Commit c972f3b125d8818748429b94cd2e59f473943a33
Committed by
Gleb Natapov
1 parent
aa11e3a8a6
Exists in
smarc-l5.0.0_1.0.0-ga
and in
5 other branches
KVM: Write protect the updated slot only when dirty logging is enabled
Calling kvm_mmu_slot_remove_write_access() for a deleted slot does nothing but search for non-existent mmu pages which have mappings to that deleted memory; this is safe but a waste of time. Since we want to make the function rmap based in a later patch, in a manner which makes it unsafe to be called for a deleted slot, we makes the caller see if the slot is non-zero and being dirty logged. Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp> Signed-off-by: Gleb Natapov <gleb@redhat.com>
Showing 2 changed files with 7 additions and 2 deletions Inline Diff
arch/x86/kvm/x86.c
1 | /* | 1 | /* |
2 | * Kernel-based Virtual Machine driver for Linux | 2 | * Kernel-based Virtual Machine driver for Linux |
3 | * | 3 | * |
4 | * derived from drivers/kvm/kvm_main.c | 4 | * derived from drivers/kvm/kvm_main.c |
5 | * | 5 | * |
6 | * Copyright (C) 2006 Qumranet, Inc. | 6 | * Copyright (C) 2006 Qumranet, Inc. |
7 | * Copyright (C) 2008 Qumranet, Inc. | 7 | * Copyright (C) 2008 Qumranet, Inc. |
8 | * Copyright IBM Corporation, 2008 | 8 | * Copyright IBM Corporation, 2008 |
9 | * Copyright 2010 Red Hat, Inc. and/or its affiliates. | 9 | * Copyright 2010 Red Hat, Inc. and/or its affiliates. |
10 | * | 10 | * |
11 | * Authors: | 11 | * Authors: |
12 | * Avi Kivity <avi@qumranet.com> | 12 | * Avi Kivity <avi@qumranet.com> |
13 | * Yaniv Kamay <yaniv@qumranet.com> | 13 | * Yaniv Kamay <yaniv@qumranet.com> |
14 | * Amit Shah <amit.shah@qumranet.com> | 14 | * Amit Shah <amit.shah@qumranet.com> |
15 | * Ben-Ami Yassour <benami@il.ibm.com> | 15 | * Ben-Ami Yassour <benami@il.ibm.com> |
16 | * | 16 | * |
17 | * This work is licensed under the terms of the GNU GPL, version 2. See | 17 | * This work is licensed under the terms of the GNU GPL, version 2. See |
18 | * the COPYING file in the top-level directory. | 18 | * the COPYING file in the top-level directory. |
19 | * | 19 | * |
20 | */ | 20 | */ |
21 | 21 | ||
22 | #include <linux/kvm_host.h> | 22 | #include <linux/kvm_host.h> |
23 | #include "irq.h" | 23 | #include "irq.h" |
24 | #include "mmu.h" | 24 | #include "mmu.h" |
25 | #include "i8254.h" | 25 | #include "i8254.h" |
26 | #include "tss.h" | 26 | #include "tss.h" |
27 | #include "kvm_cache_regs.h" | 27 | #include "kvm_cache_regs.h" |
28 | #include "x86.h" | 28 | #include "x86.h" |
29 | #include "cpuid.h" | 29 | #include "cpuid.h" |
30 | 30 | ||
31 | #include <linux/clocksource.h> | 31 | #include <linux/clocksource.h> |
32 | #include <linux/interrupt.h> | 32 | #include <linux/interrupt.h> |
33 | #include <linux/kvm.h> | 33 | #include <linux/kvm.h> |
34 | #include <linux/fs.h> | 34 | #include <linux/fs.h> |
35 | #include <linux/vmalloc.h> | 35 | #include <linux/vmalloc.h> |
36 | #include <linux/module.h> | 36 | #include <linux/module.h> |
37 | #include <linux/mman.h> | 37 | #include <linux/mman.h> |
38 | #include <linux/highmem.h> | 38 | #include <linux/highmem.h> |
39 | #include <linux/iommu.h> | 39 | #include <linux/iommu.h> |
40 | #include <linux/intel-iommu.h> | 40 | #include <linux/intel-iommu.h> |
41 | #include <linux/cpufreq.h> | 41 | #include <linux/cpufreq.h> |
42 | #include <linux/user-return-notifier.h> | 42 | #include <linux/user-return-notifier.h> |
43 | #include <linux/srcu.h> | 43 | #include <linux/srcu.h> |
44 | #include <linux/slab.h> | 44 | #include <linux/slab.h> |
45 | #include <linux/perf_event.h> | 45 | #include <linux/perf_event.h> |
46 | #include <linux/uaccess.h> | 46 | #include <linux/uaccess.h> |
47 | #include <linux/hash.h> | 47 | #include <linux/hash.h> |
48 | #include <linux/pci.h> | 48 | #include <linux/pci.h> |
49 | #include <linux/timekeeper_internal.h> | 49 | #include <linux/timekeeper_internal.h> |
50 | #include <linux/pvclock_gtod.h> | 50 | #include <linux/pvclock_gtod.h> |
51 | #include <trace/events/kvm.h> | 51 | #include <trace/events/kvm.h> |
52 | 52 | ||
53 | #define CREATE_TRACE_POINTS | 53 | #define CREATE_TRACE_POINTS |
54 | #include "trace.h" | 54 | #include "trace.h" |
55 | 55 | ||
56 | #include <asm/debugreg.h> | 56 | #include <asm/debugreg.h> |
57 | #include <asm/msr.h> | 57 | #include <asm/msr.h> |
58 | #include <asm/desc.h> | 58 | #include <asm/desc.h> |
59 | #include <asm/mtrr.h> | 59 | #include <asm/mtrr.h> |
60 | #include <asm/mce.h> | 60 | #include <asm/mce.h> |
61 | #include <asm/i387.h> | 61 | #include <asm/i387.h> |
62 | #include <asm/fpu-internal.h> /* Ugh! */ | 62 | #include <asm/fpu-internal.h> /* Ugh! */ |
63 | #include <asm/xcr.h> | 63 | #include <asm/xcr.h> |
64 | #include <asm/pvclock.h> | 64 | #include <asm/pvclock.h> |
65 | #include <asm/div64.h> | 65 | #include <asm/div64.h> |
66 | 66 | ||
67 | #define MAX_IO_MSRS 256 | 67 | #define MAX_IO_MSRS 256 |
68 | #define KVM_MAX_MCE_BANKS 32 | 68 | #define KVM_MAX_MCE_BANKS 32 |
69 | #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P) | 69 | #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P) |
70 | 70 | ||
71 | #define emul_to_vcpu(ctxt) \ | 71 | #define emul_to_vcpu(ctxt) \ |
72 | container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt) | 72 | container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt) |
73 | 73 | ||
74 | /* EFER defaults: | 74 | /* EFER defaults: |
75 | * - enable syscall per default because its emulated by KVM | 75 | * - enable syscall per default because its emulated by KVM |
76 | * - enable LME and LMA per default on 64 bit KVM | 76 | * - enable LME and LMA per default on 64 bit KVM |
77 | */ | 77 | */ |
78 | #ifdef CONFIG_X86_64 | 78 | #ifdef CONFIG_X86_64 |
79 | static | 79 | static |
80 | u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); | 80 | u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); |
81 | #else | 81 | #else |
82 | static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); | 82 | static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); |
83 | #endif | 83 | #endif |
84 | 84 | ||
85 | #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM | 85 | #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM |
86 | #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU | 86 | #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU |
87 | 87 | ||
88 | static void update_cr8_intercept(struct kvm_vcpu *vcpu); | 88 | static void update_cr8_intercept(struct kvm_vcpu *vcpu); |
89 | static void process_nmi(struct kvm_vcpu *vcpu); | 89 | static void process_nmi(struct kvm_vcpu *vcpu); |
90 | 90 | ||
91 | struct kvm_x86_ops *kvm_x86_ops; | 91 | struct kvm_x86_ops *kvm_x86_ops; |
92 | EXPORT_SYMBOL_GPL(kvm_x86_ops); | 92 | EXPORT_SYMBOL_GPL(kvm_x86_ops); |
93 | 93 | ||
94 | static bool ignore_msrs = 0; | 94 | static bool ignore_msrs = 0; |
95 | module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); | 95 | module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); |
96 | 96 | ||
97 | bool kvm_has_tsc_control; | 97 | bool kvm_has_tsc_control; |
98 | EXPORT_SYMBOL_GPL(kvm_has_tsc_control); | 98 | EXPORT_SYMBOL_GPL(kvm_has_tsc_control); |
99 | u32 kvm_max_guest_tsc_khz; | 99 | u32 kvm_max_guest_tsc_khz; |
100 | EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); | 100 | EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); |
101 | 101 | ||
102 | /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ | 102 | /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ |
103 | static u32 tsc_tolerance_ppm = 250; | 103 | static u32 tsc_tolerance_ppm = 250; |
104 | module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); | 104 | module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); |
105 | 105 | ||
106 | #define KVM_NR_SHARED_MSRS 16 | 106 | #define KVM_NR_SHARED_MSRS 16 |
107 | 107 | ||
108 | struct kvm_shared_msrs_global { | 108 | struct kvm_shared_msrs_global { |
109 | int nr; | 109 | int nr; |
110 | u32 msrs[KVM_NR_SHARED_MSRS]; | 110 | u32 msrs[KVM_NR_SHARED_MSRS]; |
111 | }; | 111 | }; |
112 | 112 | ||
113 | struct kvm_shared_msrs { | 113 | struct kvm_shared_msrs { |
114 | struct user_return_notifier urn; | 114 | struct user_return_notifier urn; |
115 | bool registered; | 115 | bool registered; |
116 | struct kvm_shared_msr_values { | 116 | struct kvm_shared_msr_values { |
117 | u64 host; | 117 | u64 host; |
118 | u64 curr; | 118 | u64 curr; |
119 | } values[KVM_NR_SHARED_MSRS]; | 119 | } values[KVM_NR_SHARED_MSRS]; |
120 | }; | 120 | }; |
121 | 121 | ||
122 | static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; | 122 | static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; |
123 | static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs); | 123 | static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs); |
124 | 124 | ||
125 | struct kvm_stats_debugfs_item debugfs_entries[] = { | 125 | struct kvm_stats_debugfs_item debugfs_entries[] = { |
126 | { "pf_fixed", VCPU_STAT(pf_fixed) }, | 126 | { "pf_fixed", VCPU_STAT(pf_fixed) }, |
127 | { "pf_guest", VCPU_STAT(pf_guest) }, | 127 | { "pf_guest", VCPU_STAT(pf_guest) }, |
128 | { "tlb_flush", VCPU_STAT(tlb_flush) }, | 128 | { "tlb_flush", VCPU_STAT(tlb_flush) }, |
129 | { "invlpg", VCPU_STAT(invlpg) }, | 129 | { "invlpg", VCPU_STAT(invlpg) }, |
130 | { "exits", VCPU_STAT(exits) }, | 130 | { "exits", VCPU_STAT(exits) }, |
131 | { "io_exits", VCPU_STAT(io_exits) }, | 131 | { "io_exits", VCPU_STAT(io_exits) }, |
132 | { "mmio_exits", VCPU_STAT(mmio_exits) }, | 132 | { "mmio_exits", VCPU_STAT(mmio_exits) }, |
133 | { "signal_exits", VCPU_STAT(signal_exits) }, | 133 | { "signal_exits", VCPU_STAT(signal_exits) }, |
134 | { "irq_window", VCPU_STAT(irq_window_exits) }, | 134 | { "irq_window", VCPU_STAT(irq_window_exits) }, |
135 | { "nmi_window", VCPU_STAT(nmi_window_exits) }, | 135 | { "nmi_window", VCPU_STAT(nmi_window_exits) }, |
136 | { "halt_exits", VCPU_STAT(halt_exits) }, | 136 | { "halt_exits", VCPU_STAT(halt_exits) }, |
137 | { "halt_wakeup", VCPU_STAT(halt_wakeup) }, | 137 | { "halt_wakeup", VCPU_STAT(halt_wakeup) }, |
138 | { "hypercalls", VCPU_STAT(hypercalls) }, | 138 | { "hypercalls", VCPU_STAT(hypercalls) }, |
139 | { "request_irq", VCPU_STAT(request_irq_exits) }, | 139 | { "request_irq", VCPU_STAT(request_irq_exits) }, |
140 | { "irq_exits", VCPU_STAT(irq_exits) }, | 140 | { "irq_exits", VCPU_STAT(irq_exits) }, |
141 | { "host_state_reload", VCPU_STAT(host_state_reload) }, | 141 | { "host_state_reload", VCPU_STAT(host_state_reload) }, |
142 | { "efer_reload", VCPU_STAT(efer_reload) }, | 142 | { "efer_reload", VCPU_STAT(efer_reload) }, |
143 | { "fpu_reload", VCPU_STAT(fpu_reload) }, | 143 | { "fpu_reload", VCPU_STAT(fpu_reload) }, |
144 | { "insn_emulation", VCPU_STAT(insn_emulation) }, | 144 | { "insn_emulation", VCPU_STAT(insn_emulation) }, |
145 | { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, | 145 | { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, |
146 | { "irq_injections", VCPU_STAT(irq_injections) }, | 146 | { "irq_injections", VCPU_STAT(irq_injections) }, |
147 | { "nmi_injections", VCPU_STAT(nmi_injections) }, | 147 | { "nmi_injections", VCPU_STAT(nmi_injections) }, |
148 | { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, | 148 | { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, |
149 | { "mmu_pte_write", VM_STAT(mmu_pte_write) }, | 149 | { "mmu_pte_write", VM_STAT(mmu_pte_write) }, |
150 | { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, | 150 | { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, |
151 | { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, | 151 | { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, |
152 | { "mmu_flooded", VM_STAT(mmu_flooded) }, | 152 | { "mmu_flooded", VM_STAT(mmu_flooded) }, |
153 | { "mmu_recycled", VM_STAT(mmu_recycled) }, | 153 | { "mmu_recycled", VM_STAT(mmu_recycled) }, |
154 | { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, | 154 | { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, |
155 | { "mmu_unsync", VM_STAT(mmu_unsync) }, | 155 | { "mmu_unsync", VM_STAT(mmu_unsync) }, |
156 | { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, | 156 | { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, |
157 | { "largepages", VM_STAT(lpages) }, | 157 | { "largepages", VM_STAT(lpages) }, |
158 | { NULL } | 158 | { NULL } |
159 | }; | 159 | }; |
160 | 160 | ||
161 | u64 __read_mostly host_xcr0; | 161 | u64 __read_mostly host_xcr0; |
162 | 162 | ||
163 | static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); | 163 | static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); |
164 | 164 | ||
165 | static int kvm_vcpu_reset(struct kvm_vcpu *vcpu); | 165 | static int kvm_vcpu_reset(struct kvm_vcpu *vcpu); |
166 | 166 | ||
167 | static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) | 167 | static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) |
168 | { | 168 | { |
169 | int i; | 169 | int i; |
170 | for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) | 170 | for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) |
171 | vcpu->arch.apf.gfns[i] = ~0; | 171 | vcpu->arch.apf.gfns[i] = ~0; |
172 | } | 172 | } |
173 | 173 | ||
174 | static void kvm_on_user_return(struct user_return_notifier *urn) | 174 | static void kvm_on_user_return(struct user_return_notifier *urn) |
175 | { | 175 | { |
176 | unsigned slot; | 176 | unsigned slot; |
177 | struct kvm_shared_msrs *locals | 177 | struct kvm_shared_msrs *locals |
178 | = container_of(urn, struct kvm_shared_msrs, urn); | 178 | = container_of(urn, struct kvm_shared_msrs, urn); |
179 | struct kvm_shared_msr_values *values; | 179 | struct kvm_shared_msr_values *values; |
180 | 180 | ||
181 | for (slot = 0; slot < shared_msrs_global.nr; ++slot) { | 181 | for (slot = 0; slot < shared_msrs_global.nr; ++slot) { |
182 | values = &locals->values[slot]; | 182 | values = &locals->values[slot]; |
183 | if (values->host != values->curr) { | 183 | if (values->host != values->curr) { |
184 | wrmsrl(shared_msrs_global.msrs[slot], values->host); | 184 | wrmsrl(shared_msrs_global.msrs[slot], values->host); |
185 | values->curr = values->host; | 185 | values->curr = values->host; |
186 | } | 186 | } |
187 | } | 187 | } |
188 | locals->registered = false; | 188 | locals->registered = false; |
189 | user_return_notifier_unregister(urn); | 189 | user_return_notifier_unregister(urn); |
190 | } | 190 | } |
191 | 191 | ||
192 | static void shared_msr_update(unsigned slot, u32 msr) | 192 | static void shared_msr_update(unsigned slot, u32 msr) |
193 | { | 193 | { |
194 | struct kvm_shared_msrs *smsr; | 194 | struct kvm_shared_msrs *smsr; |
195 | u64 value; | 195 | u64 value; |
196 | 196 | ||
197 | smsr = &__get_cpu_var(shared_msrs); | 197 | smsr = &__get_cpu_var(shared_msrs); |
198 | /* only read, and nobody should modify it at this time, | 198 | /* only read, and nobody should modify it at this time, |
199 | * so don't need lock */ | 199 | * so don't need lock */ |
200 | if (slot >= shared_msrs_global.nr) { | 200 | if (slot >= shared_msrs_global.nr) { |
201 | printk(KERN_ERR "kvm: invalid MSR slot!"); | 201 | printk(KERN_ERR "kvm: invalid MSR slot!"); |
202 | return; | 202 | return; |
203 | } | 203 | } |
204 | rdmsrl_safe(msr, &value); | 204 | rdmsrl_safe(msr, &value); |
205 | smsr->values[slot].host = value; | 205 | smsr->values[slot].host = value; |
206 | smsr->values[slot].curr = value; | 206 | smsr->values[slot].curr = value; |
207 | } | 207 | } |
208 | 208 | ||
209 | void kvm_define_shared_msr(unsigned slot, u32 msr) | 209 | void kvm_define_shared_msr(unsigned slot, u32 msr) |
210 | { | 210 | { |
211 | if (slot >= shared_msrs_global.nr) | 211 | if (slot >= shared_msrs_global.nr) |
212 | shared_msrs_global.nr = slot + 1; | 212 | shared_msrs_global.nr = slot + 1; |
213 | shared_msrs_global.msrs[slot] = msr; | 213 | shared_msrs_global.msrs[slot] = msr; |
214 | /* we need ensured the shared_msr_global have been updated */ | 214 | /* we need ensured the shared_msr_global have been updated */ |
215 | smp_wmb(); | 215 | smp_wmb(); |
216 | } | 216 | } |
217 | EXPORT_SYMBOL_GPL(kvm_define_shared_msr); | 217 | EXPORT_SYMBOL_GPL(kvm_define_shared_msr); |
218 | 218 | ||
219 | static void kvm_shared_msr_cpu_online(void) | 219 | static void kvm_shared_msr_cpu_online(void) |
220 | { | 220 | { |
221 | unsigned i; | 221 | unsigned i; |
222 | 222 | ||
223 | for (i = 0; i < shared_msrs_global.nr; ++i) | 223 | for (i = 0; i < shared_msrs_global.nr; ++i) |
224 | shared_msr_update(i, shared_msrs_global.msrs[i]); | 224 | shared_msr_update(i, shared_msrs_global.msrs[i]); |
225 | } | 225 | } |
226 | 226 | ||
227 | void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) | 227 | void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) |
228 | { | 228 | { |
229 | struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs); | 229 | struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs); |
230 | 230 | ||
231 | if (((value ^ smsr->values[slot].curr) & mask) == 0) | 231 | if (((value ^ smsr->values[slot].curr) & mask) == 0) |
232 | return; | 232 | return; |
233 | smsr->values[slot].curr = value; | 233 | smsr->values[slot].curr = value; |
234 | wrmsrl(shared_msrs_global.msrs[slot], value); | 234 | wrmsrl(shared_msrs_global.msrs[slot], value); |
235 | if (!smsr->registered) { | 235 | if (!smsr->registered) { |
236 | smsr->urn.on_user_return = kvm_on_user_return; | 236 | smsr->urn.on_user_return = kvm_on_user_return; |
237 | user_return_notifier_register(&smsr->urn); | 237 | user_return_notifier_register(&smsr->urn); |
238 | smsr->registered = true; | 238 | smsr->registered = true; |
239 | } | 239 | } |
240 | } | 240 | } |
241 | EXPORT_SYMBOL_GPL(kvm_set_shared_msr); | 241 | EXPORT_SYMBOL_GPL(kvm_set_shared_msr); |
242 | 242 | ||
243 | static void drop_user_return_notifiers(void *ignore) | 243 | static void drop_user_return_notifiers(void *ignore) |
244 | { | 244 | { |
245 | struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs); | 245 | struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs); |
246 | 246 | ||
247 | if (smsr->registered) | 247 | if (smsr->registered) |
248 | kvm_on_user_return(&smsr->urn); | 248 | kvm_on_user_return(&smsr->urn); |
249 | } | 249 | } |
250 | 250 | ||
251 | u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) | 251 | u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) |
252 | { | 252 | { |
253 | return vcpu->arch.apic_base; | 253 | return vcpu->arch.apic_base; |
254 | } | 254 | } |
255 | EXPORT_SYMBOL_GPL(kvm_get_apic_base); | 255 | EXPORT_SYMBOL_GPL(kvm_get_apic_base); |
256 | 256 | ||
257 | void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data) | 257 | void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data) |
258 | { | 258 | { |
259 | /* TODO: reserve bits check */ | 259 | /* TODO: reserve bits check */ |
260 | kvm_lapic_set_base(vcpu, data); | 260 | kvm_lapic_set_base(vcpu, data); |
261 | } | 261 | } |
262 | EXPORT_SYMBOL_GPL(kvm_set_apic_base); | 262 | EXPORT_SYMBOL_GPL(kvm_set_apic_base); |
263 | 263 | ||
264 | #define EXCPT_BENIGN 0 | 264 | #define EXCPT_BENIGN 0 |
265 | #define EXCPT_CONTRIBUTORY 1 | 265 | #define EXCPT_CONTRIBUTORY 1 |
266 | #define EXCPT_PF 2 | 266 | #define EXCPT_PF 2 |
267 | 267 | ||
268 | static int exception_class(int vector) | 268 | static int exception_class(int vector) |
269 | { | 269 | { |
270 | switch (vector) { | 270 | switch (vector) { |
271 | case PF_VECTOR: | 271 | case PF_VECTOR: |
272 | return EXCPT_PF; | 272 | return EXCPT_PF; |
273 | case DE_VECTOR: | 273 | case DE_VECTOR: |
274 | case TS_VECTOR: | 274 | case TS_VECTOR: |
275 | case NP_VECTOR: | 275 | case NP_VECTOR: |
276 | case SS_VECTOR: | 276 | case SS_VECTOR: |
277 | case GP_VECTOR: | 277 | case GP_VECTOR: |
278 | return EXCPT_CONTRIBUTORY; | 278 | return EXCPT_CONTRIBUTORY; |
279 | default: | 279 | default: |
280 | break; | 280 | break; |
281 | } | 281 | } |
282 | return EXCPT_BENIGN; | 282 | return EXCPT_BENIGN; |
283 | } | 283 | } |
284 | 284 | ||
285 | static void kvm_multiple_exception(struct kvm_vcpu *vcpu, | 285 | static void kvm_multiple_exception(struct kvm_vcpu *vcpu, |
286 | unsigned nr, bool has_error, u32 error_code, | 286 | unsigned nr, bool has_error, u32 error_code, |
287 | bool reinject) | 287 | bool reinject) |
288 | { | 288 | { |
289 | u32 prev_nr; | 289 | u32 prev_nr; |
290 | int class1, class2; | 290 | int class1, class2; |
291 | 291 | ||
292 | kvm_make_request(KVM_REQ_EVENT, vcpu); | 292 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
293 | 293 | ||
294 | if (!vcpu->arch.exception.pending) { | 294 | if (!vcpu->arch.exception.pending) { |
295 | queue: | 295 | queue: |
296 | vcpu->arch.exception.pending = true; | 296 | vcpu->arch.exception.pending = true; |
297 | vcpu->arch.exception.has_error_code = has_error; | 297 | vcpu->arch.exception.has_error_code = has_error; |
298 | vcpu->arch.exception.nr = nr; | 298 | vcpu->arch.exception.nr = nr; |
299 | vcpu->arch.exception.error_code = error_code; | 299 | vcpu->arch.exception.error_code = error_code; |
300 | vcpu->arch.exception.reinject = reinject; | 300 | vcpu->arch.exception.reinject = reinject; |
301 | return; | 301 | return; |
302 | } | 302 | } |
303 | 303 | ||
304 | /* to check exception */ | 304 | /* to check exception */ |
305 | prev_nr = vcpu->arch.exception.nr; | 305 | prev_nr = vcpu->arch.exception.nr; |
306 | if (prev_nr == DF_VECTOR) { | 306 | if (prev_nr == DF_VECTOR) { |
307 | /* triple fault -> shutdown */ | 307 | /* triple fault -> shutdown */ |
308 | kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); | 308 | kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
309 | return; | 309 | return; |
310 | } | 310 | } |
311 | class1 = exception_class(prev_nr); | 311 | class1 = exception_class(prev_nr); |
312 | class2 = exception_class(nr); | 312 | class2 = exception_class(nr); |
313 | if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) | 313 | if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) |
314 | || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { | 314 | || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { |
315 | /* generate double fault per SDM Table 5-5 */ | 315 | /* generate double fault per SDM Table 5-5 */ |
316 | vcpu->arch.exception.pending = true; | 316 | vcpu->arch.exception.pending = true; |
317 | vcpu->arch.exception.has_error_code = true; | 317 | vcpu->arch.exception.has_error_code = true; |
318 | vcpu->arch.exception.nr = DF_VECTOR; | 318 | vcpu->arch.exception.nr = DF_VECTOR; |
319 | vcpu->arch.exception.error_code = 0; | 319 | vcpu->arch.exception.error_code = 0; |
320 | } else | 320 | } else |
321 | /* replace previous exception with a new one in a hope | 321 | /* replace previous exception with a new one in a hope |
322 | that instruction re-execution will regenerate lost | 322 | that instruction re-execution will regenerate lost |
323 | exception */ | 323 | exception */ |
324 | goto queue; | 324 | goto queue; |
325 | } | 325 | } |
326 | 326 | ||
327 | void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) | 327 | void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) |
328 | { | 328 | { |
329 | kvm_multiple_exception(vcpu, nr, false, 0, false); | 329 | kvm_multiple_exception(vcpu, nr, false, 0, false); |
330 | } | 330 | } |
331 | EXPORT_SYMBOL_GPL(kvm_queue_exception); | 331 | EXPORT_SYMBOL_GPL(kvm_queue_exception); |
332 | 332 | ||
333 | void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) | 333 | void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) |
334 | { | 334 | { |
335 | kvm_multiple_exception(vcpu, nr, false, 0, true); | 335 | kvm_multiple_exception(vcpu, nr, false, 0, true); |
336 | } | 336 | } |
337 | EXPORT_SYMBOL_GPL(kvm_requeue_exception); | 337 | EXPORT_SYMBOL_GPL(kvm_requeue_exception); |
338 | 338 | ||
339 | void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) | 339 | void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) |
340 | { | 340 | { |
341 | if (err) | 341 | if (err) |
342 | kvm_inject_gp(vcpu, 0); | 342 | kvm_inject_gp(vcpu, 0); |
343 | else | 343 | else |
344 | kvm_x86_ops->skip_emulated_instruction(vcpu); | 344 | kvm_x86_ops->skip_emulated_instruction(vcpu); |
345 | } | 345 | } |
346 | EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); | 346 | EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); |
347 | 347 | ||
348 | void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) | 348 | void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) |
349 | { | 349 | { |
350 | ++vcpu->stat.pf_guest; | 350 | ++vcpu->stat.pf_guest; |
351 | vcpu->arch.cr2 = fault->address; | 351 | vcpu->arch.cr2 = fault->address; |
352 | kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); | 352 | kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); |
353 | } | 353 | } |
354 | EXPORT_SYMBOL_GPL(kvm_inject_page_fault); | 354 | EXPORT_SYMBOL_GPL(kvm_inject_page_fault); |
355 | 355 | ||
356 | void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) | 356 | void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) |
357 | { | 357 | { |
358 | if (mmu_is_nested(vcpu) && !fault->nested_page_fault) | 358 | if (mmu_is_nested(vcpu) && !fault->nested_page_fault) |
359 | vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); | 359 | vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); |
360 | else | 360 | else |
361 | vcpu->arch.mmu.inject_page_fault(vcpu, fault); | 361 | vcpu->arch.mmu.inject_page_fault(vcpu, fault); |
362 | } | 362 | } |
363 | 363 | ||
364 | void kvm_inject_nmi(struct kvm_vcpu *vcpu) | 364 | void kvm_inject_nmi(struct kvm_vcpu *vcpu) |
365 | { | 365 | { |
366 | atomic_inc(&vcpu->arch.nmi_queued); | 366 | atomic_inc(&vcpu->arch.nmi_queued); |
367 | kvm_make_request(KVM_REQ_NMI, vcpu); | 367 | kvm_make_request(KVM_REQ_NMI, vcpu); |
368 | } | 368 | } |
369 | EXPORT_SYMBOL_GPL(kvm_inject_nmi); | 369 | EXPORT_SYMBOL_GPL(kvm_inject_nmi); |
370 | 370 | ||
371 | void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) | 371 | void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) |
372 | { | 372 | { |
373 | kvm_multiple_exception(vcpu, nr, true, error_code, false); | 373 | kvm_multiple_exception(vcpu, nr, true, error_code, false); |
374 | } | 374 | } |
375 | EXPORT_SYMBOL_GPL(kvm_queue_exception_e); | 375 | EXPORT_SYMBOL_GPL(kvm_queue_exception_e); |
376 | 376 | ||
377 | void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) | 377 | void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) |
378 | { | 378 | { |
379 | kvm_multiple_exception(vcpu, nr, true, error_code, true); | 379 | kvm_multiple_exception(vcpu, nr, true, error_code, true); |
380 | } | 380 | } |
381 | EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); | 381 | EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); |
382 | 382 | ||
383 | /* | 383 | /* |
384 | * Checks if cpl <= required_cpl; if true, return true. Otherwise queue | 384 | * Checks if cpl <= required_cpl; if true, return true. Otherwise queue |
385 | * a #GP and return false. | 385 | * a #GP and return false. |
386 | */ | 386 | */ |
387 | bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) | 387 | bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) |
388 | { | 388 | { |
389 | if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl) | 389 | if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl) |
390 | return true; | 390 | return true; |
391 | kvm_queue_exception_e(vcpu, GP_VECTOR, 0); | 391 | kvm_queue_exception_e(vcpu, GP_VECTOR, 0); |
392 | return false; | 392 | return false; |
393 | } | 393 | } |
394 | EXPORT_SYMBOL_GPL(kvm_require_cpl); | 394 | EXPORT_SYMBOL_GPL(kvm_require_cpl); |
395 | 395 | ||
396 | /* | 396 | /* |
397 | * This function will be used to read from the physical memory of the currently | 397 | * This function will be used to read from the physical memory of the currently |
398 | * running guest. The difference to kvm_read_guest_page is that this function | 398 | * running guest. The difference to kvm_read_guest_page is that this function |
399 | * can read from guest physical or from the guest's guest physical memory. | 399 | * can read from guest physical or from the guest's guest physical memory. |
400 | */ | 400 | */ |
401 | int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, | 401 | int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, |
402 | gfn_t ngfn, void *data, int offset, int len, | 402 | gfn_t ngfn, void *data, int offset, int len, |
403 | u32 access) | 403 | u32 access) |
404 | { | 404 | { |
405 | gfn_t real_gfn; | 405 | gfn_t real_gfn; |
406 | gpa_t ngpa; | 406 | gpa_t ngpa; |
407 | 407 | ||
408 | ngpa = gfn_to_gpa(ngfn); | 408 | ngpa = gfn_to_gpa(ngfn); |
409 | real_gfn = mmu->translate_gpa(vcpu, ngpa, access); | 409 | real_gfn = mmu->translate_gpa(vcpu, ngpa, access); |
410 | if (real_gfn == UNMAPPED_GVA) | 410 | if (real_gfn == UNMAPPED_GVA) |
411 | return -EFAULT; | 411 | return -EFAULT; |
412 | 412 | ||
413 | real_gfn = gpa_to_gfn(real_gfn); | 413 | real_gfn = gpa_to_gfn(real_gfn); |
414 | 414 | ||
415 | return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len); | 415 | return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len); |
416 | } | 416 | } |
417 | EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); | 417 | EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); |
418 | 418 | ||
419 | int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, | 419 | int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, |
420 | void *data, int offset, int len, u32 access) | 420 | void *data, int offset, int len, u32 access) |
421 | { | 421 | { |
422 | return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, | 422 | return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, |
423 | data, offset, len, access); | 423 | data, offset, len, access); |
424 | } | 424 | } |
425 | 425 | ||
426 | /* | 426 | /* |
427 | * Load the pae pdptrs. Return true is they are all valid. | 427 | * Load the pae pdptrs. Return true is they are all valid. |
428 | */ | 428 | */ |
429 | int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) | 429 | int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) |
430 | { | 430 | { |
431 | gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; | 431 | gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; |
432 | unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; | 432 | unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; |
433 | int i; | 433 | int i; |
434 | int ret; | 434 | int ret; |
435 | u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; | 435 | u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; |
436 | 436 | ||
437 | ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, | 437 | ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, |
438 | offset * sizeof(u64), sizeof(pdpte), | 438 | offset * sizeof(u64), sizeof(pdpte), |
439 | PFERR_USER_MASK|PFERR_WRITE_MASK); | 439 | PFERR_USER_MASK|PFERR_WRITE_MASK); |
440 | if (ret < 0) { | 440 | if (ret < 0) { |
441 | ret = 0; | 441 | ret = 0; |
442 | goto out; | 442 | goto out; |
443 | } | 443 | } |
444 | for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { | 444 | for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { |
445 | if (is_present_gpte(pdpte[i]) && | 445 | if (is_present_gpte(pdpte[i]) && |
446 | (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) { | 446 | (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) { |
447 | ret = 0; | 447 | ret = 0; |
448 | goto out; | 448 | goto out; |
449 | } | 449 | } |
450 | } | 450 | } |
451 | ret = 1; | 451 | ret = 1; |
452 | 452 | ||
453 | memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); | 453 | memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); |
454 | __set_bit(VCPU_EXREG_PDPTR, | 454 | __set_bit(VCPU_EXREG_PDPTR, |
455 | (unsigned long *)&vcpu->arch.regs_avail); | 455 | (unsigned long *)&vcpu->arch.regs_avail); |
456 | __set_bit(VCPU_EXREG_PDPTR, | 456 | __set_bit(VCPU_EXREG_PDPTR, |
457 | (unsigned long *)&vcpu->arch.regs_dirty); | 457 | (unsigned long *)&vcpu->arch.regs_dirty); |
458 | out: | 458 | out: |
459 | 459 | ||
460 | return ret; | 460 | return ret; |
461 | } | 461 | } |
462 | EXPORT_SYMBOL_GPL(load_pdptrs); | 462 | EXPORT_SYMBOL_GPL(load_pdptrs); |
463 | 463 | ||
464 | static bool pdptrs_changed(struct kvm_vcpu *vcpu) | 464 | static bool pdptrs_changed(struct kvm_vcpu *vcpu) |
465 | { | 465 | { |
466 | u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; | 466 | u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; |
467 | bool changed = true; | 467 | bool changed = true; |
468 | int offset; | 468 | int offset; |
469 | gfn_t gfn; | 469 | gfn_t gfn; |
470 | int r; | 470 | int r; |
471 | 471 | ||
472 | if (is_long_mode(vcpu) || !is_pae(vcpu)) | 472 | if (is_long_mode(vcpu) || !is_pae(vcpu)) |
473 | return false; | 473 | return false; |
474 | 474 | ||
475 | if (!test_bit(VCPU_EXREG_PDPTR, | 475 | if (!test_bit(VCPU_EXREG_PDPTR, |
476 | (unsigned long *)&vcpu->arch.regs_avail)) | 476 | (unsigned long *)&vcpu->arch.regs_avail)) |
477 | return true; | 477 | return true; |
478 | 478 | ||
479 | gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT; | 479 | gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT; |
480 | offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1); | 480 | offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1); |
481 | r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), | 481 | r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), |
482 | PFERR_USER_MASK | PFERR_WRITE_MASK); | 482 | PFERR_USER_MASK | PFERR_WRITE_MASK); |
483 | if (r < 0) | 483 | if (r < 0) |
484 | goto out; | 484 | goto out; |
485 | changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; | 485 | changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; |
486 | out: | 486 | out: |
487 | 487 | ||
488 | return changed; | 488 | return changed; |
489 | } | 489 | } |
490 | 490 | ||
491 | int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) | 491 | int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) |
492 | { | 492 | { |
493 | unsigned long old_cr0 = kvm_read_cr0(vcpu); | 493 | unsigned long old_cr0 = kvm_read_cr0(vcpu); |
494 | unsigned long update_bits = X86_CR0_PG | X86_CR0_WP | | 494 | unsigned long update_bits = X86_CR0_PG | X86_CR0_WP | |
495 | X86_CR0_CD | X86_CR0_NW; | 495 | X86_CR0_CD | X86_CR0_NW; |
496 | 496 | ||
497 | cr0 |= X86_CR0_ET; | 497 | cr0 |= X86_CR0_ET; |
498 | 498 | ||
499 | #ifdef CONFIG_X86_64 | 499 | #ifdef CONFIG_X86_64 |
500 | if (cr0 & 0xffffffff00000000UL) | 500 | if (cr0 & 0xffffffff00000000UL) |
501 | return 1; | 501 | return 1; |
502 | #endif | 502 | #endif |
503 | 503 | ||
504 | cr0 &= ~CR0_RESERVED_BITS; | 504 | cr0 &= ~CR0_RESERVED_BITS; |
505 | 505 | ||
506 | if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) | 506 | if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) |
507 | return 1; | 507 | return 1; |
508 | 508 | ||
509 | if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) | 509 | if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) |
510 | return 1; | 510 | return 1; |
511 | 511 | ||
512 | if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { | 512 | if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { |
513 | #ifdef CONFIG_X86_64 | 513 | #ifdef CONFIG_X86_64 |
514 | if ((vcpu->arch.efer & EFER_LME)) { | 514 | if ((vcpu->arch.efer & EFER_LME)) { |
515 | int cs_db, cs_l; | 515 | int cs_db, cs_l; |
516 | 516 | ||
517 | if (!is_pae(vcpu)) | 517 | if (!is_pae(vcpu)) |
518 | return 1; | 518 | return 1; |
519 | kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); | 519 | kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); |
520 | if (cs_l) | 520 | if (cs_l) |
521 | return 1; | 521 | return 1; |
522 | } else | 522 | } else |
523 | #endif | 523 | #endif |
524 | if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, | 524 | if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, |
525 | kvm_read_cr3(vcpu))) | 525 | kvm_read_cr3(vcpu))) |
526 | return 1; | 526 | return 1; |
527 | } | 527 | } |
528 | 528 | ||
529 | if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) | 529 | if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) |
530 | return 1; | 530 | return 1; |
531 | 531 | ||
532 | kvm_x86_ops->set_cr0(vcpu, cr0); | 532 | kvm_x86_ops->set_cr0(vcpu, cr0); |
533 | 533 | ||
534 | if ((cr0 ^ old_cr0) & X86_CR0_PG) { | 534 | if ((cr0 ^ old_cr0) & X86_CR0_PG) { |
535 | kvm_clear_async_pf_completion_queue(vcpu); | 535 | kvm_clear_async_pf_completion_queue(vcpu); |
536 | kvm_async_pf_hash_reset(vcpu); | 536 | kvm_async_pf_hash_reset(vcpu); |
537 | } | 537 | } |
538 | 538 | ||
539 | if ((cr0 ^ old_cr0) & update_bits) | 539 | if ((cr0 ^ old_cr0) & update_bits) |
540 | kvm_mmu_reset_context(vcpu); | 540 | kvm_mmu_reset_context(vcpu); |
541 | return 0; | 541 | return 0; |
542 | } | 542 | } |
543 | EXPORT_SYMBOL_GPL(kvm_set_cr0); | 543 | EXPORT_SYMBOL_GPL(kvm_set_cr0); |
544 | 544 | ||
545 | void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) | 545 | void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) |
546 | { | 546 | { |
547 | (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); | 547 | (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); |
548 | } | 548 | } |
549 | EXPORT_SYMBOL_GPL(kvm_lmsw); | 549 | EXPORT_SYMBOL_GPL(kvm_lmsw); |
550 | 550 | ||
551 | int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) | 551 | int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) |
552 | { | 552 | { |
553 | u64 xcr0; | 553 | u64 xcr0; |
554 | 554 | ||
555 | /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ | 555 | /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ |
556 | if (index != XCR_XFEATURE_ENABLED_MASK) | 556 | if (index != XCR_XFEATURE_ENABLED_MASK) |
557 | return 1; | 557 | return 1; |
558 | xcr0 = xcr; | 558 | xcr0 = xcr; |
559 | if (kvm_x86_ops->get_cpl(vcpu) != 0) | 559 | if (kvm_x86_ops->get_cpl(vcpu) != 0) |
560 | return 1; | 560 | return 1; |
561 | if (!(xcr0 & XSTATE_FP)) | 561 | if (!(xcr0 & XSTATE_FP)) |
562 | return 1; | 562 | return 1; |
563 | if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE)) | 563 | if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE)) |
564 | return 1; | 564 | return 1; |
565 | if (xcr0 & ~host_xcr0) | 565 | if (xcr0 & ~host_xcr0) |
566 | return 1; | 566 | return 1; |
567 | vcpu->arch.xcr0 = xcr0; | 567 | vcpu->arch.xcr0 = xcr0; |
568 | vcpu->guest_xcr0_loaded = 0; | 568 | vcpu->guest_xcr0_loaded = 0; |
569 | return 0; | 569 | return 0; |
570 | } | 570 | } |
571 | 571 | ||
572 | int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) | 572 | int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) |
573 | { | 573 | { |
574 | if (__kvm_set_xcr(vcpu, index, xcr)) { | 574 | if (__kvm_set_xcr(vcpu, index, xcr)) { |
575 | kvm_inject_gp(vcpu, 0); | 575 | kvm_inject_gp(vcpu, 0); |
576 | return 1; | 576 | return 1; |
577 | } | 577 | } |
578 | return 0; | 578 | return 0; |
579 | } | 579 | } |
580 | EXPORT_SYMBOL_GPL(kvm_set_xcr); | 580 | EXPORT_SYMBOL_GPL(kvm_set_xcr); |
581 | 581 | ||
582 | int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) | 582 | int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) |
583 | { | 583 | { |
584 | unsigned long old_cr4 = kvm_read_cr4(vcpu); | 584 | unsigned long old_cr4 = kvm_read_cr4(vcpu); |
585 | unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | | 585 | unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | |
586 | X86_CR4_PAE | X86_CR4_SMEP; | 586 | X86_CR4_PAE | X86_CR4_SMEP; |
587 | if (cr4 & CR4_RESERVED_BITS) | 587 | if (cr4 & CR4_RESERVED_BITS) |
588 | return 1; | 588 | return 1; |
589 | 589 | ||
590 | if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE)) | 590 | if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE)) |
591 | return 1; | 591 | return 1; |
592 | 592 | ||
593 | if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP)) | 593 | if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP)) |
594 | return 1; | 594 | return 1; |
595 | 595 | ||
596 | if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS)) | 596 | if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS)) |
597 | return 1; | 597 | return 1; |
598 | 598 | ||
599 | if (is_long_mode(vcpu)) { | 599 | if (is_long_mode(vcpu)) { |
600 | if (!(cr4 & X86_CR4_PAE)) | 600 | if (!(cr4 & X86_CR4_PAE)) |
601 | return 1; | 601 | return 1; |
602 | } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) | 602 | } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) |
603 | && ((cr4 ^ old_cr4) & pdptr_bits) | 603 | && ((cr4 ^ old_cr4) & pdptr_bits) |
604 | && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, | 604 | && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, |
605 | kvm_read_cr3(vcpu))) | 605 | kvm_read_cr3(vcpu))) |
606 | return 1; | 606 | return 1; |
607 | 607 | ||
608 | if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { | 608 | if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { |
609 | if (!guest_cpuid_has_pcid(vcpu)) | 609 | if (!guest_cpuid_has_pcid(vcpu)) |
610 | return 1; | 610 | return 1; |
611 | 611 | ||
612 | /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ | 612 | /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ |
613 | if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) | 613 | if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) |
614 | return 1; | 614 | return 1; |
615 | } | 615 | } |
616 | 616 | ||
617 | if (kvm_x86_ops->set_cr4(vcpu, cr4)) | 617 | if (kvm_x86_ops->set_cr4(vcpu, cr4)) |
618 | return 1; | 618 | return 1; |
619 | 619 | ||
620 | if (((cr4 ^ old_cr4) & pdptr_bits) || | 620 | if (((cr4 ^ old_cr4) & pdptr_bits) || |
621 | (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) | 621 | (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) |
622 | kvm_mmu_reset_context(vcpu); | 622 | kvm_mmu_reset_context(vcpu); |
623 | 623 | ||
624 | if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE) | 624 | if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE) |
625 | kvm_update_cpuid(vcpu); | 625 | kvm_update_cpuid(vcpu); |
626 | 626 | ||
627 | return 0; | 627 | return 0; |
628 | } | 628 | } |
629 | EXPORT_SYMBOL_GPL(kvm_set_cr4); | 629 | EXPORT_SYMBOL_GPL(kvm_set_cr4); |
630 | 630 | ||
631 | int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) | 631 | int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) |
632 | { | 632 | { |
633 | if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { | 633 | if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { |
634 | kvm_mmu_sync_roots(vcpu); | 634 | kvm_mmu_sync_roots(vcpu); |
635 | kvm_mmu_flush_tlb(vcpu); | 635 | kvm_mmu_flush_tlb(vcpu); |
636 | return 0; | 636 | return 0; |
637 | } | 637 | } |
638 | 638 | ||
639 | if (is_long_mode(vcpu)) { | 639 | if (is_long_mode(vcpu)) { |
640 | if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) { | 640 | if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) { |
641 | if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS) | 641 | if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS) |
642 | return 1; | 642 | return 1; |
643 | } else | 643 | } else |
644 | if (cr3 & CR3_L_MODE_RESERVED_BITS) | 644 | if (cr3 & CR3_L_MODE_RESERVED_BITS) |
645 | return 1; | 645 | return 1; |
646 | } else { | 646 | } else { |
647 | if (is_pae(vcpu)) { | 647 | if (is_pae(vcpu)) { |
648 | if (cr3 & CR3_PAE_RESERVED_BITS) | 648 | if (cr3 & CR3_PAE_RESERVED_BITS) |
649 | return 1; | 649 | return 1; |
650 | if (is_paging(vcpu) && | 650 | if (is_paging(vcpu) && |
651 | !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) | 651 | !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) |
652 | return 1; | 652 | return 1; |
653 | } | 653 | } |
654 | /* | 654 | /* |
655 | * We don't check reserved bits in nonpae mode, because | 655 | * We don't check reserved bits in nonpae mode, because |
656 | * this isn't enforced, and VMware depends on this. | 656 | * this isn't enforced, and VMware depends on this. |
657 | */ | 657 | */ |
658 | } | 658 | } |
659 | 659 | ||
660 | /* | 660 | /* |
661 | * Does the new cr3 value map to physical memory? (Note, we | 661 | * Does the new cr3 value map to physical memory? (Note, we |
662 | * catch an invalid cr3 even in real-mode, because it would | 662 | * catch an invalid cr3 even in real-mode, because it would |
663 | * cause trouble later on when we turn on paging anyway.) | 663 | * cause trouble later on when we turn on paging anyway.) |
664 | * | 664 | * |
665 | * A real CPU would silently accept an invalid cr3 and would | 665 | * A real CPU would silently accept an invalid cr3 and would |
666 | * attempt to use it - with largely undefined (and often hard | 666 | * attempt to use it - with largely undefined (and often hard |
667 | * to debug) behavior on the guest side. | 667 | * to debug) behavior on the guest side. |
668 | */ | 668 | */ |
669 | if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT))) | 669 | if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT))) |
670 | return 1; | 670 | return 1; |
671 | vcpu->arch.cr3 = cr3; | 671 | vcpu->arch.cr3 = cr3; |
672 | __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); | 672 | __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); |
673 | vcpu->arch.mmu.new_cr3(vcpu); | 673 | vcpu->arch.mmu.new_cr3(vcpu); |
674 | return 0; | 674 | return 0; |
675 | } | 675 | } |
676 | EXPORT_SYMBOL_GPL(kvm_set_cr3); | 676 | EXPORT_SYMBOL_GPL(kvm_set_cr3); |
677 | 677 | ||
678 | int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) | 678 | int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) |
679 | { | 679 | { |
680 | if (cr8 & CR8_RESERVED_BITS) | 680 | if (cr8 & CR8_RESERVED_BITS) |
681 | return 1; | 681 | return 1; |
682 | if (irqchip_in_kernel(vcpu->kvm)) | 682 | if (irqchip_in_kernel(vcpu->kvm)) |
683 | kvm_lapic_set_tpr(vcpu, cr8); | 683 | kvm_lapic_set_tpr(vcpu, cr8); |
684 | else | 684 | else |
685 | vcpu->arch.cr8 = cr8; | 685 | vcpu->arch.cr8 = cr8; |
686 | return 0; | 686 | return 0; |
687 | } | 687 | } |
688 | EXPORT_SYMBOL_GPL(kvm_set_cr8); | 688 | EXPORT_SYMBOL_GPL(kvm_set_cr8); |
689 | 689 | ||
690 | unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) | 690 | unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) |
691 | { | 691 | { |
692 | if (irqchip_in_kernel(vcpu->kvm)) | 692 | if (irqchip_in_kernel(vcpu->kvm)) |
693 | return kvm_lapic_get_cr8(vcpu); | 693 | return kvm_lapic_get_cr8(vcpu); |
694 | else | 694 | else |
695 | return vcpu->arch.cr8; | 695 | return vcpu->arch.cr8; |
696 | } | 696 | } |
697 | EXPORT_SYMBOL_GPL(kvm_get_cr8); | 697 | EXPORT_SYMBOL_GPL(kvm_get_cr8); |
698 | 698 | ||
699 | static void kvm_update_dr7(struct kvm_vcpu *vcpu) | 699 | static void kvm_update_dr7(struct kvm_vcpu *vcpu) |
700 | { | 700 | { |
701 | unsigned long dr7; | 701 | unsigned long dr7; |
702 | 702 | ||
703 | if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) | 703 | if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) |
704 | dr7 = vcpu->arch.guest_debug_dr7; | 704 | dr7 = vcpu->arch.guest_debug_dr7; |
705 | else | 705 | else |
706 | dr7 = vcpu->arch.dr7; | 706 | dr7 = vcpu->arch.dr7; |
707 | kvm_x86_ops->set_dr7(vcpu, dr7); | 707 | kvm_x86_ops->set_dr7(vcpu, dr7); |
708 | vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK); | 708 | vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK); |
709 | } | 709 | } |
710 | 710 | ||
711 | static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) | 711 | static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) |
712 | { | 712 | { |
713 | switch (dr) { | 713 | switch (dr) { |
714 | case 0 ... 3: | 714 | case 0 ... 3: |
715 | vcpu->arch.db[dr] = val; | 715 | vcpu->arch.db[dr] = val; |
716 | if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) | 716 | if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) |
717 | vcpu->arch.eff_db[dr] = val; | 717 | vcpu->arch.eff_db[dr] = val; |
718 | break; | 718 | break; |
719 | case 4: | 719 | case 4: |
720 | if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) | 720 | if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) |
721 | return 1; /* #UD */ | 721 | return 1; /* #UD */ |
722 | /* fall through */ | 722 | /* fall through */ |
723 | case 6: | 723 | case 6: |
724 | if (val & 0xffffffff00000000ULL) | 724 | if (val & 0xffffffff00000000ULL) |
725 | return -1; /* #GP */ | 725 | return -1; /* #GP */ |
726 | vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1; | 726 | vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1; |
727 | break; | 727 | break; |
728 | case 5: | 728 | case 5: |
729 | if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) | 729 | if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) |
730 | return 1; /* #UD */ | 730 | return 1; /* #UD */ |
731 | /* fall through */ | 731 | /* fall through */ |
732 | default: /* 7 */ | 732 | default: /* 7 */ |
733 | if (val & 0xffffffff00000000ULL) | 733 | if (val & 0xffffffff00000000ULL) |
734 | return -1; /* #GP */ | 734 | return -1; /* #GP */ |
735 | vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; | 735 | vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; |
736 | kvm_update_dr7(vcpu); | 736 | kvm_update_dr7(vcpu); |
737 | break; | 737 | break; |
738 | } | 738 | } |
739 | 739 | ||
740 | return 0; | 740 | return 0; |
741 | } | 741 | } |
742 | 742 | ||
743 | int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) | 743 | int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) |
744 | { | 744 | { |
745 | int res; | 745 | int res; |
746 | 746 | ||
747 | res = __kvm_set_dr(vcpu, dr, val); | 747 | res = __kvm_set_dr(vcpu, dr, val); |
748 | if (res > 0) | 748 | if (res > 0) |
749 | kvm_queue_exception(vcpu, UD_VECTOR); | 749 | kvm_queue_exception(vcpu, UD_VECTOR); |
750 | else if (res < 0) | 750 | else if (res < 0) |
751 | kvm_inject_gp(vcpu, 0); | 751 | kvm_inject_gp(vcpu, 0); |
752 | 752 | ||
753 | return res; | 753 | return res; |
754 | } | 754 | } |
755 | EXPORT_SYMBOL_GPL(kvm_set_dr); | 755 | EXPORT_SYMBOL_GPL(kvm_set_dr); |
756 | 756 | ||
757 | static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) | 757 | static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) |
758 | { | 758 | { |
759 | switch (dr) { | 759 | switch (dr) { |
760 | case 0 ... 3: | 760 | case 0 ... 3: |
761 | *val = vcpu->arch.db[dr]; | 761 | *val = vcpu->arch.db[dr]; |
762 | break; | 762 | break; |
763 | case 4: | 763 | case 4: |
764 | if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) | 764 | if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) |
765 | return 1; | 765 | return 1; |
766 | /* fall through */ | 766 | /* fall through */ |
767 | case 6: | 767 | case 6: |
768 | *val = vcpu->arch.dr6; | 768 | *val = vcpu->arch.dr6; |
769 | break; | 769 | break; |
770 | case 5: | 770 | case 5: |
771 | if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) | 771 | if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) |
772 | return 1; | 772 | return 1; |
773 | /* fall through */ | 773 | /* fall through */ |
774 | default: /* 7 */ | 774 | default: /* 7 */ |
775 | *val = vcpu->arch.dr7; | 775 | *val = vcpu->arch.dr7; |
776 | break; | 776 | break; |
777 | } | 777 | } |
778 | 778 | ||
779 | return 0; | 779 | return 0; |
780 | } | 780 | } |
781 | 781 | ||
782 | int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) | 782 | int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) |
783 | { | 783 | { |
784 | if (_kvm_get_dr(vcpu, dr, val)) { | 784 | if (_kvm_get_dr(vcpu, dr, val)) { |
785 | kvm_queue_exception(vcpu, UD_VECTOR); | 785 | kvm_queue_exception(vcpu, UD_VECTOR); |
786 | return 1; | 786 | return 1; |
787 | } | 787 | } |
788 | return 0; | 788 | return 0; |
789 | } | 789 | } |
790 | EXPORT_SYMBOL_GPL(kvm_get_dr); | 790 | EXPORT_SYMBOL_GPL(kvm_get_dr); |
791 | 791 | ||
792 | bool kvm_rdpmc(struct kvm_vcpu *vcpu) | 792 | bool kvm_rdpmc(struct kvm_vcpu *vcpu) |
793 | { | 793 | { |
794 | u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); | 794 | u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); |
795 | u64 data; | 795 | u64 data; |
796 | int err; | 796 | int err; |
797 | 797 | ||
798 | err = kvm_pmu_read_pmc(vcpu, ecx, &data); | 798 | err = kvm_pmu_read_pmc(vcpu, ecx, &data); |
799 | if (err) | 799 | if (err) |
800 | return err; | 800 | return err; |
801 | kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data); | 801 | kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data); |
802 | kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32); | 802 | kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32); |
803 | return err; | 803 | return err; |
804 | } | 804 | } |
805 | EXPORT_SYMBOL_GPL(kvm_rdpmc); | 805 | EXPORT_SYMBOL_GPL(kvm_rdpmc); |
806 | 806 | ||
807 | /* | 807 | /* |
808 | * List of msr numbers which we expose to userspace through KVM_GET_MSRS | 808 | * List of msr numbers which we expose to userspace through KVM_GET_MSRS |
809 | * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. | 809 | * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. |
810 | * | 810 | * |
811 | * This list is modified at module load time to reflect the | 811 | * This list is modified at module load time to reflect the |
812 | * capabilities of the host cpu. This capabilities test skips MSRs that are | 812 | * capabilities of the host cpu. This capabilities test skips MSRs that are |
813 | * kvm-specific. Those are put in the beginning of the list. | 813 | * kvm-specific. Those are put in the beginning of the list. |
814 | */ | 814 | */ |
815 | 815 | ||
816 | #define KVM_SAVE_MSRS_BEGIN 10 | 816 | #define KVM_SAVE_MSRS_BEGIN 10 |
817 | static u32 msrs_to_save[] = { | 817 | static u32 msrs_to_save[] = { |
818 | MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, | 818 | MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, |
819 | MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, | 819 | MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, |
820 | HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, | 820 | HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, |
821 | HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, | 821 | HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, |
822 | MSR_KVM_PV_EOI_EN, | 822 | MSR_KVM_PV_EOI_EN, |
823 | MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, | 823 | MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, |
824 | MSR_STAR, | 824 | MSR_STAR, |
825 | #ifdef CONFIG_X86_64 | 825 | #ifdef CONFIG_X86_64 |
826 | MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, | 826 | MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, |
827 | #endif | 827 | #endif |
828 | MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA | 828 | MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA |
829 | }; | 829 | }; |
830 | 830 | ||
831 | static unsigned num_msrs_to_save; | 831 | static unsigned num_msrs_to_save; |
832 | 832 | ||
833 | static const u32 emulated_msrs[] = { | 833 | static const u32 emulated_msrs[] = { |
834 | MSR_IA32_TSC_ADJUST, | 834 | MSR_IA32_TSC_ADJUST, |
835 | MSR_IA32_TSCDEADLINE, | 835 | MSR_IA32_TSCDEADLINE, |
836 | MSR_IA32_MISC_ENABLE, | 836 | MSR_IA32_MISC_ENABLE, |
837 | MSR_IA32_MCG_STATUS, | 837 | MSR_IA32_MCG_STATUS, |
838 | MSR_IA32_MCG_CTL, | 838 | MSR_IA32_MCG_CTL, |
839 | }; | 839 | }; |
840 | 840 | ||
841 | static int set_efer(struct kvm_vcpu *vcpu, u64 efer) | 841 | static int set_efer(struct kvm_vcpu *vcpu, u64 efer) |
842 | { | 842 | { |
843 | u64 old_efer = vcpu->arch.efer; | 843 | u64 old_efer = vcpu->arch.efer; |
844 | 844 | ||
845 | if (efer & efer_reserved_bits) | 845 | if (efer & efer_reserved_bits) |
846 | return 1; | 846 | return 1; |
847 | 847 | ||
848 | if (is_paging(vcpu) | 848 | if (is_paging(vcpu) |
849 | && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) | 849 | && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) |
850 | return 1; | 850 | return 1; |
851 | 851 | ||
852 | if (efer & EFER_FFXSR) { | 852 | if (efer & EFER_FFXSR) { |
853 | struct kvm_cpuid_entry2 *feat; | 853 | struct kvm_cpuid_entry2 *feat; |
854 | 854 | ||
855 | feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); | 855 | feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); |
856 | if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) | 856 | if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) |
857 | return 1; | 857 | return 1; |
858 | } | 858 | } |
859 | 859 | ||
860 | if (efer & EFER_SVME) { | 860 | if (efer & EFER_SVME) { |
861 | struct kvm_cpuid_entry2 *feat; | 861 | struct kvm_cpuid_entry2 *feat; |
862 | 862 | ||
863 | feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); | 863 | feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); |
864 | if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) | 864 | if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) |
865 | return 1; | 865 | return 1; |
866 | } | 866 | } |
867 | 867 | ||
868 | efer &= ~EFER_LMA; | 868 | efer &= ~EFER_LMA; |
869 | efer |= vcpu->arch.efer & EFER_LMA; | 869 | efer |= vcpu->arch.efer & EFER_LMA; |
870 | 870 | ||
871 | kvm_x86_ops->set_efer(vcpu, efer); | 871 | kvm_x86_ops->set_efer(vcpu, efer); |
872 | 872 | ||
873 | vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled; | 873 | vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled; |
874 | 874 | ||
875 | /* Update reserved bits */ | 875 | /* Update reserved bits */ |
876 | if ((efer ^ old_efer) & EFER_NX) | 876 | if ((efer ^ old_efer) & EFER_NX) |
877 | kvm_mmu_reset_context(vcpu); | 877 | kvm_mmu_reset_context(vcpu); |
878 | 878 | ||
879 | return 0; | 879 | return 0; |
880 | } | 880 | } |
881 | 881 | ||
882 | void kvm_enable_efer_bits(u64 mask) | 882 | void kvm_enable_efer_bits(u64 mask) |
883 | { | 883 | { |
884 | efer_reserved_bits &= ~mask; | 884 | efer_reserved_bits &= ~mask; |
885 | } | 885 | } |
886 | EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); | 886 | EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); |
887 | 887 | ||
888 | 888 | ||
889 | /* | 889 | /* |
890 | * Writes msr value into into the appropriate "register". | 890 | * Writes msr value into into the appropriate "register". |
891 | * Returns 0 on success, non-0 otherwise. | 891 | * Returns 0 on success, non-0 otherwise. |
892 | * Assumes vcpu_load() was already called. | 892 | * Assumes vcpu_load() was already called. |
893 | */ | 893 | */ |
894 | int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) | 894 | int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) |
895 | { | 895 | { |
896 | return kvm_x86_ops->set_msr(vcpu, msr); | 896 | return kvm_x86_ops->set_msr(vcpu, msr); |
897 | } | 897 | } |
898 | 898 | ||
899 | /* | 899 | /* |
900 | * Adapt set_msr() to msr_io()'s calling convention | 900 | * Adapt set_msr() to msr_io()'s calling convention |
901 | */ | 901 | */ |
902 | static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) | 902 | static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) |
903 | { | 903 | { |
904 | struct msr_data msr; | 904 | struct msr_data msr; |
905 | 905 | ||
906 | msr.data = *data; | 906 | msr.data = *data; |
907 | msr.index = index; | 907 | msr.index = index; |
908 | msr.host_initiated = true; | 908 | msr.host_initiated = true; |
909 | return kvm_set_msr(vcpu, &msr); | 909 | return kvm_set_msr(vcpu, &msr); |
910 | } | 910 | } |
911 | 911 | ||
912 | #ifdef CONFIG_X86_64 | 912 | #ifdef CONFIG_X86_64 |
913 | struct pvclock_gtod_data { | 913 | struct pvclock_gtod_data { |
914 | seqcount_t seq; | 914 | seqcount_t seq; |
915 | 915 | ||
916 | struct { /* extract of a clocksource struct */ | 916 | struct { /* extract of a clocksource struct */ |
917 | int vclock_mode; | 917 | int vclock_mode; |
918 | cycle_t cycle_last; | 918 | cycle_t cycle_last; |
919 | cycle_t mask; | 919 | cycle_t mask; |
920 | u32 mult; | 920 | u32 mult; |
921 | u32 shift; | 921 | u32 shift; |
922 | } clock; | 922 | } clock; |
923 | 923 | ||
924 | /* open coded 'struct timespec' */ | 924 | /* open coded 'struct timespec' */ |
925 | u64 monotonic_time_snsec; | 925 | u64 monotonic_time_snsec; |
926 | time_t monotonic_time_sec; | 926 | time_t monotonic_time_sec; |
927 | }; | 927 | }; |
928 | 928 | ||
929 | static struct pvclock_gtod_data pvclock_gtod_data; | 929 | static struct pvclock_gtod_data pvclock_gtod_data; |
930 | 930 | ||
931 | static void update_pvclock_gtod(struct timekeeper *tk) | 931 | static void update_pvclock_gtod(struct timekeeper *tk) |
932 | { | 932 | { |
933 | struct pvclock_gtod_data *vdata = &pvclock_gtod_data; | 933 | struct pvclock_gtod_data *vdata = &pvclock_gtod_data; |
934 | 934 | ||
935 | write_seqcount_begin(&vdata->seq); | 935 | write_seqcount_begin(&vdata->seq); |
936 | 936 | ||
937 | /* copy pvclock gtod data */ | 937 | /* copy pvclock gtod data */ |
938 | vdata->clock.vclock_mode = tk->clock->archdata.vclock_mode; | 938 | vdata->clock.vclock_mode = tk->clock->archdata.vclock_mode; |
939 | vdata->clock.cycle_last = tk->clock->cycle_last; | 939 | vdata->clock.cycle_last = tk->clock->cycle_last; |
940 | vdata->clock.mask = tk->clock->mask; | 940 | vdata->clock.mask = tk->clock->mask; |
941 | vdata->clock.mult = tk->mult; | 941 | vdata->clock.mult = tk->mult; |
942 | vdata->clock.shift = tk->shift; | 942 | vdata->clock.shift = tk->shift; |
943 | 943 | ||
944 | vdata->monotonic_time_sec = tk->xtime_sec | 944 | vdata->monotonic_time_sec = tk->xtime_sec |
945 | + tk->wall_to_monotonic.tv_sec; | 945 | + tk->wall_to_monotonic.tv_sec; |
946 | vdata->monotonic_time_snsec = tk->xtime_nsec | 946 | vdata->monotonic_time_snsec = tk->xtime_nsec |
947 | + (tk->wall_to_monotonic.tv_nsec | 947 | + (tk->wall_to_monotonic.tv_nsec |
948 | << tk->shift); | 948 | << tk->shift); |
949 | while (vdata->monotonic_time_snsec >= | 949 | while (vdata->monotonic_time_snsec >= |
950 | (((u64)NSEC_PER_SEC) << tk->shift)) { | 950 | (((u64)NSEC_PER_SEC) << tk->shift)) { |
951 | vdata->monotonic_time_snsec -= | 951 | vdata->monotonic_time_snsec -= |
952 | ((u64)NSEC_PER_SEC) << tk->shift; | 952 | ((u64)NSEC_PER_SEC) << tk->shift; |
953 | vdata->monotonic_time_sec++; | 953 | vdata->monotonic_time_sec++; |
954 | } | 954 | } |
955 | 955 | ||
956 | write_seqcount_end(&vdata->seq); | 956 | write_seqcount_end(&vdata->seq); |
957 | } | 957 | } |
958 | #endif | 958 | #endif |
959 | 959 | ||
960 | 960 | ||
961 | static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) | 961 | static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) |
962 | { | 962 | { |
963 | int version; | 963 | int version; |
964 | int r; | 964 | int r; |
965 | struct pvclock_wall_clock wc; | 965 | struct pvclock_wall_clock wc; |
966 | struct timespec boot; | 966 | struct timespec boot; |
967 | 967 | ||
968 | if (!wall_clock) | 968 | if (!wall_clock) |
969 | return; | 969 | return; |
970 | 970 | ||
971 | r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); | 971 | r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); |
972 | if (r) | 972 | if (r) |
973 | return; | 973 | return; |
974 | 974 | ||
975 | if (version & 1) | 975 | if (version & 1) |
976 | ++version; /* first time write, random junk */ | 976 | ++version; /* first time write, random junk */ |
977 | 977 | ||
978 | ++version; | 978 | ++version; |
979 | 979 | ||
980 | kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); | 980 | kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); |
981 | 981 | ||
982 | /* | 982 | /* |
983 | * The guest calculates current wall clock time by adding | 983 | * The guest calculates current wall clock time by adding |
984 | * system time (updated by kvm_guest_time_update below) to the | 984 | * system time (updated by kvm_guest_time_update below) to the |
985 | * wall clock specified here. guest system time equals host | 985 | * wall clock specified here. guest system time equals host |
986 | * system time for us, thus we must fill in host boot time here. | 986 | * system time for us, thus we must fill in host boot time here. |
987 | */ | 987 | */ |
988 | getboottime(&boot); | 988 | getboottime(&boot); |
989 | 989 | ||
990 | if (kvm->arch.kvmclock_offset) { | 990 | if (kvm->arch.kvmclock_offset) { |
991 | struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset); | 991 | struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset); |
992 | boot = timespec_sub(boot, ts); | 992 | boot = timespec_sub(boot, ts); |
993 | } | 993 | } |
994 | wc.sec = boot.tv_sec; | 994 | wc.sec = boot.tv_sec; |
995 | wc.nsec = boot.tv_nsec; | 995 | wc.nsec = boot.tv_nsec; |
996 | wc.version = version; | 996 | wc.version = version; |
997 | 997 | ||
998 | kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); | 998 | kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); |
999 | 999 | ||
1000 | version++; | 1000 | version++; |
1001 | kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); | 1001 | kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); |
1002 | } | 1002 | } |
1003 | 1003 | ||
1004 | static uint32_t div_frac(uint32_t dividend, uint32_t divisor) | 1004 | static uint32_t div_frac(uint32_t dividend, uint32_t divisor) |
1005 | { | 1005 | { |
1006 | uint32_t quotient, remainder; | 1006 | uint32_t quotient, remainder; |
1007 | 1007 | ||
1008 | /* Don't try to replace with do_div(), this one calculates | 1008 | /* Don't try to replace with do_div(), this one calculates |
1009 | * "(dividend << 32) / divisor" */ | 1009 | * "(dividend << 32) / divisor" */ |
1010 | __asm__ ( "divl %4" | 1010 | __asm__ ( "divl %4" |
1011 | : "=a" (quotient), "=d" (remainder) | 1011 | : "=a" (quotient), "=d" (remainder) |
1012 | : "0" (0), "1" (dividend), "r" (divisor) ); | 1012 | : "0" (0), "1" (dividend), "r" (divisor) ); |
1013 | return quotient; | 1013 | return quotient; |
1014 | } | 1014 | } |
1015 | 1015 | ||
1016 | static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz, | 1016 | static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz, |
1017 | s8 *pshift, u32 *pmultiplier) | 1017 | s8 *pshift, u32 *pmultiplier) |
1018 | { | 1018 | { |
1019 | uint64_t scaled64; | 1019 | uint64_t scaled64; |
1020 | int32_t shift = 0; | 1020 | int32_t shift = 0; |
1021 | uint64_t tps64; | 1021 | uint64_t tps64; |
1022 | uint32_t tps32; | 1022 | uint32_t tps32; |
1023 | 1023 | ||
1024 | tps64 = base_khz * 1000LL; | 1024 | tps64 = base_khz * 1000LL; |
1025 | scaled64 = scaled_khz * 1000LL; | 1025 | scaled64 = scaled_khz * 1000LL; |
1026 | while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { | 1026 | while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { |
1027 | tps64 >>= 1; | 1027 | tps64 >>= 1; |
1028 | shift--; | 1028 | shift--; |
1029 | } | 1029 | } |
1030 | 1030 | ||
1031 | tps32 = (uint32_t)tps64; | 1031 | tps32 = (uint32_t)tps64; |
1032 | while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { | 1032 | while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { |
1033 | if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) | 1033 | if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) |
1034 | scaled64 >>= 1; | 1034 | scaled64 >>= 1; |
1035 | else | 1035 | else |
1036 | tps32 <<= 1; | 1036 | tps32 <<= 1; |
1037 | shift++; | 1037 | shift++; |
1038 | } | 1038 | } |
1039 | 1039 | ||
1040 | *pshift = shift; | 1040 | *pshift = shift; |
1041 | *pmultiplier = div_frac(scaled64, tps32); | 1041 | *pmultiplier = div_frac(scaled64, tps32); |
1042 | 1042 | ||
1043 | pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n", | 1043 | pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n", |
1044 | __func__, base_khz, scaled_khz, shift, *pmultiplier); | 1044 | __func__, base_khz, scaled_khz, shift, *pmultiplier); |
1045 | } | 1045 | } |
1046 | 1046 | ||
1047 | static inline u64 get_kernel_ns(void) | 1047 | static inline u64 get_kernel_ns(void) |
1048 | { | 1048 | { |
1049 | struct timespec ts; | 1049 | struct timespec ts; |
1050 | 1050 | ||
1051 | WARN_ON(preemptible()); | 1051 | WARN_ON(preemptible()); |
1052 | ktime_get_ts(&ts); | 1052 | ktime_get_ts(&ts); |
1053 | monotonic_to_bootbased(&ts); | 1053 | monotonic_to_bootbased(&ts); |
1054 | return timespec_to_ns(&ts); | 1054 | return timespec_to_ns(&ts); |
1055 | } | 1055 | } |
1056 | 1056 | ||
1057 | #ifdef CONFIG_X86_64 | 1057 | #ifdef CONFIG_X86_64 |
1058 | static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); | 1058 | static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); |
1059 | #endif | 1059 | #endif |
1060 | 1060 | ||
1061 | static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); | 1061 | static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); |
1062 | unsigned long max_tsc_khz; | 1062 | unsigned long max_tsc_khz; |
1063 | 1063 | ||
1064 | static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec) | 1064 | static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec) |
1065 | { | 1065 | { |
1066 | return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult, | 1066 | return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult, |
1067 | vcpu->arch.virtual_tsc_shift); | 1067 | vcpu->arch.virtual_tsc_shift); |
1068 | } | 1068 | } |
1069 | 1069 | ||
1070 | static u32 adjust_tsc_khz(u32 khz, s32 ppm) | 1070 | static u32 adjust_tsc_khz(u32 khz, s32 ppm) |
1071 | { | 1071 | { |
1072 | u64 v = (u64)khz * (1000000 + ppm); | 1072 | u64 v = (u64)khz * (1000000 + ppm); |
1073 | do_div(v, 1000000); | 1073 | do_div(v, 1000000); |
1074 | return v; | 1074 | return v; |
1075 | } | 1075 | } |
1076 | 1076 | ||
1077 | static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz) | 1077 | static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz) |
1078 | { | 1078 | { |
1079 | u32 thresh_lo, thresh_hi; | 1079 | u32 thresh_lo, thresh_hi; |
1080 | int use_scaling = 0; | 1080 | int use_scaling = 0; |
1081 | 1081 | ||
1082 | /* Compute a scale to convert nanoseconds in TSC cycles */ | 1082 | /* Compute a scale to convert nanoseconds in TSC cycles */ |
1083 | kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000, | 1083 | kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000, |
1084 | &vcpu->arch.virtual_tsc_shift, | 1084 | &vcpu->arch.virtual_tsc_shift, |
1085 | &vcpu->arch.virtual_tsc_mult); | 1085 | &vcpu->arch.virtual_tsc_mult); |
1086 | vcpu->arch.virtual_tsc_khz = this_tsc_khz; | 1086 | vcpu->arch.virtual_tsc_khz = this_tsc_khz; |
1087 | 1087 | ||
1088 | /* | 1088 | /* |
1089 | * Compute the variation in TSC rate which is acceptable | 1089 | * Compute the variation in TSC rate which is acceptable |
1090 | * within the range of tolerance and decide if the | 1090 | * within the range of tolerance and decide if the |
1091 | * rate being applied is within that bounds of the hardware | 1091 | * rate being applied is within that bounds of the hardware |
1092 | * rate. If so, no scaling or compensation need be done. | 1092 | * rate. If so, no scaling or compensation need be done. |
1093 | */ | 1093 | */ |
1094 | thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); | 1094 | thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); |
1095 | thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); | 1095 | thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); |
1096 | if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) { | 1096 | if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) { |
1097 | pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi); | 1097 | pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi); |
1098 | use_scaling = 1; | 1098 | use_scaling = 1; |
1099 | } | 1099 | } |
1100 | kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling); | 1100 | kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling); |
1101 | } | 1101 | } |
1102 | 1102 | ||
1103 | static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) | 1103 | static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) |
1104 | { | 1104 | { |
1105 | u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, | 1105 | u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, |
1106 | vcpu->arch.virtual_tsc_mult, | 1106 | vcpu->arch.virtual_tsc_mult, |
1107 | vcpu->arch.virtual_tsc_shift); | 1107 | vcpu->arch.virtual_tsc_shift); |
1108 | tsc += vcpu->arch.this_tsc_write; | 1108 | tsc += vcpu->arch.this_tsc_write; |
1109 | return tsc; | 1109 | return tsc; |
1110 | } | 1110 | } |
1111 | 1111 | ||
1112 | void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) | 1112 | void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) |
1113 | { | 1113 | { |
1114 | #ifdef CONFIG_X86_64 | 1114 | #ifdef CONFIG_X86_64 |
1115 | bool vcpus_matched; | 1115 | bool vcpus_matched; |
1116 | bool do_request = false; | 1116 | bool do_request = false; |
1117 | struct kvm_arch *ka = &vcpu->kvm->arch; | 1117 | struct kvm_arch *ka = &vcpu->kvm->arch; |
1118 | struct pvclock_gtod_data *gtod = &pvclock_gtod_data; | 1118 | struct pvclock_gtod_data *gtod = &pvclock_gtod_data; |
1119 | 1119 | ||
1120 | vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == | 1120 | vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == |
1121 | atomic_read(&vcpu->kvm->online_vcpus)); | 1121 | atomic_read(&vcpu->kvm->online_vcpus)); |
1122 | 1122 | ||
1123 | if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC) | 1123 | if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC) |
1124 | if (!ka->use_master_clock) | 1124 | if (!ka->use_master_clock) |
1125 | do_request = 1; | 1125 | do_request = 1; |
1126 | 1126 | ||
1127 | if (!vcpus_matched && ka->use_master_clock) | 1127 | if (!vcpus_matched && ka->use_master_clock) |
1128 | do_request = 1; | 1128 | do_request = 1; |
1129 | 1129 | ||
1130 | if (do_request) | 1130 | if (do_request) |
1131 | kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); | 1131 | kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); |
1132 | 1132 | ||
1133 | trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, | 1133 | trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, |
1134 | atomic_read(&vcpu->kvm->online_vcpus), | 1134 | atomic_read(&vcpu->kvm->online_vcpus), |
1135 | ka->use_master_clock, gtod->clock.vclock_mode); | 1135 | ka->use_master_clock, gtod->clock.vclock_mode); |
1136 | #endif | 1136 | #endif |
1137 | } | 1137 | } |
1138 | 1138 | ||
1139 | static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset) | 1139 | static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset) |
1140 | { | 1140 | { |
1141 | u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu); | 1141 | u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu); |
1142 | vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset; | 1142 | vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset; |
1143 | } | 1143 | } |
1144 | 1144 | ||
1145 | void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr) | 1145 | void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr) |
1146 | { | 1146 | { |
1147 | struct kvm *kvm = vcpu->kvm; | 1147 | struct kvm *kvm = vcpu->kvm; |
1148 | u64 offset, ns, elapsed; | 1148 | u64 offset, ns, elapsed; |
1149 | unsigned long flags; | 1149 | unsigned long flags; |
1150 | s64 usdiff; | 1150 | s64 usdiff; |
1151 | bool matched; | 1151 | bool matched; |
1152 | u64 data = msr->data; | 1152 | u64 data = msr->data; |
1153 | 1153 | ||
1154 | raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); | 1154 | raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); |
1155 | offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); | 1155 | offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); |
1156 | ns = get_kernel_ns(); | 1156 | ns = get_kernel_ns(); |
1157 | elapsed = ns - kvm->arch.last_tsc_nsec; | 1157 | elapsed = ns - kvm->arch.last_tsc_nsec; |
1158 | 1158 | ||
1159 | /* n.b - signed multiplication and division required */ | 1159 | /* n.b - signed multiplication and division required */ |
1160 | usdiff = data - kvm->arch.last_tsc_write; | 1160 | usdiff = data - kvm->arch.last_tsc_write; |
1161 | #ifdef CONFIG_X86_64 | 1161 | #ifdef CONFIG_X86_64 |
1162 | usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz; | 1162 | usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz; |
1163 | #else | 1163 | #else |
1164 | /* do_div() only does unsigned */ | 1164 | /* do_div() only does unsigned */ |
1165 | asm("idivl %2; xor %%edx, %%edx" | 1165 | asm("idivl %2; xor %%edx, %%edx" |
1166 | : "=A"(usdiff) | 1166 | : "=A"(usdiff) |
1167 | : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz)); | 1167 | : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz)); |
1168 | #endif | 1168 | #endif |
1169 | do_div(elapsed, 1000); | 1169 | do_div(elapsed, 1000); |
1170 | usdiff -= elapsed; | 1170 | usdiff -= elapsed; |
1171 | if (usdiff < 0) | 1171 | if (usdiff < 0) |
1172 | usdiff = -usdiff; | 1172 | usdiff = -usdiff; |
1173 | 1173 | ||
1174 | /* | 1174 | /* |
1175 | * Special case: TSC write with a small delta (1 second) of virtual | 1175 | * Special case: TSC write with a small delta (1 second) of virtual |
1176 | * cycle time against real time is interpreted as an attempt to | 1176 | * cycle time against real time is interpreted as an attempt to |
1177 | * synchronize the CPU. | 1177 | * synchronize the CPU. |
1178 | * | 1178 | * |
1179 | * For a reliable TSC, we can match TSC offsets, and for an unstable | 1179 | * For a reliable TSC, we can match TSC offsets, and for an unstable |
1180 | * TSC, we add elapsed time in this computation. We could let the | 1180 | * TSC, we add elapsed time in this computation. We could let the |
1181 | * compensation code attempt to catch up if we fall behind, but | 1181 | * compensation code attempt to catch up if we fall behind, but |
1182 | * it's better to try to match offsets from the beginning. | 1182 | * it's better to try to match offsets from the beginning. |
1183 | */ | 1183 | */ |
1184 | if (usdiff < USEC_PER_SEC && | 1184 | if (usdiff < USEC_PER_SEC && |
1185 | vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { | 1185 | vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { |
1186 | if (!check_tsc_unstable()) { | 1186 | if (!check_tsc_unstable()) { |
1187 | offset = kvm->arch.cur_tsc_offset; | 1187 | offset = kvm->arch.cur_tsc_offset; |
