Commit a3bc1f11e9b867a4f49505ecac486a33af248b2e

Authored by Anton Vorontsov
Committed by David S. Miller
1 parent 836cf7faf8

gianfar: Revive SKB recycling

Before calling gfar_clean_tx_ring() the driver grabs an irqsave
spinlock, and then tries to recycle skbs. But since
skb_recycle_check() returns 0 with IRQs disabled, we'll never
recycle any skbs.

It appears that gfar_clean_tx_ring() and gfar_start_xmit() are
mostly idependent and can work in parallel, except when they
modify num_txbdfree.

So we can drop the lock from most sections and thus fix the skb
recycling.

Signed-off-by: Anton Vorontsov <avorontsov@ru.mvista.com>
Acked-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: David S. Miller <davem@davemloft.net>

Showing 1 changed file with 19 additions and 12 deletions Inline Diff

drivers/net/gianfar.c
1 /* 1 /*
2 * drivers/net/gianfar.c 2 * drivers/net/gianfar.c
3 * 3 *
4 * Gianfar Ethernet Driver 4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers 5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors 6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c 7 * Based on 8260_io/fcc_enet.c
8 * 8 *
9 * Author: Andy Fleming 9 * Author: Andy Fleming
10 * Maintainer: Kumar Gala 10 * Maintainer: Kumar Gala
11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com> 11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12 * 12 *
13 * Copyright 2002-2009 Freescale Semiconductor, Inc. 13 * Copyright 2002-2009 Freescale Semiconductor, Inc.
14 * Copyright 2007 MontaVista Software, Inc. 14 * Copyright 2007 MontaVista Software, Inc.
15 * 15 *
16 * This program is free software; you can redistribute it and/or modify it 16 * This program is free software; you can redistribute it and/or modify it
17 * under the terms of the GNU General Public License as published by the 17 * under the terms of the GNU General Public License as published by the
18 * Free Software Foundation; either version 2 of the License, or (at your 18 * Free Software Foundation; either version 2 of the License, or (at your
19 * option) any later version. 19 * option) any later version.
20 * 20 *
21 * Gianfar: AKA Lambda Draconis, "Dragon" 21 * Gianfar: AKA Lambda Draconis, "Dragon"
22 * RA 11 31 24.2 22 * RA 11 31 24.2
23 * Dec +69 19 52 23 * Dec +69 19 52
24 * V 3.84 24 * V 3.84
25 * B-V +1.62 25 * B-V +1.62
26 * 26 *
27 * Theory of operation 27 * Theory of operation
28 * 28 *
29 * The driver is initialized through of_device. Configuration information 29 * The driver is initialized through of_device. Configuration information
30 * is therefore conveyed through an OF-style device tree. 30 * is therefore conveyed through an OF-style device tree.
31 * 31 *
32 * The Gianfar Ethernet Controller uses a ring of buffer 32 * The Gianfar Ethernet Controller uses a ring of buffer
33 * descriptors. The beginning is indicated by a register 33 * descriptors. The beginning is indicated by a register
34 * pointing to the physical address of the start of the ring. 34 * pointing to the physical address of the start of the ring.
35 * The end is determined by a "wrap" bit being set in the 35 * The end is determined by a "wrap" bit being set in the
36 * last descriptor of the ring. 36 * last descriptor of the ring.
37 * 37 *
38 * When a packet is received, the RXF bit in the 38 * When a packet is received, the RXF bit in the
39 * IEVENT register is set, triggering an interrupt when the 39 * IEVENT register is set, triggering an interrupt when the
40 * corresponding bit in the IMASK register is also set (if 40 * corresponding bit in the IMASK register is also set (if
41 * interrupt coalescing is active, then the interrupt may not 41 * interrupt coalescing is active, then the interrupt may not
42 * happen immediately, but will wait until either a set number 42 * happen immediately, but will wait until either a set number
43 * of frames or amount of time have passed). In NAPI, the 43 * of frames or amount of time have passed). In NAPI, the
44 * interrupt handler will signal there is work to be done, and 44 * interrupt handler will signal there is work to be done, and
45 * exit. This method will start at the last known empty 45 * exit. This method will start at the last known empty
46 * descriptor, and process every subsequent descriptor until there 46 * descriptor, and process every subsequent descriptor until there
47 * are none left with data (NAPI will stop after a set number of 47 * are none left with data (NAPI will stop after a set number of
48 * packets to give time to other tasks, but will eventually 48 * packets to give time to other tasks, but will eventually
49 * process all the packets). The data arrives inside a 49 * process all the packets). The data arrives inside a
50 * pre-allocated skb, and so after the skb is passed up to the 50 * pre-allocated skb, and so after the skb is passed up to the
51 * stack, a new skb must be allocated, and the address field in 51 * stack, a new skb must be allocated, and the address field in
52 * the buffer descriptor must be updated to indicate this new 52 * the buffer descriptor must be updated to indicate this new
53 * skb. 53 * skb.
54 * 54 *
55 * When the kernel requests that a packet be transmitted, the 55 * When the kernel requests that a packet be transmitted, the
56 * driver starts where it left off last time, and points the 56 * driver starts where it left off last time, and points the
57 * descriptor at the buffer which was passed in. The driver 57 * descriptor at the buffer which was passed in. The driver
58 * then informs the DMA engine that there are packets ready to 58 * then informs the DMA engine that there are packets ready to
59 * be transmitted. Once the controller is finished transmitting 59 * be transmitted. Once the controller is finished transmitting
60 * the packet, an interrupt may be triggered (under the same 60 * the packet, an interrupt may be triggered (under the same
61 * conditions as for reception, but depending on the TXF bit). 61 * conditions as for reception, but depending on the TXF bit).
62 * The driver then cleans up the buffer. 62 * The driver then cleans up the buffer.
63 */ 63 */
64 64
65 #include <linux/kernel.h> 65 #include <linux/kernel.h>
66 #include <linux/string.h> 66 #include <linux/string.h>
67 #include <linux/errno.h> 67 #include <linux/errno.h>
68 #include <linux/unistd.h> 68 #include <linux/unistd.h>
69 #include <linux/slab.h> 69 #include <linux/slab.h>
70 #include <linux/interrupt.h> 70 #include <linux/interrupt.h>
71 #include <linux/init.h> 71 #include <linux/init.h>
72 #include <linux/delay.h> 72 #include <linux/delay.h>
73 #include <linux/netdevice.h> 73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h> 74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h> 75 #include <linux/skbuff.h>
76 #include <linux/if_vlan.h> 76 #include <linux/if_vlan.h>
77 #include <linux/spinlock.h> 77 #include <linux/spinlock.h>
78 #include <linux/mm.h> 78 #include <linux/mm.h>
79 #include <linux/of_mdio.h> 79 #include <linux/of_mdio.h>
80 #include <linux/of_platform.h> 80 #include <linux/of_platform.h>
81 #include <linux/ip.h> 81 #include <linux/ip.h>
82 #include <linux/tcp.h> 82 #include <linux/tcp.h>
83 #include <linux/udp.h> 83 #include <linux/udp.h>
84 #include <linux/in.h> 84 #include <linux/in.h>
85 85
86 #include <asm/io.h> 86 #include <asm/io.h>
87 #include <asm/irq.h> 87 #include <asm/irq.h>
88 #include <asm/uaccess.h> 88 #include <asm/uaccess.h>
89 #include <linux/module.h> 89 #include <linux/module.h>
90 #include <linux/dma-mapping.h> 90 #include <linux/dma-mapping.h>
91 #include <linux/crc32.h> 91 #include <linux/crc32.h>
92 #include <linux/mii.h> 92 #include <linux/mii.h>
93 #include <linux/phy.h> 93 #include <linux/phy.h>
94 #include <linux/phy_fixed.h> 94 #include <linux/phy_fixed.h>
95 #include <linux/of.h> 95 #include <linux/of.h>
96 96
97 #include "gianfar.h" 97 #include "gianfar.h"
98 #include "fsl_pq_mdio.h" 98 #include "fsl_pq_mdio.h"
99 99
100 #define TX_TIMEOUT (1*HZ) 100 #define TX_TIMEOUT (1*HZ)
101 #undef BRIEF_GFAR_ERRORS 101 #undef BRIEF_GFAR_ERRORS
102 #undef VERBOSE_GFAR_ERRORS 102 #undef VERBOSE_GFAR_ERRORS
103 103
104 const char gfar_driver_name[] = "Gianfar Ethernet"; 104 const char gfar_driver_name[] = "Gianfar Ethernet";
105 const char gfar_driver_version[] = "1.3"; 105 const char gfar_driver_version[] = "1.3";
106 106
107 static int gfar_enet_open(struct net_device *dev); 107 static int gfar_enet_open(struct net_device *dev);
108 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev); 108 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
109 static void gfar_reset_task(struct work_struct *work); 109 static void gfar_reset_task(struct work_struct *work);
110 static void gfar_timeout(struct net_device *dev); 110 static void gfar_timeout(struct net_device *dev);
111 static int gfar_close(struct net_device *dev); 111 static int gfar_close(struct net_device *dev);
112 struct sk_buff *gfar_new_skb(struct net_device *dev); 112 struct sk_buff *gfar_new_skb(struct net_device *dev);
113 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp, 113 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
114 struct sk_buff *skb); 114 struct sk_buff *skb);
115 static int gfar_set_mac_address(struct net_device *dev); 115 static int gfar_set_mac_address(struct net_device *dev);
116 static int gfar_change_mtu(struct net_device *dev, int new_mtu); 116 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
117 static irqreturn_t gfar_error(int irq, void *dev_id); 117 static irqreturn_t gfar_error(int irq, void *dev_id);
118 static irqreturn_t gfar_transmit(int irq, void *dev_id); 118 static irqreturn_t gfar_transmit(int irq, void *dev_id);
119 static irqreturn_t gfar_interrupt(int irq, void *dev_id); 119 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
120 static void adjust_link(struct net_device *dev); 120 static void adjust_link(struct net_device *dev);
121 static void init_registers(struct net_device *dev); 121 static void init_registers(struct net_device *dev);
122 static int init_phy(struct net_device *dev); 122 static int init_phy(struct net_device *dev);
123 static int gfar_probe(struct of_device *ofdev, 123 static int gfar_probe(struct of_device *ofdev,
124 const struct of_device_id *match); 124 const struct of_device_id *match);
125 static int gfar_remove(struct of_device *ofdev); 125 static int gfar_remove(struct of_device *ofdev);
126 static void free_skb_resources(struct gfar_private *priv); 126 static void free_skb_resources(struct gfar_private *priv);
127 static void gfar_set_multi(struct net_device *dev); 127 static void gfar_set_multi(struct net_device *dev);
128 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr); 128 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
129 static void gfar_configure_serdes(struct net_device *dev); 129 static void gfar_configure_serdes(struct net_device *dev);
130 static int gfar_poll(struct napi_struct *napi, int budget); 130 static int gfar_poll(struct napi_struct *napi, int budget);
131 #ifdef CONFIG_NET_POLL_CONTROLLER 131 #ifdef CONFIG_NET_POLL_CONTROLLER
132 static void gfar_netpoll(struct net_device *dev); 132 static void gfar_netpoll(struct net_device *dev);
133 #endif 133 #endif
134 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit); 134 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
135 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue); 135 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
136 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, 136 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
137 int amount_pull); 137 int amount_pull);
138 static void gfar_vlan_rx_register(struct net_device *netdev, 138 static void gfar_vlan_rx_register(struct net_device *netdev,
139 struct vlan_group *grp); 139 struct vlan_group *grp);
140 void gfar_halt(struct net_device *dev); 140 void gfar_halt(struct net_device *dev);
141 static void gfar_halt_nodisable(struct net_device *dev); 141 static void gfar_halt_nodisable(struct net_device *dev);
142 void gfar_start(struct net_device *dev); 142 void gfar_start(struct net_device *dev);
143 static void gfar_clear_exact_match(struct net_device *dev); 143 static void gfar_clear_exact_match(struct net_device *dev);
144 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr); 144 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
145 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 145 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
146 u16 gfar_select_queue(struct net_device *dev, struct sk_buff *skb); 146 u16 gfar_select_queue(struct net_device *dev, struct sk_buff *skb);
147 147
148 MODULE_AUTHOR("Freescale Semiconductor, Inc"); 148 MODULE_AUTHOR("Freescale Semiconductor, Inc");
149 MODULE_DESCRIPTION("Gianfar Ethernet Driver"); 149 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
150 MODULE_LICENSE("GPL"); 150 MODULE_LICENSE("GPL");
151 151
152 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp, 152 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
153 dma_addr_t buf) 153 dma_addr_t buf)
154 { 154 {
155 u32 lstatus; 155 u32 lstatus;
156 156
157 bdp->bufPtr = buf; 157 bdp->bufPtr = buf;
158 158
159 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT); 159 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
160 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1) 160 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
161 lstatus |= BD_LFLAG(RXBD_WRAP); 161 lstatus |= BD_LFLAG(RXBD_WRAP);
162 162
163 eieio(); 163 eieio();
164 164
165 bdp->lstatus = lstatus; 165 bdp->lstatus = lstatus;
166 } 166 }
167 167
168 static int gfar_init_bds(struct net_device *ndev) 168 static int gfar_init_bds(struct net_device *ndev)
169 { 169 {
170 struct gfar_private *priv = netdev_priv(ndev); 170 struct gfar_private *priv = netdev_priv(ndev);
171 struct gfar_priv_tx_q *tx_queue = NULL; 171 struct gfar_priv_tx_q *tx_queue = NULL;
172 struct gfar_priv_rx_q *rx_queue = NULL; 172 struct gfar_priv_rx_q *rx_queue = NULL;
173 struct txbd8 *txbdp; 173 struct txbd8 *txbdp;
174 struct rxbd8 *rxbdp; 174 struct rxbd8 *rxbdp;
175 int i, j; 175 int i, j;
176 176
177 for (i = 0; i < priv->num_tx_queues; i++) { 177 for (i = 0; i < priv->num_tx_queues; i++) {
178 tx_queue = priv->tx_queue[i]; 178 tx_queue = priv->tx_queue[i];
179 /* Initialize some variables in our dev structure */ 179 /* Initialize some variables in our dev structure */
180 tx_queue->num_txbdfree = tx_queue->tx_ring_size; 180 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
181 tx_queue->dirty_tx = tx_queue->tx_bd_base; 181 tx_queue->dirty_tx = tx_queue->tx_bd_base;
182 tx_queue->cur_tx = tx_queue->tx_bd_base; 182 tx_queue->cur_tx = tx_queue->tx_bd_base;
183 tx_queue->skb_curtx = 0; 183 tx_queue->skb_curtx = 0;
184 tx_queue->skb_dirtytx = 0; 184 tx_queue->skb_dirtytx = 0;
185 185
186 /* Initialize Transmit Descriptor Ring */ 186 /* Initialize Transmit Descriptor Ring */
187 txbdp = tx_queue->tx_bd_base; 187 txbdp = tx_queue->tx_bd_base;
188 for (j = 0; j < tx_queue->tx_ring_size; j++) { 188 for (j = 0; j < tx_queue->tx_ring_size; j++) {
189 txbdp->lstatus = 0; 189 txbdp->lstatus = 0;
190 txbdp->bufPtr = 0; 190 txbdp->bufPtr = 0;
191 txbdp++; 191 txbdp++;
192 } 192 }
193 193
194 /* Set the last descriptor in the ring to indicate wrap */ 194 /* Set the last descriptor in the ring to indicate wrap */
195 txbdp--; 195 txbdp--;
196 txbdp->status |= TXBD_WRAP; 196 txbdp->status |= TXBD_WRAP;
197 } 197 }
198 198
199 for (i = 0; i < priv->num_rx_queues; i++) { 199 for (i = 0; i < priv->num_rx_queues; i++) {
200 rx_queue = priv->rx_queue[i]; 200 rx_queue = priv->rx_queue[i];
201 rx_queue->cur_rx = rx_queue->rx_bd_base; 201 rx_queue->cur_rx = rx_queue->rx_bd_base;
202 rx_queue->skb_currx = 0; 202 rx_queue->skb_currx = 0;
203 rxbdp = rx_queue->rx_bd_base; 203 rxbdp = rx_queue->rx_bd_base;
204 204
205 for (j = 0; j < rx_queue->rx_ring_size; j++) { 205 for (j = 0; j < rx_queue->rx_ring_size; j++) {
206 struct sk_buff *skb = rx_queue->rx_skbuff[j]; 206 struct sk_buff *skb = rx_queue->rx_skbuff[j];
207 207
208 if (skb) { 208 if (skb) {
209 gfar_init_rxbdp(rx_queue, rxbdp, 209 gfar_init_rxbdp(rx_queue, rxbdp,
210 rxbdp->bufPtr); 210 rxbdp->bufPtr);
211 } else { 211 } else {
212 skb = gfar_new_skb(ndev); 212 skb = gfar_new_skb(ndev);
213 if (!skb) { 213 if (!skb) {
214 pr_err("%s: Can't allocate RX buffers\n", 214 pr_err("%s: Can't allocate RX buffers\n",
215 ndev->name); 215 ndev->name);
216 goto err_rxalloc_fail; 216 goto err_rxalloc_fail;
217 } 217 }
218 rx_queue->rx_skbuff[j] = skb; 218 rx_queue->rx_skbuff[j] = skb;
219 219
220 gfar_new_rxbdp(rx_queue, rxbdp, skb); 220 gfar_new_rxbdp(rx_queue, rxbdp, skb);
221 } 221 }
222 222
223 rxbdp++; 223 rxbdp++;
224 } 224 }
225 225
226 } 226 }
227 227
228 return 0; 228 return 0;
229 229
230 err_rxalloc_fail: 230 err_rxalloc_fail:
231 free_skb_resources(priv); 231 free_skb_resources(priv);
232 return -ENOMEM; 232 return -ENOMEM;
233 } 233 }
234 234
235 static int gfar_alloc_skb_resources(struct net_device *ndev) 235 static int gfar_alloc_skb_resources(struct net_device *ndev)
236 { 236 {
237 void *vaddr; 237 void *vaddr;
238 dma_addr_t addr; 238 dma_addr_t addr;
239 int i, j, k; 239 int i, j, k;
240 struct gfar_private *priv = netdev_priv(ndev); 240 struct gfar_private *priv = netdev_priv(ndev);
241 struct device *dev = &priv->ofdev->dev; 241 struct device *dev = &priv->ofdev->dev;
242 struct gfar_priv_tx_q *tx_queue = NULL; 242 struct gfar_priv_tx_q *tx_queue = NULL;
243 struct gfar_priv_rx_q *rx_queue = NULL; 243 struct gfar_priv_rx_q *rx_queue = NULL;
244 244
245 priv->total_tx_ring_size = 0; 245 priv->total_tx_ring_size = 0;
246 for (i = 0; i < priv->num_tx_queues; i++) 246 for (i = 0; i < priv->num_tx_queues; i++)
247 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size; 247 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
248 248
249 priv->total_rx_ring_size = 0; 249 priv->total_rx_ring_size = 0;
250 for (i = 0; i < priv->num_rx_queues; i++) 250 for (i = 0; i < priv->num_rx_queues; i++)
251 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size; 251 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
252 252
253 /* Allocate memory for the buffer descriptors */ 253 /* Allocate memory for the buffer descriptors */
254 vaddr = dma_alloc_coherent(dev, 254 vaddr = dma_alloc_coherent(dev,
255 sizeof(struct txbd8) * priv->total_tx_ring_size + 255 sizeof(struct txbd8) * priv->total_tx_ring_size +
256 sizeof(struct rxbd8) * priv->total_rx_ring_size, 256 sizeof(struct rxbd8) * priv->total_rx_ring_size,
257 &addr, GFP_KERNEL); 257 &addr, GFP_KERNEL);
258 if (!vaddr) { 258 if (!vaddr) {
259 if (netif_msg_ifup(priv)) 259 if (netif_msg_ifup(priv))
260 pr_err("%s: Could not allocate buffer descriptors!\n", 260 pr_err("%s: Could not allocate buffer descriptors!\n",
261 ndev->name); 261 ndev->name);
262 return -ENOMEM; 262 return -ENOMEM;
263 } 263 }
264 264
265 for (i = 0; i < priv->num_tx_queues; i++) { 265 for (i = 0; i < priv->num_tx_queues; i++) {
266 tx_queue = priv->tx_queue[i]; 266 tx_queue = priv->tx_queue[i];
267 tx_queue->tx_bd_base = (struct txbd8 *) vaddr; 267 tx_queue->tx_bd_base = (struct txbd8 *) vaddr;
268 tx_queue->tx_bd_dma_base = addr; 268 tx_queue->tx_bd_dma_base = addr;
269 tx_queue->dev = ndev; 269 tx_queue->dev = ndev;
270 /* enet DMA only understands physical addresses */ 270 /* enet DMA only understands physical addresses */
271 addr += sizeof(struct txbd8) *tx_queue->tx_ring_size; 271 addr += sizeof(struct txbd8) *tx_queue->tx_ring_size;
272 vaddr += sizeof(struct txbd8) *tx_queue->tx_ring_size; 272 vaddr += sizeof(struct txbd8) *tx_queue->tx_ring_size;
273 } 273 }
274 274
275 /* Start the rx descriptor ring where the tx ring leaves off */ 275 /* Start the rx descriptor ring where the tx ring leaves off */
276 for (i = 0; i < priv->num_rx_queues; i++) { 276 for (i = 0; i < priv->num_rx_queues; i++) {
277 rx_queue = priv->rx_queue[i]; 277 rx_queue = priv->rx_queue[i];
278 rx_queue->rx_bd_base = (struct rxbd8 *) vaddr; 278 rx_queue->rx_bd_base = (struct rxbd8 *) vaddr;
279 rx_queue->rx_bd_dma_base = addr; 279 rx_queue->rx_bd_dma_base = addr;
280 rx_queue->dev = ndev; 280 rx_queue->dev = ndev;
281 addr += sizeof (struct rxbd8) * rx_queue->rx_ring_size; 281 addr += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
282 vaddr += sizeof (struct rxbd8) * rx_queue->rx_ring_size; 282 vaddr += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
283 } 283 }
284 284
285 /* Setup the skbuff rings */ 285 /* Setup the skbuff rings */
286 for (i = 0; i < priv->num_tx_queues; i++) { 286 for (i = 0; i < priv->num_tx_queues; i++) {
287 tx_queue = priv->tx_queue[i]; 287 tx_queue = priv->tx_queue[i];
288 tx_queue->tx_skbuff = kmalloc(sizeof(*tx_queue->tx_skbuff) * 288 tx_queue->tx_skbuff = kmalloc(sizeof(*tx_queue->tx_skbuff) *
289 tx_queue->tx_ring_size, GFP_KERNEL); 289 tx_queue->tx_ring_size, GFP_KERNEL);
290 if (!tx_queue->tx_skbuff) { 290 if (!tx_queue->tx_skbuff) {
291 if (netif_msg_ifup(priv)) 291 if (netif_msg_ifup(priv))
292 pr_err("%s: Could not allocate tx_skbuff\n", 292 pr_err("%s: Could not allocate tx_skbuff\n",
293 ndev->name); 293 ndev->name);
294 goto cleanup; 294 goto cleanup;
295 } 295 }
296 296
297 for (k = 0; k < tx_queue->tx_ring_size; k++) 297 for (k = 0; k < tx_queue->tx_ring_size; k++)
298 tx_queue->tx_skbuff[k] = NULL; 298 tx_queue->tx_skbuff[k] = NULL;
299 } 299 }
300 300
301 for (i = 0; i < priv->num_rx_queues; i++) { 301 for (i = 0; i < priv->num_rx_queues; i++) {
302 rx_queue = priv->rx_queue[i]; 302 rx_queue = priv->rx_queue[i];
303 rx_queue->rx_skbuff = kmalloc(sizeof(*rx_queue->rx_skbuff) * 303 rx_queue->rx_skbuff = kmalloc(sizeof(*rx_queue->rx_skbuff) *
304 rx_queue->rx_ring_size, GFP_KERNEL); 304 rx_queue->rx_ring_size, GFP_KERNEL);
305 305
306 if (!rx_queue->rx_skbuff) { 306 if (!rx_queue->rx_skbuff) {
307 if (netif_msg_ifup(priv)) 307 if (netif_msg_ifup(priv))
308 pr_err("%s: Could not allocate rx_skbuff\n", 308 pr_err("%s: Could not allocate rx_skbuff\n",
309 ndev->name); 309 ndev->name);
310 goto cleanup; 310 goto cleanup;
311 } 311 }
312 312
313 for (j = 0; j < rx_queue->rx_ring_size; j++) 313 for (j = 0; j < rx_queue->rx_ring_size; j++)
314 rx_queue->rx_skbuff[j] = NULL; 314 rx_queue->rx_skbuff[j] = NULL;
315 } 315 }
316 316
317 if (gfar_init_bds(ndev)) 317 if (gfar_init_bds(ndev))
318 goto cleanup; 318 goto cleanup;
319 319
320 return 0; 320 return 0;
321 321
322 cleanup: 322 cleanup:
323 free_skb_resources(priv); 323 free_skb_resources(priv);
324 return -ENOMEM; 324 return -ENOMEM;
325 } 325 }
326 326
327 static void gfar_init_tx_rx_base(struct gfar_private *priv) 327 static void gfar_init_tx_rx_base(struct gfar_private *priv)
328 { 328 {
329 struct gfar __iomem *regs = priv->gfargrp[0].regs; 329 struct gfar __iomem *regs = priv->gfargrp[0].regs;
330 u32 __iomem *baddr; 330 u32 __iomem *baddr;
331 int i; 331 int i;
332 332
333 baddr = &regs->tbase0; 333 baddr = &regs->tbase0;
334 for(i = 0; i < priv->num_tx_queues; i++) { 334 for(i = 0; i < priv->num_tx_queues; i++) {
335 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base); 335 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
336 baddr += 2; 336 baddr += 2;
337 } 337 }
338 338
339 baddr = &regs->rbase0; 339 baddr = &regs->rbase0;
340 for(i = 0; i < priv->num_rx_queues; i++) { 340 for(i = 0; i < priv->num_rx_queues; i++) {
341 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base); 341 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
342 baddr += 2; 342 baddr += 2;
343 } 343 }
344 } 344 }
345 345
346 static void gfar_init_mac(struct net_device *ndev) 346 static void gfar_init_mac(struct net_device *ndev)
347 { 347 {
348 struct gfar_private *priv = netdev_priv(ndev); 348 struct gfar_private *priv = netdev_priv(ndev);
349 struct gfar __iomem *regs = priv->gfargrp[0].regs; 349 struct gfar __iomem *regs = priv->gfargrp[0].regs;
350 u32 rctrl = 0; 350 u32 rctrl = 0;
351 u32 tctrl = 0; 351 u32 tctrl = 0;
352 u32 attrs = 0; 352 u32 attrs = 0;
353 353
354 /* write the tx/rx base registers */ 354 /* write the tx/rx base registers */
355 gfar_init_tx_rx_base(priv); 355 gfar_init_tx_rx_base(priv);
356 356
357 /* Configure the coalescing support */ 357 /* Configure the coalescing support */
358 gfar_configure_coalescing(priv, 0xFF, 0xFF); 358 gfar_configure_coalescing(priv, 0xFF, 0xFF);
359 359
360 if (priv->rx_filer_enable) 360 if (priv->rx_filer_enable)
361 rctrl |= RCTRL_FILREN; 361 rctrl |= RCTRL_FILREN;
362 362
363 if (priv->rx_csum_enable) 363 if (priv->rx_csum_enable)
364 rctrl |= RCTRL_CHECKSUMMING; 364 rctrl |= RCTRL_CHECKSUMMING;
365 365
366 if (priv->extended_hash) { 366 if (priv->extended_hash) {
367 rctrl |= RCTRL_EXTHASH; 367 rctrl |= RCTRL_EXTHASH;
368 368
369 gfar_clear_exact_match(ndev); 369 gfar_clear_exact_match(ndev);
