Commit 9eb55b030c4b3227334ee4482402096cd1d1a6fe

Authored by Nikanth Karthikesan
Committed by Jens Axboe
1 parent c69d48540c

block: catch trying to use more bits than request->cmd_flags has

Signed-off-by: Nikanth Karthikesan <knikanth@suse.de>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>

Showing 1 changed file with 3 additions and 0 deletions Inline Diff

1 /* 1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds 2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000 7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */ 9 */
10 10
11 /* 11 /*
12 * This handles all read/write requests to block devices 12 * This handles all read/write requests to block devices
13 */ 13 */
14 #include <linux/kernel.h> 14 #include <linux/kernel.h>
15 #include <linux/module.h> 15 #include <linux/module.h>
16 #include <linux/backing-dev.h> 16 #include <linux/backing-dev.h>
17 #include <linux/bio.h> 17 #include <linux/bio.h>
18 #include <linux/blkdev.h> 18 #include <linux/blkdev.h>
19 #include <linux/highmem.h> 19 #include <linux/highmem.h>
20 #include <linux/mm.h> 20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h> 21 #include <linux/kernel_stat.h>
22 #include <linux/string.h> 22 #include <linux/string.h>
23 #include <linux/init.h> 23 #include <linux/init.h>
24 #include <linux/completion.h> 24 #include <linux/completion.h>
25 #include <linux/slab.h> 25 #include <linux/slab.h>
26 #include <linux/swap.h> 26 #include <linux/swap.h>
27 #include <linux/writeback.h> 27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h> 28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/blktrace_api.h> 29 #include <linux/blktrace_api.h>
30 #include <linux/fault-inject.h> 30 #include <linux/fault-inject.h>
31 #include <trace/block.h> 31 #include <trace/block.h>
32 32
33 #include "blk.h" 33 #include "blk.h"
34 34
35 DEFINE_TRACE(block_plug); 35 DEFINE_TRACE(block_plug);
36 DEFINE_TRACE(block_unplug_io); 36 DEFINE_TRACE(block_unplug_io);
37 DEFINE_TRACE(block_unplug_timer); 37 DEFINE_TRACE(block_unplug_timer);
38 DEFINE_TRACE(block_getrq); 38 DEFINE_TRACE(block_getrq);
39 DEFINE_TRACE(block_sleeprq); 39 DEFINE_TRACE(block_sleeprq);
40 DEFINE_TRACE(block_rq_requeue); 40 DEFINE_TRACE(block_rq_requeue);
41 DEFINE_TRACE(block_bio_backmerge); 41 DEFINE_TRACE(block_bio_backmerge);
42 DEFINE_TRACE(block_bio_frontmerge); 42 DEFINE_TRACE(block_bio_frontmerge);
43 DEFINE_TRACE(block_bio_queue); 43 DEFINE_TRACE(block_bio_queue);
44 DEFINE_TRACE(block_rq_complete); 44 DEFINE_TRACE(block_rq_complete);
45 DEFINE_TRACE(block_remap); /* Also used in drivers/md/dm.c */ 45 DEFINE_TRACE(block_remap); /* Also used in drivers/md/dm.c */
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap); 46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
47 47
48 static int __make_request(struct request_queue *q, struct bio *bio); 48 static int __make_request(struct request_queue *q, struct bio *bio);
49 49
50 /* 50 /*
51 * For the allocated request tables 51 * For the allocated request tables
52 */ 52 */
53 static struct kmem_cache *request_cachep; 53 static struct kmem_cache *request_cachep;
54 54
55 /* 55 /*
56 * For queue allocation 56 * For queue allocation
57 */ 57 */
58 struct kmem_cache *blk_requestq_cachep; 58 struct kmem_cache *blk_requestq_cachep;
59 59
60 /* 60 /*
61 * Controlling structure to kblockd 61 * Controlling structure to kblockd
62 */ 62 */
63 static struct workqueue_struct *kblockd_workqueue; 63 static struct workqueue_struct *kblockd_workqueue;
64 64
65 static void drive_stat_acct(struct request *rq, int new_io) 65 static void drive_stat_acct(struct request *rq, int new_io)
66 { 66 {
67 struct hd_struct *part; 67 struct hd_struct *part;
68 int rw = rq_data_dir(rq); 68 int rw = rq_data_dir(rq);
69 int cpu; 69 int cpu;
70 70
71 if (!blk_do_io_stat(rq)) 71 if (!blk_do_io_stat(rq))
72 return; 72 return;
73 73
74 cpu = part_stat_lock(); 74 cpu = part_stat_lock();
75 part = disk_map_sector_rcu(rq->rq_disk, rq->sector); 75 part = disk_map_sector_rcu(rq->rq_disk, rq->sector);
76 76
77 if (!new_io) 77 if (!new_io)
78 part_stat_inc(cpu, part, merges[rw]); 78 part_stat_inc(cpu, part, merges[rw]);
79 else { 79 else {
80 part_round_stats(cpu, part); 80 part_round_stats(cpu, part);
81 part_inc_in_flight(part); 81 part_inc_in_flight(part);
82 } 82 }
83 83
84 part_stat_unlock(); 84 part_stat_unlock();
85 } 85 }
86 86
87 void blk_queue_congestion_threshold(struct request_queue *q) 87 void blk_queue_congestion_threshold(struct request_queue *q)
88 { 88 {
89 int nr; 89 int nr;
90 90
91 nr = q->nr_requests - (q->nr_requests / 8) + 1; 91 nr = q->nr_requests - (q->nr_requests / 8) + 1;
92 if (nr > q->nr_requests) 92 if (nr > q->nr_requests)
93 nr = q->nr_requests; 93 nr = q->nr_requests;
94 q->nr_congestion_on = nr; 94 q->nr_congestion_on = nr;
95 95
96 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 96 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
97 if (nr < 1) 97 if (nr < 1)
98 nr = 1; 98 nr = 1;
99 q->nr_congestion_off = nr; 99 q->nr_congestion_off = nr;
100 } 100 }
101 101
102 /** 102 /**
103 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info 103 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
104 * @bdev: device 104 * @bdev: device
105 * 105 *
106 * Locates the passed device's request queue and returns the address of its 106 * Locates the passed device's request queue and returns the address of its
107 * backing_dev_info 107 * backing_dev_info
108 * 108 *
109 * Will return NULL if the request queue cannot be located. 109 * Will return NULL if the request queue cannot be located.
110 */ 110 */
111 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) 111 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
112 { 112 {
113 struct backing_dev_info *ret = NULL; 113 struct backing_dev_info *ret = NULL;
114 struct request_queue *q = bdev_get_queue(bdev); 114 struct request_queue *q = bdev_get_queue(bdev);
115 115
116 if (q) 116 if (q)
117 ret = &q->backing_dev_info; 117 ret = &q->backing_dev_info;
118 return ret; 118 return ret;
119 } 119 }
120 EXPORT_SYMBOL(blk_get_backing_dev_info); 120 EXPORT_SYMBOL(blk_get_backing_dev_info);
121 121
122 void blk_rq_init(struct request_queue *q, struct request *rq) 122 void blk_rq_init(struct request_queue *q, struct request *rq)
123 { 123 {
124 memset(rq, 0, sizeof(*rq)); 124 memset(rq, 0, sizeof(*rq));
125 125
126 INIT_LIST_HEAD(&rq->queuelist); 126 INIT_LIST_HEAD(&rq->queuelist);
127 INIT_LIST_HEAD(&rq->timeout_list); 127 INIT_LIST_HEAD(&rq->timeout_list);
128 rq->cpu = -1; 128 rq->cpu = -1;
129 rq->q = q; 129 rq->q = q;
130 rq->sector = rq->hard_sector = (sector_t) -1; 130 rq->sector = rq->hard_sector = (sector_t) -1;
131 INIT_HLIST_NODE(&rq->hash); 131 INIT_HLIST_NODE(&rq->hash);
132 RB_CLEAR_NODE(&rq->rb_node); 132 RB_CLEAR_NODE(&rq->rb_node);
133 rq->cmd = rq->__cmd; 133 rq->cmd = rq->__cmd;
134 rq->cmd_len = BLK_MAX_CDB; 134 rq->cmd_len = BLK_MAX_CDB;
135 rq->tag = -1; 135 rq->tag = -1;
136 rq->ref_count = 1; 136 rq->ref_count = 1;
137 rq->start_time = jiffies; 137 rq->start_time = jiffies;
138 } 138 }
139 EXPORT_SYMBOL(blk_rq_init); 139 EXPORT_SYMBOL(blk_rq_init);
140 140
141 static void req_bio_endio(struct request *rq, struct bio *bio, 141 static void req_bio_endio(struct request *rq, struct bio *bio,
142 unsigned int nbytes, int error) 142 unsigned int nbytes, int error)
143 { 143 {
144 struct request_queue *q = rq->q; 144 struct request_queue *q = rq->q;
145 145
146 if (&q->bar_rq != rq) { 146 if (&q->bar_rq != rq) {
147 if (error) 147 if (error)
148 clear_bit(BIO_UPTODATE, &bio->bi_flags); 148 clear_bit(BIO_UPTODATE, &bio->bi_flags);
149 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 149 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
150 error = -EIO; 150 error = -EIO;
151 151
152 if (unlikely(nbytes > bio->bi_size)) { 152 if (unlikely(nbytes > bio->bi_size)) {
153 printk(KERN_ERR "%s: want %u bytes done, %u left\n", 153 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
154 __func__, nbytes, bio->bi_size); 154 __func__, nbytes, bio->bi_size);
155 nbytes = bio->bi_size; 155 nbytes = bio->bi_size;
156 } 156 }
157 157
158 if (unlikely(rq->cmd_flags & REQ_QUIET)) 158 if (unlikely(rq->cmd_flags & REQ_QUIET))
159 set_bit(BIO_QUIET, &bio->bi_flags); 159 set_bit(BIO_QUIET, &bio->bi_flags);
160 160
161 bio->bi_size -= nbytes; 161 bio->bi_size -= nbytes;
162 bio->bi_sector += (nbytes >> 9); 162 bio->bi_sector += (nbytes >> 9);
163 163
164 if (bio_integrity(bio)) 164 if (bio_integrity(bio))
165 bio_integrity_advance(bio, nbytes); 165 bio_integrity_advance(bio, nbytes);
166 166
167 if (bio->bi_size == 0) 167 if (bio->bi_size == 0)
168 bio_endio(bio, error); 168 bio_endio(bio, error);
169 } else { 169 } else {
170 170
171 /* 171 /*
172 * Okay, this is the barrier request in progress, just 172 * Okay, this is the barrier request in progress, just
173 * record the error; 173 * record the error;
174 */ 174 */
175 if (error && !q->orderr) 175 if (error && !q->orderr)
176 q->orderr = error; 176 q->orderr = error;
177 } 177 }
178 } 178 }
179 179
180 void blk_dump_rq_flags(struct request *rq, char *msg) 180 void blk_dump_rq_flags(struct request *rq, char *msg)
181 { 181 {
182 int bit; 182 int bit;
183 183
184 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg, 184 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
185 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, 185 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
186 rq->cmd_flags); 186 rq->cmd_flags);
187 187
188 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n", 188 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n",
189 (unsigned long long)rq->sector, 189 (unsigned long long)rq->sector,
190 rq->nr_sectors, 190 rq->nr_sectors,
191 rq->current_nr_sectors); 191 rq->current_nr_sectors);
192 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n", 192 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
193 rq->bio, rq->biotail, 193 rq->bio, rq->biotail,
194 rq->buffer, rq->data_len); 194 rq->buffer, rq->data_len);
195 195
196 if (blk_pc_request(rq)) { 196 if (blk_pc_request(rq)) {
197 printk(KERN_INFO " cdb: "); 197 printk(KERN_INFO " cdb: ");
198 for (bit = 0; bit < BLK_MAX_CDB; bit++) 198 for (bit = 0; bit < BLK_MAX_CDB; bit++)
199 printk("%02x ", rq->cmd[bit]); 199 printk("%02x ", rq->cmd[bit]);
200 printk("\n"); 200 printk("\n");
201 } 201 }
202 } 202 }
203 EXPORT_SYMBOL(blk_dump_rq_flags); 203 EXPORT_SYMBOL(blk_dump_rq_flags);
204 204
205 /* 205 /*
206 * "plug" the device if there are no outstanding requests: this will 206 * "plug" the device if there are no outstanding requests: this will
207 * force the transfer to start only after we have put all the requests 207 * force the transfer to start only after we have put all the requests
208 * on the list. 208 * on the list.
209 * 209 *
210 * This is called with interrupts off and no requests on the queue and 210 * This is called with interrupts off and no requests on the queue and
211 * with the queue lock held. 211 * with the queue lock held.
212 */ 212 */
213 void blk_plug_device(struct request_queue *q) 213 void blk_plug_device(struct request_queue *q)
214 { 214 {
215 WARN_ON(!irqs_disabled()); 215 WARN_ON(!irqs_disabled());
216 216
217 /* 217 /*
218 * don't plug a stopped queue, it must be paired with blk_start_queue() 218 * don't plug a stopped queue, it must be paired with blk_start_queue()
219 * which will restart the queueing 219 * which will restart the queueing
220 */ 220 */
221 if (blk_queue_stopped(q)) 221 if (blk_queue_stopped(q))
222 return; 222 return;
223 223
224 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) { 224 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
225 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay); 225 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
226 trace_block_plug(q); 226 trace_block_plug(q);
227 } 227 }
228 } 228 }
229 EXPORT_SYMBOL(blk_plug_device); 229 EXPORT_SYMBOL(blk_plug_device);
230 230
231 /** 231 /**
232 * blk_plug_device_unlocked - plug a device without queue lock held 232 * blk_plug_device_unlocked - plug a device without queue lock held
233 * @q: The &struct request_queue to plug 233 * @q: The &struct request_queue to plug
234 * 234 *
235 * Description: 235 * Description:
236 * Like @blk_plug_device(), but grabs the queue lock and disables 236 * Like @blk_plug_device(), but grabs the queue lock and disables
237 * interrupts. 237 * interrupts.
238 **/ 238 **/
239 void blk_plug_device_unlocked(struct request_queue *q) 239 void blk_plug_device_unlocked(struct request_queue *q)
240 { 240 {
241 unsigned long flags; 241 unsigned long flags;
242 242
243 spin_lock_irqsave(q->queue_lock, flags); 243 spin_lock_irqsave(q->queue_lock, flags);
244 blk_plug_device(q); 244 blk_plug_device(q);
245 spin_unlock_irqrestore(q->queue_lock, flags); 245 spin_unlock_irqrestore(q->queue_lock, flags);
246 } 246 }
247 EXPORT_SYMBOL(blk_plug_device_unlocked); 247 EXPORT_SYMBOL(blk_plug_device_unlocked);
248 248
249 /* 249 /*
250 * remove the queue from the plugged list, if present. called with 250 * remove the queue from the plugged list, if present. called with
251 * queue lock held and interrupts disabled. 251 * queue lock held and interrupts disabled.
252 */ 252 */
253 int blk_remove_plug(struct request_queue *q) 253 int blk_remove_plug(struct request_queue *q)
254 { 254 {
255 WARN_ON(!irqs_disabled()); 255 WARN_ON(!irqs_disabled());
256 256
257 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q)) 257 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
258 return 0; 258 return 0;
259 259
260 del_timer(&q->unplug_timer); 260 del_timer(&q->unplug_timer);
261 return 1; 261 return 1;
262 } 262 }
263 EXPORT_SYMBOL(blk_remove_plug); 263 EXPORT_SYMBOL(blk_remove_plug);
264 264
265 /* 265 /*
266 * remove the plug and let it rip.. 266 * remove the plug and let it rip..
267 */ 267 */
268 void __generic_unplug_device(struct request_queue *q) 268 void __generic_unplug_device(struct request_queue *q)
269 { 269 {
270 if (unlikely(blk_queue_stopped(q))) 270 if (unlikely(blk_queue_stopped(q)))
271 return; 271 return;
272 if (!blk_remove_plug(q) && !blk_queue_nonrot(q)) 272 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
273 return; 273 return;
274 274
275 q->request_fn(q); 275 q->request_fn(q);
276 } 276 }
277 277
278 /** 278 /**
279 * generic_unplug_device - fire a request queue 279 * generic_unplug_device - fire a request queue
280 * @q: The &struct request_queue in question 280 * @q: The &struct request_queue in question
281 * 281 *
282 * Description: 282 * Description:
283 * Linux uses plugging to build bigger requests queues before letting 283 * Linux uses plugging to build bigger requests queues before letting
284 * the device have at them. If a queue is plugged, the I/O scheduler 284 * the device have at them. If a queue is plugged, the I/O scheduler
285 * is still adding and merging requests on the queue. Once the queue 285 * is still adding and merging requests on the queue. Once the queue
286 * gets unplugged, the request_fn defined for the queue is invoked and 286 * gets unplugged, the request_fn defined for the queue is invoked and
287 * transfers started. 287 * transfers started.
