Commit 92562927826fceb2f8e69c89e28161b8c1e0b125

Authored by Mimi Zohar
Committed by James Morris
1 parent 93db628658

integrity: special fs magic

Discussion on the mailing list questioned the use of these
magic values in userspace, concluding these values are already
exported to userspace via statfs and their correct/incorrect
usage is left up to the userspace application.

  - Move special fs magic number definitions to magic.h
  - Add magic.h include

Signed-off-by: Mimi Zohar <zohar@us.ibm.com>
Reviewed-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>

Showing 4 changed files with 7 additions and 7 deletions Inline Diff

1 /* 1 /*
2 * file.c - part of debugfs, a tiny little debug file system 2 * file.c - part of debugfs, a tiny little debug file system
3 * 3 *
4 * Copyright (C) 2004 Greg Kroah-Hartman <greg@kroah.com> 4 * Copyright (C) 2004 Greg Kroah-Hartman <greg@kroah.com>
5 * Copyright (C) 2004 IBM Inc. 5 * Copyright (C) 2004 IBM Inc.
6 * 6 *
7 * This program is free software; you can redistribute it and/or 7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License version 8 * modify it under the terms of the GNU General Public License version
9 * 2 as published by the Free Software Foundation. 9 * 2 as published by the Free Software Foundation.
10 * 10 *
11 * debugfs is for people to use instead of /proc or /sys. 11 * debugfs is for people to use instead of /proc or /sys.
12 * See Documentation/DocBook/kernel-api for more details. 12 * See Documentation/DocBook/kernel-api for more details.
13 * 13 *
14 */ 14 */
15 15
16 /* uncomment to get debug messages from the debug filesystem, ah the irony. */ 16 /* uncomment to get debug messages from the debug filesystem, ah the irony. */
17 /* #define DEBUG */ 17 /* #define DEBUG */
18 18
19 #include <linux/module.h> 19 #include <linux/module.h>
20 #include <linux/fs.h> 20 #include <linux/fs.h>
21 #include <linux/mount.h> 21 #include <linux/mount.h>
22 #include <linux/pagemap.h> 22 #include <linux/pagemap.h>
23 #include <linux/init.h> 23 #include <linux/init.h>
24 #include <linux/kobject.h> 24 #include <linux/kobject.h>
25 #include <linux/namei.h> 25 #include <linux/namei.h>
26 #include <linux/debugfs.h> 26 #include <linux/debugfs.h>
27 #include <linux/fsnotify.h> 27 #include <linux/fsnotify.h>
28 #include <linux/string.h> 28 #include <linux/string.h>
29 29 #include <linux/magic.h>
30 #define DEBUGFS_MAGIC 0x64626720
31 30
32 static struct vfsmount *debugfs_mount; 31 static struct vfsmount *debugfs_mount;
33 static int debugfs_mount_count; 32 static int debugfs_mount_count;
34 33
35 static struct inode *debugfs_get_inode(struct super_block *sb, int mode, dev_t dev) 34 static struct inode *debugfs_get_inode(struct super_block *sb, int mode, dev_t dev)
36 { 35 {
37 struct inode *inode = new_inode(sb); 36 struct inode *inode = new_inode(sb);
38 37
39 if (inode) { 38 if (inode) {
40 inode->i_mode = mode; 39 inode->i_mode = mode;
41 inode->i_uid = 0; 40 inode->i_uid = 0;
42 inode->i_gid = 0; 41 inode->i_gid = 0;
43 inode->i_blocks = 0; 42 inode->i_blocks = 0;
44 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 43 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
45 switch (mode & S_IFMT) { 44 switch (mode & S_IFMT) {
46 default: 45 default:
47 init_special_inode(inode, mode, dev); 46 init_special_inode(inode, mode, dev);
48 break; 47 break;
49 case S_IFREG: 48 case S_IFREG:
50 inode->i_fop = &debugfs_file_operations; 49 inode->i_fop = &debugfs_file_operations;
51 break; 50 break;
52 case S_IFLNK: 51 case S_IFLNK:
53 inode->i_op = &debugfs_link_operations; 52 inode->i_op = &debugfs_link_operations;
54 break; 53 break;
55 case S_IFDIR: 54 case S_IFDIR:
56 inode->i_op = &simple_dir_inode_operations; 55 inode->i_op = &simple_dir_inode_operations;
57 inode->i_fop = &simple_dir_operations; 56 inode->i_fop = &simple_dir_operations;
58 57
59 /* directory inodes start off with i_nlink == 2 58 /* directory inodes start off with i_nlink == 2
60 * (for "." entry) */ 59 * (for "." entry) */
61 inc_nlink(inode); 60 inc_nlink(inode);
62 break; 61 break;
63 } 62 }
64 } 63 }
65 return inode; 64 return inode;
66 } 65 }
67 66
68 /* SMP-safe */ 67 /* SMP-safe */
69 static int debugfs_mknod(struct inode *dir, struct dentry *dentry, 68 static int debugfs_mknod(struct inode *dir, struct dentry *dentry,
70 int mode, dev_t dev) 69 int mode, dev_t dev)
71 { 70 {
72 struct inode *inode; 71 struct inode *inode;
73 int error = -EPERM; 72 int error = -EPERM;
74 73
75 if (dentry->d_inode) 74 if (dentry->d_inode)
76 return -EEXIST; 75 return -EEXIST;
77 76
78 inode = debugfs_get_inode(dir->i_sb, mode, dev); 77 inode = debugfs_get_inode(dir->i_sb, mode, dev);
79 if (inode) { 78 if (inode) {
80 d_instantiate(dentry, inode); 79 d_instantiate(dentry, inode);
81 dget(dentry); 80 dget(dentry);
82 error = 0; 81 error = 0;
83 } 82 }
84 return error; 83 return error;
85 } 84 }
86 85
87 static int debugfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 86 static int debugfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
88 { 87 {
89 int res; 88 int res;
90 89
91 mode = (mode & (S_IRWXUGO | S_ISVTX)) | S_IFDIR; 90 mode = (mode & (S_IRWXUGO | S_ISVTX)) | S_IFDIR;
92 res = debugfs_mknod(dir, dentry, mode, 0); 91 res = debugfs_mknod(dir, dentry, mode, 0);
93 if (!res) { 92 if (!res) {
94 inc_nlink(dir); 93 inc_nlink(dir);
95 fsnotify_mkdir(dir, dentry); 94 fsnotify_mkdir(dir, dentry);
96 } 95 }
97 return res; 96 return res;
98 } 97 }
99 98
100 static int debugfs_link(struct inode *dir, struct dentry *dentry, int mode) 99 static int debugfs_link(struct inode *dir, struct dentry *dentry, int mode)
101 { 100 {
102 mode = (mode & S_IALLUGO) | S_IFLNK; 101 mode = (mode & S_IALLUGO) | S_IFLNK;
103 return debugfs_mknod(dir, dentry, mode, 0); 102 return debugfs_mknod(dir, dentry, mode, 0);
104 } 103 }
105 104
106 static int debugfs_create(struct inode *dir, struct dentry *dentry, int mode) 105 static int debugfs_create(struct inode *dir, struct dentry *dentry, int mode)
107 { 106 {
108 int res; 107 int res;
109 108
110 mode = (mode & S_IALLUGO) | S_IFREG; 109 mode = (mode & S_IALLUGO) | S_IFREG;
111 res = debugfs_mknod(dir, dentry, mode, 0); 110 res = debugfs_mknod(dir, dentry, mode, 0);
112 if (!res) 111 if (!res)
113 fsnotify_create(dir, dentry); 112 fsnotify_create(dir, dentry);
114 return res; 113 return res;
115 } 114 }
116 115
117 static inline int debugfs_positive(struct dentry *dentry) 116 static inline int debugfs_positive(struct dentry *dentry)
118 { 117 {
119 return dentry->d_inode && !d_unhashed(dentry); 118 return dentry->d_inode && !d_unhashed(dentry);
120 } 119 }
121 120
122 static int debug_fill_super(struct super_block *sb, void *data, int silent) 121 static int debug_fill_super(struct super_block *sb, void *data, int silent)
123 { 122 {
124 static struct tree_descr debug_files[] = {{""}}; 123 static struct tree_descr debug_files[] = {{""}};
125 124
126 return simple_fill_super(sb, DEBUGFS_MAGIC, debug_files); 125 return simple_fill_super(sb, DEBUGFS_MAGIC, debug_files);
127 } 126 }
128 127
129 static int debug_get_sb(struct file_system_type *fs_type, 128 static int debug_get_sb(struct file_system_type *fs_type,
130 int flags, const char *dev_name, 129 int flags, const char *dev_name,
131 void *data, struct vfsmount *mnt) 130 void *data, struct vfsmount *mnt)
132 { 131 {
133 return get_sb_single(fs_type, flags, data, debug_fill_super, mnt); 132 return get_sb_single(fs_type, flags, data, debug_fill_super, mnt);
134 } 133 }
135 134
136 static struct file_system_type debug_fs_type = { 135 static struct file_system_type debug_fs_type = {
137 .owner = THIS_MODULE, 136 .owner = THIS_MODULE,
138 .name = "debugfs", 137 .name = "debugfs",
139 .get_sb = debug_get_sb, 138 .get_sb = debug_get_sb,
140 .kill_sb = kill_litter_super, 139 .kill_sb = kill_litter_super,
141 }; 140 };
142 141
143 static int debugfs_create_by_name(const char *name, mode_t mode, 142 static int debugfs_create_by_name(const char *name, mode_t mode,
144 struct dentry *parent, 143 struct dentry *parent,
145 struct dentry **dentry) 144 struct dentry **dentry)
146 { 145 {
147 int error = 0; 146 int error = 0;
148 147
149 /* If the parent is not specified, we create it in the root. 148 /* If the parent is not specified, we create it in the root.
150 * We need the root dentry to do this, which is in the super 149 * We need the root dentry to do this, which is in the super
151 * block. A pointer to that is in the struct vfsmount that we 150 * block. A pointer to that is in the struct vfsmount that we
152 * have around. 151 * have around.
153 */ 152 */
154 if (!parent) { 153 if (!parent) {
155 if (debugfs_mount && debugfs_mount->mnt_sb) { 154 if (debugfs_mount && debugfs_mount->mnt_sb) {
156 parent = debugfs_mount->mnt_sb->s_root; 155 parent = debugfs_mount->mnt_sb->s_root;
157 } 156 }
158 } 157 }
159 if (!parent) { 158 if (!parent) {
160 pr_debug("debugfs: Ah! can not find a parent!\n"); 159 pr_debug("debugfs: Ah! can not find a parent!\n");
161 return -EFAULT; 160 return -EFAULT;
162 } 161 }
163 162
164 *dentry = NULL; 163 *dentry = NULL;
165 mutex_lock(&parent->d_inode->i_mutex); 164 mutex_lock(&parent->d_inode->i_mutex);
166 *dentry = lookup_one_len(name, parent, strlen(name)); 165 *dentry = lookup_one_len(name, parent, strlen(name));
167 if (!IS_ERR(*dentry)) { 166 if (!IS_ERR(*dentry)) {
168 switch (mode & S_IFMT) { 167 switch (mode & S_IFMT) {
169 case S_IFDIR: 168 case S_IFDIR:
170 error = debugfs_mkdir(parent->d_inode, *dentry, mode); 169 error = debugfs_mkdir(parent->d_inode, *dentry, mode);
171 break; 170 break;
172 case S_IFLNK: 171 case S_IFLNK:
173 error = debugfs_link(parent->d_inode, *dentry, mode); 172 error = debugfs_link(parent->d_inode, *dentry, mode);
174 break; 173 break;
175 default: 174 default:
176 error = debugfs_create(parent->d_inode, *dentry, mode); 175 error = debugfs_create(parent->d_inode, *dentry, mode);
177 break; 176 break;
178 } 177 }
179 dput(*dentry); 178 dput(*dentry);
180 } else 179 } else
181 error = PTR_ERR(*dentry); 180 error = PTR_ERR(*dentry);
182 mutex_unlock(&parent->d_inode->i_mutex); 181 mutex_unlock(&parent->d_inode->i_mutex);
183 182
184 return error; 183 return error;
185 } 184 }
186 185
187 /** 186 /**
188 * debugfs_create_file - create a file in the debugfs filesystem 187 * debugfs_create_file - create a file in the debugfs filesystem
189 * @name: a pointer to a string containing the name of the file to create. 188 * @name: a pointer to a string containing the name of the file to create.
190 * @mode: the permission that the file should have 189 * @mode: the permission that the file should have
191 * @parent: a pointer to the parent dentry for this file. This should be a 190 * @parent: a pointer to the parent dentry for this file. This should be a
192 * directory dentry if set. If this paramater is NULL, then the 191 * directory dentry if set. If this paramater is NULL, then the
193 * file will be created in the root of the debugfs filesystem. 192 * file will be created in the root of the debugfs filesystem.
194 * @data: a pointer to something that the caller will want to get to later 193 * @data: a pointer to something that the caller will want to get to later
195 * on. The inode.i_private pointer will point to this value on 194 * on. The inode.i_private pointer will point to this value on
196 * the open() call. 195 * the open() call.
197 * @fops: a pointer to a struct file_operations that should be used for 196 * @fops: a pointer to a struct file_operations that should be used for
198 * this file. 197 * this file.
199 * 198 *
200 * This is the basic "create a file" function for debugfs. It allows for a 199 * This is the basic "create a file" function for debugfs. It allows for a
201 * wide range of flexibility in createing a file, or a directory (if you 200 * wide range of flexibility in createing a file, or a directory (if you
202 * want to create a directory, the debugfs_create_dir() function is 201 * want to create a directory, the debugfs_create_dir() function is
203 * recommended to be used instead.) 202 * recommended to be used instead.)
204 * 203 *
205 * This function will return a pointer to a dentry if it succeeds. This 204 * This function will return a pointer to a dentry if it succeeds. This
206 * pointer must be passed to the debugfs_remove() function when the file is 205 * pointer must be passed to the debugfs_remove() function when the file is
207 * to be removed (no automatic cleanup happens if your module is unloaded, 206 * to be removed (no automatic cleanup happens if your module is unloaded,
208 * you are responsible here.) If an error occurs, %NULL will be returned. 207 * you are responsible here.) If an error occurs, %NULL will be returned.
209 * 208 *
210 * If debugfs is not enabled in the kernel, the value -%ENODEV will be 209 * If debugfs is not enabled in the kernel, the value -%ENODEV will be
211 * returned. 210 * returned.
212 */ 211 */
213 struct dentry *debugfs_create_file(const char *name, mode_t mode, 212 struct dentry *debugfs_create_file(const char *name, mode_t mode,
214 struct dentry *parent, void *data, 213 struct dentry *parent, void *data,
215 const struct file_operations *fops) 214 const struct file_operations *fops)
216 { 215 {
217 struct dentry *dentry = NULL; 216 struct dentry *dentry = NULL;
218 int error; 217 int error;
219 218
220 pr_debug("debugfs: creating file '%s'\n",name); 219 pr_debug("debugfs: creating file '%s'\n",name);
221 220
222 error = simple_pin_fs(&debug_fs_type, &debugfs_mount, 221 error = simple_pin_fs(&debug_fs_type, &debugfs_mount,
223 &debugfs_mount_count); 222 &debugfs_mount_count);
224 if (error) 223 if (error)
225 goto exit; 224 goto exit;
226 225
227 error = debugfs_create_by_name(name, mode, parent, &dentry); 226 error = debugfs_create_by_name(name, mode, parent, &dentry);
228 if (error) { 227 if (error) {
229 dentry = NULL; 228 dentry = NULL;
230 simple_release_fs(&debugfs_mount, &debugfs_mount_count); 229 simple_release_fs(&debugfs_mount, &debugfs_mount_count);
231 goto exit; 230 goto exit;
232 } 231 }
233 232
234 if (dentry->d_inode) { 233 if (dentry->d_inode) {
235 if (data) 234 if (data)
236 dentry->d_inode->i_private = data; 235 dentry->d_inode->i_private = data;
237 if (fops) 236 if (fops)
238 dentry->d_inode->i_fop = fops; 237 dentry->d_inode->i_fop = fops;
239 } 238 }
240 exit: 239 exit:
241 return dentry; 240 return dentry;
242 } 241 }
243 EXPORT_SYMBOL_GPL(debugfs_create_file); 242 EXPORT_SYMBOL_GPL(debugfs_create_file);
244 243
245 /** 244 /**
246 * debugfs_create_dir - create a directory in the debugfs filesystem 245 * debugfs_create_dir - create a directory in the debugfs filesystem
247 * @name: a pointer to a string containing the name of the directory to 246 * @name: a pointer to a string containing the name of the directory to
248 * create. 247 * create.
249 * @parent: a pointer to the parent dentry for this file. This should be a 248 * @parent: a pointer to the parent dentry for this file. This should be a
250 * directory dentry if set. If this paramater is NULL, then the 249 * directory dentry if set. If this paramater is NULL, then the
251 * directory will be created in the root of the debugfs filesystem. 250 * directory will be created in the root of the debugfs filesystem.
252 * 251 *
253 * This function creates a directory in debugfs with the given name. 252 * This function creates a directory in debugfs with the given name.
254 * 253 *
255 * This function will return a pointer to a dentry if it succeeds. This 254 * This function will return a pointer to a dentry if it succeeds. This
256 * pointer must be passed to the debugfs_remove() function when the file is 255 * pointer must be passed to the debugfs_remove() function when the file is
257 * to be removed (no automatic cleanup happens if your module is unloaded, 256 * to be removed (no automatic cleanup happens if your module is unloaded,
258 * you are responsible here.) If an error occurs, %NULL will be returned. 257 * you are responsible here.) If an error occurs, %NULL will be returned.
259 * 258 *
260 * If debugfs is not enabled in the kernel, the value -%ENODEV will be 259 * If debugfs is not enabled in the kernel, the value -%ENODEV will be
261 * returned. 260 * returned.
262 */ 261 */
263 struct dentry *debugfs_create_dir(const char *name, struct dentry *parent) 262 struct dentry *debugfs_create_dir(const char *name, struct dentry *parent)
264 { 263 {
265 return debugfs_create_file(name, 264 return debugfs_create_file(name,
266 S_IFDIR | S_IRWXU | S_IRUGO | S_IXUGO, 265 S_IFDIR | S_IRWXU | S_IRUGO | S_IXUGO,
267 parent, NULL, NULL); 266 parent, NULL, NULL);
268 } 267 }
269 EXPORT_SYMBOL_GPL(debugfs_create_dir); 268 EXPORT_SYMBOL_GPL(debugfs_create_dir);
270 269
271 /** 270 /**
272 * debugfs_create_symlink- create a symbolic link in the debugfs filesystem 271 * debugfs_create_symlink- create a symbolic link in the debugfs filesystem
273 * @name: a pointer to a string containing the name of the symbolic link to 272 * @name: a pointer to a string containing the name of the symbolic link to
274 * create. 273 * create.
275 * @parent: a pointer to the parent dentry for this symbolic link. This 274 * @parent: a pointer to the parent dentry for this symbolic link. This
276 * should be a directory dentry if set. If this paramater is NULL, 275 * should be a directory dentry if set. If this paramater is NULL,
277 * then the symbolic link will be created in the root of the debugfs 276 * then the symbolic link will be created in the root of the debugfs
278 * filesystem. 277 * filesystem.
279 * @target: a pointer to a string containing the path to the target of the 278 * @target: a pointer to a string containing the path to the target of the
280 * symbolic link. 279 * symbolic link.
281 * 280 *
282 * This function creates a symbolic link with the given name in debugfs that 281 * This function creates a symbolic link with the given name in debugfs that
283 * links to the given target path. 282 * links to the given target path.
284 * 283 *
285 * This function will return a pointer to a dentry if it succeeds. This 284 * This function will return a pointer to a dentry if it succeeds. This
286 * pointer must be passed to the debugfs_remove() function when the symbolic 285 * pointer must be passed to the debugfs_remove() function when the symbolic
287 * link is to be removed (no automatic cleanup happens if your module is 286 * link is to be removed (no automatic cleanup happens if your module is
288 * unloaded, you are responsible here.) If an error occurs, %NULL will be 287 * unloaded, you are responsible here.) If an error occurs, %NULL will be
289 * returned. 288 * returned.
290 * 289 *
291 * If debugfs is not enabled in the kernel, the value -%ENODEV will be 290 * If debugfs is not enabled in the kernel, the value -%ENODEV will be
292 * returned. 291 * returned.
293 */ 292 */
294 struct dentry *debugfs_create_symlink(const char *name, struct dentry *parent, 293 struct dentry *debugfs_create_symlink(const char *name, struct dentry *parent,
295 const char *target) 294 const char *target)
296 { 295 {
297 struct dentry *result; 296 struct dentry *result;
298 char *link; 297 char *link;
299 298
300 link = kstrdup(target, GFP_KERNEL); 299 link = kstrdup(target, GFP_KERNEL);
301 if (!link) 300 if (!link)
302 return NULL; 301 return NULL;
303 302
304 result = debugfs_create_file(name, S_IFLNK | S_IRWXUGO, parent, link, 303 result = debugfs_create_file(name, S_IFLNK | S_IRWXUGO, parent, link,
305 NULL); 304 NULL);
306 if (!result) 305 if (!result)
307 kfree(link); 306 kfree(link);
308 return result; 307 return result;
309 } 308 }
310 EXPORT_SYMBOL_GPL(debugfs_create_symlink); 309 EXPORT_SYMBOL_GPL(debugfs_create_symlink);
311 310
312 static void __debugfs_remove(struct dentry *dentry, struct dentry *parent) 311 static void __debugfs_remove(struct dentry *dentry, struct dentry *parent)
313 { 312 {
314 int ret = 0; 313 int ret = 0;
315 314
316 if (debugfs_positive(dentry)) { 315 if (debugfs_positive(dentry)) {
317 if (dentry->d_inode) { 316 if (dentry->d_inode) {
318 dget(dentry); 317 dget(dentry);
319 switch (dentry->d_inode->i_mode & S_IFMT) { 318 switch (dentry->d_inode->i_mode & S_IFMT) {
320 case S_IFDIR: 319 case S_IFDIR:
321 ret = simple_rmdir(parent->d_inode, dentry); 320 ret = simple_rmdir(parent->d_inode, dentry);
322 break; 321 break;
323 case S_IFLNK: 322 case S_IFLNK:
324 kfree(dentry->d_inode->i_private); 323 kfree(dentry->d_inode->i_private);
325 /* fall through */ 324 /* fall through */
326 default: 325 default:
327 simple_unlink(parent->d_inode, dentry); 326 simple_unlink(parent->d_inode, dentry);
328 break; 327 break;
329 } 328 }
330 if (!ret) 329 if (!ret)
331 d_delete(dentry); 330 d_delete(dentry);
332 dput(dentry); 331 dput(dentry);
333 } 332 }
334 } 333 }
335 } 334 }
336 335
337 /** 336 /**
338 * debugfs_remove - removes a file or directory from the debugfs filesystem 337 * debugfs_remove - removes a file or directory from the debugfs filesystem
339 * @dentry: a pointer to a the dentry of the file or directory to be 338 * @dentry: a pointer to a the dentry of the file or directory to be
340 * removed. 339 * removed.
341 * 340 *
342 * This function removes a file or directory in debugfs that was previously 341 * This function removes a file or directory in debugfs that was previously
343 * created with a call to another debugfs function (like 342 * created with a call to another debugfs function (like
344 * debugfs_create_file() or variants thereof.) 343 * debugfs_create_file() or variants thereof.)
345 * 344 *
346 * This function is required to be called in order for the file to be 345 * This function is required to be called in order for the file to be
347 * removed, no automatic cleanup of files will happen when a module is 346 * removed, no automatic cleanup of files will happen when a module is
348 * removed, you are responsible here. 347 * removed, you are responsible here.
349 */ 348 */
350 void debugfs_remove(struct dentry *dentry) 349 void debugfs_remove(struct dentry *dentry)
351 { 350 {
352 struct dentry *parent; 351 struct dentry *parent;
353 352
354 if (!dentry) 353 if (!dentry)
355 return; 354 return;
356 355
357 parent = dentry->d_parent; 356 parent = dentry->d_parent;
358 if (!parent || !parent->d_inode) 357 if (!parent || !parent->d_inode)
359 return; 358 return;
360 359
361 mutex_lock(&parent->d_inode->i_mutex); 360 mutex_lock(&parent->d_inode->i_mutex);
362 __debugfs_remove(dentry, parent); 361 __debugfs_remove(dentry, parent);
363 mutex_unlock(&parent->d_inode->i_mutex); 362 mutex_unlock(&parent->d_inode->i_mutex);
364 simple_release_fs(&debugfs_mount, &debugfs_mount_count); 363 simple_release_fs(&debugfs_mount, &debugfs_mount_count);
365 } 364 }
366 EXPORT_SYMBOL_GPL(debugfs_remove); 365 EXPORT_SYMBOL_GPL(debugfs_remove);
367 366
368 /** 367 /**
369 * debugfs_remove_recursive - recursively removes a directory 368 * debugfs_remove_recursive - recursively removes a directory
370 * @dentry: a pointer to a the dentry of the directory to be removed. 369 * @dentry: a pointer to a the dentry of the directory to be removed.
371 * 370 *
372 * This function recursively removes a directory tree in debugfs that 371 * This function recursively removes a directory tree in debugfs that
373 * was previously created with a call to another debugfs function 372 * was previously created with a call to another debugfs function
374 * (like debugfs_create_file() or variants thereof.) 373 * (like debugfs_create_file() or variants thereof.)
375 * 374 *
376 * This function is required to be called in order for the file to be 375 * This function is required to be called in order for the file to be
377 * removed, no automatic cleanup of files will happen when a module is 376 * removed, no automatic cleanup of files will happen when a module is
378 * removed, you are responsible here. 377 * removed, you are responsible here.
379 */ 378 */
380 void debugfs_remove_recursive(struct dentry *dentry) 379 void debugfs_remove_recursive(struct dentry *dentry)
381 { 380 {
382 struct dentry *child; 381 struct dentry *child;
383 struct dentry *parent; 382 struct dentry *parent;
384 383
385 if (!dentry) 384 if (!dentry)
386 return; 385 return;
387 386
388 parent = dentry->d_parent; 387 parent = dentry->d_parent;
389 if (!parent || !parent->d_inode) 388 if (!parent || !parent->d_inode)
390 return; 389 return;
391 390
392 parent = dentry; 391 parent = dentry;
393 mutex_lock(&parent->d_inode->i_mutex); 392 mutex_lock(&parent->d_inode->i_mutex);
394 393
395 while (1) { 394 while (1) {
396 /* 395 /*
397 * When all dentries under "parent" has been removed, 396 * When all dentries under "parent" has been removed,
398 * walk up the tree until we reach our starting point. 397 * walk up the tree until we reach our starting point.
399 */ 398 */
400 if (list_empty(&parent->d_subdirs)) { 399 if (list_empty(&parent->d_subdirs)) {
401 mutex_unlock(&parent->d_inode->i_mutex); 400 mutex_unlock(&parent->d_inode->i_mutex);
402 if (parent == dentry) 401 if (parent == dentry)
403 break; 402 break;
404 parent = parent->d_parent; 403 parent = parent->d_parent;
405 mutex_lock(&parent->d_inode->i_mutex); 404 mutex_lock(&parent->d_inode->i_mutex);
406 } 405 }
407 child = list_entry(parent->d_subdirs.next, struct dentry, 406 child = list_entry(parent->d_subdirs.next, struct dentry,
408 d_u.d_child); 407 d_u.d_child);
409 408
410 /* 409 /*
411 * If "child" isn't empty, walk down the tree and 410 * If "child" isn't empty, walk down the tree and
412 * remove all its descendants first. 411 * remove all its descendants first.
413 */ 412 */
414 if (!list_empty(&child->d_subdirs)) { 413 if (!list_empty(&child->d_subdirs)) {
415 mutex_unlock(&parent->d_inode->i_mutex); 414 mutex_unlock(&parent->d_inode->i_mutex);
416 parent = child; 415 parent = child;
417 mutex_lock(&parent->d_inode->i_mutex); 416 mutex_lock(&parent->d_inode->i_mutex);
418 continue; 417 continue;
419 } 418 }
420 __debugfs_remove(child, parent); 419 __debugfs_remove(child, parent);
421 if (parent->d_subdirs.next == &child->d_u.d_child) { 420 if (parent->d_subdirs.next == &child->d_u.d_child) {
422 /* 421 /*
423 * Avoid infinite loop if we fail to remove 422 * Avoid infinite loop if we fail to remove
424 * one dentry. 423 * one dentry.