1188 | pr_debug("kvm: matched tsc offset for %llu\n", data); | 1188 | pr_debug("kvm: matched tsc offset for %llu\n", data); |
1189 | } else { | 1189 | } else { |
1190 | u64 delta = nsec_to_cycles(vcpu, elapsed); | 1190 | u64 delta = nsec_to_cycles(vcpu, elapsed); |
1191 | data += delta; | 1191 | data += delta; |
1192 | offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); | 1192 | offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); |
1193 | pr_debug("kvm: adjusted tsc offset by %llu\n", delta); | 1193 | pr_debug("kvm: adjusted tsc offset by %llu\n", delta); |
1194 | } | 1194 | } |
1195 | matched = true; | 1195 | matched = true; |
1196 | } else { | 1196 | } else { |
1197 | /* | 1197 | /* |
1198 | * We split periods of matched TSC writes into generations. | 1198 | * We split periods of matched TSC writes into generations. |
1199 | * For each generation, we track the original measured | 1199 | * For each generation, we track the original measured |
1200 | * nanosecond time, offset, and write, so if TSCs are in | 1200 | * nanosecond time, offset, and write, so if TSCs are in |
1201 | * sync, we can match exact offset, and if not, we can match | 1201 | * sync, we can match exact offset, and if not, we can match |
1202 | * exact software computation in compute_guest_tsc() | 1202 | * exact software computation in compute_guest_tsc() |
1203 | * | 1203 | * |
1204 | * These values are tracked in kvm->arch.cur_xxx variables. | 1204 | * These values are tracked in kvm->arch.cur_xxx variables. |
1205 | */ | 1205 | */ |
1206 | kvm->arch.cur_tsc_generation++; | 1206 | kvm->arch.cur_tsc_generation++; |
1207 | kvm->arch.cur_tsc_nsec = ns; | 1207 | kvm->arch.cur_tsc_nsec = ns; |
1208 | kvm->arch.cur_tsc_write = data; | 1208 | kvm->arch.cur_tsc_write = data; |
1209 | kvm->arch.cur_tsc_offset = offset; | 1209 | kvm->arch.cur_tsc_offset = offset; |
1210 | matched = false; | 1210 | matched = false; |
1211 | pr_debug("kvm: new tsc generation %u, clock %llu\n", | 1211 | pr_debug("kvm: new tsc generation %u, clock %llu\n", |
1212 | kvm->arch.cur_tsc_generation, data); | 1212 | kvm->arch.cur_tsc_generation, data); |
1213 | } | 1213 | } |
1214 | 1214 | ||
1215 | /* | 1215 | /* |
1216 | * We also track th most recent recorded KHZ, write and time to | 1216 | * We also track th most recent recorded KHZ, write and time to |
1217 | * allow the matching interval to be extended at each write. | 1217 | * allow the matching interval to be extended at each write. |
1218 | */ | 1218 | */ |
1219 | kvm->arch.last_tsc_nsec = ns; | 1219 | kvm->arch.last_tsc_nsec = ns; |
1220 | kvm->arch.last_tsc_write = data; | 1220 | kvm->arch.last_tsc_write = data; |
1221 | kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; | 1221 | kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; |
1222 | 1222 | ||
1223 | /* Reset of TSC must disable overshoot protection below */ | 1223 | /* Reset of TSC must disable overshoot protection below */ |
1224 | vcpu->arch.hv_clock.tsc_timestamp = 0; | 1224 | vcpu->arch.hv_clock.tsc_timestamp = 0; |
1225 | vcpu->arch.last_guest_tsc = data; | 1225 | vcpu->arch.last_guest_tsc = data; |
1226 | 1226 | ||
1227 | /* Keep track of which generation this VCPU has synchronized to */ | 1227 | /* Keep track of which generation this VCPU has synchronized to */ |
1228 | vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; | 1228 | vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; |
1229 | vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; | 1229 | vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; |
1230 | vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; | 1230 | vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; |
1231 | 1231 | ||
1232 | if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated) | 1232 | if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated) |
1233 | update_ia32_tsc_adjust_msr(vcpu, offset); | 1233 | update_ia32_tsc_adjust_msr(vcpu, offset); |
1234 | kvm_x86_ops->write_tsc_offset(vcpu, offset); | 1234 | kvm_x86_ops->write_tsc_offset(vcpu, offset); |
1235 | raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); | 1235 | raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); |
1236 | 1236 | ||
1237 | spin_lock(&kvm->arch.pvclock_gtod_sync_lock); | 1237 | spin_lock(&kvm->arch.pvclock_gtod_sync_lock); |
1238 | if (matched) | 1238 | if (matched) |
1239 | kvm->arch.nr_vcpus_matched_tsc++; | 1239 | kvm->arch.nr_vcpus_matched_tsc++; |
1240 | else | 1240 | else |
1241 | kvm->arch.nr_vcpus_matched_tsc = 0; | 1241 | kvm->arch.nr_vcpus_matched_tsc = 0; |
1242 | 1242 | ||
1243 | kvm_track_tsc_matching(vcpu); | 1243 | kvm_track_tsc_matching(vcpu); |
1244 | spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); | 1244 | spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); |
1245 | } | 1245 | } |
1246 | 1246 | ||
1247 | EXPORT_SYMBOL_GPL(kvm_write_tsc); | 1247 | EXPORT_SYMBOL_GPL(kvm_write_tsc); |
1248 | 1248 | ||
1249 | #ifdef CONFIG_X86_64 | 1249 | #ifdef CONFIG_X86_64 |
1250 | 1250 | ||
1251 | static cycle_t read_tsc(void) | 1251 | static cycle_t read_tsc(void) |
1252 | { | 1252 | { |
1253 | cycle_t ret; | 1253 | cycle_t ret; |
1254 | u64 last; | 1254 | u64 last; |
1255 | 1255 | ||
1256 | /* | 1256 | /* |
1257 | * Empirically, a fence (of type that depends on the CPU) | 1257 | * Empirically, a fence (of type that depends on the CPU) |
1258 | * before rdtsc is enough to ensure that rdtsc is ordered | 1258 | * before rdtsc is enough to ensure that rdtsc is ordered |
1259 | * with respect to loads. The various CPU manuals are unclear | 1259 | * with respect to loads. The various CPU manuals are unclear |
1260 | * as to whether rdtsc can be reordered with later loads, | 1260 | * as to whether rdtsc can be reordered with later loads, |
1261 | * but no one has ever seen it happen. | 1261 | * but no one has ever seen it happen. |
1262 | */ | 1262 | */ |
1263 | rdtsc_barrier(); | 1263 | rdtsc_barrier(); |
1264 | ret = (cycle_t)vget_cycles(); | 1264 | ret = (cycle_t)vget_cycles(); |
1265 | 1265 | ||
1266 | last = pvclock_gtod_data.clock.cycle_last; | 1266 | last = pvclock_gtod_data.clock.cycle_last; |
1267 | 1267 | ||
1268 | if (likely(ret >= last)) | 1268 | if (likely(ret >= last)) |
1269 | return ret; | 1269 | return ret; |
1270 | 1270 | ||
1271 | /* | 1271 | /* |
1272 | * GCC likes to generate cmov here, but this branch is extremely | 1272 | * GCC likes to generate cmov here, but this branch is extremely |
1273 | * predictable (it's just a funciton of time and the likely is | 1273 | * predictable (it's just a funciton of time and the likely is |
1274 | * very likely) and there's a data dependence, so force GCC | 1274 | * very likely) and there's a data dependence, so force GCC |
1275 | * to generate a branch instead. I don't barrier() because | 1275 | * to generate a branch instead. I don't barrier() because |
1276 | * we don't actually need a barrier, and if this function | 1276 | * we don't actually need a barrier, and if this function |
1277 | * ever gets inlined it will generate worse code. | 1277 | * ever gets inlined it will generate worse code. |
1278 | */ | 1278 | */ |
1279 | asm volatile (""); | 1279 | asm volatile (""); |
1280 | return last; | 1280 | return last; |
1281 | } | 1281 | } |
1282 | 1282 | ||
1283 | static inline u64 vgettsc(cycle_t *cycle_now) | 1283 | static inline u64 vgettsc(cycle_t *cycle_now) |
1284 | { | 1284 | { |
1285 | long v; | 1285 | long v; |
1286 | struct pvclock_gtod_data *gtod = &pvclock_gtod_data; | 1286 | struct pvclock_gtod_data *gtod = &pvclock_gtod_data; |
1287 | 1287 | ||
1288 | *cycle_now = read_tsc(); | 1288 | *cycle_now = read_tsc(); |
1289 | 1289 | ||
1290 | v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask; | 1290 | v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask; |
1291 | return v * gtod->clock.mult; | 1291 | return v * gtod->clock.mult; |
1292 | } | 1292 | } |
1293 | 1293 | ||
1294 | static int do_monotonic(struct timespec *ts, cycle_t *cycle_now) | 1294 | static int do_monotonic(struct timespec *ts, cycle_t *cycle_now) |
1295 | { | 1295 | { |
1296 | unsigned long seq; | 1296 | unsigned long seq; |
1297 | u64 ns; | 1297 | u64 ns; |
1298 | int mode; | 1298 | int mode; |
1299 | struct pvclock_gtod_data *gtod = &pvclock_gtod_data; | 1299 | struct pvclock_gtod_data *gtod = &pvclock_gtod_data; |
1300 | 1300 | ||
1301 | ts->tv_nsec = 0; | 1301 | ts->tv_nsec = 0; |
1302 | do { | 1302 | do { |
1303 | seq = read_seqcount_begin(>od->seq); | 1303 | seq = read_seqcount_begin(>od->seq); |
1304 | mode = gtod->clock.vclock_mode; | 1304 | mode = gtod->clock.vclock_mode; |
1305 | ts->tv_sec = gtod->monotonic_time_sec; | 1305 | ts->tv_sec = gtod->monotonic_time_sec; |
1306 | ns = gtod->monotonic_time_snsec; | 1306 | ns = gtod->monotonic_time_snsec; |
1307 | ns += vgettsc(cycle_now); | 1307 | ns += vgettsc(cycle_now); |
1308 | ns >>= gtod->clock.shift; | 1308 | ns >>= gtod->clock.shift; |
1309 | } while (unlikely(read_seqcount_retry(>od->seq, seq))); | 1309 | } while (unlikely(read_seqcount_retry(>od->seq, seq))); |
1310 | timespec_add_ns(ts, ns); | 1310 | timespec_add_ns(ts, ns); |
1311 | 1311 | ||
1312 | return mode; | 1312 | return mode; |
1313 | } | 1313 | } |
1314 | 1314 | ||
1315 | /* returns true if host is using tsc clocksource */ | 1315 | /* returns true if host is using tsc clocksource */ |
1316 | static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now) | 1316 | static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now) |
1317 | { | 1317 | { |
1318 | struct timespec ts; | 1318 | struct timespec ts; |
1319 | 1319 | ||
1320 | /* checked again under seqlock below */ | 1320 | /* checked again under seqlock below */ |
1321 | if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC) | 1321 | if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC) |
1322 | return false; | 1322 | return false; |
1323 | 1323 | ||
1324 | if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC) | 1324 | if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC) |
1325 | return false; | 1325 | return false; |
1326 | 1326 | ||
1327 | monotonic_to_bootbased(&ts); | 1327 | monotonic_to_bootbased(&ts); |
1328 | *kernel_ns = timespec_to_ns(&ts); | 1328 | *kernel_ns = timespec_to_ns(&ts); |
1329 | 1329 | ||
1330 | return true; | 1330 | return true; |
1331 | } | 1331 | } |
1332 | #endif | 1332 | #endif |
1333 | 1333 | ||
1334 | /* | 1334 | /* |
1335 | * | 1335 | * |
1336 | * Assuming a stable TSC across physical CPUS, and a stable TSC | 1336 | * Assuming a stable TSC across physical CPUS, and a stable TSC |
1337 | * across virtual CPUs, the following condition is possible. | 1337 | * across virtual CPUs, the following condition is possible. |
1338 | * Each numbered line represents an event visible to both | 1338 | * Each numbered line represents an event visible to both |
1339 | * CPUs at the next numbered event. | 1339 | * CPUs at the next numbered event. |
1340 | * | 1340 | * |
1341 | * "timespecX" represents host monotonic time. "tscX" represents | 1341 | * "timespecX" represents host monotonic time. "tscX" represents |
1342 | * RDTSC value. | 1342 | * RDTSC value. |
1343 | * | 1343 | * |
1344 | * VCPU0 on CPU0 | VCPU1 on CPU1 | 1344 | * VCPU0 on CPU0 | VCPU1 on CPU1 |
1345 | * | 1345 | * |
1346 | * 1. read timespec0,tsc0 | 1346 | * 1. read timespec0,tsc0 |
1347 | * 2. | timespec1 = timespec0 + N | 1347 | * 2. | timespec1 = timespec0 + N |
1348 | * | tsc1 = tsc0 + M | 1348 | * | tsc1 = tsc0 + M |
1349 | * 3. transition to guest | transition to guest | 1349 | * 3. transition to guest | transition to guest |
1350 | * 4. ret0 = timespec0 + (rdtsc - tsc0) | | 1350 | * 4. ret0 = timespec0 + (rdtsc - tsc0) | |
1351 | * 5. | ret1 = timespec1 + (rdtsc - tsc1) | 1351 | * 5. | ret1 = timespec1 + (rdtsc - tsc1) |
1352 | * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) | 1352 | * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) |
1353 | * | 1353 | * |
1354 | * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: | 1354 | * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: |
1355 | * | 1355 | * |
1356 | * - ret0 < ret1 | 1356 | * - ret0 < ret1 |
1357 | * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) | 1357 | * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) |
1358 | * ... | 1358 | * ... |
1359 | * - 0 < N - M => M < N | 1359 | * - 0 < N - M => M < N |
1360 | * | 1360 | * |
1361 | * That is, when timespec0 != timespec1, M < N. Unfortunately that is not | 1361 | * That is, when timespec0 != timespec1, M < N. Unfortunately that is not |
1362 | * always the case (the difference between two distinct xtime instances | 1362 | * always the case (the difference between two distinct xtime instances |
1363 | * might be smaller then the difference between corresponding TSC reads, | 1363 | * might be smaller then the difference between corresponding TSC reads, |
1364 | * when updating guest vcpus pvclock areas). | 1364 | * when updating guest vcpus pvclock areas). |
1365 | * | 1365 | * |
1366 | * To avoid that problem, do not allow visibility of distinct | 1366 | * To avoid that problem, do not allow visibility of distinct |
1367 | * system_timestamp/tsc_timestamp values simultaneously: use a master | 1367 | * system_timestamp/tsc_timestamp values simultaneously: use a master |
1368 | * copy of host monotonic time values. Update that master copy | 1368 | * copy of host monotonic time values. Update that master copy |
1369 | * in lockstep. | 1369 | * in lockstep. |
1370 | * | 1370 | * |
1371 | * Rely on synchronization of host TSCs and guest TSCs for monotonicity. | 1371 | * Rely on synchronization of host TSCs and guest TSCs for monotonicity. |
1372 | * | 1372 | * |
1373 | */ | 1373 | */ |
1374 | 1374 | ||
1375 | static void pvclock_update_vm_gtod_copy(struct kvm *kvm) | 1375 | static void pvclock_update_vm_gtod_copy(struct kvm *kvm) |
1376 | { | 1376 | { |
1377 | #ifdef CONFIG_X86_64 | 1377 | #ifdef CONFIG_X86_64 |
1378 | struct kvm_arch *ka = &kvm->arch; | 1378 | struct kvm_arch *ka = &kvm->arch; |
1379 | int vclock_mode; | 1379 | int vclock_mode; |
1380 | bool host_tsc_clocksource, vcpus_matched; | 1380 | bool host_tsc_clocksource, vcpus_matched; |
1381 | 1381 | ||
1382 | vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == | 1382 | vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == |
1383 | atomic_read(&kvm->online_vcpus)); | 1383 | atomic_read(&kvm->online_vcpus)); |
1384 | 1384 | ||
1385 | /* | 1385 | /* |
1386 | * If the host uses TSC clock, then passthrough TSC as stable | 1386 | * If the host uses TSC clock, then passthrough TSC as stable |
1387 | * to the guest. | 1387 | * to the guest. |
1388 | */ | 1388 | */ |
1389 | host_tsc_clocksource = kvm_get_time_and_clockread( | 1389 | host_tsc_clocksource = kvm_get_time_and_clockread( |
1390 | &ka->master_kernel_ns, | 1390 | &ka->master_kernel_ns, |
1391 | &ka->master_cycle_now); | 1391 | &ka->master_cycle_now); |
1392 | 1392 | ||
1393 | ka->use_master_clock = host_tsc_clocksource & vcpus_matched; | 1393 | ka->use_master_clock = host_tsc_clocksource & vcpus_matched; |
1394 | 1394 | ||
1395 | if (ka->use_master_clock) | 1395 | if (ka->use_master_clock) |
1396 | atomic_set(&kvm_guest_has_master_clock, 1); | 1396 | atomic_set(&kvm_guest_has_master_clock, 1); |
1397 | 1397 | ||
1398 | vclock_mode = pvclock_gtod_data.clock.vclock_mode; | 1398 | vclock_mode = pvclock_gtod_data.clock.vclock_mode; |
1399 | trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, | 1399 | trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, |
1400 | vcpus_matched); | 1400 | vcpus_matched); |
1401 | #endif | 1401 | #endif |
1402 | } | 1402 | } |
1403 | 1403 | ||
1404 | static int kvm_guest_time_update(struct kvm_vcpu *v) | 1404 | static int kvm_guest_time_update(struct kvm_vcpu *v) |
1405 | { | 1405 | { |
1406 | unsigned long flags, this_tsc_khz; | 1406 | unsigned long flags, this_tsc_khz; |
1407 | struct kvm_vcpu_arch *vcpu = &v->arch; | 1407 | struct kvm_vcpu_arch *vcpu = &v->arch; |
1408 | struct kvm_arch *ka = &v->kvm->arch; | 1408 | struct kvm_arch *ka = &v->kvm->arch; |
1409 | void *shared_kaddr; | 1409 | void *shared_kaddr; |
1410 | s64 kernel_ns, max_kernel_ns; | 1410 | s64 kernel_ns, max_kernel_ns; |
1411 | u64 tsc_timestamp, host_tsc; | 1411 | u64 tsc_timestamp, host_tsc; |
1412 | struct pvclock_vcpu_time_info *guest_hv_clock; | 1412 | struct pvclock_vcpu_time_info *guest_hv_clock; |
1413 | u8 pvclock_flags; | 1413 | u8 pvclock_flags; |
1414 | bool use_master_clock; | 1414 | bool use_master_clock; |
1415 | 1415 | ||
1416 | kernel_ns = 0; | 1416 | kernel_ns = 0; |
1417 | host_tsc = 0; | 1417 | host_tsc = 0; |
1418 | 1418 | ||
1419 | /* Keep irq disabled to prevent changes to the clock */ | 1419 | /* Keep irq disabled to prevent changes to the clock */ |
1420 | local_irq_save(flags); | 1420 | local_irq_save(flags); |
1421 | this_tsc_khz = __get_cpu_var(cpu_tsc_khz); | 1421 | this_tsc_khz = __get_cpu_var(cpu_tsc_khz); |
1422 | if (unlikely(this_tsc_khz == 0)) { | 1422 | if (unlikely(this_tsc_khz == 0)) { |
1423 | local_irq_restore(flags); | 1423 | local_irq_restore(flags); |
1424 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); | 1424 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); |
1425 | return 1; | 1425 | return 1; |
1426 | } | 1426 | } |
1427 | 1427 | ||
1428 | /* | 1428 | /* |
1429 | * If the host uses TSC clock, then passthrough TSC as stable | 1429 | * If the host uses TSC clock, then passthrough TSC as stable |
1430 | * to the guest. | 1430 | * to the guest. |
1431 | */ | 1431 | */ |
1432 | spin_lock(&ka->pvclock_gtod_sync_lock); | 1432 | spin_lock(&ka->pvclock_gtod_sync_lock); |
1433 | use_master_clock = ka->use_master_clock; | 1433 | use_master_clock = ka->use_master_clock; |
1434 | if (use_master_clock) { | 1434 | if (use_master_clock) { |
1435 | host_tsc = ka->master_cycle_now; | 1435 | host_tsc = ka->master_cycle_now; |
1436 | kernel_ns = ka->master_kernel_ns; | 1436 | kernel_ns = ka->master_kernel_ns; |
1437 | } | 1437 | } |
1438 | spin_unlock(&ka->pvclock_gtod_sync_lock); | 1438 | spin_unlock(&ka->pvclock_gtod_sync_lock); |
1439 | if (!use_master_clock) { | 1439 | if (!use_master_clock) { |
1440 | host_tsc = native_read_tsc(); | 1440 | host_tsc = native_read_tsc(); |
1441 | kernel_ns = get_kernel_ns(); | 1441 | kernel_ns = get_kernel_ns(); |
1442 | } | 1442 | } |
1443 | 1443 | ||
1444 | tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc); | 1444 | tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc); |
1445 | 1445 | ||
1446 | /* | 1446 | /* |
1447 | * We may have to catch up the TSC to match elapsed wall clock | 1447 | * We may have to catch up the TSC to match elapsed wall clock |
1448 | * time for two reasons, even if kvmclock is used. | 1448 | * time for two reasons, even if kvmclock is used. |
1449 | * 1) CPU could have been running below the maximum TSC rate | 1449 | * 1) CPU could have been running below the maximum TSC rate |
1450 | * 2) Broken TSC compensation resets the base at each VCPU | 1450 | * 2) Broken TSC compensation resets the base at each VCPU |
1451 | * entry to avoid unknown leaps of TSC even when running | 1451 | * entry to avoid unknown leaps of TSC even when running |
1452 | * again on the same CPU. This may cause apparent elapsed | 1452 | * again on the same CPU. This may cause apparent elapsed |
1453 | * time to disappear, and the guest to stand still or run | 1453 | * time to disappear, and the guest to stand still or run |
1454 | * very slowly. | 1454 | * very slowly. |
1455 | */ | 1455 | */ |
1456 | if (vcpu->tsc_catchup) { | 1456 | if (vcpu->tsc_catchup) { |
1457 | u64 tsc = compute_guest_tsc(v, kernel_ns); | 1457 | u64 tsc = compute_guest_tsc(v, kernel_ns); |
1458 | if (tsc > tsc_timestamp) { | 1458 | if (tsc > tsc_timestamp) { |
1459 | adjust_tsc_offset_guest(v, tsc - tsc_timestamp); | 1459 | adjust_tsc_offset_guest(v, tsc - tsc_timestamp); |
1460 | tsc_timestamp = tsc; | 1460 | tsc_timestamp = tsc; |
1461 | } | 1461 | } |
1462 | } | 1462 | } |
1463 | 1463 | ||
1464 | local_irq_restore(flags); | 1464 | local_irq_restore(flags); |
1465 | 1465 | ||
1466 | if (!vcpu->time_page) | 1466 | if (!vcpu->time_page) |
1467 | return 0; | 1467 | return 0; |
1468 | 1468 | ||
1469 | /* | 1469 | /* |
1470 | * Time as measured by the TSC may go backwards when resetting the base | 1470 | * Time as measured by the TSC may go backwards when resetting the base |
1471 | * tsc_timestamp. The reason for this is that the TSC resolution is | 1471 | * tsc_timestamp. The reason for this is that the TSC resolution is |
1472 | * higher than the resolution of the other clock scales. Thus, many | 1472 | * higher than the resolution of the other clock scales. Thus, many |
1473 | * possible measurments of the TSC correspond to one measurement of any | 1473 | * possible measurments of the TSC correspond to one measurement of any |
1474 | * other clock, and so a spread of values is possible. This is not a | 1474 | * other clock, and so a spread of values is possible. This is not a |
1475 | * problem for the computation of the nanosecond clock; with TSC rates | 1475 | * problem for the computation of the nanosecond clock; with TSC rates |
1476 | * around 1GHZ, there can only be a few cycles which correspond to one | 1476 | * around 1GHZ, there can only be a few cycles which correspond to one |
1477 | * nanosecond value, and any path through this code will inevitably | 1477 | * nanosecond value, and any path through this code will inevitably |
1478 | * take longer than that. However, with the kernel_ns value itself, | 1478 | * take longer than that. However, with the kernel_ns value itself, |
1479 | * the precision may be much lower, down to HZ granularity. If the | 1479 | * the precision may be much lower, down to HZ granularity. If the |
1480 | * first sampling of TSC against kernel_ns ends in the low part of the | 1480 | * first sampling of TSC against kernel_ns ends in the low part of the |
1481 | * range, and the second in the high end of the range, we can get: | 1481 | * range, and the second in the high end of the range, we can get: |
1482 | * | 1482 | * |
1483 | * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new | 1483 | * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new |
1484 | * | 1484 | * |
1485 | * As the sampling errors potentially range in the thousands of cycles, | 1485 | * As the sampling errors potentially range in the thousands of cycles, |
1486 | * it is possible such a time value has already been observed by the | 1486 | * it is possible such a time value has already been observed by the |
1487 | * guest. To protect against this, we must compute the system time as | 1487 | * guest. To protect against this, we must compute the system time as |
1488 | * observed by the guest and ensure the new system time is greater. | 1488 | * observed by the guest and ensure the new system time is greater. |
1489 | */ | 1489 | */ |
1490 | max_kernel_ns = 0; | 1490 | max_kernel_ns = 0; |
1491 | if (vcpu->hv_clock.tsc_timestamp) { | 1491 | if (vcpu->hv_clock.tsc_timestamp) { |
1492 | max_kernel_ns = vcpu->last_guest_tsc - | 1492 | max_kernel_ns = vcpu->last_guest_tsc - |
1493 | vcpu->hv_clock.tsc_timestamp; | 1493 | vcpu->hv_clock.tsc_timestamp; |
1494 | max_kernel_ns = pvclock_scale_delta(max_kernel_ns, | 1494 | max_kernel_ns = pvclock_scale_delta(max_kernel_ns, |
1495 | vcpu->hv_clock.tsc_to_system_mul, | 1495 | vcpu->hv_clock.tsc_to_system_mul, |
1496 | vcpu->hv_clock.tsc_shift); | 1496 | vcpu->hv_clock.tsc_shift); |
1497 | max_kernel_ns += vcpu->last_kernel_ns; | 1497 | max_kernel_ns += vcpu->last_kernel_ns; |
1498 | } | 1498 | } |
1499 | 1499 | ||
1500 | if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) { | 1500 | if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) { |
1501 | kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz, | 1501 | kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz, |
1502 | &vcpu->hv_clock.tsc_shift, | 1502 | &vcpu->hv_clock.tsc_shift, |
1503 | &vcpu->hv_clock.tsc_to_system_mul); | 1503 | &vcpu->hv_clock.tsc_to_system_mul); |
1504 | vcpu->hw_tsc_khz = this_tsc_khz; | 1504 | vcpu->hw_tsc_khz = this_tsc_khz; |
1505 | } | 1505 | } |
1506 | 1506 | ||
1507 | /* with a master <monotonic time, tsc value> tuple, | 1507 | /* with a master <monotonic time, tsc value> tuple, |
1508 | * pvclock clock reads always increase at the (scaled) rate | 1508 | * pvclock clock reads always increase at the (scaled) rate |
1509 | * of guest TSC - no need to deal with sampling errors. | 1509 | * of guest TSC - no need to deal with sampling errors. |
1510 | */ | 1510 | */ |
1511 | if (!use_master_clock) { | 1511 | if (!use_master_clock) { |
1512 | if (max_kernel_ns > kernel_ns) | 1512 | if (max_kernel_ns > kernel_ns) |
1513 | kernel_ns = max_kernel_ns; | 1513 | kernel_ns = max_kernel_ns; |
1514 | } | 1514 | } |
1515 | /* With all the info we got, fill in the values */ | 1515 | /* With all the info we got, fill in the values */ |
1516 | vcpu->hv_clock.tsc_timestamp = tsc_timestamp; | 1516 | vcpu->hv_clock.tsc_timestamp = tsc_timestamp; |
1517 | vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; | 1517 | vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; |
1518 | vcpu->last_kernel_ns = kernel_ns; | 1518 | vcpu->last_kernel_ns = kernel_ns; |
1519 | vcpu->last_guest_tsc = tsc_timestamp; | 1519 | vcpu->last_guest_tsc = tsc_timestamp; |
1520 | 1520 | ||
1521 | /* | 1521 | /* |
1522 | * The interface expects us to write an even number signaling that the | 1522 | * The interface expects us to write an even number signaling that the |
1523 | * update is finished. Since the guest won't see the intermediate | 1523 | * update is finished. Since the guest won't see the intermediate |
1524 | * state, we just increase by 2 at the end. | 1524 | * state, we just increase by 2 at the end. |
1525 | */ | 1525 | */ |
1526 | vcpu->hv_clock.version += 2; | 1526 | vcpu->hv_clock.version += 2; |
1527 | 1527 | ||
1528 | shared_kaddr = kmap_atomic(vcpu->time_page); | 1528 | shared_kaddr = kmap_atomic(vcpu->time_page); |
1529 | 1529 | ||
1530 | guest_hv_clock = shared_kaddr + vcpu->time_offset; | 1530 | guest_hv_clock = shared_kaddr + vcpu->time_offset; |
1531 | 1531 | ||
1532 | /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ | 1532 | /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ |
1533 | pvclock_flags = (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); | 1533 | pvclock_flags = (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); |
1534 | 1534 | ||
1535 | if (vcpu->pvclock_set_guest_stopped_request) { | 1535 | if (vcpu->pvclock_set_guest_stopped_request) { |
1536 | pvclock_flags |= PVCLOCK_GUEST_STOPPED; | 1536 | pvclock_flags |= PVCLOCK_GUEST_STOPPED; |
1537 | vcpu->pvclock_set_guest_stopped_request = false; | 1537 | vcpu->pvclock_set_guest_stopped_request = false; |
1538 | } | 1538 | } |
1539 | 1539 | ||
1540 | /* If the host uses TSC clocksource, then it is stable */ | 1540 | /* If the host uses TSC clocksource, then it is stable */ |
1541 | if (use_master_clock) | 1541 | if (use_master_clock) |
1542 | pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; | 1542 | pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; |
1543 | 1543 | ||
1544 | vcpu->hv_clock.flags = pvclock_flags; | 1544 | vcpu->hv_clock.flags = pvclock_flags; |
1545 | 1545 | ||
1546 | memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock, | 1546 | memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock, |
1547 | sizeof(vcpu->hv_clock)); | 1547 | sizeof(vcpu->hv_clock)); |
1548 | 1548 | ||
1549 | kunmap_atomic(shared_kaddr); | 1549 | kunmap_atomic(shared_kaddr); |
1550 | 1550 | ||
1551 | mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT); | 1551 | mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT); |
1552 | return 0; | 1552 | return 0; |
1553 | } | 1553 | } |
1554 | 1554 | ||
1555 | static bool msr_mtrr_valid(unsigned msr) | 1555 | static bool msr_mtrr_valid(unsigned msr) |
1556 | { | 1556 | { |
1557 | switch (msr) { | 1557 | switch (msr) { |
1558 | case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1: | 1558 | case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1: |
1559 | case MSR_MTRRfix64K_00000: | 1559 | case MSR_MTRRfix64K_00000: |
1560 | case MSR_MTRRfix16K_80000: | 1560 | case MSR_MTRRfix16K_80000: |
1561 | case MSR_MTRRfix16K_A0000: | 1561 | case MSR_MTRRfix16K_A0000: |
1562 | case MSR_MTRRfix4K_C0000: | 1562 | case MSR_MTRRfix4K_C0000: |
1563 | case MSR_MTRRfix4K_C8000: | 1563 | case MSR_MTRRfix4K_C8000: |
1564 | case MSR_MTRRfix4K_D0000: | 1564 | case MSR_MTRRfix4K_D0000: |
1565 | case MSR_MTRRfix4K_D8000: | 1565 | case MSR_MTRRfix4K_D8000: |
1566 | case MSR_MTRRfix4K_E0000: | 1566 | case MSR_MTRRfix4K_E0000: |
1567 | case MSR_MTRRfix4K_E8000: | 1567 | case MSR_MTRRfix4K_E8000: |
1568 | case MSR_MTRRfix4K_F0000: | 1568 | case MSR_MTRRfix4K_F0000: |
1569 | case MSR_MTRRfix4K_F8000: | 1569 | case MSR_MTRRfix4K_F8000: |
1570 | case MSR_MTRRdefType: | 1570 | case MSR_MTRRdefType: |
1571 | case MSR_IA32_CR_PAT: | 1571 | case MSR_IA32_CR_PAT: |
1572 | return true; | 1572 | return true; |
1573 | case 0x2f8: | 1573 | case 0x2f8: |
1574 | return true; | 1574 | return true; |
1575 | } | 1575 | } |
1576 | return false; | 1576 | return false; |
1577 | } | 1577 | } |
1578 | 1578 | ||
1579 | static bool valid_pat_type(unsigned t) | 1579 | static bool valid_pat_type(unsigned t) |
1580 | { | 1580 | { |
1581 | return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */ | 1581 | return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */ |
1582 | } | 1582 | } |
1583 | 1583 | ||
1584 | static bool valid_mtrr_type(unsigned t) | 1584 | static bool valid_mtrr_type(unsigned t) |
1585 | { | 1585 | { |
1586 | return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */ | 1586 | return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */ |
1587 | } | 1587 | } |
1588 | 1588 | ||
1589 | static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data) | 1589 | static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data) |
1590 | { | 1590 | { |
1591 | int i; | 1591 | int i; |
1592 | 1592 | ||
1593 | if (!msr_mtrr_valid(msr)) | 1593 | if (!msr_mtrr_valid(msr)) |
1594 | return false; | 1594 | return false; |
1595 | 1595 | ||
1596 | if (msr == MSR_IA32_CR_PAT) { | 1596 | if (msr == MSR_IA32_CR_PAT) { |
1597 | for (i = 0; i < 8; i++) | 1597 | for (i = 0; i < 8; i++) |
1598 | if (!valid_pat_type((data >> (i * 8)) & 0xff)) | 1598 | if (!valid_pat_type((data >> (i * 8)) & 0xff)) |
1599 | return false; | 1599 | return false; |
1600 | return true; | 1600 | return true; |
1601 | } else if (msr == MSR_MTRRdefType) { | 1601 | } else if (msr == MSR_MTRRdefType) { |
1602 | if (data & ~0xcff) | 1602 | if (data & ~0xcff) |
1603 | return false; | 1603 | return false; |
1604 | return valid_mtrr_type(data & 0xff); | 1604 | return valid_mtrr_type(data & 0xff); |
1605 | } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) { | 1605 | } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) { |
1606 | for (i = 0; i < 8 ; i++) | 1606 | for (i = 0; i < 8 ; i++) |
1607 | if (!valid_mtrr_type((data >> (i * 8)) & 0xff)) | 1607 | if (!valid_mtrr_type((data >> (i * 8)) & 0xff)) |
1608 | return false; | 1608 | return false; |
1609 | return true; | 1609 | return true; |
1610 | } | 1610 | } |
1611 | 1611 | ||
1612 | /* variable MTRRs */ | 1612 | /* variable MTRRs */ |
1613 | return valid_mtrr_type(data & 0xff); | 1613 | return valid_mtrr_type(data & 0xff); |
1614 | } | 1614 | } |
1615 | 1615 | ||
1616 | static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data) | 1616 | static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data) |
1617 | { | 1617 | { |
1618 | u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; | 1618 | u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; |
1619 | 1619 | ||
1620 | if (!mtrr_valid(vcpu, msr, data)) | 1620 | if (!mtrr_valid(vcpu, msr, data)) |
1621 | return 1; | 1621 | return 1; |
1622 | 1622 | ||
1623 | if (msr == MSR_MTRRdefType) { | 1623 | if (msr == MSR_MTRRdefType) { |
1624 | vcpu->arch.mtrr_state.def_type = data; | 1624 | vcpu->arch.mtrr_state.def_type = data; |
1625 | vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10; | 1625 | vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10; |
1626 | } else if (msr == MSR_MTRRfix64K_00000) | 1626 | } else if (msr == MSR_MTRRfix64K_00000) |
1627 | p[0] = data; | 1627 | p[0] = data; |
1628 | else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) | 1628 | else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) |
1629 | p[1 + msr - MSR_MTRRfix16K_80000] = data; | 1629 | p[1 + msr - MSR_MTRRfix16K_80000] = data; |
1630 | else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) | 1630 | else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) |
1631 | p[3 + msr - MSR_MTRRfix4K_C0000] = data; | 1631 | p[3 + msr - MSR_MTRRfix4K_C0000] = data; |
1632 | else if (msr == MSR_IA32_CR_PAT) | 1632 | else if (msr == MSR_IA32_CR_PAT) |
1633 | vcpu->arch.pat = data; | 1633 | vcpu->arch.pat = data; |
1634 | else { /* Variable MTRRs */ | 1634 | else { /* Variable MTRRs */ |
1635 | int idx, is_mtrr_mask; | 1635 | int idx, is_mtrr_mask; |
1636 | u64 *pt; | 1636 | u64 *pt; |
1637 | 1637 | ||
1638 | idx = (msr - 0x200) / 2; | 1638 | idx = (msr - 0x200) / 2; |
1639 | is_mtrr_mask = msr - 0x200 - 2 * idx; | 1639 | is_mtrr_mask = msr - 0x200 - 2 * idx; |
1640 | if (!is_mtrr_mask) | 1640 | if (!is_mtrr_mask) |
1641 | pt = | 1641 | pt = |
1642 | (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; | 1642 | (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; |
1643 | else | 1643 | else |
1644 | pt = | 1644 | pt = |
1645 | (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; | 1645 | (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; |
1646 | *pt = data; | 1646 | *pt = data; |
1647 | } | 1647 | } |
1648 | 1648 | ||
1649 | kvm_mmu_reset_context(vcpu); | 1649 | kvm_mmu_reset_context(vcpu); |
1650 | return 0; | 1650 | return 0; |
1651 | } | 1651 | } |
1652 | 1652 | ||
1653 | static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data) | 1653 | static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data) |
1654 | { | 1654 | { |
1655 | u64 mcg_cap = vcpu->arch.mcg_cap; | 1655 | u64 mcg_cap = vcpu->arch.mcg_cap; |
1656 | unsigned bank_num = mcg_cap & 0xff; | 1656 | unsigned bank_num = mcg_cap & 0xff; |
1657 | 1657 | ||
1658 | switch (msr) { | 1658 | switch (msr) { |
1659 | case MSR_IA32_MCG_STATUS: | 1659 | case MSR_IA32_MCG_STATUS: |
1660 | vcpu->arch.mcg_status = data; | 1660 | vcpu->arch.mcg_status = data; |
1661 | break; | 1661 | break; |
1662 | case MSR_IA32_MCG_CTL: | 1662 | case MSR_IA32_MCG_CTL: |
1663 | if (!(mcg_cap & MCG_CTL_P)) | 1663 | if (!(mcg_cap & MCG_CTL_P)) |
1664 | return 1; | 1664 | return 1; |
1665 | if (data != 0 && data != ~(u64)0) | 1665 | if (data != 0 && data != ~(u64)0) |
1666 | return -1; | 1666 | return -1; |
1667 | vcpu->arch.mcg_ctl = data; | 1667 | vcpu->arch.mcg_ctl = data; |
1668 | break; | 1668 | break; |
1669 | default: | 1669 | default: |
1670 | if (msr >= MSR_IA32_MC0_CTL && | 1670 | if (msr >= MSR_IA32_MC0_CTL && |
1671 | msr < MSR_IA32_MC0_CTL + 4 * bank_num) { | 1671 | msr < MSR_IA32_MC0_CTL + 4 * bank_num) { |
1672 | u32 offset = msr - MSR_IA32_MC0_CTL; | 1672 | u32 offset = msr - MSR_IA32_MC0_CTL; |
1673 | /* only 0 or all 1s can be written to IA32_MCi_CTL | 1673 | /* only 0 or all 1s can be written to IA32_MCi_CTL |
1674 | * some Linux kernels though clear bit 10 in bank 4 to | 1674 | * some Linux kernels though clear bit 10 in bank 4 to |
1675 | * workaround a BIOS/GART TBL issue on AMD K8s, ignore | 1675 | * workaround a BIOS/GART TBL issue on AMD K8s, ignore |
1676 | * this to avoid an uncatched #GP in the guest | 1676 | * this to avoid an uncatched #GP in the guest |
1677 | */ | 1677 | */ |
1678 | if ((offset & 0x3) == 0 && | 1678 | if ((offset & 0x3) == 0 && |
1679 | data != 0 && (data | (1 << 10)) != ~(u64)0) | 1679 | data != 0 && (data | (1 << 10)) != ~(u64)0) |
1680 | return -1; | 1680 | return -1; |
1681 | vcpu->arch.mce_banks[offset] = data; | 1681 | vcpu->arch.mce_banks[offset] = data; |
1682 | break; | 1682 | break; |
1683 | } | 1683 | } |
1684 | return 1; | 1684 | return 1; |
1685 | } | 1685 | } |
1686 | return 0; | 1686 | return 0; |
1687 | } | 1687 | } |
1688 | 1688 | ||
1689 | static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) | 1689 | static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) |
1690 | { | 1690 | { |
1691 | struct kvm *kvm = vcpu->kvm; | 1691 | struct kvm *kvm = vcpu->kvm; |
1692 | int lm = is_long_mode(vcpu); | 1692 | int lm = is_long_mode(vcpu); |
1693 | u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 | 1693 | u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 |
1694 | : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; | 1694 | : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; |
1695 | u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 | 1695 | u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 |
1696 | : kvm->arch.xen_hvm_config.blob_size_32; | 1696 | : kvm->arch.xen_hvm_config.blob_size_32; |
1697 | u32 page_num = data & ~PAGE_MASK; | 1697 | u32 page_num = data & ~PAGE_MASK; |
1698 | u64 page_addr = data & PAGE_MASK; | 1698 | u64 page_addr = data & PAGE_MASK; |
1699 | u8 *page; | 1699 | u8 *page; |
1700 | int r; | 1700 | int r; |
1701 | 1701 | ||
1702 | r = -E2BIG; | 1702 | r = -E2BIG; |
1703 | if (page_num >= blob_size) | 1703 | if (page_num >= blob_size) |
1704 | goto out; | 1704 | goto out; |
1705 | r = -ENOMEM; | 1705 | r = -ENOMEM; |
1706 | page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); | 1706 | page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); |
1707 | if (IS_ERR(page)) { | 1707 | if (IS_ERR(page)) { |
1708 | r = PTR_ERR(page); | 1708 | r = PTR_ERR(page); |
1709 | goto out; | 1709 | goto out; |
1710 | } | 1710 | } |
1711 | if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE)) | 1711 | if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE)) |
1712 | goto out_free; | 1712 | goto out_free; |
1713 | r = 0; | 1713 | r = 0; |
1714 | out_free: | 1714 | out_free: |
1715 | kfree(page); | 1715 | kfree(page); |
1716 | out: | 1716 | out: |
1717 | return r; | 1717 | return r; |
1718 | } | 1718 | } |
1719 | 1719 | ||
1720 | static bool kvm_hv_hypercall_enabled(struct kvm *kvm) | 1720 | static bool kvm_hv_hypercall_enabled(struct kvm *kvm) |
1721 | { | 1721 | { |
1722 | return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE; | 1722 | return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE; |
1723 | } | 1723 | } |
1724 | 1724 | ||
1725 | static bool kvm_hv_msr_partition_wide(u32 msr) | 1725 | static bool kvm_hv_msr_partition_wide(u32 msr) |
1726 | { | 1726 | { |
1727 | bool r = false; | 1727 | bool r = false; |
1728 | switch (msr) { | 1728 | switch (msr) { |
1729 | case HV_X64_MSR_GUEST_OS_ID: | 1729 | case HV_X64_MSR_GUEST_OS_ID: |
1730 | case HV_X64_MSR_HYPERCALL: | 1730 | case HV_X64_MSR_HYPERCALL: |
1731 | r = true; | 1731 | r = true; |
1732 | break; | 1732 | break; |
1733 | } | 1733 | } |
1734 | 1734 | ||
1735 | return r; | 1735 | return r; |
1736 | } | 1736 | } |
1737 | 1737 | ||
1738 | static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data) | 1738 | static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data) |
1739 | { | 1739 | { |
1740 | struct kvm *kvm = vcpu->kvm; | 1740 | struct kvm *kvm = vcpu->kvm; |
1741 | 1741 | ||
1742 | switch (msr) { | 1742 | switch (msr) { |
1743 | case HV_X64_MSR_GUEST_OS_ID: | 1743 | case HV_X64_MSR_GUEST_OS_ID: |
1744 | kvm->arch.hv_guest_os_id = data; | 1744 | kvm->arch.hv_guest_os_id = data; |
1745 | /* setting guest os id to zero disables hypercall page */ | 1745 | /* setting guest os id to zero disables hypercall page */ |
1746 | if (!kvm->arch.hv_guest_os_id) | 1746 | if (!kvm->arch.hv_guest_os_id) |
1747 | kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE; | 1747 | kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE; |
1748 | break; | 1748 | break; |
1749 | case HV_X64_MSR_HYPERCALL: { | 1749 | case HV_X64_MSR_HYPERCALL: { |
1750 | u64 gfn; | 1750 | u64 gfn; |
1751 | unsigned long addr; | 1751 | unsigned long addr; |
1752 | u8 instructions[4]; | 1752 | u8 instructions[4]; |
1753 | 1753 | ||
1754 | /* if guest os id is not set hypercall should remain disabled */ | 1754 | /* if guest os id is not set hypercall should remain disabled */ |
1755 | if (!kvm->arch.hv_guest_os_id) | 1755 | if (!kvm->arch.hv_guest_os_id) |
1756 | break; | 1756 | break; |
1757 | if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) { | 1757 | if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) { |
1758 | kvm->arch.hv_hypercall = data; | 1758 | kvm->arch.hv_hypercall = data; |
1759 | break; | 1759 | break; |
1760 | } | 1760 | } |
1761 | gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT; | 1761 | gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT; |
1762 | addr = gfn_to_hva(kvm, gfn); | 1762 | addr = gfn_to_hva(kvm, gfn); |
1763 | if (kvm_is_error_hva(addr)) | 1763 | if (kvm_is_error_hva(addr)) |
1764 | return 1; | 1764 | return 1; |
1765 | kvm_x86_ops->patch_hypercall(vcpu, instructions); | 1765 | kvm_x86_ops->patch_hypercall(vcpu, instructions); |
1766 | ((unsigned char *)instructions)[3] = 0xc3; /* ret */ | 1766 | ((unsigned char *)instructions)[3] = 0xc3; /* ret */ |
1767 | if (__copy_to_user((void __user *)addr, instructions, 4)) | 1767 | if (__copy_to_user((void __user *)addr, instructions, 4)) |
1768 | return 1; | 1768 | return 1; |
1769 | kvm->arch.hv_hypercall = data; | 1769 | kvm->arch.hv_hypercall = data; |
1770 | break; | 1770 | break; |
1771 | } | 1771 | } |
1772 | default: | 1772 | default: |
1773 | vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " | 1773 | vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " |
1774 | "data 0x%llx\n", msr, data); | 1774 | "data 0x%llx\n", msr, data); |
1775 | return 1; | 1775 | return 1; |
1776 | } | 1776 | } |
1777 | return 0; | 1777 | return 0; |
1778 | } | 1778 | } |
1779 | 1779 | ||
1780 | static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data) | 1780 | static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data) |
1781 | { | 1781 | { |
1782 | switch (msr) { | 1782 | switch (msr) { |
1783 | case HV_X64_MSR_APIC_ASSIST_PAGE: { | 1783 | case HV_X64_MSR_APIC_ASSIST_PAGE: { |
1784 | unsigned long addr; | 1784 | unsigned long addr; |
1785 | 1785 | ||
1786 | if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) { | 1786 | if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) { |
1787 | vcpu->arch.hv_vapic = data; | 1787 | vcpu->arch.hv_vapic = data; |
1788 | break; | 1788 | break; |
1789 | } | 1789 | } |
1790 | addr = gfn_to_hva(vcpu->kvm, data >> | 1790 | addr = gfn_to_hva(vcpu->kvm, data >> |
1791 | HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT); | 1791 | HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT); |
1792 | if (kvm_is_error_hva(addr)) | 1792 | if (kvm_is_error_hva(addr)) |
1793 | return 1; | 1793 | return 1; |
1794 | if (__clear_user((void __user *)addr, PAGE_SIZE)) | 1794 | if (__clear_user((void __user *)addr, PAGE_SIZE)) |
1795 | return 1; | 1795 | return 1; |
1796 | vcpu->arch.hv_vapic = data; | 1796 | vcpu->arch.hv_vapic = data; |
1797 | break; | 1797 | break; |
1798 | } | 1798 | } |
1799 | case HV_X64_MSR_EOI: | 1799 | case HV_X64_MSR_EOI: |
1800 | return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data); | 1800 | return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data); |
1801 | case HV_X64_MSR_ICR: | 1801 | case HV_X64_MSR_ICR: |
1802 | return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data); | 1802 | return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data); |
1803 | case HV_X64_MSR_TPR: | 1803 | case HV_X64_MSR_TPR: |
1804 | return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data); | 1804 | return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data); |
1805 | default: | 1805 | default: |
1806 | vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " | 1806 | vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " |
1807 | "data 0x%llx\n", msr, data); | 1807 | "data 0x%llx\n", msr, data); |
1808 | return 1; | 1808 | return 1; |
1809 | } | 1809 | } |
1810 | 1810 | ||
1811 | return 0; | 1811 | return 0; |
1812 | } | 1812 | } |
1813 | 1813 | ||
1814 | static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) | 1814 | static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) |
1815 | { | 1815 | { |
1816 | gpa_t gpa = data & ~0x3f; | 1816 | gpa_t gpa = data & ~0x3f; |
1817 | 1817 | ||
1818 | /* Bits 2:5 are reserved, Should be zero */ | 1818 | /* Bits 2:5 are reserved, Should be zero */ |
1819 | if (data & 0x3c) | 1819 | if (data & 0x3c) |
1820 | return 1; | 1820 | return 1; |
1821 | 1821 | ||
1822 | vcpu->arch.apf.msr_val = data; | 1822 | vcpu->arch.apf.msr_val = data; |
1823 | 1823 | ||
1824 | if (!(data & KVM_ASYNC_PF_ENABLED)) { | 1824 | if (!(data & KVM_ASYNC_PF_ENABLED)) { |
1825 | kvm_clear_async_pf_completion_queue(vcpu); | 1825 | kvm_clear_async_pf_completion_queue(vcpu); |
1826 | kvm_async_pf_hash_reset(vcpu); | 1826 | kvm_async_pf_hash_reset(vcpu); |
1827 | return 0; | 1827 | return 0; |
1828 | } | 1828 | } |
1829 | 1829 | ||
1830 | if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa)) | 1830 | if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa)) |
1831 | return 1; | 1831 | return 1; |
1832 | 1832 | ||
1833 | vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); | 1833 | vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); |
1834 | kvm_async_pf_wakeup_all(vcpu); | 1834 | kvm_async_pf_wakeup_all(vcpu); |
1835 | return 0; | 1835 | return 0; |
1836 | } | 1836 | } |
1837 | 1837 | ||
1838 | static void kvmclock_reset(struct kvm_vcpu *vcpu) | 1838 | static void kvmclock_reset(struct kvm_vcpu *vcpu) |
1839 | { | 1839 | { |
1840 | if (vcpu->arch.time_page) { | 1840 | if (vcpu->arch.time_page) { |
1841 | kvm_release_page_dirty(vcpu->arch.time_page); | 1841 | kvm_release_page_dirty(vcpu->arch.time_page); |
1842 | vcpu->arch.time_page = NULL; | 1842 | vcpu->arch.time_page = NULL; |
1843 | } | 1843 | } |
1844 | } | 1844 | } |
1845 | 1845 | ||
1846 | static void accumulate_steal_time(struct kvm_vcpu *vcpu) | 1846 | static void accumulate_steal_time(struct kvm_vcpu *vcpu) |
1847 | { | 1847 | { |
1848 | u64 delta; | 1848 | u64 delta; |
1849 | 1849 | ||
1850 | if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) | 1850 | if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) |
1851 | return; | 1851 | return; |
1852 | 1852 | ||
1853 | delta = current->sched_info.run_delay - vcpu->arch.st.last_steal; | 1853 | delta = current->sched_info.run_delay - vcpu->arch.st.last_steal; |
1854 | vcpu->arch.st.last_steal = current->sched_info.run_delay; | 1854 | vcpu->arch.st.last_steal = current->sched_info.run_delay; |
1855 | vcpu->arch.st.accum_steal = delta; | 1855 | vcpu->arch.st.accum_steal = delta; |
1856 | } | 1856 | } |
1857 | 1857 | ||
1858 | static void record_steal_time(struct kvm_vcpu *vcpu) | 1858 | static void record_steal_time(struct kvm_vcpu *vcpu) |
1859 | { | 1859 | { |
1860 | if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) | 1860 | if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) |
1861 | return; | 1861 | return; |
1862 | 1862 | ||
1863 | if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, | 1863 | if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, |
1864 | &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)))) | 1864 | &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)))) |
1865 | return; | 1865 | return; |
1866 | 1866 | ||
1867 | vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal; | 1867 | vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal; |
1868 | vcpu->arch.st.steal.version += 2; | 1868 | vcpu->arch.st.steal.version += 2; |
1869 | vcpu->arch.st.accum_steal = 0; | 1869 | vcpu->arch.st.accum_steal = 0; |
1870 | 1870 | ||
1871 | kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, | 1871 | kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, |
1872 | &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); | 1872 | &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); |
1873 | } | 1873 | } |
1874 | 1874 | ||
1875 | int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) | 1875 | int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) |
1876 | { | 1876 | { |
1877 | bool pr = false; | 1877 | bool pr = false; |
1878 | u32 msr = msr_info->index; | 1878 | u32 msr = msr_info->index; |
1879 | u64 data = msr_info->data; | 1879 | u64 data = msr_info->data; |
1880 | 1880 | ||
1881 | switch (msr) { | 1881 | switch (msr) { |
1882 | case MSR_EFER: | 1882 | case MSR_EFER: |
1883 | return set_efer(vcpu, data); | 1883 | return set_efer(vcpu, data); |
1884 | case MSR_K7_HWCR: | 1884 | case MSR_K7_HWCR: |
1885 | data &= ~(u64)0x40; /* ignore flush filter disable */ | 1885 | data &= ~(u64)0x40; /* ignore flush filter disable */ |
1886 | data &= ~(u64)0x100; /* ignore ignne emulation enable */ | 1886 | data &= ~(u64)0x100; /* ignore ignne emulation enable */ |
1887 | data &= ~(u64)0x8; /* ignore TLB cache disable */ | 1887 | data &= ~(u64)0x8; /* ignore TLB cache disable */ |
1888 | if (data != 0) { | 1888 | if (data != 0) { |
1889 | vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", | 1889 | vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", |
1890 | data); | 1890 | data); |
1891 | return 1; | 1891 | return 1; |
1892 | } | 1892 | } |
1893 | break; | 1893 | break; |
1894 | case MSR_FAM10H_MMIO_CONF_BASE: | 1894 | case MSR_FAM10H_MMIO_CONF_BASE: |
1895 | if (data != 0) { | 1895 | if (data != 0) { |
1896 | vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " | 1896 | vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " |
1897 | "0x%llx\n", data); | 1897 | "0x%llx\n", data); |
1898 | return 1; | 1898 | return 1; |
1899 | } | 1899 | } |
1900 | break; | 1900 | break; |
1901 | case MSR_AMD64_NB_CFG: | 1901 | case MSR_AMD64_NB_CFG: |
1902 | break; | 1902 | break; |
1903 | case MSR_IA32_DEBUGCTLMSR: | 1903 | case MSR_IA32_DEBUGCTLMSR: |
1904 | if (!data) { | 1904 | if (!data) { |
1905 | /* We support the non-activated case already */ | 1905 | /* We support the non-activated case already */ |
1906 | break; | 1906 | break; |
1907 | } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { | 1907 | } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { |
1908 | /* Values other than LBR and BTF are vendor-specific, | 1908 | /* Values other than LBR and BTF are vendor-specific, |
1909 | thus reserved and should throw a #GP */ | 1909 | thus reserved and should throw a #GP */ |
1910 | return 1; | 1910 | return 1; |
1911 | } | 1911 | } |
1912 | vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", | 1912 | vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", |
1913 | __func__, data); | 1913 | __func__, data); |
1914 | break; | 1914 | break; |
1915 | case MSR_IA32_UCODE_REV: | 1915 | case MSR_IA32_UCODE_REV: |
1916 | case MSR_IA32_UCODE_WRITE: | 1916 | case MSR_IA32_UCODE_WRITE: |
1917 | case MSR_VM_HSAVE_PA: | 1917 | case MSR_VM_HSAVE_PA: |
1918 | case MSR_AMD64_PATCH_LOADER: | 1918 | case MSR_AMD64_PATCH_LOADER: |
1919 | break; | 1919 | break; |
1920 | case 0x200 ... 0x2ff: | 1920 | case 0x200 ... 0x2ff: |
1921 | return set_msr_mtrr(vcpu, msr, data); | 1921 | return set_msr_mtrr(vcpu, msr, data); |
1922 | case MSR_IA32_APICBASE: | 1922 | case MSR_IA32_APICBASE: |
1923 | kvm_set_apic_base(vcpu, data); | 1923 | kvm_set_apic_base(vcpu, data); |
1924 | break; | 1924 | break; |
1925 | case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: | 1925 | case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: |
1926 | return kvm_x2apic_msr_write(vcpu, msr, data); | 1926 | return kvm_x2apic_msr_write(vcpu, msr, data); |
1927 | case MSR_IA32_TSCDEADLINE: | 1927 | case MSR_IA32_TSCDEADLINE: |
1928 | kvm_set_lapic_tscdeadline_msr(vcpu, data); | 1928 | kvm_set_lapic_tscdeadline_msr(vcpu, data); |
1929 | break; | 1929 | break; |
1930 | case MSR_IA32_TSC_ADJUST: | 1930 | case MSR_IA32_TSC_ADJUST: |
1931 | if (guest_cpuid_has_tsc_adjust(vcpu)) { | 1931 | if (guest_cpuid_has_tsc_adjust(vcpu)) { |
1932 | if (!msr_info->host_initiated) { | 1932 | if (!msr_info->host_initiated) { |
1933 | u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; | 1933 | u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; |
1934 | kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true); | 1934 | kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true); |
1935 | } | 1935 | } |
1936 | vcpu->arch.ia32_tsc_adjust_msr = data; | 1936 | vcpu->arch.ia32_tsc_adjust_msr = data; |
1937 | } | 1937 | } |
1938 | break; | 1938 | break; |
1939 | case MSR_IA32_MISC_ENABLE: | 1939 | case MSR_IA32_MISC_ENABLE: |
1940 | vcpu->arch.ia32_misc_enable_msr = data; | 1940 | vcpu->arch.ia32_misc_enable_msr = data; |
1941 | break; | 1941 | break; |
1942 | case MSR_KVM_WALL_CLOCK_NEW: | 1942 | case MSR_KVM_WALL_CLOCK_NEW: |
1943 | case MSR_KVM_WALL_CLOCK: | 1943 | case MSR_KVM_WALL_CLOCK: |
1944 | vcpu->kvm->arch.wall_clock = data; | 1944 | vcpu->kvm->arch.wall_clock = data; |
1945 | kvm_write_wall_clock(vcpu->kvm, data); | 1945 | kvm_write_wall_clock(vcpu->kvm, data); |
1946 | break; | 1946 | break; |
1947 | case MSR_KVM_SYSTEM_TIME_NEW: | 1947 | case MSR_KVM_SYSTEM_TIME_NEW: |
1948 | case MSR_KVM_SYSTEM_TIME: { | 1948 | case MSR_KVM_SYSTEM_TIME: { |
1949 | kvmclock_reset(vcpu); | 1949 | kvmclock_reset(vcpu); |
1950 | 1950 | ||
1951 | vcpu->arch.time = data; | 1951 | vcpu->arch.time = data; |
1952 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); | 1952 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
1953 | 1953 | ||
1954 | /* we verify if the enable bit is set... */ | 1954 | /* we verify if the enable bit is set... */ |
1955 | if (!(data & 1)) | 1955 | if (!(data & 1)) |
1956 | break; | 1956 | break; |
1957 | 1957 | ||
1958 | /* ...but clean it before doing the actual write */ | 1958 | /* ...but clean it before doing the actual write */ |
1959 | vcpu->arch.time_offset = data & ~(PAGE_MASK | 1); | 1959 | vcpu->arch.time_offset = data & ~(PAGE_MASK | 1); |
1960 | 1960 | ||
1961 | vcpu->arch.time_page = | 1961 | vcpu->arch.time_page = |
1962 | gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT); | 1962 | gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT); |
1963 | 1963 | ||
1964 | if (is_error_page(vcpu->arch.time_page)) | 1964 | if (is_error_page(vcpu->arch.time_page)) |
1965 | vcpu->arch.time_page = NULL; | 1965 | vcpu->arch.time_page = NULL; |
1966 | 1966 | ||
1967 | break; | 1967 | break; |
1968 | } | 1968 | } |
1969 | case MSR_KVM_ASYNC_PF_EN: | 1969 | case MSR_KVM_ASYNC_PF_EN: |
1970 | if (kvm_pv_enable_async_pf(vcpu, data)) | 1970 | if (kvm_pv_enable_async_pf(vcpu, data)) |
1971 | return 1; | 1971 | return 1; |
1972 | break; | 1972 | break; |
1973 | case MSR_KVM_STEAL_TIME: | 1973 | case MSR_KVM_STEAL_TIME: |
1974 | 1974 | ||
1975 | if (unlikely(!sched_info_on())) | 1975 | if (unlikely(!sched_info_on())) |
1976 | return 1; | 1976 | return 1; |
1977 | 1977 | ||
1978 | if (data & KVM_STEAL_RESERVED_MASK) | 1978 | if (data & KVM_STEAL_RESERVED_MASK) |
1979 | return 1; | 1979 | return 1; |
1980 | 1980 | ||
1981 | if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime, | 1981 | if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime, |
1982 | data & KVM_STEAL_VALID_BITS)) | 1982 | data & KVM_STEAL_VALID_BITS)) |
1983 | return 1; | 1983 | return 1; |
1984 | 1984 | ||
1985 | vcpu->arch.st.msr_val = data; | 1985 | vcpu->arch.st.msr_val = data; |
1986 | 1986 | ||
1987 | if (!(data & KVM_MSR_ENABLED)) | 1987 | if (!(data & KVM_MSR_ENABLED)) |
1988 | break; | 1988 | break; |
1989 | 1989 | ||
1990 | vcpu->arch.st.last_steal = current->sched_info.run_delay; | 1990 | vcpu->arch.st.last_steal = current->sched_info.run_delay; |
1991 | 1991 | ||
1992 | preempt_disable(); | 1992 | preempt_disable(); |
1993 | accumulate_steal_time(vcpu); | 1993 | accumulate_steal_time(vcpu); |
1994 | preempt_enable(); | 1994 | preempt_enable(); |
1995 | 1995 | ||
1996 | kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); | 1996 | kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); |
1997 | 1997 | ||
1998 | break; | 1998 | break; |
1999 | case MSR_KVM_PV_EOI_EN: | 1999 | case MSR_KVM_PV_EOI_EN: |
2000 | if (kvm_lapic_enable_pv_eoi(vcpu, data)) | 2000 | if (kvm_lapic_enable_pv_eoi(vcpu, data)) |
2001 | return 1; | 2001 | return 1; |
2002 | break; | 2002 | break; |
2003 | 2003 | ||
2004 | case MSR_IA32_MCG_CTL: | 2004 | case MSR_IA32_MCG_CTL: |
2005 | case MSR_IA32_MCG_STATUS: | 2005 | case MSR_IA32_MCG_STATUS: |
2006 | case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: | 2006 | case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: |
2007 | return set_msr_mce(vcpu, msr, data); | 2007 | return set_msr_mce(vcpu, msr, data); |
2008 | 2008 | ||
2009 | /* Performance counters are not protected by a CPUID bit, | 2009 | /* Performance counters are not protected by a CPUID bit, |
2010 | * so we should check all of them in the generic path for the sake of | 2010 | * so we should check all of them in the generic path for the sake of |
2011 | * cross vendor migration. | 2011 | * cross vendor migration. |
2012 | * Writing a zero into the event select MSRs disables them, | 2012 | * Writing a zero into the event select MSRs disables them, |
2013 | * which we perfectly emulate ;-). Any other value should be at least | 2013 | * which we perfectly emulate ;-). Any other value should be at least |
2014 | * reported, some guests depend on them. | 2014 | * reported, some guests depend on them. |
2015 | */ | 2015 | */ |
2016 | case MSR_K7_EVNTSEL0: | 2016 | case MSR_K7_EVNTSEL0: |
2017 | case MSR_K7_EVNTSEL1: | 2017 | case MSR_K7_EVNTSEL1: |
2018 | case MSR_K7_EVNTSEL2: | 2018 | case MSR_K7_EVNTSEL2: |
2019 | case MSR_K7_EVNTSEL3: | 2019 | case MSR_K7_EVNTSEL3: |
2020 | if (data != 0) | 2020 | if (data != 0) |
2021 | vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " | 2021 | vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " |
2022 | "0x%x data 0x%llx\n", msr, data); | 2022 | "0x%x data 0x%llx\n", msr, data); |
2023 | break; | 2023 | break; |
2024 | /* at least RHEL 4 unconditionally writes to the perfctr registers, | 2024 | /* at least RHEL 4 unconditionally writes to the perfctr registers, |
2025 | * so we ignore writes to make it happy. | 2025 | * so we ignore writes to make it happy. |
2026 | */ | 2026 | */ |
2027 | case MSR_K7_PERFCTR0: | 2027 | case MSR_K7_PERFCTR0: |
2028 | case MSR_K7_PERFCTR1: | 2028 | case MSR_K7_PERFCTR1: |
2029 | case MSR_K7_PERFCTR2: | 2029 | case MSR_K7_PERFCTR2: |
2030 | case MSR_K7_PERFCTR3: | 2030 | case MSR_K7_PERFCTR3: |
2031 | vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " | 2031 | vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " |
2032 | "0x%x data 0x%llx\n", msr, data); | 2032 | "0x%x data 0x%llx\n", msr, data); |
2033 | break; | 2033 | break; |
2034 | case MSR_P6_PERFCTR0: | 2034 | case MSR_P6_PERFCTR0: |
2035 | case MSR_P6_PERFCTR1: | 2035 | case MSR_P6_PERFCTR1: |
2036 | pr = true; | 2036 | pr = true; |
2037 | case MSR_P6_EVNTSEL0: | 2037 | case MSR_P6_EVNTSEL0: |
2038 | case MSR_P6_EVNTSEL1: | 2038 | case MSR_P6_EVNTSEL1: |
2039 | if (kvm_pmu_msr(vcpu, msr)) | 2039 | if (kvm_pmu_msr(vcpu, msr)) |
2040 | return kvm_pmu_set_msr(vcpu, msr, data); | 2040 | return kvm_pmu_set_msr(vcpu, msr, data); |
2041 | 2041 | ||
2042 | if (pr || data != 0) | 2042 | if (pr || data != 0) |
2043 | vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " | 2043 | vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " |
2044 | "0x%x data 0x%llx\n", msr, data); | 2044 | "0x%x data 0x%llx\n", msr, data); |
2045 | break; | 2045 | break; |
2046 | case MSR_K7_CLK_CTL: | 2046 | case MSR_K7_CLK_CTL: |
2047 | /* | 2047 | /* |
2048 | * Ignore all writes to this no longer documented MSR. | 2048 | * Ignore all writes to this no longer documented MSR. |
2049 | * Writes are only relevant for old K7 processors, | 2049 | * Writes are only relevant for old K7 processors, |
2050 | * all pre-dating SVM, but a recommended workaround from | 2050 | * all pre-dating SVM, but a recommended workaround from |
2051 | * AMD for these chips. It is possible to specify the | 2051 | * AMD for these chips. It is possible to specify the |
2052 | * affected processor models on the command line, hence | 2052 | * affected processor models on the command line, hence |
2053 | * the need to ignore the workaround. | 2053 | * the need to ignore the workaround. |
2054 | */ | 2054 | */ |
2055 | break; | 2055 | break; |
2056 | case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: | 2056 | case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: |
2057 | if (kvm_hv_msr_partition_wide(msr)) { | 2057 | if (kvm_hv_msr_partition_wide(msr)) { |
2058 | int r; | 2058 | int r; |
2059 | mutex_lock(&vcpu->kvm->lock); | 2059 | mutex_lock(&vcpu->kvm->lock); |
2060 | r = set_msr_hyperv_pw(vcpu, msr, data); | 2060 | r = set_msr_hyperv_pw(vcpu, msr, data); |
2061 | mutex_unlock(&vcpu->kvm->lock); | 2061 | mutex_unlock(&vcpu->kvm->lock); |
2062 | return r; | 2062 | return r; |
2063 | } else | 2063 | } else |
2064 | return set_msr_hyperv(vcpu, msr, data); | 2064 | return set_msr_hyperv(vcpu, msr, data); |
2065 | break; | 2065 | break; |
2066 | case MSR_IA32_BBL_CR_CTL3: | 2066 | case MSR_IA32_BBL_CR_CTL3: |
2067 | /* Drop writes to this legacy MSR -- see rdmsr | 2067 | /* Drop writes to this legacy MSR -- see rdmsr |
2068 | * counterpart for further detail. | 2068 | * counterpart for further detail. |
2069 | */ | 2069 | */ |
2070 | vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data); | 2070 | vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data); |
2071 | break; | 2071 | break; |
2072 | case MSR_AMD64_OSVW_ID_LENGTH: | 2072 | case MSR_AMD64_OSVW_ID_LENGTH: |
2073 | if (!guest_cpuid_has_osvw(vcpu)) | 2073 | if (!guest_cpuid_has_osvw(vcpu)) |
2074 | return 1; | 2074 | return 1; |
2075 | vcpu->arch.osvw.length = data; | 2075 | vcpu->arch.osvw.length = data; |
2076 | break; | 2076 | break; |
2077 | case MSR_AMD64_OSVW_STATUS: | 2077 | case MSR_AMD64_OSVW_STATUS: |
2078 | if (!guest_cpuid_has_osvw(vcpu)) | 2078 | if (!guest_cpuid_has_osvw(vcpu)) |
2079 | return 1; | 2079 | return 1; |
2080 | vcpu->arch.osvw.status = data; | 2080 | vcpu->arch.osvw.status = data; |
2081 | break; | 2081 | break; |
2082 | default: | 2082 | default: |
2083 | if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) | 2083 | if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) |
2084 | return xen_hvm_config(vcpu, data); | 2084 | return xen_hvm_config(vcpu, data); |
2085 | if (kvm_pmu_msr(vcpu, msr)) | 2085 | if (kvm_pmu_msr(vcpu, msr)) |
2086 | return kvm_pmu_set_msr(vcpu, msr, data); | 2086 | return kvm_pmu_set_msr(vcpu, msr, data); |
2087 | if (!ignore_msrs) { | 2087 | if (!ignore_msrs) { |
2088 | vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", | 2088 | vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", |
2089 | msr, data); | 2089 | msr, data); |
2090 | return 1; | 2090 | return 1; |
2091 | } else { | 2091 | } else { |
2092 | vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", | 2092 | vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", |
2093 | msr, data); | 2093 | msr, data); |
2094 | break; | 2094 | break; |
2095 | } | 2095 | } |
2096 | } | 2096 | } |
2097 | return 0; | 2097 | return 0; |
2098 | } | 2098 | } |
2099 | EXPORT_SYMBOL_GPL(kvm_set_msr_common); | 2099 | EXPORT_SYMBOL_GPL(kvm_set_msr_common); |
2100 | 2100 | ||
2101 | 2101 | ||
2102 | /* | 2102 | /* |
2103 | * Reads an msr value (of 'msr_index') into 'pdata'. | 2103 | * Reads an msr value (of 'msr_index') into 'pdata'. |
2104 | * Returns 0 on success, non-0 otherwise. | 2104 | * Returns 0 on success, non-0 otherwise. |
2105 | * Assumes vcpu_load() was already called. | 2105 | * Assumes vcpu_load() was already called. |
2106 | */ | 2106 | */ |
2107 | int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) | 2107 | int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) |
2108 | { | 2108 | { |
2109 | return kvm_x86_ops->get_msr(vcpu, msr_index, pdata); | 2109 | return kvm_x86_ops->get_msr(vcpu, msr_index, pdata); |
2110 | } | 2110 | } |
2111 | 2111 | ||
2112 | static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) | 2112 | static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) |
2113 | { | 2113 | { |
2114 | u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; | 2114 | u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; |
2115 | 2115 | ||
2116 | if (!msr_mtrr_valid(msr)) | 2116 | if (!msr_mtrr_valid(msr)) |
2117 | return 1; | 2117 | return 1; |
2118 | 2118 | ||
2119 | if (msr == MSR_MTRRdefType) | 2119 | if (msr == MSR_MTRRdefType) |
2120 | *pdata = vcpu->arch.mtrr_state.def_type + | 2120 | *pdata = vcpu->arch.mtrr_state.def_type + |
2121 | (vcpu->arch.mtrr_state.enabled << 10); | 2121 | (vcpu->arch.mtrr_state.enabled << 10); |
2122 | else if (msr == MSR_MTRRfix64K_00000) | 2122 | else if (msr == MSR_MTRRfix64K_00000) |
2123 | *pdata = p[0]; | 2123 | *pdata = p[0]; |
2124 | else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) | 2124 | else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) |
2125 | *pdata = p[1 + msr - MSR_MTRRfix16K_80000]; | 2125 | *pdata = p[1 + msr - MSR_MTRRfix16K_80000]; |
2126 | else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) | 2126 | else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) |
2127 | *pdata = p[3 + msr - MSR_MTRRfix4K_C0000]; | 2127 | *pdata = p[3 + msr - MSR_MTRRfix4K_C0000]; |
2128 | else if (msr == MSR_IA32_CR_PAT) | 2128 | else if (msr == MSR_IA32_CR_PAT) |
2129 | *pdata = vcpu->arch.pat; | 2129 | *pdata = vcpu->arch.pat; |
2130 | else { /* Variable MTRRs */ | 2130 | else { /* Variable MTRRs */ |
2131 | int idx, is_mtrr_mask; | 2131 | int idx, is_mtrr_mask; |
2132 | u64 *pt; | 2132 | u64 *pt; |
2133 | 2133 | ||
2134 | idx = (msr - 0x200) / 2; | 2134 | idx = (msr - 0x200) / 2; |
2135 | is_mtrr_mask = msr - 0x200 - 2 * idx; | 2135 | is_mtrr_mask = msr - 0x200 - 2 * idx; |
2136 | if (!is_mtrr_mask) | 2136 | if (!is_mtrr_mask) |
2137 | pt = | 2137 | pt = |
2138 | (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; | 2138 | (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; |
2139 | else | 2139 | else |
2140 | pt = | 2140 | pt = |
2141 | (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; | 2141 | (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; |
2142 | *pdata = *pt; | 2142 | *pdata = *pt; |
2143 | } | 2143 | } |
2144 | 2144 | ||
2145 | return 0; | 2145 | return 0; |
2146 | } | 2146 | } |
2147 | 2147 | ||
2148 | static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) | 2148 | static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) |
2149 | { | 2149 | { |
2150 | u64 data; | 2150 | u64 data; |
2151 | u64 mcg_cap = vcpu->arch.mcg_cap; | 2151 | u64 mcg_cap = vcpu->arch.mcg_cap; |
2152 | unsigned bank_num = mcg_cap & 0xff; | 2152 | unsigned bank_num = mcg_cap & 0xff; |
2153 | 2153 | ||
2154 | switch (msr) { | 2154 | switch (msr) { |
2155 | case MSR_IA32_P5_MC_ADDR: | 2155 | case MSR_IA32_P5_MC_ADDR: |
2156 | case MSR_IA32_P5_MC_TYPE: | 2156 | case MSR_IA32_P5_MC_TYPE: |
2157 | data = 0; | 2157 | data = 0; |
2158 | break; | 2158 | break; |
2159 | case MSR_IA32_MCG_CAP: | 2159 | case MSR_IA32_MCG_CAP: |
2160 | data = vcpu->arch.mcg_cap; | 2160 | data = vcpu->arch.mcg_cap; |
2161 | break; | 2161 | break; |
2162 | case MSR_IA32_MCG_CTL: | 2162 | case MSR_IA32_MCG_CTL: |
2163 | if (!(mcg_cap & MCG_CTL_P)) | 2163 | if (!(mcg_cap & MCG_CTL_P)) |
2164 | return 1; | 2164 | return 1; |
2165 | data = vcpu->arch.mcg_ctl; | 2165 | data = vcpu->arch.mcg_ctl; |
2166 | break; | 2166 | break; |
2167 | case MSR_IA32_MCG_STATUS: | 2167 | case MSR_IA32_MCG_STATUS: |
2168 | data = vcpu->arch.mcg_status; | 2168 | data = vcpu->arch.mcg_status; |
2169 | break; | 2169 | break; |
2170 | default: | 2170 | default: |
2171 | if (msr >= MSR_IA32_MC0_CTL && | 2171 | if (msr >= MSR_IA32_MC0_CTL && |
2172 | msr < MSR_IA32_MC0_CTL + 4 * bank_num) { | 2172 | msr < MSR_IA32_MC0_CTL + 4 * bank_num) { |
2173 | u32 offset = msr - MSR_IA32_MC0_CTL; | 2173 | u32 offset = msr - MSR_IA32_MC0_CTL; |
2174 | data = vcpu->arch.mce_banks[offset]; | 2174 | data = vcpu->arch.mce_banks[offset]; |
2175 | break; | 2175 | break; |
2176 | } | 2176 | } |
2177 | return 1; | 2177 | return 1; |
2178 | } | 2178 | } |
2179 | *pdata = data; | 2179 | *pdata = data; |
2180 | return 0; | 2180 | return 0; |
2181 | } | 2181 | } |
2182 | 2182 | ||
2183 | static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) | 2183 | static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) |
2184 | { | 2184 | { |
2185 | u64 data = 0; | 2185 | u64 data = 0; |
2186 | struct kvm *kvm = vcpu->kvm; | 2186 | struct kvm *kvm = vcpu->kvm; |
2187 | 2187 | ||
2188 | switch (msr) { | 2188 | switch (msr) { |
2189 | case HV_X64_MSR_GUEST_OS_ID: | 2189 | case HV_X64_MSR_GUEST_OS_ID: |
2190 | data = kvm->arch.hv_guest_os_id; | 2190 | data = kvm->arch.hv_guest_os_id; |
2191 | break; | 2191 | break; |
2192 | case HV_X64_MSR_HYPERCALL: | 2192 | case HV_X64_MSR_HYPERCALL: |
2193 | data = kvm->arch.hv_hypercall; | 2193 | data = kvm->arch.hv_hypercall; |
2194 | break; | 2194 | break; |
2195 | default: | 2195 | default: |
2196 | vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); | 2196 | vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); |
2197 | return 1; | 2197 | return 1; |
2198 | } | 2198 | } |
2199 | 2199 | ||
2200 | *pdata = data; | 2200 | *pdata = data; |
2201 | return 0; | 2201 | return 0; |
2202 | } | 2202 | } |
2203 | 2203 | ||
2204 | static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) | 2204 | static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) |
2205 | { | 2205 | { |
2206 | u64 data = 0; | 2206 | u64 data = 0; |
2207 | 2207 | ||
2208 | switch (msr) { | 2208 | switch (msr) { |
2209 | case HV_X64_MSR_VP_INDEX: { | 2209 | case HV_X64_MSR_VP_INDEX: { |
2210 | int r; | 2210 | int r; |
2211 | struct kvm_vcpu *v; | 2211 | struct kvm_vcpu *v; |
2212 | kvm_for_each_vcpu(r, v, vcpu->kvm) | 2212 | kvm_for_each_vcpu(r, v, vcpu->kvm) |
2213 | if (v == vcpu) | 2213 | if (v == vcpu) |
2214 | data = r; | 2214 | data = r; |
2215 | break; | 2215 | break; |
2216 | } | 2216 | } |
2217 | case HV_X64_MSR_EOI: | 2217 | case HV_X64_MSR_EOI: |
2218 | return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata); | 2218 | return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata); |
2219 | case HV_X64_MSR_ICR: | 2219 | case HV_X64_MSR_ICR: |
2220 | return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata); | 2220 | return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata); |
2221 | case HV_X64_MSR_TPR: | 2221 | case HV_X64_MSR_TPR: |
2222 | return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata); | 2222 | return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata); |
2223 | case HV_X64_MSR_APIC_ASSIST_PAGE: | 2223 | case HV_X64_MSR_APIC_ASSIST_PAGE: |
2224 | data = vcpu->arch.hv_vapic; | 2224 | data = vcpu->arch.hv_vapic; |
2225 | break; | 2225 | break; |
2226 | default: | 2226 | default: |
2227 | vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); | 2227 | vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); |
2228 | return 1; | 2228 | return 1; |
2229 | } | 2229 | } |
2230 | *pdata = data; | 2230 | *pdata = data; |
2231 | return 0; | 2231 | return 0; |
2232 | } | 2232 | } |
2233 | 2233 | ||
2234 | int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) | 2234 | int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) |
2235 | { | 2235 | { |
2236 | u64 data; | 2236 | u64 data; |
2237 | 2237 | ||
2238 | switch (msr) { | 2238 | switch (msr) { |
2239 | case MSR_IA32_PLATFORM_ID: | 2239 | case MSR_IA32_PLATFORM_ID: |
2240 | case MSR_IA32_EBL_CR_POWERON: | 2240 | case MSR_IA32_EBL_CR_POWERON: |
2241 | case MSR_IA32_DEBUGCTLMSR: | 2241 | case MSR_IA32_DEBUGCTLMSR: |
2242 | case MSR_IA32_LASTBRANCHFROMIP: | 2242 | case MSR_IA32_LASTBRANCHFROMIP: |
2243 | case MSR_IA32_LASTBRANCHTOIP: | 2243 | case MSR_IA32_LASTBRANCHTOIP: |
2244 | case MSR_IA32_LASTINTFROMIP: | 2244 | case MSR_IA32_LASTINTFROMIP: |
2245 | case MSR_IA32_LASTINTTOIP: | 2245 | case MSR_IA32_LASTINTTOIP: |
2246 | case MSR_K8_SYSCFG: | 2246 | case MSR_K8_SYSCFG: |
2247 | case MSR_K7_HWCR: | 2247 | case MSR_K7_HWCR: |
2248 | case MSR_VM_HSAVE_PA: | 2248 | case MSR_VM_HSAVE_PA: |
2249 | case MSR_K7_EVNTSEL0: | 2249 | case MSR_K7_EVNTSEL0: |
2250 | case MSR_K7_PERFCTR0: | 2250 | case MSR_K7_PERFCTR0: |
2251 | case MSR_K8_INT_PENDING_MSG: | 2251 | case MSR_K8_INT_PENDING_MSG: |
2252 | case MSR_AMD64_NB_CFG: | 2252 | case MSR_AMD64_NB_CFG: |
2253 | case MSR_FAM10H_MMIO_CONF_BASE: | 2253 | case MSR_FAM10H_MMIO_CONF_BASE: |
2254 | data = 0; | 2254 | data = 0; |
2255 | break; | 2255 | break; |
2256 | case MSR_P6_PERFCTR0: | 2256 | case MSR_P6_PERFCTR0: |
2257 | case MSR_P6_PERFCTR1: | 2257 | case MSR_P6_PERFCTR1: |
2258 | case MSR_P6_EVNTSEL0: | 2258 | case MSR_P6_EVNTSEL0: |
2259 | case MSR_P6_EVNTSEL1: | 2259 | case MSR_P6_EVNTSEL1: |
2260 | if (kvm_pmu_msr(vcpu, msr)) | 2260 | if (kvm_pmu_msr(vcpu, msr)) |
2261 | return kvm_pmu_get_msr(vcpu, msr, pdata); | 2261 | return kvm_pmu_get_msr(vcpu, msr, pdata); |
2262 | data = 0; | 2262 | data = 0; |
2263 | break; | 2263 | break; |
2264 | case MSR_IA32_UCODE_REV: | 2264 | case MSR_IA32_UCODE_REV: |
2265 | data = 0x100000000ULL; | 2265 | data = 0x100000000ULL; |
2266 | break; | 2266 | break; |
2267 | case MSR_MTRRcap: | 2267 | case MSR_MTRRcap: |
2268 | data = 0x500 | KVM_NR_VAR_MTRR; | 2268 | data = 0x500 | KVM_NR_VAR_MTRR; |
2269 | break; | 2269 | break; |
2270 | case 0x200 ... 0x2ff: | 2270 | case 0x200 ... 0x2ff: |
2271 | return get_msr_mtrr(vcpu, msr, pdata); | 2271 | return get_msr_mtrr(vcpu, msr, pdata); |
2272 | case 0xcd: /* fsb frequency */ | 2272 | case 0xcd: /* fsb frequency */ |
2273 | data = 3; | 2273 | data = 3; |
2274 | break; | 2274 | break; |
2275 | /* | 2275 | /* |
2276 | * MSR_EBC_FREQUENCY_ID | 2276 | * MSR_EBC_FREQUENCY_ID |
2277 | * Conservative value valid for even the basic CPU models. | 2277 | * Conservative value valid for even the basic CPU models. |
2278 | * Models 0,1: 000 in bits 23:21 indicating a bus speed of | 2278 | * Models 0,1: 000 in bits 23:21 indicating a bus speed of |
2279 | * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, | 2279 | * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, |
2280 | * and 266MHz for model 3, or 4. Set Core Clock | 2280 | * and 266MHz for model 3, or 4. Set Core Clock |
2281 | * Frequency to System Bus Frequency Ratio to 1 (bits | 2281 | * Frequency to System Bus Frequency Ratio to 1 (bits |
2282 | * 31:24) even though these are only valid for CPU | 2282 | * 31:24) even though these are only valid for CPU |
2283 | * models > 2, however guests may end up dividing or | 2283 | * models > 2, however guests may end up dividing or |
2284 | * multiplying by zero otherwise. | 2284 | * multiplying by zero otherwise. |
2285 | */ | 2285 | */ |
2286 | case MSR_EBC_FREQUENCY_ID: | 2286 | case MSR_EBC_FREQUENCY_ID: |
2287 | data = 1 << 24; | 2287 | data = 1 << 24; |
2288 | break; | 2288 | break; |
2289 | case MSR_IA32_APICBASE: | 2289 | case MSR_IA32_APICBASE: |
2290 | data = kvm_get_apic_base(vcpu); | 2290 | data = kvm_get_apic_base(vcpu); |
2291 | break; | 2291 | break; |
2292 | case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: | 2292 | case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: |
2293 | return kvm_x2apic_msr_read(vcpu, msr, pdata); | 2293 | return kvm_x2apic_msr_read(vcpu, msr, pdata); |
2294 | break; | 2294 | break; |
2295 | case MSR_IA32_TSCDEADLINE: | 2295 | case MSR_IA32_TSCDEADLINE: |
2296 | data = kvm_get_lapic_tscdeadline_msr(vcpu); | 2296 | data = kvm_get_lapic_tscdeadline_msr(vcpu); |
2297 | break; | 2297 | break; |
2298 | case MSR_IA32_TSC_ADJUST: | 2298 | case MSR_IA32_TSC_ADJUST: |
2299 | data = (u64)vcpu->arch.ia32_tsc_adjust_msr; | 2299 | data = (u64)vcpu->arch.ia32_tsc_adjust_msr; |
2300 | break; | 2300 | break; |
2301 | case MSR_IA32_MISC_ENABLE: | 2301 | case MSR_IA32_MISC_ENABLE: |
2302 | data = vcpu->arch.ia32_misc_enable_msr; | 2302 | data = vcpu->arch.ia32_misc_enable_msr; |
2303 | break; | 2303 | break; |
2304 | case MSR_IA32_PERF_STATUS: | 2304 | case MSR_IA32_PERF_STATUS: |
2305 | /* TSC increment by tick */ | 2305 | /* TSC increment by tick */ |
2306 | data = 1000ULL; | 2306 | data = 1000ULL; |
2307 | /* CPU multiplier */ | 2307 | /* CPU multiplier */ |
2308 | data |= (((uint64_t)4ULL) << 40); | 2308 | data |= (((uint64_t)4ULL) << 40); |
2309 | break; | 2309 | break; |
2310 | case MSR_EFER: | 2310 | case MSR_EFER: |
2311 | data = vcpu->arch.efer; | 2311 | data = vcpu->arch.efer; |
2312 | break; | 2312 | break; |
2313 | case MSR_KVM_WALL_CLOCK: | 2313 | case MSR_KVM_WALL_CLOCK: |
2314 | case MSR_KVM_WALL_CLOCK_NEW: | 2314 | case MSR_KVM_WALL_CLOCK_NEW: |
2315 | data = vcpu->kvm->arch.wall_clock; | 2315 | data = vcpu->kvm->arch.wall_clock; |
2316 | break; | 2316 | break; |
2317 | case MSR_KVM_SYSTEM_TIME: | 2317 | case MSR_KVM_SYSTEM_TIME: |
2318 | case MSR_KVM_SYSTEM_TIME_NEW: | 2318 | case MSR_KVM_SYSTEM_TIME_NEW: |
2319 | data = vcpu->arch.time; | 2319 | data = vcpu->arch.time; |
2320 | break; | 2320 | break; |
2321 | case MSR_KVM_ASYNC_PF_EN: | 2321 | case MSR_KVM_ASYNC_PF_EN: |
2322 | data = vcpu->arch.apf.msr_val; | 2322 | data = vcpu->arch.apf.msr_val; |
2323 | break; | 2323 | break; |
2324 | case MSR_KVM_STEAL_TIME: | 2324 | case MSR_KVM_STEAL_TIME: |
2325 | data = vcpu->arch.st.msr_val; | 2325 | data = vcpu->arch.st.msr_val; |
2326 | break; | 2326 | break; |
2327 | case MSR_KVM_PV_EOI_EN: | 2327 | case MSR_KVM_PV_EOI_EN: |
