Commit c1529fa25e20f4c5d92d82165a8ff5fe27eae974

Authored by adam radford
Committed by James Bottomley
1 parent 5738f99643

[SCSI] megaraid_sas: Add fpRead/WriteCapable, fpRead/WriteAcrossStripe checks

The following patch for megaraid_sas fixes the fastpath code decision
logic to use fpRead/WriteCapable, fpRead/WriteAcrossStripe flags
instead of the old logic.  This fixes a bug where fastpath writes
could be sent to a read only LD.

Signed-off-by: Adam Radford <aradford@gmail.com>
Signed-off-by: James Bottomley <JBottomley@Parallels.com>

Showing 1 changed file with 13 additions and 8 deletions Inline Diff

drivers/scsi/megaraid/megaraid_sas_fp.c
1 /* 1 /*
2 * Linux MegaRAID driver for SAS based RAID controllers 2 * Linux MegaRAID driver for SAS based RAID controllers
3 * 3 *
4 * Copyright (c) 2009-2011 LSI Corporation. 4 * Copyright (c) 2009-2011 LSI Corporation.
5 * 5 *
6 * This program is free software; you can redistribute it and/or 6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License 7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2 8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version. 9 * of the License, or (at your option) any later version.
10 * 10 *
11 * This program is distributed in the hope that it will be useful, 11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details. 14 * GNU General Public License for more details.
15 * 15 *
16 * You should have received a copy of the GNU General Public License 16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software 17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 * 19 *
20 * FILE: megaraid_sas_fp.c 20 * FILE: megaraid_sas_fp.c
21 * 21 *
22 * Authors: LSI Corporation 22 * Authors: LSI Corporation
23 * Sumant Patro 23 * Sumant Patro
24 * Varad Talamacki 24 * Varad Talamacki
25 * Manoj Jose 25 * Manoj Jose
26 * 26 *
27 * Send feedback to: <megaraidlinux@lsi.com> 27 * Send feedback to: <megaraidlinux@lsi.com>
28 * 28 *
29 * Mail to: LSI Corporation, 1621 Barber Lane, Milpitas, CA 95035 29 * Mail to: LSI Corporation, 1621 Barber Lane, Milpitas, CA 95035
30 * ATTN: Linuxraid 30 * ATTN: Linuxraid
31 */ 31 */
32 32
33 #include <linux/kernel.h> 33 #include <linux/kernel.h>
34 #include <linux/types.h> 34 #include <linux/types.h>
35 #include <linux/pci.h> 35 #include <linux/pci.h>
36 #include <linux/list.h> 36 #include <linux/list.h>
37 #include <linux/moduleparam.h> 37 #include <linux/moduleparam.h>
38 #include <linux/module.h> 38 #include <linux/module.h>
39 #include <linux/spinlock.h> 39 #include <linux/spinlock.h>
40 #include <linux/interrupt.h> 40 #include <linux/interrupt.h>
41 #include <linux/delay.h> 41 #include <linux/delay.h>
42 #include <linux/uio.h> 42 #include <linux/uio.h>
43 #include <linux/uaccess.h> 43 #include <linux/uaccess.h>
44 #include <linux/fs.h> 44 #include <linux/fs.h>
45 #include <linux/compat.h> 45 #include <linux/compat.h>
46 #include <linux/blkdev.h> 46 #include <linux/blkdev.h>
47 #include <linux/poll.h> 47 #include <linux/poll.h>
48 48
49 #include <scsi/scsi.h> 49 #include <scsi/scsi.h>
50 #include <scsi/scsi_cmnd.h> 50 #include <scsi/scsi_cmnd.h>
51 #include <scsi/scsi_device.h> 51 #include <scsi/scsi_device.h>
52 #include <scsi/scsi_host.h> 52 #include <scsi/scsi_host.h>
53 53
54 #include "megaraid_sas_fusion.h" 54 #include "megaraid_sas_fusion.h"
55 #include "megaraid_sas.h" 55 #include "megaraid_sas.h"
56 #include <asm/div64.h> 56 #include <asm/div64.h>
57 57
58 #define ABS_DIFF(a, b) (((a) > (b)) ? ((a) - (b)) : ((b) - (a))) 58 #define ABS_DIFF(a, b) (((a) > (b)) ? ((a) - (b)) : ((b) - (a)))
59 #define MR_LD_STATE_OPTIMAL 3 59 #define MR_LD_STATE_OPTIMAL 3
60 #define FALSE 0 60 #define FALSE 0
61 #define TRUE 1 61 #define TRUE 1
62 62
63 /* Prototypes */ 63 /* Prototypes */
64 void 64 void
65 mr_update_load_balance_params(struct MR_FW_RAID_MAP_ALL *map, 65 mr_update_load_balance_params(struct MR_FW_RAID_MAP_ALL *map,
66 struct LD_LOAD_BALANCE_INFO *lbInfo); 66 struct LD_LOAD_BALANCE_INFO *lbInfo);
67 67
