Commit 9c9cc93ad2a5d9972672e03685af20e8cea1e5a4

Authored by Christoph Hellwig
Committed by Trond Myklebust
1 parent 8ae20abdd1

SUNRPC: remove dead variable 'rpciod_running'

rpciod_running is not used at all, but due to the way DECLARE_MUTEX_LOCKED
works we don't get a warning for it.


Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>

Showing 1 changed file with 0 additions and 2 deletions Inline Diff

1 /* 1 /*
2 * linux/net/sunrpc/sched.c 2 * linux/net/sunrpc/sched.c
3 * 3 *
4 * Scheduling for synchronous and asynchronous RPC requests. 4 * Scheduling for synchronous and asynchronous RPC requests.
5 * 5 *
6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de> 6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7 * 7 *
8 * TCP NFS related read + write fixes 8 * TCP NFS related read + write fixes
9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie> 9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10 */ 10 */
11 11
12 #include <linux/module.h> 12 #include <linux/module.h>
13 13
14 #include <linux/sched.h> 14 #include <linux/sched.h>
15 #include <linux/interrupt.h> 15 #include <linux/interrupt.h>
16 #include <linux/slab.h> 16 #include <linux/slab.h>
17 #include <linux/mempool.h> 17 #include <linux/mempool.h>
18 #include <linux/smp.h> 18 #include <linux/smp.h>
19 #include <linux/smp_lock.h> 19 #include <linux/smp_lock.h>
20 #include <linux/spinlock.h> 20 #include <linux/spinlock.h>
21 #include <linux/mutex.h> 21 #include <linux/mutex.h>
22 22
23 #include <linux/sunrpc/clnt.h> 23 #include <linux/sunrpc/clnt.h>
24 24
25 #ifdef RPC_DEBUG 25 #ifdef RPC_DEBUG
26 #define RPCDBG_FACILITY RPCDBG_SCHED 26 #define RPCDBG_FACILITY RPCDBG_SCHED
27 #define RPC_TASK_MAGIC_ID 0xf00baa 27 #define RPC_TASK_MAGIC_ID 0xf00baa
28 static int rpc_task_id; 28 static int rpc_task_id;
29 #endif 29 #endif
30 30
31 /* 31 /*
32 * RPC slabs and memory pools 32 * RPC slabs and memory pools
33 */ 33 */
34 #define RPC_BUFFER_MAXSIZE (2048) 34 #define RPC_BUFFER_MAXSIZE (2048)
35 #define RPC_BUFFER_POOLSIZE (8) 35 #define RPC_BUFFER_POOLSIZE (8)
36 #define RPC_TASK_POOLSIZE (8) 36 #define RPC_TASK_POOLSIZE (8)
37 static struct kmem_cache *rpc_task_slabp __read_mostly; 37 static struct kmem_cache *rpc_task_slabp __read_mostly;
38 static struct kmem_cache *rpc_buffer_slabp __read_mostly; 38 static struct kmem_cache *rpc_buffer_slabp __read_mostly;
39 static mempool_t *rpc_task_mempool __read_mostly; 39 static mempool_t *rpc_task_mempool __read_mostly;
40 static mempool_t *rpc_buffer_mempool __read_mostly; 40 static mempool_t *rpc_buffer_mempool __read_mostly;
41 41
42 static void __rpc_default_timer(struct rpc_task *task); 42 static void __rpc_default_timer(struct rpc_task *task);
43 static void rpciod_killall(void); 43 static void rpciod_killall(void);
44 static void rpc_async_schedule(struct work_struct *); 44 static void rpc_async_schedule(struct work_struct *);
45 static void rpc_release_task(struct rpc_task *task); 45 static void rpc_release_task(struct rpc_task *task);
46 46
47 /* 47 /*
48 * RPC tasks sit here while waiting for conditions to improve. 48 * RPC tasks sit here while waiting for conditions to improve.
49 */ 49 */
50 static RPC_WAITQ(delay_queue, "delayq"); 50 static RPC_WAITQ(delay_queue, "delayq");
51 51
52 /* 52 /*
53 * All RPC tasks are linked into this list 53 * All RPC tasks are linked into this list
54 */ 54 */
55 static LIST_HEAD(all_tasks); 55 static LIST_HEAD(all_tasks);
56 56
57 /* 57 /*
58 * rpciod-related stuff 58 * rpciod-related stuff
59 */ 59 */
60 static DEFINE_MUTEX(rpciod_mutex); 60 static DEFINE_MUTEX(rpciod_mutex);
61 static unsigned int rpciod_users; 61 static unsigned int rpciod_users;
62 struct workqueue_struct *rpciod_workqueue; 62 struct workqueue_struct *rpciod_workqueue;
63 63
64 /* 64 /*
65 * Spinlock for other critical sections of code. 65 * Spinlock for other critical sections of code.
66 */ 66 */
67 static DEFINE_SPINLOCK(rpc_sched_lock); 67 static DEFINE_SPINLOCK(rpc_sched_lock);
68 68
69 /* 69 /*
70 * Disable the timer for a given RPC task. Should be called with 70 * Disable the timer for a given RPC task. Should be called with
71 * queue->lock and bh_disabled in order to avoid races within 71 * queue->lock and bh_disabled in order to avoid races within
72 * rpc_run_timer(). 72 * rpc_run_timer().
73 */ 73 */
74 static inline void 74 static inline void
75 __rpc_disable_timer(struct rpc_task *task) 75 __rpc_disable_timer(struct rpc_task *task)
76 { 76 {
77 dprintk("RPC: %5u disabling timer\n", task->tk_pid); 77 dprintk("RPC: %5u disabling timer\n", task->tk_pid);
78 task->tk_timeout_fn = NULL; 78 task->tk_timeout_fn = NULL;
79 task->tk_timeout = 0; 79 task->tk_timeout = 0;
80 } 80 }
81 81
82 /* 82 /*
83 * Run a timeout function. 83 * Run a timeout function.
84 * We use the callback in order to allow __rpc_wake_up_task() 84 * We use the callback in order to allow __rpc_wake_up_task()
85 * and friends to disable the timer synchronously on SMP systems 85 * and friends to disable the timer synchronously on SMP systems
86 * without calling del_timer_sync(). The latter could cause a 86 * without calling del_timer_sync(). The latter could cause a
87 * deadlock if called while we're holding spinlocks... 87 * deadlock if called while we're holding spinlocks...
88 */ 88 */
89 static void rpc_run_timer(struct rpc_task *task) 89 static void rpc_run_timer(struct rpc_task *task)
90 { 90 {
91 void (*callback)(struct rpc_task *); 91 void (*callback)(struct rpc_task *);
92 92
93 callback = task->tk_timeout_fn; 93 callback = task->tk_timeout_fn;
94 task->tk_timeout_fn = NULL; 94 task->tk_timeout_fn = NULL;
95 if (callback && RPC_IS_QUEUED(task)) { 95 if (callback && RPC_IS_QUEUED(task)) {
96 dprintk("RPC: %5u running timer\n", task->tk_pid); 96 dprintk("RPC: %5u running timer\n", task->tk_pid);
97 callback(task); 97 callback(task);
98 } 98 }
99 smp_mb__before_clear_bit(); 99 smp_mb__before_clear_bit();
100 clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate); 100 clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
101 smp_mb__after_clear_bit(); 101 smp_mb__after_clear_bit();
102 } 102 }
103 103
104 /* 104 /*
105 * Set up a timer for the current task. 105 * Set up a timer for the current task.
106 */ 106 */
107 static inline void 107 static inline void
108 __rpc_add_timer(struct rpc_task *task, rpc_action timer) 108 __rpc_add_timer(struct rpc_task *task, rpc_action timer)
109 { 109 {
110 if (!task->tk_timeout) 110 if (!task->tk_timeout)
111 return; 111 return;
112 112
113 dprintk("RPC: %5u setting alarm for %lu ms\n", 113 dprintk("RPC: %5u setting alarm for %lu ms\n",
114 task->tk_pid, task->tk_timeout * 1000 / HZ); 114 task->tk_pid, task->tk_timeout * 1000 / HZ);
115 115
116 if (timer) 116 if (timer)
117 task->tk_timeout_fn = timer; 117 task->tk_timeout_fn = timer;
118 else 118 else
119 task->tk_timeout_fn = __rpc_default_timer; 119 task->tk_timeout_fn = __rpc_default_timer;
120 set_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate); 120 set_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
121 mod_timer(&task->tk_timer, jiffies + task->tk_timeout); 121 mod_timer(&task->tk_timer, jiffies + task->tk_timeout);
122 } 122 }
123 123
124 /* 124 /*
125 * Delete any timer for the current task. Because we use del_timer_sync(), 125 * Delete any timer for the current task. Because we use del_timer_sync(),
126 * this function should never be called while holding queue->lock. 126 * this function should never be called while holding queue->lock.
