Commit bdf4f4d2161a795b9323855a81a047bd68f16202
Committed by
Linus Torvalds
1 parent
90deb78839
Exists in
smarc-l5.0.0_1.0.0-ga
and in
5 other branches
mm: memcg: only check anon swapin page charges for swap cache
shmem knows for sure that the page is in swap cache when attempting to charge a page, because the cache charge entry function has a check for it. Only anon pages may be removed from swap cache already when trying to charge their swapin. Adjust the comment, though: '4969c11 mm: fix swapin race condition' added a stable PageSwapCache check under the page lock in the do_swap_page() before calling the memory controller, so it's unuse_pte()'s pte_same() that may fail. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Wanpeng Li <liwp.linux@gmail.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Showing 1 changed file with 14 additions and 8 deletions Inline Diff
mm/memcontrol.c
1 | /* memcontrol.c - Memory Controller | 1 | /* memcontrol.c - Memory Controller |
2 | * | 2 | * |
3 | * Copyright IBM Corporation, 2007 | 3 | * Copyright IBM Corporation, 2007 |
4 | * Author Balbir Singh <balbir@linux.vnet.ibm.com> | 4 | * Author Balbir Singh <balbir@linux.vnet.ibm.com> |
5 | * | 5 | * |
6 | * Copyright 2007 OpenVZ SWsoft Inc | 6 | * Copyright 2007 OpenVZ SWsoft Inc |
7 | * Author: Pavel Emelianov <xemul@openvz.org> | 7 | * Author: Pavel Emelianov <xemul@openvz.org> |
8 | * | 8 | * |
9 | * Memory thresholds | 9 | * Memory thresholds |
10 | * Copyright (C) 2009 Nokia Corporation | 10 | * Copyright (C) 2009 Nokia Corporation |
11 | * Author: Kirill A. Shutemov | 11 | * Author: Kirill A. Shutemov |
12 | * | 12 | * |
13 | * This program is free software; you can redistribute it and/or modify | 13 | * This program is free software; you can redistribute it and/or modify |
14 | * it under the terms of the GNU General Public License as published by | 14 | * it under the terms of the GNU General Public License as published by |
15 | * the Free Software Foundation; either version 2 of the License, or | 15 | * the Free Software Foundation; either version 2 of the License, or |
16 | * (at your option) any later version. | 16 | * (at your option) any later version. |
17 | * | 17 | * |
18 | * This program is distributed in the hope that it will be useful, | 18 | * This program is distributed in the hope that it will be useful, |
19 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 19 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
20 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | 20 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
21 | * GNU General Public License for more details. | 21 | * GNU General Public License for more details. |
22 | */ | 22 | */ |
23 | 23 | ||
24 | #include <linux/res_counter.h> | 24 | #include <linux/res_counter.h> |
25 | #include <linux/memcontrol.h> | 25 | #include <linux/memcontrol.h> |
26 | #include <linux/cgroup.h> | 26 | #include <linux/cgroup.h> |
27 | #include <linux/mm.h> | 27 | #include <linux/mm.h> |
28 | #include <linux/hugetlb.h> | 28 | #include <linux/hugetlb.h> |
29 | #include <linux/pagemap.h> | 29 | #include <linux/pagemap.h> |
30 | #include <linux/smp.h> | 30 | #include <linux/smp.h> |
31 | #include <linux/page-flags.h> | 31 | #include <linux/page-flags.h> |
32 | #include <linux/backing-dev.h> | 32 | #include <linux/backing-dev.h> |
33 | #include <linux/bit_spinlock.h> | 33 | #include <linux/bit_spinlock.h> |
34 | #include <linux/rcupdate.h> | 34 | #include <linux/rcupdate.h> |
35 | #include <linux/limits.h> | 35 | #include <linux/limits.h> |
36 | #include <linux/export.h> | 36 | #include <linux/export.h> |
37 | #include <linux/mutex.h> | 37 | #include <linux/mutex.h> |
38 | #include <linux/rbtree.h> | 38 | #include <linux/rbtree.h> |
39 | #include <linux/slab.h> | 39 | #include <linux/slab.h> |
40 | #include <linux/swap.h> | 40 | #include <linux/swap.h> |
41 | #include <linux/swapops.h> | 41 | #include <linux/swapops.h> |
42 | #include <linux/spinlock.h> | 42 | #include <linux/spinlock.h> |
43 | #include <linux/eventfd.h> | 43 | #include <linux/eventfd.h> |
44 | #include <linux/sort.h> | 44 | #include <linux/sort.h> |
45 | #include <linux/fs.h> | 45 | #include <linux/fs.h> |
46 | #include <linux/seq_file.h> | 46 | #include <linux/seq_file.h> |
47 | #include <linux/vmalloc.h> | 47 | #include <linux/vmalloc.h> |
48 | #include <linux/mm_inline.h> | 48 | #include <linux/mm_inline.h> |
49 | #include <linux/page_cgroup.h> | 49 | #include <linux/page_cgroup.h> |
50 | #include <linux/cpu.h> | 50 | #include <linux/cpu.h> |
51 | #include <linux/oom.h> | 51 | #include <linux/oom.h> |
52 | #include "internal.h" | 52 | #include "internal.h" |
53 | #include <net/sock.h> | 53 | #include <net/sock.h> |
54 | #include <net/tcp_memcontrol.h> | 54 | #include <net/tcp_memcontrol.h> |
55 | 55 | ||
56 | #include <asm/uaccess.h> | 56 | #include <asm/uaccess.h> |
57 | 57 | ||
58 | #include <trace/events/vmscan.h> | 58 | #include <trace/events/vmscan.h> |
59 | 59 | ||
60 | struct cgroup_subsys mem_cgroup_subsys __read_mostly; | 60 | struct cgroup_subsys mem_cgroup_subsys __read_mostly; |
61 | #define MEM_CGROUP_RECLAIM_RETRIES 5 | 61 | #define MEM_CGROUP_RECLAIM_RETRIES 5 |
62 | static struct mem_cgroup *root_mem_cgroup __read_mostly; | 62 | static struct mem_cgroup *root_mem_cgroup __read_mostly; |
63 | 63 | ||
64 | #ifdef CONFIG_MEMCG_SWAP | 64 | #ifdef CONFIG_MEMCG_SWAP |
65 | /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ | 65 | /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ |
66 | int do_swap_account __read_mostly; | 66 | int do_swap_account __read_mostly; |
67 | 67 | ||
68 | /* for remember boot option*/ | 68 | /* for remember boot option*/ |
69 | #ifdef CONFIG_MEMCG_SWAP_ENABLED | 69 | #ifdef CONFIG_MEMCG_SWAP_ENABLED |
70 | static int really_do_swap_account __initdata = 1; | 70 | static int really_do_swap_account __initdata = 1; |
71 | #else | 71 | #else |
72 | static int really_do_swap_account __initdata = 0; | 72 | static int really_do_swap_account __initdata = 0; |
73 | #endif | 73 | #endif |
74 | 74 | ||
75 | #else | 75 | #else |
76 | #define do_swap_account 0 | 76 | #define do_swap_account 0 |
77 | #endif | 77 | #endif |
78 | 78 | ||
79 | 79 | ||
80 | /* | 80 | /* |
81 | * Statistics for memory cgroup. | 81 | * Statistics for memory cgroup. |
82 | */ | 82 | */ |
83 | enum mem_cgroup_stat_index { | 83 | enum mem_cgroup_stat_index { |
84 | /* | 84 | /* |
85 | * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. | 85 | * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. |
86 | */ | 86 | */ |
87 | MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ | 87 | MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ |
88 | MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */ | 88 | MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */ |
89 | MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */ | 89 | MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */ |
90 | MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */ | 90 | MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */ |
91 | MEM_CGROUP_STAT_NSTATS, | 91 | MEM_CGROUP_STAT_NSTATS, |
92 | }; | 92 | }; |
93 | 93 | ||
94 | static const char * const mem_cgroup_stat_names[] = { | 94 | static const char * const mem_cgroup_stat_names[] = { |
95 | "cache", | 95 | "cache", |
96 | "rss", | 96 | "rss", |
97 | "mapped_file", | 97 | "mapped_file", |
98 | "swap", | 98 | "swap", |
99 | }; | 99 | }; |
100 | 100 | ||
101 | enum mem_cgroup_events_index { | 101 | enum mem_cgroup_events_index { |
102 | MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */ | 102 | MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */ |
103 | MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */ | 103 | MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */ |
104 | MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */ | 104 | MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */ |
105 | MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */ | 105 | MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */ |
106 | MEM_CGROUP_EVENTS_NSTATS, | 106 | MEM_CGROUP_EVENTS_NSTATS, |
107 | }; | 107 | }; |
108 | 108 | ||
109 | static const char * const mem_cgroup_events_names[] = { | 109 | static const char * const mem_cgroup_events_names[] = { |
110 | "pgpgin", | 110 | "pgpgin", |
111 | "pgpgout", | 111 | "pgpgout", |
112 | "pgfault", | 112 | "pgfault", |
113 | "pgmajfault", | 113 | "pgmajfault", |
114 | }; | 114 | }; |
115 | 115 | ||
116 | /* | 116 | /* |
117 | * Per memcg event counter is incremented at every pagein/pageout. With THP, | 117 | * Per memcg event counter is incremented at every pagein/pageout. With THP, |
118 | * it will be incremated by the number of pages. This counter is used for | 118 | * it will be incremated by the number of pages. This counter is used for |
119 | * for trigger some periodic events. This is straightforward and better | 119 | * for trigger some periodic events. This is straightforward and better |
120 | * than using jiffies etc. to handle periodic memcg event. | 120 | * than using jiffies etc. to handle periodic memcg event. |
121 | */ | 121 | */ |
122 | enum mem_cgroup_events_target { | 122 | enum mem_cgroup_events_target { |
123 | MEM_CGROUP_TARGET_THRESH, | 123 | MEM_CGROUP_TARGET_THRESH, |
124 | MEM_CGROUP_TARGET_SOFTLIMIT, | 124 | MEM_CGROUP_TARGET_SOFTLIMIT, |
125 | MEM_CGROUP_TARGET_NUMAINFO, | 125 | MEM_CGROUP_TARGET_NUMAINFO, |
126 | MEM_CGROUP_NTARGETS, | 126 | MEM_CGROUP_NTARGETS, |
127 | }; | 127 | }; |
128 | #define THRESHOLDS_EVENTS_TARGET 128 | 128 | #define THRESHOLDS_EVENTS_TARGET 128 |
129 | #define SOFTLIMIT_EVENTS_TARGET 1024 | 129 | #define SOFTLIMIT_EVENTS_TARGET 1024 |
130 | #define NUMAINFO_EVENTS_TARGET 1024 | 130 | #define NUMAINFO_EVENTS_TARGET 1024 |
131 | 131 | ||
132 | struct mem_cgroup_stat_cpu { | 132 | struct mem_cgroup_stat_cpu { |
133 | long count[MEM_CGROUP_STAT_NSTATS]; | 133 | long count[MEM_CGROUP_STAT_NSTATS]; |
134 | unsigned long events[MEM_CGROUP_EVENTS_NSTATS]; | 134 | unsigned long events[MEM_CGROUP_EVENTS_NSTATS]; |
135 | unsigned long nr_page_events; | 135 | unsigned long nr_page_events; |
136 | unsigned long targets[MEM_CGROUP_NTARGETS]; | 136 | unsigned long targets[MEM_CGROUP_NTARGETS]; |
137 | }; | 137 | }; |
138 | 138 | ||
139 | struct mem_cgroup_reclaim_iter { | 139 | struct mem_cgroup_reclaim_iter { |
140 | /* css_id of the last scanned hierarchy member */ | 140 | /* css_id of the last scanned hierarchy member */ |
141 | int position; | 141 | int position; |
142 | /* scan generation, increased every round-trip */ | 142 | /* scan generation, increased every round-trip */ |
143 | unsigned int generation; | 143 | unsigned int generation; |
144 | }; | 144 | }; |
145 | 145 | ||
146 | /* | 146 | /* |
147 | * per-zone information in memory controller. | 147 | * per-zone information in memory controller. |
148 | */ | 148 | */ |
149 | struct mem_cgroup_per_zone { | 149 | struct mem_cgroup_per_zone { |
150 | struct lruvec lruvec; | 150 | struct lruvec lruvec; |
151 | unsigned long lru_size[NR_LRU_LISTS]; | 151 | unsigned long lru_size[NR_LRU_LISTS]; |
152 | 152 | ||
153 | struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1]; | 153 | struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1]; |
154 | 154 | ||
155 | struct rb_node tree_node; /* RB tree node */ | 155 | struct rb_node tree_node; /* RB tree node */ |
156 | unsigned long long usage_in_excess;/* Set to the value by which */ | 156 | unsigned long long usage_in_excess;/* Set to the value by which */ |
157 | /* the soft limit is exceeded*/ | 157 | /* the soft limit is exceeded*/ |
158 | bool on_tree; | 158 | bool on_tree; |
159 | struct mem_cgroup *memcg; /* Back pointer, we cannot */ | 159 | struct mem_cgroup *memcg; /* Back pointer, we cannot */ |
160 | /* use container_of */ | 160 | /* use container_of */ |
161 | }; | 161 | }; |
162 | 162 | ||
163 | struct mem_cgroup_per_node { | 163 | struct mem_cgroup_per_node { |
164 | struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; | 164 | struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; |
165 | }; | 165 | }; |
166 | 166 | ||
167 | struct mem_cgroup_lru_info { | 167 | struct mem_cgroup_lru_info { |
168 | struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES]; | 168 | struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES]; |
169 | }; | 169 | }; |
170 | 170 | ||
171 | /* | 171 | /* |
172 | * Cgroups above their limits are maintained in a RB-Tree, independent of | 172 | * Cgroups above their limits are maintained in a RB-Tree, independent of |
173 | * their hierarchy representation | 173 | * their hierarchy representation |
174 | */ | 174 | */ |
175 | 175 | ||
176 | struct mem_cgroup_tree_per_zone { | 176 | struct mem_cgroup_tree_per_zone { |
177 | struct rb_root rb_root; | 177 | struct rb_root rb_root; |
178 | spinlock_t lock; | 178 | spinlock_t lock; |
179 | }; | 179 | }; |
180 | 180 | ||
181 | struct mem_cgroup_tree_per_node { | 181 | struct mem_cgroup_tree_per_node { |
182 | struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; | 182 | struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; |
183 | }; | 183 | }; |
184 | 184 | ||
185 | struct mem_cgroup_tree { | 185 | struct mem_cgroup_tree { |
186 | struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; | 186 | struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; |
187 | }; | 187 | }; |
188 | 188 | ||
189 | static struct mem_cgroup_tree soft_limit_tree __read_mostly; | 189 | static struct mem_cgroup_tree soft_limit_tree __read_mostly; |
190 | 190 | ||
191 | struct mem_cgroup_threshold { | 191 | struct mem_cgroup_threshold { |
192 | struct eventfd_ctx *eventfd; | 192 | struct eventfd_ctx *eventfd; |
193 | u64 threshold; | 193 | u64 threshold; |
194 | }; | 194 | }; |
195 | 195 | ||
196 | /* For threshold */ | 196 | /* For threshold */ |
197 | struct mem_cgroup_threshold_ary { | 197 | struct mem_cgroup_threshold_ary { |
198 | /* An array index points to threshold just below or equal to usage. */ | 198 | /* An array index points to threshold just below or equal to usage. */ |
199 | int current_threshold; | 199 | int current_threshold; |
200 | /* Size of entries[] */ | 200 | /* Size of entries[] */ |
201 | unsigned int size; | 201 | unsigned int size; |
202 | /* Array of thresholds */ | 202 | /* Array of thresholds */ |
203 | struct mem_cgroup_threshold entries[0]; | 203 | struct mem_cgroup_threshold entries[0]; |
204 | }; | 204 | }; |
205 | 205 | ||
206 | struct mem_cgroup_thresholds { | 206 | struct mem_cgroup_thresholds { |
207 | /* Primary thresholds array */ | 207 | /* Primary thresholds array */ |
208 | struct mem_cgroup_threshold_ary *primary; | 208 | struct mem_cgroup_threshold_ary *primary; |
209 | /* | 209 | /* |
210 | * Spare threshold array. | 210 | * Spare threshold array. |
211 | * This is needed to make mem_cgroup_unregister_event() "never fail". | 211 | * This is needed to make mem_cgroup_unregister_event() "never fail". |
212 | * It must be able to store at least primary->size - 1 entries. | 212 | * It must be able to store at least primary->size - 1 entries. |
213 | */ | 213 | */ |
214 | struct mem_cgroup_threshold_ary *spare; | 214 | struct mem_cgroup_threshold_ary *spare; |
215 | }; | 215 | }; |
216 | 216 | ||
217 | /* for OOM */ | 217 | /* for OOM */ |
218 | struct mem_cgroup_eventfd_list { | 218 | struct mem_cgroup_eventfd_list { |
219 | struct list_head list; | 219 | struct list_head list; |
220 | struct eventfd_ctx *eventfd; | 220 | struct eventfd_ctx *eventfd; |
221 | }; | 221 | }; |
222 | 222 | ||
223 | static void mem_cgroup_threshold(struct mem_cgroup *memcg); | 223 | static void mem_cgroup_threshold(struct mem_cgroup *memcg); |
224 | static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); | 224 | static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); |
225 | 225 | ||
226 | /* | 226 | /* |
227 | * The memory controller data structure. The memory controller controls both | 227 | * The memory controller data structure. The memory controller controls both |
228 | * page cache and RSS per cgroup. We would eventually like to provide | 228 | * page cache and RSS per cgroup. We would eventually like to provide |
229 | * statistics based on the statistics developed by Rik Van Riel for clock-pro, | 229 | * statistics based on the statistics developed by Rik Van Riel for clock-pro, |
230 | * to help the administrator determine what knobs to tune. | 230 | * to help the administrator determine what knobs to tune. |
231 | * | 231 | * |
232 | * TODO: Add a water mark for the memory controller. Reclaim will begin when | 232 | * TODO: Add a water mark for the memory controller. Reclaim will begin when |
233 | * we hit the water mark. May be even add a low water mark, such that | 233 | * we hit the water mark. May be even add a low water mark, such that |
234 | * no reclaim occurs from a cgroup at it's low water mark, this is | 234 | * no reclaim occurs from a cgroup at it's low water mark, this is |
235 | * a feature that will be implemented much later in the future. | 235 | * a feature that will be implemented much later in the future. |
236 | */ | 236 | */ |
237 | struct mem_cgroup { | 237 | struct mem_cgroup { |
238 | struct cgroup_subsys_state css; | 238 | struct cgroup_subsys_state css; |
239 | /* | 239 | /* |
240 | * the counter to account for memory usage | 240 | * the counter to account for memory usage |
241 | */ | 241 | */ |
242 | struct res_counter res; | 242 | struct res_counter res; |
243 | 243 | ||
244 | union { | 244 | union { |
245 | /* | 245 | /* |
246 | * the counter to account for mem+swap usage. | 246 | * the counter to account for mem+swap usage. |
247 | */ | 247 | */ |
248 | struct res_counter memsw; | 248 | struct res_counter memsw; |
249 | 249 | ||
250 | /* | 250 | /* |
251 | * rcu_freeing is used only when freeing struct mem_cgroup, | 251 | * rcu_freeing is used only when freeing struct mem_cgroup, |
252 | * so put it into a union to avoid wasting more memory. | 252 | * so put it into a union to avoid wasting more memory. |
253 | * It must be disjoint from the css field. It could be | 253 | * It must be disjoint from the css field. It could be |
254 | * in a union with the res field, but res plays a much | 254 | * in a union with the res field, but res plays a much |
255 | * larger part in mem_cgroup life than memsw, and might | 255 | * larger part in mem_cgroup life than memsw, and might |
256 | * be of interest, even at time of free, when debugging. | 256 | * be of interest, even at time of free, when debugging. |
257 | * So share rcu_head with the less interesting memsw. | 257 | * So share rcu_head with the less interesting memsw. |
258 | */ | 258 | */ |
259 | struct rcu_head rcu_freeing; | 259 | struct rcu_head rcu_freeing; |
260 | /* | 260 | /* |
261 | * We also need some space for a worker in deferred freeing. | 261 | * We also need some space for a worker in deferred freeing. |
262 | * By the time we call it, rcu_freeing is no longer in use. | 262 | * By the time we call it, rcu_freeing is no longer in use. |
263 | */ | 263 | */ |
264 | struct work_struct work_freeing; | 264 | struct work_struct work_freeing; |
265 | }; | 265 | }; |
266 | 266 | ||
267 | /* | 267 | /* |
268 | * Per cgroup active and inactive list, similar to the | 268 | * Per cgroup active and inactive list, similar to the |
269 | * per zone LRU lists. | 269 | * per zone LRU lists. |
270 | */ | 270 | */ |
271 | struct mem_cgroup_lru_info info; | 271 | struct mem_cgroup_lru_info info; |
272 | int last_scanned_node; | 272 | int last_scanned_node; |
273 | #if MAX_NUMNODES > 1 | 273 | #if MAX_NUMNODES > 1 |
274 | nodemask_t scan_nodes; | 274 | nodemask_t scan_nodes; |
275 | atomic_t numainfo_events; | 275 | atomic_t numainfo_events; |
276 | atomic_t numainfo_updating; | 276 | atomic_t numainfo_updating; |
277 | #endif | 277 | #endif |
278 | /* | 278 | /* |
279 | * Should the accounting and control be hierarchical, per subtree? | 279 | * Should the accounting and control be hierarchical, per subtree? |
280 | */ | 280 | */ |
281 | bool use_hierarchy; | 281 | bool use_hierarchy; |
282 | 282 | ||
283 | bool oom_lock; | 283 | bool oom_lock; |
284 | atomic_t under_oom; | 284 | atomic_t under_oom; |
285 | 285 | ||
286 | atomic_t refcnt; | 286 | atomic_t refcnt; |
287 | 287 | ||
288 | int swappiness; | 288 | int swappiness; |
289 | /* OOM-Killer disable */ | 289 | /* OOM-Killer disable */ |
290 | int oom_kill_disable; | 290 | int oom_kill_disable; |
291 | 291 | ||
292 | /* set when res.limit == memsw.limit */ | 292 | /* set when res.limit == memsw.limit */ |
293 | bool memsw_is_minimum; | 293 | bool memsw_is_minimum; |
294 | 294 | ||
295 | /* protect arrays of thresholds */ | 295 | /* protect arrays of thresholds */ |
296 | struct mutex thresholds_lock; | 296 | struct mutex thresholds_lock; |
297 | 297 | ||
298 | /* thresholds for memory usage. RCU-protected */ | 298 | /* thresholds for memory usage. RCU-protected */ |
299 | struct mem_cgroup_thresholds thresholds; | 299 | struct mem_cgroup_thresholds thresholds; |
300 | 300 | ||
301 | /* thresholds for mem+swap usage. RCU-protected */ | 301 | /* thresholds for mem+swap usage. RCU-protected */ |
302 | struct mem_cgroup_thresholds memsw_thresholds; | 302 | struct mem_cgroup_thresholds memsw_thresholds; |
303 | 303 | ||
304 | /* For oom notifier event fd */ | 304 | /* For oom notifier event fd */ |
305 | struct list_head oom_notify; | 305 | struct list_head oom_notify; |
306 | 306 | ||
307 | /* | 307 | /* |
308 | * Should we move charges of a task when a task is moved into this | 308 | * Should we move charges of a task when a task is moved into this |
309 | * mem_cgroup ? And what type of charges should we move ? | 309 | * mem_cgroup ? And what type of charges should we move ? |
310 | */ | 310 | */ |
311 | unsigned long move_charge_at_immigrate; | 311 | unsigned long move_charge_at_immigrate; |
312 | /* | 312 | /* |
313 | * set > 0 if pages under this cgroup are moving to other cgroup. | 313 | * set > 0 if pages under this cgroup are moving to other cgroup. |
314 | */ | 314 | */ |
315 | atomic_t moving_account; | 315 | atomic_t moving_account; |
316 | /* taken only while moving_account > 0 */ | 316 | /* taken only while moving_account > 0 */ |
317 | spinlock_t move_lock; | 317 | spinlock_t move_lock; |
318 | /* | 318 | /* |
319 | * percpu counter. | 319 | * percpu counter. |
320 | */ | 320 | */ |
321 | struct mem_cgroup_stat_cpu __percpu *stat; | 321 | struct mem_cgroup_stat_cpu __percpu *stat; |
322 | /* | 322 | /* |
323 | * used when a cpu is offlined or other synchronizations | 323 | * used when a cpu is offlined or other synchronizations |
324 | * See mem_cgroup_read_stat(). | 324 | * See mem_cgroup_read_stat(). |
325 | */ | 325 | */ |
326 | struct mem_cgroup_stat_cpu nocpu_base; | 326 | struct mem_cgroup_stat_cpu nocpu_base; |
327 | spinlock_t pcp_counter_lock; | 327 | spinlock_t pcp_counter_lock; |
328 | 328 | ||
329 | #ifdef CONFIG_INET | 329 | #ifdef CONFIG_INET |
330 | struct tcp_memcontrol tcp_mem; | 330 | struct tcp_memcontrol tcp_mem; |
331 | #endif | 331 | #endif |
332 | }; | 332 | }; |
333 | 333 | ||
334 | /* Stuffs for move charges at task migration. */ | 334 | /* Stuffs for move charges at task migration. */ |
335 | /* | 335 | /* |
336 | * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a | 336 | * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a |
337 | * left-shifted bitmap of these types. | 337 | * left-shifted bitmap of these types. |
338 | */ | 338 | */ |
339 | enum move_type { | 339 | enum move_type { |
340 | MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */ | 340 | MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */ |
341 | MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */ | 341 | MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */ |
342 | NR_MOVE_TYPE, | 342 | NR_MOVE_TYPE, |
343 | }; | 343 | }; |
344 | 344 | ||
345 | /* "mc" and its members are protected by cgroup_mutex */ | 345 | /* "mc" and its members are protected by cgroup_mutex */ |
346 | static struct move_charge_struct { | 346 | static struct move_charge_struct { |
347 | spinlock_t lock; /* for from, to */ | 347 | spinlock_t lock; /* for from, to */ |
348 | struct mem_cgroup *from; | 348 | struct mem_cgroup *from; |
349 | struct mem_cgroup *to; | 349 | struct mem_cgroup *to; |
350 | unsigned long precharge; | 350 | unsigned long precharge; |
351 | unsigned long moved_charge; | 351 | unsigned long moved_charge; |
352 | unsigned long moved_swap; | 352 | unsigned long moved_swap; |
353 | struct task_struct *moving_task; /* a task moving charges */ | 353 | struct task_struct *moving_task; /* a task moving charges */ |
354 | wait_queue_head_t waitq; /* a waitq for other context */ | 354 | wait_queue_head_t waitq; /* a waitq for other context */ |
355 | } mc = { | 355 | } mc = { |
356 | .lock = __SPIN_LOCK_UNLOCKED(mc.lock), | 356 | .lock = __SPIN_LOCK_UNLOCKED(mc.lock), |
357 | .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), | 357 | .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), |
358 | }; | 358 | }; |
359 | 359 | ||
360 | static bool move_anon(void) | 360 | static bool move_anon(void) |
361 | { | 361 | { |
362 | return test_bit(MOVE_CHARGE_TYPE_ANON, | 362 | return test_bit(MOVE_CHARGE_TYPE_ANON, |
363 | &mc.to->move_charge_at_immigrate); | 363 | &mc.to->move_charge_at_immigrate); |
364 | } | 364 | } |
365 | 365 | ||
366 | static bool move_file(void) | 366 | static bool move_file(void) |
367 | { | 367 | { |
368 | return test_bit(MOVE_CHARGE_TYPE_FILE, | 368 | return test_bit(MOVE_CHARGE_TYPE_FILE, |
369 | &mc.to->move_charge_at_immigrate); | 369 | &mc.to->move_charge_at_immigrate); |
370 | } | 370 | } |
371 | 371 | ||
372 | /* | 372 | /* |
373 | * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft | 373 | * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft |
374 | * limit reclaim to prevent infinite loops, if they ever occur. | 374 | * limit reclaim to prevent infinite loops, if they ever occur. |
375 | */ | 375 | */ |
376 | #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 | 376 | #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 |
377 | #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 | 377 | #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 |
378 | 378 | ||
379 | enum charge_type { | 379 | enum charge_type { |
380 | MEM_CGROUP_CHARGE_TYPE_CACHE = 0, | 380 | MEM_CGROUP_CHARGE_TYPE_CACHE = 0, |
381 | MEM_CGROUP_CHARGE_TYPE_ANON, | 381 | MEM_CGROUP_CHARGE_TYPE_ANON, |
382 | MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ | 382 | MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ |
383 | MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ | 383 | MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ |
384 | NR_CHARGE_TYPE, | 384 | NR_CHARGE_TYPE, |
385 | }; | 385 | }; |
386 | 386 | ||
387 | /* for encoding cft->private value on file */ | 387 | /* for encoding cft->private value on file */ |
388 | #define _MEM (0) | 388 | #define _MEM (0) |
389 | #define _MEMSWAP (1) | 389 | #define _MEMSWAP (1) |
390 | #define _OOM_TYPE (2) | 390 | #define _OOM_TYPE (2) |
391 | #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) | 391 | #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) |
392 | #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) | 392 | #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) |
393 | #define MEMFILE_ATTR(val) ((val) & 0xffff) | 393 | #define MEMFILE_ATTR(val) ((val) & 0xffff) |
394 | /* Used for OOM nofiier */ | 394 | /* Used for OOM nofiier */ |
395 | #define OOM_CONTROL (0) | 395 | #define OOM_CONTROL (0) |
396 | 396 | ||
397 | /* | 397 | /* |
398 | * Reclaim flags for mem_cgroup_hierarchical_reclaim | 398 | * Reclaim flags for mem_cgroup_hierarchical_reclaim |
399 | */ | 399 | */ |
400 | #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0 | 400 | #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0 |
401 | #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT) | 401 | #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT) |
402 | #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1 | 402 | #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1 |
403 | #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT) | 403 | #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT) |
404 | 404 | ||
405 | static void mem_cgroup_get(struct mem_cgroup *memcg); | 405 | static void mem_cgroup_get(struct mem_cgroup *memcg); |
406 | static void mem_cgroup_put(struct mem_cgroup *memcg); | 406 | static void mem_cgroup_put(struct mem_cgroup *memcg); |
407 | 407 | ||
408 | /* Writing them here to avoid exposing memcg's inner layout */ | 408 | /* Writing them here to avoid exposing memcg's inner layout */ |
409 | #ifdef CONFIG_MEMCG_KMEM | 409 | #ifdef CONFIG_MEMCG_KMEM |
410 | #include <net/sock.h> | 410 | #include <net/sock.h> |
411 | #include <net/ip.h> | 411 | #include <net/ip.h> |
412 | 412 | ||
413 | static bool mem_cgroup_is_root(struct mem_cgroup *memcg); | 413 | static bool mem_cgroup_is_root(struct mem_cgroup *memcg); |
414 | void sock_update_memcg(struct sock *sk) | 414 | void sock_update_memcg(struct sock *sk) |
415 | { | 415 | { |
416 | if (mem_cgroup_sockets_enabled) { | 416 | if (mem_cgroup_sockets_enabled) { |
417 | struct mem_cgroup *memcg; | 417 | struct mem_cgroup *memcg; |
418 | struct cg_proto *cg_proto; | 418 | struct cg_proto *cg_proto; |
419 | 419 | ||
420 | BUG_ON(!sk->sk_prot->proto_cgroup); | 420 | BUG_ON(!sk->sk_prot->proto_cgroup); |
421 | 421 | ||
422 | /* Socket cloning can throw us here with sk_cgrp already | 422 | /* Socket cloning can throw us here with sk_cgrp already |
423 | * filled. It won't however, necessarily happen from | 423 | * filled. It won't however, necessarily happen from |
424 | * process context. So the test for root memcg given | 424 | * process context. So the test for root memcg given |
425 | * the current task's memcg won't help us in this case. | 425 | * the current task's memcg won't help us in this case. |
426 | * | 426 | * |
427 | * Respecting the original socket's memcg is a better | 427 | * Respecting the original socket's memcg is a better |
428 | * decision in this case. | 428 | * decision in this case. |
429 | */ | 429 | */ |
430 | if (sk->sk_cgrp) { | 430 | if (sk->sk_cgrp) { |
431 | BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg)); | 431 | BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg)); |
432 | mem_cgroup_get(sk->sk_cgrp->memcg); | 432 | mem_cgroup_get(sk->sk_cgrp->memcg); |
433 | return; | 433 | return; |
434 | } | 434 | } |
435 | 435 | ||
436 | rcu_read_lock(); | 436 | rcu_read_lock(); |
437 | memcg = mem_cgroup_from_task(current); | 437 | memcg = mem_cgroup_from_task(current); |
438 | cg_proto = sk->sk_prot->proto_cgroup(memcg); | 438 | cg_proto = sk->sk_prot->proto_cgroup(memcg); |
439 | if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) { | 439 | if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) { |
440 | mem_cgroup_get(memcg); | 440 | mem_cgroup_get(memcg); |
441 | sk->sk_cgrp = cg_proto; | 441 | sk->sk_cgrp = cg_proto; |
442 | } | 442 | } |
443 | rcu_read_unlock(); | 443 | rcu_read_unlock(); |
444 | } | 444 | } |
445 | } | 445 | } |
446 | EXPORT_SYMBOL(sock_update_memcg); | 446 | EXPORT_SYMBOL(sock_update_memcg); |
447 | 447 | ||
448 | void sock_release_memcg(struct sock *sk) | 448 | void sock_release_memcg(struct sock *sk) |
449 | { | 449 | { |
450 | if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { | 450 | if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { |
451 | struct mem_cgroup *memcg; | 451 | struct mem_cgroup *memcg; |
452 | WARN_ON(!sk->sk_cgrp->memcg); | 452 | WARN_ON(!sk->sk_cgrp->memcg); |
453 | memcg = sk->sk_cgrp->memcg; | 453 | memcg = sk->sk_cgrp->memcg; |
454 | mem_cgroup_put(memcg); | 454 | mem_cgroup_put(memcg); |
455 | } | 455 | } |
456 | } | 456 | } |
457 | 457 | ||
458 | #ifdef CONFIG_INET | 458 | #ifdef CONFIG_INET |
459 | struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg) | 459 | struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg) |
460 | { | 460 | { |
461 | if (!memcg || mem_cgroup_is_root(memcg)) | 461 | if (!memcg || mem_cgroup_is_root(memcg)) |
462 | return NULL; | 462 | return NULL; |
463 | 463 | ||
464 | return &memcg->tcp_mem.cg_proto; | 464 | return &memcg->tcp_mem.cg_proto; |
465 | } | 465 | } |
466 | EXPORT_SYMBOL(tcp_proto_cgroup); | 466 | EXPORT_SYMBOL(tcp_proto_cgroup); |
467 | #endif /* CONFIG_INET */ | 467 | #endif /* CONFIG_INET */ |
468 | #endif /* CONFIG_MEMCG_KMEM */ | 468 | #endif /* CONFIG_MEMCG_KMEM */ |
469 | 469 | ||
470 | #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) | 470 | #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) |
471 | static void disarm_sock_keys(struct mem_cgroup *memcg) | 471 | static void disarm_sock_keys(struct mem_cgroup *memcg) |
472 | { | 472 | { |
473 | if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto)) | 473 | if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto)) |
474 | return; | 474 | return; |
475 | static_key_slow_dec(&memcg_socket_limit_enabled); | 475 | static_key_slow_dec(&memcg_socket_limit_enabled); |
476 | } | 476 | } |
477 | #else | 477 | #else |
478 | static void disarm_sock_keys(struct mem_cgroup *memcg) | 478 | static void disarm_sock_keys(struct mem_cgroup *memcg) |
479 | { | 479 | { |
480 | } | 480 | } |
481 | #endif | 481 | #endif |
482 | 482 | ||
483 | static void drain_all_stock_async(struct mem_cgroup *memcg); | 483 | static void drain_all_stock_async(struct mem_cgroup *memcg); |
484 | 484 | ||
485 | static struct mem_cgroup_per_zone * | 485 | static struct mem_cgroup_per_zone * |
486 | mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid) | 486 | mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid) |
487 | { | 487 | { |
488 | return &memcg->info.nodeinfo[nid]->zoneinfo[zid]; | 488 | return &memcg->info.nodeinfo[nid]->zoneinfo[zid]; |
489 | } | 489 | } |
490 | 490 | ||
491 | struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg) | 491 | struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg) |
492 | { | 492 | { |
493 | return &memcg->css; | 493 | return &memcg->css; |
494 | } | 494 | } |
495 | 495 | ||
496 | static struct mem_cgroup_per_zone * | 496 | static struct mem_cgroup_per_zone * |
497 | page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page) | 497 | page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page) |
498 | { | 498 | { |
499 | int nid = page_to_nid(page); | 499 | int nid = page_to_nid(page); |
500 | int zid = page_zonenum(page); | 500 | int zid = page_zonenum(page); |
501 | 501 | ||
502 | return mem_cgroup_zoneinfo(memcg, nid, zid); | 502 | return mem_cgroup_zoneinfo(memcg, nid, zid); |
503 | } | 503 | } |
504 | 504 | ||
505 | static struct mem_cgroup_tree_per_zone * | 505 | static struct mem_cgroup_tree_per_zone * |
506 | soft_limit_tree_node_zone(int nid, int zid) | 506 | soft_limit_tree_node_zone(int nid, int zid) |
507 | { | 507 | { |
508 | return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; | 508 | return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; |
509 | } | 509 | } |
510 | 510 | ||
511 | static struct mem_cgroup_tree_per_zone * | 511 | static struct mem_cgroup_tree_per_zone * |
512 | soft_limit_tree_from_page(struct page *page) | 512 | soft_limit_tree_from_page(struct page *page) |
513 | { | 513 | { |
514 | int nid = page_to_nid(page); | 514 | int nid = page_to_nid(page); |
515 | int zid = page_zonenum(page); | 515 | int zid = page_zonenum(page); |
516 | 516 | ||
517 | return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; | 517 | return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; |
518 | } | 518 | } |
519 | 519 | ||
520 | static void | 520 | static void |
521 | __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg, | 521 | __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg, |
522 | struct mem_cgroup_per_zone *mz, | 522 | struct mem_cgroup_per_zone *mz, |
523 | struct mem_cgroup_tree_per_zone *mctz, | 523 | struct mem_cgroup_tree_per_zone *mctz, |
524 | unsigned long long new_usage_in_excess) | 524 | unsigned long long new_usage_in_excess) |
525 | { | 525 | { |
526 | struct rb_node **p = &mctz->rb_root.rb_node; | 526 | struct rb_node **p = &mctz->rb_root.rb_node; |
527 | struct rb_node *parent = NULL; | 527 | struct rb_node *parent = NULL; |
528 | struct mem_cgroup_per_zone *mz_node; | 528 | struct mem_cgroup_per_zone *mz_node; |
529 | 529 | ||
530 | if (mz->on_tree) | 530 | if (mz->on_tree) |
531 | return; | 531 | return; |
532 | 532 | ||
533 | mz->usage_in_excess = new_usage_in_excess; | 533 | mz->usage_in_excess = new_usage_in_excess; |
534 | if (!mz->usage_in_excess) | 534 | if (!mz->usage_in_excess) |
535 | return; | 535 | return; |
536 | while (*p) { | 536 | while (*p) { |
537 | parent = *p; | 537 | parent = *p; |
538 | mz_node = rb_entry(parent, struct mem_cgroup_per_zone, | 538 | mz_node = rb_entry(parent, struct mem_cgroup_per_zone, |
539 | tree_node); | 539 | tree_node); |
540 | if (mz->usage_in_excess < mz_node->usage_in_excess) | 540 | if (mz->usage_in_excess < mz_node->usage_in_excess) |
541 | p = &(*p)->rb_left; | 541 | p = &(*p)->rb_left; |
542 | /* | 542 | /* |
543 | * We can't avoid mem cgroups that are over their soft | 543 | * We can't avoid mem cgroups that are over their soft |
544 | * limit by the same amount | 544 | * limit by the same amount |
545 | */ | 545 | */ |
546 | else if (mz->usage_in_excess >= mz_node->usage_in_excess) | 546 | else if (mz->usage_in_excess >= mz_node->usage_in_excess) |
547 | p = &(*p)->rb_right; | 547 | p = &(*p)->rb_right; |
548 | } | 548 | } |
549 | rb_link_node(&mz->tree_node, parent, p); | 549 | rb_link_node(&mz->tree_node, parent, p); |
550 | rb_insert_color(&mz->tree_node, &mctz->rb_root); | 550 | rb_insert_color(&mz->tree_node, &mctz->rb_root); |
551 | mz->on_tree = true; | 551 | mz->on_tree = true; |
552 | } | 552 | } |
553 | 553 | ||
554 | static void | 554 | static void |
555 | __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, | 555 | __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, |
556 | struct mem_cgroup_per_zone *mz, | 556 | struct mem_cgroup_per_zone *mz, |
557 | struct mem_cgroup_tree_per_zone *mctz) | 557 | struct mem_cgroup_tree_per_zone *mctz) |
558 | { | 558 | { |
559 | if (!mz->on_tree) | 559 | if (!mz->on_tree) |
560 | return; | 560 | return; |
561 | rb_erase(&mz->tree_node, &mctz->rb_root); | 561 | rb_erase(&mz->tree_node, &mctz->rb_root); |
562 | mz->on_tree = false; | 562 | mz->on_tree = false; |
563 | } | 563 | } |
564 | 564 | ||
565 | static void | 565 | static void |
566 | mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, | 566 | mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, |
567 | struct mem_cgroup_per_zone *mz, | 567 | struct mem_cgroup_per_zone *mz, |
568 | struct mem_cgroup_tree_per_zone *mctz) | 568 | struct mem_cgroup_tree_per_zone *mctz) |
569 | { | 569 | { |
570 | spin_lock(&mctz->lock); | 570 | spin_lock(&mctz->lock); |
571 | __mem_cgroup_remove_exceeded(memcg, mz, mctz); | 571 | __mem_cgroup_remove_exceeded(memcg, mz, mctz); |
572 | spin_unlock(&mctz->lock); | 572 | spin_unlock(&mctz->lock); |
573 | } | 573 | } |
574 | 574 | ||
575 | 575 | ||
576 | static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) | 576 | static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) |
577 | { | 577 | { |
578 | unsigned long long excess; | 578 | unsigned long long excess; |
579 | struct mem_cgroup_per_zone *mz; | 579 | struct mem_cgroup_per_zone *mz; |
580 | struct mem_cgroup_tree_per_zone *mctz; | 580 | struct mem_cgroup_tree_per_zone *mctz; |
581 | int nid = page_to_nid(page); | 581 | int nid = page_to_nid(page); |
582 | int zid = page_zonenum(page); | 582 | int zid = page_zonenum(page); |
583 | mctz = soft_limit_tree_from_page(page); | 583 | mctz = soft_limit_tree_from_page(page); |
584 | 584 | ||
585 | /* | 585 | /* |
586 | * Necessary to update all ancestors when hierarchy is used. | 586 | * Necessary to update all ancestors when hierarchy is used. |
587 | * because their event counter is not touched. | 587 | * because their event counter is not touched. |
588 | */ | 588 | */ |
589 | for (; memcg; memcg = parent_mem_cgroup(memcg)) { | 589 | for (; memcg; memcg = parent_mem_cgroup(memcg)) { |
590 | mz = mem_cgroup_zoneinfo(memcg, nid, zid); | 590 | mz = mem_cgroup_zoneinfo(memcg, nid, zid); |
591 | excess = res_counter_soft_limit_excess(&memcg->res); | 591 | excess = res_counter_soft_limit_excess(&memcg->res); |
592 | /* | 592 | /* |
593 | * We have to update the tree if mz is on RB-tree or | 593 | * We have to update the tree if mz is on RB-tree or |
594 | * mem is over its softlimit. | 594 | * mem is over its softlimit. |
595 | */ | 595 | */ |
596 | if (excess || mz->on_tree) { | 596 | if (excess || mz->on_tree) { |
597 | spin_lock(&mctz->lock); | 597 | spin_lock(&mctz->lock); |
598 | /* if on-tree, remove it */ | 598 | /* if on-tree, remove it */ |
599 | if (mz->on_tree) | 599 | if (mz->on_tree) |
600 | __mem_cgroup_remove_exceeded(memcg, mz, mctz); | 600 | __mem_cgroup_remove_exceeded(memcg, mz, mctz); |
601 | /* | 601 | /* |
602 | * Insert again. mz->usage_in_excess will be updated. | 602 | * Insert again. mz->usage_in_excess will be updated. |
603 | * If excess is 0, no tree ops. | 603 | * If excess is 0, no tree ops. |
604 | */ | 604 | */ |
605 | __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess); | 605 | __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess); |
606 | spin_unlock(&mctz->lock); | 606 | spin_unlock(&mctz->lock); |
607 | } | 607 | } |
608 | } | 608 | } |
609 | } | 609 | } |
610 | 610 | ||
611 | static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) | 611 | static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) |
612 | { | 612 | { |
613 | int node, zone; | 613 | int node, zone; |
614 | struct mem_cgroup_per_zone *mz; | 614 | struct mem_cgroup_per_zone *mz; |
615 | struct mem_cgroup_tree_per_zone *mctz; | 615 | struct mem_cgroup_tree_per_zone *mctz; |
616 | 616 | ||
617 | for_each_node(node) { | 617 | for_each_node(node) { |
618 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { | 618 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { |
619 | mz = mem_cgroup_zoneinfo(memcg, node, zone); | 619 | mz = mem_cgroup_zoneinfo(memcg, node, zone); |
620 | mctz = soft_limit_tree_node_zone(node, zone); | 620 | mctz = soft_limit_tree_node_zone(node, zone); |
621 | mem_cgroup_remove_exceeded(memcg, mz, mctz); | 621 | mem_cgroup_remove_exceeded(memcg, mz, mctz); |
622 | } | 622 | } |
623 | } | 623 | } |
624 | } | 624 | } |
625 | 625 | ||
626 | static struct mem_cgroup_per_zone * | 626 | static struct mem_cgroup_per_zone * |
627 | __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) | 627 | __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) |
628 | { | 628 | { |
629 | struct rb_node *rightmost = NULL; | 629 | struct rb_node *rightmost = NULL; |
630 | struct mem_cgroup_per_zone *mz; | 630 | struct mem_cgroup_per_zone *mz; |
631 | 631 | ||
632 | retry: | 632 | retry: |
633 | mz = NULL; | 633 | mz = NULL; |
634 | rightmost = rb_last(&mctz->rb_root); | 634 | rightmost = rb_last(&mctz->rb_root); |
635 | if (!rightmost) | 635 | if (!rightmost) |
636 | goto done; /* Nothing to reclaim from */ | 636 | goto done; /* Nothing to reclaim from */ |
637 | 637 | ||
638 | mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); | 638 | mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); |
639 | /* | 639 | /* |
640 | * Remove the node now but someone else can add it back, | 640 | * Remove the node now but someone else can add it back, |
641 | * we will to add it back at the end of reclaim to its correct | 641 | * we will to add it back at the end of reclaim to its correct |
642 | * position in the tree. | 642 | * position in the tree. |
643 | */ | 643 | */ |
644 | __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); | 644 | __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); |
645 | if (!res_counter_soft_limit_excess(&mz->memcg->res) || | 645 | if (!res_counter_soft_limit_excess(&mz->memcg->res) || |
646 | !css_tryget(&mz->memcg->css)) | 646 | !css_tryget(&mz->memcg->css)) |
647 | goto retry; | 647 | goto retry; |
648 | done: | 648 | done: |
649 | return mz; | 649 | return mz; |
650 | } | 650 | } |
651 | 651 | ||
652 | static struct mem_cgroup_per_zone * | 652 | static struct mem_cgroup_per_zone * |
653 | mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) | 653 | mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) |
654 | { | 654 | { |
655 | struct mem_cgroup_per_zone *mz; | 655 | struct mem_cgroup_per_zone *mz; |
656 | 656 | ||
657 | spin_lock(&mctz->lock); | 657 | spin_lock(&mctz->lock); |
658 | mz = __mem_cgroup_largest_soft_limit_node(mctz); | 658 | mz = __mem_cgroup_largest_soft_limit_node(mctz); |
659 | spin_unlock(&mctz->lock); | 659 | spin_unlock(&mctz->lock); |
660 | return mz; | 660 | return mz; |
661 | } | 661 | } |
662 | 662 | ||
663 | /* | 663 | /* |
664 | * Implementation Note: reading percpu statistics for memcg. | 664 | * Implementation Note: reading percpu statistics for memcg. |
665 | * | 665 | * |
666 | * Both of vmstat[] and percpu_counter has threshold and do periodic | 666 | * Both of vmstat[] and percpu_counter has threshold and do periodic |
667 | * synchronization to implement "quick" read. There are trade-off between | 667 | * synchronization to implement "quick" read. There are trade-off between |
668 | * reading cost and precision of value. Then, we may have a chance to implement | 668 | * reading cost and precision of value. Then, we may have a chance to implement |
669 | * a periodic synchronizion of counter in memcg's counter. | 669 | * a periodic synchronizion of counter in memcg's counter. |
670 | * | 670 | * |
671 | * But this _read() function is used for user interface now. The user accounts | 671 | * But this _read() function is used for user interface now. The user accounts |
672 | * memory usage by memory cgroup and he _always_ requires exact value because | 672 | * memory usage by memory cgroup and he _always_ requires exact value because |
673 | * he accounts memory. Even if we provide quick-and-fuzzy read, we always | 673 | * he accounts memory. Even if we provide quick-and-fuzzy read, we always |
674 | * have to visit all online cpus and make sum. So, for now, unnecessary | 674 | * have to visit all online cpus and make sum. So, for now, unnecessary |
675 | * synchronization is not implemented. (just implemented for cpu hotplug) | 675 | * synchronization is not implemented. (just implemented for cpu hotplug) |
676 | * | 676 | * |
677 | * If there are kernel internal actions which can make use of some not-exact | 677 | * If there are kernel internal actions which can make use of some not-exact |
678 | * value, and reading all cpu value can be performance bottleneck in some | 678 | * value, and reading all cpu value can be performance bottleneck in some |