288 **/ 288 **/
289 void generic_unplug_device(struct request_queue *q) 289 void generic_unplug_device(struct request_queue *q)
290 { 290 {
291 if (blk_queue_plugged(q)) { 291 if (blk_queue_plugged(q)) {
292 spin_lock_irq(q->queue_lock); 292 spin_lock_irq(q->queue_lock);
293 __generic_unplug_device(q); 293 __generic_unplug_device(q);
294 spin_unlock_irq(q->queue_lock); 294 spin_unlock_irq(q->queue_lock);
295 } 295 }
296 } 296 }
297 EXPORT_SYMBOL(generic_unplug_device); 297 EXPORT_SYMBOL(generic_unplug_device);
298 298
299 static void blk_backing_dev_unplug(struct backing_dev_info *bdi, 299 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
300 struct page *page) 300 struct page *page)
301 { 301 {
302 struct request_queue *q = bdi->unplug_io_data; 302 struct request_queue *q = bdi->unplug_io_data;
303 303
304 blk_unplug(q); 304 blk_unplug(q);
305 } 305 }
306 306
307 void blk_unplug_work(struct work_struct *work) 307 void blk_unplug_work(struct work_struct *work)
308 { 308 {
309 struct request_queue *q = 309 struct request_queue *q =
310 container_of(work, struct request_queue, unplug_work); 310 container_of(work, struct request_queue, unplug_work);
311 311
312 trace_block_unplug_io(q); 312 trace_block_unplug_io(q);
313 q->unplug_fn(q); 313 q->unplug_fn(q);
314 } 314 }
315 315
316 void blk_unplug_timeout(unsigned long data) 316 void blk_unplug_timeout(unsigned long data)
317 { 317 {
318 struct request_queue *q = (struct request_queue *)data; 318 struct request_queue *q = (struct request_queue *)data;
319 319
320 trace_block_unplug_timer(q); 320 trace_block_unplug_timer(q);
321 kblockd_schedule_work(q, &q->unplug_work); 321 kblockd_schedule_work(q, &q->unplug_work);
322 } 322 }
323 323
324 void blk_unplug(struct request_queue *q) 324 void blk_unplug(struct request_queue *q)
325 { 325 {
326 /* 326 /*
327 * devices don't necessarily have an ->unplug_fn defined 327 * devices don't necessarily have an ->unplug_fn defined
328 */ 328 */
329 if (q->unplug_fn) { 329 if (q->unplug_fn) {
330 trace_block_unplug_io(q); 330 trace_block_unplug_io(q);
331 q->unplug_fn(q); 331 q->unplug_fn(q);
332 } 332 }
333 } 333 }
334 EXPORT_SYMBOL(blk_unplug); 334 EXPORT_SYMBOL(blk_unplug);
335 335
336 /** 336 /**
337 * blk_start_queue - restart a previously stopped queue 337 * blk_start_queue - restart a previously stopped queue
338 * @q: The &struct request_queue in question 338 * @q: The &struct request_queue in question
339 * 339 *
340 * Description: 340 * Description:
341 * blk_start_queue() will clear the stop flag on the queue, and call 341 * blk_start_queue() will clear the stop flag on the queue, and call
342 * the request_fn for the queue if it was in a stopped state when 342 * the request_fn for the queue if it was in a stopped state when
343 * entered. Also see blk_stop_queue(). Queue lock must be held. 343 * entered. Also see blk_stop_queue(). Queue lock must be held.
344 **/ 344 **/
345 void blk_start_queue(struct request_queue *q) 345 void blk_start_queue(struct request_queue *q)
346 { 346 {
347 WARN_ON(!irqs_disabled()); 347 WARN_ON(!irqs_disabled());
348 348
349 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 349 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
350 __blk_run_queue(q); 350 __blk_run_queue(q);
351 } 351 }
352 EXPORT_SYMBOL(blk_start_queue); 352 EXPORT_SYMBOL(blk_start_queue);
353 353
354 /** 354 /**
355 * blk_stop_queue - stop a queue 355 * blk_stop_queue - stop a queue
356 * @q: The &struct request_queue in question 356 * @q: The &struct request_queue in question
357 * 357 *
358 * Description: 358 * Description:
359 * The Linux block layer assumes that a block driver will consume all 359 * The Linux block layer assumes that a block driver will consume all
360 * entries on the request queue when the request_fn strategy is called. 360 * entries on the request queue when the request_fn strategy is called.
361 * Often this will not happen, because of hardware limitations (queue 361 * Often this will not happen, because of hardware limitations (queue
362 * depth settings). If a device driver gets a 'queue full' response, 362 * depth settings). If a device driver gets a 'queue full' response,
363 * or if it simply chooses not to queue more I/O at one point, it can 363 * or if it simply chooses not to queue more I/O at one point, it can
364 * call this function to prevent the request_fn from being called until 364 * call this function to prevent the request_fn from being called until
365 * the driver has signalled it's ready to go again. This happens by calling 365 * the driver has signalled it's ready to go again. This happens by calling
366 * blk_start_queue() to restart queue operations. Queue lock must be held. 366 * blk_start_queue() to restart queue operations. Queue lock must be held.
367 **/ 367 **/
368 void blk_stop_queue(struct request_queue *q) 368 void blk_stop_queue(struct request_queue *q)
369 { 369 {
370 blk_remove_plug(q); 370 blk_remove_plug(q);
371 queue_flag_set(QUEUE_FLAG_STOPPED, q); 371 queue_flag_set(QUEUE_FLAG_STOPPED, q);
372 } 372 }
373 EXPORT_SYMBOL(blk_stop_queue); 373 EXPORT_SYMBOL(blk_stop_queue);
374 374
375 /** 375 /**
376 * blk_sync_queue - cancel any pending callbacks on a queue 376 * blk_sync_queue - cancel any pending callbacks on a queue
377 * @q: the queue 377 * @q: the queue
378 * 378 *
379 * Description: 379 * Description:
380 * The block layer may perform asynchronous callback activity 380 * The block layer may perform asynchronous callback activity
381 * on a queue, such as calling the unplug function after a timeout. 381 * on a queue, such as calling the unplug function after a timeout.
382 * A block device may call blk_sync_queue to ensure that any 382 * A block device may call blk_sync_queue to ensure that any
383 * such activity is cancelled, thus allowing it to release resources 383 * such activity is cancelled, thus allowing it to release resources
384 * that the callbacks might use. The caller must already have made sure 384 * that the callbacks might use. The caller must already have made sure
385 * that its ->make_request_fn will not re-add plugging prior to calling 385 * that its ->make_request_fn will not re-add plugging prior to calling
386 * this function. 386 * this function.
387 * 387 *
388 */ 388 */
389 void blk_sync_queue(struct request_queue *q) 389 void blk_sync_queue(struct request_queue *q)
390 { 390 {
391 del_timer_sync(&q->unplug_timer); 391 del_timer_sync(&q->unplug_timer);
392 del_timer_sync(&q->timeout); 392 del_timer_sync(&q->timeout);
393 cancel_work_sync(&q->unplug_work); 393 cancel_work_sync(&q->unplug_work);
394 } 394 }
395 EXPORT_SYMBOL(blk_sync_queue); 395 EXPORT_SYMBOL(blk_sync_queue);
396 396
397 /** 397 /**
398 * __blk_run_queue - run a single device queue 398 * __blk_run_queue - run a single device queue
399 * @q: The queue to run 399 * @q: The queue to run
400 * 400 *
401 * Description: 401 * Description:
402 * See @blk_run_queue. This variant must be called with the queue lock 402 * See @blk_run_queue. This variant must be called with the queue lock
403 * held and interrupts disabled. 403 * held and interrupts disabled.
404 * 404 *
405 */ 405 */
406 void __blk_run_queue(struct request_queue *q) 406 void __blk_run_queue(struct request_queue *q)
407 { 407 {
408 blk_remove_plug(q); 408 blk_remove_plug(q);
409 409
410 if (unlikely(blk_queue_stopped(q))) 410 if (unlikely(blk_queue_stopped(q)))
411 return; 411 return;
412 412
413 if (elv_queue_empty(q)) 413 if (elv_queue_empty(q))
414 return; 414 return;
415 415
416 /* 416 /*
417 * Only recurse once to avoid overrunning the stack, let the unplug 417 * Only recurse once to avoid overrunning the stack, let the unplug
418 * handling reinvoke the handler shortly if we already got there. 418 * handling reinvoke the handler shortly if we already got there.
419 */ 419 */
420 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) { 420 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
421 q->request_fn(q); 421 q->request_fn(q);
422 queue_flag_clear(QUEUE_FLAG_REENTER, q); 422 queue_flag_clear(QUEUE_FLAG_REENTER, q);
423 } else { 423 } else {
424 queue_flag_set(QUEUE_FLAG_PLUGGED, q); 424 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
425 kblockd_schedule_work(q, &q->unplug_work); 425 kblockd_schedule_work(q, &q->unplug_work);
426 } 426 }
427 } 427 }
428 EXPORT_SYMBOL(__blk_run_queue); 428 EXPORT_SYMBOL(__blk_run_queue);
429 429
430 /** 430 /**
431 * blk_run_queue - run a single device queue 431 * blk_run_queue - run a single device queue
432 * @q: The queue to run 432 * @q: The queue to run
433 * 433 *
434 * Description: 434 * Description:
435 * Invoke request handling on this queue, if it has pending work to do. 435 * Invoke request handling on this queue, if it has pending work to do.
436 * May be used to restart queueing when a request has completed. 436 * May be used to restart queueing when a request has completed.
437 */ 437 */
438 void blk_run_queue(struct request_queue *q) 438 void blk_run_queue(struct request_queue *q)
439 { 439 {
440 unsigned long flags; 440 unsigned long flags;
441 441
442 spin_lock_irqsave(q->queue_lock, flags); 442 spin_lock_irqsave(q->queue_lock, flags);
443 __blk_run_queue(q); 443 __blk_run_queue(q);
444 spin_unlock_irqrestore(q->queue_lock, flags); 444 spin_unlock_irqrestore(q->queue_lock, flags);
445 } 445 }
446 EXPORT_SYMBOL(blk_run_queue); 446 EXPORT_SYMBOL(blk_run_queue);
447 447
448 void blk_put_queue(struct request_queue *q) 448 void blk_put_queue(struct request_queue *q)
449 { 449 {
450 kobject_put(&q->kobj); 450 kobject_put(&q->kobj);
451 } 451 }
452 452
453 void blk_cleanup_queue(struct request_queue *q) 453 void blk_cleanup_queue(struct request_queue *q)
454 { 454 {
455 /* 455 /*
456 * We know we have process context here, so we can be a little 456 * We know we have process context here, so we can be a little
457 * cautious and ensure that pending block actions on this device 457 * cautious and ensure that pending block actions on this device
458 * are done before moving on. Going into this function, we should 458 * are done before moving on. Going into this function, we should
459 * not have processes doing IO to this device. 459 * not have processes doing IO to this device.
460 */ 460 */
461 blk_sync_queue(q); 461 blk_sync_queue(q);
462 462
463 mutex_lock(&q->sysfs_lock); 463 mutex_lock(&q->sysfs_lock);
464 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q); 464 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
465 mutex_unlock(&q->sysfs_lock); 465 mutex_unlock(&q->sysfs_lock);
466 466
467 if (q->elevator) 467 if (q->elevator)
468 elevator_exit(q->elevator); 468 elevator_exit(q->elevator);
469 469
470 blk_put_queue(q); 470 blk_put_queue(q);
471 } 471 }
472 EXPORT_SYMBOL(blk_cleanup_queue); 472 EXPORT_SYMBOL(blk_cleanup_queue);
473 473
474 static int blk_init_free_list(struct request_queue *q) 474 static int blk_init_free_list(struct request_queue *q)
475 { 475 {
476 struct request_list *rl = &q->rq; 476 struct request_list *rl = &q->rq;
477 477
478 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 478 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
479 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 479 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
480 rl->elvpriv = 0; 480 rl->elvpriv = 0;
481 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 481 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
482 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 482 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
483 483
484 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, 484 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
485 mempool_free_slab, request_cachep, q->node); 485 mempool_free_slab, request_cachep, q->node);
486 486
487 if (!rl->rq_pool) 487 if (!rl->rq_pool)
488 return -ENOMEM; 488 return -ENOMEM;
489 489
490 return 0; 490 return 0;
491 } 491 }
492 492
493 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 493 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
494 { 494 {
495 return blk_alloc_queue_node(gfp_mask, -1); 495 return blk_alloc_queue_node(gfp_mask, -1);
496 } 496 }
497 EXPORT_SYMBOL(blk_alloc_queue); 497 EXPORT_SYMBOL(blk_alloc_queue);
498 498
499 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 499 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
500 { 500 {
501 struct request_queue *q; 501 struct request_queue *q;
502 int err; 502 int err;
503 503
504 q = kmem_cache_alloc_node(blk_requestq_cachep, 504 q = kmem_cache_alloc_node(blk_requestq_cachep,
505 gfp_mask | __GFP_ZERO, node_id); 505 gfp_mask | __GFP_ZERO, node_id);
506 if (!q) 506 if (!q)
507 return NULL; 507 return NULL;
508 508
509 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug; 509 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
510 q->backing_dev_info.unplug_io_data = q; 510 q->backing_dev_info.unplug_io_data = q;
511 err = bdi_init(&q->backing_dev_info); 511 err = bdi_init(&q->backing_dev_info);
512 if (err) { 512 if (err) {
513 kmem_cache_free(blk_requestq_cachep, q); 513 kmem_cache_free(blk_requestq_cachep, q);
514 return NULL; 514 return NULL;
515 } 515 }
516 516
517 init_timer(&q->unplug_timer); 517 init_timer(&q->unplug_timer);
518 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 518 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
519 INIT_LIST_HEAD(&q->timeout_list); 519 INIT_LIST_HEAD(&q->timeout_list);
520 INIT_WORK(&q->unplug_work, blk_unplug_work); 520 INIT_WORK(&q->unplug_work, blk_unplug_work);
521 521
522 kobject_init(&q->kobj, &blk_queue_ktype); 522 kobject_init(&q->kobj, &blk_queue_ktype);
523 523
524 mutex_init(&q->sysfs_lock); 524 mutex_init(&q->sysfs_lock);
525 spin_lock_init(&q->__queue_lock); 525 spin_lock_init(&q->__queue_lock);
526 526
527 return q; 527 return q;
528 } 528 }
529 EXPORT_SYMBOL(blk_alloc_queue_node); 529 EXPORT_SYMBOL(blk_alloc_queue_node);
530 530
531 /** 531 /**
532 * blk_init_queue - prepare a request queue for use with a block device 532 * blk_init_queue - prepare a request queue for use with a block device
533 * @rfn: The function to be called to process requests that have been 533 * @rfn: The function to be called to process requests that have been
534 * placed on the queue. 534 * placed on the queue.
535 * @lock: Request queue spin lock 535 * @lock: Request queue spin lock
536 * 536 *
537 * Description: 537 * Description:
538 * If a block device wishes to use the standard request handling procedures, 538 * If a block device wishes to use the standard request handling procedures,
539 * which sorts requests and coalesces adjacent requests, then it must 539 * which sorts requests and coalesces adjacent requests, then it must
540 * call blk_init_queue(). The function @rfn will be called when there 540 * call blk_init_queue(). The function @rfn will be called when there
541 * are requests on the queue that need to be processed. If the device 541 * are requests on the queue that need to be processed. If the device
542 * supports plugging, then @rfn may not be called immediately when requests 542 * supports plugging, then @rfn may not be called immediately when requests
543 * are available on the queue, but may be called at some time later instead. 543 * are available on the queue, but may be called at some time later instead.
544 * Plugged queues are generally unplugged when a buffer belonging to one 544 * Plugged queues are generally unplugged when a buffer belonging to one
545 * of the requests on the queue is needed, or due to memory pressure. 545 * of the requests on the queue is needed, or due to memory pressure.
546 * 546 *
547 * @rfn is not required, or even expected, to remove all requests off the 547 * @rfn is not required, or even expected, to remove all requests off the
548 * queue, but only as many as it can handle at a time. If it does leave 548 * queue, but only as many as it can handle at a time. If it does leave
549 * requests on the queue, it is responsible for arranging that the requests 549 * requests on the queue, it is responsible for arranging that the requests
550 * get dealt with eventually. 550 * get dealt with eventually.
