Commit ad3d9d7ede04a9c71be7a9fe1a23961817f371f7

Authored by Jens Axboe
1 parent 401a18e92c

block: fix issue with calling blk_stop_queue() from the request_fn handler

When the queue work handler was converted to delayed work, the
stopping was inadvertently made sync as well. Change this back
to being async stop, using __cancel_delayed_work() instead of
cancel_delayed_work().

Reported-by: Jeremy Fitzhardinge <jeremy@goop.org>
Reported-by: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>

Showing 1 changed file with 1 additions and 1 deletions Inline Diff

1 /* 1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds 2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000 7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */ 9 */
10 10
11 /* 11 /*
12 * This handles all read/write requests to block devices 12 * This handles all read/write requests to block devices
13 */ 13 */
14 #include <linux/kernel.h> 14 #include <linux/kernel.h>
15 #include <linux/module.h> 15 #include <linux/module.h>
16 #include <linux/backing-dev.h> 16 #include <linux/backing-dev.h>
17 #include <linux/bio.h> 17 #include <linux/bio.h>
18 #include <linux/blkdev.h> 18 #include <linux/blkdev.h>
19 #include <linux/highmem.h> 19 #include <linux/highmem.h>
20 #include <linux/mm.h> 20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h> 21 #include <linux/kernel_stat.h>
22 #include <linux/string.h> 22 #include <linux/string.h>
23 #include <linux/init.h> 23 #include <linux/init.h>
24 #include <linux/completion.h> 24 #include <linux/completion.h>
25 #include <linux/slab.h> 25 #include <linux/slab.h>
26 #include <linux/swap.h> 26 #include <linux/swap.h>
27 #include <linux/writeback.h> 27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h> 28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h> 29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h> 30 #include <linux/list_sort.h>
31 31
32 #define CREATE_TRACE_POINTS 32 #define CREATE_TRACE_POINTS
33 #include <trace/events/block.h> 33 #include <trace/events/block.h>
34 34
35 #include "blk.h" 35 #include "blk.h"
36 36
37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 39 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
40 40
41 static int __make_request(struct request_queue *q, struct bio *bio); 41 static int __make_request(struct request_queue *q, struct bio *bio);
42 42
43 /* 43 /*
44 * For the allocated request tables 44 * For the allocated request tables
45 */ 45 */
46 static struct kmem_cache *request_cachep; 46 static struct kmem_cache *request_cachep;
47 47
48 /* 48 /*
49 * For queue allocation 49 * For queue allocation
50 */ 50 */
51 struct kmem_cache *blk_requestq_cachep; 51 struct kmem_cache *blk_requestq_cachep;
52 52
53 /* 53 /*
54 * Controlling structure to kblockd 54 * Controlling structure to kblockd
55 */ 55 */
56 static struct workqueue_struct *kblockd_workqueue; 56 static struct workqueue_struct *kblockd_workqueue;
57 57
58 static void drive_stat_acct(struct request *rq, int new_io) 58 static void drive_stat_acct(struct request *rq, int new_io)
59 { 59 {
60 struct hd_struct *part; 60 struct hd_struct *part;
61 int rw = rq_data_dir(rq); 61 int rw = rq_data_dir(rq);
62 int cpu; 62 int cpu;
63 63
64 if (!blk_do_io_stat(rq)) 64 if (!blk_do_io_stat(rq))
65 return; 65 return;
66 66
67 cpu = part_stat_lock(); 67 cpu = part_stat_lock();
68 68
69 if (!new_io) { 69 if (!new_io) {
70 part = rq->part; 70 part = rq->part;
71 part_stat_inc(cpu, part, merges[rw]); 71 part_stat_inc(cpu, part, merges[rw]);
72 } else { 72 } else {
73 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 73 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
74 if (!hd_struct_try_get(part)) { 74 if (!hd_struct_try_get(part)) {
75 /* 75 /*
76 * The partition is already being removed, 76 * The partition is already being removed,
77 * the request will be accounted on the disk only 77 * the request will be accounted on the disk only
78 * 78 *
79 * We take a reference on disk->part0 although that 79 * We take a reference on disk->part0 although that
80 * partition will never be deleted, so we can treat 80 * partition will never be deleted, so we can treat
81 * it as any other partition. 81 * it as any other partition.
82 */ 82 */
83 part = &rq->rq_disk->part0; 83 part = &rq->rq_disk->part0;
84 hd_struct_get(part); 84 hd_struct_get(part);
85 } 85 }
86 part_round_stats(cpu, part); 86 part_round_stats(cpu, part);
87 part_inc_in_flight(part, rw); 87 part_inc_in_flight(part, rw);
88 rq->part = part; 88 rq->part = part;
89 } 89 }
90 90
91 part_stat_unlock(); 91 part_stat_unlock();
92 } 92 }
93 93
94 void blk_queue_congestion_threshold(struct request_queue *q) 94 void blk_queue_congestion_threshold(struct request_queue *q)
95 { 95 {
96 int nr; 96 int nr;
97 97
98 nr = q->nr_requests - (q->nr_requests / 8) + 1; 98 nr = q->nr_requests - (q->nr_requests / 8) + 1;
99 if (nr > q->nr_requests) 99 if (nr > q->nr_requests)
100 nr = q->nr_requests; 100 nr = q->nr_requests;
101 q->nr_congestion_on = nr; 101 q->nr_congestion_on = nr;
102 102
103 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 103 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
104 if (nr < 1) 104 if (nr < 1)
105 nr = 1; 105 nr = 1;
106 q->nr_congestion_off = nr; 106 q->nr_congestion_off = nr;
107 } 107 }
108 108
109 /** 109 /**
110 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info 110 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
111 * @bdev: device 111 * @bdev: device
112 * 112 *
113 * Locates the passed device's request queue and returns the address of its 113 * Locates the passed device's request queue and returns the address of its
114 * backing_dev_info 114 * backing_dev_info
115 * 115 *
116 * Will return NULL if the request queue cannot be located. 116 * Will return NULL if the request queue cannot be located.
117 */ 117 */
118 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) 118 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
119 { 119 {
120 struct backing_dev_info *ret = NULL; 120 struct backing_dev_info *ret = NULL;
121 struct request_queue *q = bdev_get_queue(bdev); 121 struct request_queue *q = bdev_get_queue(bdev);
122 122
123 if (q) 123 if (q)
124 ret = &q->backing_dev_info; 124 ret = &q->backing_dev_info;
125 return ret; 125 return ret;
126 } 126 }
127 EXPORT_SYMBOL(blk_get_backing_dev_info); 127 EXPORT_SYMBOL(blk_get_backing_dev_info);
128 128
129 void blk_rq_init(struct request_queue *q, struct request *rq) 129 void blk_rq_init(struct request_queue *q, struct request *rq)
130 { 130 {
131 memset(rq, 0, sizeof(*rq)); 131 memset(rq, 0, sizeof(*rq));
132 132
133 INIT_LIST_HEAD(&rq->queuelist); 133 INIT_LIST_HEAD(&rq->queuelist);
134 INIT_LIST_HEAD(&rq->timeout_list); 134 INIT_LIST_HEAD(&rq->timeout_list);
135 rq->cpu = -1; 135 rq->cpu = -1;
136 rq->q = q; 136 rq->q = q;
137 rq->__sector = (sector_t) -1; 137 rq->__sector = (sector_t) -1;
138 INIT_HLIST_NODE(&rq->hash); 138 INIT_HLIST_NODE(&rq->hash);
139 RB_CLEAR_NODE(&rq->rb_node); 139 RB_CLEAR_NODE(&rq->rb_node);
140 rq->cmd = rq->__cmd; 140 rq->cmd = rq->__cmd;
141 rq->cmd_len = BLK_MAX_CDB; 141 rq->cmd_len = BLK_MAX_CDB;
142 rq->tag = -1; 142 rq->tag = -1;
143 rq->ref_count = 1; 143 rq->ref_count = 1;
144 rq->start_time = jiffies; 144 rq->start_time = jiffies;
145 set_start_time_ns(rq); 145 set_start_time_ns(rq);
146 rq->part = NULL; 146 rq->part = NULL;
147 } 147 }
148 EXPORT_SYMBOL(blk_rq_init); 148 EXPORT_SYMBOL(blk_rq_init);
149 149
150 static void req_bio_endio(struct request *rq, struct bio *bio, 150 static void req_bio_endio(struct request *rq, struct bio *bio,
151 unsigned int nbytes, int error) 151 unsigned int nbytes, int error)
152 { 152 {
153 if (error) 153 if (error)
154 clear_bit(BIO_UPTODATE, &bio->bi_flags); 154 clear_bit(BIO_UPTODATE, &bio->bi_flags);
155 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 155 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
156 error = -EIO; 156 error = -EIO;
157 157
158 if (unlikely(nbytes > bio->bi_size)) { 158 if (unlikely(nbytes > bio->bi_size)) {
159 printk(KERN_ERR "%s: want %u bytes done, %u left\n", 159 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
160 __func__, nbytes, bio->bi_size); 160 __func__, nbytes, bio->bi_size);
161 nbytes = bio->bi_size; 161 nbytes = bio->bi_size;
162 } 162 }
163 163
164 if (unlikely(rq->cmd_flags & REQ_QUIET)) 164 if (unlikely(rq->cmd_flags & REQ_QUIET))
165 set_bit(BIO_QUIET, &bio->bi_flags); 165 set_bit(BIO_QUIET, &bio->bi_flags);
166 166
167 bio->bi_size -= nbytes; 167 bio->bi_size -= nbytes;
168 bio->bi_sector += (nbytes >> 9); 168 bio->bi_sector += (nbytes >> 9);
169 169
170 if (bio_integrity(bio)) 170 if (bio_integrity(bio))
171 bio_integrity_advance(bio, nbytes); 171 bio_integrity_advance(bio, nbytes);
172 172
173 /* don't actually finish bio if it's part of flush sequence */ 173 /* don't actually finish bio if it's part of flush sequence */
174 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ)) 174 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
175 bio_endio(bio, error); 175 bio_endio(bio, error);
176 } 176 }
177 177
178 void blk_dump_rq_flags(struct request *rq, char *msg) 178 void blk_dump_rq_flags(struct request *rq, char *msg)
179 { 179 {
180 int bit; 180 int bit;
181 181
182 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg, 182 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
183 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, 183 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
184 rq->cmd_flags); 184 rq->cmd_flags);
185 185
186 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 186 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
187 (unsigned long long)blk_rq_pos(rq), 187 (unsigned long long)blk_rq_pos(rq),
188 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 188 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
189 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n", 189 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
190 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq)); 190 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
191 191
192 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 192 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
193 printk(KERN_INFO " cdb: "); 193 printk(KERN_INFO " cdb: ");
194 for (bit = 0; bit < BLK_MAX_CDB; bit++) 194 for (bit = 0; bit < BLK_MAX_CDB; bit++)
195 printk("%02x ", rq->cmd[bit]); 195 printk("%02x ", rq->cmd[bit]);
196 printk("\n"); 196 printk("\n");
197 } 197 }
198 } 198 }
199 EXPORT_SYMBOL(blk_dump_rq_flags); 199 EXPORT_SYMBOL(blk_dump_rq_flags);
200 200
201 /* 201 /*
202 * Make sure that plugs that were pending when this function was entered, 202 * Make sure that plugs that were pending when this function was entered,
203 * are now complete and requests pushed to the queue. 203 * are now complete and requests pushed to the queue.
204 */ 204 */
205 static inline void queue_sync_plugs(struct request_queue *q) 205 static inline void queue_sync_plugs(struct request_queue *q)
206 { 206 {
207 /* 207 /*
208 * If the current process is plugged and has barriers submitted, 208 * If the current process is plugged and has barriers submitted,
209 * we will livelock if we don't unplug first. 209 * we will livelock if we don't unplug first.
210 */ 210 */
211 blk_flush_plug(current); 211 blk_flush_plug(current);
212 } 212 }
213 213
214 static void blk_delay_work(struct work_struct *work) 214 static void blk_delay_work(struct work_struct *work)
215 { 215 {
216 struct request_queue *q; 216 struct request_queue *q;
217 217
218 q = container_of(work, struct request_queue, delay_work.work); 218 q = container_of(work, struct request_queue, delay_work.work);
219 spin_lock_irq(q->queue_lock); 219 spin_lock_irq(q->queue_lock);
220 __blk_run_queue(q, false); 220 __blk_run_queue(q, false);
221 spin_unlock_irq(q->queue_lock); 221 spin_unlock_irq(q->queue_lock);
222 } 222 }
223 223
224 /** 224 /**
225 * blk_delay_queue - restart queueing after defined interval 225 * blk_delay_queue - restart queueing after defined interval
226 * @q: The &struct request_queue in question 226 * @q: The &struct request_queue in question
227 * @msecs: Delay in msecs 227 * @msecs: Delay in msecs
228 * 228 *
229 * Description: 229 * Description:
230 * Sometimes queueing needs to be postponed for a little while, to allow 230 * Sometimes queueing needs to be postponed for a little while, to allow
231 * resources to come back. This function will make sure that queueing is 231 * resources to come back. This function will make sure that queueing is
232 * restarted around the specified time. 232 * restarted around the specified time.
233 */ 233 */
234 void blk_delay_queue(struct request_queue *q, unsigned long msecs) 234 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
235 { 235 {
236 schedule_delayed_work(&q->delay_work, msecs_to_jiffies(msecs)); 236 schedule_delayed_work(&q->delay_work, msecs_to_jiffies(msecs));
237 } 237 }
238 EXPORT_SYMBOL(blk_delay_queue); 238 EXPORT_SYMBOL(blk_delay_queue);
239 239
240 /** 240 /**
241 * blk_start_queue - restart a previously stopped queue 241 * blk_start_queue - restart a previously stopped queue
242 * @q: The &struct request_queue in question 242 * @q: The &struct request_queue in question
243 * 243 *
244 * Description: 244 * Description:
245 * blk_start_queue() will clear the stop flag on the queue, and call 245 * blk_start_queue() will clear the stop flag on the queue, and call
246 * the request_fn for the queue if it was in a stopped state when 246 * the request_fn for the queue if it was in a stopped state when
247 * entered. Also see blk_stop_queue(). Queue lock must be held. 247 * entered. Also see blk_stop_queue(). Queue lock must be held.
248 **/ 248 **/
249 void blk_start_queue(struct request_queue *q) 249 void blk_start_queue(struct request_queue *q)
250 { 250 {
251 WARN_ON(!irqs_disabled()); 251 WARN_ON(!irqs_disabled());
252 252
253 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 253 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
254 __blk_run_queue(q, false); 254 __blk_run_queue(q, false);
255 } 255 }
256 EXPORT_SYMBOL(blk_start_queue); 256 EXPORT_SYMBOL(blk_start_queue);
257 257
258 /** 258 /**
259 * blk_stop_queue - stop a queue 259 * blk_stop_queue - stop a queue
260 * @q: The &struct request_queue in question 260 * @q: The &struct request_queue in question
261 * 261 *
262 * Description: 262 * Description:
263 * The Linux block layer assumes that a block driver will consume all 263 * The Linux block layer assumes that a block driver will consume all
264 * entries on the request queue when the request_fn strategy is called. 264 * entries on the request queue when the request_fn strategy is called.
265 * Often this will not happen, because of hardware limitations (queue 265 * Often this will not happen, because of hardware limitations (queue
266 * depth settings). If a device driver gets a 'queue full' response, 266 * depth settings). If a device driver gets a 'queue full' response,
267 * or if it simply chooses not to queue more I/O at one point, it can 267 * or if it simply chooses not to queue more I/O at one point, it can
268 * call this function to prevent the request_fn from being called until 268 * call this function to prevent the request_fn from being called until
269 * the driver has signalled it's ready to go again. This happens by calling 269 * the driver has signalled it's ready to go again. This happens by calling
270 * blk_start_queue() to restart queue operations. Queue lock must be held. 270 * blk_start_queue() to restart queue operations. Queue lock must be held.
271 **/ 271 **/
272 void blk_stop_queue(struct request_queue *q) 272 void blk_stop_queue(struct request_queue *q)
273 { 273 {
274 cancel_delayed_work(&q->delay_work); 274 __cancel_delayed_work(&q->delay_work);
275 queue_flag_set(QUEUE_FLAG_STOPPED, q); 275 queue_flag_set(QUEUE_FLAG_STOPPED, q);
276 } 276 }
277 EXPORT_SYMBOL(blk_stop_queue); 277 EXPORT_SYMBOL(blk_stop_queue);
278 278
279 /** 279 /**
280 * blk_sync_queue - cancel any pending callbacks on a queue 280 * blk_sync_queue - cancel any pending callbacks on a queue
281 * @q: the queue 281 * @q: the queue
282 * 282 *
283 * Description: 283 * Description:
284 * The block layer may perform asynchronous callback activity 284 * The block layer may perform asynchronous callback activity
285 * on a queue, such as calling the unplug function after a timeout. 285 * on a queue, such as calling the unplug function after a timeout.
286 * A block device may call blk_sync_queue to ensure that any 286 * A block device may call blk_sync_queue to ensure that any
287 * such activity is cancelled, thus allowing it to release resources 287 * such activity is cancelled, thus allowing it to release resources
288 * that the callbacks might use. The caller must already have made sure 288 * that the callbacks might use. The caller must already have made sure
289 * that its ->make_request_fn will not re-add plugging prior to calling 289 * that its ->make_request_fn will not re-add plugging prior to calling
290 * this function. 290 * this function.
291 * 291 *
292 * This function does not cancel any asynchronous activity arising 292 * This function does not cancel any asynchronous activity arising
293 * out of elevator or throttling code. That would require elevaotor_exit() 293 * out of elevator or throttling code. That would require elevaotor_exit()
294 * and blk_throtl_exit() to be called with queue lock initialized. 294 * and blk_throtl_exit() to be called with queue lock initialized.
295 * 295 *
296 */ 296 */
297 void blk_sync_queue(struct request_queue *q) 297 void blk_sync_queue(struct request_queue *q)
298 { 298 {
299 del_timer_sync(&q->timeout); 299 del_timer_sync(&q->timeout);
300 cancel_delayed_work_sync(&q->delay_work); 300 cancel_delayed_work_sync(&q->delay_work);
301 queue_sync_plugs(q); 301 queue_sync_plugs(q);
302 } 302 }
303 EXPORT_SYMBOL(blk_sync_queue); 303 EXPORT_SYMBOL(blk_sync_queue);
304 304
305 /** 305 /**
306 * __blk_run_queue - run a single device queue 306 * __blk_run_queue - run a single device queue
307 * @q: The queue to run 307 * @q: The queue to run
308 * @force_kblockd: Don't run @q->request_fn directly. Use kblockd. 308 * @force_kblockd: Don't run @q->request_fn directly. Use kblockd.
309 * 309 *
310 * Description: 310 * Description:
311 * See @blk_run_queue. This variant must be called with the queue lock 311 * See @blk_run_queue. This variant must be called with the queue lock
312 * held and interrupts disabled. 312 * held and interrupts disabled.
313 * 313 *
314 */ 314 */
315 void __blk_run_queue(struct request_queue *q, bool force_kblockd) 315 void __blk_run_queue(struct request_queue *q, bool force_kblockd)
316 { 316 {
317 if (unlikely(blk_queue_stopped(q))) 317 if (unlikely(blk_queue_stopped(q)))
318 return; 318 return;
319 319
320 /* 320 /*
321 * Only recurse once to avoid overrunning the stack, let the unplug 321 * Only recurse once to avoid overrunning the stack, let the unplug
322 * handling reinvoke the handler shortly if we already got there. 322 * handling reinvoke the handler shortly if we already got there.
323 */ 323 */
324 if (!force_kblockd && !queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) { 324 if (!force_kblockd && !queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
325 q->request_fn(q); 325 q->request_fn(q);
326 queue_flag_clear(QUEUE_FLAG_REENTER, q); 326 queue_flag_clear(QUEUE_FLAG_REENTER, q);
327 } else 327 } else
328 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0); 328 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
329 } 329 }
330 EXPORT_SYMBOL(__blk_run_queue); 330 EXPORT_SYMBOL(__blk_run_queue);
331 331
332 /** 332 /**
333 * blk_run_queue - run a single device queue 333 * blk_run_queue - run a single device queue
334 * @q: The queue to run 334 * @q: The queue to run
335 * 335 *
336 * Description: 336 * Description:
337 * Invoke request handling on this queue, if it has pending work to do. 337 * Invoke request handling on this queue, if it has pending work to do.
338 * May be used to restart queueing when a request has completed. 338 * May be used to restart queueing when a request has completed.
339 */ 339 */
340 void blk_run_queue(struct request_queue *q) 340 void blk_run_queue(struct request_queue *q)
341 { 341 {
342 unsigned long flags; 342 unsigned long flags;
343 343
344 spin_lock_irqsave(q->queue_lock, flags); 344 spin_lock_irqsave(q->queue_lock, flags);
345 __blk_run_queue(q, false); 345 __blk_run_queue(q, false);
346 spin_unlock_irqrestore(q->queue_lock, flags); 346 spin_unlock_irqrestore(q->queue_lock, flags);
347 } 347 }
348 EXPORT_SYMBOL(blk_run_queue); 348 EXPORT_SYMBOL(blk_run_queue);
349 349
350 void blk_put_queue(struct request_queue *q) 350 void blk_put_queue(struct request_queue *q)
351 { 351 {
352 kobject_put(&q->kobj); 352 kobject_put(&q->kobj);
353 } 353 }
354 354
355 /* 355 /*
356 * Note: If a driver supplied the queue lock, it should not zap that lock 356 * Note: If a driver supplied the queue lock, it should not zap that lock
357 * unexpectedly as some queue cleanup components like elevator_exit() and 357 * unexpectedly as some queue cleanup components like elevator_exit() and
358 * blk_throtl_exit() need queue lock. 358 * blk_throtl_exit() need queue lock.