679 | * common workload, threashold and synchonization as vmstat[] should be | 679 | * common workload, threashold and synchonization as vmstat[] should be |
680 | * implemented. | 680 | * implemented. |
681 | */ | 681 | */ |
682 | static long mem_cgroup_read_stat(struct mem_cgroup *memcg, | 682 | static long mem_cgroup_read_stat(struct mem_cgroup *memcg, |
683 | enum mem_cgroup_stat_index idx) | 683 | enum mem_cgroup_stat_index idx) |
684 | { | 684 | { |
685 | long val = 0; | 685 | long val = 0; |
686 | int cpu; | 686 | int cpu; |
687 | 687 | ||
688 | get_online_cpus(); | 688 | get_online_cpus(); |
689 | for_each_online_cpu(cpu) | 689 | for_each_online_cpu(cpu) |
690 | val += per_cpu(memcg->stat->count[idx], cpu); | 690 | val += per_cpu(memcg->stat->count[idx], cpu); |
691 | #ifdef CONFIG_HOTPLUG_CPU | 691 | #ifdef CONFIG_HOTPLUG_CPU |
692 | spin_lock(&memcg->pcp_counter_lock); | 692 | spin_lock(&memcg->pcp_counter_lock); |
693 | val += memcg->nocpu_base.count[idx]; | 693 | val += memcg->nocpu_base.count[idx]; |
694 | spin_unlock(&memcg->pcp_counter_lock); | 694 | spin_unlock(&memcg->pcp_counter_lock); |
695 | #endif | 695 | #endif |
696 | put_online_cpus(); | 696 | put_online_cpus(); |
697 | return val; | 697 | return val; |
698 | } | 698 | } |
699 | 699 | ||
700 | static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, | 700 | static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, |
701 | bool charge) | 701 | bool charge) |
702 | { | 702 | { |
703 | int val = (charge) ? 1 : -1; | 703 | int val = (charge) ? 1 : -1; |
704 | this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); | 704 | this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); |
705 | } | 705 | } |
706 | 706 | ||
707 | static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, | 707 | static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, |
708 | enum mem_cgroup_events_index idx) | 708 | enum mem_cgroup_events_index idx) |
709 | { | 709 | { |
710 | unsigned long val = 0; | 710 | unsigned long val = 0; |
711 | int cpu; | 711 | int cpu; |
712 | 712 | ||
713 | for_each_online_cpu(cpu) | 713 | for_each_online_cpu(cpu) |
714 | val += per_cpu(memcg->stat->events[idx], cpu); | 714 | val += per_cpu(memcg->stat->events[idx], cpu); |
715 | #ifdef CONFIG_HOTPLUG_CPU | 715 | #ifdef CONFIG_HOTPLUG_CPU |
716 | spin_lock(&memcg->pcp_counter_lock); | 716 | spin_lock(&memcg->pcp_counter_lock); |
717 | val += memcg->nocpu_base.events[idx]; | 717 | val += memcg->nocpu_base.events[idx]; |
718 | spin_unlock(&memcg->pcp_counter_lock); | 718 | spin_unlock(&memcg->pcp_counter_lock); |
719 | #endif | 719 | #endif |
720 | return val; | 720 | return val; |
721 | } | 721 | } |
722 | 722 | ||
723 | static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, | 723 | static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, |
724 | bool anon, int nr_pages) | 724 | bool anon, int nr_pages) |
725 | { | 725 | { |
726 | preempt_disable(); | 726 | preempt_disable(); |
727 | 727 | ||
728 | /* | 728 | /* |
729 | * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is | 729 | * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is |
730 | * counted as CACHE even if it's on ANON LRU. | 730 | * counted as CACHE even if it's on ANON LRU. |
731 | */ | 731 | */ |
732 | if (anon) | 732 | if (anon) |
733 | __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], | 733 | __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], |
734 | nr_pages); | 734 | nr_pages); |
735 | else | 735 | else |
736 | __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], | 736 | __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], |
737 | nr_pages); | 737 | nr_pages); |
738 | 738 | ||
739 | /* pagein of a big page is an event. So, ignore page size */ | 739 | /* pagein of a big page is an event. So, ignore page size */ |
740 | if (nr_pages > 0) | 740 | if (nr_pages > 0) |
741 | __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); | 741 | __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); |
742 | else { | 742 | else { |
743 | __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); | 743 | __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); |
744 | nr_pages = -nr_pages; /* for event */ | 744 | nr_pages = -nr_pages; /* for event */ |
745 | } | 745 | } |
746 | 746 | ||
747 | __this_cpu_add(memcg->stat->nr_page_events, nr_pages); | 747 | __this_cpu_add(memcg->stat->nr_page_events, nr_pages); |
748 | 748 | ||
749 | preempt_enable(); | 749 | preempt_enable(); |
750 | } | 750 | } |
751 | 751 | ||
752 | unsigned long | 752 | unsigned long |
753 | mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) | 753 | mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) |
754 | { | 754 | { |
755 | struct mem_cgroup_per_zone *mz; | 755 | struct mem_cgroup_per_zone *mz; |
756 | 756 | ||
757 | mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); | 757 | mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); |
758 | return mz->lru_size[lru]; | 758 | return mz->lru_size[lru]; |
759 | } | 759 | } |
760 | 760 | ||
761 | static unsigned long | 761 | static unsigned long |
762 | mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid, | 762 | mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid, |
763 | unsigned int lru_mask) | 763 | unsigned int lru_mask) |
764 | { | 764 | { |
765 | struct mem_cgroup_per_zone *mz; | 765 | struct mem_cgroup_per_zone *mz; |
766 | enum lru_list lru; | 766 | enum lru_list lru; |
767 | unsigned long ret = 0; | 767 | unsigned long ret = 0; |
768 | 768 | ||
769 | mz = mem_cgroup_zoneinfo(memcg, nid, zid); | 769 | mz = mem_cgroup_zoneinfo(memcg, nid, zid); |
770 | 770 | ||
771 | for_each_lru(lru) { | 771 | for_each_lru(lru) { |
772 | if (BIT(lru) & lru_mask) | 772 | if (BIT(lru) & lru_mask) |
773 | ret += mz->lru_size[lru]; | 773 | ret += mz->lru_size[lru]; |
774 | } | 774 | } |
775 | return ret; | 775 | return ret; |
776 | } | 776 | } |
777 | 777 | ||
778 | static unsigned long | 778 | static unsigned long |
779 | mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, | 779 | mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, |
780 | int nid, unsigned int lru_mask) | 780 | int nid, unsigned int lru_mask) |
781 | { | 781 | { |
782 | u64 total = 0; | 782 | u64 total = 0; |
783 | int zid; | 783 | int zid; |
784 | 784 | ||
785 | for (zid = 0; zid < MAX_NR_ZONES; zid++) | 785 | for (zid = 0; zid < MAX_NR_ZONES; zid++) |
786 | total += mem_cgroup_zone_nr_lru_pages(memcg, | 786 | total += mem_cgroup_zone_nr_lru_pages(memcg, |
787 | nid, zid, lru_mask); | 787 | nid, zid, lru_mask); |
788 | 788 | ||
789 | return total; | 789 | return total; |
790 | } | 790 | } |
791 | 791 | ||
792 | static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, | 792 | static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, |
793 | unsigned int lru_mask) | 793 | unsigned int lru_mask) |
794 | { | 794 | { |
795 | int nid; | 795 | int nid; |
796 | u64 total = 0; | 796 | u64 total = 0; |
797 | 797 | ||
798 | for_each_node_state(nid, N_HIGH_MEMORY) | 798 | for_each_node_state(nid, N_HIGH_MEMORY) |
799 | total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); | 799 | total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); |
800 | return total; | 800 | return total; |
801 | } | 801 | } |
802 | 802 | ||
803 | static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, | 803 | static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, |
804 | enum mem_cgroup_events_target target) | 804 | enum mem_cgroup_events_target target) |
805 | { | 805 | { |
806 | unsigned long val, next; | 806 | unsigned long val, next; |
807 | 807 | ||
808 | val = __this_cpu_read(memcg->stat->nr_page_events); | 808 | val = __this_cpu_read(memcg->stat->nr_page_events); |
809 | next = __this_cpu_read(memcg->stat->targets[target]); | 809 | next = __this_cpu_read(memcg->stat->targets[target]); |
810 | /* from time_after() in jiffies.h */ | 810 | /* from time_after() in jiffies.h */ |
811 | if ((long)next - (long)val < 0) { | 811 | if ((long)next - (long)val < 0) { |
812 | switch (target) { | 812 | switch (target) { |
813 | case MEM_CGROUP_TARGET_THRESH: | 813 | case MEM_CGROUP_TARGET_THRESH: |
814 | next = val + THRESHOLDS_EVENTS_TARGET; | 814 | next = val + THRESHOLDS_EVENTS_TARGET; |
815 | break; | 815 | break; |
816 | case MEM_CGROUP_TARGET_SOFTLIMIT: | 816 | case MEM_CGROUP_TARGET_SOFTLIMIT: |
817 | next = val + SOFTLIMIT_EVENTS_TARGET; | 817 | next = val + SOFTLIMIT_EVENTS_TARGET; |
818 | break; | 818 | break; |
819 | case MEM_CGROUP_TARGET_NUMAINFO: | 819 | case MEM_CGROUP_TARGET_NUMAINFO: |
820 | next = val + NUMAINFO_EVENTS_TARGET; | 820 | next = val + NUMAINFO_EVENTS_TARGET; |
821 | break; | 821 | break; |
822 | default: | 822 | default: |
823 | break; | 823 | break; |
824 | } | 824 | } |
825 | __this_cpu_write(memcg->stat->targets[target], next); | 825 | __this_cpu_write(memcg->stat->targets[target], next); |
826 | return true; | 826 | return true; |
827 | } | 827 | } |
828 | return false; | 828 | return false; |
829 | } | 829 | } |
830 | 830 | ||
831 | /* | 831 | /* |
832 | * Check events in order. | 832 | * Check events in order. |
833 | * | 833 | * |
834 | */ | 834 | */ |
835 | static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) | 835 | static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) |
836 | { | 836 | { |
837 | preempt_disable(); | 837 | preempt_disable(); |
838 | /* threshold event is triggered in finer grain than soft limit */ | 838 | /* threshold event is triggered in finer grain than soft limit */ |
839 | if (unlikely(mem_cgroup_event_ratelimit(memcg, | 839 | if (unlikely(mem_cgroup_event_ratelimit(memcg, |
840 | MEM_CGROUP_TARGET_THRESH))) { | 840 | MEM_CGROUP_TARGET_THRESH))) { |
841 | bool do_softlimit; | 841 | bool do_softlimit; |
842 | bool do_numainfo __maybe_unused; | 842 | bool do_numainfo __maybe_unused; |
843 | 843 | ||
844 | do_softlimit = mem_cgroup_event_ratelimit(memcg, | 844 | do_softlimit = mem_cgroup_event_ratelimit(memcg, |
845 | MEM_CGROUP_TARGET_SOFTLIMIT); | 845 | MEM_CGROUP_TARGET_SOFTLIMIT); |
846 | #if MAX_NUMNODES > 1 | 846 | #if MAX_NUMNODES > 1 |
847 | do_numainfo = mem_cgroup_event_ratelimit(memcg, | 847 | do_numainfo = mem_cgroup_event_ratelimit(memcg, |
848 | MEM_CGROUP_TARGET_NUMAINFO); | 848 | MEM_CGROUP_TARGET_NUMAINFO); |
849 | #endif | 849 | #endif |
850 | preempt_enable(); | 850 | preempt_enable(); |
851 | 851 | ||
852 | mem_cgroup_threshold(memcg); | 852 | mem_cgroup_threshold(memcg); |
853 | if (unlikely(do_softlimit)) | 853 | if (unlikely(do_softlimit)) |
854 | mem_cgroup_update_tree(memcg, page); | 854 | mem_cgroup_update_tree(memcg, page); |
855 | #if MAX_NUMNODES > 1 | 855 | #if MAX_NUMNODES > 1 |
856 | if (unlikely(do_numainfo)) | 856 | if (unlikely(do_numainfo)) |
857 | atomic_inc(&memcg->numainfo_events); | 857 | atomic_inc(&memcg->numainfo_events); |
858 | #endif | 858 | #endif |
859 | } else | 859 | } else |
860 | preempt_enable(); | 860 | preempt_enable(); |
861 | } | 861 | } |
862 | 862 | ||
863 | struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont) | 863 | struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont) |
864 | { | 864 | { |
865 | return container_of(cgroup_subsys_state(cont, | 865 | return container_of(cgroup_subsys_state(cont, |
866 | mem_cgroup_subsys_id), struct mem_cgroup, | 866 | mem_cgroup_subsys_id), struct mem_cgroup, |
867 | css); | 867 | css); |
868 | } | 868 | } |
869 | 869 | ||
870 | struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) | 870 | struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) |
871 | { | 871 | { |
872 | /* | 872 | /* |
873 | * mm_update_next_owner() may clear mm->owner to NULL | 873 | * mm_update_next_owner() may clear mm->owner to NULL |
874 | * if it races with swapoff, page migration, etc. | 874 | * if it races with swapoff, page migration, etc. |
875 | * So this can be called with p == NULL. | 875 | * So this can be called with p == NULL. |
876 | */ | 876 | */ |
877 | if (unlikely(!p)) | 877 | if (unlikely(!p)) |
878 | return NULL; | 878 | return NULL; |
879 | 879 | ||
880 | return container_of(task_subsys_state(p, mem_cgroup_subsys_id), | 880 | return container_of(task_subsys_state(p, mem_cgroup_subsys_id), |
881 | struct mem_cgroup, css); | 881 | struct mem_cgroup, css); |
882 | } | 882 | } |
883 | 883 | ||
884 | struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) | 884 | struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) |
885 | { | 885 | { |
886 | struct mem_cgroup *memcg = NULL; | 886 | struct mem_cgroup *memcg = NULL; |
887 | 887 | ||
888 | if (!mm) | 888 | if (!mm) |
889 | return NULL; | 889 | return NULL; |
890 | /* | 890 | /* |
891 | * Because we have no locks, mm->owner's may be being moved to other | 891 | * Because we have no locks, mm->owner's may be being moved to other |
892 | * cgroup. We use css_tryget() here even if this looks | 892 | * cgroup. We use css_tryget() here even if this looks |
893 | * pessimistic (rather than adding locks here). | 893 | * pessimistic (rather than adding locks here). |
894 | */ | 894 | */ |
895 | rcu_read_lock(); | 895 | rcu_read_lock(); |
896 | do { | 896 | do { |
897 | memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); | 897 | memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); |
898 | if (unlikely(!memcg)) | 898 | if (unlikely(!memcg)) |
899 | break; | 899 | break; |
900 | } while (!css_tryget(&memcg->css)); | 900 | } while (!css_tryget(&memcg->css)); |
901 | rcu_read_unlock(); | 901 | rcu_read_unlock(); |
902 | return memcg; | 902 | return memcg; |
903 | } | 903 | } |
904 | 904 | ||
905 | /** | 905 | /** |
906 | * mem_cgroup_iter - iterate over memory cgroup hierarchy | 906 | * mem_cgroup_iter - iterate over memory cgroup hierarchy |
907 | * @root: hierarchy root | 907 | * @root: hierarchy root |
908 | * @prev: previously returned memcg, NULL on first invocation | 908 | * @prev: previously returned memcg, NULL on first invocation |
909 | * @reclaim: cookie for shared reclaim walks, NULL for full walks | 909 | * @reclaim: cookie for shared reclaim walks, NULL for full walks |
910 | * | 910 | * |
911 | * Returns references to children of the hierarchy below @root, or | 911 | * Returns references to children of the hierarchy below @root, or |
912 | * @root itself, or %NULL after a full round-trip. | 912 | * @root itself, or %NULL after a full round-trip. |
913 | * | 913 | * |
914 | * Caller must pass the return value in @prev on subsequent | 914 | * Caller must pass the return value in @prev on subsequent |
915 | * invocations for reference counting, or use mem_cgroup_iter_break() | 915 | * invocations for reference counting, or use mem_cgroup_iter_break() |
916 | * to cancel a hierarchy walk before the round-trip is complete. | 916 | * to cancel a hierarchy walk before the round-trip is complete. |
917 | * | 917 | * |
918 | * Reclaimers can specify a zone and a priority level in @reclaim to | 918 | * Reclaimers can specify a zone and a priority level in @reclaim to |
919 | * divide up the memcgs in the hierarchy among all concurrent | 919 | * divide up the memcgs in the hierarchy among all concurrent |
920 | * reclaimers operating on the same zone and priority. | 920 | * reclaimers operating on the same zone and priority. |
921 | */ | 921 | */ |
922 | struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, | 922 | struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, |
923 | struct mem_cgroup *prev, | 923 | struct mem_cgroup *prev, |
924 | struct mem_cgroup_reclaim_cookie *reclaim) | 924 | struct mem_cgroup_reclaim_cookie *reclaim) |
925 | { | 925 | { |
926 | struct mem_cgroup *memcg = NULL; | 926 | struct mem_cgroup *memcg = NULL; |
927 | int id = 0; | 927 | int id = 0; |
928 | 928 | ||
929 | if (mem_cgroup_disabled()) | 929 | if (mem_cgroup_disabled()) |
930 | return NULL; | 930 | return NULL; |
931 | 931 | ||
932 | if (!root) | 932 | if (!root) |
933 | root = root_mem_cgroup; | 933 | root = root_mem_cgroup; |
934 | 934 | ||
935 | if (prev && !reclaim) | 935 | if (prev && !reclaim) |
936 | id = css_id(&prev->css); | 936 | id = css_id(&prev->css); |
937 | 937 | ||
938 | if (prev && prev != root) | 938 | if (prev && prev != root) |
939 | css_put(&prev->css); | 939 | css_put(&prev->css); |
940 | 940 | ||
941 | if (!root->use_hierarchy && root != root_mem_cgroup) { | 941 | if (!root->use_hierarchy && root != root_mem_cgroup) { |
942 | if (prev) | 942 | if (prev) |
943 | return NULL; | 943 | return NULL; |
944 | return root; | 944 | return root; |
945 | } | 945 | } |
946 | 946 | ||
947 | while (!memcg) { | 947 | while (!memcg) { |
948 | struct mem_cgroup_reclaim_iter *uninitialized_var(iter); | 948 | struct mem_cgroup_reclaim_iter *uninitialized_var(iter); |
949 | struct cgroup_subsys_state *css; | 949 | struct cgroup_subsys_state *css; |
950 | 950 | ||
951 | if (reclaim) { | 951 | if (reclaim) { |
952 | int nid = zone_to_nid(reclaim->zone); | 952 | int nid = zone_to_nid(reclaim->zone); |
953 | int zid = zone_idx(reclaim->zone); | 953 | int zid = zone_idx(reclaim->zone); |
954 | struct mem_cgroup_per_zone *mz; | 954 | struct mem_cgroup_per_zone *mz; |
955 | 955 | ||
956 | mz = mem_cgroup_zoneinfo(root, nid, zid); | 956 | mz = mem_cgroup_zoneinfo(root, nid, zid); |
957 | iter = &mz->reclaim_iter[reclaim->priority]; | 957 | iter = &mz->reclaim_iter[reclaim->priority]; |
958 | if (prev && reclaim->generation != iter->generation) | 958 | if (prev && reclaim->generation != iter->generation) |
959 | return NULL; | 959 | return NULL; |
960 | id = iter->position; | 960 | id = iter->position; |
961 | } | 961 | } |
962 | 962 | ||
963 | rcu_read_lock(); | 963 | rcu_read_lock(); |
964 | css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id); | 964 | css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id); |
965 | if (css) { | 965 | if (css) { |
966 | if (css == &root->css || css_tryget(css)) | 966 | if (css == &root->css || css_tryget(css)) |
967 | memcg = container_of(css, | 967 | memcg = container_of(css, |
968 | struct mem_cgroup, css); | 968 | struct mem_cgroup, css); |
969 | } else | 969 | } else |
970 | id = 0; | 970 | id = 0; |
971 | rcu_read_unlock(); | 971 | rcu_read_unlock(); |
972 | 972 | ||
973 | if (reclaim) { | 973 | if (reclaim) { |
974 | iter->position = id; | 974 | iter->position = id; |
975 | if (!css) | 975 | if (!css) |
976 | iter->generation++; | 976 | iter->generation++; |
977 | else if (!prev && memcg) | 977 | else if (!prev && memcg) |
978 | reclaim->generation = iter->generation; | 978 | reclaim->generation = iter->generation; |
979 | } | 979 | } |
980 | 980 | ||
981 | if (prev && !css) | 981 | if (prev && !css) |
982 | return NULL; | 982 | return NULL; |
983 | } | 983 | } |
984 | return memcg; | 984 | return memcg; |
985 | } | 985 | } |
986 | 986 | ||
987 | /** | 987 | /** |
988 | * mem_cgroup_iter_break - abort a hierarchy walk prematurely | 988 | * mem_cgroup_iter_break - abort a hierarchy walk prematurely |
989 | * @root: hierarchy root | 989 | * @root: hierarchy root |
990 | * @prev: last visited hierarchy member as returned by mem_cgroup_iter() | 990 | * @prev: last visited hierarchy member as returned by mem_cgroup_iter() |
991 | */ | 991 | */ |
992 | void mem_cgroup_iter_break(struct mem_cgroup *root, | 992 | void mem_cgroup_iter_break(struct mem_cgroup *root, |
993 | struct mem_cgroup *prev) | 993 | struct mem_cgroup *prev) |
994 | { | 994 | { |
995 | if (!root) | 995 | if (!root) |
996 | root = root_mem_cgroup; | 996 | root = root_mem_cgroup; |
997 | if (prev && prev != root) | 997 | if (prev && prev != root) |
998 | css_put(&prev->css); | 998 | css_put(&prev->css); |
999 | } | 999 | } |
1000 | 1000 | ||
1001 | /* | 1001 | /* |
1002 | * Iteration constructs for visiting all cgroups (under a tree). If | 1002 | * Iteration constructs for visiting all cgroups (under a tree). If |
1003 | * loops are exited prematurely (break), mem_cgroup_iter_break() must | 1003 | * loops are exited prematurely (break), mem_cgroup_iter_break() must |
1004 | * be used for reference counting. | 1004 | * be used for reference counting. |
1005 | */ | 1005 | */ |
1006 | #define for_each_mem_cgroup_tree(iter, root) \ | 1006 | #define for_each_mem_cgroup_tree(iter, root) \ |
1007 | for (iter = mem_cgroup_iter(root, NULL, NULL); \ | 1007 | for (iter = mem_cgroup_iter(root, NULL, NULL); \ |
1008 | iter != NULL; \ | 1008 | iter != NULL; \ |
1009 | iter = mem_cgroup_iter(root, iter, NULL)) | 1009 | iter = mem_cgroup_iter(root, iter, NULL)) |
1010 | 1010 | ||
1011 | #define for_each_mem_cgroup(iter) \ | 1011 | #define for_each_mem_cgroup(iter) \ |
1012 | for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ | 1012 | for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ |
1013 | iter != NULL; \ | 1013 | iter != NULL; \ |
1014 | iter = mem_cgroup_iter(NULL, iter, NULL)) | 1014 | iter = mem_cgroup_iter(NULL, iter, NULL)) |
1015 | 1015 | ||
1016 | static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) | 1016 | static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) |
1017 | { | 1017 | { |
1018 | return (memcg == root_mem_cgroup); | 1018 | return (memcg == root_mem_cgroup); |
1019 | } | 1019 | } |
1020 | 1020 | ||
1021 | void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) | 1021 | void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) |
1022 | { | 1022 | { |
1023 | struct mem_cgroup *memcg; | 1023 | struct mem_cgroup *memcg; |
1024 | 1024 | ||
1025 | if (!mm) | 1025 | if (!mm) |
1026 | return; | 1026 | return; |
1027 | 1027 | ||
1028 | rcu_read_lock(); | 1028 | rcu_read_lock(); |
1029 | memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); | 1029 | memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); |
1030 | if (unlikely(!memcg)) | 1030 | if (unlikely(!memcg)) |
1031 | goto out; | 1031 | goto out; |
1032 | 1032 | ||
1033 | switch (idx) { | 1033 | switch (idx) { |
1034 | case PGFAULT: | 1034 | case PGFAULT: |
1035 | this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]); | 1035 | this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]); |
1036 | break; | 1036 | break; |
1037 | case PGMAJFAULT: | 1037 | case PGMAJFAULT: |
1038 | this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]); | 1038 | this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]); |
1039 | break; | 1039 | break; |
1040 | default: | 1040 | default: |
1041 | BUG(); | 1041 | BUG(); |
1042 | } | 1042 | } |
1043 | out: | 1043 | out: |
1044 | rcu_read_unlock(); | 1044 | rcu_read_unlock(); |
1045 | } | 1045 | } |
1046 | EXPORT_SYMBOL(mem_cgroup_count_vm_event); | 1046 | EXPORT_SYMBOL(mem_cgroup_count_vm_event); |
1047 | 1047 | ||
1048 | /** | 1048 | /** |
1049 | * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg | 1049 | * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg |
1050 | * @zone: zone of the wanted lruvec | 1050 | * @zone: zone of the wanted lruvec |
1051 | * @memcg: memcg of the wanted lruvec | 1051 | * @memcg: memcg of the wanted lruvec |
1052 | * | 1052 | * |
1053 | * Returns the lru list vector holding pages for the given @zone and | 1053 | * Returns the lru list vector holding pages for the given @zone and |
1054 | * @mem. This can be the global zone lruvec, if the memory controller | 1054 | * @mem. This can be the global zone lruvec, if the memory controller |
1055 | * is disabled. | 1055 | * is disabled. |
1056 | */ | 1056 | */ |
1057 | struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, | 1057 | struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, |
1058 | struct mem_cgroup *memcg) | 1058 | struct mem_cgroup *memcg) |
1059 | { | 1059 | { |
1060 | struct mem_cgroup_per_zone *mz; | 1060 | struct mem_cgroup_per_zone *mz; |
1061 | 1061 | ||
1062 | if (mem_cgroup_disabled()) | 1062 | if (mem_cgroup_disabled()) |
1063 | return &zone->lruvec; | 1063 | return &zone->lruvec; |
1064 | 1064 | ||
1065 | mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone)); | 1065 | mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone)); |
1066 | return &mz->lruvec; | 1066 | return &mz->lruvec; |
1067 | } | 1067 | } |
1068 | 1068 | ||
1069 | /* | 1069 | /* |
1070 | * Following LRU functions are allowed to be used without PCG_LOCK. | 1070 | * Following LRU functions are allowed to be used without PCG_LOCK. |
1071 | * Operations are called by routine of global LRU independently from memcg. | 1071 | * Operations are called by routine of global LRU independently from memcg. |
1072 | * What we have to take care of here is validness of pc->mem_cgroup. | 1072 | * What we have to take care of here is validness of pc->mem_cgroup. |
1073 | * | 1073 | * |
1074 | * Changes to pc->mem_cgroup happens when | 1074 | * Changes to pc->mem_cgroup happens when |
1075 | * 1. charge | 1075 | * 1. charge |
1076 | * 2. moving account | 1076 | * 2. moving account |
1077 | * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. | 1077 | * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. |
1078 | * It is added to LRU before charge. | 1078 | * It is added to LRU before charge. |
1079 | * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. | 1079 | * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. |
1080 | * When moving account, the page is not on LRU. It's isolated. | 1080 | * When moving account, the page is not on LRU. It's isolated. |
1081 | */ | 1081 | */ |
1082 | 1082 | ||
1083 | /** | 1083 | /** |
1084 | * mem_cgroup_page_lruvec - return lruvec for adding an lru page | 1084 | * mem_cgroup_page_lruvec - return lruvec for adding an lru page |
1085 | * @page: the page | 1085 | * @page: the page |
1086 | * @zone: zone of the page | 1086 | * @zone: zone of the page |
1087 | */ | 1087 | */ |
1088 | struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone) | 1088 | struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone) |
1089 | { | 1089 | { |
1090 | struct mem_cgroup_per_zone *mz; | 1090 | struct mem_cgroup_per_zone *mz; |
1091 | struct mem_cgroup *memcg; | 1091 | struct mem_cgroup *memcg; |
1092 | struct page_cgroup *pc; | 1092 | struct page_cgroup *pc; |
1093 | 1093 | ||
1094 | if (mem_cgroup_disabled()) | 1094 | if (mem_cgroup_disabled()) |
1095 | return &zone->lruvec; | 1095 | return &zone->lruvec; |
1096 | 1096 | ||
1097 | pc = lookup_page_cgroup(page); | 1097 | pc = lookup_page_cgroup(page); |
1098 | memcg = pc->mem_cgroup; | 1098 | memcg = pc->mem_cgroup; |
1099 | 1099 | ||
1100 | /* | 1100 | /* |
1101 | * Surreptitiously switch any uncharged offlist page to root: | 1101 | * Surreptitiously switch any uncharged offlist page to root: |
1102 | * an uncharged page off lru does nothing to secure | 1102 | * an uncharged page off lru does nothing to secure |
1103 | * its former mem_cgroup from sudden removal. | 1103 | * its former mem_cgroup from sudden removal. |
1104 | * | 1104 | * |
1105 | * Our caller holds lru_lock, and PageCgroupUsed is updated | 1105 | * Our caller holds lru_lock, and PageCgroupUsed is updated |
1106 | * under page_cgroup lock: between them, they make all uses | 1106 | * under page_cgroup lock: between them, they make all uses |
1107 | * of pc->mem_cgroup safe. | 1107 | * of pc->mem_cgroup safe. |
1108 | */ | 1108 | */ |
1109 | if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup) | 1109 | if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup) |
1110 | pc->mem_cgroup = memcg = root_mem_cgroup; | 1110 | pc->mem_cgroup = memcg = root_mem_cgroup; |
1111 | 1111 | ||
1112 | mz = page_cgroup_zoneinfo(memcg, page); | 1112 | mz = page_cgroup_zoneinfo(memcg, page); |
1113 | return &mz->lruvec; | 1113 | return &mz->lruvec; |
1114 | } | 1114 | } |
1115 | 1115 | ||
1116 | /** | 1116 | /** |
1117 | * mem_cgroup_update_lru_size - account for adding or removing an lru page | 1117 | * mem_cgroup_update_lru_size - account for adding or removing an lru page |
1118 | * @lruvec: mem_cgroup per zone lru vector | 1118 | * @lruvec: mem_cgroup per zone lru vector |
1119 | * @lru: index of lru list the page is sitting on | 1119 | * @lru: index of lru list the page is sitting on |
1120 | * @nr_pages: positive when adding or negative when removing | 1120 | * @nr_pages: positive when adding or negative when removing |
1121 | * | 1121 | * |
1122 | * This function must be called when a page is added to or removed from an | 1122 | * This function must be called when a page is added to or removed from an |
1123 | * lru list. | 1123 | * lru list. |
1124 | */ | 1124 | */ |
1125 | void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, | 1125 | void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, |
1126 | int nr_pages) | 1126 | int nr_pages) |
1127 | { | 1127 | { |
1128 | struct mem_cgroup_per_zone *mz; | 1128 | struct mem_cgroup_per_zone *mz; |
1129 | unsigned long *lru_size; | 1129 | unsigned long *lru_size; |
1130 | 1130 | ||
1131 | if (mem_cgroup_disabled()) | 1131 | if (mem_cgroup_disabled()) |
1132 | return; | 1132 | return; |
1133 | 1133 | ||
1134 | mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); | 1134 | mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); |
1135 | lru_size = mz->lru_size + lru; | 1135 | lru_size = mz->lru_size + lru; |
1136 | *lru_size += nr_pages; | 1136 | *lru_size += nr_pages; |
1137 | VM_BUG_ON((long)(*lru_size) < 0); | 1137 | VM_BUG_ON((long)(*lru_size) < 0); |
1138 | } | 1138 | } |
1139 | 1139 | ||
1140 | /* | 1140 | /* |
1141 | * Checks whether given mem is same or in the root_mem_cgroup's | 1141 | * Checks whether given mem is same or in the root_mem_cgroup's |
1142 | * hierarchy subtree | 1142 | * hierarchy subtree |
1143 | */ | 1143 | */ |
1144 | bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, | 1144 | bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, |
1145 | struct mem_cgroup *memcg) | 1145 | struct mem_cgroup *memcg) |
1146 | { | 1146 | { |
1147 | if (root_memcg == memcg) | 1147 | if (root_memcg == memcg) |
1148 | return true; | 1148 | return true; |
1149 | if (!root_memcg->use_hierarchy || !memcg) | 1149 | if (!root_memcg->use_hierarchy || !memcg) |
1150 | return false; | 1150 | return false; |
1151 | return css_is_ancestor(&memcg->css, &root_memcg->css); | 1151 | return css_is_ancestor(&memcg->css, &root_memcg->css); |
1152 | } | 1152 | } |
1153 | 1153 | ||
1154 | static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, | 1154 | static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, |
1155 | struct mem_cgroup *memcg) | 1155 | struct mem_cgroup *memcg) |
1156 | { | 1156 | { |
1157 | bool ret; | 1157 | bool ret; |
1158 | 1158 | ||
1159 | rcu_read_lock(); | 1159 | rcu_read_lock(); |
1160 | ret = __mem_cgroup_same_or_subtree(root_memcg, memcg); | 1160 | ret = __mem_cgroup_same_or_subtree(root_memcg, memcg); |
1161 | rcu_read_unlock(); | 1161 | rcu_read_unlock(); |
1162 | return ret; | 1162 | return ret; |
1163 | } | 1163 | } |
1164 | 1164 | ||
1165 | int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg) | 1165 | int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg) |
1166 | { | 1166 | { |
1167 | int ret; | 1167 | int ret; |
1168 | struct mem_cgroup *curr = NULL; | 1168 | struct mem_cgroup *curr = NULL; |
1169 | struct task_struct *p; | 1169 | struct task_struct *p; |
1170 | 1170 | ||
1171 | p = find_lock_task_mm(task); | 1171 | p = find_lock_task_mm(task); |
1172 | if (p) { | 1172 | if (p) { |
1173 | curr = try_get_mem_cgroup_from_mm(p->mm); | 1173 | curr = try_get_mem_cgroup_from_mm(p->mm); |
1174 | task_unlock(p); | 1174 | task_unlock(p); |
1175 | } else { | 1175 | } else { |
1176 | /* | 1176 | /* |
1177 | * All threads may have already detached their mm's, but the oom | 1177 | * All threads may have already detached their mm's, but the oom |
1178 | * killer still needs to detect if they have already been oom | 1178 | * killer still needs to detect if they have already been oom |
1179 | * killed to prevent needlessly killing additional tasks. | 1179 | * killed to prevent needlessly killing additional tasks. |
1180 | */ | 1180 | */ |
1181 | task_lock(task); | 1181 | task_lock(task); |
1182 | curr = mem_cgroup_from_task(task); | 1182 | curr = mem_cgroup_from_task(task); |
1183 | if (curr) | 1183 | if (curr) |
1184 | css_get(&curr->css); | 1184 | css_get(&curr->css); |
1185 | task_unlock(task); | 1185 | task_unlock(task); |
1186 | } | 1186 | } |
1187 | if (!curr) | 1187 | if (!curr) |
1188 | return 0; | 1188 | return 0; |
1189 | /* | 1189 | /* |
1190 | * We should check use_hierarchy of "memcg" not "curr". Because checking | 1190 | * We should check use_hierarchy of "memcg" not "curr". Because checking |
1191 | * use_hierarchy of "curr" here make this function true if hierarchy is | 1191 | * use_hierarchy of "curr" here make this function true if hierarchy is |
1192 | * enabled in "curr" and "curr" is a child of "memcg" in *cgroup* | 1192 | * enabled in "curr" and "curr" is a child of "memcg" in *cgroup* |
1193 | * hierarchy(even if use_hierarchy is disabled in "memcg"). | 1193 | * hierarchy(even if use_hierarchy is disabled in "memcg"). |
1194 | */ | 1194 | */ |
1195 | ret = mem_cgroup_same_or_subtree(memcg, curr); | 1195 | ret = mem_cgroup_same_or_subtree(memcg, curr); |
1196 | css_put(&curr->css); | 1196 | css_put(&curr->css); |
1197 | return ret; | 1197 | return ret; |
1198 | } | 1198 | } |
1199 | 1199 | ||
1200 | int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) | 1200 | int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) |
1201 | { | 1201 | { |
1202 | unsigned long inactive_ratio; | 1202 | unsigned long inactive_ratio; |
1203 | unsigned long inactive; | 1203 | unsigned long inactive; |
1204 | unsigned long active; | 1204 | unsigned long active; |
1205 | unsigned long gb; | 1205 | unsigned long gb; |
1206 | 1206 | ||
1207 | inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON); | 1207 | inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON); |
1208 | active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON); | 1208 | active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON); |
1209 | 1209 | ||
1210 | gb = (inactive + active) >> (30 - PAGE_SHIFT); | 1210 | gb = (inactive + active) >> (30 - PAGE_SHIFT); |
1211 | if (gb) | 1211 | if (gb) |
1212 | inactive_ratio = int_sqrt(10 * gb); | 1212 | inactive_ratio = int_sqrt(10 * gb); |
1213 | else | 1213 | else |
1214 | inactive_ratio = 1; | 1214 | inactive_ratio = 1; |
1215 | 1215 | ||
1216 | return inactive * inactive_ratio < active; | 1216 | return inactive * inactive_ratio < active; |
1217 | } | 1217 | } |
1218 | 1218 | ||
1219 | int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec) | 1219 | int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec) |
1220 | { | 1220 | { |
1221 | unsigned long active; | 1221 | unsigned long active; |
1222 | unsigned long inactive; | 1222 | unsigned long inactive; |
1223 | 1223 | ||
1224 | inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE); | 1224 | inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE); |
1225 | active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE); | 1225 | active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE); |
1226 | 1226 | ||
1227 | return (active > inactive); | 1227 | return (active > inactive); |
1228 | } | 1228 | } |
1229 | 1229 | ||
1230 | #define mem_cgroup_from_res_counter(counter, member) \ | 1230 | #define mem_cgroup_from_res_counter(counter, member) \ |
1231 | container_of(counter, struct mem_cgroup, member) | 1231 | container_of(counter, struct mem_cgroup, member) |
1232 | 1232 | ||
1233 | /** | 1233 | /** |
1234 | * mem_cgroup_margin - calculate chargeable space of a memory cgroup | 1234 | * mem_cgroup_margin - calculate chargeable space of a memory cgroup |
1235 | * @memcg: the memory cgroup | 1235 | * @memcg: the memory cgroup |
1236 | * | 1236 | * |
1237 | * Returns the maximum amount of memory @mem can be charged with, in | 1237 | * Returns the maximum amount of memory @mem can be charged with, in |
1238 | * pages. | 1238 | * pages. |
1239 | */ | 1239 | */ |
1240 | static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) | 1240 | static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) |
1241 | { | 1241 | { |
1242 | unsigned long long margin; | 1242 | unsigned long long margin; |
1243 | 1243 | ||
1244 | margin = res_counter_margin(&memcg->res); | 1244 | margin = res_counter_margin(&memcg->res); |
1245 | if (do_swap_account) | 1245 | if (do_swap_account) |
1246 | margin = min(margin, res_counter_margin(&memcg->memsw)); | 1246 | margin = min(margin, res_counter_margin(&memcg->memsw)); |
1247 | return margin >> PAGE_SHIFT; | 1247 | return margin >> PAGE_SHIFT; |
1248 | } | 1248 | } |
1249 | 1249 | ||
1250 | int mem_cgroup_swappiness(struct mem_cgroup *memcg) | 1250 | int mem_cgroup_swappiness(struct mem_cgroup *memcg) |
1251 | { | 1251 | { |
1252 | struct cgroup *cgrp = memcg->css.cgroup; | 1252 | struct cgroup *cgrp = memcg->css.cgroup; |
1253 | 1253 | ||
1254 | /* root ? */ | 1254 | /* root ? */ |
1255 | if (cgrp->parent == NULL) | 1255 | if (cgrp->parent == NULL) |
1256 | return vm_swappiness; | 1256 | return vm_swappiness; |
1257 | 1257 | ||
1258 | return memcg->swappiness; | 1258 | return memcg->swappiness; |
1259 | } | 1259 | } |
1260 | 1260 | ||
1261 | /* | 1261 | /* |
1262 | * memcg->moving_account is used for checking possibility that some thread is | 1262 | * memcg->moving_account is used for checking possibility that some thread is |
1263 | * calling move_account(). When a thread on CPU-A starts moving pages under | 1263 | * calling move_account(). When a thread on CPU-A starts moving pages under |
1264 | * a memcg, other threads should check memcg->moving_account under | 1264 | * a memcg, other threads should check memcg->moving_account under |
1265 | * rcu_read_lock(), like this: | 1265 | * rcu_read_lock(), like this: |
1266 | * | 1266 | * |
1267 | * CPU-A CPU-B | 1267 | * CPU-A CPU-B |
1268 | * rcu_read_lock() | 1268 | * rcu_read_lock() |
1269 | * memcg->moving_account+1 if (memcg->mocing_account) | 1269 | * memcg->moving_account+1 if (memcg->mocing_account) |
1270 | * take heavy locks. | 1270 | * take heavy locks. |
1271 | * synchronize_rcu() update something. | 1271 | * synchronize_rcu() update something. |
1272 | * rcu_read_unlock() | 1272 | * rcu_read_unlock() |
1273 | * start move here. | 1273 | * start move here. |
1274 | */ | 1274 | */ |
1275 | 1275 | ||
1276 | /* for quick checking without looking up memcg */ | 1276 | /* for quick checking without looking up memcg */ |
1277 | atomic_t memcg_moving __read_mostly; | 1277 | atomic_t memcg_moving __read_mostly; |
1278 | 1278 | ||
1279 | static void mem_cgroup_start_move(struct mem_cgroup *memcg) | 1279 | static void mem_cgroup_start_move(struct mem_cgroup *memcg) |
1280 | { | 1280 | { |
1281 | atomic_inc(&memcg_moving); | 1281 | atomic_inc(&memcg_moving); |
1282 | atomic_inc(&memcg->moving_account); | 1282 | atomic_inc(&memcg->moving_account); |
1283 | synchronize_rcu(); | 1283 | synchronize_rcu(); |
1284 | } | 1284 | } |
1285 | 1285 | ||
1286 | static void mem_cgroup_end_move(struct mem_cgroup *memcg) | 1286 | static void mem_cgroup_end_move(struct mem_cgroup *memcg) |
1287 | { | 1287 | { |
1288 | /* | 1288 | /* |
1289 | * Now, mem_cgroup_clear_mc() may call this function with NULL. | 1289 | * Now, mem_cgroup_clear_mc() may call this function with NULL. |
1290 | * We check NULL in callee rather than caller. | 1290 | * We check NULL in callee rather than caller. |
1291 | */ | 1291 | */ |
1292 | if (memcg) { | 1292 | if (memcg) { |
1293 | atomic_dec(&memcg_moving); | 1293 | atomic_dec(&memcg_moving); |
1294 | atomic_dec(&memcg->moving_account); | 1294 | atomic_dec(&memcg->moving_account); |
1295 | } | 1295 | } |
1296 | } | 1296 | } |
1297 | 1297 | ||
1298 | /* | 1298 | /* |
1299 | * 2 routines for checking "mem" is under move_account() or not. | 1299 | * 2 routines for checking "mem" is under move_account() or not. |
1300 | * | 1300 | * |
1301 | * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This | 1301 | * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This |
1302 | * is used for avoiding races in accounting. If true, | 1302 | * is used for avoiding races in accounting. If true, |
1303 | * pc->mem_cgroup may be overwritten. | 1303 | * pc->mem_cgroup may be overwritten. |
1304 | * | 1304 | * |
1305 | * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or | 1305 | * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or |
1306 | * under hierarchy of moving cgroups. This is for | 1306 | * under hierarchy of moving cgroups. This is for |
1307 | * waiting at hith-memory prressure caused by "move". | 1307 | * waiting at hith-memory prressure caused by "move". |
1308 | */ | 1308 | */ |
1309 | 1309 | ||
1310 | static bool mem_cgroup_stolen(struct mem_cgroup *memcg) | 1310 | static bool mem_cgroup_stolen(struct mem_cgroup *memcg) |
1311 | { | 1311 | { |
1312 | VM_BUG_ON(!rcu_read_lock_held()); | 1312 | VM_BUG_ON(!rcu_read_lock_held()); |
1313 | return atomic_read(&memcg->moving_account) > 0; | 1313 | return atomic_read(&memcg->moving_account) > 0; |
1314 | } | 1314 | } |
1315 | 1315 | ||
1316 | static bool mem_cgroup_under_move(struct mem_cgroup *memcg) | 1316 | static bool mem_cgroup_under_move(struct mem_cgroup *memcg) |
1317 | { | 1317 | { |
1318 | struct mem_cgroup *from; | 1318 | struct mem_cgroup *from; |
1319 | struct mem_cgroup *to; | 1319 | struct mem_cgroup *to; |
1320 | bool ret = false; | 1320 | bool ret = false; |
1321 | /* | 1321 | /* |
1322 | * Unlike task_move routines, we access mc.to, mc.from not under | 1322 | * Unlike task_move routines, we access mc.to, mc.from not under |
1323 | * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. | 1323 | * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. |
1324 | */ | 1324 | */ |
1325 | spin_lock(&mc.lock); | 1325 | spin_lock(&mc.lock); |
1326 | from = mc.from; | 1326 | from = mc.from; |
1327 | to = mc.to; | 1327 | to = mc.to; |
1328 | if (!from) | 1328 | if (!from) |
1329 | goto unlock; | 1329 | goto unlock; |
1330 | 1330 | ||
1331 | ret = mem_cgroup_same_or_subtree(memcg, from) | 1331 | ret = mem_cgroup_same_or_subtree(memcg, from) |
1332 | || mem_cgroup_same_or_subtree(memcg, to); | 1332 | || mem_cgroup_same_or_subtree(memcg, to); |
1333 | unlock: | 1333 | unlock: |
1334 | spin_unlock(&mc.lock); | 1334 | spin_unlock(&mc.lock); |
1335 | return ret; | 1335 | return ret; |
1336 | } | 1336 | } |
1337 | 1337 | ||
1338 | static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) | 1338 | static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) |
1339 | { | 1339 | { |
1340 | if (mc.moving_task && current != mc.moving_task) { | 1340 | if (mc.moving_task && current != mc.moving_task) { |
1341 | if (mem_cgroup_under_move(memcg)) { | 1341 | if (mem_cgroup_under_move(memcg)) { |
1342 | DEFINE_WAIT(wait); | 1342 | DEFINE_WAIT(wait); |
1343 | prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); | 1343 | prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); |
1344 | /* moving charge context might have finished. */ | 1344 | /* moving charge context might have finished. */ |
1345 | if (mc.moving_task) | 1345 | if (mc.moving_task) |
1346 | schedule(); | 1346 | schedule(); |
1347 | finish_wait(&mc.waitq, &wait); | 1347 | finish_wait(&mc.waitq, &wait); |
1348 | return true; | 1348 | return true; |
1349 | } | 1349 | } |
1350 | } | 1350 | } |
1351 | return false; | 1351 | return false; |
1352 | } | 1352 | } |
1353 | 1353 | ||
1354 | /* | 1354 | /* |
1355 | * Take this lock when | 1355 | * Take this lock when |
1356 | * - a code tries to modify page's memcg while it's USED. | 1356 | * - a code tries to modify page's memcg while it's USED. |
1357 | * - a code tries to modify page state accounting in a memcg. | 1357 | * - a code tries to modify page state accounting in a memcg. |
1358 | * see mem_cgroup_stolen(), too. | 1358 | * see mem_cgroup_stolen(), too. |
1359 | */ | 1359 | */ |
1360 | static void move_lock_mem_cgroup(struct mem_cgroup *memcg, | 1360 | static void move_lock_mem_cgroup(struct mem_cgroup *memcg, |
1361 | unsigned long *flags) | 1361 | unsigned long *flags) |
1362 | { | 1362 | { |
1363 | spin_lock_irqsave(&memcg->move_lock, *flags); | 1363 | spin_lock_irqsave(&memcg->move_lock, *flags); |
1364 | } | 1364 | } |
1365 | 1365 | ||
1366 | static void move_unlock_mem_cgroup(struct mem_cgroup *memcg, | 1366 | static void move_unlock_mem_cgroup(struct mem_cgroup *memcg, |
1367 | unsigned long *flags) | 1367 | unsigned long *flags) |
1368 | { | 1368 | { |
1369 | spin_unlock_irqrestore(&memcg->move_lock, *flags); | 1369 | spin_unlock_irqrestore(&memcg->move_lock, *flags); |
1370 | } | 1370 | } |
1371 | 1371 | ||
1372 | /** | 1372 | /** |
1373 | * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode. | 1373 | * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode. |
1374 | * @memcg: The memory cgroup that went over limit | 1374 | * @memcg: The memory cgroup that went over limit |
1375 | * @p: Task that is going to be killed | 1375 | * @p: Task that is going to be killed |
1376 | * | 1376 | * |
1377 | * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is | 1377 | * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is |
1378 | * enabled | 1378 | * enabled |
1379 | */ | 1379 | */ |
1380 | void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) | 1380 | void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) |
1381 | { | 1381 | { |
1382 | struct cgroup *task_cgrp; | 1382 | struct cgroup *task_cgrp; |
1383 | struct cgroup *mem_cgrp; | 1383 | struct cgroup *mem_cgrp; |
1384 | /* | 1384 | /* |
1385 | * Need a buffer in BSS, can't rely on allocations. The code relies | 1385 | * Need a buffer in BSS, can't rely on allocations. The code relies |
1386 | * on the assumption that OOM is serialized for memory controller. | 1386 | * on the assumption that OOM is serialized for memory controller. |
1387 | * If this assumption is broken, revisit this code. | 1387 | * If this assumption is broken, revisit this code. |
1388 | */ | 1388 | */ |
1389 | static char memcg_name[PATH_MAX]; | 1389 | static char memcg_name[PATH_MAX]; |
1390 | int ret; | 1390 | int ret; |
1391 | 1391 | ||
1392 | if (!memcg || !p) | 1392 | if (!memcg || !p) |
1393 | return; | 1393 | return; |
1394 | 1394 | ||
1395 | rcu_read_lock(); | 1395 | rcu_read_lock(); |
1396 | 1396 | ||
1397 | mem_cgrp = memcg->css.cgroup; | 1397 | mem_cgrp = memcg->css.cgroup; |
1398 | task_cgrp = task_cgroup(p, mem_cgroup_subsys_id); | 1398 | task_cgrp = task_cgroup(p, mem_cgroup_subsys_id); |
1399 | 1399 | ||
1400 | ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX); | 1400 | ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX); |
1401 | if (ret < 0) { | 1401 | if (ret < 0) { |
1402 | /* | 1402 | /* |
1403 | * Unfortunately, we are unable to convert to a useful name | 1403 | * Unfortunately, we are unable to convert to a useful name |
1404 | * But we'll still print out the usage information | 1404 | * But we'll still print out the usage information |
1405 | */ | 1405 | */ |
1406 | rcu_read_unlock(); | 1406 | rcu_read_unlock(); |
1407 | goto done; | 1407 | goto done; |
1408 | } | 1408 | } |
