Commit c8161f64ccdcc3ac05c7bbfebc031e7ad5ca6412

Authored by Eric Sandeen
Committed by Linus Torvalds
1 parent c525460e27

ecryptfs: fix unlocking in error paths

Thanks to Josef Bacik for finding these.

A couple of ecryptfs error paths don't properly unlock things they locked.

Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Cc: Josef Bacik <jbacik@redhat.com>
Cc: Michael Halcrow <mhalcrow@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>

Showing 2 changed files with 5 additions and 4 deletions Inline Diff

fs/ecryptfs/crypto.c
1 /** 1 /**
2 * eCryptfs: Linux filesystem encryption layer 2 * eCryptfs: Linux filesystem encryption layer
3 * 3 *
4 * Copyright (C) 1997-2004 Erez Zadok 4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University 5 * Copyright (C) 2001-2004 Stony Brook University
6 * Copyright (C) 2004-2007 International Business Machines Corp. 6 * Copyright (C) 2004-2007 International Business Machines Corp.
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com> 7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com> 8 * Michael C. Thompson <mcthomps@us.ibm.com>
9 * 9 *
10 * This program is free software; you can redistribute it and/or 10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as 11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the 12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version. 13 * License, or (at your option) any later version.
14 * 14 *
15 * This program is distributed in the hope that it will be useful, but 15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of 16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details. 18 * General Public License for more details.
19 * 19 *
20 * You should have received a copy of the GNU General Public License 20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software 21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23 * 02111-1307, USA. 23 * 02111-1307, USA.
24 */ 24 */
25 25
26 #include <linux/fs.h> 26 #include <linux/fs.h>
27 #include <linux/mount.h> 27 #include <linux/mount.h>
28 #include <linux/pagemap.h> 28 #include <linux/pagemap.h>
29 #include <linux/random.h> 29 #include <linux/random.h>
30 #include <linux/compiler.h> 30 #include <linux/compiler.h>
31 #include <linux/key.h> 31 #include <linux/key.h>
32 #include <linux/namei.h> 32 #include <linux/namei.h>
33 #include <linux/crypto.h> 33 #include <linux/crypto.h>
34 #include <linux/file.h> 34 #include <linux/file.h>
35 #include <linux/scatterlist.h> 35 #include <linux/scatterlist.h>
36 #include "ecryptfs_kernel.h" 36 #include "ecryptfs_kernel.h"
37 37
38 static int 38 static int
39 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 39 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
40 struct page *dst_page, int dst_offset, 40 struct page *dst_page, int dst_offset,
41 struct page *src_page, int src_offset, int size, 41 struct page *src_page, int src_offset, int size,
42 unsigned char *iv); 42 unsigned char *iv);
43 static int 43 static int
44 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 44 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
45 struct page *dst_page, int dst_offset, 45 struct page *dst_page, int dst_offset,
46 struct page *src_page, int src_offset, int size, 46 struct page *src_page, int src_offset, int size,
47 unsigned char *iv); 47 unsigned char *iv);
48 48
49 /** 49 /**
50 * ecryptfs_to_hex 50 * ecryptfs_to_hex
51 * @dst: Buffer to take hex character representation of contents of 51 * @dst: Buffer to take hex character representation of contents of
52 * src; must be at least of size (src_size * 2) 52 * src; must be at least of size (src_size * 2)
53 * @src: Buffer to be converted to a hex string respresentation 53 * @src: Buffer to be converted to a hex string respresentation
54 * @src_size: number of bytes to convert 54 * @src_size: number of bytes to convert
55 */ 55 */
56 void ecryptfs_to_hex(char *dst, char *src, size_t src_size) 56 void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
57 { 57 {
58 int x; 58 int x;
59 59
60 for (x = 0; x < src_size; x++) 60 for (x = 0; x < src_size; x++)
61 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]); 61 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
62 } 62 }
63 63
64 /** 64 /**
65 * ecryptfs_from_hex 65 * ecryptfs_from_hex
66 * @dst: Buffer to take the bytes from src hex; must be at least of 66 * @dst: Buffer to take the bytes from src hex; must be at least of
67 * size (src_size / 2) 67 * size (src_size / 2)
68 * @src: Buffer to be converted from a hex string respresentation to raw value 68 * @src: Buffer to be converted from a hex string respresentation to raw value
69 * @dst_size: size of dst buffer, or number of hex characters pairs to convert 69 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
70 */ 70 */
71 void ecryptfs_from_hex(char *dst, char *src, int dst_size) 71 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
72 { 72 {
73 int x; 73 int x;
74 char tmp[3] = { 0, }; 74 char tmp[3] = { 0, };
75 75
76 for (x = 0; x < dst_size; x++) { 76 for (x = 0; x < dst_size; x++) {
77 tmp[0] = src[x * 2]; 77 tmp[0] = src[x * 2];
78 tmp[1] = src[x * 2 + 1]; 78 tmp[1] = src[x * 2 + 1];
79 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16); 79 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
80 } 80 }
81 } 81 }
82 82
83 /** 83 /**
84 * ecryptfs_calculate_md5 - calculates the md5 of @src 84 * ecryptfs_calculate_md5 - calculates the md5 of @src
85 * @dst: Pointer to 16 bytes of allocated memory 85 * @dst: Pointer to 16 bytes of allocated memory
86 * @crypt_stat: Pointer to crypt_stat struct for the current inode 86 * @crypt_stat: Pointer to crypt_stat struct for the current inode
87 * @src: Data to be md5'd 87 * @src: Data to be md5'd
88 * @len: Length of @src 88 * @len: Length of @src
89 * 89 *
90 * Uses the allocated crypto context that crypt_stat references to 90 * Uses the allocated crypto context that crypt_stat references to
91 * generate the MD5 sum of the contents of src. 91 * generate the MD5 sum of the contents of src.
92 */ 92 */
93 static int ecryptfs_calculate_md5(char *dst, 93 static int ecryptfs_calculate_md5(char *dst,
94 struct ecryptfs_crypt_stat *crypt_stat, 94 struct ecryptfs_crypt_stat *crypt_stat,
95 char *src, int len) 95 char *src, int len)
96 { 96 {
97 struct scatterlist sg; 97 struct scatterlist sg;
98 struct hash_desc desc = { 98 struct hash_desc desc = {
99 .tfm = crypt_stat->hash_tfm, 99 .tfm = crypt_stat->hash_tfm,
100 .flags = CRYPTO_TFM_REQ_MAY_SLEEP 100 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
101 }; 101 };
102 int rc = 0; 102 int rc = 0;
103 103
104 mutex_lock(&crypt_stat->cs_hash_tfm_mutex); 104 mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
105 sg_init_one(&sg, (u8 *)src, len); 105 sg_init_one(&sg, (u8 *)src, len);
106 if (!desc.tfm) { 106 if (!desc.tfm) {
107 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0, 107 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
108 CRYPTO_ALG_ASYNC); 108 CRYPTO_ALG_ASYNC);
109 if (IS_ERR(desc.tfm)) { 109 if (IS_ERR(desc.tfm)) {
110 rc = PTR_ERR(desc.tfm); 110 rc = PTR_ERR(desc.tfm);
111 ecryptfs_printk(KERN_ERR, "Error attempting to " 111 ecryptfs_printk(KERN_ERR, "Error attempting to "
112 "allocate crypto context; rc = [%d]\n", 112 "allocate crypto context; rc = [%d]\n",
113 rc); 113 rc);
114 goto out; 114 goto out;
115 } 115 }
116 crypt_stat->hash_tfm = desc.tfm; 116 crypt_stat->hash_tfm = desc.tfm;
117 } 117 }
118 rc = crypto_hash_init(&desc); 118 rc = crypto_hash_init(&desc);
119 if (rc) { 119 if (rc) {
120 printk(KERN_ERR 120 printk(KERN_ERR
121 "%s: Error initializing crypto hash; rc = [%d]\n", 121 "%s: Error initializing crypto hash; rc = [%d]\n",
122 __FUNCTION__, rc); 122 __FUNCTION__, rc);
123 goto out; 123 goto out;
124 } 124 }
125 rc = crypto_hash_update(&desc, &sg, len); 125 rc = crypto_hash_update(&desc, &sg, len);
126 if (rc) { 126 if (rc) {
127 printk(KERN_ERR 127 printk(KERN_ERR
128 "%s: Error updating crypto hash; rc = [%d]\n", 128 "%s: Error updating crypto hash; rc = [%d]\n",
129 __FUNCTION__, rc); 129 __FUNCTION__, rc);
130 goto out; 130 goto out;
131 } 131 }
132 rc = crypto_hash_final(&desc, dst); 132 rc = crypto_hash_final(&desc, dst);
133 if (rc) { 133 if (rc) {
134 printk(KERN_ERR 134 printk(KERN_ERR
135 "%s: Error finalizing crypto hash; rc = [%d]\n", 135 "%s: Error finalizing crypto hash; rc = [%d]\n",
136 __FUNCTION__, rc); 136 __FUNCTION__, rc);
137 goto out; 137 goto out;
138 } 138 }
139 out: 139 out:
140 mutex_unlock(&crypt_stat->cs_hash_tfm_mutex); 140 mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
141 return rc; 141 return rc;
142 } 142 }
143 143
144 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name, 144 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
145 char *cipher_name, 145 char *cipher_name,
146 char *chaining_modifier) 146 char *chaining_modifier)
147 { 147 {
148 int cipher_name_len = strlen(cipher_name); 148 int cipher_name_len = strlen(cipher_name);
149 int chaining_modifier_len = strlen(chaining_modifier); 149 int chaining_modifier_len = strlen(chaining_modifier);
150 int algified_name_len; 150 int algified_name_len;
151 int rc; 151 int rc;
152 152
153 algified_name_len = (chaining_modifier_len + cipher_name_len + 3); 153 algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
154 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL); 154 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
155 if (!(*algified_name)) { 155 if (!(*algified_name)) {
156 rc = -ENOMEM; 156 rc = -ENOMEM;
157 goto out; 157 goto out;
158 } 158 }
159 snprintf((*algified_name), algified_name_len, "%s(%s)", 159 snprintf((*algified_name), algified_name_len, "%s(%s)",
160 chaining_modifier, cipher_name); 160 chaining_modifier, cipher_name);
161 rc = 0; 161 rc = 0;
162 out: 162 out:
163 return rc; 163 return rc;
164 } 164 }
165 165
166 /** 166 /**
167 * ecryptfs_derive_iv 167 * ecryptfs_derive_iv
168 * @iv: destination for the derived iv vale 168 * @iv: destination for the derived iv vale
169 * @crypt_stat: Pointer to crypt_stat struct for the current inode 169 * @crypt_stat: Pointer to crypt_stat struct for the current inode
170 * @offset: Offset of the extent whose IV we are to derive 170 * @offset: Offset of the extent whose IV we are to derive
171 * 171 *
172 * Generate the initialization vector from the given root IV and page 172 * Generate the initialization vector from the given root IV and page
173 * offset. 173 * offset.
174 * 174 *
175 * Returns zero on success; non-zero on error. 175 * Returns zero on success; non-zero on error.
176 */ 176 */
177 static int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat, 177 static int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
178 loff_t offset) 178 loff_t offset)
179 { 179 {
180 int rc = 0; 180 int rc = 0;
181 char dst[MD5_DIGEST_SIZE]; 181 char dst[MD5_DIGEST_SIZE];
182 char src[ECRYPTFS_MAX_IV_BYTES + 16]; 182 char src[ECRYPTFS_MAX_IV_BYTES + 16];
183 183
184 if (unlikely(ecryptfs_verbosity > 0)) { 184 if (unlikely(ecryptfs_verbosity > 0)) {
185 ecryptfs_printk(KERN_DEBUG, "root iv:\n"); 185 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
186 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes); 186 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
187 } 187 }
188 /* TODO: It is probably secure to just cast the least 188 /* TODO: It is probably secure to just cast the least
189 * significant bits of the root IV into an unsigned long and 189 * significant bits of the root IV into an unsigned long and
190 * add the offset to that rather than go through all this 190 * add the offset to that rather than go through all this
191 * hashing business. -Halcrow */ 191 * hashing business. -Halcrow */
192 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes); 192 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
193 memset((src + crypt_stat->iv_bytes), 0, 16); 193 memset((src + crypt_stat->iv_bytes), 0, 16);
194 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset); 194 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
195 if (unlikely(ecryptfs_verbosity > 0)) { 195 if (unlikely(ecryptfs_verbosity > 0)) {
196 ecryptfs_printk(KERN_DEBUG, "source:\n"); 196 ecryptfs_printk(KERN_DEBUG, "source:\n");
197 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16)); 197 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
198 } 198 }
199 rc = ecryptfs_calculate_md5(dst, crypt_stat, src, 199 rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
200 (crypt_stat->iv_bytes + 16)); 200 (crypt_stat->iv_bytes + 16));
201 if (rc) { 201 if (rc) {
202 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 202 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
203 "MD5 while generating IV for a page\n"); 203 "MD5 while generating IV for a page\n");
204 goto out; 204 goto out;
205 } 205 }
206 memcpy(iv, dst, crypt_stat->iv_bytes); 206 memcpy(iv, dst, crypt_stat->iv_bytes);
207 if (unlikely(ecryptfs_verbosity > 0)) { 207 if (unlikely(ecryptfs_verbosity > 0)) {
208 ecryptfs_printk(KERN_DEBUG, "derived iv:\n"); 208 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
209 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes); 209 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
210 } 210 }
211 out: 211 out:
212 return rc; 212 return rc;
213 } 213 }
214 214
215 /** 215 /**
216 * ecryptfs_init_crypt_stat 216 * ecryptfs_init_crypt_stat
217 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 217 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
218 * 218 *
219 * Initialize the crypt_stat structure. 219 * Initialize the crypt_stat structure.
220 */ 220 */
221 void 221 void
222 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 222 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
223 { 223 {
224 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 224 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
225 INIT_LIST_HEAD(&crypt_stat->keysig_list); 225 INIT_LIST_HEAD(&crypt_stat->keysig_list);
226 mutex_init(&crypt_stat->keysig_list_mutex); 226 mutex_init(&crypt_stat->keysig_list_mutex);
227 mutex_init(&crypt_stat->cs_mutex); 227 mutex_init(&crypt_stat->cs_mutex);
228 mutex_init(&crypt_stat->cs_tfm_mutex); 228 mutex_init(&crypt_stat->cs_tfm_mutex);
229 mutex_init(&crypt_stat->cs_hash_tfm_mutex); 229 mutex_init(&crypt_stat->cs_hash_tfm_mutex);
230 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED; 230 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
231 } 231 }
232 232
233 /** 233 /**
234 * ecryptfs_destroy_crypt_stat 234 * ecryptfs_destroy_crypt_stat
235 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 235 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
236 * 236 *
237 * Releases all memory associated with a crypt_stat struct. 237 * Releases all memory associated with a crypt_stat struct.
238 */ 238 */
239 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 239 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
240 { 240 {
241 struct ecryptfs_key_sig *key_sig, *key_sig_tmp; 241 struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
242 242
243 if (crypt_stat->tfm) 243 if (crypt_stat->tfm)
244 crypto_free_blkcipher(crypt_stat->tfm); 244 crypto_free_blkcipher(crypt_stat->tfm);
245 if (crypt_stat->hash_tfm) 245 if (crypt_stat->hash_tfm)
246 crypto_free_hash(crypt_stat->hash_tfm); 246 crypto_free_hash(crypt_stat->hash_tfm);
247 mutex_lock(&crypt_stat->keysig_list_mutex); 247 mutex_lock(&crypt_stat->keysig_list_mutex);
248 list_for_each_entry_safe(key_sig, key_sig_tmp, 248 list_for_each_entry_safe(key_sig, key_sig_tmp,
249 &crypt_stat->keysig_list, crypt_stat_list) { 249 &crypt_stat->keysig_list, crypt_stat_list) {
250 list_del(&key_sig->crypt_stat_list); 250 list_del(&key_sig->crypt_stat_list);
251 kmem_cache_free(ecryptfs_key_sig_cache, key_sig); 251 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
252 } 252 }
253 mutex_unlock(&crypt_stat->keysig_list_mutex); 253 mutex_unlock(&crypt_stat->keysig_list_mutex);
254 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 254 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
255 } 255 }
256 256
257 void ecryptfs_destroy_mount_crypt_stat( 257 void ecryptfs_destroy_mount_crypt_stat(
258 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 258 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
259 { 259 {
260 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp; 260 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
261 261
262 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED)) 262 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
263 return; 263 return;
264 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 264 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
265 list_for_each_entry_safe(auth_tok, auth_tok_tmp, 265 list_for_each_entry_safe(auth_tok, auth_tok_tmp,
266 &mount_crypt_stat->global_auth_tok_list, 266 &mount_crypt_stat->global_auth_tok_list,
267 mount_crypt_stat_list) { 267 mount_crypt_stat_list) {
268 list_del(&auth_tok->mount_crypt_stat_list); 268 list_del(&auth_tok->mount_crypt_stat_list);
269 mount_crypt_stat->num_global_auth_toks--; 269 mount_crypt_stat->num_global_auth_toks--;
270 if (auth_tok->global_auth_tok_key 270 if (auth_tok->global_auth_tok_key
271 && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID)) 271 && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
272 key_put(auth_tok->global_auth_tok_key); 272 key_put(auth_tok->global_auth_tok_key);
273 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok); 273 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
274 } 274 }
275 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 275 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
276 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat)); 276 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
277 } 277 }
278 278
279 /** 279 /**
280 * virt_to_scatterlist 280 * virt_to_scatterlist
281 * @addr: Virtual address 281 * @addr: Virtual address
282 * @size: Size of data; should be an even multiple of the block size 282 * @size: Size of data; should be an even multiple of the block size
283 * @sg: Pointer to scatterlist array; set to NULL to obtain only 283 * @sg: Pointer to scatterlist array; set to NULL to obtain only
284 * the number of scatterlist structs required in array 284 * the number of scatterlist structs required in array
285 * @sg_size: Max array size 285 * @sg_size: Max array size
286 * 286 *
287 * Fills in a scatterlist array with page references for a passed 287 * Fills in a scatterlist array with page references for a passed
288 * virtual address. 288 * virtual address.