68 u32 mega_mod64(u64 dividend, u32 divisor) 68 u32 mega_mod64(u64 dividend, u32 divisor)
69 { 69 {
70 u64 d; 70 u64 d;
71 u32 remainder; 71 u32 remainder;
72 72
73 if (!divisor) 73 if (!divisor)
74 printk(KERN_ERR "megasas : DIVISOR is zero, in div fn\n"); 74 printk(KERN_ERR "megasas : DIVISOR is zero, in div fn\n");
75 d = dividend; 75 d = dividend;
76 remainder = do_div(d, divisor); 76 remainder = do_div(d, divisor);
77 return remainder; 77 return remainder;
78 } 78 }
79 79
80 /** 80 /**
81 * @param dividend : Dividend 81 * @param dividend : Dividend
82 * @param divisor : Divisor 82 * @param divisor : Divisor
83 * 83 *
84 * @return quotient 84 * @return quotient
85 **/ 85 **/
86 u64 mega_div64_32(uint64_t dividend, uint32_t divisor) 86 u64 mega_div64_32(uint64_t dividend, uint32_t divisor)
87 { 87 {
88 u32 remainder; 88 u32 remainder;
89 u64 d; 89 u64 d;
90 90
91 if (!divisor) 91 if (!divisor)
92 printk(KERN_ERR "megasas : DIVISOR is zero in mod fn\n"); 92 printk(KERN_ERR "megasas : DIVISOR is zero in mod fn\n");
93 93
94 d = dividend; 94 d = dividend;
95 remainder = do_div(d, divisor); 95 remainder = do_div(d, divisor);
96 96
97 return d; 97 return d;
98 } 98 }
99 99
100 struct MR_LD_RAID *MR_LdRaidGet(u32 ld, struct MR_FW_RAID_MAP_ALL *map) 100 struct MR_LD_RAID *MR_LdRaidGet(u32 ld, struct MR_FW_RAID_MAP_ALL *map)
101 { 101 {
102 return &map->raidMap.ldSpanMap[ld].ldRaid; 102 return &map->raidMap.ldSpanMap[ld].ldRaid;
103 } 103 }
104 104
105 static struct MR_SPAN_BLOCK_INFO *MR_LdSpanInfoGet(u32 ld, 105 static struct MR_SPAN_BLOCK_INFO *MR_LdSpanInfoGet(u32 ld,
106 struct MR_FW_RAID_MAP_ALL 106 struct MR_FW_RAID_MAP_ALL
107 *map) 107 *map)
108 { 108 {
109 return &map->raidMap.ldSpanMap[ld].spanBlock[0]; 109 return &map->raidMap.ldSpanMap[ld].spanBlock[0];
110 } 110 }
111 111
112 static u8 MR_LdDataArmGet(u32 ld, u32 armIdx, struct MR_FW_RAID_MAP_ALL *map) 112 static u8 MR_LdDataArmGet(u32 ld, u32 armIdx, struct MR_FW_RAID_MAP_ALL *map)
113 { 113 {
114 return map->raidMap.ldSpanMap[ld].dataArmMap[armIdx]; 114 return map->raidMap.ldSpanMap[ld].dataArmMap[armIdx];
115 } 115 }
116 116
117 static u16 MR_ArPdGet(u32 ar, u32 arm, struct MR_FW_RAID_MAP_ALL *map) 117 static u16 MR_ArPdGet(u32 ar, u32 arm, struct MR_FW_RAID_MAP_ALL *map)
118 { 118 {
119 return map->raidMap.arMapInfo[ar].pd[arm]; 119 return map->raidMap.arMapInfo[ar].pd[arm];
120 } 120 }
121 121
122 static u16 MR_LdSpanArrayGet(u32 ld, u32 span, struct MR_FW_RAID_MAP_ALL *map) 122 static u16 MR_LdSpanArrayGet(u32 ld, u32 span, struct MR_FW_RAID_MAP_ALL *map)
123 { 123 {
124 return map->raidMap.ldSpanMap[ld].spanBlock[span].span.arrayRef; 124 return map->raidMap.ldSpanMap[ld].spanBlock[span].span.arrayRef;
125 } 125 }
126 126
127 static u16 MR_PdDevHandleGet(u32 pd, struct MR_FW_RAID_MAP_ALL *map) 127 static u16 MR_PdDevHandleGet(u32 pd, struct MR_FW_RAID_MAP_ALL *map)
128 { 128 {
129 return map->raidMap.devHndlInfo[pd].curDevHdl; 129 return map->raidMap.devHndlInfo[pd].curDevHdl;
130 } 130 }
131 131
132 u16 MR_GetLDTgtId(u32 ld, struct MR_FW_RAID_MAP_ALL *map) 132 u16 MR_GetLDTgtId(u32 ld, struct MR_FW_RAID_MAP_ALL *map)
133 { 133 {
134 return map->raidMap.ldSpanMap[ld].ldRaid.targetId; 134 return map->raidMap.ldSpanMap[ld].ldRaid.targetId;
135 } 135 }
136 136
137 u16 MR_TargetIdToLdGet(u32 ldTgtId, struct MR_FW_RAID_MAP_ALL *map) 137 u16 MR_TargetIdToLdGet(u32 ldTgtId, struct MR_FW_RAID_MAP_ALL *map)
138 { 138 {
139 return map->raidMap.ldTgtIdToLd[ldTgtId]; 139 return map->raidMap.ldTgtIdToLd[ldTgtId];
140 } 140 }
141 141
142 static struct MR_LD_SPAN *MR_LdSpanPtrGet(u32 ld, u32 span, 142 static struct MR_LD_SPAN *MR_LdSpanPtrGet(u32 ld, u32 span,
143 struct MR_FW_RAID_MAP_ALL *map) 143 struct MR_FW_RAID_MAP_ALL *map)
144 { 144 {
145 return &map->raidMap.ldSpanMap[ld].spanBlock[span].span; 145 return &map->raidMap.ldSpanMap[ld].spanBlock[span].span;
146 } 146 }
147 147
148 /* 148 /*
149 * This function will validate Map info data provided by FW 149 * This function will validate Map info data provided by FW
