Commit a098397d562e2ce5aca7b9b007a4954d88ef8f5e

Authored by Ingo Molnar
Committed by David S. Miller
1 parent 45555c0ed4

atlx: fix warning in drivers/net/atlx/atl2.c

fix this warning:

  drivers/net/atlx/atl2.c: In function ‘atl2_request_irq’:
  drivers/net/atlx/atl2.c:644: warning: unused variable ‘err’

'err' is unused in the !CONFIG_PCI_MSI case.

Instead of further increasing the #ifdeffery in this function,
restructure the code a bit and get rid of the #ifdef. This
relies on the fact that pci_enable_msi() will always fail in
the !CONFIG_PCI_MSI case.

There should be no change in driver behavior.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: David S. Miller <davem@davemloft.net>

Showing 1 changed file with 0 additions and 2 deletions Inline Diff

drivers/net/atlx/atl2.c
1 /* 1 /*
2 * Copyright(c) 2006 - 2007 Atheros Corporation. All rights reserved. 2 * Copyright(c) 2006 - 2007 Atheros Corporation. All rights reserved.
3 * Copyright(c) 2007 - 2008 Chris Snook <csnook@redhat.com> 3 * Copyright(c) 2007 - 2008 Chris Snook <csnook@redhat.com>
4 * 4 *
5 * Derived from Intel e1000 driver 5 * Derived from Intel e1000 driver
6 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. 6 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
7 * 7 *
8 * This program is free software; you can redistribute it and/or modify it 8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free 9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option) 10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version. 11 * any later version.
12 * 12 *
13 * This program is distributed in the hope that it will be useful, but WITHOUT 13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details. 16 * more details.
17 * 17 *
18 * You should have received a copy of the GNU General Public License along with 18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59 19 * this program; if not, write to the Free Software Foundation, Inc., 59
20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. 20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 */ 21 */
22 22
23 #include <asm/atomic.h> 23 #include <asm/atomic.h>
24 #include <linux/crc32.h> 24 #include <linux/crc32.h>
25 #include <linux/dma-mapping.h> 25 #include <linux/dma-mapping.h>
26 #include <linux/etherdevice.h> 26 #include <linux/etherdevice.h>
27 #include <linux/ethtool.h> 27 #include <linux/ethtool.h>
28 #include <linux/hardirq.h> 28 #include <linux/hardirq.h>
29 #include <linux/if_vlan.h> 29 #include <linux/if_vlan.h>
30 #include <linux/in.h> 30 #include <linux/in.h>
31 #include <linux/interrupt.h> 31 #include <linux/interrupt.h>
32 #include <linux/ip.h> 32 #include <linux/ip.h>
33 #include <linux/irqflags.h> 33 #include <linux/irqflags.h>
34 #include <linux/irqreturn.h> 34 #include <linux/irqreturn.h>
35 #include <linux/mii.h> 35 #include <linux/mii.h>
36 #include <linux/net.h> 36 #include <linux/net.h>
37 #include <linux/netdevice.h> 37 #include <linux/netdevice.h>
38 #include <linux/pci.h> 38 #include <linux/pci.h>
39 #include <linux/pci_ids.h> 39 #include <linux/pci_ids.h>
40 #include <linux/pm.h> 40 #include <linux/pm.h>
41 #include <linux/skbuff.h> 41 #include <linux/skbuff.h>
42 #include <linux/spinlock.h> 42 #include <linux/spinlock.h>
43 #include <linux/string.h> 43 #include <linux/string.h>
44 #include <linux/tcp.h> 44 #include <linux/tcp.h>
45 #include <linux/timer.h> 45 #include <linux/timer.h>
46 #include <linux/types.h> 46 #include <linux/types.h>
47 #include <linux/workqueue.h> 47 #include <linux/workqueue.h>
48 48
49 #include "atl2.h" 49 #include "atl2.h"
50 50
51 #define ATL2_DRV_VERSION "2.2.3" 51 #define ATL2_DRV_VERSION "2.2.3"
52 52
53 static char atl2_driver_name[] = "atl2"; 53 static char atl2_driver_name[] = "atl2";
54 static const char atl2_driver_string[] = "Atheros(R) L2 Ethernet Driver"; 54 static const char atl2_driver_string[] = "Atheros(R) L2 Ethernet Driver";
55 static char atl2_copyright[] = "Copyright (c) 2007 Atheros Corporation."; 55 static char atl2_copyright[] = "Copyright (c) 2007 Atheros Corporation.";
56 static char atl2_driver_version[] = ATL2_DRV_VERSION; 56 static char atl2_driver_version[] = ATL2_DRV_VERSION;
57 57
58 MODULE_AUTHOR("Atheros Corporation <xiong.huang@atheros.com>, Chris Snook <csnook@redhat.com>"); 58 MODULE_AUTHOR("Atheros Corporation <xiong.huang@atheros.com>, Chris Snook <csnook@redhat.com>");
59 MODULE_DESCRIPTION("Atheros Fast Ethernet Network Driver"); 59 MODULE_DESCRIPTION("Atheros Fast Ethernet Network Driver");
60 MODULE_LICENSE("GPL"); 60 MODULE_LICENSE("GPL");
61 MODULE_VERSION(ATL2_DRV_VERSION); 61 MODULE_VERSION(ATL2_DRV_VERSION);
62 62
63 /* 63 /*
64 * atl2_pci_tbl - PCI Device ID Table 64 * atl2_pci_tbl - PCI Device ID Table
65 */ 65 */
66 static struct pci_device_id atl2_pci_tbl[] = { 66 static struct pci_device_id atl2_pci_tbl[] = {
67 {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L2)}, 67 {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L2)},
68 /* required last entry */ 68 /* required last entry */
69 {0,} 69 {0,}
70 }; 70 };
71 MODULE_DEVICE_TABLE(pci, atl2_pci_tbl); 71 MODULE_DEVICE_TABLE(pci, atl2_pci_tbl);
72 72
73 static void atl2_set_ethtool_ops(struct net_device *netdev); 73 static void atl2_set_ethtool_ops(struct net_device *netdev);
74 74
75 static void atl2_check_options(struct atl2_adapter *adapter); 75 static void atl2_check_options(struct atl2_adapter *adapter);
76 76
77 /* 77 /*
78 * atl2_sw_init - Initialize general software structures (struct atl2_adapter) 78 * atl2_sw_init - Initialize general software structures (struct atl2_adapter)
79 * @adapter: board private structure to initialize 79 * @adapter: board private structure to initialize
80 * 80 *
81 * atl2_sw_init initializes the Adapter private data structure. 81 * atl2_sw_init initializes the Adapter private data structure.
82 * Fields are initialized based on PCI device information and 82 * Fields are initialized based on PCI device information and
83 * OS network device settings (MTU size). 83 * OS network device settings (MTU size).
84 */ 84 */
85 static int __devinit atl2_sw_init(struct atl2_adapter *adapter) 85 static int __devinit atl2_sw_init(struct atl2_adapter *adapter)
86 { 86 {
87 struct atl2_hw *hw = &adapter->hw; 87 struct atl2_hw *hw = &adapter->hw;
88 struct pci_dev *pdev = adapter->pdev; 88 struct pci_dev *pdev = adapter->pdev;
89 89
90 /* PCI config space info */ 90 /* PCI config space info */
91 hw->vendor_id = pdev->vendor; 91 hw->vendor_id = pdev->vendor;
92 hw->device_id = pdev->device; 92 hw->device_id = pdev->device;
93 hw->subsystem_vendor_id = pdev->subsystem_vendor; 93 hw->subsystem_vendor_id = pdev->subsystem_vendor;
94 hw->subsystem_id = pdev->subsystem_device; 94 hw->subsystem_id = pdev->subsystem_device;
95 95
96 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 96 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
97 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); 97 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
98 98
99 adapter->wol = 0; 99 adapter->wol = 0;
100 adapter->ict = 50000; /* ~100ms */ 100 adapter->ict = 50000; /* ~100ms */
101 adapter->link_speed = SPEED_0; /* hardware init */ 101 adapter->link_speed = SPEED_0; /* hardware init */
102 adapter->link_duplex = FULL_DUPLEX; 102 adapter->link_duplex = FULL_DUPLEX;
103 103
104 hw->phy_configured = false; 104 hw->phy_configured = false;
105 hw->preamble_len = 7; 105 hw->preamble_len = 7;
106 hw->ipgt = 0x60; 106 hw->ipgt = 0x60;
107 hw->min_ifg = 0x50; 107 hw->min_ifg = 0x50;
108 hw->ipgr1 = 0x40; 108 hw->ipgr1 = 0x40;
109 hw->ipgr2 = 0x60; 109 hw->ipgr2 = 0x60;
110 hw->retry_buf = 2; 110 hw->retry_buf = 2;
111 hw->max_retry = 0xf; 111 hw->max_retry = 0xf;
112 hw->lcol = 0x37; 112 hw->lcol = 0x37;
113 hw->jam_ipg = 7; 113 hw->jam_ipg = 7;
114 hw->fc_rxd_hi = 0; 114 hw->fc_rxd_hi = 0;
115 hw->fc_rxd_lo = 0; 115 hw->fc_rxd_lo = 0;
116 hw->max_frame_size = adapter->netdev->mtu; 116 hw->max_frame_size = adapter->netdev->mtu;
117 117
118 spin_lock_init(&adapter->stats_lock); 118 spin_lock_init(&adapter->stats_lock);
119 119
120 set_bit(__ATL2_DOWN, &adapter->flags); 120 set_bit(__ATL2_DOWN, &adapter->flags);
121 121
122 return 0; 122 return 0;
123 } 123 }
124 124
125 /* 125 /*
126 * atl2_set_multi - Multicast and Promiscuous mode set 126 * atl2_set_multi - Multicast and Promiscuous mode set
127 * @netdev: network interface device structure 127 * @netdev: network interface device structure
128 * 128 *
129 * The set_multi entry point is called whenever the multicast address 129 * The set_multi entry point is called whenever the multicast address
130 * list or the network interface flags are updated. This routine is 130 * list or the network interface flags are updated. This routine is
131 * responsible for configuring the hardware for proper multicast, 131 * responsible for configuring the hardware for proper multicast,
132 * promiscuous mode, and all-multi behavior. 132 * promiscuous mode, and all-multi behavior.
133 */ 133 */
134 static void atl2_set_multi(struct net_device *netdev) 134 static void atl2_set_multi(struct net_device *netdev)
135 { 135 {
136 struct atl2_adapter *adapter = netdev_priv(netdev); 136 struct atl2_adapter *adapter = netdev_priv(netdev);
137 struct atl2_hw *hw = &adapter->hw; 137 struct atl2_hw *hw = &adapter->hw;
138 struct dev_mc_list *mc_ptr; 138 struct dev_mc_list *mc_ptr;
139 u32 rctl; 139 u32 rctl;
140 u32 hash_value; 140 u32 hash_value;
141 141
142 /* Check for Promiscuous and All Multicast modes */ 142 /* Check for Promiscuous and All Multicast modes */
143 rctl = ATL2_READ_REG(hw, REG_MAC_CTRL); 143 rctl = ATL2_READ_REG(hw, REG_MAC_CTRL);
144 144
145 if (netdev->flags & IFF_PROMISC) { 145 if (netdev->flags & IFF_PROMISC) {
146 rctl |= MAC_CTRL_PROMIS_EN; 146 rctl |= MAC_CTRL_PROMIS_EN;
147 } else if (netdev->flags & IFF_ALLMULTI) { 147 } else if (netdev->flags & IFF_ALLMULTI) {
148 rctl |= MAC_CTRL_MC_ALL_EN; 148 rctl |= MAC_CTRL_MC_ALL_EN;
149 rctl &= ~MAC_CTRL_PROMIS_EN; 149 rctl &= ~MAC_CTRL_PROMIS_EN;
150 } else 150 } else
151 rctl &= ~(MAC_CTRL_PROMIS_EN | MAC_CTRL_MC_ALL_EN); 151 rctl &= ~(MAC_CTRL_PROMIS_EN | MAC_CTRL_MC_ALL_EN);
152 152
153 ATL2_WRITE_REG(hw, REG_MAC_CTRL, rctl); 153 ATL2_WRITE_REG(hw, REG_MAC_CTRL, rctl);
154 154
155 /* clear the old settings from the multicast hash table */ 155 /* clear the old settings from the multicast hash table */
156 ATL2_WRITE_REG(hw, REG_RX_HASH_TABLE, 0); 156 ATL2_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
157 ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0); 157 ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);
158 158
159 /* comoute mc addresses' hash value ,and put it into hash table */ 159 /* comoute mc addresses' hash value ,and put it into hash table */
160 for (mc_ptr = netdev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) { 160 for (mc_ptr = netdev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
161 hash_value = atl2_hash_mc_addr(hw, mc_ptr->dmi_addr); 161 hash_value = atl2_hash_mc_addr(hw, mc_ptr->dmi_addr);
162 atl2_hash_set(hw, hash_value); 162 atl2_hash_set(hw, hash_value);
163 } 163 }
164 } 164 }
165 165
166 static void init_ring_ptrs(struct atl2_adapter *adapter) 166 static void init_ring_ptrs(struct atl2_adapter *adapter)
167 { 167 {
168 /* Read / Write Ptr Initialize: */ 168 /* Read / Write Ptr Initialize: */
169 adapter->txd_write_ptr = 0; 169 adapter->txd_write_ptr = 0;
170 atomic_set(&adapter->txd_read_ptr, 0); 170 atomic_set(&adapter->txd_read_ptr, 0);
171 171
172 adapter->rxd_read_ptr = 0; 172 adapter->rxd_read_ptr = 0;
173 adapter->rxd_write_ptr = 0; 173 adapter->rxd_write_ptr = 0;
174 174
175 atomic_set(&adapter->txs_write_ptr, 0); 175 atomic_set(&adapter->txs_write_ptr, 0);
176 adapter->txs_next_clear = 0; 176 adapter->txs_next_clear = 0;
177 } 177 }
178 178
179 /* 179 /*
180 * atl2_configure - Configure Transmit&Receive Unit after Reset 180 * atl2_configure - Configure Transmit&Receive Unit after Reset
181 * @adapter: board private structure 181 * @adapter: board private structure
182 * 182 *
183 * Configure the Tx /Rx unit of the MAC after a reset. 183 * Configure the Tx /Rx unit of the MAC after a reset.
184 */ 184 */
185 static int atl2_configure(struct atl2_adapter *adapter) 185 static int atl2_configure(struct atl2_adapter *adapter)
186 { 186 {
187 struct atl2_hw *hw = &adapter->hw; 187 struct atl2_hw *hw = &adapter->hw;
188 u32 value; 188 u32 value;
189 189
190 /* clear interrupt status */ 190 /* clear interrupt status */
191 ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0xffffffff); 191 ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0xffffffff);
192 192
193 /* set MAC Address */ 193 /* set MAC Address */
194 value = (((u32)hw->mac_addr[2]) << 24) | 194 value = (((u32)hw->mac_addr[2]) << 24) |
195 (((u32)hw->mac_addr[3]) << 16) | 195 (((u32)hw->mac_addr[3]) << 16) |
196 (((u32)hw->mac_addr[4]) << 8) | 196 (((u32)hw->mac_addr[4]) << 8) |
197 (((u32)hw->mac_addr[5])); 197 (((u32)hw->mac_addr[5]));
198 ATL2_WRITE_REG(hw, REG_MAC_STA_ADDR, value); 198 ATL2_WRITE_REG(hw, REG_MAC_STA_ADDR, value);
199 value = (((u32)hw->mac_addr[0]) << 8) | 199 value = (((u32)hw->mac_addr[0]) << 8) |
200 (((u32)hw->mac_addr[1])); 200 (((u32)hw->mac_addr[1]));
201 ATL2_WRITE_REG(hw, (REG_MAC_STA_ADDR+4), value); 201 ATL2_WRITE_REG(hw, (REG_MAC_STA_ADDR+4), value);
202 202
203 /* HI base address */ 203 /* HI base address */
204 ATL2_WRITE_REG(hw, REG_DESC_BASE_ADDR_HI, 204 ATL2_WRITE_REG(hw, REG_DESC_BASE_ADDR_HI,
205 (u32)((adapter->ring_dma & 0xffffffff00000000ULL) >> 32)); 205 (u32)((adapter->ring_dma & 0xffffffff00000000ULL) >> 32));
206 206
207 /* LO base address */ 207 /* LO base address */
208 ATL2_WRITE_REG(hw, REG_TXD_BASE_ADDR_LO, 208 ATL2_WRITE_REG(hw, REG_TXD_BASE_ADDR_LO,
209 (u32)(adapter->txd_dma & 0x00000000ffffffffULL)); 209 (u32)(adapter->txd_dma & 0x00000000ffffffffULL));
210 ATL2_WRITE_REG(hw, REG_TXS_BASE_ADDR_LO, 210 ATL2_WRITE_REG(hw, REG_TXS_BASE_ADDR_LO,
211 (u32)(adapter->txs_dma & 0x00000000ffffffffULL)); 211 (u32)(adapter->txs_dma & 0x00000000ffffffffULL));
212 ATL2_WRITE_REG(hw, REG_RXD_BASE_ADDR_LO, 212 ATL2_WRITE_REG(hw, REG_RXD_BASE_ADDR_LO,
213 (u32)(adapter->rxd_dma & 0x00000000ffffffffULL)); 213 (u32)(adapter->rxd_dma & 0x00000000ffffffffULL));
214 214
215 /* element count */ 215 /* element count */
216 ATL2_WRITE_REGW(hw, REG_TXD_MEM_SIZE, (u16)(adapter->txd_ring_size/4)); 216 ATL2_WRITE_REGW(hw, REG_TXD_MEM_SIZE, (u16)(adapter->txd_ring_size/4));
217 ATL2_WRITE_REGW(hw, REG_TXS_MEM_SIZE, (u16)adapter->txs_ring_size); 217 ATL2_WRITE_REGW(hw, REG_TXS_MEM_SIZE, (u16)adapter->txs_ring_size);
218 ATL2_WRITE_REGW(hw, REG_RXD_BUF_NUM, (u16)adapter->rxd_ring_size); 218 ATL2_WRITE_REGW(hw, REG_RXD_BUF_NUM, (u16)adapter->rxd_ring_size);
219 219
220 /* config Internal SRAM */ 220 /* config Internal SRAM */
221 /* 221 /*
222 ATL2_WRITE_REGW(hw, REG_SRAM_TXRAM_END, sram_tx_end); 222 ATL2_WRITE_REGW(hw, REG_SRAM_TXRAM_END, sram_tx_end);
223 ATL2_WRITE_REGW(hw, REG_SRAM_TXRAM_END, sram_rx_end); 223 ATL2_WRITE_REGW(hw, REG_SRAM_TXRAM_END, sram_rx_end);
224 */ 224 */
225 225
226 /* config IPG/IFG */ 226 /* config IPG/IFG */
227 value = (((u32)hw->ipgt & MAC_IPG_IFG_IPGT_MASK) << 227 value = (((u32)hw->ipgt & MAC_IPG_IFG_IPGT_MASK) <<
228 MAC_IPG_IFG_IPGT_SHIFT) | 228 MAC_IPG_IFG_IPGT_SHIFT) |
229 (((u32)hw->min_ifg & MAC_IPG_IFG_MIFG_MASK) << 229 (((u32)hw->min_ifg & MAC_IPG_IFG_MIFG_MASK) <<
230 MAC_IPG_IFG_MIFG_SHIFT) | 230 MAC_IPG_IFG_MIFG_SHIFT) |
231 (((u32)hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK) << 231 (((u32)hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK) <<
232 MAC_IPG_IFG_IPGR1_SHIFT)| 232 MAC_IPG_IFG_IPGR1_SHIFT)|
233 (((u32)hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK) << 233 (((u32)hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK) <<
234 MAC_IPG_IFG_IPGR2_SHIFT); 234 MAC_IPG_IFG_IPGR2_SHIFT);
235 ATL2_WRITE_REG(hw, REG_MAC_IPG_IFG, value); 235 ATL2_WRITE_REG(hw, REG_MAC_IPG_IFG, value);
236 236
237 /* config Half-Duplex Control */ 237 /* config Half-Duplex Control */
238 value = ((u32)hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) | 238 value = ((u32)hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
239 (((u32)hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK) << 239 (((u32)hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK) <<
240 MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) | 240 MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
241 MAC_HALF_DUPLX_CTRL_EXC_DEF_EN | 241 MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
242 (0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) | 242 (0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
243 (((u32)hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK) << 243 (((u32)hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK) <<
244 MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT); 244 MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
245 ATL2_WRITE_REG(hw, REG_MAC_HALF_DUPLX_CTRL, value); 245 ATL2_WRITE_REG(hw, REG_MAC_HALF_DUPLX_CTRL, value);
246 246
247 /* set Interrupt Moderator Timer */ 247 /* set Interrupt Moderator Timer */
248 ATL2_WRITE_REGW(hw, REG_IRQ_MODU_TIMER_INIT, adapter->imt); 248 ATL2_WRITE_REGW(hw, REG_IRQ_MODU_TIMER_INIT, adapter->imt);
249 ATL2_WRITE_REG(hw, REG_MASTER_CTRL, MASTER_CTRL_ITIMER_EN); 249 ATL2_WRITE_REG(hw, REG_MASTER_CTRL, MASTER_CTRL_ITIMER_EN);
250 250
251 /* set Interrupt Clear Timer */ 251 /* set Interrupt Clear Timer */
252 ATL2_WRITE_REGW(hw, REG_CMBDISDMA_TIMER, adapter->ict); 252 ATL2_WRITE_REGW(hw, REG_CMBDISDMA_TIMER, adapter->ict);
253 253
254 /* set MTU */ 254 /* set MTU */
255 ATL2_WRITE_REG(hw, REG_MTU, adapter->netdev->mtu + 255 ATL2_WRITE_REG(hw, REG_MTU, adapter->netdev->mtu +
256 ENET_HEADER_SIZE + VLAN_SIZE + ETHERNET_FCS_SIZE); 256 ENET_HEADER_SIZE + VLAN_SIZE + ETHERNET_FCS_SIZE);
257 257
258 /* 1590 */ 258 /* 1590 */
259 ATL2_WRITE_REG(hw, REG_TX_CUT_THRESH, 0x177); 259 ATL2_WRITE_REG(hw, REG_TX_CUT_THRESH, 0x177);
260 260
261 /* flow control */ 261 /* flow control */
262 ATL2_WRITE_REGW(hw, REG_PAUSE_ON_TH, hw->fc_rxd_hi); 262 ATL2_WRITE_REGW(hw, REG_PAUSE_ON_TH, hw->fc_rxd_hi);
263 ATL2_WRITE_REGW(hw, REG_PAUSE_OFF_TH, hw->fc_rxd_lo); 263 ATL2_WRITE_REGW(hw, REG_PAUSE_OFF_TH, hw->fc_rxd_lo);
264 264
265 /* Init mailbox */ 265 /* Init mailbox */
266 ATL2_WRITE_REGW(hw, REG_MB_TXD_WR_IDX, (u16)adapter->txd_write_ptr); 266 ATL2_WRITE_REGW(hw, REG_MB_TXD_WR_IDX, (u16)adapter->txd_write_ptr);
267 ATL2_WRITE_REGW(hw, REG_MB_RXD_RD_IDX, (u16)adapter->rxd_read_ptr); 267 ATL2_WRITE_REGW(hw, REG_MB_RXD_RD_IDX, (u16)adapter->rxd_read_ptr);
268 268
269 /* enable DMA read/write */ 269 /* enable DMA read/write */
270 ATL2_WRITE_REGB(hw, REG_DMAR, DMAR_EN); 270 ATL2_WRITE_REGB(hw, REG_DMAR, DMAR_EN);
271 ATL2_WRITE_REGB(hw, REG_DMAW, DMAW_EN); 271 ATL2_WRITE_REGB(hw, REG_DMAW, DMAW_EN);
272 272
273 value = ATL2_READ_REG(&adapter->hw, REG_ISR); 273 value = ATL2_READ_REG(&adapter->hw, REG_ISR);
274 if ((value & ISR_PHY_LINKDOWN) != 0) 274 if ((value & ISR_PHY_LINKDOWN) != 0)
275 value = 1; /* config failed */ 275 value = 1; /* config failed */
276 else 276 else
277 value = 0; 277 value = 0;
278 278
279 /* clear all interrupt status */ 279 /* clear all interrupt status */
280 ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0x3fffffff); 280 ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0x3fffffff);
281 ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0); 281 ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0);
282 return value; 282 return value;
283 } 283 }
284 284
285 /* 285 /*
286 * atl2_setup_ring_resources - allocate Tx / RX descriptor resources 286 * atl2_setup_ring_resources - allocate Tx / RX descriptor resources
287 * @adapter: board private structure 287 * @adapter: board private structure
288 * 288 *
289 * Return 0 on success, negative on failure 289 * Return 0 on success, negative on failure
290 */ 290 */
291 static s32 atl2_setup_ring_resources(struct atl2_adapter *adapter) 291 static s32 atl2_setup_ring_resources(struct atl2_adapter *adapter)
292 { 292 {
293 struct pci_dev *pdev = adapter->pdev; 293 struct pci_dev *pdev = adapter->pdev;
294 int size; 294 int size;
295 u8 offset = 0; 295 u8 offset = 0;
296 296
297 /* real ring DMA buffer */ 297 /* real ring DMA buffer */
298 adapter->ring_size = size = 298 adapter->ring_size = size =
299 adapter->txd_ring_size * 1 + 7 + /* dword align */ 299 adapter->txd_ring_size * 1 + 7 + /* dword align */
300 adapter->txs_ring_size * 4 + 7 + /* dword align */ 300 adapter->txs_ring_size * 4 + 7 + /* dword align */
301 adapter->rxd_ring_size * 1536 + 127; /* 128bytes align */ 301 adapter->rxd_ring_size * 1536 + 127; /* 128bytes align */
302 302
303 adapter->ring_vir_addr = pci_alloc_consistent(pdev, size, 303 adapter->ring_vir_addr = pci_alloc_consistent(pdev, size,
304 &adapter->ring_dma); 304 &adapter->ring_dma);
305 if (!adapter->ring_vir_addr) 305 if (!adapter->ring_vir_addr)
306 return -ENOMEM; 306 return -ENOMEM;
307 memset(adapter->ring_vir_addr, 0, adapter->ring_size); 307 memset(adapter->ring_vir_addr, 0, adapter->ring_size);
308 308
309 /* Init TXD Ring */ 309 /* Init TXD Ring */
310 adapter->txd_dma = adapter->ring_dma ; 310 adapter->txd_dma = adapter->ring_dma ;
311 offset = (adapter->txd_dma & 0x7) ? (8 - (adapter->txd_dma & 0x7)) : 0; 311 offset = (adapter->txd_dma & 0x7) ? (8 - (adapter->txd_dma & 0x7)) : 0;
312 adapter->txd_dma += offset; 312 adapter->txd_dma += offset;
313 adapter->txd_ring = (struct tx_pkt_header *) (adapter->ring_vir_addr + 313 adapter->txd_ring = (struct tx_pkt_header *) (adapter->ring_vir_addr +
314 offset); 314 offset);
315 315
316 /* Init TXS Ring */ 316 /* Init TXS Ring */
317 adapter->txs_dma = adapter->txd_dma + adapter->txd_ring_size; 317 adapter->txs_dma = adapter->txd_dma + adapter->txd_ring_size;
318 offset = (adapter->txs_dma & 0x7) ? (8 - (adapter->txs_dma & 0x7)) : 0; 318 offset = (adapter->txs_dma & 0x7) ? (8 - (adapter->txs_dma & 0x7)) : 0;
319 adapter->txs_dma += offset; 319 adapter->txs_dma += offset;
320 adapter->txs_ring = (struct tx_pkt_status *) 320 adapter->txs_ring = (struct tx_pkt_status *)
321 (((u8 *)adapter->txd_ring) + (adapter->txd_ring_size + offset)); 321 (((u8 *)adapter->txd_ring) + (adapter->txd_ring_size + offset));
322 322
323 /* Init RXD Ring */ 323 /* Init RXD Ring */
324 adapter->rxd_dma = adapter->txs_dma + adapter->txs_ring_size * 4; 324 adapter->rxd_dma = adapter->txs_dma + adapter->txs_ring_size * 4;
325 offset = (adapter->rxd_dma & 127) ? 325 offset = (adapter->rxd_dma & 127) ?