127 */ 127 */
128 static void 128 static void
129 rpc_delete_timer(struct rpc_task *task) 129 rpc_delete_timer(struct rpc_task *task)
130 { 130 {
131 if (RPC_IS_QUEUED(task)) 131 if (RPC_IS_QUEUED(task))
132 return; 132 return;
133 if (test_and_clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate)) { 133 if (test_and_clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate)) {
134 del_singleshot_timer_sync(&task->tk_timer); 134 del_singleshot_timer_sync(&task->tk_timer);
135 dprintk("RPC: %5u deleting timer\n", task->tk_pid); 135 dprintk("RPC: %5u deleting timer\n", task->tk_pid);
136 } 136 }
137 } 137 }
138 138
139 /* 139 /*
140 * Add new request to a priority queue. 140 * Add new request to a priority queue.
141 */ 141 */
142 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task) 142 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
143 { 143 {
144 struct list_head *q; 144 struct list_head *q;
145 struct rpc_task *t; 145 struct rpc_task *t;
146 146
147 INIT_LIST_HEAD(&task->u.tk_wait.links); 147 INIT_LIST_HEAD(&task->u.tk_wait.links);
148 q = &queue->tasks[task->tk_priority]; 148 q = &queue->tasks[task->tk_priority];
149 if (unlikely(task->tk_priority > queue->maxpriority)) 149 if (unlikely(task->tk_priority > queue->maxpriority))
150 q = &queue->tasks[queue->maxpriority]; 150 q = &queue->tasks[queue->maxpriority];
151 list_for_each_entry(t, q, u.tk_wait.list) { 151 list_for_each_entry(t, q, u.tk_wait.list) {
152 if (t->tk_cookie == task->tk_cookie) { 152 if (t->tk_cookie == task->tk_cookie) {
153 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links); 153 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
154 return; 154 return;
155 } 155 }
156 } 156 }
157 list_add_tail(&task->u.tk_wait.list, q); 157 list_add_tail(&task->u.tk_wait.list, q);
158 } 158 }
159 159
160 /* 160 /*
161 * Add new request to wait queue. 161 * Add new request to wait queue.
162 * 162 *
163 * Swapper tasks always get inserted at the head of the queue. 163 * Swapper tasks always get inserted at the head of the queue.
164 * This should avoid many nasty memory deadlocks and hopefully 164 * This should avoid many nasty memory deadlocks and hopefully
165 * improve overall performance. 165 * improve overall performance.
166 * Everyone else gets appended to the queue to ensure proper FIFO behavior. 166 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
167 */ 167 */
168 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task) 168 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
169 { 169 {
170 BUG_ON (RPC_IS_QUEUED(task)); 170 BUG_ON (RPC_IS_QUEUED(task));
171 171
172 if (RPC_IS_PRIORITY(queue)) 172 if (RPC_IS_PRIORITY(queue))
173 __rpc_add_wait_queue_priority(queue, task); 173 __rpc_add_wait_queue_priority(queue, task);
174 else if (RPC_IS_SWAPPER(task)) 174 else if (RPC_IS_SWAPPER(task))
175 list_add(&task->u.tk_wait.list, &queue->tasks[0]); 175 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
176 else 176 else
177 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]); 177 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
178 task->u.tk_wait.rpc_waitq = queue; 178 task->u.tk_wait.rpc_waitq = queue;
179 queue->qlen++; 179 queue->qlen++;
180 rpc_set_queued(task); 180 rpc_set_queued(task);
181 181
182 dprintk("RPC: %5u added to queue %p \"%s\"\n", 182 dprintk("RPC: %5u added to queue %p \"%s\"\n",
183 task->tk_pid, queue, rpc_qname(queue)); 183 task->tk_pid, queue, rpc_qname(queue));
184 } 184 }
185 185
186 /* 186 /*
187 * Remove request from a priority queue. 187 * Remove request from a priority queue.
188 */ 188 */
189 static void __rpc_remove_wait_queue_priority(struct rpc_task *task) 189 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
190 { 190 {
191 struct rpc_task *t; 191 struct rpc_task *t;
192 192
193 if (!list_empty(&task->u.tk_wait.links)) { 193 if (!list_empty(&task->u.tk_wait.links)) {
194 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list); 194 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
195 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list); 195 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
196 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links); 196 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
197 } 197 }
198 list_del(&task->u.tk_wait.list); 198 list_del(&task->u.tk_wait.list);
199 } 199 }
200 200
201 /* 201 /*
202 * Remove request from queue. 202 * Remove request from queue.
203 * Note: must be called with spin lock held. 203 * Note: must be called with spin lock held.
204 */ 204 */
205 static void __rpc_remove_wait_queue(struct rpc_task *task) 205 static void __rpc_remove_wait_queue(struct rpc_task *task)
206 { 206 {
207 struct rpc_wait_queue *queue; 207 struct rpc_wait_queue *queue;
208 queue = task->u.tk_wait.rpc_waitq; 208 queue = task->u.tk_wait.rpc_waitq;
209 209
210 if (RPC_IS_PRIORITY(queue)) 210 if (RPC_IS_PRIORITY(queue))
211 __rpc_remove_wait_queue_priority(task); 211 __rpc_remove_wait_queue_priority(task);
212 else 212 else
213 list_del(&task->u.tk_wait.list); 213 list_del(&task->u.tk_wait.list);
214 queue->qlen--; 214 queue->qlen--;
215 dprintk("RPC: %5u removed from queue %p \"%s\"\n", 215 dprintk("RPC: %5u removed from queue %p \"%s\"\n",
216 task->tk_pid, queue, rpc_qname(queue)); 216 task->tk_pid, queue, rpc_qname(queue));
217 } 217 }
218 218
219 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority) 219 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
220 { 220 {
221 queue->priority = priority; 221 queue->priority = priority;
222 queue->count = 1 << (priority * 2); 222 queue->count = 1 << (priority * 2);
223 } 223 }
224 224
225 static inline void rpc_set_waitqueue_cookie(struct rpc_wait_queue *queue, unsigned long cookie) 225 static inline void rpc_set_waitqueue_cookie(struct rpc_wait_queue *queue, unsigned long cookie)
226 { 226 {
227 queue->cookie = cookie; 227 queue->cookie = cookie;
228 queue->nr = RPC_BATCH_COUNT; 228 queue->nr = RPC_BATCH_COUNT;
229 } 229 }
230 230
231 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue) 231 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
232 { 232 {
233 rpc_set_waitqueue_priority(queue, queue->maxpriority); 233 rpc_set_waitqueue_priority(queue, queue->maxpriority);
234 rpc_set_waitqueue_cookie(queue, 0); 234 rpc_set_waitqueue_cookie(queue, 0);
235 } 235 }
236 236
237 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, int maxprio) 237 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, int maxprio)
238 { 238 {
239 int i; 239 int i;
240 240
241 spin_lock_init(&queue->lock); 241 spin_lock_init(&queue->lock);
242 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++) 242 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
243 INIT_LIST_HEAD(&queue->tasks[i]); 243 INIT_LIST_HEAD(&queue->tasks[i]);
244 queue->maxpriority = maxprio; 244 queue->maxpriority = maxprio;
245 rpc_reset_waitqueue_priority(queue); 245 rpc_reset_waitqueue_priority(queue);
246 #ifdef RPC_DEBUG 246 #ifdef RPC_DEBUG
247 queue->name = qname; 247 queue->name = qname;
248 #endif 248 #endif
249 } 249 }
250 250
251 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname) 251 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
252 { 252 {
253 __rpc_init_priority_wait_queue(queue, qname, RPC_PRIORITY_HIGH); 253 __rpc_init_priority_wait_queue(queue, qname, RPC_PRIORITY_HIGH);
254 } 254 }
255 255
256 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname) 256 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
257 { 257 {
258 __rpc_init_priority_wait_queue(queue, qname, 0); 258 __rpc_init_priority_wait_queue(queue, qname, 0);
259 } 259 }
260 EXPORT_SYMBOL(rpc_init_wait_queue); 260 EXPORT_SYMBOL(rpc_init_wait_queue);
261 261
262 static int rpc_wait_bit_interruptible(void *word) 262 static int rpc_wait_bit_interruptible(void *word)
263 { 263 {
264 if (signal_pending(current)) 264 if (signal_pending(current))
265 return -ERESTARTSYS; 265 return -ERESTARTSYS;
266 schedule(); 266 schedule();
267 return 0; 267 return 0;
268 } 268 }
269 269
270 static void rpc_set_active(struct rpc_task *task) 270 static void rpc_set_active(struct rpc_task *task)
271 { 271 {
272 if (test_and_set_bit(RPC_TASK_ACTIVE, &task->tk_runstate) != 0) 272 if (test_and_set_bit(RPC_TASK_ACTIVE, &task->tk_runstate) != 0)
273 return; 273 return;
274 spin_lock(&rpc_sched_lock); 274 spin_lock(&rpc_sched_lock);
275 #ifdef RPC_DEBUG 275 #ifdef RPC_DEBUG
276 task->tk_magic = RPC_TASK_MAGIC_ID; 276 task->tk_magic = RPC_TASK_MAGIC_ID;
277 task->tk_pid = rpc_task_id++; 277 task->tk_pid = rpc_task_id++;
278 #endif 278 #endif
279 /* Add to global list of all tasks */ 279 /* Add to global list of all tasks */
280 list_add_tail(&task->tk_task, &all_tasks); 280 list_add_tail(&task->tk_task, &all_tasks);
281 spin_unlock(&rpc_sched_lock); 281 spin_unlock(&rpc_sched_lock);
282 } 282 }
283 283
284 /* 284 /*
285 * Mark an RPC call as having completed by clearing the 'active' bit 285 * Mark an RPC call as having completed by clearing the 'active' bit
286 */ 286 */
287 static void rpc_mark_complete_task(struct rpc_task *task) 287 static void rpc_mark_complete_task(struct rpc_task *task)
288 { 288 {
289 smp_mb__before_clear_bit(); 289 smp_mb__before_clear_bit();
290 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate); 290 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
291 smp_mb__after_clear_bit(); 291 smp_mb__after_clear_bit();
292 wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE); 292 wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE);
293 } 293 }
294 294
295 /* 295 /*
296 * Allow callers to wait for completion of an RPC call 296 * Allow callers to wait for completion of an RPC call
297 */ 297 */
298 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *)) 298 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
299 { 299 {
300 if (action == NULL) 300 if (action == NULL)
301 action = rpc_wait_bit_interruptible; 301 action = rpc_wait_bit_interruptible;
302 return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE, 302 return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
303 action, TASK_INTERRUPTIBLE); 303 action, TASK_INTERRUPTIBLE);
304 } 304 }
305 EXPORT_SYMBOL(__rpc_wait_for_completion_task); 305 EXPORT_SYMBOL(__rpc_wait_for_completion_task);
306 306
307 /* 307 /*
308 * Make an RPC task runnable. 308 * Make an RPC task runnable.