2328 | data = vcpu->arch.pv_eoi.msr_val; | 2328 | data = vcpu->arch.pv_eoi.msr_val; |
2329 | break; | 2329 | break; |
2330 | case MSR_IA32_P5_MC_ADDR: | 2330 | case MSR_IA32_P5_MC_ADDR: |
2331 | case MSR_IA32_P5_MC_TYPE: | 2331 | case MSR_IA32_P5_MC_TYPE: |
2332 | case MSR_IA32_MCG_CAP: | 2332 | case MSR_IA32_MCG_CAP: |
2333 | case MSR_IA32_MCG_CTL: | 2333 | case MSR_IA32_MCG_CTL: |
2334 | case MSR_IA32_MCG_STATUS: | 2334 | case MSR_IA32_MCG_STATUS: |
2335 | case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: | 2335 | case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: |
2336 | return get_msr_mce(vcpu, msr, pdata); | 2336 | return get_msr_mce(vcpu, msr, pdata); |
2337 | case MSR_K7_CLK_CTL: | 2337 | case MSR_K7_CLK_CTL: |
2338 | /* | 2338 | /* |
2339 | * Provide expected ramp-up count for K7. All other | 2339 | * Provide expected ramp-up count for K7. All other |
2340 | * are set to zero, indicating minimum divisors for | 2340 | * are set to zero, indicating minimum divisors for |
2341 | * every field. | 2341 | * every field. |
2342 | * | 2342 | * |
2343 | * This prevents guest kernels on AMD host with CPU | 2343 | * This prevents guest kernels on AMD host with CPU |
2344 | * type 6, model 8 and higher from exploding due to | 2344 | * type 6, model 8 and higher from exploding due to |
2345 | * the rdmsr failing. | 2345 | * the rdmsr failing. |
2346 | */ | 2346 | */ |
2347 | data = 0x20000000; | 2347 | data = 0x20000000; |
2348 | break; | 2348 | break; |
2349 | case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: | 2349 | case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: |
2350 | if (kvm_hv_msr_partition_wide(msr)) { | 2350 | if (kvm_hv_msr_partition_wide(msr)) { |
2351 | int r; | 2351 | int r; |
2352 | mutex_lock(&vcpu->kvm->lock); | 2352 | mutex_lock(&vcpu->kvm->lock); |
2353 | r = get_msr_hyperv_pw(vcpu, msr, pdata); | 2353 | r = get_msr_hyperv_pw(vcpu, msr, pdata); |
2354 | mutex_unlock(&vcpu->kvm->lock); | 2354 | mutex_unlock(&vcpu->kvm->lock); |
2355 | return r; | 2355 | return r; |
2356 | } else | 2356 | } else |
2357 | return get_msr_hyperv(vcpu, msr, pdata); | 2357 | return get_msr_hyperv(vcpu, msr, pdata); |
2358 | break; | 2358 | break; |
2359 | case MSR_IA32_BBL_CR_CTL3: | 2359 | case MSR_IA32_BBL_CR_CTL3: |
2360 | /* This legacy MSR exists but isn't fully documented in current | 2360 | /* This legacy MSR exists but isn't fully documented in current |
2361 | * silicon. It is however accessed by winxp in very narrow | 2361 | * silicon. It is however accessed by winxp in very narrow |
2362 | * scenarios where it sets bit #19, itself documented as | 2362 | * scenarios where it sets bit #19, itself documented as |
2363 | * a "reserved" bit. Best effort attempt to source coherent | 2363 | * a "reserved" bit. Best effort attempt to source coherent |
2364 | * read data here should the balance of the register be | 2364 | * read data here should the balance of the register be |
2365 | * interpreted by the guest: | 2365 | * interpreted by the guest: |
2366 | * | 2366 | * |
2367 | * L2 cache control register 3: 64GB range, 256KB size, | 2367 | * L2 cache control register 3: 64GB range, 256KB size, |
2368 | * enabled, latency 0x1, configured | 2368 | * enabled, latency 0x1, configured |
2369 | */ | 2369 | */ |
2370 | data = 0xbe702111; | 2370 | data = 0xbe702111; |
2371 | break; | 2371 | break; |
2372 | case MSR_AMD64_OSVW_ID_LENGTH: | 2372 | case MSR_AMD64_OSVW_ID_LENGTH: |
2373 | if (!guest_cpuid_has_osvw(vcpu)) | 2373 | if (!guest_cpuid_has_osvw(vcpu)) |
2374 | return 1; | 2374 | return 1; |
2375 | data = vcpu->arch.osvw.length; | 2375 | data = vcpu->arch.osvw.length; |
2376 | break; | 2376 | break; |
2377 | case MSR_AMD64_OSVW_STATUS: | 2377 | case MSR_AMD64_OSVW_STATUS: |
2378 | if (!guest_cpuid_has_osvw(vcpu)) | 2378 | if (!guest_cpuid_has_osvw(vcpu)) |
2379 | return 1; | 2379 | return 1; |
2380 | data = vcpu->arch.osvw.status; | 2380 | data = vcpu->arch.osvw.status; |
2381 | break; | 2381 | break; |
2382 | default: | 2382 | default: |
2383 | if (kvm_pmu_msr(vcpu, msr)) | 2383 | if (kvm_pmu_msr(vcpu, msr)) |
2384 | return kvm_pmu_get_msr(vcpu, msr, pdata); | 2384 | return kvm_pmu_get_msr(vcpu, msr, pdata); |
2385 | if (!ignore_msrs) { | 2385 | if (!ignore_msrs) { |
2386 | vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr); | 2386 | vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr); |
2387 | return 1; | 2387 | return 1; |
2388 | } else { | 2388 | } else { |
2389 | vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr); | 2389 | vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr); |
2390 | data = 0; | 2390 | data = 0; |
2391 | } | 2391 | } |
2392 | break; | 2392 | break; |
2393 | } | 2393 | } |
2394 | *pdata = data; | 2394 | *pdata = data; |
2395 | return 0; | 2395 | return 0; |
2396 | } | 2396 | } |
2397 | EXPORT_SYMBOL_GPL(kvm_get_msr_common); | 2397 | EXPORT_SYMBOL_GPL(kvm_get_msr_common); |
2398 | 2398 | ||
2399 | /* | 2399 | /* |
2400 | * Read or write a bunch of msrs. All parameters are kernel addresses. | 2400 | * Read or write a bunch of msrs. All parameters are kernel addresses. |
2401 | * | 2401 | * |
2402 | * @return number of msrs set successfully. | 2402 | * @return number of msrs set successfully. |
2403 | */ | 2403 | */ |
2404 | static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, | 2404 | static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, |
2405 | struct kvm_msr_entry *entries, | 2405 | struct kvm_msr_entry *entries, |
2406 | int (*do_msr)(struct kvm_vcpu *vcpu, | 2406 | int (*do_msr)(struct kvm_vcpu *vcpu, |
2407 | unsigned index, u64 *data)) | 2407 | unsigned index, u64 *data)) |
2408 | { | 2408 | { |
2409 | int i, idx; | 2409 | int i, idx; |
2410 | 2410 | ||
2411 | idx = srcu_read_lock(&vcpu->kvm->srcu); | 2411 | idx = srcu_read_lock(&vcpu->kvm->srcu); |
2412 | for (i = 0; i < msrs->nmsrs; ++i) | 2412 | for (i = 0; i < msrs->nmsrs; ++i) |
2413 | if (do_msr(vcpu, entries[i].index, &entries[i].data)) | 2413 | if (do_msr(vcpu, entries[i].index, &entries[i].data)) |
2414 | break; | 2414 | break; |
2415 | srcu_read_unlock(&vcpu->kvm->srcu, idx); | 2415 | srcu_read_unlock(&vcpu->kvm->srcu, idx); |
2416 | 2416 | ||
2417 | return i; | 2417 | return i; |
2418 | } | 2418 | } |
2419 | 2419 | ||
2420 | /* | 2420 | /* |
2421 | * Read or write a bunch of msrs. Parameters are user addresses. | 2421 | * Read or write a bunch of msrs. Parameters are user addresses. |
2422 | * | 2422 | * |
2423 | * @return number of msrs set successfully. | 2423 | * @return number of msrs set successfully. |
2424 | */ | 2424 | */ |
2425 | static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, | 2425 | static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, |
2426 | int (*do_msr)(struct kvm_vcpu *vcpu, | 2426 | int (*do_msr)(struct kvm_vcpu *vcpu, |
2427 | unsigned index, u64 *data), | 2427 | unsigned index, u64 *data), |
2428 | int writeback) | 2428 | int writeback) |
2429 | { | 2429 | { |
2430 | struct kvm_msrs msrs; | 2430 | struct kvm_msrs msrs; |
2431 | struct kvm_msr_entry *entries; | 2431 | struct kvm_msr_entry *entries; |
2432 | int r, n; | 2432 | int r, n; |
2433 | unsigned size; | 2433 | unsigned size; |
2434 | 2434 | ||
2435 | r = -EFAULT; | 2435 | r = -EFAULT; |
2436 | if (copy_from_user(&msrs, user_msrs, sizeof msrs)) | 2436 | if (copy_from_user(&msrs, user_msrs, sizeof msrs)) |
2437 | goto out; | 2437 | goto out; |
2438 | 2438 | ||
2439 | r = -E2BIG; | 2439 | r = -E2BIG; |
2440 | if (msrs.nmsrs >= MAX_IO_MSRS) | 2440 | if (msrs.nmsrs >= MAX_IO_MSRS) |
2441 | goto out; | 2441 | goto out; |
2442 | 2442 | ||
2443 | size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; | 2443 | size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; |
2444 | entries = memdup_user(user_msrs->entries, size); | 2444 | entries = memdup_user(user_msrs->entries, size); |
2445 | if (IS_ERR(entries)) { | 2445 | if (IS_ERR(entries)) { |
2446 | r = PTR_ERR(entries); | 2446 | r = PTR_ERR(entries); |
2447 | goto out; | 2447 | goto out; |
2448 | } | 2448 | } |
2449 | 2449 | ||
2450 | r = n = __msr_io(vcpu, &msrs, entries, do_msr); | 2450 | r = n = __msr_io(vcpu, &msrs, entries, do_msr); |
2451 | if (r < 0) | 2451 | if (r < 0) |
2452 | goto out_free; | 2452 | goto out_free; |
2453 | 2453 | ||
2454 | r = -EFAULT; | 2454 | r = -EFAULT; |
2455 | if (writeback && copy_to_user(user_msrs->entries, entries, size)) | 2455 | if (writeback && copy_to_user(user_msrs->entries, entries, size)) |
2456 | goto out_free; | 2456 | goto out_free; |
2457 | 2457 | ||
2458 | r = n; | 2458 | r = n; |
2459 | 2459 | ||
2460 | out_free: | 2460 | out_free: |
2461 | kfree(entries); | 2461 | kfree(entries); |
2462 | out: | 2462 | out: |
2463 | return r; | 2463 | return r; |
2464 | } | 2464 | } |
2465 | 2465 | ||
2466 | int kvm_dev_ioctl_check_extension(long ext) | 2466 | int kvm_dev_ioctl_check_extension(long ext) |
2467 | { | 2467 | { |
2468 | int r; | 2468 | int r; |
2469 | 2469 | ||
2470 | switch (ext) { | 2470 | switch (ext) { |
2471 | case KVM_CAP_IRQCHIP: | 2471 | case KVM_CAP_IRQCHIP: |
2472 | case KVM_CAP_HLT: | 2472 | case KVM_CAP_HLT: |
2473 | case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: | 2473 | case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: |
2474 | case KVM_CAP_SET_TSS_ADDR: | 2474 | case KVM_CAP_SET_TSS_ADDR: |
2475 | case KVM_CAP_EXT_CPUID: | 2475 | case KVM_CAP_EXT_CPUID: |
2476 | case KVM_CAP_CLOCKSOURCE: | 2476 | case KVM_CAP_CLOCKSOURCE: |
2477 | case KVM_CAP_PIT: | 2477 | case KVM_CAP_PIT: |
2478 | case KVM_CAP_NOP_IO_DELAY: | 2478 | case KVM_CAP_NOP_IO_DELAY: |
2479 | case KVM_CAP_MP_STATE: | 2479 | case KVM_CAP_MP_STATE: |
2480 | case KVM_CAP_SYNC_MMU: | 2480 | case KVM_CAP_SYNC_MMU: |
2481 | case KVM_CAP_USER_NMI: | 2481 | case KVM_CAP_USER_NMI: |
2482 | case KVM_CAP_REINJECT_CONTROL: | 2482 | case KVM_CAP_REINJECT_CONTROL: |
2483 | case KVM_CAP_IRQ_INJECT_STATUS: | 2483 | case KVM_CAP_IRQ_INJECT_STATUS: |
2484 | case KVM_CAP_ASSIGN_DEV_IRQ: | 2484 | case KVM_CAP_ASSIGN_DEV_IRQ: |
2485 | case KVM_CAP_IRQFD: | 2485 | case KVM_CAP_IRQFD: |
2486 | case KVM_CAP_IOEVENTFD: | 2486 | case KVM_CAP_IOEVENTFD: |
2487 | case KVM_CAP_PIT2: | 2487 | case KVM_CAP_PIT2: |
2488 | case KVM_CAP_PIT_STATE2: | 2488 | case KVM_CAP_PIT_STATE2: |
2489 | case KVM_CAP_SET_IDENTITY_MAP_ADDR: | 2489 | case KVM_CAP_SET_IDENTITY_MAP_ADDR: |
2490 | case KVM_CAP_XEN_HVM: | 2490 | case KVM_CAP_XEN_HVM: |
2491 | case KVM_CAP_ADJUST_CLOCK: | 2491 | case KVM_CAP_ADJUST_CLOCK: |
2492 | case KVM_CAP_VCPU_EVENTS: | 2492 | case KVM_CAP_VCPU_EVENTS: |
2493 | case KVM_CAP_HYPERV: | 2493 | case KVM_CAP_HYPERV: |
2494 | case KVM_CAP_HYPERV_VAPIC: | 2494 | case KVM_CAP_HYPERV_VAPIC: |
2495 | case KVM_CAP_HYPERV_SPIN: | 2495 | case KVM_CAP_HYPERV_SPIN: |
2496 | case KVM_CAP_PCI_SEGMENT: | 2496 | case KVM_CAP_PCI_SEGMENT: |
2497 | case KVM_CAP_DEBUGREGS: | 2497 | case KVM_CAP_DEBUGREGS: |
2498 | case KVM_CAP_X86_ROBUST_SINGLESTEP: | 2498 | case KVM_CAP_X86_ROBUST_SINGLESTEP: |
2499 | case KVM_CAP_XSAVE: | 2499 | case KVM_CAP_XSAVE: |
2500 | case KVM_CAP_ASYNC_PF: | 2500 | case KVM_CAP_ASYNC_PF: |
2501 | case KVM_CAP_GET_TSC_KHZ: | 2501 | case KVM_CAP_GET_TSC_KHZ: |
2502 | case KVM_CAP_PCI_2_3: | 2502 | case KVM_CAP_PCI_2_3: |
2503 | case KVM_CAP_KVMCLOCK_CTRL: | 2503 | case KVM_CAP_KVMCLOCK_CTRL: |
2504 | case KVM_CAP_READONLY_MEM: | 2504 | case KVM_CAP_READONLY_MEM: |
2505 | case KVM_CAP_IRQFD_RESAMPLE: | 2505 | case KVM_CAP_IRQFD_RESAMPLE: |
2506 | r = 1; | 2506 | r = 1; |
2507 | break; | 2507 | break; |
2508 | case KVM_CAP_COALESCED_MMIO: | 2508 | case KVM_CAP_COALESCED_MMIO: |
2509 | r = KVM_COALESCED_MMIO_PAGE_OFFSET; | 2509 | r = KVM_COALESCED_MMIO_PAGE_OFFSET; |
2510 | break; | 2510 | break; |
2511 | case KVM_CAP_VAPIC: | 2511 | case KVM_CAP_VAPIC: |
2512 | r = !kvm_x86_ops->cpu_has_accelerated_tpr(); | 2512 | r = !kvm_x86_ops->cpu_has_accelerated_tpr(); |
2513 | break; | 2513 | break; |
2514 | case KVM_CAP_NR_VCPUS: | 2514 | case KVM_CAP_NR_VCPUS: |
2515 | r = KVM_SOFT_MAX_VCPUS; | 2515 | r = KVM_SOFT_MAX_VCPUS; |
2516 | break; | 2516 | break; |
2517 | case KVM_CAP_MAX_VCPUS: | 2517 | case KVM_CAP_MAX_VCPUS: |
2518 | r = KVM_MAX_VCPUS; | 2518 | r = KVM_MAX_VCPUS; |
2519 | break; | 2519 | break; |
2520 | case KVM_CAP_NR_MEMSLOTS: | 2520 | case KVM_CAP_NR_MEMSLOTS: |
2521 | r = KVM_USER_MEM_SLOTS; | 2521 | r = KVM_USER_MEM_SLOTS; |
2522 | break; | 2522 | break; |
2523 | case KVM_CAP_PV_MMU: /* obsolete */ | 2523 | case KVM_CAP_PV_MMU: /* obsolete */ |
2524 | r = 0; | 2524 | r = 0; |
2525 | break; | 2525 | break; |
2526 | case KVM_CAP_IOMMU: | 2526 | case KVM_CAP_IOMMU: |
2527 | r = iommu_present(&pci_bus_type); | 2527 | r = iommu_present(&pci_bus_type); |
2528 | break; | 2528 | break; |
2529 | case KVM_CAP_MCE: | 2529 | case KVM_CAP_MCE: |
2530 | r = KVM_MAX_MCE_BANKS; | 2530 | r = KVM_MAX_MCE_BANKS; |
2531 | break; | 2531 | break; |
2532 | case KVM_CAP_XCRS: | 2532 | case KVM_CAP_XCRS: |
2533 | r = cpu_has_xsave; | 2533 | r = cpu_has_xsave; |
2534 | break; | 2534 | break; |
2535 | case KVM_CAP_TSC_CONTROL: | 2535 | case KVM_CAP_TSC_CONTROL: |
2536 | r = kvm_has_tsc_control; | 2536 | r = kvm_has_tsc_control; |
2537 | break; | 2537 | break; |
2538 | case KVM_CAP_TSC_DEADLINE_TIMER: | 2538 | case KVM_CAP_TSC_DEADLINE_TIMER: |
2539 | r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER); | 2539 | r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER); |
2540 | break; | 2540 | break; |
2541 | default: | 2541 | default: |
2542 | r = 0; | 2542 | r = 0; |
2543 | break; | 2543 | break; |
2544 | } | 2544 | } |
2545 | return r; | 2545 | return r; |
2546 | 2546 | ||
2547 | } | 2547 | } |
2548 | 2548 | ||
2549 | long kvm_arch_dev_ioctl(struct file *filp, | 2549 | long kvm_arch_dev_ioctl(struct file *filp, |
2550 | unsigned int ioctl, unsigned long arg) | 2550 | unsigned int ioctl, unsigned long arg) |
2551 | { | 2551 | { |
2552 | void __user *argp = (void __user *)arg; | 2552 | void __user *argp = (void __user *)arg; |
2553 | long r; | 2553 | long r; |
2554 | 2554 | ||
2555 | switch (ioctl) { | 2555 | switch (ioctl) { |
2556 | case KVM_GET_MSR_INDEX_LIST: { | 2556 | case KVM_GET_MSR_INDEX_LIST: { |
2557 | struct kvm_msr_list __user *user_msr_list = argp; | 2557 | struct kvm_msr_list __user *user_msr_list = argp; |
2558 | struct kvm_msr_list msr_list; | 2558 | struct kvm_msr_list msr_list; |
2559 | unsigned n; | 2559 | unsigned n; |
2560 | 2560 | ||
2561 | r = -EFAULT; | 2561 | r = -EFAULT; |
2562 | if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) | 2562 | if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) |
2563 | goto out; | 2563 | goto out; |
2564 | n = msr_list.nmsrs; | 2564 | n = msr_list.nmsrs; |
2565 | msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs); | 2565 | msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs); |
2566 | if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) | 2566 | if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) |
2567 | goto out; | 2567 | goto out; |
2568 | r = -E2BIG; | 2568 | r = -E2BIG; |
2569 | if (n < msr_list.nmsrs) | 2569 | if (n < msr_list.nmsrs) |
2570 | goto out; | 2570 | goto out; |
2571 | r = -EFAULT; | 2571 | r = -EFAULT; |
2572 | if (copy_to_user(user_msr_list->indices, &msrs_to_save, | 2572 | if (copy_to_user(user_msr_list->indices, &msrs_to_save, |
2573 | num_msrs_to_save * sizeof(u32))) | 2573 | num_msrs_to_save * sizeof(u32))) |
2574 | goto out; | 2574 | goto out; |
2575 | if (copy_to_user(user_msr_list->indices + num_msrs_to_save, | 2575 | if (copy_to_user(user_msr_list->indices + num_msrs_to_save, |
2576 | &emulated_msrs, | 2576 | &emulated_msrs, |
2577 | ARRAY_SIZE(emulated_msrs) * sizeof(u32))) | 2577 | ARRAY_SIZE(emulated_msrs) * sizeof(u32))) |
2578 | goto out; | 2578 | goto out; |
2579 | r = 0; | 2579 | r = 0; |
2580 | break; | 2580 | break; |
2581 | } | 2581 | } |
2582 | case KVM_GET_SUPPORTED_CPUID: { | 2582 | case KVM_GET_SUPPORTED_CPUID: { |
2583 | struct kvm_cpuid2 __user *cpuid_arg = argp; | 2583 | struct kvm_cpuid2 __user *cpuid_arg = argp; |
2584 | struct kvm_cpuid2 cpuid; | 2584 | struct kvm_cpuid2 cpuid; |
2585 | 2585 | ||
2586 | r = -EFAULT; | 2586 | r = -EFAULT; |
2587 | if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) | 2587 | if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) |
2588 | goto out; | 2588 | goto out; |
2589 | r = kvm_dev_ioctl_get_supported_cpuid(&cpuid, | 2589 | r = kvm_dev_ioctl_get_supported_cpuid(&cpuid, |
2590 | cpuid_arg->entries); | 2590 | cpuid_arg->entries); |
2591 | if (r) | 2591 | if (r) |
2592 | goto out; | 2592 | goto out; |
2593 | 2593 | ||
2594 | r = -EFAULT; | 2594 | r = -EFAULT; |
2595 | if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) | 2595 | if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) |
2596 | goto out; | 2596 | goto out; |
2597 | r = 0; | 2597 | r = 0; |
2598 | break; | 2598 | break; |
2599 | } | 2599 | } |
2600 | case KVM_X86_GET_MCE_CAP_SUPPORTED: { | 2600 | case KVM_X86_GET_MCE_CAP_SUPPORTED: { |
2601 | u64 mce_cap; | 2601 | u64 mce_cap; |
2602 | 2602 | ||
2603 | mce_cap = KVM_MCE_CAP_SUPPORTED; | 2603 | mce_cap = KVM_MCE_CAP_SUPPORTED; |
2604 | r = -EFAULT; | 2604 | r = -EFAULT; |
2605 | if (copy_to_user(argp, &mce_cap, sizeof mce_cap)) | 2605 | if (copy_to_user(argp, &mce_cap, sizeof mce_cap)) |
2606 | goto out; | 2606 | goto out; |
2607 | r = 0; | 2607 | r = 0; |
2608 | break; | 2608 | break; |
2609 | } | 2609 | } |
2610 | default: | 2610 | default: |
2611 | r = -EINVAL; | 2611 | r = -EINVAL; |
2612 | } | 2612 | } |
2613 | out: | 2613 | out: |
2614 | return r; | 2614 | return r; |
2615 | } | 2615 | } |
2616 | 2616 | ||
2617 | static void wbinvd_ipi(void *garbage) | 2617 | static void wbinvd_ipi(void *garbage) |
2618 | { | 2618 | { |
2619 | wbinvd(); | 2619 | wbinvd(); |
2620 | } | 2620 | } |
2621 | 2621 | ||
2622 | static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) | 2622 | static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) |
2623 | { | 2623 | { |
2624 | return vcpu->kvm->arch.iommu_domain && | 2624 | return vcpu->kvm->arch.iommu_domain && |
2625 | !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY); | 2625 | !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY); |
2626 | } | 2626 | } |
2627 | 2627 | ||
2628 | void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) | 2628 | void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) |
2629 | { | 2629 | { |
2630 | /* Address WBINVD may be executed by guest */ | 2630 | /* Address WBINVD may be executed by guest */ |
2631 | if (need_emulate_wbinvd(vcpu)) { | 2631 | if (need_emulate_wbinvd(vcpu)) { |
2632 | if (kvm_x86_ops->has_wbinvd_exit()) | 2632 | if (kvm_x86_ops->has_wbinvd_exit()) |
2633 | cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); | 2633 | cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); |
2634 | else if (vcpu->cpu != -1 && vcpu->cpu != cpu) | 2634 | else if (vcpu->cpu != -1 && vcpu->cpu != cpu) |
2635 | smp_call_function_single(vcpu->cpu, | 2635 | smp_call_function_single(vcpu->cpu, |
2636 | wbinvd_ipi, NULL, 1); | 2636 | wbinvd_ipi, NULL, 1); |
2637 | } | 2637 | } |
2638 | 2638 | ||
2639 | kvm_x86_ops->vcpu_load(vcpu, cpu); | 2639 | kvm_x86_ops->vcpu_load(vcpu, cpu); |
2640 | 2640 | ||
2641 | /* Apply any externally detected TSC adjustments (due to suspend) */ | 2641 | /* Apply any externally detected TSC adjustments (due to suspend) */ |
2642 | if (unlikely(vcpu->arch.tsc_offset_adjustment)) { | 2642 | if (unlikely(vcpu->arch.tsc_offset_adjustment)) { |
2643 | adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); | 2643 | adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); |
2644 | vcpu->arch.tsc_offset_adjustment = 0; | 2644 | vcpu->arch.tsc_offset_adjustment = 0; |
2645 | set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); | 2645 | set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); |
2646 | } | 2646 | } |
2647 | 2647 | ||
2648 | if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) { | 2648 | if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) { |
2649 | s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : | 2649 | s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : |
2650 | native_read_tsc() - vcpu->arch.last_host_tsc; | 2650 | native_read_tsc() - vcpu->arch.last_host_tsc; |
2651 | if (tsc_delta < 0) | 2651 | if (tsc_delta < 0) |
2652 | mark_tsc_unstable("KVM discovered backwards TSC"); | 2652 | mark_tsc_unstable("KVM discovered backwards TSC"); |
2653 | if (check_tsc_unstable()) { | 2653 | if (check_tsc_unstable()) { |
2654 | u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu, | 2654 | u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu, |
2655 | vcpu->arch.last_guest_tsc); | 2655 | vcpu->arch.last_guest_tsc); |
2656 | kvm_x86_ops->write_tsc_offset(vcpu, offset); | 2656 | kvm_x86_ops->write_tsc_offset(vcpu, offset); |
2657 | vcpu->arch.tsc_catchup = 1; | 2657 | vcpu->arch.tsc_catchup = 1; |
2658 | } | 2658 | } |
2659 | /* | 2659 | /* |
2660 | * On a host with synchronized TSC, there is no need to update | 2660 | * On a host with synchronized TSC, there is no need to update |
2661 | * kvmclock on vcpu->cpu migration | 2661 | * kvmclock on vcpu->cpu migration |
2662 | */ | 2662 | */ |
2663 | if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) | 2663 | if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) |
2664 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); | 2664 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
2665 | if (vcpu->cpu != cpu) | 2665 | if (vcpu->cpu != cpu) |
2666 | kvm_migrate_timers(vcpu); | 2666 | kvm_migrate_timers(vcpu); |
2667 | vcpu->cpu = cpu; | 2667 | vcpu->cpu = cpu; |
2668 | } | 2668 | } |
2669 | 2669 | ||
2670 | accumulate_steal_time(vcpu); | 2670 | accumulate_steal_time(vcpu); |
2671 | kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); | 2671 | kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); |
2672 | } | 2672 | } |
2673 | 2673 | ||
2674 | void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) | 2674 | void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) |
2675 | { | 2675 | { |
2676 | kvm_x86_ops->vcpu_put(vcpu); | 2676 | kvm_x86_ops->vcpu_put(vcpu); |
2677 | kvm_put_guest_fpu(vcpu); | 2677 | kvm_put_guest_fpu(vcpu); |
2678 | vcpu->arch.last_host_tsc = native_read_tsc(); | 2678 | vcpu->arch.last_host_tsc = native_read_tsc(); |
2679 | } | 2679 | } |
2680 | 2680 | ||
2681 | static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, | 2681 | static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, |
2682 | struct kvm_lapic_state *s) | 2682 | struct kvm_lapic_state *s) |
2683 | { | 2683 | { |
2684 | memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s); | 2684 | memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s); |
2685 | 2685 | ||
2686 | return 0; | 2686 | return 0; |
2687 | } | 2687 | } |
2688 | 2688 | ||
2689 | static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, | 2689 | static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, |
2690 | struct kvm_lapic_state *s) | 2690 | struct kvm_lapic_state *s) |
2691 | { | 2691 | { |
2692 | kvm_apic_post_state_restore(vcpu, s); | 2692 | kvm_apic_post_state_restore(vcpu, s); |
2693 | update_cr8_intercept(vcpu); | 2693 | update_cr8_intercept(vcpu); |
2694 | 2694 | ||
2695 | return 0; | 2695 | return 0; |
2696 | } | 2696 | } |
2697 | 2697 | ||
2698 | static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, | 2698 | static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, |
2699 | struct kvm_interrupt *irq) | 2699 | struct kvm_interrupt *irq) |
2700 | { | 2700 | { |
2701 | if (irq->irq < 0 || irq->irq >= KVM_NR_INTERRUPTS) | 2701 | if (irq->irq < 0 || irq->irq >= KVM_NR_INTERRUPTS) |
2702 | return -EINVAL; | 2702 | return -EINVAL; |
2703 | if (irqchip_in_kernel(vcpu->kvm)) | 2703 | if (irqchip_in_kernel(vcpu->kvm)) |
2704 | return -ENXIO; | 2704 | return -ENXIO; |
2705 | 2705 | ||
2706 | kvm_queue_interrupt(vcpu, irq->irq, false); | 2706 | kvm_queue_interrupt(vcpu, irq->irq, false); |
2707 | kvm_make_request(KVM_REQ_EVENT, vcpu); | 2707 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
2708 | 2708 | ||
2709 | return 0; | 2709 | return 0; |
2710 | } | 2710 | } |
2711 | 2711 | ||
2712 | static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) | 2712 | static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) |
2713 | { | 2713 | { |
2714 | kvm_inject_nmi(vcpu); | 2714 | kvm_inject_nmi(vcpu); |
2715 | 2715 | ||
2716 | return 0; | 2716 | return 0; |
2717 | } | 2717 | } |
2718 | 2718 | ||
2719 | static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, | 2719 | static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, |
2720 | struct kvm_tpr_access_ctl *tac) | 2720 | struct kvm_tpr_access_ctl *tac) |
2721 | { | 2721 | { |
2722 | if (tac->flags) | 2722 | if (tac->flags) |
2723 | return -EINVAL; | 2723 | return -EINVAL; |
2724 | vcpu->arch.tpr_access_reporting = !!tac->enabled; | 2724 | vcpu->arch.tpr_access_reporting = !!tac->enabled; |
2725 | return 0; | 2725 | return 0; |
2726 | } | 2726 | } |
2727 | 2727 | ||
2728 | static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, | 2728 | static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, |
2729 | u64 mcg_cap) | 2729 | u64 mcg_cap) |
2730 | { | 2730 | { |
2731 | int r; | 2731 | int r; |
2732 | unsigned bank_num = mcg_cap & 0xff, bank; | 2732 | unsigned bank_num = mcg_cap & 0xff, bank; |
2733 | 2733 | ||
2734 | r = -EINVAL; | 2734 | r = -EINVAL; |
2735 | if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) | 2735 | if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) |
2736 | goto out; | 2736 | goto out; |
2737 | if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000)) | 2737 | if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000)) |
2738 | goto out; | 2738 | goto out; |
2739 | r = 0; | 2739 | r = 0; |
2740 | vcpu->arch.mcg_cap = mcg_cap; | 2740 | vcpu->arch.mcg_cap = mcg_cap; |
2741 | /* Init IA32_MCG_CTL to all 1s */ | 2741 | /* Init IA32_MCG_CTL to all 1s */ |
2742 | if (mcg_cap & MCG_CTL_P) | 2742 | if (mcg_cap & MCG_CTL_P) |
2743 | vcpu->arch.mcg_ctl = ~(u64)0; | 2743 | vcpu->arch.mcg_ctl = ~(u64)0; |
2744 | /* Init IA32_MCi_CTL to all 1s */ | 2744 | /* Init IA32_MCi_CTL to all 1s */ |
2745 | for (bank = 0; bank < bank_num; bank++) | 2745 | for (bank = 0; bank < bank_num; bank++) |
2746 | vcpu->arch.mce_banks[bank*4] = ~(u64)0; | 2746 | vcpu->arch.mce_banks[bank*4] = ~(u64)0; |
2747 | out: | 2747 | out: |
2748 | return r; | 2748 | return r; |
2749 | } | 2749 | } |
2750 | 2750 | ||
2751 | static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, | 2751 | static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, |
2752 | struct kvm_x86_mce *mce) | 2752 | struct kvm_x86_mce *mce) |
2753 | { | 2753 | { |
2754 | u64 mcg_cap = vcpu->arch.mcg_cap; | 2754 | u64 mcg_cap = vcpu->arch.mcg_cap; |
2755 | unsigned bank_num = mcg_cap & 0xff; | 2755 | unsigned bank_num = mcg_cap & 0xff; |
2756 | u64 *banks = vcpu->arch.mce_banks; | 2756 | u64 *banks = vcpu->arch.mce_banks; |
2757 | 2757 | ||
2758 | if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) | 2758 | if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) |
2759 | return -EINVAL; | 2759 | return -EINVAL; |
2760 | /* | 2760 | /* |
2761 | * if IA32_MCG_CTL is not all 1s, the uncorrected error | 2761 | * if IA32_MCG_CTL is not all 1s, the uncorrected error |
2762 | * reporting is disabled | 2762 | * reporting is disabled |
2763 | */ | 2763 | */ |
2764 | if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && | 2764 | if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && |
2765 | vcpu->arch.mcg_ctl != ~(u64)0) | 2765 | vcpu->arch.mcg_ctl != ~(u64)0) |
2766 | return 0; | 2766 | return 0; |
2767 | banks += 4 * mce->bank; | 2767 | banks += 4 * mce->bank; |
2768 | /* | 2768 | /* |
2769 | * if IA32_MCi_CTL is not all 1s, the uncorrected error | 2769 | * if IA32_MCi_CTL is not all 1s, the uncorrected error |
2770 | * reporting is disabled for the bank | 2770 | * reporting is disabled for the bank |
2771 | */ | 2771 | */ |
2772 | if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) | 2772 | if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) |
2773 | return 0; | 2773 | return 0; |
2774 | if (mce->status & MCI_STATUS_UC) { | 2774 | if (mce->status & MCI_STATUS_UC) { |
2775 | if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || | 2775 | if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || |
2776 | !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { | 2776 | !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { |
2777 | kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); | 2777 | kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
2778 | return 0; | 2778 | return 0; |
2779 | } | 2779 | } |
2780 | if (banks[1] & MCI_STATUS_VAL) | 2780 | if (banks[1] & MCI_STATUS_VAL) |
2781 | mce->status |= MCI_STATUS_OVER; | 2781 | mce->status |= MCI_STATUS_OVER; |
2782 | banks[2] = mce->addr; | 2782 | banks[2] = mce->addr; |
2783 | banks[3] = mce->misc; | 2783 | banks[3] = mce->misc; |
2784 | vcpu->arch.mcg_status = mce->mcg_status; | 2784 | vcpu->arch.mcg_status = mce->mcg_status; |
2785 | banks[1] = mce->status; | 2785 | banks[1] = mce->status; |
2786 | kvm_queue_exception(vcpu, MC_VECTOR); | 2786 | kvm_queue_exception(vcpu, MC_VECTOR); |
2787 | } else if (!(banks[1] & MCI_STATUS_VAL) | 2787 | } else if (!(banks[1] & MCI_STATUS_VAL) |
2788 | || !(banks[1] & MCI_STATUS_UC)) { | 2788 | || !(banks[1] & MCI_STATUS_UC)) { |
2789 | if (banks[1] & MCI_STATUS_VAL) | 2789 | if (banks[1] & MCI_STATUS_VAL) |
2790 | mce->status |= MCI_STATUS_OVER; | 2790 | mce->status |= MCI_STATUS_OVER; |
2791 | banks[2] = mce->addr; | 2791 | banks[2] = mce->addr; |
2792 | banks[3] = mce->misc; | 2792 | banks[3] = mce->misc; |
2793 | banks[1] = mce->status; | 2793 | banks[1] = mce->status; |
2794 | } else | 2794 | } else |
2795 | banks[1] |= MCI_STATUS_OVER; | 2795 | banks[1] |= MCI_STATUS_OVER; |
2796 | return 0; | 2796 | return 0; |
2797 | } | 2797 | } |
2798 | 2798 | ||
2799 | static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, | 2799 | static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, |
2800 | struct kvm_vcpu_events *events) | 2800 | struct kvm_vcpu_events *events) |
2801 | { | 2801 | { |
2802 | process_nmi(vcpu); | 2802 | process_nmi(vcpu); |
2803 | events->exception.injected = | 2803 | events->exception.injected = |
2804 | vcpu->arch.exception.pending && | 2804 | vcpu->arch.exception.pending && |
2805 | !kvm_exception_is_soft(vcpu->arch.exception.nr); | 2805 | !kvm_exception_is_soft(vcpu->arch.exception.nr); |
2806 | events->exception.nr = vcpu->arch.exception.nr; | 2806 | events->exception.nr = vcpu->arch.exception.nr; |
2807 | events->exception.has_error_code = vcpu->arch.exception.has_error_code; | 2807 | events->exception.has_error_code = vcpu->arch.exception.has_error_code; |
2808 | events->exception.pad = 0; | 2808 | events->exception.pad = 0; |
2809 | events->exception.error_code = vcpu->arch.exception.error_code; | 2809 | events->exception.error_code = vcpu->arch.exception.error_code; |
2810 | 2810 | ||
2811 | events->interrupt.injected = | 2811 | events->interrupt.injected = |
2812 | vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft; | 2812 | vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft; |
2813 | events->interrupt.nr = vcpu->arch.interrupt.nr; | 2813 | events->interrupt.nr = vcpu->arch.interrupt.nr; |
2814 | events->interrupt.soft = 0; | 2814 | events->interrupt.soft = 0; |
2815 | events->interrupt.shadow = | 2815 | events->interrupt.shadow = |
2816 | kvm_x86_ops->get_interrupt_shadow(vcpu, | 2816 | kvm_x86_ops->get_interrupt_shadow(vcpu, |
2817 | KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI); | 2817 | KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI); |
2818 | 2818 | ||
2819 | events->nmi.injected = vcpu->arch.nmi_injected; | 2819 | events->nmi.injected = vcpu->arch.nmi_injected; |
2820 | events->nmi.pending = vcpu->arch.nmi_pending != 0; | 2820 | events->nmi.pending = vcpu->arch.nmi_pending != 0; |
2821 | events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); | 2821 | events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); |
2822 | events->nmi.pad = 0; | 2822 | events->nmi.pad = 0; |
2823 | 2823 | ||
2824 | events->sipi_vector = vcpu->arch.sipi_vector; | 2824 | events->sipi_vector = vcpu->arch.sipi_vector; |
2825 | 2825 | ||
2826 | events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING | 2826 | events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING |
2827 | | KVM_VCPUEVENT_VALID_SIPI_VECTOR | 2827 | | KVM_VCPUEVENT_VALID_SIPI_VECTOR |
2828 | | KVM_VCPUEVENT_VALID_SHADOW); | 2828 | | KVM_VCPUEVENT_VALID_SHADOW); |
2829 | memset(&events->reserved, 0, sizeof(events->reserved)); | 2829 | memset(&events->reserved, 0, sizeof(events->reserved)); |
2830 | } | 2830 | } |
2831 | 2831 | ||
2832 | static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, | 2832 | static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, |
2833 | struct kvm_vcpu_events *events) | 2833 | struct kvm_vcpu_events *events) |
2834 | { | 2834 | { |
2835 | if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING | 2835 | if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING |
2836 | | KVM_VCPUEVENT_VALID_SIPI_VECTOR | 2836 | | KVM_VCPUEVENT_VALID_SIPI_VECTOR |
2837 | | KVM_VCPUEVENT_VALID_SHADOW)) | 2837 | | KVM_VCPUEVENT_VALID_SHADOW)) |
2838 | return -EINVAL; | 2838 | return -EINVAL; |
2839 | 2839 | ||
2840 | process_nmi(vcpu); | 2840 | process_nmi(vcpu); |
2841 | vcpu->arch.exception.pending = events->exception.injected; | 2841 | vcpu->arch.exception.pending = events->exception.injected; |
2842 | vcpu->arch.exception.nr = events->exception.nr; | 2842 | vcpu->arch.exception.nr = events->exception.nr; |
2843 | vcpu->arch.exception.has_error_code = events->exception.has_error_code; | 2843 | vcpu->arch.exception.has_error_code = events->exception.has_error_code; |
2844 | vcpu->arch.exception.error_code = events->exception.error_code; | 2844 | vcpu->arch.exception.error_code = events->exception.error_code; |
2845 | 2845 | ||
2846 | vcpu->arch.interrupt.pending = events->interrupt.injected; | 2846 | vcpu->arch.interrupt.pending = events->interrupt.injected; |
2847 | vcpu->arch.interrupt.nr = events->interrupt.nr; | 2847 | vcpu->arch.interrupt.nr = events->interrupt.nr; |
2848 | vcpu->arch.interrupt.soft = events->interrupt.soft; | 2848 | vcpu->arch.interrupt.soft = events->interrupt.soft; |
2849 | if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) | 2849 | if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) |
2850 | kvm_x86_ops->set_interrupt_shadow(vcpu, | 2850 | kvm_x86_ops->set_interrupt_shadow(vcpu, |
2851 | events->interrupt.shadow); | 2851 | events->interrupt.shadow); |
2852 | 2852 | ||
2853 | vcpu->arch.nmi_injected = events->nmi.injected; | 2853 | vcpu->arch.nmi_injected = events->nmi.injected; |
2854 | if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) | 2854 | if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) |
2855 | vcpu->arch.nmi_pending = events->nmi.pending; | 2855 | vcpu->arch.nmi_pending = events->nmi.pending; |
2856 | kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); | 2856 | kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); |
2857 | 2857 | ||
2858 | if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR) | 2858 | if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR) |
2859 | vcpu->arch.sipi_vector = events->sipi_vector; | 2859 | vcpu->arch.sipi_vector = events->sipi_vector; |
2860 | 2860 | ||
2861 | kvm_make_request(KVM_REQ_EVENT, vcpu); | 2861 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
2862 | 2862 | ||
2863 | return 0; | 2863 | return 0; |
2864 | } | 2864 | } |
2865 | 2865 | ||
2866 | static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, | 2866 | static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, |
2867 | struct kvm_debugregs *dbgregs) | 2867 | struct kvm_debugregs *dbgregs) |
2868 | { | 2868 | { |
2869 | memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); | 2869 | memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); |
2870 | dbgregs->dr6 = vcpu->arch.dr6; | 2870 | dbgregs->dr6 = vcpu->arch.dr6; |
2871 | dbgregs->dr7 = vcpu->arch.dr7; | 2871 | dbgregs->dr7 = vcpu->arch.dr7; |
2872 | dbgregs->flags = 0; | 2872 | dbgregs->flags = 0; |
2873 | memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); | 2873 | memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); |
2874 | } | 2874 | } |
2875 | 2875 | ||
2876 | static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, | 2876 | static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, |
2877 | struct kvm_debugregs *dbgregs) | 2877 | struct kvm_debugregs *dbgregs) |
2878 | { | 2878 | { |
2879 | if (dbgregs->flags) | 2879 | if (dbgregs->flags) |
2880 | return -EINVAL; | 2880 | return -EINVAL; |
2881 | 2881 | ||
2882 | memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); | 2882 | memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); |
2883 | vcpu->arch.dr6 = dbgregs->dr6; | 2883 | vcpu->arch.dr6 = dbgregs->dr6; |
2884 | vcpu->arch.dr7 = dbgregs->dr7; | 2884 | vcpu->arch.dr7 = dbgregs->dr7; |
2885 | 2885 | ||
2886 | return 0; | 2886 | return 0; |
2887 | } | 2887 | } |
2888 | 2888 | ||
2889 | static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, | 2889 | static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, |
2890 | struct kvm_xsave *guest_xsave) | 2890 | struct kvm_xsave *guest_xsave) |
2891 | { | 2891 | { |
2892 | if (cpu_has_xsave) | 2892 | if (cpu_has_xsave) |
2893 | memcpy(guest_xsave->region, | 2893 | memcpy(guest_xsave->region, |
2894 | &vcpu->arch.guest_fpu.state->xsave, | 2894 | &vcpu->arch.guest_fpu.state->xsave, |
2895 | xstate_size); | 2895 | xstate_size); |
2896 | else { | 2896 | else { |
2897 | memcpy(guest_xsave->region, | 2897 | memcpy(guest_xsave->region, |
2898 | &vcpu->arch.guest_fpu.state->fxsave, | 2898 | &vcpu->arch.guest_fpu.state->fxsave, |
2899 | sizeof(struct i387_fxsave_struct)); | 2899 | sizeof(struct i387_fxsave_struct)); |
2900 | *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = | 2900 | *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = |
2901 | XSTATE_FPSSE; | 2901 | XSTATE_FPSSE; |
2902 | } | 2902 | } |
2903 | } | 2903 | } |
2904 | 2904 | ||
2905 | static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, | 2905 | static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, |
2906 | struct kvm_xsave *guest_xsave) | 2906 | struct kvm_xsave *guest_xsave) |
2907 | { | 2907 | { |
2908 | u64 xstate_bv = | 2908 | u64 xstate_bv = |
2909 | *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; | 2909 | *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; |
2910 | 2910 | ||
2911 | if (cpu_has_xsave) | 2911 | if (cpu_has_xsave) |
2912 | memcpy(&vcpu->arch.guest_fpu.state->xsave, | 2912 | memcpy(&vcpu->arch.guest_fpu.state->xsave, |
2913 | guest_xsave->region, xstate_size); | 2913 | guest_xsave->region, xstate_size); |
2914 | else { | 2914 | else { |
2915 | if (xstate_bv & ~XSTATE_FPSSE) | 2915 | if (xstate_bv & ~XSTATE_FPSSE) |
2916 | return -EINVAL; | 2916 | return -EINVAL; |
2917 | memcpy(&vcpu->arch.guest_fpu.state->fxsave, | 2917 | memcpy(&vcpu->arch.guest_fpu.state->fxsave, |
2918 | guest_xsave->region, sizeof(struct i387_fxsave_struct)); | 2918 | guest_xsave->region, sizeof(struct i387_fxsave_struct)); |
2919 | } | 2919 | } |
2920 | return 0; | 2920 | return 0; |
2921 | } | 2921 | } |
2922 | 2922 | ||
2923 | static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, | 2923 | static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, |
2924 | struct kvm_xcrs *guest_xcrs) | 2924 | struct kvm_xcrs *guest_xcrs) |
2925 | { | 2925 | { |
2926 | if (!cpu_has_xsave) { | 2926 | if (!cpu_has_xsave) { |
2927 | guest_xcrs->nr_xcrs = 0; | 2927 | guest_xcrs->nr_xcrs = 0; |
2928 | return; | 2928 | return; |
2929 | } | 2929 | } |
2930 | 2930 | ||
2931 | guest_xcrs->nr_xcrs = 1; | 2931 | guest_xcrs->nr_xcrs = 1; |
2932 | guest_xcrs->flags = 0; | 2932 | guest_xcrs->flags = 0; |
2933 | guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; | 2933 | guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; |
2934 | guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; | 2934 | guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; |
2935 | } | 2935 | } |
2936 | 2936 | ||
2937 | static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, | 2937 | static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, |
2938 | struct kvm_xcrs *guest_xcrs) | 2938 | struct kvm_xcrs *guest_xcrs) |
2939 | { | 2939 | { |
2940 | int i, r = 0; | 2940 | int i, r = 0; |
2941 | 2941 | ||
2942 | if (!cpu_has_xsave) | 2942 | if (!cpu_has_xsave) |
2943 | return -EINVAL; | 2943 | return -EINVAL; |
2944 | 2944 | ||
2945 | if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) | 2945 | if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) |
2946 | return -EINVAL; | 2946 | return -EINVAL; |
2947 | 2947 | ||
2948 | for (i = 0; i < guest_xcrs->nr_xcrs; i++) | 2948 | for (i = 0; i < guest_xcrs->nr_xcrs; i++) |
2949 | /* Only support XCR0 currently */ | 2949 | /* Only support XCR0 currently */ |
2950 | if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) { | 2950 | if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) { |
2951 | r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, | 2951 | r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, |
2952 | guest_xcrs->xcrs[0].value); | 2952 | guest_xcrs->xcrs[0].value); |
2953 | break; | 2953 | break; |
2954 | } | 2954 | } |
2955 | if (r) | 2955 | if (r) |
2956 | r = -EINVAL; | 2956 | r = -EINVAL; |
2957 | return r; | 2957 | return r; |
2958 | } | 2958 | } |
2959 | 2959 | ||
2960 | /* | 2960 | /* |
2961 | * kvm_set_guest_paused() indicates to the guest kernel that it has been | 2961 | * kvm_set_guest_paused() indicates to the guest kernel that it has been |
2962 | * stopped by the hypervisor. This function will be called from the host only. | 2962 | * stopped by the hypervisor. This function will be called from the host only. |
2963 | * EINVAL is returned when the host attempts to set the flag for a guest that | 2963 | * EINVAL is returned when the host attempts to set the flag for a guest that |
2964 | * does not support pv clocks. | 2964 | * does not support pv clocks. |
2965 | */ | 2965 | */ |
2966 | static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) | 2966 | static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) |
2967 | { | 2967 | { |
2968 | if (!vcpu->arch.time_page) | 2968 | if (!vcpu->arch.time_page) |
2969 | return -EINVAL; | 2969 | return -EINVAL; |
2970 | vcpu->arch.pvclock_set_guest_stopped_request = true; | 2970 | vcpu->arch.pvclock_set_guest_stopped_request = true; |
2971 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); | 2971 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
2972 | return 0; | 2972 | return 0; |
2973 | } | 2973 | } |
2974 | 2974 | ||
2975 | long kvm_arch_vcpu_ioctl(struct file *filp, | 2975 | long kvm_arch_vcpu_ioctl(struct file *filp, |
2976 | unsigned int ioctl, unsigned long arg) | 2976 | unsigned int ioctl, unsigned long arg) |
2977 | { | 2977 | { |
2978 | struct kvm_vcpu *vcpu = filp->private_data; | 2978 | struct kvm_vcpu *vcpu = filp->private_data; |
2979 | void __user *argp = (void __user *)arg; | 2979 | void __user *argp = (void __user *)arg; |
2980 | int r; | 2980 | int r; |
2981 | union { | 2981 | union { |
2982 | struct kvm_lapic_state *lapic; | 2982 | struct kvm_lapic_state *lapic; |
2983 | struct kvm_xsave *xsave; | 2983 | struct kvm_xsave *xsave; |
2984 | struct kvm_xcrs *xcrs; | 2984 | struct kvm_xcrs *xcrs; |
2985 | void *buffer; | 2985 | void *buffer; |
2986 | } u; | 2986 | } u; |
2987 | 2987 | ||
2988 | u.buffer = NULL; | 2988 | u.buffer = NULL; |
2989 | switch (ioctl) { | 2989 | switch (ioctl) { |
2990 | case KVM_GET_LAPIC: { | 2990 | case KVM_GET_LAPIC: { |
2991 | r = -EINVAL; | 2991 | r = -EINVAL; |
2992 | if (!vcpu->arch.apic) | 2992 | if (!vcpu->arch.apic) |
2993 | goto out; | 2993 | goto out; |
2994 | u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); | 2994 | u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); |
2995 | 2995 | ||
2996 | r = -ENOMEM; | 2996 | r = -ENOMEM; |
2997 | if (!u.lapic) | 2997 | if (!u.lapic) |
2998 | goto out; | 2998 | goto out; |
2999 | r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); | 2999 | r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); |
3000 | if (r) | 3000 | if (r) |
3001 | goto out; | 3001 | goto out; |
3002 | r = -EFAULT; | 3002 | r = -EFAULT; |
3003 | if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) | 3003 | if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) |
3004 | goto out; | 3004 | goto out; |
3005 | r = 0; | 3005 | r = 0; |
3006 | break; | 3006 | break; |
3007 | } | 3007 | } |
3008 | case KVM_SET_LAPIC: { | 3008 | case KVM_SET_LAPIC: { |
3009 | r = -EINVAL; | 3009 | r = -EINVAL; |
3010 | if (!vcpu->arch.apic) | 3010 | if (!vcpu->arch.apic) |
3011 | goto out; | 3011 | goto out; |
3012 | u.lapic = memdup_user(argp, sizeof(*u.lapic)); | 3012 | u.lapic = memdup_user(argp, sizeof(*u.lapic)); |
3013 | if (IS_ERR(u.lapic)) | 3013 | if (IS_ERR(u.lapic)) |
3014 | return PTR_ERR(u.lapic); | 3014 | return PTR_ERR(u.lapic); |
3015 | 3015 | ||
3016 | r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); | 3016 | r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); |
3017 | break; | 3017 | break; |
3018 | } | 3018 | } |
3019 | case KVM_INTERRUPT: { | 3019 | case KVM_INTERRUPT: { |
3020 | struct kvm_interrupt irq; | 3020 | struct kvm_interrupt irq; |
3021 | 3021 | ||
3022 | r = -EFAULT; | 3022 | r = -EFAULT; |
3023 | if (copy_from_user(&irq, argp, sizeof irq)) | 3023 | if (copy_from_user(&irq, argp, sizeof irq)) |
3024 | goto out; | 3024 | goto out; |
3025 | r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); | 3025 | r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); |
3026 | break; | 3026 | break; |
3027 | } | 3027 | } |
3028 | case KVM_NMI: { | 3028 | case KVM_NMI: { |
3029 | r = kvm_vcpu_ioctl_nmi(vcpu); | 3029 | r = kvm_vcpu_ioctl_nmi(vcpu); |
3030 | break; | 3030 | break; |
3031 | } | 3031 | } |
3032 | case KVM_SET_CPUID: { | 3032 | case KVM_SET_CPUID: { |
3033 | struct kvm_cpuid __user *cpuid_arg = argp; | 3033 | struct kvm_cpuid __user *cpuid_arg = argp; |
3034 | struct kvm_cpuid cpuid; | 3034 | struct kvm_cpuid cpuid; |
3035 | 3035 | ||
3036 | r = -EFAULT; | 3036 | r = -EFAULT; |
3037 | if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) | 3037 | if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) |
3038 | goto out; | 3038 | goto out; |
3039 | r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); | 3039 | r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); |
3040 | break; | 3040 | break; |
3041 | } | 3041 | } |
3042 | case KVM_SET_CPUID2: { | 3042 | case KVM_SET_CPUID2: { |
3043 | struct kvm_cpuid2 __user *cpuid_arg = argp; | 3043 | struct kvm_cpuid2 __user *cpuid_arg = argp; |
3044 | struct kvm_cpuid2 cpuid; | 3044 | struct kvm_cpuid2 cpuid; |
3045 | 3045 | ||
3046 | r = -EFAULT; | 3046 | r = -EFAULT; |
3047 | if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) | 3047 | if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) |
3048 | goto out; | 3048 | goto out; |
3049 | r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, | 3049 | r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, |
3050 | cpuid_arg->entries); | 3050 | cpuid_arg->entries); |
3051 | break; | 3051 | break; |
3052 | } | 3052 | } |
3053 | case KVM_GET_CPUID2: { | 3053 | case KVM_GET_CPUID2: { |
3054 | struct kvm_cpuid2 __user *cpuid_arg = argp; | 3054 | struct kvm_cpuid2 __user *cpuid_arg = argp; |
3055 | struct kvm_cpuid2 cpuid; | 3055 | struct kvm_cpuid2 cpuid; |
3056 | 3056 | ||
3057 | r = -EFAULT; | 3057 | r = -EFAULT; |
3058 | if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) | 3058 | if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) |
3059 | goto out; | 3059 | goto out; |
3060 | r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, | 3060 | r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, |
3061 | cpuid_arg->entries); | 3061 | cpuid_arg->entries); |
3062 | if (r) | 3062 | if (r) |
3063 | goto out; | 3063 | goto out; |
3064 | r = -EFAULT; | 3064 | r = -EFAULT; |
3065 | if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) | 3065 | if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) |
3066 | goto out; | 3066 | goto out; |
3067 | r = 0; | 3067 | r = 0; |
3068 | break; | 3068 | break; |
3069 | } | 3069 | } |
3070 | case KVM_GET_MSRS: | 3070 | case KVM_GET_MSRS: |
3071 | r = msr_io(vcpu, argp, kvm_get_msr, 1); | 3071 | r = msr_io(vcpu, argp, kvm_get_msr, 1); |
3072 | break; | 3072 | break; |
3073 | case KVM_SET_MSRS: | 3073 | case KVM_SET_MSRS: |
3074 | r = msr_io(vcpu, argp, do_set_msr, 0); | 3074 | r = msr_io(vcpu, argp, do_set_msr, 0); |
3075 | break; | 3075 | break; |
3076 | case KVM_TPR_ACCESS_REPORTING: { | 3076 | case KVM_TPR_ACCESS_REPORTING: { |
3077 | struct kvm_tpr_access_ctl tac; | 3077 | struct kvm_tpr_access_ctl tac; |
3078 | 3078 | ||
3079 | r = -EFAULT; | 3079 | r = -EFAULT; |
3080 | if (copy_from_user(&tac, argp, sizeof tac)) | 3080 | if (copy_from_user(&tac, argp, sizeof tac)) |
3081 | goto out; | 3081 | goto out; |
3082 | r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); | 3082 | r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); |
3083 | if (r) | 3083 | if (r) |
3084 | goto out; | 3084 | goto out; |
3085 | r = -EFAULT; | 3085 | r = -EFAULT; |
3086 | if (copy_to_user(argp, &tac, sizeof tac)) | 3086 | if (copy_to_user(argp, &tac, sizeof tac)) |
3087 | goto out; | 3087 | goto out; |
3088 | r = 0; | 3088 | r = 0; |
3089 | break; | 3089 | break; |
3090 | }; | 3090 | }; |
3091 | case KVM_SET_VAPIC_ADDR: { | 3091 | case KVM_SET_VAPIC_ADDR: { |
3092 | struct kvm_vapic_addr va; | 3092 | struct kvm_vapic_addr va; |
3093 | 3093 | ||
3094 | r = -EINVAL; | 3094 | r = -EINVAL; |
3095 | if (!irqchip_in_kernel(vcpu->kvm)) | 3095 | if (!irqchip_in_kernel(vcpu->kvm)) |
3096 | goto out; | 3096 | goto out; |
3097 | r = -EFAULT; | 3097 | r = -EFAULT; |
3098 | if (copy_from_user(&va, argp, sizeof va)) | 3098 | if (copy_from_user(&va, argp, sizeof va)) |
3099 | goto out; | 3099 | goto out; |
3100 | r = 0; | 3100 | r = 0; |
3101 | kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); | 3101 | kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); |
3102 | break; | 3102 | break; |
3103 | } | 3103 | } |
3104 | case KVM_X86_SETUP_MCE: { | 3104 | case KVM_X86_SETUP_MCE: { |
3105 | u64 mcg_cap; | 3105 | u64 mcg_cap; |
3106 | 3106 | ||
3107 | r = -EFAULT; | 3107 | r = -EFAULT; |
3108 | if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap)) | 3108 | if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap)) |
3109 | goto out; | 3109 | goto out; |
3110 | r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); | 3110 | r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); |
3111 | break; | 3111 | break; |
3112 | } | 3112 | } |
3113 | case KVM_X86_SET_MCE: { | 3113 | case KVM_X86_SET_MCE: { |
3114 | struct kvm_x86_mce mce; | 3114 | struct kvm_x86_mce mce; |
3115 | 3115 | ||
3116 | r = -EFAULT; | 3116 | r = -EFAULT; |
3117 | if (copy_from_user(&mce, argp, sizeof mce)) | 3117 | if (copy_from_user(&mce, argp, sizeof mce)) |
3118 | goto out; | 3118 | goto out; |
3119 | r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); | 3119 | r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); |
3120 | break; | 3120 | break; |
3121 | } | 3121 | } |
3122 | case KVM_GET_VCPU_EVENTS: { | 3122 | case KVM_GET_VCPU_EVENTS: { |
3123 | struct kvm_vcpu_events events; | 3123 | struct kvm_vcpu_events events; |
3124 | 3124 | ||
3125 | kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); | 3125 | kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); |
3126 | 3126 | ||
3127 | r = -EFAULT; | 3127 | r = -EFAULT; |
3128 | if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) | 3128 | if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) |
3129 | break; | 3129 | break; |
3130 | r = 0; | 3130 | r = 0; |
3131 | break; | 3131 | break; |
3132 | } | 3132 | } |
3133 | case KVM_SET_VCPU_EVENTS: { | 3133 | case KVM_SET_VCPU_EVENTS: { |
3134 | struct kvm_vcpu_events events; | 3134 | struct kvm_vcpu_events events; |
3135 | 3135 | ||
3136 | r = -EFAULT; | 3136 | r = -EFAULT; |
3137 | if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) | 3137 | if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) |
3138 | break; | 3138 | break; |
3139 | 3139 | ||
3140 | r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); | 3140 | r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); |
3141 | break; | 3141 | break; |
3142 | } | 3142 | } |
3143 | case KVM_GET_DEBUGREGS: { | 3143 | case KVM_GET_DEBUGREGS: { |
3144 | struct kvm_debugregs dbgregs; | 3144 | struct kvm_debugregs dbgregs; |
3145 | 3145 | ||
3146 | kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); | 3146 | kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); |
3147 | 3147 | ||
3148 | r = -EFAULT; | 3148 | r = -EFAULT; |
3149 | if (copy_to_user(argp, &dbgregs, | 3149 | if (copy_to_user(argp, &dbgregs, |
3150 | sizeof(struct kvm_debugregs))) | 3150 | sizeof(struct kvm_debugregs))) |
3151 | break; | 3151 | break; |
3152 | r = 0; | 3152 | r = 0; |
3153 | break; | 3153 | break; |
3154 | } | 3154 | } |
3155 | case KVM_SET_DEBUGREGS: { | 3155 | case KVM_SET_DEBUGREGS: { |
3156 | struct kvm_debugregs dbgregs; | 3156 | struct kvm_debugregs dbgregs; |
3157 | 3157 | ||
3158 | r = -EFAULT; | 3158 | r = -EFAULT; |
3159 | if (copy_from_user(&dbgregs, argp, | 3159 | if (copy_from_user(&dbgregs, argp, |
3160 | sizeof(struct kvm_debugregs))) | 3160 | sizeof(struct kvm_debugregs))) |
3161 | break; | 3161 | break; |
3162 | 3162 | ||
3163 | r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); | 3163 | r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); |
3164 | break; | 3164 | break; |
3165 | } | 3165 | } |
3166 | case KVM_GET_XSAVE: { | 3166 | case KVM_GET_XSAVE: { |
3167 | u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); | 3167 | u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); |
3168 | r = -ENOMEM; | 3168 | r = -ENOMEM; |
3169 | if (!u.xsave) | 3169 | if (!u.xsave) |
3170 | break; | 3170 | break; |
3171 | 3171 | ||
3172 | kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); | 3172 | kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); |
3173 | 3173 | ||
3174 | r = -EFAULT; | 3174 | r = -EFAULT; |
3175 | if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) | 3175 | if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) |
3176 | break; | 3176 | break; |
3177 | r = 0; | 3177 | r = 0; |
3178 | break; | 3178 | break; |
3179 | } | 3179 | } |
3180 | case KVM_SET_XSAVE: { | 3180 | case KVM_SET_XSAVE: { |
3181 | u.xsave = memdup_user(argp, sizeof(*u.xsave)); | 3181 | u.xsave = memdup_user(argp, sizeof(*u.xsave)); |
3182 | if (IS_ERR(u.xsave)) | 3182 | if (IS_ERR(u.xsave)) |
3183 | return PTR_ERR(u.xsave); | 3183 | return PTR_ERR(u.xsave); |
3184 | 3184 | ||
3185 | r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); | 3185 | r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); |
3186 | break; | 3186 | break; |
3187 | } | 3187 | } |
3188 | case KVM_GET_XCRS: { | 3188 | case KVM_GET_XCRS: { |
3189 | u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); | 3189 | u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); |
3190 | r = -ENOMEM; | 3190 | r = -ENOMEM; |
3191 | if (!u.xcrs) | 3191 | if (!u.xcrs) |
3192 | break; | 3192 | break; |
3193 | 3193 | ||
3194 | kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); | 3194 | kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); |
3195 | 3195 | ||
3196 | r = -EFAULT; | 3196 | r = -EFAULT; |
3197 | if (copy_to_user(argp, u.xcrs, | 3197 | if (copy_to_user(argp, u.xcrs, |
3198 | sizeof(struct kvm_xcrs))) | 3198 | sizeof(struct kvm_xcrs))) |
3199 | break; | 3199 | break; |
3200 | r = 0; | 3200 | r = 0; |
3201 | break; | 3201 | break; |
3202 | } | 3202 | } |
3203 | case KVM_SET_XCRS: { | 3203 | case KVM_SET_XCRS: { |
3204 | u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); | 3204 | u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); |
3205 | if (IS_ERR(u.xcrs)) | 3205 | if (IS_ERR(u.xcrs)) |
3206 | return PTR_ERR(u.xcrs); | 3206 | return PTR_ERR(u.xcrs); |
3207 | 3207 | ||
3208 | r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); | 3208 | r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); |
3209 | break; | 3209 | break; |
3210 | } | 3210 | } |
3211 | case KVM_SET_TSC_KHZ: { | 3211 | case KVM_SET_TSC_KHZ: { |
3212 | u32 user_tsc_khz; | 3212 | u32 user_tsc_khz; |
3213 | 3213 | ||
3214 | r = -EINVAL; | 3214 | r = -EINVAL; |
3215 | user_tsc_khz = (u32)arg; | 3215 | user_tsc_khz = (u32)arg; |
3216 | 3216 | ||
3217 | if (user_tsc_khz >= kvm_max_guest_tsc_khz) | 3217 | if (user_tsc_khz >= kvm_max_guest_tsc_khz) |
3218 | goto out; | 3218 | goto out; |
3219 | 3219 | ||
3220 | if (user_tsc_khz == 0) | 3220 | if (user_tsc_khz == 0) |
3221 | user_tsc_khz = tsc_khz; | 3221 | user_tsc_khz = tsc_khz; |
3222 | 3222 | ||
3223 | kvm_set_tsc_khz(vcpu, user_tsc_khz); | 3223 | kvm_set_tsc_khz(vcpu, user_tsc_khz); |
3224 | 3224 | ||
3225 | r = 0; | 3225 | r = 0; |
3226 | goto out; | 3226 | goto out; |
3227 | } | 3227 | } |
3228 | case KVM_GET_TSC_KHZ: { | 3228 | case KVM_GET_TSC_KHZ: { |
3229 | r = vcpu->arch.virtual_tsc_khz; | 3229 | r = vcpu->arch.virtual_tsc_khz; |
3230 | goto out; | 3230 | goto out; |
3231 | } | 3231 | } |
3232 | case KVM_KVMCLOCK_CTRL: { | 3232 | case KVM_KVMCLOCK_CTRL: { |
3233 | r = kvm_set_guest_paused(vcpu); | 3233 | r = kvm_set_guest_paused(vcpu); |
3234 | goto out; | 3234 | goto out; |
3235 | } | 3235 | } |
3236 | default: | 3236 | default: |
3237 | r = -EINVAL; | 3237 | r = -EINVAL; |
3238 | } | 3238 | } |
3239 | out: | 3239 | out: |
3240 | kfree(u.buffer); | 3240 | kfree(u.buffer); |
3241 | return r; | 3241 | return r; |
3242 | } | 3242 | } |
3243 | 3243 | ||
3244 | int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) | 3244 | int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) |
3245 | { | 3245 | { |
3246 | return VM_FAULT_SIGBUS; | 3246 | return VM_FAULT_SIGBUS; |
3247 | } | 3247 | } |
3248 | 3248 | ||
3249 | static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) | 3249 | static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) |
3250 | { | 3250 | { |
3251 | int ret; | 3251 | int ret; |
3252 | 3252 | ||
3253 | if (addr > (unsigned int)(-3 * PAGE_SIZE)) | 3253 | if (addr > (unsigned int)(-3 * PAGE_SIZE)) |
3254 | return -EINVAL; | 3254 | return -EINVAL; |
3255 | ret = kvm_x86_ops->set_tss_addr(kvm, addr); | 3255 | ret = kvm_x86_ops->set_tss_addr(kvm, addr); |
3256 | return ret; | 3256 | return ret; |
3257 | } | 3257 | } |
3258 | 3258 | ||
3259 | static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, | 3259 | static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, |
3260 | u64 ident_addr) | 3260 | u64 ident_addr) |
3261 | { | 3261 | { |
3262 | kvm->arch.ept_identity_map_addr = ident_addr; | 3262 | kvm->arch.ept_identity_map_addr = ident_addr; |
3263 | return 0; | 3263 | return 0; |
3264 | } | 3264 | } |
3265 | 3265 | ||
3266 | static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, | 3266 | static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, |
3267 | u32 kvm_nr_mmu_pages) | 3267 | u32 kvm_nr_mmu_pages) |
3268 | { | 3268 | { |
3269 | if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) | 3269 | if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) |
3270 | return -EINVAL; | 3270 | return -EINVAL; |
3271 | 3271 | ||
3272 | mutex_lock(&kvm->slots_lock); | 3272 | mutex_lock(&kvm->slots_lock); |
3273 | spin_lock(&kvm->mmu_lock); | 3273 | spin_lock(&kvm->mmu_lock); |
3274 | 3274 | ||
3275 | kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); | 3275 | kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); |
3276 | kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; | 3276 | kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; |
3277 | 3277 | ||
3278 | spin_unlock(&kvm->mmu_lock); | 3278 | spin_unlock(&kvm->mmu_lock); |
3279 | mutex_unlock(&kvm->slots_lock); | 3279 | mutex_unlock(&kvm->slots_lock); |
3280 | return 0; | 3280 | return 0; |
3281 | } | 3281 | } |
3282 | 3282 | ||
3283 | static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) | 3283 | static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) |
3284 | { | 3284 | { |
3285 | return kvm->arch.n_max_mmu_pages; | 3285 | return kvm->arch.n_max_mmu_pages; |
3286 | } | 3286 | } |
3287 | 3287 | ||
3288 | static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) | 3288 | static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) |
3289 | { | 3289 | { |
3290 | int r; | 3290 | int r; |
3291 | 3291 | ||
3292 | r = 0; | 3292 | r = 0; |
3293 | switch (chip->chip_id) { | 3293 | switch (chip->chip_id) { |
3294 | case KVM_IRQCHIP_PIC_MASTER: | 3294 | case KVM_IRQCHIP_PIC_MASTER: |
3295 | memcpy(&chip->chip.pic, | 3295 | memcpy(&chip->chip.pic, |
3296 | &pic_irqchip(kvm)->pics[0], | 3296 | &pic_irqchip(kvm)->pics[0], |
3297 | sizeof(struct kvm_pic_state)); | 3297 | sizeof(struct kvm_pic_state)); |
3298 | break; | 3298 | break; |
3299 | case KVM_IRQCHIP_PIC_SLAVE: | 3299 | case KVM_IRQCHIP_PIC_SLAVE: |
3300 | memcpy(&chip->chip.pic, | 3300 | memcpy(&chip->chip.pic, |
3301 | &pic_irqchip(kvm)->pics[1], | 3301 | &pic_irqchip(kvm)->pics[1], |
3302 | sizeof(struct kvm_pic_state)); | 3302 | sizeof(struct kvm_pic_state)); |
3303 | break; | 3303 | break; |
3304 | case KVM_IRQCHIP_IOAPIC: | 3304 | case KVM_IRQCHIP_IOAPIC: |
3305 | r = kvm_get_ioapic(kvm, &chip->chip.ioapic); | 3305 | r = kvm_get_ioapic(kvm, &chip->chip.ioapic); |
3306 | break; | 3306 | break; |
3307 | default: | 3307 | default: |
3308 | r = -EINVAL; | 3308 | r = -EINVAL; |
3309 | break; | 3309 | break; |
3310 | } | 3310 | } |
3311 | return r; | 3311 | return r; |
3312 | } | 3312 | } |
3313 | 3313 | ||
3314 | static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) | 3314 | static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) |
3315 | { | 3315 | { |
3316 | int r; | 3316 | int r; |
3317 | 3317 | ||
3318 | r = 0; | 3318 | r = 0; |
3319 | switch (chip->chip_id) { | 3319 | switch (chip->chip_id) { |
3320 | case KVM_IRQCHIP_PIC_MASTER: | 3320 | case KVM_IRQCHIP_PIC_MASTER: |
3321 | spin_lock(&pic_irqchip(kvm)->lock); | 3321 | spin_lock(&pic_irqchip(kvm)->lock); |
3322 | memcpy(&pic_irqchip(kvm)->pics[0], | 3322 | memcpy(&pic_irqchip(kvm)->pics[0], |
3323 | &chip->chip.pic, | 3323 | &chip->chip.pic, |
3324 | sizeof(struct kvm_pic_state)); | 3324 | sizeof(struct kvm_pic_state)); |
3325 | spin_unlock(&pic_irqchip(kvm)->lock); | 3325 | spin_unlock(&pic_irqchip(kvm)->lock); |
3326 | break; | 3326 | break; |
3327 | case KVM_IRQCHIP_PIC_SLAVE: | 3327 | case KVM_IRQCHIP_PIC_SLAVE: |
3328 | spin_lock(&pic_irqchip(kvm)->lock); | 3328 | spin_lock(&pic_irqchip(kvm)->lock); |
3329 | memcpy(&pic_irqchip(kvm)->pics[1], | 3329 | memcpy(&pic_irqchip(kvm)->pics[1], |
3330 | &chip->chip.pic, | 3330 | &chip->chip.pic, |
3331 | sizeof(struct kvm_pic_state)); | 3331 | sizeof(struct kvm_pic_state)); |
3332 | spin_unlock(&pic_irqchip(kvm)->lock); | 3332 | spin_unlock(&pic_irqchip(kvm)->lock); |
3333 | break; | 3333 | break; |
3334 | case KVM_IRQCHIP_IOAPIC: | 3334 | case KVM_IRQCHIP_IOAPIC: |
3335 | r = kvm_set_ioapic(kvm, &chip->chip.ioapic); | 3335 | r = kvm_set_ioapic(kvm, &chip->chip.ioapic); |
3336 | break; | 3336 | break; |
3337 | default: | 3337 | default: |
3338 | r = -EINVAL; | 3338 | r = -EINVAL; |
3339 | break; | 3339 | break; |
3340 | } | 3340 | } |
3341 | kvm_pic_update_irq(pic_irqchip(kvm)); | 3341 | kvm_pic_update_irq(pic_irqchip(kvm)); |
3342 | return r; | 3342 | return r; |
3343 | } | 3343 | } |
3344 | 3344 | ||
3345 | static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) | 3345 | static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) |
3346 | { | 3346 | { |
3347 | int r = 0; | 3347 | int r = 0; |
3348 | 3348 | ||
3349 | mutex_lock(&kvm->arch.vpit->pit_state.lock); | 3349 | mutex_lock(&kvm->arch.vpit->pit_state.lock); |
3350 | memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state)); | 3350 | memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state)); |
3351 | mutex_unlock(&kvm->arch.vpit->pit_state.lock); | 3351 | mutex_unlock(&kvm->arch.vpit->pit_state.lock); |
3352 | return r; | 3352 | return r; |
3353 | } | 3353 | } |
3354 | 3354 | ||
3355 | static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) | 3355 | static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) |
3356 | { | 3356 | { |
3357 | int r = 0; | 3357 | int r = 0; |
3358 | 3358 | ||
3359 | mutex_lock(&kvm->arch.vpit->pit_state.lock); | 3359 | mutex_lock(&kvm->arch.vpit->pit_state.lock); |
3360 | memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state)); | 3360 | memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state)); |
3361 | kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0); | 3361 | kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0); |
3362 | mutex_unlock(&kvm->arch.vpit->pit_state.lock); | 3362 | mutex_unlock(&kvm->arch.vpit->pit_state.lock); |
3363 | return r; | 3363 | return r; |
3364 | } | 3364 | } |
3365 | 3365 | ||
3366 | static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) | 3366 | static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) |
3367 | { | 3367 | { |
3368 | int r = 0; | 3368 | int r = 0; |
3369 | 3369 | ||
3370 | mutex_lock(&kvm->arch.vpit->pit_state.lock); | 3370 | mutex_lock(&kvm->arch.vpit->pit_state.lock); |
3371 | memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, | 3371 | memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, |
3372 | sizeof(ps->channels)); | 3372 | sizeof(ps->channels)); |
3373 | ps->flags = kvm->arch.vpit->pit_state.flags; | 3373 | ps->flags = kvm->arch.vpit->pit_state.flags; |
3374 | mutex_unlock(&kvm->arch.vpit->pit_state.lock); | 3374 | mutex_unlock(&kvm->arch.vpit->pit_state.lock); |
3375 | memset(&ps->reserved, 0, sizeof(ps->reserved)); | 3375 | memset(&ps->reserved, 0, sizeof(ps->reserved)); |
3376 | return r; | 3376 | return r; |
3377 | } | 3377 | } |
3378 | 3378 | ||
3379 | static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) | 3379 | static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) |
3380 | { | 3380 | { |
3381 | int r = 0, start = 0; | 3381 | int r = 0, start = 0; |
3382 | u32 prev_legacy, cur_legacy; | 3382 | u32 prev_legacy, cur_legacy; |
3383 | mutex_lock(&kvm->arch.vpit->pit_state.lock); | 3383 | mutex_lock(&kvm->arch.vpit->pit_state.lock); |
3384 | prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; | 3384 | prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; |
3385 | cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; | 3385 | cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; |
3386 | if (!prev_legacy && cur_legacy) | 3386 | if (!prev_legacy && cur_legacy) |
3387 | start = 1; | 3387 | start = 1; |
3388 | memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels, | 3388 | memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels, |
3389 | sizeof(kvm->arch.vpit->pit_state.channels)); | 3389 | sizeof(kvm->arch.vpit->pit_state.channels)); |
3390 | kvm->arch.vpit->pit_state.flags = ps->flags; | 3390 | kvm->arch.vpit->pit_state.flags = ps->flags; |
3391 | kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start); | 3391 | kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start); |
3392 | mutex_unlock(&kvm->arch.vpit->pit_state.lock); | 3392 | mutex_unlock(&kvm->arch.vpit->pit_state.lock); |
3393 | return r; | 3393 | return r; |
3394 | } | 3394 | } |
3395 | 3395 | ||
3396 | static int kvm_vm_ioctl_reinject(struct kvm *kvm, | 3396 | static int kvm_vm_ioctl_reinject(struct kvm *kvm, |
3397 | struct kvm_reinject_control *control) | 3397 | struct kvm_reinject_control *control) |
3398 | { | 3398 | { |
3399 | if (!kvm->arch.vpit) | 3399 | if (!kvm->arch.vpit) |
3400 | return -ENXIO; | 3400 | return -ENXIO; |
3401 | mutex_lock(&kvm->arch.vpit->pit_state.lock); | 3401 | mutex_lock(&kvm->arch.vpit->pit_state.lock); |
3402 | kvm->arch.vpit->pit_state.reinject = control->pit_reinject; | 3402 | kvm->arch.vpit->pit_state.reinject = control->pit_reinject; |
3403 | mutex_unlock(&kvm->arch.vpit->pit_state.lock); | 3403 | mutex_unlock(&kvm->arch.vpit->pit_state.lock); |
3404 | return 0; | 3404 | return 0; |
3405 | } | 3405 | } |
3406 | 3406 | ||
3407 | /** | 3407 | /** |
3408 | * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot | 3408 | * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot |
3409 | * @kvm: kvm instance | 3409 | * @kvm: kvm instance |
3410 | * @log: slot id and address to which we copy the log | 3410 | * @log: slot id and address to which we copy the log |
3411 | * | 3411 | * |
3412 | * We need to keep it in mind that VCPU threads can write to the bitmap | 3412 | * We need to keep it in mind that VCPU threads can write to the bitmap |
3413 | * concurrently. So, to avoid losing data, we keep the following order for | 3413 | * concurrently. So, to avoid losing data, we keep the following order for |
3414 | * each bit: | 3414 | * each bit: |
3415 | * | 3415 | * |
3416 | * 1. Take a snapshot of the bit and clear it if needed. | 3416 | * 1. Take a snapshot of the bit and clear it if needed. |
3417 | * 2. Write protect the corresponding page. | 3417 | * 2. Write protect the corresponding page. |
3418 | * 3. Flush TLB's if needed. | 3418 | * 3. Flush TLB's if needed. |
3419 | * 4. Copy the snapshot to the userspace. | 3419 | * 4. Copy the snapshot to the userspace. |
3420 | * | 3420 | * |
3421 | * Between 2 and 3, the guest may write to the page using the remaining TLB | 3421 | * Between 2 and 3, the guest may write to the page using the remaining TLB |
3422 | * entry. This is not a problem because the page will be reported dirty at | 3422 | * entry. This is not a problem because the page will be reported dirty at |
3423 | * step 4 using the snapshot taken before and step 3 ensures that successive | 3423 | * step 4 using the snapshot taken before and step 3 ensures that successive |
3424 | * writes will be logged for the next call. | 3424 | * writes will be logged for the next call. |
3425 | */ | 3425 | */ |
3426 | int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) | 3426 | int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) |
3427 | { | 3427 | { |
3428 | int r; | 3428 | int r; |
3429 | struct kvm_memory_slot *memslot; | 3429 | struct kvm_memory_slot *memslot; |
3430 | unsigned long n, i; | 3430 | unsigned long n, i; |
3431 | unsigned long *dirty_bitmap; | 3431 | unsigned long *dirty_bitmap; |
3432 | unsigned long *dirty_bitmap_buffer; | 3432 | unsigned long *dirty_bitmap_buffer; |
3433 | bool is_dirty = false; | 3433 | bool is_dirty = false; |
3434 | 3434 | ||
3435 | mutex_lock(&kvm->slots_lock); | 3435 | mutex_lock(&kvm->slots_lock); |
3436 | 3436 | ||
3437 | r = -EINVAL; | 3437 | r = -EINVAL; |
3438 | if (log->slot >= KVM_USER_MEM_SLOTS) | 3438 | if (log->slot >= KVM_USER_MEM_SLOTS) |
3439 | goto out; | 3439 | goto out; |
3440 | 3440 | ||
3441 | memslot = id_to_memslot(kvm->memslots, log->slot); | 3441 | memslot = id_to_memslot(kvm->memslots, log->slot); |
3442 | 3442 | ||
3443 | dirty_bitmap = memslot->dirty_bitmap; | 3443 | dirty_bitmap = memslot->dirty_bitmap; |
3444 | r = -ENOENT; | 3444 | r = -ENOENT; |
3445 | if (!dirty_bitmap) | 3445 | if (!dirty_bitmap) |
3446 | goto out; | 3446 | goto out; |
3447 | 3447 | ||
3448 | n = kvm_dirty_bitmap_bytes(memslot); | 3448 | n = kvm_dirty_bitmap_bytes(memslot); |
3449 | 3449 | ||
3450 | dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); | 3450 | dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); |
3451 | memset(dirty_bitmap_buffer, 0, n); | 3451 | memset(dirty_bitmap_buffer, 0, n); |
3452 | 3452 | ||
3453 | spin_lock(&kvm->mmu_lock); | 3453 | spin_lock(&kvm->mmu_lock); |
3454 | 3454 | ||
3455 | for (i = 0; i < n / sizeof(long); i++) { | 3455 | for (i = 0; i < n / sizeof(long); i++) { |
3456 | unsigned long mask; | 3456 | unsigned long mask; |
3457 | gfn_t offset; | 3457 | gfn_t offset; |
3458 | 3458 | ||
3459 | if (!dirty_bitmap[i]) | 3459 | if (!dirty_bitmap[i]) |
3460 | continue; | 3460 | continue; |
3461 | 3461 | ||
3462 | is_dirty = true; | 3462 | is_dirty = true; |
3463 | 3463 | ||
3464 | mask = xchg(&dirty_bitmap[i], 0); | 3464 | mask = xchg(&dirty_bitmap[i], 0); |
3465 | dirty_bitmap_buffer[i] = mask; | 3465 | dirty_bitmap_buffer[i] = mask; |
3466 | 3466 | ||
3467 | offset = i * BITS_PER_LONG; | 3467 | offset = i * BITS_PER_LONG; |
3468 | kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask); | 3468 | kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask); |
3469 | } | 3469 | } |
3470 | if (is_dirty) | 3470 | if (is_dirty) |
3471 | kvm_flush_remote_tlbs(kvm); | 3471 | kvm_flush_remote_tlbs(kvm); |
3472 | 3472 | ||
3473 | spin_unlock(&kvm->mmu_lock); | 3473 | spin_unlock(&kvm->mmu_lock); |
3474 | 3474 | ||
3475 | r = -EFAULT; | 3475 | r = -EFAULT; |
3476 | if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) | 3476 | if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) |
3477 | goto out; | 3477 | goto out; |
3478 | 3478 | ||
3479 | r = 0; | 3479 | r = 0; |
3480 | out: | 3480 | out: |
3481 | mutex_unlock(&kvm->slots_lock); | 3481 | mutex_unlock(&kvm->slots_lock); |
3482 | return r; | 3482 | return r; |
3483 | } | 3483 | } |
3484 | 3484 | ||
3485 | int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event) | 3485 | int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event) |
3486 | { | 3486 | { |
3487 | if (!irqchip_in_kernel(kvm)) | 3487 | if (!irqchip_in_kernel(kvm)) |
3488 | return -ENXIO; | 3488 | return -ENXIO; |
3489 | 3489 | ||
3490 | irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, | 3490 | irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, |
3491 | irq_event->irq, irq_event->level); | 3491 | irq_event->irq, irq_event->level); |
3492 | return 0; | 3492 | return 0; |
3493 | } | 3493 | } |
3494 | 3494 | ||
3495 | long kvm_arch_vm_ioctl(struct file *filp, | 3495 | long kvm_arch_vm_ioctl(struct file *filp, |
3496 | unsigned int ioctl, unsigned long arg) | 3496 | unsigned int ioctl, unsigned long arg) |
3497 | { | 3497 | { |
3498 | struct kvm *kvm = filp->private_data; | 3498 | struct kvm *kvm = filp->private_data; |
3499 | void __user *argp = (void __user *)arg; | 3499 | void __user *argp = (void __user *)arg; |
3500 | int r = -ENOTTY; | 3500 | int r = -ENOTTY; |
3501 | /* | 3501 | /* |
3502 | * This union makes it completely explicit to gcc-3.x | 3502 | * This union makes it completely explicit to gcc-3.x |
3503 | * that these two variables' stack usage should be | 3503 | * that these two variables' stack usage should be |
3504 | * combined, not added together. | 3504 | * combined, not added together. |
3505 | */ | 3505 | */ |
3506 | union { | 3506 | union { |
3507 | struct kvm_pit_state ps; | 3507 | struct kvm_pit_state ps; |
3508 | struct kvm_pit_state2 ps2; | 3508 | struct kvm_pit_state2 ps2; |
3509 | struct kvm_pit_config pit_config; | 3509 | struct kvm_pit_config pit_config; |
3510 | } u; | 3510 | } u; |
3511 | 3511 | ||
3512 | switch (ioctl) { | 3512 | switch (ioctl) { |
3513 | case KVM_SET_TSS_ADDR: | 3513 | case KVM_SET_TSS_ADDR: |
3514 | r = kvm_vm_ioctl_set_tss_addr(kvm, arg); | 3514 | r = kvm_vm_ioctl_set_tss_addr(kvm, arg); |
3515 | break; | 3515 | break; |
3516 | case KVM_SET_IDENTITY_MAP_ADDR: { | 3516 | case KVM_SET_IDENTITY_MAP_ADDR: { |
3517 | u64 ident_addr; | 3517 | u64 ident_addr; |
3518 | 3518 | ||
3519 | r = -EFAULT; | 3519 | r = -EFAULT; |
3520 | if (copy_from_user(&ident_addr, argp, sizeof ident_addr)) | 3520 | if (copy_from_user(&ident_addr, argp, sizeof ident_addr)) |
3521 | goto out; | 3521 | goto out; |
3522 | r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); | 3522 | r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); |
3523 | break; | 3523 | break; |
3524 | } | 3524 | } |
3525 | case KVM_SET_NR_MMU_PAGES: | 3525 | case KVM_SET_NR_MMU_PAGES: |
3526 | r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); | 3526 | r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); |
3527 | break; | 3527 | break; |
3528 | case KVM_GET_NR_MMU_PAGES: | 3528 | case KVM_GET_NR_MMU_PAGES: |
3529 | r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); | 3529 | r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); |
3530 | break; | 3530 | break; |
3531 | case KVM_CREATE_IRQCHIP: { | 3531 | case KVM_CREATE_IRQCHIP: { |
3532 | struct kvm_pic *vpic; | 3532 | struct kvm_pic *vpic; |
3533 | 3533 | ||
3534 | mutex_lock(&kvm->lock); | 3534 | mutex_lock(&kvm->lock); |
3535 | r = -EEXIST; | 3535 | r = -EEXIST; |
3536 | if (kvm->arch.vpic) | 3536 | if (kvm->arch.vpic) |
3537 | goto create_irqchip_unlock; | 3537 | goto create_irqchip_unlock; |
3538 | r = -EINVAL; | 3538 | r = -EINVAL; |
3539 | if (atomic_read(&kvm->online_vcpus)) | 3539 | if (atomic_read(&kvm->online_vcpus)) |
3540 | goto create_irqchip_unlock; | 3540 | goto create_irqchip_unlock; |
3541 | r = -ENOMEM; | 3541 | r = -ENOMEM; |
3542 | vpic = kvm_create_pic(kvm); | 3542 | vpic = kvm_create_pic(kvm); |
3543 | if (vpic) { | 3543 | if (vpic) { |
3544 | r = kvm_ioapic_init(kvm); | 3544 | r = kvm_ioapic_init(kvm); |
3545 | if (r) { | 3545 | if (r) { |
3546 | mutex_lock(&kvm->slots_lock); | 3546 | mutex_lock(&kvm->slots_lock); |
3547 | kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, | 3547 | kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, |
3548 | &vpic->dev_master); | 3548 | &vpic->dev_master); |