150 */ 150 */
151 u8 MR_ValidateMapInfo(struct MR_FW_RAID_MAP_ALL *map, 151 u8 MR_ValidateMapInfo(struct MR_FW_RAID_MAP_ALL *map,
152 struct LD_LOAD_BALANCE_INFO *lbInfo) 152 struct LD_LOAD_BALANCE_INFO *lbInfo)
153 { 153 {
154 struct MR_FW_RAID_MAP *pFwRaidMap = &map->raidMap; 154 struct MR_FW_RAID_MAP *pFwRaidMap = &map->raidMap;
155 155
156 if (pFwRaidMap->totalSize != 156 if (pFwRaidMap->totalSize !=
157 (sizeof(struct MR_FW_RAID_MAP) -sizeof(struct MR_LD_SPAN_MAP) + 157 (sizeof(struct MR_FW_RAID_MAP) -sizeof(struct MR_LD_SPAN_MAP) +
158 (sizeof(struct MR_LD_SPAN_MAP) *pFwRaidMap->ldCount))) { 158 (sizeof(struct MR_LD_SPAN_MAP) *pFwRaidMap->ldCount))) {
159 printk(KERN_ERR "megasas: map info structure size 0x%x is not matching with ld count\n", 159 printk(KERN_ERR "megasas: map info structure size 0x%x is not matching with ld count\n",
160 (unsigned int)((sizeof(struct MR_FW_RAID_MAP) - 160 (unsigned int)((sizeof(struct MR_FW_RAID_MAP) -
161 sizeof(struct MR_LD_SPAN_MAP)) + 161 sizeof(struct MR_LD_SPAN_MAP)) +
162 (sizeof(struct MR_LD_SPAN_MAP) * 162 (sizeof(struct MR_LD_SPAN_MAP) *
163 pFwRaidMap->ldCount))); 163 pFwRaidMap->ldCount)));
164 printk(KERN_ERR "megasas: span map %x, pFwRaidMap->totalSize " 164 printk(KERN_ERR "megasas: span map %x, pFwRaidMap->totalSize "
165 ": %x\n", (unsigned int)sizeof(struct MR_LD_SPAN_MAP), 165 ": %x\n", (unsigned int)sizeof(struct MR_LD_SPAN_MAP),
166 pFwRaidMap->totalSize); 166 pFwRaidMap->totalSize);
167 return 0; 167 return 0;
168 } 168 }
169 169
170 mr_update_load_balance_params(map, lbInfo); 170 mr_update_load_balance_params(map, lbInfo);
171 171
172 return 1; 172 return 1;
173 } 173 }
174 174
175 u32 MR_GetSpanBlock(u32 ld, u64 row, u64 *span_blk, 175 u32 MR_GetSpanBlock(u32 ld, u64 row, u64 *span_blk,
176 struct MR_FW_RAID_MAP_ALL *map, int *div_error) 176 struct MR_FW_RAID_MAP_ALL *map, int *div_error)
177 { 177 {
178 struct MR_SPAN_BLOCK_INFO *pSpanBlock = MR_LdSpanInfoGet(ld, map); 178 struct MR_SPAN_BLOCK_INFO *pSpanBlock = MR_LdSpanInfoGet(ld, map);
179 struct MR_QUAD_ELEMENT *quad; 179 struct MR_QUAD_ELEMENT *quad;
180 struct MR_LD_RAID *raid = MR_LdRaidGet(ld, map); 180 struct MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
181 u32 span, j; 181 u32 span, j;
182 182
183 for (span = 0; span < raid->spanDepth; span++, pSpanBlock++) { 183 for (span = 0; span < raid->spanDepth; span++, pSpanBlock++) {
184 184
185 for (j = 0; j < pSpanBlock->block_span_info.noElements; j++) { 185 for (j = 0; j < pSpanBlock->block_span_info.noElements; j++) {
186 quad = &pSpanBlock->block_span_info.quad[j]; 186 quad = &pSpanBlock->block_span_info.quad[j];
187 187
188 if (quad->diff == 0) { 188 if (quad->diff == 0) {
189 *div_error = 1; 189 *div_error = 1;
190 return span; 190 return span;
191 } 191 }
192 if (quad->logStart <= row && row <= quad->logEnd && 192 if (quad->logStart <= row && row <= quad->logEnd &&
193 (mega_mod64(row-quad->logStart, quad->diff)) == 0) { 193 (mega_mod64(row-quad->logStart, quad->diff)) == 0) {
194 if (span_blk != NULL) { 194 if (span_blk != NULL) {
195 u64 blk, debugBlk; 195 u64 blk, debugBlk;
196 blk = 196 blk =
197 mega_div64_32( 197 mega_div64_32(
198 (row-quad->logStart), 198 (row-quad->logStart),
199 quad->diff); 199 quad->diff);
200 debugBlk = blk; 200 debugBlk = blk;
201 201
202 blk = (blk + quad->offsetInSpan) << 202 blk = (blk + quad->offsetInSpan) <<
203 raid->stripeShift; 203 raid->stripeShift;
204 *span_blk = blk; 204 *span_blk = blk;
205 } 205 }
206 return span; 206 return span;
207 } 207 }
208 } 208 }
209 } 209 }
210 return span; 210 return span;
211 } 211 }
212 212
213 /* 213 /*
214 ****************************************************************************** 214 ******************************************************************************
215 * 215 *
216 * This routine calculates the arm, span and block for the specified stripe and 216 * This routine calculates the arm, span and block for the specified stripe and
217 * reference in stripe. 217 * reference in stripe.
