Commit bdf4f4d2161a795b9323855a81a047bd68f16202

Authored by Johannes Weiner
Committed by Linus Torvalds
1 parent 90deb78839

mm: memcg: only check anon swapin page charges for swap cache

shmem knows for sure that the page is in swap cache when attempting to
charge a page, because the cache charge entry function has a check for it.
Only anon pages may be removed from swap cache already when trying to
charge their swapin.

Adjust the comment, though: '4969c11 mm: fix swapin race condition' added
a stable PageSwapCache check under the page lock in the do_swap_page()
before calling the memory controller, so it's unuse_pte()'s pte_same()
that may fail.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Wanpeng Li <liwp.linux@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>

Showing 1 changed file with 14 additions and 8 deletions Inline Diff

1 /* memcontrol.c - Memory Controller 1 /* memcontrol.c - Memory Controller
2 * 2 *
3 * Copyright IBM Corporation, 2007 3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 * 5 *
6 * Copyright 2007 OpenVZ SWsoft Inc 6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org> 7 * Author: Pavel Emelianov <xemul@openvz.org>
8 * 8 *
9 * Memory thresholds 9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation 10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov 11 * Author: Kirill A. Shutemov
12 * 12 *
13 * This program is free software; you can redistribute it and/or modify 13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by 14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or 15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version. 16 * (at your option) any later version.
17 * 17 *
18 * This program is distributed in the hope that it will be useful, 18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details. 21 * GNU General Public License for more details.
22 */ 22 */
23 23
24 #include <linux/res_counter.h> 24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h> 25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h> 26 #include <linux/cgroup.h>
27 #include <linux/mm.h> 27 #include <linux/mm.h>
28 #include <linux/hugetlb.h> 28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h> 29 #include <linux/pagemap.h>
30 #include <linux/smp.h> 30 #include <linux/smp.h>
31 #include <linux/page-flags.h> 31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h> 32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h> 33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h> 34 #include <linux/rcupdate.h>
35 #include <linux/limits.h> 35 #include <linux/limits.h>
36 #include <linux/export.h> 36 #include <linux/export.h>
37 #include <linux/mutex.h> 37 #include <linux/mutex.h>
38 #include <linux/rbtree.h> 38 #include <linux/rbtree.h>
39 #include <linux/slab.h> 39 #include <linux/slab.h>
40 #include <linux/swap.h> 40 #include <linux/swap.h>
41 #include <linux/swapops.h> 41 #include <linux/swapops.h>
42 #include <linux/spinlock.h> 42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h> 43 #include <linux/eventfd.h>
44 #include <linux/sort.h> 44 #include <linux/sort.h>
45 #include <linux/fs.h> 45 #include <linux/fs.h>
46 #include <linux/seq_file.h> 46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h> 47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h> 48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h> 49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h> 50 #include <linux/cpu.h>
51 #include <linux/oom.h> 51 #include <linux/oom.h>
52 #include "internal.h" 52 #include "internal.h"
53 #include <net/sock.h> 53 #include <net/sock.h>
54 #include <net/tcp_memcontrol.h> 54 #include <net/tcp_memcontrol.h>
55 55
56 #include <asm/uaccess.h> 56 #include <asm/uaccess.h>
57 57
58 #include <trace/events/vmscan.h> 58 #include <trace/events/vmscan.h>
59 59
60 struct cgroup_subsys mem_cgroup_subsys __read_mostly; 60 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61 #define MEM_CGROUP_RECLAIM_RETRIES 5 61 #define MEM_CGROUP_RECLAIM_RETRIES 5
62 static struct mem_cgroup *root_mem_cgroup __read_mostly; 62 static struct mem_cgroup *root_mem_cgroup __read_mostly;
63 63
64 #ifdef CONFIG_MEMCG_SWAP 64 #ifdef CONFIG_MEMCG_SWAP
65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ 65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66 int do_swap_account __read_mostly; 66 int do_swap_account __read_mostly;
67 67
68 /* for remember boot option*/ 68 /* for remember boot option*/
69 #ifdef CONFIG_MEMCG_SWAP_ENABLED 69 #ifdef CONFIG_MEMCG_SWAP_ENABLED
70 static int really_do_swap_account __initdata = 1; 70 static int really_do_swap_account __initdata = 1;
71 #else 71 #else
72 static int really_do_swap_account __initdata = 0; 72 static int really_do_swap_account __initdata = 0;
73 #endif 73 #endif
74 74
75 #else 75 #else
76 #define do_swap_account 0 76 #define do_swap_account 0
77 #endif 77 #endif
78 78
79 79
80 /* 80 /*
81 * Statistics for memory cgroup. 81 * Statistics for memory cgroup.
82 */ 82 */
83 enum mem_cgroup_stat_index { 83 enum mem_cgroup_stat_index {
84 /* 84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. 85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */ 86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ 87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */ 88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */ 89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
90 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */ 90 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
91 MEM_CGROUP_STAT_NSTATS, 91 MEM_CGROUP_STAT_NSTATS,
92 }; 92 };
93 93
94 static const char * const mem_cgroup_stat_names[] = { 94 static const char * const mem_cgroup_stat_names[] = {
95 "cache", 95 "cache",
96 "rss", 96 "rss",
97 "mapped_file", 97 "mapped_file",
98 "swap", 98 "swap",
99 }; 99 };
100 100
101 enum mem_cgroup_events_index { 101 enum mem_cgroup_events_index {
102 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */ 102 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
103 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */ 103 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
104 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */ 104 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
105 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */ 105 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
106 MEM_CGROUP_EVENTS_NSTATS, 106 MEM_CGROUP_EVENTS_NSTATS,
107 }; 107 };
108 108
109 static const char * const mem_cgroup_events_names[] = { 109 static const char * const mem_cgroup_events_names[] = {
110 "pgpgin", 110 "pgpgin",
111 "pgpgout", 111 "pgpgout",
112 "pgfault", 112 "pgfault",
113 "pgmajfault", 113 "pgmajfault",
114 }; 114 };
115 115
116 /* 116 /*
117 * Per memcg event counter is incremented at every pagein/pageout. With THP, 117 * Per memcg event counter is incremented at every pagein/pageout. With THP,
118 * it will be incremated by the number of pages. This counter is used for 118 * it will be incremated by the number of pages. This counter is used for
119 * for trigger some periodic events. This is straightforward and better 119 * for trigger some periodic events. This is straightforward and better
120 * than using jiffies etc. to handle periodic memcg event. 120 * than using jiffies etc. to handle periodic memcg event.
121 */ 121 */
122 enum mem_cgroup_events_target { 122 enum mem_cgroup_events_target {
123 MEM_CGROUP_TARGET_THRESH, 123 MEM_CGROUP_TARGET_THRESH,
124 MEM_CGROUP_TARGET_SOFTLIMIT, 124 MEM_CGROUP_TARGET_SOFTLIMIT,
125 MEM_CGROUP_TARGET_NUMAINFO, 125 MEM_CGROUP_TARGET_NUMAINFO,
126 MEM_CGROUP_NTARGETS, 126 MEM_CGROUP_NTARGETS,
127 }; 127 };
128 #define THRESHOLDS_EVENTS_TARGET 128 128 #define THRESHOLDS_EVENTS_TARGET 128
129 #define SOFTLIMIT_EVENTS_TARGET 1024 129 #define SOFTLIMIT_EVENTS_TARGET 1024
130 #define NUMAINFO_EVENTS_TARGET 1024 130 #define NUMAINFO_EVENTS_TARGET 1024
131 131
132 struct mem_cgroup_stat_cpu { 132 struct mem_cgroup_stat_cpu {
133 long count[MEM_CGROUP_STAT_NSTATS]; 133 long count[MEM_CGROUP_STAT_NSTATS];
134 unsigned long events[MEM_CGROUP_EVENTS_NSTATS]; 134 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
135 unsigned long nr_page_events; 135 unsigned long nr_page_events;
136 unsigned long targets[MEM_CGROUP_NTARGETS]; 136 unsigned long targets[MEM_CGROUP_NTARGETS];
137 }; 137 };
138 138
139 struct mem_cgroup_reclaim_iter { 139 struct mem_cgroup_reclaim_iter {
140 /* css_id of the last scanned hierarchy member */ 140 /* css_id of the last scanned hierarchy member */
141 int position; 141 int position;
142 /* scan generation, increased every round-trip */ 142 /* scan generation, increased every round-trip */
143 unsigned int generation; 143 unsigned int generation;
144 }; 144 };
145 145
146 /* 146 /*
147 * per-zone information in memory controller. 147 * per-zone information in memory controller.
148 */ 148 */
149 struct mem_cgroup_per_zone { 149 struct mem_cgroup_per_zone {
150 struct lruvec lruvec; 150 struct lruvec lruvec;
151 unsigned long lru_size[NR_LRU_LISTS]; 151 unsigned long lru_size[NR_LRU_LISTS];
152 152
153 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1]; 153 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
154 154
155 struct rb_node tree_node; /* RB tree node */ 155 struct rb_node tree_node; /* RB tree node */
156 unsigned long long usage_in_excess;/* Set to the value by which */ 156 unsigned long long usage_in_excess;/* Set to the value by which */
157 /* the soft limit is exceeded*/ 157 /* the soft limit is exceeded*/
158 bool on_tree; 158 bool on_tree;
159 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 159 struct mem_cgroup *memcg; /* Back pointer, we cannot */
160 /* use container_of */ 160 /* use container_of */
161 }; 161 };
162 162
163 struct mem_cgroup_per_node { 163 struct mem_cgroup_per_node {
164 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; 164 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
165 }; 165 };
166 166
167 struct mem_cgroup_lru_info { 167 struct mem_cgroup_lru_info {
168 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES]; 168 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
169 }; 169 };
170 170
171 /* 171 /*
172 * Cgroups above their limits are maintained in a RB-Tree, independent of 172 * Cgroups above their limits are maintained in a RB-Tree, independent of
173 * their hierarchy representation 173 * their hierarchy representation
174 */ 174 */
175 175
176 struct mem_cgroup_tree_per_zone { 176 struct mem_cgroup_tree_per_zone {
177 struct rb_root rb_root; 177 struct rb_root rb_root;
178 spinlock_t lock; 178 spinlock_t lock;
179 }; 179 };
180 180
181 struct mem_cgroup_tree_per_node { 181 struct mem_cgroup_tree_per_node {
182 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; 182 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
183 }; 183 };
184 184
185 struct mem_cgroup_tree { 185 struct mem_cgroup_tree {
186 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 186 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
187 }; 187 };
188 188
189 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 189 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
190 190
191 struct mem_cgroup_threshold { 191 struct mem_cgroup_threshold {
192 struct eventfd_ctx *eventfd; 192 struct eventfd_ctx *eventfd;
193 u64 threshold; 193 u64 threshold;
194 }; 194 };
195 195
196 /* For threshold */ 196 /* For threshold */
197 struct mem_cgroup_threshold_ary { 197 struct mem_cgroup_threshold_ary {
198 /* An array index points to threshold just below or equal to usage. */ 198 /* An array index points to threshold just below or equal to usage. */
199 int current_threshold; 199 int current_threshold;
200 /* Size of entries[] */ 200 /* Size of entries[] */
201 unsigned int size; 201 unsigned int size;
202 /* Array of thresholds */ 202 /* Array of thresholds */
203 struct mem_cgroup_threshold entries[0]; 203 struct mem_cgroup_threshold entries[0];
204 }; 204 };
205 205
206 struct mem_cgroup_thresholds { 206 struct mem_cgroup_thresholds {
207 /* Primary thresholds array */ 207 /* Primary thresholds array */
208 struct mem_cgroup_threshold_ary *primary; 208 struct mem_cgroup_threshold_ary *primary;
209 /* 209 /*
210 * Spare threshold array. 210 * Spare threshold array.
211 * This is needed to make mem_cgroup_unregister_event() "never fail". 211 * This is needed to make mem_cgroup_unregister_event() "never fail".
212 * It must be able to store at least primary->size - 1 entries. 212 * It must be able to store at least primary->size - 1 entries.
213 */ 213 */
214 struct mem_cgroup_threshold_ary *spare; 214 struct mem_cgroup_threshold_ary *spare;
215 }; 215 };
216 216
217 /* for OOM */ 217 /* for OOM */
218 struct mem_cgroup_eventfd_list { 218 struct mem_cgroup_eventfd_list {
219 struct list_head list; 219 struct list_head list;
220 struct eventfd_ctx *eventfd; 220 struct eventfd_ctx *eventfd;
221 }; 221 };
222 222
223 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 223 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
224 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 224 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
225 225
226 /* 226 /*
227 * The memory controller data structure. The memory controller controls both 227 * The memory controller data structure. The memory controller controls both
228 * page cache and RSS per cgroup. We would eventually like to provide 228 * page cache and RSS per cgroup. We would eventually like to provide
229 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 229 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
230 * to help the administrator determine what knobs to tune. 230 * to help the administrator determine what knobs to tune.
231 * 231 *
232 * TODO: Add a water mark for the memory controller. Reclaim will begin when 232 * TODO: Add a water mark for the memory controller. Reclaim will begin when
233 * we hit the water mark. May be even add a low water mark, such that 233 * we hit the water mark. May be even add a low water mark, such that
234 * no reclaim occurs from a cgroup at it's low water mark, this is 234 * no reclaim occurs from a cgroup at it's low water mark, this is
235 * a feature that will be implemented much later in the future. 235 * a feature that will be implemented much later in the future.
236 */ 236 */
237 struct mem_cgroup { 237 struct mem_cgroup {
238 struct cgroup_subsys_state css; 238 struct cgroup_subsys_state css;
239 /* 239 /*
240 * the counter to account for memory usage 240 * the counter to account for memory usage
241 */ 241 */
242 struct res_counter res; 242 struct res_counter res;
243 243
244 union { 244 union {
245 /* 245 /*
246 * the counter to account for mem+swap usage. 246 * the counter to account for mem+swap usage.
247 */ 247 */
248 struct res_counter memsw; 248 struct res_counter memsw;
249 249
250 /* 250 /*
251 * rcu_freeing is used only when freeing struct mem_cgroup, 251 * rcu_freeing is used only when freeing struct mem_cgroup,
252 * so put it into a union to avoid wasting more memory. 252 * so put it into a union to avoid wasting more memory.
253 * It must be disjoint from the css field. It could be 253 * It must be disjoint from the css field. It could be
254 * in a union with the res field, but res plays a much 254 * in a union with the res field, but res plays a much
255 * larger part in mem_cgroup life than memsw, and might 255 * larger part in mem_cgroup life than memsw, and might
256 * be of interest, even at time of free, when debugging. 256 * be of interest, even at time of free, when debugging.
257 * So share rcu_head with the less interesting memsw. 257 * So share rcu_head with the less interesting memsw.
258 */ 258 */
259 struct rcu_head rcu_freeing; 259 struct rcu_head rcu_freeing;
260 /* 260 /*
261 * We also need some space for a worker in deferred freeing. 261 * We also need some space for a worker in deferred freeing.
262 * By the time we call it, rcu_freeing is no longer in use. 262 * By the time we call it, rcu_freeing is no longer in use.
263 */ 263 */
264 struct work_struct work_freeing; 264 struct work_struct work_freeing;
265 }; 265 };
266 266
267 /* 267 /*
268 * Per cgroup active and inactive list, similar to the 268 * Per cgroup active and inactive list, similar to the
269 * per zone LRU lists. 269 * per zone LRU lists.
270 */ 270 */
271 struct mem_cgroup_lru_info info; 271 struct mem_cgroup_lru_info info;
272 int last_scanned_node; 272 int last_scanned_node;
273 #if MAX_NUMNODES > 1 273 #if MAX_NUMNODES > 1
274 nodemask_t scan_nodes; 274 nodemask_t scan_nodes;
275 atomic_t numainfo_events; 275 atomic_t numainfo_events;
276 atomic_t numainfo_updating; 276 atomic_t numainfo_updating;
277 #endif 277 #endif
278 /* 278 /*
279 * Should the accounting and control be hierarchical, per subtree? 279 * Should the accounting and control be hierarchical, per subtree?
280 */ 280 */
281 bool use_hierarchy; 281 bool use_hierarchy;
282 282
283 bool oom_lock; 283 bool oom_lock;
284 atomic_t under_oom; 284 atomic_t under_oom;
285 285
286 atomic_t refcnt; 286 atomic_t refcnt;
287 287
288 int swappiness; 288 int swappiness;
289 /* OOM-Killer disable */ 289 /* OOM-Killer disable */
290 int oom_kill_disable; 290 int oom_kill_disable;
291 291
292 /* set when res.limit == memsw.limit */ 292 /* set when res.limit == memsw.limit */
293 bool memsw_is_minimum; 293 bool memsw_is_minimum;
294 294
295 /* protect arrays of thresholds */ 295 /* protect arrays of thresholds */
296 struct mutex thresholds_lock; 296 struct mutex thresholds_lock;
297 297
298 /* thresholds for memory usage. RCU-protected */ 298 /* thresholds for memory usage. RCU-protected */
299 struct mem_cgroup_thresholds thresholds; 299 struct mem_cgroup_thresholds thresholds;
300 300
301 /* thresholds for mem+swap usage. RCU-protected */ 301 /* thresholds for mem+swap usage. RCU-protected */
302 struct mem_cgroup_thresholds memsw_thresholds; 302 struct mem_cgroup_thresholds memsw_thresholds;
303 303
304 /* For oom notifier event fd */ 304 /* For oom notifier event fd */
305 struct list_head oom_notify; 305 struct list_head oom_notify;
306 306
307 /* 307 /*
308 * Should we move charges of a task when a task is moved into this 308 * Should we move charges of a task when a task is moved into this
309 * mem_cgroup ? And what type of charges should we move ? 309 * mem_cgroup ? And what type of charges should we move ?
310 */ 310 */
311 unsigned long move_charge_at_immigrate; 311 unsigned long move_charge_at_immigrate;
312 /* 312 /*
313 * set > 0 if pages under this cgroup are moving to other cgroup. 313 * set > 0 if pages under this cgroup are moving to other cgroup.
314 */ 314 */
315 atomic_t moving_account; 315 atomic_t moving_account;
316 /* taken only while moving_account > 0 */ 316 /* taken only while moving_account > 0 */
317 spinlock_t move_lock; 317 spinlock_t move_lock;
318 /* 318 /*
319 * percpu counter. 319 * percpu counter.
320 */ 320 */
321 struct mem_cgroup_stat_cpu __percpu *stat; 321 struct mem_cgroup_stat_cpu __percpu *stat;
322 /* 322 /*
323 * used when a cpu is offlined or other synchronizations 323 * used when a cpu is offlined or other synchronizations
324 * See mem_cgroup_read_stat(). 324 * See mem_cgroup_read_stat().
325 */ 325 */
326 struct mem_cgroup_stat_cpu nocpu_base; 326 struct mem_cgroup_stat_cpu nocpu_base;
327 spinlock_t pcp_counter_lock; 327 spinlock_t pcp_counter_lock;
328 328
329 #ifdef CONFIG_INET 329 #ifdef CONFIG_INET
330 struct tcp_memcontrol tcp_mem; 330 struct tcp_memcontrol tcp_mem;
331 #endif 331 #endif
332 }; 332 };
333 333
334 /* Stuffs for move charges at task migration. */ 334 /* Stuffs for move charges at task migration. */
335 /* 335 /*
336 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a 336 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
337 * left-shifted bitmap of these types. 337 * left-shifted bitmap of these types.
338 */ 338 */
339 enum move_type { 339 enum move_type {
340 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */ 340 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
341 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */ 341 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
342 NR_MOVE_TYPE, 342 NR_MOVE_TYPE,
343 }; 343 };
344 344
345 /* "mc" and its members are protected by cgroup_mutex */ 345 /* "mc" and its members are protected by cgroup_mutex */
346 static struct move_charge_struct { 346 static struct move_charge_struct {
347 spinlock_t lock; /* for from, to */ 347 spinlock_t lock; /* for from, to */
348 struct mem_cgroup *from; 348 struct mem_cgroup *from;
349 struct mem_cgroup *to; 349 struct mem_cgroup *to;
350 unsigned long precharge; 350 unsigned long precharge;
351 unsigned long moved_charge; 351 unsigned long moved_charge;
352 unsigned long moved_swap; 352 unsigned long moved_swap;
353 struct task_struct *moving_task; /* a task moving charges */ 353 struct task_struct *moving_task; /* a task moving charges */
354 wait_queue_head_t waitq; /* a waitq for other context */ 354 wait_queue_head_t waitq; /* a waitq for other context */
355 } mc = { 355 } mc = {
356 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 356 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
357 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 357 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
358 }; 358 };
359 359
360 static bool move_anon(void) 360 static bool move_anon(void)
361 { 361 {
362 return test_bit(MOVE_CHARGE_TYPE_ANON, 362 return test_bit(MOVE_CHARGE_TYPE_ANON,
363 &mc.to->move_charge_at_immigrate); 363 &mc.to->move_charge_at_immigrate);
364 } 364 }
365 365
366 static bool move_file(void) 366 static bool move_file(void)
367 { 367 {
368 return test_bit(MOVE_CHARGE_TYPE_FILE, 368 return test_bit(MOVE_CHARGE_TYPE_FILE,
369 &mc.to->move_charge_at_immigrate); 369 &mc.to->move_charge_at_immigrate);
370 } 370 }
371 371
372 /* 372 /*
373 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 373 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
374 * limit reclaim to prevent infinite loops, if they ever occur. 374 * limit reclaim to prevent infinite loops, if they ever occur.
375 */ 375 */
376 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 376 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
377 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 377 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
378 378
379 enum charge_type { 379 enum charge_type {
380 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 380 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
381 MEM_CGROUP_CHARGE_TYPE_ANON, 381 MEM_CGROUP_CHARGE_TYPE_ANON,
382 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 382 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
383 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 383 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
384 NR_CHARGE_TYPE, 384 NR_CHARGE_TYPE,
385 }; 385 };
386 386
387 /* for encoding cft->private value on file */ 387 /* for encoding cft->private value on file */
388 #define _MEM (0) 388 #define _MEM (0)
389 #define _MEMSWAP (1) 389 #define _MEMSWAP (1)
390 #define _OOM_TYPE (2) 390 #define _OOM_TYPE (2)
391 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 391 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
392 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 392 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
393 #define MEMFILE_ATTR(val) ((val) & 0xffff) 393 #define MEMFILE_ATTR(val) ((val) & 0xffff)
394 /* Used for OOM nofiier */ 394 /* Used for OOM nofiier */
395 #define OOM_CONTROL (0) 395 #define OOM_CONTROL (0)
396 396
397 /* 397 /*
398 * Reclaim flags for mem_cgroup_hierarchical_reclaim 398 * Reclaim flags for mem_cgroup_hierarchical_reclaim
399 */ 399 */
400 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0 400 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
401 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT) 401 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
402 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1 402 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
403 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT) 403 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
404 404
405 static void mem_cgroup_get(struct mem_cgroup *memcg); 405 static void mem_cgroup_get(struct mem_cgroup *memcg);
406 static void mem_cgroup_put(struct mem_cgroup *memcg); 406 static void mem_cgroup_put(struct mem_cgroup *memcg);
407 407
408 /* Writing them here to avoid exposing memcg's inner layout */ 408 /* Writing them here to avoid exposing memcg's inner layout */
409 #ifdef CONFIG_MEMCG_KMEM 409 #ifdef CONFIG_MEMCG_KMEM
410 #include <net/sock.h> 410 #include <net/sock.h>
411 #include <net/ip.h> 411 #include <net/ip.h>
412 412
413 static bool mem_cgroup_is_root(struct mem_cgroup *memcg); 413 static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
414 void sock_update_memcg(struct sock *sk) 414 void sock_update_memcg(struct sock *sk)
415 { 415 {
416 if (mem_cgroup_sockets_enabled) { 416 if (mem_cgroup_sockets_enabled) {
417 struct mem_cgroup *memcg; 417 struct mem_cgroup *memcg;
418 struct cg_proto *cg_proto; 418 struct cg_proto *cg_proto;
419 419
420 BUG_ON(!sk->sk_prot->proto_cgroup); 420 BUG_ON(!sk->sk_prot->proto_cgroup);
421 421
422 /* Socket cloning can throw us here with sk_cgrp already 422 /* Socket cloning can throw us here with sk_cgrp already
423 * filled. It won't however, necessarily happen from 423 * filled. It won't however, necessarily happen from
424 * process context. So the test for root memcg given 424 * process context. So the test for root memcg given
425 * the current task's memcg won't help us in this case. 425 * the current task's memcg won't help us in this case.
426 * 426 *
427 * Respecting the original socket's memcg is a better 427 * Respecting the original socket's memcg is a better
428 * decision in this case. 428 * decision in this case.
429 */ 429 */
430 if (sk->sk_cgrp) { 430 if (sk->sk_cgrp) {
431 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg)); 431 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
432 mem_cgroup_get(sk->sk_cgrp->memcg); 432 mem_cgroup_get(sk->sk_cgrp->memcg);
433 return; 433 return;
434 } 434 }
435 435
436 rcu_read_lock(); 436 rcu_read_lock();
437 memcg = mem_cgroup_from_task(current); 437 memcg = mem_cgroup_from_task(current);
438 cg_proto = sk->sk_prot->proto_cgroup(memcg); 438 cg_proto = sk->sk_prot->proto_cgroup(memcg);
439 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) { 439 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
440 mem_cgroup_get(memcg); 440 mem_cgroup_get(memcg);
441 sk->sk_cgrp = cg_proto; 441 sk->sk_cgrp = cg_proto;
442 } 442 }
443 rcu_read_unlock(); 443 rcu_read_unlock();
444 } 444 }
445 } 445 }
446 EXPORT_SYMBOL(sock_update_memcg); 446 EXPORT_SYMBOL(sock_update_memcg);
447 447
448 void sock_release_memcg(struct sock *sk) 448 void sock_release_memcg(struct sock *sk)
449 { 449 {
450 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 450 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
451 struct mem_cgroup *memcg; 451 struct mem_cgroup *memcg;
452 WARN_ON(!sk->sk_cgrp->memcg); 452 WARN_ON(!sk->sk_cgrp->memcg);
453 memcg = sk->sk_cgrp->memcg; 453 memcg = sk->sk_cgrp->memcg;
454 mem_cgroup_put(memcg); 454 mem_cgroup_put(memcg);
455 } 455 }
456 } 456 }
457 457
458 #ifdef CONFIG_INET 458 #ifdef CONFIG_INET
459 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg) 459 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
460 { 460 {
461 if (!memcg || mem_cgroup_is_root(memcg)) 461 if (!memcg || mem_cgroup_is_root(memcg))
462 return NULL; 462 return NULL;
463 463
464 return &memcg->tcp_mem.cg_proto; 464 return &memcg->tcp_mem.cg_proto;
465 } 465 }
466 EXPORT_SYMBOL(tcp_proto_cgroup); 466 EXPORT_SYMBOL(tcp_proto_cgroup);
467 #endif /* CONFIG_INET */ 467 #endif /* CONFIG_INET */
468 #endif /* CONFIG_MEMCG_KMEM */ 468 #endif /* CONFIG_MEMCG_KMEM */
469 469
470 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) 470 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
471 static void disarm_sock_keys(struct mem_cgroup *memcg) 471 static void disarm_sock_keys(struct mem_cgroup *memcg)
472 { 472 {
473 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto)) 473 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
474 return; 474 return;
475 static_key_slow_dec(&memcg_socket_limit_enabled); 475 static_key_slow_dec(&memcg_socket_limit_enabled);
476 } 476 }
477 #else 477 #else
478 static void disarm_sock_keys(struct mem_cgroup *memcg) 478 static void disarm_sock_keys(struct mem_cgroup *memcg)
479 { 479 {
480 } 480 }
481 #endif 481 #endif
482 482
483 static void drain_all_stock_async(struct mem_cgroup *memcg); 483 static void drain_all_stock_async(struct mem_cgroup *memcg);
484 484
485 static struct mem_cgroup_per_zone * 485 static struct mem_cgroup_per_zone *
486 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid) 486 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
487 { 487 {
488 return &memcg->info.nodeinfo[nid]->zoneinfo[zid]; 488 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
489 } 489 }
490 490
491 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg) 491 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
492 { 492 {
493 return &memcg->css; 493 return &memcg->css;
494 } 494 }
495 495
496 static struct mem_cgroup_per_zone * 496 static struct mem_cgroup_per_zone *
497 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page) 497 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
498 { 498 {
499 int nid = page_to_nid(page); 499 int nid = page_to_nid(page);
500 int zid = page_zonenum(page); 500 int zid = page_zonenum(page);
501 501
502 return mem_cgroup_zoneinfo(memcg, nid, zid); 502 return mem_cgroup_zoneinfo(memcg, nid, zid);
503 } 503 }
504 504
505 static struct mem_cgroup_tree_per_zone * 505 static struct mem_cgroup_tree_per_zone *
506 soft_limit_tree_node_zone(int nid, int zid) 506 soft_limit_tree_node_zone(int nid, int zid)
507 { 507 {
508 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 508 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
509 } 509 }
510 510
511 static struct mem_cgroup_tree_per_zone * 511 static struct mem_cgroup_tree_per_zone *
512 soft_limit_tree_from_page(struct page *page) 512 soft_limit_tree_from_page(struct page *page)
513 { 513 {
514 int nid = page_to_nid(page); 514 int nid = page_to_nid(page);
515 int zid = page_zonenum(page); 515 int zid = page_zonenum(page);
516 516
517 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 517 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
518 } 518 }
519 519
520 static void 520 static void
521 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg, 521 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
522 struct mem_cgroup_per_zone *mz, 522 struct mem_cgroup_per_zone *mz,
523 struct mem_cgroup_tree_per_zone *mctz, 523 struct mem_cgroup_tree_per_zone *mctz,
524 unsigned long long new_usage_in_excess) 524 unsigned long long new_usage_in_excess)
525 { 525 {
526 struct rb_node **p = &mctz->rb_root.rb_node; 526 struct rb_node **p = &mctz->rb_root.rb_node;
527 struct rb_node *parent = NULL; 527 struct rb_node *parent = NULL;
528 struct mem_cgroup_per_zone *mz_node; 528 struct mem_cgroup_per_zone *mz_node;
529 529
530 if (mz->on_tree) 530 if (mz->on_tree)
531 return; 531 return;
532 532
533 mz->usage_in_excess = new_usage_in_excess; 533 mz->usage_in_excess = new_usage_in_excess;
534 if (!mz->usage_in_excess) 534 if (!mz->usage_in_excess)
535 return; 535 return;
536 while (*p) { 536 while (*p) {
537 parent = *p; 537 parent = *p;
538 mz_node = rb_entry(parent, struct mem_cgroup_per_zone, 538 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
539 tree_node); 539 tree_node);
540 if (mz->usage_in_excess < mz_node->usage_in_excess) 540 if (mz->usage_in_excess < mz_node->usage_in_excess)
541 p = &(*p)->rb_left; 541 p = &(*p)->rb_left;
542 /* 542 /*
543 * We can't avoid mem cgroups that are over their soft 543 * We can't avoid mem cgroups that are over their soft
544 * limit by the same amount 544 * limit by the same amount
545 */ 545 */
546 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 546 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
547 p = &(*p)->rb_right; 547 p = &(*p)->rb_right;
548 } 548 }
549 rb_link_node(&mz->tree_node, parent, p); 549 rb_link_node(&mz->tree_node, parent, p);
550 rb_insert_color(&mz->tree_node, &mctz->rb_root); 550 rb_insert_color(&mz->tree_node, &mctz->rb_root);
551 mz->on_tree = true; 551 mz->on_tree = true;
552 } 552 }
553 553
554 static void 554 static void
555 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, 555 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
556 struct mem_cgroup_per_zone *mz, 556 struct mem_cgroup_per_zone *mz,
557 struct mem_cgroup_tree_per_zone *mctz) 557 struct mem_cgroup_tree_per_zone *mctz)
558 { 558 {
559 if (!mz->on_tree) 559 if (!mz->on_tree)
560 return; 560 return;
561 rb_erase(&mz->tree_node, &mctz->rb_root); 561 rb_erase(&mz->tree_node, &mctz->rb_root);
562 mz->on_tree = false; 562 mz->on_tree = false;
563 } 563 }
564 564
565 static void 565 static void
566 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, 566 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
567 struct mem_cgroup_per_zone *mz, 567 struct mem_cgroup_per_zone *mz,
568 struct mem_cgroup_tree_per_zone *mctz) 568 struct mem_cgroup_tree_per_zone *mctz)
569 { 569 {
570 spin_lock(&mctz->lock); 570 spin_lock(&mctz->lock);
571 __mem_cgroup_remove_exceeded(memcg, mz, mctz); 571 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
572 spin_unlock(&mctz->lock); 572 spin_unlock(&mctz->lock);
573 } 573 }
574 574
575 575
576 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 576 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
577 { 577 {
578 unsigned long long excess; 578 unsigned long long excess;
579 struct mem_cgroup_per_zone *mz; 579 struct mem_cgroup_per_zone *mz;
580 struct mem_cgroup_tree_per_zone *mctz; 580 struct mem_cgroup_tree_per_zone *mctz;
581 int nid = page_to_nid(page); 581 int nid = page_to_nid(page);
582 int zid = page_zonenum(page); 582 int zid = page_zonenum(page);
583 mctz = soft_limit_tree_from_page(page); 583 mctz = soft_limit_tree_from_page(page);
584 584
585 /* 585 /*
586 * Necessary to update all ancestors when hierarchy is used. 586 * Necessary to update all ancestors when hierarchy is used.
587 * because their event counter is not touched. 587 * because their event counter is not touched.
588 */ 588 */
589 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 589 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
590 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 590 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
591 excess = res_counter_soft_limit_excess(&memcg->res); 591 excess = res_counter_soft_limit_excess(&memcg->res);
592 /* 592 /*
593 * We have to update the tree if mz is on RB-tree or 593 * We have to update the tree if mz is on RB-tree or
594 * mem is over its softlimit. 594 * mem is over its softlimit.
595 */ 595 */
596 if (excess || mz->on_tree) { 596 if (excess || mz->on_tree) {
597 spin_lock(&mctz->lock); 597 spin_lock(&mctz->lock);
598 /* if on-tree, remove it */ 598 /* if on-tree, remove it */
599 if (mz->on_tree) 599 if (mz->on_tree)
600 __mem_cgroup_remove_exceeded(memcg, mz, mctz); 600 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
601 /* 601 /*
602 * Insert again. mz->usage_in_excess will be updated. 602 * Insert again. mz->usage_in_excess will be updated.
603 * If excess is 0, no tree ops. 603 * If excess is 0, no tree ops.
604 */ 604 */
605 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess); 605 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
606 spin_unlock(&mctz->lock); 606 spin_unlock(&mctz->lock);
607 } 607 }
608 } 608 }
609 } 609 }
610 610
611 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 611 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
612 { 612 {
613 int node, zone; 613 int node, zone;
614 struct mem_cgroup_per_zone *mz; 614 struct mem_cgroup_per_zone *mz;
615 struct mem_cgroup_tree_per_zone *mctz; 615 struct mem_cgroup_tree_per_zone *mctz;
616 616
617 for_each_node(node) { 617 for_each_node(node) {
618 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 618 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
619 mz = mem_cgroup_zoneinfo(memcg, node, zone); 619 mz = mem_cgroup_zoneinfo(memcg, node, zone);
620 mctz = soft_limit_tree_node_zone(node, zone); 620 mctz = soft_limit_tree_node_zone(node, zone);
621 mem_cgroup_remove_exceeded(memcg, mz, mctz); 621 mem_cgroup_remove_exceeded(memcg, mz, mctz);
622 } 622 }
623 } 623 }
624 } 624 }
625 625
626 static struct mem_cgroup_per_zone * 626 static struct mem_cgroup_per_zone *
627 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 627 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
628 { 628 {
629 struct rb_node *rightmost = NULL; 629 struct rb_node *rightmost = NULL;
630 struct mem_cgroup_per_zone *mz; 630 struct mem_cgroup_per_zone *mz;
631 631
632 retry: 632 retry:
633 mz = NULL; 633 mz = NULL;
634 rightmost = rb_last(&mctz->rb_root); 634 rightmost = rb_last(&mctz->rb_root);
635 if (!rightmost) 635 if (!rightmost)
636 goto done; /* Nothing to reclaim from */ 636 goto done; /* Nothing to reclaim from */
637 637
638 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); 638 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
639 /* 639 /*
640 * Remove the node now but someone else can add it back, 640 * Remove the node now but someone else can add it back,
641 * we will to add it back at the end of reclaim to its correct 641 * we will to add it back at the end of reclaim to its correct
642 * position in the tree. 642 * position in the tree.
643 */ 643 */
644 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); 644 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
645 if (!res_counter_soft_limit_excess(&mz->memcg->res) || 645 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
646 !css_tryget(&mz->memcg->css)) 646 !css_tryget(&mz->memcg->css))
647 goto retry; 647 goto retry;
648 done: 648 done:
649 return mz; 649 return mz;
650 } 650 }
651 651
652 static struct mem_cgroup_per_zone * 652 static struct mem_cgroup_per_zone *
653 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 653 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
654 { 654 {
655 struct mem_cgroup_per_zone *mz; 655 struct mem_cgroup_per_zone *mz;
656 656
657 spin_lock(&mctz->lock); 657 spin_lock(&mctz->lock);
658 mz = __mem_cgroup_largest_soft_limit_node(mctz); 658 mz = __mem_cgroup_largest_soft_limit_node(mctz);
659 spin_unlock(&mctz->lock); 659 spin_unlock(&mctz->lock);
660 return mz; 660 return mz;
661 } 661 }
662 662
663 /* 663 /*
664 * Implementation Note: reading percpu statistics for memcg. 664 * Implementation Note: reading percpu statistics for memcg.
665 * 665 *
666 * Both of vmstat[] and percpu_counter has threshold and do periodic 666 * Both of vmstat[] and percpu_counter has threshold and do periodic
667 * synchronization to implement "quick" read. There are trade-off between 667 * synchronization to implement "quick" read. There are trade-off between
668 * reading cost and precision of value. Then, we may have a chance to implement 668 * reading cost and precision of value. Then, we may have a chance to implement
669 * a periodic synchronizion of counter in memcg's counter. 669 * a periodic synchronizion of counter in memcg's counter.
670 * 670 *
671 * But this _read() function is used for user interface now. The user accounts 671 * But this _read() function is used for user interface now. The user accounts
672 * memory usage by memory cgroup and he _always_ requires exact value because 672 * memory usage by memory cgroup and he _always_ requires exact value because
673 * he accounts memory. Even if we provide quick-and-fuzzy read, we always 673 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
674 * have to visit all online cpus and make sum. So, for now, unnecessary 674 * have to visit all online cpus and make sum. So, for now, unnecessary
675 * synchronization is not implemented. (just implemented for cpu hotplug) 675 * synchronization is not implemented. (just implemented for cpu hotplug)
676 * 676 *
677 * If there are kernel internal actions which can make use of some not-exact 677 * If there are kernel internal actions which can make use of some not-exact
678 * value, and reading all cpu value can be performance bottleneck in some 678 * value, and reading all cpu value can be performance bottleneck in some
679 * common workload, threashold and synchonization as vmstat[] should be 679 * common workload, threashold and synchonization as vmstat[] should be
680 * implemented. 680 * implemented.
681 */ 681 */
682 static long mem_cgroup_read_stat(struct mem_cgroup *memcg, 682 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
683 enum mem_cgroup_stat_index idx) 683 enum mem_cgroup_stat_index idx)
684 { 684 {
685 long val = 0; 685 long val = 0;
686 int cpu; 686 int cpu;
687 687
688 get_online_cpus(); 688 get_online_cpus();
689 for_each_online_cpu(cpu) 689 for_each_online_cpu(cpu)
690 val += per_cpu(memcg->stat->count[idx], cpu); 690 val += per_cpu(memcg->stat->count[idx], cpu);
691 #ifdef CONFIG_HOTPLUG_CPU 691 #ifdef CONFIG_HOTPLUG_CPU
692 spin_lock(&memcg->pcp_counter_lock); 692 spin_lock(&memcg->pcp_counter_lock);
693 val += memcg->nocpu_base.count[idx]; 693 val += memcg->nocpu_base.count[idx];
694 spin_unlock(&memcg->pcp_counter_lock); 694 spin_unlock(&memcg->pcp_counter_lock);
695 #endif 695 #endif
696 put_online_cpus(); 696 put_online_cpus();
697 return val; 697 return val;
698 } 698 }
699 699
700 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, 700 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
701 bool charge) 701 bool charge)
702 { 702 {
703 int val = (charge) ? 1 : -1; 703 int val = (charge) ? 1 : -1;
704 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); 704 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
705 } 705 }
706 706
707 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, 707 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
708 enum mem_cgroup_events_index idx) 708 enum mem_cgroup_events_index idx)
709 { 709 {
710 unsigned long val = 0; 710 unsigned long val = 0;
711 int cpu; 711 int cpu;
712 712
713 for_each_online_cpu(cpu) 713 for_each_online_cpu(cpu)
714 val += per_cpu(memcg->stat->events[idx], cpu); 714 val += per_cpu(memcg->stat->events[idx], cpu);
715 #ifdef CONFIG_HOTPLUG_CPU 715 #ifdef CONFIG_HOTPLUG_CPU
716 spin_lock(&memcg->pcp_counter_lock); 716 spin_lock(&memcg->pcp_counter_lock);
717 val += memcg->nocpu_base.events[idx]; 717 val += memcg->nocpu_base.events[idx];
718 spin_unlock(&memcg->pcp_counter_lock); 718 spin_unlock(&memcg->pcp_counter_lock);
719 #endif 719 #endif
720 return val; 720 return val;
721 } 721 }
722 722
723 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 723 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
724 bool anon, int nr_pages) 724 bool anon, int nr_pages)
725 { 725 {
726 preempt_disable(); 726 preempt_disable();
727 727
728 /* 728 /*
729 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 729 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
730 * counted as CACHE even if it's on ANON LRU. 730 * counted as CACHE even if it's on ANON LRU.