359 */ 359 */
360 void blk_cleanup_queue(struct request_queue *q) 360 void blk_cleanup_queue(struct request_queue *q)
361 { 361 {
362 /* 362 /*
363 * We know we have process context here, so we can be a little 363 * We know we have process context here, so we can be a little
364 * cautious and ensure that pending block actions on this device 364 * cautious and ensure that pending block actions on this device
365 * are done before moving on. Going into this function, we should 365 * are done before moving on. Going into this function, we should
366 * not have processes doing IO to this device. 366 * not have processes doing IO to this device.
367 */ 367 */
368 blk_sync_queue(q); 368 blk_sync_queue(q);
369 369
370 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer); 370 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
371 mutex_lock(&q->sysfs_lock); 371 mutex_lock(&q->sysfs_lock);
372 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q); 372 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
373 mutex_unlock(&q->sysfs_lock); 373 mutex_unlock(&q->sysfs_lock);
374 374
375 if (q->elevator) 375 if (q->elevator)
376 elevator_exit(q->elevator); 376 elevator_exit(q->elevator);
377 377
378 blk_throtl_exit(q); 378 blk_throtl_exit(q);
379 379
380 blk_put_queue(q); 380 blk_put_queue(q);
381 } 381 }
382 EXPORT_SYMBOL(blk_cleanup_queue); 382 EXPORT_SYMBOL(blk_cleanup_queue);
383 383
384 static int blk_init_free_list(struct request_queue *q) 384 static int blk_init_free_list(struct request_queue *q)
385 { 385 {
386 struct request_list *rl = &q->rq; 386 struct request_list *rl = &q->rq;
387 387
388 if (unlikely(rl->rq_pool)) 388 if (unlikely(rl->rq_pool))
389 return 0; 389 return 0;
390 390
391 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 391 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
392 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 392 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
393 rl->elvpriv = 0; 393 rl->elvpriv = 0;
394 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 394 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
395 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 395 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
396 396
397 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, 397 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
398 mempool_free_slab, request_cachep, q->node); 398 mempool_free_slab, request_cachep, q->node);
399 399
400 if (!rl->rq_pool) 400 if (!rl->rq_pool)
401 return -ENOMEM; 401 return -ENOMEM;
402 402
403 return 0; 403 return 0;
404 } 404 }
405 405
406 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 406 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
407 { 407 {
408 return blk_alloc_queue_node(gfp_mask, -1); 408 return blk_alloc_queue_node(gfp_mask, -1);
409 } 409 }
410 EXPORT_SYMBOL(blk_alloc_queue); 410 EXPORT_SYMBOL(blk_alloc_queue);
411 411
412 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 412 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
413 { 413 {
414 struct request_queue *q; 414 struct request_queue *q;
415 int err; 415 int err;
416 416
417 q = kmem_cache_alloc_node(blk_requestq_cachep, 417 q = kmem_cache_alloc_node(blk_requestq_cachep,
418 gfp_mask | __GFP_ZERO, node_id); 418 gfp_mask | __GFP_ZERO, node_id);
419 if (!q) 419 if (!q)
420 return NULL; 420 return NULL;
421 421
422 q->backing_dev_info.ra_pages = 422 q->backing_dev_info.ra_pages =
423 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE; 423 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
424 q->backing_dev_info.state = 0; 424 q->backing_dev_info.state = 0;
425 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY; 425 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
426 q->backing_dev_info.name = "block"; 426 q->backing_dev_info.name = "block";
427 427
428 err = bdi_init(&q->backing_dev_info); 428 err = bdi_init(&q->backing_dev_info);
429 if (err) { 429 if (err) {
430 kmem_cache_free(blk_requestq_cachep, q); 430 kmem_cache_free(blk_requestq_cachep, q);
431 return NULL; 431 return NULL;
432 } 432 }
433 433
434 if (blk_throtl_init(q)) { 434 if (blk_throtl_init(q)) {
435 kmem_cache_free(blk_requestq_cachep, q); 435 kmem_cache_free(blk_requestq_cachep, q);
436 return NULL; 436 return NULL;
437 } 437 }
438 438
439 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer, 439 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
440 laptop_mode_timer_fn, (unsigned long) q); 440 laptop_mode_timer_fn, (unsigned long) q);
441 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 441 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
442 INIT_LIST_HEAD(&q->timeout_list); 442 INIT_LIST_HEAD(&q->timeout_list);
443 INIT_LIST_HEAD(&q->flush_queue[0]); 443 INIT_LIST_HEAD(&q->flush_queue[0]);
444 INIT_LIST_HEAD(&q->flush_queue[1]); 444 INIT_LIST_HEAD(&q->flush_queue[1]);
445 INIT_LIST_HEAD(&q->flush_data_in_flight); 445 INIT_LIST_HEAD(&q->flush_data_in_flight);
446 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); 446 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
447 447
448 kobject_init(&q->kobj, &blk_queue_ktype); 448 kobject_init(&q->kobj, &blk_queue_ktype);
449 449
450 mutex_init(&q->sysfs_lock); 450 mutex_init(&q->sysfs_lock);
451 spin_lock_init(&q->__queue_lock); 451 spin_lock_init(&q->__queue_lock);
452 452
453 /* 453 /*
454 * By default initialize queue_lock to internal lock and driver can 454 * By default initialize queue_lock to internal lock and driver can
455 * override it later if need be. 455 * override it later if need be.
456 */ 456 */
457 q->queue_lock = &q->__queue_lock; 457 q->queue_lock = &q->__queue_lock;
458 458
459 return q; 459 return q;
460 } 460 }
461 EXPORT_SYMBOL(blk_alloc_queue_node); 461 EXPORT_SYMBOL(blk_alloc_queue_node);
462 462
463 /** 463 /**
464 * blk_init_queue - prepare a request queue for use with a block device 464 * blk_init_queue - prepare a request queue for use with a block device
465 * @rfn: The function to be called to process requests that have been 465 * @rfn: The function to be called to process requests that have been
466 * placed on the queue. 466 * placed on the queue.
467 * @lock: Request queue spin lock 467 * @lock: Request queue spin lock
468 * 468 *
469 * Description: 469 * Description:
470 * If a block device wishes to use the standard request handling procedures, 470 * If a block device wishes to use the standard request handling procedures,
471 * which sorts requests and coalesces adjacent requests, then it must 471 * which sorts requests and coalesces adjacent requests, then it must
472 * call blk_init_queue(). The function @rfn will be called when there 472 * call blk_init_queue(). The function @rfn will be called when there
473 * are requests on the queue that need to be processed. If the device 473 * are requests on the queue that need to be processed. If the device
474 * supports plugging, then @rfn may not be called immediately when requests 474 * supports plugging, then @rfn may not be called immediately when requests
475 * are available on the queue, but may be called at some time later instead. 475 * are available on the queue, but may be called at some time later instead.
476 * Plugged queues are generally unplugged when a buffer belonging to one 476 * Plugged queues are generally unplugged when a buffer belonging to one
477 * of the requests on the queue is needed, or due to memory pressure. 477 * of the requests on the queue is needed, or due to memory pressure.
478 * 478 *
479 * @rfn is not required, or even expected, to remove all requests off the 479 * @rfn is not required, or even expected, to remove all requests off the
480 * queue, but only as many as it can handle at a time. If it does leave 480 * queue, but only as many as it can handle at a time. If it does leave
481 * requests on the queue, it is responsible for arranging that the requests 481 * requests on the queue, it is responsible for arranging that the requests
482 * get dealt with eventually. 482 * get dealt with eventually.
483 * 483 *
484 * The queue spin lock must be held while manipulating the requests on the 484 * The queue spin lock must be held while manipulating the requests on the
485 * request queue; this lock will be taken also from interrupt context, so irq 485 * request queue; this lock will be taken also from interrupt context, so irq
486 * disabling is needed for it. 486 * disabling is needed for it.
487 * 487 *
488 * Function returns a pointer to the initialized request queue, or %NULL if 488 * Function returns a pointer to the initialized request queue, or %NULL if
489 * it didn't succeed. 489 * it didn't succeed.
490 * 490 *
491 * Note: 491 * Note:
492 * blk_init_queue() must be paired with a blk_cleanup_queue() call 492 * blk_init_queue() must be paired with a blk_cleanup_queue() call
493 * when the block device is deactivated (such as at module unload). 493 * when the block device is deactivated (such as at module unload).
494 **/ 494 **/
495 495
496 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 496 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
497 { 497 {
498 return blk_init_queue_node(rfn, lock, -1); 498 return blk_init_queue_node(rfn, lock, -1);
499 } 499 }
500 EXPORT_SYMBOL(blk_init_queue); 500 EXPORT_SYMBOL(blk_init_queue);
501 501
502 struct request_queue * 502 struct request_queue *
503 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 503 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
504 { 504 {
505 struct request_queue *uninit_q, *q; 505 struct request_queue *uninit_q, *q;
506 506
507 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id); 507 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
508 if (!uninit_q) 508 if (!uninit_q)
509 return NULL; 509 return NULL;
510 510
511 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id); 511 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
512 if (!q) 512 if (!q)
513 blk_cleanup_queue(uninit_q); 513 blk_cleanup_queue(uninit_q);
514 514
515 return q; 515 return q;
516 } 516 }
517 EXPORT_SYMBOL(blk_init_queue_node); 517 EXPORT_SYMBOL(blk_init_queue_node);
518 518
519 struct request_queue * 519 struct request_queue *
520 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn, 520 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
521 spinlock_t *lock) 521 spinlock_t *lock)
522 { 522 {
523 return blk_init_allocated_queue_node(q, rfn, lock, -1); 523 return blk_init_allocated_queue_node(q, rfn, lock, -1);
524 } 524 }
525 EXPORT_SYMBOL(blk_init_allocated_queue); 525 EXPORT_SYMBOL(blk_init_allocated_queue);
526 526
527 struct request_queue * 527 struct request_queue *
528 blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn, 528 blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
529 spinlock_t *lock, int node_id) 529 spinlock_t *lock, int node_id)
530 { 530 {
531 if (!q) 531 if (!q)
532 return NULL; 532 return NULL;
533 533
534 q->node = node_id; 534 q->node = node_id;
535 if (blk_init_free_list(q)) 535 if (blk_init_free_list(q))
536 return NULL; 536 return NULL;
537 537
538 q->request_fn = rfn; 538 q->request_fn = rfn;
539 q->prep_rq_fn = NULL; 539 q->prep_rq_fn = NULL;
540 q->unprep_rq_fn = NULL; 540 q->unprep_rq_fn = NULL;
541 q->queue_flags = QUEUE_FLAG_DEFAULT; 541 q->queue_flags = QUEUE_FLAG_DEFAULT;
542 542
543 /* Override internal queue lock with supplied lock pointer */ 543 /* Override internal queue lock with supplied lock pointer */
544 if (lock) 544 if (lock)
545 q->queue_lock = lock; 545 q->queue_lock = lock;
546 546
547 /* 547 /*
548 * This also sets hw/phys segments, boundary and size 548 * This also sets hw/phys segments, boundary and size
549 */ 549 */
550 blk_queue_make_request(q, __make_request); 550 blk_queue_make_request(q, __make_request);
551 551
552 q->sg_reserved_size = INT_MAX; 552 q->sg_reserved_size = INT_MAX;
553 553
554 /* 554 /*
555 * all done 555 * all done
556 */ 556 */
557 if (!elevator_init(q, NULL)) { 557 if (!elevator_init(q, NULL)) {
558 blk_queue_congestion_threshold(q); 558 blk_queue_congestion_threshold(q);
559 return q; 559 return q;
560 } 560 }
561 561
562 return NULL; 562 return NULL;
563 } 563 }
564 EXPORT_SYMBOL(blk_init_allocated_queue_node); 564 EXPORT_SYMBOL(blk_init_allocated_queue_node);
565 565
566 int blk_get_queue(struct request_queue *q) 566 int blk_get_queue(struct request_queue *q)
567 { 567 {
568 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) { 568 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
569 kobject_get(&q->kobj); 569 kobject_get(&q->kobj);
570 return 0; 570 return 0;
571 } 571 }
572 572
573 return 1; 573 return 1;
574 } 574 }
575 575
576 static inline void blk_free_request(struct request_queue *q, struct request *rq) 576 static inline void blk_free_request(struct request_queue *q, struct request *rq)
577 { 577 {
578 BUG_ON(rq->cmd_flags & REQ_ON_PLUG); 578 BUG_ON(rq->cmd_flags & REQ_ON_PLUG);
579 579
580 if (rq->cmd_flags & REQ_ELVPRIV) 580 if (rq->cmd_flags & REQ_ELVPRIV)
581 elv_put_request(q, rq); 581 elv_put_request(q, rq);
582 mempool_free(rq, q->rq.rq_pool); 582 mempool_free(rq, q->rq.rq_pool);
583 } 583 }
584 584
585 static struct request * 585 static struct request *
586 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask) 586 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
587 { 587 {
588 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask); 588 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
589 589
590 if (!rq) 590 if (!rq)
591 return NULL; 591 return NULL;
592 592
593 blk_rq_init(q, rq); 593 blk_rq_init(q, rq);
594 594
595 rq->cmd_flags = flags | REQ_ALLOCED; 595 rq->cmd_flags = flags | REQ_ALLOCED;
596 596
597 if (priv) { 597 if (priv) {
598 if (unlikely(elv_set_request(q, rq, gfp_mask))) { 598 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
599 mempool_free(rq, q->rq.rq_pool); 599 mempool_free(rq, q->rq.rq_pool);
600 return NULL; 600 return NULL;
601 } 601 }
602 rq->cmd_flags |= REQ_ELVPRIV; 602 rq->cmd_flags |= REQ_ELVPRIV;
603 } 603 }
604 604
605 return rq; 605 return rq;
606 } 606 }
607 607
608 /* 608 /*
609 * ioc_batching returns true if the ioc is a valid batching request and 609 * ioc_batching returns true if the ioc is a valid batching request and
610 * should be given priority access to a request. 610 * should be given priority access to a request.
611 */ 611 */
612 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 612 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
613 { 613 {
614 if (!ioc) 614 if (!ioc)
615 return 0; 615 return 0;
616 616
617 /* 617 /*
618 * Make sure the process is able to allocate at least 1 request 618 * Make sure the process is able to allocate at least 1 request
619 * even if the batch times out, otherwise we could theoretically 619 * even if the batch times out, otherwise we could theoretically
620 * lose wakeups. 620 * lose wakeups.
621 */ 621 */
622 return ioc->nr_batch_requests == q->nr_batching || 622 return ioc->nr_batch_requests == q->nr_batching ||
623 (ioc->nr_batch_requests > 0 623 (ioc->nr_batch_requests > 0
624 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 624 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
625 } 625 }
626 626
627 /* 627 /*
628 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 628 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
629 * will cause the process to be a "batcher" on all queues in the system. This 629 * will cause the process to be a "batcher" on all queues in the system. This
630 * is the behaviour we want though - once it gets a wakeup it should be given 630 * is the behaviour we want though - once it gets a wakeup it should be given
631 * a nice run. 631 * a nice run.
632 */ 632 */
633 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 633 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
634 { 634 {
635 if (!ioc || ioc_batching(q, ioc)) 635 if (!ioc || ioc_batching(q, ioc))
636 return; 636 return;
637 637
638 ioc->nr_batch_requests = q->nr_batching; 638 ioc->nr_batch_requests = q->nr_batching;
639 ioc->last_waited = jiffies; 639 ioc->last_waited = jiffies;
640 } 640 }
641 641
642 static void __freed_request(struct request_queue *q, int sync) 642 static void __freed_request(struct request_queue *q, int sync)
643 { 643 {
644 struct request_list *rl = &q->rq; 644 struct request_list *rl = &q->rq;
645 645
646 if (rl->count[sync] < queue_congestion_off_threshold(q)) 646 if (rl->count[sync] < queue_congestion_off_threshold(q))
647 blk_clear_queue_congested(q, sync); 647 blk_clear_queue_congested(q, sync);
648 648
649 if (rl->count[sync] + 1 <= q->nr_requests) { 649 if (rl->count[sync] + 1 <= q->nr_requests) {
650 if (waitqueue_active(&rl->wait[sync])) 650 if (waitqueue_active(&rl->wait[sync]))
651 wake_up(&rl->wait[sync]); 651 wake_up(&rl->wait[sync]);
652 652
653 blk_clear_queue_full(q, sync); 653 blk_clear_queue_full(q, sync);
654 } 654 }
655 } 655 }
656 656
657 /* 657 /*
658 * A request has just been released. Account for it, update the full and 658 * A request has just been released. Account for it, update the full and
659 * congestion status, wake up any waiters. Called under q->queue_lock. 659 * congestion status, wake up any waiters. Called under q->queue_lock.
660 */ 660 */
661 static void freed_request(struct request_queue *q, int sync, int priv) 661 static void freed_request(struct request_queue *q, int sync, int priv)
662 { 662 {
663 struct request_list *rl = &q->rq; 663 struct request_list *rl = &q->rq;
664 664
665 rl->count[sync]--; 665 rl->count[sync]--;
666 if (priv) 666 if (priv)
667 rl->elvpriv--; 667 rl->elvpriv--;
668 668
669 __freed_request(q, sync); 669 __freed_request(q, sync);
670 670
671 if (unlikely(rl->starved[sync ^ 1])) 671 if (unlikely(rl->starved[sync ^ 1]))
672 __freed_request(q, sync ^ 1); 672 __freed_request(q, sync ^ 1);
673 } 673 }
674 674
675 /* 675 /*
676 * Determine if elevator data should be initialized when allocating the 676 * Determine if elevator data should be initialized when allocating the
677 * request associated with @bio. 677 * request associated with @bio.
678 */ 678 */
679 static bool blk_rq_should_init_elevator(struct bio *bio) 679 static bool blk_rq_should_init_elevator(struct bio *bio)
680 { 680 {
681 if (!bio) 681 if (!bio)
682 return true; 682 return true;
683 683
684 /* 684 /*
685 * Flush requests do not use the elevator so skip initialization. 685 * Flush requests do not use the elevator so skip initialization.
686 * This allows a request to share the flush and elevator data. 686 * This allows a request to share the flush and elevator data.
687 */ 687 */
688 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) 688 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
689 return false; 689 return false;
690 690
691 return true; 691 return true;
692 } 692 }
693 693
694 /* 694 /*
695 * Get a free request, queue_lock must be held. 695 * Get a free request, queue_lock must be held.
696 * Returns NULL on failure, with queue_lock held. 696 * Returns NULL on failure, with queue_lock held.
697 * Returns !NULL on success, with queue_lock *not held*. 697 * Returns !NULL on success, with queue_lock *not held*.
698 */ 698 */
699 static struct request *get_request(struct request_queue *q, int rw_flags, 699 static struct request *get_request(struct request_queue *q, int rw_flags,
700 struct bio *bio, gfp_t gfp_mask) 700 struct bio *bio, gfp_t gfp_mask)
701 { 701 {
702 struct request *rq = NULL; 702 struct request *rq = NULL;
703 struct request_list *rl = &q->rq; 703 struct request_list *rl = &q->rq;
704 struct io_context *ioc = NULL; 704 struct io_context *ioc = NULL;
705 const bool is_sync = rw_is_sync(rw_flags) != 0; 705 const bool is_sync = rw_is_sync(rw_flags) != 0;
706 int may_queue, priv = 0; 706 int may_queue, priv = 0;
707 707
708 may_queue = elv_may_queue(q, rw_flags); 708 may_queue = elv_may_queue(q, rw_flags);
709 if (may_queue == ELV_MQUEUE_NO) 709 if (may_queue == ELV_MQUEUE_NO)
710 goto rq_starved; 710 goto rq_starved;
711 711
712 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 712 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
713 if (rl->count[is_sync]+1 >= q->nr_requests) { 713 if (rl->count[is_sync]+1 >= q->nr_requests) {
714 ioc = current_io_context(GFP_ATOMIC, q->node); 714 ioc = current_io_context(GFP_ATOMIC, q->node);
715 /* 715 /*
716 * The queue will fill after this allocation, so set 716 * The queue will fill after this allocation, so set
717 * it as full, and mark this process as "batching". 717 * it as full, and mark this process as "batching".
718 * This process will be allowed to complete a batch of 718 * This process will be allowed to complete a batch of
719 * requests, others will be blocked. 719 * requests, others will be blocked.
