Commit a37b06d589f2c687a38d07569f4ef97c650fde39

Authored by Doug Chapman
Committed by Phillip Lougher
1 parent 1d80cac0fe

Squashfs: fix breakage when page size > metadata block size

Squashfs is broken on any system where the page size is larger than
the metadata size (8192).  This is easily fixed by ensuring cache->pages
is always > 0.

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Doug Chapman <doug.chapman@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Phillip Lougher <phillip@lougher.demon.co.uk>

Showing 1 changed file with 1 additions and 0 deletions Inline Diff

1 /* 1 /*
2 * Squashfs - a compressed read only filesystem for Linux 2 * Squashfs - a compressed read only filesystem for Linux
3 * 3 *
4 * Copyright (c) 2002, 2003, 2004, 2005, 2006, 2007, 2008 4 * Copyright (c) 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 * Phillip Lougher <phillip@lougher.demon.co.uk> 5 * Phillip Lougher <phillip@lougher.demon.co.uk>
6 * 6 *
7 * This program is free software; you can redistribute it and/or 7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License 8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version 2, 9 * as published by the Free Software Foundation; either version 2,
10 * or (at your option) any later version. 10 * or (at your option) any later version.
11 * 11 *
12 * This program is distributed in the hope that it will be useful, 12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details. 15 * GNU General Public License for more details.
16 * 16 *
17 * You should have received a copy of the GNU General Public License 17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software 18 * along with this program; if not, write to the Free Software
19 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. 19 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
20 * 20 *
21 * cache.c 21 * cache.c
22 */ 22 */
23 23
24 /* 24 /*
25 * Blocks in Squashfs are compressed. To avoid repeatedly decompressing 25 * Blocks in Squashfs are compressed. To avoid repeatedly decompressing
26 * recently accessed data Squashfs uses two small metadata and fragment caches. 26 * recently accessed data Squashfs uses two small metadata and fragment caches.
27 * 27 *
28 * This file implements a generic cache implementation used for both caches, 28 * This file implements a generic cache implementation used for both caches,
29 * plus functions layered ontop of the generic cache implementation to 29 * plus functions layered ontop of the generic cache implementation to
30 * access the metadata and fragment caches. 30 * access the metadata and fragment caches.
31 * 31 *
32 * To avoid out of memory and fragmentation isssues with vmalloc the cache 32 * To avoid out of memory and fragmentation isssues with vmalloc the cache
33 * uses sequences of kmalloced PAGE_CACHE_SIZE buffers. 33 * uses sequences of kmalloced PAGE_CACHE_SIZE buffers.
34 * 34 *
35 * It should be noted that the cache is not used for file datablocks, these 35 * It should be noted that the cache is not used for file datablocks, these
36 * are decompressed and cached in the page-cache in the normal way. The 36 * are decompressed and cached in the page-cache in the normal way. The
37 * cache is only used to temporarily cache fragment and metadata blocks 37 * cache is only used to temporarily cache fragment and metadata blocks
38 * which have been read as as a result of a metadata (i.e. inode or 38 * which have been read as as a result of a metadata (i.e. inode or
39 * directory) or fragment access. Because metadata and fragments are packed 39 * directory) or fragment access. Because metadata and fragments are packed
40 * together into blocks (to gain greater compression) the read of a particular 40 * together into blocks (to gain greater compression) the read of a particular
41 * piece of metadata or fragment will retrieve other metadata/fragments which 41 * piece of metadata or fragment will retrieve other metadata/fragments which
42 * have been packed with it, these because of locality-of-reference may be read 42 * have been packed with it, these because of locality-of-reference may be read
43 * in the near future. Temporarily caching them ensures they are available for 43 * in the near future. Temporarily caching them ensures they are available for
44 * near future access without requiring an additional read and decompress. 44 * near future access without requiring an additional read and decompress.
45 */ 45 */
46 46
47 #include <linux/fs.h> 47 #include <linux/fs.h>
48 #include <linux/vfs.h> 48 #include <linux/vfs.h>
49 #include <linux/slab.h> 49 #include <linux/slab.h>
50 #include <linux/vmalloc.h> 50 #include <linux/vmalloc.h>
51 #include <linux/sched.h> 51 #include <linux/sched.h>
52 #include <linux/spinlock.h> 52 #include <linux/spinlock.h>
53 #include <linux/wait.h> 53 #include <linux/wait.h>
54 #include <linux/zlib.h> 54 #include <linux/zlib.h>
55 #include <linux/pagemap.h> 55 #include <linux/pagemap.h>
56 56
57 #include "squashfs_fs.h" 57 #include "squashfs_fs.h"
58 #include "squashfs_fs_sb.h" 58 #include "squashfs_fs_sb.h"
59 #include "squashfs_fs_i.h" 59 #include "squashfs_fs_i.h"
60 #include "squashfs.h" 60 #include "squashfs.h"
61 61
62 /* 62 /*
63 * Look-up block in cache, and increment usage count. If not in cache, read 63 * Look-up block in cache, and increment usage count. If not in cache, read
64 * and decompress it from disk. 64 * and decompress it from disk.