731 */ 731 */
732 if (anon) 732 if (anon)
733 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], 733 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
734 nr_pages); 734 nr_pages);
735 else 735 else
736 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], 736 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
737 nr_pages); 737 nr_pages);
738 738
739 /* pagein of a big page is an event. So, ignore page size */ 739 /* pagein of a big page is an event. So, ignore page size */
740 if (nr_pages > 0) 740 if (nr_pages > 0)
741 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); 741 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
742 else { 742 else {
743 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); 743 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
744 nr_pages = -nr_pages; /* for event */ 744 nr_pages = -nr_pages; /* for event */
745 } 745 }
746 746
747 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 747 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
748 748
749 preempt_enable(); 749 preempt_enable();
750 } 750 }
751 751
752 unsigned long 752 unsigned long
753 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 753 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
754 { 754 {
755 struct mem_cgroup_per_zone *mz; 755 struct mem_cgroup_per_zone *mz;
756 756
757 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 757 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
758 return mz->lru_size[lru]; 758 return mz->lru_size[lru];
759 } 759 }
760 760
761 static unsigned long 761 static unsigned long
762 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid, 762 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
763 unsigned int lru_mask) 763 unsigned int lru_mask)
764 { 764 {
765 struct mem_cgroup_per_zone *mz; 765 struct mem_cgroup_per_zone *mz;
766 enum lru_list lru; 766 enum lru_list lru;
767 unsigned long ret = 0; 767 unsigned long ret = 0;
768 768
769 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 769 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
770 770
771 for_each_lru(lru) { 771 for_each_lru(lru) {
772 if (BIT(lru) & lru_mask) 772 if (BIT(lru) & lru_mask)
773 ret += mz->lru_size[lru]; 773 ret += mz->lru_size[lru];
774 } 774 }
775 return ret; 775 return ret;
776 } 776 }
777 777
778 static unsigned long 778 static unsigned long
779 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 779 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
780 int nid, unsigned int lru_mask) 780 int nid, unsigned int lru_mask)
781 { 781 {
782 u64 total = 0; 782 u64 total = 0;
783 int zid; 783 int zid;
784 784
785 for (zid = 0; zid < MAX_NR_ZONES; zid++) 785 for (zid = 0; zid < MAX_NR_ZONES; zid++)
786 total += mem_cgroup_zone_nr_lru_pages(memcg, 786 total += mem_cgroup_zone_nr_lru_pages(memcg,
787 nid, zid, lru_mask); 787 nid, zid, lru_mask);
788 788
789 return total; 789 return total;
790 } 790 }
791 791
792 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 792 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
793 unsigned int lru_mask) 793 unsigned int lru_mask)
794 { 794 {
795 int nid; 795 int nid;
796 u64 total = 0; 796 u64 total = 0;
797 797
798 for_each_node_state(nid, N_HIGH_MEMORY) 798 for_each_node_state(nid, N_HIGH_MEMORY)
799 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 799 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
800 return total; 800 return total;
801 } 801 }
802 802
803 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 803 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
804 enum mem_cgroup_events_target target) 804 enum mem_cgroup_events_target target)
805 { 805 {
806 unsigned long val, next; 806 unsigned long val, next;
807 807
808 val = __this_cpu_read(memcg->stat->nr_page_events); 808 val = __this_cpu_read(memcg->stat->nr_page_events);
809 next = __this_cpu_read(memcg->stat->targets[target]); 809 next = __this_cpu_read(memcg->stat->targets[target]);
810 /* from time_after() in jiffies.h */ 810 /* from time_after() in jiffies.h */
811 if ((long)next - (long)val < 0) { 811 if ((long)next - (long)val < 0) {
812 switch (target) { 812 switch (target) {
813 case MEM_CGROUP_TARGET_THRESH: 813 case MEM_CGROUP_TARGET_THRESH:
814 next = val + THRESHOLDS_EVENTS_TARGET; 814 next = val + THRESHOLDS_EVENTS_TARGET;
815 break; 815 break;
816 case MEM_CGROUP_TARGET_SOFTLIMIT: 816 case MEM_CGROUP_TARGET_SOFTLIMIT:
817 next = val + SOFTLIMIT_EVENTS_TARGET; 817 next = val + SOFTLIMIT_EVENTS_TARGET;
818 break; 818 break;
819 case MEM_CGROUP_TARGET_NUMAINFO: 819 case MEM_CGROUP_TARGET_NUMAINFO:
820 next = val + NUMAINFO_EVENTS_TARGET; 820 next = val + NUMAINFO_EVENTS_TARGET;
821 break; 821 break;
822 default: 822 default:
823 break; 823 break;
824 } 824 }
825 __this_cpu_write(memcg->stat->targets[target], next); 825 __this_cpu_write(memcg->stat->targets[target], next);
826 return true; 826 return true;
827 } 827 }
828 return false; 828 return false;
829 } 829 }
830 830
831 /* 831 /*
832 * Check events in order. 832 * Check events in order.
833 * 833 *
834 */ 834 */
835 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 835 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
836 { 836 {
837 preempt_disable(); 837 preempt_disable();
838 /* threshold event is triggered in finer grain than soft limit */ 838 /* threshold event is triggered in finer grain than soft limit */
839 if (unlikely(mem_cgroup_event_ratelimit(memcg, 839 if (unlikely(mem_cgroup_event_ratelimit(memcg,
840 MEM_CGROUP_TARGET_THRESH))) { 840 MEM_CGROUP_TARGET_THRESH))) {
841 bool do_softlimit; 841 bool do_softlimit;
842 bool do_numainfo __maybe_unused; 842 bool do_numainfo __maybe_unused;
843 843
844 do_softlimit = mem_cgroup_event_ratelimit(memcg, 844 do_softlimit = mem_cgroup_event_ratelimit(memcg,
845 MEM_CGROUP_TARGET_SOFTLIMIT); 845 MEM_CGROUP_TARGET_SOFTLIMIT);
846 #if MAX_NUMNODES > 1 846 #if MAX_NUMNODES > 1
847 do_numainfo = mem_cgroup_event_ratelimit(memcg, 847 do_numainfo = mem_cgroup_event_ratelimit(memcg,
848 MEM_CGROUP_TARGET_NUMAINFO); 848 MEM_CGROUP_TARGET_NUMAINFO);
849 #endif 849 #endif
850 preempt_enable(); 850 preempt_enable();
851 851
852 mem_cgroup_threshold(memcg); 852 mem_cgroup_threshold(memcg);
853 if (unlikely(do_softlimit)) 853 if (unlikely(do_softlimit))
854 mem_cgroup_update_tree(memcg, page); 854 mem_cgroup_update_tree(memcg, page);
855 #if MAX_NUMNODES > 1 855 #if MAX_NUMNODES > 1
856 if (unlikely(do_numainfo)) 856 if (unlikely(do_numainfo))
857 atomic_inc(&memcg->numainfo_events); 857 atomic_inc(&memcg->numainfo_events);
858 #endif 858 #endif
859 } else 859 } else
860 preempt_enable(); 860 preempt_enable();
861 } 861 }
862 862
863 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont) 863 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
864 { 864 {
865 return container_of(cgroup_subsys_state(cont, 865 return container_of(cgroup_subsys_state(cont,
866 mem_cgroup_subsys_id), struct mem_cgroup, 866 mem_cgroup_subsys_id), struct mem_cgroup,
867 css); 867 css);
868 } 868 }
869 869
870 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 870 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
871 { 871 {
872 /* 872 /*
873 * mm_update_next_owner() may clear mm->owner to NULL 873 * mm_update_next_owner() may clear mm->owner to NULL
874 * if it races with swapoff, page migration, etc. 874 * if it races with swapoff, page migration, etc.
875 * So this can be called with p == NULL. 875 * So this can be called with p == NULL.
876 */ 876 */
877 if (unlikely(!p)) 877 if (unlikely(!p))
878 return NULL; 878 return NULL;
879 879
880 return container_of(task_subsys_state(p, mem_cgroup_subsys_id), 880 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
881 struct mem_cgroup, css); 881 struct mem_cgroup, css);
882 } 882 }
883 883
884 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) 884 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
885 { 885 {
886 struct mem_cgroup *memcg = NULL; 886 struct mem_cgroup *memcg = NULL;
887 887
888 if (!mm) 888 if (!mm)
889 return NULL; 889 return NULL;
890 /* 890 /*
891 * Because we have no locks, mm->owner's may be being moved to other 891 * Because we have no locks, mm->owner's may be being moved to other
892 * cgroup. We use css_tryget() here even if this looks 892 * cgroup. We use css_tryget() here even if this looks
893 * pessimistic (rather than adding locks here). 893 * pessimistic (rather than adding locks here).
894 */ 894 */
895 rcu_read_lock(); 895 rcu_read_lock();
896 do { 896 do {
897 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 897 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
898 if (unlikely(!memcg)) 898 if (unlikely(!memcg))
899 break; 899 break;
900 } while (!css_tryget(&memcg->css)); 900 } while (!css_tryget(&memcg->css));
901 rcu_read_unlock(); 901 rcu_read_unlock();
902 return memcg; 902 return memcg;
903 } 903 }
904 904
905 /** 905 /**
906 * mem_cgroup_iter - iterate over memory cgroup hierarchy 906 * mem_cgroup_iter - iterate over memory cgroup hierarchy
907 * @root: hierarchy root 907 * @root: hierarchy root
908 * @prev: previously returned memcg, NULL on first invocation 908 * @prev: previously returned memcg, NULL on first invocation
909 * @reclaim: cookie for shared reclaim walks, NULL for full walks 909 * @reclaim: cookie for shared reclaim walks, NULL for full walks
910 * 910 *
911 * Returns references to children of the hierarchy below @root, or 911 * Returns references to children of the hierarchy below @root, or
912 * @root itself, or %NULL after a full round-trip. 912 * @root itself, or %NULL after a full round-trip.
913 * 913 *
914 * Caller must pass the return value in @prev on subsequent 914 * Caller must pass the return value in @prev on subsequent
915 * invocations for reference counting, or use mem_cgroup_iter_break() 915 * invocations for reference counting, or use mem_cgroup_iter_break()
916 * to cancel a hierarchy walk before the round-trip is complete. 916 * to cancel a hierarchy walk before the round-trip is complete.
917 * 917 *
918 * Reclaimers can specify a zone and a priority level in @reclaim to 918 * Reclaimers can specify a zone and a priority level in @reclaim to
919 * divide up the memcgs in the hierarchy among all concurrent 919 * divide up the memcgs in the hierarchy among all concurrent
920 * reclaimers operating on the same zone and priority. 920 * reclaimers operating on the same zone and priority.
921 */ 921 */
922 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 922 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
923 struct mem_cgroup *prev, 923 struct mem_cgroup *prev,
924 struct mem_cgroup_reclaim_cookie *reclaim) 924 struct mem_cgroup_reclaim_cookie *reclaim)
925 { 925 {
926 struct mem_cgroup *memcg = NULL; 926 struct mem_cgroup *memcg = NULL;
927 int id = 0; 927 int id = 0;
928 928
929 if (mem_cgroup_disabled()) 929 if (mem_cgroup_disabled())
930 return NULL; 930 return NULL;
931 931
932 if (!root) 932 if (!root)
933 root = root_mem_cgroup; 933 root = root_mem_cgroup;
934 934
935 if (prev && !reclaim) 935 if (prev && !reclaim)
936 id = css_id(&prev->css); 936 id = css_id(&prev->css);
937 937
938 if (prev && prev != root) 938 if (prev && prev != root)
939 css_put(&prev->css); 939 css_put(&prev->css);
940 940
941 if (!root->use_hierarchy && root != root_mem_cgroup) { 941 if (!root->use_hierarchy && root != root_mem_cgroup) {
942 if (prev) 942 if (prev)
943 return NULL; 943 return NULL;
944 return root; 944 return root;
945 } 945 }
946 946
947 while (!memcg) { 947 while (!memcg) {
948 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 948 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
949 struct cgroup_subsys_state *css; 949 struct cgroup_subsys_state *css;
950 950
951 if (reclaim) { 951 if (reclaim) {
952 int nid = zone_to_nid(reclaim->zone); 952 int nid = zone_to_nid(reclaim->zone);
953 int zid = zone_idx(reclaim->zone); 953 int zid = zone_idx(reclaim->zone);
954 struct mem_cgroup_per_zone *mz; 954 struct mem_cgroup_per_zone *mz;
955 955
956 mz = mem_cgroup_zoneinfo(root, nid, zid); 956 mz = mem_cgroup_zoneinfo(root, nid, zid);
957 iter = &mz->reclaim_iter[reclaim->priority]; 957 iter = &mz->reclaim_iter[reclaim->priority];
958 if (prev && reclaim->generation != iter->generation) 958 if (prev && reclaim->generation != iter->generation)
959 return NULL; 959 return NULL;
960 id = iter->position; 960 id = iter->position;
961 } 961 }
962 962
963 rcu_read_lock(); 963 rcu_read_lock();
964 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id); 964 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
965 if (css) { 965 if (css) {
966 if (css == &root->css || css_tryget(css)) 966 if (css == &root->css || css_tryget(css))
967 memcg = container_of(css, 967 memcg = container_of(css,
968 struct mem_cgroup, css); 968 struct mem_cgroup, css);
969 } else 969 } else
970 id = 0; 970 id = 0;
971 rcu_read_unlock(); 971 rcu_read_unlock();
972 972
973 if (reclaim) { 973 if (reclaim) {
974 iter->position = id; 974 iter->position = id;
975 if (!css) 975 if (!css)
976 iter->generation++; 976 iter->generation++;
977 else if (!prev && memcg) 977 else if (!prev && memcg)
978 reclaim->generation = iter->generation; 978 reclaim->generation = iter->generation;
979 } 979 }
980 980
981 if (prev && !css) 981 if (prev && !css)
982 return NULL; 982 return NULL;
983 } 983 }
984 return memcg; 984 return memcg;
985 } 985 }
986 986
987 /** 987 /**
988 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 988 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
989 * @root: hierarchy root 989 * @root: hierarchy root
990 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 990 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
991 */ 991 */
992 void mem_cgroup_iter_break(struct mem_cgroup *root, 992 void mem_cgroup_iter_break(struct mem_cgroup *root,
993 struct mem_cgroup *prev) 993 struct mem_cgroup *prev)
994 { 994 {
995 if (!root) 995 if (!root)
996 root = root_mem_cgroup; 996 root = root_mem_cgroup;
997 if (prev && prev != root) 997 if (prev && prev != root)
998 css_put(&prev->css); 998 css_put(&prev->css);
999 } 999 }
1000 1000
1001 /* 1001 /*
1002 * Iteration constructs for visiting all cgroups (under a tree). If 1002 * Iteration constructs for visiting all cgroups (under a tree). If
1003 * loops are exited prematurely (break), mem_cgroup_iter_break() must 1003 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1004 * be used for reference counting. 1004 * be used for reference counting.
1005 */ 1005 */
1006 #define for_each_mem_cgroup_tree(iter, root) \ 1006 #define for_each_mem_cgroup_tree(iter, root) \
1007 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 1007 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1008 iter != NULL; \ 1008 iter != NULL; \
1009 iter = mem_cgroup_iter(root, iter, NULL)) 1009 iter = mem_cgroup_iter(root, iter, NULL))
1010 1010
1011 #define for_each_mem_cgroup(iter) \ 1011 #define for_each_mem_cgroup(iter) \
1012 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 1012 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1013 iter != NULL; \ 1013 iter != NULL; \
1014 iter = mem_cgroup_iter(NULL, iter, NULL)) 1014 iter = mem_cgroup_iter(NULL, iter, NULL))
1015 1015
1016 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 1016 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1017 { 1017 {
1018 return (memcg == root_mem_cgroup); 1018 return (memcg == root_mem_cgroup);
1019 } 1019 }
1020 1020
1021 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) 1021 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1022 { 1022 {
1023 struct mem_cgroup *memcg; 1023 struct mem_cgroup *memcg;
1024 1024
1025 if (!mm) 1025 if (!mm)
1026 return; 1026 return;
1027 1027
1028 rcu_read_lock(); 1028 rcu_read_lock();
1029 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1029 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1030 if (unlikely(!memcg)) 1030 if (unlikely(!memcg))
1031 goto out; 1031 goto out;
1032 1032
1033 switch (idx) { 1033 switch (idx) {
1034 case PGFAULT: 1034 case PGFAULT:
1035 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]); 1035 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1036 break; 1036 break;
1037 case PGMAJFAULT: 1037 case PGMAJFAULT:
1038 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]); 1038 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1039 break; 1039 break;
1040 default: 1040 default:
1041 BUG(); 1041 BUG();
1042 } 1042 }
1043 out: 1043 out:
1044 rcu_read_unlock(); 1044 rcu_read_unlock();
1045 } 1045 }
1046 EXPORT_SYMBOL(mem_cgroup_count_vm_event); 1046 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1047 1047
1048 /** 1048 /**
1049 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg 1049 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1050 * @zone: zone of the wanted lruvec 1050 * @zone: zone of the wanted lruvec
1051 * @memcg: memcg of the wanted lruvec 1051 * @memcg: memcg of the wanted lruvec
1052 * 1052 *
1053 * Returns the lru list vector holding pages for the given @zone and 1053 * Returns the lru list vector holding pages for the given @zone and
1054 * @mem. This can be the global zone lruvec, if the memory controller 1054 * @mem. This can be the global zone lruvec, if the memory controller
1055 * is disabled. 1055 * is disabled.
1056 */ 1056 */
1057 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 1057 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1058 struct mem_cgroup *memcg) 1058 struct mem_cgroup *memcg)
1059 { 1059 {
1060 struct mem_cgroup_per_zone *mz; 1060 struct mem_cgroup_per_zone *mz;
1061 1061
1062 if (mem_cgroup_disabled()) 1062 if (mem_cgroup_disabled())
1063 return &zone->lruvec; 1063 return &zone->lruvec;
1064 1064
1065 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone)); 1065 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1066 return &mz->lruvec; 1066 return &mz->lruvec;
1067 } 1067 }
1068 1068
1069 /* 1069 /*
1070 * Following LRU functions are allowed to be used without PCG_LOCK. 1070 * Following LRU functions are allowed to be used without PCG_LOCK.
1071 * Operations are called by routine of global LRU independently from memcg. 1071 * Operations are called by routine of global LRU independently from memcg.
1072 * What we have to take care of here is validness of pc->mem_cgroup. 1072 * What we have to take care of here is validness of pc->mem_cgroup.
1073 * 1073 *
1074 * Changes to pc->mem_cgroup happens when 1074 * Changes to pc->mem_cgroup happens when
1075 * 1. charge 1075 * 1. charge
1076 * 2. moving account 1076 * 2. moving account
1077 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. 1077 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1078 * It is added to LRU before charge. 1078 * It is added to LRU before charge.
1079 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. 1079 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1080 * When moving account, the page is not on LRU. It's isolated. 1080 * When moving account, the page is not on LRU. It's isolated.
1081 */ 1081 */
1082 1082
1083 /** 1083 /**
1084 * mem_cgroup_page_lruvec - return lruvec for adding an lru page 1084 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1085 * @page: the page 1085 * @page: the page
1086 * @zone: zone of the page 1086 * @zone: zone of the page
1087 */ 1087 */
1088 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone) 1088 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1089 { 1089 {
1090 struct mem_cgroup_per_zone *mz; 1090 struct mem_cgroup_per_zone *mz;
1091 struct mem_cgroup *memcg; 1091 struct mem_cgroup *memcg;
1092 struct page_cgroup *pc; 1092 struct page_cgroup *pc;
1093 1093
1094 if (mem_cgroup_disabled()) 1094 if (mem_cgroup_disabled())
1095 return &zone->lruvec; 1095 return &zone->lruvec;
1096 1096
1097 pc = lookup_page_cgroup(page); 1097 pc = lookup_page_cgroup(page);
1098 memcg = pc->mem_cgroup; 1098 memcg = pc->mem_cgroup;
1099 1099
1100 /* 1100 /*
1101 * Surreptitiously switch any uncharged offlist page to root: 1101 * Surreptitiously switch any uncharged offlist page to root:
1102 * an uncharged page off lru does nothing to secure 1102 * an uncharged page off lru does nothing to secure
1103 * its former mem_cgroup from sudden removal. 1103 * its former mem_cgroup from sudden removal.
1104 * 1104 *
1105 * Our caller holds lru_lock, and PageCgroupUsed is updated 1105 * Our caller holds lru_lock, and PageCgroupUsed is updated
1106 * under page_cgroup lock: between them, they make all uses 1106 * under page_cgroup lock: between them, they make all uses
1107 * of pc->mem_cgroup safe. 1107 * of pc->mem_cgroup safe.
1108 */ 1108 */
1109 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup) 1109 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1110 pc->mem_cgroup = memcg = root_mem_cgroup; 1110 pc->mem_cgroup = memcg = root_mem_cgroup;
1111 1111
1112 mz = page_cgroup_zoneinfo(memcg, page); 1112 mz = page_cgroup_zoneinfo(memcg, page);
1113 return &mz->lruvec; 1113 return &mz->lruvec;
1114 } 1114 }
1115 1115
1116 /** 1116 /**
1117 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1117 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1118 * @lruvec: mem_cgroup per zone lru vector 1118 * @lruvec: mem_cgroup per zone lru vector
1119 * @lru: index of lru list the page is sitting on 1119 * @lru: index of lru list the page is sitting on
1120 * @nr_pages: positive when adding or negative when removing 1120 * @nr_pages: positive when adding or negative when removing
1121 * 1121 *
1122 * This function must be called when a page is added to or removed from an 1122 * This function must be called when a page is added to or removed from an
1123 * lru list. 1123 * lru list.
1124 */ 1124 */
1125 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1125 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1126 int nr_pages) 1126 int nr_pages)
1127 { 1127 {
1128 struct mem_cgroup_per_zone *mz; 1128 struct mem_cgroup_per_zone *mz;
1129 unsigned long *lru_size; 1129 unsigned long *lru_size;
1130 1130
1131 if (mem_cgroup_disabled()) 1131 if (mem_cgroup_disabled())
1132 return; 1132 return;
1133 1133
1134 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 1134 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1135 lru_size = mz->lru_size + lru; 1135 lru_size = mz->lru_size + lru;
1136 *lru_size += nr_pages; 1136 *lru_size += nr_pages;
1137 VM_BUG_ON((long)(*lru_size) < 0); 1137 VM_BUG_ON((long)(*lru_size) < 0);
1138 } 1138 }
1139 1139
1140 /* 1140 /*
1141 * Checks whether given mem is same or in the root_mem_cgroup's 1141 * Checks whether given mem is same or in the root_mem_cgroup's
1142 * hierarchy subtree 1142 * hierarchy subtree
1143 */ 1143 */
1144 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1144 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1145 struct mem_cgroup *memcg) 1145 struct mem_cgroup *memcg)
1146 { 1146 {
1147 if (root_memcg == memcg) 1147 if (root_memcg == memcg)
1148 return true; 1148 return true;
1149 if (!root_memcg->use_hierarchy || !memcg) 1149 if (!root_memcg->use_hierarchy || !memcg)
1150 return false; 1150 return false;
1151 return css_is_ancestor(&memcg->css, &root_memcg->css); 1151 return css_is_ancestor(&memcg->css, &root_memcg->css);
1152 } 1152 }
1153 1153
1154 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1154 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1155 struct mem_cgroup *memcg) 1155 struct mem_cgroup *memcg)
1156 { 1156 {
1157 bool ret; 1157 bool ret;
1158 1158
1159 rcu_read_lock(); 1159 rcu_read_lock();
1160 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg); 1160 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1161 rcu_read_unlock(); 1161 rcu_read_unlock();
1162 return ret; 1162 return ret;
1163 } 1163 }
1164 1164
1165 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg) 1165 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1166 { 1166 {
1167 int ret; 1167 int ret;
1168 struct mem_cgroup *curr = NULL; 1168 struct mem_cgroup *curr = NULL;
1169 struct task_struct *p; 1169 struct task_struct *p;
1170 1170
1171 p = find_lock_task_mm(task); 1171 p = find_lock_task_mm(task);
1172 if (p) { 1172 if (p) {
1173 curr = try_get_mem_cgroup_from_mm(p->mm); 1173 curr = try_get_mem_cgroup_from_mm(p->mm);
1174 task_unlock(p); 1174 task_unlock(p);
1175 } else { 1175 } else {
1176 /* 1176 /*
1177 * All threads may have already detached their mm's, but the oom 1177 * All threads may have already detached their mm's, but the oom
1178 * killer still needs to detect if they have already been oom 1178 * killer still needs to detect if they have already been oom
1179 * killed to prevent needlessly killing additional tasks. 1179 * killed to prevent needlessly killing additional tasks.
1180 */ 1180 */
1181 task_lock(task); 1181 task_lock(task);
1182 curr = mem_cgroup_from_task(task); 1182 curr = mem_cgroup_from_task(task);
1183 if (curr) 1183 if (curr)
1184 css_get(&curr->css); 1184 css_get(&curr->css);
1185 task_unlock(task); 1185 task_unlock(task);
1186 } 1186 }
1187 if (!curr) 1187 if (!curr)
1188 return 0; 1188 return 0;
1189 /* 1189 /*
1190 * We should check use_hierarchy of "memcg" not "curr". Because checking 1190 * We should check use_hierarchy of "memcg" not "curr". Because checking
1191 * use_hierarchy of "curr" here make this function true if hierarchy is 1191 * use_hierarchy of "curr" here make this function true if hierarchy is
1192 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup* 1192 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1193 * hierarchy(even if use_hierarchy is disabled in "memcg"). 1193 * hierarchy(even if use_hierarchy is disabled in "memcg").
1194 */ 1194 */
1195 ret = mem_cgroup_same_or_subtree(memcg, curr); 1195 ret = mem_cgroup_same_or_subtree(memcg, curr);
1196 css_put(&curr->css); 1196 css_put(&curr->css);
1197 return ret; 1197 return ret;
1198 } 1198 }
1199 1199
1200 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) 1200 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1201 { 1201 {
1202 unsigned long inactive_ratio; 1202 unsigned long inactive_ratio;
1203 unsigned long inactive; 1203 unsigned long inactive;
1204 unsigned long active; 1204 unsigned long active;
1205 unsigned long gb; 1205 unsigned long gb;
1206 1206
1207 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON); 1207 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1208 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON); 1208 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1209 1209
1210 gb = (inactive + active) >> (30 - PAGE_SHIFT); 1210 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1211 if (gb) 1211 if (gb)
1212 inactive_ratio = int_sqrt(10 * gb); 1212 inactive_ratio = int_sqrt(10 * gb);
1213 else 1213 else
1214 inactive_ratio = 1; 1214 inactive_ratio = 1;
1215 1215
1216 return inactive * inactive_ratio < active; 1216 return inactive * inactive_ratio < active;
1217 } 1217 }
1218 1218
1219 int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec) 1219 int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1220 { 1220 {
1221 unsigned long active; 1221 unsigned long active;
1222 unsigned long inactive; 1222 unsigned long inactive;
1223 1223
1224 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE); 1224 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1225 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE); 1225 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1226 1226
1227 return (active > inactive); 1227 return (active > inactive);
1228 } 1228 }
1229 1229
1230 #define mem_cgroup_from_res_counter(counter, member) \ 1230 #define mem_cgroup_from_res_counter(counter, member) \
1231 container_of(counter, struct mem_cgroup, member) 1231 container_of(counter, struct mem_cgroup, member)
1232 1232
1233 /** 1233 /**
1234 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1234 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1235 * @memcg: the memory cgroup 1235 * @memcg: the memory cgroup
1236 * 1236 *
1237 * Returns the maximum amount of memory @mem can be charged with, in 1237 * Returns the maximum amount of memory @mem can be charged with, in
1238 * pages. 1238 * pages.
1239 */ 1239 */
1240 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1240 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1241 { 1241 {
1242 unsigned long long margin; 1242 unsigned long long margin;
1243 1243
1244 margin = res_counter_margin(&memcg->res); 1244 margin = res_counter_margin(&memcg->res);
1245 if (do_swap_account) 1245 if (do_swap_account)
1246 margin = min(margin, res_counter_margin(&memcg->memsw)); 1246 margin = min(margin, res_counter_margin(&memcg->memsw));
1247 return margin >> PAGE_SHIFT; 1247 return margin >> PAGE_SHIFT;
1248 } 1248 }
1249 1249
1250 int mem_cgroup_swappiness(struct mem_cgroup *memcg) 1250 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1251 { 1251 {
1252 struct cgroup *cgrp = memcg->css.cgroup; 1252 struct cgroup *cgrp = memcg->css.cgroup;
1253 1253
1254 /* root ? */ 1254 /* root ? */
1255 if (cgrp->parent == NULL) 1255 if (cgrp->parent == NULL)
1256 return vm_swappiness; 1256 return vm_swappiness;
1257 1257
1258 return memcg->swappiness; 1258 return memcg->swappiness;
1259 } 1259 }
1260 1260
1261 /* 1261 /*
1262 * memcg->moving_account is used for checking possibility that some thread is 1262 * memcg->moving_account is used for checking possibility that some thread is
1263 * calling move_account(). When a thread on CPU-A starts moving pages under 1263 * calling move_account(). When a thread on CPU-A starts moving pages under
1264 * a memcg, other threads should check memcg->moving_account under 1264 * a memcg, other threads should check memcg->moving_account under
1265 * rcu_read_lock(), like this: 1265 * rcu_read_lock(), like this:
1266 * 1266 *
1267 * CPU-A CPU-B 1267 * CPU-A CPU-B
1268 * rcu_read_lock() 1268 * rcu_read_lock()
1269 * memcg->moving_account+1 if (memcg->mocing_account) 1269 * memcg->moving_account+1 if (memcg->mocing_account)
1270 * take heavy locks. 1270 * take heavy locks.
1271 * synchronize_rcu() update something. 1271 * synchronize_rcu() update something.
1272 * rcu_read_unlock() 1272 * rcu_read_unlock()
1273 * start move here. 1273 * start move here.
1274 */ 1274 */
1275 1275
1276 /* for quick checking without looking up memcg */ 1276 /* for quick checking without looking up memcg */
1277 atomic_t memcg_moving __read_mostly; 1277 atomic_t memcg_moving __read_mostly;
1278 1278
1279 static void mem_cgroup_start_move(struct mem_cgroup *memcg) 1279 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1280 { 1280 {
1281 atomic_inc(&memcg_moving); 1281 atomic_inc(&memcg_moving);
1282 atomic_inc(&memcg->moving_account); 1282 atomic_inc(&memcg->moving_account);
1283 synchronize_rcu(); 1283 synchronize_rcu();
1284 } 1284 }
1285 1285
1286 static void mem_cgroup_end_move(struct mem_cgroup *memcg) 1286 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1287 { 1287 {
1288 /* 1288 /*
1289 * Now, mem_cgroup_clear_mc() may call this function with NULL. 1289 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1290 * We check NULL in callee rather than caller. 1290 * We check NULL in callee rather than caller.
1291 */ 1291 */
1292 if (memcg) { 1292 if (memcg) {
1293 atomic_dec(&memcg_moving); 1293 atomic_dec(&memcg_moving);
1294 atomic_dec(&memcg->moving_account); 1294 atomic_dec(&memcg->moving_account);
1295 } 1295 }
1296 } 1296 }
1297 1297
1298 /* 1298 /*
1299 * 2 routines for checking "mem" is under move_account() or not. 1299 * 2 routines for checking "mem" is under move_account() or not.
1300 * 1300 *
1301 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This 1301 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1302 * is used for avoiding races in accounting. If true, 1302 * is used for avoiding races in accounting. If true,
1303 * pc->mem_cgroup may be overwritten. 1303 * pc->mem_cgroup may be overwritten.
1304 * 1304 *
1305 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or 1305 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1306 * under hierarchy of moving cgroups. This is for 1306 * under hierarchy of moving cgroups. This is for
1307 * waiting at hith-memory prressure caused by "move". 1307 * waiting at hith-memory prressure caused by "move".
1308 */ 1308 */
1309 1309
1310 static bool mem_cgroup_stolen(struct mem_cgroup *memcg) 1310 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1311 { 1311 {
1312 VM_BUG_ON(!rcu_read_lock_held()); 1312 VM_BUG_ON(!rcu_read_lock_held());
1313 return atomic_read(&memcg->moving_account) > 0; 1313 return atomic_read(&memcg->moving_account) > 0;
1314 } 1314 }
1315 1315
1316 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1316 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1317 { 1317 {
1318 struct mem_cgroup *from; 1318 struct mem_cgroup *from;
1319 struct mem_cgroup *to; 1319 struct mem_cgroup *to;
1320 bool ret = false; 1320 bool ret = false;
1321 /* 1321 /*
1322 * Unlike task_move routines, we access mc.to, mc.from not under 1322 * Unlike task_move routines, we access mc.to, mc.from not under
1323 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1323 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1324 */ 1324 */
1325 spin_lock(&mc.lock); 1325 spin_lock(&mc.lock);
1326 from = mc.from; 1326 from = mc.from;
1327 to = mc.to; 1327 to = mc.to;
1328 if (!from) 1328 if (!from)
1329 goto unlock; 1329 goto unlock;
1330 1330
1331 ret = mem_cgroup_same_or_subtree(memcg, from) 1331 ret = mem_cgroup_same_or_subtree(memcg, from)
1332 || mem_cgroup_same_or_subtree(memcg, to); 1332 || mem_cgroup_same_or_subtree(memcg, to);
1333 unlock: 1333 unlock:
1334 spin_unlock(&mc.lock); 1334 spin_unlock(&mc.lock);
1335 return ret; 1335 return ret;
1336 } 1336 }
1337 1337
1338 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1338 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1339 { 1339 {
1340 if (mc.moving_task && current != mc.moving_task) { 1340 if (mc.moving_task && current != mc.moving_task) {
1341 if (mem_cgroup_under_move(memcg)) { 1341 if (mem_cgroup_under_move(memcg)) {
1342 DEFINE_WAIT(wait); 1342 DEFINE_WAIT(wait);
1343 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1343 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1344 /* moving charge context might have finished. */ 1344 /* moving charge context might have finished. */
1345 if (mc.moving_task) 1345 if (mc.moving_task)
1346 schedule(); 1346 schedule();
1347 finish_wait(&mc.waitq, &wait); 1347 finish_wait(&mc.waitq, &wait);
1348 return true; 1348 return true;
1349 } 1349 }
1350 } 1350 }
1351 return false; 1351 return false;
1352 } 1352 }
1353 1353
1354 /* 1354 /*
1355 * Take this lock when 1355 * Take this lock when
1356 * - a code tries to modify page's memcg while it's USED. 1356 * - a code tries to modify page's memcg while it's USED.
1357 * - a code tries to modify page state accounting in a memcg. 1357 * - a code tries to modify page state accounting in a memcg.
1358 * see mem_cgroup_stolen(), too. 1358 * see mem_cgroup_stolen(), too.
1359 */ 1359 */
1360 static void move_lock_mem_cgroup(struct mem_cgroup *memcg, 1360 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1361 unsigned long *flags) 1361 unsigned long *flags)
1362 { 1362 {
1363 spin_lock_irqsave(&memcg->move_lock, *flags); 1363 spin_lock_irqsave(&memcg->move_lock, *flags);
1364 } 1364 }
1365 1365
1366 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg, 1366 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1367 unsigned long *flags) 1367 unsigned long *flags)
1368 { 1368 {
1369 spin_unlock_irqrestore(&memcg->move_lock, *flags); 1369 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1370 } 1370 }
1371 1371
1372 /** 1372 /**
1373 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode. 1373 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1374 * @memcg: The memory cgroup that went over limit 1374 * @memcg: The memory cgroup that went over limit
1375 * @p: Task that is going to be killed 1375 * @p: Task that is going to be killed
1376 * 1376 *
1377 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1377 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1378 * enabled 1378 * enabled
1379 */ 1379 */
1380 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1380 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1381 { 1381 {
1382 struct cgroup *task_cgrp; 1382 struct cgroup *task_cgrp;
1383 struct cgroup *mem_cgrp; 1383 struct cgroup *mem_cgrp;
1384 /* 1384 /*
1385 * Need a buffer in BSS, can't rely on allocations. The code relies 1385 * Need a buffer in BSS, can't rely on allocations. The code relies
1386 * on the assumption that OOM is serialized for memory controller. 1386 * on the assumption that OOM is serialized for memory controller.
1387 * If this assumption is broken, revisit this code. 1387 * If this assumption is broken, revisit this code.
1388 */ 1388 */
1389 static char memcg_name[PATH_MAX]; 1389 static char memcg_name[PATH_MAX];
1390 int ret; 1390 int ret;
1391 1391
1392 if (!memcg || !p) 1392 if (!memcg || !p)
1393 return; 1393 return;
1394 1394
1395 rcu_read_lock(); 1395 rcu_read_lock();
1396 1396
1397 mem_cgrp = memcg->css.cgroup; 1397 mem_cgrp = memcg->css.cgroup;
1398 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id); 1398 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1399 1399
1400 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX); 1400 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1401 if (ret < 0) { 1401 if (ret < 0) {
1402 /* 1402 /*
1403 * Unfortunately, we are unable to convert to a useful name 1403 * Unfortunately, we are unable to convert to a useful name
1404 * But we'll still print out the usage information 1404 * But we'll still print out the usage information
1405 */ 1405 */
1406 rcu_read_unlock(); 1406 rcu_read_unlock();
1407 goto done; 1407 goto done;
1408 } 1408 }
1409 rcu_read_unlock(); 1409 rcu_read_unlock();
1410 1410
1411 printk(KERN_INFO "Task in %s killed", memcg_name); 1411 printk(KERN_INFO "Task in %s killed", memcg_name);
1412 1412
1413 rcu_read_lock(); 1413 rcu_read_lock();
1414 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX); 1414 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1415 if (ret < 0) { 1415 if (ret < 0) {
1416 rcu_read_unlock(); 1416 rcu_read_unlock();
1417 goto done; 1417 goto done;
1418 } 1418 }
1419 rcu_read_unlock(); 1419 rcu_read_unlock();
1420 1420
1421 /* 1421 /*
1422 * Continues from above, so we don't need an KERN_ level 1422 * Continues from above, so we don't need an KERN_ level
1423 */ 1423 */
1424 printk(KERN_CONT " as a result of limit of %s\n", memcg_name); 1424 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1425 done: 1425 done:
1426 1426
1427 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n", 1427 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1428 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, 1428 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1429 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, 1429 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1430 res_counter_read_u64(&memcg->res, RES_FAILCNT)); 1430 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1431 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, " 1431 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1432 "failcnt %llu\n", 1432 "failcnt %llu\n",
1433 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, 1433 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1434 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, 1434 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1435 res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); 1435 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1436 } 1436 }
1437 1437
1438 /* 1438 /*
1439 * This function returns the number of memcg under hierarchy tree. Returns 1439 * This function returns the number of memcg under hierarchy tree. Returns
1440 * 1(self count) if no children. 1440 * 1(self count) if no children.
1441 */ 1441 */
1442 static int mem_cgroup_count_children(struct mem_cgroup *memcg) 1442 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1443 { 1443 {
1444 int num = 0; 1444 int num = 0;
1445 struct mem_cgroup *iter; 1445 struct mem_cgroup *iter;
1446 1446
1447 for_each_mem_cgroup_tree(iter, memcg) 1447 for_each_mem_cgroup_tree(iter, memcg)
1448 num++; 1448 num++;
1449 return num; 1449 return num;
1450 } 1450 }
1451 1451
1452 /* 1452 /*
1453 * Return the memory (and swap, if configured) limit for a memcg. 1453 * Return the memory (and swap, if configured) limit for a memcg.
1454 */ 1454 */
1455 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg) 1455 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1456 { 1456 {
1457 u64 limit; 1457 u64 limit;
1458 u64 memsw; 1458 u64 memsw;
1459 1459
1460 limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 1460 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1461 limit += total_swap_pages << PAGE_SHIFT; 1461 limit += total_swap_pages << PAGE_SHIFT;
1462 1462
1463 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 1463 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1464 /* 1464 /*
1465 * If memsw is finite and limits the amount of swap space available 1465 * If memsw is finite and limits the amount of swap space available
1466 * to this memcg, return that limit. 1466 * to this memcg, return that limit.
1467 */ 1467 */
1468 return min(limit, memsw); 1468 return min(limit, memsw);
1469 } 1469 }
1470 1470
1471 void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1471 void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1472 int order) 1472 int order)
1473 { 1473 {
1474 struct mem_cgroup *iter; 1474 struct mem_cgroup *iter;
1475 unsigned long chosen_points = 0; 1475 unsigned long chosen_points = 0;
1476 unsigned long totalpages; 1476 unsigned long totalpages;
1477 unsigned int points = 0; 1477 unsigned int points = 0;
1478 struct task_struct *chosen = NULL; 1478 struct task_struct *chosen = NULL;
1479 1479
1480 /* 1480 /*
1481 * If current has a pending SIGKILL, then automatically select it. The 1481 * If current has a pending SIGKILL, then automatically select it. The
1482 * goal is to allow it to allocate so that it may quickly exit and free 1482 * goal is to allow it to allocate so that it may quickly exit and free
1483 * its memory. 1483 * its memory.