3549 | kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, | 3549 | kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, |
3550 | &vpic->dev_slave); | 3550 | &vpic->dev_slave); |
3551 | kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, | 3551 | kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, |
3552 | &vpic->dev_eclr); | 3552 | &vpic->dev_eclr); |
3553 | mutex_unlock(&kvm->slots_lock); | 3553 | mutex_unlock(&kvm->slots_lock); |
3554 | kfree(vpic); | 3554 | kfree(vpic); |
3555 | goto create_irqchip_unlock; | 3555 | goto create_irqchip_unlock; |
3556 | } | 3556 | } |
3557 | } else | 3557 | } else |
3558 | goto create_irqchip_unlock; | 3558 | goto create_irqchip_unlock; |
3559 | smp_wmb(); | 3559 | smp_wmb(); |
3560 | kvm->arch.vpic = vpic; | 3560 | kvm->arch.vpic = vpic; |
3561 | smp_wmb(); | 3561 | smp_wmb(); |
3562 | r = kvm_setup_default_irq_routing(kvm); | 3562 | r = kvm_setup_default_irq_routing(kvm); |
3563 | if (r) { | 3563 | if (r) { |
3564 | mutex_lock(&kvm->slots_lock); | 3564 | mutex_lock(&kvm->slots_lock); |
3565 | mutex_lock(&kvm->irq_lock); | 3565 | mutex_lock(&kvm->irq_lock); |
3566 | kvm_ioapic_destroy(kvm); | 3566 | kvm_ioapic_destroy(kvm); |
3567 | kvm_destroy_pic(kvm); | 3567 | kvm_destroy_pic(kvm); |
3568 | mutex_unlock(&kvm->irq_lock); | 3568 | mutex_unlock(&kvm->irq_lock); |
3569 | mutex_unlock(&kvm->slots_lock); | 3569 | mutex_unlock(&kvm->slots_lock); |
3570 | } | 3570 | } |
3571 | create_irqchip_unlock: | 3571 | create_irqchip_unlock: |
3572 | mutex_unlock(&kvm->lock); | 3572 | mutex_unlock(&kvm->lock); |
3573 | break; | 3573 | break; |
3574 | } | 3574 | } |
3575 | case KVM_CREATE_PIT: | 3575 | case KVM_CREATE_PIT: |
3576 | u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; | 3576 | u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; |
3577 | goto create_pit; | 3577 | goto create_pit; |
3578 | case KVM_CREATE_PIT2: | 3578 | case KVM_CREATE_PIT2: |
3579 | r = -EFAULT; | 3579 | r = -EFAULT; |
3580 | if (copy_from_user(&u.pit_config, argp, | 3580 | if (copy_from_user(&u.pit_config, argp, |
3581 | sizeof(struct kvm_pit_config))) | 3581 | sizeof(struct kvm_pit_config))) |
3582 | goto out; | 3582 | goto out; |
3583 | create_pit: | 3583 | create_pit: |
3584 | mutex_lock(&kvm->slots_lock); | 3584 | mutex_lock(&kvm->slots_lock); |
3585 | r = -EEXIST; | 3585 | r = -EEXIST; |
3586 | if (kvm->arch.vpit) | 3586 | if (kvm->arch.vpit) |
3587 | goto create_pit_unlock; | 3587 | goto create_pit_unlock; |
3588 | r = -ENOMEM; | 3588 | r = -ENOMEM; |
3589 | kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); | 3589 | kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); |
3590 | if (kvm->arch.vpit) | 3590 | if (kvm->arch.vpit) |
3591 | r = 0; | 3591 | r = 0; |
3592 | create_pit_unlock: | 3592 | create_pit_unlock: |
3593 | mutex_unlock(&kvm->slots_lock); | 3593 | mutex_unlock(&kvm->slots_lock); |
3594 | break; | 3594 | break; |
3595 | case KVM_GET_IRQCHIP: { | 3595 | case KVM_GET_IRQCHIP: { |
3596 | /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ | 3596 | /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ |
3597 | struct kvm_irqchip *chip; | 3597 | struct kvm_irqchip *chip; |
3598 | 3598 | ||
3599 | chip = memdup_user(argp, sizeof(*chip)); | 3599 | chip = memdup_user(argp, sizeof(*chip)); |
3600 | if (IS_ERR(chip)) { | 3600 | if (IS_ERR(chip)) { |
3601 | r = PTR_ERR(chip); | 3601 | r = PTR_ERR(chip); |
3602 | goto out; | 3602 | goto out; |
3603 | } | 3603 | } |
3604 | 3604 | ||
3605 | r = -ENXIO; | 3605 | r = -ENXIO; |
3606 | if (!irqchip_in_kernel(kvm)) | 3606 | if (!irqchip_in_kernel(kvm)) |
3607 | goto get_irqchip_out; | 3607 | goto get_irqchip_out; |
3608 | r = kvm_vm_ioctl_get_irqchip(kvm, chip); | 3608 | r = kvm_vm_ioctl_get_irqchip(kvm, chip); |
3609 | if (r) | 3609 | if (r) |
3610 | goto get_irqchip_out; | 3610 | goto get_irqchip_out; |
3611 | r = -EFAULT; | 3611 | r = -EFAULT; |
3612 | if (copy_to_user(argp, chip, sizeof *chip)) | 3612 | if (copy_to_user(argp, chip, sizeof *chip)) |
3613 | goto get_irqchip_out; | 3613 | goto get_irqchip_out; |
3614 | r = 0; | 3614 | r = 0; |
3615 | get_irqchip_out: | 3615 | get_irqchip_out: |
3616 | kfree(chip); | 3616 | kfree(chip); |
3617 | break; | 3617 | break; |
3618 | } | 3618 | } |
3619 | case KVM_SET_IRQCHIP: { | 3619 | case KVM_SET_IRQCHIP: { |
3620 | /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ | 3620 | /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ |
3621 | struct kvm_irqchip *chip; | 3621 | struct kvm_irqchip *chip; |
3622 | 3622 | ||
3623 | chip = memdup_user(argp, sizeof(*chip)); | 3623 | chip = memdup_user(argp, sizeof(*chip)); |
3624 | if (IS_ERR(chip)) { | 3624 | if (IS_ERR(chip)) { |
3625 | r = PTR_ERR(chip); | 3625 | r = PTR_ERR(chip); |
3626 | goto out; | 3626 | goto out; |
3627 | } | 3627 | } |
3628 | 3628 | ||
3629 | r = -ENXIO; | 3629 | r = -ENXIO; |
3630 | if (!irqchip_in_kernel(kvm)) | 3630 | if (!irqchip_in_kernel(kvm)) |
3631 | goto set_irqchip_out; | 3631 | goto set_irqchip_out; |
3632 | r = kvm_vm_ioctl_set_irqchip(kvm, chip); | 3632 | r = kvm_vm_ioctl_set_irqchip(kvm, chip); |
3633 | if (r) | 3633 | if (r) |
3634 | goto set_irqchip_out; | 3634 | goto set_irqchip_out; |
3635 | r = 0; | 3635 | r = 0; |
3636 | set_irqchip_out: | 3636 | set_irqchip_out: |
3637 | kfree(chip); | 3637 | kfree(chip); |
3638 | break; | 3638 | break; |
3639 | } | 3639 | } |
3640 | case KVM_GET_PIT: { | 3640 | case KVM_GET_PIT: { |
3641 | r = -EFAULT; | 3641 | r = -EFAULT; |
3642 | if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) | 3642 | if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) |
3643 | goto out; | 3643 | goto out; |
3644 | r = -ENXIO; | 3644 | r = -ENXIO; |
3645 | if (!kvm->arch.vpit) | 3645 | if (!kvm->arch.vpit) |
3646 | goto out; | 3646 | goto out; |
3647 | r = kvm_vm_ioctl_get_pit(kvm, &u.ps); | 3647 | r = kvm_vm_ioctl_get_pit(kvm, &u.ps); |
3648 | if (r) | 3648 | if (r) |
3649 | goto out; | 3649 | goto out; |
3650 | r = -EFAULT; | 3650 | r = -EFAULT; |
3651 | if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) | 3651 | if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) |
3652 | goto out; | 3652 | goto out; |
3653 | r = 0; | 3653 | r = 0; |
3654 | break; | 3654 | break; |
3655 | } | 3655 | } |
3656 | case KVM_SET_PIT: { | 3656 | case KVM_SET_PIT: { |
3657 | r = -EFAULT; | 3657 | r = -EFAULT; |
3658 | if (copy_from_user(&u.ps, argp, sizeof u.ps)) | 3658 | if (copy_from_user(&u.ps, argp, sizeof u.ps)) |
3659 | goto out; | 3659 | goto out; |
3660 | r = -ENXIO; | 3660 | r = -ENXIO; |
3661 | if (!kvm->arch.vpit) | 3661 | if (!kvm->arch.vpit) |
3662 | goto out; | 3662 | goto out; |
3663 | r = kvm_vm_ioctl_set_pit(kvm, &u.ps); | 3663 | r = kvm_vm_ioctl_set_pit(kvm, &u.ps); |
3664 | break; | 3664 | break; |
3665 | } | 3665 | } |
3666 | case KVM_GET_PIT2: { | 3666 | case KVM_GET_PIT2: { |
3667 | r = -ENXIO; | 3667 | r = -ENXIO; |
3668 | if (!kvm->arch.vpit) | 3668 | if (!kvm->arch.vpit) |
3669 | goto out; | 3669 | goto out; |
3670 | r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); | 3670 | r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); |
3671 | if (r) | 3671 | if (r) |
3672 | goto out; | 3672 | goto out; |
3673 | r = -EFAULT; | 3673 | r = -EFAULT; |
3674 | if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) | 3674 | if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) |
3675 | goto out; | 3675 | goto out; |
3676 | r = 0; | 3676 | r = 0; |
3677 | break; | 3677 | break; |
3678 | } | 3678 | } |
3679 | case KVM_SET_PIT2: { | 3679 | case KVM_SET_PIT2: { |
3680 | r = -EFAULT; | 3680 | r = -EFAULT; |
3681 | if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) | 3681 | if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) |
3682 | goto out; | 3682 | goto out; |
3683 | r = -ENXIO; | 3683 | r = -ENXIO; |
3684 | if (!kvm->arch.vpit) | 3684 | if (!kvm->arch.vpit) |
3685 | goto out; | 3685 | goto out; |
3686 | r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); | 3686 | r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); |
3687 | break; | 3687 | break; |
3688 | } | 3688 | } |
3689 | case KVM_REINJECT_CONTROL: { | 3689 | case KVM_REINJECT_CONTROL: { |
3690 | struct kvm_reinject_control control; | 3690 | struct kvm_reinject_control control; |
3691 | r = -EFAULT; | 3691 | r = -EFAULT; |
3692 | if (copy_from_user(&control, argp, sizeof(control))) | 3692 | if (copy_from_user(&control, argp, sizeof(control))) |
3693 | goto out; | 3693 | goto out; |
3694 | r = kvm_vm_ioctl_reinject(kvm, &control); | 3694 | r = kvm_vm_ioctl_reinject(kvm, &control); |
3695 | break; | 3695 | break; |
3696 | } | 3696 | } |
3697 | case KVM_XEN_HVM_CONFIG: { | 3697 | case KVM_XEN_HVM_CONFIG: { |
3698 | r = -EFAULT; | 3698 | r = -EFAULT; |
3699 | if (copy_from_user(&kvm->arch.xen_hvm_config, argp, | 3699 | if (copy_from_user(&kvm->arch.xen_hvm_config, argp, |
3700 | sizeof(struct kvm_xen_hvm_config))) | 3700 | sizeof(struct kvm_xen_hvm_config))) |
3701 | goto out; | 3701 | goto out; |
3702 | r = -EINVAL; | 3702 | r = -EINVAL; |
3703 | if (kvm->arch.xen_hvm_config.flags) | 3703 | if (kvm->arch.xen_hvm_config.flags) |
3704 | goto out; | 3704 | goto out; |
3705 | r = 0; | 3705 | r = 0; |
3706 | break; | 3706 | break; |
3707 | } | 3707 | } |
3708 | case KVM_SET_CLOCK: { | 3708 | case KVM_SET_CLOCK: { |
3709 | struct kvm_clock_data user_ns; | 3709 | struct kvm_clock_data user_ns; |
3710 | u64 now_ns; | 3710 | u64 now_ns; |
3711 | s64 delta; | 3711 | s64 delta; |
3712 | 3712 | ||
3713 | r = -EFAULT; | 3713 | r = -EFAULT; |
3714 | if (copy_from_user(&user_ns, argp, sizeof(user_ns))) | 3714 | if (copy_from_user(&user_ns, argp, sizeof(user_ns))) |
3715 | goto out; | 3715 | goto out; |
3716 | 3716 | ||
3717 | r = -EINVAL; | 3717 | r = -EINVAL; |
3718 | if (user_ns.flags) | 3718 | if (user_ns.flags) |
3719 | goto out; | 3719 | goto out; |
3720 | 3720 | ||
3721 | r = 0; | 3721 | r = 0; |
3722 | local_irq_disable(); | 3722 | local_irq_disable(); |
3723 | now_ns = get_kernel_ns(); | 3723 | now_ns = get_kernel_ns(); |
3724 | delta = user_ns.clock - now_ns; | 3724 | delta = user_ns.clock - now_ns; |
3725 | local_irq_enable(); | 3725 | local_irq_enable(); |
3726 | kvm->arch.kvmclock_offset = delta; | 3726 | kvm->arch.kvmclock_offset = delta; |
3727 | break; | 3727 | break; |
3728 | } | 3728 | } |
3729 | case KVM_GET_CLOCK: { | 3729 | case KVM_GET_CLOCK: { |
3730 | struct kvm_clock_data user_ns; | 3730 | struct kvm_clock_data user_ns; |
3731 | u64 now_ns; | 3731 | u64 now_ns; |
3732 | 3732 | ||
3733 | local_irq_disable(); | 3733 | local_irq_disable(); |
3734 | now_ns = get_kernel_ns(); | 3734 | now_ns = get_kernel_ns(); |
3735 | user_ns.clock = kvm->arch.kvmclock_offset + now_ns; | 3735 | user_ns.clock = kvm->arch.kvmclock_offset + now_ns; |
3736 | local_irq_enable(); | 3736 | local_irq_enable(); |
3737 | user_ns.flags = 0; | 3737 | user_ns.flags = 0; |
3738 | memset(&user_ns.pad, 0, sizeof(user_ns.pad)); | 3738 | memset(&user_ns.pad, 0, sizeof(user_ns.pad)); |
3739 | 3739 | ||
3740 | r = -EFAULT; | 3740 | r = -EFAULT; |
3741 | if (copy_to_user(argp, &user_ns, sizeof(user_ns))) | 3741 | if (copy_to_user(argp, &user_ns, sizeof(user_ns))) |
3742 | goto out; | 3742 | goto out; |
3743 | r = 0; | 3743 | r = 0; |
3744 | break; | 3744 | break; |
3745 | } | 3745 | } |
3746 | 3746 | ||
3747 | default: | 3747 | default: |
3748 | ; | 3748 | ; |
3749 | } | 3749 | } |
3750 | out: | 3750 | out: |
3751 | return r; | 3751 | return r; |
3752 | } | 3752 | } |
3753 | 3753 | ||
3754 | static void kvm_init_msr_list(void) | 3754 | static void kvm_init_msr_list(void) |
3755 | { | 3755 | { |
3756 | u32 dummy[2]; | 3756 | u32 dummy[2]; |
3757 | unsigned i, j; | 3757 | unsigned i, j; |
3758 | 3758 | ||
3759 | /* skip the first msrs in the list. KVM-specific */ | 3759 | /* skip the first msrs in the list. KVM-specific */ |
3760 | for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) { | 3760 | for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) { |
3761 | if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) | 3761 | if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) |
3762 | continue; | 3762 | continue; |
3763 | if (j < i) | 3763 | if (j < i) |
3764 | msrs_to_save[j] = msrs_to_save[i]; | 3764 | msrs_to_save[j] = msrs_to_save[i]; |
3765 | j++; | 3765 | j++; |
3766 | } | 3766 | } |
3767 | num_msrs_to_save = j; | 3767 | num_msrs_to_save = j; |
3768 | } | 3768 | } |
3769 | 3769 | ||
3770 | static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, | 3770 | static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, |
3771 | const void *v) | 3771 | const void *v) |
3772 | { | 3772 | { |
3773 | int handled = 0; | 3773 | int handled = 0; |
3774 | int n; | 3774 | int n; |
3775 | 3775 | ||
3776 | do { | 3776 | do { |
3777 | n = min(len, 8); | 3777 | n = min(len, 8); |
3778 | if (!(vcpu->arch.apic && | 3778 | if (!(vcpu->arch.apic && |
3779 | !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v)) | 3779 | !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v)) |
3780 | && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) | 3780 | && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) |
3781 | break; | 3781 | break; |
3782 | handled += n; | 3782 | handled += n; |
3783 | addr += n; | 3783 | addr += n; |
3784 | len -= n; | 3784 | len -= n; |
3785 | v += n; | 3785 | v += n; |
3786 | } while (len); | 3786 | } while (len); |
3787 | 3787 | ||
3788 | return handled; | 3788 | return handled; |
3789 | } | 3789 | } |
3790 | 3790 | ||
3791 | static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) | 3791 | static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) |
3792 | { | 3792 | { |
3793 | int handled = 0; | 3793 | int handled = 0; |
3794 | int n; | 3794 | int n; |
3795 | 3795 | ||
3796 | do { | 3796 | do { |
3797 | n = min(len, 8); | 3797 | n = min(len, 8); |
3798 | if (!(vcpu->arch.apic && | 3798 | if (!(vcpu->arch.apic && |
3799 | !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v)) | 3799 | !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v)) |
3800 | && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) | 3800 | && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) |
3801 | break; | 3801 | break; |
3802 | trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v); | 3802 | trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v); |
3803 | handled += n; | 3803 | handled += n; |
3804 | addr += n; | 3804 | addr += n; |
3805 | len -= n; | 3805 | len -= n; |
3806 | v += n; | 3806 | v += n; |
3807 | } while (len); | 3807 | } while (len); |
3808 | 3808 | ||
3809 | return handled; | 3809 | return handled; |
3810 | } | 3810 | } |
3811 | 3811 | ||
3812 | static void kvm_set_segment(struct kvm_vcpu *vcpu, | 3812 | static void kvm_set_segment(struct kvm_vcpu *vcpu, |
3813 | struct kvm_segment *var, int seg) | 3813 | struct kvm_segment *var, int seg) |
3814 | { | 3814 | { |
3815 | kvm_x86_ops->set_segment(vcpu, var, seg); | 3815 | kvm_x86_ops->set_segment(vcpu, var, seg); |
3816 | } | 3816 | } |
3817 | 3817 | ||
3818 | void kvm_get_segment(struct kvm_vcpu *vcpu, | 3818 | void kvm_get_segment(struct kvm_vcpu *vcpu, |
3819 | struct kvm_segment *var, int seg) | 3819 | struct kvm_segment *var, int seg) |
3820 | { | 3820 | { |
3821 | kvm_x86_ops->get_segment(vcpu, var, seg); | 3821 | kvm_x86_ops->get_segment(vcpu, var, seg); |
3822 | } | 3822 | } |
3823 | 3823 | ||
3824 | gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access) | 3824 | gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access) |
3825 | { | 3825 | { |
3826 | gpa_t t_gpa; | 3826 | gpa_t t_gpa; |
3827 | struct x86_exception exception; | 3827 | struct x86_exception exception; |
3828 | 3828 | ||
3829 | BUG_ON(!mmu_is_nested(vcpu)); | 3829 | BUG_ON(!mmu_is_nested(vcpu)); |
3830 | 3830 | ||
3831 | /* NPT walks are always user-walks */ | 3831 | /* NPT walks are always user-walks */ |
3832 | access |= PFERR_USER_MASK; | 3832 | access |= PFERR_USER_MASK; |
3833 | t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception); | 3833 | t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception); |
3834 | 3834 | ||
3835 | return t_gpa; | 3835 | return t_gpa; |
3836 | } | 3836 | } |
3837 | 3837 | ||
3838 | gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, | 3838 | gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, |
3839 | struct x86_exception *exception) | 3839 | struct x86_exception *exception) |
3840 | { | 3840 | { |
3841 | u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; | 3841 | u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; |
3842 | return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); | 3842 | return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); |
3843 | } | 3843 | } |
3844 | 3844 | ||
3845 | gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, | 3845 | gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, |
3846 | struct x86_exception *exception) | 3846 | struct x86_exception *exception) |
3847 | { | 3847 | { |
3848 | u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; | 3848 | u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; |
3849 | access |= PFERR_FETCH_MASK; | 3849 | access |= PFERR_FETCH_MASK; |
3850 | return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); | 3850 | return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); |
3851 | } | 3851 | } |
3852 | 3852 | ||
3853 | gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, | 3853 | gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, |
3854 | struct x86_exception *exception) | 3854 | struct x86_exception *exception) |
3855 | { | 3855 | { |
3856 | u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; | 3856 | u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; |
3857 | access |= PFERR_WRITE_MASK; | 3857 | access |= PFERR_WRITE_MASK; |
3858 | return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); | 3858 | return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); |
3859 | } | 3859 | } |
3860 | 3860 | ||
3861 | /* uses this to access any guest's mapped memory without checking CPL */ | 3861 | /* uses this to access any guest's mapped memory without checking CPL */ |
3862 | gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, | 3862 | gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, |
3863 | struct x86_exception *exception) | 3863 | struct x86_exception *exception) |
3864 | { | 3864 | { |
3865 | return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); | 3865 | return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); |
3866 | } | 3866 | } |
3867 | 3867 | ||
3868 | static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, | 3868 | static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, |
3869 | struct kvm_vcpu *vcpu, u32 access, | 3869 | struct kvm_vcpu *vcpu, u32 access, |
3870 | struct x86_exception *exception) | 3870 | struct x86_exception *exception) |
3871 | { | 3871 | { |
3872 | void *data = val; | 3872 | void *data = val; |
3873 | int r = X86EMUL_CONTINUE; | 3873 | int r = X86EMUL_CONTINUE; |
3874 | 3874 | ||
3875 | while (bytes) { | 3875 | while (bytes) { |
3876 | gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, | 3876 | gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, |
3877 | exception); | 3877 | exception); |
3878 | unsigned offset = addr & (PAGE_SIZE-1); | 3878 | unsigned offset = addr & (PAGE_SIZE-1); |
3879 | unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); | 3879 | unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); |
3880 | int ret; | 3880 | int ret; |
3881 | 3881 | ||
3882 | if (gpa == UNMAPPED_GVA) | 3882 | if (gpa == UNMAPPED_GVA) |
3883 | return X86EMUL_PROPAGATE_FAULT; | 3883 | return X86EMUL_PROPAGATE_FAULT; |
3884 | ret = kvm_read_guest(vcpu->kvm, gpa, data, toread); | 3884 | ret = kvm_read_guest(vcpu->kvm, gpa, data, toread); |
3885 | if (ret < 0) { | 3885 | if (ret < 0) { |
3886 | r = X86EMUL_IO_NEEDED; | 3886 | r = X86EMUL_IO_NEEDED; |
3887 | goto out; | 3887 | goto out; |
3888 | } | 3888 | } |
3889 | 3889 | ||
3890 | bytes -= toread; | 3890 | bytes -= toread; |
3891 | data += toread; | 3891 | data += toread; |
3892 | addr += toread; | 3892 | addr += toread; |
3893 | } | 3893 | } |
3894 | out: | 3894 | out: |
3895 | return r; | 3895 | return r; |
3896 | } | 3896 | } |
3897 | 3897 | ||
3898 | /* used for instruction fetching */ | 3898 | /* used for instruction fetching */ |
3899 | static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, | 3899 | static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, |
3900 | gva_t addr, void *val, unsigned int bytes, | 3900 | gva_t addr, void *val, unsigned int bytes, |
3901 | struct x86_exception *exception) | 3901 | struct x86_exception *exception) |
3902 | { | 3902 | { |
3903 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | 3903 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
3904 | u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; | 3904 | u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; |
3905 | 3905 | ||
3906 | return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, | 3906 | return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, |
3907 | access | PFERR_FETCH_MASK, | 3907 | access | PFERR_FETCH_MASK, |
3908 | exception); | 3908 | exception); |
3909 | } | 3909 | } |
3910 | 3910 | ||
3911 | int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt, | 3911 | int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt, |
3912 | gva_t addr, void *val, unsigned int bytes, | 3912 | gva_t addr, void *val, unsigned int bytes, |
3913 | struct x86_exception *exception) | 3913 | struct x86_exception *exception) |
3914 | { | 3914 | { |
3915 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | 3915 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
3916 | u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; | 3916 | u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; |
3917 | 3917 | ||
3918 | return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, | 3918 | return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, |
3919 | exception); | 3919 | exception); |
3920 | } | 3920 | } |
3921 | EXPORT_SYMBOL_GPL(kvm_read_guest_virt); | 3921 | EXPORT_SYMBOL_GPL(kvm_read_guest_virt); |
3922 | 3922 | ||
3923 | static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt, | 3923 | static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt, |
3924 | gva_t addr, void *val, unsigned int bytes, | 3924 | gva_t addr, void *val, unsigned int bytes, |
3925 | struct x86_exception *exception) | 3925 | struct x86_exception *exception) |
3926 | { | 3926 | { |
3927 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | 3927 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
3928 | return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception); | 3928 | return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception); |
3929 | } | 3929 | } |
3930 | 3930 | ||
3931 | int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt, | 3931 | int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt, |
3932 | gva_t addr, void *val, | 3932 | gva_t addr, void *val, |
3933 | unsigned int bytes, | 3933 | unsigned int bytes, |
3934 | struct x86_exception *exception) | 3934 | struct x86_exception *exception) |
3935 | { | 3935 | { |
3936 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | 3936 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
3937 | void *data = val; | 3937 | void *data = val; |
3938 | int r = X86EMUL_CONTINUE; | 3938 | int r = X86EMUL_CONTINUE; |
3939 | 3939 | ||
3940 | while (bytes) { | 3940 | while (bytes) { |
3941 | gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, | 3941 | gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, |
3942 | PFERR_WRITE_MASK, | 3942 | PFERR_WRITE_MASK, |
3943 | exception); | 3943 | exception); |
3944 | unsigned offset = addr & (PAGE_SIZE-1); | 3944 | unsigned offset = addr & (PAGE_SIZE-1); |
3945 | unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); | 3945 | unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); |
3946 | int ret; | 3946 | int ret; |
3947 | 3947 | ||
3948 | if (gpa == UNMAPPED_GVA) | 3948 | if (gpa == UNMAPPED_GVA) |
3949 | return X86EMUL_PROPAGATE_FAULT; | 3949 | return X86EMUL_PROPAGATE_FAULT; |
3950 | ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite); | 3950 | ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite); |
3951 | if (ret < 0) { | 3951 | if (ret < 0) { |
3952 | r = X86EMUL_IO_NEEDED; | 3952 | r = X86EMUL_IO_NEEDED; |
3953 | goto out; | 3953 | goto out; |
3954 | } | 3954 | } |
3955 | 3955 | ||
3956 | bytes -= towrite; | 3956 | bytes -= towrite; |
3957 | data += towrite; | 3957 | data += towrite; |
3958 | addr += towrite; | 3958 | addr += towrite; |
3959 | } | 3959 | } |
3960 | out: | 3960 | out: |
3961 | return r; | 3961 | return r; |
3962 | } | 3962 | } |
3963 | EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); | 3963 | EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); |
3964 | 3964 | ||
3965 | static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, | 3965 | static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, |
3966 | gpa_t *gpa, struct x86_exception *exception, | 3966 | gpa_t *gpa, struct x86_exception *exception, |
3967 | bool write) | 3967 | bool write) |
3968 | { | 3968 | { |
3969 | u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) | 3969 | u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) |
3970 | | (write ? PFERR_WRITE_MASK : 0); | 3970 | | (write ? PFERR_WRITE_MASK : 0); |
3971 | 3971 | ||
3972 | if (vcpu_match_mmio_gva(vcpu, gva) | 3972 | if (vcpu_match_mmio_gva(vcpu, gva) |
3973 | && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) { | 3973 | && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) { |
3974 | *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | | 3974 | *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | |
3975 | (gva & (PAGE_SIZE - 1)); | 3975 | (gva & (PAGE_SIZE - 1)); |
3976 | trace_vcpu_match_mmio(gva, *gpa, write, false); | 3976 | trace_vcpu_match_mmio(gva, *gpa, write, false); |
3977 | return 1; | 3977 | return 1; |
3978 | } | 3978 | } |
3979 | 3979 | ||
3980 | *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); | 3980 | *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); |
3981 | 3981 | ||
3982 | if (*gpa == UNMAPPED_GVA) | 3982 | if (*gpa == UNMAPPED_GVA) |
3983 | return -1; | 3983 | return -1; |
3984 | 3984 | ||
3985 | /* For APIC access vmexit */ | 3985 | /* For APIC access vmexit */ |
3986 | if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) | 3986 | if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) |
3987 | return 1; | 3987 | return 1; |
3988 | 3988 | ||
3989 | if (vcpu_match_mmio_gpa(vcpu, *gpa)) { | 3989 | if (vcpu_match_mmio_gpa(vcpu, *gpa)) { |
3990 | trace_vcpu_match_mmio(gva, *gpa, write, true); | 3990 | trace_vcpu_match_mmio(gva, *gpa, write, true); |
3991 | return 1; | 3991 | return 1; |
3992 | } | 3992 | } |
3993 | 3993 | ||
3994 | return 0; | 3994 | return 0; |
3995 | } | 3995 | } |
3996 | 3996 | ||
3997 | int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, | 3997 | int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, |
3998 | const void *val, int bytes) | 3998 | const void *val, int bytes) |
3999 | { | 3999 | { |
4000 | int ret; | 4000 | int ret; |
4001 | 4001 | ||
4002 | ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes); | 4002 | ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes); |
4003 | if (ret < 0) | 4003 | if (ret < 0) |
4004 | return 0; | 4004 | return 0; |
4005 | kvm_mmu_pte_write(vcpu, gpa, val, bytes); | 4005 | kvm_mmu_pte_write(vcpu, gpa, val, bytes); |
4006 | return 1; | 4006 | return 1; |
4007 | } | 4007 | } |
4008 | 4008 | ||
4009 | struct read_write_emulator_ops { | 4009 | struct read_write_emulator_ops { |
4010 | int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, | 4010 | int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, |
4011 | int bytes); | 4011 | int bytes); |
4012 | int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, | 4012 | int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, |
4013 | void *val, int bytes); | 4013 | void *val, int bytes); |
4014 | int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, | 4014 | int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, |
4015 | int bytes, void *val); | 4015 | int bytes, void *val); |
4016 | int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, | 4016 | int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, |
4017 | void *val, int bytes); | 4017 | void *val, int bytes); |
4018 | bool write; | 4018 | bool write; |
4019 | }; | 4019 | }; |
4020 | 4020 | ||
4021 | static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) | 4021 | static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) |
4022 | { | 4022 | { |
4023 | if (vcpu->mmio_read_completed) { | 4023 | if (vcpu->mmio_read_completed) { |
4024 | trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, | 4024 | trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, |
4025 | vcpu->mmio_fragments[0].gpa, *(u64 *)val); | 4025 | vcpu->mmio_fragments[0].gpa, *(u64 *)val); |
4026 | vcpu->mmio_read_completed = 0; | 4026 | vcpu->mmio_read_completed = 0; |
4027 | return 1; | 4027 | return 1; |
4028 | } | 4028 | } |
4029 | 4029 | ||
4030 | return 0; | 4030 | return 0; |
4031 | } | 4031 | } |
4032 | 4032 | ||
4033 | static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, | 4033 | static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, |
4034 | void *val, int bytes) | 4034 | void *val, int bytes) |
4035 | { | 4035 | { |
4036 | return !kvm_read_guest(vcpu->kvm, gpa, val, bytes); | 4036 | return !kvm_read_guest(vcpu->kvm, gpa, val, bytes); |
4037 | } | 4037 | } |
4038 | 4038 | ||
4039 | static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, | 4039 | static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, |
4040 | void *val, int bytes) | 4040 | void *val, int bytes) |
4041 | { | 4041 | { |
4042 | return emulator_write_phys(vcpu, gpa, val, bytes); | 4042 | return emulator_write_phys(vcpu, gpa, val, bytes); |
4043 | } | 4043 | } |
4044 | 4044 | ||
4045 | static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) | 4045 | static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) |
4046 | { | 4046 | { |
4047 | trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val); | 4047 | trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val); |
4048 | return vcpu_mmio_write(vcpu, gpa, bytes, val); | 4048 | return vcpu_mmio_write(vcpu, gpa, bytes, val); |
4049 | } | 4049 | } |
4050 | 4050 | ||
4051 | static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, | 4051 | static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, |
4052 | void *val, int bytes) | 4052 | void *val, int bytes) |
4053 | { | 4053 | { |
4054 | trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0); | 4054 | trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0); |
4055 | return X86EMUL_IO_NEEDED; | 4055 | return X86EMUL_IO_NEEDED; |
4056 | } | 4056 | } |
4057 | 4057 | ||
4058 | static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, | 4058 | static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, |
4059 | void *val, int bytes) | 4059 | void *val, int bytes) |
4060 | { | 4060 | { |
4061 | struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; | 4061 | struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; |
4062 | 4062 | ||
4063 | memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); | 4063 | memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); |
4064 | return X86EMUL_CONTINUE; | 4064 | return X86EMUL_CONTINUE; |
4065 | } | 4065 | } |
4066 | 4066 | ||
4067 | static const struct read_write_emulator_ops read_emultor = { | 4067 | static const struct read_write_emulator_ops read_emultor = { |
4068 | .read_write_prepare = read_prepare, | 4068 | .read_write_prepare = read_prepare, |
4069 | .read_write_emulate = read_emulate, | 4069 | .read_write_emulate = read_emulate, |
4070 | .read_write_mmio = vcpu_mmio_read, | 4070 | .read_write_mmio = vcpu_mmio_read, |
4071 | .read_write_exit_mmio = read_exit_mmio, | 4071 | .read_write_exit_mmio = read_exit_mmio, |
4072 | }; | 4072 | }; |
4073 | 4073 | ||
4074 | static const struct read_write_emulator_ops write_emultor = { | 4074 | static const struct read_write_emulator_ops write_emultor = { |
4075 | .read_write_emulate = write_emulate, | 4075 | .read_write_emulate = write_emulate, |
4076 | .read_write_mmio = write_mmio, | 4076 | .read_write_mmio = write_mmio, |
4077 | .read_write_exit_mmio = write_exit_mmio, | 4077 | .read_write_exit_mmio = write_exit_mmio, |
4078 | .write = true, | 4078 | .write = true, |
4079 | }; | 4079 | }; |
4080 | 4080 | ||
4081 | static int emulator_read_write_onepage(unsigned long addr, void *val, | 4081 | static int emulator_read_write_onepage(unsigned long addr, void *val, |
4082 | unsigned int bytes, | 4082 | unsigned int bytes, |
4083 | struct x86_exception *exception, | 4083 | struct x86_exception *exception, |
4084 | struct kvm_vcpu *vcpu, | 4084 | struct kvm_vcpu *vcpu, |
4085 | const struct read_write_emulator_ops *ops) | 4085 | const struct read_write_emulator_ops *ops) |
4086 | { | 4086 | { |
4087 | gpa_t gpa; | 4087 | gpa_t gpa; |
4088 | int handled, ret; | 4088 | int handled, ret; |
4089 | bool write = ops->write; | 4089 | bool write = ops->write; |
4090 | struct kvm_mmio_fragment *frag; | 4090 | struct kvm_mmio_fragment *frag; |
4091 | 4091 | ||
4092 | ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); | 4092 | ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); |
4093 | 4093 | ||
4094 | if (ret < 0) | 4094 | if (ret < 0) |
4095 | return X86EMUL_PROPAGATE_FAULT; | 4095 | return X86EMUL_PROPAGATE_FAULT; |
4096 | 4096 | ||
4097 | /* For APIC access vmexit */ | 4097 | /* For APIC access vmexit */ |
4098 | if (ret) | 4098 | if (ret) |
4099 | goto mmio; | 4099 | goto mmio; |
4100 | 4100 | ||
4101 | if (ops->read_write_emulate(vcpu, gpa, val, bytes)) | 4101 | if (ops->read_write_emulate(vcpu, gpa, val, bytes)) |
4102 | return X86EMUL_CONTINUE; | 4102 | return X86EMUL_CONTINUE; |
4103 | 4103 | ||
4104 | mmio: | 4104 | mmio: |
4105 | /* | 4105 | /* |
4106 | * Is this MMIO handled locally? | 4106 | * Is this MMIO handled locally? |
4107 | */ | 4107 | */ |
4108 | handled = ops->read_write_mmio(vcpu, gpa, bytes, val); | 4108 | handled = ops->read_write_mmio(vcpu, gpa, bytes, val); |
4109 | if (handled == bytes) | 4109 | if (handled == bytes) |
4110 | return X86EMUL_CONTINUE; | 4110 | return X86EMUL_CONTINUE; |
4111 | 4111 | ||
4112 | gpa += handled; | 4112 | gpa += handled; |
4113 | bytes -= handled; | 4113 | bytes -= handled; |
4114 | val += handled; | 4114 | val += handled; |
4115 | 4115 | ||
4116 | WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); | 4116 | WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); |
4117 | frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; | 4117 | frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; |
4118 | frag->gpa = gpa; | 4118 | frag->gpa = gpa; |
4119 | frag->data = val; | 4119 | frag->data = val; |
4120 | frag->len = bytes; | 4120 | frag->len = bytes; |
4121 | return X86EMUL_CONTINUE; | 4121 | return X86EMUL_CONTINUE; |
4122 | } | 4122 | } |
4123 | 4123 | ||
4124 | int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr, | 4124 | int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr, |
4125 | void *val, unsigned int bytes, | 4125 | void *val, unsigned int bytes, |
4126 | struct x86_exception *exception, | 4126 | struct x86_exception *exception, |
4127 | const struct read_write_emulator_ops *ops) | 4127 | const struct read_write_emulator_ops *ops) |
4128 | { | 4128 | { |
4129 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | 4129 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
4130 | gpa_t gpa; | 4130 | gpa_t gpa; |
4131 | int rc; | 4131 | int rc; |
4132 | 4132 | ||
4133 | if (ops->read_write_prepare && | 4133 | if (ops->read_write_prepare && |
4134 | ops->read_write_prepare(vcpu, val, bytes)) | 4134 | ops->read_write_prepare(vcpu, val, bytes)) |
4135 | return X86EMUL_CONTINUE; | 4135 | return X86EMUL_CONTINUE; |
4136 | 4136 | ||
4137 | vcpu->mmio_nr_fragments = 0; | 4137 | vcpu->mmio_nr_fragments = 0; |
4138 | 4138 | ||
4139 | /* Crossing a page boundary? */ | 4139 | /* Crossing a page boundary? */ |
4140 | if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { | 4140 | if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { |
4141 | int now; | 4141 | int now; |
4142 | 4142 | ||
4143 | now = -addr & ~PAGE_MASK; | 4143 | now = -addr & ~PAGE_MASK; |
4144 | rc = emulator_read_write_onepage(addr, val, now, exception, | 4144 | rc = emulator_read_write_onepage(addr, val, now, exception, |
4145 | vcpu, ops); | 4145 | vcpu, ops); |
4146 | 4146 | ||
4147 | if (rc != X86EMUL_CONTINUE) | 4147 | if (rc != X86EMUL_CONTINUE) |
4148 | return rc; | 4148 | return rc; |
4149 | addr += now; | 4149 | addr += now; |
4150 | val += now; | 4150 | val += now; |
4151 | bytes -= now; | 4151 | bytes -= now; |
4152 | } | 4152 | } |
4153 | 4153 | ||
4154 | rc = emulator_read_write_onepage(addr, val, bytes, exception, | 4154 | rc = emulator_read_write_onepage(addr, val, bytes, exception, |
4155 | vcpu, ops); | 4155 | vcpu, ops); |
4156 | if (rc != X86EMUL_CONTINUE) | 4156 | if (rc != X86EMUL_CONTINUE) |
4157 | return rc; | 4157 | return rc; |
4158 | 4158 | ||
4159 | if (!vcpu->mmio_nr_fragments) | 4159 | if (!vcpu->mmio_nr_fragments) |
4160 | return rc; | 4160 | return rc; |
4161 | 4161 | ||
4162 | gpa = vcpu->mmio_fragments[0].gpa; | 4162 | gpa = vcpu->mmio_fragments[0].gpa; |
4163 | 4163 | ||
4164 | vcpu->mmio_needed = 1; | 4164 | vcpu->mmio_needed = 1; |
4165 | vcpu->mmio_cur_fragment = 0; | 4165 | vcpu->mmio_cur_fragment = 0; |
4166 | 4166 | ||
4167 | vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); | 4167 | vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); |
4168 | vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; | 4168 | vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; |
4169 | vcpu->run->exit_reason = KVM_EXIT_MMIO; | 4169 | vcpu->run->exit_reason = KVM_EXIT_MMIO; |
4170 | vcpu->run->mmio.phys_addr = gpa; | 4170 | vcpu->run->mmio.phys_addr = gpa; |
4171 | 4171 | ||
4172 | return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); | 4172 | return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); |
4173 | } | 4173 | } |
4174 | 4174 | ||
4175 | static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, | 4175 | static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, |
4176 | unsigned long addr, | 4176 | unsigned long addr, |
4177 | void *val, | 4177 | void *val, |
4178 | unsigned int bytes, | 4178 | unsigned int bytes, |
4179 | struct x86_exception *exception) | 4179 | struct x86_exception *exception) |
4180 | { | 4180 | { |
4181 | return emulator_read_write(ctxt, addr, val, bytes, | 4181 | return emulator_read_write(ctxt, addr, val, bytes, |
4182 | exception, &read_emultor); | 4182 | exception, &read_emultor); |
4183 | } | 4183 | } |
4184 | 4184 | ||
4185 | int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, | 4185 | int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, |
4186 | unsigned long addr, | 4186 | unsigned long addr, |
4187 | const void *val, | 4187 | const void *val, |
4188 | unsigned int bytes, | 4188 | unsigned int bytes, |
4189 | struct x86_exception *exception) | 4189 | struct x86_exception *exception) |
4190 | { | 4190 | { |
4191 | return emulator_read_write(ctxt, addr, (void *)val, bytes, | 4191 | return emulator_read_write(ctxt, addr, (void *)val, bytes, |
4192 | exception, &write_emultor); | 4192 | exception, &write_emultor); |
4193 | } | 4193 | } |
4194 | 4194 | ||
4195 | #define CMPXCHG_TYPE(t, ptr, old, new) \ | 4195 | #define CMPXCHG_TYPE(t, ptr, old, new) \ |
4196 | (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) | 4196 | (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) |
4197 | 4197 | ||
4198 | #ifdef CONFIG_X86_64 | 4198 | #ifdef CONFIG_X86_64 |
4199 | # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) | 4199 | # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) |
4200 | #else | 4200 | #else |
4201 | # define CMPXCHG64(ptr, old, new) \ | 4201 | # define CMPXCHG64(ptr, old, new) \ |
4202 | (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) | 4202 | (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) |
4203 | #endif | 4203 | #endif |
4204 | 4204 | ||
4205 | static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, | 4205 | static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, |
4206 | unsigned long addr, | 4206 | unsigned long addr, |
4207 | const void *old, | 4207 | const void *old, |
4208 | const void *new, | 4208 | const void *new, |
4209 | unsigned int bytes, | 4209 | unsigned int bytes, |
4210 | struct x86_exception *exception) | 4210 | struct x86_exception *exception) |
4211 | { | 4211 | { |
4212 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | 4212 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
4213 | gpa_t gpa; | 4213 | gpa_t gpa; |
4214 | struct page *page; | 4214 | struct page *page; |
4215 | char *kaddr; | 4215 | char *kaddr; |
4216 | bool exchanged; | 4216 | bool exchanged; |
4217 | 4217 | ||
4218 | /* guests cmpxchg8b have to be emulated atomically */ | 4218 | /* guests cmpxchg8b have to be emulated atomically */ |
4219 | if (bytes > 8 || (bytes & (bytes - 1))) | 4219 | if (bytes > 8 || (bytes & (bytes - 1))) |
4220 | goto emul_write; | 4220 | goto emul_write; |
4221 | 4221 | ||
4222 | gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); | 4222 | gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); |
4223 | 4223 | ||
4224 | if (gpa == UNMAPPED_GVA || | 4224 | if (gpa == UNMAPPED_GVA || |
4225 | (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) | 4225 | (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) |
4226 | goto emul_write; | 4226 | goto emul_write; |
4227 | 4227 | ||
4228 | if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) | 4228 | if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) |
4229 | goto emul_write; | 4229 | goto emul_write; |
4230 | 4230 | ||
4231 | page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT); | 4231 | page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT); |
4232 | if (is_error_page(page)) | 4232 | if (is_error_page(page)) |
4233 | goto emul_write; | 4233 | goto emul_write; |
4234 | 4234 | ||
4235 | kaddr = kmap_atomic(page); | 4235 | kaddr = kmap_atomic(page); |
4236 | kaddr += offset_in_page(gpa); | 4236 | kaddr += offset_in_page(gpa); |
4237 | switch (bytes) { | 4237 | switch (bytes) { |
4238 | case 1: | 4238 | case 1: |
4239 | exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); | 4239 | exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); |
4240 | break; | 4240 | break; |
4241 | case 2: | 4241 | case 2: |
4242 | exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); | 4242 | exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); |
4243 | break; | 4243 | break; |
4244 | case 4: | 4244 | case 4: |
4245 | exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); | 4245 | exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); |
4246 | break; | 4246 | break; |
4247 | case 8: | 4247 | case 8: |
4248 | exchanged = CMPXCHG64(kaddr, old, new); | 4248 | exchanged = CMPXCHG64(kaddr, old, new); |
4249 | break; | 4249 | break; |
4250 | default: | 4250 | default: |
4251 | BUG(); | 4251 | BUG(); |
4252 | } | 4252 | } |
4253 | kunmap_atomic(kaddr); | 4253 | kunmap_atomic(kaddr); |
4254 | kvm_release_page_dirty(page); | 4254 | kvm_release_page_dirty(page); |
4255 | 4255 | ||
4256 | if (!exchanged) | 4256 | if (!exchanged) |
4257 | return X86EMUL_CMPXCHG_FAILED; | 4257 | return X86EMUL_CMPXCHG_FAILED; |
4258 | 4258 | ||
4259 | kvm_mmu_pte_write(vcpu, gpa, new, bytes); | 4259 | kvm_mmu_pte_write(vcpu, gpa, new, bytes); |
4260 | 4260 | ||
4261 | return X86EMUL_CONTINUE; | 4261 | return X86EMUL_CONTINUE; |
4262 | 4262 | ||
4263 | emul_write: | 4263 | emul_write: |
4264 | printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); | 4264 | printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); |
4265 | 4265 | ||
4266 | return emulator_write_emulated(ctxt, addr, new, bytes, exception); | 4266 | return emulator_write_emulated(ctxt, addr, new, bytes, exception); |
4267 | } | 4267 | } |
4268 | 4268 | ||
4269 | static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) | 4269 | static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) |
4270 | { | 4270 | { |
4271 | /* TODO: String I/O for in kernel device */ | 4271 | /* TODO: String I/O for in kernel device */ |
4272 | int r; | 4272 | int r; |
4273 | 4273 | ||
4274 | if (vcpu->arch.pio.in) | 4274 | if (vcpu->arch.pio.in) |
4275 | r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port, | 4275 | r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port, |
4276 | vcpu->arch.pio.size, pd); | 4276 | vcpu->arch.pio.size, pd); |
4277 | else | 4277 | else |
4278 | r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS, | 4278 | r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS, |
4279 | vcpu->arch.pio.port, vcpu->arch.pio.size, | 4279 | vcpu->arch.pio.port, vcpu->arch.pio.size, |
4280 | pd); | 4280 | pd); |
4281 | return r; | 4281 | return r; |
4282 | } | 4282 | } |
4283 | 4283 | ||
4284 | static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, | 4284 | static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, |
4285 | unsigned short port, void *val, | 4285 | unsigned short port, void *val, |
4286 | unsigned int count, bool in) | 4286 | unsigned int count, bool in) |
4287 | { | 4287 | { |
4288 | trace_kvm_pio(!in, port, size, count); | 4288 | trace_kvm_pio(!in, port, size, count); |
4289 | 4289 | ||
4290 | vcpu->arch.pio.port = port; | 4290 | vcpu->arch.pio.port = port; |
4291 | vcpu->arch.pio.in = in; | 4291 | vcpu->arch.pio.in = in; |
4292 | vcpu->arch.pio.count = count; | 4292 | vcpu->arch.pio.count = count; |
4293 | vcpu->arch.pio.size = size; | 4293 | vcpu->arch.pio.size = size; |
4294 | 4294 | ||
4295 | if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { | 4295 | if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { |
4296 | vcpu->arch.pio.count = 0; | 4296 | vcpu->arch.pio.count = 0; |
4297 | return 1; | 4297 | return 1; |
4298 | } | 4298 | } |
4299 | 4299 | ||
4300 | vcpu->run->exit_reason = KVM_EXIT_IO; | 4300 | vcpu->run->exit_reason = KVM_EXIT_IO; |
4301 | vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; | 4301 | vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; |
4302 | vcpu->run->io.size = size; | 4302 | vcpu->run->io.size = size; |
4303 | vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; | 4303 | vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; |
4304 | vcpu->run->io.count = count; | 4304 | vcpu->run->io.count = count; |
4305 | vcpu->run->io.port = port; | 4305 | vcpu->run->io.port = port; |
4306 | 4306 | ||
4307 | return 0; | 4307 | return 0; |
4308 | } | 4308 | } |
4309 | 4309 | ||
4310 | static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, | 4310 | static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, |
4311 | int size, unsigned short port, void *val, | 4311 | int size, unsigned short port, void *val, |
4312 | unsigned int count) | 4312 | unsigned int count) |
4313 | { | 4313 | { |
4314 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | 4314 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
4315 | int ret; | 4315 | int ret; |
4316 | 4316 | ||
4317 | if (vcpu->arch.pio.count) | 4317 | if (vcpu->arch.pio.count) |
4318 | goto data_avail; | 4318 | goto data_avail; |
4319 | 4319 | ||
4320 | ret = emulator_pio_in_out(vcpu, size, port, val, count, true); | 4320 | ret = emulator_pio_in_out(vcpu, size, port, val, count, true); |
4321 | if (ret) { | 4321 | if (ret) { |
4322 | data_avail: | 4322 | data_avail: |
4323 | memcpy(val, vcpu->arch.pio_data, size * count); | 4323 | memcpy(val, vcpu->arch.pio_data, size * count); |
4324 | vcpu->arch.pio.count = 0; | 4324 | vcpu->arch.pio.count = 0; |
4325 | return 1; | 4325 | return 1; |
4326 | } | 4326 | } |
4327 | 4327 | ||
4328 | return 0; | 4328 | return 0; |
4329 | } | 4329 | } |
4330 | 4330 | ||
4331 | static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, | 4331 | static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, |
4332 | int size, unsigned short port, | 4332 | int size, unsigned short port, |
4333 | const void *val, unsigned int count) | 4333 | const void *val, unsigned int count) |
4334 | { | 4334 | { |
4335 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | 4335 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
4336 | 4336 | ||
4337 | memcpy(vcpu->arch.pio_data, val, size * count); | 4337 | memcpy(vcpu->arch.pio_data, val, size * count); |
4338 | return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); | 4338 | return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); |
4339 | } | 4339 | } |
4340 | 4340 | ||
4341 | static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) | 4341 | static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) |
4342 | { | 4342 | { |
4343 | return kvm_x86_ops->get_segment_base(vcpu, seg); | 4343 | return kvm_x86_ops->get_segment_base(vcpu, seg); |
4344 | } | 4344 | } |
4345 | 4345 | ||
4346 | static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) | 4346 | static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) |
4347 | { | 4347 | { |
4348 | kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); | 4348 | kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); |
4349 | } | 4349 | } |
4350 | 4350 | ||
4351 | int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) | 4351 | int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) |
4352 | { | 4352 | { |
4353 | if (!need_emulate_wbinvd(vcpu)) | 4353 | if (!need_emulate_wbinvd(vcpu)) |
4354 | return X86EMUL_CONTINUE; | 4354 | return X86EMUL_CONTINUE; |
4355 | 4355 | ||
4356 | if (kvm_x86_ops->has_wbinvd_exit()) { | 4356 | if (kvm_x86_ops->has_wbinvd_exit()) { |
4357 | int cpu = get_cpu(); | 4357 | int cpu = get_cpu(); |
4358 | 4358 | ||
4359 | cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); | 4359 | cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); |
4360 | smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, | 4360 | smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, |
4361 | wbinvd_ipi, NULL, 1); | 4361 | wbinvd_ipi, NULL, 1); |
4362 | put_cpu(); | 4362 | put_cpu(); |
4363 | cpumask_clear(vcpu->arch.wbinvd_dirty_mask); | 4363 | cpumask_clear(vcpu->arch.wbinvd_dirty_mask); |
4364 | } else | 4364 | } else |
4365 | wbinvd(); | 4365 | wbinvd(); |
4366 | return X86EMUL_CONTINUE; | 4366 | return X86EMUL_CONTINUE; |
4367 | } | 4367 | } |
4368 | EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); | 4368 | EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); |
4369 | 4369 | ||
4370 | static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) | 4370 | static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) |
4371 | { | 4371 | { |
4372 | kvm_emulate_wbinvd(emul_to_vcpu(ctxt)); | 4372 | kvm_emulate_wbinvd(emul_to_vcpu(ctxt)); |
4373 | } | 4373 | } |
4374 | 4374 | ||
4375 | int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest) | 4375 | int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest) |
4376 | { | 4376 | { |
4377 | return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); | 4377 | return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); |
4378 | } | 4378 | } |
4379 | 4379 | ||
4380 | int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value) | 4380 | int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value) |
4381 | { | 4381 | { |
4382 | 4382 | ||
4383 | return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); | 4383 | return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); |
4384 | } | 4384 | } |
4385 | 4385 | ||
4386 | static u64 mk_cr_64(u64 curr_cr, u32 new_val) | 4386 | static u64 mk_cr_64(u64 curr_cr, u32 new_val) |
4387 | { | 4387 | { |
4388 | return (curr_cr & ~((1ULL << 32) - 1)) | new_val; | 4388 | return (curr_cr & ~((1ULL << 32) - 1)) | new_val; |
4389 | } | 4389 | } |
4390 | 4390 | ||
4391 | static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) | 4391 | static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) |
4392 | { | 4392 | { |
4393 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | 4393 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
4394 | unsigned long value; | 4394 | unsigned long value; |
4395 | 4395 | ||
4396 | switch (cr) { | 4396 | switch (cr) { |
4397 | case 0: | 4397 | case 0: |
4398 | value = kvm_read_cr0(vcpu); | 4398 | value = kvm_read_cr0(vcpu); |
4399 | break; | 4399 | break; |
4400 | case 2: | 4400 | case 2: |
4401 | value = vcpu->arch.cr2; | 4401 | value = vcpu->arch.cr2; |
4402 | break; | 4402 | break; |
4403 | case 3: | 4403 | case 3: |
4404 | value = kvm_read_cr3(vcpu); | 4404 | value = kvm_read_cr3(vcpu); |
4405 | break; | 4405 | break; |
4406 | case 4: | 4406 | case 4: |
4407 | value = kvm_read_cr4(vcpu); | 4407 | value = kvm_read_cr4(vcpu); |
4408 | break; | 4408 | break; |
4409 | case 8: | 4409 | case 8: |
4410 | value = kvm_get_cr8(vcpu); | 4410 | value = kvm_get_cr8(vcpu); |
4411 | break; | 4411 | break; |
4412 | default: | 4412 | default: |
4413 | kvm_err("%s: unexpected cr %u\n", __func__, cr); | 4413 | kvm_err("%s: unexpected cr %u\n", __func__, cr); |
4414 | return 0; | 4414 | return 0; |
4415 | } | 4415 | } |
4416 | 4416 | ||
4417 | return value; | 4417 | return value; |
4418 | } | 4418 | } |
4419 | 4419 | ||
4420 | static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) | 4420 | static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) |
4421 | { | 4421 | { |
4422 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | 4422 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
4423 | int res = 0; | 4423 | int res = 0; |
4424 | 4424 | ||
4425 | switch (cr) { | 4425 | switch (cr) { |
4426 | case 0: | 4426 | case 0: |
4427 | res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); | 4427 | res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); |
4428 | break; | 4428 | break; |
4429 | case 2: | 4429 | case 2: |
4430 | vcpu->arch.cr2 = val; | 4430 | vcpu->arch.cr2 = val; |
4431 | break; | 4431 | break; |
4432 | case 3: | 4432 | case 3: |
4433 | res = kvm_set_cr3(vcpu, val); | 4433 | res = kvm_set_cr3(vcpu, val); |
4434 | break; | 4434 | break; |
4435 | case 4: | 4435 | case 4: |
4436 | res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); | 4436 | res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); |
4437 | break; | 4437 | break; |
4438 | case 8: | 4438 | case 8: |
4439 | res = kvm_set_cr8(vcpu, val); | 4439 | res = kvm_set_cr8(vcpu, val); |
4440 | break; | 4440 | break; |
4441 | default: | 4441 | default: |
4442 | kvm_err("%s: unexpected cr %u\n", __func__, cr); | 4442 | kvm_err("%s: unexpected cr %u\n", __func__, cr); |
4443 | res = -1; | 4443 | res = -1; |
4444 | } | 4444 | } |
4445 | 4445 | ||
4446 | return res; | 4446 | return res; |
4447 | } | 4447 | } |
4448 | 4448 | ||
4449 | static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val) | 4449 | static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val) |
4450 | { | 4450 | { |
4451 | kvm_set_rflags(emul_to_vcpu(ctxt), val); | 4451 | kvm_set_rflags(emul_to_vcpu(ctxt), val); |
4452 | } | 4452 | } |
4453 | 4453 | ||
4454 | static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) | 4454 | static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) |
4455 | { | 4455 | { |
4456 | return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt)); | 4456 | return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt)); |
4457 | } | 4457 | } |
4458 | 4458 | ||
4459 | static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) | 4459 | static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) |
4460 | { | 4460 | { |
4461 | kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt); | 4461 | kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt); |
4462 | } | 4462 | } |
4463 | 4463 | ||
4464 | static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) | 4464 | static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) |
4465 | { | 4465 | { |
4466 | kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt); | 4466 | kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt); |
4467 | } | 4467 | } |
4468 | 4468 | ||
4469 | static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) | 4469 | static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) |
4470 | { | 4470 | { |
4471 | kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt); | 4471 | kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt); |
4472 | } | 4472 | } |
4473 | 4473 | ||
4474 | static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) | 4474 | static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) |
4475 | { | 4475 | { |
4476 | kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt); | 4476 | kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt); |
4477 | } | 4477 | } |
4478 | 4478 | ||
4479 | static unsigned long emulator_get_cached_segment_base( | 4479 | static unsigned long emulator_get_cached_segment_base( |
4480 | struct x86_emulate_ctxt *ctxt, int seg) | 4480 | struct x86_emulate_ctxt *ctxt, int seg) |
4481 | { | 4481 | { |
4482 | return get_segment_base(emul_to_vcpu(ctxt), seg); | 4482 | return get_segment_base(emul_to_vcpu(ctxt), seg); |
4483 | } | 4483 | } |
4484 | 4484 | ||
4485 | static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, | 4485 | static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, |
4486 | struct desc_struct *desc, u32 *base3, | 4486 | struct desc_struct *desc, u32 *base3, |
4487 | int seg) | 4487 | int seg) |
4488 | { | 4488 | { |
4489 | struct kvm_segment var; | 4489 | struct kvm_segment var; |
4490 | 4490 | ||
4491 | kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); | 4491 | kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); |
4492 | *selector = var.selector; | 4492 | *selector = var.selector; |
4493 | 4493 | ||
4494 | if (var.unusable) | 4494 | if (var.unusable) |
4495 | return false; | 4495 | return false; |
4496 | 4496 | ||
4497 | if (var.g) | 4497 | if (var.g) |
4498 | var.limit >>= 12; | 4498 | var.limit >>= 12; |
4499 | set_desc_limit(desc, var.limit); | 4499 | set_desc_limit(desc, var.limit); |
4500 | set_desc_base(desc, (unsigned long)var.base); | 4500 | set_desc_base(desc, (unsigned long)var.base); |
4501 | #ifdef CONFIG_X86_64 | 4501 | #ifdef CONFIG_X86_64 |
4502 | if (base3) | 4502 | if (base3) |
4503 | *base3 = var.base >> 32; | 4503 | *base3 = var.base >> 32; |
4504 | #endif | 4504 | #endif |
4505 | desc->type = var.type; | 4505 | desc->type = var.type; |
4506 | desc->s = var.s; | 4506 | desc->s = var.s; |
4507 | desc->dpl = var.dpl; | 4507 | desc->dpl = var.dpl; |
4508 | desc->p = var.present; | 4508 | desc->p = var.present; |
4509 | desc->avl = var.avl; | 4509 | desc->avl = var.avl; |
4510 | desc->l = var.l; | 4510 | desc->l = var.l; |
4511 | desc->d = var.db; | 4511 | desc->d = var.db; |
4512 | desc->g = var.g; | 4512 | desc->g = var.g; |
4513 | 4513 | ||
4514 | return true; | 4514 | return true; |
4515 | } | 4515 | } |
4516 | 4516 | ||
4517 | static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, | 4517 | static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, |
4518 | struct desc_struct *desc, u32 base3, | 4518 | struct desc_struct *desc, u32 base3, |
4519 | int seg) | 4519 | int seg) |
4520 | { | 4520 | { |
4521 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | 4521 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
4522 | struct kvm_segment var; | 4522 | struct kvm_segment var; |
4523 | 4523 | ||
4524 | var.selector = selector; | 4524 | var.selector = selector; |
4525 | var.base = get_desc_base(desc); | 4525 | var.base = get_desc_base(desc); |
4526 | #ifdef CONFIG_X86_64 | 4526 | #ifdef CONFIG_X86_64 |
4527 | var.base |= ((u64)base3) << 32; | 4527 | var.base |= ((u64)base3) << 32; |
4528 | #endif | 4528 | #endif |
4529 | var.limit = get_desc_limit(desc); | 4529 | var.limit = get_desc_limit(desc); |
4530 | if (desc->g) | 4530 | if (desc->g) |
4531 | var.limit = (var.limit << 12) | 0xfff; | 4531 | var.limit = (var.limit << 12) | 0xfff; |
4532 | var.type = desc->type; | 4532 | var.type = desc->type; |
4533 | var.present = desc->p; | 4533 | var.present = desc->p; |
4534 | var.dpl = desc->dpl; | 4534 | var.dpl = desc->dpl; |
4535 | var.db = desc->d; | 4535 | var.db = desc->d; |
4536 | var.s = desc->s; | 4536 | var.s = desc->s; |
4537 | var.l = desc->l; | 4537 | var.l = desc->l; |
4538 | var.g = desc->g; | 4538 | var.g = desc->g; |
4539 | var.avl = desc->avl; | 4539 | var.avl = desc->avl; |
4540 | var.present = desc->p; | 4540 | var.present = desc->p; |
4541 | var.unusable = !var.present; | 4541 | var.unusable = !var.present; |
4542 | var.padding = 0; | 4542 | var.padding = 0; |
4543 | 4543 | ||
4544 | kvm_set_segment(vcpu, &var, seg); | 4544 | kvm_set_segment(vcpu, &var, seg); |
4545 | return; | 4545 | return; |
4546 | } | 4546 | } |
4547 | 4547 | ||
4548 | static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, | 4548 | static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, |
4549 | u32 msr_index, u64 *pdata) | 4549 | u32 msr_index, u64 *pdata) |
4550 | { | 4550 | { |
4551 | return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); | 4551 | return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); |
4552 | } | 4552 | } |
4553 | 4553 | ||
4554 | static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, | 4554 | static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, |
4555 | u32 msr_index, u64 data) | 4555 | u32 msr_index, u64 data) |
4556 | { | 4556 | { |
4557 | struct msr_data msr; | 4557 | struct msr_data msr; |
4558 | 4558 | ||
4559 | msr.data = data; | 4559 | msr.data = data; |
4560 | msr.index = msr_index; | 4560 | msr.index = msr_index; |
4561 | msr.host_initiated = false; | 4561 | msr.host_initiated = false; |
4562 | return kvm_set_msr(emul_to_vcpu(ctxt), &msr); | 4562 | return kvm_set_msr(emul_to_vcpu(ctxt), &msr); |
4563 | } | 4563 | } |
4564 | 4564 | ||
4565 | static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, | 4565 | static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, |
4566 | u32 pmc, u64 *pdata) | 4566 | u32 pmc, u64 *pdata) |
4567 | { | 4567 | { |
4568 | return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata); | 4568 | return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata); |
4569 | } | 4569 | } |
4570 | 4570 | ||
4571 | static void emulator_halt(struct x86_emulate_ctxt *ctxt) | 4571 | static void emulator_halt(struct x86_emulate_ctxt *ctxt) |
4572 | { | 4572 | { |
4573 | emul_to_vcpu(ctxt)->arch.halt_request = 1; | 4573 | emul_to_vcpu(ctxt)->arch.halt_request = 1; |
4574 | } | 4574 | } |
4575 | 4575 | ||
4576 | static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt) | 4576 | static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt) |
4577 | { | 4577 | { |
4578 | preempt_disable(); | 4578 | preempt_disable(); |
4579 | kvm_load_guest_fpu(emul_to_vcpu(ctxt)); | 4579 | kvm_load_guest_fpu(emul_to_vcpu(ctxt)); |
4580 | /* | 4580 | /* |
4581 | * CR0.TS may reference the host fpu state, not the guest fpu state, | 4581 | * CR0.TS may reference the host fpu state, not the guest fpu state, |
4582 | * so it may be clear at this point. | 4582 | * so it may be clear at this point. |
4583 | */ | 4583 | */ |
4584 | clts(); | 4584 | clts(); |
4585 | } | 4585 | } |
4586 | 4586 | ||
4587 | static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt) | 4587 | static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt) |
4588 | { | 4588 | { |
4589 | preempt_enable(); | 4589 | preempt_enable(); |
4590 | } | 4590 | } |
4591 | 4591 | ||
4592 | static int emulator_intercept(struct x86_emulate_ctxt *ctxt, | 4592 | static int emulator_intercept(struct x86_emulate_ctxt *ctxt, |
4593 | struct x86_instruction_info *info, | 4593 | struct x86_instruction_info *info, |
4594 | enum x86_intercept_stage stage) | 4594 | enum x86_intercept_stage stage) |
4595 | { | 4595 | { |
4596 | return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage); | 4596 | return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage); |
4597 | } | 4597 | } |
4598 | 4598 | ||
4599 | static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, | 4599 | static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, |
4600 | u32 *eax, u32 *ebx, u32 *ecx, u32 *edx) | 4600 | u32 *eax, u32 *ebx, u32 *ecx, u32 *edx) |
4601 | { | 4601 | { |
4602 | kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx); | 4602 | kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx); |
4603 | } | 4603 | } |
4604 | 4604 | ||
4605 | static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) | 4605 | static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) |
4606 | { | 4606 | { |
4607 | return kvm_register_read(emul_to_vcpu(ctxt), reg); | 4607 | return kvm_register_read(emul_to_vcpu(ctxt), reg); |
4608 | } | 4608 | } |
4609 | 4609 | ||
4610 | static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) | 4610 | static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) |
4611 | { | 4611 | { |
4612 | kvm_register_write(emul_to_vcpu(ctxt), reg, val); | 4612 | kvm_register_write(emul_to_vcpu(ctxt), reg, val); |
4613 | } | 4613 | } |
4614 | 4614 | ||
4615 | static const struct x86_emulate_ops emulate_ops = { | 4615 | static const struct x86_emulate_ops emulate_ops = { |
4616 | .read_gpr = emulator_read_gpr, | 4616 | .read_gpr = emulator_read_gpr, |
4617 | .write_gpr = emulator_write_gpr, | 4617 | .write_gpr = emulator_write_gpr, |
4618 | .read_std = kvm_read_guest_virt_system, | 4618 | .read_std = kvm_read_guest_virt_system, |
4619 | .write_std = kvm_write_guest_virt_system, | 4619 | .write_std = kvm_write_guest_virt_system, |
4620 | .fetch = kvm_fetch_guest_virt, | 4620 | .fetch = kvm_fetch_guest_virt, |
4621 | .read_emulated = emulator_read_emulated, | 4621 | .read_emulated = emulator_read_emulated, |
4622 | .write_emulated = emulator_write_emulated, | 4622 | .write_emulated = emulator_write_emulated, |
4623 | .cmpxchg_emulated = emulator_cmpxchg_emulated, | 4623 | .cmpxchg_emulated = emulator_cmpxchg_emulated, |
4624 | .invlpg = emulator_invlpg, | 4624 | .invlpg = emulator_invlpg, |
4625 | .pio_in_emulated = emulator_pio_in_emulated, | 4625 | .pio_in_emulated = emulator_pio_in_emulated, |
4626 | .pio_out_emulated = emulator_pio_out_emulated, | 4626 | .pio_out_emulated = emulator_pio_out_emulated, |
4627 | .get_segment = emulator_get_segment, | 4627 | .get_segment = emulator_get_segment, |
4628 | .set_segment = emulator_set_segment, | 4628 | .set_segment = emulator_set_segment, |
4629 | .get_cached_segment_base = emulator_get_cached_segment_base, | 4629 | .get_cached_segment_base = emulator_get_cached_segment_base, |
4630 | .get_gdt = emulator_get_gdt, | 4630 | .get_gdt = emulator_get_gdt, |
4631 | .get_idt = emulator_get_idt, | 4631 | .get_idt = emulator_get_idt, |
4632 | .set_gdt = emulator_set_gdt, | 4632 | .set_gdt = emulator_set_gdt, |
4633 | .set_idt = emulator_set_idt, | 4633 | .set_idt = emulator_set_idt, |
4634 | .get_cr = emulator_get_cr, | 4634 | .get_cr = emulator_get_cr, |
4635 | .set_cr = emulator_set_cr, | 4635 | .set_cr = emulator_set_cr, |
4636 | .set_rflags = emulator_set_rflags, | 4636 | .set_rflags = emulator_set_rflags, |
4637 | .cpl = emulator_get_cpl, | 4637 | .cpl = emulator_get_cpl, |
4638 | .get_dr = emulator_get_dr, | 4638 | .get_dr = emulator_get_dr, |
4639 | .set_dr = emulator_set_dr, | 4639 | .set_dr = emulator_set_dr, |
4640 | .set_msr = emulator_set_msr, | 4640 | .set_msr = emulator_set_msr, |
4641 | .get_msr = emulator_get_msr, | 4641 | .get_msr = emulator_get_msr, |
4642 | .read_pmc = emulator_read_pmc, | 4642 | .read_pmc = emulator_read_pmc, |
4643 | .halt = emulator_halt, | 4643 | .halt = emulator_halt, |
4644 | .wbinvd = emulator_wbinvd, | 4644 | .wbinvd = emulator_wbinvd, |
4645 | .fix_hypercall = emulator_fix_hypercall, | 4645 | .fix_hypercall = emulator_fix_hypercall, |
4646 | .get_fpu = emulator_get_fpu, | 4646 | .get_fpu = emulator_get_fpu, |
4647 | .put_fpu = emulator_put_fpu, | 4647 | .put_fpu = emulator_put_fpu, |
4648 | .intercept = emulator_intercept, | 4648 | .intercept = emulator_intercept, |
4649 | .get_cpuid = emulator_get_cpuid, | 4649 | .get_cpuid = emulator_get_cpuid, |
4650 | }; | 4650 | }; |
4651 | 4651 | ||
4652 | static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) | 4652 | static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) |
4653 | { | 4653 | { |
4654 | u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask); | 4654 | u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask); |
4655 | /* | 4655 | /* |
4656 | * an sti; sti; sequence only disable interrupts for the first | 4656 | * an sti; sti; sequence only disable interrupts for the first |
4657 | * instruction. So, if the last instruction, be it emulated or | 4657 | * instruction. So, if the last instruction, be it emulated or |
4658 | * not, left the system with the INT_STI flag enabled, it | 4658 | * not, left the system with the INT_STI flag enabled, it |
4659 | * means that the last instruction is an sti. We should not | 4659 | * means that the last instruction is an sti. We should not |
4660 | * leave the flag on in this case. The same goes for mov ss | 4660 | * leave the flag on in this case. The same goes for mov ss |
4661 | */ | 4661 | */ |
4662 | if (!(int_shadow & mask)) | 4662 | if (!(int_shadow & mask)) |
4663 | kvm_x86_ops->set_interrupt_shadow(vcpu, mask); | 4663 | kvm_x86_ops->set_interrupt_shadow(vcpu, mask); |
4664 | } | 4664 | } |
4665 | 4665 | ||
4666 | static void inject_emulated_exception(struct kvm_vcpu *vcpu) | 4666 | static void inject_emulated_exception(struct kvm_vcpu *vcpu) |
4667 | { | 4667 | { |
4668 | struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; | 4668 | struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; |
4669 | if (ctxt->exception.vector == PF_VECTOR) | 4669 | if (ctxt->exception.vector == PF_VECTOR) |
4670 | kvm_propagate_fault(vcpu, &ctxt->exception); | 4670 | kvm_propagate_fault(vcpu, &ctxt->exception); |
4671 | else if (ctxt->exception.error_code_valid) | 4671 | else if (ctxt->exception.error_code_valid) |
4672 | kvm_queue_exception_e(vcpu, ctxt->exception.vector, | 4672 | kvm_queue_exception_e(vcpu, ctxt->exception.vector, |
4673 | ctxt->exception.error_code); | 4673 | ctxt->exception.error_code); |
4674 | else | 4674 | else |
4675 | kvm_queue_exception(vcpu, ctxt->exception.vector); | 4675 | kvm_queue_exception(vcpu, ctxt->exception.vector); |
4676 | } | 4676 | } |
4677 | 4677 | ||
4678 | static void init_decode_cache(struct x86_emulate_ctxt *ctxt) | 4678 | static void init_decode_cache(struct x86_emulate_ctxt *ctxt) |
4679 | { | 4679 | { |
4680 | memset(&ctxt->twobyte, 0, | 4680 | memset(&ctxt->twobyte, 0, |
4681 | (void *)&ctxt->_regs - (void *)&ctxt->twobyte); | 4681 | (void *)&ctxt->_regs - (void *)&ctxt->twobyte); |
4682 | 4682 | ||
4683 | ctxt->fetch.start = 0; | 4683 | ctxt->fetch.start = 0; |
4684 | ctxt->fetch.end = 0; | 4684 | ctxt->fetch.end = 0; |
4685 | ctxt->io_read.pos = 0; | 4685 | ctxt->io_read.pos = 0; |
4686 | ctxt->io_read.end = 0; | 4686 | ctxt->io_read.end = 0; |
4687 | ctxt->mem_read.pos = 0; | 4687 | ctxt->mem_read.pos = 0; |
4688 | ctxt->mem_read.end = 0; | 4688 | ctxt->mem_read.end = 0; |
4689 | } | 4689 | } |
4690 | 4690 | ||
4691 | static void init_emulate_ctxt(struct kvm_vcpu *vcpu) | 4691 | static void init_emulate_ctxt(struct kvm_vcpu *vcpu) |
4692 | { | 4692 | { |
4693 | struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; | 4693 | struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; |
4694 | int cs_db, cs_l; | 4694 | int cs_db, cs_l; |
4695 | 4695 | ||
4696 | kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); | 4696 | kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); |
4697 | 4697 | ||
4698 | ctxt->eflags = kvm_get_rflags(vcpu); | 4698 | ctxt->eflags = kvm_get_rflags(vcpu); |
4699 | ctxt->eip = kvm_rip_read(vcpu); | 4699 | ctxt->eip = kvm_rip_read(vcpu); |
4700 | ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : | 4700 | ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : |
4701 | (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : | 4701 | (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : |
4702 | cs_l ? X86EMUL_MODE_PROT64 : | 4702 | cs_l ? X86EMUL_MODE_PROT64 : |
4703 | cs_db ? X86EMUL_MODE_PROT32 : | 4703 | cs_db ? X86EMUL_MODE_PROT32 : |
4704 | X86EMUL_MODE_PROT16; | 4704 | X86EMUL_MODE_PROT16; |
4705 | ctxt->guest_mode = is_guest_mode(vcpu); | 4705 | ctxt->guest_mode = is_guest_mode(vcpu); |
4706 | 4706 | ||
4707 | init_decode_cache(ctxt); | 4707 | init_decode_cache(ctxt); |
4708 | vcpu->arch.emulate_regs_need_sync_from_vcpu = false; | 4708 | vcpu->arch.emulate_regs_need_sync_from_vcpu = false; |
4709 | } | 4709 | } |
4710 | 4710 | ||
4711 | int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) | 4711 | int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) |
4712 | { | 4712 | { |
4713 | struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; | 4713 | struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; |
4714 | int ret; | 4714 | int ret; |
4715 | 4715 | ||
4716 | init_emulate_ctxt(vcpu); | 4716 | init_emulate_ctxt(vcpu); |
4717 | 4717 | ||
4718 | ctxt->op_bytes = 2; | 4718 | ctxt->op_bytes = 2; |
4719 | ctxt->ad_bytes = 2; | 4719 | ctxt->ad_bytes = 2; |
4720 | ctxt->_eip = ctxt->eip + inc_eip; | 4720 | ctxt->_eip = ctxt->eip + inc_eip; |
4721 | ret = emulate_int_real(ctxt, irq); | 4721 | ret = emulate_int_real(ctxt, irq); |
4722 | 4722 | ||
4723 | if (ret != X86EMUL_CONTINUE) | 4723 | if (ret != X86EMUL_CONTINUE) |
4724 | return EMULATE_FAIL; | 4724 | return EMULATE_FAIL; |
4725 | 4725 | ||
4726 | ctxt->eip = ctxt->_eip; | 4726 | ctxt->eip = ctxt->_eip; |
4727 | kvm_rip_write(vcpu, ctxt->eip); | 4727 | kvm_rip_write(vcpu, ctxt->eip); |
4728 | kvm_set_rflags(vcpu, ctxt->eflags); | 4728 | kvm_set_rflags(vcpu, ctxt->eflags); |
4729 | 4729 | ||
4730 | if (irq == NMI_VECTOR) | 4730 | if (irq == NMI_VECTOR) |
4731 | vcpu->arch.nmi_pending = 0; | 4731 | vcpu->arch.nmi_pending = 0; |
4732 | else | 4732 | else |
4733 | vcpu->arch.interrupt.pending = false; | 4733 | vcpu->arch.interrupt.pending = false; |
4734 | 4734 | ||
4735 | return EMULATE_DONE; | 4735 | return EMULATE_DONE; |
4736 | } | 4736 | } |
4737 | EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); | 4737 | EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); |
4738 | 4738 | ||
4739 | static int handle_emulation_failure(struct kvm_vcpu *vcpu) | 4739 | static int handle_emulation_failure(struct kvm_vcpu *vcpu) |
4740 | { | 4740 | { |
4741 | int r = EMULATE_DONE; | 4741 | int r = EMULATE_DONE; |
4742 | 4742 | ||
4743 | ++vcpu->stat.insn_emulation_fail; | 4743 | ++vcpu->stat.insn_emulation_fail; |
4744 | trace_kvm_emulate_insn_failed(vcpu); | 4744 | trace_kvm_emulate_insn_failed(vcpu); |
4745 | if (!is_guest_mode(vcpu)) { | 4745 | if (!is_guest_mode(vcpu)) { |
4746 | vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | 4746 | vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
4747 | vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; | 4747 | vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; |
4748 | vcpu->run->internal.ndata = 0; | 4748 | vcpu->run->internal.ndata = 0; |
4749 | r = EMULATE_FAIL; | 4749 | r = EMULATE_FAIL; |
4750 | } | 4750 | } |
4751 | kvm_queue_exception(vcpu, UD_VECTOR); | 4751 | kvm_queue_exception(vcpu, UD_VECTOR); |
4752 | 4752 | ||
4753 | return r; | 4753 | return r; |
4754 | } | 4754 | } |
4755 | 4755 | ||
4756 | static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva) | 4756 | static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva) |
4757 | { | 4757 | { |
4758 | gpa_t gpa; | 4758 | gpa_t gpa; |
4759 | pfn_t pfn; | 4759 | pfn_t pfn; |
4760 | 4760 | ||
4761 | if (tdp_enabled) | 4761 | if (tdp_enabled) |
4762 | return false; | 4762 | return false; |
4763 | 4763 | ||
4764 | /* | 4764 | /* |
4765 | * if emulation was due to access to shadowed page table | 4765 | * if emulation was due to access to shadowed page table |
4766 | * and it failed try to unshadow page and re-enter the | 4766 | * and it failed try to unshadow page and re-enter the |
4767 | * guest to let CPU execute the instruction. | 4767 | * guest to let CPU execute the instruction. |
4768 | */ | 4768 | */ |
4769 | if (kvm_mmu_unprotect_page_virt(vcpu, gva)) | 4769 | if (kvm_mmu_unprotect_page_virt(vcpu, gva)) |
4770 | return true; | 4770 | return true; |
4771 | 4771 | ||
4772 | gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL); | 4772 | gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL); |
4773 | 4773 | ||
4774 | if (gpa == UNMAPPED_GVA) | 4774 | if (gpa == UNMAPPED_GVA) |
4775 | return true; /* let cpu generate fault */ | 4775 | return true; /* let cpu generate fault */ |
4776 | 4776 | ||
4777 | /* | 4777 | /* |
4778 | * Do not retry the unhandleable instruction if it faults on the | 4778 | * Do not retry the unhandleable instruction if it faults on the |
4779 | * readonly host memory, otherwise it will goto a infinite loop: | 4779 | * readonly host memory, otherwise it will goto a infinite loop: |
4780 | * retry instruction -> write #PF -> emulation fail -> retry | 4780 | * retry instruction -> write #PF -> emulation fail -> retry |
4781 | * instruction -> ... | 4781 | * instruction -> ... |
4782 | */ | 4782 | */ |
4783 | pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); | 4783 | pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); |
4784 | if (!is_error_noslot_pfn(pfn)) { | 4784 | if (!is_error_noslot_pfn(pfn)) { |
4785 | kvm_release_pfn_clean(pfn); | 4785 | kvm_release_pfn_clean(pfn); |
4786 | return true; | 4786 | return true; |