289 * 289 *
290 * Returns the number of scatterlist structs in array used 290 * Returns the number of scatterlist structs in array used
291 */ 291 */
292 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg, 292 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
293 int sg_size) 293 int sg_size)
294 { 294 {
295 int i = 0; 295 int i = 0;
296 struct page *pg; 296 struct page *pg;
297 int offset; 297 int offset;
298 int remainder_of_page; 298 int remainder_of_page;
299 299
300 sg_init_table(sg, sg_size); 300 sg_init_table(sg, sg_size);
301 301
302 while (size > 0 && i < sg_size) { 302 while (size > 0 && i < sg_size) {
303 pg = virt_to_page(addr); 303 pg = virt_to_page(addr);
304 offset = offset_in_page(addr); 304 offset = offset_in_page(addr);
305 if (sg) 305 if (sg)
306 sg_set_page(&sg[i], pg, 0, offset); 306 sg_set_page(&sg[i], pg, 0, offset);
307 remainder_of_page = PAGE_CACHE_SIZE - offset; 307 remainder_of_page = PAGE_CACHE_SIZE - offset;
308 if (size >= remainder_of_page) { 308 if (size >= remainder_of_page) {
309 if (sg) 309 if (sg)
310 sg[i].length = remainder_of_page; 310 sg[i].length = remainder_of_page;
311 addr += remainder_of_page; 311 addr += remainder_of_page;
312 size -= remainder_of_page; 312 size -= remainder_of_page;
313 } else { 313 } else {
314 if (sg) 314 if (sg)
315 sg[i].length = size; 315 sg[i].length = size;
316 addr += size; 316 addr += size;
317 size = 0; 317 size = 0;
318 } 318 }
319 i++; 319 i++;
320 } 320 }
321 if (size > 0) 321 if (size > 0)
322 return -ENOMEM; 322 return -ENOMEM;
323 return i; 323 return i;
324 } 324 }
325 325
326 /** 326 /**
327 * encrypt_scatterlist 327 * encrypt_scatterlist
328 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 328 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
329 * @dest_sg: Destination of encrypted data 329 * @dest_sg: Destination of encrypted data
330 * @src_sg: Data to be encrypted 330 * @src_sg: Data to be encrypted
331 * @size: Length of data to be encrypted 331 * @size: Length of data to be encrypted
332 * @iv: iv to use during encryption 332 * @iv: iv to use during encryption
333 * 333 *
334 * Returns the number of bytes encrypted; negative value on error 334 * Returns the number of bytes encrypted; negative value on error
335 */ 335 */
336 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat, 336 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
337 struct scatterlist *dest_sg, 337 struct scatterlist *dest_sg,
338 struct scatterlist *src_sg, int size, 338 struct scatterlist *src_sg, int size,
339 unsigned char *iv) 339 unsigned char *iv)
340 { 340 {
341 struct blkcipher_desc desc = { 341 struct blkcipher_desc desc = {
342 .tfm = crypt_stat->tfm, 342 .tfm = crypt_stat->tfm,
343 .info = iv, 343 .info = iv,
344 .flags = CRYPTO_TFM_REQ_MAY_SLEEP 344 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
345 }; 345 };
346 int rc = 0; 346 int rc = 0;
347 347
348 BUG_ON(!crypt_stat || !crypt_stat->tfm 348 BUG_ON(!crypt_stat || !crypt_stat->tfm
349 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED)); 349 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
350 if (unlikely(ecryptfs_verbosity > 0)) { 350 if (unlikely(ecryptfs_verbosity > 0)) {
351 ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n", 351 ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n",
352 crypt_stat->key_size); 352 crypt_stat->key_size);
353 ecryptfs_dump_hex(crypt_stat->key, 353 ecryptfs_dump_hex(crypt_stat->key,
354 crypt_stat->key_size); 354 crypt_stat->key_size);
355 } 355 }
356 /* Consider doing this once, when the file is opened */ 356 /* Consider doing this once, when the file is opened */
357 mutex_lock(&crypt_stat->cs_tfm_mutex); 357 mutex_lock(&crypt_stat->cs_tfm_mutex);
358 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key, 358 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
359 crypt_stat->key_size); 359 crypt_stat->key_size);
360 if (rc) { 360 if (rc) {
361 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n", 361 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
362 rc); 362 rc);
363 mutex_unlock(&crypt_stat->cs_tfm_mutex); 363 mutex_unlock(&crypt_stat->cs_tfm_mutex);
364 rc = -EINVAL; 364 rc = -EINVAL;
365 goto out; 365 goto out;
366 } 366 }
367 ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size); 367 ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
368 crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size); 368 crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
369 mutex_unlock(&crypt_stat->cs_tfm_mutex); 369 mutex_unlock(&crypt_stat->cs_tfm_mutex);
370 out: 370 out:
371 return rc; 371 return rc;
372 } 372 }
373 373
374 /** 374 /**
375 * ecryptfs_lower_offset_for_extent 375 * ecryptfs_lower_offset_for_extent
376 * 376 *
377 * Convert an eCryptfs page index into a lower byte offset 377 * Convert an eCryptfs page index into a lower byte offset
378 */ 378 */
379 void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num, 379 void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
380 struct ecryptfs_crypt_stat *crypt_stat) 380 struct ecryptfs_crypt_stat *crypt_stat)
381 { 381 {
382 (*offset) = ((crypt_stat->extent_size 382 (*offset) = ((crypt_stat->extent_size
383 * crypt_stat->num_header_extents_at_front) 383 * crypt_stat->num_header_extents_at_front)
384 + (crypt_stat->extent_size * extent_num)); 384 + (crypt_stat->extent_size * extent_num));
385 } 385 }
386 386
387 /** 387 /**
388 * ecryptfs_encrypt_extent 388 * ecryptfs_encrypt_extent
389 * @enc_extent_page: Allocated page into which to encrypt the data in 389 * @enc_extent_page: Allocated page into which to encrypt the data in
390 * @page 390 * @page
391 * @crypt_stat: crypt_stat containing cryptographic context for the 391 * @crypt_stat: crypt_stat containing cryptographic context for the
392 * encryption operation 392 * encryption operation
393 * @page: Page containing plaintext data extent to encrypt 393 * @page: Page containing plaintext data extent to encrypt
394 * @extent_offset: Page extent offset for use in generating IV 394 * @extent_offset: Page extent offset for use in generating IV
395 * 395 *
396 * Encrypts one extent of data. 396 * Encrypts one extent of data.
397 * 397 *
398 * Return zero on success; non-zero otherwise 398 * Return zero on success; non-zero otherwise
399 */ 399 */
400 static int ecryptfs_encrypt_extent(struct page *enc_extent_page, 400 static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
401 struct ecryptfs_crypt_stat *crypt_stat, 401 struct ecryptfs_crypt_stat *crypt_stat,
402 struct page *page, 402 struct page *page,
403 unsigned long extent_offset) 403 unsigned long extent_offset)
404 { 404 {
405 loff_t extent_base; 405 loff_t extent_base;
406 char extent_iv[ECRYPTFS_MAX_IV_BYTES]; 406 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
407 int rc; 407 int rc;
408 408
409 extent_base = (((loff_t)page->index) 409 extent_base = (((loff_t)page->index)
410 * (PAGE_CACHE_SIZE / crypt_stat->extent_size)); 410 * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
411 rc = ecryptfs_derive_iv(extent_iv, crypt_stat, 411 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
412 (extent_base + extent_offset)); 412 (extent_base + extent_offset));
413 if (rc) { 413 if (rc) {
414 ecryptfs_printk(KERN_ERR, "Error attempting to " 414 ecryptfs_printk(KERN_ERR, "Error attempting to "
415 "derive IV for extent [0x%.16x]; " 415 "derive IV for extent [0x%.16x]; "
416 "rc = [%d]\n", (extent_base + extent_offset), 416 "rc = [%d]\n", (extent_base + extent_offset),
417 rc); 417 rc);
418 goto out; 418 goto out;
419 } 419 }
420 if (unlikely(ecryptfs_verbosity > 0)) { 420 if (unlikely(ecryptfs_verbosity > 0)) {
421 ecryptfs_printk(KERN_DEBUG, "Encrypting extent " 421 ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
422 "with iv:\n"); 422 "with iv:\n");
423 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes); 423 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
424 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before " 424 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
425 "encryption:\n"); 425 "encryption:\n");
426 ecryptfs_dump_hex((char *) 426 ecryptfs_dump_hex((char *)
427 (page_address(page) 427 (page_address(page)
428 + (extent_offset * crypt_stat->extent_size)), 428 + (extent_offset * crypt_stat->extent_size)),
429 8); 429 8);
430 } 430 }
431 rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0, 431 rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
432 page, (extent_offset 432 page, (extent_offset
433 * crypt_stat->extent_size), 433 * crypt_stat->extent_size),
434 crypt_stat->extent_size, extent_iv); 434 crypt_stat->extent_size, extent_iv);
435 if (rc < 0) { 435 if (rc < 0) {
436 printk(KERN_ERR "%s: Error attempting to encrypt page with " 436 printk(KERN_ERR "%s: Error attempting to encrypt page with "
437 "page->index = [%ld], extent_offset = [%ld]; " 437 "page->index = [%ld], extent_offset = [%ld]; "
438 "rc = [%d]\n", __FUNCTION__, page->index, extent_offset, 438 "rc = [%d]\n", __FUNCTION__, page->index, extent_offset,
439 rc); 439 rc);
440 goto out; 440 goto out;
441 } 441 }
442 rc = 0; 442 rc = 0;
443 if (unlikely(ecryptfs_verbosity > 0)) { 443 if (unlikely(ecryptfs_verbosity > 0)) {
444 ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; " 444 ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; "
445 "rc = [%d]\n", (extent_base + extent_offset), 445 "rc = [%d]\n", (extent_base + extent_offset),
446 rc); 446 rc);
447 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after " 447 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
448 "encryption:\n"); 448 "encryption:\n");
449 ecryptfs_dump_hex((char *)(page_address(enc_extent_page)), 8); 449 ecryptfs_dump_hex((char *)(page_address(enc_extent_page)), 8);
450 } 450 }
451 out: 451 out:
452 return rc; 452 return rc;
453 } 453 }
454 454
455 /** 455 /**
456 * ecryptfs_encrypt_page 456 * ecryptfs_encrypt_page
457 * @page: Page mapped from the eCryptfs inode for the file; contains 457 * @page: Page mapped from the eCryptfs inode for the file; contains
458 * decrypted content that needs to be encrypted (to a temporary 458 * decrypted content that needs to be encrypted (to a temporary
459 * page; not in place) and written out to the lower file 459 * page; not in place) and written out to the lower file
460 * 460 *
461 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note 461 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
462 * that eCryptfs pages may straddle the lower pages -- for instance, 462 * that eCryptfs pages may straddle the lower pages -- for instance,
463 * if the file was created on a machine with an 8K page size 463 * if the file was created on a machine with an 8K page size
464 * (resulting in an 8K header), and then the file is copied onto a 464 * (resulting in an 8K header), and then the file is copied onto a
465 * host with a 32K page size, then when reading page 0 of the eCryptfs 465 * host with a 32K page size, then when reading page 0 of the eCryptfs
466 * file, 24K of page 0 of the lower file will be read and decrypted, 466 * file, 24K of page 0 of the lower file will be read and decrypted,
467 * and then 8K of page 1 of the lower file will be read and decrypted. 467 * and then 8K of page 1 of the lower file will be read and decrypted.
468 * 468 *
469 * Returns zero on success; negative on error 469 * Returns zero on success; negative on error
470 */ 470 */
471 int ecryptfs_encrypt_page(struct page *page) 471 int ecryptfs_encrypt_page(struct page *page)
472 { 472 {
473 struct inode *ecryptfs_inode; 473 struct inode *ecryptfs_inode;
474 struct ecryptfs_crypt_stat *crypt_stat; 474 struct ecryptfs_crypt_stat *crypt_stat;
475 char *enc_extent_virt = NULL; 475 char *enc_extent_virt = NULL;
476 struct page *enc_extent_page; 476 struct page *enc_extent_page;
477 loff_t extent_offset; 477 loff_t extent_offset;
478 int rc = 0; 478 int rc = 0;
479 479
480 ecryptfs_inode = page->mapping->host; 480 ecryptfs_inode = page->mapping->host;
481 crypt_stat = 481 crypt_stat =
482 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 482 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
483 if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) { 483 if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
484 rc = ecryptfs_write_lower_page_segment(ecryptfs_inode, page, 484 rc = ecryptfs_write_lower_page_segment(ecryptfs_inode, page,
485 0, PAGE_CACHE_SIZE); 485 0, PAGE_CACHE_SIZE);
486 if (rc) 486 if (rc)
487 printk(KERN_ERR "%s: Error attempting to copy " 487 printk(KERN_ERR "%s: Error attempting to copy "
488 "page at index [%ld]\n", __FUNCTION__, 488 "page at index [%ld]\n", __FUNCTION__,
489 page->index); 489 page->index);
490 goto out; 490 goto out;
491 } 491 }
492 enc_extent_virt = kmalloc(PAGE_CACHE_SIZE, GFP_USER); 492 enc_extent_virt = kmalloc(PAGE_CACHE_SIZE, GFP_USER);
493 if (!enc_extent_virt) { 493 if (!enc_extent_virt) {
494 rc = -ENOMEM; 494 rc = -ENOMEM;
495 ecryptfs_printk(KERN_ERR, "Error allocating memory for " 495 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
496 "encrypted extent\n"); 496 "encrypted extent\n");
497 goto out; 497 goto out;
498 } 498 }
499 enc_extent_page = virt_to_page(enc_extent_virt); 499 enc_extent_page = virt_to_page(enc_extent_virt);
500 for (extent_offset = 0; 500 for (extent_offset = 0;
501 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size); 501 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
502 extent_offset++) { 502 extent_offset++) {
503 loff_t offset; 503 loff_t offset;
504 504
505 rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page, 505 rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
506 extent_offset); 506 extent_offset);
507 if (rc) { 507 if (rc) {
508 printk(KERN_ERR "%s: Error encrypting extent; " 508 printk(KERN_ERR "%s: Error encrypting extent; "
509 "rc = [%d]\n", __FUNCTION__, rc); 509 "rc = [%d]\n", __FUNCTION__, rc);
510 goto out; 510 goto out;
511 } 511 }
512 ecryptfs_lower_offset_for_extent( 512 ecryptfs_lower_offset_for_extent(
513 &offset, ((((loff_t)page->index) 513 &offset, ((((loff_t)page->index)
514 * (PAGE_CACHE_SIZE 514 * (PAGE_CACHE_SIZE
515 / crypt_stat->extent_size)) 515 / crypt_stat->extent_size))
516 + extent_offset), crypt_stat); 516 + extent_offset), crypt_stat);
517 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, 517 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
518 offset, crypt_stat->extent_size); 518 offset, crypt_stat->extent_size);
519 if (rc) { 519 if (rc) {
520 ecryptfs_printk(KERN_ERR, "Error attempting " 520 ecryptfs_printk(KERN_ERR, "Error attempting "
521 "to write lower page; rc = [%d]" 521 "to write lower page; rc = [%d]"
522 "\n", rc); 522 "\n", rc);
523 goto out; 523 goto out;
524 } 524 }
525 } 525 }
526 out: 526 out:
527 kfree(enc_extent_virt); 527 kfree(enc_extent_virt);
528 return rc; 528 return rc;
529 } 529 }
530 530
531 static int ecryptfs_decrypt_extent(struct page *page, 531 static int ecryptfs_decrypt_extent(struct page *page,
532 struct ecryptfs_crypt_stat *crypt_stat, 532 struct ecryptfs_crypt_stat *crypt_stat,
533 struct page *enc_extent_page, 533 struct page *enc_extent_page,
534 unsigned long extent_offset) 534 unsigned long extent_offset)
535 { 535 {
536 loff_t extent_base; 536 loff_t extent_base;
537 char extent_iv[ECRYPTFS_MAX_IV_BYTES]; 537 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
538 int rc; 538 int rc;
539 539
540 extent_base = (((loff_t)page->index) 540 extent_base = (((loff_t)page->index)
541 * (PAGE_CACHE_SIZE / crypt_stat->extent_size)); 541 * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
542 rc = ecryptfs_derive_iv(extent_iv, crypt_stat, 542 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
543 (extent_base + extent_offset)); 543 (extent_base + extent_offset));
544 if (rc) { 544 if (rc) {
545 ecryptfs_printk(KERN_ERR, "Error attempting to " 545 ecryptfs_printk(KERN_ERR, "Error attempting to "
546 "derive IV for extent [0x%.16x]; " 546 "derive IV for extent [0x%.16x]; "
547 "rc = [%d]\n", (extent_base + extent_offset), 547 "rc = [%d]\n", (extent_base + extent_offset),
548 rc); 548 rc);
549 goto out; 549 goto out;
550 } 550 }
551 if (unlikely(ecryptfs_verbosity > 0)) { 551 if (unlikely(ecryptfs_verbosity > 0)) {
552 ecryptfs_printk(KERN_DEBUG, "Decrypting extent " 552 ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
553 "with iv:\n"); 553 "with iv:\n");
554 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes); 554 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
555 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before " 555 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
556 "decryption:\n"); 556 "decryption:\n");
557 ecryptfs_dump_hex((char *) 557 ecryptfs_dump_hex((char *)
558 (page_address(enc_extent_page) 558 (page_address(enc_extent_page)
559 + (extent_offset * crypt_stat->extent_size)), 559 + (extent_offset * crypt_stat->extent_size)),
560 8); 560 8);
561 } 561 }
562 rc = ecryptfs_decrypt_page_offset(crypt_stat, page, 562 rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
563 (extent_offset 563 (extent_offset
564 * crypt_stat->extent_size), 564 * crypt_stat->extent_size),
565 enc_extent_page, 0, 565 enc_extent_page, 0,
566 crypt_stat->extent_size, extent_iv); 566 crypt_stat->extent_size, extent_iv);
567 if (rc < 0) { 567 if (rc < 0) {
568 printk(KERN_ERR "%s: Error attempting to decrypt to page with " 568 printk(KERN_ERR "%s: Error attempting to decrypt to page with "
569 "page->index = [%ld], extent_offset = [%ld]; " 569 "page->index = [%ld], extent_offset = [%ld]; "
570 "rc = [%d]\n", __FUNCTION__, page->index, extent_offset, 570 "rc = [%d]\n", __FUNCTION__, page->index, extent_offset,
571 rc); 571 rc);
572 goto out; 572 goto out;
573 } 573 }
574 rc = 0; 574 rc = 0;
575 if (unlikely(ecryptfs_verbosity > 0)) { 575 if (unlikely(ecryptfs_verbosity > 0)) {
576 ecryptfs_printk(KERN_DEBUG, "Decrypt extent [0x%.16x]; " 576 ecryptfs_printk(KERN_DEBUG, "Decrypt extent [0x%.16x]; "
577 "rc = [%d]\n", (extent_base + extent_offset), 577 "rc = [%d]\n", (extent_base + extent_offset),
578 rc); 578 rc);
579 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after " 579 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
580 "decryption:\n"); 580 "decryption:\n");
581 ecryptfs_dump_hex((char *)(page_address(page) 581 ecryptfs_dump_hex((char *)(page_address(page)
582 + (extent_offset 582 + (extent_offset
583 * crypt_stat->extent_size)), 8); 583 * crypt_stat->extent_size)), 8);
584 } 584 }
585 out: 585 out:
586 return rc; 586 return rc;
587 } 587 }
588 588
589 /** 589 /**
590 * ecryptfs_decrypt_page 590 * ecryptfs_decrypt_page
591 * @page: Page mapped from the eCryptfs inode for the file; data read 591 * @page: Page mapped from the eCryptfs inode for the file; data read
592 * and decrypted from the lower file will be written into this 592 * and decrypted from the lower file will be written into this
593 * page 593 * page
594 * 594 *
595 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note 595 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
596 * that eCryptfs pages may straddle the lower pages -- for instance, 596 * that eCryptfs pages may straddle the lower pages -- for instance,
597 * if the file was created on a machine with an 8K page size 597 * if the file was created on a machine with an 8K page size
598 * (resulting in an 8K header), and then the file is copied onto a 598 * (resulting in an 8K header), and then the file is copied onto a
599 * host with a 32K page size, then when reading page 0 of the eCryptfs 599 * host with a 32K page size, then when reading page 0 of the eCryptfs
600 * file, 24K of page 0 of the lower file will be read and decrypted, 600 * file, 24K of page 0 of the lower file will be read and decrypted,
601 * and then 8K of page 1 of the lower file will be read and decrypted. 601 * and then 8K of page 1 of the lower file will be read and decrypted.
