Commit a850ea30374ebed32a0724742601861853fde869
Committed by
Linus Torvalds
1 parent
56c9cfb13c
Exists in
master
and in
7 other branches
hugetlb, rmap: add BUG_ON(!PageLocked) in hugetlb_add_anon_rmap()
Confirming page lock is held in hugetlb_add_anon_rmap() may be useful to detect possible future problems. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Showing 1 changed file with 2 additions and 0 deletions Inline Diff
mm/rmap.c
1 | /* | 1 | /* |
2 | * mm/rmap.c - physical to virtual reverse mappings | 2 | * mm/rmap.c - physical to virtual reverse mappings |
3 | * | 3 | * |
4 | * Copyright 2001, Rik van Riel <riel@conectiva.com.br> | 4 | * Copyright 2001, Rik van Riel <riel@conectiva.com.br> |
5 | * Released under the General Public License (GPL). | 5 | * Released under the General Public License (GPL). |
6 | * | 6 | * |
7 | * Simple, low overhead reverse mapping scheme. | 7 | * Simple, low overhead reverse mapping scheme. |
8 | * Please try to keep this thing as modular as possible. | 8 | * Please try to keep this thing as modular as possible. |
9 | * | 9 | * |
10 | * Provides methods for unmapping each kind of mapped page: | 10 | * Provides methods for unmapping each kind of mapped page: |
11 | * the anon methods track anonymous pages, and | 11 | * the anon methods track anonymous pages, and |
12 | * the file methods track pages belonging to an inode. | 12 | * the file methods track pages belonging to an inode. |
13 | * | 13 | * |
14 | * Original design by Rik van Riel <riel@conectiva.com.br> 2001 | 14 | * Original design by Rik van Riel <riel@conectiva.com.br> 2001 |
15 | * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 | 15 | * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 |
16 | * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 | 16 | * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 |
17 | * Contributions by Hugh Dickins 2003, 2004 | 17 | * Contributions by Hugh Dickins 2003, 2004 |
18 | */ | 18 | */ |
19 | 19 | ||
20 | /* | 20 | /* |
21 | * Lock ordering in mm: | 21 | * Lock ordering in mm: |
22 | * | 22 | * |
23 | * inode->i_mutex (while writing or truncating, not reading or faulting) | 23 | * inode->i_mutex (while writing or truncating, not reading or faulting) |
24 | * inode->i_alloc_sem (vmtruncate_range) | 24 | * inode->i_alloc_sem (vmtruncate_range) |
25 | * mm->mmap_sem | 25 | * mm->mmap_sem |
26 | * page->flags PG_locked (lock_page) | 26 | * page->flags PG_locked (lock_page) |
27 | * mapping->i_mmap_lock | 27 | * mapping->i_mmap_lock |
28 | * anon_vma->lock | 28 | * anon_vma->lock |
29 | * mm->page_table_lock or pte_lock | 29 | * mm->page_table_lock or pte_lock |
30 | * zone->lru_lock (in mark_page_accessed, isolate_lru_page) | 30 | * zone->lru_lock (in mark_page_accessed, isolate_lru_page) |
31 | * swap_lock (in swap_duplicate, swap_info_get) | 31 | * swap_lock (in swap_duplicate, swap_info_get) |
32 | * mmlist_lock (in mmput, drain_mmlist and others) | 32 | * mmlist_lock (in mmput, drain_mmlist and others) |
33 | * mapping->private_lock (in __set_page_dirty_buffers) | 33 | * mapping->private_lock (in __set_page_dirty_buffers) |
34 | * inode_lock (in set_page_dirty's __mark_inode_dirty) | 34 | * inode_lock (in set_page_dirty's __mark_inode_dirty) |
35 | * sb_lock (within inode_lock in fs/fs-writeback.c) | 35 | * sb_lock (within inode_lock in fs/fs-writeback.c) |
36 | * mapping->tree_lock (widely used, in set_page_dirty, | 36 | * mapping->tree_lock (widely used, in set_page_dirty, |
37 | * in arch-dependent flush_dcache_mmap_lock, | 37 | * in arch-dependent flush_dcache_mmap_lock, |
38 | * within inode_lock in __sync_single_inode) | 38 | * within inode_lock in __sync_single_inode) |
39 | * | 39 | * |
40 | * (code doesn't rely on that order so it could be switched around) | 40 | * (code doesn't rely on that order so it could be switched around) |
41 | * ->tasklist_lock | 41 | * ->tasklist_lock |
42 | * anon_vma->lock (memory_failure, collect_procs_anon) | 42 | * anon_vma->lock (memory_failure, collect_procs_anon) |
43 | * pte map lock | 43 | * pte map lock |
44 | */ | 44 | */ |
45 | 45 | ||
46 | #include <linux/mm.h> | 46 | #include <linux/mm.h> |
47 | #include <linux/pagemap.h> | 47 | #include <linux/pagemap.h> |
48 | #include <linux/swap.h> | 48 | #include <linux/swap.h> |
49 | #include <linux/swapops.h> | 49 | #include <linux/swapops.h> |
50 | #include <linux/slab.h> | 50 | #include <linux/slab.h> |
51 | #include <linux/init.h> | 51 | #include <linux/init.h> |
52 | #include <linux/ksm.h> | 52 | #include <linux/ksm.h> |
53 | #include <linux/rmap.h> | 53 | #include <linux/rmap.h> |
54 | #include <linux/rcupdate.h> | 54 | #include <linux/rcupdate.h> |
55 | #include <linux/module.h> | 55 | #include <linux/module.h> |
56 | #include <linux/memcontrol.h> | 56 | #include <linux/memcontrol.h> |
57 | #include <linux/mmu_notifier.h> | 57 | #include <linux/mmu_notifier.h> |
58 | #include <linux/migrate.h> | 58 | #include <linux/migrate.h> |
59 | #include <linux/hugetlb.h> | 59 | #include <linux/hugetlb.h> |
60 | 60 | ||
61 | #include <asm/tlbflush.h> | 61 | #include <asm/tlbflush.h> |
62 | 62 | ||
63 | #include "internal.h" | 63 | #include "internal.h" |
64 | 64 | ||
65 | static struct kmem_cache *anon_vma_cachep; | 65 | static struct kmem_cache *anon_vma_cachep; |
66 | static struct kmem_cache *anon_vma_chain_cachep; | 66 | static struct kmem_cache *anon_vma_chain_cachep; |
67 | 67 | ||
68 | static inline struct anon_vma *anon_vma_alloc(void) | 68 | static inline struct anon_vma *anon_vma_alloc(void) |
69 | { | 69 | { |
70 | return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); | 70 | return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); |
71 | } | 71 | } |
72 | 72 | ||
73 | void anon_vma_free(struct anon_vma *anon_vma) | 73 | void anon_vma_free(struct anon_vma *anon_vma) |
74 | { | 74 | { |
75 | kmem_cache_free(anon_vma_cachep, anon_vma); | 75 | kmem_cache_free(anon_vma_cachep, anon_vma); |
76 | } | 76 | } |
77 | 77 | ||
78 | static inline struct anon_vma_chain *anon_vma_chain_alloc(void) | 78 | static inline struct anon_vma_chain *anon_vma_chain_alloc(void) |
79 | { | 79 | { |
80 | return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL); | 80 | return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL); |
81 | } | 81 | } |
82 | 82 | ||
83 | void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) | 83 | void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) |
84 | { | 84 | { |
85 | kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); | 85 | kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); |
86 | } | 86 | } |
87 | 87 | ||
88 | /** | 88 | /** |
89 | * anon_vma_prepare - attach an anon_vma to a memory region | 89 | * anon_vma_prepare - attach an anon_vma to a memory region |
90 | * @vma: the memory region in question | 90 | * @vma: the memory region in question |
91 | * | 91 | * |
92 | * This makes sure the memory mapping described by 'vma' has | 92 | * This makes sure the memory mapping described by 'vma' has |
93 | * an 'anon_vma' attached to it, so that we can associate the | 93 | * an 'anon_vma' attached to it, so that we can associate the |
94 | * anonymous pages mapped into it with that anon_vma. | 94 | * anonymous pages mapped into it with that anon_vma. |
95 | * | 95 | * |
96 | * The common case will be that we already have one, but if | 96 | * The common case will be that we already have one, but if |
97 | * if not we either need to find an adjacent mapping that we | 97 | * if not we either need to find an adjacent mapping that we |
98 | * can re-use the anon_vma from (very common when the only | 98 | * can re-use the anon_vma from (very common when the only |
99 | * reason for splitting a vma has been mprotect()), or we | 99 | * reason for splitting a vma has been mprotect()), or we |
100 | * allocate a new one. | 100 | * allocate a new one. |
101 | * | 101 | * |
102 | * Anon-vma allocations are very subtle, because we may have | 102 | * Anon-vma allocations are very subtle, because we may have |
103 | * optimistically looked up an anon_vma in page_lock_anon_vma() | 103 | * optimistically looked up an anon_vma in page_lock_anon_vma() |
104 | * and that may actually touch the spinlock even in the newly | 104 | * and that may actually touch the spinlock even in the newly |
105 | * allocated vma (it depends on RCU to make sure that the | 105 | * allocated vma (it depends on RCU to make sure that the |
106 | * anon_vma isn't actually destroyed). | 106 | * anon_vma isn't actually destroyed). |
107 | * | 107 | * |
108 | * As a result, we need to do proper anon_vma locking even | 108 | * As a result, we need to do proper anon_vma locking even |
109 | * for the new allocation. At the same time, we do not want | 109 | * for the new allocation. At the same time, we do not want |
110 | * to do any locking for the common case of already having | 110 | * to do any locking for the common case of already having |
111 | * an anon_vma. | 111 | * an anon_vma. |
112 | * | 112 | * |
113 | * This must be called with the mmap_sem held for reading. | 113 | * This must be called with the mmap_sem held for reading. |
114 | */ | 114 | */ |
115 | int anon_vma_prepare(struct vm_area_struct *vma) | 115 | int anon_vma_prepare(struct vm_area_struct *vma) |
116 | { | 116 | { |
117 | struct anon_vma *anon_vma = vma->anon_vma; | 117 | struct anon_vma *anon_vma = vma->anon_vma; |
118 | struct anon_vma_chain *avc; | 118 | struct anon_vma_chain *avc; |
119 | 119 | ||
120 | might_sleep(); | 120 | might_sleep(); |
121 | if (unlikely(!anon_vma)) { | 121 | if (unlikely(!anon_vma)) { |
122 | struct mm_struct *mm = vma->vm_mm; | 122 | struct mm_struct *mm = vma->vm_mm; |
123 | struct anon_vma *allocated; | 123 | struct anon_vma *allocated; |
124 | 124 | ||
125 | avc = anon_vma_chain_alloc(); | 125 | avc = anon_vma_chain_alloc(); |
126 | if (!avc) | 126 | if (!avc) |
127 | goto out_enomem; | 127 | goto out_enomem; |
128 | 128 | ||
129 | anon_vma = find_mergeable_anon_vma(vma); | 129 | anon_vma = find_mergeable_anon_vma(vma); |
130 | allocated = NULL; | 130 | allocated = NULL; |
131 | if (!anon_vma) { | 131 | if (!anon_vma) { |
132 | anon_vma = anon_vma_alloc(); | 132 | anon_vma = anon_vma_alloc(); |
133 | if (unlikely(!anon_vma)) | 133 | if (unlikely(!anon_vma)) |
134 | goto out_enomem_free_avc; | 134 | goto out_enomem_free_avc; |
135 | allocated = anon_vma; | 135 | allocated = anon_vma; |
136 | /* | 136 | /* |
137 | * This VMA had no anon_vma yet. This anon_vma is | 137 | * This VMA had no anon_vma yet. This anon_vma is |
138 | * the root of any anon_vma tree that might form. | 138 | * the root of any anon_vma tree that might form. |
139 | */ | 139 | */ |
140 | anon_vma->root = anon_vma; | 140 | anon_vma->root = anon_vma; |
141 | } | 141 | } |
142 | 142 | ||
143 | anon_vma_lock(anon_vma); | 143 | anon_vma_lock(anon_vma); |
144 | /* page_table_lock to protect against threads */ | 144 | /* page_table_lock to protect against threads */ |
145 | spin_lock(&mm->page_table_lock); | 145 | spin_lock(&mm->page_table_lock); |
146 | if (likely(!vma->anon_vma)) { | 146 | if (likely(!vma->anon_vma)) { |
147 | vma->anon_vma = anon_vma; | 147 | vma->anon_vma = anon_vma; |
148 | avc->anon_vma = anon_vma; | 148 | avc->anon_vma = anon_vma; |
149 | avc->vma = vma; | 149 | avc->vma = vma; |
150 | list_add(&avc->same_vma, &vma->anon_vma_chain); | 150 | list_add(&avc->same_vma, &vma->anon_vma_chain); |
151 | list_add_tail(&avc->same_anon_vma, &anon_vma->head); | 151 | list_add_tail(&avc->same_anon_vma, &anon_vma->head); |
152 | allocated = NULL; | 152 | allocated = NULL; |
153 | avc = NULL; | 153 | avc = NULL; |
154 | } | 154 | } |
155 | spin_unlock(&mm->page_table_lock); | 155 | spin_unlock(&mm->page_table_lock); |
156 | anon_vma_unlock(anon_vma); | 156 | anon_vma_unlock(anon_vma); |
157 | 157 | ||
158 | if (unlikely(allocated)) | 158 | if (unlikely(allocated)) |
159 | anon_vma_free(allocated); | 159 | anon_vma_free(allocated); |
160 | if (unlikely(avc)) | 160 | if (unlikely(avc)) |
161 | anon_vma_chain_free(avc); | 161 | anon_vma_chain_free(avc); |
162 | } | 162 | } |
163 | return 0; | 163 | return 0; |
164 | 164 | ||
165 | out_enomem_free_avc: | 165 | out_enomem_free_avc: |
166 | anon_vma_chain_free(avc); | 166 | anon_vma_chain_free(avc); |
167 | out_enomem: | 167 | out_enomem: |
168 | return -ENOMEM; | 168 | return -ENOMEM; |
169 | } | 169 | } |
170 | 170 | ||
171 | static void anon_vma_chain_link(struct vm_area_struct *vma, | 171 | static void anon_vma_chain_link(struct vm_area_struct *vma, |
172 | struct anon_vma_chain *avc, | 172 | struct anon_vma_chain *avc, |
173 | struct anon_vma *anon_vma) | 173 | struct anon_vma *anon_vma) |
174 | { | 174 | { |
175 | avc->vma = vma; | 175 | avc->vma = vma; |
176 | avc->anon_vma = anon_vma; | 176 | avc->anon_vma = anon_vma; |
177 | list_add(&avc->same_vma, &vma->anon_vma_chain); | 177 | list_add(&avc->same_vma, &vma->anon_vma_chain); |
178 | 178 | ||
179 | anon_vma_lock(anon_vma); | 179 | anon_vma_lock(anon_vma); |
180 | list_add_tail(&avc->same_anon_vma, &anon_vma->head); | 180 | list_add_tail(&avc->same_anon_vma, &anon_vma->head); |
181 | anon_vma_unlock(anon_vma); | 181 | anon_vma_unlock(anon_vma); |
182 | } | 182 | } |
183 | 183 | ||
184 | /* | 184 | /* |
185 | * Attach the anon_vmas from src to dst. | 185 | * Attach the anon_vmas from src to dst. |
186 | * Returns 0 on success, -ENOMEM on failure. | 186 | * Returns 0 on success, -ENOMEM on failure. |
187 | */ | 187 | */ |
188 | int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) | 188 | int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) |
189 | { | 189 | { |
190 | struct anon_vma_chain *avc, *pavc; | 190 | struct anon_vma_chain *avc, *pavc; |
191 | 191 | ||
192 | list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { | 192 | list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { |
193 | avc = anon_vma_chain_alloc(); | 193 | avc = anon_vma_chain_alloc(); |
194 | if (!avc) | 194 | if (!avc) |
195 | goto enomem_failure; | 195 | goto enomem_failure; |
196 | anon_vma_chain_link(dst, avc, pavc->anon_vma); | 196 | anon_vma_chain_link(dst, avc, pavc->anon_vma); |
197 | } | 197 | } |
198 | return 0; | 198 | return 0; |
199 | 199 | ||