1409 | rcu_read_unlock(); | 1409 | rcu_read_unlock(); |
1410 | 1410 | ||
1411 | printk(KERN_INFO "Task in %s killed", memcg_name); | 1411 | printk(KERN_INFO "Task in %s killed", memcg_name); |
1412 | 1412 | ||
1413 | rcu_read_lock(); | 1413 | rcu_read_lock(); |
1414 | ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX); | 1414 | ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX); |
1415 | if (ret < 0) { | 1415 | if (ret < 0) { |
1416 | rcu_read_unlock(); | 1416 | rcu_read_unlock(); |
1417 | goto done; | 1417 | goto done; |
1418 | } | 1418 | } |
1419 | rcu_read_unlock(); | 1419 | rcu_read_unlock(); |
1420 | 1420 | ||
1421 | /* | 1421 | /* |
1422 | * Continues from above, so we don't need an KERN_ level | 1422 | * Continues from above, so we don't need an KERN_ level |
1423 | */ | 1423 | */ |
1424 | printk(KERN_CONT " as a result of limit of %s\n", memcg_name); | 1424 | printk(KERN_CONT " as a result of limit of %s\n", memcg_name); |
1425 | done: | 1425 | done: |
1426 | 1426 | ||
1427 | printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n", | 1427 | printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n", |
1428 | res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, | 1428 | res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, |
1429 | res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, | 1429 | res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, |
1430 | res_counter_read_u64(&memcg->res, RES_FAILCNT)); | 1430 | res_counter_read_u64(&memcg->res, RES_FAILCNT)); |
1431 | printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, " | 1431 | printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, " |
1432 | "failcnt %llu\n", | 1432 | "failcnt %llu\n", |
1433 | res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, | 1433 | res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, |
1434 | res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, | 1434 | res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, |
1435 | res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); | 1435 | res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); |
1436 | } | 1436 | } |
1437 | 1437 | ||
1438 | /* | 1438 | /* |
1439 | * This function returns the number of memcg under hierarchy tree. Returns | 1439 | * This function returns the number of memcg under hierarchy tree. Returns |
1440 | * 1(self count) if no children. | 1440 | * 1(self count) if no children. |
1441 | */ | 1441 | */ |
1442 | static int mem_cgroup_count_children(struct mem_cgroup *memcg) | 1442 | static int mem_cgroup_count_children(struct mem_cgroup *memcg) |
1443 | { | 1443 | { |
1444 | int num = 0; | 1444 | int num = 0; |
1445 | struct mem_cgroup *iter; | 1445 | struct mem_cgroup *iter; |
1446 | 1446 | ||
1447 | for_each_mem_cgroup_tree(iter, memcg) | 1447 | for_each_mem_cgroup_tree(iter, memcg) |
1448 | num++; | 1448 | num++; |
1449 | return num; | 1449 | return num; |
1450 | } | 1450 | } |
1451 | 1451 | ||
1452 | /* | 1452 | /* |
1453 | * Return the memory (and swap, if configured) limit for a memcg. | 1453 | * Return the memory (and swap, if configured) limit for a memcg. |
1454 | */ | 1454 | */ |
1455 | static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg) | 1455 | static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg) |
1456 | { | 1456 | { |
1457 | u64 limit; | 1457 | u64 limit; |
1458 | u64 memsw; | 1458 | u64 memsw; |
1459 | 1459 | ||
1460 | limit = res_counter_read_u64(&memcg->res, RES_LIMIT); | 1460 | limit = res_counter_read_u64(&memcg->res, RES_LIMIT); |
1461 | limit += total_swap_pages << PAGE_SHIFT; | 1461 | limit += total_swap_pages << PAGE_SHIFT; |
1462 | 1462 | ||
1463 | memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | 1463 | memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT); |
1464 | /* | 1464 | /* |
1465 | * If memsw is finite and limits the amount of swap space available | 1465 | * If memsw is finite and limits the amount of swap space available |
1466 | * to this memcg, return that limit. | 1466 | * to this memcg, return that limit. |
1467 | */ | 1467 | */ |
1468 | return min(limit, memsw); | 1468 | return min(limit, memsw); |
1469 | } | 1469 | } |
1470 | 1470 | ||
1471 | void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, | 1471 | void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, |
1472 | int order) | 1472 | int order) |
1473 | { | 1473 | { |
1474 | struct mem_cgroup *iter; | 1474 | struct mem_cgroup *iter; |
1475 | unsigned long chosen_points = 0; | 1475 | unsigned long chosen_points = 0; |
1476 | unsigned long totalpages; | 1476 | unsigned long totalpages; |
1477 | unsigned int points = 0; | 1477 | unsigned int points = 0; |
1478 | struct task_struct *chosen = NULL; | 1478 | struct task_struct *chosen = NULL; |
1479 | 1479 | ||
1480 | /* | 1480 | /* |
1481 | * If current has a pending SIGKILL, then automatically select it. The | 1481 | * If current has a pending SIGKILL, then automatically select it. The |
1482 | * goal is to allow it to allocate so that it may quickly exit and free | 1482 | * goal is to allow it to allocate so that it may quickly exit and free |
1483 | * its memory. | 1483 | * its memory. |
1484 | */ | 1484 | */ |
1485 | if (fatal_signal_pending(current)) { | 1485 | if (fatal_signal_pending(current)) { |
1486 | set_thread_flag(TIF_MEMDIE); | 1486 | set_thread_flag(TIF_MEMDIE); |
1487 | return; | 1487 | return; |
1488 | } | 1488 | } |
1489 | 1489 | ||
1490 | check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL); | 1490 | check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL); |
1491 | totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1; | 1491 | totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1; |
1492 | for_each_mem_cgroup_tree(iter, memcg) { | 1492 | for_each_mem_cgroup_tree(iter, memcg) { |
1493 | struct cgroup *cgroup = iter->css.cgroup; | 1493 | struct cgroup *cgroup = iter->css.cgroup; |
1494 | struct cgroup_iter it; | 1494 | struct cgroup_iter it; |
1495 | struct task_struct *task; | 1495 | struct task_struct *task; |
1496 | 1496 | ||
1497 | cgroup_iter_start(cgroup, &it); | 1497 | cgroup_iter_start(cgroup, &it); |
1498 | while ((task = cgroup_iter_next(cgroup, &it))) { | 1498 | while ((task = cgroup_iter_next(cgroup, &it))) { |
1499 | switch (oom_scan_process_thread(task, totalpages, NULL, | 1499 | switch (oom_scan_process_thread(task, totalpages, NULL, |
1500 | false)) { | 1500 | false)) { |
1501 | case OOM_SCAN_SELECT: | 1501 | case OOM_SCAN_SELECT: |
1502 | if (chosen) | 1502 | if (chosen) |
1503 | put_task_struct(chosen); | 1503 | put_task_struct(chosen); |
1504 | chosen = task; | 1504 | chosen = task; |
1505 | chosen_points = ULONG_MAX; | 1505 | chosen_points = ULONG_MAX; |
1506 | get_task_struct(chosen); | 1506 | get_task_struct(chosen); |
1507 | /* fall through */ | 1507 | /* fall through */ |
1508 | case OOM_SCAN_CONTINUE: | 1508 | case OOM_SCAN_CONTINUE: |
1509 | continue; | 1509 | continue; |
1510 | case OOM_SCAN_ABORT: | 1510 | case OOM_SCAN_ABORT: |
1511 | cgroup_iter_end(cgroup, &it); | 1511 | cgroup_iter_end(cgroup, &it); |
1512 | mem_cgroup_iter_break(memcg, iter); | 1512 | mem_cgroup_iter_break(memcg, iter); |
1513 | if (chosen) | 1513 | if (chosen) |
1514 | put_task_struct(chosen); | 1514 | put_task_struct(chosen); |
1515 | return; | 1515 | return; |
1516 | case OOM_SCAN_OK: | 1516 | case OOM_SCAN_OK: |
1517 | break; | 1517 | break; |
1518 | }; | 1518 | }; |
1519 | points = oom_badness(task, memcg, NULL, totalpages); | 1519 | points = oom_badness(task, memcg, NULL, totalpages); |
1520 | if (points > chosen_points) { | 1520 | if (points > chosen_points) { |
1521 | if (chosen) | 1521 | if (chosen) |
1522 | put_task_struct(chosen); | 1522 | put_task_struct(chosen); |
1523 | chosen = task; | 1523 | chosen = task; |
1524 | chosen_points = points; | 1524 | chosen_points = points; |
1525 | get_task_struct(chosen); | 1525 | get_task_struct(chosen); |
1526 | } | 1526 | } |
1527 | } | 1527 | } |
1528 | cgroup_iter_end(cgroup, &it); | 1528 | cgroup_iter_end(cgroup, &it); |
1529 | } | 1529 | } |
1530 | 1530 | ||
1531 | if (!chosen) | 1531 | if (!chosen) |
1532 | return; | 1532 | return; |
1533 | points = chosen_points * 1000 / totalpages; | 1533 | points = chosen_points * 1000 / totalpages; |
1534 | oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg, | 1534 | oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg, |
1535 | NULL, "Memory cgroup out of memory"); | 1535 | NULL, "Memory cgroup out of memory"); |
1536 | } | 1536 | } |
1537 | 1537 | ||
1538 | static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg, | 1538 | static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg, |
1539 | gfp_t gfp_mask, | 1539 | gfp_t gfp_mask, |
1540 | unsigned long flags) | 1540 | unsigned long flags) |
1541 | { | 1541 | { |
1542 | unsigned long total = 0; | 1542 | unsigned long total = 0; |
1543 | bool noswap = false; | 1543 | bool noswap = false; |
1544 | int loop; | 1544 | int loop; |
1545 | 1545 | ||
1546 | if (flags & MEM_CGROUP_RECLAIM_NOSWAP) | 1546 | if (flags & MEM_CGROUP_RECLAIM_NOSWAP) |
1547 | noswap = true; | 1547 | noswap = true; |
1548 | if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum) | 1548 | if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum) |
1549 | noswap = true; | 1549 | noswap = true; |
1550 | 1550 | ||
1551 | for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) { | 1551 | for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) { |
1552 | if (loop) | 1552 | if (loop) |
1553 | drain_all_stock_async(memcg); | 1553 | drain_all_stock_async(memcg); |
1554 | total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap); | 1554 | total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap); |
1555 | /* | 1555 | /* |
1556 | * Allow limit shrinkers, which are triggered directly | 1556 | * Allow limit shrinkers, which are triggered directly |
1557 | * by userspace, to catch signals and stop reclaim | 1557 | * by userspace, to catch signals and stop reclaim |
1558 | * after minimal progress, regardless of the margin. | 1558 | * after minimal progress, regardless of the margin. |
1559 | */ | 1559 | */ |
1560 | if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK)) | 1560 | if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK)) |
1561 | break; | 1561 | break; |
1562 | if (mem_cgroup_margin(memcg)) | 1562 | if (mem_cgroup_margin(memcg)) |
1563 | break; | 1563 | break; |
1564 | /* | 1564 | /* |
1565 | * If nothing was reclaimed after two attempts, there | 1565 | * If nothing was reclaimed after two attempts, there |
1566 | * may be no reclaimable pages in this hierarchy. | 1566 | * may be no reclaimable pages in this hierarchy. |
1567 | */ | 1567 | */ |
1568 | if (loop && !total) | 1568 | if (loop && !total) |
1569 | break; | 1569 | break; |
1570 | } | 1570 | } |
1571 | return total; | 1571 | return total; |
1572 | } | 1572 | } |
1573 | 1573 | ||
1574 | /** | 1574 | /** |
1575 | * test_mem_cgroup_node_reclaimable | 1575 | * test_mem_cgroup_node_reclaimable |
1576 | * @memcg: the target memcg | 1576 | * @memcg: the target memcg |
1577 | * @nid: the node ID to be checked. | 1577 | * @nid: the node ID to be checked. |
1578 | * @noswap : specify true here if the user wants flle only information. | 1578 | * @noswap : specify true here if the user wants flle only information. |
1579 | * | 1579 | * |
1580 | * This function returns whether the specified memcg contains any | 1580 | * This function returns whether the specified memcg contains any |
1581 | * reclaimable pages on a node. Returns true if there are any reclaimable | 1581 | * reclaimable pages on a node. Returns true if there are any reclaimable |
1582 | * pages in the node. | 1582 | * pages in the node. |
1583 | */ | 1583 | */ |
1584 | static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, | 1584 | static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, |
1585 | int nid, bool noswap) | 1585 | int nid, bool noswap) |
1586 | { | 1586 | { |
1587 | if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) | 1587 | if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) |
1588 | return true; | 1588 | return true; |
1589 | if (noswap || !total_swap_pages) | 1589 | if (noswap || !total_swap_pages) |
1590 | return false; | 1590 | return false; |
1591 | if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) | 1591 | if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) |
1592 | return true; | 1592 | return true; |
1593 | return false; | 1593 | return false; |
1594 | 1594 | ||
1595 | } | 1595 | } |
1596 | #if MAX_NUMNODES > 1 | 1596 | #if MAX_NUMNODES > 1 |
1597 | 1597 | ||
1598 | /* | 1598 | /* |
1599 | * Always updating the nodemask is not very good - even if we have an empty | 1599 | * Always updating the nodemask is not very good - even if we have an empty |
1600 | * list or the wrong list here, we can start from some node and traverse all | 1600 | * list or the wrong list here, we can start from some node and traverse all |
1601 | * nodes based on the zonelist. So update the list loosely once per 10 secs. | 1601 | * nodes based on the zonelist. So update the list loosely once per 10 secs. |
1602 | * | 1602 | * |
1603 | */ | 1603 | */ |
1604 | static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) | 1604 | static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) |
1605 | { | 1605 | { |
1606 | int nid; | 1606 | int nid; |
1607 | /* | 1607 | /* |
1608 | * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET | 1608 | * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET |
1609 | * pagein/pageout changes since the last update. | 1609 | * pagein/pageout changes since the last update. |
1610 | */ | 1610 | */ |
1611 | if (!atomic_read(&memcg->numainfo_events)) | 1611 | if (!atomic_read(&memcg->numainfo_events)) |
1612 | return; | 1612 | return; |
1613 | if (atomic_inc_return(&memcg->numainfo_updating) > 1) | 1613 | if (atomic_inc_return(&memcg->numainfo_updating) > 1) |
1614 | return; | 1614 | return; |
1615 | 1615 | ||
1616 | /* make a nodemask where this memcg uses memory from */ | 1616 | /* make a nodemask where this memcg uses memory from */ |
1617 | memcg->scan_nodes = node_states[N_HIGH_MEMORY]; | 1617 | memcg->scan_nodes = node_states[N_HIGH_MEMORY]; |
1618 | 1618 | ||
1619 | for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) { | 1619 | for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) { |
1620 | 1620 | ||
1621 | if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) | 1621 | if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) |
1622 | node_clear(nid, memcg->scan_nodes); | 1622 | node_clear(nid, memcg->scan_nodes); |
1623 | } | 1623 | } |
1624 | 1624 | ||
1625 | atomic_set(&memcg->numainfo_events, 0); | 1625 | atomic_set(&memcg->numainfo_events, 0); |
1626 | atomic_set(&memcg->numainfo_updating, 0); | 1626 | atomic_set(&memcg->numainfo_updating, 0); |
1627 | } | 1627 | } |
1628 | 1628 | ||
1629 | /* | 1629 | /* |
1630 | * Selecting a node where we start reclaim from. Because what we need is just | 1630 | * Selecting a node where we start reclaim from. Because what we need is just |
1631 | * reducing usage counter, start from anywhere is O,K. Considering | 1631 | * reducing usage counter, start from anywhere is O,K. Considering |
1632 | * memory reclaim from current node, there are pros. and cons. | 1632 | * memory reclaim from current node, there are pros. and cons. |
1633 | * | 1633 | * |
1634 | * Freeing memory from current node means freeing memory from a node which | 1634 | * Freeing memory from current node means freeing memory from a node which |
1635 | * we'll use or we've used. So, it may make LRU bad. And if several threads | 1635 | * we'll use or we've used. So, it may make LRU bad. And if several threads |
1636 | * hit limits, it will see a contention on a node. But freeing from remote | 1636 | * hit limits, it will see a contention on a node. But freeing from remote |
1637 | * node means more costs for memory reclaim because of memory latency. | 1637 | * node means more costs for memory reclaim because of memory latency. |
1638 | * | 1638 | * |
1639 | * Now, we use round-robin. Better algorithm is welcomed. | 1639 | * Now, we use round-robin. Better algorithm is welcomed. |
1640 | */ | 1640 | */ |
1641 | int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) | 1641 | int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) |
1642 | { | 1642 | { |
1643 | int node; | 1643 | int node; |
1644 | 1644 | ||
1645 | mem_cgroup_may_update_nodemask(memcg); | 1645 | mem_cgroup_may_update_nodemask(memcg); |
1646 | node = memcg->last_scanned_node; | 1646 | node = memcg->last_scanned_node; |
1647 | 1647 | ||
1648 | node = next_node(node, memcg->scan_nodes); | 1648 | node = next_node(node, memcg->scan_nodes); |
1649 | if (node == MAX_NUMNODES) | 1649 | if (node == MAX_NUMNODES) |
1650 | node = first_node(memcg->scan_nodes); | 1650 | node = first_node(memcg->scan_nodes); |
1651 | /* | 1651 | /* |
1652 | * We call this when we hit limit, not when pages are added to LRU. | 1652 | * We call this when we hit limit, not when pages are added to LRU. |
1653 | * No LRU may hold pages because all pages are UNEVICTABLE or | 1653 | * No LRU may hold pages because all pages are UNEVICTABLE or |
1654 | * memcg is too small and all pages are not on LRU. In that case, | 1654 | * memcg is too small and all pages are not on LRU. In that case, |
1655 | * we use curret node. | 1655 | * we use curret node. |
1656 | */ | 1656 | */ |
1657 | if (unlikely(node == MAX_NUMNODES)) | 1657 | if (unlikely(node == MAX_NUMNODES)) |
1658 | node = numa_node_id(); | 1658 | node = numa_node_id(); |
1659 | 1659 | ||
1660 | memcg->last_scanned_node = node; | 1660 | memcg->last_scanned_node = node; |
1661 | return node; | 1661 | return node; |
1662 | } | 1662 | } |
1663 | 1663 | ||
1664 | /* | 1664 | /* |
1665 | * Check all nodes whether it contains reclaimable pages or not. | 1665 | * Check all nodes whether it contains reclaimable pages or not. |
1666 | * For quick scan, we make use of scan_nodes. This will allow us to skip | 1666 | * For quick scan, we make use of scan_nodes. This will allow us to skip |
1667 | * unused nodes. But scan_nodes is lazily updated and may not cotain | 1667 | * unused nodes. But scan_nodes is lazily updated and may not cotain |
1668 | * enough new information. We need to do double check. | 1668 | * enough new information. We need to do double check. |
1669 | */ | 1669 | */ |
1670 | static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) | 1670 | static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) |
1671 | { | 1671 | { |
1672 | int nid; | 1672 | int nid; |
1673 | 1673 | ||
1674 | /* | 1674 | /* |
1675 | * quick check...making use of scan_node. | 1675 | * quick check...making use of scan_node. |
1676 | * We can skip unused nodes. | 1676 | * We can skip unused nodes. |
1677 | */ | 1677 | */ |
1678 | if (!nodes_empty(memcg->scan_nodes)) { | 1678 | if (!nodes_empty(memcg->scan_nodes)) { |
1679 | for (nid = first_node(memcg->scan_nodes); | 1679 | for (nid = first_node(memcg->scan_nodes); |
1680 | nid < MAX_NUMNODES; | 1680 | nid < MAX_NUMNODES; |
1681 | nid = next_node(nid, memcg->scan_nodes)) { | 1681 | nid = next_node(nid, memcg->scan_nodes)) { |
1682 | 1682 | ||
1683 | if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) | 1683 | if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) |
1684 | return true; | 1684 | return true; |
1685 | } | 1685 | } |
1686 | } | 1686 | } |
1687 | /* | 1687 | /* |
1688 | * Check rest of nodes. | 1688 | * Check rest of nodes. |
1689 | */ | 1689 | */ |
1690 | for_each_node_state(nid, N_HIGH_MEMORY) { | 1690 | for_each_node_state(nid, N_HIGH_MEMORY) { |
1691 | if (node_isset(nid, memcg->scan_nodes)) | 1691 | if (node_isset(nid, memcg->scan_nodes)) |
1692 | continue; | 1692 | continue; |
1693 | if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) | 1693 | if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) |
1694 | return true; | 1694 | return true; |
1695 | } | 1695 | } |
1696 | return false; | 1696 | return false; |
1697 | } | 1697 | } |
1698 | 1698 | ||
1699 | #else | 1699 | #else |
1700 | int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) | 1700 | int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) |
1701 | { | 1701 | { |
1702 | return 0; | 1702 | return 0; |
1703 | } | 1703 | } |
1704 | 1704 | ||
1705 | static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) | 1705 | static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) |
1706 | { | 1706 | { |
1707 | return test_mem_cgroup_node_reclaimable(memcg, 0, noswap); | 1707 | return test_mem_cgroup_node_reclaimable(memcg, 0, noswap); |
1708 | } | 1708 | } |
1709 | #endif | 1709 | #endif |
1710 | 1710 | ||
1711 | static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, | 1711 | static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, |
1712 | struct zone *zone, | 1712 | struct zone *zone, |
1713 | gfp_t gfp_mask, | 1713 | gfp_t gfp_mask, |
1714 | unsigned long *total_scanned) | 1714 | unsigned long *total_scanned) |
1715 | { | 1715 | { |
1716 | struct mem_cgroup *victim = NULL; | 1716 | struct mem_cgroup *victim = NULL; |
1717 | int total = 0; | 1717 | int total = 0; |
1718 | int loop = 0; | 1718 | int loop = 0; |
1719 | unsigned long excess; | 1719 | unsigned long excess; |
1720 | unsigned long nr_scanned; | 1720 | unsigned long nr_scanned; |
1721 | struct mem_cgroup_reclaim_cookie reclaim = { | 1721 | struct mem_cgroup_reclaim_cookie reclaim = { |
1722 | .zone = zone, | 1722 | .zone = zone, |
1723 | .priority = 0, | 1723 | .priority = 0, |
1724 | }; | 1724 | }; |
1725 | 1725 | ||
1726 | excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT; | 1726 | excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT; |
1727 | 1727 | ||
1728 | while (1) { | 1728 | while (1) { |
1729 | victim = mem_cgroup_iter(root_memcg, victim, &reclaim); | 1729 | victim = mem_cgroup_iter(root_memcg, victim, &reclaim); |
1730 | if (!victim) { | 1730 | if (!victim) { |
1731 | loop++; | 1731 | loop++; |
1732 | if (loop >= 2) { | 1732 | if (loop >= 2) { |
1733 | /* | 1733 | /* |
1734 | * If we have not been able to reclaim | 1734 | * If we have not been able to reclaim |
1735 | * anything, it might because there are | 1735 | * anything, it might because there are |
1736 | * no reclaimable pages under this hierarchy | 1736 | * no reclaimable pages under this hierarchy |
1737 | */ | 1737 | */ |
1738 | if (!total) | 1738 | if (!total) |
1739 | break; | 1739 | break; |
1740 | /* | 1740 | /* |
1741 | * We want to do more targeted reclaim. | 1741 | * We want to do more targeted reclaim. |
1742 | * excess >> 2 is not to excessive so as to | 1742 | * excess >> 2 is not to excessive so as to |
1743 | * reclaim too much, nor too less that we keep | 1743 | * reclaim too much, nor too less that we keep |
1744 | * coming back to reclaim from this cgroup | 1744 | * coming back to reclaim from this cgroup |
1745 | */ | 1745 | */ |
1746 | if (total >= (excess >> 2) || | 1746 | if (total >= (excess >> 2) || |
1747 | (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) | 1747 | (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) |
1748 | break; | 1748 | break; |
1749 | } | 1749 | } |
1750 | continue; | 1750 | continue; |
1751 | } | 1751 | } |
1752 | if (!mem_cgroup_reclaimable(victim, false)) | 1752 | if (!mem_cgroup_reclaimable(victim, false)) |
1753 | continue; | 1753 | continue; |
1754 | total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, | 1754 | total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, |
1755 | zone, &nr_scanned); | 1755 | zone, &nr_scanned); |
1756 | *total_scanned += nr_scanned; | 1756 | *total_scanned += nr_scanned; |
1757 | if (!res_counter_soft_limit_excess(&root_memcg->res)) | 1757 | if (!res_counter_soft_limit_excess(&root_memcg->res)) |
1758 | break; | 1758 | break; |
1759 | } | 1759 | } |
1760 | mem_cgroup_iter_break(root_memcg, victim); | 1760 | mem_cgroup_iter_break(root_memcg, victim); |
1761 | return total; | 1761 | return total; |
1762 | } | 1762 | } |
1763 | 1763 | ||
1764 | /* | 1764 | /* |
1765 | * Check OOM-Killer is already running under our hierarchy. | 1765 | * Check OOM-Killer is already running under our hierarchy. |
1766 | * If someone is running, return false. | 1766 | * If someone is running, return false. |
1767 | * Has to be called with memcg_oom_lock | 1767 | * Has to be called with memcg_oom_lock |
1768 | */ | 1768 | */ |
1769 | static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg) | 1769 | static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg) |
1770 | { | 1770 | { |
1771 | struct mem_cgroup *iter, *failed = NULL; | 1771 | struct mem_cgroup *iter, *failed = NULL; |
1772 | 1772 | ||
1773 | for_each_mem_cgroup_tree(iter, memcg) { | 1773 | for_each_mem_cgroup_tree(iter, memcg) { |
1774 | if (iter->oom_lock) { | 1774 | if (iter->oom_lock) { |
1775 | /* | 1775 | /* |
1776 | * this subtree of our hierarchy is already locked | 1776 | * this subtree of our hierarchy is already locked |
1777 | * so we cannot give a lock. | 1777 | * so we cannot give a lock. |
1778 | */ | 1778 | */ |
1779 | failed = iter; | 1779 | failed = iter; |
1780 | mem_cgroup_iter_break(memcg, iter); | 1780 | mem_cgroup_iter_break(memcg, iter); |
1781 | break; | 1781 | break; |
1782 | } else | 1782 | } else |
1783 | iter->oom_lock = true; | 1783 | iter->oom_lock = true; |
1784 | } | 1784 | } |
1785 | 1785 | ||
1786 | if (!failed) | 1786 | if (!failed) |
1787 | return true; | 1787 | return true; |
1788 | 1788 | ||
1789 | /* | 1789 | /* |
1790 | * OK, we failed to lock the whole subtree so we have to clean up | 1790 | * OK, we failed to lock the whole subtree so we have to clean up |
1791 | * what we set up to the failing subtree | 1791 | * what we set up to the failing subtree |
1792 | */ | 1792 | */ |
1793 | for_each_mem_cgroup_tree(iter, memcg) { | 1793 | for_each_mem_cgroup_tree(iter, memcg) { |
1794 | if (iter == failed) { | 1794 | if (iter == failed) { |
1795 | mem_cgroup_iter_break(memcg, iter); | 1795 | mem_cgroup_iter_break(memcg, iter); |
1796 | break; | 1796 | break; |
1797 | } | 1797 | } |
1798 | iter->oom_lock = false; | 1798 | iter->oom_lock = false; |
1799 | } | 1799 | } |
1800 | return false; | 1800 | return false; |
1801 | } | 1801 | } |
1802 | 1802 | ||
1803 | /* | 1803 | /* |
1804 | * Has to be called with memcg_oom_lock | 1804 | * Has to be called with memcg_oom_lock |
1805 | */ | 1805 | */ |
1806 | static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg) | 1806 | static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg) |
1807 | { | 1807 | { |
1808 | struct mem_cgroup *iter; | 1808 | struct mem_cgroup *iter; |
1809 | 1809 | ||
1810 | for_each_mem_cgroup_tree(iter, memcg) | 1810 | for_each_mem_cgroup_tree(iter, memcg) |
1811 | iter->oom_lock = false; | 1811 | iter->oom_lock = false; |
1812 | return 0; | 1812 | return 0; |
1813 | } | 1813 | } |
1814 | 1814 | ||
1815 | static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) | 1815 | static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) |
1816 | { | 1816 | { |
1817 | struct mem_cgroup *iter; | 1817 | struct mem_cgroup *iter; |
1818 | 1818 | ||
1819 | for_each_mem_cgroup_tree(iter, memcg) | 1819 | for_each_mem_cgroup_tree(iter, memcg) |
1820 | atomic_inc(&iter->under_oom); | 1820 | atomic_inc(&iter->under_oom); |
1821 | } | 1821 | } |
1822 | 1822 | ||
1823 | static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) | 1823 | static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) |
1824 | { | 1824 | { |
1825 | struct mem_cgroup *iter; | 1825 | struct mem_cgroup *iter; |
1826 | 1826 | ||
1827 | /* | 1827 | /* |
1828 | * When a new child is created while the hierarchy is under oom, | 1828 | * When a new child is created while the hierarchy is under oom, |
1829 | * mem_cgroup_oom_lock() may not be called. We have to use | 1829 | * mem_cgroup_oom_lock() may not be called. We have to use |
1830 | * atomic_add_unless() here. | 1830 | * atomic_add_unless() here. |
1831 | */ | 1831 | */ |
1832 | for_each_mem_cgroup_tree(iter, memcg) | 1832 | for_each_mem_cgroup_tree(iter, memcg) |
1833 | atomic_add_unless(&iter->under_oom, -1, 0); | 1833 | atomic_add_unless(&iter->under_oom, -1, 0); |
1834 | } | 1834 | } |
1835 | 1835 | ||
1836 | static DEFINE_SPINLOCK(memcg_oom_lock); | 1836 | static DEFINE_SPINLOCK(memcg_oom_lock); |
1837 | static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); | 1837 | static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); |
1838 | 1838 | ||
1839 | struct oom_wait_info { | 1839 | struct oom_wait_info { |
1840 | struct mem_cgroup *memcg; | 1840 | struct mem_cgroup *memcg; |
1841 | wait_queue_t wait; | 1841 | wait_queue_t wait; |
1842 | }; | 1842 | }; |
1843 | 1843 | ||
1844 | static int memcg_oom_wake_function(wait_queue_t *wait, | 1844 | static int memcg_oom_wake_function(wait_queue_t *wait, |
1845 | unsigned mode, int sync, void *arg) | 1845 | unsigned mode, int sync, void *arg) |
1846 | { | 1846 | { |
1847 | struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; | 1847 | struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; |
1848 | struct mem_cgroup *oom_wait_memcg; | 1848 | struct mem_cgroup *oom_wait_memcg; |
1849 | struct oom_wait_info *oom_wait_info; | 1849 | struct oom_wait_info *oom_wait_info; |
1850 | 1850 | ||
1851 | oom_wait_info = container_of(wait, struct oom_wait_info, wait); | 1851 | oom_wait_info = container_of(wait, struct oom_wait_info, wait); |
1852 | oom_wait_memcg = oom_wait_info->memcg; | 1852 | oom_wait_memcg = oom_wait_info->memcg; |
1853 | 1853 | ||
1854 | /* | 1854 | /* |
1855 | * Both of oom_wait_info->memcg and wake_memcg are stable under us. | 1855 | * Both of oom_wait_info->memcg and wake_memcg are stable under us. |
1856 | * Then we can use css_is_ancestor without taking care of RCU. | 1856 | * Then we can use css_is_ancestor without taking care of RCU. |
1857 | */ | 1857 | */ |
1858 | if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg) | 1858 | if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg) |
1859 | && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg)) | 1859 | && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg)) |
1860 | return 0; | 1860 | return 0; |
1861 | return autoremove_wake_function(wait, mode, sync, arg); | 1861 | return autoremove_wake_function(wait, mode, sync, arg); |
1862 | } | 1862 | } |
1863 | 1863 | ||
1864 | static void memcg_wakeup_oom(struct mem_cgroup *memcg) | 1864 | static void memcg_wakeup_oom(struct mem_cgroup *memcg) |
1865 | { | 1865 | { |
1866 | /* for filtering, pass "memcg" as argument. */ | 1866 | /* for filtering, pass "memcg" as argument. */ |
1867 | __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); | 1867 | __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); |
1868 | } | 1868 | } |
1869 | 1869 | ||
1870 | static void memcg_oom_recover(struct mem_cgroup *memcg) | 1870 | static void memcg_oom_recover(struct mem_cgroup *memcg) |
1871 | { | 1871 | { |
1872 | if (memcg && atomic_read(&memcg->under_oom)) | 1872 | if (memcg && atomic_read(&memcg->under_oom)) |
1873 | memcg_wakeup_oom(memcg); | 1873 | memcg_wakeup_oom(memcg); |
1874 | } | 1874 | } |
1875 | 1875 | ||
1876 | /* | 1876 | /* |
1877 | * try to call OOM killer. returns false if we should exit memory-reclaim loop. | 1877 | * try to call OOM killer. returns false if we should exit memory-reclaim loop. |
1878 | */ | 1878 | */ |
1879 | static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask, | 1879 | static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask, |
1880 | int order) | 1880 | int order) |
1881 | { | 1881 | { |
1882 | struct oom_wait_info owait; | 1882 | struct oom_wait_info owait; |
1883 | bool locked, need_to_kill; | 1883 | bool locked, need_to_kill; |
1884 | 1884 | ||
1885 | owait.memcg = memcg; | 1885 | owait.memcg = memcg; |
1886 | owait.wait.flags = 0; | 1886 | owait.wait.flags = 0; |
1887 | owait.wait.func = memcg_oom_wake_function; | 1887 | owait.wait.func = memcg_oom_wake_function; |
1888 | owait.wait.private = current; | 1888 | owait.wait.private = current; |
1889 | INIT_LIST_HEAD(&owait.wait.task_list); | 1889 | INIT_LIST_HEAD(&owait.wait.task_list); |
1890 | need_to_kill = true; | 1890 | need_to_kill = true; |
1891 | mem_cgroup_mark_under_oom(memcg); | 1891 | mem_cgroup_mark_under_oom(memcg); |
1892 | 1892 | ||
1893 | /* At first, try to OOM lock hierarchy under memcg.*/ | 1893 | /* At first, try to OOM lock hierarchy under memcg.*/ |
1894 | spin_lock(&memcg_oom_lock); | 1894 | spin_lock(&memcg_oom_lock); |
1895 | locked = mem_cgroup_oom_lock(memcg); | 1895 | locked = mem_cgroup_oom_lock(memcg); |
1896 | /* | 1896 | /* |
1897 | * Even if signal_pending(), we can't quit charge() loop without | 1897 | * Even if signal_pending(), we can't quit charge() loop without |
1898 | * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL | 1898 | * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL |
1899 | * under OOM is always welcomed, use TASK_KILLABLE here. | 1899 | * under OOM is always welcomed, use TASK_KILLABLE here. |
1900 | */ | 1900 | */ |
1901 | prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); | 1901 | prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); |
1902 | if (!locked || memcg->oom_kill_disable) | 1902 | if (!locked || memcg->oom_kill_disable) |
1903 | need_to_kill = false; | 1903 | need_to_kill = false; |
1904 | if (locked) | 1904 | if (locked) |
1905 | mem_cgroup_oom_notify(memcg); | 1905 | mem_cgroup_oom_notify(memcg); |
1906 | spin_unlock(&memcg_oom_lock); | 1906 | spin_unlock(&memcg_oom_lock); |
1907 | 1907 | ||
1908 | if (need_to_kill) { | 1908 | if (need_to_kill) { |
1909 | finish_wait(&memcg_oom_waitq, &owait.wait); | 1909 | finish_wait(&memcg_oom_waitq, &owait.wait); |
1910 | mem_cgroup_out_of_memory(memcg, mask, order); | 1910 | mem_cgroup_out_of_memory(memcg, mask, order); |
1911 | } else { | 1911 | } else { |
1912 | schedule(); | 1912 | schedule(); |
1913 | finish_wait(&memcg_oom_waitq, &owait.wait); | 1913 | finish_wait(&memcg_oom_waitq, &owait.wait); |
1914 | } | 1914 | } |
1915 | spin_lock(&memcg_oom_lock); | 1915 | spin_lock(&memcg_oom_lock); |
1916 | if (locked) | 1916 | if (locked) |
1917 | mem_cgroup_oom_unlock(memcg); | 1917 | mem_cgroup_oom_unlock(memcg); |
1918 | memcg_wakeup_oom(memcg); | 1918 | memcg_wakeup_oom(memcg); |
1919 | spin_unlock(&memcg_oom_lock); | 1919 | spin_unlock(&memcg_oom_lock); |
1920 | 1920 | ||
1921 | mem_cgroup_unmark_under_oom(memcg); | 1921 | mem_cgroup_unmark_under_oom(memcg); |
1922 | 1922 | ||
1923 | if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current)) | 1923 | if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current)) |
1924 | return false; | 1924 | return false; |
1925 | /* Give chance to dying process */ | 1925 | /* Give chance to dying process */ |
1926 | schedule_timeout_uninterruptible(1); | 1926 | schedule_timeout_uninterruptible(1); |
1927 | return true; | 1927 | return true; |
1928 | } | 1928 | } |
1929 | 1929 | ||
1930 | /* | 1930 | /* |
1931 | * Currently used to update mapped file statistics, but the routine can be | 1931 | * Currently used to update mapped file statistics, but the routine can be |
1932 | * generalized to update other statistics as well. | 1932 | * generalized to update other statistics as well. |
1933 | * | 1933 | * |
1934 | * Notes: Race condition | 1934 | * Notes: Race condition |
1935 | * | 1935 | * |
1936 | * We usually use page_cgroup_lock() for accessing page_cgroup member but | 1936 | * We usually use page_cgroup_lock() for accessing page_cgroup member but |
1937 | * it tends to be costly. But considering some conditions, we doesn't need | 1937 | * it tends to be costly. But considering some conditions, we doesn't need |
1938 | * to do so _always_. | 1938 | * to do so _always_. |
1939 | * | 1939 | * |
1940 | * Considering "charge", lock_page_cgroup() is not required because all | 1940 | * Considering "charge", lock_page_cgroup() is not required because all |
1941 | * file-stat operations happen after a page is attached to radix-tree. There | 1941 | * file-stat operations happen after a page is attached to radix-tree. There |
1942 | * are no race with "charge". | 1942 | * are no race with "charge". |
1943 | * | 1943 | * |
1944 | * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup | 1944 | * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup |
1945 | * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even | 1945 | * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even |
1946 | * if there are race with "uncharge". Statistics itself is properly handled | 1946 | * if there are race with "uncharge". Statistics itself is properly handled |
1947 | * by flags. | 1947 | * by flags. |
1948 | * | 1948 | * |
1949 | * Considering "move", this is an only case we see a race. To make the race | 1949 | * Considering "move", this is an only case we see a race. To make the race |
1950 | * small, we check mm->moving_account and detect there are possibility of race | 1950 | * small, we check mm->moving_account and detect there are possibility of race |
1951 | * If there is, we take a lock. | 1951 | * If there is, we take a lock. |
1952 | */ | 1952 | */ |
1953 | 1953 | ||
1954 | void __mem_cgroup_begin_update_page_stat(struct page *page, | 1954 | void __mem_cgroup_begin_update_page_stat(struct page *page, |
1955 | bool *locked, unsigned long *flags) | 1955 | bool *locked, unsigned long *flags) |
1956 | { | 1956 | { |
1957 | struct mem_cgroup *memcg; | 1957 | struct mem_cgroup *memcg; |
1958 | struct page_cgroup *pc; | 1958 | struct page_cgroup *pc; |
1959 | 1959 | ||
1960 | pc = lookup_page_cgroup(page); | 1960 | pc = lookup_page_cgroup(page); |
1961 | again: | 1961 | again: |
1962 | memcg = pc->mem_cgroup; | 1962 | memcg = pc->mem_cgroup; |
1963 | if (unlikely(!memcg || !PageCgroupUsed(pc))) | 1963 | if (unlikely(!memcg || !PageCgroupUsed(pc))) |
1964 | return; | 1964 | return; |
1965 | /* | 1965 | /* |
1966 | * If this memory cgroup is not under account moving, we don't | 1966 | * If this memory cgroup is not under account moving, we don't |
1967 | * need to take move_lock_mem_cgroup(). Because we already hold | 1967 | * need to take move_lock_mem_cgroup(). Because we already hold |
1968 | * rcu_read_lock(), any calls to move_account will be delayed until | 1968 | * rcu_read_lock(), any calls to move_account will be delayed until |
1969 | * rcu_read_unlock() if mem_cgroup_stolen() == true. | 1969 | * rcu_read_unlock() if mem_cgroup_stolen() == true. |
1970 | */ | 1970 | */ |
1971 | if (!mem_cgroup_stolen(memcg)) | 1971 | if (!mem_cgroup_stolen(memcg)) |
1972 | return; | 1972 | return; |
1973 | 1973 | ||
1974 | move_lock_mem_cgroup(memcg, flags); | 1974 | move_lock_mem_cgroup(memcg, flags); |
1975 | if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) { | 1975 | if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) { |
1976 | move_unlock_mem_cgroup(memcg, flags); | 1976 | move_unlock_mem_cgroup(memcg, flags); |
1977 | goto again; | 1977 | goto again; |
1978 | } | 1978 | } |
1979 | *locked = true; | 1979 | *locked = true; |
1980 | } | 1980 | } |
1981 | 1981 | ||
1982 | void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags) | 1982 | void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags) |
1983 | { | 1983 | { |
1984 | struct page_cgroup *pc = lookup_page_cgroup(page); | 1984 | struct page_cgroup *pc = lookup_page_cgroup(page); |
1985 | 1985 | ||
1986 | /* | 1986 | /* |
1987 | * It's guaranteed that pc->mem_cgroup never changes while | 1987 | * It's guaranteed that pc->mem_cgroup never changes while |
1988 | * lock is held because a routine modifies pc->mem_cgroup | 1988 | * lock is held because a routine modifies pc->mem_cgroup |
1989 | * should take move_lock_mem_cgroup(). | 1989 | * should take move_lock_mem_cgroup(). |
1990 | */ | 1990 | */ |
1991 | move_unlock_mem_cgroup(pc->mem_cgroup, flags); | 1991 | move_unlock_mem_cgroup(pc->mem_cgroup, flags); |
1992 | } | 1992 | } |
1993 | 1993 | ||
1994 | void mem_cgroup_update_page_stat(struct page *page, | 1994 | void mem_cgroup_update_page_stat(struct page *page, |
1995 | enum mem_cgroup_page_stat_item idx, int val) | 1995 | enum mem_cgroup_page_stat_item idx, int val) |
1996 | { | 1996 | { |
1997 | struct mem_cgroup *memcg; | 1997 | struct mem_cgroup *memcg; |
1998 | struct page_cgroup *pc = lookup_page_cgroup(page); | 1998 | struct page_cgroup *pc = lookup_page_cgroup(page); |
1999 | unsigned long uninitialized_var(flags); | 1999 | unsigned long uninitialized_var(flags); |
2000 | 2000 | ||
2001 | if (mem_cgroup_disabled()) | 2001 | if (mem_cgroup_disabled()) |
2002 | return; | 2002 | return; |
2003 | 2003 | ||
2004 | memcg = pc->mem_cgroup; | 2004 | memcg = pc->mem_cgroup; |
2005 | if (unlikely(!memcg || !PageCgroupUsed(pc))) | 2005 | if (unlikely(!memcg || !PageCgroupUsed(pc))) |
2006 | return; | 2006 | return; |
2007 | 2007 | ||
2008 | switch (idx) { | 2008 | switch (idx) { |
2009 | case MEMCG_NR_FILE_MAPPED: | 2009 | case MEMCG_NR_FILE_MAPPED: |
2010 | idx = MEM_CGROUP_STAT_FILE_MAPPED; | 2010 | idx = MEM_CGROUP_STAT_FILE_MAPPED; |
2011 | break; | 2011 | break; |
2012 | default: | 2012 | default: |
2013 | BUG(); | 2013 | BUG(); |
2014 | } | 2014 | } |
2015 | 2015 | ||
2016 | this_cpu_add(memcg->stat->count[idx], val); | 2016 | this_cpu_add(memcg->stat->count[idx], val); |
2017 | } | 2017 | } |
2018 | 2018 | ||
2019 | /* | 2019 | /* |
2020 | * size of first charge trial. "32" comes from vmscan.c's magic value. | 2020 | * size of first charge trial. "32" comes from vmscan.c's magic value. |
2021 | * TODO: maybe necessary to use big numbers in big irons. | 2021 | * TODO: maybe necessary to use big numbers in big irons. |
2022 | */ | 2022 | */ |
2023 | #define CHARGE_BATCH 32U | 2023 | #define CHARGE_BATCH 32U |
2024 | struct memcg_stock_pcp { | 2024 | struct memcg_stock_pcp { |
2025 | struct mem_cgroup *cached; /* this never be root cgroup */ | 2025 | struct mem_cgroup *cached; /* this never be root cgroup */ |
2026 | unsigned int nr_pages; | 2026 | unsigned int nr_pages; |
2027 | struct work_struct work; | 2027 | struct work_struct work; |
2028 | unsigned long flags; | 2028 | unsigned long flags; |
2029 | #define FLUSHING_CACHED_CHARGE 0 | 2029 | #define FLUSHING_CACHED_CHARGE 0 |
2030 | }; | 2030 | }; |
2031 | static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); | 2031 | static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); |
2032 | static DEFINE_MUTEX(percpu_charge_mutex); | 2032 | static DEFINE_MUTEX(percpu_charge_mutex); |
2033 | 2033 | ||
2034 | /* | 2034 | /* |
2035 | * Try to consume stocked charge on this cpu. If success, one page is consumed | 2035 | * Try to consume stocked charge on this cpu. If success, one page is consumed |
2036 | * from local stock and true is returned. If the stock is 0 or charges from a | 2036 | * from local stock and true is returned. If the stock is 0 or charges from a |
2037 | * cgroup which is not current target, returns false. This stock will be | 2037 | * cgroup which is not current target, returns false. This stock will be |
2038 | * refilled. | 2038 | * refilled. |
2039 | */ | 2039 | */ |
2040 | static bool consume_stock(struct mem_cgroup *memcg) | 2040 | static bool consume_stock(struct mem_cgroup *memcg) |
2041 | { | 2041 | { |
2042 | struct memcg_stock_pcp *stock; | 2042 | struct memcg_stock_pcp *stock; |
2043 | bool ret = true; | 2043 | bool ret = true; |
2044 | 2044 | ||
2045 | stock = &get_cpu_var(memcg_stock); | 2045 | stock = &get_cpu_var(memcg_stock); |
2046 | if (memcg == stock->cached && stock->nr_pages) | 2046 | if (memcg == stock->cached && stock->nr_pages) |
2047 | stock->nr_pages--; | 2047 | stock->nr_pages--; |
2048 | else /* need to call res_counter_charge */ | 2048 | else /* need to call res_counter_charge */ |
2049 | ret = false; | 2049 | ret = false; |
2050 | put_cpu_var(memcg_stock); | 2050 | put_cpu_var(memcg_stock); |
2051 | return ret; | 2051 | return ret; |
2052 | } | 2052 | } |
2053 | 2053 | ||
2054 | /* | 2054 | /* |
2055 | * Returns stocks cached in percpu to res_counter and reset cached information. | 2055 | * Returns stocks cached in percpu to res_counter and reset cached information. |
2056 | */ | 2056 | */ |
2057 | static void drain_stock(struct memcg_stock_pcp *stock) | 2057 | static void drain_stock(struct memcg_stock_pcp *stock) |
2058 | { | 2058 | { |
2059 | struct mem_cgroup *old = stock->cached; | 2059 | struct mem_cgroup *old = stock->cached; |
2060 | 2060 | ||
2061 | if (stock->nr_pages) { | 2061 | if (stock->nr_pages) { |
2062 | unsigned long bytes = stock->nr_pages * PAGE_SIZE; | 2062 | unsigned long bytes = stock->nr_pages * PAGE_SIZE; |
2063 | 2063 | ||
2064 | res_counter_uncharge(&old->res, bytes); | 2064 | res_counter_uncharge(&old->res, bytes); |
2065 | if (do_swap_account) | 2065 | if (do_swap_account) |
2066 | res_counter_uncharge(&old->memsw, bytes); | 2066 | res_counter_uncharge(&old->memsw, bytes); |
2067 | stock->nr_pages = 0; | 2067 | stock->nr_pages = 0; |
2068 | } | 2068 | } |
2069 | stock->cached = NULL; | 2069 | stock->cached = NULL; |
2070 | } | 2070 | } |
2071 | 2071 | ||
2072 | /* | 2072 | /* |
2073 | * This must be called under preempt disabled or must be called by | 2073 | * This must be called under preempt disabled or must be called by |
2074 | * a thread which is pinned to local cpu. | 2074 | * a thread which is pinned to local cpu. |
2075 | */ | 2075 | */ |
2076 | static void drain_local_stock(struct work_struct *dummy) | 2076 | static void drain_local_stock(struct work_struct *dummy) |
2077 | { | 2077 | { |
2078 | struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock); | 2078 | struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock); |
2079 | drain_stock(stock); | 2079 | drain_stock(stock); |
2080 | clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); | 2080 | clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); |
2081 | } | 2081 | } |
2082 | 2082 | ||
2083 | /* | 2083 | /* |
2084 | * Cache charges(val) which is from res_counter, to local per_cpu area. | 2084 | * Cache charges(val) which is from res_counter, to local per_cpu area. |
2085 | * This will be consumed by consume_stock() function, later. | 2085 | * This will be consumed by consume_stock() function, later. |
2086 | */ | 2086 | */ |
2087 | static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) | 2087 | static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) |
2088 | { | 2088 | { |
2089 | struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); | 2089 | struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); |
2090 | 2090 | ||
2091 | if (stock->cached != memcg) { /* reset if necessary */ | 2091 | if (stock->cached != memcg) { /* reset if necessary */ |
2092 | drain_stock(stock); | 2092 | drain_stock(stock); |
2093 | stock->cached = memcg; | 2093 | stock->cached = memcg; |
2094 | } | 2094 | } |
2095 | stock->nr_pages += nr_pages; | 2095 | stock->nr_pages += nr_pages; |
