Commit ba74c1448f127649046615ec017bded7b2a76f29
Committed by
Ingo Molnar
1 parent
bd2f55361f
Exists in
smarc-l5.0.0_1.0.0-ga
and in
5 other branches
sched/rt: Document scheduler related skip-resched-check sites
Create a distinction between scheduler related preempt_enable_no_resched() calls and the nearly one hundred other places in the kernel that do not want to reschedule, for one reason or another. This distinction matters for -rt, where the scheduler and the non-scheduler preempt models (and checks) are different. For upstream it's purely documentational. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/n/tip-gs88fvx2mdv5psnzxnv575ke@git.kernel.org Signed-off-by: Ingo Molnar <mingo@elte.hu>
Showing 5 changed files with 11 additions and 8 deletions Inline Diff
arch/powerpc/kernel/idle.c
1 | /* | 1 | /* |
2 | * Idle daemon for PowerPC. Idle daemon will handle any action | 2 | * Idle daemon for PowerPC. Idle daemon will handle any action |
3 | * that needs to be taken when the system becomes idle. | 3 | * that needs to be taken when the system becomes idle. |
4 | * | 4 | * |
5 | * Originally written by Cort Dougan (cort@cs.nmt.edu). | 5 | * Originally written by Cort Dougan (cort@cs.nmt.edu). |
6 | * Subsequent 32-bit hacking by Tom Rini, Armin Kuster, | 6 | * Subsequent 32-bit hacking by Tom Rini, Armin Kuster, |
7 | * Paul Mackerras and others. | 7 | * Paul Mackerras and others. |
8 | * | 8 | * |
9 | * iSeries supported added by Mike Corrigan <mikejc@us.ibm.com> | 9 | * iSeries supported added by Mike Corrigan <mikejc@us.ibm.com> |
10 | * | 10 | * |
11 | * Additional shared processor, SMT, and firmware support | 11 | * Additional shared processor, SMT, and firmware support |
12 | * Copyright (c) 2003 Dave Engebretsen <engebret@us.ibm.com> | 12 | * Copyright (c) 2003 Dave Engebretsen <engebret@us.ibm.com> |
13 | * | 13 | * |
14 | * 32-bit and 64-bit versions merged by Paul Mackerras <paulus@samba.org> | 14 | * 32-bit and 64-bit versions merged by Paul Mackerras <paulus@samba.org> |
15 | * | 15 | * |
16 | * This program is free software; you can redistribute it and/or | 16 | * This program is free software; you can redistribute it and/or |
17 | * modify it under the terms of the GNU General Public License | 17 | * modify it under the terms of the GNU General Public License |
18 | * as published by the Free Software Foundation; either version | 18 | * as published by the Free Software Foundation; either version |
19 | * 2 of the License, or (at your option) any later version. | 19 | * 2 of the License, or (at your option) any later version. |
20 | */ | 20 | */ |
21 | 21 | ||
22 | #include <linux/sched.h> | 22 | #include <linux/sched.h> |
23 | #include <linux/kernel.h> | 23 | #include <linux/kernel.h> |
24 | #include <linux/smp.h> | 24 | #include <linux/smp.h> |
25 | #include <linux/cpu.h> | 25 | #include <linux/cpu.h> |
26 | #include <linux/sysctl.h> | 26 | #include <linux/sysctl.h> |
27 | #include <linux/tick.h> | 27 | #include <linux/tick.h> |
28 | 28 | ||
29 | #include <asm/system.h> | 29 | #include <asm/system.h> |
30 | #include <asm/processor.h> | 30 | #include <asm/processor.h> |
31 | #include <asm/cputable.h> | 31 | #include <asm/cputable.h> |
32 | #include <asm/time.h> | 32 | #include <asm/time.h> |
33 | #include <asm/machdep.h> | 33 | #include <asm/machdep.h> |
34 | #include <asm/smp.h> | 34 | #include <asm/smp.h> |
35 | 35 | ||
36 | #ifdef CONFIG_HOTPLUG_CPU | 36 | #ifdef CONFIG_HOTPLUG_CPU |
37 | #define cpu_should_die() cpu_is_offline(smp_processor_id()) | 37 | #define cpu_should_die() cpu_is_offline(smp_processor_id()) |
38 | #else | 38 | #else |
39 | #define cpu_should_die() 0 | 39 | #define cpu_should_die() 0 |
40 | #endif | 40 | #endif |
41 | 41 | ||
42 | unsigned long cpuidle_disable = IDLE_NO_OVERRIDE; | 42 | unsigned long cpuidle_disable = IDLE_NO_OVERRIDE; |
43 | EXPORT_SYMBOL(cpuidle_disable); | 43 | EXPORT_SYMBOL(cpuidle_disable); |
44 | 44 | ||
45 | static int __init powersave_off(char *arg) | 45 | static int __init powersave_off(char *arg) |
46 | { | 46 | { |
47 | ppc_md.power_save = NULL; | 47 | ppc_md.power_save = NULL; |
48 | cpuidle_disable = IDLE_POWERSAVE_OFF; | 48 | cpuidle_disable = IDLE_POWERSAVE_OFF; |
49 | return 0; | 49 | return 0; |
50 | } | 50 | } |
51 | __setup("powersave=off", powersave_off); | 51 | __setup("powersave=off", powersave_off); |
52 | 52 | ||
53 | /* | 53 | /* |
54 | * The body of the idle task. | 54 | * The body of the idle task. |
55 | */ | 55 | */ |
56 | void cpu_idle(void) | 56 | void cpu_idle(void) |
57 | { | 57 | { |
58 | if (ppc_md.idle_loop) | 58 | if (ppc_md.idle_loop) |
59 | ppc_md.idle_loop(); /* doesn't return */ | 59 | ppc_md.idle_loop(); /* doesn't return */ |
60 | 60 | ||
61 | set_thread_flag(TIF_POLLING_NRFLAG); | 61 | set_thread_flag(TIF_POLLING_NRFLAG); |
62 | while (1) { | 62 | while (1) { |
63 | tick_nohz_idle_enter(); | 63 | tick_nohz_idle_enter(); |
64 | rcu_idle_enter(); | 64 | rcu_idle_enter(); |
65 | 65 | ||
66 | while (!need_resched() && !cpu_should_die()) { | 66 | while (!need_resched() && !cpu_should_die()) { |
67 | ppc64_runlatch_off(); | 67 | ppc64_runlatch_off(); |
68 | 68 | ||
69 | if (ppc_md.power_save) { | 69 | if (ppc_md.power_save) { |
70 | clear_thread_flag(TIF_POLLING_NRFLAG); | 70 | clear_thread_flag(TIF_POLLING_NRFLAG); |
71 | /* | 71 | /* |
72 | * smp_mb is so clearing of TIF_POLLING_NRFLAG | 72 | * smp_mb is so clearing of TIF_POLLING_NRFLAG |
73 | * is ordered w.r.t. need_resched() test. | 73 | * is ordered w.r.t. need_resched() test. |
74 | */ | 74 | */ |
75 | smp_mb(); | 75 | smp_mb(); |
76 | local_irq_disable(); | 76 | local_irq_disable(); |
77 | 77 | ||
78 | /* Don't trace irqs off for idle */ | 78 | /* Don't trace irqs off for idle */ |
79 | stop_critical_timings(); | 79 | stop_critical_timings(); |
80 | 80 | ||
81 | /* check again after disabling irqs */ | 81 | /* check again after disabling irqs */ |
82 | if (!need_resched() && !cpu_should_die()) | 82 | if (!need_resched() && !cpu_should_die()) |
83 | ppc_md.power_save(); | 83 | ppc_md.power_save(); |
84 | 84 | ||
85 | start_critical_timings(); | 85 | start_critical_timings(); |
86 | 86 | ||
87 | local_irq_enable(); | 87 | local_irq_enable(); |
88 | set_thread_flag(TIF_POLLING_NRFLAG); | 88 | set_thread_flag(TIF_POLLING_NRFLAG); |
89 | 89 | ||
90 | } else { | 90 | } else { |
91 | /* | 91 | /* |
92 | * Go into low thread priority and possibly | 92 | * Go into low thread priority and possibly |
93 | * low power mode. | 93 | * low power mode. |
94 | */ | 94 | */ |
95 | HMT_low(); | 95 | HMT_low(); |
96 | HMT_very_low(); | 96 | HMT_very_low(); |
97 | } | 97 | } |
98 | } | 98 | } |
99 | 99 | ||
100 | HMT_medium(); | 100 | HMT_medium(); |
101 | ppc64_runlatch_on(); | 101 | ppc64_runlatch_on(); |
102 | rcu_idle_exit(); | 102 | rcu_idle_exit(); |
103 | tick_nohz_idle_exit(); | 103 | tick_nohz_idle_exit(); |
104 | if (cpu_should_die()) { | 104 | if (cpu_should_die()) { |
105 | preempt_enable_no_resched(); | 105 | sched_preempt_enable_no_resched(); |
106 | cpu_die(); | 106 | cpu_die(); |
107 | } | 107 | } |
108 | schedule_preempt_disabled(); | 108 | schedule_preempt_disabled(); |
109 | } | 109 | } |
110 | } | 110 | } |
111 | 111 | ||
112 | 112 | ||
113 | /* | 113 | /* |
114 | * cpu_idle_wait - Used to ensure that all the CPUs come out of the old | 114 | * cpu_idle_wait - Used to ensure that all the CPUs come out of the old |
115 | * idle loop and start using the new idle loop. | 115 | * idle loop and start using the new idle loop. |
116 | * Required while changing idle handler on SMP systems. | 116 | * Required while changing idle handler on SMP systems. |
117 | * Caller must have changed idle handler to the new value before the call. | 117 | * Caller must have changed idle handler to the new value before the call. |
118 | * This window may be larger on shared systems. | 118 | * This window may be larger on shared systems. |
119 | */ | 119 | */ |
120 | void cpu_idle_wait(void) | 120 | void cpu_idle_wait(void) |
121 | { | 121 | { |
122 | int cpu; | 122 | int cpu; |
123 | smp_mb(); | 123 | smp_mb(); |
124 | 124 | ||
125 | /* kick all the CPUs so that they exit out of old idle routine */ | 125 | /* kick all the CPUs so that they exit out of old idle routine */ |
126 | get_online_cpus(); | 126 | get_online_cpus(); |
127 | for_each_online_cpu(cpu) { | 127 | for_each_online_cpu(cpu) { |
128 | if (cpu != smp_processor_id()) | 128 | if (cpu != smp_processor_id()) |
129 | smp_send_reschedule(cpu); | 129 | smp_send_reschedule(cpu); |
130 | } | 130 | } |
131 | put_online_cpus(); | 131 | put_online_cpus(); |
132 | } | 132 | } |
133 | EXPORT_SYMBOL_GPL(cpu_idle_wait); | 133 | EXPORT_SYMBOL_GPL(cpu_idle_wait); |
134 | 134 | ||
135 | int powersave_nap; | 135 | int powersave_nap; |
136 | 136 | ||
137 | #ifdef CONFIG_SYSCTL | 137 | #ifdef CONFIG_SYSCTL |
138 | /* | 138 | /* |
139 | * Register the sysctl to set/clear powersave_nap. | 139 | * Register the sysctl to set/clear powersave_nap. |
140 | */ | 140 | */ |
141 | static ctl_table powersave_nap_ctl_table[]={ | 141 | static ctl_table powersave_nap_ctl_table[]={ |
142 | { | 142 | { |
143 | .procname = "powersave-nap", | 143 | .procname = "powersave-nap", |
144 | .data = &powersave_nap, | 144 | .data = &powersave_nap, |
145 | .maxlen = sizeof(int), | 145 | .maxlen = sizeof(int), |
146 | .mode = 0644, | 146 | .mode = 0644, |
147 | .proc_handler = proc_dointvec, | 147 | .proc_handler = proc_dointvec, |
148 | }, | 148 | }, |
149 | {} | 149 | {} |
150 | }; | 150 | }; |
151 | static ctl_table powersave_nap_sysctl_root[] = { | 151 | static ctl_table powersave_nap_sysctl_root[] = { |
152 | { | 152 | { |
153 | .procname = "kernel", | 153 | .procname = "kernel", |
154 | .mode = 0555, | 154 | .mode = 0555, |
155 | .child = powersave_nap_ctl_table, | 155 | .child = powersave_nap_ctl_table, |
156 | }, | 156 | }, |
157 | {} | 157 | {} |
158 | }; | 158 | }; |
159 | 159 | ||
160 | static int __init | 160 | static int __init |
161 | register_powersave_nap_sysctl(void) | 161 | register_powersave_nap_sysctl(void) |
162 | { | 162 | { |
163 | register_sysctl_table(powersave_nap_sysctl_root); | 163 | register_sysctl_table(powersave_nap_sysctl_root); |
164 | 164 | ||
165 | return 0; | 165 | return 0; |
166 | } | 166 | } |
167 | __initcall(register_powersave_nap_sysctl); | 167 | __initcall(register_powersave_nap_sysctl); |
168 | #endif | 168 | #endif |
169 | 169 |
arch/sparc/kernel/process_64.c
1 | /* arch/sparc64/kernel/process.c | 1 | /* arch/sparc64/kernel/process.c |
2 | * | 2 | * |
3 | * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net) | 3 | * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net) |
4 | * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be) | 4 | * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be) |
5 | * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) | 5 | * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) |
6 | */ | 6 | */ |
7 | 7 | ||
8 | /* | 8 | /* |
9 | * This file handles the architecture-dependent parts of process handling.. | 9 | * This file handles the architecture-dependent parts of process handling.. |
10 | */ | 10 | */ |
11 | 11 | ||
12 | #include <stdarg.h> | 12 | #include <stdarg.h> |
13 | 13 | ||
14 | #include <linux/errno.h> | 14 | #include <linux/errno.h> |
15 | #include <linux/export.h> | 15 | #include <linux/export.h> |
16 | #include <linux/sched.h> | 16 | #include <linux/sched.h> |
17 | #include <linux/kernel.h> | 17 | #include <linux/kernel.h> |
18 | #include <linux/mm.h> | 18 | #include <linux/mm.h> |
19 | #include <linux/fs.h> | 19 | #include <linux/fs.h> |
20 | #include <linux/smp.h> | 20 | #include <linux/smp.h> |
21 | #include <linux/stddef.h> | 21 | #include <linux/stddef.h> |
22 | #include <linux/ptrace.h> | 22 | #include <linux/ptrace.h> |
23 | #include <linux/slab.h> | 23 | #include <linux/slab.h> |
24 | #include <linux/user.h> | 24 | #include <linux/user.h> |
25 | #include <linux/delay.h> | 25 | #include <linux/delay.h> |
26 | #include <linux/compat.h> | 26 | #include <linux/compat.h> |
27 | #include <linux/tick.h> | 27 | #include <linux/tick.h> |
28 | #include <linux/init.h> | 28 | #include <linux/init.h> |
29 | #include <linux/cpu.h> | 29 | #include <linux/cpu.h> |
30 | #include <linux/elfcore.h> | 30 | #include <linux/elfcore.h> |
31 | #include <linux/sysrq.h> | 31 | #include <linux/sysrq.h> |
32 | #include <linux/nmi.h> | 32 | #include <linux/nmi.h> |
33 | 33 | ||
34 | #include <asm/uaccess.h> | 34 | #include <asm/uaccess.h> |
35 | #include <asm/system.h> | 35 | #include <asm/system.h> |
36 | #include <asm/page.h> | 36 | #include <asm/page.h> |
37 | #include <asm/pgalloc.h> | 37 | #include <asm/pgalloc.h> |
38 | #include <asm/pgtable.h> | 38 | #include <asm/pgtable.h> |
39 | #include <asm/processor.h> | 39 | #include <asm/processor.h> |
40 | #include <asm/pstate.h> | 40 | #include <asm/pstate.h> |
41 | #include <asm/elf.h> | 41 | #include <asm/elf.h> |
42 | #include <asm/fpumacro.h> | 42 | #include <asm/fpumacro.h> |
43 | #include <asm/head.h> | 43 | #include <asm/head.h> |
44 | #include <asm/cpudata.h> | 44 | #include <asm/cpudata.h> |
45 | #include <asm/mmu_context.h> | 45 | #include <asm/mmu_context.h> |
46 | #include <asm/unistd.h> | 46 | #include <asm/unistd.h> |
47 | #include <asm/hypervisor.h> | 47 | #include <asm/hypervisor.h> |
48 | #include <asm/syscalls.h> | 48 | #include <asm/syscalls.h> |
49 | #include <asm/irq_regs.h> | 49 | #include <asm/irq_regs.h> |
50 | #include <asm/smp.h> | 50 | #include <asm/smp.h> |
51 | 51 | ||
52 | #include "kstack.h" | 52 | #include "kstack.h" |
53 | 53 | ||
54 | static void sparc64_yield(int cpu) | 54 | static void sparc64_yield(int cpu) |
55 | { | 55 | { |
56 | if (tlb_type != hypervisor) { | 56 | if (tlb_type != hypervisor) { |
57 | touch_nmi_watchdog(); | 57 | touch_nmi_watchdog(); |
58 | return; | 58 | return; |
59 | } | 59 | } |
60 | 60 | ||
61 | clear_thread_flag(TIF_POLLING_NRFLAG); | 61 | clear_thread_flag(TIF_POLLING_NRFLAG); |
62 | smp_mb__after_clear_bit(); | 62 | smp_mb__after_clear_bit(); |
63 | 63 | ||
64 | while (!need_resched() && !cpu_is_offline(cpu)) { | 64 | while (!need_resched() && !cpu_is_offline(cpu)) { |
65 | unsigned long pstate; | 65 | unsigned long pstate; |
66 | 66 | ||
67 | /* Disable interrupts. */ | 67 | /* Disable interrupts. */ |
68 | __asm__ __volatile__( | 68 | __asm__ __volatile__( |
69 | "rdpr %%pstate, %0\n\t" | 69 | "rdpr %%pstate, %0\n\t" |
70 | "andn %0, %1, %0\n\t" | 70 | "andn %0, %1, %0\n\t" |
71 | "wrpr %0, %%g0, %%pstate" | 71 | "wrpr %0, %%g0, %%pstate" |
72 | : "=&r" (pstate) | 72 | : "=&r" (pstate) |
73 | : "i" (PSTATE_IE)); | 73 | : "i" (PSTATE_IE)); |
74 | 74 | ||
75 | if (!need_resched() && !cpu_is_offline(cpu)) | 75 | if (!need_resched() && !cpu_is_offline(cpu)) |
76 | sun4v_cpu_yield(); | 76 | sun4v_cpu_yield(); |
77 | 77 | ||
78 | /* Re-enable interrupts. */ | 78 | /* Re-enable interrupts. */ |
79 | __asm__ __volatile__( | 79 | __asm__ __volatile__( |
80 | "rdpr %%pstate, %0\n\t" | 80 | "rdpr %%pstate, %0\n\t" |
81 | "or %0, %1, %0\n\t" | 81 | "or %0, %1, %0\n\t" |
82 | "wrpr %0, %%g0, %%pstate" | 82 | "wrpr %0, %%g0, %%pstate" |
83 | : "=&r" (pstate) | 83 | : "=&r" (pstate) |
84 | : "i" (PSTATE_IE)); | 84 | : "i" (PSTATE_IE)); |
85 | } | 85 | } |
86 | 86 | ||
87 | set_thread_flag(TIF_POLLING_NRFLAG); | 87 | set_thread_flag(TIF_POLLING_NRFLAG); |
88 | } | 88 | } |
89 | 89 | ||
90 | /* The idle loop on sparc64. */ | 90 | /* The idle loop on sparc64. */ |
91 | void cpu_idle(void) | 91 | void cpu_idle(void) |
92 | { | 92 | { |
93 | int cpu = smp_processor_id(); | 93 | int cpu = smp_processor_id(); |
94 | 94 | ||
95 | set_thread_flag(TIF_POLLING_NRFLAG); | 95 | set_thread_flag(TIF_POLLING_NRFLAG); |
96 | 96 | ||
97 | while(1) { | 97 | while(1) { |
98 | tick_nohz_idle_enter(); | 98 | tick_nohz_idle_enter(); |
99 | rcu_idle_enter(); | 99 | rcu_idle_enter(); |
100 | 100 | ||
101 | while (!need_resched() && !cpu_is_offline(cpu)) | 101 | while (!need_resched() && !cpu_is_offline(cpu)) |
102 | sparc64_yield(cpu); | 102 | sparc64_yield(cpu); |
103 | 103 | ||
104 | rcu_idle_exit(); | 104 | rcu_idle_exit(); |
105 | tick_nohz_idle_exit(); | 105 | tick_nohz_idle_exit(); |
106 | 106 | ||
107 | #ifdef CONFIG_HOTPLUG_CPU | 107 | #ifdef CONFIG_HOTPLUG_CPU |
108 | if (cpu_is_offline(cpu)) { | 108 | if (cpu_is_offline(cpu)) { |
109 | preempt_enable_no_resched(); | 109 | sched_preempt_enable_no_resched(); |
110 | cpu_play_dead(); | 110 | cpu_play_dead(); |
111 | } | 111 | } |
112 | #endif | 112 | #endif |
113 | schedule_preempt_disabled(); | 113 | schedule_preempt_disabled(); |
114 | } | 114 | } |
115 | } | 115 | } |
116 | 116 | ||
117 | #ifdef CONFIG_COMPAT | 117 | #ifdef CONFIG_COMPAT |
118 | static void show_regwindow32(struct pt_regs *regs) | 118 | static void show_regwindow32(struct pt_regs *regs) |
119 | { | 119 | { |
120 | struct reg_window32 __user *rw; | 120 | struct reg_window32 __user *rw; |
121 | struct reg_window32 r_w; | 121 | struct reg_window32 r_w; |
122 | mm_segment_t old_fs; | 122 | mm_segment_t old_fs; |
123 | 123 | ||
124 | __asm__ __volatile__ ("flushw"); | 124 | __asm__ __volatile__ ("flushw"); |
125 | rw = compat_ptr((unsigned)regs->u_regs[14]); | 125 | rw = compat_ptr((unsigned)regs->u_regs[14]); |
126 | old_fs = get_fs(); | 126 | old_fs = get_fs(); |
127 | set_fs (USER_DS); | 127 | set_fs (USER_DS); |
128 | if (copy_from_user (&r_w, rw, sizeof(r_w))) { | 128 | if (copy_from_user (&r_w, rw, sizeof(r_w))) { |
129 | set_fs (old_fs); | 129 | set_fs (old_fs); |
130 | return; | 130 | return; |
131 | } | 131 | } |
132 | 132 | ||
133 | set_fs (old_fs); | 133 | set_fs (old_fs); |
134 | printk("l0: %08x l1: %08x l2: %08x l3: %08x " | 134 | printk("l0: %08x l1: %08x l2: %08x l3: %08x " |
135 | "l4: %08x l5: %08x l6: %08x l7: %08x\n", | 135 | "l4: %08x l5: %08x l6: %08x l7: %08x\n", |
136 | r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3], | 136 | r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3], |
137 | r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]); | 137 | r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]); |
138 | printk("i0: %08x i1: %08x i2: %08x i3: %08x " | 138 | printk("i0: %08x i1: %08x i2: %08x i3: %08x " |
139 | "i4: %08x i5: %08x i6: %08x i7: %08x\n", | 139 | "i4: %08x i5: %08x i6: %08x i7: %08x\n", |
140 | r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3], | 140 | r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3], |
141 | r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]); | 141 | r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]); |
142 | } | 142 | } |
143 | #else | 143 | #else |
144 | #define show_regwindow32(regs) do { } while (0) | 144 | #define show_regwindow32(regs) do { } while (0) |
145 | #endif | 145 | #endif |
146 | 146 | ||
147 | static void show_regwindow(struct pt_regs *regs) | 147 | static void show_regwindow(struct pt_regs *regs) |
148 | { | 148 | { |
149 | struct reg_window __user *rw; | 149 | struct reg_window __user *rw; |
150 | struct reg_window *rwk; | 150 | struct reg_window *rwk; |
151 | struct reg_window r_w; | 151 | struct reg_window r_w; |
152 | mm_segment_t old_fs; | 152 | mm_segment_t old_fs; |
153 | 153 | ||
154 | if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) { | 154 | if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) { |
155 | __asm__ __volatile__ ("flushw"); | 155 | __asm__ __volatile__ ("flushw"); |
156 | rw = (struct reg_window __user *) | 156 | rw = (struct reg_window __user *) |
157 | (regs->u_regs[14] + STACK_BIAS); | 157 | (regs->u_regs[14] + STACK_BIAS); |
158 | rwk = (struct reg_window *) | 158 | rwk = (struct reg_window *) |
159 | (regs->u_regs[14] + STACK_BIAS); | 159 | (regs->u_regs[14] + STACK_BIAS); |
160 | if (!(regs->tstate & TSTATE_PRIV)) { | 160 | if (!(regs->tstate & TSTATE_PRIV)) { |
161 | old_fs = get_fs(); | 161 | old_fs = get_fs(); |
162 | set_fs (USER_DS); | 162 | set_fs (USER_DS); |
163 | if (copy_from_user (&r_w, rw, sizeof(r_w))) { | 163 | if (copy_from_user (&r_w, rw, sizeof(r_w))) { |
164 | set_fs (old_fs); | 164 | set_fs (old_fs); |
165 | return; | 165 | return; |
166 | } | 166 | } |
167 | rwk = &r_w; | 167 | rwk = &r_w; |
168 | set_fs (old_fs); | 168 | set_fs (old_fs); |
169 | } | 169 | } |
170 | } else { | 170 | } else { |
171 | show_regwindow32(regs); | 171 | show_regwindow32(regs); |
172 | return; | 172 | return; |
173 | } | 173 | } |
174 | printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n", | 174 | printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n", |
175 | rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]); | 175 | rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]); |
176 | printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n", | 176 | printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n", |
177 | rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]); | 177 | rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]); |
178 | printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n", | 178 | printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n", |
179 | rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]); | 179 | rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]); |
180 | printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n", | 180 | printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n", |
181 | rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]); | 181 | rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]); |
182 | if (regs->tstate & TSTATE_PRIV) | 182 | if (regs->tstate & TSTATE_PRIV) |
183 | printk("I7: <%pS>\n", (void *) rwk->ins[7]); | 183 | printk("I7: <%pS>\n", (void *) rwk->ins[7]); |
184 | } | 184 | } |
185 | 185 | ||
186 | void show_regs(struct pt_regs *regs) | 186 | void show_regs(struct pt_regs *regs) |
187 | { | 187 | { |
188 | printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate, | 188 | printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate, |
189 | regs->tpc, regs->tnpc, regs->y, print_tainted()); | 189 | regs->tpc, regs->tnpc, regs->y, print_tainted()); |
190 | printk("TPC: <%pS>\n", (void *) regs->tpc); | 190 | printk("TPC: <%pS>\n", (void *) regs->tpc); |
191 | printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n", | 191 | printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n", |
192 | regs->u_regs[0], regs->u_regs[1], regs->u_regs[2], | 192 | regs->u_regs[0], regs->u_regs[1], regs->u_regs[2], |
193 | regs->u_regs[3]); | 193 | regs->u_regs[3]); |
194 | printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n", | 194 | printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n", |
195 | regs->u_regs[4], regs->u_regs[5], regs->u_regs[6], | 195 | regs->u_regs[4], regs->u_regs[5], regs->u_regs[6], |
196 | regs->u_regs[7]); | 196 | regs->u_regs[7]); |
197 | printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n", | 197 | printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n", |
198 | regs->u_regs[8], regs->u_regs[9], regs->u_regs[10], | 198 | regs->u_regs[8], regs->u_regs[9], regs->u_regs[10], |
199 | regs->u_regs[11]); | 199 | regs->u_regs[11]); |
200 | printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n", | 200 | printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n", |
201 | regs->u_regs[12], regs->u_regs[13], regs->u_regs[14], | 201 | regs->u_regs[12], regs->u_regs[13], regs->u_regs[14], |
202 | regs->u_regs[15]); | 202 | regs->u_regs[15]); |
203 | printk("RPC: <%pS>\n", (void *) regs->u_regs[15]); | 203 | printk("RPC: <%pS>\n", (void *) regs->u_regs[15]); |
204 | show_regwindow(regs); | 204 | show_regwindow(regs); |
205 | show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]); | 205 | show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]); |
206 | } | 206 | } |
207 | 207 | ||
208 | struct global_reg_snapshot global_reg_snapshot[NR_CPUS]; | 208 | struct global_reg_snapshot global_reg_snapshot[NR_CPUS]; |
209 | static DEFINE_SPINLOCK(global_reg_snapshot_lock); | 209 | static DEFINE_SPINLOCK(global_reg_snapshot_lock); |
210 | 210 | ||
211 | static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs, | 211 | static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs, |
212 | int this_cpu) | 212 | int this_cpu) |
213 | { | 213 | { |
214 | flushw_all(); | 214 | flushw_all(); |
215 | 215 | ||
216 | global_reg_snapshot[this_cpu].tstate = regs->tstate; | 216 | global_reg_snapshot[this_cpu].tstate = regs->tstate; |
217 | global_reg_snapshot[this_cpu].tpc = regs->tpc; | 217 | global_reg_snapshot[this_cpu].tpc = regs->tpc; |
218 | global_reg_snapshot[this_cpu].tnpc = regs->tnpc; | 218 | global_reg_snapshot[this_cpu].tnpc = regs->tnpc; |
219 | global_reg_snapshot[this_cpu].o7 = regs->u_regs[UREG_I7]; | 219 | global_reg_snapshot[this_cpu].o7 = regs->u_regs[UREG_I7]; |
220 | 220 | ||
221 | if (regs->tstate & TSTATE_PRIV) { | 221 | if (regs->tstate & TSTATE_PRIV) { |
222 | struct reg_window *rw; | 222 | struct reg_window *rw; |
223 | 223 | ||
224 | rw = (struct reg_window *) | 224 | rw = (struct reg_window *) |
225 | (regs->u_regs[UREG_FP] + STACK_BIAS); | 225 | (regs->u_regs[UREG_FP] + STACK_BIAS); |
226 | if (kstack_valid(tp, (unsigned long) rw)) { | 226 | if (kstack_valid(tp, (unsigned long) rw)) { |
227 | global_reg_snapshot[this_cpu].i7 = rw->ins[7]; | 227 | global_reg_snapshot[this_cpu].i7 = rw->ins[7]; |
228 | rw = (struct reg_window *) | 228 | rw = (struct reg_window *) |
229 | (rw->ins[6] + STACK_BIAS); | 229 | (rw->ins[6] + STACK_BIAS); |
230 | if (kstack_valid(tp, (unsigned long) rw)) | 230 | if (kstack_valid(tp, (unsigned long) rw)) |
231 | global_reg_snapshot[this_cpu].rpc = rw->ins[7]; | 231 | global_reg_snapshot[this_cpu].rpc = rw->ins[7]; |
232 | } | 232 | } |
233 | } else { | 233 | } else { |
234 | global_reg_snapshot[this_cpu].i7 = 0; | 234 | global_reg_snapshot[this_cpu].i7 = 0; |
235 | global_reg_snapshot[this_cpu].rpc = 0; | 235 | global_reg_snapshot[this_cpu].rpc = 0; |
236 | } | 236 | } |
237 | global_reg_snapshot[this_cpu].thread = tp; | 237 | global_reg_snapshot[this_cpu].thread = tp; |
238 | } | 238 | } |
239 | 239 | ||
240 | /* In order to avoid hangs we do not try to synchronize with the | 240 | /* In order to avoid hangs we do not try to synchronize with the |
241 | * global register dump client cpus. The last store they make is to | 241 | * global register dump client cpus. The last store they make is to |
242 | * the thread pointer, so do a short poll waiting for that to become | 242 | * the thread pointer, so do a short poll waiting for that to become |
243 | * non-NULL. | 243 | * non-NULL. |
244 | */ | 244 | */ |
245 | static void __global_reg_poll(struct global_reg_snapshot *gp) | 245 | static void __global_reg_poll(struct global_reg_snapshot *gp) |
246 | { | 246 | { |
247 | int limit = 0; | 247 | int limit = 0; |
248 | 248 | ||
249 | while (!gp->thread && ++limit < 100) { | 249 | while (!gp->thread && ++limit < 100) { |
250 | barrier(); | 250 | barrier(); |
251 | udelay(1); | 251 | udelay(1); |
252 | } | 252 | } |
253 | } | 253 | } |
254 | 254 | ||
255 | void arch_trigger_all_cpu_backtrace(void) | 255 | void arch_trigger_all_cpu_backtrace(void) |
256 | { | 256 | { |
257 | struct thread_info *tp = current_thread_info(); | 257 | struct thread_info *tp = current_thread_info(); |
258 | struct pt_regs *regs = get_irq_regs(); | 258 | struct pt_regs *regs = get_irq_regs(); |
259 | unsigned long flags; | 259 | unsigned long flags; |
260 | int this_cpu, cpu; | 260 | int this_cpu, cpu; |
261 | 261 | ||
262 | if (!regs) | 262 | if (!regs) |
263 | regs = tp->kregs; | 263 | regs = tp->kregs; |
264 | 264 | ||
265 | spin_lock_irqsave(&global_reg_snapshot_lock, flags); | 265 | spin_lock_irqsave(&global_reg_snapshot_lock, flags); |
266 | 266 | ||
267 | memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot)); | 267 | memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot)); |
268 | 268 | ||
269 | this_cpu = raw_smp_processor_id(); | 269 | this_cpu = raw_smp_processor_id(); |
270 | 270 | ||
271 | __global_reg_self(tp, regs, this_cpu); | 271 | __global_reg_self(tp, regs, this_cpu); |
272 | 272 | ||
273 | smp_fetch_global_regs(); | 273 | smp_fetch_global_regs(); |
274 | 274 | ||
275 | for_each_online_cpu(cpu) { | 275 | for_each_online_cpu(cpu) { |
276 | struct global_reg_snapshot *gp = &global_reg_snapshot[cpu]; | 276 | struct global_reg_snapshot *gp = &global_reg_snapshot[cpu]; |
277 | 277 | ||
278 | __global_reg_poll(gp); | 278 | __global_reg_poll(gp); |
279 | 279 | ||
280 | tp = gp->thread; | 280 | tp = gp->thread; |
281 | printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n", | 281 | printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n", |
282 | (cpu == this_cpu ? '*' : ' '), cpu, | 282 | (cpu == this_cpu ? '*' : ' '), cpu, |
283 | gp->tstate, gp->tpc, gp->tnpc, | 283 | gp->tstate, gp->tpc, gp->tnpc, |
284 | ((tp && tp->task) ? tp->task->comm : "NULL"), | 284 | ((tp && tp->task) ? tp->task->comm : "NULL"), |
285 | ((tp && tp->task) ? tp->task->pid : -1)); | 285 | ((tp && tp->task) ? tp->task->pid : -1)); |
286 | 286 | ||
287 | if (gp->tstate & TSTATE_PRIV) { | 287 | if (gp->tstate & TSTATE_PRIV) { |
288 | printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n", | 288 | printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n", |
289 | (void *) gp->tpc, | 289 | (void *) gp->tpc, |
290 | (void *) gp->o7, | 290 | (void *) gp->o7, |
291 | (void *) gp->i7, | 291 | (void *) gp->i7, |
292 | (void *) gp->rpc); | 292 | (void *) gp->rpc); |
293 | } else { | 293 | } else { |
294 | printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n", | 294 | printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n", |
295 | gp->tpc, gp->o7, gp->i7, gp->rpc); | 295 | gp->tpc, gp->o7, gp->i7, gp->rpc); |
296 | } | 296 | } |
297 | } | 297 | } |
298 | 298 | ||
299 | memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot)); | 299 | memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot)); |
300 | 300 | ||
301 | spin_unlock_irqrestore(&global_reg_snapshot_lock, flags); | 301 | spin_unlock_irqrestore(&global_reg_snapshot_lock, flags); |
302 | } | 302 | } |
303 | 303 | ||
304 | #ifdef CONFIG_MAGIC_SYSRQ | 304 | #ifdef CONFIG_MAGIC_SYSRQ |
305 | 305 | ||
306 | static void sysrq_handle_globreg(int key) | 306 | static void sysrq_handle_globreg(int key) |
307 | { | 307 | { |
308 | arch_trigger_all_cpu_backtrace(); | 308 | arch_trigger_all_cpu_backtrace(); |
309 | } | 309 | } |
310 | 310 | ||
311 | static struct sysrq_key_op sparc_globalreg_op = { | 311 | static struct sysrq_key_op sparc_globalreg_op = { |
312 | .handler = sysrq_handle_globreg, | 312 | .handler = sysrq_handle_globreg, |
313 | .help_msg = "Globalregs", | 313 | .help_msg = "Globalregs", |
314 | .action_msg = "Show Global CPU Regs", | 314 | .action_msg = "Show Global CPU Regs", |
315 | }; | 315 | }; |
316 | 316 | ||
317 | static int __init sparc_globreg_init(void) | 317 | static int __init sparc_globreg_init(void) |
318 | { | 318 | { |
319 | return register_sysrq_key('y', &sparc_globalreg_op); | 319 | return register_sysrq_key('y', &sparc_globalreg_op); |
320 | } | 320 | } |
321 | 321 | ||
322 | core_initcall(sparc_globreg_init); | 322 | core_initcall(sparc_globreg_init); |
323 | 323 | ||
324 | #endif | 324 | #endif |
325 | 325 | ||
326 | unsigned long thread_saved_pc(struct task_struct *tsk) | 326 | unsigned long thread_saved_pc(struct task_struct *tsk) |
327 | { | 327 | { |
328 | struct thread_info *ti = task_thread_info(tsk); | 328 | struct thread_info *ti = task_thread_info(tsk); |
329 | unsigned long ret = 0xdeadbeefUL; | 329 | unsigned long ret = 0xdeadbeefUL; |
330 | 330 | ||
331 | if (ti && ti->ksp) { | 331 | if (ti && ti->ksp) { |
332 | unsigned long *sp; | 332 | unsigned long *sp; |
333 | sp = (unsigned long *)(ti->ksp + STACK_BIAS); | 333 | sp = (unsigned long *)(ti->ksp + STACK_BIAS); |
334 | if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL && | 334 | if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL && |
335 | sp[14]) { | 335 | sp[14]) { |
336 | unsigned long *fp; | 336 | unsigned long *fp; |
337 | fp = (unsigned long *)(sp[14] + STACK_BIAS); | 337 | fp = (unsigned long *)(sp[14] + STACK_BIAS); |
338 | if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL) | 338 | if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL) |
339 | ret = fp[15]; | 339 | ret = fp[15]; |
340 | } | 340 | } |
341 | } | 341 | } |
342 | return ret; | 342 | return ret; |
343 | } | 343 | } |
344 | 344 | ||
345 | /* Free current thread data structures etc.. */ | 345 | /* Free current thread data structures etc.. */ |
346 | void exit_thread(void) | 346 | void exit_thread(void) |
347 | { | 347 | { |
348 | struct thread_info *t = current_thread_info(); | 348 | struct thread_info *t = current_thread_info(); |
349 | 349 | ||
350 | if (t->utraps) { | 350 | if (t->utraps) { |
351 | if (t->utraps[0] < 2) | 351 | if (t->utraps[0] < 2) |
352 | kfree (t->utraps); | 352 | kfree (t->utraps); |
353 | else | 353 | else |
354 | t->utraps[0]--; | 354 | t->utraps[0]--; |
355 | } | 355 | } |
356 | } | 356 | } |
357 | 357 | ||
358 | void flush_thread(void) | 358 | void flush_thread(void) |
359 | { | 359 | { |
360 | struct thread_info *t = current_thread_info(); | 360 | struct thread_info *t = current_thread_info(); |
361 | struct mm_struct *mm; | 361 | struct mm_struct *mm; |
362 | 362 | ||
363 | mm = t->task->mm; | 363 | mm = t->task->mm; |
364 | if (mm) | 364 | if (mm) |
365 | tsb_context_switch(mm); | 365 | tsb_context_switch(mm); |
366 | 366 | ||
367 | set_thread_wsaved(0); | 367 | set_thread_wsaved(0); |
368 | 368 | ||
369 | /* Clear FPU register state. */ | 369 | /* Clear FPU register state. */ |
370 | t->fpsaved[0] = 0; | 370 | t->fpsaved[0] = 0; |
371 | } | 371 | } |
372 | 372 | ||
373 | /* It's a bit more tricky when 64-bit tasks are involved... */ | 373 | /* It's a bit more tricky when 64-bit tasks are involved... */ |
374 | static unsigned long clone_stackframe(unsigned long csp, unsigned long psp) | 374 | static unsigned long clone_stackframe(unsigned long csp, unsigned long psp) |
375 | { | 375 | { |
376 | unsigned long fp, distance, rval; | 376 | unsigned long fp, distance, rval; |
377 | 377 | ||
378 | if (!(test_thread_flag(TIF_32BIT))) { | 378 | if (!(test_thread_flag(TIF_32BIT))) { |
379 | csp += STACK_BIAS; | 379 | csp += STACK_BIAS; |
380 | psp += STACK_BIAS; | 380 | psp += STACK_BIAS; |
381 | __get_user(fp, &(((struct reg_window __user *)psp)->ins[6])); | 381 | __get_user(fp, &(((struct reg_window __user *)psp)->ins[6])); |
382 | fp += STACK_BIAS; | 382 | fp += STACK_BIAS; |
383 | } else | 383 | } else |
384 | __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6])); | 384 | __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6])); |
385 | 385 | ||
386 | /* Now align the stack as this is mandatory in the Sparc ABI | 386 | /* Now align the stack as this is mandatory in the Sparc ABI |
387 | * due to how register windows work. This hides the | 387 | * due to how register windows work. This hides the |
388 | * restriction from thread libraries etc. | 388 | * restriction from thread libraries etc. |
389 | */ | 389 | */ |
390 | csp &= ~15UL; | 390 | csp &= ~15UL; |
391 | 391 | ||
392 | distance = fp - psp; | 392 | distance = fp - psp; |
393 | rval = (csp - distance); | 393 | rval = (csp - distance); |
394 | if (copy_in_user((void __user *) rval, (void __user *) psp, distance)) | 394 | if (copy_in_user((void __user *) rval, (void __user *) psp, distance)) |
395 | rval = 0; | 395 | rval = 0; |
396 | else if (test_thread_flag(TIF_32BIT)) { | 396 | else if (test_thread_flag(TIF_32BIT)) { |
397 | if (put_user(((u32)csp), | 397 | if (put_user(((u32)csp), |
398 | &(((struct reg_window32 __user *)rval)->ins[6]))) | 398 | &(((struct reg_window32 __user *)rval)->ins[6]))) |
399 | rval = 0; | 399 | rval = 0; |
400 | } else { | 400 | } else { |
401 | if (put_user(((u64)csp - STACK_BIAS), | 401 | if (put_user(((u64)csp - STACK_BIAS), |
402 | &(((struct reg_window __user *)rval)->ins[6]))) | 402 | &(((struct reg_window __user *)rval)->ins[6]))) |
403 | rval = 0; | 403 | rval = 0; |
404 | else | 404 | else |
405 | rval = rval - STACK_BIAS; | 405 | rval = rval - STACK_BIAS; |
406 | } | 406 | } |
407 | 407 | ||
408 | return rval; | 408 | return rval; |
409 | } | 409 | } |
410 | 410 | ||
411 | /* Standard stuff. */ | 411 | /* Standard stuff. */ |
412 | static inline void shift_window_buffer(int first_win, int last_win, | 412 | static inline void shift_window_buffer(int first_win, int last_win, |
413 | struct thread_info *t) | 413 | struct thread_info *t) |
414 | { | 414 | { |
415 | int i; | 415 | int i; |
416 | 416 | ||
417 | for (i = first_win; i < last_win; i++) { | 417 | for (i = first_win; i < last_win; i++) { |
418 | t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1]; | 418 | t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1]; |
419 | memcpy(&t->reg_window[i], &t->reg_window[i+1], | 419 | memcpy(&t->reg_window[i], &t->reg_window[i+1], |
420 | sizeof(struct reg_window)); | 420 | sizeof(struct reg_window)); |
421 | } | 421 | } |
422 | } | 422 | } |
423 | 423 | ||
424 | void synchronize_user_stack(void) | 424 | void synchronize_user_stack(void) |
425 | { | 425 | { |
426 | struct thread_info *t = current_thread_info(); | 426 | struct thread_info *t = current_thread_info(); |
427 | unsigned long window; | 427 | unsigned long window; |
428 | 428 | ||
429 | flush_user_windows(); | 429 | flush_user_windows(); |
430 | if ((window = get_thread_wsaved()) != 0) { | 430 | if ((window = get_thread_wsaved()) != 0) { |
431 | int winsize = sizeof(struct reg_window); | 431 | int winsize = sizeof(struct reg_window); |
432 | int bias = 0; | 432 | int bias = 0; |
433 | 433 | ||
434 | if (test_thread_flag(TIF_32BIT)) | 434 | if (test_thread_flag(TIF_32BIT)) |
435 | winsize = sizeof(struct reg_window32); | 435 | winsize = sizeof(struct reg_window32); |
436 | else | 436 | else |
437 | bias = STACK_BIAS; | 437 | bias = STACK_BIAS; |
438 | 438 | ||
439 | window -= 1; | 439 | window -= 1; |
440 | do { | 440 | do { |
441 | unsigned long sp = (t->rwbuf_stkptrs[window] + bias); | 441 | unsigned long sp = (t->rwbuf_stkptrs[window] + bias); |
442 | struct reg_window *rwin = &t->reg_window[window]; | 442 | struct reg_window *rwin = &t->reg_window[window]; |
443 | 443 | ||
444 | if (!copy_to_user((char __user *)sp, rwin, winsize)) { | 444 | if (!copy_to_user((char __user *)sp, rwin, winsize)) { |
445 | shift_window_buffer(window, get_thread_wsaved() - 1, t); | 445 | shift_window_buffer(window, get_thread_wsaved() - 1, t); |
446 | set_thread_wsaved(get_thread_wsaved() - 1); | 446 | set_thread_wsaved(get_thread_wsaved() - 1); |
447 | } | 447 | } |
448 | } while (window--); | 448 | } while (window--); |
449 | } | 449 | } |
450 | } | 450 | } |
451 | 451 | ||
452 | static void stack_unaligned(unsigned long sp) | 452 | static void stack_unaligned(unsigned long sp) |
453 | { | 453 | { |
454 | siginfo_t info; | 454 | siginfo_t info; |
455 | 455 | ||
456 | info.si_signo = SIGBUS; | 456 | info.si_signo = SIGBUS; |
457 | info.si_errno = 0; | 457 | info.si_errno = 0; |
458 | info.si_code = BUS_ADRALN; | 458 | info.si_code = BUS_ADRALN; |
459 | info.si_addr = (void __user *) sp; | 459 | info.si_addr = (void __user *) sp; |
460 | info.si_trapno = 0; | 460 | info.si_trapno = 0; |
461 | force_sig_info(SIGBUS, &info, current); | 461 | force_sig_info(SIGBUS, &info, current); |
462 | } | 462 | } |
463 | 463 | ||
464 | void fault_in_user_windows(void) | 464 | void fault_in_user_windows(void) |
465 | { | 465 | { |
466 | struct thread_info *t = current_thread_info(); | 466 | struct thread_info *t = current_thread_info(); |
467 | unsigned long window; | 467 | unsigned long window; |
468 | int winsize = sizeof(struct reg_window); | 468 | int winsize = sizeof(struct reg_window); |
469 | int bias = 0; | 469 | int bias = 0; |
470 | 470 | ||
471 | if (test_thread_flag(TIF_32BIT)) | 471 | if (test_thread_flag(TIF_32BIT)) |
472 | winsize = sizeof(struct reg_window32); | 472 | winsize = sizeof(struct reg_window32); |
473 | else | 473 | else |
474 | bias = STACK_BIAS; | 474 | bias = STACK_BIAS; |
475 | 475 | ||
476 | flush_user_windows(); | 476 | flush_user_windows(); |
477 | window = get_thread_wsaved(); | 477 | window = get_thread_wsaved(); |
478 | 478 | ||
479 | if (likely(window != 0)) { | 479 | if (likely(window != 0)) { |
480 | window -= 1; | 480 | window -= 1; |
481 | do { | 481 | do { |
482 | unsigned long sp = (t->rwbuf_stkptrs[window] + bias); | 482 | unsigned long sp = (t->rwbuf_stkptrs[window] + bias); |
483 | struct reg_window *rwin = &t->reg_window[window]; | 483 | struct reg_window *rwin = &t->reg_window[window]; |
484 | 484 | ||
485 | if (unlikely(sp & 0x7UL)) | 485 | if (unlikely(sp & 0x7UL)) |
486 | stack_unaligned(sp); | 486 | stack_unaligned(sp); |
487 | 487 | ||
488 | if (unlikely(copy_to_user((char __user *)sp, | 488 | if (unlikely(copy_to_user((char __user *)sp, |
489 | rwin, winsize))) | 489 | rwin, winsize))) |
490 | goto barf; | 490 | goto barf; |
491 | } while (window--); | 491 | } while (window--); |
492 | } | 492 | } |
493 | set_thread_wsaved(0); | 493 | set_thread_wsaved(0); |
494 | return; | 494 | return; |
495 | 495 | ||
496 | barf: | 496 | barf: |
497 | set_thread_wsaved(window + 1); | 497 | set_thread_wsaved(window + 1); |
498 | do_exit(SIGILL); | 498 | do_exit(SIGILL); |
499 | } | 499 | } |
500 | 500 | ||
501 | asmlinkage long sparc_do_fork(unsigned long clone_flags, | 501 | asmlinkage long sparc_do_fork(unsigned long clone_flags, |
502 | unsigned long stack_start, | 502 | unsigned long stack_start, |
503 | struct pt_regs *regs, | 503 | struct pt_regs *regs, |
504 | unsigned long stack_size) | 504 | unsigned long stack_size) |
505 | { | 505 | { |
506 | int __user *parent_tid_ptr, *child_tid_ptr; | 506 | int __user *parent_tid_ptr, *child_tid_ptr; |
507 | unsigned long orig_i1 = regs->u_regs[UREG_I1]; | 507 | unsigned long orig_i1 = regs->u_regs[UREG_I1]; |
508 | long ret; | 508 | long ret; |
509 | 509 | ||
510 | #ifdef CONFIG_COMPAT | 510 | #ifdef CONFIG_COMPAT |
511 | if (test_thread_flag(TIF_32BIT)) { | 511 | if (test_thread_flag(TIF_32BIT)) { |
512 | parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]); | 512 | parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]); |
513 | child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]); | 513 | child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]); |
514 | } else | 514 | } else |
515 | #endif | 515 | #endif |
516 | { | 516 | { |
517 | parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2]; | 517 | parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2]; |
518 | child_tid_ptr = (int __user *) regs->u_regs[UREG_I4]; | 518 | child_tid_ptr = (int __user *) regs->u_regs[UREG_I4]; |
519 | } | 519 | } |
520 | 520 | ||
521 | ret = do_fork(clone_flags, stack_start, | 521 | ret = do_fork(clone_flags, stack_start, |
522 | regs, stack_size, | 522 | regs, stack_size, |
523 | parent_tid_ptr, child_tid_ptr); | 523 | parent_tid_ptr, child_tid_ptr); |
524 | 524 | ||
525 | /* If we get an error and potentially restart the system | 525 | /* If we get an error and potentially restart the system |
526 | * call, we're screwed because copy_thread() clobbered | 526 | * call, we're screwed because copy_thread() clobbered |
527 | * the parent's %o1. So detect that case and restore it | 527 | * the parent's %o1. So detect that case and restore it |
528 | * here. | 528 | * here. |
529 | */ | 529 | */ |
530 | if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK) | 530 | if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK) |
531 | regs->u_regs[UREG_I1] = orig_i1; | 531 | regs->u_regs[UREG_I1] = orig_i1; |
532 | 532 | ||
533 | return ret; | 533 | return ret; |
534 | } | 534 | } |
535 | 535 | ||
536 | /* Copy a Sparc thread. The fork() return value conventions | 536 | /* Copy a Sparc thread. The fork() return value conventions |
537 | * under SunOS are nothing short of bletcherous: | 537 | * under SunOS are nothing short of bletcherous: |
538 | * Parent --> %o0 == childs pid, %o1 == 0 | 538 | * Parent --> %o0 == childs pid, %o1 == 0 |
539 | * Child --> %o0 == parents pid, %o1 == 1 | 539 | * Child --> %o0 == parents pid, %o1 == 1 |
540 | */ | 540 | */ |
541 | int copy_thread(unsigned long clone_flags, unsigned long sp, | 541 | int copy_thread(unsigned long clone_flags, unsigned long sp, |
542 | unsigned long unused, | 542 | unsigned long unused, |
543 | struct task_struct *p, struct pt_regs *regs) | 543 | struct task_struct *p, struct pt_regs *regs) |
544 | { | 544 | { |
545 | struct thread_info *t = task_thread_info(p); | 545 | struct thread_info *t = task_thread_info(p); |
546 | struct sparc_stackf *parent_sf; | 546 | struct sparc_stackf *parent_sf; |
547 | unsigned long child_stack_sz; | 547 | unsigned long child_stack_sz; |
548 | char *child_trap_frame; | 548 | char *child_trap_frame; |
549 | int kernel_thread; | 549 | int kernel_thread; |
550 | 550 | ||
551 | kernel_thread = (regs->tstate & TSTATE_PRIV) ? 1 : 0; | 551 | kernel_thread = (regs->tstate & TSTATE_PRIV) ? 1 : 0; |
552 | parent_sf = ((struct sparc_stackf *) regs) - 1; | 552 | parent_sf = ((struct sparc_stackf *) regs) - 1; |
553 | 553 | ||
554 | /* Calculate offset to stack_frame & pt_regs */ | 554 | /* Calculate offset to stack_frame & pt_regs */ |
555 | child_stack_sz = ((STACKFRAME_SZ + TRACEREG_SZ) + | 555 | child_stack_sz = ((STACKFRAME_SZ + TRACEREG_SZ) + |
556 | (kernel_thread ? STACKFRAME_SZ : 0)); | 556 | (kernel_thread ? STACKFRAME_SZ : 0)); |
557 | child_trap_frame = (task_stack_page(p) + | 557 | child_trap_frame = (task_stack_page(p) + |
558 | (THREAD_SIZE - child_stack_sz)); | 558 | (THREAD_SIZE - child_stack_sz)); |
559 | memcpy(child_trap_frame, parent_sf, child_stack_sz); | 559 | memcpy(child_trap_frame, parent_sf, child_stack_sz); |
560 | 560 | ||
561 | t->flags = (t->flags & ~((0xffUL << TI_FLAG_CWP_SHIFT) | | 561 | t->flags = (t->flags & ~((0xffUL << TI_FLAG_CWP_SHIFT) | |
562 | (0xffUL << TI_FLAG_CURRENT_DS_SHIFT))) | | 562 | (0xffUL << TI_FLAG_CURRENT_DS_SHIFT))) | |
563 | (((regs->tstate + 1) & TSTATE_CWP) << TI_FLAG_CWP_SHIFT); | 563 | (((regs->tstate + 1) & TSTATE_CWP) << TI_FLAG_CWP_SHIFT); |
564 | t->new_child = 1; | 564 | t->new_child = 1; |
565 | t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS; | 565 | t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS; |
566 | t->kregs = (struct pt_regs *) (child_trap_frame + | 566 | t->kregs = (struct pt_regs *) (child_trap_frame + |
567 | sizeof(struct sparc_stackf)); | 567 | sizeof(struct sparc_stackf)); |
568 | t->fpsaved[0] = 0; | 568 | t->fpsaved[0] = 0; |
569 | 569 | ||
570 | if (kernel_thread) { | 570 | if (kernel_thread) { |
571 | struct sparc_stackf *child_sf = (struct sparc_stackf *) | 571 | struct sparc_stackf *child_sf = (struct sparc_stackf *) |
572 | (child_trap_frame + (STACKFRAME_SZ + TRACEREG_SZ)); | 572 | (child_trap_frame + (STACKFRAME_SZ + TRACEREG_SZ)); |
573 | 573 | ||
574 | /* Zero terminate the stack backtrace. */ | 574 | /* Zero terminate the stack backtrace. */ |
575 | child_sf->fp = NULL; | 575 | child_sf->fp = NULL; |
576 | t->kregs->u_regs[UREG_FP] = | 576 | t->kregs->u_regs[UREG_FP] = |
577 | ((unsigned long) child_sf) - STACK_BIAS; | 577 | ((unsigned long) child_sf) - STACK_BIAS; |
578 | 578 | ||
579 | t->flags |= ((long)ASI_P << TI_FLAG_CURRENT_DS_SHIFT); | 579 | t->flags |= ((long)ASI_P << TI_FLAG_CURRENT_DS_SHIFT); |
580 | t->kregs->u_regs[UREG_G6] = (unsigned long) t; | 580 | t->kregs->u_regs[UREG_G6] = (unsigned long) t; |
581 | t->kregs->u_regs[UREG_G4] = (unsigned long) t->task; | 581 | t->kregs->u_regs[UREG_G4] = (unsigned long) t->task; |
582 | } else { | 582 | } else { |
583 | if (t->flags & _TIF_32BIT) { | 583 | if (t->flags & _TIF_32BIT) { |
584 | sp &= 0x00000000ffffffffUL; | 584 | sp &= 0x00000000ffffffffUL; |
585 | regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL; | 585 | regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL; |
586 | } | 586 | } |
587 | t->kregs->u_regs[UREG_FP] = sp; | 587 | t->kregs->u_regs[UREG_FP] = sp; |
588 | t->flags |= ((long)ASI_AIUS << TI_FLAG_CURRENT_DS_SHIFT); | 588 | t->flags |= ((long)ASI_AIUS << TI_FLAG_CURRENT_DS_SHIFT); |
589 | if (sp != regs->u_regs[UREG_FP]) { | 589 | if (sp != regs->u_regs[UREG_FP]) { |
590 | unsigned long csp; | 590 | unsigned long csp; |
591 | 591 | ||
592 | csp = clone_stackframe(sp, regs->u_regs[UREG_FP]); | 592 | csp = clone_stackframe(sp, regs->u_regs[UREG_FP]); |
593 | if (!csp) | 593 | if (!csp) |
594 | return -EFAULT; | 594 | return -EFAULT; |
595 | t->kregs->u_regs[UREG_FP] = csp; | 595 | t->kregs->u_regs[UREG_FP] = csp; |
596 | } | 596 | } |
597 | if (t->utraps) | 597 | if (t->utraps) |
598 | t->utraps[0]++; | 598 | t->utraps[0]++; |
599 | } | 599 | } |
600 | 600 | ||
601 | /* Set the return value for the child. */ | 601 | /* Set the return value for the child. */ |
602 | t->kregs->u_regs[UREG_I0] = current->pid; | 602 | t->kregs->u_regs[UREG_I0] = current->pid; |
603 | t->kregs->u_regs[UREG_I1] = 1; | 603 | t->kregs->u_regs[UREG_I1] = 1; |
604 | 604 | ||
605 | /* Set the second return value for the parent. */ | 605 | /* Set the second return value for the parent. */ |
606 | regs->u_regs[UREG_I1] = 0; | 606 | regs->u_regs[UREG_I1] = 0; |
607 | 607 | ||
608 | if (clone_flags & CLONE_SETTLS) | 608 | if (clone_flags & CLONE_SETTLS) |
609 | t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3]; | 609 | t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3]; |
610 | 610 | ||
611 | return 0; | 611 | return 0; |
612 | } | 612 | } |
613 | 613 | ||
614 | /* | 614 | /* |
615 | * This is the mechanism for creating a new kernel thread. | 615 | * This is the mechanism for creating a new kernel thread. |
616 | * | 616 | * |
617 | * NOTE! Only a kernel-only process(ie the swapper or direct descendants | 617 | * NOTE! Only a kernel-only process(ie the swapper or direct descendants |
618 | * who haven't done an "execve()") should use this: it will work within | 618 | * who haven't done an "execve()") should use this: it will work within |
619 | * a system call from a "real" process, but the process memory space will | 619 | * a system call from a "real" process, but the process memory space will |
620 | * not be freed until both the parent and the child have exited. | 620 | * not be freed until both the parent and the child have exited. |
621 | */ | 621 | */ |
622 | pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) | 622 | pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) |
623 | { | 623 | { |
624 | long retval; | 624 | long retval; |
625 | 625 | ||
626 | /* If the parent runs before fn(arg) is called by the child, | 626 | /* If the parent runs before fn(arg) is called by the child, |
627 | * the input registers of this function can be clobbered. | 627 | * the input registers of this function can be clobbered. |
628 | * So we stash 'fn' and 'arg' into global registers which | 628 | * So we stash 'fn' and 'arg' into global registers which |
629 | * will not be modified by the parent. | 629 | * will not be modified by the parent. |
630 | */ | 630 | */ |
631 | __asm__ __volatile__("mov %4, %%g2\n\t" /* Save FN into global */ | 631 | __asm__ __volatile__("mov %4, %%g2\n\t" /* Save FN into global */ |
632 | "mov %5, %%g3\n\t" /* Save ARG into global */ | 632 | "mov %5, %%g3\n\t" /* Save ARG into global */ |
633 | "mov %1, %%g1\n\t" /* Clone syscall nr. */ | 633 | "mov %1, %%g1\n\t" /* Clone syscall nr. */ |
634 | "mov %2, %%o0\n\t" /* Clone flags. */ | 634 | "mov %2, %%o0\n\t" /* Clone flags. */ |
635 | "mov 0, %%o1\n\t" /* usp arg == 0 */ | 635 | "mov 0, %%o1\n\t" /* usp arg == 0 */ |
636 | "t 0x6d\n\t" /* Linux/Sparc clone(). */ | 636 | "t 0x6d\n\t" /* Linux/Sparc clone(). */ |
637 | "brz,a,pn %%o1, 1f\n\t" /* Parent, just return. */ | 637 | "brz,a,pn %%o1, 1f\n\t" /* Parent, just return. */ |
638 | " mov %%o0, %0\n\t" | 638 | " mov %%o0, %0\n\t" |
639 | "jmpl %%g2, %%o7\n\t" /* Call the function. */ | 639 | "jmpl %%g2, %%o7\n\t" /* Call the function. */ |
640 | " mov %%g3, %%o0\n\t" /* Set arg in delay. */ | 640 | " mov %%g3, %%o0\n\t" /* Set arg in delay. */ |
641 | "mov %3, %%g1\n\t" | 641 | "mov %3, %%g1\n\t" |
642 | "t 0x6d\n\t" /* Linux/Sparc exit(). */ | 642 | "t 0x6d\n\t" /* Linux/Sparc exit(). */ |
643 | /* Notreached by child. */ | 643 | /* Notreached by child. */ |
644 | "1:" : | 644 | "1:" : |
645 | "=r" (retval) : | 645 | "=r" (retval) : |
646 | "i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED), | 646 | "i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED), |
647 | "i" (__NR_exit), "r" (fn), "r" (arg) : | 647 | "i" (__NR_exit), "r" (fn), "r" (arg) : |
648 | "g1", "g2", "g3", "o0", "o1", "memory", "cc"); | 648 | "g1", "g2", "g3", "o0", "o1", "memory", "cc"); |
649 | return retval; | 649 | return retval; |
650 | } | 650 | } |
651 | EXPORT_SYMBOL(kernel_thread); | 651 | EXPORT_SYMBOL(kernel_thread); |
652 | 652 | ||
653 | typedef struct { | 653 | typedef struct { |
654 | union { | 654 | union { |
655 | unsigned int pr_regs[32]; | 655 | unsigned int pr_regs[32]; |
656 | unsigned long pr_dregs[16]; | 656 | unsigned long pr_dregs[16]; |
657 | } pr_fr; | 657 | } pr_fr; |
658 | unsigned int __unused; | 658 | unsigned int __unused; |
659 | unsigned int pr_fsr; | 659 | unsigned int pr_fsr; |
660 | unsigned char pr_qcnt; | 660 | unsigned char pr_qcnt; |
661 | unsigned char pr_q_entrysize; | 661 | unsigned char pr_q_entrysize; |
662 | unsigned char pr_en; | 662 | unsigned char pr_en; |
663 | unsigned int pr_q[64]; | 663 | unsigned int pr_q[64]; |
664 | } elf_fpregset_t32; | 664 | } elf_fpregset_t32; |
665 | 665 | ||
666 | /* | 666 | /* |
667 | * fill in the fpu structure for a core dump. | 667 | * fill in the fpu structure for a core dump. |
668 | */ | 668 | */ |
669 | int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs) | 669 | int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs) |
670 | { | 670 | { |
671 | unsigned long *kfpregs = current_thread_info()->fpregs; | 671 | unsigned long *kfpregs = current_thread_info()->fpregs; |
672 | unsigned long fprs = current_thread_info()->fpsaved[0]; | 672 | unsigned long fprs = current_thread_info()->fpsaved[0]; |
673 | 673 | ||
674 | if (test_thread_flag(TIF_32BIT)) { | 674 | if (test_thread_flag(TIF_32BIT)) { |
675 | elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs; | 675 | elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs; |
676 | 676 | ||
677 | if (fprs & FPRS_DL) | 677 | if (fprs & FPRS_DL) |
678 | memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs, | 678 | memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs, |
679 | sizeof(unsigned int) * 32); | 679 | sizeof(unsigned int) * 32); |
680 | else | 680 | else |
681 | memset(&fpregs32->pr_fr.pr_regs[0], 0, | 681 | memset(&fpregs32->pr_fr.pr_regs[0], 0, |
682 | sizeof(unsigned int) * 32); | 682 | sizeof(unsigned int) * 32); |
683 | fpregs32->pr_qcnt = 0; | 683 | fpregs32->pr_qcnt = 0; |
684 | fpregs32->pr_q_entrysize = 8; | 684 | fpregs32->pr_q_entrysize = 8; |
685 | memset(&fpregs32->pr_q[0], 0, | 685 | memset(&fpregs32->pr_q[0], 0, |
686 | (sizeof(unsigned int) * 64)); | 686 | (sizeof(unsigned int) * 64)); |
687 | if (fprs & FPRS_FEF) { | 687 | if (fprs & FPRS_FEF) { |
688 | fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0]; | 688 | fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0]; |
689 | fpregs32->pr_en = 1; | 689 | fpregs32->pr_en = 1; |
690 | } else { | 690 | } else { |
691 | fpregs32->pr_fsr = 0; | 691 | fpregs32->pr_fsr = 0; |
692 | fpregs32->pr_en = 0; | 692 | fpregs32->pr_en = 0; |
693 | } | 693 | } |
694 | } else { | 694 | } else { |
695 | if(fprs & FPRS_DL) | 695 | if(fprs & FPRS_DL) |
696 | memcpy(&fpregs->pr_regs[0], kfpregs, | 696 | memcpy(&fpregs->pr_regs[0], kfpregs, |
697 | sizeof(unsigned int) * 32); | 697 | sizeof(unsigned int) * 32); |
698 | else | 698 | else |
699 | memset(&fpregs->pr_regs[0], 0, | 699 | memset(&fpregs->pr_regs[0], 0, |
700 | sizeof(unsigned int) * 32); | 700 | sizeof(unsigned int) * 32); |
701 | if(fprs & FPRS_DU) | 701 | if(fprs & FPRS_DU) |
702 | memcpy(&fpregs->pr_regs[16], kfpregs+16, | 702 | memcpy(&fpregs->pr_regs[16], kfpregs+16, |
703 | sizeof(unsigned int) * 32); | 703 | sizeof(unsigned int) * 32); |
704 | else | 704 | else |
705 | memset(&fpregs->pr_regs[16], 0, | 705 | memset(&fpregs->pr_regs[16], 0, |
706 | sizeof(unsigned int) * 32); | 706 | sizeof(unsigned int) * 32); |
707 | if(fprs & FPRS_FEF) { | 707 | if(fprs & FPRS_FEF) { |
708 | fpregs->pr_fsr = current_thread_info()->xfsr[0]; | 708 | fpregs->pr_fsr = current_thread_info()->xfsr[0]; |
709 | fpregs->pr_gsr = current_thread_info()->gsr[0]; | 709 | fpregs->pr_gsr = current_thread_info()->gsr[0]; |
710 | } else { | 710 | } else { |
711 | fpregs->pr_fsr = fpregs->pr_gsr = 0; | 711 | fpregs->pr_fsr = fpregs->pr_gsr = 0; |
712 | } | 712 | } |
713 | fpregs->pr_fprs = fprs; | 713 | fpregs->pr_fprs = fprs; |
714 | } | 714 | } |
715 | return 1; | 715 | return 1; |
716 | } | 716 | } |
717 | EXPORT_SYMBOL(dump_fpu); | 717 | EXPORT_SYMBOL(dump_fpu); |
718 | 718 | ||
719 | /* | 719 | /* |
720 | * sparc_execve() executes a new program after the asm stub has set | 720 | * sparc_execve() executes a new program after the asm stub has set |
721 | * things up for us. This should basically do what I want it to. | 721 | * things up for us. This should basically do what I want it to. |
722 | */ | 722 | */ |
723 | asmlinkage int sparc_execve(struct pt_regs *regs) | 723 | asmlinkage int sparc_execve(struct pt_regs *regs) |
724 | { | 724 | { |
725 | int error, base = 0; | 725 | int error, base = 0; |
726 | char *filename; | 726 | char *filename; |
727 | 727 | ||
728 | /* User register window flush is done by entry.S */ | 728 | /* User register window flush is done by entry.S */ |
729 | 729 | ||
730 | /* Check for indirect call. */ | 730 | /* Check for indirect call. */ |
731 | if (regs->u_regs[UREG_G1] == 0) | 731 | if (regs->u_regs[UREG_G1] == 0) |
732 | base = 1; | 732 | base = 1; |
733 | 733 | ||
734 | filename = getname((char __user *)regs->u_regs[base + UREG_I0]); | 734 | filename = getname((char __user *)regs->u_regs[base + UREG_I0]); |
735 | error = PTR_ERR(filename); | 735 | error = PTR_ERR(filename); |
736 | if (IS_ERR(filename)) | 736 | if (IS_ERR(filename)) |
737 | goto out; | 737 | goto out; |
738 | error = do_execve(filename, | 738 | error = do_execve(filename, |
739 | (const char __user *const __user *) | 739 | (const char __user *const __user *) |
740 | regs->u_regs[base + UREG_I1], | 740 | regs->u_regs[base + UREG_I1], |
741 | (const char __user *const __user *) | 741 | (const char __user *const __user *) |
742 | regs->u_regs[base + UREG_I2], regs); | 742 | regs->u_regs[base + UREG_I2], regs); |
743 | putname(filename); | 743 | putname(filename); |
744 | if (!error) { | 744 | if (!error) { |
745 | fprs_write(0); | 745 | fprs_write(0); |
746 | current_thread_info()->xfsr[0] = 0; | 746 | current_thread_info()->xfsr[0] = 0; |
747 | current_thread_info()->fpsaved[0] = 0; | 747 | current_thread_info()->fpsaved[0] = 0; |
748 | regs->tstate &= ~TSTATE_PEF; | 748 | regs->tstate &= ~TSTATE_PEF; |
749 | } | 749 | } |
750 | out: | 750 | out: |
751 | return error; | 751 | return error; |
752 | } | 752 | } |
753 | 753 | ||
754 | unsigned long get_wchan(struct task_struct *task) | 754 | unsigned long get_wchan(struct task_struct *task) |
755 | { | 755 | { |
756 | unsigned long pc, fp, bias = 0; | 756 | unsigned long pc, fp, bias = 0; |
757 | struct thread_info *tp; | 757 | struct thread_info *tp; |
758 | struct reg_window *rw; | 758 | struct reg_window *rw; |
759 | unsigned long ret = 0; | 759 | unsigned long ret = 0; |
760 | int count = 0; | 760 | int count = 0; |
761 | 761 | ||
762 | if (!task || task == current || | 762 | if (!task || task == current || |
763 | task->state == TASK_RUNNING) | 763 | task->state == TASK_RUNNING) |
764 | goto out; | 764 | goto out; |
765 | 765 | ||
766 | tp = task_thread_info(task); | 766 | tp = task_thread_info(task); |
767 | bias = STACK_BIAS; | 767 | bias = STACK_BIAS; |
768 | fp = task_thread_info(task)->ksp + bias; | 768 | fp = task_thread_info(task)->ksp + bias; |
769 | 769 | ||
770 | do { | 770 | do { |
771 | if (!kstack_valid(tp, fp)) | 771 | if (!kstack_valid(tp, fp)) |
772 | break; | 772 | break; |
773 | rw = (struct reg_window *) fp; | 773 | rw = (struct reg_window *) fp; |
774 | pc = rw->ins[7]; | 774 | pc = rw->ins[7]; |
775 | if (!in_sched_functions(pc)) { | 775 | if (!in_sched_functions(pc)) { |
776 | ret = pc; | 776 | ret = pc; |
777 | goto out; | 777 | goto out; |
778 | } | 778 | } |
779 | fp = rw->ins[6] + bias; | 779 | fp = rw->ins[6] + bias; |
780 | } while (++count < 16); | 780 | } while (++count < 16); |
781 | 781 | ||
782 | out: | 782 | out: |
783 | return ret; | 783 | return ret; |
784 | } | 784 | } |
785 | 785 |
include/linux/preempt.h
1 | #ifndef __LINUX_PREEMPT_H | 1 | #ifndef __LINUX_PREEMPT_H |
2 | #define __LINUX_PREEMPT_H | 2 | #define __LINUX_PREEMPT_H |
3 | 3 | ||
4 | /* | 4 | /* |
5 | * include/linux/preempt.h - macros for accessing and manipulating | 5 | * include/linux/preempt.h - macros for accessing and manipulating |
6 | * preempt_count (used for kernel preemption, interrupt count, etc.) | 6 | * preempt_count (used for kernel preemption, interrupt count, etc.) |
7 | */ | 7 | */ |
8 | 8 | ||
9 | #include <linux/thread_info.h> | 9 | #include <linux/thread_info.h> |
10 | #include <linux/linkage.h> | 10 | #include <linux/linkage.h> |
11 | #include <linux/list.h> | 11 | #include <linux/list.h> |
12 | 12 | ||
13 | #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_PREEMPT_TRACER) | 13 | #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_PREEMPT_TRACER) |
14 | extern void add_preempt_count(int val); | 14 | extern void add_preempt_count(int val); |
15 | extern void sub_preempt_count(int val); | 15 | extern void sub_preempt_count(int val); |
16 | #else | 16 | #else |
17 | # define add_preempt_count(val) do { preempt_count() += (val); } while (0) | 17 | # define add_preempt_count(val) do { preempt_count() += (val); } while (0) |
18 | # define sub_preempt_count(val) do { preempt_count() -= (val); } while (0) | 18 | # define sub_preempt_count(val) do { preempt_count() -= (val); } while (0) |
19 | #endif | 19 | #endif |
20 | 20 | ||
21 | #define inc_preempt_count() add_preempt_count(1) | 21 | #define inc_preempt_count() add_preempt_count(1) |
22 | #define dec_preempt_count() sub_preempt_count(1) | 22 | #define dec_preempt_count() sub_preempt_count(1) |
23 | 23 | ||
24 | #define preempt_count() (current_thread_info()->preempt_count) | 24 | #define preempt_count() (current_thread_info()->preempt_count) |
25 | 25 | ||
26 | #ifdef CONFIG_PREEMPT | 26 | #ifdef CONFIG_PREEMPT |
27 | 27 | ||
28 | asmlinkage void preempt_schedule(void); | 28 | asmlinkage void preempt_schedule(void); |
29 | 29 | ||
30 | #define preempt_check_resched() \ | 30 | #define preempt_check_resched() \ |
31 | do { \ | 31 | do { \ |
32 | if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) \ | 32 | if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) \ |
33 | preempt_schedule(); \ | 33 | preempt_schedule(); \ |
34 | } while (0) | 34 | } while (0) |
35 | 35 | ||
36 | #else /* !CONFIG_PREEMPT */ | 36 | #else /* !CONFIG_PREEMPT */ |
37 | 37 | ||
38 | #define preempt_check_resched() do { } while (0) | 38 | #define preempt_check_resched() do { } while (0) |
39 | 39 | ||
40 | #endif /* CONFIG_PREEMPT */ | 40 | #endif /* CONFIG_PREEMPT */ |
41 | 41 | ||
42 | 42 | ||
43 | #ifdef CONFIG_PREEMPT_COUNT | 43 | #ifdef CONFIG_PREEMPT_COUNT |
44 | 44 | ||
45 | #define preempt_disable() \ | 45 | #define preempt_disable() \ |
46 | do { \ | 46 | do { \ |
47 | inc_preempt_count(); \ | 47 | inc_preempt_count(); \ |
48 | barrier(); \ | 48 | barrier(); \ |
49 | } while (0) | 49 | } while (0) |
50 | 50 | ||
51 | #define preempt_enable_no_resched() \ | 51 | #define sched_preempt_enable_no_resched() \ |
52 | do { \ | 52 | do { \ |
53 | barrier(); \ | 53 | barrier(); \ |
54 | dec_preempt_count(); \ | 54 | dec_preempt_count(); \ |
55 | } while (0) | 55 | } while (0) |
56 | 56 | ||
57 | #define preempt_enable_no_resched() sched_preempt_enable_no_resched() | ||
58 | |||
57 | #define preempt_enable() \ | 59 | #define preempt_enable() \ |
58 | do { \ | 60 | do { \ |
59 | preempt_enable_no_resched(); \ | 61 | preempt_enable_no_resched(); \ |
60 | barrier(); \ | 62 | barrier(); \ |
61 | preempt_check_resched(); \ | 63 | preempt_check_resched(); \ |
62 | } while (0) | 64 | } while (0) |
63 | 65 | ||
64 | /* For debugging and tracer internals only! */ | 66 | /* For debugging and tracer internals only! */ |
65 | #define add_preempt_count_notrace(val) \ | 67 | #define add_preempt_count_notrace(val) \ |
66 | do { preempt_count() += (val); } while (0) | 68 | do { preempt_count() += (val); } while (0) |
67 | #define sub_preempt_count_notrace(val) \ | 69 | #define sub_preempt_count_notrace(val) \ |
68 | do { preempt_count() -= (val); } while (0) | 70 | do { preempt_count() -= (val); } while (0) |
69 | #define inc_preempt_count_notrace() add_preempt_count_notrace(1) | 71 | #define inc_preempt_count_notrace() add_preempt_count_notrace(1) |
70 | #define dec_preempt_count_notrace() sub_preempt_count_notrace(1) | 72 | #define dec_preempt_count_notrace() sub_preempt_count_notrace(1) |
71 | 73 | ||
72 | #define preempt_disable_notrace() \ | 74 | #define preempt_disable_notrace() \ |
73 | do { \ | 75 | do { \ |
74 | inc_preempt_count_notrace(); \ | 76 | inc_preempt_count_notrace(); \ |
75 | barrier(); \ | 77 | barrier(); \ |
76 | } while (0) | 78 | } while (0) |
77 | 79 | ||
78 | #define preempt_enable_no_resched_notrace() \ | 80 | #define preempt_enable_no_resched_notrace() \ |
79 | do { \ | 81 | do { \ |
80 | barrier(); \ | 82 | barrier(); \ |
81 | dec_preempt_count_notrace(); \ | 83 | dec_preempt_count_notrace(); \ |
82 | } while (0) | 84 | } while (0) |
83 | 85 | ||
84 | /* preempt_check_resched is OK to trace */ | 86 | /* preempt_check_resched is OK to trace */ |
85 | #define preempt_enable_notrace() \ | 87 | #define preempt_enable_notrace() \ |
86 | do { \ | 88 | do { \ |
87 | preempt_enable_no_resched_notrace(); \ | 89 | preempt_enable_no_resched_notrace(); \ |
88 | barrier(); \ | 90 | barrier(); \ |
89 | preempt_check_resched(); \ | 91 | preempt_check_resched(); \ |
90 | } while (0) | 92 | } while (0) |
91 | 93 | ||
92 | #else /* !CONFIG_PREEMPT_COUNT */ | 94 | #else /* !CONFIG_PREEMPT_COUNT */ |
93 | 95 | ||
94 | #define preempt_disable() do { } while (0) | 96 | #define preempt_disable() do { } while (0) |
97 | #define sched_preempt_enable_no_resched() do { } while (0) | ||
95 | #define preempt_enable_no_resched() do { } while (0) | 98 | #define preempt_enable_no_resched() do { } while (0) |
96 | #define preempt_enable() do { } while (0) | 99 | #define preempt_enable() do { } while (0) |
97 | 100 | ||
98 | #define preempt_disable_notrace() do { } while (0) | 101 | #define preempt_disable_notrace() do { } while (0) |
99 | #define preempt_enable_no_resched_notrace() do { } while (0) | 102 | #define preempt_enable_no_resched_notrace() do { } while (0) |
100 | #define preempt_enable_notrace() do { } while (0) | 103 | #define preempt_enable_notrace() do { } while (0) |
101 | 104 | ||
102 | #endif /* CONFIG_PREEMPT_COUNT */ | 105 | #endif /* CONFIG_PREEMPT_COUNT */ |
103 | 106 | ||
104 | #ifdef CONFIG_PREEMPT_NOTIFIERS | 107 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
105 | 108 | ||
106 | struct preempt_notifier; | 109 | struct preempt_notifier; |
107 | 110 | ||
108 | /** | 111 | /** |
109 | * preempt_ops - notifiers called when a task is preempted and rescheduled | 112 | * preempt_ops - notifiers called when a task is preempted and rescheduled |
110 | * @sched_in: we're about to be rescheduled: | 113 | * @sched_in: we're about to be rescheduled: |
111 | * notifier: struct preempt_notifier for the task being scheduled | 114 | * notifier: struct preempt_notifier for the task being scheduled |
112 | * cpu: cpu we're scheduled on | 115 | * cpu: cpu we're scheduled on |
113 | * @sched_out: we've just been preempted | 116 | * @sched_out: we've just been preempted |
114 | * notifier: struct preempt_notifier for the task being preempted | 117 | * notifier: struct preempt_notifier for the task being preempted |
115 | * next: the task that's kicking us out | 118 | * next: the task that's kicking us out |
116 | * | 119 | * |
117 | * Please note that sched_in and out are called under different | 120 | * Please note that sched_in and out are called under different |
118 | * contexts. sched_out is called with rq lock held and irq disabled | 121 | * contexts. sched_out is called with rq lock held and irq disabled |
119 | * while sched_in is called without rq lock and irq enabled. This | 122 | * while sched_in is called without rq lock and irq enabled. This |
120 | * difference is intentional and depended upon by its users. | 123 | * difference is intentional and depended upon by its users. |
121 | */ | 124 | */ |
122 | struct preempt_ops { | 125 | struct preempt_ops { |
123 | void (*sched_in)(struct preempt_notifier *notifier, int cpu); | 126 | void (*sched_in)(struct preempt_notifier *notifier, int cpu); |
124 | void (*sched_out)(struct preempt_notifier *notifier, | 127 | void (*sched_out)(struct preempt_notifier *notifier, |
125 | struct task_struct *next); | 128 | struct task_struct *next); |
126 | }; | 129 | }; |
127 | 130 | ||
128 | /** | 131 | /** |
129 | * preempt_notifier - key for installing preemption notifiers | 132 | * preempt_notifier - key for installing preemption notifiers |
130 | * @link: internal use | 133 | * @link: internal use |
131 | * @ops: defines the notifier functions to be called | 134 | * @ops: defines the notifier functions to be called |
132 | * | 135 | * |
133 | * Usually used in conjunction with container_of(). | 136 | * Usually used in conjunction with container_of(). |
134 | */ | 137 | */ |
135 | struct preempt_notifier { | 138 | struct preempt_notifier { |
136 | struct hlist_node link; | 139 | struct hlist_node link; |
137 | struct preempt_ops *ops; | 140 | struct preempt_ops *ops; |
138 | }; | 141 | }; |
139 | 142 | ||
140 | void preempt_notifier_register(struct preempt_notifier *notifier); | 143 | void preempt_notifier_register(struct preempt_notifier *notifier); |
141 | void preempt_notifier_unregister(struct preempt_notifier *notifier); | 144 | void preempt_notifier_unregister(struct preempt_notifier *notifier); |
142 | 145 | ||
143 | static inline void preempt_notifier_init(struct preempt_notifier *notifier, | 146 | static inline void preempt_notifier_init(struct preempt_notifier *notifier, |
144 | struct preempt_ops *ops) | 147 | struct preempt_ops *ops) |
145 | { | 148 | { |
146 | INIT_HLIST_NODE(¬ifier->link); | 149 | INIT_HLIST_NODE(¬ifier->link); |
147 | notifier->ops = ops; | 150 | notifier->ops = ops; |
148 | } | 151 | } |
149 | 152 | ||
150 | #endif | 153 | #endif |
151 | 154 | ||
152 | #endif /* __LINUX_PREEMPT_H */ | 155 | #endif /* __LINUX_PREEMPT_H */ |
153 | 156 |
kernel/sched/core.c
1 | /* | 1 | /* |
2 | * kernel/sched/core.c | 2 | * kernel/sched/core.c |
3 | * | 3 | * |
4 | * Kernel scheduler and related syscalls | 4 | * Kernel scheduler and related syscalls |
5 | * | 5 | * |
6 | * Copyright (C) 1991-2002 Linus Torvalds | 6 | * Copyright (C) 1991-2002 Linus Torvalds |
7 | * | 7 | * |
8 | * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and | 8 | * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and |
9 | * make semaphores SMP safe | 9 | * make semaphores SMP safe |
10 | * 1998-11-19 Implemented schedule_timeout() and related stuff | 10 | * 1998-11-19 Implemented schedule_timeout() and related stuff |
11 | * by Andrea Arcangeli | 11 | * by Andrea Arcangeli |
12 | * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: | 12 | * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: |
13 | * hybrid priority-list and round-robin design with | 13 | * hybrid priority-list and round-robin design with |
14 | * an array-switch method of distributing timeslices | 14 | * an array-switch method of distributing timeslices |
15 | * and per-CPU runqueues. Cleanups and useful suggestions | 15 | * and per-CPU runqueues. Cleanups and useful suggestions |
16 | * by Davide Libenzi, preemptible kernel bits by Robert Love. | 16 | * by Davide Libenzi, preemptible kernel bits by Robert Love. |
17 | * 2003-09-03 Interactivity tuning by Con Kolivas. | 17 | * 2003-09-03 Interactivity tuning by Con Kolivas. |
18 | * 2004-04-02 Scheduler domains code by Nick Piggin | 18 | * 2004-04-02 Scheduler domains code by Nick Piggin |
19 | * 2007-04-15 Work begun on replacing all interactivity tuning with a | 19 | * 2007-04-15 Work begun on replacing all interactivity tuning with a |
20 | * fair scheduling design by Con Kolivas. | 20 | * fair scheduling design by Con Kolivas. |
21 | * 2007-05-05 Load balancing (smp-nice) and other improvements | 21 | * 2007-05-05 Load balancing (smp-nice) and other improvements |
22 | * by Peter Williams | 22 | * by Peter Williams |
23 | * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith | 23 | * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith |
24 | * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri | 24 | * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri |
25 | * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, | 25 | * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, |
26 | * Thomas Gleixner, Mike Kravetz | 26 | * Thomas Gleixner, Mike Kravetz |
27 | */ | 27 | */ |
28 | 28 | ||
29 | #include <linux/mm.h> | 29 | #include <linux/mm.h> |
30 | #include <linux/module.h> | 30 | #include <linux/module.h> |
31 | #include <linux/nmi.h> | 31 | #include <linux/nmi.h> |
32 | #include <linux/init.h> | 32 | #include <linux/init.h> |
33 | #include <linux/uaccess.h> | 33 | #include <linux/uaccess.h> |
34 | #include <linux/highmem.h> | 34 | #include <linux/highmem.h> |
35 | #include <asm/mmu_context.h> | 35 | #include <asm/mmu_context.h> |
36 | #include <linux/interrupt.h> | 36 | #include <linux/interrupt.h> |
37 | #include <linux/capability.h> | 37 | #include <linux/capability.h> |
38 | #include <linux/completion.h> | 38 | #include <linux/completion.h> |
39 | #include <linux/kernel_stat.h> | 39 | #include <linux/kernel_stat.h> |
40 | #include <linux/debug_locks.h> | 40 | #include <linux/debug_locks.h> |
41 | #include <linux/perf_event.h> | 41 | #include <linux/perf_event.h> |
42 | #include <linux/security.h> | 42 | #include <linux/security.h> |
43 | #include <linux/notifier.h> | 43 | #include <linux/notifier.h> |
44 | #include <linux/profile.h> | 44 | #include <linux/profile.h> |
45 | #include <linux/freezer.h> | 45 | #include <linux/freezer.h> |
46 | #include <linux/vmalloc.h> | 46 | #include <linux/vmalloc.h> |
47 | #include <linux/blkdev.h> | 47 | #include <linux/blkdev.h> |
48 | #include <linux/delay.h> | 48 | #include <linux/delay.h> |
49 | #include <linux/pid_namespace.h> | 49 | #include <linux/pid_namespace.h> |
50 | #include <linux/smp.h> | 50 | #include <linux/smp.h> |
51 | #include <linux/threads.h> | 51 | #include <linux/threads.h> |
52 | #include <linux/timer.h> | 52 | #include <linux/timer.h> |
53 | #include <linux/rcupdate.h> | 53 | #include <linux/rcupdate.h> |
54 | #include <linux/cpu.h> | 54 | #include <linux/cpu.h> |
55 | #include <linux/cpuset.h> | 55 | #include <linux/cpuset.h> |
56 | #include <linux/percpu.h> | 56 | #include <linux/percpu.h> |
57 | #include <linux/proc_fs.h> | 57 | #include <linux/proc_fs.h> |
58 | #include <linux/seq_file.h> | 58 | #include <linux/seq_file.h> |
59 | #include <linux/sysctl.h> | 59 | #include <linux/sysctl.h> |
60 | #include <linux/syscalls.h> | 60 | #include <linux/syscalls.h> |
61 | #include <linux/times.h> | 61 | #include <linux/times.h> |
62 | #include <linux/tsacct_kern.h> | 62 | #include <linux/tsacct_kern.h> |
63 | #include <linux/kprobes.h> | 63 | #include <linux/kprobes.h> |
64 | #include <linux/delayacct.h> | 64 | #include <linux/delayacct.h> |
65 | #include <linux/unistd.h> | 65 | #include <linux/unistd.h> |
66 | #include <linux/pagemap.h> | 66 | #include <linux/pagemap.h> |
67 | #include <linux/hrtimer.h> | 67 | #include <linux/hrtimer.h> |
68 | #include <linux/tick.h> | 68 | #include <linux/tick.h> |
69 | #include <linux/debugfs.h> | 69 | #include <linux/debugfs.h> |
70 | #include <linux/ctype.h> | 70 | #include <linux/ctype.h> |
71 | #include <linux/ftrace.h> | 71 | #include <linux/ftrace.h> |
72 | #include <linux/slab.h> | 72 | #include <linux/slab.h> |
73 | #include <linux/init_task.h> | 73 | #include <linux/init_task.h> |
74 | 74 | ||
75 | #include <asm/tlb.h> | 75 | #include <asm/tlb.h> |
76 | #include <asm/irq_regs.h> | 76 | #include <asm/irq_regs.h> |
77 | #include <asm/mutex.h> | 77 | #include <asm/mutex.h> |
78 | #ifdef CONFIG_PARAVIRT | 78 | #ifdef CONFIG_PARAVIRT |
79 | #include <asm/paravirt.h> | 79 | #include <asm/paravirt.h> |
80 | #endif | 80 | #endif |
81 | 81 | ||
82 | #include "sched.h" | 82 | #include "sched.h" |
83 | #include "../workqueue_sched.h" | 83 | #include "../workqueue_sched.h" |
84 | 84 | ||
85 | #define CREATE_TRACE_POINTS | 85 | #define CREATE_TRACE_POINTS |
86 | #include <trace/events/sched.h> | 86 | #include <trace/events/sched.h> |
87 | 87 | ||
88 | void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) | 88 | void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) |
89 | { | 89 | { |
90 | unsigned long delta; | 90 | unsigned long delta; |
91 | ktime_t soft, hard, now; | 91 | ktime_t soft, hard, now; |
92 | 92 | ||
93 | for (;;) { | 93 | for (;;) { |
94 | if (hrtimer_active(period_timer)) | 94 | if (hrtimer_active(period_timer)) |
95 | break; | 95 | break; |
96 | 96 | ||
97 | now = hrtimer_cb_get_time(period_timer); | 97 | now = hrtimer_cb_get_time(period_timer); |
98 | hrtimer_forward(period_timer, now, period); | 98 | hrtimer_forward(period_timer, now, period); |
99 | 99 | ||
100 | soft = hrtimer_get_softexpires(period_timer); | 100 | soft = hrtimer_get_softexpires(period_timer); |
101 | hard = hrtimer_get_expires(period_timer); | 101 | hard = hrtimer_get_expires(period_timer); |
102 | delta = ktime_to_ns(ktime_sub(hard, soft)); | 102 | delta = ktime_to_ns(ktime_sub(hard, soft)); |
103 | __hrtimer_start_range_ns(period_timer, soft, delta, | 103 | __hrtimer_start_range_ns(period_timer, soft, delta, |
104 | HRTIMER_MODE_ABS_PINNED, 0); | 104 | HRTIMER_MODE_ABS_PINNED, 0); |
105 | } | 105 | } |
106 | } | 106 | } |
107 | 107 | ||
108 | DEFINE_MUTEX(sched_domains_mutex); | 108 | DEFINE_MUTEX(sched_domains_mutex); |
109 | DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); | 109 | DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); |
110 | 110 | ||
111 | static void update_rq_clock_task(struct rq *rq, s64 delta); | 111 | static void update_rq_clock_task(struct rq *rq, s64 delta); |
112 | 112 | ||
113 | void update_rq_clock(struct rq *rq) | 113 | void update_rq_clock(struct rq *rq) |
114 | { | 114 | { |
115 | s64 delta; | 115 | s64 delta; |
116 | 116 | ||
117 | if (rq->skip_clock_update > 0) | 117 | if (rq->skip_clock_update > 0) |
118 | return; | 118 | return; |
119 | 119 | ||
120 | delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; | 120 | delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; |
121 | rq->clock += delta; | 121 | rq->clock += delta; |
122 | update_rq_clock_task(rq, delta); | 122 | update_rq_clock_task(rq, delta); |
123 | } | 123 | } |
124 | 124 | ||
125 | /* | 125 | /* |
126 | * Debugging: various feature bits | 126 | * Debugging: various feature bits |
127 | */ | 127 | */ |
128 | 128 | ||
129 | #define SCHED_FEAT(name, enabled) \ | 129 | #define SCHED_FEAT(name, enabled) \ |
130 | (1UL << __SCHED_FEAT_##name) * enabled | | 130 | (1UL << __SCHED_FEAT_##name) * enabled | |
131 | 131 | ||
132 | const_debug unsigned int sysctl_sched_features = | 132 | const_debug unsigned int sysctl_sched_features = |
133 | #include "features.h" | 133 | #include "features.h" |
134 | 0; | 134 | 0; |
135 | 135 | ||
136 | #undef SCHED_FEAT | 136 | #undef SCHED_FEAT |
137 | 137 | ||
138 | #ifdef CONFIG_SCHED_DEBUG | 138 | #ifdef CONFIG_SCHED_DEBUG |
139 | #define SCHED_FEAT(name, enabled) \ | 139 | #define SCHED_FEAT(name, enabled) \ |
140 | #name , | 140 | #name , |
141 | 141 | ||
142 | static __read_mostly char *sched_feat_names[] = { | 142 | static __read_mostly char *sched_feat_names[] = { |
143 | #include "features.h" | 143 | #include "features.h" |
144 | NULL | 144 | NULL |
145 | }; | 145 | }; |
146 | 146 | ||
147 | #undef SCHED_FEAT | 147 | #undef SCHED_FEAT |
148 | 148 | ||
149 | static int sched_feat_show(struct seq_file *m, void *v) | 149 | static int sched_feat_show(struct seq_file *m, void *v) |
150 | { | 150 | { |
151 | int i; | 151 | int i; |
152 | 152 | ||