309 * 309 *
310 * Note: If the task is ASYNC, this must be called with 310 * Note: If the task is ASYNC, this must be called with
311 * the spinlock held to protect the wait queue operation. 311 * the spinlock held to protect the wait queue operation.
312 */ 312 */
313 static void rpc_make_runnable(struct rpc_task *task) 313 static void rpc_make_runnable(struct rpc_task *task)
314 { 314 {
315 BUG_ON(task->tk_timeout_fn); 315 BUG_ON(task->tk_timeout_fn);
316 rpc_clear_queued(task); 316 rpc_clear_queued(task);
317 if (rpc_test_and_set_running(task)) 317 if (rpc_test_and_set_running(task))
318 return; 318 return;
319 /* We might have raced */ 319 /* We might have raced */
320 if (RPC_IS_QUEUED(task)) { 320 if (RPC_IS_QUEUED(task)) {
321 rpc_clear_running(task); 321 rpc_clear_running(task);
322 return; 322 return;
323 } 323 }
324 if (RPC_IS_ASYNC(task)) { 324 if (RPC_IS_ASYNC(task)) {
325 int status; 325 int status;
326 326
327 INIT_WORK(&task->u.tk_work, rpc_async_schedule); 327 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
328 status = queue_work(task->tk_workqueue, &task->u.tk_work); 328 status = queue_work(task->tk_workqueue, &task->u.tk_work);
329 if (status < 0) { 329 if (status < 0) {
330 printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status); 330 printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
331 task->tk_status = status; 331 task->tk_status = status;
332 return; 332 return;
333 } 333 }
334 } else 334 } else
335 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED); 335 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
336 } 336 }
337 337
338 /* 338 /*
339 * Prepare for sleeping on a wait queue. 339 * Prepare for sleeping on a wait queue.
340 * By always appending tasks to the list we ensure FIFO behavior. 340 * By always appending tasks to the list we ensure FIFO behavior.
341 * NB: An RPC task will only receive interrupt-driven events as long 341 * NB: An RPC task will only receive interrupt-driven events as long
342 * as it's on a wait queue. 342 * as it's on a wait queue.
343 */ 343 */
344 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, 344 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
345 rpc_action action, rpc_action timer) 345 rpc_action action, rpc_action timer)
346 { 346 {
347 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n", 347 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
348 task->tk_pid, rpc_qname(q), jiffies); 348 task->tk_pid, rpc_qname(q), jiffies);
349 349
350 if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) { 350 if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
351 printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n"); 351 printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
352 return; 352 return;
353 } 353 }
354 354
355 __rpc_add_wait_queue(q, task); 355 __rpc_add_wait_queue(q, task);
356 356
357 BUG_ON(task->tk_callback != NULL); 357 BUG_ON(task->tk_callback != NULL);
358 task->tk_callback = action; 358 task->tk_callback = action;
359 __rpc_add_timer(task, timer); 359 __rpc_add_timer(task, timer);
360 } 360 }
361 361
362 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, 362 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
363 rpc_action action, rpc_action timer) 363 rpc_action action, rpc_action timer)
364 { 364 {
365 /* Mark the task as being activated if so needed */ 365 /* Mark the task as being activated if so needed */
366 rpc_set_active(task); 366 rpc_set_active(task);
367 367
368 /* 368 /*
369 * Protect the queue operations. 369 * Protect the queue operations.
370 */ 370 */
371 spin_lock_bh(&q->lock); 371 spin_lock_bh(&q->lock);
372 __rpc_sleep_on(q, task, action, timer); 372 __rpc_sleep_on(q, task, action, timer);
373 spin_unlock_bh(&q->lock); 373 spin_unlock_bh(&q->lock);
374 } 374 }
375 375
376 /** 376 /**
377 * __rpc_do_wake_up_task - wake up a single rpc_task 377 * __rpc_do_wake_up_task - wake up a single rpc_task
378 * @task: task to be woken up 378 * @task: task to be woken up
379 * 379 *
380 * Caller must hold queue->lock, and have cleared the task queued flag. 380 * Caller must hold queue->lock, and have cleared the task queued flag.
381 */ 381 */
382 static void __rpc_do_wake_up_task(struct rpc_task *task) 382 static void __rpc_do_wake_up_task(struct rpc_task *task)
383 { 383 {
384 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n", 384 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
385 task->tk_pid, jiffies); 385 task->tk_pid, jiffies);
386 386
387 #ifdef RPC_DEBUG 387 #ifdef RPC_DEBUG
388 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID); 388 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
389 #endif 389 #endif
390 /* Has the task been executed yet? If not, we cannot wake it up! */ 390 /* Has the task been executed yet? If not, we cannot wake it up! */
391 if (!RPC_IS_ACTIVATED(task)) { 391 if (!RPC_IS_ACTIVATED(task)) {
392 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task); 392 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
393 return; 393 return;
394 } 394 }
395 395
396 __rpc_disable_timer(task); 396 __rpc_disable_timer(task);
397 __rpc_remove_wait_queue(task); 397 __rpc_remove_wait_queue(task);
398 398
399 rpc_make_runnable(task); 399 rpc_make_runnable(task);
400 400
401 dprintk("RPC: __rpc_wake_up_task done\n"); 401 dprintk("RPC: __rpc_wake_up_task done\n");
402 } 402 }
403 403
404 /* 404 /*
405 * Wake up the specified task 405 * Wake up the specified task
406 */ 406 */
407 static void __rpc_wake_up_task(struct rpc_task *task) 407 static void __rpc_wake_up_task(struct rpc_task *task)
408 { 408 {
409 if (rpc_start_wakeup(task)) { 409 if (rpc_start_wakeup(task)) {
410 if (RPC_IS_QUEUED(task)) 410 if (RPC_IS_QUEUED(task))
411 __rpc_do_wake_up_task(task); 411 __rpc_do_wake_up_task(task);
412 rpc_finish_wakeup(task); 412 rpc_finish_wakeup(task);
413 } 413 }
414 } 414 }
415 415
416 /* 416 /*
417 * Default timeout handler if none specified by user 417 * Default timeout handler if none specified by user
418 */ 418 */
419 static void 419 static void
420 __rpc_default_timer(struct rpc_task *task) 420 __rpc_default_timer(struct rpc_task *task)
421 { 421 {
422 dprintk("RPC: %5u timeout (default timer)\n", task->tk_pid); 422 dprintk("RPC: %5u timeout (default timer)\n", task->tk_pid);
423 task->tk_status = -ETIMEDOUT; 423 task->tk_status = -ETIMEDOUT;
424 rpc_wake_up_task(task); 424 rpc_wake_up_task(task);
425 } 425 }
426 426
427 /* 427 /*
428 * Wake up the specified task 428 * Wake up the specified task
429 */ 429 */
430 void rpc_wake_up_task(struct rpc_task *task) 430 void rpc_wake_up_task(struct rpc_task *task)
431 { 431 {
432 rcu_read_lock_bh(); 432 rcu_read_lock_bh();
433 if (rpc_start_wakeup(task)) { 433 if (rpc_start_wakeup(task)) {
434 if (RPC_IS_QUEUED(task)) { 434 if (RPC_IS_QUEUED(task)) {
435 struct rpc_wait_queue *queue = task->u.tk_wait.rpc_waitq; 435 struct rpc_wait_queue *queue = task->u.tk_wait.rpc_waitq;
436 436
437 /* Note: we're already in a bh-safe context */ 437 /* Note: we're already in a bh-safe context */
438 spin_lock(&queue->lock); 438 spin_lock(&queue->lock);
439 __rpc_do_wake_up_task(task); 439 __rpc_do_wake_up_task(task);
440 spin_unlock(&queue->lock); 440 spin_unlock(&queue->lock);
441 } 441 }
442 rpc_finish_wakeup(task); 442 rpc_finish_wakeup(task);
443 } 443 }
444 rcu_read_unlock_bh(); 444 rcu_read_unlock_bh();
445 } 445 }
446 446
447 /* 447 /*
448 * Wake up the next task on a priority queue. 448 * Wake up the next task on a priority queue.