218 * 218 *
219 * Inputs : 219 * Inputs :
220 * 220 *
221 * ld - Logical drive number 221 * ld - Logical drive number
222 * stripRow - Stripe number 222 * stripRow - Stripe number
223 * stripRef - Reference in stripe 223 * stripRef - Reference in stripe
224 * 224 *
225 * Outputs : 225 * Outputs :
226 * 226 *
227 * span - Span number 227 * span - Span number
228 * block - Absolute Block number in the physical disk 228 * block - Absolute Block number in the physical disk
229 */ 229 */
230 u8 MR_GetPhyParams(struct megasas_instance *instance, u32 ld, u64 stripRow, 230 u8 MR_GetPhyParams(struct megasas_instance *instance, u32 ld, u64 stripRow,
231 u16 stripRef, u64 *pdBlock, u16 *pDevHandle, 231 u16 stripRef, u64 *pdBlock, u16 *pDevHandle,
232 struct RAID_CONTEXT *pRAID_Context, 232 struct RAID_CONTEXT *pRAID_Context,
233 struct MR_FW_RAID_MAP_ALL *map) 233 struct MR_FW_RAID_MAP_ALL *map)
234 { 234 {
235 struct MR_LD_RAID *raid = MR_LdRaidGet(ld, map); 235 struct MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
236 u32 pd, arRef; 236 u32 pd, arRef;
237 u8 physArm, span; 237 u8 physArm, span;
238 u64 row; 238 u64 row;
239 u8 retval = TRUE; 239 u8 retval = TRUE;
240 int error_code = 0; 240 int error_code = 0;
241 241
242 row = mega_div64_32(stripRow, raid->rowDataSize); 242 row = mega_div64_32(stripRow, raid->rowDataSize);
243 243
244 if (raid->level == 6) { 244 if (raid->level == 6) {
245 /* logical arm within row */ 245 /* logical arm within row */
246 u32 logArm = mega_mod64(stripRow, raid->rowDataSize); 246 u32 logArm = mega_mod64(stripRow, raid->rowDataSize);
247 u32 rowMod, armQ, arm; 247 u32 rowMod, armQ, arm;
248 248
249 if (raid->rowSize == 0) 249 if (raid->rowSize == 0)
250 return FALSE; 250 return FALSE;
251 /* get logical row mod */ 251 /* get logical row mod */
252 rowMod = mega_mod64(row, raid->rowSize); 252 rowMod = mega_mod64(row, raid->rowSize);
253 armQ = raid->rowSize-1-rowMod; /* index of Q drive */ 253 armQ = raid->rowSize-1-rowMod; /* index of Q drive */
254 arm = armQ+1+logArm; /* data always logically follows Q */ 254 arm = armQ+1+logArm; /* data always logically follows Q */
255 if (arm >= raid->rowSize) /* handle wrap condition */ 255 if (arm >= raid->rowSize) /* handle wrap condition */
256 arm -= raid->rowSize; 256 arm -= raid->rowSize;
257 physArm = (u8)arm; 257 physArm = (u8)arm;
258 } else { 258 } else {
259 if (raid->modFactor == 0) 259 if (raid->modFactor == 0)
260 return FALSE; 260 return FALSE;
261 physArm = MR_LdDataArmGet(ld, mega_mod64(stripRow, 261 physArm = MR_LdDataArmGet(ld, mega_mod64(stripRow,
262 raid->modFactor), 262 raid->modFactor),
263 map); 263 map);
264 } 264 }
265 265
266 if (raid->spanDepth == 1) { 266 if (raid->spanDepth == 1) {
267 span = 0; 267 span = 0;
268 *pdBlock = row << raid->stripeShift; 268 *pdBlock = row << raid->stripeShift;
269 } else { 269 } else {
270 span = (u8)MR_GetSpanBlock(ld, row, pdBlock, map, &error_code); 270 span = (u8)MR_GetSpanBlock(ld, row, pdBlock, map, &error_code);
271 if (error_code == 1) 271 if (error_code == 1)
272 return FALSE; 272 return FALSE;
273 } 273 }
274 274
275 /* Get the array on which this span is present */ 275 /* Get the array on which this span is present */
276 arRef = MR_LdSpanArrayGet(ld, span, map); 276 arRef = MR_LdSpanArrayGet(ld, span, map);
277 pd = MR_ArPdGet(arRef, physArm, map); /* Get the pd */ 277 pd = MR_ArPdGet(arRef, physArm, map); /* Get the pd */
278 278
279 if (pd != MR_PD_INVALID) 279 if (pd != MR_PD_INVALID)
280 /* Get dev handle from Pd. */ 280 /* Get dev handle from Pd. */
281 *pDevHandle = MR_PdDevHandleGet(pd, map); 281 *pDevHandle = MR_PdDevHandleGet(pd, map);
282 else { 282 else {
283 *pDevHandle = MR_PD_INVALID; /* set dev handle as invalid. */ 283 *pDevHandle = MR_PD_INVALID; /* set dev handle as invalid. */
284 if ((raid->level >= 5) && 284 if ((raid->level >= 5) &&
285 ((instance->pdev->device != PCI_DEVICE_ID_LSI_INVADER) || 285 ((instance->pdev->device != PCI_DEVICE_ID_LSI_INVADER) ||