2096 | put_cpu_var(memcg_stock); | 2096 | put_cpu_var(memcg_stock); |
2097 | } | 2097 | } |
2098 | 2098 | ||
2099 | /* | 2099 | /* |
2100 | * Drains all per-CPU charge caches for given root_memcg resp. subtree | 2100 | * Drains all per-CPU charge caches for given root_memcg resp. subtree |
2101 | * of the hierarchy under it. sync flag says whether we should block | 2101 | * of the hierarchy under it. sync flag says whether we should block |
2102 | * until the work is done. | 2102 | * until the work is done. |
2103 | */ | 2103 | */ |
2104 | static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync) | 2104 | static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync) |
2105 | { | 2105 | { |
2106 | int cpu, curcpu; | 2106 | int cpu, curcpu; |
2107 | 2107 | ||
2108 | /* Notify other cpus that system-wide "drain" is running */ | 2108 | /* Notify other cpus that system-wide "drain" is running */ |
2109 | get_online_cpus(); | 2109 | get_online_cpus(); |
2110 | curcpu = get_cpu(); | 2110 | curcpu = get_cpu(); |
2111 | for_each_online_cpu(cpu) { | 2111 | for_each_online_cpu(cpu) { |
2112 | struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); | 2112 | struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); |
2113 | struct mem_cgroup *memcg; | 2113 | struct mem_cgroup *memcg; |
2114 | 2114 | ||
2115 | memcg = stock->cached; | 2115 | memcg = stock->cached; |
2116 | if (!memcg || !stock->nr_pages) | 2116 | if (!memcg || !stock->nr_pages) |
2117 | continue; | 2117 | continue; |
2118 | if (!mem_cgroup_same_or_subtree(root_memcg, memcg)) | 2118 | if (!mem_cgroup_same_or_subtree(root_memcg, memcg)) |
2119 | continue; | 2119 | continue; |
2120 | if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { | 2120 | if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { |
2121 | if (cpu == curcpu) | 2121 | if (cpu == curcpu) |
2122 | drain_local_stock(&stock->work); | 2122 | drain_local_stock(&stock->work); |
2123 | else | 2123 | else |
2124 | schedule_work_on(cpu, &stock->work); | 2124 | schedule_work_on(cpu, &stock->work); |
2125 | } | 2125 | } |
2126 | } | 2126 | } |
2127 | put_cpu(); | 2127 | put_cpu(); |
2128 | 2128 | ||
2129 | if (!sync) | 2129 | if (!sync) |
2130 | goto out; | 2130 | goto out; |
2131 | 2131 | ||
2132 | for_each_online_cpu(cpu) { | 2132 | for_each_online_cpu(cpu) { |
2133 | struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); | 2133 | struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); |
2134 | if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) | 2134 | if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) |
2135 | flush_work(&stock->work); | 2135 | flush_work(&stock->work); |
2136 | } | 2136 | } |
2137 | out: | 2137 | out: |
2138 | put_online_cpus(); | 2138 | put_online_cpus(); |
2139 | } | 2139 | } |
2140 | 2140 | ||
2141 | /* | 2141 | /* |
2142 | * Tries to drain stocked charges in other cpus. This function is asynchronous | 2142 | * Tries to drain stocked charges in other cpus. This function is asynchronous |
2143 | * and just put a work per cpu for draining localy on each cpu. Caller can | 2143 | * and just put a work per cpu for draining localy on each cpu. Caller can |
2144 | * expects some charges will be back to res_counter later but cannot wait for | 2144 | * expects some charges will be back to res_counter later but cannot wait for |
2145 | * it. | 2145 | * it. |
2146 | */ | 2146 | */ |
2147 | static void drain_all_stock_async(struct mem_cgroup *root_memcg) | 2147 | static void drain_all_stock_async(struct mem_cgroup *root_memcg) |
2148 | { | 2148 | { |
2149 | /* | 2149 | /* |
2150 | * If someone calls draining, avoid adding more kworker runs. | 2150 | * If someone calls draining, avoid adding more kworker runs. |
2151 | */ | 2151 | */ |
2152 | if (!mutex_trylock(&percpu_charge_mutex)) | 2152 | if (!mutex_trylock(&percpu_charge_mutex)) |
2153 | return; | 2153 | return; |
2154 | drain_all_stock(root_memcg, false); | 2154 | drain_all_stock(root_memcg, false); |
2155 | mutex_unlock(&percpu_charge_mutex); | 2155 | mutex_unlock(&percpu_charge_mutex); |
2156 | } | 2156 | } |
2157 | 2157 | ||
2158 | /* This is a synchronous drain interface. */ | 2158 | /* This is a synchronous drain interface. */ |
2159 | static void drain_all_stock_sync(struct mem_cgroup *root_memcg) | 2159 | static void drain_all_stock_sync(struct mem_cgroup *root_memcg) |
2160 | { | 2160 | { |
2161 | /* called when force_empty is called */ | 2161 | /* called when force_empty is called */ |
2162 | mutex_lock(&percpu_charge_mutex); | 2162 | mutex_lock(&percpu_charge_mutex); |
2163 | drain_all_stock(root_memcg, true); | 2163 | drain_all_stock(root_memcg, true); |
2164 | mutex_unlock(&percpu_charge_mutex); | 2164 | mutex_unlock(&percpu_charge_mutex); |
2165 | } | 2165 | } |
2166 | 2166 | ||
2167 | /* | 2167 | /* |
2168 | * This function drains percpu counter value from DEAD cpu and | 2168 | * This function drains percpu counter value from DEAD cpu and |
2169 | * move it to local cpu. Note that this function can be preempted. | 2169 | * move it to local cpu. Note that this function can be preempted. |
2170 | */ | 2170 | */ |
2171 | static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu) | 2171 | static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu) |
2172 | { | 2172 | { |
2173 | int i; | 2173 | int i; |
2174 | 2174 | ||
2175 | spin_lock(&memcg->pcp_counter_lock); | 2175 | spin_lock(&memcg->pcp_counter_lock); |
2176 | for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { | 2176 | for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { |
2177 | long x = per_cpu(memcg->stat->count[i], cpu); | 2177 | long x = per_cpu(memcg->stat->count[i], cpu); |
2178 | 2178 | ||
2179 | per_cpu(memcg->stat->count[i], cpu) = 0; | 2179 | per_cpu(memcg->stat->count[i], cpu) = 0; |
2180 | memcg->nocpu_base.count[i] += x; | 2180 | memcg->nocpu_base.count[i] += x; |
2181 | } | 2181 | } |
2182 | for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { | 2182 | for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { |
2183 | unsigned long x = per_cpu(memcg->stat->events[i], cpu); | 2183 | unsigned long x = per_cpu(memcg->stat->events[i], cpu); |
2184 | 2184 | ||
2185 | per_cpu(memcg->stat->events[i], cpu) = 0; | 2185 | per_cpu(memcg->stat->events[i], cpu) = 0; |
2186 | memcg->nocpu_base.events[i] += x; | 2186 | memcg->nocpu_base.events[i] += x; |
2187 | } | 2187 | } |
2188 | spin_unlock(&memcg->pcp_counter_lock); | 2188 | spin_unlock(&memcg->pcp_counter_lock); |
2189 | } | 2189 | } |
2190 | 2190 | ||
2191 | static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb, | 2191 | static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb, |
2192 | unsigned long action, | 2192 | unsigned long action, |
2193 | void *hcpu) | 2193 | void *hcpu) |
2194 | { | 2194 | { |
2195 | int cpu = (unsigned long)hcpu; | 2195 | int cpu = (unsigned long)hcpu; |
2196 | struct memcg_stock_pcp *stock; | 2196 | struct memcg_stock_pcp *stock; |
2197 | struct mem_cgroup *iter; | 2197 | struct mem_cgroup *iter; |
2198 | 2198 | ||
2199 | if (action == CPU_ONLINE) | 2199 | if (action == CPU_ONLINE) |
2200 | return NOTIFY_OK; | 2200 | return NOTIFY_OK; |
2201 | 2201 | ||
2202 | if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) | 2202 | if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) |
2203 | return NOTIFY_OK; | 2203 | return NOTIFY_OK; |
2204 | 2204 | ||
2205 | for_each_mem_cgroup(iter) | 2205 | for_each_mem_cgroup(iter) |
2206 | mem_cgroup_drain_pcp_counter(iter, cpu); | 2206 | mem_cgroup_drain_pcp_counter(iter, cpu); |
2207 | 2207 | ||
2208 | stock = &per_cpu(memcg_stock, cpu); | 2208 | stock = &per_cpu(memcg_stock, cpu); |
2209 | drain_stock(stock); | 2209 | drain_stock(stock); |
2210 | return NOTIFY_OK; | 2210 | return NOTIFY_OK; |
2211 | } | 2211 | } |
2212 | 2212 | ||
2213 | 2213 | ||
2214 | /* See __mem_cgroup_try_charge() for details */ | 2214 | /* See __mem_cgroup_try_charge() for details */ |
2215 | enum { | 2215 | enum { |
2216 | CHARGE_OK, /* success */ | 2216 | CHARGE_OK, /* success */ |
2217 | CHARGE_RETRY, /* need to retry but retry is not bad */ | 2217 | CHARGE_RETRY, /* need to retry but retry is not bad */ |
2218 | CHARGE_NOMEM, /* we can't do more. return -ENOMEM */ | 2218 | CHARGE_NOMEM, /* we can't do more. return -ENOMEM */ |
2219 | CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */ | 2219 | CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */ |
2220 | CHARGE_OOM_DIE, /* the current is killed because of OOM */ | 2220 | CHARGE_OOM_DIE, /* the current is killed because of OOM */ |
2221 | }; | 2221 | }; |
2222 | 2222 | ||
2223 | static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, | 2223 | static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, |
2224 | unsigned int nr_pages, bool oom_check) | 2224 | unsigned int nr_pages, bool oom_check) |
2225 | { | 2225 | { |
2226 | unsigned long csize = nr_pages * PAGE_SIZE; | 2226 | unsigned long csize = nr_pages * PAGE_SIZE; |
2227 | struct mem_cgroup *mem_over_limit; | 2227 | struct mem_cgroup *mem_over_limit; |
2228 | struct res_counter *fail_res; | 2228 | struct res_counter *fail_res; |
2229 | unsigned long flags = 0; | 2229 | unsigned long flags = 0; |
2230 | int ret; | 2230 | int ret; |
2231 | 2231 | ||
2232 | ret = res_counter_charge(&memcg->res, csize, &fail_res); | 2232 | ret = res_counter_charge(&memcg->res, csize, &fail_res); |
2233 | 2233 | ||
2234 | if (likely(!ret)) { | 2234 | if (likely(!ret)) { |
2235 | if (!do_swap_account) | 2235 | if (!do_swap_account) |
2236 | return CHARGE_OK; | 2236 | return CHARGE_OK; |
2237 | ret = res_counter_charge(&memcg->memsw, csize, &fail_res); | 2237 | ret = res_counter_charge(&memcg->memsw, csize, &fail_res); |
2238 | if (likely(!ret)) | 2238 | if (likely(!ret)) |
2239 | return CHARGE_OK; | 2239 | return CHARGE_OK; |
2240 | 2240 | ||
2241 | res_counter_uncharge(&memcg->res, csize); | 2241 | res_counter_uncharge(&memcg->res, csize); |
2242 | mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw); | 2242 | mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw); |
2243 | flags |= MEM_CGROUP_RECLAIM_NOSWAP; | 2243 | flags |= MEM_CGROUP_RECLAIM_NOSWAP; |
2244 | } else | 2244 | } else |
2245 | mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); | 2245 | mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); |
2246 | /* | 2246 | /* |
2247 | * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch | 2247 | * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch |
2248 | * of regular pages (CHARGE_BATCH), or a single regular page (1). | 2248 | * of regular pages (CHARGE_BATCH), or a single regular page (1). |
2249 | * | 2249 | * |
2250 | * Never reclaim on behalf of optional batching, retry with a | 2250 | * Never reclaim on behalf of optional batching, retry with a |
2251 | * single page instead. | 2251 | * single page instead. |
2252 | */ | 2252 | */ |
2253 | if (nr_pages == CHARGE_BATCH) | 2253 | if (nr_pages == CHARGE_BATCH) |
2254 | return CHARGE_RETRY; | 2254 | return CHARGE_RETRY; |
2255 | 2255 | ||
2256 | if (!(gfp_mask & __GFP_WAIT)) | 2256 | if (!(gfp_mask & __GFP_WAIT)) |
2257 | return CHARGE_WOULDBLOCK; | 2257 | return CHARGE_WOULDBLOCK; |
2258 | 2258 | ||
2259 | ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags); | 2259 | ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags); |
2260 | if (mem_cgroup_margin(mem_over_limit) >= nr_pages) | 2260 | if (mem_cgroup_margin(mem_over_limit) >= nr_pages) |
2261 | return CHARGE_RETRY; | 2261 | return CHARGE_RETRY; |
2262 | /* | 2262 | /* |
2263 | * Even though the limit is exceeded at this point, reclaim | 2263 | * Even though the limit is exceeded at this point, reclaim |
2264 | * may have been able to free some pages. Retry the charge | 2264 | * may have been able to free some pages. Retry the charge |
2265 | * before killing the task. | 2265 | * before killing the task. |
2266 | * | 2266 | * |
2267 | * Only for regular pages, though: huge pages are rather | 2267 | * Only for regular pages, though: huge pages are rather |
2268 | * unlikely to succeed so close to the limit, and we fall back | 2268 | * unlikely to succeed so close to the limit, and we fall back |
2269 | * to regular pages anyway in case of failure. | 2269 | * to regular pages anyway in case of failure. |
2270 | */ | 2270 | */ |
2271 | if (nr_pages == 1 && ret) | 2271 | if (nr_pages == 1 && ret) |
2272 | return CHARGE_RETRY; | 2272 | return CHARGE_RETRY; |
2273 | 2273 | ||
2274 | /* | 2274 | /* |
2275 | * At task move, charge accounts can be doubly counted. So, it's | 2275 | * At task move, charge accounts can be doubly counted. So, it's |
2276 | * better to wait until the end of task_move if something is going on. | 2276 | * better to wait until the end of task_move if something is going on. |
2277 | */ | 2277 | */ |
2278 | if (mem_cgroup_wait_acct_move(mem_over_limit)) | 2278 | if (mem_cgroup_wait_acct_move(mem_over_limit)) |
2279 | return CHARGE_RETRY; | 2279 | return CHARGE_RETRY; |
2280 | 2280 | ||
2281 | /* If we don't need to call oom-killer at el, return immediately */ | 2281 | /* If we don't need to call oom-killer at el, return immediately */ |
2282 | if (!oom_check) | 2282 | if (!oom_check) |
2283 | return CHARGE_NOMEM; | 2283 | return CHARGE_NOMEM; |
2284 | /* check OOM */ | 2284 | /* check OOM */ |
2285 | if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize))) | 2285 | if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize))) |
2286 | return CHARGE_OOM_DIE; | 2286 | return CHARGE_OOM_DIE; |
2287 | 2287 | ||
2288 | return CHARGE_RETRY; | 2288 | return CHARGE_RETRY; |
2289 | } | 2289 | } |
2290 | 2290 | ||
2291 | /* | 2291 | /* |
2292 | * __mem_cgroup_try_charge() does | 2292 | * __mem_cgroup_try_charge() does |
2293 | * 1. detect memcg to be charged against from passed *mm and *ptr, | 2293 | * 1. detect memcg to be charged against from passed *mm and *ptr, |
2294 | * 2. update res_counter | 2294 | * 2. update res_counter |
2295 | * 3. call memory reclaim if necessary. | 2295 | * 3. call memory reclaim if necessary. |
2296 | * | 2296 | * |
2297 | * In some special case, if the task is fatal, fatal_signal_pending() or | 2297 | * In some special case, if the task is fatal, fatal_signal_pending() or |
2298 | * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup | 2298 | * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup |
2299 | * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon | 2299 | * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon |
2300 | * as possible without any hazards. 2: all pages should have a valid | 2300 | * as possible without any hazards. 2: all pages should have a valid |
2301 | * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg | 2301 | * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg |
2302 | * pointer, that is treated as a charge to root_mem_cgroup. | 2302 | * pointer, that is treated as a charge to root_mem_cgroup. |
2303 | * | 2303 | * |
2304 | * So __mem_cgroup_try_charge() will return | 2304 | * So __mem_cgroup_try_charge() will return |
2305 | * 0 ... on success, filling *ptr with a valid memcg pointer. | 2305 | * 0 ... on success, filling *ptr with a valid memcg pointer. |
2306 | * -ENOMEM ... charge failure because of resource limits. | 2306 | * -ENOMEM ... charge failure because of resource limits. |
2307 | * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup. | 2307 | * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup. |
2308 | * | 2308 | * |
2309 | * Unlike the exported interface, an "oom" parameter is added. if oom==true, | 2309 | * Unlike the exported interface, an "oom" parameter is added. if oom==true, |
2310 | * the oom-killer can be invoked. | 2310 | * the oom-killer can be invoked. |
2311 | */ | 2311 | */ |
2312 | static int __mem_cgroup_try_charge(struct mm_struct *mm, | 2312 | static int __mem_cgroup_try_charge(struct mm_struct *mm, |
2313 | gfp_t gfp_mask, | 2313 | gfp_t gfp_mask, |
2314 | unsigned int nr_pages, | 2314 | unsigned int nr_pages, |
2315 | struct mem_cgroup **ptr, | 2315 | struct mem_cgroup **ptr, |
2316 | bool oom) | 2316 | bool oom) |
2317 | { | 2317 | { |
2318 | unsigned int batch = max(CHARGE_BATCH, nr_pages); | 2318 | unsigned int batch = max(CHARGE_BATCH, nr_pages); |
2319 | int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; | 2319 | int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; |
2320 | struct mem_cgroup *memcg = NULL; | 2320 | struct mem_cgroup *memcg = NULL; |
2321 | int ret; | 2321 | int ret; |
2322 | 2322 | ||
2323 | /* | 2323 | /* |
2324 | * Unlike gloval-vm's OOM-kill, we're not in memory shortage | 2324 | * Unlike gloval-vm's OOM-kill, we're not in memory shortage |
2325 | * in system level. So, allow to go ahead dying process in addition to | 2325 | * in system level. So, allow to go ahead dying process in addition to |
2326 | * MEMDIE process. | 2326 | * MEMDIE process. |
2327 | */ | 2327 | */ |
2328 | if (unlikely(test_thread_flag(TIF_MEMDIE) | 2328 | if (unlikely(test_thread_flag(TIF_MEMDIE) |
2329 | || fatal_signal_pending(current))) | 2329 | || fatal_signal_pending(current))) |
2330 | goto bypass; | 2330 | goto bypass; |
2331 | 2331 | ||
2332 | /* | 2332 | /* |
2333 | * We always charge the cgroup the mm_struct belongs to. | 2333 | * We always charge the cgroup the mm_struct belongs to. |
2334 | * The mm_struct's mem_cgroup changes on task migration if the | 2334 | * The mm_struct's mem_cgroup changes on task migration if the |
2335 | * thread group leader migrates. It's possible that mm is not | 2335 | * thread group leader migrates. It's possible that mm is not |
2336 | * set, if so charge the root memcg (happens for pagecache usage). | 2336 | * set, if so charge the root memcg (happens for pagecache usage). |
2337 | */ | 2337 | */ |
2338 | if (!*ptr && !mm) | 2338 | if (!*ptr && !mm) |
2339 | *ptr = root_mem_cgroup; | 2339 | *ptr = root_mem_cgroup; |
2340 | again: | 2340 | again: |
2341 | if (*ptr) { /* css should be a valid one */ | 2341 | if (*ptr) { /* css should be a valid one */ |
2342 | memcg = *ptr; | 2342 | memcg = *ptr; |
2343 | VM_BUG_ON(css_is_removed(&memcg->css)); | 2343 | VM_BUG_ON(css_is_removed(&memcg->css)); |
2344 | if (mem_cgroup_is_root(memcg)) | 2344 | if (mem_cgroup_is_root(memcg)) |
2345 | goto done; | 2345 | goto done; |
2346 | if (nr_pages == 1 && consume_stock(memcg)) | 2346 | if (nr_pages == 1 && consume_stock(memcg)) |
2347 | goto done; | 2347 | goto done; |
2348 | css_get(&memcg->css); | 2348 | css_get(&memcg->css); |
2349 | } else { | 2349 | } else { |
2350 | struct task_struct *p; | 2350 | struct task_struct *p; |
2351 | 2351 | ||
2352 | rcu_read_lock(); | 2352 | rcu_read_lock(); |
2353 | p = rcu_dereference(mm->owner); | 2353 | p = rcu_dereference(mm->owner); |
2354 | /* | 2354 | /* |
2355 | * Because we don't have task_lock(), "p" can exit. | 2355 | * Because we don't have task_lock(), "p" can exit. |
2356 | * In that case, "memcg" can point to root or p can be NULL with | 2356 | * In that case, "memcg" can point to root or p can be NULL with |
2357 | * race with swapoff. Then, we have small risk of mis-accouning. | 2357 | * race with swapoff. Then, we have small risk of mis-accouning. |
2358 | * But such kind of mis-account by race always happens because | 2358 | * But such kind of mis-account by race always happens because |
2359 | * we don't have cgroup_mutex(). It's overkill and we allo that | 2359 | * we don't have cgroup_mutex(). It's overkill and we allo that |
2360 | * small race, here. | 2360 | * small race, here. |
2361 | * (*) swapoff at el will charge against mm-struct not against | 2361 | * (*) swapoff at el will charge against mm-struct not against |
2362 | * task-struct. So, mm->owner can be NULL. | 2362 | * task-struct. So, mm->owner can be NULL. |
2363 | */ | 2363 | */ |
2364 | memcg = mem_cgroup_from_task(p); | 2364 | memcg = mem_cgroup_from_task(p); |
2365 | if (!memcg) | 2365 | if (!memcg) |
2366 | memcg = root_mem_cgroup; | 2366 | memcg = root_mem_cgroup; |
2367 | if (mem_cgroup_is_root(memcg)) { | 2367 | if (mem_cgroup_is_root(memcg)) { |
2368 | rcu_read_unlock(); | 2368 | rcu_read_unlock(); |
2369 | goto done; | 2369 | goto done; |
2370 | } | 2370 | } |
2371 | if (nr_pages == 1 && consume_stock(memcg)) { | 2371 | if (nr_pages == 1 && consume_stock(memcg)) { |
2372 | /* | 2372 | /* |
2373 | * It seems dagerous to access memcg without css_get(). | 2373 | * It seems dagerous to access memcg without css_get(). |
2374 | * But considering how consume_stok works, it's not | 2374 | * But considering how consume_stok works, it's not |
2375 | * necessary. If consume_stock success, some charges | 2375 | * necessary. If consume_stock success, some charges |
2376 | * from this memcg are cached on this cpu. So, we | 2376 | * from this memcg are cached on this cpu. So, we |
2377 | * don't need to call css_get()/css_tryget() before | 2377 | * don't need to call css_get()/css_tryget() before |
2378 | * calling consume_stock(). | 2378 | * calling consume_stock(). |
2379 | */ | 2379 | */ |
2380 | rcu_read_unlock(); | 2380 | rcu_read_unlock(); |
2381 | goto done; | 2381 | goto done; |
2382 | } | 2382 | } |
2383 | /* after here, we may be blocked. we need to get refcnt */ | 2383 | /* after here, we may be blocked. we need to get refcnt */ |
2384 | if (!css_tryget(&memcg->css)) { | 2384 | if (!css_tryget(&memcg->css)) { |
2385 | rcu_read_unlock(); | 2385 | rcu_read_unlock(); |
2386 | goto again; | 2386 | goto again; |
2387 | } | 2387 | } |
2388 | rcu_read_unlock(); | 2388 | rcu_read_unlock(); |
2389 | } | 2389 | } |
2390 | 2390 | ||
2391 | do { | 2391 | do { |
2392 | bool oom_check; | 2392 | bool oom_check; |
2393 | 2393 | ||
2394 | /* If killed, bypass charge */ | 2394 | /* If killed, bypass charge */ |
2395 | if (fatal_signal_pending(current)) { | 2395 | if (fatal_signal_pending(current)) { |
2396 | css_put(&memcg->css); | 2396 | css_put(&memcg->css); |
2397 | goto bypass; | 2397 | goto bypass; |
2398 | } | 2398 | } |
2399 | 2399 | ||
2400 | oom_check = false; | 2400 | oom_check = false; |
2401 | if (oom && !nr_oom_retries) { | 2401 | if (oom && !nr_oom_retries) { |
2402 | oom_check = true; | 2402 | oom_check = true; |
2403 | nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; | 2403 | nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; |
2404 | } | 2404 | } |
2405 | 2405 | ||
2406 | ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check); | 2406 | ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check); |
2407 | switch (ret) { | 2407 | switch (ret) { |
2408 | case CHARGE_OK: | 2408 | case CHARGE_OK: |
2409 | break; | 2409 | break; |
2410 | case CHARGE_RETRY: /* not in OOM situation but retry */ | 2410 | case CHARGE_RETRY: /* not in OOM situation but retry */ |
2411 | batch = nr_pages; | 2411 | batch = nr_pages; |
2412 | css_put(&memcg->css); | 2412 | css_put(&memcg->css); |
2413 | memcg = NULL; | 2413 | memcg = NULL; |
2414 | goto again; | 2414 | goto again; |
2415 | case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */ | 2415 | case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */ |
2416 | css_put(&memcg->css); | 2416 | css_put(&memcg->css); |
2417 | goto nomem; | 2417 | goto nomem; |
2418 | case CHARGE_NOMEM: /* OOM routine works */ | 2418 | case CHARGE_NOMEM: /* OOM routine works */ |
2419 | if (!oom) { | 2419 | if (!oom) { |
2420 | css_put(&memcg->css); | 2420 | css_put(&memcg->css); |
2421 | goto nomem; | 2421 | goto nomem; |
2422 | } | 2422 | } |
2423 | /* If oom, we never return -ENOMEM */ | 2423 | /* If oom, we never return -ENOMEM */ |
2424 | nr_oom_retries--; | 2424 | nr_oom_retries--; |
2425 | break; | 2425 | break; |
2426 | case CHARGE_OOM_DIE: /* Killed by OOM Killer */ | 2426 | case CHARGE_OOM_DIE: /* Killed by OOM Killer */ |
2427 | css_put(&memcg->css); | 2427 | css_put(&memcg->css); |
2428 | goto bypass; | 2428 | goto bypass; |
2429 | } | 2429 | } |
2430 | } while (ret != CHARGE_OK); | 2430 | } while (ret != CHARGE_OK); |
2431 | 2431 | ||
2432 | if (batch > nr_pages) | 2432 | if (batch > nr_pages) |
2433 | refill_stock(memcg, batch - nr_pages); | 2433 | refill_stock(memcg, batch - nr_pages); |
2434 | css_put(&memcg->css); | 2434 | css_put(&memcg->css); |
2435 | done: | 2435 | done: |
2436 | *ptr = memcg; | 2436 | *ptr = memcg; |
2437 | return 0; | 2437 | return 0; |
2438 | nomem: | 2438 | nomem: |
2439 | *ptr = NULL; | 2439 | *ptr = NULL; |
2440 | return -ENOMEM; | 2440 | return -ENOMEM; |
2441 | bypass: | 2441 | bypass: |
2442 | *ptr = root_mem_cgroup; | 2442 | *ptr = root_mem_cgroup; |
2443 | return -EINTR; | 2443 | return -EINTR; |
2444 | } | 2444 | } |
2445 | 2445 | ||
2446 | /* | 2446 | /* |
2447 | * Somemtimes we have to undo a charge we got by try_charge(). | 2447 | * Somemtimes we have to undo a charge we got by try_charge(). |
2448 | * This function is for that and do uncharge, put css's refcnt. | 2448 | * This function is for that and do uncharge, put css's refcnt. |
2449 | * gotten by try_charge(). | 2449 | * gotten by try_charge(). |
2450 | */ | 2450 | */ |
2451 | static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg, | 2451 | static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg, |
2452 | unsigned int nr_pages) | 2452 | unsigned int nr_pages) |
2453 | { | 2453 | { |
2454 | if (!mem_cgroup_is_root(memcg)) { | 2454 | if (!mem_cgroup_is_root(memcg)) { |
2455 | unsigned long bytes = nr_pages * PAGE_SIZE; | 2455 | unsigned long bytes = nr_pages * PAGE_SIZE; |
2456 | 2456 | ||
2457 | res_counter_uncharge(&memcg->res, bytes); | 2457 | res_counter_uncharge(&memcg->res, bytes); |
2458 | if (do_swap_account) | 2458 | if (do_swap_account) |
2459 | res_counter_uncharge(&memcg->memsw, bytes); | 2459 | res_counter_uncharge(&memcg->memsw, bytes); |
2460 | } | 2460 | } |
2461 | } | 2461 | } |
2462 | 2462 | ||
2463 | /* | 2463 | /* |
2464 | * Cancel chrages in this cgroup....doesn't propagate to parent cgroup. | 2464 | * Cancel chrages in this cgroup....doesn't propagate to parent cgroup. |
2465 | * This is useful when moving usage to parent cgroup. | 2465 | * This is useful when moving usage to parent cgroup. |
2466 | */ | 2466 | */ |
2467 | static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg, | 2467 | static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg, |
2468 | unsigned int nr_pages) | 2468 | unsigned int nr_pages) |
2469 | { | 2469 | { |
2470 | unsigned long bytes = nr_pages * PAGE_SIZE; | 2470 | unsigned long bytes = nr_pages * PAGE_SIZE; |
2471 | 2471 | ||
2472 | if (mem_cgroup_is_root(memcg)) | 2472 | if (mem_cgroup_is_root(memcg)) |
2473 | return; | 2473 | return; |
2474 | 2474 | ||
2475 | res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes); | 2475 | res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes); |
2476 | if (do_swap_account) | 2476 | if (do_swap_account) |
2477 | res_counter_uncharge_until(&memcg->memsw, | 2477 | res_counter_uncharge_until(&memcg->memsw, |
2478 | memcg->memsw.parent, bytes); | 2478 | memcg->memsw.parent, bytes); |
2479 | } | 2479 | } |
2480 | 2480 | ||
2481 | /* | 2481 | /* |
2482 | * A helper function to get mem_cgroup from ID. must be called under | 2482 | * A helper function to get mem_cgroup from ID. must be called under |
2483 | * rcu_read_lock(). The caller must check css_is_removed() or some if | 2483 | * rcu_read_lock(). The caller must check css_is_removed() or some if |
2484 | * it's concern. (dropping refcnt from swap can be called against removed | 2484 | * it's concern. (dropping refcnt from swap can be called against removed |
2485 | * memcg.) | 2485 | * memcg.) |
2486 | */ | 2486 | */ |
2487 | static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) | 2487 | static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) |
2488 | { | 2488 | { |
2489 | struct cgroup_subsys_state *css; | 2489 | struct cgroup_subsys_state *css; |
2490 | 2490 | ||
2491 | /* ID 0 is unused ID */ | 2491 | /* ID 0 is unused ID */ |
2492 | if (!id) | 2492 | if (!id) |
2493 | return NULL; | 2493 | return NULL; |
2494 | css = css_lookup(&mem_cgroup_subsys, id); | 2494 | css = css_lookup(&mem_cgroup_subsys, id); |
2495 | if (!css) | 2495 | if (!css) |
2496 | return NULL; | 2496 | return NULL; |
2497 | return container_of(css, struct mem_cgroup, css); | 2497 | return container_of(css, struct mem_cgroup, css); |
2498 | } | 2498 | } |
2499 | 2499 | ||
2500 | struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) | 2500 | struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) |
2501 | { | 2501 | { |
2502 | struct mem_cgroup *memcg = NULL; | 2502 | struct mem_cgroup *memcg = NULL; |
2503 | struct page_cgroup *pc; | 2503 | struct page_cgroup *pc; |
2504 | unsigned short id; | 2504 | unsigned short id; |
2505 | swp_entry_t ent; | 2505 | swp_entry_t ent; |
2506 | 2506 | ||
2507 | VM_BUG_ON(!PageLocked(page)); | 2507 | VM_BUG_ON(!PageLocked(page)); |
2508 | 2508 | ||
2509 | pc = lookup_page_cgroup(page); | 2509 | pc = lookup_page_cgroup(page); |
2510 | lock_page_cgroup(pc); | 2510 | lock_page_cgroup(pc); |
2511 | if (PageCgroupUsed(pc)) { | 2511 | if (PageCgroupUsed(pc)) { |
2512 | memcg = pc->mem_cgroup; | 2512 | memcg = pc->mem_cgroup; |
2513 | if (memcg && !css_tryget(&memcg->css)) | 2513 | if (memcg && !css_tryget(&memcg->css)) |
2514 | memcg = NULL; | 2514 | memcg = NULL; |
2515 | } else if (PageSwapCache(page)) { | 2515 | } else if (PageSwapCache(page)) { |
2516 | ent.val = page_private(page); | 2516 | ent.val = page_private(page); |
2517 | id = lookup_swap_cgroup_id(ent); | 2517 | id = lookup_swap_cgroup_id(ent); |
2518 | rcu_read_lock(); | 2518 | rcu_read_lock(); |
2519 | memcg = mem_cgroup_lookup(id); | 2519 | memcg = mem_cgroup_lookup(id); |
2520 | if (memcg && !css_tryget(&memcg->css)) | 2520 | if (memcg && !css_tryget(&memcg->css)) |
2521 | memcg = NULL; | 2521 | memcg = NULL; |
2522 | rcu_read_unlock(); | 2522 | rcu_read_unlock(); |
2523 | } | 2523 | } |
2524 | unlock_page_cgroup(pc); | 2524 | unlock_page_cgroup(pc); |
2525 | return memcg; | 2525 | return memcg; |
2526 | } | 2526 | } |
2527 | 2527 | ||
2528 | static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg, | 2528 | static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg, |
2529 | struct page *page, | 2529 | struct page *page, |
2530 | unsigned int nr_pages, | 2530 | unsigned int nr_pages, |
2531 | enum charge_type ctype, | 2531 | enum charge_type ctype, |
2532 | bool lrucare) | 2532 | bool lrucare) |
2533 | { | 2533 | { |
2534 | struct page_cgroup *pc = lookup_page_cgroup(page); | 2534 | struct page_cgroup *pc = lookup_page_cgroup(page); |
2535 | struct zone *uninitialized_var(zone); | 2535 | struct zone *uninitialized_var(zone); |
2536 | struct lruvec *lruvec; | 2536 | struct lruvec *lruvec; |
2537 | bool was_on_lru = false; | 2537 | bool was_on_lru = false; |
2538 | bool anon; | 2538 | bool anon; |
2539 | 2539 | ||
2540 | lock_page_cgroup(pc); | 2540 | lock_page_cgroup(pc); |
2541 | VM_BUG_ON(PageCgroupUsed(pc)); | 2541 | VM_BUG_ON(PageCgroupUsed(pc)); |
2542 | /* | 2542 | /* |
2543 | * we don't need page_cgroup_lock about tail pages, becase they are not | 2543 | * we don't need page_cgroup_lock about tail pages, becase they are not |
2544 | * accessed by any other context at this point. | 2544 | * accessed by any other context at this point. |
2545 | */ | 2545 | */ |
2546 | 2546 | ||
2547 | /* | 2547 | /* |
2548 | * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page | 2548 | * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page |
2549 | * may already be on some other mem_cgroup's LRU. Take care of it. | 2549 | * may already be on some other mem_cgroup's LRU. Take care of it. |
2550 | */ | 2550 | */ |
2551 | if (lrucare) { | 2551 | if (lrucare) { |
2552 | zone = page_zone(page); | 2552 | zone = page_zone(page); |
2553 | spin_lock_irq(&zone->lru_lock); | 2553 | spin_lock_irq(&zone->lru_lock); |
2554 | if (PageLRU(page)) { | 2554 | if (PageLRU(page)) { |
2555 | lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); | 2555 | lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); |
2556 | ClearPageLRU(page); | 2556 | ClearPageLRU(page); |
2557 | del_page_from_lru_list(page, lruvec, page_lru(page)); | 2557 | del_page_from_lru_list(page, lruvec, page_lru(page)); |
2558 | was_on_lru = true; | 2558 | was_on_lru = true; |
2559 | } | 2559 | } |
2560 | } | 2560 | } |
2561 | 2561 | ||
2562 | pc->mem_cgroup = memcg; | 2562 | pc->mem_cgroup = memcg; |
2563 | /* | 2563 | /* |
2564 | * We access a page_cgroup asynchronously without lock_page_cgroup(). | 2564 | * We access a page_cgroup asynchronously without lock_page_cgroup(). |
2565 | * Especially when a page_cgroup is taken from a page, pc->mem_cgroup | 2565 | * Especially when a page_cgroup is taken from a page, pc->mem_cgroup |
2566 | * is accessed after testing USED bit. To make pc->mem_cgroup visible | 2566 | * is accessed after testing USED bit. To make pc->mem_cgroup visible |
2567 | * before USED bit, we need memory barrier here. | 2567 | * before USED bit, we need memory barrier here. |
2568 | * See mem_cgroup_add_lru_list(), etc. | 2568 | * See mem_cgroup_add_lru_list(), etc. |
2569 | */ | 2569 | */ |
2570 | smp_wmb(); | 2570 | smp_wmb(); |
2571 | SetPageCgroupUsed(pc); | 2571 | SetPageCgroupUsed(pc); |
2572 | 2572 | ||
2573 | if (lrucare) { | 2573 | if (lrucare) { |
2574 | if (was_on_lru) { | 2574 | if (was_on_lru) { |
2575 | lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); | 2575 | lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); |
2576 | VM_BUG_ON(PageLRU(page)); | 2576 | VM_BUG_ON(PageLRU(page)); |
2577 | SetPageLRU(page); | 2577 | SetPageLRU(page); |
2578 | add_page_to_lru_list(page, lruvec, page_lru(page)); | 2578 | add_page_to_lru_list(page, lruvec, page_lru(page)); |
2579 | } | 2579 | } |
2580 | spin_unlock_irq(&zone->lru_lock); | 2580 | spin_unlock_irq(&zone->lru_lock); |
2581 | } | 2581 | } |
2582 | 2582 | ||
2583 | if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON) | 2583 | if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON) |
2584 | anon = true; | 2584 | anon = true; |
2585 | else | 2585 | else |
2586 | anon = false; | 2586 | anon = false; |
2587 | 2587 | ||
2588 | mem_cgroup_charge_statistics(memcg, anon, nr_pages); | 2588 | mem_cgroup_charge_statistics(memcg, anon, nr_pages); |
2589 | unlock_page_cgroup(pc); | 2589 | unlock_page_cgroup(pc); |
2590 | 2590 | ||
2591 | /* | 2591 | /* |
2592 | * "charge_statistics" updated event counter. Then, check it. | 2592 | * "charge_statistics" updated event counter. Then, check it. |
2593 | * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree. | 2593 | * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree. |
2594 | * if they exceeds softlimit. | 2594 | * if they exceeds softlimit. |
2595 | */ | 2595 | */ |
2596 | memcg_check_events(memcg, page); | 2596 | memcg_check_events(memcg, page); |
2597 | } | 2597 | } |
2598 | 2598 | ||
2599 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 2599 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
2600 | 2600 | ||
2601 | #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION) | 2601 | #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION) |
2602 | /* | 2602 | /* |
2603 | * Because tail pages are not marked as "used", set it. We're under | 2603 | * Because tail pages are not marked as "used", set it. We're under |
2604 | * zone->lru_lock, 'splitting on pmd' and compound_lock. | 2604 | * zone->lru_lock, 'splitting on pmd' and compound_lock. |
2605 | * charge/uncharge will be never happen and move_account() is done under | 2605 | * charge/uncharge will be never happen and move_account() is done under |
2606 | * compound_lock(), so we don't have to take care of races. | 2606 | * compound_lock(), so we don't have to take care of races. |
2607 | */ | 2607 | */ |
2608 | void mem_cgroup_split_huge_fixup(struct page *head) | 2608 | void mem_cgroup_split_huge_fixup(struct page *head) |
2609 | { | 2609 | { |
2610 | struct page_cgroup *head_pc = lookup_page_cgroup(head); | 2610 | struct page_cgroup *head_pc = lookup_page_cgroup(head); |
2611 | struct page_cgroup *pc; | 2611 | struct page_cgroup *pc; |
2612 | int i; | 2612 | int i; |
2613 | 2613 | ||
2614 | if (mem_cgroup_disabled()) | 2614 | if (mem_cgroup_disabled()) |
2615 | return; | 2615 | return; |
2616 | for (i = 1; i < HPAGE_PMD_NR; i++) { | 2616 | for (i = 1; i < HPAGE_PMD_NR; i++) { |
2617 | pc = head_pc + i; | 2617 | pc = head_pc + i; |
2618 | pc->mem_cgroup = head_pc->mem_cgroup; | 2618 | pc->mem_cgroup = head_pc->mem_cgroup; |
2619 | smp_wmb();/* see __commit_charge() */ | 2619 | smp_wmb();/* see __commit_charge() */ |
2620 | pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT; | 2620 | pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT; |
2621 | } | 2621 | } |
2622 | } | 2622 | } |
2623 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ | 2623 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
2624 | 2624 | ||
2625 | /** | 2625 | /** |
2626 | * mem_cgroup_move_account - move account of the page | 2626 | * mem_cgroup_move_account - move account of the page |
2627 | * @page: the page | 2627 | * @page: the page |
2628 | * @nr_pages: number of regular pages (>1 for huge pages) | 2628 | * @nr_pages: number of regular pages (>1 for huge pages) |
2629 | * @pc: page_cgroup of the page. | 2629 | * @pc: page_cgroup of the page. |
2630 | * @from: mem_cgroup which the page is moved from. | 2630 | * @from: mem_cgroup which the page is moved from. |
2631 | * @to: mem_cgroup which the page is moved to. @from != @to. | 2631 | * @to: mem_cgroup which the page is moved to. @from != @to. |
2632 | * | 2632 | * |
2633 | * The caller must confirm following. | 2633 | * The caller must confirm following. |
2634 | * - page is not on LRU (isolate_page() is useful.) | 2634 | * - page is not on LRU (isolate_page() is useful.) |
2635 | * - compound_lock is held when nr_pages > 1 | 2635 | * - compound_lock is held when nr_pages > 1 |
2636 | * | 2636 | * |
2637 | * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" | 2637 | * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" |
2638 | * from old cgroup. | 2638 | * from old cgroup. |
2639 | */ | 2639 | */ |
2640 | static int mem_cgroup_move_account(struct page *page, | 2640 | static int mem_cgroup_move_account(struct page *page, |
2641 | unsigned int nr_pages, | 2641 | unsigned int nr_pages, |
2642 | struct page_cgroup *pc, | 2642 | struct page_cgroup *pc, |
2643 | struct mem_cgroup *from, | 2643 | struct mem_cgroup *from, |
2644 | struct mem_cgroup *to) | 2644 | struct mem_cgroup *to) |
2645 | { | 2645 | { |
2646 | unsigned long flags; | 2646 | unsigned long flags; |
2647 | int ret; | 2647 | int ret; |
2648 | bool anon = PageAnon(page); | 2648 | bool anon = PageAnon(page); |
2649 | 2649 | ||
2650 | VM_BUG_ON(from == to); | 2650 | VM_BUG_ON(from == to); |
2651 | VM_BUG_ON(PageLRU(page)); | 2651 | VM_BUG_ON(PageLRU(page)); |
2652 | /* | 2652 | /* |
2653 | * The page is isolated from LRU. So, collapse function | 2653 | * The page is isolated from LRU. So, collapse function |
2654 | * will not handle this page. But page splitting can happen. | 2654 | * will not handle this page. But page splitting can happen. |
2655 | * Do this check under compound_page_lock(). The caller should | 2655 | * Do this check under compound_page_lock(). The caller should |
2656 | * hold it. | 2656 | * hold it. |
2657 | */ | 2657 | */ |
2658 | ret = -EBUSY; | 2658 | ret = -EBUSY; |
2659 | if (nr_pages > 1 && !PageTransHuge(page)) | 2659 | if (nr_pages > 1 && !PageTransHuge(page)) |
2660 | goto out; | 2660 | goto out; |
2661 | 2661 | ||
2662 | lock_page_cgroup(pc); | 2662 | lock_page_cgroup(pc); |
2663 | 2663 | ||
2664 | ret = -EINVAL; | 2664 | ret = -EINVAL; |
2665 | if (!PageCgroupUsed(pc) || pc->mem_cgroup != from) | 2665 | if (!PageCgroupUsed(pc) || pc->mem_cgroup != from) |
2666 | goto unlock; | 2666 | goto unlock; |
2667 | 2667 | ||
2668 | move_lock_mem_cgroup(from, &flags); | 2668 | move_lock_mem_cgroup(from, &flags); |
2669 | 2669 | ||
2670 | if (!anon && page_mapped(page)) { | 2670 | if (!anon && page_mapped(page)) { |
2671 | /* Update mapped_file data for mem_cgroup */ | 2671 | /* Update mapped_file data for mem_cgroup */ |
2672 | preempt_disable(); | 2672 | preempt_disable(); |
2673 | __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); | 2673 | __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); |
2674 | __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); | 2674 | __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); |
2675 | preempt_enable(); | 2675 | preempt_enable(); |
2676 | } | 2676 | } |
2677 | mem_cgroup_charge_statistics(from, anon, -nr_pages); | 2677 | mem_cgroup_charge_statistics(from, anon, -nr_pages); |
2678 | 2678 | ||
2679 | /* caller should have done css_get */ | 2679 | /* caller should have done css_get */ |
2680 | pc->mem_cgroup = to; | 2680 | pc->mem_cgroup = to; |
2681 | mem_cgroup_charge_statistics(to, anon, nr_pages); | 2681 | mem_cgroup_charge_statistics(to, anon, nr_pages); |
2682 | /* | 2682 | /* |
2683 | * We charges against "to" which may not have any tasks. Then, "to" | 2683 | * We charges against "to" which may not have any tasks. Then, "to" |
2684 | * can be under rmdir(). But in current implementation, caller of | 2684 | * can be under rmdir(). But in current implementation, caller of |
2685 | * this function is just force_empty() and move charge, so it's | 2685 | * this function is just force_empty() and move charge, so it's |
2686 | * guaranteed that "to" is never removed. So, we don't check rmdir | 2686 | * guaranteed that "to" is never removed. So, we don't check rmdir |
2687 | * status here. | 2687 | * status here. |
2688 | */ | 2688 | */ |
2689 | move_unlock_mem_cgroup(from, &flags); | 2689 | move_unlock_mem_cgroup(from, &flags); |
2690 | ret = 0; | 2690 | ret = 0; |
2691 | unlock: | 2691 | unlock: |
2692 | unlock_page_cgroup(pc); | 2692 | unlock_page_cgroup(pc); |
2693 | /* | 2693 | /* |
2694 | * check events | 2694 | * check events |
2695 | */ | 2695 | */ |
2696 | memcg_check_events(to, page); | 2696 | memcg_check_events(to, page); |
2697 | memcg_check_events(from, page); | 2697 | memcg_check_events(from, page); |
2698 | out: | 2698 | out: |
2699 | return ret; | 2699 | return ret; |
2700 | } | 2700 | } |
2701 | 2701 | ||
2702 | /* | 2702 | /* |
2703 | * move charges to its parent. | 2703 | * move charges to its parent. |
2704 | */ | 2704 | */ |
2705 | 2705 | ||
2706 | static int mem_cgroup_move_parent(struct page *page, | 2706 | static int mem_cgroup_move_parent(struct page *page, |
2707 | struct page_cgroup *pc, | 2707 | struct page_cgroup *pc, |
2708 | struct mem_cgroup *child) | 2708 | struct mem_cgroup *child) |
2709 | { | 2709 | { |
2710 | struct mem_cgroup *parent; | 2710 | struct mem_cgroup *parent; |
2711 | unsigned int nr_pages; | 2711 | unsigned int nr_pages; |
2712 | unsigned long uninitialized_var(flags); | 2712 | unsigned long uninitialized_var(flags); |
2713 | int ret; | 2713 | int ret; |
2714 | 2714 | ||
2715 | /* Is ROOT ? */ | 2715 | /* Is ROOT ? */ |
2716 | if (mem_cgroup_is_root(child)) | 2716 | if (mem_cgroup_is_root(child)) |
2717 | return -EINVAL; | 2717 | return -EINVAL; |
2718 | 2718 | ||
2719 | ret = -EBUSY; | 2719 | ret = -EBUSY; |
2720 | if (!get_page_unless_zero(page)) | 2720 | if (!get_page_unless_zero(page)) |
2721 | goto out; | 2721 | goto out; |
2722 | if (isolate_lru_page(page)) | 2722 | if (isolate_lru_page(page)) |
2723 | goto put; | 2723 | goto put; |
2724 | 2724 | ||
2725 | nr_pages = hpage_nr_pages(page); | 2725 | nr_pages = hpage_nr_pages(page); |
2726 | 2726 | ||
2727 | parent = parent_mem_cgroup(child); | 2727 | parent = parent_mem_cgroup(child); |
2728 | /* | 2728 | /* |
2729 | * If no parent, move charges to root cgroup. | 2729 | * If no parent, move charges to root cgroup. |
2730 | */ | 2730 | */ |
2731 | if (!parent) | 2731 | if (!parent) |
2732 | parent = root_mem_cgroup; | 2732 | parent = root_mem_cgroup; |
2733 | 2733 | ||
2734 | if (nr_pages > 1) | 2734 | if (nr_pages > 1) |
2735 | flags = compound_lock_irqsave(page); | 2735 | flags = compound_lock_irqsave(page); |
2736 | 2736 | ||
2737 | ret = mem_cgroup_move_account(page, nr_pages, | 2737 | ret = mem_cgroup_move_account(page, nr_pages, |
2738 | pc, child, parent); | 2738 | pc, child, parent); |
2739 | if (!ret) | 2739 | if (!ret) |
2740 | __mem_cgroup_cancel_local_charge(child, nr_pages); | 2740 | __mem_cgroup_cancel_local_charge(child, nr_pages); |
2741 | 2741 | ||
2742 | if (nr_pages > 1) | 2742 | if (nr_pages > 1) |
2743 | compound_unlock_irqrestore(page, flags); | 2743 | compound_unlock_irqrestore(page, flags); |
2744 | putback_lru_page(page); | 2744 | putback_lru_page(page); |
2745 | put: | 2745 | put: |
2746 | put_page(page); | 2746 | put_page(page); |
2747 | out: | 2747 | out: |
2748 | return ret; | 2748 | return ret; |
2749 | } | 2749 | } |
2750 | 2750 | ||
2751 | /* | 2751 | /* |
2752 | * Charge the memory controller for page usage. | 2752 | * Charge the memory controller for page usage. |
2753 | * Return | 2753 | * Return |
2754 | * 0 if the charge was successful | 2754 | * 0 if the charge was successful |
2755 | * < 0 if the cgroup is over its limit | 2755 | * < 0 if the cgroup is over its limit |
2756 | */ | 2756 | */ |
2757 | static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, | 2757 | static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, |
2758 | gfp_t gfp_mask, enum charge_type ctype) | 2758 | gfp_t gfp_mask, enum charge_type ctype) |
2759 | { | 2759 | { |
2760 | struct mem_cgroup *memcg = NULL; | 2760 | struct mem_cgroup *memcg = NULL; |
2761 | unsigned int nr_pages = 1; | 2761 | unsigned int nr_pages = 1; |
2762 | bool oom = true; | 2762 | bool oom = true; |
2763 | int ret; | 2763 | int ret; |
2764 | 2764 | ||
2765 | if (PageTransHuge(page)) { | 2765 | if (PageTransHuge(page)) { |
2766 | nr_pages <<= compound_order(page); | 2766 | nr_pages <<= compound_order(page); |
2767 | VM_BUG_ON(!PageTransHuge(page)); | 2767 | VM_BUG_ON(!PageTransHuge(page)); |
2768 | /* | 2768 | /* |
2769 | * Never OOM-kill a process for a huge page. The | 2769 | * Never OOM-kill a process for a huge page. The |
2770 | * fault handler will fall back to regular pages. | 2770 | * fault handler will fall back to regular pages. |
2771 | */ | 2771 | */ |
2772 | oom = false; | 2772 | oom = false; |
2773 | } | 2773 | } |
2774 | 2774 | ||
2775 | ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom); | 2775 | ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom); |
2776 | if (ret == -ENOMEM) | 2776 | if (ret == -ENOMEM) |
2777 | return ret; | 2777 | return ret; |
2778 | __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false); | 2778 | __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false); |
2779 | return 0; | 2779 | return 0; |
2780 | } | 2780 | } |
2781 | 2781 | ||
2782 | int mem_cgroup_newpage_charge(struct page *page, | 2782 | int mem_cgroup_newpage_charge(struct page *page, |
2783 | struct mm_struct *mm, gfp_t gfp_mask) | 2783 | struct mm_struct *mm, gfp_t gfp_mask) |