449 */ 449 */
450 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue) 450 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
451 { 451 {
452 struct list_head *q; 452 struct list_head *q;
453 struct rpc_task *task; 453 struct rpc_task *task;
454 454
455 /* 455 /*
456 * Service a batch of tasks from a single cookie. 456 * Service a batch of tasks from a single cookie.
457 */ 457 */
458 q = &queue->tasks[queue->priority]; 458 q = &queue->tasks[queue->priority];
459 if (!list_empty(q)) { 459 if (!list_empty(q)) {
460 task = list_entry(q->next, struct rpc_task, u.tk_wait.list); 460 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
461 if (queue->cookie == task->tk_cookie) { 461 if (queue->cookie == task->tk_cookie) {
462 if (--queue->nr) 462 if (--queue->nr)
463 goto out; 463 goto out;
464 list_move_tail(&task->u.tk_wait.list, q); 464 list_move_tail(&task->u.tk_wait.list, q);
465 } 465 }
466 /* 466 /*
467 * Check if we need to switch queues. 467 * Check if we need to switch queues.
468 */ 468 */
469 if (--queue->count) 469 if (--queue->count)
470 goto new_cookie; 470 goto new_cookie;
471 } 471 }
472 472
473 /* 473 /*
474 * Service the next queue. 474 * Service the next queue.
475 */ 475 */
476 do { 476 do {
477 if (q == &queue->tasks[0]) 477 if (q == &queue->tasks[0])
478 q = &queue->tasks[queue->maxpriority]; 478 q = &queue->tasks[queue->maxpriority];
479 else 479 else
480 q = q - 1; 480 q = q - 1;
481 if (!list_empty(q)) { 481 if (!list_empty(q)) {
482 task = list_entry(q->next, struct rpc_task, u.tk_wait.list); 482 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
483 goto new_queue; 483 goto new_queue;
484 } 484 }
485 } while (q != &queue->tasks[queue->priority]); 485 } while (q != &queue->tasks[queue->priority]);
486 486
487 rpc_reset_waitqueue_priority(queue); 487 rpc_reset_waitqueue_priority(queue);
488 return NULL; 488 return NULL;
489 489
490 new_queue: 490 new_queue:
491 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0])); 491 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
492 new_cookie: 492 new_cookie:
493 rpc_set_waitqueue_cookie(queue, task->tk_cookie); 493 rpc_set_waitqueue_cookie(queue, task->tk_cookie);
494 out: 494 out:
495 __rpc_wake_up_task(task); 495 __rpc_wake_up_task(task);
496 return task; 496 return task;
497 } 497 }
498 498
499 /* 499 /*
500 * Wake up the next task on the wait queue. 500 * Wake up the next task on the wait queue.
501 */ 501 */
502 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue) 502 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
503 { 503 {
504 struct rpc_task *task = NULL; 504 struct rpc_task *task = NULL;
505 505
506 dprintk("RPC: wake_up_next(%p \"%s\")\n", 506 dprintk("RPC: wake_up_next(%p \"%s\")\n",
507 queue, rpc_qname(queue)); 507 queue, rpc_qname(queue));
508 rcu_read_lock_bh(); 508 rcu_read_lock_bh();
509 spin_lock(&queue->lock); 509 spin_lock(&queue->lock);
510 if (RPC_IS_PRIORITY(queue)) 510 if (RPC_IS_PRIORITY(queue))
511 task = __rpc_wake_up_next_priority(queue); 511 task = __rpc_wake_up_next_priority(queue);
512 else { 512 else {
513 task_for_first(task, &queue->tasks[0]) 513 task_for_first(task, &queue->tasks[0])
514 __rpc_wake_up_task(task); 514 __rpc_wake_up_task(task);
515 } 515 }
516 spin_unlock(&queue->lock); 516 spin_unlock(&queue->lock);
517 rcu_read_unlock_bh(); 517 rcu_read_unlock_bh();
518 518
519 return task; 519 return task;
520 } 520 }
521 521
522 /** 522 /**
523 * rpc_wake_up - wake up all rpc_tasks 523 * rpc_wake_up - wake up all rpc_tasks
524 * @queue: rpc_wait_queue on which the tasks are sleeping 524 * @queue: rpc_wait_queue on which the tasks are sleeping
525 * 525 *
526 * Grabs queue->lock 526 * Grabs queue->lock
527 */ 527 */
528 void rpc_wake_up(struct rpc_wait_queue *queue) 528 void rpc_wake_up(struct rpc_wait_queue *queue)
529 { 529 {
530 struct rpc_task *task, *next; 530 struct rpc_task *task, *next;
531 struct list_head *head; 531 struct list_head *head;
532 532
533 rcu_read_lock_bh(); 533 rcu_read_lock_bh();
534 spin_lock(&queue->lock); 534 spin_lock(&queue->lock);
535 head = &queue->tasks[queue->maxpriority]; 535 head = &queue->tasks[queue->maxpriority];
536 for (;;) { 536 for (;;) {
537 list_for_each_entry_safe(task, next, head, u.tk_wait.list) 537 list_for_each_entry_safe(task, next, head, u.tk_wait.list)
538 __rpc_wake_up_task(task); 538 __rpc_wake_up_task(task);
539 if (head == &queue->tasks[0]) 539 if (head == &queue->tasks[0])
540 break; 540 break;
541 head--; 541 head--;
542 } 542 }
543 spin_unlock(&queue->lock); 543 spin_unlock(&queue->lock);
544 rcu_read_unlock_bh(); 544 rcu_read_unlock_bh();
545 } 545 }
546 546
547 /** 547 /**
548 * rpc_wake_up_status - wake up all rpc_tasks and set their status value. 548 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
549 * @queue: rpc_wait_queue on which the tasks are sleeping 549 * @queue: rpc_wait_queue on which the tasks are sleeping
550 * @status: status value to set 550 * @status: status value to set
551 * 551 *
552 * Grabs queue->lock 552 * Grabs queue->lock
553 */ 553 */
554 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status) 554 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
555 { 555 {
556 struct rpc_task *task, *next; 556 struct rpc_task *task, *next;
557 struct list_head *head; 557 struct list_head *head;
558 558
559 rcu_read_lock_bh(); 559 rcu_read_lock_bh();
560 spin_lock(&queue->lock); 560 spin_lock(&queue->lock);
561 head = &queue->tasks[queue->maxpriority]; 561 head = &queue->tasks[queue->maxpriority];
562 for (;;) { 562 for (;;) {
563 list_for_each_entry_safe(task, next, head, u.tk_wait.list) { 563 list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
564 task->tk_status = status; 564 task->tk_status = status;
565 __rpc_wake_up_task(task); 565 __rpc_wake_up_task(task);
566 } 566 }
567 if (head == &queue->tasks[0]) 567 if (head == &queue->tasks[0])
568 break; 568 break;
569 head--; 569 head--;
570 } 570 }
571 spin_unlock(&queue->lock); 571 spin_unlock(&queue->lock);
572 rcu_read_unlock_bh(); 572 rcu_read_unlock_bh();
573 } 573 }
574 574
575 static void __rpc_atrun(struct rpc_task *task) 575 static void __rpc_atrun(struct rpc_task *task)
576 { 576 {
577 rpc_wake_up_task(task); 577 rpc_wake_up_task(task);
578 } 578 }
579 579
580 /* 580 /*
581 * Run a task at a later time 581 * Run a task at a later time
582 */ 582 */
583 void rpc_delay(struct rpc_task *task, unsigned long delay) 583 void rpc_delay(struct rpc_task *task, unsigned long delay)
584 { 584 {
585 task->tk_timeout = delay; 585 task->tk_timeout = delay;
586 rpc_sleep_on(&delay_queue, task, NULL, __rpc_atrun); 586 rpc_sleep_on(&delay_queue, task, NULL, __rpc_atrun);
587 } 587 }
588 588
589 /* 589 /*
590 * Helper to call task->tk_ops->rpc_call_prepare 590 * Helper to call task->tk_ops->rpc_call_prepare
591 */ 591 */
592 static void rpc_prepare_task(struct rpc_task *task) 592 static void rpc_prepare_task(struct rpc_task *task)
593 { 593 {
594 lock_kernel(); 594 lock_kernel();
595 task->tk_ops->rpc_call_prepare(task, task->tk_calldata); 595 task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
596 unlock_kernel(); 596 unlock_kernel();
597 } 597 }
598 598
599 /* 599 /*
600 * Helper that calls task->tk_ops->rpc_call_done if it exists 600 * Helper that calls task->tk_ops->rpc_call_done if it exists
601 */ 601 */
602 void rpc_exit_task(struct rpc_task *task) 602 void rpc_exit_task(struct rpc_task *task)
603 { 603 {
604 task->tk_action = NULL; 604 task->tk_action = NULL;
605 if (task->tk_ops->rpc_call_done != NULL) { 605 if (task->tk_ops->rpc_call_done != NULL) {
606 lock_kernel(); 606 lock_kernel();
607 task->tk_ops->rpc_call_done(task, task->tk_calldata); 607 task->tk_ops->rpc_call_done(task, task->tk_calldata);
608 unlock_kernel(); 608 unlock_kernel();
609 if (task->tk_action != NULL) { 609 if (task->tk_action != NULL) {
610 WARN_ON(RPC_ASSASSINATED(task)); 610 WARN_ON(RPC_ASSASSINATED(task));
611 /* Always release the RPC slot and buffer memory */ 611 /* Always release the RPC slot and buffer memory */
612 xprt_release(task); 612 xprt_release(task);
613 } 613 }
614 } 614 }
615 } 615 }
616 EXPORT_SYMBOL(rpc_exit_task); 616 EXPORT_SYMBOL(rpc_exit_task);
617 617
618 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata) 618 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
619 { 619 {
620 if (ops->rpc_release != NULL) { 620 if (ops->rpc_release != NULL) {
621 lock_kernel(); 621 lock_kernel();
622 ops->rpc_release(calldata); 622 ops->rpc_release(calldata);
623 unlock_kernel(); 623 unlock_kernel();
624 } 624 }
625 } 625 }
626 626
627 /* 627 /*
628 * This is the RPC `scheduler' (or rather, the finite state machine). 628 * This is the RPC `scheduler' (or rather, the finite state machine).