551 * 551 *
552 * The queue spin lock must be held while manipulating the requests on the 552 * The queue spin lock must be held while manipulating the requests on the
553 * request queue; this lock will be taken also from interrupt context, so irq 553 * request queue; this lock will be taken also from interrupt context, so irq
554 * disabling is needed for it. 554 * disabling is needed for it.
555 * 555 *
556 * Function returns a pointer to the initialized request queue, or %NULL if 556 * Function returns a pointer to the initialized request queue, or %NULL if
557 * it didn't succeed. 557 * it didn't succeed.
558 * 558 *
559 * Note: 559 * Note:
560 * blk_init_queue() must be paired with a blk_cleanup_queue() call 560 * blk_init_queue() must be paired with a blk_cleanup_queue() call
561 * when the block device is deactivated (such as at module unload). 561 * when the block device is deactivated (such as at module unload).
562 **/ 562 **/
563 563
564 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 564 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
565 { 565 {
566 return blk_init_queue_node(rfn, lock, -1); 566 return blk_init_queue_node(rfn, lock, -1);
567 } 567 }
568 EXPORT_SYMBOL(blk_init_queue); 568 EXPORT_SYMBOL(blk_init_queue);
569 569
570 struct request_queue * 570 struct request_queue *
571 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 571 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
572 { 572 {
573 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id); 573 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
574 574
575 if (!q) 575 if (!q)
576 return NULL; 576 return NULL;
577 577
578 q->node = node_id; 578 q->node = node_id;
579 if (blk_init_free_list(q)) { 579 if (blk_init_free_list(q)) {
580 kmem_cache_free(blk_requestq_cachep, q); 580 kmem_cache_free(blk_requestq_cachep, q);
581 return NULL; 581 return NULL;
582 } 582 }
583 583
584 /* 584 /*
585 * if caller didn't supply a lock, they get per-queue locking with 585 * if caller didn't supply a lock, they get per-queue locking with
586 * our embedded lock 586 * our embedded lock
587 */ 587 */
588 if (!lock) 588 if (!lock)
589 lock = &q->__queue_lock; 589 lock = &q->__queue_lock;
590 590
591 q->request_fn = rfn; 591 q->request_fn = rfn;
592 q->prep_rq_fn = NULL; 592 q->prep_rq_fn = NULL;
593 q->unplug_fn = generic_unplug_device; 593 q->unplug_fn = generic_unplug_device;
594 q->queue_flags = QUEUE_FLAG_DEFAULT; 594 q->queue_flags = QUEUE_FLAG_DEFAULT;
595 q->queue_lock = lock; 595 q->queue_lock = lock;
596 596
597 /* 597 /*
598 * This also sets hw/phys segments, boundary and size 598 * This also sets hw/phys segments, boundary and size
599 */ 599 */
600 blk_queue_make_request(q, __make_request); 600 blk_queue_make_request(q, __make_request);
601 601
602 q->sg_reserved_size = INT_MAX; 602 q->sg_reserved_size = INT_MAX;
603 603
604 blk_set_cmd_filter_defaults(&q->cmd_filter); 604 blk_set_cmd_filter_defaults(&q->cmd_filter);
605 605
606 /* 606 /*
607 * all done 607 * all done
608 */ 608 */
609 if (!elevator_init(q, NULL)) { 609 if (!elevator_init(q, NULL)) {
610 blk_queue_congestion_threshold(q); 610 blk_queue_congestion_threshold(q);
611 return q; 611 return q;
612 } 612 }
613 613
614 blk_put_queue(q); 614 blk_put_queue(q);
615 return NULL; 615 return NULL;
616 } 616 }
617 EXPORT_SYMBOL(blk_init_queue_node); 617 EXPORT_SYMBOL(blk_init_queue_node);
618 618
619 int blk_get_queue(struct request_queue *q) 619 int blk_get_queue(struct request_queue *q)
620 { 620 {
621 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) { 621 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
622 kobject_get(&q->kobj); 622 kobject_get(&q->kobj);
623 return 0; 623 return 0;
624 } 624 }
625 625
626 return 1; 626 return 1;
627 } 627 }
628 628
629 static inline void blk_free_request(struct request_queue *q, struct request *rq) 629 static inline void blk_free_request(struct request_queue *q, struct request *rq)
630 { 630 {
631 if (rq->cmd_flags & REQ_ELVPRIV) 631 if (rq->cmd_flags & REQ_ELVPRIV)
632 elv_put_request(q, rq); 632 elv_put_request(q, rq);
633 mempool_free(rq, q->rq.rq_pool); 633 mempool_free(rq, q->rq.rq_pool);
634 } 634 }
635 635
636 static struct request * 636 static struct request *
637 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask) 637 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
638 { 638 {
639 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask); 639 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
640 640
641 if (!rq) 641 if (!rq)
642 return NULL; 642 return NULL;
643 643
644 blk_rq_init(q, rq); 644 blk_rq_init(q, rq);
645 645
646 rq->cmd_flags = flags | REQ_ALLOCED; 646 rq->cmd_flags = flags | REQ_ALLOCED;
647 647
648 if (priv) { 648 if (priv) {
649 if (unlikely(elv_set_request(q, rq, gfp_mask))) { 649 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
650 mempool_free(rq, q->rq.rq_pool); 650 mempool_free(rq, q->rq.rq_pool);
651 return NULL; 651 return NULL;
652 } 652 }
653 rq->cmd_flags |= REQ_ELVPRIV; 653 rq->cmd_flags |= REQ_ELVPRIV;
654 } 654 }
655 655
656 return rq; 656 return rq;
657 } 657 }
658 658
659 /* 659 /*
660 * ioc_batching returns true if the ioc is a valid batching request and 660 * ioc_batching returns true if the ioc is a valid batching request and
661 * should be given priority access to a request. 661 * should be given priority access to a request.
662 */ 662 */
663 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 663 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
664 { 664 {
665 if (!ioc) 665 if (!ioc)
666 return 0; 666 return 0;
667 667
668 /* 668 /*
669 * Make sure the process is able to allocate at least 1 request 669 * Make sure the process is able to allocate at least 1 request
670 * even if the batch times out, otherwise we could theoretically 670 * even if the batch times out, otherwise we could theoretically
671 * lose wakeups. 671 * lose wakeups.
672 */ 672 */
673 return ioc->nr_batch_requests == q->nr_batching || 673 return ioc->nr_batch_requests == q->nr_batching ||
674 (ioc->nr_batch_requests > 0 674 (ioc->nr_batch_requests > 0
675 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 675 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
676 } 676 }
677 677
678 /* 678 /*
679 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 679 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
680 * will cause the process to be a "batcher" on all queues in the system. This 680 * will cause the process to be a "batcher" on all queues in the system. This
681 * is the behaviour we want though - once it gets a wakeup it should be given 681 * is the behaviour we want though - once it gets a wakeup it should be given
682 * a nice run. 682 * a nice run.
683 */ 683 */
684 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 684 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
685 { 685 {
686 if (!ioc || ioc_batching(q, ioc)) 686 if (!ioc || ioc_batching(q, ioc))
687 return; 687 return;
688 688
689 ioc->nr_batch_requests = q->nr_batching; 689 ioc->nr_batch_requests = q->nr_batching;
690 ioc->last_waited = jiffies; 690 ioc->last_waited = jiffies;
691 } 691 }
692 692
693 static void __freed_request(struct request_queue *q, int sync) 693 static void __freed_request(struct request_queue *q, int sync)
694 { 694 {
695 struct request_list *rl = &q->rq; 695 struct request_list *rl = &q->rq;
696 696
697 if (rl->count[sync] < queue_congestion_off_threshold(q)) 697 if (rl->count[sync] < queue_congestion_off_threshold(q))
698 blk_clear_queue_congested(q, sync); 698 blk_clear_queue_congested(q, sync);
699 699
700 if (rl->count[sync] + 1 <= q->nr_requests) { 700 if (rl->count[sync] + 1 <= q->nr_requests) {
701 if (waitqueue_active(&rl->wait[sync])) 701 if (waitqueue_active(&rl->wait[sync]))
702 wake_up(&rl->wait[sync]); 702 wake_up(&rl->wait[sync]);
703 703
704 blk_clear_queue_full(q, sync); 704 blk_clear_queue_full(q, sync);
705 } 705 }
706 } 706 }
707 707
708 /* 708 /*
709 * A request has just been released. Account for it, update the full and 709 * A request has just been released. Account for it, update the full and
710 * congestion status, wake up any waiters. Called under q->queue_lock. 710 * congestion status, wake up any waiters. Called under q->queue_lock.
711 */ 711 */
712 static void freed_request(struct request_queue *q, int sync, int priv) 712 static void freed_request(struct request_queue *q, int sync, int priv)
713 { 713 {
714 struct request_list *rl = &q->rq; 714 struct request_list *rl = &q->rq;
715 715
716 rl->count[sync]--; 716 rl->count[sync]--;
717 if (priv) 717 if (priv)
718 rl->elvpriv--; 718 rl->elvpriv--;
719 719
720 __freed_request(q, sync); 720 __freed_request(q, sync);
721 721
722 if (unlikely(rl->starved[sync ^ 1])) 722 if (unlikely(rl->starved[sync ^ 1]))
723 __freed_request(q, sync ^ 1); 723 __freed_request(q, sync ^ 1);
724 } 724 }
725 725
726 /* 726 /*
727 * Get a free request, queue_lock must be held. 727 * Get a free request, queue_lock must be held.
728 * Returns NULL on failure, with queue_lock held. 728 * Returns NULL on failure, with queue_lock held.
729 * Returns !NULL on success, with queue_lock *not held*. 729 * Returns !NULL on success, with queue_lock *not held*.
730 */ 730 */
731 static struct request *get_request(struct request_queue *q, int rw_flags, 731 static struct request *get_request(struct request_queue *q, int rw_flags,
732 struct bio *bio, gfp_t gfp_mask) 732 struct bio *bio, gfp_t gfp_mask)
733 { 733 {
734 struct request *rq = NULL; 734 struct request *rq = NULL;
735 struct request_list *rl = &q->rq; 735 struct request_list *rl = &q->rq;
736 struct io_context *ioc = NULL; 736 struct io_context *ioc = NULL;
737 const bool is_sync = rw_is_sync(rw_flags) != 0; 737 const bool is_sync = rw_is_sync(rw_flags) != 0;
738 int may_queue, priv; 738 int may_queue, priv;
739 739
740 may_queue = elv_may_queue(q, rw_flags); 740 may_queue = elv_may_queue(q, rw_flags);
741 if (may_queue == ELV_MQUEUE_NO) 741 if (may_queue == ELV_MQUEUE_NO)
742 goto rq_starved; 742 goto rq_starved;
743 743
744 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 744 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
745 if (rl->count[is_sync]+1 >= q->nr_requests) { 745 if (rl->count[is_sync]+1 >= q->nr_requests) {
746 ioc = current_io_context(GFP_ATOMIC, q->node); 746 ioc = current_io_context(GFP_ATOMIC, q->node);
747 /* 747 /*
748 * The queue will fill after this allocation, so set 748 * The queue will fill after this allocation, so set
749 * it as full, and mark this process as "batching". 749 * it as full, and mark this process as "batching".
750 * This process will be allowed to complete a batch of 750 * This process will be allowed to complete a batch of
751 * requests, others will be blocked. 751 * requests, others will be blocked.
752 */ 752 */
753 if (!blk_queue_full(q, is_sync)) { 753 if (!blk_queue_full(q, is_sync)) {
754 ioc_set_batching(q, ioc); 754 ioc_set_batching(q, ioc);
755 blk_set_queue_full(q, is_sync); 755 blk_set_queue_full(q, is_sync);
756 } else { 756 } else {
757 if (may_queue != ELV_MQUEUE_MUST 757 if (may_queue != ELV_MQUEUE_MUST
758 && !ioc_batching(q, ioc)) { 758 && !ioc_batching(q, ioc)) {
759 /* 759 /*
760 * The queue is full and the allocating 760 * The queue is full and the allocating
761 * process is not a "batcher", and not 761 * process is not a "batcher", and not
762 * exempted by the IO scheduler 762 * exempted by the IO scheduler
763 */ 763 */
764 goto out; 764 goto out;
765 } 765 }
766 } 766 }
767 } 767 }
768 blk_set_queue_congested(q, is_sync); 768 blk_set_queue_congested(q, is_sync);
769 } 769 }
770 770
771 /* 771 /*
772 * Only allow batching queuers to allocate up to 50% over the defined 772 * Only allow batching queuers to allocate up to 50% over the defined
773 * limit of requests, otherwise we could have thousands of requests 773 * limit of requests, otherwise we could have thousands of requests
774 * allocated with any setting of ->nr_requests 774 * allocated with any setting of ->nr_requests
775 */ 775 */
776 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 776 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
777 goto out; 777 goto out;
778 778
779 rl->count[is_sync]++; 779 rl->count[is_sync]++;
780 rl->starved[is_sync] = 0; 780 rl->starved[is_sync] = 0;
781 781
782 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags); 782 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
783 if (priv) 783 if (priv)
784 rl->elvpriv++; 784 rl->elvpriv++;
785 785
786 if (blk_queue_io_stat(q)) 786 if (blk_queue_io_stat(q))
787 rw_flags |= REQ_IO_STAT; 787 rw_flags |= REQ_IO_STAT;
788 spin_unlock_irq(q->queue_lock); 788 spin_unlock_irq(q->queue_lock);
789 789
790 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask); 790 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
791 if (unlikely(!rq)) { 791 if (unlikely(!rq)) {
792 /* 792 /*
793 * Allocation failed presumably due to memory. Undo anything 793 * Allocation failed presumably due to memory. Undo anything
794 * we might have messed up. 794 * we might have messed up.
795 * 795 *
796 * Allocating task should really be put onto the front of the 796 * Allocating task should really be put onto the front of the
797 * wait queue, but this is pretty rare. 797 * wait queue, but this is pretty rare.
798 */ 798 */
799 spin_lock_irq(q->queue_lock); 799 spin_lock_irq(q->queue_lock);
800 freed_request(q, is_sync, priv); 800 freed_request(q, is_sync, priv);
801 801
802 /* 802 /*
803 * in the very unlikely event that allocation failed and no 803 * in the very unlikely event that allocation failed and no
804 * requests for this direction was pending, mark us starved 804 * requests for this direction was pending, mark us starved
805 * so that freeing of a request in the other direction will 805 * so that freeing of a request in the other direction will
806 * notice us. another possible fix would be to split the 806 * notice us. another possible fix would be to split the
807 * rq mempool into READ and WRITE 807 * rq mempool into READ and WRITE
808 */ 808 */
809 rq_starved: 809 rq_starved:
810 if (unlikely(rl->count[is_sync] == 0)) 810 if (unlikely(rl->count[is_sync] == 0))
811 rl->starved[is_sync] = 1; 811 rl->starved[is_sync] = 1;
812 812
813 goto out; 813 goto out;
814 } 814 }
815 815
816 /* 816 /*
817 * ioc may be NULL here, and ioc_batching will be false. That's 817 * ioc may be NULL here, and ioc_batching will be false. That's
818 * OK, if the queue is under the request limit then requests need 818 * OK, if the queue is under the request limit then requests need
819 * not count toward the nr_batch_requests limit. There will always 819 * not count toward the nr_batch_requests limit. There will always
820 * be some limit enforced by BLK_BATCH_TIME. 820 * be some limit enforced by BLK_BATCH_TIME.
821 */ 821 */
822 if (ioc_batching(q, ioc)) 822 if (ioc_batching(q, ioc))
823 ioc->nr_batch_requests--; 823 ioc->nr_batch_requests--;
824 824
825 trace_block_getrq(q, bio, rw_flags & 1); 825 trace_block_getrq(q, bio, rw_flags & 1);
826 out: 826 out:
827 return rq; 827 return rq;
828 } 828 }
829 829
830 /* 830 /*
831 * No available requests for this queue, unplug the device and wait for some 831 * No available requests for this queue, unplug the device and wait for some
832 * requests to become available. 832 * requests to become available.
833 * 833 *
834 * Called with q->queue_lock held, and returns with it unlocked. 834 * Called with q->queue_lock held, and returns with it unlocked.