286 (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER && 286 (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER &&
287 raid->regTypeReqOnRead != REGION_TYPE_UNUSED))) 287 raid->regTypeReqOnRead != REGION_TYPE_UNUSED)))
288 pRAID_Context->regLockFlags = REGION_TYPE_EXCLUSIVE; 288 pRAID_Context->regLockFlags = REGION_TYPE_EXCLUSIVE;
289 else if (raid->level == 1) { 289 else if (raid->level == 1) {
290 /* Get alternate Pd. */ 290 /* Get alternate Pd. */
291 pd = MR_ArPdGet(arRef, physArm + 1, map); 291 pd = MR_ArPdGet(arRef, physArm + 1, map);
292 if (pd != MR_PD_INVALID) 292 if (pd != MR_PD_INVALID)
293 /* Get dev handle from Pd */ 293 /* Get dev handle from Pd */
294 *pDevHandle = MR_PdDevHandleGet(pd, map); 294 *pDevHandle = MR_PdDevHandleGet(pd, map);
295 } 295 }
296 } 296 }
297 297
298 *pdBlock += stripRef + MR_LdSpanPtrGet(ld, span, map)->startBlk; 298 *pdBlock += stripRef + MR_LdSpanPtrGet(ld, span, map)->startBlk;
299 pRAID_Context->spanArm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | 299 pRAID_Context->spanArm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) |
300 physArm; 300 physArm;
301 return retval; 301 return retval;
302 } 302 }
303 303
304 /* 304 /*
305 ****************************************************************************** 305 ******************************************************************************
306 * 306 *
307 * MR_BuildRaidContext function 307 * MR_BuildRaidContext function
308 * 308 *
309 * This function will initiate command processing. The start/end row and strip 309 * This function will initiate command processing. The start/end row and strip
310 * information is calculated then the lock is acquired. 310 * information is calculated then the lock is acquired.
311 * This function will return 0 if region lock was acquired OR return num strips 311 * This function will return 0 if region lock was acquired OR return num strips
312 */ 312 */
313 u8 313 u8
314 MR_BuildRaidContext(struct megasas_instance *instance, 314 MR_BuildRaidContext(struct megasas_instance *instance,
315 struct IO_REQUEST_INFO *io_info, 315 struct IO_REQUEST_INFO *io_info,
316 struct RAID_CONTEXT *pRAID_Context, 316 struct RAID_CONTEXT *pRAID_Context,
317 struct MR_FW_RAID_MAP_ALL *map) 317 struct MR_FW_RAID_MAP_ALL *map)
318 { 318 {
319 struct MR_LD_RAID *raid; 319 struct MR_LD_RAID *raid;
320 u32 ld, stripSize, stripe_mask; 320 u32 ld, stripSize, stripe_mask;
321 u64 endLba, endStrip, endRow, start_row, start_strip; 321 u64 endLba, endStrip, endRow, start_row, start_strip;
322 u64 regStart; 322 u64 regStart;
323 u32 regSize; 323 u32 regSize;
324 u8 num_strips, numRows; 324 u8 num_strips, numRows;
325 u16 ref_in_start_stripe, ref_in_end_stripe; 325 u16 ref_in_start_stripe, ref_in_end_stripe;
326 u64 ldStartBlock; 326 u64 ldStartBlock;
327 u32 numBlocks, ldTgtId; 327 u32 numBlocks, ldTgtId;
328 u8 isRead; 328 u8 isRead;
329 u8 retval = 0; 329 u8 retval = 0;
330 330
331 ldStartBlock = io_info->ldStartBlock; 331 ldStartBlock = io_info->ldStartBlock;
332 numBlocks = io_info->numBlocks; 332 numBlocks = io_info->numBlocks;
333 ldTgtId = io_info->ldTgtId; 333 ldTgtId = io_info->ldTgtId;
334 isRead = io_info->isRead; 334 isRead = io_info->isRead;
335 335
336 ld = MR_TargetIdToLdGet(ldTgtId, map); 336 ld = MR_TargetIdToLdGet(ldTgtId, map);
337 raid = MR_LdRaidGet(ld, map); 337 raid = MR_LdRaidGet(ld, map);
338 338
339 stripSize = 1 << raid->stripeShift; 339 stripSize = 1 << raid->stripeShift;
340 stripe_mask = stripSize-1; 340 stripe_mask = stripSize-1;
341 /* 341 /*
342 * calculate starting row and stripe, and number of strips and rows 342 * calculate starting row and stripe, and number of strips and rows
343 */ 343 */
344 start_strip = ldStartBlock >> raid->stripeShift; 344 start_strip = ldStartBlock >> raid->stripeShift;
345 ref_in_start_stripe = (u16)(ldStartBlock & stripe_mask); 345 ref_in_start_stripe = (u16)(ldStartBlock & stripe_mask);
346 endLba = ldStartBlock + numBlocks - 1; 346 endLba = ldStartBlock + numBlocks - 1;
347 ref_in_end_stripe = (u16)(endLba & stripe_mask); 347 ref_in_end_stripe = (u16)(endLba & stripe_mask);