200 | enomem_failure: | 200 | enomem_failure: |
201 | unlink_anon_vmas(dst); | 201 | unlink_anon_vmas(dst); |
202 | return -ENOMEM; | 202 | return -ENOMEM; |
203 | } | 203 | } |
204 | 204 | ||
205 | /* | 205 | /* |
206 | * Attach vma to its own anon_vma, as well as to the anon_vmas that | 206 | * Attach vma to its own anon_vma, as well as to the anon_vmas that |
207 | * the corresponding VMA in the parent process is attached to. | 207 | * the corresponding VMA in the parent process is attached to. |
208 | * Returns 0 on success, non-zero on failure. | 208 | * Returns 0 on success, non-zero on failure. |
209 | */ | 209 | */ |
210 | int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) | 210 | int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) |
211 | { | 211 | { |
212 | struct anon_vma_chain *avc; | 212 | struct anon_vma_chain *avc; |
213 | struct anon_vma *anon_vma; | 213 | struct anon_vma *anon_vma; |
214 | 214 | ||
215 | /* Don't bother if the parent process has no anon_vma here. */ | 215 | /* Don't bother if the parent process has no anon_vma here. */ |
216 | if (!pvma->anon_vma) | 216 | if (!pvma->anon_vma) |
217 | return 0; | 217 | return 0; |
218 | 218 | ||
219 | /* | 219 | /* |
220 | * First, attach the new VMA to the parent VMA's anon_vmas, | 220 | * First, attach the new VMA to the parent VMA's anon_vmas, |
221 | * so rmap can find non-COWed pages in child processes. | 221 | * so rmap can find non-COWed pages in child processes. |
222 | */ | 222 | */ |
223 | if (anon_vma_clone(vma, pvma)) | 223 | if (anon_vma_clone(vma, pvma)) |
224 | return -ENOMEM; | 224 | return -ENOMEM; |
225 | 225 | ||
226 | /* Then add our own anon_vma. */ | 226 | /* Then add our own anon_vma. */ |
227 | anon_vma = anon_vma_alloc(); | 227 | anon_vma = anon_vma_alloc(); |
228 | if (!anon_vma) | 228 | if (!anon_vma) |
229 | goto out_error; | 229 | goto out_error; |
230 | avc = anon_vma_chain_alloc(); | 230 | avc = anon_vma_chain_alloc(); |
231 | if (!avc) | 231 | if (!avc) |
232 | goto out_error_free_anon_vma; | 232 | goto out_error_free_anon_vma; |
233 | 233 | ||
234 | /* | 234 | /* |
235 | * The root anon_vma's spinlock is the lock actually used when we | 235 | * The root anon_vma's spinlock is the lock actually used when we |
236 | * lock any of the anon_vmas in this anon_vma tree. | 236 | * lock any of the anon_vmas in this anon_vma tree. |
237 | */ | 237 | */ |
238 | anon_vma->root = pvma->anon_vma->root; | 238 | anon_vma->root = pvma->anon_vma->root; |
239 | /* | 239 | /* |
240 | * With KSM refcounts, an anon_vma can stay around longer than the | 240 | * With KSM refcounts, an anon_vma can stay around longer than the |
241 | * process it belongs to. The root anon_vma needs to be pinned | 241 | * process it belongs to. The root anon_vma needs to be pinned |
242 | * until this anon_vma is freed, because the lock lives in the root. | 242 | * until this anon_vma is freed, because the lock lives in the root. |
243 | */ | 243 | */ |
244 | get_anon_vma(anon_vma->root); | 244 | get_anon_vma(anon_vma->root); |
245 | /* Mark this anon_vma as the one where our new (COWed) pages go. */ | 245 | /* Mark this anon_vma as the one where our new (COWed) pages go. */ |
246 | vma->anon_vma = anon_vma; | 246 | vma->anon_vma = anon_vma; |
247 | anon_vma_chain_link(vma, avc, anon_vma); | 247 | anon_vma_chain_link(vma, avc, anon_vma); |
248 | 248 | ||
249 | return 0; | 249 | return 0; |
250 | 250 | ||
251 | out_error_free_anon_vma: | 251 | out_error_free_anon_vma: |
252 | anon_vma_free(anon_vma); | 252 | anon_vma_free(anon_vma); |
253 | out_error: | 253 | out_error: |
254 | unlink_anon_vmas(vma); | 254 | unlink_anon_vmas(vma); |
255 | return -ENOMEM; | 255 | return -ENOMEM; |
256 | } | 256 | } |
257 | 257 | ||
258 | static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain) | 258 | static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain) |
259 | { | 259 | { |
260 | struct anon_vma *anon_vma = anon_vma_chain->anon_vma; | 260 | struct anon_vma *anon_vma = anon_vma_chain->anon_vma; |
261 | int empty; | 261 | int empty; |
262 | 262 | ||
263 | /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */ | 263 | /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */ |
264 | if (!anon_vma) | 264 | if (!anon_vma) |
265 | return; | 265 | return; |
266 | 266 | ||
267 | anon_vma_lock(anon_vma); | 267 | anon_vma_lock(anon_vma); |
268 | list_del(&anon_vma_chain->same_anon_vma); | 268 | list_del(&anon_vma_chain->same_anon_vma); |
269 | 269 | ||
270 | /* We must garbage collect the anon_vma if it's empty */ | 270 | /* We must garbage collect the anon_vma if it's empty */ |
271 | empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma); | 271 | empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma); |
272 | anon_vma_unlock(anon_vma); | 272 | anon_vma_unlock(anon_vma); |
273 | 273 | ||
274 | if (empty) { | 274 | if (empty) { |
275 | /* We no longer need the root anon_vma */ | 275 | /* We no longer need the root anon_vma */ |
276 | if (anon_vma->root != anon_vma) | 276 | if (anon_vma->root != anon_vma) |
277 | drop_anon_vma(anon_vma->root); | 277 | drop_anon_vma(anon_vma->root); |
278 | anon_vma_free(anon_vma); | 278 | anon_vma_free(anon_vma); |
279 | } | 279 | } |
280 | } | 280 | } |
281 | 281 | ||
282 | void unlink_anon_vmas(struct vm_area_struct *vma) | 282 | void unlink_anon_vmas(struct vm_area_struct *vma) |
283 | { | 283 | { |
284 | struct anon_vma_chain *avc, *next; | 284 | struct anon_vma_chain *avc, *next; |
285 | 285 | ||
286 | /* | 286 | /* |
287 | * Unlink each anon_vma chained to the VMA. This list is ordered | 287 | * Unlink each anon_vma chained to the VMA. This list is ordered |
288 | * from newest to oldest, ensuring the root anon_vma gets freed last. | 288 | * from newest to oldest, ensuring the root anon_vma gets freed last. |
289 | */ | 289 | */ |
290 | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { | 290 | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { |
291 | anon_vma_unlink(avc); | 291 | anon_vma_unlink(avc); |
292 | list_del(&avc->same_vma); | 292 | list_del(&avc->same_vma); |
293 | anon_vma_chain_free(avc); | 293 | anon_vma_chain_free(avc); |
294 | } | 294 | } |
295 | } | 295 | } |
296 | 296 | ||
297 | static void anon_vma_ctor(void *data) | 297 | static void anon_vma_ctor(void *data) |
298 | { | 298 | { |
299 | struct anon_vma *anon_vma = data; | 299 | struct anon_vma *anon_vma = data; |
300 | 300 | ||
301 | spin_lock_init(&anon_vma->lock); | 301 | spin_lock_init(&anon_vma->lock); |
302 | anonvma_external_refcount_init(anon_vma); | 302 | anonvma_external_refcount_init(anon_vma); |
303 | INIT_LIST_HEAD(&anon_vma->head); | 303 | INIT_LIST_HEAD(&anon_vma->head); |
304 | } | 304 | } |
305 | 305 | ||
306 | void __init anon_vma_init(void) | 306 | void __init anon_vma_init(void) |
307 | { | 307 | { |
308 | anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), | 308 | anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), |
309 | 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor); | 309 | 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor); |
310 | anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC); | 310 | anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC); |
311 | } | 311 | } |
312 | 312 | ||
313 | /* | 313 | /* |
314 | * Getting a lock on a stable anon_vma from a page off the LRU is | 314 | * Getting a lock on a stable anon_vma from a page off the LRU is |
315 | * tricky: page_lock_anon_vma rely on RCU to guard against the races. | 315 | * tricky: page_lock_anon_vma rely on RCU to guard against the races. |
316 | */ | 316 | */ |
317 | struct anon_vma *page_lock_anon_vma(struct page *page) | 317 | struct anon_vma *page_lock_anon_vma(struct page *page) |
318 | { | 318 | { |
319 | struct anon_vma *anon_vma, *root_anon_vma; | 319 | struct anon_vma *anon_vma, *root_anon_vma; |
320 | unsigned long anon_mapping; | 320 | unsigned long anon_mapping; |
321 | 321 | ||
322 | rcu_read_lock(); | 322 | rcu_read_lock(); |
323 | anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); | 323 | anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); |
324 | if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) | 324 | if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) |
325 | goto out; | 325 | goto out; |
326 | if (!page_mapped(page)) | 326 | if (!page_mapped(page)) |
327 | goto out; | 327 | goto out; |
328 | 328 | ||
329 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | 329 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); |
330 | root_anon_vma = ACCESS_ONCE(anon_vma->root); | 330 | root_anon_vma = ACCESS_ONCE(anon_vma->root); |
331 | spin_lock(&root_anon_vma->lock); | 331 | spin_lock(&root_anon_vma->lock); |
332 | 332 | ||
333 | /* | 333 | /* |
334 | * If this page is still mapped, then its anon_vma cannot have been | 334 | * If this page is still mapped, then its anon_vma cannot have been |
335 | * freed. But if it has been unmapped, we have no security against | 335 | * freed. But if it has been unmapped, we have no security against |
336 | * the anon_vma structure being freed and reused (for another anon_vma: | 336 | * the anon_vma structure being freed and reused (for another anon_vma: |
337 | * SLAB_DESTROY_BY_RCU guarantees that - so the spin_lock above cannot | 337 | * SLAB_DESTROY_BY_RCU guarantees that - so the spin_lock above cannot |
338 | * corrupt): with anon_vma_prepare() or anon_vma_fork() redirecting | 338 | * corrupt): with anon_vma_prepare() or anon_vma_fork() redirecting |
339 | * anon_vma->root before page_unlock_anon_vma() is called to unlock. | 339 | * anon_vma->root before page_unlock_anon_vma() is called to unlock. |
340 | */ | 340 | */ |
341 | if (page_mapped(page)) | 341 | if (page_mapped(page)) |
342 | return anon_vma; | 342 | return anon_vma; |
343 | 343 | ||
344 | spin_unlock(&root_anon_vma->lock); | 344 | spin_unlock(&root_anon_vma->lock); |
345 | out: | 345 | out: |
346 | rcu_read_unlock(); | 346 | rcu_read_unlock(); |
347 | return NULL; | 347 | return NULL; |
348 | } | 348 | } |
349 | 349 | ||
350 | void page_unlock_anon_vma(struct anon_vma *anon_vma) | 350 | void page_unlock_anon_vma(struct anon_vma *anon_vma) |
351 | { | 351 | { |
352 | anon_vma_unlock(anon_vma); | 352 | anon_vma_unlock(anon_vma); |
353 | rcu_read_unlock(); | 353 | rcu_read_unlock(); |
354 | } | 354 | } |
355 | 355 | ||
356 | /* | 356 | /* |
357 | * At what user virtual address is page expected in @vma? | 357 | * At what user virtual address is page expected in @vma? |
358 | * Returns virtual address or -EFAULT if page's index/offset is not | 358 | * Returns virtual address or -EFAULT if page's index/offset is not |
359 | * within the range mapped the @vma. | 359 | * within the range mapped the @vma. |
360 | */ | 360 | */ |
361 | static inline unsigned long | 361 | static inline unsigned long |
362 | vma_address(struct page *page, struct vm_area_struct *vma) | 362 | vma_address(struct page *page, struct vm_area_struct *vma) |
363 | { | 363 | { |
364 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | 364 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); |
365 | unsigned long address; | 365 | unsigned long address; |
366 | 366 | ||
367 | if (unlikely(is_vm_hugetlb_page(vma))) | 367 | if (unlikely(is_vm_hugetlb_page(vma))) |
368 | pgoff = page->index << huge_page_order(page_hstate(page)); | 368 | pgoff = page->index << huge_page_order(page_hstate(page)); |
369 | address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); | 369 | address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); |
370 | if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { | 370 | if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { |
371 | /* page should be within @vma mapping range */ | 371 | /* page should be within @vma mapping range */ |
372 | return -EFAULT; | 372 | return -EFAULT; |
373 | } | 373 | } |
374 | return address; | 374 | return address; |
375 | } | 375 | } |
376 | 376 | ||
377 | /* | 377 | /* |
378 | * At what user virtual address is page expected in vma? | 378 | * At what user virtual address is page expected in vma? |
379 | * Caller should check the page is actually part of the vma. | 379 | * Caller should check the page is actually part of the vma. |
380 | */ | 380 | */ |
381 | unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) | 381 | unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) |
382 | { | 382 | { |
383 | if (PageAnon(page)) { | 383 | if (PageAnon(page)) { |
384 | if (vma->anon_vma->root != page_anon_vma(page)->root) | 384 | if (vma->anon_vma->root != page_anon_vma(page)->root) |
385 | return -EFAULT; | 385 | return -EFAULT; |
386 | } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { | 386 | } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { |
387 | if (!vma->vm_file || | 387 | if (!vma->vm_file || |
388 | vma->vm_file->f_mapping != page->mapping) | 388 | vma->vm_file->f_mapping != page->mapping) |
389 | return -EFAULT; | 389 | return -EFAULT; |
390 | } else | 390 | } else |
391 | return -EFAULT; | 391 | return -EFAULT; |
392 | return vma_address(page, vma); | 392 | return vma_address(page, vma); |
393 | } | 393 | } |
394 | 394 | ||
395 | /* | 395 | /* |
396 | * Check that @page is mapped at @address into @mm. | 396 | * Check that @page is mapped at @address into @mm. |
397 | * | 397 | * |
398 | * If @sync is false, page_check_address may perform a racy check to avoid | 398 | * If @sync is false, page_check_address may perform a racy check to avoid |
399 | * the page table lock when the pte is not present (helpful when reclaiming | 399 | * the page table lock when the pte is not present (helpful when reclaiming |
400 | * highly shared pages). | 400 | * highly shared pages). |
401 | * | 401 | * |
402 | * On success returns with pte mapped and locked. | 402 | * On success returns with pte mapped and locked. |
403 | */ | 403 | */ |
404 | pte_t *page_check_address(struct page *page, struct mm_struct *mm, | 404 | pte_t *page_check_address(struct page *page, struct mm_struct *mm, |
405 | unsigned long address, spinlock_t **ptlp, int sync) | 405 | unsigned long address, spinlock_t **ptlp, int sync) |
406 | { | 406 | { |
407 | pgd_t *pgd; | 407 | pgd_t *pgd; |
408 | pud_t *pud; | 408 | pud_t *pud; |
409 | pmd_t *pmd; | 409 | pmd_t *pmd; |