425 */ 424 */
426 mutex_unlock(&parent->d_inode->i_mutex); 425 mutex_unlock(&parent->d_inode->i_mutex);
427 break; 426 break;
428 } 427 }
429 simple_release_fs(&debugfs_mount, &debugfs_mount_count); 428 simple_release_fs(&debugfs_mount, &debugfs_mount_count);
430 } 429 }
431 430
432 parent = dentry->d_parent; 431 parent = dentry->d_parent;
433 mutex_lock(&parent->d_inode->i_mutex); 432 mutex_lock(&parent->d_inode->i_mutex);
434 __debugfs_remove(dentry, parent); 433 __debugfs_remove(dentry, parent);
435 mutex_unlock(&parent->d_inode->i_mutex); 434 mutex_unlock(&parent->d_inode->i_mutex);
436 simple_release_fs(&debugfs_mount, &debugfs_mount_count); 435 simple_release_fs(&debugfs_mount, &debugfs_mount_count);
437 } 436 }
438 EXPORT_SYMBOL_GPL(debugfs_remove_recursive); 437 EXPORT_SYMBOL_GPL(debugfs_remove_recursive);
439 438
440 /** 439 /**
441 * debugfs_rename - rename a file/directory in the debugfs filesystem 440 * debugfs_rename - rename a file/directory in the debugfs filesystem
442 * @old_dir: a pointer to the parent dentry for the renamed object. This 441 * @old_dir: a pointer to the parent dentry for the renamed object. This
443 * should be a directory dentry. 442 * should be a directory dentry.
444 * @old_dentry: dentry of an object to be renamed. 443 * @old_dentry: dentry of an object to be renamed.
445 * @new_dir: a pointer to the parent dentry where the object should be 444 * @new_dir: a pointer to the parent dentry where the object should be
446 * moved. This should be a directory dentry. 445 * moved. This should be a directory dentry.
447 * @new_name: a pointer to a string containing the target name. 446 * @new_name: a pointer to a string containing the target name.
448 * 447 *
449 * This function renames a file/directory in debugfs. The target must not 448 * This function renames a file/directory in debugfs. The target must not
450 * exist for rename to succeed. 449 * exist for rename to succeed.
451 * 450 *
452 * This function will return a pointer to old_dentry (which is updated to 451 * This function will return a pointer to old_dentry (which is updated to
453 * reflect renaming) if it succeeds. If an error occurs, %NULL will be 452 * reflect renaming) if it succeeds. If an error occurs, %NULL will be
454 * returned. 453 * returned.
455 * 454 *
456 * If debugfs is not enabled in the kernel, the value -%ENODEV will be 455 * If debugfs is not enabled in the kernel, the value -%ENODEV will be
457 * returned. 456 * returned.
458 */ 457 */
459 struct dentry *debugfs_rename(struct dentry *old_dir, struct dentry *old_dentry, 458 struct dentry *debugfs_rename(struct dentry *old_dir, struct dentry *old_dentry,
460 struct dentry *new_dir, const char *new_name) 459 struct dentry *new_dir, const char *new_name)
461 { 460 {
462 int error; 461 int error;
463 struct dentry *dentry = NULL, *trap; 462 struct dentry *dentry = NULL, *trap;
464 const char *old_name; 463 const char *old_name;
465 464
466 trap = lock_rename(new_dir, old_dir); 465 trap = lock_rename(new_dir, old_dir);
467 /* Source or destination directories don't exist? */ 466 /* Source or destination directories don't exist? */
468 if (!old_dir->d_inode || !new_dir->d_inode) 467 if (!old_dir->d_inode || !new_dir->d_inode)
469 goto exit; 468 goto exit;
470 /* Source does not exist, cyclic rename, or mountpoint? */ 469 /* Source does not exist, cyclic rename, or mountpoint? */
471 if (!old_dentry->d_inode || old_dentry == trap || 470 if (!old_dentry->d_inode || old_dentry == trap ||
472 d_mountpoint(old_dentry)) 471 d_mountpoint(old_dentry))
473 goto exit; 472 goto exit;
474 dentry = lookup_one_len(new_name, new_dir, strlen(new_name)); 473 dentry = lookup_one_len(new_name, new_dir, strlen(new_name));
475 /* Lookup failed, cyclic rename or target exists? */ 474 /* Lookup failed, cyclic rename or target exists? */
476 if (IS_ERR(dentry) || dentry == trap || dentry->d_inode) 475 if (IS_ERR(dentry) || dentry == trap || dentry->d_inode)
477 goto exit; 476 goto exit;
478 477
479 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 478 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
480 479
481 error = simple_rename(old_dir->d_inode, old_dentry, new_dir->d_inode, 480 error = simple_rename(old_dir->d_inode, old_dentry, new_dir->d_inode,
482 dentry); 481 dentry);
483 if (error) { 482 if (error) {
484 fsnotify_oldname_free(old_name); 483 fsnotify_oldname_free(old_name);
485 goto exit; 484 goto exit;
486 } 485 }
487 d_move(old_dentry, dentry); 486 d_move(old_dentry, dentry);
488 fsnotify_move(old_dir->d_inode, new_dir->d_inode, old_name, 487 fsnotify_move(old_dir->d_inode, new_dir->d_inode, old_name,
489 old_dentry->d_name.name, S_ISDIR(old_dentry->d_inode->i_mode), 488 old_dentry->d_name.name, S_ISDIR(old_dentry->d_inode->i_mode),
490 NULL, old_dentry); 489 NULL, old_dentry);
491 fsnotify_oldname_free(old_name); 490 fsnotify_oldname_free(old_name);
492 unlock_rename(new_dir, old_dir); 491 unlock_rename(new_dir, old_dir);
493 dput(dentry); 492 dput(dentry);
494 return old_dentry; 493 return old_dentry;
495 exit: 494 exit:
496 if (dentry && !IS_ERR(dentry)) 495 if (dentry && !IS_ERR(dentry))
497 dput(dentry); 496 dput(dentry);
498 unlock_rename(new_dir, old_dir); 497 unlock_rename(new_dir, old_dir);
499 return NULL; 498 return NULL;
500 } 499 }
501 EXPORT_SYMBOL_GPL(debugfs_rename); 500 EXPORT_SYMBOL_GPL(debugfs_rename);
502 501
503 static struct kobject *debug_kobj; 502 static struct kobject *debug_kobj;
504 503
505 static int __init debugfs_init(void) 504 static int __init debugfs_init(void)
506 { 505 {
507 int retval; 506 int retval;
508 507
509 debug_kobj = kobject_create_and_add("debug", kernel_kobj); 508 debug_kobj = kobject_create_and_add("debug", kernel_kobj);
510 if (!debug_kobj) 509 if (!debug_kobj)
511 return -EINVAL; 510 return -EINVAL;
512 511
513 retval = register_filesystem(&debug_fs_type); 512 retval = register_filesystem(&debug_fs_type);
514 if (retval) 513 if (retval)
515 kobject_put(debug_kobj); 514 kobject_put(debug_kobj);
516 return retval; 515 return retval;
517 } 516 }
518 517
519 static void __exit debugfs_exit(void) 518 static void __exit debugfs_exit(void)
520 { 519 {
521 simple_release_fs(&debugfs_mount, &debugfs_mount_count); 520 simple_release_fs(&debugfs_mount, &debugfs_mount_count);
522 unregister_filesystem(&debug_fs_type); 521 unregister_filesystem(&debug_fs_type);
523 kobject_put(debug_kobj); 522 kobject_put(debug_kobj);
524 } 523 }
525 524
526 core_initcall(debugfs_init); 525 core_initcall(debugfs_init);
527 module_exit(debugfs_exit); 526 module_exit(debugfs_exit);
528 MODULE_LICENSE("GPL"); 527 MODULE_LICENSE("GPL");
529 528
530 529
include/linux/magic.h
1 #ifndef __LINUX_MAGIC_H__ 1 #ifndef __LINUX_MAGIC_H__
2 #define __LINUX_MAGIC_H__ 2 #define __LINUX_MAGIC_H__
3 3
4 #define ADFS_SUPER_MAGIC 0xadf5 4 #define ADFS_SUPER_MAGIC 0xadf5
5 #define AFFS_SUPER_MAGIC 0xadff 5 #define AFFS_SUPER_MAGIC 0xadff
6 #define AFS_SUPER_MAGIC 0x5346414F 6 #define AFS_SUPER_MAGIC 0x5346414F
7 #define AUTOFS_SUPER_MAGIC 0x0187 7 #define AUTOFS_SUPER_MAGIC 0x0187
8 #define CODA_SUPER_MAGIC 0x73757245 8 #define CODA_SUPER_MAGIC 0x73757245
9 #define DEBUGFS_MAGIC 0x64626720
10 #define SYSFS_MAGIC 0x62656572
11 #define SECURITYFS_MAGIC 0x73636673
12 #define TMPFS_MAGIC 0x01021994
9 #define EFS_SUPER_MAGIC 0x414A53 13 #define EFS_SUPER_MAGIC 0x414A53
10 #define EXT2_SUPER_MAGIC 0xEF53 14 #define EXT2_SUPER_MAGIC 0xEF53
11 #define EXT3_SUPER_MAGIC 0xEF53 15 #define EXT3_SUPER_MAGIC 0xEF53
12 #define EXT4_SUPER_MAGIC 0xEF53 16 #define EXT4_SUPER_MAGIC 0xEF53
13 #define HPFS_SUPER_MAGIC 0xf995e849 17 #define HPFS_SUPER_MAGIC 0xf995e849
14 #define ISOFS_SUPER_MAGIC 0x9660 18 #define ISOFS_SUPER_MAGIC 0x9660
15 #define JFFS2_SUPER_MAGIC 0x72b6 19 #define JFFS2_SUPER_MAGIC 0x72b6
16 #define ANON_INODE_FS_MAGIC 0x09041934 20 #define ANON_INODE_FS_MAGIC 0x09041934
17 21
18 #define MINIX_SUPER_MAGIC 0x137F /* original minix fs */ 22 #define MINIX_SUPER_MAGIC 0x137F /* original minix fs */
19 #define MINIX_SUPER_MAGIC2 0x138F /* minix fs, 30 char names */ 23 #define MINIX_SUPER_MAGIC2 0x138F /* minix fs, 30 char names */
20 #define MINIX2_SUPER_MAGIC 0x2468 /* minix V2 fs */ 24 #define MINIX2_SUPER_MAGIC 0x2468 /* minix V2 fs */
21 #define MINIX2_SUPER_MAGIC2 0x2478 /* minix V2 fs, 30 char names */ 25 #define MINIX2_SUPER_MAGIC2 0x2478 /* minix V2 fs, 30 char names */
22 #define MINIX3_SUPER_MAGIC 0x4d5a /* minix V3 fs */ 26 #define MINIX3_SUPER_MAGIC 0x4d5a /* minix V3 fs */
23 27
24 #define MSDOS_SUPER_MAGIC 0x4d44 /* MD */ 28 #define MSDOS_SUPER_MAGIC 0x4d44 /* MD */
25 #define NCP_SUPER_MAGIC 0x564c /* Guess, what 0x564c is :-) */ 29 #define NCP_SUPER_MAGIC 0x564c /* Guess, what 0x564c is :-) */
26 #define NFS_SUPER_MAGIC 0x6969 30 #define NFS_SUPER_MAGIC 0x6969
27 #define OPENPROM_SUPER_MAGIC 0x9fa1 31 #define OPENPROM_SUPER_MAGIC 0x9fa1
28 #define PROC_SUPER_MAGIC 0x9fa0 32 #define PROC_SUPER_MAGIC 0x9fa0
29 #define QNX4_SUPER_MAGIC 0x002f /* qnx4 fs detection */ 33 #define QNX4_SUPER_MAGIC 0x002f /* qnx4 fs detection */
30 34
31 #define REISERFS_SUPER_MAGIC 0x52654973 /* used by gcc */ 35 #define REISERFS_SUPER_MAGIC 0x52654973 /* used by gcc */
32 /* used by file system utilities that 36 /* used by file system utilities that
33 look at the superblock, etc. */ 37 look at the superblock, etc. */
34 #define REISERFS_SUPER_MAGIC_STRING "ReIsErFs" 38 #define REISERFS_SUPER_MAGIC_STRING "ReIsErFs"
35 #define REISER2FS_SUPER_MAGIC_STRING "ReIsEr2Fs" 39 #define REISER2FS_SUPER_MAGIC_STRING "ReIsEr2Fs"
36 #define REISER2FS_JR_SUPER_MAGIC_STRING "ReIsEr3Fs" 40 #define REISER2FS_JR_SUPER_MAGIC_STRING "ReIsEr3Fs"
37 41
38 #define SMB_SUPER_MAGIC 0x517B 42 #define SMB_SUPER_MAGIC 0x517B
39 #define USBDEVICE_SUPER_MAGIC 0x9fa2 43 #define USBDEVICE_SUPER_MAGIC 0x9fa2
40 #define CGROUP_SUPER_MAGIC 0x27e0eb 44 #define CGROUP_SUPER_MAGIC 0x27e0eb
41 45
42 #define FUTEXFS_SUPER_MAGIC 0xBAD1DEA 46 #define FUTEXFS_SUPER_MAGIC 0xBAD1DEA
43 #define INOTIFYFS_SUPER_MAGIC 0x2BAD1DEA 47 #define INOTIFYFS_SUPER_MAGIC 0x2BAD1DEA
44 48
45 #endif /* __LINUX_MAGIC_H__ */ 49 #endif /* __LINUX_MAGIC_H__ */
46 50
1 /* 1 /*
2 * Resizable virtual memory filesystem for Linux. 2 * Resizable virtual memory filesystem for Linux.
3 * 3 *
4 * Copyright (C) 2000 Linus Torvalds. 4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp. 5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland 6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG 7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc. 8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins. 9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation. 10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs 11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 * 12 *
13 * Extended attribute support for tmpfs: 13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 * 16 *
17 * This file is released under the GPL. 17 * This file is released under the GPL.
18 */ 18 */
19 19
20 /* 20 /*
21 * This virtual memory filesystem is heavily based on the ramfs. It 21 * This virtual memory filesystem is heavily based on the ramfs. It
22 * extends ramfs by the ability to use swap and honor resource limits 22 * extends ramfs by the ability to use swap and honor resource limits
23 * which makes it a completely usable filesystem. 23 * which makes it a completely usable filesystem.
24 */ 24 */
25 25
26 #include <linux/module.h> 26 #include <linux/module.h>
27 #include <linux/init.h> 27 #include <linux/init.h>
28 #include <linux/fs.h> 28 #include <linux/fs.h>
29 #include <linux/xattr.h> 29 #include <linux/xattr.h>
30 #include <linux/exportfs.h> 30 #include <linux/exportfs.h>
31 #include <linux/generic_acl.h> 31 #include <linux/generic_acl.h>
32 #include <linux/mm.h> 32 #include <linux/mm.h>
33 #include <linux/mman.h> 33 #include <linux/mman.h>
34 #include <linux/file.h> 34 #include <linux/file.h>
35 #include <linux/swap.h> 35 #include <linux/swap.h>
36 #include <linux/pagemap.h> 36 #include <linux/pagemap.h>
37 #include <linux/string.h> 37 #include <linux/string.h>
38 #include <linux/slab.h> 38 #include <linux/slab.h>
39 #include <linux/backing-dev.h> 39 #include <linux/backing-dev.h>
40 #include <linux/shmem_fs.h> 40 #include <linux/shmem_fs.h>
41 #include <linux/mount.h> 41 #include <linux/mount.h>
42 #include <linux/writeback.h> 42 #include <linux/writeback.h>
43 #include <linux/vfs.h> 43 #include <linux/vfs.h>
44 #include <linux/blkdev.h> 44 #include <linux/blkdev.h>
45 #include <linux/security.h> 45 #include <linux/security.h>
46 #include <linux/swapops.h> 46 #include <linux/swapops.h>
47 #include <linux/mempolicy.h> 47 #include <linux/mempolicy.h>
48 #include <linux/namei.h> 48 #include <linux/namei.h>
49 #include <linux/ctype.h> 49 #include <linux/ctype.h>
50 #include <linux/migrate.h> 50 #include <linux/migrate.h>
51 #include <linux/highmem.h> 51 #include <linux/highmem.h>
52 #include <linux/seq_file.h> 52 #include <linux/seq_file.h>
53 #include <linux/magic.h>
53 54
54 #include <asm/uaccess.h> 55 #include <asm/uaccess.h>
55 #include <asm/div64.h> 56 #include <asm/div64.h>
56 #include <asm/pgtable.h> 57 #include <asm/pgtable.h>
57
58 /* This magic number is used in glibc for posix shared memory */
59 #define TMPFS_MAGIC 0x01021994
60 58
61 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long)) 59 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
62 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE) 60 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
63 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512) 61 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
64 62
65 #define SHMEM_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1)) 63 #define SHMEM_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
66 #define SHMEM_MAX_BYTES ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT) 64 #define SHMEM_MAX_BYTES ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
67 65
68 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT) 66 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
69 67
70 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */ 68 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
71 #define SHMEM_PAGEIN VM_READ 69 #define SHMEM_PAGEIN VM_READ
72 #define SHMEM_TRUNCATE VM_WRITE 70 #define SHMEM_TRUNCATE VM_WRITE
73 71
74 /* Definition to limit shmem_truncate's steps between cond_rescheds */ 72 /* Definition to limit shmem_truncate's steps between cond_rescheds */
75 #define LATENCY_LIMIT 64 73 #define LATENCY_LIMIT 64
76 74
77 /* Pretend that each entry is of this size in directory's i_size */ 75 /* Pretend that each entry is of this size in directory's i_size */
78 #define BOGO_DIRENT_SIZE 20 76 #define BOGO_DIRENT_SIZE 20
79 77
80 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */ 78 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
81 enum sgp_type { 79 enum sgp_type {
82 SGP_READ, /* don't exceed i_size, don't allocate page */ 80 SGP_READ, /* don't exceed i_size, don't allocate page */
83 SGP_CACHE, /* don't exceed i_size, may allocate page */ 81 SGP_CACHE, /* don't exceed i_size, may allocate page */
84 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */ 82 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
85 SGP_WRITE, /* may exceed i_size, may allocate page */ 83 SGP_WRITE, /* may exceed i_size, may allocate page */
86 }; 84 };
87 85
88 #ifdef CONFIG_TMPFS 86 #ifdef CONFIG_TMPFS
89 static unsigned long shmem_default_max_blocks(void) 87 static unsigned long shmem_default_max_blocks(void)
90 { 88 {
91 return totalram_pages / 2; 89 return totalram_pages / 2;
92 } 90 }
93 91
94 static unsigned long shmem_default_max_inodes(void) 92 static unsigned long shmem_default_max_inodes(void)
95 { 93 {
96 return min(totalram_pages - totalhigh_pages, totalram_pages / 2); 94 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
97 } 95 }
98 #endif 96 #endif
99 97
100 static int shmem_getpage(struct inode *inode, unsigned long idx, 98 static int shmem_getpage(struct inode *inode, unsigned long idx,
101 struct page **pagep, enum sgp_type sgp, int *type); 99 struct page **pagep, enum sgp_type sgp, int *type);
102 100
103 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask) 101 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
104 { 102 {
105 /* 103 /*
106 * The above definition of ENTRIES_PER_PAGE, and the use of 104 * The above definition of ENTRIES_PER_PAGE, and the use of
107 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE: 105 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
108 * might be reconsidered if it ever diverges from PAGE_SIZE. 106 * might be reconsidered if it ever diverges from PAGE_SIZE.
109 * 107 *
110 * Mobility flags are masked out as swap vectors cannot move 108 * Mobility flags are masked out as swap vectors cannot move
111 */ 109 */
112 return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO, 110 return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
113 PAGE_CACHE_SHIFT-PAGE_SHIFT); 111 PAGE_CACHE_SHIFT-PAGE_SHIFT);
114 } 112 }
115 113
116 static inline void shmem_dir_free(struct page *page) 114 static inline void shmem_dir_free(struct page *page)
117 { 115 {
118 __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT); 116 __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
119 } 117 }
120 118
121 static struct page **shmem_dir_map(struct page *page) 119 static struct page **shmem_dir_map(struct page *page)
122 { 120 {
123 return (struct page **)kmap_atomic(page, KM_USER0); 121 return (struct page **)kmap_atomic(page, KM_USER0);
124 } 122 }
125 123
126 static inline void shmem_dir_unmap(struct page **dir) 124 static inline void shmem_dir_unmap(struct page **dir)
127 { 125 {
128 kunmap_atomic(dir, KM_USER0); 126 kunmap_atomic(dir, KM_USER0);
129 } 127 }
130 128
131 static swp_entry_t *shmem_swp_map(struct page *page) 129 static swp_entry_t *shmem_swp_map(struct page *page)
132 { 130 {
133 return (swp_entry_t *)kmap_atomic(page, KM_USER1); 131 return (swp_entry_t *)kmap_atomic(page, KM_USER1);
134 } 132 }
135 133
136 static inline void shmem_swp_balance_unmap(void) 134 static inline void shmem_swp_balance_unmap(void)
137 { 135 {
138 /* 136 /*
139 * When passing a pointer to an i_direct entry, to code which 137 * When passing a pointer to an i_direct entry, to code which
140 * also handles indirect entries and so will shmem_swp_unmap, 138 * also handles indirect entries and so will shmem_swp_unmap,
141 * we must arrange for the preempt count to remain in balance. 139 * we must arrange for the preempt count to remain in balance.
142 * What kmap_atomic of a lowmem page does depends on config 140 * What kmap_atomic of a lowmem page does depends on config
143 * and architecture, so pretend to kmap_atomic some lowmem page. 141 * and architecture, so pretend to kmap_atomic some lowmem page.
144 */ 142 */
145 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1); 143 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
146 } 144 }
147 145
148 static inline void shmem_swp_unmap(swp_entry_t *entry) 146 static inline void shmem_swp_unmap(swp_entry_t *entry)
149 { 147 {
150 kunmap_atomic(entry, KM_USER1); 148 kunmap_atomic(entry, KM_USER1);
151 } 149 }
152 150
153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 151 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
154 { 152 {
155 return sb->s_fs_info; 153 return sb->s_fs_info;
156 } 154 }
157 155
158 /* 156 /*
159 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 157 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
160 * for shared memory and for shared anonymous (/dev/zero) mappings 158 * for shared memory and for shared anonymous (/dev/zero) mappings
161 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 159 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
162 * consistent with the pre-accounting of private mappings ... 160 * consistent with the pre-accounting of private mappings ...
163 */ 161 */
164 static inline int shmem_acct_size(unsigned long flags, loff_t size) 162 static inline int shmem_acct_size(unsigned long flags, loff_t size)
165 { 163 {
166 return (flags & VM_ACCOUNT)? 164 return (flags & VM_ACCOUNT)?
167 security_vm_enough_memory(VM_ACCT(size)): 0; 165 security_vm_enough_memory(VM_ACCT(size)): 0;
168 } 166 }
169 167
170 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 168 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
171 { 169 {
172 if (flags & VM_ACCOUNT) 170 if (flags & VM_ACCOUNT)
173 vm_unacct_memory(VM_ACCT(size)); 171 vm_unacct_memory(VM_ACCT(size));
174 } 172 }
175 173
176 /* 174 /*
177 * ... whereas tmpfs objects are accounted incrementally as 175 * ... whereas tmpfs objects are accounted incrementally as
178 * pages are allocated, in order to allow huge sparse files. 176 * pages are allocated, in order to allow huge sparse files.
179 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 177 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
180 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 178 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
181 */ 179 */
182 static inline int shmem_acct_block(unsigned long flags) 180 static inline int shmem_acct_block(unsigned long flags)
183 { 181 {
184 return (flags & VM_ACCOUNT)? 182 return (flags & VM_ACCOUNT)?
185 0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE)); 183 0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
186 } 184 }
187 185
188 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 186 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
189 { 187 {
190 if (!(flags & VM_ACCOUNT)) 188 if (!(flags & VM_ACCOUNT))
191 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE)); 189 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
192 } 190 }
193 191
194 static const struct super_operations shmem_ops; 192 static const struct super_operations shmem_ops;
195 static const struct address_space_operations shmem_aops; 193 static const struct address_space_operations shmem_aops;
196 static const struct file_operations shmem_file_operations; 194 static const struct file_operations shmem_file_operations;
197 static const struct inode_operations shmem_inode_operations; 195 static const struct inode_operations shmem_inode_operations;
198 static const struct inode_operations shmem_dir_inode_operations; 196 static const struct inode_operations shmem_dir_inode_operations;
199 static const struct inode_operations shmem_special_inode_operations; 197 static const struct inode_operations shmem_special_inode_operations;
200 static struct vm_operations_struct shmem_vm_ops; 198 static struct vm_operations_struct shmem_vm_ops;
201 199
202 static struct backing_dev_info shmem_backing_dev_info __read_mostly = { 200 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
203 .ra_pages = 0, /* No readahead */ 201 .ra_pages = 0, /* No readahead */
204 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK, 202 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
205 .unplug_io_fn = default_unplug_io_fn, 203 .unplug_io_fn = default_unplug_io_fn,
206 }; 204 };
207 205
208 static LIST_HEAD(shmem_swaplist); 206 static LIST_HEAD(shmem_swaplist);
209 static DEFINE_MUTEX(shmem_swaplist_mutex); 207 static DEFINE_MUTEX(shmem_swaplist_mutex);
210 208
211 static void shmem_free_blocks(struct inode *inode, long pages) 209 static void shmem_free_blocks(struct inode *inode, long pages)
212 { 210 {
213 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 211 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
214 if (sbinfo->max_blocks) { 212 if (sbinfo->max_blocks) {
215 spin_lock(&sbinfo->stat_lock); 213 spin_lock(&sbinfo->stat_lock);
216 sbinfo->free_blocks += pages; 214 sbinfo->free_blocks += pages;
217 inode->i_blocks -= pages*BLOCKS_PER_PAGE; 215 inode->i_blocks -= pages*BLOCKS_PER_PAGE;
218 spin_unlock(&sbinfo->stat_lock); 216 spin_unlock(&sbinfo->stat_lock);
219 } 217 }
220 } 218 }
221 219
222 static int shmem_reserve_inode(struct super_block *sb) 220 static int shmem_reserve_inode(struct super_block *sb)
223 { 221 {
224 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 222 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
225 if (sbinfo->max_inodes) { 223 if (sbinfo->max_inodes) {
226 spin_lock(&sbinfo->stat_lock); 224 spin_lock(&sbinfo->stat_lock);
227 if (!sbinfo->free_inodes) { 225 if (!sbinfo->free_inodes) {
228 spin_unlock(&sbinfo->stat_lock); 226 spin_unlock(&sbinfo->stat_lock);
229 return -ENOSPC; 227 return -ENOSPC;
230 } 228 }
231 sbinfo->free_inodes--; 229 sbinfo->free_inodes--;
232 spin_unlock(&sbinfo->stat_lock); 230 spin_unlock(&sbinfo->stat_lock);
233 } 231 }
234 return 0; 232 return 0;
235 } 233 }
236 234
237 static void shmem_free_inode(struct super_block *sb) 235 static void shmem_free_inode(struct super_block *sb)
238 { 236 {
239 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 237 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
240 if (sbinfo->max_inodes) { 238 if (sbinfo->max_inodes) {
241 spin_lock(&sbinfo->stat_lock); 239 spin_lock(&sbinfo->stat_lock);
242 sbinfo->free_inodes++; 240 sbinfo->free_inodes++;
243 spin_unlock(&sbinfo->stat_lock); 241 spin_unlock(&sbinfo->stat_lock);
244 } 242 }
245 } 243 }
246 244
247 /** 245 /**
248 * shmem_recalc_inode - recalculate the size of an inode 246 * shmem_recalc_inode - recalculate the size of an inode
249 * @inode: inode to recalc 247 * @inode: inode to recalc
250 * 248 *
251 * We have to calculate the free blocks since the mm can drop 249 * We have to calculate the free blocks since the mm can drop
252 * undirtied hole pages behind our back. 250 * undirtied hole pages behind our back.
253 * 251 *
254 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 252 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
255 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 253 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
256 * 254 *
257 * It has to be called with the spinlock held. 255 * It has to be called with the spinlock held.