348 endStrip = endLba >> raid->stripeShift; 348 endStrip = endLba >> raid->stripeShift;
349 num_strips = (u8)(endStrip - start_strip + 1); /* End strip */ 349 num_strips = (u8)(endStrip - start_strip + 1); /* End strip */
350 if (raid->rowDataSize == 0) 350 if (raid->rowDataSize == 0)
351 return FALSE; 351 return FALSE;
352 start_row = mega_div64_32(start_strip, raid->rowDataSize); 352 start_row = mega_div64_32(start_strip, raid->rowDataSize);
353 endRow = mega_div64_32(endStrip, raid->rowDataSize); 353 endRow = mega_div64_32(endStrip, raid->rowDataSize);
354 numRows = (u8)(endRow - start_row + 1); 354 numRows = (u8)(endRow - start_row + 1);
355 355
356 /* 356 /*
357 * calculate region info. 357 * calculate region info.
358 */ 358 */
359 359
360 /* assume region is at the start of the first row */ 360 /* assume region is at the start of the first row */
361 regStart = start_row << raid->stripeShift; 361 regStart = start_row << raid->stripeShift;
362 /* assume this IO needs the full row - we'll adjust if not true */ 362 /* assume this IO needs the full row - we'll adjust if not true */
363 regSize = stripSize; 363 regSize = stripSize;
364 364
365 /* If IO spans more than 1 strip, fp is not possible 365 /* Check if we can send this I/O via FastPath */
366 FP is not possible for writes on non-0 raid levels 366 if (raid->capability.fpCapable) {
367 FP is not possible if LD is not capable */ 367 if (isRead)
368 if (num_strips > 1 || (!isRead && raid->level != 0) || 368 io_info->fpOkForIo = (raid->capability.fpReadCapable &&
369 !raid->capability.fpCapable) { 369 ((num_strips == 1) ||
370 raid->capability.
371 fpReadAcrossStripe));
372 else
373 io_info->fpOkForIo = (raid->capability.fpWriteCapable &&
374 ((num_strips == 1) ||
375 raid->capability.
376 fpWriteAcrossStripe));
377 } else
370 io_info->fpOkForIo = FALSE; 378 io_info->fpOkForIo = FALSE;
371 } else {
372 io_info->fpOkForIo = TRUE;
373 }
374 379
375 if (numRows == 1) { 380 if (numRows == 1) {
376 /* single-strip IOs can always lock only the data needed */ 381 /* single-strip IOs can always lock only the data needed */
377 if (num_strips == 1) { 382 if (num_strips == 1) {
378 regStart += ref_in_start_stripe; 383 regStart += ref_in_start_stripe;
379 regSize = numBlocks; 384 regSize = numBlocks;
380 } 385 }
381 /* multi-strip IOs always need to full stripe locked */ 386 /* multi-strip IOs always need to full stripe locked */
382 } else { 387 } else {
383 if (start_strip == (start_row + 1) * raid->rowDataSize - 1) { 388 if (start_strip == (start_row + 1) * raid->rowDataSize - 1) {
384 /* If the start strip is the last in the start row */ 389 /* If the start strip is the last in the start row */
385 regStart += ref_in_start_stripe; 390 regStart += ref_in_start_stripe;
386 regSize = stripSize - ref_in_start_stripe; 391 regSize = stripSize - ref_in_start_stripe;
387 /* initialize count to sectors from startref to end 392 /* initialize count to sectors from startref to end
388 of strip */ 393 of strip */
389 } 394 }
390 395
391 if (numRows > 2) 396 if (numRows > 2)
392 /* Add complete rows in the middle of the transfer */ 397 /* Add complete rows in the middle of the transfer */
393 regSize += (numRows-2) << raid->stripeShift; 398 regSize += (numRows-2) << raid->stripeShift;
394 399
395 /* if IO ends within first strip of last row */ 400 /* if IO ends within first strip of last row */
396 if (endStrip == endRow*raid->rowDataSize) 401 if (endStrip == endRow*raid->rowDataSize)
397 regSize += ref_in_end_stripe+1; 402 regSize += ref_in_end_stripe+1;
398 else 403 else
399 regSize += stripSize; 404 regSize += stripSize;
400 } 405 }
401 406
402 pRAID_Context->timeoutValue = map->raidMap.fpPdIoTimeoutSec; 407 pRAID_Context->timeoutValue = map->raidMap.fpPdIoTimeoutSec;
403 if (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) 408 if (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER)
404 pRAID_Context->regLockFlags = (isRead) ? 409 pRAID_Context->regLockFlags = (isRead) ?
