 1474
1468 if (nmask) { 1475 if (nmask) {
1469 err = compat_get_bitmap(bm, nmask, nr_bits); 1476 err = compat_get_bitmap(bm, nmask, nr_bits);
1470 nm = compat_alloc_user_space(alloc_size); 1477 nm = compat_alloc_user_space(alloc_size);
1471 err |= copy_to_user(nm, bm, alloc_size); 1478 err |= copy_to_user(nm, bm, alloc_size);
1472 } 1479 }
1473 1480
1474 if (err) 1481 if (err)
1475 return -EFAULT; 1482 return -EFAULT;
1476 1483
1477 return sys_set_mempolicy(mode, nm, nr_bits+1); 1484 return sys_set_mempolicy(mode, nm, nr_bits+1);
1478 } 1485 }
1479 1486
1480 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len, 1487 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1481 compat_ulong_t mode, compat_ulong_t __user *nmask, 1488 compat_ulong_t mode, compat_ulong_t __user *nmask,
1482 compat_ulong_t maxnode, compat_ulong_t flags) 1489 compat_ulong_t maxnode, compat_ulong_t flags)
1483 { 1490 {
1484 long err = 0; 1491 long err = 0;
1485 unsigned long __user *nm = NULL; 1492 unsigned long __user *nm = NULL;
1486 unsigned long nr_bits, alloc_size; 1493 unsigned long nr_bits, alloc_size;
1487 nodemask_t bm; 1494 nodemask_t bm;
1488 1495
1489 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1496 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1490 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1497 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1491 1498
1492 if (nmask) { 1499 if (nmask) {
1493 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits); 1500 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1494 nm = compat_alloc_user_space(alloc_size); 1501 nm = compat_alloc_user_space(alloc_size);
1495 err |= copy_to_user(nm, nodes_addr(bm), alloc_size); 1502 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1496 } 1503 }
1497 1504
1498 if (err) 1505 if (err)
1499 return -EFAULT; 1506 return -EFAULT;
1500 1507
1501 return sys_mbind(start, len, mode, nm, nr_bits+1, flags); 1508 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1502 } 1509 }
1503 1510
1504 #endif 1511 #endif
1505 1512
1506 /* 1513 /*
1507 * get_vma_policy(@task, @vma, @addr) 1514 * get_vma_policy(@task, @vma, @addr)
1508 * @task - task for fallback if vma policy == default 1515 * @task - task for fallback if vma policy == default
1509 * @vma - virtual memory area whose policy is sought 1516 * @vma - virtual memory area whose policy is sought
1510 * @addr - address in @vma for shared policy lookup 1517 * @addr - address in @vma for shared policy lookup
1511 * 1518 *
1512 * Returns effective policy for a VMA at specified address. 1519 * Returns effective policy for a VMA at specified address.
1513 * Falls back to @task or system default policy, as necessary. 1520 * Falls back to @task or system default policy, as necessary.
1514 * Current or other task's task mempolicy and non-shared vma policies 1521 * Current or other task's task mempolicy and non-shared vma policies
1515 * are protected by the task's mmap_sem, which must be held for read by 1522 * are protected by the task's mmap_sem, which must be held for read by
1516 * the caller. 1523 * the caller.
1517 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1524 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1518 * count--added by the get_policy() vm_op, as appropriate--to protect against 1525 * count--added by the get_policy() vm_op, as appropriate--to protect against
1519 * freeing by another task. It is the caller's responsibility to free the 1526 * freeing by another task. It is the caller's responsibility to free the
1520 * extra reference for shared policies. 1527 * extra reference for shared policies.
1521 */ 1528 */
1522 struct mempolicy *get_vma_policy(struct task_struct *task, 1529 struct mempolicy *get_vma_policy(struct task_struct *task,
1523 struct vm_area_struct *vma, unsigned long addr) 1530 struct vm_area_struct *vma, unsigned long addr)
1524 { 1531 {
1525 struct mempolicy *pol = task->mempolicy; 1532 struct mempolicy *pol = task->mempolicy;
1526 1533
1527 if (vma) { 1534 if (vma) {
1528 if (vma->vm_ops && vma->vm_ops->get_policy) { 1535 if (vma->vm_ops && vma->vm_ops->get_policy) {
1529 struct mempolicy *vpol = vma->vm_ops->get_policy(vma, 1536 struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1530 addr); 1537 addr);
1531 if (vpol) 1538 if (vpol)
1532 pol = vpol; 1539 pol = vpol;
1533 } else if (vma->vm_policy) 1540 } else if (vma->vm_policy)
1534 pol = vma->vm_policy; 1541 pol = vma->vm_policy;
1535 } 1542 }
1536 if (!pol) 1543 if (!pol)
1537 pol = &default_policy; 1544 pol = &default_policy;
1538 return pol; 1545 return pol;
1539 } 1546 }
1540 1547
1541 /* 1548 /*
1542 * Return a nodemask representing a mempolicy for filtering nodes for 1549 * Return a nodemask representing a mempolicy for filtering nodes for
1543 * page allocation 1550 * page allocation
1544 */ 1551 */
1545 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1552 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1546 { 1553 {
1547 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1554 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1548 if (unlikely(policy->mode == MPOL_BIND) && 1555 if (unlikely(policy->mode == MPOL_BIND) &&
1549 gfp_zone(gfp) >= policy_zone && 1556 gfp_zone(gfp) >= policy_zone &&
1550 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes)) 1557 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1551 return &policy->v.nodes; 1558 return &policy->v.nodes;
1552 1559
1553 return NULL; 1560 return NULL;
1554 } 1561 }
1555 1562
1556 /* Return a zonelist indicated by gfp for node representing a mempolicy */ 1563 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1557 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy, 1564 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1558 int nd) 1565 int nd)
1559 { 1566 {
1560 switch (policy->mode) { 1567 switch (policy->mode) {
1561 case MPOL_PREFERRED: 1568 case MPOL_PREFERRED:
1562 if (!(policy->flags & MPOL_F_LOCAL)) 1569 if (!(policy->flags & MPOL_F_LOCAL))
1563 nd = policy->v.preferred_node; 1570 nd = policy->v.preferred_node;
1564 break; 1571 break;
1565 case MPOL_BIND: 1572 case MPOL_BIND:
1566 /* 1573 /*
1567 * Normally, MPOL_BIND allocations are node-local within the 1574 * Normally, MPOL_BIND allocations are node-local within the
1568 * allowed nodemask. However, if __GFP_THISNODE is set and the 1575 * allowed nodemask. However, if __GFP_THISNODE is set and the
1569 * current node isn't part of the mask, we use the zonelist for 1576 * current node isn't part of the mask, we use the zonelist for
1570 * the first node in the mask instead. 1577 * the first node in the mask instead.
1571 */ 1578 */
1572 if (unlikely(gfp & __GFP_THISNODE) && 1579 if (unlikely(gfp & __GFP_THISNODE) &&
1573 unlikely(!node_isset(nd, policy->v.nodes))) 1580 unlikely(!node_isset(nd, policy->v.nodes)))
1574 nd = first_node(policy->v.nodes); 1581 nd = first_node(policy->v.nodes);
1575 break; 1582 break;
1576 default: 1583 default:
1577 BUG(); 1584 BUG();
1578 } 1585 }
1579 return node_zonelist(nd, gfp); 1586 return node_zonelist(nd, gfp);
1580 } 1587 }
1581 1588
1582 /* Do dynamic interleaving for a process */ 1589 /* Do dynamic interleaving for a process */
1583 static unsigned interleave_nodes(struct mempolicy *policy) 1590 static unsigned interleave_nodes(struct mempolicy *policy)
1584 { 1591 {
1585 unsigned nid, next; 1592 unsigned nid, next;
1586 struct task_struct *me = current; 1593 struct task_struct *me = current;
1587 1594
1588 nid = me->il_next; 1595 nid = me->il_next;
1589 next = next_node(nid, policy->v.nodes); 1596 next = next_node(nid, policy->v.nodes);
1590 if (next >= MAX_NUMNODES) 1597 if (next >= MAX_NUMNODES)
1591 next = first_node(policy->v.nodes); 1598 next = first_node(policy->v.nodes);
1592 if (next < MAX_NUMNODES) 1599 if (next < MAX_NUMNODES)
1593 me->il_next = next; 1600 me->il_next = next;
1594 return nid; 1601 return nid;
1595 } 1602 }
1596 1603
1597 /* 1604 /*
1598 * Depending on the memory policy provide a node from which to allocate the 1605 * Depending on the memory policy provide a node from which to allocate the
1599 * next slab entry. 1606 * next slab entry.
1600 * @policy must be protected by freeing by the caller. If @policy is 1607 * @policy must be protected by freeing by the caller. If @policy is
1601 * the current task's mempolicy, this protection is implicit, as only the 1608 * the current task's mempolicy, this protection is implicit, as only the
1602 * task can change it's policy. The system default policy requires no 1609 * task can change it's policy. The system default policy requires no
1603 * such protection. 1610 * such protection.