602 * 602 *
603 * Returns zero on success; negative on error 603 * Returns zero on success; negative on error
604 */ 604 */
605 int ecryptfs_decrypt_page(struct page *page) 605 int ecryptfs_decrypt_page(struct page *page)
606 { 606 {
607 struct inode *ecryptfs_inode; 607 struct inode *ecryptfs_inode;
608 struct ecryptfs_crypt_stat *crypt_stat; 608 struct ecryptfs_crypt_stat *crypt_stat;
609 char *enc_extent_virt = NULL; 609 char *enc_extent_virt = NULL;
610 struct page *enc_extent_page; 610 struct page *enc_extent_page;
611 unsigned long extent_offset; 611 unsigned long extent_offset;
612 int rc = 0; 612 int rc = 0;
613 613
614 ecryptfs_inode = page->mapping->host; 614 ecryptfs_inode = page->mapping->host;
615 crypt_stat = 615 crypt_stat =
616 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 616 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
617 if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) { 617 if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
618 rc = ecryptfs_read_lower_page_segment(page, page->index, 0, 618 rc = ecryptfs_read_lower_page_segment(page, page->index, 0,
619 PAGE_CACHE_SIZE, 619 PAGE_CACHE_SIZE,
620 ecryptfs_inode); 620 ecryptfs_inode);
621 if (rc) 621 if (rc)
622 printk(KERN_ERR "%s: Error attempting to copy " 622 printk(KERN_ERR "%s: Error attempting to copy "
623 "page at index [%ld]\n", __FUNCTION__, 623 "page at index [%ld]\n", __FUNCTION__,
624 page->index); 624 page->index);
625 goto out; 625 goto out;
626 } 626 }
627 enc_extent_virt = kmalloc(PAGE_CACHE_SIZE, GFP_USER); 627 enc_extent_virt = kmalloc(PAGE_CACHE_SIZE, GFP_USER);
628 if (!enc_extent_virt) { 628 if (!enc_extent_virt) {
629 rc = -ENOMEM; 629 rc = -ENOMEM;
630 ecryptfs_printk(KERN_ERR, "Error allocating memory for " 630 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
631 "encrypted extent\n"); 631 "encrypted extent\n");
632 goto out; 632 goto out;
633 } 633 }
634 enc_extent_page = virt_to_page(enc_extent_virt); 634 enc_extent_page = virt_to_page(enc_extent_virt);
635 for (extent_offset = 0; 635 for (extent_offset = 0;
636 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size); 636 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
637 extent_offset++) { 637 extent_offset++) {
638 loff_t offset; 638 loff_t offset;
639 639
640 ecryptfs_lower_offset_for_extent( 640 ecryptfs_lower_offset_for_extent(
641 &offset, ((page->index * (PAGE_CACHE_SIZE 641 &offset, ((page->index * (PAGE_CACHE_SIZE
642 / crypt_stat->extent_size)) 642 / crypt_stat->extent_size))
643 + extent_offset), crypt_stat); 643 + extent_offset), crypt_stat);
644 rc = ecryptfs_read_lower(enc_extent_virt, offset, 644 rc = ecryptfs_read_lower(enc_extent_virt, offset,
645 crypt_stat->extent_size, 645 crypt_stat->extent_size,
646 ecryptfs_inode); 646 ecryptfs_inode);
647 if (rc) { 647 if (rc) {
648 ecryptfs_printk(KERN_ERR, "Error attempting " 648 ecryptfs_printk(KERN_ERR, "Error attempting "
649 "to read lower page; rc = [%d]" 649 "to read lower page; rc = [%d]"
650 "\n", rc); 650 "\n", rc);
651 goto out; 651 goto out;
652 } 652 }
653 rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page, 653 rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
654 extent_offset); 654 extent_offset);
655 if (rc) { 655 if (rc) {
656 printk(KERN_ERR "%s: Error encrypting extent; " 656 printk(KERN_ERR "%s: Error encrypting extent; "
657 "rc = [%d]\n", __FUNCTION__, rc); 657 "rc = [%d]\n", __FUNCTION__, rc);
658 goto out; 658 goto out;
659 } 659 }
660 } 660 }
661 out: 661 out:
662 kfree(enc_extent_virt); 662 kfree(enc_extent_virt);
663 return rc; 663 return rc;
664 } 664 }
665 665
666 /** 666 /**
667 * decrypt_scatterlist 667 * decrypt_scatterlist
668 * @crypt_stat: Cryptographic context 668 * @crypt_stat: Cryptographic context
669 * @dest_sg: The destination scatterlist to decrypt into 669 * @dest_sg: The destination scatterlist to decrypt into
670 * @src_sg: The source scatterlist to decrypt from 670 * @src_sg: The source scatterlist to decrypt from
671 * @size: The number of bytes to decrypt 671 * @size: The number of bytes to decrypt
672 * @iv: The initialization vector to use for the decryption 672 * @iv: The initialization vector to use for the decryption
673 * 673 *
674 * Returns the number of bytes decrypted; negative value on error 674 * Returns the number of bytes decrypted; negative value on error
675 */ 675 */
676 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat, 676 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
677 struct scatterlist *dest_sg, 677 struct scatterlist *dest_sg,
678 struct scatterlist *src_sg, int size, 678 struct scatterlist *src_sg, int size,
679 unsigned char *iv) 679 unsigned char *iv)
680 { 680 {
681 struct blkcipher_desc desc = { 681 struct blkcipher_desc desc = {
682 .tfm = crypt_stat->tfm, 682 .tfm = crypt_stat->tfm,
683 .info = iv, 683 .info = iv,
684 .flags = CRYPTO_TFM_REQ_MAY_SLEEP 684 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
685 }; 685 };
686 int rc = 0; 686 int rc = 0;
687 687
688 /* Consider doing this once, when the file is opened */ 688 /* Consider doing this once, when the file is opened */
689 mutex_lock(&crypt_stat->cs_tfm_mutex); 689 mutex_lock(&crypt_stat->cs_tfm_mutex);
690 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key, 690 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
691 crypt_stat->key_size); 691 crypt_stat->key_size);
692 if (rc) { 692 if (rc) {
693 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n", 693 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
694 rc); 694 rc);
695 mutex_unlock(&crypt_stat->cs_tfm_mutex); 695 mutex_unlock(&crypt_stat->cs_tfm_mutex);
696 rc = -EINVAL; 696 rc = -EINVAL;
697 goto out; 697 goto out;
698 } 698 }
699 ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size); 699 ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
700 rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size); 700 rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
701 mutex_unlock(&crypt_stat->cs_tfm_mutex); 701 mutex_unlock(&crypt_stat->cs_tfm_mutex);
702 if (rc) { 702 if (rc) {
703 ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n", 703 ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
704 rc); 704 rc);
705 goto out; 705 goto out;
706 } 706 }
707 rc = size; 707 rc = size;
708 out: 708 out:
709 return rc; 709 return rc;
710 } 710 }
711 711
712 /** 712 /**
713 * ecryptfs_encrypt_page_offset 713 * ecryptfs_encrypt_page_offset
714 * @crypt_stat: The cryptographic context 714 * @crypt_stat: The cryptographic context
715 * @dst_page: The page to encrypt into 715 * @dst_page: The page to encrypt into
716 * @dst_offset: The offset in the page to encrypt into 716 * @dst_offset: The offset in the page to encrypt into
717 * @src_page: The page to encrypt from 717 * @src_page: The page to encrypt from
718 * @src_offset: The offset in the page to encrypt from 718 * @src_offset: The offset in the page to encrypt from
719 * @size: The number of bytes to encrypt 719 * @size: The number of bytes to encrypt
720 * @iv: The initialization vector to use for the encryption 720 * @iv: The initialization vector to use for the encryption
721 * 721 *
722 * Returns the number of bytes encrypted 722 * Returns the number of bytes encrypted
723 */ 723 */
724 static int 724 static int
725 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 725 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
726 struct page *dst_page, int dst_offset, 726 struct page *dst_page, int dst_offset,
727 struct page *src_page, int src_offset, int size, 727 struct page *src_page, int src_offset, int size,
728 unsigned char *iv) 728 unsigned char *iv)
729 { 729 {
730 struct scatterlist src_sg, dst_sg; 730 struct scatterlist src_sg, dst_sg;
731 731
732 sg_init_table(&src_sg, 1); 732 sg_init_table(&src_sg, 1);
733 sg_init_table(&dst_sg, 1); 733 sg_init_table(&dst_sg, 1);
734 734
735 sg_set_page(&src_sg, src_page, size, src_offset); 735 sg_set_page(&src_sg, src_page, size, src_offset);
736 sg_set_page(&dst_sg, dst_page, size, dst_offset); 736 sg_set_page(&dst_sg, dst_page, size, dst_offset);
737 return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv); 737 return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
738 } 738 }
739 739
740 /** 740 /**
741 * ecryptfs_decrypt_page_offset 741 * ecryptfs_decrypt_page_offset
742 * @crypt_stat: The cryptographic context 742 * @crypt_stat: The cryptographic context
743 * @dst_page: The page to decrypt into 743 * @dst_page: The page to decrypt into
744 * @dst_offset: The offset in the page to decrypt into 744 * @dst_offset: The offset in the page to decrypt into
745 * @src_page: The page to decrypt from 745 * @src_page: The page to decrypt from
746 * @src_offset: The offset in the page to decrypt from 746 * @src_offset: The offset in the page to decrypt from
747 * @size: The number of bytes to decrypt 747 * @size: The number of bytes to decrypt
748 * @iv: The initialization vector to use for the decryption 748 * @iv: The initialization vector to use for the decryption
749 * 749 *
750 * Returns the number of bytes decrypted 750 * Returns the number of bytes decrypted
751 */ 751 */
752 static int 752 static int
753 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 753 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
754 struct page *dst_page, int dst_offset, 754 struct page *dst_page, int dst_offset,
755 struct page *src_page, int src_offset, int size, 755 struct page *src_page, int src_offset, int size,
756 unsigned char *iv) 756 unsigned char *iv)
757 { 757 {
758 struct scatterlist src_sg, dst_sg; 758 struct scatterlist src_sg, dst_sg;
759 759
760 sg_init_table(&src_sg, 1); 760 sg_init_table(&src_sg, 1);
761 sg_set_page(&src_sg, src_page, size, src_offset); 761 sg_set_page(&src_sg, src_page, size, src_offset);
762 762
763 sg_init_table(&dst_sg, 1); 763 sg_init_table(&dst_sg, 1);
764 sg_set_page(&dst_sg, dst_page, size, dst_offset); 764 sg_set_page(&dst_sg, dst_page, size, dst_offset);
765 765
766 return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv); 766 return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
767 } 767 }
768 768
769 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4 769 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
770 770
771 /** 771 /**
772 * ecryptfs_init_crypt_ctx 772 * ecryptfs_init_crypt_ctx
773 * @crypt_stat: Uninitilized crypt stats structure 773 * @crypt_stat: Uninitilized crypt stats structure
774 * 774 *
775 * Initialize the crypto context. 775 * Initialize the crypto context.
776 * 776 *
777 * TODO: Performance: Keep a cache of initialized cipher contexts; 777 * TODO: Performance: Keep a cache of initialized cipher contexts;
778 * only init if needed 778 * only init if needed
779 */ 779 */
780 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat) 780 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
781 { 781 {
782 char *full_alg_name; 782 char *full_alg_name;
783 int rc = -EINVAL; 783 int rc = -EINVAL;
784 784
785 if (!crypt_stat->cipher) { 785 if (!crypt_stat->cipher) {
786 ecryptfs_printk(KERN_ERR, "No cipher specified\n"); 786 ecryptfs_printk(KERN_ERR, "No cipher specified\n");
787 goto out; 787 goto out;
788 } 788 }
789 ecryptfs_printk(KERN_DEBUG, 789 ecryptfs_printk(KERN_DEBUG,
790 "Initializing cipher [%s]; strlen = [%d]; " 790 "Initializing cipher [%s]; strlen = [%d]; "
791 "key_size_bits = [%d]\n", 791 "key_size_bits = [%d]\n",
792 crypt_stat->cipher, (int)strlen(crypt_stat->cipher), 792 crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
793 crypt_stat->key_size << 3); 793 crypt_stat->key_size << 3);
794 if (crypt_stat->tfm) { 794 if (crypt_stat->tfm) {
795 rc = 0; 795 rc = 0;
796 goto out; 796 goto out;
797 } 797 }
798 mutex_lock(&crypt_stat->cs_tfm_mutex); 798 mutex_lock(&crypt_stat->cs_tfm_mutex);
799 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, 799 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
800 crypt_stat->cipher, "cbc"); 800 crypt_stat->cipher, "cbc");
801 if (rc) 801 if (rc)
802 goto out; 802 goto out_unlock;
803 crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0, 803 crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
804 CRYPTO_ALG_ASYNC); 804 CRYPTO_ALG_ASYNC);
805 kfree(full_alg_name); 805 kfree(full_alg_name);
806 if (IS_ERR(crypt_stat->tfm)) { 806 if (IS_ERR(crypt_stat->tfm)) {
807 rc = PTR_ERR(crypt_stat->tfm); 807 rc = PTR_ERR(crypt_stat->tfm);
808 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): " 808 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
809 "Error initializing cipher [%s]\n", 809 "Error initializing cipher [%s]\n",
810 crypt_stat->cipher); 810 crypt_stat->cipher);
811 mutex_unlock(&crypt_stat->cs_tfm_mutex); 811 goto out_unlock;
812 goto out;
813 } 812 }
814 crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY); 813 crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
815 mutex_unlock(&crypt_stat->cs_tfm_mutex);
816 rc = 0; 814 rc = 0;
815 out_unlock:
816 mutex_unlock(&crypt_stat->cs_tfm_mutex);
817 out: 817 out:
818 return rc; 818 return rc;
819 } 819 }
820 820
821 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat) 821 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
822 { 822 {
823 int extent_size_tmp; 823 int extent_size_tmp;
824 824
825 crypt_stat->extent_mask = 0xFFFFFFFF; 825 crypt_stat->extent_mask = 0xFFFFFFFF;
826 crypt_stat->extent_shift = 0; 826 crypt_stat->extent_shift = 0;
827 if (crypt_stat->extent_size == 0) 827 if (crypt_stat->extent_size == 0)
828 return; 828 return;
829 extent_size_tmp = crypt_stat->extent_size; 829 extent_size_tmp = crypt_stat->extent_size;
830 while ((extent_size_tmp & 0x01) == 0) { 830 while ((extent_size_tmp & 0x01) == 0) {
831 extent_size_tmp >>= 1; 831 extent_size_tmp >>= 1;
832 crypt_stat->extent_mask <<= 1; 832 crypt_stat->extent_mask <<= 1;
833 crypt_stat->extent_shift++; 833 crypt_stat->extent_shift++;
834 } 834 }
835 } 835 }
836 836
837 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat) 837 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
838 { 838 {
839 /* Default values; may be overwritten as we are parsing the 839 /* Default values; may be overwritten as we are parsing the
840 * packets. */ 840 * packets. */
841 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE; 841 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
842 set_extent_mask_and_shift(crypt_stat); 842 set_extent_mask_and_shift(crypt_stat);
843 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES; 843 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
844 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 844 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
845 crypt_stat->num_header_extents_at_front = 0; 845 crypt_stat->num_header_extents_at_front = 0;
846 else { 846 else {
847 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) 847 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
848 crypt_stat->num_header_extents_at_front = 848 crypt_stat->num_header_extents_at_front =
849 (ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE 849 (ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
850 / crypt_stat->extent_size); 850 / crypt_stat->extent_size);
851 else 851 else
852 crypt_stat->num_header_extents_at_front = 852 crypt_stat->num_header_extents_at_front =
853 (PAGE_CACHE_SIZE / crypt_stat->extent_size); 853 (PAGE_CACHE_SIZE / crypt_stat->extent_size);
854 } 854 }
855 } 855 }
856 856
857 /** 857 /**
858 * ecryptfs_compute_root_iv 858 * ecryptfs_compute_root_iv
859 * @crypt_stats 859 * @crypt_stats
860 * 860 *
861 * On error, sets the root IV to all 0's. 861 * On error, sets the root IV to all 0's.
862 */ 862 */
863 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat) 863 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
864 { 864 {
865 int rc = 0; 865 int rc = 0;
866 char dst[MD5_DIGEST_SIZE]; 866 char dst[MD5_DIGEST_SIZE];
867 867
868 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE); 868 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
869 BUG_ON(crypt_stat->iv_bytes <= 0); 869 BUG_ON(crypt_stat->iv_bytes <= 0);
870 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 870 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
871 rc = -EINVAL; 871 rc = -EINVAL;
872 ecryptfs_printk(KERN_WARNING, "Session key not valid; " 872 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
873 "cannot generate root IV\n"); 873 "cannot generate root IV\n");
874 goto out; 874 goto out;
875 } 875 }
876 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key, 876 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
877 crypt_stat->key_size); 877 crypt_stat->key_size);
878 if (rc) { 878 if (rc) {
879 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 879 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
880 "MD5 while generating root IV\n"); 880 "MD5 while generating root IV\n");
881 goto out; 881 goto out;
882 } 882 }
883 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes); 883 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
884 out: 884 out:
885 if (rc) { 885 if (rc) {
886 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes); 886 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
887 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING; 887 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
888 } 888 }
889 return rc; 889 return rc;
890 } 890 }
891 891
892 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat) 892 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
893 { 893 {
894 get_random_bytes(crypt_stat->key, crypt_stat->key_size); 894 get_random_bytes(crypt_stat->key, crypt_stat->key_size);
895 crypt_stat->flags |= ECRYPTFS_KEY_VALID; 895 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
896 ecryptfs_compute_root_iv(crypt_stat); 896 ecryptfs_compute_root_iv(crypt_stat);
897 if (unlikely(ecryptfs_verbosity > 0)) { 897 if (unlikely(ecryptfs_verbosity > 0)) {
898 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n"); 898 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
899 ecryptfs_dump_hex(crypt_stat->key, 899 ecryptfs_dump_hex(crypt_stat->key,
900 crypt_stat->key_size); 900 crypt_stat->key_size);
901 } 901 }
902 } 902 }
903 903
904 /** 904 /**
905 * ecryptfs_copy_mount_wide_flags_to_inode_flags 905 * ecryptfs_copy_mount_wide_flags_to_inode_flags
906 * @crypt_stat: The inode's cryptographic context 906 * @crypt_stat: The inode's cryptographic context
907 * @mount_crypt_stat: The mount point's cryptographic context 907 * @mount_crypt_stat: The mount point's cryptographic context
908 * 908 *
909 * This function propagates the mount-wide flags to individual inode 909 * This function propagates the mount-wide flags to individual inode
910 * flags. 910 * flags.
911 */ 911 */
912 static void ecryptfs_copy_mount_wide_flags_to_inode_flags( 912 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
913 struct ecryptfs_crypt_stat *crypt_stat, 913 struct ecryptfs_crypt_stat *crypt_stat,
914 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 914 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
915 { 915 {
916 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED) 916 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
917 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 917 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
918 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) 918 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
919 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED; 919 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
920 } 920 }
921 921
922 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs( 922 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
923 struct ecryptfs_crypt_stat *crypt_stat, 923 struct ecryptfs_crypt_stat *crypt_stat,
924 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 924 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
925 { 925 {
926 struct ecryptfs_global_auth_tok *global_auth_tok; 926 struct ecryptfs_global_auth_tok *global_auth_tok;
927 int rc = 0; 927 int rc = 0;
928 928
929 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 929 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
930 list_for_each_entry(global_auth_tok, 930 list_for_each_entry(global_auth_tok,
931 &mount_crypt_stat->global_auth_tok_list, 931 &mount_crypt_stat->global_auth_tok_list,
932 mount_crypt_stat_list) { 932 mount_crypt_stat_list) {
933 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig); 933 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
934 if (rc) { 934 if (rc) {
935 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc); 935 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
936 mutex_unlock( 936 mutex_unlock(
937 &mount_crypt_stat->global_auth_tok_list_mutex); 937 &mount_crypt_stat->global_auth_tok_list_mutex);
938 goto out; 938 goto out;
939 } 939 }
940 } 940 }
941 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 941 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
942 out: 942 out:
943 return rc; 943 return rc;
944 } 944 }
945 945
946 /** 946 /**
947 * ecryptfs_set_default_crypt_stat_vals 947 * ecryptfs_set_default_crypt_stat_vals
948 * @crypt_stat: The inode's cryptographic context 948 * @crypt_stat: The inode's cryptographic context
949 * @mount_crypt_stat: The mount point's cryptographic context 949 * @mount_crypt_stat: The mount point's cryptographic context
950 * 950 *
951 * Default values in the event that policy does not override them. 951 * Default values in the event that policy does not override them.
952 */ 952 */
953 static void ecryptfs_set_default_crypt_stat_vals( 953 static void ecryptfs_set_default_crypt_stat_vals(
954 struct ecryptfs_crypt_stat *crypt_stat, 954 struct ecryptfs_crypt_stat *crypt_stat,
955 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 955 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
956 { 956 {
957 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 957 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
958 mount_crypt_stat); 958 mount_crypt_stat);
959 ecryptfs_set_default_sizes(crypt_stat); 959 ecryptfs_set_default_sizes(crypt_stat);
960 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER); 960 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
961 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES; 961 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
962 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID); 962 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
963 crypt_stat->file_version = ECRYPTFS_FILE_VERSION; 963 crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
964 crypt_stat->mount_crypt_stat = mount_crypt_stat; 964 crypt_stat->mount_crypt_stat = mount_crypt_stat;
965 } 965 }
966 966
967 /** 967 /**
968 * ecryptfs_new_file_context 968 * ecryptfs_new_file_context
969 * @ecryptfs_dentry: The eCryptfs dentry 969 * @ecryptfs_dentry: The eCryptfs dentry
970 * 970 *
971 * If the crypto context for the file has not yet been established, 971 * If the crypto context for the file has not yet been established,
972 * this is where we do that. Establishing a new crypto context 972 * this is where we do that. Establishing a new crypto context
973 * involves the following decisions: 973 * involves the following decisions:
974 * - What cipher to use? 974 * - What cipher to use?
975 * - What set of authentication tokens to use? 975 * - What set of authentication tokens to use?
976 * Here we just worry about getting enough information into the 976 * Here we just worry about getting enough information into the
977 * authentication tokens so that we know that they are available. 977 * authentication tokens so that we know that they are available.
978 * We associate the available authentication tokens with the new file 978 * We associate the available authentication tokens with the new file
979 * via the set of signatures in the crypt_stat struct. Later, when 979 * via the set of signatures in the crypt_stat struct. Later, when
980 * the headers are actually written out, we may again defer to 980 * the headers are actually written out, we may again defer to
981 * userspace to perform the encryption of the session key; for the 981 * userspace to perform the encryption of the session key; for the
982 * foreseeable future, this will be the case with public key packets. 982 * foreseeable future, this will be the case with public key packets.