2784 | { | 2784 | { |
2785 | if (mem_cgroup_disabled()) | 2785 | if (mem_cgroup_disabled()) |
2786 | return 0; | 2786 | return 0; |
2787 | VM_BUG_ON(page_mapped(page)); | 2787 | VM_BUG_ON(page_mapped(page)); |
2788 | VM_BUG_ON(page->mapping && !PageAnon(page)); | 2788 | VM_BUG_ON(page->mapping && !PageAnon(page)); |
2789 | VM_BUG_ON(!mm); | 2789 | VM_BUG_ON(!mm); |
2790 | return mem_cgroup_charge_common(page, mm, gfp_mask, | 2790 | return mem_cgroup_charge_common(page, mm, gfp_mask, |
2791 | MEM_CGROUP_CHARGE_TYPE_ANON); | 2791 | MEM_CGROUP_CHARGE_TYPE_ANON); |
2792 | } | 2792 | } |
2793 | 2793 | ||
2794 | /* | 2794 | /* |
2795 | * While swap-in, try_charge -> commit or cancel, the page is locked. | 2795 | * While swap-in, try_charge -> commit or cancel, the page is locked. |
2796 | * And when try_charge() successfully returns, one refcnt to memcg without | 2796 | * And when try_charge() successfully returns, one refcnt to memcg without |
2797 | * struct page_cgroup is acquired. This refcnt will be consumed by | 2797 | * struct page_cgroup is acquired. This refcnt will be consumed by |
2798 | * "commit()" or removed by "cancel()" | 2798 | * "commit()" or removed by "cancel()" |
2799 | */ | 2799 | */ |
2800 | static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm, | 2800 | static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm, |
2801 | struct page *page, | 2801 | struct page *page, |
2802 | gfp_t mask, | 2802 | gfp_t mask, |
2803 | struct mem_cgroup **memcgp) | 2803 | struct mem_cgroup **memcgp) |
2804 | { | 2804 | { |
2805 | struct mem_cgroup *memcg; | 2805 | struct mem_cgroup *memcg; |
2806 | struct page_cgroup *pc; | 2806 | struct page_cgroup *pc; |
2807 | int ret; | 2807 | int ret; |
2808 | 2808 | ||
2809 | pc = lookup_page_cgroup(page); | 2809 | pc = lookup_page_cgroup(page); |
2810 | /* | 2810 | /* |
2811 | * Every swap fault against a single page tries to charge the | 2811 | * Every swap fault against a single page tries to charge the |
2812 | * page, bail as early as possible. shmem_unuse() encounters | 2812 | * page, bail as early as possible. shmem_unuse() encounters |
2813 | * already charged pages, too. The USED bit is protected by | 2813 | * already charged pages, too. The USED bit is protected by |
2814 | * the page lock, which serializes swap cache removal, which | 2814 | * the page lock, which serializes swap cache removal, which |
2815 | * in turn serializes uncharging. | 2815 | * in turn serializes uncharging. |
2816 | */ | 2816 | */ |
2817 | if (PageCgroupUsed(pc)) | 2817 | if (PageCgroupUsed(pc)) |
2818 | return 0; | 2818 | return 0; |
2819 | if (!do_swap_account) | 2819 | if (!do_swap_account) |
2820 | goto charge_cur_mm; | 2820 | goto charge_cur_mm; |
2821 | /* | ||
2822 | * A racing thread's fault, or swapoff, may have already updated | ||
2823 | * the pte, and even removed page from swap cache: in those cases | ||
2824 | * do_swap_page()'s pte_same() test will fail; but there's also a | ||
2825 | * KSM case which does need to charge the page. | ||
2826 | */ | ||
2827 | if (!PageSwapCache(page)) | ||
2828 | goto charge_cur_mm; | ||
2829 | memcg = try_get_mem_cgroup_from_page(page); | 2821 | memcg = try_get_mem_cgroup_from_page(page); |
2830 | if (!memcg) | 2822 | if (!memcg) |
2831 | goto charge_cur_mm; | 2823 | goto charge_cur_mm; |
2832 | *memcgp = memcg; | 2824 | *memcgp = memcg; |
2833 | ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true); | 2825 | ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true); |
2834 | css_put(&memcg->css); | 2826 | css_put(&memcg->css); |
2835 | if (ret == -EINTR) | 2827 | if (ret == -EINTR) |
2836 | ret = 0; | 2828 | ret = 0; |
2837 | return ret; | 2829 | return ret; |
2838 | charge_cur_mm: | 2830 | charge_cur_mm: |
2839 | ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true); | 2831 | ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true); |
2840 | if (ret == -EINTR) | 2832 | if (ret == -EINTR) |
2841 | ret = 0; | 2833 | ret = 0; |
2842 | return ret; | 2834 | return ret; |
2843 | } | 2835 | } |
2844 | 2836 | ||
2845 | int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page, | 2837 | int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page, |
2846 | gfp_t gfp_mask, struct mem_cgroup **memcgp) | 2838 | gfp_t gfp_mask, struct mem_cgroup **memcgp) |
2847 | { | 2839 | { |
2848 | *memcgp = NULL; | 2840 | *memcgp = NULL; |
2849 | if (mem_cgroup_disabled()) | 2841 | if (mem_cgroup_disabled()) |
2850 | return 0; | 2842 | return 0; |
2843 | /* | ||
2844 | * A racing thread's fault, or swapoff, may have already | ||
2845 | * updated the pte, and even removed page from swap cache: in | ||
2846 | * those cases unuse_pte()'s pte_same() test will fail; but | ||
2847 | * there's also a KSM case which does need to charge the page. | ||
2848 | */ | ||
2849 | if (!PageSwapCache(page)) { | ||
2850 | int ret; | ||
2851 | |||
2852 | ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true); | ||
2853 | if (ret == -EINTR) | ||
2854 | ret = 0; | ||
2855 | return ret; | ||
2856 | } | ||
2851 | return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp); | 2857 | return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp); |
2852 | } | 2858 | } |
2853 | 2859 | ||
2854 | void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg) | 2860 | void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg) |
2855 | { | 2861 | { |
2856 | if (mem_cgroup_disabled()) | 2862 | if (mem_cgroup_disabled()) |
2857 | return; | 2863 | return; |
2858 | if (!memcg) | 2864 | if (!memcg) |
2859 | return; | 2865 | return; |
2860 | __mem_cgroup_cancel_charge(memcg, 1); | 2866 | __mem_cgroup_cancel_charge(memcg, 1); |
2861 | } | 2867 | } |
2862 | 2868 | ||
2863 | static void | 2869 | static void |
2864 | __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg, | 2870 | __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg, |
2865 | enum charge_type ctype) | 2871 | enum charge_type ctype) |
2866 | { | 2872 | { |
2867 | if (mem_cgroup_disabled()) | 2873 | if (mem_cgroup_disabled()) |
2868 | return; | 2874 | return; |
2869 | if (!memcg) | 2875 | if (!memcg) |
2870 | return; | 2876 | return; |
2871 | cgroup_exclude_rmdir(&memcg->css); | 2877 | cgroup_exclude_rmdir(&memcg->css); |
2872 | 2878 | ||
2873 | __mem_cgroup_commit_charge(memcg, page, 1, ctype, true); | 2879 | __mem_cgroup_commit_charge(memcg, page, 1, ctype, true); |
2874 | /* | 2880 | /* |
2875 | * Now swap is on-memory. This means this page may be | 2881 | * Now swap is on-memory. This means this page may be |
2876 | * counted both as mem and swap....double count. | 2882 | * counted both as mem and swap....double count. |
2877 | * Fix it by uncharging from memsw. Basically, this SwapCache is stable | 2883 | * Fix it by uncharging from memsw. Basically, this SwapCache is stable |
2878 | * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() | 2884 | * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() |
2879 | * may call delete_from_swap_cache() before reach here. | 2885 | * may call delete_from_swap_cache() before reach here. |
2880 | */ | 2886 | */ |
2881 | if (do_swap_account && PageSwapCache(page)) { | 2887 | if (do_swap_account && PageSwapCache(page)) { |
2882 | swp_entry_t ent = {.val = page_private(page)}; | 2888 | swp_entry_t ent = {.val = page_private(page)}; |
2883 | mem_cgroup_uncharge_swap(ent); | 2889 | mem_cgroup_uncharge_swap(ent); |
2884 | } | 2890 | } |
2885 | /* | 2891 | /* |
2886 | * At swapin, we may charge account against cgroup which has no tasks. | 2892 | * At swapin, we may charge account against cgroup which has no tasks. |
2887 | * So, rmdir()->pre_destroy() can be called while we do this charge. | 2893 | * So, rmdir()->pre_destroy() can be called while we do this charge. |
2888 | * In that case, we need to call pre_destroy() again. check it here. | 2894 | * In that case, we need to call pre_destroy() again. check it here. |
2889 | */ | 2895 | */ |
2890 | cgroup_release_and_wakeup_rmdir(&memcg->css); | 2896 | cgroup_release_and_wakeup_rmdir(&memcg->css); |
2891 | } | 2897 | } |
2892 | 2898 | ||
2893 | void mem_cgroup_commit_charge_swapin(struct page *page, | 2899 | void mem_cgroup_commit_charge_swapin(struct page *page, |
2894 | struct mem_cgroup *memcg) | 2900 | struct mem_cgroup *memcg) |
2895 | { | 2901 | { |
2896 | __mem_cgroup_commit_charge_swapin(page, memcg, | 2902 | __mem_cgroup_commit_charge_swapin(page, memcg, |
2897 | MEM_CGROUP_CHARGE_TYPE_ANON); | 2903 | MEM_CGROUP_CHARGE_TYPE_ANON); |
2898 | } | 2904 | } |
2899 | 2905 | ||
2900 | int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, | 2906 | int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, |
2901 | gfp_t gfp_mask) | 2907 | gfp_t gfp_mask) |
2902 | { | 2908 | { |
2903 | struct mem_cgroup *memcg = NULL; | 2909 | struct mem_cgroup *memcg = NULL; |
2904 | enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; | 2910 | enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; |
2905 | int ret; | 2911 | int ret; |
2906 | 2912 | ||
2907 | if (mem_cgroup_disabled()) | 2913 | if (mem_cgroup_disabled()) |
2908 | return 0; | 2914 | return 0; |
2909 | if (PageCompound(page)) | 2915 | if (PageCompound(page)) |
2910 | return 0; | 2916 | return 0; |
2911 | 2917 | ||
2912 | if (!PageSwapCache(page)) | 2918 | if (!PageSwapCache(page)) |
2913 | ret = mem_cgroup_charge_common(page, mm, gfp_mask, type); | 2919 | ret = mem_cgroup_charge_common(page, mm, gfp_mask, type); |
2914 | else { /* page is swapcache/shmem */ | 2920 | else { /* page is swapcache/shmem */ |
2915 | ret = __mem_cgroup_try_charge_swapin(mm, page, | 2921 | ret = __mem_cgroup_try_charge_swapin(mm, page, |
2916 | gfp_mask, &memcg); | 2922 | gfp_mask, &memcg); |
2917 | if (!ret) | 2923 | if (!ret) |
2918 | __mem_cgroup_commit_charge_swapin(page, memcg, type); | 2924 | __mem_cgroup_commit_charge_swapin(page, memcg, type); |
2919 | } | 2925 | } |
2920 | return ret; | 2926 | return ret; |
2921 | } | 2927 | } |
2922 | 2928 | ||
2923 | static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg, | 2929 | static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg, |
2924 | unsigned int nr_pages, | 2930 | unsigned int nr_pages, |
2925 | const enum charge_type ctype) | 2931 | const enum charge_type ctype) |
2926 | { | 2932 | { |
2927 | struct memcg_batch_info *batch = NULL; | 2933 | struct memcg_batch_info *batch = NULL; |
2928 | bool uncharge_memsw = true; | 2934 | bool uncharge_memsw = true; |
2929 | 2935 | ||
2930 | /* If swapout, usage of swap doesn't decrease */ | 2936 | /* If swapout, usage of swap doesn't decrease */ |
2931 | if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) | 2937 | if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) |
2932 | uncharge_memsw = false; | 2938 | uncharge_memsw = false; |
2933 | 2939 | ||
2934 | batch = ¤t->memcg_batch; | 2940 | batch = ¤t->memcg_batch; |
2935 | /* | 2941 | /* |
2936 | * In usual, we do css_get() when we remember memcg pointer. | 2942 | * In usual, we do css_get() when we remember memcg pointer. |
2937 | * But in this case, we keep res->usage until end of a series of | 2943 | * But in this case, we keep res->usage until end of a series of |
2938 | * uncharges. Then, it's ok to ignore memcg's refcnt. | 2944 | * uncharges. Then, it's ok to ignore memcg's refcnt. |
2939 | */ | 2945 | */ |
2940 | if (!batch->memcg) | 2946 | if (!batch->memcg) |
2941 | batch->memcg = memcg; | 2947 | batch->memcg = memcg; |
2942 | /* | 2948 | /* |
2943 | * do_batch > 0 when unmapping pages or inode invalidate/truncate. | 2949 | * do_batch > 0 when unmapping pages or inode invalidate/truncate. |
2944 | * In those cases, all pages freed continuously can be expected to be in | 2950 | * In those cases, all pages freed continuously can be expected to be in |
2945 | * the same cgroup and we have chance to coalesce uncharges. | 2951 | * the same cgroup and we have chance to coalesce uncharges. |
2946 | * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE) | 2952 | * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE) |
2947 | * because we want to do uncharge as soon as possible. | 2953 | * because we want to do uncharge as soon as possible. |
2948 | */ | 2954 | */ |
2949 | 2955 | ||
2950 | if (!batch->do_batch || test_thread_flag(TIF_MEMDIE)) | 2956 | if (!batch->do_batch || test_thread_flag(TIF_MEMDIE)) |
2951 | goto direct_uncharge; | 2957 | goto direct_uncharge; |
2952 | 2958 | ||
2953 | if (nr_pages > 1) | 2959 | if (nr_pages > 1) |
2954 | goto direct_uncharge; | 2960 | goto direct_uncharge; |
2955 | 2961 | ||
2956 | /* | 2962 | /* |
2957 | * In typical case, batch->memcg == mem. This means we can | 2963 | * In typical case, batch->memcg == mem. This means we can |
2958 | * merge a series of uncharges to an uncharge of res_counter. | 2964 | * merge a series of uncharges to an uncharge of res_counter. |
2959 | * If not, we uncharge res_counter ony by one. | 2965 | * If not, we uncharge res_counter ony by one. |
2960 | */ | 2966 | */ |
2961 | if (batch->memcg != memcg) | 2967 | if (batch->memcg != memcg) |
2962 | goto direct_uncharge; | 2968 | goto direct_uncharge; |
2963 | /* remember freed charge and uncharge it later */ | 2969 | /* remember freed charge and uncharge it later */ |
2964 | batch->nr_pages++; | 2970 | batch->nr_pages++; |
2965 | if (uncharge_memsw) | 2971 | if (uncharge_memsw) |
2966 | batch->memsw_nr_pages++; | 2972 | batch->memsw_nr_pages++; |
2967 | return; | 2973 | return; |
2968 | direct_uncharge: | 2974 | direct_uncharge: |
2969 | res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE); | 2975 | res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE); |
2970 | if (uncharge_memsw) | 2976 | if (uncharge_memsw) |
2971 | res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE); | 2977 | res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE); |
2972 | if (unlikely(batch->memcg != memcg)) | 2978 | if (unlikely(batch->memcg != memcg)) |
2973 | memcg_oom_recover(memcg); | 2979 | memcg_oom_recover(memcg); |
2974 | } | 2980 | } |
2975 | 2981 | ||
2976 | /* | 2982 | /* |
2977 | * uncharge if !page_mapped(page) | 2983 | * uncharge if !page_mapped(page) |
2978 | */ | 2984 | */ |
2979 | static struct mem_cgroup * | 2985 | static struct mem_cgroup * |
2980 | __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype, | 2986 | __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype, |
2981 | bool end_migration) | 2987 | bool end_migration) |
2982 | { | 2988 | { |
2983 | struct mem_cgroup *memcg = NULL; | 2989 | struct mem_cgroup *memcg = NULL; |
2984 | unsigned int nr_pages = 1; | 2990 | unsigned int nr_pages = 1; |
2985 | struct page_cgroup *pc; | 2991 | struct page_cgroup *pc; |
2986 | bool anon; | 2992 | bool anon; |
2987 | 2993 | ||
2988 | if (mem_cgroup_disabled()) | 2994 | if (mem_cgroup_disabled()) |
2989 | return NULL; | 2995 | return NULL; |
2990 | 2996 | ||
2991 | VM_BUG_ON(PageSwapCache(page)); | 2997 | VM_BUG_ON(PageSwapCache(page)); |
2992 | 2998 | ||
2993 | if (PageTransHuge(page)) { | 2999 | if (PageTransHuge(page)) { |
2994 | nr_pages <<= compound_order(page); | 3000 | nr_pages <<= compound_order(page); |
2995 | VM_BUG_ON(!PageTransHuge(page)); | 3001 | VM_BUG_ON(!PageTransHuge(page)); |
2996 | } | 3002 | } |
2997 | /* | 3003 | /* |
2998 | * Check if our page_cgroup is valid | 3004 | * Check if our page_cgroup is valid |
2999 | */ | 3005 | */ |
3000 | pc = lookup_page_cgroup(page); | 3006 | pc = lookup_page_cgroup(page); |
3001 | if (unlikely(!PageCgroupUsed(pc))) | 3007 | if (unlikely(!PageCgroupUsed(pc))) |
3002 | return NULL; | 3008 | return NULL; |
3003 | 3009 | ||
3004 | lock_page_cgroup(pc); | 3010 | lock_page_cgroup(pc); |
3005 | 3011 | ||
3006 | memcg = pc->mem_cgroup; | 3012 | memcg = pc->mem_cgroup; |
3007 | 3013 | ||
3008 | if (!PageCgroupUsed(pc)) | 3014 | if (!PageCgroupUsed(pc)) |
3009 | goto unlock_out; | 3015 | goto unlock_out; |
3010 | 3016 | ||
3011 | anon = PageAnon(page); | 3017 | anon = PageAnon(page); |
3012 | 3018 | ||
3013 | switch (ctype) { | 3019 | switch (ctype) { |
3014 | case MEM_CGROUP_CHARGE_TYPE_ANON: | 3020 | case MEM_CGROUP_CHARGE_TYPE_ANON: |
3015 | /* | 3021 | /* |
3016 | * Generally PageAnon tells if it's the anon statistics to be | 3022 | * Generally PageAnon tells if it's the anon statistics to be |
3017 | * updated; but sometimes e.g. mem_cgroup_uncharge_page() is | 3023 | * updated; but sometimes e.g. mem_cgroup_uncharge_page() is |
3018 | * used before page reached the stage of being marked PageAnon. | 3024 | * used before page reached the stage of being marked PageAnon. |
3019 | */ | 3025 | */ |
3020 | anon = true; | 3026 | anon = true; |
3021 | /* fallthrough */ | 3027 | /* fallthrough */ |
3022 | case MEM_CGROUP_CHARGE_TYPE_DROP: | 3028 | case MEM_CGROUP_CHARGE_TYPE_DROP: |
3023 | /* See mem_cgroup_prepare_migration() */ | 3029 | /* See mem_cgroup_prepare_migration() */ |
3024 | if (page_mapped(page)) | 3030 | if (page_mapped(page)) |
3025 | goto unlock_out; | 3031 | goto unlock_out; |
3026 | /* | 3032 | /* |
3027 | * Pages under migration may not be uncharged. But | 3033 | * Pages under migration may not be uncharged. But |
3028 | * end_migration() /must/ be the one uncharging the | 3034 | * end_migration() /must/ be the one uncharging the |
3029 | * unused post-migration page and so it has to call | 3035 | * unused post-migration page and so it has to call |
3030 | * here with the migration bit still set. See the | 3036 | * here with the migration bit still set. See the |
3031 | * res_counter handling below. | 3037 | * res_counter handling below. |
3032 | */ | 3038 | */ |
3033 | if (!end_migration && PageCgroupMigration(pc)) | 3039 | if (!end_migration && PageCgroupMigration(pc)) |
3034 | goto unlock_out; | 3040 | goto unlock_out; |
3035 | break; | 3041 | break; |
3036 | case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: | 3042 | case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: |
3037 | if (!PageAnon(page)) { /* Shared memory */ | 3043 | if (!PageAnon(page)) { /* Shared memory */ |
3038 | if (page->mapping && !page_is_file_cache(page)) | 3044 | if (page->mapping && !page_is_file_cache(page)) |
3039 | goto unlock_out; | 3045 | goto unlock_out; |
3040 | } else if (page_mapped(page)) /* Anon */ | 3046 | } else if (page_mapped(page)) /* Anon */ |
3041 | goto unlock_out; | 3047 | goto unlock_out; |
3042 | break; | 3048 | break; |
3043 | default: | 3049 | default: |
3044 | break; | 3050 | break; |
3045 | } | 3051 | } |
3046 | 3052 | ||
3047 | mem_cgroup_charge_statistics(memcg, anon, -nr_pages); | 3053 | mem_cgroup_charge_statistics(memcg, anon, -nr_pages); |
3048 | 3054 | ||
3049 | ClearPageCgroupUsed(pc); | 3055 | ClearPageCgroupUsed(pc); |
3050 | /* | 3056 | /* |
3051 | * pc->mem_cgroup is not cleared here. It will be accessed when it's | 3057 | * pc->mem_cgroup is not cleared here. It will be accessed when it's |
3052 | * freed from LRU. This is safe because uncharged page is expected not | 3058 | * freed from LRU. This is safe because uncharged page is expected not |
3053 | * to be reused (freed soon). Exception is SwapCache, it's handled by | 3059 | * to be reused (freed soon). Exception is SwapCache, it's handled by |
3054 | * special functions. | 3060 | * special functions. |
3055 | */ | 3061 | */ |
3056 | 3062 | ||
3057 | unlock_page_cgroup(pc); | 3063 | unlock_page_cgroup(pc); |
3058 | /* | 3064 | /* |
3059 | * even after unlock, we have memcg->res.usage here and this memcg | 3065 | * even after unlock, we have memcg->res.usage here and this memcg |
3060 | * will never be freed. | 3066 | * will never be freed. |
3061 | */ | 3067 | */ |
3062 | memcg_check_events(memcg, page); | 3068 | memcg_check_events(memcg, page); |
3063 | if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { | 3069 | if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { |
3064 | mem_cgroup_swap_statistics(memcg, true); | 3070 | mem_cgroup_swap_statistics(memcg, true); |
3065 | mem_cgroup_get(memcg); | 3071 | mem_cgroup_get(memcg); |
3066 | } | 3072 | } |
3067 | /* | 3073 | /* |
3068 | * Migration does not charge the res_counter for the | 3074 | * Migration does not charge the res_counter for the |
3069 | * replacement page, so leave it alone when phasing out the | 3075 | * replacement page, so leave it alone when phasing out the |
3070 | * page that is unused after the migration. | 3076 | * page that is unused after the migration. |
3071 | */ | 3077 | */ |
3072 | if (!end_migration && !mem_cgroup_is_root(memcg)) | 3078 | if (!end_migration && !mem_cgroup_is_root(memcg)) |
3073 | mem_cgroup_do_uncharge(memcg, nr_pages, ctype); | 3079 | mem_cgroup_do_uncharge(memcg, nr_pages, ctype); |
3074 | 3080 | ||
3075 | return memcg; | 3081 | return memcg; |
3076 | 3082 | ||
3077 | unlock_out: | 3083 | unlock_out: |
3078 | unlock_page_cgroup(pc); | 3084 | unlock_page_cgroup(pc); |
3079 | return NULL; | 3085 | return NULL; |
3080 | } | 3086 | } |
3081 | 3087 | ||
3082 | void mem_cgroup_uncharge_page(struct page *page) | 3088 | void mem_cgroup_uncharge_page(struct page *page) |
3083 | { | 3089 | { |
3084 | /* early check. */ | 3090 | /* early check. */ |
3085 | if (page_mapped(page)) | 3091 | if (page_mapped(page)) |
3086 | return; | 3092 | return; |
3087 | VM_BUG_ON(page->mapping && !PageAnon(page)); | 3093 | VM_BUG_ON(page->mapping && !PageAnon(page)); |
3088 | if (PageSwapCache(page)) | 3094 | if (PageSwapCache(page)) |
3089 | return; | 3095 | return; |
3090 | __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false); | 3096 | __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false); |
3091 | } | 3097 | } |
3092 | 3098 | ||
3093 | void mem_cgroup_uncharge_cache_page(struct page *page) | 3099 | void mem_cgroup_uncharge_cache_page(struct page *page) |
3094 | { | 3100 | { |
3095 | VM_BUG_ON(page_mapped(page)); | 3101 | VM_BUG_ON(page_mapped(page)); |
3096 | VM_BUG_ON(page->mapping); | 3102 | VM_BUG_ON(page->mapping); |
3097 | __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false); | 3103 | __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false); |
3098 | } | 3104 | } |
3099 | 3105 | ||
3100 | /* | 3106 | /* |
3101 | * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate. | 3107 | * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate. |
3102 | * In that cases, pages are freed continuously and we can expect pages | 3108 | * In that cases, pages are freed continuously and we can expect pages |
3103 | * are in the same memcg. All these calls itself limits the number of | 3109 | * are in the same memcg. All these calls itself limits the number of |
3104 | * pages freed at once, then uncharge_start/end() is called properly. | 3110 | * pages freed at once, then uncharge_start/end() is called properly. |
3105 | * This may be called prural(2) times in a context, | 3111 | * This may be called prural(2) times in a context, |
3106 | */ | 3112 | */ |
3107 | 3113 | ||
3108 | void mem_cgroup_uncharge_start(void) | 3114 | void mem_cgroup_uncharge_start(void) |
3109 | { | 3115 | { |
3110 | current->memcg_batch.do_batch++; | 3116 | current->memcg_batch.do_batch++; |
3111 | /* We can do nest. */ | 3117 | /* We can do nest. */ |
3112 | if (current->memcg_batch.do_batch == 1) { | 3118 | if (current->memcg_batch.do_batch == 1) { |
3113 | current->memcg_batch.memcg = NULL; | 3119 | current->memcg_batch.memcg = NULL; |
3114 | current->memcg_batch.nr_pages = 0; | 3120 | current->memcg_batch.nr_pages = 0; |
3115 | current->memcg_batch.memsw_nr_pages = 0; | 3121 | current->memcg_batch.memsw_nr_pages = 0; |
3116 | } | 3122 | } |
3117 | } | 3123 | } |
3118 | 3124 | ||
3119 | void mem_cgroup_uncharge_end(void) | 3125 | void mem_cgroup_uncharge_end(void) |
3120 | { | 3126 | { |
3121 | struct memcg_batch_info *batch = ¤t->memcg_batch; | 3127 | struct memcg_batch_info *batch = ¤t->memcg_batch; |
3122 | 3128 | ||
3123 | if (!batch->do_batch) | 3129 | if (!batch->do_batch) |
3124 | return; | 3130 | return; |
3125 | 3131 | ||
3126 | batch->do_batch--; | 3132 | batch->do_batch--; |
3127 | if (batch->do_batch) /* If stacked, do nothing. */ | 3133 | if (batch->do_batch) /* If stacked, do nothing. */ |
3128 | return; | 3134 | return; |
3129 | 3135 | ||
3130 | if (!batch->memcg) | 3136 | if (!batch->memcg) |
3131 | return; | 3137 | return; |
3132 | /* | 3138 | /* |
3133 | * This "batch->memcg" is valid without any css_get/put etc... | 3139 | * This "batch->memcg" is valid without any css_get/put etc... |
3134 | * bacause we hide charges behind us. | 3140 | * bacause we hide charges behind us. |
3135 | */ | 3141 | */ |
3136 | if (batch->nr_pages) | 3142 | if (batch->nr_pages) |
3137 | res_counter_uncharge(&batch->memcg->res, | 3143 | res_counter_uncharge(&batch->memcg->res, |
3138 | batch->nr_pages * PAGE_SIZE); | 3144 | batch->nr_pages * PAGE_SIZE); |
3139 | if (batch->memsw_nr_pages) | 3145 | if (batch->memsw_nr_pages) |
3140 | res_counter_uncharge(&batch->memcg->memsw, | 3146 | res_counter_uncharge(&batch->memcg->memsw, |
3141 | batch->memsw_nr_pages * PAGE_SIZE); | 3147 | batch->memsw_nr_pages * PAGE_SIZE); |
3142 | memcg_oom_recover(batch->memcg); | 3148 | memcg_oom_recover(batch->memcg); |
3143 | /* forget this pointer (for sanity check) */ | 3149 | /* forget this pointer (for sanity check) */ |
3144 | batch->memcg = NULL; | 3150 | batch->memcg = NULL; |
3145 | } | 3151 | } |
3146 | 3152 | ||
3147 | #ifdef CONFIG_SWAP | 3153 | #ifdef CONFIG_SWAP |
3148 | /* | 3154 | /* |
3149 | * called after __delete_from_swap_cache() and drop "page" account. | 3155 | * called after __delete_from_swap_cache() and drop "page" account. |
3150 | * memcg information is recorded to swap_cgroup of "ent" | 3156 | * memcg information is recorded to swap_cgroup of "ent" |
3151 | */ | 3157 | */ |
3152 | void | 3158 | void |
3153 | mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) | 3159 | mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) |
3154 | { | 3160 | { |
3155 | struct mem_cgroup *memcg; | 3161 | struct mem_cgroup *memcg; |
3156 | int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT; | 3162 | int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT; |
3157 | 3163 | ||
3158 | if (!swapout) /* this was a swap cache but the swap is unused ! */ | 3164 | if (!swapout) /* this was a swap cache but the swap is unused ! */ |
3159 | ctype = MEM_CGROUP_CHARGE_TYPE_DROP; | 3165 | ctype = MEM_CGROUP_CHARGE_TYPE_DROP; |
3160 | 3166 | ||
3161 | memcg = __mem_cgroup_uncharge_common(page, ctype, false); | 3167 | memcg = __mem_cgroup_uncharge_common(page, ctype, false); |
3162 | 3168 | ||
3163 | /* | 3169 | /* |
3164 | * record memcg information, if swapout && memcg != NULL, | 3170 | * record memcg information, if swapout && memcg != NULL, |
3165 | * mem_cgroup_get() was called in uncharge(). | 3171 | * mem_cgroup_get() was called in uncharge(). |
3166 | */ | 3172 | */ |
3167 | if (do_swap_account && swapout && memcg) | 3173 | if (do_swap_account && swapout && memcg) |
3168 | swap_cgroup_record(ent, css_id(&memcg->css)); | 3174 | swap_cgroup_record(ent, css_id(&memcg->css)); |
3169 | } | 3175 | } |
3170 | #endif | 3176 | #endif |
3171 | 3177 | ||
3172 | #ifdef CONFIG_MEMCG_SWAP | 3178 | #ifdef CONFIG_MEMCG_SWAP |
3173 | /* | 3179 | /* |
3174 | * called from swap_entry_free(). remove record in swap_cgroup and | 3180 | * called from swap_entry_free(). remove record in swap_cgroup and |
3175 | * uncharge "memsw" account. | 3181 | * uncharge "memsw" account. |
3176 | */ | 3182 | */ |
3177 | void mem_cgroup_uncharge_swap(swp_entry_t ent) | 3183 | void mem_cgroup_uncharge_swap(swp_entry_t ent) |
3178 | { | 3184 | { |
3179 | struct mem_cgroup *memcg; | 3185 | struct mem_cgroup *memcg; |
3180 | unsigned short id; | 3186 | unsigned short id; |
3181 | 3187 | ||
3182 | if (!do_swap_account) | 3188 | if (!do_swap_account) |
3183 | return; | 3189 | return; |
3184 | 3190 | ||
3185 | id = swap_cgroup_record(ent, 0); | 3191 | id = swap_cgroup_record(ent, 0); |
3186 | rcu_read_lock(); | 3192 | rcu_read_lock(); |
3187 | memcg = mem_cgroup_lookup(id); | 3193 | memcg = mem_cgroup_lookup(id); |
3188 | if (memcg) { | 3194 | if (memcg) { |
3189 | /* | 3195 | /* |
3190 | * We uncharge this because swap is freed. | 3196 | * We uncharge this because swap is freed. |
3191 | * This memcg can be obsolete one. We avoid calling css_tryget | 3197 | * This memcg can be obsolete one. We avoid calling css_tryget |
3192 | */ | 3198 | */ |
3193 | if (!mem_cgroup_is_root(memcg)) | 3199 | if (!mem_cgroup_is_root(memcg)) |
3194 | res_counter_uncharge(&memcg->memsw, PAGE_SIZE); | 3200 | res_counter_uncharge(&memcg->memsw, PAGE_SIZE); |
3195 | mem_cgroup_swap_statistics(memcg, false); | 3201 | mem_cgroup_swap_statistics(memcg, false); |
3196 | mem_cgroup_put(memcg); | 3202 | mem_cgroup_put(memcg); |
3197 | } | 3203 | } |
3198 | rcu_read_unlock(); | 3204 | rcu_read_unlock(); |
3199 | } | 3205 | } |
3200 | 3206 | ||
3201 | /** | 3207 | /** |
3202 | * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. | 3208 | * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. |
3203 | * @entry: swap entry to be moved | 3209 | * @entry: swap entry to be moved |
3204 | * @from: mem_cgroup which the entry is moved from | 3210 | * @from: mem_cgroup which the entry is moved from |
3205 | * @to: mem_cgroup which the entry is moved to | 3211 | * @to: mem_cgroup which the entry is moved to |
3206 | * | 3212 | * |
3207 | * It succeeds only when the swap_cgroup's record for this entry is the same | 3213 | * It succeeds only when the swap_cgroup's record for this entry is the same |
3208 | * as the mem_cgroup's id of @from. | 3214 | * as the mem_cgroup's id of @from. |
3209 | * | 3215 | * |
3210 | * Returns 0 on success, -EINVAL on failure. | 3216 | * Returns 0 on success, -EINVAL on failure. |
3211 | * | 3217 | * |
3212 | * The caller must have charged to @to, IOW, called res_counter_charge() about | 3218 | * The caller must have charged to @to, IOW, called res_counter_charge() about |
3213 | * both res and memsw, and called css_get(). | 3219 | * both res and memsw, and called css_get(). |
3214 | */ | 3220 | */ |
3215 | static int mem_cgroup_move_swap_account(swp_entry_t entry, | 3221 | static int mem_cgroup_move_swap_account(swp_entry_t entry, |
3216 | struct mem_cgroup *from, struct mem_cgroup *to) | 3222 | struct mem_cgroup *from, struct mem_cgroup *to) |
3217 | { | 3223 | { |
3218 | unsigned short old_id, new_id; | 3224 | unsigned short old_id, new_id; |
3219 | 3225 | ||
3220 | old_id = css_id(&from->css); | 3226 | old_id = css_id(&from->css); |
3221 | new_id = css_id(&to->css); | 3227 | new_id = css_id(&to->css); |
3222 | 3228 | ||
3223 | if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { | 3229 | if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { |
3224 | mem_cgroup_swap_statistics(from, false); | 3230 | mem_cgroup_swap_statistics(from, false); |
3225 | mem_cgroup_swap_statistics(to, true); | 3231 | mem_cgroup_swap_statistics(to, true); |
3226 | /* | 3232 | /* |
3227 | * This function is only called from task migration context now. | 3233 | * This function is only called from task migration context now. |
3228 | * It postpones res_counter and refcount handling till the end | 3234 | * It postpones res_counter and refcount handling till the end |
3229 | * of task migration(mem_cgroup_clear_mc()) for performance | 3235 | * of task migration(mem_cgroup_clear_mc()) for performance |
3230 | * improvement. But we cannot postpone mem_cgroup_get(to) | 3236 | * improvement. But we cannot postpone mem_cgroup_get(to) |
3231 | * because if the process that has been moved to @to does | 3237 | * because if the process that has been moved to @to does |
3232 | * swap-in, the refcount of @to might be decreased to 0. | 3238 | * swap-in, the refcount of @to might be decreased to 0. |
3233 | */ | 3239 | */ |
3234 | mem_cgroup_get(to); | 3240 | mem_cgroup_get(to); |
3235 | return 0; | 3241 | return 0; |
3236 | } | 3242 | } |
3237 | return -EINVAL; | 3243 | return -EINVAL; |
3238 | } | 3244 | } |
3239 | #else | 3245 | #else |
3240 | static inline int mem_cgroup_move_swap_account(swp_entry_t entry, | 3246 | static inline int mem_cgroup_move_swap_account(swp_entry_t entry, |
3241 | struct mem_cgroup *from, struct mem_cgroup *to) | 3247 | struct mem_cgroup *from, struct mem_cgroup *to) |
3242 | { | 3248 | { |
3243 | return -EINVAL; | 3249 | return -EINVAL; |
3244 | } | 3250 | } |
3245 | #endif | 3251 | #endif |
3246 | 3252 | ||
3247 | /* | 3253 | /* |
3248 | * Before starting migration, account PAGE_SIZE to mem_cgroup that the old | 3254 | * Before starting migration, account PAGE_SIZE to mem_cgroup that the old |
3249 | * page belongs to. | 3255 | * page belongs to. |
3250 | */ | 3256 | */ |
3251 | void mem_cgroup_prepare_migration(struct page *page, struct page *newpage, | 3257 | void mem_cgroup_prepare_migration(struct page *page, struct page *newpage, |
3252 | struct mem_cgroup **memcgp) | 3258 | struct mem_cgroup **memcgp) |
3253 | { | 3259 | { |
3254 | struct mem_cgroup *memcg = NULL; | 3260 | struct mem_cgroup *memcg = NULL; |
3255 | struct page_cgroup *pc; | 3261 | struct page_cgroup *pc; |
3256 | enum charge_type ctype; | 3262 | enum charge_type ctype; |
3257 | 3263 | ||
3258 | *memcgp = NULL; | 3264 | *memcgp = NULL; |
3259 | 3265 | ||
3260 | VM_BUG_ON(PageTransHuge(page)); | 3266 | VM_BUG_ON(PageTransHuge(page)); |
3261 | if (mem_cgroup_disabled()) | 3267 | if (mem_cgroup_disabled()) |
3262 | return; | 3268 | return; |
3263 | 3269 | ||
3264 | pc = lookup_page_cgroup(page); | 3270 | pc = lookup_page_cgroup(page); |
3265 | lock_page_cgroup(pc); | 3271 | lock_page_cgroup(pc); |
3266 | if (PageCgroupUsed(pc)) { | 3272 | if (PageCgroupUsed(pc)) { |
3267 | memcg = pc->mem_cgroup; | 3273 | memcg = pc->mem_cgroup; |
3268 | css_get(&memcg->css); | 3274 | css_get(&memcg->css); |
3269 | /* | 3275 | /* |
3270 | * At migrating an anonymous page, its mapcount goes down | 3276 | * At migrating an anonymous page, its mapcount goes down |
3271 | * to 0 and uncharge() will be called. But, even if it's fully | 3277 | * to 0 and uncharge() will be called. But, even if it's fully |
3272 | * unmapped, migration may fail and this page has to be | 3278 | * unmapped, migration may fail and this page has to be |
3273 | * charged again. We set MIGRATION flag here and delay uncharge | 3279 | * charged again. We set MIGRATION flag here and delay uncharge |
3274 | * until end_migration() is called | 3280 | * until end_migration() is called |
3275 | * | 3281 | * |
3276 | * Corner Case Thinking | 3282 | * Corner Case Thinking |
3277 | * A) | 3283 | * A) |
3278 | * When the old page was mapped as Anon and it's unmap-and-freed | 3284 | * When the old page was mapped as Anon and it's unmap-and-freed |
3279 | * while migration was ongoing. | 3285 | * while migration was ongoing. |
3280 | * If unmap finds the old page, uncharge() of it will be delayed | 3286 | * If unmap finds the old page, uncharge() of it will be delayed |
3281 | * until end_migration(). If unmap finds a new page, it's | 3287 | * until end_migration(). If unmap finds a new page, it's |
3282 | * uncharged when it make mapcount to be 1->0. If unmap code | 3288 | * uncharged when it make mapcount to be 1->0. If unmap code |
3283 | * finds swap_migration_entry, the new page will not be mapped | 3289 | * finds swap_migration_entry, the new page will not be mapped |
3284 | * and end_migration() will find it(mapcount==0). | 3290 | * and end_migration() will find it(mapcount==0). |
3285 | * | 3291 | * |
3286 | * B) | 3292 | * B) |
3287 | * When the old page was mapped but migraion fails, the kernel | 3293 | * When the old page was mapped but migraion fails, the kernel |
3288 | * remaps it. A charge for it is kept by MIGRATION flag even | 3294 | * remaps it. A charge for it is kept by MIGRATION flag even |
3289 | * if mapcount goes down to 0. We can do remap successfully | 3295 | * if mapcount goes down to 0. We can do remap successfully |
3290 | * without charging it again. | 3296 | * without charging it again. |
3291 | * | 3297 | * |
3292 | * C) | 3298 | * C) |
3293 | * The "old" page is under lock_page() until the end of | 3299 | * The "old" page is under lock_page() until the end of |
3294 | * migration, so, the old page itself will not be swapped-out. | 3300 | * migration, so, the old page itself will not be swapped-out. |
3295 | * If the new page is swapped out before end_migraton, our | 3301 | * If the new page is swapped out before end_migraton, our |
3296 | * hook to usual swap-out path will catch the event. | 3302 | * hook to usual swap-out path will catch the event. |
3297 | */ | 3303 | */ |
3298 | if (PageAnon(page)) | 3304 | if (PageAnon(page)) |
3299 | SetPageCgroupMigration(pc); | 3305 | SetPageCgroupMigration(pc); |
3300 | } | 3306 | } |
3301 | unlock_page_cgroup(pc); | 3307 | unlock_page_cgroup(pc); |
3302 | /* | 3308 | /* |
3303 | * If the page is not charged at this point, | 3309 | * If the page is not charged at this point, |
3304 | * we return here. | 3310 | * we return here. |
3305 | */ | 3311 | */ |
3306 | if (!memcg) | 3312 | if (!memcg) |
3307 | return; | 3313 | return; |
3308 | 3314 | ||
3309 | *memcgp = memcg; | 3315 | *memcgp = memcg; |
3310 | /* | 3316 | /* |
3311 | * We charge new page before it's used/mapped. So, even if unlock_page() | 3317 | * We charge new page before it's used/mapped. So, even if unlock_page() |
3312 | * is called before end_migration, we can catch all events on this new | 3318 | * is called before end_migration, we can catch all events on this new |
3313 | * page. In the case new page is migrated but not remapped, new page's | 3319 | * page. In the case new page is migrated but not remapped, new page's |
3314 | * mapcount will be finally 0 and we call uncharge in end_migration(). | 3320 | * mapcount will be finally 0 and we call uncharge in end_migration(). |
3315 | */ | 3321 | */ |
3316 | if (PageAnon(page)) | 3322 | if (PageAnon(page)) |
3317 | ctype = MEM_CGROUP_CHARGE_TYPE_ANON; | 3323 | ctype = MEM_CGROUP_CHARGE_TYPE_ANON; |
3318 | else | 3324 | else |
3319 | ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; | 3325 | ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; |
3320 | /* | 3326 | /* |
3321 | * The page is committed to the memcg, but it's not actually | 3327 | * The page is committed to the memcg, but it's not actually |
3322 | * charged to the res_counter since we plan on replacing the | 3328 | * charged to the res_counter since we plan on replacing the |
3323 | * old one and only one page is going to be left afterwards. | 3329 | * old one and only one page is going to be left afterwards. |
3324 | */ | 3330 | */ |
3325 | __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false); | 3331 | __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false); |
3326 | } | 3332 | } |
3327 | 3333 | ||
3328 | /* remove redundant charge if migration failed*/ | 3334 | /* remove redundant charge if migration failed*/ |
3329 | void mem_cgroup_end_migration(struct mem_cgroup *memcg, | 3335 | void mem_cgroup_end_migration(struct mem_cgroup *memcg, |
3330 | struct page *oldpage, struct page *newpage, bool migration_ok) | 3336 | struct page *oldpage, struct page *newpage, bool migration_ok) |
3331 | { | 3337 | { |
3332 | struct page *used, *unused; | 3338 | struct page *used, *unused; |
3333 | struct page_cgroup *pc; | 3339 | struct page_cgroup *pc; |
3334 | bool anon; | 3340 | bool anon; |
3335 | 3341 | ||
3336 | if (!memcg) | 3342 | if (!memcg) |
3337 | return; | 3343 | return; |
3338 | /* blocks rmdir() */ | 3344 | /* blocks rmdir() */ |
3339 | cgroup_exclude_rmdir(&memcg->css); | 3345 | cgroup_exclude_rmdir(&memcg->css); |
3340 | if (!migration_ok) { | 3346 | if (!migration_ok) { |
3341 | used = oldpage; | 3347 | used = oldpage; |
3342 | unused = newpage; | 3348 | unused = newpage; |
3343 | } else { | 3349 | } else { |
3344 | used = newpage; | 3350 | used = newpage; |
3345 | unused = oldpage; | 3351 | unused = oldpage; |
3346 | } | 3352 | } |
3347 | anon = PageAnon(used); | 3353 | anon = PageAnon(used); |
3348 | __mem_cgroup_uncharge_common(unused, | 3354 | __mem_cgroup_uncharge_common(unused, |
3349 | anon ? MEM_CGROUP_CHARGE_TYPE_ANON | 3355 | anon ? MEM_CGROUP_CHARGE_TYPE_ANON |
3350 | : MEM_CGROUP_CHARGE_TYPE_CACHE, | 3356 | : MEM_CGROUP_CHARGE_TYPE_CACHE, |
3351 | true); | 3357 | true); |
3352 | css_put(&memcg->css); | 3358 | css_put(&memcg->css); |
3353 | /* | 3359 | /* |
3354 | * We disallowed uncharge of pages under migration because mapcount | 3360 | * We disallowed uncharge of pages under migration because mapcount |
3355 | * of the page goes down to zero, temporarly. | 3361 | * of the page goes down to zero, temporarly. |
3356 | * Clear the flag and check the page should be charged. | 3362 | * Clear the flag and check the page should be charged. |
3357 | */ | 3363 | */ |
3358 | pc = lookup_page_cgroup(oldpage); | 3364 | pc = lookup_page_cgroup(oldpage); |
3359 | lock_page_cgroup(pc); | 3365 | lock_page_cgroup(pc); |
3360 | ClearPageCgroupMigration(pc); | 3366 | ClearPageCgroupMigration(pc); |
3361 | unlock_page_cgroup(pc); | 3367 | unlock_page_cgroup(pc); |
3362 | 3368 | ||
3363 | /* | 3369 | /* |
3364 | * If a page is a file cache, radix-tree replacement is very atomic | 3370 | * If a page is a file cache, radix-tree replacement is very atomic |
3365 | * and we can skip this check. When it was an Anon page, its mapcount | 3371 | * and we can skip this check. When it was an Anon page, its mapcount |
3366 | * goes down to 0. But because we added MIGRATION flage, it's not | 3372 | * goes down to 0. But because we added MIGRATION flage, it's not |
3367 | * uncharged yet. There are several case but page->mapcount check | 3373 | * uncharged yet. There are several case but page->mapcount check |
3368 | * and USED bit check in mem_cgroup_uncharge_page() will do enough | 3374 | * and USED bit check in mem_cgroup_uncharge_page() will do enough |
3369 | * check. (see prepare_charge() also) | 3375 | * check. (see prepare_charge() also) |
3370 | */ | 3376 | */ |
3371 | if (anon) | 3377 | if (anon) |
3372 | mem_cgroup_uncharge_page(used); | 3378 | mem_cgroup_uncharge_page(used); |
3373 | /* | 3379 | /* |
3374 | * At migration, we may charge account against cgroup which has no | 3380 | * At migration, we may charge account against cgroup which has no |
3375 | * tasks. | 3381 | * tasks. |
3376 | * So, rmdir()->pre_destroy() can be called while we do this charge. | 3382 | * So, rmdir()->pre_destroy() can be called while we do this charge. |
3377 | * In that case, we need to call pre_destroy() again. check it here. | 3383 | * In that case, we need to call pre_destroy() again. check it here. |
3378 | */ | 3384 | */ |
3379 | cgroup_release_and_wakeup_rmdir(&memcg->css); | 3385 | cgroup_release_and_wakeup_rmdir(&memcg->css); |
3380 | } | 3386 | } |
3381 | 3387 | ||
3382 | /* | 3388 | /* |
3383 | * At replace page cache, newpage is not under any memcg but it's on | 3389 | * At replace page cache, newpage is not under any memcg but it's on |
3384 | * LRU. So, this function doesn't touch res_counter but handles LRU | 3390 | * LRU. So, this function doesn't touch res_counter but handles LRU |
3385 | * in correct way. Both pages are locked so we cannot race with uncharge. | 3391 | * in correct way. Both pages are locked so we cannot race with uncharge. |
3386 | */ | 3392 | */ |
3387 | void mem_cgroup_replace_page_cache(struct page *oldpage, | 3393 | void mem_cgroup_replace_page_cache(struct page *oldpage, |
3388 | struct page *newpage) | 3394 | struct page *newpage) |
3389 | { | 3395 | { |
3390 | struct mem_cgroup *memcg = NULL; | 3396 | struct mem_cgroup *memcg = NULL; |
3391 | struct page_cgroup *pc; | 3397 | struct page_cgroup *pc; |
3392 | enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; | 3398 | enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; |
3393 | 3399 | ||
3394 | if (mem_cgroup_disabled()) | 3400 | if (mem_cgroup_disabled()) |
3395 | return; | 3401 | return; |
3396 | 3402 | ||
3397 | pc = lookup_page_cgroup(oldpage); | 3403 | pc = lookup_page_cgroup(oldpage); |
3398 | /* fix accounting on old pages */ | 3404 | /* fix accounting on old pages */ |
3399 | lock_page_cgroup(pc); | 3405 | lock_page_cgroup(pc); |
3400 | if (PageCgroupUsed(pc)) { | 3406 | if (PageCgroupUsed(pc)) { |
3401 | memcg = pc->mem_cgroup; | 3407 | memcg = pc->mem_cgroup; |
3402 | mem_cgroup_charge_statistics(memcg, false, -1); | 3408 | mem_cgroup_charge_statistics(memcg, false, -1); |
3403 | ClearPageCgroupUsed(pc); | 3409 | ClearPageCgroupUsed(pc); |
3404 | } | 3410 | } |
3405 | unlock_page_cgroup(pc); | 3411 | unlock_page_cgroup(pc); |
3406 | 3412 | ||
3407 | /* | 3413 | /* |
3408 | * When called from shmem_replace_page(), in some cases the | 3414 | * When called from shmem_replace_page(), in some cases the |
3409 | * oldpage has already been charged, and in some cases not. | 3415 | * oldpage has already been charged, and in some cases not. |
3410 | */ | 3416 | */ |
3411 | if (!memcg) | 3417 | if (!memcg) |
3412 | return; | 3418 | return; |
3413 | /* | 3419 | /* |
3414 | * Even if newpage->mapping was NULL before starting replacement, | 3420 | * Even if newpage->mapping was NULL before starting replacement, |
3415 | * the newpage may be on LRU(or pagevec for LRU) already. We lock | 3421 | * the newpage may be on LRU(or pagevec for LRU) already. We lock |
3416 | * LRU while we overwrite pc->mem_cgroup. | 3422 | * LRU while we overwrite pc->mem_cgroup. |
3417 | */ | 3423 | */ |
3418 | __mem_cgroup_commit_charge(memcg, newpage, 1, type, true); | 3424 | __mem_cgroup_commit_charge(memcg, newpage, 1, type, true); |
3419 | } | 3425 | } |
3420 | 3426 | ||
3421 | #ifdef CONFIG_DEBUG_VM | 3427 | #ifdef CONFIG_DEBUG_VM |
3422 | static struct page_cgroup *lookup_page_cgroup_used(struct page *page) | 3428 | static struct page_cgroup *lookup_page_cgroup_used(struct page *page) |
3423 | { | 3429 | { |
3424 | struct page_cgroup *pc; | 3430 | struct page_cgroup *pc; |
3425 | 3431 | ||
3426 | pc = lookup_page_cgroup(page); | 3432 | pc = lookup_page_cgroup(page); |
3427 | /* | 3433 | /* |
3428 | * Can be NULL while feeding pages into the page allocator for | 3434 | * Can be NULL while feeding pages into the page allocator for |
3429 | * the first time, i.e. during boot or memory hotplug; | 3435 | * the first time, i.e. during boot or memory hotplug; |
3430 | * or when mem_cgroup_disabled(). | 3436 | * or when mem_cgroup_disabled(). |
3431 | */ | 3437 | */ |
3432 | if (likely(pc) && PageCgroupUsed(pc)) | 3438 | if (likely(pc) && PageCgroupUsed(pc)) |
3433 | return pc; | 3439 | return pc; |
3434 | return NULL; | 3440 | return NULL; |
3435 | } | 3441 | } |
3436 | 3442 | ||
3437 | bool mem_cgroup_bad_page_check(struct page *page) | 3443 | bool mem_cgroup_bad_page_check(struct page *page) |
3438 | { | 3444 | { |
3439 | if (mem_cgroup_disabled()) | 3445 | if (mem_cgroup_disabled()) |
3440 | return false; | 3446 | return false; |
3441 | 3447 | ||
3442 | return lookup_page_cgroup_used(page) != NULL; | 3448 | return lookup_page_cgroup_used(page) != NULL; |