153 | for (i = 0; i < __SCHED_FEAT_NR; i++) { | 153 | for (i = 0; i < __SCHED_FEAT_NR; i++) { |
154 | if (!(sysctl_sched_features & (1UL << i))) | 154 | if (!(sysctl_sched_features & (1UL << i))) |
155 | seq_puts(m, "NO_"); | 155 | seq_puts(m, "NO_"); |
156 | seq_printf(m, "%s ", sched_feat_names[i]); | 156 | seq_printf(m, "%s ", sched_feat_names[i]); |
157 | } | 157 | } |
158 | seq_puts(m, "\n"); | 158 | seq_puts(m, "\n"); |
159 | 159 | ||
160 | return 0; | 160 | return 0; |
161 | } | 161 | } |
162 | 162 | ||
163 | #ifdef HAVE_JUMP_LABEL | 163 | #ifdef HAVE_JUMP_LABEL |
164 | 164 | ||
165 | #define jump_label_key__true jump_label_key_enabled | 165 | #define jump_label_key__true jump_label_key_enabled |
166 | #define jump_label_key__false jump_label_key_disabled | 166 | #define jump_label_key__false jump_label_key_disabled |
167 | 167 | ||
168 | #define SCHED_FEAT(name, enabled) \ | 168 | #define SCHED_FEAT(name, enabled) \ |
169 | jump_label_key__##enabled , | 169 | jump_label_key__##enabled , |
170 | 170 | ||
171 | struct jump_label_key sched_feat_keys[__SCHED_FEAT_NR] = { | 171 | struct jump_label_key sched_feat_keys[__SCHED_FEAT_NR] = { |
172 | #include "features.h" | 172 | #include "features.h" |
173 | }; | 173 | }; |
174 | 174 | ||
175 | #undef SCHED_FEAT | 175 | #undef SCHED_FEAT |
176 | 176 | ||
177 | static void sched_feat_disable(int i) | 177 | static void sched_feat_disable(int i) |
178 | { | 178 | { |
179 | if (jump_label_enabled(&sched_feat_keys[i])) | 179 | if (jump_label_enabled(&sched_feat_keys[i])) |
180 | jump_label_dec(&sched_feat_keys[i]); | 180 | jump_label_dec(&sched_feat_keys[i]); |
181 | } | 181 | } |
182 | 182 | ||
183 | static void sched_feat_enable(int i) | 183 | static void sched_feat_enable(int i) |
184 | { | 184 | { |
185 | if (!jump_label_enabled(&sched_feat_keys[i])) | 185 | if (!jump_label_enabled(&sched_feat_keys[i])) |
186 | jump_label_inc(&sched_feat_keys[i]); | 186 | jump_label_inc(&sched_feat_keys[i]); |
187 | } | 187 | } |
188 | #else | 188 | #else |
189 | static void sched_feat_disable(int i) { }; | 189 | static void sched_feat_disable(int i) { }; |
190 | static void sched_feat_enable(int i) { }; | 190 | static void sched_feat_enable(int i) { }; |
191 | #endif /* HAVE_JUMP_LABEL */ | 191 | #endif /* HAVE_JUMP_LABEL */ |
192 | 192 | ||
193 | static ssize_t | 193 | static ssize_t |
194 | sched_feat_write(struct file *filp, const char __user *ubuf, | 194 | sched_feat_write(struct file *filp, const char __user *ubuf, |
195 | size_t cnt, loff_t *ppos) | 195 | size_t cnt, loff_t *ppos) |
196 | { | 196 | { |
197 | char buf[64]; | 197 | char buf[64]; |
198 | char *cmp; | 198 | char *cmp; |
199 | int neg = 0; | 199 | int neg = 0; |
200 | int i; | 200 | int i; |
201 | 201 | ||
202 | if (cnt > 63) | 202 | if (cnt > 63) |
203 | cnt = 63; | 203 | cnt = 63; |
204 | 204 | ||
205 | if (copy_from_user(&buf, ubuf, cnt)) | 205 | if (copy_from_user(&buf, ubuf, cnt)) |
206 | return -EFAULT; | 206 | return -EFAULT; |
207 | 207 | ||
208 | buf[cnt] = 0; | 208 | buf[cnt] = 0; |
209 | cmp = strstrip(buf); | 209 | cmp = strstrip(buf); |
210 | 210 | ||
211 | if (strncmp(cmp, "NO_", 3) == 0) { | 211 | if (strncmp(cmp, "NO_", 3) == 0) { |
212 | neg = 1; | 212 | neg = 1; |
213 | cmp += 3; | 213 | cmp += 3; |
214 | } | 214 | } |
215 | 215 | ||
216 | for (i = 0; i < __SCHED_FEAT_NR; i++) { | 216 | for (i = 0; i < __SCHED_FEAT_NR; i++) { |
217 | if (strcmp(cmp, sched_feat_names[i]) == 0) { | 217 | if (strcmp(cmp, sched_feat_names[i]) == 0) { |
218 | if (neg) { | 218 | if (neg) { |
219 | sysctl_sched_features &= ~(1UL << i); | 219 | sysctl_sched_features &= ~(1UL << i); |
220 | sched_feat_disable(i); | 220 | sched_feat_disable(i); |
221 | } else { | 221 | } else { |
222 | sysctl_sched_features |= (1UL << i); | 222 | sysctl_sched_features |= (1UL << i); |
223 | sched_feat_enable(i); | 223 | sched_feat_enable(i); |
224 | } | 224 | } |
225 | break; | 225 | break; |
226 | } | 226 | } |
227 | } | 227 | } |
228 | 228 | ||
229 | if (i == __SCHED_FEAT_NR) | 229 | if (i == __SCHED_FEAT_NR) |
230 | return -EINVAL; | 230 | return -EINVAL; |
231 | 231 | ||
232 | *ppos += cnt; | 232 | *ppos += cnt; |
233 | 233 | ||
234 | return cnt; | 234 | return cnt; |
235 | } | 235 | } |
236 | 236 | ||
237 | static int sched_feat_open(struct inode *inode, struct file *filp) | 237 | static int sched_feat_open(struct inode *inode, struct file *filp) |
238 | { | 238 | { |
239 | return single_open(filp, sched_feat_show, NULL); | 239 | return single_open(filp, sched_feat_show, NULL); |
240 | } | 240 | } |
241 | 241 | ||
242 | static const struct file_operations sched_feat_fops = { | 242 | static const struct file_operations sched_feat_fops = { |
243 | .open = sched_feat_open, | 243 | .open = sched_feat_open, |
244 | .write = sched_feat_write, | 244 | .write = sched_feat_write, |
245 | .read = seq_read, | 245 | .read = seq_read, |
246 | .llseek = seq_lseek, | 246 | .llseek = seq_lseek, |
247 | .release = single_release, | 247 | .release = single_release, |
248 | }; | 248 | }; |
249 | 249 | ||
250 | static __init int sched_init_debug(void) | 250 | static __init int sched_init_debug(void) |
251 | { | 251 | { |
252 | debugfs_create_file("sched_features", 0644, NULL, NULL, | 252 | debugfs_create_file("sched_features", 0644, NULL, NULL, |
253 | &sched_feat_fops); | 253 | &sched_feat_fops); |
254 | 254 | ||
255 | return 0; | 255 | return 0; |
256 | } | 256 | } |
257 | late_initcall(sched_init_debug); | 257 | late_initcall(sched_init_debug); |
258 | #endif /* CONFIG_SCHED_DEBUG */ | 258 | #endif /* CONFIG_SCHED_DEBUG */ |
259 | 259 | ||
260 | /* | 260 | /* |
261 | * Number of tasks to iterate in a single balance run. | 261 | * Number of tasks to iterate in a single balance run. |
262 | * Limited because this is done with IRQs disabled. | 262 | * Limited because this is done with IRQs disabled. |
263 | */ | 263 | */ |
264 | const_debug unsigned int sysctl_sched_nr_migrate = 32; | 264 | const_debug unsigned int sysctl_sched_nr_migrate = 32; |
265 | 265 | ||
266 | /* | 266 | /* |
267 | * period over which we average the RT time consumption, measured | 267 | * period over which we average the RT time consumption, measured |
268 | * in ms. | 268 | * in ms. |
269 | * | 269 | * |
270 | * default: 1s | 270 | * default: 1s |
271 | */ | 271 | */ |
272 | const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; | 272 | const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; |
273 | 273 | ||
274 | /* | 274 | /* |
275 | * period over which we measure -rt task cpu usage in us. | 275 | * period over which we measure -rt task cpu usage in us. |
276 | * default: 1s | 276 | * default: 1s |
277 | */ | 277 | */ |
278 | unsigned int sysctl_sched_rt_period = 1000000; | 278 | unsigned int sysctl_sched_rt_period = 1000000; |
279 | 279 | ||
280 | __read_mostly int scheduler_running; | 280 | __read_mostly int scheduler_running; |
281 | 281 | ||
282 | /* | 282 | /* |
283 | * part of the period that we allow rt tasks to run in us. | 283 | * part of the period that we allow rt tasks to run in us. |
284 | * default: 0.95s | 284 | * default: 0.95s |
285 | */ | 285 | */ |
286 | int sysctl_sched_rt_runtime = 950000; | 286 | int sysctl_sched_rt_runtime = 950000; |
287 | 287 | ||
288 | 288 | ||
289 | 289 | ||
290 | /* | 290 | /* |
291 | * __task_rq_lock - lock the rq @p resides on. | 291 | * __task_rq_lock - lock the rq @p resides on. |
292 | */ | 292 | */ |
293 | static inline struct rq *__task_rq_lock(struct task_struct *p) | 293 | static inline struct rq *__task_rq_lock(struct task_struct *p) |
294 | __acquires(rq->lock) | 294 | __acquires(rq->lock) |
295 | { | 295 | { |
296 | struct rq *rq; | 296 | struct rq *rq; |
297 | 297 | ||
298 | lockdep_assert_held(&p->pi_lock); | 298 | lockdep_assert_held(&p->pi_lock); |
299 | 299 | ||
300 | for (;;) { | 300 | for (;;) { |
301 | rq = task_rq(p); | 301 | rq = task_rq(p); |
302 | raw_spin_lock(&rq->lock); | 302 | raw_spin_lock(&rq->lock); |
303 | if (likely(rq == task_rq(p))) | 303 | if (likely(rq == task_rq(p))) |
304 | return rq; | 304 | return rq; |
305 | raw_spin_unlock(&rq->lock); | 305 | raw_spin_unlock(&rq->lock); |
306 | } | 306 | } |
307 | } | 307 | } |
308 | 308 | ||
309 | /* | 309 | /* |
310 | * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. | 310 | * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. |
311 | */ | 311 | */ |
312 | static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) | 312 | static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) |
313 | __acquires(p->pi_lock) | 313 | __acquires(p->pi_lock) |
314 | __acquires(rq->lock) | 314 | __acquires(rq->lock) |
315 | { | 315 | { |
316 | struct rq *rq; | 316 | struct rq *rq; |
317 | 317 | ||
318 | for (;;) { | 318 | for (;;) { |
319 | raw_spin_lock_irqsave(&p->pi_lock, *flags); | 319 | raw_spin_lock_irqsave(&p->pi_lock, *flags); |
320 | rq = task_rq(p); | 320 | rq = task_rq(p); |
321 | raw_spin_lock(&rq->lock); | 321 | raw_spin_lock(&rq->lock); |
322 | if (likely(rq == task_rq(p))) | 322 | if (likely(rq == task_rq(p))) |
323 | return rq; | 323 | return rq; |
324 | raw_spin_unlock(&rq->lock); | 324 | raw_spin_unlock(&rq->lock); |
325 | raw_spin_unlock_irqrestore(&p->pi_lock, *flags); | 325 | raw_spin_unlock_irqrestore(&p->pi_lock, *flags); |
326 | } | 326 | } |
327 | } | 327 | } |
328 | 328 | ||
329 | static void __task_rq_unlock(struct rq *rq) | 329 | static void __task_rq_unlock(struct rq *rq) |
330 | __releases(rq->lock) | 330 | __releases(rq->lock) |
331 | { | 331 | { |
332 | raw_spin_unlock(&rq->lock); | 332 | raw_spin_unlock(&rq->lock); |
333 | } | 333 | } |
334 | 334 | ||
335 | static inline void | 335 | static inline void |
336 | task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags) | 336 | task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags) |
337 | __releases(rq->lock) | 337 | __releases(rq->lock) |
338 | __releases(p->pi_lock) | 338 | __releases(p->pi_lock) |
339 | { | 339 | { |
340 | raw_spin_unlock(&rq->lock); | 340 | raw_spin_unlock(&rq->lock); |
341 | raw_spin_unlock_irqrestore(&p->pi_lock, *flags); | 341 | raw_spin_unlock_irqrestore(&p->pi_lock, *flags); |
342 | } | 342 | } |
343 | 343 | ||
344 | /* | 344 | /* |
345 | * this_rq_lock - lock this runqueue and disable interrupts. | 345 | * this_rq_lock - lock this runqueue and disable interrupts. |
346 | */ | 346 | */ |
347 | static struct rq *this_rq_lock(void) | 347 | static struct rq *this_rq_lock(void) |
348 | __acquires(rq->lock) | 348 | __acquires(rq->lock) |
349 | { | 349 | { |
350 | struct rq *rq; | 350 | struct rq *rq; |
351 | 351 | ||
352 | local_irq_disable(); | 352 | local_irq_disable(); |
353 | rq = this_rq(); | 353 | rq = this_rq(); |
354 | raw_spin_lock(&rq->lock); | 354 | raw_spin_lock(&rq->lock); |
355 | 355 | ||
356 | return rq; | 356 | return rq; |
357 | } | 357 | } |
358 | 358 | ||
359 | #ifdef CONFIG_SCHED_HRTICK | 359 | #ifdef CONFIG_SCHED_HRTICK |
360 | /* | 360 | /* |
361 | * Use HR-timers to deliver accurate preemption points. | 361 | * Use HR-timers to deliver accurate preemption points. |
362 | * | 362 | * |
363 | * Its all a bit involved since we cannot program an hrt while holding the | 363 | * Its all a bit involved since we cannot program an hrt while holding the |
364 | * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a | 364 | * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a |
365 | * reschedule event. | 365 | * reschedule event. |
366 | * | 366 | * |
367 | * When we get rescheduled we reprogram the hrtick_timer outside of the | 367 | * When we get rescheduled we reprogram the hrtick_timer outside of the |
368 | * rq->lock. | 368 | * rq->lock. |
369 | */ | 369 | */ |
370 | 370 | ||
371 | static void hrtick_clear(struct rq *rq) | 371 | static void hrtick_clear(struct rq *rq) |
372 | { | 372 | { |
373 | if (hrtimer_active(&rq->hrtick_timer)) | 373 | if (hrtimer_active(&rq->hrtick_timer)) |
374 | hrtimer_cancel(&rq->hrtick_timer); | 374 | hrtimer_cancel(&rq->hrtick_timer); |
375 | } | 375 | } |
376 | 376 | ||
377 | /* | 377 | /* |
378 | * High-resolution timer tick. | 378 | * High-resolution timer tick. |
379 | * Runs from hardirq context with interrupts disabled. | 379 | * Runs from hardirq context with interrupts disabled. |
380 | */ | 380 | */ |
381 | static enum hrtimer_restart hrtick(struct hrtimer *timer) | 381 | static enum hrtimer_restart hrtick(struct hrtimer *timer) |
382 | { | 382 | { |
383 | struct rq *rq = container_of(timer, struct rq, hrtick_timer); | 383 | struct rq *rq = container_of(timer, struct rq, hrtick_timer); |
384 | 384 | ||
385 | WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); | 385 | WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); |
386 | 386 | ||
387 | raw_spin_lock(&rq->lock); | 387 | raw_spin_lock(&rq->lock); |
388 | update_rq_clock(rq); | 388 | update_rq_clock(rq); |
389 | rq->curr->sched_class->task_tick(rq, rq->curr, 1); | 389 | rq->curr->sched_class->task_tick(rq, rq->curr, 1); |
390 | raw_spin_unlock(&rq->lock); | 390 | raw_spin_unlock(&rq->lock); |
391 | 391 | ||
392 | return HRTIMER_NORESTART; | 392 | return HRTIMER_NORESTART; |
393 | } | 393 | } |
394 | 394 | ||
395 | #ifdef CONFIG_SMP | 395 | #ifdef CONFIG_SMP |
396 | /* | 396 | /* |
397 | * called from hardirq (IPI) context | 397 | * called from hardirq (IPI) context |
398 | */ | 398 | */ |
399 | static void __hrtick_start(void *arg) | 399 | static void __hrtick_start(void *arg) |
400 | { | 400 | { |
401 | struct rq *rq = arg; | 401 | struct rq *rq = arg; |
402 | 402 | ||
403 | raw_spin_lock(&rq->lock); | 403 | raw_spin_lock(&rq->lock); |
404 | hrtimer_restart(&rq->hrtick_timer); | 404 | hrtimer_restart(&rq->hrtick_timer); |
405 | rq->hrtick_csd_pending = 0; | 405 | rq->hrtick_csd_pending = 0; |
406 | raw_spin_unlock(&rq->lock); | 406 | raw_spin_unlock(&rq->lock); |
407 | } | 407 | } |
408 | 408 | ||
409 | /* | 409 | /* |
410 | * Called to set the hrtick timer state. | 410 | * Called to set the hrtick timer state. |
411 | * | 411 | * |
412 | * called with rq->lock held and irqs disabled | 412 | * called with rq->lock held and irqs disabled |
413 | */ | 413 | */ |
414 | void hrtick_start(struct rq *rq, u64 delay) | 414 | void hrtick_start(struct rq *rq, u64 delay) |
415 | { | 415 | { |
416 | struct hrtimer *timer = &rq->hrtick_timer; | 416 | struct hrtimer *timer = &rq->hrtick_timer; |
417 | ktime_t time = ktime_add_ns(timer->base->get_time(), delay); | 417 | ktime_t time = ktime_add_ns(timer->base->get_time(), delay); |
418 | 418 | ||
419 | hrtimer_set_expires(timer, time); | 419 | hrtimer_set_expires(timer, time); |
420 | 420 | ||
421 | if (rq == this_rq()) { | 421 | if (rq == this_rq()) { |
422 | hrtimer_restart(timer); | 422 | hrtimer_restart(timer); |
423 | } else if (!rq->hrtick_csd_pending) { | 423 | } else if (!rq->hrtick_csd_pending) { |
424 | __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0); | 424 | __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0); |
425 | rq->hrtick_csd_pending = 1; | 425 | rq->hrtick_csd_pending = 1; |
426 | } | 426 | } |
427 | } | 427 | } |
428 | 428 | ||
429 | static int | 429 | static int |
430 | hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) | 430 | hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) |
431 | { | 431 | { |
432 | int cpu = (int)(long)hcpu; | 432 | int cpu = (int)(long)hcpu; |
433 | 433 | ||
434 | switch (action) { | 434 | switch (action) { |
435 | case CPU_UP_CANCELED: | 435 | case CPU_UP_CANCELED: |
436 | case CPU_UP_CANCELED_FROZEN: | 436 | case CPU_UP_CANCELED_FROZEN: |
437 | case CPU_DOWN_PREPARE: | 437 | case CPU_DOWN_PREPARE: |
438 | case CPU_DOWN_PREPARE_FROZEN: | 438 | case CPU_DOWN_PREPARE_FROZEN: |
439 | case CPU_DEAD: | 439 | case CPU_DEAD: |
440 | case CPU_DEAD_FROZEN: | 440 | case CPU_DEAD_FROZEN: |
441 | hrtick_clear(cpu_rq(cpu)); | 441 | hrtick_clear(cpu_rq(cpu)); |
442 | return NOTIFY_OK; | 442 | return NOTIFY_OK; |
443 | } | 443 | } |
444 | 444 | ||
445 | return NOTIFY_DONE; | 445 | return NOTIFY_DONE; |
446 | } | 446 | } |
447 | 447 | ||
448 | static __init void init_hrtick(void) | 448 | static __init void init_hrtick(void) |
449 | { | 449 | { |
450 | hotcpu_notifier(hotplug_hrtick, 0); | 450 | hotcpu_notifier(hotplug_hrtick, 0); |
451 | } | 451 | } |
452 | #else | 452 | #else |
453 | /* | 453 | /* |
454 | * Called to set the hrtick timer state. | 454 | * Called to set the hrtick timer state. |
455 | * | 455 | * |
456 | * called with rq->lock held and irqs disabled | 456 | * called with rq->lock held and irqs disabled |
457 | */ | 457 | */ |
458 | void hrtick_start(struct rq *rq, u64 delay) | 458 | void hrtick_start(struct rq *rq, u64 delay) |
459 | { | 459 | { |
460 | __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, | 460 | __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, |
461 | HRTIMER_MODE_REL_PINNED, 0); | 461 | HRTIMER_MODE_REL_PINNED, 0); |
462 | } | 462 | } |
463 | 463 | ||
464 | static inline void init_hrtick(void) | 464 | static inline void init_hrtick(void) |
465 | { | 465 | { |
466 | } | 466 | } |
467 | #endif /* CONFIG_SMP */ | 467 | #endif /* CONFIG_SMP */ |
468 | 468 | ||
469 | static void init_rq_hrtick(struct rq *rq) | 469 | static void init_rq_hrtick(struct rq *rq) |
470 | { | 470 | { |
471 | #ifdef CONFIG_SMP | 471 | #ifdef CONFIG_SMP |
472 | rq->hrtick_csd_pending = 0; | 472 | rq->hrtick_csd_pending = 0; |
473 | 473 | ||
474 | rq->hrtick_csd.flags = 0; | 474 | rq->hrtick_csd.flags = 0; |
475 | rq->hrtick_csd.func = __hrtick_start; | 475 | rq->hrtick_csd.func = __hrtick_start; |
476 | rq->hrtick_csd.info = rq; | 476 | rq->hrtick_csd.info = rq; |
477 | #endif | 477 | #endif |
478 | 478 | ||
479 | hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | 479 | hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
480 | rq->hrtick_timer.function = hrtick; | 480 | rq->hrtick_timer.function = hrtick; |
481 | } | 481 | } |
482 | #else /* CONFIG_SCHED_HRTICK */ | 482 | #else /* CONFIG_SCHED_HRTICK */ |
483 | static inline void hrtick_clear(struct rq *rq) | 483 | static inline void hrtick_clear(struct rq *rq) |
484 | { | 484 | { |
485 | } | 485 | } |
486 | 486 | ||
487 | static inline void init_rq_hrtick(struct rq *rq) | 487 | static inline void init_rq_hrtick(struct rq *rq) |
488 | { | 488 | { |
489 | } | 489 | } |
490 | 490 | ||
491 | static inline void init_hrtick(void) | 491 | static inline void init_hrtick(void) |
492 | { | 492 | { |
493 | } | 493 | } |
494 | #endif /* CONFIG_SCHED_HRTICK */ | 494 | #endif /* CONFIG_SCHED_HRTICK */ |
495 | 495 | ||
496 | /* | 496 | /* |
497 | * resched_task - mark a task 'to be rescheduled now'. | 497 | * resched_task - mark a task 'to be rescheduled now'. |
498 | * | 498 | * |
499 | * On UP this means the setting of the need_resched flag, on SMP it | 499 | * On UP this means the setting of the need_resched flag, on SMP it |
500 | * might also involve a cross-CPU call to trigger the scheduler on | 500 | * might also involve a cross-CPU call to trigger the scheduler on |
501 | * the target CPU. | 501 | * the target CPU. |
502 | */ | 502 | */ |
503 | #ifdef CONFIG_SMP | 503 | #ifdef CONFIG_SMP |
504 | 504 | ||
505 | #ifndef tsk_is_polling | 505 | #ifndef tsk_is_polling |
506 | #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG) | 506 | #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG) |
507 | #endif | 507 | #endif |
508 | 508 | ||
509 | void resched_task(struct task_struct *p) | 509 | void resched_task(struct task_struct *p) |
510 | { | 510 | { |
511 | int cpu; | 511 | int cpu; |
512 | 512 | ||
513 | assert_raw_spin_locked(&task_rq(p)->lock); | 513 | assert_raw_spin_locked(&task_rq(p)->lock); |
514 | 514 | ||
515 | if (test_tsk_need_resched(p)) | 515 | if (test_tsk_need_resched(p)) |
516 | return; | 516 | return; |
517 | 517 | ||
518 | set_tsk_need_resched(p); | 518 | set_tsk_need_resched(p); |
519 | 519 | ||
520 | cpu = task_cpu(p); | 520 | cpu = task_cpu(p); |
521 | if (cpu == smp_processor_id()) | 521 | if (cpu == smp_processor_id()) |
522 | return; | 522 | return; |
523 | 523 | ||
524 | /* NEED_RESCHED must be visible before we test polling */ | 524 | /* NEED_RESCHED must be visible before we test polling */ |
525 | smp_mb(); | 525 | smp_mb(); |
526 | if (!tsk_is_polling(p)) | 526 | if (!tsk_is_polling(p)) |
527 | smp_send_reschedule(cpu); | 527 | smp_send_reschedule(cpu); |
528 | } | 528 | } |
529 | 529 | ||
530 | void resched_cpu(int cpu) | 530 | void resched_cpu(int cpu) |
531 | { | 531 | { |
532 | struct rq *rq = cpu_rq(cpu); | 532 | struct rq *rq = cpu_rq(cpu); |
533 | unsigned long flags; | 533 | unsigned long flags; |
534 | 534 | ||
535 | if (!raw_spin_trylock_irqsave(&rq->lock, flags)) | 535 | if (!raw_spin_trylock_irqsave(&rq->lock, flags)) |
536 | return; | 536 | return; |
537 | resched_task(cpu_curr(cpu)); | 537 | resched_task(cpu_curr(cpu)); |
538 | raw_spin_unlock_irqrestore(&rq->lock, flags); | 538 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
539 | } | 539 | } |
540 | 540 | ||
541 | #ifdef CONFIG_NO_HZ | 541 | #ifdef CONFIG_NO_HZ |
542 | /* | 542 | /* |
543 | * In the semi idle case, use the nearest busy cpu for migrating timers | 543 | * In the semi idle case, use the nearest busy cpu for migrating timers |
544 | * from an idle cpu. This is good for power-savings. | 544 | * from an idle cpu. This is good for power-savings. |
545 | * | 545 | * |
546 | * We don't do similar optimization for completely idle system, as | 546 | * We don't do similar optimization for completely idle system, as |
547 | * selecting an idle cpu will add more delays to the timers than intended | 547 | * selecting an idle cpu will add more delays to the timers than intended |
548 | * (as that cpu's timer base may not be uptodate wrt jiffies etc). | 548 | * (as that cpu's timer base may not be uptodate wrt jiffies etc). |
549 | */ | 549 | */ |
550 | int get_nohz_timer_target(void) | 550 | int get_nohz_timer_target(void) |
551 | { | 551 | { |
552 | int cpu = smp_processor_id(); | 552 | int cpu = smp_processor_id(); |
553 | int i; | 553 | int i; |
554 | struct sched_domain *sd; | 554 | struct sched_domain *sd; |
555 | 555 | ||
556 | rcu_read_lock(); | 556 | rcu_read_lock(); |
557 | for_each_domain(cpu, sd) { | 557 | for_each_domain(cpu, sd) { |
558 | for_each_cpu(i, sched_domain_span(sd)) { | 558 | for_each_cpu(i, sched_domain_span(sd)) { |
559 | if (!idle_cpu(i)) { | 559 | if (!idle_cpu(i)) { |
560 | cpu = i; | 560 | cpu = i; |
561 | goto unlock; | 561 | goto unlock; |
562 | } | 562 | } |
563 | } | 563 | } |
564 | } | 564 | } |
565 | unlock: | 565 | unlock: |
566 | rcu_read_unlock(); | 566 | rcu_read_unlock(); |
567 | return cpu; | 567 | return cpu; |
568 | } | 568 | } |
569 | /* | 569 | /* |
570 | * When add_timer_on() enqueues a timer into the timer wheel of an | 570 | * When add_timer_on() enqueues a timer into the timer wheel of an |
571 | * idle CPU then this timer might expire before the next timer event | 571 | * idle CPU then this timer might expire before the next timer event |
572 | * which is scheduled to wake up that CPU. In case of a completely | 572 | * which is scheduled to wake up that CPU. In case of a completely |
573 | * idle system the next event might even be infinite time into the | 573 | * idle system the next event might even be infinite time into the |
574 | * future. wake_up_idle_cpu() ensures that the CPU is woken up and | 574 | * future. wake_up_idle_cpu() ensures that the CPU is woken up and |
575 | * leaves the inner idle loop so the newly added timer is taken into | 575 | * leaves the inner idle loop so the newly added timer is taken into |
576 | * account when the CPU goes back to idle and evaluates the timer | 576 | * account when the CPU goes back to idle and evaluates the timer |
577 | * wheel for the next timer event. | 577 | * wheel for the next timer event. |
578 | */ | 578 | */ |
579 | void wake_up_idle_cpu(int cpu) | 579 | void wake_up_idle_cpu(int cpu) |
580 | { | 580 | { |
581 | struct rq *rq = cpu_rq(cpu); | 581 | struct rq *rq = cpu_rq(cpu); |
582 | 582 | ||
583 | if (cpu == smp_processor_id()) | 583 | if (cpu == smp_processor_id()) |
584 | return; | 584 | return; |
585 | 585 | ||
586 | /* | 586 | /* |
587 | * This is safe, as this function is called with the timer | 587 | * This is safe, as this function is called with the timer |
588 | * wheel base lock of (cpu) held. When the CPU is on the way | 588 | * wheel base lock of (cpu) held. When the CPU is on the way |
589 | * to idle and has not yet set rq->curr to idle then it will | 589 | * to idle and has not yet set rq->curr to idle then it will |
590 | * be serialized on the timer wheel base lock and take the new | 590 | * be serialized on the timer wheel base lock and take the new |
591 | * timer into account automatically. | 591 | * timer into account automatically. |
592 | */ | 592 | */ |
593 | if (rq->curr != rq->idle) | 593 | if (rq->curr != rq->idle) |
594 | return; | 594 | return; |
595 | 595 | ||
596 | /* | 596 | /* |
597 | * We can set TIF_RESCHED on the idle task of the other CPU | 597 | * We can set TIF_RESCHED on the idle task of the other CPU |
598 | * lockless. The worst case is that the other CPU runs the | 598 | * lockless. The worst case is that the other CPU runs the |
599 | * idle task through an additional NOOP schedule() | 599 | * idle task through an additional NOOP schedule() |
600 | */ | 600 | */ |
601 | set_tsk_need_resched(rq->idle); | 601 | set_tsk_need_resched(rq->idle); |
602 | 602 | ||
603 | /* NEED_RESCHED must be visible before we test polling */ | 603 | /* NEED_RESCHED must be visible before we test polling */ |
604 | smp_mb(); | 604 | smp_mb(); |
605 | if (!tsk_is_polling(rq->idle)) | 605 | if (!tsk_is_polling(rq->idle)) |
606 | smp_send_reschedule(cpu); | 606 | smp_send_reschedule(cpu); |
607 | } | 607 | } |
608 | 608 | ||
609 | static inline bool got_nohz_idle_kick(void) | 609 | static inline bool got_nohz_idle_kick(void) |
610 | { | 610 | { |
611 | int cpu = smp_processor_id(); | 611 | int cpu = smp_processor_id(); |
612 | return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); | 612 | return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); |
613 | } | 613 | } |
614 | 614 | ||
615 | #else /* CONFIG_NO_HZ */ | 615 | #else /* CONFIG_NO_HZ */ |
616 | 616 | ||
617 | static inline bool got_nohz_idle_kick(void) | 617 | static inline bool got_nohz_idle_kick(void) |
618 | { | 618 | { |
619 | return false; | 619 | return false; |
620 | } | 620 | } |
621 | 621 | ||
622 | #endif /* CONFIG_NO_HZ */ | 622 | #endif /* CONFIG_NO_HZ */ |
623 | 623 | ||
624 | void sched_avg_update(struct rq *rq) | 624 | void sched_avg_update(struct rq *rq) |
625 | { | 625 | { |
626 | s64 period = sched_avg_period(); | 626 | s64 period = sched_avg_period(); |
627 | 627 | ||
628 | while ((s64)(rq->clock - rq->age_stamp) > period) { | 628 | while ((s64)(rq->clock - rq->age_stamp) > period) { |
629 | /* | 629 | /* |
630 | * Inline assembly required to prevent the compiler | 630 | * Inline assembly required to prevent the compiler |
631 | * optimising this loop into a divmod call. | 631 | * optimising this loop into a divmod call. |
632 | * See __iter_div_u64_rem() for another example of this. | 632 | * See __iter_div_u64_rem() for another example of this. |
633 | */ | 633 | */ |
634 | asm("" : "+rm" (rq->age_stamp)); | 634 | asm("" : "+rm" (rq->age_stamp)); |
635 | rq->age_stamp += period; | 635 | rq->age_stamp += period; |
636 | rq->rt_avg /= 2; | 636 | rq->rt_avg /= 2; |
637 | } | 637 | } |
638 | } | 638 | } |
639 | 639 | ||
640 | #else /* !CONFIG_SMP */ | 640 | #else /* !CONFIG_SMP */ |
641 | void resched_task(struct task_struct *p) | 641 | void resched_task(struct task_struct *p) |
642 | { | 642 | { |
643 | assert_raw_spin_locked(&task_rq(p)->lock); | 643 | assert_raw_spin_locked(&task_rq(p)->lock); |
644 | set_tsk_need_resched(p); | 644 | set_tsk_need_resched(p); |
645 | } | 645 | } |
646 | #endif /* CONFIG_SMP */ | 646 | #endif /* CONFIG_SMP */ |
647 | 647 | ||
648 | #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ | 648 | #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ |
649 | (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) | 649 | (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) |
650 | /* | 650 | /* |
651 | * Iterate task_group tree rooted at *from, calling @down when first entering a | 651 | * Iterate task_group tree rooted at *from, calling @down when first entering a |
652 | * node and @up when leaving it for the final time. | 652 | * node and @up when leaving it for the final time. |
653 | * | 653 | * |
654 | * Caller must hold rcu_lock or sufficient equivalent. | 654 | * Caller must hold rcu_lock or sufficient equivalent. |
655 | */ | 655 | */ |
656 | int walk_tg_tree_from(struct task_group *from, | 656 | int walk_tg_tree_from(struct task_group *from, |
657 | tg_visitor down, tg_visitor up, void *data) | 657 | tg_visitor down, tg_visitor up, void *data) |
658 | { | 658 | { |
659 | struct task_group *parent, *child; | 659 | struct task_group *parent, *child; |
660 | int ret; | 660 | int ret; |
661 | 661 | ||
662 | parent = from; | 662 | parent = from; |
663 | 663 | ||
664 | down: | 664 | down: |
665 | ret = (*down)(parent, data); | 665 | ret = (*down)(parent, data); |
666 | if (ret) | 666 | if (ret) |
667 | goto out; | 667 | goto out; |
668 | list_for_each_entry_rcu(child, &parent->children, siblings) { | 668 | list_for_each_entry_rcu(child, &parent->children, siblings) { |
669 | parent = child; | 669 | parent = child; |
670 | goto down; | 670 | goto down; |
671 | 671 | ||
672 | up: | 672 | up: |
673 | continue; | 673 | continue; |
674 | } | 674 | } |
675 | ret = (*up)(parent, data); | 675 | ret = (*up)(parent, data); |
676 | if (ret || parent == from) | 676 | if (ret || parent == from) |
677 | goto out; | 677 | goto out; |
678 | 678 | ||
679 | child = parent; | 679 | child = parent; |
680 | parent = parent->parent; | 680 | parent = parent->parent; |
681 | if (parent) | 681 | if (parent) |
682 | goto up; | 682 | goto up; |
683 | out: | 683 | out: |
684 | return ret; | 684 | return ret; |
685 | } | 685 | } |
686 | 686 | ||
687 | int tg_nop(struct task_group *tg, void *data) | 687 | int tg_nop(struct task_group *tg, void *data) |
688 | { | 688 | { |
689 | return 0; | 689 | return 0; |
690 | } | 690 | } |
691 | #endif | 691 | #endif |
692 | 692 | ||
693 | void update_cpu_load(struct rq *this_rq); | 693 | void update_cpu_load(struct rq *this_rq); |
694 | 694 | ||
695 | static void set_load_weight(struct task_struct *p) | 695 | static void set_load_weight(struct task_struct *p) |
696 | { | 696 | { |
697 | int prio = p->static_prio - MAX_RT_PRIO; | 697 | int prio = p->static_prio - MAX_RT_PRIO; |
698 | struct load_weight *load = &p->se.load; | 698 | struct load_weight *load = &p->se.load; |
699 | 699 | ||
700 | /* | 700 | /* |
701 | * SCHED_IDLE tasks get minimal weight: | 701 | * SCHED_IDLE tasks get minimal weight: |
702 | */ | 702 | */ |
703 | if (p->policy == SCHED_IDLE) { | 703 | if (p->policy == SCHED_IDLE) { |
704 | load->weight = scale_load(WEIGHT_IDLEPRIO); | 704 | load->weight = scale_load(WEIGHT_IDLEPRIO); |
705 | load->inv_weight = WMULT_IDLEPRIO; | 705 | load->inv_weight = WMULT_IDLEPRIO; |
706 | return; | 706 | return; |
707 | } | 707 | } |
708 | 708 | ||
709 | load->weight = scale_load(prio_to_weight[prio]); | 709 | load->weight = scale_load(prio_to_weight[prio]); |
710 | load->inv_weight = prio_to_wmult[prio]; | 710 | load->inv_weight = prio_to_wmult[prio]; |
711 | } | 711 | } |
712 | 712 | ||
713 | static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) | 713 | static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) |
714 | { | 714 | { |
715 | update_rq_clock(rq); | 715 | update_rq_clock(rq); |
716 | sched_info_queued(p); | 716 | sched_info_queued(p); |
717 | p->sched_class->enqueue_task(rq, p, flags); | 717 | p->sched_class->enqueue_task(rq, p, flags); |
718 | } | 718 | } |
719 | 719 | ||
720 | static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) | 720 | static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) |
721 | { | 721 | { |
722 | update_rq_clock(rq); | 722 | update_rq_clock(rq); |
723 | sched_info_dequeued(p); | 723 | sched_info_dequeued(p); |
724 | p->sched_class->dequeue_task(rq, p, flags); | 724 | p->sched_class->dequeue_task(rq, p, flags); |
725 | } | 725 | } |
726 | 726 | ||
727 | void activate_task(struct rq *rq, struct task_struct *p, int flags) | 727 | void activate_task(struct rq *rq, struct task_struct *p, int flags) |
728 | { | 728 | { |
729 | if (task_contributes_to_load(p)) | 729 | if (task_contributes_to_load(p)) |
730 | rq->nr_uninterruptible--; | 730 | rq->nr_uninterruptible--; |
731 | 731 | ||
732 | enqueue_task(rq, p, flags); | 732 | enqueue_task(rq, p, flags); |
733 | } | 733 | } |
734 | 734 | ||
735 | void deactivate_task(struct rq *rq, struct task_struct *p, int flags) | 735 | void deactivate_task(struct rq *rq, struct task_struct *p, int flags) |
736 | { | 736 | { |
737 | if (task_contributes_to_load(p)) | 737 | if (task_contributes_to_load(p)) |
738 | rq->nr_uninterruptible++; | 738 | rq->nr_uninterruptible++; |
739 | 739 | ||
740 | dequeue_task(rq, p, flags); | 740 | dequeue_task(rq, p, flags); |
741 | } | 741 | } |
742 | 742 | ||
743 | #ifdef CONFIG_IRQ_TIME_ACCOUNTING | 743 | #ifdef CONFIG_IRQ_TIME_ACCOUNTING |
744 | 744 | ||
745 | /* | 745 | /* |
746 | * There are no locks covering percpu hardirq/softirq time. | 746 | * There are no locks covering percpu hardirq/softirq time. |
747 | * They are only modified in account_system_vtime, on corresponding CPU | 747 | * They are only modified in account_system_vtime, on corresponding CPU |
748 | * with interrupts disabled. So, writes are safe. | 748 | * with interrupts disabled. So, writes are safe. |
749 | * They are read and saved off onto struct rq in update_rq_clock(). | 749 | * They are read and saved off onto struct rq in update_rq_clock(). |
750 | * This may result in other CPU reading this CPU's irq time and can | 750 | * This may result in other CPU reading this CPU's irq time and can |
751 | * race with irq/account_system_vtime on this CPU. We would either get old | 751 | * race with irq/account_system_vtime on this CPU. We would either get old |
752 | * or new value with a side effect of accounting a slice of irq time to wrong | 752 | * or new value with a side effect of accounting a slice of irq time to wrong |
753 | * task when irq is in progress while we read rq->clock. That is a worthy | 753 | * task when irq is in progress while we read rq->clock. That is a worthy |
754 | * compromise in place of having locks on each irq in account_system_time. | 754 | * compromise in place of having locks on each irq in account_system_time. |
755 | */ | 755 | */ |
756 | static DEFINE_PER_CPU(u64, cpu_hardirq_time); | 756 | static DEFINE_PER_CPU(u64, cpu_hardirq_time); |
757 | static DEFINE_PER_CPU(u64, cpu_softirq_time); | 757 | static DEFINE_PER_CPU(u64, cpu_softirq_time); |
758 | 758 | ||
759 | static DEFINE_PER_CPU(u64, irq_start_time); | 759 | static DEFINE_PER_CPU(u64, irq_start_time); |
760 | static int sched_clock_irqtime; | 760 | static int sched_clock_irqtime; |
761 | 761 | ||
762 | void enable_sched_clock_irqtime(void) | 762 | void enable_sched_clock_irqtime(void) |
763 | { | 763 | { |
764 | sched_clock_irqtime = 1; | 764 | sched_clock_irqtime = 1; |
765 | } | 765 | } |
766 | 766 | ||
767 | void disable_sched_clock_irqtime(void) | 767 | void disable_sched_clock_irqtime(void) |
768 | { | 768 | { |
769 | sched_clock_irqtime = 0; | 769 | sched_clock_irqtime = 0; |
770 | } | 770 | } |
771 | 771 | ||
772 | #ifndef CONFIG_64BIT | 772 | #ifndef CONFIG_64BIT |
773 | static DEFINE_PER_CPU(seqcount_t, irq_time_seq); | 773 | static DEFINE_PER_CPU(seqcount_t, irq_time_seq); |
774 | 774 | ||
775 | static inline void irq_time_write_begin(void) | 775 | static inline void irq_time_write_begin(void) |
776 | { | 776 | { |
777 | __this_cpu_inc(irq_time_seq.sequence); | 777 | __this_cpu_inc(irq_time_seq.sequence); |
778 | smp_wmb(); | 778 | smp_wmb(); |
779 | } | 779 | } |
780 | 780 | ||
781 | static inline void irq_time_write_end(void) | 781 | static inline void irq_time_write_end(void) |
782 | { | 782 | { |
783 | smp_wmb(); | 783 | smp_wmb(); |
784 | __this_cpu_inc(irq_time_seq.sequence); | 784 | __this_cpu_inc(irq_time_seq.sequence); |
785 | } | 785 | } |
786 | 786 | ||
787 | static inline u64 irq_time_read(int cpu) | 787 | static inline u64 irq_time_read(int cpu) |
788 | { | 788 | { |
789 | u64 irq_time; | 789 | u64 irq_time; |
790 | unsigned seq; | 790 | unsigned seq; |
791 | 791 | ||
792 | do { | 792 | do { |
793 | seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu)); | 793 | seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu)); |
794 | irq_time = per_cpu(cpu_softirq_time, cpu) + | 794 | irq_time = per_cpu(cpu_softirq_time, cpu) + |
795 | per_cpu(cpu_hardirq_time, cpu); | 795 | per_cpu(cpu_hardirq_time, cpu); |
796 | } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq)); | 796 | } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq)); |
797 | 797 | ||
798 | return irq_time; | 798 | return irq_time; |
799 | } | 799 | } |
800 | #else /* CONFIG_64BIT */ | 800 | #else /* CONFIG_64BIT */ |
801 | static inline void irq_time_write_begin(void) | 801 | static inline void irq_time_write_begin(void) |
802 | { | 802 | { |
803 | } | 803 | } |
804 | 804 | ||
805 | static inline void irq_time_write_end(void) | 805 | static inline void irq_time_write_end(void) |
806 | { | 806 | { |
807 | } | 807 | } |
808 | 808 | ||
809 | static inline u64 irq_time_read(int cpu) | 809 | static inline u64 irq_time_read(int cpu) |
810 | { | 810 | { |
811 | return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); | 811 | return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); |
812 | } | 812 | } |
813 | #endif /* CONFIG_64BIT */ | 813 | #endif /* CONFIG_64BIT */ |
814 | 814 | ||
815 | /* | 815 | /* |
816 | * Called before incrementing preempt_count on {soft,}irq_enter | 816 | * Called before incrementing preempt_count on {soft,}irq_enter |
817 | * and before decrementing preempt_count on {soft,}irq_exit. | 817 | * and before decrementing preempt_count on {soft,}irq_exit. |
818 | */ | 818 | */ |
819 | void account_system_vtime(struct task_struct *curr) | 819 | void account_system_vtime(struct task_struct *curr) |
820 | { | 820 | { |
821 | unsigned long flags; | 821 | unsigned long flags; |
822 | s64 delta; | 822 | s64 delta; |
823 | int cpu; | 823 | int cpu; |
824 | 824 | ||
825 | if (!sched_clock_irqtime) | 825 | if (!sched_clock_irqtime) |
826 | return; | 826 | return; |
827 | 827 | ||
828 | local_irq_save(flags); | 828 | local_irq_save(flags); |
829 | 829 | ||
830 | cpu = smp_processor_id(); | 830 | cpu = smp_processor_id(); |
831 | delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time); | 831 | delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time); |
832 | __this_cpu_add(irq_start_time, delta); | 832 | __this_cpu_add(irq_start_time, delta); |
833 | 833 | ||
834 | irq_time_write_begin(); | 834 | irq_time_write_begin(); |
835 | /* | 835 | /* |
836 | * We do not account for softirq time from ksoftirqd here. | 836 | * We do not account for softirq time from ksoftirqd here. |
837 | * We want to continue accounting softirq time to ksoftirqd thread | 837 | * We want to continue accounting softirq time to ksoftirqd thread |
838 | * in that case, so as not to confuse scheduler with a special task | 838 | * in that case, so as not to confuse scheduler with a special task |
839 | * that do not consume any time, but still wants to run. | 839 | * that do not consume any time, but still wants to run. |
840 | */ | 840 | */ |
841 | if (hardirq_count()) | 841 | if (hardirq_count()) |
842 | __this_cpu_add(cpu_hardirq_time, delta); | 842 | __this_cpu_add(cpu_hardirq_time, delta); |
843 | else if (in_serving_softirq() && curr != this_cpu_ksoftirqd()) | 843 | else if (in_serving_softirq() && curr != this_cpu_ksoftirqd()) |
844 | __this_cpu_add(cpu_softirq_time, delta); | 844 | __this_cpu_add(cpu_softirq_time, delta); |
845 | 845 | ||
846 | irq_time_write_end(); | 846 | irq_time_write_end(); |
847 | local_irq_restore(flags); | 847 | local_irq_restore(flags); |
848 | } | 848 | } |
849 | EXPORT_SYMBOL_GPL(account_system_vtime); | 849 | EXPORT_SYMBOL_GPL(account_system_vtime); |
850 | 850 | ||
851 | #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ | 851 | #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ |
852 | 852 | ||
853 | #ifdef CONFIG_PARAVIRT | 853 | #ifdef CONFIG_PARAVIRT |
854 | static inline u64 steal_ticks(u64 steal) | 854 | static inline u64 steal_ticks(u64 steal) |
855 | { | 855 | { |
856 | if (unlikely(steal > NSEC_PER_SEC)) | 856 | if (unlikely(steal > NSEC_PER_SEC)) |
857 | return div_u64(steal, TICK_NSEC); | 857 | return div_u64(steal, TICK_NSEC); |
858 | 858 | ||
859 | return __iter_div_u64_rem(steal, TICK_NSEC, &steal); | 859 | return __iter_div_u64_rem(steal, TICK_NSEC, &steal); |
860 | } | 860 | } |
861 | #endif | 861 | #endif |
862 | 862 | ||
863 | static void update_rq_clock_task(struct rq *rq, s64 delta) | 863 | static void update_rq_clock_task(struct rq *rq, s64 delta) |
864 | { | 864 | { |
865 | /* | 865 | /* |
866 | * In theory, the compile should just see 0 here, and optimize out the call | 866 | * In theory, the compile should just see 0 here, and optimize out the call |
867 | * to sched_rt_avg_update. But I don't trust it... | 867 | * to sched_rt_avg_update. But I don't trust it... |
868 | */ | 868 | */ |
869 | #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) | 869 | #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) |
870 | s64 steal = 0, irq_delta = 0; | 870 | s64 steal = 0, irq_delta = 0; |
871 | #endif | 871 | #endif |
872 | #ifdef CONFIG_IRQ_TIME_ACCOUNTING | 872 | #ifdef CONFIG_IRQ_TIME_ACCOUNTING |
873 | irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; | 873 | irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; |
874 | 874 | ||
875 | /* | 875 | /* |
876 | * Since irq_time is only updated on {soft,}irq_exit, we might run into | 876 | * Since irq_time is only updated on {soft,}irq_exit, we might run into |
877 | * this case when a previous update_rq_clock() happened inside a | 877 | * this case when a previous update_rq_clock() happened inside a |
878 | * {soft,}irq region. | 878 | * {soft,}irq region. |
879 | * | 879 | * |
880 | * When this happens, we stop ->clock_task and only update the | 880 | * When this happens, we stop ->clock_task and only update the |
881 | * prev_irq_time stamp to account for the part that fit, so that a next | 881 | * prev_irq_time stamp to account for the part that fit, so that a next |
882 | * update will consume the rest. This ensures ->clock_task is | 882 | * update will consume the rest. This ensures ->clock_task is |
883 | * monotonic. | 883 | * monotonic. |
884 | * | 884 | * |
885 | * It does however cause some slight miss-attribution of {soft,}irq | 885 | * It does however cause some slight miss-attribution of {soft,}irq |
886 | * time, a more accurate solution would be to update the irq_time using | 886 | * time, a more accurate solution would be to update the irq_time using |
887 | * the current rq->clock timestamp, except that would require using | 887 | * the current rq->clock timestamp, except that would require using |
888 | * atomic ops. | 888 | * atomic ops. |
889 | */ | 889 | */ |
890 | if (irq_delta > delta) | 890 | if (irq_delta > delta) |
891 | irq_delta = delta; | 891 | irq_delta = delta; |
892 | 892 | ||
893 | rq->prev_irq_time += irq_delta; | 893 | rq->prev_irq_time += irq_delta; |
894 | delta -= irq_delta; | 894 | delta -= irq_delta; |
895 | #endif | 895 | #endif |
896 | #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING | 896 | #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING |
897 | if (static_branch((¶virt_steal_rq_enabled))) { | 897 | if (static_branch((¶virt_steal_rq_enabled))) { |
898 | u64 st; | 898 | u64 st; |
899 | 899 | ||
900 | steal = paravirt_steal_clock(cpu_of(rq)); | 900 | steal = paravirt_steal_clock(cpu_of(rq)); |
901 | steal -= rq->prev_steal_time_rq; | 901 | steal -= rq->prev_steal_time_rq; |
902 | 902 | ||
903 | if (unlikely(steal > delta)) | 903 | if (unlikely(steal > delta)) |
904 | steal = delta; | 904 | steal = delta; |
905 | 905 | ||
906 | st = steal_ticks(steal); | 906 | st = steal_ticks(steal); |
907 | steal = st * TICK_NSEC; | 907 | steal = st * TICK_NSEC; |
908 | 908 | ||
909 | rq->prev_steal_time_rq += steal; | 909 | rq->prev_steal_time_rq += steal; |
910 | 910 | ||
911 | delta -= steal; | 911 | delta -= steal; |
912 | } | 912 | } |
913 | #endif | 913 | #endif |
914 | 914 | ||
915 | rq->clock_task += delta; | 915 | rq->clock_task += delta; |
916 | 916 | ||
917 | #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) | 917 | #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) |
918 | if ((irq_delta + steal) && sched_feat(NONTASK_POWER)) | 918 | if ((irq_delta + steal) && sched_feat(NONTASK_POWER)) |
919 | sched_rt_avg_update(rq, irq_delta + steal); | 919 | sched_rt_avg_update(rq, irq_delta + steal); |
920 | #endif | 920 | #endif |
921 | } | 921 | } |
922 | 922 | ||
923 | #ifdef CONFIG_IRQ_TIME_ACCOUNTING | 923 | #ifdef CONFIG_IRQ_TIME_ACCOUNTING |
924 | static int irqtime_account_hi_update(void) | 924 | static int irqtime_account_hi_update(void) |
925 | { | 925 | { |
926 | u64 *cpustat = kcpustat_this_cpu->cpustat; | 926 | u64 *cpustat = kcpustat_this_cpu->cpustat; |
927 | unsigned long flags; | 927 | unsigned long flags; |
928 | u64 latest_ns; | 928 | u64 latest_ns; |
929 | int ret = 0; | 929 | int ret = 0; |
930 | 930 | ||
931 | local_irq_save(flags); | 931 | local_irq_save(flags); |
932 | latest_ns = this_cpu_read(cpu_hardirq_time); | 932 | latest_ns = this_cpu_read(cpu_hardirq_time); |
933 | if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ]) | 933 | if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ]) |
934 | ret = 1; | 934 | ret = 1; |
935 | local_irq_restore(flags); | 935 | local_irq_restore(flags); |
936 | return ret; | 936 | return ret; |
937 | } | 937 | } |
938 | 938 | ||
939 | static int irqtime_account_si_update(void) | 939 | static int irqtime_account_si_update(void) |
940 | { | 940 | { |
941 | u64 *cpustat = kcpustat_this_cpu->cpustat; | 941 | u64 *cpustat = kcpustat_this_cpu->cpustat; |
942 | unsigned long flags; | 942 | unsigned long flags; |
943 | u64 latest_ns; | 943 | u64 latest_ns; |
944 | int ret = 0; | 944 | int ret = 0; |
945 | 945 | ||
946 | local_irq_save(flags); | 946 | local_irq_save(flags); |
947 | latest_ns = this_cpu_read(cpu_softirq_time); | 947 | latest_ns = this_cpu_read(cpu_softirq_time); |
948 | if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ]) | 948 | if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ]) |
949 | ret = 1; | 949 | ret = 1; |
950 | local_irq_restore(flags); | 950 | local_irq_restore(flags); |
951 | return ret; | 951 | return ret; |
952 | } | 952 | } |
953 | 953 | ||
954 | #else /* CONFIG_IRQ_TIME_ACCOUNTING */ | 954 | #else /* CONFIG_IRQ_TIME_ACCOUNTING */ |
955 | 955 | ||
956 | #define sched_clock_irqtime (0) | 956 | #define sched_clock_irqtime (0) |
957 | 957 | ||
958 | #endif | 958 | #endif |
959 | 959 | ||
960 | void sched_set_stop_task(int cpu, struct task_struct *stop) | 960 | void sched_set_stop_task(int cpu, struct task_struct *stop) |
961 | { | 961 | { |
962 | struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; | 962 | struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; |
963 | struct task_struct *old_stop = cpu_rq(cpu)->stop; | 963 | struct task_struct *old_stop = cpu_rq(cpu)->stop; |
964 | 964 | ||
965 | if (stop) { | 965 | if (stop) { |
966 | /* | 966 | /* |
967 | * Make it appear like a SCHED_FIFO task, its something | 967 | * Make it appear like a SCHED_FIFO task, its something |
968 | * userspace knows about and won't get confused about. | 968 | * userspace knows about and won't get confused about. |
969 | * | 969 | * |
970 | * Also, it will make PI more or less work without too | 970 | * Also, it will make PI more or less work without too |
971 | * much confusion -- but then, stop work should not | 971 | * much confusion -- but then, stop work should not |
972 | * rely on PI working anyway. | 972 | * rely on PI working anyway. |
973 | */ | 973 | */ |
974 | sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); | 974 | sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); |
975 | 975 | ||
976 | stop->sched_class = &stop_sched_class; | 976 | stop->sched_class = &stop_sched_class; |
977 | } | 977 | } |
978 | 978 | ||
979 | cpu_rq(cpu)->stop = stop; | 979 | cpu_rq(cpu)->stop = stop; |
980 | 980 | ||
981 | if (old_stop) { | 981 | if (old_stop) { |
982 | /* | 982 | /* |
983 | * Reset it back to a normal scheduling class so that | 983 | * Reset it back to a normal scheduling class so that |
984 | * it can die in pieces. | 984 | * it can die in pieces. |
985 | */ | 985 | */ |
986 | old_stop->sched_class = &rt_sched_class; | 986 | old_stop->sched_class = &rt_sched_class; |
987 | } | 987 | } |
988 | } | 988 | } |
989 | 989 | ||
990 | /* | 990 | /* |
991 | * __normal_prio - return the priority that is based on the static prio | 991 | * __normal_prio - return the priority that is based on the static prio |
992 | */ | 992 | */ |
993 | static inline int __normal_prio(struct task_struct *p) | 993 | static inline int __normal_prio(struct task_struct *p) |
994 | { | 994 | { |
995 | return p->static_prio; | 995 | return p->static_prio; |
996 | } | 996 | } |
997 | 997 | ||
998 | /* | 998 | /* |
999 | * Calculate the expected normal priority: i.e. priority | 999 | * Calculate the expected normal priority: i.e. priority |
1000 | * without taking RT-inheritance into account. Might be | 1000 | * without taking RT-inheritance into account. Might be |
1001 | * boosted by interactivity modifiers. Changes upon fork, | 1001 | * boosted by interactivity modifiers. Changes upon fork, |
1002 | * setprio syscalls, and whenever the interactivity | 1002 | * setprio syscalls, and whenever the interactivity |
1003 | * estimator recalculates. | 1003 | * estimator recalculates. |
1004 | */ | 1004 | */ |
1005 | static inline int normal_prio(struct task_struct *p) | 1005 | static inline int normal_prio(struct task_struct *p) |
1006 | { | 1006 | { |
1007 | int prio; | 1007 | int prio; |
1008 | 1008 | ||
1009 | if (task_has_rt_policy(p)) | 1009 | if (task_has_rt_policy(p)) |
1010 | prio = MAX_RT_PRIO-1 - p->rt_priority; | 1010 | prio = MAX_RT_PRIO-1 - p->rt_priority; |
1011 | else | 1011 | else |
1012 | prio = __normal_prio(p); | 1012 | prio = __normal_prio(p); |
1013 | return prio; | 1013 | return prio; |
1014 | } | 1014 | } |
1015 | 1015 | ||
1016 | /* | 1016 | /* |
1017 | * Calculate the current priority, i.e. the priority | 1017 | * Calculate the current priority, i.e. the priority |
1018 | * taken into account by the scheduler. This value might | 1018 | * taken into account by the scheduler. This value might |
1019 | * be boosted by RT tasks, or might be boosted by | 1019 | * be boosted by RT tasks, or might be boosted by |
1020 | * interactivity modifiers. Will be RT if the task got | 1020 | * interactivity modifiers. Will be RT if the task got |
1021 | * RT-boosted. If not then it returns p->normal_prio. | 1021 | * RT-boosted. If not then it returns p->normal_prio. |
1022 | */ | 1022 | */ |
1023 | static int effective_prio(struct task_struct *p) | 1023 | static int effective_prio(struct task_struct *p) |
1024 | { | 1024 | { |
1025 | p->normal_prio = normal_prio(p); | 1025 | p->normal_prio = normal_prio(p); |
1026 | /* | 1026 | /* |
1027 | * If we are RT tasks or we were boosted to RT priority, | 1027 | * If we are RT tasks or we were boosted to RT priority, |
1028 | * keep the priority unchanged. Otherwise, update priority | 1028 | * keep the priority unchanged. Otherwise, update priority |
1029 | * to the normal priority: | 1029 | * to the normal priority: |
1030 | */ | 1030 | */ |
1031 | if (!rt_prio(p->prio)) | 1031 | if (!rt_prio(p->prio)) |
1032 | return p->normal_prio; | 1032 | return p->normal_prio; |
1033 | return p->prio; | 1033 | return p->prio; |
1034 | } | 1034 | } |
1035 | 1035 | ||
1036 | /** | 1036 | /** |
1037 | * task_curr - is this task currently executing on a CPU? | 1037 | * task_curr - is this task currently executing on a CPU? |
1038 | * @p: the task in question. | 1038 | * @p: the task in question. |
1039 | */ | 1039 | */ |
1040 | inline int task_curr(const struct task_struct *p) | 1040 | inline int task_curr(const struct task_struct *p) |
1041 | { | 1041 | { |
1042 | return cpu_curr(task_cpu(p)) == p; | 1042 | return cpu_curr(task_cpu(p)) == p; |
1043 | } | 1043 | } |
1044 | 1044 | ||
1045 | static inline void check_class_changed(struct rq *rq, struct task_struct *p, | 1045 | static inline void check_class_changed(struct rq *rq, struct task_struct *p, |
1046 | const struct sched_class *prev_class, | 1046 | const struct sched_class *prev_class, |
1047 | int oldprio) | 1047 | int oldprio) |
1048 | { | 1048 | { |
1049 | if (prev_class != p->sched_class) { | 1049 | if (prev_class != p->sched_class) { |
1050 | if (prev_class->switched_from) | 1050 | if (prev_class->switched_from) |
1051 | prev_class->switched_from(rq, p); | 1051 | prev_class->switched_from(rq, p); |
1052 | p->sched_class->switched_to(rq, p); | 1052 | p->sched_class->switched_to(rq, p); |
1053 | } else if (oldprio != p->prio) | 1053 | } else if (oldprio != p->prio) |
1054 | p->sched_class->prio_changed(rq, p, oldprio); | 1054 | p->sched_class->prio_changed(rq, p, oldprio); |
1055 | } | 1055 | } |
1056 | 1056 | ||
1057 | void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) | 1057 | void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) |
1058 | { | 1058 | { |
1059 | const struct sched_class *class; | 1059 | const struct sched_class *class; |
1060 | 1060 | ||
1061 | if (p->sched_class == rq->curr->sched_class) { | 1061 | if (p->sched_class == rq->curr->sched_class) { |
1062 | rq->curr->sched_class->check_preempt_curr(rq, p, flags); | 1062 | rq->curr->sched_class->check_preempt_curr(rq, p, flags); |
1063 | } else { | 1063 | } else { |
1064 | for_each_class(class) { | 1064 | for_each_class(class) { |
1065 | if (class == rq->curr->sched_class) | 1065 | if (class == rq->curr->sched_class) |
1066 | break; | 1066 | break; |
1067 | if (class == p->sched_class) { | 1067 | if (class == p->sched_class) { |
1068 | resched_task(rq->curr); | 1068 | resched_task(rq->curr); |
1069 | break; | 1069 | break; |
1070 | } | 1070 | } |
1071 | } | 1071 | } |
1072 | } | 1072 | } |
1073 | 1073 | ||
1074 | /* | 1074 | /* |
1075 | * A queue event has occurred, and we're going to schedule. In | 1075 | * A queue event has occurred, and we're going to schedule. In |
1076 | * this case, we can save a useless back to back clock update. | 1076 | * this case, we can save a useless back to back clock update. |
1077 | */ | 1077 | */ |
1078 | if (rq->curr->on_rq && test_tsk_need_resched(rq->curr)) | 1078 | if (rq->curr->on_rq && test_tsk_need_resched(rq->curr)) |
1079 | rq->skip_clock_update = 1; | 1079 | rq->skip_clock_update = 1; |
1080 | } | 1080 | } |
1081 | 1081 | ||
1082 | #ifdef CONFIG_SMP | 1082 | #ifdef CONFIG_SMP |
1083 | void set_task_cpu(struct task_struct *p, unsigned int new_cpu) | 1083 | void set_task_cpu(struct task_struct *p, unsigned int new_cpu) |
1084 | { | 1084 | { |
1085 | #ifdef CONFIG_SCHED_DEBUG | 1085 | #ifdef CONFIG_SCHED_DEBUG |
1086 | /* | 1086 | /* |
1087 | * We should never call set_task_cpu() on a blocked task, | 1087 | * We should never call set_task_cpu() on a blocked task, |
1088 | * ttwu() will sort out the placement. | 1088 | * ttwu() will sort out the placement. |
1089 | */ | 1089 | */ |
1090 | WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && | 1090 | WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && |
1091 | !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE)); | 1091 | !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE)); |
1092 | 1092 | ||
1093 | #ifdef CONFIG_LOCKDEP | 1093 | #ifdef CONFIG_LOCKDEP |
1094 | /* | 1094 | /* |
1095 | * The caller should hold either p->pi_lock or rq->lock, when changing | 1095 | * The caller should hold either p->pi_lock or rq->lock, when changing |
1096 | * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. | 1096 | * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. |
1097 | * | 1097 | * |
1098 | * sched_move_task() holds both and thus holding either pins the cgroup, | 1098 | * sched_move_task() holds both and thus holding either pins the cgroup, |
1099 | * see set_task_rq(). | 1099 | * see set_task_rq(). |
1100 | * | 1100 | * |
1101 | * Furthermore, all task_rq users should acquire both locks, see | 1101 | * Furthermore, all task_rq users should acquire both locks, see |
1102 | * task_rq_lock(). | 1102 | * task_rq_lock(). |
1103 | */ | 1103 | */ |
1104 | WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || | 1104 | WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || |
1105 | lockdep_is_held(&task_rq(p)->lock))); | 1105 | lockdep_is_held(&task_rq(p)->lock))); |
1106 | #endif | 1106 | #endif |
1107 | #endif | 1107 | #endif |
1108 | 1108 | ||
1109 | trace_sched_migrate_task(p, new_cpu); | 1109 | trace_sched_migrate_task(p, new_cpu); |
1110 | 1110 | ||
1111 | if (task_cpu(p) != new_cpu) { | 1111 | if (task_cpu(p) != new_cpu) { |
1112 | p->se.nr_migrations++; | 1112 | p->se.nr_migrations++; |
1113 | perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0); | 1113 | perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0); |
1114 | } | 1114 | } |
1115 | 1115 | ||
1116 | __set_task_cpu(p, new_cpu); | 1116 | __set_task_cpu(p, new_cpu); |
1117 | } | 1117 | } |
1118 | 1118 | ||
1119 | struct migration_arg { | 1119 | struct migration_arg { |
1120 | struct task_struct *task; | 1120 | struct task_struct *task; |
1121 | int dest_cpu; | 1121 | int dest_cpu; |
1122 | }; | 1122 | }; |
1123 | 1123 | ||
1124 | static int migration_cpu_stop(void *data); | 1124 | static int migration_cpu_stop(void *data); |
1125 | 1125 | ||
1126 | /* | 1126 | /* |
1127 | * wait_task_inactive - wait for a thread to unschedule. | 1127 | * wait_task_inactive - wait for a thread to unschedule. |
1128 | * | 1128 | * |
1129 | * If @match_state is nonzero, it's the @p->state value just checked and | 1129 | * If @match_state is nonzero, it's the @p->state value just checked and |
1130 | * not expected to change. If it changes, i.e. @p might have woken up, | 1130 | * not expected to change. If it changes, i.e. @p might have woken up, |
1131 | * then return zero. When we succeed in waiting for @p to be off its CPU, | 1131 | * then return zero. When we succeed in waiting for @p to be off its CPU, |
1132 | * we return a positive number (its total switch count). If a second call | 1132 | * we return a positive number (its total switch count). If a second call |
1133 | * a short while later returns the same number, the caller can be sure that | 1133 | * a short while later returns the same number, the caller can be sure that |
1134 | * @p has remained unscheduled the whole time. | 1134 | * @p has remained unscheduled the whole time. |
1135 | * | 1135 | * |
1136 | * The caller must ensure that the task *will* unschedule sometime soon, | 1136 | * The caller must ensure that the task *will* unschedule sometime soon, |
1137 | * else this function might spin for a *long* time. This function can't | 1137 | * else this function might spin for a *long* time. This function can't |
1138 | * be called with interrupts off, or it may introduce deadlock with | 1138 | * be called with interrupts off, or it may introduce deadlock with |
1139 | * smp_call_function() if an IPI is sent by the same process we are | 1139 | * smp_call_function() if an IPI is sent by the same process we are |
1140 | * waiting to become inactive. | 1140 | * waiting to become inactive. |
1141 | */ | 1141 | */ |
1142 | unsigned long wait_task_inactive(struct task_struct *p, long match_state) | 1142 | unsigned long wait_task_inactive(struct task_struct *p, long match_state) |
1143 | { | 1143 | { |
1144 | unsigned long flags; | 1144 | unsigned long flags; |
1145 | int running, on_rq; | 1145 | int running, on_rq; |
1146 | unsigned long ncsw; | 1146 | unsigned long ncsw; |
1147 | struct rq *rq; | 1147 | struct rq *rq; |
1148 | 1148 | ||
1149 | for (;;) { | 1149 | for (;;) { |
1150 | /* | 1150 | /* |
1151 | * We do the initial early heuristics without holding | 1151 | * We do the initial early heuristics without holding |
1152 | * any task-queue locks at all. We'll only try to get | 1152 | * any task-queue locks at all. We'll only try to get |
1153 | * the runqueue lock when things look like they will | 1153 | * the runqueue lock when things look like they will |
1154 | * work out! | 1154 | * work out! |
1155 | */ | 1155 | */ |
1156 | rq = task_rq(p); | 1156 | rq = task_rq(p); |
1157 | 1157 | ||
1158 | /* | 1158 | /* |
1159 | * If the task is actively running on another CPU | 1159 | * If the task is actively running on another CPU |
1160 | * still, just relax and busy-wait without holding | 1160 | * still, just relax and busy-wait without holding |
1161 | * any locks. | 1161 | * any locks. |
1162 | * | 1162 | * |
1163 | * NOTE! Since we don't hold any locks, it's not | 1163 | * NOTE! Since we don't hold any locks, it's not |
1164 | * even sure that "rq" stays as the right runqueue! | 1164 | * even sure that "rq" stays as the right runqueue! |
1165 | * But we don't care, since "task_running()" will | 1165 | * But we don't care, since "task_running()" will |
1166 | * return false if the runqueue has changed and p | 1166 | * return false if the runqueue has changed and p |
1167 | * is actually now running somewhere else! | 1167 | * is actually now running somewhere else! |
1168 | */ | 1168 | */ |
1169 | while (task_running(rq, p)) { | 1169 | while (task_running(rq, p)) { |
1170 | if (match_state && unlikely(p->state != match_state)) | 1170 | if (match_state && unlikely(p->state != match_state)) |
1171 | return 0; | 1171 | return 0; |
1172 | cpu_relax(); | 1172 | cpu_relax(); |
1173 | } | 1173 | } |
1174 | 1174 | ||
1175 | /* | 1175 | /* |
1176 | * Ok, time to look more closely! We need the rq | 1176 | * Ok, time to look more closely! We need the rq |
1177 | * lock now, to be *sure*. If we're wrong, we'll | 1177 | * lock now, to be *sure*. If we're wrong, we'll |
1178 | * just go back and repeat. | 1178 | * just go back and repeat. |
1179 | */ | 1179 | */ |
1180 | rq = task_rq_lock(p, &flags); | 1180 | rq = task_rq_lock(p, &flags); |
1181 | trace_sched_wait_task(p); | 1181 | trace_sched_wait_task(p); |
1182 | running = task_running(rq, p); | 1182 | running = task_running(rq, p); |
1183 | on_rq = p->on_rq; | 1183 | on_rq = p->on_rq; |
1184 | ncsw = 0; | 1184 | ncsw = 0; |
1185 | if (!match_state || p->state == match_state) | 1185 | if (!match_state || p->state == match_state) |
1186 | ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ | 1186 | ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ |
1187 | task_rq_unlock(rq, p, &flags); | 1187 | task_rq_unlock(rq, p, &flags); |
1188 | 1188 | ||
1189 | /* | 1189 | /* |
1190 | * If it changed from the expected state, bail out now. | 1190 | * If it changed from the expected state, bail out now. |
1191 | */ | 1191 | */ |
1192 | if (unlikely(!ncsw)) | 1192 | if (unlikely(!ncsw)) |
1193 | break; | 1193 | break; |
1194 | 1194 | ||
1195 | /* | 1195 | /* |
1196 | * Was it really running after all now that we | 1196 | * Was it really running after all now that we |
1197 | * checked with the proper locks actually held? | 1197 | * checked with the proper locks actually held? |
1198 | * | 1198 | * |
1199 | * Oops. Go back and try again.. | 1199 | * Oops. Go back and try again.. |
1200 | */ | 1200 | */ |
1201 | if (unlikely(running)) { | 1201 | if (unlikely(running)) { |
1202 | cpu_relax(); | 1202 | cpu_relax(); |
1203 | continue; | 1203 | continue; |
1204 | } | 1204 | } |
1205 | 1205 | ||
1206 | /* | 1206 | /* |
1207 | * It's not enough that it's not actively running, | 1207 | * It's not enough that it's not actively running, |
1208 | * it must be off the runqueue _entirely_, and not | 1208 | * it must be off the runqueue _entirely_, and not |
1209 | * preempted! | 1209 | * preempted! |
1210 | * | 1210 | * |
1211 | * So if it was still runnable (but just not actively | 1211 | * So if it was still runnable (but just not actively |
1212 | * running right now), it's preempted, and we should | 1212 | * running right now), it's preempted, and we should |
1213 | * yield - it could be a while. | 1213 | * yield - it could be a while. |
1214 | */ | 1214 | */ |
1215 | if (unlikely(on_rq)) { | 1215 | if (unlikely(on_rq)) { |
1216 | ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); | 1216 | ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); |
1217 | 1217 | ||
1218 | set_current_state(TASK_UNINTERRUPTIBLE); | 1218 | set_current_state(TASK_UNINTERRUPTIBLE); |
1219 | schedule_hrtimeout(&to, HRTIMER_MODE_REL); | 1219 | schedule_hrtimeout(&to, HRTIMER_MODE_REL); |
1220 | continue; | 1220 | continue; |
1221 | } | 1221 | } |
1222 | 1222 | ||
1223 | /* | 1223 | /* |
1224 | * Ahh, all good. It wasn't running, and it wasn't | 1224 | * Ahh, all good. It wasn't running, and it wasn't |
1225 | * runnable, which means that it will never become | 1225 | * runnable, which means that it will never become |
1226 | * running in the future either. We're all done! | 1226 | * running in the future either. We're all done! |
1227 | */ | 1227 | */ |
1228 | break; | 1228 | break; |
1229 | } | 1229 | } |
1230 | 1230 | ||
1231 | return ncsw; | 1231 | return ncsw; |
1232 | } | 1232 | } |
1233 | 1233 | ||
1234 | /*** | 1234 | /*** |
1235 | * kick_process - kick a running thread to enter/exit the kernel | 1235 | * kick_process - kick a running thread to enter/exit the kernel |
1236 | * @p: the to-be-kicked thread | 1236 | * @p: the to-be-kicked thread |
1237 | * | 1237 | * |
1238 | * Cause a process which is running on another CPU to enter | 1238 | * Cause a process which is running on another CPU to enter |
1239 | * kernel-mode, without any delay. (to get signals handled.) | 1239 | * kernel-mode, without any delay. (to get signals handled.) |
1240 | * | 1240 | * |
1241 | * NOTE: this function doesn't have to take the runqueue lock, | 1241 | * NOTE: this function doesn't have to take the runqueue lock, |
1242 | * because all it wants to ensure is that the remote task enters | 1242 | * because all it wants to ensure is that the remote task enters |
1243 | * the kernel. If the IPI races and the task has been migrated | 1243 | * the kernel. If the IPI races and the task has been migrated |
1244 | * to another CPU then no harm is done and the purpose has been | 1244 | * to another CPU then no harm is done and the purpose has been |
1245 | * achieved as well. | 1245 | * achieved as well. |
1246 | */ | 1246 | */ |
1247 | void kick_process(struct task_struct *p) | 1247 | void kick_process(struct task_struct *p) |
1248 | { | 1248 | { |
1249 | int cpu; | 1249 | int cpu; |
1250 | 1250 | ||
1251 | preempt_disable(); | 1251 | preempt_disable(); |
1252 | cpu = task_cpu(p); | 1252 | cpu = task_cpu(p); |
1253 | if ((cpu != smp_processor_id()) && task_curr(p)) | 1253 | if ((cpu != smp_processor_id()) && task_curr(p)) |
1254 | smp_send_reschedule(cpu); | 1254 | smp_send_reschedule(cpu); |
1255 | preempt_enable(); | 1255 | preempt_enable(); |
1256 | } | 1256 | } |
1257 | EXPORT_SYMBOL_GPL(kick_process); | 1257 | EXPORT_SYMBOL_GPL(kick_process); |
1258 | #endif /* CONFIG_SMP */ | 1258 | #endif /* CONFIG_SMP */ |
1259 | 1259 | ||
1260 | #ifdef CONFIG_SMP | 1260 | #ifdef CONFIG_SMP |
1261 | /* | 1261 | /* |
1262 | * ->cpus_allowed is protected by both rq->lock and p->pi_lock | 1262 | * ->cpus_allowed is protected by both rq->lock and p->pi_lock |
1263 | */ | 1263 | */ |
1264 | static int select_fallback_rq(int cpu, struct task_struct *p) | 1264 | static int select_fallback_rq(int cpu, struct task_struct *p) |
1265 | { | 1265 | { |
1266 | int dest_cpu; | 1266 | int dest_cpu; |
1267 | const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu)); | 1267 | const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu)); |
1268 | 1268 | ||
1269 | /* Look for allowed, online CPU in same node. */ | 1269 | /* Look for allowed, online CPU in same node. */ |
1270 | for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask) | 1270 | for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask) |
1271 | if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) | 1271 | if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) |
1272 | return dest_cpu; | 1272 | return dest_cpu; |
1273 | 1273 | ||
1274 | /* Any allowed, online CPU? */ | 1274 | /* Any allowed, online CPU? */ |
1275 | dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask); | 1275 | dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask); |
1276 | if (dest_cpu < nr_cpu_ids) | 1276 | if (dest_cpu < nr_cpu_ids) |
1277 | return dest_cpu; | 1277 | return dest_cpu; |
1278 | 1278 | ||
1279 | /* No more Mr. Nice Guy. */ | 1279 | /* No more Mr. Nice Guy. */ |
1280 | dest_cpu = cpuset_cpus_allowed_fallback(p); | 1280 | dest_cpu = cpuset_cpus_allowed_fallback(p); |
1281 | /* | 1281 | /* |
1282 | * Don't tell them about moving exiting tasks or | 1282 | * Don't tell them about moving exiting tasks or |
1283 | * kernel threads (both mm NULL), since they never | 1283 | * kernel threads (both mm NULL), since they never |
1284 | * leave kernel. | 1284 | * leave kernel. |
1285 | */ | 1285 | */ |
1286 | if (p->mm && printk_ratelimit()) { | 1286 | if (p->mm && printk_ratelimit()) { |
1287 | printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n", | 1287 | printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n", |
1288 | task_pid_nr(p), p->comm, cpu); | 1288 | task_pid_nr(p), p->comm, cpu); |
1289 | } | 1289 | } |
1290 | 1290 | ||
1291 | return dest_cpu; | 1291 | return dest_cpu; |
1292 | } | 1292 | } |
1293 | 1293 | ||
1294 | /* | 1294 | /* |
1295 | * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. | 1295 | * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. |
1296 | */ | 1296 | */ |
1297 | static inline | 1297 | static inline |
1298 | int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags) | 1298 | int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags) |
1299 | { | 1299 | { |
1300 | int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags); | 1300 | int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags); |
1301 | 1301 | ||
1302 | /* | 1302 | /* |
1303 | * In order not to call set_task_cpu() on a blocking task we need | 1303 | * In order not to call set_task_cpu() on a blocking task we need |
1304 | * to rely on ttwu() to place the task on a valid ->cpus_allowed | 1304 | * to rely on ttwu() to place the task on a valid ->cpus_allowed |
1305 | * cpu. | 1305 | * cpu. |
1306 | * | 1306 | * |
1307 | * Since this is common to all placement strategies, this lives here. | 1307 | * Since this is common to all placement strategies, this lives here. |
1308 | * | 1308 | * |
1309 | * [ this allows ->select_task() to simply return task_cpu(p) and | 1309 | * [ this allows ->select_task() to simply return task_cpu(p) and |
1310 | * not worry about this generic constraint ] | 1310 | * not worry about this generic constraint ] |
1311 | */ | 1311 | */ |
1312 | if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || | 1312 | if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || |
1313 | !cpu_online(cpu))) | 1313 | !cpu_online(cpu))) |
1314 | cpu = select_fallback_rq(task_cpu(p), p); | 1314 | cpu = select_fallback_rq(task_cpu(p), p); |
1315 | 1315 | ||
1316 | return cpu; | 1316 | return cpu; |
1317 | } | 1317 | } |
1318 | 1318 | ||
1319 | static void update_avg(u64 *avg, u64 sample) | 1319 | static void update_avg(u64 *avg, u64 sample) |
1320 | { | 1320 | { |
1321 | s64 diff = sample - *avg; | 1321 | s64 diff = sample - *avg; |
1322 | *avg += diff >> 3; | 1322 | *avg += diff >> 3; |
1323 | } | 1323 | } |
1324 | #endif | 1324 | #endif |
1325 | 1325 | ||
1326 | static void | 1326 | static void |
1327 | ttwu_stat(struct task_struct *p, int cpu, int wake_flags) | 1327 | ttwu_stat(struct task_struct *p, int cpu, int wake_flags) |
1328 | { | 1328 | { |
1329 | #ifdef CONFIG_SCHEDSTATS | 1329 | #ifdef CONFIG_SCHEDSTATS |
1330 | struct rq *rq = this_rq(); | 1330 | struct rq *rq = this_rq(); |
1331 | 1331 | ||
1332 | #ifdef CONFIG_SMP | 1332 | #ifdef CONFIG_SMP |
1333 | int this_cpu = smp_processor_id(); | 1333 | int this_cpu = smp_processor_id(); |
1334 | 1334 | ||
1335 | if (cpu == this_cpu) { | 1335 | if (cpu == this_cpu) { |
1336 | schedstat_inc(rq, ttwu_local); | 1336 | schedstat_inc(rq, ttwu_local); |
1337 | schedstat_inc(p, se.statistics.nr_wakeups_local); | 1337 | schedstat_inc(p, se.statistics.nr_wakeups_local); |
1338 | } else { | 1338 | } else { |
1339 | struct sched_domain *sd; | 1339 | struct sched_domain *sd; |
1340 | 1340 | ||
1341 | schedstat_inc(p, se.statistics.nr_wakeups_remote); | 1341 | schedstat_inc(p, se.statistics.nr_wakeups_remote); |
1342 | rcu_read_lock(); | 1342 | rcu_read_lock(); |
1343 | for_each_domain(this_cpu, sd) { | 1343 | for_each_domain(this_cpu, sd) { |
1344 | if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { | 1344 | if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { |
1345 | schedstat_inc(sd, ttwu_wake_remote); | 1345 | schedstat_inc(sd, ttwu_wake_remote); |
1346 | break; | 1346 | break; |
1347 | } | 1347 | } |
1348 | } | 1348 | } |
1349 | rcu_read_unlock(); | 1349 | rcu_read_unlock(); |
1350 | } | 1350 | } |
1351 | 1351 | ||
1352 | if (wake_flags & WF_MIGRATED) | 1352 | if (wake_flags & WF_MIGRATED) |
1353 | schedstat_inc(p, se.statistics.nr_wakeups_migrate); | 1353 | schedstat_inc(p, se.statistics.nr_wakeups_migrate); |
1354 | 1354 | ||
1355 | #endif /* CONFIG_SMP */ | 1355 | #endif /* CONFIG_SMP */ |
1356 | 1356 | ||
1357 | schedstat_inc(rq, ttwu_count); | 1357 | schedstat_inc(rq, ttwu_count); |
1358 | schedstat_inc(p, se.statistics.nr_wakeups); | 1358 | schedstat_inc(p, se.statistics.nr_wakeups); |
1359 | 1359 | ||
1360 | if (wake_flags & WF_SYNC) | 1360 | if (wake_flags & WF_SYNC) |
1361 | schedstat_inc(p, se.statistics.nr_wakeups_sync); | 1361 | schedstat_inc(p, se.statistics.nr_wakeups_sync); |
1362 | 1362 | ||
1363 | #endif /* CONFIG_SCHEDSTATS */ | 1363 | #endif /* CONFIG_SCHEDSTATS */ |
1364 | } | 1364 | } |
1365 | 1365 | ||
1366 | static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) | 1366 | static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) |
1367 | { | 1367 | { |
1368 | activate_task(rq, p, en_flags); | 1368 | activate_task(rq, p, en_flags); |
1369 | p->on_rq = 1; | 1369 | p->on_rq = 1; |
1370 | 1370 | ||
1371 | /* if a worker is waking up, notify workqueue */ | 1371 | /* if a worker is waking up, notify workqueue */ |
1372 | if (p->flags & PF_WQ_WORKER) | 1372 | if (p->flags & PF_WQ_WORKER) |
1373 | wq_worker_waking_up(p, cpu_of(rq)); | 1373 | wq_worker_waking_up(p, cpu_of(rq)); |
1374 | } | 1374 | } |
1375 | 1375 | ||
1376 | /* | 1376 | /* |
1377 | * Mark the task runnable and perform wakeup-preemption. | 1377 | * Mark the task runnable and perform wakeup-preemption. |
1378 | */ | 1378 | */ |
1379 | static void | 1379 | static void |
1380 | ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) | 1380 | ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) |
1381 | { | 1381 | { |
1382 | trace_sched_wakeup(p, true); | 1382 | trace_sched_wakeup(p, true); |
1383 | check_preempt_curr(rq, p, wake_flags); | 1383 | check_preempt_curr(rq, p, wake_flags); |
1384 | 1384 | ||
1385 | p->state = TASK_RUNNING; | 1385 | p->state = TASK_RUNNING; |
1386 | #ifdef CONFIG_SMP | 1386 | #ifdef CONFIG_SMP |
1387 | if (p->sched_class->task_woken) | 1387 | if (p->sched_class->task_woken) |
1388 | p->sched_class->task_woken(rq, p); | 1388 | p->sched_class->task_woken(rq, p); |
1389 | 1389 | ||
1390 | if (rq->idle_stamp) { | 1390 | if (rq->idle_stamp) { |
1391 | u64 delta = rq->clock - rq->idle_stamp; | 1391 | u64 delta = rq->clock - rq->idle_stamp; |
1392 | u64 max = 2*sysctl_sched_migration_cost; | 1392 | u64 max = 2*sysctl_sched_migration_cost; |
1393 | 1393 | ||
1394 | if (delta > max) | 1394 | if (delta > max) |
1395 | rq->avg_idle = max; | 1395 | rq->avg_idle = max; |
1396 | else | 1396 | else |
1397 | update_avg(&rq->avg_idle, delta); | 1397 | update_avg(&rq->avg_idle, delta); |
1398 | rq->idle_stamp = 0; | 1398 | rq->idle_stamp = 0; |
1399 | } | 1399 | } |
1400 | #endif | 1400 | #endif |
1401 | } | 1401 | } |
1402 | 1402 | ||
1403 | static void | 1403 | static void |
1404 | ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) | 1404 | ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) |
1405 | { | 1405 | { |
1406 | #ifdef CONFIG_SMP | 1406 | #ifdef CONFIG_SMP |
1407 | if (p->sched_contributes_to_load) | 1407 | if (p->sched_contributes_to_load) |
1408 | rq->nr_uninterruptible--; | 1408 | rq->nr_uninterruptible--; |
1409 | #endif | 1409 | #endif |
1410 | 1410 | ||
1411 | ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); | 1411 | ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); |
1412 | ttwu_do_wakeup(rq, p, wake_flags); | 1412 | ttwu_do_wakeup(rq, p, wake_flags); |
1413 | } | 1413 | } |
1414 | 1414 | ||
1415 | /* | 1415 | /* |
1416 | * Called in case the task @p isn't fully descheduled from its runqueue, | 1416 | * Called in case the task @p isn't fully descheduled from its runqueue, |
1417 | * in this case we must do a remote wakeup. Its a 'light' wakeup though, | 1417 | * in this case we must do a remote wakeup. Its a 'light' wakeup though, |
1418 | * since all we need to do is flip p->state to TASK_RUNNING, since | 1418 | * since all we need to do is flip p->state to TASK_RUNNING, since |
1419 | * the task is still ->on_rq. | 1419 | * the task is still ->on_rq. |
1420 | */ | 1420 | */ |
1421 | static int ttwu_remote(struct task_struct *p, int wake_flags) | 1421 | static int ttwu_remote(struct task_struct *p, int wake_flags) |
1422 | { | 1422 | { |
1423 | struct rq *rq; | 1423 | struct rq *rq; |
1424 | int ret = 0; | 1424 | int ret = 0; |
1425 | 1425 | ||
1426 | rq = __task_rq_lock(p); | 1426 | rq = __task_rq_lock(p); |
1427 | if (p->on_rq) { | 1427 | if (p->on_rq) { |
1428 | ttwu_do_wakeup(rq, p, wake_flags); | 1428 | ttwu_do_wakeup(rq, p, wake_flags); |
1429 | ret = 1; | 1429 | ret = 1; |
1430 | } | 1430 | } |
1431 | __task_rq_unlock(rq); | 1431 | __task_rq_unlock(rq); |
1432 | 1432 | ||
1433 | return ret; | 1433 | return ret; |
1434 | } | 1434 | } |
1435 | 1435 | ||
1436 | #ifdef CONFIG_SMP | 1436 | #ifdef CONFIG_SMP |
1437 | static void sched_ttwu_pending(void) | 1437 | static void sched_ttwu_pending(void) |
1438 | { | 1438 | { |
1439 | struct rq *rq = this_rq(); | 1439 | struct rq *rq = this_rq(); |
1440 | struct llist_node *llist = llist_del_all(&rq->wake_list); | 1440 | struct llist_node *llist = llist_del_all(&rq->wake_list); |
1441 | struct task_struct *p; | 1441 | struct task_struct *p; |
1442 | 1442 | ||
1443 | raw_spin_lock(&rq->lock); | 1443 | raw_spin_lock(&rq->lock); |
1444 | 1444 | ||
1445 | while (llist) { | 1445 | while (llist) { |
1446 | p = llist_entry(llist, struct task_struct, wake_entry); | 1446 | p = llist_entry(llist, struct task_struct, wake_entry); |
1447 | llist = llist_next(llist); | 1447 | llist = llist_next(llist); |
1448 | ttwu_do_activate(rq, p, 0); | 1448 | ttwu_do_activate(rq, p, 0); |
1449 | } | 1449 | } |
1450 | 1450 | ||
1451 | raw_spin_unlock(&rq->lock); | 1451 | raw_spin_unlock(&rq->lock); |
1452 | } | 1452 | } |
1453 | 1453 | ||
1454 | void scheduler_ipi(void) | 1454 | void scheduler_ipi(void) |
1455 | { | 1455 | { |
1456 | if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) | 1456 | if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) |
1457 | return; | 1457 | return; |
1458 | 1458 | ||
1459 | /* | 1459 | /* |
1460 | * Not all reschedule IPI handlers call irq_enter/irq_exit, since | 1460 | * Not all reschedule IPI handlers call irq_enter/irq_exit, since |
1461 | * traditionally all their work was done from the interrupt return | 1461 | * traditionally all their work was done from the interrupt return |
1462 | * path. Now that we actually do some work, we need to make sure | 1462 | * path. Now that we actually do some work, we need to make sure |
1463 | * we do call them. | 1463 | * we do call them. |
1464 | * | 1464 | * |
1465 | * Some archs already do call them, luckily irq_enter/exit nest | 1465 | * Some archs already do call them, luckily irq_enter/exit nest |
1466 | * properly. | 1466 | * properly. |
1467 | * | 1467 | * |
1468 | * Arguably we should visit all archs and update all handlers, | 1468 | * Arguably we should visit all archs and update all handlers, |