370 rctrl |= RCTRL_EMEN; 370 rctrl |= RCTRL_EMEN;
371 } 371 }
372 372
373 if (priv->padding) { 373 if (priv->padding) {
374 rctrl &= ~RCTRL_PAL_MASK; 374 rctrl &= ~RCTRL_PAL_MASK;
375 rctrl |= RCTRL_PADDING(priv->padding); 375 rctrl |= RCTRL_PADDING(priv->padding);
376 } 376 }
377 377
378 /* keep vlan related bits if it's enabled */ 378 /* keep vlan related bits if it's enabled */
379 if (priv->vlgrp) { 379 if (priv->vlgrp) {
380 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT; 380 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
381 tctrl |= TCTRL_VLINS; 381 tctrl |= TCTRL_VLINS;
382 } 382 }
383 383
384 /* Init rctrl based on our settings */ 384 /* Init rctrl based on our settings */
385 gfar_write(&regs->rctrl, rctrl); 385 gfar_write(&regs->rctrl, rctrl);
386 386
387 if (ndev->features & NETIF_F_IP_CSUM) 387 if (ndev->features & NETIF_F_IP_CSUM)
388 tctrl |= TCTRL_INIT_CSUM; 388 tctrl |= TCTRL_INIT_CSUM;
389 389
390 tctrl |= TCTRL_TXSCHED_PRIO; 390 tctrl |= TCTRL_TXSCHED_PRIO;
391 391
392 gfar_write(&regs->tctrl, tctrl); 392 gfar_write(&regs->tctrl, tctrl);
393 393
394 /* Set the extraction length and index */ 394 /* Set the extraction length and index */
395 attrs = ATTRELI_EL(priv->rx_stash_size) | 395 attrs = ATTRELI_EL(priv->rx_stash_size) |
396 ATTRELI_EI(priv->rx_stash_index); 396 ATTRELI_EI(priv->rx_stash_index);
397 397
398 gfar_write(&regs->attreli, attrs); 398 gfar_write(&regs->attreli, attrs);
399 399
400 /* Start with defaults, and add stashing or locking 400 /* Start with defaults, and add stashing or locking
401 * depending on the approprate variables */ 401 * depending on the approprate variables */
402 attrs = ATTR_INIT_SETTINGS; 402 attrs = ATTR_INIT_SETTINGS;
403 403
404 if (priv->bd_stash_en) 404 if (priv->bd_stash_en)
405 attrs |= ATTR_BDSTASH; 405 attrs |= ATTR_BDSTASH;
406 406
407 if (priv->rx_stash_size != 0) 407 if (priv->rx_stash_size != 0)
408 attrs |= ATTR_BUFSTASH; 408 attrs |= ATTR_BUFSTASH;
409 409
410 gfar_write(&regs->attr, attrs); 410 gfar_write(&regs->attr, attrs);
411 411
412 gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold); 412 gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
413 gfar_write(&regs->fifo_tx_starve, priv->fifo_starve); 413 gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
414 gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off); 414 gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
415 } 415 }
416 416
417 static const struct net_device_ops gfar_netdev_ops = { 417 static const struct net_device_ops gfar_netdev_ops = {
418 .ndo_open = gfar_enet_open, 418 .ndo_open = gfar_enet_open,
419 .ndo_start_xmit = gfar_start_xmit, 419 .ndo_start_xmit = gfar_start_xmit,
420 .ndo_stop = gfar_close, 420 .ndo_stop = gfar_close,
421 .ndo_change_mtu = gfar_change_mtu, 421 .ndo_change_mtu = gfar_change_mtu,
422 .ndo_set_multicast_list = gfar_set_multi, 422 .ndo_set_multicast_list = gfar_set_multi,
423 .ndo_tx_timeout = gfar_timeout, 423 .ndo_tx_timeout = gfar_timeout,
424 .ndo_do_ioctl = gfar_ioctl, 424 .ndo_do_ioctl = gfar_ioctl,
425 .ndo_select_queue = gfar_select_queue, 425 .ndo_select_queue = gfar_select_queue,
426 .ndo_vlan_rx_register = gfar_vlan_rx_register, 426 .ndo_vlan_rx_register = gfar_vlan_rx_register,
427 .ndo_set_mac_address = eth_mac_addr, 427 .ndo_set_mac_address = eth_mac_addr,
428 .ndo_validate_addr = eth_validate_addr, 428 .ndo_validate_addr = eth_validate_addr,
429 #ifdef CONFIG_NET_POLL_CONTROLLER 429 #ifdef CONFIG_NET_POLL_CONTROLLER
430 .ndo_poll_controller = gfar_netpoll, 430 .ndo_poll_controller = gfar_netpoll,
431 #endif 431 #endif
432 }; 432 };
433 433
434 unsigned int ftp_rqfpr[MAX_FILER_IDX + 1]; 434 unsigned int ftp_rqfpr[MAX_FILER_IDX + 1];
435 unsigned int ftp_rqfcr[MAX_FILER_IDX + 1]; 435 unsigned int ftp_rqfcr[MAX_FILER_IDX + 1];
436 436
437 void lock_rx_qs(struct gfar_private *priv) 437 void lock_rx_qs(struct gfar_private *priv)
438 { 438 {
439 int i = 0x0; 439 int i = 0x0;
440 440
441 for (i = 0; i < priv->num_rx_queues; i++) 441 for (i = 0; i < priv->num_rx_queues; i++)
442 spin_lock(&priv->rx_queue[i]->rxlock); 442 spin_lock(&priv->rx_queue[i]->rxlock);
443 } 443 }
444 444
445 void lock_tx_qs(struct gfar_private *priv) 445 void lock_tx_qs(struct gfar_private *priv)
446 { 446 {
447 int i = 0x0; 447 int i = 0x0;
448 448
449 for (i = 0; i < priv->num_tx_queues; i++) 449 for (i = 0; i < priv->num_tx_queues; i++)
450 spin_lock(&priv->tx_queue[i]->txlock); 450 spin_lock(&priv->tx_queue[i]->txlock);
451 } 451 }
452 452
453 void unlock_rx_qs(struct gfar_private *priv) 453 void unlock_rx_qs(struct gfar_private *priv)
454 { 454 {
455 int i = 0x0; 455 int i = 0x0;
456 456
457 for (i = 0; i < priv->num_rx_queues; i++) 457 for (i = 0; i < priv->num_rx_queues; i++)
458 spin_unlock(&priv->rx_queue[i]->rxlock); 458 spin_unlock(&priv->rx_queue[i]->rxlock);
459 } 459 }
460 460
461 void unlock_tx_qs(struct gfar_private *priv) 461 void unlock_tx_qs(struct gfar_private *priv)
462 { 462 {
463 int i = 0x0; 463 int i = 0x0;
464 464
465 for (i = 0; i < priv->num_tx_queues; i++) 465 for (i = 0; i < priv->num_tx_queues; i++)
466 spin_unlock(&priv->tx_queue[i]->txlock); 466 spin_unlock(&priv->tx_queue[i]->txlock);
467 } 467 }
468 468
469 /* Returns 1 if incoming frames use an FCB */ 469 /* Returns 1 if incoming frames use an FCB */
470 static inline int gfar_uses_fcb(struct gfar_private *priv) 470 static inline int gfar_uses_fcb(struct gfar_private *priv)
471 { 471 {
472 return priv->vlgrp || priv->rx_csum_enable; 472 return priv->vlgrp || priv->rx_csum_enable;
473 } 473 }
474 474
475 u16 gfar_select_queue(struct net_device *dev, struct sk_buff *skb) 475 u16 gfar_select_queue(struct net_device *dev, struct sk_buff *skb)
476 { 476 {
477 return skb_get_queue_mapping(skb); 477 return skb_get_queue_mapping(skb);
478 } 478 }
479 static void free_tx_pointers(struct gfar_private *priv) 479 static void free_tx_pointers(struct gfar_private *priv)
480 { 480 {
481 int i = 0; 481 int i = 0;
482 482
483 for (i = 0; i < priv->num_tx_queues; i++) 483 for (i = 0; i < priv->num_tx_queues; i++)
484 kfree(priv->tx_queue[i]); 484 kfree(priv->tx_queue[i]);
485 } 485 }
486 486
487 static void free_rx_pointers(struct gfar_private *priv) 487 static void free_rx_pointers(struct gfar_private *priv)
488 { 488 {
489 int i = 0; 489 int i = 0;
490 490
491 for (i = 0; i < priv->num_rx_queues; i++) 491 for (i = 0; i < priv->num_rx_queues; i++)
492 kfree(priv->rx_queue[i]); 492 kfree(priv->rx_queue[i]);
493 } 493 }
494 494
495 static void unmap_group_regs(struct gfar_private *priv) 495 static void unmap_group_regs(struct gfar_private *priv)
496 { 496 {
497 int i = 0; 497 int i = 0;
498 498
499 for (i = 0; i < MAXGROUPS; i++) 499 for (i = 0; i < MAXGROUPS; i++)
500 if (priv->gfargrp[i].regs) 500 if (priv->gfargrp[i].regs)
501 iounmap(priv->gfargrp[i].regs); 501 iounmap(priv->gfargrp[i].regs);
502 } 502 }
503 503
504 static void disable_napi(struct gfar_private *priv) 504 static void disable_napi(struct gfar_private *priv)
505 { 505 {
506 int i = 0; 506 int i = 0;
507 507
508 for (i = 0; i < priv->num_grps; i++) 508 for (i = 0; i < priv->num_grps; i++)
509 napi_disable(&priv->gfargrp[i].napi); 509 napi_disable(&priv->gfargrp[i].napi);
510 } 510 }
511 511
512 static void enable_napi(struct gfar_private *priv) 512 static void enable_napi(struct gfar_private *priv)
513 { 513 {
514 int i = 0; 514 int i = 0;
515 515
516 for (i = 0; i < priv->num_grps; i++) 516 for (i = 0; i < priv->num_grps; i++)
517 napi_enable(&priv->gfargrp[i].napi); 517 napi_enable(&priv->gfargrp[i].napi);
518 } 518 }
519 519
520 static int gfar_parse_group(struct device_node *np, 520 static int gfar_parse_group(struct device_node *np,
521 struct gfar_private *priv, const char *model) 521 struct gfar_private *priv, const char *model)
522 { 522 {
523 u32 *queue_mask; 523 u32 *queue_mask;
524 u64 addr, size; 524 u64 addr, size;
525 525
526 addr = of_translate_address(np, 526 addr = of_translate_address(np,
527 of_get_address(np, 0, &size, NULL)); 527 of_get_address(np, 0, &size, NULL));
528 priv->gfargrp[priv->num_grps].regs = ioremap(addr, size); 528 priv->gfargrp[priv->num_grps].regs = ioremap(addr, size);
529 529
530 if (!priv->gfargrp[priv->num_grps].regs) 530 if (!priv->gfargrp[priv->num_grps].regs)
531 return -ENOMEM; 531 return -ENOMEM;
532 532
533 priv->gfargrp[priv->num_grps].interruptTransmit = 533 priv->gfargrp[priv->num_grps].interruptTransmit =
534 irq_of_parse_and_map(np, 0); 534 irq_of_parse_and_map(np, 0);
535 535
536 /* If we aren't the FEC we have multiple interrupts */ 536 /* If we aren't the FEC we have multiple interrupts */
537 if (model && strcasecmp(model, "FEC")) { 537 if (model && strcasecmp(model, "FEC")) {
538 priv->gfargrp[priv->num_grps].interruptReceive = 538 priv->gfargrp[priv->num_grps].interruptReceive =
539 irq_of_parse_and_map(np, 1); 539 irq_of_parse_and_map(np, 1);
540 priv->gfargrp[priv->num_grps].interruptError = 540 priv->gfargrp[priv->num_grps].interruptError =
541 irq_of_parse_and_map(np,2); 541 irq_of_parse_and_map(np,2);
542 if (priv->gfargrp[priv->num_grps].interruptTransmit < 0 || 542 if (priv->gfargrp[priv->num_grps].interruptTransmit < 0 ||
543 priv->gfargrp[priv->num_grps].interruptReceive < 0 || 543 priv->gfargrp[priv->num_grps].interruptReceive < 0 ||
544 priv->gfargrp[priv->num_grps].interruptError < 0) { 544 priv->gfargrp[priv->num_grps].interruptError < 0) {
545 return -EINVAL; 545 return -EINVAL;
546 } 546 }
547 } 547 }
548 548
549 priv->gfargrp[priv->num_grps].grp_id = priv->num_grps; 549 priv->gfargrp[priv->num_grps].grp_id = priv->num_grps;
550 priv->gfargrp[priv->num_grps].priv = priv; 550 priv->gfargrp[priv->num_grps].priv = priv;
551 spin_lock_init(&priv->gfargrp[priv->num_grps].grplock); 551 spin_lock_init(&priv->gfargrp[priv->num_grps].grplock);
552 if(priv->mode == MQ_MG_MODE) { 552 if(priv->mode == MQ_MG_MODE) {
553 queue_mask = (u32 *)of_get_property(np, 553 queue_mask = (u32 *)of_get_property(np,
554 "fsl,rx-bit-map", NULL); 554 "fsl,rx-bit-map", NULL);
555 priv->gfargrp[priv->num_grps].rx_bit_map = 555 priv->gfargrp[priv->num_grps].rx_bit_map =
556 queue_mask ? *queue_mask :(DEFAULT_MAPPING >> priv->num_grps); 556 queue_mask ? *queue_mask :(DEFAULT_MAPPING >> priv->num_grps);
557 queue_mask = (u32 *)of_get_property(np, 557 queue_mask = (u32 *)of_get_property(np,
558 "fsl,tx-bit-map", NULL); 558 "fsl,tx-bit-map", NULL);
559 priv->gfargrp[priv->num_grps].tx_bit_map = 559 priv->gfargrp[priv->num_grps].tx_bit_map =
560 queue_mask ? *queue_mask : (DEFAULT_MAPPING >> priv->num_grps); 560 queue_mask ? *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
561 } else { 561 } else {
562 priv->gfargrp[priv->num_grps].rx_bit_map = 0xFF; 562 priv->gfargrp[priv->num_grps].rx_bit_map = 0xFF;
563 priv->gfargrp[priv->num_grps].tx_bit_map = 0xFF; 563 priv->gfargrp[priv->num_grps].tx_bit_map = 0xFF;
564 } 564 }
565 priv->num_grps++; 565 priv->num_grps++;
566 566
567 return 0; 567 return 0;
568 } 568 }
569 569
570 static int gfar_of_init(struct of_device *ofdev, struct net_device **pdev) 570 static int gfar_of_init(struct of_device *ofdev, struct net_device **pdev)
571 { 571 {
572 const char *model; 572 const char *model;
573 const char *ctype; 573 const char *ctype;
574 const void *mac_addr; 574 const void *mac_addr;
575 int err = 0, i; 575 int err = 0, i;
576 struct net_device *dev = NULL; 576 struct net_device *dev = NULL;
577 struct gfar_private *priv = NULL; 577 struct gfar_private *priv = NULL;
578 struct device_node *np = ofdev->node; 578 struct device_node *np = ofdev->node;
579 struct device_node *child = NULL; 579 struct device_node *child = NULL;
580 const u32 *stash; 580 const u32 *stash;
581 const u32 *stash_len; 581 const u32 *stash_len;
582 const u32 *stash_idx; 582 const u32 *stash_idx;
583 unsigned int num_tx_qs, num_rx_qs; 583 unsigned int num_tx_qs, num_rx_qs;
584 u32 *tx_queues, *rx_queues; 584 u32 *tx_queues, *rx_queues;
585 585
586 if (!np || !of_device_is_available(np)) 586 if (!np || !of_device_is_available(np))
587 return -ENODEV; 587 return -ENODEV;
588 588
589 /* parse the num of tx and rx queues */ 589 /* parse the num of tx and rx queues */
590 tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL); 590 tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
591 num_tx_qs = tx_queues ? *tx_queues : 1; 591 num_tx_qs = tx_queues ? *tx_queues : 1;
592 592
593 if (num_tx_qs > MAX_TX_QS) { 593 if (num_tx_qs > MAX_TX_QS) {
594 printk(KERN_ERR "num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n", 594 printk(KERN_ERR "num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
595 num_tx_qs, MAX_TX_QS); 595 num_tx_qs, MAX_TX_QS);
596 printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n"); 596 printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
597 return -EINVAL; 597 return -EINVAL;
598 } 598 }
599 599
600 rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL); 600 rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
601 num_rx_qs = rx_queues ? *rx_queues : 1; 601 num_rx_qs = rx_queues ? *rx_queues : 1;
602 602
603 if (num_rx_qs > MAX_RX_QS) { 603 if (num_rx_qs > MAX_RX_QS) {
604 printk(KERN_ERR "num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n", 604 printk(KERN_ERR "num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
605 num_tx_qs, MAX_TX_QS); 605 num_tx_qs, MAX_TX_QS);
606 printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n"); 606 printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
607 return -EINVAL; 607 return -EINVAL;
608 } 608 }
609 609
610 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs); 610 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
611 dev = *pdev; 611 dev = *pdev;
612 if (NULL == dev) 612 if (NULL == dev)
613 return -ENOMEM; 613 return -ENOMEM;
614 614
615 priv = netdev_priv(dev); 615 priv = netdev_priv(dev);
616 priv->node = ofdev->node; 616 priv->node = ofdev->node;
617 priv->ndev = dev; 617 priv->ndev = dev;
618 618
619 dev->num_tx_queues = num_tx_qs; 619 dev->num_tx_queues = num_tx_qs;
620 dev->real_num_tx_queues = num_tx_qs; 620 dev->real_num_tx_queues = num_tx_qs;
621 priv->num_tx_queues = num_tx_qs; 621 priv->num_tx_queues = num_tx_qs;
622 priv->num_rx_queues = num_rx_qs; 622 priv->num_rx_queues = num_rx_qs;
623 priv->num_grps = 0x0; 623 priv->num_grps = 0x0;
624 624
625 model = of_get_property(np, "model", NULL); 625 model = of_get_property(np, "model", NULL);
626 626
627 for (i = 0; i < MAXGROUPS; i++) 627 for (i = 0; i < MAXGROUPS; i++)
628 priv->gfargrp[i].regs = NULL; 628 priv->gfargrp[i].regs = NULL;
629 629
630 /* Parse and initialize group specific information */ 630 /* Parse and initialize group specific information */
631 if (of_device_is_compatible(np, "fsl,etsec2")) { 631 if (of_device_is_compatible(np, "fsl,etsec2")) {
632 priv->mode = MQ_MG_MODE; 632 priv->mode = MQ_MG_MODE;
633 for_each_child_of_node(np, child) { 633 for_each_child_of_node(np, child) {
634 err = gfar_parse_group(child, priv, model); 634 err = gfar_parse_group(child, priv, model);
635 if (err) 635 if (err)
636 goto err_grp_init; 636 goto err_grp_init;
637 } 637 }
638 } else { 638 } else {
639 priv->mode = SQ_SG_MODE; 639 priv->mode = SQ_SG_MODE;
640 err = gfar_parse_group(np, priv, model); 640 err = gfar_parse_group(np, priv, model);
641 if(err) 641 if(err)
642 goto err_grp_init; 642 goto err_grp_init;
643 } 643 }
644 644
645 for (i = 0; i < priv->num_tx_queues; i++) 645 for (i = 0; i < priv->num_tx_queues; i++)
646 priv->tx_queue[i] = NULL; 646 priv->tx_queue[i] = NULL;
647 for (i = 0; i < priv->num_rx_queues; i++) 647 for (i = 0; i < priv->num_rx_queues; i++)
648 priv->rx_queue[i] = NULL; 648 priv->rx_queue[i] = NULL;
649 649
650 for (i = 0; i < priv->num_tx_queues; i++) { 650 for (i = 0; i < priv->num_tx_queues; i++) {
651 priv->tx_queue[i] = (struct gfar_priv_tx_q *)kmalloc( 651 priv->tx_queue[i] = (struct gfar_priv_tx_q *)kmalloc(
652 sizeof (struct gfar_priv_tx_q), GFP_KERNEL); 652 sizeof (struct gfar_priv_tx_q), GFP_KERNEL);
653 if (!priv->tx_queue[i]) { 653 if (!priv->tx_queue[i]) {
654 err = -ENOMEM; 654 err = -ENOMEM;
655 goto tx_alloc_failed; 655 goto tx_alloc_failed;
656 } 656 }
657 priv->tx_queue[i]->tx_skbuff = NULL; 657 priv->tx_queue[i]->tx_skbuff = NULL;
658 priv->tx_queue[i]->qindex = i; 658 priv->tx_queue[i]->qindex = i;
659 priv->tx_queue[i]->dev = dev; 659 priv->tx_queue[i]->dev = dev;
660 spin_lock_init(&(priv->tx_queue[i]->txlock)); 660 spin_lock_init(&(priv->tx_queue[i]->txlock));
661 } 661 }
662 662
663 for (i = 0; i < priv->num_rx_queues; i++) { 663 for (i = 0; i < priv->num_rx_queues; i++) {
664 priv->rx_queue[i] = (struct gfar_priv_rx_q *)kmalloc( 664 priv->rx_queue[i] = (struct gfar_priv_rx_q *)kmalloc(
665 sizeof (struct gfar_priv_rx_q), GFP_KERNEL); 665 sizeof (struct gfar_priv_rx_q), GFP_KERNEL);
666 if (!priv->rx_queue[i]) { 666 if (!priv->rx_queue[i]) {
667 err = -ENOMEM; 667 err = -ENOMEM;
668 goto rx_alloc_failed; 668 goto rx_alloc_failed;
669 } 669 }
670 priv->rx_queue[i]->rx_skbuff = NULL; 670 priv->rx_queue[i]->rx_skbuff = NULL;
671 priv->rx_queue[i]->qindex = i; 671 priv->rx_queue[i]->qindex = i;
672 priv->rx_queue[i]->dev = dev; 672 priv->rx_queue[i]->dev = dev;
673 spin_lock_init(&(priv->rx_queue[i]->rxlock)); 673 spin_lock_init(&(priv->rx_queue[i]->rxlock));
674 } 674 }
675 675
676 676
677 stash = of_get_property(np, "bd-stash", NULL); 677 stash = of_get_property(np, "bd-stash", NULL);
678 678
679 if (stash) { 679 if (stash) {
680 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING; 680 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
681 priv->bd_stash_en = 1; 681 priv->bd_stash_en = 1;
682 } 682 }
683 683
684 stash_len = of_get_property(np, "rx-stash-len", NULL); 684 stash_len = of_get_property(np, "rx-stash-len", NULL);
685 685
686 if (stash_len) 686 if (stash_len)
687 priv->rx_stash_size = *stash_len; 687 priv->rx_stash_size = *stash_len;
688 688
689 stash_idx = of_get_property(np, "rx-stash-idx", NULL); 689 stash_idx = of_get_property(np, "rx-stash-idx", NULL);
690 690
691 if (stash_idx) 691 if (stash_idx)
692 priv->rx_stash_index = *stash_idx; 692 priv->rx_stash_index = *stash_idx;
693 693
694 if (stash_len || stash_idx) 694 if (stash_len || stash_idx)
695 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING; 695 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
696 696
697 mac_addr = of_get_mac_address(np); 697 mac_addr = of_get_mac_address(np);
698 if (mac_addr) 698 if (mac_addr)
699 memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN); 699 memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
700 700
701 if (model && !strcasecmp(model, "TSEC")) 701 if (model && !strcasecmp(model, "TSEC"))
702 priv->device_flags = 702 priv->device_flags =
703 FSL_GIANFAR_DEV_HAS_GIGABIT | 703 FSL_GIANFAR_DEV_HAS_GIGABIT |
704 FSL_GIANFAR_DEV_HAS_COALESCE | 704 FSL_GIANFAR_DEV_HAS_COALESCE |
705 FSL_GIANFAR_DEV_HAS_RMON | 705 FSL_GIANFAR_DEV_HAS_RMON |
706 FSL_GIANFAR_DEV_HAS_MULTI_INTR; 706 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
707 if (model && !strcasecmp(model, "eTSEC")) 707 if (model && !strcasecmp(model, "eTSEC"))
708 priv->device_flags = 708 priv->device_flags =
709 FSL_GIANFAR_DEV_HAS_GIGABIT | 709 FSL_GIANFAR_DEV_HAS_GIGABIT |
710 FSL_GIANFAR_DEV_HAS_COALESCE | 710 FSL_GIANFAR_DEV_HAS_COALESCE |
711 FSL_GIANFAR_DEV_HAS_RMON | 711 FSL_GIANFAR_DEV_HAS_RMON |
712 FSL_GIANFAR_DEV_HAS_MULTI_INTR | 712 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
713 FSL_GIANFAR_DEV_HAS_PADDING | 713 FSL_GIANFAR_DEV_HAS_PADDING |
714 FSL_GIANFAR_DEV_HAS_CSUM | 714 FSL_GIANFAR_DEV_HAS_CSUM |
715 FSL_GIANFAR_DEV_HAS_VLAN | 715 FSL_GIANFAR_DEV_HAS_VLAN |
716 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET | 716 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
717 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH; 717 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH;
718 718
719 ctype = of_get_property(np, "phy-connection-type", NULL); 719 ctype = of_get_property(np, "phy-connection-type", NULL);
720 720
721 /* We only care about rgmii-id. The rest are autodetected */ 721 /* We only care about rgmii-id. The rest are autodetected */
722 if (ctype && !strcmp(ctype, "rgmii-id")) 722 if (ctype && !strcmp(ctype, "rgmii-id"))
723 priv->interface = PHY_INTERFACE_MODE_RGMII_ID; 723 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
724 else 724 else
725 priv->interface = PHY_INTERFACE_MODE_MII; 725 priv->interface = PHY_INTERFACE_MODE_MII;
726 726
727 if (of_get_property(np, "fsl,magic-packet", NULL)) 727 if (of_get_property(np, "fsl,magic-packet", NULL))
728 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET; 728 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
729 729
730 priv->phy_node = of_parse_phandle(np, "phy-handle", 0); 730 priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
731 731
732 /* Find the TBI PHY. If it's not there, we don't support SGMII */ 732 /* Find the TBI PHY. If it's not there, we don't support SGMII */
733 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0); 733 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
734 734
735 return 0; 735 return 0;
736 736
737 rx_alloc_failed: 737 rx_alloc_failed:
738 free_rx_pointers(priv); 738 free_rx_pointers(priv);
739 tx_alloc_failed: 739 tx_alloc_failed:
740 free_tx_pointers(priv); 740 free_tx_pointers(priv);
741 err_grp_init: 741 err_grp_init:
742 unmap_group_regs(priv); 742 unmap_group_regs(priv);
743 free_netdev(dev); 743 free_netdev(dev);
744 return err; 744 return err;
745 } 745 }
746 746
747 /* Ioctl MII Interface */ 747 /* Ioctl MII Interface */
748 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 748 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
749 { 749 {
750 struct gfar_private *priv = netdev_priv(dev); 750 struct gfar_private *priv = netdev_priv(dev);
751 751
752 if (!netif_running(dev)) 752 if (!netif_running(dev))
753 return -EINVAL; 753 return -EINVAL;
754 754
755 if (!priv->phydev) 755 if (!priv->phydev)
756 return -ENODEV; 756 return -ENODEV;
757 757
758 return phy_mii_ioctl(priv->phydev, if_mii(rq), cmd); 758 return phy_mii_ioctl(priv->phydev, if_mii(rq), cmd);
759 } 759 }
760 760
761 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs) 761 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
762 { 762 {
763 unsigned int new_bit_map = 0x0; 763 unsigned int new_bit_map = 0x0;
764 int mask = 0x1 << (max_qs - 1), i; 764 int mask = 0x1 << (max_qs - 1), i;
765 for (i = 0; i < max_qs; i++) { 765 for (i = 0; i < max_qs; i++) {
766 if (bit_map & mask) 766 if (bit_map & mask)
767 new_bit_map = new_bit_map + (1 << i); 767 new_bit_map = new_bit_map + (1 << i);
768 mask = mask >> 0x1; 768 mask = mask >> 0x1;
769 } 769 }
770 return new_bit_map; 770 return new_bit_map;
771 } 771 }
772 772
773 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar, 773 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
774 u32 class) 774 u32 class)
775 { 775 {
776 u32 rqfpr = FPR_FILER_MASK; 776 u32 rqfpr = FPR_FILER_MASK;
777 u32 rqfcr = 0x0; 777 u32 rqfcr = 0x0;
778 778
779 rqfar--; 779 rqfar--;
780 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT; 780 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
781 ftp_rqfpr[rqfar] = rqfpr; 781 ftp_rqfpr[rqfar] = rqfpr;
782 ftp_rqfcr[rqfar] = rqfcr; 782 ftp_rqfcr[rqfar] = rqfcr;
783 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 783 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
784 784
785 rqfar--; 785 rqfar--;
786 rqfcr = RQFCR_CMP_NOMATCH; 786 rqfcr = RQFCR_CMP_NOMATCH;
787 ftp_rqfpr[rqfar] = rqfpr; 787 ftp_rqfpr[rqfar] = rqfpr;
788 ftp_rqfcr[rqfar] = rqfcr; 788 ftp_rqfcr[rqfar] = rqfcr;
789 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 789 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
790 790
791 rqfar--; 791 rqfar--;
792 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND; 792 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
793 rqfpr = class; 793 rqfpr = class;
794 ftp_rqfcr[rqfar] = rqfcr; 794 ftp_rqfcr[rqfar] = rqfcr;
795 ftp_rqfpr[rqfar] = rqfpr; 795 ftp_rqfpr[rqfar] = rqfpr;
796 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 796 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
797 797
798 rqfar--; 798 rqfar--;
799 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND; 799 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
800 rqfpr = class; 800 rqfpr = class;
801 ftp_rqfcr[rqfar] = rqfcr; 801 ftp_rqfcr[rqfar] = rqfcr;
802 ftp_rqfpr[rqfar] = rqfpr; 802 ftp_rqfpr[rqfar] = rqfpr;
803 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 803 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
804 804
805 return rqfar; 805 return rqfar;
806 } 806 }
807 807
808 static void gfar_init_filer_table(struct gfar_private *priv) 808 static void gfar_init_filer_table(struct gfar_private *priv)
809 { 809 {