405 raid->regTypeReqOnRead : raid->regTypeReqOnWrite; 410 raid->regTypeReqOnRead : raid->regTypeReqOnWrite;
406 else 411 else
407 pRAID_Context->regLockFlags = (isRead) ? 412 pRAID_Context->regLockFlags = (isRead) ?
408 REGION_TYPE_SHARED_READ : raid->regTypeReqOnWrite; 413 REGION_TYPE_SHARED_READ : raid->regTypeReqOnWrite;
409 pRAID_Context->VirtualDiskTgtId = raid->targetId; 414 pRAID_Context->VirtualDiskTgtId = raid->targetId;
410 pRAID_Context->regLockRowLBA = regStart; 415 pRAID_Context->regLockRowLBA = regStart;
411 pRAID_Context->regLockLength = regSize; 416 pRAID_Context->regLockLength = regSize;
412 pRAID_Context->configSeqNum = raid->seqNum; 417 pRAID_Context->configSeqNum = raid->seqNum;
413 418
414 /*Get Phy Params only if FP capable, or else leave it to MR firmware 419 /*Get Phy Params only if FP capable, or else leave it to MR firmware
415 to do the calculation.*/ 420 to do the calculation.*/
416 if (io_info->fpOkForIo) { 421 if (io_info->fpOkForIo) {
417 retval = MR_GetPhyParams(instance, ld, start_strip, 422 retval = MR_GetPhyParams(instance, ld, start_strip,
418 ref_in_start_stripe, 423 ref_in_start_stripe,
419 &io_info->pdBlock, 424 &io_info->pdBlock,
420 &io_info->devHandle, pRAID_Context, 425 &io_info->devHandle, pRAID_Context,
421 map); 426 map);
422 /* If IO on an invalid Pd, then FP i snot possible */ 427 /* If IO on an invalid Pd, then FP i snot possible */
423 if (io_info->devHandle == MR_PD_INVALID) 428 if (io_info->devHandle == MR_PD_INVALID)
424 io_info->fpOkForIo = FALSE; 429 io_info->fpOkForIo = FALSE;
425 return retval; 430 return retval;
426 } else if (isRead) { 431 } else if (isRead) {
427 uint stripIdx; 432 uint stripIdx;
428 for (stripIdx = 0; stripIdx < num_strips; stripIdx++) { 433 for (stripIdx = 0; stripIdx < num_strips; stripIdx++) {
429 if (!MR_GetPhyParams(instance, ld, 434 if (!MR_GetPhyParams(instance, ld,
430 start_strip + stripIdx, 435 start_strip + stripIdx,
431 ref_in_start_stripe, 436 ref_in_start_stripe,
432 &io_info->pdBlock, 437 &io_info->pdBlock,
433 &io_info->devHandle, 438 &io_info->devHandle,
434 pRAID_Context, map)) 439 pRAID_Context, map))
435 return TRUE; 440 return TRUE;
436 } 441 }
437 } 442 }
438 return TRUE; 443 return TRUE;
439 } 444 }
440 445
441 void 446 void
442 mr_update_load_balance_params(struct MR_FW_RAID_MAP_ALL *map, 447 mr_update_load_balance_params(struct MR_FW_RAID_MAP_ALL *map,
443 struct LD_LOAD_BALANCE_INFO *lbInfo) 448 struct LD_LOAD_BALANCE_INFO *lbInfo)
444 { 449 {
445 int ldCount; 450 int ldCount;
446 u16 ld; 451 u16 ld;
447 struct MR_LD_RAID *raid; 452 struct MR_LD_RAID *raid;
448 453
449 for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES; ldCount++) { 454 for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES; ldCount++) {
450 ld = MR_TargetIdToLdGet(ldCount, map); 455 ld = MR_TargetIdToLdGet(ldCount, map);
451 if (ld >= MAX_LOGICAL_DRIVES) { 456 if (ld >= MAX_LOGICAL_DRIVES) {
452 lbInfo[ldCount].loadBalanceFlag = 0; 457 lbInfo[ldCount].loadBalanceFlag = 0;
453 continue; 458 continue;
454 } 459 }
455 460
456 raid = MR_LdRaidGet(ld, map); 461 raid = MR_LdRaidGet(ld, map);
457 462
458 /* Two drive Optimal RAID 1 */ 463 /* Two drive Optimal RAID 1 */
459 if ((raid->level == 1) && (raid->rowSize == 2) && 464 if ((raid->level == 1) && (raid->rowSize == 2) &&
460 (raid->spanDepth == 1) && raid->ldState == 465 (raid->spanDepth == 1) && raid->ldState ==
461 MR_LD_STATE_OPTIMAL) { 466 MR_LD_STATE_OPTIMAL) {
462 u32 pd, arRef; 467 u32 pd, arRef;
463 468
464 lbInfo[ldCount].loadBalanceFlag = 1; 469 lbInfo[ldCount].loadBalanceFlag = 1;
465 470