1469 | * however a fair share of IPIs are still resched only so this would | 1469 | * however a fair share of IPIs are still resched only so this would |
1470 | * somewhat pessimize the simple resched case. | 1470 | * somewhat pessimize the simple resched case. |
1471 | */ | 1471 | */ |
1472 | irq_enter(); | 1472 | irq_enter(); |
1473 | sched_ttwu_pending(); | 1473 | sched_ttwu_pending(); |
1474 | 1474 | ||
1475 | /* | 1475 | /* |
1476 | * Check if someone kicked us for doing the nohz idle load balance. | 1476 | * Check if someone kicked us for doing the nohz idle load balance. |
1477 | */ | 1477 | */ |
1478 | if (unlikely(got_nohz_idle_kick() && !need_resched())) { | 1478 | if (unlikely(got_nohz_idle_kick() && !need_resched())) { |
1479 | this_rq()->idle_balance = 1; | 1479 | this_rq()->idle_balance = 1; |
1480 | raise_softirq_irqoff(SCHED_SOFTIRQ); | 1480 | raise_softirq_irqoff(SCHED_SOFTIRQ); |
1481 | } | 1481 | } |
1482 | irq_exit(); | 1482 | irq_exit(); |
1483 | } | 1483 | } |
1484 | 1484 | ||
1485 | static void ttwu_queue_remote(struct task_struct *p, int cpu) | 1485 | static void ttwu_queue_remote(struct task_struct *p, int cpu) |
1486 | { | 1486 | { |
1487 | if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) | 1487 | if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) |
1488 | smp_send_reschedule(cpu); | 1488 | smp_send_reschedule(cpu); |
1489 | } | 1489 | } |
1490 | 1490 | ||
1491 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW | 1491 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW |
1492 | static int ttwu_activate_remote(struct task_struct *p, int wake_flags) | 1492 | static int ttwu_activate_remote(struct task_struct *p, int wake_flags) |
1493 | { | 1493 | { |
1494 | struct rq *rq; | 1494 | struct rq *rq; |
1495 | int ret = 0; | 1495 | int ret = 0; |
1496 | 1496 | ||
1497 | rq = __task_rq_lock(p); | 1497 | rq = __task_rq_lock(p); |
1498 | if (p->on_cpu) { | 1498 | if (p->on_cpu) { |
1499 | ttwu_activate(rq, p, ENQUEUE_WAKEUP); | 1499 | ttwu_activate(rq, p, ENQUEUE_WAKEUP); |
1500 | ttwu_do_wakeup(rq, p, wake_flags); | 1500 | ttwu_do_wakeup(rq, p, wake_flags); |
1501 | ret = 1; | 1501 | ret = 1; |
1502 | } | 1502 | } |
1503 | __task_rq_unlock(rq); | 1503 | __task_rq_unlock(rq); |
1504 | 1504 | ||
1505 | return ret; | 1505 | return ret; |
1506 | 1506 | ||
1507 | } | 1507 | } |
1508 | #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ | 1508 | #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ |
1509 | 1509 | ||
1510 | bool cpus_share_cache(int this_cpu, int that_cpu) | 1510 | bool cpus_share_cache(int this_cpu, int that_cpu) |
1511 | { | 1511 | { |
1512 | return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); | 1512 | return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); |
1513 | } | 1513 | } |
1514 | #endif /* CONFIG_SMP */ | 1514 | #endif /* CONFIG_SMP */ |
1515 | 1515 | ||
1516 | static void ttwu_queue(struct task_struct *p, int cpu) | 1516 | static void ttwu_queue(struct task_struct *p, int cpu) |
1517 | { | 1517 | { |
1518 | struct rq *rq = cpu_rq(cpu); | 1518 | struct rq *rq = cpu_rq(cpu); |
1519 | 1519 | ||
1520 | #if defined(CONFIG_SMP) | 1520 | #if defined(CONFIG_SMP) |
1521 | if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { | 1521 | if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { |
1522 | sched_clock_cpu(cpu); /* sync clocks x-cpu */ | 1522 | sched_clock_cpu(cpu); /* sync clocks x-cpu */ |
1523 | ttwu_queue_remote(p, cpu); | 1523 | ttwu_queue_remote(p, cpu); |
1524 | return; | 1524 | return; |
1525 | } | 1525 | } |
1526 | #endif | 1526 | #endif |
1527 | 1527 | ||
1528 | raw_spin_lock(&rq->lock); | 1528 | raw_spin_lock(&rq->lock); |
1529 | ttwu_do_activate(rq, p, 0); | 1529 | ttwu_do_activate(rq, p, 0); |
1530 | raw_spin_unlock(&rq->lock); | 1530 | raw_spin_unlock(&rq->lock); |
1531 | } | 1531 | } |
1532 | 1532 | ||
1533 | /** | 1533 | /** |
1534 | * try_to_wake_up - wake up a thread | 1534 | * try_to_wake_up - wake up a thread |
1535 | * @p: the thread to be awakened | 1535 | * @p: the thread to be awakened |
1536 | * @state: the mask of task states that can be woken | 1536 | * @state: the mask of task states that can be woken |
1537 | * @wake_flags: wake modifier flags (WF_*) | 1537 | * @wake_flags: wake modifier flags (WF_*) |
1538 | * | 1538 | * |
1539 | * Put it on the run-queue if it's not already there. The "current" | 1539 | * Put it on the run-queue if it's not already there. The "current" |
1540 | * thread is always on the run-queue (except when the actual | 1540 | * thread is always on the run-queue (except when the actual |
1541 | * re-schedule is in progress), and as such you're allowed to do | 1541 | * re-schedule is in progress), and as such you're allowed to do |
1542 | * the simpler "current->state = TASK_RUNNING" to mark yourself | 1542 | * the simpler "current->state = TASK_RUNNING" to mark yourself |
1543 | * runnable without the overhead of this. | 1543 | * runnable without the overhead of this. |
1544 | * | 1544 | * |
1545 | * Returns %true if @p was woken up, %false if it was already running | 1545 | * Returns %true if @p was woken up, %false if it was already running |
1546 | * or @state didn't match @p's state. | 1546 | * or @state didn't match @p's state. |
1547 | */ | 1547 | */ |
1548 | static int | 1548 | static int |
1549 | try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) | 1549 | try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) |
1550 | { | 1550 | { |
1551 | unsigned long flags; | 1551 | unsigned long flags; |
1552 | int cpu, success = 0; | 1552 | int cpu, success = 0; |
1553 | 1553 | ||
1554 | smp_wmb(); | 1554 | smp_wmb(); |
1555 | raw_spin_lock_irqsave(&p->pi_lock, flags); | 1555 | raw_spin_lock_irqsave(&p->pi_lock, flags); |
1556 | if (!(p->state & state)) | 1556 | if (!(p->state & state)) |
1557 | goto out; | 1557 | goto out; |
1558 | 1558 | ||
1559 | success = 1; /* we're going to change ->state */ | 1559 | success = 1; /* we're going to change ->state */ |
1560 | cpu = task_cpu(p); | 1560 | cpu = task_cpu(p); |
1561 | 1561 | ||
1562 | if (p->on_rq && ttwu_remote(p, wake_flags)) | 1562 | if (p->on_rq && ttwu_remote(p, wake_flags)) |
1563 | goto stat; | 1563 | goto stat; |
1564 | 1564 | ||
1565 | #ifdef CONFIG_SMP | 1565 | #ifdef CONFIG_SMP |
1566 | /* | 1566 | /* |
1567 | * If the owning (remote) cpu is still in the middle of schedule() with | 1567 | * If the owning (remote) cpu is still in the middle of schedule() with |
1568 | * this task as prev, wait until its done referencing the task. | 1568 | * this task as prev, wait until its done referencing the task. |
1569 | */ | 1569 | */ |
1570 | while (p->on_cpu) { | 1570 | while (p->on_cpu) { |
1571 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW | 1571 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW |
1572 | /* | 1572 | /* |
1573 | * In case the architecture enables interrupts in | 1573 | * In case the architecture enables interrupts in |
1574 | * context_switch(), we cannot busy wait, since that | 1574 | * context_switch(), we cannot busy wait, since that |
1575 | * would lead to deadlocks when an interrupt hits and | 1575 | * would lead to deadlocks when an interrupt hits and |
1576 | * tries to wake up @prev. So bail and do a complete | 1576 | * tries to wake up @prev. So bail and do a complete |
1577 | * remote wakeup. | 1577 | * remote wakeup. |
1578 | */ | 1578 | */ |
1579 | if (ttwu_activate_remote(p, wake_flags)) | 1579 | if (ttwu_activate_remote(p, wake_flags)) |
1580 | goto stat; | 1580 | goto stat; |
1581 | #else | 1581 | #else |
1582 | cpu_relax(); | 1582 | cpu_relax(); |
1583 | #endif | 1583 | #endif |
1584 | } | 1584 | } |
1585 | /* | 1585 | /* |
1586 | * Pairs with the smp_wmb() in finish_lock_switch(). | 1586 | * Pairs with the smp_wmb() in finish_lock_switch(). |
1587 | */ | 1587 | */ |
1588 | smp_rmb(); | 1588 | smp_rmb(); |
1589 | 1589 | ||
1590 | p->sched_contributes_to_load = !!task_contributes_to_load(p); | 1590 | p->sched_contributes_to_load = !!task_contributes_to_load(p); |
1591 | p->state = TASK_WAKING; | 1591 | p->state = TASK_WAKING; |
1592 | 1592 | ||
1593 | if (p->sched_class->task_waking) | 1593 | if (p->sched_class->task_waking) |
1594 | p->sched_class->task_waking(p); | 1594 | p->sched_class->task_waking(p); |
1595 | 1595 | ||
1596 | cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags); | 1596 | cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags); |
1597 | if (task_cpu(p) != cpu) { | 1597 | if (task_cpu(p) != cpu) { |
1598 | wake_flags |= WF_MIGRATED; | 1598 | wake_flags |= WF_MIGRATED; |
1599 | set_task_cpu(p, cpu); | 1599 | set_task_cpu(p, cpu); |
1600 | } | 1600 | } |
1601 | #endif /* CONFIG_SMP */ | 1601 | #endif /* CONFIG_SMP */ |
1602 | 1602 | ||
1603 | ttwu_queue(p, cpu); | 1603 | ttwu_queue(p, cpu); |
1604 | stat: | 1604 | stat: |
1605 | ttwu_stat(p, cpu, wake_flags); | 1605 | ttwu_stat(p, cpu, wake_flags); |
1606 | out: | 1606 | out: |
1607 | raw_spin_unlock_irqrestore(&p->pi_lock, flags); | 1607 | raw_spin_unlock_irqrestore(&p->pi_lock, flags); |
1608 | 1608 | ||
1609 | return success; | 1609 | return success; |
1610 | } | 1610 | } |
1611 | 1611 | ||
1612 | /** | 1612 | /** |
1613 | * try_to_wake_up_local - try to wake up a local task with rq lock held | 1613 | * try_to_wake_up_local - try to wake up a local task with rq lock held |
1614 | * @p: the thread to be awakened | 1614 | * @p: the thread to be awakened |
1615 | * | 1615 | * |
1616 | * Put @p on the run-queue if it's not already there. The caller must | 1616 | * Put @p on the run-queue if it's not already there. The caller must |
1617 | * ensure that this_rq() is locked, @p is bound to this_rq() and not | 1617 | * ensure that this_rq() is locked, @p is bound to this_rq() and not |
1618 | * the current task. | 1618 | * the current task. |
1619 | */ | 1619 | */ |
1620 | static void try_to_wake_up_local(struct task_struct *p) | 1620 | static void try_to_wake_up_local(struct task_struct *p) |
1621 | { | 1621 | { |
1622 | struct rq *rq = task_rq(p); | 1622 | struct rq *rq = task_rq(p); |
1623 | 1623 | ||
1624 | BUG_ON(rq != this_rq()); | 1624 | BUG_ON(rq != this_rq()); |
1625 | BUG_ON(p == current); | 1625 | BUG_ON(p == current); |
1626 | lockdep_assert_held(&rq->lock); | 1626 | lockdep_assert_held(&rq->lock); |
1627 | 1627 | ||
1628 | if (!raw_spin_trylock(&p->pi_lock)) { | 1628 | if (!raw_spin_trylock(&p->pi_lock)) { |
1629 | raw_spin_unlock(&rq->lock); | 1629 | raw_spin_unlock(&rq->lock); |
1630 | raw_spin_lock(&p->pi_lock); | 1630 | raw_spin_lock(&p->pi_lock); |
1631 | raw_spin_lock(&rq->lock); | 1631 | raw_spin_lock(&rq->lock); |
1632 | } | 1632 | } |
1633 | 1633 | ||
1634 | if (!(p->state & TASK_NORMAL)) | 1634 | if (!(p->state & TASK_NORMAL)) |
1635 | goto out; | 1635 | goto out; |
1636 | 1636 | ||
1637 | if (!p->on_rq) | 1637 | if (!p->on_rq) |
1638 | ttwu_activate(rq, p, ENQUEUE_WAKEUP); | 1638 | ttwu_activate(rq, p, ENQUEUE_WAKEUP); |
1639 | 1639 | ||
1640 | ttwu_do_wakeup(rq, p, 0); | 1640 | ttwu_do_wakeup(rq, p, 0); |
1641 | ttwu_stat(p, smp_processor_id(), 0); | 1641 | ttwu_stat(p, smp_processor_id(), 0); |
1642 | out: | 1642 | out: |
1643 | raw_spin_unlock(&p->pi_lock); | 1643 | raw_spin_unlock(&p->pi_lock); |
1644 | } | 1644 | } |
1645 | 1645 | ||
1646 | /** | 1646 | /** |
1647 | * wake_up_process - Wake up a specific process | 1647 | * wake_up_process - Wake up a specific process |
1648 | * @p: The process to be woken up. | 1648 | * @p: The process to be woken up. |
1649 | * | 1649 | * |
1650 | * Attempt to wake up the nominated process and move it to the set of runnable | 1650 | * Attempt to wake up the nominated process and move it to the set of runnable |
1651 | * processes. Returns 1 if the process was woken up, 0 if it was already | 1651 | * processes. Returns 1 if the process was woken up, 0 if it was already |
1652 | * running. | 1652 | * running. |
1653 | * | 1653 | * |
1654 | * It may be assumed that this function implies a write memory barrier before | 1654 | * It may be assumed that this function implies a write memory barrier before |
1655 | * changing the task state if and only if any tasks are woken up. | 1655 | * changing the task state if and only if any tasks are woken up. |
1656 | */ | 1656 | */ |
1657 | int wake_up_process(struct task_struct *p) | 1657 | int wake_up_process(struct task_struct *p) |
1658 | { | 1658 | { |
1659 | return try_to_wake_up(p, TASK_ALL, 0); | 1659 | return try_to_wake_up(p, TASK_ALL, 0); |
1660 | } | 1660 | } |
1661 | EXPORT_SYMBOL(wake_up_process); | 1661 | EXPORT_SYMBOL(wake_up_process); |
1662 | 1662 | ||
1663 | int wake_up_state(struct task_struct *p, unsigned int state) | 1663 | int wake_up_state(struct task_struct *p, unsigned int state) |
1664 | { | 1664 | { |
1665 | return try_to_wake_up(p, state, 0); | 1665 | return try_to_wake_up(p, state, 0); |
1666 | } | 1666 | } |
1667 | 1667 | ||
1668 | /* | 1668 | /* |
1669 | * Perform scheduler related setup for a newly forked process p. | 1669 | * Perform scheduler related setup for a newly forked process p. |
1670 | * p is forked by current. | 1670 | * p is forked by current. |
1671 | * | 1671 | * |
1672 | * __sched_fork() is basic setup used by init_idle() too: | 1672 | * __sched_fork() is basic setup used by init_idle() too: |
1673 | */ | 1673 | */ |
1674 | static void __sched_fork(struct task_struct *p) | 1674 | static void __sched_fork(struct task_struct *p) |
1675 | { | 1675 | { |
1676 | p->on_rq = 0; | 1676 | p->on_rq = 0; |
1677 | 1677 | ||
1678 | p->se.on_rq = 0; | 1678 | p->se.on_rq = 0; |
1679 | p->se.exec_start = 0; | 1679 | p->se.exec_start = 0; |
1680 | p->se.sum_exec_runtime = 0; | 1680 | p->se.sum_exec_runtime = 0; |
1681 | p->se.prev_sum_exec_runtime = 0; | 1681 | p->se.prev_sum_exec_runtime = 0; |
1682 | p->se.nr_migrations = 0; | 1682 | p->se.nr_migrations = 0; |
1683 | p->se.vruntime = 0; | 1683 | p->se.vruntime = 0; |
1684 | INIT_LIST_HEAD(&p->se.group_node); | 1684 | INIT_LIST_HEAD(&p->se.group_node); |
1685 | 1685 | ||
1686 | #ifdef CONFIG_SCHEDSTATS | 1686 | #ifdef CONFIG_SCHEDSTATS |
1687 | memset(&p->se.statistics, 0, sizeof(p->se.statistics)); | 1687 | memset(&p->se.statistics, 0, sizeof(p->se.statistics)); |
1688 | #endif | 1688 | #endif |
1689 | 1689 | ||
1690 | INIT_LIST_HEAD(&p->rt.run_list); | 1690 | INIT_LIST_HEAD(&p->rt.run_list); |
1691 | 1691 | ||
1692 | #ifdef CONFIG_PREEMPT_NOTIFIERS | 1692 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
1693 | INIT_HLIST_HEAD(&p->preempt_notifiers); | 1693 | INIT_HLIST_HEAD(&p->preempt_notifiers); |
1694 | #endif | 1694 | #endif |
1695 | } | 1695 | } |
1696 | 1696 | ||
1697 | /* | 1697 | /* |
1698 | * fork()/clone()-time setup: | 1698 | * fork()/clone()-time setup: |
1699 | */ | 1699 | */ |
1700 | void sched_fork(struct task_struct *p) | 1700 | void sched_fork(struct task_struct *p) |
1701 | { | 1701 | { |
1702 | unsigned long flags; | 1702 | unsigned long flags; |
1703 | int cpu = get_cpu(); | 1703 | int cpu = get_cpu(); |
1704 | 1704 | ||
1705 | __sched_fork(p); | 1705 | __sched_fork(p); |
1706 | /* | 1706 | /* |
1707 | * We mark the process as running here. This guarantees that | 1707 | * We mark the process as running here. This guarantees that |
1708 | * nobody will actually run it, and a signal or other external | 1708 | * nobody will actually run it, and a signal or other external |
1709 | * event cannot wake it up and insert it on the runqueue either. | 1709 | * event cannot wake it up and insert it on the runqueue either. |
1710 | */ | 1710 | */ |
1711 | p->state = TASK_RUNNING; | 1711 | p->state = TASK_RUNNING; |
1712 | 1712 | ||
1713 | /* | 1713 | /* |
1714 | * Make sure we do not leak PI boosting priority to the child. | 1714 | * Make sure we do not leak PI boosting priority to the child. |
1715 | */ | 1715 | */ |
1716 | p->prio = current->normal_prio; | 1716 | p->prio = current->normal_prio; |
1717 | 1717 | ||
1718 | /* | 1718 | /* |
1719 | * Revert to default priority/policy on fork if requested. | 1719 | * Revert to default priority/policy on fork if requested. |
1720 | */ | 1720 | */ |
1721 | if (unlikely(p->sched_reset_on_fork)) { | 1721 | if (unlikely(p->sched_reset_on_fork)) { |
1722 | if (task_has_rt_policy(p)) { | 1722 | if (task_has_rt_policy(p)) { |
1723 | p->policy = SCHED_NORMAL; | 1723 | p->policy = SCHED_NORMAL; |
1724 | p->static_prio = NICE_TO_PRIO(0); | 1724 | p->static_prio = NICE_TO_PRIO(0); |
1725 | p->rt_priority = 0; | 1725 | p->rt_priority = 0; |
1726 | } else if (PRIO_TO_NICE(p->static_prio) < 0) | 1726 | } else if (PRIO_TO_NICE(p->static_prio) < 0) |
1727 | p->static_prio = NICE_TO_PRIO(0); | 1727 | p->static_prio = NICE_TO_PRIO(0); |
1728 | 1728 | ||
1729 | p->prio = p->normal_prio = __normal_prio(p); | 1729 | p->prio = p->normal_prio = __normal_prio(p); |
1730 | set_load_weight(p); | 1730 | set_load_weight(p); |
1731 | 1731 | ||
1732 | /* | 1732 | /* |
1733 | * We don't need the reset flag anymore after the fork. It has | 1733 | * We don't need the reset flag anymore after the fork. It has |
1734 | * fulfilled its duty: | 1734 | * fulfilled its duty: |
1735 | */ | 1735 | */ |
1736 | p->sched_reset_on_fork = 0; | 1736 | p->sched_reset_on_fork = 0; |
1737 | } | 1737 | } |
1738 | 1738 | ||
1739 | if (!rt_prio(p->prio)) | 1739 | if (!rt_prio(p->prio)) |
1740 | p->sched_class = &fair_sched_class; | 1740 | p->sched_class = &fair_sched_class; |
1741 | 1741 | ||
1742 | if (p->sched_class->task_fork) | 1742 | if (p->sched_class->task_fork) |
1743 | p->sched_class->task_fork(p); | 1743 | p->sched_class->task_fork(p); |
1744 | 1744 | ||
1745 | /* | 1745 | /* |
1746 | * The child is not yet in the pid-hash so no cgroup attach races, | 1746 | * The child is not yet in the pid-hash so no cgroup attach races, |
1747 | * and the cgroup is pinned to this child due to cgroup_fork() | 1747 | * and the cgroup is pinned to this child due to cgroup_fork() |
1748 | * is ran before sched_fork(). | 1748 | * is ran before sched_fork(). |
1749 | * | 1749 | * |
1750 | * Silence PROVE_RCU. | 1750 | * Silence PROVE_RCU. |
1751 | */ | 1751 | */ |
1752 | raw_spin_lock_irqsave(&p->pi_lock, flags); | 1752 | raw_spin_lock_irqsave(&p->pi_lock, flags); |
1753 | set_task_cpu(p, cpu); | 1753 | set_task_cpu(p, cpu); |
1754 | raw_spin_unlock_irqrestore(&p->pi_lock, flags); | 1754 | raw_spin_unlock_irqrestore(&p->pi_lock, flags); |
1755 | 1755 | ||
1756 | #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) | 1756 | #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) |
1757 | if (likely(sched_info_on())) | 1757 | if (likely(sched_info_on())) |
1758 | memset(&p->sched_info, 0, sizeof(p->sched_info)); | 1758 | memset(&p->sched_info, 0, sizeof(p->sched_info)); |
1759 | #endif | 1759 | #endif |
1760 | #if defined(CONFIG_SMP) | 1760 | #if defined(CONFIG_SMP) |
1761 | p->on_cpu = 0; | 1761 | p->on_cpu = 0; |
1762 | #endif | 1762 | #endif |
1763 | #ifdef CONFIG_PREEMPT_COUNT | 1763 | #ifdef CONFIG_PREEMPT_COUNT |
1764 | /* Want to start with kernel preemption disabled. */ | 1764 | /* Want to start with kernel preemption disabled. */ |
1765 | task_thread_info(p)->preempt_count = 1; | 1765 | task_thread_info(p)->preempt_count = 1; |
1766 | #endif | 1766 | #endif |
1767 | #ifdef CONFIG_SMP | 1767 | #ifdef CONFIG_SMP |
1768 | plist_node_init(&p->pushable_tasks, MAX_PRIO); | 1768 | plist_node_init(&p->pushable_tasks, MAX_PRIO); |
1769 | #endif | 1769 | #endif |
1770 | 1770 | ||
1771 | put_cpu(); | 1771 | put_cpu(); |
1772 | } | 1772 | } |
1773 | 1773 | ||
1774 | /* | 1774 | /* |
1775 | * wake_up_new_task - wake up a newly created task for the first time. | 1775 | * wake_up_new_task - wake up a newly created task for the first time. |
1776 | * | 1776 | * |
1777 | * This function will do some initial scheduler statistics housekeeping | 1777 | * This function will do some initial scheduler statistics housekeeping |
1778 | * that must be done for every newly created context, then puts the task | 1778 | * that must be done for every newly created context, then puts the task |
1779 | * on the runqueue and wakes it. | 1779 | * on the runqueue and wakes it. |
1780 | */ | 1780 | */ |
1781 | void wake_up_new_task(struct task_struct *p) | 1781 | void wake_up_new_task(struct task_struct *p) |
1782 | { | 1782 | { |
1783 | unsigned long flags; | 1783 | unsigned long flags; |
1784 | struct rq *rq; | 1784 | struct rq *rq; |
1785 | 1785 | ||
1786 | raw_spin_lock_irqsave(&p->pi_lock, flags); | 1786 | raw_spin_lock_irqsave(&p->pi_lock, flags); |
1787 | #ifdef CONFIG_SMP | 1787 | #ifdef CONFIG_SMP |
1788 | /* | 1788 | /* |
1789 | * Fork balancing, do it here and not earlier because: | 1789 | * Fork balancing, do it here and not earlier because: |
1790 | * - cpus_allowed can change in the fork path | 1790 | * - cpus_allowed can change in the fork path |
1791 | * - any previously selected cpu might disappear through hotplug | 1791 | * - any previously selected cpu might disappear through hotplug |
1792 | */ | 1792 | */ |
1793 | set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0)); | 1793 | set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0)); |
1794 | #endif | 1794 | #endif |
1795 | 1795 | ||
1796 | rq = __task_rq_lock(p); | 1796 | rq = __task_rq_lock(p); |
1797 | activate_task(rq, p, 0); | 1797 | activate_task(rq, p, 0); |
1798 | p->on_rq = 1; | 1798 | p->on_rq = 1; |
1799 | trace_sched_wakeup_new(p, true); | 1799 | trace_sched_wakeup_new(p, true); |
1800 | check_preempt_curr(rq, p, WF_FORK); | 1800 | check_preempt_curr(rq, p, WF_FORK); |
1801 | #ifdef CONFIG_SMP | 1801 | #ifdef CONFIG_SMP |
1802 | if (p->sched_class->task_woken) | 1802 | if (p->sched_class->task_woken) |
1803 | p->sched_class->task_woken(rq, p); | 1803 | p->sched_class->task_woken(rq, p); |
1804 | #endif | 1804 | #endif |
1805 | task_rq_unlock(rq, p, &flags); | 1805 | task_rq_unlock(rq, p, &flags); |
1806 | } | 1806 | } |
1807 | 1807 | ||
1808 | #ifdef CONFIG_PREEMPT_NOTIFIERS | 1808 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
1809 | 1809 | ||
1810 | /** | 1810 | /** |
1811 | * preempt_notifier_register - tell me when current is being preempted & rescheduled | 1811 | * preempt_notifier_register - tell me when current is being preempted & rescheduled |
1812 | * @notifier: notifier struct to register | 1812 | * @notifier: notifier struct to register |
1813 | */ | 1813 | */ |
1814 | void preempt_notifier_register(struct preempt_notifier *notifier) | 1814 | void preempt_notifier_register(struct preempt_notifier *notifier) |
1815 | { | 1815 | { |
1816 | hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); | 1816 | hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); |
1817 | } | 1817 | } |
1818 | EXPORT_SYMBOL_GPL(preempt_notifier_register); | 1818 | EXPORT_SYMBOL_GPL(preempt_notifier_register); |
1819 | 1819 | ||
1820 | /** | 1820 | /** |
1821 | * preempt_notifier_unregister - no longer interested in preemption notifications | 1821 | * preempt_notifier_unregister - no longer interested in preemption notifications |
1822 | * @notifier: notifier struct to unregister | 1822 | * @notifier: notifier struct to unregister |
1823 | * | 1823 | * |
1824 | * This is safe to call from within a preemption notifier. | 1824 | * This is safe to call from within a preemption notifier. |
1825 | */ | 1825 | */ |
1826 | void preempt_notifier_unregister(struct preempt_notifier *notifier) | 1826 | void preempt_notifier_unregister(struct preempt_notifier *notifier) |
1827 | { | 1827 | { |
1828 | hlist_del(¬ifier->link); | 1828 | hlist_del(¬ifier->link); |
1829 | } | 1829 | } |
1830 | EXPORT_SYMBOL_GPL(preempt_notifier_unregister); | 1830 | EXPORT_SYMBOL_GPL(preempt_notifier_unregister); |
1831 | 1831 | ||
1832 | static void fire_sched_in_preempt_notifiers(struct task_struct *curr) | 1832 | static void fire_sched_in_preempt_notifiers(struct task_struct *curr) |
1833 | { | 1833 | { |
1834 | struct preempt_notifier *notifier; | 1834 | struct preempt_notifier *notifier; |
1835 | struct hlist_node *node; | 1835 | struct hlist_node *node; |
1836 | 1836 | ||
1837 | hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) | 1837 | hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) |
1838 | notifier->ops->sched_in(notifier, raw_smp_processor_id()); | 1838 | notifier->ops->sched_in(notifier, raw_smp_processor_id()); |
1839 | } | 1839 | } |
1840 | 1840 | ||
1841 | static void | 1841 | static void |
1842 | fire_sched_out_preempt_notifiers(struct task_struct *curr, | 1842 | fire_sched_out_preempt_notifiers(struct task_struct *curr, |
1843 | struct task_struct *next) | 1843 | struct task_struct *next) |
1844 | { | 1844 | { |
1845 | struct preempt_notifier *notifier; | 1845 | struct preempt_notifier *notifier; |
1846 | struct hlist_node *node; | 1846 | struct hlist_node *node; |
1847 | 1847 | ||
1848 | hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) | 1848 | hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) |
1849 | notifier->ops->sched_out(notifier, next); | 1849 | notifier->ops->sched_out(notifier, next); |
1850 | } | 1850 | } |
1851 | 1851 | ||
1852 | #else /* !CONFIG_PREEMPT_NOTIFIERS */ | 1852 | #else /* !CONFIG_PREEMPT_NOTIFIERS */ |
1853 | 1853 | ||
1854 | static void fire_sched_in_preempt_notifiers(struct task_struct *curr) | 1854 | static void fire_sched_in_preempt_notifiers(struct task_struct *curr) |
1855 | { | 1855 | { |
1856 | } | 1856 | } |
1857 | 1857 | ||
1858 | static void | 1858 | static void |
1859 | fire_sched_out_preempt_notifiers(struct task_struct *curr, | 1859 | fire_sched_out_preempt_notifiers(struct task_struct *curr, |
1860 | struct task_struct *next) | 1860 | struct task_struct *next) |
1861 | { | 1861 | { |
1862 | } | 1862 | } |
1863 | 1863 | ||
1864 | #endif /* CONFIG_PREEMPT_NOTIFIERS */ | 1864 | #endif /* CONFIG_PREEMPT_NOTIFIERS */ |
1865 | 1865 | ||
1866 | /** | 1866 | /** |
1867 | * prepare_task_switch - prepare to switch tasks | 1867 | * prepare_task_switch - prepare to switch tasks |
1868 | * @rq: the runqueue preparing to switch | 1868 | * @rq: the runqueue preparing to switch |
1869 | * @prev: the current task that is being switched out | 1869 | * @prev: the current task that is being switched out |
1870 | * @next: the task we are going to switch to. | 1870 | * @next: the task we are going to switch to. |
1871 | * | 1871 | * |
1872 | * This is called with the rq lock held and interrupts off. It must | 1872 | * This is called with the rq lock held and interrupts off. It must |
1873 | * be paired with a subsequent finish_task_switch after the context | 1873 | * be paired with a subsequent finish_task_switch after the context |
1874 | * switch. | 1874 | * switch. |
1875 | * | 1875 | * |
1876 | * prepare_task_switch sets up locking and calls architecture specific | 1876 | * prepare_task_switch sets up locking and calls architecture specific |
1877 | * hooks. | 1877 | * hooks. |
1878 | */ | 1878 | */ |
1879 | static inline void | 1879 | static inline void |
1880 | prepare_task_switch(struct rq *rq, struct task_struct *prev, | 1880 | prepare_task_switch(struct rq *rq, struct task_struct *prev, |
1881 | struct task_struct *next) | 1881 | struct task_struct *next) |
1882 | { | 1882 | { |
1883 | sched_info_switch(prev, next); | 1883 | sched_info_switch(prev, next); |
1884 | perf_event_task_sched_out(prev, next); | 1884 | perf_event_task_sched_out(prev, next); |
1885 | fire_sched_out_preempt_notifiers(prev, next); | 1885 | fire_sched_out_preempt_notifiers(prev, next); |
1886 | prepare_lock_switch(rq, next); | 1886 | prepare_lock_switch(rq, next); |
1887 | prepare_arch_switch(next); | 1887 | prepare_arch_switch(next); |
1888 | trace_sched_switch(prev, next); | 1888 | trace_sched_switch(prev, next); |
1889 | } | 1889 | } |
1890 | 1890 | ||
1891 | /** | 1891 | /** |
1892 | * finish_task_switch - clean up after a task-switch | 1892 | * finish_task_switch - clean up after a task-switch |
1893 | * @rq: runqueue associated with task-switch | 1893 | * @rq: runqueue associated with task-switch |
1894 | * @prev: the thread we just switched away from. | 1894 | * @prev: the thread we just switched away from. |
1895 | * | 1895 | * |
1896 | * finish_task_switch must be called after the context switch, paired | 1896 | * finish_task_switch must be called after the context switch, paired |
1897 | * with a prepare_task_switch call before the context switch. | 1897 | * with a prepare_task_switch call before the context switch. |
1898 | * finish_task_switch will reconcile locking set up by prepare_task_switch, | 1898 | * finish_task_switch will reconcile locking set up by prepare_task_switch, |
1899 | * and do any other architecture-specific cleanup actions. | 1899 | * and do any other architecture-specific cleanup actions. |
1900 | * | 1900 | * |
1901 | * Note that we may have delayed dropping an mm in context_switch(). If | 1901 | * Note that we may have delayed dropping an mm in context_switch(). If |
1902 | * so, we finish that here outside of the runqueue lock. (Doing it | 1902 | * so, we finish that here outside of the runqueue lock. (Doing it |
1903 | * with the lock held can cause deadlocks; see schedule() for | 1903 | * with the lock held can cause deadlocks; see schedule() for |
1904 | * details.) | 1904 | * details.) |
1905 | */ | 1905 | */ |
1906 | static void finish_task_switch(struct rq *rq, struct task_struct *prev) | 1906 | static void finish_task_switch(struct rq *rq, struct task_struct *prev) |
1907 | __releases(rq->lock) | 1907 | __releases(rq->lock) |
1908 | { | 1908 | { |
1909 | struct mm_struct *mm = rq->prev_mm; | 1909 | struct mm_struct *mm = rq->prev_mm; |
1910 | long prev_state; | 1910 | long prev_state; |
1911 | 1911 | ||
1912 | rq->prev_mm = NULL; | 1912 | rq->prev_mm = NULL; |
1913 | 1913 | ||
1914 | /* | 1914 | /* |
1915 | * A task struct has one reference for the use as "current". | 1915 | * A task struct has one reference for the use as "current". |
1916 | * If a task dies, then it sets TASK_DEAD in tsk->state and calls | 1916 | * If a task dies, then it sets TASK_DEAD in tsk->state and calls |
1917 | * schedule one last time. The schedule call will never return, and | 1917 | * schedule one last time. The schedule call will never return, and |
1918 | * the scheduled task must drop that reference. | 1918 | * the scheduled task must drop that reference. |
1919 | * The test for TASK_DEAD must occur while the runqueue locks are | 1919 | * The test for TASK_DEAD must occur while the runqueue locks are |
1920 | * still held, otherwise prev could be scheduled on another cpu, die | 1920 | * still held, otherwise prev could be scheduled on another cpu, die |
1921 | * there before we look at prev->state, and then the reference would | 1921 | * there before we look at prev->state, and then the reference would |
1922 | * be dropped twice. | 1922 | * be dropped twice. |
1923 | * Manfred Spraul <manfred@colorfullife.com> | 1923 | * Manfred Spraul <manfred@colorfullife.com> |
1924 | */ | 1924 | */ |
1925 | prev_state = prev->state; | 1925 | prev_state = prev->state; |
1926 | finish_arch_switch(prev); | 1926 | finish_arch_switch(prev); |
1927 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW | 1927 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW |
1928 | local_irq_disable(); | 1928 | local_irq_disable(); |
1929 | #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ | 1929 | #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ |
1930 | perf_event_task_sched_in(prev, current); | 1930 | perf_event_task_sched_in(prev, current); |
1931 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW | 1931 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW |
1932 | local_irq_enable(); | 1932 | local_irq_enable(); |
1933 | #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ | 1933 | #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ |
1934 | finish_lock_switch(rq, prev); | 1934 | finish_lock_switch(rq, prev); |
1935 | 1935 | ||
1936 | fire_sched_in_preempt_notifiers(current); | 1936 | fire_sched_in_preempt_notifiers(current); |
1937 | if (mm) | 1937 | if (mm) |
1938 | mmdrop(mm); | 1938 | mmdrop(mm); |
1939 | if (unlikely(prev_state == TASK_DEAD)) { | 1939 | if (unlikely(prev_state == TASK_DEAD)) { |
1940 | /* | 1940 | /* |
1941 | * Remove function-return probe instances associated with this | 1941 | * Remove function-return probe instances associated with this |
1942 | * task and put them back on the free list. | 1942 | * task and put them back on the free list. |
1943 | */ | 1943 | */ |
1944 | kprobe_flush_task(prev); | 1944 | kprobe_flush_task(prev); |
1945 | put_task_struct(prev); | 1945 | put_task_struct(prev); |
1946 | } | 1946 | } |
1947 | } | 1947 | } |
1948 | 1948 | ||
1949 | #ifdef CONFIG_SMP | 1949 | #ifdef CONFIG_SMP |
1950 | 1950 | ||
1951 | /* assumes rq->lock is held */ | 1951 | /* assumes rq->lock is held */ |
1952 | static inline void pre_schedule(struct rq *rq, struct task_struct *prev) | 1952 | static inline void pre_schedule(struct rq *rq, struct task_struct *prev) |
1953 | { | 1953 | { |
1954 | if (prev->sched_class->pre_schedule) | 1954 | if (prev->sched_class->pre_schedule) |
1955 | prev->sched_class->pre_schedule(rq, prev); | 1955 | prev->sched_class->pre_schedule(rq, prev); |
1956 | } | 1956 | } |
1957 | 1957 | ||
1958 | /* rq->lock is NOT held, but preemption is disabled */ | 1958 | /* rq->lock is NOT held, but preemption is disabled */ |
1959 | static inline void post_schedule(struct rq *rq) | 1959 | static inline void post_schedule(struct rq *rq) |
1960 | { | 1960 | { |
1961 | if (rq->post_schedule) { | 1961 | if (rq->post_schedule) { |
1962 | unsigned long flags; | 1962 | unsigned long flags; |
1963 | 1963 | ||
1964 | raw_spin_lock_irqsave(&rq->lock, flags); | 1964 | raw_spin_lock_irqsave(&rq->lock, flags); |
1965 | if (rq->curr->sched_class->post_schedule) | 1965 | if (rq->curr->sched_class->post_schedule) |
1966 | rq->curr->sched_class->post_schedule(rq); | 1966 | rq->curr->sched_class->post_schedule(rq); |
1967 | raw_spin_unlock_irqrestore(&rq->lock, flags); | 1967 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
1968 | 1968 | ||
1969 | rq->post_schedule = 0; | 1969 | rq->post_schedule = 0; |
1970 | } | 1970 | } |
1971 | } | 1971 | } |
1972 | 1972 | ||
1973 | #else | 1973 | #else |
1974 | 1974 | ||
1975 | static inline void pre_schedule(struct rq *rq, struct task_struct *p) | 1975 | static inline void pre_schedule(struct rq *rq, struct task_struct *p) |
1976 | { | 1976 | { |
1977 | } | 1977 | } |
1978 | 1978 | ||
1979 | static inline void post_schedule(struct rq *rq) | 1979 | static inline void post_schedule(struct rq *rq) |
1980 | { | 1980 | { |
1981 | } | 1981 | } |
1982 | 1982 | ||
1983 | #endif | 1983 | #endif |
1984 | 1984 | ||
1985 | /** | 1985 | /** |
1986 | * schedule_tail - first thing a freshly forked thread must call. | 1986 | * schedule_tail - first thing a freshly forked thread must call. |
1987 | * @prev: the thread we just switched away from. | 1987 | * @prev: the thread we just switched away from. |
1988 | */ | 1988 | */ |
1989 | asmlinkage void schedule_tail(struct task_struct *prev) | 1989 | asmlinkage void schedule_tail(struct task_struct *prev) |
1990 | __releases(rq->lock) | 1990 | __releases(rq->lock) |
1991 | { | 1991 | { |
1992 | struct rq *rq = this_rq(); | 1992 | struct rq *rq = this_rq(); |
1993 | 1993 | ||
1994 | finish_task_switch(rq, prev); | 1994 | finish_task_switch(rq, prev); |
1995 | 1995 | ||
1996 | /* | 1996 | /* |
1997 | * FIXME: do we need to worry about rq being invalidated by the | 1997 | * FIXME: do we need to worry about rq being invalidated by the |
1998 | * task_switch? | 1998 | * task_switch? |
1999 | */ | 1999 | */ |
2000 | post_schedule(rq); | 2000 | post_schedule(rq); |
2001 | 2001 | ||
2002 | #ifdef __ARCH_WANT_UNLOCKED_CTXSW | 2002 | #ifdef __ARCH_WANT_UNLOCKED_CTXSW |
2003 | /* In this case, finish_task_switch does not reenable preemption */ | 2003 | /* In this case, finish_task_switch does not reenable preemption */ |
2004 | preempt_enable(); | 2004 | preempt_enable(); |
2005 | #endif | 2005 | #endif |
2006 | if (current->set_child_tid) | 2006 | if (current->set_child_tid) |
2007 | put_user(task_pid_vnr(current), current->set_child_tid); | 2007 | put_user(task_pid_vnr(current), current->set_child_tid); |
2008 | } | 2008 | } |
2009 | 2009 | ||
2010 | /* | 2010 | /* |
2011 | * context_switch - switch to the new MM and the new | 2011 | * context_switch - switch to the new MM and the new |
2012 | * thread's register state. | 2012 | * thread's register state. |
2013 | */ | 2013 | */ |
2014 | static inline void | 2014 | static inline void |
2015 | context_switch(struct rq *rq, struct task_struct *prev, | 2015 | context_switch(struct rq *rq, struct task_struct *prev, |
2016 | struct task_struct *next) | 2016 | struct task_struct *next) |
2017 | { | 2017 | { |
2018 | struct mm_struct *mm, *oldmm; | 2018 | struct mm_struct *mm, *oldmm; |
2019 | 2019 | ||
2020 | prepare_task_switch(rq, prev, next); | 2020 | prepare_task_switch(rq, prev, next); |
2021 | 2021 | ||
2022 | mm = next->mm; | 2022 | mm = next->mm; |
2023 | oldmm = prev->active_mm; | 2023 | oldmm = prev->active_mm; |
2024 | /* | 2024 | /* |
2025 | * For paravirt, this is coupled with an exit in switch_to to | 2025 | * For paravirt, this is coupled with an exit in switch_to to |
2026 | * combine the page table reload and the switch backend into | 2026 | * combine the page table reload and the switch backend into |
2027 | * one hypercall. | 2027 | * one hypercall. |
2028 | */ | 2028 | */ |
2029 | arch_start_context_switch(prev); | 2029 | arch_start_context_switch(prev); |
2030 | 2030 | ||
2031 | if (!mm) { | 2031 | if (!mm) { |
2032 | next->active_mm = oldmm; | 2032 | next->active_mm = oldmm; |
2033 | atomic_inc(&oldmm->mm_count); | 2033 | atomic_inc(&oldmm->mm_count); |
2034 | enter_lazy_tlb(oldmm, next); | 2034 | enter_lazy_tlb(oldmm, next); |
2035 | } else | 2035 | } else |
2036 | switch_mm(oldmm, mm, next); | 2036 | switch_mm(oldmm, mm, next); |
2037 | 2037 | ||
2038 | if (!prev->mm) { | 2038 | if (!prev->mm) { |
2039 | prev->active_mm = NULL; | 2039 | prev->active_mm = NULL; |
2040 | rq->prev_mm = oldmm; | 2040 | rq->prev_mm = oldmm; |
2041 | } | 2041 | } |
2042 | /* | 2042 | /* |
2043 | * Since the runqueue lock will be released by the next | 2043 | * Since the runqueue lock will be released by the next |
2044 | * task (which is an invalid locking op but in the case | 2044 | * task (which is an invalid locking op but in the case |
2045 | * of the scheduler it's an obvious special-case), so we | 2045 | * of the scheduler it's an obvious special-case), so we |
2046 | * do an early lockdep release here: | 2046 | * do an early lockdep release here: |
2047 | */ | 2047 | */ |
2048 | #ifndef __ARCH_WANT_UNLOCKED_CTXSW | 2048 | #ifndef __ARCH_WANT_UNLOCKED_CTXSW |
2049 | spin_release(&rq->lock.dep_map, 1, _THIS_IP_); | 2049 | spin_release(&rq->lock.dep_map, 1, _THIS_IP_); |
2050 | #endif | 2050 | #endif |
2051 | 2051 | ||
2052 | /* Here we just switch the register state and the stack. */ | 2052 | /* Here we just switch the register state and the stack. */ |
2053 | switch_to(prev, next, prev); | 2053 | switch_to(prev, next, prev); |
2054 | 2054 | ||
2055 | barrier(); | 2055 | barrier(); |
2056 | /* | 2056 | /* |
2057 | * this_rq must be evaluated again because prev may have moved | 2057 | * this_rq must be evaluated again because prev may have moved |
2058 | * CPUs since it called schedule(), thus the 'rq' on its stack | 2058 | * CPUs since it called schedule(), thus the 'rq' on its stack |
2059 | * frame will be invalid. | 2059 | * frame will be invalid. |
2060 | */ | 2060 | */ |
2061 | finish_task_switch(this_rq(), prev); | 2061 | finish_task_switch(this_rq(), prev); |
2062 | } | 2062 | } |
2063 | 2063 | ||
2064 | /* | 2064 | /* |
2065 | * nr_running, nr_uninterruptible and nr_context_switches: | 2065 | * nr_running, nr_uninterruptible and nr_context_switches: |
2066 | * | 2066 | * |
2067 | * externally visible scheduler statistics: current number of runnable | 2067 | * externally visible scheduler statistics: current number of runnable |
2068 | * threads, current number of uninterruptible-sleeping threads, total | 2068 | * threads, current number of uninterruptible-sleeping threads, total |
2069 | * number of context switches performed since bootup. | 2069 | * number of context switches performed since bootup. |
2070 | */ | 2070 | */ |
2071 | unsigned long nr_running(void) | 2071 | unsigned long nr_running(void) |
2072 | { | 2072 | { |
2073 | unsigned long i, sum = 0; | 2073 | unsigned long i, sum = 0; |
2074 | 2074 | ||
2075 | for_each_online_cpu(i) | 2075 | for_each_online_cpu(i) |
2076 | sum += cpu_rq(i)->nr_running; | 2076 | sum += cpu_rq(i)->nr_running; |
2077 | 2077 | ||
2078 | return sum; | 2078 | return sum; |
2079 | } | 2079 | } |
2080 | 2080 | ||
2081 | unsigned long nr_uninterruptible(void) | 2081 | unsigned long nr_uninterruptible(void) |
2082 | { | 2082 | { |
2083 | unsigned long i, sum = 0; | 2083 | unsigned long i, sum = 0; |
2084 | 2084 | ||
2085 | for_each_possible_cpu(i) | 2085 | for_each_possible_cpu(i) |
2086 | sum += cpu_rq(i)->nr_uninterruptible; | 2086 | sum += cpu_rq(i)->nr_uninterruptible; |
2087 | 2087 | ||
2088 | /* | 2088 | /* |
2089 | * Since we read the counters lockless, it might be slightly | 2089 | * Since we read the counters lockless, it might be slightly |
2090 | * inaccurate. Do not allow it to go below zero though: | 2090 | * inaccurate. Do not allow it to go below zero though: |
2091 | */ | 2091 | */ |
2092 | if (unlikely((long)sum < 0)) | 2092 | if (unlikely((long)sum < 0)) |
2093 | sum = 0; | 2093 | sum = 0; |
2094 | 2094 | ||
2095 | return sum; | 2095 | return sum; |
2096 | } | 2096 | } |
2097 | 2097 | ||
2098 | unsigned long long nr_context_switches(void) | 2098 | unsigned long long nr_context_switches(void) |
2099 | { | 2099 | { |
2100 | int i; | 2100 | int i; |
2101 | unsigned long long sum = 0; | 2101 | unsigned long long sum = 0; |
2102 | 2102 | ||
2103 | for_each_possible_cpu(i) | 2103 | for_each_possible_cpu(i) |
2104 | sum += cpu_rq(i)->nr_switches; | 2104 | sum += cpu_rq(i)->nr_switches; |
2105 | 2105 | ||
2106 | return sum; | 2106 | return sum; |
2107 | } | 2107 | } |
2108 | 2108 | ||
2109 | unsigned long nr_iowait(void) | 2109 | unsigned long nr_iowait(void) |
2110 | { | 2110 | { |
2111 | unsigned long i, sum = 0; | 2111 | unsigned long i, sum = 0; |
2112 | 2112 | ||
2113 | for_each_possible_cpu(i) | 2113 | for_each_possible_cpu(i) |
2114 | sum += atomic_read(&cpu_rq(i)->nr_iowait); | 2114 | sum += atomic_read(&cpu_rq(i)->nr_iowait); |
2115 | 2115 | ||
2116 | return sum; | 2116 | return sum; |
2117 | } | 2117 | } |
2118 | 2118 | ||
2119 | unsigned long nr_iowait_cpu(int cpu) | 2119 | unsigned long nr_iowait_cpu(int cpu) |
2120 | { | 2120 | { |
2121 | struct rq *this = cpu_rq(cpu); | 2121 | struct rq *this = cpu_rq(cpu); |
2122 | return atomic_read(&this->nr_iowait); | 2122 | return atomic_read(&this->nr_iowait); |
2123 | } | 2123 | } |
2124 | 2124 | ||
2125 | unsigned long this_cpu_load(void) | 2125 | unsigned long this_cpu_load(void) |
2126 | { | 2126 | { |
2127 | struct rq *this = this_rq(); | 2127 | struct rq *this = this_rq(); |
2128 | return this->cpu_load[0]; | 2128 | return this->cpu_load[0]; |
2129 | } | 2129 | } |
2130 | 2130 | ||
2131 | 2131 | ||
2132 | /* Variables and functions for calc_load */ | 2132 | /* Variables and functions for calc_load */ |
2133 | static atomic_long_t calc_load_tasks; | 2133 | static atomic_long_t calc_load_tasks; |
2134 | static unsigned long calc_load_update; | 2134 | static unsigned long calc_load_update; |
2135 | unsigned long avenrun[3]; | 2135 | unsigned long avenrun[3]; |
2136 | EXPORT_SYMBOL(avenrun); | 2136 | EXPORT_SYMBOL(avenrun); |
2137 | 2137 | ||
2138 | static long calc_load_fold_active(struct rq *this_rq) | 2138 | static long calc_load_fold_active(struct rq *this_rq) |
2139 | { | 2139 | { |
2140 | long nr_active, delta = 0; | 2140 | long nr_active, delta = 0; |
2141 | 2141 | ||
2142 | nr_active = this_rq->nr_running; | 2142 | nr_active = this_rq->nr_running; |
2143 | nr_active += (long) this_rq->nr_uninterruptible; | 2143 | nr_active += (long) this_rq->nr_uninterruptible; |
2144 | 2144 | ||
2145 | if (nr_active != this_rq->calc_load_active) { | 2145 | if (nr_active != this_rq->calc_load_active) { |
2146 | delta = nr_active - this_rq->calc_load_active; | 2146 | delta = nr_active - this_rq->calc_load_active; |
2147 | this_rq->calc_load_active = nr_active; | 2147 | this_rq->calc_load_active = nr_active; |
2148 | } | 2148 | } |
2149 | 2149 | ||
2150 | return delta; | 2150 | return delta; |
2151 | } | 2151 | } |
2152 | 2152 | ||
2153 | static unsigned long | 2153 | static unsigned long |
2154 | calc_load(unsigned long load, unsigned long exp, unsigned long active) | 2154 | calc_load(unsigned long load, unsigned long exp, unsigned long active) |
2155 | { | 2155 | { |
2156 | load *= exp; | 2156 | load *= exp; |
2157 | load += active * (FIXED_1 - exp); | 2157 | load += active * (FIXED_1 - exp); |
2158 | load += 1UL << (FSHIFT - 1); | 2158 | load += 1UL << (FSHIFT - 1); |
2159 | return load >> FSHIFT; | 2159 | return load >> FSHIFT; |
2160 | } | 2160 | } |
2161 | 2161 | ||
2162 | #ifdef CONFIG_NO_HZ | 2162 | #ifdef CONFIG_NO_HZ |
2163 | /* | 2163 | /* |
2164 | * For NO_HZ we delay the active fold to the next LOAD_FREQ update. | 2164 | * For NO_HZ we delay the active fold to the next LOAD_FREQ update. |
2165 | * | 2165 | * |
2166 | * When making the ILB scale, we should try to pull this in as well. | 2166 | * When making the ILB scale, we should try to pull this in as well. |
2167 | */ | 2167 | */ |
2168 | static atomic_long_t calc_load_tasks_idle; | 2168 | static atomic_long_t calc_load_tasks_idle; |
2169 | 2169 | ||
2170 | void calc_load_account_idle(struct rq *this_rq) | 2170 | void calc_load_account_idle(struct rq *this_rq) |
2171 | { | 2171 | { |
2172 | long delta; | 2172 | long delta; |
2173 | 2173 | ||
2174 | delta = calc_load_fold_active(this_rq); | 2174 | delta = calc_load_fold_active(this_rq); |
2175 | if (delta) | 2175 | if (delta) |
2176 | atomic_long_add(delta, &calc_load_tasks_idle); | 2176 | atomic_long_add(delta, &calc_load_tasks_idle); |
2177 | } | 2177 | } |
2178 | 2178 | ||
2179 | static long calc_load_fold_idle(void) | 2179 | static long calc_load_fold_idle(void) |
2180 | { | 2180 | { |
2181 | long delta = 0; | 2181 | long delta = 0; |
2182 | 2182 | ||
2183 | /* | 2183 | /* |
2184 | * Its got a race, we don't care... | 2184 | * Its got a race, we don't care... |
2185 | */ | 2185 | */ |
2186 | if (atomic_long_read(&calc_load_tasks_idle)) | 2186 | if (atomic_long_read(&calc_load_tasks_idle)) |
2187 | delta = atomic_long_xchg(&calc_load_tasks_idle, 0); | 2187 | delta = atomic_long_xchg(&calc_load_tasks_idle, 0); |
2188 | 2188 | ||
2189 | return delta; | 2189 | return delta; |
2190 | } | 2190 | } |
2191 | 2191 | ||
2192 | /** | 2192 | /** |
2193 | * fixed_power_int - compute: x^n, in O(log n) time | 2193 | * fixed_power_int - compute: x^n, in O(log n) time |
2194 | * | 2194 | * |
2195 | * @x: base of the power | 2195 | * @x: base of the power |
2196 | * @frac_bits: fractional bits of @x | 2196 | * @frac_bits: fractional bits of @x |
2197 | * @n: power to raise @x to. | 2197 | * @n: power to raise @x to. |
2198 | * | 2198 | * |
2199 | * By exploiting the relation between the definition of the natural power | 2199 | * By exploiting the relation between the definition of the natural power |
2200 | * function: x^n := x*x*...*x (x multiplied by itself for n times), and | 2200 | * function: x^n := x*x*...*x (x multiplied by itself for n times), and |
2201 | * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i, | 2201 | * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i, |
2202 | * (where: n_i \elem {0, 1}, the binary vector representing n), | 2202 | * (where: n_i \elem {0, 1}, the binary vector representing n), |
2203 | * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is | 2203 | * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is |
2204 | * of course trivially computable in O(log_2 n), the length of our binary | 2204 | * of course trivially computable in O(log_2 n), the length of our binary |
2205 | * vector. | 2205 | * vector. |
2206 | */ | 2206 | */ |
2207 | static unsigned long | 2207 | static unsigned long |
2208 | fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n) | 2208 | fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n) |
2209 | { | 2209 | { |
2210 | unsigned long result = 1UL << frac_bits; | 2210 | unsigned long result = 1UL << frac_bits; |
2211 | 2211 | ||
2212 | if (n) for (;;) { | 2212 | if (n) for (;;) { |
2213 | if (n & 1) { | 2213 | if (n & 1) { |
2214 | result *= x; | 2214 | result *= x; |
2215 | result += 1UL << (frac_bits - 1); | 2215 | result += 1UL << (frac_bits - 1); |
2216 | result >>= frac_bits; | 2216 | result >>= frac_bits; |
2217 | } | 2217 | } |
2218 | n >>= 1; | 2218 | n >>= 1; |
2219 | if (!n) | 2219 | if (!n) |
2220 | break; | 2220 | break; |
2221 | x *= x; | 2221 | x *= x; |
2222 | x += 1UL << (frac_bits - 1); | 2222 | x += 1UL << (frac_bits - 1); |
2223 | x >>= frac_bits; | 2223 | x >>= frac_bits; |
2224 | } | 2224 | } |
2225 | 2225 | ||
2226 | return result; | 2226 | return result; |
2227 | } | 2227 | } |
2228 | 2228 | ||
2229 | /* | 2229 | /* |
2230 | * a1 = a0 * e + a * (1 - e) | 2230 | * a1 = a0 * e + a * (1 - e) |
2231 | * | 2231 | * |
2232 | * a2 = a1 * e + a * (1 - e) | 2232 | * a2 = a1 * e + a * (1 - e) |
2233 | * = (a0 * e + a * (1 - e)) * e + a * (1 - e) | 2233 | * = (a0 * e + a * (1 - e)) * e + a * (1 - e) |
2234 | * = a0 * e^2 + a * (1 - e) * (1 + e) | 2234 | * = a0 * e^2 + a * (1 - e) * (1 + e) |
2235 | * | 2235 | * |
2236 | * a3 = a2 * e + a * (1 - e) | 2236 | * a3 = a2 * e + a * (1 - e) |
2237 | * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e) | 2237 | * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e) |
2238 | * = a0 * e^3 + a * (1 - e) * (1 + e + e^2) | 2238 | * = a0 * e^3 + a * (1 - e) * (1 + e + e^2) |
2239 | * | 2239 | * |
2240 | * ... | 2240 | * ... |
2241 | * | 2241 | * |
2242 | * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1] | 2242 | * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1] |
2243 | * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e) | 2243 | * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e) |
2244 | * = a0 * e^n + a * (1 - e^n) | 2244 | * = a0 * e^n + a * (1 - e^n) |
2245 | * | 2245 | * |
2246 | * [1] application of the geometric series: | 2246 | * [1] application of the geometric series: |
2247 | * | 2247 | * |
2248 | * n 1 - x^(n+1) | 2248 | * n 1 - x^(n+1) |
2249 | * S_n := \Sum x^i = ------------- | 2249 | * S_n := \Sum x^i = ------------- |
2250 | * i=0 1 - x | 2250 | * i=0 1 - x |
2251 | */ | 2251 | */ |
2252 | static unsigned long | 2252 | static unsigned long |
2253 | calc_load_n(unsigned long load, unsigned long exp, | 2253 | calc_load_n(unsigned long load, unsigned long exp, |
2254 | unsigned long active, unsigned int n) | 2254 | unsigned long active, unsigned int n) |
2255 | { | 2255 | { |
2256 | 2256 | ||
2257 | return calc_load(load, fixed_power_int(exp, FSHIFT, n), active); | 2257 | return calc_load(load, fixed_power_int(exp, FSHIFT, n), active); |
2258 | } | 2258 | } |
2259 | 2259 | ||
2260 | /* | 2260 | /* |
2261 | * NO_HZ can leave us missing all per-cpu ticks calling | 2261 | * NO_HZ can leave us missing all per-cpu ticks calling |
2262 | * calc_load_account_active(), but since an idle CPU folds its delta into | 2262 | * calc_load_account_active(), but since an idle CPU folds its delta into |
2263 | * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold | 2263 | * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold |
2264 | * in the pending idle delta if our idle period crossed a load cycle boundary. | 2264 | * in the pending idle delta if our idle period crossed a load cycle boundary. |
2265 | * | 2265 | * |
2266 | * Once we've updated the global active value, we need to apply the exponential | 2266 | * Once we've updated the global active value, we need to apply the exponential |
2267 | * weights adjusted to the number of cycles missed. | 2267 | * weights adjusted to the number of cycles missed. |
2268 | */ | 2268 | */ |
2269 | static void calc_global_nohz(unsigned long ticks) | 2269 | static void calc_global_nohz(unsigned long ticks) |
2270 | { | 2270 | { |
2271 | long delta, active, n; | 2271 | long delta, active, n; |
2272 | 2272 | ||
2273 | if (time_before(jiffies, calc_load_update)) | 2273 | if (time_before(jiffies, calc_load_update)) |
2274 | return; | 2274 | return; |
2275 | 2275 | ||
2276 | /* | 2276 | /* |
2277 | * If we crossed a calc_load_update boundary, make sure to fold | 2277 | * If we crossed a calc_load_update boundary, make sure to fold |
2278 | * any pending idle changes, the respective CPUs might have | 2278 | * any pending idle changes, the respective CPUs might have |
2279 | * missed the tick driven calc_load_account_active() update | 2279 | * missed the tick driven calc_load_account_active() update |
2280 | * due to NO_HZ. | 2280 | * due to NO_HZ. |
2281 | */ | 2281 | */ |
2282 | delta = calc_load_fold_idle(); | 2282 | delta = calc_load_fold_idle(); |
2283 | if (delta) | 2283 | if (delta) |
2284 | atomic_long_add(delta, &calc_load_tasks); | 2284 | atomic_long_add(delta, &calc_load_tasks); |
2285 | 2285 | ||
2286 | /* | 2286 | /* |
2287 | * If we were idle for multiple load cycles, apply them. | 2287 | * If we were idle for multiple load cycles, apply them. |
2288 | */ | 2288 | */ |
2289 | if (ticks >= LOAD_FREQ) { | 2289 | if (ticks >= LOAD_FREQ) { |
2290 | n = ticks / LOAD_FREQ; | 2290 | n = ticks / LOAD_FREQ; |
2291 | 2291 | ||
2292 | active = atomic_long_read(&calc_load_tasks); | 2292 | active = atomic_long_read(&calc_load_tasks); |
2293 | active = active > 0 ? active * FIXED_1 : 0; | 2293 | active = active > 0 ? active * FIXED_1 : 0; |
2294 | 2294 | ||
2295 | avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n); | 2295 | avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n); |
2296 | avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n); | 2296 | avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n); |
2297 | avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n); | 2297 | avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n); |
2298 | 2298 | ||
2299 | calc_load_update += n * LOAD_FREQ; | 2299 | calc_load_update += n * LOAD_FREQ; |
2300 | } | 2300 | } |
2301 | 2301 | ||
2302 | /* | 2302 | /* |
2303 | * Its possible the remainder of the above division also crosses | 2303 | * Its possible the remainder of the above division also crosses |
2304 | * a LOAD_FREQ period, the regular check in calc_global_load() | 2304 | * a LOAD_FREQ period, the regular check in calc_global_load() |
2305 | * which comes after this will take care of that. | 2305 | * which comes after this will take care of that. |
2306 | * | 2306 | * |
2307 | * Consider us being 11 ticks before a cycle completion, and us | 2307 | * Consider us being 11 ticks before a cycle completion, and us |
2308 | * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will | 2308 | * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will |
2309 | * age us 4 cycles, and the test in calc_global_load() will | 2309 | * age us 4 cycles, and the test in calc_global_load() will |
2310 | * pick up the final one. | 2310 | * pick up the final one. |
2311 | */ | 2311 | */ |
2312 | } | 2312 | } |
2313 | #else | 2313 | #else |
2314 | void calc_load_account_idle(struct rq *this_rq) | 2314 | void calc_load_account_idle(struct rq *this_rq) |
2315 | { | 2315 | { |
2316 | } | 2316 | } |
2317 | 2317 | ||
2318 | static inline long calc_load_fold_idle(void) | 2318 | static inline long calc_load_fold_idle(void) |
2319 | { | 2319 | { |
2320 | return 0; | 2320 | return 0; |
2321 | } | 2321 | } |
2322 | 2322 | ||
2323 | static void calc_global_nohz(unsigned long ticks) | 2323 | static void calc_global_nohz(unsigned long ticks) |
2324 | { | 2324 | { |
2325 | } | 2325 | } |
2326 | #endif | 2326 | #endif |
2327 | 2327 | ||
2328 | /** | 2328 | /** |
2329 | * get_avenrun - get the load average array | 2329 | * get_avenrun - get the load average array |
2330 | * @loads: pointer to dest load array | 2330 | * @loads: pointer to dest load array |
2331 | * @offset: offset to add | 2331 | * @offset: offset to add |
2332 | * @shift: shift count to shift the result left | 2332 | * @shift: shift count to shift the result left |
2333 | * | 2333 | * |
2334 | * These values are estimates at best, so no need for locking. | 2334 | * These values are estimates at best, so no need for locking. |
2335 | */ | 2335 | */ |
2336 | void get_avenrun(unsigned long *loads, unsigned long offset, int shift) | 2336 | void get_avenrun(unsigned long *loads, unsigned long offset, int shift) |
2337 | { | 2337 | { |
2338 | loads[0] = (avenrun[0] + offset) << shift; | 2338 | loads[0] = (avenrun[0] + offset) << shift; |
2339 | loads[1] = (avenrun[1] + offset) << shift; | 2339 | loads[1] = (avenrun[1] + offset) << shift; |
2340 | loads[2] = (avenrun[2] + offset) << shift; | 2340 | loads[2] = (avenrun[2] + offset) << shift; |
2341 | } | 2341 | } |
2342 | 2342 | ||
2343 | /* | 2343 | /* |
2344 | * calc_load - update the avenrun load estimates 10 ticks after the | 2344 | * calc_load - update the avenrun load estimates 10 ticks after the |
2345 | * CPUs have updated calc_load_tasks. | 2345 | * CPUs have updated calc_load_tasks. |
2346 | */ | 2346 | */ |
2347 | void calc_global_load(unsigned long ticks) | 2347 | void calc_global_load(unsigned long ticks) |
2348 | { | 2348 | { |
2349 | long active; | 2349 | long active; |
2350 | 2350 | ||
2351 | calc_global_nohz(ticks); | 2351 | calc_global_nohz(ticks); |
2352 | 2352 | ||
2353 | if (time_before(jiffies, calc_load_update + 10)) | 2353 | if (time_before(jiffies, calc_load_update + 10)) |
2354 | return; | 2354 | return; |
2355 | 2355 | ||
2356 | active = atomic_long_read(&calc_load_tasks); | 2356 | active = atomic_long_read(&calc_load_tasks); |
2357 | active = active > 0 ? active * FIXED_1 : 0; | 2357 | active = active > 0 ? active * FIXED_1 : 0; |
2358 | 2358 | ||
2359 | avenrun[0] = calc_load(avenrun[0], EXP_1, active); | 2359 | avenrun[0] = calc_load(avenrun[0], EXP_1, active); |
2360 | avenrun[1] = calc_load(avenrun[1], EXP_5, active); | 2360 | avenrun[1] = calc_load(avenrun[1], EXP_5, active); |
2361 | avenrun[2] = calc_load(avenrun[2], EXP_15, active); | 2361 | avenrun[2] = calc_load(avenrun[2], EXP_15, active); |
2362 | 2362 | ||
2363 | calc_load_update += LOAD_FREQ; | 2363 | calc_load_update += LOAD_FREQ; |
2364 | } | 2364 | } |
2365 | 2365 | ||
2366 | /* | 2366 | /* |
2367 | * Called from update_cpu_load() to periodically update this CPU's | 2367 | * Called from update_cpu_load() to periodically update this CPU's |
2368 | * active count. | 2368 | * active count. |
2369 | */ | 2369 | */ |
2370 | static void calc_load_account_active(struct rq *this_rq) | 2370 | static void calc_load_account_active(struct rq *this_rq) |
2371 | { | 2371 | { |
2372 | long delta; | 2372 | long delta; |
2373 | 2373 | ||
2374 | if (time_before(jiffies, this_rq->calc_load_update)) | 2374 | if (time_before(jiffies, this_rq->calc_load_update)) |
2375 | return; | 2375 | return; |
2376 | 2376 | ||
2377 | delta = calc_load_fold_active(this_rq); | 2377 | delta = calc_load_fold_active(this_rq); |
2378 | delta += calc_load_fold_idle(); | 2378 | delta += calc_load_fold_idle(); |
2379 | if (delta) | 2379 | if (delta) |
2380 | atomic_long_add(delta, &calc_load_tasks); | 2380 | atomic_long_add(delta, &calc_load_tasks); |
2381 | 2381 | ||
2382 | this_rq->calc_load_update += LOAD_FREQ; | 2382 | this_rq->calc_load_update += LOAD_FREQ; |
2383 | } | 2383 | } |
2384 | 2384 | ||
2385 | /* | 2385 | /* |
2386 | * The exact cpuload at various idx values, calculated at every tick would be | 2386 | * The exact cpuload at various idx values, calculated at every tick would be |
2387 | * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load | 2387 | * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load |
2388 | * | 2388 | * |
2389 | * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called | 2389 | * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called |
2390 | * on nth tick when cpu may be busy, then we have: | 2390 | * on nth tick when cpu may be busy, then we have: |
2391 | * load = ((2^idx - 1) / 2^idx)^(n-1) * load | 2391 | * load = ((2^idx - 1) / 2^idx)^(n-1) * load |
2392 | * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load | 2392 | * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load |
2393 | * | 2393 | * |
2394 | * decay_load_missed() below does efficient calculation of | 2394 | * decay_load_missed() below does efficient calculation of |
2395 | * load = ((2^idx - 1) / 2^idx)^(n-1) * load | 2395 | * load = ((2^idx - 1) / 2^idx)^(n-1) * load |
2396 | * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load | 2396 | * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load |
2397 | * | 2397 | * |
2398 | * The calculation is approximated on a 128 point scale. | 2398 | * The calculation is approximated on a 128 point scale. |
2399 | * degrade_zero_ticks is the number of ticks after which load at any | 2399 | * degrade_zero_ticks is the number of ticks after which load at any |
2400 | * particular idx is approximated to be zero. | 2400 | * particular idx is approximated to be zero. |
2401 | * degrade_factor is a precomputed table, a row for each load idx. | 2401 | * degrade_factor is a precomputed table, a row for each load idx. |
2402 | * Each column corresponds to degradation factor for a power of two ticks, | 2402 | * Each column corresponds to degradation factor for a power of two ticks, |
2403 | * based on 128 point scale. | 2403 | * based on 128 point scale. |
2404 | * Example: | 2404 | * Example: |
2405 | * row 2, col 3 (=12) says that the degradation at load idx 2 after | 2405 | * row 2, col 3 (=12) says that the degradation at load idx 2 after |
2406 | * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8). | 2406 | * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8). |
2407 | * | 2407 | * |
2408 | * With this power of 2 load factors, we can degrade the load n times | 2408 | * With this power of 2 load factors, we can degrade the load n times |
2409 | * by looking at 1 bits in n and doing as many mult/shift instead of | 2409 | * by looking at 1 bits in n and doing as many mult/shift instead of |
2410 | * n mult/shifts needed by the exact degradation. | 2410 | * n mult/shifts needed by the exact degradation. |
2411 | */ | 2411 | */ |
2412 | #define DEGRADE_SHIFT 7 | 2412 | #define DEGRADE_SHIFT 7 |
2413 | static const unsigned char | 2413 | static const unsigned char |
2414 | degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; | 2414 | degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; |
2415 | static const unsigned char | 2415 | static const unsigned char |
2416 | degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { | 2416 | degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { |
2417 | {0, 0, 0, 0, 0, 0, 0, 0}, | 2417 | {0, 0, 0, 0, 0, 0, 0, 0}, |
2418 | {64, 32, 8, 0, 0, 0, 0, 0}, | 2418 | {64, 32, 8, 0, 0, 0, 0, 0}, |
2419 | {96, 72, 40, 12, 1, 0, 0}, | 2419 | {96, 72, 40, 12, 1, 0, 0}, |
2420 | {112, 98, 75, 43, 15, 1, 0}, | 2420 | {112, 98, 75, 43, 15, 1, 0}, |
2421 | {120, 112, 98, 76, 45, 16, 2} }; | 2421 | {120, 112, 98, 76, 45, 16, 2} }; |
2422 | 2422 | ||
2423 | /* | 2423 | /* |
2424 | * Update cpu_load for any missed ticks, due to tickless idle. The backlog | 2424 | * Update cpu_load for any missed ticks, due to tickless idle. The backlog |
2425 | * would be when CPU is idle and so we just decay the old load without | 2425 | * would be when CPU is idle and so we just decay the old load without |
2426 | * adding any new load. | 2426 | * adding any new load. |
2427 | */ | 2427 | */ |
2428 | static unsigned long | 2428 | static unsigned long |
2429 | decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) | 2429 | decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) |
2430 | { | 2430 | { |
2431 | int j = 0; | 2431 | int j = 0; |
2432 | 2432 | ||
2433 | if (!missed_updates) | 2433 | if (!missed_updates) |
2434 | return load; | 2434 | return load; |
2435 | 2435 | ||
2436 | if (missed_updates >= degrade_zero_ticks[idx]) | 2436 | if (missed_updates >= degrade_zero_ticks[idx]) |
2437 | return 0; | 2437 | return 0; |
2438 | 2438 | ||
2439 | if (idx == 1) | 2439 | if (idx == 1) |
2440 | return load >> missed_updates; | 2440 | return load >> missed_updates; |
2441 | 2441 | ||
2442 | while (missed_updates) { | 2442 | while (missed_updates) { |
2443 | if (missed_updates % 2) | 2443 | if (missed_updates % 2) |
2444 | load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; | 2444 | load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; |
2445 | 2445 | ||
2446 | missed_updates >>= 1; | 2446 | missed_updates >>= 1; |
2447 | j++; | 2447 | j++; |
2448 | } | 2448 | } |
2449 | return load; | 2449 | return load; |
2450 | } | 2450 | } |
2451 | 2451 | ||
2452 | /* | 2452 | /* |
2453 | * Update rq->cpu_load[] statistics. This function is usually called every | 2453 | * Update rq->cpu_load[] statistics. This function is usually called every |
2454 | * scheduler tick (TICK_NSEC). With tickless idle this will not be called | 2454 | * scheduler tick (TICK_NSEC). With tickless idle this will not be called |
2455 | * every tick. We fix it up based on jiffies. | 2455 | * every tick. We fix it up based on jiffies. |
2456 | */ | 2456 | */ |
2457 | void update_cpu_load(struct rq *this_rq) | 2457 | void update_cpu_load(struct rq *this_rq) |
2458 | { | 2458 | { |
2459 | unsigned long this_load = this_rq->load.weight; | 2459 | unsigned long this_load = this_rq->load.weight; |
2460 | unsigned long curr_jiffies = jiffies; | 2460 | unsigned long curr_jiffies = jiffies; |
2461 | unsigned long pending_updates; | 2461 | unsigned long pending_updates; |
2462 | int i, scale; | 2462 | int i, scale; |
2463 | 2463 | ||
2464 | this_rq->nr_load_updates++; | 2464 | this_rq->nr_load_updates++; |
2465 | 2465 | ||
2466 | /* Avoid repeated calls on same jiffy, when moving in and out of idle */ | 2466 | /* Avoid repeated calls on same jiffy, when moving in and out of idle */ |
2467 | if (curr_jiffies == this_rq->last_load_update_tick) | 2467 | if (curr_jiffies == this_rq->last_load_update_tick) |
2468 | return; | 2468 | return; |
2469 | 2469 | ||
2470 | pending_updates = curr_jiffies - this_rq->last_load_update_tick; | 2470 | pending_updates = curr_jiffies - this_rq->last_load_update_tick; |
2471 | this_rq->last_load_update_tick = curr_jiffies; | 2471 | this_rq->last_load_update_tick = curr_jiffies; |
2472 | 2472 | ||
2473 | /* Update our load: */ | 2473 | /* Update our load: */ |
2474 | this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ | 2474 | this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ |
2475 | for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { | 2475 | for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { |
2476 | unsigned long old_load, new_load; | 2476 | unsigned long old_load, new_load; |
2477 | 2477 | ||
2478 | /* scale is effectively 1 << i now, and >> i divides by scale */ | 2478 | /* scale is effectively 1 << i now, and >> i divides by scale */ |
2479 | 2479 | ||
2480 | old_load = this_rq->cpu_load[i]; | 2480 | old_load = this_rq->cpu_load[i]; |
2481 | old_load = decay_load_missed(old_load, pending_updates - 1, i); | 2481 | old_load = decay_load_missed(old_load, pending_updates - 1, i); |
2482 | new_load = this_load; | 2482 | new_load = this_load; |
2483 | /* | 2483 | /* |
2484 | * Round up the averaging division if load is increasing. This | 2484 | * Round up the averaging division if load is increasing. This |
2485 | * prevents us from getting stuck on 9 if the load is 10, for | 2485 | * prevents us from getting stuck on 9 if the load is 10, for |
2486 | * example. | 2486 | * example. |
2487 | */ | 2487 | */ |
2488 | if (new_load > old_load) | 2488 | if (new_load > old_load) |
2489 | new_load += scale - 1; | 2489 | new_load += scale - 1; |
2490 | 2490 | ||
2491 | this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; | 2491 | this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; |
2492 | } | 2492 | } |
2493 | 2493 | ||
2494 | sched_avg_update(this_rq); | 2494 | sched_avg_update(this_rq); |
2495 | } | 2495 | } |
2496 | 2496 | ||
2497 | static void update_cpu_load_active(struct rq *this_rq) | 2497 | static void update_cpu_load_active(struct rq *this_rq) |
2498 | { | 2498 | { |
2499 | update_cpu_load(this_rq); | 2499 | update_cpu_load(this_rq); |
2500 | 2500 | ||
2501 | calc_load_account_active(this_rq); | 2501 | calc_load_account_active(this_rq); |
2502 | } | 2502 | } |
2503 | 2503 | ||
2504 | #ifdef CONFIG_SMP | 2504 | #ifdef CONFIG_SMP |
2505 | 2505 | ||
2506 | /* | 2506 | /* |
2507 | * sched_exec - execve() is a valuable balancing opportunity, because at | 2507 | * sched_exec - execve() is a valuable balancing opportunity, because at |
2508 | * this point the task has the smallest effective memory and cache footprint. | 2508 | * this point the task has the smallest effective memory and cache footprint. |
2509 | */ | 2509 | */ |
2510 | void sched_exec(void) | 2510 | void sched_exec(void) |
2511 | { | 2511 | { |
2512 | struct task_struct *p = current; | 2512 | struct task_struct *p = current; |
2513 | unsigned long flags; | 2513 | unsigned long flags; |
2514 | int dest_cpu; | 2514 | int dest_cpu; |
2515 | 2515 | ||
2516 | raw_spin_lock_irqsave(&p->pi_lock, flags); | 2516 | raw_spin_lock_irqsave(&p->pi_lock, flags); |
2517 | dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0); | 2517 | dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0); |
2518 | if (dest_cpu == smp_processor_id()) | 2518 | if (dest_cpu == smp_processor_id()) |
2519 | goto unlock; | 2519 | goto unlock; |
2520 | 2520 | ||
2521 | if (likely(cpu_active(dest_cpu))) { | 2521 | if (likely(cpu_active(dest_cpu))) { |
2522 | struct migration_arg arg = { p, dest_cpu }; | 2522 | struct migration_arg arg = { p, dest_cpu }; |
2523 | 2523 | ||
2524 | raw_spin_unlock_irqrestore(&p->pi_lock, flags); | 2524 | raw_spin_unlock_irqrestore(&p->pi_lock, flags); |
2525 | stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); | 2525 | stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); |
2526 | return; | 2526 | return; |
2527 | } | 2527 | } |
2528 | unlock: | 2528 | unlock: |
2529 | raw_spin_unlock_irqrestore(&p->pi_lock, flags); | 2529 | raw_spin_unlock_irqrestore(&p->pi_lock, flags); |
2530 | } | 2530 | } |
2531 | 2531 | ||
2532 | #endif | 2532 | #endif |
2533 | 2533 | ||
2534 | DEFINE_PER_CPU(struct kernel_stat, kstat); | 2534 | DEFINE_PER_CPU(struct kernel_stat, kstat); |
2535 | DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); | 2535 | DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); |
2536 | 2536 | ||
2537 | EXPORT_PER_CPU_SYMBOL(kstat); | 2537 | EXPORT_PER_CPU_SYMBOL(kstat); |
2538 | EXPORT_PER_CPU_SYMBOL(kernel_cpustat); | 2538 | EXPORT_PER_CPU_SYMBOL(kernel_cpustat); |
2539 | 2539 | ||
2540 | /* | 2540 | /* |
2541 | * Return any ns on the sched_clock that have not yet been accounted in | 2541 | * Return any ns on the sched_clock that have not yet been accounted in |
2542 | * @p in case that task is currently running. | 2542 | * @p in case that task is currently running. |
2543 | * | 2543 | * |
2544 | * Called with task_rq_lock() held on @rq. | 2544 | * Called with task_rq_lock() held on @rq. |
2545 | */ | 2545 | */ |
2546 | static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) | 2546 | static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) |
2547 | { | 2547 | { |
2548 | u64 ns = 0; | 2548 | u64 ns = 0; |
2549 | 2549 | ||
2550 | if (task_current(rq, p)) { | 2550 | if (task_current(rq, p)) { |
2551 | update_rq_clock(rq); | 2551 | update_rq_clock(rq); |
2552 | ns = rq->clock_task - p->se.exec_start; | 2552 | ns = rq->clock_task - p->se.exec_start; |
2553 | if ((s64)ns < 0) | 2553 | if ((s64)ns < 0) |
2554 | ns = 0; | 2554 | ns = 0; |
2555 | } | 2555 | } |
2556 | 2556 | ||
2557 | return ns; | 2557 | return ns; |
2558 | } | 2558 | } |
2559 | 2559 | ||
2560 | unsigned long long task_delta_exec(struct task_struct *p) | 2560 | unsigned long long task_delta_exec(struct task_struct *p) |
2561 | { | 2561 | { |
2562 | unsigned long flags; | 2562 | unsigned long flags; |
2563 | struct rq *rq; | 2563 | struct rq *rq; |
2564 | u64 ns = 0; | 2564 | u64 ns = 0; |
2565 | 2565 | ||
2566 | rq = task_rq_lock(p, &flags); | 2566 | rq = task_rq_lock(p, &flags); |
2567 | ns = do_task_delta_exec(p, rq); | 2567 | ns = do_task_delta_exec(p, rq); |
2568 | task_rq_unlock(rq, p, &flags); | 2568 | task_rq_unlock(rq, p, &flags); |
2569 | 2569 | ||
2570 | return ns; | 2570 | return ns; |
2571 | } | 2571 | } |
2572 | 2572 | ||
2573 | /* | 2573 | /* |
2574 | * Return accounted runtime for the task. | 2574 | * Return accounted runtime for the task. |
2575 | * In case the task is currently running, return the runtime plus current's | 2575 | * In case the task is currently running, return the runtime plus current's |
2576 | * pending runtime that have not been accounted yet. | 2576 | * pending runtime that have not been accounted yet. |
2577 | */ | 2577 | */ |
2578 | unsigned long long task_sched_runtime(struct task_struct *p) | 2578 | unsigned long long task_sched_runtime(struct task_struct *p) |
2579 | { | 2579 | { |
2580 | unsigned long flags; | 2580 | unsigned long flags; |
2581 | struct rq *rq; | 2581 | struct rq *rq; |
2582 | u64 ns = 0; | 2582 | u64 ns = 0; |
2583 | 2583 | ||
2584 | rq = task_rq_lock(p, &flags); | 2584 | rq = task_rq_lock(p, &flags); |
2585 | ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq); | 2585 | ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq); |
2586 | task_rq_unlock(rq, p, &flags); | 2586 | task_rq_unlock(rq, p, &flags); |
2587 | 2587 | ||
2588 | return ns; | 2588 | return ns; |
2589 | } | 2589 | } |
2590 | 2590 | ||
2591 | #ifdef CONFIG_CGROUP_CPUACCT | 2591 | #ifdef CONFIG_CGROUP_CPUACCT |
2592 | struct cgroup_subsys cpuacct_subsys; | 2592 | struct cgroup_subsys cpuacct_subsys; |
2593 | struct cpuacct root_cpuacct; | 2593 | struct cpuacct root_cpuacct; |
2594 | #endif | 2594 | #endif |
2595 | 2595 | ||
2596 | static inline void task_group_account_field(struct task_struct *p, int index, | 2596 | static inline void task_group_account_field(struct task_struct *p, int index, |
2597 | u64 tmp) | 2597 | u64 tmp) |
2598 | { | 2598 | { |
2599 | #ifdef CONFIG_CGROUP_CPUACCT | 2599 | #ifdef CONFIG_CGROUP_CPUACCT |
2600 | struct kernel_cpustat *kcpustat; | 2600 | struct kernel_cpustat *kcpustat; |
2601 | struct cpuacct *ca; | 2601 | struct cpuacct *ca; |
2602 | #endif | 2602 | #endif |
2603 | /* | 2603 | /* |
2604 | * Since all updates are sure to touch the root cgroup, we | 2604 | * Since all updates are sure to touch the root cgroup, we |
2605 | * get ourselves ahead and touch it first. If the root cgroup | 2605 | * get ourselves ahead and touch it first. If the root cgroup |
2606 | * is the only cgroup, then nothing else should be necessary. | 2606 | * is the only cgroup, then nothing else should be necessary. |
2607 | * | 2607 | * |
2608 | */ | 2608 | */ |
2609 | __get_cpu_var(kernel_cpustat).cpustat[index] += tmp; | 2609 | __get_cpu_var(kernel_cpustat).cpustat[index] += tmp; |
2610 | 2610 | ||
2611 | #ifdef CONFIG_CGROUP_CPUACCT | 2611 | #ifdef CONFIG_CGROUP_CPUACCT |
2612 | if (unlikely(!cpuacct_subsys.active)) | 2612 | if (unlikely(!cpuacct_subsys.active)) |
2613 | return; | 2613 | return; |
2614 | 2614 | ||
2615 | rcu_read_lock(); | 2615 | rcu_read_lock(); |
2616 | ca = task_ca(p); | 2616 | ca = task_ca(p); |
2617 | while (ca && (ca != &root_cpuacct)) { | 2617 | while (ca && (ca != &root_cpuacct)) { |
2618 | kcpustat = this_cpu_ptr(ca->cpustat); | 2618 | kcpustat = this_cpu_ptr(ca->cpustat); |
2619 | kcpustat->cpustat[index] += tmp; | 2619 | kcpustat->cpustat[index] += tmp; |
2620 | ca = parent_ca(ca); | 2620 | ca = parent_ca(ca); |
2621 | } | 2621 | } |
2622 | rcu_read_unlock(); | 2622 | rcu_read_unlock(); |
2623 | #endif | 2623 | #endif |
2624 | } | 2624 | } |
2625 | 2625 | ||
2626 | 2626 | ||
2627 | /* | 2627 | /* |
2628 | * Account user cpu time to a process. | 2628 | * Account user cpu time to a process. |
2629 | * @p: the process that the cpu time gets accounted to | 2629 | * @p: the process that the cpu time gets accounted to |
2630 | * @cputime: the cpu time spent in user space since the last update | 2630 | * @cputime: the cpu time spent in user space since the last update |
2631 | * @cputime_scaled: cputime scaled by cpu frequency | 2631 | * @cputime_scaled: cputime scaled by cpu frequency |
2632 | */ | 2632 | */ |
2633 | void account_user_time(struct task_struct *p, cputime_t cputime, | 2633 | void account_user_time(struct task_struct *p, cputime_t cputime, |
2634 | cputime_t cputime_scaled) | 2634 | cputime_t cputime_scaled) |
2635 | { | 2635 | { |
2636 | int index; | 2636 | int index; |
2637 | 2637 | ||
2638 | /* Add user time to process. */ | 2638 | /* Add user time to process. */ |
2639 | p->utime += cputime; | 2639 | p->utime += cputime; |
2640 | p->utimescaled += cputime_scaled; | 2640 | p->utimescaled += cputime_scaled; |
2641 | account_group_user_time(p, cputime); | 2641 | account_group_user_time(p, cputime); |
2642 | 2642 | ||
2643 | index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER; | 2643 | index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER; |
2644 | 2644 | ||
2645 | /* Add user time to cpustat. */ | 2645 | /* Add user time to cpustat. */ |
2646 | task_group_account_field(p, index, (__force u64) cputime); | 2646 | task_group_account_field(p, index, (__force u64) cputime); |
2647 | 2647 | ||
2648 | /* Account for user time used */ | 2648 | /* Account for user time used */ |
2649 | acct_update_integrals(p); | 2649 | acct_update_integrals(p); |
2650 | } | 2650 | } |
2651 | 2651 | ||
2652 | /* | 2652 | /* |
2653 | * Account guest cpu time to a process. | 2653 | * Account guest cpu time to a process. |
2654 | * @p: the process that the cpu time gets accounted to | 2654 | * @p: the process that the cpu time gets accounted to |
2655 | * @cputime: the cpu time spent in virtual machine since the last update | 2655 | * @cputime: the cpu time spent in virtual machine since the last update |
2656 | * @cputime_scaled: cputime scaled by cpu frequency | 2656 | * @cputime_scaled: cputime scaled by cpu frequency |
2657 | */ | 2657 | */ |
2658 | static void account_guest_time(struct task_struct *p, cputime_t cputime, | 2658 | static void account_guest_time(struct task_struct *p, cputime_t cputime, |
2659 | cputime_t cputime_scaled) | 2659 | cputime_t cputime_scaled) |
2660 | { | 2660 | { |
2661 | u64 *cpustat = kcpustat_this_cpu->cpustat; | 2661 | u64 *cpustat = kcpustat_this_cpu->cpustat; |
2662 | 2662 | ||
2663 | /* Add guest time to process. */ | 2663 | /* Add guest time to process. */ |
2664 | p->utime += cputime; | 2664 | p->utime += cputime; |
2665 | p->utimescaled += cputime_scaled; | 2665 | p->utimescaled += cputime_scaled; |
2666 | account_group_user_time(p, cputime); | 2666 | account_group_user_time(p, cputime); |
2667 | p->gtime += cputime; | 2667 | p->gtime += cputime; |
2668 | 2668 | ||
2669 | /* Add guest time to cpustat. */ | 2669 | /* Add guest time to cpustat. */ |
2670 | if (TASK_NICE(p) > 0) { | 2670 | if (TASK_NICE(p) > 0) { |
2671 | cpustat[CPUTIME_NICE] += (__force u64) cputime; | 2671 | cpustat[CPUTIME_NICE] += (__force u64) cputime; |
2672 | cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime; | 2672 | cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime; |
2673 | } else { | 2673 | } else { |
2674 | cpustat[CPUTIME_USER] += (__force u64) cputime; | 2674 | cpustat[CPUTIME_USER] += (__force u64) cputime; |
2675 | cpustat[CPUTIME_GUEST] += (__force u64) cputime; | 2675 | cpustat[CPUTIME_GUEST] += (__force u64) cputime; |
2676 | } | 2676 | } |
2677 | } | 2677 | } |
2678 | 2678 | ||
2679 | /* | 2679 | /* |
2680 | * Account system cpu time to a process and desired cpustat field | 2680 | * Account system cpu time to a process and desired cpustat field |
2681 | * @p: the process that the cpu time gets accounted to | 2681 | * @p: the process that the cpu time gets accounted to |
2682 | * @cputime: the cpu time spent in kernel space since the last update | 2682 | * @cputime: the cpu time spent in kernel space since the last update |
2683 | * @cputime_scaled: cputime scaled by cpu frequency | 2683 | * @cputime_scaled: cputime scaled by cpu frequency |
2684 | * @target_cputime64: pointer to cpustat field that has to be updated | 2684 | * @target_cputime64: pointer to cpustat field that has to be updated |
2685 | */ | 2685 | */ |
2686 | static inline | 2686 | static inline |