983 * 983 *
984 * Returns zero on success; non-zero otherwise 984 * Returns zero on success; non-zero otherwise
985 */ 985 */
986 int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry) 986 int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
987 { 987 {
988 struct ecryptfs_crypt_stat *crypt_stat = 988 struct ecryptfs_crypt_stat *crypt_stat =
989 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat; 989 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
990 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 990 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
991 &ecryptfs_superblock_to_private( 991 &ecryptfs_superblock_to_private(
992 ecryptfs_dentry->d_sb)->mount_crypt_stat; 992 ecryptfs_dentry->d_sb)->mount_crypt_stat;
993 int cipher_name_len; 993 int cipher_name_len;
994 int rc = 0; 994 int rc = 0;
995 995
996 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat); 996 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
997 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID); 997 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
998 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 998 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
999 mount_crypt_stat); 999 mount_crypt_stat);
1000 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat, 1000 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
1001 mount_crypt_stat); 1001 mount_crypt_stat);
1002 if (rc) { 1002 if (rc) {
1003 printk(KERN_ERR "Error attempting to copy mount-wide key sigs " 1003 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
1004 "to the inode key sigs; rc = [%d]\n", rc); 1004 "to the inode key sigs; rc = [%d]\n", rc);
1005 goto out; 1005 goto out;
1006 } 1006 }
1007 cipher_name_len = 1007 cipher_name_len =
1008 strlen(mount_crypt_stat->global_default_cipher_name); 1008 strlen(mount_crypt_stat->global_default_cipher_name);
1009 memcpy(crypt_stat->cipher, 1009 memcpy(crypt_stat->cipher,
1010 mount_crypt_stat->global_default_cipher_name, 1010 mount_crypt_stat->global_default_cipher_name,
1011 cipher_name_len); 1011 cipher_name_len);
1012 crypt_stat->cipher[cipher_name_len] = '\0'; 1012 crypt_stat->cipher[cipher_name_len] = '\0';
1013 crypt_stat->key_size = 1013 crypt_stat->key_size =
1014 mount_crypt_stat->global_default_cipher_key_size; 1014 mount_crypt_stat->global_default_cipher_key_size;
1015 ecryptfs_generate_new_key(crypt_stat); 1015 ecryptfs_generate_new_key(crypt_stat);
1016 rc = ecryptfs_init_crypt_ctx(crypt_stat); 1016 rc = ecryptfs_init_crypt_ctx(crypt_stat);
1017 if (rc) 1017 if (rc)
1018 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic " 1018 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
1019 "context for cipher [%s]: rc = [%d]\n", 1019 "context for cipher [%s]: rc = [%d]\n",
1020 crypt_stat->cipher, rc); 1020 crypt_stat->cipher, rc);
1021 out: 1021 out:
1022 return rc; 1022 return rc;
1023 } 1023 }
1024 1024
1025 /** 1025 /**
1026 * contains_ecryptfs_marker - check for the ecryptfs marker 1026 * contains_ecryptfs_marker - check for the ecryptfs marker
1027 * @data: The data block in which to check 1027 * @data: The data block in which to check
1028 * 1028 *
1029 * Returns one if marker found; zero if not found 1029 * Returns one if marker found; zero if not found
1030 */ 1030 */
1031 static int contains_ecryptfs_marker(char *data) 1031 static int contains_ecryptfs_marker(char *data)
1032 { 1032 {
1033 u32 m_1, m_2; 1033 u32 m_1, m_2;
1034 1034
1035 memcpy(&m_1, data, 4); 1035 memcpy(&m_1, data, 4);
1036 m_1 = be32_to_cpu(m_1); 1036 m_1 = be32_to_cpu(m_1);
1037 memcpy(&m_2, (data + 4), 4); 1037 memcpy(&m_2, (data + 4), 4);
1038 m_2 = be32_to_cpu(m_2); 1038 m_2 = be32_to_cpu(m_2);
1039 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2) 1039 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
1040 return 1; 1040 return 1;
1041 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; " 1041 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1042 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2, 1042 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1043 MAGIC_ECRYPTFS_MARKER); 1043 MAGIC_ECRYPTFS_MARKER);
1044 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = " 1044 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1045 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER)); 1045 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1046 return 0; 1046 return 0;
1047 } 1047 }
1048 1048
1049 struct ecryptfs_flag_map_elem { 1049 struct ecryptfs_flag_map_elem {
1050 u32 file_flag; 1050 u32 file_flag;
1051 u32 local_flag; 1051 u32 local_flag;
1052 }; 1052 };
1053 1053
1054 /* Add support for additional flags by adding elements here. */ 1054 /* Add support for additional flags by adding elements here. */
1055 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = { 1055 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1056 {0x00000001, ECRYPTFS_ENABLE_HMAC}, 1056 {0x00000001, ECRYPTFS_ENABLE_HMAC},
1057 {0x00000002, ECRYPTFS_ENCRYPTED}, 1057 {0x00000002, ECRYPTFS_ENCRYPTED},
1058 {0x00000004, ECRYPTFS_METADATA_IN_XATTR} 1058 {0x00000004, ECRYPTFS_METADATA_IN_XATTR}
1059 }; 1059 };
1060 1060
1061 /** 1061 /**
1062 * ecryptfs_process_flags 1062 * ecryptfs_process_flags
1063 * @crypt_stat: The cryptographic context 1063 * @crypt_stat: The cryptographic context
1064 * @page_virt: Source data to be parsed 1064 * @page_virt: Source data to be parsed
1065 * @bytes_read: Updated with the number of bytes read 1065 * @bytes_read: Updated with the number of bytes read
1066 * 1066 *
1067 * Returns zero on success; non-zero if the flag set is invalid 1067 * Returns zero on success; non-zero if the flag set is invalid
1068 */ 1068 */
1069 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat, 1069 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1070 char *page_virt, int *bytes_read) 1070 char *page_virt, int *bytes_read)
1071 { 1071 {
1072 int rc = 0; 1072 int rc = 0;
1073 int i; 1073 int i;
1074 u32 flags; 1074 u32 flags;
1075 1075
1076 memcpy(&flags, page_virt, 4); 1076 memcpy(&flags, page_virt, 4);
1077 flags = be32_to_cpu(flags); 1077 flags = be32_to_cpu(flags);
1078 for (i = 0; i < ((sizeof(ecryptfs_flag_map) 1078 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1079 / sizeof(struct ecryptfs_flag_map_elem))); i++) 1079 / sizeof(struct ecryptfs_flag_map_elem))); i++)
1080 if (flags & ecryptfs_flag_map[i].file_flag) { 1080 if (flags & ecryptfs_flag_map[i].file_flag) {
1081 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag; 1081 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
1082 } else 1082 } else
1083 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag); 1083 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
1084 /* Version is in top 8 bits of the 32-bit flag vector */ 1084 /* Version is in top 8 bits of the 32-bit flag vector */
1085 crypt_stat->file_version = ((flags >> 24) & 0xFF); 1085 crypt_stat->file_version = ((flags >> 24) & 0xFF);
1086 (*bytes_read) = 4; 1086 (*bytes_read) = 4;
1087 return rc; 1087 return rc;
1088 } 1088 }
1089 1089
1090 /** 1090 /**
1091 * write_ecryptfs_marker 1091 * write_ecryptfs_marker
1092 * @page_virt: The pointer to in a page to begin writing the marker 1092 * @page_virt: The pointer to in a page to begin writing the marker
1093 * @written: Number of bytes written 1093 * @written: Number of bytes written
1094 * 1094 *
1095 * Marker = 0x3c81b7f5 1095 * Marker = 0x3c81b7f5
1096 */ 1096 */
1097 static void write_ecryptfs_marker(char *page_virt, size_t *written) 1097 static void write_ecryptfs_marker(char *page_virt, size_t *written)
1098 { 1098 {
1099 u32 m_1, m_2; 1099 u32 m_1, m_2;
1100 1100
1101 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2)); 1101 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1102 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER); 1102 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1103 m_1 = cpu_to_be32(m_1); 1103 m_1 = cpu_to_be32(m_1);
1104 memcpy(page_virt, &m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2)); 1104 memcpy(page_virt, &m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1105 m_2 = cpu_to_be32(m_2); 1105 m_2 = cpu_to_be32(m_2);
1106 memcpy(page_virt + (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2), &m_2, 1106 memcpy(page_virt + (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2), &m_2,
1107 (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2)); 1107 (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1108 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 1108 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1109 } 1109 }
1110 1110
1111 static void 1111 static void
1112 write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat, 1112 write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat,
1113 size_t *written) 1113 size_t *written)
1114 { 1114 {
1115 u32 flags = 0; 1115 u32 flags = 0;
1116 int i; 1116 int i;
1117 1117
1118 for (i = 0; i < ((sizeof(ecryptfs_flag_map) 1118 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1119 / sizeof(struct ecryptfs_flag_map_elem))); i++) 1119 / sizeof(struct ecryptfs_flag_map_elem))); i++)
1120 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag) 1120 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
1121 flags |= ecryptfs_flag_map[i].file_flag; 1121 flags |= ecryptfs_flag_map[i].file_flag;
1122 /* Version is in top 8 bits of the 32-bit flag vector */ 1122 /* Version is in top 8 bits of the 32-bit flag vector */
1123 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000); 1123 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1124 flags = cpu_to_be32(flags); 1124 flags = cpu_to_be32(flags);
1125 memcpy(page_virt, &flags, 4); 1125 memcpy(page_virt, &flags, 4);
1126 (*written) = 4; 1126 (*written) = 4;
1127 } 1127 }
1128 1128
1129 struct ecryptfs_cipher_code_str_map_elem { 1129 struct ecryptfs_cipher_code_str_map_elem {
1130 char cipher_str[16]; 1130 char cipher_str[16];
1131 u16 cipher_code; 1131 u16 cipher_code;
1132 }; 1132 };
1133 1133
1134 /* Add support for additional ciphers by adding elements here. The 1134 /* Add support for additional ciphers by adding elements here. The
1135 * cipher_code is whatever OpenPGP applicatoins use to identify the 1135 * cipher_code is whatever OpenPGP applicatoins use to identify the
1136 * ciphers. List in order of probability. */ 1136 * ciphers. List in order of probability. */
1137 static struct ecryptfs_cipher_code_str_map_elem 1137 static struct ecryptfs_cipher_code_str_map_elem
1138 ecryptfs_cipher_code_str_map[] = { 1138 ecryptfs_cipher_code_str_map[] = {
1139 {"aes",RFC2440_CIPHER_AES_128 }, 1139 {"aes",RFC2440_CIPHER_AES_128 },
1140 {"blowfish", RFC2440_CIPHER_BLOWFISH}, 1140 {"blowfish", RFC2440_CIPHER_BLOWFISH},
1141 {"des3_ede", RFC2440_CIPHER_DES3_EDE}, 1141 {"des3_ede", RFC2440_CIPHER_DES3_EDE},
1142 {"cast5", RFC2440_CIPHER_CAST_5}, 1142 {"cast5", RFC2440_CIPHER_CAST_5},
1143 {"twofish", RFC2440_CIPHER_TWOFISH}, 1143 {"twofish", RFC2440_CIPHER_TWOFISH},
1144 {"cast6", RFC2440_CIPHER_CAST_6}, 1144 {"cast6", RFC2440_CIPHER_CAST_6},
1145 {"aes", RFC2440_CIPHER_AES_192}, 1145 {"aes", RFC2440_CIPHER_AES_192},
1146 {"aes", RFC2440_CIPHER_AES_256} 1146 {"aes", RFC2440_CIPHER_AES_256}
1147 }; 1147 };
1148 1148
1149 /** 1149 /**
1150 * ecryptfs_code_for_cipher_string 1150 * ecryptfs_code_for_cipher_string
1151 * @crypt_stat: The cryptographic context 1151 * @crypt_stat: The cryptographic context
1152 * 1152 *
1153 * Returns zero on no match, or the cipher code on match 1153 * Returns zero on no match, or the cipher code on match
1154 */ 1154 */
1155 u16 ecryptfs_code_for_cipher_string(struct ecryptfs_crypt_stat *crypt_stat) 1155 u16 ecryptfs_code_for_cipher_string(struct ecryptfs_crypt_stat *crypt_stat)
1156 { 1156 {
1157 int i; 1157 int i;
1158 u16 code = 0; 1158 u16 code = 0;
1159 struct ecryptfs_cipher_code_str_map_elem *map = 1159 struct ecryptfs_cipher_code_str_map_elem *map =
1160 ecryptfs_cipher_code_str_map; 1160 ecryptfs_cipher_code_str_map;
1161 1161
1162 if (strcmp(crypt_stat->cipher, "aes") == 0) { 1162 if (strcmp(crypt_stat->cipher, "aes") == 0) {
1163 switch (crypt_stat->key_size) { 1163 switch (crypt_stat->key_size) {
1164 case 16: 1164 case 16:
1165 code = RFC2440_CIPHER_AES_128; 1165 code = RFC2440_CIPHER_AES_128;
1166 break; 1166 break;
1167 case 24: 1167 case 24:
1168 code = RFC2440_CIPHER_AES_192; 1168 code = RFC2440_CIPHER_AES_192;
1169 break; 1169 break;
1170 case 32: 1170 case 32:
1171 code = RFC2440_CIPHER_AES_256; 1171 code = RFC2440_CIPHER_AES_256;
1172 } 1172 }
1173 } else { 1173 } else {
1174 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 1174 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1175 if (strcmp(crypt_stat->cipher, map[i].cipher_str) == 0){ 1175 if (strcmp(crypt_stat->cipher, map[i].cipher_str) == 0){
1176 code = map[i].cipher_code; 1176 code = map[i].cipher_code;
1177 break; 1177 break;
1178 } 1178 }
1179 } 1179 }
1180 return code; 1180 return code;
1181 } 1181 }
1182 1182
1183 /** 1183 /**
1184 * ecryptfs_cipher_code_to_string 1184 * ecryptfs_cipher_code_to_string
1185 * @str: Destination to write out the cipher name 1185 * @str: Destination to write out the cipher name
1186 * @cipher_code: The code to convert to cipher name string 1186 * @cipher_code: The code to convert to cipher name string
1187 * 1187 *
1188 * Returns zero on success 1188 * Returns zero on success
1189 */ 1189 */
1190 int ecryptfs_cipher_code_to_string(char *str, u16 cipher_code) 1190 int ecryptfs_cipher_code_to_string(char *str, u16 cipher_code)
1191 { 1191 {
1192 int rc = 0; 1192 int rc = 0;
1193 int i; 1193 int i;
1194 1194
1195 str[0] = '\0'; 1195 str[0] = '\0';
1196 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 1196 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1197 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code) 1197 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1198 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str); 1198 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1199 if (str[0] == '\0') { 1199 if (str[0] == '\0') {
1200 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: " 1200 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1201 "[%d]\n", cipher_code); 1201 "[%d]\n", cipher_code);
1202 rc = -EINVAL; 1202 rc = -EINVAL;
1203 } 1203 }
1204 return rc; 1204 return rc;
1205 } 1205 }
1206 1206
1207 int ecryptfs_read_and_validate_header_region(char *data, 1207 int ecryptfs_read_and_validate_header_region(char *data,
1208 struct inode *ecryptfs_inode) 1208 struct inode *ecryptfs_inode)
1209 { 1209 {
1210 struct ecryptfs_crypt_stat *crypt_stat = 1210 struct ecryptfs_crypt_stat *crypt_stat =
1211 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 1211 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
1212 int rc; 1212 int rc;
1213 1213
1214 rc = ecryptfs_read_lower(data, 0, crypt_stat->extent_size, 1214 rc = ecryptfs_read_lower(data, 0, crypt_stat->extent_size,
1215 ecryptfs_inode); 1215 ecryptfs_inode);
1216 if (rc) { 1216 if (rc) {
1217 printk(KERN_ERR "%s: Error reading header region; rc = [%d]\n", 1217 printk(KERN_ERR "%s: Error reading header region; rc = [%d]\n",
1218 __FUNCTION__, rc); 1218 __FUNCTION__, rc);
1219 goto out; 1219 goto out;
1220 } 1220 }
1221 if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES)) { 1221 if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES)) {
1222 rc = -EINVAL; 1222 rc = -EINVAL;
1223 ecryptfs_printk(KERN_DEBUG, "Valid marker not found\n"); 1223 ecryptfs_printk(KERN_DEBUG, "Valid marker not found\n");
1224 } 1224 }
1225 out: 1225 out:
1226 return rc; 1226 return rc;
1227 } 1227 }
1228 1228
1229 void 1229 void
1230 ecryptfs_write_header_metadata(char *virt, 1230 ecryptfs_write_header_metadata(char *virt,
1231 struct ecryptfs_crypt_stat *crypt_stat, 1231 struct ecryptfs_crypt_stat *crypt_stat,
1232 size_t *written) 1232 size_t *written)
1233 { 1233 {
1234 u32 header_extent_size; 1234 u32 header_extent_size;
1235 u16 num_header_extents_at_front; 1235 u16 num_header_extents_at_front;
1236 1236
1237 header_extent_size = (u32)crypt_stat->extent_size; 1237 header_extent_size = (u32)crypt_stat->extent_size;
1238 num_header_extents_at_front = 1238 num_header_extents_at_front =
1239 (u16)crypt_stat->num_header_extents_at_front; 1239 (u16)crypt_stat->num_header_extents_at_front;
1240 header_extent_size = cpu_to_be32(header_extent_size); 1240 header_extent_size = cpu_to_be32(header_extent_size);
1241 memcpy(virt, &header_extent_size, 4); 1241 memcpy(virt, &header_extent_size, 4);
1242 virt += 4; 1242 virt += 4;
1243 num_header_extents_at_front = cpu_to_be16(num_header_extents_at_front); 1243 num_header_extents_at_front = cpu_to_be16(num_header_extents_at_front);
1244 memcpy(virt, &num_header_extents_at_front, 2); 1244 memcpy(virt, &num_header_extents_at_front, 2);
1245 (*written) = 6; 1245 (*written) = 6;
1246 } 1246 }
1247 1247
1248 struct kmem_cache *ecryptfs_header_cache_0; 1248 struct kmem_cache *ecryptfs_header_cache_0;
1249 struct kmem_cache *ecryptfs_header_cache_1; 1249 struct kmem_cache *ecryptfs_header_cache_1;
1250 struct kmem_cache *ecryptfs_header_cache_2; 1250 struct kmem_cache *ecryptfs_header_cache_2;
1251 1251
1252 /** 1252 /**
1253 * ecryptfs_write_headers_virt 1253 * ecryptfs_write_headers_virt
1254 * @page_virt: The virtual address to write the headers to 1254 * @page_virt: The virtual address to write the headers to
1255 * @size: Set to the number of bytes written by this function 1255 * @size: Set to the number of bytes written by this function
1256 * @crypt_stat: The cryptographic context 1256 * @crypt_stat: The cryptographic context
1257 * @ecryptfs_dentry: The eCryptfs dentry 1257 * @ecryptfs_dentry: The eCryptfs dentry
1258 * 1258 *
1259 * Format version: 1 1259 * Format version: 1
1260 * 1260 *
1261 * Header Extent: 1261 * Header Extent:
1262 * Octets 0-7: Unencrypted file size (big-endian) 1262 * Octets 0-7: Unencrypted file size (big-endian)
1263 * Octets 8-15: eCryptfs special marker 1263 * Octets 8-15: eCryptfs special marker
1264 * Octets 16-19: Flags 1264 * Octets 16-19: Flags
1265 * Octet 16: File format version number (between 0 and 255) 1265 * Octet 16: File format version number (between 0 and 255)
1266 * Octets 17-18: Reserved 1266 * Octets 17-18: Reserved
1267 * Octet 19: Bit 1 (lsb): Reserved 1267 * Octet 19: Bit 1 (lsb): Reserved
1268 * Bit 2: Encrypted? 1268 * Bit 2: Encrypted?
1269 * Bits 3-8: Reserved 1269 * Bits 3-8: Reserved
1270 * Octets 20-23: Header extent size (big-endian) 1270 * Octets 20-23: Header extent size (big-endian)
1271 * Octets 24-25: Number of header extents at front of file 1271 * Octets 24-25: Number of header extents at front of file
1272 * (big-endian) 1272 * (big-endian)
1273 * Octet 26: Begin RFC 2440 authentication token packet set 1273 * Octet 26: Begin RFC 2440 authentication token packet set
1274 * Data Extent 0: 1274 * Data Extent 0:
1275 * Lower data (CBC encrypted) 1275 * Lower data (CBC encrypted)
1276 * Data Extent 1: 1276 * Data Extent 1:
1277 * Lower data (CBC encrypted) 1277 * Lower data (CBC encrypted)
1278 * ... 1278 * ...