4787 | } | 4787 | } |
4788 | 4788 | ||
4789 | return false; | 4789 | return false; |
4790 | } | 4790 | } |
4791 | 4791 | ||
4792 | static bool retry_instruction(struct x86_emulate_ctxt *ctxt, | 4792 | static bool retry_instruction(struct x86_emulate_ctxt *ctxt, |
4793 | unsigned long cr2, int emulation_type) | 4793 | unsigned long cr2, int emulation_type) |
4794 | { | 4794 | { |
4795 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | 4795 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
4796 | unsigned long last_retry_eip, last_retry_addr, gpa = cr2; | 4796 | unsigned long last_retry_eip, last_retry_addr, gpa = cr2; |
4797 | 4797 | ||
4798 | last_retry_eip = vcpu->arch.last_retry_eip; | 4798 | last_retry_eip = vcpu->arch.last_retry_eip; |
4799 | last_retry_addr = vcpu->arch.last_retry_addr; | 4799 | last_retry_addr = vcpu->arch.last_retry_addr; |
4800 | 4800 | ||
4801 | /* | 4801 | /* |
4802 | * If the emulation is caused by #PF and it is non-page_table | 4802 | * If the emulation is caused by #PF and it is non-page_table |
4803 | * writing instruction, it means the VM-EXIT is caused by shadow | 4803 | * writing instruction, it means the VM-EXIT is caused by shadow |
4804 | * page protected, we can zap the shadow page and retry this | 4804 | * page protected, we can zap the shadow page and retry this |
4805 | * instruction directly. | 4805 | * instruction directly. |
4806 | * | 4806 | * |
4807 | * Note: if the guest uses a non-page-table modifying instruction | 4807 | * Note: if the guest uses a non-page-table modifying instruction |
4808 | * on the PDE that points to the instruction, then we will unmap | 4808 | * on the PDE that points to the instruction, then we will unmap |
4809 | * the instruction and go to an infinite loop. So, we cache the | 4809 | * the instruction and go to an infinite loop. So, we cache the |
4810 | * last retried eip and the last fault address, if we meet the eip | 4810 | * last retried eip and the last fault address, if we meet the eip |
4811 | * and the address again, we can break out of the potential infinite | 4811 | * and the address again, we can break out of the potential infinite |
4812 | * loop. | 4812 | * loop. |
4813 | */ | 4813 | */ |
4814 | vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; | 4814 | vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; |
4815 | 4815 | ||
4816 | if (!(emulation_type & EMULTYPE_RETRY)) | 4816 | if (!(emulation_type & EMULTYPE_RETRY)) |
4817 | return false; | 4817 | return false; |
4818 | 4818 | ||
4819 | if (x86_page_table_writing_insn(ctxt)) | 4819 | if (x86_page_table_writing_insn(ctxt)) |
4820 | return false; | 4820 | return false; |
4821 | 4821 | ||
4822 | if (ctxt->eip == last_retry_eip && last_retry_addr == cr2) | 4822 | if (ctxt->eip == last_retry_eip && last_retry_addr == cr2) |
4823 | return false; | 4823 | return false; |
4824 | 4824 | ||
4825 | vcpu->arch.last_retry_eip = ctxt->eip; | 4825 | vcpu->arch.last_retry_eip = ctxt->eip; |
4826 | vcpu->arch.last_retry_addr = cr2; | 4826 | vcpu->arch.last_retry_addr = cr2; |
4827 | 4827 | ||
4828 | if (!vcpu->arch.mmu.direct_map) | 4828 | if (!vcpu->arch.mmu.direct_map) |
4829 | gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); | 4829 | gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); |
4830 | 4830 | ||
4831 | kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); | 4831 | kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); |
4832 | 4832 | ||
4833 | return true; | 4833 | return true; |
4834 | } | 4834 | } |
4835 | 4835 | ||
4836 | static int complete_emulated_mmio(struct kvm_vcpu *vcpu); | 4836 | static int complete_emulated_mmio(struct kvm_vcpu *vcpu); |
4837 | static int complete_emulated_pio(struct kvm_vcpu *vcpu); | 4837 | static int complete_emulated_pio(struct kvm_vcpu *vcpu); |
4838 | 4838 | ||
4839 | int x86_emulate_instruction(struct kvm_vcpu *vcpu, | 4839 | int x86_emulate_instruction(struct kvm_vcpu *vcpu, |
4840 | unsigned long cr2, | 4840 | unsigned long cr2, |
4841 | int emulation_type, | 4841 | int emulation_type, |
4842 | void *insn, | 4842 | void *insn, |
4843 | int insn_len) | 4843 | int insn_len) |
4844 | { | 4844 | { |
4845 | int r; | 4845 | int r; |
4846 | struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; | 4846 | struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; |
4847 | bool writeback = true; | 4847 | bool writeback = true; |
4848 | 4848 | ||
4849 | kvm_clear_exception_queue(vcpu); | 4849 | kvm_clear_exception_queue(vcpu); |
4850 | 4850 | ||
4851 | if (!(emulation_type & EMULTYPE_NO_DECODE)) { | 4851 | if (!(emulation_type & EMULTYPE_NO_DECODE)) { |
4852 | init_emulate_ctxt(vcpu); | 4852 | init_emulate_ctxt(vcpu); |
4853 | ctxt->interruptibility = 0; | 4853 | ctxt->interruptibility = 0; |
4854 | ctxt->have_exception = false; | 4854 | ctxt->have_exception = false; |
4855 | ctxt->perm_ok = false; | 4855 | ctxt->perm_ok = false; |
4856 | 4856 | ||
4857 | ctxt->only_vendor_specific_insn | 4857 | ctxt->only_vendor_specific_insn |
4858 | = emulation_type & EMULTYPE_TRAP_UD; | 4858 | = emulation_type & EMULTYPE_TRAP_UD; |
4859 | 4859 | ||
4860 | r = x86_decode_insn(ctxt, insn, insn_len); | 4860 | r = x86_decode_insn(ctxt, insn, insn_len); |
4861 | 4861 | ||
4862 | trace_kvm_emulate_insn_start(vcpu); | 4862 | trace_kvm_emulate_insn_start(vcpu); |
4863 | ++vcpu->stat.insn_emulation; | 4863 | ++vcpu->stat.insn_emulation; |
4864 | if (r != EMULATION_OK) { | 4864 | if (r != EMULATION_OK) { |
4865 | if (emulation_type & EMULTYPE_TRAP_UD) | 4865 | if (emulation_type & EMULTYPE_TRAP_UD) |
4866 | return EMULATE_FAIL; | 4866 | return EMULATE_FAIL; |
4867 | if (reexecute_instruction(vcpu, cr2)) | 4867 | if (reexecute_instruction(vcpu, cr2)) |
4868 | return EMULATE_DONE; | 4868 | return EMULATE_DONE; |
4869 | if (emulation_type & EMULTYPE_SKIP) | 4869 | if (emulation_type & EMULTYPE_SKIP) |
4870 | return EMULATE_FAIL; | 4870 | return EMULATE_FAIL; |
4871 | return handle_emulation_failure(vcpu); | 4871 | return handle_emulation_failure(vcpu); |
4872 | } | 4872 | } |
4873 | } | 4873 | } |
4874 | 4874 | ||
4875 | if (emulation_type & EMULTYPE_SKIP) { | 4875 | if (emulation_type & EMULTYPE_SKIP) { |
4876 | kvm_rip_write(vcpu, ctxt->_eip); | 4876 | kvm_rip_write(vcpu, ctxt->_eip); |
4877 | return EMULATE_DONE; | 4877 | return EMULATE_DONE; |
4878 | } | 4878 | } |
4879 | 4879 | ||
4880 | if (retry_instruction(ctxt, cr2, emulation_type)) | 4880 | if (retry_instruction(ctxt, cr2, emulation_type)) |
4881 | return EMULATE_DONE; | 4881 | return EMULATE_DONE; |
4882 | 4882 | ||
4883 | /* this is needed for vmware backdoor interface to work since it | 4883 | /* this is needed for vmware backdoor interface to work since it |
4884 | changes registers values during IO operation */ | 4884 | changes registers values during IO operation */ |
4885 | if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { | 4885 | if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { |
4886 | vcpu->arch.emulate_regs_need_sync_from_vcpu = false; | 4886 | vcpu->arch.emulate_regs_need_sync_from_vcpu = false; |
4887 | emulator_invalidate_register_cache(ctxt); | 4887 | emulator_invalidate_register_cache(ctxt); |
4888 | } | 4888 | } |
4889 | 4889 | ||
4890 | restart: | 4890 | restart: |
4891 | r = x86_emulate_insn(ctxt); | 4891 | r = x86_emulate_insn(ctxt); |
4892 | 4892 | ||
4893 | if (r == EMULATION_INTERCEPTED) | 4893 | if (r == EMULATION_INTERCEPTED) |
4894 | return EMULATE_DONE; | 4894 | return EMULATE_DONE; |
4895 | 4895 | ||
4896 | if (r == EMULATION_FAILED) { | 4896 | if (r == EMULATION_FAILED) { |
4897 | if (reexecute_instruction(vcpu, cr2)) | 4897 | if (reexecute_instruction(vcpu, cr2)) |
4898 | return EMULATE_DONE; | 4898 | return EMULATE_DONE; |
4899 | 4899 | ||
4900 | return handle_emulation_failure(vcpu); | 4900 | return handle_emulation_failure(vcpu); |
4901 | } | 4901 | } |
4902 | 4902 | ||
4903 | if (ctxt->have_exception) { | 4903 | if (ctxt->have_exception) { |
4904 | inject_emulated_exception(vcpu); | 4904 | inject_emulated_exception(vcpu); |
4905 | r = EMULATE_DONE; | 4905 | r = EMULATE_DONE; |
4906 | } else if (vcpu->arch.pio.count) { | 4906 | } else if (vcpu->arch.pio.count) { |
4907 | if (!vcpu->arch.pio.in) | 4907 | if (!vcpu->arch.pio.in) |
4908 | vcpu->arch.pio.count = 0; | 4908 | vcpu->arch.pio.count = 0; |
4909 | else { | 4909 | else { |
4910 | writeback = false; | 4910 | writeback = false; |
4911 | vcpu->arch.complete_userspace_io = complete_emulated_pio; | 4911 | vcpu->arch.complete_userspace_io = complete_emulated_pio; |
4912 | } | 4912 | } |
4913 | r = EMULATE_DO_MMIO; | 4913 | r = EMULATE_DO_MMIO; |
4914 | } else if (vcpu->mmio_needed) { | 4914 | } else if (vcpu->mmio_needed) { |
4915 | if (!vcpu->mmio_is_write) | 4915 | if (!vcpu->mmio_is_write) |
4916 | writeback = false; | 4916 | writeback = false; |
4917 | r = EMULATE_DO_MMIO; | 4917 | r = EMULATE_DO_MMIO; |
4918 | vcpu->arch.complete_userspace_io = complete_emulated_mmio; | 4918 | vcpu->arch.complete_userspace_io = complete_emulated_mmio; |
4919 | } else if (r == EMULATION_RESTART) | 4919 | } else if (r == EMULATION_RESTART) |
4920 | goto restart; | 4920 | goto restart; |
4921 | else | 4921 | else |
4922 | r = EMULATE_DONE; | 4922 | r = EMULATE_DONE; |
4923 | 4923 | ||
4924 | if (writeback) { | 4924 | if (writeback) { |
4925 | toggle_interruptibility(vcpu, ctxt->interruptibility); | 4925 | toggle_interruptibility(vcpu, ctxt->interruptibility); |
4926 | kvm_set_rflags(vcpu, ctxt->eflags); | 4926 | kvm_set_rflags(vcpu, ctxt->eflags); |
4927 | kvm_make_request(KVM_REQ_EVENT, vcpu); | 4927 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
4928 | vcpu->arch.emulate_regs_need_sync_to_vcpu = false; | 4928 | vcpu->arch.emulate_regs_need_sync_to_vcpu = false; |
4929 | kvm_rip_write(vcpu, ctxt->eip); | 4929 | kvm_rip_write(vcpu, ctxt->eip); |
4930 | } else | 4930 | } else |
4931 | vcpu->arch.emulate_regs_need_sync_to_vcpu = true; | 4931 | vcpu->arch.emulate_regs_need_sync_to_vcpu = true; |
4932 | 4932 | ||
4933 | return r; | 4933 | return r; |
4934 | } | 4934 | } |
4935 | EXPORT_SYMBOL_GPL(x86_emulate_instruction); | 4935 | EXPORT_SYMBOL_GPL(x86_emulate_instruction); |
4936 | 4936 | ||
4937 | int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port) | 4937 | int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port) |
4938 | { | 4938 | { |
4939 | unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX); | 4939 | unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX); |
4940 | int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt, | 4940 | int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt, |
4941 | size, port, &val, 1); | 4941 | size, port, &val, 1); |
4942 | /* do not return to emulator after return from userspace */ | 4942 | /* do not return to emulator after return from userspace */ |
4943 | vcpu->arch.pio.count = 0; | 4943 | vcpu->arch.pio.count = 0; |
4944 | return ret; | 4944 | return ret; |
4945 | } | 4945 | } |
4946 | EXPORT_SYMBOL_GPL(kvm_fast_pio_out); | 4946 | EXPORT_SYMBOL_GPL(kvm_fast_pio_out); |
4947 | 4947 | ||
4948 | static void tsc_bad(void *info) | 4948 | static void tsc_bad(void *info) |
4949 | { | 4949 | { |
4950 | __this_cpu_write(cpu_tsc_khz, 0); | 4950 | __this_cpu_write(cpu_tsc_khz, 0); |
4951 | } | 4951 | } |
4952 | 4952 | ||
4953 | static void tsc_khz_changed(void *data) | 4953 | static void tsc_khz_changed(void *data) |
4954 | { | 4954 | { |
4955 | struct cpufreq_freqs *freq = data; | 4955 | struct cpufreq_freqs *freq = data; |
4956 | unsigned long khz = 0; | 4956 | unsigned long khz = 0; |
4957 | 4957 | ||
4958 | if (data) | 4958 | if (data) |
4959 | khz = freq->new; | 4959 | khz = freq->new; |
4960 | else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) | 4960 | else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) |
4961 | khz = cpufreq_quick_get(raw_smp_processor_id()); | 4961 | khz = cpufreq_quick_get(raw_smp_processor_id()); |
4962 | if (!khz) | 4962 | if (!khz) |
4963 | khz = tsc_khz; | 4963 | khz = tsc_khz; |
4964 | __this_cpu_write(cpu_tsc_khz, khz); | 4964 | __this_cpu_write(cpu_tsc_khz, khz); |
4965 | } | 4965 | } |
4966 | 4966 | ||
4967 | static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, | 4967 | static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, |
4968 | void *data) | 4968 | void *data) |
4969 | { | 4969 | { |
4970 | struct cpufreq_freqs *freq = data; | 4970 | struct cpufreq_freqs *freq = data; |
4971 | struct kvm *kvm; | 4971 | struct kvm *kvm; |
4972 | struct kvm_vcpu *vcpu; | 4972 | struct kvm_vcpu *vcpu; |
4973 | int i, send_ipi = 0; | 4973 | int i, send_ipi = 0; |
4974 | 4974 | ||
4975 | /* | 4975 | /* |
4976 | * We allow guests to temporarily run on slowing clocks, | 4976 | * We allow guests to temporarily run on slowing clocks, |
4977 | * provided we notify them after, or to run on accelerating | 4977 | * provided we notify them after, or to run on accelerating |
4978 | * clocks, provided we notify them before. Thus time never | 4978 | * clocks, provided we notify them before. Thus time never |
4979 | * goes backwards. | 4979 | * goes backwards. |
4980 | * | 4980 | * |
4981 | * However, we have a problem. We can't atomically update | 4981 | * However, we have a problem. We can't atomically update |
4982 | * the frequency of a given CPU from this function; it is | 4982 | * the frequency of a given CPU from this function; it is |
4983 | * merely a notifier, which can be called from any CPU. | 4983 | * merely a notifier, which can be called from any CPU. |
4984 | * Changing the TSC frequency at arbitrary points in time | 4984 | * Changing the TSC frequency at arbitrary points in time |
4985 | * requires a recomputation of local variables related to | 4985 | * requires a recomputation of local variables related to |
4986 | * the TSC for each VCPU. We must flag these local variables | 4986 | * the TSC for each VCPU. We must flag these local variables |
4987 | * to be updated and be sure the update takes place with the | 4987 | * to be updated and be sure the update takes place with the |
4988 | * new frequency before any guests proceed. | 4988 | * new frequency before any guests proceed. |
4989 | * | 4989 | * |
4990 | * Unfortunately, the combination of hotplug CPU and frequency | 4990 | * Unfortunately, the combination of hotplug CPU and frequency |
4991 | * change creates an intractable locking scenario; the order | 4991 | * change creates an intractable locking scenario; the order |
4992 | * of when these callouts happen is undefined with respect to | 4992 | * of when these callouts happen is undefined with respect to |
4993 | * CPU hotplug, and they can race with each other. As such, | 4993 | * CPU hotplug, and they can race with each other. As such, |
4994 | * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is | 4994 | * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is |
4995 | * undefined; you can actually have a CPU frequency change take | 4995 | * undefined; you can actually have a CPU frequency change take |
4996 | * place in between the computation of X and the setting of the | 4996 | * place in between the computation of X and the setting of the |
4997 | * variable. To protect against this problem, all updates of | 4997 | * variable. To protect against this problem, all updates of |
4998 | * the per_cpu tsc_khz variable are done in an interrupt | 4998 | * the per_cpu tsc_khz variable are done in an interrupt |
4999 | * protected IPI, and all callers wishing to update the value | 4999 | * protected IPI, and all callers wishing to update the value |
5000 | * must wait for a synchronous IPI to complete (which is trivial | 5000 | * must wait for a synchronous IPI to complete (which is trivial |
5001 | * if the caller is on the CPU already). This establishes the | 5001 | * if the caller is on the CPU already). This establishes the |
5002 | * necessary total order on variable updates. | 5002 | * necessary total order on variable updates. |
5003 | * | 5003 | * |
5004 | * Note that because a guest time update may take place | 5004 | * Note that because a guest time update may take place |
5005 | * anytime after the setting of the VCPU's request bit, the | 5005 | * anytime after the setting of the VCPU's request bit, the |
5006 | * correct TSC value must be set before the request. However, | 5006 | * correct TSC value must be set before the request. However, |
5007 | * to ensure the update actually makes it to any guest which | 5007 | * to ensure the update actually makes it to any guest which |
5008 | * starts running in hardware virtualization between the set | 5008 | * starts running in hardware virtualization between the set |
5009 | * and the acquisition of the spinlock, we must also ping the | 5009 | * and the acquisition of the spinlock, we must also ping the |
5010 | * CPU after setting the request bit. | 5010 | * CPU after setting the request bit. |
5011 | * | 5011 | * |
5012 | */ | 5012 | */ |
5013 | 5013 | ||
5014 | if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) | 5014 | if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) |
5015 | return 0; | 5015 | return 0; |
5016 | if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) | 5016 | if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) |
5017 | return 0; | 5017 | return 0; |
5018 | 5018 | ||
5019 | smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); | 5019 | smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); |
5020 | 5020 | ||
5021 | raw_spin_lock(&kvm_lock); | 5021 | raw_spin_lock(&kvm_lock); |
5022 | list_for_each_entry(kvm, &vm_list, vm_list) { | 5022 | list_for_each_entry(kvm, &vm_list, vm_list) { |
5023 | kvm_for_each_vcpu(i, vcpu, kvm) { | 5023 | kvm_for_each_vcpu(i, vcpu, kvm) { |
5024 | if (vcpu->cpu != freq->cpu) | 5024 | if (vcpu->cpu != freq->cpu) |
5025 | continue; | 5025 | continue; |
5026 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); | 5026 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
5027 | if (vcpu->cpu != smp_processor_id()) | 5027 | if (vcpu->cpu != smp_processor_id()) |
5028 | send_ipi = 1; | 5028 | send_ipi = 1; |
5029 | } | 5029 | } |
5030 | } | 5030 | } |
5031 | raw_spin_unlock(&kvm_lock); | 5031 | raw_spin_unlock(&kvm_lock); |
5032 | 5032 | ||
5033 | if (freq->old < freq->new && send_ipi) { | 5033 | if (freq->old < freq->new && send_ipi) { |
5034 | /* | 5034 | /* |
5035 | * We upscale the frequency. Must make the guest | 5035 | * We upscale the frequency. Must make the guest |
5036 | * doesn't see old kvmclock values while running with | 5036 | * doesn't see old kvmclock values while running with |
5037 | * the new frequency, otherwise we risk the guest sees | 5037 | * the new frequency, otherwise we risk the guest sees |
5038 | * time go backwards. | 5038 | * time go backwards. |
5039 | * | 5039 | * |
5040 | * In case we update the frequency for another cpu | 5040 | * In case we update the frequency for another cpu |
5041 | * (which might be in guest context) send an interrupt | 5041 | * (which might be in guest context) send an interrupt |
5042 | * to kick the cpu out of guest context. Next time | 5042 | * to kick the cpu out of guest context. Next time |
5043 | * guest context is entered kvmclock will be updated, | 5043 | * guest context is entered kvmclock will be updated, |
5044 | * so the guest will not see stale values. | 5044 | * so the guest will not see stale values. |
5045 | */ | 5045 | */ |
5046 | smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); | 5046 | smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); |
5047 | } | 5047 | } |
5048 | return 0; | 5048 | return 0; |
5049 | } | 5049 | } |
5050 | 5050 | ||
5051 | static struct notifier_block kvmclock_cpufreq_notifier_block = { | 5051 | static struct notifier_block kvmclock_cpufreq_notifier_block = { |
5052 | .notifier_call = kvmclock_cpufreq_notifier | 5052 | .notifier_call = kvmclock_cpufreq_notifier |
5053 | }; | 5053 | }; |
5054 | 5054 | ||
5055 | static int kvmclock_cpu_notifier(struct notifier_block *nfb, | 5055 | static int kvmclock_cpu_notifier(struct notifier_block *nfb, |
5056 | unsigned long action, void *hcpu) | 5056 | unsigned long action, void *hcpu) |
5057 | { | 5057 | { |
5058 | unsigned int cpu = (unsigned long)hcpu; | 5058 | unsigned int cpu = (unsigned long)hcpu; |
5059 | 5059 | ||
5060 | switch (action) { | 5060 | switch (action) { |
5061 | case CPU_ONLINE: | 5061 | case CPU_ONLINE: |
5062 | case CPU_DOWN_FAILED: | 5062 | case CPU_DOWN_FAILED: |
5063 | smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); | 5063 | smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); |
5064 | break; | 5064 | break; |
5065 | case CPU_DOWN_PREPARE: | 5065 | case CPU_DOWN_PREPARE: |
5066 | smp_call_function_single(cpu, tsc_bad, NULL, 1); | 5066 | smp_call_function_single(cpu, tsc_bad, NULL, 1); |
5067 | break; | 5067 | break; |
5068 | } | 5068 | } |
5069 | return NOTIFY_OK; | 5069 | return NOTIFY_OK; |
5070 | } | 5070 | } |
5071 | 5071 | ||
5072 | static struct notifier_block kvmclock_cpu_notifier_block = { | 5072 | static struct notifier_block kvmclock_cpu_notifier_block = { |
5073 | .notifier_call = kvmclock_cpu_notifier, | 5073 | .notifier_call = kvmclock_cpu_notifier, |
5074 | .priority = -INT_MAX | 5074 | .priority = -INT_MAX |
5075 | }; | 5075 | }; |
5076 | 5076 | ||
5077 | static void kvm_timer_init(void) | 5077 | static void kvm_timer_init(void) |
5078 | { | 5078 | { |
5079 | int cpu; | 5079 | int cpu; |
5080 | 5080 | ||
5081 | max_tsc_khz = tsc_khz; | 5081 | max_tsc_khz = tsc_khz; |
5082 | register_hotcpu_notifier(&kvmclock_cpu_notifier_block); | 5082 | register_hotcpu_notifier(&kvmclock_cpu_notifier_block); |
5083 | if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { | 5083 | if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { |
5084 | #ifdef CONFIG_CPU_FREQ | 5084 | #ifdef CONFIG_CPU_FREQ |
5085 | struct cpufreq_policy policy; | 5085 | struct cpufreq_policy policy; |
5086 | memset(&policy, 0, sizeof(policy)); | 5086 | memset(&policy, 0, sizeof(policy)); |
5087 | cpu = get_cpu(); | 5087 | cpu = get_cpu(); |
5088 | cpufreq_get_policy(&policy, cpu); | 5088 | cpufreq_get_policy(&policy, cpu); |
5089 | if (policy.cpuinfo.max_freq) | 5089 | if (policy.cpuinfo.max_freq) |
5090 | max_tsc_khz = policy.cpuinfo.max_freq; | 5090 | max_tsc_khz = policy.cpuinfo.max_freq; |
5091 | put_cpu(); | 5091 | put_cpu(); |
5092 | #endif | 5092 | #endif |
5093 | cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, | 5093 | cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, |
5094 | CPUFREQ_TRANSITION_NOTIFIER); | 5094 | CPUFREQ_TRANSITION_NOTIFIER); |
5095 | } | 5095 | } |
5096 | pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz); | 5096 | pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz); |
5097 | for_each_online_cpu(cpu) | 5097 | for_each_online_cpu(cpu) |
5098 | smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); | 5098 | smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); |
5099 | } | 5099 | } |
5100 | 5100 | ||
5101 | static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); | 5101 | static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); |
5102 | 5102 | ||
5103 | int kvm_is_in_guest(void) | 5103 | int kvm_is_in_guest(void) |
5104 | { | 5104 | { |
5105 | return __this_cpu_read(current_vcpu) != NULL; | 5105 | return __this_cpu_read(current_vcpu) != NULL; |
5106 | } | 5106 | } |
5107 | 5107 | ||
5108 | static int kvm_is_user_mode(void) | 5108 | static int kvm_is_user_mode(void) |
5109 | { | 5109 | { |
5110 | int user_mode = 3; | 5110 | int user_mode = 3; |
5111 | 5111 | ||
5112 | if (__this_cpu_read(current_vcpu)) | 5112 | if (__this_cpu_read(current_vcpu)) |
5113 | user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu)); | 5113 | user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu)); |
5114 | 5114 | ||
5115 | return user_mode != 0; | 5115 | return user_mode != 0; |
5116 | } | 5116 | } |
5117 | 5117 | ||
5118 | static unsigned long kvm_get_guest_ip(void) | 5118 | static unsigned long kvm_get_guest_ip(void) |
5119 | { | 5119 | { |
5120 | unsigned long ip = 0; | 5120 | unsigned long ip = 0; |
5121 | 5121 | ||
5122 | if (__this_cpu_read(current_vcpu)) | 5122 | if (__this_cpu_read(current_vcpu)) |
5123 | ip = kvm_rip_read(__this_cpu_read(current_vcpu)); | 5123 | ip = kvm_rip_read(__this_cpu_read(current_vcpu)); |
5124 | 5124 | ||
5125 | return ip; | 5125 | return ip; |
5126 | } | 5126 | } |
5127 | 5127 | ||
5128 | static struct perf_guest_info_callbacks kvm_guest_cbs = { | 5128 | static struct perf_guest_info_callbacks kvm_guest_cbs = { |
5129 | .is_in_guest = kvm_is_in_guest, | 5129 | .is_in_guest = kvm_is_in_guest, |
5130 | .is_user_mode = kvm_is_user_mode, | 5130 | .is_user_mode = kvm_is_user_mode, |
5131 | .get_guest_ip = kvm_get_guest_ip, | 5131 | .get_guest_ip = kvm_get_guest_ip, |
5132 | }; | 5132 | }; |
5133 | 5133 | ||
5134 | void kvm_before_handle_nmi(struct kvm_vcpu *vcpu) | 5134 | void kvm_before_handle_nmi(struct kvm_vcpu *vcpu) |
5135 | { | 5135 | { |
5136 | __this_cpu_write(current_vcpu, vcpu); | 5136 | __this_cpu_write(current_vcpu, vcpu); |
5137 | } | 5137 | } |
5138 | EXPORT_SYMBOL_GPL(kvm_before_handle_nmi); | 5138 | EXPORT_SYMBOL_GPL(kvm_before_handle_nmi); |
5139 | 5139 | ||
5140 | void kvm_after_handle_nmi(struct kvm_vcpu *vcpu) | 5140 | void kvm_after_handle_nmi(struct kvm_vcpu *vcpu) |
5141 | { | 5141 | { |
5142 | __this_cpu_write(current_vcpu, NULL); | 5142 | __this_cpu_write(current_vcpu, NULL); |
5143 | } | 5143 | } |
5144 | EXPORT_SYMBOL_GPL(kvm_after_handle_nmi); | 5144 | EXPORT_SYMBOL_GPL(kvm_after_handle_nmi); |
5145 | 5145 | ||
5146 | static void kvm_set_mmio_spte_mask(void) | 5146 | static void kvm_set_mmio_spte_mask(void) |
5147 | { | 5147 | { |
5148 | u64 mask; | 5148 | u64 mask; |
5149 | int maxphyaddr = boot_cpu_data.x86_phys_bits; | 5149 | int maxphyaddr = boot_cpu_data.x86_phys_bits; |
5150 | 5150 | ||
5151 | /* | 5151 | /* |
5152 | * Set the reserved bits and the present bit of an paging-structure | 5152 | * Set the reserved bits and the present bit of an paging-structure |
5153 | * entry to generate page fault with PFER.RSV = 1. | 5153 | * entry to generate page fault with PFER.RSV = 1. |
5154 | */ | 5154 | */ |
5155 | mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr; | 5155 | mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr; |
5156 | mask |= 1ull; | 5156 | mask |= 1ull; |
5157 | 5157 | ||
5158 | #ifdef CONFIG_X86_64 | 5158 | #ifdef CONFIG_X86_64 |
5159 | /* | 5159 | /* |
5160 | * If reserved bit is not supported, clear the present bit to disable | 5160 | * If reserved bit is not supported, clear the present bit to disable |
5161 | * mmio page fault. | 5161 | * mmio page fault. |
5162 | */ | 5162 | */ |
5163 | if (maxphyaddr == 52) | 5163 | if (maxphyaddr == 52) |
5164 | mask &= ~1ull; | 5164 | mask &= ~1ull; |
5165 | #endif | 5165 | #endif |
5166 | 5166 | ||
5167 | kvm_mmu_set_mmio_spte_mask(mask); | 5167 | kvm_mmu_set_mmio_spte_mask(mask); |
5168 | } | 5168 | } |
5169 | 5169 | ||
5170 | #ifdef CONFIG_X86_64 | 5170 | #ifdef CONFIG_X86_64 |
5171 | static void pvclock_gtod_update_fn(struct work_struct *work) | 5171 | static void pvclock_gtod_update_fn(struct work_struct *work) |
5172 | { | 5172 | { |
5173 | struct kvm *kvm; | 5173 | struct kvm *kvm; |
5174 | 5174 | ||
5175 | struct kvm_vcpu *vcpu; | 5175 | struct kvm_vcpu *vcpu; |
5176 | int i; | 5176 | int i; |
5177 | 5177 | ||
5178 | raw_spin_lock(&kvm_lock); | 5178 | raw_spin_lock(&kvm_lock); |
5179 | list_for_each_entry(kvm, &vm_list, vm_list) | 5179 | list_for_each_entry(kvm, &vm_list, vm_list) |
5180 | kvm_for_each_vcpu(i, vcpu, kvm) | 5180 | kvm_for_each_vcpu(i, vcpu, kvm) |
5181 | set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests); | 5181 | set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests); |
5182 | atomic_set(&kvm_guest_has_master_clock, 0); | 5182 | atomic_set(&kvm_guest_has_master_clock, 0); |
5183 | raw_spin_unlock(&kvm_lock); | 5183 | raw_spin_unlock(&kvm_lock); |
5184 | } | 5184 | } |
5185 | 5185 | ||
5186 | static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); | 5186 | static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); |
5187 | 5187 | ||
5188 | /* | 5188 | /* |
5189 | * Notification about pvclock gtod data update. | 5189 | * Notification about pvclock gtod data update. |
5190 | */ | 5190 | */ |
5191 | static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, | 5191 | static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, |
5192 | void *priv) | 5192 | void *priv) |
5193 | { | 5193 | { |
5194 | struct pvclock_gtod_data *gtod = &pvclock_gtod_data; | 5194 | struct pvclock_gtod_data *gtod = &pvclock_gtod_data; |
5195 | struct timekeeper *tk = priv; | 5195 | struct timekeeper *tk = priv; |
5196 | 5196 | ||
5197 | update_pvclock_gtod(tk); | 5197 | update_pvclock_gtod(tk); |
5198 | 5198 | ||
5199 | /* disable master clock if host does not trust, or does not | 5199 | /* disable master clock if host does not trust, or does not |
5200 | * use, TSC clocksource | 5200 | * use, TSC clocksource |
5201 | */ | 5201 | */ |
5202 | if (gtod->clock.vclock_mode != VCLOCK_TSC && | 5202 | if (gtod->clock.vclock_mode != VCLOCK_TSC && |
5203 | atomic_read(&kvm_guest_has_master_clock) != 0) | 5203 | atomic_read(&kvm_guest_has_master_clock) != 0) |
5204 | queue_work(system_long_wq, &pvclock_gtod_work); | 5204 | queue_work(system_long_wq, &pvclock_gtod_work); |
5205 | 5205 | ||
5206 | return 0; | 5206 | return 0; |
5207 | } | 5207 | } |
5208 | 5208 | ||
5209 | static struct notifier_block pvclock_gtod_notifier = { | 5209 | static struct notifier_block pvclock_gtod_notifier = { |
5210 | .notifier_call = pvclock_gtod_notify, | 5210 | .notifier_call = pvclock_gtod_notify, |
5211 | }; | 5211 | }; |
5212 | #endif | 5212 | #endif |
5213 | 5213 | ||
5214 | int kvm_arch_init(void *opaque) | 5214 | int kvm_arch_init(void *opaque) |
5215 | { | 5215 | { |
5216 | int r; | 5216 | int r; |
5217 | struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque; | 5217 | struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque; |
5218 | 5218 | ||
5219 | if (kvm_x86_ops) { | 5219 | if (kvm_x86_ops) { |
5220 | printk(KERN_ERR "kvm: already loaded the other module\n"); | 5220 | printk(KERN_ERR "kvm: already loaded the other module\n"); |
5221 | r = -EEXIST; | 5221 | r = -EEXIST; |
5222 | goto out; | 5222 | goto out; |
5223 | } | 5223 | } |
5224 | 5224 | ||
5225 | if (!ops->cpu_has_kvm_support()) { | 5225 | if (!ops->cpu_has_kvm_support()) { |
5226 | printk(KERN_ERR "kvm: no hardware support\n"); | 5226 | printk(KERN_ERR "kvm: no hardware support\n"); |
5227 | r = -EOPNOTSUPP; | 5227 | r = -EOPNOTSUPP; |
5228 | goto out; | 5228 | goto out; |
5229 | } | 5229 | } |
5230 | if (ops->disabled_by_bios()) { | 5230 | if (ops->disabled_by_bios()) { |
5231 | printk(KERN_ERR "kvm: disabled by bios\n"); | 5231 | printk(KERN_ERR "kvm: disabled by bios\n"); |
5232 | r = -EOPNOTSUPP; | 5232 | r = -EOPNOTSUPP; |
5233 | goto out; | 5233 | goto out; |
5234 | } | 5234 | } |
5235 | 5235 | ||
5236 | r = kvm_mmu_module_init(); | 5236 | r = kvm_mmu_module_init(); |
5237 | if (r) | 5237 | if (r) |
5238 | goto out; | 5238 | goto out; |
5239 | 5239 | ||
5240 | kvm_set_mmio_spte_mask(); | 5240 | kvm_set_mmio_spte_mask(); |
5241 | kvm_init_msr_list(); | 5241 | kvm_init_msr_list(); |
5242 | 5242 | ||
5243 | kvm_x86_ops = ops; | 5243 | kvm_x86_ops = ops; |
5244 | kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, | 5244 | kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, |
5245 | PT_DIRTY_MASK, PT64_NX_MASK, 0); | 5245 | PT_DIRTY_MASK, PT64_NX_MASK, 0); |
5246 | 5246 | ||
5247 | kvm_timer_init(); | 5247 | kvm_timer_init(); |
5248 | 5248 | ||
5249 | perf_register_guest_info_callbacks(&kvm_guest_cbs); | 5249 | perf_register_guest_info_callbacks(&kvm_guest_cbs); |
5250 | 5250 | ||
5251 | if (cpu_has_xsave) | 5251 | if (cpu_has_xsave) |
5252 | host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); | 5252 | host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); |
5253 | 5253 | ||
5254 | kvm_lapic_init(); | 5254 | kvm_lapic_init(); |
5255 | #ifdef CONFIG_X86_64 | 5255 | #ifdef CONFIG_X86_64 |
5256 | pvclock_gtod_register_notifier(&pvclock_gtod_notifier); | 5256 | pvclock_gtod_register_notifier(&pvclock_gtod_notifier); |
5257 | #endif | 5257 | #endif |
5258 | 5258 | ||
5259 | return 0; | 5259 | return 0; |
5260 | 5260 | ||
5261 | out: | 5261 | out: |
5262 | return r; | 5262 | return r; |
5263 | } | 5263 | } |
5264 | 5264 | ||
5265 | void kvm_arch_exit(void) | 5265 | void kvm_arch_exit(void) |
5266 | { | 5266 | { |
5267 | perf_unregister_guest_info_callbacks(&kvm_guest_cbs); | 5267 | perf_unregister_guest_info_callbacks(&kvm_guest_cbs); |
5268 | 5268 | ||
5269 | if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) | 5269 | if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) |
5270 | cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, | 5270 | cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, |
5271 | CPUFREQ_TRANSITION_NOTIFIER); | 5271 | CPUFREQ_TRANSITION_NOTIFIER); |
5272 | unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block); | 5272 | unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block); |
5273 | #ifdef CONFIG_X86_64 | 5273 | #ifdef CONFIG_X86_64 |
5274 | pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); | 5274 | pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); |
5275 | #endif | 5275 | #endif |
5276 | kvm_x86_ops = NULL; | 5276 | kvm_x86_ops = NULL; |
5277 | kvm_mmu_module_exit(); | 5277 | kvm_mmu_module_exit(); |
5278 | } | 5278 | } |
5279 | 5279 | ||
5280 | int kvm_emulate_halt(struct kvm_vcpu *vcpu) | 5280 | int kvm_emulate_halt(struct kvm_vcpu *vcpu) |
5281 | { | 5281 | { |
5282 | ++vcpu->stat.halt_exits; | 5282 | ++vcpu->stat.halt_exits; |
5283 | if (irqchip_in_kernel(vcpu->kvm)) { | 5283 | if (irqchip_in_kernel(vcpu->kvm)) { |
5284 | vcpu->arch.mp_state = KVM_MP_STATE_HALTED; | 5284 | vcpu->arch.mp_state = KVM_MP_STATE_HALTED; |
5285 | return 1; | 5285 | return 1; |
5286 | } else { | 5286 | } else { |
5287 | vcpu->run->exit_reason = KVM_EXIT_HLT; | 5287 | vcpu->run->exit_reason = KVM_EXIT_HLT; |
5288 | return 0; | 5288 | return 0; |
5289 | } | 5289 | } |
5290 | } | 5290 | } |
5291 | EXPORT_SYMBOL_GPL(kvm_emulate_halt); | 5291 | EXPORT_SYMBOL_GPL(kvm_emulate_halt); |
5292 | 5292 | ||
5293 | int kvm_hv_hypercall(struct kvm_vcpu *vcpu) | 5293 | int kvm_hv_hypercall(struct kvm_vcpu *vcpu) |
5294 | { | 5294 | { |
5295 | u64 param, ingpa, outgpa, ret; | 5295 | u64 param, ingpa, outgpa, ret; |
5296 | uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0; | 5296 | uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0; |
5297 | bool fast, longmode; | 5297 | bool fast, longmode; |
5298 | int cs_db, cs_l; | 5298 | int cs_db, cs_l; |
5299 | 5299 | ||
5300 | /* | 5300 | /* |
5301 | * hypercall generates UD from non zero cpl and real mode | 5301 | * hypercall generates UD from non zero cpl and real mode |
5302 | * per HYPER-V spec | 5302 | * per HYPER-V spec |
5303 | */ | 5303 | */ |
5304 | if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) { | 5304 | if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) { |
5305 | kvm_queue_exception(vcpu, UD_VECTOR); | 5305 | kvm_queue_exception(vcpu, UD_VECTOR); |
5306 | return 0; | 5306 | return 0; |
5307 | } | 5307 | } |
5308 | 5308 | ||
5309 | kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); | 5309 | kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); |
5310 | longmode = is_long_mode(vcpu) && cs_l == 1; | 5310 | longmode = is_long_mode(vcpu) && cs_l == 1; |
5311 | 5311 | ||
5312 | if (!longmode) { | 5312 | if (!longmode) { |
5313 | param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) | | 5313 | param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) | |
5314 | (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff); | 5314 | (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff); |
5315 | ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) | | 5315 | ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) | |
5316 | (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff); | 5316 | (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff); |
5317 | outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) | | 5317 | outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) | |
5318 | (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff); | 5318 | (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff); |
5319 | } | 5319 | } |
5320 | #ifdef CONFIG_X86_64 | 5320 | #ifdef CONFIG_X86_64 |
5321 | else { | 5321 | else { |
5322 | param = kvm_register_read(vcpu, VCPU_REGS_RCX); | 5322 | param = kvm_register_read(vcpu, VCPU_REGS_RCX); |
5323 | ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX); | 5323 | ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX); |
5324 | outgpa = kvm_register_read(vcpu, VCPU_REGS_R8); | 5324 | outgpa = kvm_register_read(vcpu, VCPU_REGS_R8); |
5325 | } | 5325 | } |
5326 | #endif | 5326 | #endif |
5327 | 5327 | ||
5328 | code = param & 0xffff; | 5328 | code = param & 0xffff; |
5329 | fast = (param >> 16) & 0x1; | 5329 | fast = (param >> 16) & 0x1; |
5330 | rep_cnt = (param >> 32) & 0xfff; | 5330 | rep_cnt = (param >> 32) & 0xfff; |
5331 | rep_idx = (param >> 48) & 0xfff; | 5331 | rep_idx = (param >> 48) & 0xfff; |
5332 | 5332 | ||
5333 | trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa); | 5333 | trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa); |
5334 | 5334 | ||
5335 | switch (code) { | 5335 | switch (code) { |
5336 | case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT: | 5336 | case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT: |
5337 | kvm_vcpu_on_spin(vcpu); | 5337 | kvm_vcpu_on_spin(vcpu); |
5338 | break; | 5338 | break; |
5339 | default: | 5339 | default: |
5340 | res = HV_STATUS_INVALID_HYPERCALL_CODE; | 5340 | res = HV_STATUS_INVALID_HYPERCALL_CODE; |
5341 | break; | 5341 | break; |
5342 | } | 5342 | } |
5343 | 5343 | ||
5344 | ret = res | (((u64)rep_done & 0xfff) << 32); | 5344 | ret = res | (((u64)rep_done & 0xfff) << 32); |
5345 | if (longmode) { | 5345 | if (longmode) { |
5346 | kvm_register_write(vcpu, VCPU_REGS_RAX, ret); | 5346 | kvm_register_write(vcpu, VCPU_REGS_RAX, ret); |
5347 | } else { | 5347 | } else { |
5348 | kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32); | 5348 | kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32); |
5349 | kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff); | 5349 | kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff); |
5350 | } | 5350 | } |
5351 | 5351 | ||
5352 | return 1; | 5352 | return 1; |
5353 | } | 5353 | } |
5354 | 5354 | ||
5355 | int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) | 5355 | int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) |
5356 | { | 5356 | { |
5357 | unsigned long nr, a0, a1, a2, a3, ret; | 5357 | unsigned long nr, a0, a1, a2, a3, ret; |
5358 | int r = 1; | 5358 | int r = 1; |
5359 | 5359 | ||
5360 | if (kvm_hv_hypercall_enabled(vcpu->kvm)) | 5360 | if (kvm_hv_hypercall_enabled(vcpu->kvm)) |
5361 | return kvm_hv_hypercall(vcpu); | 5361 | return kvm_hv_hypercall(vcpu); |
5362 | 5362 | ||
5363 | nr = kvm_register_read(vcpu, VCPU_REGS_RAX); | 5363 | nr = kvm_register_read(vcpu, VCPU_REGS_RAX); |
5364 | a0 = kvm_register_read(vcpu, VCPU_REGS_RBX); | 5364 | a0 = kvm_register_read(vcpu, VCPU_REGS_RBX); |
5365 | a1 = kvm_register_read(vcpu, VCPU_REGS_RCX); | 5365 | a1 = kvm_register_read(vcpu, VCPU_REGS_RCX); |
5366 | a2 = kvm_register_read(vcpu, VCPU_REGS_RDX); | 5366 | a2 = kvm_register_read(vcpu, VCPU_REGS_RDX); |
5367 | a3 = kvm_register_read(vcpu, VCPU_REGS_RSI); | 5367 | a3 = kvm_register_read(vcpu, VCPU_REGS_RSI); |
5368 | 5368 | ||
5369 | trace_kvm_hypercall(nr, a0, a1, a2, a3); | 5369 | trace_kvm_hypercall(nr, a0, a1, a2, a3); |
5370 | 5370 | ||
5371 | if (!is_long_mode(vcpu)) { | 5371 | if (!is_long_mode(vcpu)) { |
5372 | nr &= 0xFFFFFFFF; | 5372 | nr &= 0xFFFFFFFF; |
5373 | a0 &= 0xFFFFFFFF; | 5373 | a0 &= 0xFFFFFFFF; |
5374 | a1 &= 0xFFFFFFFF; | 5374 | a1 &= 0xFFFFFFFF; |
5375 | a2 &= 0xFFFFFFFF; | 5375 | a2 &= 0xFFFFFFFF; |
5376 | a3 &= 0xFFFFFFFF; | 5376 | a3 &= 0xFFFFFFFF; |
5377 | } | 5377 | } |
5378 | 5378 | ||
5379 | if (kvm_x86_ops->get_cpl(vcpu) != 0) { | 5379 | if (kvm_x86_ops->get_cpl(vcpu) != 0) { |
5380 | ret = -KVM_EPERM; | 5380 | ret = -KVM_EPERM; |
5381 | goto out; | 5381 | goto out; |
5382 | } | 5382 | } |
5383 | 5383 | ||
5384 | switch (nr) { | 5384 | switch (nr) { |
5385 | case KVM_HC_VAPIC_POLL_IRQ: | 5385 | case KVM_HC_VAPIC_POLL_IRQ: |
5386 | ret = 0; | 5386 | ret = 0; |
5387 | break; | 5387 | break; |
5388 | default: | 5388 | default: |
5389 | ret = -KVM_ENOSYS; | 5389 | ret = -KVM_ENOSYS; |
5390 | break; | 5390 | break; |
5391 | } | 5391 | } |
5392 | out: | 5392 | out: |
5393 | kvm_register_write(vcpu, VCPU_REGS_RAX, ret); | 5393 | kvm_register_write(vcpu, VCPU_REGS_RAX, ret); |
5394 | ++vcpu->stat.hypercalls; | 5394 | ++vcpu->stat.hypercalls; |
5395 | return r; | 5395 | return r; |
5396 | } | 5396 | } |
5397 | EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); | 5397 | EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); |
5398 | 5398 | ||
5399 | static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) | 5399 | static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) |
5400 | { | 5400 | { |
5401 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | 5401 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
5402 | char instruction[3]; | 5402 | char instruction[3]; |
5403 | unsigned long rip = kvm_rip_read(vcpu); | 5403 | unsigned long rip = kvm_rip_read(vcpu); |
5404 | 5404 | ||
5405 | /* | 5405 | /* |
5406 | * Blow out the MMU to ensure that no other VCPU has an active mapping | 5406 | * Blow out the MMU to ensure that no other VCPU has an active mapping |
5407 | * to ensure that the updated hypercall appears atomically across all | 5407 | * to ensure that the updated hypercall appears atomically across all |
5408 | * VCPUs. | 5408 | * VCPUs. |
5409 | */ | 5409 | */ |
5410 | kvm_mmu_zap_all(vcpu->kvm); | 5410 | kvm_mmu_zap_all(vcpu->kvm); |
5411 | 5411 | ||
5412 | kvm_x86_ops->patch_hypercall(vcpu, instruction); | 5412 | kvm_x86_ops->patch_hypercall(vcpu, instruction); |
5413 | 5413 | ||
5414 | return emulator_write_emulated(ctxt, rip, instruction, 3, NULL); | 5414 | return emulator_write_emulated(ctxt, rip, instruction, 3, NULL); |
5415 | } | 5415 | } |
5416 | 5416 | ||
5417 | /* | 5417 | /* |
5418 | * Check if userspace requested an interrupt window, and that the | 5418 | * Check if userspace requested an interrupt window, and that the |
5419 | * interrupt window is open. | 5419 | * interrupt window is open. |
5420 | * | 5420 | * |
5421 | * No need to exit to userspace if we already have an interrupt queued. | 5421 | * No need to exit to userspace if we already have an interrupt queued. |
5422 | */ | 5422 | */ |
5423 | static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) | 5423 | static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) |
5424 | { | 5424 | { |
5425 | return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) && | 5425 | return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) && |
5426 | vcpu->run->request_interrupt_window && | 5426 | vcpu->run->request_interrupt_window && |
5427 | kvm_arch_interrupt_allowed(vcpu)); | 5427 | kvm_arch_interrupt_allowed(vcpu)); |
5428 | } | 5428 | } |
5429 | 5429 | ||
5430 | static void post_kvm_run_save(struct kvm_vcpu *vcpu) | 5430 | static void post_kvm_run_save(struct kvm_vcpu *vcpu) |
5431 | { | 5431 | { |
5432 | struct kvm_run *kvm_run = vcpu->run; | 5432 | struct kvm_run *kvm_run = vcpu->run; |
5433 | 5433 | ||
5434 | kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; | 5434 | kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; |
5435 | kvm_run->cr8 = kvm_get_cr8(vcpu); | 5435 | kvm_run->cr8 = kvm_get_cr8(vcpu); |
5436 | kvm_run->apic_base = kvm_get_apic_base(vcpu); | 5436 | kvm_run->apic_base = kvm_get_apic_base(vcpu); |
5437 | if (irqchip_in_kernel(vcpu->kvm)) | 5437 | if (irqchip_in_kernel(vcpu->kvm)) |
5438 | kvm_run->ready_for_interrupt_injection = 1; | 5438 | kvm_run->ready_for_interrupt_injection = 1; |
5439 | else | 5439 | else |
5440 | kvm_run->ready_for_interrupt_injection = | 5440 | kvm_run->ready_for_interrupt_injection = |
5441 | kvm_arch_interrupt_allowed(vcpu) && | 5441 | kvm_arch_interrupt_allowed(vcpu) && |
5442 | !kvm_cpu_has_interrupt(vcpu) && | 5442 | !kvm_cpu_has_interrupt(vcpu) && |
5443 | !kvm_event_needs_reinjection(vcpu); | 5443 | !kvm_event_needs_reinjection(vcpu); |
5444 | } | 5444 | } |
5445 | 5445 | ||
5446 | static int vapic_enter(struct kvm_vcpu *vcpu) | 5446 | static int vapic_enter(struct kvm_vcpu *vcpu) |
5447 | { | 5447 | { |
5448 | struct kvm_lapic *apic = vcpu->arch.apic; | 5448 | struct kvm_lapic *apic = vcpu->arch.apic; |
5449 | struct page *page; | 5449 | struct page *page; |
5450 | 5450 | ||
5451 | if (!apic || !apic->vapic_addr) | 5451 | if (!apic || !apic->vapic_addr) |
5452 | return 0; | 5452 | return 0; |
5453 | 5453 | ||
5454 | page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); | 5454 | page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); |
5455 | if (is_error_page(page)) | 5455 | if (is_error_page(page)) |
5456 | return -EFAULT; | 5456 | return -EFAULT; |
5457 | 5457 | ||
5458 | vcpu->arch.apic->vapic_page = page; | 5458 | vcpu->arch.apic->vapic_page = page; |
5459 | return 0; | 5459 | return 0; |
5460 | } | 5460 | } |
5461 | 5461 | ||
5462 | static void vapic_exit(struct kvm_vcpu *vcpu) | 5462 | static void vapic_exit(struct kvm_vcpu *vcpu) |
5463 | { | 5463 | { |
5464 | struct kvm_lapic *apic = vcpu->arch.apic; | 5464 | struct kvm_lapic *apic = vcpu->arch.apic; |
5465 | int idx; | 5465 | int idx; |
5466 | 5466 | ||
5467 | if (!apic || !apic->vapic_addr) | 5467 | if (!apic || !apic->vapic_addr) |
5468 | return; | 5468 | return; |
5469 | 5469 | ||
5470 | idx = srcu_read_lock(&vcpu->kvm->srcu); | 5470 | idx = srcu_read_lock(&vcpu->kvm->srcu); |
5471 | kvm_release_page_dirty(apic->vapic_page); | 5471 | kvm_release_page_dirty(apic->vapic_page); |
5472 | mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); | 5472 | mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); |
5473 | srcu_read_unlock(&vcpu->kvm->srcu, idx); | 5473 | srcu_read_unlock(&vcpu->kvm->srcu, idx); |
5474 | } | 5474 | } |
5475 | 5475 | ||
5476 | static void update_cr8_intercept(struct kvm_vcpu *vcpu) | 5476 | static void update_cr8_intercept(struct kvm_vcpu *vcpu) |
5477 | { | 5477 | { |
5478 | int max_irr, tpr; | 5478 | int max_irr, tpr; |
5479 | 5479 | ||
5480 | if (!kvm_x86_ops->update_cr8_intercept) | 5480 | if (!kvm_x86_ops->update_cr8_intercept) |
5481 | return; | 5481 | return; |
5482 | 5482 | ||
5483 | if (!vcpu->arch.apic) | 5483 | if (!vcpu->arch.apic) |
5484 | return; | 5484 | return; |
5485 | 5485 | ||
5486 | if (!vcpu->arch.apic->vapic_addr) | 5486 | if (!vcpu->arch.apic->vapic_addr) |
5487 | max_irr = kvm_lapic_find_highest_irr(vcpu); | 5487 | max_irr = kvm_lapic_find_highest_irr(vcpu); |
5488 | else | 5488 | else |
5489 | max_irr = -1; | 5489 | max_irr = -1; |
5490 | 5490 | ||
5491 | if (max_irr != -1) | 5491 | if (max_irr != -1) |
5492 | max_irr >>= 4; | 5492 | max_irr >>= 4; |
5493 | 5493 | ||
5494 | tpr = kvm_lapic_get_cr8(vcpu); | 5494 | tpr = kvm_lapic_get_cr8(vcpu); |
5495 | 5495 | ||
5496 | kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr); | 5496 | kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr); |
5497 | } | 5497 | } |
5498 | 5498 | ||
5499 | static void inject_pending_event(struct kvm_vcpu *vcpu) | 5499 | static void inject_pending_event(struct kvm_vcpu *vcpu) |
5500 | { | 5500 | { |
5501 | /* try to reinject previous events if any */ | 5501 | /* try to reinject previous events if any */ |
5502 | if (vcpu->arch.exception.pending) { | 5502 | if (vcpu->arch.exception.pending) { |
5503 | trace_kvm_inj_exception(vcpu->arch.exception.nr, | 5503 | trace_kvm_inj_exception(vcpu->arch.exception.nr, |
5504 | vcpu->arch.exception.has_error_code, | 5504 | vcpu->arch.exception.has_error_code, |
5505 | vcpu->arch.exception.error_code); | 5505 | vcpu->arch.exception.error_code); |
5506 | kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr, | 5506 | kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr, |
5507 | vcpu->arch.exception.has_error_code, | 5507 | vcpu->arch.exception.has_error_code, |
5508 | vcpu->arch.exception.error_code, | 5508 | vcpu->arch.exception.error_code, |
5509 | vcpu->arch.exception.reinject); | 5509 | vcpu->arch.exception.reinject); |
5510 | return; | 5510 | return; |
5511 | } | 5511 | } |
5512 | 5512 | ||
5513 | if (vcpu->arch.nmi_injected) { | 5513 | if (vcpu->arch.nmi_injected) { |
5514 | kvm_x86_ops->set_nmi(vcpu); | 5514 | kvm_x86_ops->set_nmi(vcpu); |
5515 | return; | 5515 | return; |
5516 | } | 5516 | } |
5517 | 5517 | ||
5518 | if (vcpu->arch.interrupt.pending) { | 5518 | if (vcpu->arch.interrupt.pending) { |
5519 | kvm_x86_ops->set_irq(vcpu); | 5519 | kvm_x86_ops->set_irq(vcpu); |
5520 | return; | 5520 | return; |
5521 | } | 5521 | } |
5522 | 5522 | ||
5523 | /* try to inject new event if pending */ | 5523 | /* try to inject new event if pending */ |
5524 | if (vcpu->arch.nmi_pending) { | 5524 | if (vcpu->arch.nmi_pending) { |
5525 | if (kvm_x86_ops->nmi_allowed(vcpu)) { | 5525 | if (kvm_x86_ops->nmi_allowed(vcpu)) { |
5526 | --vcpu->arch.nmi_pending; | 5526 | --vcpu->arch.nmi_pending; |
5527 | vcpu->arch.nmi_injected = true; | 5527 | vcpu->arch.nmi_injected = true; |
5528 | kvm_x86_ops->set_nmi(vcpu); | 5528 | kvm_x86_ops->set_nmi(vcpu); |
5529 | } | 5529 | } |
5530 | } else if (kvm_cpu_has_interrupt(vcpu)) { | 5530 | } else if (kvm_cpu_has_interrupt(vcpu)) { |
5531 | if (kvm_x86_ops->interrupt_allowed(vcpu)) { | 5531 | if (kvm_x86_ops->interrupt_allowed(vcpu)) { |
5532 | kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), | 5532 | kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), |
5533 | false); | 5533 | false); |
5534 | kvm_x86_ops->set_irq(vcpu); | 5534 | kvm_x86_ops->set_irq(vcpu); |
5535 | } | 5535 | } |
5536 | } | 5536 | } |
5537 | } | 5537 | } |
5538 | 5538 | ||
5539 | static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu) | 5539 | static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu) |
5540 | { | 5540 | { |
5541 | if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) && | 5541 | if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) && |
5542 | !vcpu->guest_xcr0_loaded) { | 5542 | !vcpu->guest_xcr0_loaded) { |
5543 | /* kvm_set_xcr() also depends on this */ | 5543 | /* kvm_set_xcr() also depends on this */ |
5544 | xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); | 5544 | xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); |
5545 | vcpu->guest_xcr0_loaded = 1; | 5545 | vcpu->guest_xcr0_loaded = 1; |
5546 | } | 5546 | } |
5547 | } | 5547 | } |
5548 | 5548 | ||
5549 | static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu) | 5549 | static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu) |
5550 | { | 5550 | { |
5551 | if (vcpu->guest_xcr0_loaded) { | 5551 | if (vcpu->guest_xcr0_loaded) { |
5552 | if (vcpu->arch.xcr0 != host_xcr0) | 5552 | if (vcpu->arch.xcr0 != host_xcr0) |
5553 | xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); | 5553 | xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); |
5554 | vcpu->guest_xcr0_loaded = 0; | 5554 | vcpu->guest_xcr0_loaded = 0; |
5555 | } | 5555 | } |
5556 | } | 5556 | } |
5557 | 5557 | ||
5558 | static void process_nmi(struct kvm_vcpu *vcpu) | 5558 | static void process_nmi(struct kvm_vcpu *vcpu) |
5559 | { | 5559 | { |
5560 | unsigned limit = 2; | 5560 | unsigned limit = 2; |
5561 | 5561 | ||
5562 | /* | 5562 | /* |
5563 | * x86 is limited to one NMI running, and one NMI pending after it. | 5563 | * x86 is limited to one NMI running, and one NMI pending after it. |
5564 | * If an NMI is already in progress, limit further NMIs to just one. | 5564 | * If an NMI is already in progress, limit further NMIs to just one. |
5565 | * Otherwise, allow two (and we'll inject the first one immediately). | 5565 | * Otherwise, allow two (and we'll inject the first one immediately). |
5566 | */ | 5566 | */ |
5567 | if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) | 5567 | if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) |
5568 | limit = 1; | 5568 | limit = 1; |
5569 | 5569 | ||
5570 | vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); | 5570 | vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); |
5571 | vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); | 5571 | vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); |
5572 | kvm_make_request(KVM_REQ_EVENT, vcpu); | 5572 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
5573 | } | 5573 | } |
5574 | 5574 | ||
5575 | static void kvm_gen_update_masterclock(struct kvm *kvm) | 5575 | static void kvm_gen_update_masterclock(struct kvm *kvm) |
5576 | { | 5576 | { |
5577 | #ifdef CONFIG_X86_64 | 5577 | #ifdef CONFIG_X86_64 |
5578 | int i; | 5578 | int i; |
5579 | struct kvm_vcpu *vcpu; | 5579 | struct kvm_vcpu *vcpu; |
5580 | struct kvm_arch *ka = &kvm->arch; | 5580 | struct kvm_arch *ka = &kvm->arch; |
5581 | 5581 | ||
5582 | spin_lock(&ka->pvclock_gtod_sync_lock); | 5582 | spin_lock(&ka->pvclock_gtod_sync_lock); |
5583 | kvm_make_mclock_inprogress_request(kvm); | 5583 | kvm_make_mclock_inprogress_request(kvm); |
5584 | /* no guest entries from this point */ | 5584 | /* no guest entries from this point */ |
5585 | pvclock_update_vm_gtod_copy(kvm); | 5585 | pvclock_update_vm_gtod_copy(kvm); |
5586 | 5586 | ||
5587 | kvm_for_each_vcpu(i, vcpu, kvm) | 5587 | kvm_for_each_vcpu(i, vcpu, kvm) |
5588 | set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); | 5588 | set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); |
5589 | 5589 | ||
5590 | /* guest entries allowed */ | 5590 | /* guest entries allowed */ |
5591 | kvm_for_each_vcpu(i, vcpu, kvm) | 5591 | kvm_for_each_vcpu(i, vcpu, kvm) |
5592 | clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests); | 5592 | clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests); |
5593 | 5593 | ||
5594 | spin_unlock(&ka->pvclock_gtod_sync_lock); | 5594 | spin_unlock(&ka->pvclock_gtod_sync_lock); |
5595 | #endif | 5595 | #endif |
5596 | } | 5596 | } |
5597 | 5597 | ||
5598 | static int vcpu_enter_guest(struct kvm_vcpu *vcpu) | 5598 | static int vcpu_enter_guest(struct kvm_vcpu *vcpu) |
5599 | { | 5599 | { |
5600 | int r; | 5600 | int r; |
5601 | bool req_int_win = !irqchip_in_kernel(vcpu->kvm) && | 5601 | bool req_int_win = !irqchip_in_kernel(vcpu->kvm) && |
5602 | vcpu->run->request_interrupt_window; | 5602 | vcpu->run->request_interrupt_window; |
5603 | bool req_immediate_exit = 0; | 5603 | bool req_immediate_exit = 0; |
5604 | 5604 | ||
5605 | if (vcpu->requests) { | 5605 | if (vcpu->requests) { |
5606 | if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) | 5606 | if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) |
5607 | kvm_mmu_unload(vcpu); | 5607 | kvm_mmu_unload(vcpu); |
5608 | if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) | 5608 | if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) |
5609 | __kvm_migrate_timers(vcpu); | 5609 | __kvm_migrate_timers(vcpu); |
5610 | if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) | 5610 | if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) |
5611 | kvm_gen_update_masterclock(vcpu->kvm); | 5611 | kvm_gen_update_masterclock(vcpu->kvm); |
5612 | if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { | 5612 | if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { |
5613 | r = kvm_guest_time_update(vcpu); | 5613 | r = kvm_guest_time_update(vcpu); |
5614 | if (unlikely(r)) | 5614 | if (unlikely(r)) |
5615 | goto out; | 5615 | goto out; |
5616 | } | 5616 | } |
5617 | if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) | 5617 | if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) |
5618 | kvm_mmu_sync_roots(vcpu); | 5618 | kvm_mmu_sync_roots(vcpu); |
5619 | if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) | 5619 | if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) |
5620 | kvm_x86_ops->tlb_flush(vcpu); | 5620 | kvm_x86_ops->tlb_flush(vcpu); |
5621 | if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { | 5621 | if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { |
5622 | vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; | 5622 | vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; |
5623 | r = 0; | 5623 | r = 0; |
5624 | goto out; | 5624 | goto out; |
5625 | } | 5625 | } |
5626 | if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { | 5626 | if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { |
5627 | vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; | 5627 | vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; |
5628 | r = 0; | 5628 | r = 0; |
5629 | goto out; | 5629 | goto out; |
5630 | } | 5630 | } |
5631 | if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) { | 5631 | if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) { |
5632 | vcpu->fpu_active = 0; | 5632 | vcpu->fpu_active = 0; |
5633 | kvm_x86_ops->fpu_deactivate(vcpu); | 5633 | kvm_x86_ops->fpu_deactivate(vcpu); |
5634 | } | 5634 | } |
5635 | if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { | 5635 | if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { |
5636 | /* Page is swapped out. Do synthetic halt */ | 5636 | /* Page is swapped out. Do synthetic halt */ |
5637 | vcpu->arch.apf.halted = true; | 5637 | vcpu->arch.apf.halted = true; |
5638 | r = 1; | 5638 | r = 1; |
5639 | goto out; | 5639 | goto out; |
5640 | } | 5640 | } |
5641 | if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) | 5641 | if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) |
5642 | record_steal_time(vcpu); | 5642 | record_steal_time(vcpu); |
5643 | if (kvm_check_request(KVM_REQ_NMI, vcpu)) | 5643 | if (kvm_check_request(KVM_REQ_NMI, vcpu)) |
5644 | process_nmi(vcpu); | 5644 | process_nmi(vcpu); |
5645 | req_immediate_exit = | 5645 | req_immediate_exit = |
5646 | kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu); | 5646 | kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu); |
5647 | if (kvm_check_request(KVM_REQ_PMU, vcpu)) | 5647 | if (kvm_check_request(KVM_REQ_PMU, vcpu)) |
5648 | kvm_handle_pmu_event(vcpu); | 5648 | kvm_handle_pmu_event(vcpu); |
5649 | if (kvm_check_request(KVM_REQ_PMI, vcpu)) | 5649 | if (kvm_check_request(KVM_REQ_PMI, vcpu)) |
5650 | kvm_deliver_pmi(vcpu); | 5650 | kvm_deliver_pmi(vcpu); |
5651 | } | 5651 | } |
5652 | 5652 | ||
5653 | if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { | 5653 | if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { |
5654 | inject_pending_event(vcpu); | 5654 | inject_pending_event(vcpu); |
5655 | 5655 | ||
5656 | /* enable NMI/IRQ window open exits if needed */ | 5656 | /* enable NMI/IRQ window open exits if needed */ |
5657 | if (vcpu->arch.nmi_pending) | 5657 | if (vcpu->arch.nmi_pending) |
5658 | kvm_x86_ops->enable_nmi_window(vcpu); | 5658 | kvm_x86_ops->enable_nmi_window(vcpu); |
5659 | else if (kvm_cpu_has_interrupt(vcpu) || req_int_win) | 5659 | else if (kvm_cpu_has_interrupt(vcpu) || req_int_win) |
5660 | kvm_x86_ops->enable_irq_window(vcpu); | 5660 | kvm_x86_ops->enable_irq_window(vcpu); |
5661 | 5661 | ||
5662 | if (kvm_lapic_enabled(vcpu)) { | 5662 | if (kvm_lapic_enabled(vcpu)) { |
5663 | update_cr8_intercept(vcpu); | 5663 | update_cr8_intercept(vcpu); |
5664 | kvm_lapic_sync_to_vapic(vcpu); | 5664 | kvm_lapic_sync_to_vapic(vcpu); |
5665 | } | 5665 | } |
5666 | } | 5666 | } |
5667 | 5667 | ||
5668 | r = kvm_mmu_reload(vcpu); | 5668 | r = kvm_mmu_reload(vcpu); |
5669 | if (unlikely(r)) { | 5669 | if (unlikely(r)) { |
5670 | goto cancel_injection; | 5670 | goto cancel_injection; |
5671 | } | 5671 | } |
5672 | 5672 | ||
5673 | preempt_disable(); | 5673 | preempt_disable(); |
5674 | 5674 | ||
5675 | kvm_x86_ops->prepare_guest_switch(vcpu); | 5675 | kvm_x86_ops->prepare_guest_switch(vcpu); |
5676 | if (vcpu->fpu_active) | 5676 | if (vcpu->fpu_active) |
5677 | kvm_load_guest_fpu(vcpu); | 5677 | kvm_load_guest_fpu(vcpu); |
5678 | kvm_load_guest_xcr0(vcpu); | 5678 | kvm_load_guest_xcr0(vcpu); |
5679 | 5679 | ||
5680 | vcpu->mode = IN_GUEST_MODE; | 5680 | vcpu->mode = IN_GUEST_MODE; |
5681 | 5681 | ||
5682 | /* We should set ->mode before check ->requests, | 5682 | /* We should set ->mode before check ->requests, |
5683 | * see the comment in make_all_cpus_request. | 5683 | * see the comment in make_all_cpus_request. |
5684 | */ | 5684 | */ |
5685 | smp_mb(); | 5685 | smp_mb(); |
5686 | 5686 | ||
5687 | local_irq_disable(); | 5687 | local_irq_disable(); |
5688 | 5688 | ||
5689 | if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests | 5689 | if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests |
5690 | || need_resched() || signal_pending(current)) { | 5690 | || need_resched() || signal_pending(current)) { |
5691 | vcpu->mode = OUTSIDE_GUEST_MODE; | 5691 | vcpu->mode = OUTSIDE_GUEST_MODE; |
5692 | smp_wmb(); | 5692 | smp_wmb(); |
5693 | local_irq_enable(); | 5693 | local_irq_enable(); |
5694 | preempt_enable(); | 5694 | preempt_enable(); |
5695 | r = 1; | 5695 | r = 1; |
5696 | goto cancel_injection; | 5696 | goto cancel_injection; |
5697 | } | 5697 | } |
5698 | 5698 | ||
5699 | srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); | 5699 | srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); |
5700 | 5700 | ||
5701 | if (req_immediate_exit) | 5701 | if (req_immediate_exit) |
5702 | smp_send_reschedule(vcpu->cpu); | 5702 | smp_send_reschedule(vcpu->cpu); |
5703 | 5703 | ||
5704 | kvm_guest_enter(); | 5704 | kvm_guest_enter(); |
5705 | 5705 | ||
5706 | if (unlikely(vcpu->arch.switch_db_regs)) { | 5706 | if (unlikely(vcpu->arch.switch_db_regs)) { |
5707 | set_debugreg(0, 7); | 5707 | set_debugreg(0, 7); |
5708 | set_debugreg(vcpu->arch.eff_db[0], 0); | 5708 | set_debugreg(vcpu->arch.eff_db[0], 0); |
5709 | set_debugreg(vcpu->arch.eff_db[1], 1); | 5709 | set_debugreg(vcpu->arch.eff_db[1], 1); |
5710 | set_debugreg(vcpu->arch.eff_db[2], 2); | 5710 | set_debugreg(vcpu->arch.eff_db[2], 2); |
5711 | set_debugreg(vcpu->arch.eff_db[3], 3); | 5711 | set_debugreg(vcpu->arch.eff_db[3], 3); |
5712 | } | 5712 | } |
5713 | 5713 | ||
5714 | trace_kvm_entry(vcpu->vcpu_id); | 5714 | trace_kvm_entry(vcpu->vcpu_id); |
5715 | kvm_x86_ops->run(vcpu); | 5715 | kvm_x86_ops->run(vcpu); |
5716 | 5716 | ||
5717 | /* | 5717 | /* |
5718 | * If the guest has used debug registers, at least dr7 | 5718 | * If the guest has used debug registers, at least dr7 |
5719 | * will be disabled while returning to the host. | 5719 | * will be disabled while returning to the host. |
5720 | * If we don't have active breakpoints in the host, we don't | 5720 | * If we don't have active breakpoints in the host, we don't |
5721 | * care about the messed up debug address registers. But if | 5721 | * care about the messed up debug address registers. But if |
5722 | * we have some of them active, restore the old state. | 5722 | * we have some of them active, restore the old state. |
5723 | */ | 5723 | */ |
5724 | if (hw_breakpoint_active()) | 5724 | if (hw_breakpoint_active()) |
5725 | hw_breakpoint_restore(); | 5725 | hw_breakpoint_restore(); |
5726 | 5726 | ||
5727 | vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu, | 5727 | vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu, |
5728 | native_read_tsc()); | 5728 | native_read_tsc()); |
5729 | 5729 | ||
5730 | vcpu->mode = OUTSIDE_GUEST_MODE; | 5730 | vcpu->mode = OUTSIDE_GUEST_MODE; |
5731 | smp_wmb(); | 5731 | smp_wmb(); |
5732 | local_irq_enable(); | 5732 | local_irq_enable(); |
5733 | 5733 | ||
5734 | ++vcpu->stat.exits; | 5734 | ++vcpu->stat.exits; |
5735 | 5735 | ||
5736 | /* | 5736 | /* |
5737 | * We must have an instruction between local_irq_enable() and | 5737 | * We must have an instruction between local_irq_enable() and |
5738 | * kvm_guest_exit(), so the timer interrupt isn't delayed by | 5738 | * kvm_guest_exit(), so the timer interrupt isn't delayed by |
5739 | * the interrupt shadow. The stat.exits increment will do nicely. | 5739 | * the interrupt shadow. The stat.exits increment will do nicely. |
5740 | * But we need to prevent reordering, hence this barrier(): | 5740 | * But we need to prevent reordering, hence this barrier(): |
5741 | */ | 5741 | */ |
5742 | barrier(); | 5742 | barrier(); |
5743 | 5743 | ||
5744 | kvm_guest_exit(); | 5744 | kvm_guest_exit(); |
5745 | 5745 | ||
5746 | preempt_enable(); | 5746 | preempt_enable(); |
5747 | 5747 | ||
5748 | vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); | 5748 | vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); |
5749 | 5749 | ||
5750 | /* | 5750 | /* |
5751 | * Profile KVM exit RIPs: | 5751 | * Profile KVM exit RIPs: |
5752 | */ | 5752 | */ |
5753 | if (unlikely(prof_on == KVM_PROFILING)) { | 5753 | if (unlikely(prof_on == KVM_PROFILING)) { |
5754 | unsigned long rip = kvm_rip_read(vcpu); | 5754 | unsigned long rip = kvm_rip_read(vcpu); |
5755 | profile_hit(KVM_PROFILING, (void *)rip); | 5755 | profile_hit(KVM_PROFILING, (void *)rip); |
5756 | } | 5756 | } |
5757 | 5757 | ||
5758 | if (unlikely(vcpu->arch.tsc_always_catchup)) | 5758 | if (unlikely(vcpu->arch.tsc_always_catchup)) |
5759 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); | 5759 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
5760 | 5760 | ||
5761 | if (vcpu->arch.apic_attention) | 5761 | if (vcpu->arch.apic_attention) |
5762 | kvm_lapic_sync_from_vapic(vcpu); | 5762 | kvm_lapic_sync_from_vapic(vcpu); |
5763 | 5763 | ||
5764 | r = kvm_x86_ops->handle_exit(vcpu); | 5764 | r = kvm_x86_ops->handle_exit(vcpu); |
5765 | return r; | 5765 | return r; |
5766 | 5766 | ||
5767 | cancel_injection: | 5767 | cancel_injection: |
5768 | kvm_x86_ops->cancel_injection(vcpu); | 5768 | kvm_x86_ops->cancel_injection(vcpu); |
5769 | if (unlikely(vcpu->arch.apic_attention)) | 5769 | if (unlikely(vcpu->arch.apic_attention)) |
5770 | kvm_lapic_sync_from_vapic(vcpu); | 5770 | kvm_lapic_sync_from_vapic(vcpu); |
5771 | out: | 5771 | out: |
5772 | return r; | 5772 | return r; |
5773 | } | 5773 | } |
5774 | 5774 | ||
5775 | 5775 | ||
5776 | static int __vcpu_run(struct kvm_vcpu *vcpu) | 5776 | static int __vcpu_run(struct kvm_vcpu *vcpu) |
5777 | { | 5777 | { |
5778 | int r; | 5778 | int r; |
5779 | struct kvm *kvm = vcpu->kvm; | 5779 | struct kvm *kvm = vcpu->kvm; |
5780 | 5780 | ||
5781 | if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) { | 5781 | if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) { |
5782 | pr_debug("vcpu %d received sipi with vector # %x\n", | 5782 | pr_debug("vcpu %d received sipi with vector # %x\n", |
5783 | vcpu->vcpu_id, vcpu->arch.sipi_vector); | 5783 | vcpu->vcpu_id, vcpu->arch.sipi_vector); |
5784 | kvm_lapic_reset(vcpu); | 5784 | kvm_lapic_reset(vcpu); |
5785 | r = kvm_vcpu_reset(vcpu); | 5785 | r = kvm_vcpu_reset(vcpu); |
5786 | if (r) | 5786 | if (r) |
5787 | return r; | 5787 | return r; |
5788 | vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; | 5788 | vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; |
5789 | } | 5789 | } |
5790 | 5790 | ||
5791 | vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); | 5791 | vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); |
5792 | r = vapic_enter(vcpu); | 5792 | r = vapic_enter(vcpu); |
5793 | if (r) { | 5793 | if (r) { |
5794 | srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); | 5794 | srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); |
5795 | return r; | 5795 | return r; |
5796 | } | 5796 | } |
5797 | 5797 | ||
5798 | r = 1; | 5798 | r = 1; |
5799 | while (r > 0) { | 5799 | while (r > 0) { |
5800 | if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && | 5800 | if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && |
5801 | !vcpu->arch.apf.halted) | 5801 | !vcpu->arch.apf.halted) |
5802 | r = vcpu_enter_guest(vcpu); | 5802 | r = vcpu_enter_guest(vcpu); |
5803 | else { | 5803 | else { |
5804 | srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); | 5804 | srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); |
5805 | kvm_vcpu_block(vcpu); | 5805 | kvm_vcpu_block(vcpu); |
5806 | vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); | 5806 | vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); |
5807 | if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) | 5807 | if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) |
5808 | { | 5808 | { |
5809 | switch(vcpu->arch.mp_state) { | 5809 | switch(vcpu->arch.mp_state) { |
5810 | case KVM_MP_STATE_HALTED: | 5810 | case KVM_MP_STATE_HALTED: |
5811 | vcpu->arch.mp_state = | 5811 | vcpu->arch.mp_state = |
5812 | KVM_MP_STATE_RUNNABLE; | 5812 | KVM_MP_STATE_RUNNABLE; |
5813 | case KVM_MP_STATE_RUNNABLE: | 5813 | case KVM_MP_STATE_RUNNABLE: |
5814 | vcpu->arch.apf.halted = false; | 5814 | vcpu->arch.apf.halted = false; |
5815 | break; | 5815 | break; |
5816 | case KVM_MP_STATE_SIPI_RECEIVED: | 5816 | case KVM_MP_STATE_SIPI_RECEIVED: |
5817 | default: | 5817 | default: |
5818 | r = -EINTR; | 5818 | r = -EINTR; |
5819 | break; | 5819 | break; |
5820 | } | 5820 | } |
5821 | } | 5821 | } |
5822 | } | 5822 | } |
5823 | 5823 | ||
5824 | if (r <= 0) | 5824 | if (r <= 0) |
5825 | break; | 5825 | break; |
5826 | 5826 | ||
5827 | clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests); | 5827 | clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests); |
5828 | if (kvm_cpu_has_pending_timer(vcpu)) | 5828 | if (kvm_cpu_has_pending_timer(vcpu)) |
5829 | kvm_inject_pending_timer_irqs(vcpu); | 5829 | kvm_inject_pending_timer_irqs(vcpu); |
5830 | 5830 | ||
5831 | if (dm_request_for_irq_injection(vcpu)) { | 5831 | if (dm_request_for_irq_injection(vcpu)) { |
5832 | r = -EINTR; | 5832 | r = -EINTR; |
5833 | vcpu->run->exit_reason = KVM_EXIT_INTR; | 5833 | vcpu->run->exit_reason = KVM_EXIT_INTR; |
5834 | ++vcpu->stat.request_irq_exits; | 5834 | ++vcpu->stat.request_irq_exits; |
5835 | } | 5835 | } |
5836 | 5836 | ||
5837 | kvm_check_async_pf_completion(vcpu); | 5837 | kvm_check_async_pf_completion(vcpu); |
5838 | 5838 | ||
5839 | if (signal_pending(current)) { | 5839 | if (signal_pending(current)) { |
5840 | r = -EINTR; | 5840 | r = -EINTR; |
5841 | vcpu->run->exit_reason = KVM_EXIT_INTR; | 5841 | vcpu->run->exit_reason = KVM_EXIT_INTR; |
5842 | ++vcpu->stat.signal_exits; | 5842 | ++vcpu->stat.signal_exits; |
5843 | } | 5843 | } |
5844 | if (need_resched()) { | 5844 | if (need_resched()) { |
5845 | srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); | 5845 | srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); |
5846 | kvm_resched(vcpu); | 5846 | kvm_resched(vcpu); |
5847 | vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); | 5847 | vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); |
5848 | } | 5848 | } |
5849 | } | 5849 | } |
5850 | 5850 | ||
5851 | srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); | 5851 | srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); |
5852 | 5852 | ||
5853 | vapic_exit(vcpu); | 5853 | vapic_exit(vcpu); |
5854 | 5854 | ||
5855 | return r; | 5855 | return r; |
5856 | } | 5856 | } |
5857 | 5857 | ||
5858 | static inline int complete_emulated_io(struct kvm_vcpu *vcpu) | 5858 | static inline int complete_emulated_io(struct kvm_vcpu *vcpu) |
5859 | { | 5859 | { |
5860 | int r; | 5860 | int r; |
5861 | vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); | 5861 | vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); |
5862 | r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE); | 5862 | r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE); |
5863 | srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); | 5863 | srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); |
5864 | if (r != EMULATE_DONE) | 5864 | if (r != EMULATE_DONE) |
5865 | return 0; | 5865 | return 0; |
5866 | return 1; | 5866 | return 1; |
5867 | } | 5867 | } |
5868 | 5868 | ||
5869 | static int complete_emulated_pio(struct kvm_vcpu *vcpu) | 5869 | static int complete_emulated_pio(struct kvm_vcpu *vcpu) |
5870 | { | 5870 | { |
5871 | BUG_ON(!vcpu->arch.pio.count); | 5871 | BUG_ON(!vcpu->arch.pio.count); |
5872 | 5872 | ||
5873 | return complete_emulated_io(vcpu); | 5873 | return complete_emulated_io(vcpu); |
5874 | } | 5874 | } |
5875 | 5875 | ||
5876 | /* | 5876 | /* |
5877 | * Implements the following, as a state machine: | 5877 | * Implements the following, as a state machine: |
5878 | * | 5878 | * |
5879 | * read: | 5879 | * read: |
5880 | * for each fragment | 5880 | * for each fragment |
5881 | * for each mmio piece in the fragment | 5881 | * for each mmio piece in the fragment |
5882 | * write gpa, len | 5882 | * write gpa, len |
5883 | * exit | 5883 | * exit |
5884 | * copy data | 5884 | * copy data |
5885 | * execute insn | 5885 | * execute insn |
5886 | * | 5886 | * |
5887 | * write: | 5887 | * write: |
5888 | * for each fragment | 5888 | * for each fragment |
5889 | * for each mmio piece in the fragment | 5889 | * for each mmio piece in the fragment |
5890 | * write gpa, len | 5890 | * write gpa, len |
5891 | * copy data | 5891 | * copy data |
5892 | * exit | 5892 | * exit |
5893 | */ | 5893 | */ |
5894 | static int complete_emulated_mmio(struct kvm_vcpu *vcpu) | 5894 | static int complete_emulated_mmio(struct kvm_vcpu *vcpu) |
5895 | { | 5895 | { |
5896 | struct kvm_run *run = vcpu->run; | 5896 | struct kvm_run *run = vcpu->run; |
5897 | struct kvm_mmio_fragment *frag; | 5897 | struct kvm_mmio_fragment *frag; |
5898 | unsigned len; | 5898 | unsigned len; |
5899 | 5899 | ||
5900 | BUG_ON(!vcpu->mmio_needed); | 5900 | BUG_ON(!vcpu->mmio_needed); |
5901 | 5901 | ||
5902 | /* Complete previous fragment */ | 5902 | /* Complete previous fragment */ |
5903 | frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; | 5903 | frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; |
5904 | len = min(8u, frag->len); | 5904 | len = min(8u, frag->len); |
5905 | if (!vcpu->mmio_is_write) | 5905 | if (!vcpu->mmio_is_write) |
5906 | memcpy(frag->data, run->mmio.data, len); | 5906 | memcpy(frag->data, run->mmio.data, len); |
5907 | 5907 | ||
5908 | if (frag->len <= 8) { | 5908 | if (frag->len <= 8) { |
5909 | /* Switch to the next fragment. */ | 5909 | /* Switch to the next fragment. */ |
5910 | frag++; | 5910 | frag++; |
5911 | vcpu->mmio_cur_fragment++; | 5911 | vcpu->mmio_cur_fragment++; |
5912 | } else { | 5912 | } else { |
5913 | /* Go forward to the next mmio piece. */ | 5913 | /* Go forward to the next mmio piece. */ |
5914 | frag->data += len; | 5914 | frag->data += len; |
5915 | frag->gpa += len; | 5915 | frag->gpa += len; |
5916 | frag->len -= len; | 5916 | frag->len -= len; |
5917 | } | 5917 | } |
5918 | 5918 | ||
5919 | if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) { | 5919 | if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) { |
5920 | vcpu->mmio_needed = 0; | 5920 | vcpu->mmio_needed = 0; |
5921 | if (vcpu->mmio_is_write) | 5921 | if (vcpu->mmio_is_write) |
5922 | return 1; | 5922 | return 1; |
5923 | vcpu->mmio_read_completed = 1; | 5923 | vcpu->mmio_read_completed = 1; |
5924 | return complete_emulated_io(vcpu); | 5924 | return complete_emulated_io(vcpu); |
5925 | } | 5925 | } |
5926 | 5926 | ||
5927 | run->exit_reason = KVM_EXIT_MMIO; | 5927 | run->exit_reason = KVM_EXIT_MMIO; |
5928 | run->mmio.phys_addr = frag->gpa; | 5928 | run->mmio.phys_addr = frag->gpa; |
5929 | if (vcpu->mmio_is_write) | 5929 | if (vcpu->mmio_is_write) |
5930 | memcpy(run->mmio.data, frag->data, min(8u, frag->len)); | 5930 | memcpy(run->mmio.data, frag->data, min(8u, frag->len)); |
5931 | run->mmio.len = min(8u, frag->len); | 5931 | run->mmio.len = min(8u, frag->len); |
5932 | run->mmio.is_write = vcpu->mmio_is_write; | 5932 | run->mmio.is_write = vcpu->mmio_is_write; |
5933 | vcpu->arch.complete_userspace_io = complete_emulated_mmio; | 5933 | vcpu->arch.complete_userspace_io = complete_emulated_mmio; |
5934 | return 0; | 5934 | return 0; |
5935 | } | 5935 | } |
5936 | 5936 | ||
5937 | 5937 | ||
5938 | int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) | 5938 | int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
5939 | { | 5939 | { |
5940 | int r; | 5940 | int r; |
5941 | sigset_t sigsaved; | 5941 | sigset_t sigsaved; |
5942 | 5942 | ||
5943 | if (!tsk_used_math(current) && init_fpu(current)) | 5943 | if (!tsk_used_math(current) && init_fpu(current)) |
5944 | return -ENOMEM; | 5944 | return -ENOMEM; |
5945 | 5945 | ||
5946 | if (vcpu->sigset_active) | 5946 | if (vcpu->sigset_active) |
5947 | sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); | 5947 | sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); |
5948 | 5948 | ||
5949 | if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { | 5949 | if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { |
5950 | kvm_vcpu_block(vcpu); | 5950 | kvm_vcpu_block(vcpu); |
5951 | clear_bit(KVM_REQ_UNHALT, &vcpu->requests); | 5951 | clear_bit(KVM_REQ_UNHALT, &vcpu->requests); |
5952 | r = -EAGAIN; | 5952 | r = -EAGAIN; |
5953 | goto out; | 5953 | goto out; |
5954 | } | 5954 | } |
5955 | 5955 | ||
5956 | /* re-sync apic's tpr */ | 5956 | /* re-sync apic's tpr */ |
5957 | if (!irqchip_in_kernel(vcpu->kvm)) { | 5957 | if (!irqchip_in_kernel(vcpu->kvm)) { |
5958 | if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { | 5958 | if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { |
5959 | r = -EINVAL; | 5959 | r = -EINVAL; |
5960 | goto out; | 5960 | goto out; |
5961 | } | 5961 | } |
5962 | } | 5962 | } |
5963 | 5963 | ||
5964 | if (unlikely(vcpu->arch.complete_userspace_io)) { | 5964 | if (unlikely(vcpu->arch.complete_userspace_io)) { |