2687 | void __account_system_time(struct task_struct *p, cputime_t cputime, | 2687 | void __account_system_time(struct task_struct *p, cputime_t cputime, |
2688 | cputime_t cputime_scaled, int index) | 2688 | cputime_t cputime_scaled, int index) |
2689 | { | 2689 | { |
2690 | /* Add system time to process. */ | 2690 | /* Add system time to process. */ |
2691 | p->stime += cputime; | 2691 | p->stime += cputime; |
2692 | p->stimescaled += cputime_scaled; | 2692 | p->stimescaled += cputime_scaled; |
2693 | account_group_system_time(p, cputime); | 2693 | account_group_system_time(p, cputime); |
2694 | 2694 | ||
2695 | /* Add system time to cpustat. */ | 2695 | /* Add system time to cpustat. */ |
2696 | task_group_account_field(p, index, (__force u64) cputime); | 2696 | task_group_account_field(p, index, (__force u64) cputime); |
2697 | 2697 | ||
2698 | /* Account for system time used */ | 2698 | /* Account for system time used */ |
2699 | acct_update_integrals(p); | 2699 | acct_update_integrals(p); |
2700 | } | 2700 | } |
2701 | 2701 | ||
2702 | /* | 2702 | /* |
2703 | * Account system cpu time to a process. | 2703 | * Account system cpu time to a process. |
2704 | * @p: the process that the cpu time gets accounted to | 2704 | * @p: the process that the cpu time gets accounted to |
2705 | * @hardirq_offset: the offset to subtract from hardirq_count() | 2705 | * @hardirq_offset: the offset to subtract from hardirq_count() |
2706 | * @cputime: the cpu time spent in kernel space since the last update | 2706 | * @cputime: the cpu time spent in kernel space since the last update |
2707 | * @cputime_scaled: cputime scaled by cpu frequency | 2707 | * @cputime_scaled: cputime scaled by cpu frequency |
2708 | */ | 2708 | */ |
2709 | void account_system_time(struct task_struct *p, int hardirq_offset, | 2709 | void account_system_time(struct task_struct *p, int hardirq_offset, |
2710 | cputime_t cputime, cputime_t cputime_scaled) | 2710 | cputime_t cputime, cputime_t cputime_scaled) |
2711 | { | 2711 | { |
2712 | int index; | 2712 | int index; |
2713 | 2713 | ||
2714 | if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { | 2714 | if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { |
2715 | account_guest_time(p, cputime, cputime_scaled); | 2715 | account_guest_time(p, cputime, cputime_scaled); |
2716 | return; | 2716 | return; |
2717 | } | 2717 | } |
2718 | 2718 | ||
2719 | if (hardirq_count() - hardirq_offset) | 2719 | if (hardirq_count() - hardirq_offset) |
2720 | index = CPUTIME_IRQ; | 2720 | index = CPUTIME_IRQ; |
2721 | else if (in_serving_softirq()) | 2721 | else if (in_serving_softirq()) |
2722 | index = CPUTIME_SOFTIRQ; | 2722 | index = CPUTIME_SOFTIRQ; |
2723 | else | 2723 | else |
2724 | index = CPUTIME_SYSTEM; | 2724 | index = CPUTIME_SYSTEM; |
2725 | 2725 | ||
2726 | __account_system_time(p, cputime, cputime_scaled, index); | 2726 | __account_system_time(p, cputime, cputime_scaled, index); |
2727 | } | 2727 | } |
2728 | 2728 | ||
2729 | /* | 2729 | /* |
2730 | * Account for involuntary wait time. | 2730 | * Account for involuntary wait time. |
2731 | * @cputime: the cpu time spent in involuntary wait | 2731 | * @cputime: the cpu time spent in involuntary wait |
2732 | */ | 2732 | */ |
2733 | void account_steal_time(cputime_t cputime) | 2733 | void account_steal_time(cputime_t cputime) |
2734 | { | 2734 | { |
2735 | u64 *cpustat = kcpustat_this_cpu->cpustat; | 2735 | u64 *cpustat = kcpustat_this_cpu->cpustat; |
2736 | 2736 | ||
2737 | cpustat[CPUTIME_STEAL] += (__force u64) cputime; | 2737 | cpustat[CPUTIME_STEAL] += (__force u64) cputime; |
2738 | } | 2738 | } |
2739 | 2739 | ||
2740 | /* | 2740 | /* |
2741 | * Account for idle time. | 2741 | * Account for idle time. |
2742 | * @cputime: the cpu time spent in idle wait | 2742 | * @cputime: the cpu time spent in idle wait |
2743 | */ | 2743 | */ |
2744 | void account_idle_time(cputime_t cputime) | 2744 | void account_idle_time(cputime_t cputime) |
2745 | { | 2745 | { |
2746 | u64 *cpustat = kcpustat_this_cpu->cpustat; | 2746 | u64 *cpustat = kcpustat_this_cpu->cpustat; |
2747 | struct rq *rq = this_rq(); | 2747 | struct rq *rq = this_rq(); |
2748 | 2748 | ||
2749 | if (atomic_read(&rq->nr_iowait) > 0) | 2749 | if (atomic_read(&rq->nr_iowait) > 0) |
2750 | cpustat[CPUTIME_IOWAIT] += (__force u64) cputime; | 2750 | cpustat[CPUTIME_IOWAIT] += (__force u64) cputime; |
2751 | else | 2751 | else |
2752 | cpustat[CPUTIME_IDLE] += (__force u64) cputime; | 2752 | cpustat[CPUTIME_IDLE] += (__force u64) cputime; |
2753 | } | 2753 | } |
2754 | 2754 | ||
2755 | static __always_inline bool steal_account_process_tick(void) | 2755 | static __always_inline bool steal_account_process_tick(void) |
2756 | { | 2756 | { |
2757 | #ifdef CONFIG_PARAVIRT | 2757 | #ifdef CONFIG_PARAVIRT |
2758 | if (static_branch(¶virt_steal_enabled)) { | 2758 | if (static_branch(¶virt_steal_enabled)) { |
2759 | u64 steal, st = 0; | 2759 | u64 steal, st = 0; |
2760 | 2760 | ||
2761 | steal = paravirt_steal_clock(smp_processor_id()); | 2761 | steal = paravirt_steal_clock(smp_processor_id()); |
2762 | steal -= this_rq()->prev_steal_time; | 2762 | steal -= this_rq()->prev_steal_time; |
2763 | 2763 | ||
2764 | st = steal_ticks(steal); | 2764 | st = steal_ticks(steal); |
2765 | this_rq()->prev_steal_time += st * TICK_NSEC; | 2765 | this_rq()->prev_steal_time += st * TICK_NSEC; |
2766 | 2766 | ||
2767 | account_steal_time(st); | 2767 | account_steal_time(st); |
2768 | return st; | 2768 | return st; |
2769 | } | 2769 | } |
2770 | #endif | 2770 | #endif |
2771 | return false; | 2771 | return false; |
2772 | } | 2772 | } |
2773 | 2773 | ||
2774 | #ifndef CONFIG_VIRT_CPU_ACCOUNTING | 2774 | #ifndef CONFIG_VIRT_CPU_ACCOUNTING |
2775 | 2775 | ||
2776 | #ifdef CONFIG_IRQ_TIME_ACCOUNTING | 2776 | #ifdef CONFIG_IRQ_TIME_ACCOUNTING |
2777 | /* | 2777 | /* |
2778 | * Account a tick to a process and cpustat | 2778 | * Account a tick to a process and cpustat |
2779 | * @p: the process that the cpu time gets accounted to | 2779 | * @p: the process that the cpu time gets accounted to |
2780 | * @user_tick: is the tick from userspace | 2780 | * @user_tick: is the tick from userspace |
2781 | * @rq: the pointer to rq | 2781 | * @rq: the pointer to rq |
2782 | * | 2782 | * |
2783 | * Tick demultiplexing follows the order | 2783 | * Tick demultiplexing follows the order |
2784 | * - pending hardirq update | 2784 | * - pending hardirq update |
2785 | * - pending softirq update | 2785 | * - pending softirq update |
2786 | * - user_time | 2786 | * - user_time |
2787 | * - idle_time | 2787 | * - idle_time |
2788 | * - system time | 2788 | * - system time |
2789 | * - check for guest_time | 2789 | * - check for guest_time |
2790 | * - else account as system_time | 2790 | * - else account as system_time |
2791 | * | 2791 | * |
2792 | * Check for hardirq is done both for system and user time as there is | 2792 | * Check for hardirq is done both for system and user time as there is |
2793 | * no timer going off while we are on hardirq and hence we may never get an | 2793 | * no timer going off while we are on hardirq and hence we may never get an |
2794 | * opportunity to update it solely in system time. | 2794 | * opportunity to update it solely in system time. |
2795 | * p->stime and friends are only updated on system time and not on irq | 2795 | * p->stime and friends are only updated on system time and not on irq |
2796 | * softirq as those do not count in task exec_runtime any more. | 2796 | * softirq as those do not count in task exec_runtime any more. |
2797 | */ | 2797 | */ |
2798 | static void irqtime_account_process_tick(struct task_struct *p, int user_tick, | 2798 | static void irqtime_account_process_tick(struct task_struct *p, int user_tick, |
2799 | struct rq *rq) | 2799 | struct rq *rq) |
2800 | { | 2800 | { |
2801 | cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); | 2801 | cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); |
2802 | u64 *cpustat = kcpustat_this_cpu->cpustat; | 2802 | u64 *cpustat = kcpustat_this_cpu->cpustat; |
2803 | 2803 | ||
2804 | if (steal_account_process_tick()) | 2804 | if (steal_account_process_tick()) |
2805 | return; | 2805 | return; |
2806 | 2806 | ||
2807 | if (irqtime_account_hi_update()) { | 2807 | if (irqtime_account_hi_update()) { |
2808 | cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy; | 2808 | cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy; |
2809 | } else if (irqtime_account_si_update()) { | 2809 | } else if (irqtime_account_si_update()) { |
2810 | cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy; | 2810 | cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy; |
2811 | } else if (this_cpu_ksoftirqd() == p) { | 2811 | } else if (this_cpu_ksoftirqd() == p) { |
2812 | /* | 2812 | /* |
2813 | * ksoftirqd time do not get accounted in cpu_softirq_time. | 2813 | * ksoftirqd time do not get accounted in cpu_softirq_time. |
2814 | * So, we have to handle it separately here. | 2814 | * So, we have to handle it separately here. |
2815 | * Also, p->stime needs to be updated for ksoftirqd. | 2815 | * Also, p->stime needs to be updated for ksoftirqd. |
2816 | */ | 2816 | */ |
2817 | __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, | 2817 | __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, |
2818 | CPUTIME_SOFTIRQ); | 2818 | CPUTIME_SOFTIRQ); |
2819 | } else if (user_tick) { | 2819 | } else if (user_tick) { |
2820 | account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); | 2820 | account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); |
2821 | } else if (p == rq->idle) { | 2821 | } else if (p == rq->idle) { |
2822 | account_idle_time(cputime_one_jiffy); | 2822 | account_idle_time(cputime_one_jiffy); |
2823 | } else if (p->flags & PF_VCPU) { /* System time or guest time */ | 2823 | } else if (p->flags & PF_VCPU) { /* System time or guest time */ |
2824 | account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled); | 2824 | account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled); |
2825 | } else { | 2825 | } else { |
2826 | __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, | 2826 | __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, |
2827 | CPUTIME_SYSTEM); | 2827 | CPUTIME_SYSTEM); |
2828 | } | 2828 | } |
2829 | } | 2829 | } |
2830 | 2830 | ||
2831 | static void irqtime_account_idle_ticks(int ticks) | 2831 | static void irqtime_account_idle_ticks(int ticks) |
2832 | { | 2832 | { |
2833 | int i; | 2833 | int i; |
2834 | struct rq *rq = this_rq(); | 2834 | struct rq *rq = this_rq(); |
2835 | 2835 | ||
2836 | for (i = 0; i < ticks; i++) | 2836 | for (i = 0; i < ticks; i++) |
2837 | irqtime_account_process_tick(current, 0, rq); | 2837 | irqtime_account_process_tick(current, 0, rq); |
2838 | } | 2838 | } |
2839 | #else /* CONFIG_IRQ_TIME_ACCOUNTING */ | 2839 | #else /* CONFIG_IRQ_TIME_ACCOUNTING */ |
2840 | static void irqtime_account_idle_ticks(int ticks) {} | 2840 | static void irqtime_account_idle_ticks(int ticks) {} |
2841 | static void irqtime_account_process_tick(struct task_struct *p, int user_tick, | 2841 | static void irqtime_account_process_tick(struct task_struct *p, int user_tick, |
2842 | struct rq *rq) {} | 2842 | struct rq *rq) {} |
2843 | #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ | 2843 | #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ |
2844 | 2844 | ||
2845 | /* | 2845 | /* |
2846 | * Account a single tick of cpu time. | 2846 | * Account a single tick of cpu time. |
2847 | * @p: the process that the cpu time gets accounted to | 2847 | * @p: the process that the cpu time gets accounted to |
2848 | * @user_tick: indicates if the tick is a user or a system tick | 2848 | * @user_tick: indicates if the tick is a user or a system tick |
2849 | */ | 2849 | */ |
2850 | void account_process_tick(struct task_struct *p, int user_tick) | 2850 | void account_process_tick(struct task_struct *p, int user_tick) |
2851 | { | 2851 | { |
2852 | cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); | 2852 | cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); |
2853 | struct rq *rq = this_rq(); | 2853 | struct rq *rq = this_rq(); |
2854 | 2854 | ||
2855 | if (sched_clock_irqtime) { | 2855 | if (sched_clock_irqtime) { |
2856 | irqtime_account_process_tick(p, user_tick, rq); | 2856 | irqtime_account_process_tick(p, user_tick, rq); |
2857 | return; | 2857 | return; |
2858 | } | 2858 | } |
2859 | 2859 | ||
2860 | if (steal_account_process_tick()) | 2860 | if (steal_account_process_tick()) |
2861 | return; | 2861 | return; |
2862 | 2862 | ||
2863 | if (user_tick) | 2863 | if (user_tick) |
2864 | account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); | 2864 | account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); |
2865 | else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) | 2865 | else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) |
2866 | account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy, | 2866 | account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy, |
2867 | one_jiffy_scaled); | 2867 | one_jiffy_scaled); |
2868 | else | 2868 | else |
2869 | account_idle_time(cputime_one_jiffy); | 2869 | account_idle_time(cputime_one_jiffy); |
2870 | } | 2870 | } |
2871 | 2871 | ||
2872 | /* | 2872 | /* |
2873 | * Account multiple ticks of steal time. | 2873 | * Account multiple ticks of steal time. |
2874 | * @p: the process from which the cpu time has been stolen | 2874 | * @p: the process from which the cpu time has been stolen |
2875 | * @ticks: number of stolen ticks | 2875 | * @ticks: number of stolen ticks |
2876 | */ | 2876 | */ |
2877 | void account_steal_ticks(unsigned long ticks) | 2877 | void account_steal_ticks(unsigned long ticks) |
2878 | { | 2878 | { |
2879 | account_steal_time(jiffies_to_cputime(ticks)); | 2879 | account_steal_time(jiffies_to_cputime(ticks)); |
2880 | } | 2880 | } |
2881 | 2881 | ||
2882 | /* | 2882 | /* |
2883 | * Account multiple ticks of idle time. | 2883 | * Account multiple ticks of idle time. |
2884 | * @ticks: number of stolen ticks | 2884 | * @ticks: number of stolen ticks |
2885 | */ | 2885 | */ |
2886 | void account_idle_ticks(unsigned long ticks) | 2886 | void account_idle_ticks(unsigned long ticks) |
2887 | { | 2887 | { |
2888 | 2888 | ||
2889 | if (sched_clock_irqtime) { | 2889 | if (sched_clock_irqtime) { |
2890 | irqtime_account_idle_ticks(ticks); | 2890 | irqtime_account_idle_ticks(ticks); |
2891 | return; | 2891 | return; |
2892 | } | 2892 | } |
2893 | 2893 | ||
2894 | account_idle_time(jiffies_to_cputime(ticks)); | 2894 | account_idle_time(jiffies_to_cputime(ticks)); |
2895 | } | 2895 | } |
2896 | 2896 | ||
2897 | #endif | 2897 | #endif |
2898 | 2898 | ||
2899 | /* | 2899 | /* |
2900 | * Use precise platform statistics if available: | 2900 | * Use precise platform statistics if available: |
2901 | */ | 2901 | */ |
2902 | #ifdef CONFIG_VIRT_CPU_ACCOUNTING | 2902 | #ifdef CONFIG_VIRT_CPU_ACCOUNTING |
2903 | void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) | 2903 | void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) |
2904 | { | 2904 | { |
2905 | *ut = p->utime; | 2905 | *ut = p->utime; |
2906 | *st = p->stime; | 2906 | *st = p->stime; |
2907 | } | 2907 | } |
2908 | 2908 | ||
2909 | void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) | 2909 | void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) |
2910 | { | 2910 | { |
2911 | struct task_cputime cputime; | 2911 | struct task_cputime cputime; |
2912 | 2912 | ||
2913 | thread_group_cputime(p, &cputime); | 2913 | thread_group_cputime(p, &cputime); |
2914 | 2914 | ||
2915 | *ut = cputime.utime; | 2915 | *ut = cputime.utime; |
2916 | *st = cputime.stime; | 2916 | *st = cputime.stime; |
2917 | } | 2917 | } |
2918 | #else | 2918 | #else |
2919 | 2919 | ||
2920 | #ifndef nsecs_to_cputime | 2920 | #ifndef nsecs_to_cputime |
2921 | # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs) | 2921 | # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs) |
2922 | #endif | 2922 | #endif |
2923 | 2923 | ||
2924 | void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) | 2924 | void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) |
2925 | { | 2925 | { |
2926 | cputime_t rtime, utime = p->utime, total = utime + p->stime; | 2926 | cputime_t rtime, utime = p->utime, total = utime + p->stime; |
2927 | 2927 | ||
2928 | /* | 2928 | /* |
2929 | * Use CFS's precise accounting: | 2929 | * Use CFS's precise accounting: |
2930 | */ | 2930 | */ |
2931 | rtime = nsecs_to_cputime(p->se.sum_exec_runtime); | 2931 | rtime = nsecs_to_cputime(p->se.sum_exec_runtime); |
2932 | 2932 | ||
2933 | if (total) { | 2933 | if (total) { |
2934 | u64 temp = (__force u64) rtime; | 2934 | u64 temp = (__force u64) rtime; |
2935 | 2935 | ||
2936 | temp *= (__force u64) utime; | 2936 | temp *= (__force u64) utime; |
2937 | do_div(temp, (__force u32) total); | 2937 | do_div(temp, (__force u32) total); |
2938 | utime = (__force cputime_t) temp; | 2938 | utime = (__force cputime_t) temp; |
2939 | } else | 2939 | } else |
2940 | utime = rtime; | 2940 | utime = rtime; |
2941 | 2941 | ||
2942 | /* | 2942 | /* |
2943 | * Compare with previous values, to keep monotonicity: | 2943 | * Compare with previous values, to keep monotonicity: |
2944 | */ | 2944 | */ |
2945 | p->prev_utime = max(p->prev_utime, utime); | 2945 | p->prev_utime = max(p->prev_utime, utime); |
2946 | p->prev_stime = max(p->prev_stime, rtime - p->prev_utime); | 2946 | p->prev_stime = max(p->prev_stime, rtime - p->prev_utime); |
2947 | 2947 | ||
2948 | *ut = p->prev_utime; | 2948 | *ut = p->prev_utime; |
2949 | *st = p->prev_stime; | 2949 | *st = p->prev_stime; |
2950 | } | 2950 | } |
2951 | 2951 | ||
2952 | /* | 2952 | /* |
2953 | * Must be called with siglock held. | 2953 | * Must be called with siglock held. |
2954 | */ | 2954 | */ |
2955 | void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) | 2955 | void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) |
2956 | { | 2956 | { |
2957 | struct signal_struct *sig = p->signal; | 2957 | struct signal_struct *sig = p->signal; |
2958 | struct task_cputime cputime; | 2958 | struct task_cputime cputime; |
2959 | cputime_t rtime, utime, total; | 2959 | cputime_t rtime, utime, total; |
2960 | 2960 | ||
2961 | thread_group_cputime(p, &cputime); | 2961 | thread_group_cputime(p, &cputime); |
2962 | 2962 | ||
2963 | total = cputime.utime + cputime.stime; | 2963 | total = cputime.utime + cputime.stime; |
2964 | rtime = nsecs_to_cputime(cputime.sum_exec_runtime); | 2964 | rtime = nsecs_to_cputime(cputime.sum_exec_runtime); |
2965 | 2965 | ||
2966 | if (total) { | 2966 | if (total) { |
2967 | u64 temp = (__force u64) rtime; | 2967 | u64 temp = (__force u64) rtime; |
2968 | 2968 | ||
2969 | temp *= (__force u64) cputime.utime; | 2969 | temp *= (__force u64) cputime.utime; |
2970 | do_div(temp, (__force u32) total); | 2970 | do_div(temp, (__force u32) total); |
2971 | utime = (__force cputime_t) temp; | 2971 | utime = (__force cputime_t) temp; |
2972 | } else | 2972 | } else |
2973 | utime = rtime; | 2973 | utime = rtime; |
2974 | 2974 | ||
2975 | sig->prev_utime = max(sig->prev_utime, utime); | 2975 | sig->prev_utime = max(sig->prev_utime, utime); |
2976 | sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime); | 2976 | sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime); |
2977 | 2977 | ||
2978 | *ut = sig->prev_utime; | 2978 | *ut = sig->prev_utime; |
2979 | *st = sig->prev_stime; | 2979 | *st = sig->prev_stime; |
2980 | } | 2980 | } |
2981 | #endif | 2981 | #endif |
2982 | 2982 | ||
2983 | /* | 2983 | /* |
2984 | * This function gets called by the timer code, with HZ frequency. | 2984 | * This function gets called by the timer code, with HZ frequency. |
2985 | * We call it with interrupts disabled. | 2985 | * We call it with interrupts disabled. |
2986 | */ | 2986 | */ |
2987 | void scheduler_tick(void) | 2987 | void scheduler_tick(void) |
2988 | { | 2988 | { |
2989 | int cpu = smp_processor_id(); | 2989 | int cpu = smp_processor_id(); |
2990 | struct rq *rq = cpu_rq(cpu); | 2990 | struct rq *rq = cpu_rq(cpu); |
2991 | struct task_struct *curr = rq->curr; | 2991 | struct task_struct *curr = rq->curr; |
2992 | 2992 | ||
2993 | sched_clock_tick(); | 2993 | sched_clock_tick(); |
2994 | 2994 | ||
2995 | raw_spin_lock(&rq->lock); | 2995 | raw_spin_lock(&rq->lock); |
2996 | update_rq_clock(rq); | 2996 | update_rq_clock(rq); |
2997 | update_cpu_load_active(rq); | 2997 | update_cpu_load_active(rq); |
2998 | curr->sched_class->task_tick(rq, curr, 0); | 2998 | curr->sched_class->task_tick(rq, curr, 0); |
2999 | raw_spin_unlock(&rq->lock); | 2999 | raw_spin_unlock(&rq->lock); |
3000 | 3000 | ||
3001 | perf_event_task_tick(); | 3001 | perf_event_task_tick(); |
3002 | 3002 | ||
3003 | #ifdef CONFIG_SMP | 3003 | #ifdef CONFIG_SMP |
3004 | rq->idle_balance = idle_cpu(cpu); | 3004 | rq->idle_balance = idle_cpu(cpu); |
3005 | trigger_load_balance(rq, cpu); | 3005 | trigger_load_balance(rq, cpu); |
3006 | #endif | 3006 | #endif |
3007 | } | 3007 | } |
3008 | 3008 | ||
3009 | notrace unsigned long get_parent_ip(unsigned long addr) | 3009 | notrace unsigned long get_parent_ip(unsigned long addr) |
3010 | { | 3010 | { |
3011 | if (in_lock_functions(addr)) { | 3011 | if (in_lock_functions(addr)) { |
3012 | addr = CALLER_ADDR2; | 3012 | addr = CALLER_ADDR2; |
3013 | if (in_lock_functions(addr)) | 3013 | if (in_lock_functions(addr)) |
3014 | addr = CALLER_ADDR3; | 3014 | addr = CALLER_ADDR3; |
3015 | } | 3015 | } |
3016 | return addr; | 3016 | return addr; |
3017 | } | 3017 | } |
3018 | 3018 | ||
3019 | #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ | 3019 | #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ |
3020 | defined(CONFIG_PREEMPT_TRACER)) | 3020 | defined(CONFIG_PREEMPT_TRACER)) |
3021 | 3021 | ||
3022 | void __kprobes add_preempt_count(int val) | 3022 | void __kprobes add_preempt_count(int val) |
3023 | { | 3023 | { |
3024 | #ifdef CONFIG_DEBUG_PREEMPT | 3024 | #ifdef CONFIG_DEBUG_PREEMPT |
3025 | /* | 3025 | /* |
3026 | * Underflow? | 3026 | * Underflow? |
3027 | */ | 3027 | */ |
3028 | if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) | 3028 | if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) |
3029 | return; | 3029 | return; |
3030 | #endif | 3030 | #endif |
3031 | preempt_count() += val; | 3031 | preempt_count() += val; |
3032 | #ifdef CONFIG_DEBUG_PREEMPT | 3032 | #ifdef CONFIG_DEBUG_PREEMPT |
3033 | /* | 3033 | /* |
3034 | * Spinlock count overflowing soon? | 3034 | * Spinlock count overflowing soon? |
3035 | */ | 3035 | */ |
3036 | DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= | 3036 | DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= |
3037 | PREEMPT_MASK - 10); | 3037 | PREEMPT_MASK - 10); |
3038 | #endif | 3038 | #endif |
3039 | if (preempt_count() == val) | 3039 | if (preempt_count() == val) |
3040 | trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); | 3040 | trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); |
3041 | } | 3041 | } |
3042 | EXPORT_SYMBOL(add_preempt_count); | 3042 | EXPORT_SYMBOL(add_preempt_count); |
3043 | 3043 | ||
3044 | void __kprobes sub_preempt_count(int val) | 3044 | void __kprobes sub_preempt_count(int val) |
3045 | { | 3045 | { |
3046 | #ifdef CONFIG_DEBUG_PREEMPT | 3046 | #ifdef CONFIG_DEBUG_PREEMPT |
3047 | /* | 3047 | /* |
3048 | * Underflow? | 3048 | * Underflow? |
3049 | */ | 3049 | */ |
3050 | if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) | 3050 | if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) |
3051 | return; | 3051 | return; |
3052 | /* | 3052 | /* |
3053 | * Is the spinlock portion underflowing? | 3053 | * Is the spinlock portion underflowing? |
3054 | */ | 3054 | */ |
3055 | if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && | 3055 | if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && |
3056 | !(preempt_count() & PREEMPT_MASK))) | 3056 | !(preempt_count() & PREEMPT_MASK))) |
3057 | return; | 3057 | return; |
3058 | #endif | 3058 | #endif |
3059 | 3059 | ||
3060 | if (preempt_count() == val) | 3060 | if (preempt_count() == val) |
3061 | trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); | 3061 | trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); |
3062 | preempt_count() -= val; | 3062 | preempt_count() -= val; |
3063 | } | 3063 | } |
3064 | EXPORT_SYMBOL(sub_preempt_count); | 3064 | EXPORT_SYMBOL(sub_preempt_count); |
3065 | 3065 | ||
3066 | #endif | 3066 | #endif |
3067 | 3067 | ||
3068 | /* | 3068 | /* |
3069 | * Print scheduling while atomic bug: | 3069 | * Print scheduling while atomic bug: |
3070 | */ | 3070 | */ |
3071 | static noinline void __schedule_bug(struct task_struct *prev) | 3071 | static noinline void __schedule_bug(struct task_struct *prev) |
3072 | { | 3072 | { |
3073 | struct pt_regs *regs = get_irq_regs(); | 3073 | struct pt_regs *regs = get_irq_regs(); |
3074 | 3074 | ||
3075 | if (oops_in_progress) | 3075 | if (oops_in_progress) |
3076 | return; | 3076 | return; |
3077 | 3077 | ||
3078 | printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", | 3078 | printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", |
3079 | prev->comm, prev->pid, preempt_count()); | 3079 | prev->comm, prev->pid, preempt_count()); |
3080 | 3080 | ||
3081 | debug_show_held_locks(prev); | 3081 | debug_show_held_locks(prev); |
3082 | print_modules(); | 3082 | print_modules(); |
3083 | if (irqs_disabled()) | 3083 | if (irqs_disabled()) |
3084 | print_irqtrace_events(prev); | 3084 | print_irqtrace_events(prev); |
3085 | 3085 | ||
3086 | if (regs) | 3086 | if (regs) |
3087 | show_regs(regs); | 3087 | show_regs(regs); |
3088 | else | 3088 | else |
3089 | dump_stack(); | 3089 | dump_stack(); |
3090 | } | 3090 | } |
3091 | 3091 | ||
3092 | /* | 3092 | /* |
3093 | * Various schedule()-time debugging checks and statistics: | 3093 | * Various schedule()-time debugging checks and statistics: |
3094 | */ | 3094 | */ |
3095 | static inline void schedule_debug(struct task_struct *prev) | 3095 | static inline void schedule_debug(struct task_struct *prev) |
3096 | { | 3096 | { |
3097 | /* | 3097 | /* |
3098 | * Test if we are atomic. Since do_exit() needs to call into | 3098 | * Test if we are atomic. Since do_exit() needs to call into |
3099 | * schedule() atomically, we ignore that path for now. | 3099 | * schedule() atomically, we ignore that path for now. |
3100 | * Otherwise, whine if we are scheduling when we should not be. | 3100 | * Otherwise, whine if we are scheduling when we should not be. |
3101 | */ | 3101 | */ |
3102 | if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) | 3102 | if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) |
3103 | __schedule_bug(prev); | 3103 | __schedule_bug(prev); |
3104 | rcu_sleep_check(); | 3104 | rcu_sleep_check(); |
3105 | 3105 | ||
3106 | profile_hit(SCHED_PROFILING, __builtin_return_address(0)); | 3106 | profile_hit(SCHED_PROFILING, __builtin_return_address(0)); |
3107 | 3107 | ||
3108 | schedstat_inc(this_rq(), sched_count); | 3108 | schedstat_inc(this_rq(), sched_count); |
3109 | } | 3109 | } |
3110 | 3110 | ||
3111 | static void put_prev_task(struct rq *rq, struct task_struct *prev) | 3111 | static void put_prev_task(struct rq *rq, struct task_struct *prev) |
3112 | { | 3112 | { |
3113 | if (prev->on_rq || rq->skip_clock_update < 0) | 3113 | if (prev->on_rq || rq->skip_clock_update < 0) |
3114 | update_rq_clock(rq); | 3114 | update_rq_clock(rq); |
3115 | prev->sched_class->put_prev_task(rq, prev); | 3115 | prev->sched_class->put_prev_task(rq, prev); |
3116 | } | 3116 | } |
3117 | 3117 | ||
3118 | /* | 3118 | /* |
3119 | * Pick up the highest-prio task: | 3119 | * Pick up the highest-prio task: |
3120 | */ | 3120 | */ |
3121 | static inline struct task_struct * | 3121 | static inline struct task_struct * |
3122 | pick_next_task(struct rq *rq) | 3122 | pick_next_task(struct rq *rq) |
3123 | { | 3123 | { |
3124 | const struct sched_class *class; | 3124 | const struct sched_class *class; |
3125 | struct task_struct *p; | 3125 | struct task_struct *p; |
3126 | 3126 | ||
3127 | /* | 3127 | /* |
3128 | * Optimization: we know that if all tasks are in | 3128 | * Optimization: we know that if all tasks are in |
3129 | * the fair class we can call that function directly: | 3129 | * the fair class we can call that function directly: |
3130 | */ | 3130 | */ |
3131 | if (likely(rq->nr_running == rq->cfs.h_nr_running)) { | 3131 | if (likely(rq->nr_running == rq->cfs.h_nr_running)) { |
3132 | p = fair_sched_class.pick_next_task(rq); | 3132 | p = fair_sched_class.pick_next_task(rq); |
3133 | if (likely(p)) | 3133 | if (likely(p)) |
3134 | return p; | 3134 | return p; |
3135 | } | 3135 | } |
3136 | 3136 | ||
3137 | for_each_class(class) { | 3137 | for_each_class(class) { |
3138 | p = class->pick_next_task(rq); | 3138 | p = class->pick_next_task(rq); |
3139 | if (p) | 3139 | if (p) |
3140 | return p; | 3140 | return p; |
3141 | } | 3141 | } |
3142 | 3142 | ||
3143 | BUG(); /* the idle class will always have a runnable task */ | 3143 | BUG(); /* the idle class will always have a runnable task */ |
3144 | } | 3144 | } |
3145 | 3145 | ||
3146 | /* | 3146 | /* |
3147 | * __schedule() is the main scheduler function. | 3147 | * __schedule() is the main scheduler function. |
3148 | */ | 3148 | */ |
3149 | static void __sched __schedule(void) | 3149 | static void __sched __schedule(void) |
3150 | { | 3150 | { |
3151 | struct task_struct *prev, *next; | 3151 | struct task_struct *prev, *next; |
3152 | unsigned long *switch_count; | 3152 | unsigned long *switch_count; |
3153 | struct rq *rq; | 3153 | struct rq *rq; |
3154 | int cpu; | 3154 | int cpu; |
3155 | 3155 | ||
3156 | need_resched: | 3156 | need_resched: |
3157 | preempt_disable(); | 3157 | preempt_disable(); |
3158 | cpu = smp_processor_id(); | 3158 | cpu = smp_processor_id(); |
3159 | rq = cpu_rq(cpu); | 3159 | rq = cpu_rq(cpu); |
3160 | rcu_note_context_switch(cpu); | 3160 | rcu_note_context_switch(cpu); |
3161 | prev = rq->curr; | 3161 | prev = rq->curr; |
3162 | 3162 | ||
3163 | schedule_debug(prev); | 3163 | schedule_debug(prev); |
3164 | 3164 | ||
3165 | if (sched_feat(HRTICK)) | 3165 | if (sched_feat(HRTICK)) |
3166 | hrtick_clear(rq); | 3166 | hrtick_clear(rq); |
3167 | 3167 | ||
3168 | raw_spin_lock_irq(&rq->lock); | 3168 | raw_spin_lock_irq(&rq->lock); |
3169 | 3169 | ||
3170 | switch_count = &prev->nivcsw; | 3170 | switch_count = &prev->nivcsw; |
3171 | if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { | 3171 | if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { |
3172 | if (unlikely(signal_pending_state(prev->state, prev))) { | 3172 | if (unlikely(signal_pending_state(prev->state, prev))) { |
3173 | prev->state = TASK_RUNNING; | 3173 | prev->state = TASK_RUNNING; |
3174 | } else { | 3174 | } else { |
3175 | deactivate_task(rq, prev, DEQUEUE_SLEEP); | 3175 | deactivate_task(rq, prev, DEQUEUE_SLEEP); |
3176 | prev->on_rq = 0; | 3176 | prev->on_rq = 0; |
3177 | 3177 | ||
3178 | /* | 3178 | /* |
3179 | * If a worker went to sleep, notify and ask workqueue | 3179 | * If a worker went to sleep, notify and ask workqueue |
3180 | * whether it wants to wake up a task to maintain | 3180 | * whether it wants to wake up a task to maintain |
3181 | * concurrency. | 3181 | * concurrency. |
3182 | */ | 3182 | */ |
3183 | if (prev->flags & PF_WQ_WORKER) { | 3183 | if (prev->flags & PF_WQ_WORKER) { |
3184 | struct task_struct *to_wakeup; | 3184 | struct task_struct *to_wakeup; |
3185 | 3185 | ||
3186 | to_wakeup = wq_worker_sleeping(prev, cpu); | 3186 | to_wakeup = wq_worker_sleeping(prev, cpu); |
3187 | if (to_wakeup) | 3187 | if (to_wakeup) |
3188 | try_to_wake_up_local(to_wakeup); | 3188 | try_to_wake_up_local(to_wakeup); |
3189 | } | 3189 | } |
3190 | } | 3190 | } |
3191 | switch_count = &prev->nvcsw; | 3191 | switch_count = &prev->nvcsw; |
3192 | } | 3192 | } |
3193 | 3193 | ||
3194 | pre_schedule(rq, prev); | 3194 | pre_schedule(rq, prev); |
3195 | 3195 | ||
3196 | if (unlikely(!rq->nr_running)) | 3196 | if (unlikely(!rq->nr_running)) |
3197 | idle_balance(cpu, rq); | 3197 | idle_balance(cpu, rq); |
3198 | 3198 | ||
3199 | put_prev_task(rq, prev); | 3199 | put_prev_task(rq, prev); |
3200 | next = pick_next_task(rq); | 3200 | next = pick_next_task(rq); |
3201 | clear_tsk_need_resched(prev); | 3201 | clear_tsk_need_resched(prev); |
3202 | rq->skip_clock_update = 0; | 3202 | rq->skip_clock_update = 0; |
3203 | 3203 | ||
3204 | if (likely(prev != next)) { | 3204 | if (likely(prev != next)) { |
3205 | rq->nr_switches++; | 3205 | rq->nr_switches++; |
3206 | rq->curr = next; | 3206 | rq->curr = next; |
3207 | ++*switch_count; | 3207 | ++*switch_count; |
3208 | 3208 | ||
3209 | context_switch(rq, prev, next); /* unlocks the rq */ | 3209 | context_switch(rq, prev, next); /* unlocks the rq */ |
3210 | /* | 3210 | /* |
3211 | * The context switch have flipped the stack from under us | 3211 | * The context switch have flipped the stack from under us |
3212 | * and restored the local variables which were saved when | 3212 | * and restored the local variables which were saved when |
3213 | * this task called schedule() in the past. prev == current | 3213 | * this task called schedule() in the past. prev == current |
3214 | * is still correct, but it can be moved to another cpu/rq. | 3214 | * is still correct, but it can be moved to another cpu/rq. |
3215 | */ | 3215 | */ |
3216 | cpu = smp_processor_id(); | 3216 | cpu = smp_processor_id(); |
3217 | rq = cpu_rq(cpu); | 3217 | rq = cpu_rq(cpu); |
3218 | } else | 3218 | } else |
3219 | raw_spin_unlock_irq(&rq->lock); | 3219 | raw_spin_unlock_irq(&rq->lock); |
3220 | 3220 | ||
3221 | post_schedule(rq); | 3221 | post_schedule(rq); |
3222 | 3222 | ||
3223 | preempt_enable_no_resched(); | 3223 | sched_preempt_enable_no_resched(); |
3224 | if (need_resched()) | 3224 | if (need_resched()) |
3225 | goto need_resched; | 3225 | goto need_resched; |
3226 | } | 3226 | } |
3227 | 3227 | ||
3228 | static inline void sched_submit_work(struct task_struct *tsk) | 3228 | static inline void sched_submit_work(struct task_struct *tsk) |
3229 | { | 3229 | { |
3230 | if (!tsk->state) | 3230 | if (!tsk->state) |
3231 | return; | 3231 | return; |
3232 | /* | 3232 | /* |
3233 | * If we are going to sleep and we have plugged IO queued, | 3233 | * If we are going to sleep and we have plugged IO queued, |
3234 | * make sure to submit it to avoid deadlocks. | 3234 | * make sure to submit it to avoid deadlocks. |
3235 | */ | 3235 | */ |
3236 | if (blk_needs_flush_plug(tsk)) | 3236 | if (blk_needs_flush_plug(tsk)) |
3237 | blk_schedule_flush_plug(tsk); | 3237 | blk_schedule_flush_plug(tsk); |
3238 | } | 3238 | } |
3239 | 3239 | ||
3240 | asmlinkage void __sched schedule(void) | 3240 | asmlinkage void __sched schedule(void) |
3241 | { | 3241 | { |
3242 | struct task_struct *tsk = current; | 3242 | struct task_struct *tsk = current; |
3243 | 3243 | ||
3244 | sched_submit_work(tsk); | 3244 | sched_submit_work(tsk); |
3245 | __schedule(); | 3245 | __schedule(); |
3246 | } | 3246 | } |
3247 | EXPORT_SYMBOL(schedule); | 3247 | EXPORT_SYMBOL(schedule); |
3248 | 3248 | ||
3249 | /** | 3249 | /** |
3250 | * schedule_preempt_disabled - called with preemption disabled | 3250 | * schedule_preempt_disabled - called with preemption disabled |
3251 | * | 3251 | * |
3252 | * Returns with preemption disabled. Note: preempt_count must be 1 | 3252 | * Returns with preemption disabled. Note: preempt_count must be 1 |
3253 | */ | 3253 | */ |
3254 | void __sched schedule_preempt_disabled(void) | 3254 | void __sched schedule_preempt_disabled(void) |
3255 | { | 3255 | { |
3256 | preempt_enable_no_resched(); | 3256 | sched_preempt_enable_no_resched(); |
3257 | schedule(); | 3257 | schedule(); |
3258 | preempt_disable(); | 3258 | preempt_disable(); |
3259 | } | 3259 | } |
3260 | 3260 | ||
3261 | #ifdef CONFIG_MUTEX_SPIN_ON_OWNER | 3261 | #ifdef CONFIG_MUTEX_SPIN_ON_OWNER |
3262 | 3262 | ||
3263 | static inline bool owner_running(struct mutex *lock, struct task_struct *owner) | 3263 | static inline bool owner_running(struct mutex *lock, struct task_struct *owner) |
3264 | { | 3264 | { |
3265 | if (lock->owner != owner) | 3265 | if (lock->owner != owner) |
3266 | return false; | 3266 | return false; |
3267 | 3267 | ||
3268 | /* | 3268 | /* |
3269 | * Ensure we emit the owner->on_cpu, dereference _after_ checking | 3269 | * Ensure we emit the owner->on_cpu, dereference _after_ checking |
3270 | * lock->owner still matches owner, if that fails, owner might | 3270 | * lock->owner still matches owner, if that fails, owner might |
3271 | * point to free()d memory, if it still matches, the rcu_read_lock() | 3271 | * point to free()d memory, if it still matches, the rcu_read_lock() |
3272 | * ensures the memory stays valid. | 3272 | * ensures the memory stays valid. |
3273 | */ | 3273 | */ |
3274 | barrier(); | 3274 | barrier(); |
3275 | 3275 | ||
3276 | return owner->on_cpu; | 3276 | return owner->on_cpu; |
3277 | } | 3277 | } |
3278 | 3278 | ||
3279 | /* | 3279 | /* |
3280 | * Look out! "owner" is an entirely speculative pointer | 3280 | * Look out! "owner" is an entirely speculative pointer |
3281 | * access and not reliable. | 3281 | * access and not reliable. |
3282 | */ | 3282 | */ |
3283 | int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner) | 3283 | int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner) |
3284 | { | 3284 | { |
3285 | if (!sched_feat(OWNER_SPIN)) | 3285 | if (!sched_feat(OWNER_SPIN)) |
3286 | return 0; | 3286 | return 0; |
3287 | 3287 | ||
3288 | rcu_read_lock(); | 3288 | rcu_read_lock(); |
3289 | while (owner_running(lock, owner)) { | 3289 | while (owner_running(lock, owner)) { |
3290 | if (need_resched()) | 3290 | if (need_resched()) |
3291 | break; | 3291 | break; |
3292 | 3292 | ||
3293 | arch_mutex_cpu_relax(); | 3293 | arch_mutex_cpu_relax(); |
3294 | } | 3294 | } |
3295 | rcu_read_unlock(); | 3295 | rcu_read_unlock(); |
3296 | 3296 | ||
3297 | /* | 3297 | /* |
3298 | * We break out the loop above on need_resched() and when the | 3298 | * We break out the loop above on need_resched() and when the |
3299 | * owner changed, which is a sign for heavy contention. Return | 3299 | * owner changed, which is a sign for heavy contention. Return |
3300 | * success only when lock->owner is NULL. | 3300 | * success only when lock->owner is NULL. |
3301 | */ | 3301 | */ |
3302 | return lock->owner == NULL; | 3302 | return lock->owner == NULL; |
3303 | } | 3303 | } |
3304 | #endif | 3304 | #endif |
3305 | 3305 | ||
3306 | #ifdef CONFIG_PREEMPT | 3306 | #ifdef CONFIG_PREEMPT |
3307 | /* | 3307 | /* |
3308 | * this is the entry point to schedule() from in-kernel preemption | 3308 | * this is the entry point to schedule() from in-kernel preemption |
3309 | * off of preempt_enable. Kernel preemptions off return from interrupt | 3309 | * off of preempt_enable. Kernel preemptions off return from interrupt |
3310 | * occur there and call schedule directly. | 3310 | * occur there and call schedule directly. |
3311 | */ | 3311 | */ |
3312 | asmlinkage void __sched notrace preempt_schedule(void) | 3312 | asmlinkage void __sched notrace preempt_schedule(void) |
3313 | { | 3313 | { |
3314 | struct thread_info *ti = current_thread_info(); | 3314 | struct thread_info *ti = current_thread_info(); |
3315 | 3315 | ||
3316 | /* | 3316 | /* |
3317 | * If there is a non-zero preempt_count or interrupts are disabled, | 3317 | * If there is a non-zero preempt_count or interrupts are disabled, |
3318 | * we do not want to preempt the current task. Just return.. | 3318 | * we do not want to preempt the current task. Just return.. |
3319 | */ | 3319 | */ |
3320 | if (likely(ti->preempt_count || irqs_disabled())) | 3320 | if (likely(ti->preempt_count || irqs_disabled())) |
3321 | return; | 3321 | return; |
3322 | 3322 | ||
3323 | do { | 3323 | do { |
3324 | add_preempt_count_notrace(PREEMPT_ACTIVE); | 3324 | add_preempt_count_notrace(PREEMPT_ACTIVE); |
3325 | __schedule(); | 3325 | __schedule(); |
3326 | sub_preempt_count_notrace(PREEMPT_ACTIVE); | 3326 | sub_preempt_count_notrace(PREEMPT_ACTIVE); |
3327 | 3327 | ||
3328 | /* | 3328 | /* |
3329 | * Check again in case we missed a preemption opportunity | 3329 | * Check again in case we missed a preemption opportunity |
3330 | * between schedule and now. | 3330 | * between schedule and now. |
3331 | */ | 3331 | */ |
3332 | barrier(); | 3332 | barrier(); |
3333 | } while (need_resched()); | 3333 | } while (need_resched()); |
3334 | } | 3334 | } |
3335 | EXPORT_SYMBOL(preempt_schedule); | 3335 | EXPORT_SYMBOL(preempt_schedule); |
3336 | 3336 | ||
3337 | /* | 3337 | /* |
3338 | * this is the entry point to schedule() from kernel preemption | 3338 | * this is the entry point to schedule() from kernel preemption |
3339 | * off of irq context. | 3339 | * off of irq context. |
3340 | * Note, that this is called and return with irqs disabled. This will | 3340 | * Note, that this is called and return with irqs disabled. This will |
3341 | * protect us against recursive calling from irq. | 3341 | * protect us against recursive calling from irq. |
3342 | */ | 3342 | */ |
3343 | asmlinkage void __sched preempt_schedule_irq(void) | 3343 | asmlinkage void __sched preempt_schedule_irq(void) |
3344 | { | 3344 | { |
3345 | struct thread_info *ti = current_thread_info(); | 3345 | struct thread_info *ti = current_thread_info(); |
3346 | 3346 | ||
3347 | /* Catch callers which need to be fixed */ | 3347 | /* Catch callers which need to be fixed */ |
3348 | BUG_ON(ti->preempt_count || !irqs_disabled()); | 3348 | BUG_ON(ti->preempt_count || !irqs_disabled()); |
3349 | 3349 | ||
3350 | do { | 3350 | do { |
3351 | add_preempt_count(PREEMPT_ACTIVE); | 3351 | add_preempt_count(PREEMPT_ACTIVE); |
3352 | local_irq_enable(); | 3352 | local_irq_enable(); |
3353 | __schedule(); | 3353 | __schedule(); |
3354 | local_irq_disable(); | 3354 | local_irq_disable(); |
3355 | sub_preempt_count(PREEMPT_ACTIVE); | 3355 | sub_preempt_count(PREEMPT_ACTIVE); |
3356 | 3356 | ||
3357 | /* | 3357 | /* |
3358 | * Check again in case we missed a preemption opportunity | 3358 | * Check again in case we missed a preemption opportunity |
3359 | * between schedule and now. | 3359 | * between schedule and now. |
3360 | */ | 3360 | */ |
3361 | barrier(); | 3361 | barrier(); |
3362 | } while (need_resched()); | 3362 | } while (need_resched()); |
3363 | } | 3363 | } |
3364 | 3364 | ||
3365 | #endif /* CONFIG_PREEMPT */ | 3365 | #endif /* CONFIG_PREEMPT */ |
3366 | 3366 | ||
3367 | int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, | 3367 | int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, |
3368 | void *key) | 3368 | void *key) |
3369 | { | 3369 | { |
3370 | return try_to_wake_up(curr->private, mode, wake_flags); | 3370 | return try_to_wake_up(curr->private, mode, wake_flags); |
3371 | } | 3371 | } |
3372 | EXPORT_SYMBOL(default_wake_function); | 3372 | EXPORT_SYMBOL(default_wake_function); |
3373 | 3373 | ||
3374 | /* | 3374 | /* |
3375 | * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just | 3375 | * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just |
3376 | * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve | 3376 | * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve |
3377 | * number) then we wake all the non-exclusive tasks and one exclusive task. | 3377 | * number) then we wake all the non-exclusive tasks and one exclusive task. |
3378 | * | 3378 | * |
3379 | * There are circumstances in which we can try to wake a task which has already | 3379 | * There are circumstances in which we can try to wake a task which has already |
3380 | * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns | 3380 | * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns |
3381 | * zero in this (rare) case, and we handle it by continuing to scan the queue. | 3381 | * zero in this (rare) case, and we handle it by continuing to scan the queue. |
3382 | */ | 3382 | */ |
3383 | static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, | 3383 | static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, |
3384 | int nr_exclusive, int wake_flags, void *key) | 3384 | int nr_exclusive, int wake_flags, void *key) |
3385 | { | 3385 | { |
3386 | wait_queue_t *curr, *next; | 3386 | wait_queue_t *curr, *next; |
3387 | 3387 | ||
3388 | list_for_each_entry_safe(curr, next, &q->task_list, task_list) { | 3388 | list_for_each_entry_safe(curr, next, &q->task_list, task_list) { |
3389 | unsigned flags = curr->flags; | 3389 | unsigned flags = curr->flags; |
3390 | 3390 | ||
3391 | if (curr->func(curr, mode, wake_flags, key) && | 3391 | if (curr->func(curr, mode, wake_flags, key) && |
3392 | (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) | 3392 | (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) |
3393 | break; | 3393 | break; |
3394 | } | 3394 | } |
3395 | } | 3395 | } |
3396 | 3396 | ||
3397 | /** | 3397 | /** |
3398 | * __wake_up - wake up threads blocked on a waitqueue. | 3398 | * __wake_up - wake up threads blocked on a waitqueue. |
3399 | * @q: the waitqueue | 3399 | * @q: the waitqueue |
3400 | * @mode: which threads | 3400 | * @mode: which threads |
3401 | * @nr_exclusive: how many wake-one or wake-many threads to wake up | 3401 | * @nr_exclusive: how many wake-one or wake-many threads to wake up |
3402 | * @key: is directly passed to the wakeup function | 3402 | * @key: is directly passed to the wakeup function |
3403 | * | 3403 | * |
3404 | * It may be assumed that this function implies a write memory barrier before | 3404 | * It may be assumed that this function implies a write memory barrier before |
3405 | * changing the task state if and only if any tasks are woken up. | 3405 | * changing the task state if and only if any tasks are woken up. |
3406 | */ | 3406 | */ |
3407 | void __wake_up(wait_queue_head_t *q, unsigned int mode, | 3407 | void __wake_up(wait_queue_head_t *q, unsigned int mode, |
3408 | int nr_exclusive, void *key) | 3408 | int nr_exclusive, void *key) |
3409 | { | 3409 | { |
3410 | unsigned long flags; | 3410 | unsigned long flags; |
3411 | 3411 | ||
3412 | spin_lock_irqsave(&q->lock, flags); | 3412 | spin_lock_irqsave(&q->lock, flags); |
3413 | __wake_up_common(q, mode, nr_exclusive, 0, key); | 3413 | __wake_up_common(q, mode, nr_exclusive, 0, key); |
3414 | spin_unlock_irqrestore(&q->lock, flags); | 3414 | spin_unlock_irqrestore(&q->lock, flags); |
3415 | } | 3415 | } |
3416 | EXPORT_SYMBOL(__wake_up); | 3416 | EXPORT_SYMBOL(__wake_up); |
3417 | 3417 | ||
3418 | /* | 3418 | /* |
3419 | * Same as __wake_up but called with the spinlock in wait_queue_head_t held. | 3419 | * Same as __wake_up but called with the spinlock in wait_queue_head_t held. |
3420 | */ | 3420 | */ |
3421 | void __wake_up_locked(wait_queue_head_t *q, unsigned int mode) | 3421 | void __wake_up_locked(wait_queue_head_t *q, unsigned int mode) |
3422 | { | 3422 | { |
3423 | __wake_up_common(q, mode, 1, 0, NULL); | 3423 | __wake_up_common(q, mode, 1, 0, NULL); |
3424 | } | 3424 | } |
3425 | EXPORT_SYMBOL_GPL(__wake_up_locked); | 3425 | EXPORT_SYMBOL_GPL(__wake_up_locked); |
3426 | 3426 | ||
3427 | void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) | 3427 | void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) |
3428 | { | 3428 | { |
3429 | __wake_up_common(q, mode, 1, 0, key); | 3429 | __wake_up_common(q, mode, 1, 0, key); |
3430 | } | 3430 | } |
3431 | EXPORT_SYMBOL_GPL(__wake_up_locked_key); | 3431 | EXPORT_SYMBOL_GPL(__wake_up_locked_key); |
3432 | 3432 | ||
3433 | /** | 3433 | /** |
3434 | * __wake_up_sync_key - wake up threads blocked on a waitqueue. | 3434 | * __wake_up_sync_key - wake up threads blocked on a waitqueue. |
3435 | * @q: the waitqueue | 3435 | * @q: the waitqueue |
3436 | * @mode: which threads | 3436 | * @mode: which threads |
3437 | * @nr_exclusive: how many wake-one or wake-many threads to wake up | 3437 | * @nr_exclusive: how many wake-one or wake-many threads to wake up |
3438 | * @key: opaque value to be passed to wakeup targets | 3438 | * @key: opaque value to be passed to wakeup targets |
3439 | * | 3439 | * |
3440 | * The sync wakeup differs that the waker knows that it will schedule | 3440 | * The sync wakeup differs that the waker knows that it will schedule |
3441 | * away soon, so while the target thread will be woken up, it will not | 3441 | * away soon, so while the target thread will be woken up, it will not |
3442 | * be migrated to another CPU - ie. the two threads are 'synchronized' | 3442 | * be migrated to another CPU - ie. the two threads are 'synchronized' |
3443 | * with each other. This can prevent needless bouncing between CPUs. | 3443 | * with each other. This can prevent needless bouncing between CPUs. |
3444 | * | 3444 | * |
3445 | * On UP it can prevent extra preemption. | 3445 | * On UP it can prevent extra preemption. |
3446 | * | 3446 | * |
3447 | * It may be assumed that this function implies a write memory barrier before | 3447 | * It may be assumed that this function implies a write memory barrier before |
3448 | * changing the task state if and only if any tasks are woken up. | 3448 | * changing the task state if and only if any tasks are woken up. |
3449 | */ | 3449 | */ |
3450 | void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, | 3450 | void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, |
3451 | int nr_exclusive, void *key) | 3451 | int nr_exclusive, void *key) |
3452 | { | 3452 | { |
3453 | unsigned long flags; | 3453 | unsigned long flags; |
3454 | int wake_flags = WF_SYNC; | 3454 | int wake_flags = WF_SYNC; |
3455 | 3455 | ||
3456 | if (unlikely(!q)) | 3456 | if (unlikely(!q)) |
3457 | return; | 3457 | return; |
3458 | 3458 | ||
3459 | if (unlikely(!nr_exclusive)) | 3459 | if (unlikely(!nr_exclusive)) |
3460 | wake_flags = 0; | 3460 | wake_flags = 0; |
3461 | 3461 | ||
3462 | spin_lock_irqsave(&q->lock, flags); | 3462 | spin_lock_irqsave(&q->lock, flags); |
3463 | __wake_up_common(q, mode, nr_exclusive, wake_flags, key); | 3463 | __wake_up_common(q, mode, nr_exclusive, wake_flags, key); |
3464 | spin_unlock_irqrestore(&q->lock, flags); | 3464 | spin_unlock_irqrestore(&q->lock, flags); |
3465 | } | 3465 | } |
3466 | EXPORT_SYMBOL_GPL(__wake_up_sync_key); | 3466 | EXPORT_SYMBOL_GPL(__wake_up_sync_key); |
3467 | 3467 | ||
3468 | /* | 3468 | /* |
3469 | * __wake_up_sync - see __wake_up_sync_key() | 3469 | * __wake_up_sync - see __wake_up_sync_key() |
3470 | */ | 3470 | */ |
3471 | void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) | 3471 | void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) |
3472 | { | 3472 | { |
3473 | __wake_up_sync_key(q, mode, nr_exclusive, NULL); | 3473 | __wake_up_sync_key(q, mode, nr_exclusive, NULL); |
3474 | } | 3474 | } |
3475 | EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ | 3475 | EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ |
3476 | 3476 | ||
3477 | /** | 3477 | /** |
3478 | * complete: - signals a single thread waiting on this completion | 3478 | * complete: - signals a single thread waiting on this completion |
3479 | * @x: holds the state of this particular completion | 3479 | * @x: holds the state of this particular completion |
3480 | * | 3480 | * |
3481 | * This will wake up a single thread waiting on this completion. Threads will be | 3481 | * This will wake up a single thread waiting on this completion. Threads will be |
3482 | * awakened in the same order in which they were queued. | 3482 | * awakened in the same order in which they were queued. |
3483 | * | 3483 | * |
3484 | * See also complete_all(), wait_for_completion() and related routines. | 3484 | * See also complete_all(), wait_for_completion() and related routines. |
3485 | * | 3485 | * |
3486 | * It may be assumed that this function implies a write memory barrier before | 3486 | * It may be assumed that this function implies a write memory barrier before |
3487 | * changing the task state if and only if any tasks are woken up. | 3487 | * changing the task state if and only if any tasks are woken up. |
3488 | */ | 3488 | */ |
3489 | void complete(struct completion *x) | 3489 | void complete(struct completion *x) |
3490 | { | 3490 | { |
3491 | unsigned long flags; | 3491 | unsigned long flags; |
3492 | 3492 | ||
3493 | spin_lock_irqsave(&x->wait.lock, flags); | 3493 | spin_lock_irqsave(&x->wait.lock, flags); |
3494 | x->done++; | 3494 | x->done++; |
3495 | __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL); | 3495 | __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL); |
3496 | spin_unlock_irqrestore(&x->wait.lock, flags); | 3496 | spin_unlock_irqrestore(&x->wait.lock, flags); |
3497 | } | 3497 | } |
3498 | EXPORT_SYMBOL(complete); | 3498 | EXPORT_SYMBOL(complete); |
3499 | 3499 | ||
3500 | /** | 3500 | /** |
3501 | * complete_all: - signals all threads waiting on this completion | 3501 | * complete_all: - signals all threads waiting on this completion |
3502 | * @x: holds the state of this particular completion | 3502 | * @x: holds the state of this particular completion |
3503 | * | 3503 | * |
3504 | * This will wake up all threads waiting on this particular completion event. | 3504 | * This will wake up all threads waiting on this particular completion event. |
3505 | * | 3505 | * |
3506 | * It may be assumed that this function implies a write memory barrier before | 3506 | * It may be assumed that this function implies a write memory barrier before |
3507 | * changing the task state if and only if any tasks are woken up. | 3507 | * changing the task state if and only if any tasks are woken up. |
3508 | */ | 3508 | */ |
3509 | void complete_all(struct completion *x) | 3509 | void complete_all(struct completion *x) |
3510 | { | 3510 | { |
3511 | unsigned long flags; | 3511 | unsigned long flags; |
3512 | 3512 | ||
3513 | spin_lock_irqsave(&x->wait.lock, flags); | 3513 | spin_lock_irqsave(&x->wait.lock, flags); |
3514 | x->done += UINT_MAX/2; | 3514 | x->done += UINT_MAX/2; |
3515 | __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL); | 3515 | __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL); |
3516 | spin_unlock_irqrestore(&x->wait.lock, flags); | 3516 | spin_unlock_irqrestore(&x->wait.lock, flags); |
3517 | } | 3517 | } |
3518 | EXPORT_SYMBOL(complete_all); | 3518 | EXPORT_SYMBOL(complete_all); |
3519 | 3519 | ||
3520 | static inline long __sched | 3520 | static inline long __sched |
3521 | do_wait_for_common(struct completion *x, long timeout, int state) | 3521 | do_wait_for_common(struct completion *x, long timeout, int state) |
3522 | { | 3522 | { |
3523 | if (!x->done) { | 3523 | if (!x->done) { |
3524 | DECLARE_WAITQUEUE(wait, current); | 3524 | DECLARE_WAITQUEUE(wait, current); |
3525 | 3525 | ||
3526 | __add_wait_queue_tail_exclusive(&x->wait, &wait); | 3526 | __add_wait_queue_tail_exclusive(&x->wait, &wait); |
3527 | do { | 3527 | do { |
3528 | if (signal_pending_state(state, current)) { | 3528 | if (signal_pending_state(state, current)) { |
3529 | timeout = -ERESTARTSYS; | 3529 | timeout = -ERESTARTSYS; |
3530 | break; | 3530 | break; |
3531 | } | 3531 | } |
3532 | __set_current_state(state); | 3532 | __set_current_state(state); |
3533 | spin_unlock_irq(&x->wait.lock); | 3533 | spin_unlock_irq(&x->wait.lock); |
3534 | timeout = schedule_timeout(timeout); | 3534 | timeout = schedule_timeout(timeout); |
3535 | spin_lock_irq(&x->wait.lock); | 3535 | spin_lock_irq(&x->wait.lock); |
3536 | } while (!x->done && timeout); | 3536 | } while (!x->done && timeout); |
3537 | __remove_wait_queue(&x->wait, &wait); | 3537 | __remove_wait_queue(&x->wait, &wait); |
3538 | if (!x->done) | 3538 | if (!x->done) |
3539 | return timeout; | 3539 | return timeout; |
3540 | } | 3540 | } |
3541 | x->done--; | 3541 | x->done--; |
3542 | return timeout ?: 1; | 3542 | return timeout ?: 1; |
3543 | } | 3543 | } |
3544 | 3544 | ||
3545 | static long __sched | 3545 | static long __sched |
3546 | wait_for_common(struct completion *x, long timeout, int state) | 3546 | wait_for_common(struct completion *x, long timeout, int state) |
3547 | { | 3547 | { |
3548 | might_sleep(); | 3548 | might_sleep(); |
3549 | 3549 | ||
3550 | spin_lock_irq(&x->wait.lock); | 3550 | spin_lock_irq(&x->wait.lock); |
3551 | timeout = do_wait_for_common(x, timeout, state); | 3551 | timeout = do_wait_for_common(x, timeout, state); |
3552 | spin_unlock_irq(&x->wait.lock); | 3552 | spin_unlock_irq(&x->wait.lock); |
3553 | return timeout; | 3553 | return timeout; |
3554 | } | 3554 | } |
3555 | 3555 | ||
3556 | /** | 3556 | /** |
3557 | * wait_for_completion: - waits for completion of a task | 3557 | * wait_for_completion: - waits for completion of a task |
3558 | * @x: holds the state of this particular completion | 3558 | * @x: holds the state of this particular completion |
3559 | * | 3559 | * |
3560 | * This waits to be signaled for completion of a specific task. It is NOT | 3560 | * This waits to be signaled for completion of a specific task. It is NOT |
3561 | * interruptible and there is no timeout. | 3561 | * interruptible and there is no timeout. |
3562 | * | 3562 | * |
3563 | * See also similar routines (i.e. wait_for_completion_timeout()) with timeout | 3563 | * See also similar routines (i.e. wait_for_completion_timeout()) with timeout |
3564 | * and interrupt capability. Also see complete(). | 3564 | * and interrupt capability. Also see complete(). |
3565 | */ | 3565 | */ |
3566 | void __sched wait_for_completion(struct completion *x) | 3566 | void __sched wait_for_completion(struct completion *x) |
3567 | { | 3567 | { |
3568 | wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); | 3568 | wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); |
3569 | } | 3569 | } |
3570 | EXPORT_SYMBOL(wait_for_completion); | 3570 | EXPORT_SYMBOL(wait_for_completion); |
3571 | 3571 | ||
3572 | /** | 3572 | /** |
3573 | * wait_for_completion_timeout: - waits for completion of a task (w/timeout) | 3573 | * wait_for_completion_timeout: - waits for completion of a task (w/timeout) |
3574 | * @x: holds the state of this particular completion | 3574 | * @x: holds the state of this particular completion |
3575 | * @timeout: timeout value in jiffies | 3575 | * @timeout: timeout value in jiffies |
3576 | * | 3576 | * |
3577 | * This waits for either a completion of a specific task to be signaled or for a | 3577 | * This waits for either a completion of a specific task to be signaled or for a |
3578 | * specified timeout to expire. The timeout is in jiffies. It is not | 3578 | * specified timeout to expire. The timeout is in jiffies. It is not |
3579 | * interruptible. | 3579 | * interruptible. |
3580 | * | 3580 | * |
3581 | * The return value is 0 if timed out, and positive (at least 1, or number of | 3581 | * The return value is 0 if timed out, and positive (at least 1, or number of |
3582 | * jiffies left till timeout) if completed. | 3582 | * jiffies left till timeout) if completed. |
3583 | */ | 3583 | */ |
3584 | unsigned long __sched | 3584 | unsigned long __sched |
3585 | wait_for_completion_timeout(struct completion *x, unsigned long timeout) | 3585 | wait_for_completion_timeout(struct completion *x, unsigned long timeout) |
3586 | { | 3586 | { |
3587 | return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); | 3587 | return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); |
3588 | } | 3588 | } |
3589 | EXPORT_SYMBOL(wait_for_completion_timeout); | 3589 | EXPORT_SYMBOL(wait_for_completion_timeout); |
3590 | 3590 | ||
3591 | /** | 3591 | /** |
3592 | * wait_for_completion_interruptible: - waits for completion of a task (w/intr) | 3592 | * wait_for_completion_interruptible: - waits for completion of a task (w/intr) |
3593 | * @x: holds the state of this particular completion | 3593 | * @x: holds the state of this particular completion |
3594 | * | 3594 | * |
3595 | * This waits for completion of a specific task to be signaled. It is | 3595 | * This waits for completion of a specific task to be signaled. It is |
3596 | * interruptible. | 3596 | * interruptible. |
3597 | * | 3597 | * |
3598 | * The return value is -ERESTARTSYS if interrupted, 0 if completed. | 3598 | * The return value is -ERESTARTSYS if interrupted, 0 if completed. |
3599 | */ | 3599 | */ |
3600 | int __sched wait_for_completion_interruptible(struct completion *x) | 3600 | int __sched wait_for_completion_interruptible(struct completion *x) |
3601 | { | 3601 | { |
3602 | long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); | 3602 | long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); |
3603 | if (t == -ERESTARTSYS) | 3603 | if (t == -ERESTARTSYS) |
3604 | return t; | 3604 | return t; |
3605 | return 0; | 3605 | return 0; |
3606 | } | 3606 | } |
3607 | EXPORT_SYMBOL(wait_for_completion_interruptible); | 3607 | EXPORT_SYMBOL(wait_for_completion_interruptible); |
3608 | 3608 | ||
3609 | /** | 3609 | /** |
3610 | * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr)) | 3610 | * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr)) |
3611 | * @x: holds the state of this particular completion | 3611 | * @x: holds the state of this particular completion |
3612 | * @timeout: timeout value in jiffies | 3612 | * @timeout: timeout value in jiffies |
3613 | * | 3613 | * |
3614 | * This waits for either a completion of a specific task to be signaled or for a | 3614 | * This waits for either a completion of a specific task to be signaled or for a |
3615 | * specified timeout to expire. It is interruptible. The timeout is in jiffies. | 3615 | * specified timeout to expire. It is interruptible. The timeout is in jiffies. |
3616 | * | 3616 | * |
3617 | * The return value is -ERESTARTSYS if interrupted, 0 if timed out, | 3617 | * The return value is -ERESTARTSYS if interrupted, 0 if timed out, |
3618 | * positive (at least 1, or number of jiffies left till timeout) if completed. | 3618 | * positive (at least 1, or number of jiffies left till timeout) if completed. |
3619 | */ | 3619 | */ |
3620 | long __sched | 3620 | long __sched |
3621 | wait_for_completion_interruptible_timeout(struct completion *x, | 3621 | wait_for_completion_interruptible_timeout(struct completion *x, |
3622 | unsigned long timeout) | 3622 | unsigned long timeout) |
3623 | { | 3623 | { |
3624 | return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); | 3624 | return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); |
3625 | } | 3625 | } |
3626 | EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); | 3626 | EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); |
3627 | 3627 | ||
3628 | /** | 3628 | /** |
3629 | * wait_for_completion_killable: - waits for completion of a task (killable) | 3629 | * wait_for_completion_killable: - waits for completion of a task (killable) |
3630 | * @x: holds the state of this particular completion | 3630 | * @x: holds the state of this particular completion |
3631 | * | 3631 | * |
3632 | * This waits to be signaled for completion of a specific task. It can be | 3632 | * This waits to be signaled for completion of a specific task. It can be |
3633 | * interrupted by a kill signal. | 3633 | * interrupted by a kill signal. |
3634 | * | 3634 | * |
3635 | * The return value is -ERESTARTSYS if interrupted, 0 if completed. | 3635 | * The return value is -ERESTARTSYS if interrupted, 0 if completed. |
3636 | */ | 3636 | */ |
3637 | int __sched wait_for_completion_killable(struct completion *x) | 3637 | int __sched wait_for_completion_killable(struct completion *x) |
3638 | { | 3638 | { |
3639 | long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); | 3639 | long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); |
3640 | if (t == -ERESTARTSYS) | 3640 | if (t == -ERESTARTSYS) |
3641 | return t; | 3641 | return t; |
3642 | return 0; | 3642 | return 0; |
3643 | } | 3643 | } |
3644 | EXPORT_SYMBOL(wait_for_completion_killable); | 3644 | EXPORT_SYMBOL(wait_for_completion_killable); |
3645 | 3645 | ||
3646 | /** | 3646 | /** |
3647 | * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable)) | 3647 | * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable)) |
3648 | * @x: holds the state of this particular completion | 3648 | * @x: holds the state of this particular completion |
3649 | * @timeout: timeout value in jiffies | 3649 | * @timeout: timeout value in jiffies |
3650 | * | 3650 | * |
3651 | * This waits for either a completion of a specific task to be | 3651 | * This waits for either a completion of a specific task to be |
3652 | * signaled or for a specified timeout to expire. It can be | 3652 | * signaled or for a specified timeout to expire. It can be |
3653 | * interrupted by a kill signal. The timeout is in jiffies. | 3653 | * interrupted by a kill signal. The timeout is in jiffies. |
3654 | * | 3654 | * |
3655 | * The return value is -ERESTARTSYS if interrupted, 0 if timed out, | 3655 | * The return value is -ERESTARTSYS if interrupted, 0 if timed out, |
3656 | * positive (at least 1, or number of jiffies left till timeout) if completed. | 3656 | * positive (at least 1, or number of jiffies left till timeout) if completed. |
3657 | */ | 3657 | */ |
3658 | long __sched | 3658 | long __sched |
3659 | wait_for_completion_killable_timeout(struct completion *x, | 3659 | wait_for_completion_killable_timeout(struct completion *x, |
3660 | unsigned long timeout) | 3660 | unsigned long timeout) |
3661 | { | 3661 | { |
3662 | return wait_for_common(x, timeout, TASK_KILLABLE); | 3662 | return wait_for_common(x, timeout, TASK_KILLABLE); |
3663 | } | 3663 | } |
3664 | EXPORT_SYMBOL(wait_for_completion_killable_timeout); | 3664 | EXPORT_SYMBOL(wait_for_completion_killable_timeout); |
3665 | 3665 | ||
3666 | /** | 3666 | /** |
3667 | * try_wait_for_completion - try to decrement a completion without blocking | 3667 | * try_wait_for_completion - try to decrement a completion without blocking |
3668 | * @x: completion structure | 3668 | * @x: completion structure |
3669 | * | 3669 | * |
3670 | * Returns: 0 if a decrement cannot be done without blocking | 3670 | * Returns: 0 if a decrement cannot be done without blocking |
3671 | * 1 if a decrement succeeded. | 3671 | * 1 if a decrement succeeded. |
3672 | * | 3672 | * |
3673 | * If a completion is being used as a counting completion, | 3673 | * If a completion is being used as a counting completion, |
3674 | * attempt to decrement the counter without blocking. This | 3674 | * attempt to decrement the counter without blocking. This |
3675 | * enables us to avoid waiting if the resource the completion | 3675 | * enables us to avoid waiting if the resource the completion |
3676 | * is protecting is not available. | 3676 | * is protecting is not available. |
3677 | */ | 3677 | */ |
3678 | bool try_wait_for_completion(struct completion *x) | 3678 | bool try_wait_for_completion(struct completion *x) |
3679 | { | 3679 | { |
3680 | unsigned long flags; | 3680 | unsigned long flags; |
3681 | int ret = 1; | 3681 | int ret = 1; |
3682 | 3682 | ||
3683 | spin_lock_irqsave(&x->wait.lock, flags); | 3683 | spin_lock_irqsave(&x->wait.lock, flags); |
3684 | if (!x->done) | 3684 | if (!x->done) |
3685 | ret = 0; | 3685 | ret = 0; |
3686 | else | 3686 | else |
3687 | x->done--; | 3687 | x->done--; |
3688 | spin_unlock_irqrestore(&x->wait.lock, flags); | 3688 | spin_unlock_irqrestore(&x->wait.lock, flags); |
3689 | return ret; | 3689 | return ret; |
3690 | } | 3690 | } |
3691 | EXPORT_SYMBOL(try_wait_for_completion); | 3691 | EXPORT_SYMBOL(try_wait_for_completion); |
3692 | 3692 | ||
3693 | /** | 3693 | /** |
3694 | * completion_done - Test to see if a completion has any waiters | 3694 | * completion_done - Test to see if a completion has any waiters |
3695 | * @x: completion structure | 3695 | * @x: completion structure |
3696 | * | 3696 | * |
3697 | * Returns: 0 if there are waiters (wait_for_completion() in progress) | 3697 | * Returns: 0 if there are waiters (wait_for_completion() in progress) |
3698 | * 1 if there are no waiters. | 3698 | * 1 if there are no waiters. |
3699 | * | 3699 | * |
3700 | */ | 3700 | */ |
3701 | bool completion_done(struct completion *x) | 3701 | bool completion_done(struct completion *x) |
3702 | { | 3702 | { |
3703 | unsigned long flags; | 3703 | unsigned long flags; |
3704 | int ret = 1; | 3704 | int ret = 1; |
3705 | 3705 | ||
3706 | spin_lock_irqsave(&x->wait.lock, flags); | 3706 | spin_lock_irqsave(&x->wait.lock, flags); |
3707 | if (!x->done) | 3707 | if (!x->done) |
3708 | ret = 0; | 3708 | ret = 0; |
3709 | spin_unlock_irqrestore(&x->wait.lock, flags); | 3709 | spin_unlock_irqrestore(&x->wait.lock, flags); |
3710 | return ret; | 3710 | return ret; |
3711 | } | 3711 | } |
3712 | EXPORT_SYMBOL(completion_done); | 3712 | EXPORT_SYMBOL(completion_done); |
3713 | 3713 | ||
3714 | static long __sched | 3714 | static long __sched |
3715 | sleep_on_common(wait_queue_head_t *q, int state, long timeout) | 3715 | sleep_on_common(wait_queue_head_t *q, int state, long timeout) |
3716 | { | 3716 | { |
3717 | unsigned long flags; | 3717 | unsigned long flags; |
3718 | wait_queue_t wait; | 3718 | wait_queue_t wait; |
3719 | 3719 | ||
3720 | init_waitqueue_entry(&wait, current); | 3720 | init_waitqueue_entry(&wait, current); |
3721 | 3721 | ||
3722 | __set_current_state(state); | 3722 | __set_current_state(state); |
3723 | 3723 | ||
3724 | spin_lock_irqsave(&q->lock, flags); | 3724 | spin_lock_irqsave(&q->lock, flags); |
3725 | __add_wait_queue(q, &wait); | 3725 | __add_wait_queue(q, &wait); |
3726 | spin_unlock(&q->lock); | 3726 | spin_unlock(&q->lock); |
3727 | timeout = schedule_timeout(timeout); | 3727 | timeout = schedule_timeout(timeout); |
3728 | spin_lock_irq(&q->lock); | 3728 | spin_lock_irq(&q->lock); |
3729 | __remove_wait_queue(q, &wait); | 3729 | __remove_wait_queue(q, &wait); |
3730 | spin_unlock_irqrestore(&q->lock, flags); | 3730 | spin_unlock_irqrestore(&q->lock, flags); |
3731 | 3731 | ||
3732 | return timeout; | 3732 | return timeout; |
3733 | } | 3733 | } |
3734 | 3734 | ||
3735 | void __sched interruptible_sleep_on(wait_queue_head_t *q) | 3735 | void __sched interruptible_sleep_on(wait_queue_head_t *q) |
3736 | { | 3736 | { |
3737 | sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); | 3737 | sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); |
3738 | } | 3738 | } |
3739 | EXPORT_SYMBOL(interruptible_sleep_on); | 3739 | EXPORT_SYMBOL(interruptible_sleep_on); |
3740 | 3740 | ||
3741 | long __sched | 3741 | long __sched |
3742 | interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) | 3742 | interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) |
3743 | { | 3743 | { |
3744 | return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); | 3744 | return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); |
3745 | } | 3745 | } |
3746 | EXPORT_SYMBOL(interruptible_sleep_on_timeout); | 3746 | EXPORT_SYMBOL(interruptible_sleep_on_timeout); |
3747 | 3747 | ||
3748 | void __sched sleep_on(wait_queue_head_t *q) | 3748 | void __sched sleep_on(wait_queue_head_t *q) |
3749 | { | 3749 | { |
3750 | sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); | 3750 | sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); |
3751 | } | 3751 | } |
3752 | EXPORT_SYMBOL(sleep_on); | 3752 | EXPORT_SYMBOL(sleep_on); |
3753 | 3753 | ||
3754 | long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) | 3754 | long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) |
3755 | { | 3755 | { |
3756 | return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); | 3756 | return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); |
3757 | } | 3757 | } |
3758 | EXPORT_SYMBOL(sleep_on_timeout); | 3758 | EXPORT_SYMBOL(sleep_on_timeout); |
3759 | 3759 | ||
3760 | #ifdef CONFIG_RT_MUTEXES | 3760 | #ifdef CONFIG_RT_MUTEXES |
3761 | 3761 | ||
3762 | /* | 3762 | /* |
3763 | * rt_mutex_setprio - set the current priority of a task | 3763 | * rt_mutex_setprio - set the current priority of a task |
3764 | * @p: task | 3764 | * @p: task |
3765 | * @prio: prio value (kernel-internal form) | 3765 | * @prio: prio value (kernel-internal form) |
3766 | * | 3766 | * |
3767 | * This function changes the 'effective' priority of a task. It does | 3767 | * This function changes the 'effective' priority of a task. It does |
3768 | * not touch ->normal_prio like __setscheduler(). | 3768 | * not touch ->normal_prio like __setscheduler(). |
3769 | * | 3769 | * |
3770 | * Used by the rt_mutex code to implement priority inheritance logic. | 3770 | * Used by the rt_mutex code to implement priority inheritance logic. |
3771 | */ | 3771 | */ |
3772 | void rt_mutex_setprio(struct task_struct *p, int prio) | 3772 | void rt_mutex_setprio(struct task_struct *p, int prio) |
3773 | { | 3773 | { |
3774 | int oldprio, on_rq, running; | 3774 | int oldprio, on_rq, running; |
3775 | struct rq *rq; | 3775 | struct rq *rq; |
3776 | const struct sched_class *prev_class; | 3776 | const struct sched_class *prev_class; |
3777 | 3777 | ||
3778 | BUG_ON(prio < 0 || prio > MAX_PRIO); | 3778 | BUG_ON(prio < 0 || prio > MAX_PRIO); |
3779 | 3779 | ||
3780 | rq = __task_rq_lock(p); | 3780 | rq = __task_rq_lock(p); |
3781 | 3781 | ||
3782 | trace_sched_pi_setprio(p, prio); | 3782 | trace_sched_pi_setprio(p, prio); |
3783 | oldprio = p->prio; | 3783 | oldprio = p->prio; |
3784 | prev_class = p->sched_class; | 3784 | prev_class = p->sched_class; |
3785 | on_rq = p->on_rq; | 3785 | on_rq = p->on_rq; |
3786 | running = task_current(rq, p); | 3786 | running = task_current(rq, p); |
3787 | if (on_rq) | 3787 | if (on_rq) |
3788 | dequeue_task(rq, p, 0); | 3788 | dequeue_task(rq, p, 0); |
3789 | if (running) | 3789 | if (running) |
3790 | p->sched_class->put_prev_task(rq, p); | 3790 | p->sched_class->put_prev_task(rq, p); |
3791 | 3791 | ||
3792 | if (rt_prio(prio)) | 3792 | if (rt_prio(prio)) |
3793 | p->sched_class = &rt_sched_class; | 3793 | p->sched_class = &rt_sched_class; |
3794 | else | 3794 | else |
3795 | p->sched_class = &fair_sched_class; | 3795 | p->sched_class = &fair_sched_class; |
3796 | 3796 | ||
3797 | p->prio = prio; | 3797 | p->prio = prio; |
3798 | 3798 | ||
3799 | if (running) | 3799 | if (running) |
3800 | p->sched_class->set_curr_task(rq); | 3800 | p->sched_class->set_curr_task(rq); |
3801 | if (on_rq) | 3801 | if (on_rq) |
3802 | enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0); | 3802 | enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0); |
3803 | 3803 | ||
3804 | check_class_changed(rq, p, prev_class, oldprio); | 3804 | check_class_changed(rq, p, prev_class, oldprio); |
3805 | __task_rq_unlock(rq); | 3805 | __task_rq_unlock(rq); |
3806 | } | 3806 | } |
3807 | 3807 | ||
3808 | #endif | 3808 | #endif |
3809 | 3809 | ||
3810 | void set_user_nice(struct task_struct *p, long nice) | 3810 | void set_user_nice(struct task_struct *p, long nice) |
3811 | { | 3811 | { |
3812 | int old_prio, delta, on_rq; | 3812 | int old_prio, delta, on_rq; |
3813 | unsigned long flags; | 3813 | unsigned long flags; |
3814 | struct rq *rq; | 3814 | struct rq *rq; |
3815 | 3815 | ||
3816 | if (TASK_NICE(p) == nice || nice < -20 || nice > 19) | 3816 | if (TASK_NICE(p) == nice || nice < -20 || nice > 19) |
3817 | return; | 3817 | return; |
3818 | /* | 3818 | /* |
3819 | * We have to be careful, if called from sys_setpriority(), | 3819 | * We have to be careful, if called from sys_setpriority(), |
3820 | * the task might be in the middle of scheduling on another CPU. | 3820 | * the task might be in the middle of scheduling on another CPU. |
3821 | */ | 3821 | */ |
3822 | rq = task_rq_lock(p, &flags); | 3822 | rq = task_rq_lock(p, &flags); |
3823 | /* | 3823 | /* |
3824 | * The RT priorities are set via sched_setscheduler(), but we still | 3824 | * The RT priorities are set via sched_setscheduler(), but we still |
3825 | * allow the 'normal' nice value to be set - but as expected | 3825 | * allow the 'normal' nice value to be set - but as expected |
3826 | * it wont have any effect on scheduling until the task is | 3826 | * it wont have any effect on scheduling until the task is |
3827 | * SCHED_FIFO/SCHED_RR: | 3827 | * SCHED_FIFO/SCHED_RR: |
3828 | */ | 3828 | */ |
3829 | if (task_has_rt_policy(p)) { | 3829 | if (task_has_rt_policy(p)) { |
3830 | p->static_prio = NICE_TO_PRIO(nice); | 3830 | p->static_prio = NICE_TO_PRIO(nice); |
3831 | goto out_unlock; | 3831 | goto out_unlock; |
3832 | } | 3832 | } |
3833 | on_rq = p->on_rq; | 3833 | on_rq = p->on_rq; |
3834 | if (on_rq) | 3834 | if (on_rq) |
3835 | dequeue_task(rq, p, 0); | 3835 | dequeue_task(rq, p, 0); |
3836 | 3836 | ||
3837 | p->static_prio = NICE_TO_PRIO(nice); | 3837 | p->static_prio = NICE_TO_PRIO(nice); |
3838 | set_load_weight(p); | 3838 | set_load_weight(p); |
3839 | old_prio = p->prio; | 3839 | old_prio = p->prio; |
3840 | p->prio = effective_prio(p); | 3840 | p->prio = effective_prio(p); |
3841 | delta = p->prio - old_prio; | 3841 | delta = p->prio - old_prio; |
3842 | 3842 | ||
3843 | if (on_rq) { | 3843 | if (on_rq) { |
3844 | enqueue_task(rq, p, 0); | 3844 | enqueue_task(rq, p, 0); |
3845 | /* | 3845 | /* |
3846 | * If the task increased its priority or is running and | 3846 | * If the task increased its priority or is running and |
3847 | * lowered its priority, then reschedule its CPU: | 3847 | * lowered its priority, then reschedule its CPU: |
3848 | */ | 3848 | */ |
3849 | if (delta < 0 || (delta > 0 && task_running(rq, p))) | 3849 | if (delta < 0 || (delta > 0 && task_running(rq, p))) |
3850 | resched_task(rq->curr); | 3850 | resched_task(rq->curr); |
3851 | } | 3851 | } |
3852 | out_unlock: | 3852 | out_unlock: |
3853 | task_rq_unlock(rq, p, &flags); | 3853 | task_rq_unlock(rq, p, &flags); |
3854 | } | 3854 | } |
3855 | EXPORT_SYMBOL(set_user_nice); | 3855 | EXPORT_SYMBOL(set_user_nice); |
3856 | 3856 | ||
3857 | /* | 3857 | /* |
3858 | * can_nice - check if a task can reduce its nice value | 3858 | * can_nice - check if a task can reduce its nice value |
3859 | * @p: task | 3859 | * @p: task |
3860 | * @nice: nice value | 3860 | * @nice: nice value |
3861 | */ | 3861 | */ |
3862 | int can_nice(const struct task_struct *p, const int nice) | 3862 | int can_nice(const struct task_struct *p, const int nice) |
3863 | { | 3863 | { |
3864 | /* convert nice value [19,-20] to rlimit style value [1,40] */ | 3864 | /* convert nice value [19,-20] to rlimit style value [1,40] */ |
3865 | int nice_rlim = 20 - nice; | 3865 | int nice_rlim = 20 - nice; |
3866 | 3866 | ||
3867 | return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || | 3867 | return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || |
3868 | capable(CAP_SYS_NICE)); | 3868 | capable(CAP_SYS_NICE)); |
3869 | } | 3869 | } |
3870 | 3870 | ||
3871 | #ifdef __ARCH_WANT_SYS_NICE | 3871 | #ifdef __ARCH_WANT_SYS_NICE |
3872 | 3872 | ||
3873 | /* | 3873 | /* |
3874 | * sys_nice - change the priority of the current process. | 3874 | * sys_nice - change the priority of the current process. |
3875 | * @increment: priority increment | 3875 | * @increment: priority increment |
3876 | * | 3876 | * |
3877 | * sys_setpriority is a more generic, but much slower function that | 3877 | * sys_setpriority is a more generic, but much slower function that |
3878 | * does similar things. | 3878 | * does similar things. |
3879 | */ | 3879 | */ |
3880 | SYSCALL_DEFINE1(nice, int, increment) | 3880 | SYSCALL_DEFINE1(nice, int, increment) |
3881 | { | 3881 | { |
3882 | long nice, retval; | 3882 | long nice, retval; |
3883 | 3883 | ||
3884 | /* | 3884 | /* |
3885 | * Setpriority might change our priority at the same moment. | 3885 | * Setpriority might change our priority at the same moment. |
3886 | * We don't have to worry. Conceptually one call occurs first | 3886 | * We don't have to worry. Conceptually one call occurs first |
3887 | * and we have a single winner. | 3887 | * and we have a single winner. |
3888 | */ | 3888 | */ |
3889 | if (increment < -40) | 3889 | if (increment < -40) |
3890 | increment = -40; | 3890 | increment = -40; |
3891 | if (increment > 40) | 3891 | if (increment > 40) |
3892 | increment = 40; | 3892 | increment = 40; |
3893 | 3893 | ||
3894 | nice = TASK_NICE(current) + increment; | 3894 | nice = TASK_NICE(current) + increment; |
3895 | if (nice < -20) | 3895 | if (nice < -20) |
3896 | nice = -20; | 3896 | nice = -20; |
3897 | if (nice > 19) | 3897 | if (nice > 19) |
3898 | nice = 19; | 3898 | nice = 19; |
3899 | 3899 | ||
3900 | if (increment < 0 && !can_nice(current, nice)) | 3900 | if (increment < 0 && !can_nice(current, nice)) |
3901 | return -EPERM; | 3901 | return -EPERM; |
3902 | 3902 | ||
3903 | retval = security_task_setnice(current, nice); | 3903 | retval = security_task_setnice(current, nice); |
3904 | if (retval) | 3904 | if (retval) |