258 */ 256 */
259 static void shmem_recalc_inode(struct inode *inode) 257 static void shmem_recalc_inode(struct inode *inode)
260 { 258 {
261 struct shmem_inode_info *info = SHMEM_I(inode); 259 struct shmem_inode_info *info = SHMEM_I(inode);
262 long freed; 260 long freed;
263 261
264 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 262 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
265 if (freed > 0) { 263 if (freed > 0) {
266 info->alloced -= freed; 264 info->alloced -= freed;
267 shmem_unacct_blocks(info->flags, freed); 265 shmem_unacct_blocks(info->flags, freed);
268 shmem_free_blocks(inode, freed); 266 shmem_free_blocks(inode, freed);
269 } 267 }
270 } 268 }
271 269
272 /** 270 /**
273 * shmem_swp_entry - find the swap vector position in the info structure 271 * shmem_swp_entry - find the swap vector position in the info structure
274 * @info: info structure for the inode 272 * @info: info structure for the inode
275 * @index: index of the page to find 273 * @index: index of the page to find
276 * @page: optional page to add to the structure. Has to be preset to 274 * @page: optional page to add to the structure. Has to be preset to
277 * all zeros 275 * all zeros
278 * 276 *
279 * If there is no space allocated yet it will return NULL when 277 * If there is no space allocated yet it will return NULL when
280 * page is NULL, else it will use the page for the needed block, 278 * page is NULL, else it will use the page for the needed block,
281 * setting it to NULL on return to indicate that it has been used. 279 * setting it to NULL on return to indicate that it has been used.
282 * 280 *
283 * The swap vector is organized the following way: 281 * The swap vector is organized the following way:
284 * 282 *
285 * There are SHMEM_NR_DIRECT entries directly stored in the 283 * There are SHMEM_NR_DIRECT entries directly stored in the
286 * shmem_inode_info structure. So small files do not need an addional 284 * shmem_inode_info structure. So small files do not need an addional
287 * allocation. 285 * allocation.
288 * 286 *
289 * For pages with index > SHMEM_NR_DIRECT there is the pointer 287 * For pages with index > SHMEM_NR_DIRECT there is the pointer
290 * i_indirect which points to a page which holds in the first half 288 * i_indirect which points to a page which holds in the first half
291 * doubly indirect blocks, in the second half triple indirect blocks: 289 * doubly indirect blocks, in the second half triple indirect blocks:
292 * 290 *
293 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the 291 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
294 * following layout (for SHMEM_NR_DIRECT == 16): 292 * following layout (for SHMEM_NR_DIRECT == 16):
295 * 293 *
296 * i_indirect -> dir --> 16-19 294 * i_indirect -> dir --> 16-19
297 * | +-> 20-23 295 * | +-> 20-23
298 * | 296 * |
299 * +-->dir2 --> 24-27 297 * +-->dir2 --> 24-27
300 * | +-> 28-31 298 * | +-> 28-31
301 * | +-> 32-35 299 * | +-> 32-35
302 * | +-> 36-39 300 * | +-> 36-39
303 * | 301 * |
304 * +-->dir3 --> 40-43 302 * +-->dir3 --> 40-43
305 * +-> 44-47 303 * +-> 44-47
306 * +-> 48-51 304 * +-> 48-51
307 * +-> 52-55 305 * +-> 52-55
308 */ 306 */
309 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page) 307 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
310 { 308 {
311 unsigned long offset; 309 unsigned long offset;
312 struct page **dir; 310 struct page **dir;
313 struct page *subdir; 311 struct page *subdir;
314 312
315 if (index < SHMEM_NR_DIRECT) { 313 if (index < SHMEM_NR_DIRECT) {
316 shmem_swp_balance_unmap(); 314 shmem_swp_balance_unmap();
317 return info->i_direct+index; 315 return info->i_direct+index;
318 } 316 }
319 if (!info->i_indirect) { 317 if (!info->i_indirect) {
320 if (page) { 318 if (page) {
321 info->i_indirect = *page; 319 info->i_indirect = *page;
322 *page = NULL; 320 *page = NULL;
323 } 321 }
324 return NULL; /* need another page */ 322 return NULL; /* need another page */
325 } 323 }
326 324
327 index -= SHMEM_NR_DIRECT; 325 index -= SHMEM_NR_DIRECT;
328 offset = index % ENTRIES_PER_PAGE; 326 offset = index % ENTRIES_PER_PAGE;
329 index /= ENTRIES_PER_PAGE; 327 index /= ENTRIES_PER_PAGE;
330 dir = shmem_dir_map(info->i_indirect); 328 dir = shmem_dir_map(info->i_indirect);
331 329
332 if (index >= ENTRIES_PER_PAGE/2) { 330 if (index >= ENTRIES_PER_PAGE/2) {
333 index -= ENTRIES_PER_PAGE/2; 331 index -= ENTRIES_PER_PAGE/2;
334 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE; 332 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
335 index %= ENTRIES_PER_PAGE; 333 index %= ENTRIES_PER_PAGE;
336 subdir = *dir; 334 subdir = *dir;
337 if (!subdir) { 335 if (!subdir) {
338 if (page) { 336 if (page) {
339 *dir = *page; 337 *dir = *page;
340 *page = NULL; 338 *page = NULL;
341 } 339 }
342 shmem_dir_unmap(dir); 340 shmem_dir_unmap(dir);
343 return NULL; /* need another page */ 341 return NULL; /* need another page */
344 } 342 }
345 shmem_dir_unmap(dir); 343 shmem_dir_unmap(dir);
346 dir = shmem_dir_map(subdir); 344 dir = shmem_dir_map(subdir);
347 } 345 }
348 346
349 dir += index; 347 dir += index;
350 subdir = *dir; 348 subdir = *dir;
351 if (!subdir) { 349 if (!subdir) {
352 if (!page || !(subdir = *page)) { 350 if (!page || !(subdir = *page)) {
353 shmem_dir_unmap(dir); 351 shmem_dir_unmap(dir);
354 return NULL; /* need a page */ 352 return NULL; /* need a page */
355 } 353 }
356 *dir = subdir; 354 *dir = subdir;
357 *page = NULL; 355 *page = NULL;
358 } 356 }
359 shmem_dir_unmap(dir); 357 shmem_dir_unmap(dir);
360 return shmem_swp_map(subdir) + offset; 358 return shmem_swp_map(subdir) + offset;
361 } 359 }
362 360
363 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value) 361 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
364 { 362 {
365 long incdec = value? 1: -1; 363 long incdec = value? 1: -1;
366 364
367 entry->val = value; 365 entry->val = value;
368 info->swapped += incdec; 366 info->swapped += incdec;
369 if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) { 367 if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
370 struct page *page = kmap_atomic_to_page(entry); 368 struct page *page = kmap_atomic_to_page(entry);
371 set_page_private(page, page_private(page) + incdec); 369 set_page_private(page, page_private(page) + incdec);
372 } 370 }
373 } 371 }
374 372
375 /** 373 /**
376 * shmem_swp_alloc - get the position of the swap entry for the page. 374 * shmem_swp_alloc - get the position of the swap entry for the page.
377 * @info: info structure for the inode 375 * @info: info structure for the inode
378 * @index: index of the page to find 376 * @index: index of the page to find
379 * @sgp: check and recheck i_size? skip allocation? 377 * @sgp: check and recheck i_size? skip allocation?
380 * 378 *
381 * If the entry does not exist, allocate it. 379 * If the entry does not exist, allocate it.
382 */ 380 */
383 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp) 381 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
384 { 382 {
385 struct inode *inode = &info->vfs_inode; 383 struct inode *inode = &info->vfs_inode;
386 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 384 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
387 struct page *page = NULL; 385 struct page *page = NULL;
388 swp_entry_t *entry; 386 swp_entry_t *entry;
389 387
390 if (sgp != SGP_WRITE && 388 if (sgp != SGP_WRITE &&
391 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) 389 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
392 return ERR_PTR(-EINVAL); 390 return ERR_PTR(-EINVAL);
393 391
394 while (!(entry = shmem_swp_entry(info, index, &page))) { 392 while (!(entry = shmem_swp_entry(info, index, &page))) {
395 if (sgp == SGP_READ) 393 if (sgp == SGP_READ)
396 return shmem_swp_map(ZERO_PAGE(0)); 394 return shmem_swp_map(ZERO_PAGE(0));
397 /* 395 /*
398 * Test free_blocks against 1 not 0, since we have 1 data 396 * Test free_blocks against 1 not 0, since we have 1 data
399 * page (and perhaps indirect index pages) yet to allocate: 397 * page (and perhaps indirect index pages) yet to allocate:
400 * a waste to allocate index if we cannot allocate data. 398 * a waste to allocate index if we cannot allocate data.
401 */ 399 */
402 if (sbinfo->max_blocks) { 400 if (sbinfo->max_blocks) {
403 spin_lock(&sbinfo->stat_lock); 401 spin_lock(&sbinfo->stat_lock);
404 if (sbinfo->free_blocks <= 1) { 402 if (sbinfo->free_blocks <= 1) {
405 spin_unlock(&sbinfo->stat_lock); 403 spin_unlock(&sbinfo->stat_lock);
406 return ERR_PTR(-ENOSPC); 404 return ERR_PTR(-ENOSPC);
407 } 405 }
408 sbinfo->free_blocks--; 406 sbinfo->free_blocks--;
409 inode->i_blocks += BLOCKS_PER_PAGE; 407 inode->i_blocks += BLOCKS_PER_PAGE;
410 spin_unlock(&sbinfo->stat_lock); 408 spin_unlock(&sbinfo->stat_lock);
411 } 409 }
412 410
413 spin_unlock(&info->lock); 411 spin_unlock(&info->lock);
414 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping)); 412 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
415 if (page) 413 if (page)
416 set_page_private(page, 0); 414 set_page_private(page, 0);
417 spin_lock(&info->lock); 415 spin_lock(&info->lock);
418 416
419 if (!page) { 417 if (!page) {
420 shmem_free_blocks(inode, 1); 418 shmem_free_blocks(inode, 1);
421 return ERR_PTR(-ENOMEM); 419 return ERR_PTR(-ENOMEM);
422 } 420 }
423 if (sgp != SGP_WRITE && 421 if (sgp != SGP_WRITE &&
424 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 422 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
425 entry = ERR_PTR(-EINVAL); 423 entry = ERR_PTR(-EINVAL);
426 break; 424 break;
427 } 425 }
428 if (info->next_index <= index) 426 if (info->next_index <= index)
429 info->next_index = index + 1; 427 info->next_index = index + 1;
430 } 428 }
431 if (page) { 429 if (page) {
432 /* another task gave its page, or truncated the file */ 430 /* another task gave its page, or truncated the file */
433 shmem_free_blocks(inode, 1); 431 shmem_free_blocks(inode, 1);
434 shmem_dir_free(page); 432 shmem_dir_free(page);
435 } 433 }
436 if (info->next_index <= index && !IS_ERR(entry)) 434 if (info->next_index <= index && !IS_ERR(entry))
437 info->next_index = index + 1; 435 info->next_index = index + 1;
438 return entry; 436 return entry;
439 } 437 }
440 438
441 /** 439 /**
442 * shmem_free_swp - free some swap entries in a directory 440 * shmem_free_swp - free some swap entries in a directory
443 * @dir: pointer to the directory 441 * @dir: pointer to the directory
444 * @edir: pointer after last entry of the directory 442 * @edir: pointer after last entry of the directory
445 * @punch_lock: pointer to spinlock when needed for the holepunch case 443 * @punch_lock: pointer to spinlock when needed for the holepunch case
446 */ 444 */
447 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir, 445 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
448 spinlock_t *punch_lock) 446 spinlock_t *punch_lock)
449 { 447 {
450 spinlock_t *punch_unlock = NULL; 448 spinlock_t *punch_unlock = NULL;
451 swp_entry_t *ptr; 449 swp_entry_t *ptr;
452 int freed = 0; 450 int freed = 0;
453 451
454 for (ptr = dir; ptr < edir; ptr++) { 452 for (ptr = dir; ptr < edir; ptr++) {
455 if (ptr->val) { 453 if (ptr->val) {
456 if (unlikely(punch_lock)) { 454 if (unlikely(punch_lock)) {
457 punch_unlock = punch_lock; 455 punch_unlock = punch_lock;
458 punch_lock = NULL; 456 punch_lock = NULL;
459 spin_lock(punch_unlock); 457 spin_lock(punch_unlock);
460 if (!ptr->val) 458 if (!ptr->val)
461 continue; 459 continue;
462 } 460 }
463 free_swap_and_cache(*ptr); 461 free_swap_and_cache(*ptr);
464 *ptr = (swp_entry_t){0}; 462 *ptr = (swp_entry_t){0};
465 freed++; 463 freed++;
466 } 464 }
467 } 465 }
468 if (punch_unlock) 466 if (punch_unlock)
469 spin_unlock(punch_unlock); 467 spin_unlock(punch_unlock);
470 return freed; 468 return freed;
471 } 469 }
472 470
473 static int shmem_map_and_free_swp(struct page *subdir, int offset, 471 static int shmem_map_and_free_swp(struct page *subdir, int offset,
474 int limit, struct page ***dir, spinlock_t *punch_lock) 472 int limit, struct page ***dir, spinlock_t *punch_lock)
475 { 473 {
476 swp_entry_t *ptr; 474 swp_entry_t *ptr;
477 int freed = 0; 475 int freed = 0;
478 476
479 ptr = shmem_swp_map(subdir); 477 ptr = shmem_swp_map(subdir);
480 for (; offset < limit; offset += LATENCY_LIMIT) { 478 for (; offset < limit; offset += LATENCY_LIMIT) {
481 int size = limit - offset; 479 int size = limit - offset;
482 if (size > LATENCY_LIMIT) 480 if (size > LATENCY_LIMIT)
483 size = LATENCY_LIMIT; 481 size = LATENCY_LIMIT;
484 freed += shmem_free_swp(ptr+offset, ptr+offset+size, 482 freed += shmem_free_swp(ptr+offset, ptr+offset+size,
485 punch_lock); 483 punch_lock);
486 if (need_resched()) { 484 if (need_resched()) {
487 shmem_swp_unmap(ptr); 485 shmem_swp_unmap(ptr);
488 if (*dir) { 486 if (*dir) {
489 shmem_dir_unmap(*dir); 487 shmem_dir_unmap(*dir);
490 *dir = NULL; 488 *dir = NULL;
491 } 489 }
492 cond_resched(); 490 cond_resched();
493 ptr = shmem_swp_map(subdir); 491 ptr = shmem_swp_map(subdir);
494 } 492 }
495 } 493 }
496 shmem_swp_unmap(ptr); 494 shmem_swp_unmap(ptr);
497 return freed; 495 return freed;
498 } 496 }
499 497
500 static void shmem_free_pages(struct list_head *next) 498 static void shmem_free_pages(struct list_head *next)
501 { 499 {
502 struct page *page; 500 struct page *page;
503 int freed = 0; 501 int freed = 0;
504 502
505 do { 503 do {
506 page = container_of(next, struct page, lru); 504 page = container_of(next, struct page, lru);
507 next = next->next; 505 next = next->next;
508 shmem_dir_free(page); 506 shmem_dir_free(page);
509 freed++; 507 freed++;
510 if (freed >= LATENCY_LIMIT) { 508 if (freed >= LATENCY_LIMIT) {
511 cond_resched(); 509 cond_resched();
512 freed = 0; 510 freed = 0;
513 } 511 }
514 } while (next); 512 } while (next);
515 } 513 }
516 514
517 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end) 515 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
518 { 516 {
519 struct shmem_inode_info *info = SHMEM_I(inode); 517 struct shmem_inode_info *info = SHMEM_I(inode);
520 unsigned long idx; 518 unsigned long idx;
521 unsigned long size; 519 unsigned long size;
522 unsigned long limit; 520 unsigned long limit;
523 unsigned long stage; 521 unsigned long stage;
524 unsigned long diroff; 522 unsigned long diroff;
525 struct page **dir; 523 struct page **dir;
526 struct page *topdir; 524 struct page *topdir;
527 struct page *middir; 525 struct page *middir;
528 struct page *subdir; 526 struct page *subdir;
529 swp_entry_t *ptr; 527 swp_entry_t *ptr;
530 LIST_HEAD(pages_to_free); 528 LIST_HEAD(pages_to_free);
531 long nr_pages_to_free = 0; 529 long nr_pages_to_free = 0;
532 long nr_swaps_freed = 0; 530 long nr_swaps_freed = 0;
533 int offset; 531 int offset;
534 int freed; 532 int freed;
535 int punch_hole; 533 int punch_hole;
536 spinlock_t *needs_lock; 534 spinlock_t *needs_lock;
537 spinlock_t *punch_lock; 535 spinlock_t *punch_lock;
538 unsigned long upper_limit; 536 unsigned long upper_limit;
539 537
540 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 538 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
541 idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 539 idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
542 if (idx >= info->next_index) 540 if (idx >= info->next_index)
543 return; 541 return;
544 542
545 spin_lock(&info->lock); 543 spin_lock(&info->lock);
546 info->flags |= SHMEM_TRUNCATE; 544 info->flags |= SHMEM_TRUNCATE;
547 if (likely(end == (loff_t) -1)) { 545 if (likely(end == (loff_t) -1)) {
548 limit = info->next_index; 546 limit = info->next_index;
549 upper_limit = SHMEM_MAX_INDEX; 547 upper_limit = SHMEM_MAX_INDEX;
550 info->next_index = idx; 548 info->next_index = idx;
551 needs_lock = NULL; 549 needs_lock = NULL;
552 punch_hole = 0; 550 punch_hole = 0;
553 } else { 551 } else {
554 if (end + 1 >= inode->i_size) { /* we may free a little more */ 552 if (end + 1 >= inode->i_size) { /* we may free a little more */
555 limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >> 553 limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
556 PAGE_CACHE_SHIFT; 554 PAGE_CACHE_SHIFT;
557 upper_limit = SHMEM_MAX_INDEX; 555 upper_limit = SHMEM_MAX_INDEX;
558 } else { 556 } else {
559 limit = (end + 1) >> PAGE_CACHE_SHIFT; 557 limit = (end + 1) >> PAGE_CACHE_SHIFT;
560 upper_limit = limit; 558 upper_limit = limit;
561 } 559 }
562 needs_lock = &info->lock; 560 needs_lock = &info->lock;
563 punch_hole = 1; 561 punch_hole = 1;
564 } 562 }
565 563
566 topdir = info->i_indirect; 564 topdir = info->i_indirect;
567 if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) { 565 if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
568 info->i_indirect = NULL; 566 info->i_indirect = NULL;
569 nr_pages_to_free++; 567 nr_pages_to_free++;
570 list_add(&topdir->lru, &pages_to_free); 568 list_add(&topdir->lru, &pages_to_free);
571 } 569 }
572 spin_unlock(&info->lock); 570 spin_unlock(&info->lock);
573 571
574 if (info->swapped && idx < SHMEM_NR_DIRECT) { 572 if (info->swapped && idx < SHMEM_NR_DIRECT) {
575 ptr = info->i_direct; 573 ptr = info->i_direct;
576 size = limit; 574 size = limit;
577 if (size > SHMEM_NR_DIRECT) 575 if (size > SHMEM_NR_DIRECT)
578 size = SHMEM_NR_DIRECT; 576 size = SHMEM_NR_DIRECT;
579 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock); 577 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
580 } 578 }
581 579
582 /* 580 /*
583 * If there are no indirect blocks or we are punching a hole 581 * If there are no indirect blocks or we are punching a hole
584 * below indirect blocks, nothing to be done. 582 * below indirect blocks, nothing to be done.
585 */ 583 */
586 if (!topdir || limit <= SHMEM_NR_DIRECT) 584 if (!topdir || limit <= SHMEM_NR_DIRECT)
587 goto done2; 585 goto done2;
588 586
589 /* 587 /*
590 * The truncation case has already dropped info->lock, and we're safe 588 * The truncation case has already dropped info->lock, and we're safe
591 * because i_size and next_index have already been lowered, preventing 589 * because i_size and next_index have already been lowered, preventing
592 * access beyond. But in the punch_hole case, we still need to take 590 * access beyond. But in the punch_hole case, we still need to take
593 * the lock when updating the swap directory, because there might be 591 * the lock when updating the swap directory, because there might be
594 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or 592 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
595 * shmem_writepage. However, whenever we find we can remove a whole 593 * shmem_writepage. However, whenever we find we can remove a whole
596 * directory page (not at the misaligned start or end of the range), 594 * directory page (not at the misaligned start or end of the range),
597 * we first NULLify its pointer in the level above, and then have no 595 * we first NULLify its pointer in the level above, and then have no
598 * need to take the lock when updating its contents: needs_lock and 596 * need to take the lock when updating its contents: needs_lock and
599 * punch_lock (either pointing to info->lock or NULL) manage this. 597 * punch_lock (either pointing to info->lock or NULL) manage this.
600 */ 598 */
601 599
602 upper_limit -= SHMEM_NR_DIRECT; 600 upper_limit -= SHMEM_NR_DIRECT;
603 limit -= SHMEM_NR_DIRECT; 601 limit -= SHMEM_NR_DIRECT;
604 idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0; 602 idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
605 offset = idx % ENTRIES_PER_PAGE; 603 offset = idx % ENTRIES_PER_PAGE;
606 idx -= offset; 604 idx -= offset;
607 605
608 dir = shmem_dir_map(topdir); 606 dir = shmem_dir_map(topdir);
609 stage = ENTRIES_PER_PAGEPAGE/2; 607 stage = ENTRIES_PER_PAGEPAGE/2;
610 if (idx < ENTRIES_PER_PAGEPAGE/2) { 608 if (idx < ENTRIES_PER_PAGEPAGE/2) {
611 middir = topdir; 609 middir = topdir;
612 diroff = idx/ENTRIES_PER_PAGE; 610 diroff = idx/ENTRIES_PER_PAGE;
613 } else { 611 } else {
614 dir += ENTRIES_PER_PAGE/2; 612 dir += ENTRIES_PER_PAGE/2;
615 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE; 613 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
616 while (stage <= idx) 614 while (stage <= idx)
617 stage += ENTRIES_PER_PAGEPAGE; 615 stage += ENTRIES_PER_PAGEPAGE;
618 middir = *dir; 616 middir = *dir;
619 if (*dir) { 617 if (*dir) {
620 diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) % 618 diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
621 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE; 619 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
622 if (!diroff && !offset && upper_limit >= stage) { 620 if (!diroff && !offset && upper_limit >= stage) {
623 if (needs_lock) { 621 if (needs_lock) {
624 spin_lock(needs_lock); 622 spin_lock(needs_lock);
625 *dir = NULL; 623 *dir = NULL;
626 spin_unlock(needs_lock); 624 spin_unlock(needs_lock);
627 needs_lock = NULL; 625 needs_lock = NULL;
628 } else 626 } else
629 *dir = NULL; 627 *dir = NULL;
630 nr_pages_to_free++; 628 nr_pages_to_free++;
631 list_add(&middir->lru, &pages_to_free); 629 list_add(&middir->lru, &pages_to_free);
632 } 630 }
633 shmem_dir_unmap(dir); 631 shmem_dir_unmap(dir);
634 dir = shmem_dir_map(middir); 632 dir = shmem_dir_map(middir);
635 } else { 633 } else {
636 diroff = 0; 634 diroff = 0;
637 offset = 0; 635 offset = 0;
638 idx = stage; 636 idx = stage;
639 } 637 }
640 } 638 }
641 639
642 for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) { 640 for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
643 if (unlikely(idx == stage)) { 641 if (unlikely(idx == stage)) {
644 shmem_dir_unmap(dir); 642 shmem_dir_unmap(dir);
645 dir = shmem_dir_map(topdir) + 643 dir = shmem_dir_map(topdir) +
646 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE; 644 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
647 while (!*dir) { 645 while (!*dir) {
648 dir++; 646 dir++;
649 idx += ENTRIES_PER_PAGEPAGE; 647 idx += ENTRIES_PER_PAGEPAGE;
650 if (idx >= limit) 648 if (idx >= limit)
651 goto done1; 649 goto done1;
652 } 650 }
653 stage = idx + ENTRIES_PER_PAGEPAGE; 651 stage = idx + ENTRIES_PER_PAGEPAGE;
654 middir = *dir; 652 middir = *dir;
655 if (punch_hole) 653 if (punch_hole)
656 needs_lock = &info->lock; 654 needs_lock = &info->lock;
657 if (upper_limit >= stage) { 655 if (upper_limit >= stage) {
658 if (needs_lock) { 656 if (needs_lock) {
659 spin_lock(needs_lock); 657 spin_lock(needs_lock);
660 *dir = NULL; 658 *dir = NULL;
661 spin_unlock(needs_lock); 659 spin_unlock(needs_lock);
662 needs_lock = NULL; 660 needs_lock = NULL;
663 } else 661 } else
664 *dir = NULL; 662 *dir = NULL;
665 nr_pages_to_free++; 663 nr_pages_to_free++;
666 list_add(&middir->lru, &pages_to_free); 664 list_add(&middir->lru, &pages_to_free);
667 } 665 }
668 shmem_dir_unmap(dir); 666 shmem_dir_unmap(dir);
669 cond_resched(); 667 cond_resched();
670 dir = shmem_dir_map(middir); 668 dir = shmem_dir_map(middir);
671 diroff = 0; 669 diroff = 0;
672 } 670 }
673 punch_lock = needs_lock; 671 punch_lock = needs_lock;
674 subdir = dir[diroff]; 672 subdir = dir[diroff];
675 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) { 673 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
676 if (needs_lock) { 674 if (needs_lock) {
677 spin_lock(needs_lock); 675 spin_lock(needs_lock);
678 dir[diroff] = NULL; 676 dir[diroff] = NULL;
679 spin_unlock(needs_lock); 677 spin_unlock(needs_lock);
680 punch_lock = NULL; 678 punch_lock = NULL;
681 } else 679 } else
682 dir[diroff] = NULL; 680 dir[diroff] = NULL;
683 nr_pages_to_free++; 681 nr_pages_to_free++;
684 list_add(&subdir->lru, &pages_to_free); 682 list_add(&subdir->lru, &pages_to_free);
685 } 683 }
686 if (subdir && page_private(subdir) /* has swap entries */) { 684 if (subdir && page_private(subdir) /* has swap entries */) {
687 size = limit - idx; 685 size = limit - idx;
688 if (size > ENTRIES_PER_PAGE) 686 if (size > ENTRIES_PER_PAGE)
689 size = ENTRIES_PER_PAGE; 687 size = ENTRIES_PER_PAGE;
690 freed = shmem_map_and_free_swp(subdir, 688 freed = shmem_map_and_free_swp(subdir,
691 offset, size, &dir, punch_lock); 689 offset, size, &dir, punch_lock);
692 if (!dir) 690 if (!dir)
693 dir = shmem_dir_map(middir); 691 dir = shmem_dir_map(middir);
694 nr_swaps_freed += freed; 692 nr_swaps_freed += freed;
695 if (offset || punch_lock) { 693 if (offset || punch_lock) {
696 spin_lock(&info->lock); 694 spin_lock(&info->lock);
697 set_page_private(subdir, 695 set_page_private(subdir,
698 page_private(subdir) - freed); 696 page_private(subdir) - freed);
699 spin_unlock(&info->lock); 697 spin_unlock(&info->lock);
700 } else 698 } else
701 BUG_ON(page_private(subdir) != freed); 699 BUG_ON(page_private(subdir) != freed);
702 } 700 }
703 offset = 0; 701 offset = 0;
704 } 702 }
705 done1: 703 done1:
706 shmem_dir_unmap(dir); 704 shmem_dir_unmap(dir);
707 done2: 705 done2:
708 if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) { 706 if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
709 /* 707 /*
710 * Call truncate_inode_pages again: racing shmem_unuse_inode 708 * Call truncate_inode_pages again: racing shmem_unuse_inode
711 * may have swizzled a page in from swap since vmtruncate or 709 * may have swizzled a page in from swap since vmtruncate or
712 * generic_delete_inode did it, before we lowered next_index. 710 * generic_delete_inode did it, before we lowered next_index.
713 * Also, though shmem_getpage checks i_size before adding to 711 * Also, though shmem_getpage checks i_size before adding to
714 * cache, no recheck after: so fix the narrow window there too. 712 * cache, no recheck after: so fix the narrow window there too.
715 * 713 *
716 * Recalling truncate_inode_pages_range and unmap_mapping_range 714 * Recalling truncate_inode_pages_range and unmap_mapping_range
717 * every time for punch_hole (which never got a chance to clear 715 * every time for punch_hole (which never got a chance to clear
718 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive, 716 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
719 * yet hardly ever necessary: try to optimize them out later. 717 * yet hardly ever necessary: try to optimize them out later.