1604 */ 1611 */
1605 unsigned slab_node(void) 1612 unsigned slab_node(void)
1606 { 1613 {
1607 struct mempolicy *policy; 1614 struct mempolicy *policy;
1608 1615
1609 if (in_interrupt()) 1616 if (in_interrupt())
1610 return numa_node_id(); 1617 return numa_node_id();
1611 1618
1612 policy = current->mempolicy; 1619 policy = current->mempolicy;
1613 if (!policy || policy->flags & MPOL_F_LOCAL) 1620 if (!policy || policy->flags & MPOL_F_LOCAL)
1614 return numa_node_id(); 1621 return numa_node_id();
1615 1622
1616 switch (policy->mode) { 1623 switch (policy->mode) {
1617 case MPOL_PREFERRED: 1624 case MPOL_PREFERRED:
1618 /* 1625 /*
1619 * handled MPOL_F_LOCAL above 1626 * handled MPOL_F_LOCAL above
1620 */ 1627 */
1621 return policy->v.preferred_node; 1628 return policy->v.preferred_node;
1622 1629
1623 case MPOL_INTERLEAVE: 1630 case MPOL_INTERLEAVE:
1624 return interleave_nodes(policy); 1631 return interleave_nodes(policy);
1625 1632
1626 case MPOL_BIND: { 1633 case MPOL_BIND: {
1627 /* 1634 /*
1628 * Follow bind policy behavior and start allocation at the 1635 * Follow bind policy behavior and start allocation at the
1629 * first node. 1636 * first node.
1630 */ 1637 */
1631 struct zonelist *zonelist; 1638 struct zonelist *zonelist;
1632 struct zone *zone; 1639 struct zone *zone;
1633 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1640 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1634 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0]; 1641 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1635 (void)first_zones_zonelist(zonelist, highest_zoneidx, 1642 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1636 &policy->v.nodes, 1643 &policy->v.nodes,
1637 &zone); 1644 &zone);
1638 return zone ? zone->node : numa_node_id(); 1645 return zone ? zone->node : numa_node_id();
1639 } 1646 }
1640 1647
1641 default: 1648 default:
1642 BUG(); 1649 BUG();
1643 } 1650 }
1644 } 1651 }
1645 1652
1646 /* Do static interleaving for a VMA with known offset. */ 1653 /* Do static interleaving for a VMA with known offset. */
1647 static unsigned offset_il_node(struct mempolicy *pol, 1654 static unsigned offset_il_node(struct mempolicy *pol,
1648 struct vm_area_struct *vma, unsigned long off) 1655 struct vm_area_struct *vma, unsigned long off)
1649 { 1656 {
1650 unsigned nnodes = nodes_weight(pol->v.nodes); 1657 unsigned nnodes = nodes_weight(pol->v.nodes);
1651 unsigned target; 1658 unsigned target;
1652 int c; 1659 int c;
1653 int nid = -1; 1660 int nid = -1;
1654 1661
1655 if (!nnodes) 1662 if (!nnodes)
1656 return numa_node_id(); 1663 return numa_node_id();
1657 target = (unsigned int)off % nnodes; 1664 target = (unsigned int)off % nnodes;
1658 c = 0; 1665 c = 0;
1659 do { 1666 do {
1660 nid = next_node(nid, pol->v.nodes); 1667 nid = next_node(nid, pol->v.nodes);
1661 c++; 1668 c++;
1662 } while (c <= target); 1669 } while (c <= target);
1663 return nid; 1670 return nid;
1664 } 1671 }
1665 1672
1666 /* Determine a node number for interleave */ 1673 /* Determine a node number for interleave */
1667 static inline unsigned interleave_nid(struct mempolicy *pol, 1674 static inline unsigned interleave_nid(struct mempolicy *pol,
1668 struct vm_area_struct *vma, unsigned long addr, int shift) 1675 struct vm_area_struct *vma, unsigned long addr, int shift)
1669 { 1676 {
1670 if (vma) { 1677 if (vma) {
1671 unsigned long off; 1678 unsigned long off;
1672 1679
1673 /* 1680 /*
1674 * for small pages, there is no difference between 1681 * for small pages, there is no difference between
1675 * shift and PAGE_SHIFT, so the bit-shift is safe. 1682 * shift and PAGE_SHIFT, so the bit-shift is safe.
1676 * for huge pages, since vm_pgoff is in units of small 1683 * for huge pages, since vm_pgoff is in units of small
1677 * pages, we need to shift off the always 0 bits to get 1684 * pages, we need to shift off the always 0 bits to get
1678 * a useful offset. 1685 * a useful offset.
1679 */ 1686 */
1680 BUG_ON(shift < PAGE_SHIFT); 1687 BUG_ON(shift < PAGE_SHIFT);
1681 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 1688 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1682 off += (addr - vma->vm_start) >> shift; 1689 off += (addr - vma->vm_start) >> shift;
1683 return offset_il_node(pol, vma, off); 1690 return offset_il_node(pol, vma, off);
1684 } else 1691 } else
1685 return interleave_nodes(pol); 1692 return interleave_nodes(pol);
1686 } 1693 }
1687 1694
1688 /* 1695 /*
1689 * Return the bit number of a random bit set in the nodemask. 1696 * Return the bit number of a random bit set in the nodemask.
1690 * (returns -1 if nodemask is empty) 1697 * (returns -1 if nodemask is empty)
1691 */ 1698 */
1692 int node_random(const nodemask_t *maskp) 1699 int node_random(const nodemask_t *maskp)
1693 { 1700 {
1694 int w, bit = -1; 1701 int w, bit = -1;
1695 1702
1696 w = nodes_weight(*maskp); 1703 w = nodes_weight(*maskp);
1697 if (w) 1704 if (w)
1698 bit = bitmap_ord_to_pos(maskp->bits, 1705 bit = bitmap_ord_to_pos(maskp->bits,
1699 get_random_int() % w, MAX_NUMNODES); 1706 get_random_int() % w, MAX_NUMNODES);
1700 return bit; 1707 return bit;
1701 } 1708 }
1702 1709
1703 #ifdef CONFIG_HUGETLBFS 1710 #ifdef CONFIG_HUGETLBFS
1704 /* 1711 /*
1705 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol) 1712 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1706 * @vma = virtual memory area whose policy is sought 1713 * @vma = virtual memory area whose policy is sought
1707 * @addr = address in @vma for shared policy lookup and interleave policy 1714 * @addr = address in @vma for shared policy lookup and interleave policy
1708 * @gfp_flags = for requested zone 1715 * @gfp_flags = for requested zone
1709 * @mpol = pointer to mempolicy pointer for reference counted mempolicy 1716 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1710 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask 1717 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1711 * 1718 *
1712 * Returns a zonelist suitable for a huge page allocation and a pointer 1719 * Returns a zonelist suitable for a huge page allocation and a pointer
1713 * to the struct mempolicy for conditional unref after allocation. 1720 * to the struct mempolicy for conditional unref after allocation.
1714 * If the effective policy is 'BIND, returns a pointer to the mempolicy's 1721 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1715 * @nodemask for filtering the zonelist. 1722 * @nodemask for filtering the zonelist.
1716 * 1723 *
1717 * Must be protected by get_mems_allowed() 1724 * Must be protected by get_mems_allowed()
1718 */ 1725 */
1719 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr, 1726 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1720 gfp_t gfp_flags, struct mempolicy **mpol, 1727 gfp_t gfp_flags, struct mempolicy **mpol,
1721 nodemask_t **nodemask) 1728 nodemask_t **nodemask)
1722 { 1729 {
1723 struct zonelist *zl; 1730 struct zonelist *zl;
1724 1731
1725 *mpol = get_vma_policy(current, vma, addr); 1732 *mpol = get_vma_policy(current, vma, addr);
1726 *nodemask = NULL; /* assume !MPOL_BIND */ 1733 *nodemask = NULL; /* assume !MPOL_BIND */
1727 1734
1728 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) { 1735 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1729 zl = node_zonelist(interleave_nid(*mpol, vma, addr, 1736 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1730 huge_page_shift(hstate_vma(vma))), gfp_flags); 1737 huge_page_shift(hstate_vma(vma))), gfp_flags);
1731 } else { 1738 } else {
1732 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id()); 1739 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1733 if ((*mpol)->mode == MPOL_BIND) 1740 if ((*mpol)->mode == MPOL_BIND)
1734 *nodemask = &(*mpol)->v.nodes; 1741 *nodemask = &(*mpol)->v.nodes;
1735 } 1742 }
1736 return zl; 1743 return zl;
1737 } 1744 }
1738 1745
1739 /* 1746 /*
1740 * init_nodemask_of_mempolicy 1747 * init_nodemask_of_mempolicy
1741 * 1748 *
1742 * If the current task's mempolicy is "default" [NULL], return 'false' 1749 * If the current task's mempolicy is "default" [NULL], return 'false'
1743 * to indicate default policy. Otherwise, extract the policy nodemask 1750 * to indicate default policy. Otherwise, extract the policy nodemask
1744 * for 'bind' or 'interleave' policy into the argument nodemask, or 1751 * for 'bind' or 'interleave' policy into the argument nodemask, or
1745 * initialize the argument nodemask to contain the single node for 1752 * initialize the argument nodemask to contain the single node for
1746 * 'preferred' or 'local' policy and return 'true' to indicate presence 1753 * 'preferred' or 'local' policy and return 'true' to indicate presence
1747 * of non-default mempolicy. 1754 * of non-default mempolicy.