835 */ 835 */
836 static struct request *get_request_wait(struct request_queue *q, int rw_flags, 836 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
837 struct bio *bio) 837 struct bio *bio)
838 { 838 {
839 const bool is_sync = rw_is_sync(rw_flags) != 0; 839 const bool is_sync = rw_is_sync(rw_flags) != 0;
840 struct request *rq; 840 struct request *rq;
841 841
842 rq = get_request(q, rw_flags, bio, GFP_NOIO); 842 rq = get_request(q, rw_flags, bio, GFP_NOIO);
843 while (!rq) { 843 while (!rq) {
844 DEFINE_WAIT(wait); 844 DEFINE_WAIT(wait);
845 struct io_context *ioc; 845 struct io_context *ioc;
846 struct request_list *rl = &q->rq; 846 struct request_list *rl = &q->rq;
847 847
848 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 848 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
849 TASK_UNINTERRUPTIBLE); 849 TASK_UNINTERRUPTIBLE);
850 850
851 trace_block_sleeprq(q, bio, rw_flags & 1); 851 trace_block_sleeprq(q, bio, rw_flags & 1);
852 852
853 __generic_unplug_device(q); 853 __generic_unplug_device(q);
854 spin_unlock_irq(q->queue_lock); 854 spin_unlock_irq(q->queue_lock);
855 io_schedule(); 855 io_schedule();
856 856
857 /* 857 /*
858 * After sleeping, we become a "batching" process and 858 * After sleeping, we become a "batching" process and
859 * will be able to allocate at least one request, and 859 * will be able to allocate at least one request, and
860 * up to a big batch of them for a small period time. 860 * up to a big batch of them for a small period time.
861 * See ioc_batching, ioc_set_batching 861 * See ioc_batching, ioc_set_batching
862 */ 862 */
863 ioc = current_io_context(GFP_NOIO, q->node); 863 ioc = current_io_context(GFP_NOIO, q->node);
864 ioc_set_batching(q, ioc); 864 ioc_set_batching(q, ioc);
865 865
866 spin_lock_irq(q->queue_lock); 866 spin_lock_irq(q->queue_lock);
867 finish_wait(&rl->wait[is_sync], &wait); 867 finish_wait(&rl->wait[is_sync], &wait);
868 868
869 rq = get_request(q, rw_flags, bio, GFP_NOIO); 869 rq = get_request(q, rw_flags, bio, GFP_NOIO);
870 }; 870 };
871 871
872 return rq; 872 return rq;
873 } 873 }
874 874
875 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 875 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
876 { 876 {
877 struct request *rq; 877 struct request *rq;
878 878
879 BUG_ON(rw != READ && rw != WRITE); 879 BUG_ON(rw != READ && rw != WRITE);
880 880
881 spin_lock_irq(q->queue_lock); 881 spin_lock_irq(q->queue_lock);
882 if (gfp_mask & __GFP_WAIT) { 882 if (gfp_mask & __GFP_WAIT) {
883 rq = get_request_wait(q, rw, NULL); 883 rq = get_request_wait(q, rw, NULL);
884 } else { 884 } else {
885 rq = get_request(q, rw, NULL, gfp_mask); 885 rq = get_request(q, rw, NULL, gfp_mask);
886 if (!rq) 886 if (!rq)
887 spin_unlock_irq(q->queue_lock); 887 spin_unlock_irq(q->queue_lock);
888 } 888 }
889 /* q->queue_lock is unlocked at this point */ 889 /* q->queue_lock is unlocked at this point */
890 890
891 return rq; 891 return rq;
892 } 892 }
893 EXPORT_SYMBOL(blk_get_request); 893 EXPORT_SYMBOL(blk_get_request);
894 894
895 /** 895 /**
896 * blk_requeue_request - put a request back on queue 896 * blk_requeue_request - put a request back on queue
897 * @q: request queue where request should be inserted 897 * @q: request queue where request should be inserted
898 * @rq: request to be inserted 898 * @rq: request to be inserted
899 * 899 *
900 * Description: 900 * Description:
901 * Drivers often keep queueing requests until the hardware cannot accept 901 * Drivers often keep queueing requests until the hardware cannot accept
902 * more, when that condition happens we need to put the request back 902 * more, when that condition happens we need to put the request back
903 * on the queue. Must be called with queue lock held. 903 * on the queue. Must be called with queue lock held.
904 */ 904 */
905 void blk_requeue_request(struct request_queue *q, struct request *rq) 905 void blk_requeue_request(struct request_queue *q, struct request *rq)
906 { 906 {
907 blk_delete_timer(rq); 907 blk_delete_timer(rq);
908 blk_clear_rq_complete(rq); 908 blk_clear_rq_complete(rq);
909 trace_block_rq_requeue(q, rq); 909 trace_block_rq_requeue(q, rq);
910 910
911 if (blk_rq_tagged(rq)) 911 if (blk_rq_tagged(rq))
912 blk_queue_end_tag(q, rq); 912 blk_queue_end_tag(q, rq);
913 913
914 elv_requeue_request(q, rq); 914 elv_requeue_request(q, rq);
915 } 915 }
916 EXPORT_SYMBOL(blk_requeue_request); 916 EXPORT_SYMBOL(blk_requeue_request);
917 917
918 /** 918 /**
919 * blk_insert_request - insert a special request into a request queue 919 * blk_insert_request - insert a special request into a request queue
920 * @q: request queue where request should be inserted 920 * @q: request queue where request should be inserted
921 * @rq: request to be inserted 921 * @rq: request to be inserted
922 * @at_head: insert request at head or tail of queue 922 * @at_head: insert request at head or tail of queue
923 * @data: private data 923 * @data: private data
924 * 924 *
925 * Description: 925 * Description:
926 * Many block devices need to execute commands asynchronously, so they don't 926 * Many block devices need to execute commands asynchronously, so they don't
927 * block the whole kernel from preemption during request execution. This is 927 * block the whole kernel from preemption during request execution. This is
928 * accomplished normally by inserting aritficial requests tagged as 928 * accomplished normally by inserting aritficial requests tagged as
929 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them 929 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
930 * be scheduled for actual execution by the request queue. 930 * be scheduled for actual execution by the request queue.
931 * 931 *
932 * We have the option of inserting the head or the tail of the queue. 932 * We have the option of inserting the head or the tail of the queue.
933 * Typically we use the tail for new ioctls and so forth. We use the head 933 * Typically we use the tail for new ioctls and so forth. We use the head
934 * of the queue for things like a QUEUE_FULL message from a device, or a 934 * of the queue for things like a QUEUE_FULL message from a device, or a
935 * host that is unable to accept a particular command. 935 * host that is unable to accept a particular command.
936 */ 936 */
937 void blk_insert_request(struct request_queue *q, struct request *rq, 937 void blk_insert_request(struct request_queue *q, struct request *rq,
938 int at_head, void *data) 938 int at_head, void *data)
939 { 939 {
940 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK; 940 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
941 unsigned long flags; 941 unsigned long flags;
942 942
943 /* 943 /*
944 * tell I/O scheduler that this isn't a regular read/write (ie it 944 * tell I/O scheduler that this isn't a regular read/write (ie it
945 * must not attempt merges on this) and that it acts as a soft 945 * must not attempt merges on this) and that it acts as a soft
946 * barrier 946 * barrier
947 */ 947 */
948 rq->cmd_type = REQ_TYPE_SPECIAL; 948 rq->cmd_type = REQ_TYPE_SPECIAL;
949 949
950 rq->special = data; 950 rq->special = data;
951 951
952 spin_lock_irqsave(q->queue_lock, flags); 952 spin_lock_irqsave(q->queue_lock, flags);
953 953
954 /* 954 /*
955 * If command is tagged, release the tag 955 * If command is tagged, release the tag
956 */ 956 */
957 if (blk_rq_tagged(rq)) 957 if (blk_rq_tagged(rq))
958 blk_queue_end_tag(q, rq); 958 blk_queue_end_tag(q, rq);
959 959
960 drive_stat_acct(rq, 1); 960 drive_stat_acct(rq, 1);
961 __elv_add_request(q, rq, where, 0); 961 __elv_add_request(q, rq, where, 0);
962 __blk_run_queue(q); 962 __blk_run_queue(q);
963 spin_unlock_irqrestore(q->queue_lock, flags); 963 spin_unlock_irqrestore(q->queue_lock, flags);
964 } 964 }
965 EXPORT_SYMBOL(blk_insert_request); 965 EXPORT_SYMBOL(blk_insert_request);
966 966
967 /* 967 /*
968 * add-request adds a request to the linked list. 968 * add-request adds a request to the linked list.
969 * queue lock is held and interrupts disabled, as we muck with the 969 * queue lock is held and interrupts disabled, as we muck with the
970 * request queue list. 970 * request queue list.
971 */ 971 */
972 static inline void add_request(struct request_queue *q, struct request *req) 972 static inline void add_request(struct request_queue *q, struct request *req)
973 { 973 {
974 drive_stat_acct(req, 1); 974 drive_stat_acct(req, 1);
975 975
976 /* 976 /*
977 * elevator indicated where it wants this request to be 977 * elevator indicated where it wants this request to be
978 * inserted at elevator_merge time 978 * inserted at elevator_merge time
979 */ 979 */
980 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0); 980 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
981 } 981 }
982 982
983 static void part_round_stats_single(int cpu, struct hd_struct *part, 983 static void part_round_stats_single(int cpu, struct hd_struct *part,
984 unsigned long now) 984 unsigned long now)
985 { 985 {
986 if (now == part->stamp) 986 if (now == part->stamp)
987 return; 987 return;
988 988
989 if (part->in_flight) { 989 if (part->in_flight) {
990 __part_stat_add(cpu, part, time_in_queue, 990 __part_stat_add(cpu, part, time_in_queue,
991 part->in_flight * (now - part->stamp)); 991 part->in_flight * (now - part->stamp));
992 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 992 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
993 } 993 }
994 part->stamp = now; 994 part->stamp = now;
995 } 995 }
996 996
997 /** 997 /**
998 * part_round_stats() - Round off the performance stats on a struct disk_stats. 998 * part_round_stats() - Round off the performance stats on a struct disk_stats.
999 * @cpu: cpu number for stats access 999 * @cpu: cpu number for stats access
1000 * @part: target partition 1000 * @part: target partition
1001 * 1001 *
1002 * The average IO queue length and utilisation statistics are maintained 1002 * The average IO queue length and utilisation statistics are maintained
1003 * by observing the current state of the queue length and the amount of 1003 * by observing the current state of the queue length and the amount of
1004 * time it has been in this state for. 1004 * time it has been in this state for.
1005 * 1005 *
1006 * Normally, that accounting is done on IO completion, but that can result 1006 * Normally, that accounting is done on IO completion, but that can result
1007 * in more than a second's worth of IO being accounted for within any one 1007 * in more than a second's worth of IO being accounted for within any one
1008 * second, leading to >100% utilisation. To deal with that, we call this 1008 * second, leading to >100% utilisation. To deal with that, we call this
1009 * function to do a round-off before returning the results when reading 1009 * function to do a round-off before returning the results when reading
1010 * /proc/diskstats. This accounts immediately for all queue usage up to 1010 * /proc/diskstats. This accounts immediately for all queue usage up to
1011 * the current jiffies and restarts the counters again. 1011 * the current jiffies and restarts the counters again.
1012 */ 1012 */
1013 void part_round_stats(int cpu, struct hd_struct *part) 1013 void part_round_stats(int cpu, struct hd_struct *part)
1014 { 1014 {
1015 unsigned long now = jiffies; 1015 unsigned long now = jiffies;
1016 1016
1017 if (part->partno) 1017 if (part->partno)
1018 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1018 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1019 part_round_stats_single(cpu, part, now); 1019 part_round_stats_single(cpu, part, now);
1020 } 1020 }
1021 EXPORT_SYMBOL_GPL(part_round_stats); 1021 EXPORT_SYMBOL_GPL(part_round_stats);
1022 1022
1023 /* 1023 /*
1024 * queue lock must be held 1024 * queue lock must be held
1025 */ 1025 */
1026 void __blk_put_request(struct request_queue *q, struct request *req) 1026 void __blk_put_request(struct request_queue *q, struct request *req)
1027 { 1027 {
1028 if (unlikely(!q)) 1028 if (unlikely(!q))
1029 return; 1029 return;
1030 if (unlikely(--req->ref_count)) 1030 if (unlikely(--req->ref_count))
1031 return; 1031 return;
1032 1032
1033 elv_completed_request(q, req); 1033 elv_completed_request(q, req);
1034 1034
1035 /* this is a bio leak */ 1035 /* this is a bio leak */
1036 WARN_ON(req->bio != NULL); 1036 WARN_ON(req->bio != NULL);
1037 1037
1038 /* 1038 /*
1039 * Request may not have originated from ll_rw_blk. if not, 1039 * Request may not have originated from ll_rw_blk. if not,
1040 * it didn't come out of our reserved rq pools 1040 * it didn't come out of our reserved rq pools
1041 */ 1041 */
1042 if (req->cmd_flags & REQ_ALLOCED) { 1042 if (req->cmd_flags & REQ_ALLOCED) {
1043 int is_sync = rq_is_sync(req) != 0; 1043 int is_sync = rq_is_sync(req) != 0;
1044 int priv = req->cmd_flags & REQ_ELVPRIV; 1044 int priv = req->cmd_flags & REQ_ELVPRIV;
1045 1045
1046 BUG_ON(!list_empty(&req->queuelist)); 1046 BUG_ON(!list_empty(&req->queuelist));
1047 BUG_ON(!hlist_unhashed(&req->hash)); 1047 BUG_ON(!hlist_unhashed(&req->hash));
1048 1048
1049 blk_free_request(q, req); 1049 blk_free_request(q, req);
1050 freed_request(q, is_sync, priv); 1050 freed_request(q, is_sync, priv);
1051 } 1051 }
1052 } 1052 }
1053 EXPORT_SYMBOL_GPL(__blk_put_request); 1053 EXPORT_SYMBOL_GPL(__blk_put_request);
1054 1054
1055 void blk_put_request(struct request *req) 1055 void blk_put_request(struct request *req)
1056 { 1056 {
1057 unsigned long flags; 1057 unsigned long flags;
1058 struct request_queue *q = req->q; 1058 struct request_queue *q = req->q;
1059 1059
1060 spin_lock_irqsave(q->queue_lock, flags); 1060 spin_lock_irqsave(q->queue_lock, flags);
1061 __blk_put_request(q, req); 1061 __blk_put_request(q, req);
1062 spin_unlock_irqrestore(q->queue_lock, flags); 1062 spin_unlock_irqrestore(q->queue_lock, flags);
1063 } 1063 }
1064 EXPORT_SYMBOL(blk_put_request); 1064 EXPORT_SYMBOL(blk_put_request);
1065 1065
1066 void init_request_from_bio(struct request *req, struct bio *bio) 1066 void init_request_from_bio(struct request *req, struct bio *bio)
1067 { 1067 {
1068 req->cpu = bio->bi_comp_cpu; 1068 req->cpu = bio->bi_comp_cpu;
1069 req->cmd_type = REQ_TYPE_FS; 1069 req->cmd_type = REQ_TYPE_FS;
1070 1070
1071 /* 1071 /*
1072 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST) 1072 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1073 */ 1073 */
1074 if (bio_rw_ahead(bio)) 1074 if (bio_rw_ahead(bio))
1075 req->cmd_flags |= (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT | 1075 req->cmd_flags |= (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT |
1076 REQ_FAILFAST_DRIVER); 1076 REQ_FAILFAST_DRIVER);
1077 if (bio_failfast_dev(bio)) 1077 if (bio_failfast_dev(bio))
1078 req->cmd_flags |= REQ_FAILFAST_DEV; 1078 req->cmd_flags |= REQ_FAILFAST_DEV;
1079 if (bio_failfast_transport(bio)) 1079 if (bio_failfast_transport(bio))
1080 req->cmd_flags |= REQ_FAILFAST_TRANSPORT; 1080 req->cmd_flags |= REQ_FAILFAST_TRANSPORT;
1081 if (bio_failfast_driver(bio)) 1081 if (bio_failfast_driver(bio))
1082 req->cmd_flags |= REQ_FAILFAST_DRIVER; 1082 req->cmd_flags |= REQ_FAILFAST_DRIVER;
1083 1083
1084 if (unlikely(bio_discard(bio))) { 1084 if (unlikely(bio_discard(bio))) {
1085 req->cmd_flags |= REQ_DISCARD; 1085 req->cmd_flags |= REQ_DISCARD;
1086 if (bio_barrier(bio)) 1086 if (bio_barrier(bio))
1087 req->cmd_flags |= REQ_SOFTBARRIER; 1087 req->cmd_flags |= REQ_SOFTBARRIER;
1088 req->q->prepare_discard_fn(req->q, req); 1088 req->q->prepare_discard_fn(req->q, req);