326 (128 - (adapter->rxd_dma & 127)) : 0; 326 (128 - (adapter->rxd_dma & 127)) : 0;
327 if (offset > 7) 327 if (offset > 7)
328 offset -= 8; 328 offset -= 8;
329 else 329 else
330 offset += (128 - 8); 330 offset += (128 - 8);
331 331
332 adapter->rxd_dma += offset; 332 adapter->rxd_dma += offset;
333 adapter->rxd_ring = (struct rx_desc *) (((u8 *)adapter->txs_ring) + 333 adapter->rxd_ring = (struct rx_desc *) (((u8 *)adapter->txs_ring) +
334 (adapter->txs_ring_size * 4 + offset)); 334 (adapter->txs_ring_size * 4 + offset));
335 335
336 /* 336 /*
337 * Read / Write Ptr Initialize: 337 * Read / Write Ptr Initialize:
338 * init_ring_ptrs(adapter); 338 * init_ring_ptrs(adapter);
339 */ 339 */
340 return 0; 340 return 0;
341 } 341 }
342 342
343 /* 343 /*
344 * atl2_irq_enable - Enable default interrupt generation settings 344 * atl2_irq_enable - Enable default interrupt generation settings
345 * @adapter: board private structure 345 * @adapter: board private structure
346 */ 346 */
347 static inline void atl2_irq_enable(struct atl2_adapter *adapter) 347 static inline void atl2_irq_enable(struct atl2_adapter *adapter)
348 { 348 {
349 ATL2_WRITE_REG(&adapter->hw, REG_IMR, IMR_NORMAL_MASK); 349 ATL2_WRITE_REG(&adapter->hw, REG_IMR, IMR_NORMAL_MASK);
350 ATL2_WRITE_FLUSH(&adapter->hw); 350 ATL2_WRITE_FLUSH(&adapter->hw);
351 } 351 }
352 352
353 /* 353 /*
354 * atl2_irq_disable - Mask off interrupt generation on the NIC 354 * atl2_irq_disable - Mask off interrupt generation on the NIC
355 * @adapter: board private structure 355 * @adapter: board private structure
356 */ 356 */
357 static inline void atl2_irq_disable(struct atl2_adapter *adapter) 357 static inline void atl2_irq_disable(struct atl2_adapter *adapter)
358 { 358 {
359 ATL2_WRITE_REG(&adapter->hw, REG_IMR, 0); 359 ATL2_WRITE_REG(&adapter->hw, REG_IMR, 0);
360 ATL2_WRITE_FLUSH(&adapter->hw); 360 ATL2_WRITE_FLUSH(&adapter->hw);
361 synchronize_irq(adapter->pdev->irq); 361 synchronize_irq(adapter->pdev->irq);
362 } 362 }
363 363
364 #ifdef NETIF_F_HW_VLAN_TX 364 #ifdef NETIF_F_HW_VLAN_TX
365 static void atl2_vlan_rx_register(struct net_device *netdev, 365 static void atl2_vlan_rx_register(struct net_device *netdev,
366 struct vlan_group *grp) 366 struct vlan_group *grp)
367 { 367 {
368 struct atl2_adapter *adapter = netdev_priv(netdev); 368 struct atl2_adapter *adapter = netdev_priv(netdev);
369 u32 ctrl; 369 u32 ctrl;
370 370
371 atl2_irq_disable(adapter); 371 atl2_irq_disable(adapter);
372 adapter->vlgrp = grp; 372 adapter->vlgrp = grp;
373 373
374 if (grp) { 374 if (grp) {
375 /* enable VLAN tag insert/strip */ 375 /* enable VLAN tag insert/strip */
376 ctrl = ATL2_READ_REG(&adapter->hw, REG_MAC_CTRL); 376 ctrl = ATL2_READ_REG(&adapter->hw, REG_MAC_CTRL);
377 ctrl |= MAC_CTRL_RMV_VLAN; 377 ctrl |= MAC_CTRL_RMV_VLAN;
378 ATL2_WRITE_REG(&adapter->hw, REG_MAC_CTRL, ctrl); 378 ATL2_WRITE_REG(&adapter->hw, REG_MAC_CTRL, ctrl);
379 } else { 379 } else {
380 /* disable VLAN tag insert/strip */ 380 /* disable VLAN tag insert/strip */
381 ctrl = ATL2_READ_REG(&adapter->hw, REG_MAC_CTRL); 381 ctrl = ATL2_READ_REG(&adapter->hw, REG_MAC_CTRL);
382 ctrl &= ~MAC_CTRL_RMV_VLAN; 382 ctrl &= ~MAC_CTRL_RMV_VLAN;
383 ATL2_WRITE_REG(&adapter->hw, REG_MAC_CTRL, ctrl); 383 ATL2_WRITE_REG(&adapter->hw, REG_MAC_CTRL, ctrl);
384 } 384 }
385 385
386 atl2_irq_enable(adapter); 386 atl2_irq_enable(adapter);
387 } 387 }
388 388
389 static void atl2_restore_vlan(struct atl2_adapter *adapter) 389 static void atl2_restore_vlan(struct atl2_adapter *adapter)
390 { 390 {
391 atl2_vlan_rx_register(adapter->netdev, adapter->vlgrp); 391 atl2_vlan_rx_register(adapter->netdev, adapter->vlgrp);
392 } 392 }
393 #endif 393 #endif
394 394
395 static void atl2_intr_rx(struct atl2_adapter *adapter) 395 static void atl2_intr_rx(struct atl2_adapter *adapter)
396 { 396 {
397 struct net_device *netdev = adapter->netdev; 397 struct net_device *netdev = adapter->netdev;
398 struct rx_desc *rxd; 398 struct rx_desc *rxd;
399 struct sk_buff *skb; 399 struct sk_buff *skb;
400 400
401 do { 401 do {
402 rxd = adapter->rxd_ring+adapter->rxd_write_ptr; 402 rxd = adapter->rxd_ring+adapter->rxd_write_ptr;
403 if (!rxd->status.update) 403 if (!rxd->status.update)
404 break; /* end of tx */ 404 break; /* end of tx */
405 405
406 /* clear this flag at once */ 406 /* clear this flag at once */
407 rxd->status.update = 0; 407 rxd->status.update = 0;
408 408
409 if (rxd->status.ok && rxd->status.pkt_size >= 60) { 409 if (rxd->status.ok && rxd->status.pkt_size >= 60) {
410 int rx_size = (int)(rxd->status.pkt_size - 4); 410 int rx_size = (int)(rxd->status.pkt_size - 4);
411 /* alloc new buffer */ 411 /* alloc new buffer */
412 skb = netdev_alloc_skb(netdev, rx_size + NET_IP_ALIGN); 412 skb = netdev_alloc_skb(netdev, rx_size + NET_IP_ALIGN);
413 if (NULL == skb) { 413 if (NULL == skb) {
414 printk(KERN_WARNING 414 printk(KERN_WARNING
415 "%s: Mem squeeze, deferring packet.\n", 415 "%s: Mem squeeze, deferring packet.\n",
416 netdev->name); 416 netdev->name);
417 /* 417 /*
418 * Check that some rx space is free. If not, 418 * Check that some rx space is free. If not,
419 * free one and mark stats->rx_dropped++. 419 * free one and mark stats->rx_dropped++.
420 */ 420 */
421 netdev->stats.rx_dropped++; 421 netdev->stats.rx_dropped++;
422 break; 422 break;
423 } 423 }
424 skb_reserve(skb, NET_IP_ALIGN); 424 skb_reserve(skb, NET_IP_ALIGN);
425 skb->dev = netdev; 425 skb->dev = netdev;
426 memcpy(skb->data, rxd->packet, rx_size); 426 memcpy(skb->data, rxd->packet, rx_size);
427 skb_put(skb, rx_size); 427 skb_put(skb, rx_size);
428 skb->protocol = eth_type_trans(skb, netdev); 428 skb->protocol = eth_type_trans(skb, netdev);
429 #ifdef NETIF_F_HW_VLAN_TX 429 #ifdef NETIF_F_HW_VLAN_TX
430 if (adapter->vlgrp && (rxd->status.vlan)) { 430 if (adapter->vlgrp && (rxd->status.vlan)) {
431 u16 vlan_tag = (rxd->status.vtag>>4) | 431 u16 vlan_tag = (rxd->status.vtag>>4) |
432 ((rxd->status.vtag&7) << 13) | 432 ((rxd->status.vtag&7) << 13) |
433 ((rxd->status.vtag&8) << 9); 433 ((rxd->status.vtag&8) << 9);
434 vlan_hwaccel_rx(skb, adapter->vlgrp, vlan_tag); 434 vlan_hwaccel_rx(skb, adapter->vlgrp, vlan_tag);
435 } else 435 } else
436 #endif 436 #endif
437 netif_rx(skb); 437 netif_rx(skb);
438 netdev->stats.rx_bytes += rx_size; 438 netdev->stats.rx_bytes += rx_size;
439 netdev->stats.rx_packets++; 439 netdev->stats.rx_packets++;
440 } else { 440 } else {
441 netdev->stats.rx_errors++; 441 netdev->stats.rx_errors++;
442 442
443 if (rxd->status.ok && rxd->status.pkt_size <= 60) 443 if (rxd->status.ok && rxd->status.pkt_size <= 60)
444 netdev->stats.rx_length_errors++; 444 netdev->stats.rx_length_errors++;
445 if (rxd->status.mcast) 445 if (rxd->status.mcast)
446 netdev->stats.multicast++; 446 netdev->stats.multicast++;
447 if (rxd->status.crc) 447 if (rxd->status.crc)
448 netdev->stats.rx_crc_errors++; 448 netdev->stats.rx_crc_errors++;
449 if (rxd->status.align) 449 if (rxd->status.align)
450 netdev->stats.rx_frame_errors++; 450 netdev->stats.rx_frame_errors++;
451 } 451 }
452 452
453 /* advance write ptr */ 453 /* advance write ptr */
454 if (++adapter->rxd_write_ptr == adapter->rxd_ring_size) 454 if (++adapter->rxd_write_ptr == adapter->rxd_ring_size)
455 adapter->rxd_write_ptr = 0; 455 adapter->rxd_write_ptr = 0;
456 } while (1); 456 } while (1);
457 457
458 /* update mailbox? */ 458 /* update mailbox? */
459 adapter->rxd_read_ptr = adapter->rxd_write_ptr; 459 adapter->rxd_read_ptr = adapter->rxd_write_ptr;
460 ATL2_WRITE_REGW(&adapter->hw, REG_MB_RXD_RD_IDX, adapter->rxd_read_ptr); 460 ATL2_WRITE_REGW(&adapter->hw, REG_MB_RXD_RD_IDX, adapter->rxd_read_ptr);
461 } 461 }
462 462
463 static void atl2_intr_tx(struct atl2_adapter *adapter) 463 static void atl2_intr_tx(struct atl2_adapter *adapter)
464 { 464 {
465 struct net_device *netdev = adapter->netdev; 465 struct net_device *netdev = adapter->netdev;
466 u32 txd_read_ptr; 466 u32 txd_read_ptr;
467 u32 txs_write_ptr; 467 u32 txs_write_ptr;
468 struct tx_pkt_status *txs; 468 struct tx_pkt_status *txs;
469 struct tx_pkt_header *txph; 469 struct tx_pkt_header *txph;
470 int free_hole = 0; 470 int free_hole = 0;
471 471
472 do { 472 do {
473 txs_write_ptr = (u32) atomic_read(&adapter->txs_write_ptr); 473 txs_write_ptr = (u32) atomic_read(&adapter->txs_write_ptr);
474 txs = adapter->txs_ring + txs_write_ptr; 474 txs = adapter->txs_ring + txs_write_ptr;
475 if (!txs->update) 475 if (!txs->update)
476 break; /* tx stop here */ 476 break; /* tx stop here */
477 477
478 free_hole = 1; 478 free_hole = 1;
479 txs->update = 0; 479 txs->update = 0;
480 480
481 if (++txs_write_ptr == adapter->txs_ring_size) 481 if (++txs_write_ptr == adapter->txs_ring_size)
482 txs_write_ptr = 0; 482 txs_write_ptr = 0;
483 atomic_set(&adapter->txs_write_ptr, (int)txs_write_ptr); 483 atomic_set(&adapter->txs_write_ptr, (int)txs_write_ptr);
484 484
485 txd_read_ptr = (u32) atomic_read(&adapter->txd_read_ptr); 485 txd_read_ptr = (u32) atomic_read(&adapter->txd_read_ptr);
486 txph = (struct tx_pkt_header *) 486 txph = (struct tx_pkt_header *)
487 (((u8 *)adapter->txd_ring) + txd_read_ptr); 487 (((u8 *)adapter->txd_ring) + txd_read_ptr);
488 488
489 if (txph->pkt_size != txs->pkt_size) { 489 if (txph->pkt_size != txs->pkt_size) {
490 struct tx_pkt_status *old_txs = txs; 490 struct tx_pkt_status *old_txs = txs;
491 printk(KERN_WARNING 491 printk(KERN_WARNING
492 "%s: txs packet size not consistent with txd" 492 "%s: txs packet size not consistent with txd"
493 " txd_:0x%08x, txs_:0x%08x!\n", 493 " txd_:0x%08x, txs_:0x%08x!\n",
494 adapter->netdev->name, 494 adapter->netdev->name,
495 *(u32 *)txph, *(u32 *)txs); 495 *(u32 *)txph, *(u32 *)txs);
496 printk(KERN_WARNING 496 printk(KERN_WARNING
497 "txd read ptr: 0x%x\n", 497 "txd read ptr: 0x%x\n",
498 txd_read_ptr); 498 txd_read_ptr);
499 txs = adapter->txs_ring + txs_write_ptr; 499 txs = adapter->txs_ring + txs_write_ptr;
500 printk(KERN_WARNING 500 printk(KERN_WARNING
501 "txs-behind:0x%08x\n", 501 "txs-behind:0x%08x\n",
502 *(u32 *)txs); 502 *(u32 *)txs);
503 if (txs_write_ptr < 2) { 503 if (txs_write_ptr < 2) {
504 txs = adapter->txs_ring + 504 txs = adapter->txs_ring +
505 (adapter->txs_ring_size + 505 (adapter->txs_ring_size +
506 txs_write_ptr - 2); 506 txs_write_ptr - 2);
507 } else { 507 } else {
508 txs = adapter->txs_ring + (txs_write_ptr - 2); 508 txs = adapter->txs_ring + (txs_write_ptr - 2);
509 } 509 }
510 printk(KERN_WARNING 510 printk(KERN_WARNING
511 "txs-before:0x%08x\n", 511 "txs-before:0x%08x\n",
512 *(u32 *)txs); 512 *(u32 *)txs);
513 txs = old_txs; 513 txs = old_txs;
514 } 514 }
515 515
516 /* 4for TPH */ 516 /* 4for TPH */
517 txd_read_ptr += (((u32)(txph->pkt_size) + 7) & ~3); 517 txd_read_ptr += (((u32)(txph->pkt_size) + 7) & ~3);
518 if (txd_read_ptr >= adapter->txd_ring_size) 518 if (txd_read_ptr >= adapter->txd_ring_size)
519 txd_read_ptr -= adapter->txd_ring_size; 519 txd_read_ptr -= adapter->txd_ring_size;
520 520
521 atomic_set(&adapter->txd_read_ptr, (int)txd_read_ptr); 521 atomic_set(&adapter->txd_read_ptr, (int)txd_read_ptr);
522 522
523 /* tx statistics: */ 523 /* tx statistics: */
524 if (txs->ok) { 524 if (txs->ok) {
525 netdev->stats.tx_bytes += txs->pkt_size; 525 netdev->stats.tx_bytes += txs->pkt_size;
526 netdev->stats.tx_packets++; 526 netdev->stats.tx_packets++;
527 } 527 }
528 else 528 else
529 netdev->stats.tx_errors++; 529 netdev->stats.tx_errors++;
530 530
531 if (txs->defer) 531 if (txs->defer)
532 netdev->stats.collisions++; 532 netdev->stats.collisions++;
533 if (txs->abort_col) 533 if (txs->abort_col)
534 netdev->stats.tx_aborted_errors++; 534 netdev->stats.tx_aborted_errors++;
535 if (txs->late_col) 535 if (txs->late_col)
536 netdev->stats.tx_window_errors++; 536 netdev->stats.tx_window_errors++;
537 if (txs->underun) 537 if (txs->underun)
538 netdev->stats.tx_fifo_errors++; 538 netdev->stats.tx_fifo_errors++;
539 } while (1); 539 } while (1);
540 540
541 if (free_hole) { 541 if (free_hole) {
542 if (netif_queue_stopped(adapter->netdev) && 542 if (netif_queue_stopped(adapter->netdev) &&
543 netif_carrier_ok(adapter->netdev)) 543 netif_carrier_ok(adapter->netdev))
544 netif_wake_queue(adapter->netdev); 544 netif_wake_queue(adapter->netdev);
545 } 545 }
546 } 546 }
547 547
548 static void atl2_check_for_link(struct atl2_adapter *adapter) 548 static void atl2_check_for_link(struct atl2_adapter *adapter)
549 { 549 {
550 struct net_device *netdev = adapter->netdev; 550 struct net_device *netdev = adapter->netdev;
551 u16 phy_data = 0; 551 u16 phy_data = 0;
552 552
553 spin_lock(&adapter->stats_lock); 553 spin_lock(&adapter->stats_lock);
554 atl2_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data); 554 atl2_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data);
555 atl2_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data); 555 atl2_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data);
556 spin_unlock(&adapter->stats_lock); 556 spin_unlock(&adapter->stats_lock);
557 557
558 /* notify upper layer link down ASAP */ 558 /* notify upper layer link down ASAP */
559 if (!(phy_data & BMSR_LSTATUS)) { /* Link Down */ 559 if (!(phy_data & BMSR_LSTATUS)) { /* Link Down */
560 if (netif_carrier_ok(netdev)) { /* old link state: Up */ 560 if (netif_carrier_ok(netdev)) { /* old link state: Up */
561 printk(KERN_INFO "%s: %s NIC Link is Down\n", 561 printk(KERN_INFO "%s: %s NIC Link is Down\n",
562 atl2_driver_name, netdev->name); 562 atl2_driver_name, netdev->name);
563 adapter->link_speed = SPEED_0; 563 adapter->link_speed = SPEED_0;
564 netif_carrier_off(netdev); 564 netif_carrier_off(netdev);
565 netif_stop_queue(netdev); 565 netif_stop_queue(netdev);
566 } 566 }
567 } 567 }
568 schedule_work(&adapter->link_chg_task); 568 schedule_work(&adapter->link_chg_task);
569 } 569 }
570 570
571 static inline void atl2_clear_phy_int(struct atl2_adapter *adapter) 571 static inline void atl2_clear_phy_int(struct atl2_adapter *adapter)
572 { 572 {
573 u16 phy_data; 573 u16 phy_data;
574 spin_lock(&adapter->stats_lock); 574 spin_lock(&adapter->stats_lock);
575 atl2_read_phy_reg(&adapter->hw, 19, &phy_data); 575 atl2_read_phy_reg(&adapter->hw, 19, &phy_data);
576 spin_unlock(&adapter->stats_lock); 576 spin_unlock(&adapter->stats_lock);
577 } 577 }
578 578
579 /* 579 /*
580 * atl2_intr - Interrupt Handler 580 * atl2_intr - Interrupt Handler
581 * @irq: interrupt number 581 * @irq: interrupt number
582 * @data: pointer to a network interface device structure 582 * @data: pointer to a network interface device structure
583 * @pt_regs: CPU registers structure 583 * @pt_regs: CPU registers structure
584 */ 584 */
585 static irqreturn_t atl2_intr(int irq, void *data) 585 static irqreturn_t atl2_intr(int irq, void *data)
586 { 586 {
587 struct atl2_adapter *adapter = netdev_priv(data); 587 struct atl2_adapter *adapter = netdev_priv(data);
588 struct atl2_hw *hw = &adapter->hw; 588 struct atl2_hw *hw = &adapter->hw;
589 u32 status; 589 u32 status;
590 590
591 status = ATL2_READ_REG(hw, REG_ISR); 591 status = ATL2_READ_REG(hw, REG_ISR);
592 if (0 == status) 592 if (0 == status)
593 return IRQ_NONE; 593 return IRQ_NONE;
594 594
595 /* link event */ 595 /* link event */
596 if (status & ISR_PHY) 596 if (status & ISR_PHY)
597 atl2_clear_phy_int(adapter); 597 atl2_clear_phy_int(adapter);
598 598
599 /* clear ISR status, and Enable CMB DMA/Disable Interrupt */ 599 /* clear ISR status, and Enable CMB DMA/Disable Interrupt */
600 ATL2_WRITE_REG(hw, REG_ISR, status | ISR_DIS_INT); 600 ATL2_WRITE_REG(hw, REG_ISR, status | ISR_DIS_INT);
601 601
602 /* check if PCIE PHY Link down */ 602 /* check if PCIE PHY Link down */
603 if (status & ISR_PHY_LINKDOWN) { 603 if (status & ISR_PHY_LINKDOWN) {
604 if (netif_running(adapter->netdev)) { /* reset MAC */ 604 if (netif_running(adapter->netdev)) { /* reset MAC */
605 ATL2_WRITE_REG(hw, REG_ISR, 0); 605 ATL2_WRITE_REG(hw, REG_ISR, 0);
606 ATL2_WRITE_REG(hw, REG_IMR, 0); 606 ATL2_WRITE_REG(hw, REG_IMR, 0);
607 ATL2_WRITE_FLUSH(hw); 607 ATL2_WRITE_FLUSH(hw);
608 schedule_work(&adapter->reset_task); 608 schedule_work(&adapter->reset_task);
609 return IRQ_HANDLED; 609 return IRQ_HANDLED;
610 } 610 }
611 } 611 }
612 612
613 /* check if DMA read/write error? */ 613 /* check if DMA read/write error? */
614 if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) { 614 if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
615 ATL2_WRITE_REG(hw, REG_ISR, 0); 615 ATL2_WRITE_REG(hw, REG_ISR, 0);
616 ATL2_WRITE_REG(hw, REG_IMR, 0); 616 ATL2_WRITE_REG(hw, REG_IMR, 0);
617 ATL2_WRITE_FLUSH(hw); 617 ATL2_WRITE_FLUSH(hw);
618 schedule_work(&adapter->reset_task); 618 schedule_work(&adapter->reset_task);
619 return IRQ_HANDLED; 619 return IRQ_HANDLED;
620 } 620 }
621 621
622 /* link event */ 622 /* link event */
623 if (status & (ISR_PHY | ISR_MANUAL)) { 623 if (status & (ISR_PHY | ISR_MANUAL)) {
624 adapter->netdev->stats.tx_carrier_errors++; 624 adapter->netdev->stats.tx_carrier_errors++;
625 atl2_check_for_link(adapter); 625 atl2_check_for_link(adapter);
626 } 626 }
627 627
628 /* transmit event */ 628 /* transmit event */
629 if (status & ISR_TX_EVENT) 629 if (status & ISR_TX_EVENT)
630 atl2_intr_tx(adapter); 630 atl2_intr_tx(adapter);
631 631
632 /* rx exception */ 632 /* rx exception */
633 if (status & ISR_RX_EVENT) 633 if (status & ISR_RX_EVENT)
634 atl2_intr_rx(adapter); 634 atl2_intr_rx(adapter);
635 635
636 /* re-enable Interrupt */ 636 /* re-enable Interrupt */
637 ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0); 637 ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0);
638 return IRQ_HANDLED; 638 return IRQ_HANDLED;
639 } 639 }
640 640
641 static int atl2_request_irq(struct atl2_adapter *adapter) 641 static int atl2_request_irq(struct atl2_adapter *adapter)
642 { 642 {
643 struct net_device *netdev = adapter->netdev; 643 struct net_device *netdev = adapter->netdev;
644 int flags, err = 0; 644 int flags, err = 0;
645 645
646 flags = IRQF_SHARED; 646 flags = IRQF_SHARED;
647 #ifdef CONFIG_PCI_MSI
648 adapter->have_msi = true; 647 adapter->have_msi = true;
649 err = pci_enable_msi(adapter->pdev); 648 err = pci_enable_msi(adapter->pdev);
650 if (err) 649 if (err)
651 adapter->have_msi = false; 650 adapter->have_msi = false;
652 651
653 if (adapter->have_msi) 652 if (adapter->have_msi)
654 flags &= ~IRQF_SHARED; 653 flags &= ~IRQF_SHARED;
655 #endif
656 654
657 return request_irq(adapter->pdev->irq, &atl2_intr, flags, netdev->name, 655 return request_irq(adapter->pdev->irq, &atl2_intr, flags, netdev->name,
658 netdev); 656 netdev);
659 } 657 }
660 658
661 /* 659 /*
662 * atl2_free_ring_resources - Free Tx / RX descriptor Resources 660 * atl2_free_ring_resources - Free Tx / RX descriptor Resources
663 * @adapter: board private structure 661 * @adapter: board private structure
664 * 662 *
665 * Free all transmit software resources 663 * Free all transmit software resources
666 */ 664 */
667 static void atl2_free_ring_resources(struct atl2_adapter *adapter) 665 static void atl2_free_ring_resources(struct atl2_adapter *adapter)
668 { 666 {
669 struct pci_dev *pdev = adapter->pdev; 667 struct pci_dev *pdev = adapter->pdev;
670 pci_free_consistent(pdev, adapter->ring_size, adapter->ring_vir_addr, 668 pci_free_consistent(pdev, adapter->ring_size, adapter->ring_vir_addr,
671 adapter->ring_dma); 669 adapter->ring_dma);
672 } 670 }
673 671
674 /* 672 /*
675 * atl2_open - Called when a network interface is made active 673 * atl2_open - Called when a network interface is made active
676 * @netdev: network interface device structure 674 * @netdev: network interface device structure
677 * 675 *
678 * Returns 0 on success, negative value on failure 676 * Returns 0 on success, negative value on failure
679 * 677 *
680 * The open entry point is called when a network interface is made 678 * The open entry point is called when a network interface is made
681 * active by the system (IFF_UP). At this point all resources needed 679 * active by the system (IFF_UP). At this point all resources needed
682 * for transmit and receive operations are allocated, the interrupt 680 * for transmit and receive operations are allocated, the interrupt
683 * handler is registered with the OS, the watchdog timer is started, 681 * handler is registered with the OS, the watchdog timer is started,
684 * and the stack is notified that the interface is ready. 682 * and the stack is notified that the interface is ready.
685 */ 683 */
686 static int atl2_open(struct net_device *netdev) 684 static int atl2_open(struct net_device *netdev)
687 { 685 {
688 struct atl2_adapter *adapter = netdev_priv(netdev); 686 struct atl2_adapter *adapter = netdev_priv(netdev);
689 int err; 687 int err;
690 u32 val; 688 u32 val;
691 689
692 /* disallow open during test */ 690 /* disallow open during test */
693 if (test_bit(__ATL2_TESTING, &adapter->flags)) 691 if (test_bit(__ATL2_TESTING, &adapter->flags))
694 return -EBUSY; 692 return -EBUSY;
695 693
696 /* allocate transmit descriptors */ 694 /* allocate transmit descriptors */
697 err = atl2_setup_ring_resources(adapter); 695 err = atl2_setup_ring_resources(adapter);
698 if (err) 696 if (err)
699 return err; 697 return err;
700 698
701 err = atl2_init_hw(&adapter->hw); 699 err = atl2_init_hw(&adapter->hw);
702 if (err) { 700 if (err) {
703 err = -EIO; 701 err = -EIO;
704 goto err_init_hw; 702 goto err_init_hw;
705 } 703 }
706 704
707 /* hardware has been reset, we need to reload some things */ 705 /* hardware has been reset, we need to reload some things */
708 atl2_set_multi(netdev); 706 atl2_set_multi(netdev);
709 init_ring_ptrs(adapter); 707 init_ring_ptrs(adapter);
710 708
711 #ifdef NETIF_F_HW_VLAN_TX 709 #ifdef NETIF_F_HW_VLAN_TX
712 atl2_restore_vlan(adapter); 710 atl2_restore_vlan(adapter);
713 #endif 711 #endif
714 712
715 if (atl2_configure(adapter)) { 713 if (atl2_configure(adapter)) {
716 err = -EIO; 714 err = -EIO;
717 goto err_config; 715 goto err_config;
718 } 716 }
719 717
720 err = atl2_request_irq(adapter); 718 err = atl2_request_irq(adapter);
721 if (err) 719 if (err)
722 goto err_req_irq; 720 goto err_req_irq;
723 721
724 clear_bit(__ATL2_DOWN, &adapter->flags); 722 clear_bit(__ATL2_DOWN, &adapter->flags);
725 723
726 mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 4*HZ)); 724 mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 4*HZ));
727 725
728 val = ATL2_READ_REG(&adapter->hw, REG_MASTER_CTRL); 726 val = ATL2_READ_REG(&adapter->hw, REG_MASTER_CTRL);
729 ATL2_WRITE_REG(&adapter->hw, REG_MASTER_CTRL, 727 ATL2_WRITE_REG(&adapter->hw, REG_MASTER_CTRL,
730 val | MASTER_CTRL_MANUAL_INT); 728 val | MASTER_CTRL_MANUAL_INT);
731 729
732 atl2_irq_enable(adapter); 730 atl2_irq_enable(adapter);
733 731
734 return 0; 732 return 0;
735 733
736 err_init_hw: 734 err_init_hw:
737 err_req_irq: 735 err_req_irq:
738 err_config: 736 err_config:
739 atl2_free_ring_resources(adapter); 737 atl2_free_ring_resources(adapter);
740 atl2_reset_hw(&adapter->hw); 738 atl2_reset_hw(&adapter->hw);
741 739
742 return err; 740 return err;
743 } 741 }
744 742
745 static void atl2_down(struct atl2_adapter *adapter) 743 static void atl2_down(struct atl2_adapter *adapter)
746 { 744 {
747 struct net_device *netdev = adapter->netdev; 745 struct net_device *netdev = adapter->netdev;
748 746
749 /* signal that we're down so the interrupt handler does not 747 /* signal that we're down so the interrupt handler does not
750 * reschedule our watchdog timer */ 748 * reschedule our watchdog timer */
751 set_bit(__ATL2_DOWN, &adapter->flags); 749 set_bit(__ATL2_DOWN, &adapter->flags);
752 750
753 netif_tx_disable(netdev); 751 netif_tx_disable(netdev);
754 752
755 /* reset MAC to disable all RX/TX */ 753 /* reset MAC to disable all RX/TX */
756 atl2_reset_hw(&adapter->hw); 754 atl2_reset_hw(&adapter->hw);
757 msleep(1); 755 msleep(1);
758 756
759 atl2_irq_disable(adapter); 757 atl2_irq_disable(adapter);
760 758
761 del_timer_sync(&adapter->watchdog_timer); 759 del_timer_sync(&adapter->watchdog_timer);
762 del_timer_sync(&adapter->phy_config_timer); 760 del_timer_sync(&adapter->phy_config_timer);
763 clear_bit(0, &adapter->cfg_phy); 761 clear_bit(0, &adapter->cfg_phy);
764 762
765 netif_carrier_off(netdev); 763 netif_carrier_off(netdev);
766 adapter->link_speed = SPEED_0; 764 adapter->link_speed = SPEED_0;
767 adapter->link_duplex = -1; 765 adapter->link_duplex = -1;
768 } 766 }
769 767
770 static void atl2_free_irq(struct atl2_adapter *adapter) 768 static void atl2_free_irq(struct atl2_adapter *adapter)
771 { 769 {
772 struct net_device *netdev = adapter->netdev; 770 struct net_device *netdev = adapter->netdev;
773 771
774 free_irq(adapter->pdev->irq, netdev); 772 free_irq(adapter->pdev->irq, netdev);
775 773
776 #ifdef CONFIG_PCI_MSI 774 #ifdef CONFIG_PCI_MSI
777 if (adapter->have_msi) 775 if (adapter->have_msi)
778 pci_disable_msi(adapter->pdev); 776 pci_disable_msi(adapter->pdev);
779 #endif 777 #endif
780 } 778 }
781 779
782 /* 780 /*
783 * atl2_close - Disables a network interface 781 * atl2_close - Disables a network interface
784 * @netdev: network interface device structure 782 * @netdev: network interface device structure
785 * 783 *
786 * Returns 0, this is not allowed to fail 784 * Returns 0, this is not allowed to fail
787 * 785 *
788 * The close entry point is called when an interface is de-activated 786 * The close entry point is called when an interface is de-activated
789 * by the OS. The hardware is still under the drivers control, but 787 * by the OS. The hardware is still under the drivers control, but
790 * needs to be disabled. A global MAC reset is issued to stop the 788 * needs to be disabled. A global MAC reset is issued to stop the
791 * hardware, and all transmit and receive resources are freed. 789 * hardware, and all transmit and receive resources are freed.