1748 * 1755 *
1749 * We don't bother with reference counting the mempolicy [mpol_get/put] 1756 * We don't bother with reference counting the mempolicy [mpol_get/put]
1750 * because the current task is examining it's own mempolicy and a task's 1757 * because the current task is examining it's own mempolicy and a task's
1751 * mempolicy is only ever changed by the task itself. 1758 * mempolicy is only ever changed by the task itself.
1752 * 1759 *
1753 * N.B., it is the caller's responsibility to free a returned nodemask. 1760 * N.B., it is the caller's responsibility to free a returned nodemask.
1754 */ 1761 */
1755 bool init_nodemask_of_mempolicy(nodemask_t *mask) 1762 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1756 { 1763 {
1757 struct mempolicy *mempolicy; 1764 struct mempolicy *mempolicy;
1758 int nid; 1765 int nid;
1759 1766
1760 if (!(mask && current->mempolicy)) 1767 if (!(mask && current->mempolicy))
1761 return false; 1768 return false;
1762 1769
1763 task_lock(current); 1770 task_lock(current);
1764 mempolicy = current->mempolicy; 1771 mempolicy = current->mempolicy;
1765 switch (mempolicy->mode) { 1772 switch (mempolicy->mode) {
1766 case MPOL_PREFERRED: 1773 case MPOL_PREFERRED:
1767 if (mempolicy->flags & MPOL_F_LOCAL) 1774 if (mempolicy->flags & MPOL_F_LOCAL)
1768 nid = numa_node_id(); 1775 nid = numa_node_id();
1769 else 1776 else
1770 nid = mempolicy->v.preferred_node; 1777 nid = mempolicy->v.preferred_node;
1771 init_nodemask_of_node(mask, nid); 1778 init_nodemask_of_node(mask, nid);
1772 break; 1779 break;
1773 1780
1774 case MPOL_BIND: 1781 case MPOL_BIND:
1775 /* Fall through */ 1782 /* Fall through */
1776 case MPOL_INTERLEAVE: 1783 case MPOL_INTERLEAVE:
1777 *mask = mempolicy->v.nodes; 1784 *mask = mempolicy->v.nodes;
1778 break; 1785 break;
1779 1786
1780 default: 1787 default:
1781 BUG(); 1788 BUG();
1782 } 1789 }
1783 task_unlock(current); 1790 task_unlock(current);
1784 1791
1785 return true; 1792 return true;
1786 } 1793 }
1787 #endif 1794 #endif
1788 1795
1789 /* 1796 /*
1790 * mempolicy_nodemask_intersects 1797 * mempolicy_nodemask_intersects
1791 * 1798 *
1792 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default 1799 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1793 * policy. Otherwise, check for intersection between mask and the policy 1800 * policy. Otherwise, check for intersection between mask and the policy
1794 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local' 1801 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1795 * policy, always return true since it may allocate elsewhere on fallback. 1802 * policy, always return true since it may allocate elsewhere on fallback.
1796 * 1803 *
1797 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 1804 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1798 */ 1805 */
1799 bool mempolicy_nodemask_intersects(struct task_struct *tsk, 1806 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1800 const nodemask_t *mask) 1807 const nodemask_t *mask)
1801 { 1808 {
1802 struct mempolicy *mempolicy; 1809 struct mempolicy *mempolicy;
1803 bool ret = true; 1810 bool ret = true;
1804 1811
1805 if (!mask) 1812 if (!mask)
1806 return ret; 1813 return ret;
1807 task_lock(tsk); 1814 task_lock(tsk);
1808 mempolicy = tsk->mempolicy; 1815 mempolicy = tsk->mempolicy;
1809 if (!mempolicy) 1816 if (!mempolicy)
1810 goto out; 1817 goto out;
1811 1818
1812 switch (mempolicy->mode) { 1819 switch (mempolicy->mode) {
1813 case MPOL_PREFERRED: 1820 case MPOL_PREFERRED:
1814 /* 1821 /*
1815 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to 1822 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1816 * allocate from, they may fallback to other nodes when oom. 1823 * allocate from, they may fallback to other nodes when oom.
1817 * Thus, it's possible for tsk to have allocated memory from 1824 * Thus, it's possible for tsk to have allocated memory from
1818 * nodes in mask. 1825 * nodes in mask.
1819 */ 1826 */
1820 break; 1827 break;
1821 case MPOL_BIND: 1828 case MPOL_BIND:
1822 case MPOL_INTERLEAVE: 1829 case MPOL_INTERLEAVE:
1823 ret = nodes_intersects(mempolicy->v.nodes, *mask); 1830 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1824 break; 1831 break;
1825 default: 1832 default:
1826 BUG(); 1833 BUG();
1827 } 1834 }
1828 out: 1835 out:
1829 task_unlock(tsk); 1836 task_unlock(tsk);
1830 return ret; 1837 return ret;
1831 } 1838 }
1832 1839
1833 /* Allocate a page in interleaved policy. 1840 /* Allocate a page in interleaved policy.
1834 Own path because it needs to do special accounting. */ 1841 Own path because it needs to do special accounting. */
1835 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 1842 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1836 unsigned nid) 1843 unsigned nid)
1837 { 1844 {
1838 struct zonelist *zl; 1845 struct zonelist *zl;
1839 struct page *page; 1846 struct page *page;
1840 1847
1841 zl = node_zonelist(nid, gfp); 1848 zl = node_zonelist(nid, gfp);
1842 page = __alloc_pages(gfp, order, zl); 1849 page = __alloc_pages(gfp, order, zl);
1843 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0])) 1850 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1844 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT); 1851 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1845 return page; 1852 return page;
1846 } 1853 }
1847 1854
1848 /** 1855 /**
1849 * alloc_pages_vma - Allocate a page for a VMA. 1856 * alloc_pages_vma - Allocate a page for a VMA.
1850 * 1857 *
1851 * @gfp: 1858 * @gfp:
1852 * %GFP_USER user allocation. 1859 * %GFP_USER user allocation.
1853 * %GFP_KERNEL kernel allocations, 1860 * %GFP_KERNEL kernel allocations,
1854 * %GFP_HIGHMEM highmem/user allocations, 1861 * %GFP_HIGHMEM highmem/user allocations,
1855 * %GFP_FS allocation should not call back into a file system. 1862 * %GFP_FS allocation should not call back into a file system.
1856 * %GFP_ATOMIC don't sleep. 1863 * %GFP_ATOMIC don't sleep.
1857 * 1864 *
1858 * @order:Order of the GFP allocation. 1865 * @order:Order of the GFP allocation.
1859 * @vma: Pointer to VMA or NULL if not available. 1866 * @vma: Pointer to VMA or NULL if not available.
1860 * @addr: Virtual Address of the allocation. Must be inside the VMA. 1867 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1861 * 1868 *
1862 * This function allocates a page from the kernel page pool and applies 1869 * This function allocates a page from the kernel page pool and applies
1863 * a NUMA policy associated with the VMA or the current process. 1870 * a NUMA policy associated with the VMA or the current process.
1864 * When VMA is not NULL caller must hold down_read on the mmap_sem of the 1871 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1865 * mm_struct of the VMA to prevent it from going away. Should be used for 1872 * mm_struct of the VMA to prevent it from going away. Should be used for
1866 * all allocations for pages that will be mapped into 1873 * all allocations for pages that will be mapped into
1867 * user space. Returns NULL when no page can be allocated. 1874 * user space. Returns NULL when no page can be allocated.
1868 * 1875 *
1869 * Should be called with the mm_sem of the vma hold. 1876 * Should be called with the mm_sem of the vma hold.