1484 */ 1484 */
1485 if (fatal_signal_pending(current)) { 1485 if (fatal_signal_pending(current)) {
1486 set_thread_flag(TIF_MEMDIE); 1486 set_thread_flag(TIF_MEMDIE);
1487 return; 1487 return;
1488 } 1488 }
1489 1489
1490 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL); 1490 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1491 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1; 1491 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1492 for_each_mem_cgroup_tree(iter, memcg) { 1492 for_each_mem_cgroup_tree(iter, memcg) {
1493 struct cgroup *cgroup = iter->css.cgroup; 1493 struct cgroup *cgroup = iter->css.cgroup;
1494 struct cgroup_iter it; 1494 struct cgroup_iter it;
1495 struct task_struct *task; 1495 struct task_struct *task;
1496 1496
1497 cgroup_iter_start(cgroup, &it); 1497 cgroup_iter_start(cgroup, &it);
1498 while ((task = cgroup_iter_next(cgroup, &it))) { 1498 while ((task = cgroup_iter_next(cgroup, &it))) {
1499 switch (oom_scan_process_thread(task, totalpages, NULL, 1499 switch (oom_scan_process_thread(task, totalpages, NULL,
1500 false)) { 1500 false)) {
1501 case OOM_SCAN_SELECT: 1501 case OOM_SCAN_SELECT:
1502 if (chosen) 1502 if (chosen)
1503 put_task_struct(chosen); 1503 put_task_struct(chosen);
1504 chosen = task; 1504 chosen = task;
1505 chosen_points = ULONG_MAX; 1505 chosen_points = ULONG_MAX;
1506 get_task_struct(chosen); 1506 get_task_struct(chosen);
1507 /* fall through */ 1507 /* fall through */
1508 case OOM_SCAN_CONTINUE: 1508 case OOM_SCAN_CONTINUE:
1509 continue; 1509 continue;
1510 case OOM_SCAN_ABORT: 1510 case OOM_SCAN_ABORT:
1511 cgroup_iter_end(cgroup, &it); 1511 cgroup_iter_end(cgroup, &it);
1512 mem_cgroup_iter_break(memcg, iter); 1512 mem_cgroup_iter_break(memcg, iter);
1513 if (chosen) 1513 if (chosen)
1514 put_task_struct(chosen); 1514 put_task_struct(chosen);
1515 return; 1515 return;
1516 case OOM_SCAN_OK: 1516 case OOM_SCAN_OK:
1517 break; 1517 break;
1518 }; 1518 };
1519 points = oom_badness(task, memcg, NULL, totalpages); 1519 points = oom_badness(task, memcg, NULL, totalpages);
1520 if (points > chosen_points) { 1520 if (points > chosen_points) {
1521 if (chosen) 1521 if (chosen)
1522 put_task_struct(chosen); 1522 put_task_struct(chosen);
1523 chosen = task; 1523 chosen = task;
1524 chosen_points = points; 1524 chosen_points = points;
1525 get_task_struct(chosen); 1525 get_task_struct(chosen);
1526 } 1526 }
1527 } 1527 }
1528 cgroup_iter_end(cgroup, &it); 1528 cgroup_iter_end(cgroup, &it);
1529 } 1529 }
1530 1530
1531 if (!chosen) 1531 if (!chosen)
1532 return; 1532 return;
1533 points = chosen_points * 1000 / totalpages; 1533 points = chosen_points * 1000 / totalpages;
1534 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg, 1534 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1535 NULL, "Memory cgroup out of memory"); 1535 NULL, "Memory cgroup out of memory");
1536 } 1536 }
1537 1537
1538 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg, 1538 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1539 gfp_t gfp_mask, 1539 gfp_t gfp_mask,
1540 unsigned long flags) 1540 unsigned long flags)
1541 { 1541 {
1542 unsigned long total = 0; 1542 unsigned long total = 0;
1543 bool noswap = false; 1543 bool noswap = false;
1544 int loop; 1544 int loop;
1545 1545
1546 if (flags & MEM_CGROUP_RECLAIM_NOSWAP) 1546 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1547 noswap = true; 1547 noswap = true;
1548 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum) 1548 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1549 noswap = true; 1549 noswap = true;
1550 1550
1551 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) { 1551 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1552 if (loop) 1552 if (loop)
1553 drain_all_stock_async(memcg); 1553 drain_all_stock_async(memcg);
1554 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap); 1554 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1555 /* 1555 /*
1556 * Allow limit shrinkers, which are triggered directly 1556 * Allow limit shrinkers, which are triggered directly
1557 * by userspace, to catch signals and stop reclaim 1557 * by userspace, to catch signals and stop reclaim
1558 * after minimal progress, regardless of the margin. 1558 * after minimal progress, regardless of the margin.
1559 */ 1559 */
1560 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK)) 1560 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1561 break; 1561 break;
1562 if (mem_cgroup_margin(memcg)) 1562 if (mem_cgroup_margin(memcg))
1563 break; 1563 break;
1564 /* 1564 /*
1565 * If nothing was reclaimed after two attempts, there 1565 * If nothing was reclaimed after two attempts, there
1566 * may be no reclaimable pages in this hierarchy. 1566 * may be no reclaimable pages in this hierarchy.
1567 */ 1567 */
1568 if (loop && !total) 1568 if (loop && !total)
1569 break; 1569 break;
1570 } 1570 }
1571 return total; 1571 return total;
1572 } 1572 }
1573 1573
1574 /** 1574 /**
1575 * test_mem_cgroup_node_reclaimable 1575 * test_mem_cgroup_node_reclaimable
1576 * @memcg: the target memcg 1576 * @memcg: the target memcg
1577 * @nid: the node ID to be checked. 1577 * @nid: the node ID to be checked.
1578 * @noswap : specify true here if the user wants flle only information. 1578 * @noswap : specify true here if the user wants flle only information.
1579 * 1579 *
1580 * This function returns whether the specified memcg contains any 1580 * This function returns whether the specified memcg contains any
1581 * reclaimable pages on a node. Returns true if there are any reclaimable 1581 * reclaimable pages on a node. Returns true if there are any reclaimable
1582 * pages in the node. 1582 * pages in the node.
1583 */ 1583 */
1584 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1584 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1585 int nid, bool noswap) 1585 int nid, bool noswap)
1586 { 1586 {
1587 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1587 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1588 return true; 1588 return true;
1589 if (noswap || !total_swap_pages) 1589 if (noswap || !total_swap_pages)
1590 return false; 1590 return false;
1591 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1591 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1592 return true; 1592 return true;
1593 return false; 1593 return false;
1594 1594
1595 } 1595 }
1596 #if MAX_NUMNODES > 1 1596 #if MAX_NUMNODES > 1
1597 1597
1598 /* 1598 /*
1599 * Always updating the nodemask is not very good - even if we have an empty 1599 * Always updating the nodemask is not very good - even if we have an empty
1600 * list or the wrong list here, we can start from some node and traverse all 1600 * list or the wrong list here, we can start from some node and traverse all
1601 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1601 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1602 * 1602 *
1603 */ 1603 */
1604 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1604 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1605 { 1605 {
1606 int nid; 1606 int nid;
1607 /* 1607 /*
1608 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1608 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1609 * pagein/pageout changes since the last update. 1609 * pagein/pageout changes since the last update.
1610 */ 1610 */
1611 if (!atomic_read(&memcg->numainfo_events)) 1611 if (!atomic_read(&memcg->numainfo_events))
1612 return; 1612 return;
1613 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1613 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1614 return; 1614 return;
1615 1615
1616 /* make a nodemask where this memcg uses memory from */ 1616 /* make a nodemask where this memcg uses memory from */
1617 memcg->scan_nodes = node_states[N_HIGH_MEMORY]; 1617 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1618 1618
1619 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) { 1619 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1620 1620
1621 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1621 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1622 node_clear(nid, memcg->scan_nodes); 1622 node_clear(nid, memcg->scan_nodes);
1623 } 1623 }
1624 1624
1625 atomic_set(&memcg->numainfo_events, 0); 1625 atomic_set(&memcg->numainfo_events, 0);
1626 atomic_set(&memcg->numainfo_updating, 0); 1626 atomic_set(&memcg->numainfo_updating, 0);
1627 } 1627 }
1628 1628
1629 /* 1629 /*
1630 * Selecting a node where we start reclaim from. Because what we need is just 1630 * Selecting a node where we start reclaim from. Because what we need is just
1631 * reducing usage counter, start from anywhere is O,K. Considering 1631 * reducing usage counter, start from anywhere is O,K. Considering
1632 * memory reclaim from current node, there are pros. and cons. 1632 * memory reclaim from current node, there are pros. and cons.
1633 * 1633 *
1634 * Freeing memory from current node means freeing memory from a node which 1634 * Freeing memory from current node means freeing memory from a node which
1635 * we'll use or we've used. So, it may make LRU bad. And if several threads 1635 * we'll use or we've used. So, it may make LRU bad. And if several threads
1636 * hit limits, it will see a contention on a node. But freeing from remote 1636 * hit limits, it will see a contention on a node. But freeing from remote
1637 * node means more costs for memory reclaim because of memory latency. 1637 * node means more costs for memory reclaim because of memory latency.
1638 * 1638 *
1639 * Now, we use round-robin. Better algorithm is welcomed. 1639 * Now, we use round-robin. Better algorithm is welcomed.
1640 */ 1640 */
1641 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1641 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1642 { 1642 {
1643 int node; 1643 int node;
1644 1644
1645 mem_cgroup_may_update_nodemask(memcg); 1645 mem_cgroup_may_update_nodemask(memcg);
1646 node = memcg->last_scanned_node; 1646 node = memcg->last_scanned_node;
1647 1647
1648 node = next_node(node, memcg->scan_nodes); 1648 node = next_node(node, memcg->scan_nodes);
1649 if (node == MAX_NUMNODES) 1649 if (node == MAX_NUMNODES)
1650 node = first_node(memcg->scan_nodes); 1650 node = first_node(memcg->scan_nodes);
1651 /* 1651 /*
1652 * We call this when we hit limit, not when pages are added to LRU. 1652 * We call this when we hit limit, not when pages are added to LRU.
1653 * No LRU may hold pages because all pages are UNEVICTABLE or 1653 * No LRU may hold pages because all pages are UNEVICTABLE or
1654 * memcg is too small and all pages are not on LRU. In that case, 1654 * memcg is too small and all pages are not on LRU. In that case,
1655 * we use curret node. 1655 * we use curret node.
1656 */ 1656 */
1657 if (unlikely(node == MAX_NUMNODES)) 1657 if (unlikely(node == MAX_NUMNODES))
1658 node = numa_node_id(); 1658 node = numa_node_id();
1659 1659
1660 memcg->last_scanned_node = node; 1660 memcg->last_scanned_node = node;
1661 return node; 1661 return node;
1662 } 1662 }
1663 1663
1664 /* 1664 /*
1665 * Check all nodes whether it contains reclaimable pages or not. 1665 * Check all nodes whether it contains reclaimable pages or not.
1666 * For quick scan, we make use of scan_nodes. This will allow us to skip 1666 * For quick scan, we make use of scan_nodes. This will allow us to skip
1667 * unused nodes. But scan_nodes is lazily updated and may not cotain 1667 * unused nodes. But scan_nodes is lazily updated and may not cotain
1668 * enough new information. We need to do double check. 1668 * enough new information. We need to do double check.
1669 */ 1669 */
1670 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 1670 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1671 { 1671 {
1672 int nid; 1672 int nid;
1673 1673
1674 /* 1674 /*
1675 * quick check...making use of scan_node. 1675 * quick check...making use of scan_node.
1676 * We can skip unused nodes. 1676 * We can skip unused nodes.
1677 */ 1677 */
1678 if (!nodes_empty(memcg->scan_nodes)) { 1678 if (!nodes_empty(memcg->scan_nodes)) {
1679 for (nid = first_node(memcg->scan_nodes); 1679 for (nid = first_node(memcg->scan_nodes);
1680 nid < MAX_NUMNODES; 1680 nid < MAX_NUMNODES;
1681 nid = next_node(nid, memcg->scan_nodes)) { 1681 nid = next_node(nid, memcg->scan_nodes)) {
1682 1682
1683 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 1683 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1684 return true; 1684 return true;
1685 } 1685 }
1686 } 1686 }
1687 /* 1687 /*
1688 * Check rest of nodes. 1688 * Check rest of nodes.
1689 */ 1689 */
1690 for_each_node_state(nid, N_HIGH_MEMORY) { 1690 for_each_node_state(nid, N_HIGH_MEMORY) {
1691 if (node_isset(nid, memcg->scan_nodes)) 1691 if (node_isset(nid, memcg->scan_nodes))
1692 continue; 1692 continue;
1693 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 1693 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1694 return true; 1694 return true;
1695 } 1695 }
1696 return false; 1696 return false;
1697 } 1697 }
1698 1698
1699 #else 1699 #else
1700 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1700 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1701 { 1701 {
1702 return 0; 1702 return 0;
1703 } 1703 }
1704 1704
1705 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 1705 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1706 { 1706 {
1707 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap); 1707 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1708 } 1708 }
1709 #endif 1709 #endif
1710 1710
1711 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1711 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1712 struct zone *zone, 1712 struct zone *zone,
1713 gfp_t gfp_mask, 1713 gfp_t gfp_mask,
1714 unsigned long *total_scanned) 1714 unsigned long *total_scanned)
1715 { 1715 {
1716 struct mem_cgroup *victim = NULL; 1716 struct mem_cgroup *victim = NULL;
1717 int total = 0; 1717 int total = 0;
1718 int loop = 0; 1718 int loop = 0;
1719 unsigned long excess; 1719 unsigned long excess;
1720 unsigned long nr_scanned; 1720 unsigned long nr_scanned;
1721 struct mem_cgroup_reclaim_cookie reclaim = { 1721 struct mem_cgroup_reclaim_cookie reclaim = {
1722 .zone = zone, 1722 .zone = zone,
1723 .priority = 0, 1723 .priority = 0,
1724 }; 1724 };
1725 1725
1726 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT; 1726 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1727 1727
1728 while (1) { 1728 while (1) {
1729 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1729 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1730 if (!victim) { 1730 if (!victim) {
1731 loop++; 1731 loop++;
1732 if (loop >= 2) { 1732 if (loop >= 2) {
1733 /* 1733 /*
1734 * If we have not been able to reclaim 1734 * If we have not been able to reclaim
1735 * anything, it might because there are 1735 * anything, it might because there are
1736 * no reclaimable pages under this hierarchy 1736 * no reclaimable pages under this hierarchy
1737 */ 1737 */
1738 if (!total) 1738 if (!total)
1739 break; 1739 break;
1740 /* 1740 /*
1741 * We want to do more targeted reclaim. 1741 * We want to do more targeted reclaim.
1742 * excess >> 2 is not to excessive so as to 1742 * excess >> 2 is not to excessive so as to
1743 * reclaim too much, nor too less that we keep 1743 * reclaim too much, nor too less that we keep
1744 * coming back to reclaim from this cgroup 1744 * coming back to reclaim from this cgroup
1745 */ 1745 */
1746 if (total >= (excess >> 2) || 1746 if (total >= (excess >> 2) ||
1747 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1747 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1748 break; 1748 break;
1749 } 1749 }
1750 continue; 1750 continue;
1751 } 1751 }
1752 if (!mem_cgroup_reclaimable(victim, false)) 1752 if (!mem_cgroup_reclaimable(victim, false))
1753 continue; 1753 continue;
1754 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, 1754 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1755 zone, &nr_scanned); 1755 zone, &nr_scanned);
1756 *total_scanned += nr_scanned; 1756 *total_scanned += nr_scanned;
1757 if (!res_counter_soft_limit_excess(&root_memcg->res)) 1757 if (!res_counter_soft_limit_excess(&root_memcg->res))
1758 break; 1758 break;
1759 } 1759 }
1760 mem_cgroup_iter_break(root_memcg, victim); 1760 mem_cgroup_iter_break(root_memcg, victim);
1761 return total; 1761 return total;
1762 } 1762 }
1763 1763
1764 /* 1764 /*
1765 * Check OOM-Killer is already running under our hierarchy. 1765 * Check OOM-Killer is already running under our hierarchy.
1766 * If someone is running, return false. 1766 * If someone is running, return false.
1767 * Has to be called with memcg_oom_lock 1767 * Has to be called with memcg_oom_lock
1768 */ 1768 */
1769 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg) 1769 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1770 { 1770 {
1771 struct mem_cgroup *iter, *failed = NULL; 1771 struct mem_cgroup *iter, *failed = NULL;
1772 1772
1773 for_each_mem_cgroup_tree(iter, memcg) { 1773 for_each_mem_cgroup_tree(iter, memcg) {
1774 if (iter->oom_lock) { 1774 if (iter->oom_lock) {
1775 /* 1775 /*
1776 * this subtree of our hierarchy is already locked 1776 * this subtree of our hierarchy is already locked
1777 * so we cannot give a lock. 1777 * so we cannot give a lock.
1778 */ 1778 */
1779 failed = iter; 1779 failed = iter;
1780 mem_cgroup_iter_break(memcg, iter); 1780 mem_cgroup_iter_break(memcg, iter);
1781 break; 1781 break;
1782 } else 1782 } else
1783 iter->oom_lock = true; 1783 iter->oom_lock = true;
1784 } 1784 }
1785 1785
1786 if (!failed) 1786 if (!failed)
1787 return true; 1787 return true;
1788 1788
1789 /* 1789 /*
1790 * OK, we failed to lock the whole subtree so we have to clean up 1790 * OK, we failed to lock the whole subtree so we have to clean up
1791 * what we set up to the failing subtree 1791 * what we set up to the failing subtree
1792 */ 1792 */
1793 for_each_mem_cgroup_tree(iter, memcg) { 1793 for_each_mem_cgroup_tree(iter, memcg) {
1794 if (iter == failed) { 1794 if (iter == failed) {
1795 mem_cgroup_iter_break(memcg, iter); 1795 mem_cgroup_iter_break(memcg, iter);
1796 break; 1796 break;
1797 } 1797 }
1798 iter->oom_lock = false; 1798 iter->oom_lock = false;
1799 } 1799 }
1800 return false; 1800 return false;
1801 } 1801 }
1802 1802
1803 /* 1803 /*
1804 * Has to be called with memcg_oom_lock 1804 * Has to be called with memcg_oom_lock
1805 */ 1805 */
1806 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1806 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1807 { 1807 {
1808 struct mem_cgroup *iter; 1808 struct mem_cgroup *iter;
1809 1809
1810 for_each_mem_cgroup_tree(iter, memcg) 1810 for_each_mem_cgroup_tree(iter, memcg)
1811 iter->oom_lock = false; 1811 iter->oom_lock = false;
1812 return 0; 1812 return 0;
1813 } 1813 }
1814 1814
1815 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1815 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1816 { 1816 {
1817 struct mem_cgroup *iter; 1817 struct mem_cgroup *iter;
1818 1818
1819 for_each_mem_cgroup_tree(iter, memcg) 1819 for_each_mem_cgroup_tree(iter, memcg)
1820 atomic_inc(&iter->under_oom); 1820 atomic_inc(&iter->under_oom);
1821 } 1821 }
1822 1822
1823 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1823 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1824 { 1824 {
1825 struct mem_cgroup *iter; 1825 struct mem_cgroup *iter;
1826 1826
1827 /* 1827 /*
1828 * When a new child is created while the hierarchy is under oom, 1828 * When a new child is created while the hierarchy is under oom,
1829 * mem_cgroup_oom_lock() may not be called. We have to use 1829 * mem_cgroup_oom_lock() may not be called. We have to use
1830 * atomic_add_unless() here. 1830 * atomic_add_unless() here.
1831 */ 1831 */
1832 for_each_mem_cgroup_tree(iter, memcg) 1832 for_each_mem_cgroup_tree(iter, memcg)
1833 atomic_add_unless(&iter->under_oom, -1, 0); 1833 atomic_add_unless(&iter->under_oom, -1, 0);
1834 } 1834 }
1835 1835
1836 static DEFINE_SPINLOCK(memcg_oom_lock); 1836 static DEFINE_SPINLOCK(memcg_oom_lock);
1837 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1837 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1838 1838
1839 struct oom_wait_info { 1839 struct oom_wait_info {
1840 struct mem_cgroup *memcg; 1840 struct mem_cgroup *memcg;
1841 wait_queue_t wait; 1841 wait_queue_t wait;
1842 }; 1842 };
1843 1843
1844 static int memcg_oom_wake_function(wait_queue_t *wait, 1844 static int memcg_oom_wake_function(wait_queue_t *wait,
1845 unsigned mode, int sync, void *arg) 1845 unsigned mode, int sync, void *arg)
1846 { 1846 {
1847 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1847 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1848 struct mem_cgroup *oom_wait_memcg; 1848 struct mem_cgroup *oom_wait_memcg;
1849 struct oom_wait_info *oom_wait_info; 1849 struct oom_wait_info *oom_wait_info;
1850 1850
1851 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1851 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1852 oom_wait_memcg = oom_wait_info->memcg; 1852 oom_wait_memcg = oom_wait_info->memcg;
1853 1853
1854 /* 1854 /*
1855 * Both of oom_wait_info->memcg and wake_memcg are stable under us. 1855 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1856 * Then we can use css_is_ancestor without taking care of RCU. 1856 * Then we can use css_is_ancestor without taking care of RCU.
1857 */ 1857 */
1858 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg) 1858 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1859 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg)) 1859 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1860 return 0; 1860 return 0;
1861 return autoremove_wake_function(wait, mode, sync, arg); 1861 return autoremove_wake_function(wait, mode, sync, arg);
1862 } 1862 }
1863 1863
1864 static void memcg_wakeup_oom(struct mem_cgroup *memcg) 1864 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1865 { 1865 {
1866 /* for filtering, pass "memcg" as argument. */ 1866 /* for filtering, pass "memcg" as argument. */
1867 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1867 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1868 } 1868 }
1869 1869
1870 static void memcg_oom_recover(struct mem_cgroup *memcg) 1870 static void memcg_oom_recover(struct mem_cgroup *memcg)
1871 { 1871 {
1872 if (memcg && atomic_read(&memcg->under_oom)) 1872 if (memcg && atomic_read(&memcg->under_oom))
1873 memcg_wakeup_oom(memcg); 1873 memcg_wakeup_oom(memcg);
1874 } 1874 }
1875 1875
1876 /* 1876 /*
1877 * try to call OOM killer. returns false if we should exit memory-reclaim loop. 1877 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1878 */ 1878 */
1879 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask, 1879 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1880 int order) 1880 int order)
1881 { 1881 {
1882 struct oom_wait_info owait; 1882 struct oom_wait_info owait;
1883 bool locked, need_to_kill; 1883 bool locked, need_to_kill;
1884 1884
1885 owait.memcg = memcg; 1885 owait.memcg = memcg;
1886 owait.wait.flags = 0; 1886 owait.wait.flags = 0;
1887 owait.wait.func = memcg_oom_wake_function; 1887 owait.wait.func = memcg_oom_wake_function;
1888 owait.wait.private = current; 1888 owait.wait.private = current;
1889 INIT_LIST_HEAD(&owait.wait.task_list); 1889 INIT_LIST_HEAD(&owait.wait.task_list);
1890 need_to_kill = true; 1890 need_to_kill = true;
1891 mem_cgroup_mark_under_oom(memcg); 1891 mem_cgroup_mark_under_oom(memcg);
1892 1892
1893 /* At first, try to OOM lock hierarchy under memcg.*/ 1893 /* At first, try to OOM lock hierarchy under memcg.*/
1894 spin_lock(&memcg_oom_lock); 1894 spin_lock(&memcg_oom_lock);
1895 locked = mem_cgroup_oom_lock(memcg); 1895 locked = mem_cgroup_oom_lock(memcg);
1896 /* 1896 /*
1897 * Even if signal_pending(), we can't quit charge() loop without 1897 * Even if signal_pending(), we can't quit charge() loop without
1898 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL 1898 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1899 * under OOM is always welcomed, use TASK_KILLABLE here. 1899 * under OOM is always welcomed, use TASK_KILLABLE here.
1900 */ 1900 */
1901 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1901 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1902 if (!locked || memcg->oom_kill_disable) 1902 if (!locked || memcg->oom_kill_disable)
1903 need_to_kill = false; 1903 need_to_kill = false;
1904 if (locked) 1904 if (locked)
1905 mem_cgroup_oom_notify(memcg); 1905 mem_cgroup_oom_notify(memcg);
1906 spin_unlock(&memcg_oom_lock); 1906 spin_unlock(&memcg_oom_lock);
1907 1907
1908 if (need_to_kill) { 1908 if (need_to_kill) {
1909 finish_wait(&memcg_oom_waitq, &owait.wait); 1909 finish_wait(&memcg_oom_waitq, &owait.wait);
1910 mem_cgroup_out_of_memory(memcg, mask, order); 1910 mem_cgroup_out_of_memory(memcg, mask, order);
1911 } else { 1911 } else {
1912 schedule(); 1912 schedule();
1913 finish_wait(&memcg_oom_waitq, &owait.wait); 1913 finish_wait(&memcg_oom_waitq, &owait.wait);
1914 } 1914 }
1915 spin_lock(&memcg_oom_lock); 1915 spin_lock(&memcg_oom_lock);
1916 if (locked) 1916 if (locked)
1917 mem_cgroup_oom_unlock(memcg); 1917 mem_cgroup_oom_unlock(memcg);
1918 memcg_wakeup_oom(memcg); 1918 memcg_wakeup_oom(memcg);
1919 spin_unlock(&memcg_oom_lock); 1919 spin_unlock(&memcg_oom_lock);
1920 1920
1921 mem_cgroup_unmark_under_oom(memcg); 1921 mem_cgroup_unmark_under_oom(memcg);
1922 1922
1923 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current)) 1923 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1924 return false; 1924 return false;
1925 /* Give chance to dying process */ 1925 /* Give chance to dying process */
1926 schedule_timeout_uninterruptible(1); 1926 schedule_timeout_uninterruptible(1);
1927 return true; 1927 return true;
1928 } 1928 }
1929 1929
1930 /* 1930 /*
1931 * Currently used to update mapped file statistics, but the routine can be 1931 * Currently used to update mapped file statistics, but the routine can be
1932 * generalized to update other statistics as well. 1932 * generalized to update other statistics as well.
1933 * 1933 *
1934 * Notes: Race condition 1934 * Notes: Race condition
1935 * 1935 *
1936 * We usually use page_cgroup_lock() for accessing page_cgroup member but 1936 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1937 * it tends to be costly. But considering some conditions, we doesn't need 1937 * it tends to be costly. But considering some conditions, we doesn't need
1938 * to do so _always_. 1938 * to do so _always_.
1939 * 1939 *
1940 * Considering "charge", lock_page_cgroup() is not required because all 1940 * Considering "charge", lock_page_cgroup() is not required because all
1941 * file-stat operations happen after a page is attached to radix-tree. There 1941 * file-stat operations happen after a page is attached to radix-tree. There
1942 * are no race with "charge". 1942 * are no race with "charge".
1943 * 1943 *
1944 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup 1944 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1945 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even 1945 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1946 * if there are race with "uncharge". Statistics itself is properly handled 1946 * if there are race with "uncharge". Statistics itself is properly handled
1947 * by flags. 1947 * by flags.
1948 * 1948 *
1949 * Considering "move", this is an only case we see a race. To make the race 1949 * Considering "move", this is an only case we see a race. To make the race
1950 * small, we check mm->moving_account and detect there are possibility of race 1950 * small, we check mm->moving_account and detect there are possibility of race
1951 * If there is, we take a lock. 1951 * If there is, we take a lock.
1952 */ 1952 */
1953 1953
1954 void __mem_cgroup_begin_update_page_stat(struct page *page, 1954 void __mem_cgroup_begin_update_page_stat(struct page *page,
1955 bool *locked, unsigned long *flags) 1955 bool *locked, unsigned long *flags)
1956 { 1956 {
1957 struct mem_cgroup *memcg; 1957 struct mem_cgroup *memcg;
1958 struct page_cgroup *pc; 1958 struct page_cgroup *pc;
1959 1959
1960 pc = lookup_page_cgroup(page); 1960 pc = lookup_page_cgroup(page);
1961 again: 1961 again:
1962 memcg = pc->mem_cgroup; 1962 memcg = pc->mem_cgroup;
1963 if (unlikely(!memcg || !PageCgroupUsed(pc))) 1963 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1964 return; 1964 return;
1965 /* 1965 /*
1966 * If this memory cgroup is not under account moving, we don't 1966 * If this memory cgroup is not under account moving, we don't
1967 * need to take move_lock_mem_cgroup(). Because we already hold 1967 * need to take move_lock_mem_cgroup(). Because we already hold
1968 * rcu_read_lock(), any calls to move_account will be delayed until 1968 * rcu_read_lock(), any calls to move_account will be delayed until
1969 * rcu_read_unlock() if mem_cgroup_stolen() == true. 1969 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1970 */ 1970 */
1971 if (!mem_cgroup_stolen(memcg)) 1971 if (!mem_cgroup_stolen(memcg))
1972 return; 1972 return;
1973 1973
1974 move_lock_mem_cgroup(memcg, flags); 1974 move_lock_mem_cgroup(memcg, flags);
1975 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) { 1975 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1976 move_unlock_mem_cgroup(memcg, flags); 1976 move_unlock_mem_cgroup(memcg, flags);
1977 goto again; 1977 goto again;
1978 } 1978 }
1979 *locked = true; 1979 *locked = true;
1980 } 1980 }
1981 1981
1982 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags) 1982 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1983 { 1983 {
1984 struct page_cgroup *pc = lookup_page_cgroup(page); 1984 struct page_cgroup *pc = lookup_page_cgroup(page);
1985 1985
1986 /* 1986 /*
1987 * It's guaranteed that pc->mem_cgroup never changes while 1987 * It's guaranteed that pc->mem_cgroup never changes while
1988 * lock is held because a routine modifies pc->mem_cgroup 1988 * lock is held because a routine modifies pc->mem_cgroup
1989 * should take move_lock_mem_cgroup(). 1989 * should take move_lock_mem_cgroup().
1990 */ 1990 */
1991 move_unlock_mem_cgroup(pc->mem_cgroup, flags); 1991 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1992 } 1992 }
1993 1993
1994 void mem_cgroup_update_page_stat(struct page *page, 1994 void mem_cgroup_update_page_stat(struct page *page,
1995 enum mem_cgroup_page_stat_item idx, int val) 1995 enum mem_cgroup_page_stat_item idx, int val)
1996 { 1996 {
1997 struct mem_cgroup *memcg; 1997 struct mem_cgroup *memcg;
1998 struct page_cgroup *pc = lookup_page_cgroup(page); 1998 struct page_cgroup *pc = lookup_page_cgroup(page);
1999 unsigned long uninitialized_var(flags); 1999 unsigned long uninitialized_var(flags);
2000 2000
2001 if (mem_cgroup_disabled()) 2001 if (mem_cgroup_disabled())
2002 return; 2002 return;
2003 2003
2004 memcg = pc->mem_cgroup; 2004 memcg = pc->mem_cgroup;
2005 if (unlikely(!memcg || !PageCgroupUsed(pc))) 2005 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2006 return; 2006 return;
2007 2007
2008 switch (idx) { 2008 switch (idx) {
2009 case MEMCG_NR_FILE_MAPPED: 2009 case MEMCG_NR_FILE_MAPPED:
2010 idx = MEM_CGROUP_STAT_FILE_MAPPED; 2010 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2011 break; 2011 break;
2012 default: 2012 default:
2013 BUG(); 2013 BUG();
2014 } 2014 }
2015 2015
2016 this_cpu_add(memcg->stat->count[idx], val); 2016 this_cpu_add(memcg->stat->count[idx], val);
2017 } 2017 }
2018 2018
2019 /* 2019 /*
2020 * size of first charge trial. "32" comes from vmscan.c's magic value. 2020 * size of first charge trial. "32" comes from vmscan.c's magic value.
2021 * TODO: maybe necessary to use big numbers in big irons. 2021 * TODO: maybe necessary to use big numbers in big irons.
2022 */ 2022 */
2023 #define CHARGE_BATCH 32U 2023 #define CHARGE_BATCH 32U
2024 struct memcg_stock_pcp { 2024 struct memcg_stock_pcp {
2025 struct mem_cgroup *cached; /* this never be root cgroup */ 2025 struct mem_cgroup *cached; /* this never be root cgroup */
2026 unsigned int nr_pages; 2026 unsigned int nr_pages;
2027 struct work_struct work; 2027 struct work_struct work;
2028 unsigned long flags; 2028 unsigned long flags;
2029 #define FLUSHING_CACHED_CHARGE 0 2029 #define FLUSHING_CACHED_CHARGE 0
2030 }; 2030 };
2031 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2031 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2032 static DEFINE_MUTEX(percpu_charge_mutex); 2032 static DEFINE_MUTEX(percpu_charge_mutex);
2033 2033
2034 /* 2034 /*
2035 * Try to consume stocked charge on this cpu. If success, one page is consumed 2035 * Try to consume stocked charge on this cpu. If success, one page is consumed
2036 * from local stock and true is returned. If the stock is 0 or charges from a 2036 * from local stock and true is returned. If the stock is 0 or charges from a
2037 * cgroup which is not current target, returns false. This stock will be 2037 * cgroup which is not current target, returns false. This stock will be
2038 * refilled. 2038 * refilled.
2039 */ 2039 */
2040 static bool consume_stock(struct mem_cgroup *memcg) 2040 static bool consume_stock(struct mem_cgroup *memcg)
2041 { 2041 {
2042 struct memcg_stock_pcp *stock; 2042 struct memcg_stock_pcp *stock;
2043 bool ret = true; 2043 bool ret = true;
2044 2044
2045 stock = &get_cpu_var(memcg_stock); 2045 stock = &get_cpu_var(memcg_stock);
2046 if (memcg == stock->cached && stock->nr_pages) 2046 if (memcg == stock->cached && stock->nr_pages)
2047 stock->nr_pages--; 2047 stock->nr_pages--;
2048 else /* need to call res_counter_charge */ 2048 else /* need to call res_counter_charge */
2049 ret = false; 2049 ret = false;
2050 put_cpu_var(memcg_stock); 2050 put_cpu_var(memcg_stock);
2051 return ret; 2051 return ret;
2052 } 2052 }
2053 2053
2054 /* 2054 /*
2055 * Returns stocks cached in percpu to res_counter and reset cached information. 2055 * Returns stocks cached in percpu to res_counter and reset cached information.
2056 */ 2056 */
2057 static void drain_stock(struct memcg_stock_pcp *stock) 2057 static void drain_stock(struct memcg_stock_pcp *stock)
2058 { 2058 {
2059 struct mem_cgroup *old = stock->cached; 2059 struct mem_cgroup *old = stock->cached;
2060 2060
2061 if (stock->nr_pages) { 2061 if (stock->nr_pages) {
2062 unsigned long bytes = stock->nr_pages * PAGE_SIZE; 2062 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2063 2063
2064 res_counter_uncharge(&old->res, bytes); 2064 res_counter_uncharge(&old->res, bytes);
2065 if (do_swap_account) 2065 if (do_swap_account)
2066 res_counter_uncharge(&old->memsw, bytes); 2066 res_counter_uncharge(&old->memsw, bytes);
2067 stock->nr_pages = 0; 2067 stock->nr_pages = 0;
2068 } 2068 }
2069 stock->cached = NULL; 2069 stock->cached = NULL;
2070 } 2070 }
2071 2071
2072 /* 2072 /*
2073 * This must be called under preempt disabled or must be called by 2073 * This must be called under preempt disabled or must be called by
2074 * a thread which is pinned to local cpu. 2074 * a thread which is pinned to local cpu.
2075 */ 2075 */
2076 static void drain_local_stock(struct work_struct *dummy) 2076 static void drain_local_stock(struct work_struct *dummy)
2077 { 2077 {
2078 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock); 2078 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2079 drain_stock(stock); 2079 drain_stock(stock);
2080 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2080 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2081 } 2081 }
2082 2082
2083 /* 2083 /*
2084 * Cache charges(val) which is from res_counter, to local per_cpu area. 2084 * Cache charges(val) which is from res_counter, to local per_cpu area.
2085 * This will be consumed by consume_stock() function, later. 2085 * This will be consumed by consume_stock() function, later.
2086 */ 2086 */
2087 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2087 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2088 { 2088 {
2089 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); 2089 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2090 2090
2091 if (stock->cached != memcg) { /* reset if necessary */ 2091 if (stock->cached != memcg) { /* reset if necessary */
2092 drain_stock(stock); 2092 drain_stock(stock);
2093 stock->cached = memcg; 2093 stock->cached = memcg;
2094 } 2094 }
2095 stock->nr_pages += nr_pages; 2095 stock->nr_pages += nr_pages;
2096 put_cpu_var(memcg_stock); 2096 put_cpu_var(memcg_stock);
2097 } 2097 }
2098 2098
2099 /* 2099 /*
2100 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2100 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2101 * of the hierarchy under it. sync flag says whether we should block 2101 * of the hierarchy under it. sync flag says whether we should block
2102 * until the work is done. 2102 * until the work is done.
2103 */ 2103 */
2104 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync) 2104 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2105 { 2105 {
2106 int cpu, curcpu; 2106 int cpu, curcpu;
2107 2107
2108 /* Notify other cpus that system-wide "drain" is running */ 2108 /* Notify other cpus that system-wide "drain" is running */
2109 get_online_cpus(); 2109 get_online_cpus();
2110 curcpu = get_cpu(); 2110 curcpu = get_cpu();
2111 for_each_online_cpu(cpu) { 2111 for_each_online_cpu(cpu) {
2112 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2112 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2113 struct mem_cgroup *memcg; 2113 struct mem_cgroup *memcg;
2114 2114
2115 memcg = stock->cached; 2115 memcg = stock->cached;
2116 if (!memcg || !stock->nr_pages) 2116 if (!memcg || !stock->nr_pages)
2117 continue; 2117 continue;
2118 if (!mem_cgroup_same_or_subtree(root_memcg, memcg)) 2118 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2119 continue; 2119 continue;
2120 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2120 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2121 if (cpu == curcpu) 2121 if (cpu == curcpu)
2122 drain_local_stock(&stock->work); 2122 drain_local_stock(&stock->work);
2123 else 2123 else
2124 schedule_work_on(cpu, &stock->work); 2124 schedule_work_on(cpu, &stock->work);
2125 } 2125 }
2126 } 2126 }
2127 put_cpu(); 2127 put_cpu();
2128 2128
2129 if (!sync) 2129 if (!sync)
2130 goto out; 2130 goto out;
2131 2131
2132 for_each_online_cpu(cpu) { 2132 for_each_online_cpu(cpu) {
2133 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2133 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2134 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) 2134 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2135 flush_work(&stock->work); 2135 flush_work(&stock->work);
2136 } 2136 }
2137 out: 2137 out:
2138 put_online_cpus(); 2138 put_online_cpus();
2139 } 2139 }
2140 2140
2141 /* 2141 /*
2142 * Tries to drain stocked charges in other cpus. This function is asynchronous 2142 * Tries to drain stocked charges in other cpus. This function is asynchronous
2143 * and just put a work per cpu for draining localy on each cpu. Caller can 2143 * and just put a work per cpu for draining localy on each cpu. Caller can
2144 * expects some charges will be back to res_counter later but cannot wait for 2144 * expects some charges will be back to res_counter later but cannot wait for
2145 * it. 2145 * it.
2146 */ 2146 */
2147 static void drain_all_stock_async(struct mem_cgroup *root_memcg) 2147 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2148 { 2148 {
2149 /* 2149 /*
2150 * If someone calls draining, avoid adding more kworker runs. 2150 * If someone calls draining, avoid adding more kworker runs.
2151 */ 2151 */
2152 if (!mutex_trylock(&percpu_charge_mutex)) 2152 if (!mutex_trylock(&percpu_charge_mutex))
2153 return; 2153 return;
2154 drain_all_stock(root_memcg, false); 2154 drain_all_stock(root_memcg, false);
2155 mutex_unlock(&percpu_charge_mutex); 2155 mutex_unlock(&percpu_charge_mutex);
2156 } 2156 }
2157 2157
2158 /* This is a synchronous drain interface. */ 2158 /* This is a synchronous drain interface. */
2159 static void drain_all_stock_sync(struct mem_cgroup *root_memcg) 2159 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2160 { 2160 {
2161 /* called when force_empty is called */ 2161 /* called when force_empty is called */
2162 mutex_lock(&percpu_charge_mutex); 2162 mutex_lock(&percpu_charge_mutex);
2163 drain_all_stock(root_memcg, true); 2163 drain_all_stock(root_memcg, true);
2164 mutex_unlock(&percpu_charge_mutex); 2164 mutex_unlock(&percpu_charge_mutex);
2165 } 2165 }
2166 2166
2167 /* 2167 /*
2168 * This function drains percpu counter value from DEAD cpu and 2168 * This function drains percpu counter value from DEAD cpu and
2169 * move it to local cpu. Note that this function can be preempted. 2169 * move it to local cpu. Note that this function can be preempted.