810 int i = 0x0; 810 int i = 0x0;
811 u32 rqfar = MAX_FILER_IDX; 811 u32 rqfar = MAX_FILER_IDX;
812 u32 rqfcr = 0x0; 812 u32 rqfcr = 0x0;
813 u32 rqfpr = FPR_FILER_MASK; 813 u32 rqfpr = FPR_FILER_MASK;
814 814
815 /* Default rule */ 815 /* Default rule */
816 rqfcr = RQFCR_CMP_MATCH; 816 rqfcr = RQFCR_CMP_MATCH;
817 ftp_rqfcr[rqfar] = rqfcr; 817 ftp_rqfcr[rqfar] = rqfcr;
818 ftp_rqfpr[rqfar] = rqfpr; 818 ftp_rqfpr[rqfar] = rqfpr;
819 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 819 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
820 820
821 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6); 821 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
822 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP); 822 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
823 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP); 823 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
824 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4); 824 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
825 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP); 825 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
826 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP); 826 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
827 827
828 /* cur_filer_idx indicated the fisrt non-masked rule */ 828 /* cur_filer_idx indicated the fisrt non-masked rule */
829 priv->cur_filer_idx = rqfar; 829 priv->cur_filer_idx = rqfar;
830 830
831 /* Rest are masked rules */ 831 /* Rest are masked rules */
832 rqfcr = RQFCR_CMP_NOMATCH; 832 rqfcr = RQFCR_CMP_NOMATCH;
833 for (i = 0; i < rqfar; i++) { 833 for (i = 0; i < rqfar; i++) {
834 ftp_rqfcr[i] = rqfcr; 834 ftp_rqfcr[i] = rqfcr;
835 ftp_rqfpr[i] = rqfpr; 835 ftp_rqfpr[i] = rqfpr;
836 gfar_write_filer(priv, i, rqfcr, rqfpr); 836 gfar_write_filer(priv, i, rqfcr, rqfpr);
837 } 837 }
838 } 838 }
839 839
840 /* Set up the ethernet device structure, private data, 840 /* Set up the ethernet device structure, private data,
841 * and anything else we need before we start */ 841 * and anything else we need before we start */
842 static int gfar_probe(struct of_device *ofdev, 842 static int gfar_probe(struct of_device *ofdev,
843 const struct of_device_id *match) 843 const struct of_device_id *match)
844 { 844 {
845 u32 tempval; 845 u32 tempval;
846 struct net_device *dev = NULL; 846 struct net_device *dev = NULL;
847 struct gfar_private *priv = NULL; 847 struct gfar_private *priv = NULL;
848 struct gfar __iomem *regs = NULL; 848 struct gfar __iomem *regs = NULL;
849 int err = 0, i, grp_idx = 0; 849 int err = 0, i, grp_idx = 0;
850 int len_devname; 850 int len_devname;
851 u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0; 851 u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
852 u32 isrg = 0; 852 u32 isrg = 0;
853 u32 __iomem *baddr; 853 u32 __iomem *baddr;
854 854
855 err = gfar_of_init(ofdev, &dev); 855 err = gfar_of_init(ofdev, &dev);
856 856
857 if (err) 857 if (err)
858 return err; 858 return err;
859 859
860 priv = netdev_priv(dev); 860 priv = netdev_priv(dev);
861 priv->ndev = dev; 861 priv->ndev = dev;
862 priv->ofdev = ofdev; 862 priv->ofdev = ofdev;
863 priv->node = ofdev->node; 863 priv->node = ofdev->node;
864 SET_NETDEV_DEV(dev, &ofdev->dev); 864 SET_NETDEV_DEV(dev, &ofdev->dev);
865 865
866 spin_lock_init(&priv->bflock); 866 spin_lock_init(&priv->bflock);
867 INIT_WORK(&priv->reset_task, gfar_reset_task); 867 INIT_WORK(&priv->reset_task, gfar_reset_task);
868 868
869 dev_set_drvdata(&ofdev->dev, priv); 869 dev_set_drvdata(&ofdev->dev, priv);
870 regs = priv->gfargrp[0].regs; 870 regs = priv->gfargrp[0].regs;
871 871
872 /* Stop the DMA engine now, in case it was running before */ 872 /* Stop the DMA engine now, in case it was running before */
873 /* (The firmware could have used it, and left it running). */ 873 /* (The firmware could have used it, and left it running). */
874 gfar_halt(dev); 874 gfar_halt(dev);
875 875
876 /* Reset MAC layer */ 876 /* Reset MAC layer */
877 gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET); 877 gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
878 878
879 /* We need to delay at least 3 TX clocks */ 879 /* We need to delay at least 3 TX clocks */
880 udelay(2); 880 udelay(2);
881 881
882 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW); 882 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
883 gfar_write(&regs->maccfg1, tempval); 883 gfar_write(&regs->maccfg1, tempval);
884 884
885 /* Initialize MACCFG2. */ 885 /* Initialize MACCFG2. */
886 gfar_write(&regs->maccfg2, MACCFG2_INIT_SETTINGS); 886 gfar_write(&regs->maccfg2, MACCFG2_INIT_SETTINGS);
887 887
888 /* Initialize ECNTRL */ 888 /* Initialize ECNTRL */
889 gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS); 889 gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
890 890
891 /* Set the dev->base_addr to the gfar reg region */ 891 /* Set the dev->base_addr to the gfar reg region */
892 dev->base_addr = (unsigned long) regs; 892 dev->base_addr = (unsigned long) regs;
893 893
894 SET_NETDEV_DEV(dev, &ofdev->dev); 894 SET_NETDEV_DEV(dev, &ofdev->dev);
895 895
896 /* Fill in the dev structure */ 896 /* Fill in the dev structure */
897 dev->watchdog_timeo = TX_TIMEOUT; 897 dev->watchdog_timeo = TX_TIMEOUT;
898 dev->mtu = 1500; 898 dev->mtu = 1500;
899 dev->netdev_ops = &gfar_netdev_ops; 899 dev->netdev_ops = &gfar_netdev_ops;
900 dev->ethtool_ops = &gfar_ethtool_ops; 900 dev->ethtool_ops = &gfar_ethtool_ops;
901 901
902 /* Register for napi ...We are registering NAPI for each grp */ 902 /* Register for napi ...We are registering NAPI for each grp */
903 for (i = 0; i < priv->num_grps; i++) 903 for (i = 0; i < priv->num_grps; i++)
904 netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll, GFAR_DEV_WEIGHT); 904 netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll, GFAR_DEV_WEIGHT);
905 905
906 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) { 906 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
907 priv->rx_csum_enable = 1; 907 priv->rx_csum_enable = 1;
908 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA; 908 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
909 } else 909 } else
910 priv->rx_csum_enable = 0; 910 priv->rx_csum_enable = 0;
911 911
912 priv->vlgrp = NULL; 912 priv->vlgrp = NULL;
913 913
914 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) 914 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN)
915 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; 915 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
916 916
917 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) { 917 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
918 priv->extended_hash = 1; 918 priv->extended_hash = 1;
919 priv->hash_width = 9; 919 priv->hash_width = 9;
920 920
921 priv->hash_regs[0] = &regs->igaddr0; 921 priv->hash_regs[0] = &regs->igaddr0;
922 priv->hash_regs[1] = &regs->igaddr1; 922 priv->hash_regs[1] = &regs->igaddr1;
923 priv->hash_regs[2] = &regs->igaddr2; 923 priv->hash_regs[2] = &regs->igaddr2;
924 priv->hash_regs[3] = &regs->igaddr3; 924 priv->hash_regs[3] = &regs->igaddr3;
925 priv->hash_regs[4] = &regs->igaddr4; 925 priv->hash_regs[4] = &regs->igaddr4;
926 priv->hash_regs[5] = &regs->igaddr5; 926 priv->hash_regs[5] = &regs->igaddr5;
927 priv->hash_regs[6] = &regs->igaddr6; 927 priv->hash_regs[6] = &regs->igaddr6;
928 priv->hash_regs[7] = &regs->igaddr7; 928 priv->hash_regs[7] = &regs->igaddr7;
929 priv->hash_regs[8] = &regs->gaddr0; 929 priv->hash_regs[8] = &regs->gaddr0;
930 priv->hash_regs[9] = &regs->gaddr1; 930 priv->hash_regs[9] = &regs->gaddr1;
931 priv->hash_regs[10] = &regs->gaddr2; 931 priv->hash_regs[10] = &regs->gaddr2;
932 priv->hash_regs[11] = &regs->gaddr3; 932 priv->hash_regs[11] = &regs->gaddr3;
933 priv->hash_regs[12] = &regs->gaddr4; 933 priv->hash_regs[12] = &regs->gaddr4;
934 priv->hash_regs[13] = &regs->gaddr5; 934 priv->hash_regs[13] = &regs->gaddr5;
935 priv->hash_regs[14] = &regs->gaddr6; 935 priv->hash_regs[14] = &regs->gaddr6;
936 priv->hash_regs[15] = &regs->gaddr7; 936 priv->hash_regs[15] = &regs->gaddr7;
937 937
938 } else { 938 } else {
939 priv->extended_hash = 0; 939 priv->extended_hash = 0;
940 priv->hash_width = 8; 940 priv->hash_width = 8;
941 941
942 priv->hash_regs[0] = &regs->gaddr0; 942 priv->hash_regs[0] = &regs->gaddr0;
943 priv->hash_regs[1] = &regs->gaddr1; 943 priv->hash_regs[1] = &regs->gaddr1;
944 priv->hash_regs[2] = &regs->gaddr2; 944 priv->hash_regs[2] = &regs->gaddr2;
945 priv->hash_regs[3] = &regs->gaddr3; 945 priv->hash_regs[3] = &regs->gaddr3;
946 priv->hash_regs[4] = &regs->gaddr4; 946 priv->hash_regs[4] = &regs->gaddr4;
947 priv->hash_regs[5] = &regs->gaddr5; 947 priv->hash_regs[5] = &regs->gaddr5;
948 priv->hash_regs[6] = &regs->gaddr6; 948 priv->hash_regs[6] = &regs->gaddr6;
949 priv->hash_regs[7] = &regs->gaddr7; 949 priv->hash_regs[7] = &regs->gaddr7;
950 } 950 }
951 951
952 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING) 952 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
953 priv->padding = DEFAULT_PADDING; 953 priv->padding = DEFAULT_PADDING;
954 else 954 else
955 priv->padding = 0; 955 priv->padding = 0;
956 956
957 if (dev->features & NETIF_F_IP_CSUM) 957 if (dev->features & NETIF_F_IP_CSUM)
958 dev->hard_header_len += GMAC_FCB_LEN; 958 dev->hard_header_len += GMAC_FCB_LEN;
959 959
960 /* Program the isrg regs only if number of grps > 1 */ 960 /* Program the isrg regs only if number of grps > 1 */
961 if (priv->num_grps > 1) { 961 if (priv->num_grps > 1) {
962 baddr = &regs->isrg0; 962 baddr = &regs->isrg0;
963 for (i = 0; i < priv->num_grps; i++) { 963 for (i = 0; i < priv->num_grps; i++) {
964 isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX); 964 isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
965 isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX); 965 isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
966 gfar_write(baddr, isrg); 966 gfar_write(baddr, isrg);
967 baddr++; 967 baddr++;
968 isrg = 0x0; 968 isrg = 0x0;
969 } 969 }
970 } 970 }
971 971
972 /* Need to reverse the bit maps as bit_map's MSB is q0 972 /* Need to reverse the bit maps as bit_map's MSB is q0
973 * but, for_each_bit parses from right to left, which 973 * but, for_each_bit parses from right to left, which
974 * basically reverses the queue numbers */ 974 * basically reverses the queue numbers */
975 for (i = 0; i< priv->num_grps; i++) { 975 for (i = 0; i< priv->num_grps; i++) {
976 priv->gfargrp[i].tx_bit_map = reverse_bitmap( 976 priv->gfargrp[i].tx_bit_map = reverse_bitmap(
977 priv->gfargrp[i].tx_bit_map, MAX_TX_QS); 977 priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
978 priv->gfargrp[i].rx_bit_map = reverse_bitmap( 978 priv->gfargrp[i].rx_bit_map = reverse_bitmap(
979 priv->gfargrp[i].rx_bit_map, MAX_RX_QS); 979 priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
980 } 980 }
981 981
982 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values, 982 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
983 * also assign queues to groups */ 983 * also assign queues to groups */
984 for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) { 984 for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
985 priv->gfargrp[grp_idx].num_rx_queues = 0x0; 985 priv->gfargrp[grp_idx].num_rx_queues = 0x0;
986 for_each_bit(i, &priv->gfargrp[grp_idx].rx_bit_map, 986 for_each_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
987 priv->num_rx_queues) { 987 priv->num_rx_queues) {
988 priv->gfargrp[grp_idx].num_rx_queues++; 988 priv->gfargrp[grp_idx].num_rx_queues++;
989 priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx]; 989 priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
990 rstat = rstat | (RSTAT_CLEAR_RHALT >> i); 990 rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
991 rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i); 991 rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
992 } 992 }
993 priv->gfargrp[grp_idx].num_tx_queues = 0x0; 993 priv->gfargrp[grp_idx].num_tx_queues = 0x0;
994 for_each_bit (i, &priv->gfargrp[grp_idx].tx_bit_map, 994 for_each_bit (i, &priv->gfargrp[grp_idx].tx_bit_map,
995 priv->num_tx_queues) { 995 priv->num_tx_queues) {
996 priv->gfargrp[grp_idx].num_tx_queues++; 996 priv->gfargrp[grp_idx].num_tx_queues++;
997 priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx]; 997 priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
998 tstat = tstat | (TSTAT_CLEAR_THALT >> i); 998 tstat = tstat | (TSTAT_CLEAR_THALT >> i);
999 tqueue = tqueue | (TQUEUE_EN0 >> i); 999 tqueue = tqueue | (TQUEUE_EN0 >> i);
1000 } 1000 }
1001 priv->gfargrp[grp_idx].rstat = rstat; 1001 priv->gfargrp[grp_idx].rstat = rstat;
1002 priv->gfargrp[grp_idx].tstat = tstat; 1002 priv->gfargrp[grp_idx].tstat = tstat;
1003 rstat = tstat =0; 1003 rstat = tstat =0;
1004 } 1004 }
1005 1005
1006 gfar_write(&regs->rqueue, rqueue); 1006 gfar_write(&regs->rqueue, rqueue);
1007 gfar_write(&regs->tqueue, tqueue); 1007 gfar_write(&regs->tqueue, tqueue);
1008 1008
1009 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE; 1009 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1010 1010
1011 /* Initializing some of the rx/tx queue level parameters */ 1011 /* Initializing some of the rx/tx queue level parameters */
1012 for (i = 0; i < priv->num_tx_queues; i++) { 1012 for (i = 0; i < priv->num_tx_queues; i++) {
1013 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE; 1013 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1014 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE; 1014 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1015 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE; 1015 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1016 priv->tx_queue[i]->txic = DEFAULT_TXIC; 1016 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1017 } 1017 }
1018 1018
1019 for (i = 0; i < priv->num_rx_queues; i++) { 1019 for (i = 0; i < priv->num_rx_queues; i++) {
1020 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE; 1020 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1021 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE; 1021 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1022 priv->rx_queue[i]->rxic = DEFAULT_RXIC; 1022 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1023 } 1023 }
1024 1024
1025 /* Enable most messages by default */ 1025 /* Enable most messages by default */
1026 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1; 1026 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1027 1027
1028 /* Carrier starts down, phylib will bring it up */ 1028 /* Carrier starts down, phylib will bring it up */
1029 netif_carrier_off(dev); 1029 netif_carrier_off(dev);
1030 1030
1031 err = register_netdev(dev); 1031 err = register_netdev(dev);
1032 1032
1033 if (err) { 1033 if (err) {
1034 printk(KERN_ERR "%s: Cannot register net device, aborting.\n", 1034 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1035 dev->name); 1035 dev->name);
1036 goto register_fail; 1036 goto register_fail;
1037 } 1037 }
1038 1038
1039 device_init_wakeup(&dev->dev, 1039 device_init_wakeup(&dev->dev,
1040 priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET); 1040 priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1041 1041
1042 /* fill out IRQ number and name fields */ 1042 /* fill out IRQ number and name fields */
1043 len_devname = strlen(dev->name); 1043 len_devname = strlen(dev->name);
1044 for (i = 0; i < priv->num_grps; i++) { 1044 for (i = 0; i < priv->num_grps; i++) {
1045 strncpy(&priv->gfargrp[i].int_name_tx[0], dev->name, 1045 strncpy(&priv->gfargrp[i].int_name_tx[0], dev->name,
1046 len_devname); 1046 len_devname);
1047 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 1047 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1048 strncpy(&priv->gfargrp[i].int_name_tx[len_devname], 1048 strncpy(&priv->gfargrp[i].int_name_tx[len_devname],
1049 "_g", sizeof("_g")); 1049 "_g", sizeof("_g"));
1050 priv->gfargrp[i].int_name_tx[ 1050 priv->gfargrp[i].int_name_tx[
1051 strlen(priv->gfargrp[i].int_name_tx)] = i+48; 1051 strlen(priv->gfargrp[i].int_name_tx)] = i+48;
1052 strncpy(&priv->gfargrp[i].int_name_tx[strlen( 1052 strncpy(&priv->gfargrp[i].int_name_tx[strlen(
1053 priv->gfargrp[i].int_name_tx)], 1053 priv->gfargrp[i].int_name_tx)],
1054 "_tx", sizeof("_tx") + 1); 1054 "_tx", sizeof("_tx") + 1);
1055 1055
1056 strncpy(&priv->gfargrp[i].int_name_rx[0], dev->name, 1056 strncpy(&priv->gfargrp[i].int_name_rx[0], dev->name,
1057 len_devname); 1057 len_devname);
1058 strncpy(&priv->gfargrp[i].int_name_rx[len_devname], 1058 strncpy(&priv->gfargrp[i].int_name_rx[len_devname],
1059 "_g", sizeof("_g")); 1059 "_g", sizeof("_g"));
1060 priv->gfargrp[i].int_name_rx[ 1060 priv->gfargrp[i].int_name_rx[
1061 strlen(priv->gfargrp[i].int_name_rx)] = i+48; 1061 strlen(priv->gfargrp[i].int_name_rx)] = i+48;
1062 strncpy(&priv->gfargrp[i].int_name_rx[strlen( 1062 strncpy(&priv->gfargrp[i].int_name_rx[strlen(
1063 priv->gfargrp[i].int_name_rx)], 1063 priv->gfargrp[i].int_name_rx)],
1064 "_rx", sizeof("_rx") + 1); 1064 "_rx", sizeof("_rx") + 1);
1065 1065
1066 strncpy(&priv->gfargrp[i].int_name_er[0], dev->name, 1066 strncpy(&priv->gfargrp[i].int_name_er[0], dev->name,
1067 len_devname); 1067 len_devname);
1068 strncpy(&priv->gfargrp[i].int_name_er[len_devname], 1068 strncpy(&priv->gfargrp[i].int_name_er[len_devname],
1069 "_g", sizeof("_g")); 1069 "_g", sizeof("_g"));
1070 priv->gfargrp[i].int_name_er[strlen( 1070 priv->gfargrp[i].int_name_er[strlen(
1071 priv->gfargrp[i].int_name_er)] = i+48; 1071 priv->gfargrp[i].int_name_er)] = i+48;
1072 strncpy(&priv->gfargrp[i].int_name_er[strlen(\ 1072 strncpy(&priv->gfargrp[i].int_name_er[strlen(\
1073 priv->gfargrp[i].int_name_er)], 1073 priv->gfargrp[i].int_name_er)],
1074 "_er", sizeof("_er") + 1); 1074 "_er", sizeof("_er") + 1);
1075 } else 1075 } else
1076 priv->gfargrp[i].int_name_tx[len_devname] = '\0'; 1076 priv->gfargrp[i].int_name_tx[len_devname] = '\0';
1077 } 1077 }
1078 1078
1079 /* Initialize the filer table */ 1079 /* Initialize the filer table */
1080 gfar_init_filer_table(priv); 1080 gfar_init_filer_table(priv);
1081 1081
1082 /* Create all the sysfs files */ 1082 /* Create all the sysfs files */
1083 gfar_init_sysfs(dev); 1083 gfar_init_sysfs(dev);
1084 1084
1085 /* Print out the device info */ 1085 /* Print out the device info */
1086 printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr); 1086 printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
1087 1087
1088 /* Even more device info helps when determining which kernel */ 1088 /* Even more device info helps when determining which kernel */
1089 /* provided which set of benchmarks. */ 1089 /* provided which set of benchmarks. */
1090 printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name); 1090 printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
1091 for (i = 0; i < priv->num_rx_queues; i++) 1091 for (i = 0; i < priv->num_rx_queues; i++)
1092 printk(KERN_INFO "%s: :RX BD ring size for Q[%d]: %d\n", 1092 printk(KERN_INFO "%s: :RX BD ring size for Q[%d]: %d\n",
1093 dev->name, i, priv->rx_queue[i]->rx_ring_size); 1093 dev->name, i, priv->rx_queue[i]->rx_ring_size);
1094 for(i = 0; i < priv->num_tx_queues; i++) 1094 for(i = 0; i < priv->num_tx_queues; i++)
1095 printk(KERN_INFO "%s:TX BD ring size for Q[%d]: %d\n", 1095 printk(KERN_INFO "%s:TX BD ring size for Q[%d]: %d\n",
1096 dev->name, i, priv->tx_queue[i]->tx_ring_size); 1096 dev->name, i, priv->tx_queue[i]->tx_ring_size);
1097 1097
1098 return 0; 1098 return 0;
1099 1099
1100 register_fail: 1100 register_fail:
1101 unmap_group_regs(priv); 1101 unmap_group_regs(priv);
1102 free_tx_pointers(priv); 1102 free_tx_pointers(priv);
1103 free_rx_pointers(priv); 1103 free_rx_pointers(priv);
1104 if (priv->phy_node) 1104 if (priv->phy_node)
1105 of_node_put(priv->phy_node); 1105 of_node_put(priv->phy_node);
1106 if (priv->tbi_node) 1106 if (priv->tbi_node)
1107 of_node_put(priv->tbi_node); 1107 of_node_put(priv->tbi_node);
1108 free_netdev(dev); 1108 free_netdev(dev);
1109 return err; 1109 return err;
1110 } 1110 }
1111 1111
1112 static int gfar_remove(struct of_device *ofdev) 1112 static int gfar_remove(struct of_device *ofdev)
1113 { 1113 {
1114 struct gfar_private *priv = dev_get_drvdata(&ofdev->dev); 1114 struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
1115 1115
1116 if (priv->phy_node) 1116 if (priv->phy_node)
1117 of_node_put(priv->phy_node); 1117 of_node_put(priv->phy_node);
1118 if (priv->tbi_node) 1118 if (priv->tbi_node)
1119 of_node_put(priv->tbi_node); 1119 of_node_put(priv->tbi_node);
1120 1120
1121 dev_set_drvdata(&ofdev->dev, NULL); 1121 dev_set_drvdata(&ofdev->dev, NULL);
1122 1122
1123 unregister_netdev(priv->ndev); 1123 unregister_netdev(priv->ndev);
1124 unmap_group_regs(priv); 1124 unmap_group_regs(priv);
1125 free_netdev(priv->ndev); 1125 free_netdev(priv->ndev);
1126 1126
1127 return 0; 1127 return 0;
1128 } 1128 }
1129 1129
1130 #ifdef CONFIG_PM 1130 #ifdef CONFIG_PM
1131 1131
1132 static int gfar_suspend(struct device *dev) 1132 static int gfar_suspend(struct device *dev)
1133 { 1133 {
1134 struct gfar_private *priv = dev_get_drvdata(dev); 1134 struct gfar_private *priv = dev_get_drvdata(dev);
1135 struct net_device *ndev = priv->ndev; 1135 struct net_device *ndev = priv->ndev;
1136 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1136 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1137 unsigned long flags; 1137 unsigned long flags;
1138 u32 tempval; 1138 u32 tempval;
1139 1139
1140 int magic_packet = priv->wol_en && 1140 int magic_packet = priv->wol_en &&
1141 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET); 1141 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1142 1142
1143 netif_device_detach(ndev); 1143 netif_device_detach(ndev);
1144 1144
1145 if (netif_running(ndev)) { 1145 if (netif_running(ndev)) {
1146 1146
1147 local_irq_save(flags); 1147 local_irq_save(flags);
1148 lock_tx_qs(priv); 1148 lock_tx_qs(priv);
1149 lock_rx_qs(priv); 1149 lock_rx_qs(priv);
1150 1150
1151 gfar_halt_nodisable(ndev); 1151 gfar_halt_nodisable(ndev);
1152 1152
1153 /* Disable Tx, and Rx if wake-on-LAN is disabled. */ 1153 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1154 tempval = gfar_read(&regs->maccfg1); 1154 tempval = gfar_read(&regs->maccfg1);
1155 1155
1156 tempval &= ~MACCFG1_TX_EN; 1156 tempval &= ~MACCFG1_TX_EN;
1157 1157
1158 if (!magic_packet) 1158 if (!magic_packet)
1159 tempval &= ~MACCFG1_RX_EN; 1159 tempval &= ~MACCFG1_RX_EN;
1160 1160
1161 gfar_write(&regs->maccfg1, tempval); 1161 gfar_write(&regs->maccfg1, tempval);
1162 1162
1163 unlock_rx_qs(priv); 1163 unlock_rx_qs(priv);
1164 unlock_tx_qs(priv); 1164 unlock_tx_qs(priv);
1165 local_irq_restore(flags); 1165 local_irq_restore(flags);
1166 1166
1167 disable_napi(priv); 1167 disable_napi(priv);
1168 1168
1169 if (magic_packet) { 1169 if (magic_packet) {
1170 /* Enable interrupt on Magic Packet */ 1170 /* Enable interrupt on Magic Packet */
1171 gfar_write(&regs->imask, IMASK_MAG); 1171 gfar_write(&regs->imask, IMASK_MAG);
1172 1172
1173 /* Enable Magic Packet mode */ 1173 /* Enable Magic Packet mode */
1174 tempval = gfar_read(&regs->maccfg2); 1174 tempval = gfar_read(&regs->maccfg2);
1175 tempval |= MACCFG2_MPEN; 1175 tempval |= MACCFG2_MPEN;
1176 gfar_write(&regs->maccfg2, tempval); 1176 gfar_write(&regs->maccfg2, tempval);
1177 } else { 1177 } else {
1178 phy_stop(priv->phydev); 1178 phy_stop(priv->phydev);
1179 } 1179 }
1180 } 1180 }
1181 1181
1182 return 0; 1182 return 0;
1183 } 1183 }
1184 1184
1185 static int gfar_resume(struct device *dev) 1185 static int gfar_resume(struct device *dev)
1186 { 1186 {
1187 struct gfar_private *priv = dev_get_drvdata(dev); 1187 struct gfar_private *priv = dev_get_drvdata(dev);
1188 struct net_device *ndev = priv->ndev; 1188 struct net_device *ndev = priv->ndev;
1189 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1189 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1190 unsigned long flags; 1190 unsigned long flags;
1191 u32 tempval; 1191 u32 tempval;
1192 int magic_packet = priv->wol_en && 1192 int magic_packet = priv->wol_en &&
1193 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET); 1193 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1194 1194
1195 if (!netif_running(ndev)) { 1195 if (!netif_running(ndev)) {
1196 netif_device_attach(ndev); 1196 netif_device_attach(ndev);
1197 return 0; 1197 return 0;
1198 } 1198 }
1199 1199
1200 if (!magic_packet && priv->phydev) 1200 if (!magic_packet && priv->phydev)
1201 phy_start(priv->phydev); 1201 phy_start(priv->phydev);
1202 1202
1203 /* Disable Magic Packet mode, in case something 1203 /* Disable Magic Packet mode, in case something
1204 * else woke us up. 1204 * else woke us up.