410 | pte_t *pte; | 410 | pte_t *pte; |
411 | spinlock_t *ptl; | 411 | spinlock_t *ptl; |
412 | 412 | ||
413 | if (unlikely(PageHuge(page))) { | 413 | if (unlikely(PageHuge(page))) { |
414 | pte = huge_pte_offset(mm, address); | 414 | pte = huge_pte_offset(mm, address); |
415 | ptl = &mm->page_table_lock; | 415 | ptl = &mm->page_table_lock; |
416 | goto check; | 416 | goto check; |
417 | } | 417 | } |
418 | 418 | ||
419 | pgd = pgd_offset(mm, address); | 419 | pgd = pgd_offset(mm, address); |
420 | if (!pgd_present(*pgd)) | 420 | if (!pgd_present(*pgd)) |
421 | return NULL; | 421 | return NULL; |
422 | 422 | ||
423 | pud = pud_offset(pgd, address); | 423 | pud = pud_offset(pgd, address); |
424 | if (!pud_present(*pud)) | 424 | if (!pud_present(*pud)) |
425 | return NULL; | 425 | return NULL; |
426 | 426 | ||
427 | pmd = pmd_offset(pud, address); | 427 | pmd = pmd_offset(pud, address); |
428 | if (!pmd_present(*pmd)) | 428 | if (!pmd_present(*pmd)) |
429 | return NULL; | 429 | return NULL; |
430 | 430 | ||
431 | pte = pte_offset_map(pmd, address); | 431 | pte = pte_offset_map(pmd, address); |
432 | /* Make a quick check before getting the lock */ | 432 | /* Make a quick check before getting the lock */ |
433 | if (!sync && !pte_present(*pte)) { | 433 | if (!sync && !pte_present(*pte)) { |
434 | pte_unmap(pte); | 434 | pte_unmap(pte); |
435 | return NULL; | 435 | return NULL; |
436 | } | 436 | } |
437 | 437 | ||
438 | ptl = pte_lockptr(mm, pmd); | 438 | ptl = pte_lockptr(mm, pmd); |
439 | check: | 439 | check: |
440 | spin_lock(ptl); | 440 | spin_lock(ptl); |
441 | if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { | 441 | if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { |
442 | *ptlp = ptl; | 442 | *ptlp = ptl; |
443 | return pte; | 443 | return pte; |
444 | } | 444 | } |
445 | pte_unmap_unlock(pte, ptl); | 445 | pte_unmap_unlock(pte, ptl); |
446 | return NULL; | 446 | return NULL; |
447 | } | 447 | } |
448 | 448 | ||
449 | /** | 449 | /** |
450 | * page_mapped_in_vma - check whether a page is really mapped in a VMA | 450 | * page_mapped_in_vma - check whether a page is really mapped in a VMA |
451 | * @page: the page to test | 451 | * @page: the page to test |
452 | * @vma: the VMA to test | 452 | * @vma: the VMA to test |
453 | * | 453 | * |
454 | * Returns 1 if the page is mapped into the page tables of the VMA, 0 | 454 | * Returns 1 if the page is mapped into the page tables of the VMA, 0 |
455 | * if the page is not mapped into the page tables of this VMA. Only | 455 | * if the page is not mapped into the page tables of this VMA. Only |
456 | * valid for normal file or anonymous VMAs. | 456 | * valid for normal file or anonymous VMAs. |
457 | */ | 457 | */ |
458 | int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) | 458 | int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) |
459 | { | 459 | { |
460 | unsigned long address; | 460 | unsigned long address; |
461 | pte_t *pte; | 461 | pte_t *pte; |
462 | spinlock_t *ptl; | 462 | spinlock_t *ptl; |
463 | 463 | ||
464 | address = vma_address(page, vma); | 464 | address = vma_address(page, vma); |
465 | if (address == -EFAULT) /* out of vma range */ | 465 | if (address == -EFAULT) /* out of vma range */ |
466 | return 0; | 466 | return 0; |
467 | pte = page_check_address(page, vma->vm_mm, address, &ptl, 1); | 467 | pte = page_check_address(page, vma->vm_mm, address, &ptl, 1); |
468 | if (!pte) /* the page is not in this mm */ | 468 | if (!pte) /* the page is not in this mm */ |
469 | return 0; | 469 | return 0; |
470 | pte_unmap_unlock(pte, ptl); | 470 | pte_unmap_unlock(pte, ptl); |
471 | 471 | ||
472 | return 1; | 472 | return 1; |
473 | } | 473 | } |
474 | 474 | ||
475 | /* | 475 | /* |
476 | * Subfunctions of page_referenced: page_referenced_one called | 476 | * Subfunctions of page_referenced: page_referenced_one called |
477 | * repeatedly from either page_referenced_anon or page_referenced_file. | 477 | * repeatedly from either page_referenced_anon or page_referenced_file. |
478 | */ | 478 | */ |
479 | int page_referenced_one(struct page *page, struct vm_area_struct *vma, | 479 | int page_referenced_one(struct page *page, struct vm_area_struct *vma, |
480 | unsigned long address, unsigned int *mapcount, | 480 | unsigned long address, unsigned int *mapcount, |
481 | unsigned long *vm_flags) | 481 | unsigned long *vm_flags) |
482 | { | 482 | { |
483 | struct mm_struct *mm = vma->vm_mm; | 483 | struct mm_struct *mm = vma->vm_mm; |
484 | pte_t *pte; | 484 | pte_t *pte; |
485 | spinlock_t *ptl; | 485 | spinlock_t *ptl; |
486 | int referenced = 0; | 486 | int referenced = 0; |
487 | 487 | ||
488 | pte = page_check_address(page, mm, address, &ptl, 0); | 488 | pte = page_check_address(page, mm, address, &ptl, 0); |
489 | if (!pte) | 489 | if (!pte) |
490 | goto out; | 490 | goto out; |
491 | 491 | ||
492 | /* | 492 | /* |
493 | * Don't want to elevate referenced for mlocked page that gets this far, | 493 | * Don't want to elevate referenced for mlocked page that gets this far, |
494 | * in order that it progresses to try_to_unmap and is moved to the | 494 | * in order that it progresses to try_to_unmap and is moved to the |
495 | * unevictable list. | 495 | * unevictable list. |
496 | */ | 496 | */ |
497 | if (vma->vm_flags & VM_LOCKED) { | 497 | if (vma->vm_flags & VM_LOCKED) { |
498 | *mapcount = 1; /* break early from loop */ | 498 | *mapcount = 1; /* break early from loop */ |
499 | *vm_flags |= VM_LOCKED; | 499 | *vm_flags |= VM_LOCKED; |
500 | goto out_unmap; | 500 | goto out_unmap; |
501 | } | 501 | } |
502 | 502 | ||
503 | if (ptep_clear_flush_young_notify(vma, address, pte)) { | 503 | if (ptep_clear_flush_young_notify(vma, address, pte)) { |
504 | /* | 504 | /* |
505 | * Don't treat a reference through a sequentially read | 505 | * Don't treat a reference through a sequentially read |
506 | * mapping as such. If the page has been used in | 506 | * mapping as such. If the page has been used in |
507 | * another mapping, we will catch it; if this other | 507 | * another mapping, we will catch it; if this other |
508 | * mapping is already gone, the unmap path will have | 508 | * mapping is already gone, the unmap path will have |
509 | * set PG_referenced or activated the page. | 509 | * set PG_referenced or activated the page. |
510 | */ | 510 | */ |
511 | if (likely(!VM_SequentialReadHint(vma))) | 511 | if (likely(!VM_SequentialReadHint(vma))) |
512 | referenced++; | 512 | referenced++; |
513 | } | 513 | } |
514 | 514 | ||
515 | /* Pretend the page is referenced if the task has the | 515 | /* Pretend the page is referenced if the task has the |
516 | swap token and is in the middle of a page fault. */ | 516 | swap token and is in the middle of a page fault. */ |
517 | if (mm != current->mm && has_swap_token(mm) && | 517 | if (mm != current->mm && has_swap_token(mm) && |
518 | rwsem_is_locked(&mm->mmap_sem)) | 518 | rwsem_is_locked(&mm->mmap_sem)) |
519 | referenced++; | 519 | referenced++; |
520 | 520 | ||
521 | out_unmap: | 521 | out_unmap: |
522 | (*mapcount)--; | 522 | (*mapcount)--; |
523 | pte_unmap_unlock(pte, ptl); | 523 | pte_unmap_unlock(pte, ptl); |
524 | 524 | ||
525 | if (referenced) | 525 | if (referenced) |
526 | *vm_flags |= vma->vm_flags; | 526 | *vm_flags |= vma->vm_flags; |
527 | out: | 527 | out: |
528 | return referenced; | 528 | return referenced; |
529 | } | 529 | } |
530 | 530 | ||
531 | static int page_referenced_anon(struct page *page, | 531 | static int page_referenced_anon(struct page *page, |
532 | struct mem_cgroup *mem_cont, | 532 | struct mem_cgroup *mem_cont, |
533 | unsigned long *vm_flags) | 533 | unsigned long *vm_flags) |
534 | { | 534 | { |
535 | unsigned int mapcount; | 535 | unsigned int mapcount; |
536 | struct anon_vma *anon_vma; | 536 | struct anon_vma *anon_vma; |
537 | struct anon_vma_chain *avc; | 537 | struct anon_vma_chain *avc; |
538 | int referenced = 0; | 538 | int referenced = 0; |
539 | 539 | ||
540 | anon_vma = page_lock_anon_vma(page); | 540 | anon_vma = page_lock_anon_vma(page); |
541 | if (!anon_vma) | 541 | if (!anon_vma) |
542 | return referenced; | 542 | return referenced; |
543 | 543 | ||
544 | mapcount = page_mapcount(page); | 544 | mapcount = page_mapcount(page); |
545 | list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { | 545 | list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { |
546 | struct vm_area_struct *vma = avc->vma; | 546 | struct vm_area_struct *vma = avc->vma; |
547 | unsigned long address = vma_address(page, vma); | 547 | unsigned long address = vma_address(page, vma); |
548 | if (address == -EFAULT) | 548 | if (address == -EFAULT) |
549 | continue; | 549 | continue; |
550 | /* | 550 | /* |
551 | * If we are reclaiming on behalf of a cgroup, skip | 551 | * If we are reclaiming on behalf of a cgroup, skip |
552 | * counting on behalf of references from different | 552 | * counting on behalf of references from different |
553 | * cgroups | 553 | * cgroups |
554 | */ | 554 | */ |
555 | if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) | 555 | if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) |
556 | continue; | 556 | continue; |
557 | referenced += page_referenced_one(page, vma, address, | 557 | referenced += page_referenced_one(page, vma, address, |
558 | &mapcount, vm_flags); | 558 | &mapcount, vm_flags); |
559 | if (!mapcount) | 559 | if (!mapcount) |
560 | break; | 560 | break; |
561 | } | 561 | } |
562 | 562 | ||
563 | page_unlock_anon_vma(anon_vma); | 563 | page_unlock_anon_vma(anon_vma); |
564 | return referenced; | 564 | return referenced; |
565 | } | 565 | } |
566 | 566 | ||
567 | /** | 567 | /** |
568 | * page_referenced_file - referenced check for object-based rmap | 568 | * page_referenced_file - referenced check for object-based rmap |
569 | * @page: the page we're checking references on. | 569 | * @page: the page we're checking references on. |
570 | * @mem_cont: target memory controller | 570 | * @mem_cont: target memory controller |
571 | * @vm_flags: collect encountered vma->vm_flags who actually referenced the page | 571 | * @vm_flags: collect encountered vma->vm_flags who actually referenced the page |
572 | * | 572 | * |
573 | * For an object-based mapped page, find all the places it is mapped and | 573 | * For an object-based mapped page, find all the places it is mapped and |
574 | * check/clear the referenced flag. This is done by following the page->mapping | 574 | * check/clear the referenced flag. This is done by following the page->mapping |
575 | * pointer, then walking the chain of vmas it holds. It returns the number | 575 | * pointer, then walking the chain of vmas it holds. It returns the number |
576 | * of references it found. | 576 | * of references it found. |
577 | * | 577 | * |
578 | * This function is only called from page_referenced for object-based pages. | 578 | * This function is only called from page_referenced for object-based pages. |
579 | */ | 579 | */ |
580 | static int page_referenced_file(struct page *page, | 580 | static int page_referenced_file(struct page *page, |
581 | struct mem_cgroup *mem_cont, | 581 | struct mem_cgroup *mem_cont, |
582 | unsigned long *vm_flags) | 582 | unsigned long *vm_flags) |
583 | { | 583 | { |
584 | unsigned int mapcount; | 584 | unsigned int mapcount; |
585 | struct address_space *mapping = page->mapping; | 585 | struct address_space *mapping = page->mapping; |
586 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | 586 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); |
587 | struct vm_area_struct *vma; | 587 | struct vm_area_struct *vma; |
588 | struct prio_tree_iter iter; | 588 | struct prio_tree_iter iter; |
589 | int referenced = 0; | 589 | int referenced = 0; |
590 | 590 | ||
591 | /* | 591 | /* |
592 | * The caller's checks on page->mapping and !PageAnon have made | 592 | * The caller's checks on page->mapping and !PageAnon have made |
593 | * sure that this is a file page: the check for page->mapping | 593 | * sure that this is a file page: the check for page->mapping |
594 | * excludes the case just before it gets set on an anon page. | 594 | * excludes the case just before it gets set on an anon page. |
595 | */ | 595 | */ |
596 | BUG_ON(PageAnon(page)); | 596 | BUG_ON(PageAnon(page)); |
597 | 597 | ||
598 | /* | 598 | /* |
599 | * The page lock not only makes sure that page->mapping cannot | 599 | * The page lock not only makes sure that page->mapping cannot |
600 | * suddenly be NULLified by truncation, it makes sure that the | 600 | * suddenly be NULLified by truncation, it makes sure that the |
601 | * structure at mapping cannot be freed and reused yet, | 601 | * structure at mapping cannot be freed and reused yet, |
602 | * so we can safely take mapping->i_mmap_lock. | 602 | * so we can safely take mapping->i_mmap_lock. |
603 | */ | 603 | */ |
604 | BUG_ON(!PageLocked(page)); | 604 | BUG_ON(!PageLocked(page)); |
605 | 605 | ||
606 | spin_lock(&mapping->i_mmap_lock); | 606 | spin_lock(&mapping->i_mmap_lock); |
607 | 607 | ||
608 | /* | 608 | /* |
609 | * i_mmap_lock does not stabilize mapcount at all, but mapcount | 609 | * i_mmap_lock does not stabilize mapcount at all, but mapcount |
610 | * is more likely to be accurate if we note it after spinning. | 610 | * is more likely to be accurate if we note it after spinning. |
611 | */ | 611 | */ |
612 | mapcount = page_mapcount(page); | 612 | mapcount = page_mapcount(page); |
613 | 613 | ||
614 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | 614 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { |
615 | unsigned long address = vma_address(page, vma); | 615 | unsigned long address = vma_address(page, vma); |
616 | if (address == -EFAULT) | 616 | if (address == -EFAULT) |
617 | continue; | 617 | continue; |
618 | /* | 618 | /* |
619 | * If we are reclaiming on behalf of a cgroup, skip | 619 | * If we are reclaiming on behalf of a cgroup, skip |
620 | * counting on behalf of references from different | 620 | * counting on behalf of references from different |
621 | * cgroups | 621 | * cgroups |
622 | */ | 622 | */ |
623 | if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) | 623 | if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) |