720 */ 720 */
721 if (!blk_queue_full(q, is_sync)) { 721 if (!blk_queue_full(q, is_sync)) {
722 ioc_set_batching(q, ioc); 722 ioc_set_batching(q, ioc);
723 blk_set_queue_full(q, is_sync); 723 blk_set_queue_full(q, is_sync);
724 } else { 724 } else {
725 if (may_queue != ELV_MQUEUE_MUST 725 if (may_queue != ELV_MQUEUE_MUST
726 && !ioc_batching(q, ioc)) { 726 && !ioc_batching(q, ioc)) {
727 /* 727 /*
728 * The queue is full and the allocating 728 * The queue is full and the allocating
729 * process is not a "batcher", and not 729 * process is not a "batcher", and not
730 * exempted by the IO scheduler 730 * exempted by the IO scheduler
731 */ 731 */
732 goto out; 732 goto out;
733 } 733 }
734 } 734 }
735 } 735 }
736 blk_set_queue_congested(q, is_sync); 736 blk_set_queue_congested(q, is_sync);
737 } 737 }
738 738
739 /* 739 /*
740 * Only allow batching queuers to allocate up to 50% over the defined 740 * Only allow batching queuers to allocate up to 50% over the defined
741 * limit of requests, otherwise we could have thousands of requests 741 * limit of requests, otherwise we could have thousands of requests
742 * allocated with any setting of ->nr_requests 742 * allocated with any setting of ->nr_requests
743 */ 743 */
744 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 744 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
745 goto out; 745 goto out;
746 746
747 rl->count[is_sync]++; 747 rl->count[is_sync]++;
748 rl->starved[is_sync] = 0; 748 rl->starved[is_sync] = 0;
749 749
750 if (blk_rq_should_init_elevator(bio)) { 750 if (blk_rq_should_init_elevator(bio)) {
751 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags); 751 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
752 if (priv) 752 if (priv)
753 rl->elvpriv++; 753 rl->elvpriv++;
754 } 754 }
755 755
756 if (blk_queue_io_stat(q)) 756 if (blk_queue_io_stat(q))
757 rw_flags |= REQ_IO_STAT; 757 rw_flags |= REQ_IO_STAT;
758 spin_unlock_irq(q->queue_lock); 758 spin_unlock_irq(q->queue_lock);
759 759
760 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask); 760 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
761 if (unlikely(!rq)) { 761 if (unlikely(!rq)) {
762 /* 762 /*
763 * Allocation failed presumably due to memory. Undo anything 763 * Allocation failed presumably due to memory. Undo anything
764 * we might have messed up. 764 * we might have messed up.
765 * 765 *
766 * Allocating task should really be put onto the front of the 766 * Allocating task should really be put onto the front of the
767 * wait queue, but this is pretty rare. 767 * wait queue, but this is pretty rare.
768 */ 768 */
769 spin_lock_irq(q->queue_lock); 769 spin_lock_irq(q->queue_lock);
770 freed_request(q, is_sync, priv); 770 freed_request(q, is_sync, priv);
771 771
772 /* 772 /*
773 * in the very unlikely event that allocation failed and no 773 * in the very unlikely event that allocation failed and no
774 * requests for this direction was pending, mark us starved 774 * requests for this direction was pending, mark us starved
775 * so that freeing of a request in the other direction will 775 * so that freeing of a request in the other direction will
776 * notice us. another possible fix would be to split the 776 * notice us. another possible fix would be to split the
777 * rq mempool into READ and WRITE 777 * rq mempool into READ and WRITE
778 */ 778 */
779 rq_starved: 779 rq_starved:
780 if (unlikely(rl->count[is_sync] == 0)) 780 if (unlikely(rl->count[is_sync] == 0))
781 rl->starved[is_sync] = 1; 781 rl->starved[is_sync] = 1;
782 782
783 goto out; 783 goto out;
784 } 784 }
785 785
786 /* 786 /*
787 * ioc may be NULL here, and ioc_batching will be false. That's 787 * ioc may be NULL here, and ioc_batching will be false. That's
788 * OK, if the queue is under the request limit then requests need 788 * OK, if the queue is under the request limit then requests need
789 * not count toward the nr_batch_requests limit. There will always 789 * not count toward the nr_batch_requests limit. There will always
790 * be some limit enforced by BLK_BATCH_TIME. 790 * be some limit enforced by BLK_BATCH_TIME.
791 */ 791 */
792 if (ioc_batching(q, ioc)) 792 if (ioc_batching(q, ioc))
793 ioc->nr_batch_requests--; 793 ioc->nr_batch_requests--;
794 794
795 trace_block_getrq(q, bio, rw_flags & 1); 795 trace_block_getrq(q, bio, rw_flags & 1);
796 out: 796 out:
797 return rq; 797 return rq;
798 } 798 }
799 799
800 /* 800 /*
801 * No available requests for this queue, wait for some requests to become 801 * No available requests for this queue, wait for some requests to become
802 * available. 802 * available.
803 * 803 *
804 * Called with q->queue_lock held, and returns with it unlocked. 804 * Called with q->queue_lock held, and returns with it unlocked.
805 */ 805 */
806 static struct request *get_request_wait(struct request_queue *q, int rw_flags, 806 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
807 struct bio *bio) 807 struct bio *bio)
808 { 808 {
809 const bool is_sync = rw_is_sync(rw_flags) != 0; 809 const bool is_sync = rw_is_sync(rw_flags) != 0;
810 struct request *rq; 810 struct request *rq;
811 811
812 rq = get_request(q, rw_flags, bio, GFP_NOIO); 812 rq = get_request(q, rw_flags, bio, GFP_NOIO);
813 while (!rq) { 813 while (!rq) {
814 DEFINE_WAIT(wait); 814 DEFINE_WAIT(wait);
815 struct io_context *ioc; 815 struct io_context *ioc;
816 struct request_list *rl = &q->rq; 816 struct request_list *rl = &q->rq;
817 817
818 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 818 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
819 TASK_UNINTERRUPTIBLE); 819 TASK_UNINTERRUPTIBLE);
820 820
821 trace_block_sleeprq(q, bio, rw_flags & 1); 821 trace_block_sleeprq(q, bio, rw_flags & 1);
822 822
823 spin_unlock_irq(q->queue_lock); 823 spin_unlock_irq(q->queue_lock);
824 io_schedule(); 824 io_schedule();
825 825
826 /* 826 /*
827 * After sleeping, we become a "batching" process and 827 * After sleeping, we become a "batching" process and
828 * will be able to allocate at least one request, and 828 * will be able to allocate at least one request, and
829 * up to a big batch of them for a small period time. 829 * up to a big batch of them for a small period time.
830 * See ioc_batching, ioc_set_batching 830 * See ioc_batching, ioc_set_batching
831 */ 831 */
832 ioc = current_io_context(GFP_NOIO, q->node); 832 ioc = current_io_context(GFP_NOIO, q->node);
833 ioc_set_batching(q, ioc); 833 ioc_set_batching(q, ioc);
834 834
835 spin_lock_irq(q->queue_lock); 835 spin_lock_irq(q->queue_lock);
836 finish_wait(&rl->wait[is_sync], &wait); 836 finish_wait(&rl->wait[is_sync], &wait);
837 837
838 rq = get_request(q, rw_flags, bio, GFP_NOIO); 838 rq = get_request(q, rw_flags, bio, GFP_NOIO);
839 }; 839 };
840 840
841 return rq; 841 return rq;
842 } 842 }
843 843
844 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 844 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
845 { 845 {
846 struct request *rq; 846 struct request *rq;
847 847
848 BUG_ON(rw != READ && rw != WRITE); 848 BUG_ON(rw != READ && rw != WRITE);
849 849
850 spin_lock_irq(q->queue_lock); 850 spin_lock_irq(q->queue_lock);
851 if (gfp_mask & __GFP_WAIT) { 851 if (gfp_mask & __GFP_WAIT) {
852 rq = get_request_wait(q, rw, NULL); 852 rq = get_request_wait(q, rw, NULL);
853 } else { 853 } else {
854 rq = get_request(q, rw, NULL, gfp_mask); 854 rq = get_request(q, rw, NULL, gfp_mask);
855 if (!rq) 855 if (!rq)
856 spin_unlock_irq(q->queue_lock); 856 spin_unlock_irq(q->queue_lock);
857 } 857 }
858 /* q->queue_lock is unlocked at this point */ 858 /* q->queue_lock is unlocked at this point */
859 859
860 return rq; 860 return rq;
861 } 861 }
862 EXPORT_SYMBOL(blk_get_request); 862 EXPORT_SYMBOL(blk_get_request);
863 863
864 /** 864 /**
865 * blk_make_request - given a bio, allocate a corresponding struct request. 865 * blk_make_request - given a bio, allocate a corresponding struct request.
866 * @q: target request queue 866 * @q: target request queue
867 * @bio: The bio describing the memory mappings that will be submitted for IO. 867 * @bio: The bio describing the memory mappings that will be submitted for IO.
868 * It may be a chained-bio properly constructed by block/bio layer. 868 * It may be a chained-bio properly constructed by block/bio layer.
869 * @gfp_mask: gfp flags to be used for memory allocation 869 * @gfp_mask: gfp flags to be used for memory allocation
870 * 870 *
871 * blk_make_request is the parallel of generic_make_request for BLOCK_PC 871 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
872 * type commands. Where the struct request needs to be farther initialized by 872 * type commands. Where the struct request needs to be farther initialized by
873 * the caller. It is passed a &struct bio, which describes the memory info of 873 * the caller. It is passed a &struct bio, which describes the memory info of
874 * the I/O transfer. 874 * the I/O transfer.
875 * 875 *
876 * The caller of blk_make_request must make sure that bi_io_vec 876 * The caller of blk_make_request must make sure that bi_io_vec
877 * are set to describe the memory buffers. That bio_data_dir() will return 877 * are set to describe the memory buffers. That bio_data_dir() will return
878 * the needed direction of the request. (And all bio's in the passed bio-chain 878 * the needed direction of the request. (And all bio's in the passed bio-chain
879 * are properly set accordingly) 879 * are properly set accordingly)
880 * 880 *
881 * If called under none-sleepable conditions, mapped bio buffers must not 881 * If called under none-sleepable conditions, mapped bio buffers must not
882 * need bouncing, by calling the appropriate masked or flagged allocator, 882 * need bouncing, by calling the appropriate masked or flagged allocator,
883 * suitable for the target device. Otherwise the call to blk_queue_bounce will 883 * suitable for the target device. Otherwise the call to blk_queue_bounce will
884 * BUG. 884 * BUG.
885 * 885 *
886 * WARNING: When allocating/cloning a bio-chain, careful consideration should be 886 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
887 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for 887 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
888 * anything but the first bio in the chain. Otherwise you risk waiting for IO 888 * anything but the first bio in the chain. Otherwise you risk waiting for IO
889 * completion of a bio that hasn't been submitted yet, thus resulting in a 889 * completion of a bio that hasn't been submitted yet, thus resulting in a
890 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead 890 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
891 * of bio_alloc(), as that avoids the mempool deadlock. 891 * of bio_alloc(), as that avoids the mempool deadlock.
892 * If possible a big IO should be split into smaller parts when allocation 892 * If possible a big IO should be split into smaller parts when allocation
893 * fails. Partial allocation should not be an error, or you risk a live-lock. 893 * fails. Partial allocation should not be an error, or you risk a live-lock.
894 */ 894 */
895 struct request *blk_make_request(struct request_queue *q, struct bio *bio, 895 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
896 gfp_t gfp_mask) 896 gfp_t gfp_mask)
897 { 897 {
898 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask); 898 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
899 899
900 if (unlikely(!rq)) 900 if (unlikely(!rq))
901 return ERR_PTR(-ENOMEM); 901 return ERR_PTR(-ENOMEM);
902 902
903 for_each_bio(bio) { 903 for_each_bio(bio) {
904 struct bio *bounce_bio = bio; 904 struct bio *bounce_bio = bio;
905 int ret; 905 int ret;
906 906
907 blk_queue_bounce(q, &bounce_bio); 907 blk_queue_bounce(q, &bounce_bio);
908 ret = blk_rq_append_bio(q, rq, bounce_bio); 908 ret = blk_rq_append_bio(q, rq, bounce_bio);
909 if (unlikely(ret)) { 909 if (unlikely(ret)) {
910 blk_put_request(rq); 910 blk_put_request(rq);
911 return ERR_PTR(ret); 911 return ERR_PTR(ret);
912 } 912 }
913 } 913 }
914 914
915 return rq; 915 return rq;
916 } 916 }
917 EXPORT_SYMBOL(blk_make_request); 917 EXPORT_SYMBOL(blk_make_request);
918 918
919 /** 919 /**
920 * blk_requeue_request - put a request back on queue 920 * blk_requeue_request - put a request back on queue
921 * @q: request queue where request should be inserted 921 * @q: request queue where request should be inserted
922 * @rq: request to be inserted 922 * @rq: request to be inserted
923 * 923 *
924 * Description: 924 * Description:
925 * Drivers often keep queueing requests until the hardware cannot accept 925 * Drivers often keep queueing requests until the hardware cannot accept
926 * more, when that condition happens we need to put the request back 926 * more, when that condition happens we need to put the request back
927 * on the queue. Must be called with queue lock held. 927 * on the queue. Must be called with queue lock held.
928 */ 928 */
929 void blk_requeue_request(struct request_queue *q, struct request *rq) 929 void blk_requeue_request(struct request_queue *q, struct request *rq)
930 { 930 {
931 blk_delete_timer(rq); 931 blk_delete_timer(rq);
932 blk_clear_rq_complete(rq); 932 blk_clear_rq_complete(rq);
933 trace_block_rq_requeue(q, rq); 933 trace_block_rq_requeue(q, rq);
934 934
935 if (blk_rq_tagged(rq)) 935 if (blk_rq_tagged(rq))
936 blk_queue_end_tag(q, rq); 936 blk_queue_end_tag(q, rq);
937 937
938 BUG_ON(blk_queued_rq(rq)); 938 BUG_ON(blk_queued_rq(rq));
939 939
940 elv_requeue_request(q, rq); 940 elv_requeue_request(q, rq);
941 } 941 }
942 EXPORT_SYMBOL(blk_requeue_request); 942 EXPORT_SYMBOL(blk_requeue_request);
943 943
944 static void add_acct_request(struct request_queue *q, struct request *rq, 944 static void add_acct_request(struct request_queue *q, struct request *rq,
945 int where) 945 int where)
946 { 946 {
947 drive_stat_acct(rq, 1); 947 drive_stat_acct(rq, 1);
948 __elv_add_request(q, rq, where); 948 __elv_add_request(q, rq, where);
949 } 949 }
950 950
951 /** 951 /**
952 * blk_insert_request - insert a special request into a request queue 952 * blk_insert_request - insert a special request into a request queue
953 * @q: request queue where request should be inserted 953 * @q: request queue where request should be inserted
954 * @rq: request to be inserted 954 * @rq: request to be inserted
955 * @at_head: insert request at head or tail of queue 955 * @at_head: insert request at head or tail of queue
956 * @data: private data 956 * @data: private data
957 * 957 *
958 * Description: 958 * Description:
959 * Many block devices need to execute commands asynchronously, so they don't 959 * Many block devices need to execute commands asynchronously, so they don't
960 * block the whole kernel from preemption during request execution. This is 960 * block the whole kernel from preemption during request execution. This is
961 * accomplished normally by inserting aritficial requests tagged as 961 * accomplished normally by inserting aritficial requests tagged as
962 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them 962 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
963 * be scheduled for actual execution by the request queue. 963 * be scheduled for actual execution by the request queue.
964 * 964 *
965 * We have the option of inserting the head or the tail of the queue. 965 * We have the option of inserting the head or the tail of the queue.
966 * Typically we use the tail for new ioctls and so forth. We use the head 966 * Typically we use the tail for new ioctls and so forth. We use the head
967 * of the queue for things like a QUEUE_FULL message from a device, or a 967 * of the queue for things like a QUEUE_FULL message from a device, or a
968 * host that is unable to accept a particular command. 968 * host that is unable to accept a particular command.
969 */ 969 */
970 void blk_insert_request(struct request_queue *q, struct request *rq, 970 void blk_insert_request(struct request_queue *q, struct request *rq,
971 int at_head, void *data) 971 int at_head, void *data)
972 { 972 {
973 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK; 973 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
974 unsigned long flags; 974 unsigned long flags;
975 975
976 /* 976 /*
977 * tell I/O scheduler that this isn't a regular read/write (ie it 977 * tell I/O scheduler that this isn't a regular read/write (ie it
978 * must not attempt merges on this) and that it acts as a soft 978 * must not attempt merges on this) and that it acts as a soft
979 * barrier 979 * barrier
980 */ 980 */
981 rq->cmd_type = REQ_TYPE_SPECIAL; 981 rq->cmd_type = REQ_TYPE_SPECIAL;
982 982
983 rq->special = data; 983 rq->special = data;
984 984
985 spin_lock_irqsave(q->queue_lock, flags); 985 spin_lock_irqsave(q->queue_lock, flags);
986 986
987 /* 987 /*
988 * If command is tagged, release the tag 988 * If command is tagged, release the tag
989 */ 989 */
990 if (blk_rq_tagged(rq)) 990 if (blk_rq_tagged(rq))
991 blk_queue_end_tag(q, rq); 991 blk_queue_end_tag(q, rq);
992 992
993 add_acct_request(q, rq, where); 993 add_acct_request(q, rq, where);
994 __blk_run_queue(q, false); 994 __blk_run_queue(q, false);
995 spin_unlock_irqrestore(q->queue_lock, flags); 995 spin_unlock_irqrestore(q->queue_lock, flags);
996 } 996 }
997 EXPORT_SYMBOL(blk_insert_request); 997 EXPORT_SYMBOL(blk_insert_request);
998 998
999 static void part_round_stats_single(int cpu, struct hd_struct *part, 999 static void part_round_stats_single(int cpu, struct hd_struct *part,
1000 unsigned long now) 1000 unsigned long now)
1001 { 1001 {
1002 if (now == part->stamp) 1002 if (now == part->stamp)
1003 return; 1003 return;
1004 1004
1005 if (part_in_flight(part)) { 1005 if (part_in_flight(part)) {
1006 __part_stat_add(cpu, part, time_in_queue, 1006 __part_stat_add(cpu, part, time_in_queue,
1007 part_in_flight(part) * (now - part->stamp)); 1007 part_in_flight(part) * (now - part->stamp));
1008 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1008 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1009 } 1009 }
1010 part->stamp = now; 1010 part->stamp = now;
1011 } 1011 }
1012 1012
1013 /** 1013 /**
1014 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1014 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1015 * @cpu: cpu number for stats access 1015 * @cpu: cpu number for stats access
1016 * @part: target partition 1016 * @part: target partition
1017 * 1017 *
1018 * The average IO queue length and utilisation statistics are maintained 1018 * The average IO queue length and utilisation statistics are maintained
1019 * by observing the current state of the queue length and the amount of 1019 * by observing the current state of the queue length and the amount of
1020 * time it has been in this state for. 1020 * time it has been in this state for.
1021 * 1021 *
1022 * Normally, that accounting is done on IO completion, but that can result 1022 * Normally, that accounting is done on IO completion, but that can result
1023 * in more than a second's worth of IO being accounted for within any one 1023 * in more than a second's worth of IO being accounted for within any one
1024 * second, leading to >100% utilisation. To deal with that, we call this 1024 * second, leading to >100% utilisation. To deal with that, we call this
1025 * function to do a round-off before returning the results when reading 1025 * function to do a round-off before returning the results when reading
1026 * /proc/diskstats. This accounts immediately for all queue usage up to 1026 * /proc/diskstats. This accounts immediately for all queue usage up to
1027 * the current jiffies and restarts the counters again. 1027 * the current jiffies and restarts the counters again.