720 */ 718 */
721 truncate_inode_pages_range(inode->i_mapping, start, end); 719 truncate_inode_pages_range(inode->i_mapping, start, end);
722 if (punch_hole) 720 if (punch_hole)
723 unmap_mapping_range(inode->i_mapping, start, 721 unmap_mapping_range(inode->i_mapping, start,
724 end - start, 1); 722 end - start, 1);
725 } 723 }
726 724
727 spin_lock(&info->lock); 725 spin_lock(&info->lock);
728 info->flags &= ~SHMEM_TRUNCATE; 726 info->flags &= ~SHMEM_TRUNCATE;
729 info->swapped -= nr_swaps_freed; 727 info->swapped -= nr_swaps_freed;
730 if (nr_pages_to_free) 728 if (nr_pages_to_free)
731 shmem_free_blocks(inode, nr_pages_to_free); 729 shmem_free_blocks(inode, nr_pages_to_free);
732 shmem_recalc_inode(inode); 730 shmem_recalc_inode(inode);
733 spin_unlock(&info->lock); 731 spin_unlock(&info->lock);
734 732
735 /* 733 /*
736 * Empty swap vector directory pages to be freed? 734 * Empty swap vector directory pages to be freed?
737 */ 735 */
738 if (!list_empty(&pages_to_free)) { 736 if (!list_empty(&pages_to_free)) {
739 pages_to_free.prev->next = NULL; 737 pages_to_free.prev->next = NULL;
740 shmem_free_pages(pages_to_free.next); 738 shmem_free_pages(pages_to_free.next);
741 } 739 }
742 } 740 }
743 741
744 static void shmem_truncate(struct inode *inode) 742 static void shmem_truncate(struct inode *inode)
745 { 743 {
746 shmem_truncate_range(inode, inode->i_size, (loff_t)-1); 744 shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
747 } 745 }
748 746
749 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr) 747 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
750 { 748 {
751 struct inode *inode = dentry->d_inode; 749 struct inode *inode = dentry->d_inode;
752 struct page *page = NULL; 750 struct page *page = NULL;
753 int error; 751 int error;
754 752
755 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 753 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
756 if (attr->ia_size < inode->i_size) { 754 if (attr->ia_size < inode->i_size) {
757 /* 755 /*
758 * If truncating down to a partial page, then 756 * If truncating down to a partial page, then
759 * if that page is already allocated, hold it 757 * if that page is already allocated, hold it
760 * in memory until the truncation is over, so 758 * in memory until the truncation is over, so
761 * truncate_partial_page cannnot miss it were 759 * truncate_partial_page cannnot miss it were
762 * it assigned to swap. 760 * it assigned to swap.
763 */ 761 */
764 if (attr->ia_size & (PAGE_CACHE_SIZE-1)) { 762 if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
765 (void) shmem_getpage(inode, 763 (void) shmem_getpage(inode,
766 attr->ia_size>>PAGE_CACHE_SHIFT, 764 attr->ia_size>>PAGE_CACHE_SHIFT,
767 &page, SGP_READ, NULL); 765 &page, SGP_READ, NULL);
768 if (page) 766 if (page)
769 unlock_page(page); 767 unlock_page(page);
770 } 768 }
771 /* 769 /*
772 * Reset SHMEM_PAGEIN flag so that shmem_truncate can 770 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
773 * detect if any pages might have been added to cache 771 * detect if any pages might have been added to cache
774 * after truncate_inode_pages. But we needn't bother 772 * after truncate_inode_pages. But we needn't bother
775 * if it's being fully truncated to zero-length: the 773 * if it's being fully truncated to zero-length: the
776 * nrpages check is efficient enough in that case. 774 * nrpages check is efficient enough in that case.
777 */ 775 */
778 if (attr->ia_size) { 776 if (attr->ia_size) {
779 struct shmem_inode_info *info = SHMEM_I(inode); 777 struct shmem_inode_info *info = SHMEM_I(inode);
780 spin_lock(&info->lock); 778 spin_lock(&info->lock);
781 info->flags &= ~SHMEM_PAGEIN; 779 info->flags &= ~SHMEM_PAGEIN;
782 spin_unlock(&info->lock); 780 spin_unlock(&info->lock);
783 } 781 }
784 } 782 }
785 } 783 }
786 784
787 error = inode_change_ok(inode, attr); 785 error = inode_change_ok(inode, attr);
788 if (!error) 786 if (!error)
789 error = inode_setattr(inode, attr); 787 error = inode_setattr(inode, attr);
790 #ifdef CONFIG_TMPFS_POSIX_ACL 788 #ifdef CONFIG_TMPFS_POSIX_ACL
791 if (!error && (attr->ia_valid & ATTR_MODE)) 789 if (!error && (attr->ia_valid & ATTR_MODE))
792 error = generic_acl_chmod(inode, &shmem_acl_ops); 790 error = generic_acl_chmod(inode, &shmem_acl_ops);
793 #endif 791 #endif
794 if (page) 792 if (page)
795 page_cache_release(page); 793 page_cache_release(page);
796 return error; 794 return error;
797 } 795 }
798 796
799 static void shmem_delete_inode(struct inode *inode) 797 static void shmem_delete_inode(struct inode *inode)
800 { 798 {
801 struct shmem_inode_info *info = SHMEM_I(inode); 799 struct shmem_inode_info *info = SHMEM_I(inode);
802 800
803 if (inode->i_op->truncate == shmem_truncate) { 801 if (inode->i_op->truncate == shmem_truncate) {
804 truncate_inode_pages(inode->i_mapping, 0); 802 truncate_inode_pages(inode->i_mapping, 0);
805 shmem_unacct_size(info->flags, inode->i_size); 803 shmem_unacct_size(info->flags, inode->i_size);
806 inode->i_size = 0; 804 inode->i_size = 0;
807 shmem_truncate(inode); 805 shmem_truncate(inode);
808 if (!list_empty(&info->swaplist)) { 806 if (!list_empty(&info->swaplist)) {
809 mutex_lock(&shmem_swaplist_mutex); 807 mutex_lock(&shmem_swaplist_mutex);
810 list_del_init(&info->swaplist); 808 list_del_init(&info->swaplist);
811 mutex_unlock(&shmem_swaplist_mutex); 809 mutex_unlock(&shmem_swaplist_mutex);
812 } 810 }
813 } 811 }
814 BUG_ON(inode->i_blocks); 812 BUG_ON(inode->i_blocks);
815 shmem_free_inode(inode->i_sb); 813 shmem_free_inode(inode->i_sb);
816 clear_inode(inode); 814 clear_inode(inode);
817 } 815 }
818 816
819 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir) 817 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
820 { 818 {
821 swp_entry_t *ptr; 819 swp_entry_t *ptr;
822 820
823 for (ptr = dir; ptr < edir; ptr++) { 821 for (ptr = dir; ptr < edir; ptr++) {
824 if (ptr->val == entry.val) 822 if (ptr->val == entry.val)
825 return ptr - dir; 823 return ptr - dir;
826 } 824 }
827 return -1; 825 return -1;
828 } 826 }
829 827
830 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page) 828 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
831 { 829 {
832 struct inode *inode; 830 struct inode *inode;
833 unsigned long idx; 831 unsigned long idx;
834 unsigned long size; 832 unsigned long size;
835 unsigned long limit; 833 unsigned long limit;
836 unsigned long stage; 834 unsigned long stage;
837 struct page **dir; 835 struct page **dir;
838 struct page *subdir; 836 struct page *subdir;
839 swp_entry_t *ptr; 837 swp_entry_t *ptr;
840 int offset; 838 int offset;
841 int error; 839 int error;
842 840
843 idx = 0; 841 idx = 0;
844 ptr = info->i_direct; 842 ptr = info->i_direct;
845 spin_lock(&info->lock); 843 spin_lock(&info->lock);
846 if (!info->swapped) { 844 if (!info->swapped) {
847 list_del_init(&info->swaplist); 845 list_del_init(&info->swaplist);
848 goto lost2; 846 goto lost2;
849 } 847 }
850 limit = info->next_index; 848 limit = info->next_index;
851 size = limit; 849 size = limit;
852 if (size > SHMEM_NR_DIRECT) 850 if (size > SHMEM_NR_DIRECT)
853 size = SHMEM_NR_DIRECT; 851 size = SHMEM_NR_DIRECT;
854 offset = shmem_find_swp(entry, ptr, ptr+size); 852 offset = shmem_find_swp(entry, ptr, ptr+size);
855 if (offset >= 0) 853 if (offset >= 0)
856 goto found; 854 goto found;
857 if (!info->i_indirect) 855 if (!info->i_indirect)
858 goto lost2; 856 goto lost2;
859 857
860 dir = shmem_dir_map(info->i_indirect); 858 dir = shmem_dir_map(info->i_indirect);
861 stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2; 859 stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
862 860
863 for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) { 861 for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
864 if (unlikely(idx == stage)) { 862 if (unlikely(idx == stage)) {
865 shmem_dir_unmap(dir-1); 863 shmem_dir_unmap(dir-1);
866 if (cond_resched_lock(&info->lock)) { 864 if (cond_resched_lock(&info->lock)) {
867 /* check it has not been truncated */ 865 /* check it has not been truncated */
868 if (limit > info->next_index) { 866 if (limit > info->next_index) {
869 limit = info->next_index; 867 limit = info->next_index;
870 if (idx >= limit) 868 if (idx >= limit)
871 goto lost2; 869 goto lost2;
872 } 870 }
873 } 871 }
874 dir = shmem_dir_map(info->i_indirect) + 872 dir = shmem_dir_map(info->i_indirect) +
875 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE; 873 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
876 while (!*dir) { 874 while (!*dir) {
877 dir++; 875 dir++;
878 idx += ENTRIES_PER_PAGEPAGE; 876 idx += ENTRIES_PER_PAGEPAGE;
879 if (idx >= limit) 877 if (idx >= limit)
880 goto lost1; 878 goto lost1;
881 } 879 }
882 stage = idx + ENTRIES_PER_PAGEPAGE; 880 stage = idx + ENTRIES_PER_PAGEPAGE;
883 subdir = *dir; 881 subdir = *dir;
884 shmem_dir_unmap(dir); 882 shmem_dir_unmap(dir);
885 dir = shmem_dir_map(subdir); 883 dir = shmem_dir_map(subdir);
886 } 884 }
887 subdir = *dir; 885 subdir = *dir;
888 if (subdir && page_private(subdir)) { 886 if (subdir && page_private(subdir)) {
889 ptr = shmem_swp_map(subdir); 887 ptr = shmem_swp_map(subdir);
890 size = limit - idx; 888 size = limit - idx;
891 if (size > ENTRIES_PER_PAGE) 889 if (size > ENTRIES_PER_PAGE)
892 size = ENTRIES_PER_PAGE; 890 size = ENTRIES_PER_PAGE;
893 offset = shmem_find_swp(entry, ptr, ptr+size); 891 offset = shmem_find_swp(entry, ptr, ptr+size);
894 shmem_swp_unmap(ptr); 892 shmem_swp_unmap(ptr);
895 if (offset >= 0) { 893 if (offset >= 0) {
896 shmem_dir_unmap(dir); 894 shmem_dir_unmap(dir);
897 goto found; 895 goto found;
898 } 896 }
899 } 897 }
900 } 898 }
901 lost1: 899 lost1:
902 shmem_dir_unmap(dir-1); 900 shmem_dir_unmap(dir-1);
903 lost2: 901 lost2:
904 spin_unlock(&info->lock); 902 spin_unlock(&info->lock);
905 return 0; 903 return 0;
906 found: 904 found:
907 idx += offset; 905 idx += offset;
908 inode = igrab(&info->vfs_inode); 906 inode = igrab(&info->vfs_inode);
909 spin_unlock(&info->lock); 907 spin_unlock(&info->lock);
910 908
911 /* 909 /*
912 * Move _head_ to start search for next from here. 910 * Move _head_ to start search for next from here.
913 * But be careful: shmem_delete_inode checks list_empty without taking 911 * But be careful: shmem_delete_inode checks list_empty without taking
914 * mutex, and there's an instant in list_move_tail when info->swaplist 912 * mutex, and there's an instant in list_move_tail when info->swaplist
915 * would appear empty, if it were the only one on shmem_swaplist. We 913 * would appear empty, if it were the only one on shmem_swaplist. We
916 * could avoid doing it if inode NULL; or use this minor optimization. 914 * could avoid doing it if inode NULL; or use this minor optimization.
917 */ 915 */
918 if (shmem_swaplist.next != &info->swaplist) 916 if (shmem_swaplist.next != &info->swaplist)
919 list_move_tail(&shmem_swaplist, &info->swaplist); 917 list_move_tail(&shmem_swaplist, &info->swaplist);
920 mutex_unlock(&shmem_swaplist_mutex); 918 mutex_unlock(&shmem_swaplist_mutex);
921 919
922 error = 1; 920 error = 1;
923 if (!inode) 921 if (!inode)
924 goto out; 922 goto out;
925 /* Precharge page using GFP_KERNEL while we can wait */ 923 /* Precharge page using GFP_KERNEL while we can wait */
926 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL); 924 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
927 if (error) 925 if (error)
928 goto out; 926 goto out;
929 error = radix_tree_preload(GFP_KERNEL); 927 error = radix_tree_preload(GFP_KERNEL);
930 if (error) { 928 if (error) {
931 mem_cgroup_uncharge_cache_page(page); 929 mem_cgroup_uncharge_cache_page(page);
932 goto out; 930 goto out;
933 } 931 }
934 error = 1; 932 error = 1;
935 933
936 spin_lock(&info->lock); 934 spin_lock(&info->lock);
937 ptr = shmem_swp_entry(info, idx, NULL); 935 ptr = shmem_swp_entry(info, idx, NULL);
938 if (ptr && ptr->val == entry.val) { 936 if (ptr && ptr->val == entry.val) {
939 error = add_to_page_cache_locked(page, inode->i_mapping, 937 error = add_to_page_cache_locked(page, inode->i_mapping,
940 idx, GFP_NOWAIT); 938 idx, GFP_NOWAIT);
941 /* does mem_cgroup_uncharge_cache_page on error */ 939 /* does mem_cgroup_uncharge_cache_page on error */
942 } else /* we must compensate for our precharge above */ 940 } else /* we must compensate for our precharge above */
943 mem_cgroup_uncharge_cache_page(page); 941 mem_cgroup_uncharge_cache_page(page);
944 942
945 if (error == -EEXIST) { 943 if (error == -EEXIST) {
946 struct page *filepage = find_get_page(inode->i_mapping, idx); 944 struct page *filepage = find_get_page(inode->i_mapping, idx);
947 error = 1; 945 error = 1;
948 if (filepage) { 946 if (filepage) {
949 /* 947 /*
950 * There might be a more uptodate page coming down 948 * There might be a more uptodate page coming down
951 * from a stacked writepage: forget our swappage if so. 949 * from a stacked writepage: forget our swappage if so.
952 */ 950 */
953 if (PageUptodate(filepage)) 951 if (PageUptodate(filepage))
954 error = 0; 952 error = 0;
955 page_cache_release(filepage); 953 page_cache_release(filepage);
956 } 954 }
957 } 955 }
958 if (!error) { 956 if (!error) {
959 delete_from_swap_cache(page); 957 delete_from_swap_cache(page);
960 set_page_dirty(page); 958 set_page_dirty(page);
961 info->flags |= SHMEM_PAGEIN; 959 info->flags |= SHMEM_PAGEIN;
962 shmem_swp_set(info, ptr, 0); 960 shmem_swp_set(info, ptr, 0);
963 swap_free(entry); 961 swap_free(entry);
964 error = 1; /* not an error, but entry was found */ 962 error = 1; /* not an error, but entry was found */
965 } 963 }
966 if (ptr) 964 if (ptr)
967 shmem_swp_unmap(ptr); 965 shmem_swp_unmap(ptr);
968 spin_unlock(&info->lock); 966 spin_unlock(&info->lock);
969 radix_tree_preload_end(); 967 radix_tree_preload_end();
970 out: 968 out:
971 unlock_page(page); 969 unlock_page(page);
972 page_cache_release(page); 970 page_cache_release(page);
973 iput(inode); /* allows for NULL */ 971 iput(inode); /* allows for NULL */
974 return error; 972 return error;
975 } 973 }
976 974
977 /* 975 /*
978 * shmem_unuse() search for an eventually swapped out shmem page. 976 * shmem_unuse() search for an eventually swapped out shmem page.
979 */ 977 */
980 int shmem_unuse(swp_entry_t entry, struct page *page) 978 int shmem_unuse(swp_entry_t entry, struct page *page)
981 { 979 {
982 struct list_head *p, *next; 980 struct list_head *p, *next;
983 struct shmem_inode_info *info; 981 struct shmem_inode_info *info;
984 int found = 0; 982 int found = 0;
985 983
986 mutex_lock(&shmem_swaplist_mutex); 984 mutex_lock(&shmem_swaplist_mutex);
987 list_for_each_safe(p, next, &shmem_swaplist) { 985 list_for_each_safe(p, next, &shmem_swaplist) {
988 info = list_entry(p, struct shmem_inode_info, swaplist); 986 info = list_entry(p, struct shmem_inode_info, swaplist);
989 found = shmem_unuse_inode(info, entry, page); 987 found = shmem_unuse_inode(info, entry, page);
990 cond_resched(); 988 cond_resched();
991 if (found) 989 if (found)
992 goto out; 990 goto out;
993 } 991 }
994 mutex_unlock(&shmem_swaplist_mutex); 992 mutex_unlock(&shmem_swaplist_mutex);
995 out: return found; /* 0 or 1 or -ENOMEM */ 993 out: return found; /* 0 or 1 or -ENOMEM */
996 } 994 }
997 995
998 /* 996 /*
999 * Move the page from the page cache to the swap cache. 997 * Move the page from the page cache to the swap cache.
1000 */ 998 */
1001 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 999 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1002 { 1000 {
1003 struct shmem_inode_info *info; 1001 struct shmem_inode_info *info;
1004 swp_entry_t *entry, swap; 1002 swp_entry_t *entry, swap;
1005 struct address_space *mapping; 1003 struct address_space *mapping;
1006 unsigned long index; 1004 unsigned long index;
1007 struct inode *inode; 1005 struct inode *inode;
1008 1006
1009 BUG_ON(!PageLocked(page)); 1007 BUG_ON(!PageLocked(page));
1010 mapping = page->mapping; 1008 mapping = page->mapping;
1011 index = page->index; 1009 index = page->index;
1012 inode = mapping->host; 1010 inode = mapping->host;
1013 info = SHMEM_I(inode); 1011 info = SHMEM_I(inode);
1014 if (info->flags & VM_LOCKED) 1012 if (info->flags & VM_LOCKED)
1015 goto redirty; 1013 goto redirty;
1016 if (!total_swap_pages) 1014 if (!total_swap_pages)
1017 goto redirty; 1015 goto redirty;
1018 1016
1019 /* 1017 /*
1020 * shmem_backing_dev_info's capabilities prevent regular writeback or 1018 * shmem_backing_dev_info's capabilities prevent regular writeback or
1021 * sync from ever calling shmem_writepage; but a stacking filesystem 1019 * sync from ever calling shmem_writepage; but a stacking filesystem
1022 * may use the ->writepage of its underlying filesystem, in which case 1020 * may use the ->writepage of its underlying filesystem, in which case
1023 * tmpfs should write out to swap only in response to memory pressure, 1021 * tmpfs should write out to swap only in response to memory pressure,
1024 * and not for pdflush or sync. However, in those cases, we do still 1022 * and not for pdflush or sync. However, in those cases, we do still
1025 * want to check if there's a redundant swappage to be discarded. 1023 * want to check if there's a redundant swappage to be discarded.
1026 */ 1024 */
1027 if (wbc->for_reclaim) 1025 if (wbc->for_reclaim)
1028 swap = get_swap_page(); 1026 swap = get_swap_page();
1029 else 1027 else
1030 swap.val = 0; 1028 swap.val = 0;
1031 1029
1032 spin_lock(&info->lock); 1030 spin_lock(&info->lock);
1033 if (index >= info->next_index) { 1031 if (index >= info->next_index) {
1034 BUG_ON(!(info->flags & SHMEM_TRUNCATE)); 1032 BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1035 goto unlock; 1033 goto unlock;
1036 } 1034 }
1037 entry = shmem_swp_entry(info, index, NULL); 1035 entry = shmem_swp_entry(info, index, NULL);
1038 if (entry->val) { 1036 if (entry->val) {
1039 /* 1037 /*
1040 * The more uptodate page coming down from a stacked 1038 * The more uptodate page coming down from a stacked
1041 * writepage should replace our old swappage. 1039 * writepage should replace our old swappage.
1042 */ 1040 */
1043 free_swap_and_cache(*entry); 1041 free_swap_and_cache(*entry);
1044 shmem_swp_set(info, entry, 0); 1042 shmem_swp_set(info, entry, 0);
1045 } 1043 }
1046 shmem_recalc_inode(inode); 1044 shmem_recalc_inode(inode);
1047 1045
1048 if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 1046 if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1049 remove_from_page_cache(page); 1047 remove_from_page_cache(page);
1050 shmem_swp_set(info, entry, swap.val); 1048 shmem_swp_set(info, entry, swap.val);
1051 shmem_swp_unmap(entry); 1049 shmem_swp_unmap(entry);
1052 if (list_empty(&info->swaplist)) 1050 if (list_empty(&info->swaplist))
1053 inode = igrab(inode); 1051 inode = igrab(inode);
1054 else 1052 else
1055 inode = NULL; 1053 inode = NULL;
1056 spin_unlock(&info->lock); 1054 spin_unlock(&info->lock);
1057 swap_duplicate(swap); 1055 swap_duplicate(swap);
1058 BUG_ON(page_mapped(page)); 1056 BUG_ON(page_mapped(page));
1059 page_cache_release(page); /* pagecache ref */ 1057 page_cache_release(page); /* pagecache ref */
1060 set_page_dirty(page); 1058 set_page_dirty(page);
1061 unlock_page(page); 1059 unlock_page(page);
1062 if (inode) { 1060 if (inode) {
1063 mutex_lock(&shmem_swaplist_mutex); 1061 mutex_lock(&shmem_swaplist_mutex);
1064 /* move instead of add in case we're racing */ 1062 /* move instead of add in case we're racing */
1065 list_move_tail(&info->swaplist, &shmem_swaplist); 1063 list_move_tail(&info->swaplist, &shmem_swaplist);
1066 mutex_unlock(&shmem_swaplist_mutex); 1064 mutex_unlock(&shmem_swaplist_mutex);
1067 iput(inode); 1065 iput(inode);
1068 } 1066 }
1069 return 0; 1067 return 0;
1070 } 1068 }
1071 1069
1072 shmem_swp_unmap(entry); 1070 shmem_swp_unmap(entry);
1073 unlock: 1071 unlock:
1074 spin_unlock(&info->lock); 1072 spin_unlock(&info->lock);
1075 swap_free(swap); 1073 swap_free(swap);
1076 redirty: 1074 redirty:
1077 set_page_dirty(page); 1075 set_page_dirty(page);
1078 if (wbc->for_reclaim) 1076 if (wbc->for_reclaim)
1079 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1077 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1080 unlock_page(page); 1078 unlock_page(page);
1081 return 0; 1079 return 0;
1082 } 1080 }
1083 1081
1084 #ifdef CONFIG_NUMA 1082 #ifdef CONFIG_NUMA
1085 #ifdef CONFIG_TMPFS 1083 #ifdef CONFIG_TMPFS
1086 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1084 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1087 { 1085 {
1088 char buffer[64]; 1086 char buffer[64];
1089 1087
1090 if (!mpol || mpol->mode == MPOL_DEFAULT) 1088 if (!mpol || mpol->mode == MPOL_DEFAULT)
1091 return; /* show nothing */ 1089 return; /* show nothing */
1092 1090
1093 mpol_to_str(buffer, sizeof(buffer), mpol, 1); 1091 mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1094 1092
1095 seq_printf(seq, ",mpol=%s", buffer); 1093 seq_printf(seq, ",mpol=%s", buffer);
1096 } 1094 }
1097 1095
1098 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1096 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1099 { 1097 {
1100 struct mempolicy *mpol = NULL; 1098 struct mempolicy *mpol = NULL;
1101 if (sbinfo->mpol) { 1099 if (sbinfo->mpol) {
1102 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1100 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1103 mpol = sbinfo->mpol; 1101 mpol = sbinfo->mpol;
1104 mpol_get(mpol); 1102 mpol_get(mpol);
1105 spin_unlock(&sbinfo->stat_lock); 1103 spin_unlock(&sbinfo->stat_lock);
1106 } 1104 }
1107 return mpol; 1105 return mpol;
1108 } 1106 }
1109 #endif /* CONFIG_TMPFS */ 1107 #endif /* CONFIG_TMPFS */
1110 1108
1111 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp, 1109 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1112 struct shmem_inode_info *info, unsigned long idx) 1110 struct shmem_inode_info *info, unsigned long idx)
1113 { 1111 {
1114 struct mempolicy mpol, *spol; 1112 struct mempolicy mpol, *spol;
1115 struct vm_area_struct pvma; 1113 struct vm_area_struct pvma;
1116 struct page *page; 1114 struct page *page;
1117 1115
1118 spol = mpol_cond_copy(&mpol, 1116 spol = mpol_cond_copy(&mpol,
1119 mpol_shared_policy_lookup(&info->policy, idx)); 1117 mpol_shared_policy_lookup(&info->policy, idx));
1120 1118
1121 /* Create a pseudo vma that just contains the policy */ 1119 /* Create a pseudo vma that just contains the policy */
1122 pvma.vm_start = 0; 1120 pvma.vm_start = 0;
1123 pvma.vm_pgoff = idx; 1121 pvma.vm_pgoff = idx;
1124 pvma.vm_ops = NULL; 1122 pvma.vm_ops = NULL;
1125 pvma.vm_policy = spol; 1123 pvma.vm_policy = spol;
1126 page = swapin_readahead(entry, gfp, &pvma, 0); 1124 page = swapin_readahead(entry, gfp, &pvma, 0);
1127 return page; 1125 return page;
1128 } 1126 }
1129 1127
1130 static struct page *shmem_alloc_page(gfp_t gfp, 1128 static struct page *shmem_alloc_page(gfp_t gfp,
1131 struct shmem_inode_info *info, unsigned long idx) 1129 struct shmem_inode_info *info, unsigned long idx)
1132 { 1130 {
1133 struct vm_area_struct pvma; 1131 struct vm_area_struct pvma;
1134 1132
1135 /* Create a pseudo vma that just contains the policy */ 1133 /* Create a pseudo vma that just contains the policy */
1136 pvma.vm_start = 0; 1134 pvma.vm_start = 0;
1137 pvma.vm_pgoff = idx; 1135 pvma.vm_pgoff = idx;
1138 pvma.vm_ops = NULL; 1136 pvma.vm_ops = NULL;
1139 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx); 1137 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1140 1138
1141 /* 1139 /*
1142 * alloc_page_vma() will drop the shared policy reference 1140 * alloc_page_vma() will drop the shared policy reference
1143 */ 1141 */
1144 return alloc_page_vma(gfp, &pvma, 0); 1142 return alloc_page_vma(gfp, &pvma, 0);
1145 } 1143 }
1146 #else /* !CONFIG_NUMA */ 1144 #else /* !CONFIG_NUMA */
1147 #ifdef CONFIG_TMPFS 1145 #ifdef CONFIG_TMPFS
1148 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p) 1146 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1149 { 1147 {
1150 } 1148 }
1151 #endif /* CONFIG_TMPFS */ 1149 #endif /* CONFIG_TMPFS */
1152 1150
1153 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp, 1151 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1154 struct shmem_inode_info *info, unsigned long idx) 1152 struct shmem_inode_info *info, unsigned long idx)
1155 { 1153 {
1156 return swapin_readahead(entry, gfp, NULL, 0); 1154 return swapin_readahead(entry, gfp, NULL, 0);
1157 } 1155 }
1158 1156
1159 static inline struct page *shmem_alloc_page(gfp_t gfp, 1157 static inline struct page *shmem_alloc_page(gfp_t gfp,
1160 struct shmem_inode_info *info, unsigned long idx) 1158 struct shmem_inode_info *info, unsigned long idx)
1161 { 1159 {
1162 return alloc_page(gfp); 1160 return alloc_page(gfp);
1163 } 1161 }
1164 #endif /* CONFIG_NUMA */ 1162 #endif /* CONFIG_NUMA */
1165 1163
1166 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS) 1164 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1167 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1165 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1168 { 1166 {
1169 return NULL; 1167 return NULL;
1170 } 1168 }
1171 #endif 1169 #endif
1172 1170
1173 /* 1171 /*
1174 * shmem_getpage - either get the page from swap or allocate a new one 1172 * shmem_getpage - either get the page from swap or allocate a new one
1175 * 1173 *
1176 * If we allocate a new one we do not mark it dirty. That's up to the 1174 * If we allocate a new one we do not mark it dirty. That's up to the
1177 * vm. If we swap it in we mark it dirty since we also free the swap 1175 * vm. If we swap it in we mark it dirty since we also free the swap
1178 * entry since a page cannot live in both the swap and page cache 1176 * entry since a page cannot live in both the swap and page cache
1179 */ 1177 */
1180 static int shmem_getpage(struct inode *inode, unsigned long idx, 1178 static int shmem_getpage(struct inode *inode, unsigned long idx,
1181 struct page **pagep, enum sgp_type sgp, int *type) 1179 struct page **pagep, enum sgp_type sgp, int *type)
1182 { 1180 {
1183 struct address_space *mapping = inode->i_mapping; 1181 struct address_space *mapping = inode->i_mapping;
1184 struct shmem_inode_info *info = SHMEM_I(inode); 1182 struct shmem_inode_info *info = SHMEM_I(inode);
1185 struct shmem_sb_info *sbinfo; 1183 struct shmem_sb_info *sbinfo;
1186 struct page *filepage = *pagep; 1184 struct page *filepage = *pagep;
1187 struct page *swappage; 1185 struct page *swappage;
1188 swp_entry_t *entry; 1186 swp_entry_t *entry;
1189 swp_entry_t swap; 1187 swp_entry_t swap;
1190 gfp_t gfp; 1188 gfp_t gfp;
1191 int error; 1189 int error;
1192 1190
1193 if (idx >= SHMEM_MAX_INDEX) 1191 if (idx >= SHMEM_MAX_INDEX)
1194 return -EFBIG; 1192 return -EFBIG;
1195 1193
1196 if (type) 1194 if (type)
1197 *type = 0; 1195 *type = 0;
1198 1196
1199 /* 1197 /*
1200 * Normally, filepage is NULL on entry, and either found 1198 * Normally, filepage is NULL on entry, and either found
1201 * uptodate immediately, or allocated and zeroed, or read 1199 * uptodate immediately, or allocated and zeroed, or read
1202 * in under swappage, which is then assigned to filepage. 1200 * in under swappage, which is then assigned to filepage.