629 */ 629 */
630 static void __rpc_execute(struct rpc_task *task) 630 static void __rpc_execute(struct rpc_task *task)
631 { 631 {
632 int status = 0; 632 int status = 0;
633 633
634 dprintk("RPC: %5u __rpc_execute flags=0x%x\n", 634 dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
635 task->tk_pid, task->tk_flags); 635 task->tk_pid, task->tk_flags);
636 636
637 BUG_ON(RPC_IS_QUEUED(task)); 637 BUG_ON(RPC_IS_QUEUED(task));
638 638
639 for (;;) { 639 for (;;) {
640 /* 640 /*
641 * Garbage collection of pending timers... 641 * Garbage collection of pending timers...
642 */ 642 */
643 rpc_delete_timer(task); 643 rpc_delete_timer(task);
644 644
645 /* 645 /*
646 * Execute any pending callback. 646 * Execute any pending callback.
647 */ 647 */
648 if (RPC_DO_CALLBACK(task)) { 648 if (RPC_DO_CALLBACK(task)) {
649 /* Define a callback save pointer */ 649 /* Define a callback save pointer */
650 void (*save_callback)(struct rpc_task *); 650 void (*save_callback)(struct rpc_task *);
651 651
652 /* 652 /*
653 * If a callback exists, save it, reset it, 653 * If a callback exists, save it, reset it,
654 * call it. 654 * call it.
655 * The save is needed to stop from resetting 655 * The save is needed to stop from resetting
656 * another callback set within the callback handler 656 * another callback set within the callback handler
657 * - Dave 657 * - Dave
658 */ 658 */
659 save_callback=task->tk_callback; 659 save_callback=task->tk_callback;
660 task->tk_callback=NULL; 660 task->tk_callback=NULL;
661 save_callback(task); 661 save_callback(task);
662 } 662 }
663 663
664 /* 664 /*
665 * Perform the next FSM step. 665 * Perform the next FSM step.
666 * tk_action may be NULL when the task has been killed 666 * tk_action may be NULL when the task has been killed
667 * by someone else. 667 * by someone else.
668 */ 668 */
669 if (!RPC_IS_QUEUED(task)) { 669 if (!RPC_IS_QUEUED(task)) {
670 if (task->tk_action == NULL) 670 if (task->tk_action == NULL)
671 break; 671 break;
672 task->tk_action(task); 672 task->tk_action(task);
673 } 673 }
674 674
675 /* 675 /*
676 * Lockless check for whether task is sleeping or not. 676 * Lockless check for whether task is sleeping or not.
677 */ 677 */
678 if (!RPC_IS_QUEUED(task)) 678 if (!RPC_IS_QUEUED(task))
679 continue; 679 continue;
680 rpc_clear_running(task); 680 rpc_clear_running(task);
681 if (RPC_IS_ASYNC(task)) { 681 if (RPC_IS_ASYNC(task)) {
682 /* Careful! we may have raced... */ 682 /* Careful! we may have raced... */
683 if (RPC_IS_QUEUED(task)) 683 if (RPC_IS_QUEUED(task))
684 return; 684 return;
685 if (rpc_test_and_set_running(task)) 685 if (rpc_test_and_set_running(task))
686 return; 686 return;
687 continue; 687 continue;
688 } 688 }
689 689
690 /* sync task: sleep here */ 690 /* sync task: sleep here */
691 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid); 691 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
692 /* Note: Caller should be using rpc_clnt_sigmask() */ 692 /* Note: Caller should be using rpc_clnt_sigmask() */
693 status = out_of_line_wait_on_bit(&task->tk_runstate, 693 status = out_of_line_wait_on_bit(&task->tk_runstate,
694 RPC_TASK_QUEUED, rpc_wait_bit_interruptible, 694 RPC_TASK_QUEUED, rpc_wait_bit_interruptible,
695 TASK_INTERRUPTIBLE); 695 TASK_INTERRUPTIBLE);
696 if (status == -ERESTARTSYS) { 696 if (status == -ERESTARTSYS) {
697 /* 697 /*
698 * When a sync task receives a signal, it exits with 698 * When a sync task receives a signal, it exits with
699 * -ERESTARTSYS. In order to catch any callbacks that 699 * -ERESTARTSYS. In order to catch any callbacks that
700 * clean up after sleeping on some queue, we don't 700 * clean up after sleeping on some queue, we don't
701 * break the loop here, but go around once more. 701 * break the loop here, but go around once more.
702 */ 702 */
703 dprintk("RPC: %5u got signal\n", task->tk_pid); 703 dprintk("RPC: %5u got signal\n", task->tk_pid);
704 task->tk_flags |= RPC_TASK_KILLED; 704 task->tk_flags |= RPC_TASK_KILLED;
705 rpc_exit(task, -ERESTARTSYS); 705 rpc_exit(task, -ERESTARTSYS);
706 rpc_wake_up_task(task); 706 rpc_wake_up_task(task);
707 } 707 }
708 rpc_set_running(task); 708 rpc_set_running(task);
709 dprintk("RPC: %5u sync task resuming\n", task->tk_pid); 709 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
710 } 710 }
711 711
712 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status, 712 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
713 task->tk_status); 713 task->tk_status);
714 /* Release all resources associated with the task */ 714 /* Release all resources associated with the task */
715 rpc_release_task(task); 715 rpc_release_task(task);
716 } 716 }
717 717
718 /* 718 /*
719 * User-visible entry point to the scheduler. 719 * User-visible entry point to the scheduler.
720 * 720 *
721 * This may be called recursively if e.g. an async NFS task updates 721 * This may be called recursively if e.g. an async NFS task updates
722 * the attributes and finds that dirty pages must be flushed. 722 * the attributes and finds that dirty pages must be flushed.
723 * NOTE: Upon exit of this function the task is guaranteed to be 723 * NOTE: Upon exit of this function the task is guaranteed to be
724 * released. In particular note that tk_release() will have 724 * released. In particular note that tk_release() will have
725 * been called, so your task memory may have been freed. 725 * been called, so your task memory may have been freed.
726 */ 726 */
727 void rpc_execute(struct rpc_task *task) 727 void rpc_execute(struct rpc_task *task)
728 { 728 {
729 rpc_set_active(task); 729 rpc_set_active(task);
730 rpc_set_running(task); 730 rpc_set_running(task);
731 __rpc_execute(task); 731 __rpc_execute(task);
732 } 732 }
733 733
734 static void rpc_async_schedule(struct work_struct *work) 734 static void rpc_async_schedule(struct work_struct *work)
735 { 735 {
736 __rpc_execute(container_of(work, struct rpc_task, u.tk_work)); 736 __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
737 } 737 }
738 738
739 struct rpc_buffer { 739 struct rpc_buffer {
740 size_t len; 740 size_t len;
741 char data[]; 741 char data[];
742 }; 742 };
743 743
744 /** 744 /**
745 * rpc_malloc - allocate an RPC buffer 745 * rpc_malloc - allocate an RPC buffer
746 * @task: RPC task that will use this buffer 746 * @task: RPC task that will use this buffer
747 * @size: requested byte size 747 * @size: requested byte size
748 * 748 *
749 * To prevent rpciod from hanging, this allocator never sleeps, 749 * To prevent rpciod from hanging, this allocator never sleeps,
750 * returning NULL if the request cannot be serviced immediately. 750 * returning NULL if the request cannot be serviced immediately.