65 */ 65 */
66 struct squashfs_cache_entry *squashfs_cache_get(struct super_block *sb, 66 struct squashfs_cache_entry *squashfs_cache_get(struct super_block *sb,
67 struct squashfs_cache *cache, u64 block, int length) 67 struct squashfs_cache *cache, u64 block, int length)
68 { 68 {
69 int i, n; 69 int i, n;
70 struct squashfs_cache_entry *entry; 70 struct squashfs_cache_entry *entry;
71 71
72 spin_lock(&cache->lock); 72 spin_lock(&cache->lock);
73 73
74 while (1) { 74 while (1) {
75 for (i = 0; i < cache->entries; i++) 75 for (i = 0; i < cache->entries; i++)
76 if (cache->entry[i].block == block) 76 if (cache->entry[i].block == block)
77 break; 77 break;
78 78
79 if (i == cache->entries) { 79 if (i == cache->entries) {
80 /* 80 /*
81 * Block not in cache, if all cache entries are used 81 * Block not in cache, if all cache entries are used
82 * go to sleep waiting for one to become available. 82 * go to sleep waiting for one to become available.
83 */ 83 */
84 if (cache->unused == 0) { 84 if (cache->unused == 0) {
85 cache->num_waiters++; 85 cache->num_waiters++;
86 spin_unlock(&cache->lock); 86 spin_unlock(&cache->lock);
87 wait_event(cache->wait_queue, cache->unused); 87 wait_event(cache->wait_queue, cache->unused);
88 spin_lock(&cache->lock); 88 spin_lock(&cache->lock);
89 cache->num_waiters--; 89 cache->num_waiters--;
90 continue; 90 continue;
91 } 91 }
92 92
93 /* 93 /*
94 * At least one unused cache entry. A simple 94 * At least one unused cache entry. A simple
95 * round-robin strategy is used to choose the entry to 95 * round-robin strategy is used to choose the entry to
96 * be evicted from the cache. 96 * be evicted from the cache.
97 */ 97 */
98 i = cache->next_blk; 98 i = cache->next_blk;
99 for (n = 0; n < cache->entries; n++) { 99 for (n = 0; n < cache->entries; n++) {
100 if (cache->entry[i].refcount == 0) 100 if (cache->entry[i].refcount == 0)
101 break; 101 break;
102 i = (i + 1) % cache->entries; 102 i = (i + 1) % cache->entries;
103 } 103 }
104 104
105 cache->next_blk = (i + 1) % cache->entries; 105 cache->next_blk = (i + 1) % cache->entries;
106 entry = &cache->entry[i]; 106 entry = &cache->entry[i];
107 107
108 /* 108 /*
109 * Initialise choosen cache entry, and fill it in from 109 * Initialise choosen cache entry, and fill it in from
110 * disk. 110 * disk.
111 */ 111 */
112 cache->unused--; 112 cache->unused--;
113 entry->block = block; 113 entry->block = block;
114 entry->refcount = 1; 114 entry->refcount = 1;
115 entry->pending = 1; 115 entry->pending = 1;
116 entry->num_waiters = 0; 116 entry->num_waiters = 0;
117 entry->error = 0; 117 entry->error = 0;
118 spin_unlock(&cache->lock); 118 spin_unlock(&cache->lock);
119 119
120 entry->length = squashfs_read_data(sb, entry->data, 120 entry->length = squashfs_read_data(sb, entry->data,
121 block, length, &entry->next_index, 121 block, length, &entry->next_index,
122 cache->block_size, cache->pages); 122 cache->block_size, cache->pages);
123 123
124 spin_lock(&cache->lock); 124 spin_lock(&cache->lock);
125 125
126 if (entry->length < 0) 126 if (entry->length < 0)
127 entry->error = entry->length; 127 entry->error = entry->length;
128 128
129 entry->pending = 0; 129 entry->pending = 0;
130 130
131 /* 131 /*
132 * While filling this entry one or more other processes 132 * While filling this entry one or more other processes
133 * have looked it up in the cache, and have slept 133 * have looked it up in the cache, and have slept
134 * waiting for it to become available. 134 * waiting for it to become available.