624 | continue; | 624 | continue; |
625 | referenced += page_referenced_one(page, vma, address, | 625 | referenced += page_referenced_one(page, vma, address, |
626 | &mapcount, vm_flags); | 626 | &mapcount, vm_flags); |
627 | if (!mapcount) | 627 | if (!mapcount) |
628 | break; | 628 | break; |
629 | } | 629 | } |
630 | 630 | ||
631 | spin_unlock(&mapping->i_mmap_lock); | 631 | spin_unlock(&mapping->i_mmap_lock); |
632 | return referenced; | 632 | return referenced; |
633 | } | 633 | } |
634 | 634 | ||
635 | /** | 635 | /** |
636 | * page_referenced - test if the page was referenced | 636 | * page_referenced - test if the page was referenced |
637 | * @page: the page to test | 637 | * @page: the page to test |
638 | * @is_locked: caller holds lock on the page | 638 | * @is_locked: caller holds lock on the page |
639 | * @mem_cont: target memory controller | 639 | * @mem_cont: target memory controller |
640 | * @vm_flags: collect encountered vma->vm_flags who actually referenced the page | 640 | * @vm_flags: collect encountered vma->vm_flags who actually referenced the page |
641 | * | 641 | * |
642 | * Quick test_and_clear_referenced for all mappings to a page, | 642 | * Quick test_and_clear_referenced for all mappings to a page, |
643 | * returns the number of ptes which referenced the page. | 643 | * returns the number of ptes which referenced the page. |
644 | */ | 644 | */ |
645 | int page_referenced(struct page *page, | 645 | int page_referenced(struct page *page, |
646 | int is_locked, | 646 | int is_locked, |
647 | struct mem_cgroup *mem_cont, | 647 | struct mem_cgroup *mem_cont, |
648 | unsigned long *vm_flags) | 648 | unsigned long *vm_flags) |
649 | { | 649 | { |
650 | int referenced = 0; | 650 | int referenced = 0; |
651 | int we_locked = 0; | 651 | int we_locked = 0; |
652 | 652 | ||
653 | *vm_flags = 0; | 653 | *vm_flags = 0; |
654 | if (page_mapped(page) && page_rmapping(page)) { | 654 | if (page_mapped(page) && page_rmapping(page)) { |
655 | if (!is_locked && (!PageAnon(page) || PageKsm(page))) { | 655 | if (!is_locked && (!PageAnon(page) || PageKsm(page))) { |
656 | we_locked = trylock_page(page); | 656 | we_locked = trylock_page(page); |
657 | if (!we_locked) { | 657 | if (!we_locked) { |
658 | referenced++; | 658 | referenced++; |
659 | goto out; | 659 | goto out; |
660 | } | 660 | } |
661 | } | 661 | } |
662 | if (unlikely(PageKsm(page))) | 662 | if (unlikely(PageKsm(page))) |
663 | referenced += page_referenced_ksm(page, mem_cont, | 663 | referenced += page_referenced_ksm(page, mem_cont, |
664 | vm_flags); | 664 | vm_flags); |
665 | else if (PageAnon(page)) | 665 | else if (PageAnon(page)) |
666 | referenced += page_referenced_anon(page, mem_cont, | 666 | referenced += page_referenced_anon(page, mem_cont, |
667 | vm_flags); | 667 | vm_flags); |
668 | else if (page->mapping) | 668 | else if (page->mapping) |
669 | referenced += page_referenced_file(page, mem_cont, | 669 | referenced += page_referenced_file(page, mem_cont, |
670 | vm_flags); | 670 | vm_flags); |
671 | if (we_locked) | 671 | if (we_locked) |
672 | unlock_page(page); | 672 | unlock_page(page); |
673 | } | 673 | } |
674 | out: | 674 | out: |
675 | if (page_test_and_clear_young(page)) | 675 | if (page_test_and_clear_young(page)) |
676 | referenced++; | 676 | referenced++; |
677 | 677 | ||
678 | return referenced; | 678 | return referenced; |
679 | } | 679 | } |
680 | 680 | ||
681 | static int page_mkclean_one(struct page *page, struct vm_area_struct *vma, | 681 | static int page_mkclean_one(struct page *page, struct vm_area_struct *vma, |
682 | unsigned long address) | 682 | unsigned long address) |
683 | { | 683 | { |
684 | struct mm_struct *mm = vma->vm_mm; | 684 | struct mm_struct *mm = vma->vm_mm; |
685 | pte_t *pte; | 685 | pte_t *pte; |
686 | spinlock_t *ptl; | 686 | spinlock_t *ptl; |
687 | int ret = 0; | 687 | int ret = 0; |
688 | 688 | ||
689 | pte = page_check_address(page, mm, address, &ptl, 1); | 689 | pte = page_check_address(page, mm, address, &ptl, 1); |
690 | if (!pte) | 690 | if (!pte) |
691 | goto out; | 691 | goto out; |
692 | 692 | ||
693 | if (pte_dirty(*pte) || pte_write(*pte)) { | 693 | if (pte_dirty(*pte) || pte_write(*pte)) { |
694 | pte_t entry; | 694 | pte_t entry; |
695 | 695 | ||
696 | flush_cache_page(vma, address, pte_pfn(*pte)); | 696 | flush_cache_page(vma, address, pte_pfn(*pte)); |
697 | entry = ptep_clear_flush_notify(vma, address, pte); | 697 | entry = ptep_clear_flush_notify(vma, address, pte); |
698 | entry = pte_wrprotect(entry); | 698 | entry = pte_wrprotect(entry); |
699 | entry = pte_mkclean(entry); | 699 | entry = pte_mkclean(entry); |
700 | set_pte_at(mm, address, pte, entry); | 700 | set_pte_at(mm, address, pte, entry); |
701 | ret = 1; | 701 | ret = 1; |
702 | } | 702 | } |
703 | 703 | ||
704 | pte_unmap_unlock(pte, ptl); | 704 | pte_unmap_unlock(pte, ptl); |
705 | out: | 705 | out: |
706 | return ret; | 706 | return ret; |
707 | } | 707 | } |
708 | 708 | ||
709 | static int page_mkclean_file(struct address_space *mapping, struct page *page) | 709 | static int page_mkclean_file(struct address_space *mapping, struct page *page) |
710 | { | 710 | { |
711 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | 711 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); |
712 | struct vm_area_struct *vma; | 712 | struct vm_area_struct *vma; |
713 | struct prio_tree_iter iter; | 713 | struct prio_tree_iter iter; |
714 | int ret = 0; | 714 | int ret = 0; |
715 | 715 | ||
716 | BUG_ON(PageAnon(page)); | 716 | BUG_ON(PageAnon(page)); |
717 | 717 | ||
718 | spin_lock(&mapping->i_mmap_lock); | 718 | spin_lock(&mapping->i_mmap_lock); |
719 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | 719 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { |
720 | if (vma->vm_flags & VM_SHARED) { | 720 | if (vma->vm_flags & VM_SHARED) { |
721 | unsigned long address = vma_address(page, vma); | 721 | unsigned long address = vma_address(page, vma); |
722 | if (address == -EFAULT) | 722 | if (address == -EFAULT) |
723 | continue; | 723 | continue; |
724 | ret += page_mkclean_one(page, vma, address); | 724 | ret += page_mkclean_one(page, vma, address); |
725 | } | 725 | } |
726 | } | 726 | } |
727 | spin_unlock(&mapping->i_mmap_lock); | 727 | spin_unlock(&mapping->i_mmap_lock); |
728 | return ret; | 728 | return ret; |
729 | } | 729 | } |
730 | 730 | ||
731 | int page_mkclean(struct page *page) | 731 | int page_mkclean(struct page *page) |
732 | { | 732 | { |
733 | int ret = 0; | 733 | int ret = 0; |
734 | 734 | ||
735 | BUG_ON(!PageLocked(page)); | 735 | BUG_ON(!PageLocked(page)); |
736 | 736 | ||
737 | if (page_mapped(page)) { | 737 | if (page_mapped(page)) { |
738 | struct address_space *mapping = page_mapping(page); | 738 | struct address_space *mapping = page_mapping(page); |
739 | if (mapping) { | 739 | if (mapping) { |
740 | ret = page_mkclean_file(mapping, page); | 740 | ret = page_mkclean_file(mapping, page); |
741 | if (page_test_dirty(page)) { | 741 | if (page_test_dirty(page)) { |
742 | page_clear_dirty(page); | 742 | page_clear_dirty(page); |
743 | ret = 1; | 743 | ret = 1; |
744 | } | 744 | } |
745 | } | 745 | } |
746 | } | 746 | } |
747 | 747 | ||
748 | return ret; | 748 | return ret; |
749 | } | 749 | } |
750 | EXPORT_SYMBOL_GPL(page_mkclean); | 750 | EXPORT_SYMBOL_GPL(page_mkclean); |
751 | 751 | ||
752 | /** | 752 | /** |
753 | * page_move_anon_rmap - move a page to our anon_vma | 753 | * page_move_anon_rmap - move a page to our anon_vma |
754 | * @page: the page to move to our anon_vma | 754 | * @page: the page to move to our anon_vma |
755 | * @vma: the vma the page belongs to | 755 | * @vma: the vma the page belongs to |
756 | * @address: the user virtual address mapped | 756 | * @address: the user virtual address mapped |
757 | * | 757 | * |
758 | * When a page belongs exclusively to one process after a COW event, | 758 | * When a page belongs exclusively to one process after a COW event, |
759 | * that page can be moved into the anon_vma that belongs to just that | 759 | * that page can be moved into the anon_vma that belongs to just that |
760 | * process, so the rmap code will not search the parent or sibling | 760 | * process, so the rmap code will not search the parent or sibling |
761 | * processes. | 761 | * processes. |
762 | */ | 762 | */ |
763 | void page_move_anon_rmap(struct page *page, | 763 | void page_move_anon_rmap(struct page *page, |
764 | struct vm_area_struct *vma, unsigned long address) | 764 | struct vm_area_struct *vma, unsigned long address) |
765 | { | 765 | { |
766 | struct anon_vma *anon_vma = vma->anon_vma; | 766 | struct anon_vma *anon_vma = vma->anon_vma; |
767 | 767 | ||
768 | VM_BUG_ON(!PageLocked(page)); | 768 | VM_BUG_ON(!PageLocked(page)); |
769 | VM_BUG_ON(!anon_vma); | 769 | VM_BUG_ON(!anon_vma); |
770 | VM_BUG_ON(page->index != linear_page_index(vma, address)); | 770 | VM_BUG_ON(page->index != linear_page_index(vma, address)); |
771 | 771 | ||
772 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | 772 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; |
773 | page->mapping = (struct address_space *) anon_vma; | 773 | page->mapping = (struct address_space *) anon_vma; |
774 | } | 774 | } |
775 | 775 | ||
776 | /** | 776 | /** |
777 | * __page_set_anon_rmap - setup new anonymous rmap | 777 | * __page_set_anon_rmap - setup new anonymous rmap |
778 | * @page: the page to add the mapping to | 778 | * @page: the page to add the mapping to |
779 | * @vma: the vm area in which the mapping is added | 779 | * @vma: the vm area in which the mapping is added |
780 | * @address: the user virtual address mapped | 780 | * @address: the user virtual address mapped |
781 | * @exclusive: the page is exclusively owned by the current process | 781 | * @exclusive: the page is exclusively owned by the current process |
782 | */ | 782 | */ |
783 | static void __page_set_anon_rmap(struct page *page, | 783 | static void __page_set_anon_rmap(struct page *page, |
784 | struct vm_area_struct *vma, unsigned long address, int exclusive) | 784 | struct vm_area_struct *vma, unsigned long address, int exclusive) |
785 | { | 785 | { |
786 | struct anon_vma *anon_vma = vma->anon_vma; | 786 | struct anon_vma *anon_vma = vma->anon_vma; |
787 | 787 | ||
788 | BUG_ON(!anon_vma); | 788 | BUG_ON(!anon_vma); |
789 | 789 | ||
790 | /* | 790 | /* |
791 | * If the page isn't exclusively mapped into this vma, | 791 | * If the page isn't exclusively mapped into this vma, |
792 | * we must use the _oldest_ possible anon_vma for the | 792 | * we must use the _oldest_ possible anon_vma for the |
793 | * page mapping! | 793 | * page mapping! |
794 | */ | 794 | */ |
795 | if (!exclusive) { | 795 | if (!exclusive) { |
796 | if (PageAnon(page)) | 796 | if (PageAnon(page)) |
797 | return; | 797 | return; |
798 | anon_vma = anon_vma->root; | 798 | anon_vma = anon_vma->root; |
799 | } else { | 799 | } else { |
800 | /* | 800 | /* |
801 | * In this case, swapped-out-but-not-discarded swap-cache | 801 | * In this case, swapped-out-but-not-discarded swap-cache |
802 | * is remapped. So, no need to update page->mapping here. | 802 | * is remapped. So, no need to update page->mapping here. |
803 | * We convice anon_vma poitned by page->mapping is not obsolete | 803 | * We convice anon_vma poitned by page->mapping is not obsolete |
804 | * because vma->anon_vma is necessary to be a family of it. | 804 | * because vma->anon_vma is necessary to be a family of it. |
805 | */ | 805 | */ |
806 | if (PageAnon(page)) | 806 | if (PageAnon(page)) |
807 | return; | 807 | return; |
808 | } | 808 | } |
809 | 809 | ||
810 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | 810 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; |
811 | page->mapping = (struct address_space *) anon_vma; | 811 | page->mapping = (struct address_space *) anon_vma; |
812 | page->index = linear_page_index(vma, address); | 812 | page->index = linear_page_index(vma, address); |
813 | } | 813 | } |
814 | 814 | ||
815 | /** | 815 | /** |
816 | * __page_check_anon_rmap - sanity check anonymous rmap addition | 816 | * __page_check_anon_rmap - sanity check anonymous rmap addition |
817 | * @page: the page to add the mapping to | 817 | * @page: the page to add the mapping to |
818 | * @vma: the vm area in which the mapping is added | 818 | * @vma: the vm area in which the mapping is added |
819 | * @address: the user virtual address mapped | 819 | * @address: the user virtual address mapped |
820 | */ | 820 | */ |
821 | static void __page_check_anon_rmap(struct page *page, | 821 | static void __page_check_anon_rmap(struct page *page, |
822 | struct vm_area_struct *vma, unsigned long address) | 822 | struct vm_area_struct *vma, unsigned long address) |
823 | { | 823 | { |
824 | #ifdef CONFIG_DEBUG_VM | 824 | #ifdef CONFIG_DEBUG_VM |
825 | /* | 825 | /* |
826 | * The page's anon-rmap details (mapping and index) are guaranteed to | 826 | * The page's anon-rmap details (mapping and index) are guaranteed to |
827 | * be set up correctly at this point. | 827 | * be set up correctly at this point. |
828 | * | 828 | * |
829 | * We have exclusion against page_add_anon_rmap because the caller | 829 | * We have exclusion against page_add_anon_rmap because the caller |
830 | * always holds the page locked, except if called from page_dup_rmap, | 830 | * always holds the page locked, except if called from page_dup_rmap, |
831 | * in which case the page is already known to be setup. | 831 | * in which case the page is already known to be setup. |
832 | * | 832 | * |
833 | * We have exclusion against page_add_new_anon_rmap because those pages | 833 | * We have exclusion against page_add_new_anon_rmap because those pages |
834 | * are initially only visible via the pagetables, and the pte is locked | 834 | * are initially only visible via the pagetables, and the pte is locked |
835 | * over the call to page_add_new_anon_rmap. | 835 | * over the call to page_add_new_anon_rmap. |
836 | */ | 836 | */ |
837 | BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); | 837 | BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); |
838 | BUG_ON(page->index != linear_page_index(vma, address)); | 838 | BUG_ON(page->index != linear_page_index(vma, address)); |