1089 } else if (unlikely(bio_barrier(bio))) 1089 } else if (unlikely(bio_barrier(bio)))
1090 req->cmd_flags |= REQ_HARDBARRIER; 1090 req->cmd_flags |= REQ_HARDBARRIER;
1091 1091
1092 if (bio_sync(bio)) 1092 if (bio_sync(bio))
1093 req->cmd_flags |= REQ_RW_SYNC; 1093 req->cmd_flags |= REQ_RW_SYNC;
1094 if (bio_rw_meta(bio)) 1094 if (bio_rw_meta(bio))
1095 req->cmd_flags |= REQ_RW_META; 1095 req->cmd_flags |= REQ_RW_META;
1096 if (bio_noidle(bio)) 1096 if (bio_noidle(bio))
1097 req->cmd_flags |= REQ_NOIDLE; 1097 req->cmd_flags |= REQ_NOIDLE;
1098 1098
1099 req->errors = 0; 1099 req->errors = 0;
1100 req->hard_sector = req->sector = bio->bi_sector; 1100 req->hard_sector = req->sector = bio->bi_sector;
1101 req->ioprio = bio_prio(bio); 1101 req->ioprio = bio_prio(bio);
1102 blk_rq_bio_prep(req->q, req, bio); 1102 blk_rq_bio_prep(req->q, req, bio);
1103 } 1103 }
1104 1104
1105 /* 1105 /*
1106 * Only disabling plugging for non-rotational devices if it does tagging 1106 * Only disabling plugging for non-rotational devices if it does tagging
1107 * as well, otherwise we do need the proper merging 1107 * as well, otherwise we do need the proper merging
1108 */ 1108 */
1109 static inline bool queue_should_plug(struct request_queue *q) 1109 static inline bool queue_should_plug(struct request_queue *q)
1110 { 1110 {
1111 return !(blk_queue_nonrot(q) && blk_queue_tagged(q)); 1111 return !(blk_queue_nonrot(q) && blk_queue_tagged(q));
1112 } 1112 }
1113 1113
1114 static int __make_request(struct request_queue *q, struct bio *bio) 1114 static int __make_request(struct request_queue *q, struct bio *bio)
1115 { 1115 {
1116 struct request *req; 1116 struct request *req;
1117 int el_ret, nr_sectors; 1117 int el_ret, nr_sectors;
1118 const unsigned short prio = bio_prio(bio); 1118 const unsigned short prio = bio_prio(bio);
1119 const int sync = bio_sync(bio); 1119 const int sync = bio_sync(bio);
1120 const int unplug = bio_unplug(bio); 1120 const int unplug = bio_unplug(bio);
1121 int rw_flags; 1121 int rw_flags;
1122 1122
1123 nr_sectors = bio_sectors(bio); 1123 nr_sectors = bio_sectors(bio);
1124 1124
1125 /* 1125 /*
1126 * low level driver can indicate that it wants pages above a 1126 * low level driver can indicate that it wants pages above a
1127 * certain limit bounced to low memory (ie for highmem, or even 1127 * certain limit bounced to low memory (ie for highmem, or even
1128 * ISA dma in theory) 1128 * ISA dma in theory)
1129 */ 1129 */
1130 blk_queue_bounce(q, &bio); 1130 blk_queue_bounce(q, &bio);
1131 1131
1132 spin_lock_irq(q->queue_lock); 1132 spin_lock_irq(q->queue_lock);
1133 1133
1134 if (unlikely(bio_barrier(bio)) || elv_queue_empty(q)) 1134 if (unlikely(bio_barrier(bio)) || elv_queue_empty(q))
1135 goto get_rq; 1135 goto get_rq;
1136 1136
1137 el_ret = elv_merge(q, &req, bio); 1137 el_ret = elv_merge(q, &req, bio);
1138 switch (el_ret) { 1138 switch (el_ret) {
1139 case ELEVATOR_BACK_MERGE: 1139 case ELEVATOR_BACK_MERGE:
1140 BUG_ON(!rq_mergeable(req)); 1140 BUG_ON(!rq_mergeable(req));
1141 1141
1142 if (!ll_back_merge_fn(q, req, bio)) 1142 if (!ll_back_merge_fn(q, req, bio))
1143 break; 1143 break;
1144 1144
1145 trace_block_bio_backmerge(q, bio); 1145 trace_block_bio_backmerge(q, bio);
1146 1146
1147 req->biotail->bi_next = bio; 1147 req->biotail->bi_next = bio;
1148 req->biotail = bio; 1148 req->biotail = bio;
1149 req->nr_sectors = req->hard_nr_sectors += nr_sectors; 1149 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1150 req->ioprio = ioprio_best(req->ioprio, prio); 1150 req->ioprio = ioprio_best(req->ioprio, prio);
1151 if (!blk_rq_cpu_valid(req)) 1151 if (!blk_rq_cpu_valid(req))
1152 req->cpu = bio->bi_comp_cpu; 1152 req->cpu = bio->bi_comp_cpu;
1153 drive_stat_acct(req, 0); 1153 drive_stat_acct(req, 0);
1154 if (!attempt_back_merge(q, req)) 1154 if (!attempt_back_merge(q, req))
1155 elv_merged_request(q, req, el_ret); 1155 elv_merged_request(q, req, el_ret);
1156 goto out; 1156 goto out;
1157 1157
1158 case ELEVATOR_FRONT_MERGE: 1158 case ELEVATOR_FRONT_MERGE:
1159 BUG_ON(!rq_mergeable(req)); 1159 BUG_ON(!rq_mergeable(req));
1160 1160
1161 if (!ll_front_merge_fn(q, req, bio)) 1161 if (!ll_front_merge_fn(q, req, bio))
1162 break; 1162 break;
1163 1163
1164 trace_block_bio_frontmerge(q, bio); 1164 trace_block_bio_frontmerge(q, bio);
1165 1165
1166 bio->bi_next = req->bio; 1166 bio->bi_next = req->bio;
1167 req->bio = bio; 1167 req->bio = bio;
1168 1168
1169 /* 1169 /*
1170 * may not be valid. if the low level driver said 1170 * may not be valid. if the low level driver said
1171 * it didn't need a bounce buffer then it better 1171 * it didn't need a bounce buffer then it better
1172 * not touch req->buffer either... 1172 * not touch req->buffer either...
1173 */ 1173 */
1174 req->buffer = bio_data(bio); 1174 req->buffer = bio_data(bio);
1175 req->current_nr_sectors = bio_cur_sectors(bio); 1175 req->current_nr_sectors = bio_cur_sectors(bio);
1176 req->hard_cur_sectors = req->current_nr_sectors; 1176 req->hard_cur_sectors = req->current_nr_sectors;
1177 req->sector = req->hard_sector = bio->bi_sector; 1177 req->sector = req->hard_sector = bio->bi_sector;
1178 req->nr_sectors = req->hard_nr_sectors += nr_sectors; 1178 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1179 req->ioprio = ioprio_best(req->ioprio, prio); 1179 req->ioprio = ioprio_best(req->ioprio, prio);
1180 if (!blk_rq_cpu_valid(req)) 1180 if (!blk_rq_cpu_valid(req))
1181 req->cpu = bio->bi_comp_cpu; 1181 req->cpu = bio->bi_comp_cpu;
1182 drive_stat_acct(req, 0); 1182 drive_stat_acct(req, 0);
1183 if (!attempt_front_merge(q, req)) 1183 if (!attempt_front_merge(q, req))
1184 elv_merged_request(q, req, el_ret); 1184 elv_merged_request(q, req, el_ret);
1185 goto out; 1185 goto out;
1186 1186
1187 /* ELV_NO_MERGE: elevator says don't/can't merge. */ 1187 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1188 default: 1188 default:
1189 ; 1189 ;
1190 } 1190 }
1191 1191
1192 get_rq: 1192 get_rq:
1193 /* 1193 /*
1194 * This sync check and mask will be re-done in init_request_from_bio(), 1194 * This sync check and mask will be re-done in init_request_from_bio(),
1195 * but we need to set it earlier to expose the sync flag to the 1195 * but we need to set it earlier to expose the sync flag to the
1196 * rq allocator and io schedulers. 1196 * rq allocator and io schedulers.
1197 */ 1197 */
1198 rw_flags = bio_data_dir(bio); 1198 rw_flags = bio_data_dir(bio);
1199 if (sync) 1199 if (sync)
1200 rw_flags |= REQ_RW_SYNC; 1200 rw_flags |= REQ_RW_SYNC;
1201 1201
1202 /* 1202 /*
1203 * Grab a free request. This is might sleep but can not fail. 1203 * Grab a free request. This is might sleep but can not fail.
1204 * Returns with the queue unlocked. 1204 * Returns with the queue unlocked.
1205 */ 1205 */
1206 req = get_request_wait(q, rw_flags, bio); 1206 req = get_request_wait(q, rw_flags, bio);
1207 1207
1208 /* 1208 /*
1209 * After dropping the lock and possibly sleeping here, our request 1209 * After dropping the lock and possibly sleeping here, our request
1210 * may now be mergeable after it had proven unmergeable (above). 1210 * may now be mergeable after it had proven unmergeable (above).
1211 * We don't worry about that case for efficiency. It won't happen 1211 * We don't worry about that case for efficiency. It won't happen
1212 * often, and the elevators are able to handle it. 1212 * often, and the elevators are able to handle it.
1213 */ 1213 */
1214 init_request_from_bio(req, bio); 1214 init_request_from_bio(req, bio);
1215 1215
1216 spin_lock_irq(q->queue_lock); 1216 spin_lock_irq(q->queue_lock);
1217 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) || 1217 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1218 bio_flagged(bio, BIO_CPU_AFFINE)) 1218 bio_flagged(bio, BIO_CPU_AFFINE))
1219 req->cpu = blk_cpu_to_group(smp_processor_id()); 1219 req->cpu = blk_cpu_to_group(smp_processor_id());
1220 if (queue_should_plug(q) && elv_queue_empty(q)) 1220 if (queue_should_plug(q) && elv_queue_empty(q))
1221 blk_plug_device(q); 1221 blk_plug_device(q);
1222 add_request(q, req); 1222 add_request(q, req);
1223 out: 1223 out:
1224 if (unplug || !queue_should_plug(q)) 1224 if (unplug || !queue_should_plug(q))
1225 __generic_unplug_device(q); 1225 __generic_unplug_device(q);
1226 spin_unlock_irq(q->queue_lock); 1226 spin_unlock_irq(q->queue_lock);
1227 return 0; 1227 return 0;
1228 } 1228 }
1229 1229
1230 /* 1230 /*
1231 * If bio->bi_dev is a partition, remap the location 1231 * If bio->bi_dev is a partition, remap the location
1232 */ 1232 */
1233 static inline void blk_partition_remap(struct bio *bio) 1233 static inline void blk_partition_remap(struct bio *bio)
1234 { 1234 {
1235 struct block_device *bdev = bio->bi_bdev; 1235 struct block_device *bdev = bio->bi_bdev;
1236 1236
1237 if (bio_sectors(bio) && bdev != bdev->bd_contains) { 1237 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1238 struct hd_struct *p = bdev->bd_part; 1238 struct hd_struct *p = bdev->bd_part;
1239 1239
1240 bio->bi_sector += p->start_sect; 1240 bio->bi_sector += p->start_sect;
1241 bio->bi_bdev = bdev->bd_contains; 1241 bio->bi_bdev = bdev->bd_contains;
1242 1242
1243 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio, 1243 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
1244 bdev->bd_dev, bio->bi_sector, 1244 bdev->bd_dev, bio->bi_sector,
1245 bio->bi_sector - p->start_sect); 1245 bio->bi_sector - p->start_sect);
1246 } 1246 }
1247 } 1247 }
1248 1248
1249 static void handle_bad_sector(struct bio *bio) 1249 static void handle_bad_sector(struct bio *bio)
1250 { 1250 {
1251 char b[BDEVNAME_SIZE]; 1251 char b[BDEVNAME_SIZE];
1252 1252
1253 printk(KERN_INFO "attempt to access beyond end of device\n"); 1253 printk(KERN_INFO "attempt to access beyond end of device\n");
1254 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n", 1254 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1255 bdevname(bio->bi_bdev, b), 1255 bdevname(bio->bi_bdev, b),
1256 bio->bi_rw, 1256 bio->bi_rw,
1257 (unsigned long long)bio->bi_sector + bio_sectors(bio), 1257 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1258 (long long)(bio->bi_bdev->bd_inode->i_size >> 9)); 1258 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1259 1259
1260 set_bit(BIO_EOF, &bio->bi_flags); 1260 set_bit(BIO_EOF, &bio->bi_flags);
1261 } 1261 }
1262 1262
1263 #ifdef CONFIG_FAIL_MAKE_REQUEST 1263 #ifdef CONFIG_FAIL_MAKE_REQUEST
1264 1264
1265 static DECLARE_FAULT_ATTR(fail_make_request); 1265 static DECLARE_FAULT_ATTR(fail_make_request);
1266 1266
1267 static int __init setup_fail_make_request(char *str) 1267 static int __init setup_fail_make_request(char *str)
1268 { 1268 {
1269 return setup_fault_attr(&fail_make_request, str); 1269 return setup_fault_attr(&fail_make_request, str);
1270 } 1270 }
1271 __setup("fail_make_request=", setup_fail_make_request); 1271 __setup("fail_make_request=", setup_fail_make_request);
1272 1272
1273 static int should_fail_request(struct bio *bio) 1273 static int should_fail_request(struct bio *bio)
1274 { 1274 {
1275 struct hd_struct *part = bio->bi_bdev->bd_part; 1275 struct hd_struct *part = bio->bi_bdev->bd_part;
1276 1276
1277 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail) 1277 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1278 return should_fail(&fail_make_request, bio->bi_size); 1278 return should_fail(&fail_make_request, bio->bi_size);
1279 1279
1280 return 0; 1280 return 0;
1281 } 1281 }
1282 1282
1283 static int __init fail_make_request_debugfs(void) 1283 static int __init fail_make_request_debugfs(void)
1284 { 1284 {
1285 return init_fault_attr_dentries(&fail_make_request, 1285 return init_fault_attr_dentries(&fail_make_request,
1286 "fail_make_request"); 1286 "fail_make_request");
1287 } 1287 }
1288 1288
1289 late_initcall(fail_make_request_debugfs); 1289 late_initcall(fail_make_request_debugfs);
1290 1290
1291 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1291 #else /* CONFIG_FAIL_MAKE_REQUEST */
1292 1292
1293 static inline int should_fail_request(struct bio *bio) 1293 static inline int should_fail_request(struct bio *bio)
1294 { 1294 {
1295 return 0; 1295 return 0;
1296 } 1296 }
1297 1297
1298 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1298 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1299 1299
1300 /* 1300 /*
1301 * Check whether this bio extends beyond the end of the device. 1301 * Check whether this bio extends beyond the end of the device.
1302 */ 1302 */
1303 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1303 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1304 { 1304 {
1305 sector_t maxsector; 1305 sector_t maxsector;
1306 1306
1307 if (!nr_sectors) 1307 if (!nr_sectors)
1308 return 0; 1308 return 0;
1309 1309
1310 /* Test device or partition size, when known. */ 1310 /* Test device or partition size, when known. */
1311 maxsector = bio->bi_bdev->bd_inode->i_size >> 9; 1311 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1312 if (maxsector) { 1312 if (maxsector) {
1313 sector_t sector = bio->bi_sector; 1313 sector_t sector = bio->bi_sector;
1314 1314
1315 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1315 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1316 /* 1316 /*
1317 * This may well happen - the kernel calls bread() 1317 * This may well happen - the kernel calls bread()
1318 * without checking the size of the device, e.g., when 1318 * without checking the size of the device, e.g., when
1319 * mounting a device. 1319 * mounting a device.
1320 */ 1320 */
1321 handle_bad_sector(bio); 1321 handle_bad_sector(bio);
1322 return 1; 1322 return 1;
1323 } 1323 }
1324 } 1324 }
1325 1325
1326 return 0; 1326 return 0;
1327 } 1327 }
1328 1328
1329 /** 1329 /**
1330 * generic_make_request - hand a buffer to its device driver for I/O 1330 * generic_make_request - hand a buffer to its device driver for I/O
1331 * @bio: The bio describing the location in memory and on the device. 1331 * @bio: The bio describing the location in memory and on the device.
1332 * 1332 *
1333 * generic_make_request() is used to make I/O requests of block 1333 * generic_make_request() is used to make I/O requests of block
1334 * devices. It is passed a &struct bio, which describes the I/O that needs 1334 * devices. It is passed a &struct bio, which describes the I/O that needs
1335 * to be done. 1335 * to be done.
1336 * 1336 *
1337 * generic_make_request() does not return any status. The 1337 * generic_make_request() does not return any status. The
1338 * success/failure status of the request, along with notification of 1338 * success/failure status of the request, along with notification of
1339 * completion, is delivered asynchronously through the bio->bi_end_io 1339 * completion, is delivered asynchronously through the bio->bi_end_io
1340 * function described (one day) else where. 1340 * function described (one day) else where.
1341 * 1341 *
1342 * The caller of generic_make_request must make sure that bi_io_vec 1342 * The caller of generic_make_request must make sure that bi_io_vec
1343 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1343 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1344 * set to describe the device address, and the 1344 * set to describe the device address, and the
1345 * bi_end_io and optionally bi_private are set to describe how 1345 * bi_end_io and optionally bi_private are set to describe how
1346 * completion notification should be signaled. 1346 * completion notification should be signaled.