3905 | return retval; | 3905 | return retval; |
3906 | 3906 | ||
3907 | set_user_nice(current, nice); | 3907 | set_user_nice(current, nice); |
3908 | return 0; | 3908 | return 0; |
3909 | } | 3909 | } |
3910 | 3910 | ||
3911 | #endif | 3911 | #endif |
3912 | 3912 | ||
3913 | /** | 3913 | /** |
3914 | * task_prio - return the priority value of a given task. | 3914 | * task_prio - return the priority value of a given task. |
3915 | * @p: the task in question. | 3915 | * @p: the task in question. |
3916 | * | 3916 | * |
3917 | * This is the priority value as seen by users in /proc. | 3917 | * This is the priority value as seen by users in /proc. |
3918 | * RT tasks are offset by -200. Normal tasks are centered | 3918 | * RT tasks are offset by -200. Normal tasks are centered |
3919 | * around 0, value goes from -16 to +15. | 3919 | * around 0, value goes from -16 to +15. |
3920 | */ | 3920 | */ |
3921 | int task_prio(const struct task_struct *p) | 3921 | int task_prio(const struct task_struct *p) |
3922 | { | 3922 | { |
3923 | return p->prio - MAX_RT_PRIO; | 3923 | return p->prio - MAX_RT_PRIO; |
3924 | } | 3924 | } |
3925 | 3925 | ||
3926 | /** | 3926 | /** |
3927 | * task_nice - return the nice value of a given task. | 3927 | * task_nice - return the nice value of a given task. |
3928 | * @p: the task in question. | 3928 | * @p: the task in question. |
3929 | */ | 3929 | */ |
3930 | int task_nice(const struct task_struct *p) | 3930 | int task_nice(const struct task_struct *p) |
3931 | { | 3931 | { |
3932 | return TASK_NICE(p); | 3932 | return TASK_NICE(p); |
3933 | } | 3933 | } |
3934 | EXPORT_SYMBOL(task_nice); | 3934 | EXPORT_SYMBOL(task_nice); |
3935 | 3935 | ||
3936 | /** | 3936 | /** |
3937 | * idle_cpu - is a given cpu idle currently? | 3937 | * idle_cpu - is a given cpu idle currently? |
3938 | * @cpu: the processor in question. | 3938 | * @cpu: the processor in question. |
3939 | */ | 3939 | */ |
3940 | int idle_cpu(int cpu) | 3940 | int idle_cpu(int cpu) |
3941 | { | 3941 | { |
3942 | struct rq *rq = cpu_rq(cpu); | 3942 | struct rq *rq = cpu_rq(cpu); |
3943 | 3943 | ||
3944 | if (rq->curr != rq->idle) | 3944 | if (rq->curr != rq->idle) |
3945 | return 0; | 3945 | return 0; |
3946 | 3946 | ||
3947 | if (rq->nr_running) | 3947 | if (rq->nr_running) |
3948 | return 0; | 3948 | return 0; |
3949 | 3949 | ||
3950 | #ifdef CONFIG_SMP | 3950 | #ifdef CONFIG_SMP |
3951 | if (!llist_empty(&rq->wake_list)) | 3951 | if (!llist_empty(&rq->wake_list)) |
3952 | return 0; | 3952 | return 0; |
3953 | #endif | 3953 | #endif |
3954 | 3954 | ||
3955 | return 1; | 3955 | return 1; |
3956 | } | 3956 | } |
3957 | 3957 | ||
3958 | /** | 3958 | /** |
3959 | * idle_task - return the idle task for a given cpu. | 3959 | * idle_task - return the idle task for a given cpu. |
3960 | * @cpu: the processor in question. | 3960 | * @cpu: the processor in question. |
3961 | */ | 3961 | */ |
3962 | struct task_struct *idle_task(int cpu) | 3962 | struct task_struct *idle_task(int cpu) |
3963 | { | 3963 | { |
3964 | return cpu_rq(cpu)->idle; | 3964 | return cpu_rq(cpu)->idle; |
3965 | } | 3965 | } |
3966 | 3966 | ||
3967 | /** | 3967 | /** |
3968 | * find_process_by_pid - find a process with a matching PID value. | 3968 | * find_process_by_pid - find a process with a matching PID value. |
3969 | * @pid: the pid in question. | 3969 | * @pid: the pid in question. |
3970 | */ | 3970 | */ |
3971 | static struct task_struct *find_process_by_pid(pid_t pid) | 3971 | static struct task_struct *find_process_by_pid(pid_t pid) |
3972 | { | 3972 | { |
3973 | return pid ? find_task_by_vpid(pid) : current; | 3973 | return pid ? find_task_by_vpid(pid) : current; |
3974 | } | 3974 | } |
3975 | 3975 | ||
3976 | /* Actually do priority change: must hold rq lock. */ | 3976 | /* Actually do priority change: must hold rq lock. */ |
3977 | static void | 3977 | static void |
3978 | __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) | 3978 | __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) |
3979 | { | 3979 | { |
3980 | p->policy = policy; | 3980 | p->policy = policy; |
3981 | p->rt_priority = prio; | 3981 | p->rt_priority = prio; |
3982 | p->normal_prio = normal_prio(p); | 3982 | p->normal_prio = normal_prio(p); |
3983 | /* we are holding p->pi_lock already */ | 3983 | /* we are holding p->pi_lock already */ |
3984 | p->prio = rt_mutex_getprio(p); | 3984 | p->prio = rt_mutex_getprio(p); |
3985 | if (rt_prio(p->prio)) | 3985 | if (rt_prio(p->prio)) |
3986 | p->sched_class = &rt_sched_class; | 3986 | p->sched_class = &rt_sched_class; |
3987 | else | 3987 | else |
3988 | p->sched_class = &fair_sched_class; | 3988 | p->sched_class = &fair_sched_class; |
3989 | set_load_weight(p); | 3989 | set_load_weight(p); |
3990 | } | 3990 | } |
3991 | 3991 | ||
3992 | /* | 3992 | /* |
3993 | * check the target process has a UID that matches the current process's | 3993 | * check the target process has a UID that matches the current process's |
3994 | */ | 3994 | */ |
3995 | static bool check_same_owner(struct task_struct *p) | 3995 | static bool check_same_owner(struct task_struct *p) |
3996 | { | 3996 | { |
3997 | const struct cred *cred = current_cred(), *pcred; | 3997 | const struct cred *cred = current_cred(), *pcred; |
3998 | bool match; | 3998 | bool match; |
3999 | 3999 | ||
4000 | rcu_read_lock(); | 4000 | rcu_read_lock(); |
4001 | pcred = __task_cred(p); | 4001 | pcred = __task_cred(p); |
4002 | if (cred->user->user_ns == pcred->user->user_ns) | 4002 | if (cred->user->user_ns == pcred->user->user_ns) |
4003 | match = (cred->euid == pcred->euid || | 4003 | match = (cred->euid == pcred->euid || |
4004 | cred->euid == pcred->uid); | 4004 | cred->euid == pcred->uid); |
4005 | else | 4005 | else |
4006 | match = false; | 4006 | match = false; |
4007 | rcu_read_unlock(); | 4007 | rcu_read_unlock(); |
4008 | return match; | 4008 | return match; |
4009 | } | 4009 | } |
4010 | 4010 | ||
4011 | static int __sched_setscheduler(struct task_struct *p, int policy, | 4011 | static int __sched_setscheduler(struct task_struct *p, int policy, |
4012 | const struct sched_param *param, bool user) | 4012 | const struct sched_param *param, bool user) |
4013 | { | 4013 | { |
4014 | int retval, oldprio, oldpolicy = -1, on_rq, running; | 4014 | int retval, oldprio, oldpolicy = -1, on_rq, running; |
4015 | unsigned long flags; | 4015 | unsigned long flags; |
4016 | const struct sched_class *prev_class; | 4016 | const struct sched_class *prev_class; |
4017 | struct rq *rq; | 4017 | struct rq *rq; |
4018 | int reset_on_fork; | 4018 | int reset_on_fork; |
4019 | 4019 | ||
4020 | /* may grab non-irq protected spin_locks */ | 4020 | /* may grab non-irq protected spin_locks */ |
4021 | BUG_ON(in_interrupt()); | 4021 | BUG_ON(in_interrupt()); |
4022 | recheck: | 4022 | recheck: |
4023 | /* double check policy once rq lock held */ | 4023 | /* double check policy once rq lock held */ |
4024 | if (policy < 0) { | 4024 | if (policy < 0) { |
4025 | reset_on_fork = p->sched_reset_on_fork; | 4025 | reset_on_fork = p->sched_reset_on_fork; |
4026 | policy = oldpolicy = p->policy; | 4026 | policy = oldpolicy = p->policy; |
4027 | } else { | 4027 | } else { |
4028 | reset_on_fork = !!(policy & SCHED_RESET_ON_FORK); | 4028 | reset_on_fork = !!(policy & SCHED_RESET_ON_FORK); |
4029 | policy &= ~SCHED_RESET_ON_FORK; | 4029 | policy &= ~SCHED_RESET_ON_FORK; |
4030 | 4030 | ||
4031 | if (policy != SCHED_FIFO && policy != SCHED_RR && | 4031 | if (policy != SCHED_FIFO && policy != SCHED_RR && |
4032 | policy != SCHED_NORMAL && policy != SCHED_BATCH && | 4032 | policy != SCHED_NORMAL && policy != SCHED_BATCH && |
4033 | policy != SCHED_IDLE) | 4033 | policy != SCHED_IDLE) |
4034 | return -EINVAL; | 4034 | return -EINVAL; |
4035 | } | 4035 | } |
4036 | 4036 | ||
4037 | /* | 4037 | /* |
4038 | * Valid priorities for SCHED_FIFO and SCHED_RR are | 4038 | * Valid priorities for SCHED_FIFO and SCHED_RR are |
4039 | * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, | 4039 | * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, |
4040 | * SCHED_BATCH and SCHED_IDLE is 0. | 4040 | * SCHED_BATCH and SCHED_IDLE is 0. |
4041 | */ | 4041 | */ |
4042 | if (param->sched_priority < 0 || | 4042 | if (param->sched_priority < 0 || |
4043 | (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || | 4043 | (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || |
4044 | (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) | 4044 | (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) |
4045 | return -EINVAL; | 4045 | return -EINVAL; |
4046 | if (rt_policy(policy) != (param->sched_priority != 0)) | 4046 | if (rt_policy(policy) != (param->sched_priority != 0)) |
4047 | return -EINVAL; | 4047 | return -EINVAL; |
4048 | 4048 | ||
4049 | /* | 4049 | /* |
4050 | * Allow unprivileged RT tasks to decrease priority: | 4050 | * Allow unprivileged RT tasks to decrease priority: |
4051 | */ | 4051 | */ |
4052 | if (user && !capable(CAP_SYS_NICE)) { | 4052 | if (user && !capable(CAP_SYS_NICE)) { |
4053 | if (rt_policy(policy)) { | 4053 | if (rt_policy(policy)) { |
4054 | unsigned long rlim_rtprio = | 4054 | unsigned long rlim_rtprio = |
4055 | task_rlimit(p, RLIMIT_RTPRIO); | 4055 | task_rlimit(p, RLIMIT_RTPRIO); |
4056 | 4056 | ||
4057 | /* can't set/change the rt policy */ | 4057 | /* can't set/change the rt policy */ |
4058 | if (policy != p->policy && !rlim_rtprio) | 4058 | if (policy != p->policy && !rlim_rtprio) |
4059 | return -EPERM; | 4059 | return -EPERM; |
4060 | 4060 | ||
4061 | /* can't increase priority */ | 4061 | /* can't increase priority */ |
4062 | if (param->sched_priority > p->rt_priority && | 4062 | if (param->sched_priority > p->rt_priority && |
4063 | param->sched_priority > rlim_rtprio) | 4063 | param->sched_priority > rlim_rtprio) |
4064 | return -EPERM; | 4064 | return -EPERM; |
4065 | } | 4065 | } |
4066 | 4066 | ||
4067 | /* | 4067 | /* |
4068 | * Treat SCHED_IDLE as nice 20. Only allow a switch to | 4068 | * Treat SCHED_IDLE as nice 20. Only allow a switch to |
4069 | * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. | 4069 | * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. |
4070 | */ | 4070 | */ |
4071 | if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) { | 4071 | if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) { |
4072 | if (!can_nice(p, TASK_NICE(p))) | 4072 | if (!can_nice(p, TASK_NICE(p))) |
4073 | return -EPERM; | 4073 | return -EPERM; |
4074 | } | 4074 | } |
4075 | 4075 | ||
4076 | /* can't change other user's priorities */ | 4076 | /* can't change other user's priorities */ |
4077 | if (!check_same_owner(p)) | 4077 | if (!check_same_owner(p)) |
4078 | return -EPERM; | 4078 | return -EPERM; |
4079 | 4079 | ||
4080 | /* Normal users shall not reset the sched_reset_on_fork flag */ | 4080 | /* Normal users shall not reset the sched_reset_on_fork flag */ |
4081 | if (p->sched_reset_on_fork && !reset_on_fork) | 4081 | if (p->sched_reset_on_fork && !reset_on_fork) |
4082 | return -EPERM; | 4082 | return -EPERM; |
4083 | } | 4083 | } |
4084 | 4084 | ||
4085 | if (user) { | 4085 | if (user) { |
4086 | retval = security_task_setscheduler(p); | 4086 | retval = security_task_setscheduler(p); |
4087 | if (retval) | 4087 | if (retval) |
4088 | return retval; | 4088 | return retval; |
4089 | } | 4089 | } |
4090 | 4090 | ||
4091 | /* | 4091 | /* |
4092 | * make sure no PI-waiters arrive (or leave) while we are | 4092 | * make sure no PI-waiters arrive (or leave) while we are |
4093 | * changing the priority of the task: | 4093 | * changing the priority of the task: |
4094 | * | 4094 | * |
4095 | * To be able to change p->policy safely, the appropriate | 4095 | * To be able to change p->policy safely, the appropriate |
4096 | * runqueue lock must be held. | 4096 | * runqueue lock must be held. |
4097 | */ | 4097 | */ |
4098 | rq = task_rq_lock(p, &flags); | 4098 | rq = task_rq_lock(p, &flags); |
4099 | 4099 | ||
4100 | /* | 4100 | /* |
4101 | * Changing the policy of the stop threads its a very bad idea | 4101 | * Changing the policy of the stop threads its a very bad idea |
4102 | */ | 4102 | */ |
4103 | if (p == rq->stop) { | 4103 | if (p == rq->stop) { |
4104 | task_rq_unlock(rq, p, &flags); | 4104 | task_rq_unlock(rq, p, &flags); |
4105 | return -EINVAL; | 4105 | return -EINVAL; |
4106 | } | 4106 | } |
4107 | 4107 | ||
4108 | /* | 4108 | /* |
4109 | * If not changing anything there's no need to proceed further: | 4109 | * If not changing anything there's no need to proceed further: |
4110 | */ | 4110 | */ |
4111 | if (unlikely(policy == p->policy && (!rt_policy(policy) || | 4111 | if (unlikely(policy == p->policy && (!rt_policy(policy) || |
4112 | param->sched_priority == p->rt_priority))) { | 4112 | param->sched_priority == p->rt_priority))) { |
4113 | 4113 | ||
4114 | __task_rq_unlock(rq); | 4114 | __task_rq_unlock(rq); |
4115 | raw_spin_unlock_irqrestore(&p->pi_lock, flags); | 4115 | raw_spin_unlock_irqrestore(&p->pi_lock, flags); |
4116 | return 0; | 4116 | return 0; |
4117 | } | 4117 | } |
4118 | 4118 | ||
4119 | #ifdef CONFIG_RT_GROUP_SCHED | 4119 | #ifdef CONFIG_RT_GROUP_SCHED |
4120 | if (user) { | 4120 | if (user) { |
4121 | /* | 4121 | /* |
4122 | * Do not allow realtime tasks into groups that have no runtime | 4122 | * Do not allow realtime tasks into groups that have no runtime |
4123 | * assigned. | 4123 | * assigned. |
4124 | */ | 4124 | */ |
4125 | if (rt_bandwidth_enabled() && rt_policy(policy) && | 4125 | if (rt_bandwidth_enabled() && rt_policy(policy) && |
4126 | task_group(p)->rt_bandwidth.rt_runtime == 0 && | 4126 | task_group(p)->rt_bandwidth.rt_runtime == 0 && |
4127 | !task_group_is_autogroup(task_group(p))) { | 4127 | !task_group_is_autogroup(task_group(p))) { |
4128 | task_rq_unlock(rq, p, &flags); | 4128 | task_rq_unlock(rq, p, &flags); |
4129 | return -EPERM; | 4129 | return -EPERM; |
4130 | } | 4130 | } |
4131 | } | 4131 | } |
4132 | #endif | 4132 | #endif |
4133 | 4133 | ||
4134 | /* recheck policy now with rq lock held */ | 4134 | /* recheck policy now with rq lock held */ |
4135 | if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { | 4135 | if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { |
4136 | policy = oldpolicy = -1; | 4136 | policy = oldpolicy = -1; |
4137 | task_rq_unlock(rq, p, &flags); | 4137 | task_rq_unlock(rq, p, &flags); |
4138 | goto recheck; | 4138 | goto recheck; |
4139 | } | 4139 | } |
4140 | on_rq = p->on_rq; | 4140 | on_rq = p->on_rq; |
4141 | running = task_current(rq, p); | 4141 | running = task_current(rq, p); |
4142 | if (on_rq) | 4142 | if (on_rq) |
4143 | dequeue_task(rq, p, 0); | 4143 | dequeue_task(rq, p, 0); |
4144 | if (running) | 4144 | if (running) |
4145 | p->sched_class->put_prev_task(rq, p); | 4145 | p->sched_class->put_prev_task(rq, p); |
4146 | 4146 | ||
4147 | p->sched_reset_on_fork = reset_on_fork; | 4147 | p->sched_reset_on_fork = reset_on_fork; |
4148 | 4148 | ||
4149 | oldprio = p->prio; | 4149 | oldprio = p->prio; |
4150 | prev_class = p->sched_class; | 4150 | prev_class = p->sched_class; |
4151 | __setscheduler(rq, p, policy, param->sched_priority); | 4151 | __setscheduler(rq, p, policy, param->sched_priority); |
4152 | 4152 | ||
4153 | if (running) | 4153 | if (running) |
4154 | p->sched_class->set_curr_task(rq); | 4154 | p->sched_class->set_curr_task(rq); |
4155 | if (on_rq) | 4155 | if (on_rq) |
4156 | enqueue_task(rq, p, 0); | 4156 | enqueue_task(rq, p, 0); |
4157 | 4157 | ||
4158 | check_class_changed(rq, p, prev_class, oldprio); | 4158 | check_class_changed(rq, p, prev_class, oldprio); |
4159 | task_rq_unlock(rq, p, &flags); | 4159 | task_rq_unlock(rq, p, &flags); |
4160 | 4160 | ||
4161 | rt_mutex_adjust_pi(p); | 4161 | rt_mutex_adjust_pi(p); |
4162 | 4162 | ||
4163 | return 0; | 4163 | return 0; |
4164 | } | 4164 | } |
4165 | 4165 | ||
4166 | /** | 4166 | /** |
4167 | * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. | 4167 | * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. |
4168 | * @p: the task in question. | 4168 | * @p: the task in question. |
4169 | * @policy: new policy. | 4169 | * @policy: new policy. |
4170 | * @param: structure containing the new RT priority. | 4170 | * @param: structure containing the new RT priority. |
4171 | * | 4171 | * |
4172 | * NOTE that the task may be already dead. | 4172 | * NOTE that the task may be already dead. |
4173 | */ | 4173 | */ |
4174 | int sched_setscheduler(struct task_struct *p, int policy, | 4174 | int sched_setscheduler(struct task_struct *p, int policy, |
4175 | const struct sched_param *param) | 4175 | const struct sched_param *param) |
4176 | { | 4176 | { |
4177 | return __sched_setscheduler(p, policy, param, true); | 4177 | return __sched_setscheduler(p, policy, param, true); |
4178 | } | 4178 | } |
4179 | EXPORT_SYMBOL_GPL(sched_setscheduler); | 4179 | EXPORT_SYMBOL_GPL(sched_setscheduler); |
4180 | 4180 | ||
4181 | /** | 4181 | /** |
4182 | * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. | 4182 | * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. |
4183 | * @p: the task in question. | 4183 | * @p: the task in question. |
4184 | * @policy: new policy. | 4184 | * @policy: new policy. |
4185 | * @param: structure containing the new RT priority. | 4185 | * @param: structure containing the new RT priority. |
4186 | * | 4186 | * |
4187 | * Just like sched_setscheduler, only don't bother checking if the | 4187 | * Just like sched_setscheduler, only don't bother checking if the |
4188 | * current context has permission. For example, this is needed in | 4188 | * current context has permission. For example, this is needed in |
4189 | * stop_machine(): we create temporary high priority worker threads, | 4189 | * stop_machine(): we create temporary high priority worker threads, |
4190 | * but our caller might not have that capability. | 4190 | * but our caller might not have that capability. |
4191 | */ | 4191 | */ |
4192 | int sched_setscheduler_nocheck(struct task_struct *p, int policy, | 4192 | int sched_setscheduler_nocheck(struct task_struct *p, int policy, |
4193 | const struct sched_param *param) | 4193 | const struct sched_param *param) |
4194 | { | 4194 | { |
4195 | return __sched_setscheduler(p, policy, param, false); | 4195 | return __sched_setscheduler(p, policy, param, false); |
4196 | } | 4196 | } |
4197 | 4197 | ||
4198 | static int | 4198 | static int |
4199 | do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) | 4199 | do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) |
4200 | { | 4200 | { |
4201 | struct sched_param lparam; | 4201 | struct sched_param lparam; |
4202 | struct task_struct *p; | 4202 | struct task_struct *p; |
4203 | int retval; | 4203 | int retval; |
4204 | 4204 | ||
4205 | if (!param || pid < 0) | 4205 | if (!param || pid < 0) |
4206 | return -EINVAL; | 4206 | return -EINVAL; |
4207 | if (copy_from_user(&lparam, param, sizeof(struct sched_param))) | 4207 | if (copy_from_user(&lparam, param, sizeof(struct sched_param))) |
4208 | return -EFAULT; | 4208 | return -EFAULT; |
4209 | 4209 | ||
4210 | rcu_read_lock(); | 4210 | rcu_read_lock(); |
4211 | retval = -ESRCH; | 4211 | retval = -ESRCH; |
4212 | p = find_process_by_pid(pid); | 4212 | p = find_process_by_pid(pid); |
4213 | if (p != NULL) | 4213 | if (p != NULL) |
4214 | retval = sched_setscheduler(p, policy, &lparam); | 4214 | retval = sched_setscheduler(p, policy, &lparam); |
4215 | rcu_read_unlock(); | 4215 | rcu_read_unlock(); |
4216 | 4216 | ||
4217 | return retval; | 4217 | return retval; |
4218 | } | 4218 | } |
4219 | 4219 | ||
4220 | /** | 4220 | /** |
4221 | * sys_sched_setscheduler - set/change the scheduler policy and RT priority | 4221 | * sys_sched_setscheduler - set/change the scheduler policy and RT priority |
4222 | * @pid: the pid in question. | 4222 | * @pid: the pid in question. |
4223 | * @policy: new policy. | 4223 | * @policy: new policy. |
4224 | * @param: structure containing the new RT priority. | 4224 | * @param: structure containing the new RT priority. |
4225 | */ | 4225 | */ |
4226 | SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, | 4226 | SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, |
4227 | struct sched_param __user *, param) | 4227 | struct sched_param __user *, param) |
4228 | { | 4228 | { |
4229 | /* negative values for policy are not valid */ | 4229 | /* negative values for policy are not valid */ |
4230 | if (policy < 0) | 4230 | if (policy < 0) |
4231 | return -EINVAL; | 4231 | return -EINVAL; |
4232 | 4232 | ||
4233 | return do_sched_setscheduler(pid, policy, param); | 4233 | return do_sched_setscheduler(pid, policy, param); |
4234 | } | 4234 | } |
4235 | 4235 | ||
4236 | /** | 4236 | /** |
4237 | * sys_sched_setparam - set/change the RT priority of a thread | 4237 | * sys_sched_setparam - set/change the RT priority of a thread |
4238 | * @pid: the pid in question. | 4238 | * @pid: the pid in question. |
4239 | * @param: structure containing the new RT priority. | 4239 | * @param: structure containing the new RT priority. |
4240 | */ | 4240 | */ |
4241 | SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) | 4241 | SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) |
4242 | { | 4242 | { |
4243 | return do_sched_setscheduler(pid, -1, param); | 4243 | return do_sched_setscheduler(pid, -1, param); |
4244 | } | 4244 | } |
4245 | 4245 | ||
4246 | /** | 4246 | /** |
4247 | * sys_sched_getscheduler - get the policy (scheduling class) of a thread | 4247 | * sys_sched_getscheduler - get the policy (scheduling class) of a thread |
4248 | * @pid: the pid in question. | 4248 | * @pid: the pid in question. |
4249 | */ | 4249 | */ |
4250 | SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) | 4250 | SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) |
4251 | { | 4251 | { |
4252 | struct task_struct *p; | 4252 | struct task_struct *p; |
4253 | int retval; | 4253 | int retval; |
4254 | 4254 | ||
4255 | if (pid < 0) | 4255 | if (pid < 0) |
4256 | return -EINVAL; | 4256 | return -EINVAL; |
4257 | 4257 | ||
4258 | retval = -ESRCH; | 4258 | retval = -ESRCH; |
4259 | rcu_read_lock(); | 4259 | rcu_read_lock(); |
4260 | p = find_process_by_pid(pid); | 4260 | p = find_process_by_pid(pid); |
4261 | if (p) { | 4261 | if (p) { |
4262 | retval = security_task_getscheduler(p); | 4262 | retval = security_task_getscheduler(p); |
4263 | if (!retval) | 4263 | if (!retval) |
4264 | retval = p->policy | 4264 | retval = p->policy |
4265 | | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); | 4265 | | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); |
4266 | } | 4266 | } |
4267 | rcu_read_unlock(); | 4267 | rcu_read_unlock(); |
4268 | return retval; | 4268 | return retval; |
4269 | } | 4269 | } |
4270 | 4270 | ||
4271 | /** | 4271 | /** |
4272 | * sys_sched_getparam - get the RT priority of a thread | 4272 | * sys_sched_getparam - get the RT priority of a thread |
4273 | * @pid: the pid in question. | 4273 | * @pid: the pid in question. |
4274 | * @param: structure containing the RT priority. | 4274 | * @param: structure containing the RT priority. |
4275 | */ | 4275 | */ |
4276 | SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) | 4276 | SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) |
4277 | { | 4277 | { |
4278 | struct sched_param lp; | 4278 | struct sched_param lp; |
4279 | struct task_struct *p; | 4279 | struct task_struct *p; |
4280 | int retval; | 4280 | int retval; |
4281 | 4281 | ||
4282 | if (!param || pid < 0) | 4282 | if (!param || pid < 0) |
4283 | return -EINVAL; | 4283 | return -EINVAL; |
4284 | 4284 | ||
4285 | rcu_read_lock(); | 4285 | rcu_read_lock(); |
4286 | p = find_process_by_pid(pid); | 4286 | p = find_process_by_pid(pid); |
4287 | retval = -ESRCH; | 4287 | retval = -ESRCH; |
4288 | if (!p) | 4288 | if (!p) |
4289 | goto out_unlock; | 4289 | goto out_unlock; |
4290 | 4290 | ||
4291 | retval = security_task_getscheduler(p); | 4291 | retval = security_task_getscheduler(p); |
4292 | if (retval) | 4292 | if (retval) |
4293 | goto out_unlock; | 4293 | goto out_unlock; |
4294 | 4294 | ||
4295 | lp.sched_priority = p->rt_priority; | 4295 | lp.sched_priority = p->rt_priority; |
4296 | rcu_read_unlock(); | 4296 | rcu_read_unlock(); |
4297 | 4297 | ||
4298 | /* | 4298 | /* |
4299 | * This one might sleep, we cannot do it with a spinlock held ... | 4299 | * This one might sleep, we cannot do it with a spinlock held ... |
4300 | */ | 4300 | */ |
4301 | retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; | 4301 | retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; |
4302 | 4302 | ||
4303 | return retval; | 4303 | return retval; |
4304 | 4304 | ||
4305 | out_unlock: | 4305 | out_unlock: |
4306 | rcu_read_unlock(); | 4306 | rcu_read_unlock(); |
4307 | return retval; | 4307 | return retval; |
4308 | } | 4308 | } |
4309 | 4309 | ||
4310 | long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) | 4310 | long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) |
4311 | { | 4311 | { |
4312 | cpumask_var_t cpus_allowed, new_mask; | 4312 | cpumask_var_t cpus_allowed, new_mask; |
4313 | struct task_struct *p; | 4313 | struct task_struct *p; |
4314 | int retval; | 4314 | int retval; |
4315 | 4315 | ||
4316 | get_online_cpus(); | 4316 | get_online_cpus(); |
4317 | rcu_read_lock(); | 4317 | rcu_read_lock(); |
4318 | 4318 | ||
4319 | p = find_process_by_pid(pid); | 4319 | p = find_process_by_pid(pid); |
4320 | if (!p) { | 4320 | if (!p) { |
4321 | rcu_read_unlock(); | 4321 | rcu_read_unlock(); |
4322 | put_online_cpus(); | 4322 | put_online_cpus(); |
4323 | return -ESRCH; | 4323 | return -ESRCH; |
4324 | } | 4324 | } |
4325 | 4325 | ||
4326 | /* Prevent p going away */ | 4326 | /* Prevent p going away */ |
4327 | get_task_struct(p); | 4327 | get_task_struct(p); |
4328 | rcu_read_unlock(); | 4328 | rcu_read_unlock(); |
4329 | 4329 | ||
4330 | if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { | 4330 | if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { |
4331 | retval = -ENOMEM; | 4331 | retval = -ENOMEM; |
4332 | goto out_put_task; | 4332 | goto out_put_task; |
4333 | } | 4333 | } |
4334 | if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { | 4334 | if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { |
4335 | retval = -ENOMEM; | 4335 | retval = -ENOMEM; |
4336 | goto out_free_cpus_allowed; | 4336 | goto out_free_cpus_allowed; |
4337 | } | 4337 | } |
4338 | retval = -EPERM; | 4338 | retval = -EPERM; |
4339 | if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE)) | 4339 | if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE)) |
4340 | goto out_unlock; | 4340 | goto out_unlock; |
4341 | 4341 | ||
4342 | retval = security_task_setscheduler(p); | 4342 | retval = security_task_setscheduler(p); |
4343 | if (retval) | 4343 | if (retval) |
4344 | goto out_unlock; | 4344 | goto out_unlock; |
4345 | 4345 | ||
4346 | cpuset_cpus_allowed(p, cpus_allowed); | 4346 | cpuset_cpus_allowed(p, cpus_allowed); |
4347 | cpumask_and(new_mask, in_mask, cpus_allowed); | 4347 | cpumask_and(new_mask, in_mask, cpus_allowed); |
4348 | again: | 4348 | again: |
4349 | retval = set_cpus_allowed_ptr(p, new_mask); | 4349 | retval = set_cpus_allowed_ptr(p, new_mask); |
4350 | 4350 | ||
4351 | if (!retval) { | 4351 | if (!retval) { |
4352 | cpuset_cpus_allowed(p, cpus_allowed); | 4352 | cpuset_cpus_allowed(p, cpus_allowed); |
4353 | if (!cpumask_subset(new_mask, cpus_allowed)) { | 4353 | if (!cpumask_subset(new_mask, cpus_allowed)) { |
4354 | /* | 4354 | /* |
4355 | * We must have raced with a concurrent cpuset | 4355 | * We must have raced with a concurrent cpuset |
4356 | * update. Just reset the cpus_allowed to the | 4356 | * update. Just reset the cpus_allowed to the |
4357 | * cpuset's cpus_allowed | 4357 | * cpuset's cpus_allowed |
4358 | */ | 4358 | */ |
4359 | cpumask_copy(new_mask, cpus_allowed); | 4359 | cpumask_copy(new_mask, cpus_allowed); |
4360 | goto again; | 4360 | goto again; |
4361 | } | 4361 | } |
4362 | } | 4362 | } |
4363 | out_unlock: | 4363 | out_unlock: |
4364 | free_cpumask_var(new_mask); | 4364 | free_cpumask_var(new_mask); |
4365 | out_free_cpus_allowed: | 4365 | out_free_cpus_allowed: |
4366 | free_cpumask_var(cpus_allowed); | 4366 | free_cpumask_var(cpus_allowed); |
4367 | out_put_task: | 4367 | out_put_task: |
4368 | put_task_struct(p); | 4368 | put_task_struct(p); |
4369 | put_online_cpus(); | 4369 | put_online_cpus(); |
4370 | return retval; | 4370 | return retval; |
4371 | } | 4371 | } |
4372 | 4372 | ||
4373 | static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, | 4373 | static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, |
4374 | struct cpumask *new_mask) | 4374 | struct cpumask *new_mask) |
4375 | { | 4375 | { |
4376 | if (len < cpumask_size()) | 4376 | if (len < cpumask_size()) |
4377 | cpumask_clear(new_mask); | 4377 | cpumask_clear(new_mask); |
4378 | else if (len > cpumask_size()) | 4378 | else if (len > cpumask_size()) |
4379 | len = cpumask_size(); | 4379 | len = cpumask_size(); |
4380 | 4380 | ||
4381 | return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; | 4381 | return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; |
4382 | } | 4382 | } |
4383 | 4383 | ||
4384 | /** | 4384 | /** |
4385 | * sys_sched_setaffinity - set the cpu affinity of a process | 4385 | * sys_sched_setaffinity - set the cpu affinity of a process |
4386 | * @pid: pid of the process | 4386 | * @pid: pid of the process |
4387 | * @len: length in bytes of the bitmask pointed to by user_mask_ptr | 4387 | * @len: length in bytes of the bitmask pointed to by user_mask_ptr |
4388 | * @user_mask_ptr: user-space pointer to the new cpu mask | 4388 | * @user_mask_ptr: user-space pointer to the new cpu mask |
4389 | */ | 4389 | */ |
4390 | SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, | 4390 | SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, |
4391 | unsigned long __user *, user_mask_ptr) | 4391 | unsigned long __user *, user_mask_ptr) |
4392 | { | 4392 | { |
4393 | cpumask_var_t new_mask; | 4393 | cpumask_var_t new_mask; |
4394 | int retval; | 4394 | int retval; |
4395 | 4395 | ||
4396 | if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) | 4396 | if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) |
4397 | return -ENOMEM; | 4397 | return -ENOMEM; |
4398 | 4398 | ||
4399 | retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); | 4399 | retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); |
4400 | if (retval == 0) | 4400 | if (retval == 0) |
4401 | retval = sched_setaffinity(pid, new_mask); | 4401 | retval = sched_setaffinity(pid, new_mask); |
4402 | free_cpumask_var(new_mask); | 4402 | free_cpumask_var(new_mask); |
4403 | return retval; | 4403 | return retval; |
4404 | } | 4404 | } |
4405 | 4405 | ||
4406 | long sched_getaffinity(pid_t pid, struct cpumask *mask) | 4406 | long sched_getaffinity(pid_t pid, struct cpumask *mask) |
4407 | { | 4407 | { |
4408 | struct task_struct *p; | 4408 | struct task_struct *p; |
4409 | unsigned long flags; | 4409 | unsigned long flags; |
4410 | int retval; | 4410 | int retval; |
4411 | 4411 | ||
4412 | get_online_cpus(); | 4412 | get_online_cpus(); |
4413 | rcu_read_lock(); | 4413 | rcu_read_lock(); |
4414 | 4414 | ||
4415 | retval = -ESRCH; | 4415 | retval = -ESRCH; |
4416 | p = find_process_by_pid(pid); | 4416 | p = find_process_by_pid(pid); |
4417 | if (!p) | 4417 | if (!p) |
4418 | goto out_unlock; | 4418 | goto out_unlock; |
4419 | 4419 | ||
4420 | retval = security_task_getscheduler(p); | 4420 | retval = security_task_getscheduler(p); |
4421 | if (retval) | 4421 | if (retval) |
4422 | goto out_unlock; | 4422 | goto out_unlock; |
4423 | 4423 | ||
4424 | raw_spin_lock_irqsave(&p->pi_lock, flags); | 4424 | raw_spin_lock_irqsave(&p->pi_lock, flags); |
4425 | cpumask_and(mask, &p->cpus_allowed, cpu_online_mask); | 4425 | cpumask_and(mask, &p->cpus_allowed, cpu_online_mask); |
4426 | raw_spin_unlock_irqrestore(&p->pi_lock, flags); | 4426 | raw_spin_unlock_irqrestore(&p->pi_lock, flags); |
4427 | 4427 | ||
4428 | out_unlock: | 4428 | out_unlock: |
4429 | rcu_read_unlock(); | 4429 | rcu_read_unlock(); |
4430 | put_online_cpus(); | 4430 | put_online_cpus(); |
4431 | 4431 | ||
4432 | return retval; | 4432 | return retval; |
4433 | } | 4433 | } |
4434 | 4434 | ||
4435 | /** | 4435 | /** |
4436 | * sys_sched_getaffinity - get the cpu affinity of a process | 4436 | * sys_sched_getaffinity - get the cpu affinity of a process |
4437 | * @pid: pid of the process | 4437 | * @pid: pid of the process |
4438 | * @len: length in bytes of the bitmask pointed to by user_mask_ptr | 4438 | * @len: length in bytes of the bitmask pointed to by user_mask_ptr |
4439 | * @user_mask_ptr: user-space pointer to hold the current cpu mask | 4439 | * @user_mask_ptr: user-space pointer to hold the current cpu mask |
4440 | */ | 4440 | */ |
4441 | SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, | 4441 | SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, |
4442 | unsigned long __user *, user_mask_ptr) | 4442 | unsigned long __user *, user_mask_ptr) |
4443 | { | 4443 | { |
4444 | int ret; | 4444 | int ret; |
4445 | cpumask_var_t mask; | 4445 | cpumask_var_t mask; |
4446 | 4446 | ||
4447 | if ((len * BITS_PER_BYTE) < nr_cpu_ids) | 4447 | if ((len * BITS_PER_BYTE) < nr_cpu_ids) |
4448 | return -EINVAL; | 4448 | return -EINVAL; |
4449 | if (len & (sizeof(unsigned long)-1)) | 4449 | if (len & (sizeof(unsigned long)-1)) |
4450 | return -EINVAL; | 4450 | return -EINVAL; |
4451 | 4451 | ||
4452 | if (!alloc_cpumask_var(&mask, GFP_KERNEL)) | 4452 | if (!alloc_cpumask_var(&mask, GFP_KERNEL)) |
4453 | return -ENOMEM; | 4453 | return -ENOMEM; |
4454 | 4454 | ||
4455 | ret = sched_getaffinity(pid, mask); | 4455 | ret = sched_getaffinity(pid, mask); |
4456 | if (ret == 0) { | 4456 | if (ret == 0) { |
4457 | size_t retlen = min_t(size_t, len, cpumask_size()); | 4457 | size_t retlen = min_t(size_t, len, cpumask_size()); |
4458 | 4458 | ||
4459 | if (copy_to_user(user_mask_ptr, mask, retlen)) | 4459 | if (copy_to_user(user_mask_ptr, mask, retlen)) |
4460 | ret = -EFAULT; | 4460 | ret = -EFAULT; |
4461 | else | 4461 | else |
4462 | ret = retlen; | 4462 | ret = retlen; |
4463 | } | 4463 | } |
4464 | free_cpumask_var(mask); | 4464 | free_cpumask_var(mask); |
4465 | 4465 | ||
4466 | return ret; | 4466 | return ret; |
4467 | } | 4467 | } |
4468 | 4468 | ||
4469 | /** | 4469 | /** |
4470 | * sys_sched_yield - yield the current processor to other threads. | 4470 | * sys_sched_yield - yield the current processor to other threads. |
4471 | * | 4471 | * |
4472 | * This function yields the current CPU to other tasks. If there are no | 4472 | * This function yields the current CPU to other tasks. If there are no |
4473 | * other threads running on this CPU then this function will return. | 4473 | * other threads running on this CPU then this function will return. |
4474 | */ | 4474 | */ |
4475 | SYSCALL_DEFINE0(sched_yield) | 4475 | SYSCALL_DEFINE0(sched_yield) |
4476 | { | 4476 | { |
4477 | struct rq *rq = this_rq_lock(); | 4477 | struct rq *rq = this_rq_lock(); |
4478 | 4478 | ||
4479 | schedstat_inc(rq, yld_count); | 4479 | schedstat_inc(rq, yld_count); |
4480 | current->sched_class->yield_task(rq); | 4480 | current->sched_class->yield_task(rq); |
4481 | 4481 | ||
4482 | /* | 4482 | /* |
4483 | * Since we are going to call schedule() anyway, there's | 4483 | * Since we are going to call schedule() anyway, there's |
4484 | * no need to preempt or enable interrupts: | 4484 | * no need to preempt or enable interrupts: |
4485 | */ | 4485 | */ |
4486 | __release(rq->lock); | 4486 | __release(rq->lock); |
4487 | spin_release(&rq->lock.dep_map, 1, _THIS_IP_); | 4487 | spin_release(&rq->lock.dep_map, 1, _THIS_IP_); |
4488 | do_raw_spin_unlock(&rq->lock); | 4488 | do_raw_spin_unlock(&rq->lock); |
4489 | preempt_enable_no_resched(); | 4489 | sched_preempt_enable_no_resched(); |
4490 | 4490 | ||
4491 | schedule(); | 4491 | schedule(); |
4492 | 4492 | ||
4493 | return 0; | 4493 | return 0; |
4494 | } | 4494 | } |
4495 | 4495 | ||
4496 | static inline int should_resched(void) | 4496 | static inline int should_resched(void) |
4497 | { | 4497 | { |
4498 | return need_resched() && !(preempt_count() & PREEMPT_ACTIVE); | 4498 | return need_resched() && !(preempt_count() & PREEMPT_ACTIVE); |
4499 | } | 4499 | } |
4500 | 4500 | ||
4501 | static void __cond_resched(void) | 4501 | static void __cond_resched(void) |
4502 | { | 4502 | { |
4503 | add_preempt_count(PREEMPT_ACTIVE); | 4503 | add_preempt_count(PREEMPT_ACTIVE); |
4504 | __schedule(); | 4504 | __schedule(); |
4505 | sub_preempt_count(PREEMPT_ACTIVE); | 4505 | sub_preempt_count(PREEMPT_ACTIVE); |
4506 | } | 4506 | } |
4507 | 4507 | ||
4508 | int __sched _cond_resched(void) | 4508 | int __sched _cond_resched(void) |
4509 | { | 4509 | { |
4510 | if (should_resched()) { | 4510 | if (should_resched()) { |
4511 | __cond_resched(); | 4511 | __cond_resched(); |
4512 | return 1; | 4512 | return 1; |
4513 | } | 4513 | } |
4514 | return 0; | 4514 | return 0; |
4515 | } | 4515 | } |
4516 | EXPORT_SYMBOL(_cond_resched); | 4516 | EXPORT_SYMBOL(_cond_resched); |
4517 | 4517 | ||
4518 | /* | 4518 | /* |
4519 | * __cond_resched_lock() - if a reschedule is pending, drop the given lock, | 4519 | * __cond_resched_lock() - if a reschedule is pending, drop the given lock, |
4520 | * call schedule, and on return reacquire the lock. | 4520 | * call schedule, and on return reacquire the lock. |
4521 | * | 4521 | * |
4522 | * This works OK both with and without CONFIG_PREEMPT. We do strange low-level | 4522 | * This works OK both with and without CONFIG_PREEMPT. We do strange low-level |
4523 | * operations here to prevent schedule() from being called twice (once via | 4523 | * operations here to prevent schedule() from being called twice (once via |
4524 | * spin_unlock(), once by hand). | 4524 | * spin_unlock(), once by hand). |
4525 | */ | 4525 | */ |
4526 | int __cond_resched_lock(spinlock_t *lock) | 4526 | int __cond_resched_lock(spinlock_t *lock) |
4527 | { | 4527 | { |
4528 | int resched = should_resched(); | 4528 | int resched = should_resched(); |
4529 | int ret = 0; | 4529 | int ret = 0; |
4530 | 4530 | ||
4531 | lockdep_assert_held(lock); | 4531 | lockdep_assert_held(lock); |
4532 | 4532 | ||
4533 | if (spin_needbreak(lock) || resched) { | 4533 | if (spin_needbreak(lock) || resched) { |
4534 | spin_unlock(lock); | 4534 | spin_unlock(lock); |
4535 | if (resched) | 4535 | if (resched) |
4536 | __cond_resched(); | 4536 | __cond_resched(); |
4537 | else | 4537 | else |
4538 | cpu_relax(); | 4538 | cpu_relax(); |
4539 | ret = 1; | 4539 | ret = 1; |
4540 | spin_lock(lock); | 4540 | spin_lock(lock); |
4541 | } | 4541 | } |
4542 | return ret; | 4542 | return ret; |
4543 | } | 4543 | } |
4544 | EXPORT_SYMBOL(__cond_resched_lock); | 4544 | EXPORT_SYMBOL(__cond_resched_lock); |
4545 | 4545 | ||
4546 | int __sched __cond_resched_softirq(void) | 4546 | int __sched __cond_resched_softirq(void) |
4547 | { | 4547 | { |
4548 | BUG_ON(!in_softirq()); | 4548 | BUG_ON(!in_softirq()); |
4549 | 4549 | ||
4550 | if (should_resched()) { | 4550 | if (should_resched()) { |
4551 | local_bh_enable(); | 4551 | local_bh_enable(); |
4552 | __cond_resched(); | 4552 | __cond_resched(); |
4553 | local_bh_disable(); | 4553 | local_bh_disable(); |
4554 | return 1; | 4554 | return 1; |
4555 | } | 4555 | } |
4556 | return 0; | 4556 | return 0; |
4557 | } | 4557 | } |
4558 | EXPORT_SYMBOL(__cond_resched_softirq); | 4558 | EXPORT_SYMBOL(__cond_resched_softirq); |
4559 | 4559 | ||
4560 | /** | 4560 | /** |
4561 | * yield - yield the current processor to other threads. | 4561 | * yield - yield the current processor to other threads. |
4562 | * | 4562 | * |
4563 | * This is a shortcut for kernel-space yielding - it marks the | 4563 | * This is a shortcut for kernel-space yielding - it marks the |
4564 | * thread runnable and calls sys_sched_yield(). | 4564 | * thread runnable and calls sys_sched_yield(). |
4565 | */ | 4565 | */ |
4566 | void __sched yield(void) | 4566 | void __sched yield(void) |
4567 | { | 4567 | { |
4568 | set_current_state(TASK_RUNNING); | 4568 | set_current_state(TASK_RUNNING); |
4569 | sys_sched_yield(); | 4569 | sys_sched_yield(); |
4570 | } | 4570 | } |
4571 | EXPORT_SYMBOL(yield); | 4571 | EXPORT_SYMBOL(yield); |
4572 | 4572 | ||
4573 | /** | 4573 | /** |
4574 | * yield_to - yield the current processor to another thread in | 4574 | * yield_to - yield the current processor to another thread in |
4575 | * your thread group, or accelerate that thread toward the | 4575 | * your thread group, or accelerate that thread toward the |
4576 | * processor it's on. | 4576 | * processor it's on. |
4577 | * @p: target task | 4577 | * @p: target task |
4578 | * @preempt: whether task preemption is allowed or not | 4578 | * @preempt: whether task preemption is allowed or not |
4579 | * | 4579 | * |
4580 | * It's the caller's job to ensure that the target task struct | 4580 | * It's the caller's job to ensure that the target task struct |
4581 | * can't go away on us before we can do any checks. | 4581 | * can't go away on us before we can do any checks. |
4582 | * | 4582 | * |
4583 | * Returns true if we indeed boosted the target task. | 4583 | * Returns true if we indeed boosted the target task. |
4584 | */ | 4584 | */ |
4585 | bool __sched yield_to(struct task_struct *p, bool preempt) | 4585 | bool __sched yield_to(struct task_struct *p, bool preempt) |
4586 | { | 4586 | { |
4587 | struct task_struct *curr = current; | 4587 | struct task_struct *curr = current; |
4588 | struct rq *rq, *p_rq; | 4588 | struct rq *rq, *p_rq; |
4589 | unsigned long flags; | 4589 | unsigned long flags; |
4590 | bool yielded = 0; | 4590 | bool yielded = 0; |
4591 | 4591 | ||
4592 | local_irq_save(flags); | 4592 | local_irq_save(flags); |
4593 | rq = this_rq(); | 4593 | rq = this_rq(); |
4594 | 4594 | ||
4595 | again: | 4595 | again: |
4596 | p_rq = task_rq(p); | 4596 | p_rq = task_rq(p); |
4597 | double_rq_lock(rq, p_rq); | 4597 | double_rq_lock(rq, p_rq); |
4598 | while (task_rq(p) != p_rq) { | 4598 | while (task_rq(p) != p_rq) { |
4599 | double_rq_unlock(rq, p_rq); | 4599 | double_rq_unlock(rq, p_rq); |
4600 | goto again; | 4600 | goto again; |
4601 | } | 4601 | } |
4602 | 4602 | ||
4603 | if (!curr->sched_class->yield_to_task) | 4603 | if (!curr->sched_class->yield_to_task) |
4604 | goto out; | 4604 | goto out; |
4605 | 4605 | ||
4606 | if (curr->sched_class != p->sched_class) | 4606 | if (curr->sched_class != p->sched_class) |
4607 | goto out; | 4607 | goto out; |
4608 | 4608 | ||
4609 | if (task_running(p_rq, p) || p->state) | 4609 | if (task_running(p_rq, p) || p->state) |
4610 | goto out; | 4610 | goto out; |
4611 | 4611 | ||
4612 | yielded = curr->sched_class->yield_to_task(rq, p, preempt); | 4612 | yielded = curr->sched_class->yield_to_task(rq, p, preempt); |
4613 | if (yielded) { | 4613 | if (yielded) { |
4614 | schedstat_inc(rq, yld_count); | 4614 | schedstat_inc(rq, yld_count); |
4615 | /* | 4615 | /* |
4616 | * Make p's CPU reschedule; pick_next_entity takes care of | 4616 | * Make p's CPU reschedule; pick_next_entity takes care of |
4617 | * fairness. | 4617 | * fairness. |
4618 | */ | 4618 | */ |
4619 | if (preempt && rq != p_rq) | 4619 | if (preempt && rq != p_rq) |
4620 | resched_task(p_rq->curr); | 4620 | resched_task(p_rq->curr); |
4621 | } else { | 4621 | } else { |
4622 | /* | 4622 | /* |
4623 | * We might have set it in task_yield_fair(), but are | 4623 | * We might have set it in task_yield_fair(), but are |
4624 | * not going to schedule(), so don't want to skip | 4624 | * not going to schedule(), so don't want to skip |
4625 | * the next update. | 4625 | * the next update. |
4626 | */ | 4626 | */ |
4627 | rq->skip_clock_update = 0; | 4627 | rq->skip_clock_update = 0; |
4628 | } | 4628 | } |
4629 | 4629 | ||
4630 | out: | 4630 | out: |
4631 | double_rq_unlock(rq, p_rq); | 4631 | double_rq_unlock(rq, p_rq); |
4632 | local_irq_restore(flags); | 4632 | local_irq_restore(flags); |
4633 | 4633 | ||
4634 | if (yielded) | 4634 | if (yielded) |
4635 | schedule(); | 4635 | schedule(); |
4636 | 4636 | ||
4637 | return yielded; | 4637 | return yielded; |
4638 | } | 4638 | } |
4639 | EXPORT_SYMBOL_GPL(yield_to); | 4639 | EXPORT_SYMBOL_GPL(yield_to); |
4640 | 4640 | ||
4641 | /* | 4641 | /* |
4642 | * This task is about to go to sleep on IO. Increment rq->nr_iowait so | 4642 | * This task is about to go to sleep on IO. Increment rq->nr_iowait so |
4643 | * that process accounting knows that this is a task in IO wait state. | 4643 | * that process accounting knows that this is a task in IO wait state. |
4644 | */ | 4644 | */ |
4645 | void __sched io_schedule(void) | 4645 | void __sched io_schedule(void) |
4646 | { | 4646 | { |
4647 | struct rq *rq = raw_rq(); | 4647 | struct rq *rq = raw_rq(); |
4648 | 4648 | ||
4649 | delayacct_blkio_start(); | 4649 | delayacct_blkio_start(); |
4650 | atomic_inc(&rq->nr_iowait); | 4650 | atomic_inc(&rq->nr_iowait); |
4651 | blk_flush_plug(current); | 4651 | blk_flush_plug(current); |
4652 | current->in_iowait = 1; | 4652 | current->in_iowait = 1; |
4653 | schedule(); | 4653 | schedule(); |
4654 | current->in_iowait = 0; | 4654 | current->in_iowait = 0; |
4655 | atomic_dec(&rq->nr_iowait); | 4655 | atomic_dec(&rq->nr_iowait); |
4656 | delayacct_blkio_end(); | 4656 | delayacct_blkio_end(); |
4657 | } | 4657 | } |
4658 | EXPORT_SYMBOL(io_schedule); | 4658 | EXPORT_SYMBOL(io_schedule); |
4659 | 4659 | ||
4660 | long __sched io_schedule_timeout(long timeout) | 4660 | long __sched io_schedule_timeout(long timeout) |
4661 | { | 4661 | { |
4662 | struct rq *rq = raw_rq(); | 4662 | struct rq *rq = raw_rq(); |
4663 | long ret; | 4663 | long ret; |
4664 | 4664 | ||
4665 | delayacct_blkio_start(); | 4665 | delayacct_blkio_start(); |
4666 | atomic_inc(&rq->nr_iowait); | 4666 | atomic_inc(&rq->nr_iowait); |
4667 | blk_flush_plug(current); | 4667 | blk_flush_plug(current); |
4668 | current->in_iowait = 1; | 4668 | current->in_iowait = 1; |
4669 | ret = schedule_timeout(timeout); | 4669 | ret = schedule_timeout(timeout); |
4670 | current->in_iowait = 0; | 4670 | current->in_iowait = 0; |
4671 | atomic_dec(&rq->nr_iowait); | 4671 | atomic_dec(&rq->nr_iowait); |
4672 | delayacct_blkio_end(); | 4672 | delayacct_blkio_end(); |
4673 | return ret; | 4673 | return ret; |
4674 | } | 4674 | } |
4675 | 4675 | ||
4676 | /** | 4676 | /** |
4677 | * sys_sched_get_priority_max - return maximum RT priority. | 4677 | * sys_sched_get_priority_max - return maximum RT priority. |
4678 | * @policy: scheduling class. | 4678 | * @policy: scheduling class. |
4679 | * | 4679 | * |
4680 | * this syscall returns the maximum rt_priority that can be used | 4680 | * this syscall returns the maximum rt_priority that can be used |
4681 | * by a given scheduling class. | 4681 | * by a given scheduling class. |
4682 | */ | 4682 | */ |
4683 | SYSCALL_DEFINE1(sched_get_priority_max, int, policy) | 4683 | SYSCALL_DEFINE1(sched_get_priority_max, int, policy) |
4684 | { | 4684 | { |
4685 | int ret = -EINVAL; | 4685 | int ret = -EINVAL; |
4686 | 4686 | ||
4687 | switch (policy) { | 4687 | switch (policy) { |
4688 | case SCHED_FIFO: | 4688 | case SCHED_FIFO: |
4689 | case SCHED_RR: | 4689 | case SCHED_RR: |
4690 | ret = MAX_USER_RT_PRIO-1; | 4690 | ret = MAX_USER_RT_PRIO-1; |
4691 | break; | 4691 | break; |
4692 | case SCHED_NORMAL: | 4692 | case SCHED_NORMAL: |
4693 | case SCHED_BATCH: | 4693 | case SCHED_BATCH: |
4694 | case SCHED_IDLE: | 4694 | case SCHED_IDLE: |
4695 | ret = 0; | 4695 | ret = 0; |
4696 | break; | 4696 | break; |
4697 | } | 4697 | } |
4698 | return ret; | 4698 | return ret; |
4699 | } | 4699 | } |
4700 | 4700 | ||
4701 | /** | 4701 | /** |
4702 | * sys_sched_get_priority_min - return minimum RT priority. | 4702 | * sys_sched_get_priority_min - return minimum RT priority. |
4703 | * @policy: scheduling class. | 4703 | * @policy: scheduling class. |
4704 | * | 4704 | * |
4705 | * this syscall returns the minimum rt_priority that can be used | 4705 | * this syscall returns the minimum rt_priority that can be used |
4706 | * by a given scheduling class. | 4706 | * by a given scheduling class. |
4707 | */ | 4707 | */ |
4708 | SYSCALL_DEFINE1(sched_get_priority_min, int, policy) | 4708 | SYSCALL_DEFINE1(sched_get_priority_min, int, policy) |
4709 | { | 4709 | { |
4710 | int ret = -EINVAL; | 4710 | int ret = -EINVAL; |
4711 | 4711 | ||
4712 | switch (policy) { | 4712 | switch (policy) { |
4713 | case SCHED_FIFO: | 4713 | case SCHED_FIFO: |
4714 | case SCHED_RR: | 4714 | case SCHED_RR: |
4715 | ret = 1; | 4715 | ret = 1; |
4716 | break; | 4716 | break; |
4717 | case SCHED_NORMAL: | 4717 | case SCHED_NORMAL: |
4718 | case SCHED_BATCH: | 4718 | case SCHED_BATCH: |
4719 | case SCHED_IDLE: | 4719 | case SCHED_IDLE: |
4720 | ret = 0; | 4720 | ret = 0; |
4721 | } | 4721 | } |
4722 | return ret; | 4722 | return ret; |
4723 | } | 4723 | } |
4724 | 4724 | ||
4725 | /** | 4725 | /** |
4726 | * sys_sched_rr_get_interval - return the default timeslice of a process. | 4726 | * sys_sched_rr_get_interval - return the default timeslice of a process. |
4727 | * @pid: pid of the process. | 4727 | * @pid: pid of the process. |
4728 | * @interval: userspace pointer to the timeslice value. | 4728 | * @interval: userspace pointer to the timeslice value. |
4729 | * | 4729 | * |
4730 | * this syscall writes the default timeslice value of a given process | 4730 | * this syscall writes the default timeslice value of a given process |
4731 | * into the user-space timespec buffer. A value of '0' means infinity. | 4731 | * into the user-space timespec buffer. A value of '0' means infinity. |
4732 | */ | 4732 | */ |
4733 | SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, | 4733 | SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, |
4734 | struct timespec __user *, interval) | 4734 | struct timespec __user *, interval) |
4735 | { | 4735 | { |
4736 | struct task_struct *p; | 4736 | struct task_struct *p; |
4737 | unsigned int time_slice; | 4737 | unsigned int time_slice; |
4738 | unsigned long flags; | 4738 | unsigned long flags; |
4739 | struct rq *rq; | 4739 | struct rq *rq; |
4740 | int retval; | 4740 | int retval; |
4741 | struct timespec t; | 4741 | struct timespec t; |
4742 | 4742 | ||
4743 | if (pid < 0) | 4743 | if (pid < 0) |
4744 | return -EINVAL; | 4744 | return -EINVAL; |
4745 | 4745 | ||
4746 | retval = -ESRCH; | 4746 | retval = -ESRCH; |
4747 | rcu_read_lock(); | 4747 | rcu_read_lock(); |
4748 | p = find_process_by_pid(pid); | 4748 | p = find_process_by_pid(pid); |
4749 | if (!p) | 4749 | if (!p) |
4750 | goto out_unlock; | 4750 | goto out_unlock; |
4751 | 4751 | ||
4752 | retval = security_task_getscheduler(p); | 4752 | retval = security_task_getscheduler(p); |
4753 | if (retval) | 4753 | if (retval) |
4754 | goto out_unlock; | 4754 | goto out_unlock; |
4755 | 4755 | ||
4756 | rq = task_rq_lock(p, &flags); | 4756 | rq = task_rq_lock(p, &flags); |
4757 | time_slice = p->sched_class->get_rr_interval(rq, p); | 4757 | time_slice = p->sched_class->get_rr_interval(rq, p); |
4758 | task_rq_unlock(rq, p, &flags); | 4758 | task_rq_unlock(rq, p, &flags); |
4759 | 4759 | ||
4760 | rcu_read_unlock(); | 4760 | rcu_read_unlock(); |
4761 | jiffies_to_timespec(time_slice, &t); | 4761 | jiffies_to_timespec(time_slice, &t); |
4762 | retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; | 4762 | retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; |
4763 | return retval; | 4763 | return retval; |
4764 | 4764 | ||
4765 | out_unlock: | 4765 | out_unlock: |
4766 | rcu_read_unlock(); | 4766 | rcu_read_unlock(); |
4767 | return retval; | 4767 | return retval; |
4768 | } | 4768 | } |
4769 | 4769 | ||
4770 | static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; | 4770 | static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; |
4771 | 4771 | ||
4772 | void sched_show_task(struct task_struct *p) | 4772 | void sched_show_task(struct task_struct *p) |
4773 | { | 4773 | { |
4774 | unsigned long free = 0; | 4774 | unsigned long free = 0; |
4775 | unsigned state; | 4775 | unsigned state; |
4776 | 4776 | ||
4777 | state = p->state ? __ffs(p->state) + 1 : 0; | 4777 | state = p->state ? __ffs(p->state) + 1 : 0; |
4778 | printk(KERN_INFO "%-15.15s %c", p->comm, | 4778 | printk(KERN_INFO "%-15.15s %c", p->comm, |
4779 | state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); | 4779 | state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); |
4780 | #if BITS_PER_LONG == 32 | 4780 | #if BITS_PER_LONG == 32 |
4781 | if (state == TASK_RUNNING) | 4781 | if (state == TASK_RUNNING) |
4782 | printk(KERN_CONT " running "); | 4782 | printk(KERN_CONT " running "); |
4783 | else | 4783 | else |
4784 | printk(KERN_CONT " %08lx ", thread_saved_pc(p)); | 4784 | printk(KERN_CONT " %08lx ", thread_saved_pc(p)); |
4785 | #else | 4785 | #else |
4786 | if (state == TASK_RUNNING) | 4786 | if (state == TASK_RUNNING) |
4787 | printk(KERN_CONT " running task "); | 4787 | printk(KERN_CONT " running task "); |
4788 | else | 4788 | else |
4789 | printk(KERN_CONT " %016lx ", thread_saved_pc(p)); | 4789 | printk(KERN_CONT " %016lx ", thread_saved_pc(p)); |
4790 | #endif | 4790 | #endif |
4791 | #ifdef CONFIG_DEBUG_STACK_USAGE | 4791 | #ifdef CONFIG_DEBUG_STACK_USAGE |
4792 | free = stack_not_used(p); | 4792 | free = stack_not_used(p); |
4793 | #endif | 4793 | #endif |
4794 | printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, | 4794 | printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, |
4795 | task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)), | 4795 | task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)), |
4796 | (unsigned long)task_thread_info(p)->flags); | 4796 | (unsigned long)task_thread_info(p)->flags); |
4797 | 4797 | ||
4798 | show_stack(p, NULL); | 4798 | show_stack(p, NULL); |
4799 | } | 4799 | } |
4800 | 4800 | ||
4801 | void show_state_filter(unsigned long state_filter) | 4801 | void show_state_filter(unsigned long state_filter) |
4802 | { | 4802 | { |
4803 | struct task_struct *g, *p; | 4803 | struct task_struct *g, *p; |
4804 | 4804 | ||
4805 | #if BITS_PER_LONG == 32 | 4805 | #if BITS_PER_LONG == 32 |
4806 | printk(KERN_INFO | 4806 | printk(KERN_INFO |
4807 | " task PC stack pid father\n"); | 4807 | " task PC stack pid father\n"); |
4808 | #else | 4808 | #else |
4809 | printk(KERN_INFO | 4809 | printk(KERN_INFO |
4810 | " task PC stack pid father\n"); | 4810 | " task PC stack pid father\n"); |
4811 | #endif | 4811 | #endif |
4812 | rcu_read_lock(); | 4812 | rcu_read_lock(); |
4813 | do_each_thread(g, p) { | 4813 | do_each_thread(g, p) { |
4814 | /* | 4814 | /* |
4815 | * reset the NMI-timeout, listing all files on a slow | 4815 | * reset the NMI-timeout, listing all files on a slow |
4816 | * console might take a lot of time: | 4816 | * console might take a lot of time: |
4817 | */ | 4817 | */ |
4818 | touch_nmi_watchdog(); | 4818 | touch_nmi_watchdog(); |
4819 | if (!state_filter || (p->state & state_filter)) | 4819 | if (!state_filter || (p->state & state_filter)) |
4820 | sched_show_task(p); | 4820 | sched_show_task(p); |
4821 | } while_each_thread(g, p); | 4821 | } while_each_thread(g, p); |
4822 | 4822 | ||
4823 | touch_all_softlockup_watchdogs(); | 4823 | touch_all_softlockup_watchdogs(); |
4824 | 4824 | ||
4825 | #ifdef CONFIG_SCHED_DEBUG | 4825 | #ifdef CONFIG_SCHED_DEBUG |
4826 | sysrq_sched_debug_show(); | 4826 | sysrq_sched_debug_show(); |
4827 | #endif | 4827 | #endif |
4828 | rcu_read_unlock(); | 4828 | rcu_read_unlock(); |
4829 | /* | 4829 | /* |
4830 | * Only show locks if all tasks are dumped: | 4830 | * Only show locks if all tasks are dumped: |
4831 | */ | 4831 | */ |
4832 | if (!state_filter) | 4832 | if (!state_filter) |
4833 | debug_show_all_locks(); | 4833 | debug_show_all_locks(); |
4834 | } | 4834 | } |
4835 | 4835 | ||
4836 | void __cpuinit init_idle_bootup_task(struct task_struct *idle) | 4836 | void __cpuinit init_idle_bootup_task(struct task_struct *idle) |
4837 | { | 4837 | { |
4838 | idle->sched_class = &idle_sched_class; | 4838 | idle->sched_class = &idle_sched_class; |
4839 | } | 4839 | } |
4840 | 4840 | ||
4841 | /** | 4841 | /** |
4842 | * init_idle - set up an idle thread for a given CPU | 4842 | * init_idle - set up an idle thread for a given CPU |
4843 | * @idle: task in question | 4843 | * @idle: task in question |
4844 | * @cpu: cpu the idle task belongs to | 4844 | * @cpu: cpu the idle task belongs to |
4845 | * | 4845 | * |
4846 | * NOTE: this function does not set the idle thread's NEED_RESCHED | 4846 | * NOTE: this function does not set the idle thread's NEED_RESCHED |
4847 | * flag, to make booting more robust. | 4847 | * flag, to make booting more robust. |
4848 | */ | 4848 | */ |
4849 | void __cpuinit init_idle(struct task_struct *idle, int cpu) | 4849 | void __cpuinit init_idle(struct task_struct *idle, int cpu) |
4850 | { | 4850 | { |
4851 | struct rq *rq = cpu_rq(cpu); | 4851 | struct rq *rq = cpu_rq(cpu); |
4852 | unsigned long flags; | 4852 | unsigned long flags; |
4853 | 4853 | ||
4854 | raw_spin_lock_irqsave(&rq->lock, flags); | 4854 | raw_spin_lock_irqsave(&rq->lock, flags); |
4855 | 4855 | ||
4856 | __sched_fork(idle); | 4856 | __sched_fork(idle); |
4857 | idle->state = TASK_RUNNING; | 4857 | idle->state = TASK_RUNNING; |
4858 | idle->se.exec_start = sched_clock(); | 4858 | idle->se.exec_start = sched_clock(); |
4859 | 4859 | ||
4860 | do_set_cpus_allowed(idle, cpumask_of(cpu)); | 4860 | do_set_cpus_allowed(idle, cpumask_of(cpu)); |
4861 | /* | 4861 | /* |
4862 | * We're having a chicken and egg problem, even though we are | 4862 | * We're having a chicken and egg problem, even though we are |
4863 | * holding rq->lock, the cpu isn't yet set to this cpu so the | 4863 | * holding rq->lock, the cpu isn't yet set to this cpu so the |
4864 | * lockdep check in task_group() will fail. | 4864 | * lockdep check in task_group() will fail. |
4865 | * | 4865 | * |
4866 | * Similar case to sched_fork(). / Alternatively we could | 4866 | * Similar case to sched_fork(). / Alternatively we could |
4867 | * use task_rq_lock() here and obtain the other rq->lock. | 4867 | * use task_rq_lock() here and obtain the other rq->lock. |
4868 | * | 4868 | * |
4869 | * Silence PROVE_RCU | 4869 | * Silence PROVE_RCU |
4870 | */ | 4870 | */ |
4871 | rcu_read_lock(); | 4871 | rcu_read_lock(); |
4872 | __set_task_cpu(idle, cpu); | 4872 | __set_task_cpu(idle, cpu); |
4873 | rcu_read_unlock(); | 4873 | rcu_read_unlock(); |
4874 | 4874 | ||
4875 | rq->curr = rq->idle = idle; | 4875 | rq->curr = rq->idle = idle; |
4876 | #if defined(CONFIG_SMP) | 4876 | #if defined(CONFIG_SMP) |
4877 | idle->on_cpu = 1; | 4877 | idle->on_cpu = 1; |
4878 | #endif | 4878 | #endif |
4879 | raw_spin_unlock_irqrestore(&rq->lock, flags); | 4879 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
4880 | 4880 | ||
4881 | /* Set the preempt count _outside_ the spinlocks! */ | 4881 | /* Set the preempt count _outside_ the spinlocks! */ |
4882 | task_thread_info(idle)->preempt_count = 0; | 4882 | task_thread_info(idle)->preempt_count = 0; |
4883 | 4883 | ||
4884 | /* | 4884 | /* |
4885 | * The idle tasks have their own, simple scheduling class: | 4885 | * The idle tasks have their own, simple scheduling class: |
4886 | */ | 4886 | */ |
4887 | idle->sched_class = &idle_sched_class; | 4887 | idle->sched_class = &idle_sched_class; |
4888 | ftrace_graph_init_idle_task(idle, cpu); | 4888 | ftrace_graph_init_idle_task(idle, cpu); |
4889 | #if defined(CONFIG_SMP) | 4889 | #if defined(CONFIG_SMP) |
4890 | sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); | 4890 | sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); |
4891 | #endif | 4891 | #endif |
4892 | } | 4892 | } |
4893 | 4893 | ||
4894 | #ifdef CONFIG_SMP | 4894 | #ifdef CONFIG_SMP |
4895 | void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) | 4895 | void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) |
4896 | { | 4896 | { |
4897 | if (p->sched_class && p->sched_class->set_cpus_allowed) | 4897 | if (p->sched_class && p->sched_class->set_cpus_allowed) |
4898 | p->sched_class->set_cpus_allowed(p, new_mask); | 4898 | p->sched_class->set_cpus_allowed(p, new_mask); |
4899 | 4899 | ||
4900 | cpumask_copy(&p->cpus_allowed, new_mask); | 4900 | cpumask_copy(&p->cpus_allowed, new_mask); |
4901 | p->rt.nr_cpus_allowed = cpumask_weight(new_mask); | 4901 | p->rt.nr_cpus_allowed = cpumask_weight(new_mask); |
4902 | } | 4902 | } |
4903 | 4903 | ||
4904 | /* | 4904 | /* |
4905 | * This is how migration works: | 4905 | * This is how migration works: |
4906 | * | 4906 | * |
4907 | * 1) we invoke migration_cpu_stop() on the target CPU using | 4907 | * 1) we invoke migration_cpu_stop() on the target CPU using |
4908 | * stop_one_cpu(). | 4908 | * stop_one_cpu(). |
4909 | * 2) stopper starts to run (implicitly forcing the migrated thread | 4909 | * 2) stopper starts to run (implicitly forcing the migrated thread |
4910 | * off the CPU) | 4910 | * off the CPU) |
4911 | * 3) it checks whether the migrated task is still in the wrong runqueue. | 4911 | * 3) it checks whether the migrated task is still in the wrong runqueue. |
4912 | * 4) if it's in the wrong runqueue then the migration thread removes | 4912 | * 4) if it's in the wrong runqueue then the migration thread removes |
4913 | * it and puts it into the right queue. | 4913 | * it and puts it into the right queue. |
4914 | * 5) stopper completes and stop_one_cpu() returns and the migration | 4914 | * 5) stopper completes and stop_one_cpu() returns and the migration |
4915 | * is done. | 4915 | * is done. |
4916 | */ | 4916 | */ |
4917 | 4917 | ||
4918 | /* | 4918 | /* |
4919 | * Change a given task's CPU affinity. Migrate the thread to a | 4919 | * Change a given task's CPU affinity. Migrate the thread to a |
4920 | * proper CPU and schedule it away if the CPU it's executing on | 4920 | * proper CPU and schedule it away if the CPU it's executing on |
4921 | * is removed from the allowed bitmask. | 4921 | * is removed from the allowed bitmask. |
4922 | * | 4922 | * |
4923 | * NOTE: the caller must have a valid reference to the task, the | 4923 | * NOTE: the caller must have a valid reference to the task, the |
4924 | * task must not exit() & deallocate itself prematurely. The | 4924 | * task must not exit() & deallocate itself prematurely. The |
4925 | * call is not atomic; no spinlocks may be held. | 4925 | * call is not atomic; no spinlocks may be held. |
4926 | */ | 4926 | */ |
4927 | int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) | 4927 | int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) |
4928 | { | 4928 | { |
4929 | unsigned long flags; | 4929 | unsigned long flags; |
4930 | struct rq *rq; | 4930 | struct rq *rq; |
4931 | unsigned int dest_cpu; | 4931 | unsigned int dest_cpu; |
4932 | int ret = 0; | 4932 | int ret = 0; |
4933 | 4933 | ||
4934 | rq = task_rq_lock(p, &flags); | 4934 | rq = task_rq_lock(p, &flags); |
4935 | 4935 | ||
4936 | if (cpumask_equal(&p->cpus_allowed, new_mask)) | 4936 | if (cpumask_equal(&p->cpus_allowed, new_mask)) |
4937 | goto out; | 4937 | goto out; |
4938 | 4938 | ||
4939 | if (!cpumask_intersects(new_mask, cpu_active_mask)) { | 4939 | if (!cpumask_intersects(new_mask, cpu_active_mask)) { |
4940 | ret = -EINVAL; | 4940 | ret = -EINVAL; |
4941 | goto out; | 4941 | goto out; |
4942 | } | 4942 | } |
4943 | 4943 | ||
4944 | if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) { | 4944 | if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) { |
4945 | ret = -EINVAL; | 4945 | ret = -EINVAL; |
4946 | goto out; | 4946 | goto out; |
4947 | } | 4947 | } |
4948 | 4948 | ||
4949 | do_set_cpus_allowed(p, new_mask); | 4949 | do_set_cpus_allowed(p, new_mask); |
4950 | 4950 | ||
4951 | /* Can the task run on the task's current CPU? If so, we're done */ | 4951 | /* Can the task run on the task's current CPU? If so, we're done */ |
4952 | if (cpumask_test_cpu(task_cpu(p), new_mask)) | 4952 | if (cpumask_test_cpu(task_cpu(p), new_mask)) |
4953 | goto out; | 4953 | goto out; |
4954 | 4954 | ||
4955 | dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); | 4955 | dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); |
4956 | if (p->on_rq) { | 4956 | if (p->on_rq) { |
4957 | struct migration_arg arg = { p, dest_cpu }; | 4957 | struct migration_arg arg = { p, dest_cpu }; |
4958 | /* Need help from migration thread: drop lock and wait. */ | 4958 | /* Need help from migration thread: drop lock and wait. */ |
4959 | task_rq_unlock(rq, p, &flags); | 4959 | task_rq_unlock(rq, p, &flags); |
4960 | stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); | 4960 | stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); |
4961 | tlb_migrate_finish(p->mm); | 4961 | tlb_migrate_finish(p->mm); |
4962 | return 0; | 4962 | return 0; |
4963 | } | 4963 | } |
4964 | out: | 4964 | out: |
4965 | task_rq_unlock(rq, p, &flags); | 4965 | task_rq_unlock(rq, p, &flags); |
4966 | 4966 | ||
4967 | return ret; | 4967 | return ret; |
4968 | } | 4968 | } |
4969 | EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); | 4969 | EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); |
4970 | 4970 | ||
4971 | /* | 4971 | /* |
4972 | * Move (not current) task off this cpu, onto dest cpu. We're doing | 4972 | * Move (not current) task off this cpu, onto dest cpu. We're doing |
4973 | * this because either it can't run here any more (set_cpus_allowed() | 4973 | * this because either it can't run here any more (set_cpus_allowed() |
4974 | * away from this CPU, or CPU going down), or because we're | 4974 | * away from this CPU, or CPU going down), or because we're |
4975 | * attempting to rebalance this task on exec (sched_exec). | 4975 | * attempting to rebalance this task on exec (sched_exec). |
4976 | * | 4976 | * |
4977 | * So we race with normal scheduler movements, but that's OK, as long | 4977 | * So we race with normal scheduler movements, but that's OK, as long |
4978 | * as the task is no longer on this CPU. | 4978 | * as the task is no longer on this CPU. |
4979 | * | 4979 | * |
4980 | * Returns non-zero if task was successfully migrated. | 4980 | * Returns non-zero if task was successfully migrated. |
4981 | */ | 4981 | */ |
4982 | static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) | 4982 | static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) |
4983 | { | 4983 | { |
4984 | struct rq *rq_dest, *rq_src; | 4984 | struct rq *rq_dest, *rq_src; |
4985 | int ret = 0; | 4985 | int ret = 0; |
4986 | 4986 | ||
4987 | if (unlikely(!cpu_active(dest_cpu))) | 4987 | if (unlikely(!cpu_active(dest_cpu))) |
4988 | return ret; | 4988 | return ret; |
4989 | 4989 | ||
4990 | rq_src = cpu_rq(src_cpu); | 4990 | rq_src = cpu_rq(src_cpu); |
4991 | rq_dest = cpu_rq(dest_cpu); | 4991 | rq_dest = cpu_rq(dest_cpu); |
4992 | 4992 | ||
4993 | raw_spin_lock(&p->pi_lock); | 4993 | raw_spin_lock(&p->pi_lock); |
4994 | double_rq_lock(rq_src, rq_dest); | 4994 | double_rq_lock(rq_src, rq_dest); |
4995 | /* Already moved. */ | 4995 | /* Already moved. */ |
4996 | if (task_cpu(p) != src_cpu) | 4996 | if (task_cpu(p) != src_cpu) |
4997 | goto done; | 4997 | goto done; |
4998 | /* Affinity changed (again). */ | 4998 | /* Affinity changed (again). */ |
4999 | if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) | 4999 | if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) |
5000 | goto fail; | 5000 | goto fail; |
5001 | 5001 | ||
5002 | /* | 5002 | /* |
5003 | * If we're not on a rq, the next wake-up will ensure we're | 5003 | * If we're not on a rq, the next wake-up will ensure we're |
5004 | * placed properly. | 5004 | * placed properly. |
5005 | */ | 5005 | */ |
5006 | if (p->on_rq) { | 5006 | if (p->on_rq) { |
5007 | dequeue_task(rq_src, p, 0); | 5007 | dequeue_task(rq_src, p, 0); |
5008 | set_task_cpu(p, dest_cpu); | 5008 | set_task_cpu(p, dest_cpu); |
5009 | enqueue_task(rq_dest, p, 0); | 5009 | enqueue_task(rq_dest, p, 0); |
5010 | check_preempt_curr(rq_dest, p, 0); | 5010 | check_preempt_curr(rq_dest, p, 0); |
5011 | } | 5011 | } |
5012 | done: | 5012 | done: |
5013 | ret = 1; | 5013 | ret = 1; |
5014 | fail: | 5014 | fail: |
5015 | double_rq_unlock(rq_src, rq_dest); | 5015 | double_rq_unlock(rq_src, rq_dest); |
5016 | raw_spin_unlock(&p->pi_lock); | 5016 | raw_spin_unlock(&p->pi_lock); |
5017 | return ret; | 5017 | return ret; |
5018 | } | 5018 | } |
5019 | 5019 | ||
5020 | /* | 5020 | /* |
5021 | * migration_cpu_stop - this will be executed by a highprio stopper thread | 5021 | * migration_cpu_stop - this will be executed by a highprio stopper thread |
5022 | * and performs thread migration by bumping thread off CPU then | 5022 | * and performs thread migration by bumping thread off CPU then |
5023 | * 'pushing' onto another runqueue. | 5023 | * 'pushing' onto another runqueue. |
5024 | */ | 5024 | */ |
5025 | static int migration_cpu_stop(void *data) | 5025 | static int migration_cpu_stop(void *data) |
5026 | { | 5026 | { |
5027 | struct migration_arg *arg = data; | 5027 | struct migration_arg *arg = data; |
5028 | 5028 | ||
5029 | /* | 5029 | /* |
5030 | * The original target cpu might have gone down and we might | 5030 | * The original target cpu might have gone down and we might |
5031 | * be on another cpu but it doesn't matter. | 5031 | * be on another cpu but it doesn't matter. |
5032 | */ | 5032 | */ |
5033 | local_irq_disable(); | 5033 | local_irq_disable(); |
5034 | __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); | 5034 | __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); |
5035 | local_irq_enable(); | 5035 | local_irq_enable(); |
5036 | return 0; | 5036 | return 0; |
5037 | } | 5037 | } |
5038 | 5038 | ||
5039 | #ifdef CONFIG_HOTPLUG_CPU | 5039 | #ifdef CONFIG_HOTPLUG_CPU |
5040 | 5040 | ||
5041 | /* | 5041 | /* |
5042 | * Ensures that the idle task is using init_mm right before its cpu goes | 5042 | * Ensures that the idle task is using init_mm right before its cpu goes |
5043 | * offline. | 5043 | * offline. |
5044 | */ | 5044 | */ |
5045 | void idle_task_exit(void) | 5045 | void idle_task_exit(void) |
5046 | { | 5046 | { |
5047 | struct mm_struct *mm = current->active_mm; | 5047 | struct mm_struct *mm = current->active_mm; |
5048 | 5048 | ||
5049 | BUG_ON(cpu_online(smp_processor_id())); | 5049 | BUG_ON(cpu_online(smp_processor_id())); |
5050 | 5050 | ||
5051 | if (mm != &init_mm) | 5051 | if (mm != &init_mm) |
5052 | switch_mm(mm, &init_mm, current); | 5052 | switch_mm(mm, &init_mm, current); |
5053 | mmdrop(mm); | 5053 | mmdrop(mm); |
5054 | } | 5054 | } |
5055 | 5055 | ||
5056 | /* | 5056 | /* |
5057 | * While a dead CPU has no uninterruptible tasks queued at this point, | 5057 | * While a dead CPU has no uninterruptible tasks queued at this point, |
5058 | * it might still have a nonzero ->nr_uninterruptible counter, because | 5058 | * it might still have a nonzero ->nr_uninterruptible counter, because |
5059 | * for performance reasons the counter is not stricly tracking tasks to | 5059 | * for performance reasons the counter is not stricly tracking tasks to |
5060 | * their home CPUs. So we just add the counter to another CPU's counter, | 5060 | * their home CPUs. So we just add the counter to another CPU's counter, |
5061 | * to keep the global sum constant after CPU-down: | 5061 | * to keep the global sum constant after CPU-down: |
5062 | */ | 5062 | */ |
5063 | static void migrate_nr_uninterruptible(struct rq *rq_src) | 5063 | static void migrate_nr_uninterruptible(struct rq *rq_src) |
5064 | { | 5064 | { |
5065 | struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask)); | 5065 | struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask)); |
5066 | 5066 | ||
5067 | rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible; | 5067 | rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible; |
5068 | rq_src->nr_uninterruptible = 0; | 5068 | rq_src->nr_uninterruptible = 0; |
5069 | } | 5069 | } |
5070 | 5070 | ||
5071 | /* | 5071 | /* |
5072 | * remove the tasks which were accounted by rq from calc_load_tasks. | 5072 | * remove the tasks which were accounted by rq from calc_load_tasks. |
5073 | */ | 5073 | */ |
5074 | static void calc_global_load_remove(struct rq *rq) | 5074 | static void calc_global_load_remove(struct rq *rq) |
5075 | { | 5075 | { |
5076 | atomic_long_sub(rq->calc_load_active, &calc_load_tasks); | 5076 | atomic_long_sub(rq->calc_load_active, &calc_load_tasks); |
5077 | rq->calc_load_active = 0; | 5077 | rq->calc_load_active = 0; |
5078 | } | 5078 | } |
5079 | 5079 | ||
5080 | /* | 5080 | /* |
5081 | * Migrate all tasks from the rq, sleeping tasks will be migrated by | 5081 | * Migrate all tasks from the rq, sleeping tasks will be migrated by |
5082 | * try_to_wake_up()->select_task_rq(). | 5082 | * try_to_wake_up()->select_task_rq(). |
5083 | * | 5083 | * |
5084 | * Called with rq->lock held even though we'er in stop_machine() and | 5084 | * Called with rq->lock held even though we'er in stop_machine() and |
5085 | * there's no concurrency possible, we hold the required locks anyway | 5085 | * there's no concurrency possible, we hold the required locks anyway |
5086 | * because of lock validation efforts. | 5086 | * because of lock validation efforts. |
5087 | */ | 5087 | */ |
5088 | static void migrate_tasks(unsigned int dead_cpu) | 5088 | static void migrate_tasks(unsigned int dead_cpu) |
5089 | { | 5089 | { |
5090 | struct rq *rq = cpu_rq(dead_cpu); | 5090 | struct rq *rq = cpu_rq(dead_cpu); |
5091 | struct task_struct *next, *stop = rq->stop; | 5091 | struct task_struct *next, *stop = rq->stop; |
5092 | int dest_cpu; | 5092 | int dest_cpu; |
5093 | 5093 | ||
5094 | /* | 5094 | /* |
5095 | * Fudge the rq selection such that the below task selection loop | 5095 | * Fudge the rq selection such that the below task selection loop |
5096 | * doesn't get stuck on the currently eligible stop task. | 5096 | * doesn't get stuck on the currently eligible stop task. |
5097 | * | 5097 | * |
5098 | * We're currently inside stop_machine() and the rq is either stuck | 5098 | * We're currently inside stop_machine() and the rq is either stuck |
5099 | * in the stop_machine_cpu_stop() loop, or we're executing this code, | 5099 | * in the stop_machine_cpu_stop() loop, or we're executing this code, |
5100 | * either way we should never end up calling schedule() until we're | 5100 | * either way we should never end up calling schedule() until we're |
5101 | * done here. | 5101 | * done here. |
5102 | */ | 5102 | */ |
5103 | rq->stop = NULL; | 5103 | rq->stop = NULL; |
5104 | 5104 | ||
5105 | /* Ensure any throttled groups are reachable by pick_next_task */ | 5105 | /* Ensure any throttled groups are reachable by pick_next_task */ |
5106 | unthrottle_offline_cfs_rqs(rq); | 5106 | unthrottle_offline_cfs_rqs(rq); |
5107 | 5107 | ||
5108 | for ( ; ; ) { | 5108 | for ( ; ; ) { |
5109 | /* | 5109 | /* |
5110 | * There's this thread running, bail when that's the only | 5110 | * There's this thread running, bail when that's the only |
5111 | * remaining thread. | 5111 | * remaining thread. |
5112 | */ | 5112 | */ |
5113 | if (rq->nr_running == 1) | 5113 | if (rq->nr_running == 1) |
5114 | break; | 5114 | break; |
5115 | 5115 | ||
5116 | next = pick_next_task(rq); | 5116 | next = pick_next_task(rq); |
5117 | BUG_ON(!next); | 5117 | BUG_ON(!next); |
5118 | next->sched_class->put_prev_task(rq, next); | 5118 | next->sched_class->put_prev_task(rq, next); |
5119 | 5119 | ||
5120 | /* Find suitable destination for @next, with force if needed. */ | 5120 | /* Find suitable destination for @next, with force if needed. */ |
5121 | dest_cpu = select_fallback_rq(dead_cpu, next); | 5121 | dest_cpu = select_fallback_rq(dead_cpu, next); |
5122 | raw_spin_unlock(&rq->lock); | 5122 | raw_spin_unlock(&rq->lock); |
5123 | 5123 | ||
5124 | __migrate_task(next, dead_cpu, dest_cpu); | 5124 | __migrate_task(next, dead_cpu, dest_cpu); |
5125 | 5125 | ||
5126 | raw_spin_lock(&rq->lock); | 5126 | raw_spin_lock(&rq->lock); |
5127 | } | 5127 | } |
5128 | 5128 | ||
5129 | rq->stop = stop; | 5129 | rq->stop = stop; |
5130 | } | 5130 | } |
5131 | 5131 | ||
5132 | #endif /* CONFIG_HOTPLUG_CPU */ | 5132 | #endif /* CONFIG_HOTPLUG_CPU */ |
5133 | 5133 | ||
5134 | #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) | 5134 | #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) |
5135 | 5135 | ||
5136 | static struct ctl_table sd_ctl_dir[] = { | 5136 | static struct ctl_table sd_ctl_dir[] = { |
5137 | { | 5137 | { |
5138 | .procname = "sched_domain", | 5138 | .procname = "sched_domain", |
5139 | .mode = 0555, | 5139 | .mode = 0555, |
5140 | }, | 5140 | }, |
5141 | {} | 5141 | {} |
5142 | }; | 5142 | }; |
5143 | 5143 | ||
5144 | static struct ctl_table sd_ctl_root[] = { | 5144 | static struct ctl_table sd_ctl_root[] = { |
5145 | { | 5145 | { |
5146 | .procname = "kernel", | 5146 | .procname = "kernel", |
5147 | .mode = 0555, | 5147 | .mode = 0555, |
5148 | .child = sd_ctl_dir, | 5148 | .child = sd_ctl_dir, |
5149 | }, | 5149 | }, |
5150 | {} | 5150 | {} |
5151 | }; | 5151 | }; |
5152 | 5152 | ||
5153 | static struct ctl_table *sd_alloc_ctl_entry(int n) | 5153 | static struct ctl_table *sd_alloc_ctl_entry(int n) |
5154 | { | 5154 | { |
5155 | struct ctl_table *entry = | 5155 | struct ctl_table *entry = |
5156 | kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); | 5156 | kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); |
5157 | 5157 | ||
5158 | return entry; | 5158 | return entry; |
5159 | } | 5159 | } |
5160 | 5160 | ||
5161 | static void sd_free_ctl_entry(struct ctl_table **tablep) | 5161 | static void sd_free_ctl_entry(struct ctl_table **tablep) |
5162 | { | 5162 | { |
5163 | struct ctl_table *entry; | 5163 | struct ctl_table *entry; |
5164 | 5164 | ||
5165 | /* | 5165 | /* |
5166 | * In the intermediate directories, both the child directory and | 5166 | * In the intermediate directories, both the child directory and |
5167 | * procname are dynamically allocated and could fail but the mode | 5167 | * procname are dynamically allocated and could fail but the mode |
5168 | * will always be set. In the lowest directory the names are | 5168 | * will always be set. In the lowest directory the names are |
5169 | * static strings and all have proc handlers. | 5169 | * static strings and all have proc handlers. |
5170 | */ | 5170 | */ |
5171 | for (entry = *tablep; entry->mode; entry++) { | 5171 | for (entry = *tablep; entry->mode; entry++) { |
5172 | if (entry->child) | 5172 | if (entry->child) |
5173 | sd_free_ctl_entry(&entry->child); | 5173 | sd_free_ctl_entry(&entry->child); |
5174 | if (entry->proc_handler == NULL) | 5174 | if (entry->proc_handler == NULL) |
5175 | kfree(entry->procname); | 5175 | kfree(entry->procname); |
5176 | } | 5176 | } |
5177 | 5177 | ||
5178 | kfree(*tablep); | 5178 | kfree(*tablep); |
5179 | *tablep = NULL; | 5179 | *tablep = NULL; |
5180 | } | 5180 | } |
5181 | 5181 | ||
5182 | static void | 5182 | static void |
5183 | set_table_entry(struct ctl_table *entry, | 5183 | set_table_entry(struct ctl_table *entry, |
5184 | const char *procname, void *data, int maxlen, | 5184 | const char *procname, void *data, int maxlen, |
5185 | umode_t mode, proc_handler *proc_handler) | 5185 | umode_t mode, proc_handler *proc_handler) |
5186 | { | 5186 | { |
5187 | entry->procname = procname; | 5187 | entry->procname = procname; |
5188 | entry->data = data; | 5188 | entry->data = data; |
5189 | entry->maxlen = maxlen; | 5189 | entry->maxlen = maxlen; |
5190 | entry->mode = mode; | 5190 | entry->mode = mode; |
5191 | entry->proc_handler = proc_handler; | 5191 | entry->proc_handler = proc_handler; |
5192 | } | 5192 | } |
5193 | 5193 | ||
5194 | static struct ctl_table * | 5194 | static struct ctl_table * |
5195 | sd_alloc_ctl_domain_table(struct sched_domain *sd) | 5195 | sd_alloc_ctl_domain_table(struct sched_domain *sd) |
5196 | { | 5196 | { |
5197 | struct ctl_table *table = sd_alloc_ctl_entry(13); | 5197 | struct ctl_table *table = sd_alloc_ctl_entry(13); |
5198 | 5198 | ||
5199 | if (table == NULL) | 5199 | if (table == NULL) |
5200 | return NULL; | 5200 | return NULL; |
5201 | 5201 | ||
5202 | set_table_entry(&table[0], "min_interval", &sd->min_interval, | 5202 | set_table_entry(&table[0], "min_interval", &sd->min_interval, |
5203 | sizeof(long), 0644, proc_doulongvec_minmax); | 5203 | sizeof(long), 0644, proc_doulongvec_minmax); |
5204 | set_table_entry(&table[1], "max_interval", &sd->max_interval, | 5204 | set_table_entry(&table[1], "max_interval", &sd->max_interval, |
5205 | sizeof(long), 0644, proc_doulongvec_minmax); | 5205 | sizeof(long), 0644, proc_doulongvec_minmax); |