839 | #endif | 839 | #endif |
840 | } | 840 | } |
841 | 841 | ||
842 | /** | 842 | /** |
843 | * page_add_anon_rmap - add pte mapping to an anonymous page | 843 | * page_add_anon_rmap - add pte mapping to an anonymous page |
844 | * @page: the page to add the mapping to | 844 | * @page: the page to add the mapping to |
845 | * @vma: the vm area in which the mapping is added | 845 | * @vma: the vm area in which the mapping is added |
846 | * @address: the user virtual address mapped | 846 | * @address: the user virtual address mapped |
847 | * | 847 | * |
848 | * The caller needs to hold the pte lock, and the page must be locked in | 848 | * The caller needs to hold the pte lock, and the page must be locked in |
849 | * the anon_vma case: to serialize mapping,index checking after setting, | 849 | * the anon_vma case: to serialize mapping,index checking after setting, |
850 | * and to ensure that PageAnon is not being upgraded racily to PageKsm | 850 | * and to ensure that PageAnon is not being upgraded racily to PageKsm |
851 | * (but PageKsm is never downgraded to PageAnon). | 851 | * (but PageKsm is never downgraded to PageAnon). |
852 | */ | 852 | */ |
853 | void page_add_anon_rmap(struct page *page, | 853 | void page_add_anon_rmap(struct page *page, |
854 | struct vm_area_struct *vma, unsigned long address) | 854 | struct vm_area_struct *vma, unsigned long address) |
855 | { | 855 | { |
856 | do_page_add_anon_rmap(page, vma, address, 0); | 856 | do_page_add_anon_rmap(page, vma, address, 0); |
857 | } | 857 | } |
858 | 858 | ||
859 | /* | 859 | /* |
860 | * Special version of the above for do_swap_page, which often runs | 860 | * Special version of the above for do_swap_page, which often runs |
861 | * into pages that are exclusively owned by the current process. | 861 | * into pages that are exclusively owned by the current process. |
862 | * Everybody else should continue to use page_add_anon_rmap above. | 862 | * Everybody else should continue to use page_add_anon_rmap above. |
863 | */ | 863 | */ |
864 | void do_page_add_anon_rmap(struct page *page, | 864 | void do_page_add_anon_rmap(struct page *page, |
865 | struct vm_area_struct *vma, unsigned long address, int exclusive) | 865 | struct vm_area_struct *vma, unsigned long address, int exclusive) |
866 | { | 866 | { |
867 | int first = atomic_inc_and_test(&page->_mapcount); | 867 | int first = atomic_inc_and_test(&page->_mapcount); |
868 | if (first) | 868 | if (first) |
869 | __inc_zone_page_state(page, NR_ANON_PAGES); | 869 | __inc_zone_page_state(page, NR_ANON_PAGES); |
870 | if (unlikely(PageKsm(page))) | 870 | if (unlikely(PageKsm(page))) |
871 | return; | 871 | return; |
872 | 872 | ||
873 | VM_BUG_ON(!PageLocked(page)); | 873 | VM_BUG_ON(!PageLocked(page)); |
874 | VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); | 874 | VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); |
875 | if (first) | 875 | if (first) |
876 | __page_set_anon_rmap(page, vma, address, exclusive); | 876 | __page_set_anon_rmap(page, vma, address, exclusive); |
877 | else | 877 | else |
878 | __page_check_anon_rmap(page, vma, address); | 878 | __page_check_anon_rmap(page, vma, address); |
879 | } | 879 | } |
880 | 880 | ||
881 | /** | 881 | /** |
882 | * page_add_new_anon_rmap - add pte mapping to a new anonymous page | 882 | * page_add_new_anon_rmap - add pte mapping to a new anonymous page |
883 | * @page: the page to add the mapping to | 883 | * @page: the page to add the mapping to |
884 | * @vma: the vm area in which the mapping is added | 884 | * @vma: the vm area in which the mapping is added |
885 | * @address: the user virtual address mapped | 885 | * @address: the user virtual address mapped |
886 | * | 886 | * |
887 | * Same as page_add_anon_rmap but must only be called on *new* pages. | 887 | * Same as page_add_anon_rmap but must only be called on *new* pages. |
888 | * This means the inc-and-test can be bypassed. | 888 | * This means the inc-and-test can be bypassed. |
889 | * Page does not have to be locked. | 889 | * Page does not have to be locked. |
890 | */ | 890 | */ |
891 | void page_add_new_anon_rmap(struct page *page, | 891 | void page_add_new_anon_rmap(struct page *page, |
892 | struct vm_area_struct *vma, unsigned long address) | 892 | struct vm_area_struct *vma, unsigned long address) |
893 | { | 893 | { |
894 | VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); | 894 | VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); |
895 | SetPageSwapBacked(page); | 895 | SetPageSwapBacked(page); |
896 | atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */ | 896 | atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */ |
897 | __inc_zone_page_state(page, NR_ANON_PAGES); | 897 | __inc_zone_page_state(page, NR_ANON_PAGES); |
898 | __page_set_anon_rmap(page, vma, address, 1); | 898 | __page_set_anon_rmap(page, vma, address, 1); |
899 | if (page_evictable(page, vma)) | 899 | if (page_evictable(page, vma)) |
900 | lru_cache_add_lru(page, LRU_ACTIVE_ANON); | 900 | lru_cache_add_lru(page, LRU_ACTIVE_ANON); |
901 | else | 901 | else |
902 | add_page_to_unevictable_list(page); | 902 | add_page_to_unevictable_list(page); |
903 | } | 903 | } |
904 | 904 | ||
905 | /** | 905 | /** |
906 | * page_add_file_rmap - add pte mapping to a file page | 906 | * page_add_file_rmap - add pte mapping to a file page |
907 | * @page: the page to add the mapping to | 907 | * @page: the page to add the mapping to |
908 | * | 908 | * |
909 | * The caller needs to hold the pte lock. | 909 | * The caller needs to hold the pte lock. |
910 | */ | 910 | */ |
911 | void page_add_file_rmap(struct page *page) | 911 | void page_add_file_rmap(struct page *page) |
912 | { | 912 | { |
913 | if (atomic_inc_and_test(&page->_mapcount)) { | 913 | if (atomic_inc_and_test(&page->_mapcount)) { |
914 | __inc_zone_page_state(page, NR_FILE_MAPPED); | 914 | __inc_zone_page_state(page, NR_FILE_MAPPED); |
915 | mem_cgroup_update_file_mapped(page, 1); | 915 | mem_cgroup_update_file_mapped(page, 1); |
916 | } | 916 | } |
917 | } | 917 | } |
918 | 918 | ||
919 | /** | 919 | /** |
920 | * page_remove_rmap - take down pte mapping from a page | 920 | * page_remove_rmap - take down pte mapping from a page |
921 | * @page: page to remove mapping from | 921 | * @page: page to remove mapping from |
922 | * | 922 | * |
923 | * The caller needs to hold the pte lock. | 923 | * The caller needs to hold the pte lock. |
924 | */ | 924 | */ |
925 | void page_remove_rmap(struct page *page) | 925 | void page_remove_rmap(struct page *page) |
926 | { | 926 | { |
927 | /* page still mapped by someone else? */ | 927 | /* page still mapped by someone else? */ |
928 | if (!atomic_add_negative(-1, &page->_mapcount)) | 928 | if (!atomic_add_negative(-1, &page->_mapcount)) |
929 | return; | 929 | return; |
930 | 930 | ||
931 | /* | 931 | /* |
932 | * Now that the last pte has gone, s390 must transfer dirty | 932 | * Now that the last pte has gone, s390 must transfer dirty |
933 | * flag from storage key to struct page. We can usually skip | 933 | * flag from storage key to struct page. We can usually skip |
934 | * this if the page is anon, so about to be freed; but perhaps | 934 | * this if the page is anon, so about to be freed; but perhaps |
935 | * not if it's in swapcache - there might be another pte slot | 935 | * not if it's in swapcache - there might be another pte slot |
936 | * containing the swap entry, but page not yet written to swap. | 936 | * containing the swap entry, but page not yet written to swap. |
937 | */ | 937 | */ |
938 | if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) { | 938 | if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) { |
939 | page_clear_dirty(page); | 939 | page_clear_dirty(page); |
940 | set_page_dirty(page); | 940 | set_page_dirty(page); |
941 | } | 941 | } |
942 | /* | 942 | /* |
943 | * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED | 943 | * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED |
944 | * and not charged by memcg for now. | 944 | * and not charged by memcg for now. |
945 | */ | 945 | */ |
946 | if (unlikely(PageHuge(page))) | 946 | if (unlikely(PageHuge(page))) |
947 | return; | 947 | return; |
948 | if (PageAnon(page)) { | 948 | if (PageAnon(page)) { |
949 | mem_cgroup_uncharge_page(page); | 949 | mem_cgroup_uncharge_page(page); |
950 | __dec_zone_page_state(page, NR_ANON_PAGES); | 950 | __dec_zone_page_state(page, NR_ANON_PAGES); |
951 | } else { | 951 | } else { |
952 | __dec_zone_page_state(page, NR_FILE_MAPPED); | 952 | __dec_zone_page_state(page, NR_FILE_MAPPED); |
953 | mem_cgroup_update_file_mapped(page, -1); | 953 | mem_cgroup_update_file_mapped(page, -1); |
954 | } | 954 | } |
955 | /* | 955 | /* |
956 | * It would be tidy to reset the PageAnon mapping here, | 956 | * It would be tidy to reset the PageAnon mapping here, |
957 | * but that might overwrite a racing page_add_anon_rmap | 957 | * but that might overwrite a racing page_add_anon_rmap |
958 | * which increments mapcount after us but sets mapping | 958 | * which increments mapcount after us but sets mapping |
959 | * before us: so leave the reset to free_hot_cold_page, | 959 | * before us: so leave the reset to free_hot_cold_page, |
960 | * and remember that it's only reliable while mapped. | 960 | * and remember that it's only reliable while mapped. |
961 | * Leaving it set also helps swapoff to reinstate ptes | 961 | * Leaving it set also helps swapoff to reinstate ptes |
962 | * faster for those pages still in swapcache. | 962 | * faster for those pages still in swapcache. |
963 | */ | 963 | */ |
964 | } | 964 | } |
965 | 965 | ||
966 | /* | 966 | /* |
967 | * Subfunctions of try_to_unmap: try_to_unmap_one called | 967 | * Subfunctions of try_to_unmap: try_to_unmap_one called |
968 | * repeatedly from either try_to_unmap_anon or try_to_unmap_file. | 968 | * repeatedly from either try_to_unmap_anon or try_to_unmap_file. |
969 | */ | 969 | */ |
970 | int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, | 970 | int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, |
971 | unsigned long address, enum ttu_flags flags) | 971 | unsigned long address, enum ttu_flags flags) |
972 | { | 972 | { |
973 | struct mm_struct *mm = vma->vm_mm; | 973 | struct mm_struct *mm = vma->vm_mm; |
974 | pte_t *pte; | 974 | pte_t *pte; |
975 | pte_t pteval; | 975 | pte_t pteval; |
976 | spinlock_t *ptl; | 976 | spinlock_t *ptl; |
977 | int ret = SWAP_AGAIN; | 977 | int ret = SWAP_AGAIN; |
978 | 978 | ||
979 | pte = page_check_address(page, mm, address, &ptl, 0); | 979 | pte = page_check_address(page, mm, address, &ptl, 0); |
980 | if (!pte) | 980 | if (!pte) |
981 | goto out; | 981 | goto out; |
982 | 982 | ||
983 | /* | 983 | /* |
984 | * If the page is mlock()d, we cannot swap it out. | 984 | * If the page is mlock()d, we cannot swap it out. |
985 | * If it's recently referenced (perhaps page_referenced | 985 | * If it's recently referenced (perhaps page_referenced |
986 | * skipped over this mm) then we should reactivate it. | 986 | * skipped over this mm) then we should reactivate it. |
987 | */ | 987 | */ |
988 | if (!(flags & TTU_IGNORE_MLOCK)) { | 988 | if (!(flags & TTU_IGNORE_MLOCK)) { |
989 | if (vma->vm_flags & VM_LOCKED) | 989 | if (vma->vm_flags & VM_LOCKED) |
990 | goto out_mlock; | 990 | goto out_mlock; |
991 | 991 | ||
992 | if (TTU_ACTION(flags) == TTU_MUNLOCK) | 992 | if (TTU_ACTION(flags) == TTU_MUNLOCK) |
993 | goto out_unmap; | 993 | goto out_unmap; |
994 | } | 994 | } |
995 | if (!(flags & TTU_IGNORE_ACCESS)) { | 995 | if (!(flags & TTU_IGNORE_ACCESS)) { |
996 | if (ptep_clear_flush_young_notify(vma, address, pte)) { | 996 | if (ptep_clear_flush_young_notify(vma, address, pte)) { |
997 | ret = SWAP_FAIL; | 997 | ret = SWAP_FAIL; |
998 | goto out_unmap; | 998 | goto out_unmap; |
999 | } | 999 | } |
1000 | } | 1000 | } |
1001 | 1001 | ||
1002 | /* Nuke the page table entry. */ | 1002 | /* Nuke the page table entry. */ |
1003 | flush_cache_page(vma, address, page_to_pfn(page)); | 1003 | flush_cache_page(vma, address, page_to_pfn(page)); |
1004 | pteval = ptep_clear_flush_notify(vma, address, pte); | 1004 | pteval = ptep_clear_flush_notify(vma, address, pte); |
1005 | 1005 | ||
1006 | /* Move the dirty bit to the physical page now the pte is gone. */ | 1006 | /* Move the dirty bit to the physical page now the pte is gone. */ |
1007 | if (pte_dirty(pteval)) | 1007 | if (pte_dirty(pteval)) |
1008 | set_page_dirty(page); | 1008 | set_page_dirty(page); |
1009 | 1009 | ||
1010 | /* Update high watermark before we lower rss */ | 1010 | /* Update high watermark before we lower rss */ |
1011 | update_hiwater_rss(mm); | 1011 | update_hiwater_rss(mm); |
1012 | 1012 | ||
1013 | if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { | 1013 | if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { |
1014 | if (PageAnon(page)) | 1014 | if (PageAnon(page)) |
1015 | dec_mm_counter(mm, MM_ANONPAGES); | 1015 | dec_mm_counter(mm, MM_ANONPAGES); |
1016 | else | 1016 | else |
1017 | dec_mm_counter(mm, MM_FILEPAGES); | 1017 | dec_mm_counter(mm, MM_FILEPAGES); |
1018 | set_pte_at(mm, address, pte, | 1018 | set_pte_at(mm, address, pte, |
1019 | swp_entry_to_pte(make_hwpoison_entry(page))); | 1019 | swp_entry_to_pte(make_hwpoison_entry(page))); |
1020 | } else if (PageAnon(page)) { | 1020 | } else if (PageAnon(page)) { |
1021 | swp_entry_t entry = { .val = page_private(page) }; | 1021 | swp_entry_t entry = { .val = page_private(page) }; |
1022 | 1022 | ||
1023 | if (PageSwapCache(page)) { | 1023 | if (PageSwapCache(page)) { |
1024 | /* | 1024 | /* |
1025 | * Store the swap location in the pte. | 1025 | * Store the swap location in the pte. |
1026 | * See handle_pte_fault() ... | 1026 | * See handle_pte_fault() ... |
1027 | */ | 1027 | */ |
1028 | if (swap_duplicate(entry) < 0) { | 1028 | if (swap_duplicate(entry) < 0) { |
1029 | set_pte_at(mm, address, pte, pteval); | 1029 | set_pte_at(mm, address, pte, pteval); |
1030 | ret = SWAP_FAIL; | 1030 | ret = SWAP_FAIL; |
1031 | goto out_unmap; | 1031 | goto out_unmap; |
1032 | } | 1032 | } |
1033 | if (list_empty(&mm->mmlist)) { | 1033 | if (list_empty(&mm->mmlist)) { |