3443 | } | 3449 | } |
3444 | 3450 | ||
3445 | void mem_cgroup_print_bad_page(struct page *page) | 3451 | void mem_cgroup_print_bad_page(struct page *page) |
3446 | { | 3452 | { |
3447 | struct page_cgroup *pc; | 3453 | struct page_cgroup *pc; |
3448 | 3454 | ||
3449 | pc = lookup_page_cgroup_used(page); | 3455 | pc = lookup_page_cgroup_used(page); |
3450 | if (pc) { | 3456 | if (pc) { |
3451 | printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n", | 3457 | printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n", |
3452 | pc, pc->flags, pc->mem_cgroup); | 3458 | pc, pc->flags, pc->mem_cgroup); |
3453 | } | 3459 | } |
3454 | } | 3460 | } |
3455 | #endif | 3461 | #endif |
3456 | 3462 | ||
3457 | static DEFINE_MUTEX(set_limit_mutex); | 3463 | static DEFINE_MUTEX(set_limit_mutex); |
3458 | 3464 | ||
3459 | static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, | 3465 | static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, |
3460 | unsigned long long val) | 3466 | unsigned long long val) |
3461 | { | 3467 | { |
3462 | int retry_count; | 3468 | int retry_count; |
3463 | u64 memswlimit, memlimit; | 3469 | u64 memswlimit, memlimit; |
3464 | int ret = 0; | 3470 | int ret = 0; |
3465 | int children = mem_cgroup_count_children(memcg); | 3471 | int children = mem_cgroup_count_children(memcg); |
3466 | u64 curusage, oldusage; | 3472 | u64 curusage, oldusage; |
3467 | int enlarge; | 3473 | int enlarge; |
3468 | 3474 | ||
3469 | /* | 3475 | /* |
3470 | * For keeping hierarchical_reclaim simple, how long we should retry | 3476 | * For keeping hierarchical_reclaim simple, how long we should retry |
3471 | * is depends on callers. We set our retry-count to be function | 3477 | * is depends on callers. We set our retry-count to be function |
3472 | * of # of children which we should visit in this loop. | 3478 | * of # of children which we should visit in this loop. |
3473 | */ | 3479 | */ |
3474 | retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; | 3480 | retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; |
3475 | 3481 | ||
3476 | oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); | 3482 | oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); |
3477 | 3483 | ||
3478 | enlarge = 0; | 3484 | enlarge = 0; |
3479 | while (retry_count) { | 3485 | while (retry_count) { |
3480 | if (signal_pending(current)) { | 3486 | if (signal_pending(current)) { |
3481 | ret = -EINTR; | 3487 | ret = -EINTR; |
3482 | break; | 3488 | break; |
3483 | } | 3489 | } |
3484 | /* | 3490 | /* |
3485 | * Rather than hide all in some function, I do this in | 3491 | * Rather than hide all in some function, I do this in |
3486 | * open coded manner. You see what this really does. | 3492 | * open coded manner. You see what this really does. |
3487 | * We have to guarantee memcg->res.limit <= memcg->memsw.limit. | 3493 | * We have to guarantee memcg->res.limit <= memcg->memsw.limit. |
3488 | */ | 3494 | */ |
3489 | mutex_lock(&set_limit_mutex); | 3495 | mutex_lock(&set_limit_mutex); |
3490 | memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | 3496 | memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); |
3491 | if (memswlimit < val) { | 3497 | if (memswlimit < val) { |
3492 | ret = -EINVAL; | 3498 | ret = -EINVAL; |
3493 | mutex_unlock(&set_limit_mutex); | 3499 | mutex_unlock(&set_limit_mutex); |
3494 | break; | 3500 | break; |
3495 | } | 3501 | } |
3496 | 3502 | ||
3497 | memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); | 3503 | memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); |
3498 | if (memlimit < val) | 3504 | if (memlimit < val) |
3499 | enlarge = 1; | 3505 | enlarge = 1; |
3500 | 3506 | ||
3501 | ret = res_counter_set_limit(&memcg->res, val); | 3507 | ret = res_counter_set_limit(&memcg->res, val); |
3502 | if (!ret) { | 3508 | if (!ret) { |
3503 | if (memswlimit == val) | 3509 | if (memswlimit == val) |
3504 | memcg->memsw_is_minimum = true; | 3510 | memcg->memsw_is_minimum = true; |
3505 | else | 3511 | else |
3506 | memcg->memsw_is_minimum = false; | 3512 | memcg->memsw_is_minimum = false; |
3507 | } | 3513 | } |
3508 | mutex_unlock(&set_limit_mutex); | 3514 | mutex_unlock(&set_limit_mutex); |
3509 | 3515 | ||
3510 | if (!ret) | 3516 | if (!ret) |
3511 | break; | 3517 | break; |
3512 | 3518 | ||
3513 | mem_cgroup_reclaim(memcg, GFP_KERNEL, | 3519 | mem_cgroup_reclaim(memcg, GFP_KERNEL, |
3514 | MEM_CGROUP_RECLAIM_SHRINK); | 3520 | MEM_CGROUP_RECLAIM_SHRINK); |
3515 | curusage = res_counter_read_u64(&memcg->res, RES_USAGE); | 3521 | curusage = res_counter_read_u64(&memcg->res, RES_USAGE); |
3516 | /* Usage is reduced ? */ | 3522 | /* Usage is reduced ? */ |
3517 | if (curusage >= oldusage) | 3523 | if (curusage >= oldusage) |
3518 | retry_count--; | 3524 | retry_count--; |
3519 | else | 3525 | else |
3520 | oldusage = curusage; | 3526 | oldusage = curusage; |
3521 | } | 3527 | } |
3522 | if (!ret && enlarge) | 3528 | if (!ret && enlarge) |
3523 | memcg_oom_recover(memcg); | 3529 | memcg_oom_recover(memcg); |
3524 | 3530 | ||
3525 | return ret; | 3531 | return ret; |
3526 | } | 3532 | } |
3527 | 3533 | ||
3528 | static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, | 3534 | static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, |
3529 | unsigned long long val) | 3535 | unsigned long long val) |
3530 | { | 3536 | { |
3531 | int retry_count; | 3537 | int retry_count; |
3532 | u64 memlimit, memswlimit, oldusage, curusage; | 3538 | u64 memlimit, memswlimit, oldusage, curusage; |
3533 | int children = mem_cgroup_count_children(memcg); | 3539 | int children = mem_cgroup_count_children(memcg); |
3534 | int ret = -EBUSY; | 3540 | int ret = -EBUSY; |
3535 | int enlarge = 0; | 3541 | int enlarge = 0; |
3536 | 3542 | ||
3537 | /* see mem_cgroup_resize_res_limit */ | 3543 | /* see mem_cgroup_resize_res_limit */ |
3538 | retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; | 3544 | retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; |
3539 | oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); | 3545 | oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); |
3540 | while (retry_count) { | 3546 | while (retry_count) { |
3541 | if (signal_pending(current)) { | 3547 | if (signal_pending(current)) { |
3542 | ret = -EINTR; | 3548 | ret = -EINTR; |
3543 | break; | 3549 | break; |
3544 | } | 3550 | } |
3545 | /* | 3551 | /* |
3546 | * Rather than hide all in some function, I do this in | 3552 | * Rather than hide all in some function, I do this in |
3547 | * open coded manner. You see what this really does. | 3553 | * open coded manner. You see what this really does. |
3548 | * We have to guarantee memcg->res.limit <= memcg->memsw.limit. | 3554 | * We have to guarantee memcg->res.limit <= memcg->memsw.limit. |
3549 | */ | 3555 | */ |
3550 | mutex_lock(&set_limit_mutex); | 3556 | mutex_lock(&set_limit_mutex); |
3551 | memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); | 3557 | memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); |
3552 | if (memlimit > val) { | 3558 | if (memlimit > val) { |
3553 | ret = -EINVAL; | 3559 | ret = -EINVAL; |
3554 | mutex_unlock(&set_limit_mutex); | 3560 | mutex_unlock(&set_limit_mutex); |
3555 | break; | 3561 | break; |
3556 | } | 3562 | } |
3557 | memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | 3563 | memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); |
3558 | if (memswlimit < val) | 3564 | if (memswlimit < val) |
3559 | enlarge = 1; | 3565 | enlarge = 1; |
3560 | ret = res_counter_set_limit(&memcg->memsw, val); | 3566 | ret = res_counter_set_limit(&memcg->memsw, val); |
3561 | if (!ret) { | 3567 | if (!ret) { |
3562 | if (memlimit == val) | 3568 | if (memlimit == val) |
3563 | memcg->memsw_is_minimum = true; | 3569 | memcg->memsw_is_minimum = true; |
3564 | else | 3570 | else |
3565 | memcg->memsw_is_minimum = false; | 3571 | memcg->memsw_is_minimum = false; |
3566 | } | 3572 | } |
3567 | mutex_unlock(&set_limit_mutex); | 3573 | mutex_unlock(&set_limit_mutex); |
3568 | 3574 | ||
3569 | if (!ret) | 3575 | if (!ret) |
3570 | break; | 3576 | break; |
3571 | 3577 | ||
3572 | mem_cgroup_reclaim(memcg, GFP_KERNEL, | 3578 | mem_cgroup_reclaim(memcg, GFP_KERNEL, |
3573 | MEM_CGROUP_RECLAIM_NOSWAP | | 3579 | MEM_CGROUP_RECLAIM_NOSWAP | |
3574 | MEM_CGROUP_RECLAIM_SHRINK); | 3580 | MEM_CGROUP_RECLAIM_SHRINK); |
3575 | curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); | 3581 | curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); |
3576 | /* Usage is reduced ? */ | 3582 | /* Usage is reduced ? */ |
3577 | if (curusage >= oldusage) | 3583 | if (curusage >= oldusage) |
3578 | retry_count--; | 3584 | retry_count--; |
3579 | else | 3585 | else |
3580 | oldusage = curusage; | 3586 | oldusage = curusage; |
3581 | } | 3587 | } |
3582 | if (!ret && enlarge) | 3588 | if (!ret && enlarge) |
3583 | memcg_oom_recover(memcg); | 3589 | memcg_oom_recover(memcg); |
3584 | return ret; | 3590 | return ret; |
3585 | } | 3591 | } |
3586 | 3592 | ||
3587 | unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, | 3593 | unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, |
3588 | gfp_t gfp_mask, | 3594 | gfp_t gfp_mask, |
3589 | unsigned long *total_scanned) | 3595 | unsigned long *total_scanned) |
3590 | { | 3596 | { |
3591 | unsigned long nr_reclaimed = 0; | 3597 | unsigned long nr_reclaimed = 0; |
3592 | struct mem_cgroup_per_zone *mz, *next_mz = NULL; | 3598 | struct mem_cgroup_per_zone *mz, *next_mz = NULL; |
3593 | unsigned long reclaimed; | 3599 | unsigned long reclaimed; |
3594 | int loop = 0; | 3600 | int loop = 0; |
3595 | struct mem_cgroup_tree_per_zone *mctz; | 3601 | struct mem_cgroup_tree_per_zone *mctz; |
3596 | unsigned long long excess; | 3602 | unsigned long long excess; |
3597 | unsigned long nr_scanned; | 3603 | unsigned long nr_scanned; |
3598 | 3604 | ||
3599 | if (order > 0) | 3605 | if (order > 0) |
3600 | return 0; | 3606 | return 0; |
3601 | 3607 | ||
3602 | mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); | 3608 | mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); |
3603 | /* | 3609 | /* |
3604 | * This loop can run a while, specially if mem_cgroup's continuously | 3610 | * This loop can run a while, specially if mem_cgroup's continuously |
3605 | * keep exceeding their soft limit and putting the system under | 3611 | * keep exceeding their soft limit and putting the system under |
3606 | * pressure | 3612 | * pressure |
3607 | */ | 3613 | */ |
3608 | do { | 3614 | do { |
3609 | if (next_mz) | 3615 | if (next_mz) |
3610 | mz = next_mz; | 3616 | mz = next_mz; |
3611 | else | 3617 | else |
3612 | mz = mem_cgroup_largest_soft_limit_node(mctz); | 3618 | mz = mem_cgroup_largest_soft_limit_node(mctz); |
3613 | if (!mz) | 3619 | if (!mz) |
3614 | break; | 3620 | break; |
3615 | 3621 | ||
3616 | nr_scanned = 0; | 3622 | nr_scanned = 0; |
3617 | reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, | 3623 | reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, |
3618 | gfp_mask, &nr_scanned); | 3624 | gfp_mask, &nr_scanned); |
3619 | nr_reclaimed += reclaimed; | 3625 | nr_reclaimed += reclaimed; |
3620 | *total_scanned += nr_scanned; | 3626 | *total_scanned += nr_scanned; |
3621 | spin_lock(&mctz->lock); | 3627 | spin_lock(&mctz->lock); |
3622 | 3628 | ||
3623 | /* | 3629 | /* |
3624 | * If we failed to reclaim anything from this memory cgroup | 3630 | * If we failed to reclaim anything from this memory cgroup |
3625 | * it is time to move on to the next cgroup | 3631 | * it is time to move on to the next cgroup |
3626 | */ | 3632 | */ |
3627 | next_mz = NULL; | 3633 | next_mz = NULL; |
3628 | if (!reclaimed) { | 3634 | if (!reclaimed) { |
3629 | do { | 3635 | do { |
3630 | /* | 3636 | /* |
3631 | * Loop until we find yet another one. | 3637 | * Loop until we find yet another one. |
3632 | * | 3638 | * |
3633 | * By the time we get the soft_limit lock | 3639 | * By the time we get the soft_limit lock |
3634 | * again, someone might have aded the | 3640 | * again, someone might have aded the |
3635 | * group back on the RB tree. Iterate to | 3641 | * group back on the RB tree. Iterate to |
3636 | * make sure we get a different mem. | 3642 | * make sure we get a different mem. |
3637 | * mem_cgroup_largest_soft_limit_node returns | 3643 | * mem_cgroup_largest_soft_limit_node returns |
3638 | * NULL if no other cgroup is present on | 3644 | * NULL if no other cgroup is present on |
3639 | * the tree | 3645 | * the tree |
3640 | */ | 3646 | */ |
3641 | next_mz = | 3647 | next_mz = |
3642 | __mem_cgroup_largest_soft_limit_node(mctz); | 3648 | __mem_cgroup_largest_soft_limit_node(mctz); |
3643 | if (next_mz == mz) | 3649 | if (next_mz == mz) |
3644 | css_put(&next_mz->memcg->css); | 3650 | css_put(&next_mz->memcg->css); |
3645 | else /* next_mz == NULL or other memcg */ | 3651 | else /* next_mz == NULL or other memcg */ |
3646 | break; | 3652 | break; |
3647 | } while (1); | 3653 | } while (1); |
3648 | } | 3654 | } |
3649 | __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); | 3655 | __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); |
3650 | excess = res_counter_soft_limit_excess(&mz->memcg->res); | 3656 | excess = res_counter_soft_limit_excess(&mz->memcg->res); |
3651 | /* | 3657 | /* |
3652 | * One school of thought says that we should not add | 3658 | * One school of thought says that we should not add |
3653 | * back the node to the tree if reclaim returns 0. | 3659 | * back the node to the tree if reclaim returns 0. |
3654 | * But our reclaim could return 0, simply because due | 3660 | * But our reclaim could return 0, simply because due |
3655 | * to priority we are exposing a smaller subset of | 3661 | * to priority we are exposing a smaller subset of |
3656 | * memory to reclaim from. Consider this as a longer | 3662 | * memory to reclaim from. Consider this as a longer |
3657 | * term TODO. | 3663 | * term TODO. |
3658 | */ | 3664 | */ |
3659 | /* If excess == 0, no tree ops */ | 3665 | /* If excess == 0, no tree ops */ |
3660 | __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess); | 3666 | __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess); |
3661 | spin_unlock(&mctz->lock); | 3667 | spin_unlock(&mctz->lock); |
3662 | css_put(&mz->memcg->css); | 3668 | css_put(&mz->memcg->css); |
3663 | loop++; | 3669 | loop++; |
3664 | /* | 3670 | /* |
3665 | * Could not reclaim anything and there are no more | 3671 | * Could not reclaim anything and there are no more |
3666 | * mem cgroups to try or we seem to be looping without | 3672 | * mem cgroups to try or we seem to be looping without |
3667 | * reclaiming anything. | 3673 | * reclaiming anything. |
3668 | */ | 3674 | */ |
3669 | if (!nr_reclaimed && | 3675 | if (!nr_reclaimed && |
3670 | (next_mz == NULL || | 3676 | (next_mz == NULL || |
3671 | loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) | 3677 | loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) |
3672 | break; | 3678 | break; |
3673 | } while (!nr_reclaimed); | 3679 | } while (!nr_reclaimed); |
3674 | if (next_mz) | 3680 | if (next_mz) |
3675 | css_put(&next_mz->memcg->css); | 3681 | css_put(&next_mz->memcg->css); |
3676 | return nr_reclaimed; | 3682 | return nr_reclaimed; |
3677 | } | 3683 | } |
3678 | 3684 | ||
3679 | /* | 3685 | /* |
3680 | * Traverse a specified page_cgroup list and try to drop them all. This doesn't | 3686 | * Traverse a specified page_cgroup list and try to drop them all. This doesn't |
3681 | * reclaim the pages page themselves - it just removes the page_cgroups. | 3687 | * reclaim the pages page themselves - it just removes the page_cgroups. |
3682 | * Returns true if some page_cgroups were not freed, indicating that the caller | 3688 | * Returns true if some page_cgroups were not freed, indicating that the caller |
3683 | * must retry this operation. | 3689 | * must retry this operation. |
3684 | */ | 3690 | */ |
3685 | static bool mem_cgroup_force_empty_list(struct mem_cgroup *memcg, | 3691 | static bool mem_cgroup_force_empty_list(struct mem_cgroup *memcg, |
3686 | int node, int zid, enum lru_list lru) | 3692 | int node, int zid, enum lru_list lru) |
3687 | { | 3693 | { |
3688 | struct mem_cgroup_per_zone *mz; | 3694 | struct mem_cgroup_per_zone *mz; |
3689 | unsigned long flags, loop; | 3695 | unsigned long flags, loop; |
3690 | struct list_head *list; | 3696 | struct list_head *list; |
3691 | struct page *busy; | 3697 | struct page *busy; |
3692 | struct zone *zone; | 3698 | struct zone *zone; |
3693 | 3699 | ||
3694 | zone = &NODE_DATA(node)->node_zones[zid]; | 3700 | zone = &NODE_DATA(node)->node_zones[zid]; |
3695 | mz = mem_cgroup_zoneinfo(memcg, node, zid); | 3701 | mz = mem_cgroup_zoneinfo(memcg, node, zid); |
3696 | list = &mz->lruvec.lists[lru]; | 3702 | list = &mz->lruvec.lists[lru]; |
3697 | 3703 | ||
3698 | loop = mz->lru_size[lru]; | 3704 | loop = mz->lru_size[lru]; |
3699 | /* give some margin against EBUSY etc...*/ | 3705 | /* give some margin against EBUSY etc...*/ |
3700 | loop += 256; | 3706 | loop += 256; |
3701 | busy = NULL; | 3707 | busy = NULL; |
3702 | while (loop--) { | 3708 | while (loop--) { |
3703 | struct page_cgroup *pc; | 3709 | struct page_cgroup *pc; |
3704 | struct page *page; | 3710 | struct page *page; |
3705 | 3711 | ||
3706 | spin_lock_irqsave(&zone->lru_lock, flags); | 3712 | spin_lock_irqsave(&zone->lru_lock, flags); |
3707 | if (list_empty(list)) { | 3713 | if (list_empty(list)) { |
3708 | spin_unlock_irqrestore(&zone->lru_lock, flags); | 3714 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
3709 | break; | 3715 | break; |
3710 | } | 3716 | } |
3711 | page = list_entry(list->prev, struct page, lru); | 3717 | page = list_entry(list->prev, struct page, lru); |
3712 | if (busy == page) { | 3718 | if (busy == page) { |
3713 | list_move(&page->lru, list); | 3719 | list_move(&page->lru, list); |
3714 | busy = NULL; | 3720 | busy = NULL; |
3715 | spin_unlock_irqrestore(&zone->lru_lock, flags); | 3721 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
3716 | continue; | 3722 | continue; |
3717 | } | 3723 | } |
3718 | spin_unlock_irqrestore(&zone->lru_lock, flags); | 3724 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
3719 | 3725 | ||
3720 | pc = lookup_page_cgroup(page); | 3726 | pc = lookup_page_cgroup(page); |
3721 | 3727 | ||
3722 | if (mem_cgroup_move_parent(page, pc, memcg)) { | 3728 | if (mem_cgroup_move_parent(page, pc, memcg)) { |
3723 | /* found lock contention or "pc" is obsolete. */ | 3729 | /* found lock contention or "pc" is obsolete. */ |
3724 | busy = page; | 3730 | busy = page; |
3725 | cond_resched(); | 3731 | cond_resched(); |
3726 | } else | 3732 | } else |
3727 | busy = NULL; | 3733 | busy = NULL; |
3728 | } | 3734 | } |
3729 | return !list_empty(list); | 3735 | return !list_empty(list); |
3730 | } | 3736 | } |
3731 | 3737 | ||
3732 | /* | 3738 | /* |
3733 | * make mem_cgroup's charge to be 0 if there is no task. | 3739 | * make mem_cgroup's charge to be 0 if there is no task. |
3734 | * This enables deleting this mem_cgroup. | 3740 | * This enables deleting this mem_cgroup. |
3735 | */ | 3741 | */ |
3736 | static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all) | 3742 | static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all) |
3737 | { | 3743 | { |
3738 | int ret; | 3744 | int ret; |
3739 | int node, zid, shrink; | 3745 | int node, zid, shrink; |
3740 | int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | 3746 | int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; |
3741 | struct cgroup *cgrp = memcg->css.cgroup; | 3747 | struct cgroup *cgrp = memcg->css.cgroup; |
3742 | 3748 | ||
3743 | css_get(&memcg->css); | 3749 | css_get(&memcg->css); |
3744 | 3750 | ||
3745 | shrink = 0; | 3751 | shrink = 0; |
3746 | /* should free all ? */ | 3752 | /* should free all ? */ |
3747 | if (free_all) | 3753 | if (free_all) |
3748 | goto try_to_free; | 3754 | goto try_to_free; |
3749 | move_account: | 3755 | move_account: |
3750 | do { | 3756 | do { |
3751 | ret = -EBUSY; | 3757 | ret = -EBUSY; |
3752 | if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) | 3758 | if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) |
3753 | goto out; | 3759 | goto out; |
3754 | /* This is for making all *used* pages to be on LRU. */ | 3760 | /* This is for making all *used* pages to be on LRU. */ |
3755 | lru_add_drain_all(); | 3761 | lru_add_drain_all(); |
3756 | drain_all_stock_sync(memcg); | 3762 | drain_all_stock_sync(memcg); |
3757 | ret = 0; | 3763 | ret = 0; |
3758 | mem_cgroup_start_move(memcg); | 3764 | mem_cgroup_start_move(memcg); |
3759 | for_each_node_state(node, N_HIGH_MEMORY) { | 3765 | for_each_node_state(node, N_HIGH_MEMORY) { |
3760 | for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) { | 3766 | for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) { |
3761 | enum lru_list lru; | 3767 | enum lru_list lru; |
3762 | for_each_lru(lru) { | 3768 | for_each_lru(lru) { |
3763 | ret = mem_cgroup_force_empty_list(memcg, | 3769 | ret = mem_cgroup_force_empty_list(memcg, |
3764 | node, zid, lru); | 3770 | node, zid, lru); |
3765 | if (ret) | 3771 | if (ret) |
3766 | break; | 3772 | break; |
3767 | } | 3773 | } |
3768 | } | 3774 | } |
3769 | if (ret) | 3775 | if (ret) |
3770 | break; | 3776 | break; |
3771 | } | 3777 | } |
3772 | mem_cgroup_end_move(memcg); | 3778 | mem_cgroup_end_move(memcg); |
3773 | memcg_oom_recover(memcg); | 3779 | memcg_oom_recover(memcg); |
3774 | cond_resched(); | 3780 | cond_resched(); |
3775 | /* "ret" should also be checked to ensure all lists are empty. */ | 3781 | /* "ret" should also be checked to ensure all lists are empty. */ |
3776 | } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret); | 3782 | } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret); |
3777 | out: | 3783 | out: |
3778 | css_put(&memcg->css); | 3784 | css_put(&memcg->css); |
3779 | return ret; | 3785 | return ret; |
3780 | 3786 | ||
3781 | try_to_free: | 3787 | try_to_free: |
3782 | /* returns EBUSY if there is a task or if we come here twice. */ | 3788 | /* returns EBUSY if there is a task or if we come here twice. */ |
3783 | if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) { | 3789 | if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) { |
3784 | ret = -EBUSY; | 3790 | ret = -EBUSY; |
3785 | goto out; | 3791 | goto out; |
3786 | } | 3792 | } |
3787 | /* we call try-to-free pages for make this cgroup empty */ | 3793 | /* we call try-to-free pages for make this cgroup empty */ |
3788 | lru_add_drain_all(); | 3794 | lru_add_drain_all(); |
3789 | /* try to free all pages in this cgroup */ | 3795 | /* try to free all pages in this cgroup */ |
3790 | shrink = 1; | 3796 | shrink = 1; |
3791 | while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) { | 3797 | while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) { |
3792 | int progress; | 3798 | int progress; |
3793 | 3799 | ||
3794 | if (signal_pending(current)) { | 3800 | if (signal_pending(current)) { |
3795 | ret = -EINTR; | 3801 | ret = -EINTR; |
3796 | goto out; | 3802 | goto out; |
3797 | } | 3803 | } |
3798 | progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, | 3804 | progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, |
3799 | false); | 3805 | false); |
3800 | if (!progress) { | 3806 | if (!progress) { |
3801 | nr_retries--; | 3807 | nr_retries--; |
3802 | /* maybe some writeback is necessary */ | 3808 | /* maybe some writeback is necessary */ |
3803 | congestion_wait(BLK_RW_ASYNC, HZ/10); | 3809 | congestion_wait(BLK_RW_ASYNC, HZ/10); |
3804 | } | 3810 | } |
3805 | 3811 | ||
3806 | } | 3812 | } |
3807 | lru_add_drain(); | 3813 | lru_add_drain(); |
3808 | /* try move_account...there may be some *locked* pages. */ | 3814 | /* try move_account...there may be some *locked* pages. */ |
3809 | goto move_account; | 3815 | goto move_account; |
3810 | } | 3816 | } |
3811 | 3817 | ||
3812 | static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event) | 3818 | static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event) |
3813 | { | 3819 | { |
3814 | return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true); | 3820 | return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true); |
3815 | } | 3821 | } |
3816 | 3822 | ||
3817 | 3823 | ||
3818 | static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft) | 3824 | static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft) |
3819 | { | 3825 | { |
3820 | return mem_cgroup_from_cont(cont)->use_hierarchy; | 3826 | return mem_cgroup_from_cont(cont)->use_hierarchy; |
3821 | } | 3827 | } |
3822 | 3828 | ||
3823 | static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft, | 3829 | static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft, |
3824 | u64 val) | 3830 | u64 val) |
3825 | { | 3831 | { |
3826 | int retval = 0; | 3832 | int retval = 0; |
3827 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); | 3833 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); |
3828 | struct cgroup *parent = cont->parent; | 3834 | struct cgroup *parent = cont->parent; |
3829 | struct mem_cgroup *parent_memcg = NULL; | 3835 | struct mem_cgroup *parent_memcg = NULL; |
3830 | 3836 | ||
3831 | if (parent) | 3837 | if (parent) |
3832 | parent_memcg = mem_cgroup_from_cont(parent); | 3838 | parent_memcg = mem_cgroup_from_cont(parent); |
3833 | 3839 | ||
3834 | cgroup_lock(); | 3840 | cgroup_lock(); |
3835 | 3841 | ||
3836 | if (memcg->use_hierarchy == val) | 3842 | if (memcg->use_hierarchy == val) |
3837 | goto out; | 3843 | goto out; |
3838 | 3844 | ||
3839 | /* | 3845 | /* |
3840 | * If parent's use_hierarchy is set, we can't make any modifications | 3846 | * If parent's use_hierarchy is set, we can't make any modifications |
3841 | * in the child subtrees. If it is unset, then the change can | 3847 | * in the child subtrees. If it is unset, then the change can |
3842 | * occur, provided the current cgroup has no children. | 3848 | * occur, provided the current cgroup has no children. |
3843 | * | 3849 | * |
3844 | * For the root cgroup, parent_mem is NULL, we allow value to be | 3850 | * For the root cgroup, parent_mem is NULL, we allow value to be |
3845 | * set if there are no children. | 3851 | * set if there are no children. |
3846 | */ | 3852 | */ |
3847 | if ((!parent_memcg || !parent_memcg->use_hierarchy) && | 3853 | if ((!parent_memcg || !parent_memcg->use_hierarchy) && |
3848 | (val == 1 || val == 0)) { | 3854 | (val == 1 || val == 0)) { |
3849 | if (list_empty(&cont->children)) | 3855 | if (list_empty(&cont->children)) |
3850 | memcg->use_hierarchy = val; | 3856 | memcg->use_hierarchy = val; |
3851 | else | 3857 | else |
3852 | retval = -EBUSY; | 3858 | retval = -EBUSY; |
3853 | } else | 3859 | } else |
3854 | retval = -EINVAL; | 3860 | retval = -EINVAL; |
3855 | 3861 | ||
3856 | out: | 3862 | out: |
3857 | cgroup_unlock(); | 3863 | cgroup_unlock(); |
3858 | 3864 | ||
3859 | return retval; | 3865 | return retval; |
3860 | } | 3866 | } |
3861 | 3867 | ||
3862 | 3868 | ||
3863 | static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg, | 3869 | static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg, |
3864 | enum mem_cgroup_stat_index idx) | 3870 | enum mem_cgroup_stat_index idx) |
3865 | { | 3871 | { |
3866 | struct mem_cgroup *iter; | 3872 | struct mem_cgroup *iter; |
3867 | long val = 0; | 3873 | long val = 0; |
3868 | 3874 | ||
3869 | /* Per-cpu values can be negative, use a signed accumulator */ | 3875 | /* Per-cpu values can be negative, use a signed accumulator */ |
3870 | for_each_mem_cgroup_tree(iter, memcg) | 3876 | for_each_mem_cgroup_tree(iter, memcg) |
3871 | val += mem_cgroup_read_stat(iter, idx); | 3877 | val += mem_cgroup_read_stat(iter, idx); |
3872 | 3878 | ||
3873 | if (val < 0) /* race ? */ | 3879 | if (val < 0) /* race ? */ |
3874 | val = 0; | 3880 | val = 0; |
3875 | return val; | 3881 | return val; |
3876 | } | 3882 | } |
3877 | 3883 | ||
3878 | static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) | 3884 | static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) |
3879 | { | 3885 | { |
3880 | u64 val; | 3886 | u64 val; |
3881 | 3887 | ||
3882 | if (!mem_cgroup_is_root(memcg)) { | 3888 | if (!mem_cgroup_is_root(memcg)) { |
3883 | if (!swap) | 3889 | if (!swap) |
3884 | return res_counter_read_u64(&memcg->res, RES_USAGE); | 3890 | return res_counter_read_u64(&memcg->res, RES_USAGE); |
3885 | else | 3891 | else |
3886 | return res_counter_read_u64(&memcg->memsw, RES_USAGE); | 3892 | return res_counter_read_u64(&memcg->memsw, RES_USAGE); |
3887 | } | 3893 | } |
3888 | 3894 | ||
3889 | val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE); | 3895 | val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE); |
3890 | val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS); | 3896 | val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS); |
3891 | 3897 | ||
3892 | if (swap) | 3898 | if (swap) |
3893 | val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP); | 3899 | val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP); |
3894 | 3900 | ||
3895 | return val << PAGE_SHIFT; | 3901 | return val << PAGE_SHIFT; |
3896 | } | 3902 | } |
3897 | 3903 | ||
3898 | static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft, | 3904 | static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft, |
3899 | struct file *file, char __user *buf, | 3905 | struct file *file, char __user *buf, |
3900 | size_t nbytes, loff_t *ppos) | 3906 | size_t nbytes, loff_t *ppos) |
3901 | { | 3907 | { |
3902 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); | 3908 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); |
3903 | char str[64]; | 3909 | char str[64]; |
3904 | u64 val; | 3910 | u64 val; |
3905 | int type, name, len; | 3911 | int type, name, len; |
3906 | 3912 | ||
3907 | type = MEMFILE_TYPE(cft->private); | 3913 | type = MEMFILE_TYPE(cft->private); |
3908 | name = MEMFILE_ATTR(cft->private); | 3914 | name = MEMFILE_ATTR(cft->private); |
3909 | 3915 | ||
3910 | if (!do_swap_account && type == _MEMSWAP) | 3916 | if (!do_swap_account && type == _MEMSWAP) |
3911 | return -EOPNOTSUPP; | 3917 | return -EOPNOTSUPP; |
3912 | 3918 | ||
3913 | switch (type) { | 3919 | switch (type) { |
3914 | case _MEM: | 3920 | case _MEM: |
3915 | if (name == RES_USAGE) | 3921 | if (name == RES_USAGE) |
3916 | val = mem_cgroup_usage(memcg, false); | 3922 | val = mem_cgroup_usage(memcg, false); |
3917 | else | 3923 | else |
3918 | val = res_counter_read_u64(&memcg->res, name); | 3924 | val = res_counter_read_u64(&memcg->res, name); |
3919 | break; | 3925 | break; |
3920 | case _MEMSWAP: | 3926 | case _MEMSWAP: |
3921 | if (name == RES_USAGE) | 3927 | if (name == RES_USAGE) |
3922 | val = mem_cgroup_usage(memcg, true); | 3928 | val = mem_cgroup_usage(memcg, true); |
3923 | else | 3929 | else |
3924 | val = res_counter_read_u64(&memcg->memsw, name); | 3930 | val = res_counter_read_u64(&memcg->memsw, name); |
3925 | break; | 3931 | break; |
3926 | default: | 3932 | default: |
3927 | BUG(); | 3933 | BUG(); |
3928 | } | 3934 | } |
3929 | 3935 | ||
3930 | len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val); | 3936 | len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val); |
3931 | return simple_read_from_buffer(buf, nbytes, ppos, str, len); | 3937 | return simple_read_from_buffer(buf, nbytes, ppos, str, len); |
3932 | } | 3938 | } |
3933 | /* | 3939 | /* |
3934 | * The user of this function is... | 3940 | * The user of this function is... |
3935 | * RES_LIMIT. | 3941 | * RES_LIMIT. |
3936 | */ | 3942 | */ |
3937 | static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, | 3943 | static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, |
3938 | const char *buffer) | 3944 | const char *buffer) |
3939 | { | 3945 | { |
3940 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); | 3946 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); |
3941 | int type, name; | 3947 | int type, name; |
3942 | unsigned long long val; | 3948 | unsigned long long val; |
3943 | int ret; | 3949 | int ret; |
3944 | 3950 | ||
3945 | type = MEMFILE_TYPE(cft->private); | 3951 | type = MEMFILE_TYPE(cft->private); |
3946 | name = MEMFILE_ATTR(cft->private); | 3952 | name = MEMFILE_ATTR(cft->private); |
3947 | 3953 | ||
3948 | if (!do_swap_account && type == _MEMSWAP) | 3954 | if (!do_swap_account && type == _MEMSWAP) |
3949 | return -EOPNOTSUPP; | 3955 | return -EOPNOTSUPP; |
3950 | 3956 | ||
3951 | switch (name) { | 3957 | switch (name) { |
3952 | case RES_LIMIT: | 3958 | case RES_LIMIT: |
3953 | if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ | 3959 | if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ |
3954 | ret = -EINVAL; | 3960 | ret = -EINVAL; |
3955 | break; | 3961 | break; |
3956 | } | 3962 | } |
3957 | /* This function does all necessary parse...reuse it */ | 3963 | /* This function does all necessary parse...reuse it */ |
3958 | ret = res_counter_memparse_write_strategy(buffer, &val); | 3964 | ret = res_counter_memparse_write_strategy(buffer, &val); |
3959 | if (ret) | 3965 | if (ret) |
3960 | break; | 3966 | break; |
3961 | if (type == _MEM) | 3967 | if (type == _MEM) |
3962 | ret = mem_cgroup_resize_limit(memcg, val); | 3968 | ret = mem_cgroup_resize_limit(memcg, val); |
3963 | else | 3969 | else |
3964 | ret = mem_cgroup_resize_memsw_limit(memcg, val); | 3970 | ret = mem_cgroup_resize_memsw_limit(memcg, val); |
3965 | break; | 3971 | break; |
3966 | case RES_SOFT_LIMIT: | 3972 | case RES_SOFT_LIMIT: |
3967 | ret = res_counter_memparse_write_strategy(buffer, &val); | 3973 | ret = res_counter_memparse_write_strategy(buffer, &val); |
3968 | if (ret) | 3974 | if (ret) |
3969 | break; | 3975 | break; |
3970 | /* | 3976 | /* |
3971 | * For memsw, soft limits are hard to implement in terms | 3977 | * For memsw, soft limits are hard to implement in terms |
3972 | * of semantics, for now, we support soft limits for | 3978 | * of semantics, for now, we support soft limits for |
3973 | * control without swap | 3979 | * control without swap |
3974 | */ | 3980 | */ |
3975 | if (type == _MEM) | 3981 | if (type == _MEM) |
3976 | ret = res_counter_set_soft_limit(&memcg->res, val); | 3982 | ret = res_counter_set_soft_limit(&memcg->res, val); |
3977 | else | 3983 | else |
3978 | ret = -EINVAL; | 3984 | ret = -EINVAL; |
3979 | break; | 3985 | break; |
3980 | default: | 3986 | default: |
3981 | ret = -EINVAL; /* should be BUG() ? */ | 3987 | ret = -EINVAL; /* should be BUG() ? */ |
3982 | break; | 3988 | break; |
3983 | } | 3989 | } |
3984 | return ret; | 3990 | return ret; |
3985 | } | 3991 | } |
3986 | 3992 | ||
3987 | static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, | 3993 | static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, |
3988 | unsigned long long *mem_limit, unsigned long long *memsw_limit) | 3994 | unsigned long long *mem_limit, unsigned long long *memsw_limit) |
3989 | { | 3995 | { |
3990 | struct cgroup *cgroup; | 3996 | struct cgroup *cgroup; |
3991 | unsigned long long min_limit, min_memsw_limit, tmp; | 3997 | unsigned long long min_limit, min_memsw_limit, tmp; |
3992 | 3998 | ||
3993 | min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); | 3999 | min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); |
3994 | min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | 4000 | min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); |
3995 | cgroup = memcg->css.cgroup; | 4001 | cgroup = memcg->css.cgroup; |
3996 | if (!memcg->use_hierarchy) | 4002 | if (!memcg->use_hierarchy) |
3997 | goto out; | 4003 | goto out; |
3998 | 4004 | ||
3999 | while (cgroup->parent) { | 4005 | while (cgroup->parent) { |
4000 | cgroup = cgroup->parent; | 4006 | cgroup = cgroup->parent; |
4001 | memcg = mem_cgroup_from_cont(cgroup); | 4007 | memcg = mem_cgroup_from_cont(cgroup); |
4002 | if (!memcg->use_hierarchy) | 4008 | if (!memcg->use_hierarchy) |
4003 | break; | 4009 | break; |
4004 | tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); | 4010 | tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); |
4005 | min_limit = min(min_limit, tmp); | 4011 | min_limit = min(min_limit, tmp); |
4006 | tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | 4012 | tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); |
4007 | min_memsw_limit = min(min_memsw_limit, tmp); | 4013 | min_memsw_limit = min(min_memsw_limit, tmp); |
4008 | } | 4014 | } |
4009 | out: | 4015 | out: |
4010 | *mem_limit = min_limit; | 4016 | *mem_limit = min_limit; |
4011 | *memsw_limit = min_memsw_limit; | 4017 | *memsw_limit = min_memsw_limit; |
4012 | } | 4018 | } |
4013 | 4019 | ||
4014 | static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) | 4020 | static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) |
4015 | { | 4021 | { |
4016 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); | 4022 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); |
4017 | int type, name; | 4023 | int type, name; |
4018 | 4024 | ||
4019 | type = MEMFILE_TYPE(event); | 4025 | type = MEMFILE_TYPE(event); |
4020 | name = MEMFILE_ATTR(event); | 4026 | name = MEMFILE_ATTR(event); |
4021 | 4027 | ||
4022 | if (!do_swap_account && type == _MEMSWAP) | 4028 | if (!do_swap_account && type == _MEMSWAP) |
4023 | return -EOPNOTSUPP; | 4029 | return -EOPNOTSUPP; |
4024 | 4030 | ||
4025 | switch (name) { | 4031 | switch (name) { |
4026 | case RES_MAX_USAGE: | 4032 | case RES_MAX_USAGE: |
4027 | if (type == _MEM) | 4033 | if (type == _MEM) |
4028 | res_counter_reset_max(&memcg->res); | 4034 | res_counter_reset_max(&memcg->res); |
4029 | else | 4035 | else |
4030 | res_counter_reset_max(&memcg->memsw); | 4036 | res_counter_reset_max(&memcg->memsw); |
4031 | break; | 4037 | break; |
4032 | case RES_FAILCNT: | 4038 | case RES_FAILCNT: |
4033 | if (type == _MEM) | 4039 | if (type == _MEM) |
4034 | res_counter_reset_failcnt(&memcg->res); | 4040 | res_counter_reset_failcnt(&memcg->res); |
4035 | else | 4041 | else |
4036 | res_counter_reset_failcnt(&memcg->memsw); | 4042 | res_counter_reset_failcnt(&memcg->memsw); |
4037 | break; | 4043 | break; |
4038 | } | 4044 | } |
4039 | 4045 | ||
4040 | return 0; | 4046 | return 0; |
4041 | } | 4047 | } |
4042 | 4048 | ||
4043 | static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp, | 4049 | static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp, |
4044 | struct cftype *cft) | 4050 | struct cftype *cft) |
4045 | { | 4051 | { |
4046 | return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate; | 4052 | return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate; |
4047 | } | 4053 | } |
4048 | 4054 | ||
4049 | #ifdef CONFIG_MMU | 4055 | #ifdef CONFIG_MMU |
4050 | static int mem_cgroup_move_charge_write(struct cgroup *cgrp, | 4056 | static int mem_cgroup_move_charge_write(struct cgroup *cgrp, |
4051 | struct cftype *cft, u64 val) | 4057 | struct cftype *cft, u64 val) |
4052 | { | 4058 | { |
4053 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | 4059 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); |
4054 | 4060 | ||
4055 | if (val >= (1 << NR_MOVE_TYPE)) | 4061 | if (val >= (1 << NR_MOVE_TYPE)) |
4056 | return -EINVAL; | 4062 | return -EINVAL; |
4057 | /* | 4063 | /* |
4058 | * We check this value several times in both in can_attach() and | 4064 | * We check this value several times in both in can_attach() and |
4059 | * attach(), so we need cgroup lock to prevent this value from being | 4065 | * attach(), so we need cgroup lock to prevent this value from being |
4060 | * inconsistent. | 4066 | * inconsistent. |
4061 | */ | 4067 | */ |
4062 | cgroup_lock(); | 4068 | cgroup_lock(); |
4063 | memcg->move_charge_at_immigrate = val; | 4069 | memcg->move_charge_at_immigrate = val; |
4064 | cgroup_unlock(); | 4070 | cgroup_unlock(); |
4065 | 4071 | ||
4066 | return 0; | 4072 | return 0; |
4067 | } | 4073 | } |
4068 | #else | 4074 | #else |
4069 | static int mem_cgroup_move_charge_write(struct cgroup *cgrp, | 4075 | static int mem_cgroup_move_charge_write(struct cgroup *cgrp, |
4070 | struct cftype *cft, u64 val) | 4076 | struct cftype *cft, u64 val) |
4071 | { | 4077 | { |
4072 | return -ENOSYS; | 4078 | return -ENOSYS; |
4073 | } | 4079 | } |
4074 | #endif | 4080 | #endif |
4075 | 4081 | ||
4076 | #ifdef CONFIG_NUMA | 4082 | #ifdef CONFIG_NUMA |
4077 | static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft, | 4083 | static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft, |
4078 | struct seq_file *m) | 4084 | struct seq_file *m) |
4079 | { | 4085 | { |
4080 | int nid; | 4086 | int nid; |
4081 | unsigned long total_nr, file_nr, anon_nr, unevictable_nr; | 4087 | unsigned long total_nr, file_nr, anon_nr, unevictable_nr; |
4082 | unsigned long node_nr; | 4088 | unsigned long node_nr; |
4083 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); | 4089 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); |
4084 | 4090 | ||
4085 | total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL); | 4091 | total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL); |
4086 | seq_printf(m, "total=%lu", total_nr); | 4092 | seq_printf(m, "total=%lu", total_nr); |
4087 | for_each_node_state(nid, N_HIGH_MEMORY) { | 4093 | for_each_node_state(nid, N_HIGH_MEMORY) { |
4088 | node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL); | 4094 | node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL); |
4089 | seq_printf(m, " N%d=%lu", nid, node_nr); | 4095 | seq_printf(m, " N%d=%lu", nid, node_nr); |
4090 | } | 4096 | } |
4091 | seq_putc(m, '\n'); | 4097 | seq_putc(m, '\n'); |
4092 | 4098 | ||
4093 | file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE); | 4099 | file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE); |
4094 | seq_printf(m, "file=%lu", file_nr); | 4100 | seq_printf(m, "file=%lu", file_nr); |
4095 | for_each_node_state(nid, N_HIGH_MEMORY) { | 4101 | for_each_node_state(nid, N_HIGH_MEMORY) { |
4096 | node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, | 4102 | node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, |
4097 | LRU_ALL_FILE); | 4103 | LRU_ALL_FILE); |
4098 | seq_printf(m, " N%d=%lu", nid, node_nr); | 4104 | seq_printf(m, " N%d=%lu", nid, node_nr); |
4099 | } | 4105 | } |
4100 | seq_putc(m, '\n'); | 4106 | seq_putc(m, '\n'); |
4101 | 4107 | ||
4102 | anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON); | 4108 | anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON); |
4103 | seq_printf(m, "anon=%lu", anon_nr); | 4109 | seq_printf(m, "anon=%lu", anon_nr); |
4104 | for_each_node_state(nid, N_HIGH_MEMORY) { | 4110 | for_each_node_state(nid, N_HIGH_MEMORY) { |
4105 | node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, | 4111 | node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, |
4106 | LRU_ALL_ANON); | 4112 | LRU_ALL_ANON); |
4107 | seq_printf(m, " N%d=%lu", nid, node_nr); | 4113 | seq_printf(m, " N%d=%lu", nid, node_nr); |
4108 | } | 4114 | } |
4109 | seq_putc(m, '\n'); | 4115 | seq_putc(m, '\n'); |
4110 | 4116 | ||
4111 | unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE)); | 4117 | unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE)); |
4112 | seq_printf(m, "unevictable=%lu", unevictable_nr); | 4118 | seq_printf(m, "unevictable=%lu", unevictable_nr); |
4113 | for_each_node_state(nid, N_HIGH_MEMORY) { | 4119 | for_each_node_state(nid, N_HIGH_MEMORY) { |
4114 | node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, | 4120 | node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, |
4115 | BIT(LRU_UNEVICTABLE)); | 4121 | BIT(LRU_UNEVICTABLE)); |
4116 | seq_printf(m, " N%d=%lu", nid, node_nr); | 4122 | seq_printf(m, " N%d=%lu", nid, node_nr); |
4117 | } | 4123 | } |
4118 | seq_putc(m, '\n'); | 4124 | seq_putc(m, '\n'); |
4119 | return 0; | 4125 | return 0; |
4120 | } | 4126 | } |
4121 | #endif /* CONFIG_NUMA */ | 4127 | #endif /* CONFIG_NUMA */ |
4122 | 4128 | ||
4123 | static const char * const mem_cgroup_lru_names[] = { | 4129 | static const char * const mem_cgroup_lru_names[] = { |
4124 | "inactive_anon", | 4130 | "inactive_anon", |
4125 | "active_anon", | 4131 | "active_anon", |
4126 | "inactive_file", | 4132 | "inactive_file", |
4127 | "active_file", | 4133 | "active_file", |
4128 | "unevictable", | 4134 | "unevictable", |
4129 | }; | 4135 | }; |
4130 | 4136 | ||
4131 | static inline void mem_cgroup_lru_names_not_uptodate(void) | 4137 | static inline void mem_cgroup_lru_names_not_uptodate(void) |
4132 | { | 4138 | { |
4133 | BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); | 4139 | BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); |
4134 | } | 4140 | } |
4135 | 4141 | ||
4136 | static int memcg_stat_show(struct cgroup *cont, struct cftype *cft, | 4142 | static int memcg_stat_show(struct cgroup *cont, struct cftype *cft, |
4137 | struct seq_file *m) | 4143 | struct seq_file *m) |
4138 | { | 4144 | { |
4139 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); | 4145 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); |
4140 | struct mem_cgroup *mi; | 4146 | struct mem_cgroup *mi; |
4141 | unsigned int i; | 4147 | unsigned int i; |
4142 | 4148 | ||
4143 | for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { | 4149 | for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { |
4144 | if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) | 4150 | if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) |
4145 | continue; | 4151 | continue; |
4146 | seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i], | 4152 | seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i], |
4147 | mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); | 4153 | mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); |
4148 | } | 4154 | } |
4149 | 4155 | ||
4150 | for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) | 4156 | for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) |
4151 | seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], | 4157 | seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], |
4152 | mem_cgroup_read_events(memcg, i)); | 4158 | mem_cgroup_read_events(memcg, i)); |
4153 | 4159 | ||
4154 | for (i = 0; i < NR_LRU_LISTS; i++) | 4160 | for (i = 0; i < NR_LRU_LISTS; i++) |
4155 | seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], | 4161 | seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], |
4156 | mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); | 4162 | mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); |
4157 | 4163 | ||
4158 | /* Hierarchical information */ | 4164 | /* Hierarchical information */ |
4159 | { | 4165 | { |
4160 | unsigned long long limit, memsw_limit; | 4166 | unsigned long long limit, memsw_limit; |
4161 | memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit); | 4167 | memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit); |
4162 | seq_printf(m, "hierarchical_memory_limit %llu\n", limit); | 4168 | seq_printf(m, "hierarchical_memory_limit %llu\n", limit); |
4163 | if (do_swap_account) | 4169 | if (do_swap_account) |