1028 */ 1028 */
1029 void part_round_stats(int cpu, struct hd_struct *part) 1029 void part_round_stats(int cpu, struct hd_struct *part)
1030 { 1030 {
1031 unsigned long now = jiffies; 1031 unsigned long now = jiffies;
1032 1032
1033 if (part->partno) 1033 if (part->partno)
1034 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1034 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1035 part_round_stats_single(cpu, part, now); 1035 part_round_stats_single(cpu, part, now);
1036 } 1036 }
1037 EXPORT_SYMBOL_GPL(part_round_stats); 1037 EXPORT_SYMBOL_GPL(part_round_stats);
1038 1038
1039 /* 1039 /*
1040 * queue lock must be held 1040 * queue lock must be held
1041 */ 1041 */
1042 void __blk_put_request(struct request_queue *q, struct request *req) 1042 void __blk_put_request(struct request_queue *q, struct request *req)
1043 { 1043 {
1044 if (unlikely(!q)) 1044 if (unlikely(!q))
1045 return; 1045 return;
1046 if (unlikely(--req->ref_count)) 1046 if (unlikely(--req->ref_count))
1047 return; 1047 return;
1048 1048
1049 elv_completed_request(q, req); 1049 elv_completed_request(q, req);
1050 1050
1051 /* this is a bio leak */ 1051 /* this is a bio leak */
1052 WARN_ON(req->bio != NULL); 1052 WARN_ON(req->bio != NULL);
1053 1053
1054 /* 1054 /*
1055 * Request may not have originated from ll_rw_blk. if not, 1055 * Request may not have originated from ll_rw_blk. if not,
1056 * it didn't come out of our reserved rq pools 1056 * it didn't come out of our reserved rq pools
1057 */ 1057 */
1058 if (req->cmd_flags & REQ_ALLOCED) { 1058 if (req->cmd_flags & REQ_ALLOCED) {
1059 int is_sync = rq_is_sync(req) != 0; 1059 int is_sync = rq_is_sync(req) != 0;
1060 int priv = req->cmd_flags & REQ_ELVPRIV; 1060 int priv = req->cmd_flags & REQ_ELVPRIV;
1061 1061
1062 BUG_ON(!list_empty(&req->queuelist)); 1062 BUG_ON(!list_empty(&req->queuelist));
1063 BUG_ON(!hlist_unhashed(&req->hash)); 1063 BUG_ON(!hlist_unhashed(&req->hash));
1064 1064
1065 blk_free_request(q, req); 1065 blk_free_request(q, req);
1066 freed_request(q, is_sync, priv); 1066 freed_request(q, is_sync, priv);
1067 } 1067 }
1068 } 1068 }
1069 EXPORT_SYMBOL_GPL(__blk_put_request); 1069 EXPORT_SYMBOL_GPL(__blk_put_request);
1070 1070
1071 void blk_put_request(struct request *req) 1071 void blk_put_request(struct request *req)
1072 { 1072 {
1073 unsigned long flags; 1073 unsigned long flags;
1074 struct request_queue *q = req->q; 1074 struct request_queue *q = req->q;
1075 1075
1076 spin_lock_irqsave(q->queue_lock, flags); 1076 spin_lock_irqsave(q->queue_lock, flags);
1077 __blk_put_request(q, req); 1077 __blk_put_request(q, req);
1078 spin_unlock_irqrestore(q->queue_lock, flags); 1078 spin_unlock_irqrestore(q->queue_lock, flags);
1079 } 1079 }
1080 EXPORT_SYMBOL(blk_put_request); 1080 EXPORT_SYMBOL(blk_put_request);
1081 1081
1082 /** 1082 /**
1083 * blk_add_request_payload - add a payload to a request 1083 * blk_add_request_payload - add a payload to a request
1084 * @rq: request to update 1084 * @rq: request to update
1085 * @page: page backing the payload 1085 * @page: page backing the payload
1086 * @len: length of the payload. 1086 * @len: length of the payload.
1087 * 1087 *
1088 * This allows to later add a payload to an already submitted request by 1088 * This allows to later add a payload to an already submitted request by
1089 * a block driver. The driver needs to take care of freeing the payload 1089 * a block driver. The driver needs to take care of freeing the payload
1090 * itself. 1090 * itself.
1091 * 1091 *
1092 * Note that this is a quite horrible hack and nothing but handling of 1092 * Note that this is a quite horrible hack and nothing but handling of
1093 * discard requests should ever use it. 1093 * discard requests should ever use it.
1094 */ 1094 */
1095 void blk_add_request_payload(struct request *rq, struct page *page, 1095 void blk_add_request_payload(struct request *rq, struct page *page,
1096 unsigned int len) 1096 unsigned int len)
1097 { 1097 {
1098 struct bio *bio = rq->bio; 1098 struct bio *bio = rq->bio;
1099 1099
1100 bio->bi_io_vec->bv_page = page; 1100 bio->bi_io_vec->bv_page = page;
1101 bio->bi_io_vec->bv_offset = 0; 1101 bio->bi_io_vec->bv_offset = 0;
1102 bio->bi_io_vec->bv_len = len; 1102 bio->bi_io_vec->bv_len = len;
1103 1103
1104 bio->bi_size = len; 1104 bio->bi_size = len;
1105 bio->bi_vcnt = 1; 1105 bio->bi_vcnt = 1;
1106 bio->bi_phys_segments = 1; 1106 bio->bi_phys_segments = 1;
1107 1107
1108 rq->__data_len = rq->resid_len = len; 1108 rq->__data_len = rq->resid_len = len;
1109 rq->nr_phys_segments = 1; 1109 rq->nr_phys_segments = 1;
1110 rq->buffer = bio_data(bio); 1110 rq->buffer = bio_data(bio);
1111 } 1111 }
1112 EXPORT_SYMBOL_GPL(blk_add_request_payload); 1112 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1113 1113
1114 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 1114 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1115 struct bio *bio) 1115 struct bio *bio)
1116 { 1116 {
1117 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1117 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1118 1118
1119 /* 1119 /*
1120 * Debug stuff, kill later 1120 * Debug stuff, kill later
1121 */ 1121 */
1122 if (!rq_mergeable(req)) { 1122 if (!rq_mergeable(req)) {
1123 blk_dump_rq_flags(req, "back"); 1123 blk_dump_rq_flags(req, "back");
1124 return false; 1124 return false;
1125 } 1125 }
1126 1126
1127 if (!ll_back_merge_fn(q, req, bio)) 1127 if (!ll_back_merge_fn(q, req, bio))
1128 return false; 1128 return false;
1129 1129
1130 trace_block_bio_backmerge(q, bio); 1130 trace_block_bio_backmerge(q, bio);
1131 1131
1132 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1132 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1133 blk_rq_set_mixed_merge(req); 1133 blk_rq_set_mixed_merge(req);
1134 1134
1135 req->biotail->bi_next = bio; 1135 req->biotail->bi_next = bio;
1136 req->biotail = bio; 1136 req->biotail = bio;
1137 req->__data_len += bio->bi_size; 1137 req->__data_len += bio->bi_size;
1138 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1138 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1139 1139
1140 drive_stat_acct(req, 0); 1140 drive_stat_acct(req, 0);
1141 return true; 1141 return true;
1142 } 1142 }
1143 1143
1144 static bool bio_attempt_front_merge(struct request_queue *q, 1144 static bool bio_attempt_front_merge(struct request_queue *q,
1145 struct request *req, struct bio *bio) 1145 struct request *req, struct bio *bio)
1146 { 1146 {
1147 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1147 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1148 sector_t sector; 1148 sector_t sector;
1149 1149
1150 /* 1150 /*
1151 * Debug stuff, kill later 1151 * Debug stuff, kill later
1152 */ 1152 */
1153 if (!rq_mergeable(req)) { 1153 if (!rq_mergeable(req)) {
1154 blk_dump_rq_flags(req, "front"); 1154 blk_dump_rq_flags(req, "front");
1155 return false; 1155 return false;
1156 } 1156 }
1157 1157
1158 if (!ll_front_merge_fn(q, req, bio)) 1158 if (!ll_front_merge_fn(q, req, bio))
1159 return false; 1159 return false;
1160 1160
1161 trace_block_bio_frontmerge(q, bio); 1161 trace_block_bio_frontmerge(q, bio);
1162 1162
1163 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1163 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1164 blk_rq_set_mixed_merge(req); 1164 blk_rq_set_mixed_merge(req);
1165 1165
1166 sector = bio->bi_sector; 1166 sector = bio->bi_sector;
1167 1167
1168 bio->bi_next = req->bio; 1168 bio->bi_next = req->bio;
1169 req->bio = bio; 1169 req->bio = bio;
1170 1170
1171 /* 1171 /*
1172 * may not be valid. if the low level driver said 1172 * may not be valid. if the low level driver said
1173 * it didn't need a bounce buffer then it better 1173 * it didn't need a bounce buffer then it better
1174 * not touch req->buffer either... 1174 * not touch req->buffer either...
1175 */ 1175 */
1176 req->buffer = bio_data(bio); 1176 req->buffer = bio_data(bio);
1177 req->__sector = bio->bi_sector; 1177 req->__sector = bio->bi_sector;
1178 req->__data_len += bio->bi_size; 1178 req->__data_len += bio->bi_size;
1179 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1179 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1180 1180
1181 drive_stat_acct(req, 0); 1181 drive_stat_acct(req, 0);
1182 return true; 1182 return true;
1183 } 1183 }
1184 1184
1185 /* 1185 /*
1186 * Attempts to merge with the plugged list in the current process. Returns 1186 * Attempts to merge with the plugged list in the current process. Returns
1187 * true if merge was succesful, otherwise false. 1187 * true if merge was succesful, otherwise false.
1188 */ 1188 */
1189 static bool attempt_plug_merge(struct task_struct *tsk, struct request_queue *q, 1189 static bool attempt_plug_merge(struct task_struct *tsk, struct request_queue *q,
1190 struct bio *bio) 1190 struct bio *bio)
1191 { 1191 {
1192 struct blk_plug *plug; 1192 struct blk_plug *plug;
1193 struct request *rq; 1193 struct request *rq;
1194 bool ret = false; 1194 bool ret = false;
1195 1195
1196 plug = tsk->plug; 1196 plug = tsk->plug;
1197 if (!plug) 1197 if (!plug)
1198 goto out; 1198 goto out;
1199 1199
1200 list_for_each_entry_reverse(rq, &plug->list, queuelist) { 1200 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1201 int el_ret; 1201 int el_ret;
1202 1202
1203 if (rq->q != q) 1203 if (rq->q != q)
1204 continue; 1204 continue;
1205 1205
1206 el_ret = elv_try_merge(rq, bio); 1206 el_ret = elv_try_merge(rq, bio);
1207 if (el_ret == ELEVATOR_BACK_MERGE) { 1207 if (el_ret == ELEVATOR_BACK_MERGE) {
1208 ret = bio_attempt_back_merge(q, rq, bio); 1208 ret = bio_attempt_back_merge(q, rq, bio);
1209 if (ret) 1209 if (ret)
1210 break; 1210 break;
1211 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1211 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1212 ret = bio_attempt_front_merge(q, rq, bio); 1212 ret = bio_attempt_front_merge(q, rq, bio);
1213 if (ret) 1213 if (ret)
1214 break; 1214 break;
1215 } 1215 }
1216 } 1216 }
1217 out: 1217 out:
1218 return ret; 1218 return ret;
1219 } 1219 }
1220 1220
1221 void init_request_from_bio(struct request *req, struct bio *bio) 1221 void init_request_from_bio(struct request *req, struct bio *bio)
1222 { 1222 {
1223 req->cpu = bio->bi_comp_cpu; 1223 req->cpu = bio->bi_comp_cpu;
1224 req->cmd_type = REQ_TYPE_FS; 1224 req->cmd_type = REQ_TYPE_FS;
1225 1225
1226 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK; 1226 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1227 if (bio->bi_rw & REQ_RAHEAD) 1227 if (bio->bi_rw & REQ_RAHEAD)
1228 req->cmd_flags |= REQ_FAILFAST_MASK; 1228 req->cmd_flags |= REQ_FAILFAST_MASK;
1229 1229
1230 req->errors = 0; 1230 req->errors = 0;
1231 req->__sector = bio->bi_sector; 1231 req->__sector = bio->bi_sector;
1232 req->ioprio = bio_prio(bio); 1232 req->ioprio = bio_prio(bio);
1233 blk_rq_bio_prep(req->q, req, bio); 1233 blk_rq_bio_prep(req->q, req, bio);
1234 } 1234 }
1235 1235
1236 static int __make_request(struct request_queue *q, struct bio *bio) 1236 static int __make_request(struct request_queue *q, struct bio *bio)
1237 { 1237 {
1238 const bool sync = !!(bio->bi_rw & REQ_SYNC); 1238 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1239 struct blk_plug *plug; 1239 struct blk_plug *plug;
1240 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT; 1240 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1241 struct request *req; 1241 struct request *req;
1242 1242
1243 /* 1243 /*
1244 * low level driver can indicate that it wants pages above a 1244 * low level driver can indicate that it wants pages above a
1245 * certain limit bounced to low memory (ie for highmem, or even 1245 * certain limit bounced to low memory (ie for highmem, or even
1246 * ISA dma in theory) 1246 * ISA dma in theory)
1247 */ 1247 */
1248 blk_queue_bounce(q, &bio); 1248 blk_queue_bounce(q, &bio);
1249 1249
1250 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) { 1250 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1251 spin_lock_irq(q->queue_lock); 1251 spin_lock_irq(q->queue_lock);
1252 where = ELEVATOR_INSERT_FLUSH; 1252 where = ELEVATOR_INSERT_FLUSH;
1253 goto get_rq; 1253 goto get_rq;
1254 } 1254 }
1255 1255
1256 /* 1256 /*
1257 * Check if we can merge with the plugged list before grabbing 1257 * Check if we can merge with the plugged list before grabbing
1258 * any locks. 1258 * any locks.
1259 */ 1259 */
1260 if (attempt_plug_merge(current, q, bio)) 1260 if (attempt_plug_merge(current, q, bio))
1261 goto out; 1261 goto out;
1262 1262
1263 spin_lock_irq(q->queue_lock); 1263 spin_lock_irq(q->queue_lock);
1264 1264
1265 el_ret = elv_merge(q, &req, bio); 1265 el_ret = elv_merge(q, &req, bio);
1266 if (el_ret == ELEVATOR_BACK_MERGE) { 1266 if (el_ret == ELEVATOR_BACK_MERGE) {
1267 BUG_ON(req->cmd_flags & REQ_ON_PLUG); 1267 BUG_ON(req->cmd_flags & REQ_ON_PLUG);
1268 if (bio_attempt_back_merge(q, req, bio)) { 1268 if (bio_attempt_back_merge(q, req, bio)) {
1269 if (!attempt_back_merge(q, req)) 1269 if (!attempt_back_merge(q, req))
1270 elv_merged_request(q, req, el_ret); 1270 elv_merged_request(q, req, el_ret);
1271 goto out_unlock; 1271 goto out_unlock;
1272 } 1272 }
1273 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1273 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1274 BUG_ON(req->cmd_flags & REQ_ON_PLUG); 1274 BUG_ON(req->cmd_flags & REQ_ON_PLUG);
1275 if (bio_attempt_front_merge(q, req, bio)) { 1275 if (bio_attempt_front_merge(q, req, bio)) {
1276 if (!attempt_front_merge(q, req)) 1276 if (!attempt_front_merge(q, req))
1277 elv_merged_request(q, req, el_ret); 1277 elv_merged_request(q, req, el_ret);
1278 goto out_unlock; 1278 goto out_unlock;
1279 } 1279 }
1280 } 1280 }
1281 1281
1282 get_rq: 1282 get_rq:
1283 /* 1283 /*
1284 * This sync check and mask will be re-done in init_request_from_bio(), 1284 * This sync check and mask will be re-done in init_request_from_bio(),
1285 * but we need to set it earlier to expose the sync flag to the 1285 * but we need to set it earlier to expose the sync flag to the
1286 * rq allocator and io schedulers. 1286 * rq allocator and io schedulers.
1287 */ 1287 */
1288 rw_flags = bio_data_dir(bio); 1288 rw_flags = bio_data_dir(bio);
1289 if (sync) 1289 if (sync)
1290 rw_flags |= REQ_SYNC; 1290 rw_flags |= REQ_SYNC;
1291 1291
1292 /* 1292 /*
1293 * Grab a free request. This is might sleep but can not fail. 1293 * Grab a free request. This is might sleep but can not fail.
1294 * Returns with the queue unlocked. 1294 * Returns with the queue unlocked.
1295 */ 1295 */
1296 req = get_request_wait(q, rw_flags, bio); 1296 req = get_request_wait(q, rw_flags, bio);
1297 1297
1298 /* 1298 /*
1299 * After dropping the lock and possibly sleeping here, our request 1299 * After dropping the lock and possibly sleeping here, our request
1300 * may now be mergeable after it had proven unmergeable (above). 1300 * may now be mergeable after it had proven unmergeable (above).
1301 * We don't worry about that case for efficiency. It won't happen 1301 * We don't worry about that case for efficiency. It won't happen
1302 * often, and the elevators are able to handle it. 1302 * often, and the elevators are able to handle it.
1303 */ 1303 */
1304 init_request_from_bio(req, bio); 1304 init_request_from_bio(req, bio);
1305 1305
1306 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) || 1306 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1307 bio_flagged(bio, BIO_CPU_AFFINE)) { 1307 bio_flagged(bio, BIO_CPU_AFFINE)) {
1308 req->cpu = blk_cpu_to_group(get_cpu()); 1308 req->cpu = blk_cpu_to_group(get_cpu());
1309 put_cpu(); 1309 put_cpu();
1310 } 1310 }
1311 1311
1312 plug = current->plug; 1312 plug = current->plug;
1313 if (plug) { 1313 if (plug) {
1314 if (!plug->should_sort && !list_empty(&plug->list)) { 1314 if (!plug->should_sort && !list_empty(&plug->list)) {
1315 struct request *__rq; 1315 struct request *__rq;
1316 1316
1317 __rq = list_entry_rq(plug->list.prev); 1317 __rq = list_entry_rq(plug->list.prev);
1318 if (__rq->q != q) 1318 if (__rq->q != q)
1319 plug->should_sort = 1; 1319 plug->should_sort = 1;
1320 } 1320 }
1321 /* 1321 /*
1322 * Debug flag, kill later 1322 * Debug flag, kill later
1323 */ 1323 */
1324 req->cmd_flags |= REQ_ON_PLUG; 1324 req->cmd_flags |= REQ_ON_PLUG;
1325 list_add_tail(&req->queuelist, &plug->list); 1325 list_add_tail(&req->queuelist, &plug->list);
1326 drive_stat_acct(req, 1); 1326 drive_stat_acct(req, 1);
1327 } else { 1327 } else {
1328 spin_lock_irq(q->queue_lock); 1328 spin_lock_irq(q->queue_lock);
1329 add_acct_request(q, req, where); 1329 add_acct_request(q, req, where);
1330 __blk_run_queue(q, false); 1330 __blk_run_queue(q, false);
1331 out_unlock: 1331 out_unlock:
1332 spin_unlock_irq(q->queue_lock); 1332 spin_unlock_irq(q->queue_lock);
1333 } 1333 }
1334 out: 1334 out:
1335 return 0; 1335 return 0;
1336 } 1336 }
1337 1337
1338 /* 1338 /*
1339 * If bio->bi_dev is a partition, remap the location 1339 * If bio->bi_dev is a partition, remap the location
1340 */ 1340 */
1341 static inline void blk_partition_remap(struct bio *bio) 1341 static inline void blk_partition_remap(struct bio *bio)
1342 { 1342 {
1343 struct block_device *bdev = bio->bi_bdev; 1343 struct block_device *bdev = bio->bi_bdev;
1344 1344
1345 if (bio_sectors(bio) && bdev != bdev->bd_contains) { 1345 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1346 struct hd_struct *p = bdev->bd_part; 1346 struct hd_struct *p = bdev->bd_part;
1347 1347
1348 bio->bi_sector += p->start_sect; 1348 bio->bi_sector += p->start_sect;
1349 bio->bi_bdev = bdev->bd_contains; 1349 bio->bi_bdev = bdev->bd_contains;
1350 1350
1351 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio, 1351 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1352 bdev->bd_dev, 1352 bdev->bd_dev,
1353 bio->bi_sector - p->start_sect); 1353 bio->bi_sector - p->start_sect);
1354 } 1354 }
1355 } 1355 }
1356 1356
1357 static void handle_bad_sector(struct bio *bio) 1357 static void handle_bad_sector(struct bio *bio)
1358 { 1358 {
1359 char b[BDEVNAME_SIZE]; 1359 char b[BDEVNAME_SIZE];
1360 1360
1361 printk(KERN_INFO "attempt to access beyond end of device\n"); 1361 printk(KERN_INFO "attempt to access beyond end of device\n");
1362 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n", 1362 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1363 bdevname(bio->bi_bdev, b), 1363 bdevname(bio->bi_bdev, b),
1364 bio->bi_rw, 1364 bio->bi_rw,
1365 (unsigned long long)bio->bi_sector + bio_sectors(bio), 1365 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1366 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9)); 1366 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1367 1367
1368 set_bit(BIO_EOF, &bio->bi_flags); 1368 set_bit(BIO_EOF, &bio->bi_flags);
1369 } 1369 }
1370 1370
1371 #ifdef CONFIG_FAIL_MAKE_REQUEST 1371 #ifdef CONFIG_FAIL_MAKE_REQUEST
1372 1372
1373 static DECLARE_FAULT_ATTR(fail_make_request); 1373 static DECLARE_FAULT_ATTR(fail_make_request);
1374 1374
1375 static int __init setup_fail_make_request(char *str) 1375 static int __init setup_fail_make_request(char *str)
1376 { 1376 {
1377 return setup_fault_attr(&fail_make_request, str); 1377 return setup_fault_attr(&fail_make_request, str);
1378 } 1378 }
1379 __setup("fail_make_request=", setup_fail_make_request); 1379 __setup("fail_make_request=", setup_fail_make_request);
1380 1380
1381 static int should_fail_request(struct bio *bio) 1381 static int should_fail_request(struct bio *bio)
1382 { 1382 {
1383 struct hd_struct *part = bio->bi_bdev->bd_part; 1383 struct hd_struct *part = bio->bi_bdev->bd_part;
1384 1384
1385 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail) 1385 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1386 return should_fail(&fail_make_request, bio->bi_size); 1386 return should_fail(&fail_make_request, bio->bi_size);
1387 1387
1388 return 0; 1388 return 0;
1389 } 1389 }
1390 1390
1391 static int __init fail_make_request_debugfs(void) 1391 static int __init fail_make_request_debugfs(void)
1392 { 1392 {
1393 return init_fault_attr_dentries(&fail_make_request, 1393 return init_fault_attr_dentries(&fail_make_request,
1394 "fail_make_request"); 1394 "fail_make_request");
1395 } 1395 }
1396 1396
1397 late_initcall(fail_make_request_debugfs); 1397 late_initcall(fail_make_request_debugfs);
1398 1398
1399 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1399 #else /* CONFIG_FAIL_MAKE_REQUEST */
1400 1400
1401 static inline int should_fail_request(struct bio *bio) 1401 static inline int should_fail_request(struct bio *bio)
1402 { 1402 {
1403 return 0; 1403 return 0;
1404 } 1404 }
1405 1405
1406 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1406 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1407 1407
1408 /* 1408 /*
1409 * Check whether this bio extends beyond the end of the device. 1409 * Check whether this bio extends beyond the end of the device.