1034 | spin_lock(&mmlist_lock); | 1034 | spin_lock(&mmlist_lock); |
1035 | if (list_empty(&mm->mmlist)) | 1035 | if (list_empty(&mm->mmlist)) |
1036 | list_add(&mm->mmlist, &init_mm.mmlist); | 1036 | list_add(&mm->mmlist, &init_mm.mmlist); |
1037 | spin_unlock(&mmlist_lock); | 1037 | spin_unlock(&mmlist_lock); |
1038 | } | 1038 | } |
1039 | dec_mm_counter(mm, MM_ANONPAGES); | 1039 | dec_mm_counter(mm, MM_ANONPAGES); |
1040 | inc_mm_counter(mm, MM_SWAPENTS); | 1040 | inc_mm_counter(mm, MM_SWAPENTS); |
1041 | } else if (PAGE_MIGRATION) { | 1041 | } else if (PAGE_MIGRATION) { |
1042 | /* | 1042 | /* |
1043 | * Store the pfn of the page in a special migration | 1043 | * Store the pfn of the page in a special migration |
1044 | * pte. do_swap_page() will wait until the migration | 1044 | * pte. do_swap_page() will wait until the migration |
1045 | * pte is removed and then restart fault handling. | 1045 | * pte is removed and then restart fault handling. |
1046 | */ | 1046 | */ |
1047 | BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION); | 1047 | BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION); |
1048 | entry = make_migration_entry(page, pte_write(pteval)); | 1048 | entry = make_migration_entry(page, pte_write(pteval)); |
1049 | } | 1049 | } |
1050 | set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); | 1050 | set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); |
1051 | BUG_ON(pte_file(*pte)); | 1051 | BUG_ON(pte_file(*pte)); |
1052 | } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) { | 1052 | } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) { |
1053 | /* Establish migration entry for a file page */ | 1053 | /* Establish migration entry for a file page */ |
1054 | swp_entry_t entry; | 1054 | swp_entry_t entry; |
1055 | entry = make_migration_entry(page, pte_write(pteval)); | 1055 | entry = make_migration_entry(page, pte_write(pteval)); |
1056 | set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); | 1056 | set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); |
1057 | } else | 1057 | } else |
1058 | dec_mm_counter(mm, MM_FILEPAGES); | 1058 | dec_mm_counter(mm, MM_FILEPAGES); |
1059 | 1059 | ||
1060 | page_remove_rmap(page); | 1060 | page_remove_rmap(page); |
1061 | page_cache_release(page); | 1061 | page_cache_release(page); |
1062 | 1062 | ||
1063 | out_unmap: | 1063 | out_unmap: |
1064 | pte_unmap_unlock(pte, ptl); | 1064 | pte_unmap_unlock(pte, ptl); |
1065 | out: | 1065 | out: |
1066 | return ret; | 1066 | return ret; |
1067 | 1067 | ||
1068 | out_mlock: | 1068 | out_mlock: |
1069 | pte_unmap_unlock(pte, ptl); | 1069 | pte_unmap_unlock(pte, ptl); |
1070 | 1070 | ||
1071 | 1071 | ||
1072 | /* | 1072 | /* |
1073 | * We need mmap_sem locking, Otherwise VM_LOCKED check makes | 1073 | * We need mmap_sem locking, Otherwise VM_LOCKED check makes |
1074 | * unstable result and race. Plus, We can't wait here because | 1074 | * unstable result and race. Plus, We can't wait here because |
1075 | * we now hold anon_vma->lock or mapping->i_mmap_lock. | 1075 | * we now hold anon_vma->lock or mapping->i_mmap_lock. |
1076 | * if trylock failed, the page remain in evictable lru and later | 1076 | * if trylock failed, the page remain in evictable lru and later |
1077 | * vmscan could retry to move the page to unevictable lru if the | 1077 | * vmscan could retry to move the page to unevictable lru if the |
1078 | * page is actually mlocked. | 1078 | * page is actually mlocked. |
1079 | */ | 1079 | */ |
1080 | if (down_read_trylock(&vma->vm_mm->mmap_sem)) { | 1080 | if (down_read_trylock(&vma->vm_mm->mmap_sem)) { |
1081 | if (vma->vm_flags & VM_LOCKED) { | 1081 | if (vma->vm_flags & VM_LOCKED) { |
1082 | mlock_vma_page(page); | 1082 | mlock_vma_page(page); |
1083 | ret = SWAP_MLOCK; | 1083 | ret = SWAP_MLOCK; |
1084 | } | 1084 | } |
1085 | up_read(&vma->vm_mm->mmap_sem); | 1085 | up_read(&vma->vm_mm->mmap_sem); |
1086 | } | 1086 | } |
1087 | return ret; | 1087 | return ret; |
1088 | } | 1088 | } |
1089 | 1089 | ||
1090 | /* | 1090 | /* |
1091 | * objrmap doesn't work for nonlinear VMAs because the assumption that | 1091 | * objrmap doesn't work for nonlinear VMAs because the assumption that |
1092 | * offset-into-file correlates with offset-into-virtual-addresses does not hold. | 1092 | * offset-into-file correlates with offset-into-virtual-addresses does not hold. |
1093 | * Consequently, given a particular page and its ->index, we cannot locate the | 1093 | * Consequently, given a particular page and its ->index, we cannot locate the |
1094 | * ptes which are mapping that page without an exhaustive linear search. | 1094 | * ptes which are mapping that page without an exhaustive linear search. |
1095 | * | 1095 | * |
1096 | * So what this code does is a mini "virtual scan" of each nonlinear VMA which | 1096 | * So what this code does is a mini "virtual scan" of each nonlinear VMA which |
1097 | * maps the file to which the target page belongs. The ->vm_private_data field | 1097 | * maps the file to which the target page belongs. The ->vm_private_data field |
1098 | * holds the current cursor into that scan. Successive searches will circulate | 1098 | * holds the current cursor into that scan. Successive searches will circulate |
1099 | * around the vma's virtual address space. | 1099 | * around the vma's virtual address space. |
1100 | * | 1100 | * |
1101 | * So as more replacement pressure is applied to the pages in a nonlinear VMA, | 1101 | * So as more replacement pressure is applied to the pages in a nonlinear VMA, |
1102 | * more scanning pressure is placed against them as well. Eventually pages | 1102 | * more scanning pressure is placed against them as well. Eventually pages |
1103 | * will become fully unmapped and are eligible for eviction. | 1103 | * will become fully unmapped and are eligible for eviction. |
1104 | * | 1104 | * |
1105 | * For very sparsely populated VMAs this is a little inefficient - chances are | 1105 | * For very sparsely populated VMAs this is a little inefficient - chances are |
1106 | * there there won't be many ptes located within the scan cluster. In this case | 1106 | * there there won't be many ptes located within the scan cluster. In this case |
1107 | * maybe we could scan further - to the end of the pte page, perhaps. | 1107 | * maybe we could scan further - to the end of the pte page, perhaps. |
1108 | * | 1108 | * |
1109 | * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can | 1109 | * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can |
1110 | * acquire it without blocking. If vma locked, mlock the pages in the cluster, | 1110 | * acquire it without blocking. If vma locked, mlock the pages in the cluster, |
1111 | * rather than unmapping them. If we encounter the "check_page" that vmscan is | 1111 | * rather than unmapping them. If we encounter the "check_page" that vmscan is |
1112 | * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN. | 1112 | * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN. |
1113 | */ | 1113 | */ |
1114 | #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) | 1114 | #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) |
1115 | #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) | 1115 | #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) |
1116 | 1116 | ||
1117 | static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount, | 1117 | static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount, |
1118 | struct vm_area_struct *vma, struct page *check_page) | 1118 | struct vm_area_struct *vma, struct page *check_page) |
1119 | { | 1119 | { |
1120 | struct mm_struct *mm = vma->vm_mm; | 1120 | struct mm_struct *mm = vma->vm_mm; |
1121 | pgd_t *pgd; | 1121 | pgd_t *pgd; |
1122 | pud_t *pud; | 1122 | pud_t *pud; |
1123 | pmd_t *pmd; | 1123 | pmd_t *pmd; |
1124 | pte_t *pte; | 1124 | pte_t *pte; |
1125 | pte_t pteval; | 1125 | pte_t pteval; |
1126 | spinlock_t *ptl; | 1126 | spinlock_t *ptl; |
1127 | struct page *page; | 1127 | struct page *page; |
1128 | unsigned long address; | 1128 | unsigned long address; |
1129 | unsigned long end; | 1129 | unsigned long end; |
1130 | int ret = SWAP_AGAIN; | 1130 | int ret = SWAP_AGAIN; |
1131 | int locked_vma = 0; | 1131 | int locked_vma = 0; |
1132 | 1132 | ||
1133 | address = (vma->vm_start + cursor) & CLUSTER_MASK; | 1133 | address = (vma->vm_start + cursor) & CLUSTER_MASK; |
1134 | end = address + CLUSTER_SIZE; | 1134 | end = address + CLUSTER_SIZE; |
1135 | if (address < vma->vm_start) | 1135 | if (address < vma->vm_start) |
1136 | address = vma->vm_start; | 1136 | address = vma->vm_start; |
1137 | if (end > vma->vm_end) | 1137 | if (end > vma->vm_end) |
1138 | end = vma->vm_end; | 1138 | end = vma->vm_end; |
1139 | 1139 | ||
1140 | pgd = pgd_offset(mm, address); | 1140 | pgd = pgd_offset(mm, address); |
1141 | if (!pgd_present(*pgd)) | 1141 | if (!pgd_present(*pgd)) |
1142 | return ret; | 1142 | return ret; |
1143 | 1143 | ||
1144 | pud = pud_offset(pgd, address); | 1144 | pud = pud_offset(pgd, address); |
1145 | if (!pud_present(*pud)) | 1145 | if (!pud_present(*pud)) |
1146 | return ret; | 1146 | return ret; |
1147 | 1147 | ||
1148 | pmd = pmd_offset(pud, address); | 1148 | pmd = pmd_offset(pud, address); |
1149 | if (!pmd_present(*pmd)) | 1149 | if (!pmd_present(*pmd)) |
1150 | return ret; | 1150 | return ret; |
1151 | 1151 | ||
1152 | /* | 1152 | /* |
1153 | * If we can acquire the mmap_sem for read, and vma is VM_LOCKED, | 1153 | * If we can acquire the mmap_sem for read, and vma is VM_LOCKED, |
1154 | * keep the sem while scanning the cluster for mlocking pages. | 1154 | * keep the sem while scanning the cluster for mlocking pages. |
1155 | */ | 1155 | */ |
1156 | if (down_read_trylock(&vma->vm_mm->mmap_sem)) { | 1156 | if (down_read_trylock(&vma->vm_mm->mmap_sem)) { |
1157 | locked_vma = (vma->vm_flags & VM_LOCKED); | 1157 | locked_vma = (vma->vm_flags & VM_LOCKED); |
1158 | if (!locked_vma) | 1158 | if (!locked_vma) |
1159 | up_read(&vma->vm_mm->mmap_sem); /* don't need it */ | 1159 | up_read(&vma->vm_mm->mmap_sem); /* don't need it */ |
1160 | } | 1160 | } |
1161 | 1161 | ||
1162 | pte = pte_offset_map_lock(mm, pmd, address, &ptl); | 1162 | pte = pte_offset_map_lock(mm, pmd, address, &ptl); |
1163 | 1163 | ||
1164 | /* Update high watermark before we lower rss */ | 1164 | /* Update high watermark before we lower rss */ |
1165 | update_hiwater_rss(mm); | 1165 | update_hiwater_rss(mm); |
1166 | 1166 | ||
1167 | for (; address < end; pte++, address += PAGE_SIZE) { | 1167 | for (; address < end; pte++, address += PAGE_SIZE) { |
1168 | if (!pte_present(*pte)) | 1168 | if (!pte_present(*pte)) |
1169 | continue; | 1169 | continue; |
1170 | page = vm_normal_page(vma, address, *pte); | 1170 | page = vm_normal_page(vma, address, *pte); |
1171 | BUG_ON(!page || PageAnon(page)); | 1171 | BUG_ON(!page || PageAnon(page)); |
1172 | 1172 | ||
1173 | if (locked_vma) { | 1173 | if (locked_vma) { |
1174 | mlock_vma_page(page); /* no-op if already mlocked */ | 1174 | mlock_vma_page(page); /* no-op if already mlocked */ |
1175 | if (page == check_page) | 1175 | if (page == check_page) |
1176 | ret = SWAP_MLOCK; | 1176 | ret = SWAP_MLOCK; |
1177 | continue; /* don't unmap */ | 1177 | continue; /* don't unmap */ |
1178 | } | 1178 | } |
1179 | 1179 | ||
1180 | if (ptep_clear_flush_young_notify(vma, address, pte)) | 1180 | if (ptep_clear_flush_young_notify(vma, address, pte)) |
1181 | continue; | 1181 | continue; |
1182 | 1182 | ||
1183 | /* Nuke the page table entry. */ | 1183 | /* Nuke the page table entry. */ |
1184 | flush_cache_page(vma, address, pte_pfn(*pte)); | 1184 | flush_cache_page(vma, address, pte_pfn(*pte)); |
1185 | pteval = ptep_clear_flush_notify(vma, address, pte); | 1185 | pteval = ptep_clear_flush_notify(vma, address, pte); |
1186 | 1186 | ||
1187 | /* If nonlinear, store the file page offset in the pte. */ | 1187 | /* If nonlinear, store the file page offset in the pte. */ |
1188 | if (page->index != linear_page_index(vma, address)) | 1188 | if (page->index != linear_page_index(vma, address)) |
1189 | set_pte_at(mm, address, pte, pgoff_to_pte(page->index)); | 1189 | set_pte_at(mm, address, pte, pgoff_to_pte(page->index)); |
1190 | 1190 | ||
1191 | /* Move the dirty bit to the physical page now the pte is gone. */ | 1191 | /* Move the dirty bit to the physical page now the pte is gone. */ |
1192 | if (pte_dirty(pteval)) | 1192 | if (pte_dirty(pteval)) |
1193 | set_page_dirty(page); | 1193 | set_page_dirty(page); |
1194 | 1194 | ||
1195 | page_remove_rmap(page); | 1195 | page_remove_rmap(page); |
1196 | page_cache_release(page); | 1196 | page_cache_release(page); |
1197 | dec_mm_counter(mm, MM_FILEPAGES); | 1197 | dec_mm_counter(mm, MM_FILEPAGES); |
1198 | (*mapcount)--; | 1198 | (*mapcount)--; |
1199 | } | 1199 | } |
1200 | pte_unmap_unlock(pte - 1, ptl); | 1200 | pte_unmap_unlock(pte - 1, ptl); |
1201 | if (locked_vma) | 1201 | if (locked_vma) |
1202 | up_read(&vma->vm_mm->mmap_sem); | 1202 | up_read(&vma->vm_mm->mmap_sem); |
1203 | return ret; | 1203 | return ret; |
1204 | } | 1204 | } |
1205 | 1205 | ||
1206 | static bool is_vma_temporary_stack(struct vm_area_struct *vma) | 1206 | static bool is_vma_temporary_stack(struct vm_area_struct *vma) |
1207 | { | 1207 | { |
1208 | int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); | 1208 | int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); |
1209 | 1209 | ||
1210 | if (!maybe_stack) | 1210 | if (!maybe_stack) |
1211 | return false; | 1211 | return false; |
1212 | 1212 | ||
1213 | if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == | 1213 | if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == |
1214 | VM_STACK_INCOMPLETE_SETUP) | 1214 | VM_STACK_INCOMPLETE_SETUP) |
1215 | return true; | 1215 | return true; |
1216 | 1216 | ||
1217 | return false; | 1217 | return false; |
1218 | } | 1218 | } |
1219 | 1219 | ||
1220 | /** | 1220 | /** |
1221 | * try_to_unmap_anon - unmap or unlock anonymous page using the object-based | 1221 | * try_to_unmap_anon - unmap or unlock anonymous page using the object-based |
1222 | * rmap method | 1222 | * rmap method |
1223 | * @page: the page to unmap/unlock | 1223 | * @page: the page to unmap/unlock |