5206 | set_table_entry(&table[2], "busy_idx", &sd->busy_idx, | 5206 | set_table_entry(&table[2], "busy_idx", &sd->busy_idx, |
5207 | sizeof(int), 0644, proc_dointvec_minmax); | 5207 | sizeof(int), 0644, proc_dointvec_minmax); |
5208 | set_table_entry(&table[3], "idle_idx", &sd->idle_idx, | 5208 | set_table_entry(&table[3], "idle_idx", &sd->idle_idx, |
5209 | sizeof(int), 0644, proc_dointvec_minmax); | 5209 | sizeof(int), 0644, proc_dointvec_minmax); |
5210 | set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, | 5210 | set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, |
5211 | sizeof(int), 0644, proc_dointvec_minmax); | 5211 | sizeof(int), 0644, proc_dointvec_minmax); |
5212 | set_table_entry(&table[5], "wake_idx", &sd->wake_idx, | 5212 | set_table_entry(&table[5], "wake_idx", &sd->wake_idx, |
5213 | sizeof(int), 0644, proc_dointvec_minmax); | 5213 | sizeof(int), 0644, proc_dointvec_minmax); |
5214 | set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, | 5214 | set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, |
5215 | sizeof(int), 0644, proc_dointvec_minmax); | 5215 | sizeof(int), 0644, proc_dointvec_minmax); |
5216 | set_table_entry(&table[7], "busy_factor", &sd->busy_factor, | 5216 | set_table_entry(&table[7], "busy_factor", &sd->busy_factor, |
5217 | sizeof(int), 0644, proc_dointvec_minmax); | 5217 | sizeof(int), 0644, proc_dointvec_minmax); |
5218 | set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, | 5218 | set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, |
5219 | sizeof(int), 0644, proc_dointvec_minmax); | 5219 | sizeof(int), 0644, proc_dointvec_minmax); |
5220 | set_table_entry(&table[9], "cache_nice_tries", | 5220 | set_table_entry(&table[9], "cache_nice_tries", |
5221 | &sd->cache_nice_tries, | 5221 | &sd->cache_nice_tries, |
5222 | sizeof(int), 0644, proc_dointvec_minmax); | 5222 | sizeof(int), 0644, proc_dointvec_minmax); |
5223 | set_table_entry(&table[10], "flags", &sd->flags, | 5223 | set_table_entry(&table[10], "flags", &sd->flags, |
5224 | sizeof(int), 0644, proc_dointvec_minmax); | 5224 | sizeof(int), 0644, proc_dointvec_minmax); |
5225 | set_table_entry(&table[11], "name", sd->name, | 5225 | set_table_entry(&table[11], "name", sd->name, |
5226 | CORENAME_MAX_SIZE, 0444, proc_dostring); | 5226 | CORENAME_MAX_SIZE, 0444, proc_dostring); |
5227 | /* &table[12] is terminator */ | 5227 | /* &table[12] is terminator */ |
5228 | 5228 | ||
5229 | return table; | 5229 | return table; |
5230 | } | 5230 | } |
5231 | 5231 | ||
5232 | static ctl_table *sd_alloc_ctl_cpu_table(int cpu) | 5232 | static ctl_table *sd_alloc_ctl_cpu_table(int cpu) |
5233 | { | 5233 | { |
5234 | struct ctl_table *entry, *table; | 5234 | struct ctl_table *entry, *table; |
5235 | struct sched_domain *sd; | 5235 | struct sched_domain *sd; |
5236 | int domain_num = 0, i; | 5236 | int domain_num = 0, i; |
5237 | char buf[32]; | 5237 | char buf[32]; |
5238 | 5238 | ||
5239 | for_each_domain(cpu, sd) | 5239 | for_each_domain(cpu, sd) |
5240 | domain_num++; | 5240 | domain_num++; |
5241 | entry = table = sd_alloc_ctl_entry(domain_num + 1); | 5241 | entry = table = sd_alloc_ctl_entry(domain_num + 1); |
5242 | if (table == NULL) | 5242 | if (table == NULL) |
5243 | return NULL; | 5243 | return NULL; |
5244 | 5244 | ||
5245 | i = 0; | 5245 | i = 0; |
5246 | for_each_domain(cpu, sd) { | 5246 | for_each_domain(cpu, sd) { |
5247 | snprintf(buf, 32, "domain%d", i); | 5247 | snprintf(buf, 32, "domain%d", i); |
5248 | entry->procname = kstrdup(buf, GFP_KERNEL); | 5248 | entry->procname = kstrdup(buf, GFP_KERNEL); |
5249 | entry->mode = 0555; | 5249 | entry->mode = 0555; |
5250 | entry->child = sd_alloc_ctl_domain_table(sd); | 5250 | entry->child = sd_alloc_ctl_domain_table(sd); |
5251 | entry++; | 5251 | entry++; |
5252 | i++; | 5252 | i++; |
5253 | } | 5253 | } |
5254 | return table; | 5254 | return table; |
5255 | } | 5255 | } |
5256 | 5256 | ||
5257 | static struct ctl_table_header *sd_sysctl_header; | 5257 | static struct ctl_table_header *sd_sysctl_header; |
5258 | static void register_sched_domain_sysctl(void) | 5258 | static void register_sched_domain_sysctl(void) |
5259 | { | 5259 | { |
5260 | int i, cpu_num = num_possible_cpus(); | 5260 | int i, cpu_num = num_possible_cpus(); |
5261 | struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); | 5261 | struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); |
5262 | char buf[32]; | 5262 | char buf[32]; |
5263 | 5263 | ||
5264 | WARN_ON(sd_ctl_dir[0].child); | 5264 | WARN_ON(sd_ctl_dir[0].child); |
5265 | sd_ctl_dir[0].child = entry; | 5265 | sd_ctl_dir[0].child = entry; |
5266 | 5266 | ||
5267 | if (entry == NULL) | 5267 | if (entry == NULL) |
5268 | return; | 5268 | return; |
5269 | 5269 | ||
5270 | for_each_possible_cpu(i) { | 5270 | for_each_possible_cpu(i) { |
5271 | snprintf(buf, 32, "cpu%d", i); | 5271 | snprintf(buf, 32, "cpu%d", i); |
5272 | entry->procname = kstrdup(buf, GFP_KERNEL); | 5272 | entry->procname = kstrdup(buf, GFP_KERNEL); |
5273 | entry->mode = 0555; | 5273 | entry->mode = 0555; |
5274 | entry->child = sd_alloc_ctl_cpu_table(i); | 5274 | entry->child = sd_alloc_ctl_cpu_table(i); |
5275 | entry++; | 5275 | entry++; |
5276 | } | 5276 | } |
5277 | 5277 | ||
5278 | WARN_ON(sd_sysctl_header); | 5278 | WARN_ON(sd_sysctl_header); |
5279 | sd_sysctl_header = register_sysctl_table(sd_ctl_root); | 5279 | sd_sysctl_header = register_sysctl_table(sd_ctl_root); |
5280 | } | 5280 | } |
5281 | 5281 | ||
5282 | /* may be called multiple times per register */ | 5282 | /* may be called multiple times per register */ |
5283 | static void unregister_sched_domain_sysctl(void) | 5283 | static void unregister_sched_domain_sysctl(void) |
5284 | { | 5284 | { |
5285 | if (sd_sysctl_header) | 5285 | if (sd_sysctl_header) |
5286 | unregister_sysctl_table(sd_sysctl_header); | 5286 | unregister_sysctl_table(sd_sysctl_header); |
5287 | sd_sysctl_header = NULL; | 5287 | sd_sysctl_header = NULL; |
5288 | if (sd_ctl_dir[0].child) | 5288 | if (sd_ctl_dir[0].child) |
5289 | sd_free_ctl_entry(&sd_ctl_dir[0].child); | 5289 | sd_free_ctl_entry(&sd_ctl_dir[0].child); |
5290 | } | 5290 | } |
5291 | #else | 5291 | #else |
5292 | static void register_sched_domain_sysctl(void) | 5292 | static void register_sched_domain_sysctl(void) |
5293 | { | 5293 | { |
5294 | } | 5294 | } |
5295 | static void unregister_sched_domain_sysctl(void) | 5295 | static void unregister_sched_domain_sysctl(void) |
5296 | { | 5296 | { |
5297 | } | 5297 | } |
5298 | #endif | 5298 | #endif |
5299 | 5299 | ||
5300 | static void set_rq_online(struct rq *rq) | 5300 | static void set_rq_online(struct rq *rq) |
5301 | { | 5301 | { |
5302 | if (!rq->online) { | 5302 | if (!rq->online) { |
5303 | const struct sched_class *class; | 5303 | const struct sched_class *class; |
5304 | 5304 | ||
5305 | cpumask_set_cpu(rq->cpu, rq->rd->online); | 5305 | cpumask_set_cpu(rq->cpu, rq->rd->online); |
5306 | rq->online = 1; | 5306 | rq->online = 1; |
5307 | 5307 | ||
5308 | for_each_class(class) { | 5308 | for_each_class(class) { |
5309 | if (class->rq_online) | 5309 | if (class->rq_online) |
5310 | class->rq_online(rq); | 5310 | class->rq_online(rq); |
5311 | } | 5311 | } |
5312 | } | 5312 | } |
5313 | } | 5313 | } |
5314 | 5314 | ||
5315 | static void set_rq_offline(struct rq *rq) | 5315 | static void set_rq_offline(struct rq *rq) |
5316 | { | 5316 | { |
5317 | if (rq->online) { | 5317 | if (rq->online) { |
5318 | const struct sched_class *class; | 5318 | const struct sched_class *class; |
5319 | 5319 | ||
5320 | for_each_class(class) { | 5320 | for_each_class(class) { |
5321 | if (class->rq_offline) | 5321 | if (class->rq_offline) |
5322 | class->rq_offline(rq); | 5322 | class->rq_offline(rq); |
5323 | } | 5323 | } |
5324 | 5324 | ||
5325 | cpumask_clear_cpu(rq->cpu, rq->rd->online); | 5325 | cpumask_clear_cpu(rq->cpu, rq->rd->online); |
5326 | rq->online = 0; | 5326 | rq->online = 0; |
5327 | } | 5327 | } |
5328 | } | 5328 | } |
5329 | 5329 | ||
5330 | /* | 5330 | /* |
5331 | * migration_call - callback that gets triggered when a CPU is added. | 5331 | * migration_call - callback that gets triggered when a CPU is added. |
5332 | * Here we can start up the necessary migration thread for the new CPU. | 5332 | * Here we can start up the necessary migration thread for the new CPU. |
5333 | */ | 5333 | */ |
5334 | static int __cpuinit | 5334 | static int __cpuinit |
5335 | migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) | 5335 | migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) |
5336 | { | 5336 | { |
5337 | int cpu = (long)hcpu; | 5337 | int cpu = (long)hcpu; |
5338 | unsigned long flags; | 5338 | unsigned long flags; |
5339 | struct rq *rq = cpu_rq(cpu); | 5339 | struct rq *rq = cpu_rq(cpu); |
5340 | 5340 | ||
5341 | switch (action & ~CPU_TASKS_FROZEN) { | 5341 | switch (action & ~CPU_TASKS_FROZEN) { |
5342 | 5342 | ||
5343 | case CPU_UP_PREPARE: | 5343 | case CPU_UP_PREPARE: |
5344 | rq->calc_load_update = calc_load_update; | 5344 | rq->calc_load_update = calc_load_update; |
5345 | break; | 5345 | break; |
5346 | 5346 | ||
5347 | case CPU_ONLINE: | 5347 | case CPU_ONLINE: |
5348 | /* Update our root-domain */ | 5348 | /* Update our root-domain */ |
5349 | raw_spin_lock_irqsave(&rq->lock, flags); | 5349 | raw_spin_lock_irqsave(&rq->lock, flags); |
5350 | if (rq->rd) { | 5350 | if (rq->rd) { |
5351 | BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); | 5351 | BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); |
5352 | 5352 | ||
5353 | set_rq_online(rq); | 5353 | set_rq_online(rq); |
5354 | } | 5354 | } |
5355 | raw_spin_unlock_irqrestore(&rq->lock, flags); | 5355 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
5356 | break; | 5356 | break; |
5357 | 5357 | ||
5358 | #ifdef CONFIG_HOTPLUG_CPU | 5358 | #ifdef CONFIG_HOTPLUG_CPU |
5359 | case CPU_DYING: | 5359 | case CPU_DYING: |
5360 | sched_ttwu_pending(); | 5360 | sched_ttwu_pending(); |
5361 | /* Update our root-domain */ | 5361 | /* Update our root-domain */ |
5362 | raw_spin_lock_irqsave(&rq->lock, flags); | 5362 | raw_spin_lock_irqsave(&rq->lock, flags); |
5363 | if (rq->rd) { | 5363 | if (rq->rd) { |
5364 | BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); | 5364 | BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); |
5365 | set_rq_offline(rq); | 5365 | set_rq_offline(rq); |
5366 | } | 5366 | } |
5367 | migrate_tasks(cpu); | 5367 | migrate_tasks(cpu); |
5368 | BUG_ON(rq->nr_running != 1); /* the migration thread */ | 5368 | BUG_ON(rq->nr_running != 1); /* the migration thread */ |
5369 | raw_spin_unlock_irqrestore(&rq->lock, flags); | 5369 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
5370 | 5370 | ||
5371 | migrate_nr_uninterruptible(rq); | 5371 | migrate_nr_uninterruptible(rq); |
5372 | calc_global_load_remove(rq); | 5372 | calc_global_load_remove(rq); |
5373 | break; | 5373 | break; |
5374 | #endif | 5374 | #endif |
5375 | } | 5375 | } |
5376 | 5376 | ||
5377 | update_max_interval(); | 5377 | update_max_interval(); |
5378 | 5378 | ||
5379 | return NOTIFY_OK; | 5379 | return NOTIFY_OK; |
5380 | } | 5380 | } |
5381 | 5381 | ||
5382 | /* | 5382 | /* |
5383 | * Register at high priority so that task migration (migrate_all_tasks) | 5383 | * Register at high priority so that task migration (migrate_all_tasks) |
5384 | * happens before everything else. This has to be lower priority than | 5384 | * happens before everything else. This has to be lower priority than |
5385 | * the notifier in the perf_event subsystem, though. | 5385 | * the notifier in the perf_event subsystem, though. |
5386 | */ | 5386 | */ |
5387 | static struct notifier_block __cpuinitdata migration_notifier = { | 5387 | static struct notifier_block __cpuinitdata migration_notifier = { |
5388 | .notifier_call = migration_call, | 5388 | .notifier_call = migration_call, |
5389 | .priority = CPU_PRI_MIGRATION, | 5389 | .priority = CPU_PRI_MIGRATION, |
5390 | }; | 5390 | }; |
5391 | 5391 | ||
5392 | static int __cpuinit sched_cpu_active(struct notifier_block *nfb, | 5392 | static int __cpuinit sched_cpu_active(struct notifier_block *nfb, |
5393 | unsigned long action, void *hcpu) | 5393 | unsigned long action, void *hcpu) |
5394 | { | 5394 | { |
5395 | switch (action & ~CPU_TASKS_FROZEN) { | 5395 | switch (action & ~CPU_TASKS_FROZEN) { |
5396 | case CPU_ONLINE: | 5396 | case CPU_ONLINE: |
5397 | case CPU_DOWN_FAILED: | 5397 | case CPU_DOWN_FAILED: |
5398 | set_cpu_active((long)hcpu, true); | 5398 | set_cpu_active((long)hcpu, true); |
5399 | return NOTIFY_OK; | 5399 | return NOTIFY_OK; |
5400 | default: | 5400 | default: |
5401 | return NOTIFY_DONE; | 5401 | return NOTIFY_DONE; |
5402 | } | 5402 | } |
5403 | } | 5403 | } |
5404 | 5404 | ||
5405 | static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb, | 5405 | static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb, |
5406 | unsigned long action, void *hcpu) | 5406 | unsigned long action, void *hcpu) |
5407 | { | 5407 | { |
5408 | switch (action & ~CPU_TASKS_FROZEN) { | 5408 | switch (action & ~CPU_TASKS_FROZEN) { |
5409 | case CPU_DOWN_PREPARE: | 5409 | case CPU_DOWN_PREPARE: |
5410 | set_cpu_active((long)hcpu, false); | 5410 | set_cpu_active((long)hcpu, false); |
5411 | return NOTIFY_OK; | 5411 | return NOTIFY_OK; |
5412 | default: | 5412 | default: |
5413 | return NOTIFY_DONE; | 5413 | return NOTIFY_DONE; |
5414 | } | 5414 | } |
5415 | } | 5415 | } |
5416 | 5416 | ||
5417 | static int __init migration_init(void) | 5417 | static int __init migration_init(void) |
5418 | { | 5418 | { |
5419 | void *cpu = (void *)(long)smp_processor_id(); | 5419 | void *cpu = (void *)(long)smp_processor_id(); |
5420 | int err; | 5420 | int err; |
5421 | 5421 | ||
5422 | /* Initialize migration for the boot CPU */ | 5422 | /* Initialize migration for the boot CPU */ |
5423 | err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); | 5423 | err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); |
5424 | BUG_ON(err == NOTIFY_BAD); | 5424 | BUG_ON(err == NOTIFY_BAD); |
5425 | migration_call(&migration_notifier, CPU_ONLINE, cpu); | 5425 | migration_call(&migration_notifier, CPU_ONLINE, cpu); |
5426 | register_cpu_notifier(&migration_notifier); | 5426 | register_cpu_notifier(&migration_notifier); |
5427 | 5427 | ||
5428 | /* Register cpu active notifiers */ | 5428 | /* Register cpu active notifiers */ |
5429 | cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); | 5429 | cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); |
5430 | cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); | 5430 | cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); |
5431 | 5431 | ||
5432 | return 0; | 5432 | return 0; |
5433 | } | 5433 | } |
5434 | early_initcall(migration_init); | 5434 | early_initcall(migration_init); |
5435 | #endif | 5435 | #endif |
5436 | 5436 | ||
5437 | #ifdef CONFIG_SMP | 5437 | #ifdef CONFIG_SMP |
5438 | 5438 | ||
5439 | static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ | 5439 | static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ |
5440 | 5440 | ||
5441 | #ifdef CONFIG_SCHED_DEBUG | 5441 | #ifdef CONFIG_SCHED_DEBUG |
5442 | 5442 | ||
5443 | static __read_mostly int sched_domain_debug_enabled; | 5443 | static __read_mostly int sched_domain_debug_enabled; |
5444 | 5444 | ||
5445 | static int __init sched_domain_debug_setup(char *str) | 5445 | static int __init sched_domain_debug_setup(char *str) |
5446 | { | 5446 | { |
5447 | sched_domain_debug_enabled = 1; | 5447 | sched_domain_debug_enabled = 1; |
5448 | 5448 | ||
5449 | return 0; | 5449 | return 0; |
5450 | } | 5450 | } |
5451 | early_param("sched_debug", sched_domain_debug_setup); | 5451 | early_param("sched_debug", sched_domain_debug_setup); |
5452 | 5452 | ||
5453 | static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, | 5453 | static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, |
5454 | struct cpumask *groupmask) | 5454 | struct cpumask *groupmask) |
5455 | { | 5455 | { |
5456 | struct sched_group *group = sd->groups; | 5456 | struct sched_group *group = sd->groups; |
5457 | char str[256]; | 5457 | char str[256]; |
5458 | 5458 | ||
5459 | cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); | 5459 | cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); |
5460 | cpumask_clear(groupmask); | 5460 | cpumask_clear(groupmask); |
5461 | 5461 | ||
5462 | printk(KERN_DEBUG "%*s domain %d: ", level, "", level); | 5462 | printk(KERN_DEBUG "%*s domain %d: ", level, "", level); |
5463 | 5463 | ||
5464 | if (!(sd->flags & SD_LOAD_BALANCE)) { | 5464 | if (!(sd->flags & SD_LOAD_BALANCE)) { |
5465 | printk("does not load-balance\n"); | 5465 | printk("does not load-balance\n"); |
5466 | if (sd->parent) | 5466 | if (sd->parent) |
5467 | printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" | 5467 | printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" |
5468 | " has parent"); | 5468 | " has parent"); |
5469 | return -1; | 5469 | return -1; |
5470 | } | 5470 | } |
5471 | 5471 | ||
5472 | printk(KERN_CONT "span %s level %s\n", str, sd->name); | 5472 | printk(KERN_CONT "span %s level %s\n", str, sd->name); |
5473 | 5473 | ||
5474 | if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { | 5474 | if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { |
5475 | printk(KERN_ERR "ERROR: domain->span does not contain " | 5475 | printk(KERN_ERR "ERROR: domain->span does not contain " |
5476 | "CPU%d\n", cpu); | 5476 | "CPU%d\n", cpu); |
5477 | } | 5477 | } |
5478 | if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { | 5478 | if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { |
5479 | printk(KERN_ERR "ERROR: domain->groups does not contain" | 5479 | printk(KERN_ERR "ERROR: domain->groups does not contain" |
5480 | " CPU%d\n", cpu); | 5480 | " CPU%d\n", cpu); |
5481 | } | 5481 | } |
5482 | 5482 | ||
5483 | printk(KERN_DEBUG "%*s groups:", level + 1, ""); | 5483 | printk(KERN_DEBUG "%*s groups:", level + 1, ""); |
5484 | do { | 5484 | do { |
5485 | if (!group) { | 5485 | if (!group) { |
5486 | printk("\n"); | 5486 | printk("\n"); |
5487 | printk(KERN_ERR "ERROR: group is NULL\n"); | 5487 | printk(KERN_ERR "ERROR: group is NULL\n"); |
5488 | break; | 5488 | break; |
5489 | } | 5489 | } |
5490 | 5490 | ||
5491 | if (!group->sgp->power) { | 5491 | if (!group->sgp->power) { |
5492 | printk(KERN_CONT "\n"); | 5492 | printk(KERN_CONT "\n"); |
5493 | printk(KERN_ERR "ERROR: domain->cpu_power not " | 5493 | printk(KERN_ERR "ERROR: domain->cpu_power not " |
5494 | "set\n"); | 5494 | "set\n"); |
5495 | break; | 5495 | break; |
5496 | } | 5496 | } |
5497 | 5497 | ||
5498 | if (!cpumask_weight(sched_group_cpus(group))) { | 5498 | if (!cpumask_weight(sched_group_cpus(group))) { |
5499 | printk(KERN_CONT "\n"); | 5499 | printk(KERN_CONT "\n"); |
5500 | printk(KERN_ERR "ERROR: empty group\n"); | 5500 | printk(KERN_ERR "ERROR: empty group\n"); |
5501 | break; | 5501 | break; |
5502 | } | 5502 | } |
5503 | 5503 | ||
5504 | if (cpumask_intersects(groupmask, sched_group_cpus(group))) { | 5504 | if (cpumask_intersects(groupmask, sched_group_cpus(group))) { |
5505 | printk(KERN_CONT "\n"); | 5505 | printk(KERN_CONT "\n"); |
5506 | printk(KERN_ERR "ERROR: repeated CPUs\n"); | 5506 | printk(KERN_ERR "ERROR: repeated CPUs\n"); |
5507 | break; | 5507 | break; |
5508 | } | 5508 | } |
5509 | 5509 | ||
5510 | cpumask_or(groupmask, groupmask, sched_group_cpus(group)); | 5510 | cpumask_or(groupmask, groupmask, sched_group_cpus(group)); |
5511 | 5511 | ||
5512 | cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); | 5512 | cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); |
5513 | 5513 | ||
5514 | printk(KERN_CONT " %s", str); | 5514 | printk(KERN_CONT " %s", str); |
5515 | if (group->sgp->power != SCHED_POWER_SCALE) { | 5515 | if (group->sgp->power != SCHED_POWER_SCALE) { |
5516 | printk(KERN_CONT " (cpu_power = %d)", | 5516 | printk(KERN_CONT " (cpu_power = %d)", |
5517 | group->sgp->power); | 5517 | group->sgp->power); |
5518 | } | 5518 | } |
5519 | 5519 | ||
5520 | group = group->next; | 5520 | group = group->next; |
5521 | } while (group != sd->groups); | 5521 | } while (group != sd->groups); |
5522 | printk(KERN_CONT "\n"); | 5522 | printk(KERN_CONT "\n"); |
5523 | 5523 | ||
5524 | if (!cpumask_equal(sched_domain_span(sd), groupmask)) | 5524 | if (!cpumask_equal(sched_domain_span(sd), groupmask)) |
5525 | printk(KERN_ERR "ERROR: groups don't span domain->span\n"); | 5525 | printk(KERN_ERR "ERROR: groups don't span domain->span\n"); |
5526 | 5526 | ||
5527 | if (sd->parent && | 5527 | if (sd->parent && |
5528 | !cpumask_subset(groupmask, sched_domain_span(sd->parent))) | 5528 | !cpumask_subset(groupmask, sched_domain_span(sd->parent))) |
5529 | printk(KERN_ERR "ERROR: parent span is not a superset " | 5529 | printk(KERN_ERR "ERROR: parent span is not a superset " |
5530 | "of domain->span\n"); | 5530 | "of domain->span\n"); |
5531 | return 0; | 5531 | return 0; |
5532 | } | 5532 | } |
5533 | 5533 | ||
5534 | static void sched_domain_debug(struct sched_domain *sd, int cpu) | 5534 | static void sched_domain_debug(struct sched_domain *sd, int cpu) |
5535 | { | 5535 | { |
5536 | int level = 0; | 5536 | int level = 0; |
5537 | 5537 | ||
5538 | if (!sched_domain_debug_enabled) | 5538 | if (!sched_domain_debug_enabled) |
5539 | return; | 5539 | return; |
5540 | 5540 | ||
5541 | if (!sd) { | 5541 | if (!sd) { |
5542 | printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); | 5542 | printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); |
5543 | return; | 5543 | return; |
5544 | } | 5544 | } |
5545 | 5545 | ||
5546 | printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); | 5546 | printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); |
5547 | 5547 | ||
5548 | for (;;) { | 5548 | for (;;) { |
5549 | if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) | 5549 | if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) |
5550 | break; | 5550 | break; |
5551 | level++; | 5551 | level++; |
5552 | sd = sd->parent; | 5552 | sd = sd->parent; |
5553 | if (!sd) | 5553 | if (!sd) |
5554 | break; | 5554 | break; |
5555 | } | 5555 | } |
5556 | } | 5556 | } |
5557 | #else /* !CONFIG_SCHED_DEBUG */ | 5557 | #else /* !CONFIG_SCHED_DEBUG */ |
5558 | # define sched_domain_debug(sd, cpu) do { } while (0) | 5558 | # define sched_domain_debug(sd, cpu) do { } while (0) |
5559 | #endif /* CONFIG_SCHED_DEBUG */ | 5559 | #endif /* CONFIG_SCHED_DEBUG */ |
5560 | 5560 | ||
5561 | static int sd_degenerate(struct sched_domain *sd) | 5561 | static int sd_degenerate(struct sched_domain *sd) |
5562 | { | 5562 | { |
5563 | if (cpumask_weight(sched_domain_span(sd)) == 1) | 5563 | if (cpumask_weight(sched_domain_span(sd)) == 1) |
5564 | return 1; | 5564 | return 1; |
5565 | 5565 | ||
5566 | /* Following flags need at least 2 groups */ | 5566 | /* Following flags need at least 2 groups */ |
5567 | if (sd->flags & (SD_LOAD_BALANCE | | 5567 | if (sd->flags & (SD_LOAD_BALANCE | |
5568 | SD_BALANCE_NEWIDLE | | 5568 | SD_BALANCE_NEWIDLE | |
5569 | SD_BALANCE_FORK | | 5569 | SD_BALANCE_FORK | |
5570 | SD_BALANCE_EXEC | | 5570 | SD_BALANCE_EXEC | |
5571 | SD_SHARE_CPUPOWER | | 5571 | SD_SHARE_CPUPOWER | |
5572 | SD_SHARE_PKG_RESOURCES)) { | 5572 | SD_SHARE_PKG_RESOURCES)) { |
5573 | if (sd->groups != sd->groups->next) | 5573 | if (sd->groups != sd->groups->next) |
5574 | return 0; | 5574 | return 0; |
5575 | } | 5575 | } |
5576 | 5576 | ||
5577 | /* Following flags don't use groups */ | 5577 | /* Following flags don't use groups */ |
5578 | if (sd->flags & (SD_WAKE_AFFINE)) | 5578 | if (sd->flags & (SD_WAKE_AFFINE)) |
5579 | return 0; | 5579 | return 0; |
5580 | 5580 | ||
5581 | return 1; | 5581 | return 1; |
5582 | } | 5582 | } |
5583 | 5583 | ||
5584 | static int | 5584 | static int |
5585 | sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) | 5585 | sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) |
5586 | { | 5586 | { |
5587 | unsigned long cflags = sd->flags, pflags = parent->flags; | 5587 | unsigned long cflags = sd->flags, pflags = parent->flags; |
5588 | 5588 | ||
5589 | if (sd_degenerate(parent)) | 5589 | if (sd_degenerate(parent)) |
5590 | return 1; | 5590 | return 1; |
5591 | 5591 | ||
5592 | if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) | 5592 | if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) |
5593 | return 0; | 5593 | return 0; |
5594 | 5594 | ||
5595 | /* Flags needing groups don't count if only 1 group in parent */ | 5595 | /* Flags needing groups don't count if only 1 group in parent */ |
5596 | if (parent->groups == parent->groups->next) { | 5596 | if (parent->groups == parent->groups->next) { |
5597 | pflags &= ~(SD_LOAD_BALANCE | | 5597 | pflags &= ~(SD_LOAD_BALANCE | |
5598 | SD_BALANCE_NEWIDLE | | 5598 | SD_BALANCE_NEWIDLE | |
5599 | SD_BALANCE_FORK | | 5599 | SD_BALANCE_FORK | |
5600 | SD_BALANCE_EXEC | | 5600 | SD_BALANCE_EXEC | |
5601 | SD_SHARE_CPUPOWER | | 5601 | SD_SHARE_CPUPOWER | |
5602 | SD_SHARE_PKG_RESOURCES); | 5602 | SD_SHARE_PKG_RESOURCES); |
5603 | if (nr_node_ids == 1) | 5603 | if (nr_node_ids == 1) |
5604 | pflags &= ~SD_SERIALIZE; | 5604 | pflags &= ~SD_SERIALIZE; |
5605 | } | 5605 | } |
5606 | if (~cflags & pflags) | 5606 | if (~cflags & pflags) |
5607 | return 0; | 5607 | return 0; |
5608 | 5608 | ||
5609 | return 1; | 5609 | return 1; |
5610 | } | 5610 | } |
5611 | 5611 | ||
5612 | static void free_rootdomain(struct rcu_head *rcu) | 5612 | static void free_rootdomain(struct rcu_head *rcu) |
5613 | { | 5613 | { |
5614 | struct root_domain *rd = container_of(rcu, struct root_domain, rcu); | 5614 | struct root_domain *rd = container_of(rcu, struct root_domain, rcu); |
5615 | 5615 | ||
5616 | cpupri_cleanup(&rd->cpupri); | 5616 | cpupri_cleanup(&rd->cpupri); |
5617 | free_cpumask_var(rd->rto_mask); | 5617 | free_cpumask_var(rd->rto_mask); |
5618 | free_cpumask_var(rd->online); | 5618 | free_cpumask_var(rd->online); |
5619 | free_cpumask_var(rd->span); | 5619 | free_cpumask_var(rd->span); |
5620 | kfree(rd); | 5620 | kfree(rd); |
5621 | } | 5621 | } |
5622 | 5622 | ||
5623 | static void rq_attach_root(struct rq *rq, struct root_domain *rd) | 5623 | static void rq_attach_root(struct rq *rq, struct root_domain *rd) |
5624 | { | 5624 | { |
5625 | struct root_domain *old_rd = NULL; | 5625 | struct root_domain *old_rd = NULL; |
5626 | unsigned long flags; | 5626 | unsigned long flags; |
5627 | 5627 | ||
5628 | raw_spin_lock_irqsave(&rq->lock, flags); | 5628 | raw_spin_lock_irqsave(&rq->lock, flags); |
5629 | 5629 | ||
5630 | if (rq->rd) { | 5630 | if (rq->rd) { |
5631 | old_rd = rq->rd; | 5631 | old_rd = rq->rd; |
5632 | 5632 | ||
5633 | if (cpumask_test_cpu(rq->cpu, old_rd->online)) | 5633 | if (cpumask_test_cpu(rq->cpu, old_rd->online)) |
5634 | set_rq_offline(rq); | 5634 | set_rq_offline(rq); |
5635 | 5635 | ||
5636 | cpumask_clear_cpu(rq->cpu, old_rd->span); | 5636 | cpumask_clear_cpu(rq->cpu, old_rd->span); |
5637 | 5637 | ||
5638 | /* | 5638 | /* |
5639 | * If we dont want to free the old_rt yet then | 5639 | * If we dont want to free the old_rt yet then |
5640 | * set old_rd to NULL to skip the freeing later | 5640 | * set old_rd to NULL to skip the freeing later |
5641 | * in this function: | 5641 | * in this function: |
5642 | */ | 5642 | */ |
5643 | if (!atomic_dec_and_test(&old_rd->refcount)) | 5643 | if (!atomic_dec_and_test(&old_rd->refcount)) |
5644 | old_rd = NULL; | 5644 | old_rd = NULL; |
5645 | } | 5645 | } |
5646 | 5646 | ||
5647 | atomic_inc(&rd->refcount); | 5647 | atomic_inc(&rd->refcount); |
5648 | rq->rd = rd; | 5648 | rq->rd = rd; |
5649 | 5649 | ||
5650 | cpumask_set_cpu(rq->cpu, rd->span); | 5650 | cpumask_set_cpu(rq->cpu, rd->span); |
5651 | if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) | 5651 | if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) |
5652 | set_rq_online(rq); | 5652 | set_rq_online(rq); |
5653 | 5653 | ||
5654 | raw_spin_unlock_irqrestore(&rq->lock, flags); | 5654 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
5655 | 5655 | ||
5656 | if (old_rd) | 5656 | if (old_rd) |
5657 | call_rcu_sched(&old_rd->rcu, free_rootdomain); | 5657 | call_rcu_sched(&old_rd->rcu, free_rootdomain); |
5658 | } | 5658 | } |
5659 | 5659 | ||
5660 | static int init_rootdomain(struct root_domain *rd) | 5660 | static int init_rootdomain(struct root_domain *rd) |
5661 | { | 5661 | { |
5662 | memset(rd, 0, sizeof(*rd)); | 5662 | memset(rd, 0, sizeof(*rd)); |
5663 | 5663 | ||
5664 | if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) | 5664 | if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) |
5665 | goto out; | 5665 | goto out; |
5666 | if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) | 5666 | if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) |
5667 | goto free_span; | 5667 | goto free_span; |
5668 | if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) | 5668 | if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) |
5669 | goto free_online; | 5669 | goto free_online; |
5670 | 5670 | ||
5671 | if (cpupri_init(&rd->cpupri) != 0) | 5671 | if (cpupri_init(&rd->cpupri) != 0) |
5672 | goto free_rto_mask; | 5672 | goto free_rto_mask; |
5673 | return 0; | 5673 | return 0; |
5674 | 5674 | ||
5675 | free_rto_mask: | 5675 | free_rto_mask: |
5676 | free_cpumask_var(rd->rto_mask); | 5676 | free_cpumask_var(rd->rto_mask); |
5677 | free_online: | 5677 | free_online: |
5678 | free_cpumask_var(rd->online); | 5678 | free_cpumask_var(rd->online); |
5679 | free_span: | 5679 | free_span: |
5680 | free_cpumask_var(rd->span); | 5680 | free_cpumask_var(rd->span); |
5681 | out: | 5681 | out: |
5682 | return -ENOMEM; | 5682 | return -ENOMEM; |
5683 | } | 5683 | } |
5684 | 5684 | ||
5685 | /* | 5685 | /* |
5686 | * By default the system creates a single root-domain with all cpus as | 5686 | * By default the system creates a single root-domain with all cpus as |
5687 | * members (mimicking the global state we have today). | 5687 | * members (mimicking the global state we have today). |
5688 | */ | 5688 | */ |
5689 | struct root_domain def_root_domain; | 5689 | struct root_domain def_root_domain; |
5690 | 5690 | ||
5691 | static void init_defrootdomain(void) | 5691 | static void init_defrootdomain(void) |
5692 | { | 5692 | { |
5693 | init_rootdomain(&def_root_domain); | 5693 | init_rootdomain(&def_root_domain); |
5694 | 5694 | ||
5695 | atomic_set(&def_root_domain.refcount, 1); | 5695 | atomic_set(&def_root_domain.refcount, 1); |
5696 | } | 5696 | } |
5697 | 5697 | ||
5698 | static struct root_domain *alloc_rootdomain(void) | 5698 | static struct root_domain *alloc_rootdomain(void) |
5699 | { | 5699 | { |
5700 | struct root_domain *rd; | 5700 | struct root_domain *rd; |
5701 | 5701 | ||
5702 | rd = kmalloc(sizeof(*rd), GFP_KERNEL); | 5702 | rd = kmalloc(sizeof(*rd), GFP_KERNEL); |
5703 | if (!rd) | 5703 | if (!rd) |
5704 | return NULL; | 5704 | return NULL; |
5705 | 5705 | ||
5706 | if (init_rootdomain(rd) != 0) { | 5706 | if (init_rootdomain(rd) != 0) { |
5707 | kfree(rd); | 5707 | kfree(rd); |
5708 | return NULL; | 5708 | return NULL; |
5709 | } | 5709 | } |
5710 | 5710 | ||
5711 | return rd; | 5711 | return rd; |
5712 | } | 5712 | } |
5713 | 5713 | ||
5714 | static void free_sched_groups(struct sched_group *sg, int free_sgp) | 5714 | static void free_sched_groups(struct sched_group *sg, int free_sgp) |
5715 | { | 5715 | { |
5716 | struct sched_group *tmp, *first; | 5716 | struct sched_group *tmp, *first; |
5717 | 5717 | ||
5718 | if (!sg) | 5718 | if (!sg) |
5719 | return; | 5719 | return; |
5720 | 5720 | ||
5721 | first = sg; | 5721 | first = sg; |
5722 | do { | 5722 | do { |
5723 | tmp = sg->next; | 5723 | tmp = sg->next; |
5724 | 5724 | ||
5725 | if (free_sgp && atomic_dec_and_test(&sg->sgp->ref)) | 5725 | if (free_sgp && atomic_dec_and_test(&sg->sgp->ref)) |
5726 | kfree(sg->sgp); | 5726 | kfree(sg->sgp); |
5727 | 5727 | ||
5728 | kfree(sg); | 5728 | kfree(sg); |
5729 | sg = tmp; | 5729 | sg = tmp; |
5730 | } while (sg != first); | 5730 | } while (sg != first); |
5731 | } | 5731 | } |
5732 | 5732 | ||
5733 | static void free_sched_domain(struct rcu_head *rcu) | 5733 | static void free_sched_domain(struct rcu_head *rcu) |
5734 | { | 5734 | { |
5735 | struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); | 5735 | struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); |
5736 | 5736 | ||
5737 | /* | 5737 | /* |
5738 | * If its an overlapping domain it has private groups, iterate and | 5738 | * If its an overlapping domain it has private groups, iterate and |
5739 | * nuke them all. | 5739 | * nuke them all. |
5740 | */ | 5740 | */ |
5741 | if (sd->flags & SD_OVERLAP) { | 5741 | if (sd->flags & SD_OVERLAP) { |
5742 | free_sched_groups(sd->groups, 1); | 5742 | free_sched_groups(sd->groups, 1); |
5743 | } else if (atomic_dec_and_test(&sd->groups->ref)) { | 5743 | } else if (atomic_dec_and_test(&sd->groups->ref)) { |
5744 | kfree(sd->groups->sgp); | 5744 | kfree(sd->groups->sgp); |
5745 | kfree(sd->groups); | 5745 | kfree(sd->groups); |
5746 | } | 5746 | } |
5747 | kfree(sd); | 5747 | kfree(sd); |
5748 | } | 5748 | } |
5749 | 5749 | ||
5750 | static void destroy_sched_domain(struct sched_domain *sd, int cpu) | 5750 | static void destroy_sched_domain(struct sched_domain *sd, int cpu) |
5751 | { | 5751 | { |
5752 | call_rcu(&sd->rcu, free_sched_domain); | 5752 | call_rcu(&sd->rcu, free_sched_domain); |
5753 | } | 5753 | } |
5754 | 5754 | ||
5755 | static void destroy_sched_domains(struct sched_domain *sd, int cpu) | 5755 | static void destroy_sched_domains(struct sched_domain *sd, int cpu) |
5756 | { | 5756 | { |
5757 | for (; sd; sd = sd->parent) | 5757 | for (; sd; sd = sd->parent) |
5758 | destroy_sched_domain(sd, cpu); | 5758 | destroy_sched_domain(sd, cpu); |
5759 | } | 5759 | } |
5760 | 5760 | ||
5761 | /* | 5761 | /* |
5762 | * Keep a special pointer to the highest sched_domain that has | 5762 | * Keep a special pointer to the highest sched_domain that has |
5763 | * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this | 5763 | * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this |
5764 | * allows us to avoid some pointer chasing select_idle_sibling(). | 5764 | * allows us to avoid some pointer chasing select_idle_sibling(). |
5765 | * | 5765 | * |
5766 | * Also keep a unique ID per domain (we use the first cpu number in | 5766 | * Also keep a unique ID per domain (we use the first cpu number in |
5767 | * the cpumask of the domain), this allows us to quickly tell if | 5767 | * the cpumask of the domain), this allows us to quickly tell if |
5768 | * two cpus are in the same cache domain, see cpus_share_cache(). | 5768 | * two cpus are in the same cache domain, see cpus_share_cache(). |
5769 | */ | 5769 | */ |
5770 | DEFINE_PER_CPU(struct sched_domain *, sd_llc); | 5770 | DEFINE_PER_CPU(struct sched_domain *, sd_llc); |
5771 | DEFINE_PER_CPU(int, sd_llc_id); | 5771 | DEFINE_PER_CPU(int, sd_llc_id); |
5772 | 5772 | ||
5773 | static void update_top_cache_domain(int cpu) | 5773 | static void update_top_cache_domain(int cpu) |
5774 | { | 5774 | { |
5775 | struct sched_domain *sd; | 5775 | struct sched_domain *sd; |
5776 | int id = cpu; | 5776 | int id = cpu; |
5777 | 5777 | ||
5778 | sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); | 5778 | sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); |
5779 | if (sd) | 5779 | if (sd) |
5780 | id = cpumask_first(sched_domain_span(sd)); | 5780 | id = cpumask_first(sched_domain_span(sd)); |
5781 | 5781 | ||
5782 | rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); | 5782 | rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); |
5783 | per_cpu(sd_llc_id, cpu) = id; | 5783 | per_cpu(sd_llc_id, cpu) = id; |
5784 | } | 5784 | } |
5785 | 5785 | ||
5786 | /* | 5786 | /* |
5787 | * Attach the domain 'sd' to 'cpu' as its base domain. Callers must | 5787 | * Attach the domain 'sd' to 'cpu' as its base domain. Callers must |
5788 | * hold the hotplug lock. | 5788 | * hold the hotplug lock. |
5789 | */ | 5789 | */ |
5790 | static void | 5790 | static void |
5791 | cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) | 5791 | cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) |
5792 | { | 5792 | { |
5793 | struct rq *rq = cpu_rq(cpu); | 5793 | struct rq *rq = cpu_rq(cpu); |
5794 | struct sched_domain *tmp; | 5794 | struct sched_domain *tmp; |
5795 | 5795 | ||
5796 | /* Remove the sched domains which do not contribute to scheduling. */ | 5796 | /* Remove the sched domains which do not contribute to scheduling. */ |
5797 | for (tmp = sd; tmp; ) { | 5797 | for (tmp = sd; tmp; ) { |
5798 | struct sched_domain *parent = tmp->parent; | 5798 | struct sched_domain *parent = tmp->parent; |
5799 | if (!parent) | 5799 | if (!parent) |
5800 | break; | 5800 | break; |
5801 | 5801 | ||
5802 | if (sd_parent_degenerate(tmp, parent)) { | 5802 | if (sd_parent_degenerate(tmp, parent)) { |
5803 | tmp->parent = parent->parent; | 5803 | tmp->parent = parent->parent; |
5804 | if (parent->parent) | 5804 | if (parent->parent) |
5805 | parent->parent->child = tmp; | 5805 | parent->parent->child = tmp; |
5806 | destroy_sched_domain(parent, cpu); | 5806 | destroy_sched_domain(parent, cpu); |
5807 | } else | 5807 | } else |
5808 | tmp = tmp->parent; | 5808 | tmp = tmp->parent; |
5809 | } | 5809 | } |
5810 | 5810 | ||
5811 | if (sd && sd_degenerate(sd)) { | 5811 | if (sd && sd_degenerate(sd)) { |
5812 | tmp = sd; | 5812 | tmp = sd; |
5813 | sd = sd->parent; | 5813 | sd = sd->parent; |
5814 | destroy_sched_domain(tmp, cpu); | 5814 | destroy_sched_domain(tmp, cpu); |
5815 | if (sd) | 5815 | if (sd) |
5816 | sd->child = NULL; | 5816 | sd->child = NULL; |
5817 | } | 5817 | } |
5818 | 5818 | ||
5819 | sched_domain_debug(sd, cpu); | 5819 | sched_domain_debug(sd, cpu); |
5820 | 5820 | ||
5821 | rq_attach_root(rq, rd); | 5821 | rq_attach_root(rq, rd); |
5822 | tmp = rq->sd; | 5822 | tmp = rq->sd; |
5823 | rcu_assign_pointer(rq->sd, sd); | 5823 | rcu_assign_pointer(rq->sd, sd); |
5824 | destroy_sched_domains(tmp, cpu); | 5824 | destroy_sched_domains(tmp, cpu); |
5825 | 5825 | ||
5826 | update_top_cache_domain(cpu); | 5826 | update_top_cache_domain(cpu); |
5827 | } | 5827 | } |
5828 | 5828 | ||
5829 | /* cpus with isolated domains */ | 5829 | /* cpus with isolated domains */ |
5830 | static cpumask_var_t cpu_isolated_map; | 5830 | static cpumask_var_t cpu_isolated_map; |
5831 | 5831 | ||
5832 | /* Setup the mask of cpus configured for isolated domains */ | 5832 | /* Setup the mask of cpus configured for isolated domains */ |
5833 | static int __init isolated_cpu_setup(char *str) | 5833 | static int __init isolated_cpu_setup(char *str) |
5834 | { | 5834 | { |
5835 | alloc_bootmem_cpumask_var(&cpu_isolated_map); | 5835 | alloc_bootmem_cpumask_var(&cpu_isolated_map); |
5836 | cpulist_parse(str, cpu_isolated_map); | 5836 | cpulist_parse(str, cpu_isolated_map); |
5837 | return 1; | 5837 | return 1; |
5838 | } | 5838 | } |
5839 | 5839 | ||
5840 | __setup("isolcpus=", isolated_cpu_setup); | 5840 | __setup("isolcpus=", isolated_cpu_setup); |
5841 | 5841 | ||
5842 | #ifdef CONFIG_NUMA | 5842 | #ifdef CONFIG_NUMA |
5843 | 5843 | ||
5844 | /** | 5844 | /** |
5845 | * find_next_best_node - find the next node to include in a sched_domain | 5845 | * find_next_best_node - find the next node to include in a sched_domain |
5846 | * @node: node whose sched_domain we're building | 5846 | * @node: node whose sched_domain we're building |
5847 | * @used_nodes: nodes already in the sched_domain | 5847 | * @used_nodes: nodes already in the sched_domain |
5848 | * | 5848 | * |
5849 | * Find the next node to include in a given scheduling domain. Simply | 5849 | * Find the next node to include in a given scheduling domain. Simply |
5850 | * finds the closest node not already in the @used_nodes map. | 5850 | * finds the closest node not already in the @used_nodes map. |
5851 | * | 5851 | * |
5852 | * Should use nodemask_t. | 5852 | * Should use nodemask_t. |
5853 | */ | 5853 | */ |
5854 | static int find_next_best_node(int node, nodemask_t *used_nodes) | 5854 | static int find_next_best_node(int node, nodemask_t *used_nodes) |
5855 | { | 5855 | { |
5856 | int i, n, val, min_val, best_node = -1; | 5856 | int i, n, val, min_val, best_node = -1; |
5857 | 5857 | ||
5858 | min_val = INT_MAX; | 5858 | min_val = INT_MAX; |
5859 | 5859 | ||
5860 | for (i = 0; i < nr_node_ids; i++) { | 5860 | for (i = 0; i < nr_node_ids; i++) { |
5861 | /* Start at @node */ | 5861 | /* Start at @node */ |
5862 | n = (node + i) % nr_node_ids; | 5862 | n = (node + i) % nr_node_ids; |
5863 | 5863 | ||
5864 | if (!nr_cpus_node(n)) | 5864 | if (!nr_cpus_node(n)) |
5865 | continue; | 5865 | continue; |
5866 | 5866 | ||
5867 | /* Skip already used nodes */ | 5867 | /* Skip already used nodes */ |
5868 | if (node_isset(n, *used_nodes)) | 5868 | if (node_isset(n, *used_nodes)) |
5869 | continue; | 5869 | continue; |
5870 | 5870 | ||
5871 | /* Simple min distance search */ | 5871 | /* Simple min distance search */ |
5872 | val = node_distance(node, n); | 5872 | val = node_distance(node, n); |
5873 | 5873 | ||
5874 | if (val < min_val) { | 5874 | if (val < min_val) { |
5875 | min_val = val; | 5875 | min_val = val; |
5876 | best_node = n; | 5876 | best_node = n; |
5877 | } | 5877 | } |
5878 | } | 5878 | } |
5879 | 5879 | ||
5880 | if (best_node != -1) | 5880 | if (best_node != -1) |
5881 | node_set(best_node, *used_nodes); | 5881 | node_set(best_node, *used_nodes); |
5882 | return best_node; | 5882 | return best_node; |
5883 | } | 5883 | } |
5884 | 5884 | ||
5885 | /** | 5885 | /** |
5886 | * sched_domain_node_span - get a cpumask for a node's sched_domain | 5886 | * sched_domain_node_span - get a cpumask for a node's sched_domain |
5887 | * @node: node whose cpumask we're constructing | 5887 | * @node: node whose cpumask we're constructing |
5888 | * @span: resulting cpumask | 5888 | * @span: resulting cpumask |
5889 | * | 5889 | * |
5890 | * Given a node, construct a good cpumask for its sched_domain to span. It | 5890 | * Given a node, construct a good cpumask for its sched_domain to span. It |
5891 | * should be one that prevents unnecessary balancing, but also spreads tasks | 5891 | * should be one that prevents unnecessary balancing, but also spreads tasks |
5892 | * out optimally. | 5892 | * out optimally. |
5893 | */ | 5893 | */ |
5894 | static void sched_domain_node_span(int node, struct cpumask *span) | 5894 | static void sched_domain_node_span(int node, struct cpumask *span) |
5895 | { | 5895 | { |
5896 | nodemask_t used_nodes; | 5896 | nodemask_t used_nodes; |
5897 | int i; | 5897 | int i; |
5898 | 5898 | ||
5899 | cpumask_clear(span); | 5899 | cpumask_clear(span); |
5900 | nodes_clear(used_nodes); | 5900 | nodes_clear(used_nodes); |
5901 | 5901 | ||
5902 | cpumask_or(span, span, cpumask_of_node(node)); | 5902 | cpumask_or(span, span, cpumask_of_node(node)); |
5903 | node_set(node, used_nodes); | 5903 | node_set(node, used_nodes); |
5904 | 5904 | ||
5905 | for (i = 1; i < SD_NODES_PER_DOMAIN; i++) { | 5905 | for (i = 1; i < SD_NODES_PER_DOMAIN; i++) { |
5906 | int next_node = find_next_best_node(node, &used_nodes); | 5906 | int next_node = find_next_best_node(node, &used_nodes); |
5907 | if (next_node < 0) | 5907 | if (next_node < 0) |
5908 | break; | 5908 | break; |
5909 | cpumask_or(span, span, cpumask_of_node(next_node)); | 5909 | cpumask_or(span, span, cpumask_of_node(next_node)); |
5910 | } | 5910 | } |
5911 | } | 5911 | } |
5912 | 5912 | ||
5913 | static const struct cpumask *cpu_node_mask(int cpu) | 5913 | static const struct cpumask *cpu_node_mask(int cpu) |
5914 | { | 5914 | { |
5915 | lockdep_assert_held(&sched_domains_mutex); | 5915 | lockdep_assert_held(&sched_domains_mutex); |
5916 | 5916 | ||
5917 | sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask); | 5917 | sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask); |
5918 | 5918 | ||
5919 | return sched_domains_tmpmask; | 5919 | return sched_domains_tmpmask; |
5920 | } | 5920 | } |
5921 | 5921 | ||
5922 | static const struct cpumask *cpu_allnodes_mask(int cpu) | 5922 | static const struct cpumask *cpu_allnodes_mask(int cpu) |
5923 | { | 5923 | { |
5924 | return cpu_possible_mask; | 5924 | return cpu_possible_mask; |
5925 | } | 5925 | } |
5926 | #endif /* CONFIG_NUMA */ | 5926 | #endif /* CONFIG_NUMA */ |
5927 | 5927 | ||
5928 | static const struct cpumask *cpu_cpu_mask(int cpu) | 5928 | static const struct cpumask *cpu_cpu_mask(int cpu) |
5929 | { | 5929 | { |
5930 | return cpumask_of_node(cpu_to_node(cpu)); | 5930 | return cpumask_of_node(cpu_to_node(cpu)); |
5931 | } | 5931 | } |
5932 | 5932 | ||
5933 | int sched_smt_power_savings = 0, sched_mc_power_savings = 0; | 5933 | int sched_smt_power_savings = 0, sched_mc_power_savings = 0; |
5934 | 5934 | ||
5935 | struct sd_data { | 5935 | struct sd_data { |
5936 | struct sched_domain **__percpu sd; | 5936 | struct sched_domain **__percpu sd; |
5937 | struct sched_group **__percpu sg; | 5937 | struct sched_group **__percpu sg; |
5938 | struct sched_group_power **__percpu sgp; | 5938 | struct sched_group_power **__percpu sgp; |
5939 | }; | 5939 | }; |
5940 | 5940 | ||
5941 | struct s_data { | 5941 | struct s_data { |
5942 | struct sched_domain ** __percpu sd; | 5942 | struct sched_domain ** __percpu sd; |
5943 | struct root_domain *rd; | 5943 | struct root_domain *rd; |
5944 | }; | 5944 | }; |
5945 | 5945 | ||
5946 | enum s_alloc { | 5946 | enum s_alloc { |
5947 | sa_rootdomain, | 5947 | sa_rootdomain, |
5948 | sa_sd, | 5948 | sa_sd, |
5949 | sa_sd_storage, | 5949 | sa_sd_storage, |
5950 | sa_none, | 5950 | sa_none, |
5951 | }; | 5951 | }; |
5952 | 5952 | ||
5953 | struct sched_domain_topology_level; | 5953 | struct sched_domain_topology_level; |
5954 | 5954 | ||
5955 | typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu); | 5955 | typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu); |
5956 | typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); | 5956 | typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); |
5957 | 5957 | ||
5958 | #define SDTL_OVERLAP 0x01 | 5958 | #define SDTL_OVERLAP 0x01 |
5959 | 5959 | ||
5960 | struct sched_domain_topology_level { | 5960 | struct sched_domain_topology_level { |
5961 | sched_domain_init_f init; | 5961 | sched_domain_init_f init; |
5962 | sched_domain_mask_f mask; | 5962 | sched_domain_mask_f mask; |
5963 | int flags; | 5963 | int flags; |
5964 | struct sd_data data; | 5964 | struct sd_data data; |
5965 | }; | 5965 | }; |
5966 | 5966 | ||
5967 | static int | 5967 | static int |
5968 | build_overlap_sched_groups(struct sched_domain *sd, int cpu) | 5968 | build_overlap_sched_groups(struct sched_domain *sd, int cpu) |
5969 | { | 5969 | { |
5970 | struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; | 5970 | struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; |
5971 | const struct cpumask *span = sched_domain_span(sd); | 5971 | const struct cpumask *span = sched_domain_span(sd); |
5972 | struct cpumask *covered = sched_domains_tmpmask; | 5972 | struct cpumask *covered = sched_domains_tmpmask; |
5973 | struct sd_data *sdd = sd->private; | 5973 | struct sd_data *sdd = sd->private; |
5974 | struct sched_domain *child; | 5974 | struct sched_domain *child; |
5975 | int i; | 5975 | int i; |
5976 | 5976 | ||
5977 | cpumask_clear(covered); | 5977 | cpumask_clear(covered); |
5978 | 5978 | ||
5979 | for_each_cpu(i, span) { | 5979 | for_each_cpu(i, span) { |
5980 | struct cpumask *sg_span; | 5980 | struct cpumask *sg_span; |
5981 | 5981 | ||
5982 | if (cpumask_test_cpu(i, covered)) | 5982 | if (cpumask_test_cpu(i, covered)) |
5983 | continue; | 5983 | continue; |
5984 | 5984 | ||
5985 | sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), | 5985 | sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), |
5986 | GFP_KERNEL, cpu_to_node(cpu)); | 5986 | GFP_KERNEL, cpu_to_node(cpu)); |
5987 | 5987 | ||
5988 | if (!sg) | 5988 | if (!sg) |
5989 | goto fail; | 5989 | goto fail; |
5990 | 5990 | ||
5991 | sg_span = sched_group_cpus(sg); | 5991 | sg_span = sched_group_cpus(sg); |
5992 | 5992 | ||
5993 | child = *per_cpu_ptr(sdd->sd, i); | 5993 | child = *per_cpu_ptr(sdd->sd, i); |
5994 | if (child->child) { | 5994 | if (child->child) { |
5995 | child = child->child; | 5995 | child = child->child; |
5996 | cpumask_copy(sg_span, sched_domain_span(child)); | 5996 | cpumask_copy(sg_span, sched_domain_span(child)); |
5997 | } else | 5997 | } else |
5998 | cpumask_set_cpu(i, sg_span); | 5998 | cpumask_set_cpu(i, sg_span); |
5999 | 5999 | ||
6000 | cpumask_or(covered, covered, sg_span); | 6000 | cpumask_or(covered, covered, sg_span); |
6001 | 6001 | ||
6002 | sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span)); | 6002 | sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span)); |
6003 | atomic_inc(&sg->sgp->ref); | 6003 | atomic_inc(&sg->sgp->ref); |
6004 | 6004 | ||
6005 | if (cpumask_test_cpu(cpu, sg_span)) | 6005 | if (cpumask_test_cpu(cpu, sg_span)) |
6006 | groups = sg; | 6006 | groups = sg; |
6007 | 6007 | ||
6008 | if (!first) | 6008 | if (!first) |
6009 | first = sg; | 6009 | first = sg; |
6010 | if (last) | 6010 | if (last) |
6011 | last->next = sg; | 6011 | last->next = sg; |
6012 | last = sg; | 6012 | last = sg; |
6013 | last->next = first; | 6013 | last->next = first; |
6014 | } | 6014 | } |
6015 | sd->groups = groups; | 6015 | sd->groups = groups; |
6016 | 6016 | ||
6017 | return 0; | 6017 | return 0; |
6018 | 6018 | ||
6019 | fail: | 6019 | fail: |
6020 | free_sched_groups(first, 0); | 6020 | free_sched_groups(first, 0); |
6021 | 6021 | ||
6022 | return -ENOMEM; | 6022 | return -ENOMEM; |
6023 | } | 6023 | } |
6024 | 6024 | ||
6025 | static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) | 6025 | static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) |
6026 | { | 6026 | { |
6027 | struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); | 6027 | struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); |
6028 | struct sched_domain *child = sd->child; | 6028 | struct sched_domain *child = sd->child; |
6029 | 6029 | ||
6030 | if (child) | 6030 | if (child) |
6031 | cpu = cpumask_first(sched_domain_span(child)); | 6031 | cpu = cpumask_first(sched_domain_span(child)); |
6032 | 6032 | ||
6033 | if (sg) { | 6033 | if (sg) { |
6034 | *sg = *per_cpu_ptr(sdd->sg, cpu); | 6034 | *sg = *per_cpu_ptr(sdd->sg, cpu); |
6035 | (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu); | 6035 | (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu); |
6036 | atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */ | 6036 | atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */ |
6037 | } | 6037 | } |
6038 | 6038 | ||
6039 | return cpu; | 6039 | return cpu; |
6040 | } | 6040 | } |
6041 | 6041 | ||
6042 | /* | 6042 | /* |
6043 | * build_sched_groups will build a circular linked list of the groups | 6043 | * build_sched_groups will build a circular linked list of the groups |
6044 | * covered by the given span, and will set each group's ->cpumask correctly, | 6044 | * covered by the given span, and will set each group's ->cpumask correctly, |
6045 | * and ->cpu_power to 0. | 6045 | * and ->cpu_power to 0. |
6046 | * | 6046 | * |
6047 | * Assumes the sched_domain tree is fully constructed | 6047 | * Assumes the sched_domain tree is fully constructed |
6048 | */ | 6048 | */ |
6049 | static int | 6049 | static int |
6050 | build_sched_groups(struct sched_domain *sd, int cpu) | 6050 | build_sched_groups(struct sched_domain *sd, int cpu) |
6051 | { | 6051 | { |
6052 | struct sched_group *first = NULL, *last = NULL; | 6052 | struct sched_group *first = NULL, *last = NULL; |
6053 | struct sd_data *sdd = sd->private; | 6053 | struct sd_data *sdd = sd->private; |
6054 | const struct cpumask *span = sched_domain_span(sd); | 6054 | const struct cpumask *span = sched_domain_span(sd); |
6055 | struct cpumask *covered; | 6055 | struct cpumask *covered; |
6056 | int i; | 6056 | int i; |
6057 | 6057 | ||
6058 | get_group(cpu, sdd, &sd->groups); | 6058 | get_group(cpu, sdd, &sd->groups); |
6059 | atomic_inc(&sd->groups->ref); | 6059 | atomic_inc(&sd->groups->ref); |
6060 | 6060 | ||
6061 | if (cpu != cpumask_first(sched_domain_span(sd))) | 6061 | if (cpu != cpumask_first(sched_domain_span(sd))) |
6062 | return 0; | 6062 | return 0; |
6063 | 6063 | ||
6064 | lockdep_assert_held(&sched_domains_mutex); | 6064 | lockdep_assert_held(&sched_domains_mutex); |
6065 | covered = sched_domains_tmpmask; | 6065 | covered = sched_domains_tmpmask; |
6066 | 6066 | ||
6067 | cpumask_clear(covered); | 6067 | cpumask_clear(covered); |
6068 | 6068 | ||
6069 | for_each_cpu(i, span) { | 6069 | for_each_cpu(i, span) { |
6070 | struct sched_group *sg; | 6070 | struct sched_group *sg; |
6071 | int group = get_group(i, sdd, &sg); | 6071 | int group = get_group(i, sdd, &sg); |
6072 | int j; | 6072 | int j; |
6073 | 6073 | ||
6074 | if (cpumask_test_cpu(i, covered)) | 6074 | if (cpumask_test_cpu(i, covered)) |
6075 | continue; | 6075 | continue; |
6076 | 6076 | ||
6077 | cpumask_clear(sched_group_cpus(sg)); | 6077 | cpumask_clear(sched_group_cpus(sg)); |
6078 | sg->sgp->power = 0; | 6078 | sg->sgp->power = 0; |
6079 | 6079 | ||
6080 | for_each_cpu(j, span) { | 6080 | for_each_cpu(j, span) { |
6081 | if (get_group(j, sdd, NULL) != group) | 6081 | if (get_group(j, sdd, NULL) != group) |
6082 | continue; | 6082 | continue; |
6083 | 6083 | ||
6084 | cpumask_set_cpu(j, covered); | 6084 | cpumask_set_cpu(j, covered); |
6085 | cpumask_set_cpu(j, sched_group_cpus(sg)); | 6085 | cpumask_set_cpu(j, sched_group_cpus(sg)); |
6086 | } | 6086 | } |
6087 | 6087 | ||
6088 | if (!first) | 6088 | if (!first) |
6089 | first = sg; | 6089 | first = sg; |
6090 | if (last) | 6090 | if (last) |
6091 | last->next = sg; | 6091 | last->next = sg; |
6092 | last = sg; | 6092 | last = sg; |
6093 | } | 6093 | } |
6094 | last->next = first; | 6094 | last->next = first; |
6095 | 6095 | ||
6096 | return 0; | 6096 | return 0; |
6097 | } | 6097 | } |
6098 | 6098 | ||
6099 | /* | 6099 | /* |
6100 | * Initialize sched groups cpu_power. | 6100 | * Initialize sched groups cpu_power. |
6101 | * | 6101 | * |
6102 | * cpu_power indicates the capacity of sched group, which is used while | 6102 | * cpu_power indicates the capacity of sched group, which is used while |
6103 | * distributing the load between different sched groups in a sched domain. | 6103 | * distributing the load between different sched groups in a sched domain. |
6104 | * Typically cpu_power for all the groups in a sched domain will be same unless | 6104 | * Typically cpu_power for all the groups in a sched domain will be same unless |
6105 | * there are asymmetries in the topology. If there are asymmetries, group | 6105 | * there are asymmetries in the topology. If there are asymmetries, group |
6106 | * having more cpu_power will pickup more load compared to the group having | 6106 | * having more cpu_power will pickup more load compared to the group having |
6107 | * less cpu_power. | 6107 | * less cpu_power. |
6108 | */ | 6108 | */ |
6109 | static void init_sched_groups_power(int cpu, struct sched_domain *sd) | 6109 | static void init_sched_groups_power(int cpu, struct sched_domain *sd) |
6110 | { | 6110 | { |
6111 | struct sched_group *sg = sd->groups; | 6111 | struct sched_group *sg = sd->groups; |
6112 | 6112 | ||
6113 | WARN_ON(!sd || !sg); | 6113 | WARN_ON(!sd || !sg); |
6114 | 6114 | ||
6115 | do { | 6115 | do { |
6116 | sg->group_weight = cpumask_weight(sched_group_cpus(sg)); | 6116 | sg->group_weight = cpumask_weight(sched_group_cpus(sg)); |
6117 | sg = sg->next; | 6117 | sg = sg->next; |
6118 | } while (sg != sd->groups); | 6118 | } while (sg != sd->groups); |
6119 | 6119 | ||
6120 | if (cpu != group_first_cpu(sg)) | 6120 | if (cpu != group_first_cpu(sg)) |
6121 | return; | 6121 | return; |
6122 | 6122 | ||
6123 | update_group_power(sd, cpu); | 6123 | update_group_power(sd, cpu); |
6124 | atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight); | 6124 | atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight); |
6125 | } | 6125 | } |
6126 | 6126 | ||
6127 | int __weak arch_sd_sibling_asym_packing(void) | 6127 | int __weak arch_sd_sibling_asym_packing(void) |
6128 | { | 6128 | { |
6129 | return 0*SD_ASYM_PACKING; | 6129 | return 0*SD_ASYM_PACKING; |
6130 | } | 6130 | } |
6131 | 6131 | ||
6132 | /* | 6132 | /* |
6133 | * Initializers for schedule domains | 6133 | * Initializers for schedule domains |
6134 | * Non-inlined to reduce accumulated stack pressure in build_sched_domains() | 6134 | * Non-inlined to reduce accumulated stack pressure in build_sched_domains() |
6135 | */ | 6135 | */ |
6136 | 6136 | ||
6137 | #ifdef CONFIG_SCHED_DEBUG | 6137 | #ifdef CONFIG_SCHED_DEBUG |
6138 | # define SD_INIT_NAME(sd, type) sd->name = #type | 6138 | # define SD_INIT_NAME(sd, type) sd->name = #type |
6139 | #else | 6139 | #else |
6140 | # define SD_INIT_NAME(sd, type) do { } while (0) | 6140 | # define SD_INIT_NAME(sd, type) do { } while (0) |
6141 | #endif | 6141 | #endif |
6142 | 6142 | ||
6143 | #define SD_INIT_FUNC(type) \ | 6143 | #define SD_INIT_FUNC(type) \ |
6144 | static noinline struct sched_domain * \ | 6144 | static noinline struct sched_domain * \ |
6145 | sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \ | 6145 | sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \ |
6146 | { \ | 6146 | { \ |
6147 | struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \ | 6147 | struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \ |
6148 | *sd = SD_##type##_INIT; \ | 6148 | *sd = SD_##type##_INIT; \ |
6149 | SD_INIT_NAME(sd, type); \ | 6149 | SD_INIT_NAME(sd, type); \ |
6150 | sd->private = &tl->data; \ | 6150 | sd->private = &tl->data; \ |
6151 | return sd; \ | 6151 | return sd; \ |
6152 | } | 6152 | } |
6153 | 6153 | ||
6154 | SD_INIT_FUNC(CPU) | 6154 | SD_INIT_FUNC(CPU) |
6155 | #ifdef CONFIG_NUMA | 6155 | #ifdef CONFIG_NUMA |
6156 | SD_INIT_FUNC(ALLNODES) | 6156 | SD_INIT_FUNC(ALLNODES) |
6157 | SD_INIT_FUNC(NODE) | 6157 | SD_INIT_FUNC(NODE) |
6158 | #endif | 6158 | #endif |
6159 | #ifdef CONFIG_SCHED_SMT | 6159 | #ifdef CONFIG_SCHED_SMT |
6160 | SD_INIT_FUNC(SIBLING) | 6160 | SD_INIT_FUNC(SIBLING) |
6161 | #endif | 6161 | #endif |
6162 | #ifdef CONFIG_SCHED_MC | 6162 | #ifdef CONFIG_SCHED_MC |
6163 | SD_INIT_FUNC(MC) | 6163 | SD_INIT_FUNC(MC) |
6164 | #endif | 6164 | #endif |
6165 | #ifdef CONFIG_SCHED_BOOK | 6165 | #ifdef CONFIG_SCHED_BOOK |
6166 | SD_INIT_FUNC(BOOK) | 6166 | SD_INIT_FUNC(BOOK) |
6167 | #endif | 6167 | #endif |
6168 | 6168 | ||
6169 | static int default_relax_domain_level = -1; | 6169 | static int default_relax_domain_level = -1; |
6170 | int sched_domain_level_max; | 6170 | int sched_domain_level_max; |
6171 | 6171 | ||
6172 | static int __init setup_relax_domain_level(char *str) | 6172 | static int __init setup_relax_domain_level(char *str) |
6173 | { | 6173 | { |
6174 | unsigned long val; | 6174 | unsigned long val; |
6175 | 6175 | ||
6176 | val = simple_strtoul(str, NULL, 0); | 6176 | val = simple_strtoul(str, NULL, 0); |
6177 | if (val < sched_domain_level_max) | 6177 | if (val < sched_domain_level_max) |
6178 | default_relax_domain_level = val; | 6178 | default_relax_domain_level = val; |
6179 | 6179 | ||
6180 | return 1; | 6180 | return 1; |
6181 | } | 6181 | } |
6182 | __setup("relax_domain_level=", setup_relax_domain_level); | 6182 | __setup("relax_domain_level=", setup_relax_domain_level); |
6183 | 6183 | ||
6184 | static void set_domain_attribute(struct sched_domain *sd, | 6184 | static void set_domain_attribute(struct sched_domain *sd, |
6185 | struct sched_domain_attr *attr) | 6185 | struct sched_domain_attr *attr) |
6186 | { | 6186 | { |
6187 | int request; | 6187 | int request; |
6188 | 6188 | ||
6189 | if (!attr || attr->relax_domain_level < 0) { | 6189 | if (!attr || attr->relax_domain_level < 0) { |
6190 | if (default_relax_domain_level < 0) | 6190 | if (default_relax_domain_level < 0) |
6191 | return; | 6191 | return; |
6192 | else | 6192 | else |
6193 | request = default_relax_domain_level; | 6193 | request = default_relax_domain_level; |
6194 | } else | 6194 | } else |
6195 | request = attr->relax_domain_level; | 6195 | request = attr->relax_domain_level; |
6196 | if (request < sd->level) { | 6196 | if (request < sd->level) { |
6197 | /* turn off idle balance on this domain */ | 6197 | /* turn off idle balance on this domain */ |
6198 | sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); | 6198 | sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); |
6199 | } else { | 6199 | } else { |
6200 | /* turn on idle balance on this domain */ | 6200 | /* turn on idle balance on this domain */ |
6201 | sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); | 6201 | sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); |
6202 | } | 6202 | } |
6203 | } | 6203 | } |
6204 | 6204 | ||
6205 | static void __sdt_free(const struct cpumask *cpu_map); | 6205 | static void __sdt_free(const struct cpumask *cpu_map); |
6206 | static int __sdt_alloc(const struct cpumask *cpu_map); | 6206 | static int __sdt_alloc(const struct cpumask *cpu_map); |
6207 | 6207 | ||
6208 | static void __free_domain_allocs(struct s_data *d, enum s_alloc what, | 6208 | static void __free_domain_allocs(struct s_data *d, enum s_alloc what, |
6209 | const struct cpumask *cpu_map) | 6209 | const struct cpumask *cpu_map) |
6210 | { | 6210 | { |
6211 | switch (what) { | 6211 | switch (what) { |
6212 | case sa_rootdomain: | 6212 | case sa_rootdomain: |
6213 | if (!atomic_read(&d->rd->refcount)) | 6213 | if (!atomic_read(&d->rd->refcount)) |
6214 | free_rootdomain(&d->rd->rcu); /* fall through */ | 6214 | free_rootdomain(&d->rd->rcu); /* fall through */ |
6215 | case sa_sd: | 6215 | case sa_sd: |
6216 | free_percpu(d->sd); /* fall through */ | 6216 | free_percpu(d->sd); /* fall through */ |
6217 | case sa_sd_storage: | 6217 | case sa_sd_storage: |
6218 | __sdt_free(cpu_map); /* fall through */ | 6218 | __sdt_free(cpu_map); /* fall through */ |
6219 | case sa_none: | 6219 | case sa_none: |
6220 | break; | 6220 | break; |
6221 | } | 6221 | } |
6222 | } | 6222 | } |
6223 | 6223 | ||
6224 | static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, | 6224 | static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, |
6225 | const struct cpumask *cpu_map) | 6225 | const struct cpumask *cpu_map) |
6226 | { | 6226 | { |
6227 | memset(d, 0, sizeof(*d)); | 6227 | memset(d, 0, sizeof(*d)); |
6228 | 6228 | ||
6229 | if (__sdt_alloc(cpu_map)) | 6229 | if (__sdt_alloc(cpu_map)) |
6230 | return sa_sd_storage; | 6230 | return sa_sd_storage; |
6231 | d->sd = alloc_percpu(struct sched_domain *); | 6231 | d->sd = alloc_percpu(struct sched_domain *); |
6232 | if (!d->sd) | 6232 | if (!d->sd) |
6233 | return sa_sd_storage; | 6233 | return sa_sd_storage; |
6234 | d->rd = alloc_rootdomain(); | 6234 | d->rd = alloc_rootdomain(); |
6235 | if (!d->rd) | 6235 | if (!d->rd) |
6236 | return sa_sd; | 6236 | return sa_sd; |
6237 | return sa_rootdomain; | 6237 | return sa_rootdomain; |
6238 | } | 6238 | } |
6239 | 6239 | ||
6240 | /* | 6240 | /* |
6241 | * NULL the sd_data elements we've used to build the sched_domain and | 6241 | * NULL the sd_data elements we've used to build the sched_domain and |
6242 | * sched_group structure so that the subsequent __free_domain_allocs() | 6242 | * sched_group structure so that the subsequent __free_domain_allocs() |
6243 | * will not free the data we're using. | 6243 | * will not free the data we're using. |
6244 | */ | 6244 | */ |
6245 | static void claim_allocations(int cpu, struct sched_domain *sd) | 6245 | static void claim_allocations(int cpu, struct sched_domain *sd) |
6246 | { | 6246 | { |
6247 | struct sd_data *sdd = sd->private; | 6247 | struct sd_data *sdd = sd->private; |
6248 | 6248 | ||
6249 | WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); | 6249 | WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); |
6250 | *per_cpu_ptr(sdd->sd, cpu) = NULL; | 6250 | *per_cpu_ptr(sdd->sd, cpu) = NULL; |
6251 | 6251 | ||
6252 | if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) | 6252 | if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) |
6253 | *per_cpu_ptr(sdd->sg, cpu) = NULL; | 6253 | *per_cpu_ptr(sdd->sg, cpu) = NULL; |
6254 | 6254 | ||
6255 | if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref)) | 6255 | if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref)) |
6256 | *per_cpu_ptr(sdd->sgp, cpu) = NULL; | 6256 | *per_cpu_ptr(sdd->sgp, cpu) = NULL; |
6257 | } | 6257 | } |
6258 | 6258 | ||
6259 | #ifdef CONFIG_SCHED_SMT | 6259 | #ifdef CONFIG_SCHED_SMT |
6260 | static const struct cpumask *cpu_smt_mask(int cpu) | 6260 | static const struct cpumask *cpu_smt_mask(int cpu) |
6261 | { | 6261 | { |
6262 | return topology_thread_cpumask(cpu); | 6262 | return topology_thread_cpumask(cpu); |
6263 | } | 6263 | } |
6264 | #endif | 6264 | #endif |
6265 | 6265 | ||
6266 | /* | 6266 | /* |
6267 | * Topology list, bottom-up. | 6267 | * Topology list, bottom-up. |
6268 | */ | 6268 | */ |
6269 | static struct sched_domain_topology_level default_topology[] = { | 6269 | static struct sched_domain_topology_level default_topology[] = { |
6270 | #ifdef CONFIG_SCHED_SMT | 6270 | #ifdef CONFIG_SCHED_SMT |
6271 | { sd_init_SIBLING, cpu_smt_mask, }, | 6271 | { sd_init_SIBLING, cpu_smt_mask, }, |
6272 | #endif | 6272 | #endif |
6273 | #ifdef CONFIG_SCHED_MC | 6273 | #ifdef CONFIG_SCHED_MC |
6274 | { sd_init_MC, cpu_coregroup_mask, }, | 6274 | { sd_init_MC, cpu_coregroup_mask, }, |
6275 | #endif | 6275 | #endif |
6276 | #ifdef CONFIG_SCHED_BOOK | 6276 | #ifdef CONFIG_SCHED_BOOK |
6277 | { sd_init_BOOK, cpu_book_mask, }, | 6277 | { sd_init_BOOK, cpu_book_mask, }, |
6278 | #endif | 6278 | #endif |
6279 | { sd_init_CPU, cpu_cpu_mask, }, | 6279 | { sd_init_CPU, cpu_cpu_mask, }, |
6280 | #ifdef CONFIG_NUMA | 6280 | #ifdef CONFIG_NUMA |
6281 | { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, }, | 6281 | { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, }, |
6282 | { sd_init_ALLNODES, cpu_allnodes_mask, }, | 6282 | { sd_init_ALLNODES, cpu_allnodes_mask, }, |
6283 | #endif | 6283 | #endif |
6284 | { NULL, }, | 6284 | { NULL, }, |
6285 | }; | 6285 | }; |
6286 | 6286 | ||
6287 | static struct sched_domain_topology_level *sched_domain_topology = default_topology; | 6287 | static struct sched_domain_topology_level *sched_domain_topology = default_topology; |
6288 | 6288 | ||
6289 | static int __sdt_alloc(const struct cpumask *cpu_map) | 6289 | static int __sdt_alloc(const struct cpumask *cpu_map) |
6290 | { | 6290 | { |
6291 | struct sched_domain_topology_level *tl; | 6291 | struct sched_domain_topology_level *tl; |
6292 | int j; | 6292 | int j; |
6293 | 6293 | ||
6294 | for (tl = sched_domain_topology; tl->init; tl++) { | 6294 | for (tl = sched_domain_topology; tl->init; tl++) { |
6295 | struct sd_data *sdd = &tl->data; | 6295 | struct sd_data *sdd = &tl->data; |
6296 | 6296 | ||
6297 | sdd->sd = alloc_percpu(struct sched_domain *); | 6297 | sdd->sd = alloc_percpu(struct sched_domain *); |
6298 | if (!sdd->sd) | 6298 | if (!sdd->sd) |
6299 | return -ENOMEM; | 6299 | return -ENOMEM; |
6300 | 6300 | ||
6301 | sdd->sg = alloc_percpu(struct sched_group *); | 6301 | sdd->sg = alloc_percpu(struct sched_group *); |
6302 | if (!sdd->sg) | 6302 | if (!sdd->sg) |
6303 | return -ENOMEM; | 6303 | return -ENOMEM; |
6304 | 6304 | ||
6305 | sdd->sgp = alloc_percpu(struct sched_group_power *); | 6305 | sdd->sgp = alloc_percpu(struct sched_group_power *); |
6306 | if (!sdd->sgp) | 6306 | if (!sdd->sgp) |
6307 | return -ENOMEM; | 6307 | return -ENOMEM; |
6308 | 6308 | ||
6309 | for_each_cpu(j, cpu_map) { | 6309 | for_each_cpu(j, cpu_map) { |
6310 | struct sched_domain *sd; | 6310 | struct sched_domain *sd; |
6311 | struct sched_group *sg; | 6311 | struct sched_group *sg; |
6312 | struct sched_group_power *sgp; | 6312 | struct sched_group_power *sgp; |
6313 | 6313 | ||
6314 | sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), | 6314 | sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), |
6315 | GFP_KERNEL, cpu_to_node(j)); | 6315 | GFP_KERNEL, cpu_to_node(j)); |
6316 | if (!sd) | 6316 | if (!sd) |
6317 | return -ENOMEM; | 6317 | return -ENOMEM; |
6318 | 6318 | ||
6319 | *per_cpu_ptr(sdd->sd, j) = sd; | 6319 | *per_cpu_ptr(sdd->sd, j) = sd; |
6320 | 6320 | ||
6321 | sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), | 6321 | sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), |
6322 | GFP_KERNEL, cpu_to_node(j)); | 6322 | GFP_KERNEL, cpu_to_node(j)); |
6323 | if (!sg) | 6323 | if (!sg) |
6324 | return -ENOMEM; | 6324 | return -ENOMEM; |
6325 | 6325 | ||
6326 | *per_cpu_ptr(sdd->sg, j) = sg; | 6326 | *per_cpu_ptr(sdd->sg, j) = sg; |
6327 | 6327 | ||
6328 | sgp = kzalloc_node(sizeof(struct sched_group_power), | 6328 | sgp = kzalloc_node(sizeof(struct sched_group_power), |
6329 | GFP_KERNEL, cpu_to_node(j)); | 6329 | GFP_KERNEL, cpu_to_node(j)); |
6330 | if (!sgp) | 6330 | if (!sgp) |
6331 | return -ENOMEM; | 6331 | return -ENOMEM; |
6332 | 6332 | ||
6333 | *per_cpu_ptr(sdd->sgp, j) = sgp; | 6333 | *per_cpu_ptr(sdd->sgp, j) = sgp; |
6334 | } | 6334 | } |
6335 | } | 6335 | } |
6336 | 6336 | ||
6337 | return 0; | 6337 | return 0; |
6338 | } | 6338 | } |
6339 | 6339 | ||
6340 | static void __sdt_free(const struct cpumask *cpu_map) | 6340 | static void __sdt_free(const struct cpumask *cpu_map) |
6341 | { | 6341 | { |
6342 | struct sched_domain_topology_level *tl; | 6342 | struct sched_domain_topology_level *tl; |
6343 | int j; | 6343 | int j; |
6344 | 6344 | ||
6345 | for (tl = sched_domain_topology; tl->init; tl++) { | 6345 | for (tl = sched_domain_topology; tl->init; tl++) { |
6346 | struct sd_data *sdd = &tl->data; | 6346 | struct sd_data *sdd = &tl->data; |
6347 | 6347 | ||
6348 | for_each_cpu(j, cpu_map) { | 6348 | for_each_cpu(j, cpu_map) { |
6349 | struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j); | 6349 | struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j); |
6350 | if (sd && (sd->flags & SD_OVERLAP)) | 6350 | if (sd && (sd->flags & SD_OVERLAP)) |
6351 | free_sched_groups(sd->groups, 0); | 6351 | free_sched_groups(sd->groups, 0); |
6352 | kfree(*per_cpu_ptr(sdd->sd, j)); | 6352 | kfree(*per_cpu_ptr(sdd->sd, j)); |
6353 | kfree(*per_cpu_ptr(sdd->sg, j)); | 6353 | kfree(*per_cpu_ptr(sdd->sg, j)); |
6354 | kfree(*per_cpu_ptr(sdd->sgp, j)); | 6354 | kfree(*per_cpu_ptr(sdd->sgp, j)); |
6355 | } | 6355 | } |
6356 | free_percpu(sdd->sd); | 6356 | free_percpu(sdd->sd); |
6357 | free_percpu(sdd->sg); | 6357 | free_percpu(sdd->sg); |
6358 | free_percpu(sdd->sgp); | 6358 | free_percpu(sdd->sgp); |
6359 | } | 6359 | } |
6360 | } | 6360 | } |
6361 | 6361 | ||
6362 | struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, | 6362 | struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, |
6363 | struct s_data *d, const struct cpumask *cpu_map, | 6363 | struct s_data *d, const struct cpumask *cpu_map, |
6364 | struct sched_domain_attr *attr, struct sched_domain *child, | 6364 | struct sched_domain_attr *attr, struct sched_domain *child, |
6365 | int cpu) | 6365 | int cpu) |
6366 | { | 6366 | { |
6367 | struct sched_domain *sd = tl->init(tl, cpu); | 6367 | struct sched_domain *sd = tl->init(tl, cpu); |
6368 | if (!sd) | 6368 | if (!sd) |
6369 | return child; | 6369 | return child; |
6370 | 6370 | ||
6371 | set_domain_attribute(sd, attr); | 6371 | set_domain_attribute(sd, attr); |
6372 | cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); | 6372 | cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); |
6373 | if (child) { | 6373 | if (child) { |
6374 | sd->level = child->level + 1; | 6374 | sd->level = child->level + 1; |
6375 | sched_domain_level_max = max(sched_domain_level_max, sd->level); | 6375 | sched_domain_level_max = max(sched_domain_level_max, sd->level); |
6376 | child->parent = sd; | 6376 | child->parent = sd; |
6377 | } | 6377 | } |
6378 | sd->child = child; | 6378 | sd->child = child; |
6379 | 6379 | ||
6380 | return sd; | 6380 | return sd; |
6381 | } | 6381 | } |
6382 | 6382 | ||
6383 | /* | 6383 | /* |
6384 | * Build sched domains for a given set of cpus and attach the sched domains | 6384 | * Build sched domains for a given set of cpus and attach the sched domains |
6385 | * to the individual cpus | 6385 | * to the individual cpus |
6386 | */ | 6386 | */ |
6387 | static int build_sched_domains(const struct cpumask *cpu_map, | 6387 | static int build_sched_domains(const struct cpumask *cpu_map, |
6388 | struct sched_domain_attr *attr) | 6388 | struct sched_domain_attr *attr) |
6389 | { | 6389 | { |
6390 | enum s_alloc alloc_state = sa_none; | 6390 | enum s_alloc alloc_state = sa_none; |
6391 | struct sched_domain *sd; | 6391 | struct sched_domain *sd; |
6392 | struct s_data d; | 6392 | struct s_data d; |
6393 | int i, ret = -ENOMEM; | 6393 | int i, ret = -ENOMEM; |
6394 | 6394 | ||
6395 | alloc_state = __visit_domain_allocation_hell(&d, cpu_map); | 6395 | alloc_state = __visit_domain_allocation_hell(&d, cpu_map); |
6396 | if (alloc_state != sa_rootdomain) | 6396 | if (alloc_state != sa_rootdomain) |
6397 | goto error; | 6397 | goto error; |
6398 | 6398 | ||
6399 | /* Set up domains for cpus specified by the cpu_map. */ | 6399 | /* Set up domains for cpus specified by the cpu_map. */ |
6400 | for_each_cpu(i, cpu_map) { | 6400 | for_each_cpu(i, cpu_map) { |
6401 | struct sched_domain_topology_level *tl; | 6401 | struct sched_domain_topology_level *tl; |
6402 | 6402 | ||
6403 | sd = NULL; | 6403 | sd = NULL; |
6404 | for (tl = sched_domain_topology; tl->init; tl++) { | 6404 | for (tl = sched_domain_topology; tl->init; tl++) { |
6405 | sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i); | 6405 | sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i); |
6406 | if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) | 6406 | if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) |
6407 | sd->flags |= SD_OVERLAP; | 6407 | sd->flags |= SD_OVERLAP; |
6408 | if (cpumask_equal(cpu_map, sched_domain_span(sd))) | 6408 | if (cpumask_equal(cpu_map, sched_domain_span(sd))) |
6409 | break; | 6409 | break; |
6410 | } | 6410 | } |
6411 | 6411 | ||
6412 | while (sd->child) | 6412 | while (sd->child) |
6413 | sd = sd->child; | 6413 | sd = sd->child; |
6414 | 6414 | ||
6415 | *per_cpu_ptr(d.sd, i) = sd; | 6415 | *per_cpu_ptr(d.sd, i) = sd; |
6416 | } | 6416 | } |
6417 | 6417 | ||
6418 | /* Build the groups for the domains */ | 6418 | /* Build the groups for the domains */ |
6419 | for_each_cpu(i, cpu_map) { | 6419 | for_each_cpu(i, cpu_map) { |
6420 | for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { | 6420 | for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { |
6421 | sd->span_weight = cpumask_weight(sched_domain_span(sd)); | 6421 | sd->span_weight = cpumask_weight(sched_domain_span(sd)); |
6422 | if (sd->flags & SD_OVERLAP) { | 6422 | if (sd->flags & SD_OVERLAP) { |
6423 | if (build_overlap_sched_groups(sd, i)) | 6423 | if (build_overlap_sched_groups(sd, i)) |
6424 | goto error; | 6424 | goto error; |
6425 | } else { | 6425 | } else { |
6426 | if (build_sched_groups(sd, i)) | 6426 | if (build_sched_groups(sd, i)) |
6427 | goto error; | 6427 | goto error; |
6428 | } | 6428 | } |
6429 | } | 6429 | } |
6430 | } | 6430 | } |
6431 | 6431 | ||
6432 | /* Calculate CPU power for physical packages and nodes */ | 6432 | /* Calculate CPU power for physical packages and nodes */ |
6433 | for (i = nr_cpumask_bits-1; i >= 0; i--) { | 6433 | for (i = nr_cpumask_bits-1; i >= 0; i--) { |
6434 | if (!cpumask_test_cpu(i, cpu_map)) | 6434 | if (!cpumask_test_cpu(i, cpu_map)) |
6435 | continue; | 6435 | continue; |
6436 | 6436 | ||
6437 | for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { | 6437 | for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { |
6438 | claim_allocations(i, sd); | 6438 | claim_allocations(i, sd); |
6439 | init_sched_groups_power(i, sd); | 6439 | init_sched_groups_power(i, sd); |
6440 | } | 6440 | } |
6441 | } | 6441 | } |
6442 | 6442 | ||
6443 | /* Attach the domains */ | 6443 | /* Attach the domains */ |
6444 | rcu_read_lock(); | 6444 | rcu_read_lock(); |
6445 | for_each_cpu(i, cpu_map) { | 6445 | for_each_cpu(i, cpu_map) { |
6446 | sd = *per_cpu_ptr(d.sd, i); | 6446 | sd = *per_cpu_ptr(d.sd, i); |
6447 | cpu_attach_domain(sd, d.rd, i); | 6447 | cpu_attach_domain(sd, d.rd, i); |
6448 | } | 6448 | } |
6449 | rcu_read_unlock(); | 6449 | rcu_read_unlock(); |
6450 | 6450 | ||
6451 | ret = 0; | 6451 | ret = 0; |
6452 | error: | 6452 | error: |
6453 | __free_domain_allocs(&d, alloc_state, cpu_map); | 6453 | __free_domain_allocs(&d, alloc_state, cpu_map); |
6454 | return ret; | 6454 | return ret; |
6455 | } | 6455 | } |
6456 | 6456 | ||
6457 | static cpumask_var_t *doms_cur; /* current sched domains */ | 6457 | static cpumask_var_t *doms_cur; /* current sched domains */ |
6458 | static int ndoms_cur; /* number of sched domains in 'doms_cur' */ | 6458 | static int ndoms_cur; /* number of sched domains in 'doms_cur' */ |
6459 | static struct sched_domain_attr *dattr_cur; | 6459 | static struct sched_domain_attr *dattr_cur; |
6460 | /* attribues of custom domains in 'doms_cur' */ | 6460 | /* attribues of custom domains in 'doms_cur' */ |
6461 | 6461 | ||
6462 | /* | 6462 | /* |
6463 | * Special case: If a kmalloc of a doms_cur partition (array of | 6463 | * Special case: If a kmalloc of a doms_cur partition (array of |
6464 | * cpumask) fails, then fallback to a single sched domain, | 6464 | * cpumask) fails, then fallback to a single sched domain, |
6465 | * as determined by the single cpumask fallback_doms. | 6465 | * as determined by the single cpumask fallback_doms. |
6466 | */ | 6466 | */ |
6467 | static cpumask_var_t fallback_doms; | 6467 | static cpumask_var_t fallback_doms; |
6468 | 6468 | ||
6469 | /* | 6469 | /* |
6470 | * arch_update_cpu_topology lets virtualized architectures update the | 6470 | * arch_update_cpu_topology lets virtualized architectures update the |
6471 | * cpu core maps. It is supposed to return 1 if the topology changed | 6471 | * cpu core maps. It is supposed to return 1 if the topology changed |
6472 | * or 0 if it stayed the same. | 6472 | * or 0 if it stayed the same. |
6473 | */ | 6473 | */ |
6474 | int __attribute__((weak)) arch_update_cpu_topology(void) | 6474 | int __attribute__((weak)) arch_update_cpu_topology(void) |
6475 | { | 6475 | { |
6476 | return 0; | 6476 | return 0; |
6477 | } | 6477 | } |
6478 | 6478 | ||
6479 | cpumask_var_t *alloc_sched_domains(unsigned int ndoms) | 6479 | cpumask_var_t *alloc_sched_domains(unsigned int ndoms) |
6480 | { | 6480 | { |
6481 | int i; | 6481 | int i; |
6482 | cpumask_var_t *doms; | 6482 | cpumask_var_t *doms; |
6483 | 6483 | ||
6484 | doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); | 6484 | doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); |
6485 | if (!doms) | 6485 | if (!doms) |
6486 | return NULL; | 6486 | return NULL; |
6487 | for (i = 0; i < ndoms; i++) { | 6487 | for (i = 0; i < ndoms; i++) { |
6488 | if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { | 6488 | if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { |
6489 | free_sched_domains(doms, i); | 6489 | free_sched_domains(doms, i); |
6490 | return NULL; | 6490 | return NULL; |
6491 | } | 6491 | } |
6492 | } | 6492 | } |
6493 | return doms; | 6493 | return doms; |
6494 | } | 6494 | } |
6495 | 6495 | ||
6496 | void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) | 6496 | void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) |
6497 | { | 6497 | { |
6498 | unsigned int i; | 6498 | unsigned int i; |
6499 | for (i = 0; i < ndoms; i++) | 6499 | for (i = 0; i < ndoms; i++) |
6500 | free_cpumask_var(doms[i]); | 6500 | free_cpumask_var(doms[i]); |
6501 | kfree(doms); | 6501 | kfree(doms); |
6502 | } | 6502 | } |
6503 | 6503 | ||
6504 | /* | 6504 | /* |
6505 | * Set up scheduler domains and groups. Callers must hold the hotplug lock. | 6505 | * Set up scheduler domains and groups. Callers must hold the hotplug lock. |
6506 | * For now this just excludes isolated cpus, but could be used to | 6506 | * For now this just excludes isolated cpus, but could be used to |
6507 | * exclude other special cases in the future. | 6507 | * exclude other special cases in the future. |
6508 | */ | 6508 | */ |
6509 | static int init_sched_domains(const struct cpumask *cpu_map) | 6509 | static int init_sched_domains(const struct cpumask *cpu_map) |
6510 | { | 6510 | { |
6511 | int err; | 6511 | int err; |
6512 | 6512 | ||
6513 | arch_update_cpu_topology(); | 6513 | arch_update_cpu_topology(); |
6514 | ndoms_cur = 1; | 6514 | ndoms_cur = 1; |
6515 | doms_cur = alloc_sched_domains(ndoms_cur); | 6515 | doms_cur = alloc_sched_domains(ndoms_cur); |
6516 | if (!doms_cur) | 6516 | if (!doms_cur) |