1410 */ 1410 */
1411 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1411 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1412 { 1412 {
1413 sector_t maxsector; 1413 sector_t maxsector;
1414 1414
1415 if (!nr_sectors) 1415 if (!nr_sectors)
1416 return 0; 1416 return 0;
1417 1417
1418 /* Test device or partition size, when known. */ 1418 /* Test device or partition size, when known. */
1419 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 1419 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1420 if (maxsector) { 1420 if (maxsector) {
1421 sector_t sector = bio->bi_sector; 1421 sector_t sector = bio->bi_sector;
1422 1422
1423 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1423 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1424 /* 1424 /*
1425 * This may well happen - the kernel calls bread() 1425 * This may well happen - the kernel calls bread()
1426 * without checking the size of the device, e.g., when 1426 * without checking the size of the device, e.g., when
1427 * mounting a device. 1427 * mounting a device.
1428 */ 1428 */
1429 handle_bad_sector(bio); 1429 handle_bad_sector(bio);
1430 return 1; 1430 return 1;
1431 } 1431 }
1432 } 1432 }
1433 1433
1434 return 0; 1434 return 0;
1435 } 1435 }
1436 1436
1437 /** 1437 /**
1438 * generic_make_request - hand a buffer to its device driver for I/O 1438 * generic_make_request - hand a buffer to its device driver for I/O
1439 * @bio: The bio describing the location in memory and on the device. 1439 * @bio: The bio describing the location in memory and on the device.
1440 * 1440 *
1441 * generic_make_request() is used to make I/O requests of block 1441 * generic_make_request() is used to make I/O requests of block
1442 * devices. It is passed a &struct bio, which describes the I/O that needs 1442 * devices. It is passed a &struct bio, which describes the I/O that needs
1443 * to be done. 1443 * to be done.
1444 * 1444 *
1445 * generic_make_request() does not return any status. The 1445 * generic_make_request() does not return any status. The
1446 * success/failure status of the request, along with notification of 1446 * success/failure status of the request, along with notification of
1447 * completion, is delivered asynchronously through the bio->bi_end_io 1447 * completion, is delivered asynchronously through the bio->bi_end_io
1448 * function described (one day) else where. 1448 * function described (one day) else where.
1449 * 1449 *
1450 * The caller of generic_make_request must make sure that bi_io_vec 1450 * The caller of generic_make_request must make sure that bi_io_vec
1451 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1451 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1452 * set to describe the device address, and the 1452 * set to describe the device address, and the
1453 * bi_end_io and optionally bi_private are set to describe how 1453 * bi_end_io and optionally bi_private are set to describe how
1454 * completion notification should be signaled. 1454 * completion notification should be signaled.
1455 * 1455 *
1456 * generic_make_request and the drivers it calls may use bi_next if this 1456 * generic_make_request and the drivers it calls may use bi_next if this
1457 * bio happens to be merged with someone else, and may change bi_dev and 1457 * bio happens to be merged with someone else, and may change bi_dev and
1458 * bi_sector for remaps as it sees fit. So the values of these fields 1458 * bi_sector for remaps as it sees fit. So the values of these fields
1459 * should NOT be depended on after the call to generic_make_request. 1459 * should NOT be depended on after the call to generic_make_request.
1460 */ 1460 */
1461 static inline void __generic_make_request(struct bio *bio) 1461 static inline void __generic_make_request(struct bio *bio)
1462 { 1462 {
1463 struct request_queue *q; 1463 struct request_queue *q;
1464 sector_t old_sector; 1464 sector_t old_sector;
1465 int ret, nr_sectors = bio_sectors(bio); 1465 int ret, nr_sectors = bio_sectors(bio);
1466 dev_t old_dev; 1466 dev_t old_dev;
1467 int err = -EIO; 1467 int err = -EIO;
1468 1468
1469 might_sleep(); 1469 might_sleep();
1470 1470
1471 if (bio_check_eod(bio, nr_sectors)) 1471 if (bio_check_eod(bio, nr_sectors))
1472 goto end_io; 1472 goto end_io;
1473 1473
1474 /* 1474 /*
1475 * Resolve the mapping until finished. (drivers are 1475 * Resolve the mapping until finished. (drivers are
1476 * still free to implement/resolve their own stacking 1476 * still free to implement/resolve their own stacking
1477 * by explicitly returning 0) 1477 * by explicitly returning 0)
1478 * 1478 *
1479 * NOTE: we don't repeat the blk_size check for each new device. 1479 * NOTE: we don't repeat the blk_size check for each new device.
1480 * Stacking drivers are expected to know what they are doing. 1480 * Stacking drivers are expected to know what they are doing.
1481 */ 1481 */
1482 old_sector = -1; 1482 old_sector = -1;
1483 old_dev = 0; 1483 old_dev = 0;
1484 do { 1484 do {
1485 char b[BDEVNAME_SIZE]; 1485 char b[BDEVNAME_SIZE];
1486 1486
1487 q = bdev_get_queue(bio->bi_bdev); 1487 q = bdev_get_queue(bio->bi_bdev);
1488 if (unlikely(!q)) { 1488 if (unlikely(!q)) {
1489 printk(KERN_ERR 1489 printk(KERN_ERR
1490 "generic_make_request: Trying to access " 1490 "generic_make_request: Trying to access "
1491 "nonexistent block-device %s (%Lu)\n", 1491 "nonexistent block-device %s (%Lu)\n",
1492 bdevname(bio->bi_bdev, b), 1492 bdevname(bio->bi_bdev, b),
1493 (long long) bio->bi_sector); 1493 (long long) bio->bi_sector);
1494 goto end_io; 1494 goto end_io;
1495 } 1495 }
1496 1496
1497 if (unlikely(!(bio->bi_rw & REQ_DISCARD) && 1497 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1498 nr_sectors > queue_max_hw_sectors(q))) { 1498 nr_sectors > queue_max_hw_sectors(q))) {
1499 printk(KERN_ERR "bio too big device %s (%u > %u)\n", 1499 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1500 bdevname(bio->bi_bdev, b), 1500 bdevname(bio->bi_bdev, b),
1501 bio_sectors(bio), 1501 bio_sectors(bio),
1502 queue_max_hw_sectors(q)); 1502 queue_max_hw_sectors(q));
1503 goto end_io; 1503 goto end_io;
1504 } 1504 }
1505 1505
1506 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) 1506 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1507 goto end_io; 1507 goto end_io;
1508 1508
1509 if (should_fail_request(bio)) 1509 if (should_fail_request(bio))
1510 goto end_io; 1510 goto end_io;
1511 1511
1512 /* 1512 /*
1513 * If this device has partitions, remap block n 1513 * If this device has partitions, remap block n
1514 * of partition p to block n+start(p) of the disk. 1514 * of partition p to block n+start(p) of the disk.
1515 */ 1515 */
1516 blk_partition_remap(bio); 1516 blk_partition_remap(bio);
1517 1517
1518 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) 1518 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1519 goto end_io; 1519 goto end_io;
1520 1520
1521 if (old_sector != -1) 1521 if (old_sector != -1)
1522 trace_block_bio_remap(q, bio, old_dev, old_sector); 1522 trace_block_bio_remap(q, bio, old_dev, old_sector);
1523 1523
1524 old_sector = bio->bi_sector; 1524 old_sector = bio->bi_sector;
1525 old_dev = bio->bi_bdev->bd_dev; 1525 old_dev = bio->bi_bdev->bd_dev;
1526 1526
1527 if (bio_check_eod(bio, nr_sectors)) 1527 if (bio_check_eod(bio, nr_sectors))
1528 goto end_io; 1528 goto end_io;
1529 1529
1530 /* 1530 /*
1531 * Filter flush bio's early so that make_request based 1531 * Filter flush bio's early so that make_request based
1532 * drivers without flush support don't have to worry 1532 * drivers without flush support don't have to worry
1533 * about them. 1533 * about them.
1534 */ 1534 */
1535 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) { 1535 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1536 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA); 1536 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1537 if (!nr_sectors) { 1537 if (!nr_sectors) {
1538 err = 0; 1538 err = 0;
1539 goto end_io; 1539 goto end_io;
1540 } 1540 }
1541 } 1541 }
1542 1542
1543 if ((bio->bi_rw & REQ_DISCARD) && 1543 if ((bio->bi_rw & REQ_DISCARD) &&
1544 (!blk_queue_discard(q) || 1544 (!blk_queue_discard(q) ||
1545 ((bio->bi_rw & REQ_SECURE) && 1545 ((bio->bi_rw & REQ_SECURE) &&
1546 !blk_queue_secdiscard(q)))) { 1546 !blk_queue_secdiscard(q)))) {
1547 err = -EOPNOTSUPP; 1547 err = -EOPNOTSUPP;
1548 goto end_io; 1548 goto end_io;
1549 } 1549 }
1550 1550
1551 blk_throtl_bio(q, &bio); 1551 blk_throtl_bio(q, &bio);
1552 1552
1553 /* 1553 /*
1554 * If bio = NULL, bio has been throttled and will be submitted 1554 * If bio = NULL, bio has been throttled and will be submitted
1555 * later. 1555 * later.
1556 */ 1556 */
1557 if (!bio) 1557 if (!bio)
1558 break; 1558 break;
1559 1559
1560 trace_block_bio_queue(q, bio); 1560 trace_block_bio_queue(q, bio);
1561 1561
1562 ret = q->make_request_fn(q, bio); 1562 ret = q->make_request_fn(q, bio);
1563 } while (ret); 1563 } while (ret);
1564 1564
1565 return; 1565 return;
1566 1566
1567 end_io: 1567 end_io:
1568 bio_endio(bio, err); 1568 bio_endio(bio, err);
1569 } 1569 }
1570 1570
1571 /* 1571 /*
1572 * We only want one ->make_request_fn to be active at a time, 1572 * We only want one ->make_request_fn to be active at a time,
1573 * else stack usage with stacked devices could be a problem. 1573 * else stack usage with stacked devices could be a problem.
1574 * So use current->bio_list to keep a list of requests 1574 * So use current->bio_list to keep a list of requests
1575 * submited by a make_request_fn function. 1575 * submited by a make_request_fn function.
1576 * current->bio_list is also used as a flag to say if 1576 * current->bio_list is also used as a flag to say if
1577 * generic_make_request is currently active in this task or not. 1577 * generic_make_request is currently active in this task or not.
1578 * If it is NULL, then no make_request is active. If it is non-NULL, 1578 * If it is NULL, then no make_request is active. If it is non-NULL,
1579 * then a make_request is active, and new requests should be added 1579 * then a make_request is active, and new requests should be added
1580 * at the tail 1580 * at the tail
1581 */ 1581 */
1582 void generic_make_request(struct bio *bio) 1582 void generic_make_request(struct bio *bio)
1583 { 1583 {
1584 struct bio_list bio_list_on_stack; 1584 struct bio_list bio_list_on_stack;
1585 1585
1586 if (current->bio_list) { 1586 if (current->bio_list) {
1587 /* make_request is active */ 1587 /* make_request is active */
1588 bio_list_add(current->bio_list, bio); 1588 bio_list_add(current->bio_list, bio);
1589 return; 1589 return;
1590 } 1590 }
1591 /* following loop may be a bit non-obvious, and so deserves some 1591 /* following loop may be a bit non-obvious, and so deserves some
1592 * explanation. 1592 * explanation.
1593 * Before entering the loop, bio->bi_next is NULL (as all callers 1593 * Before entering the loop, bio->bi_next is NULL (as all callers
1594 * ensure that) so we have a list with a single bio. 1594 * ensure that) so we have a list with a single bio.
1595 * We pretend that we have just taken it off a longer list, so 1595 * We pretend that we have just taken it off a longer list, so
1596 * we assign bio_list to a pointer to the bio_list_on_stack, 1596 * we assign bio_list to a pointer to the bio_list_on_stack,
1597 * thus initialising the bio_list of new bios to be 1597 * thus initialising the bio_list of new bios to be
1598 * added. __generic_make_request may indeed add some more bios 1598 * added. __generic_make_request may indeed add some more bios
1599 * through a recursive call to generic_make_request. If it 1599 * through a recursive call to generic_make_request. If it
1600 * did, we find a non-NULL value in bio_list and re-enter the loop 1600 * did, we find a non-NULL value in bio_list and re-enter the loop
1601 * from the top. In this case we really did just take the bio 1601 * from the top. In this case we really did just take the bio
1602 * of the top of the list (no pretending) and so remove it from 1602 * of the top of the list (no pretending) and so remove it from
1603 * bio_list, and call into __generic_make_request again. 1603 * bio_list, and call into __generic_make_request again.
1604 * 1604 *
1605 * The loop was structured like this to make only one call to 1605 * The loop was structured like this to make only one call to
1606 * __generic_make_request (which is important as it is large and 1606 * __generic_make_request (which is important as it is large and
1607 * inlined) and to keep the structure simple. 1607 * inlined) and to keep the structure simple.
1608 */ 1608 */
1609 BUG_ON(bio->bi_next); 1609 BUG_ON(bio->bi_next);
1610 bio_list_init(&bio_list_on_stack); 1610 bio_list_init(&bio_list_on_stack);
1611 current->bio_list = &bio_list_on_stack; 1611 current->bio_list = &bio_list_on_stack;
1612 do { 1612 do {
1613 __generic_make_request(bio); 1613 __generic_make_request(bio);
1614 bio = bio_list_pop(current->bio_list); 1614 bio = bio_list_pop(current->bio_list);
1615 } while (bio); 1615 } while (bio);
1616 current->bio_list = NULL; /* deactivate */ 1616 current->bio_list = NULL; /* deactivate */
1617 } 1617 }
1618 EXPORT_SYMBOL(generic_make_request); 1618 EXPORT_SYMBOL(generic_make_request);
1619 1619
1620 /** 1620 /**
1621 * submit_bio - submit a bio to the block device layer for I/O 1621 * submit_bio - submit a bio to the block device layer for I/O
1622 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 1622 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1623 * @bio: The &struct bio which describes the I/O 1623 * @bio: The &struct bio which describes the I/O
1624 * 1624 *
1625 * submit_bio() is very similar in purpose to generic_make_request(), and 1625 * submit_bio() is very similar in purpose to generic_make_request(), and
1626 * uses that function to do most of the work. Both are fairly rough 1626 * uses that function to do most of the work. Both are fairly rough
1627 * interfaces; @bio must be presetup and ready for I/O. 1627 * interfaces; @bio must be presetup and ready for I/O.
1628 * 1628 *
1629 */ 1629 */
1630 void submit_bio(int rw, struct bio *bio) 1630 void submit_bio(int rw, struct bio *bio)
1631 { 1631 {
1632 int count = bio_sectors(bio); 1632 int count = bio_sectors(bio);
1633 1633
1634 bio->bi_rw |= rw; 1634 bio->bi_rw |= rw;
1635 1635
1636 /* 1636 /*
1637 * If it's a regular read/write or a barrier with data attached, 1637 * If it's a regular read/write or a barrier with data attached,
1638 * go through the normal accounting stuff before submission. 1638 * go through the normal accounting stuff before submission.
1639 */ 1639 */
1640 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) { 1640 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
1641 if (rw & WRITE) { 1641 if (rw & WRITE) {
1642 count_vm_events(PGPGOUT, count); 1642 count_vm_events(PGPGOUT, count);
1643 } else { 1643 } else {
1644 task_io_account_read(bio->bi_size); 1644 task_io_account_read(bio->bi_size);
1645 count_vm_events(PGPGIN, count); 1645 count_vm_events(PGPGIN, count);
1646 } 1646 }
1647 1647
1648 if (unlikely(block_dump)) { 1648 if (unlikely(block_dump)) {
1649 char b[BDEVNAME_SIZE]; 1649 char b[BDEVNAME_SIZE];
1650 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 1650 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1651 current->comm, task_pid_nr(current), 1651 current->comm, task_pid_nr(current),
1652 (rw & WRITE) ? "WRITE" : "READ", 1652 (rw & WRITE) ? "WRITE" : "READ",
1653 (unsigned long long)bio->bi_sector, 1653 (unsigned long long)bio->bi_sector,
1654 bdevname(bio->bi_bdev, b), 1654 bdevname(bio->bi_bdev, b),
1655 count); 1655 count);
1656 } 1656 }
1657 } 1657 }
1658 1658
1659 generic_make_request(bio); 1659 generic_make_request(bio);
1660 } 1660 }
1661 EXPORT_SYMBOL(submit_bio); 1661 EXPORT_SYMBOL(submit_bio);
1662 1662
1663 /** 1663 /**
1664 * blk_rq_check_limits - Helper function to check a request for the queue limit 1664 * blk_rq_check_limits - Helper function to check a request for the queue limit
1665 * @q: the queue 1665 * @q: the queue
1666 * @rq: the request being checked 1666 * @rq: the request being checked
1667 * 1667 *
1668 * Description: 1668 * Description:
1669 * @rq may have been made based on weaker limitations of upper-level queues 1669 * @rq may have been made based on weaker limitations of upper-level queues
1670 * in request stacking drivers, and it may violate the limitation of @q. 1670 * in request stacking drivers, and it may violate the limitation of @q.
1671 * Since the block layer and the underlying device driver trust @rq 1671 * Since the block layer and the underlying device driver trust @rq
1672 * after it is inserted to @q, it should be checked against @q before 1672 * after it is inserted to @q, it should be checked against @q before
1673 * the insertion using this generic function. 1673 * the insertion using this generic function.
1674 * 1674 *
1675 * This function should also be useful for request stacking drivers 1675 * This function should also be useful for request stacking drivers
1676 * in some cases below, so export this function. 1676 * in some cases below, so export this function.
1677 * Request stacking drivers like request-based dm may change the queue 1677 * Request stacking drivers like request-based dm may change the queue
1678 * limits while requests are in the queue (e.g. dm's table swapping). 1678 * limits while requests are in the queue (e.g. dm's table swapping).
1679 * Such request stacking drivers should check those requests agaist 1679 * Such request stacking drivers should check those requests agaist
1680 * the new queue limits again when they dispatch those requests, 1680 * the new queue limits again when they dispatch those requests,
1681 * although such checkings are also done against the old queue limits 1681 * although such checkings are also done against the old queue limits
1682 * when submitting requests. 1682 * when submitting requests.
1683 */ 1683 */
1684 int blk_rq_check_limits(struct request_queue *q, struct request *rq) 1684 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1685 { 1685 {
1686 if (rq->cmd_flags & REQ_DISCARD) 1686 if (rq->cmd_flags & REQ_DISCARD)
1687 return 0; 1687 return 0;
1688 1688
1689 if (blk_rq_sectors(rq) > queue_max_sectors(q) || 1689 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1690 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) { 1690 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1691 printk(KERN_ERR "%s: over max size limit.\n", __func__); 1691 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1692 return -EIO; 1692 return -EIO;
1693 } 1693 }
1694 1694
1695 /* 1695 /*
1696 * queue's settings related to segment counting like q->bounce_pfn 1696 * queue's settings related to segment counting like q->bounce_pfn
1697 * may differ from that of other stacking queues. 1697 * may differ from that of other stacking queues.
1698 * Recalculate it to check the request correctly on this queue's 1698 * Recalculate it to check the request correctly on this queue's
1699 * limitation. 1699 * limitation.