1279 * 1279 *
1280 * Returns zero on success 1280 * Returns zero on success
1281 */ 1281 */
1282 static int ecryptfs_write_headers_virt(char *page_virt, size_t *size, 1282 static int ecryptfs_write_headers_virt(char *page_virt, size_t *size,
1283 struct ecryptfs_crypt_stat *crypt_stat, 1283 struct ecryptfs_crypt_stat *crypt_stat,
1284 struct dentry *ecryptfs_dentry) 1284 struct dentry *ecryptfs_dentry)
1285 { 1285 {
1286 int rc; 1286 int rc;
1287 size_t written; 1287 size_t written;
1288 size_t offset; 1288 size_t offset;
1289 1289
1290 offset = ECRYPTFS_FILE_SIZE_BYTES; 1290 offset = ECRYPTFS_FILE_SIZE_BYTES;
1291 write_ecryptfs_marker((page_virt + offset), &written); 1291 write_ecryptfs_marker((page_virt + offset), &written);
1292 offset += written; 1292 offset += written;
1293 write_ecryptfs_flags((page_virt + offset), crypt_stat, &written); 1293 write_ecryptfs_flags((page_virt + offset), crypt_stat, &written);
1294 offset += written; 1294 offset += written;
1295 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat, 1295 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1296 &written); 1296 &written);
1297 offset += written; 1297 offset += written;
1298 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat, 1298 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1299 ecryptfs_dentry, &written, 1299 ecryptfs_dentry, &written,
1300 PAGE_CACHE_SIZE - offset); 1300 PAGE_CACHE_SIZE - offset);
1301 if (rc) 1301 if (rc)
1302 ecryptfs_printk(KERN_WARNING, "Error generating key packet " 1302 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1303 "set; rc = [%d]\n", rc); 1303 "set; rc = [%d]\n", rc);
1304 if (size) { 1304 if (size) {
1305 offset += written; 1305 offset += written;
1306 *size = offset; 1306 *size = offset;
1307 } 1307 }
1308 return rc; 1308 return rc;
1309 } 1309 }
1310 1310
1311 static int 1311 static int
1312 ecryptfs_write_metadata_to_contents(struct ecryptfs_crypt_stat *crypt_stat, 1312 ecryptfs_write_metadata_to_contents(struct ecryptfs_crypt_stat *crypt_stat,
1313 struct dentry *ecryptfs_dentry, 1313 struct dentry *ecryptfs_dentry,
1314 char *page_virt) 1314 char *page_virt)
1315 { 1315 {
1316 int current_header_page; 1316 int current_header_page;
1317 int header_pages; 1317 int header_pages;
1318 int rc; 1318 int rc;
1319 1319
1320 rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode, page_virt, 1320 rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode, page_virt,
1321 0, PAGE_CACHE_SIZE); 1321 0, PAGE_CACHE_SIZE);
1322 if (rc) { 1322 if (rc) {
1323 printk(KERN_ERR "%s: Error attempting to write header " 1323 printk(KERN_ERR "%s: Error attempting to write header "
1324 "information to lower file; rc = [%d]\n", __FUNCTION__, 1324 "information to lower file; rc = [%d]\n", __FUNCTION__,
1325 rc); 1325 rc);
1326 goto out; 1326 goto out;
1327 } 1327 }
1328 header_pages = ((crypt_stat->extent_size 1328 header_pages = ((crypt_stat->extent_size
1329 * crypt_stat->num_header_extents_at_front) 1329 * crypt_stat->num_header_extents_at_front)
1330 / PAGE_CACHE_SIZE); 1330 / PAGE_CACHE_SIZE);
1331 memset(page_virt, 0, PAGE_CACHE_SIZE); 1331 memset(page_virt, 0, PAGE_CACHE_SIZE);
1332 current_header_page = 1; 1332 current_header_page = 1;
1333 while (current_header_page < header_pages) { 1333 while (current_header_page < header_pages) {
1334 loff_t offset; 1334 loff_t offset;
1335 1335
1336 offset = (((loff_t)current_header_page) << PAGE_CACHE_SHIFT); 1336 offset = (((loff_t)current_header_page) << PAGE_CACHE_SHIFT);
1337 if ((rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode, 1337 if ((rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode,
1338 page_virt, offset, 1338 page_virt, offset,
1339 PAGE_CACHE_SIZE))) { 1339 PAGE_CACHE_SIZE))) {
1340 printk(KERN_ERR "%s: Error attempting to write header " 1340 printk(KERN_ERR "%s: Error attempting to write header "
1341 "information to lower file; rc = [%d]\n", 1341 "information to lower file; rc = [%d]\n",
1342 __FUNCTION__, rc); 1342 __FUNCTION__, rc);
1343 goto out; 1343 goto out;
1344 } 1344 }
1345 current_header_page++; 1345 current_header_page++;
1346 } 1346 }
1347 out: 1347 out:
1348 return rc; 1348 return rc;
1349 } 1349 }
1350 1350
1351 static int 1351 static int
1352 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry, 1352 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1353 struct ecryptfs_crypt_stat *crypt_stat, 1353 struct ecryptfs_crypt_stat *crypt_stat,
1354 char *page_virt, size_t size) 1354 char *page_virt, size_t size)
1355 { 1355 {
1356 int rc; 1356 int rc;
1357 1357
1358 rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt, 1358 rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1359 size, 0); 1359 size, 0);
1360 return rc; 1360 return rc;
1361 } 1361 }
1362 1362
1363 /** 1363 /**
1364 * ecryptfs_write_metadata 1364 * ecryptfs_write_metadata
1365 * @ecryptfs_dentry: The eCryptfs dentry 1365 * @ecryptfs_dentry: The eCryptfs dentry
1366 * 1366 *
1367 * Write the file headers out. This will likely involve a userspace 1367 * Write the file headers out. This will likely involve a userspace
1368 * callout, in which the session key is encrypted with one or more 1368 * callout, in which the session key is encrypted with one or more
1369 * public keys and/or the passphrase necessary to do the encryption is 1369 * public keys and/or the passphrase necessary to do the encryption is
1370 * retrieved via a prompt. Exactly what happens at this point should 1370 * retrieved via a prompt. Exactly what happens at this point should
1371 * be policy-dependent. 1371 * be policy-dependent.
1372 * 1372 *
1373 * TODO: Support header information spanning multiple pages 1373 * TODO: Support header information spanning multiple pages
1374 * 1374 *
1375 * Returns zero on success; non-zero on error 1375 * Returns zero on success; non-zero on error
1376 */ 1376 */
1377 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry) 1377 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry)
1378 { 1378 {
1379 struct ecryptfs_crypt_stat *crypt_stat = 1379 struct ecryptfs_crypt_stat *crypt_stat =
1380 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat; 1380 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
1381 char *page_virt; 1381 char *page_virt;
1382 size_t size = 0; 1382 size_t size = 0;
1383 int rc = 0; 1383 int rc = 0;
1384 1384
1385 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) { 1385 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1386 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 1386 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1387 printk(KERN_ERR "Key is invalid; bailing out\n"); 1387 printk(KERN_ERR "Key is invalid; bailing out\n");
1388 rc = -EINVAL; 1388 rc = -EINVAL;
1389 goto out; 1389 goto out;
1390 } 1390 }
1391 } else { 1391 } else {
1392 rc = -EINVAL; 1392 rc = -EINVAL;
1393 ecryptfs_printk(KERN_WARNING, 1393 ecryptfs_printk(KERN_WARNING,
1394 "Called with crypt_stat->encrypted == 0\n"); 1394 "Called with crypt_stat->encrypted == 0\n");
1395 goto out; 1395 goto out;
1396 } 1396 }
1397 /* Released in this function */ 1397 /* Released in this function */
1398 page_virt = kmem_cache_zalloc(ecryptfs_header_cache_0, GFP_USER); 1398 page_virt = kmem_cache_zalloc(ecryptfs_header_cache_0, GFP_USER);
1399 if (!page_virt) { 1399 if (!page_virt) {
1400 ecryptfs_printk(KERN_ERR, "Out of memory\n"); 1400 ecryptfs_printk(KERN_ERR, "Out of memory\n");
1401 rc = -ENOMEM; 1401 rc = -ENOMEM;
1402 goto out; 1402 goto out;
1403 } 1403 }
1404 rc = ecryptfs_write_headers_virt(page_virt, &size, crypt_stat, 1404 rc = ecryptfs_write_headers_virt(page_virt, &size, crypt_stat,
1405 ecryptfs_dentry); 1405 ecryptfs_dentry);
1406 if (unlikely(rc)) { 1406 if (unlikely(rc)) {
1407 ecryptfs_printk(KERN_ERR, "Error whilst writing headers\n"); 1407 ecryptfs_printk(KERN_ERR, "Error whilst writing headers\n");
1408 memset(page_virt, 0, PAGE_CACHE_SIZE); 1408 memset(page_virt, 0, PAGE_CACHE_SIZE);
1409 goto out_free; 1409 goto out_free;
1410 } 1410 }
1411 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 1411 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1412 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, 1412 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry,
1413 crypt_stat, page_virt, 1413 crypt_stat, page_virt,
1414 size); 1414 size);
1415 else 1415 else
1416 rc = ecryptfs_write_metadata_to_contents(crypt_stat, 1416 rc = ecryptfs_write_metadata_to_contents(crypt_stat,
1417 ecryptfs_dentry, 1417 ecryptfs_dentry,
1418 page_virt); 1418 page_virt);
1419 if (rc) { 1419 if (rc) {
1420 printk(KERN_ERR "Error writing metadata out to lower file; " 1420 printk(KERN_ERR "Error writing metadata out to lower file; "
1421 "rc = [%d]\n", rc); 1421 "rc = [%d]\n", rc);
1422 goto out_free; 1422 goto out_free;
1423 } 1423 }
1424 out_free: 1424 out_free:
1425 kmem_cache_free(ecryptfs_header_cache_0, page_virt); 1425 kmem_cache_free(ecryptfs_header_cache_0, page_virt);
1426 out: 1426 out:
1427 return rc; 1427 return rc;
1428 } 1428 }
1429 1429
1430 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0 1430 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1431 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1 1431 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1432 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat, 1432 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1433 char *virt, int *bytes_read, 1433 char *virt, int *bytes_read,
1434 int validate_header_size) 1434 int validate_header_size)
1435 { 1435 {
1436 int rc = 0; 1436 int rc = 0;
1437 u32 header_extent_size; 1437 u32 header_extent_size;
1438 u16 num_header_extents_at_front; 1438 u16 num_header_extents_at_front;
1439 1439
1440 memcpy(&header_extent_size, virt, sizeof(u32)); 1440 memcpy(&header_extent_size, virt, sizeof(u32));
1441 header_extent_size = be32_to_cpu(header_extent_size); 1441 header_extent_size = be32_to_cpu(header_extent_size);
1442 virt += sizeof(u32); 1442 virt += sizeof(u32);
1443 memcpy(&num_header_extents_at_front, virt, sizeof(u16)); 1443 memcpy(&num_header_extents_at_front, virt, sizeof(u16));
1444 num_header_extents_at_front = be16_to_cpu(num_header_extents_at_front); 1444 num_header_extents_at_front = be16_to_cpu(num_header_extents_at_front);
1445 crypt_stat->num_header_extents_at_front = 1445 crypt_stat->num_header_extents_at_front =
1446 (int)num_header_extents_at_front; 1446 (int)num_header_extents_at_front;
1447 (*bytes_read) = (sizeof(u32) + sizeof(u16)); 1447 (*bytes_read) = (sizeof(u32) + sizeof(u16));
1448 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE) 1448 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1449 && ((crypt_stat->extent_size 1449 && ((crypt_stat->extent_size
1450 * crypt_stat->num_header_extents_at_front) 1450 * crypt_stat->num_header_extents_at_front)
1451 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) { 1451 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1452 rc = -EINVAL; 1452 rc = -EINVAL;
1453 printk(KERN_WARNING "Invalid number of header extents: [%zd]\n", 1453 printk(KERN_WARNING "Invalid number of header extents: [%zd]\n",
1454 crypt_stat->num_header_extents_at_front); 1454 crypt_stat->num_header_extents_at_front);
1455 } 1455 }
1456 return rc; 1456 return rc;
1457 } 1457 }
1458 1458
1459 /** 1459 /**
1460 * set_default_header_data 1460 * set_default_header_data
1461 * @crypt_stat: The cryptographic context 1461 * @crypt_stat: The cryptographic context
1462 * 1462 *
1463 * For version 0 file format; this function is only for backwards 1463 * For version 0 file format; this function is only for backwards
1464 * compatibility for files created with the prior versions of 1464 * compatibility for files created with the prior versions of
1465 * eCryptfs. 1465 * eCryptfs.
1466 */ 1466 */
1467 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat) 1467 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1468 { 1468 {
1469 crypt_stat->num_header_extents_at_front = 2; 1469 crypt_stat->num_header_extents_at_front = 2;
1470 } 1470 }
1471 1471
1472 /** 1472 /**
1473 * ecryptfs_read_headers_virt 1473 * ecryptfs_read_headers_virt
1474 * @page_virt: The virtual address into which to read the headers 1474 * @page_virt: The virtual address into which to read the headers
1475 * @crypt_stat: The cryptographic context 1475 * @crypt_stat: The cryptographic context
1476 * @ecryptfs_dentry: The eCryptfs dentry 1476 * @ecryptfs_dentry: The eCryptfs dentry
1477 * @validate_header_size: Whether to validate the header size while reading 1477 * @validate_header_size: Whether to validate the header size while reading
1478 * 1478 *
1479 * Read/parse the header data. The header format is detailed in the 1479 * Read/parse the header data. The header format is detailed in the
1480 * comment block for the ecryptfs_write_headers_virt() function. 1480 * comment block for the ecryptfs_write_headers_virt() function.
1481 * 1481 *
1482 * Returns zero on success 1482 * Returns zero on success
1483 */ 1483 */
1484 static int ecryptfs_read_headers_virt(char *page_virt, 1484 static int ecryptfs_read_headers_virt(char *page_virt,
1485 struct ecryptfs_crypt_stat *crypt_stat, 1485 struct ecryptfs_crypt_stat *crypt_stat,
1486 struct dentry *ecryptfs_dentry, 1486 struct dentry *ecryptfs_dentry,
1487 int validate_header_size) 1487 int validate_header_size)
1488 { 1488 {
1489 int rc = 0; 1489 int rc = 0;
1490 int offset; 1490 int offset;
1491 int bytes_read; 1491 int bytes_read;
1492 1492
1493 ecryptfs_set_default_sizes(crypt_stat); 1493 ecryptfs_set_default_sizes(crypt_stat);
1494 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private( 1494 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1495 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1495 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1496 offset = ECRYPTFS_FILE_SIZE_BYTES; 1496 offset = ECRYPTFS_FILE_SIZE_BYTES;
1497 rc = contains_ecryptfs_marker(page_virt + offset); 1497 rc = contains_ecryptfs_marker(page_virt + offset);
1498 if (rc == 0) { 1498 if (rc == 0) {
1499 rc = -EINVAL; 1499 rc = -EINVAL;
1500 goto out; 1500 goto out;
1501 } 1501 }
1502 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 1502 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1503 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset), 1503 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1504 &bytes_read); 1504 &bytes_read);
1505 if (rc) { 1505 if (rc) {
1506 ecryptfs_printk(KERN_WARNING, "Error processing flags\n"); 1506 ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1507 goto out; 1507 goto out;
1508 } 1508 }
1509 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) { 1509 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1510 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only " 1510 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1511 "file version [%d] is supported by this " 1511 "file version [%d] is supported by this "
1512 "version of eCryptfs\n", 1512 "version of eCryptfs\n",
1513 crypt_stat->file_version, 1513 crypt_stat->file_version,
1514 ECRYPTFS_SUPPORTED_FILE_VERSION); 1514 ECRYPTFS_SUPPORTED_FILE_VERSION);
1515 rc = -EINVAL; 1515 rc = -EINVAL;
1516 goto out; 1516 goto out;
1517 } 1517 }
1518 offset += bytes_read; 1518 offset += bytes_read;
1519 if (crypt_stat->file_version >= 1) { 1519 if (crypt_stat->file_version >= 1) {
1520 rc = parse_header_metadata(crypt_stat, (page_virt + offset), 1520 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1521 &bytes_read, validate_header_size); 1521 &bytes_read, validate_header_size);
1522 if (rc) { 1522 if (rc) {
1523 ecryptfs_printk(KERN_WARNING, "Error reading header " 1523 ecryptfs_printk(KERN_WARNING, "Error reading header "
1524 "metadata; rc = [%d]\n", rc); 1524 "metadata; rc = [%d]\n", rc);
1525 } 1525 }
1526 offset += bytes_read; 1526 offset += bytes_read;
1527 } else 1527 } else
1528 set_default_header_data(crypt_stat); 1528 set_default_header_data(crypt_stat);
1529 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset), 1529 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1530 ecryptfs_dentry); 1530 ecryptfs_dentry);
1531 out: 1531 out:
1532 return rc; 1532 return rc;
1533 } 1533 }
1534 1534
1535 /** 1535 /**
1536 * ecryptfs_read_xattr_region 1536 * ecryptfs_read_xattr_region
1537 * @page_virt: The vitual address into which to read the xattr data 1537 * @page_virt: The vitual address into which to read the xattr data
1538 * @ecryptfs_inode: The eCryptfs inode 1538 * @ecryptfs_inode: The eCryptfs inode
1539 * 1539 *
1540 * Attempts to read the crypto metadata from the extended attribute 1540 * Attempts to read the crypto metadata from the extended attribute
1541 * region of the lower file. 1541 * region of the lower file.
1542 * 1542 *
1543 * Returns zero on success; non-zero on error 1543 * Returns zero on success; non-zero on error
1544 */ 1544 */
1545 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode) 1545 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1546 { 1546 {
1547 struct dentry *lower_dentry = 1547 struct dentry *lower_dentry =
1548 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry; 1548 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1549 ssize_t size; 1549 ssize_t size;
1550 int rc = 0; 1550 int rc = 0;
1551 1551
1552 size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME, 1552 size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1553 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE); 1553 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1554 if (size < 0) { 1554 if (size < 0) {
1555 printk(KERN_ERR "Error attempting to read the [%s] " 1555 printk(KERN_ERR "Error attempting to read the [%s] "
1556 "xattr from the lower file; return value = [%zd]\n", 1556 "xattr from the lower file; return value = [%zd]\n",
1557 ECRYPTFS_XATTR_NAME, size); 1557 ECRYPTFS_XATTR_NAME, size);
1558 rc = -EINVAL; 1558 rc = -EINVAL;
1559 goto out; 1559 goto out;
1560 } 1560 }
1561 out: 1561 out:
1562 return rc; 1562 return rc;
1563 } 1563 }
1564 1564
1565 int ecryptfs_read_and_validate_xattr_region(char *page_virt, 1565 int ecryptfs_read_and_validate_xattr_region(char *page_virt,
1566 struct dentry *ecryptfs_dentry) 1566 struct dentry *ecryptfs_dentry)
1567 { 1567 {
1568 int rc; 1568 int rc;
1569 1569
1570 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry->d_inode); 1570 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry->d_inode);
1571 if (rc) 1571 if (rc)
1572 goto out; 1572 goto out;
1573 if (!contains_ecryptfs_marker(page_virt + ECRYPTFS_FILE_SIZE_BYTES)) { 1573 if (!contains_ecryptfs_marker(page_virt + ECRYPTFS_FILE_SIZE_BYTES)) {
1574 printk(KERN_WARNING "Valid data found in [%s] xattr, but " 1574 printk(KERN_WARNING "Valid data found in [%s] xattr, but "
1575 "the marker is invalid\n", ECRYPTFS_XATTR_NAME); 1575 "the marker is invalid\n", ECRYPTFS_XATTR_NAME);
1576 rc = -EINVAL; 1576 rc = -EINVAL;
1577 } 1577 }
1578 out: 1578 out:
1579 return rc; 1579 return rc;
1580 } 1580 }
1581 1581
1582 /** 1582 /**
1583 * ecryptfs_read_metadata 1583 * ecryptfs_read_metadata
1584 * 1584 *
1585 * Common entry point for reading file metadata. From here, we could 1585 * Common entry point for reading file metadata. From here, we could
1586 * retrieve the header information from the header region of the file, 1586 * retrieve the header information from the header region of the file,
1587 * the xattr region of the file, or some other repostory that is 1587 * the xattr region of the file, or some other repostory that is
1588 * stored separately from the file itself. The current implementation 1588 * stored separately from the file itself. The current implementation
1589 * supports retrieving the metadata information from the file contents 1589 * supports retrieving the metadata information from the file contents
1590 * and from the xattr region. 1590 * and from the xattr region.