751 * The caller can arrange to sleep in a way that is safe for rpciod. 751 * The caller can arrange to sleep in a way that is safe for rpciod.
752 * 752 *
753 * Most requests are 'small' (under 2KiB) and can be serviced from a 753 * Most requests are 'small' (under 2KiB) and can be serviced from a
754 * mempool, ensuring that NFS reads and writes can always proceed, 754 * mempool, ensuring that NFS reads and writes can always proceed,
755 * and that there is good locality of reference for these buffers. 755 * and that there is good locality of reference for these buffers.
756 * 756 *
757 * In order to avoid memory starvation triggering more writebacks of 757 * In order to avoid memory starvation triggering more writebacks of
758 * NFS requests, we avoid using GFP_KERNEL. 758 * NFS requests, we avoid using GFP_KERNEL.
759 */ 759 */
760 void *rpc_malloc(struct rpc_task *task, size_t size) 760 void *rpc_malloc(struct rpc_task *task, size_t size)
761 { 761 {
762 struct rpc_buffer *buf; 762 struct rpc_buffer *buf;
763 gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT; 763 gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
764 764
765 size += sizeof(struct rpc_buffer); 765 size += sizeof(struct rpc_buffer);
766 if (size <= RPC_BUFFER_MAXSIZE) 766 if (size <= RPC_BUFFER_MAXSIZE)
767 buf = mempool_alloc(rpc_buffer_mempool, gfp); 767 buf = mempool_alloc(rpc_buffer_mempool, gfp);
768 else 768 else
769 buf = kmalloc(size, gfp); 769 buf = kmalloc(size, gfp);
770 770
771 if (!buf) 771 if (!buf)
772 return NULL; 772 return NULL;
773 773
774 buf->len = size; 774 buf->len = size;
775 dprintk("RPC: %5u allocated buffer of size %zu at %p\n", 775 dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
776 task->tk_pid, size, buf); 776 task->tk_pid, size, buf);
777 return &buf->data; 777 return &buf->data;
778 } 778 }
779 779
780 /** 780 /**
781 * rpc_free - free buffer allocated via rpc_malloc 781 * rpc_free - free buffer allocated via rpc_malloc
782 * @buffer: buffer to free 782 * @buffer: buffer to free
783 * 783 *
784 */ 784 */
785 void rpc_free(void *buffer) 785 void rpc_free(void *buffer)
786 { 786 {
787 size_t size; 787 size_t size;
788 struct rpc_buffer *buf; 788 struct rpc_buffer *buf;
789 789
790 if (!buffer) 790 if (!buffer)
791 return; 791 return;
792 792
793 buf = container_of(buffer, struct rpc_buffer, data); 793 buf = container_of(buffer, struct rpc_buffer, data);
794 size = buf->len; 794 size = buf->len;
795 795
796 dprintk("RPC: freeing buffer of size %zu at %p\n", 796 dprintk("RPC: freeing buffer of size %zu at %p\n",
797 size, buf); 797 size, buf);
798 798
799 if (size <= RPC_BUFFER_MAXSIZE) 799 if (size <= RPC_BUFFER_MAXSIZE)
800 mempool_free(buf, rpc_buffer_mempool); 800 mempool_free(buf, rpc_buffer_mempool);
801 else 801 else
802 kfree(buf); 802 kfree(buf);
803 } 803 }
804 804
805 /* 805 /*
806 * Creation and deletion of RPC task structures 806 * Creation and deletion of RPC task structures
807 */ 807 */
808 void rpc_init_task(struct rpc_task *task, struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata) 808 void rpc_init_task(struct rpc_task *task, struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata)
809 { 809 {
810 memset(task, 0, sizeof(*task)); 810 memset(task, 0, sizeof(*task));
811 init_timer(&task->tk_timer); 811 init_timer(&task->tk_timer);
812 task->tk_timer.data = (unsigned long) task; 812 task->tk_timer.data = (unsigned long) task;
813 task->tk_timer.function = (void (*)(unsigned long)) rpc_run_timer; 813 task->tk_timer.function = (void (*)(unsigned long)) rpc_run_timer;
814 atomic_set(&task->tk_count, 1); 814 atomic_set(&task->tk_count, 1);
815 task->tk_client = clnt; 815 task->tk_client = clnt;
816 task->tk_flags = flags; 816 task->tk_flags = flags;
817 task->tk_ops = tk_ops; 817 task->tk_ops = tk_ops;
818 if (tk_ops->rpc_call_prepare != NULL) 818 if (tk_ops->rpc_call_prepare != NULL)
819 task->tk_action = rpc_prepare_task; 819 task->tk_action = rpc_prepare_task;
820 task->tk_calldata = calldata; 820 task->tk_calldata = calldata;
821 821
822 /* Initialize retry counters */ 822 /* Initialize retry counters */
823 task->tk_garb_retry = 2; 823 task->tk_garb_retry = 2;
824 task->tk_cred_retry = 2; 824 task->tk_cred_retry = 2;
825 825
826 task->tk_priority = RPC_PRIORITY_NORMAL; 826 task->tk_priority = RPC_PRIORITY_NORMAL;
827 task->tk_cookie = (unsigned long)current; 827 task->tk_cookie = (unsigned long)current;
828 828
829 /* Initialize workqueue for async tasks */ 829 /* Initialize workqueue for async tasks */
830 task->tk_workqueue = rpciod_workqueue; 830 task->tk_workqueue = rpciod_workqueue;
831 831
832 if (clnt) { 832 if (clnt) {
833 atomic_inc(&clnt->cl_users); 833 atomic_inc(&clnt->cl_users);
834 if (clnt->cl_softrtry) 834 if (clnt->cl_softrtry)
835 task->tk_flags |= RPC_TASK_SOFT; 835 task->tk_flags |= RPC_TASK_SOFT;
836 if (!clnt->cl_intr) 836 if (!clnt->cl_intr)
837 task->tk_flags |= RPC_TASK_NOINTR; 837 task->tk_flags |= RPC_TASK_NOINTR;
838 } 838 }
839 839
840 BUG_ON(task->tk_ops == NULL); 840 BUG_ON(task->tk_ops == NULL);
841 841
842 /* starting timestamp */ 842 /* starting timestamp */
843 task->tk_start = jiffies; 843 task->tk_start = jiffies;
844 844
845 dprintk("RPC: new task initialized, procpid %u\n", 845 dprintk("RPC: new task initialized, procpid %u\n",
846 current->pid); 846 current->pid);
847 } 847 }
848 848
849 static struct rpc_task * 849 static struct rpc_task *
850 rpc_alloc_task(void) 850 rpc_alloc_task(void)
851 { 851 {
852 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS); 852 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
853 } 853 }
854 854
855 static void rpc_free_task(struct rcu_head *rcu) 855 static void rpc_free_task(struct rcu_head *rcu)
856 { 856 {
857 struct rpc_task *task = container_of(rcu, struct rpc_task, u.tk_rcu); 857 struct rpc_task *task = container_of(rcu, struct rpc_task, u.tk_rcu);
858 dprintk("RPC: %5u freeing task\n", task->tk_pid); 858 dprintk("RPC: %5u freeing task\n", task->tk_pid);
859 mempool_free(task, rpc_task_mempool); 859 mempool_free(task, rpc_task_mempool);
860 } 860 }
861 861
862 /* 862 /*
863 * Create a new task for the specified client. We have to 863 * Create a new task for the specified client. We have to
864 * clean up after an allocation failure, as the client may 864 * clean up after an allocation failure, as the client may
865 * have specified "oneshot". 865 * have specified "oneshot".