5965 | int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; | 5965 | int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; |
5966 | vcpu->arch.complete_userspace_io = NULL; | 5966 | vcpu->arch.complete_userspace_io = NULL; |
5967 | r = cui(vcpu); | 5967 | r = cui(vcpu); |
5968 | if (r <= 0) | 5968 | if (r <= 0) |
5969 | goto out; | 5969 | goto out; |
5970 | } else | 5970 | } else |
5971 | WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); | 5971 | WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); |
5972 | 5972 | ||
5973 | r = __vcpu_run(vcpu); | 5973 | r = __vcpu_run(vcpu); |
5974 | 5974 | ||
5975 | out: | 5975 | out: |
5976 | post_kvm_run_save(vcpu); | 5976 | post_kvm_run_save(vcpu); |
5977 | if (vcpu->sigset_active) | 5977 | if (vcpu->sigset_active) |
5978 | sigprocmask(SIG_SETMASK, &sigsaved, NULL); | 5978 | sigprocmask(SIG_SETMASK, &sigsaved, NULL); |
5979 | 5979 | ||
5980 | return r; | 5980 | return r; |
5981 | } | 5981 | } |
5982 | 5982 | ||
5983 | int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) | 5983 | int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) |
5984 | { | 5984 | { |
5985 | if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { | 5985 | if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { |
5986 | /* | 5986 | /* |
5987 | * We are here if userspace calls get_regs() in the middle of | 5987 | * We are here if userspace calls get_regs() in the middle of |
5988 | * instruction emulation. Registers state needs to be copied | 5988 | * instruction emulation. Registers state needs to be copied |
5989 | * back from emulation context to vcpu. Userspace shouldn't do | 5989 | * back from emulation context to vcpu. Userspace shouldn't do |
5990 | * that usually, but some bad designed PV devices (vmware | 5990 | * that usually, but some bad designed PV devices (vmware |
5991 | * backdoor interface) need this to work | 5991 | * backdoor interface) need this to work |
5992 | */ | 5992 | */ |
5993 | emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt); | 5993 | emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt); |
5994 | vcpu->arch.emulate_regs_need_sync_to_vcpu = false; | 5994 | vcpu->arch.emulate_regs_need_sync_to_vcpu = false; |
5995 | } | 5995 | } |
5996 | regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX); | 5996 | regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX); |
5997 | regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX); | 5997 | regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX); |
5998 | regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX); | 5998 | regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX); |
5999 | regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX); | 5999 | regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX); |
6000 | regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI); | 6000 | regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI); |
6001 | regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI); | 6001 | regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI); |
6002 | regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); | 6002 | regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); |
6003 | regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP); | 6003 | regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP); |
6004 | #ifdef CONFIG_X86_64 | 6004 | #ifdef CONFIG_X86_64 |
6005 | regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8); | 6005 | regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8); |
6006 | regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9); | 6006 | regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9); |
6007 | regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10); | 6007 | regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10); |
6008 | regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11); | 6008 | regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11); |
6009 | regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12); | 6009 | regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12); |
6010 | regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13); | 6010 | regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13); |
6011 | regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14); | 6011 | regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14); |
6012 | regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15); | 6012 | regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15); |
6013 | #endif | 6013 | #endif |
6014 | 6014 | ||
6015 | regs->rip = kvm_rip_read(vcpu); | 6015 | regs->rip = kvm_rip_read(vcpu); |
6016 | regs->rflags = kvm_get_rflags(vcpu); | 6016 | regs->rflags = kvm_get_rflags(vcpu); |
6017 | 6017 | ||
6018 | return 0; | 6018 | return 0; |
6019 | } | 6019 | } |
6020 | 6020 | ||
6021 | int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) | 6021 | int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) |
6022 | { | 6022 | { |
6023 | vcpu->arch.emulate_regs_need_sync_from_vcpu = true; | 6023 | vcpu->arch.emulate_regs_need_sync_from_vcpu = true; |
6024 | vcpu->arch.emulate_regs_need_sync_to_vcpu = false; | 6024 | vcpu->arch.emulate_regs_need_sync_to_vcpu = false; |
6025 | 6025 | ||
6026 | kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax); | 6026 | kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax); |
6027 | kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx); | 6027 | kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx); |
6028 | kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx); | 6028 | kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx); |
6029 | kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx); | 6029 | kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx); |
6030 | kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi); | 6030 | kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi); |
6031 | kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi); | 6031 | kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi); |
6032 | kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp); | 6032 | kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp); |
6033 | kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp); | 6033 | kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp); |
6034 | #ifdef CONFIG_X86_64 | 6034 | #ifdef CONFIG_X86_64 |
6035 | kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8); | 6035 | kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8); |
6036 | kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9); | 6036 | kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9); |
6037 | kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10); | 6037 | kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10); |
6038 | kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11); | 6038 | kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11); |
6039 | kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12); | 6039 | kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12); |
6040 | kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13); | 6040 | kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13); |
6041 | kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14); | 6041 | kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14); |
6042 | kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15); | 6042 | kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15); |
6043 | #endif | 6043 | #endif |
6044 | 6044 | ||
6045 | kvm_rip_write(vcpu, regs->rip); | 6045 | kvm_rip_write(vcpu, regs->rip); |
6046 | kvm_set_rflags(vcpu, regs->rflags); | 6046 | kvm_set_rflags(vcpu, regs->rflags); |
6047 | 6047 | ||
6048 | vcpu->arch.exception.pending = false; | 6048 | vcpu->arch.exception.pending = false; |
6049 | 6049 | ||
6050 | kvm_make_request(KVM_REQ_EVENT, vcpu); | 6050 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
6051 | 6051 | ||
6052 | return 0; | 6052 | return 0; |
6053 | } | 6053 | } |
6054 | 6054 | ||
6055 | void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) | 6055 | void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) |
6056 | { | 6056 | { |
6057 | struct kvm_segment cs; | 6057 | struct kvm_segment cs; |
6058 | 6058 | ||
6059 | kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); | 6059 | kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); |
6060 | *db = cs.db; | 6060 | *db = cs.db; |
6061 | *l = cs.l; | 6061 | *l = cs.l; |
6062 | } | 6062 | } |
6063 | EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); | 6063 | EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); |
6064 | 6064 | ||
6065 | int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, | 6065 | int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, |
6066 | struct kvm_sregs *sregs) | 6066 | struct kvm_sregs *sregs) |
6067 | { | 6067 | { |
6068 | struct desc_ptr dt; | 6068 | struct desc_ptr dt; |
6069 | 6069 | ||
6070 | kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); | 6070 | kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); |
6071 | kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); | 6071 | kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); |
6072 | kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); | 6072 | kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); |
6073 | kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); | 6073 | kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); |
6074 | kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); | 6074 | kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); |
6075 | kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); | 6075 | kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); |
6076 | 6076 | ||
6077 | kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); | 6077 | kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); |
6078 | kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); | 6078 | kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); |
6079 | 6079 | ||
6080 | kvm_x86_ops->get_idt(vcpu, &dt); | 6080 | kvm_x86_ops->get_idt(vcpu, &dt); |
6081 | sregs->idt.limit = dt.size; | 6081 | sregs->idt.limit = dt.size; |
6082 | sregs->idt.base = dt.address; | 6082 | sregs->idt.base = dt.address; |
6083 | kvm_x86_ops->get_gdt(vcpu, &dt); | 6083 | kvm_x86_ops->get_gdt(vcpu, &dt); |
6084 | sregs->gdt.limit = dt.size; | 6084 | sregs->gdt.limit = dt.size; |
6085 | sregs->gdt.base = dt.address; | 6085 | sregs->gdt.base = dt.address; |
6086 | 6086 | ||
6087 | sregs->cr0 = kvm_read_cr0(vcpu); | 6087 | sregs->cr0 = kvm_read_cr0(vcpu); |
6088 | sregs->cr2 = vcpu->arch.cr2; | 6088 | sregs->cr2 = vcpu->arch.cr2; |
6089 | sregs->cr3 = kvm_read_cr3(vcpu); | 6089 | sregs->cr3 = kvm_read_cr3(vcpu); |
6090 | sregs->cr4 = kvm_read_cr4(vcpu); | 6090 | sregs->cr4 = kvm_read_cr4(vcpu); |
6091 | sregs->cr8 = kvm_get_cr8(vcpu); | 6091 | sregs->cr8 = kvm_get_cr8(vcpu); |
6092 | sregs->efer = vcpu->arch.efer; | 6092 | sregs->efer = vcpu->arch.efer; |
6093 | sregs->apic_base = kvm_get_apic_base(vcpu); | 6093 | sregs->apic_base = kvm_get_apic_base(vcpu); |
6094 | 6094 | ||
6095 | memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap); | 6095 | memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap); |
6096 | 6096 | ||
6097 | if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft) | 6097 | if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft) |
6098 | set_bit(vcpu->arch.interrupt.nr, | 6098 | set_bit(vcpu->arch.interrupt.nr, |
6099 | (unsigned long *)sregs->interrupt_bitmap); | 6099 | (unsigned long *)sregs->interrupt_bitmap); |
6100 | 6100 | ||
6101 | return 0; | 6101 | return 0; |
6102 | } | 6102 | } |
6103 | 6103 | ||
6104 | int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, | 6104 | int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, |
6105 | struct kvm_mp_state *mp_state) | 6105 | struct kvm_mp_state *mp_state) |
6106 | { | 6106 | { |
6107 | mp_state->mp_state = vcpu->arch.mp_state; | 6107 | mp_state->mp_state = vcpu->arch.mp_state; |
6108 | return 0; | 6108 | return 0; |
6109 | } | 6109 | } |
6110 | 6110 | ||
6111 | int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, | 6111 | int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, |
6112 | struct kvm_mp_state *mp_state) | 6112 | struct kvm_mp_state *mp_state) |
6113 | { | 6113 | { |
6114 | vcpu->arch.mp_state = mp_state->mp_state; | 6114 | vcpu->arch.mp_state = mp_state->mp_state; |
6115 | kvm_make_request(KVM_REQ_EVENT, vcpu); | 6115 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
6116 | return 0; | 6116 | return 0; |
6117 | } | 6117 | } |
6118 | 6118 | ||
6119 | int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, | 6119 | int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, |
6120 | int reason, bool has_error_code, u32 error_code) | 6120 | int reason, bool has_error_code, u32 error_code) |
6121 | { | 6121 | { |
6122 | struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; | 6122 | struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; |
6123 | int ret; | 6123 | int ret; |
6124 | 6124 | ||
6125 | init_emulate_ctxt(vcpu); | 6125 | init_emulate_ctxt(vcpu); |
6126 | 6126 | ||
6127 | ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, | 6127 | ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, |
6128 | has_error_code, error_code); | 6128 | has_error_code, error_code); |
6129 | 6129 | ||
6130 | if (ret) | 6130 | if (ret) |
6131 | return EMULATE_FAIL; | 6131 | return EMULATE_FAIL; |
6132 | 6132 | ||
6133 | kvm_rip_write(vcpu, ctxt->eip); | 6133 | kvm_rip_write(vcpu, ctxt->eip); |
6134 | kvm_set_rflags(vcpu, ctxt->eflags); | 6134 | kvm_set_rflags(vcpu, ctxt->eflags); |
6135 | kvm_make_request(KVM_REQ_EVENT, vcpu); | 6135 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
6136 | return EMULATE_DONE; | 6136 | return EMULATE_DONE; |
6137 | } | 6137 | } |
6138 | EXPORT_SYMBOL_GPL(kvm_task_switch); | 6138 | EXPORT_SYMBOL_GPL(kvm_task_switch); |
6139 | 6139 | ||
6140 | int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, | 6140 | int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, |
6141 | struct kvm_sregs *sregs) | 6141 | struct kvm_sregs *sregs) |
6142 | { | 6142 | { |
6143 | int mmu_reset_needed = 0; | 6143 | int mmu_reset_needed = 0; |
6144 | int pending_vec, max_bits, idx; | 6144 | int pending_vec, max_bits, idx; |
6145 | struct desc_ptr dt; | 6145 | struct desc_ptr dt; |
6146 | 6146 | ||
6147 | if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE)) | 6147 | if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE)) |
6148 | return -EINVAL; | 6148 | return -EINVAL; |
6149 | 6149 | ||
6150 | dt.size = sregs->idt.limit; | 6150 | dt.size = sregs->idt.limit; |
6151 | dt.address = sregs->idt.base; | 6151 | dt.address = sregs->idt.base; |
6152 | kvm_x86_ops->set_idt(vcpu, &dt); | 6152 | kvm_x86_ops->set_idt(vcpu, &dt); |
6153 | dt.size = sregs->gdt.limit; | 6153 | dt.size = sregs->gdt.limit; |
6154 | dt.address = sregs->gdt.base; | 6154 | dt.address = sregs->gdt.base; |
6155 | kvm_x86_ops->set_gdt(vcpu, &dt); | 6155 | kvm_x86_ops->set_gdt(vcpu, &dt); |
6156 | 6156 | ||
6157 | vcpu->arch.cr2 = sregs->cr2; | 6157 | vcpu->arch.cr2 = sregs->cr2; |
6158 | mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; | 6158 | mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; |
6159 | vcpu->arch.cr3 = sregs->cr3; | 6159 | vcpu->arch.cr3 = sregs->cr3; |
6160 | __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); | 6160 | __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); |
6161 | 6161 | ||
6162 | kvm_set_cr8(vcpu, sregs->cr8); | 6162 | kvm_set_cr8(vcpu, sregs->cr8); |
6163 | 6163 | ||
6164 | mmu_reset_needed |= vcpu->arch.efer != sregs->efer; | 6164 | mmu_reset_needed |= vcpu->arch.efer != sregs->efer; |
6165 | kvm_x86_ops->set_efer(vcpu, sregs->efer); | 6165 | kvm_x86_ops->set_efer(vcpu, sregs->efer); |
6166 | kvm_set_apic_base(vcpu, sregs->apic_base); | 6166 | kvm_set_apic_base(vcpu, sregs->apic_base); |
6167 | 6167 | ||
6168 | mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; | 6168 | mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; |
6169 | kvm_x86_ops->set_cr0(vcpu, sregs->cr0); | 6169 | kvm_x86_ops->set_cr0(vcpu, sregs->cr0); |
6170 | vcpu->arch.cr0 = sregs->cr0; | 6170 | vcpu->arch.cr0 = sregs->cr0; |
6171 | 6171 | ||
6172 | mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; | 6172 | mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; |
6173 | kvm_x86_ops->set_cr4(vcpu, sregs->cr4); | 6173 | kvm_x86_ops->set_cr4(vcpu, sregs->cr4); |
6174 | if (sregs->cr4 & X86_CR4_OSXSAVE) | 6174 | if (sregs->cr4 & X86_CR4_OSXSAVE) |
6175 | kvm_update_cpuid(vcpu); | 6175 | kvm_update_cpuid(vcpu); |
6176 | 6176 | ||
6177 | idx = srcu_read_lock(&vcpu->kvm->srcu); | 6177 | idx = srcu_read_lock(&vcpu->kvm->srcu); |
6178 | if (!is_long_mode(vcpu) && is_pae(vcpu)) { | 6178 | if (!is_long_mode(vcpu) && is_pae(vcpu)) { |
6179 | load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); | 6179 | load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); |
6180 | mmu_reset_needed = 1; | 6180 | mmu_reset_needed = 1; |
6181 | } | 6181 | } |
6182 | srcu_read_unlock(&vcpu->kvm->srcu, idx); | 6182 | srcu_read_unlock(&vcpu->kvm->srcu, idx); |
6183 | 6183 | ||
6184 | if (mmu_reset_needed) | 6184 | if (mmu_reset_needed) |
6185 | kvm_mmu_reset_context(vcpu); | 6185 | kvm_mmu_reset_context(vcpu); |
6186 | 6186 | ||
6187 | max_bits = KVM_NR_INTERRUPTS; | 6187 | max_bits = KVM_NR_INTERRUPTS; |
6188 | pending_vec = find_first_bit( | 6188 | pending_vec = find_first_bit( |
6189 | (const unsigned long *)sregs->interrupt_bitmap, max_bits); | 6189 | (const unsigned long *)sregs->interrupt_bitmap, max_bits); |
6190 | if (pending_vec < max_bits) { | 6190 | if (pending_vec < max_bits) { |
6191 | kvm_queue_interrupt(vcpu, pending_vec, false); | 6191 | kvm_queue_interrupt(vcpu, pending_vec, false); |
6192 | pr_debug("Set back pending irq %d\n", pending_vec); | 6192 | pr_debug("Set back pending irq %d\n", pending_vec); |
6193 | } | 6193 | } |
6194 | 6194 | ||
6195 | kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); | 6195 | kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); |
6196 | kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); | 6196 | kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); |
6197 | kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); | 6197 | kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); |
6198 | kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); | 6198 | kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); |
6199 | kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); | 6199 | kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); |
6200 | kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); | 6200 | kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); |
6201 | 6201 | ||
6202 | kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); | 6202 | kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); |
6203 | kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); | 6203 | kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); |
6204 | 6204 | ||
6205 | update_cr8_intercept(vcpu); | 6205 | update_cr8_intercept(vcpu); |
6206 | 6206 | ||
6207 | /* Older userspace won't unhalt the vcpu on reset. */ | 6207 | /* Older userspace won't unhalt the vcpu on reset. */ |
6208 | if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && | 6208 | if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && |
6209 | sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && | 6209 | sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && |
6210 | !is_protmode(vcpu)) | 6210 | !is_protmode(vcpu)) |
6211 | vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; | 6211 | vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; |
6212 | 6212 | ||
6213 | kvm_make_request(KVM_REQ_EVENT, vcpu); | 6213 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
6214 | 6214 | ||
6215 | return 0; | 6215 | return 0; |
6216 | } | 6216 | } |
6217 | 6217 | ||
6218 | int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, | 6218 | int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, |
6219 | struct kvm_guest_debug *dbg) | 6219 | struct kvm_guest_debug *dbg) |
6220 | { | 6220 | { |
6221 | unsigned long rflags; | 6221 | unsigned long rflags; |
6222 | int i, r; | 6222 | int i, r; |
6223 | 6223 | ||
6224 | if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { | 6224 | if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { |
6225 | r = -EBUSY; | 6225 | r = -EBUSY; |
6226 | if (vcpu->arch.exception.pending) | 6226 | if (vcpu->arch.exception.pending) |
6227 | goto out; | 6227 | goto out; |
6228 | if (dbg->control & KVM_GUESTDBG_INJECT_DB) | 6228 | if (dbg->control & KVM_GUESTDBG_INJECT_DB) |
6229 | kvm_queue_exception(vcpu, DB_VECTOR); | 6229 | kvm_queue_exception(vcpu, DB_VECTOR); |
6230 | else | 6230 | else |
6231 | kvm_queue_exception(vcpu, BP_VECTOR); | 6231 | kvm_queue_exception(vcpu, BP_VECTOR); |
6232 | } | 6232 | } |
6233 | 6233 | ||
6234 | /* | 6234 | /* |
6235 | * Read rflags as long as potentially injected trace flags are still | 6235 | * Read rflags as long as potentially injected trace flags are still |
6236 | * filtered out. | 6236 | * filtered out. |
6237 | */ | 6237 | */ |
6238 | rflags = kvm_get_rflags(vcpu); | 6238 | rflags = kvm_get_rflags(vcpu); |
6239 | 6239 | ||
6240 | vcpu->guest_debug = dbg->control; | 6240 | vcpu->guest_debug = dbg->control; |
6241 | if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) | 6241 | if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) |
6242 | vcpu->guest_debug = 0; | 6242 | vcpu->guest_debug = 0; |
6243 | 6243 | ||
6244 | if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { | 6244 | if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { |
6245 | for (i = 0; i < KVM_NR_DB_REGS; ++i) | 6245 | for (i = 0; i < KVM_NR_DB_REGS; ++i) |
6246 | vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; | 6246 | vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; |
6247 | vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; | 6247 | vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; |
6248 | } else { | 6248 | } else { |
6249 | for (i = 0; i < KVM_NR_DB_REGS; i++) | 6249 | for (i = 0; i < KVM_NR_DB_REGS; i++) |
6250 | vcpu->arch.eff_db[i] = vcpu->arch.db[i]; | 6250 | vcpu->arch.eff_db[i] = vcpu->arch.db[i]; |
6251 | } | 6251 | } |
6252 | kvm_update_dr7(vcpu); | 6252 | kvm_update_dr7(vcpu); |
6253 | 6253 | ||
6254 | if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) | 6254 | if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) |
6255 | vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + | 6255 | vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + |
6256 | get_segment_base(vcpu, VCPU_SREG_CS); | 6256 | get_segment_base(vcpu, VCPU_SREG_CS); |
6257 | 6257 | ||
6258 | /* | 6258 | /* |
6259 | * Trigger an rflags update that will inject or remove the trace | 6259 | * Trigger an rflags update that will inject or remove the trace |
6260 | * flags. | 6260 | * flags. |
6261 | */ | 6261 | */ |
6262 | kvm_set_rflags(vcpu, rflags); | 6262 | kvm_set_rflags(vcpu, rflags); |
6263 | 6263 | ||
6264 | kvm_x86_ops->update_db_bp_intercept(vcpu); | 6264 | kvm_x86_ops->update_db_bp_intercept(vcpu); |
6265 | 6265 | ||
6266 | r = 0; | 6266 | r = 0; |
6267 | 6267 | ||
6268 | out: | 6268 | out: |
6269 | 6269 | ||
6270 | return r; | 6270 | return r; |
6271 | } | 6271 | } |
6272 | 6272 | ||
6273 | /* | 6273 | /* |
6274 | * Translate a guest virtual address to a guest physical address. | 6274 | * Translate a guest virtual address to a guest physical address. |
6275 | */ | 6275 | */ |
6276 | int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, | 6276 | int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, |
6277 | struct kvm_translation *tr) | 6277 | struct kvm_translation *tr) |
6278 | { | 6278 | { |
6279 | unsigned long vaddr = tr->linear_address; | 6279 | unsigned long vaddr = tr->linear_address; |
6280 | gpa_t gpa; | 6280 | gpa_t gpa; |
6281 | int idx; | 6281 | int idx; |
6282 | 6282 | ||
6283 | idx = srcu_read_lock(&vcpu->kvm->srcu); | 6283 | idx = srcu_read_lock(&vcpu->kvm->srcu); |
6284 | gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); | 6284 | gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); |
6285 | srcu_read_unlock(&vcpu->kvm->srcu, idx); | 6285 | srcu_read_unlock(&vcpu->kvm->srcu, idx); |
6286 | tr->physical_address = gpa; | 6286 | tr->physical_address = gpa; |
6287 | tr->valid = gpa != UNMAPPED_GVA; | 6287 | tr->valid = gpa != UNMAPPED_GVA; |
6288 | tr->writeable = 1; | 6288 | tr->writeable = 1; |
6289 | tr->usermode = 0; | 6289 | tr->usermode = 0; |
6290 | 6290 | ||
6291 | return 0; | 6291 | return 0; |
6292 | } | 6292 | } |
6293 | 6293 | ||
6294 | int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) | 6294 | int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) |
6295 | { | 6295 | { |
6296 | struct i387_fxsave_struct *fxsave = | 6296 | struct i387_fxsave_struct *fxsave = |
6297 | &vcpu->arch.guest_fpu.state->fxsave; | 6297 | &vcpu->arch.guest_fpu.state->fxsave; |
6298 | 6298 | ||
6299 | memcpy(fpu->fpr, fxsave->st_space, 128); | 6299 | memcpy(fpu->fpr, fxsave->st_space, 128); |
6300 | fpu->fcw = fxsave->cwd; | 6300 | fpu->fcw = fxsave->cwd; |
6301 | fpu->fsw = fxsave->swd; | 6301 | fpu->fsw = fxsave->swd; |
6302 | fpu->ftwx = fxsave->twd; | 6302 | fpu->ftwx = fxsave->twd; |
6303 | fpu->last_opcode = fxsave->fop; | 6303 | fpu->last_opcode = fxsave->fop; |
6304 | fpu->last_ip = fxsave->rip; | 6304 | fpu->last_ip = fxsave->rip; |
6305 | fpu->last_dp = fxsave->rdp; | 6305 | fpu->last_dp = fxsave->rdp; |
6306 | memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); | 6306 | memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); |
6307 | 6307 | ||
6308 | return 0; | 6308 | return 0; |
6309 | } | 6309 | } |
6310 | 6310 | ||
6311 | int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) | 6311 | int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) |
6312 | { | 6312 | { |
6313 | struct i387_fxsave_struct *fxsave = | 6313 | struct i387_fxsave_struct *fxsave = |
6314 | &vcpu->arch.guest_fpu.state->fxsave; | 6314 | &vcpu->arch.guest_fpu.state->fxsave; |
6315 | 6315 | ||
6316 | memcpy(fxsave->st_space, fpu->fpr, 128); | 6316 | memcpy(fxsave->st_space, fpu->fpr, 128); |
6317 | fxsave->cwd = fpu->fcw; | 6317 | fxsave->cwd = fpu->fcw; |
6318 | fxsave->swd = fpu->fsw; | 6318 | fxsave->swd = fpu->fsw; |
6319 | fxsave->twd = fpu->ftwx; | 6319 | fxsave->twd = fpu->ftwx; |
6320 | fxsave->fop = fpu->last_opcode; | 6320 | fxsave->fop = fpu->last_opcode; |
6321 | fxsave->rip = fpu->last_ip; | 6321 | fxsave->rip = fpu->last_ip; |
6322 | fxsave->rdp = fpu->last_dp; | 6322 | fxsave->rdp = fpu->last_dp; |
6323 | memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); | 6323 | memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); |
6324 | 6324 | ||
6325 | return 0; | 6325 | return 0; |
6326 | } | 6326 | } |
6327 | 6327 | ||
6328 | int fx_init(struct kvm_vcpu *vcpu) | 6328 | int fx_init(struct kvm_vcpu *vcpu) |
6329 | { | 6329 | { |
6330 | int err; | 6330 | int err; |
6331 | 6331 | ||
6332 | err = fpu_alloc(&vcpu->arch.guest_fpu); | 6332 | err = fpu_alloc(&vcpu->arch.guest_fpu); |
6333 | if (err) | 6333 | if (err) |
6334 | return err; | 6334 | return err; |
6335 | 6335 | ||
6336 | fpu_finit(&vcpu->arch.guest_fpu); | 6336 | fpu_finit(&vcpu->arch.guest_fpu); |
6337 | 6337 | ||
6338 | /* | 6338 | /* |
6339 | * Ensure guest xcr0 is valid for loading | 6339 | * Ensure guest xcr0 is valid for loading |
6340 | */ | 6340 | */ |
6341 | vcpu->arch.xcr0 = XSTATE_FP; | 6341 | vcpu->arch.xcr0 = XSTATE_FP; |
6342 | 6342 | ||
6343 | vcpu->arch.cr0 |= X86_CR0_ET; | 6343 | vcpu->arch.cr0 |= X86_CR0_ET; |
6344 | 6344 | ||
6345 | return 0; | 6345 | return 0; |
6346 | } | 6346 | } |
6347 | EXPORT_SYMBOL_GPL(fx_init); | 6347 | EXPORT_SYMBOL_GPL(fx_init); |
6348 | 6348 | ||
6349 | static void fx_free(struct kvm_vcpu *vcpu) | 6349 | static void fx_free(struct kvm_vcpu *vcpu) |
6350 | { | 6350 | { |
6351 | fpu_free(&vcpu->arch.guest_fpu); | 6351 | fpu_free(&vcpu->arch.guest_fpu); |
6352 | } | 6352 | } |
6353 | 6353 | ||
6354 | void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) | 6354 | void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) |
6355 | { | 6355 | { |
6356 | if (vcpu->guest_fpu_loaded) | 6356 | if (vcpu->guest_fpu_loaded) |
6357 | return; | 6357 | return; |
6358 | 6358 | ||
6359 | /* | 6359 | /* |
6360 | * Restore all possible states in the guest, | 6360 | * Restore all possible states in the guest, |
6361 | * and assume host would use all available bits. | 6361 | * and assume host would use all available bits. |
6362 | * Guest xcr0 would be loaded later. | 6362 | * Guest xcr0 would be loaded later. |
6363 | */ | 6363 | */ |
6364 | kvm_put_guest_xcr0(vcpu); | 6364 | kvm_put_guest_xcr0(vcpu); |
6365 | vcpu->guest_fpu_loaded = 1; | 6365 | vcpu->guest_fpu_loaded = 1; |
6366 | __kernel_fpu_begin(); | 6366 | __kernel_fpu_begin(); |
6367 | fpu_restore_checking(&vcpu->arch.guest_fpu); | 6367 | fpu_restore_checking(&vcpu->arch.guest_fpu); |
6368 | trace_kvm_fpu(1); | 6368 | trace_kvm_fpu(1); |
6369 | } | 6369 | } |
6370 | 6370 | ||
6371 | void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) | 6371 | void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) |
6372 | { | 6372 | { |
6373 | kvm_put_guest_xcr0(vcpu); | 6373 | kvm_put_guest_xcr0(vcpu); |
6374 | 6374 | ||
6375 | if (!vcpu->guest_fpu_loaded) | 6375 | if (!vcpu->guest_fpu_loaded) |
6376 | return; | 6376 | return; |
6377 | 6377 | ||
6378 | vcpu->guest_fpu_loaded = 0; | 6378 | vcpu->guest_fpu_loaded = 0; |
6379 | fpu_save_init(&vcpu->arch.guest_fpu); | 6379 | fpu_save_init(&vcpu->arch.guest_fpu); |
6380 | __kernel_fpu_end(); | 6380 | __kernel_fpu_end(); |
6381 | ++vcpu->stat.fpu_reload; | 6381 | ++vcpu->stat.fpu_reload; |
6382 | kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu); | 6382 | kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu); |
6383 | trace_kvm_fpu(0); | 6383 | trace_kvm_fpu(0); |
6384 | } | 6384 | } |
6385 | 6385 | ||
6386 | void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) | 6386 | void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) |
6387 | { | 6387 | { |
6388 | kvmclock_reset(vcpu); | 6388 | kvmclock_reset(vcpu); |
6389 | 6389 | ||
6390 | free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); | 6390 | free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); |
6391 | fx_free(vcpu); | 6391 | fx_free(vcpu); |
6392 | kvm_x86_ops->vcpu_free(vcpu); | 6392 | kvm_x86_ops->vcpu_free(vcpu); |
6393 | } | 6393 | } |
6394 | 6394 | ||
6395 | struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, | 6395 | struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, |
6396 | unsigned int id) | 6396 | unsigned int id) |
6397 | { | 6397 | { |
6398 | if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) | 6398 | if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) |
6399 | printk_once(KERN_WARNING | 6399 | printk_once(KERN_WARNING |
6400 | "kvm: SMP vm created on host with unstable TSC; " | 6400 | "kvm: SMP vm created on host with unstable TSC; " |
6401 | "guest TSC will not be reliable\n"); | 6401 | "guest TSC will not be reliable\n"); |
6402 | return kvm_x86_ops->vcpu_create(kvm, id); | 6402 | return kvm_x86_ops->vcpu_create(kvm, id); |
6403 | } | 6403 | } |
6404 | 6404 | ||
6405 | int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) | 6405 | int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) |
6406 | { | 6406 | { |
6407 | int r; | 6407 | int r; |
6408 | 6408 | ||
6409 | vcpu->arch.mtrr_state.have_fixed = 1; | 6409 | vcpu->arch.mtrr_state.have_fixed = 1; |
6410 | r = vcpu_load(vcpu); | 6410 | r = vcpu_load(vcpu); |
6411 | if (r) | 6411 | if (r) |
6412 | return r; | 6412 | return r; |
6413 | r = kvm_vcpu_reset(vcpu); | 6413 | r = kvm_vcpu_reset(vcpu); |
6414 | if (r == 0) | 6414 | if (r == 0) |
6415 | r = kvm_mmu_setup(vcpu); | 6415 | r = kvm_mmu_setup(vcpu); |
6416 | vcpu_put(vcpu); | 6416 | vcpu_put(vcpu); |
6417 | 6417 | ||
6418 | return r; | 6418 | return r; |
6419 | } | 6419 | } |
6420 | 6420 | ||
6421 | int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) | 6421 | int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) |
6422 | { | 6422 | { |
6423 | int r; | 6423 | int r; |
6424 | struct msr_data msr; | 6424 | struct msr_data msr; |
6425 | 6425 | ||
6426 | r = vcpu_load(vcpu); | 6426 | r = vcpu_load(vcpu); |
6427 | if (r) | 6427 | if (r) |
6428 | return r; | 6428 | return r; |
6429 | msr.data = 0x0; | 6429 | msr.data = 0x0; |
6430 | msr.index = MSR_IA32_TSC; | 6430 | msr.index = MSR_IA32_TSC; |
6431 | msr.host_initiated = true; | 6431 | msr.host_initiated = true; |
6432 | kvm_write_tsc(vcpu, &msr); | 6432 | kvm_write_tsc(vcpu, &msr); |
6433 | vcpu_put(vcpu); | 6433 | vcpu_put(vcpu); |
6434 | 6434 | ||
6435 | return r; | 6435 | return r; |
6436 | } | 6436 | } |
6437 | 6437 | ||
6438 | void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) | 6438 | void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) |
6439 | { | 6439 | { |
6440 | int r; | 6440 | int r; |
6441 | vcpu->arch.apf.msr_val = 0; | 6441 | vcpu->arch.apf.msr_val = 0; |
6442 | 6442 | ||
6443 | r = vcpu_load(vcpu); | 6443 | r = vcpu_load(vcpu); |
6444 | BUG_ON(r); | 6444 | BUG_ON(r); |
6445 | kvm_mmu_unload(vcpu); | 6445 | kvm_mmu_unload(vcpu); |
6446 | vcpu_put(vcpu); | 6446 | vcpu_put(vcpu); |
6447 | 6447 | ||
6448 | fx_free(vcpu); | 6448 | fx_free(vcpu); |
6449 | kvm_x86_ops->vcpu_free(vcpu); | 6449 | kvm_x86_ops->vcpu_free(vcpu); |
6450 | } | 6450 | } |
6451 | 6451 | ||
6452 | static int kvm_vcpu_reset(struct kvm_vcpu *vcpu) | 6452 | static int kvm_vcpu_reset(struct kvm_vcpu *vcpu) |
6453 | { | 6453 | { |
6454 | atomic_set(&vcpu->arch.nmi_queued, 0); | 6454 | atomic_set(&vcpu->arch.nmi_queued, 0); |
6455 | vcpu->arch.nmi_pending = 0; | 6455 | vcpu->arch.nmi_pending = 0; |
6456 | vcpu->arch.nmi_injected = false; | 6456 | vcpu->arch.nmi_injected = false; |
6457 | 6457 | ||
6458 | memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); | 6458 | memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); |
6459 | vcpu->arch.dr6 = DR6_FIXED_1; | 6459 | vcpu->arch.dr6 = DR6_FIXED_1; |
6460 | vcpu->arch.dr7 = DR7_FIXED_1; | 6460 | vcpu->arch.dr7 = DR7_FIXED_1; |
6461 | kvm_update_dr7(vcpu); | 6461 | kvm_update_dr7(vcpu); |
6462 | 6462 | ||
6463 | kvm_make_request(KVM_REQ_EVENT, vcpu); | 6463 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
6464 | vcpu->arch.apf.msr_val = 0; | 6464 | vcpu->arch.apf.msr_val = 0; |
6465 | vcpu->arch.st.msr_val = 0; | 6465 | vcpu->arch.st.msr_val = 0; |
6466 | 6466 | ||
6467 | kvmclock_reset(vcpu); | 6467 | kvmclock_reset(vcpu); |
6468 | 6468 | ||
6469 | kvm_clear_async_pf_completion_queue(vcpu); | 6469 | kvm_clear_async_pf_completion_queue(vcpu); |
6470 | kvm_async_pf_hash_reset(vcpu); | 6470 | kvm_async_pf_hash_reset(vcpu); |
6471 | vcpu->arch.apf.halted = false; | 6471 | vcpu->arch.apf.halted = false; |
6472 | 6472 | ||
6473 | kvm_pmu_reset(vcpu); | 6473 | kvm_pmu_reset(vcpu); |
6474 | 6474 | ||
6475 | memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); | 6475 | memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); |
6476 | vcpu->arch.regs_avail = ~0; | 6476 | vcpu->arch.regs_avail = ~0; |
6477 | vcpu->arch.regs_dirty = ~0; | 6477 | vcpu->arch.regs_dirty = ~0; |
6478 | 6478 | ||
6479 | return kvm_x86_ops->vcpu_reset(vcpu); | 6479 | return kvm_x86_ops->vcpu_reset(vcpu); |
6480 | } | 6480 | } |
6481 | 6481 | ||
6482 | int kvm_arch_hardware_enable(void *garbage) | 6482 | int kvm_arch_hardware_enable(void *garbage) |
6483 | { | 6483 | { |
6484 | struct kvm *kvm; | 6484 | struct kvm *kvm; |
6485 | struct kvm_vcpu *vcpu; | 6485 | struct kvm_vcpu *vcpu; |
6486 | int i; | 6486 | int i; |
6487 | int ret; | 6487 | int ret; |
6488 | u64 local_tsc; | 6488 | u64 local_tsc; |
6489 | u64 max_tsc = 0; | 6489 | u64 max_tsc = 0; |
6490 | bool stable, backwards_tsc = false; | 6490 | bool stable, backwards_tsc = false; |
6491 | 6491 | ||
6492 | kvm_shared_msr_cpu_online(); | 6492 | kvm_shared_msr_cpu_online(); |
6493 | ret = kvm_x86_ops->hardware_enable(garbage); | 6493 | ret = kvm_x86_ops->hardware_enable(garbage); |
6494 | if (ret != 0) | 6494 | if (ret != 0) |
6495 | return ret; | 6495 | return ret; |
6496 | 6496 | ||
6497 | local_tsc = native_read_tsc(); | 6497 | local_tsc = native_read_tsc(); |
6498 | stable = !check_tsc_unstable(); | 6498 | stable = !check_tsc_unstable(); |
6499 | list_for_each_entry(kvm, &vm_list, vm_list) { | 6499 | list_for_each_entry(kvm, &vm_list, vm_list) { |
6500 | kvm_for_each_vcpu(i, vcpu, kvm) { | 6500 | kvm_for_each_vcpu(i, vcpu, kvm) { |
6501 | if (!stable && vcpu->cpu == smp_processor_id()) | 6501 | if (!stable && vcpu->cpu == smp_processor_id()) |
6502 | set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); | 6502 | set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); |
6503 | if (stable && vcpu->arch.last_host_tsc > local_tsc) { | 6503 | if (stable && vcpu->arch.last_host_tsc > local_tsc) { |
6504 | backwards_tsc = true; | 6504 | backwards_tsc = true; |
6505 | if (vcpu->arch.last_host_tsc > max_tsc) | 6505 | if (vcpu->arch.last_host_tsc > max_tsc) |
6506 | max_tsc = vcpu->arch.last_host_tsc; | 6506 | max_tsc = vcpu->arch.last_host_tsc; |
6507 | } | 6507 | } |
6508 | } | 6508 | } |
6509 | } | 6509 | } |
6510 | 6510 | ||
6511 | /* | 6511 | /* |
6512 | * Sometimes, even reliable TSCs go backwards. This happens on | 6512 | * Sometimes, even reliable TSCs go backwards. This happens on |
6513 | * platforms that reset TSC during suspend or hibernate actions, but | 6513 | * platforms that reset TSC during suspend or hibernate actions, but |
6514 | * maintain synchronization. We must compensate. Fortunately, we can | 6514 | * maintain synchronization. We must compensate. Fortunately, we can |
6515 | * detect that condition here, which happens early in CPU bringup, | 6515 | * detect that condition here, which happens early in CPU bringup, |
6516 | * before any KVM threads can be running. Unfortunately, we can't | 6516 | * before any KVM threads can be running. Unfortunately, we can't |
6517 | * bring the TSCs fully up to date with real time, as we aren't yet far | 6517 | * bring the TSCs fully up to date with real time, as we aren't yet far |
6518 | * enough into CPU bringup that we know how much real time has actually | 6518 | * enough into CPU bringup that we know how much real time has actually |
6519 | * elapsed; our helper function, get_kernel_ns() will be using boot | 6519 | * elapsed; our helper function, get_kernel_ns() will be using boot |
6520 | * variables that haven't been updated yet. | 6520 | * variables that haven't been updated yet. |
6521 | * | 6521 | * |
6522 | * So we simply find the maximum observed TSC above, then record the | 6522 | * So we simply find the maximum observed TSC above, then record the |
6523 | * adjustment to TSC in each VCPU. When the VCPU later gets loaded, | 6523 | * adjustment to TSC in each VCPU. When the VCPU later gets loaded, |
6524 | * the adjustment will be applied. Note that we accumulate | 6524 | * the adjustment will be applied. Note that we accumulate |
6525 | * adjustments, in case multiple suspend cycles happen before some VCPU | 6525 | * adjustments, in case multiple suspend cycles happen before some VCPU |
6526 | * gets a chance to run again. In the event that no KVM threads get a | 6526 | * gets a chance to run again. In the event that no KVM threads get a |
6527 | * chance to run, we will miss the entire elapsed period, as we'll have | 6527 | * chance to run, we will miss the entire elapsed period, as we'll have |
6528 | * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may | 6528 | * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may |
6529 | * loose cycle time. This isn't too big a deal, since the loss will be | 6529 | * loose cycle time. This isn't too big a deal, since the loss will be |
6530 | * uniform across all VCPUs (not to mention the scenario is extremely | 6530 | * uniform across all VCPUs (not to mention the scenario is extremely |
6531 | * unlikely). It is possible that a second hibernate recovery happens | 6531 | * unlikely). It is possible that a second hibernate recovery happens |
6532 | * much faster than a first, causing the observed TSC here to be | 6532 | * much faster than a first, causing the observed TSC here to be |
6533 | * smaller; this would require additional padding adjustment, which is | 6533 | * smaller; this would require additional padding adjustment, which is |
6534 | * why we set last_host_tsc to the local tsc observed here. | 6534 | * why we set last_host_tsc to the local tsc observed here. |
6535 | * | 6535 | * |
6536 | * N.B. - this code below runs only on platforms with reliable TSC, | 6536 | * N.B. - this code below runs only on platforms with reliable TSC, |
6537 | * as that is the only way backwards_tsc is set above. Also note | 6537 | * as that is the only way backwards_tsc is set above. Also note |
6538 | * that this runs for ALL vcpus, which is not a bug; all VCPUs should | 6538 | * that this runs for ALL vcpus, which is not a bug; all VCPUs should |
6539 | * have the same delta_cyc adjustment applied if backwards_tsc | 6539 | * have the same delta_cyc adjustment applied if backwards_tsc |
6540 | * is detected. Note further, this adjustment is only done once, | 6540 | * is detected. Note further, this adjustment is only done once, |
6541 | * as we reset last_host_tsc on all VCPUs to stop this from being | 6541 | * as we reset last_host_tsc on all VCPUs to stop this from being |
6542 | * called multiple times (one for each physical CPU bringup). | 6542 | * called multiple times (one for each physical CPU bringup). |
6543 | * | 6543 | * |
6544 | * Platforms with unreliable TSCs don't have to deal with this, they | 6544 | * Platforms with unreliable TSCs don't have to deal with this, they |
6545 | * will be compensated by the logic in vcpu_load, which sets the TSC to | 6545 | * will be compensated by the logic in vcpu_load, which sets the TSC to |
6546 | * catchup mode. This will catchup all VCPUs to real time, but cannot | 6546 | * catchup mode. This will catchup all VCPUs to real time, but cannot |
6547 | * guarantee that they stay in perfect synchronization. | 6547 | * guarantee that they stay in perfect synchronization. |
6548 | */ | 6548 | */ |
6549 | if (backwards_tsc) { | 6549 | if (backwards_tsc) { |
6550 | u64 delta_cyc = max_tsc - local_tsc; | 6550 | u64 delta_cyc = max_tsc - local_tsc; |
6551 | list_for_each_entry(kvm, &vm_list, vm_list) { | 6551 | list_for_each_entry(kvm, &vm_list, vm_list) { |
6552 | kvm_for_each_vcpu(i, vcpu, kvm) { | 6552 | kvm_for_each_vcpu(i, vcpu, kvm) { |
6553 | vcpu->arch.tsc_offset_adjustment += delta_cyc; | 6553 | vcpu->arch.tsc_offset_adjustment += delta_cyc; |
6554 | vcpu->arch.last_host_tsc = local_tsc; | 6554 | vcpu->arch.last_host_tsc = local_tsc; |
6555 | set_bit(KVM_REQ_MASTERCLOCK_UPDATE, | 6555 | set_bit(KVM_REQ_MASTERCLOCK_UPDATE, |
6556 | &vcpu->requests); | 6556 | &vcpu->requests); |
6557 | } | 6557 | } |
6558 | 6558 | ||
6559 | /* | 6559 | /* |
6560 | * We have to disable TSC offset matching.. if you were | 6560 | * We have to disable TSC offset matching.. if you were |
6561 | * booting a VM while issuing an S4 host suspend.... | 6561 | * booting a VM while issuing an S4 host suspend.... |
6562 | * you may have some problem. Solving this issue is | 6562 | * you may have some problem. Solving this issue is |
6563 | * left as an exercise to the reader. | 6563 | * left as an exercise to the reader. |
6564 | */ | 6564 | */ |
6565 | kvm->arch.last_tsc_nsec = 0; | 6565 | kvm->arch.last_tsc_nsec = 0; |
6566 | kvm->arch.last_tsc_write = 0; | 6566 | kvm->arch.last_tsc_write = 0; |
6567 | } | 6567 | } |
6568 | 6568 | ||
6569 | } | 6569 | } |
6570 | return 0; | 6570 | return 0; |
6571 | } | 6571 | } |
6572 | 6572 | ||
6573 | void kvm_arch_hardware_disable(void *garbage) | 6573 | void kvm_arch_hardware_disable(void *garbage) |
6574 | { | 6574 | { |
6575 | kvm_x86_ops->hardware_disable(garbage); | 6575 | kvm_x86_ops->hardware_disable(garbage); |
6576 | drop_user_return_notifiers(garbage); | 6576 | drop_user_return_notifiers(garbage); |
6577 | } | 6577 | } |
6578 | 6578 | ||
6579 | int kvm_arch_hardware_setup(void) | 6579 | int kvm_arch_hardware_setup(void) |
6580 | { | 6580 | { |
6581 | return kvm_x86_ops->hardware_setup(); | 6581 | return kvm_x86_ops->hardware_setup(); |
6582 | } | 6582 | } |
6583 | 6583 | ||
6584 | void kvm_arch_hardware_unsetup(void) | 6584 | void kvm_arch_hardware_unsetup(void) |
6585 | { | 6585 | { |
6586 | kvm_x86_ops->hardware_unsetup(); | 6586 | kvm_x86_ops->hardware_unsetup(); |
6587 | } | 6587 | } |
6588 | 6588 | ||
6589 | void kvm_arch_check_processor_compat(void *rtn) | 6589 | void kvm_arch_check_processor_compat(void *rtn) |
6590 | { | 6590 | { |
6591 | kvm_x86_ops->check_processor_compatibility(rtn); | 6591 | kvm_x86_ops->check_processor_compatibility(rtn); |
6592 | } | 6592 | } |
6593 | 6593 | ||
6594 | bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu) | 6594 | bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu) |
6595 | { | 6595 | { |
6596 | return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL); | 6596 | return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL); |
6597 | } | 6597 | } |
6598 | 6598 | ||
6599 | struct static_key kvm_no_apic_vcpu __read_mostly; | 6599 | struct static_key kvm_no_apic_vcpu __read_mostly; |
6600 | 6600 | ||
6601 | int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) | 6601 | int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) |
6602 | { | 6602 | { |
6603 | struct page *page; | 6603 | struct page *page; |
6604 | struct kvm *kvm; | 6604 | struct kvm *kvm; |
6605 | int r; | 6605 | int r; |
6606 | 6606 | ||
6607 | BUG_ON(vcpu->kvm == NULL); | 6607 | BUG_ON(vcpu->kvm == NULL); |
6608 | kvm = vcpu->kvm; | 6608 | kvm = vcpu->kvm; |
6609 | 6609 | ||
6610 | vcpu->arch.emulate_ctxt.ops = &emulate_ops; | 6610 | vcpu->arch.emulate_ctxt.ops = &emulate_ops; |
6611 | if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu)) | 6611 | if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu)) |
6612 | vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; | 6612 | vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; |
6613 | else | 6613 | else |
6614 | vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; | 6614 | vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; |
6615 | 6615 | ||
6616 | page = alloc_page(GFP_KERNEL | __GFP_ZERO); | 6616 | page = alloc_page(GFP_KERNEL | __GFP_ZERO); |
6617 | if (!page) { | 6617 | if (!page) { |
6618 | r = -ENOMEM; | 6618 | r = -ENOMEM; |
6619 | goto fail; | 6619 | goto fail; |
6620 | } | 6620 | } |
6621 | vcpu->arch.pio_data = page_address(page); | 6621 | vcpu->arch.pio_data = page_address(page); |
6622 | 6622 | ||
6623 | kvm_set_tsc_khz(vcpu, max_tsc_khz); | 6623 | kvm_set_tsc_khz(vcpu, max_tsc_khz); |
6624 | 6624 | ||
6625 | r = kvm_mmu_create(vcpu); | 6625 | r = kvm_mmu_create(vcpu); |
6626 | if (r < 0) | 6626 | if (r < 0) |
6627 | goto fail_free_pio_data; | 6627 | goto fail_free_pio_data; |
6628 | 6628 | ||
6629 | if (irqchip_in_kernel(kvm)) { | 6629 | if (irqchip_in_kernel(kvm)) { |
6630 | r = kvm_create_lapic(vcpu); | 6630 | r = kvm_create_lapic(vcpu); |
6631 | if (r < 0) | 6631 | if (r < 0) |
6632 | goto fail_mmu_destroy; | 6632 | goto fail_mmu_destroy; |
6633 | } else | 6633 | } else |
6634 | static_key_slow_inc(&kvm_no_apic_vcpu); | 6634 | static_key_slow_inc(&kvm_no_apic_vcpu); |
6635 | 6635 | ||
6636 | vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, | 6636 | vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, |
6637 | GFP_KERNEL); | 6637 | GFP_KERNEL); |
6638 | if (!vcpu->arch.mce_banks) { | 6638 | if (!vcpu->arch.mce_banks) { |
6639 | r = -ENOMEM; | 6639 | r = -ENOMEM; |
6640 | goto fail_free_lapic; | 6640 | goto fail_free_lapic; |
6641 | } | 6641 | } |
6642 | vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; | 6642 | vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; |
6643 | 6643 | ||
6644 | if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) | 6644 | if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) |
6645 | goto fail_free_mce_banks; | 6645 | goto fail_free_mce_banks; |
6646 | 6646 | ||
6647 | r = fx_init(vcpu); | 6647 | r = fx_init(vcpu); |
6648 | if (r) | 6648 | if (r) |
6649 | goto fail_free_wbinvd_dirty_mask; | 6649 | goto fail_free_wbinvd_dirty_mask; |
6650 | 6650 | ||
6651 | vcpu->arch.ia32_tsc_adjust_msr = 0x0; | 6651 | vcpu->arch.ia32_tsc_adjust_msr = 0x0; |
6652 | kvm_async_pf_hash_reset(vcpu); | 6652 | kvm_async_pf_hash_reset(vcpu); |
6653 | kvm_pmu_init(vcpu); | 6653 | kvm_pmu_init(vcpu); |
6654 | 6654 | ||
6655 | return 0; | 6655 | return 0; |
6656 | fail_free_wbinvd_dirty_mask: | 6656 | fail_free_wbinvd_dirty_mask: |
6657 | free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); | 6657 | free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); |
6658 | fail_free_mce_banks: | 6658 | fail_free_mce_banks: |
6659 | kfree(vcpu->arch.mce_banks); | 6659 | kfree(vcpu->arch.mce_banks); |
6660 | fail_free_lapic: | 6660 | fail_free_lapic: |
6661 | kvm_free_lapic(vcpu); | 6661 | kvm_free_lapic(vcpu); |
6662 | fail_mmu_destroy: | 6662 | fail_mmu_destroy: |
6663 | kvm_mmu_destroy(vcpu); | 6663 | kvm_mmu_destroy(vcpu); |
6664 | fail_free_pio_data: | 6664 | fail_free_pio_data: |
6665 | free_page((unsigned long)vcpu->arch.pio_data); | 6665 | free_page((unsigned long)vcpu->arch.pio_data); |
6666 | fail: | 6666 | fail: |
6667 | return r; | 6667 | return r; |
6668 | } | 6668 | } |
6669 | 6669 | ||
6670 | void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) | 6670 | void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) |
6671 | { | 6671 | { |
6672 | int idx; | 6672 | int idx; |
6673 | 6673 | ||
6674 | kvm_pmu_destroy(vcpu); | 6674 | kvm_pmu_destroy(vcpu); |
6675 | kfree(vcpu->arch.mce_banks); | 6675 | kfree(vcpu->arch.mce_banks); |
6676 | kvm_free_lapic(vcpu); | 6676 | kvm_free_lapic(vcpu); |
6677 | idx = srcu_read_lock(&vcpu->kvm->srcu); | 6677 | idx = srcu_read_lock(&vcpu->kvm->srcu); |
6678 | kvm_mmu_destroy(vcpu); | 6678 | kvm_mmu_destroy(vcpu); |
6679 | srcu_read_unlock(&vcpu->kvm->srcu, idx); | 6679 | srcu_read_unlock(&vcpu->kvm->srcu, idx); |
6680 | free_page((unsigned long)vcpu->arch.pio_data); | 6680 | free_page((unsigned long)vcpu->arch.pio_data); |
6681 | if (!irqchip_in_kernel(vcpu->kvm)) | 6681 | if (!irqchip_in_kernel(vcpu->kvm)) |
6682 | static_key_slow_dec(&kvm_no_apic_vcpu); | 6682 | static_key_slow_dec(&kvm_no_apic_vcpu); |
6683 | } | 6683 | } |
6684 | 6684 | ||
6685 | int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) | 6685 | int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) |
6686 | { | 6686 | { |
6687 | if (type) | 6687 | if (type) |
6688 | return -EINVAL; | 6688 | return -EINVAL; |
6689 | 6689 | ||
6690 | INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); | 6690 | INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); |
6691 | INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); | 6691 | INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); |
6692 | 6692 | ||
6693 | /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ | 6693 | /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ |
6694 | set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); | 6694 | set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); |
6695 | /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ | 6695 | /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ |
6696 | set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, | 6696 | set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, |
6697 | &kvm->arch.irq_sources_bitmap); | 6697 | &kvm->arch.irq_sources_bitmap); |
6698 | 6698 | ||
6699 | raw_spin_lock_init(&kvm->arch.tsc_write_lock); | 6699 | raw_spin_lock_init(&kvm->arch.tsc_write_lock); |
6700 | mutex_init(&kvm->arch.apic_map_lock); | 6700 | mutex_init(&kvm->arch.apic_map_lock); |
6701 | spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); | 6701 | spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); |
6702 | 6702 | ||
6703 | pvclock_update_vm_gtod_copy(kvm); | 6703 | pvclock_update_vm_gtod_copy(kvm); |
6704 | 6704 | ||
6705 | return 0; | 6705 | return 0; |
6706 | } | 6706 | } |
6707 | 6707 | ||
6708 | static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) | 6708 | static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) |
6709 | { | 6709 | { |
6710 | int r; | 6710 | int r; |
6711 | r = vcpu_load(vcpu); | 6711 | r = vcpu_load(vcpu); |
6712 | BUG_ON(r); | 6712 | BUG_ON(r); |
6713 | kvm_mmu_unload(vcpu); | 6713 | kvm_mmu_unload(vcpu); |
6714 | vcpu_put(vcpu); | 6714 | vcpu_put(vcpu); |
6715 | } | 6715 | } |
6716 | 6716 | ||
6717 | static void kvm_free_vcpus(struct kvm *kvm) | 6717 | static void kvm_free_vcpus(struct kvm *kvm) |
6718 | { | 6718 | { |
6719 | unsigned int i; | 6719 | unsigned int i; |
6720 | struct kvm_vcpu *vcpu; | 6720 | struct kvm_vcpu *vcpu; |
6721 | 6721 | ||
6722 | /* | 6722 | /* |
6723 | * Unpin any mmu pages first. | 6723 | * Unpin any mmu pages first. |
6724 | */ | 6724 | */ |
6725 | kvm_for_each_vcpu(i, vcpu, kvm) { | 6725 | kvm_for_each_vcpu(i, vcpu, kvm) { |
6726 | kvm_clear_async_pf_completion_queue(vcpu); | 6726 | kvm_clear_async_pf_completion_queue(vcpu); |
6727 | kvm_unload_vcpu_mmu(vcpu); | 6727 | kvm_unload_vcpu_mmu(vcpu); |
6728 | } | 6728 | } |
6729 | kvm_for_each_vcpu(i, vcpu, kvm) | 6729 | kvm_for_each_vcpu(i, vcpu, kvm) |
6730 | kvm_arch_vcpu_free(vcpu); | 6730 | kvm_arch_vcpu_free(vcpu); |
6731 | 6731 | ||
6732 | mutex_lock(&kvm->lock); | 6732 | mutex_lock(&kvm->lock); |
6733 | for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) | 6733 | for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) |
6734 | kvm->vcpus[i] = NULL; | 6734 | kvm->vcpus[i] = NULL; |
6735 | 6735 | ||
6736 | atomic_set(&kvm->online_vcpus, 0); | 6736 | atomic_set(&kvm->online_vcpus, 0); |
6737 | mutex_unlock(&kvm->lock); | 6737 | mutex_unlock(&kvm->lock); |
6738 | } | 6738 | } |
6739 | 6739 | ||
6740 | void kvm_arch_sync_events(struct kvm *kvm) | 6740 | void kvm_arch_sync_events(struct kvm *kvm) |
6741 | { | 6741 | { |
6742 | kvm_free_all_assigned_devices(kvm); | 6742 | kvm_free_all_assigned_devices(kvm); |
6743 | kvm_free_pit(kvm); | 6743 | kvm_free_pit(kvm); |
6744 | } | 6744 | } |
6745 | 6745 | ||
6746 | void kvm_arch_destroy_vm(struct kvm *kvm) | 6746 | void kvm_arch_destroy_vm(struct kvm *kvm) |
6747 | { | 6747 | { |
6748 | kvm_iommu_unmap_guest(kvm); | 6748 | kvm_iommu_unmap_guest(kvm); |
6749 | kfree(kvm->arch.vpic); | 6749 | kfree(kvm->arch.vpic); |
6750 | kfree(kvm->arch.vioapic); | 6750 | kfree(kvm->arch.vioapic); |
6751 | kvm_free_vcpus(kvm); | 6751 | kvm_free_vcpus(kvm); |
6752 | if (kvm->arch.apic_access_page) | 6752 | if (kvm->arch.apic_access_page) |
6753 | put_page(kvm->arch.apic_access_page); | 6753 | put_page(kvm->arch.apic_access_page); |
6754 | if (kvm->arch.ept_identity_pagetable) | 6754 | if (kvm->arch.ept_identity_pagetable) |
6755 | put_page(kvm->arch.ept_identity_pagetable); | 6755 | put_page(kvm->arch.ept_identity_pagetable); |
6756 | kfree(rcu_dereference_check(kvm->arch.apic_map, 1)); | 6756 | kfree(rcu_dereference_check(kvm->arch.apic_map, 1)); |
6757 | } | 6757 | } |
6758 | 6758 | ||
6759 | void kvm_arch_free_memslot(struct kvm_memory_slot *free, | 6759 | void kvm_arch_free_memslot(struct kvm_memory_slot *free, |
6760 | struct kvm_memory_slot *dont) | 6760 | struct kvm_memory_slot *dont) |
6761 | { | 6761 | { |
6762 | int i; | 6762 | int i; |
6763 | 6763 | ||
6764 | for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { | 6764 | for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { |
6765 | if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) { | 6765 | if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) { |
6766 | kvm_kvfree(free->arch.rmap[i]); | 6766 | kvm_kvfree(free->arch.rmap[i]); |
6767 | free->arch.rmap[i] = NULL; | 6767 | free->arch.rmap[i] = NULL; |
6768 | } | 6768 | } |
6769 | if (i == 0) | 6769 | if (i == 0) |
6770 | continue; | 6770 | continue; |
6771 | 6771 | ||
6772 | if (!dont || free->arch.lpage_info[i - 1] != | 6772 | if (!dont || free->arch.lpage_info[i - 1] != |
6773 | dont->arch.lpage_info[i - 1]) { | 6773 | dont->arch.lpage_info[i - 1]) { |
6774 | kvm_kvfree(free->arch.lpage_info[i - 1]); | 6774 | kvm_kvfree(free->arch.lpage_info[i - 1]); |
6775 | free->arch.lpage_info[i - 1] = NULL; | 6775 | free->arch.lpage_info[i - 1] = NULL; |
6776 | } | 6776 | } |
6777 | } | 6777 | } |
6778 | } | 6778 | } |
6779 | 6779 | ||
6780 | int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages) | 6780 | int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages) |
6781 | { | 6781 | { |
6782 | int i; | 6782 | int i; |
6783 | 6783 | ||
6784 | for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { | 6784 | for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { |
6785 | unsigned long ugfn; | 6785 | unsigned long ugfn; |
6786 | int lpages; | 6786 | int lpages; |
6787 | int level = i + 1; | 6787 | int level = i + 1; |
6788 | 6788 | ||
6789 | lpages = gfn_to_index(slot->base_gfn + npages - 1, | 6789 | lpages = gfn_to_index(slot->base_gfn + npages - 1, |
6790 | slot->base_gfn, level) + 1; | 6790 | slot->base_gfn, level) + 1; |
6791 | 6791 | ||
6792 | slot->arch.rmap[i] = | 6792 | slot->arch.rmap[i] = |
6793 | kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i])); | 6793 | kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i])); |
6794 | if (!slot->arch.rmap[i]) | 6794 | if (!slot->arch.rmap[i]) |
6795 | goto out_free; | 6795 | goto out_free; |
6796 | if (i == 0) | 6796 | if (i == 0) |
6797 | continue; | 6797 | continue; |
6798 | 6798 | ||
6799 | slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages * | 6799 | slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages * |
6800 | sizeof(*slot->arch.lpage_info[i - 1])); | 6800 | sizeof(*slot->arch.lpage_info[i - 1])); |
6801 | if (!slot->arch.lpage_info[i - 1]) | 6801 | if (!slot->arch.lpage_info[i - 1]) |
6802 | goto out_free; | 6802 | goto out_free; |
6803 | 6803 | ||
6804 | if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) | 6804 | if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) |
6805 | slot->arch.lpage_info[i - 1][0].write_count = 1; | 6805 | slot->arch.lpage_info[i - 1][0].write_count = 1; |
6806 | if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) | 6806 | if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) |
6807 | slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1; | 6807 | slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1; |
6808 | ugfn = slot->userspace_addr >> PAGE_SHIFT; | 6808 | ugfn = slot->userspace_addr >> PAGE_SHIFT; |
6809 | /* | 6809 | /* |
6810 | * If the gfn and userspace address are not aligned wrt each | 6810 | * If the gfn and userspace address are not aligned wrt each |
6811 | * other, or if explicitly asked to, disable large page | 6811 | * other, or if explicitly asked to, disable large page |
6812 | * support for this slot | 6812 | * support for this slot |
6813 | */ | 6813 | */ |
6814 | if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) || | 6814 | if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) || |
6815 | !kvm_largepages_enabled()) { | 6815 | !kvm_largepages_enabled()) { |
6816 | unsigned long j; | 6816 | unsigned long j; |
6817 | 6817 | ||
6818 | for (j = 0; j < lpages; ++j) | 6818 | for (j = 0; j < lpages; ++j) |
6819 | slot->arch.lpage_info[i - 1][j].write_count = 1; | 6819 | slot->arch.lpage_info[i - 1][j].write_count = 1; |
6820 | } | 6820 | } |
6821 | } | 6821 | } |
6822 | 6822 | ||
6823 | return 0; | 6823 | return 0; |
6824 | 6824 | ||
6825 | out_free: | 6825 | out_free: |
6826 | for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { | 6826 | for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { |
6827 | kvm_kvfree(slot->arch.rmap[i]); | 6827 | kvm_kvfree(slot->arch.rmap[i]); |
6828 | slot->arch.rmap[i] = NULL; | 6828 | slot->arch.rmap[i] = NULL; |
6829 | if (i == 0) | 6829 | if (i == 0) |
6830 | continue; | 6830 | continue; |
6831 | 6831 | ||
6832 | kvm_kvfree(slot->arch.lpage_info[i - 1]); | 6832 | kvm_kvfree(slot->arch.lpage_info[i - 1]); |
6833 | slot->arch.lpage_info[i - 1] = NULL; | 6833 | slot->arch.lpage_info[i - 1] = NULL; |
6834 | } | 6834 | } |
6835 | return -ENOMEM; | 6835 | return -ENOMEM; |
6836 | } | 6836 | } |
6837 | 6837 | ||
6838 | int kvm_arch_prepare_memory_region(struct kvm *kvm, | 6838 | int kvm_arch_prepare_memory_region(struct kvm *kvm, |
6839 | struct kvm_memory_slot *memslot, | 6839 | struct kvm_memory_slot *memslot, |
6840 | struct kvm_memory_slot old, | 6840 | struct kvm_memory_slot old, |
6841 | struct kvm_userspace_memory_region *mem, | 6841 | struct kvm_userspace_memory_region *mem, |
6842 | bool user_alloc) | 6842 | bool user_alloc) |
6843 | { | 6843 | { |
6844 | int npages = memslot->npages; | 6844 | int npages = memslot->npages; |
6845 | int map_flags = MAP_PRIVATE | MAP_ANONYMOUS; | 6845 | int map_flags = MAP_PRIVATE | MAP_ANONYMOUS; |
6846 | 6846 | ||
6847 | /* Prevent internal slot pages from being moved by fork()/COW. */ | 6847 | /* Prevent internal slot pages from being moved by fork()/COW. */ |
6848 | if (memslot->id >= KVM_USER_MEM_SLOTS) | 6848 | if (memslot->id >= KVM_USER_MEM_SLOTS) |
6849 | map_flags = MAP_SHARED | MAP_ANONYMOUS; | 6849 | map_flags = MAP_SHARED | MAP_ANONYMOUS; |
6850 | 6850 | ||
6851 | /*To keep backward compatibility with older userspace, | 6851 | /*To keep backward compatibility with older userspace, |
6852 | *x86 needs to handle !user_alloc case. | 6852 | *x86 needs to handle !user_alloc case. |
6853 | */ | 6853 | */ |
6854 | if (!user_alloc) { | 6854 | if (!user_alloc) { |
6855 | if (npages && !old.npages) { | 6855 | if (npages && !old.npages) { |
6856 | unsigned long userspace_addr; | 6856 | unsigned long userspace_addr; |
6857 | 6857 | ||
6858 | userspace_addr = vm_mmap(NULL, 0, | 6858 | userspace_addr = vm_mmap(NULL, 0, |
6859 | npages * PAGE_SIZE, | 6859 | npages * PAGE_SIZE, |
6860 | PROT_READ | PROT_WRITE, | 6860 | PROT_READ | PROT_WRITE, |
6861 | map_flags, | 6861 | map_flags, |
6862 | 0); | 6862 | 0); |
6863 | 6863 | ||
6864 | if (IS_ERR((void *)userspace_addr)) | 6864 | if (IS_ERR((void *)userspace_addr)) |
6865 | return PTR_ERR((void *)userspace_addr); | 6865 | return PTR_ERR((void *)userspace_addr); |
6866 | 6866 | ||
6867 | memslot->userspace_addr = userspace_addr; | 6867 | memslot->userspace_addr = userspace_addr; |
6868 | } | 6868 | } |
6869 | } | 6869 | } |
6870 | 6870 | ||
6871 | 6871 | ||
6872 | return 0; | 6872 | return 0; |
6873 | } | 6873 | } |
6874 | 6874 | ||
6875 | void kvm_arch_commit_memory_region(struct kvm *kvm, | 6875 | void kvm_arch_commit_memory_region(struct kvm *kvm, |
6876 | struct kvm_userspace_memory_region *mem, | 6876 | struct kvm_userspace_memory_region *mem, |
6877 | struct kvm_memory_slot old, | 6877 | struct kvm_memory_slot old, |
6878 | bool user_alloc) | 6878 | bool user_alloc) |
6879 | { | 6879 | { |
6880 | 6880 | ||
6881 | int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT; | 6881 | int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT; |
6882 | 6882 | ||
6883 | if (!user_alloc && !old.user_alloc && old.npages && !npages) { | 6883 | if (!user_alloc && !old.user_alloc && old.npages && !npages) { |
6884 | int ret; | 6884 | int ret; |
6885 | 6885 | ||
6886 | ret = vm_munmap(old.userspace_addr, | 6886 | ret = vm_munmap(old.userspace_addr, |
6887 | old.npages * PAGE_SIZE); | 6887 | old.npages * PAGE_SIZE); |
6888 | if (ret < 0) | 6888 | if (ret < 0) |
6889 | printk(KERN_WARNING | 6889 | printk(KERN_WARNING |
6890 | "kvm_vm_ioctl_set_memory_region: " | 6890 | "kvm_vm_ioctl_set_memory_region: " |
6891 | "failed to munmap memory\n"); | 6891 | "failed to munmap memory\n"); |
6892 | } | 6892 | } |
6893 | 6893 | ||
6894 | if (!kvm->arch.n_requested_mmu_pages) | 6894 | if (!kvm->arch.n_requested_mmu_pages) |
6895 | nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm); | 6895 | nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm); |
6896 | 6896 | ||
6897 | spin_lock(&kvm->mmu_lock); | 6897 | spin_lock(&kvm->mmu_lock); |
6898 | if (nr_mmu_pages) | 6898 | if (nr_mmu_pages) |
6899 | kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); | 6899 | kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); |
6900 | kvm_mmu_slot_remove_write_access(kvm, mem->slot); | 6900 | /* |
6901 | * Write protect all pages for dirty logging. | ||
6902 | * Existing largepage mappings are destroyed here and new ones will | ||
6903 | * not be created until the end of the logging. | ||
6904 | */ | ||
6905 | if (npages && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES)) | ||
6906 | kvm_mmu_slot_remove_write_access(kvm, mem->slot); | ||
6901 | spin_unlock(&kvm->mmu_lock); | 6907 | spin_unlock(&kvm->mmu_lock); |
6902 | /* | 6908 | /* |
6903 | * If memory slot is created, or moved, we need to clear all | 6909 | * If memory slot is created, or moved, we need to clear all |
6904 | * mmio sptes. | 6910 | * mmio sptes. |
6905 | */ | 6911 | */ |
6906 | if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT) { | 6912 | if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT) { |
6907 | kvm_mmu_zap_all(kvm); | 6913 | kvm_mmu_zap_all(kvm); |
6908 | kvm_reload_remote_mmus(kvm); | 6914 | kvm_reload_remote_mmus(kvm); |
6909 | } | 6915 | } |
6910 | } | 6916 | } |
6911 | 6917 | ||
6912 | void kvm_arch_flush_shadow_all(struct kvm *kvm) | 6918 | void kvm_arch_flush_shadow_all(struct kvm *kvm) |
6913 | { | 6919 | { |
6914 | kvm_mmu_zap_all(kvm); | 6920 | kvm_mmu_zap_all(kvm); |
6915 | kvm_reload_remote_mmus(kvm); | 6921 | kvm_reload_remote_mmus(kvm); |
6916 | } | 6922 | } |
6917 | 6923 | ||
6918 | void kvm_arch_flush_shadow_memslot(struct kvm *kvm, | 6924 | void kvm_arch_flush_shadow_memslot(struct kvm *kvm, |
6919 | struct kvm_memory_slot *slot) | 6925 | struct kvm_memory_slot *slot) |
6920 | { | 6926 | { |
6921 | kvm_arch_flush_shadow_all(kvm); | 6927 | kvm_arch_flush_shadow_all(kvm); |
6922 | } | 6928 | } |
6923 | 6929 | ||
6924 | int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) | 6930 | int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) |
6925 | { | 6931 | { |
6926 | return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && | 6932 | return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && |
6927 | !vcpu->arch.apf.halted) | 6933 | !vcpu->arch.apf.halted) |
6928 | || !list_empty_careful(&vcpu->async_pf.done) | 6934 | || !list_empty_careful(&vcpu->async_pf.done) |
6929 | || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED | 6935 | || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED |
6930 | || atomic_read(&vcpu->arch.nmi_queued) || | 6936 | || atomic_read(&vcpu->arch.nmi_queued) || |
6931 | (kvm_arch_interrupt_allowed(vcpu) && | 6937 | (kvm_arch_interrupt_allowed(vcpu) && |
6932 | kvm_cpu_has_interrupt(vcpu)); | 6938 | kvm_cpu_has_interrupt(vcpu)); |
6933 | } | 6939 | } |
6934 | 6940 | ||
6935 | int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) | 6941 | int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) |
6936 | { | 6942 | { |
6937 | return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; | 6943 | return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; |
6938 | } | 6944 | } |
6939 | 6945 | ||
6940 | int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) | 6946 | int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) |
6941 | { | 6947 | { |
6942 | return kvm_x86_ops->interrupt_allowed(vcpu); | 6948 | return kvm_x86_ops->interrupt_allowed(vcpu); |
6943 | } | 6949 | } |
6944 | 6950 | ||
6945 | bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) | 6951 | bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) |
6946 | { | 6952 | { |
6947 | unsigned long current_rip = kvm_rip_read(vcpu) + | 6953 | unsigned long current_rip = kvm_rip_read(vcpu) + |
6948 | get_segment_base(vcpu, VCPU_SREG_CS); | 6954 | get_segment_base(vcpu, VCPU_SREG_CS); |
6949 | 6955 | ||
6950 | return current_rip == linear_rip; | 6956 | return current_rip == linear_rip; |
6951 | } | 6957 | } |
6952 | EXPORT_SYMBOL_GPL(kvm_is_linear_rip); | 6958 | EXPORT_SYMBOL_GPL(kvm_is_linear_rip); |
6953 | 6959 | ||
6954 | unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) | 6960 | unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) |
6955 | { | 6961 | { |
6956 | unsigned long rflags; | 6962 | unsigned long rflags; |
6957 | 6963 | ||
6958 | rflags = kvm_x86_ops->get_rflags(vcpu); | 6964 | rflags = kvm_x86_ops->get_rflags(vcpu); |
6959 | if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) | 6965 | if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) |
6960 | rflags &= ~X86_EFLAGS_TF; | 6966 | rflags &= ~X86_EFLAGS_TF; |
6961 | return rflags; | 6967 | return rflags; |
6962 | } | 6968 | } |
6963 | EXPORT_SYMBOL_GPL(kvm_get_rflags); | 6969 | EXPORT_SYMBOL_GPL(kvm_get_rflags); |
6964 | 6970 | ||
6965 | void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) | 6971 | void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) |
6966 | { | 6972 | { |
6967 | if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && | 6973 | if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && |
6968 | kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) | 6974 | kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) |
6969 | rflags |= X86_EFLAGS_TF; | 6975 | rflags |= X86_EFLAGS_TF; |
6970 | kvm_x86_ops->set_rflags(vcpu, rflags); | 6976 | kvm_x86_ops->set_rflags(vcpu, rflags); |
6971 | kvm_make_request(KVM_REQ_EVENT, vcpu); | 6977 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
6972 | } | 6978 | } |
6973 | EXPORT_SYMBOL_GPL(kvm_set_rflags); | 6979 | EXPORT_SYMBOL_GPL(kvm_set_rflags); |
6974 | 6980 | ||
6975 | void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) | 6981 | void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) |
6976 | { | 6982 | { |
6977 | int r; | 6983 | int r; |
6978 | 6984 | ||
6979 | if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) || | 6985 | if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) || |
6980 | is_error_page(work->page)) | 6986 | is_error_page(work->page)) |
6981 | return; | 6987 | return; |
6982 | 6988 | ||
6983 | r = kvm_mmu_reload(vcpu); | 6989 | r = kvm_mmu_reload(vcpu); |
6984 | if (unlikely(r)) | 6990 | if (unlikely(r)) |
6985 | return; | 6991 | return; |
6986 | 6992 | ||
6987 | if (!vcpu->arch.mmu.direct_map && | 6993 | if (!vcpu->arch.mmu.direct_map && |
6988 | work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu)) | 6994 | work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu)) |
6989 | return; | 6995 | return; |
6990 | 6996 | ||
6991 | vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true); | 6997 | vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true); |
6992 | } | 6998 | } |
6993 | 6999 | ||
6994 | static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) | 7000 | static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) |
6995 | { | 7001 | { |
6996 | return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); | 7002 | return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); |
6997 | } | 7003 | } |
6998 | 7004 | ||
6999 | static inline u32 kvm_async_pf_next_probe(u32 key) | 7005 | static inline u32 kvm_async_pf_next_probe(u32 key) |
7000 | { | 7006 | { |
7001 | return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); | 7007 | return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); |
7002 | } | 7008 | } |
7003 | 7009 | ||
7004 | static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) | 7010 | static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) |
7005 | { | 7011 | { |
7006 | u32 key = kvm_async_pf_hash_fn(gfn); | 7012 | u32 key = kvm_async_pf_hash_fn(gfn); |
7007 | 7013 | ||
7008 | while (vcpu->arch.apf.gfns[key] != ~0) | 7014 | while (vcpu->arch.apf.gfns[key] != ~0) |
7009 | key = kvm_async_pf_next_probe(key); | 7015 | key = kvm_async_pf_next_probe(key); |
7010 | 7016 | ||
7011 | vcpu->arch.apf.gfns[key] = gfn; | 7017 | vcpu->arch.apf.gfns[key] = gfn; |
7012 | } | 7018 | } |
7013 | 7019 | ||
7014 | static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) | 7020 | static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) |
7015 | { | 7021 | { |
7016 | int i; | 7022 | int i; |
7017 | u32 key = kvm_async_pf_hash_fn(gfn); | 7023 | u32 key = kvm_async_pf_hash_fn(gfn); |
7018 | 7024 | ||
7019 | for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && | 7025 | for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && |
7020 | (vcpu->arch.apf.gfns[key] != gfn && | 7026 | (vcpu->arch.apf.gfns[key] != gfn && |
7021 | vcpu->arch.apf.gfns[key] != ~0); i++) | 7027 | vcpu->arch.apf.gfns[key] != ~0); i++) |
7022 | key = kvm_async_pf_next_probe(key); | 7028 | key = kvm_async_pf_next_probe(key); |
7023 | 7029 | ||
7024 | return key; | 7030 | return key; |
7025 | } | 7031 | } |
7026 | 7032 | ||
7027 | bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) | 7033 | bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) |
7028 | { | 7034 | { |
7029 | return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; | 7035 | return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; |
7030 | } | 7036 | } |
7031 | 7037 | ||
7032 | static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) | 7038 | static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) |
7033 | { | 7039 | { |
7034 | u32 i, j, k; | 7040 | u32 i, j, k; |
7035 | 7041 | ||
7036 | i = j = kvm_async_pf_gfn_slot(vcpu, gfn); | 7042 | i = j = kvm_async_pf_gfn_slot(vcpu, gfn); |
7037 | while (true) { | 7043 | while (true) { |
7038 | vcpu->arch.apf.gfns[i] = ~0; | 7044 | vcpu->arch.apf.gfns[i] = ~0; |
7039 | do { | 7045 | do { |
7040 | j = kvm_async_pf_next_probe(j); | 7046 | j = kvm_async_pf_next_probe(j); |
7041 | if (vcpu->arch.apf.gfns[j] == ~0) | 7047 | if (vcpu->arch.apf.gfns[j] == ~0) |
7042 | return; | 7048 | return; |
7043 | k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); | 7049 | k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); |
7044 | /* | 7050 | /* |
7045 | * k lies cyclically in ]i,j] | 7051 | * k lies cyclically in ]i,j] |
7046 | * | i.k.j | | 7052 | * | i.k.j | |
7047 | * |....j i.k.| or |.k..j i...| | 7053 | * |....j i.k.| or |.k..j i...| |
7048 | */ | 7054 | */ |
7049 | } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); | 7055 | } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); |
7050 | vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; | 7056 | vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; |
7051 | i = j; | 7057 | i = j; |
7052 | } | 7058 | } |
7053 | } | 7059 | } |
7054 | 7060 | ||
7055 | static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) | 7061 | static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) |
7056 | { | 7062 | { |
7057 | 7063 | ||
7058 | return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val, | 7064 | return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val, |
7059 | sizeof(val)); | 7065 | sizeof(val)); |
7060 | } | 7066 | } |
7061 | 7067 | ||
7062 | void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, | 7068 | void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, |
7063 | struct kvm_async_pf *work) | 7069 | struct kvm_async_pf *work) |
7064 | { | 7070 | { |
7065 | struct x86_exception fault; | 7071 | struct x86_exception fault; |
7066 | 7072 | ||
7067 | trace_kvm_async_pf_not_present(work->arch.token, work->gva); | 7073 | trace_kvm_async_pf_not_present(work->arch.token, work->gva); |
7068 | kvm_add_async_pf_gfn(vcpu, work->arch.gfn); | 7074 | kvm_add_async_pf_gfn(vcpu, work->arch.gfn); |
7069 | 7075 | ||
7070 | if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || | 7076 | if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || |
7071 | (vcpu->arch.apf.send_user_only && | 7077 | (vcpu->arch.apf.send_user_only && |
7072 | kvm_x86_ops->get_cpl(vcpu) == 0)) | 7078 | kvm_x86_ops->get_cpl(vcpu) == 0)) |
7073 | kvm_make_request(KVM_REQ_APF_HALT, vcpu); | 7079 | kvm_make_request(KVM_REQ_APF_HALT, vcpu); |
7074 | else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { | 7080 | else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { |
7075 | fault.vector = PF_VECTOR; | 7081 | fault.vector = PF_VECTOR; |
7076 | fault.error_code_valid = true; | 7082 | fault.error_code_valid = true; |
7077 | fault.error_code = 0; | 7083 | fault.error_code = 0; |
7078 | fault.nested_page_fault = false; | 7084 | fault.nested_page_fault = false; |
7079 | fault.address = work->arch.token; | 7085 | fault.address = work->arch.token; |
7080 | kvm_inject_page_fault(vcpu, &fault); | 7086 | kvm_inject_page_fault(vcpu, &fault); |
7081 | } | 7087 | } |
7082 | } | 7088 | } |
7083 | 7089 | ||
7084 | void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, | 7090 | void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, |
7085 | struct kvm_async_pf *work) | 7091 | struct kvm_async_pf *work) |
7086 | { | 7092 | { |
7087 | struct x86_exception fault; | 7093 | struct x86_exception fault; |
7088 | 7094 | ||
7089 | trace_kvm_async_pf_ready(work->arch.token, work->gva); | 7095 | trace_kvm_async_pf_ready(work->arch.token, work->gva); |
7090 | if (is_error_page(work->page)) | 7096 | if (is_error_page(work->page)) |
7091 | work->arch.token = ~0; /* broadcast wakeup */ | 7097 | work->arch.token = ~0; /* broadcast wakeup */ |
7092 | else | 7098 | else |
7093 | kvm_del_async_pf_gfn(vcpu, work->arch.gfn); | 7099 | kvm_del_async_pf_gfn(vcpu, work->arch.gfn); |
7094 | 7100 | ||
7095 | if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) && | 7101 | if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) && |