1700 */ 1700 */
1701 blk_recalc_rq_segments(rq); 1701 blk_recalc_rq_segments(rq);
1702 if (rq->nr_phys_segments > queue_max_segments(q)) { 1702 if (rq->nr_phys_segments > queue_max_segments(q)) {
1703 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 1703 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1704 return -EIO; 1704 return -EIO;
1705 } 1705 }
1706 1706
1707 return 0; 1707 return 0;
1708 } 1708 }
1709 EXPORT_SYMBOL_GPL(blk_rq_check_limits); 1709 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1710 1710
1711 /** 1711 /**
1712 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1712 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1713 * @q: the queue to submit the request 1713 * @q: the queue to submit the request
1714 * @rq: the request being queued 1714 * @rq: the request being queued
1715 */ 1715 */
1716 int blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1716 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1717 { 1717 {
1718 unsigned long flags; 1718 unsigned long flags;
1719 1719
1720 if (blk_rq_check_limits(q, rq)) 1720 if (blk_rq_check_limits(q, rq))
1721 return -EIO; 1721 return -EIO;
1722 1722
1723 #ifdef CONFIG_FAIL_MAKE_REQUEST 1723 #ifdef CONFIG_FAIL_MAKE_REQUEST
1724 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail && 1724 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1725 should_fail(&fail_make_request, blk_rq_bytes(rq))) 1725 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1726 return -EIO; 1726 return -EIO;
1727 #endif 1727 #endif
1728 1728
1729 spin_lock_irqsave(q->queue_lock, flags); 1729 spin_lock_irqsave(q->queue_lock, flags);
1730 1730
1731 /* 1731 /*
1732 * Submitting request must be dequeued before calling this function 1732 * Submitting request must be dequeued before calling this function
1733 * because it will be linked to another request_queue 1733 * because it will be linked to another request_queue
1734 */ 1734 */
1735 BUG_ON(blk_queued_rq(rq)); 1735 BUG_ON(blk_queued_rq(rq));
1736 1736
1737 add_acct_request(q, rq, ELEVATOR_INSERT_BACK); 1737 add_acct_request(q, rq, ELEVATOR_INSERT_BACK);
1738 spin_unlock_irqrestore(q->queue_lock, flags); 1738 spin_unlock_irqrestore(q->queue_lock, flags);
1739 1739
1740 return 0; 1740 return 0;
1741 } 1741 }
1742 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 1742 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1743 1743
1744 /** 1744 /**
1745 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 1745 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1746 * @rq: request to examine 1746 * @rq: request to examine
1747 * 1747 *
1748 * Description: 1748 * Description:
1749 * A request could be merge of IOs which require different failure 1749 * A request could be merge of IOs which require different failure
1750 * handling. This function determines the number of bytes which 1750 * handling. This function determines the number of bytes which
1751 * can be failed from the beginning of the request without 1751 * can be failed from the beginning of the request without
1752 * crossing into area which need to be retried further. 1752 * crossing into area which need to be retried further.
1753 * 1753 *
1754 * Return: 1754 * Return:
1755 * The number of bytes to fail. 1755 * The number of bytes to fail.
1756 * 1756 *
1757 * Context: 1757 * Context:
1758 * queue_lock must be held. 1758 * queue_lock must be held.
1759 */ 1759 */
1760 unsigned int blk_rq_err_bytes(const struct request *rq) 1760 unsigned int blk_rq_err_bytes(const struct request *rq)
1761 { 1761 {
1762 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 1762 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1763 unsigned int bytes = 0; 1763 unsigned int bytes = 0;
1764 struct bio *bio; 1764 struct bio *bio;
1765 1765
1766 if (!(rq->cmd_flags & REQ_MIXED_MERGE)) 1766 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1767 return blk_rq_bytes(rq); 1767 return blk_rq_bytes(rq);
1768 1768
1769 /* 1769 /*
1770 * Currently the only 'mixing' which can happen is between 1770 * Currently the only 'mixing' which can happen is between
1771 * different fastfail types. We can safely fail portions 1771 * different fastfail types. We can safely fail portions
1772 * which have all the failfast bits that the first one has - 1772 * which have all the failfast bits that the first one has -
1773 * the ones which are at least as eager to fail as the first 1773 * the ones which are at least as eager to fail as the first
1774 * one. 1774 * one.
1775 */ 1775 */
1776 for (bio = rq->bio; bio; bio = bio->bi_next) { 1776 for (bio = rq->bio; bio; bio = bio->bi_next) {
1777 if ((bio->bi_rw & ff) != ff) 1777 if ((bio->bi_rw & ff) != ff)
1778 break; 1778 break;
1779 bytes += bio->bi_size; 1779 bytes += bio->bi_size;
1780 } 1780 }
1781 1781
1782 /* this could lead to infinite loop */ 1782 /* this could lead to infinite loop */
1783 BUG_ON(blk_rq_bytes(rq) && !bytes); 1783 BUG_ON(blk_rq_bytes(rq) && !bytes);
1784 return bytes; 1784 return bytes;
1785 } 1785 }
1786 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 1786 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1787 1787
1788 static void blk_account_io_completion(struct request *req, unsigned int bytes) 1788 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1789 { 1789 {
1790 if (blk_do_io_stat(req)) { 1790 if (blk_do_io_stat(req)) {
1791 const int rw = rq_data_dir(req); 1791 const int rw = rq_data_dir(req);
1792 struct hd_struct *part; 1792 struct hd_struct *part;
1793 int cpu; 1793 int cpu;
1794 1794
1795 cpu = part_stat_lock(); 1795 cpu = part_stat_lock();
1796 part = req->part; 1796 part = req->part;
1797 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 1797 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1798 part_stat_unlock(); 1798 part_stat_unlock();
1799 } 1799 }
1800 } 1800 }
1801 1801
1802 static void blk_account_io_done(struct request *req) 1802 static void blk_account_io_done(struct request *req)
1803 { 1803 {
1804 /* 1804 /*
1805 * Account IO completion. flush_rq isn't accounted as a 1805 * Account IO completion. flush_rq isn't accounted as a
1806 * normal IO on queueing nor completion. Accounting the 1806 * normal IO on queueing nor completion. Accounting the
1807 * containing request is enough. 1807 * containing request is enough.
1808 */ 1808 */
1809 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) { 1809 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
1810 unsigned long duration = jiffies - req->start_time; 1810 unsigned long duration = jiffies - req->start_time;
1811 const int rw = rq_data_dir(req); 1811 const int rw = rq_data_dir(req);
1812 struct hd_struct *part; 1812 struct hd_struct *part;
1813 int cpu; 1813 int cpu;
1814 1814
1815 cpu = part_stat_lock(); 1815 cpu = part_stat_lock();
1816 part = req->part; 1816 part = req->part;
1817 1817
1818 part_stat_inc(cpu, part, ios[rw]); 1818 part_stat_inc(cpu, part, ios[rw]);
1819 part_stat_add(cpu, part, ticks[rw], duration); 1819 part_stat_add(cpu, part, ticks[rw], duration);
1820 part_round_stats(cpu, part); 1820 part_round_stats(cpu, part);
1821 part_dec_in_flight(part, rw); 1821 part_dec_in_flight(part, rw);
1822 1822
1823 hd_struct_put(part); 1823 hd_struct_put(part);
1824 part_stat_unlock(); 1824 part_stat_unlock();
1825 } 1825 }
1826 } 1826 }
1827 1827
1828 /** 1828 /**
1829 * blk_peek_request - peek at the top of a request queue 1829 * blk_peek_request - peek at the top of a request queue
1830 * @q: request queue to peek at 1830 * @q: request queue to peek at
1831 * 1831 *
1832 * Description: 1832 * Description:
1833 * Return the request at the top of @q. The returned request 1833 * Return the request at the top of @q. The returned request
1834 * should be started using blk_start_request() before LLD starts 1834 * should be started using blk_start_request() before LLD starts
1835 * processing it. 1835 * processing it.
1836 * 1836 *
1837 * Return: 1837 * Return:
1838 * Pointer to the request at the top of @q if available. Null 1838 * Pointer to the request at the top of @q if available. Null
1839 * otherwise. 1839 * otherwise.
1840 * 1840 *
1841 * Context: 1841 * Context:
1842 * queue_lock must be held. 1842 * queue_lock must be held.
1843 */ 1843 */
1844 struct request *blk_peek_request(struct request_queue *q) 1844 struct request *blk_peek_request(struct request_queue *q)
1845 { 1845 {
1846 struct request *rq; 1846 struct request *rq;
1847 int ret; 1847 int ret;
1848 1848
1849 while ((rq = __elv_next_request(q)) != NULL) { 1849 while ((rq = __elv_next_request(q)) != NULL) {
1850 if (!(rq->cmd_flags & REQ_STARTED)) { 1850 if (!(rq->cmd_flags & REQ_STARTED)) {
1851 /* 1851 /*
1852 * This is the first time the device driver 1852 * This is the first time the device driver
1853 * sees this request (possibly after 1853 * sees this request (possibly after
1854 * requeueing). Notify IO scheduler. 1854 * requeueing). Notify IO scheduler.
1855 */ 1855 */
1856 if (rq->cmd_flags & REQ_SORTED) 1856 if (rq->cmd_flags & REQ_SORTED)
1857 elv_activate_rq(q, rq); 1857 elv_activate_rq(q, rq);
1858 1858
1859 /* 1859 /*
1860 * just mark as started even if we don't start 1860 * just mark as started even if we don't start
1861 * it, a request that has been delayed should 1861 * it, a request that has been delayed should
1862 * not be passed by new incoming requests 1862 * not be passed by new incoming requests
1863 */ 1863 */
1864 rq->cmd_flags |= REQ_STARTED; 1864 rq->cmd_flags |= REQ_STARTED;
1865 trace_block_rq_issue(q, rq); 1865 trace_block_rq_issue(q, rq);
1866 } 1866 }
1867 1867
1868 if (!q->boundary_rq || q->boundary_rq == rq) { 1868 if (!q->boundary_rq || q->boundary_rq == rq) {
1869 q->end_sector = rq_end_sector(rq); 1869 q->end_sector = rq_end_sector(rq);
1870 q->boundary_rq = NULL; 1870 q->boundary_rq = NULL;
1871 } 1871 }
1872 1872
1873 if (rq->cmd_flags & REQ_DONTPREP) 1873 if (rq->cmd_flags & REQ_DONTPREP)
1874 break; 1874 break;
1875 1875
1876 if (q->dma_drain_size && blk_rq_bytes(rq)) { 1876 if (q->dma_drain_size && blk_rq_bytes(rq)) {
1877 /* 1877 /*
1878 * make sure space for the drain appears we 1878 * make sure space for the drain appears we
1879 * know we can do this because max_hw_segments 1879 * know we can do this because max_hw_segments
1880 * has been adjusted to be one fewer than the 1880 * has been adjusted to be one fewer than the
1881 * device can handle 1881 * device can handle
1882 */ 1882 */
1883 rq->nr_phys_segments++; 1883 rq->nr_phys_segments++;
1884 } 1884 }
1885 1885
1886 if (!q->prep_rq_fn) 1886 if (!q->prep_rq_fn)
1887 break; 1887 break;
1888 1888
1889 ret = q->prep_rq_fn(q, rq); 1889 ret = q->prep_rq_fn(q, rq);
1890 if (ret == BLKPREP_OK) { 1890 if (ret == BLKPREP_OK) {
1891 break; 1891 break;
1892 } else if (ret == BLKPREP_DEFER) { 1892 } else if (ret == BLKPREP_DEFER) {
1893 /* 1893 /*
1894 * the request may have been (partially) prepped. 1894 * the request may have been (partially) prepped.
1895 * we need to keep this request in the front to 1895 * we need to keep this request in the front to
1896 * avoid resource deadlock. REQ_STARTED will 1896 * avoid resource deadlock. REQ_STARTED will
1897 * prevent other fs requests from passing this one. 1897 * prevent other fs requests from passing this one.
1898 */ 1898 */
1899 if (q->dma_drain_size && blk_rq_bytes(rq) && 1899 if (q->dma_drain_size && blk_rq_bytes(rq) &&
1900 !(rq->cmd_flags & REQ_DONTPREP)) { 1900 !(rq->cmd_flags & REQ_DONTPREP)) {
1901 /* 1901 /*
1902 * remove the space for the drain we added 1902 * remove the space for the drain we added
1903 * so that we don't add it again 1903 * so that we don't add it again
1904 */ 1904 */
1905 --rq->nr_phys_segments; 1905 --rq->nr_phys_segments;
1906 } 1906 }
1907 1907
1908 rq = NULL; 1908 rq = NULL;
1909 break; 1909 break;
1910 } else if (ret == BLKPREP_KILL) { 1910 } else if (ret == BLKPREP_KILL) {
1911 rq->cmd_flags |= REQ_QUIET; 1911 rq->cmd_flags |= REQ_QUIET;
1912 /* 1912 /*
1913 * Mark this request as started so we don't trigger 1913 * Mark this request as started so we don't trigger
1914 * any debug logic in the end I/O path. 1914 * any debug logic in the end I/O path.
1915 */ 1915 */
1916 blk_start_request(rq); 1916 blk_start_request(rq);
1917 __blk_end_request_all(rq, -EIO); 1917 __blk_end_request_all(rq, -EIO);
1918 } else { 1918 } else {
1919 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 1919 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1920 break; 1920 break;
1921 } 1921 }
1922 } 1922 }
1923 1923
1924 return rq; 1924 return rq;
1925 } 1925 }
1926 EXPORT_SYMBOL(blk_peek_request); 1926 EXPORT_SYMBOL(blk_peek_request);
1927 1927
1928 void blk_dequeue_request(struct request *rq) 1928 void blk_dequeue_request(struct request *rq)
1929 { 1929 {
1930 struct request_queue *q = rq->q; 1930 struct request_queue *q = rq->q;
1931 1931
1932 BUG_ON(list_empty(&rq->queuelist)); 1932 BUG_ON(list_empty(&rq->queuelist));
1933 BUG_ON(ELV_ON_HASH(rq)); 1933 BUG_ON(ELV_ON_HASH(rq));
1934 1934
1935 list_del_init(&rq->queuelist); 1935 list_del_init(&rq->queuelist);
1936 1936
1937 /* 1937 /*
1938 * the time frame between a request being removed from the lists 1938 * the time frame between a request being removed from the lists
1939 * and to it is freed is accounted as io that is in progress at 1939 * and to it is freed is accounted as io that is in progress at
1940 * the driver side. 1940 * the driver side.
1941 */ 1941 */
1942 if (blk_account_rq(rq)) { 1942 if (blk_account_rq(rq)) {
1943 q->in_flight[rq_is_sync(rq)]++; 1943 q->in_flight[rq_is_sync(rq)]++;
1944 set_io_start_time_ns(rq); 1944 set_io_start_time_ns(rq);
1945 } 1945 }
1946 } 1946 }
1947 1947
1948 /** 1948 /**
1949 * blk_start_request - start request processing on the driver 1949 * blk_start_request - start request processing on the driver
1950 * @req: request to dequeue 1950 * @req: request to dequeue
1951 * 1951 *
1952 * Description: 1952 * Description:
1953 * Dequeue @req and start timeout timer on it. This hands off the 1953 * Dequeue @req and start timeout timer on it. This hands off the
1954 * request to the driver. 1954 * request to the driver.
1955 * 1955 *
1956 * Block internal functions which don't want to start timer should 1956 * Block internal functions which don't want to start timer should
1957 * call blk_dequeue_request(). 1957 * call blk_dequeue_request().
1958 * 1958 *
1959 * Context: 1959 * Context:
1960 * queue_lock must be held. 1960 * queue_lock must be held.
1961 */ 1961 */
1962 void blk_start_request(struct request *req) 1962 void blk_start_request(struct request *req)
1963 { 1963 {
1964 blk_dequeue_request(req); 1964 blk_dequeue_request(req);
1965 1965
1966 /* 1966 /*
1967 * We are now handing the request to the hardware, initialize 1967 * We are now handing the request to the hardware, initialize
1968 * resid_len to full count and add the timeout handler. 1968 * resid_len to full count and add the timeout handler.
1969 */ 1969 */
1970 req->resid_len = blk_rq_bytes(req); 1970 req->resid_len = blk_rq_bytes(req);
1971 if (unlikely(blk_bidi_rq(req))) 1971 if (unlikely(blk_bidi_rq(req)))
1972 req->next_rq->resid_len = blk_rq_bytes(req->next_rq); 1972 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1973 1973
1974 blk_add_timer(req); 1974 blk_add_timer(req);
1975 } 1975 }
1976 EXPORT_SYMBOL(blk_start_request); 1976 EXPORT_SYMBOL(blk_start_request);
1977 1977
1978 /** 1978 /**
1979 * blk_fetch_request - fetch a request from a request queue 1979 * blk_fetch_request - fetch a request from a request queue
1980 * @q: request queue to fetch a request from 1980 * @q: request queue to fetch a request from
1981 * 1981 *
1982 * Description: 1982 * Description:
1983 * Return the request at the top of @q. The request is started on 1983 * Return the request at the top of @q. The request is started on
1984 * return and LLD can start processing it immediately. 1984 * return and LLD can start processing it immediately.
1985 * 1985 *
1986 * Return: 1986 * Return:
1987 * Pointer to the request at the top of @q if available. Null 1987 * Pointer to the request at the top of @q if available. Null
1988 * otherwise. 1988 * otherwise.
1989 * 1989 *
1990 * Context: 1990 * Context:
1991 * queue_lock must be held. 1991 * queue_lock must be held.
1992 */ 1992 */
1993 struct request *blk_fetch_request(struct request_queue *q) 1993 struct request *blk_fetch_request(struct request_queue *q)
1994 { 1994 {
1995 struct request *rq; 1995 struct request *rq;
1996 1996
1997 rq = blk_peek_request(q); 1997 rq = blk_peek_request(q);
1998 if (rq) 1998 if (rq)
1999 blk_start_request(rq); 1999 blk_start_request(rq);
2000 return rq; 2000 return rq;
2001 } 2001 }
2002 EXPORT_SYMBOL(blk_fetch_request); 2002 EXPORT_SYMBOL(blk_fetch_request);
2003 2003
2004 /** 2004 /**
2005 * blk_update_request - Special helper function for request stacking drivers 2005 * blk_update_request - Special helper function for request stacking drivers
2006 * @req: the request being processed 2006 * @req: the request being processed
2007 * @error: %0 for success, < %0 for error 2007 * @error: %0 for success, < %0 for error
2008 * @nr_bytes: number of bytes to complete @req 2008 * @nr_bytes: number of bytes to complete @req
2009 * 2009 *
2010 * Description: 2010 * Description:
2011 * Ends I/O on a number of bytes attached to @req, but doesn't complete 2011 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2012 * the request structure even if @req doesn't have leftover. 2012 * the request structure even if @req doesn't have leftover.
2013 * If @req has leftover, sets it up for the next range of segments. 2013 * If @req has leftover, sets it up for the next range of segments.
2014 * 2014 *
2015 * This special helper function is only for request stacking drivers 2015 * This special helper function is only for request stacking drivers
2016 * (e.g. request-based dm) so that they can handle partial completion. 2016 * (e.g. request-based dm) so that they can handle partial completion.
2017 * Actual device drivers should use blk_end_request instead. 2017 * Actual device drivers should use blk_end_request instead.
2018 * 2018 *
2019 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 2019 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2020 * %false return from this function. 2020 * %false return from this function.
2021 * 2021 *
2022 * Return: 2022 * Return:
2023 * %false - this request doesn't have any more data 2023 * %false - this request doesn't have any more data
2024 * %true - this request has more data 2024 * %true - this request has more data
2025 **/ 2025 **/
2026 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes) 2026 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2027 { 2027 {
2028 int total_bytes, bio_nbytes, next_idx = 0; 2028 int total_bytes, bio_nbytes, next_idx = 0;
2029 struct bio *bio; 2029 struct bio *bio;
2030 2030
2031 if (!req->bio) 2031 if (!req->bio)
2032 return false; 2032 return false;
2033 2033
2034 trace_block_rq_complete(req->q, req); 2034 trace_block_rq_complete(req->q, req);
2035 2035
2036 /* 2036 /*
2037 * For fs requests, rq is just carrier of independent bio's 2037 * For fs requests, rq is just carrier of independent bio's
2038 * and each partial completion should be handled separately. 2038 * and each partial completion should be handled separately.
2039 * Reset per-request error on each partial completion. 2039 * Reset per-request error on each partial completion.
2040 * 2040 *
2041 * TODO: tj: This is too subtle. It would be better to let 2041 * TODO: tj: This is too subtle. It would be better to let
2042 * low level drivers do what they see fit. 2042 * low level drivers do what they see fit.