1870 */ 1877 */
1871 struct page * 1878 struct page *
1872 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, 1879 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1873 unsigned long addr, int node) 1880 unsigned long addr, int node)
1874 { 1881 {
1875 struct mempolicy *pol; 1882 struct mempolicy *pol;
1876 struct zonelist *zl; 1883 struct zonelist *zl;
1877 struct page *page; 1884 struct page *page;
1878 unsigned int cpuset_mems_cookie; 1885 unsigned int cpuset_mems_cookie;
1879 1886
1880 retry_cpuset: 1887 retry_cpuset:
1881 pol = get_vma_policy(current, vma, addr); 1888 pol = get_vma_policy(current, vma, addr);
1882 cpuset_mems_cookie = get_mems_allowed(); 1889 cpuset_mems_cookie = get_mems_allowed();
1883 1890
1884 if (unlikely(pol->mode == MPOL_INTERLEAVE)) { 1891 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1885 unsigned nid; 1892 unsigned nid;
1886 1893
1887 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); 1894 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1888 mpol_cond_put(pol); 1895 mpol_cond_put(pol);
1889 page = alloc_page_interleave(gfp, order, nid); 1896 page = alloc_page_interleave(gfp, order, nid);
1890 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) 1897 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1891 goto retry_cpuset; 1898 goto retry_cpuset;
1892 1899
1893 return page; 1900 return page;
1894 } 1901 }
1895 zl = policy_zonelist(gfp, pol, node); 1902 zl = policy_zonelist(gfp, pol, node);
1896 if (unlikely(mpol_needs_cond_ref(pol))) { 1903 if (unlikely(mpol_needs_cond_ref(pol))) {
1897 /* 1904 /*
1898 * slow path: ref counted shared policy 1905 * slow path: ref counted shared policy
1899 */ 1906 */
1900 struct page *page = __alloc_pages_nodemask(gfp, order, 1907 struct page *page = __alloc_pages_nodemask(gfp, order,
1901 zl, policy_nodemask(gfp, pol)); 1908 zl, policy_nodemask(gfp, pol));
1902 __mpol_put(pol); 1909 __mpol_put(pol);
1903 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) 1910 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1904 goto retry_cpuset; 1911 goto retry_cpuset;
1905 return page; 1912 return page;
1906 } 1913 }
1907 /* 1914 /*
1908 * fast path: default or task policy 1915 * fast path: default or task policy
1909 */ 1916 */
1910 page = __alloc_pages_nodemask(gfp, order, zl, 1917 page = __alloc_pages_nodemask(gfp, order, zl,
1911 policy_nodemask(gfp, pol)); 1918 policy_nodemask(gfp, pol));
1912 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) 1919 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1913 goto retry_cpuset; 1920 goto retry_cpuset;
1914 return page; 1921 return page;
1915 } 1922 }
1916 1923
1917 /** 1924 /**
1918 * alloc_pages_current - Allocate pages. 1925 * alloc_pages_current - Allocate pages.
1919 * 1926 *
1920 * @gfp: 1927 * @gfp:
1921 * %GFP_USER user allocation, 1928 * %GFP_USER user allocation,
1922 * %GFP_KERNEL kernel allocation, 1929 * %GFP_KERNEL kernel allocation,
1923 * %GFP_HIGHMEM highmem allocation, 1930 * %GFP_HIGHMEM highmem allocation,
1924 * %GFP_FS don't call back into a file system. 1931 * %GFP_FS don't call back into a file system.
1925 * %GFP_ATOMIC don't sleep. 1932 * %GFP_ATOMIC don't sleep.
1926 * @order: Power of two of allocation size in pages. 0 is a single page. 1933 * @order: Power of two of allocation size in pages. 0 is a single page.
1927 * 1934 *
1928 * Allocate a page from the kernel page pool. When not in 1935 * Allocate a page from the kernel page pool. When not in
1929 * interrupt context and apply the current process NUMA policy. 1936 * interrupt context and apply the current process NUMA policy.
1930 * Returns NULL when no page can be allocated. 1937 * Returns NULL when no page can be allocated.
1931 * 1938 *
1932 * Don't call cpuset_update_task_memory_state() unless 1939 * Don't call cpuset_update_task_memory_state() unless
1933 * 1) it's ok to take cpuset_sem (can WAIT), and 1940 * 1) it's ok to take cpuset_sem (can WAIT), and
1934 * 2) allocating for current task (not interrupt). 1941 * 2) allocating for current task (not interrupt).
1935 */ 1942 */
1936 struct page *alloc_pages_current(gfp_t gfp, unsigned order) 1943 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1937 { 1944 {
1938 struct mempolicy *pol = current->mempolicy; 1945 struct mempolicy *pol = current->mempolicy;
1939 struct page *page; 1946 struct page *page;
1940 unsigned int cpuset_mems_cookie; 1947 unsigned int cpuset_mems_cookie;
1941 1948
1942 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE)) 1949 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1943 pol = &default_policy; 1950 pol = &default_policy;
1944 1951
1945 retry_cpuset: 1952 retry_cpuset:
1946 cpuset_mems_cookie = get_mems_allowed(); 1953 cpuset_mems_cookie = get_mems_allowed();
1947 1954
1948 /* 1955 /*
1949 * No reference counting needed for current->mempolicy 1956 * No reference counting needed for current->mempolicy
1950 * nor system default_policy 1957 * nor system default_policy
1951 */ 1958 */
1952 if (pol->mode == MPOL_INTERLEAVE) 1959 if (pol->mode == MPOL_INTERLEAVE)
1953 page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); 1960 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
1954 else 1961 else
1955 page = __alloc_pages_nodemask(gfp, order, 1962 page = __alloc_pages_nodemask(gfp, order,
1956 policy_zonelist(gfp, pol, numa_node_id()), 1963 policy_zonelist(gfp, pol, numa_node_id()),
1957 policy_nodemask(gfp, pol)); 1964 policy_nodemask(gfp, pol));
1958 1965
1959 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) 1966 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1960 goto retry_cpuset; 1967 goto retry_cpuset;
1961 1968
1962 return page; 1969 return page;
1963 } 1970 }
1964 EXPORT_SYMBOL(alloc_pages_current); 1971 EXPORT_SYMBOL(alloc_pages_current);
1965 1972
1966 /* 1973 /*
1967 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 1974 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1968 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 1975 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1969 * with the mems_allowed returned by cpuset_mems_allowed(). This 1976 * with the mems_allowed returned by cpuset_mems_allowed(). This
1970 * keeps mempolicies cpuset relative after its cpuset moves. See 1977 * keeps mempolicies cpuset relative after its cpuset moves. See
1971 * further kernel/cpuset.c update_nodemask(). 1978 * further kernel/cpuset.c update_nodemask().
1972 * 1979 *
1973 * current's mempolicy may be rebinded by the other task(the task that changes 1980 * current's mempolicy may be rebinded by the other task(the task that changes
1974 * cpuset's mems), so we needn't do rebind work for current task. 1981 * cpuset's mems), so we needn't do rebind work for current task.
1975 */ 1982 */
1976 1983
1977 /* Slow path of a mempolicy duplicate */ 1984 /* Slow path of a mempolicy duplicate */
1978 struct mempolicy *__mpol_dup(struct mempolicy *old) 1985 struct mempolicy *__mpol_dup(struct mempolicy *old)
1979 { 1986 {
1980 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 1987 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1981 1988
1982 if (!new) 1989 if (!new)
1983 return ERR_PTR(-ENOMEM); 1990 return ERR_PTR(-ENOMEM);
1984 1991
1985 /* task's mempolicy is protected by alloc_lock */ 1992 /* task's mempolicy is protected by alloc_lock */
1986 if (old == current->mempolicy) { 1993 if (old == current->mempolicy) {
1987 task_lock(current); 1994 task_lock(current);
1988 *new = *old; 1995 *new = *old;
1989 task_unlock(current); 1996 task_unlock(current);
1990 } else 1997 } else
1991 *new = *old; 1998 *new = *old;
1992 1999
1993 rcu_read_lock(); 2000 rcu_read_lock();
1994 if (current_cpuset_is_being_rebound()) { 2001 if (current_cpuset_is_being_rebound()) {
1995 nodemask_t mems = cpuset_mems_allowed(current); 2002 nodemask_t mems = cpuset_mems_allowed(current);
1996 if (new->flags & MPOL_F_REBINDING) 2003 if (new->flags & MPOL_F_REBINDING)
1997 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2); 2004 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
1998 else 2005 else
1999 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE); 2006 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2000 } 2007 }
2001 rcu_read_unlock(); 2008 rcu_read_unlock();
2002 atomic_set(&new->refcnt, 1); 2009 atomic_set(&new->refcnt, 1);
2003 return new; 2010 return new;
2004 } 2011 }
2005 2012
2006 /* 2013 /*
2007 * If *frompol needs [has] an extra ref, copy *frompol to *tompol , 2014 * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
2008 * eliminate the * MPOL_F_* flags that require conditional ref and 2015 * eliminate the * MPOL_F_* flags that require conditional ref and
2009 * [NOTE!!!] drop the extra ref. Not safe to reference *frompol directly 2016 * [NOTE!!!] drop the extra ref. Not safe to reference *frompol directly
2010 * after return. Use the returned value. 2017 * after return. Use the returned value.