1203 * But shmem_readpage (required for splice) passes in a locked 1201 * But shmem_readpage (required for splice) passes in a locked
1204 * filepage, which may be found not uptodate by other callers 1202 * filepage, which may be found not uptodate by other callers
1205 * too, and may need to be copied from the swappage read in. 1203 * too, and may need to be copied from the swappage read in.
1206 */ 1204 */
1207 repeat: 1205 repeat:
1208 if (!filepage) 1206 if (!filepage)
1209 filepage = find_lock_page(mapping, idx); 1207 filepage = find_lock_page(mapping, idx);
1210 if (filepage && PageUptodate(filepage)) 1208 if (filepage && PageUptodate(filepage))
1211 goto done; 1209 goto done;
1212 error = 0; 1210 error = 0;
1213 gfp = mapping_gfp_mask(mapping); 1211 gfp = mapping_gfp_mask(mapping);
1214 if (!filepage) { 1212 if (!filepage) {
1215 /* 1213 /*
1216 * Try to preload while we can wait, to not make a habit of 1214 * Try to preload while we can wait, to not make a habit of
1217 * draining atomic reserves; but don't latch on to this cpu. 1215 * draining atomic reserves; but don't latch on to this cpu.
1218 */ 1216 */
1219 error = radix_tree_preload(gfp & ~__GFP_HIGHMEM); 1217 error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1220 if (error) 1218 if (error)
1221 goto failed; 1219 goto failed;
1222 radix_tree_preload_end(); 1220 radix_tree_preload_end();
1223 } 1221 }
1224 1222
1225 spin_lock(&info->lock); 1223 spin_lock(&info->lock);
1226 shmem_recalc_inode(inode); 1224 shmem_recalc_inode(inode);
1227 entry = shmem_swp_alloc(info, idx, sgp); 1225 entry = shmem_swp_alloc(info, idx, sgp);
1228 if (IS_ERR(entry)) { 1226 if (IS_ERR(entry)) {
1229 spin_unlock(&info->lock); 1227 spin_unlock(&info->lock);
1230 error = PTR_ERR(entry); 1228 error = PTR_ERR(entry);
1231 goto failed; 1229 goto failed;
1232 } 1230 }
1233 swap = *entry; 1231 swap = *entry;
1234 1232
1235 if (swap.val) { 1233 if (swap.val) {
1236 /* Look it up and read it in.. */ 1234 /* Look it up and read it in.. */
1237 swappage = lookup_swap_cache(swap); 1235 swappage = lookup_swap_cache(swap);
1238 if (!swappage) { 1236 if (!swappage) {
1239 shmem_swp_unmap(entry); 1237 shmem_swp_unmap(entry);
1240 /* here we actually do the io */ 1238 /* here we actually do the io */
1241 if (type && !(*type & VM_FAULT_MAJOR)) { 1239 if (type && !(*type & VM_FAULT_MAJOR)) {
1242 __count_vm_event(PGMAJFAULT); 1240 __count_vm_event(PGMAJFAULT);
1243 *type |= VM_FAULT_MAJOR; 1241 *type |= VM_FAULT_MAJOR;
1244 } 1242 }
1245 spin_unlock(&info->lock); 1243 spin_unlock(&info->lock);
1246 swappage = shmem_swapin(swap, gfp, info, idx); 1244 swappage = shmem_swapin(swap, gfp, info, idx);
1247 if (!swappage) { 1245 if (!swappage) {
1248 spin_lock(&info->lock); 1246 spin_lock(&info->lock);
1249 entry = shmem_swp_alloc(info, idx, sgp); 1247 entry = shmem_swp_alloc(info, idx, sgp);
1250 if (IS_ERR(entry)) 1248 if (IS_ERR(entry))
1251 error = PTR_ERR(entry); 1249 error = PTR_ERR(entry);
1252 else { 1250 else {
1253 if (entry->val == swap.val) 1251 if (entry->val == swap.val)
1254 error = -ENOMEM; 1252 error = -ENOMEM;
1255 shmem_swp_unmap(entry); 1253 shmem_swp_unmap(entry);
1256 } 1254 }
1257 spin_unlock(&info->lock); 1255 spin_unlock(&info->lock);
1258 if (error) 1256 if (error)
1259 goto failed; 1257 goto failed;
1260 goto repeat; 1258 goto repeat;
1261 } 1259 }
1262 wait_on_page_locked(swappage); 1260 wait_on_page_locked(swappage);
1263 page_cache_release(swappage); 1261 page_cache_release(swappage);
1264 goto repeat; 1262 goto repeat;
1265 } 1263 }
1266 1264
1267 /* We have to do this with page locked to prevent races */ 1265 /* We have to do this with page locked to prevent races */
1268 if (!trylock_page(swappage)) { 1266 if (!trylock_page(swappage)) {
1269 shmem_swp_unmap(entry); 1267 shmem_swp_unmap(entry);
1270 spin_unlock(&info->lock); 1268 spin_unlock(&info->lock);
1271 wait_on_page_locked(swappage); 1269 wait_on_page_locked(swappage);
1272 page_cache_release(swappage); 1270 page_cache_release(swappage);
1273 goto repeat; 1271 goto repeat;
1274 } 1272 }
1275 if (PageWriteback(swappage)) { 1273 if (PageWriteback(swappage)) {
1276 shmem_swp_unmap(entry); 1274 shmem_swp_unmap(entry);
1277 spin_unlock(&info->lock); 1275 spin_unlock(&info->lock);
1278 wait_on_page_writeback(swappage); 1276 wait_on_page_writeback(swappage);
1279 unlock_page(swappage); 1277 unlock_page(swappage);
1280 page_cache_release(swappage); 1278 page_cache_release(swappage);
1281 goto repeat; 1279 goto repeat;
1282 } 1280 }
1283 if (!PageUptodate(swappage)) { 1281 if (!PageUptodate(swappage)) {
1284 shmem_swp_unmap(entry); 1282 shmem_swp_unmap(entry);
1285 spin_unlock(&info->lock); 1283 spin_unlock(&info->lock);
1286 unlock_page(swappage); 1284 unlock_page(swappage);
1287 page_cache_release(swappage); 1285 page_cache_release(swappage);
1288 error = -EIO; 1286 error = -EIO;
1289 goto failed; 1287 goto failed;
1290 } 1288 }
1291 1289
1292 if (filepage) { 1290 if (filepage) {
1293 shmem_swp_set(info, entry, 0); 1291 shmem_swp_set(info, entry, 0);
1294 shmem_swp_unmap(entry); 1292 shmem_swp_unmap(entry);
1295 delete_from_swap_cache(swappage); 1293 delete_from_swap_cache(swappage);
1296 spin_unlock(&info->lock); 1294 spin_unlock(&info->lock);
1297 copy_highpage(filepage, swappage); 1295 copy_highpage(filepage, swappage);
1298 unlock_page(swappage); 1296 unlock_page(swappage);
1299 page_cache_release(swappage); 1297 page_cache_release(swappage);
1300 flush_dcache_page(filepage); 1298 flush_dcache_page(filepage);
1301 SetPageUptodate(filepage); 1299 SetPageUptodate(filepage);
1302 set_page_dirty(filepage); 1300 set_page_dirty(filepage);
1303 swap_free(swap); 1301 swap_free(swap);
1304 } else if (!(error = add_to_page_cache_locked(swappage, mapping, 1302 } else if (!(error = add_to_page_cache_locked(swappage, mapping,
1305 idx, GFP_NOWAIT))) { 1303 idx, GFP_NOWAIT))) {
1306 info->flags |= SHMEM_PAGEIN; 1304 info->flags |= SHMEM_PAGEIN;
1307 shmem_swp_set(info, entry, 0); 1305 shmem_swp_set(info, entry, 0);
1308 shmem_swp_unmap(entry); 1306 shmem_swp_unmap(entry);
1309 delete_from_swap_cache(swappage); 1307 delete_from_swap_cache(swappage);
1310 spin_unlock(&info->lock); 1308 spin_unlock(&info->lock);
1311 filepage = swappage; 1309 filepage = swappage;
1312 set_page_dirty(filepage); 1310 set_page_dirty(filepage);
1313 swap_free(swap); 1311 swap_free(swap);
1314 } else { 1312 } else {
1315 shmem_swp_unmap(entry); 1313 shmem_swp_unmap(entry);
1316 spin_unlock(&info->lock); 1314 spin_unlock(&info->lock);
1317 unlock_page(swappage); 1315 unlock_page(swappage);
1318 page_cache_release(swappage); 1316 page_cache_release(swappage);
1319 if (error == -ENOMEM) { 1317 if (error == -ENOMEM) {
1320 /* allow reclaim from this memory cgroup */ 1318 /* allow reclaim from this memory cgroup */
1321 error = mem_cgroup_shrink_usage(current->mm, 1319 error = mem_cgroup_shrink_usage(current->mm,
1322 gfp); 1320 gfp);
1323 if (error) 1321 if (error)
1324 goto failed; 1322 goto failed;
1325 } 1323 }
1326 goto repeat; 1324 goto repeat;
1327 } 1325 }
1328 } else if (sgp == SGP_READ && !filepage) { 1326 } else if (sgp == SGP_READ && !filepage) {
1329 shmem_swp_unmap(entry); 1327 shmem_swp_unmap(entry);
1330 filepage = find_get_page(mapping, idx); 1328 filepage = find_get_page(mapping, idx);
1331 if (filepage && 1329 if (filepage &&
1332 (!PageUptodate(filepage) || !trylock_page(filepage))) { 1330 (!PageUptodate(filepage) || !trylock_page(filepage))) {
1333 spin_unlock(&info->lock); 1331 spin_unlock(&info->lock);
1334 wait_on_page_locked(filepage); 1332 wait_on_page_locked(filepage);
1335 page_cache_release(filepage); 1333 page_cache_release(filepage);
1336 filepage = NULL; 1334 filepage = NULL;
1337 goto repeat; 1335 goto repeat;
1338 } 1336 }
1339 spin_unlock(&info->lock); 1337 spin_unlock(&info->lock);
1340 } else { 1338 } else {
1341 shmem_swp_unmap(entry); 1339 shmem_swp_unmap(entry);
1342 sbinfo = SHMEM_SB(inode->i_sb); 1340 sbinfo = SHMEM_SB(inode->i_sb);
1343 if (sbinfo->max_blocks) { 1341 if (sbinfo->max_blocks) {
1344 spin_lock(&sbinfo->stat_lock); 1342 spin_lock(&sbinfo->stat_lock);
1345 if (sbinfo->free_blocks == 0 || 1343 if (sbinfo->free_blocks == 0 ||
1346 shmem_acct_block(info->flags)) { 1344 shmem_acct_block(info->flags)) {
1347 spin_unlock(&sbinfo->stat_lock); 1345 spin_unlock(&sbinfo->stat_lock);
1348 spin_unlock(&info->lock); 1346 spin_unlock(&info->lock);
1349 error = -ENOSPC; 1347 error = -ENOSPC;
1350 goto failed; 1348 goto failed;
1351 } 1349 }
1352 sbinfo->free_blocks--; 1350 sbinfo->free_blocks--;
1353 inode->i_blocks += BLOCKS_PER_PAGE; 1351 inode->i_blocks += BLOCKS_PER_PAGE;
1354 spin_unlock(&sbinfo->stat_lock); 1352 spin_unlock(&sbinfo->stat_lock);
1355 } else if (shmem_acct_block(info->flags)) { 1353 } else if (shmem_acct_block(info->flags)) {
1356 spin_unlock(&info->lock); 1354 spin_unlock(&info->lock);
1357 error = -ENOSPC; 1355 error = -ENOSPC;
1358 goto failed; 1356 goto failed;
1359 } 1357 }
1360 1358
1361 if (!filepage) { 1359 if (!filepage) {
1362 int ret; 1360 int ret;
1363 1361
1364 spin_unlock(&info->lock); 1362 spin_unlock(&info->lock);
1365 filepage = shmem_alloc_page(gfp, info, idx); 1363 filepage = shmem_alloc_page(gfp, info, idx);
1366 if (!filepage) { 1364 if (!filepage) {
1367 shmem_unacct_blocks(info->flags, 1); 1365 shmem_unacct_blocks(info->flags, 1);
1368 shmem_free_blocks(inode, 1); 1366 shmem_free_blocks(inode, 1);
1369 error = -ENOMEM; 1367 error = -ENOMEM;
1370 goto failed; 1368 goto failed;
1371 } 1369 }
1372 1370
1373 /* Precharge page while we can wait, compensate after */ 1371 /* Precharge page while we can wait, compensate after */
1374 error = mem_cgroup_cache_charge(filepage, current->mm, 1372 error = mem_cgroup_cache_charge(filepage, current->mm,
1375 gfp & ~__GFP_HIGHMEM); 1373 gfp & ~__GFP_HIGHMEM);
1376 if (error) { 1374 if (error) {
1377 page_cache_release(filepage); 1375 page_cache_release(filepage);
1378 shmem_unacct_blocks(info->flags, 1); 1376 shmem_unacct_blocks(info->flags, 1);
1379 shmem_free_blocks(inode, 1); 1377 shmem_free_blocks(inode, 1);
1380 filepage = NULL; 1378 filepage = NULL;
1381 goto failed; 1379 goto failed;
1382 } 1380 }
1383 1381
1384 spin_lock(&info->lock); 1382 spin_lock(&info->lock);
1385 entry = shmem_swp_alloc(info, idx, sgp); 1383 entry = shmem_swp_alloc(info, idx, sgp);
1386 if (IS_ERR(entry)) 1384 if (IS_ERR(entry))
1387 error = PTR_ERR(entry); 1385 error = PTR_ERR(entry);
1388 else { 1386 else {
1389 swap = *entry; 1387 swap = *entry;
1390 shmem_swp_unmap(entry); 1388 shmem_swp_unmap(entry);
1391 } 1389 }
1392 ret = error || swap.val; 1390 ret = error || swap.val;
1393 if (ret) 1391 if (ret)
1394 mem_cgroup_uncharge_cache_page(filepage); 1392 mem_cgroup_uncharge_cache_page(filepage);
1395 else 1393 else
1396 ret = add_to_page_cache_lru(filepage, mapping, 1394 ret = add_to_page_cache_lru(filepage, mapping,
1397 idx, GFP_NOWAIT); 1395 idx, GFP_NOWAIT);
1398 /* 1396 /*
1399 * At add_to_page_cache_lru() failure, uncharge will 1397 * At add_to_page_cache_lru() failure, uncharge will
1400 * be done automatically. 1398 * be done automatically.
1401 */ 1399 */
1402 if (ret) { 1400 if (ret) {
1403 spin_unlock(&info->lock); 1401 spin_unlock(&info->lock);
1404 page_cache_release(filepage); 1402 page_cache_release(filepage);
1405 shmem_unacct_blocks(info->flags, 1); 1403 shmem_unacct_blocks(info->flags, 1);
1406 shmem_free_blocks(inode, 1); 1404 shmem_free_blocks(inode, 1);
1407 filepage = NULL; 1405 filepage = NULL;
1408 if (error) 1406 if (error)
1409 goto failed; 1407 goto failed;
1410 goto repeat; 1408 goto repeat;
1411 } 1409 }
1412 info->flags |= SHMEM_PAGEIN; 1410 info->flags |= SHMEM_PAGEIN;
1413 } 1411 }
1414 1412
1415 info->alloced++; 1413 info->alloced++;
1416 spin_unlock(&info->lock); 1414 spin_unlock(&info->lock);
1417 clear_highpage(filepage); 1415 clear_highpage(filepage);
1418 flush_dcache_page(filepage); 1416 flush_dcache_page(filepage);
1419 SetPageUptodate(filepage); 1417 SetPageUptodate(filepage);
1420 if (sgp == SGP_DIRTY) 1418 if (sgp == SGP_DIRTY)
1421 set_page_dirty(filepage); 1419 set_page_dirty(filepage);
1422 } 1420 }
1423 done: 1421 done:
1424 *pagep = filepage; 1422 *pagep = filepage;
1425 return 0; 1423 return 0;
1426 1424
1427 failed: 1425 failed:
1428 if (*pagep != filepage) { 1426 if (*pagep != filepage) {
1429 unlock_page(filepage); 1427 unlock_page(filepage);
1430 page_cache_release(filepage); 1428 page_cache_release(filepage);
1431 } 1429 }
1432 return error; 1430 return error;
1433 } 1431 }
1434 1432
1435 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1433 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1436 { 1434 {
1437 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 1435 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1438 int error; 1436 int error;
1439 int ret; 1437 int ret;
1440 1438
1441 if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode)) 1439 if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1442 return VM_FAULT_SIGBUS; 1440 return VM_FAULT_SIGBUS;
1443 1441
1444 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret); 1442 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1445 if (error) 1443 if (error)
1446 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS); 1444 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1447 1445
1448 mark_page_accessed(vmf->page); 1446 mark_page_accessed(vmf->page);
1449 return ret | VM_FAULT_LOCKED; 1447 return ret | VM_FAULT_LOCKED;
1450 } 1448 }
1451 1449
1452 #ifdef CONFIG_NUMA 1450 #ifdef CONFIG_NUMA
1453 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new) 1451 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1454 { 1452 {
1455 struct inode *i = vma->vm_file->f_path.dentry->d_inode; 1453 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1456 return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new); 1454 return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1457 } 1455 }
1458 1456
1459 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 1457 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1460 unsigned long addr) 1458 unsigned long addr)
1461 { 1459 {
1462 struct inode *i = vma->vm_file->f_path.dentry->d_inode; 1460 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1463 unsigned long idx; 1461 unsigned long idx;
1464 1462
1465 idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 1463 idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1466 return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx); 1464 return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1467 } 1465 }
1468 #endif 1466 #endif
1469 1467
1470 int shmem_lock(struct file *file, int lock, struct user_struct *user) 1468 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1471 { 1469 {
1472 struct inode *inode = file->f_path.dentry->d_inode; 1470 struct inode *inode = file->f_path.dentry->d_inode;
1473 struct shmem_inode_info *info = SHMEM_I(inode); 1471 struct shmem_inode_info *info = SHMEM_I(inode);
1474 int retval = -ENOMEM; 1472 int retval = -ENOMEM;
1475 1473
1476 spin_lock(&info->lock); 1474 spin_lock(&info->lock);
1477 if (lock && !(info->flags & VM_LOCKED)) { 1475 if (lock && !(info->flags & VM_LOCKED)) {
1478 if (!user_shm_lock(inode->i_size, user)) 1476 if (!user_shm_lock(inode->i_size, user))
1479 goto out_nomem; 1477 goto out_nomem;
1480 info->flags |= VM_LOCKED; 1478 info->flags |= VM_LOCKED;
1481 } 1479 }
1482 if (!lock && (info->flags & VM_LOCKED) && user) { 1480 if (!lock && (info->flags & VM_LOCKED) && user) {
1483 user_shm_unlock(inode->i_size, user); 1481 user_shm_unlock(inode->i_size, user);
1484 info->flags &= ~VM_LOCKED; 1482 info->flags &= ~VM_LOCKED;
1485 } 1483 }
1486 retval = 0; 1484 retval = 0;
1487 out_nomem: 1485 out_nomem:
1488 spin_unlock(&info->lock); 1486 spin_unlock(&info->lock);
1489 return retval; 1487 return retval;
1490 } 1488 }
1491 1489
1492 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 1490 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1493 { 1491 {
1494 file_accessed(file); 1492 file_accessed(file);
1495 vma->vm_ops = &shmem_vm_ops; 1493 vma->vm_ops = &shmem_vm_ops;
1496 vma->vm_flags |= VM_CAN_NONLINEAR; 1494 vma->vm_flags |= VM_CAN_NONLINEAR;
1497 return 0; 1495 return 0;
1498 } 1496 }
1499 1497
1500 static struct inode * 1498 static struct inode *
1501 shmem_get_inode(struct super_block *sb, int mode, dev_t dev) 1499 shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1502 { 1500 {
1503 struct inode *inode; 1501 struct inode *inode;
1504 struct shmem_inode_info *info; 1502 struct shmem_inode_info *info;
1505 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 1503 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1506 1504
1507 if (shmem_reserve_inode(sb)) 1505 if (shmem_reserve_inode(sb))
1508 return NULL; 1506 return NULL;
1509 1507
1510 inode = new_inode(sb); 1508 inode = new_inode(sb);
1511 if (inode) { 1509 if (inode) {
1512 inode->i_mode = mode; 1510 inode->i_mode = mode;
1513 inode->i_uid = current->fsuid; 1511 inode->i_uid = current->fsuid;
1514 inode->i_gid = current->fsgid; 1512 inode->i_gid = current->fsgid;
1515 inode->i_blocks = 0; 1513 inode->i_blocks = 0;
1516 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info; 1514 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1517 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 1515 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1518 inode->i_generation = get_seconds(); 1516 inode->i_generation = get_seconds();
1519 info = SHMEM_I(inode); 1517 info = SHMEM_I(inode);
1520 memset(info, 0, (char *)inode - (char *)info); 1518 memset(info, 0, (char *)inode - (char *)info);
1521 spin_lock_init(&info->lock); 1519 spin_lock_init(&info->lock);
1522 INIT_LIST_HEAD(&info->swaplist); 1520 INIT_LIST_HEAD(&info->swaplist);
1523 1521
1524 switch (mode & S_IFMT) { 1522 switch (mode & S_IFMT) {
1525 default: 1523 default:
1526 inode->i_op = &shmem_special_inode_operations; 1524 inode->i_op = &shmem_special_inode_operations;
1527 init_special_inode(inode, mode, dev); 1525 init_special_inode(inode, mode, dev);
1528 break; 1526 break;
1529 case S_IFREG: 1527 case S_IFREG:
1530 inode->i_mapping->a_ops = &shmem_aops; 1528 inode->i_mapping->a_ops = &shmem_aops;
1531 inode->i_op = &shmem_inode_operations; 1529 inode->i_op = &shmem_inode_operations;
1532 inode->i_fop = &shmem_file_operations; 1530 inode->i_fop = &shmem_file_operations;
1533 mpol_shared_policy_init(&info->policy, 1531 mpol_shared_policy_init(&info->policy,
1534 shmem_get_sbmpol(sbinfo)); 1532 shmem_get_sbmpol(sbinfo));
1535 break; 1533 break;
1536 case S_IFDIR: 1534 case S_IFDIR:
1537 inc_nlink(inode); 1535 inc_nlink(inode);
1538 /* Some things misbehave if size == 0 on a directory */ 1536 /* Some things misbehave if size == 0 on a directory */
1539 inode->i_size = 2 * BOGO_DIRENT_SIZE; 1537 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1540 inode->i_op = &shmem_dir_inode_operations; 1538 inode->i_op = &shmem_dir_inode_operations;
1541 inode->i_fop = &simple_dir_operations; 1539 inode->i_fop = &simple_dir_operations;
1542 break; 1540 break;
1543 case S_IFLNK: 1541 case S_IFLNK:
1544 /* 1542 /*
1545 * Must not load anything in the rbtree, 1543 * Must not load anything in the rbtree,
1546 * mpol_free_shared_policy will not be called. 1544 * mpol_free_shared_policy will not be called.
1547 */ 1545 */
1548 mpol_shared_policy_init(&info->policy, NULL); 1546 mpol_shared_policy_init(&info->policy, NULL);
1549 break; 1547 break;
1550 } 1548 }
1551 } else 1549 } else
1552 shmem_free_inode(sb); 1550 shmem_free_inode(sb);
1553 return inode; 1551 return inode;
1554 } 1552 }
1555 1553
1556 #ifdef CONFIG_TMPFS 1554 #ifdef CONFIG_TMPFS
1557 static const struct inode_operations shmem_symlink_inode_operations; 1555 static const struct inode_operations shmem_symlink_inode_operations;
1558 static const struct inode_operations shmem_symlink_inline_operations; 1556 static const struct inode_operations shmem_symlink_inline_operations;
1559 1557
1560 /* 1558 /*
1561 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin; 1559 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1562 * but providing them allows a tmpfs file to be used for splice, sendfile, and 1560 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1563 * below the loop driver, in the generic fashion that many filesystems support. 1561 * below the loop driver, in the generic fashion that many filesystems support.