1224 | * @flags: action and flags | 1224 | * @flags: action and flags |
1225 | * | 1225 | * |
1226 | * Find all the mappings of a page using the mapping pointer and the vma chains | 1226 | * Find all the mappings of a page using the mapping pointer and the vma chains |
1227 | * contained in the anon_vma struct it points to. | 1227 | * contained in the anon_vma struct it points to. |
1228 | * | 1228 | * |
1229 | * This function is only called from try_to_unmap/try_to_munlock for | 1229 | * This function is only called from try_to_unmap/try_to_munlock for |
1230 | * anonymous pages. | 1230 | * anonymous pages. |
1231 | * When called from try_to_munlock(), the mmap_sem of the mm containing the vma | 1231 | * When called from try_to_munlock(), the mmap_sem of the mm containing the vma |
1232 | * where the page was found will be held for write. So, we won't recheck | 1232 | * where the page was found will be held for write. So, we won't recheck |
1233 | * vm_flags for that VMA. That should be OK, because that vma shouldn't be | 1233 | * vm_flags for that VMA. That should be OK, because that vma shouldn't be |
1234 | * 'LOCKED. | 1234 | * 'LOCKED. |
1235 | */ | 1235 | */ |
1236 | static int try_to_unmap_anon(struct page *page, enum ttu_flags flags) | 1236 | static int try_to_unmap_anon(struct page *page, enum ttu_flags flags) |
1237 | { | 1237 | { |
1238 | struct anon_vma *anon_vma; | 1238 | struct anon_vma *anon_vma; |
1239 | struct anon_vma_chain *avc; | 1239 | struct anon_vma_chain *avc; |
1240 | int ret = SWAP_AGAIN; | 1240 | int ret = SWAP_AGAIN; |
1241 | 1241 | ||
1242 | anon_vma = page_lock_anon_vma(page); | 1242 | anon_vma = page_lock_anon_vma(page); |
1243 | if (!anon_vma) | 1243 | if (!anon_vma) |
1244 | return ret; | 1244 | return ret; |
1245 | 1245 | ||
1246 | list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { | 1246 | list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { |
1247 | struct vm_area_struct *vma = avc->vma; | 1247 | struct vm_area_struct *vma = avc->vma; |
1248 | unsigned long address; | 1248 | unsigned long address; |
1249 | 1249 | ||
1250 | /* | 1250 | /* |
1251 | * During exec, a temporary VMA is setup and later moved. | 1251 | * During exec, a temporary VMA is setup and later moved. |
1252 | * The VMA is moved under the anon_vma lock but not the | 1252 | * The VMA is moved under the anon_vma lock but not the |
1253 | * page tables leading to a race where migration cannot | 1253 | * page tables leading to a race where migration cannot |
1254 | * find the migration ptes. Rather than increasing the | 1254 | * find the migration ptes. Rather than increasing the |
1255 | * locking requirements of exec(), migration skips | 1255 | * locking requirements of exec(), migration skips |
1256 | * temporary VMAs until after exec() completes. | 1256 | * temporary VMAs until after exec() completes. |
1257 | */ | 1257 | */ |
1258 | if (PAGE_MIGRATION && (flags & TTU_MIGRATION) && | 1258 | if (PAGE_MIGRATION && (flags & TTU_MIGRATION) && |
1259 | is_vma_temporary_stack(vma)) | 1259 | is_vma_temporary_stack(vma)) |
1260 | continue; | 1260 | continue; |
1261 | 1261 | ||
1262 | address = vma_address(page, vma); | 1262 | address = vma_address(page, vma); |
1263 | if (address == -EFAULT) | 1263 | if (address == -EFAULT) |
1264 | continue; | 1264 | continue; |
1265 | ret = try_to_unmap_one(page, vma, address, flags); | 1265 | ret = try_to_unmap_one(page, vma, address, flags); |
1266 | if (ret != SWAP_AGAIN || !page_mapped(page)) | 1266 | if (ret != SWAP_AGAIN || !page_mapped(page)) |
1267 | break; | 1267 | break; |
1268 | } | 1268 | } |
1269 | 1269 | ||
1270 | page_unlock_anon_vma(anon_vma); | 1270 | page_unlock_anon_vma(anon_vma); |
1271 | return ret; | 1271 | return ret; |
1272 | } | 1272 | } |
1273 | 1273 | ||
1274 | /** | 1274 | /** |
1275 | * try_to_unmap_file - unmap/unlock file page using the object-based rmap method | 1275 | * try_to_unmap_file - unmap/unlock file page using the object-based rmap method |
1276 | * @page: the page to unmap/unlock | 1276 | * @page: the page to unmap/unlock |
1277 | * @flags: action and flags | 1277 | * @flags: action and flags |
1278 | * | 1278 | * |
1279 | * Find all the mappings of a page using the mapping pointer and the vma chains | 1279 | * Find all the mappings of a page using the mapping pointer and the vma chains |
1280 | * contained in the address_space struct it points to. | 1280 | * contained in the address_space struct it points to. |
1281 | * | 1281 | * |
1282 | * This function is only called from try_to_unmap/try_to_munlock for | 1282 | * This function is only called from try_to_unmap/try_to_munlock for |
1283 | * object-based pages. | 1283 | * object-based pages. |
1284 | * When called from try_to_munlock(), the mmap_sem of the mm containing the vma | 1284 | * When called from try_to_munlock(), the mmap_sem of the mm containing the vma |
1285 | * where the page was found will be held for write. So, we won't recheck | 1285 | * where the page was found will be held for write. So, we won't recheck |
1286 | * vm_flags for that VMA. That should be OK, because that vma shouldn't be | 1286 | * vm_flags for that VMA. That should be OK, because that vma shouldn't be |
1287 | * 'LOCKED. | 1287 | * 'LOCKED. |
1288 | */ | 1288 | */ |
1289 | static int try_to_unmap_file(struct page *page, enum ttu_flags flags) | 1289 | static int try_to_unmap_file(struct page *page, enum ttu_flags flags) |
1290 | { | 1290 | { |
1291 | struct address_space *mapping = page->mapping; | 1291 | struct address_space *mapping = page->mapping; |
1292 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | 1292 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); |
1293 | struct vm_area_struct *vma; | 1293 | struct vm_area_struct *vma; |
1294 | struct prio_tree_iter iter; | 1294 | struct prio_tree_iter iter; |
1295 | int ret = SWAP_AGAIN; | 1295 | int ret = SWAP_AGAIN; |
1296 | unsigned long cursor; | 1296 | unsigned long cursor; |
1297 | unsigned long max_nl_cursor = 0; | 1297 | unsigned long max_nl_cursor = 0; |
1298 | unsigned long max_nl_size = 0; | 1298 | unsigned long max_nl_size = 0; |
1299 | unsigned int mapcount; | 1299 | unsigned int mapcount; |
1300 | 1300 | ||
1301 | spin_lock(&mapping->i_mmap_lock); | 1301 | spin_lock(&mapping->i_mmap_lock); |
1302 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | 1302 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { |
1303 | unsigned long address = vma_address(page, vma); | 1303 | unsigned long address = vma_address(page, vma); |
1304 | if (address == -EFAULT) | 1304 | if (address == -EFAULT) |
1305 | continue; | 1305 | continue; |
1306 | ret = try_to_unmap_one(page, vma, address, flags); | 1306 | ret = try_to_unmap_one(page, vma, address, flags); |
1307 | if (ret != SWAP_AGAIN || !page_mapped(page)) | 1307 | if (ret != SWAP_AGAIN || !page_mapped(page)) |
1308 | goto out; | 1308 | goto out; |
1309 | } | 1309 | } |
1310 | 1310 | ||
1311 | if (list_empty(&mapping->i_mmap_nonlinear)) | 1311 | if (list_empty(&mapping->i_mmap_nonlinear)) |
1312 | goto out; | 1312 | goto out; |
1313 | 1313 | ||
1314 | /* | 1314 | /* |
1315 | * We don't bother to try to find the munlocked page in nonlinears. | 1315 | * We don't bother to try to find the munlocked page in nonlinears. |
1316 | * It's costly. Instead, later, page reclaim logic may call | 1316 | * It's costly. Instead, later, page reclaim logic may call |
1317 | * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily. | 1317 | * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily. |
1318 | */ | 1318 | */ |
1319 | if (TTU_ACTION(flags) == TTU_MUNLOCK) | 1319 | if (TTU_ACTION(flags) == TTU_MUNLOCK) |
1320 | goto out; | 1320 | goto out; |
1321 | 1321 | ||
1322 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, | 1322 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, |
1323 | shared.vm_set.list) { | 1323 | shared.vm_set.list) { |
1324 | cursor = (unsigned long) vma->vm_private_data; | 1324 | cursor = (unsigned long) vma->vm_private_data; |
1325 | if (cursor > max_nl_cursor) | 1325 | if (cursor > max_nl_cursor) |
1326 | max_nl_cursor = cursor; | 1326 | max_nl_cursor = cursor; |
1327 | cursor = vma->vm_end - vma->vm_start; | 1327 | cursor = vma->vm_end - vma->vm_start; |
1328 | if (cursor > max_nl_size) | 1328 | if (cursor > max_nl_size) |
1329 | max_nl_size = cursor; | 1329 | max_nl_size = cursor; |
1330 | } | 1330 | } |
1331 | 1331 | ||
1332 | if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */ | 1332 | if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */ |
1333 | ret = SWAP_FAIL; | 1333 | ret = SWAP_FAIL; |
1334 | goto out; | 1334 | goto out; |
1335 | } | 1335 | } |
1336 | 1336 | ||
1337 | /* | 1337 | /* |
1338 | * We don't try to search for this page in the nonlinear vmas, | 1338 | * We don't try to search for this page in the nonlinear vmas, |
1339 | * and page_referenced wouldn't have found it anyway. Instead | 1339 | * and page_referenced wouldn't have found it anyway. Instead |
1340 | * just walk the nonlinear vmas trying to age and unmap some. | 1340 | * just walk the nonlinear vmas trying to age and unmap some. |
1341 | * The mapcount of the page we came in with is irrelevant, | 1341 | * The mapcount of the page we came in with is irrelevant, |
1342 | * but even so use it as a guide to how hard we should try? | 1342 | * but even so use it as a guide to how hard we should try? |
1343 | */ | 1343 | */ |
1344 | mapcount = page_mapcount(page); | 1344 | mapcount = page_mapcount(page); |
1345 | if (!mapcount) | 1345 | if (!mapcount) |
1346 | goto out; | 1346 | goto out; |
1347 | cond_resched_lock(&mapping->i_mmap_lock); | 1347 | cond_resched_lock(&mapping->i_mmap_lock); |
1348 | 1348 | ||
1349 | max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; | 1349 | max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; |
1350 | if (max_nl_cursor == 0) | 1350 | if (max_nl_cursor == 0) |
1351 | max_nl_cursor = CLUSTER_SIZE; | 1351 | max_nl_cursor = CLUSTER_SIZE; |
1352 | 1352 | ||
1353 | do { | 1353 | do { |
1354 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, | 1354 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, |
1355 | shared.vm_set.list) { | 1355 | shared.vm_set.list) { |
1356 | cursor = (unsigned long) vma->vm_private_data; | 1356 | cursor = (unsigned long) vma->vm_private_data; |
1357 | while ( cursor < max_nl_cursor && | 1357 | while ( cursor < max_nl_cursor && |
1358 | cursor < vma->vm_end - vma->vm_start) { | 1358 | cursor < vma->vm_end - vma->vm_start) { |
1359 | if (try_to_unmap_cluster(cursor, &mapcount, | 1359 | if (try_to_unmap_cluster(cursor, &mapcount, |
1360 | vma, page) == SWAP_MLOCK) | 1360 | vma, page) == SWAP_MLOCK) |
1361 | ret = SWAP_MLOCK; | 1361 | ret = SWAP_MLOCK; |
1362 | cursor += CLUSTER_SIZE; | 1362 | cursor += CLUSTER_SIZE; |
1363 | vma->vm_private_data = (void *) cursor; | 1363 | vma->vm_private_data = (void *) cursor; |
1364 | if ((int)mapcount <= 0) | 1364 | if ((int)mapcount <= 0) |
1365 | goto out; | 1365 | goto out; |
1366 | } | 1366 | } |
1367 | vma->vm_private_data = (void *) max_nl_cursor; | 1367 | vma->vm_private_data = (void *) max_nl_cursor; |
1368 | } | 1368 | } |
1369 | cond_resched_lock(&mapping->i_mmap_lock); | 1369 | cond_resched_lock(&mapping->i_mmap_lock); |
1370 | max_nl_cursor += CLUSTER_SIZE; | 1370 | max_nl_cursor += CLUSTER_SIZE; |
1371 | } while (max_nl_cursor <= max_nl_size); | 1371 | } while (max_nl_cursor <= max_nl_size); |
1372 | 1372 | ||
1373 | /* | 1373 | /* |
1374 | * Don't loop forever (perhaps all the remaining pages are | 1374 | * Don't loop forever (perhaps all the remaining pages are |
1375 | * in locked vmas). Reset cursor on all unreserved nonlinear | 1375 | * in locked vmas). Reset cursor on all unreserved nonlinear |
1376 | * vmas, now forgetting on which ones it had fallen behind. | 1376 | * vmas, now forgetting on which ones it had fallen behind. |
1377 | */ | 1377 | */ |
1378 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) | 1378 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) |
1379 | vma->vm_private_data = NULL; | 1379 | vma->vm_private_data = NULL; |
1380 | out: | 1380 | out: |
1381 | spin_unlock(&mapping->i_mmap_lock); | 1381 | spin_unlock(&mapping->i_mmap_lock); |
1382 | return ret; | 1382 | return ret; |
1383 | } | 1383 | } |
1384 | 1384 | ||
1385 | /** | 1385 | /** |
1386 | * try_to_unmap - try to remove all page table mappings to a page | 1386 | * try_to_unmap - try to remove all page table mappings to a page |
1387 | * @page: the page to get unmapped | 1387 | * @page: the page to get unmapped |
1388 | * @flags: action and flags | 1388 | * @flags: action and flags |
1389 | * | 1389 | * |
1390 | * Tries to remove all the page table entries which are mapping this | 1390 | * Tries to remove all the page table entries which are mapping this |
1391 | * page, used in the pageout path. Caller must hold the page lock. | 1391 | * page, used in the pageout path. Caller must hold the page lock. |
1392 | * Return values are: | 1392 | * Return values are: |
1393 | * | 1393 | * |
1394 | * SWAP_SUCCESS - we succeeded in removing all mappings | 1394 | * SWAP_SUCCESS - we succeeded in removing all mappings |
1395 | * SWAP_AGAIN - we missed a mapping, try again later | 1395 | * SWAP_AGAIN - we missed a mapping, try again later |
1396 | * SWAP_FAIL - the page is unswappable | 1396 | * SWAP_FAIL - the page is unswappable |
1397 | * SWAP_MLOCK - page is mlocked. | 1397 | * SWAP_MLOCK - page is mlocked. |
1398 | */ | 1398 | */ |
1399 | int try_to_unmap(struct page *page, enum ttu_flags flags) | 1399 | int try_to_unmap(struct page *page, enum ttu_flags flags) |
1400 | { | 1400 | { |
1401 | int ret; | 1401 | int ret; |
1402 | 1402 | ||
1403 | BUG_ON(!PageLocked(page)); | 1403 | BUG_ON(!PageLocked(page)); |
1404 | 1404 | ||
1405 | if (unlikely(PageKsm(page))) | 1405 | if (unlikely(PageKsm(page))) |
1406 | ret = try_to_unmap_ksm(page, flags); | 1406 | ret = try_to_unmap_ksm(page, flags); |
1407 | else if (PageAnon(page)) | 1407 | else if (PageAnon(page)) |
1408 | ret = try_to_unmap_anon(page, flags); | 1408 | ret = try_to_unmap_anon(page, flags); |
1409 | else | 1409 | else |
1410 | ret = try_to_unmap_file(page, flags); | 1410 | ret = try_to_unmap_file(page, flags); |