2011 * 2018 *
2012 * Allows use of a mempolicy for, e.g., multiple allocations with a single 2019 * Allows use of a mempolicy for, e.g., multiple allocations with a single
2013 * policy lookup, even if the policy needs/has extra ref on lookup. 2020 * policy lookup, even if the policy needs/has extra ref on lookup.
2014 * shmem_readahead needs this. 2021 * shmem_readahead needs this.
2015 */ 2022 */
2016 struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol, 2023 struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
2017 struct mempolicy *frompol) 2024 struct mempolicy *frompol)
2018 { 2025 {
2019 if (!mpol_needs_cond_ref(frompol)) 2026 if (!mpol_needs_cond_ref(frompol))
2020 return frompol; 2027 return frompol;
2021 2028
2022 *tompol = *frompol; 2029 *tompol = *frompol;
2023 tompol->flags &= ~MPOL_F_SHARED; /* copy doesn't need unref */ 2030 tompol->flags &= ~MPOL_F_SHARED; /* copy doesn't need unref */
2024 __mpol_put(frompol); 2031 __mpol_put(frompol);
2025 return tompol; 2032 return tompol;
2026 } 2033 }
2027 2034
2028 /* Slow path of a mempolicy comparison */ 2035 /* Slow path of a mempolicy comparison */
2029 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2036 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2030 { 2037 {
2031 if (!a || !b) 2038 if (!a || !b)
2032 return false; 2039 return false;
2033 if (a->mode != b->mode) 2040 if (a->mode != b->mode)
2034 return false; 2041 return false;
2035 if (a->flags != b->flags) 2042 if (a->flags != b->flags)
2036 return false; 2043 return false;
2037 if (mpol_store_user_nodemask(a)) 2044 if (mpol_store_user_nodemask(a))
2038 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2045 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2039 return false; 2046 return false;
2040 2047
2041 switch (a->mode) { 2048 switch (a->mode) {
2042 case MPOL_BIND: 2049 case MPOL_BIND:
2043 /* Fall through */ 2050 /* Fall through */
2044 case MPOL_INTERLEAVE: 2051 case MPOL_INTERLEAVE:
2045 return !!nodes_equal(a->v.nodes, b->v.nodes); 2052 return !!nodes_equal(a->v.nodes, b->v.nodes);
2046 case MPOL_PREFERRED: 2053 case MPOL_PREFERRED:
2047 return a->v.preferred_node == b->v.preferred_node; 2054 return a->v.preferred_node == b->v.preferred_node;
2048 default: 2055 default:
2049 BUG(); 2056 BUG();
2050 return false; 2057 return false;
2051 } 2058 }
2052 } 2059 }
2053 2060
2054 /* 2061 /*
2055 * Shared memory backing store policy support. 2062 * Shared memory backing store policy support.
2056 * 2063 *
2057 * Remember policies even when nobody has shared memory mapped. 2064 * Remember policies even when nobody has shared memory mapped.
2058 * The policies are kept in Red-Black tree linked from the inode. 2065 * The policies are kept in Red-Black tree linked from the inode.
2059 * They are protected by the sp->lock spinlock, which should be held 2066 * They are protected by the sp->lock spinlock, which should be held
2060 * for any accesses to the tree. 2067 * for any accesses to the tree.
2061 */ 2068 */
2062 2069
2063 /* lookup first element intersecting start-end */ 2070 /* lookup first element intersecting start-end */
2064 /* Caller holds sp->lock */ 2071 /* Caller holds sp->lock */
2065 static struct sp_node * 2072 static struct sp_node *
2066 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 2073 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2067 { 2074 {
2068 struct rb_node *n = sp->root.rb_node; 2075 struct rb_node *n = sp->root.rb_node;
2069 2076
2070 while (n) { 2077 while (n) {
2071 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2078 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2072 2079
2073 if (start >= p->end) 2080 if (start >= p->end)
2074 n = n->rb_right; 2081 n = n->rb_right;
2075 else if (end <= p->start) 2082 else if (end <= p->start)
2076 n = n->rb_left; 2083 n = n->rb_left;
2077 else 2084 else
2078 break; 2085 break;
2079 } 2086 }
2080 if (!n) 2087 if (!n)
2081 return NULL; 2088 return NULL;
2082 for (;;) { 2089 for (;;) {
2083 struct sp_node *w = NULL; 2090 struct sp_node *w = NULL;
2084 struct rb_node *prev = rb_prev(n); 2091 struct rb_node *prev = rb_prev(n);
2085 if (!prev) 2092 if (!prev)
2086 break; 2093 break;
2087 w = rb_entry(prev, struct sp_node, nd); 2094 w = rb_entry(prev, struct sp_node, nd);
2088 if (w->end <= start) 2095 if (w->end <= start)
2089 break; 2096 break;
2090 n = prev; 2097 n = prev;
2091 } 2098 }
2092 return rb_entry(n, struct sp_node, nd); 2099 return rb_entry(n, struct sp_node, nd);
2093 } 2100 }
2094 2101
2095 /* Insert a new shared policy into the list. */ 2102 /* Insert a new shared policy into the list. */
2096 /* Caller holds sp->lock */ 2103 /* Caller holds sp->lock */
2097 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2104 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2098 { 2105 {
2099 struct rb_node **p = &sp->root.rb_node; 2106 struct rb_node **p = &sp->root.rb_node;
2100 struct rb_node *parent = NULL; 2107 struct rb_node *parent = NULL;
2101 struct sp_node *nd; 2108 struct sp_node *nd;
2102 2109
2103 while (*p) { 2110 while (*p) {
2104 parent = *p; 2111 parent = *p;
2105 nd = rb_entry(parent, struct sp_node, nd); 2112 nd = rb_entry(parent, struct sp_node, nd);
2106 if (new->start < nd->start) 2113 if (new->start < nd->start)
2107 p = &(*p)->rb_left; 2114 p = &(*p)->rb_left;
2108 else if (new->end > nd->end) 2115 else if (new->end > nd->end)
2109 p = &(*p)->rb_right; 2116 p = &(*p)->rb_right;
2110 else 2117 else
2111 BUG(); 2118 BUG();
2112 } 2119 }
2113 rb_link_node(&new->nd, parent, p); 2120 rb_link_node(&new->nd, parent, p);
2114 rb_insert_color(&new->nd, &sp->root); 2121 rb_insert_color(&new->nd, &sp->root);
2115 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 2122 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2116 new->policy ? new->policy->mode : 0); 2123 new->policy ? new->policy->mode : 0);
2117 } 2124 }
2118 2125
2119 /* Find shared policy intersecting idx */ 2126 /* Find shared policy intersecting idx */
2120 struct mempolicy * 2127 struct mempolicy *
2121 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 2128 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2122 { 2129 {
2123 struct mempolicy *pol = NULL; 2130 struct mempolicy *pol = NULL;
2124 struct sp_node *sn; 2131 struct sp_node *sn;
2125 2132
2126 if (!sp->root.rb_node) 2133 if (!sp->root.rb_node)
2127 return NULL; 2134 return NULL;
2128 spin_lock(&sp->lock); 2135 spin_lock(&sp->lock);
2129 sn = sp_lookup(sp, idx, idx+1); 2136 sn = sp_lookup(sp, idx, idx+1);
2130 if (sn) { 2137 if (sn) {
2131 mpol_get(sn->policy); 2138 mpol_get(sn->policy);
2132 pol = sn->policy; 2139 pol = sn->policy;
2133 } 2140 }
2134 spin_unlock(&sp->lock); 2141 spin_unlock(&sp->lock);
2135 return pol; 2142 return pol;
2136 } 2143 }
2137 2144
2138 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2145 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2139 { 2146 {
2140 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 2147 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2141 rb_erase(&n->nd, &sp->root); 2148 rb_erase(&n->nd, &sp->root);
2142 mpol_put(n->policy); 2149 mpol_put(n->policy);
2143 kmem_cache_free(sn_cache, n); 2150 kmem_cache_free(sn_cache, n);
2144 } 2151 }
2145 2152
2146 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2153 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2147 struct mempolicy *pol) 2154 struct mempolicy *pol)
2148 { 2155 {
2149 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2156 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2150 2157
2151 if (!n) 2158 if (!n)
2152 return NULL; 2159 return NULL;
2153 n->start = start; 2160 n->start = start;
2154 n->end = end; 2161 n->end = end;
2155 mpol_get(pol); 2162 mpol_get(pol);
2156 pol->flags |= MPOL_F_SHARED; /* for unref */ 2163 pol->flags |= MPOL_F_SHARED; /* for unref */
2157 n->policy = pol; 2164 n->policy = pol;
2158 return n; 2165 return n;
2159 } 2166 }
2160 2167
2161 /* Replace a policy range. */ 2168 /* Replace a policy range. */
2162 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 2169 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2163 unsigned long end, struct sp_node *new) 2170 unsigned long end, struct sp_node *new)
2164 { 2171 {
2165 struct sp_node *n, *new2 = NULL; 2172 struct sp_node *n, *new2 = NULL;
2166 2173
2167 restart: 2174 restart:
2168 spin_lock(&sp->lock); 2175 spin_lock(&sp->lock);
2169 n = sp_lookup(sp, start, end); 2176 n = sp_lookup(sp, start, end);