4164 | seq_printf(m, "hierarchical_memsw_limit %llu\n", | 4170 | seq_printf(m, "hierarchical_memsw_limit %llu\n", |
4165 | memsw_limit); | 4171 | memsw_limit); |
4166 | } | 4172 | } |
4167 | 4173 | ||
4168 | for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { | 4174 | for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { |
4169 | long long val = 0; | 4175 | long long val = 0; |
4170 | 4176 | ||
4171 | if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) | 4177 | if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) |
4172 | continue; | 4178 | continue; |
4173 | for_each_mem_cgroup_tree(mi, memcg) | 4179 | for_each_mem_cgroup_tree(mi, memcg) |
4174 | val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; | 4180 | val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; |
4175 | seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val); | 4181 | seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val); |
4176 | } | 4182 | } |
4177 | 4183 | ||
4178 | for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { | 4184 | for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { |
4179 | unsigned long long val = 0; | 4185 | unsigned long long val = 0; |
4180 | 4186 | ||
4181 | for_each_mem_cgroup_tree(mi, memcg) | 4187 | for_each_mem_cgroup_tree(mi, memcg) |
4182 | val += mem_cgroup_read_events(mi, i); | 4188 | val += mem_cgroup_read_events(mi, i); |
4183 | seq_printf(m, "total_%s %llu\n", | 4189 | seq_printf(m, "total_%s %llu\n", |
4184 | mem_cgroup_events_names[i], val); | 4190 | mem_cgroup_events_names[i], val); |
4185 | } | 4191 | } |
4186 | 4192 | ||
4187 | for (i = 0; i < NR_LRU_LISTS; i++) { | 4193 | for (i = 0; i < NR_LRU_LISTS; i++) { |
4188 | unsigned long long val = 0; | 4194 | unsigned long long val = 0; |
4189 | 4195 | ||
4190 | for_each_mem_cgroup_tree(mi, memcg) | 4196 | for_each_mem_cgroup_tree(mi, memcg) |
4191 | val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; | 4197 | val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; |
4192 | seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); | 4198 | seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); |
4193 | } | 4199 | } |
4194 | 4200 | ||
4195 | #ifdef CONFIG_DEBUG_VM | 4201 | #ifdef CONFIG_DEBUG_VM |
4196 | { | 4202 | { |
4197 | int nid, zid; | 4203 | int nid, zid; |
4198 | struct mem_cgroup_per_zone *mz; | 4204 | struct mem_cgroup_per_zone *mz; |
4199 | struct zone_reclaim_stat *rstat; | 4205 | struct zone_reclaim_stat *rstat; |
4200 | unsigned long recent_rotated[2] = {0, 0}; | 4206 | unsigned long recent_rotated[2] = {0, 0}; |
4201 | unsigned long recent_scanned[2] = {0, 0}; | 4207 | unsigned long recent_scanned[2] = {0, 0}; |
4202 | 4208 | ||
4203 | for_each_online_node(nid) | 4209 | for_each_online_node(nid) |
4204 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | 4210 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { |
4205 | mz = mem_cgroup_zoneinfo(memcg, nid, zid); | 4211 | mz = mem_cgroup_zoneinfo(memcg, nid, zid); |
4206 | rstat = &mz->lruvec.reclaim_stat; | 4212 | rstat = &mz->lruvec.reclaim_stat; |
4207 | 4213 | ||
4208 | recent_rotated[0] += rstat->recent_rotated[0]; | 4214 | recent_rotated[0] += rstat->recent_rotated[0]; |
4209 | recent_rotated[1] += rstat->recent_rotated[1]; | 4215 | recent_rotated[1] += rstat->recent_rotated[1]; |
4210 | recent_scanned[0] += rstat->recent_scanned[0]; | 4216 | recent_scanned[0] += rstat->recent_scanned[0]; |
4211 | recent_scanned[1] += rstat->recent_scanned[1]; | 4217 | recent_scanned[1] += rstat->recent_scanned[1]; |
4212 | } | 4218 | } |
4213 | seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); | 4219 | seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); |
4214 | seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); | 4220 | seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); |
4215 | seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); | 4221 | seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); |
4216 | seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); | 4222 | seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); |
4217 | } | 4223 | } |
4218 | #endif | 4224 | #endif |
4219 | 4225 | ||
4220 | return 0; | 4226 | return 0; |
4221 | } | 4227 | } |
4222 | 4228 | ||
4223 | static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft) | 4229 | static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft) |
4224 | { | 4230 | { |
4225 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | 4231 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); |
4226 | 4232 | ||
4227 | return mem_cgroup_swappiness(memcg); | 4233 | return mem_cgroup_swappiness(memcg); |
4228 | } | 4234 | } |
4229 | 4235 | ||
4230 | static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft, | 4236 | static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft, |
4231 | u64 val) | 4237 | u64 val) |
4232 | { | 4238 | { |
4233 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | 4239 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); |
4234 | struct mem_cgroup *parent; | 4240 | struct mem_cgroup *parent; |
4235 | 4241 | ||
4236 | if (val > 100) | 4242 | if (val > 100) |
4237 | return -EINVAL; | 4243 | return -EINVAL; |
4238 | 4244 | ||
4239 | if (cgrp->parent == NULL) | 4245 | if (cgrp->parent == NULL) |
4240 | return -EINVAL; | 4246 | return -EINVAL; |
4241 | 4247 | ||
4242 | parent = mem_cgroup_from_cont(cgrp->parent); | 4248 | parent = mem_cgroup_from_cont(cgrp->parent); |
4243 | 4249 | ||
4244 | cgroup_lock(); | 4250 | cgroup_lock(); |
4245 | 4251 | ||
4246 | /* If under hierarchy, only empty-root can set this value */ | 4252 | /* If under hierarchy, only empty-root can set this value */ |
4247 | if ((parent->use_hierarchy) || | 4253 | if ((parent->use_hierarchy) || |
4248 | (memcg->use_hierarchy && !list_empty(&cgrp->children))) { | 4254 | (memcg->use_hierarchy && !list_empty(&cgrp->children))) { |
4249 | cgroup_unlock(); | 4255 | cgroup_unlock(); |
4250 | return -EINVAL; | 4256 | return -EINVAL; |
4251 | } | 4257 | } |
4252 | 4258 | ||
4253 | memcg->swappiness = val; | 4259 | memcg->swappiness = val; |
4254 | 4260 | ||
4255 | cgroup_unlock(); | 4261 | cgroup_unlock(); |
4256 | 4262 | ||
4257 | return 0; | 4263 | return 0; |
4258 | } | 4264 | } |
4259 | 4265 | ||
4260 | static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) | 4266 | static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) |
4261 | { | 4267 | { |
4262 | struct mem_cgroup_threshold_ary *t; | 4268 | struct mem_cgroup_threshold_ary *t; |
4263 | u64 usage; | 4269 | u64 usage; |
4264 | int i; | 4270 | int i; |
4265 | 4271 | ||
4266 | rcu_read_lock(); | 4272 | rcu_read_lock(); |
4267 | if (!swap) | 4273 | if (!swap) |
4268 | t = rcu_dereference(memcg->thresholds.primary); | 4274 | t = rcu_dereference(memcg->thresholds.primary); |
4269 | else | 4275 | else |
4270 | t = rcu_dereference(memcg->memsw_thresholds.primary); | 4276 | t = rcu_dereference(memcg->memsw_thresholds.primary); |
4271 | 4277 | ||
4272 | if (!t) | 4278 | if (!t) |
4273 | goto unlock; | 4279 | goto unlock; |
4274 | 4280 | ||
4275 | usage = mem_cgroup_usage(memcg, swap); | 4281 | usage = mem_cgroup_usage(memcg, swap); |
4276 | 4282 | ||
4277 | /* | 4283 | /* |
4278 | * current_threshold points to threshold just below or equal to usage. | 4284 | * current_threshold points to threshold just below or equal to usage. |
4279 | * If it's not true, a threshold was crossed after last | 4285 | * If it's not true, a threshold was crossed after last |
4280 | * call of __mem_cgroup_threshold(). | 4286 | * call of __mem_cgroup_threshold(). |
4281 | */ | 4287 | */ |
4282 | i = t->current_threshold; | 4288 | i = t->current_threshold; |
4283 | 4289 | ||
4284 | /* | 4290 | /* |
4285 | * Iterate backward over array of thresholds starting from | 4291 | * Iterate backward over array of thresholds starting from |
4286 | * current_threshold and check if a threshold is crossed. | 4292 | * current_threshold and check if a threshold is crossed. |
4287 | * If none of thresholds below usage is crossed, we read | 4293 | * If none of thresholds below usage is crossed, we read |
4288 | * only one element of the array here. | 4294 | * only one element of the array here. |
4289 | */ | 4295 | */ |
4290 | for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) | 4296 | for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) |
4291 | eventfd_signal(t->entries[i].eventfd, 1); | 4297 | eventfd_signal(t->entries[i].eventfd, 1); |
4292 | 4298 | ||
4293 | /* i = current_threshold + 1 */ | 4299 | /* i = current_threshold + 1 */ |
4294 | i++; | 4300 | i++; |
4295 | 4301 | ||
4296 | /* | 4302 | /* |
4297 | * Iterate forward over array of thresholds starting from | 4303 | * Iterate forward over array of thresholds starting from |
4298 | * current_threshold+1 and check if a threshold is crossed. | 4304 | * current_threshold+1 and check if a threshold is crossed. |
4299 | * If none of thresholds above usage is crossed, we read | 4305 | * If none of thresholds above usage is crossed, we read |
4300 | * only one element of the array here. | 4306 | * only one element of the array here. |
4301 | */ | 4307 | */ |
4302 | for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) | 4308 | for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) |
4303 | eventfd_signal(t->entries[i].eventfd, 1); | 4309 | eventfd_signal(t->entries[i].eventfd, 1); |
4304 | 4310 | ||
4305 | /* Update current_threshold */ | 4311 | /* Update current_threshold */ |
4306 | t->current_threshold = i - 1; | 4312 | t->current_threshold = i - 1; |
4307 | unlock: | 4313 | unlock: |
4308 | rcu_read_unlock(); | 4314 | rcu_read_unlock(); |
4309 | } | 4315 | } |
4310 | 4316 | ||
4311 | static void mem_cgroup_threshold(struct mem_cgroup *memcg) | 4317 | static void mem_cgroup_threshold(struct mem_cgroup *memcg) |
4312 | { | 4318 | { |
4313 | while (memcg) { | 4319 | while (memcg) { |
4314 | __mem_cgroup_threshold(memcg, false); | 4320 | __mem_cgroup_threshold(memcg, false); |
4315 | if (do_swap_account) | 4321 | if (do_swap_account) |
4316 | __mem_cgroup_threshold(memcg, true); | 4322 | __mem_cgroup_threshold(memcg, true); |
4317 | 4323 | ||
4318 | memcg = parent_mem_cgroup(memcg); | 4324 | memcg = parent_mem_cgroup(memcg); |
4319 | } | 4325 | } |
4320 | } | 4326 | } |
4321 | 4327 | ||
4322 | static int compare_thresholds(const void *a, const void *b) | 4328 | static int compare_thresholds(const void *a, const void *b) |
4323 | { | 4329 | { |
4324 | const struct mem_cgroup_threshold *_a = a; | 4330 | const struct mem_cgroup_threshold *_a = a; |
4325 | const struct mem_cgroup_threshold *_b = b; | 4331 | const struct mem_cgroup_threshold *_b = b; |
4326 | 4332 | ||
4327 | return _a->threshold - _b->threshold; | 4333 | return _a->threshold - _b->threshold; |
4328 | } | 4334 | } |
4329 | 4335 | ||
4330 | static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) | 4336 | static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) |
4331 | { | 4337 | { |
4332 | struct mem_cgroup_eventfd_list *ev; | 4338 | struct mem_cgroup_eventfd_list *ev; |
4333 | 4339 | ||
4334 | list_for_each_entry(ev, &memcg->oom_notify, list) | 4340 | list_for_each_entry(ev, &memcg->oom_notify, list) |
4335 | eventfd_signal(ev->eventfd, 1); | 4341 | eventfd_signal(ev->eventfd, 1); |
4336 | return 0; | 4342 | return 0; |
4337 | } | 4343 | } |
4338 | 4344 | ||
4339 | static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) | 4345 | static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) |
4340 | { | 4346 | { |
4341 | struct mem_cgroup *iter; | 4347 | struct mem_cgroup *iter; |
4342 | 4348 | ||
4343 | for_each_mem_cgroup_tree(iter, memcg) | 4349 | for_each_mem_cgroup_tree(iter, memcg) |
4344 | mem_cgroup_oom_notify_cb(iter); | 4350 | mem_cgroup_oom_notify_cb(iter); |
4345 | } | 4351 | } |
4346 | 4352 | ||
4347 | static int mem_cgroup_usage_register_event(struct cgroup *cgrp, | 4353 | static int mem_cgroup_usage_register_event(struct cgroup *cgrp, |
4348 | struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) | 4354 | struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) |
4349 | { | 4355 | { |
4350 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | 4356 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); |
4351 | struct mem_cgroup_thresholds *thresholds; | 4357 | struct mem_cgroup_thresholds *thresholds; |
4352 | struct mem_cgroup_threshold_ary *new; | 4358 | struct mem_cgroup_threshold_ary *new; |
4353 | int type = MEMFILE_TYPE(cft->private); | 4359 | int type = MEMFILE_TYPE(cft->private); |
4354 | u64 threshold, usage; | 4360 | u64 threshold, usage; |
4355 | int i, size, ret; | 4361 | int i, size, ret; |
4356 | 4362 | ||
4357 | ret = res_counter_memparse_write_strategy(args, &threshold); | 4363 | ret = res_counter_memparse_write_strategy(args, &threshold); |
4358 | if (ret) | 4364 | if (ret) |
4359 | return ret; | 4365 | return ret; |
4360 | 4366 | ||
4361 | mutex_lock(&memcg->thresholds_lock); | 4367 | mutex_lock(&memcg->thresholds_lock); |
4362 | 4368 | ||
4363 | if (type == _MEM) | 4369 | if (type == _MEM) |
4364 | thresholds = &memcg->thresholds; | 4370 | thresholds = &memcg->thresholds; |
4365 | else if (type == _MEMSWAP) | 4371 | else if (type == _MEMSWAP) |
4366 | thresholds = &memcg->memsw_thresholds; | 4372 | thresholds = &memcg->memsw_thresholds; |
4367 | else | 4373 | else |
4368 | BUG(); | 4374 | BUG(); |
4369 | 4375 | ||
4370 | usage = mem_cgroup_usage(memcg, type == _MEMSWAP); | 4376 | usage = mem_cgroup_usage(memcg, type == _MEMSWAP); |
4371 | 4377 | ||
4372 | /* Check if a threshold crossed before adding a new one */ | 4378 | /* Check if a threshold crossed before adding a new one */ |
4373 | if (thresholds->primary) | 4379 | if (thresholds->primary) |
4374 | __mem_cgroup_threshold(memcg, type == _MEMSWAP); | 4380 | __mem_cgroup_threshold(memcg, type == _MEMSWAP); |
4375 | 4381 | ||
4376 | size = thresholds->primary ? thresholds->primary->size + 1 : 1; | 4382 | size = thresholds->primary ? thresholds->primary->size + 1 : 1; |
4377 | 4383 | ||
4378 | /* Allocate memory for new array of thresholds */ | 4384 | /* Allocate memory for new array of thresholds */ |
4379 | new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), | 4385 | new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), |
4380 | GFP_KERNEL); | 4386 | GFP_KERNEL); |
4381 | if (!new) { | 4387 | if (!new) { |
4382 | ret = -ENOMEM; | 4388 | ret = -ENOMEM; |
4383 | goto unlock; | 4389 | goto unlock; |
4384 | } | 4390 | } |
4385 | new->size = size; | 4391 | new->size = size; |
4386 | 4392 | ||
4387 | /* Copy thresholds (if any) to new array */ | 4393 | /* Copy thresholds (if any) to new array */ |
4388 | if (thresholds->primary) { | 4394 | if (thresholds->primary) { |
4389 | memcpy(new->entries, thresholds->primary->entries, (size - 1) * | 4395 | memcpy(new->entries, thresholds->primary->entries, (size - 1) * |
4390 | sizeof(struct mem_cgroup_threshold)); | 4396 | sizeof(struct mem_cgroup_threshold)); |
4391 | } | 4397 | } |
4392 | 4398 | ||
4393 | /* Add new threshold */ | 4399 | /* Add new threshold */ |
4394 | new->entries[size - 1].eventfd = eventfd; | 4400 | new->entries[size - 1].eventfd = eventfd; |
4395 | new->entries[size - 1].threshold = threshold; | 4401 | new->entries[size - 1].threshold = threshold; |
4396 | 4402 | ||
4397 | /* Sort thresholds. Registering of new threshold isn't time-critical */ | 4403 | /* Sort thresholds. Registering of new threshold isn't time-critical */ |
4398 | sort(new->entries, size, sizeof(struct mem_cgroup_threshold), | 4404 | sort(new->entries, size, sizeof(struct mem_cgroup_threshold), |
4399 | compare_thresholds, NULL); | 4405 | compare_thresholds, NULL); |
4400 | 4406 | ||
4401 | /* Find current threshold */ | 4407 | /* Find current threshold */ |
4402 | new->current_threshold = -1; | 4408 | new->current_threshold = -1; |
4403 | for (i = 0; i < size; i++) { | 4409 | for (i = 0; i < size; i++) { |
4404 | if (new->entries[i].threshold <= usage) { | 4410 | if (new->entries[i].threshold <= usage) { |
4405 | /* | 4411 | /* |
4406 | * new->current_threshold will not be used until | 4412 | * new->current_threshold will not be used until |
4407 | * rcu_assign_pointer(), so it's safe to increment | 4413 | * rcu_assign_pointer(), so it's safe to increment |
4408 | * it here. | 4414 | * it here. |
4409 | */ | 4415 | */ |
4410 | ++new->current_threshold; | 4416 | ++new->current_threshold; |
4411 | } else | 4417 | } else |
4412 | break; | 4418 | break; |
4413 | } | 4419 | } |
4414 | 4420 | ||
4415 | /* Free old spare buffer and save old primary buffer as spare */ | 4421 | /* Free old spare buffer and save old primary buffer as spare */ |
4416 | kfree(thresholds->spare); | 4422 | kfree(thresholds->spare); |
4417 | thresholds->spare = thresholds->primary; | 4423 | thresholds->spare = thresholds->primary; |
4418 | 4424 | ||
4419 | rcu_assign_pointer(thresholds->primary, new); | 4425 | rcu_assign_pointer(thresholds->primary, new); |
4420 | 4426 | ||
4421 | /* To be sure that nobody uses thresholds */ | 4427 | /* To be sure that nobody uses thresholds */ |
4422 | synchronize_rcu(); | 4428 | synchronize_rcu(); |
4423 | 4429 | ||
4424 | unlock: | 4430 | unlock: |
4425 | mutex_unlock(&memcg->thresholds_lock); | 4431 | mutex_unlock(&memcg->thresholds_lock); |
4426 | 4432 | ||
4427 | return ret; | 4433 | return ret; |
4428 | } | 4434 | } |
4429 | 4435 | ||
4430 | static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp, | 4436 | static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp, |
4431 | struct cftype *cft, struct eventfd_ctx *eventfd) | 4437 | struct cftype *cft, struct eventfd_ctx *eventfd) |
4432 | { | 4438 | { |
4433 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | 4439 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); |
4434 | struct mem_cgroup_thresholds *thresholds; | 4440 | struct mem_cgroup_thresholds *thresholds; |
4435 | struct mem_cgroup_threshold_ary *new; | 4441 | struct mem_cgroup_threshold_ary *new; |
4436 | int type = MEMFILE_TYPE(cft->private); | 4442 | int type = MEMFILE_TYPE(cft->private); |
4437 | u64 usage; | 4443 | u64 usage; |
4438 | int i, j, size; | 4444 | int i, j, size; |
4439 | 4445 | ||
4440 | mutex_lock(&memcg->thresholds_lock); | 4446 | mutex_lock(&memcg->thresholds_lock); |
4441 | if (type == _MEM) | 4447 | if (type == _MEM) |
4442 | thresholds = &memcg->thresholds; | 4448 | thresholds = &memcg->thresholds; |
4443 | else if (type == _MEMSWAP) | 4449 | else if (type == _MEMSWAP) |
4444 | thresholds = &memcg->memsw_thresholds; | 4450 | thresholds = &memcg->memsw_thresholds; |
4445 | else | 4451 | else |
4446 | BUG(); | 4452 | BUG(); |
4447 | 4453 | ||
4448 | if (!thresholds->primary) | 4454 | if (!thresholds->primary) |
4449 | goto unlock; | 4455 | goto unlock; |
4450 | 4456 | ||
4451 | usage = mem_cgroup_usage(memcg, type == _MEMSWAP); | 4457 | usage = mem_cgroup_usage(memcg, type == _MEMSWAP); |
4452 | 4458 | ||
4453 | /* Check if a threshold crossed before removing */ | 4459 | /* Check if a threshold crossed before removing */ |
4454 | __mem_cgroup_threshold(memcg, type == _MEMSWAP); | 4460 | __mem_cgroup_threshold(memcg, type == _MEMSWAP); |
4455 | 4461 | ||
4456 | /* Calculate new number of threshold */ | 4462 | /* Calculate new number of threshold */ |
4457 | size = 0; | 4463 | size = 0; |
4458 | for (i = 0; i < thresholds->primary->size; i++) { | 4464 | for (i = 0; i < thresholds->primary->size; i++) { |
4459 | if (thresholds->primary->entries[i].eventfd != eventfd) | 4465 | if (thresholds->primary->entries[i].eventfd != eventfd) |
4460 | size++; | 4466 | size++; |
4461 | } | 4467 | } |
4462 | 4468 | ||
4463 | new = thresholds->spare; | 4469 | new = thresholds->spare; |
4464 | 4470 | ||
4465 | /* Set thresholds array to NULL if we don't have thresholds */ | 4471 | /* Set thresholds array to NULL if we don't have thresholds */ |
4466 | if (!size) { | 4472 | if (!size) { |
4467 | kfree(new); | 4473 | kfree(new); |
4468 | new = NULL; | 4474 | new = NULL; |
4469 | goto swap_buffers; | 4475 | goto swap_buffers; |
4470 | } | 4476 | } |
4471 | 4477 | ||
4472 | new->size = size; | 4478 | new->size = size; |
4473 | 4479 | ||
4474 | /* Copy thresholds and find current threshold */ | 4480 | /* Copy thresholds and find current threshold */ |
4475 | new->current_threshold = -1; | 4481 | new->current_threshold = -1; |
4476 | for (i = 0, j = 0; i < thresholds->primary->size; i++) { | 4482 | for (i = 0, j = 0; i < thresholds->primary->size; i++) { |
4477 | if (thresholds->primary->entries[i].eventfd == eventfd) | 4483 | if (thresholds->primary->entries[i].eventfd == eventfd) |
4478 | continue; | 4484 | continue; |
4479 | 4485 | ||
4480 | new->entries[j] = thresholds->primary->entries[i]; | 4486 | new->entries[j] = thresholds->primary->entries[i]; |
4481 | if (new->entries[j].threshold <= usage) { | 4487 | if (new->entries[j].threshold <= usage) { |
4482 | /* | 4488 | /* |
4483 | * new->current_threshold will not be used | 4489 | * new->current_threshold will not be used |
4484 | * until rcu_assign_pointer(), so it's safe to increment | 4490 | * until rcu_assign_pointer(), so it's safe to increment |
4485 | * it here. | 4491 | * it here. |
4486 | */ | 4492 | */ |
4487 | ++new->current_threshold; | 4493 | ++new->current_threshold; |
4488 | } | 4494 | } |
4489 | j++; | 4495 | j++; |
4490 | } | 4496 | } |
4491 | 4497 | ||
4492 | swap_buffers: | 4498 | swap_buffers: |
4493 | /* Swap primary and spare array */ | 4499 | /* Swap primary and spare array */ |
4494 | thresholds->spare = thresholds->primary; | 4500 | thresholds->spare = thresholds->primary; |
4495 | /* If all events are unregistered, free the spare array */ | 4501 | /* If all events are unregistered, free the spare array */ |
4496 | if (!new) { | 4502 | if (!new) { |
4497 | kfree(thresholds->spare); | 4503 | kfree(thresholds->spare); |
4498 | thresholds->spare = NULL; | 4504 | thresholds->spare = NULL; |
4499 | } | 4505 | } |
4500 | 4506 | ||
4501 | rcu_assign_pointer(thresholds->primary, new); | 4507 | rcu_assign_pointer(thresholds->primary, new); |
4502 | 4508 | ||
4503 | /* To be sure that nobody uses thresholds */ | 4509 | /* To be sure that nobody uses thresholds */ |
4504 | synchronize_rcu(); | 4510 | synchronize_rcu(); |
4505 | unlock: | 4511 | unlock: |
4506 | mutex_unlock(&memcg->thresholds_lock); | 4512 | mutex_unlock(&memcg->thresholds_lock); |
4507 | } | 4513 | } |
4508 | 4514 | ||
4509 | static int mem_cgroup_oom_register_event(struct cgroup *cgrp, | 4515 | static int mem_cgroup_oom_register_event(struct cgroup *cgrp, |
4510 | struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) | 4516 | struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) |
4511 | { | 4517 | { |
4512 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | 4518 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); |
4513 | struct mem_cgroup_eventfd_list *event; | 4519 | struct mem_cgroup_eventfd_list *event; |
4514 | int type = MEMFILE_TYPE(cft->private); | 4520 | int type = MEMFILE_TYPE(cft->private); |
4515 | 4521 | ||
4516 | BUG_ON(type != _OOM_TYPE); | 4522 | BUG_ON(type != _OOM_TYPE); |
4517 | event = kmalloc(sizeof(*event), GFP_KERNEL); | 4523 | event = kmalloc(sizeof(*event), GFP_KERNEL); |
4518 | if (!event) | 4524 | if (!event) |
4519 | return -ENOMEM; | 4525 | return -ENOMEM; |
4520 | 4526 | ||
4521 | spin_lock(&memcg_oom_lock); | 4527 | spin_lock(&memcg_oom_lock); |
4522 | 4528 | ||
4523 | event->eventfd = eventfd; | 4529 | event->eventfd = eventfd; |
4524 | list_add(&event->list, &memcg->oom_notify); | 4530 | list_add(&event->list, &memcg->oom_notify); |
4525 | 4531 | ||
4526 | /* already in OOM ? */ | 4532 | /* already in OOM ? */ |
4527 | if (atomic_read(&memcg->under_oom)) | 4533 | if (atomic_read(&memcg->under_oom)) |
4528 | eventfd_signal(eventfd, 1); | 4534 | eventfd_signal(eventfd, 1); |
4529 | spin_unlock(&memcg_oom_lock); | 4535 | spin_unlock(&memcg_oom_lock); |
4530 | 4536 | ||
4531 | return 0; | 4537 | return 0; |
4532 | } | 4538 | } |
4533 | 4539 | ||
4534 | static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp, | 4540 | static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp, |
4535 | struct cftype *cft, struct eventfd_ctx *eventfd) | 4541 | struct cftype *cft, struct eventfd_ctx *eventfd) |
4536 | { | 4542 | { |
4537 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | 4543 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); |
4538 | struct mem_cgroup_eventfd_list *ev, *tmp; | 4544 | struct mem_cgroup_eventfd_list *ev, *tmp; |
4539 | int type = MEMFILE_TYPE(cft->private); | 4545 | int type = MEMFILE_TYPE(cft->private); |
4540 | 4546 | ||
4541 | BUG_ON(type != _OOM_TYPE); | 4547 | BUG_ON(type != _OOM_TYPE); |
4542 | 4548 | ||
4543 | spin_lock(&memcg_oom_lock); | 4549 | spin_lock(&memcg_oom_lock); |
4544 | 4550 | ||
4545 | list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { | 4551 | list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { |
4546 | if (ev->eventfd == eventfd) { | 4552 | if (ev->eventfd == eventfd) { |
4547 | list_del(&ev->list); | 4553 | list_del(&ev->list); |
4548 | kfree(ev); | 4554 | kfree(ev); |
4549 | } | 4555 | } |
4550 | } | 4556 | } |
4551 | 4557 | ||
4552 | spin_unlock(&memcg_oom_lock); | 4558 | spin_unlock(&memcg_oom_lock); |
4553 | } | 4559 | } |
4554 | 4560 | ||
4555 | static int mem_cgroup_oom_control_read(struct cgroup *cgrp, | 4561 | static int mem_cgroup_oom_control_read(struct cgroup *cgrp, |
4556 | struct cftype *cft, struct cgroup_map_cb *cb) | 4562 | struct cftype *cft, struct cgroup_map_cb *cb) |
4557 | { | 4563 | { |
4558 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | 4564 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); |
4559 | 4565 | ||
4560 | cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable); | 4566 | cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable); |
4561 | 4567 | ||
4562 | if (atomic_read(&memcg->under_oom)) | 4568 | if (atomic_read(&memcg->under_oom)) |
4563 | cb->fill(cb, "under_oom", 1); | 4569 | cb->fill(cb, "under_oom", 1); |
4564 | else | 4570 | else |
4565 | cb->fill(cb, "under_oom", 0); | 4571 | cb->fill(cb, "under_oom", 0); |
4566 | return 0; | 4572 | return 0; |
4567 | } | 4573 | } |
4568 | 4574 | ||
4569 | static int mem_cgroup_oom_control_write(struct cgroup *cgrp, | 4575 | static int mem_cgroup_oom_control_write(struct cgroup *cgrp, |
4570 | struct cftype *cft, u64 val) | 4576 | struct cftype *cft, u64 val) |
4571 | { | 4577 | { |
4572 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | 4578 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); |
4573 | struct mem_cgroup *parent; | 4579 | struct mem_cgroup *parent; |
4574 | 4580 | ||
4575 | /* cannot set to root cgroup and only 0 and 1 are allowed */ | 4581 | /* cannot set to root cgroup and only 0 and 1 are allowed */ |
4576 | if (!cgrp->parent || !((val == 0) || (val == 1))) | 4582 | if (!cgrp->parent || !((val == 0) || (val == 1))) |
4577 | return -EINVAL; | 4583 | return -EINVAL; |
4578 | 4584 | ||
4579 | parent = mem_cgroup_from_cont(cgrp->parent); | 4585 | parent = mem_cgroup_from_cont(cgrp->parent); |
4580 | 4586 | ||
4581 | cgroup_lock(); | 4587 | cgroup_lock(); |
4582 | /* oom-kill-disable is a flag for subhierarchy. */ | 4588 | /* oom-kill-disable is a flag for subhierarchy. */ |
4583 | if ((parent->use_hierarchy) || | 4589 | if ((parent->use_hierarchy) || |
4584 | (memcg->use_hierarchy && !list_empty(&cgrp->children))) { | 4590 | (memcg->use_hierarchy && !list_empty(&cgrp->children))) { |
4585 | cgroup_unlock(); | 4591 | cgroup_unlock(); |
4586 | return -EINVAL; | 4592 | return -EINVAL; |
4587 | } | 4593 | } |
4588 | memcg->oom_kill_disable = val; | 4594 | memcg->oom_kill_disable = val; |
4589 | if (!val) | 4595 | if (!val) |
4590 | memcg_oom_recover(memcg); | 4596 | memcg_oom_recover(memcg); |
4591 | cgroup_unlock(); | 4597 | cgroup_unlock(); |
4592 | return 0; | 4598 | return 0; |
4593 | } | 4599 | } |
4594 | 4600 | ||
4595 | #ifdef CONFIG_MEMCG_KMEM | 4601 | #ifdef CONFIG_MEMCG_KMEM |
4596 | static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) | 4602 | static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) |
4597 | { | 4603 | { |
4598 | return mem_cgroup_sockets_init(memcg, ss); | 4604 | return mem_cgroup_sockets_init(memcg, ss); |
4599 | }; | 4605 | }; |
4600 | 4606 | ||
4601 | static void kmem_cgroup_destroy(struct mem_cgroup *memcg) | 4607 | static void kmem_cgroup_destroy(struct mem_cgroup *memcg) |
4602 | { | 4608 | { |
4603 | mem_cgroup_sockets_destroy(memcg); | 4609 | mem_cgroup_sockets_destroy(memcg); |
4604 | } | 4610 | } |
4605 | #else | 4611 | #else |
4606 | static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) | 4612 | static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) |
4607 | { | 4613 | { |
4608 | return 0; | 4614 | return 0; |
4609 | } | 4615 | } |
4610 | 4616 | ||
4611 | static void kmem_cgroup_destroy(struct mem_cgroup *memcg) | 4617 | static void kmem_cgroup_destroy(struct mem_cgroup *memcg) |
4612 | { | 4618 | { |
4613 | } | 4619 | } |
4614 | #endif | 4620 | #endif |
4615 | 4621 | ||
4616 | static struct cftype mem_cgroup_files[] = { | 4622 | static struct cftype mem_cgroup_files[] = { |
4617 | { | 4623 | { |
4618 | .name = "usage_in_bytes", | 4624 | .name = "usage_in_bytes", |
4619 | .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), | 4625 | .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), |
4620 | .read = mem_cgroup_read, | 4626 | .read = mem_cgroup_read, |
4621 | .register_event = mem_cgroup_usage_register_event, | 4627 | .register_event = mem_cgroup_usage_register_event, |
4622 | .unregister_event = mem_cgroup_usage_unregister_event, | 4628 | .unregister_event = mem_cgroup_usage_unregister_event, |
4623 | }, | 4629 | }, |
4624 | { | 4630 | { |
4625 | .name = "max_usage_in_bytes", | 4631 | .name = "max_usage_in_bytes", |
4626 | .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), | 4632 | .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), |
4627 | .trigger = mem_cgroup_reset, | 4633 | .trigger = mem_cgroup_reset, |
4628 | .read = mem_cgroup_read, | 4634 | .read = mem_cgroup_read, |
4629 | }, | 4635 | }, |
4630 | { | 4636 | { |
4631 | .name = "limit_in_bytes", | 4637 | .name = "limit_in_bytes", |
4632 | .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), | 4638 | .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), |
4633 | .write_string = mem_cgroup_write, | 4639 | .write_string = mem_cgroup_write, |
4634 | .read = mem_cgroup_read, | 4640 | .read = mem_cgroup_read, |
4635 | }, | 4641 | }, |
4636 | { | 4642 | { |
4637 | .name = "soft_limit_in_bytes", | 4643 | .name = "soft_limit_in_bytes", |
4638 | .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), | 4644 | .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), |
4639 | .write_string = mem_cgroup_write, | 4645 | .write_string = mem_cgroup_write, |
4640 | .read = mem_cgroup_read, | 4646 | .read = mem_cgroup_read, |
4641 | }, | 4647 | }, |
4642 | { | 4648 | { |
4643 | .name = "failcnt", | 4649 | .name = "failcnt", |
4644 | .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), | 4650 | .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), |
4645 | .trigger = mem_cgroup_reset, | 4651 | .trigger = mem_cgroup_reset, |
4646 | .read = mem_cgroup_read, | 4652 | .read = mem_cgroup_read, |
4647 | }, | 4653 | }, |
4648 | { | 4654 | { |
4649 | .name = "stat", | 4655 | .name = "stat", |
4650 | .read_seq_string = memcg_stat_show, | 4656 | .read_seq_string = memcg_stat_show, |
4651 | }, | 4657 | }, |
4652 | { | 4658 | { |
4653 | .name = "force_empty", | 4659 | .name = "force_empty", |
4654 | .trigger = mem_cgroup_force_empty_write, | 4660 | .trigger = mem_cgroup_force_empty_write, |
4655 | }, | 4661 | }, |
4656 | { | 4662 | { |
4657 | .name = "use_hierarchy", | 4663 | .name = "use_hierarchy", |
4658 | .write_u64 = mem_cgroup_hierarchy_write, | 4664 | .write_u64 = mem_cgroup_hierarchy_write, |
4659 | .read_u64 = mem_cgroup_hierarchy_read, | 4665 | .read_u64 = mem_cgroup_hierarchy_read, |
4660 | }, | 4666 | }, |
4661 | { | 4667 | { |
4662 | .name = "swappiness", | 4668 | .name = "swappiness", |
4663 | .read_u64 = mem_cgroup_swappiness_read, | 4669 | .read_u64 = mem_cgroup_swappiness_read, |
4664 | .write_u64 = mem_cgroup_swappiness_write, | 4670 | .write_u64 = mem_cgroup_swappiness_write, |
4665 | }, | 4671 | }, |
4666 | { | 4672 | { |
4667 | .name = "move_charge_at_immigrate", | 4673 | .name = "move_charge_at_immigrate", |
4668 | .read_u64 = mem_cgroup_move_charge_read, | 4674 | .read_u64 = mem_cgroup_move_charge_read, |
4669 | .write_u64 = mem_cgroup_move_charge_write, | 4675 | .write_u64 = mem_cgroup_move_charge_write, |
4670 | }, | 4676 | }, |
4671 | { | 4677 | { |
4672 | .name = "oom_control", | 4678 | .name = "oom_control", |
4673 | .read_map = mem_cgroup_oom_control_read, | 4679 | .read_map = mem_cgroup_oom_control_read, |
4674 | .write_u64 = mem_cgroup_oom_control_write, | 4680 | .write_u64 = mem_cgroup_oom_control_write, |
4675 | .register_event = mem_cgroup_oom_register_event, | 4681 | .register_event = mem_cgroup_oom_register_event, |
4676 | .unregister_event = mem_cgroup_oom_unregister_event, | 4682 | .unregister_event = mem_cgroup_oom_unregister_event, |
4677 | .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), | 4683 | .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), |
4678 | }, | 4684 | }, |
4679 | #ifdef CONFIG_NUMA | 4685 | #ifdef CONFIG_NUMA |
4680 | { | 4686 | { |
4681 | .name = "numa_stat", | 4687 | .name = "numa_stat", |
4682 | .read_seq_string = memcg_numa_stat_show, | 4688 | .read_seq_string = memcg_numa_stat_show, |
4683 | }, | 4689 | }, |
4684 | #endif | 4690 | #endif |
4685 | #ifdef CONFIG_MEMCG_SWAP | 4691 | #ifdef CONFIG_MEMCG_SWAP |
4686 | { | 4692 | { |
4687 | .name = "memsw.usage_in_bytes", | 4693 | .name = "memsw.usage_in_bytes", |
4688 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), | 4694 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), |
4689 | .read = mem_cgroup_read, | 4695 | .read = mem_cgroup_read, |
4690 | .register_event = mem_cgroup_usage_register_event, | 4696 | .register_event = mem_cgroup_usage_register_event, |
4691 | .unregister_event = mem_cgroup_usage_unregister_event, | 4697 | .unregister_event = mem_cgroup_usage_unregister_event, |
4692 | }, | 4698 | }, |
4693 | { | 4699 | { |
4694 | .name = "memsw.max_usage_in_bytes", | 4700 | .name = "memsw.max_usage_in_bytes", |
4695 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), | 4701 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), |
4696 | .trigger = mem_cgroup_reset, | 4702 | .trigger = mem_cgroup_reset, |
4697 | .read = mem_cgroup_read, | 4703 | .read = mem_cgroup_read, |
4698 | }, | 4704 | }, |
4699 | { | 4705 | { |
4700 | .name = "memsw.limit_in_bytes", | 4706 | .name = "memsw.limit_in_bytes", |
4701 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), | 4707 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), |
4702 | .write_string = mem_cgroup_write, | 4708 | .write_string = mem_cgroup_write, |
4703 | .read = mem_cgroup_read, | 4709 | .read = mem_cgroup_read, |
4704 | }, | 4710 | }, |
4705 | { | 4711 | { |
4706 | .name = "memsw.failcnt", | 4712 | .name = "memsw.failcnt", |
4707 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), | 4713 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), |
4708 | .trigger = mem_cgroup_reset, | 4714 | .trigger = mem_cgroup_reset, |
4709 | .read = mem_cgroup_read, | 4715 | .read = mem_cgroup_read, |
4710 | }, | 4716 | }, |
4711 | #endif | 4717 | #endif |
4712 | { }, /* terminate */ | 4718 | { }, /* terminate */ |
4713 | }; | 4719 | }; |
4714 | 4720 | ||
4715 | static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) | 4721 | static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) |
4716 | { | 4722 | { |
4717 | struct mem_cgroup_per_node *pn; | 4723 | struct mem_cgroup_per_node *pn; |
4718 | struct mem_cgroup_per_zone *mz; | 4724 | struct mem_cgroup_per_zone *mz; |
4719 | int zone, tmp = node; | 4725 | int zone, tmp = node; |
4720 | /* | 4726 | /* |
4721 | * This routine is called against possible nodes. | 4727 | * This routine is called against possible nodes. |
4722 | * But it's BUG to call kmalloc() against offline node. | 4728 | * But it's BUG to call kmalloc() against offline node. |
4723 | * | 4729 | * |
4724 | * TODO: this routine can waste much memory for nodes which will | 4730 | * TODO: this routine can waste much memory for nodes which will |
4725 | * never be onlined. It's better to use memory hotplug callback | 4731 | * never be onlined. It's better to use memory hotplug callback |
4726 | * function. | 4732 | * function. |
4727 | */ | 4733 | */ |
4728 | if (!node_state(node, N_NORMAL_MEMORY)) | 4734 | if (!node_state(node, N_NORMAL_MEMORY)) |
4729 | tmp = -1; | 4735 | tmp = -1; |
4730 | pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); | 4736 | pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); |
4731 | if (!pn) | 4737 | if (!pn) |
4732 | return 1; | 4738 | return 1; |
4733 | 4739 | ||
4734 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { | 4740 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { |
4735 | mz = &pn->zoneinfo[zone]; | 4741 | mz = &pn->zoneinfo[zone]; |
4736 | lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]); | 4742 | lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]); |
4737 | mz->usage_in_excess = 0; | 4743 | mz->usage_in_excess = 0; |
4738 | mz->on_tree = false; | 4744 | mz->on_tree = false; |
4739 | mz->memcg = memcg; | 4745 | mz->memcg = memcg; |
4740 | } | 4746 | } |
4741 | memcg->info.nodeinfo[node] = pn; | 4747 | memcg->info.nodeinfo[node] = pn; |
4742 | return 0; | 4748 | return 0; |
4743 | } | 4749 | } |
4744 | 4750 | ||
4745 | static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) | 4751 | static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) |
4746 | { | 4752 | { |
4747 | kfree(memcg->info.nodeinfo[node]); | 4753 | kfree(memcg->info.nodeinfo[node]); |
4748 | } | 4754 | } |
4749 | 4755 | ||
4750 | static struct mem_cgroup *mem_cgroup_alloc(void) | 4756 | static struct mem_cgroup *mem_cgroup_alloc(void) |
4751 | { | 4757 | { |
4752 | struct mem_cgroup *memcg; | 4758 | struct mem_cgroup *memcg; |
4753 | int size = sizeof(struct mem_cgroup); | 4759 | int size = sizeof(struct mem_cgroup); |
4754 | 4760 | ||
4755 | /* Can be very big if MAX_NUMNODES is very big */ | 4761 | /* Can be very big if MAX_NUMNODES is very big */ |
4756 | if (size < PAGE_SIZE) | 4762 | if (size < PAGE_SIZE) |
4757 | memcg = kzalloc(size, GFP_KERNEL); | 4763 | memcg = kzalloc(size, GFP_KERNEL); |
4758 | else | 4764 | else |
4759 | memcg = vzalloc(size); | 4765 | memcg = vzalloc(size); |
4760 | 4766 | ||
4761 | if (!memcg) | 4767 | if (!memcg) |
4762 | return NULL; | 4768 | return NULL; |
4763 | 4769 | ||
4764 | memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); | 4770 | memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); |
4765 | if (!memcg->stat) | 4771 | if (!memcg->stat) |
4766 | goto out_free; | 4772 | goto out_free; |
4767 | spin_lock_init(&memcg->pcp_counter_lock); | 4773 | spin_lock_init(&memcg->pcp_counter_lock); |
4768 | return memcg; | 4774 | return memcg; |
4769 | 4775 | ||
4770 | out_free: | 4776 | out_free: |
4771 | if (size < PAGE_SIZE) | 4777 | if (size < PAGE_SIZE) |
4772 | kfree(memcg); | 4778 | kfree(memcg); |
4773 | else | 4779 | else |
4774 | vfree(memcg); | 4780 | vfree(memcg); |
4775 | return NULL; | 4781 | return NULL; |
4776 | } | 4782 | } |
4777 | 4783 | ||
4778 | /* | 4784 | /* |
4779 | * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU, | 4785 | * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU, |
4780 | * but in process context. The work_freeing structure is overlaid | 4786 | * but in process context. The work_freeing structure is overlaid |
4781 | * on the rcu_freeing structure, which itself is overlaid on memsw. | 4787 | * on the rcu_freeing structure, which itself is overlaid on memsw. |
4782 | */ | 4788 | */ |
4783 | static void free_work(struct work_struct *work) | 4789 | static void free_work(struct work_struct *work) |
4784 | { | 4790 | { |
4785 | struct mem_cgroup *memcg; | 4791 | struct mem_cgroup *memcg; |
4786 | int size = sizeof(struct mem_cgroup); | 4792 | int size = sizeof(struct mem_cgroup); |
4787 | 4793 | ||
4788 | memcg = container_of(work, struct mem_cgroup, work_freeing); | 4794 | memcg = container_of(work, struct mem_cgroup, work_freeing); |
4789 | /* | 4795 | /* |
4790 | * We need to make sure that (at least for now), the jump label | 4796 | * We need to make sure that (at least for now), the jump label |
4791 | * destruction code runs outside of the cgroup lock. This is because | 4797 | * destruction code runs outside of the cgroup lock. This is because |
4792 | * get_online_cpus(), which is called from the static_branch update, | 4798 | * get_online_cpus(), which is called from the static_branch update, |
4793 | * can't be called inside the cgroup_lock. cpusets are the ones | 4799 | * can't be called inside the cgroup_lock. cpusets are the ones |
4794 | * enforcing this dependency, so if they ever change, we might as well. | 4800 | * enforcing this dependency, so if they ever change, we might as well. |
4795 | * | 4801 | * |
4796 | * schedule_work() will guarantee this happens. Be careful if you need | 4802 | * schedule_work() will guarantee this happens. Be careful if you need |
4797 | * to move this code around, and make sure it is outside | 4803 | * to move this code around, and make sure it is outside |
4798 | * the cgroup_lock. | 4804 | * the cgroup_lock. |
4799 | */ | 4805 | */ |
4800 | disarm_sock_keys(memcg); | 4806 | disarm_sock_keys(memcg); |
4801 | if (size < PAGE_SIZE) | 4807 | if (size < PAGE_SIZE) |
4802 | kfree(memcg); | 4808 | kfree(memcg); |
4803 | else | 4809 | else |
4804 | vfree(memcg); | 4810 | vfree(memcg); |
4805 | } | 4811 | } |
4806 | 4812 | ||
4807 | static void free_rcu(struct rcu_head *rcu_head) | 4813 | static void free_rcu(struct rcu_head *rcu_head) |
4808 | { | 4814 | { |
4809 | struct mem_cgroup *memcg; | 4815 | struct mem_cgroup *memcg; |
4810 | 4816 | ||
4811 | memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing); | 4817 | memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing); |
4812 | INIT_WORK(&memcg->work_freeing, free_work); | 4818 | INIT_WORK(&memcg->work_freeing, free_work); |
4813 | schedule_work(&memcg->work_freeing); | 4819 | schedule_work(&memcg->work_freeing); |
4814 | } | 4820 | } |
4815 | 4821 | ||
4816 | /* | 4822 | /* |
4817 | * At destroying mem_cgroup, references from swap_cgroup can remain. | 4823 | * At destroying mem_cgroup, references from swap_cgroup can remain. |
4818 | * (scanning all at force_empty is too costly...) | 4824 | * (scanning all at force_empty is too costly...) |
4819 | * | 4825 | * |
4820 | * Instead of clearing all references at force_empty, we remember | 4826 | * Instead of clearing all references at force_empty, we remember |
4821 | * the number of reference from swap_cgroup and free mem_cgroup when | 4827 | * the number of reference from swap_cgroup and free mem_cgroup when |
4822 | * it goes down to 0. | 4828 | * it goes down to 0. |
4823 | * | 4829 | * |
4824 | * Removal of cgroup itself succeeds regardless of refs from swap. | 4830 | * Removal of cgroup itself succeeds regardless of refs from swap. |
4825 | */ | 4831 | */ |
4826 | 4832 | ||
4827 | static void __mem_cgroup_free(struct mem_cgroup *memcg) | 4833 | static void __mem_cgroup_free(struct mem_cgroup *memcg) |
4828 | { | 4834 | { |
4829 | int node; | 4835 | int node; |
4830 | 4836 | ||
4831 | mem_cgroup_remove_from_trees(memcg); | 4837 | mem_cgroup_remove_from_trees(memcg); |
4832 | free_css_id(&mem_cgroup_subsys, &memcg->css); | 4838 | free_css_id(&mem_cgroup_subsys, &memcg->css); |
4833 | 4839 | ||
4834 | for_each_node(node) | 4840 | for_each_node(node) |
4835 | free_mem_cgroup_per_zone_info(memcg, node); | 4841 | free_mem_cgroup_per_zone_info(memcg, node); |
4836 | 4842 | ||
4837 | free_percpu(memcg->stat); | 4843 | free_percpu(memcg->stat); |
4838 | call_rcu(&memcg->rcu_freeing, free_rcu); | 4844 | call_rcu(&memcg->rcu_freeing, free_rcu); |
4839 | } | 4845 | } |
4840 | 4846 | ||
4841 | static void mem_cgroup_get(struct mem_cgroup *memcg) | 4847 | static void mem_cgroup_get(struct mem_cgroup *memcg) |
4842 | { | 4848 | { |
4843 | atomic_inc(&memcg->refcnt); | 4849 | atomic_inc(&memcg->refcnt); |
4844 | } | 4850 | } |
4845 | 4851 | ||
4846 | static void __mem_cgroup_put(struct mem_cgroup *memcg, int count) | 4852 | static void __mem_cgroup_put(struct mem_cgroup *memcg, int count) |
4847 | { | 4853 | { |
4848 | if (atomic_sub_and_test(count, &memcg->refcnt)) { | 4854 | if (atomic_sub_and_test(count, &memcg->refcnt)) { |
4849 | struct mem_cgroup *parent = parent_mem_cgroup(memcg); | 4855 | struct mem_cgroup *parent = parent_mem_cgroup(memcg); |
4850 | __mem_cgroup_free(memcg); | 4856 | __mem_cgroup_free(memcg); |
4851 | if (parent) | 4857 | if (parent) |
4852 | mem_cgroup_put(parent); | 4858 | mem_cgroup_put(parent); |
4853 | } | 4859 | } |
4854 | } | 4860 | } |
4855 | 4861 | ||
4856 | static void mem_cgroup_put(struct mem_cgroup *memcg) | 4862 | static void mem_cgroup_put(struct mem_cgroup *memcg) |
4857 | { | 4863 | { |
4858 | __mem_cgroup_put(memcg, 1); | 4864 | __mem_cgroup_put(memcg, 1); |
4859 | } | 4865 | } |
4860 | 4866 | ||
4861 | /* | 4867 | /* |
4862 | * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. | 4868 | * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. |
4863 | */ | 4869 | */ |
4864 | struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) | 4870 | struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) |
4865 | { | 4871 | { |
4866 | if (!memcg->res.parent) | 4872 | if (!memcg->res.parent) |
4867 | return NULL; | 4873 | return NULL; |
4868 | return mem_cgroup_from_res_counter(memcg->res.parent, res); | 4874 | return mem_cgroup_from_res_counter(memcg->res.parent, res); |
4869 | } | 4875 | } |
4870 | EXPORT_SYMBOL(parent_mem_cgroup); | 4876 | EXPORT_SYMBOL(parent_mem_cgroup); |
4871 | 4877 | ||
4872 | #ifdef CONFIG_MEMCG_SWAP | 4878 | #ifdef CONFIG_MEMCG_SWAP |
4873 | static void __init enable_swap_cgroup(void) | 4879 | static void __init enable_swap_cgroup(void) |
4874 | { | 4880 | { |
4875 | if (!mem_cgroup_disabled() && really_do_swap_account) | 4881 | if (!mem_cgroup_disabled() && really_do_swap_account) |
4876 | do_swap_account = 1; | 4882 | do_swap_account = 1; |
4877 | } | 4883 | } |
4878 | #else | 4884 | #else |
4879 | static void __init enable_swap_cgroup(void) | 4885 | static void __init enable_swap_cgroup(void) |
4880 | { | 4886 | { |
4881 | } | 4887 | } |
4882 | #endif | 4888 | #endif |
4883 | 4889 | ||
4884 | static int mem_cgroup_soft_limit_tree_init(void) | 4890 | static int mem_cgroup_soft_limit_tree_init(void) |
4885 | { | 4891 | { |
4886 | struct mem_cgroup_tree_per_node *rtpn; | 4892 | struct mem_cgroup_tree_per_node *rtpn; |
4887 | struct mem_cgroup_tree_per_zone *rtpz; | 4893 | struct mem_cgroup_tree_per_zone *rtpz; |