2170 */ 2170 */
2171 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu) 2171 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2172 { 2172 {
2173 int i; 2173 int i;
2174 2174
2175 spin_lock(&memcg->pcp_counter_lock); 2175 spin_lock(&memcg->pcp_counter_lock);
2176 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 2176 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2177 long x = per_cpu(memcg->stat->count[i], cpu); 2177 long x = per_cpu(memcg->stat->count[i], cpu);
2178 2178
2179 per_cpu(memcg->stat->count[i], cpu) = 0; 2179 per_cpu(memcg->stat->count[i], cpu) = 0;
2180 memcg->nocpu_base.count[i] += x; 2180 memcg->nocpu_base.count[i] += x;
2181 } 2181 }
2182 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 2182 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2183 unsigned long x = per_cpu(memcg->stat->events[i], cpu); 2183 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2184 2184
2185 per_cpu(memcg->stat->events[i], cpu) = 0; 2185 per_cpu(memcg->stat->events[i], cpu) = 0;
2186 memcg->nocpu_base.events[i] += x; 2186 memcg->nocpu_base.events[i] += x;
2187 } 2187 }
2188 spin_unlock(&memcg->pcp_counter_lock); 2188 spin_unlock(&memcg->pcp_counter_lock);
2189 } 2189 }
2190 2190
2191 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb, 2191 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2192 unsigned long action, 2192 unsigned long action,
2193 void *hcpu) 2193 void *hcpu)
2194 { 2194 {
2195 int cpu = (unsigned long)hcpu; 2195 int cpu = (unsigned long)hcpu;
2196 struct memcg_stock_pcp *stock; 2196 struct memcg_stock_pcp *stock;
2197 struct mem_cgroup *iter; 2197 struct mem_cgroup *iter;
2198 2198
2199 if (action == CPU_ONLINE) 2199 if (action == CPU_ONLINE)
2200 return NOTIFY_OK; 2200 return NOTIFY_OK;
2201 2201
2202 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 2202 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2203 return NOTIFY_OK; 2203 return NOTIFY_OK;
2204 2204
2205 for_each_mem_cgroup(iter) 2205 for_each_mem_cgroup(iter)
2206 mem_cgroup_drain_pcp_counter(iter, cpu); 2206 mem_cgroup_drain_pcp_counter(iter, cpu);
2207 2207
2208 stock = &per_cpu(memcg_stock, cpu); 2208 stock = &per_cpu(memcg_stock, cpu);
2209 drain_stock(stock); 2209 drain_stock(stock);
2210 return NOTIFY_OK; 2210 return NOTIFY_OK;
2211 } 2211 }
2212 2212
2213 2213
2214 /* See __mem_cgroup_try_charge() for details */ 2214 /* See __mem_cgroup_try_charge() for details */
2215 enum { 2215 enum {
2216 CHARGE_OK, /* success */ 2216 CHARGE_OK, /* success */
2217 CHARGE_RETRY, /* need to retry but retry is not bad */ 2217 CHARGE_RETRY, /* need to retry but retry is not bad */
2218 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */ 2218 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2219 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */ 2219 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2220 CHARGE_OOM_DIE, /* the current is killed because of OOM */ 2220 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2221 }; 2221 };
2222 2222
2223 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2223 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2224 unsigned int nr_pages, bool oom_check) 2224 unsigned int nr_pages, bool oom_check)
2225 { 2225 {
2226 unsigned long csize = nr_pages * PAGE_SIZE; 2226 unsigned long csize = nr_pages * PAGE_SIZE;
2227 struct mem_cgroup *mem_over_limit; 2227 struct mem_cgroup *mem_over_limit;
2228 struct res_counter *fail_res; 2228 struct res_counter *fail_res;
2229 unsigned long flags = 0; 2229 unsigned long flags = 0;
2230 int ret; 2230 int ret;
2231 2231
2232 ret = res_counter_charge(&memcg->res, csize, &fail_res); 2232 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2233 2233
2234 if (likely(!ret)) { 2234 if (likely(!ret)) {
2235 if (!do_swap_account) 2235 if (!do_swap_account)
2236 return CHARGE_OK; 2236 return CHARGE_OK;
2237 ret = res_counter_charge(&memcg->memsw, csize, &fail_res); 2237 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2238 if (likely(!ret)) 2238 if (likely(!ret))
2239 return CHARGE_OK; 2239 return CHARGE_OK;
2240 2240
2241 res_counter_uncharge(&memcg->res, csize); 2241 res_counter_uncharge(&memcg->res, csize);
2242 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw); 2242 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2243 flags |= MEM_CGROUP_RECLAIM_NOSWAP; 2243 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2244 } else 2244 } else
2245 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); 2245 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2246 /* 2246 /*
2247 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch 2247 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2248 * of regular pages (CHARGE_BATCH), or a single regular page (1). 2248 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2249 * 2249 *
2250 * Never reclaim on behalf of optional batching, retry with a 2250 * Never reclaim on behalf of optional batching, retry with a
2251 * single page instead. 2251 * single page instead.
2252 */ 2252 */
2253 if (nr_pages == CHARGE_BATCH) 2253 if (nr_pages == CHARGE_BATCH)
2254 return CHARGE_RETRY; 2254 return CHARGE_RETRY;
2255 2255
2256 if (!(gfp_mask & __GFP_WAIT)) 2256 if (!(gfp_mask & __GFP_WAIT))
2257 return CHARGE_WOULDBLOCK; 2257 return CHARGE_WOULDBLOCK;
2258 2258
2259 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags); 2259 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2260 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2260 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2261 return CHARGE_RETRY; 2261 return CHARGE_RETRY;
2262 /* 2262 /*
2263 * Even though the limit is exceeded at this point, reclaim 2263 * Even though the limit is exceeded at this point, reclaim
2264 * may have been able to free some pages. Retry the charge 2264 * may have been able to free some pages. Retry the charge
2265 * before killing the task. 2265 * before killing the task.
2266 * 2266 *
2267 * Only for regular pages, though: huge pages are rather 2267 * Only for regular pages, though: huge pages are rather
2268 * unlikely to succeed so close to the limit, and we fall back 2268 * unlikely to succeed so close to the limit, and we fall back
2269 * to regular pages anyway in case of failure. 2269 * to regular pages anyway in case of failure.
2270 */ 2270 */
2271 if (nr_pages == 1 && ret) 2271 if (nr_pages == 1 && ret)
2272 return CHARGE_RETRY; 2272 return CHARGE_RETRY;
2273 2273
2274 /* 2274 /*
2275 * At task move, charge accounts can be doubly counted. So, it's 2275 * At task move, charge accounts can be doubly counted. So, it's
2276 * better to wait until the end of task_move if something is going on. 2276 * better to wait until the end of task_move if something is going on.
2277 */ 2277 */
2278 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2278 if (mem_cgroup_wait_acct_move(mem_over_limit))
2279 return CHARGE_RETRY; 2279 return CHARGE_RETRY;
2280 2280
2281 /* If we don't need to call oom-killer at el, return immediately */ 2281 /* If we don't need to call oom-killer at el, return immediately */
2282 if (!oom_check) 2282 if (!oom_check)
2283 return CHARGE_NOMEM; 2283 return CHARGE_NOMEM;
2284 /* check OOM */ 2284 /* check OOM */
2285 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize))) 2285 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2286 return CHARGE_OOM_DIE; 2286 return CHARGE_OOM_DIE;
2287 2287
2288 return CHARGE_RETRY; 2288 return CHARGE_RETRY;
2289 } 2289 }
2290 2290
2291 /* 2291 /*
2292 * __mem_cgroup_try_charge() does 2292 * __mem_cgroup_try_charge() does
2293 * 1. detect memcg to be charged against from passed *mm and *ptr, 2293 * 1. detect memcg to be charged against from passed *mm and *ptr,
2294 * 2. update res_counter 2294 * 2. update res_counter
2295 * 3. call memory reclaim if necessary. 2295 * 3. call memory reclaim if necessary.
2296 * 2296 *
2297 * In some special case, if the task is fatal, fatal_signal_pending() or 2297 * In some special case, if the task is fatal, fatal_signal_pending() or
2298 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup 2298 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2299 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon 2299 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2300 * as possible without any hazards. 2: all pages should have a valid 2300 * as possible without any hazards. 2: all pages should have a valid
2301 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg 2301 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2302 * pointer, that is treated as a charge to root_mem_cgroup. 2302 * pointer, that is treated as a charge to root_mem_cgroup.
2303 * 2303 *
2304 * So __mem_cgroup_try_charge() will return 2304 * So __mem_cgroup_try_charge() will return
2305 * 0 ... on success, filling *ptr with a valid memcg pointer. 2305 * 0 ... on success, filling *ptr with a valid memcg pointer.
2306 * -ENOMEM ... charge failure because of resource limits. 2306 * -ENOMEM ... charge failure because of resource limits.
2307 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup. 2307 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2308 * 2308 *
2309 * Unlike the exported interface, an "oom" parameter is added. if oom==true, 2309 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2310 * the oom-killer can be invoked. 2310 * the oom-killer can be invoked.
2311 */ 2311 */
2312 static int __mem_cgroup_try_charge(struct mm_struct *mm, 2312 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2313 gfp_t gfp_mask, 2313 gfp_t gfp_mask,
2314 unsigned int nr_pages, 2314 unsigned int nr_pages,
2315 struct mem_cgroup **ptr, 2315 struct mem_cgroup **ptr,
2316 bool oom) 2316 bool oom)
2317 { 2317 {
2318 unsigned int batch = max(CHARGE_BATCH, nr_pages); 2318 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2319 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 2319 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2320 struct mem_cgroup *memcg = NULL; 2320 struct mem_cgroup *memcg = NULL;
2321 int ret; 2321 int ret;
2322 2322
2323 /* 2323 /*
2324 * Unlike gloval-vm's OOM-kill, we're not in memory shortage 2324 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2325 * in system level. So, allow to go ahead dying process in addition to 2325 * in system level. So, allow to go ahead dying process in addition to
2326 * MEMDIE process. 2326 * MEMDIE process.
2327 */ 2327 */
2328 if (unlikely(test_thread_flag(TIF_MEMDIE) 2328 if (unlikely(test_thread_flag(TIF_MEMDIE)
2329 || fatal_signal_pending(current))) 2329 || fatal_signal_pending(current)))
2330 goto bypass; 2330 goto bypass;
2331 2331
2332 /* 2332 /*
2333 * We always charge the cgroup the mm_struct belongs to. 2333 * We always charge the cgroup the mm_struct belongs to.
2334 * The mm_struct's mem_cgroup changes on task migration if the 2334 * The mm_struct's mem_cgroup changes on task migration if the
2335 * thread group leader migrates. It's possible that mm is not 2335 * thread group leader migrates. It's possible that mm is not
2336 * set, if so charge the root memcg (happens for pagecache usage). 2336 * set, if so charge the root memcg (happens for pagecache usage).
2337 */ 2337 */
2338 if (!*ptr && !mm) 2338 if (!*ptr && !mm)
2339 *ptr = root_mem_cgroup; 2339 *ptr = root_mem_cgroup;
2340 again: 2340 again:
2341 if (*ptr) { /* css should be a valid one */ 2341 if (*ptr) { /* css should be a valid one */
2342 memcg = *ptr; 2342 memcg = *ptr;
2343 VM_BUG_ON(css_is_removed(&memcg->css)); 2343 VM_BUG_ON(css_is_removed(&memcg->css));
2344 if (mem_cgroup_is_root(memcg)) 2344 if (mem_cgroup_is_root(memcg))
2345 goto done; 2345 goto done;
2346 if (nr_pages == 1 && consume_stock(memcg)) 2346 if (nr_pages == 1 && consume_stock(memcg))
2347 goto done; 2347 goto done;
2348 css_get(&memcg->css); 2348 css_get(&memcg->css);
2349 } else { 2349 } else {
2350 struct task_struct *p; 2350 struct task_struct *p;
2351 2351
2352 rcu_read_lock(); 2352 rcu_read_lock();
2353 p = rcu_dereference(mm->owner); 2353 p = rcu_dereference(mm->owner);
2354 /* 2354 /*
2355 * Because we don't have task_lock(), "p" can exit. 2355 * Because we don't have task_lock(), "p" can exit.
2356 * In that case, "memcg" can point to root or p can be NULL with 2356 * In that case, "memcg" can point to root or p can be NULL with
2357 * race with swapoff. Then, we have small risk of mis-accouning. 2357 * race with swapoff. Then, we have small risk of mis-accouning.
2358 * But such kind of mis-account by race always happens because 2358 * But such kind of mis-account by race always happens because
2359 * we don't have cgroup_mutex(). It's overkill and we allo that 2359 * we don't have cgroup_mutex(). It's overkill and we allo that
2360 * small race, here. 2360 * small race, here.
2361 * (*) swapoff at el will charge against mm-struct not against 2361 * (*) swapoff at el will charge against mm-struct not against
2362 * task-struct. So, mm->owner can be NULL. 2362 * task-struct. So, mm->owner can be NULL.
2363 */ 2363 */
2364 memcg = mem_cgroup_from_task(p); 2364 memcg = mem_cgroup_from_task(p);
2365 if (!memcg) 2365 if (!memcg)
2366 memcg = root_mem_cgroup; 2366 memcg = root_mem_cgroup;
2367 if (mem_cgroup_is_root(memcg)) { 2367 if (mem_cgroup_is_root(memcg)) {
2368 rcu_read_unlock(); 2368 rcu_read_unlock();
2369 goto done; 2369 goto done;
2370 } 2370 }
2371 if (nr_pages == 1 && consume_stock(memcg)) { 2371 if (nr_pages == 1 && consume_stock(memcg)) {
2372 /* 2372 /*
2373 * It seems dagerous to access memcg without css_get(). 2373 * It seems dagerous to access memcg without css_get().
2374 * But considering how consume_stok works, it's not 2374 * But considering how consume_stok works, it's not
2375 * necessary. If consume_stock success, some charges 2375 * necessary. If consume_stock success, some charges
2376 * from this memcg are cached on this cpu. So, we 2376 * from this memcg are cached on this cpu. So, we
2377 * don't need to call css_get()/css_tryget() before 2377 * don't need to call css_get()/css_tryget() before
2378 * calling consume_stock(). 2378 * calling consume_stock().
2379 */ 2379 */
2380 rcu_read_unlock(); 2380 rcu_read_unlock();
2381 goto done; 2381 goto done;
2382 } 2382 }
2383 /* after here, we may be blocked. we need to get refcnt */ 2383 /* after here, we may be blocked. we need to get refcnt */
2384 if (!css_tryget(&memcg->css)) { 2384 if (!css_tryget(&memcg->css)) {
2385 rcu_read_unlock(); 2385 rcu_read_unlock();
2386 goto again; 2386 goto again;
2387 } 2387 }
2388 rcu_read_unlock(); 2388 rcu_read_unlock();
2389 } 2389 }
2390 2390
2391 do { 2391 do {
2392 bool oom_check; 2392 bool oom_check;
2393 2393
2394 /* If killed, bypass charge */ 2394 /* If killed, bypass charge */
2395 if (fatal_signal_pending(current)) { 2395 if (fatal_signal_pending(current)) {
2396 css_put(&memcg->css); 2396 css_put(&memcg->css);
2397 goto bypass; 2397 goto bypass;
2398 } 2398 }
2399 2399
2400 oom_check = false; 2400 oom_check = false;
2401 if (oom && !nr_oom_retries) { 2401 if (oom && !nr_oom_retries) {
2402 oom_check = true; 2402 oom_check = true;
2403 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 2403 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2404 } 2404 }
2405 2405
2406 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check); 2406 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2407 switch (ret) { 2407 switch (ret) {
2408 case CHARGE_OK: 2408 case CHARGE_OK:
2409 break; 2409 break;
2410 case CHARGE_RETRY: /* not in OOM situation but retry */ 2410 case CHARGE_RETRY: /* not in OOM situation but retry */
2411 batch = nr_pages; 2411 batch = nr_pages;
2412 css_put(&memcg->css); 2412 css_put(&memcg->css);
2413 memcg = NULL; 2413 memcg = NULL;
2414 goto again; 2414 goto again;
2415 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */ 2415 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2416 css_put(&memcg->css); 2416 css_put(&memcg->css);
2417 goto nomem; 2417 goto nomem;
2418 case CHARGE_NOMEM: /* OOM routine works */ 2418 case CHARGE_NOMEM: /* OOM routine works */
2419 if (!oom) { 2419 if (!oom) {
2420 css_put(&memcg->css); 2420 css_put(&memcg->css);
2421 goto nomem; 2421 goto nomem;
2422 } 2422 }
2423 /* If oom, we never return -ENOMEM */ 2423 /* If oom, we never return -ENOMEM */
2424 nr_oom_retries--; 2424 nr_oom_retries--;
2425 break; 2425 break;
2426 case CHARGE_OOM_DIE: /* Killed by OOM Killer */ 2426 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2427 css_put(&memcg->css); 2427 css_put(&memcg->css);
2428 goto bypass; 2428 goto bypass;
2429 } 2429 }
2430 } while (ret != CHARGE_OK); 2430 } while (ret != CHARGE_OK);
2431 2431
2432 if (batch > nr_pages) 2432 if (batch > nr_pages)
2433 refill_stock(memcg, batch - nr_pages); 2433 refill_stock(memcg, batch - nr_pages);
2434 css_put(&memcg->css); 2434 css_put(&memcg->css);
2435 done: 2435 done:
2436 *ptr = memcg; 2436 *ptr = memcg;
2437 return 0; 2437 return 0;
2438 nomem: 2438 nomem:
2439 *ptr = NULL; 2439 *ptr = NULL;
2440 return -ENOMEM; 2440 return -ENOMEM;
2441 bypass: 2441 bypass:
2442 *ptr = root_mem_cgroup; 2442 *ptr = root_mem_cgroup;
2443 return -EINTR; 2443 return -EINTR;
2444 } 2444 }
2445 2445
2446 /* 2446 /*
2447 * Somemtimes we have to undo a charge we got by try_charge(). 2447 * Somemtimes we have to undo a charge we got by try_charge().
2448 * This function is for that and do uncharge, put css's refcnt. 2448 * This function is for that and do uncharge, put css's refcnt.
2449 * gotten by try_charge(). 2449 * gotten by try_charge().
2450 */ 2450 */
2451 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg, 2451 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2452 unsigned int nr_pages) 2452 unsigned int nr_pages)
2453 { 2453 {
2454 if (!mem_cgroup_is_root(memcg)) { 2454 if (!mem_cgroup_is_root(memcg)) {
2455 unsigned long bytes = nr_pages * PAGE_SIZE; 2455 unsigned long bytes = nr_pages * PAGE_SIZE;
2456 2456
2457 res_counter_uncharge(&memcg->res, bytes); 2457 res_counter_uncharge(&memcg->res, bytes);
2458 if (do_swap_account) 2458 if (do_swap_account)
2459 res_counter_uncharge(&memcg->memsw, bytes); 2459 res_counter_uncharge(&memcg->memsw, bytes);
2460 } 2460 }
2461 } 2461 }
2462 2462
2463 /* 2463 /*
2464 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup. 2464 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2465 * This is useful when moving usage to parent cgroup. 2465 * This is useful when moving usage to parent cgroup.
2466 */ 2466 */
2467 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg, 2467 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2468 unsigned int nr_pages) 2468 unsigned int nr_pages)
2469 { 2469 {
2470 unsigned long bytes = nr_pages * PAGE_SIZE; 2470 unsigned long bytes = nr_pages * PAGE_SIZE;
2471 2471
2472 if (mem_cgroup_is_root(memcg)) 2472 if (mem_cgroup_is_root(memcg))
2473 return; 2473 return;
2474 2474
2475 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes); 2475 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2476 if (do_swap_account) 2476 if (do_swap_account)
2477 res_counter_uncharge_until(&memcg->memsw, 2477 res_counter_uncharge_until(&memcg->memsw,
2478 memcg->memsw.parent, bytes); 2478 memcg->memsw.parent, bytes);
2479 } 2479 }
2480 2480
2481 /* 2481 /*
2482 * A helper function to get mem_cgroup from ID. must be called under 2482 * A helper function to get mem_cgroup from ID. must be called under
2483 * rcu_read_lock(). The caller must check css_is_removed() or some if 2483 * rcu_read_lock(). The caller must check css_is_removed() or some if
2484 * it's concern. (dropping refcnt from swap can be called against removed 2484 * it's concern. (dropping refcnt from swap can be called against removed
2485 * memcg.) 2485 * memcg.)
2486 */ 2486 */
2487 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) 2487 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2488 { 2488 {
2489 struct cgroup_subsys_state *css; 2489 struct cgroup_subsys_state *css;
2490 2490
2491 /* ID 0 is unused ID */ 2491 /* ID 0 is unused ID */
2492 if (!id) 2492 if (!id)
2493 return NULL; 2493 return NULL;
2494 css = css_lookup(&mem_cgroup_subsys, id); 2494 css = css_lookup(&mem_cgroup_subsys, id);
2495 if (!css) 2495 if (!css)
2496 return NULL; 2496 return NULL;
2497 return container_of(css, struct mem_cgroup, css); 2497 return container_of(css, struct mem_cgroup, css);
2498 } 2498 }
2499 2499
2500 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) 2500 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2501 { 2501 {
2502 struct mem_cgroup *memcg = NULL; 2502 struct mem_cgroup *memcg = NULL;
2503 struct page_cgroup *pc; 2503 struct page_cgroup *pc;
2504 unsigned short id; 2504 unsigned short id;
2505 swp_entry_t ent; 2505 swp_entry_t ent;
2506 2506
2507 VM_BUG_ON(!PageLocked(page)); 2507 VM_BUG_ON(!PageLocked(page));
2508 2508
2509 pc = lookup_page_cgroup(page); 2509 pc = lookup_page_cgroup(page);
2510 lock_page_cgroup(pc); 2510 lock_page_cgroup(pc);
2511 if (PageCgroupUsed(pc)) { 2511 if (PageCgroupUsed(pc)) {
2512 memcg = pc->mem_cgroup; 2512 memcg = pc->mem_cgroup;
2513 if (memcg && !css_tryget(&memcg->css)) 2513 if (memcg && !css_tryget(&memcg->css))
2514 memcg = NULL; 2514 memcg = NULL;
2515 } else if (PageSwapCache(page)) { 2515 } else if (PageSwapCache(page)) {
2516 ent.val = page_private(page); 2516 ent.val = page_private(page);
2517 id = lookup_swap_cgroup_id(ent); 2517 id = lookup_swap_cgroup_id(ent);
2518 rcu_read_lock(); 2518 rcu_read_lock();
2519 memcg = mem_cgroup_lookup(id); 2519 memcg = mem_cgroup_lookup(id);
2520 if (memcg && !css_tryget(&memcg->css)) 2520 if (memcg && !css_tryget(&memcg->css))
2521 memcg = NULL; 2521 memcg = NULL;
2522 rcu_read_unlock(); 2522 rcu_read_unlock();
2523 } 2523 }
2524 unlock_page_cgroup(pc); 2524 unlock_page_cgroup(pc);
2525 return memcg; 2525 return memcg;
2526 } 2526 }
2527 2527
2528 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg, 2528 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2529 struct page *page, 2529 struct page *page,
2530 unsigned int nr_pages, 2530 unsigned int nr_pages,
2531 enum charge_type ctype, 2531 enum charge_type ctype,
2532 bool lrucare) 2532 bool lrucare)
2533 { 2533 {
2534 struct page_cgroup *pc = lookup_page_cgroup(page); 2534 struct page_cgroup *pc = lookup_page_cgroup(page);
2535 struct zone *uninitialized_var(zone); 2535 struct zone *uninitialized_var(zone);
2536 struct lruvec *lruvec; 2536 struct lruvec *lruvec;
2537 bool was_on_lru = false; 2537 bool was_on_lru = false;
2538 bool anon; 2538 bool anon;
2539 2539
2540 lock_page_cgroup(pc); 2540 lock_page_cgroup(pc);
2541 VM_BUG_ON(PageCgroupUsed(pc)); 2541 VM_BUG_ON(PageCgroupUsed(pc));
2542 /* 2542 /*
2543 * we don't need page_cgroup_lock about tail pages, becase they are not 2543 * we don't need page_cgroup_lock about tail pages, becase they are not
2544 * accessed by any other context at this point. 2544 * accessed by any other context at this point.
2545 */ 2545 */
2546 2546
2547 /* 2547 /*
2548 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2548 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2549 * may already be on some other mem_cgroup's LRU. Take care of it. 2549 * may already be on some other mem_cgroup's LRU. Take care of it.
2550 */ 2550 */
2551 if (lrucare) { 2551 if (lrucare) {
2552 zone = page_zone(page); 2552 zone = page_zone(page);
2553 spin_lock_irq(&zone->lru_lock); 2553 spin_lock_irq(&zone->lru_lock);
2554 if (PageLRU(page)) { 2554 if (PageLRU(page)) {
2555 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); 2555 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2556 ClearPageLRU(page); 2556 ClearPageLRU(page);
2557 del_page_from_lru_list(page, lruvec, page_lru(page)); 2557 del_page_from_lru_list(page, lruvec, page_lru(page));
2558 was_on_lru = true; 2558 was_on_lru = true;
2559 } 2559 }
2560 } 2560 }
2561 2561
2562 pc->mem_cgroup = memcg; 2562 pc->mem_cgroup = memcg;
2563 /* 2563 /*
2564 * We access a page_cgroup asynchronously without lock_page_cgroup(). 2564 * We access a page_cgroup asynchronously without lock_page_cgroup().
2565 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup 2565 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2566 * is accessed after testing USED bit. To make pc->mem_cgroup visible 2566 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2567 * before USED bit, we need memory barrier here. 2567 * before USED bit, we need memory barrier here.
2568 * See mem_cgroup_add_lru_list(), etc. 2568 * See mem_cgroup_add_lru_list(), etc.
2569 */ 2569 */
2570 smp_wmb(); 2570 smp_wmb();
2571 SetPageCgroupUsed(pc); 2571 SetPageCgroupUsed(pc);
2572 2572
2573 if (lrucare) { 2573 if (lrucare) {
2574 if (was_on_lru) { 2574 if (was_on_lru) {
2575 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); 2575 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2576 VM_BUG_ON(PageLRU(page)); 2576 VM_BUG_ON(PageLRU(page));
2577 SetPageLRU(page); 2577 SetPageLRU(page);
2578 add_page_to_lru_list(page, lruvec, page_lru(page)); 2578 add_page_to_lru_list(page, lruvec, page_lru(page));
2579 } 2579 }
2580 spin_unlock_irq(&zone->lru_lock); 2580 spin_unlock_irq(&zone->lru_lock);
2581 } 2581 }
2582 2582
2583 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON) 2583 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2584 anon = true; 2584 anon = true;
2585 else 2585 else
2586 anon = false; 2586 anon = false;
2587 2587
2588 mem_cgroup_charge_statistics(memcg, anon, nr_pages); 2588 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2589 unlock_page_cgroup(pc); 2589 unlock_page_cgroup(pc);
2590 2590
2591 /* 2591 /*
2592 * "charge_statistics" updated event counter. Then, check it. 2592 * "charge_statistics" updated event counter. Then, check it.
2593 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree. 2593 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2594 * if they exceeds softlimit. 2594 * if they exceeds softlimit.
2595 */ 2595 */
2596 memcg_check_events(memcg, page); 2596 memcg_check_events(memcg, page);
2597 } 2597 }
2598 2598
2599 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2599 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2600 2600
2601 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION) 2601 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2602 /* 2602 /*
2603 * Because tail pages are not marked as "used", set it. We're under 2603 * Because tail pages are not marked as "used", set it. We're under
2604 * zone->lru_lock, 'splitting on pmd' and compound_lock. 2604 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2605 * charge/uncharge will be never happen and move_account() is done under 2605 * charge/uncharge will be never happen and move_account() is done under
2606 * compound_lock(), so we don't have to take care of races. 2606 * compound_lock(), so we don't have to take care of races.
2607 */ 2607 */
2608 void mem_cgroup_split_huge_fixup(struct page *head) 2608 void mem_cgroup_split_huge_fixup(struct page *head)
2609 { 2609 {
2610 struct page_cgroup *head_pc = lookup_page_cgroup(head); 2610 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2611 struct page_cgroup *pc; 2611 struct page_cgroup *pc;
2612 int i; 2612 int i;
2613 2613
2614 if (mem_cgroup_disabled()) 2614 if (mem_cgroup_disabled())
2615 return; 2615 return;
2616 for (i = 1; i < HPAGE_PMD_NR; i++) { 2616 for (i = 1; i < HPAGE_PMD_NR; i++) {
2617 pc = head_pc + i; 2617 pc = head_pc + i;
2618 pc->mem_cgroup = head_pc->mem_cgroup; 2618 pc->mem_cgroup = head_pc->mem_cgroup;
2619 smp_wmb();/* see __commit_charge() */ 2619 smp_wmb();/* see __commit_charge() */
2620 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT; 2620 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2621 } 2621 }
2622 } 2622 }
2623 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2623 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2624 2624
2625 /** 2625 /**
2626 * mem_cgroup_move_account - move account of the page 2626 * mem_cgroup_move_account - move account of the page
2627 * @page: the page 2627 * @page: the page
2628 * @nr_pages: number of regular pages (>1 for huge pages) 2628 * @nr_pages: number of regular pages (>1 for huge pages)
2629 * @pc: page_cgroup of the page. 2629 * @pc: page_cgroup of the page.
2630 * @from: mem_cgroup which the page is moved from. 2630 * @from: mem_cgroup which the page is moved from.
2631 * @to: mem_cgroup which the page is moved to. @from != @to. 2631 * @to: mem_cgroup which the page is moved to. @from != @to.
2632 * 2632 *
2633 * The caller must confirm following. 2633 * The caller must confirm following.
2634 * - page is not on LRU (isolate_page() is useful.) 2634 * - page is not on LRU (isolate_page() is useful.)
2635 * - compound_lock is held when nr_pages > 1 2635 * - compound_lock is held when nr_pages > 1
2636 * 2636 *
2637 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 2637 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2638 * from old cgroup. 2638 * from old cgroup.
2639 */ 2639 */
2640 static int mem_cgroup_move_account(struct page *page, 2640 static int mem_cgroup_move_account(struct page *page,
2641 unsigned int nr_pages, 2641 unsigned int nr_pages,
2642 struct page_cgroup *pc, 2642 struct page_cgroup *pc,
2643 struct mem_cgroup *from, 2643 struct mem_cgroup *from,
2644 struct mem_cgroup *to) 2644 struct mem_cgroup *to)
2645 { 2645 {
2646 unsigned long flags; 2646 unsigned long flags;
2647 int ret; 2647 int ret;
2648 bool anon = PageAnon(page); 2648 bool anon = PageAnon(page);
2649 2649
2650 VM_BUG_ON(from == to); 2650 VM_BUG_ON(from == to);
2651 VM_BUG_ON(PageLRU(page)); 2651 VM_BUG_ON(PageLRU(page));
2652 /* 2652 /*
2653 * The page is isolated from LRU. So, collapse function 2653 * The page is isolated from LRU. So, collapse function
2654 * will not handle this page. But page splitting can happen. 2654 * will not handle this page. But page splitting can happen.
2655 * Do this check under compound_page_lock(). The caller should 2655 * Do this check under compound_page_lock(). The caller should
2656 * hold it. 2656 * hold it.
2657 */ 2657 */
2658 ret = -EBUSY; 2658 ret = -EBUSY;
2659 if (nr_pages > 1 && !PageTransHuge(page)) 2659 if (nr_pages > 1 && !PageTransHuge(page))
2660 goto out; 2660 goto out;
2661 2661
2662 lock_page_cgroup(pc); 2662 lock_page_cgroup(pc);
2663 2663
2664 ret = -EINVAL; 2664 ret = -EINVAL;
2665 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from) 2665 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2666 goto unlock; 2666 goto unlock;
2667 2667
2668 move_lock_mem_cgroup(from, &flags); 2668 move_lock_mem_cgroup(from, &flags);
2669 2669
2670 if (!anon && page_mapped(page)) { 2670 if (!anon && page_mapped(page)) {
2671 /* Update mapped_file data for mem_cgroup */ 2671 /* Update mapped_file data for mem_cgroup */
2672 preempt_disable(); 2672 preempt_disable();
2673 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); 2673 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2674 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); 2674 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2675 preempt_enable(); 2675 preempt_enable();
2676 } 2676 }
2677 mem_cgroup_charge_statistics(from, anon, -nr_pages); 2677 mem_cgroup_charge_statistics(from, anon, -nr_pages);
2678 2678
2679 /* caller should have done css_get */ 2679 /* caller should have done css_get */
2680 pc->mem_cgroup = to; 2680 pc->mem_cgroup = to;
2681 mem_cgroup_charge_statistics(to, anon, nr_pages); 2681 mem_cgroup_charge_statistics(to, anon, nr_pages);
2682 /* 2682 /*
2683 * We charges against "to" which may not have any tasks. Then, "to" 2683 * We charges against "to" which may not have any tasks. Then, "to"
2684 * can be under rmdir(). But in current implementation, caller of 2684 * can be under rmdir(). But in current implementation, caller of
2685 * this function is just force_empty() and move charge, so it's 2685 * this function is just force_empty() and move charge, so it's
2686 * guaranteed that "to" is never removed. So, we don't check rmdir 2686 * guaranteed that "to" is never removed. So, we don't check rmdir
2687 * status here. 2687 * status here.
2688 */ 2688 */
2689 move_unlock_mem_cgroup(from, &flags); 2689 move_unlock_mem_cgroup(from, &flags);
2690 ret = 0; 2690 ret = 0;
2691 unlock: 2691 unlock:
2692 unlock_page_cgroup(pc); 2692 unlock_page_cgroup(pc);
2693 /* 2693 /*
2694 * check events 2694 * check events
2695 */ 2695 */
2696 memcg_check_events(to, page); 2696 memcg_check_events(to, page);
2697 memcg_check_events(from, page); 2697 memcg_check_events(from, page);
2698 out: 2698 out:
2699 return ret; 2699 return ret;
2700 } 2700 }
2701 2701
2702 /* 2702 /*
2703 * move charges to its parent. 2703 * move charges to its parent.
2704 */ 2704 */
2705 2705
2706 static int mem_cgroup_move_parent(struct page *page, 2706 static int mem_cgroup_move_parent(struct page *page,
2707 struct page_cgroup *pc, 2707 struct page_cgroup *pc,
2708 struct mem_cgroup *child) 2708 struct mem_cgroup *child)
2709 { 2709 {
2710 struct mem_cgroup *parent; 2710 struct mem_cgroup *parent;
2711 unsigned int nr_pages; 2711 unsigned int nr_pages;
2712 unsigned long uninitialized_var(flags); 2712 unsigned long uninitialized_var(flags);
2713 int ret; 2713 int ret;
2714 2714
2715 /* Is ROOT ? */ 2715 /* Is ROOT ? */
2716 if (mem_cgroup_is_root(child)) 2716 if (mem_cgroup_is_root(child))
2717 return -EINVAL; 2717 return -EINVAL;
2718 2718
2719 ret = -EBUSY; 2719 ret = -EBUSY;
2720 if (!get_page_unless_zero(page)) 2720 if (!get_page_unless_zero(page))
2721 goto out; 2721 goto out;
2722 if (isolate_lru_page(page)) 2722 if (isolate_lru_page(page))
2723 goto put; 2723 goto put;
2724 2724
2725 nr_pages = hpage_nr_pages(page); 2725 nr_pages = hpage_nr_pages(page);
2726 2726
2727 parent = parent_mem_cgroup(child); 2727 parent = parent_mem_cgroup(child);
2728 /* 2728 /*
2729 * If no parent, move charges to root cgroup. 2729 * If no parent, move charges to root cgroup.
2730 */ 2730 */
2731 if (!parent) 2731 if (!parent)
2732 parent = root_mem_cgroup; 2732 parent = root_mem_cgroup;
2733 2733
2734 if (nr_pages > 1) 2734 if (nr_pages > 1)
2735 flags = compound_lock_irqsave(page); 2735 flags = compound_lock_irqsave(page);
2736 2736
2737 ret = mem_cgroup_move_account(page, nr_pages, 2737 ret = mem_cgroup_move_account(page, nr_pages,
2738 pc, child, parent); 2738 pc, child, parent);
2739 if (!ret) 2739 if (!ret)
2740 __mem_cgroup_cancel_local_charge(child, nr_pages); 2740 __mem_cgroup_cancel_local_charge(child, nr_pages);
2741 2741
2742 if (nr_pages > 1) 2742 if (nr_pages > 1)
2743 compound_unlock_irqrestore(page, flags); 2743 compound_unlock_irqrestore(page, flags);
2744 putback_lru_page(page); 2744 putback_lru_page(page);
2745 put: 2745 put:
2746 put_page(page); 2746 put_page(page);
2747 out: 2747 out:
2748 return ret; 2748 return ret;
2749 } 2749 }
2750 2750
2751 /* 2751 /*
2752 * Charge the memory controller for page usage. 2752 * Charge the memory controller for page usage.
2753 * Return 2753 * Return
2754 * 0 if the charge was successful 2754 * 0 if the charge was successful
2755 * < 0 if the cgroup is over its limit 2755 * < 0 if the cgroup is over its limit
2756 */ 2756 */
2757 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, 2757 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2758 gfp_t gfp_mask, enum charge_type ctype) 2758 gfp_t gfp_mask, enum charge_type ctype)
2759 { 2759 {
2760 struct mem_cgroup *memcg = NULL; 2760 struct mem_cgroup *memcg = NULL;
2761 unsigned int nr_pages = 1; 2761 unsigned int nr_pages = 1;
2762 bool oom = true; 2762 bool oom = true;
2763 int ret; 2763 int ret;
2764 2764
2765 if (PageTransHuge(page)) { 2765 if (PageTransHuge(page)) {
2766 nr_pages <<= compound_order(page); 2766 nr_pages <<= compound_order(page);
2767 VM_BUG_ON(!PageTransHuge(page)); 2767 VM_BUG_ON(!PageTransHuge(page));
2768 /* 2768 /*
2769 * Never OOM-kill a process for a huge page. The 2769 * Never OOM-kill a process for a huge page. The
2770 * fault handler will fall back to regular pages. 2770 * fault handler will fall back to regular pages.
2771 */ 2771 */
2772 oom = false; 2772 oom = false;
2773 } 2773 }
2774 2774
2775 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom); 2775 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2776 if (ret == -ENOMEM) 2776 if (ret == -ENOMEM)
2777 return ret; 2777 return ret;
2778 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false); 2778 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2779 return 0; 2779 return 0;
2780 } 2780 }
2781 2781
2782 int mem_cgroup_newpage_charge(struct page *page, 2782 int mem_cgroup_newpage_charge(struct page *page,
2783 struct mm_struct *mm, gfp_t gfp_mask) 2783 struct mm_struct *mm, gfp_t gfp_mask)
2784 { 2784 {
2785 if (mem_cgroup_disabled()) 2785 if (mem_cgroup_disabled())
2786 return 0; 2786 return 0;
2787 VM_BUG_ON(page_mapped(page)); 2787 VM_BUG_ON(page_mapped(page));
2788 VM_BUG_ON(page->mapping && !PageAnon(page)); 2788 VM_BUG_ON(page->mapping && !PageAnon(page));
2789 VM_BUG_ON(!mm); 2789 VM_BUG_ON(!mm);
2790 return mem_cgroup_charge_common(page, mm, gfp_mask, 2790 return mem_cgroup_charge_common(page, mm, gfp_mask,
2791 MEM_CGROUP_CHARGE_TYPE_ANON); 2791 MEM_CGROUP_CHARGE_TYPE_ANON);
2792 } 2792 }
2793 2793
2794 /* 2794 /*
2795 * While swap-in, try_charge -> commit or cancel, the page is locked. 2795 * While swap-in, try_charge -> commit or cancel, the page is locked.
2796 * And when try_charge() successfully returns, one refcnt to memcg without 2796 * And when try_charge() successfully returns, one refcnt to memcg without
2797 * struct page_cgroup is acquired. This refcnt will be consumed by 2797 * struct page_cgroup is acquired. This refcnt will be consumed by
2798 * "commit()" or removed by "cancel()" 2798 * "commit()" or removed by "cancel()"
2799 */ 2799 */
2800 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm, 2800 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2801 struct page *page, 2801 struct page *page,
2802 gfp_t mask, 2802 gfp_t mask,
2803 struct mem_cgroup **memcgp) 2803 struct mem_cgroup **memcgp)
2804 { 2804 {
2805 struct mem_cgroup *memcg; 2805 struct mem_cgroup *memcg;
2806 struct page_cgroup *pc; 2806 struct page_cgroup *pc;
2807 int ret; 2807 int ret;
2808 2808
2809 pc = lookup_page_cgroup(page); 2809 pc = lookup_page_cgroup(page);
2810 /* 2810 /*
2811 * Every swap fault against a single page tries to charge the 2811 * Every swap fault against a single page tries to charge the
2812 * page, bail as early as possible. shmem_unuse() encounters 2812 * page, bail as early as possible. shmem_unuse() encounters
2813 * already charged pages, too. The USED bit is protected by 2813 * already charged pages, too. The USED bit is protected by
2814 * the page lock, which serializes swap cache removal, which 2814 * the page lock, which serializes swap cache removal, which
2815 * in turn serializes uncharging. 2815 * in turn serializes uncharging.
2816 */ 2816 */
2817 if (PageCgroupUsed(pc)) 2817 if (PageCgroupUsed(pc))
2818 return 0; 2818 return 0;
2819 if (!do_swap_account) 2819 if (!do_swap_account)
2820 goto charge_cur_mm; 2820 goto charge_cur_mm;
2821 /*
2822 * A racing thread's fault, or swapoff, may have already updated
2823 * the pte, and even removed page from swap cache: in those cases
2824 * do_swap_page()'s pte_same() test will fail; but there's also a
2825 * KSM case which does need to charge the page.
2826 */
2827 if (!PageSwapCache(page))
2828 goto charge_cur_mm;
2829 memcg = try_get_mem_cgroup_from_page(page); 2821 memcg = try_get_mem_cgroup_from_page(page);
2830 if (!memcg) 2822 if (!memcg)
2831 goto charge_cur_mm; 2823 goto charge_cur_mm;
2832 *memcgp = memcg; 2824 *memcgp = memcg;
2833 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true); 2825 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2834 css_put(&memcg->css); 2826 css_put(&memcg->css);
2835 if (ret == -EINTR) 2827 if (ret == -EINTR)
2836 ret = 0; 2828 ret = 0;
2837 return ret; 2829 return ret;
2838 charge_cur_mm: 2830 charge_cur_mm:
2839 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true); 2831 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2840 if (ret == -EINTR) 2832 if (ret == -EINTR)
2841 ret = 0; 2833 ret = 0;
2842 return ret; 2834 return ret;
2843 } 2835 }
2844 2836
2845 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page, 2837 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
2846 gfp_t gfp_mask, struct mem_cgroup **memcgp) 2838 gfp_t gfp_mask, struct mem_cgroup **memcgp)
2847 { 2839 {
2848 *memcgp = NULL; 2840 *memcgp = NULL;
2849 if (mem_cgroup_disabled()) 2841 if (mem_cgroup_disabled())
2850 return 0; 2842 return 0;
2843 /*
2844 * A racing thread's fault, or swapoff, may have already
2845 * updated the pte, and even removed page from swap cache: in
2846 * those cases unuse_pte()'s pte_same() test will fail; but
2847 * there's also a KSM case which does need to charge the page.
2848 */
2849 if (!PageSwapCache(page)) {
2850 int ret;
2851
2852 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
2853 if (ret == -EINTR)
2854 ret = 0;
2855 return ret;
2856 }
2851 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp); 2857 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
2852 } 2858 }
2853 2859
2854 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg) 2860 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2855 { 2861 {
2856 if (mem_cgroup_disabled()) 2862 if (mem_cgroup_disabled())
2857 return; 2863 return;
2858 if (!memcg) 2864 if (!memcg)
2859 return; 2865 return;
2860 __mem_cgroup_cancel_charge(memcg, 1); 2866 __mem_cgroup_cancel_charge(memcg, 1);
2861 } 2867 }
2862 2868
2863 static void 2869 static void
2864 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg, 2870 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2865 enum charge_type ctype) 2871 enum charge_type ctype)
2866 { 2872 {
2867 if (mem_cgroup_disabled()) 2873 if (mem_cgroup_disabled())
2868 return; 2874 return;
2869 if (!memcg) 2875 if (!memcg)
2870 return; 2876 return;
2871 cgroup_exclude_rmdir(&memcg->css); 2877 cgroup_exclude_rmdir(&memcg->css);
2872 2878
2873 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true); 2879 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2874 /* 2880 /*
2875 * Now swap is on-memory. This means this page may be 2881 * Now swap is on-memory. This means this page may be
2876 * counted both as mem and swap....double count. 2882 * counted both as mem and swap....double count.