1591 * 1591 *
1592 * Returns zero if valid headers found and parsed; non-zero otherwise 1592 * Returns zero if valid headers found and parsed; non-zero otherwise
1593 */ 1593 */
1594 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry) 1594 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1595 { 1595 {
1596 int rc = 0; 1596 int rc = 0;
1597 char *page_virt = NULL; 1597 char *page_virt = NULL;
1598 struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode; 1598 struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1599 struct ecryptfs_crypt_stat *crypt_stat = 1599 struct ecryptfs_crypt_stat *crypt_stat =
1600 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 1600 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1601 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 1601 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1602 &ecryptfs_superblock_to_private( 1602 &ecryptfs_superblock_to_private(
1603 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1603 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1604 1604
1605 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 1605 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1606 mount_crypt_stat); 1606 mount_crypt_stat);
1607 /* Read the first page from the underlying file */ 1607 /* Read the first page from the underlying file */
1608 page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER); 1608 page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER);
1609 if (!page_virt) { 1609 if (!page_virt) {
1610 rc = -ENOMEM; 1610 rc = -ENOMEM;
1611 printk(KERN_ERR "%s: Unable to allocate page_virt\n", 1611 printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1612 __FUNCTION__); 1612 __FUNCTION__);
1613 goto out; 1613 goto out;
1614 } 1614 }
1615 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size, 1615 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1616 ecryptfs_inode); 1616 ecryptfs_inode);
1617 if (!rc) 1617 if (!rc)
1618 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1618 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1619 ecryptfs_dentry, 1619 ecryptfs_dentry,
1620 ECRYPTFS_VALIDATE_HEADER_SIZE); 1620 ECRYPTFS_VALIDATE_HEADER_SIZE);
1621 if (rc) { 1621 if (rc) {
1622 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode); 1622 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1623 if (rc) { 1623 if (rc) {
1624 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1624 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1625 "file header region or xattr region\n"); 1625 "file header region or xattr region\n");
1626 rc = -EINVAL; 1626 rc = -EINVAL;
1627 goto out; 1627 goto out;
1628 } 1628 }
1629 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1629 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1630 ecryptfs_dentry, 1630 ecryptfs_dentry,
1631 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE); 1631 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1632 if (rc) { 1632 if (rc) {
1633 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1633 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1634 "file xattr region either\n"); 1634 "file xattr region either\n");
1635 rc = -EINVAL; 1635 rc = -EINVAL;
1636 } 1636 }
1637 if (crypt_stat->mount_crypt_stat->flags 1637 if (crypt_stat->mount_crypt_stat->flags
1638 & ECRYPTFS_XATTR_METADATA_ENABLED) { 1638 & ECRYPTFS_XATTR_METADATA_ENABLED) {
1639 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 1639 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1640 } else { 1640 } else {
1641 printk(KERN_WARNING "Attempt to access file with " 1641 printk(KERN_WARNING "Attempt to access file with "
1642 "crypto metadata only in the extended attribute " 1642 "crypto metadata only in the extended attribute "
1643 "region, but eCryptfs was mounted without " 1643 "region, but eCryptfs was mounted without "
1644 "xattr support enabled. eCryptfs will not treat " 1644 "xattr support enabled. eCryptfs will not treat "
1645 "this like an encrypted file.\n"); 1645 "this like an encrypted file.\n");
1646 rc = -EINVAL; 1646 rc = -EINVAL;
1647 } 1647 }
1648 } 1648 }
1649 out: 1649 out:
1650 if (page_virt) { 1650 if (page_virt) {
1651 memset(page_virt, 0, PAGE_CACHE_SIZE); 1651 memset(page_virt, 0, PAGE_CACHE_SIZE);
1652 kmem_cache_free(ecryptfs_header_cache_1, page_virt); 1652 kmem_cache_free(ecryptfs_header_cache_1, page_virt);
1653 } 1653 }
1654 return rc; 1654 return rc;
1655 } 1655 }
1656 1656
1657 /** 1657 /**
1658 * ecryptfs_encode_filename - converts a plaintext file name to cipher text 1658 * ecryptfs_encode_filename - converts a plaintext file name to cipher text
1659 * @crypt_stat: The crypt_stat struct associated with the file anem to encode 1659 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1660 * @name: The plaintext name 1660 * @name: The plaintext name
1661 * @length: The length of the plaintext 1661 * @length: The length of the plaintext
1662 * @encoded_name: The encypted name 1662 * @encoded_name: The encypted name
1663 * 1663 *
1664 * Encrypts and encodes a filename into something that constitutes a 1664 * Encrypts and encodes a filename into something that constitutes a
1665 * valid filename for a filesystem, with printable characters. 1665 * valid filename for a filesystem, with printable characters.
1666 * 1666 *
1667 * We assume that we have a properly initialized crypto context, 1667 * We assume that we have a properly initialized crypto context,
1668 * pointed to by crypt_stat->tfm. 1668 * pointed to by crypt_stat->tfm.
1669 * 1669 *
1670 * TODO: Implement filename decoding and decryption here, in place of 1670 * TODO: Implement filename decoding and decryption here, in place of
1671 * memcpy. We are keeping the framework around for now to (1) 1671 * memcpy. We are keeping the framework around for now to (1)
1672 * facilitate testing of the components needed to implement filename 1672 * facilitate testing of the components needed to implement filename
1673 * encryption and (2) to provide a code base from which other 1673 * encryption and (2) to provide a code base from which other
1674 * developers in the community can easily implement this feature. 1674 * developers in the community can easily implement this feature.
1675 * 1675 *
1676 * Returns the length of encoded filename; negative if error 1676 * Returns the length of encoded filename; negative if error
1677 */ 1677 */
1678 int 1678 int
1679 ecryptfs_encode_filename(struct ecryptfs_crypt_stat *crypt_stat, 1679 ecryptfs_encode_filename(struct ecryptfs_crypt_stat *crypt_stat,
1680 const char *name, int length, char **encoded_name) 1680 const char *name, int length, char **encoded_name)
1681 { 1681 {
1682 int error = 0; 1682 int error = 0;
1683 1683
1684 (*encoded_name) = kmalloc(length + 2, GFP_KERNEL); 1684 (*encoded_name) = kmalloc(length + 2, GFP_KERNEL);
1685 if (!(*encoded_name)) { 1685 if (!(*encoded_name)) {
1686 error = -ENOMEM; 1686 error = -ENOMEM;
1687 goto out; 1687 goto out;
1688 } 1688 }
1689 /* TODO: Filename encryption is a scheduled feature for a 1689 /* TODO: Filename encryption is a scheduled feature for a
1690 * future version of eCryptfs. This function is here only for 1690 * future version of eCryptfs. This function is here only for
1691 * the purpose of providing a framework for other developers 1691 * the purpose of providing a framework for other developers
1692 * to easily implement filename encryption. Hint: Replace this 1692 * to easily implement filename encryption. Hint: Replace this
1693 * memcpy() with a call to encrypt and encode the 1693 * memcpy() with a call to encrypt and encode the
1694 * filename, the set the length accordingly. */ 1694 * filename, the set the length accordingly. */
1695 memcpy((void *)(*encoded_name), (void *)name, length); 1695 memcpy((void *)(*encoded_name), (void *)name, length);
1696 (*encoded_name)[length] = '\0'; 1696 (*encoded_name)[length] = '\0';
1697 error = length + 1; 1697 error = length + 1;
1698 out: 1698 out:
1699 return error; 1699 return error;
1700 } 1700 }
1701 1701
1702 /** 1702 /**
1703 * ecryptfs_decode_filename - converts the cipher text name to plaintext 1703 * ecryptfs_decode_filename - converts the cipher text name to plaintext
1704 * @crypt_stat: The crypt_stat struct associated with the file 1704 * @crypt_stat: The crypt_stat struct associated with the file
1705 * @name: The filename in cipher text 1705 * @name: The filename in cipher text
1706 * @length: The length of the cipher text name 1706 * @length: The length of the cipher text name
1707 * @decrypted_name: The plaintext name 1707 * @decrypted_name: The plaintext name
1708 * 1708 *
1709 * Decodes and decrypts the filename. 1709 * Decodes and decrypts the filename.
1710 * 1710 *
1711 * We assume that we have a properly initialized crypto context, 1711 * We assume that we have a properly initialized crypto context,
1712 * pointed to by crypt_stat->tfm. 1712 * pointed to by crypt_stat->tfm.
1713 * 1713 *
1714 * TODO: Implement filename decoding and decryption here, in place of 1714 * TODO: Implement filename decoding and decryption here, in place of
1715 * memcpy. We are keeping the framework around for now to (1) 1715 * memcpy. We are keeping the framework around for now to (1)
1716 * facilitate testing of the components needed to implement filename 1716 * facilitate testing of the components needed to implement filename
1717 * encryption and (2) to provide a code base from which other 1717 * encryption and (2) to provide a code base from which other
1718 * developers in the community can easily implement this feature. 1718 * developers in the community can easily implement this feature.
1719 * 1719 *
1720 * Returns the length of decoded filename; negative if error 1720 * Returns the length of decoded filename; negative if error
1721 */ 1721 */
1722 int 1722 int
1723 ecryptfs_decode_filename(struct ecryptfs_crypt_stat *crypt_stat, 1723 ecryptfs_decode_filename(struct ecryptfs_crypt_stat *crypt_stat,
1724 const char *name, int length, char **decrypted_name) 1724 const char *name, int length, char **decrypted_name)
1725 { 1725 {
1726 int error = 0; 1726 int error = 0;
1727 1727
1728 (*decrypted_name) = kmalloc(length + 2, GFP_KERNEL); 1728 (*decrypted_name) = kmalloc(length + 2, GFP_KERNEL);
1729 if (!(*decrypted_name)) { 1729 if (!(*decrypted_name)) {
1730 error = -ENOMEM; 1730 error = -ENOMEM;
1731 goto out; 1731 goto out;
1732 } 1732 }
1733 /* TODO: Filename encryption is a scheduled feature for a 1733 /* TODO: Filename encryption is a scheduled feature for a
1734 * future version of eCryptfs. This function is here only for 1734 * future version of eCryptfs. This function is here only for
1735 * the purpose of providing a framework for other developers 1735 * the purpose of providing a framework for other developers
1736 * to easily implement filename encryption. Hint: Replace this 1736 * to easily implement filename encryption. Hint: Replace this
1737 * memcpy() with a call to decode and decrypt the 1737 * memcpy() with a call to decode and decrypt the
1738 * filename, the set the length accordingly. */ 1738 * filename, the set the length accordingly. */
1739 memcpy((void *)(*decrypted_name), (void *)name, length); 1739 memcpy((void *)(*decrypted_name), (void *)name, length);
1740 (*decrypted_name)[length + 1] = '\0'; /* Only for convenience 1740 (*decrypted_name)[length + 1] = '\0'; /* Only for convenience
1741 * in printing out the 1741 * in printing out the
1742 * string in debug 1742 * string in debug
1743 * messages */ 1743 * messages */
1744 error = length; 1744 error = length;
1745 out: 1745 out:
1746 return error; 1746 return error;
1747 } 1747 }
1748 1748
1749 /** 1749 /**
1750 * ecryptfs_process_key_cipher - Perform key cipher initialization. 1750 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1751 * @key_tfm: Crypto context for key material, set by this function 1751 * @key_tfm: Crypto context for key material, set by this function
1752 * @cipher_name: Name of the cipher 1752 * @cipher_name: Name of the cipher
1753 * @key_size: Size of the key in bytes 1753 * @key_size: Size of the key in bytes
1754 * 1754 *
1755 * Returns zero on success. Any crypto_tfm structs allocated here 1755 * Returns zero on success. Any crypto_tfm structs allocated here
1756 * should be released by other functions, such as on a superblock put 1756 * should be released by other functions, such as on a superblock put
1757 * event, regardless of whether this function succeeds for fails. 1757 * event, regardless of whether this function succeeds for fails.
1758 */ 1758 */
1759 static int 1759 static int
1760 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm, 1760 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1761 char *cipher_name, size_t *key_size) 1761 char *cipher_name, size_t *key_size)
1762 { 1762 {
1763 char dummy_key[ECRYPTFS_MAX_KEY_BYTES]; 1763 char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1764 char *full_alg_name; 1764 char *full_alg_name;
1765 int rc; 1765 int rc;
1766 1766
1767 *key_tfm = NULL; 1767 *key_tfm = NULL;
1768 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) { 1768 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1769 rc = -EINVAL; 1769 rc = -EINVAL;
1770 printk(KERN_ERR "Requested key size is [%Zd] bytes; maximum " 1770 printk(KERN_ERR "Requested key size is [%Zd] bytes; maximum "
1771 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES); 1771 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1772 goto out; 1772 goto out;
1773 } 1773 }
1774 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name, 1774 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1775 "ecb"); 1775 "ecb");
1776 if (rc) 1776 if (rc)
1777 goto out; 1777 goto out;
1778 *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC); 1778 *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1779 kfree(full_alg_name); 1779 kfree(full_alg_name);
1780 if (IS_ERR(*key_tfm)) { 1780 if (IS_ERR(*key_tfm)) {
1781 rc = PTR_ERR(*key_tfm); 1781 rc = PTR_ERR(*key_tfm);
1782 printk(KERN_ERR "Unable to allocate crypto cipher with name " 1782 printk(KERN_ERR "Unable to allocate crypto cipher with name "
1783 "[%s]; rc = [%d]\n", cipher_name, rc); 1783 "[%s]; rc = [%d]\n", cipher_name, rc);
1784 goto out; 1784 goto out;
1785 } 1785 }
1786 crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY); 1786 crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1787 if (*key_size == 0) { 1787 if (*key_size == 0) {
1788 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm); 1788 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1789 1789
1790 *key_size = alg->max_keysize; 1790 *key_size = alg->max_keysize;
1791 } 1791 }
1792 get_random_bytes(dummy_key, *key_size); 1792 get_random_bytes(dummy_key, *key_size);
1793 rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size); 1793 rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1794 if (rc) { 1794 if (rc) {
1795 printk(KERN_ERR "Error attempting to set key of size [%Zd] for " 1795 printk(KERN_ERR "Error attempting to set key of size [%Zd] for "
1796 "cipher [%s]; rc = [%d]\n", *key_size, cipher_name, rc); 1796 "cipher [%s]; rc = [%d]\n", *key_size, cipher_name, rc);
1797 rc = -EINVAL; 1797 rc = -EINVAL;
1798 goto out; 1798 goto out;
1799 } 1799 }
1800 out: 1800 out:
1801 return rc; 1801 return rc;
1802 } 1802 }
1803 1803
1804 struct kmem_cache *ecryptfs_key_tfm_cache; 1804 struct kmem_cache *ecryptfs_key_tfm_cache;
1805 struct list_head key_tfm_list; 1805 struct list_head key_tfm_list;
1806 struct mutex key_tfm_list_mutex; 1806 struct mutex key_tfm_list_mutex;
1807 1807
1808 int ecryptfs_init_crypto(void) 1808 int ecryptfs_init_crypto(void)
1809 { 1809 {
1810 mutex_init(&key_tfm_list_mutex); 1810 mutex_init(&key_tfm_list_mutex);
1811 INIT_LIST_HEAD(&key_tfm_list); 1811 INIT_LIST_HEAD(&key_tfm_list);
1812 return 0; 1812 return 0;
1813 } 1813 }
1814 1814
1815 int ecryptfs_destroy_crypto(void) 1815 int ecryptfs_destroy_crypto(void)
1816 { 1816 {
1817 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp; 1817 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1818 1818
1819 mutex_lock(&key_tfm_list_mutex); 1819 mutex_lock(&key_tfm_list_mutex);
1820 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list, 1820 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1821 key_tfm_list) { 1821 key_tfm_list) {
1822 list_del(&key_tfm->key_tfm_list); 1822 list_del(&key_tfm->key_tfm_list);
1823 if (key_tfm->key_tfm) 1823 if (key_tfm->key_tfm)
1824 crypto_free_blkcipher(key_tfm->key_tfm); 1824 crypto_free_blkcipher(key_tfm->key_tfm);
1825 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm); 1825 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1826 } 1826 }
1827 mutex_unlock(&key_tfm_list_mutex); 1827 mutex_unlock(&key_tfm_list_mutex);
1828 return 0; 1828 return 0;
1829 } 1829 }
1830 1830
1831 int 1831 int
1832 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name, 1832 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1833 size_t key_size) 1833 size_t key_size)
1834 { 1834 {
1835 struct ecryptfs_key_tfm *tmp_tfm; 1835 struct ecryptfs_key_tfm *tmp_tfm;
1836 int rc = 0; 1836 int rc = 0;
1837 1837
1838 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL); 1838 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1839 if (key_tfm != NULL) 1839 if (key_tfm != NULL)
1840 (*key_tfm) = tmp_tfm; 1840 (*key_tfm) = tmp_tfm;
1841 if (!tmp_tfm) { 1841 if (!tmp_tfm) {
1842 rc = -ENOMEM; 1842 rc = -ENOMEM;
1843 printk(KERN_ERR "Error attempting to allocate from " 1843 printk(KERN_ERR "Error attempting to allocate from "
1844 "ecryptfs_key_tfm_cache\n"); 1844 "ecryptfs_key_tfm_cache\n");
1845 goto out; 1845 goto out;
1846 } 1846 }
1847 mutex_init(&tmp_tfm->key_tfm_mutex); 1847 mutex_init(&tmp_tfm->key_tfm_mutex);
1848 strncpy(tmp_tfm->cipher_name, cipher_name, 1848 strncpy(tmp_tfm->cipher_name, cipher_name,
1849 ECRYPTFS_MAX_CIPHER_NAME_SIZE); 1849 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1850 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0'; 1850 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1851 tmp_tfm->key_size = key_size; 1851 tmp_tfm->key_size = key_size;
1852 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm, 1852 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1853 tmp_tfm->cipher_name, 1853 tmp_tfm->cipher_name,
1854 &tmp_tfm->key_size); 1854 &tmp_tfm->key_size);
1855 if (rc) { 1855 if (rc) {
1856 printk(KERN_ERR "Error attempting to initialize key TFM " 1856 printk(KERN_ERR "Error attempting to initialize key TFM "
1857 "cipher with name = [%s]; rc = [%d]\n", 1857 "cipher with name = [%s]; rc = [%d]\n",
1858 tmp_tfm->cipher_name, rc); 1858 tmp_tfm->cipher_name, rc);
1859 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm); 1859 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1860 if (key_tfm != NULL) 1860 if (key_tfm != NULL)
1861 (*key_tfm) = NULL; 1861 (*key_tfm) = NULL;
1862 goto out; 1862 goto out;
1863 } 1863 }
1864 mutex_lock(&key_tfm_list_mutex); 1864 mutex_lock(&key_tfm_list_mutex);
1865 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list); 1865 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1866 mutex_unlock(&key_tfm_list_mutex); 1866 mutex_unlock(&key_tfm_list_mutex);
1867 out: 1867 out:
1868 return rc; 1868 return rc;
1869 } 1869 }
1870 1870
1871 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm, 1871 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1872 struct mutex **tfm_mutex, 1872 struct mutex **tfm_mutex,
1873 char *cipher_name) 1873 char *cipher_name)
1874 { 1874 {
1875 struct ecryptfs_key_tfm *key_tfm; 1875 struct ecryptfs_key_tfm *key_tfm;
1876 int rc = 0; 1876 int rc = 0;
1877 1877
1878 (*tfm) = NULL; 1878 (*tfm) = NULL;
1879 (*tfm_mutex) = NULL; 1879 (*tfm_mutex) = NULL;
1880 mutex_lock(&key_tfm_list_mutex); 1880 mutex_lock(&key_tfm_list_mutex);
1881 list_for_each_entry(key_tfm, &key_tfm_list, key_tfm_list) { 1881 list_for_each_entry(key_tfm, &key_tfm_list, key_tfm_list) {
1882 if (strcmp(key_tfm->cipher_name, cipher_name) == 0) { 1882 if (strcmp(key_tfm->cipher_name, cipher_name) == 0) {
1883 (*tfm) = key_tfm->key_tfm; 1883 (*tfm) = key_tfm->key_tfm;
1884 (*tfm_mutex) = &key_tfm->key_tfm_mutex; 1884 (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1885 mutex_unlock(&key_tfm_list_mutex); 1885 mutex_unlock(&key_tfm_list_mutex);
1886 goto out; 1886 goto out;
1887 } 1887 }
1888 } 1888 }
1889 mutex_unlock(&key_tfm_list_mutex); 1889 mutex_unlock(&key_tfm_list_mutex);
1890 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0); 1890 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1891 if (rc) { 1891 if (rc) {
1892 printk(KERN_ERR "Error adding new key_tfm to list; rc = [%d]\n", 1892 printk(KERN_ERR "Error adding new key_tfm to list; rc = [%d]\n",
1893 rc); 1893 rc);
1894 goto out; 1894 goto out;
1895 } 1895 }
1896 (*tfm) = key_tfm->key_tfm; 1896 (*tfm) = key_tfm->key_tfm;
1897 (*tfm_mutex) = &key_tfm->key_tfm_mutex; 1897 (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1898 out: 1898 out:
1899 return rc; 1899 return rc;
fs/ecryptfs/messaging.c
1 /** 1 /**
2 * eCryptfs: Linux filesystem encryption layer 2 * eCryptfs: Linux filesystem encryption layer
3 * 3 *
4 * Copyright (C) 2004-2006 International Business Machines Corp. 4 * Copyright (C) 2004-2006 International Business Machines Corp.