792 */ 790 */
793 static int atl2_close(struct net_device *netdev) 791 static int atl2_close(struct net_device *netdev)
794 { 792 {
795 struct atl2_adapter *adapter = netdev_priv(netdev); 793 struct atl2_adapter *adapter = netdev_priv(netdev);
796 794
797 WARN_ON(test_bit(__ATL2_RESETTING, &adapter->flags)); 795 WARN_ON(test_bit(__ATL2_RESETTING, &adapter->flags));
798 796
799 atl2_down(adapter); 797 atl2_down(adapter);
800 atl2_free_irq(adapter); 798 atl2_free_irq(adapter);
801 atl2_free_ring_resources(adapter); 799 atl2_free_ring_resources(adapter);
802 800
803 return 0; 801 return 0;
804 } 802 }
805 803
806 static inline int TxsFreeUnit(struct atl2_adapter *adapter) 804 static inline int TxsFreeUnit(struct atl2_adapter *adapter)
807 { 805 {
808 u32 txs_write_ptr = (u32) atomic_read(&adapter->txs_write_ptr); 806 u32 txs_write_ptr = (u32) atomic_read(&adapter->txs_write_ptr);
809 807
810 return (adapter->txs_next_clear >= txs_write_ptr) ? 808 return (adapter->txs_next_clear >= txs_write_ptr) ?
811 (int) (adapter->txs_ring_size - adapter->txs_next_clear + 809 (int) (adapter->txs_ring_size - adapter->txs_next_clear +
812 txs_write_ptr - 1) : 810 txs_write_ptr - 1) :
813 (int) (txs_write_ptr - adapter->txs_next_clear - 1); 811 (int) (txs_write_ptr - adapter->txs_next_clear - 1);
814 } 812 }
815 813
816 static inline int TxdFreeBytes(struct atl2_adapter *adapter) 814 static inline int TxdFreeBytes(struct atl2_adapter *adapter)
817 { 815 {
818 u32 txd_read_ptr = (u32)atomic_read(&adapter->txd_read_ptr); 816 u32 txd_read_ptr = (u32)atomic_read(&adapter->txd_read_ptr);
819 817
820 return (adapter->txd_write_ptr >= txd_read_ptr) ? 818 return (adapter->txd_write_ptr >= txd_read_ptr) ?
821 (int) (adapter->txd_ring_size - adapter->txd_write_ptr + 819 (int) (adapter->txd_ring_size - adapter->txd_write_ptr +
822 txd_read_ptr - 1) : 820 txd_read_ptr - 1) :
823 (int) (txd_read_ptr - adapter->txd_write_ptr - 1); 821 (int) (txd_read_ptr - adapter->txd_write_ptr - 1);
824 } 822 }
825 823
826 static int atl2_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 824 static int atl2_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
827 { 825 {
828 struct atl2_adapter *adapter = netdev_priv(netdev); 826 struct atl2_adapter *adapter = netdev_priv(netdev);
829 struct tx_pkt_header *txph; 827 struct tx_pkt_header *txph;
830 u32 offset, copy_len; 828 u32 offset, copy_len;
831 int txs_unused; 829 int txs_unused;
832 int txbuf_unused; 830 int txbuf_unused;
833 831
834 if (test_bit(__ATL2_DOWN, &adapter->flags)) { 832 if (test_bit(__ATL2_DOWN, &adapter->flags)) {
835 dev_kfree_skb_any(skb); 833 dev_kfree_skb_any(skb);
836 return NETDEV_TX_OK; 834 return NETDEV_TX_OK;
837 } 835 }
838 836
839 if (unlikely(skb->len <= 0)) { 837 if (unlikely(skb->len <= 0)) {
840 dev_kfree_skb_any(skb); 838 dev_kfree_skb_any(skb);
841 return NETDEV_TX_OK; 839 return NETDEV_TX_OK;
842 } 840 }
843 841
844 txs_unused = TxsFreeUnit(adapter); 842 txs_unused = TxsFreeUnit(adapter);
845 txbuf_unused = TxdFreeBytes(adapter); 843 txbuf_unused = TxdFreeBytes(adapter);
846 844
847 if (skb->len + sizeof(struct tx_pkt_header) + 4 > txbuf_unused || 845 if (skb->len + sizeof(struct tx_pkt_header) + 4 > txbuf_unused ||
848 txs_unused < 1) { 846 txs_unused < 1) {
849 /* not enough resources */ 847 /* not enough resources */
850 netif_stop_queue(netdev); 848 netif_stop_queue(netdev);
851 return NETDEV_TX_BUSY; 849 return NETDEV_TX_BUSY;
852 } 850 }
853 851
854 offset = adapter->txd_write_ptr; 852 offset = adapter->txd_write_ptr;
855 853
856 txph = (struct tx_pkt_header *) (((u8 *)adapter->txd_ring) + offset); 854 txph = (struct tx_pkt_header *) (((u8 *)adapter->txd_ring) + offset);
857 855
858 *(u32 *)txph = 0; 856 *(u32 *)txph = 0;
859 txph->pkt_size = skb->len; 857 txph->pkt_size = skb->len;
860 858
861 offset += 4; 859 offset += 4;
862 if (offset >= adapter->txd_ring_size) 860 if (offset >= adapter->txd_ring_size)
863 offset -= adapter->txd_ring_size; 861 offset -= adapter->txd_ring_size;
864 copy_len = adapter->txd_ring_size - offset; 862 copy_len = adapter->txd_ring_size - offset;
865 if (copy_len >= skb->len) { 863 if (copy_len >= skb->len) {
866 memcpy(((u8 *)adapter->txd_ring) + offset, skb->data, skb->len); 864 memcpy(((u8 *)adapter->txd_ring) + offset, skb->data, skb->len);
867 offset += ((u32)(skb->len + 3) & ~3); 865 offset += ((u32)(skb->len + 3) & ~3);
868 } else { 866 } else {
869 memcpy(((u8 *)adapter->txd_ring)+offset, skb->data, copy_len); 867 memcpy(((u8 *)adapter->txd_ring)+offset, skb->data, copy_len);
870 memcpy((u8 *)adapter->txd_ring, skb->data+copy_len, 868 memcpy((u8 *)adapter->txd_ring, skb->data+copy_len,
871 skb->len-copy_len); 869 skb->len-copy_len);
872 offset = ((u32)(skb->len-copy_len + 3) & ~3); 870 offset = ((u32)(skb->len-copy_len + 3) & ~3);
873 } 871 }
874 #ifdef NETIF_F_HW_VLAN_TX 872 #ifdef NETIF_F_HW_VLAN_TX
875 if (adapter->vlgrp && vlan_tx_tag_present(skb)) { 873 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
876 u16 vlan_tag = vlan_tx_tag_get(skb); 874 u16 vlan_tag = vlan_tx_tag_get(skb);
877 vlan_tag = (vlan_tag << 4) | 875 vlan_tag = (vlan_tag << 4) |
878 (vlan_tag >> 13) | 876 (vlan_tag >> 13) |
879 ((vlan_tag >> 9) & 0x8); 877 ((vlan_tag >> 9) & 0x8);
880 txph->ins_vlan = 1; 878 txph->ins_vlan = 1;
881 txph->vlan = vlan_tag; 879 txph->vlan = vlan_tag;
882 } 880 }
883 #endif 881 #endif
884 if (offset >= adapter->txd_ring_size) 882 if (offset >= adapter->txd_ring_size)
885 offset -= adapter->txd_ring_size; 883 offset -= adapter->txd_ring_size;
886 adapter->txd_write_ptr = offset; 884 adapter->txd_write_ptr = offset;
887 885
888 /* clear txs before send */ 886 /* clear txs before send */
889 adapter->txs_ring[adapter->txs_next_clear].update = 0; 887 adapter->txs_ring[adapter->txs_next_clear].update = 0;
890 if (++adapter->txs_next_clear == adapter->txs_ring_size) 888 if (++adapter->txs_next_clear == adapter->txs_ring_size)
891 adapter->txs_next_clear = 0; 889 adapter->txs_next_clear = 0;
892 890
893 ATL2_WRITE_REGW(&adapter->hw, REG_MB_TXD_WR_IDX, 891 ATL2_WRITE_REGW(&adapter->hw, REG_MB_TXD_WR_IDX,
894 (adapter->txd_write_ptr >> 2)); 892 (adapter->txd_write_ptr >> 2));
895 893
896 mmiowb(); 894 mmiowb();
897 netdev->trans_start = jiffies; 895 netdev->trans_start = jiffies;
898 dev_kfree_skb_any(skb); 896 dev_kfree_skb_any(skb);
899 return NETDEV_TX_OK; 897 return NETDEV_TX_OK;
900 } 898 }
901 899
902 /* 900 /*
903 * atl2_change_mtu - Change the Maximum Transfer Unit 901 * atl2_change_mtu - Change the Maximum Transfer Unit
904 * @netdev: network interface device structure 902 * @netdev: network interface device structure
905 * @new_mtu: new value for maximum frame size 903 * @new_mtu: new value for maximum frame size
906 * 904 *
907 * Returns 0 on success, negative on failure 905 * Returns 0 on success, negative on failure
908 */ 906 */
909 static int atl2_change_mtu(struct net_device *netdev, int new_mtu) 907 static int atl2_change_mtu(struct net_device *netdev, int new_mtu)
910 { 908 {
911 struct atl2_adapter *adapter = netdev_priv(netdev); 909 struct atl2_adapter *adapter = netdev_priv(netdev);
912 struct atl2_hw *hw = &adapter->hw; 910 struct atl2_hw *hw = &adapter->hw;
913 911
914 if ((new_mtu < 40) || (new_mtu > (ETH_DATA_LEN + VLAN_SIZE))) 912 if ((new_mtu < 40) || (new_mtu > (ETH_DATA_LEN + VLAN_SIZE)))
915 return -EINVAL; 913 return -EINVAL;
916 914
917 /* set MTU */ 915 /* set MTU */
918 if (hw->max_frame_size != new_mtu) { 916 if (hw->max_frame_size != new_mtu) {
919 netdev->mtu = new_mtu; 917 netdev->mtu = new_mtu;
920 ATL2_WRITE_REG(hw, REG_MTU, new_mtu + ENET_HEADER_SIZE + 918 ATL2_WRITE_REG(hw, REG_MTU, new_mtu + ENET_HEADER_SIZE +
921 VLAN_SIZE + ETHERNET_FCS_SIZE); 919 VLAN_SIZE + ETHERNET_FCS_SIZE);
922 } 920 }
923 921
924 return 0; 922 return 0;
925 } 923 }
926 924
927 /* 925 /*
928 * atl2_set_mac - Change the Ethernet Address of the NIC 926 * atl2_set_mac - Change the Ethernet Address of the NIC
929 * @netdev: network interface device structure 927 * @netdev: network interface device structure
930 * @p: pointer to an address structure 928 * @p: pointer to an address structure
931 * 929 *
932 * Returns 0 on success, negative on failure 930 * Returns 0 on success, negative on failure
933 */ 931 */
934 static int atl2_set_mac(struct net_device *netdev, void *p) 932 static int atl2_set_mac(struct net_device *netdev, void *p)
935 { 933 {
936 struct atl2_adapter *adapter = netdev_priv(netdev); 934 struct atl2_adapter *adapter = netdev_priv(netdev);
937 struct sockaddr *addr = p; 935 struct sockaddr *addr = p;
938 936
939 if (!is_valid_ether_addr(addr->sa_data)) 937 if (!is_valid_ether_addr(addr->sa_data))
940 return -EADDRNOTAVAIL; 938 return -EADDRNOTAVAIL;
941 939
942 if (netif_running(netdev)) 940 if (netif_running(netdev))
943 return -EBUSY; 941 return -EBUSY;
944 942
945 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 943 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
946 memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len); 944 memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
947 945
948 atl2_set_mac_addr(&adapter->hw); 946 atl2_set_mac_addr(&adapter->hw);
949 947
950 return 0; 948 return 0;
951 } 949 }
952 950
953 /* 951 /*
954 * atl2_mii_ioctl - 952 * atl2_mii_ioctl -
955 * @netdev: 953 * @netdev:
956 * @ifreq: 954 * @ifreq:
957 * @cmd: 955 * @cmd:
958 */ 956 */
959 static int atl2_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 957 static int atl2_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
960 { 958 {
961 struct atl2_adapter *adapter = netdev_priv(netdev); 959 struct atl2_adapter *adapter = netdev_priv(netdev);
962 struct mii_ioctl_data *data = if_mii(ifr); 960 struct mii_ioctl_data *data = if_mii(ifr);
963 unsigned long flags; 961 unsigned long flags;
964 962
965 switch (cmd) { 963 switch (cmd) {
966 case SIOCGMIIPHY: 964 case SIOCGMIIPHY:
967 data->phy_id = 0; 965 data->phy_id = 0;
968 break; 966 break;
969 case SIOCGMIIREG: 967 case SIOCGMIIREG:
970 if (!capable(CAP_NET_ADMIN)) 968 if (!capable(CAP_NET_ADMIN))
971 return -EPERM; 969 return -EPERM;
972 spin_lock_irqsave(&adapter->stats_lock, flags); 970 spin_lock_irqsave(&adapter->stats_lock, flags);
973 if (atl2_read_phy_reg(&adapter->hw, 971 if (atl2_read_phy_reg(&adapter->hw,
974 data->reg_num & 0x1F, &data->val_out)) { 972 data->reg_num & 0x1F, &data->val_out)) {
975 spin_unlock_irqrestore(&adapter->stats_lock, flags); 973 spin_unlock_irqrestore(&adapter->stats_lock, flags);
976 return -EIO; 974 return -EIO;
977 } 975 }
978 spin_unlock_irqrestore(&adapter->stats_lock, flags); 976 spin_unlock_irqrestore(&adapter->stats_lock, flags);
979 break; 977 break;
980 case SIOCSMIIREG: 978 case SIOCSMIIREG:
981 if (!capable(CAP_NET_ADMIN)) 979 if (!capable(CAP_NET_ADMIN))
982 return -EPERM; 980 return -EPERM;
983 if (data->reg_num & ~(0x1F)) 981 if (data->reg_num & ~(0x1F))
984 return -EFAULT; 982 return -EFAULT;
985 spin_lock_irqsave(&adapter->stats_lock, flags); 983 spin_lock_irqsave(&adapter->stats_lock, flags);
986 if (atl2_write_phy_reg(&adapter->hw, data->reg_num, 984 if (atl2_write_phy_reg(&adapter->hw, data->reg_num,
987 data->val_in)) { 985 data->val_in)) {
988 spin_unlock_irqrestore(&adapter->stats_lock, flags); 986 spin_unlock_irqrestore(&adapter->stats_lock, flags);
989 return -EIO; 987 return -EIO;
990 } 988 }
991 spin_unlock_irqrestore(&adapter->stats_lock, flags); 989 spin_unlock_irqrestore(&adapter->stats_lock, flags);
992 break; 990 break;
993 default: 991 default:
994 return -EOPNOTSUPP; 992 return -EOPNOTSUPP;
995 } 993 }
996 return 0; 994 return 0;
997 } 995 }
998 996
999 /* 997 /*
1000 * atl2_ioctl - 998 * atl2_ioctl -
1001 * @netdev: 999 * @netdev:
1002 * @ifreq: 1000 * @ifreq:
1003 * @cmd: 1001 * @cmd:
1004 */ 1002 */
1005 static int atl2_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 1003 static int atl2_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1006 { 1004 {
1007 switch (cmd) { 1005 switch (cmd) {
1008 case SIOCGMIIPHY: 1006 case SIOCGMIIPHY:
1009 case SIOCGMIIREG: 1007 case SIOCGMIIREG:
1010 case SIOCSMIIREG: 1008 case SIOCSMIIREG:
1011 return atl2_mii_ioctl(netdev, ifr, cmd); 1009 return atl2_mii_ioctl(netdev, ifr, cmd);
1012 #ifdef ETHTOOL_OPS_COMPAT 1010 #ifdef ETHTOOL_OPS_COMPAT
1013 case SIOCETHTOOL: 1011 case SIOCETHTOOL:
1014 return ethtool_ioctl(ifr); 1012 return ethtool_ioctl(ifr);
1015 #endif 1013 #endif
1016 default: 1014 default:
1017 return -EOPNOTSUPP; 1015 return -EOPNOTSUPP;
1018 } 1016 }
1019 } 1017 }
1020 1018
1021 /* 1019 /*
1022 * atl2_tx_timeout - Respond to a Tx Hang 1020 * atl2_tx_timeout - Respond to a Tx Hang
1023 * @netdev: network interface device structure 1021 * @netdev: network interface device structure
1024 */ 1022 */
1025 static void atl2_tx_timeout(struct net_device *netdev) 1023 static void atl2_tx_timeout(struct net_device *netdev)
1026 { 1024 {
1027 struct atl2_adapter *adapter = netdev_priv(netdev); 1025 struct atl2_adapter *adapter = netdev_priv(netdev);
1028 1026
1029 /* Do the reset outside of interrupt context */ 1027 /* Do the reset outside of interrupt context */
1030 schedule_work(&adapter->reset_task); 1028 schedule_work(&adapter->reset_task);
1031 } 1029 }
1032 1030
1033 /* 1031 /*
1034 * atl2_watchdog - Timer Call-back 1032 * atl2_watchdog - Timer Call-back
1035 * @data: pointer to netdev cast into an unsigned long 1033 * @data: pointer to netdev cast into an unsigned long
1036 */ 1034 */
1037 static void atl2_watchdog(unsigned long data) 1035 static void atl2_watchdog(unsigned long data)
1038 { 1036 {
1039 struct atl2_adapter *adapter = (struct atl2_adapter *) data; 1037 struct atl2_adapter *adapter = (struct atl2_adapter *) data;
1040 1038
1041 if (!test_bit(__ATL2_DOWN, &adapter->flags)) { 1039 if (!test_bit(__ATL2_DOWN, &adapter->flags)) {
1042 u32 drop_rxd, drop_rxs; 1040 u32 drop_rxd, drop_rxs;
1043 unsigned long flags; 1041 unsigned long flags;
1044 1042
1045 spin_lock_irqsave(&adapter->stats_lock, flags); 1043 spin_lock_irqsave(&adapter->stats_lock, flags);
1046 drop_rxd = ATL2_READ_REG(&adapter->hw, REG_STS_RXD_OV); 1044 drop_rxd = ATL2_READ_REG(&adapter->hw, REG_STS_RXD_OV);
1047 drop_rxs = ATL2_READ_REG(&adapter->hw, REG_STS_RXS_OV); 1045 drop_rxs = ATL2_READ_REG(&adapter->hw, REG_STS_RXS_OV);
1048 spin_unlock_irqrestore(&adapter->stats_lock, flags); 1046 spin_unlock_irqrestore(&adapter->stats_lock, flags);
1049 1047
1050 adapter->netdev->stats.rx_over_errors += drop_rxd + drop_rxs; 1048 adapter->netdev->stats.rx_over_errors += drop_rxd + drop_rxs;
1051 1049
1052 /* Reset the timer */ 1050 /* Reset the timer */
1053 mod_timer(&adapter->watchdog_timer, 1051 mod_timer(&adapter->watchdog_timer,
1054 round_jiffies(jiffies + 4 * HZ)); 1052 round_jiffies(jiffies + 4 * HZ));
1055 } 1053 }
1056 } 1054 }
1057 1055
1058 /* 1056 /*
1059 * atl2_phy_config - Timer Call-back 1057 * atl2_phy_config - Timer Call-back
1060 * @data: pointer to netdev cast into an unsigned long 1058 * @data: pointer to netdev cast into an unsigned long
1061 */ 1059 */
1062 static void atl2_phy_config(unsigned long data) 1060 static void atl2_phy_config(unsigned long data)
1063 { 1061 {
1064 struct atl2_adapter *adapter = (struct atl2_adapter *) data; 1062 struct atl2_adapter *adapter = (struct atl2_adapter *) data;
1065 struct atl2_hw *hw = &adapter->hw; 1063 struct atl2_hw *hw = &adapter->hw;
1066 unsigned long flags; 1064 unsigned long flags;
1067 1065
1068 spin_lock_irqsave(&adapter->stats_lock, flags); 1066 spin_lock_irqsave(&adapter->stats_lock, flags);
1069 atl2_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg); 1067 atl2_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
1070 atl2_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN | 1068 atl2_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN |
1071 MII_CR_RESTART_AUTO_NEG); 1069 MII_CR_RESTART_AUTO_NEG);
1072 spin_unlock_irqrestore(&adapter->stats_lock, flags); 1070 spin_unlock_irqrestore(&adapter->stats_lock, flags);
1073 clear_bit(0, &adapter->cfg_phy); 1071 clear_bit(0, &adapter->cfg_phy);
1074 } 1072 }
1075 1073
1076 static int atl2_up(struct atl2_adapter *adapter) 1074 static int atl2_up(struct atl2_adapter *adapter)
1077 { 1075 {
1078 struct net_device *netdev = adapter->netdev; 1076 struct net_device *netdev = adapter->netdev;
1079 int err = 0; 1077 int err = 0;
1080 u32 val; 1078 u32 val;
1081 1079
1082 /* hardware has been reset, we need to reload some things */ 1080 /* hardware has been reset, we need to reload some things */
1083 1081
1084 err = atl2_init_hw(&adapter->hw); 1082 err = atl2_init_hw(&adapter->hw);
1085 if (err) { 1083 if (err) {
1086 err = -EIO; 1084 err = -EIO;
1087 return err; 1085 return err;
1088 } 1086 }
1089 1087
1090 atl2_set_multi(netdev); 1088 atl2_set_multi(netdev);
1091 init_ring_ptrs(adapter); 1089 init_ring_ptrs(adapter);
1092 1090
1093 #ifdef NETIF_F_HW_VLAN_TX 1091 #ifdef NETIF_F_HW_VLAN_TX
1094 atl2_restore_vlan(adapter); 1092 atl2_restore_vlan(adapter);
1095 #endif 1093 #endif
1096 1094
1097 if (atl2_configure(adapter)) { 1095 if (atl2_configure(adapter)) {
1098 err = -EIO; 1096 err = -EIO;
1099 goto err_up; 1097 goto err_up;
1100 } 1098 }
1101 1099
1102 clear_bit(__ATL2_DOWN, &adapter->flags); 1100 clear_bit(__ATL2_DOWN, &adapter->flags);
1103 1101
1104 val = ATL2_READ_REG(&adapter->hw, REG_MASTER_CTRL); 1102 val = ATL2_READ_REG(&adapter->hw, REG_MASTER_CTRL);
1105 ATL2_WRITE_REG(&adapter->hw, REG_MASTER_CTRL, val | 1103 ATL2_WRITE_REG(&adapter->hw, REG_MASTER_CTRL, val |
1106 MASTER_CTRL_MANUAL_INT); 1104 MASTER_CTRL_MANUAL_INT);
1107 1105
1108 atl2_irq_enable(adapter); 1106 atl2_irq_enable(adapter);
1109 1107
1110 err_up: 1108 err_up:
1111 return err; 1109 return err;
1112 } 1110 }
1113 1111
1114 static void atl2_reinit_locked(struct atl2_adapter *adapter) 1112 static void atl2_reinit_locked(struct atl2_adapter *adapter)
1115 { 1113 {
1116 WARN_ON(in_interrupt()); 1114 WARN_ON(in_interrupt());
1117 while (test_and_set_bit(__ATL2_RESETTING, &adapter->flags)) 1115 while (test_and_set_bit(__ATL2_RESETTING, &adapter->flags))
1118 msleep(1); 1116 msleep(1);
1119 atl2_down(adapter); 1117 atl2_down(adapter);
1120 atl2_up(adapter); 1118 atl2_up(adapter);
1121 clear_bit(__ATL2_RESETTING, &adapter->flags); 1119 clear_bit(__ATL2_RESETTING, &adapter->flags);
1122 } 1120 }
1123 1121
1124 static void atl2_reset_task(struct work_struct *work) 1122 static void atl2_reset_task(struct work_struct *work)
1125 { 1123 {
1126 struct atl2_adapter *adapter; 1124 struct atl2_adapter *adapter;
1127 adapter = container_of(work, struct atl2_adapter, reset_task); 1125 adapter = container_of(work, struct atl2_adapter, reset_task);
1128 1126
1129 atl2_reinit_locked(adapter); 1127 atl2_reinit_locked(adapter);
1130 } 1128 }
1131 1129
1132 static void atl2_setup_mac_ctrl(struct atl2_adapter *adapter) 1130 static void atl2_setup_mac_ctrl(struct atl2_adapter *adapter)
1133 { 1131 {
1134 u32 value; 1132 u32 value;
1135 struct atl2_hw *hw = &adapter->hw; 1133 struct atl2_hw *hw = &adapter->hw;
1136 struct net_device *netdev = adapter->netdev; 1134 struct net_device *netdev = adapter->netdev;
1137 1135
1138 /* Config MAC CTRL Register */ 1136 /* Config MAC CTRL Register */
1139 value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN | MAC_CTRL_MACLP_CLK_PHY; 1137 value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN | MAC_CTRL_MACLP_CLK_PHY;
1140 1138
1141 /* duplex */ 1139 /* duplex */
1142 if (FULL_DUPLEX == adapter->link_duplex) 1140 if (FULL_DUPLEX == adapter->link_duplex)
1143 value |= MAC_CTRL_DUPLX; 1141 value |= MAC_CTRL_DUPLX;
1144 1142
1145 /* flow control */ 1143 /* flow control */
1146 value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW); 1144 value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
1147 1145
1148 /* PAD & CRC */ 1146 /* PAD & CRC */
1149 value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD); 1147 value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
1150 1148
1151 /* preamble length */ 1149 /* preamble length */
1152 value |= (((u32)adapter->hw.preamble_len & MAC_CTRL_PRMLEN_MASK) << 1150 value |= (((u32)adapter->hw.preamble_len & MAC_CTRL_PRMLEN_MASK) <<
1153 MAC_CTRL_PRMLEN_SHIFT); 1151 MAC_CTRL_PRMLEN_SHIFT);
1154 1152
1155 /* vlan */ 1153 /* vlan */
1156 if (adapter->vlgrp) 1154 if (adapter->vlgrp)
1157 value |= MAC_CTRL_RMV_VLAN; 1155 value |= MAC_CTRL_RMV_VLAN;
1158 1156
1159 /* filter mode */ 1157 /* filter mode */
1160 value |= MAC_CTRL_BC_EN; 1158 value |= MAC_CTRL_BC_EN;
1161 if (netdev->flags & IFF_PROMISC) 1159 if (netdev->flags & IFF_PROMISC)
1162 value |= MAC_CTRL_PROMIS_EN; 1160 value |= MAC_CTRL_PROMIS_EN;
1163 else if (netdev->flags & IFF_ALLMULTI) 1161 else if (netdev->flags & IFF_ALLMULTI)
1164 value |= MAC_CTRL_MC_ALL_EN; 1162 value |= MAC_CTRL_MC_ALL_EN;
1165 1163
1166 /* half retry buffer */ 1164 /* half retry buffer */
1167 value |= (((u32)(adapter->hw.retry_buf & 1165 value |= (((u32)(adapter->hw.retry_buf &
1168 MAC_CTRL_HALF_LEFT_BUF_MASK)) << MAC_CTRL_HALF_LEFT_BUF_SHIFT); 1166 MAC_CTRL_HALF_LEFT_BUF_MASK)) << MAC_CTRL_HALF_LEFT_BUF_SHIFT);
1169 1167
1170 ATL2_WRITE_REG(hw, REG_MAC_CTRL, value); 1168 ATL2_WRITE_REG(hw, REG_MAC_CTRL, value);
1171 } 1169 }
1172 1170
1173 static int atl2_check_link(struct atl2_adapter *adapter) 1171 static int atl2_check_link(struct atl2_adapter *adapter)
1174 { 1172 {
1175 struct atl2_hw *hw = &adapter->hw; 1173 struct atl2_hw *hw = &adapter->hw;
1176 struct net_device *netdev = adapter->netdev; 1174 struct net_device *netdev = adapter->netdev;
1177 int ret_val; 1175 int ret_val;
1178 u16 speed, duplex, phy_data; 1176 u16 speed, duplex, phy_data;
1179 int reconfig = 0; 1177 int reconfig = 0;
1180 1178
1181 /* MII_BMSR must read twise */ 1179 /* MII_BMSR must read twise */
1182 atl2_read_phy_reg(hw, MII_BMSR, &phy_data); 1180 atl2_read_phy_reg(hw, MII_BMSR, &phy_data);
1183 atl2_read_phy_reg(hw, MII_BMSR, &phy_data); 1181 atl2_read_phy_reg(hw, MII_BMSR, &phy_data);
1184 if (!(phy_data&BMSR_LSTATUS)) { /* link down */ 1182 if (!(phy_data&BMSR_LSTATUS)) { /* link down */
1185 if (netif_carrier_ok(netdev)) { /* old link state: Up */ 1183 if (netif_carrier_ok(netdev)) { /* old link state: Up */
1186 u32 value; 1184 u32 value;
1187 /* disable rx */ 1185 /* disable rx */
1188 value = ATL2_READ_REG(hw, REG_MAC_CTRL); 1186 value = ATL2_READ_REG(hw, REG_MAC_CTRL);
1189 value &= ~MAC_CTRL_RX_EN; 1187 value &= ~MAC_CTRL_RX_EN;
1190 ATL2_WRITE_REG(hw, REG_MAC_CTRL, value); 1188 ATL2_WRITE_REG(hw, REG_MAC_CTRL, value);
1191 adapter->link_speed = SPEED_0; 1189 adapter->link_speed = SPEED_0;
1192 netif_carrier_off(netdev); 1190 netif_carrier_off(netdev);
1193 netif_stop_queue(netdev); 1191 netif_stop_queue(netdev);
1194 } 1192 }
1195 return 0; 1193 return 0;
1196 } 1194 }
1197 1195
1198 /* Link Up */ 1196 /* Link Up */
1199 ret_val = atl2_get_speed_and_duplex(hw, &speed, &duplex); 1197 ret_val = atl2_get_speed_and_duplex(hw, &speed, &duplex);
1200 if (ret_val) 1198 if (ret_val)
1201 return ret_val; 1199 return ret_val;
1202 switch (hw->MediaType) { 1200 switch (hw->MediaType) {
1203 case MEDIA_TYPE_100M_FULL: 1201 case MEDIA_TYPE_100M_FULL:
1204 if (speed != SPEED_100 || duplex != FULL_DUPLEX) 1202 if (speed != SPEED_100 || duplex != FULL_DUPLEX)
1205 reconfig = 1; 1203 reconfig = 1;
1206 break; 1204 break;
1207 case MEDIA_TYPE_100M_HALF: 1205 case MEDIA_TYPE_100M_HALF:
1208 if (speed != SPEED_100 || duplex != HALF_DUPLEX) 1206 if (speed != SPEED_100 || duplex != HALF_DUPLEX)
1209 reconfig = 1; 1207 reconfig = 1;
1210 break; 1208 break;
1211 case MEDIA_TYPE_10M_FULL: 1209 case MEDIA_TYPE_10M_FULL:
1212 if (speed != SPEED_10 || duplex != FULL_DUPLEX) 1210 if (speed != SPEED_10 || duplex != FULL_DUPLEX)
1213 reconfig = 1; 1211 reconfig = 1;
1214 break; 1212 break;
1215 case MEDIA_TYPE_10M_HALF: 1213 case MEDIA_TYPE_10M_HALF:
1216 if (speed != SPEED_10 || duplex != HALF_DUPLEX) 1214 if (speed != SPEED_10 || duplex != HALF_DUPLEX)
1217 reconfig = 1; 1215 reconfig = 1;
1218 break; 1216 break;
1219 } 1217 }
1220 /* link result is our setting */ 1218 /* link result is our setting */
1221 if (reconfig == 0) { 1219 if (reconfig == 0) {
1222 if (adapter->link_speed != speed || 1220 if (adapter->link_speed != speed ||
1223 adapter->link_duplex != duplex) { 1221 adapter->link_duplex != duplex) {
1224 adapter->link_speed = speed; 1222 adapter->link_speed = speed;
1225 adapter->link_duplex = duplex; 1223 adapter->link_duplex = duplex;
1226 atl2_setup_mac_ctrl(adapter); 1224 atl2_setup_mac_ctrl(adapter);
1227 printk(KERN_INFO "%s: %s NIC Link is Up<%d Mbps %s>\n", 1225 printk(KERN_INFO "%s: %s NIC Link is Up<%d Mbps %s>\n",
1228 atl2_driver_name, netdev->name, 1226 atl2_driver_name, netdev->name,
1229 adapter->link_speed, 1227 adapter->link_speed,
1230 adapter->link_duplex == FULL_DUPLEX ? 1228 adapter->link_duplex == FULL_DUPLEX ?