2877 * Fix it by uncharging from memsw. Basically, this SwapCache is stable 2883 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2878 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() 2884 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2879 * may call delete_from_swap_cache() before reach here. 2885 * may call delete_from_swap_cache() before reach here.
2880 */ 2886 */
2881 if (do_swap_account && PageSwapCache(page)) { 2887 if (do_swap_account && PageSwapCache(page)) {
2882 swp_entry_t ent = {.val = page_private(page)}; 2888 swp_entry_t ent = {.val = page_private(page)};
2883 mem_cgroup_uncharge_swap(ent); 2889 mem_cgroup_uncharge_swap(ent);
2884 } 2890 }
2885 /* 2891 /*
2886 * At swapin, we may charge account against cgroup which has no tasks. 2892 * At swapin, we may charge account against cgroup which has no tasks.
2887 * So, rmdir()->pre_destroy() can be called while we do this charge. 2893 * So, rmdir()->pre_destroy() can be called while we do this charge.
2888 * In that case, we need to call pre_destroy() again. check it here. 2894 * In that case, we need to call pre_destroy() again. check it here.
2889 */ 2895 */
2890 cgroup_release_and_wakeup_rmdir(&memcg->css); 2896 cgroup_release_and_wakeup_rmdir(&memcg->css);
2891 } 2897 }
2892 2898
2893 void mem_cgroup_commit_charge_swapin(struct page *page, 2899 void mem_cgroup_commit_charge_swapin(struct page *page,
2894 struct mem_cgroup *memcg) 2900 struct mem_cgroup *memcg)
2895 { 2901 {
2896 __mem_cgroup_commit_charge_swapin(page, memcg, 2902 __mem_cgroup_commit_charge_swapin(page, memcg,
2897 MEM_CGROUP_CHARGE_TYPE_ANON); 2903 MEM_CGROUP_CHARGE_TYPE_ANON);
2898 } 2904 }
2899 2905
2900 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, 2906 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2901 gfp_t gfp_mask) 2907 gfp_t gfp_mask)
2902 { 2908 {
2903 struct mem_cgroup *memcg = NULL; 2909 struct mem_cgroup *memcg = NULL;
2904 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 2910 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2905 int ret; 2911 int ret;
2906 2912
2907 if (mem_cgroup_disabled()) 2913 if (mem_cgroup_disabled())
2908 return 0; 2914 return 0;
2909 if (PageCompound(page)) 2915 if (PageCompound(page))
2910 return 0; 2916 return 0;
2911 2917
2912 if (!PageSwapCache(page)) 2918 if (!PageSwapCache(page))
2913 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type); 2919 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2914 else { /* page is swapcache/shmem */ 2920 else { /* page is swapcache/shmem */
2915 ret = __mem_cgroup_try_charge_swapin(mm, page, 2921 ret = __mem_cgroup_try_charge_swapin(mm, page,
2916 gfp_mask, &memcg); 2922 gfp_mask, &memcg);
2917 if (!ret) 2923 if (!ret)
2918 __mem_cgroup_commit_charge_swapin(page, memcg, type); 2924 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2919 } 2925 }
2920 return ret; 2926 return ret;
2921 } 2927 }
2922 2928
2923 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg, 2929 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2924 unsigned int nr_pages, 2930 unsigned int nr_pages,
2925 const enum charge_type ctype) 2931 const enum charge_type ctype)
2926 { 2932 {
2927 struct memcg_batch_info *batch = NULL; 2933 struct memcg_batch_info *batch = NULL;
2928 bool uncharge_memsw = true; 2934 bool uncharge_memsw = true;
2929 2935
2930 /* If swapout, usage of swap doesn't decrease */ 2936 /* If swapout, usage of swap doesn't decrease */
2931 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) 2937 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2932 uncharge_memsw = false; 2938 uncharge_memsw = false;
2933 2939
2934 batch = &current->memcg_batch; 2940 batch = &current->memcg_batch;
2935 /* 2941 /*
2936 * In usual, we do css_get() when we remember memcg pointer. 2942 * In usual, we do css_get() when we remember memcg pointer.
2937 * But in this case, we keep res->usage until end of a series of 2943 * But in this case, we keep res->usage until end of a series of
2938 * uncharges. Then, it's ok to ignore memcg's refcnt. 2944 * uncharges. Then, it's ok to ignore memcg's refcnt.
2939 */ 2945 */
2940 if (!batch->memcg) 2946 if (!batch->memcg)
2941 batch->memcg = memcg; 2947 batch->memcg = memcg;
2942 /* 2948 /*
2943 * do_batch > 0 when unmapping pages or inode invalidate/truncate. 2949 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2944 * In those cases, all pages freed continuously can be expected to be in 2950 * In those cases, all pages freed continuously can be expected to be in
2945 * the same cgroup and we have chance to coalesce uncharges. 2951 * the same cgroup and we have chance to coalesce uncharges.
2946 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE) 2952 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2947 * because we want to do uncharge as soon as possible. 2953 * because we want to do uncharge as soon as possible.
2948 */ 2954 */
2949 2955
2950 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE)) 2956 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2951 goto direct_uncharge; 2957 goto direct_uncharge;
2952 2958
2953 if (nr_pages > 1) 2959 if (nr_pages > 1)
2954 goto direct_uncharge; 2960 goto direct_uncharge;
2955 2961
2956 /* 2962 /*
2957 * In typical case, batch->memcg == mem. This means we can 2963 * In typical case, batch->memcg == mem. This means we can
2958 * merge a series of uncharges to an uncharge of res_counter. 2964 * merge a series of uncharges to an uncharge of res_counter.
2959 * If not, we uncharge res_counter ony by one. 2965 * If not, we uncharge res_counter ony by one.
2960 */ 2966 */
2961 if (batch->memcg != memcg) 2967 if (batch->memcg != memcg)
2962 goto direct_uncharge; 2968 goto direct_uncharge;
2963 /* remember freed charge and uncharge it later */ 2969 /* remember freed charge and uncharge it later */
2964 batch->nr_pages++; 2970 batch->nr_pages++;
2965 if (uncharge_memsw) 2971 if (uncharge_memsw)
2966 batch->memsw_nr_pages++; 2972 batch->memsw_nr_pages++;
2967 return; 2973 return;
2968 direct_uncharge: 2974 direct_uncharge:
2969 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE); 2975 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2970 if (uncharge_memsw) 2976 if (uncharge_memsw)
2971 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE); 2977 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2972 if (unlikely(batch->memcg != memcg)) 2978 if (unlikely(batch->memcg != memcg))
2973 memcg_oom_recover(memcg); 2979 memcg_oom_recover(memcg);
2974 } 2980 }
2975 2981
2976 /* 2982 /*
2977 * uncharge if !page_mapped(page) 2983 * uncharge if !page_mapped(page)
2978 */ 2984 */
2979 static struct mem_cgroup * 2985 static struct mem_cgroup *
2980 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype, 2986 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
2981 bool end_migration) 2987 bool end_migration)
2982 { 2988 {
2983 struct mem_cgroup *memcg = NULL; 2989 struct mem_cgroup *memcg = NULL;
2984 unsigned int nr_pages = 1; 2990 unsigned int nr_pages = 1;
2985 struct page_cgroup *pc; 2991 struct page_cgroup *pc;
2986 bool anon; 2992 bool anon;
2987 2993
2988 if (mem_cgroup_disabled()) 2994 if (mem_cgroup_disabled())
2989 return NULL; 2995 return NULL;
2990 2996
2991 VM_BUG_ON(PageSwapCache(page)); 2997 VM_BUG_ON(PageSwapCache(page));
2992 2998
2993 if (PageTransHuge(page)) { 2999 if (PageTransHuge(page)) {
2994 nr_pages <<= compound_order(page); 3000 nr_pages <<= compound_order(page);
2995 VM_BUG_ON(!PageTransHuge(page)); 3001 VM_BUG_ON(!PageTransHuge(page));
2996 } 3002 }
2997 /* 3003 /*
2998 * Check if our page_cgroup is valid 3004 * Check if our page_cgroup is valid
2999 */ 3005 */
3000 pc = lookup_page_cgroup(page); 3006 pc = lookup_page_cgroup(page);
3001 if (unlikely(!PageCgroupUsed(pc))) 3007 if (unlikely(!PageCgroupUsed(pc)))
3002 return NULL; 3008 return NULL;
3003 3009
3004 lock_page_cgroup(pc); 3010 lock_page_cgroup(pc);
3005 3011
3006 memcg = pc->mem_cgroup; 3012 memcg = pc->mem_cgroup;
3007 3013
3008 if (!PageCgroupUsed(pc)) 3014 if (!PageCgroupUsed(pc))
3009 goto unlock_out; 3015 goto unlock_out;
3010 3016
3011 anon = PageAnon(page); 3017 anon = PageAnon(page);
3012 3018
3013 switch (ctype) { 3019 switch (ctype) {
3014 case MEM_CGROUP_CHARGE_TYPE_ANON: 3020 case MEM_CGROUP_CHARGE_TYPE_ANON:
3015 /* 3021 /*
3016 * Generally PageAnon tells if it's the anon statistics to be 3022 * Generally PageAnon tells if it's the anon statistics to be
3017 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is 3023 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3018 * used before page reached the stage of being marked PageAnon. 3024 * used before page reached the stage of being marked PageAnon.
3019 */ 3025 */
3020 anon = true; 3026 anon = true;
3021 /* fallthrough */ 3027 /* fallthrough */
3022 case MEM_CGROUP_CHARGE_TYPE_DROP: 3028 case MEM_CGROUP_CHARGE_TYPE_DROP:
3023 /* See mem_cgroup_prepare_migration() */ 3029 /* See mem_cgroup_prepare_migration() */
3024 if (page_mapped(page)) 3030 if (page_mapped(page))
3025 goto unlock_out; 3031 goto unlock_out;
3026 /* 3032 /*
3027 * Pages under migration may not be uncharged. But 3033 * Pages under migration may not be uncharged. But
3028 * end_migration() /must/ be the one uncharging the 3034 * end_migration() /must/ be the one uncharging the
3029 * unused post-migration page and so it has to call 3035 * unused post-migration page and so it has to call
3030 * here with the migration bit still set. See the 3036 * here with the migration bit still set. See the
3031 * res_counter handling below. 3037 * res_counter handling below.
3032 */ 3038 */
3033 if (!end_migration && PageCgroupMigration(pc)) 3039 if (!end_migration && PageCgroupMigration(pc))
3034 goto unlock_out; 3040 goto unlock_out;
3035 break; 3041 break;
3036 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: 3042 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3037 if (!PageAnon(page)) { /* Shared memory */ 3043 if (!PageAnon(page)) { /* Shared memory */
3038 if (page->mapping && !page_is_file_cache(page)) 3044 if (page->mapping && !page_is_file_cache(page))
3039 goto unlock_out; 3045 goto unlock_out;
3040 } else if (page_mapped(page)) /* Anon */ 3046 } else if (page_mapped(page)) /* Anon */
3041 goto unlock_out; 3047 goto unlock_out;
3042 break; 3048 break;
3043 default: 3049 default:
3044 break; 3050 break;
3045 } 3051 }
3046 3052
3047 mem_cgroup_charge_statistics(memcg, anon, -nr_pages); 3053 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
3048 3054
3049 ClearPageCgroupUsed(pc); 3055 ClearPageCgroupUsed(pc);
3050 /* 3056 /*
3051 * pc->mem_cgroup is not cleared here. It will be accessed when it's 3057 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3052 * freed from LRU. This is safe because uncharged page is expected not 3058 * freed from LRU. This is safe because uncharged page is expected not
3053 * to be reused (freed soon). Exception is SwapCache, it's handled by 3059 * to be reused (freed soon). Exception is SwapCache, it's handled by
3054 * special functions. 3060 * special functions.
3055 */ 3061 */
3056 3062
3057 unlock_page_cgroup(pc); 3063 unlock_page_cgroup(pc);
3058 /* 3064 /*
3059 * even after unlock, we have memcg->res.usage here and this memcg 3065 * even after unlock, we have memcg->res.usage here and this memcg
3060 * will never be freed. 3066 * will never be freed.
3061 */ 3067 */
3062 memcg_check_events(memcg, page); 3068 memcg_check_events(memcg, page);
3063 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { 3069 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3064 mem_cgroup_swap_statistics(memcg, true); 3070 mem_cgroup_swap_statistics(memcg, true);
3065 mem_cgroup_get(memcg); 3071 mem_cgroup_get(memcg);
3066 } 3072 }
3067 /* 3073 /*
3068 * Migration does not charge the res_counter for the 3074 * Migration does not charge the res_counter for the
3069 * replacement page, so leave it alone when phasing out the 3075 * replacement page, so leave it alone when phasing out the
3070 * page that is unused after the migration. 3076 * page that is unused after the migration.
3071 */ 3077 */
3072 if (!end_migration && !mem_cgroup_is_root(memcg)) 3078 if (!end_migration && !mem_cgroup_is_root(memcg))
3073 mem_cgroup_do_uncharge(memcg, nr_pages, ctype); 3079 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3074 3080
3075 return memcg; 3081 return memcg;
3076 3082
3077 unlock_out: 3083 unlock_out:
3078 unlock_page_cgroup(pc); 3084 unlock_page_cgroup(pc);
3079 return NULL; 3085 return NULL;
3080 } 3086 }
3081 3087
3082 void mem_cgroup_uncharge_page(struct page *page) 3088 void mem_cgroup_uncharge_page(struct page *page)
3083 { 3089 {
3084 /* early check. */ 3090 /* early check. */
3085 if (page_mapped(page)) 3091 if (page_mapped(page))
3086 return; 3092 return;
3087 VM_BUG_ON(page->mapping && !PageAnon(page)); 3093 VM_BUG_ON(page->mapping && !PageAnon(page));
3088 if (PageSwapCache(page)) 3094 if (PageSwapCache(page))
3089 return; 3095 return;
3090 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false); 3096 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
3091 } 3097 }
3092 3098
3093 void mem_cgroup_uncharge_cache_page(struct page *page) 3099 void mem_cgroup_uncharge_cache_page(struct page *page)
3094 { 3100 {
3095 VM_BUG_ON(page_mapped(page)); 3101 VM_BUG_ON(page_mapped(page));
3096 VM_BUG_ON(page->mapping); 3102 VM_BUG_ON(page->mapping);
3097 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false); 3103 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
3098 } 3104 }
3099 3105
3100 /* 3106 /*
3101 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate. 3107 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3102 * In that cases, pages are freed continuously and we can expect pages 3108 * In that cases, pages are freed continuously and we can expect pages
3103 * are in the same memcg. All these calls itself limits the number of 3109 * are in the same memcg. All these calls itself limits the number of
3104 * pages freed at once, then uncharge_start/end() is called properly. 3110 * pages freed at once, then uncharge_start/end() is called properly.
3105 * This may be called prural(2) times in a context, 3111 * This may be called prural(2) times in a context,
3106 */ 3112 */
3107 3113
3108 void mem_cgroup_uncharge_start(void) 3114 void mem_cgroup_uncharge_start(void)
3109 { 3115 {
3110 current->memcg_batch.do_batch++; 3116 current->memcg_batch.do_batch++;
3111 /* We can do nest. */ 3117 /* We can do nest. */
3112 if (current->memcg_batch.do_batch == 1) { 3118 if (current->memcg_batch.do_batch == 1) {
3113 current->memcg_batch.memcg = NULL; 3119 current->memcg_batch.memcg = NULL;
3114 current->memcg_batch.nr_pages = 0; 3120 current->memcg_batch.nr_pages = 0;
3115 current->memcg_batch.memsw_nr_pages = 0; 3121 current->memcg_batch.memsw_nr_pages = 0;
3116 } 3122 }
3117 } 3123 }
3118 3124
3119 void mem_cgroup_uncharge_end(void) 3125 void mem_cgroup_uncharge_end(void)
3120 { 3126 {
3121 struct memcg_batch_info *batch = &current->memcg_batch; 3127 struct memcg_batch_info *batch = &current->memcg_batch;
3122 3128
3123 if (!batch->do_batch) 3129 if (!batch->do_batch)
3124 return; 3130 return;
3125 3131
3126 batch->do_batch--; 3132 batch->do_batch--;
3127 if (batch->do_batch) /* If stacked, do nothing. */ 3133 if (batch->do_batch) /* If stacked, do nothing. */
3128 return; 3134 return;
3129 3135
3130 if (!batch->memcg) 3136 if (!batch->memcg)
3131 return; 3137 return;
3132 /* 3138 /*
3133 * This "batch->memcg" is valid without any css_get/put etc... 3139 * This "batch->memcg" is valid without any css_get/put etc...
3134 * bacause we hide charges behind us. 3140 * bacause we hide charges behind us.
3135 */ 3141 */
3136 if (batch->nr_pages) 3142 if (batch->nr_pages)
3137 res_counter_uncharge(&batch->memcg->res, 3143 res_counter_uncharge(&batch->memcg->res,
3138 batch->nr_pages * PAGE_SIZE); 3144 batch->nr_pages * PAGE_SIZE);
3139 if (batch->memsw_nr_pages) 3145 if (batch->memsw_nr_pages)
3140 res_counter_uncharge(&batch->memcg->memsw, 3146 res_counter_uncharge(&batch->memcg->memsw,
3141 batch->memsw_nr_pages * PAGE_SIZE); 3147 batch->memsw_nr_pages * PAGE_SIZE);
3142 memcg_oom_recover(batch->memcg); 3148 memcg_oom_recover(batch->memcg);
3143 /* forget this pointer (for sanity check) */ 3149 /* forget this pointer (for sanity check) */
3144 batch->memcg = NULL; 3150 batch->memcg = NULL;
3145 } 3151 }
3146 3152
3147 #ifdef CONFIG_SWAP 3153 #ifdef CONFIG_SWAP
3148 /* 3154 /*
3149 * called after __delete_from_swap_cache() and drop "page" account. 3155 * called after __delete_from_swap_cache() and drop "page" account.
3150 * memcg information is recorded to swap_cgroup of "ent" 3156 * memcg information is recorded to swap_cgroup of "ent"
3151 */ 3157 */
3152 void 3158 void
3153 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) 3159 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3154 { 3160 {
3155 struct mem_cgroup *memcg; 3161 struct mem_cgroup *memcg;
3156 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT; 3162 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3157 3163
3158 if (!swapout) /* this was a swap cache but the swap is unused ! */ 3164 if (!swapout) /* this was a swap cache but the swap is unused ! */
3159 ctype = MEM_CGROUP_CHARGE_TYPE_DROP; 3165 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3160 3166
3161 memcg = __mem_cgroup_uncharge_common(page, ctype, false); 3167 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
3162 3168
3163 /* 3169 /*
3164 * record memcg information, if swapout && memcg != NULL, 3170 * record memcg information, if swapout && memcg != NULL,
3165 * mem_cgroup_get() was called in uncharge(). 3171 * mem_cgroup_get() was called in uncharge().
3166 */ 3172 */
3167 if (do_swap_account && swapout && memcg) 3173 if (do_swap_account && swapout && memcg)
3168 swap_cgroup_record(ent, css_id(&memcg->css)); 3174 swap_cgroup_record(ent, css_id(&memcg->css));
3169 } 3175 }
3170 #endif 3176 #endif
3171 3177
3172 #ifdef CONFIG_MEMCG_SWAP 3178 #ifdef CONFIG_MEMCG_SWAP
3173 /* 3179 /*
3174 * called from swap_entry_free(). remove record in swap_cgroup and 3180 * called from swap_entry_free(). remove record in swap_cgroup and
3175 * uncharge "memsw" account. 3181 * uncharge "memsw" account.
3176 */ 3182 */
3177 void mem_cgroup_uncharge_swap(swp_entry_t ent) 3183 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3178 { 3184 {
3179 struct mem_cgroup *memcg; 3185 struct mem_cgroup *memcg;
3180 unsigned short id; 3186 unsigned short id;
3181 3187
3182 if (!do_swap_account) 3188 if (!do_swap_account)
3183 return; 3189 return;
3184 3190
3185 id = swap_cgroup_record(ent, 0); 3191 id = swap_cgroup_record(ent, 0);
3186 rcu_read_lock(); 3192 rcu_read_lock();
3187 memcg = mem_cgroup_lookup(id); 3193 memcg = mem_cgroup_lookup(id);
3188 if (memcg) { 3194 if (memcg) {
3189 /* 3195 /*
3190 * We uncharge this because swap is freed. 3196 * We uncharge this because swap is freed.
3191 * This memcg can be obsolete one. We avoid calling css_tryget 3197 * This memcg can be obsolete one. We avoid calling css_tryget
3192 */ 3198 */
3193 if (!mem_cgroup_is_root(memcg)) 3199 if (!mem_cgroup_is_root(memcg))
3194 res_counter_uncharge(&memcg->memsw, PAGE_SIZE); 3200 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3195 mem_cgroup_swap_statistics(memcg, false); 3201 mem_cgroup_swap_statistics(memcg, false);
3196 mem_cgroup_put(memcg); 3202 mem_cgroup_put(memcg);
3197 } 3203 }
3198 rcu_read_unlock(); 3204 rcu_read_unlock();
3199 } 3205 }
3200 3206
3201 /** 3207 /**
3202 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3208 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3203 * @entry: swap entry to be moved 3209 * @entry: swap entry to be moved
3204 * @from: mem_cgroup which the entry is moved from 3210 * @from: mem_cgroup which the entry is moved from
3205 * @to: mem_cgroup which the entry is moved to 3211 * @to: mem_cgroup which the entry is moved to
3206 * 3212 *
3207 * It succeeds only when the swap_cgroup's record for this entry is the same 3213 * It succeeds only when the swap_cgroup's record for this entry is the same
3208 * as the mem_cgroup's id of @from. 3214 * as the mem_cgroup's id of @from.
3209 * 3215 *
3210 * Returns 0 on success, -EINVAL on failure. 3216 * Returns 0 on success, -EINVAL on failure.
3211 * 3217 *
3212 * The caller must have charged to @to, IOW, called res_counter_charge() about 3218 * The caller must have charged to @to, IOW, called res_counter_charge() about
3213 * both res and memsw, and called css_get(). 3219 * both res and memsw, and called css_get().
3214 */ 3220 */
3215 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3221 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3216 struct mem_cgroup *from, struct mem_cgroup *to) 3222 struct mem_cgroup *from, struct mem_cgroup *to)
3217 { 3223 {
3218 unsigned short old_id, new_id; 3224 unsigned short old_id, new_id;
3219 3225
3220 old_id = css_id(&from->css); 3226 old_id = css_id(&from->css);
3221 new_id = css_id(&to->css); 3227 new_id = css_id(&to->css);
3222 3228
3223 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3229 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3224 mem_cgroup_swap_statistics(from, false); 3230 mem_cgroup_swap_statistics(from, false);
3225 mem_cgroup_swap_statistics(to, true); 3231 mem_cgroup_swap_statistics(to, true);
3226 /* 3232 /*
3227 * This function is only called from task migration context now. 3233 * This function is only called from task migration context now.
3228 * It postpones res_counter and refcount handling till the end 3234 * It postpones res_counter and refcount handling till the end
3229 * of task migration(mem_cgroup_clear_mc()) for performance 3235 * of task migration(mem_cgroup_clear_mc()) for performance
3230 * improvement. But we cannot postpone mem_cgroup_get(to) 3236 * improvement. But we cannot postpone mem_cgroup_get(to)
3231 * because if the process that has been moved to @to does 3237 * because if the process that has been moved to @to does
3232 * swap-in, the refcount of @to might be decreased to 0. 3238 * swap-in, the refcount of @to might be decreased to 0.
3233 */ 3239 */
3234 mem_cgroup_get(to); 3240 mem_cgroup_get(to);
3235 return 0; 3241 return 0;
3236 } 3242 }
3237 return -EINVAL; 3243 return -EINVAL;
3238 } 3244 }
3239 #else 3245 #else
3240 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3246 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3241 struct mem_cgroup *from, struct mem_cgroup *to) 3247 struct mem_cgroup *from, struct mem_cgroup *to)
3242 { 3248 {
3243 return -EINVAL; 3249 return -EINVAL;
3244 } 3250 }
3245 #endif 3251 #endif
3246 3252
3247 /* 3253 /*
3248 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old 3254 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3249 * page belongs to. 3255 * page belongs to.
3250 */ 3256 */
3251 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage, 3257 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
3252 struct mem_cgroup **memcgp) 3258 struct mem_cgroup **memcgp)
3253 { 3259 {
3254 struct mem_cgroup *memcg = NULL; 3260 struct mem_cgroup *memcg = NULL;
3255 struct page_cgroup *pc; 3261 struct page_cgroup *pc;
3256 enum charge_type ctype; 3262 enum charge_type ctype;
3257 3263
3258 *memcgp = NULL; 3264 *memcgp = NULL;
3259 3265
3260 VM_BUG_ON(PageTransHuge(page)); 3266 VM_BUG_ON(PageTransHuge(page));
3261 if (mem_cgroup_disabled()) 3267 if (mem_cgroup_disabled())
3262 return; 3268 return;
3263 3269
3264 pc = lookup_page_cgroup(page); 3270 pc = lookup_page_cgroup(page);
3265 lock_page_cgroup(pc); 3271 lock_page_cgroup(pc);
3266 if (PageCgroupUsed(pc)) { 3272 if (PageCgroupUsed(pc)) {
3267 memcg = pc->mem_cgroup; 3273 memcg = pc->mem_cgroup;
3268 css_get(&memcg->css); 3274 css_get(&memcg->css);
3269 /* 3275 /*
3270 * At migrating an anonymous page, its mapcount goes down 3276 * At migrating an anonymous page, its mapcount goes down
3271 * to 0 and uncharge() will be called. But, even if it's fully 3277 * to 0 and uncharge() will be called. But, even if it's fully
3272 * unmapped, migration may fail and this page has to be 3278 * unmapped, migration may fail and this page has to be
3273 * charged again. We set MIGRATION flag here and delay uncharge 3279 * charged again. We set MIGRATION flag here and delay uncharge
3274 * until end_migration() is called 3280 * until end_migration() is called
3275 * 3281 *
3276 * Corner Case Thinking 3282 * Corner Case Thinking
3277 * A) 3283 * A)
3278 * When the old page was mapped as Anon and it's unmap-and-freed 3284 * When the old page was mapped as Anon and it's unmap-and-freed
3279 * while migration was ongoing. 3285 * while migration was ongoing.
3280 * If unmap finds the old page, uncharge() of it will be delayed 3286 * If unmap finds the old page, uncharge() of it will be delayed
3281 * until end_migration(). If unmap finds a new page, it's 3287 * until end_migration(). If unmap finds a new page, it's
3282 * uncharged when it make mapcount to be 1->0. If unmap code 3288 * uncharged when it make mapcount to be 1->0. If unmap code
3283 * finds swap_migration_entry, the new page will not be mapped 3289 * finds swap_migration_entry, the new page will not be mapped
3284 * and end_migration() will find it(mapcount==0). 3290 * and end_migration() will find it(mapcount==0).
3285 * 3291 *
3286 * B) 3292 * B)
3287 * When the old page was mapped but migraion fails, the kernel 3293 * When the old page was mapped but migraion fails, the kernel
3288 * remaps it. A charge for it is kept by MIGRATION flag even 3294 * remaps it. A charge for it is kept by MIGRATION flag even
3289 * if mapcount goes down to 0. We can do remap successfully 3295 * if mapcount goes down to 0. We can do remap successfully
3290 * without charging it again. 3296 * without charging it again.
3291 * 3297 *
3292 * C) 3298 * C)
3293 * The "old" page is under lock_page() until the end of 3299 * The "old" page is under lock_page() until the end of
3294 * migration, so, the old page itself will not be swapped-out. 3300 * migration, so, the old page itself will not be swapped-out.
3295 * If the new page is swapped out before end_migraton, our 3301 * If the new page is swapped out before end_migraton, our
3296 * hook to usual swap-out path will catch the event. 3302 * hook to usual swap-out path will catch the event.
3297 */ 3303 */
3298 if (PageAnon(page)) 3304 if (PageAnon(page))
3299 SetPageCgroupMigration(pc); 3305 SetPageCgroupMigration(pc);
3300 } 3306 }
3301 unlock_page_cgroup(pc); 3307 unlock_page_cgroup(pc);
3302 /* 3308 /*
3303 * If the page is not charged at this point, 3309 * If the page is not charged at this point,
3304 * we return here. 3310 * we return here.
3305 */ 3311 */
3306 if (!memcg) 3312 if (!memcg)
3307 return; 3313 return;
3308 3314
3309 *memcgp = memcg; 3315 *memcgp = memcg;
3310 /* 3316 /*
3311 * We charge new page before it's used/mapped. So, even if unlock_page() 3317 * We charge new page before it's used/mapped. So, even if unlock_page()
3312 * is called before end_migration, we can catch all events on this new 3318 * is called before end_migration, we can catch all events on this new
3313 * page. In the case new page is migrated but not remapped, new page's 3319 * page. In the case new page is migrated but not remapped, new page's
3314 * mapcount will be finally 0 and we call uncharge in end_migration(). 3320 * mapcount will be finally 0 and we call uncharge in end_migration().
3315 */ 3321 */
3316 if (PageAnon(page)) 3322 if (PageAnon(page))
3317 ctype = MEM_CGROUP_CHARGE_TYPE_ANON; 3323 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
3318 else 3324 else
3319 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; 3325 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3320 /* 3326 /*
3321 * The page is committed to the memcg, but it's not actually 3327 * The page is committed to the memcg, but it's not actually
3322 * charged to the res_counter since we plan on replacing the 3328 * charged to the res_counter since we plan on replacing the
3323 * old one and only one page is going to be left afterwards. 3329 * old one and only one page is going to be left afterwards.
3324 */ 3330 */
3325 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false); 3331 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3326 } 3332 }
3327 3333
3328 /* remove redundant charge if migration failed*/ 3334 /* remove redundant charge if migration failed*/
3329 void mem_cgroup_end_migration(struct mem_cgroup *memcg, 3335 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3330 struct page *oldpage, struct page *newpage, bool migration_ok) 3336 struct page *oldpage, struct page *newpage, bool migration_ok)
3331 { 3337 {
3332 struct page *used, *unused; 3338 struct page *used, *unused;
3333 struct page_cgroup *pc; 3339 struct page_cgroup *pc;
3334 bool anon; 3340 bool anon;
3335 3341
3336 if (!memcg) 3342 if (!memcg)
3337 return; 3343 return;
3338 /* blocks rmdir() */ 3344 /* blocks rmdir() */
3339 cgroup_exclude_rmdir(&memcg->css); 3345 cgroup_exclude_rmdir(&memcg->css);
3340 if (!migration_ok) { 3346 if (!migration_ok) {
3341 used = oldpage; 3347 used = oldpage;
3342 unused = newpage; 3348 unused = newpage;
3343 } else { 3349 } else {
3344 used = newpage; 3350 used = newpage;
3345 unused = oldpage; 3351 unused = oldpage;
3346 } 3352 }
3347 anon = PageAnon(used); 3353 anon = PageAnon(used);
3348 __mem_cgroup_uncharge_common(unused, 3354 __mem_cgroup_uncharge_common(unused,
3349 anon ? MEM_CGROUP_CHARGE_TYPE_ANON 3355 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
3350 : MEM_CGROUP_CHARGE_TYPE_CACHE, 3356 : MEM_CGROUP_CHARGE_TYPE_CACHE,
3351 true); 3357 true);
3352 css_put(&memcg->css); 3358 css_put(&memcg->css);
3353 /* 3359 /*
3354 * We disallowed uncharge of pages under migration because mapcount 3360 * We disallowed uncharge of pages under migration because mapcount
3355 * of the page goes down to zero, temporarly. 3361 * of the page goes down to zero, temporarly.
3356 * Clear the flag and check the page should be charged. 3362 * Clear the flag and check the page should be charged.
3357 */ 3363 */
3358 pc = lookup_page_cgroup(oldpage); 3364 pc = lookup_page_cgroup(oldpage);
3359 lock_page_cgroup(pc); 3365 lock_page_cgroup(pc);
3360 ClearPageCgroupMigration(pc); 3366 ClearPageCgroupMigration(pc);
3361 unlock_page_cgroup(pc); 3367 unlock_page_cgroup(pc);
3362 3368
3363 /* 3369 /*
3364 * If a page is a file cache, radix-tree replacement is very atomic 3370 * If a page is a file cache, radix-tree replacement is very atomic
3365 * and we can skip this check. When it was an Anon page, its mapcount 3371 * and we can skip this check. When it was an Anon page, its mapcount
3366 * goes down to 0. But because we added MIGRATION flage, it's not 3372 * goes down to 0. But because we added MIGRATION flage, it's not
3367 * uncharged yet. There are several case but page->mapcount check 3373 * uncharged yet. There are several case but page->mapcount check
3368 * and USED bit check in mem_cgroup_uncharge_page() will do enough 3374 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3369 * check. (see prepare_charge() also) 3375 * check. (see prepare_charge() also)
3370 */ 3376 */
3371 if (anon) 3377 if (anon)
3372 mem_cgroup_uncharge_page(used); 3378 mem_cgroup_uncharge_page(used);
3373 /* 3379 /*
3374 * At migration, we may charge account against cgroup which has no 3380 * At migration, we may charge account against cgroup which has no
3375 * tasks. 3381 * tasks.
3376 * So, rmdir()->pre_destroy() can be called while we do this charge. 3382 * So, rmdir()->pre_destroy() can be called while we do this charge.
3377 * In that case, we need to call pre_destroy() again. check it here. 3383 * In that case, we need to call pre_destroy() again. check it here.
3378 */ 3384 */
3379 cgroup_release_and_wakeup_rmdir(&memcg->css); 3385 cgroup_release_and_wakeup_rmdir(&memcg->css);
3380 } 3386 }
3381 3387
3382 /* 3388 /*
3383 * At replace page cache, newpage is not under any memcg but it's on 3389 * At replace page cache, newpage is not under any memcg but it's on
3384 * LRU. So, this function doesn't touch res_counter but handles LRU 3390 * LRU. So, this function doesn't touch res_counter but handles LRU
3385 * in correct way. Both pages are locked so we cannot race with uncharge. 3391 * in correct way. Both pages are locked so we cannot race with uncharge.
3386 */ 3392 */
3387 void mem_cgroup_replace_page_cache(struct page *oldpage, 3393 void mem_cgroup_replace_page_cache(struct page *oldpage,
3388 struct page *newpage) 3394 struct page *newpage)
3389 { 3395 {
3390 struct mem_cgroup *memcg = NULL; 3396 struct mem_cgroup *memcg = NULL;
3391 struct page_cgroup *pc; 3397 struct page_cgroup *pc;
3392 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 3398 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3393 3399
3394 if (mem_cgroup_disabled()) 3400 if (mem_cgroup_disabled())
3395 return; 3401 return;
3396 3402
3397 pc = lookup_page_cgroup(oldpage); 3403 pc = lookup_page_cgroup(oldpage);
3398 /* fix accounting on old pages */ 3404 /* fix accounting on old pages */
3399 lock_page_cgroup(pc); 3405 lock_page_cgroup(pc);
3400 if (PageCgroupUsed(pc)) { 3406 if (PageCgroupUsed(pc)) {
3401 memcg = pc->mem_cgroup; 3407 memcg = pc->mem_cgroup;
3402 mem_cgroup_charge_statistics(memcg, false, -1); 3408 mem_cgroup_charge_statistics(memcg, false, -1);
3403 ClearPageCgroupUsed(pc); 3409 ClearPageCgroupUsed(pc);
3404 } 3410 }
3405 unlock_page_cgroup(pc); 3411 unlock_page_cgroup(pc);
3406 3412
3407 /* 3413 /*
3408 * When called from shmem_replace_page(), in some cases the 3414 * When called from shmem_replace_page(), in some cases the
3409 * oldpage has already been charged, and in some cases not. 3415 * oldpage has already been charged, and in some cases not.
3410 */ 3416 */
3411 if (!memcg) 3417 if (!memcg)
3412 return; 3418 return;
3413 /* 3419 /*
3414 * Even if newpage->mapping was NULL before starting replacement, 3420 * Even if newpage->mapping was NULL before starting replacement,
3415 * the newpage may be on LRU(or pagevec for LRU) already. We lock 3421 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3416 * LRU while we overwrite pc->mem_cgroup. 3422 * LRU while we overwrite pc->mem_cgroup.
3417 */ 3423 */
3418 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true); 3424 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3419 } 3425 }
3420 3426
3421 #ifdef CONFIG_DEBUG_VM 3427 #ifdef CONFIG_DEBUG_VM
3422 static struct page_cgroup *lookup_page_cgroup_used(struct page *page) 3428 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3423 { 3429 {
3424 struct page_cgroup *pc; 3430 struct page_cgroup *pc;
3425 3431
3426 pc = lookup_page_cgroup(page); 3432 pc = lookup_page_cgroup(page);
3427 /* 3433 /*
3428 * Can be NULL while feeding pages into the page allocator for 3434 * Can be NULL while feeding pages into the page allocator for
3429 * the first time, i.e. during boot or memory hotplug; 3435 * the first time, i.e. during boot or memory hotplug;
3430 * or when mem_cgroup_disabled(). 3436 * or when mem_cgroup_disabled().
3431 */ 3437 */
3432 if (likely(pc) && PageCgroupUsed(pc)) 3438 if (likely(pc) && PageCgroupUsed(pc))
3433 return pc; 3439 return pc;
3434 return NULL; 3440 return NULL;
3435 } 3441 }
3436 3442
3437 bool mem_cgroup_bad_page_check(struct page *page) 3443 bool mem_cgroup_bad_page_check(struct page *page)
3438 { 3444 {
3439 if (mem_cgroup_disabled()) 3445 if (mem_cgroup_disabled())
3440 return false; 3446 return false;
3441 3447
3442 return lookup_page_cgroup_used(page) != NULL; 3448 return lookup_page_cgroup_used(page) != NULL;
3443 } 3449 }
3444 3450
3445 void mem_cgroup_print_bad_page(struct page *page) 3451 void mem_cgroup_print_bad_page(struct page *page)
3446 { 3452 {
3447 struct page_cgroup *pc; 3453 struct page_cgroup *pc;
3448 3454
3449 pc = lookup_page_cgroup_used(page); 3455 pc = lookup_page_cgroup_used(page);
3450 if (pc) { 3456 if (pc) {
3451 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n", 3457 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3452 pc, pc->flags, pc->mem_cgroup); 3458 pc, pc->flags, pc->mem_cgroup);
3453 } 3459 }
3454 } 3460 }
3455 #endif 3461 #endif
3456 3462
3457 static DEFINE_MUTEX(set_limit_mutex); 3463 static DEFINE_MUTEX(set_limit_mutex);
3458 3464
3459 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 3465 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3460 unsigned long long val) 3466 unsigned long long val)
3461 { 3467 {
3462 int retry_count; 3468 int retry_count;
3463 u64 memswlimit, memlimit; 3469 u64 memswlimit, memlimit;
3464 int ret = 0; 3470 int ret = 0;
3465 int children = mem_cgroup_count_children(memcg); 3471 int children = mem_cgroup_count_children(memcg);
3466 u64 curusage, oldusage; 3472 u64 curusage, oldusage;
3467 int enlarge; 3473 int enlarge;
3468 3474
3469 /* 3475 /*
3470 * For keeping hierarchical_reclaim simple, how long we should retry 3476 * For keeping hierarchical_reclaim simple, how long we should retry
3471 * is depends on callers. We set our retry-count to be function 3477 * is depends on callers. We set our retry-count to be function
3472 * of # of children which we should visit in this loop. 3478 * of # of children which we should visit in this loop.
3473 */ 3479 */
3474 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; 3480 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3475 3481
3476 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); 3482 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3477 3483
3478 enlarge = 0; 3484 enlarge = 0;
3479 while (retry_count) { 3485 while (retry_count) {
3480 if (signal_pending(current)) { 3486 if (signal_pending(current)) {
3481 ret = -EINTR; 3487 ret = -EINTR;
3482 break; 3488 break;
3483 } 3489 }
3484 /* 3490 /*
3485 * Rather than hide all in some function, I do this in 3491 * Rather than hide all in some function, I do this in
3486 * open coded manner. You see what this really does. 3492 * open coded manner. You see what this really does.