2043 */ 2043 */
2044 if (req->cmd_type == REQ_TYPE_FS) 2044 if (req->cmd_type == REQ_TYPE_FS)
2045 req->errors = 0; 2045 req->errors = 0;
2046 2046
2047 if (error && req->cmd_type == REQ_TYPE_FS && 2047 if (error && req->cmd_type == REQ_TYPE_FS &&
2048 !(req->cmd_flags & REQ_QUIET)) { 2048 !(req->cmd_flags & REQ_QUIET)) {
2049 char *error_type; 2049 char *error_type;
2050 2050
2051 switch (error) { 2051 switch (error) {
2052 case -ENOLINK: 2052 case -ENOLINK:
2053 error_type = "recoverable transport"; 2053 error_type = "recoverable transport";
2054 break; 2054 break;
2055 case -EREMOTEIO: 2055 case -EREMOTEIO:
2056 error_type = "critical target"; 2056 error_type = "critical target";
2057 break; 2057 break;
2058 case -EBADE: 2058 case -EBADE:
2059 error_type = "critical nexus"; 2059 error_type = "critical nexus";
2060 break; 2060 break;
2061 case -EIO: 2061 case -EIO:
2062 default: 2062 default:
2063 error_type = "I/O"; 2063 error_type = "I/O";
2064 break; 2064 break;
2065 } 2065 }
2066 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n", 2066 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2067 error_type, req->rq_disk ? req->rq_disk->disk_name : "?", 2067 error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2068 (unsigned long long)blk_rq_pos(req)); 2068 (unsigned long long)blk_rq_pos(req));
2069 } 2069 }
2070 2070
2071 blk_account_io_completion(req, nr_bytes); 2071 blk_account_io_completion(req, nr_bytes);
2072 2072
2073 total_bytes = bio_nbytes = 0; 2073 total_bytes = bio_nbytes = 0;
2074 while ((bio = req->bio) != NULL) { 2074 while ((bio = req->bio) != NULL) {
2075 int nbytes; 2075 int nbytes;
2076 2076
2077 if (nr_bytes >= bio->bi_size) { 2077 if (nr_bytes >= bio->bi_size) {
2078 req->bio = bio->bi_next; 2078 req->bio = bio->bi_next;
2079 nbytes = bio->bi_size; 2079 nbytes = bio->bi_size;
2080 req_bio_endio(req, bio, nbytes, error); 2080 req_bio_endio(req, bio, nbytes, error);
2081 next_idx = 0; 2081 next_idx = 0;
2082 bio_nbytes = 0; 2082 bio_nbytes = 0;
2083 } else { 2083 } else {
2084 int idx = bio->bi_idx + next_idx; 2084 int idx = bio->bi_idx + next_idx;
2085 2085
2086 if (unlikely(idx >= bio->bi_vcnt)) { 2086 if (unlikely(idx >= bio->bi_vcnt)) {
2087 blk_dump_rq_flags(req, "__end_that"); 2087 blk_dump_rq_flags(req, "__end_that");
2088 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n", 2088 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2089 __func__, idx, bio->bi_vcnt); 2089 __func__, idx, bio->bi_vcnt);
2090 break; 2090 break;
2091 } 2091 }
2092 2092
2093 nbytes = bio_iovec_idx(bio, idx)->bv_len; 2093 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2094 BIO_BUG_ON(nbytes > bio->bi_size); 2094 BIO_BUG_ON(nbytes > bio->bi_size);
2095 2095
2096 /* 2096 /*
2097 * not a complete bvec done 2097 * not a complete bvec done
2098 */ 2098 */
2099 if (unlikely(nbytes > nr_bytes)) { 2099 if (unlikely(nbytes > nr_bytes)) {
2100 bio_nbytes += nr_bytes; 2100 bio_nbytes += nr_bytes;
2101 total_bytes += nr_bytes; 2101 total_bytes += nr_bytes;
2102 break; 2102 break;
2103 } 2103 }
2104 2104
2105 /* 2105 /*
2106 * advance to the next vector 2106 * advance to the next vector
2107 */ 2107 */
2108 next_idx++; 2108 next_idx++;
2109 bio_nbytes += nbytes; 2109 bio_nbytes += nbytes;
2110 } 2110 }
2111 2111
2112 total_bytes += nbytes; 2112 total_bytes += nbytes;
2113 nr_bytes -= nbytes; 2113 nr_bytes -= nbytes;
2114 2114
2115 bio = req->bio; 2115 bio = req->bio;
2116 if (bio) { 2116 if (bio) {
2117 /* 2117 /*
2118 * end more in this run, or just return 'not-done' 2118 * end more in this run, or just return 'not-done'
2119 */ 2119 */
2120 if (unlikely(nr_bytes <= 0)) 2120 if (unlikely(nr_bytes <= 0))
2121 break; 2121 break;
2122 } 2122 }
2123 } 2123 }
2124 2124
2125 /* 2125 /*
2126 * completely done 2126 * completely done
2127 */ 2127 */
2128 if (!req->bio) { 2128 if (!req->bio) {
2129 /* 2129 /*
2130 * Reset counters so that the request stacking driver 2130 * Reset counters so that the request stacking driver
2131 * can find how many bytes remain in the request 2131 * can find how many bytes remain in the request
2132 * later. 2132 * later.
2133 */ 2133 */
2134 req->__data_len = 0; 2134 req->__data_len = 0;
2135 return false; 2135 return false;
2136 } 2136 }
2137 2137
2138 /* 2138 /*
2139 * if the request wasn't completed, update state 2139 * if the request wasn't completed, update state
2140 */ 2140 */
2141 if (bio_nbytes) { 2141 if (bio_nbytes) {
2142 req_bio_endio(req, bio, bio_nbytes, error); 2142 req_bio_endio(req, bio, bio_nbytes, error);
2143 bio->bi_idx += next_idx; 2143 bio->bi_idx += next_idx;
2144 bio_iovec(bio)->bv_offset += nr_bytes; 2144 bio_iovec(bio)->bv_offset += nr_bytes;
2145 bio_iovec(bio)->bv_len -= nr_bytes; 2145 bio_iovec(bio)->bv_len -= nr_bytes;
2146 } 2146 }
2147 2147
2148 req->__data_len -= total_bytes; 2148 req->__data_len -= total_bytes;
2149 req->buffer = bio_data(req->bio); 2149 req->buffer = bio_data(req->bio);
2150 2150
2151 /* update sector only for requests with clear definition of sector */ 2151 /* update sector only for requests with clear definition of sector */
2152 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD)) 2152 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2153 req->__sector += total_bytes >> 9; 2153 req->__sector += total_bytes >> 9;
2154 2154
2155 /* mixed attributes always follow the first bio */ 2155 /* mixed attributes always follow the first bio */
2156 if (req->cmd_flags & REQ_MIXED_MERGE) { 2156 if (req->cmd_flags & REQ_MIXED_MERGE) {
2157 req->cmd_flags &= ~REQ_FAILFAST_MASK; 2157 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2158 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK; 2158 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2159 } 2159 }
2160 2160
2161 /* 2161 /*
2162 * If total number of sectors is less than the first segment 2162 * If total number of sectors is less than the first segment
2163 * size, something has gone terribly wrong. 2163 * size, something has gone terribly wrong.
2164 */ 2164 */
2165 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 2165 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2166 printk(KERN_ERR "blk: request botched\n"); 2166 printk(KERN_ERR "blk: request botched\n");
2167 req->__data_len = blk_rq_cur_bytes(req); 2167 req->__data_len = blk_rq_cur_bytes(req);
2168 } 2168 }
2169 2169
2170 /* recalculate the number of segments */ 2170 /* recalculate the number of segments */
2171 blk_recalc_rq_segments(req); 2171 blk_recalc_rq_segments(req);
2172 2172
2173 return true; 2173 return true;
2174 } 2174 }
2175 EXPORT_SYMBOL_GPL(blk_update_request); 2175 EXPORT_SYMBOL_GPL(blk_update_request);
2176 2176
2177 static bool blk_update_bidi_request(struct request *rq, int error, 2177 static bool blk_update_bidi_request(struct request *rq, int error,
2178 unsigned int nr_bytes, 2178 unsigned int nr_bytes,
2179 unsigned int bidi_bytes) 2179 unsigned int bidi_bytes)
2180 { 2180 {
2181 if (blk_update_request(rq, error, nr_bytes)) 2181 if (blk_update_request(rq, error, nr_bytes))
2182 return true; 2182 return true;
2183 2183
2184 /* Bidi request must be completed as a whole */ 2184 /* Bidi request must be completed as a whole */
2185 if (unlikely(blk_bidi_rq(rq)) && 2185 if (unlikely(blk_bidi_rq(rq)) &&
2186 blk_update_request(rq->next_rq, error, bidi_bytes)) 2186 blk_update_request(rq->next_rq, error, bidi_bytes))
2187 return true; 2187 return true;
2188 2188
2189 if (blk_queue_add_random(rq->q)) 2189 if (blk_queue_add_random(rq->q))
2190 add_disk_randomness(rq->rq_disk); 2190 add_disk_randomness(rq->rq_disk);
2191 2191
2192 return false; 2192 return false;
2193 } 2193 }
2194 2194
2195 /** 2195 /**
2196 * blk_unprep_request - unprepare a request 2196 * blk_unprep_request - unprepare a request
2197 * @req: the request 2197 * @req: the request
2198 * 2198 *
2199 * This function makes a request ready for complete resubmission (or 2199 * This function makes a request ready for complete resubmission (or
2200 * completion). It happens only after all error handling is complete, 2200 * completion). It happens only after all error handling is complete,
2201 * so represents the appropriate moment to deallocate any resources 2201 * so represents the appropriate moment to deallocate any resources
2202 * that were allocated to the request in the prep_rq_fn. The queue 2202 * that were allocated to the request in the prep_rq_fn. The queue
2203 * lock is held when calling this. 2203 * lock is held when calling this.
2204 */ 2204 */
2205 void blk_unprep_request(struct request *req) 2205 void blk_unprep_request(struct request *req)
2206 { 2206 {
2207 struct request_queue *q = req->q; 2207 struct request_queue *q = req->q;
2208 2208
2209 req->cmd_flags &= ~REQ_DONTPREP; 2209 req->cmd_flags &= ~REQ_DONTPREP;
2210 if (q->unprep_rq_fn) 2210 if (q->unprep_rq_fn)
2211 q->unprep_rq_fn(q, req); 2211 q->unprep_rq_fn(q, req);
2212 } 2212 }
2213 EXPORT_SYMBOL_GPL(blk_unprep_request); 2213 EXPORT_SYMBOL_GPL(blk_unprep_request);
2214 2214
2215 /* 2215 /*
2216 * queue lock must be held 2216 * queue lock must be held
2217 */ 2217 */
2218 static void blk_finish_request(struct request *req, int error) 2218 static void blk_finish_request(struct request *req, int error)
2219 { 2219 {
2220 if (blk_rq_tagged(req)) 2220 if (blk_rq_tagged(req))
2221 blk_queue_end_tag(req->q, req); 2221 blk_queue_end_tag(req->q, req);
2222 2222
2223 BUG_ON(blk_queued_rq(req)); 2223 BUG_ON(blk_queued_rq(req));
2224 2224
2225 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS) 2225 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2226 laptop_io_completion(&req->q->backing_dev_info); 2226 laptop_io_completion(&req->q->backing_dev_info);
2227 2227
2228 blk_delete_timer(req); 2228 blk_delete_timer(req);
2229 2229
2230 if (req->cmd_flags & REQ_DONTPREP) 2230 if (req->cmd_flags & REQ_DONTPREP)
2231 blk_unprep_request(req); 2231 blk_unprep_request(req);
2232 2232
2233 2233
2234 blk_account_io_done(req); 2234 blk_account_io_done(req);
2235 2235
2236 if (req->end_io) 2236 if (req->end_io)
2237 req->end_io(req, error); 2237 req->end_io(req, error);
2238 else { 2238 else {
2239 if (blk_bidi_rq(req)) 2239 if (blk_bidi_rq(req))
2240 __blk_put_request(req->next_rq->q, req->next_rq); 2240 __blk_put_request(req->next_rq->q, req->next_rq);
2241 2241
2242 __blk_put_request(req->q, req); 2242 __blk_put_request(req->q, req);
2243 } 2243 }
2244 } 2244 }
2245 2245
2246 /** 2246 /**
2247 * blk_end_bidi_request - Complete a bidi request 2247 * blk_end_bidi_request - Complete a bidi request
2248 * @rq: the request to complete 2248 * @rq: the request to complete
2249 * @error: %0 for success, < %0 for error 2249 * @error: %0 for success, < %0 for error
2250 * @nr_bytes: number of bytes to complete @rq 2250 * @nr_bytes: number of bytes to complete @rq
2251 * @bidi_bytes: number of bytes to complete @rq->next_rq 2251 * @bidi_bytes: number of bytes to complete @rq->next_rq
2252 * 2252 *
2253 * Description: 2253 * Description:
2254 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 2254 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2255 * Drivers that supports bidi can safely call this member for any 2255 * Drivers that supports bidi can safely call this member for any
2256 * type of request, bidi or uni. In the later case @bidi_bytes is 2256 * type of request, bidi or uni. In the later case @bidi_bytes is
2257 * just ignored. 2257 * just ignored.
2258 * 2258 *
2259 * Return: 2259 * Return:
2260 * %false - we are done with this request 2260 * %false - we are done with this request
2261 * %true - still buffers pending for this request 2261 * %true - still buffers pending for this request
2262 **/ 2262 **/
2263 static bool blk_end_bidi_request(struct request *rq, int error, 2263 static bool blk_end_bidi_request(struct request *rq, int error,
2264 unsigned int nr_bytes, unsigned int bidi_bytes) 2264 unsigned int nr_bytes, unsigned int bidi_bytes)
2265 { 2265 {
2266 struct request_queue *q = rq->q; 2266 struct request_queue *q = rq->q;
2267 unsigned long flags; 2267 unsigned long flags;
2268 2268
2269 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2269 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2270 return true; 2270 return true;
2271 2271
2272 spin_lock_irqsave(q->queue_lock, flags); 2272 spin_lock_irqsave(q->queue_lock, flags);
2273 blk_finish_request(rq, error); 2273 blk_finish_request(rq, error);
2274 spin_unlock_irqrestore(q->queue_lock, flags); 2274 spin_unlock_irqrestore(q->queue_lock, flags);
2275 2275
2276 return false; 2276 return false;
2277 } 2277 }
2278 2278
2279 /** 2279 /**
2280 * __blk_end_bidi_request - Complete a bidi request with queue lock held 2280 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2281 * @rq: the request to complete 2281 * @rq: the request to complete
2282 * @error: %0 for success, < %0 for error 2282 * @error: %0 for success, < %0 for error
2283 * @nr_bytes: number of bytes to complete @rq 2283 * @nr_bytes: number of bytes to complete @rq
2284 * @bidi_bytes: number of bytes to complete @rq->next_rq 2284 * @bidi_bytes: number of bytes to complete @rq->next_rq
2285 * 2285 *
2286 * Description: 2286 * Description:
2287 * Identical to blk_end_bidi_request() except that queue lock is 2287 * Identical to blk_end_bidi_request() except that queue lock is
2288 * assumed to be locked on entry and remains so on return. 2288 * assumed to be locked on entry and remains so on return.
2289 * 2289 *
2290 * Return: 2290 * Return:
2291 * %false - we are done with this request 2291 * %false - we are done with this request
2292 * %true - still buffers pending for this request 2292 * %true - still buffers pending for this request
2293 **/ 2293 **/
2294 static bool __blk_end_bidi_request(struct request *rq, int error, 2294 static bool __blk_end_bidi_request(struct request *rq, int error,
2295 unsigned int nr_bytes, unsigned int bidi_bytes) 2295 unsigned int nr_bytes, unsigned int bidi_bytes)
2296 { 2296 {
2297 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2297 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2298 return true; 2298 return true;
2299 2299
2300 blk_finish_request(rq, error); 2300 blk_finish_request(rq, error);
2301 2301
2302 return false; 2302 return false;
2303 } 2303 }
2304 2304
2305 /** 2305 /**
2306 * blk_end_request - Helper function for drivers to complete the request. 2306 * blk_end_request - Helper function for drivers to complete the request.
2307 * @rq: the request being processed 2307 * @rq: the request being processed
2308 * @error: %0 for success, < %0 for error 2308 * @error: %0 for success, < %0 for error
2309 * @nr_bytes: number of bytes to complete 2309 * @nr_bytes: number of bytes to complete
2310 * 2310 *
2311 * Description: 2311 * Description:
2312 * Ends I/O on a number of bytes attached to @rq. 2312 * Ends I/O on a number of bytes attached to @rq.
2313 * If @rq has leftover, sets it up for the next range of segments. 2313 * If @rq has leftover, sets it up for the next range of segments.
2314 * 2314 *
2315 * Return: 2315 * Return:
2316 * %false - we are done with this request 2316 * %false - we are done with this request
2317 * %true - still buffers pending for this request 2317 * %true - still buffers pending for this request
2318 **/ 2318 **/
2319 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2319 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2320 { 2320 {
2321 return blk_end_bidi_request(rq, error, nr_bytes, 0); 2321 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2322 } 2322 }
2323 EXPORT_SYMBOL(blk_end_request); 2323 EXPORT_SYMBOL(blk_end_request);
2324 2324
2325 /** 2325 /**
2326 * blk_end_request_all - Helper function for drives to finish the request. 2326 * blk_end_request_all - Helper function for drives to finish the request.
2327 * @rq: the request to finish 2327 * @rq: the request to finish
2328 * @error: %0 for success, < %0 for error 2328 * @error: %0 for success, < %0 for error
2329 * 2329 *
2330 * Description: 2330 * Description:
2331 * Completely finish @rq. 2331 * Completely finish @rq.
2332 */ 2332 */
2333 void blk_end_request_all(struct request *rq, int error) 2333 void blk_end_request_all(struct request *rq, int error)
2334 { 2334 {
2335 bool pending; 2335 bool pending;
2336 unsigned int bidi_bytes = 0; 2336 unsigned int bidi_bytes = 0;
2337 2337
2338 if (unlikely(blk_bidi_rq(rq))) 2338 if (unlikely(blk_bidi_rq(rq)))
2339 bidi_bytes = blk_rq_bytes(rq->next_rq); 2339 bidi_bytes = blk_rq_bytes(rq->next_rq);
2340 2340
2341 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2341 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2342 BUG_ON(pending); 2342 BUG_ON(pending);
2343 } 2343 }
2344 EXPORT_SYMBOL(blk_end_request_all); 2344 EXPORT_SYMBOL(blk_end_request_all);
2345 2345
2346 /** 2346 /**
2347 * blk_end_request_cur - Helper function to finish the current request chunk. 2347 * blk_end_request_cur - Helper function to finish the current request chunk.
2348 * @rq: the request to finish the current chunk for 2348 * @rq: the request to finish the current chunk for
2349 * @error: %0 for success, < %0 for error 2349 * @error: %0 for success, < %0 for error
2350 * 2350 *
2351 * Description: 2351 * Description:
2352 * Complete the current consecutively mapped chunk from @rq. 2352 * Complete the current consecutively mapped chunk from @rq.
2353 * 2353 *
2354 * Return: 2354 * Return:
2355 * %false - we are done with this request 2355 * %false - we are done with this request
2356 * %true - still buffers pending for this request 2356 * %true - still buffers pending for this request
2357 */ 2357 */
2358 bool blk_end_request_cur(struct request *rq, int error) 2358 bool blk_end_request_cur(struct request *rq, int error)
2359 { 2359 {
2360 return blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2360 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2361 } 2361 }
2362 EXPORT_SYMBOL(blk_end_request_cur); 2362 EXPORT_SYMBOL(blk_end_request_cur);
2363 2363
2364 /** 2364 /**
2365 * blk_end_request_err - Finish a request till the next failure boundary. 2365 * blk_end_request_err - Finish a request till the next failure boundary.
2366 * @rq: the request to finish till the next failure boundary for 2366 * @rq: the request to finish till the next failure boundary for
2367 * @error: must be negative errno 2367 * @error: must be negative errno
2368 * 2368 *
2369 * Description: 2369 * Description:
2370 * Complete @rq till the next failure boundary. 2370 * Complete @rq till the next failure boundary.
2371 * 2371 *
2372 * Return: 2372 * Return:
2373 * %false - we are done with this request 2373 * %false - we are done with this request
2374 * %true - still buffers pending for this request 2374 * %true - still buffers pending for this request
2375 */ 2375 */
2376 bool blk_end_request_err(struct request *rq, int error) 2376 bool blk_end_request_err(struct request *rq, int error)
2377 { 2377 {
2378 WARN_ON(error >= 0); 2378 WARN_ON(error >= 0);
2379 return blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2379 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2380 } 2380 }
2381 EXPORT_SYMBOL_GPL(blk_end_request_err); 2381 EXPORT_SYMBOL_GPL(blk_end_request_err);
2382 2382
2383 /** 2383 /**
2384 * __blk_end_request - Helper function for drivers to complete the request. 2384 * __blk_end_request - Helper function for drivers to complete the request.
2385 * @rq: the request being processed 2385 * @rq: the request being processed
2386 * @error: %0 for success, < %0 for error 2386 * @error: %0 for success, < %0 for error
2387 * @nr_bytes: number of bytes to complete 2387 * @nr_bytes: number of bytes to complete
2388 * 2388 *
2389 * Description: 2389 * Description:
2390 * Must be called with queue lock held unlike blk_end_request(). 2390 * Must be called with queue lock held unlike blk_end_request().
2391 * 2391 *
2392 * Return: 2392 * Return:
2393 * %false - we are done with this request 2393 * %false - we are done with this request
2394 * %true - still buffers pending for this request 2394 * %true - still buffers pending for this request
2395 **/ 2395 **/
2396 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2396 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2397 { 2397 {
2398 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 2398 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2399 } 2399 }
2400 EXPORT_SYMBOL(__blk_end_request); 2400 EXPORT_SYMBOL(__blk_end_request);
2401 2401
2402 /** 2402 /**
2403 * __blk_end_request_all - Helper function for drives to finish the request. 2403 * __blk_end_request_all - Helper function for drives to finish the request.
2404 * @rq: the request to finish 2404 * @rq: the request to finish
2405 * @error: %0 for success, < %0 for error 2405 * @error: %0 for success, < %0 for error
2406 * 2406 *
2407 * Description: 2407 * Description:
2408 * Completely finish @rq. Must be called with queue lock held. 2408 * Completely finish @rq. Must be called with queue lock held.
2409 */ 2409 */
2410 void __blk_end_request_all(struct request *rq, int error) 2410 void __blk_end_request_all(struct request *rq, int error)
2411 { 2411 {
2412 bool pending; 2412 bool pending;
2413 unsigned int bidi_bytes = 0; 2413 unsigned int bidi_bytes = 0;
2414 2414
2415 if (unlikely(blk_bidi_rq(rq))) 2415 if (unlikely(blk_bidi_rq(rq)))
2416 bidi_bytes = blk_rq_bytes(rq->next_rq); 2416 bidi_bytes = blk_rq_bytes(rq->next_rq);
2417 2417
2418 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2418 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2419 BUG_ON(pending); 2419 BUG_ON(pending);
2420 } 2420 }
2421 EXPORT_SYMBOL(__blk_end_request_all); 2421 EXPORT_SYMBOL(__blk_end_request_all);
2422 2422
2423 /** 2423 /**
2424 * __blk_end_request_cur - Helper function to finish the current request chunk. 2424 * __blk_end_request_cur - Helper function to finish the current request chunk.