6517 | doms_cur = &fallback_doms; | 6517 | doms_cur = &fallback_doms; |
6518 | cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); | 6518 | cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); |
6519 | dattr_cur = NULL; | 6519 | dattr_cur = NULL; |
6520 | err = build_sched_domains(doms_cur[0], NULL); | 6520 | err = build_sched_domains(doms_cur[0], NULL); |
6521 | register_sched_domain_sysctl(); | 6521 | register_sched_domain_sysctl(); |
6522 | 6522 | ||
6523 | return err; | 6523 | return err; |
6524 | } | 6524 | } |
6525 | 6525 | ||
6526 | /* | 6526 | /* |
6527 | * Detach sched domains from a group of cpus specified in cpu_map | 6527 | * Detach sched domains from a group of cpus specified in cpu_map |
6528 | * These cpus will now be attached to the NULL domain | 6528 | * These cpus will now be attached to the NULL domain |
6529 | */ | 6529 | */ |
6530 | static void detach_destroy_domains(const struct cpumask *cpu_map) | 6530 | static void detach_destroy_domains(const struct cpumask *cpu_map) |
6531 | { | 6531 | { |
6532 | int i; | 6532 | int i; |
6533 | 6533 | ||
6534 | rcu_read_lock(); | 6534 | rcu_read_lock(); |
6535 | for_each_cpu(i, cpu_map) | 6535 | for_each_cpu(i, cpu_map) |
6536 | cpu_attach_domain(NULL, &def_root_domain, i); | 6536 | cpu_attach_domain(NULL, &def_root_domain, i); |
6537 | rcu_read_unlock(); | 6537 | rcu_read_unlock(); |
6538 | } | 6538 | } |
6539 | 6539 | ||
6540 | /* handle null as "default" */ | 6540 | /* handle null as "default" */ |
6541 | static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, | 6541 | static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, |
6542 | struct sched_domain_attr *new, int idx_new) | 6542 | struct sched_domain_attr *new, int idx_new) |
6543 | { | 6543 | { |
6544 | struct sched_domain_attr tmp; | 6544 | struct sched_domain_attr tmp; |
6545 | 6545 | ||
6546 | /* fast path */ | 6546 | /* fast path */ |
6547 | if (!new && !cur) | 6547 | if (!new && !cur) |
6548 | return 1; | 6548 | return 1; |
6549 | 6549 | ||
6550 | tmp = SD_ATTR_INIT; | 6550 | tmp = SD_ATTR_INIT; |
6551 | return !memcmp(cur ? (cur + idx_cur) : &tmp, | 6551 | return !memcmp(cur ? (cur + idx_cur) : &tmp, |
6552 | new ? (new + idx_new) : &tmp, | 6552 | new ? (new + idx_new) : &tmp, |
6553 | sizeof(struct sched_domain_attr)); | 6553 | sizeof(struct sched_domain_attr)); |
6554 | } | 6554 | } |
6555 | 6555 | ||
6556 | /* | 6556 | /* |
6557 | * Partition sched domains as specified by the 'ndoms_new' | 6557 | * Partition sched domains as specified by the 'ndoms_new' |
6558 | * cpumasks in the array doms_new[] of cpumasks. This compares | 6558 | * cpumasks in the array doms_new[] of cpumasks. This compares |
6559 | * doms_new[] to the current sched domain partitioning, doms_cur[]. | 6559 | * doms_new[] to the current sched domain partitioning, doms_cur[]. |
6560 | * It destroys each deleted domain and builds each new domain. | 6560 | * It destroys each deleted domain and builds each new domain. |
6561 | * | 6561 | * |
6562 | * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. | 6562 | * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. |
6563 | * The masks don't intersect (don't overlap.) We should setup one | 6563 | * The masks don't intersect (don't overlap.) We should setup one |
6564 | * sched domain for each mask. CPUs not in any of the cpumasks will | 6564 | * sched domain for each mask. CPUs not in any of the cpumasks will |
6565 | * not be load balanced. If the same cpumask appears both in the | 6565 | * not be load balanced. If the same cpumask appears both in the |
6566 | * current 'doms_cur' domains and in the new 'doms_new', we can leave | 6566 | * current 'doms_cur' domains and in the new 'doms_new', we can leave |
6567 | * it as it is. | 6567 | * it as it is. |
6568 | * | 6568 | * |
6569 | * The passed in 'doms_new' should be allocated using | 6569 | * The passed in 'doms_new' should be allocated using |
6570 | * alloc_sched_domains. This routine takes ownership of it and will | 6570 | * alloc_sched_domains. This routine takes ownership of it and will |
6571 | * free_sched_domains it when done with it. If the caller failed the | 6571 | * free_sched_domains it when done with it. If the caller failed the |
6572 | * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, | 6572 | * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, |
6573 | * and partition_sched_domains() will fallback to the single partition | 6573 | * and partition_sched_domains() will fallback to the single partition |
6574 | * 'fallback_doms', it also forces the domains to be rebuilt. | 6574 | * 'fallback_doms', it also forces the domains to be rebuilt. |
6575 | * | 6575 | * |
6576 | * If doms_new == NULL it will be replaced with cpu_online_mask. | 6576 | * If doms_new == NULL it will be replaced with cpu_online_mask. |
6577 | * ndoms_new == 0 is a special case for destroying existing domains, | 6577 | * ndoms_new == 0 is a special case for destroying existing domains, |
6578 | * and it will not create the default domain. | 6578 | * and it will not create the default domain. |
6579 | * | 6579 | * |
6580 | * Call with hotplug lock held | 6580 | * Call with hotplug lock held |
6581 | */ | 6581 | */ |
6582 | void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], | 6582 | void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], |
6583 | struct sched_domain_attr *dattr_new) | 6583 | struct sched_domain_attr *dattr_new) |
6584 | { | 6584 | { |
6585 | int i, j, n; | 6585 | int i, j, n; |
6586 | int new_topology; | 6586 | int new_topology; |
6587 | 6587 | ||
6588 | mutex_lock(&sched_domains_mutex); | 6588 | mutex_lock(&sched_domains_mutex); |
6589 | 6589 | ||
6590 | /* always unregister in case we don't destroy any domains */ | 6590 | /* always unregister in case we don't destroy any domains */ |
6591 | unregister_sched_domain_sysctl(); | 6591 | unregister_sched_domain_sysctl(); |
6592 | 6592 | ||
6593 | /* Let architecture update cpu core mappings. */ | 6593 | /* Let architecture update cpu core mappings. */ |
6594 | new_topology = arch_update_cpu_topology(); | 6594 | new_topology = arch_update_cpu_topology(); |
6595 | 6595 | ||
6596 | n = doms_new ? ndoms_new : 0; | 6596 | n = doms_new ? ndoms_new : 0; |
6597 | 6597 | ||
6598 | /* Destroy deleted domains */ | 6598 | /* Destroy deleted domains */ |
6599 | for (i = 0; i < ndoms_cur; i++) { | 6599 | for (i = 0; i < ndoms_cur; i++) { |
6600 | for (j = 0; j < n && !new_topology; j++) { | 6600 | for (j = 0; j < n && !new_topology; j++) { |
6601 | if (cpumask_equal(doms_cur[i], doms_new[j]) | 6601 | if (cpumask_equal(doms_cur[i], doms_new[j]) |
6602 | && dattrs_equal(dattr_cur, i, dattr_new, j)) | 6602 | && dattrs_equal(dattr_cur, i, dattr_new, j)) |
6603 | goto match1; | 6603 | goto match1; |
6604 | } | 6604 | } |
6605 | /* no match - a current sched domain not in new doms_new[] */ | 6605 | /* no match - a current sched domain not in new doms_new[] */ |
6606 | detach_destroy_domains(doms_cur[i]); | 6606 | detach_destroy_domains(doms_cur[i]); |
6607 | match1: | 6607 | match1: |
6608 | ; | 6608 | ; |
6609 | } | 6609 | } |
6610 | 6610 | ||
6611 | if (doms_new == NULL) { | 6611 | if (doms_new == NULL) { |
6612 | ndoms_cur = 0; | 6612 | ndoms_cur = 0; |
6613 | doms_new = &fallback_doms; | 6613 | doms_new = &fallback_doms; |
6614 | cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); | 6614 | cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); |
6615 | WARN_ON_ONCE(dattr_new); | 6615 | WARN_ON_ONCE(dattr_new); |
6616 | } | 6616 | } |
6617 | 6617 | ||
6618 | /* Build new domains */ | 6618 | /* Build new domains */ |
6619 | for (i = 0; i < ndoms_new; i++) { | 6619 | for (i = 0; i < ndoms_new; i++) { |
6620 | for (j = 0; j < ndoms_cur && !new_topology; j++) { | 6620 | for (j = 0; j < ndoms_cur && !new_topology; j++) { |
6621 | if (cpumask_equal(doms_new[i], doms_cur[j]) | 6621 | if (cpumask_equal(doms_new[i], doms_cur[j]) |
6622 | && dattrs_equal(dattr_new, i, dattr_cur, j)) | 6622 | && dattrs_equal(dattr_new, i, dattr_cur, j)) |
6623 | goto match2; | 6623 | goto match2; |
6624 | } | 6624 | } |
6625 | /* no match - add a new doms_new */ | 6625 | /* no match - add a new doms_new */ |
6626 | build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); | 6626 | build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); |
6627 | match2: | 6627 | match2: |
6628 | ; | 6628 | ; |
6629 | } | 6629 | } |
6630 | 6630 | ||
6631 | /* Remember the new sched domains */ | 6631 | /* Remember the new sched domains */ |
6632 | if (doms_cur != &fallback_doms) | 6632 | if (doms_cur != &fallback_doms) |
6633 | free_sched_domains(doms_cur, ndoms_cur); | 6633 | free_sched_domains(doms_cur, ndoms_cur); |
6634 | kfree(dattr_cur); /* kfree(NULL) is safe */ | 6634 | kfree(dattr_cur); /* kfree(NULL) is safe */ |
6635 | doms_cur = doms_new; | 6635 | doms_cur = doms_new; |
6636 | dattr_cur = dattr_new; | 6636 | dattr_cur = dattr_new; |
6637 | ndoms_cur = ndoms_new; | 6637 | ndoms_cur = ndoms_new; |
6638 | 6638 | ||
6639 | register_sched_domain_sysctl(); | 6639 | register_sched_domain_sysctl(); |
6640 | 6640 | ||
6641 | mutex_unlock(&sched_domains_mutex); | 6641 | mutex_unlock(&sched_domains_mutex); |
6642 | } | 6642 | } |
6643 | 6643 | ||
6644 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | 6644 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) |
6645 | static void reinit_sched_domains(void) | 6645 | static void reinit_sched_domains(void) |
6646 | { | 6646 | { |
6647 | get_online_cpus(); | 6647 | get_online_cpus(); |
6648 | 6648 | ||
6649 | /* Destroy domains first to force the rebuild */ | 6649 | /* Destroy domains first to force the rebuild */ |
6650 | partition_sched_domains(0, NULL, NULL); | 6650 | partition_sched_domains(0, NULL, NULL); |
6651 | 6651 | ||
6652 | rebuild_sched_domains(); | 6652 | rebuild_sched_domains(); |
6653 | put_online_cpus(); | 6653 | put_online_cpus(); |
6654 | } | 6654 | } |
6655 | 6655 | ||
6656 | static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt) | 6656 | static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt) |
6657 | { | 6657 | { |
6658 | unsigned int level = 0; | 6658 | unsigned int level = 0; |
6659 | 6659 | ||
6660 | if (sscanf(buf, "%u", &level) != 1) | 6660 | if (sscanf(buf, "%u", &level) != 1) |
6661 | return -EINVAL; | 6661 | return -EINVAL; |
6662 | 6662 | ||
6663 | /* | 6663 | /* |
6664 | * level is always be positive so don't check for | 6664 | * level is always be positive so don't check for |
6665 | * level < POWERSAVINGS_BALANCE_NONE which is 0 | 6665 | * level < POWERSAVINGS_BALANCE_NONE which is 0 |
6666 | * What happens on 0 or 1 byte write, | 6666 | * What happens on 0 or 1 byte write, |
6667 | * need to check for count as well? | 6667 | * need to check for count as well? |
6668 | */ | 6668 | */ |
6669 | 6669 | ||
6670 | if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS) | 6670 | if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS) |
6671 | return -EINVAL; | 6671 | return -EINVAL; |
6672 | 6672 | ||
6673 | if (smt) | 6673 | if (smt) |
6674 | sched_smt_power_savings = level; | 6674 | sched_smt_power_savings = level; |
6675 | else | 6675 | else |
6676 | sched_mc_power_savings = level; | 6676 | sched_mc_power_savings = level; |
6677 | 6677 | ||
6678 | reinit_sched_domains(); | 6678 | reinit_sched_domains(); |
6679 | 6679 | ||
6680 | return count; | 6680 | return count; |
6681 | } | 6681 | } |
6682 | 6682 | ||
6683 | #ifdef CONFIG_SCHED_MC | 6683 | #ifdef CONFIG_SCHED_MC |
6684 | static ssize_t sched_mc_power_savings_show(struct device *dev, | 6684 | static ssize_t sched_mc_power_savings_show(struct device *dev, |
6685 | struct device_attribute *attr, | 6685 | struct device_attribute *attr, |
6686 | char *buf) | 6686 | char *buf) |
6687 | { | 6687 | { |
6688 | return sprintf(buf, "%u\n", sched_mc_power_savings); | 6688 | return sprintf(buf, "%u\n", sched_mc_power_savings); |
6689 | } | 6689 | } |
6690 | static ssize_t sched_mc_power_savings_store(struct device *dev, | 6690 | static ssize_t sched_mc_power_savings_store(struct device *dev, |
6691 | struct device_attribute *attr, | 6691 | struct device_attribute *attr, |
6692 | const char *buf, size_t count) | 6692 | const char *buf, size_t count) |
6693 | { | 6693 | { |
6694 | return sched_power_savings_store(buf, count, 0); | 6694 | return sched_power_savings_store(buf, count, 0); |
6695 | } | 6695 | } |
6696 | static DEVICE_ATTR(sched_mc_power_savings, 0644, | 6696 | static DEVICE_ATTR(sched_mc_power_savings, 0644, |
6697 | sched_mc_power_savings_show, | 6697 | sched_mc_power_savings_show, |
6698 | sched_mc_power_savings_store); | 6698 | sched_mc_power_savings_store); |
6699 | #endif | 6699 | #endif |
6700 | 6700 | ||
6701 | #ifdef CONFIG_SCHED_SMT | 6701 | #ifdef CONFIG_SCHED_SMT |
6702 | static ssize_t sched_smt_power_savings_show(struct device *dev, | 6702 | static ssize_t sched_smt_power_savings_show(struct device *dev, |
6703 | struct device_attribute *attr, | 6703 | struct device_attribute *attr, |
6704 | char *buf) | 6704 | char *buf) |
6705 | { | 6705 | { |
6706 | return sprintf(buf, "%u\n", sched_smt_power_savings); | 6706 | return sprintf(buf, "%u\n", sched_smt_power_savings); |
6707 | } | 6707 | } |
6708 | static ssize_t sched_smt_power_savings_store(struct device *dev, | 6708 | static ssize_t sched_smt_power_savings_store(struct device *dev, |
6709 | struct device_attribute *attr, | 6709 | struct device_attribute *attr, |
6710 | const char *buf, size_t count) | 6710 | const char *buf, size_t count) |
6711 | { | 6711 | { |
6712 | return sched_power_savings_store(buf, count, 1); | 6712 | return sched_power_savings_store(buf, count, 1); |
6713 | } | 6713 | } |
6714 | static DEVICE_ATTR(sched_smt_power_savings, 0644, | 6714 | static DEVICE_ATTR(sched_smt_power_savings, 0644, |
6715 | sched_smt_power_savings_show, | 6715 | sched_smt_power_savings_show, |
6716 | sched_smt_power_savings_store); | 6716 | sched_smt_power_savings_store); |
6717 | #endif | 6717 | #endif |
6718 | 6718 | ||
6719 | int __init sched_create_sysfs_power_savings_entries(struct device *dev) | 6719 | int __init sched_create_sysfs_power_savings_entries(struct device *dev) |
6720 | { | 6720 | { |
6721 | int err = 0; | 6721 | int err = 0; |
6722 | 6722 | ||
6723 | #ifdef CONFIG_SCHED_SMT | 6723 | #ifdef CONFIG_SCHED_SMT |
6724 | if (smt_capable()) | 6724 | if (smt_capable()) |
6725 | err = device_create_file(dev, &dev_attr_sched_smt_power_savings); | 6725 | err = device_create_file(dev, &dev_attr_sched_smt_power_savings); |
6726 | #endif | 6726 | #endif |
6727 | #ifdef CONFIG_SCHED_MC | 6727 | #ifdef CONFIG_SCHED_MC |
6728 | if (!err && mc_capable()) | 6728 | if (!err && mc_capable()) |
6729 | err = device_create_file(dev, &dev_attr_sched_mc_power_savings); | 6729 | err = device_create_file(dev, &dev_attr_sched_mc_power_savings); |
6730 | #endif | 6730 | #endif |
6731 | return err; | 6731 | return err; |
6732 | } | 6732 | } |
6733 | #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | 6733 | #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ |
6734 | 6734 | ||
6735 | /* | 6735 | /* |
6736 | * Update cpusets according to cpu_active mask. If cpusets are | 6736 | * Update cpusets according to cpu_active mask. If cpusets are |
6737 | * disabled, cpuset_update_active_cpus() becomes a simple wrapper | 6737 | * disabled, cpuset_update_active_cpus() becomes a simple wrapper |
6738 | * around partition_sched_domains(). | 6738 | * around partition_sched_domains(). |
6739 | */ | 6739 | */ |
6740 | static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, | 6740 | static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, |
6741 | void *hcpu) | 6741 | void *hcpu) |
6742 | { | 6742 | { |
6743 | switch (action & ~CPU_TASKS_FROZEN) { | 6743 | switch (action & ~CPU_TASKS_FROZEN) { |
6744 | case CPU_ONLINE: | 6744 | case CPU_ONLINE: |
6745 | case CPU_DOWN_FAILED: | 6745 | case CPU_DOWN_FAILED: |
6746 | cpuset_update_active_cpus(); | 6746 | cpuset_update_active_cpus(); |
6747 | return NOTIFY_OK; | 6747 | return NOTIFY_OK; |
6748 | default: | 6748 | default: |
6749 | return NOTIFY_DONE; | 6749 | return NOTIFY_DONE; |
6750 | } | 6750 | } |
6751 | } | 6751 | } |
6752 | 6752 | ||
6753 | static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, | 6753 | static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, |
6754 | void *hcpu) | 6754 | void *hcpu) |
6755 | { | 6755 | { |
6756 | switch (action & ~CPU_TASKS_FROZEN) { | 6756 | switch (action & ~CPU_TASKS_FROZEN) { |
6757 | case CPU_DOWN_PREPARE: | 6757 | case CPU_DOWN_PREPARE: |
6758 | cpuset_update_active_cpus(); | 6758 | cpuset_update_active_cpus(); |
6759 | return NOTIFY_OK; | 6759 | return NOTIFY_OK; |
6760 | default: | 6760 | default: |
6761 | return NOTIFY_DONE; | 6761 | return NOTIFY_DONE; |
6762 | } | 6762 | } |
6763 | } | 6763 | } |
6764 | 6764 | ||
6765 | void __init sched_init_smp(void) | 6765 | void __init sched_init_smp(void) |
6766 | { | 6766 | { |
6767 | cpumask_var_t non_isolated_cpus; | 6767 | cpumask_var_t non_isolated_cpus; |
6768 | 6768 | ||
6769 | alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); | 6769 | alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); |
6770 | alloc_cpumask_var(&fallback_doms, GFP_KERNEL); | 6770 | alloc_cpumask_var(&fallback_doms, GFP_KERNEL); |
6771 | 6771 | ||
6772 | get_online_cpus(); | 6772 | get_online_cpus(); |
6773 | mutex_lock(&sched_domains_mutex); | 6773 | mutex_lock(&sched_domains_mutex); |
6774 | init_sched_domains(cpu_active_mask); | 6774 | init_sched_domains(cpu_active_mask); |
6775 | cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); | 6775 | cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); |
6776 | if (cpumask_empty(non_isolated_cpus)) | 6776 | if (cpumask_empty(non_isolated_cpus)) |
6777 | cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); | 6777 | cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); |
6778 | mutex_unlock(&sched_domains_mutex); | 6778 | mutex_unlock(&sched_domains_mutex); |
6779 | put_online_cpus(); | 6779 | put_online_cpus(); |
6780 | 6780 | ||
6781 | hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); | 6781 | hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); |
6782 | hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); | 6782 | hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); |
6783 | 6783 | ||
6784 | /* RT runtime code needs to handle some hotplug events */ | 6784 | /* RT runtime code needs to handle some hotplug events */ |
6785 | hotcpu_notifier(update_runtime, 0); | 6785 | hotcpu_notifier(update_runtime, 0); |
6786 | 6786 | ||
6787 | init_hrtick(); | 6787 | init_hrtick(); |
6788 | 6788 | ||
6789 | /* Move init over to a non-isolated CPU */ | 6789 | /* Move init over to a non-isolated CPU */ |
6790 | if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) | 6790 | if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) |
6791 | BUG(); | 6791 | BUG(); |
6792 | sched_init_granularity(); | 6792 | sched_init_granularity(); |
6793 | free_cpumask_var(non_isolated_cpus); | 6793 | free_cpumask_var(non_isolated_cpus); |
6794 | 6794 | ||
6795 | init_sched_rt_class(); | 6795 | init_sched_rt_class(); |
6796 | } | 6796 | } |
6797 | #else | 6797 | #else |
6798 | void __init sched_init_smp(void) | 6798 | void __init sched_init_smp(void) |
6799 | { | 6799 | { |
6800 | sched_init_granularity(); | 6800 | sched_init_granularity(); |
6801 | } | 6801 | } |
6802 | #endif /* CONFIG_SMP */ | 6802 | #endif /* CONFIG_SMP */ |
6803 | 6803 | ||
6804 | const_debug unsigned int sysctl_timer_migration = 1; | 6804 | const_debug unsigned int sysctl_timer_migration = 1; |
6805 | 6805 | ||
6806 | int in_sched_functions(unsigned long addr) | 6806 | int in_sched_functions(unsigned long addr) |
6807 | { | 6807 | { |
6808 | return in_lock_functions(addr) || | 6808 | return in_lock_functions(addr) || |
6809 | (addr >= (unsigned long)__sched_text_start | 6809 | (addr >= (unsigned long)__sched_text_start |
6810 | && addr < (unsigned long)__sched_text_end); | 6810 | && addr < (unsigned long)__sched_text_end); |
6811 | } | 6811 | } |
6812 | 6812 | ||
6813 | #ifdef CONFIG_CGROUP_SCHED | 6813 | #ifdef CONFIG_CGROUP_SCHED |
6814 | struct task_group root_task_group; | 6814 | struct task_group root_task_group; |
6815 | #endif | 6815 | #endif |
6816 | 6816 | ||
6817 | DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask); | 6817 | DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask); |
6818 | 6818 | ||
6819 | void __init sched_init(void) | 6819 | void __init sched_init(void) |
6820 | { | 6820 | { |
6821 | int i, j; | 6821 | int i, j; |
6822 | unsigned long alloc_size = 0, ptr; | 6822 | unsigned long alloc_size = 0, ptr; |
6823 | 6823 | ||
6824 | #ifdef CONFIG_FAIR_GROUP_SCHED | 6824 | #ifdef CONFIG_FAIR_GROUP_SCHED |
6825 | alloc_size += 2 * nr_cpu_ids * sizeof(void **); | 6825 | alloc_size += 2 * nr_cpu_ids * sizeof(void **); |
6826 | #endif | 6826 | #endif |
6827 | #ifdef CONFIG_RT_GROUP_SCHED | 6827 | #ifdef CONFIG_RT_GROUP_SCHED |
6828 | alloc_size += 2 * nr_cpu_ids * sizeof(void **); | 6828 | alloc_size += 2 * nr_cpu_ids * sizeof(void **); |
6829 | #endif | 6829 | #endif |
6830 | #ifdef CONFIG_CPUMASK_OFFSTACK | 6830 | #ifdef CONFIG_CPUMASK_OFFSTACK |
6831 | alloc_size += num_possible_cpus() * cpumask_size(); | 6831 | alloc_size += num_possible_cpus() * cpumask_size(); |
6832 | #endif | 6832 | #endif |
6833 | if (alloc_size) { | 6833 | if (alloc_size) { |
6834 | ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); | 6834 | ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); |
6835 | 6835 | ||
6836 | #ifdef CONFIG_FAIR_GROUP_SCHED | 6836 | #ifdef CONFIG_FAIR_GROUP_SCHED |
6837 | root_task_group.se = (struct sched_entity **)ptr; | 6837 | root_task_group.se = (struct sched_entity **)ptr; |
6838 | ptr += nr_cpu_ids * sizeof(void **); | 6838 | ptr += nr_cpu_ids * sizeof(void **); |
6839 | 6839 | ||
6840 | root_task_group.cfs_rq = (struct cfs_rq **)ptr; | 6840 | root_task_group.cfs_rq = (struct cfs_rq **)ptr; |
6841 | ptr += nr_cpu_ids * sizeof(void **); | 6841 | ptr += nr_cpu_ids * sizeof(void **); |
6842 | 6842 | ||
6843 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 6843 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
6844 | #ifdef CONFIG_RT_GROUP_SCHED | 6844 | #ifdef CONFIG_RT_GROUP_SCHED |
6845 | root_task_group.rt_se = (struct sched_rt_entity **)ptr; | 6845 | root_task_group.rt_se = (struct sched_rt_entity **)ptr; |
6846 | ptr += nr_cpu_ids * sizeof(void **); | 6846 | ptr += nr_cpu_ids * sizeof(void **); |
6847 | 6847 | ||
6848 | root_task_group.rt_rq = (struct rt_rq **)ptr; | 6848 | root_task_group.rt_rq = (struct rt_rq **)ptr; |
6849 | ptr += nr_cpu_ids * sizeof(void **); | 6849 | ptr += nr_cpu_ids * sizeof(void **); |
6850 | 6850 | ||
6851 | #endif /* CONFIG_RT_GROUP_SCHED */ | 6851 | #endif /* CONFIG_RT_GROUP_SCHED */ |
6852 | #ifdef CONFIG_CPUMASK_OFFSTACK | 6852 | #ifdef CONFIG_CPUMASK_OFFSTACK |
6853 | for_each_possible_cpu(i) { | 6853 | for_each_possible_cpu(i) { |
6854 | per_cpu(load_balance_tmpmask, i) = (void *)ptr; | 6854 | per_cpu(load_balance_tmpmask, i) = (void *)ptr; |
6855 | ptr += cpumask_size(); | 6855 | ptr += cpumask_size(); |
6856 | } | 6856 | } |
6857 | #endif /* CONFIG_CPUMASK_OFFSTACK */ | 6857 | #endif /* CONFIG_CPUMASK_OFFSTACK */ |
6858 | } | 6858 | } |
6859 | 6859 | ||
6860 | #ifdef CONFIG_SMP | 6860 | #ifdef CONFIG_SMP |
6861 | init_defrootdomain(); | 6861 | init_defrootdomain(); |
6862 | #endif | 6862 | #endif |
6863 | 6863 | ||
6864 | init_rt_bandwidth(&def_rt_bandwidth, | 6864 | init_rt_bandwidth(&def_rt_bandwidth, |
6865 | global_rt_period(), global_rt_runtime()); | 6865 | global_rt_period(), global_rt_runtime()); |
6866 | 6866 | ||
6867 | #ifdef CONFIG_RT_GROUP_SCHED | 6867 | #ifdef CONFIG_RT_GROUP_SCHED |
6868 | init_rt_bandwidth(&root_task_group.rt_bandwidth, | 6868 | init_rt_bandwidth(&root_task_group.rt_bandwidth, |
6869 | global_rt_period(), global_rt_runtime()); | 6869 | global_rt_period(), global_rt_runtime()); |
6870 | #endif /* CONFIG_RT_GROUP_SCHED */ | 6870 | #endif /* CONFIG_RT_GROUP_SCHED */ |
6871 | 6871 | ||
6872 | #ifdef CONFIG_CGROUP_SCHED | 6872 | #ifdef CONFIG_CGROUP_SCHED |
6873 | list_add(&root_task_group.list, &task_groups); | 6873 | list_add(&root_task_group.list, &task_groups); |
6874 | INIT_LIST_HEAD(&root_task_group.children); | 6874 | INIT_LIST_HEAD(&root_task_group.children); |
6875 | INIT_LIST_HEAD(&root_task_group.siblings); | 6875 | INIT_LIST_HEAD(&root_task_group.siblings); |
6876 | autogroup_init(&init_task); | 6876 | autogroup_init(&init_task); |
6877 | 6877 | ||
6878 | #endif /* CONFIG_CGROUP_SCHED */ | 6878 | #endif /* CONFIG_CGROUP_SCHED */ |
6879 | 6879 | ||
6880 | #ifdef CONFIG_CGROUP_CPUACCT | 6880 | #ifdef CONFIG_CGROUP_CPUACCT |
6881 | root_cpuacct.cpustat = &kernel_cpustat; | 6881 | root_cpuacct.cpustat = &kernel_cpustat; |
6882 | root_cpuacct.cpuusage = alloc_percpu(u64); | 6882 | root_cpuacct.cpuusage = alloc_percpu(u64); |
6883 | /* Too early, not expected to fail */ | 6883 | /* Too early, not expected to fail */ |
6884 | BUG_ON(!root_cpuacct.cpuusage); | 6884 | BUG_ON(!root_cpuacct.cpuusage); |
6885 | #endif | 6885 | #endif |
6886 | for_each_possible_cpu(i) { | 6886 | for_each_possible_cpu(i) { |
6887 | struct rq *rq; | 6887 | struct rq *rq; |
6888 | 6888 | ||
6889 | rq = cpu_rq(i); | 6889 | rq = cpu_rq(i); |
6890 | raw_spin_lock_init(&rq->lock); | 6890 | raw_spin_lock_init(&rq->lock); |
6891 | rq->nr_running = 0; | 6891 | rq->nr_running = 0; |
6892 | rq->calc_load_active = 0; | 6892 | rq->calc_load_active = 0; |
6893 | rq->calc_load_update = jiffies + LOAD_FREQ; | 6893 | rq->calc_load_update = jiffies + LOAD_FREQ; |
6894 | init_cfs_rq(&rq->cfs); | 6894 | init_cfs_rq(&rq->cfs); |
6895 | init_rt_rq(&rq->rt, rq); | 6895 | init_rt_rq(&rq->rt, rq); |
6896 | #ifdef CONFIG_FAIR_GROUP_SCHED | 6896 | #ifdef CONFIG_FAIR_GROUP_SCHED |
6897 | root_task_group.shares = ROOT_TASK_GROUP_LOAD; | 6897 | root_task_group.shares = ROOT_TASK_GROUP_LOAD; |
6898 | INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); | 6898 | INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); |
6899 | /* | 6899 | /* |
6900 | * How much cpu bandwidth does root_task_group get? | 6900 | * How much cpu bandwidth does root_task_group get? |
6901 | * | 6901 | * |
6902 | * In case of task-groups formed thr' the cgroup filesystem, it | 6902 | * In case of task-groups formed thr' the cgroup filesystem, it |
6903 | * gets 100% of the cpu resources in the system. This overall | 6903 | * gets 100% of the cpu resources in the system. This overall |
6904 | * system cpu resource is divided among the tasks of | 6904 | * system cpu resource is divided among the tasks of |
6905 | * root_task_group and its child task-groups in a fair manner, | 6905 | * root_task_group and its child task-groups in a fair manner, |
6906 | * based on each entity's (task or task-group's) weight | 6906 | * based on each entity's (task or task-group's) weight |
6907 | * (se->load.weight). | 6907 | * (se->load.weight). |
6908 | * | 6908 | * |
6909 | * In other words, if root_task_group has 10 tasks of weight | 6909 | * In other words, if root_task_group has 10 tasks of weight |
6910 | * 1024) and two child groups A0 and A1 (of weight 1024 each), | 6910 | * 1024) and two child groups A0 and A1 (of weight 1024 each), |
6911 | * then A0's share of the cpu resource is: | 6911 | * then A0's share of the cpu resource is: |
6912 | * | 6912 | * |
6913 | * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% | 6913 | * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% |
6914 | * | 6914 | * |
6915 | * We achieve this by letting root_task_group's tasks sit | 6915 | * We achieve this by letting root_task_group's tasks sit |
6916 | * directly in rq->cfs (i.e root_task_group->se[] = NULL). | 6916 | * directly in rq->cfs (i.e root_task_group->se[] = NULL). |
6917 | */ | 6917 | */ |
6918 | init_cfs_bandwidth(&root_task_group.cfs_bandwidth); | 6918 | init_cfs_bandwidth(&root_task_group.cfs_bandwidth); |
6919 | init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); | 6919 | init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); |
6920 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 6920 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
6921 | 6921 | ||
6922 | rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; | 6922 | rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; |
6923 | #ifdef CONFIG_RT_GROUP_SCHED | 6923 | #ifdef CONFIG_RT_GROUP_SCHED |
6924 | INIT_LIST_HEAD(&rq->leaf_rt_rq_list); | 6924 | INIT_LIST_HEAD(&rq->leaf_rt_rq_list); |
6925 | init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); | 6925 | init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); |
6926 | #endif | 6926 | #endif |
6927 | 6927 | ||
6928 | for (j = 0; j < CPU_LOAD_IDX_MAX; j++) | 6928 | for (j = 0; j < CPU_LOAD_IDX_MAX; j++) |
6929 | rq->cpu_load[j] = 0; | 6929 | rq->cpu_load[j] = 0; |
6930 | 6930 | ||
6931 | rq->last_load_update_tick = jiffies; | 6931 | rq->last_load_update_tick = jiffies; |
6932 | 6932 | ||
6933 | #ifdef CONFIG_SMP | 6933 | #ifdef CONFIG_SMP |
6934 | rq->sd = NULL; | 6934 | rq->sd = NULL; |
6935 | rq->rd = NULL; | 6935 | rq->rd = NULL; |
6936 | rq->cpu_power = SCHED_POWER_SCALE; | 6936 | rq->cpu_power = SCHED_POWER_SCALE; |
6937 | rq->post_schedule = 0; | 6937 | rq->post_schedule = 0; |
6938 | rq->active_balance = 0; | 6938 | rq->active_balance = 0; |
6939 | rq->next_balance = jiffies; | 6939 | rq->next_balance = jiffies; |
6940 | rq->push_cpu = 0; | 6940 | rq->push_cpu = 0; |
6941 | rq->cpu = i; | 6941 | rq->cpu = i; |
6942 | rq->online = 0; | 6942 | rq->online = 0; |
6943 | rq->idle_stamp = 0; | 6943 | rq->idle_stamp = 0; |
6944 | rq->avg_idle = 2*sysctl_sched_migration_cost; | 6944 | rq->avg_idle = 2*sysctl_sched_migration_cost; |
6945 | rq_attach_root(rq, &def_root_domain); | 6945 | rq_attach_root(rq, &def_root_domain); |
6946 | #ifdef CONFIG_NO_HZ | 6946 | #ifdef CONFIG_NO_HZ |
6947 | rq->nohz_flags = 0; | 6947 | rq->nohz_flags = 0; |
6948 | #endif | 6948 | #endif |
6949 | #endif | 6949 | #endif |
6950 | init_rq_hrtick(rq); | 6950 | init_rq_hrtick(rq); |
6951 | atomic_set(&rq->nr_iowait, 0); | 6951 | atomic_set(&rq->nr_iowait, 0); |
6952 | } | 6952 | } |
6953 | 6953 | ||
6954 | set_load_weight(&init_task); | 6954 | set_load_weight(&init_task); |
6955 | 6955 | ||
6956 | #ifdef CONFIG_PREEMPT_NOTIFIERS | 6956 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
6957 | INIT_HLIST_HEAD(&init_task.preempt_notifiers); | 6957 | INIT_HLIST_HEAD(&init_task.preempt_notifiers); |
6958 | #endif | 6958 | #endif |
6959 | 6959 | ||
6960 | #ifdef CONFIG_RT_MUTEXES | 6960 | #ifdef CONFIG_RT_MUTEXES |
6961 | plist_head_init(&init_task.pi_waiters); | 6961 | plist_head_init(&init_task.pi_waiters); |
6962 | #endif | 6962 | #endif |
6963 | 6963 | ||
6964 | /* | 6964 | /* |
6965 | * The boot idle thread does lazy MMU switching as well: | 6965 | * The boot idle thread does lazy MMU switching as well: |
6966 | */ | 6966 | */ |
6967 | atomic_inc(&init_mm.mm_count); | 6967 | atomic_inc(&init_mm.mm_count); |
6968 | enter_lazy_tlb(&init_mm, current); | 6968 | enter_lazy_tlb(&init_mm, current); |
6969 | 6969 | ||
6970 | /* | 6970 | /* |
6971 | * Make us the idle thread. Technically, schedule() should not be | 6971 | * Make us the idle thread. Technically, schedule() should not be |
6972 | * called from this thread, however somewhere below it might be, | 6972 | * called from this thread, however somewhere below it might be, |
6973 | * but because we are the idle thread, we just pick up running again | 6973 | * but because we are the idle thread, we just pick up running again |
6974 | * when this runqueue becomes "idle". | 6974 | * when this runqueue becomes "idle". |
6975 | */ | 6975 | */ |
6976 | init_idle(current, smp_processor_id()); | 6976 | init_idle(current, smp_processor_id()); |
6977 | 6977 | ||
6978 | calc_load_update = jiffies + LOAD_FREQ; | 6978 | calc_load_update = jiffies + LOAD_FREQ; |
6979 | 6979 | ||
6980 | /* | 6980 | /* |
6981 | * During early bootup we pretend to be a normal task: | 6981 | * During early bootup we pretend to be a normal task: |
6982 | */ | 6982 | */ |
6983 | current->sched_class = &fair_sched_class; | 6983 | current->sched_class = &fair_sched_class; |
6984 | 6984 | ||
6985 | #ifdef CONFIG_SMP | 6985 | #ifdef CONFIG_SMP |
6986 | zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); | 6986 | zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); |
6987 | /* May be allocated at isolcpus cmdline parse time */ | 6987 | /* May be allocated at isolcpus cmdline parse time */ |
6988 | if (cpu_isolated_map == NULL) | 6988 | if (cpu_isolated_map == NULL) |
6989 | zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); | 6989 | zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); |
6990 | #endif | 6990 | #endif |
6991 | init_sched_fair_class(); | 6991 | init_sched_fair_class(); |
6992 | 6992 | ||
6993 | scheduler_running = 1; | 6993 | scheduler_running = 1; |
6994 | } | 6994 | } |
6995 | 6995 | ||
6996 | #ifdef CONFIG_DEBUG_ATOMIC_SLEEP | 6996 | #ifdef CONFIG_DEBUG_ATOMIC_SLEEP |
6997 | static inline int preempt_count_equals(int preempt_offset) | 6997 | static inline int preempt_count_equals(int preempt_offset) |
6998 | { | 6998 | { |
6999 | int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); | 6999 | int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); |
7000 | 7000 | ||
7001 | return (nested == preempt_offset); | 7001 | return (nested == preempt_offset); |
7002 | } | 7002 | } |
7003 | 7003 | ||
7004 | void __might_sleep(const char *file, int line, int preempt_offset) | 7004 | void __might_sleep(const char *file, int line, int preempt_offset) |
7005 | { | 7005 | { |
7006 | static unsigned long prev_jiffy; /* ratelimiting */ | 7006 | static unsigned long prev_jiffy; /* ratelimiting */ |
7007 | 7007 | ||
7008 | rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ | 7008 | rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ |
7009 | if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) || | 7009 | if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) || |
7010 | system_state != SYSTEM_RUNNING || oops_in_progress) | 7010 | system_state != SYSTEM_RUNNING || oops_in_progress) |
7011 | return; | 7011 | return; |
7012 | if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) | 7012 | if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) |
7013 | return; | 7013 | return; |
7014 | prev_jiffy = jiffies; | 7014 | prev_jiffy = jiffies; |
7015 | 7015 | ||
7016 | printk(KERN_ERR | 7016 | printk(KERN_ERR |
7017 | "BUG: sleeping function called from invalid context at %s:%d\n", | 7017 | "BUG: sleeping function called from invalid context at %s:%d\n", |
7018 | file, line); | 7018 | file, line); |
7019 | printk(KERN_ERR | 7019 | printk(KERN_ERR |
7020 | "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", | 7020 | "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", |
7021 | in_atomic(), irqs_disabled(), | 7021 | in_atomic(), irqs_disabled(), |
7022 | current->pid, current->comm); | 7022 | current->pid, current->comm); |
7023 | 7023 | ||
7024 | debug_show_held_locks(current); | 7024 | debug_show_held_locks(current); |
7025 | if (irqs_disabled()) | 7025 | if (irqs_disabled()) |
7026 | print_irqtrace_events(current); | 7026 | print_irqtrace_events(current); |
7027 | dump_stack(); | 7027 | dump_stack(); |
7028 | } | 7028 | } |
7029 | EXPORT_SYMBOL(__might_sleep); | 7029 | EXPORT_SYMBOL(__might_sleep); |
7030 | #endif | 7030 | #endif |
7031 | 7031 | ||
7032 | #ifdef CONFIG_MAGIC_SYSRQ | 7032 | #ifdef CONFIG_MAGIC_SYSRQ |
7033 | static void normalize_task(struct rq *rq, struct task_struct *p) | 7033 | static void normalize_task(struct rq *rq, struct task_struct *p) |
7034 | { | 7034 | { |
7035 | const struct sched_class *prev_class = p->sched_class; | 7035 | const struct sched_class *prev_class = p->sched_class; |
7036 | int old_prio = p->prio; | 7036 | int old_prio = p->prio; |
7037 | int on_rq; | 7037 | int on_rq; |
7038 | 7038 | ||
7039 | on_rq = p->on_rq; | 7039 | on_rq = p->on_rq; |
7040 | if (on_rq) | 7040 | if (on_rq) |
7041 | dequeue_task(rq, p, 0); | 7041 | dequeue_task(rq, p, 0); |
7042 | __setscheduler(rq, p, SCHED_NORMAL, 0); | 7042 | __setscheduler(rq, p, SCHED_NORMAL, 0); |
7043 | if (on_rq) { | 7043 | if (on_rq) { |
7044 | enqueue_task(rq, p, 0); | 7044 | enqueue_task(rq, p, 0); |
7045 | resched_task(rq->curr); | 7045 | resched_task(rq->curr); |
7046 | } | 7046 | } |
7047 | 7047 | ||
7048 | check_class_changed(rq, p, prev_class, old_prio); | 7048 | check_class_changed(rq, p, prev_class, old_prio); |
7049 | } | 7049 | } |
7050 | 7050 | ||
7051 | void normalize_rt_tasks(void) | 7051 | void normalize_rt_tasks(void) |
7052 | { | 7052 | { |
7053 | struct task_struct *g, *p; | 7053 | struct task_struct *g, *p; |
7054 | unsigned long flags; | 7054 | unsigned long flags; |
7055 | struct rq *rq; | 7055 | struct rq *rq; |
7056 | 7056 | ||
7057 | read_lock_irqsave(&tasklist_lock, flags); | 7057 | read_lock_irqsave(&tasklist_lock, flags); |
7058 | do_each_thread(g, p) { | 7058 | do_each_thread(g, p) { |
7059 | /* | 7059 | /* |
7060 | * Only normalize user tasks: | 7060 | * Only normalize user tasks: |
7061 | */ | 7061 | */ |
7062 | if (!p->mm) | 7062 | if (!p->mm) |
7063 | continue; | 7063 | continue; |
7064 | 7064 | ||
7065 | p->se.exec_start = 0; | 7065 | p->se.exec_start = 0; |
7066 | #ifdef CONFIG_SCHEDSTATS | 7066 | #ifdef CONFIG_SCHEDSTATS |
7067 | p->se.statistics.wait_start = 0; | 7067 | p->se.statistics.wait_start = 0; |
7068 | p->se.statistics.sleep_start = 0; | 7068 | p->se.statistics.sleep_start = 0; |
7069 | p->se.statistics.block_start = 0; | 7069 | p->se.statistics.block_start = 0; |
7070 | #endif | 7070 | #endif |
7071 | 7071 | ||
7072 | if (!rt_task(p)) { | 7072 | if (!rt_task(p)) { |
7073 | /* | 7073 | /* |
7074 | * Renice negative nice level userspace | 7074 | * Renice negative nice level userspace |
7075 | * tasks back to 0: | 7075 | * tasks back to 0: |
7076 | */ | 7076 | */ |
7077 | if (TASK_NICE(p) < 0 && p->mm) | 7077 | if (TASK_NICE(p) < 0 && p->mm) |
7078 | set_user_nice(p, 0); | 7078 | set_user_nice(p, 0); |
7079 | continue; | 7079 | continue; |
7080 | } | 7080 | } |
7081 | 7081 | ||
7082 | raw_spin_lock(&p->pi_lock); | 7082 | raw_spin_lock(&p->pi_lock); |
7083 | rq = __task_rq_lock(p); | 7083 | rq = __task_rq_lock(p); |
7084 | 7084 | ||
7085 | normalize_task(rq, p); | 7085 | normalize_task(rq, p); |
7086 | 7086 | ||
7087 | __task_rq_unlock(rq); | 7087 | __task_rq_unlock(rq); |
7088 | raw_spin_unlock(&p->pi_lock); | 7088 | raw_spin_unlock(&p->pi_lock); |
7089 | } while_each_thread(g, p); | 7089 | } while_each_thread(g, p); |
7090 | 7090 | ||
7091 | read_unlock_irqrestore(&tasklist_lock, flags); | 7091 | read_unlock_irqrestore(&tasklist_lock, flags); |
7092 | } | 7092 | } |
7093 | 7093 | ||
7094 | #endif /* CONFIG_MAGIC_SYSRQ */ | 7094 | #endif /* CONFIG_MAGIC_SYSRQ */ |
7095 | 7095 | ||
7096 | #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) | 7096 | #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) |
7097 | /* | 7097 | /* |
7098 | * These functions are only useful for the IA64 MCA handling, or kdb. | 7098 | * These functions are only useful for the IA64 MCA handling, or kdb. |
7099 | * | 7099 | * |
7100 | * They can only be called when the whole system has been | 7100 | * They can only be called when the whole system has been |
7101 | * stopped - every CPU needs to be quiescent, and no scheduling | 7101 | * stopped - every CPU needs to be quiescent, and no scheduling |
7102 | * activity can take place. Using them for anything else would | 7102 | * activity can take place. Using them for anything else would |
7103 | * be a serious bug, and as a result, they aren't even visible | 7103 | * be a serious bug, and as a result, they aren't even visible |
7104 | * under any other configuration. | 7104 | * under any other configuration. |
7105 | */ | 7105 | */ |
7106 | 7106 | ||
7107 | /** | 7107 | /** |
7108 | * curr_task - return the current task for a given cpu. | 7108 | * curr_task - return the current task for a given cpu. |
7109 | * @cpu: the processor in question. | 7109 | * @cpu: the processor in question. |
7110 | * | 7110 | * |
7111 | * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! | 7111 | * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! |
7112 | */ | 7112 | */ |
7113 | struct task_struct *curr_task(int cpu) | 7113 | struct task_struct *curr_task(int cpu) |
7114 | { | 7114 | { |
7115 | return cpu_curr(cpu); | 7115 | return cpu_curr(cpu); |
7116 | } | 7116 | } |
7117 | 7117 | ||
7118 | #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ | 7118 | #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ |
7119 | 7119 | ||
7120 | #ifdef CONFIG_IA64 | 7120 | #ifdef CONFIG_IA64 |
7121 | /** | 7121 | /** |
7122 | * set_curr_task - set the current task for a given cpu. | 7122 | * set_curr_task - set the current task for a given cpu. |
7123 | * @cpu: the processor in question. | 7123 | * @cpu: the processor in question. |
7124 | * @p: the task pointer to set. | 7124 | * @p: the task pointer to set. |
7125 | * | 7125 | * |
7126 | * Description: This function must only be used when non-maskable interrupts | 7126 | * Description: This function must only be used when non-maskable interrupts |
7127 | * are serviced on a separate stack. It allows the architecture to switch the | 7127 | * are serviced on a separate stack. It allows the architecture to switch the |
7128 | * notion of the current task on a cpu in a non-blocking manner. This function | 7128 | * notion of the current task on a cpu in a non-blocking manner. This function |
7129 | * must be called with all CPU's synchronized, and interrupts disabled, the | 7129 | * must be called with all CPU's synchronized, and interrupts disabled, the |
7130 | * and caller must save the original value of the current task (see | 7130 | * and caller must save the original value of the current task (see |
7131 | * curr_task() above) and restore that value before reenabling interrupts and | 7131 | * curr_task() above) and restore that value before reenabling interrupts and |
7132 | * re-starting the system. | 7132 | * re-starting the system. |
7133 | * | 7133 | * |
7134 | * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! | 7134 | * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! |
7135 | */ | 7135 | */ |
7136 | void set_curr_task(int cpu, struct task_struct *p) | 7136 | void set_curr_task(int cpu, struct task_struct *p) |
7137 | { | 7137 | { |
7138 | cpu_curr(cpu) = p; | 7138 | cpu_curr(cpu) = p; |
7139 | } | 7139 | } |
7140 | 7140 | ||
7141 | #endif | 7141 | #endif |
7142 | 7142 | ||
7143 | #ifdef CONFIG_CGROUP_SCHED | 7143 | #ifdef CONFIG_CGROUP_SCHED |
7144 | /* task_group_lock serializes the addition/removal of task groups */ | 7144 | /* task_group_lock serializes the addition/removal of task groups */ |
7145 | static DEFINE_SPINLOCK(task_group_lock); | 7145 | static DEFINE_SPINLOCK(task_group_lock); |
7146 | 7146 | ||
7147 | static void free_sched_group(struct task_group *tg) | 7147 | static void free_sched_group(struct task_group *tg) |
7148 | { | 7148 | { |
7149 | free_fair_sched_group(tg); | 7149 | free_fair_sched_group(tg); |
7150 | free_rt_sched_group(tg); | 7150 | free_rt_sched_group(tg); |
7151 | autogroup_free(tg); | 7151 | autogroup_free(tg); |
7152 | kfree(tg); | 7152 | kfree(tg); |
7153 | } | 7153 | } |
7154 | 7154 | ||
7155 | /* allocate runqueue etc for a new task group */ | 7155 | /* allocate runqueue etc for a new task group */ |
7156 | struct task_group *sched_create_group(struct task_group *parent) | 7156 | struct task_group *sched_create_group(struct task_group *parent) |
7157 | { | 7157 | { |
7158 | struct task_group *tg; | 7158 | struct task_group *tg; |
7159 | unsigned long flags; | 7159 | unsigned long flags; |
7160 | 7160 | ||
7161 | tg = kzalloc(sizeof(*tg), GFP_KERNEL); | 7161 | tg = kzalloc(sizeof(*tg), GFP_KERNEL); |
7162 | if (!tg) | 7162 | if (!tg) |
7163 | return ERR_PTR(-ENOMEM); | 7163 | return ERR_PTR(-ENOMEM); |
7164 | 7164 | ||
7165 | if (!alloc_fair_sched_group(tg, parent)) | 7165 | if (!alloc_fair_sched_group(tg, parent)) |
7166 | goto err; | 7166 | goto err; |
7167 | 7167 | ||
7168 | if (!alloc_rt_sched_group(tg, parent)) | 7168 | if (!alloc_rt_sched_group(tg, parent)) |
7169 | goto err; | 7169 | goto err; |
7170 | 7170 | ||
7171 | spin_lock_irqsave(&task_group_lock, flags); | 7171 | spin_lock_irqsave(&task_group_lock, flags); |
7172 | list_add_rcu(&tg->list, &task_groups); | 7172 | list_add_rcu(&tg->list, &task_groups); |
7173 | 7173 | ||
7174 | WARN_ON(!parent); /* root should already exist */ | 7174 | WARN_ON(!parent); /* root should already exist */ |
7175 | 7175 | ||
7176 | tg->parent = parent; | 7176 | tg->parent = parent; |
7177 | INIT_LIST_HEAD(&tg->children); | 7177 | INIT_LIST_HEAD(&tg->children); |
7178 | list_add_rcu(&tg->siblings, &parent->children); | 7178 | list_add_rcu(&tg->siblings, &parent->children); |
7179 | spin_unlock_irqrestore(&task_group_lock, flags); | 7179 | spin_unlock_irqrestore(&task_group_lock, flags); |
7180 | 7180 | ||
7181 | return tg; | 7181 | return tg; |
7182 | 7182 | ||
7183 | err: | 7183 | err: |
7184 | free_sched_group(tg); | 7184 | free_sched_group(tg); |
7185 | return ERR_PTR(-ENOMEM); | 7185 | return ERR_PTR(-ENOMEM); |
7186 | } | 7186 | } |
7187 | 7187 | ||
7188 | /* rcu callback to free various structures associated with a task group */ | 7188 | /* rcu callback to free various structures associated with a task group */ |
7189 | static void free_sched_group_rcu(struct rcu_head *rhp) | 7189 | static void free_sched_group_rcu(struct rcu_head *rhp) |
7190 | { | 7190 | { |
7191 | /* now it should be safe to free those cfs_rqs */ | 7191 | /* now it should be safe to free those cfs_rqs */ |
7192 | free_sched_group(container_of(rhp, struct task_group, rcu)); | 7192 | free_sched_group(container_of(rhp, struct task_group, rcu)); |
7193 | } | 7193 | } |
7194 | 7194 | ||
7195 | /* Destroy runqueue etc associated with a task group */ | 7195 | /* Destroy runqueue etc associated with a task group */ |
7196 | void sched_destroy_group(struct task_group *tg) | 7196 | void sched_destroy_group(struct task_group *tg) |
7197 | { | 7197 | { |
7198 | unsigned long flags; | 7198 | unsigned long flags; |
7199 | int i; | 7199 | int i; |
7200 | 7200 | ||
7201 | /* end participation in shares distribution */ | 7201 | /* end participation in shares distribution */ |
7202 | for_each_possible_cpu(i) | 7202 | for_each_possible_cpu(i) |
7203 | unregister_fair_sched_group(tg, i); | 7203 | unregister_fair_sched_group(tg, i); |
7204 | 7204 | ||
7205 | spin_lock_irqsave(&task_group_lock, flags); | 7205 | spin_lock_irqsave(&task_group_lock, flags); |
7206 | list_del_rcu(&tg->list); | 7206 | list_del_rcu(&tg->list); |
7207 | list_del_rcu(&tg->siblings); | 7207 | list_del_rcu(&tg->siblings); |
7208 | spin_unlock_irqrestore(&task_group_lock, flags); | 7208 | spin_unlock_irqrestore(&task_group_lock, flags); |
7209 | 7209 | ||
7210 | /* wait for possible concurrent references to cfs_rqs complete */ | 7210 | /* wait for possible concurrent references to cfs_rqs complete */ |
7211 | call_rcu(&tg->rcu, free_sched_group_rcu); | 7211 | call_rcu(&tg->rcu, free_sched_group_rcu); |
7212 | } | 7212 | } |
7213 | 7213 | ||
7214 | /* change task's runqueue when it moves between groups. | 7214 | /* change task's runqueue when it moves between groups. |
7215 | * The caller of this function should have put the task in its new group | 7215 | * The caller of this function should have put the task in its new group |
7216 | * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to | 7216 | * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to |
7217 | * reflect its new group. | 7217 | * reflect its new group. |
7218 | */ | 7218 | */ |
7219 | void sched_move_task(struct task_struct *tsk) | 7219 | void sched_move_task(struct task_struct *tsk) |
7220 | { | 7220 | { |
7221 | int on_rq, running; | 7221 | int on_rq, running; |
7222 | unsigned long flags; | 7222 | unsigned long flags; |
7223 | struct rq *rq; | 7223 | struct rq *rq; |
7224 | 7224 | ||
7225 | rq = task_rq_lock(tsk, &flags); | 7225 | rq = task_rq_lock(tsk, &flags); |
7226 | 7226 | ||
7227 | running = task_current(rq, tsk); | 7227 | running = task_current(rq, tsk); |
7228 | on_rq = tsk->on_rq; | 7228 | on_rq = tsk->on_rq; |
7229 | 7229 | ||
7230 | if (on_rq) | 7230 | if (on_rq) |
7231 | dequeue_task(rq, tsk, 0); | 7231 | dequeue_task(rq, tsk, 0); |
7232 | if (unlikely(running)) | 7232 | if (unlikely(running)) |
7233 | tsk->sched_class->put_prev_task(rq, tsk); | 7233 | tsk->sched_class->put_prev_task(rq, tsk); |
7234 | 7234 | ||
7235 | #ifdef CONFIG_FAIR_GROUP_SCHED | 7235 | #ifdef CONFIG_FAIR_GROUP_SCHED |
7236 | if (tsk->sched_class->task_move_group) | 7236 | if (tsk->sched_class->task_move_group) |
7237 | tsk->sched_class->task_move_group(tsk, on_rq); | 7237 | tsk->sched_class->task_move_group(tsk, on_rq); |
7238 | else | 7238 | else |
7239 | #endif | 7239 | #endif |
7240 | set_task_rq(tsk, task_cpu(tsk)); | 7240 | set_task_rq(tsk, task_cpu(tsk)); |
7241 | 7241 | ||
7242 | if (unlikely(running)) | 7242 | if (unlikely(running)) |
7243 | tsk->sched_class->set_curr_task(rq); | 7243 | tsk->sched_class->set_curr_task(rq); |
7244 | if (on_rq) | 7244 | if (on_rq) |
7245 | enqueue_task(rq, tsk, 0); | 7245 | enqueue_task(rq, tsk, 0); |
7246 | 7246 | ||
7247 | task_rq_unlock(rq, tsk, &flags); | 7247 | task_rq_unlock(rq, tsk, &flags); |
7248 | } | 7248 | } |
7249 | #endif /* CONFIG_CGROUP_SCHED */ | 7249 | #endif /* CONFIG_CGROUP_SCHED */ |
7250 | 7250 | ||
7251 | #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH) | 7251 | #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH) |
7252 | static unsigned long to_ratio(u64 period, u64 runtime) | 7252 | static unsigned long to_ratio(u64 period, u64 runtime) |
7253 | { | 7253 | { |
7254 | if (runtime == RUNTIME_INF) | 7254 | if (runtime == RUNTIME_INF) |
7255 | return 1ULL << 20; | 7255 | return 1ULL << 20; |
7256 | 7256 | ||
7257 | return div64_u64(runtime << 20, period); | 7257 | return div64_u64(runtime << 20, period); |
7258 | } | 7258 | } |
7259 | #endif | 7259 | #endif |
7260 | 7260 | ||
7261 | #ifdef CONFIG_RT_GROUP_SCHED | 7261 | #ifdef CONFIG_RT_GROUP_SCHED |
7262 | /* | 7262 | /* |
7263 | * Ensure that the real time constraints are schedulable. | 7263 | * Ensure that the real time constraints are schedulable. |
7264 | */ | 7264 | */ |
7265 | static DEFINE_MUTEX(rt_constraints_mutex); | 7265 | static DEFINE_MUTEX(rt_constraints_mutex); |
7266 | 7266 | ||
7267 | /* Must be called with tasklist_lock held */ | 7267 | /* Must be called with tasklist_lock held */ |
7268 | static inline int tg_has_rt_tasks(struct task_group *tg) | 7268 | static inline int tg_has_rt_tasks(struct task_group *tg) |
7269 | { | 7269 | { |
7270 | struct task_struct *g, *p; | 7270 | struct task_struct *g, *p; |
7271 | 7271 | ||
7272 | do_each_thread(g, p) { | 7272 | do_each_thread(g, p) { |
7273 | if (rt_task(p) && task_rq(p)->rt.tg == tg) | 7273 | if (rt_task(p) && task_rq(p)->rt.tg == tg) |
7274 | return 1; | 7274 | return 1; |
7275 | } while_each_thread(g, p); | 7275 | } while_each_thread(g, p); |
7276 | 7276 | ||
7277 | return 0; | 7277 | return 0; |
7278 | } | 7278 | } |
7279 | 7279 | ||
7280 | struct rt_schedulable_data { | 7280 | struct rt_schedulable_data { |
7281 | struct task_group *tg; | 7281 | struct task_group *tg; |
7282 | u64 rt_period; | 7282 | u64 rt_period; |
7283 | u64 rt_runtime; | 7283 | u64 rt_runtime; |
7284 | }; | 7284 | }; |
7285 | 7285 | ||
7286 | static int tg_rt_schedulable(struct task_group *tg, void *data) | 7286 | static int tg_rt_schedulable(struct task_group *tg, void *data) |
7287 | { | 7287 | { |
7288 | struct rt_schedulable_data *d = data; | 7288 | struct rt_schedulable_data *d = data; |
7289 | struct task_group *child; | 7289 | struct task_group *child; |
7290 | unsigned long total, sum = 0; | 7290 | unsigned long total, sum = 0; |
7291 | u64 period, runtime; | 7291 | u64 period, runtime; |
7292 | 7292 | ||
7293 | period = ktime_to_ns(tg->rt_bandwidth.rt_period); | 7293 | period = ktime_to_ns(tg->rt_bandwidth.rt_period); |
7294 | runtime = tg->rt_bandwidth.rt_runtime; | 7294 | runtime = tg->rt_bandwidth.rt_runtime; |
7295 | 7295 | ||
7296 | if (tg == d->tg) { | 7296 | if (tg == d->tg) { |
7297 | period = d->rt_period; | 7297 | period = d->rt_period; |
7298 | runtime = d->rt_runtime; | 7298 | runtime = d->rt_runtime; |
7299 | } | 7299 | } |
7300 | 7300 | ||
7301 | /* | 7301 | /* |
7302 | * Cannot have more runtime than the period. | 7302 | * Cannot have more runtime than the period. |
7303 | */ | 7303 | */ |
7304 | if (runtime > period && runtime != RUNTIME_INF) | 7304 | if (runtime > period && runtime != RUNTIME_INF) |
7305 | return -EINVAL; | 7305 | return -EINVAL; |
7306 | 7306 | ||
7307 | /* | 7307 | /* |
7308 | * Ensure we don't starve existing RT tasks. | 7308 | * Ensure we don't starve existing RT tasks. |
7309 | */ | 7309 | */ |
7310 | if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) | 7310 | if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) |
7311 | return -EBUSY; | 7311 | return -EBUSY; |
7312 | 7312 | ||
7313 | total = to_ratio(period, runtime); | 7313 | total = to_ratio(period, runtime); |
7314 | 7314 | ||
7315 | /* | 7315 | /* |
7316 | * Nobody can have more than the global setting allows. | 7316 | * Nobody can have more than the global setting allows. |
7317 | */ | 7317 | */ |
7318 | if (total > to_ratio(global_rt_period(), global_rt_runtime())) | 7318 | if (total > to_ratio(global_rt_period(), global_rt_runtime())) |
7319 | return -EINVAL; | 7319 | return -EINVAL; |
7320 | 7320 | ||
7321 | /* | 7321 | /* |
7322 | * The sum of our children's runtime should not exceed our own. | 7322 | * The sum of our children's runtime should not exceed our own. |
7323 | */ | 7323 | */ |
7324 | list_for_each_entry_rcu(child, &tg->children, siblings) { | 7324 | list_for_each_entry_rcu(child, &tg->children, siblings) { |
7325 | period = ktime_to_ns(child->rt_bandwidth.rt_period); | 7325 | period = ktime_to_ns(child->rt_bandwidth.rt_period); |
7326 | runtime = child->rt_bandwidth.rt_runtime; | 7326 | runtime = child->rt_bandwidth.rt_runtime; |
7327 | 7327 | ||
7328 | if (child == d->tg) { | 7328 | if (child == d->tg) { |
7329 | period = d->rt_period; | 7329 | period = d->rt_period; |
7330 | runtime = d->rt_runtime; | 7330 | runtime = d->rt_runtime; |
7331 | } | 7331 | } |
7332 | 7332 | ||
7333 | sum += to_ratio(period, runtime); | 7333 | sum += to_ratio(period, runtime); |
7334 | } | 7334 | } |
7335 | 7335 | ||
7336 | if (sum > total) | 7336 | if (sum > total) |
7337 | return -EINVAL; | 7337 | return -EINVAL; |
7338 | 7338 | ||
7339 | return 0; | 7339 | return 0; |
7340 | } | 7340 | } |
7341 | 7341 | ||
7342 | static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) | 7342 | static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) |
7343 | { | 7343 | { |
7344 | int ret; | 7344 | int ret; |
7345 | 7345 | ||
7346 | struct rt_schedulable_data data = { | 7346 | struct rt_schedulable_data data = { |
7347 | .tg = tg, | 7347 | .tg = tg, |
7348 | .rt_period = period, | 7348 | .rt_period = period, |
7349 | .rt_runtime = runtime, | 7349 | .rt_runtime = runtime, |
7350 | }; | 7350 | }; |
7351 | 7351 | ||
7352 | rcu_read_lock(); | 7352 | rcu_read_lock(); |
7353 | ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); | 7353 | ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); |
7354 | rcu_read_unlock(); | 7354 | rcu_read_unlock(); |
7355 | 7355 | ||
7356 | return ret; | 7356 | return ret; |
7357 | } | 7357 | } |
7358 | 7358 | ||
7359 | static int tg_set_rt_bandwidth(struct task_group *tg, | 7359 | static int tg_set_rt_bandwidth(struct task_group *tg, |
7360 | u64 rt_period, u64 rt_runtime) | 7360 | u64 rt_period, u64 rt_runtime) |
7361 | { | 7361 | { |
7362 | int i, err = 0; | 7362 | int i, err = 0; |
7363 | 7363 | ||
7364 | mutex_lock(&rt_constraints_mutex); | 7364 | mutex_lock(&rt_constraints_mutex); |
7365 | read_lock(&tasklist_lock); | 7365 | read_lock(&tasklist_lock); |
7366 | err = __rt_schedulable(tg, rt_period, rt_runtime); | 7366 | err = __rt_schedulable(tg, rt_period, rt_runtime); |
7367 | if (err) | 7367 | if (err) |
7368 | goto unlock; | 7368 | goto unlock; |
7369 | 7369 | ||
7370 | raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); | 7370 | raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); |
7371 | tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); | 7371 | tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); |
7372 | tg->rt_bandwidth.rt_runtime = rt_runtime; | 7372 | tg->rt_bandwidth.rt_runtime = rt_runtime; |
7373 | 7373 | ||
7374 | for_each_possible_cpu(i) { | 7374 | for_each_possible_cpu(i) { |
7375 | struct rt_rq *rt_rq = tg->rt_rq[i]; | 7375 | struct rt_rq *rt_rq = tg->rt_rq[i]; |
7376 | 7376 | ||
7377 | raw_spin_lock(&rt_rq->rt_runtime_lock); | 7377 | raw_spin_lock(&rt_rq->rt_runtime_lock); |
7378 | rt_rq->rt_runtime = rt_runtime; | 7378 | rt_rq->rt_runtime = rt_runtime; |
7379 | raw_spin_unlock(&rt_rq->rt_runtime_lock); | 7379 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
7380 | } | 7380 | } |
7381 | raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); | 7381 | raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); |
7382 | unlock: | 7382 | unlock: |
7383 | read_unlock(&tasklist_lock); | 7383 | read_unlock(&tasklist_lock); |
7384 | mutex_unlock(&rt_constraints_mutex); | 7384 | mutex_unlock(&rt_constraints_mutex); |
7385 | 7385 | ||
7386 | return err; | 7386 | return err; |
7387 | } | 7387 | } |
7388 | 7388 | ||
7389 | int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) | 7389 | int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) |
7390 | { | 7390 | { |
7391 | u64 rt_runtime, rt_period; | 7391 | u64 rt_runtime, rt_period; |
7392 | 7392 | ||
7393 | rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); | 7393 | rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); |
7394 | rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; | 7394 | rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; |
7395 | if (rt_runtime_us < 0) | 7395 | if (rt_runtime_us < 0) |
7396 | rt_runtime = RUNTIME_INF; | 7396 | rt_runtime = RUNTIME_INF; |
7397 | 7397 | ||
7398 | return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); | 7398 | return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); |
7399 | } | 7399 | } |
7400 | 7400 | ||
7401 | long sched_group_rt_runtime(struct task_group *tg) | 7401 | long sched_group_rt_runtime(struct task_group *tg) |
7402 | { | 7402 | { |
7403 | u64 rt_runtime_us; | 7403 | u64 rt_runtime_us; |
7404 | 7404 | ||
7405 | if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) | 7405 | if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) |
7406 | return -1; | 7406 | return -1; |
7407 | 7407 | ||
7408 | rt_runtime_us = tg->rt_bandwidth.rt_runtime; | 7408 | rt_runtime_us = tg->rt_bandwidth.rt_runtime; |
7409 | do_div(rt_runtime_us, NSEC_PER_USEC); | 7409 | do_div(rt_runtime_us, NSEC_PER_USEC); |
7410 | return rt_runtime_us; | 7410 | return rt_runtime_us; |
7411 | } | 7411 | } |
7412 | 7412 | ||
7413 | int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) | 7413 | int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) |
7414 | { | 7414 | { |
7415 | u64 rt_runtime, rt_period; | 7415 | u64 rt_runtime, rt_period; |
7416 | 7416 | ||
7417 | rt_period = (u64)rt_period_us * NSEC_PER_USEC; | 7417 | rt_period = (u64)rt_period_us * NSEC_PER_USEC; |
7418 | rt_runtime = tg->rt_bandwidth.rt_runtime; | 7418 | rt_runtime = tg->rt_bandwidth.rt_runtime; |
7419 | 7419 | ||
7420 | if (rt_period == 0) | 7420 | if (rt_period == 0) |
7421 | return -EINVAL; | 7421 | return -EINVAL; |
7422 | 7422 | ||
7423 | return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); | 7423 | return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); |
7424 | } | 7424 | } |
7425 | 7425 | ||
7426 | long sched_group_rt_period(struct task_group *tg) | 7426 | long sched_group_rt_period(struct task_group *tg) |
7427 | { | 7427 | { |
7428 | u64 rt_period_us; | 7428 | u64 rt_period_us; |
7429 | 7429 | ||
7430 | rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); | 7430 | rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); |
7431 | do_div(rt_period_us, NSEC_PER_USEC); | 7431 | do_div(rt_period_us, NSEC_PER_USEC); |
7432 | return rt_period_us; | 7432 | return rt_period_us; |
7433 | } | 7433 | } |
7434 | 7434 | ||
7435 | static int sched_rt_global_constraints(void) | 7435 | static int sched_rt_global_constraints(void) |
7436 | { | 7436 | { |
7437 | u64 runtime, period; | 7437 | u64 runtime, period; |
7438 | int ret = 0; | 7438 | int ret = 0; |
7439 | 7439 | ||
7440 | if (sysctl_sched_rt_period <= 0) | 7440 | if (sysctl_sched_rt_period <= 0) |
7441 | return -EINVAL; | 7441 | return -EINVAL; |
7442 | 7442 | ||
7443 | runtime = global_rt_runtime(); | 7443 | runtime = global_rt_runtime(); |
7444 | period = global_rt_period(); | 7444 | period = global_rt_period(); |
7445 | 7445 | ||
7446 | /* | 7446 | /* |
7447 | * Sanity check on the sysctl variables. | 7447 | * Sanity check on the sysctl variables. |
7448 | */ | 7448 | */ |
7449 | if (runtime > period && runtime != RUNTIME_INF) | 7449 | if (runtime > period && runtime != RUNTIME_INF) |
7450 | return -EINVAL; | 7450 | return -EINVAL; |
7451 | 7451 | ||
7452 | mutex_lock(&rt_constraints_mutex); | 7452 | mutex_lock(&rt_constraints_mutex); |
7453 | read_lock(&tasklist_lock); | 7453 | read_lock(&tasklist_lock); |
7454 | ret = __rt_schedulable(NULL, 0, 0); | 7454 | ret = __rt_schedulable(NULL, 0, 0); |
7455 | read_unlock(&tasklist_lock); | 7455 | read_unlock(&tasklist_lock); |
7456 | mutex_unlock(&rt_constraints_mutex); | 7456 | mutex_unlock(&rt_constraints_mutex); |
7457 | 7457 | ||
7458 | return ret; | 7458 | return ret; |
7459 | } | 7459 | } |
7460 | 7460 | ||
7461 | int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) | 7461 | int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) |
7462 | { | 7462 | { |
7463 | /* Don't accept realtime tasks when there is no way for them to run */ | 7463 | /* Don't accept realtime tasks when there is no way for them to run */ |
7464 | if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) | 7464 | if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) |
7465 | return 0; | 7465 | return 0; |
7466 | 7466 | ||
7467 | return 1; | 7467 | return 1; |
7468 | } | 7468 | } |
7469 | 7469 | ||
7470 | #else /* !CONFIG_RT_GROUP_SCHED */ | 7470 | #else /* !CONFIG_RT_GROUP_SCHED */ |
7471 | static int sched_rt_global_constraints(void) | 7471 | static int sched_rt_global_constraints(void) |
7472 | { | 7472 | { |
7473 | unsigned long flags; | 7473 | unsigned long flags; |
7474 | int i; | 7474 | int i; |
7475 | 7475 | ||
7476 | if (sysctl_sched_rt_period <= 0) | 7476 | if (sysctl_sched_rt_period <= 0) |
7477 | return -EINVAL; | 7477 | return -EINVAL; |
7478 | 7478 | ||
7479 | /* | 7479 | /* |
7480 | * There's always some RT tasks in the root group | 7480 | * There's always some RT tasks in the root group |
7481 | * -- migration, kstopmachine etc.. | 7481 | * -- migration, kstopmachine etc.. |
7482 | */ | 7482 | */ |
7483 | if (sysctl_sched_rt_runtime == 0) | 7483 | if (sysctl_sched_rt_runtime == 0) |
7484 | return -EBUSY; | 7484 | return -EBUSY; |
7485 | 7485 | ||
7486 | raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); | 7486 | raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); |
7487 | for_each_possible_cpu(i) { | 7487 | for_each_possible_cpu(i) { |
7488 | struct rt_rq *rt_rq = &cpu_rq(i)->rt; | 7488 | struct rt_rq *rt_rq = &cpu_rq(i)->rt; |
7489 | 7489 | ||
7490 | raw_spin_lock(&rt_rq->rt_runtime_lock); | 7490 | raw_spin_lock(&rt_rq->rt_runtime_lock); |
7491 | rt_rq->rt_runtime = global_rt_runtime(); | 7491 | rt_rq->rt_runtime = global_rt_runtime(); |
7492 | raw_spin_unlock(&rt_rq->rt_runtime_lock); | 7492 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
7493 | } | 7493 | } |
7494 | raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); | 7494 | raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); |
7495 | 7495 | ||
7496 | return 0; | 7496 | return 0; |
7497 | } | 7497 | } |
7498 | #endif /* CONFIG_RT_GROUP_SCHED */ | 7498 | #endif /* CONFIG_RT_GROUP_SCHED */ |
7499 | 7499 | ||
7500 | int sched_rt_handler(struct ctl_table *table, int write, | 7500 | int sched_rt_handler(struct ctl_table *table, int write, |
7501 | void __user *buffer, size_t *lenp, | 7501 | void __user *buffer, size_t *lenp, |
7502 | loff_t *ppos) | 7502 | loff_t *ppos) |
7503 | { | 7503 | { |
7504 | int ret; | 7504 | int ret; |
7505 | int old_period, old_runtime; | 7505 | int old_period, old_runtime; |
7506 | static DEFINE_MUTEX(mutex); | 7506 | static DEFINE_MUTEX(mutex); |
7507 | 7507 | ||
7508 | mutex_lock(&mutex); | 7508 | mutex_lock(&mutex); |
7509 | old_period = sysctl_sched_rt_period; | 7509 | old_period = sysctl_sched_rt_period; |
7510 | old_runtime = sysctl_sched_rt_runtime; | 7510 | old_runtime = sysctl_sched_rt_runtime; |
7511 | 7511 | ||
7512 | ret = proc_dointvec(table, write, buffer, lenp, ppos); | 7512 | ret = proc_dointvec(table, write, buffer, lenp, ppos); |
7513 | 7513 | ||
7514 | if (!ret && write) { | 7514 | if (!ret && write) { |
7515 | ret = sched_rt_global_constraints(); | 7515 | ret = sched_rt_global_constraints(); |
7516 | if (ret) { | 7516 | if (ret) { |
7517 | sysctl_sched_rt_period = old_period; | 7517 | sysctl_sched_rt_period = old_period; |
7518 | sysctl_sched_rt_runtime = old_runtime; | 7518 | sysctl_sched_rt_runtime = old_runtime; |
7519 | } else { | 7519 | } else { |
7520 | def_rt_bandwidth.rt_runtime = global_rt_runtime(); | 7520 | def_rt_bandwidth.rt_runtime = global_rt_runtime(); |
7521 | def_rt_bandwidth.rt_period = | 7521 | def_rt_bandwidth.rt_period = |
7522 | ns_to_ktime(global_rt_period()); | 7522 | ns_to_ktime(global_rt_period()); |
7523 | } | 7523 | } |
7524 | } | 7524 | } |
7525 | mutex_unlock(&mutex); | 7525 | mutex_unlock(&mutex); |
7526 | 7526 | ||
7527 | return ret; | 7527 | return ret; |
7528 | } | 7528 | } |
7529 | 7529 | ||
7530 | #ifdef CONFIG_CGROUP_SCHED | 7530 | #ifdef CONFIG_CGROUP_SCHED |
7531 | 7531 | ||
7532 | /* return corresponding task_group object of a cgroup */ | 7532 | /* return corresponding task_group object of a cgroup */ |
7533 | static inline struct task_group *cgroup_tg(struct cgroup *cgrp) | 7533 | static inline struct task_group *cgroup_tg(struct cgroup *cgrp) |
7534 | { | 7534 | { |
7535 | return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id), | 7535 | return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id), |
7536 | struct task_group, css); | 7536 | struct task_group, css); |
7537 | } | 7537 | } |
7538 | 7538 | ||
7539 | static struct cgroup_subsys_state * | 7539 | static struct cgroup_subsys_state * |
7540 | cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp) | 7540 | cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp) |
7541 | { | 7541 | { |
7542 | struct task_group *tg, *parent; | 7542 | struct task_group *tg, *parent; |
7543 | 7543 | ||
7544 | if (!cgrp->parent) { | 7544 | if (!cgrp->parent) { |
7545 | /* This is early initialization for the top cgroup */ | 7545 | /* This is early initialization for the top cgroup */ |
7546 | return &root_task_group.css; | 7546 | return &root_task_group.css; |
7547 | } | 7547 | } |
7548 | 7548 | ||
7549 | parent = cgroup_tg(cgrp->parent); | 7549 | parent = cgroup_tg(cgrp->parent); |
7550 | tg = sched_create_group(parent); | 7550 | tg = sched_create_group(parent); |
7551 | if (IS_ERR(tg)) | 7551 | if (IS_ERR(tg)) |
7552 | return ERR_PTR(-ENOMEM); | 7552 | return ERR_PTR(-ENOMEM); |
7553 | 7553 | ||
7554 | return &tg->css; | 7554 | return &tg->css; |
7555 | } | 7555 | } |
7556 | 7556 | ||
7557 | static void | 7557 | static void |
7558 | cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) | 7558 | cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) |
7559 | { | 7559 | { |
7560 | struct task_group *tg = cgroup_tg(cgrp); | 7560 | struct task_group *tg = cgroup_tg(cgrp); |
7561 | 7561 | ||
7562 | sched_destroy_group(tg); | 7562 | sched_destroy_group(tg); |
7563 | } | 7563 | } |
7564 | 7564 | ||
7565 | static int cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, | 7565 | static int cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, |
7566 | struct cgroup_taskset *tset) | 7566 | struct cgroup_taskset *tset) |
7567 | { | 7567 | { |
7568 | struct task_struct *task; | 7568 | struct task_struct *task; |
7569 | 7569 | ||
7570 | cgroup_taskset_for_each(task, cgrp, tset) { | 7570 | cgroup_taskset_for_each(task, cgrp, tset) { |
7571 | #ifdef CONFIG_RT_GROUP_SCHED | 7571 | #ifdef CONFIG_RT_GROUP_SCHED |
7572 | if (!sched_rt_can_attach(cgroup_tg(cgrp), task)) | 7572 | if (!sched_rt_can_attach(cgroup_tg(cgrp), task)) |
7573 | return -EINVAL; | 7573 | return -EINVAL; |
7574 | #else | 7574 | #else |
7575 | /* We don't support RT-tasks being in separate groups */ | 7575 | /* We don't support RT-tasks being in separate groups */ |
7576 | if (task->sched_class != &fair_sched_class) | 7576 | if (task->sched_class != &fair_sched_class) |
7577 | return -EINVAL; | 7577 | return -EINVAL; |
7578 | #endif | 7578 | #endif |
7579 | } | 7579 | } |
7580 | return 0; | 7580 | return 0; |
7581 | } | 7581 | } |
7582 | 7582 | ||
7583 | static void cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, | 7583 | static void cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, |
7584 | struct cgroup_taskset *tset) | 7584 | struct cgroup_taskset *tset) |
7585 | { | 7585 | { |
7586 | struct task_struct *task; | 7586 | struct task_struct *task; |
7587 | 7587 | ||
7588 | cgroup_taskset_for_each(task, cgrp, tset) | 7588 | cgroup_taskset_for_each(task, cgrp, tset) |
7589 | sched_move_task(task); | 7589 | sched_move_task(task); |
7590 | } | 7590 | } |
7591 | 7591 | ||
7592 | static void | 7592 | static void |
7593 | cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp, | 7593 | cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp, |
7594 | struct cgroup *old_cgrp, struct task_struct *task) | 7594 | struct cgroup *old_cgrp, struct task_struct *task) |
7595 | { | 7595 | { |
7596 | /* | 7596 | /* |
7597 | * cgroup_exit() is called in the copy_process() failure path. | 7597 | * cgroup_exit() is called in the copy_process() failure path. |
7598 | * Ignore this case since the task hasn't ran yet, this avoids | 7598 | * Ignore this case since the task hasn't ran yet, this avoids |
7599 | * trying to poke a half freed task state from generic code. | 7599 | * trying to poke a half freed task state from generic code. |
7600 | */ | 7600 | */ |
7601 | if (!(task->flags & PF_EXITING)) | 7601 | if (!(task->flags & PF_EXITING)) |
7602 | return; | 7602 | return; |
7603 | 7603 | ||
7604 | sched_move_task(task); | 7604 | sched_move_task(task); |
7605 | } | 7605 | } |
7606 | 7606 | ||
7607 | #ifdef CONFIG_FAIR_GROUP_SCHED | 7607 | #ifdef CONFIG_FAIR_GROUP_SCHED |
7608 | static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype, | 7608 | static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype, |
7609 | u64 shareval) | 7609 | u64 shareval) |
7610 | { | 7610 | { |
7611 | return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval)); | 7611 | return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval)); |
7612 | } | 7612 | } |
7613 | 7613 | ||
7614 | static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft) | 7614 | static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft) |
7615 | { | 7615 | { |
7616 | struct task_group *tg = cgroup_tg(cgrp); | 7616 | struct task_group *tg = cgroup_tg(cgrp); |
7617 | 7617 | ||
7618 | return (u64) scale_load_down(tg->shares); | 7618 | return (u64) scale_load_down(tg->shares); |
7619 | } | 7619 | } |
7620 | 7620 | ||
7621 | #ifdef CONFIG_CFS_BANDWIDTH | 7621 | #ifdef CONFIG_CFS_BANDWIDTH |
7622 | static DEFINE_MUTEX(cfs_constraints_mutex); | 7622 | static DEFINE_MUTEX(cfs_constraints_mutex); |
7623 | 7623 | ||
7624 | const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ | 7624 | const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ |
7625 | const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ | 7625 | const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ |
7626 | 7626 | ||
7627 | static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); | 7627 | static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); |
7628 | 7628 | ||
7629 | static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) | 7629 | static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) |
7630 | { | 7630 | { |
7631 | int i, ret = 0, runtime_enabled, runtime_was_enabled; | 7631 | int i, ret = 0, runtime_enabled, runtime_was_enabled; |
7632 | struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; | 7632 | struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; |
7633 | 7633 | ||
7634 | if (tg == &root_task_group) | 7634 | if (tg == &root_task_group) |
7635 | return -EINVAL; | 7635 | return -EINVAL; |
7636 | 7636 | ||
7637 | /* | 7637 | /* |
7638 | * Ensure we have at some amount of bandwidth every period. This is | 7638 | * Ensure we have at some amount of bandwidth every period. This is |
7639 | * to prevent reaching a state of large arrears when throttled via | 7639 | * to prevent reaching a state of large arrears when throttled via |
7640 | * entity_tick() resulting in prolonged exit starvation. | 7640 | * entity_tick() resulting in prolonged exit starvation. |
7641 | */ | 7641 | */ |
7642 | if (quota < min_cfs_quota_period || period < min_cfs_quota_period) | 7642 | if (quota < min_cfs_quota_period || period < min_cfs_quota_period) |
7643 | return -EINVAL; | 7643 | return -EINVAL; |
7644 | 7644 | ||
7645 | /* | 7645 | /* |
7646 | * Likewise, bound things on the otherside by preventing insane quota | 7646 | * Likewise, bound things on the otherside by preventing insane quota |
7647 | * periods. This also allows us to normalize in computing quota | 7647 | * periods. This also allows us to normalize in computing quota |
7648 | * feasibility. | 7648 | * feasibility. |
7649 | */ | 7649 | */ |
7650 | if (period > max_cfs_quota_period) | 7650 | if (period > max_cfs_quota_period) |
7651 | return -EINVAL; | 7651 | return -EINVAL; |
7652 | 7652 | ||
7653 | mutex_lock(&cfs_constraints_mutex); | 7653 | mutex_lock(&cfs_constraints_mutex); |
7654 | ret = __cfs_schedulable(tg, period, quota); | 7654 | ret = __cfs_schedulable(tg, period, quota); |
7655 | if (ret) | 7655 | if (ret) |
7656 | goto out_unlock; | 7656 | goto out_unlock; |
7657 | 7657 | ||
7658 | runtime_enabled = quota != RUNTIME_INF; | 7658 | runtime_enabled = quota != RUNTIME_INF; |
7659 | runtime_was_enabled = cfs_b->quota != RUNTIME_INF; | 7659 | runtime_was_enabled = cfs_b->quota != RUNTIME_INF; |
7660 | account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled); | 7660 | account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled); |
7661 | raw_spin_lock_irq(&cfs_b->lock); | 7661 | raw_spin_lock_irq(&cfs_b->lock); |
7662 | cfs_b->period = ns_to_ktime(period); | 7662 | cfs_b->period = ns_to_ktime(period); |
7663 | cfs_b->quota = quota; | 7663 | cfs_b->quota = quota; |
7664 | 7664 | ||
7665 | __refill_cfs_bandwidth_runtime(cfs_b); | 7665 | __refill_cfs_bandwidth_runtime(cfs_b); |
7666 | /* restart the period timer (if active) to handle new period expiry */ | 7666 | /* restart the period timer (if active) to handle new period expiry */ |
7667 | if (runtime_enabled && cfs_b->timer_active) { | 7667 | if (runtime_enabled && cfs_b->timer_active) { |
7668 | /* force a reprogram */ | 7668 | /* force a reprogram */ |
7669 | cfs_b->timer_active = 0; | 7669 | cfs_b->timer_active = 0; |
7670 | __start_cfs_bandwidth(cfs_b); | 7670 | __start_cfs_bandwidth(cfs_b); |
7671 | } | 7671 | } |
7672 | raw_spin_unlock_irq(&cfs_b->lock); | 7672 | raw_spin_unlock_irq(&cfs_b->lock); |
7673 | 7673 | ||
7674 | for_each_possible_cpu(i) { | 7674 | for_each_possible_cpu(i) { |
7675 | struct cfs_rq *cfs_rq = tg->cfs_rq[i]; | 7675 | struct cfs_rq *cfs_rq = tg->cfs_rq[i]; |
7676 | struct rq *rq = cfs_rq->rq; | 7676 | struct rq *rq = cfs_rq->rq; |
7677 | 7677 | ||
7678 | raw_spin_lock_irq(&rq->lock); | 7678 | raw_spin_lock_irq(&rq->lock); |
7679 | cfs_rq->runtime_enabled = runtime_enabled; | 7679 | cfs_rq->runtime_enabled = runtime_enabled; |
7680 | cfs_rq->runtime_remaining = 0; | 7680 | cfs_rq->runtime_remaining = 0; |
7681 | 7681 | ||
7682 | if (cfs_rq->throttled) | 7682 | if (cfs_rq->throttled) |
7683 | unthrottle_cfs_rq(cfs_rq); | 7683 | unthrottle_cfs_rq(cfs_rq); |
7684 | raw_spin_unlock_irq(&rq->lock); | 7684 | raw_spin_unlock_irq(&rq->lock); |
7685 | } | 7685 | } |
7686 | out_unlock: | 7686 | out_unlock: |
7687 | mutex_unlock(&cfs_constraints_mutex); | 7687 | mutex_unlock(&cfs_constraints_mutex); |
7688 | 7688 | ||
7689 | return ret; | 7689 | return ret; |
7690 | } | 7690 | } |
7691 | 7691 | ||
7692 | int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) | 7692 | int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) |
7693 | { | 7693 | { |
7694 | u64 quota, period; | 7694 | u64 quota, period; |
7695 | 7695 | ||
7696 | period = ktime_to_ns(tg->cfs_bandwidth.period); | 7696 | period = ktime_to_ns(tg->cfs_bandwidth.period); |
7697 | if (cfs_quota_us < 0) | 7697 | if (cfs_quota_us < 0) |
7698 | quota = RUNTIME_INF; | 7698 | quota = RUNTIME_INF; |
7699 | else | 7699 | else |
7700 | quota = (u64)cfs_quota_us * NSEC_PER_USEC; | 7700 | quota = (u64)cfs_quota_us * NSEC_PER_USEC; |
7701 | 7701 | ||
7702 | return tg_set_cfs_bandwidth(tg, period, quota); | 7702 | return tg_set_cfs_bandwidth(tg, period, quota); |
7703 | } | 7703 | } |
7704 | 7704 | ||
7705 | long tg_get_cfs_quota(struct task_group *tg) | 7705 | long tg_get_cfs_quota(struct task_group *tg) |
7706 | { | 7706 | { |
7707 | u64 quota_us; | 7707 | u64 quota_us; |
7708 | 7708 | ||
7709 | if (tg->cfs_bandwidth.quota == RUNTIME_INF) | 7709 | if (tg->cfs_bandwidth.quota == RUNTIME_INF) |
7710 | return -1; | 7710 | return -1; |
7711 | 7711 | ||
7712 | quota_us = tg->cfs_bandwidth.quota; | 7712 | quota_us = tg->cfs_bandwidth.quota; |
7713 | do_div(quota_us, NSEC_PER_USEC); | 7713 | do_div(quota_us, NSEC_PER_USEC); |
7714 | 7714 | ||
7715 | return quota_us; | 7715 | return quota_us; |
7716 | } | 7716 | } |
7717 | 7717 | ||
7718 | int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) | 7718 | int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) |
7719 | { | 7719 | { |
7720 | u64 quota, period; | 7720 | u64 quota, period; |
7721 | 7721 | ||
7722 | period = (u64)cfs_period_us * NSEC_PER_USEC; | 7722 | period = (u64)cfs_period_us * NSEC_PER_USEC; |
7723 | quota = tg->cfs_bandwidth.quota; | 7723 | quota = tg->cfs_bandwidth.quota; |
7724 | 7724 | ||
7725 | return tg_set_cfs_bandwidth(tg, period, quota); | 7725 | return tg_set_cfs_bandwidth(tg, period, quota); |
7726 | } | 7726 | } |
7727 | 7727 | ||
7728 | long tg_get_cfs_period(struct task_group *tg) | 7728 | long tg_get_cfs_period(struct task_group *tg) |
7729 | { | 7729 | { |
7730 | u64 cfs_period_us; | 7730 | u64 cfs_period_us; |
7731 | 7731 | ||
7732 | cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); | 7732 | cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); |
7733 | do_div(cfs_period_us, NSEC_PER_USEC); | 7733 | do_div(cfs_period_us, NSEC_PER_USEC); |
7734 | 7734 | ||
7735 | return cfs_period_us; | 7735 | return cfs_period_us; |
7736 | } | 7736 | } |
7737 | 7737 | ||
7738 | static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft) | 7738 | static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft) |
7739 | { | 7739 | { |
7740 | return tg_get_cfs_quota(cgroup_tg(cgrp)); | 7740 | return tg_get_cfs_quota(cgroup_tg(cgrp)); |
7741 | } | 7741 | } |
7742 | 7742 | ||
7743 | static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype, | 7743 | static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype, |
7744 | s64 cfs_quota_us) | 7744 | s64 cfs_quota_us) |
7745 | { | 7745 | { |
7746 | return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us); | 7746 | return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us); |
7747 | } | 7747 | } |
7748 | 7748 | ||
7749 | static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft) | 7749 | static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft) |
7750 | { | 7750 | { |
7751 | return tg_get_cfs_period(cgroup_tg(cgrp)); | 7751 | return tg_get_cfs_period(cgroup_tg(cgrp)); |
7752 | } | 7752 | } |
7753 | 7753 | ||
7754 | static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype, | 7754 | static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype, |
7755 | u64 cfs_period_us) | 7755 | u64 cfs_period_us) |