1347 * 1347 *
1348 * generic_make_request and the drivers it calls may use bi_next if this 1348 * generic_make_request and the drivers it calls may use bi_next if this
1349 * bio happens to be merged with someone else, and may change bi_dev and 1349 * bio happens to be merged with someone else, and may change bi_dev and
1350 * bi_sector for remaps as it sees fit. So the values of these fields 1350 * bi_sector for remaps as it sees fit. So the values of these fields
1351 * should NOT be depended on after the call to generic_make_request. 1351 * should NOT be depended on after the call to generic_make_request.
1352 */ 1352 */
1353 static inline void __generic_make_request(struct bio *bio) 1353 static inline void __generic_make_request(struct bio *bio)
1354 { 1354 {
1355 struct request_queue *q; 1355 struct request_queue *q;
1356 sector_t old_sector; 1356 sector_t old_sector;
1357 int ret, nr_sectors = bio_sectors(bio); 1357 int ret, nr_sectors = bio_sectors(bio);
1358 dev_t old_dev; 1358 dev_t old_dev;
1359 int err = -EIO; 1359 int err = -EIO;
1360 1360
1361 might_sleep(); 1361 might_sleep();
1362 1362
1363 if (bio_check_eod(bio, nr_sectors)) 1363 if (bio_check_eod(bio, nr_sectors))
1364 goto end_io; 1364 goto end_io;
1365 1365
1366 /* 1366 /*
1367 * Resolve the mapping until finished. (drivers are 1367 * Resolve the mapping until finished. (drivers are
1368 * still free to implement/resolve their own stacking 1368 * still free to implement/resolve their own stacking
1369 * by explicitly returning 0) 1369 * by explicitly returning 0)
1370 * 1370 *
1371 * NOTE: we don't repeat the blk_size check for each new device. 1371 * NOTE: we don't repeat the blk_size check for each new device.
1372 * Stacking drivers are expected to know what they are doing. 1372 * Stacking drivers are expected to know what they are doing.
1373 */ 1373 */
1374 old_sector = -1; 1374 old_sector = -1;
1375 old_dev = 0; 1375 old_dev = 0;
1376 do { 1376 do {
1377 char b[BDEVNAME_SIZE]; 1377 char b[BDEVNAME_SIZE];
1378 1378
1379 q = bdev_get_queue(bio->bi_bdev); 1379 q = bdev_get_queue(bio->bi_bdev);
1380 if (unlikely(!q)) { 1380 if (unlikely(!q)) {
1381 printk(KERN_ERR 1381 printk(KERN_ERR
1382 "generic_make_request: Trying to access " 1382 "generic_make_request: Trying to access "
1383 "nonexistent block-device %s (%Lu)\n", 1383 "nonexistent block-device %s (%Lu)\n",
1384 bdevname(bio->bi_bdev, b), 1384 bdevname(bio->bi_bdev, b),
1385 (long long) bio->bi_sector); 1385 (long long) bio->bi_sector);
1386 goto end_io; 1386 goto end_io;
1387 } 1387 }
1388 1388
1389 if (unlikely(nr_sectors > q->max_hw_sectors)) { 1389 if (unlikely(nr_sectors > q->max_hw_sectors)) {
1390 printk(KERN_ERR "bio too big device %s (%u > %u)\n", 1390 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1391 bdevname(bio->bi_bdev, b), 1391 bdevname(bio->bi_bdev, b),
1392 bio_sectors(bio), 1392 bio_sectors(bio),
1393 q->max_hw_sectors); 1393 q->max_hw_sectors);
1394 goto end_io; 1394 goto end_io;
1395 } 1395 }
1396 1396
1397 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) 1397 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1398 goto end_io; 1398 goto end_io;
1399 1399
1400 if (should_fail_request(bio)) 1400 if (should_fail_request(bio))
1401 goto end_io; 1401 goto end_io;
1402 1402
1403 /* 1403 /*
1404 * If this device has partitions, remap block n 1404 * If this device has partitions, remap block n
1405 * of partition p to block n+start(p) of the disk. 1405 * of partition p to block n+start(p) of the disk.
1406 */ 1406 */
1407 blk_partition_remap(bio); 1407 blk_partition_remap(bio);
1408 1408
1409 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) 1409 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1410 goto end_io; 1410 goto end_io;
1411 1411
1412 if (old_sector != -1) 1412 if (old_sector != -1)
1413 trace_block_remap(q, bio, old_dev, bio->bi_sector, 1413 trace_block_remap(q, bio, old_dev, bio->bi_sector,
1414 old_sector); 1414 old_sector);
1415 1415
1416 trace_block_bio_queue(q, bio); 1416 trace_block_bio_queue(q, bio);
1417 1417
1418 old_sector = bio->bi_sector; 1418 old_sector = bio->bi_sector;
1419 old_dev = bio->bi_bdev->bd_dev; 1419 old_dev = bio->bi_bdev->bd_dev;
1420 1420
1421 if (bio_check_eod(bio, nr_sectors)) 1421 if (bio_check_eod(bio, nr_sectors))
1422 goto end_io; 1422 goto end_io;
1423 1423
1424 if (bio_discard(bio) && !q->prepare_discard_fn) { 1424 if (bio_discard(bio) && !q->prepare_discard_fn) {
1425 err = -EOPNOTSUPP; 1425 err = -EOPNOTSUPP;
1426 goto end_io; 1426 goto end_io;
1427 } 1427 }
1428 if (bio_barrier(bio) && bio_has_data(bio) && 1428 if (bio_barrier(bio) && bio_has_data(bio) &&
1429 (q->next_ordered == QUEUE_ORDERED_NONE)) { 1429 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1430 err = -EOPNOTSUPP; 1430 err = -EOPNOTSUPP;
1431 goto end_io; 1431 goto end_io;
1432 } 1432 }
1433 1433
1434 ret = q->make_request_fn(q, bio); 1434 ret = q->make_request_fn(q, bio);
1435 } while (ret); 1435 } while (ret);
1436 1436
1437 return; 1437 return;
1438 1438
1439 end_io: 1439 end_io:
1440 bio_endio(bio, err); 1440 bio_endio(bio, err);
1441 } 1441 }
1442 1442
1443 /* 1443 /*
1444 * We only want one ->make_request_fn to be active at a time, 1444 * We only want one ->make_request_fn to be active at a time,
1445 * else stack usage with stacked devices could be a problem. 1445 * else stack usage with stacked devices could be a problem.
1446 * So use current->bio_{list,tail} to keep a list of requests 1446 * So use current->bio_{list,tail} to keep a list of requests
1447 * submited by a make_request_fn function. 1447 * submited by a make_request_fn function.
1448 * current->bio_tail is also used as a flag to say if 1448 * current->bio_tail is also used as a flag to say if
1449 * generic_make_request is currently active in this task or not. 1449 * generic_make_request is currently active in this task or not.
1450 * If it is NULL, then no make_request is active. If it is non-NULL, 1450 * If it is NULL, then no make_request is active. If it is non-NULL,
1451 * then a make_request is active, and new requests should be added 1451 * then a make_request is active, and new requests should be added
1452 * at the tail 1452 * at the tail
1453 */ 1453 */
1454 void generic_make_request(struct bio *bio) 1454 void generic_make_request(struct bio *bio)
1455 { 1455 {
1456 if (current->bio_tail) { 1456 if (current->bio_tail) {
1457 /* make_request is active */ 1457 /* make_request is active */
1458 *(current->bio_tail) = bio; 1458 *(current->bio_tail) = bio;
1459 bio->bi_next = NULL; 1459 bio->bi_next = NULL;
1460 current->bio_tail = &bio->bi_next; 1460 current->bio_tail = &bio->bi_next;
1461 return; 1461 return;
1462 } 1462 }
1463 /* following loop may be a bit non-obvious, and so deserves some 1463 /* following loop may be a bit non-obvious, and so deserves some
1464 * explanation. 1464 * explanation.
1465 * Before entering the loop, bio->bi_next is NULL (as all callers 1465 * Before entering the loop, bio->bi_next is NULL (as all callers
1466 * ensure that) so we have a list with a single bio. 1466 * ensure that) so we have a list with a single bio.
1467 * We pretend that we have just taken it off a longer list, so 1467 * We pretend that we have just taken it off a longer list, so
1468 * we assign bio_list to the next (which is NULL) and bio_tail 1468 * we assign bio_list to the next (which is NULL) and bio_tail
1469 * to &bio_list, thus initialising the bio_list of new bios to be 1469 * to &bio_list, thus initialising the bio_list of new bios to be
1470 * added. __generic_make_request may indeed add some more bios 1470 * added. __generic_make_request may indeed add some more bios
1471 * through a recursive call to generic_make_request. If it 1471 * through a recursive call to generic_make_request. If it
1472 * did, we find a non-NULL value in bio_list and re-enter the loop 1472 * did, we find a non-NULL value in bio_list and re-enter the loop
1473 * from the top. In this case we really did just take the bio 1473 * from the top. In this case we really did just take the bio
1474 * of the top of the list (no pretending) and so fixup bio_list and 1474 * of the top of the list (no pretending) and so fixup bio_list and
1475 * bio_tail or bi_next, and call into __generic_make_request again. 1475 * bio_tail or bi_next, and call into __generic_make_request again.
1476 * 1476 *
1477 * The loop was structured like this to make only one call to 1477 * The loop was structured like this to make only one call to
1478 * __generic_make_request (which is important as it is large and 1478 * __generic_make_request (which is important as it is large and
1479 * inlined) and to keep the structure simple. 1479 * inlined) and to keep the structure simple.
1480 */ 1480 */
1481 BUG_ON(bio->bi_next); 1481 BUG_ON(bio->bi_next);
1482 do { 1482 do {
1483 current->bio_list = bio->bi_next; 1483 current->bio_list = bio->bi_next;
1484 if (bio->bi_next == NULL) 1484 if (bio->bi_next == NULL)
1485 current->bio_tail = &current->bio_list; 1485 current->bio_tail = &current->bio_list;
1486 else 1486 else
1487 bio->bi_next = NULL; 1487 bio->bi_next = NULL;
1488 __generic_make_request(bio); 1488 __generic_make_request(bio);
1489 bio = current->bio_list; 1489 bio = current->bio_list;
1490 } while (bio); 1490 } while (bio);
1491 current->bio_tail = NULL; /* deactivate */ 1491 current->bio_tail = NULL; /* deactivate */
1492 } 1492 }
1493 EXPORT_SYMBOL(generic_make_request); 1493 EXPORT_SYMBOL(generic_make_request);
1494 1494
1495 /** 1495 /**
1496 * submit_bio - submit a bio to the block device layer for I/O 1496 * submit_bio - submit a bio to the block device layer for I/O
1497 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 1497 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1498 * @bio: The &struct bio which describes the I/O 1498 * @bio: The &struct bio which describes the I/O
1499 * 1499 *
1500 * submit_bio() is very similar in purpose to generic_make_request(), and 1500 * submit_bio() is very similar in purpose to generic_make_request(), and
1501 * uses that function to do most of the work. Both are fairly rough 1501 * uses that function to do most of the work. Both are fairly rough
1502 * interfaces; @bio must be presetup and ready for I/O. 1502 * interfaces; @bio must be presetup and ready for I/O.
1503 * 1503 *
1504 */ 1504 */
1505 void submit_bio(int rw, struct bio *bio) 1505 void submit_bio(int rw, struct bio *bio)
1506 { 1506 {
1507 int count = bio_sectors(bio); 1507 int count = bio_sectors(bio);
1508 1508
1509 bio->bi_rw |= rw; 1509 bio->bi_rw |= rw;
1510 1510
1511 /* 1511 /*
1512 * If it's a regular read/write or a barrier with data attached, 1512 * If it's a regular read/write or a barrier with data attached,
1513 * go through the normal accounting stuff before submission. 1513 * go through the normal accounting stuff before submission.
1514 */ 1514 */
1515 if (bio_has_data(bio)) { 1515 if (bio_has_data(bio)) {
1516 if (rw & WRITE) { 1516 if (rw & WRITE) {
1517 count_vm_events(PGPGOUT, count); 1517 count_vm_events(PGPGOUT, count);
1518 } else { 1518 } else {
1519 task_io_account_read(bio->bi_size); 1519 task_io_account_read(bio->bi_size);
1520 count_vm_events(PGPGIN, count); 1520 count_vm_events(PGPGIN, count);
1521 } 1521 }
1522 1522
1523 if (unlikely(block_dump)) { 1523 if (unlikely(block_dump)) {
1524 char b[BDEVNAME_SIZE]; 1524 char b[BDEVNAME_SIZE];
1525 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n", 1525 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1526 current->comm, task_pid_nr(current), 1526 current->comm, task_pid_nr(current),
1527 (rw & WRITE) ? "WRITE" : "READ", 1527 (rw & WRITE) ? "WRITE" : "READ",
1528 (unsigned long long)bio->bi_sector, 1528 (unsigned long long)bio->bi_sector,
1529 bdevname(bio->bi_bdev, b)); 1529 bdevname(bio->bi_bdev, b));
1530 } 1530 }
1531 } 1531 }
1532 1532
1533 generic_make_request(bio); 1533 generic_make_request(bio);
1534 } 1534 }
1535 EXPORT_SYMBOL(submit_bio); 1535 EXPORT_SYMBOL(submit_bio);
1536 1536
1537 /** 1537 /**
1538 * blk_rq_check_limits - Helper function to check a request for the queue limit 1538 * blk_rq_check_limits - Helper function to check a request for the queue limit
1539 * @q: the queue 1539 * @q: the queue
1540 * @rq: the request being checked 1540 * @rq: the request being checked
1541 * 1541 *
1542 * Description: 1542 * Description:
1543 * @rq may have been made based on weaker limitations of upper-level queues 1543 * @rq may have been made based on weaker limitations of upper-level queues
1544 * in request stacking drivers, and it may violate the limitation of @q. 1544 * in request stacking drivers, and it may violate the limitation of @q.
1545 * Since the block layer and the underlying device driver trust @rq 1545 * Since the block layer and the underlying device driver trust @rq
1546 * after it is inserted to @q, it should be checked against @q before 1546 * after it is inserted to @q, it should be checked against @q before
1547 * the insertion using this generic function. 1547 * the insertion using this generic function.
1548 * 1548 *
1549 * This function should also be useful for request stacking drivers 1549 * This function should also be useful for request stacking drivers
1550 * in some cases below, so export this fuction. 1550 * in some cases below, so export this fuction.
1551 * Request stacking drivers like request-based dm may change the queue 1551 * Request stacking drivers like request-based dm may change the queue
1552 * limits while requests are in the queue (e.g. dm's table swapping). 1552 * limits while requests are in the queue (e.g. dm's table swapping).
1553 * Such request stacking drivers should check those requests agaist 1553 * Such request stacking drivers should check those requests agaist
1554 * the new queue limits again when they dispatch those requests, 1554 * the new queue limits again when they dispatch those requests,
1555 * although such checkings are also done against the old queue limits 1555 * although such checkings are also done against the old queue limits
1556 * when submitting requests. 1556 * when submitting requests.
1557 */ 1557 */
1558 int blk_rq_check_limits(struct request_queue *q, struct request *rq) 1558 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1559 { 1559 {
1560 if (rq->nr_sectors > q->max_sectors || 1560 if (rq->nr_sectors > q->max_sectors ||
1561 rq->data_len > q->max_hw_sectors << 9) { 1561 rq->data_len > q->max_hw_sectors << 9) {
1562 printk(KERN_ERR "%s: over max size limit.\n", __func__); 1562 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1563 return -EIO; 1563 return -EIO;
1564 } 1564 }
1565 1565
1566 /* 1566 /*
1567 * queue's settings related to segment counting like q->bounce_pfn 1567 * queue's settings related to segment counting like q->bounce_pfn
1568 * may differ from that of other stacking queues. 1568 * may differ from that of other stacking queues.
1569 * Recalculate it to check the request correctly on this queue's 1569 * Recalculate it to check the request correctly on this queue's
1570 * limitation. 1570 * limitation.