1231 "Full Duplex" : "Half Duplex"); 1229 "Full Duplex" : "Half Duplex");
1232 } 1230 }
1233 1231
1234 if (!netif_carrier_ok(netdev)) { /* Link down -> Up */ 1232 if (!netif_carrier_ok(netdev)) { /* Link down -> Up */
1235 netif_carrier_on(netdev); 1233 netif_carrier_on(netdev);
1236 netif_wake_queue(netdev); 1234 netif_wake_queue(netdev);
1237 } 1235 }
1238 return 0; 1236 return 0;
1239 } 1237 }
1240 1238
1241 /* change original link status */ 1239 /* change original link status */
1242 if (netif_carrier_ok(netdev)) { 1240 if (netif_carrier_ok(netdev)) {
1243 u32 value; 1241 u32 value;
1244 /* disable rx */ 1242 /* disable rx */
1245 value = ATL2_READ_REG(hw, REG_MAC_CTRL); 1243 value = ATL2_READ_REG(hw, REG_MAC_CTRL);
1246 value &= ~MAC_CTRL_RX_EN; 1244 value &= ~MAC_CTRL_RX_EN;
1247 ATL2_WRITE_REG(hw, REG_MAC_CTRL, value); 1245 ATL2_WRITE_REG(hw, REG_MAC_CTRL, value);
1248 1246
1249 adapter->link_speed = SPEED_0; 1247 adapter->link_speed = SPEED_0;
1250 netif_carrier_off(netdev); 1248 netif_carrier_off(netdev);
1251 netif_stop_queue(netdev); 1249 netif_stop_queue(netdev);
1252 } 1250 }
1253 1251
1254 /* auto-neg, insert timer to re-config phy 1252 /* auto-neg, insert timer to re-config phy
1255 * (if interval smaller than 5 seconds, something strange) */ 1253 * (if interval smaller than 5 seconds, something strange) */
1256 if (!test_bit(__ATL2_DOWN, &adapter->flags)) { 1254 if (!test_bit(__ATL2_DOWN, &adapter->flags)) {
1257 if (!test_and_set_bit(0, &adapter->cfg_phy)) 1255 if (!test_and_set_bit(0, &adapter->cfg_phy))
1258 mod_timer(&adapter->phy_config_timer, 1256 mod_timer(&adapter->phy_config_timer,
1259 round_jiffies(jiffies + 5 * HZ)); 1257 round_jiffies(jiffies + 5 * HZ));
1260 } 1258 }
1261 1259
1262 return 0; 1260 return 0;
1263 } 1261 }
1264 1262
1265 /* 1263 /*
1266 * atl2_link_chg_task - deal with link change event Out of interrupt context 1264 * atl2_link_chg_task - deal with link change event Out of interrupt context
1267 * @netdev: network interface device structure 1265 * @netdev: network interface device structure
1268 */ 1266 */
1269 static void atl2_link_chg_task(struct work_struct *work) 1267 static void atl2_link_chg_task(struct work_struct *work)
1270 { 1268 {
1271 struct atl2_adapter *adapter; 1269 struct atl2_adapter *adapter;
1272 unsigned long flags; 1270 unsigned long flags;
1273 1271
1274 adapter = container_of(work, struct atl2_adapter, link_chg_task); 1272 adapter = container_of(work, struct atl2_adapter, link_chg_task);
1275 1273
1276 spin_lock_irqsave(&adapter->stats_lock, flags); 1274 spin_lock_irqsave(&adapter->stats_lock, flags);
1277 atl2_check_link(adapter); 1275 atl2_check_link(adapter);
1278 spin_unlock_irqrestore(&adapter->stats_lock, flags); 1276 spin_unlock_irqrestore(&adapter->stats_lock, flags);
1279 } 1277 }
1280 1278
1281 static void atl2_setup_pcicmd(struct pci_dev *pdev) 1279 static void atl2_setup_pcicmd(struct pci_dev *pdev)
1282 { 1280 {
1283 u16 cmd; 1281 u16 cmd;
1284 1282
1285 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 1283 pci_read_config_word(pdev, PCI_COMMAND, &cmd);
1286 1284
1287 if (cmd & PCI_COMMAND_INTX_DISABLE) 1285 if (cmd & PCI_COMMAND_INTX_DISABLE)
1288 cmd &= ~PCI_COMMAND_INTX_DISABLE; 1286 cmd &= ~PCI_COMMAND_INTX_DISABLE;
1289 if (cmd & PCI_COMMAND_IO) 1287 if (cmd & PCI_COMMAND_IO)
1290 cmd &= ~PCI_COMMAND_IO; 1288 cmd &= ~PCI_COMMAND_IO;
1291 if (0 == (cmd & PCI_COMMAND_MEMORY)) 1289 if (0 == (cmd & PCI_COMMAND_MEMORY))
1292 cmd |= PCI_COMMAND_MEMORY; 1290 cmd |= PCI_COMMAND_MEMORY;
1293 if (0 == (cmd & PCI_COMMAND_MASTER)) 1291 if (0 == (cmd & PCI_COMMAND_MASTER))
1294 cmd |= PCI_COMMAND_MASTER; 1292 cmd |= PCI_COMMAND_MASTER;
1295 pci_write_config_word(pdev, PCI_COMMAND, cmd); 1293 pci_write_config_word(pdev, PCI_COMMAND, cmd);
1296 1294
1297 /* 1295 /*
1298 * some motherboards BIOS(PXE/EFI) driver may set PME 1296 * some motherboards BIOS(PXE/EFI) driver may set PME
1299 * while they transfer control to OS (Windows/Linux) 1297 * while they transfer control to OS (Windows/Linux)
1300 * so we should clear this bit before NIC work normally 1298 * so we should clear this bit before NIC work normally
1301 */ 1299 */
1302 pci_write_config_dword(pdev, REG_PM_CTRLSTAT, 0); 1300 pci_write_config_dword(pdev, REG_PM_CTRLSTAT, 0);
1303 } 1301 }
1304 1302
1305 #ifdef CONFIG_NET_POLL_CONTROLLER 1303 #ifdef CONFIG_NET_POLL_CONTROLLER
1306 static void atl2_poll_controller(struct net_device *netdev) 1304 static void atl2_poll_controller(struct net_device *netdev)
1307 { 1305 {
1308 disable_irq(netdev->irq); 1306 disable_irq(netdev->irq);
1309 atl2_intr(netdev->irq, netdev); 1307 atl2_intr(netdev->irq, netdev);
1310 enable_irq(netdev->irq); 1308 enable_irq(netdev->irq);
1311 } 1309 }
1312 #endif 1310 #endif
1313 1311
1314 1312
1315 static const struct net_device_ops atl2_netdev_ops = { 1313 static const struct net_device_ops atl2_netdev_ops = {
1316 .ndo_open = atl2_open, 1314 .ndo_open = atl2_open,
1317 .ndo_stop = atl2_close, 1315 .ndo_stop = atl2_close,
1318 .ndo_start_xmit = atl2_xmit_frame, 1316 .ndo_start_xmit = atl2_xmit_frame,
1319 .ndo_set_multicast_list = atl2_set_multi, 1317 .ndo_set_multicast_list = atl2_set_multi,
1320 .ndo_validate_addr = eth_validate_addr, 1318 .ndo_validate_addr = eth_validate_addr,
1321 .ndo_set_mac_address = atl2_set_mac, 1319 .ndo_set_mac_address = atl2_set_mac,
1322 .ndo_change_mtu = atl2_change_mtu, 1320 .ndo_change_mtu = atl2_change_mtu,
1323 .ndo_do_ioctl = atl2_ioctl, 1321 .ndo_do_ioctl = atl2_ioctl,
1324 .ndo_tx_timeout = atl2_tx_timeout, 1322 .ndo_tx_timeout = atl2_tx_timeout,
1325 .ndo_vlan_rx_register = atl2_vlan_rx_register, 1323 .ndo_vlan_rx_register = atl2_vlan_rx_register,
1326 #ifdef CONFIG_NET_POLL_CONTROLLER 1324 #ifdef CONFIG_NET_POLL_CONTROLLER
1327 .ndo_poll_controller = atl2_poll_controller, 1325 .ndo_poll_controller = atl2_poll_controller,
1328 #endif 1326 #endif
1329 }; 1327 };
1330 1328
1331 /* 1329 /*
1332 * atl2_probe - Device Initialization Routine 1330 * atl2_probe - Device Initialization Routine
1333 * @pdev: PCI device information struct 1331 * @pdev: PCI device information struct
1334 * @ent: entry in atl2_pci_tbl 1332 * @ent: entry in atl2_pci_tbl
1335 * 1333 *
1336 * Returns 0 on success, negative on failure 1334 * Returns 0 on success, negative on failure
1337 * 1335 *
1338 * atl2_probe initializes an adapter identified by a pci_dev structure. 1336 * atl2_probe initializes an adapter identified by a pci_dev structure.
1339 * The OS initialization, configuring of the adapter private structure, 1337 * The OS initialization, configuring of the adapter private structure,
1340 * and a hardware reset occur. 1338 * and a hardware reset occur.
1341 */ 1339 */
1342 static int __devinit atl2_probe(struct pci_dev *pdev, 1340 static int __devinit atl2_probe(struct pci_dev *pdev,
1343 const struct pci_device_id *ent) 1341 const struct pci_device_id *ent)
1344 { 1342 {
1345 struct net_device *netdev; 1343 struct net_device *netdev;
1346 struct atl2_adapter *adapter; 1344 struct atl2_adapter *adapter;
1347 static int cards_found; 1345 static int cards_found;
1348 unsigned long mmio_start; 1346 unsigned long mmio_start;
1349 int mmio_len; 1347 int mmio_len;
1350 int err; 1348 int err;
1351 1349
1352 cards_found = 0; 1350 cards_found = 0;
1353 1351
1354 err = pci_enable_device(pdev); 1352 err = pci_enable_device(pdev);
1355 if (err) 1353 if (err)
1356 return err; 1354 return err;
1357 1355
1358 /* 1356 /*
1359 * atl2 is a shared-high-32-bit device, so we're stuck with 32-bit DMA 1357 * atl2 is a shared-high-32-bit device, so we're stuck with 32-bit DMA
1360 * until the kernel has the proper infrastructure to support 64-bit DMA 1358 * until the kernel has the proper infrastructure to support 64-bit DMA
1361 * on these devices. 1359 * on these devices.
1362 */ 1360 */
1363 if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) && 1361 if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) &&
1364 pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK)) { 1362 pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK)) {
1365 printk(KERN_ERR "atl2: No usable DMA configuration, aborting\n"); 1363 printk(KERN_ERR "atl2: No usable DMA configuration, aborting\n");
1366 goto err_dma; 1364 goto err_dma;
1367 } 1365 }
1368 1366
1369 /* Mark all PCI regions associated with PCI device 1367 /* Mark all PCI regions associated with PCI device
1370 * pdev as being reserved by owner atl2_driver_name */ 1368 * pdev as being reserved by owner atl2_driver_name */
1371 err = pci_request_regions(pdev, atl2_driver_name); 1369 err = pci_request_regions(pdev, atl2_driver_name);
1372 if (err) 1370 if (err)
1373 goto err_pci_reg; 1371 goto err_pci_reg;
1374 1372
1375 /* Enables bus-mastering on the device and calls 1373 /* Enables bus-mastering on the device and calls
1376 * pcibios_set_master to do the needed arch specific settings */ 1374 * pcibios_set_master to do the needed arch specific settings */
1377 pci_set_master(pdev); 1375 pci_set_master(pdev);
1378 1376
1379 err = -ENOMEM; 1377 err = -ENOMEM;
1380 netdev = alloc_etherdev(sizeof(struct atl2_adapter)); 1378 netdev = alloc_etherdev(sizeof(struct atl2_adapter));
1381 if (!netdev) 1379 if (!netdev)
1382 goto err_alloc_etherdev; 1380 goto err_alloc_etherdev;
1383 1381
1384 SET_NETDEV_DEV(netdev, &pdev->dev); 1382 SET_NETDEV_DEV(netdev, &pdev->dev);
1385 1383
1386 pci_set_drvdata(pdev, netdev); 1384 pci_set_drvdata(pdev, netdev);
1387 adapter = netdev_priv(netdev); 1385 adapter = netdev_priv(netdev);
1388 adapter->netdev = netdev; 1386 adapter->netdev = netdev;
1389 adapter->pdev = pdev; 1387 adapter->pdev = pdev;
1390 adapter->hw.back = adapter; 1388 adapter->hw.back = adapter;
1391 1389
1392 mmio_start = pci_resource_start(pdev, 0x0); 1390 mmio_start = pci_resource_start(pdev, 0x0);
1393 mmio_len = pci_resource_len(pdev, 0x0); 1391 mmio_len = pci_resource_len(pdev, 0x0);
1394 1392
1395 adapter->hw.mem_rang = (u32)mmio_len; 1393 adapter->hw.mem_rang = (u32)mmio_len;
1396 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len); 1394 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
1397 if (!adapter->hw.hw_addr) { 1395 if (!adapter->hw.hw_addr) {
1398 err = -EIO; 1396 err = -EIO;
1399 goto err_ioremap; 1397 goto err_ioremap;
1400 } 1398 }
1401 1399
1402 atl2_setup_pcicmd(pdev); 1400 atl2_setup_pcicmd(pdev);
1403 1401
1404 netdev->netdev_ops = &atl2_netdev_ops; 1402 netdev->netdev_ops = &atl2_netdev_ops;
1405 atl2_set_ethtool_ops(netdev); 1403 atl2_set_ethtool_ops(netdev);
1406 netdev->watchdog_timeo = 5 * HZ; 1404 netdev->watchdog_timeo = 5 * HZ;
1407 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 1405 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1408 1406
1409 netdev->mem_start = mmio_start; 1407 netdev->mem_start = mmio_start;
1410 netdev->mem_end = mmio_start + mmio_len; 1408 netdev->mem_end = mmio_start + mmio_len;
1411 adapter->bd_number = cards_found; 1409 adapter->bd_number = cards_found;
1412 adapter->pci_using_64 = false; 1410 adapter->pci_using_64 = false;
1413 1411
1414 /* setup the private structure */ 1412 /* setup the private structure */
1415 err = atl2_sw_init(adapter); 1413 err = atl2_sw_init(adapter);
1416 if (err) 1414 if (err)
1417 goto err_sw_init; 1415 goto err_sw_init;
1418 1416
1419 err = -EIO; 1417 err = -EIO;
1420 1418
1421 #ifdef NETIF_F_HW_VLAN_TX 1419 #ifdef NETIF_F_HW_VLAN_TX
1422 netdev->features |= (NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX); 1420 netdev->features |= (NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX);
1423 #endif 1421 #endif
1424 1422
1425 /* Init PHY as early as possible due to power saving issue */ 1423 /* Init PHY as early as possible due to power saving issue */
1426 atl2_phy_init(&adapter->hw); 1424 atl2_phy_init(&adapter->hw);
1427 1425
1428 /* reset the controller to 1426 /* reset the controller to
1429 * put the device in a known good starting state */ 1427 * put the device in a known good starting state */
1430 1428
1431 if (atl2_reset_hw(&adapter->hw)) { 1429 if (atl2_reset_hw(&adapter->hw)) {
1432 err = -EIO; 1430 err = -EIO;
1433 goto err_reset; 1431 goto err_reset;
1434 } 1432 }
1435 1433
1436 /* copy the MAC address out of the EEPROM */ 1434 /* copy the MAC address out of the EEPROM */
1437 atl2_read_mac_addr(&adapter->hw); 1435 atl2_read_mac_addr(&adapter->hw);
1438 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len); 1436 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
1439 /* FIXME: do we still need this? */ 1437 /* FIXME: do we still need this? */
1440 #ifdef ETHTOOL_GPERMADDR 1438 #ifdef ETHTOOL_GPERMADDR
1441 memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len); 1439 memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
1442 1440
1443 if (!is_valid_ether_addr(netdev->perm_addr)) { 1441 if (!is_valid_ether_addr(netdev->perm_addr)) {
1444 #else 1442 #else
1445 if (!is_valid_ether_addr(netdev->dev_addr)) { 1443 if (!is_valid_ether_addr(netdev->dev_addr)) {
1446 #endif 1444 #endif
1447 err = -EIO; 1445 err = -EIO;
1448 goto err_eeprom; 1446 goto err_eeprom;
1449 } 1447 }
1450 1448
1451 atl2_check_options(adapter); 1449 atl2_check_options(adapter);
1452 1450
1453 init_timer(&adapter->watchdog_timer); 1451 init_timer(&adapter->watchdog_timer);
1454 adapter->watchdog_timer.function = &atl2_watchdog; 1452 adapter->watchdog_timer.function = &atl2_watchdog;
1455 adapter->watchdog_timer.data = (unsigned long) adapter; 1453 adapter->watchdog_timer.data = (unsigned long) adapter;
1456 1454
1457 init_timer(&adapter->phy_config_timer); 1455 init_timer(&adapter->phy_config_timer);
1458 adapter->phy_config_timer.function = &atl2_phy_config; 1456 adapter->phy_config_timer.function = &atl2_phy_config;
1459 adapter->phy_config_timer.data = (unsigned long) adapter; 1457 adapter->phy_config_timer.data = (unsigned long) adapter;
1460 1458
1461 INIT_WORK(&adapter->reset_task, atl2_reset_task); 1459 INIT_WORK(&adapter->reset_task, atl2_reset_task);
1462 INIT_WORK(&adapter->link_chg_task, atl2_link_chg_task); 1460 INIT_WORK(&adapter->link_chg_task, atl2_link_chg_task);
1463 1461
1464 strcpy(netdev->name, "eth%d"); /* ?? */ 1462 strcpy(netdev->name, "eth%d"); /* ?? */
1465 err = register_netdev(netdev); 1463 err = register_netdev(netdev);
1466 if (err) 1464 if (err)
1467 goto err_register; 1465 goto err_register;
1468 1466
1469 /* assume we have no link for now */ 1467 /* assume we have no link for now */
1470 netif_carrier_off(netdev); 1468 netif_carrier_off(netdev);
1471 netif_stop_queue(netdev); 1469 netif_stop_queue(netdev);
1472 1470
1473 cards_found++; 1471 cards_found++;
1474 1472
1475 return 0; 1473 return 0;
1476 1474
1477 err_reset: 1475 err_reset:
1478 err_register: 1476 err_register:
1479 err_sw_init: 1477 err_sw_init:
1480 err_eeprom: 1478 err_eeprom:
1481 iounmap(adapter->hw.hw_addr); 1479 iounmap(adapter->hw.hw_addr);
1482 err_ioremap: 1480 err_ioremap:
1483 free_netdev(netdev); 1481 free_netdev(netdev);
1484 err_alloc_etherdev: 1482 err_alloc_etherdev:
1485 pci_release_regions(pdev); 1483 pci_release_regions(pdev);
1486 err_pci_reg: 1484 err_pci_reg:
1487 err_dma: 1485 err_dma:
1488 pci_disable_device(pdev); 1486 pci_disable_device(pdev);
1489 return err; 1487 return err;
1490 } 1488 }
1491 1489
1492 /* 1490 /*
1493 * atl2_remove - Device Removal Routine 1491 * atl2_remove - Device Removal Routine
1494 * @pdev: PCI device information struct 1492 * @pdev: PCI device information struct
1495 * 1493 *
1496 * atl2_remove is called by the PCI subsystem to alert the driver 1494 * atl2_remove is called by the PCI subsystem to alert the driver
1497 * that it should release a PCI device. The could be caused by a 1495 * that it should release a PCI device. The could be caused by a
1498 * Hot-Plug event, or because the driver is going to be removed from 1496 * Hot-Plug event, or because the driver is going to be removed from
1499 * memory. 1497 * memory.