3487 * We have to guarantee memcg->res.limit <= memcg->memsw.limit. 3493 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3488 */ 3494 */
3489 mutex_lock(&set_limit_mutex); 3495 mutex_lock(&set_limit_mutex);
3490 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 3496 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3491 if (memswlimit < val) { 3497 if (memswlimit < val) {
3492 ret = -EINVAL; 3498 ret = -EINVAL;
3493 mutex_unlock(&set_limit_mutex); 3499 mutex_unlock(&set_limit_mutex);
3494 break; 3500 break;
3495 } 3501 }
3496 3502
3497 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 3503 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3498 if (memlimit < val) 3504 if (memlimit < val)
3499 enlarge = 1; 3505 enlarge = 1;
3500 3506
3501 ret = res_counter_set_limit(&memcg->res, val); 3507 ret = res_counter_set_limit(&memcg->res, val);
3502 if (!ret) { 3508 if (!ret) {
3503 if (memswlimit == val) 3509 if (memswlimit == val)
3504 memcg->memsw_is_minimum = true; 3510 memcg->memsw_is_minimum = true;
3505 else 3511 else
3506 memcg->memsw_is_minimum = false; 3512 memcg->memsw_is_minimum = false;
3507 } 3513 }
3508 mutex_unlock(&set_limit_mutex); 3514 mutex_unlock(&set_limit_mutex);
3509 3515
3510 if (!ret) 3516 if (!ret)
3511 break; 3517 break;
3512 3518
3513 mem_cgroup_reclaim(memcg, GFP_KERNEL, 3519 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3514 MEM_CGROUP_RECLAIM_SHRINK); 3520 MEM_CGROUP_RECLAIM_SHRINK);
3515 curusage = res_counter_read_u64(&memcg->res, RES_USAGE); 3521 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3516 /* Usage is reduced ? */ 3522 /* Usage is reduced ? */
3517 if (curusage >= oldusage) 3523 if (curusage >= oldusage)
3518 retry_count--; 3524 retry_count--;
3519 else 3525 else
3520 oldusage = curusage; 3526 oldusage = curusage;
3521 } 3527 }
3522 if (!ret && enlarge) 3528 if (!ret && enlarge)
3523 memcg_oom_recover(memcg); 3529 memcg_oom_recover(memcg);
3524 3530
3525 return ret; 3531 return ret;
3526 } 3532 }
3527 3533
3528 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 3534 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3529 unsigned long long val) 3535 unsigned long long val)
3530 { 3536 {
3531 int retry_count; 3537 int retry_count;
3532 u64 memlimit, memswlimit, oldusage, curusage; 3538 u64 memlimit, memswlimit, oldusage, curusage;
3533 int children = mem_cgroup_count_children(memcg); 3539 int children = mem_cgroup_count_children(memcg);
3534 int ret = -EBUSY; 3540 int ret = -EBUSY;
3535 int enlarge = 0; 3541 int enlarge = 0;
3536 3542
3537 /* see mem_cgroup_resize_res_limit */ 3543 /* see mem_cgroup_resize_res_limit */
3538 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; 3544 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3539 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 3545 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3540 while (retry_count) { 3546 while (retry_count) {
3541 if (signal_pending(current)) { 3547 if (signal_pending(current)) {
3542 ret = -EINTR; 3548 ret = -EINTR;
3543 break; 3549 break;
3544 } 3550 }
3545 /* 3551 /*
3546 * Rather than hide all in some function, I do this in 3552 * Rather than hide all in some function, I do this in
3547 * open coded manner. You see what this really does. 3553 * open coded manner. You see what this really does.
3548 * We have to guarantee memcg->res.limit <= memcg->memsw.limit. 3554 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3549 */ 3555 */
3550 mutex_lock(&set_limit_mutex); 3556 mutex_lock(&set_limit_mutex);
3551 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 3557 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3552 if (memlimit > val) { 3558 if (memlimit > val) {
3553 ret = -EINVAL; 3559 ret = -EINVAL;
3554 mutex_unlock(&set_limit_mutex); 3560 mutex_unlock(&set_limit_mutex);
3555 break; 3561 break;
3556 } 3562 }
3557 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 3563 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3558 if (memswlimit < val) 3564 if (memswlimit < val)
3559 enlarge = 1; 3565 enlarge = 1;
3560 ret = res_counter_set_limit(&memcg->memsw, val); 3566 ret = res_counter_set_limit(&memcg->memsw, val);
3561 if (!ret) { 3567 if (!ret) {
3562 if (memlimit == val) 3568 if (memlimit == val)
3563 memcg->memsw_is_minimum = true; 3569 memcg->memsw_is_minimum = true;
3564 else 3570 else
3565 memcg->memsw_is_minimum = false; 3571 memcg->memsw_is_minimum = false;
3566 } 3572 }
3567 mutex_unlock(&set_limit_mutex); 3573 mutex_unlock(&set_limit_mutex);
3568 3574
3569 if (!ret) 3575 if (!ret)
3570 break; 3576 break;
3571 3577
3572 mem_cgroup_reclaim(memcg, GFP_KERNEL, 3578 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3573 MEM_CGROUP_RECLAIM_NOSWAP | 3579 MEM_CGROUP_RECLAIM_NOSWAP |
3574 MEM_CGROUP_RECLAIM_SHRINK); 3580 MEM_CGROUP_RECLAIM_SHRINK);
3575 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 3581 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3576 /* Usage is reduced ? */ 3582 /* Usage is reduced ? */
3577 if (curusage >= oldusage) 3583 if (curusage >= oldusage)
3578 retry_count--; 3584 retry_count--;
3579 else 3585 else
3580 oldusage = curusage; 3586 oldusage = curusage;
3581 } 3587 }
3582 if (!ret && enlarge) 3588 if (!ret && enlarge)
3583 memcg_oom_recover(memcg); 3589 memcg_oom_recover(memcg);
3584 return ret; 3590 return ret;
3585 } 3591 }
3586 3592
3587 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 3593 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3588 gfp_t gfp_mask, 3594 gfp_t gfp_mask,
3589 unsigned long *total_scanned) 3595 unsigned long *total_scanned)
3590 { 3596 {
3591 unsigned long nr_reclaimed = 0; 3597 unsigned long nr_reclaimed = 0;
3592 struct mem_cgroup_per_zone *mz, *next_mz = NULL; 3598 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3593 unsigned long reclaimed; 3599 unsigned long reclaimed;
3594 int loop = 0; 3600 int loop = 0;
3595 struct mem_cgroup_tree_per_zone *mctz; 3601 struct mem_cgroup_tree_per_zone *mctz;
3596 unsigned long long excess; 3602 unsigned long long excess;
3597 unsigned long nr_scanned; 3603 unsigned long nr_scanned;
3598 3604
3599 if (order > 0) 3605 if (order > 0)
3600 return 0; 3606 return 0;
3601 3607
3602 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); 3608 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3603 /* 3609 /*
3604 * This loop can run a while, specially if mem_cgroup's continuously 3610 * This loop can run a while, specially if mem_cgroup's continuously
3605 * keep exceeding their soft limit and putting the system under 3611 * keep exceeding their soft limit and putting the system under
3606 * pressure 3612 * pressure
3607 */ 3613 */
3608 do { 3614 do {
3609 if (next_mz) 3615 if (next_mz)
3610 mz = next_mz; 3616 mz = next_mz;
3611 else 3617 else
3612 mz = mem_cgroup_largest_soft_limit_node(mctz); 3618 mz = mem_cgroup_largest_soft_limit_node(mctz);
3613 if (!mz) 3619 if (!mz)
3614 break; 3620 break;
3615 3621
3616 nr_scanned = 0; 3622 nr_scanned = 0;
3617 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, 3623 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3618 gfp_mask, &nr_scanned); 3624 gfp_mask, &nr_scanned);
3619 nr_reclaimed += reclaimed; 3625 nr_reclaimed += reclaimed;
3620 *total_scanned += nr_scanned; 3626 *total_scanned += nr_scanned;
3621 spin_lock(&mctz->lock); 3627 spin_lock(&mctz->lock);
3622 3628
3623 /* 3629 /*
3624 * If we failed to reclaim anything from this memory cgroup 3630 * If we failed to reclaim anything from this memory cgroup
3625 * it is time to move on to the next cgroup 3631 * it is time to move on to the next cgroup
3626 */ 3632 */
3627 next_mz = NULL; 3633 next_mz = NULL;
3628 if (!reclaimed) { 3634 if (!reclaimed) {
3629 do { 3635 do {
3630 /* 3636 /*
3631 * Loop until we find yet another one. 3637 * Loop until we find yet another one.
3632 * 3638 *
3633 * By the time we get the soft_limit lock 3639 * By the time we get the soft_limit lock
3634 * again, someone might have aded the 3640 * again, someone might have aded the
3635 * group back on the RB tree. Iterate to 3641 * group back on the RB tree. Iterate to
3636 * make sure we get a different mem. 3642 * make sure we get a different mem.
3637 * mem_cgroup_largest_soft_limit_node returns 3643 * mem_cgroup_largest_soft_limit_node returns
3638 * NULL if no other cgroup is present on 3644 * NULL if no other cgroup is present on
3639 * the tree 3645 * the tree
3640 */ 3646 */
3641 next_mz = 3647 next_mz =
3642 __mem_cgroup_largest_soft_limit_node(mctz); 3648 __mem_cgroup_largest_soft_limit_node(mctz);
3643 if (next_mz == mz) 3649 if (next_mz == mz)
3644 css_put(&next_mz->memcg->css); 3650 css_put(&next_mz->memcg->css);
3645 else /* next_mz == NULL or other memcg */ 3651 else /* next_mz == NULL or other memcg */
3646 break; 3652 break;
3647 } while (1); 3653 } while (1);
3648 } 3654 }
3649 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); 3655 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3650 excess = res_counter_soft_limit_excess(&mz->memcg->res); 3656 excess = res_counter_soft_limit_excess(&mz->memcg->res);
3651 /* 3657 /*
3652 * One school of thought says that we should not add 3658 * One school of thought says that we should not add
3653 * back the node to the tree if reclaim returns 0. 3659 * back the node to the tree if reclaim returns 0.
3654 * But our reclaim could return 0, simply because due 3660 * But our reclaim could return 0, simply because due
3655 * to priority we are exposing a smaller subset of 3661 * to priority we are exposing a smaller subset of
3656 * memory to reclaim from. Consider this as a longer 3662 * memory to reclaim from. Consider this as a longer
3657 * term TODO. 3663 * term TODO.
3658 */ 3664 */
3659 /* If excess == 0, no tree ops */ 3665 /* If excess == 0, no tree ops */
3660 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess); 3666 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3661 spin_unlock(&mctz->lock); 3667 spin_unlock(&mctz->lock);
3662 css_put(&mz->memcg->css); 3668 css_put(&mz->memcg->css);
3663 loop++; 3669 loop++;
3664 /* 3670 /*
3665 * Could not reclaim anything and there are no more 3671 * Could not reclaim anything and there are no more
3666 * mem cgroups to try or we seem to be looping without 3672 * mem cgroups to try or we seem to be looping without
3667 * reclaiming anything. 3673 * reclaiming anything.
3668 */ 3674 */
3669 if (!nr_reclaimed && 3675 if (!nr_reclaimed &&
3670 (next_mz == NULL || 3676 (next_mz == NULL ||
3671 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3677 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3672 break; 3678 break;
3673 } while (!nr_reclaimed); 3679 } while (!nr_reclaimed);
3674 if (next_mz) 3680 if (next_mz)
3675 css_put(&next_mz->memcg->css); 3681 css_put(&next_mz->memcg->css);
3676 return nr_reclaimed; 3682 return nr_reclaimed;
3677 } 3683 }
3678 3684
3679 /* 3685 /*
3680 * Traverse a specified page_cgroup list and try to drop them all. This doesn't 3686 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
3681 * reclaim the pages page themselves - it just removes the page_cgroups. 3687 * reclaim the pages page themselves - it just removes the page_cgroups.
3682 * Returns true if some page_cgroups were not freed, indicating that the caller 3688 * Returns true if some page_cgroups were not freed, indicating that the caller
3683 * must retry this operation. 3689 * must retry this operation.
3684 */ 3690 */
3685 static bool mem_cgroup_force_empty_list(struct mem_cgroup *memcg, 3691 static bool mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3686 int node, int zid, enum lru_list lru) 3692 int node, int zid, enum lru_list lru)
3687 { 3693 {
3688 struct mem_cgroup_per_zone *mz; 3694 struct mem_cgroup_per_zone *mz;
3689 unsigned long flags, loop; 3695 unsigned long flags, loop;
3690 struct list_head *list; 3696 struct list_head *list;
3691 struct page *busy; 3697 struct page *busy;
3692 struct zone *zone; 3698 struct zone *zone;
3693 3699
3694 zone = &NODE_DATA(node)->node_zones[zid]; 3700 zone = &NODE_DATA(node)->node_zones[zid];
3695 mz = mem_cgroup_zoneinfo(memcg, node, zid); 3701 mz = mem_cgroup_zoneinfo(memcg, node, zid);
3696 list = &mz->lruvec.lists[lru]; 3702 list = &mz->lruvec.lists[lru];
3697 3703
3698 loop = mz->lru_size[lru]; 3704 loop = mz->lru_size[lru];
3699 /* give some margin against EBUSY etc...*/ 3705 /* give some margin against EBUSY etc...*/
3700 loop += 256; 3706 loop += 256;
3701 busy = NULL; 3707 busy = NULL;
3702 while (loop--) { 3708 while (loop--) {
3703 struct page_cgroup *pc; 3709 struct page_cgroup *pc;
3704 struct page *page; 3710 struct page *page;
3705 3711
3706 spin_lock_irqsave(&zone->lru_lock, flags); 3712 spin_lock_irqsave(&zone->lru_lock, flags);
3707 if (list_empty(list)) { 3713 if (list_empty(list)) {
3708 spin_unlock_irqrestore(&zone->lru_lock, flags); 3714 spin_unlock_irqrestore(&zone->lru_lock, flags);
3709 break; 3715 break;
3710 } 3716 }
3711 page = list_entry(list->prev, struct page, lru); 3717 page = list_entry(list->prev, struct page, lru);
3712 if (busy == page) { 3718 if (busy == page) {
3713 list_move(&page->lru, list); 3719 list_move(&page->lru, list);
3714 busy = NULL; 3720 busy = NULL;
3715 spin_unlock_irqrestore(&zone->lru_lock, flags); 3721 spin_unlock_irqrestore(&zone->lru_lock, flags);
3716 continue; 3722 continue;
3717 } 3723 }
3718 spin_unlock_irqrestore(&zone->lru_lock, flags); 3724 spin_unlock_irqrestore(&zone->lru_lock, flags);
3719 3725
3720 pc = lookup_page_cgroup(page); 3726 pc = lookup_page_cgroup(page);
3721 3727
3722 if (mem_cgroup_move_parent(page, pc, memcg)) { 3728 if (mem_cgroup_move_parent(page, pc, memcg)) {
3723 /* found lock contention or "pc" is obsolete. */ 3729 /* found lock contention or "pc" is obsolete. */
3724 busy = page; 3730 busy = page;
3725 cond_resched(); 3731 cond_resched();
3726 } else 3732 } else
3727 busy = NULL; 3733 busy = NULL;
3728 } 3734 }
3729 return !list_empty(list); 3735 return !list_empty(list);
3730 } 3736 }
3731 3737
3732 /* 3738 /*
3733 * make mem_cgroup's charge to be 0 if there is no task. 3739 * make mem_cgroup's charge to be 0 if there is no task.
3734 * This enables deleting this mem_cgroup. 3740 * This enables deleting this mem_cgroup.
3735 */ 3741 */
3736 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all) 3742 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3737 { 3743 {
3738 int ret; 3744 int ret;
3739 int node, zid, shrink; 3745 int node, zid, shrink;
3740 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 3746 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3741 struct cgroup *cgrp = memcg->css.cgroup; 3747 struct cgroup *cgrp = memcg->css.cgroup;
3742 3748
3743 css_get(&memcg->css); 3749 css_get(&memcg->css);
3744 3750
3745 shrink = 0; 3751 shrink = 0;
3746 /* should free all ? */ 3752 /* should free all ? */
3747 if (free_all) 3753 if (free_all)
3748 goto try_to_free; 3754 goto try_to_free;
3749 move_account: 3755 move_account:
3750 do { 3756 do {
3751 ret = -EBUSY; 3757 ret = -EBUSY;
3752 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) 3758 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3753 goto out; 3759 goto out;
3754 /* This is for making all *used* pages to be on LRU. */ 3760 /* This is for making all *used* pages to be on LRU. */
3755 lru_add_drain_all(); 3761 lru_add_drain_all();
3756 drain_all_stock_sync(memcg); 3762 drain_all_stock_sync(memcg);
3757 ret = 0; 3763 ret = 0;
3758 mem_cgroup_start_move(memcg); 3764 mem_cgroup_start_move(memcg);
3759 for_each_node_state(node, N_HIGH_MEMORY) { 3765 for_each_node_state(node, N_HIGH_MEMORY) {
3760 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) { 3766 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3761 enum lru_list lru; 3767 enum lru_list lru;
3762 for_each_lru(lru) { 3768 for_each_lru(lru) {
3763 ret = mem_cgroup_force_empty_list(memcg, 3769 ret = mem_cgroup_force_empty_list(memcg,
3764 node, zid, lru); 3770 node, zid, lru);
3765 if (ret) 3771 if (ret)
3766 break; 3772 break;
3767 } 3773 }
3768 } 3774 }
3769 if (ret) 3775 if (ret)
3770 break; 3776 break;
3771 } 3777 }
3772 mem_cgroup_end_move(memcg); 3778 mem_cgroup_end_move(memcg);
3773 memcg_oom_recover(memcg); 3779 memcg_oom_recover(memcg);
3774 cond_resched(); 3780 cond_resched();
3775 /* "ret" should also be checked to ensure all lists are empty. */ 3781 /* "ret" should also be checked to ensure all lists are empty. */
3776 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret); 3782 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3777 out: 3783 out:
3778 css_put(&memcg->css); 3784 css_put(&memcg->css);
3779 return ret; 3785 return ret;
3780 3786
3781 try_to_free: 3787 try_to_free:
3782 /* returns EBUSY if there is a task or if we come here twice. */ 3788 /* returns EBUSY if there is a task or if we come here twice. */
3783 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) { 3789 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3784 ret = -EBUSY; 3790 ret = -EBUSY;
3785 goto out; 3791 goto out;
3786 } 3792 }
3787 /* we call try-to-free pages for make this cgroup empty */ 3793 /* we call try-to-free pages for make this cgroup empty */
3788 lru_add_drain_all(); 3794 lru_add_drain_all();
3789 /* try to free all pages in this cgroup */ 3795 /* try to free all pages in this cgroup */
3790 shrink = 1; 3796 shrink = 1;
3791 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) { 3797 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3792 int progress; 3798 int progress;
3793 3799
3794 if (signal_pending(current)) { 3800 if (signal_pending(current)) {
3795 ret = -EINTR; 3801 ret = -EINTR;
3796 goto out; 3802 goto out;
3797 } 3803 }
3798 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, 3804 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3799 false); 3805 false);
3800 if (!progress) { 3806 if (!progress) {
3801 nr_retries--; 3807 nr_retries--;
3802 /* maybe some writeback is necessary */ 3808 /* maybe some writeback is necessary */
3803 congestion_wait(BLK_RW_ASYNC, HZ/10); 3809 congestion_wait(BLK_RW_ASYNC, HZ/10);
3804 } 3810 }
3805 3811
3806 } 3812 }
3807 lru_add_drain(); 3813 lru_add_drain();
3808 /* try move_account...there may be some *locked* pages. */ 3814 /* try move_account...there may be some *locked* pages. */
3809 goto move_account; 3815 goto move_account;
3810 } 3816 }
3811 3817
3812 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event) 3818 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3813 { 3819 {
3814 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true); 3820 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3815 } 3821 }
3816 3822
3817 3823
3818 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft) 3824 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3819 { 3825 {
3820 return mem_cgroup_from_cont(cont)->use_hierarchy; 3826 return mem_cgroup_from_cont(cont)->use_hierarchy;
3821 } 3827 }
3822 3828
3823 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft, 3829 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3824 u64 val) 3830 u64 val)
3825 { 3831 {
3826 int retval = 0; 3832 int retval = 0;
3827 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 3833 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3828 struct cgroup *parent = cont->parent; 3834 struct cgroup *parent = cont->parent;
3829 struct mem_cgroup *parent_memcg = NULL; 3835 struct mem_cgroup *parent_memcg = NULL;
3830 3836
3831 if (parent) 3837 if (parent)
3832 parent_memcg = mem_cgroup_from_cont(parent); 3838 parent_memcg = mem_cgroup_from_cont(parent);
3833 3839
3834 cgroup_lock(); 3840 cgroup_lock();
3835 3841
3836 if (memcg->use_hierarchy == val) 3842 if (memcg->use_hierarchy == val)
3837 goto out; 3843 goto out;
3838 3844
3839 /* 3845 /*
3840 * If parent's use_hierarchy is set, we can't make any modifications 3846 * If parent's use_hierarchy is set, we can't make any modifications
3841 * in the child subtrees. If it is unset, then the change can 3847 * in the child subtrees. If it is unset, then the change can
3842 * occur, provided the current cgroup has no children. 3848 * occur, provided the current cgroup has no children.
3843 * 3849 *
3844 * For the root cgroup, parent_mem is NULL, we allow value to be 3850 * For the root cgroup, parent_mem is NULL, we allow value to be
3845 * set if there are no children. 3851 * set if there are no children.
3846 */ 3852 */
3847 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 3853 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3848 (val == 1 || val == 0)) { 3854 (val == 1 || val == 0)) {
3849 if (list_empty(&cont->children)) 3855 if (list_empty(&cont->children))
3850 memcg->use_hierarchy = val; 3856 memcg->use_hierarchy = val;
3851 else 3857 else
3852 retval = -EBUSY; 3858 retval = -EBUSY;
3853 } else 3859 } else
3854 retval = -EINVAL; 3860 retval = -EINVAL;
3855 3861
3856 out: 3862 out:
3857 cgroup_unlock(); 3863 cgroup_unlock();
3858 3864
3859 return retval; 3865 return retval;
3860 } 3866 }
3861 3867
3862 3868
3863 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg, 3869 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3864 enum mem_cgroup_stat_index idx) 3870 enum mem_cgroup_stat_index idx)
3865 { 3871 {
3866 struct mem_cgroup *iter; 3872 struct mem_cgroup *iter;
3867 long val = 0; 3873 long val = 0;
3868 3874
3869 /* Per-cpu values can be negative, use a signed accumulator */ 3875 /* Per-cpu values can be negative, use a signed accumulator */
3870 for_each_mem_cgroup_tree(iter, memcg) 3876 for_each_mem_cgroup_tree(iter, memcg)
3871 val += mem_cgroup_read_stat(iter, idx); 3877 val += mem_cgroup_read_stat(iter, idx);
3872 3878
3873 if (val < 0) /* race ? */ 3879 if (val < 0) /* race ? */
3874 val = 0; 3880 val = 0;
3875 return val; 3881 return val;
3876 } 3882 }
3877 3883
3878 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3884 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3879 { 3885 {
3880 u64 val; 3886 u64 val;
3881 3887
3882 if (!mem_cgroup_is_root(memcg)) { 3888 if (!mem_cgroup_is_root(memcg)) {
3883 if (!swap) 3889 if (!swap)
3884 return res_counter_read_u64(&memcg->res, RES_USAGE); 3890 return res_counter_read_u64(&memcg->res, RES_USAGE);
3885 else 3891 else
3886 return res_counter_read_u64(&memcg->memsw, RES_USAGE); 3892 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3887 } 3893 }
3888 3894
3889 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE); 3895 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3890 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS); 3896 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3891 3897
3892 if (swap) 3898 if (swap)
3893 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP); 3899 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
3894 3900
3895 return val << PAGE_SHIFT; 3901 return val << PAGE_SHIFT;
3896 } 3902 }
3897 3903
3898 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft, 3904 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3899 struct file *file, char __user *buf, 3905 struct file *file, char __user *buf,
3900 size_t nbytes, loff_t *ppos) 3906 size_t nbytes, loff_t *ppos)
3901 { 3907 {
3902 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 3908 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3903 char str[64]; 3909 char str[64];
3904 u64 val; 3910 u64 val;
3905 int type, name, len; 3911 int type, name, len;
3906 3912
3907 type = MEMFILE_TYPE(cft->private); 3913 type = MEMFILE_TYPE(cft->private);
3908 name = MEMFILE_ATTR(cft->private); 3914 name = MEMFILE_ATTR(cft->private);
3909 3915
3910 if (!do_swap_account && type == _MEMSWAP) 3916 if (!do_swap_account && type == _MEMSWAP)
3911 return -EOPNOTSUPP; 3917 return -EOPNOTSUPP;
3912 3918
3913 switch (type) { 3919 switch (type) {
3914 case _MEM: 3920 case _MEM:
3915 if (name == RES_USAGE) 3921 if (name == RES_USAGE)
3916 val = mem_cgroup_usage(memcg, false); 3922 val = mem_cgroup_usage(memcg, false);
3917 else 3923 else
3918 val = res_counter_read_u64(&memcg->res, name); 3924 val = res_counter_read_u64(&memcg->res, name);
3919 break; 3925 break;
3920 case _MEMSWAP: 3926 case _MEMSWAP:
3921 if (name == RES_USAGE) 3927 if (name == RES_USAGE)
3922 val = mem_cgroup_usage(memcg, true); 3928 val = mem_cgroup_usage(memcg, true);
3923 else 3929 else
3924 val = res_counter_read_u64(&memcg->memsw, name); 3930 val = res_counter_read_u64(&memcg->memsw, name);
3925 break; 3931 break;
3926 default: 3932 default:
3927 BUG(); 3933 BUG();
3928 } 3934 }
3929 3935
3930 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val); 3936 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3931 return simple_read_from_buffer(buf, nbytes, ppos, str, len); 3937 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
3932 } 3938 }
3933 /* 3939 /*
3934 * The user of this function is... 3940 * The user of this function is...
3935 * RES_LIMIT. 3941 * RES_LIMIT.
3936 */ 3942 */
3937 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, 3943 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3938 const char *buffer) 3944 const char *buffer)
3939 { 3945 {
3940 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 3946 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3941 int type, name; 3947 int type, name;
3942 unsigned long long val; 3948 unsigned long long val;
3943 int ret; 3949 int ret;
3944 3950
3945 type = MEMFILE_TYPE(cft->private); 3951 type = MEMFILE_TYPE(cft->private);
3946 name = MEMFILE_ATTR(cft->private); 3952 name = MEMFILE_ATTR(cft->private);
3947 3953
3948 if (!do_swap_account && type == _MEMSWAP) 3954 if (!do_swap_account && type == _MEMSWAP)
3949 return -EOPNOTSUPP; 3955 return -EOPNOTSUPP;
3950 3956
3951 switch (name) { 3957 switch (name) {
3952 case RES_LIMIT: 3958 case RES_LIMIT:
3953 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3959 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3954 ret = -EINVAL; 3960 ret = -EINVAL;
3955 break; 3961 break;
3956 } 3962 }
3957 /* This function does all necessary parse...reuse it */ 3963 /* This function does all necessary parse...reuse it */
3958 ret = res_counter_memparse_write_strategy(buffer, &val); 3964 ret = res_counter_memparse_write_strategy(buffer, &val);
3959 if (ret) 3965 if (ret)
3960 break; 3966 break;
3961 if (type == _MEM) 3967 if (type == _MEM)
3962 ret = mem_cgroup_resize_limit(memcg, val); 3968 ret = mem_cgroup_resize_limit(memcg, val);
3963 else 3969 else
3964 ret = mem_cgroup_resize_memsw_limit(memcg, val); 3970 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3965 break; 3971 break;
3966 case RES_SOFT_LIMIT: 3972 case RES_SOFT_LIMIT:
3967 ret = res_counter_memparse_write_strategy(buffer, &val); 3973 ret = res_counter_memparse_write_strategy(buffer, &val);
3968 if (ret) 3974 if (ret)
3969 break; 3975 break;
3970 /* 3976 /*
3971 * For memsw, soft limits are hard to implement in terms 3977 * For memsw, soft limits are hard to implement in terms
3972 * of semantics, for now, we support soft limits for 3978 * of semantics, for now, we support soft limits for
3973 * control without swap 3979 * control without swap
3974 */ 3980 */
3975 if (type == _MEM) 3981 if (type == _MEM)
3976 ret = res_counter_set_soft_limit(&memcg->res, val); 3982 ret = res_counter_set_soft_limit(&memcg->res, val);
3977 else 3983 else
3978 ret = -EINVAL; 3984 ret = -EINVAL;
3979 break; 3985 break;
3980 default: 3986 default:
3981 ret = -EINVAL; /* should be BUG() ? */ 3987 ret = -EINVAL; /* should be BUG() ? */
3982 break; 3988 break;
3983 } 3989 }
3984 return ret; 3990 return ret;
3985 } 3991 }
3986 3992
3987 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, 3993 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3988 unsigned long long *mem_limit, unsigned long long *memsw_limit) 3994 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3989 { 3995 {
3990 struct cgroup *cgroup; 3996 struct cgroup *cgroup;
3991 unsigned long long min_limit, min_memsw_limit, tmp; 3997 unsigned long long min_limit, min_memsw_limit, tmp;
3992 3998
3993 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 3999 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3994 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 4000 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3995 cgroup = memcg->css.cgroup; 4001 cgroup = memcg->css.cgroup;
3996 if (!memcg->use_hierarchy) 4002 if (!memcg->use_hierarchy)
3997 goto out; 4003 goto out;
3998 4004
3999 while (cgroup->parent) { 4005 while (cgroup->parent) {
4000 cgroup = cgroup->parent; 4006 cgroup = cgroup->parent;
4001 memcg = mem_cgroup_from_cont(cgroup); 4007 memcg = mem_cgroup_from_cont(cgroup);
4002 if (!memcg->use_hierarchy) 4008 if (!memcg->use_hierarchy)
4003 break; 4009 break;
4004 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); 4010 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4005 min_limit = min(min_limit, tmp); 4011 min_limit = min(min_limit, tmp);
4006 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 4012 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4007 min_memsw_limit = min(min_memsw_limit, tmp); 4013 min_memsw_limit = min(min_memsw_limit, tmp);
4008 } 4014 }
4009 out: 4015 out:
4010 *mem_limit = min_limit; 4016 *mem_limit = min_limit;
4011 *memsw_limit = min_memsw_limit; 4017 *memsw_limit = min_memsw_limit;
4012 } 4018 }
4013 4019
4014 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) 4020 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4015 { 4021 {
4016 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 4022 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4017 int type, name; 4023 int type, name;
4018 4024
4019 type = MEMFILE_TYPE(event); 4025 type = MEMFILE_TYPE(event);
4020 name = MEMFILE_ATTR(event); 4026 name = MEMFILE_ATTR(event);
4021 4027
4022 if (!do_swap_account && type == _MEMSWAP) 4028 if (!do_swap_account && type == _MEMSWAP)
4023 return -EOPNOTSUPP; 4029 return -EOPNOTSUPP;
4024 4030
4025 switch (name) { 4031 switch (name) {
4026 case RES_MAX_USAGE: 4032 case RES_MAX_USAGE:
4027 if (type == _MEM) 4033 if (type == _MEM)
4028 res_counter_reset_max(&memcg->res); 4034 res_counter_reset_max(&memcg->res);
4029 else 4035 else
4030 res_counter_reset_max(&memcg->memsw); 4036 res_counter_reset_max(&memcg->memsw);
4031 break; 4037 break;
4032 case RES_FAILCNT: 4038 case RES_FAILCNT:
4033 if (type == _MEM) 4039 if (type == _MEM)
4034 res_counter_reset_failcnt(&memcg->res); 4040 res_counter_reset_failcnt(&memcg->res);
4035 else 4041 else
4036 res_counter_reset_failcnt(&memcg->memsw); 4042 res_counter_reset_failcnt(&memcg->memsw);
4037 break; 4043 break;
4038 } 4044 }
4039 4045
4040 return 0; 4046 return 0;
4041 } 4047 }
4042 4048
4043 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp, 4049 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4044 struct cftype *cft) 4050 struct cftype *cft)
4045 { 4051 {
4046 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate; 4052 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4047 } 4053 }
4048 4054
4049 #ifdef CONFIG_MMU 4055 #ifdef CONFIG_MMU
4050 static int mem_cgroup_move_charge_write(struct cgroup *cgrp, 4056 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4051 struct cftype *cft, u64 val) 4057 struct cftype *cft, u64 val)
4052 { 4058 {
4053 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4059 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4054 4060
4055 if (val >= (1 << NR_MOVE_TYPE)) 4061 if (val >= (1 << NR_MOVE_TYPE))
4056 return -EINVAL; 4062 return -EINVAL;
4057 /* 4063 /*
4058 * We check this value several times in both in can_attach() and 4064 * We check this value several times in both in can_attach() and
4059 * attach(), so we need cgroup lock to prevent this value from being 4065 * attach(), so we need cgroup lock to prevent this value from being
4060 * inconsistent. 4066 * inconsistent.
4061 */ 4067 */
4062 cgroup_lock(); 4068 cgroup_lock();
4063 memcg->move_charge_at_immigrate = val; 4069 memcg->move_charge_at_immigrate = val;
4064 cgroup_unlock(); 4070 cgroup_unlock();
4065 4071
4066 return 0; 4072 return 0;
4067 } 4073 }
4068 #else 4074 #else
4069 static int mem_cgroup_move_charge_write(struct cgroup *cgrp, 4075 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4070 struct cftype *cft, u64 val) 4076 struct cftype *cft, u64 val)
4071 { 4077 {
4072 return -ENOSYS; 4078 return -ENOSYS;
4073 } 4079 }
4074 #endif 4080 #endif
4075 4081
4076 #ifdef CONFIG_NUMA 4082 #ifdef CONFIG_NUMA
4077 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft, 4083 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4078 struct seq_file *m) 4084 struct seq_file *m)
4079 { 4085 {
4080 int nid; 4086 int nid;
4081 unsigned long total_nr, file_nr, anon_nr, unevictable_nr; 4087 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4082 unsigned long node_nr; 4088 unsigned long node_nr;
4083 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 4089 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4084 4090
4085 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL); 4091 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4086 seq_printf(m, "total=%lu", total_nr); 4092 seq_printf(m, "total=%lu", total_nr);
4087 for_each_node_state(nid, N_HIGH_MEMORY) { 4093 for_each_node_state(nid, N_HIGH_MEMORY) {
4088 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL); 4094 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4089 seq_printf(m, " N%d=%lu", nid, node_nr); 4095 seq_printf(m, " N%d=%lu", nid, node_nr);
4090 } 4096 }
4091 seq_putc(m, '\n'); 4097 seq_putc(m, '\n');
4092 4098
4093 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE); 4099 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4094 seq_printf(m, "file=%lu", file_nr); 4100 seq_printf(m, "file=%lu", file_nr);
4095 for_each_node_state(nid, N_HIGH_MEMORY) { 4101 for_each_node_state(nid, N_HIGH_MEMORY) {
4096 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 4102 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4097 LRU_ALL_FILE); 4103 LRU_ALL_FILE);
4098 seq_printf(m, " N%d=%lu", nid, node_nr); 4104 seq_printf(m, " N%d=%lu", nid, node_nr);
4099 } 4105 }
4100 seq_putc(m, '\n'); 4106 seq_putc(m, '\n');
4101 4107
4102 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON); 4108 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4103 seq_printf(m, "anon=%lu", anon_nr); 4109 seq_printf(m, "anon=%lu", anon_nr);
4104 for_each_node_state(nid, N_HIGH_MEMORY) { 4110 for_each_node_state(nid, N_HIGH_MEMORY) {
4105 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 4111 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4106 LRU_ALL_ANON); 4112 LRU_ALL_ANON);
4107 seq_printf(m, " N%d=%lu", nid, node_nr); 4113 seq_printf(m, " N%d=%lu", nid, node_nr);
4108 } 4114 }
4109 seq_putc(m, '\n'); 4115 seq_putc(m, '\n');
4110 4116
4111 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE)); 4117 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4112 seq_printf(m, "unevictable=%lu", unevictable_nr); 4118 seq_printf(m, "unevictable=%lu", unevictable_nr);
4113 for_each_node_state(nid, N_HIGH_MEMORY) { 4119 for_each_node_state(nid, N_HIGH_MEMORY) {
4114 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 4120 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4115 BIT(LRU_UNEVICTABLE)); 4121 BIT(LRU_UNEVICTABLE));
4116 seq_printf(m, " N%d=%lu", nid, node_nr); 4122 seq_printf(m, " N%d=%lu", nid, node_nr);
4117 } 4123 }
4118 seq_putc(m, '\n'); 4124 seq_putc(m, '\n');
4119 return 0; 4125 return 0;
4120 } 4126 }
4121 #endif /* CONFIG_NUMA */ 4127 #endif /* CONFIG_NUMA */
4122 4128
4123 static const char * const mem_cgroup_lru_names[] = { 4129 static const char * const mem_cgroup_lru_names[] = {
4124 "inactive_anon", 4130 "inactive_anon",
4125 "active_anon", 4131 "active_anon",
4126 "inactive_file", 4132 "inactive_file",
4127 "active_file", 4133 "active_file",
4128 "unevictable", 4134 "unevictable",
4129 }; 4135 };
4130 4136
4131 static inline void mem_cgroup_lru_names_not_uptodate(void) 4137 static inline void mem_cgroup_lru_names_not_uptodate(void)
4132 { 4138 {
4133 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 4139 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4134 } 4140 }
4135 4141
4136 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft, 4142 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
4137 struct seq_file *m) 4143 struct seq_file *m)
4138 { 4144 {
4139 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 4145 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4140 struct mem_cgroup *mi; 4146 struct mem_cgroup *mi;
4141 unsigned int i; 4147 unsigned int i;
4142 4148
4143 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 4149 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4144 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 4150 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4145 continue; 4151 continue;
4146 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i], 4152 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4147 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); 4153 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4148 } 4154 }
4149 4155
4150 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) 4156 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4151 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], 4157 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4152 mem_cgroup_read_events(memcg, i)); 4158 mem_cgroup_read_events(memcg, i));
4153 4159
4154 for (i = 0; i < NR_LRU_LISTS; i++) 4160 for (i = 0; i < NR_LRU_LISTS; i++)
4155 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 4161 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4156 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); 4162 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4157 4163
4158 /* Hierarchical information */ 4164 /* Hierarchical information */
4159 { 4165 {
4160 unsigned long long limit, memsw_limit; 4166 unsigned long long limit, memsw_limit;
4161 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit); 4167 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4162 seq_printf(m, "hierarchical_memory_limit %llu\n", limit); 4168 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4163 if (do_swap_account) 4169 if (do_swap_account)
4164 seq_printf(m, "hierarchical_memsw_limit %llu\n", 4170 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4165 memsw_limit); 4171 memsw_limit);
4166 } 4172 }
4167 4173
4168 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 4174 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4169 long long val = 0; 4175 long long val = 0;
4170 4176
4171 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 4177 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4172 continue; 4178 continue;
4173 for_each_mem_cgroup_tree(mi, memcg) 4179 for_each_mem_cgroup_tree(mi, memcg)
4174 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; 4180 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4175 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val); 4181 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4176 } 4182 }
4177 4183
4178 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 4184 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4179 unsigned long long val = 0; 4185 unsigned long long val = 0;
4180 4186
4181 for_each_mem_cgroup_tree(mi, memcg) 4187 for_each_mem_cgroup_tree(mi, memcg)
4182 val += mem_cgroup_read_events(mi, i); 4188 val += mem_cgroup_read_events(mi, i);
4183 seq_printf(m, "total_%s %llu\n", 4189 seq_printf(m, "total_%s %llu\n",
4184 mem_cgroup_events_names[i], val); 4190 mem_cgroup_events_names[i], val);
4185 } 4191 }
4186 4192
4187 for (i = 0; i < NR_LRU_LISTS; i++) { 4193 for (i = 0; i < NR_LRU_LISTS; i++) {
4188 unsigned long long val = 0; 4194 unsigned long long val = 0;
4189 4195
4190 for_each_mem_cgroup_tree(mi, memcg) 4196 for_each_mem_cgroup_tree(mi, memcg)
4191 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; 4197 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4192 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); 4198 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4193 } 4199 }
4194 4200
4195 #ifdef CONFIG_DEBUG_VM 4201 #ifdef CONFIG_DEBUG_VM
4196 { 4202 {
4197 int nid, zid; 4203 int nid, zid;
4198 struct mem_cgroup_per_zone *mz; 4204 struct mem_cgroup_per_zone *mz;
4199 struct zone_reclaim_stat *rstat; 4205 struct zone_reclaim_stat *rstat;
4200 unsigned long recent_rotated[2] = {0, 0}; 4206 unsigned long recent_rotated[2] = {0, 0};
4201 unsigned long recent_scanned[2] = {0, 0}; 4207 unsigned long recent_scanned[2] = {0, 0};
4202 4208
4203 for_each_online_node(nid) 4209 for_each_online_node(nid)
4204 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 4210 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4205 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 4211 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4206 rstat = &mz->lruvec.reclaim_stat; 4212 rstat = &mz->lruvec.reclaim_stat;
4207 4213
4208 recent_rotated[0] += rstat->recent_rotated[0]; 4214 recent_rotated[0] += rstat->recent_rotated[0];
4209 recent_rotated[1] += rstat->recent_rotated[1]; 4215 recent_rotated[1] += rstat->recent_rotated[1];
4210 recent_scanned[0] += rstat->recent_scanned[0]; 4216 recent_scanned[0] += rstat->recent_scanned[0];
4211 recent_scanned[1] += rstat->recent_scanned[1]; 4217 recent_scanned[1] += rstat->recent_scanned[1];
4212 } 4218 }
4213 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 4219 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4214 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 4220 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4215 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 4221 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4216 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 4222 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
4217 } 4223 }
4218 #endif 4224 #endif
4219 4225
4220 return 0; 4226 return 0;
4221 } 4227 }
4222 4228
4223 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft) 4229 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4224 { 4230 {
4225 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4231 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4226 4232
4227 return mem_cgroup_swappiness(memcg); 4233 return mem_cgroup_swappiness(memcg);
4228 } 4234 }
4229 4235
4230 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft, 4236 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4231 u64 val) 4237 u64 val)
4232 { 4238 {
4233 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4239 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4234 struct mem_cgroup *parent; 4240 struct mem_cgroup *parent;
4235 4241
4236 if (val > 100) 4242 if (val > 100)
4237 return -EINVAL; 4243 return -EINVAL;
4238 4244
4239 if (cgrp->parent == NULL) 4245 if (cgrp->parent == NULL)
4240 return -EINVAL; 4246 return -EINVAL;
4241 4247
4242 parent = mem_cgroup_from_cont(cgrp->parent); 4248 parent = mem_cgroup_from_cont(cgrp->parent);
4243 4249
4244 cgroup_lock(); 4250 cgroup_lock();
4245 4251
4246 /* If under hierarchy, only empty-root can set this value */ 4252 /* If under hierarchy, only empty-root can set this value */
4247 if ((parent->use_hierarchy) || 4253 if ((parent->use_hierarchy) ||
4248 (memcg->use_hierarchy && !list_empty(&cgrp->children))) { 4254 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4249 cgroup_unlock(); 4255 cgroup_unlock();
4250 return -EINVAL; 4256 return -EINVAL;
4251 } 4257 }
4252 4258
4253 memcg->swappiness = val; 4259 memcg->swappiness = val;
4254 4260
4255 cgroup_unlock(); 4261 cgroup_unlock();
4256 4262
4257 return 0; 4263 return 0;
4258 } 4264 }
4259 4265
4260 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 4266 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4261 { 4267 {
4262 struct mem_cgroup_threshold_ary *t; 4268 struct mem_cgroup_threshold_ary *t;
4263 u64 usage; 4269 u64 usage;
4264 int i; 4270 int i;
4265 4271
4266 rcu_read_lock(); 4272 rcu_read_lock();
4267 if (!swap) 4273 if (!swap)
4268 t = rcu_dereference(memcg->thresholds.primary); 4274 t = rcu_dereference(memcg->thresholds.primary);
4269 else 4275 else
4270 t = rcu_dereference(memcg->memsw_thresholds.primary); 4276 t = rcu_dereference(memcg->memsw_thresholds.primary);
4271 4277
4272 if (!t) 4278 if (!t)
4273 goto unlock; 4279 goto unlock;
4274 4280
4275 usage = mem_cgroup_usage(memcg, swap); 4281 usage = mem_cgroup_usage(memcg, swap);
4276 4282
4277 /* 4283 /*
4278 * current_threshold points to threshold just below or equal to usage. 4284 * current_threshold points to threshold just below or equal to usage.