7096 | !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { | 7102 | !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { |
7097 | fault.vector = PF_VECTOR; | 7103 | fault.vector = PF_VECTOR; |
7098 | fault.error_code_valid = true; | 7104 | fault.error_code_valid = true; |
7099 | fault.error_code = 0; | 7105 | fault.error_code = 0; |
7100 | fault.nested_page_fault = false; | 7106 | fault.nested_page_fault = false; |
7101 | fault.address = work->arch.token; | 7107 | fault.address = work->arch.token; |
7102 | kvm_inject_page_fault(vcpu, &fault); | 7108 | kvm_inject_page_fault(vcpu, &fault); |
7103 | } | 7109 | } |
7104 | vcpu->arch.apf.halted = false; | 7110 | vcpu->arch.apf.halted = false; |
7105 | vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; | 7111 | vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; |
7106 | } | 7112 | } |
7107 | 7113 | ||
7108 | bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) | 7114 | bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) |
7109 | { | 7115 | { |
7110 | if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) | 7116 | if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) |
7111 | return true; | 7117 | return true; |
7112 | else | 7118 | else |
7113 | return !kvm_event_needs_reinjection(vcpu) && | 7119 | return !kvm_event_needs_reinjection(vcpu) && |
7114 | kvm_x86_ops->interrupt_allowed(vcpu); | 7120 | kvm_x86_ops->interrupt_allowed(vcpu); |
7115 | } | 7121 | } |
7116 | 7122 | ||
7117 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); | 7123 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); |
7118 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); | 7124 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); |
7119 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); | 7125 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); |
7120 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); | 7126 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); |
7121 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); | 7127 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); |
7122 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); | 7128 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); |
7123 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); | 7129 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); |
7124 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); | 7130 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); |
7125 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); | 7131 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); |
7126 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); | 7132 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); |
7127 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); | 7133 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); |
7128 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); | 7134 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); |
7129 | 7135 |
virt/kvm/kvm_main.c
1 | /* | 1 | /* |
2 | * Kernel-based Virtual Machine driver for Linux | 2 | * Kernel-based Virtual Machine driver for Linux |
3 | * | 3 | * |
4 | * This module enables machines with Intel VT-x extensions to run virtual | 4 | * This module enables machines with Intel VT-x extensions to run virtual |
5 | * machines without emulation or binary translation. | 5 | * machines without emulation or binary translation. |
6 | * | 6 | * |
7 | * Copyright (C) 2006 Qumranet, Inc. | 7 | * Copyright (C) 2006 Qumranet, Inc. |
8 | * Copyright 2010 Red Hat, Inc. and/or its affiliates. | 8 | * Copyright 2010 Red Hat, Inc. and/or its affiliates. |
9 | * | 9 | * |
10 | * Authors: | 10 | * Authors: |
11 | * Avi Kivity <avi@qumranet.com> | 11 | * Avi Kivity <avi@qumranet.com> |
12 | * Yaniv Kamay <yaniv@qumranet.com> | 12 | * Yaniv Kamay <yaniv@qumranet.com> |
13 | * | 13 | * |
14 | * This work is licensed under the terms of the GNU GPL, version 2. See | 14 | * This work is licensed under the terms of the GNU GPL, version 2. See |
15 | * the COPYING file in the top-level directory. | 15 | * the COPYING file in the top-level directory. |
16 | * | 16 | * |
17 | */ | 17 | */ |
18 | 18 | ||
19 | #include "iodev.h" | 19 | #include "iodev.h" |
20 | 20 | ||
21 | #include <linux/kvm_host.h> | 21 | #include <linux/kvm_host.h> |
22 | #include <linux/kvm.h> | 22 | #include <linux/kvm.h> |
23 | #include <linux/module.h> | 23 | #include <linux/module.h> |
24 | #include <linux/errno.h> | 24 | #include <linux/errno.h> |
25 | #include <linux/percpu.h> | 25 | #include <linux/percpu.h> |
26 | #include <linux/mm.h> | 26 | #include <linux/mm.h> |
27 | #include <linux/miscdevice.h> | 27 | #include <linux/miscdevice.h> |
28 | #include <linux/vmalloc.h> | 28 | #include <linux/vmalloc.h> |
29 | #include <linux/reboot.h> | 29 | #include <linux/reboot.h> |
30 | #include <linux/debugfs.h> | 30 | #include <linux/debugfs.h> |
31 | #include <linux/highmem.h> | 31 | #include <linux/highmem.h> |
32 | #include <linux/file.h> | 32 | #include <linux/file.h> |
33 | #include <linux/syscore_ops.h> | 33 | #include <linux/syscore_ops.h> |
34 | #include <linux/cpu.h> | 34 | #include <linux/cpu.h> |
35 | #include <linux/sched.h> | 35 | #include <linux/sched.h> |
36 | #include <linux/cpumask.h> | 36 | #include <linux/cpumask.h> |
37 | #include <linux/smp.h> | 37 | #include <linux/smp.h> |
38 | #include <linux/anon_inodes.h> | 38 | #include <linux/anon_inodes.h> |
39 | #include <linux/profile.h> | 39 | #include <linux/profile.h> |
40 | #include <linux/kvm_para.h> | 40 | #include <linux/kvm_para.h> |
41 | #include <linux/pagemap.h> | 41 | #include <linux/pagemap.h> |
42 | #include <linux/mman.h> | 42 | #include <linux/mman.h> |
43 | #include <linux/swap.h> | 43 | #include <linux/swap.h> |
44 | #include <linux/bitops.h> | 44 | #include <linux/bitops.h> |
45 | #include <linux/spinlock.h> | 45 | #include <linux/spinlock.h> |
46 | #include <linux/compat.h> | 46 | #include <linux/compat.h> |
47 | #include <linux/srcu.h> | 47 | #include <linux/srcu.h> |
48 | #include <linux/hugetlb.h> | 48 | #include <linux/hugetlb.h> |
49 | #include <linux/slab.h> | 49 | #include <linux/slab.h> |
50 | #include <linux/sort.h> | 50 | #include <linux/sort.h> |
51 | #include <linux/bsearch.h> | 51 | #include <linux/bsearch.h> |
52 | 52 | ||
53 | #include <asm/processor.h> | 53 | #include <asm/processor.h> |
54 | #include <asm/io.h> | 54 | #include <asm/io.h> |
55 | #include <asm/uaccess.h> | 55 | #include <asm/uaccess.h> |
56 | #include <asm/pgtable.h> | 56 | #include <asm/pgtable.h> |
57 | 57 | ||
58 | #include "coalesced_mmio.h" | 58 | #include "coalesced_mmio.h" |
59 | #include "async_pf.h" | 59 | #include "async_pf.h" |
60 | 60 | ||
61 | #define CREATE_TRACE_POINTS | 61 | #define CREATE_TRACE_POINTS |
62 | #include <trace/events/kvm.h> | 62 | #include <trace/events/kvm.h> |
63 | 63 | ||
64 | MODULE_AUTHOR("Qumranet"); | 64 | MODULE_AUTHOR("Qumranet"); |
65 | MODULE_LICENSE("GPL"); | 65 | MODULE_LICENSE("GPL"); |
66 | 66 | ||
67 | /* | 67 | /* |
68 | * Ordering of locks: | 68 | * Ordering of locks: |
69 | * | 69 | * |
70 | * kvm->lock --> kvm->slots_lock --> kvm->irq_lock | 70 | * kvm->lock --> kvm->slots_lock --> kvm->irq_lock |
71 | */ | 71 | */ |
72 | 72 | ||
73 | DEFINE_RAW_SPINLOCK(kvm_lock); | 73 | DEFINE_RAW_SPINLOCK(kvm_lock); |
74 | LIST_HEAD(vm_list); | 74 | LIST_HEAD(vm_list); |
75 | 75 | ||
76 | static cpumask_var_t cpus_hardware_enabled; | 76 | static cpumask_var_t cpus_hardware_enabled; |
77 | static int kvm_usage_count = 0; | 77 | static int kvm_usage_count = 0; |
78 | static atomic_t hardware_enable_failed; | 78 | static atomic_t hardware_enable_failed; |
79 | 79 | ||
80 | struct kmem_cache *kvm_vcpu_cache; | 80 | struct kmem_cache *kvm_vcpu_cache; |
81 | EXPORT_SYMBOL_GPL(kvm_vcpu_cache); | 81 | EXPORT_SYMBOL_GPL(kvm_vcpu_cache); |
82 | 82 | ||
83 | static __read_mostly struct preempt_ops kvm_preempt_ops; | 83 | static __read_mostly struct preempt_ops kvm_preempt_ops; |
84 | 84 | ||
85 | struct dentry *kvm_debugfs_dir; | 85 | struct dentry *kvm_debugfs_dir; |
86 | 86 | ||
87 | static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, | 87 | static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, |
88 | unsigned long arg); | 88 | unsigned long arg); |
89 | #ifdef CONFIG_COMPAT | 89 | #ifdef CONFIG_COMPAT |
90 | static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, | 90 | static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, |
91 | unsigned long arg); | 91 | unsigned long arg); |
92 | #endif | 92 | #endif |
93 | static int hardware_enable_all(void); | 93 | static int hardware_enable_all(void); |
94 | static void hardware_disable_all(void); | 94 | static void hardware_disable_all(void); |
95 | 95 | ||
96 | static void kvm_io_bus_destroy(struct kvm_io_bus *bus); | 96 | static void kvm_io_bus_destroy(struct kvm_io_bus *bus); |
97 | 97 | ||
98 | bool kvm_rebooting; | 98 | bool kvm_rebooting; |
99 | EXPORT_SYMBOL_GPL(kvm_rebooting); | 99 | EXPORT_SYMBOL_GPL(kvm_rebooting); |
100 | 100 | ||
101 | static bool largepages_enabled = true; | 101 | static bool largepages_enabled = true; |
102 | 102 | ||
103 | bool kvm_is_mmio_pfn(pfn_t pfn) | 103 | bool kvm_is_mmio_pfn(pfn_t pfn) |
104 | { | 104 | { |
105 | if (pfn_valid(pfn)) { | 105 | if (pfn_valid(pfn)) { |
106 | int reserved; | 106 | int reserved; |
107 | struct page *tail = pfn_to_page(pfn); | 107 | struct page *tail = pfn_to_page(pfn); |
108 | struct page *head = compound_trans_head(tail); | 108 | struct page *head = compound_trans_head(tail); |
109 | reserved = PageReserved(head); | 109 | reserved = PageReserved(head); |
110 | if (head != tail) { | 110 | if (head != tail) { |
111 | /* | 111 | /* |
112 | * "head" is not a dangling pointer | 112 | * "head" is not a dangling pointer |
113 | * (compound_trans_head takes care of that) | 113 | * (compound_trans_head takes care of that) |
114 | * but the hugepage may have been splitted | 114 | * but the hugepage may have been splitted |
115 | * from under us (and we may not hold a | 115 | * from under us (and we may not hold a |
116 | * reference count on the head page so it can | 116 | * reference count on the head page so it can |
117 | * be reused before we run PageReferenced), so | 117 | * be reused before we run PageReferenced), so |
118 | * we've to check PageTail before returning | 118 | * we've to check PageTail before returning |
119 | * what we just read. | 119 | * what we just read. |
120 | */ | 120 | */ |
121 | smp_rmb(); | 121 | smp_rmb(); |
122 | if (PageTail(tail)) | 122 | if (PageTail(tail)) |
123 | return reserved; | 123 | return reserved; |
124 | } | 124 | } |
125 | return PageReserved(tail); | 125 | return PageReserved(tail); |
126 | } | 126 | } |
127 | 127 | ||
128 | return true; | 128 | return true; |
129 | } | 129 | } |
130 | 130 | ||
131 | /* | 131 | /* |
132 | * Switches to specified vcpu, until a matching vcpu_put() | 132 | * Switches to specified vcpu, until a matching vcpu_put() |
133 | */ | 133 | */ |
134 | int vcpu_load(struct kvm_vcpu *vcpu) | 134 | int vcpu_load(struct kvm_vcpu *vcpu) |
135 | { | 135 | { |
136 | int cpu; | 136 | int cpu; |
137 | 137 | ||
138 | if (mutex_lock_killable(&vcpu->mutex)) | 138 | if (mutex_lock_killable(&vcpu->mutex)) |
139 | return -EINTR; | 139 | return -EINTR; |
140 | if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) { | 140 | if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) { |
141 | /* The thread running this VCPU changed. */ | 141 | /* The thread running this VCPU changed. */ |
142 | struct pid *oldpid = vcpu->pid; | 142 | struct pid *oldpid = vcpu->pid; |
143 | struct pid *newpid = get_task_pid(current, PIDTYPE_PID); | 143 | struct pid *newpid = get_task_pid(current, PIDTYPE_PID); |
144 | rcu_assign_pointer(vcpu->pid, newpid); | 144 | rcu_assign_pointer(vcpu->pid, newpid); |
145 | synchronize_rcu(); | 145 | synchronize_rcu(); |
146 | put_pid(oldpid); | 146 | put_pid(oldpid); |
147 | } | 147 | } |
148 | cpu = get_cpu(); | 148 | cpu = get_cpu(); |
149 | preempt_notifier_register(&vcpu->preempt_notifier); | 149 | preempt_notifier_register(&vcpu->preempt_notifier); |
150 | kvm_arch_vcpu_load(vcpu, cpu); | 150 | kvm_arch_vcpu_load(vcpu, cpu); |
151 | put_cpu(); | 151 | put_cpu(); |
152 | return 0; | 152 | return 0; |
153 | } | 153 | } |
154 | 154 | ||
155 | void vcpu_put(struct kvm_vcpu *vcpu) | 155 | void vcpu_put(struct kvm_vcpu *vcpu) |
156 | { | 156 | { |
157 | preempt_disable(); | 157 | preempt_disable(); |
158 | kvm_arch_vcpu_put(vcpu); | 158 | kvm_arch_vcpu_put(vcpu); |
159 | preempt_notifier_unregister(&vcpu->preempt_notifier); | 159 | preempt_notifier_unregister(&vcpu->preempt_notifier); |
160 | preempt_enable(); | 160 | preempt_enable(); |
161 | mutex_unlock(&vcpu->mutex); | 161 | mutex_unlock(&vcpu->mutex); |
162 | } | 162 | } |
163 | 163 | ||
164 | static void ack_flush(void *_completed) | 164 | static void ack_flush(void *_completed) |
165 | { | 165 | { |
166 | } | 166 | } |
167 | 167 | ||
168 | static bool make_all_cpus_request(struct kvm *kvm, unsigned int req) | 168 | static bool make_all_cpus_request(struct kvm *kvm, unsigned int req) |
169 | { | 169 | { |
170 | int i, cpu, me; | 170 | int i, cpu, me; |
171 | cpumask_var_t cpus; | 171 | cpumask_var_t cpus; |
172 | bool called = true; | 172 | bool called = true; |
173 | struct kvm_vcpu *vcpu; | 173 | struct kvm_vcpu *vcpu; |
174 | 174 | ||
175 | zalloc_cpumask_var(&cpus, GFP_ATOMIC); | 175 | zalloc_cpumask_var(&cpus, GFP_ATOMIC); |
176 | 176 | ||
177 | me = get_cpu(); | 177 | me = get_cpu(); |
178 | kvm_for_each_vcpu(i, vcpu, kvm) { | 178 | kvm_for_each_vcpu(i, vcpu, kvm) { |
179 | kvm_make_request(req, vcpu); | 179 | kvm_make_request(req, vcpu); |
180 | cpu = vcpu->cpu; | 180 | cpu = vcpu->cpu; |
181 | 181 | ||
182 | /* Set ->requests bit before we read ->mode */ | 182 | /* Set ->requests bit before we read ->mode */ |
183 | smp_mb(); | 183 | smp_mb(); |
184 | 184 | ||
185 | if (cpus != NULL && cpu != -1 && cpu != me && | 185 | if (cpus != NULL && cpu != -1 && cpu != me && |
186 | kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE) | 186 | kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE) |
187 | cpumask_set_cpu(cpu, cpus); | 187 | cpumask_set_cpu(cpu, cpus); |
188 | } | 188 | } |
189 | if (unlikely(cpus == NULL)) | 189 | if (unlikely(cpus == NULL)) |
190 | smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1); | 190 | smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1); |
191 | else if (!cpumask_empty(cpus)) | 191 | else if (!cpumask_empty(cpus)) |
192 | smp_call_function_many(cpus, ack_flush, NULL, 1); | 192 | smp_call_function_many(cpus, ack_flush, NULL, 1); |
193 | else | 193 | else |
194 | called = false; | 194 | called = false; |
195 | put_cpu(); | 195 | put_cpu(); |
196 | free_cpumask_var(cpus); | 196 | free_cpumask_var(cpus); |
197 | return called; | 197 | return called; |
198 | } | 198 | } |
199 | 199 | ||
200 | void kvm_flush_remote_tlbs(struct kvm *kvm) | 200 | void kvm_flush_remote_tlbs(struct kvm *kvm) |
201 | { | 201 | { |
202 | long dirty_count = kvm->tlbs_dirty; | 202 | long dirty_count = kvm->tlbs_dirty; |
203 | 203 | ||
204 | smp_mb(); | 204 | smp_mb(); |
205 | if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) | 205 | if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) |
206 | ++kvm->stat.remote_tlb_flush; | 206 | ++kvm->stat.remote_tlb_flush; |
207 | cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); | 207 | cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); |
208 | } | 208 | } |
209 | 209 | ||
210 | void kvm_reload_remote_mmus(struct kvm *kvm) | 210 | void kvm_reload_remote_mmus(struct kvm *kvm) |
211 | { | 211 | { |
212 | make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); | 212 | make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); |
213 | } | 213 | } |
214 | 214 | ||
215 | void kvm_make_mclock_inprogress_request(struct kvm *kvm) | 215 | void kvm_make_mclock_inprogress_request(struct kvm *kvm) |
216 | { | 216 | { |
217 | make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); | 217 | make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); |
218 | } | 218 | } |
219 | 219 | ||
220 | int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) | 220 | int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) |
221 | { | 221 | { |
222 | struct page *page; | 222 | struct page *page; |
223 | int r; | 223 | int r; |
224 | 224 | ||
225 | mutex_init(&vcpu->mutex); | 225 | mutex_init(&vcpu->mutex); |
226 | vcpu->cpu = -1; | 226 | vcpu->cpu = -1; |
227 | vcpu->kvm = kvm; | 227 | vcpu->kvm = kvm; |
228 | vcpu->vcpu_id = id; | 228 | vcpu->vcpu_id = id; |
229 | vcpu->pid = NULL; | 229 | vcpu->pid = NULL; |
230 | init_waitqueue_head(&vcpu->wq); | 230 | init_waitqueue_head(&vcpu->wq); |
231 | kvm_async_pf_vcpu_init(vcpu); | 231 | kvm_async_pf_vcpu_init(vcpu); |
232 | 232 | ||
233 | page = alloc_page(GFP_KERNEL | __GFP_ZERO); | 233 | page = alloc_page(GFP_KERNEL | __GFP_ZERO); |
234 | if (!page) { | 234 | if (!page) { |
235 | r = -ENOMEM; | 235 | r = -ENOMEM; |
236 | goto fail; | 236 | goto fail; |
237 | } | 237 | } |
238 | vcpu->run = page_address(page); | 238 | vcpu->run = page_address(page); |
239 | 239 | ||
240 | kvm_vcpu_set_in_spin_loop(vcpu, false); | 240 | kvm_vcpu_set_in_spin_loop(vcpu, false); |
241 | kvm_vcpu_set_dy_eligible(vcpu, false); | 241 | kvm_vcpu_set_dy_eligible(vcpu, false); |
242 | 242 | ||
243 | r = kvm_arch_vcpu_init(vcpu); | 243 | r = kvm_arch_vcpu_init(vcpu); |
244 | if (r < 0) | 244 | if (r < 0) |
245 | goto fail_free_run; | 245 | goto fail_free_run; |
246 | return 0; | 246 | return 0; |
247 | 247 | ||
248 | fail_free_run: | 248 | fail_free_run: |
249 | free_page((unsigned long)vcpu->run); | 249 | free_page((unsigned long)vcpu->run); |
250 | fail: | 250 | fail: |
251 | return r; | 251 | return r; |
252 | } | 252 | } |
253 | EXPORT_SYMBOL_GPL(kvm_vcpu_init); | 253 | EXPORT_SYMBOL_GPL(kvm_vcpu_init); |
254 | 254 | ||
255 | void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) | 255 | void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) |
256 | { | 256 | { |
257 | put_pid(vcpu->pid); | 257 | put_pid(vcpu->pid); |
258 | kvm_arch_vcpu_uninit(vcpu); | 258 | kvm_arch_vcpu_uninit(vcpu); |
259 | free_page((unsigned long)vcpu->run); | 259 | free_page((unsigned long)vcpu->run); |
260 | } | 260 | } |
261 | EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); | 261 | EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); |
262 | 262 | ||
263 | #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) | 263 | #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) |
264 | static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) | 264 | static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) |
265 | { | 265 | { |
266 | return container_of(mn, struct kvm, mmu_notifier); | 266 | return container_of(mn, struct kvm, mmu_notifier); |
267 | } | 267 | } |
268 | 268 | ||
269 | static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn, | 269 | static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn, |
270 | struct mm_struct *mm, | 270 | struct mm_struct *mm, |
271 | unsigned long address) | 271 | unsigned long address) |
272 | { | 272 | { |
273 | struct kvm *kvm = mmu_notifier_to_kvm(mn); | 273 | struct kvm *kvm = mmu_notifier_to_kvm(mn); |
274 | int need_tlb_flush, idx; | 274 | int need_tlb_flush, idx; |
275 | 275 | ||
276 | /* | 276 | /* |
277 | * When ->invalidate_page runs, the linux pte has been zapped | 277 | * When ->invalidate_page runs, the linux pte has been zapped |
278 | * already but the page is still allocated until | 278 | * already but the page is still allocated until |
279 | * ->invalidate_page returns. So if we increase the sequence | 279 | * ->invalidate_page returns. So if we increase the sequence |
280 | * here the kvm page fault will notice if the spte can't be | 280 | * here the kvm page fault will notice if the spte can't be |
281 | * established because the page is going to be freed. If | 281 | * established because the page is going to be freed. If |
282 | * instead the kvm page fault establishes the spte before | 282 | * instead the kvm page fault establishes the spte before |
283 | * ->invalidate_page runs, kvm_unmap_hva will release it | 283 | * ->invalidate_page runs, kvm_unmap_hva will release it |
284 | * before returning. | 284 | * before returning. |
285 | * | 285 | * |
286 | * The sequence increase only need to be seen at spin_unlock | 286 | * The sequence increase only need to be seen at spin_unlock |
287 | * time, and not at spin_lock time. | 287 | * time, and not at spin_lock time. |
288 | * | 288 | * |
289 | * Increasing the sequence after the spin_unlock would be | 289 | * Increasing the sequence after the spin_unlock would be |
290 | * unsafe because the kvm page fault could then establish the | 290 | * unsafe because the kvm page fault could then establish the |
291 | * pte after kvm_unmap_hva returned, without noticing the page | 291 | * pte after kvm_unmap_hva returned, without noticing the page |
292 | * is going to be freed. | 292 | * is going to be freed. |
293 | */ | 293 | */ |
294 | idx = srcu_read_lock(&kvm->srcu); | 294 | idx = srcu_read_lock(&kvm->srcu); |
295 | spin_lock(&kvm->mmu_lock); | 295 | spin_lock(&kvm->mmu_lock); |
296 | 296 | ||
297 | kvm->mmu_notifier_seq++; | 297 | kvm->mmu_notifier_seq++; |
298 | need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty; | 298 | need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty; |
299 | /* we've to flush the tlb before the pages can be freed */ | 299 | /* we've to flush the tlb before the pages can be freed */ |
300 | if (need_tlb_flush) | 300 | if (need_tlb_flush) |
301 | kvm_flush_remote_tlbs(kvm); | 301 | kvm_flush_remote_tlbs(kvm); |
302 | 302 | ||
303 | spin_unlock(&kvm->mmu_lock); | 303 | spin_unlock(&kvm->mmu_lock); |
304 | srcu_read_unlock(&kvm->srcu, idx); | 304 | srcu_read_unlock(&kvm->srcu, idx); |
305 | } | 305 | } |
306 | 306 | ||
307 | static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, | 307 | static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, |
308 | struct mm_struct *mm, | 308 | struct mm_struct *mm, |
309 | unsigned long address, | 309 | unsigned long address, |
310 | pte_t pte) | 310 | pte_t pte) |
311 | { | 311 | { |
312 | struct kvm *kvm = mmu_notifier_to_kvm(mn); | 312 | struct kvm *kvm = mmu_notifier_to_kvm(mn); |
313 | int idx; | 313 | int idx; |
314 | 314 | ||
315 | idx = srcu_read_lock(&kvm->srcu); | 315 | idx = srcu_read_lock(&kvm->srcu); |
316 | spin_lock(&kvm->mmu_lock); | 316 | spin_lock(&kvm->mmu_lock); |
317 | kvm->mmu_notifier_seq++; | 317 | kvm->mmu_notifier_seq++; |
318 | kvm_set_spte_hva(kvm, address, pte); | 318 | kvm_set_spte_hva(kvm, address, pte); |
319 | spin_unlock(&kvm->mmu_lock); | 319 | spin_unlock(&kvm->mmu_lock); |
320 | srcu_read_unlock(&kvm->srcu, idx); | 320 | srcu_read_unlock(&kvm->srcu, idx); |
321 | } | 321 | } |
322 | 322 | ||
323 | static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, | 323 | static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, |
324 | struct mm_struct *mm, | 324 | struct mm_struct *mm, |
325 | unsigned long start, | 325 | unsigned long start, |
326 | unsigned long end) | 326 | unsigned long end) |
327 | { | 327 | { |
328 | struct kvm *kvm = mmu_notifier_to_kvm(mn); | 328 | struct kvm *kvm = mmu_notifier_to_kvm(mn); |
329 | int need_tlb_flush = 0, idx; | 329 | int need_tlb_flush = 0, idx; |
330 | 330 | ||
331 | idx = srcu_read_lock(&kvm->srcu); | 331 | idx = srcu_read_lock(&kvm->srcu); |
332 | spin_lock(&kvm->mmu_lock); | 332 | spin_lock(&kvm->mmu_lock); |
333 | /* | 333 | /* |
334 | * The count increase must become visible at unlock time as no | 334 | * The count increase must become visible at unlock time as no |
335 | * spte can be established without taking the mmu_lock and | 335 | * spte can be established without taking the mmu_lock and |
336 | * count is also read inside the mmu_lock critical section. | 336 | * count is also read inside the mmu_lock critical section. |
337 | */ | 337 | */ |
338 | kvm->mmu_notifier_count++; | 338 | kvm->mmu_notifier_count++; |
339 | need_tlb_flush = kvm_unmap_hva_range(kvm, start, end); | 339 | need_tlb_flush = kvm_unmap_hva_range(kvm, start, end); |
340 | need_tlb_flush |= kvm->tlbs_dirty; | 340 | need_tlb_flush |= kvm->tlbs_dirty; |
341 | /* we've to flush the tlb before the pages can be freed */ | 341 | /* we've to flush the tlb before the pages can be freed */ |
342 | if (need_tlb_flush) | 342 | if (need_tlb_flush) |
343 | kvm_flush_remote_tlbs(kvm); | 343 | kvm_flush_remote_tlbs(kvm); |
344 | 344 | ||
345 | spin_unlock(&kvm->mmu_lock); | 345 | spin_unlock(&kvm->mmu_lock); |
346 | srcu_read_unlock(&kvm->srcu, idx); | 346 | srcu_read_unlock(&kvm->srcu, idx); |
347 | } | 347 | } |
348 | 348 | ||
349 | static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, | 349 | static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, |
350 | struct mm_struct *mm, | 350 | struct mm_struct *mm, |
351 | unsigned long start, | 351 | unsigned long start, |
352 | unsigned long end) | 352 | unsigned long end) |
353 | { | 353 | { |
354 | struct kvm *kvm = mmu_notifier_to_kvm(mn); | 354 | struct kvm *kvm = mmu_notifier_to_kvm(mn); |
355 | 355 | ||
356 | spin_lock(&kvm->mmu_lock); | 356 | spin_lock(&kvm->mmu_lock); |
357 | /* | 357 | /* |
358 | * This sequence increase will notify the kvm page fault that | 358 | * This sequence increase will notify the kvm page fault that |
359 | * the page that is going to be mapped in the spte could have | 359 | * the page that is going to be mapped in the spte could have |
360 | * been freed. | 360 | * been freed. |
361 | */ | 361 | */ |
362 | kvm->mmu_notifier_seq++; | 362 | kvm->mmu_notifier_seq++; |
363 | smp_wmb(); | 363 | smp_wmb(); |
364 | /* | 364 | /* |
365 | * The above sequence increase must be visible before the | 365 | * The above sequence increase must be visible before the |
366 | * below count decrease, which is ensured by the smp_wmb above | 366 | * below count decrease, which is ensured by the smp_wmb above |
367 | * in conjunction with the smp_rmb in mmu_notifier_retry(). | 367 | * in conjunction with the smp_rmb in mmu_notifier_retry(). |
368 | */ | 368 | */ |
369 | kvm->mmu_notifier_count--; | 369 | kvm->mmu_notifier_count--; |
370 | spin_unlock(&kvm->mmu_lock); | 370 | spin_unlock(&kvm->mmu_lock); |
371 | 371 | ||
372 | BUG_ON(kvm->mmu_notifier_count < 0); | 372 | BUG_ON(kvm->mmu_notifier_count < 0); |
373 | } | 373 | } |
374 | 374 | ||
375 | static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, | 375 | static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, |
376 | struct mm_struct *mm, | 376 | struct mm_struct *mm, |
377 | unsigned long address) | 377 | unsigned long address) |
378 | { | 378 | { |
379 | struct kvm *kvm = mmu_notifier_to_kvm(mn); | 379 | struct kvm *kvm = mmu_notifier_to_kvm(mn); |
380 | int young, idx; | 380 | int young, idx; |
381 | 381 | ||
382 | idx = srcu_read_lock(&kvm->srcu); | 382 | idx = srcu_read_lock(&kvm->srcu); |
383 | spin_lock(&kvm->mmu_lock); | 383 | spin_lock(&kvm->mmu_lock); |
384 | 384 | ||
385 | young = kvm_age_hva(kvm, address); | 385 | young = kvm_age_hva(kvm, address); |
386 | if (young) | 386 | if (young) |
387 | kvm_flush_remote_tlbs(kvm); | 387 | kvm_flush_remote_tlbs(kvm); |
388 | 388 | ||
389 | spin_unlock(&kvm->mmu_lock); | 389 | spin_unlock(&kvm->mmu_lock); |
390 | srcu_read_unlock(&kvm->srcu, idx); | 390 | srcu_read_unlock(&kvm->srcu, idx); |
391 | 391 | ||
392 | return young; | 392 | return young; |
393 | } | 393 | } |
394 | 394 | ||
395 | static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, | 395 | static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, |
396 | struct mm_struct *mm, | 396 | struct mm_struct *mm, |
397 | unsigned long address) | 397 | unsigned long address) |
398 | { | 398 | { |
399 | struct kvm *kvm = mmu_notifier_to_kvm(mn); | 399 | struct kvm *kvm = mmu_notifier_to_kvm(mn); |
400 | int young, idx; | 400 | int young, idx; |
401 | 401 | ||
402 | idx = srcu_read_lock(&kvm->srcu); | 402 | idx = srcu_read_lock(&kvm->srcu); |
403 | spin_lock(&kvm->mmu_lock); | 403 | spin_lock(&kvm->mmu_lock); |
404 | young = kvm_test_age_hva(kvm, address); | 404 | young = kvm_test_age_hva(kvm, address); |
405 | spin_unlock(&kvm->mmu_lock); | 405 | spin_unlock(&kvm->mmu_lock); |
406 | srcu_read_unlock(&kvm->srcu, idx); | 406 | srcu_read_unlock(&kvm->srcu, idx); |
407 | 407 | ||
408 | return young; | 408 | return young; |
409 | } | 409 | } |
410 | 410 | ||
411 | static void kvm_mmu_notifier_release(struct mmu_notifier *mn, | 411 | static void kvm_mmu_notifier_release(struct mmu_notifier *mn, |
412 | struct mm_struct *mm) | 412 | struct mm_struct *mm) |
413 | { | 413 | { |
414 | struct kvm *kvm = mmu_notifier_to_kvm(mn); | 414 | struct kvm *kvm = mmu_notifier_to_kvm(mn); |
415 | int idx; | 415 | int idx; |
416 | 416 | ||
417 | idx = srcu_read_lock(&kvm->srcu); | 417 | idx = srcu_read_lock(&kvm->srcu); |
418 | kvm_arch_flush_shadow_all(kvm); | 418 | kvm_arch_flush_shadow_all(kvm); |
419 | srcu_read_unlock(&kvm->srcu, idx); | 419 | srcu_read_unlock(&kvm->srcu, idx); |
420 | } | 420 | } |
421 | 421 | ||
422 | static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { | 422 | static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { |
423 | .invalidate_page = kvm_mmu_notifier_invalidate_page, | 423 | .invalidate_page = kvm_mmu_notifier_invalidate_page, |
424 | .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, | 424 | .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, |
425 | .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, | 425 | .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, |
426 | .clear_flush_young = kvm_mmu_notifier_clear_flush_young, | 426 | .clear_flush_young = kvm_mmu_notifier_clear_flush_young, |
427 | .test_young = kvm_mmu_notifier_test_young, | 427 | .test_young = kvm_mmu_notifier_test_young, |
428 | .change_pte = kvm_mmu_notifier_change_pte, | 428 | .change_pte = kvm_mmu_notifier_change_pte, |
429 | .release = kvm_mmu_notifier_release, | 429 | .release = kvm_mmu_notifier_release, |
430 | }; | 430 | }; |
431 | 431 | ||
432 | static int kvm_init_mmu_notifier(struct kvm *kvm) | 432 | static int kvm_init_mmu_notifier(struct kvm *kvm) |
433 | { | 433 | { |
434 | kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; | 434 | kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; |
435 | return mmu_notifier_register(&kvm->mmu_notifier, current->mm); | 435 | return mmu_notifier_register(&kvm->mmu_notifier, current->mm); |
436 | } | 436 | } |
437 | 437 | ||
438 | #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ | 438 | #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ |
439 | 439 | ||
440 | static int kvm_init_mmu_notifier(struct kvm *kvm) | 440 | static int kvm_init_mmu_notifier(struct kvm *kvm) |
441 | { | 441 | { |
442 | return 0; | 442 | return 0; |
443 | } | 443 | } |
444 | 444 | ||
445 | #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ | 445 | #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ |
446 | 446 | ||
447 | static void kvm_init_memslots_id(struct kvm *kvm) | 447 | static void kvm_init_memslots_id(struct kvm *kvm) |
448 | { | 448 | { |
449 | int i; | 449 | int i; |
450 | struct kvm_memslots *slots = kvm->memslots; | 450 | struct kvm_memslots *slots = kvm->memslots; |
451 | 451 | ||
452 | for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) | 452 | for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) |
453 | slots->id_to_index[i] = slots->memslots[i].id = i; | 453 | slots->id_to_index[i] = slots->memslots[i].id = i; |
454 | } | 454 | } |
455 | 455 | ||
456 | static struct kvm *kvm_create_vm(unsigned long type) | 456 | static struct kvm *kvm_create_vm(unsigned long type) |
457 | { | 457 | { |
458 | int r, i; | 458 | int r, i; |
459 | struct kvm *kvm = kvm_arch_alloc_vm(); | 459 | struct kvm *kvm = kvm_arch_alloc_vm(); |
460 | 460 | ||
461 | if (!kvm) | 461 | if (!kvm) |
462 | return ERR_PTR(-ENOMEM); | 462 | return ERR_PTR(-ENOMEM); |
463 | 463 | ||
464 | r = kvm_arch_init_vm(kvm, type); | 464 | r = kvm_arch_init_vm(kvm, type); |
465 | if (r) | 465 | if (r) |
466 | goto out_err_nodisable; | 466 | goto out_err_nodisable; |
467 | 467 | ||
468 | r = hardware_enable_all(); | 468 | r = hardware_enable_all(); |
469 | if (r) | 469 | if (r) |
470 | goto out_err_nodisable; | 470 | goto out_err_nodisable; |
471 | 471 | ||
472 | #ifdef CONFIG_HAVE_KVM_IRQCHIP | 472 | #ifdef CONFIG_HAVE_KVM_IRQCHIP |
473 | INIT_HLIST_HEAD(&kvm->mask_notifier_list); | 473 | INIT_HLIST_HEAD(&kvm->mask_notifier_list); |
474 | INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); | 474 | INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); |
475 | #endif | 475 | #endif |
476 | 476 | ||
477 | BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); | 477 | BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); |
478 | 478 | ||
479 | r = -ENOMEM; | 479 | r = -ENOMEM; |
480 | kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); | 480 | kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); |
481 | if (!kvm->memslots) | 481 | if (!kvm->memslots) |
482 | goto out_err_nosrcu; | 482 | goto out_err_nosrcu; |
483 | kvm_init_memslots_id(kvm); | 483 | kvm_init_memslots_id(kvm); |
484 | if (init_srcu_struct(&kvm->srcu)) | 484 | if (init_srcu_struct(&kvm->srcu)) |
485 | goto out_err_nosrcu; | 485 | goto out_err_nosrcu; |
486 | for (i = 0; i < KVM_NR_BUSES; i++) { | 486 | for (i = 0; i < KVM_NR_BUSES; i++) { |
487 | kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus), | 487 | kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus), |
488 | GFP_KERNEL); | 488 | GFP_KERNEL); |
489 | if (!kvm->buses[i]) | 489 | if (!kvm->buses[i]) |
490 | goto out_err; | 490 | goto out_err; |
491 | } | 491 | } |
492 | 492 | ||
493 | spin_lock_init(&kvm->mmu_lock); | 493 | spin_lock_init(&kvm->mmu_lock); |
494 | kvm->mm = current->mm; | 494 | kvm->mm = current->mm; |
495 | atomic_inc(&kvm->mm->mm_count); | 495 | atomic_inc(&kvm->mm->mm_count); |
496 | kvm_eventfd_init(kvm); | 496 | kvm_eventfd_init(kvm); |
497 | mutex_init(&kvm->lock); | 497 | mutex_init(&kvm->lock); |
498 | mutex_init(&kvm->irq_lock); | 498 | mutex_init(&kvm->irq_lock); |
499 | mutex_init(&kvm->slots_lock); | 499 | mutex_init(&kvm->slots_lock); |
500 | atomic_set(&kvm->users_count, 1); | 500 | atomic_set(&kvm->users_count, 1); |
501 | 501 | ||
502 | r = kvm_init_mmu_notifier(kvm); | 502 | r = kvm_init_mmu_notifier(kvm); |
503 | if (r) | 503 | if (r) |
504 | goto out_err; | 504 | goto out_err; |
505 | 505 | ||
506 | raw_spin_lock(&kvm_lock); | 506 | raw_spin_lock(&kvm_lock); |
507 | list_add(&kvm->vm_list, &vm_list); | 507 | list_add(&kvm->vm_list, &vm_list); |
508 | raw_spin_unlock(&kvm_lock); | 508 | raw_spin_unlock(&kvm_lock); |
509 | 509 | ||
510 | return kvm; | 510 | return kvm; |
511 | 511 | ||
512 | out_err: | 512 | out_err: |
513 | cleanup_srcu_struct(&kvm->srcu); | 513 | cleanup_srcu_struct(&kvm->srcu); |
514 | out_err_nosrcu: | 514 | out_err_nosrcu: |
515 | hardware_disable_all(); | 515 | hardware_disable_all(); |
516 | out_err_nodisable: | 516 | out_err_nodisable: |
517 | for (i = 0; i < KVM_NR_BUSES; i++) | 517 | for (i = 0; i < KVM_NR_BUSES; i++) |
518 | kfree(kvm->buses[i]); | 518 | kfree(kvm->buses[i]); |
519 | kfree(kvm->memslots); | 519 | kfree(kvm->memslots); |
520 | kvm_arch_free_vm(kvm); | 520 | kvm_arch_free_vm(kvm); |
521 | return ERR_PTR(r); | 521 | return ERR_PTR(r); |
522 | } | 522 | } |
523 | 523 | ||
524 | /* | 524 | /* |
525 | * Avoid using vmalloc for a small buffer. | 525 | * Avoid using vmalloc for a small buffer. |
526 | * Should not be used when the size is statically known. | 526 | * Should not be used when the size is statically known. |
527 | */ | 527 | */ |
528 | void *kvm_kvzalloc(unsigned long size) | 528 | void *kvm_kvzalloc(unsigned long size) |
529 | { | 529 | { |
530 | if (size > PAGE_SIZE) | 530 | if (size > PAGE_SIZE) |
531 | return vzalloc(size); | 531 | return vzalloc(size); |
532 | else | 532 | else |
533 | return kzalloc(size, GFP_KERNEL); | 533 | return kzalloc(size, GFP_KERNEL); |
534 | } | 534 | } |
535 | 535 | ||
536 | void kvm_kvfree(const void *addr) | 536 | void kvm_kvfree(const void *addr) |
537 | { | 537 | { |
538 | if (is_vmalloc_addr(addr)) | 538 | if (is_vmalloc_addr(addr)) |
539 | vfree(addr); | 539 | vfree(addr); |
540 | else | 540 | else |
541 | kfree(addr); | 541 | kfree(addr); |
542 | } | 542 | } |
543 | 543 | ||
544 | static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) | 544 | static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) |
545 | { | 545 | { |
546 | if (!memslot->dirty_bitmap) | 546 | if (!memslot->dirty_bitmap) |
547 | return; | 547 | return; |
548 | 548 | ||
549 | kvm_kvfree(memslot->dirty_bitmap); | 549 | kvm_kvfree(memslot->dirty_bitmap); |
550 | memslot->dirty_bitmap = NULL; | 550 | memslot->dirty_bitmap = NULL; |
551 | } | 551 | } |
552 | 552 | ||
553 | /* | 553 | /* |
554 | * Free any memory in @free but not in @dont. | 554 | * Free any memory in @free but not in @dont. |
555 | */ | 555 | */ |
556 | static void kvm_free_physmem_slot(struct kvm_memory_slot *free, | 556 | static void kvm_free_physmem_slot(struct kvm_memory_slot *free, |
557 | struct kvm_memory_slot *dont) | 557 | struct kvm_memory_slot *dont) |
558 | { | 558 | { |
559 | if (!dont || free->dirty_bitmap != dont->dirty_bitmap) | 559 | if (!dont || free->dirty_bitmap != dont->dirty_bitmap) |
560 | kvm_destroy_dirty_bitmap(free); | 560 | kvm_destroy_dirty_bitmap(free); |
561 | 561 | ||
562 | kvm_arch_free_memslot(free, dont); | 562 | kvm_arch_free_memslot(free, dont); |
563 | 563 | ||
564 | free->npages = 0; | 564 | free->npages = 0; |
565 | } | 565 | } |
566 | 566 | ||
567 | void kvm_free_physmem(struct kvm *kvm) | 567 | void kvm_free_physmem(struct kvm *kvm) |
568 | { | 568 | { |
569 | struct kvm_memslots *slots = kvm->memslots; | 569 | struct kvm_memslots *slots = kvm->memslots; |
570 | struct kvm_memory_slot *memslot; | 570 | struct kvm_memory_slot *memslot; |
571 | 571 | ||
572 | kvm_for_each_memslot(memslot, slots) | 572 | kvm_for_each_memslot(memslot, slots) |
573 | kvm_free_physmem_slot(memslot, NULL); | 573 | kvm_free_physmem_slot(memslot, NULL); |
574 | 574 | ||
575 | kfree(kvm->memslots); | 575 | kfree(kvm->memslots); |
576 | } | 576 | } |
577 | 577 | ||
578 | static void kvm_destroy_vm(struct kvm *kvm) | 578 | static void kvm_destroy_vm(struct kvm *kvm) |
579 | { | 579 | { |
580 | int i; | 580 | int i; |
581 | struct mm_struct *mm = kvm->mm; | 581 | struct mm_struct *mm = kvm->mm; |
582 | 582 | ||
583 | kvm_arch_sync_events(kvm); | 583 | kvm_arch_sync_events(kvm); |
584 | raw_spin_lock(&kvm_lock); | 584 | raw_spin_lock(&kvm_lock); |
585 | list_del(&kvm->vm_list); | 585 | list_del(&kvm->vm_list); |
586 | raw_spin_unlock(&kvm_lock); | 586 | raw_spin_unlock(&kvm_lock); |
587 | kvm_free_irq_routing(kvm); | 587 | kvm_free_irq_routing(kvm); |
588 | for (i = 0; i < KVM_NR_BUSES; i++) | 588 | for (i = 0; i < KVM_NR_BUSES; i++) |
589 | kvm_io_bus_destroy(kvm->buses[i]); | 589 | kvm_io_bus_destroy(kvm->buses[i]); |
590 | kvm_coalesced_mmio_free(kvm); | 590 | kvm_coalesced_mmio_free(kvm); |
591 | #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) | 591 | #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) |
592 | mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); | 592 | mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); |
593 | #else | 593 | #else |
594 | kvm_arch_flush_shadow_all(kvm); | 594 | kvm_arch_flush_shadow_all(kvm); |
595 | #endif | 595 | #endif |
596 | kvm_arch_destroy_vm(kvm); | 596 | kvm_arch_destroy_vm(kvm); |
597 | kvm_free_physmem(kvm); | 597 | kvm_free_physmem(kvm); |
598 | cleanup_srcu_struct(&kvm->srcu); | 598 | cleanup_srcu_struct(&kvm->srcu); |
599 | kvm_arch_free_vm(kvm); | 599 | kvm_arch_free_vm(kvm); |
600 | hardware_disable_all(); | 600 | hardware_disable_all(); |
601 | mmdrop(mm); | 601 | mmdrop(mm); |
602 | } | 602 | } |
603 | 603 | ||
604 | void kvm_get_kvm(struct kvm *kvm) | 604 | void kvm_get_kvm(struct kvm *kvm) |
605 | { | 605 | { |
606 | atomic_inc(&kvm->users_count); | 606 | atomic_inc(&kvm->users_count); |
607 | } | 607 | } |
608 | EXPORT_SYMBOL_GPL(kvm_get_kvm); | 608 | EXPORT_SYMBOL_GPL(kvm_get_kvm); |
609 | 609 | ||
610 | void kvm_put_kvm(struct kvm *kvm) | 610 | void kvm_put_kvm(struct kvm *kvm) |
611 | { | 611 | { |
612 | if (atomic_dec_and_test(&kvm->users_count)) | 612 | if (atomic_dec_and_test(&kvm->users_count)) |
613 | kvm_destroy_vm(kvm); | 613 | kvm_destroy_vm(kvm); |
614 | } | 614 | } |
615 | EXPORT_SYMBOL_GPL(kvm_put_kvm); | 615 | EXPORT_SYMBOL_GPL(kvm_put_kvm); |
616 | 616 | ||
617 | 617 | ||
618 | static int kvm_vm_release(struct inode *inode, struct file *filp) | 618 | static int kvm_vm_release(struct inode *inode, struct file *filp) |
619 | { | 619 | { |
620 | struct kvm *kvm = filp->private_data; | 620 | struct kvm *kvm = filp->private_data; |
621 | 621 | ||
622 | kvm_irqfd_release(kvm); | 622 | kvm_irqfd_release(kvm); |
623 | 623 | ||
624 | kvm_put_kvm(kvm); | 624 | kvm_put_kvm(kvm); |
625 | return 0; | 625 | return 0; |
626 | } | 626 | } |
627 | 627 | ||
628 | /* | 628 | /* |
629 | * Allocation size is twice as large as the actual dirty bitmap size. | 629 | * Allocation size is twice as large as the actual dirty bitmap size. |
630 | * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. | 630 | * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. |
631 | */ | 631 | */ |
632 | static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) | 632 | static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) |
633 | { | 633 | { |
634 | #ifndef CONFIG_S390 | 634 | #ifndef CONFIG_S390 |
635 | unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); | 635 | unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); |
636 | 636 | ||
637 | memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes); | 637 | memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes); |
638 | if (!memslot->dirty_bitmap) | 638 | if (!memslot->dirty_bitmap) |
639 | return -ENOMEM; | 639 | return -ENOMEM; |
640 | 640 | ||
641 | #endif /* !CONFIG_S390 */ | 641 | #endif /* !CONFIG_S390 */ |
642 | return 0; | 642 | return 0; |
643 | } | 643 | } |
644 | 644 | ||
645 | static int cmp_memslot(const void *slot1, const void *slot2) | 645 | static int cmp_memslot(const void *slot1, const void *slot2) |
646 | { | 646 | { |
647 | struct kvm_memory_slot *s1, *s2; | 647 | struct kvm_memory_slot *s1, *s2; |
648 | 648 | ||
649 | s1 = (struct kvm_memory_slot *)slot1; | 649 | s1 = (struct kvm_memory_slot *)slot1; |
650 | s2 = (struct kvm_memory_slot *)slot2; | 650 | s2 = (struct kvm_memory_slot *)slot2; |
651 | 651 | ||
652 | if (s1->npages < s2->npages) | 652 | if (s1->npages < s2->npages) |
653 | return 1; | 653 | return 1; |
654 | if (s1->npages > s2->npages) | 654 | if (s1->npages > s2->npages) |
655 | return -1; | 655 | return -1; |
656 | 656 | ||
657 | return 0; | 657 | return 0; |
658 | } | 658 | } |
659 | 659 | ||
660 | /* | 660 | /* |
661 | * Sort the memslots base on its size, so the larger slots | 661 | * Sort the memslots base on its size, so the larger slots |
662 | * will get better fit. | 662 | * will get better fit. |
663 | */ | 663 | */ |
664 | static void sort_memslots(struct kvm_memslots *slots) | 664 | static void sort_memslots(struct kvm_memslots *slots) |
665 | { | 665 | { |
666 | int i; | 666 | int i; |
667 | 667 | ||
668 | sort(slots->memslots, KVM_MEM_SLOTS_NUM, | 668 | sort(slots->memslots, KVM_MEM_SLOTS_NUM, |
669 | sizeof(struct kvm_memory_slot), cmp_memslot, NULL); | 669 | sizeof(struct kvm_memory_slot), cmp_memslot, NULL); |
670 | 670 | ||
671 | for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) | 671 | for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) |
672 | slots->id_to_index[slots->memslots[i].id] = i; | 672 | slots->id_to_index[slots->memslots[i].id] = i; |
673 | } | 673 | } |
674 | 674 | ||
675 | void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new, | 675 | void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new, |
676 | u64 last_generation) | 676 | u64 last_generation) |
677 | { | 677 | { |
678 | if (new) { | 678 | if (new) { |
679 | int id = new->id; | 679 | int id = new->id; |
680 | struct kvm_memory_slot *old = id_to_memslot(slots, id); | 680 | struct kvm_memory_slot *old = id_to_memslot(slots, id); |
681 | unsigned long npages = old->npages; | 681 | unsigned long npages = old->npages; |
682 | 682 | ||
683 | *old = *new; | 683 | *old = *new; |
684 | if (new->npages != npages) | 684 | if (new->npages != npages) |
685 | sort_memslots(slots); | 685 | sort_memslots(slots); |
686 | } | 686 | } |
687 | 687 | ||
688 | slots->generation = last_generation + 1; | 688 | slots->generation = last_generation + 1; |
689 | } | 689 | } |
690 | 690 | ||
691 | static int check_memory_region_flags(struct kvm_userspace_memory_region *mem) | 691 | static int check_memory_region_flags(struct kvm_userspace_memory_region *mem) |
692 | { | 692 | { |
693 | u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; | 693 | u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; |
694 | 694 | ||
695 | #ifdef KVM_CAP_READONLY_MEM | 695 | #ifdef KVM_CAP_READONLY_MEM |
696 | valid_flags |= KVM_MEM_READONLY; | 696 | valid_flags |= KVM_MEM_READONLY; |
697 | #endif | 697 | #endif |
698 | 698 | ||
699 | if (mem->flags & ~valid_flags) | 699 | if (mem->flags & ~valid_flags) |
700 | return -EINVAL; | 700 | return -EINVAL; |
701 | 701 | ||
702 | return 0; | 702 | return 0; |
703 | } | 703 | } |
704 | 704 | ||
705 | static struct kvm_memslots *install_new_memslots(struct kvm *kvm, | 705 | static struct kvm_memslots *install_new_memslots(struct kvm *kvm, |
706 | struct kvm_memslots *slots, struct kvm_memory_slot *new) | 706 | struct kvm_memslots *slots, struct kvm_memory_slot *new) |
707 | { | 707 | { |
708 | struct kvm_memslots *old_memslots = kvm->memslots; | 708 | struct kvm_memslots *old_memslots = kvm->memslots; |
709 | 709 | ||
710 | update_memslots(slots, new, kvm->memslots->generation); | 710 | update_memslots(slots, new, kvm->memslots->generation); |
711 | rcu_assign_pointer(kvm->memslots, slots); | 711 | rcu_assign_pointer(kvm->memslots, slots); |
712 | synchronize_srcu_expedited(&kvm->srcu); | 712 | synchronize_srcu_expedited(&kvm->srcu); |
713 | return old_memslots; | 713 | return old_memslots; |
714 | } | 714 | } |
715 | 715 | ||
716 | /* | 716 | /* |
717 | * Allocate some memory and give it an address in the guest physical address | 717 | * Allocate some memory and give it an address in the guest physical address |
718 | * space. | 718 | * space. |
719 | * | 719 | * |
720 | * Discontiguous memory is allowed, mostly for framebuffers. | 720 | * Discontiguous memory is allowed, mostly for framebuffers. |
721 | * | 721 | * |
722 | * Must be called holding mmap_sem for write. | 722 | * Must be called holding mmap_sem for write. |
723 | */ | 723 | */ |
724 | int __kvm_set_memory_region(struct kvm *kvm, | 724 | int __kvm_set_memory_region(struct kvm *kvm, |
725 | struct kvm_userspace_memory_region *mem, | 725 | struct kvm_userspace_memory_region *mem, |
726 | bool user_alloc) | 726 | bool user_alloc) |
727 | { | 727 | { |
728 | int r; | 728 | int r; |
729 | gfn_t base_gfn; | 729 | gfn_t base_gfn; |
730 | unsigned long npages; | 730 | unsigned long npages; |
731 | struct kvm_memory_slot *memslot, *slot; | 731 | struct kvm_memory_slot *memslot, *slot; |
732 | struct kvm_memory_slot old, new; | 732 | struct kvm_memory_slot old, new; |
733 | struct kvm_memslots *slots = NULL, *old_memslots; | 733 | struct kvm_memslots *slots = NULL, *old_memslots; |
734 | 734 | ||
735 | r = check_memory_region_flags(mem); | 735 | r = check_memory_region_flags(mem); |
736 | if (r) | 736 | if (r) |
737 | goto out; | 737 | goto out; |
738 | 738 | ||
739 | r = -EINVAL; | 739 | r = -EINVAL; |
740 | /* General sanity checks */ | 740 | /* General sanity checks */ |
741 | if (mem->memory_size & (PAGE_SIZE - 1)) | 741 | if (mem->memory_size & (PAGE_SIZE - 1)) |
742 | goto out; | 742 | goto out; |
743 | if (mem->guest_phys_addr & (PAGE_SIZE - 1)) | 743 | if (mem->guest_phys_addr & (PAGE_SIZE - 1)) |
744 | goto out; | 744 | goto out; |
745 | /* We can read the guest memory with __xxx_user() later on. */ | 745 | /* We can read the guest memory with __xxx_user() later on. */ |
746 | if (user_alloc && | 746 | if (user_alloc && |
747 | ((mem->userspace_addr & (PAGE_SIZE - 1)) || | 747 | ((mem->userspace_addr & (PAGE_SIZE - 1)) || |
748 | !access_ok(VERIFY_WRITE, | 748 | !access_ok(VERIFY_WRITE, |
749 | (void __user *)(unsigned long)mem->userspace_addr, | 749 | (void __user *)(unsigned long)mem->userspace_addr, |
750 | mem->memory_size))) | 750 | mem->memory_size))) |
751 | goto out; | 751 | goto out; |
752 | if (mem->slot >= KVM_MEM_SLOTS_NUM) | 752 | if (mem->slot >= KVM_MEM_SLOTS_NUM) |
753 | goto out; | 753 | goto out; |
754 | if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) | 754 | if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) |
755 | goto out; | 755 | goto out; |
756 | 756 | ||
757 | memslot = id_to_memslot(kvm->memslots, mem->slot); | 757 | memslot = id_to_memslot(kvm->memslots, mem->slot); |
758 | base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; | 758 | base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; |
759 | npages = mem->memory_size >> PAGE_SHIFT; | 759 | npages = mem->memory_size >> PAGE_SHIFT; |
760 | 760 | ||
761 | r = -EINVAL; | 761 | r = -EINVAL; |
762 | if (npages > KVM_MEM_MAX_NR_PAGES) | 762 | if (npages > KVM_MEM_MAX_NR_PAGES) |
763 | goto out; | 763 | goto out; |
764 | 764 | ||
765 | if (!npages) | 765 | if (!npages) |
766 | mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES; | 766 | mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES; |
767 | 767 | ||
768 | new = old = *memslot; | 768 | new = old = *memslot; |
769 | 769 | ||
770 | new.id = mem->slot; | 770 | new.id = mem->slot; |
771 | new.base_gfn = base_gfn; | 771 | new.base_gfn = base_gfn; |
772 | new.npages = npages; | 772 | new.npages = npages; |
773 | new.flags = mem->flags; | 773 | new.flags = mem->flags; |
774 | 774 | ||
775 | /* | 775 | /* |
776 | * Disallow changing a memory slot's size or changing anything about | 776 | * Disallow changing a memory slot's size or changing anything about |
777 | * zero sized slots that doesn't involve making them non-zero. | 777 | * zero sized slots that doesn't involve making them non-zero. |
778 | */ | 778 | */ |
779 | r = -EINVAL; | 779 | r = -EINVAL; |
780 | if (npages && old.npages && npages != old.npages) | 780 | if (npages && old.npages && npages != old.npages) |
781 | goto out_free; | 781 | goto out_free; |
782 | if (!npages && !old.npages) | 782 | if (!npages && !old.npages) |
783 | goto out_free; | 783 | goto out_free; |
784 | 784 | ||
785 | /* Check for overlaps */ | 785 | /* Check for overlaps */ |
786 | r = -EEXIST; | 786 | r = -EEXIST; |
787 | kvm_for_each_memslot(slot, kvm->memslots) { | 787 | kvm_for_each_memslot(slot, kvm->memslots) { |
788 | if (slot->id >= KVM_USER_MEM_SLOTS || slot == memslot) | 788 | if (slot->id >= KVM_USER_MEM_SLOTS || slot == memslot) |
789 | continue; | 789 | continue; |
790 | if (!((base_gfn + npages <= slot->base_gfn) || | 790 | if (!((base_gfn + npages <= slot->base_gfn) || |
791 | (base_gfn >= slot->base_gfn + slot->npages))) | 791 | (base_gfn >= slot->base_gfn + slot->npages))) |
792 | goto out_free; | 792 | goto out_free; |
793 | } | 793 | } |
794 | 794 | ||
795 | /* Free page dirty bitmap if unneeded */ | 795 | /* Free page dirty bitmap if unneeded */ |
796 | if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) | 796 | if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) |
797 | new.dirty_bitmap = NULL; | 797 | new.dirty_bitmap = NULL; |
798 | 798 | ||
799 | r = -ENOMEM; | 799 | r = -ENOMEM; |
800 | 800 | ||
801 | /* | 801 | /* |
802 | * Allocate if a slot is being created. If modifying a slot, | 802 | * Allocate if a slot is being created. If modifying a slot, |
803 | * the userspace_addr cannot change. | 803 | * the userspace_addr cannot change. |
804 | */ | 804 | */ |
805 | if (!old.npages) { | 805 | if (!old.npages) { |
806 | new.user_alloc = user_alloc; | 806 | new.user_alloc = user_alloc; |
807 | new.userspace_addr = mem->userspace_addr; | 807 | new.userspace_addr = mem->userspace_addr; |
808 | 808 | ||
809 | if (kvm_arch_create_memslot(&new, npages)) | 809 | if (kvm_arch_create_memslot(&new, npages)) |
810 | goto out_free; | 810 | goto out_free; |
811 | } else if (npages && mem->userspace_addr != old.userspace_addr) { | 811 | } else if (npages && mem->userspace_addr != old.userspace_addr) { |
812 | r = -EINVAL; | 812 | r = -EINVAL; |
813 | goto out_free; | 813 | goto out_free; |
814 | } | 814 | } |
815 | 815 | ||
816 | /* Allocate page dirty bitmap if needed */ | 816 | /* Allocate page dirty bitmap if needed */ |
817 | if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { | 817 | if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { |
818 | if (kvm_create_dirty_bitmap(&new) < 0) | 818 | if (kvm_create_dirty_bitmap(&new) < 0) |
819 | goto out_free; | 819 | goto out_free; |
820 | /* destroy any largepage mappings for dirty tracking */ | ||
821 | } | 820 | } |
822 | 821 | ||
823 | if (!npages || base_gfn != old.base_gfn) { | 822 | if (!npages || base_gfn != old.base_gfn) { |
824 | struct kvm_memory_slot *slot; | 823 | struct kvm_memory_slot *slot; |
825 | 824 | ||
826 | r = -ENOMEM; | 825 | r = -ENOMEM; |
827 | slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots), | 826 | slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots), |
828 | GFP_KERNEL); | 827 | GFP_KERNEL); |
829 | if (!slots) | 828 | if (!slots) |
830 | goto out_free; | 829 | goto out_free; |
831 | slot = id_to_memslot(slots, mem->slot); | 830 | slot = id_to_memslot(slots, mem->slot); |
832 | slot->flags |= KVM_MEMSLOT_INVALID; | 831 | slot->flags |= KVM_MEMSLOT_INVALID; |
833 | 832 | ||
834 | old_memslots = install_new_memslots(kvm, slots, NULL); | 833 | old_memslots = install_new_memslots(kvm, slots, NULL); |
835 | 834 | ||
836 | /* slot was deleted or moved, clear iommu mapping */ | 835 | /* slot was deleted or moved, clear iommu mapping */ |
837 | kvm_iommu_unmap_pages(kvm, &old); | 836 | kvm_iommu_unmap_pages(kvm, &old); |
838 | /* From this point no new shadow pages pointing to a deleted, | 837 | /* From this point no new shadow pages pointing to a deleted, |
839 | * or moved, memslot will be created. | 838 | * or moved, memslot will be created. |
840 | * | 839 | * |
841 | * validation of sp->gfn happens in: | 840 | * validation of sp->gfn happens in: |
842 | * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) | 841 | * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) |
843 | * - kvm_is_visible_gfn (mmu_check_roots) | 842 | * - kvm_is_visible_gfn (mmu_check_roots) |
844 | */ | 843 | */ |
845 | kvm_arch_flush_shadow_memslot(kvm, slot); | 844 | kvm_arch_flush_shadow_memslot(kvm, slot); |
846 | slots = old_memslots; | 845 | slots = old_memslots; |
847 | } | 846 | } |
848 | 847 | ||
849 | r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc); | 848 | r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc); |
850 | if (r) | 849 | if (r) |
851 | goto out_slots; | 850 | goto out_slots; |
852 | 851 | ||
853 | r = -ENOMEM; | 852 | r = -ENOMEM; |
854 | /* | 853 | /* |
855 | * We can re-use the old_memslots from above, the only difference | 854 | * We can re-use the old_memslots from above, the only difference |
856 | * from the currently installed memslots is the invalid flag. This | 855 | * from the currently installed memslots is the invalid flag. This |
857 | * will get overwritten by update_memslots anyway. | 856 | * will get overwritten by update_memslots anyway. |
858 | */ | 857 | */ |
859 | if (!slots) { | 858 | if (!slots) { |
860 | slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots), | 859 | slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots), |
861 | GFP_KERNEL); | 860 | GFP_KERNEL); |
862 | if (!slots) | 861 | if (!slots) |
863 | goto out_free; | 862 | goto out_free; |
864 | } | 863 | } |
865 | 864 | ||
866 | /* map new memory slot into the iommu */ | 865 | /* map new memory slot into the iommu */ |
867 | if (npages) { | 866 | if (npages) { |
868 | r = kvm_iommu_map_pages(kvm, &new); | 867 | r = kvm_iommu_map_pages(kvm, &new); |
869 | if (r) | 868 | if (r) |
870 | goto out_slots; | 869 | goto out_slots; |
871 | } | 870 | } |
872 | 871 | ||
873 | /* actual memory is freed via old in kvm_free_physmem_slot below */ | 872 | /* actual memory is freed via old in kvm_free_physmem_slot below */ |
874 | if (!npages) { | 873 | if (!npages) { |
875 | new.dirty_bitmap = NULL; | 874 | new.dirty_bitmap = NULL; |
876 | memset(&new.arch, 0, sizeof(new.arch)); | 875 | memset(&new.arch, 0, sizeof(new.arch)); |
877 | } | 876 | } |
878 | 877 | ||
879 | old_memslots = install_new_memslots(kvm, slots, &new); | 878 | old_memslots = install_new_memslots(kvm, slots, &new); |
880 | 879 | ||
881 | kvm_arch_commit_memory_region(kvm, mem, old, user_alloc); | 880 | kvm_arch_commit_memory_region(kvm, mem, old, user_alloc); |
882 | 881 | ||
883 | kvm_free_physmem_slot(&old, &new); | 882 | kvm_free_physmem_slot(&old, &new); |
884 | kfree(old_memslots); | 883 | kfree(old_memslots); |
885 | 884 | ||
886 | return 0; | 885 | return 0; |
887 | 886 | ||
888 | out_slots: | 887 | out_slots: |
889 | kfree(slots); | 888 | kfree(slots); |
890 | out_free: | 889 | out_free: |
891 | kvm_free_physmem_slot(&new, &old); | 890 | kvm_free_physmem_slot(&new, &old); |
892 | out: | 891 | out: |
893 | return r; | 892 | return r; |
894 | 893 | ||
895 | } | 894 | } |
896 | EXPORT_SYMBOL_GPL(__kvm_set_memory_region); | 895 | EXPORT_SYMBOL_GPL(__kvm_set_memory_region); |
897 | 896 | ||
898 | int kvm_set_memory_region(struct kvm *kvm, | 897 | int kvm_set_memory_region(struct kvm *kvm, |
899 | struct kvm_userspace_memory_region *mem, | 898 | struct kvm_userspace_memory_region *mem, |
900 | bool user_alloc) | 899 | bool user_alloc) |
901 | { | 900 | { |
902 | int r; | 901 | int r; |
903 | 902 | ||
904 | mutex_lock(&kvm->slots_lock); | 903 | mutex_lock(&kvm->slots_lock); |
905 | r = __kvm_set_memory_region(kvm, mem, user_alloc); | 904 | r = __kvm_set_memory_region(kvm, mem, user_alloc); |
906 | mutex_unlock(&kvm->slots_lock); | 905 | mutex_unlock(&kvm->slots_lock); |
907 | return r; | 906 | return r; |
908 | } | 907 | } |
909 | EXPORT_SYMBOL_GPL(kvm_set_memory_region); | 908 | EXPORT_SYMBOL_GPL(kvm_set_memory_region); |
910 | 909 | ||
911 | int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, | 910 | int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, |
912 | struct | 911 | struct |
913 | kvm_userspace_memory_region *mem, | 912 | kvm_userspace_memory_region *mem, |
914 | bool user_alloc) | 913 | bool user_alloc) |
915 | { | 914 | { |
916 | if (mem->slot >= KVM_USER_MEM_SLOTS) | 915 | if (mem->slot >= KVM_USER_MEM_SLOTS) |
917 | return -EINVAL; | 916 | return -EINVAL; |
918 | return kvm_set_memory_region(kvm, mem, user_alloc); | 917 | return kvm_set_memory_region(kvm, mem, user_alloc); |
919 | } | 918 | } |
920 | 919 | ||
921 | int kvm_get_dirty_log(struct kvm *kvm, | 920 | int kvm_get_dirty_log(struct kvm *kvm, |
922 | struct kvm_dirty_log *log, int *is_dirty) | 921 | struct kvm_dirty_log *log, int *is_dirty) |
923 | { | 922 | { |
924 | struct kvm_memory_slot *memslot; | 923 | struct kvm_memory_slot *memslot; |
925 | int r, i; | 924 | int r, i; |
926 | unsigned long n; | 925 | unsigned long n; |
927 | unsigned long any = 0; | 926 | unsigned long any = 0; |
928 | 927 | ||
929 | r = -EINVAL; | 928 | r = -EINVAL; |
930 | if (log->slot >= KVM_USER_MEM_SLOTS) | 929 | if (log->slot >= KVM_USER_MEM_SLOTS) |
931 | goto out; | 930 | goto out; |
932 | 931 | ||
933 | memslot = id_to_memslot(kvm->memslots, log->slot); | 932 | memslot = id_to_memslot(kvm->memslots, log->slot); |
934 | r = -ENOENT; | 933 | r = -ENOENT; |
935 | if (!memslot->dirty_bitmap) | 934 | if (!memslot->dirty_bitmap) |
936 | goto out; | 935 | goto out; |
937 | 936 | ||
938 | n = kvm_dirty_bitmap_bytes(memslot); | 937 | n = kvm_dirty_bitmap_bytes(memslot); |
939 | 938 | ||
940 | for (i = 0; !any && i < n/sizeof(long); ++i) | 939 | for (i = 0; !any && i < n/sizeof(long); ++i) |
941 | any = memslot->dirty_bitmap[i]; | 940 | any = memslot->dirty_bitmap[i]; |
942 | 941 | ||
943 | r = -EFAULT; | 942 | r = -EFAULT; |
944 | if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) | 943 | if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) |
945 | goto out; | 944 | goto out; |
946 | 945 | ||
947 | if (any) | 946 | if (any) |
948 | *is_dirty = 1; | 947 | *is_dirty = 1; |
949 | 948 | ||
950 | r = 0; | 949 | r = 0; |
951 | out: | 950 | out: |
952 | return r; | 951 | return r; |
953 | } | 952 | } |
954 | 953 | ||
955 | bool kvm_largepages_enabled(void) | 954 | bool kvm_largepages_enabled(void) |
956 | { | 955 | { |
957 | return largepages_enabled; | 956 | return largepages_enabled; |
958 | } | 957 | } |
959 | 958 | ||
960 | void kvm_disable_largepages(void) | 959 | void kvm_disable_largepages(void) |
961 | { | 960 | { |
962 | largepages_enabled = false; | 961 | largepages_enabled = false; |
963 | } | 962 | } |
964 | EXPORT_SYMBOL_GPL(kvm_disable_largepages); | 963 | EXPORT_SYMBOL_GPL(kvm_disable_largepages); |
965 | 964 | ||
966 | struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) | 965 | struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) |
967 | { | 966 | { |
968 | return __gfn_to_memslot(kvm_memslots(kvm), gfn); | 967 | return __gfn_to_memslot(kvm_memslots(kvm), gfn); |
969 | } | 968 | } |
970 | EXPORT_SYMBOL_GPL(gfn_to_memslot); | 969 | EXPORT_SYMBOL_GPL(gfn_to_memslot); |
971 | 970 | ||
972 | int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) | 971 | int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) |
973 | { | 972 | { |
974 | struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); | 973 | struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); |
975 | 974 | ||
976 | if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || | 975 | if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || |
977 | memslot->flags & KVM_MEMSLOT_INVALID) | 976 | memslot->flags & KVM_MEMSLOT_INVALID) |
978 | return 0; | 977 | return 0; |
979 | 978 | ||
980 | return 1; | 979 | return 1; |
981 | } | 980 | } |
982 | EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); | 981 | EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); |
983 | 982 | ||
984 | unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) | 983 | unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) |
985 | { | 984 | { |
986 | struct vm_area_struct *vma; | 985 | struct vm_area_struct *vma; |
987 | unsigned long addr, size; | 986 | unsigned long addr, size; |
988 | 987 | ||
989 | size = PAGE_SIZE; | 988 | size = PAGE_SIZE; |
990 | 989 | ||
991 | addr = gfn_to_hva(kvm, gfn); | 990 | addr = gfn_to_hva(kvm, gfn); |
992 | if (kvm_is_error_hva(addr)) | 991 | if (kvm_is_error_hva(addr)) |
993 | return PAGE_SIZE; | 992 | return PAGE_SIZE; |
994 | 993 | ||
995 | down_read(¤t->mm->mmap_sem); | 994 | down_read(¤t->mm->mmap_sem); |
996 | vma = find_vma(current->mm, addr); | 995 | vma = find_vma(current->mm, addr); |
997 | if (!vma) | 996 | if (!vma) |
998 | goto out; | 997 | goto out; |
999 | 998 | ||
1000 | size = vma_kernel_pagesize(vma); | 999 | size = vma_kernel_pagesize(vma); |
1001 | 1000 | ||
1002 | out: | 1001 | out: |
1003 | up_read(¤t->mm->mmap_sem); | 1002 | up_read(¤t->mm->mmap_sem); |
1004 | 1003 | ||
1005 | return size; | 1004 | return size; |
1006 | } | 1005 | } |
1007 | 1006 | ||
1008 | static bool memslot_is_readonly(struct kvm_memory_slot *slot) | 1007 | static bool memslot_is_readonly(struct kvm_memory_slot *slot) |
1009 | { | 1008 | { |
1010 | return slot->flags & KVM_MEM_READONLY; | 1009 | return slot->flags & KVM_MEM_READONLY; |
1011 | } | 1010 | } |
1012 | 1011 | ||
1013 | static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, | 1012 | static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, |
1014 | gfn_t *nr_pages, bool write) | 1013 | gfn_t *nr_pages, bool write) |
1015 | { | 1014 | { |
1016 | if (!slot || slot->flags & KVM_MEMSLOT_INVALID) | 1015 | if (!slot || slot->flags & KVM_MEMSLOT_INVALID) |
1017 | return KVM_HVA_ERR_BAD; | 1016 | return KVM_HVA_ERR_BAD; |
1018 | 1017 | ||
1019 | if (memslot_is_readonly(slot) && write) | 1018 | if (memslot_is_readonly(slot) && write) |
1020 | return KVM_HVA_ERR_RO_BAD; | 1019 | return KVM_HVA_ERR_RO_BAD; |
1021 | 1020 | ||
1022 | if (nr_pages) | 1021 | if (nr_pages) |
1023 | *nr_pages = slot->npages - (gfn - slot->base_gfn); | 1022 | *nr_pages = slot->npages - (gfn - slot->base_gfn); |
1024 | 1023 | ||
1025 | return __gfn_to_hva_memslot(slot, gfn); | 1024 | return __gfn_to_hva_memslot(slot, gfn); |
1026 | } | 1025 | } |
1027 | 1026 | ||
1028 | static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, | 1027 | static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, |
1029 | gfn_t *nr_pages) | 1028 | gfn_t *nr_pages) |
1030 | { | 1029 | { |
1031 | return __gfn_to_hva_many(slot, gfn, nr_pages, true); | 1030 | return __gfn_to_hva_many(slot, gfn, nr_pages, true); |
1032 | } | 1031 | } |
1033 | 1032 | ||
1034 | unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, | 1033 | unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, |
1035 | gfn_t gfn) | 1034 | gfn_t gfn) |
1036 | { | 1035 | { |
1037 | return gfn_to_hva_many(slot, gfn, NULL); | 1036 | return gfn_to_hva_many(slot, gfn, NULL); |
1038 | } | 1037 | } |
1039 | EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); | 1038 | EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); |
1040 | 1039 | ||
1041 | unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) | 1040 | unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) |
1042 | { | 1041 | { |
1043 | return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); | 1042 | return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); |
1044 | } | 1043 | } |
1045 | EXPORT_SYMBOL_GPL(gfn_to_hva); | 1044 | EXPORT_SYMBOL_GPL(gfn_to_hva); |
1046 | 1045 | ||
1047 | /* | 1046 | /* |
1048 | * The hva returned by this function is only allowed to be read. | 1047 | * The hva returned by this function is only allowed to be read. |
1049 | * It should pair with kvm_read_hva() or kvm_read_hva_atomic(). | 1048 | * It should pair with kvm_read_hva() or kvm_read_hva_atomic(). |
1050 | */ | 1049 | */ |
1051 | static unsigned long gfn_to_hva_read(struct kvm *kvm, gfn_t gfn) | 1050 | static unsigned long gfn_to_hva_read(struct kvm *kvm, gfn_t gfn) |
1052 | { | 1051 | { |
1053 | return __gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL, false); | 1052 | return __gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL, false); |
1054 | } | 1053 | } |
1055 | 1054 | ||
1056 | static int kvm_read_hva(void *data, void __user *hva, int len) | 1055 | static int kvm_read_hva(void *data, void __user *hva, int len) |
1057 | { | 1056 | { |
1058 | return __copy_from_user(data, hva, len); | 1057 | return __copy_from_user(data, hva, len); |
1059 | } | 1058 | } |
1060 | 1059 | ||
1061 | static int kvm_read_hva_atomic(void *data, void __user *hva, int len) | 1060 | static int kvm_read_hva_atomic(void *data, void __user *hva, int len) |
1062 | { | 1061 | { |
1063 | return __copy_from_user_inatomic(data, hva, len); | 1062 | return __copy_from_user_inatomic(data, hva, len); |
1064 | } | 1063 | } |
1065 | 1064 | ||
1066 | int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm, | 1065 | int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm, |
1067 | unsigned long start, int write, struct page **page) | 1066 | unsigned long start, int write, struct page **page) |
1068 | { | 1067 | { |
1069 | int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET; | 1068 | int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET; |
1070 | 1069 | ||
1071 | if (write) | 1070 | if (write) |
1072 | flags |= FOLL_WRITE; | 1071 | flags |= FOLL_WRITE; |
1073 | 1072 | ||
1074 | return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL); | 1073 | return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL); |
1075 | } | 1074 | } |
1076 | 1075 | ||
1077 | static inline int check_user_page_hwpoison(unsigned long addr) | 1076 | static inline int check_user_page_hwpoison(unsigned long addr) |
1078 | { | 1077 | { |
1079 | int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE; | 1078 | int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE; |
1080 | 1079 | ||
1081 | rc = __get_user_pages(current, current->mm, addr, 1, | 1080 | rc = __get_user_pages(current, current->mm, addr, 1, |
1082 | flags, NULL, NULL, NULL); | 1081 | flags, NULL, NULL, NULL); |
1083 | return rc == -EHWPOISON; | 1082 | return rc == -EHWPOISON; |
1084 | } | 1083 | } |
1085 | 1084 | ||
1086 | /* | 1085 | /* |
1087 | * The atomic path to get the writable pfn which will be stored in @pfn, | 1086 | * The atomic path to get the writable pfn which will be stored in @pfn, |
1088 | * true indicates success, otherwise false is returned. | 1087 | * true indicates success, otherwise false is returned. |
1089 | */ | 1088 | */ |
1090 | static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async, | 1089 | static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async, |
1091 | bool write_fault, bool *writable, pfn_t *pfn) | 1090 | bool write_fault, bool *writable, pfn_t *pfn) |
1092 | { | 1091 | { |
1093 | struct page *page[1]; | 1092 | struct page *page[1]; |
1094 | int npages; | 1093 | int npages; |
1095 | 1094 | ||
1096 | if (!(async || atomic)) | 1095 | if (!(async || atomic)) |
1097 | return false; | 1096 | return false; |
1098 | 1097 | ||
1099 | /* | 1098 | /* |
1100 | * Fast pin a writable pfn only if it is a write fault request | 1099 | * Fast pin a writable pfn only if it is a write fault request |
1101 | * or the caller allows to map a writable pfn for a read fault | 1100 | * or the caller allows to map a writable pfn for a read fault |
1102 | * request. | 1101 | * request. |
1103 | */ | 1102 | */ |
1104 | if (!(write_fault || writable)) | 1103 | if (!(write_fault || writable)) |
1105 | return false; | 1104 | return false; |
1106 | 1105 | ||
1107 | npages = __get_user_pages_fast(addr, 1, 1, page); | 1106 | npages = __get_user_pages_fast(addr, 1, 1, page); |
1108 | if (npages == 1) { | 1107 | if (npages == 1) { |
1109 | *pfn = page_to_pfn(page[0]); | 1108 | *pfn = page_to_pfn(page[0]); |
1110 | 1109 | ||
1111 | if (writable) | 1110 | if (writable) |
1112 | *writable = true; | 1111 | *writable = true; |
1113 | return true; | 1112 | return true; |
1114 | } | 1113 | } |
1115 | 1114 | ||
1116 | return false; | 1115 | return false; |
1117 | } | 1116 | } |
1118 | 1117 | ||
1119 | /* | 1118 | /* |
1120 | * The slow path to get the pfn of the specified host virtual address, | 1119 | * The slow path to get the pfn of the specified host virtual address, |
1121 | * 1 indicates success, -errno is returned if error is detected. | 1120 | * 1 indicates success, -errno is returned if error is detected. |
1122 | */ | 1121 | */ |
1123 | static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, | 1122 | static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, |
1124 | bool *writable, pfn_t *pfn) | 1123 | bool *writable, pfn_t *pfn) |
1125 | { | 1124 | { |
1126 | struct page *page[1]; | 1125 | struct page *page[1]; |
1127 | int npages = 0; | 1126 | int npages = 0; |
1128 | 1127 | ||
1129 | might_sleep(); | 1128 | might_sleep(); |
1130 | 1129 | ||
1131 | if (writable) | 1130 | if (writable) |
1132 | *writable = write_fault; | 1131 | *writable = write_fault; |
1133 | 1132 | ||
1134 | if (async) { | 1133 | if (async) { |
1135 | down_read(¤t->mm->mmap_sem); | 1134 | down_read(¤t->mm->mmap_sem); |
1136 | npages = get_user_page_nowait(current, current->mm, | 1135 | npages = get_user_page_nowait(current, current->mm, |
1137 | addr, write_fault, page); | 1136 | addr, write_fault, page); |
1138 | up_read(¤t->mm->mmap_sem); | 1137 | up_read(¤t->mm->mmap_sem); |
1139 | } else | 1138 | } else |
1140 | npages = get_user_pages_fast(addr, 1, write_fault, | 1139 | npages = get_user_pages_fast(addr, 1, write_fault, |
1141 | page); | 1140 | page); |
1142 | if (npages != 1) | 1141 | if (npages != 1) |
1143 | return npages; | 1142 | return npages; |
1144 | 1143 | ||
1145 | /* map read fault as writable if possible */ | 1144 | /* map read fault as writable if possible */ |
1146 | if (unlikely(!write_fault) && writable) { | 1145 | if (unlikely(!write_fault) && writable) { |
1147 | struct page *wpage[1]; | 1146 | struct page *wpage[1]; |
1148 | 1147 | ||
1149 | npages = __get_user_pages_fast(addr, 1, 1, wpage); | 1148 | npages = __get_user_pages_fast(addr, 1, 1, wpage); |
1150 | if (npages == 1) { | 1149 | if (npages == 1) { |
1151 | *writable = true; | 1150 | *writable = true; |
1152 | put_page(page[0]); | 1151 | put_page(page[0]); |
1153 | page[0] = wpage[0]; | 1152 | page[0] = wpage[0]; |
1154 | } | 1153 | } |
1155 | 1154 | ||
1156 | npages = 1; | 1155 | npages = 1; |
1157 | } | 1156 | } |
1158 | *pfn = page_to_pfn(page[0]); | 1157 | *pfn = page_to_pfn(page[0]); |
1159 | return npages; | 1158 | return npages; |
1160 | } | 1159 | } |
1161 | 1160 | ||
1162 | static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) | 1161 | static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) |
1163 | { | 1162 | { |
1164 | if (unlikely(!(vma->vm_flags & VM_READ))) | 1163 | if (unlikely(!(vma->vm_flags & VM_READ))) |
1165 | return false; | 1164 | return false; |
1166 | 1165 | ||
1167 | if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) | 1166 | if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) |
1168 | return false; | 1167 | return false; |
1169 | 1168 | ||
1170 | return true; | 1169 | return true; |
1171 | } | 1170 | } |
1172 | 1171 | ||
1173 | /* | 1172 | /* |
1174 | * Pin guest page in memory and return its pfn. | 1173 | * Pin guest page in memory and return its pfn. |
1175 | * @addr: host virtual address which maps memory to the guest | 1174 | * @addr: host virtual address which maps memory to the guest |
1176 | * @atomic: whether this function can sleep | 1175 | * @atomic: whether this function can sleep |
1177 | * @async: whether this function need to wait IO complete if the | 1176 | * @async: whether this function need to wait IO complete if the |
1178 | * host page is not in the memory | 1177 | * host page is not in the memory |
1179 | * @write_fault: whether we should get a writable host page | 1178 | * @write_fault: whether we should get a writable host page |
1180 | * @writable: whether it allows to map a writable host page for !@write_fault | 1179 | * @writable: whether it allows to map a writable host page for !@write_fault |
1181 | * | 1180 | * |
1182 | * The function will map a writable host page for these two cases: | 1181 | * The function will map a writable host page for these two cases: |
1183 | * 1): @write_fault = true | 1182 | * 1): @write_fault = true |
1184 | * 2): @write_fault = false && @writable, @writable will tell the caller | 1183 | * 2): @write_fault = false && @writable, @writable will tell the caller |
1185 | * whether the mapping is writable. | 1184 | * whether the mapping is writable. |
1186 | */ | 1185 | */ |
1187 | static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, | 1186 | static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, |
1188 | bool write_fault, bool *writable) | 1187 | bool write_fault, bool *writable) |
1189 | { | 1188 | { |
1190 | struct vm_area_struct *vma; | 1189 | struct vm_area_struct *vma; |
1191 | pfn_t pfn = 0; | 1190 | pfn_t pfn = 0; |
1192 | int npages; | 1191 | int npages; |
1193 | 1192 | ||
1194 | /* we can do it either atomically or asynchronously, not both */ | 1193 | /* we can do it either atomically or asynchronously, not both */ |
1195 | BUG_ON(atomic && async); | 1194 | BUG_ON(atomic && async); |
1196 | 1195 | ||
1197 | if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn)) | 1196 | if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn)) |
1198 | return pfn; | 1197 | return pfn; |
1199 | 1198 | ||
1200 | if (atomic) | 1199 | if (atomic) |
1201 | return KVM_PFN_ERR_FAULT; | 1200 | return KVM_PFN_ERR_FAULT; |
1202 | 1201 | ||
1203 | npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); | 1202 | npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); |
1204 | if (npages == 1) | 1203 | if (npages == 1) |
1205 | return pfn; | 1204 | return pfn; |
1206 | 1205 | ||
1207 | down_read(¤t->mm->mmap_sem); | 1206 | down_read(¤t->mm->mmap_sem); |
1208 | if (npages == -EHWPOISON || | 1207 | if (npages == -EHWPOISON || |
1209 | (!async && check_user_page_hwpoison(addr))) { | 1208 | (!async && check_user_page_hwpoison(addr))) { |
1210 | pfn = KVM_PFN_ERR_HWPOISON; | 1209 | pfn = KVM_PFN_ERR_HWPOISON; |
1211 | goto exit; | 1210 | goto exit; |
1212 | } | 1211 | } |
1213 | 1212 | ||
1214 | vma = find_vma_intersection(current->mm, addr, addr + 1); | 1213 | vma = find_vma_intersection(current->mm, addr, addr + 1); |
1215 | 1214 | ||
1216 | if (vma == NULL) | 1215 | if (vma == NULL) |
1217 | pfn = KVM_PFN_ERR_FAULT; | 1216 | pfn = KVM_PFN_ERR_FAULT; |
1218 | else if ((vma->vm_flags & VM_PFNMAP)) { | 1217 | else if ((vma->vm_flags & VM_PFNMAP)) { |
1219 | pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + | 1218 | pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + |
1220 | vma->vm_pgoff; | 1219 | vma->vm_pgoff; |
1221 | BUG_ON(!kvm_is_mmio_pfn(pfn)); | 1220 | BUG_ON(!kvm_is_mmio_pfn(pfn)); |
1222 | } else { | 1221 | } else { |
1223 | if (async && vma_is_valid(vma, write_fault)) | 1222 | if (async && vma_is_valid(vma, write_fault)) |