1205 */ 1205 */
1206 local_irq_save(flags); 1206 local_irq_save(flags);
1207 lock_tx_qs(priv); 1207 lock_tx_qs(priv);
1208 lock_rx_qs(priv); 1208 lock_rx_qs(priv);
1209 1209
1210 tempval = gfar_read(&regs->maccfg2); 1210 tempval = gfar_read(&regs->maccfg2);
1211 tempval &= ~MACCFG2_MPEN; 1211 tempval &= ~MACCFG2_MPEN;
1212 gfar_write(&regs->maccfg2, tempval); 1212 gfar_write(&regs->maccfg2, tempval);
1213 1213
1214 gfar_start(ndev); 1214 gfar_start(ndev);
1215 1215
1216 unlock_rx_qs(priv); 1216 unlock_rx_qs(priv);
1217 unlock_tx_qs(priv); 1217 unlock_tx_qs(priv);
1218 local_irq_restore(flags); 1218 local_irq_restore(flags);
1219 1219
1220 netif_device_attach(ndev); 1220 netif_device_attach(ndev);
1221 1221
1222 enable_napi(priv); 1222 enable_napi(priv);
1223 1223
1224 return 0; 1224 return 0;
1225 } 1225 }
1226 1226
1227 static int gfar_restore(struct device *dev) 1227 static int gfar_restore(struct device *dev)
1228 { 1228 {
1229 struct gfar_private *priv = dev_get_drvdata(dev); 1229 struct gfar_private *priv = dev_get_drvdata(dev);
1230 struct net_device *ndev = priv->ndev; 1230 struct net_device *ndev = priv->ndev;
1231 1231
1232 if (!netif_running(ndev)) 1232 if (!netif_running(ndev))
1233 return 0; 1233 return 0;
1234 1234
1235 gfar_init_bds(ndev); 1235 gfar_init_bds(ndev);
1236 init_registers(ndev); 1236 init_registers(ndev);
1237 gfar_set_mac_address(ndev); 1237 gfar_set_mac_address(ndev);
1238 gfar_init_mac(ndev); 1238 gfar_init_mac(ndev);
1239 gfar_start(ndev); 1239 gfar_start(ndev);
1240 1240
1241 priv->oldlink = 0; 1241 priv->oldlink = 0;
1242 priv->oldspeed = 0; 1242 priv->oldspeed = 0;
1243 priv->oldduplex = -1; 1243 priv->oldduplex = -1;
1244 1244
1245 if (priv->phydev) 1245 if (priv->phydev)
1246 phy_start(priv->phydev); 1246 phy_start(priv->phydev);
1247 1247
1248 netif_device_attach(ndev); 1248 netif_device_attach(ndev);
1249 enable_napi(priv); 1249 enable_napi(priv);
1250 1250
1251 return 0; 1251 return 0;
1252 } 1252 }
1253 1253
1254 static struct dev_pm_ops gfar_pm_ops = { 1254 static struct dev_pm_ops gfar_pm_ops = {
1255 .suspend = gfar_suspend, 1255 .suspend = gfar_suspend,
1256 .resume = gfar_resume, 1256 .resume = gfar_resume,
1257 .freeze = gfar_suspend, 1257 .freeze = gfar_suspend,
1258 .thaw = gfar_resume, 1258 .thaw = gfar_resume,
1259 .restore = gfar_restore, 1259 .restore = gfar_restore,
1260 }; 1260 };
1261 1261
1262 #define GFAR_PM_OPS (&gfar_pm_ops) 1262 #define GFAR_PM_OPS (&gfar_pm_ops)
1263 1263
1264 static int gfar_legacy_suspend(struct of_device *ofdev, pm_message_t state) 1264 static int gfar_legacy_suspend(struct of_device *ofdev, pm_message_t state)
1265 { 1265 {
1266 return gfar_suspend(&ofdev->dev); 1266 return gfar_suspend(&ofdev->dev);
1267 } 1267 }
1268 1268
1269 static int gfar_legacy_resume(struct of_device *ofdev) 1269 static int gfar_legacy_resume(struct of_device *ofdev)
1270 { 1270 {
1271 return gfar_resume(&ofdev->dev); 1271 return gfar_resume(&ofdev->dev);
1272 } 1272 }
1273 1273
1274 #else 1274 #else
1275 1275
1276 #define GFAR_PM_OPS NULL 1276 #define GFAR_PM_OPS NULL
1277 #define gfar_legacy_suspend NULL 1277 #define gfar_legacy_suspend NULL
1278 #define gfar_legacy_resume NULL 1278 #define gfar_legacy_resume NULL
1279 1279
1280 #endif 1280 #endif
1281 1281
1282 /* Reads the controller's registers to determine what interface 1282 /* Reads the controller's registers to determine what interface
1283 * connects it to the PHY. 1283 * connects it to the PHY.
1284 */ 1284 */
1285 static phy_interface_t gfar_get_interface(struct net_device *dev) 1285 static phy_interface_t gfar_get_interface(struct net_device *dev)
1286 { 1286 {
1287 struct gfar_private *priv = netdev_priv(dev); 1287 struct gfar_private *priv = netdev_priv(dev);
1288 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1288 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1289 u32 ecntrl; 1289 u32 ecntrl;
1290 1290
1291 ecntrl = gfar_read(&regs->ecntrl); 1291 ecntrl = gfar_read(&regs->ecntrl);
1292 1292
1293 if (ecntrl & ECNTRL_SGMII_MODE) 1293 if (ecntrl & ECNTRL_SGMII_MODE)
1294 return PHY_INTERFACE_MODE_SGMII; 1294 return PHY_INTERFACE_MODE_SGMII;
1295 1295
1296 if (ecntrl & ECNTRL_TBI_MODE) { 1296 if (ecntrl & ECNTRL_TBI_MODE) {
1297 if (ecntrl & ECNTRL_REDUCED_MODE) 1297 if (ecntrl & ECNTRL_REDUCED_MODE)
1298 return PHY_INTERFACE_MODE_RTBI; 1298 return PHY_INTERFACE_MODE_RTBI;
1299 else 1299 else
1300 return PHY_INTERFACE_MODE_TBI; 1300 return PHY_INTERFACE_MODE_TBI;
1301 } 1301 }
1302 1302
1303 if (ecntrl & ECNTRL_REDUCED_MODE) { 1303 if (ecntrl & ECNTRL_REDUCED_MODE) {
1304 if (ecntrl & ECNTRL_REDUCED_MII_MODE) 1304 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
1305 return PHY_INTERFACE_MODE_RMII; 1305 return PHY_INTERFACE_MODE_RMII;
1306 else { 1306 else {
1307 phy_interface_t interface = priv->interface; 1307 phy_interface_t interface = priv->interface;
1308 1308
1309 /* 1309 /*
1310 * This isn't autodetected right now, so it must 1310 * This isn't autodetected right now, so it must
1311 * be set by the device tree or platform code. 1311 * be set by the device tree or platform code.
1312 */ 1312 */
1313 if (interface == PHY_INTERFACE_MODE_RGMII_ID) 1313 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1314 return PHY_INTERFACE_MODE_RGMII_ID; 1314 return PHY_INTERFACE_MODE_RGMII_ID;
1315 1315
1316 return PHY_INTERFACE_MODE_RGMII; 1316 return PHY_INTERFACE_MODE_RGMII;
1317 } 1317 }
1318 } 1318 }
1319 1319
1320 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT) 1320 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1321 return PHY_INTERFACE_MODE_GMII; 1321 return PHY_INTERFACE_MODE_GMII;
1322 1322
1323 return PHY_INTERFACE_MODE_MII; 1323 return PHY_INTERFACE_MODE_MII;
1324 } 1324 }
1325 1325
1326 1326
1327 /* Initializes driver's PHY state, and attaches to the PHY. 1327 /* Initializes driver's PHY state, and attaches to the PHY.
1328 * Returns 0 on success. 1328 * Returns 0 on success.
1329 */ 1329 */
1330 static int init_phy(struct net_device *dev) 1330 static int init_phy(struct net_device *dev)
1331 { 1331 {
1332 struct gfar_private *priv = netdev_priv(dev); 1332 struct gfar_private *priv = netdev_priv(dev);
1333 uint gigabit_support = 1333 uint gigabit_support =
1334 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ? 1334 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1335 SUPPORTED_1000baseT_Full : 0; 1335 SUPPORTED_1000baseT_Full : 0;
1336 phy_interface_t interface; 1336 phy_interface_t interface;
1337 1337
1338 priv->oldlink = 0; 1338 priv->oldlink = 0;
1339 priv->oldspeed = 0; 1339 priv->oldspeed = 0;
1340 priv->oldduplex = -1; 1340 priv->oldduplex = -1;
1341 1341
1342 interface = gfar_get_interface(dev); 1342 interface = gfar_get_interface(dev);
1343 1343
1344 priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0, 1344 priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1345 interface); 1345 interface);
1346 if (!priv->phydev) 1346 if (!priv->phydev)
1347 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link, 1347 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1348 interface); 1348 interface);
1349 if (!priv->phydev) { 1349 if (!priv->phydev) {
1350 dev_err(&dev->dev, "could not attach to PHY\n"); 1350 dev_err(&dev->dev, "could not attach to PHY\n");
1351 return -ENODEV; 1351 return -ENODEV;
1352 } 1352 }
1353 1353
1354 if (interface == PHY_INTERFACE_MODE_SGMII) 1354 if (interface == PHY_INTERFACE_MODE_SGMII)
1355 gfar_configure_serdes(dev); 1355 gfar_configure_serdes(dev);
1356 1356
1357 /* Remove any features not supported by the controller */ 1357 /* Remove any features not supported by the controller */
1358 priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support); 1358 priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1359 priv->phydev->advertising = priv->phydev->supported; 1359 priv->phydev->advertising = priv->phydev->supported;
1360 1360
1361 return 0; 1361 return 0;
1362 } 1362 }
1363 1363
1364 /* 1364 /*
1365 * Initialize TBI PHY interface for communicating with the 1365 * Initialize TBI PHY interface for communicating with the
1366 * SERDES lynx PHY on the chip. We communicate with this PHY 1366 * SERDES lynx PHY on the chip. We communicate with this PHY
1367 * through the MDIO bus on each controller, treating it as a 1367 * through the MDIO bus on each controller, treating it as a
1368 * "normal" PHY at the address found in the TBIPA register. We assume 1368 * "normal" PHY at the address found in the TBIPA register. We assume
1369 * that the TBIPA register is valid. Either the MDIO bus code will set 1369 * that the TBIPA register is valid. Either the MDIO bus code will set
1370 * it to a value that doesn't conflict with other PHYs on the bus, or the 1370 * it to a value that doesn't conflict with other PHYs on the bus, or the
1371 * value doesn't matter, as there are no other PHYs on the bus. 1371 * value doesn't matter, as there are no other PHYs on the bus.
1372 */ 1372 */
1373 static void gfar_configure_serdes(struct net_device *dev) 1373 static void gfar_configure_serdes(struct net_device *dev)
1374 { 1374 {
1375 struct gfar_private *priv = netdev_priv(dev); 1375 struct gfar_private *priv = netdev_priv(dev);
1376 struct phy_device *tbiphy; 1376 struct phy_device *tbiphy;
1377 1377
1378 if (!priv->tbi_node) { 1378 if (!priv->tbi_node) {
1379 dev_warn(&dev->dev, "error: SGMII mode requires that the " 1379 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1380 "device tree specify a tbi-handle\n"); 1380 "device tree specify a tbi-handle\n");
1381 return; 1381 return;
1382 } 1382 }
1383 1383
1384 tbiphy = of_phy_find_device(priv->tbi_node); 1384 tbiphy = of_phy_find_device(priv->tbi_node);
1385 if (!tbiphy) { 1385 if (!tbiphy) {
1386 dev_err(&dev->dev, "error: Could not get TBI device\n"); 1386 dev_err(&dev->dev, "error: Could not get TBI device\n");
1387 return; 1387 return;
1388 } 1388 }
1389 1389
1390 /* 1390 /*
1391 * If the link is already up, we must already be ok, and don't need to 1391 * If the link is already up, we must already be ok, and don't need to
1392 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured 1392 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1393 * everything for us? Resetting it takes the link down and requires 1393 * everything for us? Resetting it takes the link down and requires
1394 * several seconds for it to come back. 1394 * several seconds for it to come back.
1395 */ 1395 */
1396 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) 1396 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1397 return; 1397 return;
1398 1398
1399 /* Single clk mode, mii mode off(for serdes communication) */ 1399 /* Single clk mode, mii mode off(for serdes communication) */
1400 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT); 1400 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1401 1401
1402 phy_write(tbiphy, MII_ADVERTISE, 1402 phy_write(tbiphy, MII_ADVERTISE,
1403 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | 1403 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1404 ADVERTISE_1000XPSE_ASYM); 1404 ADVERTISE_1000XPSE_ASYM);
1405 1405
1406 phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE | 1406 phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
1407 BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000); 1407 BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
1408 } 1408 }
1409 1409
1410 static void init_registers(struct net_device *dev) 1410 static void init_registers(struct net_device *dev)
1411 { 1411 {
1412 struct gfar_private *priv = netdev_priv(dev); 1412 struct gfar_private *priv = netdev_priv(dev);
1413 struct gfar __iomem *regs = NULL; 1413 struct gfar __iomem *regs = NULL;
1414 int i = 0; 1414 int i = 0;
1415 1415
1416 for (i = 0; i < priv->num_grps; i++) { 1416 for (i = 0; i < priv->num_grps; i++) {
1417 regs = priv->gfargrp[i].regs; 1417 regs = priv->gfargrp[i].regs;
1418 /* Clear IEVENT */ 1418 /* Clear IEVENT */
1419 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR); 1419 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1420 1420
1421 /* Initialize IMASK */ 1421 /* Initialize IMASK */
1422 gfar_write(&regs->imask, IMASK_INIT_CLEAR); 1422 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1423 } 1423 }
1424 1424
1425 regs = priv->gfargrp[0].regs; 1425 regs = priv->gfargrp[0].regs;
1426 /* Init hash registers to zero */ 1426 /* Init hash registers to zero */
1427 gfar_write(&regs->igaddr0, 0); 1427 gfar_write(&regs->igaddr0, 0);
1428 gfar_write(&regs->igaddr1, 0); 1428 gfar_write(&regs->igaddr1, 0);
1429 gfar_write(&regs->igaddr2, 0); 1429 gfar_write(&regs->igaddr2, 0);
1430 gfar_write(&regs->igaddr3, 0); 1430 gfar_write(&regs->igaddr3, 0);
1431 gfar_write(&regs->igaddr4, 0); 1431 gfar_write(&regs->igaddr4, 0);
1432 gfar_write(&regs->igaddr5, 0); 1432 gfar_write(&regs->igaddr5, 0);
1433 gfar_write(&regs->igaddr6, 0); 1433 gfar_write(&regs->igaddr6, 0);
1434 gfar_write(&regs->igaddr7, 0); 1434 gfar_write(&regs->igaddr7, 0);
1435 1435
1436 gfar_write(&regs->gaddr0, 0); 1436 gfar_write(&regs->gaddr0, 0);
1437 gfar_write(&regs->gaddr1, 0); 1437 gfar_write(&regs->gaddr1, 0);
1438 gfar_write(&regs->gaddr2, 0); 1438 gfar_write(&regs->gaddr2, 0);
1439 gfar_write(&regs->gaddr3, 0); 1439 gfar_write(&regs->gaddr3, 0);
1440 gfar_write(&regs->gaddr4, 0); 1440 gfar_write(&regs->gaddr4, 0);
1441 gfar_write(&regs->gaddr5, 0); 1441 gfar_write(&regs->gaddr5, 0);
1442 gfar_write(&regs->gaddr6, 0); 1442 gfar_write(&regs->gaddr6, 0);
1443 gfar_write(&regs->gaddr7, 0); 1443 gfar_write(&regs->gaddr7, 0);
1444 1444
1445 /* Zero out the rmon mib registers if it has them */ 1445 /* Zero out the rmon mib registers if it has them */
1446 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) { 1446 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1447 memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib)); 1447 memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1448 1448
1449 /* Mask off the CAM interrupts */ 1449 /* Mask off the CAM interrupts */
1450 gfar_write(&regs->rmon.cam1, 0xffffffff); 1450 gfar_write(&regs->rmon.cam1, 0xffffffff);
1451 gfar_write(&regs->rmon.cam2, 0xffffffff); 1451 gfar_write(&regs->rmon.cam2, 0xffffffff);
1452 } 1452 }
1453 1453
1454 /* Initialize the max receive buffer length */ 1454 /* Initialize the max receive buffer length */
1455 gfar_write(&regs->mrblr, priv->rx_buffer_size); 1455 gfar_write(&regs->mrblr, priv->rx_buffer_size);
1456 1456
1457 /* Initialize the Minimum Frame Length Register */ 1457 /* Initialize the Minimum Frame Length Register */
1458 gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS); 1458 gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1459 } 1459 }
1460 1460
1461 1461
1462 /* Halt the receive and transmit queues */ 1462 /* Halt the receive and transmit queues */
1463 static void gfar_halt_nodisable(struct net_device *dev) 1463 static void gfar_halt_nodisable(struct net_device *dev)
1464 { 1464 {
1465 struct gfar_private *priv = netdev_priv(dev); 1465 struct gfar_private *priv = netdev_priv(dev);
1466 struct gfar __iomem *regs = NULL; 1466 struct gfar __iomem *regs = NULL;
1467 u32 tempval; 1467 u32 tempval;
1468 int i = 0; 1468 int i = 0;
1469 1469
1470 for (i = 0; i < priv->num_grps; i++) { 1470 for (i = 0; i < priv->num_grps; i++) {
1471 regs = priv->gfargrp[i].regs; 1471 regs = priv->gfargrp[i].regs;
1472 /* Mask all interrupts */ 1472 /* Mask all interrupts */
1473 gfar_write(&regs->imask, IMASK_INIT_CLEAR); 1473 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1474 1474
1475 /* Clear all interrupts */ 1475 /* Clear all interrupts */
1476 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR); 1476 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1477 } 1477 }
1478 1478
1479 regs = priv->gfargrp[0].regs; 1479 regs = priv->gfargrp[0].regs;
1480 /* Stop the DMA, and wait for it to stop */ 1480 /* Stop the DMA, and wait for it to stop */
1481 tempval = gfar_read(&regs->dmactrl); 1481 tempval = gfar_read(&regs->dmactrl);
1482 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS)) 1482 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
1483 != (DMACTRL_GRS | DMACTRL_GTS)) { 1483 != (DMACTRL_GRS | DMACTRL_GTS)) {
1484 tempval |= (DMACTRL_GRS | DMACTRL_GTS); 1484 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1485 gfar_write(&regs->dmactrl, tempval); 1485 gfar_write(&regs->dmactrl, tempval);
1486 1486
1487 while (!(gfar_read(&regs->ievent) & 1487 while (!(gfar_read(&regs->ievent) &
1488 (IEVENT_GRSC | IEVENT_GTSC))) 1488 (IEVENT_GRSC | IEVENT_GTSC)))
1489 cpu_relax(); 1489 cpu_relax();
1490 } 1490 }
1491 } 1491 }
1492 1492
1493 /* Halt the receive and transmit queues */ 1493 /* Halt the receive and transmit queues */
1494 void gfar_halt(struct net_device *dev) 1494 void gfar_halt(struct net_device *dev)
1495 { 1495 {
1496 struct gfar_private *priv = netdev_priv(dev); 1496 struct gfar_private *priv = netdev_priv(dev);
1497 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1497 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1498 u32 tempval; 1498 u32 tempval;
1499 1499
1500 gfar_halt_nodisable(dev); 1500 gfar_halt_nodisable(dev);
1501 1501
1502 /* Disable Rx and Tx */ 1502 /* Disable Rx and Tx */
1503 tempval = gfar_read(&regs->maccfg1); 1503 tempval = gfar_read(&regs->maccfg1);
1504 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN); 1504 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1505 gfar_write(&regs->maccfg1, tempval); 1505 gfar_write(&regs->maccfg1, tempval);
1506 } 1506 }
1507 1507
1508 static void free_grp_irqs(struct gfar_priv_grp *grp) 1508 static void free_grp_irqs(struct gfar_priv_grp *grp)
1509 { 1509 {
1510 free_irq(grp->interruptError, grp); 1510 free_irq(grp->interruptError, grp);
1511 free_irq(grp->interruptTransmit, grp); 1511 free_irq(grp->interruptTransmit, grp);
1512 free_irq(grp->interruptReceive, grp); 1512 free_irq(grp->interruptReceive, grp);
1513 } 1513 }
1514 1514
1515 void stop_gfar(struct net_device *dev) 1515 void stop_gfar(struct net_device *dev)
1516 { 1516 {
1517 struct gfar_private *priv = netdev_priv(dev); 1517 struct gfar_private *priv = netdev_priv(dev);
1518 unsigned long flags; 1518 unsigned long flags;
1519 int i; 1519 int i;
1520 1520
1521 phy_stop(priv->phydev); 1521 phy_stop(priv->phydev);
1522 1522
1523 1523
1524 /* Lock it down */ 1524 /* Lock it down */
1525 local_irq_save(flags); 1525 local_irq_save(flags);
1526 lock_tx_qs(priv); 1526 lock_tx_qs(priv);
1527 lock_rx_qs(priv); 1527 lock_rx_qs(priv);
1528 1528
1529 gfar_halt(dev); 1529 gfar_halt(dev);
1530 1530
1531 unlock_rx_qs(priv); 1531 unlock_rx_qs(priv);
1532 unlock_tx_qs(priv); 1532 unlock_tx_qs(priv);
1533 local_irq_restore(flags); 1533 local_irq_restore(flags);
1534 1534
1535 /* Free the IRQs */ 1535 /* Free the IRQs */
1536 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 1536 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1537 for (i = 0; i < priv->num_grps; i++) 1537 for (i = 0; i < priv->num_grps; i++)
1538 free_grp_irqs(&priv->gfargrp[i]); 1538 free_grp_irqs(&priv->gfargrp[i]);
1539 } else { 1539 } else {
1540 for (i = 0; i < priv->num_grps; i++) 1540 for (i = 0; i < priv->num_grps; i++)
1541 free_irq(priv->gfargrp[i].interruptTransmit, 1541 free_irq(priv->gfargrp[i].interruptTransmit,
1542 &priv->gfargrp[i]); 1542 &priv->gfargrp[i]);
1543 } 1543 }
1544 1544
1545 free_skb_resources(priv); 1545 free_skb_resources(priv);
1546 } 1546 }
1547 1547
1548 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue) 1548 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1549 { 1549 {
1550 struct txbd8 *txbdp; 1550 struct txbd8 *txbdp;
1551 struct gfar_private *priv = netdev_priv(tx_queue->dev); 1551 struct gfar_private *priv = netdev_priv(tx_queue->dev);
1552 int i, j; 1552 int i, j;
1553 1553
1554 txbdp = tx_queue->tx_bd_base; 1554 txbdp = tx_queue->tx_bd_base;
1555 1555
1556 for (i = 0; i < tx_queue->tx_ring_size; i++) { 1556 for (i = 0; i < tx_queue->tx_ring_size; i++) {
1557 if (!tx_queue->tx_skbuff[i]) 1557 if (!tx_queue->tx_skbuff[i])
1558 continue; 1558 continue;
1559 1559
1560 dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr, 1560 dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
1561 txbdp->length, DMA_TO_DEVICE); 1561 txbdp->length, DMA_TO_DEVICE);
1562 txbdp->lstatus = 0; 1562 txbdp->lstatus = 0;
1563 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags; 1563 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1564 j++) { 1564 j++) {
1565 txbdp++; 1565 txbdp++;
1566 dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr, 1566 dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
1567 txbdp->length, DMA_TO_DEVICE); 1567 txbdp->length, DMA_TO_DEVICE);
1568 } 1568 }
1569 txbdp++; 1569 txbdp++;
1570 dev_kfree_skb_any(tx_queue->tx_skbuff[i]); 1570 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1571 tx_queue->tx_skbuff[i] = NULL; 1571 tx_queue->tx_skbuff[i] = NULL;
1572 } 1572 }
1573 kfree(tx_queue->tx_skbuff); 1573 kfree(tx_queue->tx_skbuff);
1574 } 1574 }
1575 1575
1576 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue) 1576 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1577 { 1577 {
1578 struct rxbd8 *rxbdp; 1578 struct rxbd8 *rxbdp;
1579 struct gfar_private *priv = netdev_priv(rx_queue->dev); 1579 struct gfar_private *priv = netdev_priv(rx_queue->dev);
1580 int i; 1580 int i;
1581 1581
1582 rxbdp = rx_queue->rx_bd_base; 1582 rxbdp = rx_queue->rx_bd_base;
1583 1583
1584 for (i = 0; i < rx_queue->rx_ring_size; i++) { 1584 for (i = 0; i < rx_queue->rx_ring_size; i++) {
1585 if (rx_queue->rx_skbuff[i]) { 1585 if (rx_queue->rx_skbuff[i]) {
1586 dma_unmap_single(&priv->ofdev->dev, 1586 dma_unmap_single(&priv->ofdev->dev,
1587 rxbdp->bufPtr, priv->rx_buffer_size, 1587 rxbdp->bufPtr, priv->rx_buffer_size,
1588 DMA_FROM_DEVICE); 1588 DMA_FROM_DEVICE);
1589 dev_kfree_skb_any(rx_queue->rx_skbuff[i]); 1589 dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1590 rx_queue->rx_skbuff[i] = NULL; 1590 rx_queue->rx_skbuff[i] = NULL;
1591 } 1591 }
1592 rxbdp->lstatus = 0; 1592 rxbdp->lstatus = 0;
1593 rxbdp->bufPtr = 0; 1593 rxbdp->bufPtr = 0;
1594 rxbdp++; 1594 rxbdp++;
1595 } 1595 }
1596 kfree(rx_queue->rx_skbuff); 1596 kfree(rx_queue->rx_skbuff);
1597 } 1597 }
1598 1598
1599 /* If there are any tx skbs or rx skbs still around, free them. 1599 /* If there are any tx skbs or rx skbs still around, free them.