4279 * If it's not true, a threshold was crossed after last 4285 * If it's not true, a threshold was crossed after last
4280 * call of __mem_cgroup_threshold(). 4286 * call of __mem_cgroup_threshold().
4281 */ 4287 */
4282 i = t->current_threshold; 4288 i = t->current_threshold;
4283 4289
4284 /* 4290 /*
4285 * Iterate backward over array of thresholds starting from 4291 * Iterate backward over array of thresholds starting from
4286 * current_threshold and check if a threshold is crossed. 4292 * current_threshold and check if a threshold is crossed.
4287 * If none of thresholds below usage is crossed, we read 4293 * If none of thresholds below usage is crossed, we read
4288 * only one element of the array here. 4294 * only one element of the array here.
4289 */ 4295 */
4290 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 4296 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4291 eventfd_signal(t->entries[i].eventfd, 1); 4297 eventfd_signal(t->entries[i].eventfd, 1);
4292 4298
4293 /* i = current_threshold + 1 */ 4299 /* i = current_threshold + 1 */
4294 i++; 4300 i++;
4295 4301
4296 /* 4302 /*
4297 * Iterate forward over array of thresholds starting from 4303 * Iterate forward over array of thresholds starting from
4298 * current_threshold+1 and check if a threshold is crossed. 4304 * current_threshold+1 and check if a threshold is crossed.
4299 * If none of thresholds above usage is crossed, we read 4305 * If none of thresholds above usage is crossed, we read
4300 * only one element of the array here. 4306 * only one element of the array here.
4301 */ 4307 */
4302 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 4308 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4303 eventfd_signal(t->entries[i].eventfd, 1); 4309 eventfd_signal(t->entries[i].eventfd, 1);
4304 4310
4305 /* Update current_threshold */ 4311 /* Update current_threshold */
4306 t->current_threshold = i - 1; 4312 t->current_threshold = i - 1;
4307 unlock: 4313 unlock:
4308 rcu_read_unlock(); 4314 rcu_read_unlock();
4309 } 4315 }
4310 4316
4311 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 4317 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4312 { 4318 {
4313 while (memcg) { 4319 while (memcg) {
4314 __mem_cgroup_threshold(memcg, false); 4320 __mem_cgroup_threshold(memcg, false);
4315 if (do_swap_account) 4321 if (do_swap_account)
4316 __mem_cgroup_threshold(memcg, true); 4322 __mem_cgroup_threshold(memcg, true);
4317 4323
4318 memcg = parent_mem_cgroup(memcg); 4324 memcg = parent_mem_cgroup(memcg);
4319 } 4325 }
4320 } 4326 }
4321 4327
4322 static int compare_thresholds(const void *a, const void *b) 4328 static int compare_thresholds(const void *a, const void *b)
4323 { 4329 {
4324 const struct mem_cgroup_threshold *_a = a; 4330 const struct mem_cgroup_threshold *_a = a;
4325 const struct mem_cgroup_threshold *_b = b; 4331 const struct mem_cgroup_threshold *_b = b;
4326 4332
4327 return _a->threshold - _b->threshold; 4333 return _a->threshold - _b->threshold;
4328 } 4334 }
4329 4335
4330 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 4336 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4331 { 4337 {
4332 struct mem_cgroup_eventfd_list *ev; 4338 struct mem_cgroup_eventfd_list *ev;
4333 4339
4334 list_for_each_entry(ev, &memcg->oom_notify, list) 4340 list_for_each_entry(ev, &memcg->oom_notify, list)
4335 eventfd_signal(ev->eventfd, 1); 4341 eventfd_signal(ev->eventfd, 1);
4336 return 0; 4342 return 0;
4337 } 4343 }
4338 4344
4339 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 4345 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4340 { 4346 {
4341 struct mem_cgroup *iter; 4347 struct mem_cgroup *iter;
4342 4348
4343 for_each_mem_cgroup_tree(iter, memcg) 4349 for_each_mem_cgroup_tree(iter, memcg)
4344 mem_cgroup_oom_notify_cb(iter); 4350 mem_cgroup_oom_notify_cb(iter);
4345 } 4351 }
4346 4352
4347 static int mem_cgroup_usage_register_event(struct cgroup *cgrp, 4353 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4348 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 4354 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4349 { 4355 {
4350 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4356 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4351 struct mem_cgroup_thresholds *thresholds; 4357 struct mem_cgroup_thresholds *thresholds;
4352 struct mem_cgroup_threshold_ary *new; 4358 struct mem_cgroup_threshold_ary *new;
4353 int type = MEMFILE_TYPE(cft->private); 4359 int type = MEMFILE_TYPE(cft->private);
4354 u64 threshold, usage; 4360 u64 threshold, usage;
4355 int i, size, ret; 4361 int i, size, ret;
4356 4362
4357 ret = res_counter_memparse_write_strategy(args, &threshold); 4363 ret = res_counter_memparse_write_strategy(args, &threshold);
4358 if (ret) 4364 if (ret)
4359 return ret; 4365 return ret;
4360 4366
4361 mutex_lock(&memcg->thresholds_lock); 4367 mutex_lock(&memcg->thresholds_lock);
4362 4368
4363 if (type == _MEM) 4369 if (type == _MEM)
4364 thresholds = &memcg->thresholds; 4370 thresholds = &memcg->thresholds;
4365 else if (type == _MEMSWAP) 4371 else if (type == _MEMSWAP)
4366 thresholds = &memcg->memsw_thresholds; 4372 thresholds = &memcg->memsw_thresholds;
4367 else 4373 else
4368 BUG(); 4374 BUG();
4369 4375
4370 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 4376 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4371 4377
4372 /* Check if a threshold crossed before adding a new one */ 4378 /* Check if a threshold crossed before adding a new one */
4373 if (thresholds->primary) 4379 if (thresholds->primary)
4374 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4380 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4375 4381
4376 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4382 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4377 4383
4378 /* Allocate memory for new array of thresholds */ 4384 /* Allocate memory for new array of thresholds */
4379 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 4385 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4380 GFP_KERNEL); 4386 GFP_KERNEL);
4381 if (!new) { 4387 if (!new) {
4382 ret = -ENOMEM; 4388 ret = -ENOMEM;
4383 goto unlock; 4389 goto unlock;
4384 } 4390 }
4385 new->size = size; 4391 new->size = size;
4386 4392
4387 /* Copy thresholds (if any) to new array */ 4393 /* Copy thresholds (if any) to new array */
4388 if (thresholds->primary) { 4394 if (thresholds->primary) {
4389 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 4395 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4390 sizeof(struct mem_cgroup_threshold)); 4396 sizeof(struct mem_cgroup_threshold));
4391 } 4397 }
4392 4398
4393 /* Add new threshold */ 4399 /* Add new threshold */
4394 new->entries[size - 1].eventfd = eventfd; 4400 new->entries[size - 1].eventfd = eventfd;
4395 new->entries[size - 1].threshold = threshold; 4401 new->entries[size - 1].threshold = threshold;
4396 4402
4397 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4403 /* Sort thresholds. Registering of new threshold isn't time-critical */
4398 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 4404 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4399 compare_thresholds, NULL); 4405 compare_thresholds, NULL);
4400 4406
4401 /* Find current threshold */ 4407 /* Find current threshold */
4402 new->current_threshold = -1; 4408 new->current_threshold = -1;
4403 for (i = 0; i < size; i++) { 4409 for (i = 0; i < size; i++) {
4404 if (new->entries[i].threshold <= usage) { 4410 if (new->entries[i].threshold <= usage) {
4405 /* 4411 /*
4406 * new->current_threshold will not be used until 4412 * new->current_threshold will not be used until
4407 * rcu_assign_pointer(), so it's safe to increment 4413 * rcu_assign_pointer(), so it's safe to increment
4408 * it here. 4414 * it here.
4409 */ 4415 */
4410 ++new->current_threshold; 4416 ++new->current_threshold;
4411 } else 4417 } else
4412 break; 4418 break;
4413 } 4419 }
4414 4420
4415 /* Free old spare buffer and save old primary buffer as spare */ 4421 /* Free old spare buffer and save old primary buffer as spare */
4416 kfree(thresholds->spare); 4422 kfree(thresholds->spare);
4417 thresholds->spare = thresholds->primary; 4423 thresholds->spare = thresholds->primary;
4418 4424
4419 rcu_assign_pointer(thresholds->primary, new); 4425 rcu_assign_pointer(thresholds->primary, new);
4420 4426
4421 /* To be sure that nobody uses thresholds */ 4427 /* To be sure that nobody uses thresholds */
4422 synchronize_rcu(); 4428 synchronize_rcu();
4423 4429
4424 unlock: 4430 unlock:
4425 mutex_unlock(&memcg->thresholds_lock); 4431 mutex_unlock(&memcg->thresholds_lock);
4426 4432
4427 return ret; 4433 return ret;
4428 } 4434 }
4429 4435
4430 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp, 4436 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4431 struct cftype *cft, struct eventfd_ctx *eventfd) 4437 struct cftype *cft, struct eventfd_ctx *eventfd)
4432 { 4438 {
4433 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4439 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4434 struct mem_cgroup_thresholds *thresholds; 4440 struct mem_cgroup_thresholds *thresholds;
4435 struct mem_cgroup_threshold_ary *new; 4441 struct mem_cgroup_threshold_ary *new;
4436 int type = MEMFILE_TYPE(cft->private); 4442 int type = MEMFILE_TYPE(cft->private);
4437 u64 usage; 4443 u64 usage;
4438 int i, j, size; 4444 int i, j, size;
4439 4445
4440 mutex_lock(&memcg->thresholds_lock); 4446 mutex_lock(&memcg->thresholds_lock);
4441 if (type == _MEM) 4447 if (type == _MEM)
4442 thresholds = &memcg->thresholds; 4448 thresholds = &memcg->thresholds;
4443 else if (type == _MEMSWAP) 4449 else if (type == _MEMSWAP)
4444 thresholds = &memcg->memsw_thresholds; 4450 thresholds = &memcg->memsw_thresholds;
4445 else 4451 else
4446 BUG(); 4452 BUG();
4447 4453
4448 if (!thresholds->primary) 4454 if (!thresholds->primary)
4449 goto unlock; 4455 goto unlock;
4450 4456
4451 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 4457 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4452 4458
4453 /* Check if a threshold crossed before removing */ 4459 /* Check if a threshold crossed before removing */
4454 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4460 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4455 4461
4456 /* Calculate new number of threshold */ 4462 /* Calculate new number of threshold */
4457 size = 0; 4463 size = 0;
4458 for (i = 0; i < thresholds->primary->size; i++) { 4464 for (i = 0; i < thresholds->primary->size; i++) {
4459 if (thresholds->primary->entries[i].eventfd != eventfd) 4465 if (thresholds->primary->entries[i].eventfd != eventfd)
4460 size++; 4466 size++;
4461 } 4467 }
4462 4468
4463 new = thresholds->spare; 4469 new = thresholds->spare;
4464 4470
4465 /* Set thresholds array to NULL if we don't have thresholds */ 4471 /* Set thresholds array to NULL if we don't have thresholds */
4466 if (!size) { 4472 if (!size) {
4467 kfree(new); 4473 kfree(new);
4468 new = NULL; 4474 new = NULL;
4469 goto swap_buffers; 4475 goto swap_buffers;
4470 } 4476 }
4471 4477
4472 new->size = size; 4478 new->size = size;
4473 4479
4474 /* Copy thresholds and find current threshold */ 4480 /* Copy thresholds and find current threshold */
4475 new->current_threshold = -1; 4481 new->current_threshold = -1;
4476 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4482 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4477 if (thresholds->primary->entries[i].eventfd == eventfd) 4483 if (thresholds->primary->entries[i].eventfd == eventfd)
4478 continue; 4484 continue;
4479 4485
4480 new->entries[j] = thresholds->primary->entries[i]; 4486 new->entries[j] = thresholds->primary->entries[i];
4481 if (new->entries[j].threshold <= usage) { 4487 if (new->entries[j].threshold <= usage) {
4482 /* 4488 /*
4483 * new->current_threshold will not be used 4489 * new->current_threshold will not be used
4484 * until rcu_assign_pointer(), so it's safe to increment 4490 * until rcu_assign_pointer(), so it's safe to increment
4485 * it here. 4491 * it here.
4486 */ 4492 */
4487 ++new->current_threshold; 4493 ++new->current_threshold;
4488 } 4494 }
4489 j++; 4495 j++;
4490 } 4496 }
4491 4497
4492 swap_buffers: 4498 swap_buffers:
4493 /* Swap primary and spare array */ 4499 /* Swap primary and spare array */
4494 thresholds->spare = thresholds->primary; 4500 thresholds->spare = thresholds->primary;
4495 /* If all events are unregistered, free the spare array */ 4501 /* If all events are unregistered, free the spare array */
4496 if (!new) { 4502 if (!new) {
4497 kfree(thresholds->spare); 4503 kfree(thresholds->spare);
4498 thresholds->spare = NULL; 4504 thresholds->spare = NULL;
4499 } 4505 }
4500 4506
4501 rcu_assign_pointer(thresholds->primary, new); 4507 rcu_assign_pointer(thresholds->primary, new);
4502 4508
4503 /* To be sure that nobody uses thresholds */ 4509 /* To be sure that nobody uses thresholds */
4504 synchronize_rcu(); 4510 synchronize_rcu();
4505 unlock: 4511 unlock:
4506 mutex_unlock(&memcg->thresholds_lock); 4512 mutex_unlock(&memcg->thresholds_lock);
4507 } 4513 }
4508 4514
4509 static int mem_cgroup_oom_register_event(struct cgroup *cgrp, 4515 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4510 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 4516 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4511 { 4517 {
4512 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4518 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4513 struct mem_cgroup_eventfd_list *event; 4519 struct mem_cgroup_eventfd_list *event;
4514 int type = MEMFILE_TYPE(cft->private); 4520 int type = MEMFILE_TYPE(cft->private);
4515 4521
4516 BUG_ON(type != _OOM_TYPE); 4522 BUG_ON(type != _OOM_TYPE);
4517 event = kmalloc(sizeof(*event), GFP_KERNEL); 4523 event = kmalloc(sizeof(*event), GFP_KERNEL);
4518 if (!event) 4524 if (!event)
4519 return -ENOMEM; 4525 return -ENOMEM;
4520 4526
4521 spin_lock(&memcg_oom_lock); 4527 spin_lock(&memcg_oom_lock);
4522 4528
4523 event->eventfd = eventfd; 4529 event->eventfd = eventfd;
4524 list_add(&event->list, &memcg->oom_notify); 4530 list_add(&event->list, &memcg->oom_notify);
4525 4531
4526 /* already in OOM ? */ 4532 /* already in OOM ? */
4527 if (atomic_read(&memcg->under_oom)) 4533 if (atomic_read(&memcg->under_oom))
4528 eventfd_signal(eventfd, 1); 4534 eventfd_signal(eventfd, 1);
4529 spin_unlock(&memcg_oom_lock); 4535 spin_unlock(&memcg_oom_lock);
4530 4536
4531 return 0; 4537 return 0;
4532 } 4538 }
4533 4539
4534 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp, 4540 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4535 struct cftype *cft, struct eventfd_ctx *eventfd) 4541 struct cftype *cft, struct eventfd_ctx *eventfd)
4536 { 4542 {
4537 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4543 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4538 struct mem_cgroup_eventfd_list *ev, *tmp; 4544 struct mem_cgroup_eventfd_list *ev, *tmp;
4539 int type = MEMFILE_TYPE(cft->private); 4545 int type = MEMFILE_TYPE(cft->private);
4540 4546
4541 BUG_ON(type != _OOM_TYPE); 4547 BUG_ON(type != _OOM_TYPE);
4542 4548
4543 spin_lock(&memcg_oom_lock); 4549 spin_lock(&memcg_oom_lock);
4544 4550
4545 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4551 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4546 if (ev->eventfd == eventfd) { 4552 if (ev->eventfd == eventfd) {
4547 list_del(&ev->list); 4553 list_del(&ev->list);
4548 kfree(ev); 4554 kfree(ev);
4549 } 4555 }
4550 } 4556 }
4551 4557
4552 spin_unlock(&memcg_oom_lock); 4558 spin_unlock(&memcg_oom_lock);
4553 } 4559 }
4554 4560
4555 static int mem_cgroup_oom_control_read(struct cgroup *cgrp, 4561 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4556 struct cftype *cft, struct cgroup_map_cb *cb) 4562 struct cftype *cft, struct cgroup_map_cb *cb)
4557 { 4563 {
4558 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4564 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4559 4565
4560 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable); 4566 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4561 4567
4562 if (atomic_read(&memcg->under_oom)) 4568 if (atomic_read(&memcg->under_oom))
4563 cb->fill(cb, "under_oom", 1); 4569 cb->fill(cb, "under_oom", 1);
4564 else 4570 else
4565 cb->fill(cb, "under_oom", 0); 4571 cb->fill(cb, "under_oom", 0);
4566 return 0; 4572 return 0;
4567 } 4573 }
4568 4574
4569 static int mem_cgroup_oom_control_write(struct cgroup *cgrp, 4575 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4570 struct cftype *cft, u64 val) 4576 struct cftype *cft, u64 val)
4571 { 4577 {
4572 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4578 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4573 struct mem_cgroup *parent; 4579 struct mem_cgroup *parent;
4574 4580
4575 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4581 /* cannot set to root cgroup and only 0 and 1 are allowed */
4576 if (!cgrp->parent || !((val == 0) || (val == 1))) 4582 if (!cgrp->parent || !((val == 0) || (val == 1)))
4577 return -EINVAL; 4583 return -EINVAL;
4578 4584
4579 parent = mem_cgroup_from_cont(cgrp->parent); 4585 parent = mem_cgroup_from_cont(cgrp->parent);
4580 4586
4581 cgroup_lock(); 4587 cgroup_lock();
4582 /* oom-kill-disable is a flag for subhierarchy. */ 4588 /* oom-kill-disable is a flag for subhierarchy. */
4583 if ((parent->use_hierarchy) || 4589 if ((parent->use_hierarchy) ||
4584 (memcg->use_hierarchy && !list_empty(&cgrp->children))) { 4590 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4585 cgroup_unlock(); 4591 cgroup_unlock();
4586 return -EINVAL; 4592 return -EINVAL;
4587 } 4593 }
4588 memcg->oom_kill_disable = val; 4594 memcg->oom_kill_disable = val;
4589 if (!val) 4595 if (!val)
4590 memcg_oom_recover(memcg); 4596 memcg_oom_recover(memcg);
4591 cgroup_unlock(); 4597 cgroup_unlock();
4592 return 0; 4598 return 0;
4593 } 4599 }
4594 4600
4595 #ifdef CONFIG_MEMCG_KMEM 4601 #ifdef CONFIG_MEMCG_KMEM
4596 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 4602 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4597 { 4603 {
4598 return mem_cgroup_sockets_init(memcg, ss); 4604 return mem_cgroup_sockets_init(memcg, ss);
4599 }; 4605 };
4600 4606
4601 static void kmem_cgroup_destroy(struct mem_cgroup *memcg) 4607 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4602 { 4608 {
4603 mem_cgroup_sockets_destroy(memcg); 4609 mem_cgroup_sockets_destroy(memcg);
4604 } 4610 }
4605 #else 4611 #else
4606 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 4612 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4607 { 4613 {
4608 return 0; 4614 return 0;
4609 } 4615 }
4610 4616
4611 static void kmem_cgroup_destroy(struct mem_cgroup *memcg) 4617 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4612 { 4618 {
4613 } 4619 }
4614 #endif 4620 #endif
4615 4621
4616 static struct cftype mem_cgroup_files[] = { 4622 static struct cftype mem_cgroup_files[] = {
4617 { 4623 {
4618 .name = "usage_in_bytes", 4624 .name = "usage_in_bytes",
4619 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4625 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4620 .read = mem_cgroup_read, 4626 .read = mem_cgroup_read,
4621 .register_event = mem_cgroup_usage_register_event, 4627 .register_event = mem_cgroup_usage_register_event,
4622 .unregister_event = mem_cgroup_usage_unregister_event, 4628 .unregister_event = mem_cgroup_usage_unregister_event,
4623 }, 4629 },
4624 { 4630 {
4625 .name = "max_usage_in_bytes", 4631 .name = "max_usage_in_bytes",
4626 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4632 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4627 .trigger = mem_cgroup_reset, 4633 .trigger = mem_cgroup_reset,
4628 .read = mem_cgroup_read, 4634 .read = mem_cgroup_read,
4629 }, 4635 },
4630 { 4636 {
4631 .name = "limit_in_bytes", 4637 .name = "limit_in_bytes",
4632 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4638 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4633 .write_string = mem_cgroup_write, 4639 .write_string = mem_cgroup_write,
4634 .read = mem_cgroup_read, 4640 .read = mem_cgroup_read,
4635 }, 4641 },
4636 { 4642 {
4637 .name = "soft_limit_in_bytes", 4643 .name = "soft_limit_in_bytes",
4638 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4644 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4639 .write_string = mem_cgroup_write, 4645 .write_string = mem_cgroup_write,
4640 .read = mem_cgroup_read, 4646 .read = mem_cgroup_read,
4641 }, 4647 },
4642 { 4648 {
4643 .name = "failcnt", 4649 .name = "failcnt",
4644 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4650 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4645 .trigger = mem_cgroup_reset, 4651 .trigger = mem_cgroup_reset,
4646 .read = mem_cgroup_read, 4652 .read = mem_cgroup_read,
4647 }, 4653 },
4648 { 4654 {
4649 .name = "stat", 4655 .name = "stat",
4650 .read_seq_string = memcg_stat_show, 4656 .read_seq_string = memcg_stat_show,
4651 }, 4657 },
4652 { 4658 {
4653 .name = "force_empty", 4659 .name = "force_empty",
4654 .trigger = mem_cgroup_force_empty_write, 4660 .trigger = mem_cgroup_force_empty_write,
4655 }, 4661 },
4656 { 4662 {
4657 .name = "use_hierarchy", 4663 .name = "use_hierarchy",
4658 .write_u64 = mem_cgroup_hierarchy_write, 4664 .write_u64 = mem_cgroup_hierarchy_write,
4659 .read_u64 = mem_cgroup_hierarchy_read, 4665 .read_u64 = mem_cgroup_hierarchy_read,
4660 }, 4666 },
4661 { 4667 {
4662 .name = "swappiness", 4668 .name = "swappiness",
4663 .read_u64 = mem_cgroup_swappiness_read, 4669 .read_u64 = mem_cgroup_swappiness_read,
4664 .write_u64 = mem_cgroup_swappiness_write, 4670 .write_u64 = mem_cgroup_swappiness_write,
4665 }, 4671 },
4666 { 4672 {
4667 .name = "move_charge_at_immigrate", 4673 .name = "move_charge_at_immigrate",
4668 .read_u64 = mem_cgroup_move_charge_read, 4674 .read_u64 = mem_cgroup_move_charge_read,
4669 .write_u64 = mem_cgroup_move_charge_write, 4675 .write_u64 = mem_cgroup_move_charge_write,
4670 }, 4676 },
4671 { 4677 {
4672 .name = "oom_control", 4678 .name = "oom_control",
4673 .read_map = mem_cgroup_oom_control_read, 4679 .read_map = mem_cgroup_oom_control_read,
4674 .write_u64 = mem_cgroup_oom_control_write, 4680 .write_u64 = mem_cgroup_oom_control_write,
4675 .register_event = mem_cgroup_oom_register_event, 4681 .register_event = mem_cgroup_oom_register_event,
4676 .unregister_event = mem_cgroup_oom_unregister_event, 4682 .unregister_event = mem_cgroup_oom_unregister_event,
4677 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4683 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4678 }, 4684 },
4679 #ifdef CONFIG_NUMA 4685 #ifdef CONFIG_NUMA
4680 { 4686 {
4681 .name = "numa_stat", 4687 .name = "numa_stat",
4682 .read_seq_string = memcg_numa_stat_show, 4688 .read_seq_string = memcg_numa_stat_show,
4683 }, 4689 },
4684 #endif 4690 #endif
4685 #ifdef CONFIG_MEMCG_SWAP 4691 #ifdef CONFIG_MEMCG_SWAP
4686 { 4692 {
4687 .name = "memsw.usage_in_bytes", 4693 .name = "memsw.usage_in_bytes",
4688 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 4694 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4689 .read = mem_cgroup_read, 4695 .read = mem_cgroup_read,
4690 .register_event = mem_cgroup_usage_register_event, 4696 .register_event = mem_cgroup_usage_register_event,
4691 .unregister_event = mem_cgroup_usage_unregister_event, 4697 .unregister_event = mem_cgroup_usage_unregister_event,
4692 }, 4698 },
4693 { 4699 {
4694 .name = "memsw.max_usage_in_bytes", 4700 .name = "memsw.max_usage_in_bytes",
4695 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 4701 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4696 .trigger = mem_cgroup_reset, 4702 .trigger = mem_cgroup_reset,
4697 .read = mem_cgroup_read, 4703 .read = mem_cgroup_read,
4698 }, 4704 },
4699 { 4705 {
4700 .name = "memsw.limit_in_bytes", 4706 .name = "memsw.limit_in_bytes",
4701 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 4707 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4702 .write_string = mem_cgroup_write, 4708 .write_string = mem_cgroup_write,
4703 .read = mem_cgroup_read, 4709 .read = mem_cgroup_read,
4704 }, 4710 },
4705 { 4711 {
4706 .name = "memsw.failcnt", 4712 .name = "memsw.failcnt",
4707 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 4713 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4708 .trigger = mem_cgroup_reset, 4714 .trigger = mem_cgroup_reset,
4709 .read = mem_cgroup_read, 4715 .read = mem_cgroup_read,
4710 }, 4716 },
4711 #endif 4717 #endif
4712 { }, /* terminate */ 4718 { }, /* terminate */
4713 }; 4719 };
4714 4720
4715 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 4721 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4716 { 4722 {
4717 struct mem_cgroup_per_node *pn; 4723 struct mem_cgroup_per_node *pn;
4718 struct mem_cgroup_per_zone *mz; 4724 struct mem_cgroup_per_zone *mz;
4719 int zone, tmp = node; 4725 int zone, tmp = node;
4720 /* 4726 /*
4721 * This routine is called against possible nodes. 4727 * This routine is called against possible nodes.
4722 * But it's BUG to call kmalloc() against offline node. 4728 * But it's BUG to call kmalloc() against offline node.
4723 * 4729 *
4724 * TODO: this routine can waste much memory for nodes which will 4730 * TODO: this routine can waste much memory for nodes which will
4725 * never be onlined. It's better to use memory hotplug callback 4731 * never be onlined. It's better to use memory hotplug callback
4726 * function. 4732 * function.
4727 */ 4733 */
4728 if (!node_state(node, N_NORMAL_MEMORY)) 4734 if (!node_state(node, N_NORMAL_MEMORY))
4729 tmp = -1; 4735 tmp = -1;
4730 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4736 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4731 if (!pn) 4737 if (!pn)
4732 return 1; 4738 return 1;
4733 4739
4734 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4740 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4735 mz = &pn->zoneinfo[zone]; 4741 mz = &pn->zoneinfo[zone];
4736 lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]); 4742 lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
4737 mz->usage_in_excess = 0; 4743 mz->usage_in_excess = 0;
4738 mz->on_tree = false; 4744 mz->on_tree = false;
4739 mz->memcg = memcg; 4745 mz->memcg = memcg;
4740 } 4746 }
4741 memcg->info.nodeinfo[node] = pn; 4747 memcg->info.nodeinfo[node] = pn;
4742 return 0; 4748 return 0;
4743 } 4749 }
4744 4750
4745 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 4751 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4746 { 4752 {
4747 kfree(memcg->info.nodeinfo[node]); 4753 kfree(memcg->info.nodeinfo[node]);
4748 } 4754 }
4749 4755
4750 static struct mem_cgroup *mem_cgroup_alloc(void) 4756 static struct mem_cgroup *mem_cgroup_alloc(void)
4751 { 4757 {
4752 struct mem_cgroup *memcg; 4758 struct mem_cgroup *memcg;
4753 int size = sizeof(struct mem_cgroup); 4759 int size = sizeof(struct mem_cgroup);
4754 4760
4755 /* Can be very big if MAX_NUMNODES is very big */ 4761 /* Can be very big if MAX_NUMNODES is very big */
4756 if (size < PAGE_SIZE) 4762 if (size < PAGE_SIZE)
4757 memcg = kzalloc(size, GFP_KERNEL); 4763 memcg = kzalloc(size, GFP_KERNEL);
4758 else 4764 else
4759 memcg = vzalloc(size); 4765 memcg = vzalloc(size);
4760 4766
4761 if (!memcg) 4767 if (!memcg)
4762 return NULL; 4768 return NULL;
4763 4769
4764 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); 4770 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4765 if (!memcg->stat) 4771 if (!memcg->stat)
4766 goto out_free; 4772 goto out_free;
4767 spin_lock_init(&memcg->pcp_counter_lock); 4773 spin_lock_init(&memcg->pcp_counter_lock);
4768 return memcg; 4774 return memcg;
4769 4775
4770 out_free: 4776 out_free:
4771 if (size < PAGE_SIZE) 4777 if (size < PAGE_SIZE)
4772 kfree(memcg); 4778 kfree(memcg);
4773 else 4779 else
4774 vfree(memcg); 4780 vfree(memcg);
4775 return NULL; 4781 return NULL;
4776 } 4782 }
4777 4783
4778 /* 4784 /*
4779 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU, 4785 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
4780 * but in process context. The work_freeing structure is overlaid 4786 * but in process context. The work_freeing structure is overlaid
4781 * on the rcu_freeing structure, which itself is overlaid on memsw. 4787 * on the rcu_freeing structure, which itself is overlaid on memsw.
4782 */ 4788 */
4783 static void free_work(struct work_struct *work) 4789 static void free_work(struct work_struct *work)
4784 { 4790 {
4785 struct mem_cgroup *memcg; 4791 struct mem_cgroup *memcg;
4786 int size = sizeof(struct mem_cgroup); 4792 int size = sizeof(struct mem_cgroup);
4787 4793
4788 memcg = container_of(work, struct mem_cgroup, work_freeing); 4794 memcg = container_of(work, struct mem_cgroup, work_freeing);
4789 /* 4795 /*
4790 * We need to make sure that (at least for now), the jump label 4796 * We need to make sure that (at least for now), the jump label
4791 * destruction code runs outside of the cgroup lock. This is because 4797 * destruction code runs outside of the cgroup lock. This is because
4792 * get_online_cpus(), which is called from the static_branch update, 4798 * get_online_cpus(), which is called from the static_branch update,
4793 * can't be called inside the cgroup_lock. cpusets are the ones 4799 * can't be called inside the cgroup_lock. cpusets are the ones
4794 * enforcing this dependency, so if they ever change, we might as well. 4800 * enforcing this dependency, so if they ever change, we might as well.
4795 * 4801 *
4796 * schedule_work() will guarantee this happens. Be careful if you need 4802 * schedule_work() will guarantee this happens. Be careful if you need
4797 * to move this code around, and make sure it is outside 4803 * to move this code around, and make sure it is outside
4798 * the cgroup_lock. 4804 * the cgroup_lock.
4799 */ 4805 */
4800 disarm_sock_keys(memcg); 4806 disarm_sock_keys(memcg);
4801 if (size < PAGE_SIZE) 4807 if (size < PAGE_SIZE)
4802 kfree(memcg); 4808 kfree(memcg);
4803 else 4809 else
4804 vfree(memcg); 4810 vfree(memcg);
4805 } 4811 }
4806 4812
4807 static void free_rcu(struct rcu_head *rcu_head) 4813 static void free_rcu(struct rcu_head *rcu_head)
4808 { 4814 {
4809 struct mem_cgroup *memcg; 4815 struct mem_cgroup *memcg;
4810 4816
4811 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing); 4817 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4812 INIT_WORK(&memcg->work_freeing, free_work); 4818 INIT_WORK(&memcg->work_freeing, free_work);
4813 schedule_work(&memcg->work_freeing); 4819 schedule_work(&memcg->work_freeing);
4814 } 4820 }
4815 4821
4816 /* 4822 /*
4817 * At destroying mem_cgroup, references from swap_cgroup can remain. 4823 * At destroying mem_cgroup, references from swap_cgroup can remain.
4818 * (scanning all at force_empty is too costly...) 4824 * (scanning all at force_empty is too costly...)
4819 * 4825 *
4820 * Instead of clearing all references at force_empty, we remember 4826 * Instead of clearing all references at force_empty, we remember
4821 * the number of reference from swap_cgroup and free mem_cgroup when 4827 * the number of reference from swap_cgroup and free mem_cgroup when
4822 * it goes down to 0. 4828 * it goes down to 0.
4823 * 4829 *
4824 * Removal of cgroup itself succeeds regardless of refs from swap. 4830 * Removal of cgroup itself succeeds regardless of refs from swap.
4825 */ 4831 */
4826 4832
4827 static void __mem_cgroup_free(struct mem_cgroup *memcg) 4833 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4828 { 4834 {
4829 int node; 4835 int node;
4830 4836
4831 mem_cgroup_remove_from_trees(memcg); 4837 mem_cgroup_remove_from_trees(memcg);
4832 free_css_id(&mem_cgroup_subsys, &memcg->css); 4838 free_css_id(&mem_cgroup_subsys, &memcg->css);
4833 4839
4834 for_each_node(node) 4840 for_each_node(node)
4835 free_mem_cgroup_per_zone_info(memcg, node); 4841 free_mem_cgroup_per_zone_info(memcg, node);
4836 4842
4837 free_percpu(memcg->stat); 4843 free_percpu(memcg->stat);
4838 call_rcu(&memcg->rcu_freeing, free_rcu); 4844 call_rcu(&memcg->rcu_freeing, free_rcu);
4839 } 4845 }
4840 4846
4841 static void mem_cgroup_get(struct mem_cgroup *memcg) 4847 static void mem_cgroup_get(struct mem_cgroup *memcg)
4842 { 4848 {
4843 atomic_inc(&memcg->refcnt); 4849 atomic_inc(&memcg->refcnt);
4844 } 4850 }
4845 4851
4846 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count) 4852 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4847 { 4853 {
4848 if (atomic_sub_and_test(count, &memcg->refcnt)) { 4854 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4849 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 4855 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4850 __mem_cgroup_free(memcg); 4856 __mem_cgroup_free(memcg);
4851 if (parent) 4857 if (parent)
4852 mem_cgroup_put(parent); 4858 mem_cgroup_put(parent);
4853 } 4859 }
4854 } 4860 }
4855 4861
4856 static void mem_cgroup_put(struct mem_cgroup *memcg) 4862 static void mem_cgroup_put(struct mem_cgroup *memcg)
4857 { 4863 {
4858 __mem_cgroup_put(memcg, 1); 4864 __mem_cgroup_put(memcg, 1);
4859 } 4865 }
4860 4866
4861 /* 4867 /*
4862 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. 4868 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4863 */ 4869 */
4864 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 4870 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4865 { 4871 {
4866 if (!memcg->res.parent) 4872 if (!memcg->res.parent)
4867 return NULL; 4873 return NULL;
4868 return mem_cgroup_from_res_counter(memcg->res.parent, res); 4874 return mem_cgroup_from_res_counter(memcg->res.parent, res);
4869 } 4875 }
4870 EXPORT_SYMBOL(parent_mem_cgroup); 4876 EXPORT_SYMBOL(parent_mem_cgroup);
4871 4877
4872 #ifdef CONFIG_MEMCG_SWAP 4878 #ifdef CONFIG_MEMCG_SWAP
4873 static void __init enable_swap_cgroup(void) 4879 static void __init enable_swap_cgroup(void)
4874 { 4880 {
4875 if (!mem_cgroup_disabled() && really_do_swap_account) 4881 if (!mem_cgroup_disabled() && really_do_swap_account)
4876 do_swap_account = 1; 4882 do_swap_account = 1;
4877 } 4883 }
4878 #else 4884 #else
4879 static void __init enable_swap_cgroup(void) 4885 static void __init enable_swap_cgroup(void)
4880 { 4886 {
4881 } 4887 }
4882 #endif 4888 #endif
4883 4889
4884 static int mem_cgroup_soft_limit_tree_init(void) 4890 static int mem_cgroup_soft_limit_tree_init(void)
4885 { 4891 {
4886 struct mem_cgroup_tree_per_node *rtpn; 4892 struct mem_cgroup_tree_per_node *rtpn;
4887 struct mem_cgroup_tree_per_zone *rtpz; 4893 struct mem_cgroup_tree_per_zone *rtpz;
4888 int tmp, node, zone; 4894 int tmp, node, zone;
4889 4895
4890 for_each_node(node) { 4896 for_each_node(node) {
4891 tmp = node; 4897 tmp = node;
4892 if (!node_state(node, N_NORMAL_MEMORY)) 4898 if (!node_state(node, N_NORMAL_MEMORY))
4893 tmp = -1; 4899 tmp = -1;
4894 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp); 4900 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4895 if (!rtpn) 4901 if (!rtpn)
4896 goto err_cleanup; 4902 goto err_cleanup;
4897 4903
4898 soft_limit_tree.rb_tree_per_node[node] = rtpn; 4904 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4899 4905
4900 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4906 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4901 rtpz = &rtpn->rb_tree_per_zone[zone]; 4907 rtpz = &rtpn->rb_tree_per_zone[zone];
4902 rtpz->rb_root = RB_ROOT; 4908 rtpz->rb_root = RB_ROOT;
4903 spin_lock_init(&rtpz->lock); 4909 spin_lock_init(&rtpz->lock);
4904 } 4910 }
4905 } 4911 }
4906 return 0; 4912 return 0;
4907 4913
4908 err_cleanup: 4914 err_cleanup:
4909 for_each_node(node) { 4915 for_each_node(node) {
4910 if (!soft_limit_tree.rb_tree_per_node[node]) 4916 if (!soft_limit_tree.rb_tree_per_node[node])
4911 break; 4917 break;
4912 kfree(soft_limit_tree.rb_tree_per_node[node]); 4918 kfree(soft_limit_tree.rb_tree_per_node[node]);
4913 soft_limit_tree.rb_tree_per_node[node] = NULL; 4919 soft_limit_tree.rb_tree_per_node[node] = NULL;
4914 } 4920 }
4915 return 1; 4921 return 1;
4916 4922
4917 } 4923 }
4918 4924
4919 static struct cgroup_subsys_state * __ref 4925 static struct cgroup_subsys_state * __ref
4920 mem_cgroup_create(struct cgroup *cont) 4926 mem_cgroup_create(struct cgroup *cont)
4921 { 4927 {
4922 struct mem_cgroup *memcg, *parent; 4928 struct mem_cgroup *memcg, *parent;
4923 long error = -ENOMEM; 4929 long error = -ENOMEM;
4924 int node; 4930 int node;
4925 4931
4926 memcg = mem_cgroup_alloc(); 4932 memcg = mem_cgroup_alloc();
4927 if (!memcg) 4933 if (!memcg)
4928 return ERR_PTR(error); 4934 return ERR_PTR(error);
4929 4935
4930 for_each_node(node) 4936 for_each_node(node)
4931 if (alloc_mem_cgroup_per_zone_info(memcg, node)) 4937 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4932 goto free_out; 4938 goto free_out;
4933 4939
4934 /* root ? */ 4940 /* root ? */
4935 if (cont->parent == NULL) { 4941 if (cont->parent == NULL) {
4936 int cpu; 4942 int cpu;
4937 enable_swap_cgroup(); 4943 enable_swap_cgroup();
4938 parent = NULL; 4944 parent = NULL;
4939 if (mem_cgroup_soft_limit_tree_init()) 4945 if (mem_cgroup_soft_limit_tree_init())
4940 goto free_out; 4946 goto free_out;
4941 root_mem_cgroup = memcg; 4947 root_mem_cgroup = memcg;
4942 for_each_possible_cpu(cpu) { 4948 for_each_possible_cpu(cpu) {
4943 struct memcg_stock_pcp *stock = 4949 struct memcg_stock_pcp *stock =
4944 &per_cpu(memcg_stock, cpu); 4950 &per_cpu(memcg_stock, cpu);
4945 INIT_WORK(&stock->work, drain_local_stock); 4951 INIT_WORK(&stock->work, drain_local_stock);
4946 } 4952 }
4947 hotcpu_notifier(memcg_cpu_hotplug_callback, 0); 4953 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4948 } else { 4954 } else {
4949 parent = mem_cgroup_from_cont(cont->parent); 4955 parent = mem_cgroup_from_cont(cont->parent);
4950 memcg->use_hierarchy = parent->use_hierarchy; 4956 memcg->use_hierarchy = parent->use_hierarchy;
4951 memcg->oom_kill_disable = parent->oom_kill_disable; 4957 memcg->oom_kill_disable = parent->oom_kill_disable;
4952 } 4958 }
4953 4959
4954 if (parent && parent->use_hierarchy) { 4960 if (parent && parent->use_hierarchy) {
4955 res_counter_init(&memcg->res, &parent->res); 4961 res_counter_init(&memcg->res, &parent->res);
4956 res_counter_init(&memcg->memsw, &parent->memsw); 4962 res_counter_init(&memcg->memsw, &parent->memsw);
4957 /* 4963 /*
4958 * We increment refcnt of the parent to ensure that we can 4964 * We increment refcnt of the parent to ensure that we can
4959 * safely access it on res_counter_charge/uncharge. 4965 * safely access it on res_counter_charge/uncharge.