1500 */ 1498 */
1501 /* FIXME: write the original MAC address back in case it was changed from a 1499 /* FIXME: write the original MAC address back in case it was changed from a
1502 * BIOS-set value, as in atl1 -- CHS */ 1500 * BIOS-set value, as in atl1 -- CHS */
1503 static void __devexit atl2_remove(struct pci_dev *pdev) 1501 static void __devexit atl2_remove(struct pci_dev *pdev)
1504 { 1502 {
1505 struct net_device *netdev = pci_get_drvdata(pdev); 1503 struct net_device *netdev = pci_get_drvdata(pdev);
1506 struct atl2_adapter *adapter = netdev_priv(netdev); 1504 struct atl2_adapter *adapter = netdev_priv(netdev);
1507 1505
1508 /* flush_scheduled work may reschedule our watchdog task, so 1506 /* flush_scheduled work may reschedule our watchdog task, so
1509 * explicitly disable watchdog tasks from being rescheduled */ 1507 * explicitly disable watchdog tasks from being rescheduled */
1510 set_bit(__ATL2_DOWN, &adapter->flags); 1508 set_bit(__ATL2_DOWN, &adapter->flags);
1511 1509
1512 del_timer_sync(&adapter->watchdog_timer); 1510 del_timer_sync(&adapter->watchdog_timer);
1513 del_timer_sync(&adapter->phy_config_timer); 1511 del_timer_sync(&adapter->phy_config_timer);
1514 1512
1515 flush_scheduled_work(); 1513 flush_scheduled_work();
1516 1514
1517 unregister_netdev(netdev); 1515 unregister_netdev(netdev);
1518 1516
1519 atl2_force_ps(&adapter->hw); 1517 atl2_force_ps(&adapter->hw);
1520 1518
1521 iounmap(adapter->hw.hw_addr); 1519 iounmap(adapter->hw.hw_addr);
1522 pci_release_regions(pdev); 1520 pci_release_regions(pdev);
1523 1521
1524 free_netdev(netdev); 1522 free_netdev(netdev);
1525 1523
1526 pci_disable_device(pdev); 1524 pci_disable_device(pdev);
1527 } 1525 }
1528 1526
1529 static int atl2_suspend(struct pci_dev *pdev, pm_message_t state) 1527 static int atl2_suspend(struct pci_dev *pdev, pm_message_t state)
1530 { 1528 {
1531 struct net_device *netdev = pci_get_drvdata(pdev); 1529 struct net_device *netdev = pci_get_drvdata(pdev);
1532 struct atl2_adapter *adapter = netdev_priv(netdev); 1530 struct atl2_adapter *adapter = netdev_priv(netdev);
1533 struct atl2_hw *hw = &adapter->hw; 1531 struct atl2_hw *hw = &adapter->hw;
1534 u16 speed, duplex; 1532 u16 speed, duplex;
1535 u32 ctrl = 0; 1533 u32 ctrl = 0;
1536 u32 wufc = adapter->wol; 1534 u32 wufc = adapter->wol;
1537 1535
1538 #ifdef CONFIG_PM 1536 #ifdef CONFIG_PM
1539 int retval = 0; 1537 int retval = 0;
1540 #endif 1538 #endif
1541 1539
1542 netif_device_detach(netdev); 1540 netif_device_detach(netdev);
1543 1541
1544 if (netif_running(netdev)) { 1542 if (netif_running(netdev)) {
1545 WARN_ON(test_bit(__ATL2_RESETTING, &adapter->flags)); 1543 WARN_ON(test_bit(__ATL2_RESETTING, &adapter->flags));
1546 atl2_down(adapter); 1544 atl2_down(adapter);
1547 } 1545 }
1548 1546
1549 #ifdef CONFIG_PM 1547 #ifdef CONFIG_PM
1550 retval = pci_save_state(pdev); 1548 retval = pci_save_state(pdev);
1551 if (retval) 1549 if (retval)
1552 return retval; 1550 return retval;
1553 #endif 1551 #endif
1554 1552
1555 atl2_read_phy_reg(hw, MII_BMSR, (u16 *)&ctrl); 1553 atl2_read_phy_reg(hw, MII_BMSR, (u16 *)&ctrl);
1556 atl2_read_phy_reg(hw, MII_BMSR, (u16 *)&ctrl); 1554 atl2_read_phy_reg(hw, MII_BMSR, (u16 *)&ctrl);
1557 if (ctrl & BMSR_LSTATUS) 1555 if (ctrl & BMSR_LSTATUS)
1558 wufc &= ~ATLX_WUFC_LNKC; 1556 wufc &= ~ATLX_WUFC_LNKC;
1559 1557
1560 if (0 != (ctrl & BMSR_LSTATUS) && 0 != wufc) { 1558 if (0 != (ctrl & BMSR_LSTATUS) && 0 != wufc) {
1561 u32 ret_val; 1559 u32 ret_val;
1562 /* get current link speed & duplex */ 1560 /* get current link speed & duplex */
1563 ret_val = atl2_get_speed_and_duplex(hw, &speed, &duplex); 1561 ret_val = atl2_get_speed_and_duplex(hw, &speed, &duplex);
1564 if (ret_val) { 1562 if (ret_val) {
1565 printk(KERN_DEBUG 1563 printk(KERN_DEBUG
1566 "%s: get speed&duplex error while suspend\n", 1564 "%s: get speed&duplex error while suspend\n",
1567 atl2_driver_name); 1565 atl2_driver_name);
1568 goto wol_dis; 1566 goto wol_dis;
1569 } 1567 }
1570 1568
1571 ctrl = 0; 1569 ctrl = 0;
1572 1570
1573 /* turn on magic packet wol */ 1571 /* turn on magic packet wol */
1574 if (wufc & ATLX_WUFC_MAG) 1572 if (wufc & ATLX_WUFC_MAG)
1575 ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN); 1573 ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN);
1576 1574
1577 /* ignore Link Chg event when Link is up */ 1575 /* ignore Link Chg event when Link is up */
1578 ATL2_WRITE_REG(hw, REG_WOL_CTRL, ctrl); 1576 ATL2_WRITE_REG(hw, REG_WOL_CTRL, ctrl);
1579 1577
1580 /* Config MAC CTRL Register */ 1578 /* Config MAC CTRL Register */
1581 ctrl = MAC_CTRL_RX_EN | MAC_CTRL_MACLP_CLK_PHY; 1579 ctrl = MAC_CTRL_RX_EN | MAC_CTRL_MACLP_CLK_PHY;
1582 if (FULL_DUPLEX == adapter->link_duplex) 1580 if (FULL_DUPLEX == adapter->link_duplex)
1583 ctrl |= MAC_CTRL_DUPLX; 1581 ctrl |= MAC_CTRL_DUPLX;
1584 ctrl |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD); 1582 ctrl |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
1585 ctrl |= (((u32)adapter->hw.preamble_len & 1583 ctrl |= (((u32)adapter->hw.preamble_len &
1586 MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT); 1584 MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
1587 ctrl |= (((u32)(adapter->hw.retry_buf & 1585 ctrl |= (((u32)(adapter->hw.retry_buf &
1588 MAC_CTRL_HALF_LEFT_BUF_MASK)) << 1586 MAC_CTRL_HALF_LEFT_BUF_MASK)) <<
1589 MAC_CTRL_HALF_LEFT_BUF_SHIFT); 1587 MAC_CTRL_HALF_LEFT_BUF_SHIFT);
1590 if (wufc & ATLX_WUFC_MAG) { 1588 if (wufc & ATLX_WUFC_MAG) {
1591 /* magic packet maybe Broadcast&multicast&Unicast */ 1589 /* magic packet maybe Broadcast&multicast&Unicast */
1592 ctrl |= MAC_CTRL_BC_EN; 1590 ctrl |= MAC_CTRL_BC_EN;
1593 } 1591 }
1594 1592
1595 ATL2_WRITE_REG(hw, REG_MAC_CTRL, ctrl); 1593 ATL2_WRITE_REG(hw, REG_MAC_CTRL, ctrl);
1596 1594
1597 /* pcie patch */ 1595 /* pcie patch */
1598 ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC); 1596 ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC);
1599 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET; 1597 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
1600 ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl); 1598 ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
1601 ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1); 1599 ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1);
1602 ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK; 1600 ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK;
1603 ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl); 1601 ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl);
1604 1602
1605 pci_enable_wake(pdev, pci_choose_state(pdev, state), 1); 1603 pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
1606 goto suspend_exit; 1604 goto suspend_exit;
1607 } 1605 }
1608 1606
1609 if (0 == (ctrl&BMSR_LSTATUS) && 0 != (wufc&ATLX_WUFC_LNKC)) { 1607 if (0 == (ctrl&BMSR_LSTATUS) && 0 != (wufc&ATLX_WUFC_LNKC)) {
1610 /* link is down, so only LINK CHG WOL event enable */ 1608 /* link is down, so only LINK CHG WOL event enable */
1611 ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN); 1609 ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
1612 ATL2_WRITE_REG(hw, REG_WOL_CTRL, ctrl); 1610 ATL2_WRITE_REG(hw, REG_WOL_CTRL, ctrl);
1613 ATL2_WRITE_REG(hw, REG_MAC_CTRL, 0); 1611 ATL2_WRITE_REG(hw, REG_MAC_CTRL, 0);
1614 1612
1615 /* pcie patch */ 1613 /* pcie patch */
1616 ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC); 1614 ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC);
1617 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET; 1615 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
1618 ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl); 1616 ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
1619 ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1); 1617 ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1);
1620 ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK; 1618 ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK;
1621 ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl); 1619 ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl);
1622 1620
1623 hw->phy_configured = false; /* re-init PHY when resume */ 1621 hw->phy_configured = false; /* re-init PHY when resume */
1624 1622
1625 pci_enable_wake(pdev, pci_choose_state(pdev, state), 1); 1623 pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
1626 1624
1627 goto suspend_exit; 1625 goto suspend_exit;
1628 } 1626 }
1629 1627
1630 wol_dis: 1628 wol_dis:
1631 /* WOL disabled */ 1629 /* WOL disabled */
1632 ATL2_WRITE_REG(hw, REG_WOL_CTRL, 0); 1630 ATL2_WRITE_REG(hw, REG_WOL_CTRL, 0);
1633 1631
1634 /* pcie patch */ 1632 /* pcie patch */
1635 ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC); 1633 ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC);
1636 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET; 1634 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
1637 ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl); 1635 ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
1638 ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1); 1636 ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1);
1639 ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK; 1637 ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK;
1640 ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl); 1638 ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl);
1641 1639
1642 atl2_force_ps(hw); 1640 atl2_force_ps(hw);
1643 hw->phy_configured = false; /* re-init PHY when resume */ 1641 hw->phy_configured = false; /* re-init PHY when resume */
1644 1642
1645 pci_enable_wake(pdev, pci_choose_state(pdev, state), 0); 1643 pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
1646 1644
1647 suspend_exit: 1645 suspend_exit:
1648 if (netif_running(netdev)) 1646 if (netif_running(netdev))
1649 atl2_free_irq(adapter); 1647 atl2_free_irq(adapter);
1650 1648
1651 pci_disable_device(pdev); 1649 pci_disable_device(pdev);
1652 1650
1653 pci_set_power_state(pdev, pci_choose_state(pdev, state)); 1651 pci_set_power_state(pdev, pci_choose_state(pdev, state));
1654 1652
1655 return 0; 1653 return 0;
1656 } 1654 }
1657 1655
1658 #ifdef CONFIG_PM 1656 #ifdef CONFIG_PM
1659 static int atl2_resume(struct pci_dev *pdev) 1657 static int atl2_resume(struct pci_dev *pdev)
1660 { 1658 {
1661 struct net_device *netdev = pci_get_drvdata(pdev); 1659 struct net_device *netdev = pci_get_drvdata(pdev);
1662 struct atl2_adapter *adapter = netdev_priv(netdev); 1660 struct atl2_adapter *adapter = netdev_priv(netdev);
1663 u32 err; 1661 u32 err;
1664 1662
1665 pci_set_power_state(pdev, PCI_D0); 1663 pci_set_power_state(pdev, PCI_D0);
1666 pci_restore_state(pdev); 1664 pci_restore_state(pdev);
1667 1665
1668 err = pci_enable_device(pdev); 1666 err = pci_enable_device(pdev);
1669 if (err) { 1667 if (err) {
1670 printk(KERN_ERR 1668 printk(KERN_ERR
1671 "atl2: Cannot enable PCI device from suspend\n"); 1669 "atl2: Cannot enable PCI device from suspend\n");
1672 return err; 1670 return err;
1673 } 1671 }
1674 1672
1675 pci_set_master(pdev); 1673 pci_set_master(pdev);
1676 1674
1677 ATL2_READ_REG(&adapter->hw, REG_WOL_CTRL); /* clear WOL status */ 1675 ATL2_READ_REG(&adapter->hw, REG_WOL_CTRL); /* clear WOL status */
1678 1676
1679 pci_enable_wake(pdev, PCI_D3hot, 0); 1677 pci_enable_wake(pdev, PCI_D3hot, 0);
1680 pci_enable_wake(pdev, PCI_D3cold, 0); 1678 pci_enable_wake(pdev, PCI_D3cold, 0);
1681 1679
1682 ATL2_WRITE_REG(&adapter->hw, REG_WOL_CTRL, 0); 1680 ATL2_WRITE_REG(&adapter->hw, REG_WOL_CTRL, 0);
1683 1681
1684 if (netif_running(netdev)) { 1682 if (netif_running(netdev)) {
1685 err = atl2_request_irq(adapter); 1683 err = atl2_request_irq(adapter);
1686 if (err) 1684 if (err)
1687 return err; 1685 return err;
1688 } 1686 }
1689 1687
1690 atl2_reset_hw(&adapter->hw); 1688 atl2_reset_hw(&adapter->hw);
1691 1689
1692 if (netif_running(netdev)) 1690 if (netif_running(netdev))
1693 atl2_up(adapter); 1691 atl2_up(adapter);
1694 1692
1695 netif_device_attach(netdev); 1693 netif_device_attach(netdev);
1696 1694
1697 return 0; 1695 return 0;
1698 } 1696 }
1699 #endif 1697 #endif
1700 1698
1701 static void atl2_shutdown(struct pci_dev *pdev) 1699 static void atl2_shutdown(struct pci_dev *pdev)
1702 { 1700 {
1703 atl2_suspend(pdev, PMSG_SUSPEND); 1701 atl2_suspend(pdev, PMSG_SUSPEND);
1704 } 1702 }
1705 1703
1706 static struct pci_driver atl2_driver = { 1704 static struct pci_driver atl2_driver = {
1707 .name = atl2_driver_name, 1705 .name = atl2_driver_name,
1708 .id_table = atl2_pci_tbl, 1706 .id_table = atl2_pci_tbl,
1709 .probe = atl2_probe, 1707 .probe = atl2_probe,
1710 .remove = __devexit_p(atl2_remove), 1708 .remove = __devexit_p(atl2_remove),
1711 /* Power Managment Hooks */ 1709 /* Power Managment Hooks */
1712 .suspend = atl2_suspend, 1710 .suspend = atl2_suspend,
1713 #ifdef CONFIG_PM 1711 #ifdef CONFIG_PM
1714 .resume = atl2_resume, 1712 .resume = atl2_resume,
1715 #endif 1713 #endif
1716 .shutdown = atl2_shutdown, 1714 .shutdown = atl2_shutdown,
1717 }; 1715 };
1718 1716
1719 /* 1717 /*
1720 * atl2_init_module - Driver Registration Routine 1718 * atl2_init_module - Driver Registration Routine
1721 * 1719 *
1722 * atl2_init_module is the first routine called when the driver is 1720 * atl2_init_module is the first routine called when the driver is
1723 * loaded. All it does is register with the PCI subsystem. 1721 * loaded. All it does is register with the PCI subsystem.
1724 */ 1722 */
1725 static int __init atl2_init_module(void) 1723 static int __init atl2_init_module(void)
1726 { 1724 {
1727 printk(KERN_INFO "%s - version %s\n", atl2_driver_string, 1725 printk(KERN_INFO "%s - version %s\n", atl2_driver_string,
1728 atl2_driver_version); 1726 atl2_driver_version);
1729 printk(KERN_INFO "%s\n", atl2_copyright); 1727 printk(KERN_INFO "%s\n", atl2_copyright);
1730 return pci_register_driver(&atl2_driver); 1728 return pci_register_driver(&atl2_driver);
1731 } 1729 }
1732 module_init(atl2_init_module); 1730 module_init(atl2_init_module);
1733 1731
1734 /* 1732 /*
1735 * atl2_exit_module - Driver Exit Cleanup Routine 1733 * atl2_exit_module - Driver Exit Cleanup Routine
1736 * 1734 *
1737 * atl2_exit_module is called just before the driver is removed 1735 * atl2_exit_module is called just before the driver is removed
1738 * from memory. 1736 * from memory.
1739 */ 1737 */
1740 static void __exit atl2_exit_module(void) 1738 static void __exit atl2_exit_module(void)
1741 { 1739 {
1742 pci_unregister_driver(&atl2_driver); 1740 pci_unregister_driver(&atl2_driver);
1743 } 1741 }
1744 module_exit(atl2_exit_module); 1742 module_exit(atl2_exit_module);
1745 1743
1746 static void atl2_read_pci_cfg(struct atl2_hw *hw, u32 reg, u16 *value) 1744 static void atl2_read_pci_cfg(struct atl2_hw *hw, u32 reg, u16 *value)
1747 { 1745 {
1748 struct atl2_adapter *adapter = hw->back; 1746 struct atl2_adapter *adapter = hw->back;
1749 pci_read_config_word(adapter->pdev, reg, value); 1747 pci_read_config_word(adapter->pdev, reg, value);
1750 } 1748 }
1751 1749
1752 static void atl2_write_pci_cfg(struct atl2_hw *hw, u32 reg, u16 *value) 1750 static void atl2_write_pci_cfg(struct atl2_hw *hw, u32 reg, u16 *value)
1753 { 1751 {
1754 struct atl2_adapter *adapter = hw->back; 1752 struct atl2_adapter *adapter = hw->back;
1755 pci_write_config_word(adapter->pdev, reg, *value); 1753 pci_write_config_word(adapter->pdev, reg, *value);
1756 } 1754 }
1757 1755
1758 static int atl2_get_settings(struct net_device *netdev, 1756 static int atl2_get_settings(struct net_device *netdev,
1759 struct ethtool_cmd *ecmd) 1757 struct ethtool_cmd *ecmd)
1760 { 1758 {
1761 struct atl2_adapter *adapter = netdev_priv(netdev); 1759 struct atl2_adapter *adapter = netdev_priv(netdev);
1762 struct atl2_hw *hw = &adapter->hw; 1760 struct atl2_hw *hw = &adapter->hw;
1763 1761
1764 ecmd->supported = (SUPPORTED_10baseT_Half | 1762 ecmd->supported = (SUPPORTED_10baseT_Half |
1765 SUPPORTED_10baseT_Full | 1763 SUPPORTED_10baseT_Full |
1766 SUPPORTED_100baseT_Half | 1764 SUPPORTED_100baseT_Half |
1767 SUPPORTED_100baseT_Full | 1765 SUPPORTED_100baseT_Full |
1768 SUPPORTED_Autoneg | 1766 SUPPORTED_Autoneg |
1769 SUPPORTED_TP); 1767 SUPPORTED_TP);
1770 ecmd->advertising = ADVERTISED_TP; 1768 ecmd->advertising = ADVERTISED_TP;
1771 1769
1772 ecmd->advertising |= ADVERTISED_Autoneg; 1770 ecmd->advertising |= ADVERTISED_Autoneg;
1773 ecmd->advertising |= hw->autoneg_advertised; 1771 ecmd->advertising |= hw->autoneg_advertised;
1774 1772
1775 ecmd->port = PORT_TP; 1773 ecmd->port = PORT_TP;
1776 ecmd->phy_address = 0; 1774 ecmd->phy_address = 0;
1777 ecmd->transceiver = XCVR_INTERNAL; 1775 ecmd->transceiver = XCVR_INTERNAL;
1778 1776
1779 if (adapter->link_speed != SPEED_0) { 1777 if (adapter->link_speed != SPEED_0) {
1780 ecmd->speed = adapter->link_speed; 1778 ecmd->speed = adapter->link_speed;
1781 if (adapter->link_duplex == FULL_DUPLEX) 1779 if (adapter->link_duplex == FULL_DUPLEX)
1782 ecmd->duplex = DUPLEX_FULL; 1780 ecmd->duplex = DUPLEX_FULL;
1783 else 1781 else
1784 ecmd->duplex = DUPLEX_HALF; 1782 ecmd->duplex = DUPLEX_HALF;
1785 } else { 1783 } else {
1786 ecmd->speed = -1; 1784 ecmd->speed = -1;
1787 ecmd->duplex = -1; 1785 ecmd->duplex = -1;
1788 } 1786 }
1789 1787
1790 ecmd->autoneg = AUTONEG_ENABLE; 1788 ecmd->autoneg = AUTONEG_ENABLE;
1791 return 0; 1789 return 0;
1792 } 1790 }
1793 1791
1794 static int atl2_set_settings(struct net_device *netdev, 1792 static int atl2_set_settings(struct net_device *netdev,
1795 struct ethtool_cmd *ecmd) 1793 struct ethtool_cmd *ecmd)
1796 { 1794 {
1797 struct atl2_adapter *adapter = netdev_priv(netdev); 1795 struct atl2_adapter *adapter = netdev_priv(netdev);
1798 struct atl2_hw *hw = &adapter->hw; 1796 struct atl2_hw *hw = &adapter->hw;
1799 1797
1800 while (test_and_set_bit(__ATL2_RESETTING, &adapter->flags)) 1798 while (test_and_set_bit(__ATL2_RESETTING, &adapter->flags))
1801 msleep(1); 1799 msleep(1);
1802 1800
1803 if (ecmd->autoneg == AUTONEG_ENABLE) { 1801 if (ecmd->autoneg == AUTONEG_ENABLE) {
1804 #define MY_ADV_MASK (ADVERTISE_10_HALF | \ 1802 #define MY_ADV_MASK (ADVERTISE_10_HALF | \
1805 ADVERTISE_10_FULL | \ 1803 ADVERTISE_10_FULL | \
1806 ADVERTISE_100_HALF| \ 1804 ADVERTISE_100_HALF| \
1807 ADVERTISE_100_FULL) 1805 ADVERTISE_100_FULL)
1808 1806
1809 if ((ecmd->advertising & MY_ADV_MASK) == MY_ADV_MASK) { 1807 if ((ecmd->advertising & MY_ADV_MASK) == MY_ADV_MASK) {
1810 hw->MediaType = MEDIA_TYPE_AUTO_SENSOR; 1808 hw->MediaType = MEDIA_TYPE_AUTO_SENSOR;
1811 hw->autoneg_advertised = MY_ADV_MASK; 1809 hw->autoneg_advertised = MY_ADV_MASK;
1812 } else if ((ecmd->advertising & MY_ADV_MASK) == 1810 } else if ((ecmd->advertising & MY_ADV_MASK) ==
1813 ADVERTISE_100_FULL) { 1811 ADVERTISE_100_FULL) {
1814 hw->MediaType = MEDIA_TYPE_100M_FULL; 1812 hw->MediaType = MEDIA_TYPE_100M_FULL;
1815 hw->autoneg_advertised = ADVERTISE_100_FULL; 1813 hw->autoneg_advertised = ADVERTISE_100_FULL;
1816 } else if ((ecmd->advertising & MY_ADV_MASK) == 1814 } else if ((ecmd->advertising & MY_ADV_MASK) ==
1817 ADVERTISE_100_HALF) { 1815 ADVERTISE_100_HALF) {
1818 hw->MediaType = MEDIA_TYPE_100M_HALF; 1816 hw->MediaType = MEDIA_TYPE_100M_HALF;
1819 hw->autoneg_advertised = ADVERTISE_100_HALF; 1817 hw->autoneg_advertised = ADVERTISE_100_HALF;
1820 } else if ((ecmd->advertising & MY_ADV_MASK) == 1818 } else if ((ecmd->advertising & MY_ADV_MASK) ==
1821 ADVERTISE_10_FULL) { 1819 ADVERTISE_10_FULL) {
1822 hw->MediaType = MEDIA_TYPE_10M_FULL; 1820 hw->MediaType = MEDIA_TYPE_10M_FULL;
1823 hw->autoneg_advertised = ADVERTISE_10_FULL; 1821 hw->autoneg_advertised = ADVERTISE_10_FULL;
1824 } else if ((ecmd->advertising & MY_ADV_MASK) == 1822 } else if ((ecmd->advertising & MY_ADV_MASK) ==
1825 ADVERTISE_10_HALF) { 1823 ADVERTISE_10_HALF) {
1826 hw->MediaType = MEDIA_TYPE_10M_HALF; 1824 hw->MediaType = MEDIA_TYPE_10M_HALF;
1827 hw->autoneg_advertised = ADVERTISE_10_HALF; 1825 hw->autoneg_advertised = ADVERTISE_10_HALF;
1828 } else { 1826 } else {
1829 clear_bit(__ATL2_RESETTING, &adapter->flags); 1827 clear_bit(__ATL2_RESETTING, &adapter->flags);
1830 return -EINVAL; 1828 return -EINVAL;
1831 } 1829 }
1832 ecmd->advertising = hw->autoneg_advertised | 1830 ecmd->advertising = hw->autoneg_advertised |
1833 ADVERTISED_TP | ADVERTISED_Autoneg; 1831 ADVERTISED_TP | ADVERTISED_Autoneg;
1834 } else { 1832 } else {
1835 clear_bit(__ATL2_RESETTING, &adapter->flags); 1833 clear_bit(__ATL2_RESETTING, &adapter->flags);
1836 return -EINVAL; 1834 return -EINVAL;
1837 } 1835 }
1838 1836
1839 /* reset the link */ 1837 /* reset the link */
1840 if (netif_running(adapter->netdev)) { 1838 if (netif_running(adapter->netdev)) {
1841 atl2_down(adapter); 1839 atl2_down(adapter);
1842 atl2_up(adapter); 1840 atl2_up(adapter);
1843 } else 1841 } else
1844 atl2_reset_hw(&adapter->hw); 1842 atl2_reset_hw(&adapter->hw);
1845 1843
1846 clear_bit(__ATL2_RESETTING, &adapter->flags); 1844 clear_bit(__ATL2_RESETTING, &adapter->flags);
1847 return 0; 1845 return 0;
1848 } 1846 }
1849 1847
1850 static u32 atl2_get_tx_csum(struct net_device *netdev) 1848 static u32 atl2_get_tx_csum(struct net_device *netdev)
1851 { 1849 {
1852 return (netdev->features & NETIF_F_HW_CSUM) != 0; 1850 return (netdev->features & NETIF_F_HW_CSUM) != 0;
1853 } 1851 }
1854 1852
1855 static u32 atl2_get_msglevel(struct net_device *netdev) 1853 static u32 atl2_get_msglevel(struct net_device *netdev)
1856 { 1854 {
1857 return 0; 1855 return 0;
1858 } 1856 }
1859 1857
1860 /* 1858 /*
1861 * It's sane for this to be empty, but we might want to take advantage of this. 1859 * It's sane for this to be empty, but we might want to take advantage of this.
1862 */ 1860 */
1863 static void atl2_set_msglevel(struct net_device *netdev, u32 data) 1861 static void atl2_set_msglevel(struct net_device *netdev, u32 data)
1864 { 1862 {
1865 } 1863 }
1866 1864
1867 static int atl2_get_regs_len(struct net_device *netdev) 1865 static int atl2_get_regs_len(struct net_device *netdev)
1868 { 1866 {
1869 #define ATL2_REGS_LEN 42 1867 #define ATL2_REGS_LEN 42
1870 return sizeof(u32) * ATL2_REGS_LEN; 1868 return sizeof(u32) * ATL2_REGS_LEN;
1871 } 1869 }
1872 1870
1873 static void atl2_get_regs(struct net_device *netdev, 1871 static void atl2_get_regs(struct net_device *netdev,
1874 struct ethtool_regs *regs, void *p) 1872 struct ethtool_regs *regs, void *p)
1875 { 1873 {
1876 struct atl2_adapter *adapter = netdev_priv(netdev); 1874 struct atl2_adapter *adapter = netdev_priv(netdev);
1877 struct atl2_hw *hw = &adapter->hw; 1875 struct atl2_hw *hw = &adapter->hw;
1878 u32 *regs_buff = p; 1876 u32 *regs_buff = p;
1879 u16 phy_data; 1877 u16 phy_data;
1880 1878
1881 memset(p, 0, sizeof(u32) * ATL2_REGS_LEN); 1879 memset(p, 0, sizeof(u32) * ATL2_REGS_LEN);
1882 1880
1883 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id; 1881 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
1884 1882
1885 regs_buff[0] = ATL2_READ_REG(hw, REG_VPD_CAP); 1883 regs_buff[0] = ATL2_READ_REG(hw, REG_VPD_CAP);
1886 regs_buff[1] = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL); 1884 regs_buff[1] = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL);
1887 regs_buff[2] = ATL2_READ_REG(hw, REG_SPI_FLASH_CONFIG); 1885 regs_buff[2] = ATL2_READ_REG(hw, REG_SPI_FLASH_CONFIG);
1888 regs_buff[3] = ATL2_READ_REG(hw, REG_TWSI_CTRL); 1886 regs_buff[3] = ATL2_READ_REG(hw, REG_TWSI_CTRL);
1889 regs_buff[4] = ATL2_READ_REG(hw, REG_PCIE_DEV_MISC_CTRL); 1887 regs_buff[4] = ATL2_READ_REG(hw, REG_PCIE_DEV_MISC_CTRL);
1890 regs_buff[5] = ATL2_READ_REG(hw, REG_MASTER_CTRL); 1888 regs_buff[5] = ATL2_READ_REG(hw, REG_MASTER_CTRL);
1891 regs_buff[6] = ATL2_READ_REG(hw, REG_MANUAL_TIMER_INIT); 1889 regs_buff[6] = ATL2_READ_REG(hw, REG_MANUAL_TIMER_INIT);
1892 regs_buff[7] = ATL2_READ_REG(hw, REG_IRQ_MODU_TIMER_INIT); 1890 regs_buff[7] = ATL2_READ_REG(hw, REG_IRQ_MODU_TIMER_INIT);
1893 regs_buff[8] = ATL2_READ_REG(hw, REG_PHY_ENABLE); 1891 regs_buff[8] = ATL2_READ_REG(hw, REG_PHY_ENABLE);
1894 regs_buff[9] = ATL2_READ_REG(hw, REG_CMBDISDMA_TIMER); 1892 regs_buff[9] = ATL2_READ_REG(hw, REG_CMBDISDMA_TIMER);
1895 regs_buff[10] = ATL2_READ_REG(hw, REG_IDLE_STATUS); 1893 regs_buff[10] = ATL2_READ_REG(hw, REG_IDLE_STATUS);
1896 regs_buff[11] = ATL2_READ_REG(hw, REG_MDIO_CTRL); 1894 regs_buff[11] = ATL2_READ_REG(hw, REG_MDIO_CTRL);
1897 regs_buff[12] = ATL2_READ_REG(hw, REG_SERDES_LOCK); 1895 regs_buff[12] = ATL2_READ_REG(hw, REG_SERDES_LOCK);
1898 regs_buff[13] = ATL2_READ_REG(hw, REG_MAC_CTRL); 1896 regs_buff[13] = ATL2_READ_REG(hw, REG_MAC_CTRL);
1899 regs_buff[14] = ATL2_READ_REG(hw, REG_MAC_IPG_IFG); 1897 regs_buff[14] = ATL2_READ_REG(hw, REG_MAC_IPG_IFG);
1900 regs_buff[15] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR); 1898 regs_buff[15] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR);
1901 regs_buff[16] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR+4); 1899 regs_buff[16] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR+4);
1902 regs_buff[17] = ATL2_READ_REG(hw, REG_RX_HASH_TABLE); 1900 regs_buff[17] = ATL2_READ_REG(hw, REG_RX_HASH_TABLE);
1903 regs_buff[18] = ATL2_READ_REG(hw, REG_RX_HASH_TABLE+4); 1901 regs_buff[18] = ATL2_READ_REG(hw, REG_RX_HASH_TABLE+4);
1904 regs_buff[19] = ATL2_READ_REG(hw, REG_MAC_HALF_DUPLX_CTRL); 1902 regs_buff[19] = ATL2_READ_REG(hw, REG_MAC_HALF_DUPLX_CTRL);
1905 regs_buff[20] = ATL2_READ_REG(hw, REG_MTU); 1903 regs_buff[20] = ATL2_READ_REG(hw, REG_MTU);
1906 regs_buff[21] = ATL2_READ_REG(hw, REG_WOL_CTRL); 1904 regs_buff[21] = ATL2_READ_REG(hw, REG_WOL_CTRL);
1907 regs_buff[22] = ATL2_READ_REG(hw, REG_SRAM_TXRAM_END); 1905 regs_buff[22] = ATL2_READ_REG(hw, REG_SRAM_TXRAM_END);
1908 regs_buff[23] = ATL2_READ_REG(hw, REG_DESC_BASE_ADDR_HI); 1906 regs_buff[23] = ATL2_READ_REG(hw, REG_DESC_BASE_ADDR_HI);
1909 regs_buff[24] = ATL2_READ_REG(hw, REG_TXD_BASE_ADDR_LO); 1907 regs_buff[24] = ATL2_READ_REG(hw, REG_TXD_BASE_ADDR_LO);
1910 regs_buff[25] = ATL2_READ_REG(hw, REG_TXD_MEM_SIZE); 1908 regs_buff[25] = ATL2_READ_REG(hw, REG_TXD_MEM_SIZE);
1911 regs_buff[26] = ATL2_READ_REG(hw, REG_TXS_BASE_ADDR_LO); 1909 regs_buff[26] = ATL2_READ_REG(hw, REG_TXS_BASE_ADDR_LO);
1912 regs_buff[27] = ATL2_READ_REG(hw, REG_TXS_MEM_SIZE); 1910 regs_buff[27] = ATL2_READ_REG(hw, REG_TXS_MEM_SIZE);
1913 regs_buff[28] = ATL2_READ_REG(hw, REG_RXD_BASE_ADDR_LO); 1911 regs_buff[28] = ATL2_READ_REG(hw, REG_RXD_BASE_ADDR_LO);
1914 regs_buff[29] = ATL2_READ_REG(hw, REG_RXD_BUF_NUM); 1912 regs_buff[29] = ATL2_READ_REG(hw, REG_RXD_BUF_NUM);
1915 regs_buff[30] = ATL2_READ_REG(hw, REG_DMAR); 1913 regs_buff[30] = ATL2_READ_REG(hw, REG_DMAR);
1916 regs_buff[31] = ATL2_READ_REG(hw, REG_TX_CUT_THRESH); 1914 regs_buff[31] = ATL2_READ_REG(hw, REG_TX_CUT_THRESH);
1917 regs_buff[32] = ATL2_READ_REG(hw, REG_DMAW); 1915 regs_buff[32] = ATL2_READ_REG(hw, REG_DMAW);
1918 regs_buff[33] = ATL2_READ_REG(hw, REG_PAUSE_ON_TH); 1916 regs_buff[33] = ATL2_READ_REG(hw, REG_PAUSE_ON_TH);
1919 regs_buff[34] = ATL2_READ_REG(hw, REG_PAUSE_OFF_TH); 1917 regs_buff[34] = ATL2_READ_REG(hw, REG_PAUSE_OFF_TH);
1920 regs_buff[35] = ATL2_READ_REG(hw, REG_MB_TXD_WR_IDX); 1918 regs_buff[35] = ATL2_READ_REG(hw, REG_MB_TXD_WR_IDX);
1921 regs_buff[36] = ATL2_READ_REG(hw, REG_MB_RXD_RD_IDX); 1919 regs_buff[36] = ATL2_READ_REG(hw, REG_MB_RXD_RD_IDX);
1922 regs_buff[38] = ATL2_READ_REG(hw, REG_ISR); 1920 regs_buff[38] = ATL2_READ_REG(hw, REG_ISR);
1923 regs_buff[39] = ATL2_READ_REG(hw, REG_IMR); 1921 regs_buff[39] = ATL2_READ_REG(hw, REG_IMR);
1924 1922
1925 atl2_read_phy_reg(hw, MII_BMCR, &phy_data); 1923 atl2_read_phy_reg(hw, MII_BMCR, &phy_data);