4888 | int tmp, node, zone; | 4894 | int tmp, node, zone; |
4889 | 4895 | ||
4890 | for_each_node(node) { | 4896 | for_each_node(node) { |
4891 | tmp = node; | 4897 | tmp = node; |
4892 | if (!node_state(node, N_NORMAL_MEMORY)) | 4898 | if (!node_state(node, N_NORMAL_MEMORY)) |
4893 | tmp = -1; | 4899 | tmp = -1; |
4894 | rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp); | 4900 | rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp); |
4895 | if (!rtpn) | 4901 | if (!rtpn) |
4896 | goto err_cleanup; | 4902 | goto err_cleanup; |
4897 | 4903 | ||
4898 | soft_limit_tree.rb_tree_per_node[node] = rtpn; | 4904 | soft_limit_tree.rb_tree_per_node[node] = rtpn; |
4899 | 4905 | ||
4900 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { | 4906 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { |
4901 | rtpz = &rtpn->rb_tree_per_zone[zone]; | 4907 | rtpz = &rtpn->rb_tree_per_zone[zone]; |
4902 | rtpz->rb_root = RB_ROOT; | 4908 | rtpz->rb_root = RB_ROOT; |
4903 | spin_lock_init(&rtpz->lock); | 4909 | spin_lock_init(&rtpz->lock); |
4904 | } | 4910 | } |
4905 | } | 4911 | } |
4906 | return 0; | 4912 | return 0; |
4907 | 4913 | ||
4908 | err_cleanup: | 4914 | err_cleanup: |
4909 | for_each_node(node) { | 4915 | for_each_node(node) { |
4910 | if (!soft_limit_tree.rb_tree_per_node[node]) | 4916 | if (!soft_limit_tree.rb_tree_per_node[node]) |
4911 | break; | 4917 | break; |
4912 | kfree(soft_limit_tree.rb_tree_per_node[node]); | 4918 | kfree(soft_limit_tree.rb_tree_per_node[node]); |
4913 | soft_limit_tree.rb_tree_per_node[node] = NULL; | 4919 | soft_limit_tree.rb_tree_per_node[node] = NULL; |
4914 | } | 4920 | } |
4915 | return 1; | 4921 | return 1; |
4916 | 4922 | ||
4917 | } | 4923 | } |
4918 | 4924 | ||
4919 | static struct cgroup_subsys_state * __ref | 4925 | static struct cgroup_subsys_state * __ref |
4920 | mem_cgroup_create(struct cgroup *cont) | 4926 | mem_cgroup_create(struct cgroup *cont) |
4921 | { | 4927 | { |
4922 | struct mem_cgroup *memcg, *parent; | 4928 | struct mem_cgroup *memcg, *parent; |
4923 | long error = -ENOMEM; | 4929 | long error = -ENOMEM; |
4924 | int node; | 4930 | int node; |
4925 | 4931 | ||
4926 | memcg = mem_cgroup_alloc(); | 4932 | memcg = mem_cgroup_alloc(); |
4927 | if (!memcg) | 4933 | if (!memcg) |
4928 | return ERR_PTR(error); | 4934 | return ERR_PTR(error); |
4929 | 4935 | ||
4930 | for_each_node(node) | 4936 | for_each_node(node) |
4931 | if (alloc_mem_cgroup_per_zone_info(memcg, node)) | 4937 | if (alloc_mem_cgroup_per_zone_info(memcg, node)) |
4932 | goto free_out; | 4938 | goto free_out; |
4933 | 4939 | ||
4934 | /* root ? */ | 4940 | /* root ? */ |
4935 | if (cont->parent == NULL) { | 4941 | if (cont->parent == NULL) { |
4936 | int cpu; | 4942 | int cpu; |
4937 | enable_swap_cgroup(); | 4943 | enable_swap_cgroup(); |
4938 | parent = NULL; | 4944 | parent = NULL; |
4939 | if (mem_cgroup_soft_limit_tree_init()) | 4945 | if (mem_cgroup_soft_limit_tree_init()) |
4940 | goto free_out; | 4946 | goto free_out; |
4941 | root_mem_cgroup = memcg; | 4947 | root_mem_cgroup = memcg; |
4942 | for_each_possible_cpu(cpu) { | 4948 | for_each_possible_cpu(cpu) { |
4943 | struct memcg_stock_pcp *stock = | 4949 | struct memcg_stock_pcp *stock = |
4944 | &per_cpu(memcg_stock, cpu); | 4950 | &per_cpu(memcg_stock, cpu); |
4945 | INIT_WORK(&stock->work, drain_local_stock); | 4951 | INIT_WORK(&stock->work, drain_local_stock); |
4946 | } | 4952 | } |
4947 | hotcpu_notifier(memcg_cpu_hotplug_callback, 0); | 4953 | hotcpu_notifier(memcg_cpu_hotplug_callback, 0); |
4948 | } else { | 4954 | } else { |
4949 | parent = mem_cgroup_from_cont(cont->parent); | 4955 | parent = mem_cgroup_from_cont(cont->parent); |
4950 | memcg->use_hierarchy = parent->use_hierarchy; | 4956 | memcg->use_hierarchy = parent->use_hierarchy; |
4951 | memcg->oom_kill_disable = parent->oom_kill_disable; | 4957 | memcg->oom_kill_disable = parent->oom_kill_disable; |
4952 | } | 4958 | } |
4953 | 4959 | ||
4954 | if (parent && parent->use_hierarchy) { | 4960 | if (parent && parent->use_hierarchy) { |
4955 | res_counter_init(&memcg->res, &parent->res); | 4961 | res_counter_init(&memcg->res, &parent->res); |
4956 | res_counter_init(&memcg->memsw, &parent->memsw); | 4962 | res_counter_init(&memcg->memsw, &parent->memsw); |
4957 | /* | 4963 | /* |
4958 | * We increment refcnt of the parent to ensure that we can | 4964 | * We increment refcnt of the parent to ensure that we can |
4959 | * safely access it on res_counter_charge/uncharge. | 4965 | * safely access it on res_counter_charge/uncharge. |
4960 | * This refcnt will be decremented when freeing this | 4966 | * This refcnt will be decremented when freeing this |
4961 | * mem_cgroup(see mem_cgroup_put). | 4967 | * mem_cgroup(see mem_cgroup_put). |
4962 | */ | 4968 | */ |
4963 | mem_cgroup_get(parent); | 4969 | mem_cgroup_get(parent); |
4964 | } else { | 4970 | } else { |
4965 | res_counter_init(&memcg->res, NULL); | 4971 | res_counter_init(&memcg->res, NULL); |
4966 | res_counter_init(&memcg->memsw, NULL); | 4972 | res_counter_init(&memcg->memsw, NULL); |
4967 | } | 4973 | } |
4968 | memcg->last_scanned_node = MAX_NUMNODES; | 4974 | memcg->last_scanned_node = MAX_NUMNODES; |
4969 | INIT_LIST_HEAD(&memcg->oom_notify); | 4975 | INIT_LIST_HEAD(&memcg->oom_notify); |
4970 | 4976 | ||
4971 | if (parent) | 4977 | if (parent) |
4972 | memcg->swappiness = mem_cgroup_swappiness(parent); | 4978 | memcg->swappiness = mem_cgroup_swappiness(parent); |
4973 | atomic_set(&memcg->refcnt, 1); | 4979 | atomic_set(&memcg->refcnt, 1); |
4974 | memcg->move_charge_at_immigrate = 0; | 4980 | memcg->move_charge_at_immigrate = 0; |
4975 | mutex_init(&memcg->thresholds_lock); | 4981 | mutex_init(&memcg->thresholds_lock); |
4976 | spin_lock_init(&memcg->move_lock); | 4982 | spin_lock_init(&memcg->move_lock); |
4977 | 4983 | ||
4978 | error = memcg_init_kmem(memcg, &mem_cgroup_subsys); | 4984 | error = memcg_init_kmem(memcg, &mem_cgroup_subsys); |
4979 | if (error) { | 4985 | if (error) { |
4980 | /* | 4986 | /* |
4981 | * We call put now because our (and parent's) refcnts | 4987 | * We call put now because our (and parent's) refcnts |
4982 | * are already in place. mem_cgroup_put() will internally | 4988 | * are already in place. mem_cgroup_put() will internally |
4983 | * call __mem_cgroup_free, so return directly | 4989 | * call __mem_cgroup_free, so return directly |
4984 | */ | 4990 | */ |
4985 | mem_cgroup_put(memcg); | 4991 | mem_cgroup_put(memcg); |
4986 | return ERR_PTR(error); | 4992 | return ERR_PTR(error); |
4987 | } | 4993 | } |
4988 | return &memcg->css; | 4994 | return &memcg->css; |
4989 | free_out: | 4995 | free_out: |
4990 | __mem_cgroup_free(memcg); | 4996 | __mem_cgroup_free(memcg); |
4991 | return ERR_PTR(error); | 4997 | return ERR_PTR(error); |
4992 | } | 4998 | } |
4993 | 4999 | ||
4994 | static int mem_cgroup_pre_destroy(struct cgroup *cont) | 5000 | static int mem_cgroup_pre_destroy(struct cgroup *cont) |
4995 | { | 5001 | { |
4996 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); | 5002 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); |
4997 | 5003 | ||
4998 | return mem_cgroup_force_empty(memcg, false); | 5004 | return mem_cgroup_force_empty(memcg, false); |
4999 | } | 5005 | } |
5000 | 5006 | ||
5001 | static void mem_cgroup_destroy(struct cgroup *cont) | 5007 | static void mem_cgroup_destroy(struct cgroup *cont) |
5002 | { | 5008 | { |
5003 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); | 5009 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); |
5004 | 5010 | ||
5005 | kmem_cgroup_destroy(memcg); | 5011 | kmem_cgroup_destroy(memcg); |
5006 | 5012 | ||
5007 | mem_cgroup_put(memcg); | 5013 | mem_cgroup_put(memcg); |
5008 | } | 5014 | } |
5009 | 5015 | ||
5010 | #ifdef CONFIG_MMU | 5016 | #ifdef CONFIG_MMU |
5011 | /* Handlers for move charge at task migration. */ | 5017 | /* Handlers for move charge at task migration. */ |
5012 | #define PRECHARGE_COUNT_AT_ONCE 256 | 5018 | #define PRECHARGE_COUNT_AT_ONCE 256 |
5013 | static int mem_cgroup_do_precharge(unsigned long count) | 5019 | static int mem_cgroup_do_precharge(unsigned long count) |
5014 | { | 5020 | { |
5015 | int ret = 0; | 5021 | int ret = 0; |
5016 | int batch_count = PRECHARGE_COUNT_AT_ONCE; | 5022 | int batch_count = PRECHARGE_COUNT_AT_ONCE; |
5017 | struct mem_cgroup *memcg = mc.to; | 5023 | struct mem_cgroup *memcg = mc.to; |
5018 | 5024 | ||
5019 | if (mem_cgroup_is_root(memcg)) { | 5025 | if (mem_cgroup_is_root(memcg)) { |
5020 | mc.precharge += count; | 5026 | mc.precharge += count; |
5021 | /* we don't need css_get for root */ | 5027 | /* we don't need css_get for root */ |
5022 | return ret; | 5028 | return ret; |
5023 | } | 5029 | } |
5024 | /* try to charge at once */ | 5030 | /* try to charge at once */ |
5025 | if (count > 1) { | 5031 | if (count > 1) { |
5026 | struct res_counter *dummy; | 5032 | struct res_counter *dummy; |
5027 | /* | 5033 | /* |
5028 | * "memcg" cannot be under rmdir() because we've already checked | 5034 | * "memcg" cannot be under rmdir() because we've already checked |
5029 | * by cgroup_lock_live_cgroup() that it is not removed and we | 5035 | * by cgroup_lock_live_cgroup() that it is not removed and we |
5030 | * are still under the same cgroup_mutex. So we can postpone | 5036 | * are still under the same cgroup_mutex. So we can postpone |
5031 | * css_get(). | 5037 | * css_get(). |
5032 | */ | 5038 | */ |
5033 | if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy)) | 5039 | if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy)) |
5034 | goto one_by_one; | 5040 | goto one_by_one; |
5035 | if (do_swap_account && res_counter_charge(&memcg->memsw, | 5041 | if (do_swap_account && res_counter_charge(&memcg->memsw, |
5036 | PAGE_SIZE * count, &dummy)) { | 5042 | PAGE_SIZE * count, &dummy)) { |
5037 | res_counter_uncharge(&memcg->res, PAGE_SIZE * count); | 5043 | res_counter_uncharge(&memcg->res, PAGE_SIZE * count); |
5038 | goto one_by_one; | 5044 | goto one_by_one; |
5039 | } | 5045 | } |
5040 | mc.precharge += count; | 5046 | mc.precharge += count; |
5041 | return ret; | 5047 | return ret; |
5042 | } | 5048 | } |
5043 | one_by_one: | 5049 | one_by_one: |
5044 | /* fall back to one by one charge */ | 5050 | /* fall back to one by one charge */ |
5045 | while (count--) { | 5051 | while (count--) { |
5046 | if (signal_pending(current)) { | 5052 | if (signal_pending(current)) { |
5047 | ret = -EINTR; | 5053 | ret = -EINTR; |
5048 | break; | 5054 | break; |
5049 | } | 5055 | } |
5050 | if (!batch_count--) { | 5056 | if (!batch_count--) { |
5051 | batch_count = PRECHARGE_COUNT_AT_ONCE; | 5057 | batch_count = PRECHARGE_COUNT_AT_ONCE; |
5052 | cond_resched(); | 5058 | cond_resched(); |
5053 | } | 5059 | } |
5054 | ret = __mem_cgroup_try_charge(NULL, | 5060 | ret = __mem_cgroup_try_charge(NULL, |
5055 | GFP_KERNEL, 1, &memcg, false); | 5061 | GFP_KERNEL, 1, &memcg, false); |
5056 | if (ret) | 5062 | if (ret) |
5057 | /* mem_cgroup_clear_mc() will do uncharge later */ | 5063 | /* mem_cgroup_clear_mc() will do uncharge later */ |
5058 | return ret; | 5064 | return ret; |
5059 | mc.precharge++; | 5065 | mc.precharge++; |
5060 | } | 5066 | } |
5061 | return ret; | 5067 | return ret; |
5062 | } | 5068 | } |
5063 | 5069 | ||
5064 | /** | 5070 | /** |
5065 | * get_mctgt_type - get target type of moving charge | 5071 | * get_mctgt_type - get target type of moving charge |
5066 | * @vma: the vma the pte to be checked belongs | 5072 | * @vma: the vma the pte to be checked belongs |
5067 | * @addr: the address corresponding to the pte to be checked | 5073 | * @addr: the address corresponding to the pte to be checked |
5068 | * @ptent: the pte to be checked | 5074 | * @ptent: the pte to be checked |
5069 | * @target: the pointer the target page or swap ent will be stored(can be NULL) | 5075 | * @target: the pointer the target page or swap ent will be stored(can be NULL) |
5070 | * | 5076 | * |
5071 | * Returns | 5077 | * Returns |
5072 | * 0(MC_TARGET_NONE): if the pte is not a target for move charge. | 5078 | * 0(MC_TARGET_NONE): if the pte is not a target for move charge. |
5073 | * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for | 5079 | * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for |
5074 | * move charge. if @target is not NULL, the page is stored in target->page | 5080 | * move charge. if @target is not NULL, the page is stored in target->page |
5075 | * with extra refcnt got(Callers should handle it). | 5081 | * with extra refcnt got(Callers should handle it). |
5076 | * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a | 5082 | * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a |
5077 | * target for charge migration. if @target is not NULL, the entry is stored | 5083 | * target for charge migration. if @target is not NULL, the entry is stored |
5078 | * in target->ent. | 5084 | * in target->ent. |
5079 | * | 5085 | * |
5080 | * Called with pte lock held. | 5086 | * Called with pte lock held. |
5081 | */ | 5087 | */ |
5082 | union mc_target { | 5088 | union mc_target { |
5083 | struct page *page; | 5089 | struct page *page; |
5084 | swp_entry_t ent; | 5090 | swp_entry_t ent; |
5085 | }; | 5091 | }; |
5086 | 5092 | ||
5087 | enum mc_target_type { | 5093 | enum mc_target_type { |
5088 | MC_TARGET_NONE = 0, | 5094 | MC_TARGET_NONE = 0, |
5089 | MC_TARGET_PAGE, | 5095 | MC_TARGET_PAGE, |
5090 | MC_TARGET_SWAP, | 5096 | MC_TARGET_SWAP, |
5091 | }; | 5097 | }; |
5092 | 5098 | ||
5093 | static struct page *mc_handle_present_pte(struct vm_area_struct *vma, | 5099 | static struct page *mc_handle_present_pte(struct vm_area_struct *vma, |
5094 | unsigned long addr, pte_t ptent) | 5100 | unsigned long addr, pte_t ptent) |
5095 | { | 5101 | { |
5096 | struct page *page = vm_normal_page(vma, addr, ptent); | 5102 | struct page *page = vm_normal_page(vma, addr, ptent); |
5097 | 5103 | ||
5098 | if (!page || !page_mapped(page)) | 5104 | if (!page || !page_mapped(page)) |
5099 | return NULL; | 5105 | return NULL; |
5100 | if (PageAnon(page)) { | 5106 | if (PageAnon(page)) { |
5101 | /* we don't move shared anon */ | 5107 | /* we don't move shared anon */ |
5102 | if (!move_anon()) | 5108 | if (!move_anon()) |
5103 | return NULL; | 5109 | return NULL; |
5104 | } else if (!move_file()) | 5110 | } else if (!move_file()) |
5105 | /* we ignore mapcount for file pages */ | 5111 | /* we ignore mapcount for file pages */ |
5106 | return NULL; | 5112 | return NULL; |
5107 | if (!get_page_unless_zero(page)) | 5113 | if (!get_page_unless_zero(page)) |
5108 | return NULL; | 5114 | return NULL; |
5109 | 5115 | ||
5110 | return page; | 5116 | return page; |
5111 | } | 5117 | } |
5112 | 5118 | ||
5113 | #ifdef CONFIG_SWAP | 5119 | #ifdef CONFIG_SWAP |
5114 | static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, | 5120 | static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, |
5115 | unsigned long addr, pte_t ptent, swp_entry_t *entry) | 5121 | unsigned long addr, pte_t ptent, swp_entry_t *entry) |
5116 | { | 5122 | { |
5117 | struct page *page = NULL; | 5123 | struct page *page = NULL; |
5118 | swp_entry_t ent = pte_to_swp_entry(ptent); | 5124 | swp_entry_t ent = pte_to_swp_entry(ptent); |
5119 | 5125 | ||
5120 | if (!move_anon() || non_swap_entry(ent)) | 5126 | if (!move_anon() || non_swap_entry(ent)) |
5121 | return NULL; | 5127 | return NULL; |
5122 | /* | 5128 | /* |
5123 | * Because lookup_swap_cache() updates some statistics counter, | 5129 | * Because lookup_swap_cache() updates some statistics counter, |
5124 | * we call find_get_page() with swapper_space directly. | 5130 | * we call find_get_page() with swapper_space directly. |
5125 | */ | 5131 | */ |
5126 | page = find_get_page(&swapper_space, ent.val); | 5132 | page = find_get_page(&swapper_space, ent.val); |
5127 | if (do_swap_account) | 5133 | if (do_swap_account) |
5128 | entry->val = ent.val; | 5134 | entry->val = ent.val; |
5129 | 5135 | ||
5130 | return page; | 5136 | return page; |
5131 | } | 5137 | } |
5132 | #else | 5138 | #else |
5133 | static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, | 5139 | static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, |
5134 | unsigned long addr, pte_t ptent, swp_entry_t *entry) | 5140 | unsigned long addr, pte_t ptent, swp_entry_t *entry) |
5135 | { | 5141 | { |
5136 | return NULL; | 5142 | return NULL; |
5137 | } | 5143 | } |
5138 | #endif | 5144 | #endif |
5139 | 5145 | ||
5140 | static struct page *mc_handle_file_pte(struct vm_area_struct *vma, | 5146 | static struct page *mc_handle_file_pte(struct vm_area_struct *vma, |
5141 | unsigned long addr, pte_t ptent, swp_entry_t *entry) | 5147 | unsigned long addr, pte_t ptent, swp_entry_t *entry) |
5142 | { | 5148 | { |
5143 | struct page *page = NULL; | 5149 | struct page *page = NULL; |
5144 | struct address_space *mapping; | 5150 | struct address_space *mapping; |
5145 | pgoff_t pgoff; | 5151 | pgoff_t pgoff; |
5146 | 5152 | ||
5147 | if (!vma->vm_file) /* anonymous vma */ | 5153 | if (!vma->vm_file) /* anonymous vma */ |
5148 | return NULL; | 5154 | return NULL; |
5149 | if (!move_file()) | 5155 | if (!move_file()) |
5150 | return NULL; | 5156 | return NULL; |
5151 | 5157 | ||
5152 | mapping = vma->vm_file->f_mapping; | 5158 | mapping = vma->vm_file->f_mapping; |
5153 | if (pte_none(ptent)) | 5159 | if (pte_none(ptent)) |
5154 | pgoff = linear_page_index(vma, addr); | 5160 | pgoff = linear_page_index(vma, addr); |
5155 | else /* pte_file(ptent) is true */ | 5161 | else /* pte_file(ptent) is true */ |
5156 | pgoff = pte_to_pgoff(ptent); | 5162 | pgoff = pte_to_pgoff(ptent); |
5157 | 5163 | ||
5158 | /* page is moved even if it's not RSS of this task(page-faulted). */ | 5164 | /* page is moved even if it's not RSS of this task(page-faulted). */ |
5159 | page = find_get_page(mapping, pgoff); | 5165 | page = find_get_page(mapping, pgoff); |
5160 | 5166 | ||
5161 | #ifdef CONFIG_SWAP | 5167 | #ifdef CONFIG_SWAP |
5162 | /* shmem/tmpfs may report page out on swap: account for that too. */ | 5168 | /* shmem/tmpfs may report page out on swap: account for that too. */ |
5163 | if (radix_tree_exceptional_entry(page)) { | 5169 | if (radix_tree_exceptional_entry(page)) { |
5164 | swp_entry_t swap = radix_to_swp_entry(page); | 5170 | swp_entry_t swap = radix_to_swp_entry(page); |
5165 | if (do_swap_account) | 5171 | if (do_swap_account) |
5166 | *entry = swap; | 5172 | *entry = swap; |
5167 | page = find_get_page(&swapper_space, swap.val); | 5173 | page = find_get_page(&swapper_space, swap.val); |
5168 | } | 5174 | } |
5169 | #endif | 5175 | #endif |
5170 | return page; | 5176 | return page; |
5171 | } | 5177 | } |
5172 | 5178 | ||
5173 | static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, | 5179 | static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, |
5174 | unsigned long addr, pte_t ptent, union mc_target *target) | 5180 | unsigned long addr, pte_t ptent, union mc_target *target) |
5175 | { | 5181 | { |
5176 | struct page *page = NULL; | 5182 | struct page *page = NULL; |
5177 | struct page_cgroup *pc; | 5183 | struct page_cgroup *pc; |
5178 | enum mc_target_type ret = MC_TARGET_NONE; | 5184 | enum mc_target_type ret = MC_TARGET_NONE; |
5179 | swp_entry_t ent = { .val = 0 }; | 5185 | swp_entry_t ent = { .val = 0 }; |
5180 | 5186 | ||
5181 | if (pte_present(ptent)) | 5187 | if (pte_present(ptent)) |
5182 | page = mc_handle_present_pte(vma, addr, ptent); | 5188 | page = mc_handle_present_pte(vma, addr, ptent); |
5183 | else if (is_swap_pte(ptent)) | 5189 | else if (is_swap_pte(ptent)) |
5184 | page = mc_handle_swap_pte(vma, addr, ptent, &ent); | 5190 | page = mc_handle_swap_pte(vma, addr, ptent, &ent); |
5185 | else if (pte_none(ptent) || pte_file(ptent)) | 5191 | else if (pte_none(ptent) || pte_file(ptent)) |
5186 | page = mc_handle_file_pte(vma, addr, ptent, &ent); | 5192 | page = mc_handle_file_pte(vma, addr, ptent, &ent); |
5187 | 5193 | ||
5188 | if (!page && !ent.val) | 5194 | if (!page && !ent.val) |
5189 | return ret; | 5195 | return ret; |
5190 | if (page) { | 5196 | if (page) { |
5191 | pc = lookup_page_cgroup(page); | 5197 | pc = lookup_page_cgroup(page); |
5192 | /* | 5198 | /* |
5193 | * Do only loose check w/o page_cgroup lock. | 5199 | * Do only loose check w/o page_cgroup lock. |
5194 | * mem_cgroup_move_account() checks the pc is valid or not under | 5200 | * mem_cgroup_move_account() checks the pc is valid or not under |
5195 | * the lock. | 5201 | * the lock. |
5196 | */ | 5202 | */ |
5197 | if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { | 5203 | if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { |
5198 | ret = MC_TARGET_PAGE; | 5204 | ret = MC_TARGET_PAGE; |
5199 | if (target) | 5205 | if (target) |
5200 | target->page = page; | 5206 | target->page = page; |
5201 | } | 5207 | } |
5202 | if (!ret || !target) | 5208 | if (!ret || !target) |
5203 | put_page(page); | 5209 | put_page(page); |
5204 | } | 5210 | } |
5205 | /* There is a swap entry and a page doesn't exist or isn't charged */ | 5211 | /* There is a swap entry and a page doesn't exist or isn't charged */ |
5206 | if (ent.val && !ret && | 5212 | if (ent.val && !ret && |
5207 | css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) { | 5213 | css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) { |
5208 | ret = MC_TARGET_SWAP; | 5214 | ret = MC_TARGET_SWAP; |
5209 | if (target) | 5215 | if (target) |
5210 | target->ent = ent; | 5216 | target->ent = ent; |
5211 | } | 5217 | } |
5212 | return ret; | 5218 | return ret; |
5213 | } | 5219 | } |
5214 | 5220 | ||
5215 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 5221 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
5216 | /* | 5222 | /* |
5217 | * We don't consider swapping or file mapped pages because THP does not | 5223 | * We don't consider swapping or file mapped pages because THP does not |
5218 | * support them for now. | 5224 | * support them for now. |
5219 | * Caller should make sure that pmd_trans_huge(pmd) is true. | 5225 | * Caller should make sure that pmd_trans_huge(pmd) is true. |
5220 | */ | 5226 | */ |
5221 | static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, | 5227 | static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, |
5222 | unsigned long addr, pmd_t pmd, union mc_target *target) | 5228 | unsigned long addr, pmd_t pmd, union mc_target *target) |
5223 | { | 5229 | { |
5224 | struct page *page = NULL; | 5230 | struct page *page = NULL; |
5225 | struct page_cgroup *pc; | 5231 | struct page_cgroup *pc; |
5226 | enum mc_target_type ret = MC_TARGET_NONE; | 5232 | enum mc_target_type ret = MC_TARGET_NONE; |
5227 | 5233 | ||
5228 | page = pmd_page(pmd); | 5234 | page = pmd_page(pmd); |
5229 | VM_BUG_ON(!page || !PageHead(page)); | 5235 | VM_BUG_ON(!page || !PageHead(page)); |
5230 | if (!move_anon()) | 5236 | if (!move_anon()) |
5231 | return ret; | 5237 | return ret; |
5232 | pc = lookup_page_cgroup(page); | 5238 | pc = lookup_page_cgroup(page); |
5233 | if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { | 5239 | if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { |
5234 | ret = MC_TARGET_PAGE; | 5240 | ret = MC_TARGET_PAGE; |
5235 | if (target) { | 5241 | if (target) { |
5236 | get_page(page); | 5242 | get_page(page); |
5237 | target->page = page; | 5243 | target->page = page; |
5238 | } | 5244 | } |
5239 | } | 5245 | } |
5240 | return ret; | 5246 | return ret; |
5241 | } | 5247 | } |
5242 | #else | 5248 | #else |
5243 | static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, | 5249 | static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, |
5244 | unsigned long addr, pmd_t pmd, union mc_target *target) | 5250 | unsigned long addr, pmd_t pmd, union mc_target *target) |
5245 | { | 5251 | { |
5246 | return MC_TARGET_NONE; | 5252 | return MC_TARGET_NONE; |
5247 | } | 5253 | } |
5248 | #endif | 5254 | #endif |
5249 | 5255 | ||
5250 | static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, | 5256 | static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, |
5251 | unsigned long addr, unsigned long end, | 5257 | unsigned long addr, unsigned long end, |
5252 | struct mm_walk *walk) | 5258 | struct mm_walk *walk) |
5253 | { | 5259 | { |
5254 | struct vm_area_struct *vma = walk->private; | 5260 | struct vm_area_struct *vma = walk->private; |
5255 | pte_t *pte; | 5261 | pte_t *pte; |
5256 | spinlock_t *ptl; | 5262 | spinlock_t *ptl; |
5257 | 5263 | ||
5258 | if (pmd_trans_huge_lock(pmd, vma) == 1) { | 5264 | if (pmd_trans_huge_lock(pmd, vma) == 1) { |
5259 | if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) | 5265 | if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) |
5260 | mc.precharge += HPAGE_PMD_NR; | 5266 | mc.precharge += HPAGE_PMD_NR; |
5261 | spin_unlock(&vma->vm_mm->page_table_lock); | 5267 | spin_unlock(&vma->vm_mm->page_table_lock); |
5262 | return 0; | 5268 | return 0; |
5263 | } | 5269 | } |
5264 | 5270 | ||
5265 | if (pmd_trans_unstable(pmd)) | 5271 | if (pmd_trans_unstable(pmd)) |
5266 | return 0; | 5272 | return 0; |
5267 | pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); | 5273 | pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); |
5268 | for (; addr != end; pte++, addr += PAGE_SIZE) | 5274 | for (; addr != end; pte++, addr += PAGE_SIZE) |
5269 | if (get_mctgt_type(vma, addr, *pte, NULL)) | 5275 | if (get_mctgt_type(vma, addr, *pte, NULL)) |
5270 | mc.precharge++; /* increment precharge temporarily */ | 5276 | mc.precharge++; /* increment precharge temporarily */ |
5271 | pte_unmap_unlock(pte - 1, ptl); | 5277 | pte_unmap_unlock(pte - 1, ptl); |
5272 | cond_resched(); | 5278 | cond_resched(); |
5273 | 5279 | ||
5274 | return 0; | 5280 | return 0; |
5275 | } | 5281 | } |
5276 | 5282 | ||
5277 | static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) | 5283 | static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) |
5278 | { | 5284 | { |
5279 | unsigned long precharge; | 5285 | unsigned long precharge; |
5280 | struct vm_area_struct *vma; | 5286 | struct vm_area_struct *vma; |
5281 | 5287 | ||
5282 | down_read(&mm->mmap_sem); | 5288 | down_read(&mm->mmap_sem); |
5283 | for (vma = mm->mmap; vma; vma = vma->vm_next) { | 5289 | for (vma = mm->mmap; vma; vma = vma->vm_next) { |
5284 | struct mm_walk mem_cgroup_count_precharge_walk = { | 5290 | struct mm_walk mem_cgroup_count_precharge_walk = { |
5285 | .pmd_entry = mem_cgroup_count_precharge_pte_range, | 5291 | .pmd_entry = mem_cgroup_count_precharge_pte_range, |
5286 | .mm = mm, | 5292 | .mm = mm, |
5287 | .private = vma, | 5293 | .private = vma, |
5288 | }; | 5294 | }; |
5289 | if (is_vm_hugetlb_page(vma)) | 5295 | if (is_vm_hugetlb_page(vma)) |
5290 | continue; | 5296 | continue; |
5291 | walk_page_range(vma->vm_start, vma->vm_end, | 5297 | walk_page_range(vma->vm_start, vma->vm_end, |
5292 | &mem_cgroup_count_precharge_walk); | 5298 | &mem_cgroup_count_precharge_walk); |
5293 | } | 5299 | } |
5294 | up_read(&mm->mmap_sem); | 5300 | up_read(&mm->mmap_sem); |
5295 | 5301 | ||
5296 | precharge = mc.precharge; | 5302 | precharge = mc.precharge; |
5297 | mc.precharge = 0; | 5303 | mc.precharge = 0; |
5298 | 5304 | ||
5299 | return precharge; | 5305 | return precharge; |
5300 | } | 5306 | } |
5301 | 5307 | ||
5302 | static int mem_cgroup_precharge_mc(struct mm_struct *mm) | 5308 | static int mem_cgroup_precharge_mc(struct mm_struct *mm) |
5303 | { | 5309 | { |
5304 | unsigned long precharge = mem_cgroup_count_precharge(mm); | 5310 | unsigned long precharge = mem_cgroup_count_precharge(mm); |
5305 | 5311 | ||
5306 | VM_BUG_ON(mc.moving_task); | 5312 | VM_BUG_ON(mc.moving_task); |
5307 | mc.moving_task = current; | 5313 | mc.moving_task = current; |
5308 | return mem_cgroup_do_precharge(precharge); | 5314 | return mem_cgroup_do_precharge(precharge); |
5309 | } | 5315 | } |
5310 | 5316 | ||
5311 | /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ | 5317 | /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ |
5312 | static void __mem_cgroup_clear_mc(void) | 5318 | static void __mem_cgroup_clear_mc(void) |
5313 | { | 5319 | { |
5314 | struct mem_cgroup *from = mc.from; | 5320 | struct mem_cgroup *from = mc.from; |
5315 | struct mem_cgroup *to = mc.to; | 5321 | struct mem_cgroup *to = mc.to; |
5316 | 5322 | ||
5317 | /* we must uncharge all the leftover precharges from mc.to */ | 5323 | /* we must uncharge all the leftover precharges from mc.to */ |
5318 | if (mc.precharge) { | 5324 | if (mc.precharge) { |
5319 | __mem_cgroup_cancel_charge(mc.to, mc.precharge); | 5325 | __mem_cgroup_cancel_charge(mc.to, mc.precharge); |
5320 | mc.precharge = 0; | 5326 | mc.precharge = 0; |
5321 | } | 5327 | } |
5322 | /* | 5328 | /* |
5323 | * we didn't uncharge from mc.from at mem_cgroup_move_account(), so | 5329 | * we didn't uncharge from mc.from at mem_cgroup_move_account(), so |
5324 | * we must uncharge here. | 5330 | * we must uncharge here. |
5325 | */ | 5331 | */ |
5326 | if (mc.moved_charge) { | 5332 | if (mc.moved_charge) { |
5327 | __mem_cgroup_cancel_charge(mc.from, mc.moved_charge); | 5333 | __mem_cgroup_cancel_charge(mc.from, mc.moved_charge); |
5328 | mc.moved_charge = 0; | 5334 | mc.moved_charge = 0; |
5329 | } | 5335 | } |
5330 | /* we must fixup refcnts and charges */ | 5336 | /* we must fixup refcnts and charges */ |
5331 | if (mc.moved_swap) { | 5337 | if (mc.moved_swap) { |
5332 | /* uncharge swap account from the old cgroup */ | 5338 | /* uncharge swap account from the old cgroup */ |
5333 | if (!mem_cgroup_is_root(mc.from)) | 5339 | if (!mem_cgroup_is_root(mc.from)) |
5334 | res_counter_uncharge(&mc.from->memsw, | 5340 | res_counter_uncharge(&mc.from->memsw, |
5335 | PAGE_SIZE * mc.moved_swap); | 5341 | PAGE_SIZE * mc.moved_swap); |
5336 | __mem_cgroup_put(mc.from, mc.moved_swap); | 5342 | __mem_cgroup_put(mc.from, mc.moved_swap); |
5337 | 5343 | ||
5338 | if (!mem_cgroup_is_root(mc.to)) { | 5344 | if (!mem_cgroup_is_root(mc.to)) { |
5339 | /* | 5345 | /* |
5340 | * we charged both to->res and to->memsw, so we should | 5346 | * we charged both to->res and to->memsw, so we should |
5341 | * uncharge to->res. | 5347 | * uncharge to->res. |
5342 | */ | 5348 | */ |
5343 | res_counter_uncharge(&mc.to->res, | 5349 | res_counter_uncharge(&mc.to->res, |
5344 | PAGE_SIZE * mc.moved_swap); | 5350 | PAGE_SIZE * mc.moved_swap); |
5345 | } | 5351 | } |
5346 | /* we've already done mem_cgroup_get(mc.to) */ | 5352 | /* we've already done mem_cgroup_get(mc.to) */ |
5347 | mc.moved_swap = 0; | 5353 | mc.moved_swap = 0; |
5348 | } | 5354 | } |
5349 | memcg_oom_recover(from); | 5355 | memcg_oom_recover(from); |
5350 | memcg_oom_recover(to); | 5356 | memcg_oom_recover(to); |
5351 | wake_up_all(&mc.waitq); | 5357 | wake_up_all(&mc.waitq); |
5352 | } | 5358 | } |
5353 | 5359 | ||
5354 | static void mem_cgroup_clear_mc(void) | 5360 | static void mem_cgroup_clear_mc(void) |
5355 | { | 5361 | { |
5356 | struct mem_cgroup *from = mc.from; | 5362 | struct mem_cgroup *from = mc.from; |
5357 | 5363 | ||
5358 | /* | 5364 | /* |
5359 | * we must clear moving_task before waking up waiters at the end of | 5365 | * we must clear moving_task before waking up waiters at the end of |
5360 | * task migration. | 5366 | * task migration. |
5361 | */ | 5367 | */ |
5362 | mc.moving_task = NULL; | 5368 | mc.moving_task = NULL; |
5363 | __mem_cgroup_clear_mc(); | 5369 | __mem_cgroup_clear_mc(); |
5364 | spin_lock(&mc.lock); | 5370 | spin_lock(&mc.lock); |
5365 | mc.from = NULL; | 5371 | mc.from = NULL; |
5366 | mc.to = NULL; | 5372 | mc.to = NULL; |
5367 | spin_unlock(&mc.lock); | 5373 | spin_unlock(&mc.lock); |
5368 | mem_cgroup_end_move(from); | 5374 | mem_cgroup_end_move(from); |
5369 | } | 5375 | } |
5370 | 5376 | ||
5371 | static int mem_cgroup_can_attach(struct cgroup *cgroup, | 5377 | static int mem_cgroup_can_attach(struct cgroup *cgroup, |
5372 | struct cgroup_taskset *tset) | 5378 | struct cgroup_taskset *tset) |
5373 | { | 5379 | { |
5374 | struct task_struct *p = cgroup_taskset_first(tset); | 5380 | struct task_struct *p = cgroup_taskset_first(tset); |
5375 | int ret = 0; | 5381 | int ret = 0; |
5376 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup); | 5382 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup); |
5377 | 5383 | ||
5378 | if (memcg->move_charge_at_immigrate) { | 5384 | if (memcg->move_charge_at_immigrate) { |
5379 | struct mm_struct *mm; | 5385 | struct mm_struct *mm; |
5380 | struct mem_cgroup *from = mem_cgroup_from_task(p); | 5386 | struct mem_cgroup *from = mem_cgroup_from_task(p); |
5381 | 5387 | ||
5382 | VM_BUG_ON(from == memcg); | 5388 | VM_BUG_ON(from == memcg); |
5383 | 5389 | ||
5384 | mm = get_task_mm(p); | 5390 | mm = get_task_mm(p); |
5385 | if (!mm) | 5391 | if (!mm) |
5386 | return 0; | 5392 | return 0; |
5387 | /* We move charges only when we move a owner of the mm */ | 5393 | /* We move charges only when we move a owner of the mm */ |
5388 | if (mm->owner == p) { | 5394 | if (mm->owner == p) { |
5389 | VM_BUG_ON(mc.from); | 5395 | VM_BUG_ON(mc.from); |
5390 | VM_BUG_ON(mc.to); | 5396 | VM_BUG_ON(mc.to); |
5391 | VM_BUG_ON(mc.precharge); | 5397 | VM_BUG_ON(mc.precharge); |
5392 | VM_BUG_ON(mc.moved_charge); | 5398 | VM_BUG_ON(mc.moved_charge); |
5393 | VM_BUG_ON(mc.moved_swap); | 5399 | VM_BUG_ON(mc.moved_swap); |
5394 | mem_cgroup_start_move(from); | 5400 | mem_cgroup_start_move(from); |
5395 | spin_lock(&mc.lock); | 5401 | spin_lock(&mc.lock); |
5396 | mc.from = from; | 5402 | mc.from = from; |
5397 | mc.to = memcg; | 5403 | mc.to = memcg; |
5398 | spin_unlock(&mc.lock); | 5404 | spin_unlock(&mc.lock); |
5399 | /* We set mc.moving_task later */ | 5405 | /* We set mc.moving_task later */ |
5400 | 5406 | ||
5401 | ret = mem_cgroup_precharge_mc(mm); | 5407 | ret = mem_cgroup_precharge_mc(mm); |
5402 | if (ret) | 5408 | if (ret) |
5403 | mem_cgroup_clear_mc(); | 5409 | mem_cgroup_clear_mc(); |
5404 | } | 5410 | } |
5405 | mmput(mm); | 5411 | mmput(mm); |
5406 | } | 5412 | } |
5407 | return ret; | 5413 | return ret; |
5408 | } | 5414 | } |
5409 | 5415 | ||
5410 | static void mem_cgroup_cancel_attach(struct cgroup *cgroup, | 5416 | static void mem_cgroup_cancel_attach(struct cgroup *cgroup, |
5411 | struct cgroup_taskset *tset) | 5417 | struct cgroup_taskset *tset) |
5412 | { | 5418 | { |
5413 | mem_cgroup_clear_mc(); | 5419 | mem_cgroup_clear_mc(); |
5414 | } | 5420 | } |
5415 | 5421 | ||
5416 | static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, | 5422 | static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, |
5417 | unsigned long addr, unsigned long end, | 5423 | unsigned long addr, unsigned long end, |
5418 | struct mm_walk *walk) | 5424 | struct mm_walk *walk) |
5419 | { | 5425 | { |
5420 | int ret = 0; | 5426 | int ret = 0; |
5421 | struct vm_area_struct *vma = walk->private; | 5427 | struct vm_area_struct *vma = walk->private; |
5422 | pte_t *pte; | 5428 | pte_t *pte; |
5423 | spinlock_t *ptl; | 5429 | spinlock_t *ptl; |
5424 | enum mc_target_type target_type; | 5430 | enum mc_target_type target_type; |
5425 | union mc_target target; | 5431 | union mc_target target; |
5426 | struct page *page; | 5432 | struct page *page; |
5427 | struct page_cgroup *pc; | 5433 | struct page_cgroup *pc; |
5428 | 5434 | ||
5429 | /* | 5435 | /* |
5430 | * We don't take compound_lock() here but no race with splitting thp | 5436 | * We don't take compound_lock() here but no race with splitting thp |
5431 | * happens because: | 5437 | * happens because: |
5432 | * - if pmd_trans_huge_lock() returns 1, the relevant thp is not | 5438 | * - if pmd_trans_huge_lock() returns 1, the relevant thp is not |
5433 | * under splitting, which means there's no concurrent thp split, | 5439 | * under splitting, which means there's no concurrent thp split, |
5434 | * - if another thread runs into split_huge_page() just after we | 5440 | * - if another thread runs into split_huge_page() just after we |
5435 | * entered this if-block, the thread must wait for page table lock | 5441 | * entered this if-block, the thread must wait for page table lock |
5436 | * to be unlocked in __split_huge_page_splitting(), where the main | 5442 | * to be unlocked in __split_huge_page_splitting(), where the main |
5437 | * part of thp split is not executed yet. | 5443 | * part of thp split is not executed yet. |
5438 | */ | 5444 | */ |
5439 | if (pmd_trans_huge_lock(pmd, vma) == 1) { | 5445 | if (pmd_trans_huge_lock(pmd, vma) == 1) { |
5440 | if (mc.precharge < HPAGE_PMD_NR) { | 5446 | if (mc.precharge < HPAGE_PMD_NR) { |
5441 | spin_unlock(&vma->vm_mm->page_table_lock); | 5447 | spin_unlock(&vma->vm_mm->page_table_lock); |
5442 | return 0; | 5448 | return 0; |
5443 | } | 5449 | } |
5444 | target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); | 5450 | target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); |
5445 | if (target_type == MC_TARGET_PAGE) { | 5451 | if (target_type == MC_TARGET_PAGE) { |
5446 | page = target.page; | 5452 | page = target.page; |
5447 | if (!isolate_lru_page(page)) { | 5453 | if (!isolate_lru_page(page)) { |
5448 | pc = lookup_page_cgroup(page); | 5454 | pc = lookup_page_cgroup(page); |
5449 | if (!mem_cgroup_move_account(page, HPAGE_PMD_NR, | 5455 | if (!mem_cgroup_move_account(page, HPAGE_PMD_NR, |
5450 | pc, mc.from, mc.to)) { | 5456 | pc, mc.from, mc.to)) { |
5451 | mc.precharge -= HPAGE_PMD_NR; | 5457 | mc.precharge -= HPAGE_PMD_NR; |
5452 | mc.moved_charge += HPAGE_PMD_NR; | 5458 | mc.moved_charge += HPAGE_PMD_NR; |
5453 | } | 5459 | } |
5454 | putback_lru_page(page); | 5460 | putback_lru_page(page); |
5455 | } | 5461 | } |
5456 | put_page(page); | 5462 | put_page(page); |
5457 | } | 5463 | } |
5458 | spin_unlock(&vma->vm_mm->page_table_lock); | 5464 | spin_unlock(&vma->vm_mm->page_table_lock); |
5459 | return 0; | 5465 | return 0; |
5460 | } | 5466 | } |
5461 | 5467 | ||
5462 | if (pmd_trans_unstable(pmd)) | 5468 | if (pmd_trans_unstable(pmd)) |
5463 | return 0; | 5469 | return 0; |
5464 | retry: | 5470 | retry: |
5465 | pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); | 5471 | pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); |
5466 | for (; addr != end; addr += PAGE_SIZE) { | 5472 | for (; addr != end; addr += PAGE_SIZE) { |
5467 | pte_t ptent = *(pte++); | 5473 | pte_t ptent = *(pte++); |
5468 | swp_entry_t ent; | 5474 | swp_entry_t ent; |
5469 | 5475 | ||
5470 | if (!mc.precharge) | 5476 | if (!mc.precharge) |
5471 | break; | 5477 | break; |
5472 | 5478 | ||
5473 | switch (get_mctgt_type(vma, addr, ptent, &target)) { | 5479 | switch (get_mctgt_type(vma, addr, ptent, &target)) { |
5474 | case MC_TARGET_PAGE: | 5480 | case MC_TARGET_PAGE: |
5475 | page = target.page; | 5481 | page = target.page; |
5476 | if (isolate_lru_page(page)) | 5482 | if (isolate_lru_page(page)) |
5477 | goto put; | 5483 | goto put; |
5478 | pc = lookup_page_cgroup(page); | 5484 | pc = lookup_page_cgroup(page); |
5479 | if (!mem_cgroup_move_account(page, 1, pc, | 5485 | if (!mem_cgroup_move_account(page, 1, pc, |
5480 | mc.from, mc.to)) { | 5486 | mc.from, mc.to)) { |
5481 | mc.precharge--; | 5487 | mc.precharge--; |
5482 | /* we uncharge from mc.from later. */ | 5488 | /* we uncharge from mc.from later. */ |
5483 | mc.moved_charge++; | 5489 | mc.moved_charge++; |
5484 | } | 5490 | } |
5485 | putback_lru_page(page); | 5491 | putback_lru_page(page); |
5486 | put: /* get_mctgt_type() gets the page */ | 5492 | put: /* get_mctgt_type() gets the page */ |
5487 | put_page(page); | 5493 | put_page(page); |
5488 | break; | 5494 | break; |
5489 | case MC_TARGET_SWAP: | 5495 | case MC_TARGET_SWAP: |
5490 | ent = target.ent; | 5496 | ent = target.ent; |
5491 | if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { | 5497 | if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { |
5492 | mc.precharge--; | 5498 | mc.precharge--; |
5493 | /* we fixup refcnts and charges later. */ | 5499 | /* we fixup refcnts and charges later. */ |
5494 | mc.moved_swap++; | 5500 | mc.moved_swap++; |
5495 | } | 5501 | } |
5496 | break; | 5502 | break; |
5497 | default: | 5503 | default: |
5498 | break; | 5504 | break; |
5499 | } | 5505 | } |
5500 | } | 5506 | } |
5501 | pte_unmap_unlock(pte - 1, ptl); | 5507 | pte_unmap_unlock(pte - 1, ptl); |
5502 | cond_resched(); | 5508 | cond_resched(); |
5503 | 5509 | ||
5504 | if (addr != end) { | 5510 | if (addr != end) { |
5505 | /* | 5511 | /* |
5506 | * We have consumed all precharges we got in can_attach(). | 5512 | * We have consumed all precharges we got in can_attach(). |
5507 | * We try charge one by one, but don't do any additional | 5513 | * We try charge one by one, but don't do any additional |
5508 | * charges to mc.to if we have failed in charge once in attach() | 5514 | * charges to mc.to if we have failed in charge once in attach() |
5509 | * phase. | 5515 | * phase. |
5510 | */ | 5516 | */ |
5511 | ret = mem_cgroup_do_precharge(1); | 5517 | ret = mem_cgroup_do_precharge(1); |
5512 | if (!ret) | 5518 | if (!ret) |
5513 | goto retry; | 5519 | goto retry; |
5514 | } | 5520 | } |
5515 | 5521 | ||
5516 | return ret; | 5522 | return ret; |
5517 | } | 5523 | } |
5518 | 5524 | ||
5519 | static void mem_cgroup_move_charge(struct mm_struct *mm) | 5525 | static void mem_cgroup_move_charge(struct mm_struct *mm) |
5520 | { | 5526 | { |
5521 | struct vm_area_struct *vma; | 5527 | struct vm_area_struct *vma; |
5522 | 5528 | ||
5523 | lru_add_drain_all(); | 5529 | lru_add_drain_all(); |
5524 | retry: | 5530 | retry: |
5525 | if (unlikely(!down_read_trylock(&mm->mmap_sem))) { | 5531 | if (unlikely(!down_read_trylock(&mm->mmap_sem))) { |
5526 | /* | 5532 | /* |
5527 | * Someone who are holding the mmap_sem might be waiting in | 5533 | * Someone who are holding the mmap_sem might be waiting in |
5528 | * waitq. So we cancel all extra charges, wake up all waiters, | 5534 | * waitq. So we cancel all extra charges, wake up all waiters, |
5529 | * and retry. Because we cancel precharges, we might not be able | 5535 | * and retry. Because we cancel precharges, we might not be able |
5530 | * to move enough charges, but moving charge is a best-effort | 5536 | * to move enough charges, but moving charge is a best-effort |
5531 | * feature anyway, so it wouldn't be a big problem. | 5537 | * feature anyway, so it wouldn't be a big problem. |
5532 | */ | 5538 | */ |
5533 | __mem_cgroup_clear_mc(); | 5539 | __mem_cgroup_clear_mc(); |
5534 | cond_resched(); | 5540 | cond_resched(); |
5535 | goto retry; | 5541 | goto retry; |
5536 | } | 5542 | } |
5537 | for (vma = mm->mmap; vma; vma = vma->vm_next) { | 5543 | for (vma = mm->mmap; vma; vma = vma->vm_next) { |
5538 | int ret; | 5544 | int ret; |
5539 | struct mm_walk mem_cgroup_move_charge_walk = { | 5545 | struct mm_walk mem_cgroup_move_charge_walk = { |
5540 | .pmd_entry = mem_cgroup_move_charge_pte_range, | 5546 | .pmd_entry = mem_cgroup_move_charge_pte_range, |
5541 | .mm = mm, | 5547 | .mm = mm, |
5542 | .private = vma, | 5548 | .private = vma, |
5543 | }; | 5549 | }; |
5544 | if (is_vm_hugetlb_page(vma)) | 5550 | if (is_vm_hugetlb_page(vma)) |
5545 | continue; | 5551 | continue; |
5546 | ret = walk_page_range(vma->vm_start, vma->vm_end, | 5552 | ret = walk_page_range(vma->vm_start, vma->vm_end, |
5547 | &mem_cgroup_move_charge_walk); | 5553 | &mem_cgroup_move_charge_walk); |
5548 | if (ret) | 5554 | if (ret) |
5549 | /* | 5555 | /* |
5550 | * means we have consumed all precharges and failed in | 5556 | * means we have consumed all precharges and failed in |
5551 | * doing additional charge. Just abandon here. | 5557 | * doing additional charge. Just abandon here. |
5552 | */ | 5558 | */ |
5553 | break; | 5559 | break; |
5554 | } | 5560 | } |
5555 | up_read(&mm->mmap_sem); | 5561 | up_read(&mm->mmap_sem); |
5556 | } | 5562 | } |
5557 | 5563 | ||
5558 | static void mem_cgroup_move_task(struct cgroup *cont, | 5564 | static void mem_cgroup_move_task(struct cgroup *cont, |
5559 | struct cgroup_taskset *tset) | 5565 | struct cgroup_taskset *tset) |
5560 | { | 5566 | { |
5561 | struct task_struct *p = cgroup_taskset_first(tset); | 5567 | struct task_struct *p = cgroup_taskset_first(tset); |
5562 | struct mm_struct *mm = get_task_mm(p); | 5568 | struct mm_struct *mm = get_task_mm(p); |
5563 | 5569 | ||
5564 | if (mm) { | 5570 | if (mm) { |
5565 | if (mc.to) | 5571 | if (mc.to) |
5566 | mem_cgroup_move_charge(mm); | 5572 | mem_cgroup_move_charge(mm); |
5567 | mmput(mm); | 5573 | mmput(mm); |
5568 | } | 5574 | } |
5569 | if (mc.to) | 5575 | if (mc.to) |
5570 | mem_cgroup_clear_mc(); | 5576 | mem_cgroup_clear_mc(); |
5571 | } | 5577 | } |
5572 | #else /* !CONFIG_MMU */ | 5578 | #else /* !CONFIG_MMU */ |
5573 | static int mem_cgroup_can_attach(struct cgroup *cgroup, | 5579 | static int mem_cgroup_can_attach(struct cgroup *cgroup, |
5574 | struct cgroup_taskset *tset) | 5580 | struct cgroup_taskset *tset) |
5575 | { | 5581 | { |
5576 | return 0; | 5582 | return 0; |
5577 | } | 5583 | } |
5578 | static void mem_cgroup_cancel_attach(struct cgroup *cgroup, | 5584 | static void mem_cgroup_cancel_attach(struct cgroup *cgroup, |
5579 | struct cgroup_taskset *tset) | 5585 | struct cgroup_taskset *tset) |
5580 | { | 5586 | { |
5581 | } | 5587 | } |
5582 | static void mem_cgroup_move_task(struct cgroup *cont, | 5588 | static void mem_cgroup_move_task(struct cgroup *cont, |
5583 | struct cgroup_taskset *tset) | 5589 | struct cgroup_taskset *tset) |
5584 | { | 5590 | { |
5585 | } | 5591 | } |
5586 | #endif | 5592 | #endif |
5587 | 5593 | ||
5588 | struct cgroup_subsys mem_cgroup_subsys = { | 5594 | struct cgroup_subsys mem_cgroup_subsys = { |
5589 | .name = "memory", | 5595 | .name = "memory", |
5590 | .subsys_id = mem_cgroup_subsys_id, | 5596 | .subsys_id = mem_cgroup_subsys_id, |
5591 | .create = mem_cgroup_create, | 5597 | .create = mem_cgroup_create, |
5592 | .pre_destroy = mem_cgroup_pre_destroy, | 5598 | .pre_destroy = mem_cgroup_pre_destroy, |
5593 | .destroy = mem_cgroup_destroy, | 5599 | .destroy = mem_cgroup_destroy, |
5594 | .can_attach = mem_cgroup_can_attach, | 5600 | .can_attach = mem_cgroup_can_attach, |
5595 | .cancel_attach = mem_cgroup_cancel_attach, | 5601 | .cancel_attach = mem_cgroup_cancel_attach, |
5596 | .attach = mem_cgroup_move_task, | 5602 | .attach = mem_cgroup_move_task, |
5597 | .base_cftypes = mem_cgroup_files, | 5603 | .base_cftypes = mem_cgroup_files, |
5598 | .early_init = 0, | 5604 | .early_init = 0, |
5599 | .use_id = 1, | 5605 | .use_id = 1, |
5600 | .__DEPRECATED_clear_css_refs = true, | 5606 | .__DEPRECATED_clear_css_refs = true, |
5601 | }; | 5607 | }; |
5602 | 5608 | ||
5603 | #ifdef CONFIG_MEMCG_SWAP | 5609 | #ifdef CONFIG_MEMCG_SWAP |
5604 | static int __init enable_swap_account(char *s) | 5610 | static int __init enable_swap_account(char *s) |
5605 | { | 5611 | { |
5606 | /* consider enabled if no parameter or 1 is given */ | 5612 | /* consider enabled if no parameter or 1 is given */ |
5607 | if (!strcmp(s, "1")) | 5613 | if (!strcmp(s, "1")) |
5608 | really_do_swap_account = 1; | 5614 | really_do_swap_account = 1; |