2425 * @rq: the request to finish the current chunk for 2425 * @rq: the request to finish the current chunk for
2426 * @error: %0 for success, < %0 for error 2426 * @error: %0 for success, < %0 for error
2427 * 2427 *
2428 * Description: 2428 * Description:
2429 * Complete the current consecutively mapped chunk from @rq. Must 2429 * Complete the current consecutively mapped chunk from @rq. Must
2430 * be called with queue lock held. 2430 * be called with queue lock held.
2431 * 2431 *
2432 * Return: 2432 * Return:
2433 * %false - we are done with this request 2433 * %false - we are done with this request
2434 * %true - still buffers pending for this request 2434 * %true - still buffers pending for this request
2435 */ 2435 */
2436 bool __blk_end_request_cur(struct request *rq, int error) 2436 bool __blk_end_request_cur(struct request *rq, int error)
2437 { 2437 {
2438 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2438 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2439 } 2439 }
2440 EXPORT_SYMBOL(__blk_end_request_cur); 2440 EXPORT_SYMBOL(__blk_end_request_cur);
2441 2441
2442 /** 2442 /**
2443 * __blk_end_request_err - Finish a request till the next failure boundary. 2443 * __blk_end_request_err - Finish a request till the next failure boundary.
2444 * @rq: the request to finish till the next failure boundary for 2444 * @rq: the request to finish till the next failure boundary for
2445 * @error: must be negative errno 2445 * @error: must be negative errno
2446 * 2446 *
2447 * Description: 2447 * Description:
2448 * Complete @rq till the next failure boundary. Must be called 2448 * Complete @rq till the next failure boundary. Must be called
2449 * with queue lock held. 2449 * with queue lock held.
2450 * 2450 *
2451 * Return: 2451 * Return:
2452 * %false - we are done with this request 2452 * %false - we are done with this request
2453 * %true - still buffers pending for this request 2453 * %true - still buffers pending for this request
2454 */ 2454 */
2455 bool __blk_end_request_err(struct request *rq, int error) 2455 bool __blk_end_request_err(struct request *rq, int error)
2456 { 2456 {
2457 WARN_ON(error >= 0); 2457 WARN_ON(error >= 0);
2458 return __blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2458 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2459 } 2459 }
2460 EXPORT_SYMBOL_GPL(__blk_end_request_err); 2460 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2461 2461
2462 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2462 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2463 struct bio *bio) 2463 struct bio *bio)
2464 { 2464 {
2465 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */ 2465 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2466 rq->cmd_flags |= bio->bi_rw & REQ_WRITE; 2466 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2467 2467
2468 if (bio_has_data(bio)) { 2468 if (bio_has_data(bio)) {
2469 rq->nr_phys_segments = bio_phys_segments(q, bio); 2469 rq->nr_phys_segments = bio_phys_segments(q, bio);
2470 rq->buffer = bio_data(bio); 2470 rq->buffer = bio_data(bio);
2471 } 2471 }
2472 rq->__data_len = bio->bi_size; 2472 rq->__data_len = bio->bi_size;
2473 rq->bio = rq->biotail = bio; 2473 rq->bio = rq->biotail = bio;
2474 2474
2475 if (bio->bi_bdev) 2475 if (bio->bi_bdev)
2476 rq->rq_disk = bio->bi_bdev->bd_disk; 2476 rq->rq_disk = bio->bi_bdev->bd_disk;
2477 } 2477 }
2478 2478
2479 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 2479 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2480 /** 2480 /**
2481 * rq_flush_dcache_pages - Helper function to flush all pages in a request 2481 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2482 * @rq: the request to be flushed 2482 * @rq: the request to be flushed
2483 * 2483 *
2484 * Description: 2484 * Description:
2485 * Flush all pages in @rq. 2485 * Flush all pages in @rq.
2486 */ 2486 */
2487 void rq_flush_dcache_pages(struct request *rq) 2487 void rq_flush_dcache_pages(struct request *rq)
2488 { 2488 {
2489 struct req_iterator iter; 2489 struct req_iterator iter;
2490 struct bio_vec *bvec; 2490 struct bio_vec *bvec;
2491 2491
2492 rq_for_each_segment(bvec, rq, iter) 2492 rq_for_each_segment(bvec, rq, iter)
2493 flush_dcache_page(bvec->bv_page); 2493 flush_dcache_page(bvec->bv_page);
2494 } 2494 }
2495 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 2495 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2496 #endif 2496 #endif
2497 2497
2498 /** 2498 /**
2499 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 2499 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2500 * @q : the queue of the device being checked 2500 * @q : the queue of the device being checked
2501 * 2501 *
2502 * Description: 2502 * Description:
2503 * Check if underlying low-level drivers of a device are busy. 2503 * Check if underlying low-level drivers of a device are busy.
2504 * If the drivers want to export their busy state, they must set own 2504 * If the drivers want to export their busy state, they must set own
2505 * exporting function using blk_queue_lld_busy() first. 2505 * exporting function using blk_queue_lld_busy() first.
2506 * 2506 *
2507 * Basically, this function is used only by request stacking drivers 2507 * Basically, this function is used only by request stacking drivers
2508 * to stop dispatching requests to underlying devices when underlying 2508 * to stop dispatching requests to underlying devices when underlying
2509 * devices are busy. This behavior helps more I/O merging on the queue 2509 * devices are busy. This behavior helps more I/O merging on the queue
2510 * of the request stacking driver and prevents I/O throughput regression 2510 * of the request stacking driver and prevents I/O throughput regression
2511 * on burst I/O load. 2511 * on burst I/O load.
2512 * 2512 *
2513 * Return: 2513 * Return:
2514 * 0 - Not busy (The request stacking driver should dispatch request) 2514 * 0 - Not busy (The request stacking driver should dispatch request)
2515 * 1 - Busy (The request stacking driver should stop dispatching request) 2515 * 1 - Busy (The request stacking driver should stop dispatching request)
2516 */ 2516 */
2517 int blk_lld_busy(struct request_queue *q) 2517 int blk_lld_busy(struct request_queue *q)
2518 { 2518 {
2519 if (q->lld_busy_fn) 2519 if (q->lld_busy_fn)
2520 return q->lld_busy_fn(q); 2520 return q->lld_busy_fn(q);
2521 2521
2522 return 0; 2522 return 0;
2523 } 2523 }
2524 EXPORT_SYMBOL_GPL(blk_lld_busy); 2524 EXPORT_SYMBOL_GPL(blk_lld_busy);
2525 2525
2526 /** 2526 /**
2527 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 2527 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2528 * @rq: the clone request to be cleaned up 2528 * @rq: the clone request to be cleaned up
2529 * 2529 *
2530 * Description: 2530 * Description:
2531 * Free all bios in @rq for a cloned request. 2531 * Free all bios in @rq for a cloned request.
2532 */ 2532 */
2533 void blk_rq_unprep_clone(struct request *rq) 2533 void blk_rq_unprep_clone(struct request *rq)
2534 { 2534 {
2535 struct bio *bio; 2535 struct bio *bio;
2536 2536
2537 while ((bio = rq->bio) != NULL) { 2537 while ((bio = rq->bio) != NULL) {
2538 rq->bio = bio->bi_next; 2538 rq->bio = bio->bi_next;
2539 2539
2540 bio_put(bio); 2540 bio_put(bio);
2541 } 2541 }
2542 } 2542 }
2543 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 2543 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2544 2544
2545 /* 2545 /*
2546 * Copy attributes of the original request to the clone request. 2546 * Copy attributes of the original request to the clone request.
2547 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied. 2547 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2548 */ 2548 */
2549 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 2549 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2550 { 2550 {
2551 dst->cpu = src->cpu; 2551 dst->cpu = src->cpu;
2552 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE; 2552 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2553 dst->cmd_type = src->cmd_type; 2553 dst->cmd_type = src->cmd_type;
2554 dst->__sector = blk_rq_pos(src); 2554 dst->__sector = blk_rq_pos(src);
2555 dst->__data_len = blk_rq_bytes(src); 2555 dst->__data_len = blk_rq_bytes(src);
2556 dst->nr_phys_segments = src->nr_phys_segments; 2556 dst->nr_phys_segments = src->nr_phys_segments;
2557 dst->ioprio = src->ioprio; 2557 dst->ioprio = src->ioprio;
2558 dst->extra_len = src->extra_len; 2558 dst->extra_len = src->extra_len;
2559 } 2559 }
2560 2560
2561 /** 2561 /**
2562 * blk_rq_prep_clone - Helper function to setup clone request 2562 * blk_rq_prep_clone - Helper function to setup clone request
2563 * @rq: the request to be setup 2563 * @rq: the request to be setup
2564 * @rq_src: original request to be cloned 2564 * @rq_src: original request to be cloned
2565 * @bs: bio_set that bios for clone are allocated from 2565 * @bs: bio_set that bios for clone are allocated from
2566 * @gfp_mask: memory allocation mask for bio 2566 * @gfp_mask: memory allocation mask for bio
2567 * @bio_ctr: setup function to be called for each clone bio. 2567 * @bio_ctr: setup function to be called for each clone bio.
2568 * Returns %0 for success, non %0 for failure. 2568 * Returns %0 for success, non %0 for failure.
2569 * @data: private data to be passed to @bio_ctr 2569 * @data: private data to be passed to @bio_ctr
2570 * 2570 *
2571 * Description: 2571 * Description:
2572 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 2572 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2573 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense) 2573 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2574 * are not copied, and copying such parts is the caller's responsibility. 2574 * are not copied, and copying such parts is the caller's responsibility.
2575 * Also, pages which the original bios are pointing to are not copied 2575 * Also, pages which the original bios are pointing to are not copied
2576 * and the cloned bios just point same pages. 2576 * and the cloned bios just point same pages.
2577 * So cloned bios must be completed before original bios, which means 2577 * So cloned bios must be completed before original bios, which means
2578 * the caller must complete @rq before @rq_src. 2578 * the caller must complete @rq before @rq_src.
2579 */ 2579 */
2580 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 2580 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2581 struct bio_set *bs, gfp_t gfp_mask, 2581 struct bio_set *bs, gfp_t gfp_mask,
2582 int (*bio_ctr)(struct bio *, struct bio *, void *), 2582 int (*bio_ctr)(struct bio *, struct bio *, void *),
2583 void *data) 2583 void *data)
2584 { 2584 {
2585 struct bio *bio, *bio_src; 2585 struct bio *bio, *bio_src;
2586 2586
2587 if (!bs) 2587 if (!bs)
2588 bs = fs_bio_set; 2588 bs = fs_bio_set;
2589 2589
2590 blk_rq_init(NULL, rq); 2590 blk_rq_init(NULL, rq);
2591 2591
2592 __rq_for_each_bio(bio_src, rq_src) { 2592 __rq_for_each_bio(bio_src, rq_src) {
2593 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs); 2593 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2594 if (!bio) 2594 if (!bio)
2595 goto free_and_out; 2595 goto free_and_out;
2596 2596
2597 __bio_clone(bio, bio_src); 2597 __bio_clone(bio, bio_src);
2598 2598
2599 if (bio_integrity(bio_src) && 2599 if (bio_integrity(bio_src) &&
2600 bio_integrity_clone(bio, bio_src, gfp_mask, bs)) 2600 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2601 goto free_and_out; 2601 goto free_and_out;
2602 2602
2603 if (bio_ctr && bio_ctr(bio, bio_src, data)) 2603 if (bio_ctr && bio_ctr(bio, bio_src, data))
2604 goto free_and_out; 2604 goto free_and_out;
2605 2605
2606 if (rq->bio) { 2606 if (rq->bio) {
2607 rq->biotail->bi_next = bio; 2607 rq->biotail->bi_next = bio;
2608 rq->biotail = bio; 2608 rq->biotail = bio;
2609 } else 2609 } else
2610 rq->bio = rq->biotail = bio; 2610 rq->bio = rq->biotail = bio;
2611 } 2611 }
2612 2612
2613 __blk_rq_prep_clone(rq, rq_src); 2613 __blk_rq_prep_clone(rq, rq_src);
2614 2614
2615 return 0; 2615 return 0;
2616 2616
2617 free_and_out: 2617 free_and_out:
2618 if (bio) 2618 if (bio)
2619 bio_free(bio, bs); 2619 bio_free(bio, bs);
2620 blk_rq_unprep_clone(rq); 2620 blk_rq_unprep_clone(rq);
2621 2621
2622 return -ENOMEM; 2622 return -ENOMEM;
2623 } 2623 }
2624 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 2624 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2625 2625
2626 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work) 2626 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2627 { 2627 {
2628 return queue_work(kblockd_workqueue, work); 2628 return queue_work(kblockd_workqueue, work);
2629 } 2629 }
2630 EXPORT_SYMBOL(kblockd_schedule_work); 2630 EXPORT_SYMBOL(kblockd_schedule_work);
2631 2631
2632 int kblockd_schedule_delayed_work(struct request_queue *q, 2632 int kblockd_schedule_delayed_work(struct request_queue *q,
2633 struct delayed_work *dwork, unsigned long delay) 2633 struct delayed_work *dwork, unsigned long delay)
2634 { 2634 {
2635 return queue_delayed_work(kblockd_workqueue, dwork, delay); 2635 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2636 } 2636 }
2637 EXPORT_SYMBOL(kblockd_schedule_delayed_work); 2637 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2638 2638
2639 #define PLUG_MAGIC 0x91827364 2639 #define PLUG_MAGIC 0x91827364
2640 2640
2641 void blk_start_plug(struct blk_plug *plug) 2641 void blk_start_plug(struct blk_plug *plug)
2642 { 2642 {
2643 struct task_struct *tsk = current; 2643 struct task_struct *tsk = current;
2644 2644
2645 plug->magic = PLUG_MAGIC; 2645 plug->magic = PLUG_MAGIC;
2646 INIT_LIST_HEAD(&plug->list); 2646 INIT_LIST_HEAD(&plug->list);
2647 plug->should_sort = 0; 2647 plug->should_sort = 0;
2648 2648
2649 /* 2649 /*
2650 * If this is a nested plug, don't actually assign it. It will be 2650 * If this is a nested plug, don't actually assign it. It will be
2651 * flushed on its own. 2651 * flushed on its own.
2652 */ 2652 */
2653 if (!tsk->plug) { 2653 if (!tsk->plug) {
2654 /* 2654 /*
2655 * Store ordering should not be needed here, since a potential 2655 * Store ordering should not be needed here, since a potential
2656 * preempt will imply a full memory barrier 2656 * preempt will imply a full memory barrier
2657 */ 2657 */
2658 tsk->plug = plug; 2658 tsk->plug = plug;
2659 } 2659 }
2660 } 2660 }
2661 EXPORT_SYMBOL(blk_start_plug); 2661 EXPORT_SYMBOL(blk_start_plug);
2662 2662
2663 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 2663 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2664 { 2664 {
2665 struct request *rqa = container_of(a, struct request, queuelist); 2665 struct request *rqa = container_of(a, struct request, queuelist);
2666 struct request *rqb = container_of(b, struct request, queuelist); 2666 struct request *rqb = container_of(b, struct request, queuelist);
2667 2667
2668 return !(rqa->q == rqb->q); 2668 return !(rqa->q == rqb->q);
2669 } 2669 }
2670 2670
2671 static void flush_plug_list(struct blk_plug *plug) 2671 static void flush_plug_list(struct blk_plug *plug)
2672 { 2672 {
2673 struct request_queue *q; 2673 struct request_queue *q;
2674 unsigned long flags; 2674 unsigned long flags;
2675 struct request *rq; 2675 struct request *rq;
2676 2676
2677 BUG_ON(plug->magic != PLUG_MAGIC); 2677 BUG_ON(plug->magic != PLUG_MAGIC);
2678 2678
2679 if (list_empty(&plug->list)) 2679 if (list_empty(&plug->list))
2680 return; 2680 return;
2681 2681
2682 if (plug->should_sort) 2682 if (plug->should_sort)
2683 list_sort(NULL, &plug->list, plug_rq_cmp); 2683 list_sort(NULL, &plug->list, plug_rq_cmp);
2684 2684
2685 q = NULL; 2685 q = NULL;
2686 local_irq_save(flags); 2686 local_irq_save(flags);
2687 while (!list_empty(&plug->list)) { 2687 while (!list_empty(&plug->list)) {
2688 rq = list_entry_rq(plug->list.next); 2688 rq = list_entry_rq(plug->list.next);
2689 list_del_init(&rq->queuelist); 2689 list_del_init(&rq->queuelist);
2690 BUG_ON(!(rq->cmd_flags & REQ_ON_PLUG)); 2690 BUG_ON(!(rq->cmd_flags & REQ_ON_PLUG));
2691 BUG_ON(!rq->q); 2691 BUG_ON(!rq->q);
2692 if (rq->q != q) { 2692 if (rq->q != q) {
2693 if (q) { 2693 if (q) {
2694 __blk_run_queue(q, false); 2694 __blk_run_queue(q, false);
2695 spin_unlock(q->queue_lock); 2695 spin_unlock(q->queue_lock);
2696 } 2696 }
2697 q = rq->q; 2697 q = rq->q;
2698 spin_lock(q->queue_lock); 2698 spin_lock(q->queue_lock);
2699 } 2699 }
2700 rq->cmd_flags &= ~REQ_ON_PLUG; 2700 rq->cmd_flags &= ~REQ_ON_PLUG;
2701 2701
2702 /* 2702 /*
2703 * rq is already accounted, so use raw insert 2703 * rq is already accounted, so use raw insert
2704 */ 2704 */
2705 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA)) 2705 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2706 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); 2706 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2707 else 2707 else
2708 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); 2708 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
2709 } 2709 }
2710 2710
2711 if (q) { 2711 if (q) {
2712 __blk_run_queue(q, false); 2712 __blk_run_queue(q, false);
2713 spin_unlock(q->queue_lock); 2713 spin_unlock(q->queue_lock);
2714 } 2714 }
2715 2715
2716 BUG_ON(!list_empty(&plug->list)); 2716 BUG_ON(!list_empty(&plug->list));
2717 local_irq_restore(flags); 2717 local_irq_restore(flags);
2718 } 2718 }
2719 2719
2720 static void __blk_finish_plug(struct task_struct *tsk, struct blk_plug *plug) 2720 static void __blk_finish_plug(struct task_struct *tsk, struct blk_plug *plug)
2721 { 2721 {
2722 flush_plug_list(plug); 2722 flush_plug_list(plug);
2723 2723
2724 if (plug == tsk->plug) 2724 if (plug == tsk->plug)
2725 tsk->plug = NULL; 2725 tsk->plug = NULL;
2726 } 2726 }
2727 2727
2728 void blk_finish_plug(struct blk_plug *plug) 2728 void blk_finish_plug(struct blk_plug *plug)
2729 { 2729 {
2730 if (plug) 2730 if (plug)
2731 __blk_finish_plug(current, plug); 2731 __blk_finish_plug(current, plug);
2732 } 2732 }
2733 EXPORT_SYMBOL(blk_finish_plug); 2733 EXPORT_SYMBOL(blk_finish_plug);
2734 2734
2735 void __blk_flush_plug(struct task_struct *tsk, struct blk_plug *plug) 2735 void __blk_flush_plug(struct task_struct *tsk, struct blk_plug *plug)
2736 { 2736 {
2737 __blk_finish_plug(tsk, plug); 2737 __blk_finish_plug(tsk, plug);
2738 tsk->plug = plug; 2738 tsk->plug = plug;
2739 } 2739 }
2740 EXPORT_SYMBOL(__blk_flush_plug); 2740 EXPORT_SYMBOL(__blk_flush_plug);
2741 2741
2742 int __init blk_dev_init(void) 2742 int __init blk_dev_init(void)
2743 { 2743 {
2744 BUILD_BUG_ON(__REQ_NR_BITS > 8 * 2744 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2745 sizeof(((struct request *)0)->cmd_flags)); 2745 sizeof(((struct request *)0)->cmd_flags));
2746 2746
2747 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 2747 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2748 kblockd_workqueue = alloc_workqueue("kblockd", 2748 kblockd_workqueue = alloc_workqueue("kblockd",
2749 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2749 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2750 if (!kblockd_workqueue) 2750 if (!kblockd_workqueue)
2751 panic("Failed to create kblockd\n"); 2751 panic("Failed to create kblockd\n");
2752 2752
2753 request_cachep = kmem_cache_create("blkdev_requests", 2753 request_cachep = kmem_cache_create("blkdev_requests",
2754 sizeof(struct request), 0, SLAB_PANIC, NULL); 2754 sizeof(struct request), 0, SLAB_PANIC, NULL);
2755 2755
2756 blk_requestq_cachep = kmem_cache_create("blkdev_queue", 2756 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2757 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 2757 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2758 2758
2759 return 0; 2759 return 0;
2760 } 2760 }
2761 2761