135 */ 135 */
136 if (entry->num_waiters) { 136 if (entry->num_waiters) {
137 spin_unlock(&cache->lock); 137 spin_unlock(&cache->lock);
138 wake_up_all(&entry->wait_queue); 138 wake_up_all(&entry->wait_queue);
139 } else 139 } else
140 spin_unlock(&cache->lock); 140 spin_unlock(&cache->lock);
141 141
142 goto out; 142 goto out;
143 } 143 }
144 144
145 /* 145 /*
146 * Block already in cache. Increment refcount so it doesn't 146 * Block already in cache. Increment refcount so it doesn't
147 * get reused until we're finished with it, if it was 147 * get reused until we're finished with it, if it was
148 * previously unused there's one less cache entry available 148 * previously unused there's one less cache entry available
149 * for reuse. 149 * for reuse.
150 */ 150 */
151 entry = &cache->entry[i]; 151 entry = &cache->entry[i];
152 if (entry->refcount == 0) 152 if (entry->refcount == 0)
153 cache->unused--; 153 cache->unused--;
154 entry->refcount++; 154 entry->refcount++;
155 155
156 /* 156 /*
157 * If the entry is currently being filled in by another process 157 * If the entry is currently being filled in by another process
158 * go to sleep waiting for it to become available. 158 * go to sleep waiting for it to become available.
159 */ 159 */
160 if (entry->pending) { 160 if (entry->pending) {
161 entry->num_waiters++; 161 entry->num_waiters++;
162 spin_unlock(&cache->lock); 162 spin_unlock(&cache->lock);
163 wait_event(entry->wait_queue, !entry->pending); 163 wait_event(entry->wait_queue, !entry->pending);
164 } else 164 } else
165 spin_unlock(&cache->lock); 165 spin_unlock(&cache->lock);
166 166
167 goto out; 167 goto out;
168 } 168 }
169 169
170 out: 170 out:
171 TRACE("Got %s %d, start block %lld, refcount %d, error %d\n", 171 TRACE("Got %s %d, start block %lld, refcount %d, error %d\n",
172 cache->name, i, entry->block, entry->refcount, entry->error); 172 cache->name, i, entry->block, entry->refcount, entry->error);
173 173
174 if (entry->error) 174 if (entry->error)
175 ERROR("Unable to read %s cache entry [%llx]\n", cache->name, 175 ERROR("Unable to read %s cache entry [%llx]\n", cache->name,
176 block); 176 block);
177 return entry; 177 return entry;
178 } 178 }
179 179
180 180
181 /* 181 /*
182 * Release cache entry, once usage count is zero it can be reused. 182 * Release cache entry, once usage count is zero it can be reused.
183 */ 183 */
184 void squashfs_cache_put(struct squashfs_cache_entry *entry) 184 void squashfs_cache_put(struct squashfs_cache_entry *entry)
185 { 185 {
186 struct squashfs_cache *cache = entry->cache; 186 struct squashfs_cache *cache = entry->cache;
187 187
188 spin_lock(&cache->lock); 188 spin_lock(&cache->lock);
189 entry->refcount--; 189 entry->refcount--;
190 if (entry->refcount == 0) { 190 if (entry->refcount == 0) {
191 cache->unused++; 191 cache->unused++;
192 /* 192 /*
193 * If there's any processes waiting for a block to become 193 * If there's any processes waiting for a block to become
194 * available, wake one up. 194 * available, wake one up.
195 */ 195 */
196 if (cache->num_waiters) { 196 if (cache->num_waiters) {
197 spin_unlock(&cache->lock); 197 spin_unlock(&cache->lock);
198 wake_up(&cache->wait_queue); 198 wake_up(&cache->wait_queue);
199 return; 199 return;
200 } 200 }
201 } 201 }
202 spin_unlock(&cache->lock); 202 spin_unlock(&cache->lock);
203 } 203 }
204 204
205 /* 205 /*
206 * Delete cache reclaiming all kmalloced buffers. 206 * Delete cache reclaiming all kmalloced buffers.