1571 */ 1571 */
1572 blk_recalc_rq_segments(rq); 1572 blk_recalc_rq_segments(rq);
1573 if (rq->nr_phys_segments > q->max_phys_segments || 1573 if (rq->nr_phys_segments > q->max_phys_segments ||
1574 rq->nr_phys_segments > q->max_hw_segments) { 1574 rq->nr_phys_segments > q->max_hw_segments) {
1575 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 1575 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1576 return -EIO; 1576 return -EIO;
1577 } 1577 }
1578 1578
1579 return 0; 1579 return 0;
1580 } 1580 }
1581 EXPORT_SYMBOL_GPL(blk_rq_check_limits); 1581 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1582 1582
1583 /** 1583 /**
1584 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1584 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1585 * @q: the queue to submit the request 1585 * @q: the queue to submit the request
1586 * @rq: the request being queued 1586 * @rq: the request being queued
1587 */ 1587 */
1588 int blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1588 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1589 { 1589 {
1590 unsigned long flags; 1590 unsigned long flags;
1591 1591
1592 if (blk_rq_check_limits(q, rq)) 1592 if (blk_rq_check_limits(q, rq))
1593 return -EIO; 1593 return -EIO;
1594 1594
1595 #ifdef CONFIG_FAIL_MAKE_REQUEST 1595 #ifdef CONFIG_FAIL_MAKE_REQUEST
1596 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail && 1596 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1597 should_fail(&fail_make_request, blk_rq_bytes(rq))) 1597 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1598 return -EIO; 1598 return -EIO;
1599 #endif 1599 #endif
1600 1600
1601 spin_lock_irqsave(q->queue_lock, flags); 1601 spin_lock_irqsave(q->queue_lock, flags);
1602 1602
1603 /* 1603 /*
1604 * Submitting request must be dequeued before calling this function 1604 * Submitting request must be dequeued before calling this function
1605 * because it will be linked to another request_queue 1605 * because it will be linked to another request_queue
1606 */ 1606 */
1607 BUG_ON(blk_queued_rq(rq)); 1607 BUG_ON(blk_queued_rq(rq));
1608 1608
1609 drive_stat_acct(rq, 1); 1609 drive_stat_acct(rq, 1);
1610 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0); 1610 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1611 1611
1612 spin_unlock_irqrestore(q->queue_lock, flags); 1612 spin_unlock_irqrestore(q->queue_lock, flags);
1613 1613
1614 return 0; 1614 return 0;
1615 } 1615 }
1616 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 1616 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1617 1617
1618 /** 1618 /**
1619 * blkdev_dequeue_request - dequeue request and start timeout timer 1619 * blkdev_dequeue_request - dequeue request and start timeout timer
1620 * @req: request to dequeue 1620 * @req: request to dequeue
1621 * 1621 *
1622 * Dequeue @req and start timeout timer on it. This hands off the 1622 * Dequeue @req and start timeout timer on it. This hands off the
1623 * request to the driver. 1623 * request to the driver.
1624 * 1624 *
1625 * Block internal functions which don't want to start timer should 1625 * Block internal functions which don't want to start timer should
1626 * call elv_dequeue_request(). 1626 * call elv_dequeue_request().
1627 */ 1627 */
1628 void blkdev_dequeue_request(struct request *req) 1628 void blkdev_dequeue_request(struct request *req)
1629 { 1629 {
1630 elv_dequeue_request(req->q, req); 1630 elv_dequeue_request(req->q, req);
1631 1631
1632 /* 1632 /*
1633 * We are now handing the request to the hardware, add the 1633 * We are now handing the request to the hardware, add the
1634 * timeout handler. 1634 * timeout handler.
1635 */ 1635 */
1636 blk_add_timer(req); 1636 blk_add_timer(req);
1637 } 1637 }
1638 EXPORT_SYMBOL(blkdev_dequeue_request); 1638 EXPORT_SYMBOL(blkdev_dequeue_request);
1639 1639
1640 static void blk_account_io_completion(struct request *req, unsigned int bytes) 1640 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1641 { 1641 {
1642 if (blk_do_io_stat(req)) { 1642 if (blk_do_io_stat(req)) {
1643 const int rw = rq_data_dir(req); 1643 const int rw = rq_data_dir(req);
1644 struct hd_struct *part; 1644 struct hd_struct *part;
1645 int cpu; 1645 int cpu;
1646 1646
1647 cpu = part_stat_lock(); 1647 cpu = part_stat_lock();
1648 part = disk_map_sector_rcu(req->rq_disk, req->sector); 1648 part = disk_map_sector_rcu(req->rq_disk, req->sector);
1649 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 1649 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1650 part_stat_unlock(); 1650 part_stat_unlock();
1651 } 1651 }
1652 } 1652 }
1653 1653
1654 static void blk_account_io_done(struct request *req) 1654 static void blk_account_io_done(struct request *req)
1655 { 1655 {
1656 /* 1656 /*
1657 * Account IO completion. bar_rq isn't accounted as a normal 1657 * Account IO completion. bar_rq isn't accounted as a normal
1658 * IO on queueing nor completion. Accounting the containing 1658 * IO on queueing nor completion. Accounting the containing
1659 * request is enough. 1659 * request is enough.
1660 */ 1660 */
1661 if (blk_do_io_stat(req) && req != &req->q->bar_rq) { 1661 if (blk_do_io_stat(req) && req != &req->q->bar_rq) {
1662 unsigned long duration = jiffies - req->start_time; 1662 unsigned long duration = jiffies - req->start_time;
1663 const int rw = rq_data_dir(req); 1663 const int rw = rq_data_dir(req);
1664 struct hd_struct *part; 1664 struct hd_struct *part;
1665 int cpu; 1665 int cpu;
1666 1666
1667 cpu = part_stat_lock(); 1667 cpu = part_stat_lock();
1668 part = disk_map_sector_rcu(req->rq_disk, req->sector); 1668 part = disk_map_sector_rcu(req->rq_disk, req->sector);
1669 1669
1670 part_stat_inc(cpu, part, ios[rw]); 1670 part_stat_inc(cpu, part, ios[rw]);
1671 part_stat_add(cpu, part, ticks[rw], duration); 1671 part_stat_add(cpu, part, ticks[rw], duration);
1672 part_round_stats(cpu, part); 1672 part_round_stats(cpu, part);
1673 part_dec_in_flight(part); 1673 part_dec_in_flight(part);
1674 1674
1675 part_stat_unlock(); 1675 part_stat_unlock();
1676 } 1676 }
1677 } 1677 }
1678 1678
1679 /** 1679 /**
1680 * blk_rq_bytes - Returns bytes left to complete in the entire request 1680 * blk_rq_bytes - Returns bytes left to complete in the entire request
1681 * @rq: the request being processed 1681 * @rq: the request being processed
1682 **/ 1682 **/
1683 unsigned int blk_rq_bytes(struct request *rq) 1683 unsigned int blk_rq_bytes(struct request *rq)
1684 { 1684 {
1685 if (blk_fs_request(rq)) 1685 if (blk_fs_request(rq))
1686 return rq->hard_nr_sectors << 9; 1686 return rq->hard_nr_sectors << 9;
1687 1687
1688 return rq->data_len; 1688 return rq->data_len;
1689 } 1689 }
1690 EXPORT_SYMBOL_GPL(blk_rq_bytes); 1690 EXPORT_SYMBOL_GPL(blk_rq_bytes);
1691 1691
1692 /** 1692 /**
1693 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment 1693 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
1694 * @rq: the request being processed 1694 * @rq: the request being processed
1695 **/ 1695 **/
1696 unsigned int blk_rq_cur_bytes(struct request *rq) 1696 unsigned int blk_rq_cur_bytes(struct request *rq)
1697 { 1697 {
1698 if (blk_fs_request(rq)) 1698 if (blk_fs_request(rq))
1699 return rq->current_nr_sectors << 9; 1699 return rq->current_nr_sectors << 9;
1700 1700
1701 if (rq->bio) 1701 if (rq->bio)
1702 return rq->bio->bi_size; 1702 return rq->bio->bi_size;
1703 1703
1704 return rq->data_len; 1704 return rq->data_len;
1705 } 1705 }
1706 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes); 1706 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
1707 1707
1708 struct request *elv_next_request(struct request_queue *q) 1708 struct request *elv_next_request(struct request_queue *q)
1709 { 1709 {
1710 struct request *rq; 1710 struct request *rq;
1711 int ret; 1711 int ret;
1712 1712
1713 while ((rq = __elv_next_request(q)) != NULL) { 1713 while ((rq = __elv_next_request(q)) != NULL) {
1714 if (!(rq->cmd_flags & REQ_STARTED)) { 1714 if (!(rq->cmd_flags & REQ_STARTED)) {
1715 /* 1715 /*
1716 * This is the first time the device driver 1716 * This is the first time the device driver
1717 * sees this request (possibly after 1717 * sees this request (possibly after
1718 * requeueing). Notify IO scheduler. 1718 * requeueing). Notify IO scheduler.
1719 */ 1719 */
1720 if (blk_sorted_rq(rq)) 1720 if (blk_sorted_rq(rq))
1721 elv_activate_rq(q, rq); 1721 elv_activate_rq(q, rq);
1722 1722
1723 /* 1723 /*
1724 * just mark as started even if we don't start 1724 * just mark as started even if we don't start
1725 * it, a request that has been delayed should 1725 * it, a request that has been delayed should
1726 * not be passed by new incoming requests 1726 * not be passed by new incoming requests
1727 */ 1727 */
1728 rq->cmd_flags |= REQ_STARTED; 1728 rq->cmd_flags |= REQ_STARTED;
1729 trace_block_rq_issue(q, rq); 1729 trace_block_rq_issue(q, rq);
1730 } 1730 }
1731 1731
1732 if (!q->boundary_rq || q->boundary_rq == rq) { 1732 if (!q->boundary_rq || q->boundary_rq == rq) {
1733 q->end_sector = rq_end_sector(rq); 1733 q->end_sector = rq_end_sector(rq);
1734 q->boundary_rq = NULL; 1734 q->boundary_rq = NULL;
1735 } 1735 }
1736 1736
1737 if (rq->cmd_flags & REQ_DONTPREP) 1737 if (rq->cmd_flags & REQ_DONTPREP)
1738 break; 1738 break;
1739 1739
1740 if (q->dma_drain_size && rq->data_len) { 1740 if (q->dma_drain_size && rq->data_len) {
1741 /* 1741 /*
1742 * make sure space for the drain appears we 1742 * make sure space for the drain appears we
1743 * know we can do this because max_hw_segments 1743 * know we can do this because max_hw_segments
1744 * has been adjusted to be one fewer than the 1744 * has been adjusted to be one fewer than the
1745 * device can handle 1745 * device can handle
1746 */ 1746 */
1747 rq->nr_phys_segments++; 1747 rq->nr_phys_segments++;
1748 } 1748 }
1749 1749
1750 if (!q->prep_rq_fn) 1750 if (!q->prep_rq_fn)
1751 break; 1751 break;
1752 1752
1753 ret = q->prep_rq_fn(q, rq); 1753 ret = q->prep_rq_fn(q, rq);
1754 if (ret == BLKPREP_OK) { 1754 if (ret == BLKPREP_OK) {
1755 break; 1755 break;
1756 } else if (ret == BLKPREP_DEFER) { 1756 } else if (ret == BLKPREP_DEFER) {
1757 /* 1757 /*
1758 * the request may have been (partially) prepped. 1758 * the request may have been (partially) prepped.
1759 * we need to keep this request in the front to 1759 * we need to keep this request in the front to
1760 * avoid resource deadlock. REQ_STARTED will 1760 * avoid resource deadlock. REQ_STARTED will
1761 * prevent other fs requests from passing this one. 1761 * prevent other fs requests from passing this one.
1762 */ 1762 */
1763 if (q->dma_drain_size && rq->data_len && 1763 if (q->dma_drain_size && rq->data_len &&
1764 !(rq->cmd_flags & REQ_DONTPREP)) { 1764 !(rq->cmd_flags & REQ_DONTPREP)) {
1765 /* 1765 /*
1766 * remove the space for the drain we added 1766 * remove the space for the drain we added
1767 * so that we don't add it again 1767 * so that we don't add it again
1768 */ 1768 */
1769 --rq->nr_phys_segments; 1769 --rq->nr_phys_segments;
1770 } 1770 }
1771 1771
1772 rq = NULL; 1772 rq = NULL;
1773 break; 1773 break;
1774 } else if (ret == BLKPREP_KILL) { 1774 } else if (ret == BLKPREP_KILL) {
1775 rq->cmd_flags |= REQ_QUIET; 1775 rq->cmd_flags |= REQ_QUIET;
1776 __blk_end_request_all(rq, -EIO); 1776 __blk_end_request_all(rq, -EIO);
1777 } else { 1777 } else {
1778 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 1778 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1779 break; 1779 break;
1780 } 1780 }
1781 } 1781 }
1782 1782
1783 return rq; 1783 return rq;
1784 } 1784 }
1785 EXPORT_SYMBOL(elv_next_request); 1785 EXPORT_SYMBOL(elv_next_request);
1786 1786
1787 void elv_dequeue_request(struct request_queue *q, struct request *rq) 1787 void elv_dequeue_request(struct request_queue *q, struct request *rq)
1788 { 1788 {
1789 BUG_ON(list_empty(&rq->queuelist)); 1789 BUG_ON(list_empty(&rq->queuelist));
1790 BUG_ON(ELV_ON_HASH(rq)); 1790 BUG_ON(ELV_ON_HASH(rq));
1791 1791
1792 list_del_init(&rq->queuelist); 1792 list_del_init(&rq->queuelist);
1793 1793
1794 /* 1794 /*
1795 * the time frame between a request being removed from the lists 1795 * the time frame between a request being removed from the lists
1796 * and to it is freed is accounted as io that is in progress at 1796 * and to it is freed is accounted as io that is in progress at
1797 * the driver side. 1797 * the driver side.
1798 */ 1798 */
1799 if (blk_account_rq(rq)) 1799 if (blk_account_rq(rq))
1800 q->in_flight++; 1800 q->in_flight++;
1801 } 1801 }
1802 1802
1803 /** 1803 /**
1804 * blk_update_request - Special helper function for request stacking drivers 1804 * blk_update_request - Special helper function for request stacking drivers
1805 * @rq: the request being processed 1805 * @rq: the request being processed
1806 * @error: %0 for success, < %0 for error 1806 * @error: %0 for success, < %0 for error
1807 * @nr_bytes: number of bytes to complete @rq 1807 * @nr_bytes: number of bytes to complete @rq
1808 * 1808 *
1809 * Description: 1809 * Description:
1810 * Ends I/O on a number of bytes attached to @rq, but doesn't complete 1810 * Ends I/O on a number of bytes attached to @rq, but doesn't complete
1811 * the request structure even if @rq doesn't have leftover. 1811 * the request structure even if @rq doesn't have leftover.
1812 * If @rq has leftover, sets it up for the next range of segments. 1812 * If @rq has leftover, sets it up for the next range of segments.
1813 * 1813 *
1814 * This special helper function is only for request stacking drivers 1814 * This special helper function is only for request stacking drivers
1815 * (e.g. request-based dm) so that they can handle partial completion. 1815 * (e.g. request-based dm) so that they can handle partial completion.
1816 * Actual device drivers should use blk_end_request instead. 1816 * Actual device drivers should use blk_end_request instead.
1817 * 1817 *
1818 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 1818 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1819 * %false return from this function. 1819 * %false return from this function.
1820 * 1820 *
1821 * Return: 1821 * Return:
1822 * %false - this request doesn't have any more data 1822 * %false - this request doesn't have any more data
1823 * %true - this request has more data 1823 * %true - this request has more data
1824 **/ 1824 **/
1825 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes) 1825 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1826 { 1826 {
1827 int total_bytes, bio_nbytes, next_idx = 0; 1827 int total_bytes, bio_nbytes, next_idx = 0;
1828 struct bio *bio; 1828 struct bio *bio;
1829 1829
1830 if (!req->bio) 1830 if (!req->bio)
1831 return false; 1831 return false;
1832 1832
1833 trace_block_rq_complete(req->q, req); 1833 trace_block_rq_complete(req->q, req);
1834 1834
1835 /* 1835 /*
1836 * For fs requests, rq is just carrier of independent bio's 1836 * For fs requests, rq is just carrier of independent bio's
1837 * and each partial completion should be handled separately. 1837 * and each partial completion should be handled separately.
1838 * Reset per-request error on each partial completion. 1838 * Reset per-request error on each partial completion.
1839 * 1839 *
1840 * TODO: tj: This is too subtle. It would be better to let 1840 * TODO: tj: This is too subtle. It would be better to let
1841 * low level drivers do what they see fit. 1841 * low level drivers do what they see fit.