5 * Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com> 5 * Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
6 * Tyler Hicks <tyhicks@ou.edu> 6 * Tyler Hicks <tyhicks@ou.edu>
7 * 7 *
8 * This program is free software; you can redistribute it and/or 8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License version 9 * modify it under the terms of the GNU General Public License version
10 * 2 as published by the Free Software Foundation. 10 * 2 as published by the Free Software Foundation.
11 * 11 *
12 * This program is distributed in the hope that it will be useful, but 12 * This program is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of 13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details. 15 * General Public License for more details.
16 * 16 *
17 * You should have received a copy of the GNU General Public License 17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software 18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
20 * 02111-1307, USA. 20 * 02111-1307, USA.
21 */ 21 */
22 #include <linux/sched.h> 22 #include <linux/sched.h>
23 #include "ecryptfs_kernel.h" 23 #include "ecryptfs_kernel.h"
24 24
25 static LIST_HEAD(ecryptfs_msg_ctx_free_list); 25 static LIST_HEAD(ecryptfs_msg_ctx_free_list);
26 static LIST_HEAD(ecryptfs_msg_ctx_alloc_list); 26 static LIST_HEAD(ecryptfs_msg_ctx_alloc_list);
27 static struct mutex ecryptfs_msg_ctx_lists_mux; 27 static struct mutex ecryptfs_msg_ctx_lists_mux;
28 28
29 static struct hlist_head *ecryptfs_daemon_id_hash; 29 static struct hlist_head *ecryptfs_daemon_id_hash;
30 static struct mutex ecryptfs_daemon_id_hash_mux; 30 static struct mutex ecryptfs_daemon_id_hash_mux;
31 static int ecryptfs_hash_buckets; 31 static int ecryptfs_hash_buckets;
32 #define ecryptfs_uid_hash(uid) \ 32 #define ecryptfs_uid_hash(uid) \
33 hash_long((unsigned long)uid, ecryptfs_hash_buckets) 33 hash_long((unsigned long)uid, ecryptfs_hash_buckets)
34 34
35 static unsigned int ecryptfs_msg_counter; 35 static unsigned int ecryptfs_msg_counter;
36 static struct ecryptfs_msg_ctx *ecryptfs_msg_ctx_arr; 36 static struct ecryptfs_msg_ctx *ecryptfs_msg_ctx_arr;
37 37
38 /** 38 /**
39 * ecryptfs_acquire_free_msg_ctx 39 * ecryptfs_acquire_free_msg_ctx
40 * @msg_ctx: The context that was acquired from the free list 40 * @msg_ctx: The context that was acquired from the free list
41 * 41 *
42 * Acquires a context element from the free list and locks the mutex 42 * Acquires a context element from the free list and locks the mutex
43 * on the context. Returns zero on success; non-zero on error or upon 43 * on the context. Returns zero on success; non-zero on error or upon
44 * failure to acquire a free context element. Be sure to lock the 44 * failure to acquire a free context element. Be sure to lock the
45 * list mutex before calling. 45 * list mutex before calling.
46 */ 46 */
47 static int ecryptfs_acquire_free_msg_ctx(struct ecryptfs_msg_ctx **msg_ctx) 47 static int ecryptfs_acquire_free_msg_ctx(struct ecryptfs_msg_ctx **msg_ctx)
48 { 48 {
49 struct list_head *p; 49 struct list_head *p;
50 int rc; 50 int rc;
51 51
52 if (list_empty(&ecryptfs_msg_ctx_free_list)) { 52 if (list_empty(&ecryptfs_msg_ctx_free_list)) {
53 ecryptfs_printk(KERN_WARNING, "The eCryptfs free " 53 ecryptfs_printk(KERN_WARNING, "The eCryptfs free "
54 "context list is empty. It may be helpful to " 54 "context list is empty. It may be helpful to "
55 "specify the ecryptfs_message_buf_len " 55 "specify the ecryptfs_message_buf_len "
56 "parameter to be greater than the current " 56 "parameter to be greater than the current "
57 "value of [%d]\n", ecryptfs_message_buf_len); 57 "value of [%d]\n", ecryptfs_message_buf_len);
58 rc = -ENOMEM; 58 rc = -ENOMEM;
59 goto out; 59 goto out;
60 } 60 }
61 list_for_each(p, &ecryptfs_msg_ctx_free_list) { 61 list_for_each(p, &ecryptfs_msg_ctx_free_list) {
62 *msg_ctx = list_entry(p, struct ecryptfs_msg_ctx, node); 62 *msg_ctx = list_entry(p, struct ecryptfs_msg_ctx, node);
63 if (mutex_trylock(&(*msg_ctx)->mux)) { 63 if (mutex_trylock(&(*msg_ctx)->mux)) {
64 (*msg_ctx)->task = current; 64 (*msg_ctx)->task = current;
65 rc = 0; 65 rc = 0;
66 goto out; 66 goto out;
67 } 67 }
68 } 68 }
69 rc = -ENOMEM; 69 rc = -ENOMEM;
70 out: 70 out:
71 return rc; 71 return rc;
72 } 72 }
73 73
74 /** 74 /**
75 * ecryptfs_msg_ctx_free_to_alloc 75 * ecryptfs_msg_ctx_free_to_alloc
76 * @msg_ctx: The context to move from the free list to the alloc list 76 * @msg_ctx: The context to move from the free list to the alloc list
77 * 77 *
78 * Be sure to lock the list mutex and the context mutex before 78 * Be sure to lock the list mutex and the context mutex before
79 * calling. 79 * calling.
80 */ 80 */
81 static void ecryptfs_msg_ctx_free_to_alloc(struct ecryptfs_msg_ctx *msg_ctx) 81 static void ecryptfs_msg_ctx_free_to_alloc(struct ecryptfs_msg_ctx *msg_ctx)
82 { 82 {
83 list_move(&msg_ctx->node, &ecryptfs_msg_ctx_alloc_list); 83 list_move(&msg_ctx->node, &ecryptfs_msg_ctx_alloc_list);
84 msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_PENDING; 84 msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_PENDING;
85 msg_ctx->counter = ++ecryptfs_msg_counter; 85 msg_ctx->counter = ++ecryptfs_msg_counter;
86 } 86 }
87 87
88 /** 88 /**
89 * ecryptfs_msg_ctx_alloc_to_free 89 * ecryptfs_msg_ctx_alloc_to_free
90 * @msg_ctx: The context to move from the alloc list to the free list 90 * @msg_ctx: The context to move from the alloc list to the free list
91 * 91 *
92 * Be sure to lock the list mutex and the context mutex before 92 * Be sure to lock the list mutex and the context mutex before
93 * calling. 93 * calling.
94 */ 94 */
95 static void ecryptfs_msg_ctx_alloc_to_free(struct ecryptfs_msg_ctx *msg_ctx) 95 static void ecryptfs_msg_ctx_alloc_to_free(struct ecryptfs_msg_ctx *msg_ctx)
96 { 96 {
97 list_move(&(msg_ctx->node), &ecryptfs_msg_ctx_free_list); 97 list_move(&(msg_ctx->node), &ecryptfs_msg_ctx_free_list);
98 if (msg_ctx->msg) 98 if (msg_ctx->msg)
99 kfree(msg_ctx->msg); 99 kfree(msg_ctx->msg);
100 msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_FREE; 100 msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_FREE;
101 } 101 }
102 102
103 /** 103 /**
104 * ecryptfs_find_daemon_id 104 * ecryptfs_find_daemon_id
105 * @uid: The user id which maps to the desired daemon id 105 * @uid: The user id which maps to the desired daemon id
106 * @id: If return value is zero, points to the desired daemon id 106 * @id: If return value is zero, points to the desired daemon id
107 * pointer 107 * pointer
108 * 108 *
109 * Search the hash list for the given user id. Returns zero if the 109 * Search the hash list for the given user id. Returns zero if the
110 * user id exists in the list; non-zero otherwise. The daemon id hash 110 * user id exists in the list; non-zero otherwise. The daemon id hash
111 * mutex should be held before calling this function. 111 * mutex should be held before calling this function.
112 */ 112 */
113 static int ecryptfs_find_daemon_id(uid_t uid, struct ecryptfs_daemon_id **id) 113 static int ecryptfs_find_daemon_id(uid_t uid, struct ecryptfs_daemon_id **id)
114 { 114 {
115 struct hlist_node *elem; 115 struct hlist_node *elem;
116 int rc; 116 int rc;
117 117
118 hlist_for_each_entry(*id, elem, 118 hlist_for_each_entry(*id, elem,
119 &ecryptfs_daemon_id_hash[ecryptfs_uid_hash(uid)], 119 &ecryptfs_daemon_id_hash[ecryptfs_uid_hash(uid)],
120 id_chain) { 120 id_chain) {
121 if ((*id)->uid == uid) { 121 if ((*id)->uid == uid) {
122 rc = 0; 122 rc = 0;
123 goto out; 123 goto out;
124 } 124 }
125 } 125 }
126 rc = -EINVAL; 126 rc = -EINVAL;
127 out: 127 out:
128 return rc; 128 return rc;
129 } 129 }
130 130
131 static int ecryptfs_send_raw_message(unsigned int transport, u16 msg_type, 131 static int ecryptfs_send_raw_message(unsigned int transport, u16 msg_type,
132 pid_t pid) 132 pid_t pid)
133 { 133 {
134 int rc; 134 int rc;
135 135
136 switch(transport) { 136 switch(transport) {
137 case ECRYPTFS_TRANSPORT_NETLINK: 137 case ECRYPTFS_TRANSPORT_NETLINK:
138 rc = ecryptfs_send_netlink(NULL, 0, NULL, msg_type, 0, pid); 138 rc = ecryptfs_send_netlink(NULL, 0, NULL, msg_type, 0, pid);
139 break; 139 break;
140 case ECRYPTFS_TRANSPORT_CONNECTOR: 140 case ECRYPTFS_TRANSPORT_CONNECTOR:
141 case ECRYPTFS_TRANSPORT_RELAYFS: 141 case ECRYPTFS_TRANSPORT_RELAYFS:
142 default: 142 default:
143 rc = -ENOSYS; 143 rc = -ENOSYS;
144 } 144 }
145 return rc; 145 return rc;
146 } 146 }
147 147
148 /** 148 /**
149 * ecryptfs_process_helo 149 * ecryptfs_process_helo
150 * @transport: The underlying transport (netlink, etc.) 150 * @transport: The underlying transport (netlink, etc.)
151 * @uid: The user ID owner of the message 151 * @uid: The user ID owner of the message
152 * @pid: The process ID for the userspace program that sent the 152 * @pid: The process ID for the userspace program that sent the
153 * message 153 * message
154 * 154 *
155 * Adds the uid and pid values to the daemon id hash. If a uid 155 * Adds the uid and pid values to the daemon id hash. If a uid
156 * already has a daemon pid registered, the daemon will be 156 * already has a daemon pid registered, the daemon will be
157 * unregistered before the new daemon id is put into the hash list. 157 * unregistered before the new daemon id is put into the hash list.
158 * Returns zero after adding a new daemon id to the hash list; 158 * Returns zero after adding a new daemon id to the hash list;
159 * non-zero otherwise. 159 * non-zero otherwise.
160 */ 160 */
161 int ecryptfs_process_helo(unsigned int transport, uid_t uid, pid_t pid) 161 int ecryptfs_process_helo(unsigned int transport, uid_t uid, pid_t pid)
162 { 162 {
163 struct ecryptfs_daemon_id *new_id; 163 struct ecryptfs_daemon_id *new_id;
164 struct ecryptfs_daemon_id *old_id; 164 struct ecryptfs_daemon_id *old_id;
165 int rc; 165 int rc;
166 166
167 mutex_lock(&ecryptfs_daemon_id_hash_mux); 167 mutex_lock(&ecryptfs_daemon_id_hash_mux);
168 new_id = kmalloc(sizeof(*new_id), GFP_KERNEL); 168 new_id = kmalloc(sizeof(*new_id), GFP_KERNEL);
169 if (!new_id) { 169 if (!new_id) {
170 rc = -ENOMEM; 170 rc = -ENOMEM;
171 ecryptfs_printk(KERN_ERR, "Failed to allocate memory; unable " 171 ecryptfs_printk(KERN_ERR, "Failed to allocate memory; unable "
172 "to register daemon [%d] for user [%d]\n", 172 "to register daemon [%d] for user [%d]\n",
173 pid, uid); 173 pid, uid);
174 goto unlock; 174 goto unlock;
175 } 175 }
176 if (!ecryptfs_find_daemon_id(uid, &old_id)) { 176 if (!ecryptfs_find_daemon_id(uid, &old_id)) {
177 printk(KERN_WARNING "Received request from user [%d] " 177 printk(KERN_WARNING "Received request from user [%d] "
178 "to register daemon [%d]; unregistering daemon " 178 "to register daemon [%d]; unregistering daemon "
179 "[%d]\n", uid, pid, old_id->pid); 179 "[%d]\n", uid, pid, old_id->pid);
180 hlist_del(&old_id->id_chain); 180 hlist_del(&old_id->id_chain);
181 rc = ecryptfs_send_raw_message(transport, ECRYPTFS_NLMSG_QUIT, 181 rc = ecryptfs_send_raw_message(transport, ECRYPTFS_NLMSG_QUIT,
182 old_id->pid); 182 old_id->pid);
183 if (rc) 183 if (rc)
184 printk(KERN_WARNING "Failed to send QUIT " 184 printk(KERN_WARNING "Failed to send QUIT "
185 "message to daemon [%d]; rc = [%d]\n", 185 "message to daemon [%d]; rc = [%d]\n",
186 old_id->pid, rc); 186 old_id->pid, rc);
187 kfree(old_id); 187 kfree(old_id);
188 } 188 }
189 new_id->uid = uid; 189 new_id->uid = uid;
190 new_id->pid = pid; 190 new_id->pid = pid;
191 hlist_add_head(&new_id->id_chain, 191 hlist_add_head(&new_id->id_chain,
192 &ecryptfs_daemon_id_hash[ecryptfs_uid_hash(uid)]); 192 &ecryptfs_daemon_id_hash[ecryptfs_uid_hash(uid)]);
193 rc = 0; 193 rc = 0;
194 unlock: 194 unlock:
195 mutex_unlock(&ecryptfs_daemon_id_hash_mux); 195 mutex_unlock(&ecryptfs_daemon_id_hash_mux);
196 return rc; 196 return rc;
197 } 197 }
198 198
199 /** 199 /**
200 * ecryptfs_process_quit 200 * ecryptfs_process_quit
201 * @uid: The user ID owner of the message 201 * @uid: The user ID owner of the message
202 * @pid: The process ID for the userspace program that sent the 202 * @pid: The process ID for the userspace program that sent the
203 * message 203 * message
204 * 204 *
205 * Deletes the corresponding daemon id for the given uid and pid, if 205 * Deletes the corresponding daemon id for the given uid and pid, if
206 * it is the registered that is requesting the deletion. Returns zero 206 * it is the registered that is requesting the deletion. Returns zero
207 * after deleting the desired daemon id; non-zero otherwise. 207 * after deleting the desired daemon id; non-zero otherwise.
208 */ 208 */
209 int ecryptfs_process_quit(uid_t uid, pid_t pid) 209 int ecryptfs_process_quit(uid_t uid, pid_t pid)
210 { 210 {
211 struct ecryptfs_daemon_id *id; 211 struct ecryptfs_daemon_id *id;
212 int rc; 212 int rc;
213 213
214 mutex_lock(&ecryptfs_daemon_id_hash_mux); 214 mutex_lock(&ecryptfs_daemon_id_hash_mux);
215 if (ecryptfs_find_daemon_id(uid, &id)) { 215 if (ecryptfs_find_daemon_id(uid, &id)) {
216 rc = -EINVAL; 216 rc = -EINVAL;
217 ecryptfs_printk(KERN_ERR, "Received request from user [%d] to " 217 ecryptfs_printk(KERN_ERR, "Received request from user [%d] to "
218 "unregister unrecognized daemon [%d]\n", uid, 218 "unregister unrecognized daemon [%d]\n", uid,
219 pid); 219 pid);
220 goto unlock; 220 goto unlock;
221 } 221 }
222 if (id->pid != pid) { 222 if (id->pid != pid) {
223 rc = -EINVAL; 223 rc = -EINVAL;
224 ecryptfs_printk(KERN_WARNING, "Received request from user [%d] " 224 ecryptfs_printk(KERN_WARNING, "Received request from user [%d] "
225 "with pid [%d] to unregister daemon [%d]\n", 225 "with pid [%d] to unregister daemon [%d]\n",
226 uid, pid, id->pid); 226 uid, pid, id->pid);
227 goto unlock; 227 goto unlock;
228 } 228 }
229 hlist_del(&id->id_chain); 229 hlist_del(&id->id_chain);
230 kfree(id); 230 kfree(id);
231 rc = 0; 231 rc = 0;
232 unlock: 232 unlock:
233 mutex_unlock(&ecryptfs_daemon_id_hash_mux); 233 mutex_unlock(&ecryptfs_daemon_id_hash_mux);
234 return rc; 234 return rc;
235 } 235 }
236 236
237 /** 237 /**
238 * ecryptfs_process_reponse 238 * ecryptfs_process_reponse
239 * @msg: The ecryptfs message received; the caller should sanity check 239 * @msg: The ecryptfs message received; the caller should sanity check
240 * msg->data_len 240 * msg->data_len
241 * @pid: The process ID of the userspace application that sent the 241 * @pid: The process ID of the userspace application that sent the
242 * message 242 * message
243 * @seq: The sequence number of the message 243 * @seq: The sequence number of the message
244 * 244 *
245 * Processes a response message after sending a operation request to 245 * Processes a response message after sending a operation request to
246 * userspace. Returns zero upon delivery to desired context element; 246 * userspace. Returns zero upon delivery to desired context element;
247 * non-zero upon delivery failure or error. 247 * non-zero upon delivery failure or error.