1600 * Then free tx_skbuff and rx_skbuff */ 1600 * Then free tx_skbuff and rx_skbuff */
1601 static void free_skb_resources(struct gfar_private *priv) 1601 static void free_skb_resources(struct gfar_private *priv)
1602 { 1602 {
1603 struct gfar_priv_tx_q *tx_queue = NULL; 1603 struct gfar_priv_tx_q *tx_queue = NULL;
1604 struct gfar_priv_rx_q *rx_queue = NULL; 1604 struct gfar_priv_rx_q *rx_queue = NULL;
1605 int i; 1605 int i;
1606 1606
1607 /* Go through all the buffer descriptors and free their data buffers */ 1607 /* Go through all the buffer descriptors and free their data buffers */
1608 for (i = 0; i < priv->num_tx_queues; i++) { 1608 for (i = 0; i < priv->num_tx_queues; i++) {
1609 tx_queue = priv->tx_queue[i]; 1609 tx_queue = priv->tx_queue[i];
1610 if(!tx_queue->tx_skbuff) 1610 if(!tx_queue->tx_skbuff)
1611 free_skb_tx_queue(tx_queue); 1611 free_skb_tx_queue(tx_queue);
1612 } 1612 }
1613 1613
1614 for (i = 0; i < priv->num_rx_queues; i++) { 1614 for (i = 0; i < priv->num_rx_queues; i++) {
1615 rx_queue = priv->rx_queue[i]; 1615 rx_queue = priv->rx_queue[i];
1616 if(!rx_queue->rx_skbuff) 1616 if(!rx_queue->rx_skbuff)
1617 free_skb_rx_queue(rx_queue); 1617 free_skb_rx_queue(rx_queue);
1618 } 1618 }
1619 1619
1620 dma_free_coherent(&priv->ofdev->dev, 1620 dma_free_coherent(&priv->ofdev->dev,
1621 sizeof(struct txbd8) * priv->total_tx_ring_size + 1621 sizeof(struct txbd8) * priv->total_tx_ring_size +
1622 sizeof(struct rxbd8) * priv->total_rx_ring_size, 1622 sizeof(struct rxbd8) * priv->total_rx_ring_size,
1623 priv->tx_queue[0]->tx_bd_base, 1623 priv->tx_queue[0]->tx_bd_base,
1624 priv->tx_queue[0]->tx_bd_dma_base); 1624 priv->tx_queue[0]->tx_bd_dma_base);
1625 } 1625 }
1626 1626
1627 void gfar_start(struct net_device *dev) 1627 void gfar_start(struct net_device *dev)
1628 { 1628 {
1629 struct gfar_private *priv = netdev_priv(dev); 1629 struct gfar_private *priv = netdev_priv(dev);
1630 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1630 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1631 u32 tempval; 1631 u32 tempval;
1632 int i = 0; 1632 int i = 0;
1633 1633
1634 /* Enable Rx and Tx in MACCFG1 */ 1634 /* Enable Rx and Tx in MACCFG1 */
1635 tempval = gfar_read(&regs->maccfg1); 1635 tempval = gfar_read(&regs->maccfg1);
1636 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN); 1636 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1637 gfar_write(&regs->maccfg1, tempval); 1637 gfar_write(&regs->maccfg1, tempval);
1638 1638
1639 /* Initialize DMACTRL to have WWR and WOP */ 1639 /* Initialize DMACTRL to have WWR and WOP */
1640 tempval = gfar_read(&regs->dmactrl); 1640 tempval = gfar_read(&regs->dmactrl);
1641 tempval |= DMACTRL_INIT_SETTINGS; 1641 tempval |= DMACTRL_INIT_SETTINGS;
1642 gfar_write(&regs->dmactrl, tempval); 1642 gfar_write(&regs->dmactrl, tempval);
1643 1643
1644 /* Make sure we aren't stopped */ 1644 /* Make sure we aren't stopped */
1645 tempval = gfar_read(&regs->dmactrl); 1645 tempval = gfar_read(&regs->dmactrl);
1646 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS); 1646 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1647 gfar_write(&regs->dmactrl, tempval); 1647 gfar_write(&regs->dmactrl, tempval);
1648 1648
1649 for (i = 0; i < priv->num_grps; i++) { 1649 for (i = 0; i < priv->num_grps; i++) {
1650 regs = priv->gfargrp[i].regs; 1650 regs = priv->gfargrp[i].regs;
1651 /* Clear THLT/RHLT, so that the DMA starts polling now */ 1651 /* Clear THLT/RHLT, so that the DMA starts polling now */
1652 gfar_write(&regs->tstat, priv->gfargrp[i].tstat); 1652 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1653 gfar_write(&regs->rstat, priv->gfargrp[i].rstat); 1653 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1654 /* Unmask the interrupts we look for */ 1654 /* Unmask the interrupts we look for */
1655 gfar_write(&regs->imask, IMASK_DEFAULT); 1655 gfar_write(&regs->imask, IMASK_DEFAULT);
1656 } 1656 }
1657 1657
1658 dev->trans_start = jiffies; 1658 dev->trans_start = jiffies;
1659 } 1659 }
1660 1660
1661 void gfar_configure_coalescing(struct gfar_private *priv, 1661 void gfar_configure_coalescing(struct gfar_private *priv,
1662 unsigned long tx_mask, unsigned long rx_mask) 1662 unsigned long tx_mask, unsigned long rx_mask)
1663 { 1663 {
1664 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1664 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1665 u32 __iomem *baddr; 1665 u32 __iomem *baddr;
1666 int i = 0; 1666 int i = 0;
1667 1667
1668 /* Backward compatible case ---- even if we enable 1668 /* Backward compatible case ---- even if we enable
1669 * multiple queues, there's only single reg to program 1669 * multiple queues, there's only single reg to program
1670 */ 1670 */
1671 gfar_write(&regs->txic, 0); 1671 gfar_write(&regs->txic, 0);
1672 if(likely(priv->tx_queue[0]->txcoalescing)) 1672 if(likely(priv->tx_queue[0]->txcoalescing))
1673 gfar_write(&regs->txic, priv->tx_queue[0]->txic); 1673 gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1674 1674
1675 gfar_write(&regs->rxic, 0); 1675 gfar_write(&regs->rxic, 0);
1676 if(unlikely(priv->rx_queue[0]->rxcoalescing)) 1676 if(unlikely(priv->rx_queue[0]->rxcoalescing))
1677 gfar_write(&regs->rxic, priv->rx_queue[0]->rxic); 1677 gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1678 1678
1679 if (priv->mode == MQ_MG_MODE) { 1679 if (priv->mode == MQ_MG_MODE) {
1680 baddr = &regs->txic0; 1680 baddr = &regs->txic0;
1681 for_each_bit (i, &tx_mask, priv->num_tx_queues) { 1681 for_each_bit (i, &tx_mask, priv->num_tx_queues) {
1682 if (likely(priv->tx_queue[i]->txcoalescing)) { 1682 if (likely(priv->tx_queue[i]->txcoalescing)) {
1683 gfar_write(baddr + i, 0); 1683 gfar_write(baddr + i, 0);
1684 gfar_write(baddr + i, priv->tx_queue[i]->txic); 1684 gfar_write(baddr + i, priv->tx_queue[i]->txic);
1685 } 1685 }
1686 } 1686 }
1687 1687
1688 baddr = &regs->rxic0; 1688 baddr = &regs->rxic0;
1689 for_each_bit (i, &rx_mask, priv->num_rx_queues) { 1689 for_each_bit (i, &rx_mask, priv->num_rx_queues) {
1690 if (likely(priv->rx_queue[i]->rxcoalescing)) { 1690 if (likely(priv->rx_queue[i]->rxcoalescing)) {
1691 gfar_write(baddr + i, 0); 1691 gfar_write(baddr + i, 0);
1692 gfar_write(baddr + i, priv->rx_queue[i]->rxic); 1692 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1693 } 1693 }
1694 } 1694 }
1695 } 1695 }
1696 } 1696 }
1697 1697
1698 static int register_grp_irqs(struct gfar_priv_grp *grp) 1698 static int register_grp_irqs(struct gfar_priv_grp *grp)
1699 { 1699 {
1700 struct gfar_private *priv = grp->priv; 1700 struct gfar_private *priv = grp->priv;
1701 struct net_device *dev = priv->ndev; 1701 struct net_device *dev = priv->ndev;
1702 int err; 1702 int err;
1703 1703
1704 /* If the device has multiple interrupts, register for 1704 /* If the device has multiple interrupts, register for
1705 * them. Otherwise, only register for the one */ 1705 * them. Otherwise, only register for the one */
1706 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 1706 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1707 /* Install our interrupt handlers for Error, 1707 /* Install our interrupt handlers for Error,
1708 * Transmit, and Receive */ 1708 * Transmit, and Receive */
1709 if ((err = request_irq(grp->interruptError, gfar_error, 0, 1709 if ((err = request_irq(grp->interruptError, gfar_error, 0,
1710 grp->int_name_er,grp)) < 0) { 1710 grp->int_name_er,grp)) < 0) {
1711 if (netif_msg_intr(priv)) 1711 if (netif_msg_intr(priv))
1712 printk(KERN_ERR "%s: Can't get IRQ %d\n", 1712 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1713 dev->name, grp->interruptError); 1713 dev->name, grp->interruptError);
1714 1714
1715 goto err_irq_fail; 1715 goto err_irq_fail;
1716 } 1716 }
1717 1717
1718 if ((err = request_irq(grp->interruptTransmit, gfar_transmit, 1718 if ((err = request_irq(grp->interruptTransmit, gfar_transmit,
1719 0, grp->int_name_tx, grp)) < 0) { 1719 0, grp->int_name_tx, grp)) < 0) {
1720 if (netif_msg_intr(priv)) 1720 if (netif_msg_intr(priv))
1721 printk(KERN_ERR "%s: Can't get IRQ %d\n", 1721 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1722 dev->name, grp->interruptTransmit); 1722 dev->name, grp->interruptTransmit);
1723 goto tx_irq_fail; 1723 goto tx_irq_fail;
1724 } 1724 }
1725 1725
1726 if ((err = request_irq(grp->interruptReceive, gfar_receive, 0, 1726 if ((err = request_irq(grp->interruptReceive, gfar_receive, 0,
1727 grp->int_name_rx, grp)) < 0) { 1727 grp->int_name_rx, grp)) < 0) {
1728 if (netif_msg_intr(priv)) 1728 if (netif_msg_intr(priv))
1729 printk(KERN_ERR "%s: Can't get IRQ %d\n", 1729 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1730 dev->name, grp->interruptReceive); 1730 dev->name, grp->interruptReceive);
1731 goto rx_irq_fail; 1731 goto rx_irq_fail;
1732 } 1732 }
1733 } else { 1733 } else {
1734 if ((err = request_irq(grp->interruptTransmit, gfar_interrupt, 0, 1734 if ((err = request_irq(grp->interruptTransmit, gfar_interrupt, 0,
1735 grp->int_name_tx, grp)) < 0) { 1735 grp->int_name_tx, grp)) < 0) {
1736 if (netif_msg_intr(priv)) 1736 if (netif_msg_intr(priv))
1737 printk(KERN_ERR "%s: Can't get IRQ %d\n", 1737 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1738 dev->name, grp->interruptTransmit); 1738 dev->name, grp->interruptTransmit);
1739 goto err_irq_fail; 1739 goto err_irq_fail;
1740 } 1740 }
1741 } 1741 }
1742 1742
1743 return 0; 1743 return 0;
1744 1744
1745 rx_irq_fail: 1745 rx_irq_fail:
1746 free_irq(grp->interruptTransmit, grp); 1746 free_irq(grp->interruptTransmit, grp);
1747 tx_irq_fail: 1747 tx_irq_fail:
1748 free_irq(grp->interruptError, grp); 1748 free_irq(grp->interruptError, grp);
1749 err_irq_fail: 1749 err_irq_fail:
1750 return err; 1750 return err;
1751 1751
1752 } 1752 }
1753 1753
1754 /* Bring the controller up and running */ 1754 /* Bring the controller up and running */
1755 int startup_gfar(struct net_device *ndev) 1755 int startup_gfar(struct net_device *ndev)
1756 { 1756 {
1757 struct gfar_private *priv = netdev_priv(ndev); 1757 struct gfar_private *priv = netdev_priv(ndev);
1758 struct gfar __iomem *regs = NULL; 1758 struct gfar __iomem *regs = NULL;
1759 int err, i, j; 1759 int err, i, j;
1760 1760
1761 for (i = 0; i < priv->num_grps; i++) { 1761 for (i = 0; i < priv->num_grps; i++) {
1762 regs= priv->gfargrp[i].regs; 1762 regs= priv->gfargrp[i].regs;
1763 gfar_write(&regs->imask, IMASK_INIT_CLEAR); 1763 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1764 } 1764 }
1765 1765
1766 regs= priv->gfargrp[0].regs; 1766 regs= priv->gfargrp[0].regs;
1767 err = gfar_alloc_skb_resources(ndev); 1767 err = gfar_alloc_skb_resources(ndev);
1768 if (err) 1768 if (err)
1769 return err; 1769 return err;
1770 1770
1771 gfar_init_mac(ndev); 1771 gfar_init_mac(ndev);
1772 1772
1773 for (i = 0; i < priv->num_grps; i++) { 1773 for (i = 0; i < priv->num_grps; i++) {
1774 err = register_grp_irqs(&priv->gfargrp[i]); 1774 err = register_grp_irqs(&priv->gfargrp[i]);
1775 if (err) { 1775 if (err) {
1776 for (j = 0; j < i; j++) 1776 for (j = 0; j < i; j++)
1777 free_grp_irqs(&priv->gfargrp[j]); 1777 free_grp_irqs(&priv->gfargrp[j]);
1778 goto irq_fail; 1778 goto irq_fail;
1779 } 1779 }
1780 } 1780 }
1781 1781
1782 /* Start the controller */ 1782 /* Start the controller */
1783 gfar_start(ndev); 1783 gfar_start(ndev);
1784 1784
1785 phy_start(priv->phydev); 1785 phy_start(priv->phydev);
1786 1786
1787 gfar_configure_coalescing(priv, 0xFF, 0xFF); 1787 gfar_configure_coalescing(priv, 0xFF, 0xFF);
1788 1788
1789 return 0; 1789 return 0;
1790 1790
1791 irq_fail: 1791 irq_fail:
1792 free_skb_resources(priv); 1792 free_skb_resources(priv);
1793 return err; 1793 return err;
1794 } 1794 }
1795 1795
1796 /* Called when something needs to use the ethernet device */ 1796 /* Called when something needs to use the ethernet device */
1797 /* Returns 0 for success. */ 1797 /* Returns 0 for success. */
1798 static int gfar_enet_open(struct net_device *dev) 1798 static int gfar_enet_open(struct net_device *dev)
1799 { 1799 {
1800 struct gfar_private *priv = netdev_priv(dev); 1800 struct gfar_private *priv = netdev_priv(dev);
1801 int err; 1801 int err;
1802 1802
1803 enable_napi(priv); 1803 enable_napi(priv);
1804 1804
1805 skb_queue_head_init(&priv->rx_recycle); 1805 skb_queue_head_init(&priv->rx_recycle);
1806 1806
1807 /* Initialize a bunch of registers */ 1807 /* Initialize a bunch of registers */
1808 init_registers(dev); 1808 init_registers(dev);
1809 1809
1810 gfar_set_mac_address(dev); 1810 gfar_set_mac_address(dev);
1811 1811
1812 err = init_phy(dev); 1812 err = init_phy(dev);
1813 1813
1814 if (err) { 1814 if (err) {
1815 disable_napi(priv); 1815 disable_napi(priv);
1816 return err; 1816 return err;
1817 } 1817 }
1818 1818
1819 err = startup_gfar(dev); 1819 err = startup_gfar(dev);
1820 if (err) { 1820 if (err) {
1821 disable_napi(priv); 1821 disable_napi(priv);
1822 return err; 1822 return err;
1823 } 1823 }
1824 1824
1825 netif_tx_start_all_queues(dev); 1825 netif_tx_start_all_queues(dev);
1826 1826
1827 device_set_wakeup_enable(&dev->dev, priv->wol_en); 1827 device_set_wakeup_enable(&dev->dev, priv->wol_en);
1828 1828
1829 return err; 1829 return err;
1830 } 1830 }
1831 1831
1832 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb) 1832 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1833 { 1833 {
1834 struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN); 1834 struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1835 1835
1836 memset(fcb, 0, GMAC_FCB_LEN); 1836 memset(fcb, 0, GMAC_FCB_LEN);
1837 1837
1838 return fcb; 1838 return fcb;
1839 } 1839 }
1840 1840
1841 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb) 1841 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1842 { 1842 {
1843 u8 flags = 0; 1843 u8 flags = 0;
1844 1844
1845 /* If we're here, it's a IP packet with a TCP or UDP 1845 /* If we're here, it's a IP packet with a TCP or UDP
1846 * payload. We set it to checksum, using a pseudo-header 1846 * payload. We set it to checksum, using a pseudo-header
1847 * we provide 1847 * we provide
1848 */ 1848 */
1849 flags = TXFCB_DEFAULT; 1849 flags = TXFCB_DEFAULT;
1850 1850
1851 /* Tell the controller what the protocol is */ 1851 /* Tell the controller what the protocol is */
1852 /* And provide the already calculated phcs */ 1852 /* And provide the already calculated phcs */
1853 if (ip_hdr(skb)->protocol == IPPROTO_UDP) { 1853 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1854 flags |= TXFCB_UDP; 1854 flags |= TXFCB_UDP;
1855 fcb->phcs = udp_hdr(skb)->check; 1855 fcb->phcs = udp_hdr(skb)->check;
1856 } else 1856 } else
1857 fcb->phcs = tcp_hdr(skb)->check; 1857 fcb->phcs = tcp_hdr(skb)->check;
1858 1858
1859 /* l3os is the distance between the start of the 1859 /* l3os is the distance between the start of the
1860 * frame (skb->data) and the start of the IP hdr. 1860 * frame (skb->data) and the start of the IP hdr.