207 */ 207 */
208 void squashfs_cache_delete(struct squashfs_cache *cache) 208 void squashfs_cache_delete(struct squashfs_cache *cache)
209 { 209 {
210 int i, j; 210 int i, j;
211 211
212 if (cache == NULL) 212 if (cache == NULL)
213 return; 213 return;
214 214
215 for (i = 0; i < cache->entries; i++) { 215 for (i = 0; i < cache->entries; i++) {
216 if (cache->entry[i].data) { 216 if (cache->entry[i].data) {
217 for (j = 0; j < cache->pages; j++) 217 for (j = 0; j < cache->pages; j++)
218 kfree(cache->entry[i].data[j]); 218 kfree(cache->entry[i].data[j]);
219 kfree(cache->entry[i].data); 219 kfree(cache->entry[i].data);
220 } 220 }
221 } 221 }
222 222
223 kfree(cache->entry); 223 kfree(cache->entry);
224 kfree(cache); 224 kfree(cache);
225 } 225 }
226 226
227 227
228 /* 228 /*
229 * Initialise cache allocating the specified number of entries, each of 229 * Initialise cache allocating the specified number of entries, each of
230 * size block_size. To avoid vmalloc fragmentation issues each entry 230 * size block_size. To avoid vmalloc fragmentation issues each entry
231 * is allocated as a sequence of kmalloced PAGE_CACHE_SIZE buffers. 231 * is allocated as a sequence of kmalloced PAGE_CACHE_SIZE buffers.
232 */ 232 */
233 struct squashfs_cache *squashfs_cache_init(char *name, int entries, 233 struct squashfs_cache *squashfs_cache_init(char *name, int entries,
234 int block_size) 234 int block_size)
235 { 235 {
236 int i, j; 236 int i, j;
237 struct squashfs_cache *cache = kzalloc(sizeof(*cache), GFP_KERNEL); 237 struct squashfs_cache *cache = kzalloc(sizeof(*cache), GFP_KERNEL);
238 238
239 if (cache == NULL) { 239 if (cache == NULL) {
240 ERROR("Failed to allocate %s cache\n", name); 240 ERROR("Failed to allocate %s cache\n", name);
241 return NULL; 241 return NULL;
242 } 242 }
243 243
244 cache->entry = kcalloc(entries, sizeof(*(cache->entry)), GFP_KERNEL); 244 cache->entry = kcalloc(entries, sizeof(*(cache->entry)), GFP_KERNEL);
245 if (cache->entry == NULL) { 245 if (cache->entry == NULL) {
246 ERROR("Failed to allocate %s cache\n", name); 246 ERROR("Failed to allocate %s cache\n", name);
247 goto cleanup; 247 goto cleanup;
248 } 248 }
249 249
250 cache->next_blk = 0; 250 cache->next_blk = 0;
251 cache->unused = entries; 251 cache->unused = entries;
252 cache->entries = entries; 252 cache->entries = entries;
253 cache->block_size = block_size; 253 cache->block_size = block_size;
254 cache->pages = block_size >> PAGE_CACHE_SHIFT; 254 cache->pages = block_size >> PAGE_CACHE_SHIFT;
255 cache->pages = cache->pages ? cache->pages : 1;
255 cache->name = name; 256 cache->name = name;
256 cache->num_waiters = 0; 257 cache->num_waiters = 0;
257 spin_lock_init(&cache->lock); 258 spin_lock_init(&cache->lock);
258 init_waitqueue_head(&cache->wait_queue); 259 init_waitqueue_head(&cache->wait_queue);
259 260
260 for (i = 0; i < entries; i++) { 261 for (i = 0; i < entries; i++) {
261 struct squashfs_cache_entry *entry = &cache->entry[i]; 262 struct squashfs_cache_entry *entry = &cache->entry[i];
262 263
263 init_waitqueue_head(&cache->entry[i].wait_queue); 264 init_waitqueue_head(&cache->entry[i].wait_queue);
264 entry->cache = cache; 265 entry->cache = cache;
265 entry->block = SQUASHFS_INVALID_BLK; 266 entry->block = SQUASHFS_INVALID_BLK;
266 entry->data = kcalloc(cache->pages, sizeof(void *), GFP_KERNEL); 267 entry->data = kcalloc(cache->pages, sizeof(void *), GFP_KERNEL);
267 if (entry->data == NULL) { 268 if (entry->data == NULL) {
268 ERROR("Failed to allocate %s cache entry\n", name); 269 ERROR("Failed to allocate %s cache entry\n", name);
269 goto cleanup; 270 goto cleanup;
270 } 271 }
271 272
272 for (j = 0; j < cache->pages; j++) { 273 for (j = 0; j < cache->pages; j++) {
273 entry->data[j] = kmalloc(PAGE_CACHE_SIZE, GFP_KERNEL); 274 entry->data[j] = kmalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
274 if (entry->data[j] == NULL) { 275 if (entry->data[j] == NULL) {
275 ERROR("Failed to allocate %s buffer\n", name); 276 ERROR("Failed to allocate %s buffer\n", name);
276 goto cleanup; 277 goto cleanup;
277 } 278 }
278 } 279 }
279 } 280 }
280 281
281 return cache; 282 return cache;
282 283
283 cleanup: 284 cleanup:
284 squashfs_cache_delete(cache); 285 squashfs_cache_delete(cache);
285 return NULL; 286 return NULL;
286 } 287 }
287 288
288 289
289 /* 290 /*
290 * Copy upto length bytes from cache entry to buffer starting at offset bytes 291 * Copy upto length bytes from cache entry to buffer starting at offset bytes
291 * into the cache entry. If there's not length bytes then copy the number of 292 * into the cache entry. If there's not length bytes then copy the number of
292 * bytes available. In all cases return the number of bytes copied. 293 * bytes available. In all cases return the number of bytes copied.