1926 regs_buff[40] = (u32)phy_data; 1924 regs_buff[40] = (u32)phy_data;
1927 atl2_read_phy_reg(hw, MII_BMSR, &phy_data); 1925 atl2_read_phy_reg(hw, MII_BMSR, &phy_data);
1928 regs_buff[41] = (u32)phy_data; 1926 regs_buff[41] = (u32)phy_data;
1929 } 1927 }
1930 1928
1931 static int atl2_get_eeprom_len(struct net_device *netdev) 1929 static int atl2_get_eeprom_len(struct net_device *netdev)
1932 { 1930 {
1933 struct atl2_adapter *adapter = netdev_priv(netdev); 1931 struct atl2_adapter *adapter = netdev_priv(netdev);
1934 1932
1935 if (!atl2_check_eeprom_exist(&adapter->hw)) 1933 if (!atl2_check_eeprom_exist(&adapter->hw))
1936 return 512; 1934 return 512;
1937 else 1935 else
1938 return 0; 1936 return 0;
1939 } 1937 }
1940 1938
1941 static int atl2_get_eeprom(struct net_device *netdev, 1939 static int atl2_get_eeprom(struct net_device *netdev,
1942 struct ethtool_eeprom *eeprom, u8 *bytes) 1940 struct ethtool_eeprom *eeprom, u8 *bytes)
1943 { 1941 {
1944 struct atl2_adapter *adapter = netdev_priv(netdev); 1942 struct atl2_adapter *adapter = netdev_priv(netdev);
1945 struct atl2_hw *hw = &adapter->hw; 1943 struct atl2_hw *hw = &adapter->hw;
1946 u32 *eeprom_buff; 1944 u32 *eeprom_buff;
1947 int first_dword, last_dword; 1945 int first_dword, last_dword;
1948 int ret_val = 0; 1946 int ret_val = 0;
1949 int i; 1947 int i;
1950 1948
1951 if (eeprom->len == 0) 1949 if (eeprom->len == 0)
1952 return -EINVAL; 1950 return -EINVAL;
1953 1951
1954 if (atl2_check_eeprom_exist(hw)) 1952 if (atl2_check_eeprom_exist(hw))
1955 return -EINVAL; 1953 return -EINVAL;
1956 1954
1957 eeprom->magic = hw->vendor_id | (hw->device_id << 16); 1955 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
1958 1956
1959 first_dword = eeprom->offset >> 2; 1957 first_dword = eeprom->offset >> 2;
1960 last_dword = (eeprom->offset + eeprom->len - 1) >> 2; 1958 last_dword = (eeprom->offset + eeprom->len - 1) >> 2;
1961 1959
1962 eeprom_buff = kmalloc(sizeof(u32) * (last_dword - first_dword + 1), 1960 eeprom_buff = kmalloc(sizeof(u32) * (last_dword - first_dword + 1),
1963 GFP_KERNEL); 1961 GFP_KERNEL);
1964 if (!eeprom_buff) 1962 if (!eeprom_buff)
1965 return -ENOMEM; 1963 return -ENOMEM;
1966 1964
1967 for (i = first_dword; i < last_dword; i++) { 1965 for (i = first_dword; i < last_dword; i++) {
1968 if (!atl2_read_eeprom(hw, i*4, &(eeprom_buff[i-first_dword]))) 1966 if (!atl2_read_eeprom(hw, i*4, &(eeprom_buff[i-first_dword])))
1969 return -EIO; 1967 return -EIO;
1970 } 1968 }
1971 1969
1972 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 3), 1970 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 3),
1973 eeprom->len); 1971 eeprom->len);
1974 kfree(eeprom_buff); 1972 kfree(eeprom_buff);
1975 1973
1976 return ret_val; 1974 return ret_val;
1977 } 1975 }
1978 1976
1979 static int atl2_set_eeprom(struct net_device *netdev, 1977 static int atl2_set_eeprom(struct net_device *netdev,
1980 struct ethtool_eeprom *eeprom, u8 *bytes) 1978 struct ethtool_eeprom *eeprom, u8 *bytes)
1981 { 1979 {
1982 struct atl2_adapter *adapter = netdev_priv(netdev); 1980 struct atl2_adapter *adapter = netdev_priv(netdev);
1983 struct atl2_hw *hw = &adapter->hw; 1981 struct atl2_hw *hw = &adapter->hw;
1984 u32 *eeprom_buff; 1982 u32 *eeprom_buff;
1985 u32 *ptr; 1983 u32 *ptr;
1986 int max_len, first_dword, last_dword, ret_val = 0; 1984 int max_len, first_dword, last_dword, ret_val = 0;
1987 int i; 1985 int i;
1988 1986
1989 if (eeprom->len == 0) 1987 if (eeprom->len == 0)
1990 return -EOPNOTSUPP; 1988 return -EOPNOTSUPP;
1991 1989
1992 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16))) 1990 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
1993 return -EFAULT; 1991 return -EFAULT;
1994 1992
1995 max_len = 512; 1993 max_len = 512;
1996 1994
1997 first_dword = eeprom->offset >> 2; 1995 first_dword = eeprom->offset >> 2;
1998 last_dword = (eeprom->offset + eeprom->len - 1) >> 2; 1996 last_dword = (eeprom->offset + eeprom->len - 1) >> 2;
1999 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 1997 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
2000 if (!eeprom_buff) 1998 if (!eeprom_buff)
2001 return -ENOMEM; 1999 return -ENOMEM;
2002 2000
2003 ptr = (u32 *)eeprom_buff; 2001 ptr = (u32 *)eeprom_buff;
2004 2002
2005 if (eeprom->offset & 3) { 2003 if (eeprom->offset & 3) {
2006 /* need read/modify/write of first changed EEPROM word */ 2004 /* need read/modify/write of first changed EEPROM word */
2007 /* only the second byte of the word is being modified */ 2005 /* only the second byte of the word is being modified */
2008 if (!atl2_read_eeprom(hw, first_dword*4, &(eeprom_buff[0]))) 2006 if (!atl2_read_eeprom(hw, first_dword*4, &(eeprom_buff[0])))
2009 return -EIO; 2007 return -EIO;
2010 ptr++; 2008 ptr++;
2011 } 2009 }
2012 if (((eeprom->offset + eeprom->len) & 3)) { 2010 if (((eeprom->offset + eeprom->len) & 3)) {
2013 /* 2011 /*
2014 * need read/modify/write of last changed EEPROM word 2012 * need read/modify/write of last changed EEPROM word
2015 * only the first byte of the word is being modified 2013 * only the first byte of the word is being modified
2016 */ 2014 */
2017 if (!atl2_read_eeprom(hw, last_dword * 4, 2015 if (!atl2_read_eeprom(hw, last_dword * 4,
2018 &(eeprom_buff[last_dword - first_dword]))) 2016 &(eeprom_buff[last_dword - first_dword])))
2019 return -EIO; 2017 return -EIO;
2020 } 2018 }
2021 2019
2022 /* Device's eeprom is always little-endian, word addressable */ 2020 /* Device's eeprom is always little-endian, word addressable */
2023 memcpy(ptr, bytes, eeprom->len); 2021 memcpy(ptr, bytes, eeprom->len);
2024 2022
2025 for (i = 0; i < last_dword - first_dword + 1; i++) { 2023 for (i = 0; i < last_dword - first_dword + 1; i++) {
2026 if (!atl2_write_eeprom(hw, ((first_dword+i)*4), eeprom_buff[i])) 2024 if (!atl2_write_eeprom(hw, ((first_dword+i)*4), eeprom_buff[i]))
2027 return -EIO; 2025 return -EIO;
2028 } 2026 }
2029 2027
2030 kfree(eeprom_buff); 2028 kfree(eeprom_buff);
2031 return ret_val; 2029 return ret_val;
2032 } 2030 }
2033 2031
2034 static void atl2_get_drvinfo(struct net_device *netdev, 2032 static void atl2_get_drvinfo(struct net_device *netdev,
2035 struct ethtool_drvinfo *drvinfo) 2033 struct ethtool_drvinfo *drvinfo)
2036 { 2034 {
2037 struct atl2_adapter *adapter = netdev_priv(netdev); 2035 struct atl2_adapter *adapter = netdev_priv(netdev);
2038 2036
2039 strncpy(drvinfo->driver, atl2_driver_name, 32); 2037 strncpy(drvinfo->driver, atl2_driver_name, 32);
2040 strncpy(drvinfo->version, atl2_driver_version, 32); 2038 strncpy(drvinfo->version, atl2_driver_version, 32);
2041 strncpy(drvinfo->fw_version, "L2", 32); 2039 strncpy(drvinfo->fw_version, "L2", 32);
2042 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32); 2040 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
2043 drvinfo->n_stats = 0; 2041 drvinfo->n_stats = 0;
2044 drvinfo->testinfo_len = 0; 2042 drvinfo->testinfo_len = 0;
2045 drvinfo->regdump_len = atl2_get_regs_len(netdev); 2043 drvinfo->regdump_len = atl2_get_regs_len(netdev);
2046 drvinfo->eedump_len = atl2_get_eeprom_len(netdev); 2044 drvinfo->eedump_len = atl2_get_eeprom_len(netdev);
2047 } 2045 }
2048 2046
2049 static void atl2_get_wol(struct net_device *netdev, 2047 static void atl2_get_wol(struct net_device *netdev,
2050 struct ethtool_wolinfo *wol) 2048 struct ethtool_wolinfo *wol)
2051 { 2049 {
2052 struct atl2_adapter *adapter = netdev_priv(netdev); 2050 struct atl2_adapter *adapter = netdev_priv(netdev);
2053 2051
2054 wol->supported = WAKE_MAGIC; 2052 wol->supported = WAKE_MAGIC;
2055 wol->wolopts = 0; 2053 wol->wolopts = 0;
2056 2054
2057 if (adapter->wol & ATLX_WUFC_EX) 2055 if (adapter->wol & ATLX_WUFC_EX)
2058 wol->wolopts |= WAKE_UCAST; 2056 wol->wolopts |= WAKE_UCAST;
2059 if (adapter->wol & ATLX_WUFC_MC) 2057 if (adapter->wol & ATLX_WUFC_MC)
2060 wol->wolopts |= WAKE_MCAST; 2058 wol->wolopts |= WAKE_MCAST;
2061 if (adapter->wol & ATLX_WUFC_BC) 2059 if (adapter->wol & ATLX_WUFC_BC)
2062 wol->wolopts |= WAKE_BCAST; 2060 wol->wolopts |= WAKE_BCAST;
2063 if (adapter->wol & ATLX_WUFC_MAG) 2061 if (adapter->wol & ATLX_WUFC_MAG)
2064 wol->wolopts |= WAKE_MAGIC; 2062 wol->wolopts |= WAKE_MAGIC;
2065 if (adapter->wol & ATLX_WUFC_LNKC) 2063 if (adapter->wol & ATLX_WUFC_LNKC)
2066 wol->wolopts |= WAKE_PHY; 2064 wol->wolopts |= WAKE_PHY;
2067 } 2065 }
2068 2066
2069 static int atl2_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 2067 static int atl2_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2070 { 2068 {
2071 struct atl2_adapter *adapter = netdev_priv(netdev); 2069 struct atl2_adapter *adapter = netdev_priv(netdev);
2072 2070
2073 if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE)) 2071 if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2074 return -EOPNOTSUPP; 2072 return -EOPNOTSUPP;
2075 2073
2076 if (wol->wolopts & (WAKE_MCAST|WAKE_BCAST|WAKE_MCAST)) 2074 if (wol->wolopts & (WAKE_MCAST|WAKE_BCAST|WAKE_MCAST))
2077 return -EOPNOTSUPP; 2075 return -EOPNOTSUPP;
2078 2076
2079 /* these settings will always override what we currently have */ 2077 /* these settings will always override what we currently have */
2080 adapter->wol = 0; 2078 adapter->wol = 0;
2081 2079
2082 if (wol->wolopts & WAKE_MAGIC) 2080 if (wol->wolopts & WAKE_MAGIC)
2083 adapter->wol |= ATLX_WUFC_MAG; 2081 adapter->wol |= ATLX_WUFC_MAG;
2084 if (wol->wolopts & WAKE_PHY) 2082 if (wol->wolopts & WAKE_PHY)
2085 adapter->wol |= ATLX_WUFC_LNKC; 2083 adapter->wol |= ATLX_WUFC_LNKC;
2086 2084
2087 return 0; 2085 return 0;
2088 } 2086 }
2089 2087
2090 static int atl2_nway_reset(struct net_device *netdev) 2088 static int atl2_nway_reset(struct net_device *netdev)
2091 { 2089 {
2092 struct atl2_adapter *adapter = netdev_priv(netdev); 2090 struct atl2_adapter *adapter = netdev_priv(netdev);
2093 if (netif_running(netdev)) 2091 if (netif_running(netdev))
2094 atl2_reinit_locked(adapter); 2092 atl2_reinit_locked(adapter);
2095 return 0; 2093 return 0;
2096 } 2094 }
2097 2095
2098 static struct ethtool_ops atl2_ethtool_ops = { 2096 static struct ethtool_ops atl2_ethtool_ops = {
2099 .get_settings = atl2_get_settings, 2097 .get_settings = atl2_get_settings,
2100 .set_settings = atl2_set_settings, 2098 .set_settings = atl2_set_settings,
2101 .get_drvinfo = atl2_get_drvinfo, 2099 .get_drvinfo = atl2_get_drvinfo,
2102 .get_regs_len = atl2_get_regs_len, 2100 .get_regs_len = atl2_get_regs_len,
2103 .get_regs = atl2_get_regs, 2101 .get_regs = atl2_get_regs,
2104 .get_wol = atl2_get_wol, 2102 .get_wol = atl2_get_wol,
2105 .set_wol = atl2_set_wol, 2103 .set_wol = atl2_set_wol,
2106 .get_msglevel = atl2_get_msglevel, 2104 .get_msglevel = atl2_get_msglevel,
2107 .set_msglevel = atl2_set_msglevel, 2105 .set_msglevel = atl2_set_msglevel,
2108 .nway_reset = atl2_nway_reset, 2106 .nway_reset = atl2_nway_reset,
2109 .get_link = ethtool_op_get_link, 2107 .get_link = ethtool_op_get_link,
2110 .get_eeprom_len = atl2_get_eeprom_len, 2108 .get_eeprom_len = atl2_get_eeprom_len,
2111 .get_eeprom = atl2_get_eeprom, 2109 .get_eeprom = atl2_get_eeprom,
2112 .set_eeprom = atl2_set_eeprom, 2110 .set_eeprom = atl2_set_eeprom,
2113 .get_tx_csum = atl2_get_tx_csum, 2111 .get_tx_csum = atl2_get_tx_csum,
2114 .get_sg = ethtool_op_get_sg, 2112 .get_sg = ethtool_op_get_sg,
2115 .set_sg = ethtool_op_set_sg, 2113 .set_sg = ethtool_op_set_sg,
2116 #ifdef NETIF_F_TSO 2114 #ifdef NETIF_F_TSO
2117 .get_tso = ethtool_op_get_tso, 2115 .get_tso = ethtool_op_get_tso,
2118 #endif 2116 #endif
2119 }; 2117 };
2120 2118
2121 static void atl2_set_ethtool_ops(struct net_device *netdev) 2119 static void atl2_set_ethtool_ops(struct net_device *netdev)
2122 { 2120 {
2123 SET_ETHTOOL_OPS(netdev, &atl2_ethtool_ops); 2121 SET_ETHTOOL_OPS(netdev, &atl2_ethtool_ops);
2124 } 2122 }
2125 2123
2126 #define LBYTESWAP(a) ((((a) & 0x00ff00ff) << 8) | \ 2124 #define LBYTESWAP(a) ((((a) & 0x00ff00ff) << 8) | \
2127 (((a) & 0xff00ff00) >> 8)) 2125 (((a) & 0xff00ff00) >> 8))
2128 #define LONGSWAP(a) ((LBYTESWAP(a) << 16) | (LBYTESWAP(a) >> 16)) 2126 #define LONGSWAP(a) ((LBYTESWAP(a) << 16) | (LBYTESWAP(a) >> 16))
2129 #define SHORTSWAP(a) (((a) << 8) | ((a) >> 8)) 2127 #define SHORTSWAP(a) (((a) << 8) | ((a) >> 8))
2130 2128
2131 /* 2129 /*
2132 * Reset the transmit and receive units; mask and clear all interrupts. 2130 * Reset the transmit and receive units; mask and clear all interrupts.
2133 * 2131 *
2134 * hw - Struct containing variables accessed by shared code 2132 * hw - Struct containing variables accessed by shared code
2135 * return : 0 or idle status (if error) 2133 * return : 0 or idle status (if error)
2136 */ 2134 */
2137 static s32 atl2_reset_hw(struct atl2_hw *hw) 2135 static s32 atl2_reset_hw(struct atl2_hw *hw)
2138 { 2136 {
2139 u32 icr; 2137 u32 icr;
2140 u16 pci_cfg_cmd_word; 2138 u16 pci_cfg_cmd_word;
2141 int i; 2139 int i;
2142 2140
2143 /* Workaround for PCI problem when BIOS sets MMRBC incorrectly. */ 2141 /* Workaround for PCI problem when BIOS sets MMRBC incorrectly. */
2144 atl2_read_pci_cfg(hw, PCI_REG_COMMAND, &pci_cfg_cmd_word); 2142 atl2_read_pci_cfg(hw, PCI_REG_COMMAND, &pci_cfg_cmd_word);
2145 if ((pci_cfg_cmd_word & 2143 if ((pci_cfg_cmd_word &
2146 (CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER)) != 2144 (CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER)) !=
2147 (CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER)) { 2145 (CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER)) {
2148 pci_cfg_cmd_word |= 2146 pci_cfg_cmd_word |=
2149 (CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER); 2147 (CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER);
2150 atl2_write_pci_cfg(hw, PCI_REG_COMMAND, &pci_cfg_cmd_word); 2148 atl2_write_pci_cfg(hw, PCI_REG_COMMAND, &pci_cfg_cmd_word);
2151 } 2149 }
2152 2150
2153 /* Clear Interrupt mask to stop board from generating 2151 /* Clear Interrupt mask to stop board from generating
2154 * interrupts & Clear any pending interrupt events 2152 * interrupts & Clear any pending interrupt events
2155 */ 2153 */
2156 /* FIXME */ 2154 /* FIXME */
2157 /* ATL2_WRITE_REG(hw, REG_IMR, 0); */ 2155 /* ATL2_WRITE_REG(hw, REG_IMR, 0); */
2158 /* ATL2_WRITE_REG(hw, REG_ISR, 0xffffffff); */ 2156 /* ATL2_WRITE_REG(hw, REG_ISR, 0xffffffff); */
2159 2157
2160 /* Issue Soft Reset to the MAC. This will reset the chip's 2158 /* Issue Soft Reset to the MAC. This will reset the chip's
2161 * transmit, receive, DMA. It will not effect 2159 * transmit, receive, DMA. It will not effect
2162 * the current PCI configuration. The global reset bit is self- 2160 * the current PCI configuration. The global reset bit is self-
2163 * clearing, and should clear within a microsecond. 2161 * clearing, and should clear within a microsecond.
2164 */ 2162 */
2165 ATL2_WRITE_REG(hw, REG_MASTER_CTRL, MASTER_CTRL_SOFT_RST); 2163 ATL2_WRITE_REG(hw, REG_MASTER_CTRL, MASTER_CTRL_SOFT_RST);
2166 wmb(); 2164 wmb();
2167 msleep(1); /* delay about 1ms */ 2165 msleep(1); /* delay about 1ms */
2168 2166
2169 /* Wait at least 10ms for All module to be Idle */ 2167 /* Wait at least 10ms for All module to be Idle */
2170 for (i = 0; i < 10; i++) { 2168 for (i = 0; i < 10; i++) {
2171 icr = ATL2_READ_REG(hw, REG_IDLE_STATUS); 2169 icr = ATL2_READ_REG(hw, REG_IDLE_STATUS);
2172 if (!icr) 2170 if (!icr)
2173 break; 2171 break;
2174 msleep(1); /* delay 1 ms */ 2172 msleep(1); /* delay 1 ms */
2175 cpu_relax(); 2173 cpu_relax();
2176 } 2174 }
2177 2175
2178 if (icr) 2176 if (icr)
2179 return icr; 2177 return icr;
2180 2178
2181 return 0; 2179 return 0;
2182 } 2180 }
2183 2181
2184 #define CUSTOM_SPI_CS_SETUP 2 2182 #define CUSTOM_SPI_CS_SETUP 2
2185 #define CUSTOM_SPI_CLK_HI 2 2183 #define CUSTOM_SPI_CLK_HI 2
2186 #define CUSTOM_SPI_CLK_LO 2 2184 #define CUSTOM_SPI_CLK_LO 2
2187 #define CUSTOM_SPI_CS_HOLD 2 2185 #define CUSTOM_SPI_CS_HOLD 2
2188 #define CUSTOM_SPI_CS_HI 3 2186 #define CUSTOM_SPI_CS_HI 3
2189 2187
2190 static struct atl2_spi_flash_dev flash_table[] = 2188 static struct atl2_spi_flash_dev flash_table[] =
2191 { 2189 {
2192 /* MFR WRSR READ PROGRAM WREN WRDI RDSR RDID SECTOR_ERASE CHIP_ERASE */ 2190 /* MFR WRSR READ PROGRAM WREN WRDI RDSR RDID SECTOR_ERASE CHIP_ERASE */
2193 {"Atmel", 0x0, 0x03, 0x02, 0x06, 0x04, 0x05, 0x15, 0x52, 0x62 }, 2191 {"Atmel", 0x0, 0x03, 0x02, 0x06, 0x04, 0x05, 0x15, 0x52, 0x62 },
2194 {"SST", 0x01, 0x03, 0x02, 0x06, 0x04, 0x05, 0x90, 0x20, 0x60 }, 2192 {"SST", 0x01, 0x03, 0x02, 0x06, 0x04, 0x05, 0x90, 0x20, 0x60 },
2195 {"ST", 0x01, 0x03, 0x02, 0x06, 0x04, 0x05, 0xAB, 0xD8, 0xC7 }, 2193 {"ST", 0x01, 0x03, 0x02, 0x06, 0x04, 0x05, 0xAB, 0xD8, 0xC7 },
2196 }; 2194 };
2197 2195
2198 static bool atl2_spi_read(struct atl2_hw *hw, u32 addr, u32 *buf) 2196 static bool atl2_spi_read(struct atl2_hw *hw, u32 addr, u32 *buf)
2199 { 2197 {
2200 int i; 2198 int i;
2201 u32 value; 2199 u32 value;
2202 2200
2203 ATL2_WRITE_REG(hw, REG_SPI_DATA, 0); 2201 ATL2_WRITE_REG(hw, REG_SPI_DATA, 0);
2204 ATL2_WRITE_REG(hw, REG_SPI_ADDR, addr); 2202 ATL2_WRITE_REG(hw, REG_SPI_ADDR, addr);
2205 2203
2206 value = SPI_FLASH_CTRL_WAIT_READY | 2204 value = SPI_FLASH_CTRL_WAIT_READY |
2207 (CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) << 2205 (CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
2208 SPI_FLASH_CTRL_CS_SETUP_SHIFT | 2206 SPI_FLASH_CTRL_CS_SETUP_SHIFT |
2209 (CUSTOM_SPI_CLK_HI & SPI_FLASH_CTRL_CLK_HI_MASK) << 2207 (CUSTOM_SPI_CLK_HI & SPI_FLASH_CTRL_CLK_HI_MASK) <<
2210 SPI_FLASH_CTRL_CLK_HI_SHIFT | 2208 SPI_FLASH_CTRL_CLK_HI_SHIFT |
2211 (CUSTOM_SPI_CLK_LO & SPI_FLASH_CTRL_CLK_LO_MASK) << 2209 (CUSTOM_SPI_CLK_LO & SPI_FLASH_CTRL_CLK_LO_MASK) <<
2212 SPI_FLASH_CTRL_CLK_LO_SHIFT | 2210 SPI_FLASH_CTRL_CLK_LO_SHIFT |
2213 (CUSTOM_SPI_CS_HOLD & SPI_FLASH_CTRL_CS_HOLD_MASK) << 2211 (CUSTOM_SPI_CS_HOLD & SPI_FLASH_CTRL_CS_HOLD_MASK) <<
2214 SPI_FLASH_CTRL_CS_HOLD_SHIFT | 2212 SPI_FLASH_CTRL_CS_HOLD_SHIFT |
2215 (CUSTOM_SPI_CS_HI & SPI_FLASH_CTRL_CS_HI_MASK) << 2213 (CUSTOM_SPI_CS_HI & SPI_FLASH_CTRL_CS_HI_MASK) <<
2216 SPI_FLASH_CTRL_CS_HI_SHIFT | 2214 SPI_FLASH_CTRL_CS_HI_SHIFT |
2217 (0x1 & SPI_FLASH_CTRL_INS_MASK) << SPI_FLASH_CTRL_INS_SHIFT; 2215 (0x1 & SPI_FLASH_CTRL_INS_MASK) << SPI_FLASH_CTRL_INS_SHIFT;
2218 2216
2219 ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value); 2217 ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
2220 2218
2221 value |= SPI_FLASH_CTRL_START; 2219 value |= SPI_FLASH_CTRL_START;
2222 2220
2223 ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value); 2221 ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
2224 2222
2225 for (i = 0; i < 10; i++) { 2223 for (i = 0; i < 10; i++) {
2226 msleep(1); 2224 msleep(1);
2227 value = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL); 2225 value = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL);
2228 if (!(value & SPI_FLASH_CTRL_START)) 2226 if (!(value & SPI_FLASH_CTRL_START))
2229 break; 2227 break;
2230 } 2228 }
2231 2229
2232 if (value & SPI_FLASH_CTRL_START) 2230 if (value & SPI_FLASH_CTRL_START)
2233 return false; 2231 return false;
2234 2232
2235 *buf = ATL2_READ_REG(hw, REG_SPI_DATA); 2233 *buf = ATL2_READ_REG(hw, REG_SPI_DATA);
2236 2234
2237 return true; 2235 return true;
2238 } 2236 }
2239 2237
2240 /* 2238 /*
2241 * get_permanent_address 2239 * get_permanent_address
2242 * return 0 if get valid mac address, 2240 * return 0 if get valid mac address,
2243 */ 2241 */
2244 static int get_permanent_address(struct atl2_hw *hw) 2242 static int get_permanent_address(struct atl2_hw *hw)
2245 { 2243 {
2246 u32 Addr[2]; 2244 u32 Addr[2];
2247 u32 i, Control; 2245 u32 i, Control;
2248 u16 Register; 2246 u16 Register;
2249 u8 EthAddr[NODE_ADDRESS_SIZE]; 2247 u8 EthAddr[NODE_ADDRESS_SIZE];
2250 bool KeyValid; 2248 bool KeyValid;
2251 2249
2252 if (is_valid_ether_addr(hw->perm_mac_addr)) 2250 if (is_valid_ether_addr(hw->perm_mac_addr))
2253 return 0; 2251 return 0;
2254 2252
2255 Addr[0] = 0; 2253 Addr[0] = 0;
2256 Addr[1] = 0; 2254 Addr[1] = 0;
2257 2255
2258 if (!atl2_check_eeprom_exist(hw)) { /* eeprom exists */ 2256 if (!atl2_check_eeprom_exist(hw)) { /* eeprom exists */
2259 Register = 0; 2257 Register = 0;
2260 KeyValid = false; 2258 KeyValid = false;
2261 2259
2262 /* Read out all EEPROM content */ 2260 /* Read out all EEPROM content */
2263 i = 0; 2261 i = 0;
2264 while (1) { 2262 while (1) {
2265 if (atl2_read_eeprom(hw, i + 0x100, &Control)) { 2263 if (atl2_read_eeprom(hw, i + 0x100, &Control)) {
2266 if (KeyValid) { 2264 if (KeyValid) {
2267 if (Register == REG_MAC_STA_ADDR) 2265 if (Register == REG_MAC_STA_ADDR)
2268 Addr[0] = Control; 2266 Addr[0] = Control;
2269 else if (Register == 2267 else if (Register ==
2270 (REG_MAC_STA_ADDR + 4)) 2268 (REG_MAC_STA_ADDR + 4))
2271 Addr[1] = Control; 2269 Addr[1] = Control;
2272 KeyValid = false; 2270 KeyValid = false;
2273 } else if ((Control & 0xff) == 0x5A) { 2271 } else if ((Control & 0xff) == 0x5A) {
2274 KeyValid = true; 2272 KeyValid = true;
2275 Register = (u16) (Control >> 16); 2273 Register = (u16) (Control >> 16);
2276 } else { 2274 } else {
2277 /* assume data end while encount an invalid KEYWORD */ 2275 /* assume data end while encount an invalid KEYWORD */
2278 break; 2276 break;
2279 } 2277 }
2280 } else { 2278 } else {
2281 break; /* read error */ 2279 break; /* read error */
2282 } 2280 }
2283 i += 4; 2281 i += 4;
2284 } 2282 }
2285 2283
2286 *(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]); 2284 *(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]);
2287 *(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *) &Addr[1]); 2285 *(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *) &Addr[1]);
2288 2286
2289 if (is_valid_ether_addr(EthAddr)) { 2287 if (is_valid_ether_addr(EthAddr)) {
2290 memcpy(hw->perm_mac_addr, EthAddr, NODE_ADDRESS_SIZE); 2288 memcpy(hw->perm_mac_addr, EthAddr, NODE_ADDRESS_SIZE);
2291 return 0; 2289 return 0;
2292 } 2290 }
2293 return 1; 2291 return 1;
2294 } 2292 }
2295 2293
2296 /* see if SPI flash exists? */ 2294 /* see if SPI flash exists? */
2297 Addr[0] = 0; 2295 Addr[0] = 0;
2298 Addr[1] = 0; 2296 Addr[1] = 0;
2299 Register = 0; 2297 Register = 0;
2300 KeyValid = false; 2298 KeyValid = false;
2301 i = 0; 2299 i = 0;
2302 while (1) { 2300 while (1) {
2303 if (atl2_spi_read(hw, i + 0x1f000, &Control)) { 2301 if (atl2_spi_read(hw, i + 0x1f000, &Control)) {
2304 if (KeyValid) { 2302 if (KeyValid) {
2305 if (Register == REG_MAC_STA_ADDR) 2303 if (Register == REG_MAC_STA_ADDR)
2306 Addr[0] = Control; 2304 Addr[0] = Control;
2307 else if (Register == (REG_MAC_STA_ADDR + 4)) 2305 else if (Register == (REG_MAC_STA_ADDR + 4))
2308 Addr[1] = Control; 2306 Addr[1] = Control;
2309 KeyValid = false; 2307 KeyValid = false;
2310 } else if ((Control & 0xff) == 0x5A) { 2308 } else if ((Control & 0xff) == 0x5A) {
2311 KeyValid = true; 2309 KeyValid = true;
2312 Register = (u16) (Control >> 16); 2310 Register = (u16) (Control >> 16);
2313 } else { 2311 } else {
2314 break; /* data end */ 2312 break; /* data end */
2315 } 2313 }
2316 } else { 2314 } else {
2317 break; /* read error */ 2315 break; /* read error */
2318 } 2316 }
2319 i += 4; 2317 i += 4;
2320 } 2318 }
2321 2319
2322 *(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]); 2320 *(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]);
2323 *(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *)&Addr[1]); 2321 *(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *)&Addr[1]);
2324 if (is_valid_ether_addr(EthAddr)) { 2322 if (is_valid_ether_addr(EthAddr)) {
2325 memcpy(hw->perm_mac_addr, EthAddr, NODE_ADDRESS_SIZE); 2323 memcpy(hw->perm_mac_addr, EthAddr, NODE_ADDRESS_SIZE);
2326 return 0; 2324 return 0;
2327 } 2325 }
2328 /* maybe MAC-address is from BIOS */ 2326 /* maybe MAC-address is from BIOS */
2329 Addr[0] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR); 2327 Addr[0] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR);
2330 Addr[1] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR + 4); 2328 Addr[1] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR + 4);
2331 *(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]); 2329 *(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]);
2332 *(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *) &Addr[1]); 2330 *(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *) &Addr[1]);
2333 2331
2334 if (is_valid_ether_addr(EthAddr)) { 2332 if (is_valid_ether_addr(EthAddr)) {
2335 memcpy(hw->perm_mac_addr, EthAddr, NODE_ADDRESS_SIZE); 2333 memcpy(hw->perm_mac_addr, EthAddr, NODE_ADDRESS_SIZE);
2336 return 0; 2334 return 0;
2337 } 2335 }
2338 2336
2339 return 1; 2337 return 1;
2340 } 2338 }
2341 2339
2342 /* 2340 /*
2343 * Reads the adapter's MAC address from the EEPROM 2341 * Reads the adapter's MAC address from the EEPROM
2344 * 2342 *
2345 * hw - Struct containing variables accessed by shared code 2343 * hw - Struct containing variables accessed by shared code
2346 */ 2344 */
2347 static s32 atl2_read_mac_addr(struct atl2_hw *hw) 2345 static s32 atl2_read_mac_addr(struct atl2_hw *hw)
2348 { 2346 {
2349 u16 i; 2347 u16 i;
2350 2348
2351 if (get_permanent_address(hw)) { 2349 if (get_permanent_address(hw)) {
2352 /* for test */ 2350 /* for test */
2353 /* FIXME: shouldn't we use random_ether_addr() here? */ 2351 /* FIXME: shouldn't we use random_ether_addr() here? */
2354 hw->perm_mac_addr[0] = 0x00; 2352 hw->perm_mac_addr[0] = 0x00;
2355 hw->perm_mac_addr[1] = 0x13; 2353 hw->perm_mac_addr[1] = 0x13;
2356 hw->perm_mac_addr[2] = 0x74; 2354 hw->perm_mac_addr[2] = 0x74;
2357 hw->perm_mac_addr[3] = 0x00; 2355 hw->perm_mac_addr[3] = 0x00;
2358 hw->perm_mac_addr[4] = 0x5c; 2356 hw->perm_mac_addr[4] = 0x5c;
2359 hw->perm_mac_addr[5] = 0x38; 2357 hw->perm_mac_addr[5] = 0x38;
2360 } 2358 }
2361 2359
2362 for (i = 0; i < NODE_ADDRESS_SIZE; i++) 2360 for (i = 0; i < NODE_ADDRESS_SIZE; i++)
2363 hw->mac_addr[i] = hw->perm_mac_addr[i]; 2361 hw->mac_addr[i] = hw->perm_mac_addr[i];
2364 2362
2365 return 0; 2363 return 0;
2366 } 2364 }
2367 2365
2368 /* 2366 /*
2369 * Hashes an address to determine its location in the multicast table 2367 * Hashes an address to determine its location in the multicast table
2370 * 2368 *
2371 * hw - Struct containing variables accessed by shared code 2369 * hw - Struct containing variables accessed by shared code
2372 * mc_addr - the multicast address to hash 2370 * mc_addr - the multicast address to hash
2373 * 2371 *
2374 * atl2_hash_mc_addr 2372 * atl2_hash_mc_addr
2375 * purpose 2373 * purpose
2376 * set hash value for a multicast address 2374 * set hash value for a multicast address
2377 * hash calcu processing : 2375 * hash calcu processing :
2378 * 1. calcu 32bit CRC for multicast address 2376 * 1. calcu 32bit CRC for multicast address
2379 * 2. reverse crc with MSB to LSB 2377 * 2. reverse crc with MSB to LSB
2380 */ 2378 */
2381 static u32 atl2_hash_mc_addr(struct atl2_hw *hw, u8 *mc_addr) 2379 static u32 atl2_hash_mc_addr(struct atl2_hw *hw, u8 *mc_addr)
2382 { 2380 {
2383 u32 crc32, value; 2381 u32 crc32, value;
2384 int i; 2382 int i;
2385 2383
2386 value = 0; 2384 value = 0;
2387 crc32 = ether_crc_le(6, mc_addr); 2385 crc32 = ether_crc_le(6, mc_addr);
2388 2386
2389 for (i = 0; i < 32; i++) 2387 for (i = 0; i < 32; i++)
2390 value |= (((crc32 >> i) & 1) << (31 - i)); 2388 value |= (((crc32 >> i) & 1) << (31 - i));
2391 2389
2392 return value; 2390 return value;
2393 } 2391 }
2394 2392
2395 /* 2393 /*
2396 * Sets the bit in the multicast table corresponding to the hash value. 2394 * Sets the bit in the multicast table corresponding to the hash value.