1842 */ 1842 */
1843 if (blk_fs_request(req)) 1843 if (blk_fs_request(req))
1844 req->errors = 0; 1844 req->errors = 0;
1845 1845
1846 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) { 1846 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1847 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n", 1847 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1848 req->rq_disk ? req->rq_disk->disk_name : "?", 1848 req->rq_disk ? req->rq_disk->disk_name : "?",
1849 (unsigned long long)req->sector); 1849 (unsigned long long)req->sector);
1850 } 1850 }
1851 1851
1852 blk_account_io_completion(req, nr_bytes); 1852 blk_account_io_completion(req, nr_bytes);
1853 1853
1854 total_bytes = bio_nbytes = 0; 1854 total_bytes = bio_nbytes = 0;
1855 while ((bio = req->bio) != NULL) { 1855 while ((bio = req->bio) != NULL) {
1856 int nbytes; 1856 int nbytes;
1857 1857
1858 if (nr_bytes >= bio->bi_size) { 1858 if (nr_bytes >= bio->bi_size) {
1859 req->bio = bio->bi_next; 1859 req->bio = bio->bi_next;
1860 nbytes = bio->bi_size; 1860 nbytes = bio->bi_size;
1861 req_bio_endio(req, bio, nbytes, error); 1861 req_bio_endio(req, bio, nbytes, error);
1862 next_idx = 0; 1862 next_idx = 0;
1863 bio_nbytes = 0; 1863 bio_nbytes = 0;
1864 } else { 1864 } else {
1865 int idx = bio->bi_idx + next_idx; 1865 int idx = bio->bi_idx + next_idx;
1866 1866
1867 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) { 1867 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
1868 blk_dump_rq_flags(req, "__end_that"); 1868 blk_dump_rq_flags(req, "__end_that");
1869 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n", 1869 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
1870 __func__, bio->bi_idx, bio->bi_vcnt); 1870 __func__, bio->bi_idx, bio->bi_vcnt);
1871 break; 1871 break;
1872 } 1872 }
1873 1873
1874 nbytes = bio_iovec_idx(bio, idx)->bv_len; 1874 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1875 BIO_BUG_ON(nbytes > bio->bi_size); 1875 BIO_BUG_ON(nbytes > bio->bi_size);
1876 1876
1877 /* 1877 /*
1878 * not a complete bvec done 1878 * not a complete bvec done
1879 */ 1879 */
1880 if (unlikely(nbytes > nr_bytes)) { 1880 if (unlikely(nbytes > nr_bytes)) {
1881 bio_nbytes += nr_bytes; 1881 bio_nbytes += nr_bytes;
1882 total_bytes += nr_bytes; 1882 total_bytes += nr_bytes;
1883 break; 1883 break;
1884 } 1884 }
1885 1885
1886 /* 1886 /*
1887 * advance to the next vector 1887 * advance to the next vector
1888 */ 1888 */
1889 next_idx++; 1889 next_idx++;
1890 bio_nbytes += nbytes; 1890 bio_nbytes += nbytes;
1891 } 1891 }
1892 1892
1893 total_bytes += nbytes; 1893 total_bytes += nbytes;
1894 nr_bytes -= nbytes; 1894 nr_bytes -= nbytes;
1895 1895
1896 bio = req->bio; 1896 bio = req->bio;
1897 if (bio) { 1897 if (bio) {
1898 /* 1898 /*
1899 * end more in this run, or just return 'not-done' 1899 * end more in this run, or just return 'not-done'
1900 */ 1900 */
1901 if (unlikely(nr_bytes <= 0)) 1901 if (unlikely(nr_bytes <= 0))
1902 break; 1902 break;
1903 } 1903 }
1904 } 1904 }
1905 1905
1906 /* 1906 /*
1907 * completely done 1907 * completely done
1908 */ 1908 */
1909 if (!req->bio) { 1909 if (!req->bio) {
1910 /* 1910 /*
1911 * Reset counters so that the request stacking driver 1911 * Reset counters so that the request stacking driver
1912 * can find how many bytes remain in the request 1912 * can find how many bytes remain in the request
1913 * later. 1913 * later.
1914 */ 1914 */
1915 req->nr_sectors = req->hard_nr_sectors = 0; 1915 req->nr_sectors = req->hard_nr_sectors = 0;
1916 req->current_nr_sectors = req->hard_cur_sectors = 0; 1916 req->current_nr_sectors = req->hard_cur_sectors = 0;
1917 return false; 1917 return false;
1918 } 1918 }
1919 1919
1920 /* 1920 /*
1921 * if the request wasn't completed, update state 1921 * if the request wasn't completed, update state
1922 */ 1922 */
1923 if (bio_nbytes) { 1923 if (bio_nbytes) {
1924 req_bio_endio(req, bio, bio_nbytes, error); 1924 req_bio_endio(req, bio, bio_nbytes, error);
1925 bio->bi_idx += next_idx; 1925 bio->bi_idx += next_idx;
1926 bio_iovec(bio)->bv_offset += nr_bytes; 1926 bio_iovec(bio)->bv_offset += nr_bytes;
1927 bio_iovec(bio)->bv_len -= nr_bytes; 1927 bio_iovec(bio)->bv_len -= nr_bytes;
1928 } 1928 }
1929 1929
1930 blk_recalc_rq_sectors(req, total_bytes >> 9); 1930 blk_recalc_rq_sectors(req, total_bytes >> 9);
1931 blk_recalc_rq_segments(req); 1931 blk_recalc_rq_segments(req);
1932 return true; 1932 return true;
1933 } 1933 }
1934 EXPORT_SYMBOL_GPL(blk_update_request); 1934 EXPORT_SYMBOL_GPL(blk_update_request);
1935 1935
1936 static bool blk_update_bidi_request(struct request *rq, int error, 1936 static bool blk_update_bidi_request(struct request *rq, int error,
1937 unsigned int nr_bytes, 1937 unsigned int nr_bytes,
1938 unsigned int bidi_bytes) 1938 unsigned int bidi_bytes)
1939 { 1939 {
1940 if (blk_update_request(rq, error, nr_bytes)) 1940 if (blk_update_request(rq, error, nr_bytes))
1941 return true; 1941 return true;
1942 1942
1943 /* Bidi request must be completed as a whole */ 1943 /* Bidi request must be completed as a whole */
1944 if (unlikely(blk_bidi_rq(rq)) && 1944 if (unlikely(blk_bidi_rq(rq)) &&
1945 blk_update_request(rq->next_rq, error, bidi_bytes)) 1945 blk_update_request(rq->next_rq, error, bidi_bytes))
1946 return true; 1946 return true;
1947 1947
1948 add_disk_randomness(rq->rq_disk); 1948 add_disk_randomness(rq->rq_disk);
1949 1949
1950 return false; 1950 return false;
1951 } 1951 }
1952 1952
1953 /* 1953 /*
1954 * queue lock must be held 1954 * queue lock must be held
1955 */ 1955 */
1956 static void blk_finish_request(struct request *req, int error) 1956 static void blk_finish_request(struct request *req, int error)
1957 { 1957 {
1958 if (blk_rq_tagged(req)) 1958 if (blk_rq_tagged(req))
1959 blk_queue_end_tag(req->q, req); 1959 blk_queue_end_tag(req->q, req);
1960 1960
1961 if (blk_queued_rq(req)) 1961 if (blk_queued_rq(req))
1962 elv_dequeue_request(req->q, req); 1962 elv_dequeue_request(req->q, req);
1963 1963
1964 if (unlikely(laptop_mode) && blk_fs_request(req)) 1964 if (unlikely(laptop_mode) && blk_fs_request(req))
1965 laptop_io_completion(); 1965 laptop_io_completion();
1966 1966
1967 blk_delete_timer(req); 1967 blk_delete_timer(req);
1968 1968
1969 blk_account_io_done(req); 1969 blk_account_io_done(req);
1970 1970
1971 if (req->end_io) 1971 if (req->end_io)
1972 req->end_io(req, error); 1972 req->end_io(req, error);
1973 else { 1973 else {
1974 if (blk_bidi_rq(req)) 1974 if (blk_bidi_rq(req))
1975 __blk_put_request(req->next_rq->q, req->next_rq); 1975 __blk_put_request(req->next_rq->q, req->next_rq);
1976 1976
1977 __blk_put_request(req->q, req); 1977 __blk_put_request(req->q, req);
1978 } 1978 }
1979 } 1979 }
1980 1980
1981 /** 1981 /**
1982 * blk_end_bidi_request - Complete a bidi request 1982 * blk_end_bidi_request - Complete a bidi request
1983 * @rq: the request to complete 1983 * @rq: the request to complete
1984 * @error: %0 for success, < %0 for error 1984 * @error: %0 for success, < %0 for error
1985 * @nr_bytes: number of bytes to complete @rq 1985 * @nr_bytes: number of bytes to complete @rq
1986 * @bidi_bytes: number of bytes to complete @rq->next_rq 1986 * @bidi_bytes: number of bytes to complete @rq->next_rq
1987 * 1987 *
1988 * Description: 1988 * Description:
1989 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 1989 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1990 * Drivers that supports bidi can safely call this member for any 1990 * Drivers that supports bidi can safely call this member for any
1991 * type of request, bidi or uni. In the later case @bidi_bytes is 1991 * type of request, bidi or uni. In the later case @bidi_bytes is
1992 * just ignored. 1992 * just ignored.
1993 * 1993 *
1994 * Return: 1994 * Return:
1995 * %false - we are done with this request 1995 * %false - we are done with this request
1996 * %true - still buffers pending for this request 1996 * %true - still buffers pending for this request
1997 **/ 1997 **/
1998 bool blk_end_bidi_request(struct request *rq, int error, 1998 bool blk_end_bidi_request(struct request *rq, int error,
1999 unsigned int nr_bytes, unsigned int bidi_bytes) 1999 unsigned int nr_bytes, unsigned int bidi_bytes)
2000 { 2000 {
2001 struct request_queue *q = rq->q; 2001 struct request_queue *q = rq->q;
2002 unsigned long flags; 2002 unsigned long flags;
2003 2003
2004 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2004 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2005 return true; 2005 return true;
2006 2006
2007 spin_lock_irqsave(q->queue_lock, flags); 2007 spin_lock_irqsave(q->queue_lock, flags);
2008 blk_finish_request(rq, error); 2008 blk_finish_request(rq, error);
2009 spin_unlock_irqrestore(q->queue_lock, flags); 2009 spin_unlock_irqrestore(q->queue_lock, flags);
2010 2010
2011 return false; 2011 return false;
2012 } 2012 }
2013 EXPORT_SYMBOL_GPL(blk_end_bidi_request); 2013 EXPORT_SYMBOL_GPL(blk_end_bidi_request);
2014 2014
2015 /** 2015 /**
2016 * __blk_end_bidi_request - Complete a bidi request with queue lock held 2016 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2017 * @rq: the request to complete 2017 * @rq: the request to complete
2018 * @error: %0 for success, < %0 for error 2018 * @error: %0 for success, < %0 for error
2019 * @nr_bytes: number of bytes to complete @rq 2019 * @nr_bytes: number of bytes to complete @rq
2020 * @bidi_bytes: number of bytes to complete @rq->next_rq 2020 * @bidi_bytes: number of bytes to complete @rq->next_rq
2021 * 2021 *
2022 * Description: 2022 * Description:
2023 * Identical to blk_end_bidi_request() except that queue lock is 2023 * Identical to blk_end_bidi_request() except that queue lock is
2024 * assumed to be locked on entry and remains so on return. 2024 * assumed to be locked on entry and remains so on return.
2025 * 2025 *
2026 * Return: 2026 * Return:
2027 * %false - we are done with this request 2027 * %false - we are done with this request
2028 * %true - still buffers pending for this request 2028 * %true - still buffers pending for this request
2029 **/ 2029 **/
2030 bool __blk_end_bidi_request(struct request *rq, int error, 2030 bool __blk_end_bidi_request(struct request *rq, int error,
2031 unsigned int nr_bytes, unsigned int bidi_bytes) 2031 unsigned int nr_bytes, unsigned int bidi_bytes)
2032 { 2032 {
2033 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2033 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2034 return true; 2034 return true;
2035 2035
2036 blk_finish_request(rq, error); 2036 blk_finish_request(rq, error);
2037 2037
2038 return false; 2038 return false;
2039 } 2039 }
2040 EXPORT_SYMBOL_GPL(__blk_end_bidi_request); 2040 EXPORT_SYMBOL_GPL(__blk_end_bidi_request);
2041 2041
2042 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2042 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2043 struct bio *bio) 2043 struct bio *bio)
2044 { 2044 {
2045 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and 2045 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and
2046 we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */ 2046 we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */
2047 rq->cmd_flags |= (bio->bi_rw & 3); 2047 rq->cmd_flags |= (bio->bi_rw & 3);
2048 2048
2049 if (bio_has_data(bio)) { 2049 if (bio_has_data(bio)) {
2050 rq->nr_phys_segments = bio_phys_segments(q, bio); 2050 rq->nr_phys_segments = bio_phys_segments(q, bio);
2051 rq->buffer = bio_data(bio); 2051 rq->buffer = bio_data(bio);
2052 } 2052 }
2053 rq->current_nr_sectors = bio_cur_sectors(bio); 2053 rq->current_nr_sectors = bio_cur_sectors(bio);
2054 rq->hard_cur_sectors = rq->current_nr_sectors; 2054 rq->hard_cur_sectors = rq->current_nr_sectors;
2055 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio); 2055 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
2056 rq->data_len = bio->bi_size; 2056 rq->data_len = bio->bi_size;
2057 2057
2058 rq->bio = rq->biotail = bio; 2058 rq->bio = rq->biotail = bio;
2059 2059
2060 if (bio->bi_bdev) 2060 if (bio->bi_bdev)
2061 rq->rq_disk = bio->bi_bdev->bd_disk; 2061 rq->rq_disk = bio->bi_bdev->bd_disk;
2062 } 2062 }
2063 2063
2064 /** 2064 /**
2065 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 2065 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2066 * @q : the queue of the device being checked 2066 * @q : the queue of the device being checked
2067 * 2067 *
2068 * Description: 2068 * Description:
2069 * Check if underlying low-level drivers of a device are busy. 2069 * Check if underlying low-level drivers of a device are busy.
2070 * If the drivers want to export their busy state, they must set own 2070 * If the drivers want to export their busy state, they must set own
2071 * exporting function using blk_queue_lld_busy() first. 2071 * exporting function using blk_queue_lld_busy() first.
2072 * 2072 *
2073 * Basically, this function is used only by request stacking drivers 2073 * Basically, this function is used only by request stacking drivers
2074 * to stop dispatching requests to underlying devices when underlying 2074 * to stop dispatching requests to underlying devices when underlying
2075 * devices are busy. This behavior helps more I/O merging on the queue 2075 * devices are busy. This behavior helps more I/O merging on the queue
2076 * of the request stacking driver and prevents I/O throughput regression 2076 * of the request stacking driver and prevents I/O throughput regression
2077 * on burst I/O load. 2077 * on burst I/O load.
2078 * 2078 *
2079 * Return: 2079 * Return:
2080 * 0 - Not busy (The request stacking driver should dispatch request) 2080 * 0 - Not busy (The request stacking driver should dispatch request)
2081 * 1 - Busy (The request stacking driver should stop dispatching request) 2081 * 1 - Busy (The request stacking driver should stop dispatching request)
2082 */ 2082 */
2083 int blk_lld_busy(struct request_queue *q) 2083 int blk_lld_busy(struct request_queue *q)
2084 { 2084 {
2085 if (q->lld_busy_fn) 2085 if (q->lld_busy_fn)
2086 return q->lld_busy_fn(q); 2086 return q->lld_busy_fn(q);
2087 2087
2088 return 0; 2088 return 0;
2089 } 2089 }
2090 EXPORT_SYMBOL_GPL(blk_lld_busy); 2090 EXPORT_SYMBOL_GPL(blk_lld_busy);
2091 2091
2092 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work) 2092 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2093 { 2093 {
2094 return queue_work(kblockd_workqueue, work); 2094 return queue_work(kblockd_workqueue, work);
2095 } 2095 }
2096 EXPORT_SYMBOL(kblockd_schedule_work); 2096 EXPORT_SYMBOL(kblockd_schedule_work);
2097 2097
2098 int __init blk_dev_init(void) 2098 int __init blk_dev_init(void)
2099 { 2099 {
2100 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2101 sizeof(((struct request *)0)->cmd_flags));
2102
2100 kblockd_workqueue = create_workqueue("kblockd"); 2103 kblockd_workqueue = create_workqueue("kblockd");
2101 if (!kblockd_workqueue) 2104 if (!kblockd_workqueue)
2102 panic("Failed to create kblockd\n"); 2105 panic("Failed to create kblockd\n");
2103 2106
2104 request_cachep = kmem_cache_create("blkdev_requests", 2107 request_cachep = kmem_cache_create("blkdev_requests",
2105 sizeof(struct request), 0, SLAB_PANIC, NULL); 2108 sizeof(struct request), 0, SLAB_PANIC, NULL);
2106 2109
2107 blk_requestq_cachep = kmem_cache_create("blkdev_queue", 2110 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2108 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 2111 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2109 2112
2110 return 0; 2113 return 0;
2111 } 2114 }
2112 2115
2113 2116