1861 * l4os is the distance between the start of the 1861 * l4os is the distance between the start of the
1862 * l3 hdr and the l4 hdr */ 1862 * l3 hdr and the l4 hdr */
1863 fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN); 1863 fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
1864 fcb->l4os = skb_network_header_len(skb); 1864 fcb->l4os = skb_network_header_len(skb);
1865 1865
1866 fcb->flags = flags; 1866 fcb->flags = flags;
1867 } 1867 }
1868 1868
1869 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb) 1869 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1870 { 1870 {
1871 fcb->flags |= TXFCB_VLN; 1871 fcb->flags |= TXFCB_VLN;
1872 fcb->vlctl = vlan_tx_tag_get(skb); 1872 fcb->vlctl = vlan_tx_tag_get(skb);
1873 } 1873 }
1874 1874
1875 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride, 1875 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1876 struct txbd8 *base, int ring_size) 1876 struct txbd8 *base, int ring_size)
1877 { 1877 {
1878 struct txbd8 *new_bd = bdp + stride; 1878 struct txbd8 *new_bd = bdp + stride;
1879 1879
1880 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd; 1880 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1881 } 1881 }
1882 1882
1883 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base, 1883 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1884 int ring_size) 1884 int ring_size)
1885 { 1885 {
1886 return skip_txbd(bdp, 1, base, ring_size); 1886 return skip_txbd(bdp, 1, base, ring_size);
1887 } 1887 }
1888 1888
1889 /* This is called by the kernel when a frame is ready for transmission. */ 1889 /* This is called by the kernel when a frame is ready for transmission. */
1890 /* It is pointed to by the dev->hard_start_xmit function pointer */ 1890 /* It is pointed to by the dev->hard_start_xmit function pointer */
1891 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev) 1891 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1892 { 1892 {
1893 struct gfar_private *priv = netdev_priv(dev); 1893 struct gfar_private *priv = netdev_priv(dev);
1894 struct gfar_priv_tx_q *tx_queue = NULL; 1894 struct gfar_priv_tx_q *tx_queue = NULL;
1895 struct netdev_queue *txq; 1895 struct netdev_queue *txq;
1896 struct gfar __iomem *regs = NULL; 1896 struct gfar __iomem *regs = NULL;
1897 struct txfcb *fcb = NULL; 1897 struct txfcb *fcb = NULL;
1898 struct txbd8 *txbdp, *txbdp_start, *base; 1898 struct txbd8 *txbdp, *txbdp_start, *base;
1899 u32 lstatus; 1899 u32 lstatus;
1900 int i, rq = 0; 1900 int i, rq = 0;
1901 u32 bufaddr; 1901 u32 bufaddr;
1902 unsigned long flags; 1902 unsigned long flags;
1903 unsigned int nr_frags, length; 1903 unsigned int nr_frags, length;
1904 1904
1905 1905
1906 rq = skb->queue_mapping; 1906 rq = skb->queue_mapping;
1907 tx_queue = priv->tx_queue[rq]; 1907 tx_queue = priv->tx_queue[rq];
1908 txq = netdev_get_tx_queue(dev, rq); 1908 txq = netdev_get_tx_queue(dev, rq);
1909 base = tx_queue->tx_bd_base; 1909 base = tx_queue->tx_bd_base;
1910 regs = tx_queue->grp->regs; 1910 regs = tx_queue->grp->regs;
1911 1911
1912 /* make space for additional header when fcb is needed */ 1912 /* make space for additional header when fcb is needed */
1913 if (((skb->ip_summed == CHECKSUM_PARTIAL) || 1913 if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
1914 (priv->vlgrp && vlan_tx_tag_present(skb))) && 1914 (priv->vlgrp && vlan_tx_tag_present(skb))) &&
1915 (skb_headroom(skb) < GMAC_FCB_LEN)) { 1915 (skb_headroom(skb) < GMAC_FCB_LEN)) {
1916 struct sk_buff *skb_new; 1916 struct sk_buff *skb_new;
1917 1917
1918 skb_new = skb_realloc_headroom(skb, GMAC_FCB_LEN); 1918 skb_new = skb_realloc_headroom(skb, GMAC_FCB_LEN);
1919 if (!skb_new) { 1919 if (!skb_new) {
1920 dev->stats.tx_errors++; 1920 dev->stats.tx_errors++;
1921 kfree_skb(skb); 1921 kfree_skb(skb);
1922 return NETDEV_TX_OK; 1922 return NETDEV_TX_OK;
1923 } 1923 }
1924 kfree_skb(skb); 1924 kfree_skb(skb);
1925 skb = skb_new; 1925 skb = skb_new;
1926 } 1926 }
1927 1927
1928 /* total number of fragments in the SKB */ 1928 /* total number of fragments in the SKB */
1929 nr_frags = skb_shinfo(skb)->nr_frags; 1929 nr_frags = skb_shinfo(skb)->nr_frags;
1930 1930
1931 spin_lock_irqsave(&tx_queue->txlock, flags);
1932
1933 /* check if there is space to queue this packet */ 1931 /* check if there is space to queue this packet */
1934 if ((nr_frags+1) > tx_queue->num_txbdfree) { 1932 if ((nr_frags+1) > tx_queue->num_txbdfree) {
1935 /* no space, stop the queue */ 1933 /* no space, stop the queue */
1936 netif_tx_stop_queue(txq); 1934 netif_tx_stop_queue(txq);
1937 dev->stats.tx_fifo_errors++; 1935 dev->stats.tx_fifo_errors++;
1938 spin_unlock_irqrestore(&tx_queue->txlock, flags);
1939 return NETDEV_TX_BUSY; 1936 return NETDEV_TX_BUSY;
1940 } 1937 }
1941 1938
1942 /* Update transmit stats */ 1939 /* Update transmit stats */
1943 dev->stats.tx_bytes += skb->len; 1940 dev->stats.tx_bytes += skb->len;
1944 1941
1945 txbdp = txbdp_start = tx_queue->cur_tx; 1942 txbdp = txbdp_start = tx_queue->cur_tx;
1946 1943
1947 if (nr_frags == 0) { 1944 if (nr_frags == 0) {
1948 lstatus = txbdp->lstatus | BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 1945 lstatus = txbdp->lstatus | BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1949 } else { 1946 } else {
1950 /* Place the fragment addresses and lengths into the TxBDs */ 1947 /* Place the fragment addresses and lengths into the TxBDs */
1951 for (i = 0; i < nr_frags; i++) { 1948 for (i = 0; i < nr_frags; i++) {
1952 /* Point at the next BD, wrapping as needed */ 1949 /* Point at the next BD, wrapping as needed */
1953 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); 1950 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1954 1951
1955 length = skb_shinfo(skb)->frags[i].size; 1952 length = skb_shinfo(skb)->frags[i].size;
1956 1953
1957 lstatus = txbdp->lstatus | length | 1954 lstatus = txbdp->lstatus | length |
1958 BD_LFLAG(TXBD_READY); 1955 BD_LFLAG(TXBD_READY);
1959 1956
1960 /* Handle the last BD specially */ 1957 /* Handle the last BD specially */
1961 if (i == nr_frags - 1) 1958 if (i == nr_frags - 1)
1962 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 1959 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1963 1960
1964 bufaddr = dma_map_page(&priv->ofdev->dev, 1961 bufaddr = dma_map_page(&priv->ofdev->dev,
1965 skb_shinfo(skb)->frags[i].page, 1962 skb_shinfo(skb)->frags[i].page,
1966 skb_shinfo(skb)->frags[i].page_offset, 1963 skb_shinfo(skb)->frags[i].page_offset,
1967 length, 1964 length,
1968 DMA_TO_DEVICE); 1965 DMA_TO_DEVICE);
1969 1966
1970 /* set the TxBD length and buffer pointer */ 1967 /* set the TxBD length and buffer pointer */
1971 txbdp->bufPtr = bufaddr; 1968 txbdp->bufPtr = bufaddr;
1972 txbdp->lstatus = lstatus; 1969 txbdp->lstatus = lstatus;
1973 } 1970 }
1974 1971
1975 lstatus = txbdp_start->lstatus; 1972 lstatus = txbdp_start->lstatus;
1976 } 1973 }
1977 1974
1978 /* Set up checksumming */ 1975 /* Set up checksumming */
1979 if (CHECKSUM_PARTIAL == skb->ip_summed) { 1976 if (CHECKSUM_PARTIAL == skb->ip_summed) {
1980 fcb = gfar_add_fcb(skb); 1977 fcb = gfar_add_fcb(skb);
1981 lstatus |= BD_LFLAG(TXBD_TOE); 1978 lstatus |= BD_LFLAG(TXBD_TOE);
1982 gfar_tx_checksum(skb, fcb); 1979 gfar_tx_checksum(skb, fcb);
1983 } 1980 }
1984 1981
1985 if (priv->vlgrp && vlan_tx_tag_present(skb)) { 1982 if (priv->vlgrp && vlan_tx_tag_present(skb)) {
1986 if (unlikely(NULL == fcb)) { 1983 if (unlikely(NULL == fcb)) {
1987 fcb = gfar_add_fcb(skb); 1984 fcb = gfar_add_fcb(skb);
1988 lstatus |= BD_LFLAG(TXBD_TOE); 1985 lstatus |= BD_LFLAG(TXBD_TOE);
1989 } 1986 }
1990 1987
1991 gfar_tx_vlan(skb, fcb); 1988 gfar_tx_vlan(skb, fcb);
1992 } 1989 }
1993 1990
1994 /* setup the TxBD length and buffer pointer for the first BD */ 1991 /* setup the TxBD length and buffer pointer for the first BD */
1995 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb; 1992 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
1996 txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data, 1993 txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
1997 skb_headlen(skb), DMA_TO_DEVICE); 1994 skb_headlen(skb), DMA_TO_DEVICE);
1998 1995
1999 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb); 1996 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2000 1997
2001 /* 1998 /*
1999 * We can work in parallel with gfar_clean_tx_ring(), except
2000 * when modifying num_txbdfree. Note that we didn't grab the lock
2001 * when we were reading the num_txbdfree and checking for available
2002 * space, that's because outside of this function it can only grow,
2003 * and once we've got needed space, it cannot suddenly disappear.
2004 *
2005 * The lock also protects us from gfar_error(), which can modify
2006 * regs->tstat and thus retrigger the transfers, which is why we
2007 * also must grab the lock before setting ready bit for the first
2008 * to be transmitted BD.
2009 */
2010 spin_lock_irqsave(&tx_queue->txlock, flags);
2011
2012 /*
2002 * The powerpc-specific eieio() is used, as wmb() has too strong 2013 * The powerpc-specific eieio() is used, as wmb() has too strong
2003 * semantics (it requires synchronization between cacheable and 2014 * semantics (it requires synchronization between cacheable and
2004 * uncacheable mappings, which eieio doesn't provide and which we 2015 * uncacheable mappings, which eieio doesn't provide and which we
2005 * don't need), thus requiring a more expensive sync instruction. At 2016 * don't need), thus requiring a more expensive sync instruction. At
2006 * some point, the set of architecture-independent barrier functions 2017 * some point, the set of architecture-independent barrier functions
2007 * should be expanded to include weaker barriers. 2018 * should be expanded to include weaker barriers.
2008 */ 2019 */
2009 eieio(); 2020 eieio();
2010 2021
2011 txbdp_start->lstatus = lstatus; 2022 txbdp_start->lstatus = lstatus;
2012 2023
2013 /* Update the current skb pointer to the next entry we will use 2024 /* Update the current skb pointer to the next entry we will use
2014 * (wrapping if necessary) */ 2025 * (wrapping if necessary) */
2015 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) & 2026 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2016 TX_RING_MOD_MASK(tx_queue->tx_ring_size); 2027 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2017 2028
2018 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size); 2029 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2019 2030
2020 /* reduce TxBD free count */ 2031 /* reduce TxBD free count */
2021 tx_queue->num_txbdfree -= (nr_frags + 1); 2032 tx_queue->num_txbdfree -= (nr_frags + 1);
2022 2033
2023 dev->trans_start = jiffies; 2034 dev->trans_start = jiffies;
2024 2035
2025 /* If the next BD still needs to be cleaned up, then the bds 2036 /* If the next BD still needs to be cleaned up, then the bds
2026 are full. We need to tell the kernel to stop sending us stuff. */ 2037 are full. We need to tell the kernel to stop sending us stuff. */
2027 if (!tx_queue->num_txbdfree) { 2038 if (!tx_queue->num_txbdfree) {
2028 netif_tx_stop_queue(txq); 2039 netif_tx_stop_queue(txq);
2029 2040
2030 dev->stats.tx_fifo_errors++; 2041 dev->stats.tx_fifo_errors++;
2031 } 2042 }
2032 2043
2033 /* Tell the DMA to go go go */ 2044 /* Tell the DMA to go go go */
2034 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex); 2045 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2035 2046
2036 /* Unlock priv */ 2047 /* Unlock priv */
2037 spin_unlock_irqrestore(&tx_queue->txlock, flags); 2048 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2038 2049
2039 return NETDEV_TX_OK; 2050 return NETDEV_TX_OK;
2040 } 2051 }
2041 2052
2042 /* Stops the kernel queue, and halts the controller */ 2053 /* Stops the kernel queue, and halts the controller */
2043 static int gfar_close(struct net_device *dev) 2054 static int gfar_close(struct net_device *dev)
2044 { 2055 {
2045 struct gfar_private *priv = netdev_priv(dev); 2056 struct gfar_private *priv = netdev_priv(dev);
2046 2057
2047 disable_napi(priv); 2058 disable_napi(priv);
2048 2059
2049 skb_queue_purge(&priv->rx_recycle); 2060 skb_queue_purge(&priv->rx_recycle);
2050 cancel_work_sync(&priv->reset_task); 2061 cancel_work_sync(&priv->reset_task);
2051 stop_gfar(dev); 2062 stop_gfar(dev);
2052 2063
2053 /* Disconnect from the PHY */ 2064 /* Disconnect from the PHY */
2054 phy_disconnect(priv->phydev); 2065 phy_disconnect(priv->phydev);
2055 priv->phydev = NULL; 2066 priv->phydev = NULL;
2056 2067
2057 netif_tx_stop_all_queues(dev); 2068 netif_tx_stop_all_queues(dev);
2058 2069
2059 return 0; 2070 return 0;
2060 } 2071 }
2061 2072
2062 /* Changes the mac address if the controller is not running. */ 2073 /* Changes the mac address if the controller is not running. */
2063 static int gfar_set_mac_address(struct net_device *dev) 2074 static int gfar_set_mac_address(struct net_device *dev)
2064 { 2075 {
2065 gfar_set_mac_for_addr(dev, 0, dev->dev_addr); 2076 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2066 2077
2067 return 0; 2078 return 0;
2068 } 2079 }
2069 2080
2070 2081
2071 /* Enables and disables VLAN insertion/extraction */ 2082 /* Enables and disables VLAN insertion/extraction */
2072 static void gfar_vlan_rx_register(struct net_device *dev, 2083 static void gfar_vlan_rx_register(struct net_device *dev,
2073 struct vlan_group *grp) 2084 struct vlan_group *grp)
2074 { 2085 {
2075 struct gfar_private *priv = netdev_priv(dev); 2086 struct gfar_private *priv = netdev_priv(dev);
2076 struct gfar __iomem *regs = NULL; 2087 struct gfar __iomem *regs = NULL;
2077 unsigned long flags; 2088 unsigned long flags;
2078 u32 tempval; 2089 u32 tempval;
2079 2090
2080 regs = priv->gfargrp[0].regs; 2091 regs = priv->gfargrp[0].regs;
2081 local_irq_save(flags); 2092 local_irq_save(flags);
2082 lock_rx_qs(priv); 2093 lock_rx_qs(priv);
2083 2094
2084 priv->vlgrp = grp; 2095 priv->vlgrp = grp;
2085 2096
2086 if (grp) { 2097 if (grp) {
2087 /* Enable VLAN tag insertion */ 2098 /* Enable VLAN tag insertion */
2088 tempval = gfar_read(&regs->tctrl); 2099 tempval = gfar_read(&regs->tctrl);
2089 tempval |= TCTRL_VLINS; 2100 tempval |= TCTRL_VLINS;
2090 2101
2091 gfar_write(&regs->tctrl, tempval); 2102 gfar_write(&regs->tctrl, tempval);
2092 2103
2093 /* Enable VLAN tag extraction */ 2104 /* Enable VLAN tag extraction */
2094 tempval = gfar_read(&regs->rctrl); 2105 tempval = gfar_read(&regs->rctrl);
2095 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT); 2106 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2096 gfar_write(&regs->rctrl, tempval); 2107 gfar_write(&regs->rctrl, tempval);
2097 } else { 2108 } else {
2098 /* Disable VLAN tag insertion */ 2109 /* Disable VLAN tag insertion */
2099 tempval = gfar_read(&regs->tctrl); 2110 tempval = gfar_read(&regs->tctrl);
2100 tempval &= ~TCTRL_VLINS; 2111 tempval &= ~TCTRL_VLINS;
2101 gfar_write(&regs->tctrl, tempval); 2112 gfar_write(&regs->tctrl, tempval);
2102 2113
2103 /* Disable VLAN tag extraction */ 2114 /* Disable VLAN tag extraction */
2104 tempval = gfar_read(&regs->rctrl); 2115 tempval = gfar_read(&regs->rctrl);
2105 tempval &= ~RCTRL_VLEX; 2116 tempval &= ~RCTRL_VLEX;
2106 /* If parse is no longer required, then disable parser */ 2117 /* If parse is no longer required, then disable parser */
2107 if (tempval & RCTRL_REQ_PARSER) 2118 if (tempval & RCTRL_REQ_PARSER)
2108 tempval |= RCTRL_PRSDEP_INIT; 2119 tempval |= RCTRL_PRSDEP_INIT;
2109 else 2120 else
2110 tempval &= ~RCTRL_PRSDEP_INIT; 2121 tempval &= ~RCTRL_PRSDEP_INIT;
2111 gfar_write(&regs->rctrl, tempval); 2122 gfar_write(&regs->rctrl, tempval);
2112 } 2123 }
2113 2124
2114 gfar_change_mtu(dev, dev->mtu); 2125 gfar_change_mtu(dev, dev->mtu);
2115 2126
2116 unlock_rx_qs(priv); 2127 unlock_rx_qs(priv);
2117 local_irq_restore(flags); 2128 local_irq_restore(flags);
2118 } 2129 }
2119 2130
2120 static int gfar_change_mtu(struct net_device *dev, int new_mtu) 2131 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2121 { 2132 {
2122 int tempsize, tempval; 2133 int tempsize, tempval;
2123 struct gfar_private *priv = netdev_priv(dev); 2134 struct gfar_private *priv = netdev_priv(dev);
2124 struct gfar __iomem *regs = priv->gfargrp[0].regs; 2135 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2125 int oldsize = priv->rx_buffer_size; 2136 int oldsize = priv->rx_buffer_size;
2126 int frame_size = new_mtu + ETH_HLEN; 2137 int frame_size = new_mtu + ETH_HLEN;
2127 2138
2128 if (priv->vlgrp) 2139 if (priv->vlgrp)
2129 frame_size += VLAN_HLEN; 2140 frame_size += VLAN_HLEN;
2130 2141
2131 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) { 2142 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2132 if (netif_msg_drv(priv)) 2143 if (netif_msg_drv(priv))
2133 printk(KERN_ERR "%s: Invalid MTU setting\n", 2144 printk(KERN_ERR "%s: Invalid MTU setting\n",
2134 dev->name); 2145 dev->name);
2135 return -EINVAL; 2146 return -EINVAL;
2136 } 2147 }
2137 2148
2138 if (gfar_uses_fcb(priv)) 2149 if (gfar_uses_fcb(priv))
2139 frame_size += GMAC_FCB_LEN; 2150 frame_size += GMAC_FCB_LEN;
2140 2151
2141 frame_size += priv->padding; 2152 frame_size += priv->padding;
2142 2153
2143 tempsize = 2154 tempsize =
2144 (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) + 2155 (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2145 INCREMENTAL_BUFFER_SIZE; 2156 INCREMENTAL_BUFFER_SIZE;
2146 2157
2147 /* Only stop and start the controller if it isn't already 2158 /* Only stop and start the controller if it isn't already
2148 * stopped, and we changed something */ 2159 * stopped, and we changed something */
2149 if ((oldsize != tempsize) && (dev->flags & IFF_UP)) 2160 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2150 stop_gfar(dev); 2161 stop_gfar(dev);
2151 2162
2152 priv->rx_buffer_size = tempsize; 2163 priv->rx_buffer_size = tempsize;
2153 2164
2154 dev->mtu = new_mtu; 2165 dev->mtu = new_mtu;
2155 2166
2156 gfar_write(&regs->mrblr, priv->rx_buffer_size); 2167 gfar_write(&regs->mrblr, priv->rx_buffer_size);
2157 gfar_write(&regs->maxfrm, priv->rx_buffer_size); 2168 gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2158 2169
2159 /* If the mtu is larger than the max size for standard 2170 /* If the mtu is larger than the max size for standard
2160 * ethernet frames (ie, a jumbo frame), then set maccfg2 2171 * ethernet frames (ie, a jumbo frame), then set maccfg2
2161 * to allow huge frames, and to check the length */ 2172 * to allow huge frames, and to check the length */
2162 tempval = gfar_read(&regs->maccfg2); 2173 tempval = gfar_read(&regs->maccfg2);
2163 2174
2164 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE) 2175 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
2165 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK); 2176 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2166 else 2177 else
2167 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK); 2178 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2168 2179
2169 gfar_write(&regs->maccfg2, tempval); 2180 gfar_write(&regs->maccfg2, tempval);
2170 2181
2171 if ((oldsize != tempsize) && (dev->flags & IFF_UP)) 2182 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2172 startup_gfar(dev); 2183 startup_gfar(dev);
2173 2184
2174 return 0; 2185 return 0;
2175 } 2186 }
2176 2187
2177 /* gfar_reset_task gets scheduled when a packet has not been 2188 /* gfar_reset_task gets scheduled when a packet has not been
2178 * transmitted after a set amount of time. 2189 * transmitted after a set amount of time.
2179 * For now, assume that clearing out all the structures, and 2190 * For now, assume that clearing out all the structures, and
2180 * starting over will fix the problem. 2191 * starting over will fix the problem.
2181 */ 2192 */
2182 static void gfar_reset_task(struct work_struct *work) 2193 static void gfar_reset_task(struct work_struct *work)
2183 { 2194 {
2184 struct gfar_private *priv = container_of(work, struct gfar_private, 2195 struct gfar_private *priv = container_of(work, struct gfar_private,
2185 reset_task); 2196 reset_task);
2186 struct net_device *dev = priv->ndev; 2197 struct net_device *dev = priv->ndev;
2187 2198
2188 if (dev->flags & IFF_UP) { 2199 if (dev->flags & IFF_UP) {
2189 netif_tx_stop_all_queues(dev); 2200 netif_tx_stop_all_queues(dev);
2190 stop_gfar(dev); 2201 stop_gfar(dev);
2191 startup_gfar(dev); 2202 startup_gfar(dev);
2192 netif_tx_start_all_queues(dev); 2203 netif_tx_start_all_queues(dev);
2193 } 2204 }
2194 2205
2195 netif_tx_schedule_all(dev); 2206 netif_tx_schedule_all(dev);
2196 } 2207 }
2197 2208
2198 static void gfar_timeout(struct net_device *dev) 2209 static void gfar_timeout(struct net_device *dev)
2199 { 2210 {
2200 struct gfar_private *priv = netdev_priv(dev); 2211 struct gfar_private *priv = netdev_priv(dev);
2201 2212
2202 dev->stats.tx_errors++; 2213 dev->stats.tx_errors++;
2203 schedule_work(&priv->reset_task); 2214 schedule_work(&priv->reset_task);
2204 } 2215 }
2205 2216
2206 /* Interrupt Handler for Transmit complete */ 2217 /* Interrupt Handler for Transmit complete */
2207 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue) 2218 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2208 { 2219 {
2209 struct net_device *dev = tx_queue->dev; 2220 struct net_device *dev = tx_queue->dev;
2210 struct gfar_private *priv = netdev_priv(dev); 2221 struct gfar_private *priv = netdev_priv(dev);
2211 struct gfar_priv_rx_q *rx_queue = NULL; 2222 struct gfar_priv_rx_q *rx_queue = NULL;
2212 struct txbd8 *bdp; 2223 struct txbd8 *bdp;
2213 struct txbd8 *lbdp = NULL; 2224 struct txbd8 *lbdp = NULL;
2214 struct txbd8 *base = tx_queue->tx_bd_base; 2225 struct txbd8 *base = tx_queue->tx_bd_base;
2215 struct sk_buff *skb; 2226 struct sk_buff *skb;
2216 int skb_dirtytx; 2227 int skb_dirtytx;
2217 int tx_ring_size = tx_queue->tx_ring_size; 2228 int tx_ring_size = tx_queue->tx_ring_size;
2218 int frags = 0; 2229 int frags = 0;
2219 int i; 2230 int i;
2220 int howmany = 0; 2231 int howmany = 0;
2221 u32 lstatus; 2232 u32 lstatus;
2222 2233
2223 rx_queue = priv->rx_queue[tx_queue->qindex]; 2234 rx_queue = priv->rx_queue[tx_queue->qindex];
2224 bdp = tx_queue->dirty_tx; 2235 bdp = tx_queue->dirty_tx;
2225 skb_dirtytx = tx_queue->skb_dirtytx; 2236 skb_dirtytx = tx_queue->skb_dirtytx;
2226 2237
2227 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) { 2238 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2239 unsigned long flags;
2240
2228 frags = skb_shinfo(skb)->nr_frags; 2241 frags = skb_shinfo(skb)->nr_frags;
2229 lbdp = skip_txbd(bdp, frags, base, tx_ring_size); 2242 lbdp = skip_txbd(bdp, frags, base, tx_ring_size);
2230 2243
2231 lstatus = lbdp->lstatus; 2244 lstatus = lbdp->lstatus;
2232 2245
2233 /* Only clean completed frames */ 2246 /* Only clean completed frames */
2234 if ((lstatus & BD_LFLAG(TXBD_READY)) && 2247 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2235 (lstatus & BD_LENGTH_MASK)) 2248 (lstatus & BD_LENGTH_MASK))
2236 break; 2249 break;
2237 2250
2238 dma_unmap_single(&priv->ofdev->dev, 2251 dma_unmap_single(&priv->ofdev->dev,
2239 bdp->bufPtr, 2252 bdp->bufPtr,
2240 bdp->length, 2253 bdp->length,
2241 DMA_TO_DEVICE); 2254 DMA_TO_DEVICE);
2242 2255
2243 bdp->lstatus &= BD_LFLAG(TXBD_WRAP); 2256 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2244 bdp = next_txbd(bdp, base, tx_ring_size); 2257 bdp = next_txbd(bdp, base, tx_ring_size);
2245 2258
2246 for (i = 0; i < frags; i++) { 2259 for (i = 0; i < frags; i++) {
2247 dma_unmap_page(&priv->ofdev->dev, 2260 dma_unmap_page(&priv->ofdev->dev,
2248 bdp->bufPtr, 2261 bdp->bufPtr,
2249 bdp->length, 2262 bdp->length,
2250 DMA_TO_DEVICE); 2263 DMA_TO_DEVICE);
2251 bdp->lstatus &= BD_LFLAG(TXBD_WRAP); 2264 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2252 bdp = next_txbd(bdp, base, tx_ring_size); 2265 bdp = next_txbd(bdp, base, tx_ring_size);
2253 } 2266 }
2254 2267
2255 /* 2268 /*
2256 * If there's room in the queue (limit it to rx_buffer_size) 2269 * If there's room in the queue (limit it to rx_buffer_size)
2257 * we add this skb back into the pool, if it's the right size 2270 * we add this skb back into the pool, if it's the right size
2258 */ 2271 */
2259 if (skb_queue_len(&priv->rx_recycle) < rx_queue->rx_ring_size && 2272 if (skb_queue_len(&priv->rx_recycle) < rx_queue->rx_ring_size &&
2260 skb_recycle_check(skb, priv->rx_buffer_size + 2273 skb_recycle_check(skb, priv->rx_buffer_size +
2261 RXBUF_ALIGNMENT)) 2274 RXBUF_ALIGNMENT))
2262 __skb_queue_head(&priv->rx_recycle, skb); 2275 __skb_queue_head(&priv->rx_recycle, skb);
2263 else 2276 else
2264 dev_kfree_skb_any(skb); 2277 dev_kfree_skb_any(skb);
2265 2278
2266 tx_queue->tx_skbuff[skb_dirtytx] = NULL; 2279 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2267 2280
2268 skb_dirtytx = (skb_dirtytx + 1) & 2281 skb_dirtytx = (skb_dirtytx + 1) &
2269 TX_RING_MOD_MASK(tx_ring_size); 2282 TX_RING_MOD_MASK(tx_ring_size);
2270 2283
2271 howmany++; 2284 howmany++;
2285 spin_lock_irqsave(&tx_queue->txlock, flags);
2272 tx_queue->num_txbdfree += frags + 1; 2286 tx_queue->num_txbdfree += frags + 1;
2287 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2273 } 2288 }
2274 2289
2275 /* If we freed a buffer, we can restart transmission, if necessary */ 2290 /* If we freed a buffer, we can restart transmission, if necessary */
2276 if (__netif_subqueue_stopped(dev, tx_queue->qindex) && tx_queue->num_txbdfree) 2291 if (__netif_subqueue_stopped(dev, tx_queue->qindex) && tx_queue->num_txbdfree)
2277 netif_wake_subqueue(dev, tx_queue->qindex); 2292 netif_wake_subqueue(dev, tx_queue->qindex);
2278 2293
2279 /* Update dirty indicators */ 2294 /* Update dirty indicators */
2280 tx_queue->skb_dirtytx = skb_dirtytx; 2295 tx_queue->skb_dirtytx = skb_dirtytx;
2281 tx_queue->dirty_tx = bdp; 2296 tx_queue->dirty_tx = bdp;
2282 2297
2283 dev->stats.tx_packets += howmany; 2298 dev->stats.tx_packets += howmany;
2284 2299
2285 return howmany; 2300 return howmany;
2286 } 2301 }
2287 2302
2288 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp) 2303 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2289 { 2304 {
2290 unsigned long flags; 2305 unsigned long flags;
2291 2306
2292 spin_lock_irqsave(&gfargrp->grplock, flags); 2307 spin_lock_irqsave(&gfargrp->grplock, flags);
2293 if (napi_schedule_prep(&gfargrp->napi)) { 2308 if (napi_schedule_prep(&gfargrp->napi)) {
2294 gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED); 2309 gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2295 __napi_schedule(&gfargrp->napi); 2310 __napi_schedule(&gfargrp->napi);
2296 } else { 2311 } else {
2297 /* 2312 /*
2298 * Clear IEVENT, so interrupts aren't called again 2313 * Clear IEVENT, so interrupts aren't called again
2299 * because of the packets that have already arrived. 2314 * because of the packets that have already arrived.