866 */ 866 */
867 struct rpc_task *rpc_new_task(struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata) 867 struct rpc_task *rpc_new_task(struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata)
868 { 868 {
869 struct rpc_task *task; 869 struct rpc_task *task;
870 870
871 task = rpc_alloc_task(); 871 task = rpc_alloc_task();
872 if (!task) 872 if (!task)
873 goto cleanup; 873 goto cleanup;
874 874
875 rpc_init_task(task, clnt, flags, tk_ops, calldata); 875 rpc_init_task(task, clnt, flags, tk_ops, calldata);
876 876
877 dprintk("RPC: allocated task %p\n", task); 877 dprintk("RPC: allocated task %p\n", task);
878 task->tk_flags |= RPC_TASK_DYNAMIC; 878 task->tk_flags |= RPC_TASK_DYNAMIC;
879 out: 879 out:
880 return task; 880 return task;
881 881
882 cleanup: 882 cleanup:
883 /* Check whether to release the client */ 883 /* Check whether to release the client */
884 if (clnt) { 884 if (clnt) {
885 printk("rpc_new_task: failed, users=%d, oneshot=%d\n", 885 printk("rpc_new_task: failed, users=%d, oneshot=%d\n",
886 atomic_read(&clnt->cl_users), clnt->cl_oneshot); 886 atomic_read(&clnt->cl_users), clnt->cl_oneshot);
887 atomic_inc(&clnt->cl_users); /* pretend we were used ... */ 887 atomic_inc(&clnt->cl_users); /* pretend we were used ... */
888 rpc_release_client(clnt); 888 rpc_release_client(clnt);
889 } 889 }
890 goto out; 890 goto out;
891 } 891 }
892 892
893 893
894 void rpc_put_task(struct rpc_task *task) 894 void rpc_put_task(struct rpc_task *task)
895 { 895 {
896 const struct rpc_call_ops *tk_ops = task->tk_ops; 896 const struct rpc_call_ops *tk_ops = task->tk_ops;
897 void *calldata = task->tk_calldata; 897 void *calldata = task->tk_calldata;
898 898
899 if (!atomic_dec_and_test(&task->tk_count)) 899 if (!atomic_dec_and_test(&task->tk_count))
900 return; 900 return;
901 /* Release resources */ 901 /* Release resources */
902 if (task->tk_rqstp) 902 if (task->tk_rqstp)
903 xprt_release(task); 903 xprt_release(task);
904 if (task->tk_msg.rpc_cred) 904 if (task->tk_msg.rpc_cred)
905 rpcauth_unbindcred(task); 905 rpcauth_unbindcred(task);
906 if (task->tk_client) { 906 if (task->tk_client) {
907 rpc_release_client(task->tk_client); 907 rpc_release_client(task->tk_client);
908 task->tk_client = NULL; 908 task->tk_client = NULL;
909 } 909 }
910 if (task->tk_flags & RPC_TASK_DYNAMIC) 910 if (task->tk_flags & RPC_TASK_DYNAMIC)
911 call_rcu_bh(&task->u.tk_rcu, rpc_free_task); 911 call_rcu_bh(&task->u.tk_rcu, rpc_free_task);
912 rpc_release_calldata(tk_ops, calldata); 912 rpc_release_calldata(tk_ops, calldata);
913 } 913 }
914 EXPORT_SYMBOL(rpc_put_task); 914 EXPORT_SYMBOL(rpc_put_task);
915 915
916 static void rpc_release_task(struct rpc_task *task) 916 static void rpc_release_task(struct rpc_task *task)
917 { 917 {
918 #ifdef RPC_DEBUG 918 #ifdef RPC_DEBUG
919 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID); 919 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
920 #endif 920 #endif
921 dprintk("RPC: %5u release task\n", task->tk_pid); 921 dprintk("RPC: %5u release task\n", task->tk_pid);
922 922
923 /* Remove from global task list */ 923 /* Remove from global task list */
924 spin_lock(&rpc_sched_lock); 924 spin_lock(&rpc_sched_lock);
925 list_del(&task->tk_task); 925 list_del(&task->tk_task);
926 spin_unlock(&rpc_sched_lock); 926 spin_unlock(&rpc_sched_lock);
927 927
928 BUG_ON (RPC_IS_QUEUED(task)); 928 BUG_ON (RPC_IS_QUEUED(task));
929 929
930 /* Synchronously delete any running timer */ 930 /* Synchronously delete any running timer */
931 rpc_delete_timer(task); 931 rpc_delete_timer(task);
932 932
933 #ifdef RPC_DEBUG 933 #ifdef RPC_DEBUG
934 task->tk_magic = 0; 934 task->tk_magic = 0;
935 #endif 935 #endif
936 /* Wake up anyone who is waiting for task completion */ 936 /* Wake up anyone who is waiting for task completion */
937 rpc_mark_complete_task(task); 937 rpc_mark_complete_task(task);
938 938
939 rpc_put_task(task); 939 rpc_put_task(task);
940 } 940 }
941 941
942 /** 942 /**
943 * rpc_run_task - Allocate a new RPC task, then run rpc_execute against it 943 * rpc_run_task - Allocate a new RPC task, then run rpc_execute against it
944 * @clnt: pointer to RPC client 944 * @clnt: pointer to RPC client
945 * @flags: RPC flags 945 * @flags: RPC flags
946 * @ops: RPC call ops 946 * @ops: RPC call ops
947 * @data: user call data 947 * @data: user call data
948 */ 948 */
949 struct rpc_task *rpc_run_task(struct rpc_clnt *clnt, int flags, 949 struct rpc_task *rpc_run_task(struct rpc_clnt *clnt, int flags,
950 const struct rpc_call_ops *ops, 950 const struct rpc_call_ops *ops,
951 void *data) 951 void *data)
952 { 952 {
953 struct rpc_task *task; 953 struct rpc_task *task;
954 task = rpc_new_task(clnt, flags, ops, data); 954 task = rpc_new_task(clnt, flags, ops, data);
955 if (task == NULL) { 955 if (task == NULL) {
956 rpc_release_calldata(ops, data); 956 rpc_release_calldata(ops, data);
957 return ERR_PTR(-ENOMEM); 957 return ERR_PTR(-ENOMEM);
958 } 958 }
959 atomic_inc(&task->tk_count); 959 atomic_inc(&task->tk_count);
960 rpc_execute(task); 960 rpc_execute(task);
961 return task; 961 return task;
962 } 962 }
963 EXPORT_SYMBOL(rpc_run_task); 963 EXPORT_SYMBOL(rpc_run_task);
964 964
965 /* 965 /*
966 * Kill all tasks for the given client. 966 * Kill all tasks for the given client.
967 * XXX: kill their descendants as well? 967 * XXX: kill their descendants as well?
968 */ 968 */
969 void rpc_killall_tasks(struct rpc_clnt *clnt) 969 void rpc_killall_tasks(struct rpc_clnt *clnt)
970 { 970 {
971 struct rpc_task *rovr; 971 struct rpc_task *rovr;
972 struct list_head *le; 972 struct list_head *le;
973 973
974 dprintk("RPC: killing all tasks for client %p\n", clnt); 974 dprintk("RPC: killing all tasks for client %p\n", clnt);
975 975
976 /* 976 /*
977 * Spin lock all_tasks to prevent changes... 977 * Spin lock all_tasks to prevent changes...
978 */ 978 */
979 spin_lock(&rpc_sched_lock); 979 spin_lock(&rpc_sched_lock);
980 alltask_for_each(rovr, le, &all_tasks) { 980 alltask_for_each(rovr, le, &all_tasks) {
981 if (! RPC_IS_ACTIVATED(rovr)) 981 if (! RPC_IS_ACTIVATED(rovr))
982 continue; 982 continue;
983 if (!clnt || rovr->tk_client == clnt) { 983 if (!clnt || rovr->tk_client == clnt) {
984 rovr->tk_flags |= RPC_TASK_KILLED; 984 rovr->tk_flags |= RPC_TASK_KILLED;
985 rpc_exit(rovr, -EIO); 985 rpc_exit(rovr, -EIO);
986 rpc_wake_up_task(rovr); 986 rpc_wake_up_task(rovr);
987 } 987 }
988 } 988 }
989 spin_unlock(&rpc_sched_lock); 989 spin_unlock(&rpc_sched_lock);
990 } 990 }
991 991
992 static DECLARE_MUTEX_LOCKED(rpciod_running);
993
994 static void rpciod_killall(void) 992 static void rpciod_killall(void)
995 { 993 {
996 unsigned long flags; 994 unsigned long flags;
997 995
998 while (!list_empty(&all_tasks)) { 996 while (!list_empty(&all_tasks)) {
999 clear_thread_flag(TIF_SIGPENDING); 997 clear_thread_flag(TIF_SIGPENDING);
1000 rpc_killall_tasks(NULL); 998 rpc_killall_tasks(NULL);
1001 flush_workqueue(rpciod_workqueue); 999 flush_workqueue(rpciod_workqueue);
1002 if (!list_empty(&all_tasks)) { 1000 if (!list_empty(&all_tasks)) {
1003 dprintk("RPC: rpciod_killall: waiting for tasks " 1001 dprintk("RPC: rpciod_killall: waiting for tasks "
1004 "to exit\n"); 1002 "to exit\n");
1005 yield(); 1003 yield();
1006 } 1004 }
1007 } 1005 }
1008 1006
1009 spin_lock_irqsave(&current->sighand->siglock, flags); 1007 spin_lock_irqsave(&current->sighand->siglock, flags);
1010 recalc_sigpending(); 1008 recalc_sigpending();
1011 spin_unlock_irqrestore(&current->sighand->siglock, flags); 1009 spin_unlock_irqrestore(&current->sighand->siglock, flags);
1012 } 1010 }
1013 1011
1014 /* 1012 /*
1015 * Start up the rpciod process if it's not already running. 1013 * Start up the rpciod process if it's not already running.
1016 */ 1014 */
1017 int 1015 int
1018 rpciod_up(void) 1016 rpciod_up(void)
1019 { 1017 {
1020 struct workqueue_struct *wq; 1018 struct workqueue_struct *wq;
1021 int error = 0; 1019 int error = 0;
1022 1020
1023 mutex_lock(&rpciod_mutex); 1021 mutex_lock(&rpciod_mutex);
1024 dprintk("RPC: rpciod_up: users %u\n", rpciod_users); 1022 dprintk("RPC: rpciod_up: users %u\n", rpciod_users);
1025 rpciod_users++; 1023 rpciod_users++;
1026 if (rpciod_workqueue) 1024 if (rpciod_workqueue)
1027 goto out; 1025 goto out;
1028 /* 1026 /*
1029 * If there's no pid, we should be the first user. 1027 * If there's no pid, we should be the first user.