1564 */ 1562 */
1565 static int shmem_readpage(struct file *file, struct page *page) 1563 static int shmem_readpage(struct file *file, struct page *page)
1566 { 1564 {
1567 struct inode *inode = page->mapping->host; 1565 struct inode *inode = page->mapping->host;
1568 int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL); 1566 int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1569 unlock_page(page); 1567 unlock_page(page);
1570 return error; 1568 return error;
1571 } 1569 }
1572 1570
1573 static int 1571 static int
1574 shmem_write_begin(struct file *file, struct address_space *mapping, 1572 shmem_write_begin(struct file *file, struct address_space *mapping,
1575 loff_t pos, unsigned len, unsigned flags, 1573 loff_t pos, unsigned len, unsigned flags,
1576 struct page **pagep, void **fsdata) 1574 struct page **pagep, void **fsdata)
1577 { 1575 {
1578 struct inode *inode = mapping->host; 1576 struct inode *inode = mapping->host;
1579 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1577 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1580 *pagep = NULL; 1578 *pagep = NULL;
1581 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL); 1579 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1582 } 1580 }
1583 1581
1584 static int 1582 static int
1585 shmem_write_end(struct file *file, struct address_space *mapping, 1583 shmem_write_end(struct file *file, struct address_space *mapping,
1586 loff_t pos, unsigned len, unsigned copied, 1584 loff_t pos, unsigned len, unsigned copied,
1587 struct page *page, void *fsdata) 1585 struct page *page, void *fsdata)
1588 { 1586 {
1589 struct inode *inode = mapping->host; 1587 struct inode *inode = mapping->host;
1590 1588
1591 if (pos + copied > inode->i_size) 1589 if (pos + copied > inode->i_size)
1592 i_size_write(inode, pos + copied); 1590 i_size_write(inode, pos + copied);
1593 1591
1594 unlock_page(page); 1592 unlock_page(page);
1595 set_page_dirty(page); 1593 set_page_dirty(page);
1596 page_cache_release(page); 1594 page_cache_release(page);
1597 1595
1598 return copied; 1596 return copied;
1599 } 1597 }
1600 1598
1601 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor) 1599 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1602 { 1600 {
1603 struct inode *inode = filp->f_path.dentry->d_inode; 1601 struct inode *inode = filp->f_path.dentry->d_inode;
1604 struct address_space *mapping = inode->i_mapping; 1602 struct address_space *mapping = inode->i_mapping;
1605 unsigned long index, offset; 1603 unsigned long index, offset;
1606 enum sgp_type sgp = SGP_READ; 1604 enum sgp_type sgp = SGP_READ;
1607 1605
1608 /* 1606 /*
1609 * Might this read be for a stacking filesystem? Then when reading 1607 * Might this read be for a stacking filesystem? Then when reading
1610 * holes of a sparse file, we actually need to allocate those pages, 1608 * holes of a sparse file, we actually need to allocate those pages,
1611 * and even mark them dirty, so it cannot exceed the max_blocks limit. 1609 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1612 */ 1610 */
1613 if (segment_eq(get_fs(), KERNEL_DS)) 1611 if (segment_eq(get_fs(), KERNEL_DS))
1614 sgp = SGP_DIRTY; 1612 sgp = SGP_DIRTY;
1615 1613
1616 index = *ppos >> PAGE_CACHE_SHIFT; 1614 index = *ppos >> PAGE_CACHE_SHIFT;
1617 offset = *ppos & ~PAGE_CACHE_MASK; 1615 offset = *ppos & ~PAGE_CACHE_MASK;
1618 1616
1619 for (;;) { 1617 for (;;) {
1620 struct page *page = NULL; 1618 struct page *page = NULL;
1621 unsigned long end_index, nr, ret; 1619 unsigned long end_index, nr, ret;
1622 loff_t i_size = i_size_read(inode); 1620 loff_t i_size = i_size_read(inode);
1623 1621
1624 end_index = i_size >> PAGE_CACHE_SHIFT; 1622 end_index = i_size >> PAGE_CACHE_SHIFT;
1625 if (index > end_index) 1623 if (index > end_index)
1626 break; 1624 break;
1627 if (index == end_index) { 1625 if (index == end_index) {
1628 nr = i_size & ~PAGE_CACHE_MASK; 1626 nr = i_size & ~PAGE_CACHE_MASK;
1629 if (nr <= offset) 1627 if (nr <= offset)
1630 break; 1628 break;
1631 } 1629 }
1632 1630
1633 desc->error = shmem_getpage(inode, index, &page, sgp, NULL); 1631 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1634 if (desc->error) { 1632 if (desc->error) {
1635 if (desc->error == -EINVAL) 1633 if (desc->error == -EINVAL)
1636 desc->error = 0; 1634 desc->error = 0;
1637 break; 1635 break;
1638 } 1636 }
1639 if (page) 1637 if (page)
1640 unlock_page(page); 1638 unlock_page(page);
1641 1639
1642 /* 1640 /*
1643 * We must evaluate after, since reads (unlike writes) 1641 * We must evaluate after, since reads (unlike writes)
1644 * are called without i_mutex protection against truncate 1642 * are called without i_mutex protection against truncate
1645 */ 1643 */
1646 nr = PAGE_CACHE_SIZE; 1644 nr = PAGE_CACHE_SIZE;
1647 i_size = i_size_read(inode); 1645 i_size = i_size_read(inode);
1648 end_index = i_size >> PAGE_CACHE_SHIFT; 1646 end_index = i_size >> PAGE_CACHE_SHIFT;
1649 if (index == end_index) { 1647 if (index == end_index) {
1650 nr = i_size & ~PAGE_CACHE_MASK; 1648 nr = i_size & ~PAGE_CACHE_MASK;
1651 if (nr <= offset) { 1649 if (nr <= offset) {
1652 if (page) 1650 if (page)
1653 page_cache_release(page); 1651 page_cache_release(page);
1654 break; 1652 break;
1655 } 1653 }
1656 } 1654 }
1657 nr -= offset; 1655 nr -= offset;
1658 1656
1659 if (page) { 1657 if (page) {
1660 /* 1658 /*
1661 * If users can be writing to this page using arbitrary 1659 * If users can be writing to this page using arbitrary
1662 * virtual addresses, take care about potential aliasing 1660 * virtual addresses, take care about potential aliasing
1663 * before reading the page on the kernel side. 1661 * before reading the page on the kernel side.
1664 */ 1662 */
1665 if (mapping_writably_mapped(mapping)) 1663 if (mapping_writably_mapped(mapping))
1666 flush_dcache_page(page); 1664 flush_dcache_page(page);
1667 /* 1665 /*
1668 * Mark the page accessed if we read the beginning. 1666 * Mark the page accessed if we read the beginning.
1669 */ 1667 */
1670 if (!offset) 1668 if (!offset)
1671 mark_page_accessed(page); 1669 mark_page_accessed(page);
1672 } else { 1670 } else {
1673 page = ZERO_PAGE(0); 1671 page = ZERO_PAGE(0);
1674 page_cache_get(page); 1672 page_cache_get(page);
1675 } 1673 }
1676 1674
1677 /* 1675 /*
1678 * Ok, we have the page, and it's up-to-date, so 1676 * Ok, we have the page, and it's up-to-date, so
1679 * now we can copy it to user space... 1677 * now we can copy it to user space...
1680 * 1678 *
1681 * The actor routine returns how many bytes were actually used.. 1679 * The actor routine returns how many bytes were actually used..
1682 * NOTE! This may not be the same as how much of a user buffer 1680 * NOTE! This may not be the same as how much of a user buffer
1683 * we filled up (we may be padding etc), so we can only update 1681 * we filled up (we may be padding etc), so we can only update
1684 * "pos" here (the actor routine has to update the user buffer 1682 * "pos" here (the actor routine has to update the user buffer
1685 * pointers and the remaining count). 1683 * pointers and the remaining count).
1686 */ 1684 */
1687 ret = actor(desc, page, offset, nr); 1685 ret = actor(desc, page, offset, nr);
1688 offset += ret; 1686 offset += ret;
1689 index += offset >> PAGE_CACHE_SHIFT; 1687 index += offset >> PAGE_CACHE_SHIFT;
1690 offset &= ~PAGE_CACHE_MASK; 1688 offset &= ~PAGE_CACHE_MASK;
1691 1689
1692 page_cache_release(page); 1690 page_cache_release(page);
1693 if (ret != nr || !desc->count) 1691 if (ret != nr || !desc->count)
1694 break; 1692 break;
1695 1693
1696 cond_resched(); 1694 cond_resched();
1697 } 1695 }
1698 1696
1699 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; 1697 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1700 file_accessed(filp); 1698 file_accessed(filp);
1701 } 1699 }
1702 1700
1703 static ssize_t shmem_file_aio_read(struct kiocb *iocb, 1701 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1704 const struct iovec *iov, unsigned long nr_segs, loff_t pos) 1702 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1705 { 1703 {
1706 struct file *filp = iocb->ki_filp; 1704 struct file *filp = iocb->ki_filp;
1707 ssize_t retval; 1705 ssize_t retval;
1708 unsigned long seg; 1706 unsigned long seg;
1709 size_t count; 1707 size_t count;
1710 loff_t *ppos = &iocb->ki_pos; 1708 loff_t *ppos = &iocb->ki_pos;
1711 1709
1712 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); 1710 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1713 if (retval) 1711 if (retval)
1714 return retval; 1712 return retval;
1715 1713
1716 for (seg = 0; seg < nr_segs; seg++) { 1714 for (seg = 0; seg < nr_segs; seg++) {
1717 read_descriptor_t desc; 1715 read_descriptor_t desc;
1718 1716
1719 desc.written = 0; 1717 desc.written = 0;
1720 desc.arg.buf = iov[seg].iov_base; 1718 desc.arg.buf = iov[seg].iov_base;
1721 desc.count = iov[seg].iov_len; 1719 desc.count = iov[seg].iov_len;
1722 if (desc.count == 0) 1720 if (desc.count == 0)
1723 continue; 1721 continue;
1724 desc.error = 0; 1722 desc.error = 0;
1725 do_shmem_file_read(filp, ppos, &desc, file_read_actor); 1723 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1726 retval += desc.written; 1724 retval += desc.written;
1727 if (desc.error) { 1725 if (desc.error) {
1728 retval = retval ?: desc.error; 1726 retval = retval ?: desc.error;
1729 break; 1727 break;
1730 } 1728 }
1731 if (desc.count > 0) 1729 if (desc.count > 0)
1732 break; 1730 break;
1733 } 1731 }
1734 return retval; 1732 return retval;
1735 } 1733 }
1736 1734
1737 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 1735 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1738 { 1736 {
1739 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 1737 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1740 1738
1741 buf->f_type = TMPFS_MAGIC; 1739 buf->f_type = TMPFS_MAGIC;
1742 buf->f_bsize = PAGE_CACHE_SIZE; 1740 buf->f_bsize = PAGE_CACHE_SIZE;
1743 buf->f_namelen = NAME_MAX; 1741 buf->f_namelen = NAME_MAX;
1744 spin_lock(&sbinfo->stat_lock); 1742 spin_lock(&sbinfo->stat_lock);
1745 if (sbinfo->max_blocks) { 1743 if (sbinfo->max_blocks) {
1746 buf->f_blocks = sbinfo->max_blocks; 1744 buf->f_blocks = sbinfo->max_blocks;
1747 buf->f_bavail = buf->f_bfree = sbinfo->free_blocks; 1745 buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1748 } 1746 }
1749 if (sbinfo->max_inodes) { 1747 if (sbinfo->max_inodes) {
1750 buf->f_files = sbinfo->max_inodes; 1748 buf->f_files = sbinfo->max_inodes;
1751 buf->f_ffree = sbinfo->free_inodes; 1749 buf->f_ffree = sbinfo->free_inodes;
1752 } 1750 }
1753 /* else leave those fields 0 like simple_statfs */ 1751 /* else leave those fields 0 like simple_statfs */
1754 spin_unlock(&sbinfo->stat_lock); 1752 spin_unlock(&sbinfo->stat_lock);
1755 return 0; 1753 return 0;
1756 } 1754 }
1757 1755
1758 /* 1756 /*
1759 * File creation. Allocate an inode, and we're done.. 1757 * File creation. Allocate an inode, and we're done..
1760 */ 1758 */
1761 static int 1759 static int
1762 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 1760 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1763 { 1761 {
1764 struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev); 1762 struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1765 int error = -ENOSPC; 1763 int error = -ENOSPC;
1766 1764
1767 if (inode) { 1765 if (inode) {
1768 error = security_inode_init_security(inode, dir, NULL, NULL, 1766 error = security_inode_init_security(inode, dir, NULL, NULL,
1769 NULL); 1767 NULL);
1770 if (error) { 1768 if (error) {
1771 if (error != -EOPNOTSUPP) { 1769 if (error != -EOPNOTSUPP) {
1772 iput(inode); 1770 iput(inode);
1773 return error; 1771 return error;
1774 } 1772 }
1775 } 1773 }
1776 error = shmem_acl_init(inode, dir); 1774 error = shmem_acl_init(inode, dir);
1777 if (error) { 1775 if (error) {
1778 iput(inode); 1776 iput(inode);
1779 return error; 1777 return error;
1780 } 1778 }
1781 if (dir->i_mode & S_ISGID) { 1779 if (dir->i_mode & S_ISGID) {
1782 inode->i_gid = dir->i_gid; 1780 inode->i_gid = dir->i_gid;
1783 if (S_ISDIR(mode)) 1781 if (S_ISDIR(mode))
1784 inode->i_mode |= S_ISGID; 1782 inode->i_mode |= S_ISGID;
1785 } 1783 }
1786 dir->i_size += BOGO_DIRENT_SIZE; 1784 dir->i_size += BOGO_DIRENT_SIZE;
1787 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1785 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1788 d_instantiate(dentry, inode); 1786 d_instantiate(dentry, inode);
1789 dget(dentry); /* Extra count - pin the dentry in core */ 1787 dget(dentry); /* Extra count - pin the dentry in core */
1790 } 1788 }
1791 return error; 1789 return error;
1792 } 1790 }
1793 1791
1794 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode) 1792 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1795 { 1793 {
1796 int error; 1794 int error;
1797 1795
1798 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 1796 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1799 return error; 1797 return error;
1800 inc_nlink(dir); 1798 inc_nlink(dir);
1801 return 0; 1799 return 0;
1802 } 1800 }
1803 1801
1804 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode, 1802 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1805 struct nameidata *nd) 1803 struct nameidata *nd)
1806 { 1804 {
1807 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 1805 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1808 } 1806 }
1809 1807
1810 /* 1808 /*
1811 * Link a file.. 1809 * Link a file..
1812 */ 1810 */
1813 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1811 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1814 { 1812 {
1815 struct inode *inode = old_dentry->d_inode; 1813 struct inode *inode = old_dentry->d_inode;
1816 int ret; 1814 int ret;
1817 1815
1818 /* 1816 /*
1819 * No ordinary (disk based) filesystem counts links as inodes; 1817 * No ordinary (disk based) filesystem counts links as inodes;
1820 * but each new link needs a new dentry, pinning lowmem, and 1818 * but each new link needs a new dentry, pinning lowmem, and
1821 * tmpfs dentries cannot be pruned until they are unlinked. 1819 * tmpfs dentries cannot be pruned until they are unlinked.
1822 */ 1820 */
1823 ret = shmem_reserve_inode(inode->i_sb); 1821 ret = shmem_reserve_inode(inode->i_sb);
1824 if (ret) 1822 if (ret)
1825 goto out; 1823 goto out;
1826 1824
1827 dir->i_size += BOGO_DIRENT_SIZE; 1825 dir->i_size += BOGO_DIRENT_SIZE;
1828 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1826 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1829 inc_nlink(inode); 1827 inc_nlink(inode);
1830 atomic_inc(&inode->i_count); /* New dentry reference */ 1828 atomic_inc(&inode->i_count); /* New dentry reference */
1831 dget(dentry); /* Extra pinning count for the created dentry */ 1829 dget(dentry); /* Extra pinning count for the created dentry */
1832 d_instantiate(dentry, inode); 1830 d_instantiate(dentry, inode);
1833 out: 1831 out:
1834 return ret; 1832 return ret;
1835 } 1833 }
1836 1834
1837 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 1835 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1838 { 1836 {
1839 struct inode *inode = dentry->d_inode; 1837 struct inode *inode = dentry->d_inode;
1840 1838
1841 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 1839 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1842 shmem_free_inode(inode->i_sb); 1840 shmem_free_inode(inode->i_sb);
1843 1841
1844 dir->i_size -= BOGO_DIRENT_SIZE; 1842 dir->i_size -= BOGO_DIRENT_SIZE;
1845 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1843 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1846 drop_nlink(inode); 1844 drop_nlink(inode);
1847 dput(dentry); /* Undo the count from "create" - this does all the work */ 1845 dput(dentry); /* Undo the count from "create" - this does all the work */
1848 return 0; 1846 return 0;
1849 } 1847 }
1850 1848
1851 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 1849 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1852 { 1850 {
1853 if (!simple_empty(dentry)) 1851 if (!simple_empty(dentry))
1854 return -ENOTEMPTY; 1852 return -ENOTEMPTY;
1855 1853
1856 drop_nlink(dentry->d_inode); 1854 drop_nlink(dentry->d_inode);
1857 drop_nlink(dir); 1855 drop_nlink(dir);
1858 return shmem_unlink(dir, dentry); 1856 return shmem_unlink(dir, dentry);
1859 } 1857 }
1860 1858
1861 /* 1859 /*
1862 * The VFS layer already does all the dentry stuff for rename, 1860 * The VFS layer already does all the dentry stuff for rename,
1863 * we just have to decrement the usage count for the target if 1861 * we just have to decrement the usage count for the target if
1864 * it exists so that the VFS layer correctly free's it when it 1862 * it exists so that the VFS layer correctly free's it when it
1865 * gets overwritten. 1863 * gets overwritten.
1866 */ 1864 */
1867 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 1865 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1868 { 1866 {
1869 struct inode *inode = old_dentry->d_inode; 1867 struct inode *inode = old_dentry->d_inode;
1870 int they_are_dirs = S_ISDIR(inode->i_mode); 1868 int they_are_dirs = S_ISDIR(inode->i_mode);
1871 1869
1872 if (!simple_empty(new_dentry)) 1870 if (!simple_empty(new_dentry))
1873 return -ENOTEMPTY; 1871 return -ENOTEMPTY;
1874 1872
1875 if (new_dentry->d_inode) { 1873 if (new_dentry->d_inode) {
1876 (void) shmem_unlink(new_dir, new_dentry); 1874 (void) shmem_unlink(new_dir, new_dentry);
1877 if (they_are_dirs) 1875 if (they_are_dirs)
1878 drop_nlink(old_dir); 1876 drop_nlink(old_dir);
1879 } else if (they_are_dirs) { 1877 } else if (they_are_dirs) {
1880 drop_nlink(old_dir); 1878 drop_nlink(old_dir);
1881 inc_nlink(new_dir); 1879 inc_nlink(new_dir);
1882 } 1880 }
1883 1881
1884 old_dir->i_size -= BOGO_DIRENT_SIZE; 1882 old_dir->i_size -= BOGO_DIRENT_SIZE;
1885 new_dir->i_size += BOGO_DIRENT_SIZE; 1883 new_dir->i_size += BOGO_DIRENT_SIZE;
1886 old_dir->i_ctime = old_dir->i_mtime = 1884 old_dir->i_ctime = old_dir->i_mtime =
1887 new_dir->i_ctime = new_dir->i_mtime = 1885 new_dir->i_ctime = new_dir->i_mtime =
1888 inode->i_ctime = CURRENT_TIME; 1886 inode->i_ctime = CURRENT_TIME;
1889 return 0; 1887 return 0;
1890 } 1888 }
1891 1889
1892 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1890 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1893 { 1891 {
1894 int error; 1892 int error;
1895 int len; 1893 int len;
1896 struct inode *inode; 1894 struct inode *inode;
1897 struct page *page = NULL; 1895 struct page *page = NULL;
1898 char *kaddr; 1896 char *kaddr;
1899 struct shmem_inode_info *info; 1897 struct shmem_inode_info *info;
1900 1898
1901 len = strlen(symname) + 1; 1899 len = strlen(symname) + 1;
1902 if (len > PAGE_CACHE_SIZE) 1900 if (len > PAGE_CACHE_SIZE)
1903 return -ENAMETOOLONG; 1901 return -ENAMETOOLONG;
1904 1902
1905 inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0); 1903 inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1906 if (!inode) 1904 if (!inode)
1907 return -ENOSPC; 1905 return -ENOSPC;
1908 1906
1909 error = security_inode_init_security(inode, dir, NULL, NULL, 1907 error = security_inode_init_security(inode, dir, NULL, NULL,
1910 NULL); 1908 NULL);
1911 if (error) { 1909 if (error) {
1912 if (error != -EOPNOTSUPP) { 1910 if (error != -EOPNOTSUPP) {
1913 iput(inode); 1911 iput(inode);
1914 return error; 1912 return error;
1915 } 1913 }
1916 error = 0; 1914 error = 0;
1917 } 1915 }
1918 1916
1919 info = SHMEM_I(inode); 1917 info = SHMEM_I(inode);
1920 inode->i_size = len-1; 1918 inode->i_size = len-1;
1921 if (len <= (char *)inode - (char *)info) { 1919 if (len <= (char *)inode - (char *)info) {
1922 /* do it inline */ 1920 /* do it inline */
1923 memcpy(info, symname, len); 1921 memcpy(info, symname, len);
1924 inode->i_op = &shmem_symlink_inline_operations; 1922 inode->i_op = &shmem_symlink_inline_operations;
1925 } else { 1923 } else {
1926 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL); 1924 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1927 if (error) { 1925 if (error) {
1928 iput(inode); 1926 iput(inode);
1929 return error; 1927 return error;
1930 } 1928 }
1931 unlock_page(page); 1929 unlock_page(page);
1932 inode->i_mapping->a_ops = &shmem_aops; 1930 inode->i_mapping->a_ops = &shmem_aops;
1933 inode->i_op = &shmem_symlink_inode_operations; 1931 inode->i_op = &shmem_symlink_inode_operations;
1934 kaddr = kmap_atomic(page, KM_USER0); 1932 kaddr = kmap_atomic(page, KM_USER0);
1935 memcpy(kaddr, symname, len); 1933 memcpy(kaddr, symname, len);
1936 kunmap_atomic(kaddr, KM_USER0); 1934 kunmap_atomic(kaddr, KM_USER0);
1937 set_page_dirty(page); 1935 set_page_dirty(page);
1938 page_cache_release(page); 1936 page_cache_release(page);
1939 } 1937 }
1940 if (dir->i_mode & S_ISGID) 1938 if (dir->i_mode & S_ISGID)
1941 inode->i_gid = dir->i_gid; 1939 inode->i_gid = dir->i_gid;
1942 dir->i_size += BOGO_DIRENT_SIZE; 1940 dir->i_size += BOGO_DIRENT_SIZE;
1943 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1941 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1944 d_instantiate(dentry, inode); 1942 d_instantiate(dentry, inode);
1945 dget(dentry); 1943 dget(dentry);
1946 return 0; 1944 return 0;
1947 } 1945 }
1948 1946
1949 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd) 1947 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1950 { 1948 {
1951 nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode)); 1949 nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1952 return NULL; 1950 return NULL;
1953 } 1951 }
1954 1952
1955 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd) 1953 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1956 { 1954 {
1957 struct page *page = NULL; 1955 struct page *page = NULL;
1958 int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL); 1956 int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1959 nd_set_link(nd, res ? ERR_PTR(res) : kmap(page)); 1957 nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1960 if (page) 1958 if (page)
1961 unlock_page(page); 1959 unlock_page(page);
1962 return page; 1960 return page;
1963 } 1961 }
1964 1962
1965 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 1963 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1966 { 1964 {
1967 if (!IS_ERR(nd_get_link(nd))) { 1965 if (!IS_ERR(nd_get_link(nd))) {
1968 struct page *page = cookie; 1966 struct page *page = cookie;
1969 kunmap(page); 1967 kunmap(page);
1970 mark_page_accessed(page); 1968 mark_page_accessed(page);
1971 page_cache_release(page); 1969 page_cache_release(page);
1972 } 1970 }
1973 } 1971 }
1974 1972
1975 static const struct inode_operations shmem_symlink_inline_operations = { 1973 static const struct inode_operations shmem_symlink_inline_operations = {
1976 .readlink = generic_readlink, 1974 .readlink = generic_readlink,
1977 .follow_link = shmem_follow_link_inline, 1975 .follow_link = shmem_follow_link_inline,
1978 }; 1976 };
1979 1977
1980 static const struct inode_operations shmem_symlink_inode_operations = { 1978 static const struct inode_operations shmem_symlink_inode_operations = {
1981 .truncate = shmem_truncate, 1979 .truncate = shmem_truncate,
1982 .readlink = generic_readlink, 1980 .readlink = generic_readlink,
1983 .follow_link = shmem_follow_link, 1981 .follow_link = shmem_follow_link,
1984 .put_link = shmem_put_link, 1982 .put_link = shmem_put_link,
1985 }; 1983 };
1986 1984
1987 #ifdef CONFIG_TMPFS_POSIX_ACL 1985 #ifdef CONFIG_TMPFS_POSIX_ACL
1988 /* 1986 /*
1989 * Superblocks without xattr inode operations will get security.* xattr 1987 * Superblocks without xattr inode operations will get security.* xattr
1990 * support from the VFS "for free". As soon as we have any other xattrs 1988 * support from the VFS "for free". As soon as we have any other xattrs
1991 * like ACLs, we also need to implement the security.* handlers at 1989 * like ACLs, we also need to implement the security.* handlers at
1992 * filesystem level, though. 1990 * filesystem level, though.
1993 */ 1991 */
1994 1992
1995 static size_t shmem_xattr_security_list(struct inode *inode, char *list, 1993 static size_t shmem_xattr_security_list(struct inode *inode, char *list,
1996 size_t list_len, const char *name, 1994 size_t list_len, const char *name,
1997 size_t name_len) 1995 size_t name_len)
1998 { 1996 {
1999 return security_inode_listsecurity(inode, list, list_len); 1997 return security_inode_listsecurity(inode, list, list_len);
2000 } 1998 }
2001 1999
2002 static int shmem_xattr_security_get(struct inode *inode, const char *name, 2000 static int shmem_xattr_security_get(struct inode *inode, const char *name,
2003 void *buffer, size_t size) 2001 void *buffer, size_t size)
2004 { 2002 {
2005 if (strcmp(name, "") == 0) 2003 if (strcmp(name, "") == 0)
2006 return -EINVAL; 2004 return -EINVAL;
2007 return xattr_getsecurity(inode, name, buffer, size); 2005 return xattr_getsecurity(inode, name, buffer, size);
2008 } 2006 }
2009 2007
2010 static int shmem_xattr_security_set(struct inode *inode, const char *name, 2008 static int shmem_xattr_security_set(struct inode *inode, const char *name,
2011 const void *value, size_t size, int flags) 2009 const void *value, size_t size, int flags)
2012 { 2010 {
2013 if (strcmp(name, "") == 0) 2011 if (strcmp(name, "") == 0)
2014 return -EINVAL; 2012 return -EINVAL;
2015 return security_inode_setsecurity(inode, name, value, size, flags); 2013 return security_inode_setsecurity(inode, name, value, size, flags);
2016 } 2014 }
2017 2015
2018 static struct xattr_handler shmem_xattr_security_handler = { 2016 static struct xattr_handler shmem_xattr_security_handler = {
2019 .prefix = XATTR_SECURITY_PREFIX, 2017 .prefix = XATTR_SECURITY_PREFIX,
2020 .list = shmem_xattr_security_list, 2018 .list = shmem_xattr_security_list,
2021 .get = shmem_xattr_security_get, 2019 .get = shmem_xattr_security_get,
2022 .set = shmem_xattr_security_set, 2020 .set = shmem_xattr_security_set,
2023 }; 2021 };
2024 2022
2025 static struct xattr_handler *shmem_xattr_handlers[] = { 2023 static struct xattr_handler *shmem_xattr_handlers[] = {
2026 &shmem_xattr_acl_access_handler, 2024 &shmem_xattr_acl_access_handler,
2027 &shmem_xattr_acl_default_handler, 2025 &shmem_xattr_acl_default_handler,
2028 &shmem_xattr_security_handler, 2026 &shmem_xattr_security_handler,
2029 NULL 2027 NULL
2030 }; 2028 };
2031 #endif 2029 #endif
2032 2030
2033 static struct dentry *shmem_get_parent(struct dentry *child) 2031 static struct dentry *shmem_get_parent(struct dentry *child)
2034 { 2032 {
2035 return ERR_PTR(-ESTALE); 2033 return ERR_PTR(-ESTALE);
2036 } 2034 }
2037 2035
2038 static int shmem_match(struct inode *ino, void *vfh) 2036 static int shmem_match(struct inode *ino, void *vfh)
2039 { 2037 {
2040 __u32 *fh = vfh; 2038 __u32 *fh = vfh;
2041 __u64 inum = fh[2]; 2039 __u64 inum = fh[2];
2042 inum = (inum << 32) | fh[1]; 2040 inum = (inum << 32) | fh[1];
2043 return ino->i_ino == inum && fh[0] == ino->i_generation; 2041 return ino->i_ino == inum && fh[0] == ino->i_generation;
2044 } 2042 }
2045 2043
2046 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 2044 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2047 struct fid *fid, int fh_len, int fh_type) 2045 struct fid *fid, int fh_len, int fh_type)
2048 { 2046 {
2049 struct inode *inode; 2047 struct inode *inode;
2050 struct dentry *dentry = NULL; 2048 struct dentry *dentry = NULL;
2051 u64 inum = fid->raw[2]; 2049 u64 inum = fid->raw[2];
2052 inum = (inum << 32) | fid->raw[1]; 2050 inum = (inum << 32) | fid->raw[1];
2053 2051
2054 if (fh_len < 3) 2052 if (fh_len < 3)
2055 return NULL; 2053 return NULL;
2056 2054
2057 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 2055 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2058 shmem_match, fid->raw); 2056 shmem_match, fid->raw);
2059 if (inode) { 2057 if (inode) {
2060 dentry = d_find_alias(inode); 2058 dentry = d_find_alias(inode);
2061 iput(inode); 2059 iput(inode);
2062 } 2060 }
2063 2061
2064 return dentry; 2062 return dentry;
2065 } 2063 }
2066 2064
2067 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len, 2065 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2068 int connectable) 2066 int connectable)
2069 { 2067 {
2070 struct inode *inode = dentry->d_inode; 2068 struct inode *inode = dentry->d_inode;
2071 2069
2072 if (*len < 3) 2070 if (*len < 3)
2073 return 255; 2071 return 255;
2074 2072
2075 if (hlist_unhashed(&inode->i_hash)) { 2073 if (hlist_unhashed(&inode->i_hash)) {
2076 /* Unfortunately insert_inode_hash is not idempotent, 2074 /* Unfortunately insert_inode_hash is not idempotent,
2077 * so as we hash inodes here rather than at creation 2075 * so as we hash inodes here rather than at creation
2078 * time, we need a lock to ensure we only try 2076 * time, we need a lock to ensure we only try
2079 * to do it once 2077 * to do it once
2080 */ 2078 */
2081 static DEFINE_SPINLOCK(lock); 2079 static DEFINE_SPINLOCK(lock);
2082 spin_lock(&lock); 2080 spin_lock(&lock);
2083 if (hlist_unhashed(&inode->i_hash)) 2081 if (hlist_unhashed(&inode->i_hash))
2084 __insert_inode_hash(inode, 2082 __insert_inode_hash(inode,
2085 inode->i_ino + inode->i_generation); 2083 inode->i_ino + inode->i_generation);
2086 spin_unlock(&lock); 2084 spin_unlock(&lock);
2087 } 2085 }
2088 2086
2089 fh[0] = inode->i_generation; 2087 fh[0] = inode->i_generation;
2090 fh[1] = inode->i_ino; 2088 fh[1] = inode->i_ino;
2091 fh[2] = ((__u64)inode->i_ino) >> 32; 2089 fh[2] = ((__u64)inode->i_ino) >> 32;
2092 2090
2093 *len = 3; 2091 *len = 3;
2094 return 1; 2092 return 1;
2095 } 2093 }
2096 2094
2097 static const struct export_operations shmem_export_ops = { 2095 static const struct export_operations shmem_export_ops = {
2098 .get_parent = shmem_get_parent, 2096 .get_parent = shmem_get_parent,
2099 .encode_fh = shmem_encode_fh, 2097 .encode_fh = shmem_encode_fh,
2100 .fh_to_dentry = shmem_fh_to_dentry, 2098 .fh_to_dentry = shmem_fh_to_dentry,
2101 }; 2099 };
2102 2100
2103 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 2101 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2104 bool remount) 2102 bool remount)
2105 { 2103 {
2106 char *this_char, *value, *rest; 2104 char *this_char, *value, *rest;
2107 2105
2108 while (options != NULL) { 2106 while (options != NULL) {
2109 this_char = options; 2107 this_char = options;
2110 for (;;) { 2108 for (;;) {
2111 /* 2109 /*
2112 * NUL-terminate this option: unfortunately, 2110 * NUL-terminate this option: unfortunately,
2113 * mount options form a comma-separated list, 2111 * mount options form a comma-separated list,
2114 * but mpol's nodelist may also contain commas. 2112 * but mpol's nodelist may also contain commas.