2170 /* Take care of old policies in the same range. */ 2177 /* Take care of old policies in the same range. */
2171 while (n && n->start < end) { 2178 while (n && n->start < end) {
2172 struct rb_node *next = rb_next(&n->nd); 2179 struct rb_node *next = rb_next(&n->nd);
2173 if (n->start >= start) { 2180 if (n->start >= start) {
2174 if (n->end <= end) 2181 if (n->end <= end)
2175 sp_delete(sp, n); 2182 sp_delete(sp, n);
2176 else 2183 else
2177 n->start = end; 2184 n->start = end;
2178 } else { 2185 } else {
2179 /* Old policy spanning whole new range. */ 2186 /* Old policy spanning whole new range. */
2180 if (n->end > end) { 2187 if (n->end > end) {
2181 if (!new2) { 2188 if (!new2) {
2182 spin_unlock(&sp->lock); 2189 spin_unlock(&sp->lock);
2183 new2 = sp_alloc(end, n->end, n->policy); 2190 new2 = sp_alloc(end, n->end, n->policy);
2184 if (!new2) 2191 if (!new2)
2185 return -ENOMEM; 2192 return -ENOMEM;
2186 goto restart; 2193 goto restart;
2187 } 2194 }
2188 n->end = start; 2195 n->end = start;
2189 sp_insert(sp, new2); 2196 sp_insert(sp, new2);
2190 new2 = NULL; 2197 new2 = NULL;
2191 break; 2198 break;
2192 } else 2199 } else
2193 n->end = start; 2200 n->end = start;
2194 } 2201 }
2195 if (!next) 2202 if (!next)
2196 break; 2203 break;
2197 n = rb_entry(next, struct sp_node, nd); 2204 n = rb_entry(next, struct sp_node, nd);
2198 } 2205 }
2199 if (new) 2206 if (new)
2200 sp_insert(sp, new); 2207 sp_insert(sp, new);
2201 spin_unlock(&sp->lock); 2208 spin_unlock(&sp->lock);
2202 if (new2) { 2209 if (new2) {
2203 mpol_put(new2->policy); 2210 mpol_put(new2->policy);
2204 kmem_cache_free(sn_cache, new2); 2211 kmem_cache_free(sn_cache, new2);
2205 } 2212 }
2206 return 0; 2213 return 0;
2207 } 2214 }
2208 2215
2209 /** 2216 /**
2210 * mpol_shared_policy_init - initialize shared policy for inode 2217 * mpol_shared_policy_init - initialize shared policy for inode
2211 * @sp: pointer to inode shared policy 2218 * @sp: pointer to inode shared policy
2212 * @mpol: struct mempolicy to install 2219 * @mpol: struct mempolicy to install
2213 * 2220 *
2214 * Install non-NULL @mpol in inode's shared policy rb-tree. 2221 * Install non-NULL @mpol in inode's shared policy rb-tree.
2215 * On entry, the current task has a reference on a non-NULL @mpol. 2222 * On entry, the current task has a reference on a non-NULL @mpol.
2216 * This must be released on exit. 2223 * This must be released on exit.
2217 * This is called at get_inode() calls and we can use GFP_KERNEL. 2224 * This is called at get_inode() calls and we can use GFP_KERNEL.
2218 */ 2225 */
2219 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2226 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2220 { 2227 {
2221 int ret; 2228 int ret;
2222 2229
2223 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2230 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2224 spin_lock_init(&sp->lock); 2231 spin_lock_init(&sp->lock);
2225 2232
2226 if (mpol) { 2233 if (mpol) {
2227 struct vm_area_struct pvma; 2234 struct vm_area_struct pvma;
2228 struct mempolicy *new; 2235 struct mempolicy *new;
2229 NODEMASK_SCRATCH(scratch); 2236 NODEMASK_SCRATCH(scratch);
2230 2237
2231 if (!scratch) 2238 if (!scratch)
2232 goto put_mpol; 2239 goto put_mpol;
2233 /* contextualize the tmpfs mount point mempolicy */ 2240 /* contextualize the tmpfs mount point mempolicy */
2234 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2241 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2235 if (IS_ERR(new)) 2242 if (IS_ERR(new))
2236 goto free_scratch; /* no valid nodemask intersection */ 2243 goto free_scratch; /* no valid nodemask intersection */
2237 2244
2238 task_lock(current); 2245 task_lock(current);
2239 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); 2246 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2240 task_unlock(current); 2247 task_unlock(current);
2241 if (ret) 2248 if (ret)
2242 goto put_new; 2249 goto put_new;
2243 2250
2244 /* Create pseudo-vma that contains just the policy */ 2251 /* Create pseudo-vma that contains just the policy */
2245 memset(&pvma, 0, sizeof(struct vm_area_struct)); 2252 memset(&pvma, 0, sizeof(struct vm_area_struct));
2246 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 2253 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2247 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 2254 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2248 2255
2249 put_new: 2256 put_new:
2250 mpol_put(new); /* drop initial ref */ 2257 mpol_put(new); /* drop initial ref */
2251 free_scratch: 2258 free_scratch:
2252 NODEMASK_SCRATCH_FREE(scratch); 2259 NODEMASK_SCRATCH_FREE(scratch);
2253 put_mpol: 2260 put_mpol:
2254 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2261 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2255 } 2262 }
2256 } 2263 }
2257 2264
2258 int mpol_set_shared_policy(struct shared_policy *info, 2265 int mpol_set_shared_policy(struct shared_policy *info,
2259 struct vm_area_struct *vma, struct mempolicy *npol) 2266 struct vm_area_struct *vma, struct mempolicy *npol)
2260 { 2267 {
2261 int err; 2268 int err;
2262 struct sp_node *new = NULL; 2269 struct sp_node *new = NULL;
2263 unsigned long sz = vma_pages(vma); 2270 unsigned long sz = vma_pages(vma);
2264 2271
2265 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 2272 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2266 vma->vm_pgoff, 2273 vma->vm_pgoff,
2267 sz, npol ? npol->mode : -1, 2274 sz, npol ? npol->mode : -1,
2268 npol ? npol->flags : -1, 2275 npol ? npol->flags : -1,
2269 npol ? nodes_addr(npol->v.nodes)[0] : -1); 2276 npol ? nodes_addr(npol->v.nodes)[0] : -1);
2270 2277
2271 if (npol) { 2278 if (npol) {
2272 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 2279 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2273 if (!new) 2280 if (!new)
2274 return -ENOMEM; 2281 return -ENOMEM;
2275 } 2282 }
2276 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 2283 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2277 if (err && new) 2284 if (err && new)
2278 kmem_cache_free(sn_cache, new); 2285 kmem_cache_free(sn_cache, new);
2279 return err; 2286 return err;
2280 } 2287 }
2281 2288
2282 /* Free a backing policy store on inode delete. */ 2289 /* Free a backing policy store on inode delete. */
2283 void mpol_free_shared_policy(struct shared_policy *p) 2290 void mpol_free_shared_policy(struct shared_policy *p)
2284 { 2291 {
2285 struct sp_node *n; 2292 struct sp_node *n;
2286 struct rb_node *next; 2293 struct rb_node *next;
2287 2294
2288 if (!p->root.rb_node) 2295 if (!p->root.rb_node)
2289 return; 2296 return;
2290 spin_lock(&p->lock); 2297 spin_lock(&p->lock);
2291 next = rb_first(&p->root); 2298 next = rb_first(&p->root);
2292 while (next) { 2299 while (next) {
2293 n = rb_entry(next, struct sp_node, nd); 2300 n = rb_entry(next, struct sp_node, nd);
2294 next = rb_next(&n->nd); 2301 next = rb_next(&n->nd);
2295 rb_erase(&n->nd, &p->root); 2302 rb_erase(&n->nd, &p->root);
2296 mpol_put(n->policy); 2303 mpol_put(n->policy);
2297 kmem_cache_free(sn_cache, n); 2304 kmem_cache_free(sn_cache, n);
2298 } 2305 }
2299 spin_unlock(&p->lock); 2306 spin_unlock(&p->lock);
2300 } 2307 }
2301 2308
2302 /* assumes fs == KERNEL_DS */ 2309 /* assumes fs == KERNEL_DS */
2303 void __init numa_policy_init(void) 2310 void __init numa_policy_init(void)
2304 { 2311 {
2305 nodemask_t interleave_nodes; 2312 nodemask_t interleave_nodes;
2306 unsigned long largest = 0; 2313 unsigned long largest = 0;
2307 int nid, prefer = 0; 2314 int nid, prefer = 0;
2308 2315
2309 policy_cache = kmem_cache_create("numa_policy", 2316 policy_cache = kmem_cache_create("numa_policy",
2310 sizeof(struct mempolicy), 2317 sizeof(struct mempolicy),
2311 0, SLAB_PANIC, NULL); 2318 0, SLAB_PANIC, NULL);
2312 2319
2313 sn_cache = kmem_cache_create("shared_policy_node", 2320 sn_cache = kmem_cache_create("shared_policy_node",
2314 sizeof(struct sp_node), 2321 sizeof(struct sp_node),
2315 0, SLAB_PANIC, NULL); 2322 0, SLAB_PANIC, NULL);
2316 2323
2317 /* 2324 /*
2318 * Set interleaving policy for system init. Interleaving is only 2325 * Set interleaving policy for system init. Interleaving is only
2319 * enabled across suitably sized nodes (default is >= 16MB), or 2326 * enabled across suitably sized nodes (default is >= 16MB), or
2320 * fall back to the largest node if they're all smaller. 2327 * fall back to the largest node if they're all smaller.