1411 | if (ret != SWAP_MLOCK && !page_mapped(page)) | 1411 | if (ret != SWAP_MLOCK && !page_mapped(page)) |
1412 | ret = SWAP_SUCCESS; | 1412 | ret = SWAP_SUCCESS; |
1413 | return ret; | 1413 | return ret; |
1414 | } | 1414 | } |
1415 | 1415 | ||
1416 | /** | 1416 | /** |
1417 | * try_to_munlock - try to munlock a page | 1417 | * try_to_munlock - try to munlock a page |
1418 | * @page: the page to be munlocked | 1418 | * @page: the page to be munlocked |
1419 | * | 1419 | * |
1420 | * Called from munlock code. Checks all of the VMAs mapping the page | 1420 | * Called from munlock code. Checks all of the VMAs mapping the page |
1421 | * to make sure nobody else has this page mlocked. The page will be | 1421 | * to make sure nobody else has this page mlocked. The page will be |
1422 | * returned with PG_mlocked cleared if no other vmas have it mlocked. | 1422 | * returned with PG_mlocked cleared if no other vmas have it mlocked. |
1423 | * | 1423 | * |
1424 | * Return values are: | 1424 | * Return values are: |
1425 | * | 1425 | * |
1426 | * SWAP_AGAIN - no vma is holding page mlocked, or, | 1426 | * SWAP_AGAIN - no vma is holding page mlocked, or, |
1427 | * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem | 1427 | * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem |
1428 | * SWAP_FAIL - page cannot be located at present | 1428 | * SWAP_FAIL - page cannot be located at present |
1429 | * SWAP_MLOCK - page is now mlocked. | 1429 | * SWAP_MLOCK - page is now mlocked. |
1430 | */ | 1430 | */ |
1431 | int try_to_munlock(struct page *page) | 1431 | int try_to_munlock(struct page *page) |
1432 | { | 1432 | { |
1433 | VM_BUG_ON(!PageLocked(page) || PageLRU(page)); | 1433 | VM_BUG_ON(!PageLocked(page) || PageLRU(page)); |
1434 | 1434 | ||
1435 | if (unlikely(PageKsm(page))) | 1435 | if (unlikely(PageKsm(page))) |
1436 | return try_to_unmap_ksm(page, TTU_MUNLOCK); | 1436 | return try_to_unmap_ksm(page, TTU_MUNLOCK); |
1437 | else if (PageAnon(page)) | 1437 | else if (PageAnon(page)) |
1438 | return try_to_unmap_anon(page, TTU_MUNLOCK); | 1438 | return try_to_unmap_anon(page, TTU_MUNLOCK); |
1439 | else | 1439 | else |
1440 | return try_to_unmap_file(page, TTU_MUNLOCK); | 1440 | return try_to_unmap_file(page, TTU_MUNLOCK); |
1441 | } | 1441 | } |
1442 | 1442 | ||
1443 | #if defined(CONFIG_KSM) || defined(CONFIG_MIGRATION) | 1443 | #if defined(CONFIG_KSM) || defined(CONFIG_MIGRATION) |
1444 | /* | 1444 | /* |
1445 | * Drop an anon_vma refcount, freeing the anon_vma and anon_vma->root | 1445 | * Drop an anon_vma refcount, freeing the anon_vma and anon_vma->root |
1446 | * if necessary. Be careful to do all the tests under the lock. Once | 1446 | * if necessary. Be careful to do all the tests under the lock. Once |
1447 | * we know we are the last user, nobody else can get a reference and we | 1447 | * we know we are the last user, nobody else can get a reference and we |
1448 | * can do the freeing without the lock. | 1448 | * can do the freeing without the lock. |
1449 | */ | 1449 | */ |
1450 | void drop_anon_vma(struct anon_vma *anon_vma) | 1450 | void drop_anon_vma(struct anon_vma *anon_vma) |
1451 | { | 1451 | { |
1452 | BUG_ON(atomic_read(&anon_vma->external_refcount) <= 0); | 1452 | BUG_ON(atomic_read(&anon_vma->external_refcount) <= 0); |
1453 | if (atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->root->lock)) { | 1453 | if (atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->root->lock)) { |
1454 | struct anon_vma *root = anon_vma->root; | 1454 | struct anon_vma *root = anon_vma->root; |
1455 | int empty = list_empty(&anon_vma->head); | 1455 | int empty = list_empty(&anon_vma->head); |
1456 | int last_root_user = 0; | 1456 | int last_root_user = 0; |
1457 | int root_empty = 0; | 1457 | int root_empty = 0; |
1458 | 1458 | ||
1459 | /* | 1459 | /* |
1460 | * The refcount on a non-root anon_vma got dropped. Drop | 1460 | * The refcount on a non-root anon_vma got dropped. Drop |
1461 | * the refcount on the root and check if we need to free it. | 1461 | * the refcount on the root and check if we need to free it. |
1462 | */ | 1462 | */ |
1463 | if (empty && anon_vma != root) { | 1463 | if (empty && anon_vma != root) { |
1464 | BUG_ON(atomic_read(&root->external_refcount) <= 0); | 1464 | BUG_ON(atomic_read(&root->external_refcount) <= 0); |
1465 | last_root_user = atomic_dec_and_test(&root->external_refcount); | 1465 | last_root_user = atomic_dec_and_test(&root->external_refcount); |
1466 | root_empty = list_empty(&root->head); | 1466 | root_empty = list_empty(&root->head); |
1467 | } | 1467 | } |
1468 | anon_vma_unlock(anon_vma); | 1468 | anon_vma_unlock(anon_vma); |
1469 | 1469 | ||
1470 | if (empty) { | 1470 | if (empty) { |
1471 | anon_vma_free(anon_vma); | 1471 | anon_vma_free(anon_vma); |
1472 | if (root_empty && last_root_user) | 1472 | if (root_empty && last_root_user) |
1473 | anon_vma_free(root); | 1473 | anon_vma_free(root); |
1474 | } | 1474 | } |
1475 | } | 1475 | } |
1476 | } | 1476 | } |
1477 | #endif | 1477 | #endif |
1478 | 1478 | ||
1479 | #ifdef CONFIG_MIGRATION | 1479 | #ifdef CONFIG_MIGRATION |
1480 | /* | 1480 | /* |
1481 | * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file(): | 1481 | * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file(): |
1482 | * Called by migrate.c to remove migration ptes, but might be used more later. | 1482 | * Called by migrate.c to remove migration ptes, but might be used more later. |
1483 | */ | 1483 | */ |
1484 | static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *, | 1484 | static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *, |
1485 | struct vm_area_struct *, unsigned long, void *), void *arg) | 1485 | struct vm_area_struct *, unsigned long, void *), void *arg) |
1486 | { | 1486 | { |
1487 | struct anon_vma *anon_vma; | 1487 | struct anon_vma *anon_vma; |
1488 | struct anon_vma_chain *avc; | 1488 | struct anon_vma_chain *avc; |
1489 | int ret = SWAP_AGAIN; | 1489 | int ret = SWAP_AGAIN; |
1490 | 1490 | ||
1491 | /* | 1491 | /* |
1492 | * Note: remove_migration_ptes() cannot use page_lock_anon_vma() | 1492 | * Note: remove_migration_ptes() cannot use page_lock_anon_vma() |
1493 | * because that depends on page_mapped(); but not all its usages | 1493 | * because that depends on page_mapped(); but not all its usages |
1494 | * are holding mmap_sem. Users without mmap_sem are required to | 1494 | * are holding mmap_sem. Users without mmap_sem are required to |
1495 | * take a reference count to prevent the anon_vma disappearing | 1495 | * take a reference count to prevent the anon_vma disappearing |
1496 | */ | 1496 | */ |
1497 | anon_vma = page_anon_vma(page); | 1497 | anon_vma = page_anon_vma(page); |
1498 | if (!anon_vma) | 1498 | if (!anon_vma) |
1499 | return ret; | 1499 | return ret; |
1500 | anon_vma_lock(anon_vma); | 1500 | anon_vma_lock(anon_vma); |
1501 | list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { | 1501 | list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { |
1502 | struct vm_area_struct *vma = avc->vma; | 1502 | struct vm_area_struct *vma = avc->vma; |
1503 | unsigned long address = vma_address(page, vma); | 1503 | unsigned long address = vma_address(page, vma); |
1504 | if (address == -EFAULT) | 1504 | if (address == -EFAULT) |
1505 | continue; | 1505 | continue; |
1506 | ret = rmap_one(page, vma, address, arg); | 1506 | ret = rmap_one(page, vma, address, arg); |
1507 | if (ret != SWAP_AGAIN) | 1507 | if (ret != SWAP_AGAIN) |
1508 | break; | 1508 | break; |
1509 | } | 1509 | } |
1510 | anon_vma_unlock(anon_vma); | 1510 | anon_vma_unlock(anon_vma); |
1511 | return ret; | 1511 | return ret; |
1512 | } | 1512 | } |
1513 | 1513 | ||
1514 | static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *, | 1514 | static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *, |
1515 | struct vm_area_struct *, unsigned long, void *), void *arg) | 1515 | struct vm_area_struct *, unsigned long, void *), void *arg) |
1516 | { | 1516 | { |
1517 | struct address_space *mapping = page->mapping; | 1517 | struct address_space *mapping = page->mapping; |
1518 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | 1518 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); |
1519 | struct vm_area_struct *vma; | 1519 | struct vm_area_struct *vma; |
1520 | struct prio_tree_iter iter; | 1520 | struct prio_tree_iter iter; |
1521 | int ret = SWAP_AGAIN; | 1521 | int ret = SWAP_AGAIN; |
1522 | 1522 | ||
1523 | if (!mapping) | 1523 | if (!mapping) |
1524 | return ret; | 1524 | return ret; |
1525 | spin_lock(&mapping->i_mmap_lock); | 1525 | spin_lock(&mapping->i_mmap_lock); |
1526 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | 1526 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { |
1527 | unsigned long address = vma_address(page, vma); | 1527 | unsigned long address = vma_address(page, vma); |
1528 | if (address == -EFAULT) | 1528 | if (address == -EFAULT) |
1529 | continue; | 1529 | continue; |
1530 | ret = rmap_one(page, vma, address, arg); | 1530 | ret = rmap_one(page, vma, address, arg); |
1531 | if (ret != SWAP_AGAIN) | 1531 | if (ret != SWAP_AGAIN) |
1532 | break; | 1532 | break; |
1533 | } | 1533 | } |
1534 | /* | 1534 | /* |
1535 | * No nonlinear handling: being always shared, nonlinear vmas | 1535 | * No nonlinear handling: being always shared, nonlinear vmas |
1536 | * never contain migration ptes. Decide what to do about this | 1536 | * never contain migration ptes. Decide what to do about this |
1537 | * limitation to linear when we need rmap_walk() on nonlinear. | 1537 | * limitation to linear when we need rmap_walk() on nonlinear. |
1538 | */ | 1538 | */ |
1539 | spin_unlock(&mapping->i_mmap_lock); | 1539 | spin_unlock(&mapping->i_mmap_lock); |
1540 | return ret; | 1540 | return ret; |
1541 | } | 1541 | } |
1542 | 1542 | ||
1543 | int rmap_walk(struct page *page, int (*rmap_one)(struct page *, | 1543 | int rmap_walk(struct page *page, int (*rmap_one)(struct page *, |
1544 | struct vm_area_struct *, unsigned long, void *), void *arg) | 1544 | struct vm_area_struct *, unsigned long, void *), void *arg) |
1545 | { | 1545 | { |
1546 | VM_BUG_ON(!PageLocked(page)); | 1546 | VM_BUG_ON(!PageLocked(page)); |
1547 | 1547 | ||
1548 | if (unlikely(PageKsm(page))) | 1548 | if (unlikely(PageKsm(page))) |
1549 | return rmap_walk_ksm(page, rmap_one, arg); | 1549 | return rmap_walk_ksm(page, rmap_one, arg); |
1550 | else if (PageAnon(page)) | 1550 | else if (PageAnon(page)) |
1551 | return rmap_walk_anon(page, rmap_one, arg); | 1551 | return rmap_walk_anon(page, rmap_one, arg); |
1552 | else | 1552 | else |
1553 | return rmap_walk_file(page, rmap_one, arg); | 1553 | return rmap_walk_file(page, rmap_one, arg); |
1554 | } | 1554 | } |
1555 | #endif /* CONFIG_MIGRATION */ | 1555 | #endif /* CONFIG_MIGRATION */ |
1556 | 1556 | ||
1557 | #ifdef CONFIG_HUGETLB_PAGE | 1557 | #ifdef CONFIG_HUGETLB_PAGE |
1558 | /* | 1558 | /* |
1559 | * The following three functions are for anonymous (private mapped) hugepages. | 1559 | * The following three functions are for anonymous (private mapped) hugepages. |
1560 | * Unlike common anonymous pages, anonymous hugepages have no accounting code | 1560 | * Unlike common anonymous pages, anonymous hugepages have no accounting code |
1561 | * and no lru code, because we handle hugepages differently from common pages. | 1561 | * and no lru code, because we handle hugepages differently from common pages. |
1562 | */ | 1562 | */ |
1563 | static void __hugepage_set_anon_rmap(struct page *page, | 1563 | static void __hugepage_set_anon_rmap(struct page *page, |
1564 | struct vm_area_struct *vma, unsigned long address, int exclusive) | 1564 | struct vm_area_struct *vma, unsigned long address, int exclusive) |
1565 | { | 1565 | { |
1566 | struct anon_vma *anon_vma = vma->anon_vma; | 1566 | struct anon_vma *anon_vma = vma->anon_vma; |
1567 | 1567 | ||
1568 | BUG_ON(!anon_vma); | 1568 | BUG_ON(!anon_vma); |
1569 | 1569 | ||
1570 | if (PageAnon(page)) | 1570 | if (PageAnon(page)) |
1571 | return; | 1571 | return; |
1572 | if (!exclusive) | 1572 | if (!exclusive) |
1573 | anon_vma = anon_vma->root; | 1573 | anon_vma = anon_vma->root; |
1574 | 1574 | ||
1575 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | 1575 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; |
1576 | page->mapping = (struct address_space *) anon_vma; | 1576 | page->mapping = (struct address_space *) anon_vma; |
1577 | page->index = linear_page_index(vma, address); | 1577 | page->index = linear_page_index(vma, address); |
1578 | } | 1578 | } |
1579 | 1579 | ||
1580 | void hugepage_add_anon_rmap(struct page *page, | 1580 | void hugepage_add_anon_rmap(struct page *page, |
1581 | struct vm_area_struct *vma, unsigned long address) | 1581 | struct vm_area_struct *vma, unsigned long address) |
1582 | { | 1582 | { |
1583 | struct anon_vma *anon_vma = vma->anon_vma; | 1583 | struct anon_vma *anon_vma = vma->anon_vma; |
1584 | int first; | 1584 | int first; |
1585 | |||
1586 | BUG_ON(!PageLocked(page)); | ||
1585 | BUG_ON(!anon_vma); | 1587 | BUG_ON(!anon_vma); |
1586 | BUG_ON(address < vma->vm_start || address >= vma->vm_end); | 1588 | BUG_ON(address < vma->vm_start || address >= vma->vm_end); |
1587 | first = atomic_inc_and_test(&page->_mapcount); | 1589 | first = atomic_inc_and_test(&page->_mapcount); |
1588 | if (first) | 1590 | if (first) |
1589 | __hugepage_set_anon_rmap(page, vma, address, 0); | 1591 | __hugepage_set_anon_rmap(page, vma, address, 0); |
1590 | } | 1592 | } |
1591 | 1593 | ||
1592 | void hugepage_add_new_anon_rmap(struct page *page, | 1594 | void hugepage_add_new_anon_rmap(struct page *page, |
1593 | struct vm_area_struct *vma, unsigned long address) | 1595 | struct vm_area_struct *vma, unsigned long address) |
1594 | { | 1596 | { |
1595 | BUG_ON(address < vma->vm_start || address >= vma->vm_end); | 1597 | BUG_ON(address < vma->vm_start || address >= vma->vm_end); |
1596 | atomic_set(&page->_mapcount, 0); | 1598 | atomic_set(&page->_mapcount, 0); |
1597 | __hugepage_set_anon_rmap(page, vma, address, 1); | 1599 | __hugepage_set_anon_rmap(page, vma, address, 1); |
1598 | } | 1600 | } |
1599 | #endif /* CONFIG_HUGETLB_PAGE */ | 1601 | #endif /* CONFIG_HUGETLB_PAGE */ |
1600 | 1602 |