466 /* Get the array on which this span is present */ 471 /* Get the array on which this span is present */
467 arRef = MR_LdSpanArrayGet(ld, 0, map); 472 arRef = MR_LdSpanArrayGet(ld, 0, map);
468 473
469 /* Get the Pd */ 474 /* Get the Pd */
470 pd = MR_ArPdGet(arRef, 0, map); 475 pd = MR_ArPdGet(arRef, 0, map);
471 /* Get dev handle from Pd */ 476 /* Get dev handle from Pd */
472 lbInfo[ldCount].raid1DevHandle[0] = 477 lbInfo[ldCount].raid1DevHandle[0] =
473 MR_PdDevHandleGet(pd, map); 478 MR_PdDevHandleGet(pd, map);
474 /* Get the Pd */ 479 /* Get the Pd */
475 pd = MR_ArPdGet(arRef, 1, map); 480 pd = MR_ArPdGet(arRef, 1, map);
476 481
477 /* Get the dev handle from Pd */ 482 /* Get the dev handle from Pd */
478 lbInfo[ldCount].raid1DevHandle[1] = 483 lbInfo[ldCount].raid1DevHandle[1] =
479 MR_PdDevHandleGet(pd, map); 484 MR_PdDevHandleGet(pd, map);
480 } else 485 } else
481 lbInfo[ldCount].loadBalanceFlag = 0; 486 lbInfo[ldCount].loadBalanceFlag = 0;
482 } 487 }
483 } 488 }
484 489
485 u8 megasas_get_best_arm(struct LD_LOAD_BALANCE_INFO *lbInfo, u8 arm, u64 block, 490 u8 megasas_get_best_arm(struct LD_LOAD_BALANCE_INFO *lbInfo, u8 arm, u64 block,
486 u32 count) 491 u32 count)
487 { 492 {
488 u16 pend0, pend1; 493 u16 pend0, pend1;
489 u64 diff0, diff1; 494 u64 diff0, diff1;
490 u8 bestArm; 495 u8 bestArm;
491 496
492 /* get the pending cmds for the data and mirror arms */ 497 /* get the pending cmds for the data and mirror arms */
493 pend0 = atomic_read(&lbInfo->scsi_pending_cmds[0]); 498 pend0 = atomic_read(&lbInfo->scsi_pending_cmds[0]);
494 pend1 = atomic_read(&lbInfo->scsi_pending_cmds[1]); 499 pend1 = atomic_read(&lbInfo->scsi_pending_cmds[1]);
495 500
496 /* Determine the disk whose head is nearer to the req. block */ 501 /* Determine the disk whose head is nearer to the req. block */
497 diff0 = ABS_DIFF(block, lbInfo->last_accessed_block[0]); 502 diff0 = ABS_DIFF(block, lbInfo->last_accessed_block[0]);
498 diff1 = ABS_DIFF(block, lbInfo->last_accessed_block[1]); 503 diff1 = ABS_DIFF(block, lbInfo->last_accessed_block[1]);
499 bestArm = (diff0 <= diff1 ? 0 : 1); 504 bestArm = (diff0 <= diff1 ? 0 : 1);
500 505
501 if ((bestArm == arm && pend0 > pend1 + 16) || 506 if ((bestArm == arm && pend0 > pend1 + 16) ||
502 (bestArm != arm && pend1 > pend0 + 16)) 507 (bestArm != arm && pend1 > pend0 + 16))
503 bestArm ^= 1; 508 bestArm ^= 1;
504 509
505 /* Update the last accessed block on the correct pd */ 510 /* Update the last accessed block on the correct pd */
506 lbInfo->last_accessed_block[bestArm] = block + count - 1; 511 lbInfo->last_accessed_block[bestArm] = block + count - 1;
507 512
508 return bestArm; 513 return bestArm;
509 } 514 }
510 515
511 u16 get_updated_dev_handle(struct LD_LOAD_BALANCE_INFO *lbInfo, 516 u16 get_updated_dev_handle(struct LD_LOAD_BALANCE_INFO *lbInfo,
512 struct IO_REQUEST_INFO *io_info) 517 struct IO_REQUEST_INFO *io_info)
513 { 518 {
514 u8 arm, old_arm; 519 u8 arm, old_arm;
515 u16 devHandle; 520 u16 devHandle;
516 521
517 old_arm = lbInfo->raid1DevHandle[0] == io_info->devHandle ? 0 : 1; 522 old_arm = lbInfo->raid1DevHandle[0] == io_info->devHandle ? 0 : 1;
518 523
519 /* get best new arm */ 524 /* get best new arm */
520 arm = megasas_get_best_arm(lbInfo, old_arm, io_info->ldStartBlock, 525 arm = megasas_get_best_arm(lbInfo, old_arm, io_info->ldStartBlock,
521 io_info->numBlocks); 526 io_info->numBlocks);
522 devHandle = lbInfo->raid1DevHandle[arm]; 527 devHandle = lbInfo->raid1DevHandle[arm];
523 atomic_inc(&lbInfo->scsi_pending_cmds[arm]); 528 atomic_inc(&lbInfo->scsi_pending_cmds[arm]);
524 529