2397 * 2395 *
2398 * hw - Struct containing variables accessed by shared code 2396 * hw - Struct containing variables accessed by shared code
2399 * hash_value - Multicast address hash value 2397 * hash_value - Multicast address hash value
2400 */ 2398 */
2401 static void atl2_hash_set(struct atl2_hw *hw, u32 hash_value) 2399 static void atl2_hash_set(struct atl2_hw *hw, u32 hash_value)
2402 { 2400 {
2403 u32 hash_bit, hash_reg; 2401 u32 hash_bit, hash_reg;
2404 u32 mta; 2402 u32 mta;
2405 2403
2406 /* The HASH Table is a register array of 2 32-bit registers. 2404 /* The HASH Table is a register array of 2 32-bit registers.
2407 * It is treated like an array of 64 bits. We want to set 2405 * It is treated like an array of 64 bits. We want to set
2408 * bit BitArray[hash_value]. So we figure out what register 2406 * bit BitArray[hash_value]. So we figure out what register
2409 * the bit is in, read it, OR in the new bit, then write 2407 * the bit is in, read it, OR in the new bit, then write
2410 * back the new value. The register is determined by the 2408 * back the new value. The register is determined by the
2411 * upper 7 bits of the hash value and the bit within that 2409 * upper 7 bits of the hash value and the bit within that
2412 * register are determined by the lower 5 bits of the value. 2410 * register are determined by the lower 5 bits of the value.
2413 */ 2411 */
2414 hash_reg = (hash_value >> 31) & 0x1; 2412 hash_reg = (hash_value >> 31) & 0x1;
2415 hash_bit = (hash_value >> 26) & 0x1F; 2413 hash_bit = (hash_value >> 26) & 0x1F;
2416 2414
2417 mta = ATL2_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg); 2415 mta = ATL2_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg);
2418 2416
2419 mta |= (1 << hash_bit); 2417 mta |= (1 << hash_bit);
2420 2418
2421 ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta); 2419 ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta);
2422 } 2420 }
2423 2421
2424 /* 2422 /*
2425 * atl2_init_pcie - init PCIE module 2423 * atl2_init_pcie - init PCIE module
2426 */ 2424 */
2427 static void atl2_init_pcie(struct atl2_hw *hw) 2425 static void atl2_init_pcie(struct atl2_hw *hw)
2428 { 2426 {
2429 u32 value; 2427 u32 value;
2430 value = LTSSM_TEST_MODE_DEF; 2428 value = LTSSM_TEST_MODE_DEF;
2431 ATL2_WRITE_REG(hw, REG_LTSSM_TEST_MODE, value); 2429 ATL2_WRITE_REG(hw, REG_LTSSM_TEST_MODE, value);
2432 2430
2433 value = PCIE_DLL_TX_CTRL1_DEF; 2431 value = PCIE_DLL_TX_CTRL1_DEF;
2434 ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, value); 2432 ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, value);
2435 } 2433 }
2436 2434
2437 static void atl2_init_flash_opcode(struct atl2_hw *hw) 2435 static void atl2_init_flash_opcode(struct atl2_hw *hw)
2438 { 2436 {
2439 if (hw->flash_vendor >= ARRAY_SIZE(flash_table)) 2437 if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
2440 hw->flash_vendor = 0; /* ATMEL */ 2438 hw->flash_vendor = 0; /* ATMEL */
2441 2439
2442 /* Init OP table */ 2440 /* Init OP table */
2443 ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_PROGRAM, 2441 ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_PROGRAM,
2444 flash_table[hw->flash_vendor].cmdPROGRAM); 2442 flash_table[hw->flash_vendor].cmdPROGRAM);
2445 ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_SC_ERASE, 2443 ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_SC_ERASE,
2446 flash_table[hw->flash_vendor].cmdSECTOR_ERASE); 2444 flash_table[hw->flash_vendor].cmdSECTOR_ERASE);
2447 ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_CHIP_ERASE, 2445 ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_CHIP_ERASE,
2448 flash_table[hw->flash_vendor].cmdCHIP_ERASE); 2446 flash_table[hw->flash_vendor].cmdCHIP_ERASE);
2449 ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_RDID, 2447 ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_RDID,
2450 flash_table[hw->flash_vendor].cmdRDID); 2448 flash_table[hw->flash_vendor].cmdRDID);
2451 ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_WREN, 2449 ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_WREN,
2452 flash_table[hw->flash_vendor].cmdWREN); 2450 flash_table[hw->flash_vendor].cmdWREN);
2453 ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_RDSR, 2451 ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_RDSR,
2454 flash_table[hw->flash_vendor].cmdRDSR); 2452 flash_table[hw->flash_vendor].cmdRDSR);
2455 ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_WRSR, 2453 ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_WRSR,
2456 flash_table[hw->flash_vendor].cmdWRSR); 2454 flash_table[hw->flash_vendor].cmdWRSR);
2457 ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_READ, 2455 ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_READ,
2458 flash_table[hw->flash_vendor].cmdREAD); 2456 flash_table[hw->flash_vendor].cmdREAD);
2459 } 2457 }
2460 2458
2461 /******************************************************************** 2459 /********************************************************************
2462 * Performs basic configuration of the adapter. 2460 * Performs basic configuration of the adapter.
2463 * 2461 *
2464 * hw - Struct containing variables accessed by shared code 2462 * hw - Struct containing variables accessed by shared code
2465 * Assumes that the controller has previously been reset and is in a 2463 * Assumes that the controller has previously been reset and is in a
2466 * post-reset uninitialized state. Initializes multicast table, 2464 * post-reset uninitialized state. Initializes multicast table,
2467 * and Calls routines to setup link 2465 * and Calls routines to setup link
2468 * Leaves the transmit and receive units disabled and uninitialized. 2466 * Leaves the transmit and receive units disabled and uninitialized.
2469 ********************************************************************/ 2467 ********************************************************************/
2470 static s32 atl2_init_hw(struct atl2_hw *hw) 2468 static s32 atl2_init_hw(struct atl2_hw *hw)
2471 { 2469 {
2472 u32 ret_val = 0; 2470 u32 ret_val = 0;
2473 2471
2474 atl2_init_pcie(hw); 2472 atl2_init_pcie(hw);
2475 2473
2476 /* Zero out the Multicast HASH table */ 2474 /* Zero out the Multicast HASH table */
2477 /* clear the old settings from the multicast hash table */ 2475 /* clear the old settings from the multicast hash table */
2478 ATL2_WRITE_REG(hw, REG_RX_HASH_TABLE, 0); 2476 ATL2_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
2479 ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0); 2477 ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);
2480 2478
2481 atl2_init_flash_opcode(hw); 2479 atl2_init_flash_opcode(hw);
2482 2480
2483 ret_val = atl2_phy_init(hw); 2481 ret_val = atl2_phy_init(hw);
2484 2482
2485 return ret_val; 2483 return ret_val;
2486 } 2484 }
2487 2485
2488 /* 2486 /*
2489 * Detects the current speed and duplex settings of the hardware. 2487 * Detects the current speed and duplex settings of the hardware.
2490 * 2488 *
2491 * hw - Struct containing variables accessed by shared code 2489 * hw - Struct containing variables accessed by shared code
2492 * speed - Speed of the connection 2490 * speed - Speed of the connection
2493 * duplex - Duplex setting of the connection 2491 * duplex - Duplex setting of the connection
2494 */ 2492 */
2495 static s32 atl2_get_speed_and_duplex(struct atl2_hw *hw, u16 *speed, 2493 static s32 atl2_get_speed_and_duplex(struct atl2_hw *hw, u16 *speed,
2496 u16 *duplex) 2494 u16 *duplex)
2497 { 2495 {
2498 s32 ret_val; 2496 s32 ret_val;
2499 u16 phy_data; 2497 u16 phy_data;
2500 2498
2501 /* Read PHY Specific Status Register (17) */ 2499 /* Read PHY Specific Status Register (17) */
2502 ret_val = atl2_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data); 2500 ret_val = atl2_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data);
2503 if (ret_val) 2501 if (ret_val)
2504 return ret_val; 2502 return ret_val;
2505 2503
2506 if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED)) 2504 if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED))
2507 return ATLX_ERR_PHY_RES; 2505 return ATLX_ERR_PHY_RES;
2508 2506
2509 switch (phy_data & MII_ATLX_PSSR_SPEED) { 2507 switch (phy_data & MII_ATLX_PSSR_SPEED) {
2510 case MII_ATLX_PSSR_100MBS: 2508 case MII_ATLX_PSSR_100MBS:
2511 *speed = SPEED_100; 2509 *speed = SPEED_100;
2512 break; 2510 break;
2513 case MII_ATLX_PSSR_10MBS: 2511 case MII_ATLX_PSSR_10MBS:
2514 *speed = SPEED_10; 2512 *speed = SPEED_10;
2515 break; 2513 break;
2516 default: 2514 default:
2517 return ATLX_ERR_PHY_SPEED; 2515 return ATLX_ERR_PHY_SPEED;
2518 break; 2516 break;
2519 } 2517 }
2520 2518
2521 if (phy_data & MII_ATLX_PSSR_DPLX) 2519 if (phy_data & MII_ATLX_PSSR_DPLX)
2522 *duplex = FULL_DUPLEX; 2520 *duplex = FULL_DUPLEX;
2523 else 2521 else
2524 *duplex = HALF_DUPLEX; 2522 *duplex = HALF_DUPLEX;
2525 2523
2526 return 0; 2524 return 0;
2527 } 2525 }
2528 2526
2529 /* 2527 /*
2530 * Reads the value from a PHY register 2528 * Reads the value from a PHY register
2531 * hw - Struct containing variables accessed by shared code 2529 * hw - Struct containing variables accessed by shared code
2532 * reg_addr - address of the PHY register to read 2530 * reg_addr - address of the PHY register to read
2533 */ 2531 */
2534 static s32 atl2_read_phy_reg(struct atl2_hw *hw, u16 reg_addr, u16 *phy_data) 2532 static s32 atl2_read_phy_reg(struct atl2_hw *hw, u16 reg_addr, u16 *phy_data)
2535 { 2533 {
2536 u32 val; 2534 u32 val;
2537 int i; 2535 int i;
2538 2536
2539 val = ((u32)(reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT | 2537 val = ((u32)(reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
2540 MDIO_START | 2538 MDIO_START |
2541 MDIO_SUP_PREAMBLE | 2539 MDIO_SUP_PREAMBLE |
2542 MDIO_RW | 2540 MDIO_RW |
2543 MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT; 2541 MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
2544 ATL2_WRITE_REG(hw, REG_MDIO_CTRL, val); 2542 ATL2_WRITE_REG(hw, REG_MDIO_CTRL, val);
2545 2543
2546 wmb(); 2544 wmb();
2547 2545
2548 for (i = 0; i < MDIO_WAIT_TIMES; i++) { 2546 for (i = 0; i < MDIO_WAIT_TIMES; i++) {
2549 udelay(2); 2547 udelay(2);
2550 val = ATL2_READ_REG(hw, REG_MDIO_CTRL); 2548 val = ATL2_READ_REG(hw, REG_MDIO_CTRL);
2551 if (!(val & (MDIO_START | MDIO_BUSY))) 2549 if (!(val & (MDIO_START | MDIO_BUSY)))
2552 break; 2550 break;
2553 wmb(); 2551 wmb();
2554 } 2552 }
2555 if (!(val & (MDIO_START | MDIO_BUSY))) { 2553 if (!(val & (MDIO_START | MDIO_BUSY))) {
2556 *phy_data = (u16)val; 2554 *phy_data = (u16)val;
2557 return 0; 2555 return 0;
2558 } 2556 }
2559 2557
2560 return ATLX_ERR_PHY; 2558 return ATLX_ERR_PHY;
2561 } 2559 }
2562 2560
2563 /* 2561 /*
2564 * Writes a value to a PHY register 2562 * Writes a value to a PHY register
2565 * hw - Struct containing variables accessed by shared code 2563 * hw - Struct containing variables accessed by shared code
2566 * reg_addr - address of the PHY register to write 2564 * reg_addr - address of the PHY register to write
2567 * data - data to write to the PHY 2565 * data - data to write to the PHY
2568 */ 2566 */
2569 static s32 atl2_write_phy_reg(struct atl2_hw *hw, u32 reg_addr, u16 phy_data) 2567 static s32 atl2_write_phy_reg(struct atl2_hw *hw, u32 reg_addr, u16 phy_data)
2570 { 2568 {
2571 int i; 2569 int i;
2572 u32 val; 2570 u32 val;
2573 2571
2574 val = ((u32)(phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT | 2572 val = ((u32)(phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
2575 (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT | 2573 (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
2576 MDIO_SUP_PREAMBLE | 2574 MDIO_SUP_PREAMBLE |
2577 MDIO_START | 2575 MDIO_START |
2578 MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT; 2576 MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
2579 ATL2_WRITE_REG(hw, REG_MDIO_CTRL, val); 2577 ATL2_WRITE_REG(hw, REG_MDIO_CTRL, val);
2580 2578
2581 wmb(); 2579 wmb();
2582 2580
2583 for (i = 0; i < MDIO_WAIT_TIMES; i++) { 2581 for (i = 0; i < MDIO_WAIT_TIMES; i++) {
2584 udelay(2); 2582 udelay(2);
2585 val = ATL2_READ_REG(hw, REG_MDIO_CTRL); 2583 val = ATL2_READ_REG(hw, REG_MDIO_CTRL);
2586 if (!(val & (MDIO_START | MDIO_BUSY))) 2584 if (!(val & (MDIO_START | MDIO_BUSY)))
2587 break; 2585 break;
2588 2586
2589 wmb(); 2587 wmb();
2590 } 2588 }
2591 2589
2592 if (!(val & (MDIO_START | MDIO_BUSY))) 2590 if (!(val & (MDIO_START | MDIO_BUSY)))
2593 return 0; 2591 return 0;
2594 2592
2595 return ATLX_ERR_PHY; 2593 return ATLX_ERR_PHY;
2596 } 2594 }
2597 2595
2598 /* 2596 /*
2599 * Configures PHY autoneg and flow control advertisement settings 2597 * Configures PHY autoneg and flow control advertisement settings
2600 * 2598 *
2601 * hw - Struct containing variables accessed by shared code 2599 * hw - Struct containing variables accessed by shared code
2602 */ 2600 */
2603 static s32 atl2_phy_setup_autoneg_adv(struct atl2_hw *hw) 2601 static s32 atl2_phy_setup_autoneg_adv(struct atl2_hw *hw)
2604 { 2602 {
2605 s32 ret_val; 2603 s32 ret_val;
2606 s16 mii_autoneg_adv_reg; 2604 s16 mii_autoneg_adv_reg;
2607 2605
2608 /* Read the MII Auto-Neg Advertisement Register (Address 4). */ 2606 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
2609 mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK; 2607 mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
2610 2608
2611 /* Need to parse autoneg_advertised and set up 2609 /* Need to parse autoneg_advertised and set up
2612 * the appropriate PHY registers. First we will parse for 2610 * the appropriate PHY registers. First we will parse for
2613 * autoneg_advertised software override. Since we can advertise 2611 * autoneg_advertised software override. Since we can advertise
2614 * a plethora of combinations, we need to check each bit 2612 * a plethora of combinations, we need to check each bit
2615 * individually. 2613 * individually.
2616 */ 2614 */
2617 2615
2618 /* First we clear all the 10/100 mb speed bits in the Auto-Neg 2616 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
2619 * Advertisement Register (Address 4) and the 1000 mb speed bits in 2617 * Advertisement Register (Address 4) and the 1000 mb speed bits in
2620 * the 1000Base-T Control Register (Address 9). */ 2618 * the 1000Base-T Control Register (Address 9). */
2621 mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK; 2619 mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
2622 2620
2623 /* Need to parse MediaType and setup the 2621 /* Need to parse MediaType and setup the
2624 * appropriate PHY registers. */ 2622 * appropriate PHY registers. */
2625 switch (hw->MediaType) { 2623 switch (hw->MediaType) {
2626 case MEDIA_TYPE_AUTO_SENSOR: 2624 case MEDIA_TYPE_AUTO_SENSOR:
2627 mii_autoneg_adv_reg |= 2625 mii_autoneg_adv_reg |=
2628 (MII_AR_10T_HD_CAPS | 2626 (MII_AR_10T_HD_CAPS |
2629 MII_AR_10T_FD_CAPS | 2627 MII_AR_10T_FD_CAPS |
2630 MII_AR_100TX_HD_CAPS| 2628 MII_AR_100TX_HD_CAPS|
2631 MII_AR_100TX_FD_CAPS); 2629 MII_AR_100TX_FD_CAPS);
2632 hw->autoneg_advertised = 2630 hw->autoneg_advertised =
2633 ADVERTISE_10_HALF | 2631 ADVERTISE_10_HALF |
2634 ADVERTISE_10_FULL | 2632 ADVERTISE_10_FULL |
2635 ADVERTISE_100_HALF| 2633 ADVERTISE_100_HALF|
2636 ADVERTISE_100_FULL; 2634 ADVERTISE_100_FULL;
2637 break; 2635 break;
2638 case MEDIA_TYPE_100M_FULL: 2636 case MEDIA_TYPE_100M_FULL:
2639 mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS; 2637 mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
2640 hw->autoneg_advertised = ADVERTISE_100_FULL; 2638 hw->autoneg_advertised = ADVERTISE_100_FULL;
2641 break; 2639 break;
2642 case MEDIA_TYPE_100M_HALF: 2640 case MEDIA_TYPE_100M_HALF:
2643 mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS; 2641 mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
2644 hw->autoneg_advertised = ADVERTISE_100_HALF; 2642 hw->autoneg_advertised = ADVERTISE_100_HALF;
2645 break; 2643 break;
2646 case MEDIA_TYPE_10M_FULL: 2644 case MEDIA_TYPE_10M_FULL:
2647 mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS; 2645 mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
2648 hw->autoneg_advertised = ADVERTISE_10_FULL; 2646 hw->autoneg_advertised = ADVERTISE_10_FULL;
2649 break; 2647 break;
2650 default: 2648 default:
2651 mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS; 2649 mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
2652 hw->autoneg_advertised = ADVERTISE_10_HALF; 2650 hw->autoneg_advertised = ADVERTISE_10_HALF;
2653 break; 2651 break;
2654 } 2652 }
2655 2653
2656 /* flow control fixed to enable all */ 2654 /* flow control fixed to enable all */
2657 mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE); 2655 mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
2658 2656
2659 hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg; 2657 hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
2660 2658
2661 ret_val = atl2_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg); 2659 ret_val = atl2_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
2662 2660
2663 if (ret_val) 2661 if (ret_val)
2664 return ret_val; 2662 return ret_val;
2665 2663
2666 return 0; 2664 return 0;
2667 } 2665 }
2668 2666
2669 /* 2667 /*
2670 * Resets the PHY and make all config validate 2668 * Resets the PHY and make all config validate
2671 * 2669 *
2672 * hw - Struct containing variables accessed by shared code 2670 * hw - Struct containing variables accessed by shared code
2673 * 2671 *
2674 * Sets bit 15 and 12 of the MII Control regiser (for F001 bug) 2672 * Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
2675 */ 2673 */
2676 static s32 atl2_phy_commit(struct atl2_hw *hw) 2674 static s32 atl2_phy_commit(struct atl2_hw *hw)
2677 { 2675 {
2678 s32 ret_val; 2676 s32 ret_val;
2679 u16 phy_data; 2677 u16 phy_data;
2680 2678
2681 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG; 2679 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2682 ret_val = atl2_write_phy_reg(hw, MII_BMCR, phy_data); 2680 ret_val = atl2_write_phy_reg(hw, MII_BMCR, phy_data);
2683 if (ret_val) { 2681 if (ret_val) {
2684 u32 val; 2682 u32 val;
2685 int i; 2683 int i;
2686 /* pcie serdes link may be down ! */ 2684 /* pcie serdes link may be down ! */
2687 for (i = 0; i < 25; i++) { 2685 for (i = 0; i < 25; i++) {
2688 msleep(1); 2686 msleep(1);
2689 val = ATL2_READ_REG(hw, REG_MDIO_CTRL); 2687 val = ATL2_READ_REG(hw, REG_MDIO_CTRL);
2690 if (!(val & (MDIO_START | MDIO_BUSY))) 2688 if (!(val & (MDIO_START | MDIO_BUSY)))
2691 break; 2689 break;
2692 } 2690 }
2693 2691
2694 if (0 != (val & (MDIO_START | MDIO_BUSY))) { 2692 if (0 != (val & (MDIO_START | MDIO_BUSY))) {
2695 printk(KERN_ERR "atl2: PCIe link down for at least 25ms !\n"); 2693 printk(KERN_ERR "atl2: PCIe link down for at least 25ms !\n");
2696 return ret_val; 2694 return ret_val;
2697 } 2695 }
2698 } 2696 }
2699 return 0; 2697 return 0;
2700 } 2698 }
2701 2699
2702 static s32 atl2_phy_init(struct atl2_hw *hw) 2700 static s32 atl2_phy_init(struct atl2_hw *hw)
2703 { 2701 {
2704 s32 ret_val; 2702 s32 ret_val;
2705 u16 phy_val; 2703 u16 phy_val;
2706 2704
2707 if (hw->phy_configured) 2705 if (hw->phy_configured)
2708 return 0; 2706 return 0;
2709 2707
2710 /* Enable PHY */ 2708 /* Enable PHY */
2711 ATL2_WRITE_REGW(hw, REG_PHY_ENABLE, 1); 2709 ATL2_WRITE_REGW(hw, REG_PHY_ENABLE, 1);
2712 ATL2_WRITE_FLUSH(hw); 2710 ATL2_WRITE_FLUSH(hw);
2713 msleep(1); 2711 msleep(1);
2714 2712
2715 /* check if the PHY is in powersaving mode */ 2713 /* check if the PHY is in powersaving mode */
2716 atl2_write_phy_reg(hw, MII_DBG_ADDR, 0); 2714 atl2_write_phy_reg(hw, MII_DBG_ADDR, 0);
2717 atl2_read_phy_reg(hw, MII_DBG_DATA, &phy_val); 2715 atl2_read_phy_reg(hw, MII_DBG_DATA, &phy_val);
2718 2716
2719 /* 024E / 124E 0r 0274 / 1274 ? */ 2717 /* 024E / 124E 0r 0274 / 1274 ? */
2720 if (phy_val & 0x1000) { 2718 if (phy_val & 0x1000) {
2721 phy_val &= ~0x1000; 2719 phy_val &= ~0x1000;
2722 atl2_write_phy_reg(hw, MII_DBG_DATA, phy_val); 2720 atl2_write_phy_reg(hw, MII_DBG_DATA, phy_val);
2723 } 2721 }
2724 2722
2725 msleep(1); 2723 msleep(1);
2726 2724
2727 /*Enable PHY LinkChange Interrupt */ 2725 /*Enable PHY LinkChange Interrupt */
2728 ret_val = atl2_write_phy_reg(hw, 18, 0xC00); 2726 ret_val = atl2_write_phy_reg(hw, 18, 0xC00);
2729 if (ret_val) 2727 if (ret_val)
2730 return ret_val; 2728 return ret_val;
2731 2729
2732 /* setup AutoNeg parameters */ 2730 /* setup AutoNeg parameters */
2733 ret_val = atl2_phy_setup_autoneg_adv(hw); 2731 ret_val = atl2_phy_setup_autoneg_adv(hw);
2734 if (ret_val) 2732 if (ret_val)
2735 return ret_val; 2733 return ret_val;
2736 2734
2737 /* SW.Reset & En-Auto-Neg to restart Auto-Neg */ 2735 /* SW.Reset & En-Auto-Neg to restart Auto-Neg */
2738 ret_val = atl2_phy_commit(hw); 2736 ret_val = atl2_phy_commit(hw);
2739 if (ret_val) 2737 if (ret_val)
2740 return ret_val; 2738 return ret_val;
2741 2739
2742 hw->phy_configured = true; 2740 hw->phy_configured = true;
2743 2741
2744 return ret_val; 2742 return ret_val;
2745 } 2743 }
2746 2744
2747 static void atl2_set_mac_addr(struct atl2_hw *hw) 2745 static void atl2_set_mac_addr(struct atl2_hw *hw)
2748 { 2746 {
2749 u32 value; 2747 u32 value;
2750 /* 00-0B-6A-F6-00-DC 2748 /* 00-0B-6A-F6-00-DC
2751 * 0: 6AF600DC 1: 000B 2749 * 0: 6AF600DC 1: 000B
2752 * low dword */ 2750 * low dword */
2753 value = (((u32)hw->mac_addr[2]) << 24) | 2751 value = (((u32)hw->mac_addr[2]) << 24) |
2754 (((u32)hw->mac_addr[3]) << 16) | 2752 (((u32)hw->mac_addr[3]) << 16) |
2755 (((u32)hw->mac_addr[4]) << 8) | 2753 (((u32)hw->mac_addr[4]) << 8) |
2756 (((u32)hw->mac_addr[5])); 2754 (((u32)hw->mac_addr[5]));
2757 ATL2_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value); 2755 ATL2_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value);
2758 /* hight dword */ 2756 /* hight dword */
2759 value = (((u32)hw->mac_addr[0]) << 8) | 2757 value = (((u32)hw->mac_addr[0]) << 8) |
2760 (((u32)hw->mac_addr[1])); 2758 (((u32)hw->mac_addr[1]));
2761 ATL2_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value); 2759 ATL2_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value);
2762 } 2760 }
2763 2761
2764 /* 2762 /*
2765 * check_eeprom_exist 2763 * check_eeprom_exist
2766 * return 0 if eeprom exist 2764 * return 0 if eeprom exist
2767 */ 2765 */
2768 static int atl2_check_eeprom_exist(struct atl2_hw *hw) 2766 static int atl2_check_eeprom_exist(struct atl2_hw *hw)
2769 { 2767 {
2770 u32 value; 2768 u32 value;
2771 2769
2772 value = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL); 2770 value = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL);
2773 if (value & SPI_FLASH_CTRL_EN_VPD) { 2771 if (value & SPI_FLASH_CTRL_EN_VPD) {
2774 value &= ~SPI_FLASH_CTRL_EN_VPD; 2772 value &= ~SPI_FLASH_CTRL_EN_VPD;
2775 ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value); 2773 ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
2776 } 2774 }
2777 value = ATL2_READ_REGW(hw, REG_PCIE_CAP_LIST); 2775 value = ATL2_READ_REGW(hw, REG_PCIE_CAP_LIST);
2778 return ((value & 0xFF00) == 0x6C00) ? 0 : 1; 2776 return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
2779 } 2777 }
2780 2778
2781 /* FIXME: This doesn't look right. -- CHS */ 2779 /* FIXME: This doesn't look right. -- CHS */
2782 static bool atl2_write_eeprom(struct atl2_hw *hw, u32 offset, u32 value) 2780 static bool atl2_write_eeprom(struct atl2_hw *hw, u32 offset, u32 value)
2783 { 2781 {
2784 return true; 2782 return true;
2785 } 2783 }
2786 2784
2787 static bool atl2_read_eeprom(struct atl2_hw *hw, u32 Offset, u32 *pValue) 2785 static bool atl2_read_eeprom(struct atl2_hw *hw, u32 Offset, u32 *pValue)
2788 { 2786 {
2789 int i; 2787 int i;
2790 u32 Control; 2788 u32 Control;
2791 2789
2792 if (Offset & 0x3) 2790 if (Offset & 0x3)
2793 return false; /* address do not align */ 2791 return false; /* address do not align */
2794 2792
2795 ATL2_WRITE_REG(hw, REG_VPD_DATA, 0); 2793 ATL2_WRITE_REG(hw, REG_VPD_DATA, 0);
2796 Control = (Offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT; 2794 Control = (Offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
2797 ATL2_WRITE_REG(hw, REG_VPD_CAP, Control); 2795 ATL2_WRITE_REG(hw, REG_VPD_CAP, Control);
2798 2796
2799 for (i = 0; i < 10; i++) { 2797 for (i = 0; i < 10; i++) {
2800 msleep(2); 2798 msleep(2);
2801 Control = ATL2_READ_REG(hw, REG_VPD_CAP); 2799 Control = ATL2_READ_REG(hw, REG_VPD_CAP);
2802 if (Control & VPD_CAP_VPD_FLAG) 2800 if (Control & VPD_CAP_VPD_FLAG)
2803 break; 2801 break;
2804 } 2802 }
2805 2803
2806 if (Control & VPD_CAP_VPD_FLAG) { 2804 if (Control & VPD_CAP_VPD_FLAG) {
2807 *pValue = ATL2_READ_REG(hw, REG_VPD_DATA); 2805 *pValue = ATL2_READ_REG(hw, REG_VPD_DATA);
2808 return true; 2806 return true;
2809 } 2807 }
2810 return false; /* timeout */ 2808 return false; /* timeout */
2811 } 2809 }
2812 2810
2813 static void atl2_force_ps(struct atl2_hw *hw) 2811 static void atl2_force_ps(struct atl2_hw *hw)
2814 { 2812 {
2815 u16 phy_val; 2813 u16 phy_val;
2816 2814
2817 atl2_write_phy_reg(hw, MII_DBG_ADDR, 0); 2815 atl2_write_phy_reg(hw, MII_DBG_ADDR, 0);
2818 atl2_read_phy_reg(hw, MII_DBG_DATA, &phy_val); 2816 atl2_read_phy_reg(hw, MII_DBG_DATA, &phy_val);
2819 atl2_write_phy_reg(hw, MII_DBG_DATA, phy_val | 0x1000); 2817 atl2_write_phy_reg(hw, MII_DBG_DATA, phy_val | 0x1000);
2820 2818
2821 atl2_write_phy_reg(hw, MII_DBG_ADDR, 2); 2819 atl2_write_phy_reg(hw, MII_DBG_ADDR, 2);
2822 atl2_write_phy_reg(hw, MII_DBG_DATA, 0x3000); 2820 atl2_write_phy_reg(hw, MII_DBG_DATA, 0x3000);
2823 atl2_write_phy_reg(hw, MII_DBG_ADDR, 3); 2821 atl2_write_phy_reg(hw, MII_DBG_ADDR, 3);
2824 atl2_write_phy_reg(hw, MII_DBG_DATA, 0); 2822 atl2_write_phy_reg(hw, MII_DBG_DATA, 0);
2825 } 2823 }
2826 2824
2827 /* This is the only thing that needs to be changed to adjust the 2825 /* This is the only thing that needs to be changed to adjust the
2828 * maximum number of ports that the driver can manage. 2826 * maximum number of ports that the driver can manage.