2321 */ 2328 */
2322 nodes_clear(interleave_nodes); 2329 nodes_clear(interleave_nodes);
2323 for_each_node_state(nid, N_HIGH_MEMORY) { 2330 for_each_node_state(nid, N_HIGH_MEMORY) {
2324 unsigned long total_pages = node_present_pages(nid); 2331 unsigned long total_pages = node_present_pages(nid);
2325 2332
2326 /* Preserve the largest node */ 2333 /* Preserve the largest node */
2327 if (largest < total_pages) { 2334 if (largest < total_pages) {
2328 largest = total_pages; 2335 largest = total_pages;
2329 prefer = nid; 2336 prefer = nid;
2330 } 2337 }
2331 2338
2332 /* Interleave this node? */ 2339 /* Interleave this node? */
2333 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2340 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2334 node_set(nid, interleave_nodes); 2341 node_set(nid, interleave_nodes);
2335 } 2342 }
2336 2343
2337 /* All too small, use the largest */ 2344 /* All too small, use the largest */
2338 if (unlikely(nodes_empty(interleave_nodes))) 2345 if (unlikely(nodes_empty(interleave_nodes)))
2339 node_set(prefer, interleave_nodes); 2346 node_set(prefer, interleave_nodes);
2340 2347
2341 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2348 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2342 printk("numa_policy_init: interleaving failed\n"); 2349 printk("numa_policy_init: interleaving failed\n");
2343 } 2350 }
2344 2351
2345 /* Reset policy of current process to default */ 2352 /* Reset policy of current process to default */
2346 void numa_default_policy(void) 2353 void numa_default_policy(void)
2347 { 2354 {
2348 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2355 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2349 } 2356 }
2350 2357
2351 /* 2358 /*
2352 * Parse and format mempolicy from/to strings 2359 * Parse and format mempolicy from/to strings
2353 */ 2360 */
2354 2361
2355 /* 2362 /*
2356 * "local" is pseudo-policy: MPOL_PREFERRED with MPOL_F_LOCAL flag 2363 * "local" is pseudo-policy: MPOL_PREFERRED with MPOL_F_LOCAL flag
2357 * Used only for mpol_parse_str() and mpol_to_str() 2364 * Used only for mpol_parse_str() and mpol_to_str()
2358 */ 2365 */
2359 #define MPOL_LOCAL MPOL_MAX 2366 #define MPOL_LOCAL MPOL_MAX
2360 static const char * const policy_modes[] = 2367 static const char * const policy_modes[] =
2361 { 2368 {
2362 [MPOL_DEFAULT] = "default", 2369 [MPOL_DEFAULT] = "default",
2363 [MPOL_PREFERRED] = "prefer", 2370 [MPOL_PREFERRED] = "prefer",
2364 [MPOL_BIND] = "bind", 2371 [MPOL_BIND] = "bind",
2365 [MPOL_INTERLEAVE] = "interleave", 2372 [MPOL_INTERLEAVE] = "interleave",
2366 [MPOL_LOCAL] = "local" 2373 [MPOL_LOCAL] = "local"
2367 }; 2374 };
2368 2375
2369 2376
2370 #ifdef CONFIG_TMPFS 2377 #ifdef CONFIG_TMPFS
2371 /** 2378 /**
2372 * mpol_parse_str - parse string to mempolicy 2379 * mpol_parse_str - parse string to mempolicy
2373 * @str: string containing mempolicy to parse 2380 * @str: string containing mempolicy to parse
2374 * @mpol: pointer to struct mempolicy pointer, returned on success. 2381 * @mpol: pointer to struct mempolicy pointer, returned on success.
2375 * @no_context: flag whether to "contextualize" the mempolicy 2382 * @no_context: flag whether to "contextualize" the mempolicy
2376 * 2383 *
2377 * Format of input: 2384 * Format of input:
2378 * <mode>[=<flags>][:<nodelist>] 2385 * <mode>[=<flags>][:<nodelist>]
2379 * 2386 *
2380 * if @no_context is true, save the input nodemask in w.user_nodemask in 2387 * if @no_context is true, save the input nodemask in w.user_nodemask in
2381 * the returned mempolicy. This will be used to "clone" the mempolicy in 2388 * the returned mempolicy. This will be used to "clone" the mempolicy in
2382 * a specific context [cpuset] at a later time. Used to parse tmpfs mpol 2389 * a specific context [cpuset] at a later time. Used to parse tmpfs mpol
2383 * mount option. Note that if 'static' or 'relative' mode flags were 2390 * mount option. Note that if 'static' or 'relative' mode flags were
2384 * specified, the input nodemask will already have been saved. Saving 2391 * specified, the input nodemask will already have been saved. Saving
2385 * it again is redundant, but safe. 2392 * it again is redundant, but safe.
2386 * 2393 *
2387 * On success, returns 0, else 1 2394 * On success, returns 0, else 1
2388 */ 2395 */
2389 int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context) 2396 int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
2390 { 2397 {
2391 struct mempolicy *new = NULL; 2398 struct mempolicy *new = NULL;
2392 unsigned short mode; 2399 unsigned short mode;
2393 unsigned short uninitialized_var(mode_flags); 2400 unsigned short uninitialized_var(mode_flags);
2394 nodemask_t nodes; 2401 nodemask_t nodes;
2395 char *nodelist = strchr(str, ':'); 2402 char *nodelist = strchr(str, ':');
2396 char *flags = strchr(str, '='); 2403 char *flags = strchr(str, '=');
2397 int err = 1; 2404 int err = 1;
2398 2405
2399 if (nodelist) { 2406 if (nodelist) {
2400 /* NUL-terminate mode or flags string */ 2407 /* NUL-terminate mode or flags string */
2401 *nodelist++ = '\0'; 2408 *nodelist++ = '\0';
2402 if (nodelist_parse(nodelist, nodes)) 2409 if (nodelist_parse(nodelist, nodes))
2403 goto out; 2410 goto out;
2404 if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY])) 2411 if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2405 goto out; 2412 goto out;
2406 } else 2413 } else
2407 nodes_clear(nodes); 2414 nodes_clear(nodes);
2408 2415
2409 if (flags) 2416 if (flags)
2410 *flags++ = '\0'; /* terminate mode string */ 2417 *flags++ = '\0'; /* terminate mode string */
2411 2418
2412 for (mode = 0; mode <= MPOL_LOCAL; mode++) { 2419 for (mode = 0; mode <= MPOL_LOCAL; mode++) {
2413 if (!strcmp(str, policy_modes[mode])) { 2420 if (!strcmp(str, policy_modes[mode])) {
2414 break; 2421 break;
2415 } 2422 }
2416 } 2423 }
2417 if (mode > MPOL_LOCAL) 2424 if (mode > MPOL_LOCAL)
2418 goto out; 2425 goto out;
2419 2426
2420 switch (mode) { 2427 switch (mode) {
2421 case MPOL_PREFERRED: 2428 case MPOL_PREFERRED:
2422 /* 2429 /*
2423 * Insist on a nodelist of one node only 2430 * Insist on a nodelist of one node only
2424 */ 2431 */
2425 if (nodelist) { 2432 if (nodelist) {
2426 char *rest = nodelist; 2433 char *rest = nodelist;
2427 while (isdigit(*rest)) 2434 while (isdigit(*rest))
2428 rest++; 2435 rest++;
2429 if (*rest) 2436 if (*rest)
2430 goto out; 2437 goto out;
2431 } 2438 }
2432 break; 2439 break;
2433 case MPOL_INTERLEAVE: 2440 case MPOL_INTERLEAVE:
2434 /* 2441 /*
2435 * Default to online nodes with memory if no nodelist 2442 * Default to online nodes with memory if no nodelist
2436 */ 2443 */
2437 if (!nodelist) 2444 if (!nodelist)
2438 nodes = node_states[N_HIGH_MEMORY]; 2445 nodes = node_states[N_HIGH_MEMORY];
2439 break; 2446 break;
2440 case MPOL_LOCAL: 2447 case MPOL_LOCAL:
2441 /* 2448 /*
2442 * Don't allow a nodelist; mpol_new() checks flags 2449 * Don't allow a nodelist; mpol_new() checks flags
2443 */ 2450 */
2444 if (nodelist) 2451 if (nodelist)
2445 goto out; 2452 goto out;
2446 mode = MPOL_PREFERRED; 2453 mode = MPOL_PREFERRED;
2447 break; 2454 break;
2448 case MPOL_DEFAULT: 2455 case MPOL_DEFAULT:
2449 /* 2456 /*
2450 * Insist on a empty nodelist 2457 * Insist on a empty nodelist
2451 */ 2458 */
2452 if (!nodelist) 2459 if (!nodelist)
2453 err = 0; 2460 err = 0;
2454 goto out; 2461 goto out;
2455 case MPOL_BIND: 2462 case MPOL_BIND:
2456 /* 2463 /*
2457 * Insist on a nodelist 2464 * Insist on a nodelist
2458 */ 2465 */
2459 if (!nodelist) 2466 if (!nodelist)
2460 goto out; 2467 goto out;
2461 } 2468 }
2462 2469
2463 mode_flags = 0; 2470 mode_flags = 0;
2464 if (flags) { 2471 if (flags) {
2465 /* 2472 /*
2466 * Currently, we only support two mutually exclusive 2473 * Currently, we only support two mutually exclusive
2467 * mode flags. 2474 * mode flags.