2300 */ 2315 */
2301 gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK); 2316 gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2302 } 2317 }
2303 spin_unlock_irqrestore(&gfargrp->grplock, flags); 2318 spin_unlock_irqrestore(&gfargrp->grplock, flags);
2304 2319
2305 } 2320 }
2306 2321
2307 /* Interrupt Handler for Transmit complete */ 2322 /* Interrupt Handler for Transmit complete */
2308 static irqreturn_t gfar_transmit(int irq, void *grp_id) 2323 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2309 { 2324 {
2310 gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id); 2325 gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2311 return IRQ_HANDLED; 2326 return IRQ_HANDLED;
2312 } 2327 }
2313 2328
2314 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp, 2329 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2315 struct sk_buff *skb) 2330 struct sk_buff *skb)
2316 { 2331 {
2317 struct net_device *dev = rx_queue->dev; 2332 struct net_device *dev = rx_queue->dev;
2318 struct gfar_private *priv = netdev_priv(dev); 2333 struct gfar_private *priv = netdev_priv(dev);
2319 dma_addr_t buf; 2334 dma_addr_t buf;
2320 2335
2321 buf = dma_map_single(&priv->ofdev->dev, skb->data, 2336 buf = dma_map_single(&priv->ofdev->dev, skb->data,
2322 priv->rx_buffer_size, DMA_FROM_DEVICE); 2337 priv->rx_buffer_size, DMA_FROM_DEVICE);
2323 gfar_init_rxbdp(rx_queue, bdp, buf); 2338 gfar_init_rxbdp(rx_queue, bdp, buf);
2324 } 2339 }
2325 2340
2326 2341
2327 struct sk_buff * gfar_new_skb(struct net_device *dev) 2342 struct sk_buff * gfar_new_skb(struct net_device *dev)
2328 { 2343 {
2329 unsigned int alignamount; 2344 unsigned int alignamount;
2330 struct gfar_private *priv = netdev_priv(dev); 2345 struct gfar_private *priv = netdev_priv(dev);
2331 struct sk_buff *skb = NULL; 2346 struct sk_buff *skb = NULL;
2332 2347
2333 skb = __skb_dequeue(&priv->rx_recycle); 2348 skb = __skb_dequeue(&priv->rx_recycle);
2334 if (!skb) 2349 if (!skb)
2335 skb = netdev_alloc_skb(dev, 2350 skb = netdev_alloc_skb(dev,
2336 priv->rx_buffer_size + RXBUF_ALIGNMENT); 2351 priv->rx_buffer_size + RXBUF_ALIGNMENT);
2337 2352
2338 if (!skb) 2353 if (!skb)
2339 return NULL; 2354 return NULL;
2340 2355
2341 alignamount = RXBUF_ALIGNMENT - 2356 alignamount = RXBUF_ALIGNMENT -
2342 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)); 2357 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
2343 2358
2344 /* We need the data buffer to be aligned properly. We will reserve 2359 /* We need the data buffer to be aligned properly. We will reserve
2345 * as many bytes as needed to align the data properly 2360 * as many bytes as needed to align the data properly
2346 */ 2361 */
2347 skb_reserve(skb, alignamount); 2362 skb_reserve(skb, alignamount);
2348 2363
2349 return skb; 2364 return skb;
2350 } 2365 }
2351 2366
2352 static inline void count_errors(unsigned short status, struct net_device *dev) 2367 static inline void count_errors(unsigned short status, struct net_device *dev)
2353 { 2368 {
2354 struct gfar_private *priv = netdev_priv(dev); 2369 struct gfar_private *priv = netdev_priv(dev);
2355 struct net_device_stats *stats = &dev->stats; 2370 struct net_device_stats *stats = &dev->stats;
2356 struct gfar_extra_stats *estats = &priv->extra_stats; 2371 struct gfar_extra_stats *estats = &priv->extra_stats;
2357 2372
2358 /* If the packet was truncated, none of the other errors 2373 /* If the packet was truncated, none of the other errors
2359 * matter */ 2374 * matter */
2360 if (status & RXBD_TRUNCATED) { 2375 if (status & RXBD_TRUNCATED) {
2361 stats->rx_length_errors++; 2376 stats->rx_length_errors++;
2362 2377
2363 estats->rx_trunc++; 2378 estats->rx_trunc++;
2364 2379
2365 return; 2380 return;
2366 } 2381 }
2367 /* Count the errors, if there were any */ 2382 /* Count the errors, if there were any */
2368 if (status & (RXBD_LARGE | RXBD_SHORT)) { 2383 if (status & (RXBD_LARGE | RXBD_SHORT)) {
2369 stats->rx_length_errors++; 2384 stats->rx_length_errors++;
2370 2385
2371 if (status & RXBD_LARGE) 2386 if (status & RXBD_LARGE)
2372 estats->rx_large++; 2387 estats->rx_large++;
2373 else 2388 else
2374 estats->rx_short++; 2389 estats->rx_short++;
2375 } 2390 }
2376 if (status & RXBD_NONOCTET) { 2391 if (status & RXBD_NONOCTET) {
2377 stats->rx_frame_errors++; 2392 stats->rx_frame_errors++;
2378 estats->rx_nonoctet++; 2393 estats->rx_nonoctet++;
2379 } 2394 }
2380 if (status & RXBD_CRCERR) { 2395 if (status & RXBD_CRCERR) {
2381 estats->rx_crcerr++; 2396 estats->rx_crcerr++;
2382 stats->rx_crc_errors++; 2397 stats->rx_crc_errors++;
2383 } 2398 }
2384 if (status & RXBD_OVERRUN) { 2399 if (status & RXBD_OVERRUN) {
2385 estats->rx_overrun++; 2400 estats->rx_overrun++;
2386 stats->rx_crc_errors++; 2401 stats->rx_crc_errors++;
2387 } 2402 }
2388 } 2403 }
2389 2404
2390 irqreturn_t gfar_receive(int irq, void *grp_id) 2405 irqreturn_t gfar_receive(int irq, void *grp_id)
2391 { 2406 {
2392 gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id); 2407 gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2393 return IRQ_HANDLED; 2408 return IRQ_HANDLED;
2394 } 2409 }
2395 2410
2396 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb) 2411 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2397 { 2412 {
2398 /* If valid headers were found, and valid sums 2413 /* If valid headers were found, and valid sums
2399 * were verified, then we tell the kernel that no 2414 * were verified, then we tell the kernel that no
2400 * checksumming is necessary. Otherwise, it is */ 2415 * checksumming is necessary. Otherwise, it is */
2401 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU)) 2416 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2402 skb->ip_summed = CHECKSUM_UNNECESSARY; 2417 skb->ip_summed = CHECKSUM_UNNECESSARY;
2403 else 2418 else
2404 skb->ip_summed = CHECKSUM_NONE; 2419 skb->ip_summed = CHECKSUM_NONE;
2405 } 2420 }
2406 2421
2407 2422
2408 /* gfar_process_frame() -- handle one incoming packet if skb 2423 /* gfar_process_frame() -- handle one incoming packet if skb
2409 * isn't NULL. */ 2424 * isn't NULL. */
2410 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, 2425 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2411 int amount_pull) 2426 int amount_pull)
2412 { 2427 {
2413 struct gfar_private *priv = netdev_priv(dev); 2428 struct gfar_private *priv = netdev_priv(dev);
2414 struct rxfcb *fcb = NULL; 2429 struct rxfcb *fcb = NULL;
2415 2430
2416 int ret; 2431 int ret;
2417 2432
2418 /* fcb is at the beginning if exists */ 2433 /* fcb is at the beginning if exists */
2419 fcb = (struct rxfcb *)skb->data; 2434 fcb = (struct rxfcb *)skb->data;
2420 2435
2421 /* Remove the FCB from the skb */ 2436 /* Remove the FCB from the skb */
2422 skb_set_queue_mapping(skb, fcb->rq); 2437 skb_set_queue_mapping(skb, fcb->rq);
2423 /* Remove the padded bytes, if there are any */ 2438 /* Remove the padded bytes, if there are any */
2424 if (amount_pull) 2439 if (amount_pull)
2425 skb_pull(skb, amount_pull); 2440 skb_pull(skb, amount_pull);
2426 2441
2427 if (priv->rx_csum_enable) 2442 if (priv->rx_csum_enable)
2428 gfar_rx_checksum(skb, fcb); 2443 gfar_rx_checksum(skb, fcb);
2429 2444
2430 /* Tell the skb what kind of packet this is */ 2445 /* Tell the skb what kind of packet this is */
2431 skb->protocol = eth_type_trans(skb, dev); 2446 skb->protocol = eth_type_trans(skb, dev);
2432 2447
2433 /* Send the packet up the stack */ 2448 /* Send the packet up the stack */
2434 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN))) 2449 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
2435 ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl); 2450 ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl);
2436 else 2451 else
2437 ret = netif_receive_skb(skb); 2452 ret = netif_receive_skb(skb);
2438 2453
2439 if (NET_RX_DROP == ret) 2454 if (NET_RX_DROP == ret)
2440 priv->extra_stats.kernel_dropped++; 2455 priv->extra_stats.kernel_dropped++;
2441 2456
2442 return 0; 2457 return 0;
2443 } 2458 }
2444 2459
2445 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring 2460 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2446 * until the budget/quota has been reached. Returns the number 2461 * until the budget/quota has been reached. Returns the number
2447 * of frames handled 2462 * of frames handled
2448 */ 2463 */
2449 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit) 2464 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2450 { 2465 {
2451 struct net_device *dev = rx_queue->dev; 2466 struct net_device *dev = rx_queue->dev;
2452 struct rxbd8 *bdp, *base; 2467 struct rxbd8 *bdp, *base;
2453 struct sk_buff *skb; 2468 struct sk_buff *skb;
2454 int pkt_len; 2469 int pkt_len;
2455 int amount_pull; 2470 int amount_pull;
2456 int howmany = 0; 2471 int howmany = 0;
2457 struct gfar_private *priv = netdev_priv(dev); 2472 struct gfar_private *priv = netdev_priv(dev);
2458 2473
2459 /* Get the first full descriptor */ 2474 /* Get the first full descriptor */
2460 bdp = rx_queue->cur_rx; 2475 bdp = rx_queue->cur_rx;
2461 base = rx_queue->rx_bd_base; 2476 base = rx_queue->rx_bd_base;
2462 2477
2463 amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0) + 2478 amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0) +
2464 priv->padding; 2479 priv->padding;
2465 2480
2466 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) { 2481 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2467 struct sk_buff *newskb; 2482 struct sk_buff *newskb;
2468 rmb(); 2483 rmb();
2469 2484
2470 /* Add another skb for the future */ 2485 /* Add another skb for the future */
2471 newskb = gfar_new_skb(dev); 2486 newskb = gfar_new_skb(dev);
2472 2487
2473 skb = rx_queue->rx_skbuff[rx_queue->skb_currx]; 2488 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2474 2489
2475 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr, 2490 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2476 priv->rx_buffer_size, DMA_FROM_DEVICE); 2491 priv->rx_buffer_size, DMA_FROM_DEVICE);
2477 2492
2478 /* We drop the frame if we failed to allocate a new buffer */ 2493 /* We drop the frame if we failed to allocate a new buffer */
2479 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) || 2494 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2480 bdp->status & RXBD_ERR)) { 2495 bdp->status & RXBD_ERR)) {
2481 count_errors(bdp->status, dev); 2496 count_errors(bdp->status, dev);
2482 2497
2483 if (unlikely(!newskb)) 2498 if (unlikely(!newskb))
2484 newskb = skb; 2499 newskb = skb;
2485 else if (skb) { 2500 else if (skb) {
2486 /* 2501 /*
2487 * We need to reset ->data to what it 2502 * We need to reset ->data to what it
2488 * was before gfar_new_skb() re-aligned 2503 * was before gfar_new_skb() re-aligned
2489 * it to an RXBUF_ALIGNMENT boundary 2504 * it to an RXBUF_ALIGNMENT boundary
2490 * before we put the skb back on the 2505 * before we put the skb back on the
2491 * recycle list. 2506 * recycle list.
2492 */ 2507 */
2493 skb->data = skb->head + NET_SKB_PAD; 2508 skb->data = skb->head + NET_SKB_PAD;
2494 __skb_queue_head(&priv->rx_recycle, skb); 2509 __skb_queue_head(&priv->rx_recycle, skb);
2495 } 2510 }
2496 } else { 2511 } else {
2497 /* Increment the number of packets */ 2512 /* Increment the number of packets */
2498 dev->stats.rx_packets++; 2513 dev->stats.rx_packets++;
2499 howmany++; 2514 howmany++;
2500 2515
2501 if (likely(skb)) { 2516 if (likely(skb)) {
2502 pkt_len = bdp->length - ETH_FCS_LEN; 2517 pkt_len = bdp->length - ETH_FCS_LEN;
2503 /* Remove the FCS from the packet length */ 2518 /* Remove the FCS from the packet length */
2504 skb_put(skb, pkt_len); 2519 skb_put(skb, pkt_len);
2505 dev->stats.rx_bytes += pkt_len; 2520 dev->stats.rx_bytes += pkt_len;
2506 2521
2507 gfar_process_frame(dev, skb, amount_pull); 2522 gfar_process_frame(dev, skb, amount_pull);
2508 2523
2509 } else { 2524 } else {
2510 if (netif_msg_rx_err(priv)) 2525 if (netif_msg_rx_err(priv))
2511 printk(KERN_WARNING 2526 printk(KERN_WARNING
2512 "%s: Missing skb!\n", dev->name); 2527 "%s: Missing skb!\n", dev->name);
2513 dev->stats.rx_dropped++; 2528 dev->stats.rx_dropped++;
2514 priv->extra_stats.rx_skbmissing++; 2529 priv->extra_stats.rx_skbmissing++;
2515 } 2530 }
2516 2531
2517 } 2532 }
2518 2533
2519 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb; 2534 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2520 2535
2521 /* Setup the new bdp */ 2536 /* Setup the new bdp */
2522 gfar_new_rxbdp(rx_queue, bdp, newskb); 2537 gfar_new_rxbdp(rx_queue, bdp, newskb);
2523 2538
2524 /* Update to the next pointer */ 2539 /* Update to the next pointer */
2525 bdp = next_bd(bdp, base, rx_queue->rx_ring_size); 2540 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2526 2541
2527 /* update to point at the next skb */ 2542 /* update to point at the next skb */
2528 rx_queue->skb_currx = 2543 rx_queue->skb_currx =
2529 (rx_queue->skb_currx + 1) & 2544 (rx_queue->skb_currx + 1) &
2530 RX_RING_MOD_MASK(rx_queue->rx_ring_size); 2545 RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2531 } 2546 }
2532 2547
2533 /* Update the current rxbd pointer to be the next one */ 2548 /* Update the current rxbd pointer to be the next one */
2534 rx_queue->cur_rx = bdp; 2549 rx_queue->cur_rx = bdp;
2535 2550
2536 return howmany; 2551 return howmany;
2537 } 2552 }
2538 2553
2539 static int gfar_poll(struct napi_struct *napi, int budget) 2554 static int gfar_poll(struct napi_struct *napi, int budget)
2540 { 2555 {
2541 struct gfar_priv_grp *gfargrp = container_of(napi, 2556 struct gfar_priv_grp *gfargrp = container_of(napi,
2542 struct gfar_priv_grp, napi); 2557 struct gfar_priv_grp, napi);
2543 struct gfar_private *priv = gfargrp->priv; 2558 struct gfar_private *priv = gfargrp->priv;
2544 struct gfar __iomem *regs = gfargrp->regs; 2559 struct gfar __iomem *regs = gfargrp->regs;
2545 struct gfar_priv_tx_q *tx_queue = NULL; 2560 struct gfar_priv_tx_q *tx_queue = NULL;
2546 struct gfar_priv_rx_q *rx_queue = NULL; 2561 struct gfar_priv_rx_q *rx_queue = NULL;
2547 int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0; 2562 int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0;
2548 int tx_cleaned = 0, i, left_over_budget = budget; 2563 int tx_cleaned = 0, i, left_over_budget = budget;
2549 unsigned long serviced_queues = 0; 2564 unsigned long serviced_queues = 0;
2550 int num_queues = 0; 2565 int num_queues = 0;
2551 unsigned long flags;
2552 2566
2553 num_queues = gfargrp->num_rx_queues; 2567 num_queues = gfargrp->num_rx_queues;
2554 budget_per_queue = budget/num_queues; 2568 budget_per_queue = budget/num_queues;
2555 2569
2556 /* Clear IEVENT, so interrupts aren't called again 2570 /* Clear IEVENT, so interrupts aren't called again
2557 * because of the packets that have already arrived */ 2571 * because of the packets that have already arrived */
2558 gfar_write(&regs->ievent, IEVENT_RTX_MASK); 2572 gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2559 2573
2560 while (num_queues && left_over_budget) { 2574 while (num_queues && left_over_budget) {
2561 2575
2562 budget_per_queue = left_over_budget/num_queues; 2576 budget_per_queue = left_over_budget/num_queues;
2563 left_over_budget = 0; 2577 left_over_budget = 0;
2564 2578
2565 for_each_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) { 2579 for_each_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2566 if (test_bit(i, &serviced_queues)) 2580 if (test_bit(i, &serviced_queues))
2567 continue; 2581 continue;
2568 rx_queue = priv->rx_queue[i]; 2582 rx_queue = priv->rx_queue[i];
2569 tx_queue = priv->tx_queue[rx_queue->qindex]; 2583 tx_queue = priv->tx_queue[rx_queue->qindex];
2570 2584
2571 /* If we fail to get the lock, 2585 tx_cleaned += gfar_clean_tx_ring(tx_queue);
2572 * don't bother with the TX BDs */
2573 if (spin_trylock_irqsave(&tx_queue->txlock, flags)) {
2574 tx_cleaned += gfar_clean_tx_ring(tx_queue);
2575 spin_unlock_irqrestore(&tx_queue->txlock,
2576 flags);
2577 }
2578
2579 rx_cleaned_per_queue = gfar_clean_rx_ring(rx_queue, 2586 rx_cleaned_per_queue = gfar_clean_rx_ring(rx_queue,
2580 budget_per_queue); 2587 budget_per_queue);
2581 rx_cleaned += rx_cleaned_per_queue; 2588 rx_cleaned += rx_cleaned_per_queue;
2582 if(rx_cleaned_per_queue < budget_per_queue) { 2589 if(rx_cleaned_per_queue < budget_per_queue) {
2583 left_over_budget = left_over_budget + 2590 left_over_budget = left_over_budget +
2584 (budget_per_queue - rx_cleaned_per_queue); 2591 (budget_per_queue - rx_cleaned_per_queue);
2585 set_bit(i, &serviced_queues); 2592 set_bit(i, &serviced_queues);
2586 num_queues--; 2593 num_queues--;
2587 } 2594 }
2588 } 2595 }
2589 } 2596 }
2590 2597
2591 if (tx_cleaned) 2598 if (tx_cleaned)
2592 return budget; 2599 return budget;
2593 2600
2594 if (rx_cleaned < budget) { 2601 if (rx_cleaned < budget) {
2595 napi_complete(napi); 2602 napi_complete(napi);
2596 2603
2597 /* Clear the halt bit in RSTAT */ 2604 /* Clear the halt bit in RSTAT */
2598 gfar_write(&regs->rstat, gfargrp->rstat); 2605 gfar_write(&regs->rstat, gfargrp->rstat);
2599 2606
2600 gfar_write(&regs->imask, IMASK_DEFAULT); 2607 gfar_write(&regs->imask, IMASK_DEFAULT);
2601 2608
2602 /* If we are coalescing interrupts, update the timer */ 2609 /* If we are coalescing interrupts, update the timer */
2603 /* Otherwise, clear it */ 2610 /* Otherwise, clear it */
2604 gfar_configure_coalescing(priv, 2611 gfar_configure_coalescing(priv,
2605 gfargrp->rx_bit_map, gfargrp->tx_bit_map); 2612 gfargrp->rx_bit_map, gfargrp->tx_bit_map);
2606 } 2613 }
2607 2614
2608 return rx_cleaned; 2615 return rx_cleaned;
2609 } 2616 }
2610 2617
2611 #ifdef CONFIG_NET_POLL_CONTROLLER 2618 #ifdef CONFIG_NET_POLL_CONTROLLER
2612 /* 2619 /*
2613 * Polling 'interrupt' - used by things like netconsole to send skbs 2620 * Polling 'interrupt' - used by things like netconsole to send skbs
2614 * without having to re-enable interrupts. It's not called while 2621 * without having to re-enable interrupts. It's not called while
2615 * the interrupt routine is executing. 2622 * the interrupt routine is executing.
2616 */ 2623 */
2617 static void gfar_netpoll(struct net_device *dev) 2624 static void gfar_netpoll(struct net_device *dev)
2618 { 2625 {
2619 struct gfar_private *priv = netdev_priv(dev); 2626 struct gfar_private *priv = netdev_priv(dev);
2620 int i = 0; 2627 int i = 0;
2621 2628
2622 /* If the device has multiple interrupts, run tx/rx */ 2629 /* If the device has multiple interrupts, run tx/rx */
2623 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 2630 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2624 for (i = 0; i < priv->num_grps; i++) { 2631 for (i = 0; i < priv->num_grps; i++) {
2625 disable_irq(priv->gfargrp[i].interruptTransmit); 2632 disable_irq(priv->gfargrp[i].interruptTransmit);
2626 disable_irq(priv->gfargrp[i].interruptReceive); 2633 disable_irq(priv->gfargrp[i].interruptReceive);
2627 disable_irq(priv->gfargrp[i].interruptError); 2634 disable_irq(priv->gfargrp[i].interruptError);
2628 gfar_interrupt(priv->gfargrp[i].interruptTransmit, 2635 gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2629 &priv->gfargrp[i]); 2636 &priv->gfargrp[i]);
2630 enable_irq(priv->gfargrp[i].interruptError); 2637 enable_irq(priv->gfargrp[i].interruptError);
2631 enable_irq(priv->gfargrp[i].interruptReceive); 2638 enable_irq(priv->gfargrp[i].interruptReceive);
2632 enable_irq(priv->gfargrp[i].interruptTransmit); 2639 enable_irq(priv->gfargrp[i].interruptTransmit);
2633 } 2640 }
2634 } else { 2641 } else {
2635 for (i = 0; i < priv->num_grps; i++) { 2642 for (i = 0; i < priv->num_grps; i++) {
2636 disable_irq(priv->gfargrp[i].interruptTransmit); 2643 disable_irq(priv->gfargrp[i].interruptTransmit);
2637 gfar_interrupt(priv->gfargrp[i].interruptTransmit, 2644 gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2638 &priv->gfargrp[i]); 2645 &priv->gfargrp[i]);
2639 enable_irq(priv->gfargrp[i].interruptTransmit); 2646 enable_irq(priv->gfargrp[i].interruptTransmit);
2640 } 2647 }
2641 } 2648 }
2642 #endif 2649 #endif
2643 2650
2644 /* The interrupt handler for devices with one interrupt */ 2651 /* The interrupt handler for devices with one interrupt */
2645 static irqreturn_t gfar_interrupt(int irq, void *grp_id) 2652 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2646 { 2653 {
2647 struct gfar_priv_grp *gfargrp = grp_id; 2654 struct gfar_priv_grp *gfargrp = grp_id;
2648 2655
2649 /* Save ievent for future reference */ 2656 /* Save ievent for future reference */
2650 u32 events = gfar_read(&gfargrp->regs->ievent); 2657 u32 events = gfar_read(&gfargrp->regs->ievent);
2651 2658
2652 /* Check for reception */ 2659 /* Check for reception */
2653 if (events & IEVENT_RX_MASK) 2660 if (events & IEVENT_RX_MASK)
2654 gfar_receive(irq, grp_id); 2661 gfar_receive(irq, grp_id);
2655 2662
2656 /* Check for transmit completion */ 2663 /* Check for transmit completion */
2657 if (events & IEVENT_TX_MASK) 2664 if (events & IEVENT_TX_MASK)
2658 gfar_transmit(irq, grp_id); 2665 gfar_transmit(irq, grp_id);
2659 2666
2660 /* Check for errors */ 2667 /* Check for errors */
2661 if (events & IEVENT_ERR_MASK) 2668 if (events & IEVENT_ERR_MASK)
2662 gfar_error(irq, grp_id); 2669 gfar_error(irq, grp_id);
2663 2670
2664 return IRQ_HANDLED; 2671 return IRQ_HANDLED;
2665 } 2672 }
2666 2673
2667 /* Called every time the controller might need to be made 2674 /* Called every time the controller might need to be made
2668 * aware of new link state. The PHY code conveys this 2675 * aware of new link state. The PHY code conveys this
2669 * information through variables in the phydev structure, and this 2676 * information through variables in the phydev structure, and this
2670 * function converts those variables into the appropriate 2677 * function converts those variables into the appropriate
2671 * register values, and can bring down the device if needed. 2678 * register values, and can bring down the device if needed.