7756 | { | 7756 | { |
7757 | return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us); | 7757 | return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us); |
7758 | } | 7758 | } |
7759 | 7759 | ||
7760 | struct cfs_schedulable_data { | 7760 | struct cfs_schedulable_data { |
7761 | struct task_group *tg; | 7761 | struct task_group *tg; |
7762 | u64 period, quota; | 7762 | u64 period, quota; |
7763 | }; | 7763 | }; |
7764 | 7764 | ||
7765 | /* | 7765 | /* |
7766 | * normalize group quota/period to be quota/max_period | 7766 | * normalize group quota/period to be quota/max_period |
7767 | * note: units are usecs | 7767 | * note: units are usecs |
7768 | */ | 7768 | */ |
7769 | static u64 normalize_cfs_quota(struct task_group *tg, | 7769 | static u64 normalize_cfs_quota(struct task_group *tg, |
7770 | struct cfs_schedulable_data *d) | 7770 | struct cfs_schedulable_data *d) |
7771 | { | 7771 | { |
7772 | u64 quota, period; | 7772 | u64 quota, period; |
7773 | 7773 | ||
7774 | if (tg == d->tg) { | 7774 | if (tg == d->tg) { |
7775 | period = d->period; | 7775 | period = d->period; |
7776 | quota = d->quota; | 7776 | quota = d->quota; |
7777 | } else { | 7777 | } else { |
7778 | period = tg_get_cfs_period(tg); | 7778 | period = tg_get_cfs_period(tg); |
7779 | quota = tg_get_cfs_quota(tg); | 7779 | quota = tg_get_cfs_quota(tg); |
7780 | } | 7780 | } |
7781 | 7781 | ||
7782 | /* note: these should typically be equivalent */ | 7782 | /* note: these should typically be equivalent */ |
7783 | if (quota == RUNTIME_INF || quota == -1) | 7783 | if (quota == RUNTIME_INF || quota == -1) |
7784 | return RUNTIME_INF; | 7784 | return RUNTIME_INF; |
7785 | 7785 | ||
7786 | return to_ratio(period, quota); | 7786 | return to_ratio(period, quota); |
7787 | } | 7787 | } |
7788 | 7788 | ||
7789 | static int tg_cfs_schedulable_down(struct task_group *tg, void *data) | 7789 | static int tg_cfs_schedulable_down(struct task_group *tg, void *data) |
7790 | { | 7790 | { |
7791 | struct cfs_schedulable_data *d = data; | 7791 | struct cfs_schedulable_data *d = data; |
7792 | struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; | 7792 | struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; |
7793 | s64 quota = 0, parent_quota = -1; | 7793 | s64 quota = 0, parent_quota = -1; |
7794 | 7794 | ||
7795 | if (!tg->parent) { | 7795 | if (!tg->parent) { |
7796 | quota = RUNTIME_INF; | 7796 | quota = RUNTIME_INF; |
7797 | } else { | 7797 | } else { |
7798 | struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; | 7798 | struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; |
7799 | 7799 | ||
7800 | quota = normalize_cfs_quota(tg, d); | 7800 | quota = normalize_cfs_quota(tg, d); |
7801 | parent_quota = parent_b->hierarchal_quota; | 7801 | parent_quota = parent_b->hierarchal_quota; |
7802 | 7802 | ||
7803 | /* | 7803 | /* |
7804 | * ensure max(child_quota) <= parent_quota, inherit when no | 7804 | * ensure max(child_quota) <= parent_quota, inherit when no |
7805 | * limit is set | 7805 | * limit is set |
7806 | */ | 7806 | */ |
7807 | if (quota == RUNTIME_INF) | 7807 | if (quota == RUNTIME_INF) |
7808 | quota = parent_quota; | 7808 | quota = parent_quota; |
7809 | else if (parent_quota != RUNTIME_INF && quota > parent_quota) | 7809 | else if (parent_quota != RUNTIME_INF && quota > parent_quota) |
7810 | return -EINVAL; | 7810 | return -EINVAL; |
7811 | } | 7811 | } |
7812 | cfs_b->hierarchal_quota = quota; | 7812 | cfs_b->hierarchal_quota = quota; |
7813 | 7813 | ||
7814 | return 0; | 7814 | return 0; |
7815 | } | 7815 | } |
7816 | 7816 | ||
7817 | static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) | 7817 | static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) |
7818 | { | 7818 | { |
7819 | int ret; | 7819 | int ret; |
7820 | struct cfs_schedulable_data data = { | 7820 | struct cfs_schedulable_data data = { |
7821 | .tg = tg, | 7821 | .tg = tg, |
7822 | .period = period, | 7822 | .period = period, |
7823 | .quota = quota, | 7823 | .quota = quota, |
7824 | }; | 7824 | }; |
7825 | 7825 | ||
7826 | if (quota != RUNTIME_INF) { | 7826 | if (quota != RUNTIME_INF) { |
7827 | do_div(data.period, NSEC_PER_USEC); | 7827 | do_div(data.period, NSEC_PER_USEC); |
7828 | do_div(data.quota, NSEC_PER_USEC); | 7828 | do_div(data.quota, NSEC_PER_USEC); |
7829 | } | 7829 | } |
7830 | 7830 | ||
7831 | rcu_read_lock(); | 7831 | rcu_read_lock(); |
7832 | ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); | 7832 | ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); |
7833 | rcu_read_unlock(); | 7833 | rcu_read_unlock(); |
7834 | 7834 | ||
7835 | return ret; | 7835 | return ret; |
7836 | } | 7836 | } |
7837 | 7837 | ||
7838 | static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft, | 7838 | static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft, |
7839 | struct cgroup_map_cb *cb) | 7839 | struct cgroup_map_cb *cb) |
7840 | { | 7840 | { |
7841 | struct task_group *tg = cgroup_tg(cgrp); | 7841 | struct task_group *tg = cgroup_tg(cgrp); |
7842 | struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; | 7842 | struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; |
7843 | 7843 | ||
7844 | cb->fill(cb, "nr_periods", cfs_b->nr_periods); | 7844 | cb->fill(cb, "nr_periods", cfs_b->nr_periods); |
7845 | cb->fill(cb, "nr_throttled", cfs_b->nr_throttled); | 7845 | cb->fill(cb, "nr_throttled", cfs_b->nr_throttled); |
7846 | cb->fill(cb, "throttled_time", cfs_b->throttled_time); | 7846 | cb->fill(cb, "throttled_time", cfs_b->throttled_time); |
7847 | 7847 | ||
7848 | return 0; | 7848 | return 0; |
7849 | } | 7849 | } |
7850 | #endif /* CONFIG_CFS_BANDWIDTH */ | 7850 | #endif /* CONFIG_CFS_BANDWIDTH */ |
7851 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 7851 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
7852 | 7852 | ||
7853 | #ifdef CONFIG_RT_GROUP_SCHED | 7853 | #ifdef CONFIG_RT_GROUP_SCHED |
7854 | static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft, | 7854 | static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft, |
7855 | s64 val) | 7855 | s64 val) |
7856 | { | 7856 | { |
7857 | return sched_group_set_rt_runtime(cgroup_tg(cgrp), val); | 7857 | return sched_group_set_rt_runtime(cgroup_tg(cgrp), val); |
7858 | } | 7858 | } |
7859 | 7859 | ||
7860 | static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft) | 7860 | static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft) |
7861 | { | 7861 | { |
7862 | return sched_group_rt_runtime(cgroup_tg(cgrp)); | 7862 | return sched_group_rt_runtime(cgroup_tg(cgrp)); |
7863 | } | 7863 | } |
7864 | 7864 | ||
7865 | static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype, | 7865 | static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype, |
7866 | u64 rt_period_us) | 7866 | u64 rt_period_us) |
7867 | { | 7867 | { |
7868 | return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us); | 7868 | return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us); |
7869 | } | 7869 | } |
7870 | 7870 | ||
7871 | static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft) | 7871 | static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft) |
7872 | { | 7872 | { |
7873 | return sched_group_rt_period(cgroup_tg(cgrp)); | 7873 | return sched_group_rt_period(cgroup_tg(cgrp)); |
7874 | } | 7874 | } |
7875 | #endif /* CONFIG_RT_GROUP_SCHED */ | 7875 | #endif /* CONFIG_RT_GROUP_SCHED */ |
7876 | 7876 | ||
7877 | static struct cftype cpu_files[] = { | 7877 | static struct cftype cpu_files[] = { |
7878 | #ifdef CONFIG_FAIR_GROUP_SCHED | 7878 | #ifdef CONFIG_FAIR_GROUP_SCHED |
7879 | { | 7879 | { |
7880 | .name = "shares", | 7880 | .name = "shares", |
7881 | .read_u64 = cpu_shares_read_u64, | 7881 | .read_u64 = cpu_shares_read_u64, |
7882 | .write_u64 = cpu_shares_write_u64, | 7882 | .write_u64 = cpu_shares_write_u64, |
7883 | }, | 7883 | }, |
7884 | #endif | 7884 | #endif |
7885 | #ifdef CONFIG_CFS_BANDWIDTH | 7885 | #ifdef CONFIG_CFS_BANDWIDTH |
7886 | { | 7886 | { |
7887 | .name = "cfs_quota_us", | 7887 | .name = "cfs_quota_us", |
7888 | .read_s64 = cpu_cfs_quota_read_s64, | 7888 | .read_s64 = cpu_cfs_quota_read_s64, |
7889 | .write_s64 = cpu_cfs_quota_write_s64, | 7889 | .write_s64 = cpu_cfs_quota_write_s64, |
7890 | }, | 7890 | }, |
7891 | { | 7891 | { |
7892 | .name = "cfs_period_us", | 7892 | .name = "cfs_period_us", |
7893 | .read_u64 = cpu_cfs_period_read_u64, | 7893 | .read_u64 = cpu_cfs_period_read_u64, |
7894 | .write_u64 = cpu_cfs_period_write_u64, | 7894 | .write_u64 = cpu_cfs_period_write_u64, |
7895 | }, | 7895 | }, |
7896 | { | 7896 | { |
7897 | .name = "stat", | 7897 | .name = "stat", |
7898 | .read_map = cpu_stats_show, | 7898 | .read_map = cpu_stats_show, |
7899 | }, | 7899 | }, |
7900 | #endif | 7900 | #endif |
7901 | #ifdef CONFIG_RT_GROUP_SCHED | 7901 | #ifdef CONFIG_RT_GROUP_SCHED |
7902 | { | 7902 | { |
7903 | .name = "rt_runtime_us", | 7903 | .name = "rt_runtime_us", |
7904 | .read_s64 = cpu_rt_runtime_read, | 7904 | .read_s64 = cpu_rt_runtime_read, |
7905 | .write_s64 = cpu_rt_runtime_write, | 7905 | .write_s64 = cpu_rt_runtime_write, |
7906 | }, | 7906 | }, |
7907 | { | 7907 | { |
7908 | .name = "rt_period_us", | 7908 | .name = "rt_period_us", |
7909 | .read_u64 = cpu_rt_period_read_uint, | 7909 | .read_u64 = cpu_rt_period_read_uint, |
7910 | .write_u64 = cpu_rt_period_write_uint, | 7910 | .write_u64 = cpu_rt_period_write_uint, |
7911 | }, | 7911 | }, |
7912 | #endif | 7912 | #endif |
7913 | }; | 7913 | }; |
7914 | 7914 | ||
7915 | static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont) | 7915 | static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont) |
7916 | { | 7916 | { |
7917 | return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files)); | 7917 | return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files)); |
7918 | } | 7918 | } |
7919 | 7919 | ||
7920 | struct cgroup_subsys cpu_cgroup_subsys = { | 7920 | struct cgroup_subsys cpu_cgroup_subsys = { |
7921 | .name = "cpu", | 7921 | .name = "cpu", |
7922 | .create = cpu_cgroup_create, | 7922 | .create = cpu_cgroup_create, |
7923 | .destroy = cpu_cgroup_destroy, | 7923 | .destroy = cpu_cgroup_destroy, |
7924 | .can_attach = cpu_cgroup_can_attach, | 7924 | .can_attach = cpu_cgroup_can_attach, |
7925 | .attach = cpu_cgroup_attach, | 7925 | .attach = cpu_cgroup_attach, |
7926 | .exit = cpu_cgroup_exit, | 7926 | .exit = cpu_cgroup_exit, |
7927 | .populate = cpu_cgroup_populate, | 7927 | .populate = cpu_cgroup_populate, |
7928 | .subsys_id = cpu_cgroup_subsys_id, | 7928 | .subsys_id = cpu_cgroup_subsys_id, |
7929 | .early_init = 1, | 7929 | .early_init = 1, |
7930 | }; | 7930 | }; |
7931 | 7931 | ||
7932 | #endif /* CONFIG_CGROUP_SCHED */ | 7932 | #endif /* CONFIG_CGROUP_SCHED */ |
7933 | 7933 | ||
7934 | #ifdef CONFIG_CGROUP_CPUACCT | 7934 | #ifdef CONFIG_CGROUP_CPUACCT |
7935 | 7935 | ||
7936 | /* | 7936 | /* |
7937 | * CPU accounting code for task groups. | 7937 | * CPU accounting code for task groups. |
7938 | * | 7938 | * |
7939 | * Based on the work by Paul Menage (menage@google.com) and Balbir Singh | 7939 | * Based on the work by Paul Menage (menage@google.com) and Balbir Singh |
7940 | * (balbir@in.ibm.com). | 7940 | * (balbir@in.ibm.com). |
7941 | */ | 7941 | */ |
7942 | 7942 | ||
7943 | /* create a new cpu accounting group */ | 7943 | /* create a new cpu accounting group */ |
7944 | static struct cgroup_subsys_state *cpuacct_create( | 7944 | static struct cgroup_subsys_state *cpuacct_create( |
7945 | struct cgroup_subsys *ss, struct cgroup *cgrp) | 7945 | struct cgroup_subsys *ss, struct cgroup *cgrp) |
7946 | { | 7946 | { |
7947 | struct cpuacct *ca; | 7947 | struct cpuacct *ca; |
7948 | 7948 | ||
7949 | if (!cgrp->parent) | 7949 | if (!cgrp->parent) |
7950 | return &root_cpuacct.css; | 7950 | return &root_cpuacct.css; |
7951 | 7951 | ||
7952 | ca = kzalloc(sizeof(*ca), GFP_KERNEL); | 7952 | ca = kzalloc(sizeof(*ca), GFP_KERNEL); |
7953 | if (!ca) | 7953 | if (!ca) |
7954 | goto out; | 7954 | goto out; |
7955 | 7955 | ||
7956 | ca->cpuusage = alloc_percpu(u64); | 7956 | ca->cpuusage = alloc_percpu(u64); |
7957 | if (!ca->cpuusage) | 7957 | if (!ca->cpuusage) |
7958 | goto out_free_ca; | 7958 | goto out_free_ca; |
7959 | 7959 | ||
7960 | ca->cpustat = alloc_percpu(struct kernel_cpustat); | 7960 | ca->cpustat = alloc_percpu(struct kernel_cpustat); |
7961 | if (!ca->cpustat) | 7961 | if (!ca->cpustat) |
7962 | goto out_free_cpuusage; | 7962 | goto out_free_cpuusage; |
7963 | 7963 | ||
7964 | return &ca->css; | 7964 | return &ca->css; |
7965 | 7965 | ||
7966 | out_free_cpuusage: | 7966 | out_free_cpuusage: |
7967 | free_percpu(ca->cpuusage); | 7967 | free_percpu(ca->cpuusage); |
7968 | out_free_ca: | 7968 | out_free_ca: |
7969 | kfree(ca); | 7969 | kfree(ca); |
7970 | out: | 7970 | out: |
7971 | return ERR_PTR(-ENOMEM); | 7971 | return ERR_PTR(-ENOMEM); |
7972 | } | 7972 | } |
7973 | 7973 | ||
7974 | /* destroy an existing cpu accounting group */ | 7974 | /* destroy an existing cpu accounting group */ |
7975 | static void | 7975 | static void |
7976 | cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) | 7976 | cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) |
7977 | { | 7977 | { |
7978 | struct cpuacct *ca = cgroup_ca(cgrp); | 7978 | struct cpuacct *ca = cgroup_ca(cgrp); |
7979 | 7979 | ||
7980 | free_percpu(ca->cpustat); | 7980 | free_percpu(ca->cpustat); |
7981 | free_percpu(ca->cpuusage); | 7981 | free_percpu(ca->cpuusage); |
7982 | kfree(ca); | 7982 | kfree(ca); |
7983 | } | 7983 | } |
7984 | 7984 | ||
7985 | static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu) | 7985 | static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu) |
7986 | { | 7986 | { |
7987 | u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); | 7987 | u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); |
7988 | u64 data; | 7988 | u64 data; |
7989 | 7989 | ||
7990 | #ifndef CONFIG_64BIT | 7990 | #ifndef CONFIG_64BIT |
7991 | /* | 7991 | /* |
7992 | * Take rq->lock to make 64-bit read safe on 32-bit platforms. | 7992 | * Take rq->lock to make 64-bit read safe on 32-bit platforms. |
7993 | */ | 7993 | */ |
7994 | raw_spin_lock_irq(&cpu_rq(cpu)->lock); | 7994 | raw_spin_lock_irq(&cpu_rq(cpu)->lock); |
7995 | data = *cpuusage; | 7995 | data = *cpuusage; |
7996 | raw_spin_unlock_irq(&cpu_rq(cpu)->lock); | 7996 | raw_spin_unlock_irq(&cpu_rq(cpu)->lock); |
7997 | #else | 7997 | #else |
7998 | data = *cpuusage; | 7998 | data = *cpuusage; |
7999 | #endif | 7999 | #endif |
8000 | 8000 | ||
8001 | return data; | 8001 | return data; |
8002 | } | 8002 | } |
8003 | 8003 | ||
8004 | static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val) | 8004 | static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val) |
8005 | { | 8005 | { |
8006 | u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); | 8006 | u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); |
8007 | 8007 | ||
8008 | #ifndef CONFIG_64BIT | 8008 | #ifndef CONFIG_64BIT |
8009 | /* | 8009 | /* |
8010 | * Take rq->lock to make 64-bit write safe on 32-bit platforms. | 8010 | * Take rq->lock to make 64-bit write safe on 32-bit platforms. |
8011 | */ | 8011 | */ |
8012 | raw_spin_lock_irq(&cpu_rq(cpu)->lock); | 8012 | raw_spin_lock_irq(&cpu_rq(cpu)->lock); |
8013 | *cpuusage = val; | 8013 | *cpuusage = val; |
8014 | raw_spin_unlock_irq(&cpu_rq(cpu)->lock); | 8014 | raw_spin_unlock_irq(&cpu_rq(cpu)->lock); |
8015 | #else | 8015 | #else |
8016 | *cpuusage = val; | 8016 | *cpuusage = val; |
8017 | #endif | 8017 | #endif |
8018 | } | 8018 | } |
8019 | 8019 | ||
8020 | /* return total cpu usage (in nanoseconds) of a group */ | 8020 | /* return total cpu usage (in nanoseconds) of a group */ |
8021 | static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft) | 8021 | static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft) |
8022 | { | 8022 | { |
8023 | struct cpuacct *ca = cgroup_ca(cgrp); | 8023 | struct cpuacct *ca = cgroup_ca(cgrp); |
8024 | u64 totalcpuusage = 0; | 8024 | u64 totalcpuusage = 0; |
8025 | int i; | 8025 | int i; |
8026 | 8026 | ||
8027 | for_each_present_cpu(i) | 8027 | for_each_present_cpu(i) |
8028 | totalcpuusage += cpuacct_cpuusage_read(ca, i); | 8028 | totalcpuusage += cpuacct_cpuusage_read(ca, i); |
8029 | 8029 | ||
8030 | return totalcpuusage; | 8030 | return totalcpuusage; |
8031 | } | 8031 | } |
8032 | 8032 | ||
8033 | static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype, | 8033 | static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype, |
8034 | u64 reset) | 8034 | u64 reset) |
8035 | { | 8035 | { |
8036 | struct cpuacct *ca = cgroup_ca(cgrp); | 8036 | struct cpuacct *ca = cgroup_ca(cgrp); |
8037 | int err = 0; | 8037 | int err = 0; |
8038 | int i; | 8038 | int i; |
8039 | 8039 | ||
8040 | if (reset) { | 8040 | if (reset) { |
8041 | err = -EINVAL; | 8041 | err = -EINVAL; |
8042 | goto out; | 8042 | goto out; |
8043 | } | 8043 | } |
8044 | 8044 | ||
8045 | for_each_present_cpu(i) | 8045 | for_each_present_cpu(i) |
8046 | cpuacct_cpuusage_write(ca, i, 0); | 8046 | cpuacct_cpuusage_write(ca, i, 0); |
8047 | 8047 | ||
8048 | out: | 8048 | out: |
8049 | return err; | 8049 | return err; |
8050 | } | 8050 | } |
8051 | 8051 | ||
8052 | static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft, | 8052 | static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft, |
8053 | struct seq_file *m) | 8053 | struct seq_file *m) |
8054 | { | 8054 | { |
8055 | struct cpuacct *ca = cgroup_ca(cgroup); | 8055 | struct cpuacct *ca = cgroup_ca(cgroup); |
8056 | u64 percpu; | 8056 | u64 percpu; |
8057 | int i; | 8057 | int i; |
8058 | 8058 | ||
8059 | for_each_present_cpu(i) { | 8059 | for_each_present_cpu(i) { |
8060 | percpu = cpuacct_cpuusage_read(ca, i); | 8060 | percpu = cpuacct_cpuusage_read(ca, i); |
8061 | seq_printf(m, "%llu ", (unsigned long long) percpu); | 8061 | seq_printf(m, "%llu ", (unsigned long long) percpu); |
8062 | } | 8062 | } |
8063 | seq_printf(m, "\n"); | 8063 | seq_printf(m, "\n"); |
8064 | return 0; | 8064 | return 0; |
8065 | } | 8065 | } |
8066 | 8066 | ||
8067 | static const char *cpuacct_stat_desc[] = { | 8067 | static const char *cpuacct_stat_desc[] = { |
8068 | [CPUACCT_STAT_USER] = "user", | 8068 | [CPUACCT_STAT_USER] = "user", |
8069 | [CPUACCT_STAT_SYSTEM] = "system", | 8069 | [CPUACCT_STAT_SYSTEM] = "system", |
8070 | }; | 8070 | }; |
8071 | 8071 | ||
8072 | static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft, | 8072 | static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft, |
8073 | struct cgroup_map_cb *cb) | 8073 | struct cgroup_map_cb *cb) |
8074 | { | 8074 | { |
8075 | struct cpuacct *ca = cgroup_ca(cgrp); | 8075 | struct cpuacct *ca = cgroup_ca(cgrp); |
8076 | int cpu; | 8076 | int cpu; |
8077 | s64 val = 0; | 8077 | s64 val = 0; |
8078 | 8078 | ||
8079 | for_each_online_cpu(cpu) { | 8079 | for_each_online_cpu(cpu) { |
8080 | struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu); | 8080 | struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu); |
8081 | val += kcpustat->cpustat[CPUTIME_USER]; | 8081 | val += kcpustat->cpustat[CPUTIME_USER]; |
8082 | val += kcpustat->cpustat[CPUTIME_NICE]; | 8082 | val += kcpustat->cpustat[CPUTIME_NICE]; |
8083 | } | 8083 | } |
8084 | val = cputime64_to_clock_t(val); | 8084 | val = cputime64_to_clock_t(val); |
8085 | cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val); | 8085 | cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val); |
8086 | 8086 | ||
8087 | val = 0; | 8087 | val = 0; |
8088 | for_each_online_cpu(cpu) { | 8088 | for_each_online_cpu(cpu) { |
8089 | struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu); | 8089 | struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu); |
8090 | val += kcpustat->cpustat[CPUTIME_SYSTEM]; | 8090 | val += kcpustat->cpustat[CPUTIME_SYSTEM]; |
8091 | val += kcpustat->cpustat[CPUTIME_IRQ]; | 8091 | val += kcpustat->cpustat[CPUTIME_IRQ]; |
8092 | val += kcpustat->cpustat[CPUTIME_SOFTIRQ]; | 8092 | val += kcpustat->cpustat[CPUTIME_SOFTIRQ]; |
8093 | } | 8093 | } |
8094 | 8094 | ||
8095 | val = cputime64_to_clock_t(val); | 8095 | val = cputime64_to_clock_t(val); |
8096 | cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val); | 8096 | cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val); |
8097 | 8097 | ||
8098 | return 0; | 8098 | return 0; |
8099 | } | 8099 | } |
8100 | 8100 | ||
8101 | static struct cftype files[] = { | 8101 | static struct cftype files[] = { |
8102 | { | 8102 | { |
8103 | .name = "usage", | 8103 | .name = "usage", |
8104 | .read_u64 = cpuusage_read, | 8104 | .read_u64 = cpuusage_read, |
8105 | .write_u64 = cpuusage_write, | 8105 | .write_u64 = cpuusage_write, |
8106 | }, | 8106 | }, |
8107 | { | 8107 | { |
8108 | .name = "usage_percpu", | 8108 | .name = "usage_percpu", |
8109 | .read_seq_string = cpuacct_percpu_seq_read, | 8109 | .read_seq_string = cpuacct_percpu_seq_read, |
8110 | }, | 8110 | }, |
8111 | { | 8111 | { |
8112 | .name = "stat", | 8112 | .name = "stat", |
8113 | .read_map = cpuacct_stats_show, | 8113 | .read_map = cpuacct_stats_show, |
8114 | }, | 8114 | }, |
8115 | }; | 8115 | }; |
8116 | 8116 | ||
8117 | static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp) | 8117 | static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp) |
8118 | { | 8118 | { |
8119 | return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files)); | 8119 | return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files)); |
8120 | } | 8120 | } |
8121 | 8121 | ||
8122 | /* | 8122 | /* |
8123 | * charge this task's execution time to its accounting group. | 8123 | * charge this task's execution time to its accounting group. |
8124 | * | 8124 | * |
8125 | * called with rq->lock held. | 8125 | * called with rq->lock held. |
8126 | */ | 8126 | */ |
8127 | void cpuacct_charge(struct task_struct *tsk, u64 cputime) | 8127 | void cpuacct_charge(struct task_struct *tsk, u64 cputime) |
8128 | { | 8128 | { |
8129 | struct cpuacct *ca; | 8129 | struct cpuacct *ca; |
8130 | int cpu; | 8130 | int cpu; |
8131 | 8131 | ||
8132 | if (unlikely(!cpuacct_subsys.active)) | 8132 | if (unlikely(!cpuacct_subsys.active)) |
8133 | return; | 8133 | return; |
8134 | 8134 | ||
8135 | cpu = task_cpu(tsk); | 8135 | cpu = task_cpu(tsk); |
8136 | 8136 | ||
8137 | rcu_read_lock(); | 8137 | rcu_read_lock(); |
8138 | 8138 | ||
8139 | ca = task_ca(tsk); | 8139 | ca = task_ca(tsk); |
8140 | 8140 | ||
8141 | for (; ca; ca = parent_ca(ca)) { | 8141 | for (; ca; ca = parent_ca(ca)) { |
8142 | u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); | 8142 | u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); |
8143 | *cpuusage += cputime; | 8143 | *cpuusage += cputime; |
8144 | } | 8144 | } |
8145 | 8145 | ||
8146 | rcu_read_unlock(); | 8146 | rcu_read_unlock(); |
8147 | } | 8147 | } |
8148 | 8148 | ||
8149 | struct cgroup_subsys cpuacct_subsys = { | 8149 | struct cgroup_subsys cpuacct_subsys = { |
8150 | .name = "cpuacct", | 8150 | .name = "cpuacct", |
8151 | .create = cpuacct_create, | 8151 | .create = cpuacct_create, |
8152 | .destroy = cpuacct_destroy, | 8152 | .destroy = cpuacct_destroy, |
8153 | .populate = cpuacct_populate, | 8153 | .populate = cpuacct_populate, |
8154 | .subsys_id = cpuacct_subsys_id, | 8154 | .subsys_id = cpuacct_subsys_id, |
8155 | }; | 8155 | }; |
8156 | #endif /* CONFIG_CGROUP_CPUACCT */ | 8156 | #endif /* CONFIG_CGROUP_CPUACCT */ |
8157 | 8157 |
kernel/softirq.c
1 | /* | 1 | /* |
2 | * linux/kernel/softirq.c | 2 | * linux/kernel/softirq.c |
3 | * | 3 | * |
4 | * Copyright (C) 1992 Linus Torvalds | 4 | * Copyright (C) 1992 Linus Torvalds |
5 | * | 5 | * |
6 | * Distribute under GPLv2. | 6 | * Distribute under GPLv2. |
7 | * | 7 | * |
8 | * Rewritten. Old one was good in 2.2, but in 2.3 it was immoral. --ANK (990903) | 8 | * Rewritten. Old one was good in 2.2, but in 2.3 it was immoral. --ANK (990903) |
9 | * | 9 | * |
10 | * Remote softirq infrastructure is by Jens Axboe. | 10 | * Remote softirq infrastructure is by Jens Axboe. |
11 | */ | 11 | */ |
12 | 12 | ||
13 | #include <linux/export.h> | 13 | #include <linux/export.h> |
14 | #include <linux/kernel_stat.h> | 14 | #include <linux/kernel_stat.h> |
15 | #include <linux/interrupt.h> | 15 | #include <linux/interrupt.h> |
16 | #include <linux/init.h> | 16 | #include <linux/init.h> |
17 | #include <linux/mm.h> | 17 | #include <linux/mm.h> |
18 | #include <linux/notifier.h> | 18 | #include <linux/notifier.h> |
19 | #include <linux/percpu.h> | 19 | #include <linux/percpu.h> |
20 | #include <linux/cpu.h> | 20 | #include <linux/cpu.h> |
21 | #include <linux/freezer.h> | 21 | #include <linux/freezer.h> |
22 | #include <linux/kthread.h> | 22 | #include <linux/kthread.h> |
23 | #include <linux/rcupdate.h> | 23 | #include <linux/rcupdate.h> |
24 | #include <linux/ftrace.h> | 24 | #include <linux/ftrace.h> |
25 | #include <linux/smp.h> | 25 | #include <linux/smp.h> |
26 | #include <linux/tick.h> | 26 | #include <linux/tick.h> |
27 | 27 | ||
28 | #define CREATE_TRACE_POINTS | 28 | #define CREATE_TRACE_POINTS |
29 | #include <trace/events/irq.h> | 29 | #include <trace/events/irq.h> |
30 | 30 | ||
31 | #include <asm/irq.h> | 31 | #include <asm/irq.h> |
32 | /* | 32 | /* |
33 | - No shared variables, all the data are CPU local. | 33 | - No shared variables, all the data are CPU local. |
34 | - If a softirq needs serialization, let it serialize itself | 34 | - If a softirq needs serialization, let it serialize itself |
35 | by its own spinlocks. | 35 | by its own spinlocks. |
36 | - Even if softirq is serialized, only local cpu is marked for | 36 | - Even if softirq is serialized, only local cpu is marked for |
37 | execution. Hence, we get something sort of weak cpu binding. | 37 | execution. Hence, we get something sort of weak cpu binding. |
38 | Though it is still not clear, will it result in better locality | 38 | Though it is still not clear, will it result in better locality |
39 | or will not. | 39 | or will not. |
40 | 40 | ||
41 | Examples: | 41 | Examples: |
42 | - NET RX softirq. It is multithreaded and does not require | 42 | - NET RX softirq. It is multithreaded and does not require |
43 | any global serialization. | 43 | any global serialization. |
44 | - NET TX softirq. It kicks software netdevice queues, hence | 44 | - NET TX softirq. It kicks software netdevice queues, hence |
45 | it is logically serialized per device, but this serialization | 45 | it is logically serialized per device, but this serialization |
46 | is invisible to common code. | 46 | is invisible to common code. |
47 | - Tasklets: serialized wrt itself. | 47 | - Tasklets: serialized wrt itself. |
48 | */ | 48 | */ |
49 | 49 | ||
50 | #ifndef __ARCH_IRQ_STAT | 50 | #ifndef __ARCH_IRQ_STAT |
51 | irq_cpustat_t irq_stat[NR_CPUS] ____cacheline_aligned; | 51 | irq_cpustat_t irq_stat[NR_CPUS] ____cacheline_aligned; |
52 | EXPORT_SYMBOL(irq_stat); | 52 | EXPORT_SYMBOL(irq_stat); |
53 | #endif | 53 | #endif |
54 | 54 | ||
55 | static struct softirq_action softirq_vec[NR_SOFTIRQS] __cacheline_aligned_in_smp; | 55 | static struct softirq_action softirq_vec[NR_SOFTIRQS] __cacheline_aligned_in_smp; |
56 | 56 | ||
57 | DEFINE_PER_CPU(struct task_struct *, ksoftirqd); | 57 | DEFINE_PER_CPU(struct task_struct *, ksoftirqd); |
58 | 58 | ||
59 | char *softirq_to_name[NR_SOFTIRQS] = { | 59 | char *softirq_to_name[NR_SOFTIRQS] = { |
60 | "HI", "TIMER", "NET_TX", "NET_RX", "BLOCK", "BLOCK_IOPOLL", | 60 | "HI", "TIMER", "NET_TX", "NET_RX", "BLOCK", "BLOCK_IOPOLL", |
61 | "TASKLET", "SCHED", "HRTIMER", "RCU" | 61 | "TASKLET", "SCHED", "HRTIMER", "RCU" |
62 | }; | 62 | }; |
63 | 63 | ||
64 | /* | 64 | /* |
65 | * we cannot loop indefinitely here to avoid userspace starvation, | 65 | * we cannot loop indefinitely here to avoid userspace starvation, |
66 | * but we also don't want to introduce a worst case 1/HZ latency | 66 | * but we also don't want to introduce a worst case 1/HZ latency |
67 | * to the pending events, so lets the scheduler to balance | 67 | * to the pending events, so lets the scheduler to balance |
68 | * the softirq load for us. | 68 | * the softirq load for us. |
69 | */ | 69 | */ |
70 | static void wakeup_softirqd(void) | 70 | static void wakeup_softirqd(void) |
71 | { | 71 | { |
72 | /* Interrupts are disabled: no need to stop preemption */ | 72 | /* Interrupts are disabled: no need to stop preemption */ |
73 | struct task_struct *tsk = __this_cpu_read(ksoftirqd); | 73 | struct task_struct *tsk = __this_cpu_read(ksoftirqd); |
74 | 74 | ||
75 | if (tsk && tsk->state != TASK_RUNNING) | 75 | if (tsk && tsk->state != TASK_RUNNING) |
76 | wake_up_process(tsk); | 76 | wake_up_process(tsk); |
77 | } | 77 | } |
78 | 78 | ||
79 | /* | 79 | /* |
80 | * preempt_count and SOFTIRQ_OFFSET usage: | 80 | * preempt_count and SOFTIRQ_OFFSET usage: |
81 | * - preempt_count is changed by SOFTIRQ_OFFSET on entering or leaving | 81 | * - preempt_count is changed by SOFTIRQ_OFFSET on entering or leaving |
82 | * softirq processing. | 82 | * softirq processing. |
83 | * - preempt_count is changed by SOFTIRQ_DISABLE_OFFSET (= 2 * SOFTIRQ_OFFSET) | 83 | * - preempt_count is changed by SOFTIRQ_DISABLE_OFFSET (= 2 * SOFTIRQ_OFFSET) |
84 | * on local_bh_disable or local_bh_enable. | 84 | * on local_bh_disable or local_bh_enable. |
85 | * This lets us distinguish between whether we are currently processing | 85 | * This lets us distinguish between whether we are currently processing |
86 | * softirq and whether we just have bh disabled. | 86 | * softirq and whether we just have bh disabled. |
87 | */ | 87 | */ |
88 | 88 | ||
89 | /* | 89 | /* |
90 | * This one is for softirq.c-internal use, | 90 | * This one is for softirq.c-internal use, |
91 | * where hardirqs are disabled legitimately: | 91 | * where hardirqs are disabled legitimately: |
92 | */ | 92 | */ |
93 | #ifdef CONFIG_TRACE_IRQFLAGS | 93 | #ifdef CONFIG_TRACE_IRQFLAGS |
94 | static void __local_bh_disable(unsigned long ip, unsigned int cnt) | 94 | static void __local_bh_disable(unsigned long ip, unsigned int cnt) |
95 | { | 95 | { |
96 | unsigned long flags; | 96 | unsigned long flags; |
97 | 97 | ||
98 | WARN_ON_ONCE(in_irq()); | 98 | WARN_ON_ONCE(in_irq()); |
99 | 99 | ||
100 | raw_local_irq_save(flags); | 100 | raw_local_irq_save(flags); |
101 | /* | 101 | /* |
102 | * The preempt tracer hooks into add_preempt_count and will break | 102 | * The preempt tracer hooks into add_preempt_count and will break |
103 | * lockdep because it calls back into lockdep after SOFTIRQ_OFFSET | 103 | * lockdep because it calls back into lockdep after SOFTIRQ_OFFSET |
104 | * is set and before current->softirq_enabled is cleared. | 104 | * is set and before current->softirq_enabled is cleared. |
105 | * We must manually increment preempt_count here and manually | 105 | * We must manually increment preempt_count here and manually |
106 | * call the trace_preempt_off later. | 106 | * call the trace_preempt_off later. |
107 | */ | 107 | */ |
108 | preempt_count() += cnt; | 108 | preempt_count() += cnt; |
109 | /* | 109 | /* |
110 | * Were softirqs turned off above: | 110 | * Were softirqs turned off above: |
111 | */ | 111 | */ |
112 | if (softirq_count() == cnt) | 112 | if (softirq_count() == cnt) |
113 | trace_softirqs_off(ip); | 113 | trace_softirqs_off(ip); |
114 | raw_local_irq_restore(flags); | 114 | raw_local_irq_restore(flags); |
115 | 115 | ||
116 | if (preempt_count() == cnt) | 116 | if (preempt_count() == cnt) |
117 | trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); | 117 | trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); |
118 | } | 118 | } |
119 | #else /* !CONFIG_TRACE_IRQFLAGS */ | 119 | #else /* !CONFIG_TRACE_IRQFLAGS */ |
120 | static inline void __local_bh_disable(unsigned long ip, unsigned int cnt) | 120 | static inline void __local_bh_disable(unsigned long ip, unsigned int cnt) |
121 | { | 121 | { |
122 | add_preempt_count(cnt); | 122 | add_preempt_count(cnt); |
123 | barrier(); | 123 | barrier(); |
124 | } | 124 | } |
125 | #endif /* CONFIG_TRACE_IRQFLAGS */ | 125 | #endif /* CONFIG_TRACE_IRQFLAGS */ |
126 | 126 | ||
127 | void local_bh_disable(void) | 127 | void local_bh_disable(void) |
128 | { | 128 | { |
129 | __local_bh_disable((unsigned long)__builtin_return_address(0), | 129 | __local_bh_disable((unsigned long)__builtin_return_address(0), |
130 | SOFTIRQ_DISABLE_OFFSET); | 130 | SOFTIRQ_DISABLE_OFFSET); |
131 | } | 131 | } |
132 | 132 | ||
133 | EXPORT_SYMBOL(local_bh_disable); | 133 | EXPORT_SYMBOL(local_bh_disable); |
134 | 134 | ||
135 | static void __local_bh_enable(unsigned int cnt) | 135 | static void __local_bh_enable(unsigned int cnt) |
136 | { | 136 | { |
137 | WARN_ON_ONCE(in_irq()); | 137 | WARN_ON_ONCE(in_irq()); |
138 | WARN_ON_ONCE(!irqs_disabled()); | 138 | WARN_ON_ONCE(!irqs_disabled()); |
139 | 139 | ||
140 | if (softirq_count() == cnt) | 140 | if (softirq_count() == cnt) |
141 | trace_softirqs_on((unsigned long)__builtin_return_address(0)); | 141 | trace_softirqs_on((unsigned long)__builtin_return_address(0)); |
142 | sub_preempt_count(cnt); | 142 | sub_preempt_count(cnt); |
143 | } | 143 | } |
144 | 144 | ||
145 | /* | 145 | /* |
146 | * Special-case - softirqs can safely be enabled in | 146 | * Special-case - softirqs can safely be enabled in |
147 | * cond_resched_softirq(), or by __do_softirq(), | 147 | * cond_resched_softirq(), or by __do_softirq(), |
148 | * without processing still-pending softirqs: | 148 | * without processing still-pending softirqs: |
149 | */ | 149 | */ |
150 | void _local_bh_enable(void) | 150 | void _local_bh_enable(void) |
151 | { | 151 | { |
152 | __local_bh_enable(SOFTIRQ_DISABLE_OFFSET); | 152 | __local_bh_enable(SOFTIRQ_DISABLE_OFFSET); |
153 | } | 153 | } |
154 | 154 | ||
155 | EXPORT_SYMBOL(_local_bh_enable); | 155 | EXPORT_SYMBOL(_local_bh_enable); |
156 | 156 | ||
157 | static inline void _local_bh_enable_ip(unsigned long ip) | 157 | static inline void _local_bh_enable_ip(unsigned long ip) |
158 | { | 158 | { |
159 | WARN_ON_ONCE(in_irq() || irqs_disabled()); | 159 | WARN_ON_ONCE(in_irq() || irqs_disabled()); |
160 | #ifdef CONFIG_TRACE_IRQFLAGS | 160 | #ifdef CONFIG_TRACE_IRQFLAGS |
161 | local_irq_disable(); | 161 | local_irq_disable(); |
162 | #endif | 162 | #endif |
163 | /* | 163 | /* |
164 | * Are softirqs going to be turned on now: | 164 | * Are softirqs going to be turned on now: |
165 | */ | 165 | */ |
166 | if (softirq_count() == SOFTIRQ_DISABLE_OFFSET) | 166 | if (softirq_count() == SOFTIRQ_DISABLE_OFFSET) |
167 | trace_softirqs_on(ip); | 167 | trace_softirqs_on(ip); |
168 | /* | 168 | /* |
169 | * Keep preemption disabled until we are done with | 169 | * Keep preemption disabled until we are done with |
170 | * softirq processing: | 170 | * softirq processing: |
171 | */ | 171 | */ |
172 | sub_preempt_count(SOFTIRQ_DISABLE_OFFSET - 1); | 172 | sub_preempt_count(SOFTIRQ_DISABLE_OFFSET - 1); |
173 | 173 | ||
174 | if (unlikely(!in_interrupt() && local_softirq_pending())) | 174 | if (unlikely(!in_interrupt() && local_softirq_pending())) |
175 | do_softirq(); | 175 | do_softirq(); |
176 | 176 | ||
177 | dec_preempt_count(); | 177 | dec_preempt_count(); |
178 | #ifdef CONFIG_TRACE_IRQFLAGS | 178 | #ifdef CONFIG_TRACE_IRQFLAGS |
179 | local_irq_enable(); | 179 | local_irq_enable(); |
180 | #endif | 180 | #endif |
181 | preempt_check_resched(); | 181 | preempt_check_resched(); |
182 | } | 182 | } |
183 | 183 | ||
184 | void local_bh_enable(void) | 184 | void local_bh_enable(void) |
185 | { | 185 | { |
186 | _local_bh_enable_ip((unsigned long)__builtin_return_address(0)); | 186 | _local_bh_enable_ip((unsigned long)__builtin_return_address(0)); |
187 | } | 187 | } |
188 | EXPORT_SYMBOL(local_bh_enable); | 188 | EXPORT_SYMBOL(local_bh_enable); |
189 | 189 | ||
190 | void local_bh_enable_ip(unsigned long ip) | 190 | void local_bh_enable_ip(unsigned long ip) |
191 | { | 191 | { |
192 | _local_bh_enable_ip(ip); | 192 | _local_bh_enable_ip(ip); |
193 | } | 193 | } |
194 | EXPORT_SYMBOL(local_bh_enable_ip); | 194 | EXPORT_SYMBOL(local_bh_enable_ip); |
195 | 195 | ||
196 | /* | 196 | /* |
197 | * We restart softirq processing MAX_SOFTIRQ_RESTART times, | 197 | * We restart softirq processing MAX_SOFTIRQ_RESTART times, |
198 | * and we fall back to softirqd after that. | 198 | * and we fall back to softirqd after that. |
199 | * | 199 | * |
200 | * This number has been established via experimentation. | 200 | * This number has been established via experimentation. |
201 | * The two things to balance is latency against fairness - | 201 | * The two things to balance is latency against fairness - |
202 | * we want to handle softirqs as soon as possible, but they | 202 | * we want to handle softirqs as soon as possible, but they |
203 | * should not be able to lock up the box. | 203 | * should not be able to lock up the box. |
204 | */ | 204 | */ |
205 | #define MAX_SOFTIRQ_RESTART 10 | 205 | #define MAX_SOFTIRQ_RESTART 10 |
206 | 206 | ||
207 | asmlinkage void __do_softirq(void) | 207 | asmlinkage void __do_softirq(void) |
208 | { | 208 | { |
209 | struct softirq_action *h; | 209 | struct softirq_action *h; |
210 | __u32 pending; | 210 | __u32 pending; |
211 | int max_restart = MAX_SOFTIRQ_RESTART; | 211 | int max_restart = MAX_SOFTIRQ_RESTART; |
212 | int cpu; | 212 | int cpu; |
213 | 213 | ||
214 | pending = local_softirq_pending(); | 214 | pending = local_softirq_pending(); |
215 | account_system_vtime(current); | 215 | account_system_vtime(current); |
216 | 216 | ||
217 | __local_bh_disable((unsigned long)__builtin_return_address(0), | 217 | __local_bh_disable((unsigned long)__builtin_return_address(0), |
218 | SOFTIRQ_OFFSET); | 218 | SOFTIRQ_OFFSET); |
219 | lockdep_softirq_enter(); | 219 | lockdep_softirq_enter(); |
220 | 220 | ||
221 | cpu = smp_processor_id(); | 221 | cpu = smp_processor_id(); |
222 | restart: | 222 | restart: |
223 | /* Reset the pending bitmask before enabling irqs */ | 223 | /* Reset the pending bitmask before enabling irqs */ |
224 | set_softirq_pending(0); | 224 | set_softirq_pending(0); |
225 | 225 | ||
226 | local_irq_enable(); | 226 | local_irq_enable(); |
227 | 227 | ||
228 | h = softirq_vec; | 228 | h = softirq_vec; |
229 | 229 | ||
230 | do { | 230 | do { |
231 | if (pending & 1) { | 231 | if (pending & 1) { |
232 | unsigned int vec_nr = h - softirq_vec; | 232 | unsigned int vec_nr = h - softirq_vec; |
233 | int prev_count = preempt_count(); | 233 | int prev_count = preempt_count(); |
234 | 234 | ||
235 | kstat_incr_softirqs_this_cpu(vec_nr); | 235 | kstat_incr_softirqs_this_cpu(vec_nr); |
236 | 236 | ||
237 | trace_softirq_entry(vec_nr); | 237 | trace_softirq_entry(vec_nr); |
238 | h->action(h); | 238 | h->action(h); |
239 | trace_softirq_exit(vec_nr); | 239 | trace_softirq_exit(vec_nr); |
240 | if (unlikely(prev_count != preempt_count())) { | 240 | if (unlikely(prev_count != preempt_count())) { |
241 | printk(KERN_ERR "huh, entered softirq %u %s %p" | 241 | printk(KERN_ERR "huh, entered softirq %u %s %p" |
242 | "with preempt_count %08x," | 242 | "with preempt_count %08x," |
243 | " exited with %08x?\n", vec_nr, | 243 | " exited with %08x?\n", vec_nr, |
244 | softirq_to_name[vec_nr], h->action, | 244 | softirq_to_name[vec_nr], h->action, |
245 | prev_count, preempt_count()); | 245 | prev_count, preempt_count()); |
246 | preempt_count() = prev_count; | 246 | preempt_count() = prev_count; |
247 | } | 247 | } |
248 | 248 | ||
249 | rcu_bh_qs(cpu); | 249 | rcu_bh_qs(cpu); |
250 | } | 250 | } |
251 | h++; | 251 | h++; |
252 | pending >>= 1; | 252 | pending >>= 1; |
253 | } while (pending); | 253 | } while (pending); |
254 | 254 | ||
255 | local_irq_disable(); | 255 | local_irq_disable(); |
256 | 256 | ||
257 | pending = local_softirq_pending(); | 257 | pending = local_softirq_pending(); |
258 | if (pending && --max_restart) | 258 | if (pending && --max_restart) |
259 | goto restart; | 259 | goto restart; |
260 | 260 | ||
261 | if (pending) | 261 | if (pending) |
262 | wakeup_softirqd(); | 262 | wakeup_softirqd(); |
263 | 263 | ||
264 | lockdep_softirq_exit(); | 264 | lockdep_softirq_exit(); |
265 | 265 | ||
266 | account_system_vtime(current); | 266 | account_system_vtime(current); |
267 | __local_bh_enable(SOFTIRQ_OFFSET); | 267 | __local_bh_enable(SOFTIRQ_OFFSET); |
268 | } | 268 | } |
269 | 269 | ||
270 | #ifndef __ARCH_HAS_DO_SOFTIRQ | 270 | #ifndef __ARCH_HAS_DO_SOFTIRQ |
271 | 271 | ||
272 | asmlinkage void do_softirq(void) | 272 | asmlinkage void do_softirq(void) |
273 | { | 273 | { |
274 | __u32 pending; | 274 | __u32 pending; |
275 | unsigned long flags; | 275 | unsigned long flags; |
276 | 276 | ||
277 | if (in_interrupt()) | 277 | if (in_interrupt()) |
278 | return; | 278 | return; |
279 | 279 | ||
280 | local_irq_save(flags); | 280 | local_irq_save(flags); |
281 | 281 | ||
282 | pending = local_softirq_pending(); | 282 | pending = local_softirq_pending(); |
283 | 283 | ||
284 | if (pending) | 284 | if (pending) |
285 | __do_softirq(); | 285 | __do_softirq(); |
286 | 286 | ||
287 | local_irq_restore(flags); | 287 | local_irq_restore(flags); |
288 | } | 288 | } |
289 | 289 | ||
290 | #endif | 290 | #endif |
291 | 291 | ||
292 | /* | 292 | /* |
293 | * Enter an interrupt context. | 293 | * Enter an interrupt context. |
294 | */ | 294 | */ |
295 | void irq_enter(void) | 295 | void irq_enter(void) |
296 | { | 296 | { |
297 | int cpu = smp_processor_id(); | 297 | int cpu = smp_processor_id(); |
298 | 298 | ||
299 | rcu_irq_enter(); | 299 | rcu_irq_enter(); |
300 | if (idle_cpu(cpu) && !in_interrupt()) { | 300 | if (idle_cpu(cpu) && !in_interrupt()) { |
301 | /* | 301 | /* |
302 | * Prevent raise_softirq from needlessly waking up ksoftirqd | 302 | * Prevent raise_softirq from needlessly waking up ksoftirqd |
303 | * here, as softirq will be serviced on return from interrupt. | 303 | * here, as softirq will be serviced on return from interrupt. |
304 | */ | 304 | */ |
305 | local_bh_disable(); | 305 | local_bh_disable(); |
306 | tick_check_idle(cpu); | 306 | tick_check_idle(cpu); |
307 | _local_bh_enable(); | 307 | _local_bh_enable(); |
308 | } | 308 | } |
309 | 309 | ||
310 | __irq_enter(); | 310 | __irq_enter(); |
311 | } | 311 | } |
312 | 312 | ||
313 | #ifdef __ARCH_IRQ_EXIT_IRQS_DISABLED | 313 | #ifdef __ARCH_IRQ_EXIT_IRQS_DISABLED |
314 | static inline void invoke_softirq(void) | 314 | static inline void invoke_softirq(void) |
315 | { | 315 | { |
316 | if (!force_irqthreads) | 316 | if (!force_irqthreads) |
317 | __do_softirq(); | 317 | __do_softirq(); |
318 | else { | 318 | else { |
319 | __local_bh_disable((unsigned long)__builtin_return_address(0), | 319 | __local_bh_disable((unsigned long)__builtin_return_address(0), |
320 | SOFTIRQ_OFFSET); | 320 | SOFTIRQ_OFFSET); |
321 | wakeup_softirqd(); | 321 | wakeup_softirqd(); |
322 | __local_bh_enable(SOFTIRQ_OFFSET); | 322 | __local_bh_enable(SOFTIRQ_OFFSET); |
323 | } | 323 | } |
324 | } | 324 | } |
325 | #else | 325 | #else |
326 | static inline void invoke_softirq(void) | 326 | static inline void invoke_softirq(void) |
327 | { | 327 | { |
328 | if (!force_irqthreads) | 328 | if (!force_irqthreads) |
329 | do_softirq(); | 329 | do_softirq(); |
330 | else { | 330 | else { |
331 | __local_bh_disable((unsigned long)__builtin_return_address(0), | 331 | __local_bh_disable((unsigned long)__builtin_return_address(0), |
332 | SOFTIRQ_OFFSET); | 332 | SOFTIRQ_OFFSET); |
333 | wakeup_softirqd(); | 333 | wakeup_softirqd(); |
334 | __local_bh_enable(SOFTIRQ_OFFSET); | 334 | __local_bh_enable(SOFTIRQ_OFFSET); |
335 | } | 335 | } |
336 | } | 336 | } |
337 | #endif | 337 | #endif |
338 | 338 | ||
339 | /* | 339 | /* |
340 | * Exit an interrupt context. Process softirqs if needed and possible: | 340 | * Exit an interrupt context. Process softirqs if needed and possible: |
341 | */ | 341 | */ |
342 | void irq_exit(void) | 342 | void irq_exit(void) |
343 | { | 343 | { |
344 | account_system_vtime(current); | 344 | account_system_vtime(current); |
345 | trace_hardirq_exit(); | 345 | trace_hardirq_exit(); |
346 | sub_preempt_count(IRQ_EXIT_OFFSET); | 346 | sub_preempt_count(IRQ_EXIT_OFFSET); |
347 | if (!in_interrupt() && local_softirq_pending()) | 347 | if (!in_interrupt() && local_softirq_pending()) |
348 | invoke_softirq(); | 348 | invoke_softirq(); |
349 | 349 | ||
350 | #ifdef CONFIG_NO_HZ | 350 | #ifdef CONFIG_NO_HZ |
351 | /* Make sure that timer wheel updates are propagated */ | 351 | /* Make sure that timer wheel updates are propagated */ |
352 | if (idle_cpu(smp_processor_id()) && !in_interrupt() && !need_resched()) | 352 | if (idle_cpu(smp_processor_id()) && !in_interrupt() && !need_resched()) |
353 | tick_nohz_irq_exit(); | 353 | tick_nohz_irq_exit(); |
354 | #endif | 354 | #endif |
355 | rcu_irq_exit(); | 355 | rcu_irq_exit(); |
356 | preempt_enable_no_resched(); | 356 | sched_preempt_enable_no_resched(); |
357 | } | 357 | } |
358 | 358 | ||
359 | /* | 359 | /* |
360 | * This function must run with irqs disabled! | 360 | * This function must run with irqs disabled! |
361 | */ | 361 | */ |
362 | inline void raise_softirq_irqoff(unsigned int nr) | 362 | inline void raise_softirq_irqoff(unsigned int nr) |
363 | { | 363 | { |
364 | __raise_softirq_irqoff(nr); | 364 | __raise_softirq_irqoff(nr); |
365 | 365 | ||
366 | /* | 366 | /* |
367 | * If we're in an interrupt or softirq, we're done | 367 | * If we're in an interrupt or softirq, we're done |
368 | * (this also catches softirq-disabled code). We will | 368 | * (this also catches softirq-disabled code). We will |
369 | * actually run the softirq once we return from | 369 | * actually run the softirq once we return from |
370 | * the irq or softirq. | 370 | * the irq or softirq. |
371 | * | 371 | * |
372 | * Otherwise we wake up ksoftirqd to make sure we | 372 | * Otherwise we wake up ksoftirqd to make sure we |
373 | * schedule the softirq soon. | 373 | * schedule the softirq soon. |
374 | */ | 374 | */ |
375 | if (!in_interrupt()) | 375 | if (!in_interrupt()) |
376 | wakeup_softirqd(); | 376 | wakeup_softirqd(); |
377 | } | 377 | } |
378 | 378 | ||
379 | void raise_softirq(unsigned int nr) | 379 | void raise_softirq(unsigned int nr) |
380 | { | 380 | { |
381 | unsigned long flags; | 381 | unsigned long flags; |
382 | 382 | ||
383 | local_irq_save(flags); | 383 | local_irq_save(flags); |
384 | raise_softirq_irqoff(nr); | 384 | raise_softirq_irqoff(nr); |
385 | local_irq_restore(flags); | 385 | local_irq_restore(flags); |
386 | } | 386 | } |
387 | 387 | ||
388 | void open_softirq(int nr, void (*action)(struct softirq_action *)) | 388 | void open_softirq(int nr, void (*action)(struct softirq_action *)) |
389 | { | 389 | { |
390 | softirq_vec[nr].action = action; | 390 | softirq_vec[nr].action = action; |
391 | } | 391 | } |
392 | 392 | ||
393 | /* | 393 | /* |
394 | * Tasklets | 394 | * Tasklets |
395 | */ | 395 | */ |
396 | struct tasklet_head | 396 | struct tasklet_head |
397 | { | 397 | { |
398 | struct tasklet_struct *head; | 398 | struct tasklet_struct *head; |
399 | struct tasklet_struct **tail; | 399 | struct tasklet_struct **tail; |
400 | }; | 400 | }; |
401 | 401 | ||
402 | static DEFINE_PER_CPU(struct tasklet_head, tasklet_vec); | 402 | static DEFINE_PER_CPU(struct tasklet_head, tasklet_vec); |
403 | static DEFINE_PER_CPU(struct tasklet_head, tasklet_hi_vec); | 403 | static DEFINE_PER_CPU(struct tasklet_head, tasklet_hi_vec); |
404 | 404 | ||
405 | void __tasklet_schedule(struct tasklet_struct *t) | 405 | void __tasklet_schedule(struct tasklet_struct *t) |
406 | { | 406 | { |
407 | unsigned long flags; | 407 | unsigned long flags; |
408 | 408 | ||
409 | local_irq_save(flags); | 409 | local_irq_save(flags); |
410 | t->next = NULL; | 410 | t->next = NULL; |
411 | *__this_cpu_read(tasklet_vec.tail) = t; | 411 | *__this_cpu_read(tasklet_vec.tail) = t; |
412 | __this_cpu_write(tasklet_vec.tail, &(t->next)); | 412 | __this_cpu_write(tasklet_vec.tail, &(t->next)); |
413 | raise_softirq_irqoff(TASKLET_SOFTIRQ); | 413 | raise_softirq_irqoff(TASKLET_SOFTIRQ); |
414 | local_irq_restore(flags); | 414 | local_irq_restore(flags); |
415 | } | 415 | } |
416 | 416 | ||
417 | EXPORT_SYMBOL(__tasklet_schedule); | 417 | EXPORT_SYMBOL(__tasklet_schedule); |
418 | 418 | ||
419 | void __tasklet_hi_schedule(struct tasklet_struct *t) | 419 | void __tasklet_hi_schedule(struct tasklet_struct *t) |
420 | { | 420 | { |
421 | unsigned long flags; | 421 | unsigned long flags; |
422 | 422 | ||
423 | local_irq_save(flags); | 423 | local_irq_save(flags); |
424 | t->next = NULL; | 424 | t->next = NULL; |
425 | *__this_cpu_read(tasklet_hi_vec.tail) = t; | 425 | *__this_cpu_read(tasklet_hi_vec.tail) = t; |
426 | __this_cpu_write(tasklet_hi_vec.tail, &(t->next)); | 426 | __this_cpu_write(tasklet_hi_vec.tail, &(t->next)); |
427 | raise_softirq_irqoff(HI_SOFTIRQ); | 427 | raise_softirq_irqoff(HI_SOFTIRQ); |
428 | local_irq_restore(flags); | 428 | local_irq_restore(flags); |
429 | } | 429 | } |
430 | 430 | ||
431 | EXPORT_SYMBOL(__tasklet_hi_schedule); | 431 | EXPORT_SYMBOL(__tasklet_hi_schedule); |
432 | 432 | ||
433 | void __tasklet_hi_schedule_first(struct tasklet_struct *t) | 433 | void __tasklet_hi_schedule_first(struct tasklet_struct *t) |
434 | { | 434 | { |
435 | BUG_ON(!irqs_disabled()); | 435 | BUG_ON(!irqs_disabled()); |
436 | 436 | ||
437 | t->next = __this_cpu_read(tasklet_hi_vec.head); | 437 | t->next = __this_cpu_read(tasklet_hi_vec.head); |
438 | __this_cpu_write(tasklet_hi_vec.head, t); | 438 | __this_cpu_write(tasklet_hi_vec.head, t); |
439 | __raise_softirq_irqoff(HI_SOFTIRQ); | 439 | __raise_softirq_irqoff(HI_SOFTIRQ); |
440 | } | 440 | } |
441 | 441 | ||
442 | EXPORT_SYMBOL(__tasklet_hi_schedule_first); | 442 | EXPORT_SYMBOL(__tasklet_hi_schedule_first); |
443 | 443 | ||
444 | static void tasklet_action(struct softirq_action *a) | 444 | static void tasklet_action(struct softirq_action *a) |
445 | { | 445 | { |
446 | struct tasklet_struct *list; | 446 | struct tasklet_struct *list; |
447 | 447 | ||
448 | local_irq_disable(); | 448 | local_irq_disable(); |
449 | list = __this_cpu_read(tasklet_vec.head); | 449 | list = __this_cpu_read(tasklet_vec.head); |
450 | __this_cpu_write(tasklet_vec.head, NULL); | 450 | __this_cpu_write(tasklet_vec.head, NULL); |
451 | __this_cpu_write(tasklet_vec.tail, &__get_cpu_var(tasklet_vec).head); | 451 | __this_cpu_write(tasklet_vec.tail, &__get_cpu_var(tasklet_vec).head); |
452 | local_irq_enable(); | 452 | local_irq_enable(); |
453 | 453 | ||
454 | while (list) { | 454 | while (list) { |
455 | struct tasklet_struct *t = list; | 455 | struct tasklet_struct *t = list; |
456 | 456 | ||
457 | list = list->next; | 457 | list = list->next; |
458 | 458 | ||
459 | if (tasklet_trylock(t)) { | 459 | if (tasklet_trylock(t)) { |
460 | if (!atomic_read(&t->count)) { | 460 | if (!atomic_read(&t->count)) { |
461 | if (!test_and_clear_bit(TASKLET_STATE_SCHED, &t->state)) | 461 | if (!test_and_clear_bit(TASKLET_STATE_SCHED, &t->state)) |
462 | BUG(); | 462 | BUG(); |
463 | t->func(t->data); | 463 | t->func(t->data); |
464 | tasklet_unlock(t); | 464 | tasklet_unlock(t); |
465 | continue; | 465 | continue; |
466 | } | 466 | } |
467 | tasklet_unlock(t); | 467 | tasklet_unlock(t); |
468 | } | 468 | } |
469 | 469 | ||
470 | local_irq_disable(); | 470 | local_irq_disable(); |
471 | t->next = NULL; | 471 | t->next = NULL; |
472 | *__this_cpu_read(tasklet_vec.tail) = t; | 472 | *__this_cpu_read(tasklet_vec.tail) = t; |
473 | __this_cpu_write(tasklet_vec.tail, &(t->next)); | 473 | __this_cpu_write(tasklet_vec.tail, &(t->next)); |
474 | __raise_softirq_irqoff(TASKLET_SOFTIRQ); | 474 | __raise_softirq_irqoff(TASKLET_SOFTIRQ); |
475 | local_irq_enable(); | 475 | local_irq_enable(); |
476 | } | 476 | } |
477 | } | 477 | } |
478 | 478 | ||
479 | static void tasklet_hi_action(struct softirq_action *a) | 479 | static void tasklet_hi_action(struct softirq_action *a) |
480 | { | 480 | { |
481 | struct tasklet_struct *list; | 481 | struct tasklet_struct *list; |
482 | 482 | ||
483 | local_irq_disable(); | 483 | local_irq_disable(); |
484 | list = __this_cpu_read(tasklet_hi_vec.head); | 484 | list = __this_cpu_read(tasklet_hi_vec.head); |
485 | __this_cpu_write(tasklet_hi_vec.head, NULL); | 485 | __this_cpu_write(tasklet_hi_vec.head, NULL); |
486 | __this_cpu_write(tasklet_hi_vec.tail, &__get_cpu_var(tasklet_hi_vec).head); | 486 | __this_cpu_write(tasklet_hi_vec.tail, &__get_cpu_var(tasklet_hi_vec).head); |
487 | local_irq_enable(); | 487 | local_irq_enable(); |
488 | 488 | ||
489 | while (list) { | 489 | while (list) { |
490 | struct tasklet_struct *t = list; | 490 | struct tasklet_struct *t = list; |
491 | 491 | ||
492 | list = list->next; | 492 | list = list->next; |
493 | 493 | ||
494 | if (tasklet_trylock(t)) { | 494 | if (tasklet_trylock(t)) { |
495 | if (!atomic_read(&t->count)) { | 495 | if (!atomic_read(&t->count)) { |
496 | if (!test_and_clear_bit(TASKLET_STATE_SCHED, &t->state)) | 496 | if (!test_and_clear_bit(TASKLET_STATE_SCHED, &t->state)) |
497 | BUG(); | 497 | BUG(); |
498 | t->func(t->data); | 498 | t->func(t->data); |
499 | tasklet_unlock(t); | 499 | tasklet_unlock(t); |
500 | continue; | 500 | continue; |
501 | } | 501 | } |
502 | tasklet_unlock(t); | 502 | tasklet_unlock(t); |
503 | } | 503 | } |
504 | 504 | ||
505 | local_irq_disable(); | 505 | local_irq_disable(); |
506 | t->next = NULL; | 506 | t->next = NULL; |
507 | *__this_cpu_read(tasklet_hi_vec.tail) = t; | 507 | *__this_cpu_read(tasklet_hi_vec.tail) = t; |
508 | __this_cpu_write(tasklet_hi_vec.tail, &(t->next)); | 508 | __this_cpu_write(tasklet_hi_vec.tail, &(t->next)); |
509 | __raise_softirq_irqoff(HI_SOFTIRQ); | 509 | __raise_softirq_irqoff(HI_SOFTIRQ); |
510 | local_irq_enable(); | 510 | local_irq_enable(); |
511 | } | 511 | } |
512 | } | 512 | } |
513 | 513 | ||
514 | 514 | ||
515 | void tasklet_init(struct tasklet_struct *t, | 515 | void tasklet_init(struct tasklet_struct *t, |
516 | void (*func)(unsigned long), unsigned long data) | 516 | void (*func)(unsigned long), unsigned long data) |
517 | { | 517 | { |
518 | t->next = NULL; | 518 | t->next = NULL; |
519 | t->state = 0; | 519 | t->state = 0; |
520 | atomic_set(&t->count, 0); | 520 | atomic_set(&t->count, 0); |
521 | t->func = func; | 521 | t->func = func; |
522 | t->data = data; | 522 | t->data = data; |
523 | } | 523 | } |
524 | 524 | ||
525 | EXPORT_SYMBOL(tasklet_init); | 525 | EXPORT_SYMBOL(tasklet_init); |
526 | 526 | ||
527 | void tasklet_kill(struct tasklet_struct *t) | 527 | void tasklet_kill(struct tasklet_struct *t) |
528 | { | 528 | { |
529 | if (in_interrupt()) | 529 | if (in_interrupt()) |
530 | printk("Attempt to kill tasklet from interrupt\n"); | 530 | printk("Attempt to kill tasklet from interrupt\n"); |
531 | 531 | ||
532 | while (test_and_set_bit(TASKLET_STATE_SCHED, &t->state)) { | 532 | while (test_and_set_bit(TASKLET_STATE_SCHED, &t->state)) { |
533 | do { | 533 | do { |
534 | yield(); | 534 | yield(); |
535 | } while (test_bit(TASKLET_STATE_SCHED, &t->state)); | 535 | } while (test_bit(TASKLET_STATE_SCHED, &t->state)); |
536 | } | 536 | } |
537 | tasklet_unlock_wait(t); | 537 | tasklet_unlock_wait(t); |
538 | clear_bit(TASKLET_STATE_SCHED, &t->state); | 538 | clear_bit(TASKLET_STATE_SCHED, &t->state); |
539 | } | 539 | } |
540 | 540 | ||
541 | EXPORT_SYMBOL(tasklet_kill); | 541 | EXPORT_SYMBOL(tasklet_kill); |
542 | 542 | ||
543 | /* | 543 | /* |
544 | * tasklet_hrtimer | 544 | * tasklet_hrtimer |
545 | */ | 545 | */ |
546 | 546 | ||
547 | /* | 547 | /* |
548 | * The trampoline is called when the hrtimer expires. It schedules a tasklet | 548 | * The trampoline is called when the hrtimer expires. It schedules a tasklet |
549 | * to run __tasklet_hrtimer_trampoline() which in turn will call the intended | 549 | * to run __tasklet_hrtimer_trampoline() which in turn will call the intended |
550 | * hrtimer callback, but from softirq context. | 550 | * hrtimer callback, but from softirq context. |
551 | */ | 551 | */ |
552 | static enum hrtimer_restart __hrtimer_tasklet_trampoline(struct hrtimer *timer) | 552 | static enum hrtimer_restart __hrtimer_tasklet_trampoline(struct hrtimer *timer) |
553 | { | 553 | { |
554 | struct tasklet_hrtimer *ttimer = | 554 | struct tasklet_hrtimer *ttimer = |
555 | container_of(timer, struct tasklet_hrtimer, timer); | 555 | container_of(timer, struct tasklet_hrtimer, timer); |
556 | 556 | ||
557 | tasklet_hi_schedule(&ttimer->tasklet); | 557 | tasklet_hi_schedule(&ttimer->tasklet); |
558 | return HRTIMER_NORESTART; | 558 | return HRTIMER_NORESTART; |
559 | } | 559 | } |
560 | 560 | ||
561 | /* | 561 | /* |
562 | * Helper function which calls the hrtimer callback from | 562 | * Helper function which calls the hrtimer callback from |
563 | * tasklet/softirq context | 563 | * tasklet/softirq context |
564 | */ | 564 | */ |
565 | static void __tasklet_hrtimer_trampoline(unsigned long data) | 565 | static void __tasklet_hrtimer_trampoline(unsigned long data) |
566 | { | 566 | { |
567 | struct tasklet_hrtimer *ttimer = (void *)data; | 567 | struct tasklet_hrtimer *ttimer = (void *)data; |
568 | enum hrtimer_restart restart; | 568 | enum hrtimer_restart restart; |
569 | 569 | ||
570 | restart = ttimer->function(&ttimer->timer); | 570 | restart = ttimer->function(&ttimer->timer); |
571 | if (restart != HRTIMER_NORESTART) | 571 | if (restart != HRTIMER_NORESTART) |
572 | hrtimer_restart(&ttimer->timer); | 572 | hrtimer_restart(&ttimer->timer); |
573 | } | 573 | } |
574 | 574 | ||
575 | /** | 575 | /** |
576 | * tasklet_hrtimer_init - Init a tasklet/hrtimer combo for softirq callbacks | 576 | * tasklet_hrtimer_init - Init a tasklet/hrtimer combo for softirq callbacks |
577 | * @ttimer: tasklet_hrtimer which is initialized | 577 | * @ttimer: tasklet_hrtimer which is initialized |
578 | * @function: hrtimer callback function which gets called from softirq context | 578 | * @function: hrtimer callback function which gets called from softirq context |
579 | * @which_clock: clock id (CLOCK_MONOTONIC/CLOCK_REALTIME) | 579 | * @which_clock: clock id (CLOCK_MONOTONIC/CLOCK_REALTIME) |
580 | * @mode: hrtimer mode (HRTIMER_MODE_ABS/HRTIMER_MODE_REL) | 580 | * @mode: hrtimer mode (HRTIMER_MODE_ABS/HRTIMER_MODE_REL) |
581 | */ | 581 | */ |
582 | void tasklet_hrtimer_init(struct tasklet_hrtimer *ttimer, | 582 | void tasklet_hrtimer_init(struct tasklet_hrtimer *ttimer, |
583 | enum hrtimer_restart (*function)(struct hrtimer *), | 583 | enum hrtimer_restart (*function)(struct hrtimer *), |
584 | clockid_t which_clock, enum hrtimer_mode mode) | 584 | clockid_t which_clock, enum hrtimer_mode mode) |
585 | { | 585 | { |
586 | hrtimer_init(&ttimer->timer, which_clock, mode); | 586 | hrtimer_init(&ttimer->timer, which_clock, mode); |
587 | ttimer->timer.function = __hrtimer_tasklet_trampoline; | 587 | ttimer->timer.function = __hrtimer_tasklet_trampoline; |
588 | tasklet_init(&ttimer->tasklet, __tasklet_hrtimer_trampoline, | 588 | tasklet_init(&ttimer->tasklet, __tasklet_hrtimer_trampoline, |
589 | (unsigned long)ttimer); | 589 | (unsigned long)ttimer); |
590 | ttimer->function = function; | 590 | ttimer->function = function; |
591 | } | 591 | } |
592 | EXPORT_SYMBOL_GPL(tasklet_hrtimer_init); | 592 | EXPORT_SYMBOL_GPL(tasklet_hrtimer_init); |
593 | 593 | ||
594 | /* | 594 | /* |
595 | * Remote softirq bits | 595 | * Remote softirq bits |
596 | */ | 596 | */ |
597 | 597 | ||
598 | DEFINE_PER_CPU(struct list_head [NR_SOFTIRQS], softirq_work_list); | 598 | DEFINE_PER_CPU(struct list_head [NR_SOFTIRQS], softirq_work_list); |
599 | EXPORT_PER_CPU_SYMBOL(softirq_work_list); | 599 | EXPORT_PER_CPU_SYMBOL(softirq_work_list); |
600 | 600 | ||
601 | static void __local_trigger(struct call_single_data *cp, int softirq) | 601 | static void __local_trigger(struct call_single_data *cp, int softirq) |
602 | { | 602 | { |
603 | struct list_head *head = &__get_cpu_var(softirq_work_list[softirq]); | 603 | struct list_head *head = &__get_cpu_var(softirq_work_list[softirq]); |
604 | 604 | ||
605 | list_add_tail(&cp->list, head); | 605 | list_add_tail(&cp->list, head); |
606 | 606 | ||
607 | /* Trigger the softirq only if the list was previously empty. */ | 607 | /* Trigger the softirq only if the list was previously empty. */ |
608 | if (head->next == &cp->list) | 608 | if (head->next == &cp->list) |
609 | raise_softirq_irqoff(softirq); | 609 | raise_softirq_irqoff(softirq); |
610 | } | 610 | } |
611 | 611 | ||
612 | #ifdef CONFIG_USE_GENERIC_SMP_HELPERS | 612 | #ifdef CONFIG_USE_GENERIC_SMP_HELPERS |
613 | static void remote_softirq_receive(void *data) | 613 | static void remote_softirq_receive(void *data) |
614 | { | 614 | { |
615 | struct call_single_data *cp = data; | 615 | struct call_single_data *cp = data; |
616 | unsigned long flags; | 616 | unsigned long flags; |
617 | int softirq; | 617 | int softirq; |
618 | 618 | ||
619 | softirq = cp->priv; | 619 | softirq = cp->priv; |
620 | 620 | ||
621 | local_irq_save(flags); | 621 | local_irq_save(flags); |
622 | __local_trigger(cp, softirq); | 622 | __local_trigger(cp, softirq); |
623 | local_irq_restore(flags); | 623 | local_irq_restore(flags); |
624 | } | 624 | } |
625 | 625 | ||
626 | static int __try_remote_softirq(struct call_single_data *cp, int cpu, int softirq) | 626 | static int __try_remote_softirq(struct call_single_data *cp, int cpu, int softirq) |
627 | { | 627 | { |
628 | if (cpu_online(cpu)) { | 628 | if (cpu_online(cpu)) { |
629 | cp->func = remote_softirq_receive; | 629 | cp->func = remote_softirq_receive; |
630 | cp->info = cp; | 630 | cp->info = cp; |
631 | cp->flags = 0; | 631 | cp->flags = 0; |
632 | cp->priv = softirq; | 632 | cp->priv = softirq; |
633 | 633 | ||
634 | __smp_call_function_single(cpu, cp, 0); | 634 | __smp_call_function_single(cpu, cp, 0); |
635 | return 0; | 635 | return 0; |
636 | } | 636 | } |
637 | return 1; | 637 | return 1; |
638 | } | 638 | } |
639 | #else /* CONFIG_USE_GENERIC_SMP_HELPERS */ | 639 | #else /* CONFIG_USE_GENERIC_SMP_HELPERS */ |
640 | static int __try_remote_softirq(struct call_single_data *cp, int cpu, int softirq) | 640 | static int __try_remote_softirq(struct call_single_data *cp, int cpu, int softirq) |
641 | { | 641 | { |
642 | return 1; | 642 | return 1; |
643 | } | 643 | } |
644 | #endif | 644 | #endif |
645 | 645 | ||
646 | /** | 646 | /** |
647 | * __send_remote_softirq - try to schedule softirq work on a remote cpu | 647 | * __send_remote_softirq - try to schedule softirq work on a remote cpu |
648 | * @cp: private SMP call function data area | 648 | * @cp: private SMP call function data area |
649 | * @cpu: the remote cpu | 649 | * @cpu: the remote cpu |
650 | * @this_cpu: the currently executing cpu | 650 | * @this_cpu: the currently executing cpu |
651 | * @softirq: the softirq for the work | 651 | * @softirq: the softirq for the work |
652 | * | 652 | * |
653 | * Attempt to schedule softirq work on a remote cpu. If this cannot be | 653 | * Attempt to schedule softirq work on a remote cpu. If this cannot be |
654 | * done, the work is instead queued up on the local cpu. | 654 | * done, the work is instead queued up on the local cpu. |
655 | * | 655 | * |
656 | * Interrupts must be disabled. | 656 | * Interrupts must be disabled. |
657 | */ | 657 | */ |
658 | void __send_remote_softirq(struct call_single_data *cp, int cpu, int this_cpu, int softirq) | 658 | void __send_remote_softirq(struct call_single_data *cp, int cpu, int this_cpu, int softirq) |
659 | { | 659 | { |
660 | if (cpu == this_cpu || __try_remote_softirq(cp, cpu, softirq)) | 660 | if (cpu == this_cpu || __try_remote_softirq(cp, cpu, softirq)) |
661 | __local_trigger(cp, softirq); | 661 | __local_trigger(cp, softirq); |
662 | } | 662 | } |
663 | EXPORT_SYMBOL(__send_remote_softirq); | 663 | EXPORT_SYMBOL(__send_remote_softirq); |
664 | 664 | ||
665 | /** | 665 | /** |
666 | * send_remote_softirq - try to schedule softirq work on a remote cpu | 666 | * send_remote_softirq - try to schedule softirq work on a remote cpu |
667 | * @cp: private SMP call function data area | 667 | * @cp: private SMP call function data area |
668 | * @cpu: the remote cpu | 668 | * @cpu: the remote cpu |
669 | * @softirq: the softirq for the work | 669 | * @softirq: the softirq for the work |
670 | * | 670 | * |
671 | * Like __send_remote_softirq except that disabling interrupts and | 671 | * Like __send_remote_softirq except that disabling interrupts and |
672 | * computing the current cpu is done for the caller. | 672 | * computing the current cpu is done for the caller. |
673 | */ | 673 | */ |
674 | void send_remote_softirq(struct call_single_data *cp, int cpu, int softirq) | 674 | void send_remote_softirq(struct call_single_data *cp, int cpu, int softirq) |
675 | { | 675 | { |
676 | unsigned long flags; | 676 | unsigned long flags; |
677 | int this_cpu; | 677 | int this_cpu; |
678 | 678 | ||
679 | local_irq_save(flags); | 679 | local_irq_save(flags); |
680 | this_cpu = smp_processor_id(); | 680 | this_cpu = smp_processor_id(); |
681 | __send_remote_softirq(cp, cpu, this_cpu, softirq); | 681 | __send_remote_softirq(cp, cpu, this_cpu, softirq); |
682 | local_irq_restore(flags); | 682 | local_irq_restore(flags); |
683 | } | 683 | } |
684 | EXPORT_SYMBOL(send_remote_softirq); | 684 | EXPORT_SYMBOL(send_remote_softirq); |
685 | 685 | ||
686 | static int __cpuinit remote_softirq_cpu_notify(struct notifier_block *self, | 686 | static int __cpuinit remote_softirq_cpu_notify(struct notifier_block *self, |
687 | unsigned long action, void *hcpu) | 687 | unsigned long action, void *hcpu) |
688 | { | 688 | { |
689 | /* | 689 | /* |
690 | * If a CPU goes away, splice its entries to the current CPU | 690 | * If a CPU goes away, splice its entries to the current CPU |
691 | * and trigger a run of the softirq | 691 | * and trigger a run of the softirq |
692 | */ | 692 | */ |
693 | if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { | 693 | if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { |
694 | int cpu = (unsigned long) hcpu; | 694 | int cpu = (unsigned long) hcpu; |
695 | int i; | 695 | int i; |
696 | 696 | ||
697 | local_irq_disable(); | 697 | local_irq_disable(); |
698 | for (i = 0; i < NR_SOFTIRQS; i++) { | 698 | for (i = 0; i < NR_SOFTIRQS; i++) { |
699 | struct list_head *head = &per_cpu(softirq_work_list[i], cpu); | 699 | struct list_head *head = &per_cpu(softirq_work_list[i], cpu); |
700 | struct list_head *local_head; | 700 | struct list_head *local_head; |
701 | 701 | ||
702 | if (list_empty(head)) | 702 | if (list_empty(head)) |
703 | continue; | 703 | continue; |
704 | 704 | ||
705 | local_head = &__get_cpu_var(softirq_work_list[i]); | 705 | local_head = &__get_cpu_var(softirq_work_list[i]); |
706 | list_splice_init(head, local_head); | 706 | list_splice_init(head, local_head); |
707 | raise_softirq_irqoff(i); | 707 | raise_softirq_irqoff(i); |
708 | } | 708 | } |
709 | local_irq_enable(); | 709 | local_irq_enable(); |
710 | } | 710 | } |
711 | 711 | ||
712 | return NOTIFY_OK; | 712 | return NOTIFY_OK; |
713 | } | 713 | } |
714 | 714 | ||
715 | static struct notifier_block __cpuinitdata remote_softirq_cpu_notifier = { | 715 | static struct notifier_block __cpuinitdata remote_softirq_cpu_notifier = { |
716 | .notifier_call = remote_softirq_cpu_notify, | 716 | .notifier_call = remote_softirq_cpu_notify, |
717 | }; | 717 | }; |
718 | 718 | ||
719 | void __init softirq_init(void) | 719 | void __init softirq_init(void) |
720 | { | 720 | { |
721 | int cpu; | 721 | int cpu; |
722 | 722 | ||
723 | for_each_possible_cpu(cpu) { | 723 | for_each_possible_cpu(cpu) { |
724 | int i; | 724 | int i; |
725 | 725 | ||
726 | per_cpu(tasklet_vec, cpu).tail = | 726 | per_cpu(tasklet_vec, cpu).tail = |
727 | &per_cpu(tasklet_vec, cpu).head; | 727 | &per_cpu(tasklet_vec, cpu).head; |
728 | per_cpu(tasklet_hi_vec, cpu).tail = | 728 | per_cpu(tasklet_hi_vec, cpu).tail = |
729 | &per_cpu(tasklet_hi_vec, cpu).head; | 729 | &per_cpu(tasklet_hi_vec, cpu).head; |
730 | for (i = 0; i < NR_SOFTIRQS; i++) | 730 | for (i = 0; i < NR_SOFTIRQS; i++) |
731 | INIT_LIST_HEAD(&per_cpu(softirq_work_list[i], cpu)); | 731 | INIT_LIST_HEAD(&per_cpu(softirq_work_list[i], cpu)); |
732 | } | 732 | } |
733 | 733 | ||
734 | register_hotcpu_notifier(&remote_softirq_cpu_notifier); | 734 | register_hotcpu_notifier(&remote_softirq_cpu_notifier); |
735 | 735 | ||
736 | open_softirq(TASKLET_SOFTIRQ, tasklet_action); | 736 | open_softirq(TASKLET_SOFTIRQ, tasklet_action); |
737 | open_softirq(HI_SOFTIRQ, tasklet_hi_action); | 737 | open_softirq(HI_SOFTIRQ, tasklet_hi_action); |
738 | } | 738 | } |
739 | 739 | ||
740 | static int run_ksoftirqd(void * __bind_cpu) | 740 | static int run_ksoftirqd(void * __bind_cpu) |
741 | { | 741 | { |
742 | set_current_state(TASK_INTERRUPTIBLE); | 742 | set_current_state(TASK_INTERRUPTIBLE); |
743 | 743 | ||
744 | while (!kthread_should_stop()) { | 744 | while (!kthread_should_stop()) { |
745 | preempt_disable(); | 745 | preempt_disable(); |
746 | if (!local_softirq_pending()) { | 746 | if (!local_softirq_pending()) { |
747 | schedule_preempt_disabled(); | 747 | schedule_preempt_disabled(); |
748 | } | 748 | } |
749 | 749 | ||
750 | __set_current_state(TASK_RUNNING); | 750 | __set_current_state(TASK_RUNNING); |
751 | 751 | ||
752 | while (local_softirq_pending()) { | 752 | while (local_softirq_pending()) { |
753 | /* Preempt disable stops cpu going offline. | 753 | /* Preempt disable stops cpu going offline. |
754 | If already offline, we'll be on wrong CPU: | 754 | If already offline, we'll be on wrong CPU: |
755 | don't process */ | 755 | don't process */ |
756 | if (cpu_is_offline((long)__bind_cpu)) | 756 | if (cpu_is_offline((long)__bind_cpu)) |
757 | goto wait_to_die; | 757 | goto wait_to_die; |
758 | local_irq_disable(); | 758 | local_irq_disable(); |
759 | if (local_softirq_pending()) | 759 | if (local_softirq_pending()) |
760 | __do_softirq(); | 760 | __do_softirq(); |
761 | local_irq_enable(); | 761 | local_irq_enable(); |
762 | preempt_enable_no_resched(); | 762 | sched_preempt_enable_no_resched(); |
763 | cond_resched(); | 763 | cond_resched(); |
764 | preempt_disable(); | 764 | preempt_disable(); |
765 | rcu_note_context_switch((long)__bind_cpu); | 765 | rcu_note_context_switch((long)__bind_cpu); |
766 | } | 766 | } |
767 | preempt_enable(); | 767 | preempt_enable(); |
768 | set_current_state(TASK_INTERRUPTIBLE); | 768 | set_current_state(TASK_INTERRUPTIBLE); |
769 | } | 769 | } |
770 | __set_current_state(TASK_RUNNING); | 770 | __set_current_state(TASK_RUNNING); |
771 | return 0; | 771 | return 0; |
772 | 772 | ||
773 | wait_to_die: | 773 | wait_to_die: |
774 | preempt_enable(); | 774 | preempt_enable(); |
775 | /* Wait for kthread_stop */ | 775 | /* Wait for kthread_stop */ |
776 | set_current_state(TASK_INTERRUPTIBLE); | 776 | set_current_state(TASK_INTERRUPTIBLE); |
777 | while (!kthread_should_stop()) { | 777 | while (!kthread_should_stop()) { |
778 | schedule(); | 778 | schedule(); |
779 | set_current_state(TASK_INTERRUPTIBLE); | 779 | set_current_state(TASK_INTERRUPTIBLE); |
780 | } | 780 | } |
781 | __set_current_state(TASK_RUNNING); | 781 | __set_current_state(TASK_RUNNING); |
782 | return 0; | 782 | return 0; |
783 | } | 783 | } |
784 | 784 | ||
785 | #ifdef CONFIG_HOTPLUG_CPU | 785 | #ifdef CONFIG_HOTPLUG_CPU |
786 | /* | 786 | /* |
787 | * tasklet_kill_immediate is called to remove a tasklet which can already be | 787 | * tasklet_kill_immediate is called to remove a tasklet which can already be |
788 | * scheduled for execution on @cpu. | 788 | * scheduled for execution on @cpu. |
789 | * | 789 | * |
790 | * Unlike tasklet_kill, this function removes the tasklet | 790 | * Unlike tasklet_kill, this function removes the tasklet |
791 | * _immediately_, even if the tasklet is in TASKLET_STATE_SCHED state. | 791 | * _immediately_, even if the tasklet is in TASKLET_STATE_SCHED state. |
792 | * | 792 | * |
793 | * When this function is called, @cpu must be in the CPU_DEAD state. | 793 | * When this function is called, @cpu must be in the CPU_DEAD state. |
794 | */ | 794 | */ |
795 | void tasklet_kill_immediate(struct tasklet_struct *t, unsigned int cpu) | 795 | void tasklet_kill_immediate(struct tasklet_struct *t, unsigned int cpu) |
796 | { | 796 | { |
797 | struct tasklet_struct **i; | 797 | struct tasklet_struct **i; |
798 | 798 | ||
799 | BUG_ON(cpu_online(cpu)); | 799 | BUG_ON(cpu_online(cpu)); |
800 | BUG_ON(test_bit(TASKLET_STATE_RUN, &t->state)); | 800 | BUG_ON(test_bit(TASKLET_STATE_RUN, &t->state)); |
801 | 801 | ||
802 | if (!test_bit(TASKLET_STATE_SCHED, &t->state)) | 802 | if (!test_bit(TASKLET_STATE_SCHED, &t->state)) |
803 | return; | 803 | return; |
804 | 804 | ||
805 | /* CPU is dead, so no lock needed. */ | 805 | /* CPU is dead, so no lock needed. */ |
806 | for (i = &per_cpu(tasklet_vec, cpu).head; *i; i = &(*i)->next) { | 806 | for (i = &per_cpu(tasklet_vec, cpu).head; *i; i = &(*i)->next) { |
807 | if (*i == t) { | 807 | if (*i == t) { |
808 | *i = t->next; | 808 | *i = t->next; |
809 | /* If this was the tail element, move the tail ptr */ | 809 | /* If this was the tail element, move the tail ptr */ |
810 | if (*i == NULL) | 810 | if (*i == NULL) |
811 | per_cpu(tasklet_vec, cpu).tail = i; | 811 | per_cpu(tasklet_vec, cpu).tail = i; |
812 | return; | 812 | return; |
813 | } | 813 | } |
814 | } | 814 | } |
815 | BUG(); | 815 | BUG(); |
816 | } | 816 | } |
817 | 817 | ||
818 | static void takeover_tasklets(unsigned int cpu) | 818 | static void takeover_tasklets(unsigned int cpu) |
819 | { | 819 | { |
820 | /* CPU is dead, so no lock needed. */ | 820 | /* CPU is dead, so no lock needed. */ |
821 | local_irq_disable(); | 821 | local_irq_disable(); |
822 | 822 | ||
823 | /* Find end, append list for that CPU. */ | 823 | /* Find end, append list for that CPU. */ |
824 | if (&per_cpu(tasklet_vec, cpu).head != per_cpu(tasklet_vec, cpu).tail) { | 824 | if (&per_cpu(tasklet_vec, cpu).head != per_cpu(tasklet_vec, cpu).tail) { |
825 | *__this_cpu_read(tasklet_vec.tail) = per_cpu(tasklet_vec, cpu).head; | 825 | *__this_cpu_read(tasklet_vec.tail) = per_cpu(tasklet_vec, cpu).head; |
826 | this_cpu_write(tasklet_vec.tail, per_cpu(tasklet_vec, cpu).tail); | 826 | this_cpu_write(tasklet_vec.tail, per_cpu(tasklet_vec, cpu).tail); |
827 | per_cpu(tasklet_vec, cpu).head = NULL; | 827 | per_cpu(tasklet_vec, cpu).head = NULL; |
828 | per_cpu(tasklet_vec, cpu).tail = &per_cpu(tasklet_vec, cpu).head; | 828 | per_cpu(tasklet_vec, cpu).tail = &per_cpu(tasklet_vec, cpu).head; |
829 | } | 829 | } |
830 | raise_softirq_irqoff(TASKLET_SOFTIRQ); | 830 | raise_softirq_irqoff(TASKLET_SOFTIRQ); |
831 | 831 | ||
832 | if (&per_cpu(tasklet_hi_vec, cpu).head != per_cpu(tasklet_hi_vec, cpu).tail) { | 832 | if (&per_cpu(tasklet_hi_vec, cpu).head != per_cpu(tasklet_hi_vec, cpu).tail) { |
833 | *__this_cpu_read(tasklet_hi_vec.tail) = per_cpu(tasklet_hi_vec, cpu).head; | 833 | *__this_cpu_read(tasklet_hi_vec.tail) = per_cpu(tasklet_hi_vec, cpu).head; |
834 | __this_cpu_write(tasklet_hi_vec.tail, per_cpu(tasklet_hi_vec, cpu).tail); | 834 | __this_cpu_write(tasklet_hi_vec.tail, per_cpu(tasklet_hi_vec, cpu).tail); |
835 | per_cpu(tasklet_hi_vec, cpu).head = NULL; | 835 | per_cpu(tasklet_hi_vec, cpu).head = NULL; |
836 | per_cpu(tasklet_hi_vec, cpu).tail = &per_cpu(tasklet_hi_vec, cpu).head; | 836 | per_cpu(tasklet_hi_vec, cpu).tail = &per_cpu(tasklet_hi_vec, cpu).head; |
837 | } | 837 | } |
838 | raise_softirq_irqoff(HI_SOFTIRQ); | 838 | raise_softirq_irqoff(HI_SOFTIRQ); |
839 | 839 | ||
840 | local_irq_enable(); | 840 | local_irq_enable(); |
841 | } | 841 | } |
842 | #endif /* CONFIG_HOTPLUG_CPU */ | 842 | #endif /* CONFIG_HOTPLUG_CPU */ |
843 | 843 | ||
844 | static int __cpuinit cpu_callback(struct notifier_block *nfb, | 844 | static int __cpuinit cpu_callback(struct notifier_block *nfb, |
845 | unsigned long action, | 845 | unsigned long action, |
846 | void *hcpu) | 846 | void *hcpu) |
847 | { | 847 | { |
848 | int hotcpu = (unsigned long)hcpu; | 848 | int hotcpu = (unsigned long)hcpu; |
849 | struct task_struct *p; | 849 | struct task_struct *p; |
850 | 850 | ||
851 | switch (action) { | 851 | switch (action) { |
852 | case CPU_UP_PREPARE: | 852 | case CPU_UP_PREPARE: |
853 | case CPU_UP_PREPARE_FROZEN: | 853 | case CPU_UP_PREPARE_FROZEN: |
854 | p = kthread_create_on_node(run_ksoftirqd, | 854 | p = kthread_create_on_node(run_ksoftirqd, |
855 | hcpu, | 855 | hcpu, |
856 | cpu_to_node(hotcpu), | 856 | cpu_to_node(hotcpu), |
857 | "ksoftirqd/%d", hotcpu); | 857 | "ksoftirqd/%d", hotcpu); |
858 | if (IS_ERR(p)) { | 858 | if (IS_ERR(p)) { |
859 | printk("ksoftirqd for %i failed\n", hotcpu); | 859 | printk("ksoftirqd for %i failed\n", hotcpu); |
860 | return notifier_from_errno(PTR_ERR(p)); | 860 | return notifier_from_errno(PTR_ERR(p)); |
861 | } | 861 | } |
862 | kthread_bind(p, hotcpu); | 862 | kthread_bind(p, hotcpu); |
863 | per_cpu(ksoftirqd, hotcpu) = p; | 863 | per_cpu(ksoftirqd, hotcpu) = p; |
864 | break; | 864 | break; |
865 | case CPU_ONLINE: | 865 | case CPU_ONLINE: |
866 | case CPU_ONLINE_FROZEN: | 866 | case CPU_ONLINE_FROZEN: |
867 | wake_up_process(per_cpu(ksoftirqd, hotcpu)); | 867 | wake_up_process(per_cpu(ksoftirqd, hotcpu)); |
868 | break; | 868 | break; |
869 | #ifdef CONFIG_HOTPLUG_CPU | 869 | #ifdef CONFIG_HOTPLUG_CPU |
870 | case CPU_UP_CANCELED: | 870 | case CPU_UP_CANCELED: |
871 | case CPU_UP_CANCELED_FROZEN: | 871 | case CPU_UP_CANCELED_FROZEN: |
872 | if (!per_cpu(ksoftirqd, hotcpu)) | 872 | if (!per_cpu(ksoftirqd, hotcpu)) |
873 | break; | 873 | break; |
874 | /* Unbind so it can run. Fall thru. */ | 874 | /* Unbind so it can run. Fall thru. */ |
875 | kthread_bind(per_cpu(ksoftirqd, hotcpu), | 875 | kthread_bind(per_cpu(ksoftirqd, hotcpu), |
876 | cpumask_any(cpu_online_mask)); | 876 | cpumask_any(cpu_online_mask)); |
877 | case CPU_DEAD: | 877 | case CPU_DEAD: |
878 | case CPU_DEAD_FROZEN: { | 878 | case CPU_DEAD_FROZEN: { |
879 | static const struct sched_param param = { | 879 | static const struct sched_param param = { |
880 | .sched_priority = MAX_RT_PRIO-1 | 880 | .sched_priority = MAX_RT_PRIO-1 |
881 | }; | 881 | }; |
882 | 882 | ||
883 | p = per_cpu(ksoftirqd, hotcpu); | 883 | p = per_cpu(ksoftirqd, hotcpu); |
884 | per_cpu(ksoftirqd, hotcpu) = NULL; | 884 | per_cpu(ksoftirqd, hotcpu) = NULL; |
885 | sched_setscheduler_nocheck(p, SCHED_FIFO, ¶m); | 885 | sched_setscheduler_nocheck(p, SCHED_FIFO, ¶m); |
886 | kthread_stop(p); | 886 | kthread_stop(p); |
887 | takeover_tasklets(hotcpu); | 887 | takeover_tasklets(hotcpu); |
888 | break; | 888 | break; |
889 | } | 889 | } |
890 | #endif /* CONFIG_HOTPLUG_CPU */ | 890 | #endif /* CONFIG_HOTPLUG_CPU */ |
891 | } | 891 | } |
892 | return NOTIFY_OK; | 892 | return NOTIFY_OK; |
893 | } | 893 | } |
894 | 894 | ||
895 | static struct notifier_block __cpuinitdata cpu_nfb = { | 895 | static struct notifier_block __cpuinitdata cpu_nfb = { |
896 | .notifier_call = cpu_callback | 896 | .notifier_call = cpu_callback |
897 | }; | 897 | }; |
898 | 898 | ||
899 | static __init int spawn_ksoftirqd(void) | 899 | static __init int spawn_ksoftirqd(void) |
900 | { | 900 | { |
901 | void *cpu = (void *)(long)smp_processor_id(); | 901 | void *cpu = (void *)(long)smp_processor_id(); |
902 | int err = cpu_callback(&cpu_nfb, CPU_UP_PREPARE, cpu); | 902 | int err = cpu_callback(&cpu_nfb, CPU_UP_PREPARE, cpu); |
903 | 903 | ||
904 | BUG_ON(err != NOTIFY_OK); | 904 | BUG_ON(err != NOTIFY_OK); |
905 | cpu_callback(&cpu_nfb, CPU_ONLINE, cpu); | 905 | cpu_callback(&cpu_nfb, CPU_ONLINE, cpu); |
906 | register_cpu_notifier(&cpu_nfb); | 906 | register_cpu_notifier(&cpu_nfb); |
907 | return 0; | 907 | return 0; |
908 | } | 908 | } |
909 | early_initcall(spawn_ksoftirqd); | 909 | early_initcall(spawn_ksoftirqd); |
910 | 910 | ||
911 | /* | 911 | /* |
912 | * [ These __weak aliases are kept in a separate compilation unit, so that | 912 | * [ These __weak aliases are kept in a separate compilation unit, so that |
913 | * GCC does not inline them incorrectly. ] | 913 | * GCC does not inline them incorrectly. ] |
914 | */ | 914 | */ |
915 | 915 | ||
916 | int __init __weak early_irq_init(void) | 916 | int __init __weak early_irq_init(void) |
917 | { | 917 | { |
918 | return 0; | 918 | return 0; |
919 | } | 919 | } |
920 | 920 | ||
921 | #ifdef CONFIG_GENERIC_HARDIRQS | 921 | #ifdef CONFIG_GENERIC_HARDIRQS |
922 | int __init __weak arch_probe_nr_irqs(void) | 922 | int __init __weak arch_probe_nr_irqs(void) |
923 | { | 923 | { |
924 | return NR_IRQS_LEGACY; | 924 | return NR_IRQS_LEGACY; |
925 | } | 925 | } |
926 | 926 | ||
927 | int __init __weak arch_early_irq_init(void) | 927 | int __init __weak arch_early_irq_init(void) |
928 | { | 928 | { |
929 | return 0; | 929 | return 0; |
930 | } | 930 | } |
931 | #endif | 931 | #endif |
932 | 932 |