2468 */ 2475 */
2469 if (!strcmp(flags, "static")) 2476 if (!strcmp(flags, "static"))
2470 mode_flags |= MPOL_F_STATIC_NODES; 2477 mode_flags |= MPOL_F_STATIC_NODES;
2471 else if (!strcmp(flags, "relative")) 2478 else if (!strcmp(flags, "relative"))
2472 mode_flags |= MPOL_F_RELATIVE_NODES; 2479 mode_flags |= MPOL_F_RELATIVE_NODES;
2473 else 2480 else
2474 goto out; 2481 goto out;
2475 } 2482 }
2476 2483
2477 new = mpol_new(mode, mode_flags, &nodes); 2484 new = mpol_new(mode, mode_flags, &nodes);
2478 if (IS_ERR(new)) 2485 if (IS_ERR(new))
2479 goto out; 2486 goto out;
2480 2487
2481 if (no_context) { 2488 if (no_context) {
2482 /* save for contextualization */ 2489 /* save for contextualization */
2483 new->w.user_nodemask = nodes; 2490 new->w.user_nodemask = nodes;
2484 } else { 2491 } else {
2485 int ret; 2492 int ret;
2486 NODEMASK_SCRATCH(scratch); 2493 NODEMASK_SCRATCH(scratch);
2487 if (scratch) { 2494 if (scratch) {
2488 task_lock(current); 2495 task_lock(current);
2489 ret = mpol_set_nodemask(new, &nodes, scratch); 2496 ret = mpol_set_nodemask(new, &nodes, scratch);
2490 task_unlock(current); 2497 task_unlock(current);
2491 } else 2498 } else
2492 ret = -ENOMEM; 2499 ret = -ENOMEM;
2493 NODEMASK_SCRATCH_FREE(scratch); 2500 NODEMASK_SCRATCH_FREE(scratch);
2494 if (ret) { 2501 if (ret) {
2495 mpol_put(new); 2502 mpol_put(new);
2496 goto out; 2503 goto out;
2497 } 2504 }
2498 } 2505 }
2499 err = 0; 2506 err = 0;
2500 2507
2501 out: 2508 out:
2502 /* Restore string for error message */ 2509 /* Restore string for error message */
2503 if (nodelist) 2510 if (nodelist)
2504 *--nodelist = ':'; 2511 *--nodelist = ':';
2505 if (flags) 2512 if (flags)
2506 *--flags = '='; 2513 *--flags = '=';
2507 if (!err) 2514 if (!err)
2508 *mpol = new; 2515 *mpol = new;
2509 return err; 2516 return err;
2510 } 2517 }
2511 #endif /* CONFIG_TMPFS */ 2518 #endif /* CONFIG_TMPFS */
2512 2519
2513 /** 2520 /**
2514 * mpol_to_str - format a mempolicy structure for printing 2521 * mpol_to_str - format a mempolicy structure for printing
2515 * @buffer: to contain formatted mempolicy string 2522 * @buffer: to contain formatted mempolicy string
2516 * @maxlen: length of @buffer 2523 * @maxlen: length of @buffer
2517 * @pol: pointer to mempolicy to be formatted 2524 * @pol: pointer to mempolicy to be formatted
2518 * @no_context: "context free" mempolicy - use nodemask in w.user_nodemask 2525 * @no_context: "context free" mempolicy - use nodemask in w.user_nodemask
2519 * 2526 *
2520 * Convert a mempolicy into a string. 2527 * Convert a mempolicy into a string.
2521 * Returns the number of characters in buffer (if positive) 2528 * Returns the number of characters in buffer (if positive)
2522 * or an error (negative) 2529 * or an error (negative)
2523 */ 2530 */
2524 int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context) 2531 int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2525 { 2532 {
2526 char *p = buffer; 2533 char *p = buffer;
2527 int l; 2534 int l;
2528 nodemask_t nodes; 2535 nodemask_t nodes;
2529 unsigned short mode; 2536 unsigned short mode;
2530 unsigned short flags = pol ? pol->flags : 0; 2537 unsigned short flags = pol ? pol->flags : 0;
2531 2538
2532 /* 2539 /*
2533 * Sanity check: room for longest mode, flag and some nodes 2540 * Sanity check: room for longest mode, flag and some nodes
2534 */ 2541 */
2535 VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16); 2542 VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2536 2543
2537 if (!pol || pol == &default_policy) 2544 if (!pol || pol == &default_policy)
2538 mode = MPOL_DEFAULT; 2545 mode = MPOL_DEFAULT;
2539 else 2546 else
2540 mode = pol->mode; 2547 mode = pol->mode;
2541 2548
2542 switch (mode) { 2549 switch (mode) {
2543 case MPOL_DEFAULT: 2550 case MPOL_DEFAULT:
2544 nodes_clear(nodes); 2551 nodes_clear(nodes);
2545 break; 2552 break;
2546 2553
2547 case MPOL_PREFERRED: 2554 case MPOL_PREFERRED:
2548 nodes_clear(nodes); 2555 nodes_clear(nodes);
2549 if (flags & MPOL_F_LOCAL) 2556 if (flags & MPOL_F_LOCAL)
2550 mode = MPOL_LOCAL; /* pseudo-policy */ 2557 mode = MPOL_LOCAL; /* pseudo-policy */
2551 else 2558 else
2552 node_set(pol->v.preferred_node, nodes); 2559 node_set(pol->v.preferred_node, nodes);
2553 break; 2560 break;
2554 2561
2555 case MPOL_BIND: 2562 case MPOL_BIND:
2556 /* Fall through */ 2563 /* Fall through */
2557 case MPOL_INTERLEAVE: 2564 case MPOL_INTERLEAVE:
2558 if (no_context) 2565 if (no_context)
2559 nodes = pol->w.user_nodemask; 2566 nodes = pol->w.user_nodemask;
2560 else 2567 else
2561 nodes = pol->v.nodes; 2568 nodes = pol->v.nodes;
2562 break; 2569 break;
2563 2570
2564 default: 2571 default:
2565 return -EINVAL; 2572 return -EINVAL;
2566 } 2573 }
2567 2574
2568 l = strlen(policy_modes[mode]); 2575 l = strlen(policy_modes[mode]);
2569 if (buffer + maxlen < p + l + 1) 2576 if (buffer + maxlen < p + l + 1)
2570 return -ENOSPC; 2577 return -ENOSPC;
2571 2578
2572 strcpy(p, policy_modes[mode]); 2579 strcpy(p, policy_modes[mode]);
2573 p += l; 2580 p += l;
2574 2581
2575 if (flags & MPOL_MODE_FLAGS) { 2582 if (flags & MPOL_MODE_FLAGS) {
2576 if (buffer + maxlen < p + 2) 2583 if (buffer + maxlen < p + 2)
2577 return -ENOSPC; 2584 return -ENOSPC;
2578 *p++ = '='; 2585 *p++ = '=';
2579 2586
2580 /* 2587 /*
2581 * Currently, the only defined flags are mutually exclusive 2588 * Currently, the only defined flags are mutually exclusive
2582 */ 2589 */
2583 if (flags & MPOL_F_STATIC_NODES) 2590 if (flags & MPOL_F_STATIC_NODES)