293 */ 294 */
294 int squashfs_copy_data(void *buffer, struct squashfs_cache_entry *entry, 295 int squashfs_copy_data(void *buffer, struct squashfs_cache_entry *entry,
295 int offset, int length) 296 int offset, int length)
296 { 297 {
297 int remaining = length; 298 int remaining = length;
298 299
299 if (length == 0) 300 if (length == 0)
300 return 0; 301 return 0;
301 else if (buffer == NULL) 302 else if (buffer == NULL)
302 return min(length, entry->length - offset); 303 return min(length, entry->length - offset);
303 304
304 while (offset < entry->length) { 305 while (offset < entry->length) {
305 void *buff = entry->data[offset / PAGE_CACHE_SIZE] 306 void *buff = entry->data[offset / PAGE_CACHE_SIZE]
306 + (offset % PAGE_CACHE_SIZE); 307 + (offset % PAGE_CACHE_SIZE);
307 int bytes = min_t(int, entry->length - offset, 308 int bytes = min_t(int, entry->length - offset,
308 PAGE_CACHE_SIZE - (offset % PAGE_CACHE_SIZE)); 309 PAGE_CACHE_SIZE - (offset % PAGE_CACHE_SIZE));
309 310
310 if (bytes >= remaining) { 311 if (bytes >= remaining) {
311 memcpy(buffer, buff, remaining); 312 memcpy(buffer, buff, remaining);
312 remaining = 0; 313 remaining = 0;
313 break; 314 break;
314 } 315 }
315 316
316 memcpy(buffer, buff, bytes); 317 memcpy(buffer, buff, bytes);
317 buffer += bytes; 318 buffer += bytes;
318 remaining -= bytes; 319 remaining -= bytes;
319 offset += bytes; 320 offset += bytes;
320 } 321 }
321 322
322 return length - remaining; 323 return length - remaining;
323 } 324 }
324 325
325 326
326 /* 327 /*
327 * Read length bytes from metadata position <block, offset> (block is the 328 * Read length bytes from metadata position <block, offset> (block is the
328 * start of the compressed block on disk, and offset is the offset into 329 * start of the compressed block on disk, and offset is the offset into
329 * the block once decompressed). Data is packed into consecutive blocks, 330 * the block once decompressed). Data is packed into consecutive blocks,
330 * and length bytes may require reading more than one block. 331 * and length bytes may require reading more than one block.