4960 * This refcnt will be decremented when freeing this 4966 * This refcnt will be decremented when freeing this
4961 * mem_cgroup(see mem_cgroup_put). 4967 * mem_cgroup(see mem_cgroup_put).
4962 */ 4968 */
4963 mem_cgroup_get(parent); 4969 mem_cgroup_get(parent);
4964 } else { 4970 } else {
4965 res_counter_init(&memcg->res, NULL); 4971 res_counter_init(&memcg->res, NULL);
4966 res_counter_init(&memcg->memsw, NULL); 4972 res_counter_init(&memcg->memsw, NULL);
4967 } 4973 }
4968 memcg->last_scanned_node = MAX_NUMNODES; 4974 memcg->last_scanned_node = MAX_NUMNODES;
4969 INIT_LIST_HEAD(&memcg->oom_notify); 4975 INIT_LIST_HEAD(&memcg->oom_notify);
4970 4976
4971 if (parent) 4977 if (parent)
4972 memcg->swappiness = mem_cgroup_swappiness(parent); 4978 memcg->swappiness = mem_cgroup_swappiness(parent);
4973 atomic_set(&memcg->refcnt, 1); 4979 atomic_set(&memcg->refcnt, 1);
4974 memcg->move_charge_at_immigrate = 0; 4980 memcg->move_charge_at_immigrate = 0;
4975 mutex_init(&memcg->thresholds_lock); 4981 mutex_init(&memcg->thresholds_lock);
4976 spin_lock_init(&memcg->move_lock); 4982 spin_lock_init(&memcg->move_lock);
4977 4983
4978 error = memcg_init_kmem(memcg, &mem_cgroup_subsys); 4984 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
4979 if (error) { 4985 if (error) {
4980 /* 4986 /*
4981 * We call put now because our (and parent's) refcnts 4987 * We call put now because our (and parent's) refcnts
4982 * are already in place. mem_cgroup_put() will internally 4988 * are already in place. mem_cgroup_put() will internally
4983 * call __mem_cgroup_free, so return directly 4989 * call __mem_cgroup_free, so return directly
4984 */ 4990 */
4985 mem_cgroup_put(memcg); 4991 mem_cgroup_put(memcg);
4986 return ERR_PTR(error); 4992 return ERR_PTR(error);
4987 } 4993 }
4988 return &memcg->css; 4994 return &memcg->css;
4989 free_out: 4995 free_out:
4990 __mem_cgroup_free(memcg); 4996 __mem_cgroup_free(memcg);
4991 return ERR_PTR(error); 4997 return ERR_PTR(error);
4992 } 4998 }
4993 4999
4994 static int mem_cgroup_pre_destroy(struct cgroup *cont) 5000 static int mem_cgroup_pre_destroy(struct cgroup *cont)
4995 { 5001 {
4996 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 5002 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4997 5003
4998 return mem_cgroup_force_empty(memcg, false); 5004 return mem_cgroup_force_empty(memcg, false);
4999 } 5005 }
5000 5006
5001 static void mem_cgroup_destroy(struct cgroup *cont) 5007 static void mem_cgroup_destroy(struct cgroup *cont)
5002 { 5008 {
5003 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 5009 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5004 5010
5005 kmem_cgroup_destroy(memcg); 5011 kmem_cgroup_destroy(memcg);
5006 5012
5007 mem_cgroup_put(memcg); 5013 mem_cgroup_put(memcg);
5008 } 5014 }
5009 5015
5010 #ifdef CONFIG_MMU 5016 #ifdef CONFIG_MMU
5011 /* Handlers for move charge at task migration. */ 5017 /* Handlers for move charge at task migration. */
5012 #define PRECHARGE_COUNT_AT_ONCE 256 5018 #define PRECHARGE_COUNT_AT_ONCE 256
5013 static int mem_cgroup_do_precharge(unsigned long count) 5019 static int mem_cgroup_do_precharge(unsigned long count)
5014 { 5020 {
5015 int ret = 0; 5021 int ret = 0;
5016 int batch_count = PRECHARGE_COUNT_AT_ONCE; 5022 int batch_count = PRECHARGE_COUNT_AT_ONCE;
5017 struct mem_cgroup *memcg = mc.to; 5023 struct mem_cgroup *memcg = mc.to;
5018 5024
5019 if (mem_cgroup_is_root(memcg)) { 5025 if (mem_cgroup_is_root(memcg)) {
5020 mc.precharge += count; 5026 mc.precharge += count;
5021 /* we don't need css_get for root */ 5027 /* we don't need css_get for root */
5022 return ret; 5028 return ret;
5023 } 5029 }
5024 /* try to charge at once */ 5030 /* try to charge at once */
5025 if (count > 1) { 5031 if (count > 1) {
5026 struct res_counter *dummy; 5032 struct res_counter *dummy;
5027 /* 5033 /*
5028 * "memcg" cannot be under rmdir() because we've already checked 5034 * "memcg" cannot be under rmdir() because we've already checked
5029 * by cgroup_lock_live_cgroup() that it is not removed and we 5035 * by cgroup_lock_live_cgroup() that it is not removed and we
5030 * are still under the same cgroup_mutex. So we can postpone 5036 * are still under the same cgroup_mutex. So we can postpone
5031 * css_get(). 5037 * css_get().
5032 */ 5038 */
5033 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy)) 5039 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5034 goto one_by_one; 5040 goto one_by_one;
5035 if (do_swap_account && res_counter_charge(&memcg->memsw, 5041 if (do_swap_account && res_counter_charge(&memcg->memsw,
5036 PAGE_SIZE * count, &dummy)) { 5042 PAGE_SIZE * count, &dummy)) {
5037 res_counter_uncharge(&memcg->res, PAGE_SIZE * count); 5043 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5038 goto one_by_one; 5044 goto one_by_one;
5039 } 5045 }
5040 mc.precharge += count; 5046 mc.precharge += count;
5041 return ret; 5047 return ret;
5042 } 5048 }
5043 one_by_one: 5049 one_by_one:
5044 /* fall back to one by one charge */ 5050 /* fall back to one by one charge */
5045 while (count--) { 5051 while (count--) {
5046 if (signal_pending(current)) { 5052 if (signal_pending(current)) {
5047 ret = -EINTR; 5053 ret = -EINTR;
5048 break; 5054 break;
5049 } 5055 }
5050 if (!batch_count--) { 5056 if (!batch_count--) {
5051 batch_count = PRECHARGE_COUNT_AT_ONCE; 5057 batch_count = PRECHARGE_COUNT_AT_ONCE;
5052 cond_resched(); 5058 cond_resched();
5053 } 5059 }
5054 ret = __mem_cgroup_try_charge(NULL, 5060 ret = __mem_cgroup_try_charge(NULL,
5055 GFP_KERNEL, 1, &memcg, false); 5061 GFP_KERNEL, 1, &memcg, false);
5056 if (ret) 5062 if (ret)
5057 /* mem_cgroup_clear_mc() will do uncharge later */ 5063 /* mem_cgroup_clear_mc() will do uncharge later */
5058 return ret; 5064 return ret;
5059 mc.precharge++; 5065 mc.precharge++;
5060 } 5066 }
5061 return ret; 5067 return ret;
5062 } 5068 }
5063 5069
5064 /** 5070 /**
5065 * get_mctgt_type - get target type of moving charge 5071 * get_mctgt_type - get target type of moving charge
5066 * @vma: the vma the pte to be checked belongs 5072 * @vma: the vma the pte to be checked belongs
5067 * @addr: the address corresponding to the pte to be checked 5073 * @addr: the address corresponding to the pte to be checked
5068 * @ptent: the pte to be checked 5074 * @ptent: the pte to be checked
5069 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5075 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5070 * 5076 *
5071 * Returns 5077 * Returns
5072 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5078 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5073 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5079 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5074 * move charge. if @target is not NULL, the page is stored in target->page 5080 * move charge. if @target is not NULL, the page is stored in target->page
5075 * with extra refcnt got(Callers should handle it). 5081 * with extra refcnt got(Callers should handle it).
5076 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5082 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5077 * target for charge migration. if @target is not NULL, the entry is stored 5083 * target for charge migration. if @target is not NULL, the entry is stored
5078 * in target->ent. 5084 * in target->ent.
5079 * 5085 *
5080 * Called with pte lock held. 5086 * Called with pte lock held.
5081 */ 5087 */
5082 union mc_target { 5088 union mc_target {
5083 struct page *page; 5089 struct page *page;
5084 swp_entry_t ent; 5090 swp_entry_t ent;
5085 }; 5091 };
5086 5092
5087 enum mc_target_type { 5093 enum mc_target_type {
5088 MC_TARGET_NONE = 0, 5094 MC_TARGET_NONE = 0,
5089 MC_TARGET_PAGE, 5095 MC_TARGET_PAGE,
5090 MC_TARGET_SWAP, 5096 MC_TARGET_SWAP,
5091 }; 5097 };
5092 5098
5093 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5099 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5094 unsigned long addr, pte_t ptent) 5100 unsigned long addr, pte_t ptent)
5095 { 5101 {
5096 struct page *page = vm_normal_page(vma, addr, ptent); 5102 struct page *page = vm_normal_page(vma, addr, ptent);
5097 5103
5098 if (!page || !page_mapped(page)) 5104 if (!page || !page_mapped(page))
5099 return NULL; 5105 return NULL;
5100 if (PageAnon(page)) { 5106 if (PageAnon(page)) {
5101 /* we don't move shared anon */ 5107 /* we don't move shared anon */
5102 if (!move_anon()) 5108 if (!move_anon())
5103 return NULL; 5109 return NULL;
5104 } else if (!move_file()) 5110 } else if (!move_file())
5105 /* we ignore mapcount for file pages */ 5111 /* we ignore mapcount for file pages */
5106 return NULL; 5112 return NULL;
5107 if (!get_page_unless_zero(page)) 5113 if (!get_page_unless_zero(page))
5108 return NULL; 5114 return NULL;
5109 5115
5110 return page; 5116 return page;
5111 } 5117 }
5112 5118
5113 #ifdef CONFIG_SWAP 5119 #ifdef CONFIG_SWAP
5114 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5120 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5115 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5121 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5116 { 5122 {
5117 struct page *page = NULL; 5123 struct page *page = NULL;
5118 swp_entry_t ent = pte_to_swp_entry(ptent); 5124 swp_entry_t ent = pte_to_swp_entry(ptent);
5119 5125
5120 if (!move_anon() || non_swap_entry(ent)) 5126 if (!move_anon() || non_swap_entry(ent))
5121 return NULL; 5127 return NULL;
5122 /* 5128 /*
5123 * Because lookup_swap_cache() updates some statistics counter, 5129 * Because lookup_swap_cache() updates some statistics counter,
5124 * we call find_get_page() with swapper_space directly. 5130 * we call find_get_page() with swapper_space directly.
5125 */ 5131 */
5126 page = find_get_page(&swapper_space, ent.val); 5132 page = find_get_page(&swapper_space, ent.val);
5127 if (do_swap_account) 5133 if (do_swap_account)
5128 entry->val = ent.val; 5134 entry->val = ent.val;
5129 5135
5130 return page; 5136 return page;
5131 } 5137 }
5132 #else 5138 #else
5133 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5139 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5134 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5140 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5135 { 5141 {
5136 return NULL; 5142 return NULL;
5137 } 5143 }
5138 #endif 5144 #endif
5139 5145
5140 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5146 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5141 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5147 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5142 { 5148 {
5143 struct page *page = NULL; 5149 struct page *page = NULL;
5144 struct address_space *mapping; 5150 struct address_space *mapping;
5145 pgoff_t pgoff; 5151 pgoff_t pgoff;
5146 5152
5147 if (!vma->vm_file) /* anonymous vma */ 5153 if (!vma->vm_file) /* anonymous vma */
5148 return NULL; 5154 return NULL;
5149 if (!move_file()) 5155 if (!move_file())
5150 return NULL; 5156 return NULL;
5151 5157
5152 mapping = vma->vm_file->f_mapping; 5158 mapping = vma->vm_file->f_mapping;
5153 if (pte_none(ptent)) 5159 if (pte_none(ptent))
5154 pgoff = linear_page_index(vma, addr); 5160 pgoff = linear_page_index(vma, addr);
5155 else /* pte_file(ptent) is true */ 5161 else /* pte_file(ptent) is true */
5156 pgoff = pte_to_pgoff(ptent); 5162 pgoff = pte_to_pgoff(ptent);
5157 5163
5158 /* page is moved even if it's not RSS of this task(page-faulted). */ 5164 /* page is moved even if it's not RSS of this task(page-faulted). */
5159 page = find_get_page(mapping, pgoff); 5165 page = find_get_page(mapping, pgoff);
5160 5166
5161 #ifdef CONFIG_SWAP 5167 #ifdef CONFIG_SWAP
5162 /* shmem/tmpfs may report page out on swap: account for that too. */ 5168 /* shmem/tmpfs may report page out on swap: account for that too. */
5163 if (radix_tree_exceptional_entry(page)) { 5169 if (radix_tree_exceptional_entry(page)) {
5164 swp_entry_t swap = radix_to_swp_entry(page); 5170 swp_entry_t swap = radix_to_swp_entry(page);
5165 if (do_swap_account) 5171 if (do_swap_account)
5166 *entry = swap; 5172 *entry = swap;
5167 page = find_get_page(&swapper_space, swap.val); 5173 page = find_get_page(&swapper_space, swap.val);
5168 } 5174 }
5169 #endif 5175 #endif
5170 return page; 5176 return page;
5171 } 5177 }
5172 5178
5173 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5179 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5174 unsigned long addr, pte_t ptent, union mc_target *target) 5180 unsigned long addr, pte_t ptent, union mc_target *target)
5175 { 5181 {
5176 struct page *page = NULL; 5182 struct page *page = NULL;
5177 struct page_cgroup *pc; 5183 struct page_cgroup *pc;
5178 enum mc_target_type ret = MC_TARGET_NONE; 5184 enum mc_target_type ret = MC_TARGET_NONE;
5179 swp_entry_t ent = { .val = 0 }; 5185 swp_entry_t ent = { .val = 0 };
5180 5186
5181 if (pte_present(ptent)) 5187 if (pte_present(ptent))
5182 page = mc_handle_present_pte(vma, addr, ptent); 5188 page = mc_handle_present_pte(vma, addr, ptent);
5183 else if (is_swap_pte(ptent)) 5189 else if (is_swap_pte(ptent))
5184 page = mc_handle_swap_pte(vma, addr, ptent, &ent); 5190 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5185 else if (pte_none(ptent) || pte_file(ptent)) 5191 else if (pte_none(ptent) || pte_file(ptent))
5186 page = mc_handle_file_pte(vma, addr, ptent, &ent); 5192 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5187 5193
5188 if (!page && !ent.val) 5194 if (!page && !ent.val)
5189 return ret; 5195 return ret;
5190 if (page) { 5196 if (page) {
5191 pc = lookup_page_cgroup(page); 5197 pc = lookup_page_cgroup(page);
5192 /* 5198 /*
5193 * Do only loose check w/o page_cgroup lock. 5199 * Do only loose check w/o page_cgroup lock.
5194 * mem_cgroup_move_account() checks the pc is valid or not under 5200 * mem_cgroup_move_account() checks the pc is valid or not under
5195 * the lock. 5201 * the lock.
5196 */ 5202 */
5197 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 5203 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5198 ret = MC_TARGET_PAGE; 5204 ret = MC_TARGET_PAGE;
5199 if (target) 5205 if (target)
5200 target->page = page; 5206 target->page = page;
5201 } 5207 }
5202 if (!ret || !target) 5208 if (!ret || !target)
5203 put_page(page); 5209 put_page(page);
5204 } 5210 }
5205 /* There is a swap entry and a page doesn't exist or isn't charged */ 5211 /* There is a swap entry and a page doesn't exist or isn't charged */
5206 if (ent.val && !ret && 5212 if (ent.val && !ret &&
5207 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) { 5213 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5208 ret = MC_TARGET_SWAP; 5214 ret = MC_TARGET_SWAP;
5209 if (target) 5215 if (target)
5210 target->ent = ent; 5216 target->ent = ent;
5211 } 5217 }
5212 return ret; 5218 return ret;
5213 } 5219 }
5214 5220
5215 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5221 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5216 /* 5222 /*
5217 * We don't consider swapping or file mapped pages because THP does not 5223 * We don't consider swapping or file mapped pages because THP does not
5218 * support them for now. 5224 * support them for now.
5219 * Caller should make sure that pmd_trans_huge(pmd) is true. 5225 * Caller should make sure that pmd_trans_huge(pmd) is true.
5220 */ 5226 */
5221 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5227 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5222 unsigned long addr, pmd_t pmd, union mc_target *target) 5228 unsigned long addr, pmd_t pmd, union mc_target *target)
5223 { 5229 {
5224 struct page *page = NULL; 5230 struct page *page = NULL;
5225 struct page_cgroup *pc; 5231 struct page_cgroup *pc;
5226 enum mc_target_type ret = MC_TARGET_NONE; 5232 enum mc_target_type ret = MC_TARGET_NONE;
5227 5233
5228 page = pmd_page(pmd); 5234 page = pmd_page(pmd);
5229 VM_BUG_ON(!page || !PageHead(page)); 5235 VM_BUG_ON(!page || !PageHead(page));
5230 if (!move_anon()) 5236 if (!move_anon())
5231 return ret; 5237 return ret;
5232 pc = lookup_page_cgroup(page); 5238 pc = lookup_page_cgroup(page);
5233 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 5239 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5234 ret = MC_TARGET_PAGE; 5240 ret = MC_TARGET_PAGE;
5235 if (target) { 5241 if (target) {
5236 get_page(page); 5242 get_page(page);
5237 target->page = page; 5243 target->page = page;
5238 } 5244 }
5239 } 5245 }
5240 return ret; 5246 return ret;
5241 } 5247 }
5242 #else 5248 #else
5243 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5249 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5244 unsigned long addr, pmd_t pmd, union mc_target *target) 5250 unsigned long addr, pmd_t pmd, union mc_target *target)
5245 { 5251 {
5246 return MC_TARGET_NONE; 5252 return MC_TARGET_NONE;
5247 } 5253 }
5248 #endif 5254 #endif
5249 5255
5250 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5256 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5251 unsigned long addr, unsigned long end, 5257 unsigned long addr, unsigned long end,
5252 struct mm_walk *walk) 5258 struct mm_walk *walk)
5253 { 5259 {
5254 struct vm_area_struct *vma = walk->private; 5260 struct vm_area_struct *vma = walk->private;
5255 pte_t *pte; 5261 pte_t *pte;
5256 spinlock_t *ptl; 5262 spinlock_t *ptl;
5257 5263
5258 if (pmd_trans_huge_lock(pmd, vma) == 1) { 5264 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5259 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5265 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5260 mc.precharge += HPAGE_PMD_NR; 5266 mc.precharge += HPAGE_PMD_NR;
5261 spin_unlock(&vma->vm_mm->page_table_lock); 5267 spin_unlock(&vma->vm_mm->page_table_lock);
5262 return 0; 5268 return 0;
5263 } 5269 }
5264 5270
5265 if (pmd_trans_unstable(pmd)) 5271 if (pmd_trans_unstable(pmd))
5266 return 0; 5272 return 0;
5267 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5273 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5268 for (; addr != end; pte++, addr += PAGE_SIZE) 5274 for (; addr != end; pte++, addr += PAGE_SIZE)
5269 if (get_mctgt_type(vma, addr, *pte, NULL)) 5275 if (get_mctgt_type(vma, addr, *pte, NULL))
5270 mc.precharge++; /* increment precharge temporarily */ 5276 mc.precharge++; /* increment precharge temporarily */
5271 pte_unmap_unlock(pte - 1, ptl); 5277 pte_unmap_unlock(pte - 1, ptl);
5272 cond_resched(); 5278 cond_resched();
5273 5279
5274 return 0; 5280 return 0;
5275 } 5281 }
5276 5282
5277 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5283 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5278 { 5284 {
5279 unsigned long precharge; 5285 unsigned long precharge;
5280 struct vm_area_struct *vma; 5286 struct vm_area_struct *vma;
5281 5287
5282 down_read(&mm->mmap_sem); 5288 down_read(&mm->mmap_sem);
5283 for (vma = mm->mmap; vma; vma = vma->vm_next) { 5289 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5284 struct mm_walk mem_cgroup_count_precharge_walk = { 5290 struct mm_walk mem_cgroup_count_precharge_walk = {
5285 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5291 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5286 .mm = mm, 5292 .mm = mm,
5287 .private = vma, 5293 .private = vma,
5288 }; 5294 };
5289 if (is_vm_hugetlb_page(vma)) 5295 if (is_vm_hugetlb_page(vma))
5290 continue; 5296 continue;
5291 walk_page_range(vma->vm_start, vma->vm_end, 5297 walk_page_range(vma->vm_start, vma->vm_end,
5292 &mem_cgroup_count_precharge_walk); 5298 &mem_cgroup_count_precharge_walk);
5293 } 5299 }
5294 up_read(&mm->mmap_sem); 5300 up_read(&mm->mmap_sem);
5295 5301
5296 precharge = mc.precharge; 5302 precharge = mc.precharge;
5297 mc.precharge = 0; 5303 mc.precharge = 0;
5298 5304
5299 return precharge; 5305 return precharge;
5300 } 5306 }
5301 5307
5302 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5308 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5303 { 5309 {
5304 unsigned long precharge = mem_cgroup_count_precharge(mm); 5310 unsigned long precharge = mem_cgroup_count_precharge(mm);
5305 5311
5306 VM_BUG_ON(mc.moving_task); 5312 VM_BUG_ON(mc.moving_task);
5307 mc.moving_task = current; 5313 mc.moving_task = current;
5308 return mem_cgroup_do_precharge(precharge); 5314 return mem_cgroup_do_precharge(precharge);
5309 } 5315 }
5310 5316
5311 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5317 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5312 static void __mem_cgroup_clear_mc(void) 5318 static void __mem_cgroup_clear_mc(void)
5313 { 5319 {
5314 struct mem_cgroup *from = mc.from; 5320 struct mem_cgroup *from = mc.from;
5315 struct mem_cgroup *to = mc.to; 5321 struct mem_cgroup *to = mc.to;
5316 5322
5317 /* we must uncharge all the leftover precharges from mc.to */ 5323 /* we must uncharge all the leftover precharges from mc.to */
5318 if (mc.precharge) { 5324 if (mc.precharge) {
5319 __mem_cgroup_cancel_charge(mc.to, mc.precharge); 5325 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5320 mc.precharge = 0; 5326 mc.precharge = 0;
5321 } 5327 }
5322 /* 5328 /*
5323 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5329 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5324 * we must uncharge here. 5330 * we must uncharge here.
5325 */ 5331 */
5326 if (mc.moved_charge) { 5332 if (mc.moved_charge) {
5327 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge); 5333 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5328 mc.moved_charge = 0; 5334 mc.moved_charge = 0;
5329 } 5335 }
5330 /* we must fixup refcnts and charges */ 5336 /* we must fixup refcnts and charges */
5331 if (mc.moved_swap) { 5337 if (mc.moved_swap) {
5332 /* uncharge swap account from the old cgroup */ 5338 /* uncharge swap account from the old cgroup */
5333 if (!mem_cgroup_is_root(mc.from)) 5339 if (!mem_cgroup_is_root(mc.from))
5334 res_counter_uncharge(&mc.from->memsw, 5340 res_counter_uncharge(&mc.from->memsw,
5335 PAGE_SIZE * mc.moved_swap); 5341 PAGE_SIZE * mc.moved_swap);
5336 __mem_cgroup_put(mc.from, mc.moved_swap); 5342 __mem_cgroup_put(mc.from, mc.moved_swap);
5337 5343
5338 if (!mem_cgroup_is_root(mc.to)) { 5344 if (!mem_cgroup_is_root(mc.to)) {
5339 /* 5345 /*
5340 * we charged both to->res and to->memsw, so we should 5346 * we charged both to->res and to->memsw, so we should
5341 * uncharge to->res. 5347 * uncharge to->res.
5342 */ 5348 */
5343 res_counter_uncharge(&mc.to->res, 5349 res_counter_uncharge(&mc.to->res,
5344 PAGE_SIZE * mc.moved_swap); 5350 PAGE_SIZE * mc.moved_swap);
5345 } 5351 }
5346 /* we've already done mem_cgroup_get(mc.to) */ 5352 /* we've already done mem_cgroup_get(mc.to) */
5347 mc.moved_swap = 0; 5353 mc.moved_swap = 0;
5348 } 5354 }
5349 memcg_oom_recover(from); 5355 memcg_oom_recover(from);
5350 memcg_oom_recover(to); 5356 memcg_oom_recover(to);
5351 wake_up_all(&mc.waitq); 5357 wake_up_all(&mc.waitq);
5352 } 5358 }
5353 5359
5354 static void mem_cgroup_clear_mc(void) 5360 static void mem_cgroup_clear_mc(void)
5355 { 5361 {
5356 struct mem_cgroup *from = mc.from; 5362 struct mem_cgroup *from = mc.from;
5357 5363
5358 /* 5364 /*
5359 * we must clear moving_task before waking up waiters at the end of 5365 * we must clear moving_task before waking up waiters at the end of
5360 * task migration. 5366 * task migration.
5361 */ 5367 */
5362 mc.moving_task = NULL; 5368 mc.moving_task = NULL;
5363 __mem_cgroup_clear_mc(); 5369 __mem_cgroup_clear_mc();
5364 spin_lock(&mc.lock); 5370 spin_lock(&mc.lock);
5365 mc.from = NULL; 5371 mc.from = NULL;
5366 mc.to = NULL; 5372 mc.to = NULL;
5367 spin_unlock(&mc.lock); 5373 spin_unlock(&mc.lock);
5368 mem_cgroup_end_move(from); 5374 mem_cgroup_end_move(from);
5369 } 5375 }
5370 5376
5371 static int mem_cgroup_can_attach(struct cgroup *cgroup, 5377 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5372 struct cgroup_taskset *tset) 5378 struct cgroup_taskset *tset)
5373 { 5379 {
5374 struct task_struct *p = cgroup_taskset_first(tset); 5380 struct task_struct *p = cgroup_taskset_first(tset);
5375 int ret = 0; 5381 int ret = 0;
5376 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup); 5382 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5377 5383
5378 if (memcg->move_charge_at_immigrate) { 5384 if (memcg->move_charge_at_immigrate) {
5379 struct mm_struct *mm; 5385 struct mm_struct *mm;
5380 struct mem_cgroup *from = mem_cgroup_from_task(p); 5386 struct mem_cgroup *from = mem_cgroup_from_task(p);
5381 5387
5382 VM_BUG_ON(from == memcg); 5388 VM_BUG_ON(from == memcg);
5383 5389
5384 mm = get_task_mm(p); 5390 mm = get_task_mm(p);
5385 if (!mm) 5391 if (!mm)
5386 return 0; 5392 return 0;
5387 /* We move charges only when we move a owner of the mm */ 5393 /* We move charges only when we move a owner of the mm */
5388 if (mm->owner == p) { 5394 if (mm->owner == p) {
5389 VM_BUG_ON(mc.from); 5395 VM_BUG_ON(mc.from);
5390 VM_BUG_ON(mc.to); 5396 VM_BUG_ON(mc.to);
5391 VM_BUG_ON(mc.precharge); 5397 VM_BUG_ON(mc.precharge);
5392 VM_BUG_ON(mc.moved_charge); 5398 VM_BUG_ON(mc.moved_charge);
5393 VM_BUG_ON(mc.moved_swap); 5399 VM_BUG_ON(mc.moved_swap);
5394 mem_cgroup_start_move(from); 5400 mem_cgroup_start_move(from);
5395 spin_lock(&mc.lock); 5401 spin_lock(&mc.lock);
5396 mc.from = from; 5402 mc.from = from;
5397 mc.to = memcg; 5403 mc.to = memcg;
5398 spin_unlock(&mc.lock); 5404 spin_unlock(&mc.lock);
5399 /* We set mc.moving_task later */ 5405 /* We set mc.moving_task later */
5400 5406
5401 ret = mem_cgroup_precharge_mc(mm); 5407 ret = mem_cgroup_precharge_mc(mm);
5402 if (ret) 5408 if (ret)
5403 mem_cgroup_clear_mc(); 5409 mem_cgroup_clear_mc();
5404 } 5410 }
5405 mmput(mm); 5411 mmput(mm);
5406 } 5412 }
5407 return ret; 5413 return ret;
5408 } 5414 }
5409 5415
5410 static void mem_cgroup_cancel_attach(struct cgroup *cgroup, 5416 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5411 struct cgroup_taskset *tset) 5417 struct cgroup_taskset *tset)
5412 { 5418 {
5413 mem_cgroup_clear_mc(); 5419 mem_cgroup_clear_mc();
5414 } 5420 }
5415 5421
5416 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 5422 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5417 unsigned long addr, unsigned long end, 5423 unsigned long addr, unsigned long end,
5418 struct mm_walk *walk) 5424 struct mm_walk *walk)
5419 { 5425 {
5420 int ret = 0; 5426 int ret = 0;
5421 struct vm_area_struct *vma = walk->private; 5427 struct vm_area_struct *vma = walk->private;
5422 pte_t *pte; 5428 pte_t *pte;
5423 spinlock_t *ptl; 5429 spinlock_t *ptl;
5424 enum mc_target_type target_type; 5430 enum mc_target_type target_type;
5425 union mc_target target; 5431 union mc_target target;
5426 struct page *page; 5432 struct page *page;
5427 struct page_cgroup *pc; 5433 struct page_cgroup *pc;
5428 5434
5429 /* 5435 /*
5430 * We don't take compound_lock() here but no race with splitting thp 5436 * We don't take compound_lock() here but no race with splitting thp
5431 * happens because: 5437 * happens because:
5432 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not 5438 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5433 * under splitting, which means there's no concurrent thp split, 5439 * under splitting, which means there's no concurrent thp split,
5434 * - if another thread runs into split_huge_page() just after we 5440 * - if another thread runs into split_huge_page() just after we
5435 * entered this if-block, the thread must wait for page table lock 5441 * entered this if-block, the thread must wait for page table lock
5436 * to be unlocked in __split_huge_page_splitting(), where the main 5442 * to be unlocked in __split_huge_page_splitting(), where the main
5437 * part of thp split is not executed yet. 5443 * part of thp split is not executed yet.
5438 */ 5444 */
5439 if (pmd_trans_huge_lock(pmd, vma) == 1) { 5445 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5440 if (mc.precharge < HPAGE_PMD_NR) { 5446 if (mc.precharge < HPAGE_PMD_NR) {
5441 spin_unlock(&vma->vm_mm->page_table_lock); 5447 spin_unlock(&vma->vm_mm->page_table_lock);
5442 return 0; 5448 return 0;
5443 } 5449 }
5444 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 5450 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5445 if (target_type == MC_TARGET_PAGE) { 5451 if (target_type == MC_TARGET_PAGE) {
5446 page = target.page; 5452 page = target.page;
5447 if (!isolate_lru_page(page)) { 5453 if (!isolate_lru_page(page)) {
5448 pc = lookup_page_cgroup(page); 5454 pc = lookup_page_cgroup(page);
5449 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR, 5455 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5450 pc, mc.from, mc.to)) { 5456 pc, mc.from, mc.to)) {
5451 mc.precharge -= HPAGE_PMD_NR; 5457 mc.precharge -= HPAGE_PMD_NR;
5452 mc.moved_charge += HPAGE_PMD_NR; 5458 mc.moved_charge += HPAGE_PMD_NR;
5453 } 5459 }
5454 putback_lru_page(page); 5460 putback_lru_page(page);
5455 } 5461 }
5456 put_page(page); 5462 put_page(page);
5457 } 5463 }
5458 spin_unlock(&vma->vm_mm->page_table_lock); 5464 spin_unlock(&vma->vm_mm->page_table_lock);
5459 return 0; 5465 return 0;
5460 } 5466 }
5461 5467
5462 if (pmd_trans_unstable(pmd)) 5468 if (pmd_trans_unstable(pmd))
5463 return 0; 5469 return 0;
5464 retry: 5470 retry:
5465 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5471 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5466 for (; addr != end; addr += PAGE_SIZE) { 5472 for (; addr != end; addr += PAGE_SIZE) {
5467 pte_t ptent = *(pte++); 5473 pte_t ptent = *(pte++);
5468 swp_entry_t ent; 5474 swp_entry_t ent;
5469 5475
5470 if (!mc.precharge) 5476 if (!mc.precharge)
5471 break; 5477 break;
5472 5478
5473 switch (get_mctgt_type(vma, addr, ptent, &target)) { 5479 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5474 case MC_TARGET_PAGE: 5480 case MC_TARGET_PAGE:
5475 page = target.page; 5481 page = target.page;
5476 if (isolate_lru_page(page)) 5482 if (isolate_lru_page(page))
5477 goto put; 5483 goto put;
5478 pc = lookup_page_cgroup(page); 5484 pc = lookup_page_cgroup(page);
5479 if (!mem_cgroup_move_account(page, 1, pc, 5485 if (!mem_cgroup_move_account(page, 1, pc,
5480 mc.from, mc.to)) { 5486 mc.from, mc.to)) {
5481 mc.precharge--; 5487 mc.precharge--;
5482 /* we uncharge from mc.from later. */ 5488 /* we uncharge from mc.from later. */
5483 mc.moved_charge++; 5489 mc.moved_charge++;
5484 } 5490 }
5485 putback_lru_page(page); 5491 putback_lru_page(page);
5486 put: /* get_mctgt_type() gets the page */ 5492 put: /* get_mctgt_type() gets the page */
5487 put_page(page); 5493 put_page(page);
5488 break; 5494 break;
5489 case MC_TARGET_SWAP: 5495 case MC_TARGET_SWAP:
5490 ent = target.ent; 5496 ent = target.ent;
5491 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 5497 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5492 mc.precharge--; 5498 mc.precharge--;
5493 /* we fixup refcnts and charges later. */ 5499 /* we fixup refcnts and charges later. */
5494 mc.moved_swap++; 5500 mc.moved_swap++;
5495 } 5501 }
5496 break; 5502 break;
5497 default: 5503 default:
5498 break; 5504 break;
5499 } 5505 }
5500 } 5506 }
5501 pte_unmap_unlock(pte - 1, ptl); 5507 pte_unmap_unlock(pte - 1, ptl);
5502 cond_resched(); 5508 cond_resched();
5503 5509
5504 if (addr != end) { 5510 if (addr != end) {
5505 /* 5511 /*
5506 * We have consumed all precharges we got in can_attach(). 5512 * We have consumed all precharges we got in can_attach().
5507 * We try charge one by one, but don't do any additional 5513 * We try charge one by one, but don't do any additional
5508 * charges to mc.to if we have failed in charge once in attach() 5514 * charges to mc.to if we have failed in charge once in attach()
5509 * phase. 5515 * phase.
5510 */ 5516 */
5511 ret = mem_cgroup_do_precharge(1); 5517 ret = mem_cgroup_do_precharge(1);
5512 if (!ret) 5518 if (!ret)
5513 goto retry; 5519 goto retry;
5514 } 5520 }
5515 5521
5516 return ret; 5522 return ret;
5517 } 5523 }
5518 5524
5519 static void mem_cgroup_move_charge(struct mm_struct *mm) 5525 static void mem_cgroup_move_charge(struct mm_struct *mm)
5520 { 5526 {
5521 struct vm_area_struct *vma; 5527 struct vm_area_struct *vma;
5522 5528
5523 lru_add_drain_all(); 5529 lru_add_drain_all();
5524 retry: 5530 retry:
5525 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 5531 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5526 /* 5532 /*
5527 * Someone who are holding the mmap_sem might be waiting in 5533 * Someone who are holding the mmap_sem might be waiting in
5528 * waitq. So we cancel all extra charges, wake up all waiters, 5534 * waitq. So we cancel all extra charges, wake up all waiters,
5529 * and retry. Because we cancel precharges, we might not be able 5535 * and retry. Because we cancel precharges, we might not be able
5530 * to move enough charges, but moving charge is a best-effort 5536 * to move enough charges, but moving charge is a best-effort
5531 * feature anyway, so it wouldn't be a big problem. 5537 * feature anyway, so it wouldn't be a big problem.
5532 */ 5538 */
5533 __mem_cgroup_clear_mc(); 5539 __mem_cgroup_clear_mc();
5534 cond_resched(); 5540 cond_resched();
5535 goto retry; 5541 goto retry;
5536 } 5542 }
5537 for (vma = mm->mmap; vma; vma = vma->vm_next) { 5543 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5538 int ret; 5544 int ret;
5539 struct mm_walk mem_cgroup_move_charge_walk = { 5545 struct mm_walk mem_cgroup_move_charge_walk = {
5540 .pmd_entry = mem_cgroup_move_charge_pte_range, 5546 .pmd_entry = mem_cgroup_move_charge_pte_range,
5541 .mm = mm, 5547 .mm = mm,
5542 .private = vma, 5548 .private = vma,
5543 }; 5549 };
5544 if (is_vm_hugetlb_page(vma)) 5550 if (is_vm_hugetlb_page(vma))
5545 continue; 5551 continue;
5546 ret = walk_page_range(vma->vm_start, vma->vm_end, 5552 ret = walk_page_range(vma->vm_start, vma->vm_end,
5547 &mem_cgroup_move_charge_walk); 5553 &mem_cgroup_move_charge_walk);
5548 if (ret) 5554 if (ret)
5549 /* 5555 /*
5550 * means we have consumed all precharges and failed in 5556 * means we have consumed all precharges and failed in
5551 * doing additional charge. Just abandon here. 5557 * doing additional charge. Just abandon here.
5552 */ 5558 */
5553 break; 5559 break;
5554 } 5560 }
5555 up_read(&mm->mmap_sem); 5561 up_read(&mm->mmap_sem);
5556 } 5562 }
5557 5563
5558 static void mem_cgroup_move_task(struct cgroup *cont, 5564 static void mem_cgroup_move_task(struct cgroup *cont,
5559 struct cgroup_taskset *tset) 5565 struct cgroup_taskset *tset)
5560 { 5566 {
5561 struct task_struct *p = cgroup_taskset_first(tset); 5567 struct task_struct *p = cgroup_taskset_first(tset);
5562 struct mm_struct *mm = get_task_mm(p); 5568 struct mm_struct *mm = get_task_mm(p);
5563 5569
5564 if (mm) { 5570 if (mm) {
5565 if (mc.to) 5571 if (mc.to)
5566 mem_cgroup_move_charge(mm); 5572 mem_cgroup_move_charge(mm);
5567 mmput(mm); 5573 mmput(mm);
5568 } 5574 }
5569 if (mc.to) 5575 if (mc.to)
5570 mem_cgroup_clear_mc(); 5576 mem_cgroup_clear_mc();
5571 } 5577 }
5572 #else /* !CONFIG_MMU */ 5578 #else /* !CONFIG_MMU */
5573 static int mem_cgroup_can_attach(struct cgroup *cgroup, 5579 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5574 struct cgroup_taskset *tset) 5580 struct cgroup_taskset *tset)
5575 { 5581 {
5576 return 0; 5582 return 0;
5577 } 5583 }
5578 static void mem_cgroup_cancel_attach(struct cgroup *cgroup, 5584 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5579 struct cgroup_taskset *tset) 5585 struct cgroup_taskset *tset)
5580 { 5586 {
5581 } 5587 }
5582 static void mem_cgroup_move_task(struct cgroup *cont, 5588 static void mem_cgroup_move_task(struct cgroup *cont,
5583 struct cgroup_taskset *tset) 5589 struct cgroup_taskset *tset)
5584 { 5590 {
5585 } 5591 }
5586 #endif 5592 #endif
5587 5593
5588 struct cgroup_subsys mem_cgroup_subsys = { 5594 struct cgroup_subsys mem_cgroup_subsys = {
5589 .name = "memory", 5595 .name = "memory",
5590 .subsys_id = mem_cgroup_subsys_id, 5596 .subsys_id = mem_cgroup_subsys_id,
5591 .create = mem_cgroup_create, 5597 .create = mem_cgroup_create,
5592 .pre_destroy = mem_cgroup_pre_destroy, 5598 .pre_destroy = mem_cgroup_pre_destroy,
5593 .destroy = mem_cgroup_destroy, 5599 .destroy = mem_cgroup_destroy,
5594 .can_attach = mem_cgroup_can_attach, 5600 .can_attach = mem_cgroup_can_attach,
5595 .cancel_attach = mem_cgroup_cancel_attach, 5601 .cancel_attach = mem_cgroup_cancel_attach,
5596 .attach = mem_cgroup_move_task, 5602 .attach = mem_cgroup_move_task,
5597 .base_cftypes = mem_cgroup_files, 5603 .base_cftypes = mem_cgroup_files,
5598 .early_init = 0, 5604 .early_init = 0,
5599 .use_id = 1, 5605 .use_id = 1,
5600 .__DEPRECATED_clear_css_refs = true, 5606 .__DEPRECATED_clear_css_refs = true,
5601 }; 5607 };
5602 5608
5603 #ifdef CONFIG_MEMCG_SWAP 5609 #ifdef CONFIG_MEMCG_SWAP
5604 static int __init enable_swap_account(char *s) 5610 static int __init enable_swap_account(char *s)
5605 { 5611 {
5606 /* consider enabled if no parameter or 1 is given */ 5612 /* consider enabled if no parameter or 1 is given */
5607 if (!strcmp(s, "1")) 5613 if (!strcmp(s, "1"))
5608 really_do_swap_account = 1; 5614 really_do_swap_account = 1;