2829 */ 2827 */
2830 #define ATL2_MAX_NIC 4 2828 #define ATL2_MAX_NIC 4
2831 2829
2832 #define OPTION_UNSET -1 2830 #define OPTION_UNSET -1
2833 #define OPTION_DISABLED 0 2831 #define OPTION_DISABLED 0
2834 #define OPTION_ENABLED 1 2832 #define OPTION_ENABLED 1
2835 2833
2836 /* All parameters are treated the same, as an integer array of values. 2834 /* All parameters are treated the same, as an integer array of values.
2837 * This macro just reduces the need to repeat the same declaration code 2835 * This macro just reduces the need to repeat the same declaration code
2838 * over and over (plus this helps to avoid typo bugs). 2836 * over and over (plus this helps to avoid typo bugs).
2839 */ 2837 */
2840 #define ATL2_PARAM_INIT {[0 ... ATL2_MAX_NIC] = OPTION_UNSET} 2838 #define ATL2_PARAM_INIT {[0 ... ATL2_MAX_NIC] = OPTION_UNSET}
2841 #ifndef module_param_array 2839 #ifndef module_param_array
2842 /* Module Parameters are always initialized to -1, so that the driver 2840 /* Module Parameters are always initialized to -1, so that the driver
2843 * can tell the difference between no user specified value or the 2841 * can tell the difference between no user specified value or the
2844 * user asking for the default value. 2842 * user asking for the default value.
2845 * The true default values are loaded in when atl2_check_options is called. 2843 * The true default values are loaded in when atl2_check_options is called.
2846 * 2844 *
2847 * This is a GCC extension to ANSI C. 2845 * This is a GCC extension to ANSI C.
2848 * See the item "Labeled Elements in Initializers" in the section 2846 * See the item "Labeled Elements in Initializers" in the section
2849 * "Extensions to the C Language Family" of the GCC documentation. 2847 * "Extensions to the C Language Family" of the GCC documentation.
2850 */ 2848 */
2851 2849
2852 #define ATL2_PARAM(X, desc) \ 2850 #define ATL2_PARAM(X, desc) \
2853 static const int __devinitdata X[ATL2_MAX_NIC + 1] = ATL2_PARAM_INIT; \ 2851 static const int __devinitdata X[ATL2_MAX_NIC + 1] = ATL2_PARAM_INIT; \
2854 MODULE_PARM(X, "1-" __MODULE_STRING(ATL2_MAX_NIC) "i"); \ 2852 MODULE_PARM(X, "1-" __MODULE_STRING(ATL2_MAX_NIC) "i"); \
2855 MODULE_PARM_DESC(X, desc); 2853 MODULE_PARM_DESC(X, desc);
2856 #else 2854 #else
2857 #define ATL2_PARAM(X, desc) \ 2855 #define ATL2_PARAM(X, desc) \
2858 static int __devinitdata X[ATL2_MAX_NIC+1] = ATL2_PARAM_INIT; \ 2856 static int __devinitdata X[ATL2_MAX_NIC+1] = ATL2_PARAM_INIT; \
2859 static int num_##X = 0; \ 2857 static int num_##X = 0; \
2860 module_param_array_named(X, X, int, &num_##X, 0); \ 2858 module_param_array_named(X, X, int, &num_##X, 0); \
2861 MODULE_PARM_DESC(X, desc); 2859 MODULE_PARM_DESC(X, desc);
2862 #endif 2860 #endif
2863 2861
2864 /* 2862 /*
2865 * Transmit Memory Size 2863 * Transmit Memory Size
2866 * Valid Range: 64-2048 2864 * Valid Range: 64-2048
2867 * Default Value: 128 2865 * Default Value: 128
2868 */ 2866 */
2869 #define ATL2_MIN_TX_MEMSIZE 4 /* 4KB */ 2867 #define ATL2_MIN_TX_MEMSIZE 4 /* 4KB */
2870 #define ATL2_MAX_TX_MEMSIZE 64 /* 64KB */ 2868 #define ATL2_MAX_TX_MEMSIZE 64 /* 64KB */
2871 #define ATL2_DEFAULT_TX_MEMSIZE 8 /* 8KB */ 2869 #define ATL2_DEFAULT_TX_MEMSIZE 8 /* 8KB */
2872 ATL2_PARAM(TxMemSize, "Bytes of Transmit Memory"); 2870 ATL2_PARAM(TxMemSize, "Bytes of Transmit Memory");
2873 2871
2874 /* 2872 /*
2875 * Receive Memory Block Count 2873 * Receive Memory Block Count
2876 * Valid Range: 16-512 2874 * Valid Range: 16-512
2877 * Default Value: 128 2875 * Default Value: 128
2878 */ 2876 */
2879 #define ATL2_MIN_RXD_COUNT 16 2877 #define ATL2_MIN_RXD_COUNT 16
2880 #define ATL2_MAX_RXD_COUNT 512 2878 #define ATL2_MAX_RXD_COUNT 512
2881 #define ATL2_DEFAULT_RXD_COUNT 64 2879 #define ATL2_DEFAULT_RXD_COUNT 64
2882 ATL2_PARAM(RxMemBlock, "Number of receive memory block"); 2880 ATL2_PARAM(RxMemBlock, "Number of receive memory block");
2883 2881
2884 /* 2882 /*
2885 * User Specified MediaType Override 2883 * User Specified MediaType Override
2886 * 2884 *
2887 * Valid Range: 0-5 2885 * Valid Range: 0-5
2888 * - 0 - auto-negotiate at all supported speeds 2886 * - 0 - auto-negotiate at all supported speeds
2889 * - 1 - only link at 1000Mbps Full Duplex 2887 * - 1 - only link at 1000Mbps Full Duplex
2890 * - 2 - only link at 100Mbps Full Duplex 2888 * - 2 - only link at 100Mbps Full Duplex
2891 * - 3 - only link at 100Mbps Half Duplex 2889 * - 3 - only link at 100Mbps Half Duplex
2892 * - 4 - only link at 10Mbps Full Duplex 2890 * - 4 - only link at 10Mbps Full Duplex
2893 * - 5 - only link at 10Mbps Half Duplex 2891 * - 5 - only link at 10Mbps Half Duplex
2894 * Default Value: 0 2892 * Default Value: 0
2895 */ 2893 */
2896 ATL2_PARAM(MediaType, "MediaType Select"); 2894 ATL2_PARAM(MediaType, "MediaType Select");
2897 2895
2898 /* 2896 /*
2899 * Interrupt Moderate Timer in units of 2048 ns (~2 us) 2897 * Interrupt Moderate Timer in units of 2048 ns (~2 us)
2900 * Valid Range: 10-65535 2898 * Valid Range: 10-65535
2901 * Default Value: 45000(90ms) 2899 * Default Value: 45000(90ms)
2902 */ 2900 */
2903 #define INT_MOD_DEFAULT_CNT 100 /* 200us */ 2901 #define INT_MOD_DEFAULT_CNT 100 /* 200us */
2904 #define INT_MOD_MAX_CNT 65000 2902 #define INT_MOD_MAX_CNT 65000
2905 #define INT_MOD_MIN_CNT 50 2903 #define INT_MOD_MIN_CNT 50
2906 ATL2_PARAM(IntModTimer, "Interrupt Moderator Timer"); 2904 ATL2_PARAM(IntModTimer, "Interrupt Moderator Timer");
2907 2905
2908 /* 2906 /*
2909 * FlashVendor 2907 * FlashVendor
2910 * Valid Range: 0-2 2908 * Valid Range: 0-2
2911 * 0 - Atmel 2909 * 0 - Atmel
2912 * 1 - SST 2910 * 1 - SST
2913 * 2 - ST 2911 * 2 - ST
2914 */ 2912 */
2915 ATL2_PARAM(FlashVendor, "SPI Flash Vendor"); 2913 ATL2_PARAM(FlashVendor, "SPI Flash Vendor");
2916 2914
2917 #define AUTONEG_ADV_DEFAULT 0x2F 2915 #define AUTONEG_ADV_DEFAULT 0x2F
2918 #define AUTONEG_ADV_MASK 0x2F 2916 #define AUTONEG_ADV_MASK 0x2F
2919 #define FLOW_CONTROL_DEFAULT FLOW_CONTROL_FULL 2917 #define FLOW_CONTROL_DEFAULT FLOW_CONTROL_FULL
2920 2918
2921 #define FLASH_VENDOR_DEFAULT 0 2919 #define FLASH_VENDOR_DEFAULT 0
2922 #define FLASH_VENDOR_MIN 0 2920 #define FLASH_VENDOR_MIN 0
2923 #define FLASH_VENDOR_MAX 2 2921 #define FLASH_VENDOR_MAX 2
2924 2922
2925 struct atl2_option { 2923 struct atl2_option {
2926 enum { enable_option, range_option, list_option } type; 2924 enum { enable_option, range_option, list_option } type;
2927 char *name; 2925 char *name;
2928 char *err; 2926 char *err;
2929 int def; 2927 int def;
2930 union { 2928 union {
2931 struct { /* range_option info */ 2929 struct { /* range_option info */
2932 int min; 2930 int min;
2933 int max; 2931 int max;
2934 } r; 2932 } r;
2935 struct { /* list_option info */ 2933 struct { /* list_option info */
2936 int nr; 2934 int nr;
2937 struct atl2_opt_list { int i; char *str; } *p; 2935 struct atl2_opt_list { int i; char *str; } *p;
2938 } l; 2936 } l;
2939 } arg; 2937 } arg;
2940 }; 2938 };
2941 2939
2942 static int __devinit atl2_validate_option(int *value, struct atl2_option *opt) 2940 static int __devinit atl2_validate_option(int *value, struct atl2_option *opt)
2943 { 2941 {
2944 int i; 2942 int i;
2945 struct atl2_opt_list *ent; 2943 struct atl2_opt_list *ent;
2946 2944
2947 if (*value == OPTION_UNSET) { 2945 if (*value == OPTION_UNSET) {
2948 *value = opt->def; 2946 *value = opt->def;
2949 return 0; 2947 return 0;
2950 } 2948 }
2951 2949
2952 switch (opt->type) { 2950 switch (opt->type) {
2953 case enable_option: 2951 case enable_option:
2954 switch (*value) { 2952 switch (*value) {
2955 case OPTION_ENABLED: 2953 case OPTION_ENABLED:
2956 printk(KERN_INFO "%s Enabled\n", opt->name); 2954 printk(KERN_INFO "%s Enabled\n", opt->name);
2957 return 0; 2955 return 0;
2958 break; 2956 break;
2959 case OPTION_DISABLED: 2957 case OPTION_DISABLED:
2960 printk(KERN_INFO "%s Disabled\n", opt->name); 2958 printk(KERN_INFO "%s Disabled\n", opt->name);
2961 return 0; 2959 return 0;
2962 break; 2960 break;
2963 } 2961 }
2964 break; 2962 break;
2965 case range_option: 2963 case range_option:
2966 if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) { 2964 if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
2967 printk(KERN_INFO "%s set to %i\n", opt->name, *value); 2965 printk(KERN_INFO "%s set to %i\n", opt->name, *value);
2968 return 0; 2966 return 0;
2969 } 2967 }
2970 break; 2968 break;
2971 case list_option: 2969 case list_option:
2972 for (i = 0; i < opt->arg.l.nr; i++) { 2970 for (i = 0; i < opt->arg.l.nr; i++) {
2973 ent = &opt->arg.l.p[i]; 2971 ent = &opt->arg.l.p[i];
2974 if (*value == ent->i) { 2972 if (*value == ent->i) {
2975 if (ent->str[0] != '\0') 2973 if (ent->str[0] != '\0')
2976 printk(KERN_INFO "%s\n", ent->str); 2974 printk(KERN_INFO "%s\n", ent->str);
2977 return 0; 2975 return 0;
2978 } 2976 }
2979 } 2977 }
2980 break; 2978 break;
2981 default: 2979 default:
2982 BUG(); 2980 BUG();
2983 } 2981 }
2984 2982
2985 printk(KERN_INFO "Invalid %s specified (%i) %s\n", 2983 printk(KERN_INFO "Invalid %s specified (%i) %s\n",
2986 opt->name, *value, opt->err); 2984 opt->name, *value, opt->err);
2987 *value = opt->def; 2985 *value = opt->def;
2988 return -1; 2986 return -1;
2989 } 2987 }
2990 2988
2991 /* 2989 /*
2992 * atl2_check_options - Range Checking for Command Line Parameters 2990 * atl2_check_options - Range Checking for Command Line Parameters
2993 * @adapter: board private structure 2991 * @adapter: board private structure
2994 * 2992 *
2995 * This routine checks all command line parameters for valid user 2993 * This routine checks all command line parameters for valid user
2996 * input. If an invalid value is given, or if no user specified 2994 * input. If an invalid value is given, or if no user specified
2997 * value exists, a default value is used. The final value is stored 2995 * value exists, a default value is used. The final value is stored
2998 * in a variable in the adapter structure. 2996 * in a variable in the adapter structure.
2999 */ 2997 */
3000 static void __devinit atl2_check_options(struct atl2_adapter *adapter) 2998 static void __devinit atl2_check_options(struct atl2_adapter *adapter)
3001 { 2999 {
3002 int val; 3000 int val;
3003 struct atl2_option opt; 3001 struct atl2_option opt;
3004 int bd = adapter->bd_number; 3002 int bd = adapter->bd_number;
3005 if (bd >= ATL2_MAX_NIC) { 3003 if (bd >= ATL2_MAX_NIC) {
3006 printk(KERN_NOTICE "Warning: no configuration for board #%i\n", 3004 printk(KERN_NOTICE "Warning: no configuration for board #%i\n",
3007 bd); 3005 bd);
3008 printk(KERN_NOTICE "Using defaults for all values\n"); 3006 printk(KERN_NOTICE "Using defaults for all values\n");
3009 #ifndef module_param_array 3007 #ifndef module_param_array
3010 bd = ATL2_MAX_NIC; 3008 bd = ATL2_MAX_NIC;
3011 #endif 3009 #endif
3012 } 3010 }
3013 3011
3014 /* Bytes of Transmit Memory */ 3012 /* Bytes of Transmit Memory */
3015 opt.type = range_option; 3013 opt.type = range_option;
3016 opt.name = "Bytes of Transmit Memory"; 3014 opt.name = "Bytes of Transmit Memory";
3017 opt.err = "using default of " __MODULE_STRING(ATL2_DEFAULT_TX_MEMSIZE); 3015 opt.err = "using default of " __MODULE_STRING(ATL2_DEFAULT_TX_MEMSIZE);
3018 opt.def = ATL2_DEFAULT_TX_MEMSIZE; 3016 opt.def = ATL2_DEFAULT_TX_MEMSIZE;
3019 opt.arg.r.min = ATL2_MIN_TX_MEMSIZE; 3017 opt.arg.r.min = ATL2_MIN_TX_MEMSIZE;
3020 opt.arg.r.max = ATL2_MAX_TX_MEMSIZE; 3018 opt.arg.r.max = ATL2_MAX_TX_MEMSIZE;
3021 #ifdef module_param_array 3019 #ifdef module_param_array
3022 if (num_TxMemSize > bd) { 3020 if (num_TxMemSize > bd) {
3023 #endif 3021 #endif
3024 val = TxMemSize[bd]; 3022 val = TxMemSize[bd];
3025 atl2_validate_option(&val, &opt); 3023 atl2_validate_option(&val, &opt);
3026 adapter->txd_ring_size = ((u32) val) * 1024; 3024 adapter->txd_ring_size = ((u32) val) * 1024;
3027 #ifdef module_param_array 3025 #ifdef module_param_array
3028 } else 3026 } else
3029 adapter->txd_ring_size = ((u32)opt.def) * 1024; 3027 adapter->txd_ring_size = ((u32)opt.def) * 1024;
3030 #endif 3028 #endif
3031 /* txs ring size: */ 3029 /* txs ring size: */
3032 adapter->txs_ring_size = adapter->txd_ring_size / 128; 3030 adapter->txs_ring_size = adapter->txd_ring_size / 128;
3033 if (adapter->txs_ring_size > 160) 3031 if (adapter->txs_ring_size > 160)
3034 adapter->txs_ring_size = 160; 3032 adapter->txs_ring_size = 160;
3035 3033
3036 /* Receive Memory Block Count */ 3034 /* Receive Memory Block Count */
3037 opt.type = range_option; 3035 opt.type = range_option;
3038 opt.name = "Number of receive memory block"; 3036 opt.name = "Number of receive memory block";
3039 opt.err = "using default of " __MODULE_STRING(ATL2_DEFAULT_RXD_COUNT); 3037 opt.err = "using default of " __MODULE_STRING(ATL2_DEFAULT_RXD_COUNT);
3040 opt.def = ATL2_DEFAULT_RXD_COUNT; 3038 opt.def = ATL2_DEFAULT_RXD_COUNT;
3041 opt.arg.r.min = ATL2_MIN_RXD_COUNT; 3039 opt.arg.r.min = ATL2_MIN_RXD_COUNT;
3042 opt.arg.r.max = ATL2_MAX_RXD_COUNT; 3040 opt.arg.r.max = ATL2_MAX_RXD_COUNT;
3043 #ifdef module_param_array 3041 #ifdef module_param_array
3044 if (num_RxMemBlock > bd) { 3042 if (num_RxMemBlock > bd) {
3045 #endif 3043 #endif
3046 val = RxMemBlock[bd]; 3044 val = RxMemBlock[bd];
3047 atl2_validate_option(&val, &opt); 3045 atl2_validate_option(&val, &opt);
3048 adapter->rxd_ring_size = (u32)val; 3046 adapter->rxd_ring_size = (u32)val;
3049 /* FIXME */ 3047 /* FIXME */
3050 /* ((u16)val)&~1; */ /* even number */ 3048 /* ((u16)val)&~1; */ /* even number */
3051 #ifdef module_param_array 3049 #ifdef module_param_array
3052 } else 3050 } else
3053 adapter->rxd_ring_size = (u32)opt.def; 3051 adapter->rxd_ring_size = (u32)opt.def;
3054 #endif 3052 #endif
3055 /* init RXD Flow control value */ 3053 /* init RXD Flow control value */
3056 adapter->hw.fc_rxd_hi = (adapter->rxd_ring_size / 8) * 7; 3054 adapter->hw.fc_rxd_hi = (adapter->rxd_ring_size / 8) * 7;
3057 adapter->hw.fc_rxd_lo = (ATL2_MIN_RXD_COUNT / 8) > 3055 adapter->hw.fc_rxd_lo = (ATL2_MIN_RXD_COUNT / 8) >
3058 (adapter->rxd_ring_size / 12) ? (ATL2_MIN_RXD_COUNT / 8) : 3056 (adapter->rxd_ring_size / 12) ? (ATL2_MIN_RXD_COUNT / 8) :
3059 (adapter->rxd_ring_size / 12); 3057 (adapter->rxd_ring_size / 12);
3060 3058
3061 /* Interrupt Moderate Timer */ 3059 /* Interrupt Moderate Timer */
3062 opt.type = range_option; 3060 opt.type = range_option;
3063 opt.name = "Interrupt Moderate Timer"; 3061 opt.name = "Interrupt Moderate Timer";
3064 opt.err = "using default of " __MODULE_STRING(INT_MOD_DEFAULT_CNT); 3062 opt.err = "using default of " __MODULE_STRING(INT_MOD_DEFAULT_CNT);
3065 opt.def = INT_MOD_DEFAULT_CNT; 3063 opt.def = INT_MOD_DEFAULT_CNT;
3066 opt.arg.r.min = INT_MOD_MIN_CNT; 3064 opt.arg.r.min = INT_MOD_MIN_CNT;
3067 opt.arg.r.max = INT_MOD_MAX_CNT; 3065 opt.arg.r.max = INT_MOD_MAX_CNT;
3068 #ifdef module_param_array 3066 #ifdef module_param_array
3069 if (num_IntModTimer > bd) { 3067 if (num_IntModTimer > bd) {
3070 #endif 3068 #endif
3071 val = IntModTimer[bd]; 3069 val = IntModTimer[bd];
3072 atl2_validate_option(&val, &opt); 3070 atl2_validate_option(&val, &opt);
3073 adapter->imt = (u16) val; 3071 adapter->imt = (u16) val;
3074 #ifdef module_param_array 3072 #ifdef module_param_array
3075 } else 3073 } else
3076 adapter->imt = (u16)(opt.def); 3074 adapter->imt = (u16)(opt.def);
3077 #endif 3075 #endif
3078 /* Flash Vendor */ 3076 /* Flash Vendor */
3079 opt.type = range_option; 3077 opt.type = range_option;
3080 opt.name = "SPI Flash Vendor"; 3078 opt.name = "SPI Flash Vendor";
3081 opt.err = "using default of " __MODULE_STRING(FLASH_VENDOR_DEFAULT); 3079 opt.err = "using default of " __MODULE_STRING(FLASH_VENDOR_DEFAULT);
3082 opt.def = FLASH_VENDOR_DEFAULT; 3080 opt.def = FLASH_VENDOR_DEFAULT;
3083 opt.arg.r.min = FLASH_VENDOR_MIN; 3081 opt.arg.r.min = FLASH_VENDOR_MIN;
3084 opt.arg.r.max = FLASH_VENDOR_MAX; 3082 opt.arg.r.max = FLASH_VENDOR_MAX;
3085 #ifdef module_param_array 3083 #ifdef module_param_array
3086 if (num_FlashVendor > bd) { 3084 if (num_FlashVendor > bd) {
3087 #endif 3085 #endif
3088 val = FlashVendor[bd]; 3086 val = FlashVendor[bd];
3089 atl2_validate_option(&val, &opt); 3087 atl2_validate_option(&val, &opt);
3090 adapter->hw.flash_vendor = (u8) val; 3088 adapter->hw.flash_vendor = (u8) val;
3091 #ifdef module_param_array 3089 #ifdef module_param_array
3092 } else 3090 } else
3093 adapter->hw.flash_vendor = (u8)(opt.def); 3091 adapter->hw.flash_vendor = (u8)(opt.def);
3094 #endif 3092 #endif
3095 /* MediaType */ 3093 /* MediaType */
3096 opt.type = range_option; 3094 opt.type = range_option;
3097 opt.name = "Speed/Duplex Selection"; 3095 opt.name = "Speed/Duplex Selection";
3098 opt.err = "using default of " __MODULE_STRING(MEDIA_TYPE_AUTO_SENSOR); 3096 opt.err = "using default of " __MODULE_STRING(MEDIA_TYPE_AUTO_SENSOR);
3099 opt.def = MEDIA_TYPE_AUTO_SENSOR; 3097 opt.def = MEDIA_TYPE_AUTO_SENSOR;
3100 opt.arg.r.min = MEDIA_TYPE_AUTO_SENSOR; 3098 opt.arg.r.min = MEDIA_TYPE_AUTO_SENSOR;
3101 opt.arg.r.max = MEDIA_TYPE_10M_HALF; 3099 opt.arg.r.max = MEDIA_TYPE_10M_HALF;
3102 #ifdef module_param_array 3100 #ifdef module_param_array
3103 if (num_MediaType > bd) { 3101 if (num_MediaType > bd) {
3104 #endif 3102 #endif
3105 val = MediaType[bd]; 3103 val = MediaType[bd];
3106 atl2_validate_option(&val, &opt); 3104 atl2_validate_option(&val, &opt);
3107 adapter->hw.MediaType = (u16) val; 3105 adapter->hw.MediaType = (u16) val;
3108 #ifdef module_param_array 3106 #ifdef module_param_array
3109 } else 3107 } else
3110 adapter->hw.MediaType = (u16)(opt.def); 3108 adapter->hw.MediaType = (u16)(opt.def);
3111 #endif 3109 #endif
3112 } 3110 }
3113 3111