2115 */ 2113 */
2116 options = strchr(options, ','); 2114 options = strchr(options, ',');
2117 if (options == NULL) 2115 if (options == NULL)
2118 break; 2116 break;
2119 options++; 2117 options++;
2120 if (!isdigit(*options)) { 2118 if (!isdigit(*options)) {
2121 options[-1] = '\0'; 2119 options[-1] = '\0';
2122 break; 2120 break;
2123 } 2121 }
2124 } 2122 }
2125 if (!*this_char) 2123 if (!*this_char)
2126 continue; 2124 continue;
2127 if ((value = strchr(this_char,'=')) != NULL) { 2125 if ((value = strchr(this_char,'=')) != NULL) {
2128 *value++ = 0; 2126 *value++ = 0;
2129 } else { 2127 } else {
2130 printk(KERN_ERR 2128 printk(KERN_ERR
2131 "tmpfs: No value for mount option '%s'\n", 2129 "tmpfs: No value for mount option '%s'\n",
2132 this_char); 2130 this_char);
2133 return 1; 2131 return 1;
2134 } 2132 }
2135 2133
2136 if (!strcmp(this_char,"size")) { 2134 if (!strcmp(this_char,"size")) {
2137 unsigned long long size; 2135 unsigned long long size;
2138 size = memparse(value,&rest); 2136 size = memparse(value,&rest);
2139 if (*rest == '%') { 2137 if (*rest == '%') {
2140 size <<= PAGE_SHIFT; 2138 size <<= PAGE_SHIFT;
2141 size *= totalram_pages; 2139 size *= totalram_pages;
2142 do_div(size, 100); 2140 do_div(size, 100);
2143 rest++; 2141 rest++;
2144 } 2142 }
2145 if (*rest) 2143 if (*rest)
2146 goto bad_val; 2144 goto bad_val;
2147 sbinfo->max_blocks = 2145 sbinfo->max_blocks =
2148 DIV_ROUND_UP(size, PAGE_CACHE_SIZE); 2146 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2149 } else if (!strcmp(this_char,"nr_blocks")) { 2147 } else if (!strcmp(this_char,"nr_blocks")) {
2150 sbinfo->max_blocks = memparse(value, &rest); 2148 sbinfo->max_blocks = memparse(value, &rest);
2151 if (*rest) 2149 if (*rest)
2152 goto bad_val; 2150 goto bad_val;
2153 } else if (!strcmp(this_char,"nr_inodes")) { 2151 } else if (!strcmp(this_char,"nr_inodes")) {
2154 sbinfo->max_inodes = memparse(value, &rest); 2152 sbinfo->max_inodes = memparse(value, &rest);
2155 if (*rest) 2153 if (*rest)
2156 goto bad_val; 2154 goto bad_val;
2157 } else if (!strcmp(this_char,"mode")) { 2155 } else if (!strcmp(this_char,"mode")) {
2158 if (remount) 2156 if (remount)
2159 continue; 2157 continue;
2160 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 2158 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2161 if (*rest) 2159 if (*rest)
2162 goto bad_val; 2160 goto bad_val;
2163 } else if (!strcmp(this_char,"uid")) { 2161 } else if (!strcmp(this_char,"uid")) {
2164 if (remount) 2162 if (remount)
2165 continue; 2163 continue;
2166 sbinfo->uid = simple_strtoul(value, &rest, 0); 2164 sbinfo->uid = simple_strtoul(value, &rest, 0);
2167 if (*rest) 2165 if (*rest)
2168 goto bad_val; 2166 goto bad_val;
2169 } else if (!strcmp(this_char,"gid")) { 2167 } else if (!strcmp(this_char,"gid")) {
2170 if (remount) 2168 if (remount)
2171 continue; 2169 continue;
2172 sbinfo->gid = simple_strtoul(value, &rest, 0); 2170 sbinfo->gid = simple_strtoul(value, &rest, 0);
2173 if (*rest) 2171 if (*rest)
2174 goto bad_val; 2172 goto bad_val;
2175 } else if (!strcmp(this_char,"mpol")) { 2173 } else if (!strcmp(this_char,"mpol")) {
2176 if (mpol_parse_str(value, &sbinfo->mpol, 1)) 2174 if (mpol_parse_str(value, &sbinfo->mpol, 1))
2177 goto bad_val; 2175 goto bad_val;
2178 } else { 2176 } else {
2179 printk(KERN_ERR "tmpfs: Bad mount option %s\n", 2177 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2180 this_char); 2178 this_char);
2181 return 1; 2179 return 1;
2182 } 2180 }
2183 } 2181 }
2184 return 0; 2182 return 0;
2185 2183
2186 bad_val: 2184 bad_val:
2187 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n", 2185 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2188 value, this_char); 2186 value, this_char);
2189 return 1; 2187 return 1;
2190 2188
2191 } 2189 }
2192 2190
2193 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 2191 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2194 { 2192 {
2195 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2193 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2196 struct shmem_sb_info config = *sbinfo; 2194 struct shmem_sb_info config = *sbinfo;
2197 unsigned long blocks; 2195 unsigned long blocks;
2198 unsigned long inodes; 2196 unsigned long inodes;
2199 int error = -EINVAL; 2197 int error = -EINVAL;
2200 2198
2201 if (shmem_parse_options(data, &config, true)) 2199 if (shmem_parse_options(data, &config, true))
2202 return error; 2200 return error;
2203 2201
2204 spin_lock(&sbinfo->stat_lock); 2202 spin_lock(&sbinfo->stat_lock);
2205 blocks = sbinfo->max_blocks - sbinfo->free_blocks; 2203 blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2206 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 2204 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2207 if (config.max_blocks < blocks) 2205 if (config.max_blocks < blocks)
2208 goto out; 2206 goto out;
2209 if (config.max_inodes < inodes) 2207 if (config.max_inodes < inodes)
2210 goto out; 2208 goto out;
2211 /* 2209 /*
2212 * Those tests also disallow limited->unlimited while any are in 2210 * Those tests also disallow limited->unlimited while any are in
2213 * use, so i_blocks will always be zero when max_blocks is zero; 2211 * use, so i_blocks will always be zero when max_blocks is zero;
2214 * but we must separately disallow unlimited->limited, because 2212 * but we must separately disallow unlimited->limited, because
2215 * in that case we have no record of how much is already in use. 2213 * in that case we have no record of how much is already in use.
2216 */ 2214 */
2217 if (config.max_blocks && !sbinfo->max_blocks) 2215 if (config.max_blocks && !sbinfo->max_blocks)
2218 goto out; 2216 goto out;
2219 if (config.max_inodes && !sbinfo->max_inodes) 2217 if (config.max_inodes && !sbinfo->max_inodes)
2220 goto out; 2218 goto out;
2221 2219
2222 error = 0; 2220 error = 0;
2223 sbinfo->max_blocks = config.max_blocks; 2221 sbinfo->max_blocks = config.max_blocks;
2224 sbinfo->free_blocks = config.max_blocks - blocks; 2222 sbinfo->free_blocks = config.max_blocks - blocks;
2225 sbinfo->max_inodes = config.max_inodes; 2223 sbinfo->max_inodes = config.max_inodes;
2226 sbinfo->free_inodes = config.max_inodes - inodes; 2224 sbinfo->free_inodes = config.max_inodes - inodes;
2227 2225
2228 mpol_put(sbinfo->mpol); 2226 mpol_put(sbinfo->mpol);
2229 sbinfo->mpol = config.mpol; /* transfers initial ref */ 2227 sbinfo->mpol = config.mpol; /* transfers initial ref */
2230 out: 2228 out:
2231 spin_unlock(&sbinfo->stat_lock); 2229 spin_unlock(&sbinfo->stat_lock);
2232 return error; 2230 return error;
2233 } 2231 }
2234 2232
2235 static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs) 2233 static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2236 { 2234 {
2237 struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb); 2235 struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2238 2236
2239 if (sbinfo->max_blocks != shmem_default_max_blocks()) 2237 if (sbinfo->max_blocks != shmem_default_max_blocks())
2240 seq_printf(seq, ",size=%luk", 2238 seq_printf(seq, ",size=%luk",
2241 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10)); 2239 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2242 if (sbinfo->max_inodes != shmem_default_max_inodes()) 2240 if (sbinfo->max_inodes != shmem_default_max_inodes())
2243 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 2241 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2244 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX)) 2242 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2245 seq_printf(seq, ",mode=%03o", sbinfo->mode); 2243 seq_printf(seq, ",mode=%03o", sbinfo->mode);
2246 if (sbinfo->uid != 0) 2244 if (sbinfo->uid != 0)
2247 seq_printf(seq, ",uid=%u", sbinfo->uid); 2245 seq_printf(seq, ",uid=%u", sbinfo->uid);
2248 if (sbinfo->gid != 0) 2246 if (sbinfo->gid != 0)
2249 seq_printf(seq, ",gid=%u", sbinfo->gid); 2247 seq_printf(seq, ",gid=%u", sbinfo->gid);
2250 shmem_show_mpol(seq, sbinfo->mpol); 2248 shmem_show_mpol(seq, sbinfo->mpol);
2251 return 0; 2249 return 0;
2252 } 2250 }
2253 #endif /* CONFIG_TMPFS */ 2251 #endif /* CONFIG_TMPFS */
2254 2252
2255 static void shmem_put_super(struct super_block *sb) 2253 static void shmem_put_super(struct super_block *sb)
2256 { 2254 {
2257 kfree(sb->s_fs_info); 2255 kfree(sb->s_fs_info);
2258 sb->s_fs_info = NULL; 2256 sb->s_fs_info = NULL;
2259 } 2257 }
2260 2258
2261 static int shmem_fill_super(struct super_block *sb, 2259 static int shmem_fill_super(struct super_block *sb,
2262 void *data, int silent) 2260 void *data, int silent)
2263 { 2261 {
2264 struct inode *inode; 2262 struct inode *inode;
2265 struct dentry *root; 2263 struct dentry *root;
2266 struct shmem_sb_info *sbinfo; 2264 struct shmem_sb_info *sbinfo;
2267 int err = -ENOMEM; 2265 int err = -ENOMEM;
2268 2266
2269 /* Round up to L1_CACHE_BYTES to resist false sharing */ 2267 /* Round up to L1_CACHE_BYTES to resist false sharing */
2270 sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info), 2268 sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2271 L1_CACHE_BYTES), GFP_KERNEL); 2269 L1_CACHE_BYTES), GFP_KERNEL);
2272 if (!sbinfo) 2270 if (!sbinfo)
2273 return -ENOMEM; 2271 return -ENOMEM;
2274 2272
2275 sbinfo->max_blocks = 0; 2273 sbinfo->max_blocks = 0;
2276 sbinfo->max_inodes = 0; 2274 sbinfo->max_inodes = 0;
2277 sbinfo->mode = S_IRWXUGO | S_ISVTX; 2275 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2278 sbinfo->uid = current->fsuid; 2276 sbinfo->uid = current->fsuid;
2279 sbinfo->gid = current->fsgid; 2277 sbinfo->gid = current->fsgid;
2280 sbinfo->mpol = NULL; 2278 sbinfo->mpol = NULL;
2281 sb->s_fs_info = sbinfo; 2279 sb->s_fs_info = sbinfo;
2282 2280
2283 #ifdef CONFIG_TMPFS 2281 #ifdef CONFIG_TMPFS
2284 /* 2282 /*
2285 * Per default we only allow half of the physical ram per 2283 * Per default we only allow half of the physical ram per
2286 * tmpfs instance, limiting inodes to one per page of lowmem; 2284 * tmpfs instance, limiting inodes to one per page of lowmem;
2287 * but the internal instance is left unlimited. 2285 * but the internal instance is left unlimited.
2288 */ 2286 */
2289 if (!(sb->s_flags & MS_NOUSER)) { 2287 if (!(sb->s_flags & MS_NOUSER)) {
2290 sbinfo->max_blocks = shmem_default_max_blocks(); 2288 sbinfo->max_blocks = shmem_default_max_blocks();
2291 sbinfo->max_inodes = shmem_default_max_inodes(); 2289 sbinfo->max_inodes = shmem_default_max_inodes();
2292 if (shmem_parse_options(data, sbinfo, false)) { 2290 if (shmem_parse_options(data, sbinfo, false)) {
2293 err = -EINVAL; 2291 err = -EINVAL;
2294 goto failed; 2292 goto failed;
2295 } 2293 }
2296 } 2294 }
2297 sb->s_export_op = &shmem_export_ops; 2295 sb->s_export_op = &shmem_export_ops;
2298 #else 2296 #else
2299 sb->s_flags |= MS_NOUSER; 2297 sb->s_flags |= MS_NOUSER;
2300 #endif 2298 #endif
2301 2299
2302 spin_lock_init(&sbinfo->stat_lock); 2300 spin_lock_init(&sbinfo->stat_lock);
2303 sbinfo->free_blocks = sbinfo->max_blocks; 2301 sbinfo->free_blocks = sbinfo->max_blocks;
2304 sbinfo->free_inodes = sbinfo->max_inodes; 2302 sbinfo->free_inodes = sbinfo->max_inodes;
2305 2303
2306 sb->s_maxbytes = SHMEM_MAX_BYTES; 2304 sb->s_maxbytes = SHMEM_MAX_BYTES;
2307 sb->s_blocksize = PAGE_CACHE_SIZE; 2305 sb->s_blocksize = PAGE_CACHE_SIZE;
2308 sb->s_blocksize_bits = PAGE_CACHE_SHIFT; 2306 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2309 sb->s_magic = TMPFS_MAGIC; 2307 sb->s_magic = TMPFS_MAGIC;
2310 sb->s_op = &shmem_ops; 2308 sb->s_op = &shmem_ops;
2311 sb->s_time_gran = 1; 2309 sb->s_time_gran = 1;
2312 #ifdef CONFIG_TMPFS_POSIX_ACL 2310 #ifdef CONFIG_TMPFS_POSIX_ACL
2313 sb->s_xattr = shmem_xattr_handlers; 2311 sb->s_xattr = shmem_xattr_handlers;
2314 sb->s_flags |= MS_POSIXACL; 2312 sb->s_flags |= MS_POSIXACL;
2315 #endif 2313 #endif
2316 2314
2317 inode = shmem_get_inode(sb, S_IFDIR | sbinfo->mode, 0); 2315 inode = shmem_get_inode(sb, S_IFDIR | sbinfo->mode, 0);
2318 if (!inode) 2316 if (!inode)
2319 goto failed; 2317 goto failed;
2320 inode->i_uid = sbinfo->uid; 2318 inode->i_uid = sbinfo->uid;
2321 inode->i_gid = sbinfo->gid; 2319 inode->i_gid = sbinfo->gid;
2322 root = d_alloc_root(inode); 2320 root = d_alloc_root(inode);
2323 if (!root) 2321 if (!root)
2324 goto failed_iput; 2322 goto failed_iput;
2325 sb->s_root = root; 2323 sb->s_root = root;
2326 return 0; 2324 return 0;
2327 2325
2328 failed_iput: 2326 failed_iput:
2329 iput(inode); 2327 iput(inode);
2330 failed: 2328 failed:
2331 shmem_put_super(sb); 2329 shmem_put_super(sb);
2332 return err; 2330 return err;
2333 } 2331 }
2334 2332
2335 static struct kmem_cache *shmem_inode_cachep; 2333 static struct kmem_cache *shmem_inode_cachep;
2336 2334
2337 static struct inode *shmem_alloc_inode(struct super_block *sb) 2335 static struct inode *shmem_alloc_inode(struct super_block *sb)
2338 { 2336 {
2339 struct shmem_inode_info *p; 2337 struct shmem_inode_info *p;
2340 p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 2338 p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2341 if (!p) 2339 if (!p)
2342 return NULL; 2340 return NULL;
2343 return &p->vfs_inode; 2341 return &p->vfs_inode;
2344 } 2342 }
2345 2343
2346 static void shmem_destroy_inode(struct inode *inode) 2344 static void shmem_destroy_inode(struct inode *inode)
2347 { 2345 {
2348 if ((inode->i_mode & S_IFMT) == S_IFREG) { 2346 if ((inode->i_mode & S_IFMT) == S_IFREG) {
2349 /* only struct inode is valid if it's an inline symlink */ 2347 /* only struct inode is valid if it's an inline symlink */
2350 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 2348 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2351 } 2349 }
2352 shmem_acl_destroy_inode(inode); 2350 shmem_acl_destroy_inode(inode);
2353 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 2351 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2354 } 2352 }
2355 2353
2356 static void init_once(void *foo) 2354 static void init_once(void *foo)
2357 { 2355 {
2358 struct shmem_inode_info *p = (struct shmem_inode_info *) foo; 2356 struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2359 2357
2360 inode_init_once(&p->vfs_inode); 2358 inode_init_once(&p->vfs_inode);
2361 #ifdef CONFIG_TMPFS_POSIX_ACL 2359 #ifdef CONFIG_TMPFS_POSIX_ACL
2362 p->i_acl = NULL; 2360 p->i_acl = NULL;
2363 p->i_default_acl = NULL; 2361 p->i_default_acl = NULL;
2364 #endif 2362 #endif
2365 } 2363 }
2366 2364
2367 static int init_inodecache(void) 2365 static int init_inodecache(void)
2368 { 2366 {
2369 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 2367 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2370 sizeof(struct shmem_inode_info), 2368 sizeof(struct shmem_inode_info),
2371 0, SLAB_PANIC, init_once); 2369 0, SLAB_PANIC, init_once);
2372 return 0; 2370 return 0;
2373 } 2371 }
2374 2372
2375 static void destroy_inodecache(void) 2373 static void destroy_inodecache(void)
2376 { 2374 {
2377 kmem_cache_destroy(shmem_inode_cachep); 2375 kmem_cache_destroy(shmem_inode_cachep);
2378 } 2376 }
2379 2377
2380 static const struct address_space_operations shmem_aops = { 2378 static const struct address_space_operations shmem_aops = {
2381 .writepage = shmem_writepage, 2379 .writepage = shmem_writepage,
2382 .set_page_dirty = __set_page_dirty_no_writeback, 2380 .set_page_dirty = __set_page_dirty_no_writeback,
2383 #ifdef CONFIG_TMPFS 2381 #ifdef CONFIG_TMPFS
2384 .readpage = shmem_readpage, 2382 .readpage = shmem_readpage,
2385 .write_begin = shmem_write_begin, 2383 .write_begin = shmem_write_begin,
2386 .write_end = shmem_write_end, 2384 .write_end = shmem_write_end,
2387 #endif 2385 #endif
2388 .migratepage = migrate_page, 2386 .migratepage = migrate_page,
2389 }; 2387 };
2390 2388
2391 static const struct file_operations shmem_file_operations = { 2389 static const struct file_operations shmem_file_operations = {
2392 .mmap = shmem_mmap, 2390 .mmap = shmem_mmap,
2393 #ifdef CONFIG_TMPFS 2391 #ifdef CONFIG_TMPFS
2394 .llseek = generic_file_llseek, 2392 .llseek = generic_file_llseek,
2395 .read = do_sync_read, 2393 .read = do_sync_read,
2396 .write = do_sync_write, 2394 .write = do_sync_write,
2397 .aio_read = shmem_file_aio_read, 2395 .aio_read = shmem_file_aio_read,
2398 .aio_write = generic_file_aio_write, 2396 .aio_write = generic_file_aio_write,
2399 .fsync = simple_sync_file, 2397 .fsync = simple_sync_file,
2400 .splice_read = generic_file_splice_read, 2398 .splice_read = generic_file_splice_read,
2401 .splice_write = generic_file_splice_write, 2399 .splice_write = generic_file_splice_write,
2402 #endif 2400 #endif
2403 }; 2401 };
2404 2402
2405 static const struct inode_operations shmem_inode_operations = { 2403 static const struct inode_operations shmem_inode_operations = {
2406 .truncate = shmem_truncate, 2404 .truncate = shmem_truncate,
2407 .setattr = shmem_notify_change, 2405 .setattr = shmem_notify_change,
2408 .truncate_range = shmem_truncate_range, 2406 .truncate_range = shmem_truncate_range,
2409 #ifdef CONFIG_TMPFS_POSIX_ACL 2407 #ifdef CONFIG_TMPFS_POSIX_ACL
2410 .setxattr = generic_setxattr, 2408 .setxattr = generic_setxattr,
2411 .getxattr = generic_getxattr, 2409 .getxattr = generic_getxattr,
2412 .listxattr = generic_listxattr, 2410 .listxattr = generic_listxattr,
2413 .removexattr = generic_removexattr, 2411 .removexattr = generic_removexattr,
2414 .permission = shmem_permission, 2412 .permission = shmem_permission,
2415 #endif 2413 #endif
2416 2414
2417 }; 2415 };
2418 2416
2419 static const struct inode_operations shmem_dir_inode_operations = { 2417 static const struct inode_operations shmem_dir_inode_operations = {
2420 #ifdef CONFIG_TMPFS 2418 #ifdef CONFIG_TMPFS
2421 .create = shmem_create, 2419 .create = shmem_create,
2422 .lookup = simple_lookup, 2420 .lookup = simple_lookup,
2423 .link = shmem_link, 2421 .link = shmem_link,
2424 .unlink = shmem_unlink, 2422 .unlink = shmem_unlink,
2425 .symlink = shmem_symlink, 2423 .symlink = shmem_symlink,
2426 .mkdir = shmem_mkdir, 2424 .mkdir = shmem_mkdir,
2427 .rmdir = shmem_rmdir, 2425 .rmdir = shmem_rmdir,
2428 .mknod = shmem_mknod, 2426 .mknod = shmem_mknod,
2429 .rename = shmem_rename, 2427 .rename = shmem_rename,
2430 #endif 2428 #endif
2431 #ifdef CONFIG_TMPFS_POSIX_ACL 2429 #ifdef CONFIG_TMPFS_POSIX_ACL
2432 .setattr = shmem_notify_change, 2430 .setattr = shmem_notify_change,
2433 .setxattr = generic_setxattr, 2431 .setxattr = generic_setxattr,
2434 .getxattr = generic_getxattr, 2432 .getxattr = generic_getxattr,
2435 .listxattr = generic_listxattr, 2433 .listxattr = generic_listxattr,
2436 .removexattr = generic_removexattr, 2434 .removexattr = generic_removexattr,
2437 .permission = shmem_permission, 2435 .permission = shmem_permission,
2438 #endif 2436 #endif
2439 }; 2437 };
2440 2438
2441 static const struct inode_operations shmem_special_inode_operations = { 2439 static const struct inode_operations shmem_special_inode_operations = {
2442 #ifdef CONFIG_TMPFS_POSIX_ACL 2440 #ifdef CONFIG_TMPFS_POSIX_ACL
2443 .setattr = shmem_notify_change, 2441 .setattr = shmem_notify_change,
2444 .setxattr = generic_setxattr, 2442 .setxattr = generic_setxattr,
2445 .getxattr = generic_getxattr, 2443 .getxattr = generic_getxattr,
2446 .listxattr = generic_listxattr, 2444 .listxattr = generic_listxattr,
2447 .removexattr = generic_removexattr, 2445 .removexattr = generic_removexattr,
2448 .permission = shmem_permission, 2446 .permission = shmem_permission,
2449 #endif 2447 #endif
2450 }; 2448 };
2451 2449
2452 static const struct super_operations shmem_ops = { 2450 static const struct super_operations shmem_ops = {
2453 .alloc_inode = shmem_alloc_inode, 2451 .alloc_inode = shmem_alloc_inode,
2454 .destroy_inode = shmem_destroy_inode, 2452 .destroy_inode = shmem_destroy_inode,
2455 #ifdef CONFIG_TMPFS 2453 #ifdef CONFIG_TMPFS
2456 .statfs = shmem_statfs, 2454 .statfs = shmem_statfs,
2457 .remount_fs = shmem_remount_fs, 2455 .remount_fs = shmem_remount_fs,
2458 .show_options = shmem_show_options, 2456 .show_options = shmem_show_options,
2459 #endif 2457 #endif
2460 .delete_inode = shmem_delete_inode, 2458 .delete_inode = shmem_delete_inode,
2461 .drop_inode = generic_delete_inode, 2459 .drop_inode = generic_delete_inode,
2462 .put_super = shmem_put_super, 2460 .put_super = shmem_put_super,
2463 }; 2461 };
2464 2462
2465 static struct vm_operations_struct shmem_vm_ops = { 2463 static struct vm_operations_struct shmem_vm_ops = {
2466 .fault = shmem_fault, 2464 .fault = shmem_fault,
2467 #ifdef CONFIG_NUMA 2465 #ifdef CONFIG_NUMA
2468 .set_policy = shmem_set_policy, 2466 .set_policy = shmem_set_policy,
2469 .get_policy = shmem_get_policy, 2467 .get_policy = shmem_get_policy,
2470 #endif 2468 #endif
2471 }; 2469 };
2472 2470
2473 2471
2474 static int shmem_get_sb(struct file_system_type *fs_type, 2472 static int shmem_get_sb(struct file_system_type *fs_type,
2475 int flags, const char *dev_name, void *data, struct vfsmount *mnt) 2473 int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2476 { 2474 {
2477 return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt); 2475 return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2478 } 2476 }
2479 2477
2480 static struct file_system_type tmpfs_fs_type = { 2478 static struct file_system_type tmpfs_fs_type = {
2481 .owner = THIS_MODULE, 2479 .owner = THIS_MODULE,
2482 .name = "tmpfs", 2480 .name = "tmpfs",
2483 .get_sb = shmem_get_sb, 2481 .get_sb = shmem_get_sb,
2484 .kill_sb = kill_litter_super, 2482 .kill_sb = kill_litter_super,
2485 }; 2483 };
2486 static struct vfsmount *shm_mnt; 2484 static struct vfsmount *shm_mnt;
2487 2485
2488 static int __init init_tmpfs(void) 2486 static int __init init_tmpfs(void)
2489 { 2487 {
2490 int error; 2488 int error;
2491 2489
2492 error = bdi_init(&shmem_backing_dev_info); 2490 error = bdi_init(&shmem_backing_dev_info);
2493 if (error) 2491 if (error)
2494 goto out4; 2492 goto out4;
2495 2493
2496 error = init_inodecache(); 2494 error = init_inodecache();
2497 if (error) 2495 if (error)
2498 goto out3; 2496 goto out3;
2499 2497
2500 error = register_filesystem(&tmpfs_fs_type); 2498 error = register_filesystem(&tmpfs_fs_type);
2501 if (error) { 2499 if (error) {
2502 printk(KERN_ERR "Could not register tmpfs\n"); 2500 printk(KERN_ERR "Could not register tmpfs\n");
2503 goto out2; 2501 goto out2;
2504 } 2502 }
2505 2503
2506 shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER, 2504 shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2507 tmpfs_fs_type.name, NULL); 2505 tmpfs_fs_type.name, NULL);
2508 if (IS_ERR(shm_mnt)) { 2506 if (IS_ERR(shm_mnt)) {
2509 error = PTR_ERR(shm_mnt); 2507 error = PTR_ERR(shm_mnt);
2510 printk(KERN_ERR "Could not kern_mount tmpfs\n"); 2508 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2511 goto out1; 2509 goto out1;
2512 } 2510 }
2513 return 0; 2511 return 0;
2514 2512
2515 out1: 2513 out1:
2516 unregister_filesystem(&tmpfs_fs_type); 2514 unregister_filesystem(&tmpfs_fs_type);
2517 out2: 2515 out2:
2518 destroy_inodecache(); 2516 destroy_inodecache();
2519 out3: 2517 out3:
2520 bdi_destroy(&shmem_backing_dev_info); 2518 bdi_destroy(&shmem_backing_dev_info);
2521 out4: 2519 out4:
2522 shm_mnt = ERR_PTR(error); 2520 shm_mnt = ERR_PTR(error);
2523 return error; 2521 return error;
2524 } 2522 }
2525 module_init(init_tmpfs) 2523 module_init(init_tmpfs)
2526 2524
2527 /** 2525 /**
2528 * shmem_file_setup - get an unlinked file living in tmpfs 2526 * shmem_file_setup - get an unlinked file living in tmpfs
2529 * @name: name for dentry (to be seen in /proc/<pid>/maps 2527 * @name: name for dentry (to be seen in /proc/<pid>/maps
2530 * @size: size to be set for the file 2528 * @size: size to be set for the file
2531 * @flags: vm_flags 2529 * @flags: vm_flags
2532 */ 2530 */
2533 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags) 2531 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2534 { 2532 {
2535 int error; 2533 int error;
2536 struct file *file; 2534 struct file *file;
2537 struct inode *inode; 2535 struct inode *inode;
2538 struct dentry *dentry, *root; 2536 struct dentry *dentry, *root;
2539 struct qstr this; 2537 struct qstr this;
2540 2538
2541 if (IS_ERR(shm_mnt)) 2539 if (IS_ERR(shm_mnt))
2542 return (void *)shm_mnt; 2540 return (void *)shm_mnt;
2543 2541
2544 if (size < 0 || size > SHMEM_MAX_BYTES) 2542 if (size < 0 || size > SHMEM_MAX_BYTES)
2545 return ERR_PTR(-EINVAL); 2543 return ERR_PTR(-EINVAL);
2546 2544
2547 if (shmem_acct_size(flags, size)) 2545 if (shmem_acct_size(flags, size))
2548 return ERR_PTR(-ENOMEM); 2546 return ERR_PTR(-ENOMEM);
2549 2547
2550 error = -ENOMEM; 2548 error = -ENOMEM;
2551 this.name = name; 2549 this.name = name;
2552 this.len = strlen(name); 2550 this.len = strlen(name);
2553 this.hash = 0; /* will go */ 2551 this.hash = 0; /* will go */
2554 root = shm_mnt->mnt_root; 2552 root = shm_mnt->mnt_root;
2555 dentry = d_alloc(root, &this); 2553 dentry = d_alloc(root, &this);
2556 if (!dentry) 2554 if (!dentry)
2557 goto put_memory; 2555 goto put_memory;
2558 2556
2559 error = -ENFILE; 2557 error = -ENFILE;
2560 file = get_empty_filp(); 2558 file = get_empty_filp();
2561 if (!file) 2559 if (!file)
2562 goto put_dentry; 2560 goto put_dentry;
2563 2561
2564 error = -ENOSPC; 2562 error = -ENOSPC;
2565 inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0); 2563 inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2566 if (!inode) 2564 if (!inode)
2567 goto close_file; 2565 goto close_file;
2568 2566
2569 SHMEM_I(inode)->flags = flags & VM_ACCOUNT; 2567 SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2570 d_instantiate(dentry, inode); 2568 d_instantiate(dentry, inode);
2571 inode->i_size = size; 2569 inode->i_size = size;
2572 inode->i_nlink = 0; /* It is unlinked */ 2570 inode->i_nlink = 0; /* It is unlinked */
2573 init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ, 2571 init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
2574 &shmem_file_operations); 2572 &shmem_file_operations);
2575 return file; 2573 return file;
2576 2574
2577 close_file: 2575 close_file:
2578 put_filp(file); 2576 put_filp(file);
2579 put_dentry: 2577 put_dentry:
2580 dput(dentry); 2578 dput(dentry);
2581 put_memory: 2579 put_memory:
2582 shmem_unacct_size(flags, size); 2580 shmem_unacct_size(flags, size);
2583 return ERR_PTR(error); 2581 return ERR_PTR(error);
2584 } 2582 }
2585 2583
2586 /** 2584 /**
2587 * shmem_zero_setup - setup a shared anonymous mapping 2585 * shmem_zero_setup - setup a shared anonymous mapping
2588 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 2586 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2589 */ 2587 */
2590 int shmem_zero_setup(struct vm_area_struct *vma) 2588 int shmem_zero_setup(struct vm_area_struct *vma)
2591 { 2589 {
2592 struct file *file; 2590 struct file *file;
2593 loff_t size = vma->vm_end - vma->vm_start; 2591 loff_t size = vma->vm_end - vma->vm_start;
2594 2592
2595 file = shmem_file_setup("dev/zero", size, vma->vm_flags); 2593 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2596 if (IS_ERR(file)) 2594 if (IS_ERR(file))
2597 return PTR_ERR(file); 2595 return PTR_ERR(file);
2598 2596
2599 if (vma->vm_file) 2597 if (vma->vm_file)
2600 fput(vma->vm_file); 2598 fput(vma->vm_file);
2601 vma->vm_file = file; 2599 vma->vm_file = file;
2602 vma->vm_ops = &shmem_vm_ops; 2600 vma->vm_ops = &shmem_vm_ops;
2603 return 0; 2601 return 0;
2604 } 2602 }
1 /* 1 /*
2 * inode.c - securityfs 2 * inode.c - securityfs
3 * 3 *
4 * Copyright (C) 2005 Greg Kroah-Hartman <gregkh@suse.de> 4 * Copyright (C) 2005 Greg Kroah-Hartman <gregkh@suse.de>
5 * 5 *
6 * This program is free software; you can redistribute it and/or 6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License version 7 * modify it under the terms of the GNU General Public License version
8 * 2 as published by the Free Software Foundation. 8 * 2 as published by the Free Software Foundation.