331 */ 332 */
332 int squashfs_read_metadata(struct super_block *sb, void *buffer, 333 int squashfs_read_metadata(struct super_block *sb, void *buffer,
333 u64 *block, int *offset, int length) 334 u64 *block, int *offset, int length)
334 { 335 {
335 struct squashfs_sb_info *msblk = sb->s_fs_info; 336 struct squashfs_sb_info *msblk = sb->s_fs_info;
336 int bytes, copied = length; 337 int bytes, copied = length;
337 struct squashfs_cache_entry *entry; 338 struct squashfs_cache_entry *entry;
338 339
339 TRACE("Entered squashfs_read_metadata [%llx:%x]\n", *block, *offset); 340 TRACE("Entered squashfs_read_metadata [%llx:%x]\n", *block, *offset);
340 341
341 while (length) { 342 while (length) {
342 entry = squashfs_cache_get(sb, msblk->block_cache, *block, 0); 343 entry = squashfs_cache_get(sb, msblk->block_cache, *block, 0);
343 if (entry->error) 344 if (entry->error)
344 return entry->error; 345 return entry->error;
345 else if (*offset >= entry->length) 346 else if (*offset >= entry->length)
346 return -EIO; 347 return -EIO;
347 348
348 bytes = squashfs_copy_data(buffer, entry, *offset, length); 349 bytes = squashfs_copy_data(buffer, entry, *offset, length);
349 if (buffer) 350 if (buffer)
350 buffer += bytes; 351 buffer += bytes;
351 length -= bytes; 352 length -= bytes;
352 *offset += bytes; 353 *offset += bytes;
353 354
354 if (*offset == entry->length) { 355 if (*offset == entry->length) {
355 *block = entry->next_index; 356 *block = entry->next_index;
356 *offset = 0; 357 *offset = 0;
357 } 358 }
358 359
359 squashfs_cache_put(entry); 360 squashfs_cache_put(entry);
360 } 361 }
361 362
362 return copied; 363 return copied;
363 } 364 }
364 365
365 366
366 /* 367 /*
367 * Look-up in the fragmment cache the fragment located at <start_block> in the 368 * Look-up in the fragmment cache the fragment located at <start_block> in the
368 * filesystem. If necessary read and decompress it from disk. 369 * filesystem. If necessary read and decompress it from disk.
369 */ 370 */
370 struct squashfs_cache_entry *squashfs_get_fragment(struct super_block *sb, 371 struct squashfs_cache_entry *squashfs_get_fragment(struct super_block *sb,
371 u64 start_block, int length) 372 u64 start_block, int length)
372 { 373 {
373 struct squashfs_sb_info *msblk = sb->s_fs_info; 374 struct squashfs_sb_info *msblk = sb->s_fs_info;
374 375
375 return squashfs_cache_get(sb, msblk->fragment_cache, start_block, 376 return squashfs_cache_get(sb, msblk->fragment_cache, start_block,
376 length); 377 length);
377 } 378 }
378 379
379 380
380 /* 381 /*
381 * Read and decompress the datablock located at <start_block> in the 382 * Read and decompress the datablock located at <start_block> in the
382 * filesystem. The cache is used here to avoid duplicating locking and 383 * filesystem. The cache is used here to avoid duplicating locking and
383 * read/decompress code. 384 * read/decompress code.
384 */ 385 */
385 struct squashfs_cache_entry *squashfs_get_datablock(struct super_block *sb, 386 struct squashfs_cache_entry *squashfs_get_datablock(struct super_block *sb,
386 u64 start_block, int length) 387 u64 start_block, int length)
387 { 388 {
388 struct squashfs_sb_info *msblk = sb->s_fs_info; 389 struct squashfs_sb_info *msblk = sb->s_fs_info;
389 390
390 return squashfs_cache_get(sb, msblk->read_page, start_block, length); 391 return squashfs_cache_get(sb, msblk->read_page, start_block, length);
391 } 392 }
392 393
393 394
394 /* 395 /*
395 * Read a filesystem table (uncompressed sequence of bytes) from disk 396 * Read a filesystem table (uncompressed sequence of bytes) from disk
396 */ 397 */
397 int squashfs_read_table(struct super_block *sb, void *buffer, u64 block, 398 int squashfs_read_table(struct super_block *sb, void *buffer, u64 block,
398 int length) 399 int length)
399 { 400 {
400 int pages = (length + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 401 int pages = (length + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
401 int i, res; 402 int i, res;
402 void **data = kcalloc(pages, sizeof(void *), GFP_KERNEL); 403 void **data = kcalloc(pages, sizeof(void *), GFP_KERNEL);
403 if (data == NULL) 404 if (data == NULL)
404 return -ENOMEM; 405 return -ENOMEM;
405 406
406 for (i = 0; i < pages; i++, buffer += PAGE_CACHE_SIZE) 407 for (i = 0; i < pages; i++, buffer += PAGE_CACHE_SIZE)
407 data[i] = buffer; 408 data[i] = buffer;
408 res = squashfs_read_data(sb, data, block, length | 409 res = squashfs_read_data(sb, data, block, length |
409 SQUASHFS_COMPRESSED_BIT_BLOCK, NULL, length, pages); 410 SQUASHFS_COMPRESSED_BIT_BLOCK, NULL, length, pages);
410 kfree(data); 411 kfree(data);
411 return res; 412 return res;
412 } 413 }
413 414