1030 */ 1028 */
1031 if (rpciod_users > 1) 1029 if (rpciod_users > 1)
1032 printk(KERN_WARNING "rpciod_up: no workqueue, %u users??\n", rpciod_users); 1030 printk(KERN_WARNING "rpciod_up: no workqueue, %u users??\n", rpciod_users);
1033 /* 1031 /*
1034 * Create the rpciod thread and wait for it to start. 1032 * Create the rpciod thread and wait for it to start.
1035 */ 1033 */
1036 error = -ENOMEM; 1034 error = -ENOMEM;
1037 wq = create_workqueue("rpciod"); 1035 wq = create_workqueue("rpciod");
1038 if (wq == NULL) { 1036 if (wq == NULL) {
1039 printk(KERN_WARNING "rpciod_up: create workqueue failed, error=%d\n", error); 1037 printk(KERN_WARNING "rpciod_up: create workqueue failed, error=%d\n", error);
1040 rpciod_users--; 1038 rpciod_users--;
1041 goto out; 1039 goto out;
1042 } 1040 }
1043 rpciod_workqueue = wq; 1041 rpciod_workqueue = wq;
1044 error = 0; 1042 error = 0;
1045 out: 1043 out:
1046 mutex_unlock(&rpciod_mutex); 1044 mutex_unlock(&rpciod_mutex);
1047 return error; 1045 return error;
1048 } 1046 }
1049 1047
1050 void 1048 void
1051 rpciod_down(void) 1049 rpciod_down(void)
1052 { 1050 {
1053 mutex_lock(&rpciod_mutex); 1051 mutex_lock(&rpciod_mutex);
1054 dprintk("RPC: rpciod_down sema %u\n", rpciod_users); 1052 dprintk("RPC: rpciod_down sema %u\n", rpciod_users);
1055 if (rpciod_users) { 1053 if (rpciod_users) {
1056 if (--rpciod_users) 1054 if (--rpciod_users)
1057 goto out; 1055 goto out;
1058 } else 1056 } else
1059 printk(KERN_WARNING "rpciod_down: no users??\n"); 1057 printk(KERN_WARNING "rpciod_down: no users??\n");
1060 1058
1061 if (!rpciod_workqueue) { 1059 if (!rpciod_workqueue) {
1062 dprintk("RPC: rpciod_down: Nothing to do!\n"); 1060 dprintk("RPC: rpciod_down: Nothing to do!\n");
1063 goto out; 1061 goto out;
1064 } 1062 }
1065 rpciod_killall(); 1063 rpciod_killall();
1066 1064
1067 destroy_workqueue(rpciod_workqueue); 1065 destroy_workqueue(rpciod_workqueue);
1068 rpciod_workqueue = NULL; 1066 rpciod_workqueue = NULL;
1069 out: 1067 out:
1070 mutex_unlock(&rpciod_mutex); 1068 mutex_unlock(&rpciod_mutex);
1071 } 1069 }
1072 1070
1073 #ifdef RPC_DEBUG 1071 #ifdef RPC_DEBUG
1074 void rpc_show_tasks(void) 1072 void rpc_show_tasks(void)
1075 { 1073 {
1076 struct list_head *le; 1074 struct list_head *le;
1077 struct rpc_task *t; 1075 struct rpc_task *t;
1078 1076
1079 spin_lock(&rpc_sched_lock); 1077 spin_lock(&rpc_sched_lock);
1080 if (list_empty(&all_tasks)) { 1078 if (list_empty(&all_tasks)) {
1081 spin_unlock(&rpc_sched_lock); 1079 spin_unlock(&rpc_sched_lock);
1082 return; 1080 return;
1083 } 1081 }
1084 printk("-pid- proc flgs status -client- -prog- --rqstp- -timeout " 1082 printk("-pid- proc flgs status -client- -prog- --rqstp- -timeout "
1085 "-rpcwait -action- ---ops--\n"); 1083 "-rpcwait -action- ---ops--\n");
1086 alltask_for_each(t, le, &all_tasks) { 1084 alltask_for_each(t, le, &all_tasks) {
1087 const char *rpc_waitq = "none"; 1085 const char *rpc_waitq = "none";
1088 1086
1089 if (RPC_IS_QUEUED(t)) 1087 if (RPC_IS_QUEUED(t))
1090 rpc_waitq = rpc_qname(t->u.tk_wait.rpc_waitq); 1088 rpc_waitq = rpc_qname(t->u.tk_wait.rpc_waitq);
1091 1089
1092 printk("%5u %04d %04x %6d %8p %6d %8p %8ld %8s %8p %8p\n", 1090 printk("%5u %04d %04x %6d %8p %6d %8p %8ld %8s %8p %8p\n",
1093 t->tk_pid, 1091 t->tk_pid,
1094 (t->tk_msg.rpc_proc ? t->tk_msg.rpc_proc->p_proc : -1), 1092 (t->tk_msg.rpc_proc ? t->tk_msg.rpc_proc->p_proc : -1),
1095 t->tk_flags, t->tk_status, 1093 t->tk_flags, t->tk_status,
1096 t->tk_client, 1094 t->tk_client,
1097 (t->tk_client ? t->tk_client->cl_prog : 0), 1095 (t->tk_client ? t->tk_client->cl_prog : 0),
1098 t->tk_rqstp, t->tk_timeout, 1096 t->tk_rqstp, t->tk_timeout,
1099 rpc_waitq, 1097 rpc_waitq,
1100 t->tk_action, t->tk_ops); 1098 t->tk_action, t->tk_ops);
1101 } 1099 }
1102 spin_unlock(&rpc_sched_lock); 1100 spin_unlock(&rpc_sched_lock);
1103 } 1101 }
1104 #endif 1102 #endif
1105 1103
1106 void 1104 void
1107 rpc_destroy_mempool(void) 1105 rpc_destroy_mempool(void)
1108 { 1106 {
1109 if (rpc_buffer_mempool) 1107 if (rpc_buffer_mempool)
1110 mempool_destroy(rpc_buffer_mempool); 1108 mempool_destroy(rpc_buffer_mempool);
1111 if (rpc_task_mempool) 1109 if (rpc_task_mempool)
1112 mempool_destroy(rpc_task_mempool); 1110 mempool_destroy(rpc_task_mempool);
1113 if (rpc_task_slabp) 1111 if (rpc_task_slabp)
1114 kmem_cache_destroy(rpc_task_slabp); 1112 kmem_cache_destroy(rpc_task_slabp);
1115 if (rpc_buffer_slabp) 1113 if (rpc_buffer_slabp)
1116 kmem_cache_destroy(rpc_buffer_slabp); 1114 kmem_cache_destroy(rpc_buffer_slabp);
1117 } 1115 }
1118 1116
1119 int 1117 int
1120 rpc_init_mempool(void) 1118 rpc_init_mempool(void)
1121 { 1119 {
1122 rpc_task_slabp = kmem_cache_create("rpc_tasks", 1120 rpc_task_slabp = kmem_cache_create("rpc_tasks",
1123 sizeof(struct rpc_task), 1121 sizeof(struct rpc_task),
1124 0, SLAB_HWCACHE_ALIGN, 1122 0, SLAB_HWCACHE_ALIGN,
1125 NULL, NULL); 1123 NULL, NULL);
1126 if (!rpc_task_slabp) 1124 if (!rpc_task_slabp)
1127 goto err_nomem; 1125 goto err_nomem;
1128 rpc_buffer_slabp = kmem_cache_create("rpc_buffers", 1126 rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1129 RPC_BUFFER_MAXSIZE, 1127 RPC_BUFFER_MAXSIZE,
1130 0, SLAB_HWCACHE_ALIGN, 1128 0, SLAB_HWCACHE_ALIGN,
1131 NULL, NULL); 1129 NULL, NULL);
1132 if (!rpc_buffer_slabp) 1130 if (!rpc_buffer_slabp)
1133 goto err_nomem; 1131 goto err_nomem;
1134 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE, 1132 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1135 rpc_task_slabp); 1133 rpc_task_slabp);
1136 if (!rpc_task_mempool) 1134 if (!rpc_task_mempool)
1137 goto err_nomem; 1135 goto err_nomem;
1138 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE, 1136 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1139 rpc_buffer_slabp); 1137 rpc_buffer_slabp);
1140 if (!rpc_buffer_mempool) 1138 if (!rpc_buffer_mempool)
1141 goto err_nomem; 1139 goto err_nomem;
1142 return 0; 1140 return 0;
1143 err_nomem: 1141 err_nomem:
1144 rpc_destroy_mempool(); 1142 rpc_destroy_mempool();
1145 return -ENOMEM; 1143 return -ENOMEM;
1146 } 1144 }
1147 1145