9 * 9 *
10 * Based on fs/debugfs/inode.c which had the following copyright notice: 10 * Based on fs/debugfs/inode.c which had the following copyright notice:
11 * Copyright (C) 2004 Greg Kroah-Hartman <greg@kroah.com> 11 * Copyright (C) 2004 Greg Kroah-Hartman <greg@kroah.com>
12 * Copyright (C) 2004 IBM Inc. 12 * Copyright (C) 2004 IBM Inc.
13 */ 13 */
14 14
15 /* #define DEBUG */ 15 /* #define DEBUG */
16 #include <linux/module.h> 16 #include <linux/module.h>
17 #include <linux/fs.h> 17 #include <linux/fs.h>
18 #include <linux/mount.h> 18 #include <linux/mount.h>
19 #include <linux/pagemap.h> 19 #include <linux/pagemap.h>
20 #include <linux/init.h> 20 #include <linux/init.h>
21 #include <linux/namei.h> 21 #include <linux/namei.h>
22 #include <linux/security.h> 22 #include <linux/security.h>
23 23 #include <linux/magic.h>
24 #define SECURITYFS_MAGIC 0x73636673
25 24
26 static struct vfsmount *mount; 25 static struct vfsmount *mount;
27 static int mount_count; 26 static int mount_count;
28 27
29 /* 28 /*
30 * TODO: 29 * TODO:
31 * I think I can get rid of these default_file_ops, but not quite sure... 30 * I think I can get rid of these default_file_ops, but not quite sure...
32 */ 31 */
33 static ssize_t default_read_file(struct file *file, char __user *buf, 32 static ssize_t default_read_file(struct file *file, char __user *buf,
34 size_t count, loff_t *ppos) 33 size_t count, loff_t *ppos)
35 { 34 {
36 return 0; 35 return 0;
37 } 36 }
38 37
39 static ssize_t default_write_file(struct file *file, const char __user *buf, 38 static ssize_t default_write_file(struct file *file, const char __user *buf,
40 size_t count, loff_t *ppos) 39 size_t count, loff_t *ppos)
41 { 40 {
42 return count; 41 return count;
43 } 42 }
44 43
45 static int default_open(struct inode *inode, struct file *file) 44 static int default_open(struct inode *inode, struct file *file)
46 { 45 {
47 if (inode->i_private) 46 if (inode->i_private)
48 file->private_data = inode->i_private; 47 file->private_data = inode->i_private;
49 48
50 return 0; 49 return 0;
51 } 50 }
52 51
53 static const struct file_operations default_file_ops = { 52 static const struct file_operations default_file_ops = {
54 .read = default_read_file, 53 .read = default_read_file,
55 .write = default_write_file, 54 .write = default_write_file,
56 .open = default_open, 55 .open = default_open,
57 }; 56 };
58 57
59 static struct inode *get_inode(struct super_block *sb, int mode, dev_t dev) 58 static struct inode *get_inode(struct super_block *sb, int mode, dev_t dev)
60 { 59 {
61 struct inode *inode = new_inode(sb); 60 struct inode *inode = new_inode(sb);
62 61
63 if (inode) { 62 if (inode) {
64 inode->i_mode = mode; 63 inode->i_mode = mode;
65 inode->i_uid = 0; 64 inode->i_uid = 0;
66 inode->i_gid = 0; 65 inode->i_gid = 0;
67 inode->i_blocks = 0; 66 inode->i_blocks = 0;
68 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 67 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
69 switch (mode & S_IFMT) { 68 switch (mode & S_IFMT) {
70 default: 69 default:
71 init_special_inode(inode, mode, dev); 70 init_special_inode(inode, mode, dev);
72 break; 71 break;
73 case S_IFREG: 72 case S_IFREG:
74 inode->i_fop = &default_file_ops; 73 inode->i_fop = &default_file_ops;
75 break; 74 break;
76 case S_IFDIR: 75 case S_IFDIR:
77 inode->i_op = &simple_dir_inode_operations; 76 inode->i_op = &simple_dir_inode_operations;
78 inode->i_fop = &simple_dir_operations; 77 inode->i_fop = &simple_dir_operations;
79 78
80 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 79 /* directory inodes start off with i_nlink == 2 (for "." entry) */
81 inc_nlink(inode); 80 inc_nlink(inode);
82 break; 81 break;
83 } 82 }
84 } 83 }
85 return inode; 84 return inode;
86 } 85 }
87 86
88 /* SMP-safe */ 87 /* SMP-safe */
89 static int mknod(struct inode *dir, struct dentry *dentry, 88 static int mknod(struct inode *dir, struct dentry *dentry,
90 int mode, dev_t dev) 89 int mode, dev_t dev)
91 { 90 {
92 struct inode *inode; 91 struct inode *inode;
93 int error = -EPERM; 92 int error = -EPERM;
94 93
95 if (dentry->d_inode) 94 if (dentry->d_inode)
96 return -EEXIST; 95 return -EEXIST;
97 96
98 inode = get_inode(dir->i_sb, mode, dev); 97 inode = get_inode(dir->i_sb, mode, dev);
99 if (inode) { 98 if (inode) {
100 d_instantiate(dentry, inode); 99 d_instantiate(dentry, inode);
101 dget(dentry); 100 dget(dentry);
102 error = 0; 101 error = 0;
103 } 102 }
104 return error; 103 return error;
105 } 104 }
106 105
107 static int mkdir(struct inode *dir, struct dentry *dentry, int mode) 106 static int mkdir(struct inode *dir, struct dentry *dentry, int mode)
108 { 107 {
109 int res; 108 int res;
110 109
111 mode = (mode & (S_IRWXUGO | S_ISVTX)) | S_IFDIR; 110 mode = (mode & (S_IRWXUGO | S_ISVTX)) | S_IFDIR;
112 res = mknod(dir, dentry, mode, 0); 111 res = mknod(dir, dentry, mode, 0);
113 if (!res) 112 if (!res)
114 inc_nlink(dir); 113 inc_nlink(dir);
115 return res; 114 return res;
116 } 115 }
117 116
118 static int create(struct inode *dir, struct dentry *dentry, int mode) 117 static int create(struct inode *dir, struct dentry *dentry, int mode)
119 { 118 {
120 mode = (mode & S_IALLUGO) | S_IFREG; 119 mode = (mode & S_IALLUGO) | S_IFREG;
121 return mknod(dir, dentry, mode, 0); 120 return mknod(dir, dentry, mode, 0);
122 } 121 }
123 122
124 static inline int positive(struct dentry *dentry) 123 static inline int positive(struct dentry *dentry)
125 { 124 {
126 return dentry->d_inode && !d_unhashed(dentry); 125 return dentry->d_inode && !d_unhashed(dentry);
127 } 126 }
128 127
129 static int fill_super(struct super_block *sb, void *data, int silent) 128 static int fill_super(struct super_block *sb, void *data, int silent)
130 { 129 {
131 static struct tree_descr files[] = {{""}}; 130 static struct tree_descr files[] = {{""}};
132 131
133 return simple_fill_super(sb, SECURITYFS_MAGIC, files); 132 return simple_fill_super(sb, SECURITYFS_MAGIC, files);
134 } 133 }
135 134
136 static int get_sb(struct file_system_type *fs_type, 135 static int get_sb(struct file_system_type *fs_type,
137 int flags, const char *dev_name, 136 int flags, const char *dev_name,
138 void *data, struct vfsmount *mnt) 137 void *data, struct vfsmount *mnt)
139 { 138 {
140 return get_sb_single(fs_type, flags, data, fill_super, mnt); 139 return get_sb_single(fs_type, flags, data, fill_super, mnt);
141 } 140 }
142 141
143 static struct file_system_type fs_type = { 142 static struct file_system_type fs_type = {
144 .owner = THIS_MODULE, 143 .owner = THIS_MODULE,
145 .name = "securityfs", 144 .name = "securityfs",
146 .get_sb = get_sb, 145 .get_sb = get_sb,
147 .kill_sb = kill_litter_super, 146 .kill_sb = kill_litter_super,
148 }; 147 };
149 148
150 static int create_by_name(const char *name, mode_t mode, 149 static int create_by_name(const char *name, mode_t mode,
151 struct dentry *parent, 150 struct dentry *parent,
152 struct dentry **dentry) 151 struct dentry **dentry)
153 { 152 {
154 int error = 0; 153 int error = 0;
155 154
156 *dentry = NULL; 155 *dentry = NULL;
157 156
158 /* If the parent is not specified, we create it in the root. 157 /* If the parent is not specified, we create it in the root.
159 * We need the root dentry to do this, which is in the super 158 * We need the root dentry to do this, which is in the super
160 * block. A pointer to that is in the struct vfsmount that we 159 * block. A pointer to that is in the struct vfsmount that we
161 * have around. 160 * have around.
162 */ 161 */
163 if (!parent ) { 162 if (!parent ) {
164 if (mount && mount->mnt_sb) { 163 if (mount && mount->mnt_sb) {
165 parent = mount->mnt_sb->s_root; 164 parent = mount->mnt_sb->s_root;
166 } 165 }
167 } 166 }
168 if (!parent) { 167 if (!parent) {
169 pr_debug("securityfs: Ah! can not find a parent!\n"); 168 pr_debug("securityfs: Ah! can not find a parent!\n");
170 return -EFAULT; 169 return -EFAULT;
171 } 170 }
172 171
173 mutex_lock(&parent->d_inode->i_mutex); 172 mutex_lock(&parent->d_inode->i_mutex);
174 *dentry = lookup_one_len(name, parent, strlen(name)); 173 *dentry = lookup_one_len(name, parent, strlen(name));
175 if (!IS_ERR(dentry)) { 174 if (!IS_ERR(dentry)) {
176 if ((mode & S_IFMT) == S_IFDIR) 175 if ((mode & S_IFMT) == S_IFDIR)
177 error = mkdir(parent->d_inode, *dentry, mode); 176 error = mkdir(parent->d_inode, *dentry, mode);
178 else 177 else
179 error = create(parent->d_inode, *dentry, mode); 178 error = create(parent->d_inode, *dentry, mode);
180 } else 179 } else
181 error = PTR_ERR(dentry); 180 error = PTR_ERR(dentry);
182 mutex_unlock(&parent->d_inode->i_mutex); 181 mutex_unlock(&parent->d_inode->i_mutex);
183 182
184 return error; 183 return error;
185 } 184 }
186 185
187 /** 186 /**
188 * securityfs_create_file - create a file in the securityfs filesystem 187 * securityfs_create_file - create a file in the securityfs filesystem
189 * 188 *
190 * @name: a pointer to a string containing the name of the file to create. 189 * @name: a pointer to a string containing the name of the file to create.
191 * @mode: the permission that the file should have 190 * @mode: the permission that the file should have
192 * @parent: a pointer to the parent dentry for this file. This should be a 191 * @parent: a pointer to the parent dentry for this file. This should be a
193 * directory dentry if set. If this parameter is %NULL, then the 192 * directory dentry if set. If this parameter is %NULL, then the
194 * file will be created in the root of the securityfs filesystem. 193 * file will be created in the root of the securityfs filesystem.
195 * @data: a pointer to something that the caller will want to get to later 194 * @data: a pointer to something that the caller will want to get to later
196 * on. The inode.i_private pointer will point to this value on 195 * on. The inode.i_private pointer will point to this value on
197 * the open() call. 196 * the open() call.
198 * @fops: a pointer to a struct file_operations that should be used for 197 * @fops: a pointer to a struct file_operations that should be used for
199 * this file. 198 * this file.
200 * 199 *
201 * This is the basic "create a file" function for securityfs. It allows for a 200 * This is the basic "create a file" function for securityfs. It allows for a
202 * wide range of flexibility in creating a file, or a directory (if you 201 * wide range of flexibility in creating a file, or a directory (if you
203 * want to create a directory, the securityfs_create_dir() function is 202 * want to create a directory, the securityfs_create_dir() function is
204 * recommended to be used instead). 203 * recommended to be used instead).
205 * 204 *
206 * This function returns a pointer to a dentry if it succeeds. This 205 * This function returns a pointer to a dentry if it succeeds. This
207 * pointer must be passed to the securityfs_remove() function when the file is 206 * pointer must be passed to the securityfs_remove() function when the file is
208 * to be removed (no automatic cleanup happens if your module is unloaded, 207 * to be removed (no automatic cleanup happens if your module is unloaded,
209 * you are responsible here). If an error occurs, %NULL is returned. 208 * you are responsible here). If an error occurs, %NULL is returned.
210 * 209 *
211 * If securityfs is not enabled in the kernel, the value %-ENODEV is 210 * If securityfs is not enabled in the kernel, the value %-ENODEV is
212 * returned. It is not wise to check for this value, but rather, check for 211 * returned. It is not wise to check for this value, but rather, check for
213 * %NULL or !%NULL instead as to eliminate the need for #ifdef in the calling 212 * %NULL or !%NULL instead as to eliminate the need for #ifdef in the calling
214 * code. 213 * code.
215 */ 214 */
216 struct dentry *securityfs_create_file(const char *name, mode_t mode, 215 struct dentry *securityfs_create_file(const char *name, mode_t mode,
217 struct dentry *parent, void *data, 216 struct dentry *parent, void *data,
218 const struct file_operations *fops) 217 const struct file_operations *fops)
219 { 218 {
220 struct dentry *dentry = NULL; 219 struct dentry *dentry = NULL;
221 int error; 220 int error;
222 221
223 pr_debug("securityfs: creating file '%s'\n",name); 222 pr_debug("securityfs: creating file '%s'\n",name);
224 223
225 error = simple_pin_fs(&fs_type, &mount, &mount_count); 224 error = simple_pin_fs(&fs_type, &mount, &mount_count);
226 if (error) { 225 if (error) {
227 dentry = ERR_PTR(error); 226 dentry = ERR_PTR(error);
228 goto exit; 227 goto exit;
229 } 228 }
230 229
231 error = create_by_name(name, mode, parent, &dentry); 230 error = create_by_name(name, mode, parent, &dentry);
232 if (error) { 231 if (error) {
233 dentry = ERR_PTR(error); 232 dentry = ERR_PTR(error);
234 simple_release_fs(&mount, &mount_count); 233 simple_release_fs(&mount, &mount_count);
235 goto exit; 234 goto exit;
236 } 235 }
237 236
238 if (dentry->d_inode) { 237 if (dentry->d_inode) {
239 if (fops) 238 if (fops)
240 dentry->d_inode->i_fop = fops; 239 dentry->d_inode->i_fop = fops;
241 if (data) 240 if (data)
242 dentry->d_inode->i_private = data; 241 dentry->d_inode->i_private = data;
243 } 242 }
244 exit: 243 exit:
245 return dentry; 244 return dentry;
246 } 245 }
247 EXPORT_SYMBOL_GPL(securityfs_create_file); 246 EXPORT_SYMBOL_GPL(securityfs_create_file);
248 247
249 /** 248 /**
250 * securityfs_create_dir - create a directory in the securityfs filesystem 249 * securityfs_create_dir - create a directory in the securityfs filesystem
251 * 250 *
252 * @name: a pointer to a string containing the name of the directory to 251 * @name: a pointer to a string containing the name of the directory to
253 * create. 252 * create.
254 * @parent: a pointer to the parent dentry for this file. This should be a 253 * @parent: a pointer to the parent dentry for this file. This should be a
255 * directory dentry if set. If this parameter is %NULL, then the 254 * directory dentry if set. If this parameter is %NULL, then the
256 * directory will be created in the root of the securityfs filesystem. 255 * directory will be created in the root of the securityfs filesystem.
257 * 256 *
258 * This function creates a directory in securityfs with the given @name. 257 * This function creates a directory in securityfs with the given @name.
259 * 258 *
260 * This function returns a pointer to a dentry if it succeeds. This 259 * This function returns a pointer to a dentry if it succeeds. This
261 * pointer must be passed to the securityfs_remove() function when the file is 260 * pointer must be passed to the securityfs_remove() function when the file is
262 * to be removed (no automatic cleanup happens if your module is unloaded, 261 * to be removed (no automatic cleanup happens if your module is unloaded,
263 * you are responsible here). If an error occurs, %NULL will be returned. 262 * you are responsible here). If an error occurs, %NULL will be returned.
264 * 263 *
265 * If securityfs is not enabled in the kernel, the value %-ENODEV is 264 * If securityfs is not enabled in the kernel, the value %-ENODEV is
266 * returned. It is not wise to check for this value, but rather, check for 265 * returned. It is not wise to check for this value, but rather, check for
267 * %NULL or !%NULL instead as to eliminate the need for #ifdef in the calling 266 * %NULL or !%NULL instead as to eliminate the need for #ifdef in the calling
268 * code. 267 * code.
269 */ 268 */
270 struct dentry *securityfs_create_dir(const char *name, struct dentry *parent) 269 struct dentry *securityfs_create_dir(const char *name, struct dentry *parent)
271 { 270 {
272 return securityfs_create_file(name, 271 return securityfs_create_file(name,
273 S_IFDIR | S_IRWXU | S_IRUGO | S_IXUGO, 272 S_IFDIR | S_IRWXU | S_IRUGO | S_IXUGO,
274 parent, NULL, NULL); 273 parent, NULL, NULL);
275 } 274 }
276 EXPORT_SYMBOL_GPL(securityfs_create_dir); 275 EXPORT_SYMBOL_GPL(securityfs_create_dir);
277 276
278 /** 277 /**
279 * securityfs_remove - removes a file or directory from the securityfs filesystem 278 * securityfs_remove - removes a file or directory from the securityfs filesystem
280 * 279 *
281 * @dentry: a pointer to a the dentry of the file or directory to be removed. 280 * @dentry: a pointer to a the dentry of the file or directory to be removed.
282 * 281 *
283 * This function removes a file or directory in securityfs that was previously 282 * This function removes a file or directory in securityfs that was previously
284 * created with a call to another securityfs function (like 283 * created with a call to another securityfs function (like
285 * securityfs_create_file() or variants thereof.) 284 * securityfs_create_file() or variants thereof.)
286 * 285 *
287 * This function is required to be called in order for the file to be 286 * This function is required to be called in order for the file to be
288 * removed. No automatic cleanup of files will happen when a module is 287 * removed. No automatic cleanup of files will happen when a module is
289 * removed; you are responsible here. 288 * removed; you are responsible here.
290 */ 289 */
291 void securityfs_remove(struct dentry *dentry) 290 void securityfs_remove(struct dentry *dentry)
292 { 291 {
293 struct dentry *parent; 292 struct dentry *parent;
294 293
295 if (!dentry) 294 if (!dentry)
296 return; 295 return;
297 296
298 parent = dentry->d_parent; 297 parent = dentry->d_parent;
299 if (!parent || !parent->d_inode) 298 if (!parent || !parent->d_inode)
300 return; 299 return;
301 300
302 mutex_lock(&parent->d_inode->i_mutex); 301 mutex_lock(&parent->d_inode->i_mutex);
303 if (positive(dentry)) { 302 if (positive(dentry)) {
304 if (dentry->d_inode) { 303 if (dentry->d_inode) {
305 if (S_ISDIR(dentry->d_inode->i_mode)) 304 if (S_ISDIR(dentry->d_inode->i_mode))
306 simple_rmdir(parent->d_inode, dentry); 305 simple_rmdir(parent->d_inode, dentry);
307 else 306 else
308 simple_unlink(parent->d_inode, dentry); 307 simple_unlink(parent->d_inode, dentry);
309 dput(dentry); 308 dput(dentry);
310 } 309 }
311 } 310 }
312 mutex_unlock(&parent->d_inode->i_mutex); 311 mutex_unlock(&parent->d_inode->i_mutex);
313 simple_release_fs(&mount, &mount_count); 312 simple_release_fs(&mount, &mount_count);
314 } 313 }
315 EXPORT_SYMBOL_GPL(securityfs_remove); 314 EXPORT_SYMBOL_GPL(securityfs_remove);
316 315
317 static struct kobject *security_kobj; 316 static struct kobject *security_kobj;
318 317
319 static int __init securityfs_init(void) 318 static int __init securityfs_init(void)
320 { 319 {
321 int retval; 320 int retval;
322 321
323 security_kobj = kobject_create_and_add("security", kernel_kobj); 322 security_kobj = kobject_create_and_add("security", kernel_kobj);
324 if (!security_kobj) 323 if (!security_kobj)
325 return -EINVAL; 324 return -EINVAL;
326 325
327 retval = register_filesystem(&fs_type); 326 retval = register_filesystem(&fs_type);
328 if (retval) 327 if (retval)
329 kobject_put(security_kobj); 328 kobject_put(security_kobj);
330 return retval; 329 return retval;
331 } 330 }
332 331
333 core_initcall(securityfs_init); 332 core_initcall(securityfs_init);
334 MODULE_LICENSE("GPL"); 333 MODULE_LICENSE("GPL");
335 334
336 335