248 */ 248 */
249 int ecryptfs_process_response(struct ecryptfs_message *msg, uid_t uid, 249 int ecryptfs_process_response(struct ecryptfs_message *msg, uid_t uid,
250 pid_t pid, u32 seq) 250 pid_t pid, u32 seq)
251 { 251 {
252 struct ecryptfs_daemon_id *id; 252 struct ecryptfs_daemon_id *id;
253 struct ecryptfs_msg_ctx *msg_ctx; 253 struct ecryptfs_msg_ctx *msg_ctx;
254 int msg_size; 254 int msg_size;
255 int rc; 255 int rc;
256 256
257 if (msg->index >= ecryptfs_message_buf_len) { 257 if (msg->index >= ecryptfs_message_buf_len) {
258 rc = -EINVAL; 258 rc = -EINVAL;
259 ecryptfs_printk(KERN_ERR, "Attempt to reference " 259 ecryptfs_printk(KERN_ERR, "Attempt to reference "
260 "context buffer at index [%d]; maximum " 260 "context buffer at index [%d]; maximum "
261 "allowable is [%d]\n", msg->index, 261 "allowable is [%d]\n", msg->index,
262 (ecryptfs_message_buf_len - 1)); 262 (ecryptfs_message_buf_len - 1));
263 goto out; 263 goto out;
264 } 264 }
265 msg_ctx = &ecryptfs_msg_ctx_arr[msg->index]; 265 msg_ctx = &ecryptfs_msg_ctx_arr[msg->index];
266 mutex_lock(&msg_ctx->mux); 266 mutex_lock(&msg_ctx->mux);
267 if (ecryptfs_find_daemon_id(msg_ctx->task->euid, &id)) { 267 if (ecryptfs_find_daemon_id(msg_ctx->task->euid, &id)) {
268 rc = -EBADMSG; 268 rc = -EBADMSG;
269 ecryptfs_printk(KERN_WARNING, "User [%d] received a " 269 ecryptfs_printk(KERN_WARNING, "User [%d] received a "
270 "message response from process [%d] but does " 270 "message response from process [%d] but does "
271 "not have a registered daemon\n", 271 "not have a registered daemon\n",
272 msg_ctx->task->euid, pid); 272 msg_ctx->task->euid, pid);
273 goto wake_up; 273 goto wake_up;
274 } 274 }
275 if (msg_ctx->task->euid != uid) { 275 if (msg_ctx->task->euid != uid) {
276 rc = -EBADMSG; 276 rc = -EBADMSG;
277 ecryptfs_printk(KERN_WARNING, "Received message from user " 277 ecryptfs_printk(KERN_WARNING, "Received message from user "
278 "[%d]; expected message from user [%d]\n", 278 "[%d]; expected message from user [%d]\n",
279 uid, msg_ctx->task->euid); 279 uid, msg_ctx->task->euid);
280 goto unlock; 280 goto unlock;
281 } 281 }
282 if (id->pid != pid) { 282 if (id->pid != pid) {
283 rc = -EBADMSG; 283 rc = -EBADMSG;
284 ecryptfs_printk(KERN_ERR, "User [%d] received a " 284 ecryptfs_printk(KERN_ERR, "User [%d] received a "
285 "message response from an unrecognized " 285 "message response from an unrecognized "
286 "process [%d]\n", msg_ctx->task->euid, pid); 286 "process [%d]\n", msg_ctx->task->euid, pid);
287 goto unlock; 287 goto unlock;
288 } 288 }
289 if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_PENDING) { 289 if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_PENDING) {
290 rc = -EINVAL; 290 rc = -EINVAL;
291 ecryptfs_printk(KERN_WARNING, "Desired context element is not " 291 ecryptfs_printk(KERN_WARNING, "Desired context element is not "
292 "pending a response\n"); 292 "pending a response\n");
293 goto unlock; 293 goto unlock;
294 } else if (msg_ctx->counter != seq) { 294 } else if (msg_ctx->counter != seq) {
295 rc = -EINVAL; 295 rc = -EINVAL;
296 ecryptfs_printk(KERN_WARNING, "Invalid message sequence; " 296 ecryptfs_printk(KERN_WARNING, "Invalid message sequence; "
297 "expected [%d]; received [%d]\n", 297 "expected [%d]; received [%d]\n",
298 msg_ctx->counter, seq); 298 msg_ctx->counter, seq);
299 goto unlock; 299 goto unlock;
300 } 300 }
301 msg_size = sizeof(*msg) + msg->data_len; 301 msg_size = sizeof(*msg) + msg->data_len;
302 msg_ctx->msg = kmalloc(msg_size, GFP_KERNEL); 302 msg_ctx->msg = kmalloc(msg_size, GFP_KERNEL);
303 if (!msg_ctx->msg) { 303 if (!msg_ctx->msg) {
304 rc = -ENOMEM; 304 rc = -ENOMEM;
305 ecryptfs_printk(KERN_ERR, "Failed to allocate memory\n"); 305 ecryptfs_printk(KERN_ERR, "Failed to allocate memory\n");
306 goto unlock; 306 goto unlock;
307 } 307 }
308 memcpy(msg_ctx->msg, msg, msg_size); 308 memcpy(msg_ctx->msg, msg, msg_size);
309 msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_DONE; 309 msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_DONE;
310 rc = 0; 310 rc = 0;
311 wake_up: 311 wake_up:
312 wake_up_process(msg_ctx->task); 312 wake_up_process(msg_ctx->task);
313 unlock: 313 unlock:
314 mutex_unlock(&msg_ctx->mux); 314 mutex_unlock(&msg_ctx->mux);
315 out: 315 out:
316 return rc; 316 return rc;
317 } 317 }
318 318
319 /** 319 /**
320 * ecryptfs_send_message 320 * ecryptfs_send_message
321 * @transport: The transport over which to send the message (i.e., 321 * @transport: The transport over which to send the message (i.e.,
322 * netlink) 322 * netlink)
323 * @data: The data to send 323 * @data: The data to send
324 * @data_len: The length of data 324 * @data_len: The length of data
325 * @msg_ctx: The message context allocated for the send 325 * @msg_ctx: The message context allocated for the send
326 */ 326 */
327 int ecryptfs_send_message(unsigned int transport, char *data, int data_len, 327 int ecryptfs_send_message(unsigned int transport, char *data, int data_len,
328 struct ecryptfs_msg_ctx **msg_ctx) 328 struct ecryptfs_msg_ctx **msg_ctx)
329 { 329 {
330 struct ecryptfs_daemon_id *id; 330 struct ecryptfs_daemon_id *id;
331 int rc; 331 int rc;
332 332
333 mutex_lock(&ecryptfs_daemon_id_hash_mux); 333 mutex_lock(&ecryptfs_daemon_id_hash_mux);
334 if (ecryptfs_find_daemon_id(current->euid, &id)) { 334 if (ecryptfs_find_daemon_id(current->euid, &id)) {
335 mutex_unlock(&ecryptfs_daemon_id_hash_mux); 335 mutex_unlock(&ecryptfs_daemon_id_hash_mux);
336 rc = -ENOTCONN; 336 rc = -ENOTCONN;
337 ecryptfs_printk(KERN_ERR, "User [%d] does not have a daemon " 337 ecryptfs_printk(KERN_ERR, "User [%d] does not have a daemon "
338 "registered\n", current->euid); 338 "registered\n", current->euid);
339 goto out; 339 goto out;
340 } 340 }
341 mutex_unlock(&ecryptfs_daemon_id_hash_mux); 341 mutex_unlock(&ecryptfs_daemon_id_hash_mux);
342 mutex_lock(&ecryptfs_msg_ctx_lists_mux); 342 mutex_lock(&ecryptfs_msg_ctx_lists_mux);
343 rc = ecryptfs_acquire_free_msg_ctx(msg_ctx); 343 rc = ecryptfs_acquire_free_msg_ctx(msg_ctx);
344 if (rc) { 344 if (rc) {
345 mutex_unlock(&ecryptfs_msg_ctx_lists_mux); 345 mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
346 ecryptfs_printk(KERN_WARNING, "Could not claim a free " 346 ecryptfs_printk(KERN_WARNING, "Could not claim a free "
347 "context element\n"); 347 "context element\n");
348 goto out; 348 goto out;
349 } 349 }
350 ecryptfs_msg_ctx_free_to_alloc(*msg_ctx); 350 ecryptfs_msg_ctx_free_to_alloc(*msg_ctx);
351 mutex_unlock(&(*msg_ctx)->mux); 351 mutex_unlock(&(*msg_ctx)->mux);
352 mutex_unlock(&ecryptfs_msg_ctx_lists_mux); 352 mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
353 switch (transport) { 353 switch (transport) {
354 case ECRYPTFS_TRANSPORT_NETLINK: 354 case ECRYPTFS_TRANSPORT_NETLINK:
355 rc = ecryptfs_send_netlink(data, data_len, *msg_ctx, 355 rc = ecryptfs_send_netlink(data, data_len, *msg_ctx,
356 ECRYPTFS_NLMSG_REQUEST, 0, id->pid); 356 ECRYPTFS_NLMSG_REQUEST, 0, id->pid);
357 break; 357 break;
358 case ECRYPTFS_TRANSPORT_CONNECTOR: 358 case ECRYPTFS_TRANSPORT_CONNECTOR:
359 case ECRYPTFS_TRANSPORT_RELAYFS: 359 case ECRYPTFS_TRANSPORT_RELAYFS:
360 default: 360 default:
361 rc = -ENOSYS; 361 rc = -ENOSYS;
362 } 362 }
363 if (rc) { 363 if (rc) {
364 printk(KERN_ERR "Error attempting to send message to userspace " 364 printk(KERN_ERR "Error attempting to send message to userspace "
365 "daemon; rc = [%d]\n", rc); 365 "daemon; rc = [%d]\n", rc);
366 } 366 }
367 out: 367 out:
368 return rc; 368 return rc;
369 } 369 }
370 370
371 /** 371 /**
372 * ecryptfs_wait_for_response 372 * ecryptfs_wait_for_response
373 * @msg_ctx: The context that was assigned when sending a message 373 * @msg_ctx: The context that was assigned when sending a message
374 * @msg: The incoming message from userspace; not set if rc != 0 374 * @msg: The incoming message from userspace; not set if rc != 0
375 * 375 *
376 * Sleeps until awaken by ecryptfs_receive_message or until the amount 376 * Sleeps until awaken by ecryptfs_receive_message or until the amount
377 * of time exceeds ecryptfs_message_wait_timeout. If zero is 377 * of time exceeds ecryptfs_message_wait_timeout. If zero is
378 * returned, msg will point to a valid message from userspace; a 378 * returned, msg will point to a valid message from userspace; a
379 * non-zero value is returned upon failure to receive a message or an 379 * non-zero value is returned upon failure to receive a message or an
380 * error occurs. 380 * error occurs.
381 */ 381 */
382 int ecryptfs_wait_for_response(struct ecryptfs_msg_ctx *msg_ctx, 382 int ecryptfs_wait_for_response(struct ecryptfs_msg_ctx *msg_ctx,
383 struct ecryptfs_message **msg) 383 struct ecryptfs_message **msg)
384 { 384 {
385 signed long timeout = ecryptfs_message_wait_timeout * HZ; 385 signed long timeout = ecryptfs_message_wait_timeout * HZ;
386 int rc = 0; 386 int rc = 0;
387 387
388 sleep: 388 sleep:
389 timeout = schedule_timeout_interruptible(timeout); 389 timeout = schedule_timeout_interruptible(timeout);
390 mutex_lock(&ecryptfs_msg_ctx_lists_mux); 390 mutex_lock(&ecryptfs_msg_ctx_lists_mux);
391 mutex_lock(&msg_ctx->mux); 391 mutex_lock(&msg_ctx->mux);
392 if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_DONE) { 392 if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_DONE) {
393 if (timeout) { 393 if (timeout) {
394 mutex_unlock(&msg_ctx->mux); 394 mutex_unlock(&msg_ctx->mux);
395 mutex_unlock(&ecryptfs_msg_ctx_lists_mux); 395 mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
396 goto sleep; 396 goto sleep;
397 } 397 }
398 rc = -ENOMSG; 398 rc = -ENOMSG;
399 } else { 399 } else {
400 *msg = msg_ctx->msg; 400 *msg = msg_ctx->msg;
401 msg_ctx->msg = NULL; 401 msg_ctx->msg = NULL;
402 } 402 }
403 ecryptfs_msg_ctx_alloc_to_free(msg_ctx); 403 ecryptfs_msg_ctx_alloc_to_free(msg_ctx);
404 mutex_unlock(&msg_ctx->mux); 404 mutex_unlock(&msg_ctx->mux);
405 mutex_unlock(&ecryptfs_msg_ctx_lists_mux); 405 mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
406 return rc; 406 return rc;
407 } 407 }
408 408
409 int ecryptfs_init_messaging(unsigned int transport) 409 int ecryptfs_init_messaging(unsigned int transport)
410 { 410 {
411 int i; 411 int i;
412 int rc = 0; 412 int rc = 0;
413 413
414 if (ecryptfs_number_of_users > ECRYPTFS_MAX_NUM_USERS) { 414 if (ecryptfs_number_of_users > ECRYPTFS_MAX_NUM_USERS) {
415 ecryptfs_number_of_users = ECRYPTFS_MAX_NUM_USERS; 415 ecryptfs_number_of_users = ECRYPTFS_MAX_NUM_USERS;
416 ecryptfs_printk(KERN_WARNING, "Specified number of users is " 416 ecryptfs_printk(KERN_WARNING, "Specified number of users is "
417 "too large, defaulting to [%d] users\n", 417 "too large, defaulting to [%d] users\n",
418 ecryptfs_number_of_users); 418 ecryptfs_number_of_users);
419 } 419 }
420 mutex_init(&ecryptfs_daemon_id_hash_mux); 420 mutex_init(&ecryptfs_daemon_id_hash_mux);
421 mutex_lock(&ecryptfs_daemon_id_hash_mux); 421 mutex_lock(&ecryptfs_daemon_id_hash_mux);
422 ecryptfs_hash_buckets = 1; 422 ecryptfs_hash_buckets = 1;
423 while (ecryptfs_number_of_users >> ecryptfs_hash_buckets) 423 while (ecryptfs_number_of_users >> ecryptfs_hash_buckets)
424 ecryptfs_hash_buckets++; 424 ecryptfs_hash_buckets++;
425 ecryptfs_daemon_id_hash = kmalloc(sizeof(struct hlist_head) 425 ecryptfs_daemon_id_hash = kmalloc(sizeof(struct hlist_head)
426 * ecryptfs_hash_buckets, GFP_KERNEL); 426 * ecryptfs_hash_buckets, GFP_KERNEL);
427 if (!ecryptfs_daemon_id_hash) { 427 if (!ecryptfs_daemon_id_hash) {
428 rc = -ENOMEM; 428 rc = -ENOMEM;
429 ecryptfs_printk(KERN_ERR, "Failed to allocate memory\n"); 429 ecryptfs_printk(KERN_ERR, "Failed to allocate memory\n");
430 mutex_unlock(&ecryptfs_daemon_id_hash_mux);
430 goto out; 431 goto out;
431 } 432 }
432 for (i = 0; i < ecryptfs_hash_buckets; i++) 433 for (i = 0; i < ecryptfs_hash_buckets; i++)
433 INIT_HLIST_HEAD(&ecryptfs_daemon_id_hash[i]); 434 INIT_HLIST_HEAD(&ecryptfs_daemon_id_hash[i]);
434 mutex_unlock(&ecryptfs_daemon_id_hash_mux); 435 mutex_unlock(&ecryptfs_daemon_id_hash_mux);
435 436
436 ecryptfs_msg_ctx_arr = kmalloc((sizeof(struct ecryptfs_msg_ctx) 437 ecryptfs_msg_ctx_arr = kmalloc((sizeof(struct ecryptfs_msg_ctx)
437 * ecryptfs_message_buf_len), GFP_KERNEL); 438 * ecryptfs_message_buf_len), GFP_KERNEL);
438 if (!ecryptfs_msg_ctx_arr) { 439 if (!ecryptfs_msg_ctx_arr) {
439 rc = -ENOMEM; 440 rc = -ENOMEM;
440 ecryptfs_printk(KERN_ERR, "Failed to allocate memory\n"); 441 ecryptfs_printk(KERN_ERR, "Failed to allocate memory\n");
441 goto out; 442 goto out;
442 } 443 }
443 mutex_init(&ecryptfs_msg_ctx_lists_mux); 444 mutex_init(&ecryptfs_msg_ctx_lists_mux);
444 mutex_lock(&ecryptfs_msg_ctx_lists_mux); 445 mutex_lock(&ecryptfs_msg_ctx_lists_mux);
445 ecryptfs_msg_counter = 0; 446 ecryptfs_msg_counter = 0;
446 for (i = 0; i < ecryptfs_message_buf_len; i++) { 447 for (i = 0; i < ecryptfs_message_buf_len; i++) {
447 INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].node); 448 INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].node);
448 mutex_init(&ecryptfs_msg_ctx_arr[i].mux); 449 mutex_init(&ecryptfs_msg_ctx_arr[i].mux);
449 mutex_lock(&ecryptfs_msg_ctx_arr[i].mux); 450 mutex_lock(&ecryptfs_msg_ctx_arr[i].mux);
450 ecryptfs_msg_ctx_arr[i].index = i; 451 ecryptfs_msg_ctx_arr[i].index = i;
451 ecryptfs_msg_ctx_arr[i].state = ECRYPTFS_MSG_CTX_STATE_FREE; 452 ecryptfs_msg_ctx_arr[i].state = ECRYPTFS_MSG_CTX_STATE_FREE;
452 ecryptfs_msg_ctx_arr[i].counter = 0; 453 ecryptfs_msg_ctx_arr[i].counter = 0;
453 ecryptfs_msg_ctx_arr[i].task = NULL; 454 ecryptfs_msg_ctx_arr[i].task = NULL;
454 ecryptfs_msg_ctx_arr[i].msg = NULL; 455 ecryptfs_msg_ctx_arr[i].msg = NULL;
455 list_add_tail(&ecryptfs_msg_ctx_arr[i].node, 456 list_add_tail(&ecryptfs_msg_ctx_arr[i].node,
456 &ecryptfs_msg_ctx_free_list); 457 &ecryptfs_msg_ctx_free_list);
457 mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux); 458 mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux);
458 } 459 }
459 mutex_unlock(&ecryptfs_msg_ctx_lists_mux); 460 mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
460 switch(transport) { 461 switch(transport) {
461 case ECRYPTFS_TRANSPORT_NETLINK: 462 case ECRYPTFS_TRANSPORT_NETLINK:
462 rc = ecryptfs_init_netlink(); 463 rc = ecryptfs_init_netlink();
463 if (rc) 464 if (rc)
464 ecryptfs_release_messaging(transport); 465 ecryptfs_release_messaging(transport);
465 break; 466 break;
466 case ECRYPTFS_TRANSPORT_CONNECTOR: 467 case ECRYPTFS_TRANSPORT_CONNECTOR:
467 case ECRYPTFS_TRANSPORT_RELAYFS: 468 case ECRYPTFS_TRANSPORT_RELAYFS:
468 default: 469 default:
469 rc = -ENOSYS; 470 rc = -ENOSYS;
470 } 471 }
471 out: 472 out:
472 return rc; 473 return rc;
473 } 474 }
474 475
475 void ecryptfs_release_messaging(unsigned int transport) 476 void ecryptfs_release_messaging(unsigned int transport)
476 { 477 {
477 if (ecryptfs_msg_ctx_arr) { 478 if (ecryptfs_msg_ctx_arr) {
478 int i; 479 int i;
479 480
480 mutex_lock(&ecryptfs_msg_ctx_lists_mux); 481 mutex_lock(&ecryptfs_msg_ctx_lists_mux);
481 for (i = 0; i < ecryptfs_message_buf_len; i++) { 482 for (i = 0; i < ecryptfs_message_buf_len; i++) {
482 mutex_lock(&ecryptfs_msg_ctx_arr[i].mux); 483 mutex_lock(&ecryptfs_msg_ctx_arr[i].mux);
483 if (ecryptfs_msg_ctx_arr[i].msg) 484 if (ecryptfs_msg_ctx_arr[i].msg)
484 kfree(ecryptfs_msg_ctx_arr[i].msg); 485 kfree(ecryptfs_msg_ctx_arr[i].msg);
485 mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux); 486 mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux);
486 } 487 }
487 kfree(ecryptfs_msg_ctx_arr); 488 kfree(ecryptfs_msg_ctx_arr);
488 mutex_unlock(&ecryptfs_msg_ctx_lists_mux); 489 mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
489 } 490 }
490 if (ecryptfs_daemon_id_hash) { 491 if (ecryptfs_daemon_id_hash) {
491 struct hlist_node *elem; 492 struct hlist_node *elem;
492 struct ecryptfs_daemon_id *id; 493 struct ecryptfs_daemon_id *id;
493 int i; 494 int i;
494 495
495 mutex_lock(&ecryptfs_daemon_id_hash_mux); 496 mutex_lock(&ecryptfs_daemon_id_hash_mux);
496 for (i = 0; i < ecryptfs_hash_buckets; i++) { 497 for (i = 0; i < ecryptfs_hash_buckets; i++) {
497 hlist_for_each_entry(id, elem, 498 hlist_for_each_entry(id, elem,
498 &ecryptfs_daemon_id_hash[i], 499 &ecryptfs_daemon_id_hash[i],
499 id_chain) { 500 id_chain) {
500 hlist_del(elem); 501 hlist_del(elem);
501 kfree(id); 502 kfree(id);
502 } 503 }
503 } 504 }
504 kfree(ecryptfs_daemon_id_hash); 505 kfree(ecryptfs_daemon_id_hash);
505 mutex_unlock(&ecryptfs_daemon_id_hash_mux); 506 mutex_unlock(&ecryptfs_daemon_id_hash_mux);
506 } 507 }
507 switch(transport) { 508 switch(transport) {
508 case ECRYPTFS_TRANSPORT_NETLINK: 509 case ECRYPTFS_TRANSPORT_NETLINK:
509 ecryptfs_release_netlink(); 510 ecryptfs_release_netlink();
510 break; 511 break;
511 case ECRYPTFS_TRANSPORT_CONNECTOR: 512 case ECRYPTFS_TRANSPORT_CONNECTOR:
512 case ECRYPTFS_TRANSPORT_RELAYFS: 513 case ECRYPTFS_TRANSPORT_RELAYFS:
513 default: 514 default:
514 break; 515 break;
515 } 516 }
516 return; 517 return;
517 } 518 }
518 519