2672 */ 2679 */
2673 static void adjust_link(struct net_device *dev) 2680 static void adjust_link(struct net_device *dev)
2674 { 2681 {
2675 struct gfar_private *priv = netdev_priv(dev); 2682 struct gfar_private *priv = netdev_priv(dev);
2676 struct gfar __iomem *regs = priv->gfargrp[0].regs; 2683 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2677 unsigned long flags; 2684 unsigned long flags;
2678 struct phy_device *phydev = priv->phydev; 2685 struct phy_device *phydev = priv->phydev;
2679 int new_state = 0; 2686 int new_state = 0;
2680 2687
2681 local_irq_save(flags); 2688 local_irq_save(flags);
2682 lock_tx_qs(priv); 2689 lock_tx_qs(priv);
2683 2690
2684 if (phydev->link) { 2691 if (phydev->link) {
2685 u32 tempval = gfar_read(&regs->maccfg2); 2692 u32 tempval = gfar_read(&regs->maccfg2);
2686 u32 ecntrl = gfar_read(&regs->ecntrl); 2693 u32 ecntrl = gfar_read(&regs->ecntrl);
2687 2694
2688 /* Now we make sure that we can be in full duplex mode. 2695 /* Now we make sure that we can be in full duplex mode.
2689 * If not, we operate in half-duplex mode. */ 2696 * If not, we operate in half-duplex mode. */
2690 if (phydev->duplex != priv->oldduplex) { 2697 if (phydev->duplex != priv->oldduplex) {
2691 new_state = 1; 2698 new_state = 1;
2692 if (!(phydev->duplex)) 2699 if (!(phydev->duplex))
2693 tempval &= ~(MACCFG2_FULL_DUPLEX); 2700 tempval &= ~(MACCFG2_FULL_DUPLEX);
2694 else 2701 else
2695 tempval |= MACCFG2_FULL_DUPLEX; 2702 tempval |= MACCFG2_FULL_DUPLEX;
2696 2703
2697 priv->oldduplex = phydev->duplex; 2704 priv->oldduplex = phydev->duplex;
2698 } 2705 }
2699 2706
2700 if (phydev->speed != priv->oldspeed) { 2707 if (phydev->speed != priv->oldspeed) {
2701 new_state = 1; 2708 new_state = 1;
2702 switch (phydev->speed) { 2709 switch (phydev->speed) {
2703 case 1000: 2710 case 1000:
2704 tempval = 2711 tempval =
2705 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII); 2712 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2706 2713
2707 ecntrl &= ~(ECNTRL_R100); 2714 ecntrl &= ~(ECNTRL_R100);
2708 break; 2715 break;
2709 case 100: 2716 case 100:
2710 case 10: 2717 case 10:
2711 tempval = 2718 tempval =
2712 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII); 2719 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2713 2720
2714 /* Reduced mode distinguishes 2721 /* Reduced mode distinguishes
2715 * between 10 and 100 */ 2722 * between 10 and 100 */
2716 if (phydev->speed == SPEED_100) 2723 if (phydev->speed == SPEED_100)
2717 ecntrl |= ECNTRL_R100; 2724 ecntrl |= ECNTRL_R100;
2718 else 2725 else
2719 ecntrl &= ~(ECNTRL_R100); 2726 ecntrl &= ~(ECNTRL_R100);
2720 break; 2727 break;
2721 default: 2728 default:
2722 if (netif_msg_link(priv)) 2729 if (netif_msg_link(priv))
2723 printk(KERN_WARNING 2730 printk(KERN_WARNING
2724 "%s: Ack! Speed (%d) is not 10/100/1000!\n", 2731 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
2725 dev->name, phydev->speed); 2732 dev->name, phydev->speed);
2726 break; 2733 break;
2727 } 2734 }
2728 2735
2729 priv->oldspeed = phydev->speed; 2736 priv->oldspeed = phydev->speed;
2730 } 2737 }
2731 2738
2732 gfar_write(&regs->maccfg2, tempval); 2739 gfar_write(&regs->maccfg2, tempval);
2733 gfar_write(&regs->ecntrl, ecntrl); 2740 gfar_write(&regs->ecntrl, ecntrl);
2734 2741
2735 if (!priv->oldlink) { 2742 if (!priv->oldlink) {
2736 new_state = 1; 2743 new_state = 1;
2737 priv->oldlink = 1; 2744 priv->oldlink = 1;
2738 } 2745 }
2739 } else if (priv->oldlink) { 2746 } else if (priv->oldlink) {
2740 new_state = 1; 2747 new_state = 1;
2741 priv->oldlink = 0; 2748 priv->oldlink = 0;
2742 priv->oldspeed = 0; 2749 priv->oldspeed = 0;
2743 priv->oldduplex = -1; 2750 priv->oldduplex = -1;
2744 } 2751 }
2745 2752
2746 if (new_state && netif_msg_link(priv)) 2753 if (new_state && netif_msg_link(priv))
2747 phy_print_status(phydev); 2754 phy_print_status(phydev);
2748 unlock_tx_qs(priv); 2755 unlock_tx_qs(priv);
2749 local_irq_restore(flags); 2756 local_irq_restore(flags);
2750 } 2757 }
2751 2758
2752 /* Update the hash table based on the current list of multicast 2759 /* Update the hash table based on the current list of multicast
2753 * addresses we subscribe to. Also, change the promiscuity of 2760 * addresses we subscribe to. Also, change the promiscuity of
2754 * the device based on the flags (this function is called 2761 * the device based on the flags (this function is called
2755 * whenever dev->flags is changed */ 2762 * whenever dev->flags is changed */
2756 static void gfar_set_multi(struct net_device *dev) 2763 static void gfar_set_multi(struct net_device *dev)
2757 { 2764 {
2758 struct dev_mc_list *mc_ptr; 2765 struct dev_mc_list *mc_ptr;
2759 struct gfar_private *priv = netdev_priv(dev); 2766 struct gfar_private *priv = netdev_priv(dev);
2760 struct gfar __iomem *regs = priv->gfargrp[0].regs; 2767 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2761 u32 tempval; 2768 u32 tempval;
2762 2769
2763 if (dev->flags & IFF_PROMISC) { 2770 if (dev->flags & IFF_PROMISC) {
2764 /* Set RCTRL to PROM */ 2771 /* Set RCTRL to PROM */
2765 tempval = gfar_read(&regs->rctrl); 2772 tempval = gfar_read(&regs->rctrl);
2766 tempval |= RCTRL_PROM; 2773 tempval |= RCTRL_PROM;
2767 gfar_write(&regs->rctrl, tempval); 2774 gfar_write(&regs->rctrl, tempval);
2768 } else { 2775 } else {
2769 /* Set RCTRL to not PROM */ 2776 /* Set RCTRL to not PROM */
2770 tempval = gfar_read(&regs->rctrl); 2777 tempval = gfar_read(&regs->rctrl);
2771 tempval &= ~(RCTRL_PROM); 2778 tempval &= ~(RCTRL_PROM);
2772 gfar_write(&regs->rctrl, tempval); 2779 gfar_write(&regs->rctrl, tempval);
2773 } 2780 }
2774 2781
2775 if (dev->flags & IFF_ALLMULTI) { 2782 if (dev->flags & IFF_ALLMULTI) {
2776 /* Set the hash to rx all multicast frames */ 2783 /* Set the hash to rx all multicast frames */
2777 gfar_write(&regs->igaddr0, 0xffffffff); 2784 gfar_write(&regs->igaddr0, 0xffffffff);
2778 gfar_write(&regs->igaddr1, 0xffffffff); 2785 gfar_write(&regs->igaddr1, 0xffffffff);
2779 gfar_write(&regs->igaddr2, 0xffffffff); 2786 gfar_write(&regs->igaddr2, 0xffffffff);
2780 gfar_write(&regs->igaddr3, 0xffffffff); 2787 gfar_write(&regs->igaddr3, 0xffffffff);
2781 gfar_write(&regs->igaddr4, 0xffffffff); 2788 gfar_write(&regs->igaddr4, 0xffffffff);
2782 gfar_write(&regs->igaddr5, 0xffffffff); 2789 gfar_write(&regs->igaddr5, 0xffffffff);
2783 gfar_write(&regs->igaddr6, 0xffffffff); 2790 gfar_write(&regs->igaddr6, 0xffffffff);
2784 gfar_write(&regs->igaddr7, 0xffffffff); 2791 gfar_write(&regs->igaddr7, 0xffffffff);
2785 gfar_write(&regs->gaddr0, 0xffffffff); 2792 gfar_write(&regs->gaddr0, 0xffffffff);
2786 gfar_write(&regs->gaddr1, 0xffffffff); 2793 gfar_write(&regs->gaddr1, 0xffffffff);
2787 gfar_write(&regs->gaddr2, 0xffffffff); 2794 gfar_write(&regs->gaddr2, 0xffffffff);
2788 gfar_write(&regs->gaddr3, 0xffffffff); 2795 gfar_write(&regs->gaddr3, 0xffffffff);
2789 gfar_write(&regs->gaddr4, 0xffffffff); 2796 gfar_write(&regs->gaddr4, 0xffffffff);
2790 gfar_write(&regs->gaddr5, 0xffffffff); 2797 gfar_write(&regs->gaddr5, 0xffffffff);
2791 gfar_write(&regs->gaddr6, 0xffffffff); 2798 gfar_write(&regs->gaddr6, 0xffffffff);
2792 gfar_write(&regs->gaddr7, 0xffffffff); 2799 gfar_write(&regs->gaddr7, 0xffffffff);
2793 } else { 2800 } else {
2794 int em_num; 2801 int em_num;
2795 int idx; 2802 int idx;
2796 2803
2797 /* zero out the hash */ 2804 /* zero out the hash */
2798 gfar_write(&regs->igaddr0, 0x0); 2805 gfar_write(&regs->igaddr0, 0x0);
2799 gfar_write(&regs->igaddr1, 0x0); 2806 gfar_write(&regs->igaddr1, 0x0);
2800 gfar_write(&regs->igaddr2, 0x0); 2807 gfar_write(&regs->igaddr2, 0x0);
2801 gfar_write(&regs->igaddr3, 0x0); 2808 gfar_write(&regs->igaddr3, 0x0);
2802 gfar_write(&regs->igaddr4, 0x0); 2809 gfar_write(&regs->igaddr4, 0x0);
2803 gfar_write(&regs->igaddr5, 0x0); 2810 gfar_write(&regs->igaddr5, 0x0);
2804 gfar_write(&regs->igaddr6, 0x0); 2811 gfar_write(&regs->igaddr6, 0x0);
2805 gfar_write(&regs->igaddr7, 0x0); 2812 gfar_write(&regs->igaddr7, 0x0);
2806 gfar_write(&regs->gaddr0, 0x0); 2813 gfar_write(&regs->gaddr0, 0x0);
2807 gfar_write(&regs->gaddr1, 0x0); 2814 gfar_write(&regs->gaddr1, 0x0);
2808 gfar_write(&regs->gaddr2, 0x0); 2815 gfar_write(&regs->gaddr2, 0x0);
2809 gfar_write(&regs->gaddr3, 0x0); 2816 gfar_write(&regs->gaddr3, 0x0);
2810 gfar_write(&regs->gaddr4, 0x0); 2817 gfar_write(&regs->gaddr4, 0x0);
2811 gfar_write(&regs->gaddr5, 0x0); 2818 gfar_write(&regs->gaddr5, 0x0);
2812 gfar_write(&regs->gaddr6, 0x0); 2819 gfar_write(&regs->gaddr6, 0x0);
2813 gfar_write(&regs->gaddr7, 0x0); 2820 gfar_write(&regs->gaddr7, 0x0);
2814 2821
2815 /* If we have extended hash tables, we need to 2822 /* If we have extended hash tables, we need to
2816 * clear the exact match registers to prepare for 2823 * clear the exact match registers to prepare for
2817 * setting them */ 2824 * setting them */
2818 if (priv->extended_hash) { 2825 if (priv->extended_hash) {
2819 em_num = GFAR_EM_NUM + 1; 2826 em_num = GFAR_EM_NUM + 1;
2820 gfar_clear_exact_match(dev); 2827 gfar_clear_exact_match(dev);
2821 idx = 1; 2828 idx = 1;
2822 } else { 2829 } else {
2823 idx = 0; 2830 idx = 0;
2824 em_num = 0; 2831 em_num = 0;
2825 } 2832 }
2826 2833
2827 if (dev->mc_count == 0) 2834 if (dev->mc_count == 0)
2828 return; 2835 return;
2829 2836
2830 /* Parse the list, and set the appropriate bits */ 2837 /* Parse the list, and set the appropriate bits */
2831 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) { 2838 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
2832 if (idx < em_num) { 2839 if (idx < em_num) {
2833 gfar_set_mac_for_addr(dev, idx, 2840 gfar_set_mac_for_addr(dev, idx,
2834 mc_ptr->dmi_addr); 2841 mc_ptr->dmi_addr);
2835 idx++; 2842 idx++;
2836 } else 2843 } else
2837 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr); 2844 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
2838 } 2845 }
2839 } 2846 }
2840 2847
2841 return; 2848 return;
2842 } 2849 }
2843 2850
2844 2851
2845 /* Clears each of the exact match registers to zero, so they 2852 /* Clears each of the exact match registers to zero, so they
2846 * don't interfere with normal reception */ 2853 * don't interfere with normal reception */
2847 static void gfar_clear_exact_match(struct net_device *dev) 2854 static void gfar_clear_exact_match(struct net_device *dev)
2848 { 2855 {
2849 int idx; 2856 int idx;
2850 u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0}; 2857 u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
2851 2858
2852 for(idx = 1;idx < GFAR_EM_NUM + 1;idx++) 2859 for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
2853 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr); 2860 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
2854 } 2861 }
2855 2862
2856 /* Set the appropriate hash bit for the given addr */ 2863 /* Set the appropriate hash bit for the given addr */
2857 /* The algorithm works like so: 2864 /* The algorithm works like so:
2858 * 1) Take the Destination Address (ie the multicast address), and 2865 * 1) Take the Destination Address (ie the multicast address), and
2859 * do a CRC on it (little endian), and reverse the bits of the 2866 * do a CRC on it (little endian), and reverse the bits of the
2860 * result. 2867 * result.
2861 * 2) Use the 8 most significant bits as a hash into a 256-entry 2868 * 2) Use the 8 most significant bits as a hash into a 256-entry
2862 * table. The table is controlled through 8 32-bit registers: 2869 * table. The table is controlled through 8 32-bit registers:
2863 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is 2870 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
2864 * gaddr7. This means that the 3 most significant bits in the 2871 * gaddr7. This means that the 3 most significant bits in the
2865 * hash index which gaddr register to use, and the 5 other bits 2872 * hash index which gaddr register to use, and the 5 other bits
2866 * indicate which bit (assuming an IBM numbering scheme, which 2873 * indicate which bit (assuming an IBM numbering scheme, which
2867 * for PowerPC (tm) is usually the case) in the register holds 2874 * for PowerPC (tm) is usually the case) in the register holds
2868 * the entry. */ 2875 * the entry. */
2869 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr) 2876 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
2870 { 2877 {
2871 u32 tempval; 2878 u32 tempval;
2872 struct gfar_private *priv = netdev_priv(dev); 2879 struct gfar_private *priv = netdev_priv(dev);
2873 u32 result = ether_crc(MAC_ADDR_LEN, addr); 2880 u32 result = ether_crc(MAC_ADDR_LEN, addr);
2874 int width = priv->hash_width; 2881 int width = priv->hash_width;
2875 u8 whichbit = (result >> (32 - width)) & 0x1f; 2882 u8 whichbit = (result >> (32 - width)) & 0x1f;
2876 u8 whichreg = result >> (32 - width + 5); 2883 u8 whichreg = result >> (32 - width + 5);
2877 u32 value = (1 << (31-whichbit)); 2884 u32 value = (1 << (31-whichbit));
2878 2885
2879 tempval = gfar_read(priv->hash_regs[whichreg]); 2886 tempval = gfar_read(priv->hash_regs[whichreg]);
2880 tempval |= value; 2887 tempval |= value;
2881 gfar_write(priv->hash_regs[whichreg], tempval); 2888 gfar_write(priv->hash_regs[whichreg], tempval);
2882 2889
2883 return; 2890 return;
2884 } 2891 }
2885 2892
2886 2893
2887 /* There are multiple MAC Address register pairs on some controllers 2894 /* There are multiple MAC Address register pairs on some controllers
2888 * This function sets the numth pair to a given address 2895 * This function sets the numth pair to a given address
2889 */ 2896 */
2890 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr) 2897 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
2891 { 2898 {
2892 struct gfar_private *priv = netdev_priv(dev); 2899 struct gfar_private *priv = netdev_priv(dev);
2893 struct gfar __iomem *regs = priv->gfargrp[0].regs; 2900 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2894 int idx; 2901 int idx;
2895 char tmpbuf[MAC_ADDR_LEN]; 2902 char tmpbuf[MAC_ADDR_LEN];
2896 u32 tempval; 2903 u32 tempval;
2897 u32 __iomem *macptr = &regs->macstnaddr1; 2904 u32 __iomem *macptr = &regs->macstnaddr1;
2898 2905
2899 macptr += num*2; 2906 macptr += num*2;
2900 2907
2901 /* Now copy it into the mac registers backwards, cuz */ 2908 /* Now copy it into the mac registers backwards, cuz */
2902 /* little endian is silly */ 2909 /* little endian is silly */
2903 for (idx = 0; idx < MAC_ADDR_LEN; idx++) 2910 for (idx = 0; idx < MAC_ADDR_LEN; idx++)
2904 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx]; 2911 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
2905 2912
2906 gfar_write(macptr, *((u32 *) (tmpbuf))); 2913 gfar_write(macptr, *((u32 *) (tmpbuf)));
2907 2914
2908 tempval = *((u32 *) (tmpbuf + 4)); 2915 tempval = *((u32 *) (tmpbuf + 4));
2909 2916
2910 gfar_write(macptr+1, tempval); 2917 gfar_write(macptr+1, tempval);
2911 } 2918 }
2912 2919
2913 /* GFAR error interrupt handler */ 2920 /* GFAR error interrupt handler */
2914 static irqreturn_t gfar_error(int irq, void *grp_id) 2921 static irqreturn_t gfar_error(int irq, void *grp_id)
2915 { 2922 {
2916 struct gfar_priv_grp *gfargrp = grp_id; 2923 struct gfar_priv_grp *gfargrp = grp_id;
2917 struct gfar __iomem *regs = gfargrp->regs; 2924 struct gfar __iomem *regs = gfargrp->regs;
2918 struct gfar_private *priv= gfargrp->priv; 2925 struct gfar_private *priv= gfargrp->priv;
2919 struct net_device *dev = priv->ndev; 2926 struct net_device *dev = priv->ndev;
2920 2927
2921 /* Save ievent for future reference */ 2928 /* Save ievent for future reference */
2922 u32 events = gfar_read(&regs->ievent); 2929 u32 events = gfar_read(&regs->ievent);
2923 2930
2924 /* Clear IEVENT */ 2931 /* Clear IEVENT */
2925 gfar_write(&regs->ievent, events & IEVENT_ERR_MASK); 2932 gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
2926 2933
2927 /* Magic Packet is not an error. */ 2934 /* Magic Packet is not an error. */
2928 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) && 2935 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2929 (events & IEVENT_MAG)) 2936 (events & IEVENT_MAG))
2930 events &= ~IEVENT_MAG; 2937 events &= ~IEVENT_MAG;
2931 2938
2932 /* Hmm... */ 2939 /* Hmm... */
2933 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv)) 2940 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2934 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n", 2941 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
2935 dev->name, events, gfar_read(&regs->imask)); 2942 dev->name, events, gfar_read(&regs->imask));
2936 2943
2937 /* Update the error counters */ 2944 /* Update the error counters */
2938 if (events & IEVENT_TXE) { 2945 if (events & IEVENT_TXE) {
2939 dev->stats.tx_errors++; 2946 dev->stats.tx_errors++;
2940 2947
2941 if (events & IEVENT_LC) 2948 if (events & IEVENT_LC)
2942 dev->stats.tx_window_errors++; 2949 dev->stats.tx_window_errors++;
2943 if (events & IEVENT_CRL) 2950 if (events & IEVENT_CRL)
2944 dev->stats.tx_aborted_errors++; 2951 dev->stats.tx_aborted_errors++;
2945 if (events & IEVENT_XFUN) { 2952 if (events & IEVENT_XFUN) {
2946 unsigned long flags; 2953 unsigned long flags;
2947 2954
2948 if (netif_msg_tx_err(priv)) 2955 if (netif_msg_tx_err(priv))
2949 printk(KERN_DEBUG "%s: TX FIFO underrun, " 2956 printk(KERN_DEBUG "%s: TX FIFO underrun, "
2950 "packet dropped.\n", dev->name); 2957 "packet dropped.\n", dev->name);
2951 dev->stats.tx_dropped++; 2958 dev->stats.tx_dropped++;
2952 priv->extra_stats.tx_underrun++; 2959 priv->extra_stats.tx_underrun++;
2953 2960
2954 local_irq_save(flags); 2961 local_irq_save(flags);
2955 lock_tx_qs(priv); 2962 lock_tx_qs(priv);
2956 2963
2957 /* Reactivate the Tx Queues */ 2964 /* Reactivate the Tx Queues */
2958 gfar_write(&regs->tstat, gfargrp->tstat); 2965 gfar_write(&regs->tstat, gfargrp->tstat);
2959 2966
2960 unlock_tx_qs(priv); 2967 unlock_tx_qs(priv);
2961 local_irq_restore(flags); 2968 local_irq_restore(flags);
2962 } 2969 }
2963 if (netif_msg_tx_err(priv)) 2970 if (netif_msg_tx_err(priv))
2964 printk(KERN_DEBUG "%s: Transmit Error\n", dev->name); 2971 printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
2965 } 2972 }
2966 if (events & IEVENT_BSY) { 2973 if (events & IEVENT_BSY) {
2967 dev->stats.rx_errors++; 2974 dev->stats.rx_errors++;
2968 priv->extra_stats.rx_bsy++; 2975 priv->extra_stats.rx_bsy++;
2969 2976
2970 gfar_receive(irq, grp_id); 2977 gfar_receive(irq, grp_id);
2971 2978
2972 if (netif_msg_rx_err(priv)) 2979 if (netif_msg_rx_err(priv))
2973 printk(KERN_DEBUG "%s: busy error (rstat: %x)\n", 2980 printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
2974 dev->name, gfar_read(&regs->rstat)); 2981 dev->name, gfar_read(&regs->rstat));
2975 } 2982 }
2976 if (events & IEVENT_BABR) { 2983 if (events & IEVENT_BABR) {
2977 dev->stats.rx_errors++; 2984 dev->stats.rx_errors++;
2978 priv->extra_stats.rx_babr++; 2985 priv->extra_stats.rx_babr++;
2979 2986
2980 if (netif_msg_rx_err(priv)) 2987 if (netif_msg_rx_err(priv))
2981 printk(KERN_DEBUG "%s: babbling RX error\n", dev->name); 2988 printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
2982 } 2989 }
2983 if (events & IEVENT_EBERR) { 2990 if (events & IEVENT_EBERR) {
2984 priv->extra_stats.eberr++; 2991 priv->extra_stats.eberr++;
2985 if (netif_msg_rx_err(priv)) 2992 if (netif_msg_rx_err(priv))
2986 printk(KERN_DEBUG "%s: bus error\n", dev->name); 2993 printk(KERN_DEBUG "%s: bus error\n", dev->name);
2987 } 2994 }
2988 if ((events & IEVENT_RXC) && netif_msg_rx_status(priv)) 2995 if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
2989 printk(KERN_DEBUG "%s: control frame\n", dev->name); 2996 printk(KERN_DEBUG "%s: control frame\n", dev->name);
2990 2997
2991 if (events & IEVENT_BABT) { 2998 if (events & IEVENT_BABT) {
2992 priv->extra_stats.tx_babt++; 2999 priv->extra_stats.tx_babt++;
2993 if (netif_msg_tx_err(priv)) 3000 if (netif_msg_tx_err(priv))
2994 printk(KERN_DEBUG "%s: babbling TX error\n", dev->name); 3001 printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
2995 } 3002 }
2996 return IRQ_HANDLED; 3003 return IRQ_HANDLED;
2997 } 3004 }
2998 3005
2999 static struct of_device_id gfar_match[] = 3006 static struct of_device_id gfar_match[] =
3000 { 3007 {
3001 { 3008 {
3002 .type = "network", 3009 .type = "network",
3003 .compatible = "gianfar", 3010 .compatible = "gianfar",
3004 }, 3011 },
3005 { 3012 {
3006 .compatible = "fsl,etsec2", 3013 .compatible = "fsl,etsec2",
3007 }, 3014 },
3008 {}, 3015 {},
3009 }; 3016 };
3010 MODULE_DEVICE_TABLE(of, gfar_match); 3017 MODULE_DEVICE_TABLE(of, gfar_match);
3011 3018
3012 /* Structure for a device driver */ 3019 /* Structure for a device driver */
3013 static struct of_platform_driver gfar_driver = { 3020 static struct of_platform_driver gfar_driver = {
3014 .name = "fsl-gianfar", 3021 .name = "fsl-gianfar",
3015 .match_table = gfar_match, 3022 .match_table = gfar_match,
3016 3023
3017 .probe = gfar_probe, 3024 .probe = gfar_probe,
3018 .remove = gfar_remove, 3025 .remove = gfar_remove,
3019 .suspend = gfar_legacy_suspend, 3026 .suspend = gfar_legacy_suspend,
3020 .resume = gfar_legacy_resume, 3027 .resume = gfar_legacy_resume,
3021 .driver.pm = GFAR_PM_OPS, 3028 .driver.pm = GFAR_PM_OPS,
3022 }; 3029 };
3023 3030
3024 static int __init gfar_init(void) 3031 static int __init gfar_init(void)
3025 { 3032 {
3026 return of_register_platform_driver(&gfar_driver); 3033 return of_register_platform_driver(&gfar_driver);