1224 | *async = true; | 1223 | *async = true; |
1225 | pfn = KVM_PFN_ERR_FAULT; | 1224 | pfn = KVM_PFN_ERR_FAULT; |
1226 | } | 1225 | } |
1227 | exit: | 1226 | exit: |
1228 | up_read(¤t->mm->mmap_sem); | 1227 | up_read(¤t->mm->mmap_sem); |
1229 | return pfn; | 1228 | return pfn; |
1230 | } | 1229 | } |
1231 | 1230 | ||
1232 | static pfn_t | 1231 | static pfn_t |
1233 | __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic, | 1232 | __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic, |
1234 | bool *async, bool write_fault, bool *writable) | 1233 | bool *async, bool write_fault, bool *writable) |
1235 | { | 1234 | { |
1236 | unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); | 1235 | unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); |
1237 | 1236 | ||
1238 | if (addr == KVM_HVA_ERR_RO_BAD) | 1237 | if (addr == KVM_HVA_ERR_RO_BAD) |
1239 | return KVM_PFN_ERR_RO_FAULT; | 1238 | return KVM_PFN_ERR_RO_FAULT; |
1240 | 1239 | ||
1241 | if (kvm_is_error_hva(addr)) | 1240 | if (kvm_is_error_hva(addr)) |
1242 | return KVM_PFN_NOSLOT; | 1241 | return KVM_PFN_NOSLOT; |
1243 | 1242 | ||
1244 | /* Do not map writable pfn in the readonly memslot. */ | 1243 | /* Do not map writable pfn in the readonly memslot. */ |
1245 | if (writable && memslot_is_readonly(slot)) { | 1244 | if (writable && memslot_is_readonly(slot)) { |
1246 | *writable = false; | 1245 | *writable = false; |
1247 | writable = NULL; | 1246 | writable = NULL; |
1248 | } | 1247 | } |
1249 | 1248 | ||
1250 | return hva_to_pfn(addr, atomic, async, write_fault, | 1249 | return hva_to_pfn(addr, atomic, async, write_fault, |
1251 | writable); | 1250 | writable); |
1252 | } | 1251 | } |
1253 | 1252 | ||
1254 | static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async, | 1253 | static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async, |
1255 | bool write_fault, bool *writable) | 1254 | bool write_fault, bool *writable) |
1256 | { | 1255 | { |
1257 | struct kvm_memory_slot *slot; | 1256 | struct kvm_memory_slot *slot; |
1258 | 1257 | ||
1259 | if (async) | 1258 | if (async) |
1260 | *async = false; | 1259 | *async = false; |
1261 | 1260 | ||
1262 | slot = gfn_to_memslot(kvm, gfn); | 1261 | slot = gfn_to_memslot(kvm, gfn); |
1263 | 1262 | ||
1264 | return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault, | 1263 | return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault, |
1265 | writable); | 1264 | writable); |
1266 | } | 1265 | } |
1267 | 1266 | ||
1268 | pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) | 1267 | pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) |
1269 | { | 1268 | { |
1270 | return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL); | 1269 | return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL); |
1271 | } | 1270 | } |
1272 | EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); | 1271 | EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); |
1273 | 1272 | ||
1274 | pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async, | 1273 | pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async, |
1275 | bool write_fault, bool *writable) | 1274 | bool write_fault, bool *writable) |
1276 | { | 1275 | { |
1277 | return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable); | 1276 | return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable); |
1278 | } | 1277 | } |
1279 | EXPORT_SYMBOL_GPL(gfn_to_pfn_async); | 1278 | EXPORT_SYMBOL_GPL(gfn_to_pfn_async); |
1280 | 1279 | ||
1281 | pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) | 1280 | pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) |
1282 | { | 1281 | { |
1283 | return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL); | 1282 | return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL); |
1284 | } | 1283 | } |
1285 | EXPORT_SYMBOL_GPL(gfn_to_pfn); | 1284 | EXPORT_SYMBOL_GPL(gfn_to_pfn); |
1286 | 1285 | ||
1287 | pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, | 1286 | pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, |
1288 | bool *writable) | 1287 | bool *writable) |
1289 | { | 1288 | { |
1290 | return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable); | 1289 | return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable); |
1291 | } | 1290 | } |
1292 | EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); | 1291 | EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); |
1293 | 1292 | ||
1294 | pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) | 1293 | pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) |
1295 | { | 1294 | { |
1296 | return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); | 1295 | return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); |
1297 | } | 1296 | } |
1298 | 1297 | ||
1299 | pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) | 1298 | pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) |
1300 | { | 1299 | { |
1301 | return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); | 1300 | return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); |
1302 | } | 1301 | } |
1303 | EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); | 1302 | EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); |
1304 | 1303 | ||
1305 | int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages, | 1304 | int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages, |
1306 | int nr_pages) | 1305 | int nr_pages) |
1307 | { | 1306 | { |
1308 | unsigned long addr; | 1307 | unsigned long addr; |
1309 | gfn_t entry; | 1308 | gfn_t entry; |
1310 | 1309 | ||
1311 | addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry); | 1310 | addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry); |
1312 | if (kvm_is_error_hva(addr)) | 1311 | if (kvm_is_error_hva(addr)) |
1313 | return -1; | 1312 | return -1; |
1314 | 1313 | ||
1315 | if (entry < nr_pages) | 1314 | if (entry < nr_pages) |
1316 | return 0; | 1315 | return 0; |
1317 | 1316 | ||
1318 | return __get_user_pages_fast(addr, nr_pages, 1, pages); | 1317 | return __get_user_pages_fast(addr, nr_pages, 1, pages); |
1319 | } | 1318 | } |
1320 | EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); | 1319 | EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); |
1321 | 1320 | ||
1322 | static struct page *kvm_pfn_to_page(pfn_t pfn) | 1321 | static struct page *kvm_pfn_to_page(pfn_t pfn) |
1323 | { | 1322 | { |
1324 | if (is_error_noslot_pfn(pfn)) | 1323 | if (is_error_noslot_pfn(pfn)) |
1325 | return KVM_ERR_PTR_BAD_PAGE; | 1324 | return KVM_ERR_PTR_BAD_PAGE; |
1326 | 1325 | ||
1327 | if (kvm_is_mmio_pfn(pfn)) { | 1326 | if (kvm_is_mmio_pfn(pfn)) { |
1328 | WARN_ON(1); | 1327 | WARN_ON(1); |
1329 | return KVM_ERR_PTR_BAD_PAGE; | 1328 | return KVM_ERR_PTR_BAD_PAGE; |
1330 | } | 1329 | } |
1331 | 1330 | ||
1332 | return pfn_to_page(pfn); | 1331 | return pfn_to_page(pfn); |
1333 | } | 1332 | } |
1334 | 1333 | ||
1335 | struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) | 1334 | struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) |
1336 | { | 1335 | { |
1337 | pfn_t pfn; | 1336 | pfn_t pfn; |
1338 | 1337 | ||
1339 | pfn = gfn_to_pfn(kvm, gfn); | 1338 | pfn = gfn_to_pfn(kvm, gfn); |
1340 | 1339 | ||
1341 | return kvm_pfn_to_page(pfn); | 1340 | return kvm_pfn_to_page(pfn); |
1342 | } | 1341 | } |
1343 | 1342 | ||
1344 | EXPORT_SYMBOL_GPL(gfn_to_page); | 1343 | EXPORT_SYMBOL_GPL(gfn_to_page); |
1345 | 1344 | ||
1346 | void kvm_release_page_clean(struct page *page) | 1345 | void kvm_release_page_clean(struct page *page) |
1347 | { | 1346 | { |
1348 | WARN_ON(is_error_page(page)); | 1347 | WARN_ON(is_error_page(page)); |
1349 | 1348 | ||
1350 | kvm_release_pfn_clean(page_to_pfn(page)); | 1349 | kvm_release_pfn_clean(page_to_pfn(page)); |
1351 | } | 1350 | } |
1352 | EXPORT_SYMBOL_GPL(kvm_release_page_clean); | 1351 | EXPORT_SYMBOL_GPL(kvm_release_page_clean); |
1353 | 1352 | ||
1354 | void kvm_release_pfn_clean(pfn_t pfn) | 1353 | void kvm_release_pfn_clean(pfn_t pfn) |
1355 | { | 1354 | { |
1356 | if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn)) | 1355 | if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn)) |
1357 | put_page(pfn_to_page(pfn)); | 1356 | put_page(pfn_to_page(pfn)); |
1358 | } | 1357 | } |
1359 | EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); | 1358 | EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); |
1360 | 1359 | ||
1361 | void kvm_release_page_dirty(struct page *page) | 1360 | void kvm_release_page_dirty(struct page *page) |
1362 | { | 1361 | { |
1363 | WARN_ON(is_error_page(page)); | 1362 | WARN_ON(is_error_page(page)); |
1364 | 1363 | ||
1365 | kvm_release_pfn_dirty(page_to_pfn(page)); | 1364 | kvm_release_pfn_dirty(page_to_pfn(page)); |
1366 | } | 1365 | } |
1367 | EXPORT_SYMBOL_GPL(kvm_release_page_dirty); | 1366 | EXPORT_SYMBOL_GPL(kvm_release_page_dirty); |
1368 | 1367 | ||
1369 | void kvm_release_pfn_dirty(pfn_t pfn) | 1368 | void kvm_release_pfn_dirty(pfn_t pfn) |
1370 | { | 1369 | { |
1371 | kvm_set_pfn_dirty(pfn); | 1370 | kvm_set_pfn_dirty(pfn); |
1372 | kvm_release_pfn_clean(pfn); | 1371 | kvm_release_pfn_clean(pfn); |
1373 | } | 1372 | } |
1374 | EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); | 1373 | EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); |
1375 | 1374 | ||
1376 | void kvm_set_page_dirty(struct page *page) | 1375 | void kvm_set_page_dirty(struct page *page) |
1377 | { | 1376 | { |
1378 | kvm_set_pfn_dirty(page_to_pfn(page)); | 1377 | kvm_set_pfn_dirty(page_to_pfn(page)); |
1379 | } | 1378 | } |
1380 | EXPORT_SYMBOL_GPL(kvm_set_page_dirty); | 1379 | EXPORT_SYMBOL_GPL(kvm_set_page_dirty); |
1381 | 1380 | ||
1382 | void kvm_set_pfn_dirty(pfn_t pfn) | 1381 | void kvm_set_pfn_dirty(pfn_t pfn) |
1383 | { | 1382 | { |
1384 | if (!kvm_is_mmio_pfn(pfn)) { | 1383 | if (!kvm_is_mmio_pfn(pfn)) { |
1385 | struct page *page = pfn_to_page(pfn); | 1384 | struct page *page = pfn_to_page(pfn); |
1386 | if (!PageReserved(page)) | 1385 | if (!PageReserved(page)) |
1387 | SetPageDirty(page); | 1386 | SetPageDirty(page); |
1388 | } | 1387 | } |
1389 | } | 1388 | } |
1390 | EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); | 1389 | EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); |
1391 | 1390 | ||
1392 | void kvm_set_pfn_accessed(pfn_t pfn) | 1391 | void kvm_set_pfn_accessed(pfn_t pfn) |
1393 | { | 1392 | { |
1394 | if (!kvm_is_mmio_pfn(pfn)) | 1393 | if (!kvm_is_mmio_pfn(pfn)) |
1395 | mark_page_accessed(pfn_to_page(pfn)); | 1394 | mark_page_accessed(pfn_to_page(pfn)); |
1396 | } | 1395 | } |
1397 | EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); | 1396 | EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); |
1398 | 1397 | ||
1399 | void kvm_get_pfn(pfn_t pfn) | 1398 | void kvm_get_pfn(pfn_t pfn) |
1400 | { | 1399 | { |
1401 | if (!kvm_is_mmio_pfn(pfn)) | 1400 | if (!kvm_is_mmio_pfn(pfn)) |
1402 | get_page(pfn_to_page(pfn)); | 1401 | get_page(pfn_to_page(pfn)); |
1403 | } | 1402 | } |
1404 | EXPORT_SYMBOL_GPL(kvm_get_pfn); | 1403 | EXPORT_SYMBOL_GPL(kvm_get_pfn); |
1405 | 1404 | ||
1406 | static int next_segment(unsigned long len, int offset) | 1405 | static int next_segment(unsigned long len, int offset) |
1407 | { | 1406 | { |
1408 | if (len > PAGE_SIZE - offset) | 1407 | if (len > PAGE_SIZE - offset) |
1409 | return PAGE_SIZE - offset; | 1408 | return PAGE_SIZE - offset; |
1410 | else | 1409 | else |
1411 | return len; | 1410 | return len; |
1412 | } | 1411 | } |
1413 | 1412 | ||
1414 | int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, | 1413 | int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, |
1415 | int len) | 1414 | int len) |
1416 | { | 1415 | { |
1417 | int r; | 1416 | int r; |
1418 | unsigned long addr; | 1417 | unsigned long addr; |
1419 | 1418 | ||
1420 | addr = gfn_to_hva_read(kvm, gfn); | 1419 | addr = gfn_to_hva_read(kvm, gfn); |
1421 | if (kvm_is_error_hva(addr)) | 1420 | if (kvm_is_error_hva(addr)) |
1422 | return -EFAULT; | 1421 | return -EFAULT; |
1423 | r = kvm_read_hva(data, (void __user *)addr + offset, len); | 1422 | r = kvm_read_hva(data, (void __user *)addr + offset, len); |
1424 | if (r) | 1423 | if (r) |
1425 | return -EFAULT; | 1424 | return -EFAULT; |
1426 | return 0; | 1425 | return 0; |
1427 | } | 1426 | } |
1428 | EXPORT_SYMBOL_GPL(kvm_read_guest_page); | 1427 | EXPORT_SYMBOL_GPL(kvm_read_guest_page); |
1429 | 1428 | ||
1430 | int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) | 1429 | int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) |
1431 | { | 1430 | { |
1432 | gfn_t gfn = gpa >> PAGE_SHIFT; | 1431 | gfn_t gfn = gpa >> PAGE_SHIFT; |
1433 | int seg; | 1432 | int seg; |
1434 | int offset = offset_in_page(gpa); | 1433 | int offset = offset_in_page(gpa); |
1435 | int ret; | 1434 | int ret; |
1436 | 1435 | ||
1437 | while ((seg = next_segment(len, offset)) != 0) { | 1436 | while ((seg = next_segment(len, offset)) != 0) { |
1438 | ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); | 1437 | ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); |
1439 | if (ret < 0) | 1438 | if (ret < 0) |
1440 | return ret; | 1439 | return ret; |
1441 | offset = 0; | 1440 | offset = 0; |
1442 | len -= seg; | 1441 | len -= seg; |
1443 | data += seg; | 1442 | data += seg; |
1444 | ++gfn; | 1443 | ++gfn; |
1445 | } | 1444 | } |
1446 | return 0; | 1445 | return 0; |
1447 | } | 1446 | } |
1448 | EXPORT_SYMBOL_GPL(kvm_read_guest); | 1447 | EXPORT_SYMBOL_GPL(kvm_read_guest); |
1449 | 1448 | ||
1450 | int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, | 1449 | int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, |
1451 | unsigned long len) | 1450 | unsigned long len) |
1452 | { | 1451 | { |
1453 | int r; | 1452 | int r; |
1454 | unsigned long addr; | 1453 | unsigned long addr; |
1455 | gfn_t gfn = gpa >> PAGE_SHIFT; | 1454 | gfn_t gfn = gpa >> PAGE_SHIFT; |
1456 | int offset = offset_in_page(gpa); | 1455 | int offset = offset_in_page(gpa); |
1457 | 1456 | ||
1458 | addr = gfn_to_hva_read(kvm, gfn); | 1457 | addr = gfn_to_hva_read(kvm, gfn); |
1459 | if (kvm_is_error_hva(addr)) | 1458 | if (kvm_is_error_hva(addr)) |
1460 | return -EFAULT; | 1459 | return -EFAULT; |
1461 | pagefault_disable(); | 1460 | pagefault_disable(); |
1462 | r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len); | 1461 | r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len); |
1463 | pagefault_enable(); | 1462 | pagefault_enable(); |
1464 | if (r) | 1463 | if (r) |
1465 | return -EFAULT; | 1464 | return -EFAULT; |
1466 | return 0; | 1465 | return 0; |
1467 | } | 1466 | } |
1468 | EXPORT_SYMBOL(kvm_read_guest_atomic); | 1467 | EXPORT_SYMBOL(kvm_read_guest_atomic); |
1469 | 1468 | ||
1470 | int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, | 1469 | int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, |
1471 | int offset, int len) | 1470 | int offset, int len) |
1472 | { | 1471 | { |
1473 | int r; | 1472 | int r; |
1474 | unsigned long addr; | 1473 | unsigned long addr; |
1475 | 1474 | ||
1476 | addr = gfn_to_hva(kvm, gfn); | 1475 | addr = gfn_to_hva(kvm, gfn); |
1477 | if (kvm_is_error_hva(addr)) | 1476 | if (kvm_is_error_hva(addr)) |
1478 | return -EFAULT; | 1477 | return -EFAULT; |
1479 | r = __copy_to_user((void __user *)addr + offset, data, len); | 1478 | r = __copy_to_user((void __user *)addr + offset, data, len); |
1480 | if (r) | 1479 | if (r) |
1481 | return -EFAULT; | 1480 | return -EFAULT; |
1482 | mark_page_dirty(kvm, gfn); | 1481 | mark_page_dirty(kvm, gfn); |
1483 | return 0; | 1482 | return 0; |
1484 | } | 1483 | } |
1485 | EXPORT_SYMBOL_GPL(kvm_write_guest_page); | 1484 | EXPORT_SYMBOL_GPL(kvm_write_guest_page); |
1486 | 1485 | ||
1487 | int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, | 1486 | int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, |
1488 | unsigned long len) | 1487 | unsigned long len) |
1489 | { | 1488 | { |
1490 | gfn_t gfn = gpa >> PAGE_SHIFT; | 1489 | gfn_t gfn = gpa >> PAGE_SHIFT; |
1491 | int seg; | 1490 | int seg; |
1492 | int offset = offset_in_page(gpa); | 1491 | int offset = offset_in_page(gpa); |
1493 | int ret; | 1492 | int ret; |
1494 | 1493 | ||
1495 | while ((seg = next_segment(len, offset)) != 0) { | 1494 | while ((seg = next_segment(len, offset)) != 0) { |
1496 | ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); | 1495 | ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); |
1497 | if (ret < 0) | 1496 | if (ret < 0) |
1498 | return ret; | 1497 | return ret; |
1499 | offset = 0; | 1498 | offset = 0; |
1500 | len -= seg; | 1499 | len -= seg; |
1501 | data += seg; | 1500 | data += seg; |
1502 | ++gfn; | 1501 | ++gfn; |
1503 | } | 1502 | } |
1504 | return 0; | 1503 | return 0; |
1505 | } | 1504 | } |
1506 | 1505 | ||
1507 | int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, | 1506 | int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, |
1508 | gpa_t gpa) | 1507 | gpa_t gpa) |
1509 | { | 1508 | { |
1510 | struct kvm_memslots *slots = kvm_memslots(kvm); | 1509 | struct kvm_memslots *slots = kvm_memslots(kvm); |
1511 | int offset = offset_in_page(gpa); | 1510 | int offset = offset_in_page(gpa); |
1512 | gfn_t gfn = gpa >> PAGE_SHIFT; | 1511 | gfn_t gfn = gpa >> PAGE_SHIFT; |
1513 | 1512 | ||
1514 | ghc->gpa = gpa; | 1513 | ghc->gpa = gpa; |
1515 | ghc->generation = slots->generation; | 1514 | ghc->generation = slots->generation; |
1516 | ghc->memslot = gfn_to_memslot(kvm, gfn); | 1515 | ghc->memslot = gfn_to_memslot(kvm, gfn); |
1517 | ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL); | 1516 | ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL); |
1518 | if (!kvm_is_error_hva(ghc->hva)) | 1517 | if (!kvm_is_error_hva(ghc->hva)) |
1519 | ghc->hva += offset; | 1518 | ghc->hva += offset; |
1520 | else | 1519 | else |
1521 | return -EFAULT; | 1520 | return -EFAULT; |
1522 | 1521 | ||
1523 | return 0; | 1522 | return 0; |
1524 | } | 1523 | } |
1525 | EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); | 1524 | EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); |
1526 | 1525 | ||
1527 | int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, | 1526 | int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, |
1528 | void *data, unsigned long len) | 1527 | void *data, unsigned long len) |
1529 | { | 1528 | { |
1530 | struct kvm_memslots *slots = kvm_memslots(kvm); | 1529 | struct kvm_memslots *slots = kvm_memslots(kvm); |
1531 | int r; | 1530 | int r; |
1532 | 1531 | ||
1533 | if (slots->generation != ghc->generation) | 1532 | if (slots->generation != ghc->generation) |
1534 | kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa); | 1533 | kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa); |
1535 | 1534 | ||
1536 | if (kvm_is_error_hva(ghc->hva)) | 1535 | if (kvm_is_error_hva(ghc->hva)) |
1537 | return -EFAULT; | 1536 | return -EFAULT; |
1538 | 1537 | ||
1539 | r = __copy_to_user((void __user *)ghc->hva, data, len); | 1538 | r = __copy_to_user((void __user *)ghc->hva, data, len); |
1540 | if (r) | 1539 | if (r) |
1541 | return -EFAULT; | 1540 | return -EFAULT; |
1542 | mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT); | 1541 | mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT); |
1543 | 1542 | ||
1544 | return 0; | 1543 | return 0; |
1545 | } | 1544 | } |
1546 | EXPORT_SYMBOL_GPL(kvm_write_guest_cached); | 1545 | EXPORT_SYMBOL_GPL(kvm_write_guest_cached); |
1547 | 1546 | ||
1548 | int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, | 1547 | int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, |
1549 | void *data, unsigned long len) | 1548 | void *data, unsigned long len) |
1550 | { | 1549 | { |
1551 | struct kvm_memslots *slots = kvm_memslots(kvm); | 1550 | struct kvm_memslots *slots = kvm_memslots(kvm); |
1552 | int r; | 1551 | int r; |
1553 | 1552 | ||
1554 | if (slots->generation != ghc->generation) | 1553 | if (slots->generation != ghc->generation) |
1555 | kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa); | 1554 | kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa); |
1556 | 1555 | ||
1557 | if (kvm_is_error_hva(ghc->hva)) | 1556 | if (kvm_is_error_hva(ghc->hva)) |
1558 | return -EFAULT; | 1557 | return -EFAULT; |
1559 | 1558 | ||
1560 | r = __copy_from_user(data, (void __user *)ghc->hva, len); | 1559 | r = __copy_from_user(data, (void __user *)ghc->hva, len); |
1561 | if (r) | 1560 | if (r) |
1562 | return -EFAULT; | 1561 | return -EFAULT; |
1563 | 1562 | ||
1564 | return 0; | 1563 | return 0; |
1565 | } | 1564 | } |
1566 | EXPORT_SYMBOL_GPL(kvm_read_guest_cached); | 1565 | EXPORT_SYMBOL_GPL(kvm_read_guest_cached); |
1567 | 1566 | ||
1568 | int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) | 1567 | int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) |
1569 | { | 1568 | { |
1570 | return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page, | 1569 | return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page, |
1571 | offset, len); | 1570 | offset, len); |
1572 | } | 1571 | } |
1573 | EXPORT_SYMBOL_GPL(kvm_clear_guest_page); | 1572 | EXPORT_SYMBOL_GPL(kvm_clear_guest_page); |
1574 | 1573 | ||
1575 | int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) | 1574 | int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) |
1576 | { | 1575 | { |
1577 | gfn_t gfn = gpa >> PAGE_SHIFT; | 1576 | gfn_t gfn = gpa >> PAGE_SHIFT; |
1578 | int seg; | 1577 | int seg; |
1579 | int offset = offset_in_page(gpa); | 1578 | int offset = offset_in_page(gpa); |
1580 | int ret; | 1579 | int ret; |
1581 | 1580 | ||
1582 | while ((seg = next_segment(len, offset)) != 0) { | 1581 | while ((seg = next_segment(len, offset)) != 0) { |
1583 | ret = kvm_clear_guest_page(kvm, gfn, offset, seg); | 1582 | ret = kvm_clear_guest_page(kvm, gfn, offset, seg); |
1584 | if (ret < 0) | 1583 | if (ret < 0) |
1585 | return ret; | 1584 | return ret; |
1586 | offset = 0; | 1585 | offset = 0; |
1587 | len -= seg; | 1586 | len -= seg; |
1588 | ++gfn; | 1587 | ++gfn; |
1589 | } | 1588 | } |
1590 | return 0; | 1589 | return 0; |
1591 | } | 1590 | } |
1592 | EXPORT_SYMBOL_GPL(kvm_clear_guest); | 1591 | EXPORT_SYMBOL_GPL(kvm_clear_guest); |
1593 | 1592 | ||
1594 | void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot, | 1593 | void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot, |
1595 | gfn_t gfn) | 1594 | gfn_t gfn) |
1596 | { | 1595 | { |
1597 | if (memslot && memslot->dirty_bitmap) { | 1596 | if (memslot && memslot->dirty_bitmap) { |
1598 | unsigned long rel_gfn = gfn - memslot->base_gfn; | 1597 | unsigned long rel_gfn = gfn - memslot->base_gfn; |
1599 | 1598 | ||
1600 | set_bit_le(rel_gfn, memslot->dirty_bitmap); | 1599 | set_bit_le(rel_gfn, memslot->dirty_bitmap); |
1601 | } | 1600 | } |
1602 | } | 1601 | } |
1603 | 1602 | ||
1604 | void mark_page_dirty(struct kvm *kvm, gfn_t gfn) | 1603 | void mark_page_dirty(struct kvm *kvm, gfn_t gfn) |
1605 | { | 1604 | { |
1606 | struct kvm_memory_slot *memslot; | 1605 | struct kvm_memory_slot *memslot; |
1607 | 1606 | ||
1608 | memslot = gfn_to_memslot(kvm, gfn); | 1607 | memslot = gfn_to_memslot(kvm, gfn); |
1609 | mark_page_dirty_in_slot(kvm, memslot, gfn); | 1608 | mark_page_dirty_in_slot(kvm, memslot, gfn); |
1610 | } | 1609 | } |
1611 | 1610 | ||
1612 | /* | 1611 | /* |
1613 | * The vCPU has executed a HLT instruction with in-kernel mode enabled. | 1612 | * The vCPU has executed a HLT instruction with in-kernel mode enabled. |
1614 | */ | 1613 | */ |
1615 | void kvm_vcpu_block(struct kvm_vcpu *vcpu) | 1614 | void kvm_vcpu_block(struct kvm_vcpu *vcpu) |
1616 | { | 1615 | { |
1617 | DEFINE_WAIT(wait); | 1616 | DEFINE_WAIT(wait); |
1618 | 1617 | ||
1619 | for (;;) { | 1618 | for (;;) { |
1620 | prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); | 1619 | prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); |
1621 | 1620 | ||
1622 | if (kvm_arch_vcpu_runnable(vcpu)) { | 1621 | if (kvm_arch_vcpu_runnable(vcpu)) { |
1623 | kvm_make_request(KVM_REQ_UNHALT, vcpu); | 1622 | kvm_make_request(KVM_REQ_UNHALT, vcpu); |
1624 | break; | 1623 | break; |
1625 | } | 1624 | } |
1626 | if (kvm_cpu_has_pending_timer(vcpu)) | 1625 | if (kvm_cpu_has_pending_timer(vcpu)) |
1627 | break; | 1626 | break; |
1628 | if (signal_pending(current)) | 1627 | if (signal_pending(current)) |
1629 | break; | 1628 | break; |
1630 | 1629 | ||
1631 | schedule(); | 1630 | schedule(); |
1632 | } | 1631 | } |
1633 | 1632 | ||
1634 | finish_wait(&vcpu->wq, &wait); | 1633 | finish_wait(&vcpu->wq, &wait); |
1635 | } | 1634 | } |
1636 | 1635 | ||
1637 | #ifndef CONFIG_S390 | 1636 | #ifndef CONFIG_S390 |
1638 | /* | 1637 | /* |
1639 | * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. | 1638 | * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. |
1640 | */ | 1639 | */ |
1641 | void kvm_vcpu_kick(struct kvm_vcpu *vcpu) | 1640 | void kvm_vcpu_kick(struct kvm_vcpu *vcpu) |
1642 | { | 1641 | { |
1643 | int me; | 1642 | int me; |
1644 | int cpu = vcpu->cpu; | 1643 | int cpu = vcpu->cpu; |
1645 | wait_queue_head_t *wqp; | 1644 | wait_queue_head_t *wqp; |
1646 | 1645 | ||
1647 | wqp = kvm_arch_vcpu_wq(vcpu); | 1646 | wqp = kvm_arch_vcpu_wq(vcpu); |
1648 | if (waitqueue_active(wqp)) { | 1647 | if (waitqueue_active(wqp)) { |
1649 | wake_up_interruptible(wqp); | 1648 | wake_up_interruptible(wqp); |
1650 | ++vcpu->stat.halt_wakeup; | 1649 | ++vcpu->stat.halt_wakeup; |
1651 | } | 1650 | } |
1652 | 1651 | ||
1653 | me = get_cpu(); | 1652 | me = get_cpu(); |
1654 | if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) | 1653 | if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) |
1655 | if (kvm_arch_vcpu_should_kick(vcpu)) | 1654 | if (kvm_arch_vcpu_should_kick(vcpu)) |
1656 | smp_send_reschedule(cpu); | 1655 | smp_send_reschedule(cpu); |
1657 | put_cpu(); | 1656 | put_cpu(); |
1658 | } | 1657 | } |
1659 | #endif /* !CONFIG_S390 */ | 1658 | #endif /* !CONFIG_S390 */ |
1660 | 1659 | ||
1661 | void kvm_resched(struct kvm_vcpu *vcpu) | 1660 | void kvm_resched(struct kvm_vcpu *vcpu) |
1662 | { | 1661 | { |
1663 | if (!need_resched()) | 1662 | if (!need_resched()) |
1664 | return; | 1663 | return; |
1665 | cond_resched(); | 1664 | cond_resched(); |
1666 | } | 1665 | } |
1667 | EXPORT_SYMBOL_GPL(kvm_resched); | 1666 | EXPORT_SYMBOL_GPL(kvm_resched); |
1668 | 1667 | ||
1669 | bool kvm_vcpu_yield_to(struct kvm_vcpu *target) | 1668 | bool kvm_vcpu_yield_to(struct kvm_vcpu *target) |
1670 | { | 1669 | { |
1671 | struct pid *pid; | 1670 | struct pid *pid; |
1672 | struct task_struct *task = NULL; | 1671 | struct task_struct *task = NULL; |
1673 | 1672 | ||
1674 | rcu_read_lock(); | 1673 | rcu_read_lock(); |
1675 | pid = rcu_dereference(target->pid); | 1674 | pid = rcu_dereference(target->pid); |
1676 | if (pid) | 1675 | if (pid) |
1677 | task = get_pid_task(target->pid, PIDTYPE_PID); | 1676 | task = get_pid_task(target->pid, PIDTYPE_PID); |
1678 | rcu_read_unlock(); | 1677 | rcu_read_unlock(); |
1679 | if (!task) | 1678 | if (!task) |
1680 | return false; | 1679 | return false; |
1681 | if (task->flags & PF_VCPU) { | 1680 | if (task->flags & PF_VCPU) { |
1682 | put_task_struct(task); | 1681 | put_task_struct(task); |
1683 | return false; | 1682 | return false; |
1684 | } | 1683 | } |
1685 | if (yield_to(task, 1)) { | 1684 | if (yield_to(task, 1)) { |
1686 | put_task_struct(task); | 1685 | put_task_struct(task); |
1687 | return true; | 1686 | return true; |
1688 | } | 1687 | } |
1689 | put_task_struct(task); | 1688 | put_task_struct(task); |
1690 | return false; | 1689 | return false; |
1691 | } | 1690 | } |
1692 | EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); | 1691 | EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); |
1693 | 1692 | ||
1694 | #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT | 1693 | #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT |
1695 | /* | 1694 | /* |
1696 | * Helper that checks whether a VCPU is eligible for directed yield. | 1695 | * Helper that checks whether a VCPU is eligible for directed yield. |
1697 | * Most eligible candidate to yield is decided by following heuristics: | 1696 | * Most eligible candidate to yield is decided by following heuristics: |
1698 | * | 1697 | * |
1699 | * (a) VCPU which has not done pl-exit or cpu relax intercepted recently | 1698 | * (a) VCPU which has not done pl-exit or cpu relax intercepted recently |
1700 | * (preempted lock holder), indicated by @in_spin_loop. | 1699 | * (preempted lock holder), indicated by @in_spin_loop. |
1701 | * Set at the beiginning and cleared at the end of interception/PLE handler. | 1700 | * Set at the beiginning and cleared at the end of interception/PLE handler. |
1702 | * | 1701 | * |
1703 | * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get | 1702 | * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get |
1704 | * chance last time (mostly it has become eligible now since we have probably | 1703 | * chance last time (mostly it has become eligible now since we have probably |
1705 | * yielded to lockholder in last iteration. This is done by toggling | 1704 | * yielded to lockholder in last iteration. This is done by toggling |
1706 | * @dy_eligible each time a VCPU checked for eligibility.) | 1705 | * @dy_eligible each time a VCPU checked for eligibility.) |
1707 | * | 1706 | * |
1708 | * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding | 1707 | * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding |
1709 | * to preempted lock-holder could result in wrong VCPU selection and CPU | 1708 | * to preempted lock-holder could result in wrong VCPU selection and CPU |
1710 | * burning. Giving priority for a potential lock-holder increases lock | 1709 | * burning. Giving priority for a potential lock-holder increases lock |
1711 | * progress. | 1710 | * progress. |
1712 | * | 1711 | * |
1713 | * Since algorithm is based on heuristics, accessing another VCPU data without | 1712 | * Since algorithm is based on heuristics, accessing another VCPU data without |
1714 | * locking does not harm. It may result in trying to yield to same VCPU, fail | 1713 | * locking does not harm. It may result in trying to yield to same VCPU, fail |
1715 | * and continue with next VCPU and so on. | 1714 | * and continue with next VCPU and so on. |
1716 | */ | 1715 | */ |
1717 | bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) | 1716 | bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) |
1718 | { | 1717 | { |
1719 | bool eligible; | 1718 | bool eligible; |
1720 | 1719 | ||
1721 | eligible = !vcpu->spin_loop.in_spin_loop || | 1720 | eligible = !vcpu->spin_loop.in_spin_loop || |
1722 | (vcpu->spin_loop.in_spin_loop && | 1721 | (vcpu->spin_loop.in_spin_loop && |
1723 | vcpu->spin_loop.dy_eligible); | 1722 | vcpu->spin_loop.dy_eligible); |
1724 | 1723 | ||
1725 | if (vcpu->spin_loop.in_spin_loop) | 1724 | if (vcpu->spin_loop.in_spin_loop) |
1726 | kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); | 1725 | kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); |
1727 | 1726 | ||
1728 | return eligible; | 1727 | return eligible; |
1729 | } | 1728 | } |
1730 | #endif | 1729 | #endif |
1731 | void kvm_vcpu_on_spin(struct kvm_vcpu *me) | 1730 | void kvm_vcpu_on_spin(struct kvm_vcpu *me) |
1732 | { | 1731 | { |
1733 | struct kvm *kvm = me->kvm; | 1732 | struct kvm *kvm = me->kvm; |
1734 | struct kvm_vcpu *vcpu; | 1733 | struct kvm_vcpu *vcpu; |
1735 | int last_boosted_vcpu = me->kvm->last_boosted_vcpu; | 1734 | int last_boosted_vcpu = me->kvm->last_boosted_vcpu; |
1736 | int yielded = 0; | 1735 | int yielded = 0; |
1737 | int pass; | 1736 | int pass; |
1738 | int i; | 1737 | int i; |
1739 | 1738 | ||
1740 | kvm_vcpu_set_in_spin_loop(me, true); | 1739 | kvm_vcpu_set_in_spin_loop(me, true); |
1741 | /* | 1740 | /* |
1742 | * We boost the priority of a VCPU that is runnable but not | 1741 | * We boost the priority of a VCPU that is runnable but not |
1743 | * currently running, because it got preempted by something | 1742 | * currently running, because it got preempted by something |
1744 | * else and called schedule in __vcpu_run. Hopefully that | 1743 | * else and called schedule in __vcpu_run. Hopefully that |
1745 | * VCPU is holding the lock that we need and will release it. | 1744 | * VCPU is holding the lock that we need and will release it. |
1746 | * We approximate round-robin by starting at the last boosted VCPU. | 1745 | * We approximate round-robin by starting at the last boosted VCPU. |
1747 | */ | 1746 | */ |
1748 | for (pass = 0; pass < 2 && !yielded; pass++) { | 1747 | for (pass = 0; pass < 2 && !yielded; pass++) { |
1749 | kvm_for_each_vcpu(i, vcpu, kvm) { | 1748 | kvm_for_each_vcpu(i, vcpu, kvm) { |
1750 | if (!pass && i <= last_boosted_vcpu) { | 1749 | if (!pass && i <= last_boosted_vcpu) { |
1751 | i = last_boosted_vcpu; | 1750 | i = last_boosted_vcpu; |
1752 | continue; | 1751 | continue; |
1753 | } else if (pass && i > last_boosted_vcpu) | 1752 | } else if (pass && i > last_boosted_vcpu) |
1754 | break; | 1753 | break; |
1755 | if (vcpu == me) | 1754 | if (vcpu == me) |
1756 | continue; | 1755 | continue; |
1757 | if (waitqueue_active(&vcpu->wq)) | 1756 | if (waitqueue_active(&vcpu->wq)) |
1758 | continue; | 1757 | continue; |
1759 | if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) | 1758 | if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) |
1760 | continue; | 1759 | continue; |
1761 | if (kvm_vcpu_yield_to(vcpu)) { | 1760 | if (kvm_vcpu_yield_to(vcpu)) { |
1762 | kvm->last_boosted_vcpu = i; | 1761 | kvm->last_boosted_vcpu = i; |
1763 | yielded = 1; | 1762 | yielded = 1; |
1764 | break; | 1763 | break; |
1765 | } | 1764 | } |
1766 | } | 1765 | } |
1767 | } | 1766 | } |
1768 | kvm_vcpu_set_in_spin_loop(me, false); | 1767 | kvm_vcpu_set_in_spin_loop(me, false); |
1769 | 1768 | ||
1770 | /* Ensure vcpu is not eligible during next spinloop */ | 1769 | /* Ensure vcpu is not eligible during next spinloop */ |
1771 | kvm_vcpu_set_dy_eligible(me, false); | 1770 | kvm_vcpu_set_dy_eligible(me, false); |
1772 | } | 1771 | } |
1773 | EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); | 1772 | EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); |
1774 | 1773 | ||
1775 | static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | 1774 | static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf) |
1776 | { | 1775 | { |
1777 | struct kvm_vcpu *vcpu = vma->vm_file->private_data; | 1776 | struct kvm_vcpu *vcpu = vma->vm_file->private_data; |
1778 | struct page *page; | 1777 | struct page *page; |
1779 | 1778 | ||
1780 | if (vmf->pgoff == 0) | 1779 | if (vmf->pgoff == 0) |
1781 | page = virt_to_page(vcpu->run); | 1780 | page = virt_to_page(vcpu->run); |
1782 | #ifdef CONFIG_X86 | 1781 | #ifdef CONFIG_X86 |
1783 | else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) | 1782 | else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) |
1784 | page = virt_to_page(vcpu->arch.pio_data); | 1783 | page = virt_to_page(vcpu->arch.pio_data); |
1785 | #endif | 1784 | #endif |
1786 | #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET | 1785 | #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET |
1787 | else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) | 1786 | else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) |
1788 | page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); | 1787 | page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); |
1789 | #endif | 1788 | #endif |
1790 | else | 1789 | else |
1791 | return kvm_arch_vcpu_fault(vcpu, vmf); | 1790 | return kvm_arch_vcpu_fault(vcpu, vmf); |
1792 | get_page(page); | 1791 | get_page(page); |
1793 | vmf->page = page; | 1792 | vmf->page = page; |
1794 | return 0; | 1793 | return 0; |
1795 | } | 1794 | } |
1796 | 1795 | ||
1797 | static const struct vm_operations_struct kvm_vcpu_vm_ops = { | 1796 | static const struct vm_operations_struct kvm_vcpu_vm_ops = { |
1798 | .fault = kvm_vcpu_fault, | 1797 | .fault = kvm_vcpu_fault, |
1799 | }; | 1798 | }; |
1800 | 1799 | ||
1801 | static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) | 1800 | static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) |
1802 | { | 1801 | { |
1803 | vma->vm_ops = &kvm_vcpu_vm_ops; | 1802 | vma->vm_ops = &kvm_vcpu_vm_ops; |
1804 | return 0; | 1803 | return 0; |
1805 | } | 1804 | } |
1806 | 1805 | ||
1807 | static int kvm_vcpu_release(struct inode *inode, struct file *filp) | 1806 | static int kvm_vcpu_release(struct inode *inode, struct file *filp) |
1808 | { | 1807 | { |
1809 | struct kvm_vcpu *vcpu = filp->private_data; | 1808 | struct kvm_vcpu *vcpu = filp->private_data; |
1810 | 1809 | ||
1811 | kvm_put_kvm(vcpu->kvm); | 1810 | kvm_put_kvm(vcpu->kvm); |
1812 | return 0; | 1811 | return 0; |
1813 | } | 1812 | } |
1814 | 1813 | ||
1815 | static struct file_operations kvm_vcpu_fops = { | 1814 | static struct file_operations kvm_vcpu_fops = { |
1816 | .release = kvm_vcpu_release, | 1815 | .release = kvm_vcpu_release, |
1817 | .unlocked_ioctl = kvm_vcpu_ioctl, | 1816 | .unlocked_ioctl = kvm_vcpu_ioctl, |
1818 | #ifdef CONFIG_COMPAT | 1817 | #ifdef CONFIG_COMPAT |
1819 | .compat_ioctl = kvm_vcpu_compat_ioctl, | 1818 | .compat_ioctl = kvm_vcpu_compat_ioctl, |
1820 | #endif | 1819 | #endif |
1821 | .mmap = kvm_vcpu_mmap, | 1820 | .mmap = kvm_vcpu_mmap, |
1822 | .llseek = noop_llseek, | 1821 | .llseek = noop_llseek, |
1823 | }; | 1822 | }; |
1824 | 1823 | ||
1825 | /* | 1824 | /* |
1826 | * Allocates an inode for the vcpu. | 1825 | * Allocates an inode for the vcpu. |
1827 | */ | 1826 | */ |
1828 | static int create_vcpu_fd(struct kvm_vcpu *vcpu) | 1827 | static int create_vcpu_fd(struct kvm_vcpu *vcpu) |
1829 | { | 1828 | { |
1830 | return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR); | 1829 | return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR); |
1831 | } | 1830 | } |
1832 | 1831 | ||
1833 | /* | 1832 | /* |
1834 | * Creates some virtual cpus. Good luck creating more than one. | 1833 | * Creates some virtual cpus. Good luck creating more than one. |
1835 | */ | 1834 | */ |
1836 | static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) | 1835 | static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) |
1837 | { | 1836 | { |
1838 | int r; | 1837 | int r; |
1839 | struct kvm_vcpu *vcpu, *v; | 1838 | struct kvm_vcpu *vcpu, *v; |
1840 | 1839 | ||
1841 | vcpu = kvm_arch_vcpu_create(kvm, id); | 1840 | vcpu = kvm_arch_vcpu_create(kvm, id); |
1842 | if (IS_ERR(vcpu)) | 1841 | if (IS_ERR(vcpu)) |
1843 | return PTR_ERR(vcpu); | 1842 | return PTR_ERR(vcpu); |
1844 | 1843 | ||
1845 | preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); | 1844 | preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); |
1846 | 1845 | ||
1847 | r = kvm_arch_vcpu_setup(vcpu); | 1846 | r = kvm_arch_vcpu_setup(vcpu); |
1848 | if (r) | 1847 | if (r) |
1849 | goto vcpu_destroy; | 1848 | goto vcpu_destroy; |
1850 | 1849 | ||
1851 | mutex_lock(&kvm->lock); | 1850 | mutex_lock(&kvm->lock); |
1852 | if (!kvm_vcpu_compatible(vcpu)) { | 1851 | if (!kvm_vcpu_compatible(vcpu)) { |
1853 | r = -EINVAL; | 1852 | r = -EINVAL; |
1854 | goto unlock_vcpu_destroy; | 1853 | goto unlock_vcpu_destroy; |
1855 | } | 1854 | } |
1856 | if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) { | 1855 | if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) { |
1857 | r = -EINVAL; | 1856 | r = -EINVAL; |
1858 | goto unlock_vcpu_destroy; | 1857 | goto unlock_vcpu_destroy; |
1859 | } | 1858 | } |
1860 | 1859 | ||
1861 | kvm_for_each_vcpu(r, v, kvm) | 1860 | kvm_for_each_vcpu(r, v, kvm) |
1862 | if (v->vcpu_id == id) { | 1861 | if (v->vcpu_id == id) { |
1863 | r = -EEXIST; | 1862 | r = -EEXIST; |
1864 | goto unlock_vcpu_destroy; | 1863 | goto unlock_vcpu_destroy; |
1865 | } | 1864 | } |
1866 | 1865 | ||
1867 | BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); | 1866 | BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); |
1868 | 1867 | ||
1869 | /* Now it's all set up, let userspace reach it */ | 1868 | /* Now it's all set up, let userspace reach it */ |
1870 | kvm_get_kvm(kvm); | 1869 | kvm_get_kvm(kvm); |
1871 | r = create_vcpu_fd(vcpu); | 1870 | r = create_vcpu_fd(vcpu); |
1872 | if (r < 0) { | 1871 | if (r < 0) { |
1873 | kvm_put_kvm(kvm); | 1872 | kvm_put_kvm(kvm); |
1874 | goto unlock_vcpu_destroy; | 1873 | goto unlock_vcpu_destroy; |
1875 | } | 1874 | } |
1876 | 1875 | ||
1877 | kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; | 1876 | kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; |
1878 | smp_wmb(); | 1877 | smp_wmb(); |
1879 | atomic_inc(&kvm->online_vcpus); | 1878 | atomic_inc(&kvm->online_vcpus); |
1880 | 1879 | ||
1881 | mutex_unlock(&kvm->lock); | 1880 | mutex_unlock(&kvm->lock); |
1882 | kvm_arch_vcpu_postcreate(vcpu); | 1881 | kvm_arch_vcpu_postcreate(vcpu); |
1883 | return r; | 1882 | return r; |
1884 | 1883 | ||
1885 | unlock_vcpu_destroy: | 1884 | unlock_vcpu_destroy: |
1886 | mutex_unlock(&kvm->lock); | 1885 | mutex_unlock(&kvm->lock); |
1887 | vcpu_destroy: | 1886 | vcpu_destroy: |
1888 | kvm_arch_vcpu_destroy(vcpu); | 1887 | kvm_arch_vcpu_destroy(vcpu); |
1889 | return r; | 1888 | return r; |
1890 | } | 1889 | } |
1891 | 1890 | ||
1892 | static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) | 1891 | static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) |
1893 | { | 1892 | { |
1894 | if (sigset) { | 1893 | if (sigset) { |
1895 | sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); | 1894 | sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); |
1896 | vcpu->sigset_active = 1; | 1895 | vcpu->sigset_active = 1; |
1897 | vcpu->sigset = *sigset; | 1896 | vcpu->sigset = *sigset; |
1898 | } else | 1897 | } else |
1899 | vcpu->sigset_active = 0; | 1898 | vcpu->sigset_active = 0; |
1900 | return 0; | 1899 | return 0; |
1901 | } | 1900 | } |
1902 | 1901 | ||
1903 | static long kvm_vcpu_ioctl(struct file *filp, | 1902 | static long kvm_vcpu_ioctl(struct file *filp, |
1904 | unsigned int ioctl, unsigned long arg) | 1903 | unsigned int ioctl, unsigned long arg) |
1905 | { | 1904 | { |
1906 | struct kvm_vcpu *vcpu = filp->private_data; | 1905 | struct kvm_vcpu *vcpu = filp->private_data; |
1907 | void __user *argp = (void __user *)arg; | 1906 | void __user *argp = (void __user *)arg; |
1908 | int r; | 1907 | int r; |
1909 | struct kvm_fpu *fpu = NULL; | 1908 | struct kvm_fpu *fpu = NULL; |
1910 | struct kvm_sregs *kvm_sregs = NULL; | 1909 | struct kvm_sregs *kvm_sregs = NULL; |
1911 | 1910 | ||
1912 | if (vcpu->kvm->mm != current->mm) | 1911 | if (vcpu->kvm->mm != current->mm) |
1913 | return -EIO; | 1912 | return -EIO; |
1914 | 1913 | ||
1915 | #if defined(CONFIG_S390) || defined(CONFIG_PPC) | 1914 | #if defined(CONFIG_S390) || defined(CONFIG_PPC) |
1916 | /* | 1915 | /* |
1917 | * Special cases: vcpu ioctls that are asynchronous to vcpu execution, | 1916 | * Special cases: vcpu ioctls that are asynchronous to vcpu execution, |
1918 | * so vcpu_load() would break it. | 1917 | * so vcpu_load() would break it. |
1919 | */ | 1918 | */ |
1920 | if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT) | 1919 | if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT) |
1921 | return kvm_arch_vcpu_ioctl(filp, ioctl, arg); | 1920 | return kvm_arch_vcpu_ioctl(filp, ioctl, arg); |
1922 | #endif | 1921 | #endif |
1923 | 1922 | ||
1924 | 1923 | ||
1925 | r = vcpu_load(vcpu); | 1924 | r = vcpu_load(vcpu); |
1926 | if (r) | 1925 | if (r) |
1927 | return r; | 1926 | return r; |
1928 | switch (ioctl) { | 1927 | switch (ioctl) { |
1929 | case KVM_RUN: | 1928 | case KVM_RUN: |
1930 | r = -EINVAL; | 1929 | r = -EINVAL; |
1931 | if (arg) | 1930 | if (arg) |
1932 | goto out; | 1931 | goto out; |
1933 | r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); | 1932 | r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); |
1934 | trace_kvm_userspace_exit(vcpu->run->exit_reason, r); | 1933 | trace_kvm_userspace_exit(vcpu->run->exit_reason, r); |
1935 | break; | 1934 | break; |
1936 | case KVM_GET_REGS: { | 1935 | case KVM_GET_REGS: { |
1937 | struct kvm_regs *kvm_regs; | 1936 | struct kvm_regs *kvm_regs; |
1938 | 1937 | ||
1939 | r = -ENOMEM; | 1938 | r = -ENOMEM; |
1940 | kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); | 1939 | kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); |
1941 | if (!kvm_regs) | 1940 | if (!kvm_regs) |
1942 | goto out; | 1941 | goto out; |
1943 | r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); | 1942 | r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); |
1944 | if (r) | 1943 | if (r) |
1945 | goto out_free1; | 1944 | goto out_free1; |
1946 | r = -EFAULT; | 1945 | r = -EFAULT; |
1947 | if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) | 1946 | if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) |
1948 | goto out_free1; | 1947 | goto out_free1; |
1949 | r = 0; | 1948 | r = 0; |
1950 | out_free1: | 1949 | out_free1: |
1951 | kfree(kvm_regs); | 1950 | kfree(kvm_regs); |
1952 | break; | 1951 | break; |
1953 | } | 1952 | } |
1954 | case KVM_SET_REGS: { | 1953 | case KVM_SET_REGS: { |
1955 | struct kvm_regs *kvm_regs; | 1954 | struct kvm_regs *kvm_regs; |
1956 | 1955 | ||
1957 | r = -ENOMEM; | 1956 | r = -ENOMEM; |
1958 | kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); | 1957 | kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); |
1959 | if (IS_ERR(kvm_regs)) { | 1958 | if (IS_ERR(kvm_regs)) { |
1960 | r = PTR_ERR(kvm_regs); | 1959 | r = PTR_ERR(kvm_regs); |
1961 | goto out; | 1960 | goto out; |
1962 | } | 1961 | } |
1963 | r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); | 1962 | r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); |
1964 | kfree(kvm_regs); | 1963 | kfree(kvm_regs); |
1965 | break; | 1964 | break; |
1966 | } | 1965 | } |
1967 | case KVM_GET_SREGS: { | 1966 | case KVM_GET_SREGS: { |
1968 | kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); | 1967 | kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); |
1969 | r = -ENOMEM; | 1968 | r = -ENOMEM; |
1970 | if (!kvm_sregs) | 1969 | if (!kvm_sregs) |
1971 | goto out; | 1970 | goto out; |
1972 | r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); | 1971 | r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); |
1973 | if (r) | 1972 | if (r) |
1974 | goto out; | 1973 | goto out; |
1975 | r = -EFAULT; | 1974 | r = -EFAULT; |
1976 | if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) | 1975 | if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) |
1977 | goto out; | 1976 | goto out; |
1978 | r = 0; | 1977 | r = 0; |
1979 | break; | 1978 | break; |
1980 | } | 1979 | } |
1981 | case KVM_SET_SREGS: { | 1980 | case KVM_SET_SREGS: { |
1982 | kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); | 1981 | kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); |
1983 | if (IS_ERR(kvm_sregs)) { | 1982 | if (IS_ERR(kvm_sregs)) { |
1984 | r = PTR_ERR(kvm_sregs); | 1983 | r = PTR_ERR(kvm_sregs); |
1985 | kvm_sregs = NULL; | 1984 | kvm_sregs = NULL; |
1986 | goto out; | 1985 | goto out; |
1987 | } | 1986 | } |
1988 | r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); | 1987 | r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); |
1989 | break; | 1988 | break; |
1990 | } | 1989 | } |
1991 | case KVM_GET_MP_STATE: { | 1990 | case KVM_GET_MP_STATE: { |
1992 | struct kvm_mp_state mp_state; | 1991 | struct kvm_mp_state mp_state; |
1993 | 1992 | ||
1994 | r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); | 1993 | r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); |
1995 | if (r) | 1994 | if (r) |
1996 | goto out; | 1995 | goto out; |
1997 | r = -EFAULT; | 1996 | r = -EFAULT; |
1998 | if (copy_to_user(argp, &mp_state, sizeof mp_state)) | 1997 | if (copy_to_user(argp, &mp_state, sizeof mp_state)) |
1999 | goto out; | 1998 | goto out; |
2000 | r = 0; | 1999 | r = 0; |
2001 | break; | 2000 | break; |
2002 | } | 2001 | } |
2003 | case KVM_SET_MP_STATE: { | 2002 | case KVM_SET_MP_STATE: { |
2004 | struct kvm_mp_state mp_state; | 2003 | struct kvm_mp_state mp_state; |
2005 | 2004 | ||
2006 | r = -EFAULT; | 2005 | r = -EFAULT; |
2007 | if (copy_from_user(&mp_state, argp, sizeof mp_state)) | 2006 | if (copy_from_user(&mp_state, argp, sizeof mp_state)) |
2008 | goto out; | 2007 | goto out; |
2009 | r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); | 2008 | r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); |
2010 | break; | 2009 | break; |
2011 | } | 2010 | } |
2012 | case KVM_TRANSLATE: { | 2011 | case KVM_TRANSLATE: { |
2013 | struct kvm_translation tr; | 2012 | struct kvm_translation tr; |
2014 | 2013 | ||
2015 | r = -EFAULT; | 2014 | r = -EFAULT; |
2016 | if (copy_from_user(&tr, argp, sizeof tr)) | 2015 | if (copy_from_user(&tr, argp, sizeof tr)) |
2017 | goto out; | 2016 | goto out; |
2018 | r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); | 2017 | r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); |
2019 | if (r) | 2018 | if (r) |
2020 | goto out; | 2019 | goto out; |
2021 | r = -EFAULT; | 2020 | r = -EFAULT; |
2022 | if (copy_to_user(argp, &tr, sizeof tr)) | 2021 | if (copy_to_user(argp, &tr, sizeof tr)) |
2023 | goto out; | 2022 | goto out; |
2024 | r = 0; | 2023 | r = 0; |
2025 | break; | 2024 | break; |
2026 | } | 2025 | } |
2027 | case KVM_SET_GUEST_DEBUG: { | 2026 | case KVM_SET_GUEST_DEBUG: { |
2028 | struct kvm_guest_debug dbg; | 2027 | struct kvm_guest_debug dbg; |
2029 | 2028 | ||
2030 | r = -EFAULT; | 2029 | r = -EFAULT; |
2031 | if (copy_from_user(&dbg, argp, sizeof dbg)) | 2030 | if (copy_from_user(&dbg, argp, sizeof dbg)) |
2032 | goto out; | 2031 | goto out; |
2033 | r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); | 2032 | r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); |
2034 | break; | 2033 | break; |
2035 | } | 2034 | } |
2036 | case KVM_SET_SIGNAL_MASK: { | 2035 | case KVM_SET_SIGNAL_MASK: { |
2037 | struct kvm_signal_mask __user *sigmask_arg = argp; | 2036 | struct kvm_signal_mask __user *sigmask_arg = argp; |
2038 | struct kvm_signal_mask kvm_sigmask; | 2037 | struct kvm_signal_mask kvm_sigmask; |
2039 | sigset_t sigset, *p; | 2038 | sigset_t sigset, *p; |
2040 | 2039 | ||
2041 | p = NULL; | 2040 | p = NULL; |
2042 | if (argp) { | 2041 | if (argp) { |
2043 | r = -EFAULT; | 2042 | r = -EFAULT; |
2044 | if (copy_from_user(&kvm_sigmask, argp, | 2043 | if (copy_from_user(&kvm_sigmask, argp, |
2045 | sizeof kvm_sigmask)) | 2044 | sizeof kvm_sigmask)) |
2046 | goto out; | 2045 | goto out; |
2047 | r = -EINVAL; | 2046 | r = -EINVAL; |
2048 | if (kvm_sigmask.len != sizeof sigset) | 2047 | if (kvm_sigmask.len != sizeof sigset) |
2049 | goto out; | 2048 | goto out; |
2050 | r = -EFAULT; | 2049 | r = -EFAULT; |
2051 | if (copy_from_user(&sigset, sigmask_arg->sigset, | 2050 | if (copy_from_user(&sigset, sigmask_arg->sigset, |
2052 | sizeof sigset)) | 2051 | sizeof sigset)) |
2053 | goto out; | 2052 | goto out; |
2054 | p = &sigset; | 2053 | p = &sigset; |
2055 | } | 2054 | } |
2056 | r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); | 2055 | r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); |
2057 | break; | 2056 | break; |
2058 | } | 2057 | } |
2059 | case KVM_GET_FPU: { | 2058 | case KVM_GET_FPU: { |
2060 | fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); | 2059 | fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); |
2061 | r = -ENOMEM; | 2060 | r = -ENOMEM; |
2062 | if (!fpu) | 2061 | if (!fpu) |
2063 | goto out; | 2062 | goto out; |
2064 | r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); | 2063 | r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); |
2065 | if (r) | 2064 | if (r) |
2066 | goto out; | 2065 | goto out; |
2067 | r = -EFAULT; | 2066 | r = -EFAULT; |
2068 | if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) | 2067 | if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) |
2069 | goto out; | 2068 | goto out; |
2070 | r = 0; | 2069 | r = 0; |
2071 | break; | 2070 | break; |
2072 | } | 2071 | } |
2073 | case KVM_SET_FPU: { | 2072 | case KVM_SET_FPU: { |
2074 | fpu = memdup_user(argp, sizeof(*fpu)); | 2073 | fpu = memdup_user(argp, sizeof(*fpu)); |
2075 | if (IS_ERR(fpu)) { | 2074 | if (IS_ERR(fpu)) { |
2076 | r = PTR_ERR(fpu); | 2075 | r = PTR_ERR(fpu); |
2077 | fpu = NULL; | 2076 | fpu = NULL; |
2078 | goto out; | 2077 | goto out; |
2079 | } | 2078 | } |
2080 | r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); | 2079 | r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); |
2081 | break; | 2080 | break; |
2082 | } | 2081 | } |
2083 | default: | 2082 | default: |
2084 | r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); | 2083 | r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); |
2085 | } | 2084 | } |
2086 | out: | 2085 | out: |
2087 | vcpu_put(vcpu); | 2086 | vcpu_put(vcpu); |
2088 | kfree(fpu); | 2087 | kfree(fpu); |
2089 | kfree(kvm_sregs); | 2088 | kfree(kvm_sregs); |
2090 | return r; | 2089 | return r; |
2091 | } | 2090 | } |
2092 | 2091 | ||
2093 | #ifdef CONFIG_COMPAT | 2092 | #ifdef CONFIG_COMPAT |
2094 | static long kvm_vcpu_compat_ioctl(struct file *filp, | 2093 | static long kvm_vcpu_compat_ioctl(struct file *filp, |
2095 | unsigned int ioctl, unsigned long arg) | 2094 | unsigned int ioctl, unsigned long arg) |
2096 | { | 2095 | { |
2097 | struct kvm_vcpu *vcpu = filp->private_data; | 2096 | struct kvm_vcpu *vcpu = filp->private_data; |
2098 | void __user *argp = compat_ptr(arg); | 2097 | void __user *argp = compat_ptr(arg); |
2099 | int r; | 2098 | int r; |
2100 | 2099 | ||
2101 | if (vcpu->kvm->mm != current->mm) | 2100 | if (vcpu->kvm->mm != current->mm) |
2102 | return -EIO; | 2101 | return -EIO; |
2103 | 2102 | ||
2104 | switch (ioctl) { | 2103 | switch (ioctl) { |
2105 | case KVM_SET_SIGNAL_MASK: { | 2104 | case KVM_SET_SIGNAL_MASK: { |
2106 | struct kvm_signal_mask __user *sigmask_arg = argp; | 2105 | struct kvm_signal_mask __user *sigmask_arg = argp; |
2107 | struct kvm_signal_mask kvm_sigmask; | 2106 | struct kvm_signal_mask kvm_sigmask; |
2108 | compat_sigset_t csigset; | 2107 | compat_sigset_t csigset; |
2109 | sigset_t sigset; | 2108 | sigset_t sigset; |
2110 | 2109 | ||
2111 | if (argp) { | 2110 | if (argp) { |
2112 | r = -EFAULT; | 2111 | r = -EFAULT; |
2113 | if (copy_from_user(&kvm_sigmask, argp, | 2112 | if (copy_from_user(&kvm_sigmask, argp, |
2114 | sizeof kvm_sigmask)) | 2113 | sizeof kvm_sigmask)) |
2115 | goto out; | 2114 | goto out; |
2116 | r = -EINVAL; | 2115 | r = -EINVAL; |
2117 | if (kvm_sigmask.len != sizeof csigset) | 2116 | if (kvm_sigmask.len != sizeof csigset) |
2118 | goto out; | 2117 | goto out; |
2119 | r = -EFAULT; | 2118 | r = -EFAULT; |
2120 | if (copy_from_user(&csigset, sigmask_arg->sigset, | 2119 | if (copy_from_user(&csigset, sigmask_arg->sigset, |
2121 | sizeof csigset)) | 2120 | sizeof csigset)) |
2122 | goto out; | 2121 | goto out; |
2123 | sigset_from_compat(&sigset, &csigset); | 2122 | sigset_from_compat(&sigset, &csigset); |
2124 | r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); | 2123 | r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); |
2125 | } else | 2124 | } else |
2126 | r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); | 2125 | r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); |
2127 | break; | 2126 | break; |
2128 | } | 2127 | } |
2129 | default: | 2128 | default: |
2130 | r = kvm_vcpu_ioctl(filp, ioctl, arg); | 2129 | r = kvm_vcpu_ioctl(filp, ioctl, arg); |
2131 | } | 2130 | } |
2132 | 2131 | ||
2133 | out: | 2132 | out: |
2134 | return r; | 2133 | return r; |
2135 | } | 2134 | } |
2136 | #endif | 2135 | #endif |
2137 | 2136 | ||
2138 | static long kvm_vm_ioctl(struct file *filp, | 2137 | static long kvm_vm_ioctl(struct file *filp, |
2139 | unsigned int ioctl, unsigned long arg) | 2138 | unsigned int ioctl, unsigned long arg) |
2140 | { | 2139 | { |
2141 | struct kvm *kvm = filp->private_data; | 2140 | struct kvm *kvm = filp->private_data; |
2142 | void __user *argp = (void __user *)arg; | 2141 | void __user *argp = (void __user *)arg; |
2143 | int r; | 2142 | int r; |
2144 | 2143 | ||
2145 | if (kvm->mm != current->mm) | 2144 | if (kvm->mm != current->mm) |
2146 | return -EIO; | 2145 | return -EIO; |
2147 | switch (ioctl) { | 2146 | switch (ioctl) { |
2148 | case KVM_CREATE_VCPU: | 2147 | case KVM_CREATE_VCPU: |
2149 | r = kvm_vm_ioctl_create_vcpu(kvm, arg); | 2148 | r = kvm_vm_ioctl_create_vcpu(kvm, arg); |
2150 | break; | 2149 | break; |
2151 | case KVM_SET_USER_MEMORY_REGION: { | 2150 | case KVM_SET_USER_MEMORY_REGION: { |
2152 | struct kvm_userspace_memory_region kvm_userspace_mem; | 2151 | struct kvm_userspace_memory_region kvm_userspace_mem; |
2153 | 2152 | ||
2154 | r = -EFAULT; | 2153 | r = -EFAULT; |
2155 | if (copy_from_user(&kvm_userspace_mem, argp, | 2154 | if (copy_from_user(&kvm_userspace_mem, argp, |
2156 | sizeof kvm_userspace_mem)) | 2155 | sizeof kvm_userspace_mem)) |
2157 | goto out; | 2156 | goto out; |
2158 | 2157 | ||
2159 | r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, true); | 2158 | r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, true); |
2160 | break; | 2159 | break; |
2161 | } | 2160 | } |
2162 | case KVM_GET_DIRTY_LOG: { | 2161 | case KVM_GET_DIRTY_LOG: { |
2163 | struct kvm_dirty_log log; | 2162 | struct kvm_dirty_log log; |
2164 | 2163 | ||
2165 | r = -EFAULT; | 2164 | r = -EFAULT; |
2166 | if (copy_from_user(&log, argp, sizeof log)) | 2165 | if (copy_from_user(&log, argp, sizeof log)) |
2167 | goto out; | 2166 | goto out; |
2168 | r = kvm_vm_ioctl_get_dirty_log(kvm, &log); | 2167 | r = kvm_vm_ioctl_get_dirty_log(kvm, &log); |
2169 | break; | 2168 | break; |
2170 | } | 2169 | } |
2171 | #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET | 2170 | #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET |
2172 | case KVM_REGISTER_COALESCED_MMIO: { | 2171 | case KVM_REGISTER_COALESCED_MMIO: { |
2173 | struct kvm_coalesced_mmio_zone zone; | 2172 | struct kvm_coalesced_mmio_zone zone; |
2174 | r = -EFAULT; | 2173 | r = -EFAULT; |
2175 | if (copy_from_user(&zone, argp, sizeof zone)) | 2174 | if (copy_from_user(&zone, argp, sizeof zone)) |
2176 | goto out; | 2175 | goto out; |
2177 | r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); | 2176 | r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); |
2178 | break; | 2177 | break; |
2179 | } | 2178 | } |
2180 | case KVM_UNREGISTER_COALESCED_MMIO: { | 2179 | case KVM_UNREGISTER_COALESCED_MMIO: { |
2181 | struct kvm_coalesced_mmio_zone zone; | 2180 | struct kvm_coalesced_mmio_zone zone; |
2182 | r = -EFAULT; | 2181 | r = -EFAULT; |
2183 | if (copy_from_user(&zone, argp, sizeof zone)) | 2182 | if (copy_from_user(&zone, argp, sizeof zone)) |
2184 | goto out; | 2183 | goto out; |
2185 | r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); | 2184 | r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); |
2186 | break; | 2185 | break; |
2187 | } | 2186 | } |
2188 | #endif | 2187 | #endif |
2189 | case KVM_IRQFD: { | 2188 | case KVM_IRQFD: { |
2190 | struct kvm_irqfd data; | 2189 | struct kvm_irqfd data; |
2191 | 2190 | ||
2192 | r = -EFAULT; | 2191 | r = -EFAULT; |
2193 | if (copy_from_user(&data, argp, sizeof data)) | 2192 | if (copy_from_user(&data, argp, sizeof data)) |
2194 | goto out; | 2193 | goto out; |
2195 | r = kvm_irqfd(kvm, &data); | 2194 | r = kvm_irqfd(kvm, &data); |
2196 | break; | 2195 | break; |
2197 | } | 2196 | } |
2198 | case KVM_IOEVENTFD: { | 2197 | case KVM_IOEVENTFD: { |
2199 | struct kvm_ioeventfd data; | 2198 | struct kvm_ioeventfd data; |
2200 | 2199 | ||
2201 | r = -EFAULT; | 2200 | r = -EFAULT; |
2202 | if (copy_from_user(&data, argp, sizeof data)) | 2201 | if (copy_from_user(&data, argp, sizeof data)) |
2203 | goto out; | 2202 | goto out; |
2204 | r = kvm_ioeventfd(kvm, &data); | 2203 | r = kvm_ioeventfd(kvm, &data); |
2205 | break; | 2204 | break; |
2206 | } | 2205 | } |
2207 | #ifdef CONFIG_KVM_APIC_ARCHITECTURE | 2206 | #ifdef CONFIG_KVM_APIC_ARCHITECTURE |
2208 | case KVM_SET_BOOT_CPU_ID: | 2207 | case KVM_SET_BOOT_CPU_ID: |
2209 | r = 0; | 2208 | r = 0; |
2210 | mutex_lock(&kvm->lock); | 2209 | mutex_lock(&kvm->lock); |
2211 | if (atomic_read(&kvm->online_vcpus) != 0) | 2210 | if (atomic_read(&kvm->online_vcpus) != 0) |
2212 | r = -EBUSY; | 2211 | r = -EBUSY; |
2213 | else | 2212 | else |
2214 | kvm->bsp_vcpu_id = arg; | 2213 | kvm->bsp_vcpu_id = arg; |
2215 | mutex_unlock(&kvm->lock); | 2214 | mutex_unlock(&kvm->lock); |
2216 | break; | 2215 | break; |
2217 | #endif | 2216 | #endif |
2218 | #ifdef CONFIG_HAVE_KVM_MSI | 2217 | #ifdef CONFIG_HAVE_KVM_MSI |
2219 | case KVM_SIGNAL_MSI: { | 2218 | case KVM_SIGNAL_MSI: { |
2220 | struct kvm_msi msi; | 2219 | struct kvm_msi msi; |
2221 | 2220 | ||
2222 | r = -EFAULT; | 2221 | r = -EFAULT; |
2223 | if (copy_from_user(&msi, argp, sizeof msi)) | 2222 | if (copy_from_user(&msi, argp, sizeof msi)) |
2224 | goto out; | 2223 | goto out; |
2225 | r = kvm_send_userspace_msi(kvm, &msi); | 2224 | r = kvm_send_userspace_msi(kvm, &msi); |
2226 | break; | 2225 | break; |
2227 | } | 2226 | } |
2228 | #endif | 2227 | #endif |
2229 | #ifdef __KVM_HAVE_IRQ_LINE | 2228 | #ifdef __KVM_HAVE_IRQ_LINE |
2230 | case KVM_IRQ_LINE_STATUS: | 2229 | case KVM_IRQ_LINE_STATUS: |
2231 | case KVM_IRQ_LINE: { | 2230 | case KVM_IRQ_LINE: { |
2232 | struct kvm_irq_level irq_event; | 2231 | struct kvm_irq_level irq_event; |
2233 | 2232 | ||
2234 | r = -EFAULT; | 2233 | r = -EFAULT; |
2235 | if (copy_from_user(&irq_event, argp, sizeof irq_event)) | 2234 | if (copy_from_user(&irq_event, argp, sizeof irq_event)) |
2236 | goto out; | 2235 | goto out; |
2237 | 2236 | ||
2238 | r = kvm_vm_ioctl_irq_line(kvm, &irq_event); | 2237 | r = kvm_vm_ioctl_irq_line(kvm, &irq_event); |
2239 | if (r) | 2238 | if (r) |
2240 | goto out; | 2239 | goto out; |
2241 | 2240 | ||
2242 | r = -EFAULT; | 2241 | r = -EFAULT; |
2243 | if (ioctl == KVM_IRQ_LINE_STATUS) { | 2242 | if (ioctl == KVM_IRQ_LINE_STATUS) { |
2244 | if (copy_to_user(argp, &irq_event, sizeof irq_event)) | 2243 | if (copy_to_user(argp, &irq_event, sizeof irq_event)) |
2245 | goto out; | 2244 | goto out; |
2246 | } | 2245 | } |
2247 | 2246 | ||
2248 | r = 0; | 2247 | r = 0; |
2249 | break; | 2248 | break; |
2250 | } | 2249 | } |
2251 | #endif | 2250 | #endif |
2252 | default: | 2251 | default: |
2253 | r = kvm_arch_vm_ioctl(filp, ioctl, arg); | 2252 | r = kvm_arch_vm_ioctl(filp, ioctl, arg); |
2254 | if (r == -ENOTTY) | 2253 | if (r == -ENOTTY) |
2255 | r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg); | 2254 | r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg); |
2256 | } | 2255 | } |
2257 | out: | 2256 | out: |
2258 | return r; | 2257 | return r; |
2259 | } | 2258 | } |
2260 | 2259 | ||
2261 | #ifdef CONFIG_COMPAT | 2260 | #ifdef CONFIG_COMPAT |
2262 | struct compat_kvm_dirty_log { | 2261 | struct compat_kvm_dirty_log { |
2263 | __u32 slot; | 2262 | __u32 slot; |
2264 | __u32 padding1; | 2263 | __u32 padding1; |
2265 | union { | 2264 | union { |
2266 | compat_uptr_t dirty_bitmap; /* one bit per page */ | 2265 | compat_uptr_t dirty_bitmap; /* one bit per page */ |
2267 | __u64 padding2; | 2266 | __u64 padding2; |
2268 | }; | 2267 | }; |
2269 | }; | 2268 | }; |
2270 | 2269 | ||
2271 | static long kvm_vm_compat_ioctl(struct file *filp, | 2270 | static long kvm_vm_compat_ioctl(struct file *filp, |
2272 | unsigned int ioctl, unsigned long arg) | 2271 | unsigned int ioctl, unsigned long arg) |
2273 | { | 2272 | { |
2274 | struct kvm *kvm = filp->private_data; | 2273 | struct kvm *kvm = filp->private_data; |
2275 | int r; | 2274 | int r; |
2276 | 2275 | ||
2277 | if (kvm->mm != current->mm) | 2276 | if (kvm->mm != current->mm) |
2278 | return -EIO; | 2277 | return -EIO; |
2279 | switch (ioctl) { | 2278 | switch (ioctl) { |
2280 | case KVM_GET_DIRTY_LOG: { | 2279 | case KVM_GET_DIRTY_LOG: { |
2281 | struct compat_kvm_dirty_log compat_log; | 2280 | struct compat_kvm_dirty_log compat_log; |
2282 | struct kvm_dirty_log log; | 2281 | struct kvm_dirty_log log; |
2283 | 2282 | ||
2284 | r = -EFAULT; | 2283 | r = -EFAULT; |
2285 | if (copy_from_user(&compat_log, (void __user *)arg, | 2284 | if (copy_from_user(&compat_log, (void __user *)arg, |
2286 | sizeof(compat_log))) | 2285 | sizeof(compat_log))) |
2287 | goto out; | 2286 | goto out; |
2288 | log.slot = compat_log.slot; | 2287 | log.slot = compat_log.slot; |
2289 | log.padding1 = compat_log.padding1; | 2288 | log.padding1 = compat_log.padding1; |
2290 | log.padding2 = compat_log.padding2; | 2289 | log.padding2 = compat_log.padding2; |
2291 | log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); | 2290 | log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); |
2292 | 2291 | ||
2293 | r = kvm_vm_ioctl_get_dirty_log(kvm, &log); | 2292 | r = kvm_vm_ioctl_get_dirty_log(kvm, &log); |
2294 | break; | 2293 | break; |
2295 | } | 2294 | } |
2296 | default: | 2295 | default: |
2297 | r = kvm_vm_ioctl(filp, ioctl, arg); | 2296 | r = kvm_vm_ioctl(filp, ioctl, arg); |
2298 | } | 2297 | } |
2299 | 2298 | ||
2300 | out: | 2299 | out: |
2301 | return r; | 2300 | return r; |
2302 | } | 2301 | } |
2303 | #endif | 2302 | #endif |
2304 | 2303 | ||
2305 | static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | 2304 | static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf) |
2306 | { | 2305 | { |
2307 | struct page *page[1]; | 2306 | struct page *page[1]; |
2308 | unsigned long addr; | 2307 | unsigned long addr; |
2309 | int npages; | 2308 | int npages; |
2310 | gfn_t gfn = vmf->pgoff; | 2309 | gfn_t gfn = vmf->pgoff; |
2311 | struct kvm *kvm = vma->vm_file->private_data; | 2310 | struct kvm *kvm = vma->vm_file->private_data; |
2312 | 2311 | ||
2313 | addr = gfn_to_hva(kvm, gfn); | 2312 | addr = gfn_to_hva(kvm, gfn); |
2314 | if (kvm_is_error_hva(addr)) | 2313 | if (kvm_is_error_hva(addr)) |
2315 | return VM_FAULT_SIGBUS; | 2314 | return VM_FAULT_SIGBUS; |
2316 | 2315 | ||
2317 | npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page, | 2316 | npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page, |
2318 | NULL); | 2317 | NULL); |
2319 | if (unlikely(npages != 1)) | 2318 | if (unlikely(npages != 1)) |
2320 | return VM_FAULT_SIGBUS; | 2319 | return VM_FAULT_SIGBUS; |
2321 | 2320 | ||
2322 | vmf->page = page[0]; | 2321 | vmf->page = page[0]; |
2323 | return 0; | 2322 | return 0; |
2324 | } | 2323 | } |
2325 | 2324 | ||
2326 | static const struct vm_operations_struct kvm_vm_vm_ops = { | 2325 | static const struct vm_operations_struct kvm_vm_vm_ops = { |
2327 | .fault = kvm_vm_fault, | 2326 | .fault = kvm_vm_fault, |
2328 | }; | 2327 | }; |
2329 | 2328 | ||
2330 | static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma) | 2329 | static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma) |
2331 | { | 2330 | { |
2332 | vma->vm_ops = &kvm_vm_vm_ops; | 2331 | vma->vm_ops = &kvm_vm_vm_ops; |
2333 | return 0; | 2332 | return 0; |
2334 | } | 2333 | } |
2335 | 2334 | ||
2336 | static struct file_operations kvm_vm_fops = { | 2335 | static struct file_operations kvm_vm_fops = { |
2337 | .release = kvm_vm_release, | 2336 | .release = kvm_vm_release, |
2338 | .unlocked_ioctl = kvm_vm_ioctl, | 2337 | .unlocked_ioctl = kvm_vm_ioctl, |
2339 | #ifdef CONFIG_COMPAT | 2338 | #ifdef CONFIG_COMPAT |
2340 | .compat_ioctl = kvm_vm_compat_ioctl, | 2339 | .compat_ioctl = kvm_vm_compat_ioctl, |
2341 | #endif | 2340 | #endif |
2342 | .mmap = kvm_vm_mmap, | 2341 | .mmap = kvm_vm_mmap, |
2343 | .llseek = noop_llseek, | 2342 | .llseek = noop_llseek, |
2344 | }; | 2343 | }; |
2345 | 2344 | ||
2346 | static int kvm_dev_ioctl_create_vm(unsigned long type) | 2345 | static int kvm_dev_ioctl_create_vm(unsigned long type) |
2347 | { | 2346 | { |
2348 | int r; | 2347 | int r; |
2349 | struct kvm *kvm; | 2348 | struct kvm *kvm; |
2350 | 2349 | ||
2351 | kvm = kvm_create_vm(type); | 2350 | kvm = kvm_create_vm(type); |
2352 | if (IS_ERR(kvm)) | 2351 | if (IS_ERR(kvm)) |
2353 | return PTR_ERR(kvm); | 2352 | return PTR_ERR(kvm); |
2354 | #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET | 2353 | #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET |
2355 | r = kvm_coalesced_mmio_init(kvm); | 2354 | r = kvm_coalesced_mmio_init(kvm); |
2356 | if (r < 0) { | 2355 | if (r < 0) { |
2357 | kvm_put_kvm(kvm); | 2356 | kvm_put_kvm(kvm); |
2358 | return r; | 2357 | return r; |
2359 | } | 2358 | } |
2360 | #endif | 2359 | #endif |
2361 | r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); | 2360 | r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); |
2362 | if (r < 0) | 2361 | if (r < 0) |
2363 | kvm_put_kvm(kvm); | 2362 | kvm_put_kvm(kvm); |
2364 | 2363 | ||
2365 | return r; | 2364 | return r; |
2366 | } | 2365 | } |
2367 | 2366 | ||
2368 | static long kvm_dev_ioctl_check_extension_generic(long arg) | 2367 | static long kvm_dev_ioctl_check_extension_generic(long arg) |
2369 | { | 2368 | { |
2370 | switch (arg) { | 2369 | switch (arg) { |
2371 | case KVM_CAP_USER_MEMORY: | 2370 | case KVM_CAP_USER_MEMORY: |
2372 | case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: | 2371 | case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: |
2373 | case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: | 2372 | case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: |
2374 | #ifdef CONFIG_KVM_APIC_ARCHITECTURE | 2373 | #ifdef CONFIG_KVM_APIC_ARCHITECTURE |
2375 | case KVM_CAP_SET_BOOT_CPU_ID: | 2374 | case KVM_CAP_SET_BOOT_CPU_ID: |
2376 | #endif | 2375 | #endif |
2377 | case KVM_CAP_INTERNAL_ERROR_DATA: | 2376 | case KVM_CAP_INTERNAL_ERROR_DATA: |
2378 | #ifdef CONFIG_HAVE_KVM_MSI | 2377 | #ifdef CONFIG_HAVE_KVM_MSI |
2379 | case KVM_CAP_SIGNAL_MSI: | 2378 | case KVM_CAP_SIGNAL_MSI: |
2380 | #endif | 2379 | #endif |
2381 | return 1; | 2380 | return 1; |
2382 | #ifdef KVM_CAP_IRQ_ROUTING | 2381 | #ifdef KVM_CAP_IRQ_ROUTING |
2383 | case KVM_CAP_IRQ_ROUTING: | 2382 | case KVM_CAP_IRQ_ROUTING: |
2384 | return KVM_MAX_IRQ_ROUTES; | 2383 | return KVM_MAX_IRQ_ROUTES; |
2385 | #endif | 2384 | #endif |
2386 | default: | 2385 | default: |
2387 | break; | 2386 | break; |
2388 | } | 2387 | } |
2389 | return kvm_dev_ioctl_check_extension(arg); | 2388 | return kvm_dev_ioctl_check_extension(arg); |
2390 | } | 2389 | } |
2391 | 2390 | ||
2392 | static long kvm_dev_ioctl(struct file *filp, | 2391 | static long kvm_dev_ioctl(struct file *filp, |
2393 | unsigned int ioctl, unsigned long arg) | 2392 | unsigned int ioctl, unsigned long arg) |
2394 | { | 2393 | { |
2395 | long r = -EINVAL; | 2394 | long r = -EINVAL; |
2396 | 2395 | ||
2397 | switch (ioctl) { | 2396 | switch (ioctl) { |
2398 | case KVM_GET_API_VERSION: | 2397 | case KVM_GET_API_VERSION: |
2399 | r = -EINVAL; | 2398 | r = -EINVAL; |
2400 | if (arg) | 2399 | if (arg) |
2401 | goto out; | 2400 | goto out; |
2402 | r = KVM_API_VERSION; | 2401 | r = KVM_API_VERSION; |
2403 | break; | 2402 | break; |
2404 | case KVM_CREATE_VM: | 2403 | case KVM_CREATE_VM: |
2405 | r = kvm_dev_ioctl_create_vm(arg); | 2404 | r = kvm_dev_ioctl_create_vm(arg); |
2406 | break; | 2405 | break; |
2407 | case KVM_CHECK_EXTENSION: | 2406 | case KVM_CHECK_EXTENSION: |
2408 | r = kvm_dev_ioctl_check_extension_generic(arg); | 2407 | r = kvm_dev_ioctl_check_extension_generic(arg); |
2409 | break; | 2408 | break; |
2410 | case KVM_GET_VCPU_MMAP_SIZE: | 2409 | case KVM_GET_VCPU_MMAP_SIZE: |
2411 | r = -EINVAL; | 2410 | r = -EINVAL; |
2412 | if (arg) | 2411 | if (arg) |
2413 | goto out; | 2412 | goto out; |
2414 | r = PAGE_SIZE; /* struct kvm_run */ | 2413 | r = PAGE_SIZE; /* struct kvm_run */ |
2415 | #ifdef CONFIG_X86 | 2414 | #ifdef CONFIG_X86 |
2416 | r += PAGE_SIZE; /* pio data page */ | 2415 | r += PAGE_SIZE; /* pio data page */ |
2417 | #endif | 2416 | #endif |
2418 | #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET | 2417 | #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET |
2419 | r += PAGE_SIZE; /* coalesced mmio ring page */ | 2418 | r += PAGE_SIZE; /* coalesced mmio ring page */ |
2420 | #endif | 2419 | #endif |
2421 | break; | 2420 | break; |
2422 | case KVM_TRACE_ENABLE: | 2421 | case KVM_TRACE_ENABLE: |
2423 | case KVM_TRACE_PAUSE: | 2422 | case KVM_TRACE_PAUSE: |
2424 | case KVM_TRACE_DISABLE: | 2423 | case KVM_TRACE_DISABLE: |
2425 | r = -EOPNOTSUPP; | 2424 | r = -EOPNOTSUPP; |
2426 | break; | 2425 | break; |
2427 | default: | 2426 | default: |
2428 | return kvm_arch_dev_ioctl(filp, ioctl, arg); | 2427 | return kvm_arch_dev_ioctl(filp, ioctl, arg); |
2429 | } | 2428 | } |
2430 | out: | 2429 | out: |
2431 | return r; | 2430 | return r; |
2432 | } | 2431 | } |
2433 | 2432 | ||
2434 | static struct file_operations kvm_chardev_ops = { | 2433 | static struct file_operations kvm_chardev_ops = { |
2435 | .unlocked_ioctl = kvm_dev_ioctl, | 2434 | .unlocked_ioctl = kvm_dev_ioctl, |
2436 | .compat_ioctl = kvm_dev_ioctl, | 2435 | .compat_ioctl = kvm_dev_ioctl, |
2437 | .llseek = noop_llseek, | 2436 | .llseek = noop_llseek, |
2438 | }; | 2437 | }; |
2439 | 2438 | ||
2440 | static struct miscdevice kvm_dev = { | 2439 | static struct miscdevice kvm_dev = { |
2441 | KVM_MINOR, | 2440 | KVM_MINOR, |
2442 | "kvm", | 2441 | "kvm", |
2443 | &kvm_chardev_ops, | 2442 | &kvm_chardev_ops, |
2444 | }; | 2443 | }; |
2445 | 2444 | ||
2446 | static void hardware_enable_nolock(void *junk) | 2445 | static void hardware_enable_nolock(void *junk) |
2447 | { | 2446 | { |
2448 | int cpu = raw_smp_processor_id(); | 2447 | int cpu = raw_smp_processor_id(); |
2449 | int r; | 2448 | int r; |
2450 | 2449 | ||
2451 | if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) | 2450 | if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) |
2452 | return; | 2451 | return; |
2453 | 2452 | ||
2454 | cpumask_set_cpu(cpu, cpus_hardware_enabled); | 2453 | cpumask_set_cpu(cpu, cpus_hardware_enabled); |
2455 | 2454 | ||
2456 | r = kvm_arch_hardware_enable(NULL); | 2455 | r = kvm_arch_hardware_enable(NULL); |
2457 | 2456 | ||
2458 | if (r) { | 2457 | if (r) { |
2459 | cpumask_clear_cpu(cpu, cpus_hardware_enabled); | 2458 | cpumask_clear_cpu(cpu, cpus_hardware_enabled); |
2460 | atomic_inc(&hardware_enable_failed); | 2459 | atomic_inc(&hardware_enable_failed); |
2461 | printk(KERN_INFO "kvm: enabling virtualization on " | 2460 | printk(KERN_INFO "kvm: enabling virtualization on " |
2462 | "CPU%d failed\n", cpu); | 2461 | "CPU%d failed\n", cpu); |
2463 | } | 2462 | } |
2464 | } | 2463 | } |
2465 | 2464 | ||
2466 | static void hardware_enable(void *junk) | 2465 | static void hardware_enable(void *junk) |
2467 | { | 2466 | { |
2468 | raw_spin_lock(&kvm_lock); | 2467 | raw_spin_lock(&kvm_lock); |
2469 | hardware_enable_nolock(junk); | 2468 | hardware_enable_nolock(junk); |
2470 | raw_spin_unlock(&kvm_lock); | 2469 | raw_spin_unlock(&kvm_lock); |
2471 | } | 2470 | } |
2472 | 2471 | ||
2473 | static void hardware_disable_nolock(void *junk) | 2472 | static void hardware_disable_nolock(void *junk) |
2474 | { | 2473 | { |
2475 | int cpu = raw_smp_processor_id(); | 2474 | int cpu = raw_smp_processor_id(); |
2476 | 2475 | ||
2477 | if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) | 2476 | if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) |
2478 | return; | 2477 | return; |
2479 | cpumask_clear_cpu(cpu, cpus_hardware_enabled); | 2478 | cpumask_clear_cpu(cpu, cpus_hardware_enabled); |
2480 | kvm_arch_hardware_disable(NULL); | 2479 | kvm_arch_hardware_disable(NULL); |
2481 | } | 2480 | } |
2482 | 2481 | ||
2483 | static void hardware_disable(void *junk) | 2482 | static void hardware_disable(void *junk) |
2484 | { | 2483 | { |
2485 | raw_spin_lock(&kvm_lock); | 2484 | raw_spin_lock(&kvm_lock); |
2486 | hardware_disable_nolock(junk); | 2485 | hardware_disable_nolock(junk); |
2487 | raw_spin_unlock(&kvm_lock); | 2486 | raw_spin_unlock(&kvm_lock); |
2488 | } | 2487 | } |
2489 | 2488 | ||
2490 | static void hardware_disable_all_nolock(void) | 2489 | static void hardware_disable_all_nolock(void) |
2491 | { | 2490 | { |
2492 | BUG_ON(!kvm_usage_count); | 2491 | BUG_ON(!kvm_usage_count); |
2493 | 2492 | ||
2494 | kvm_usage_count--; | 2493 | kvm_usage_count--; |
2495 | if (!kvm_usage_count) | 2494 | if (!kvm_usage_count) |
2496 | on_each_cpu(hardware_disable_nolock, NULL, 1); | 2495 | on_each_cpu(hardware_disable_nolock, NULL, 1); |
2497 | } | 2496 | } |
2498 | 2497 | ||
2499 | static void hardware_disable_all(void) | 2498 | static void hardware_disable_all(void) |
2500 | { | 2499 | { |
2501 | raw_spin_lock(&kvm_lock); | 2500 | raw_spin_lock(&kvm_lock); |
2502 | hardware_disable_all_nolock(); | 2501 | hardware_disable_all_nolock(); |
2503 | raw_spin_unlock(&kvm_lock); | 2502 | raw_spin_unlock(&kvm_lock); |
2504 | } | 2503 | } |
2505 | 2504 | ||
2506 | static int hardware_enable_all(void) | 2505 | static int hardware_enable_all(void) |
2507 | { | 2506 | { |
2508 | int r = 0; | 2507 | int r = 0; |
2509 | 2508 | ||
2510 | raw_spin_lock(&kvm_lock); | 2509 | raw_spin_lock(&kvm_lock); |
2511 | 2510 | ||
2512 | kvm_usage_count++; | 2511 | kvm_usage_count++; |
2513 | if (kvm_usage_count == 1) { | 2512 | if (kvm_usage_count == 1) { |
2514 | atomic_set(&hardware_enable_failed, 0); | 2513 | atomic_set(&hardware_enable_failed, 0); |
2515 | on_each_cpu(hardware_enable_nolock, NULL, 1); | 2514 | on_each_cpu(hardware_enable_nolock, NULL, 1); |
2516 | 2515 | ||
2517 | if (atomic_read(&hardware_enable_failed)) { | 2516 | if (atomic_read(&hardware_enable_failed)) { |
2518 | hardware_disable_all_nolock(); | 2517 | hardware_disable_all_nolock(); |
2519 | r = -EBUSY; | 2518 | r = -EBUSY; |
2520 | } | 2519 | } |
2521 | } | 2520 | } |
2522 | 2521 | ||
2523 | raw_spin_unlock(&kvm_lock); | 2522 | raw_spin_unlock(&kvm_lock); |
2524 | 2523 | ||
2525 | return r; | 2524 | return r; |
2526 | } | 2525 | } |
2527 | 2526 | ||
2528 | static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val, | 2527 | static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val, |
2529 | void *v) | 2528 | void *v) |
2530 | { | 2529 | { |
2531 | int cpu = (long)v; | 2530 | int cpu = (long)v; |
2532 | 2531 | ||
2533 | if (!kvm_usage_count) | 2532 | if (!kvm_usage_count) |
2534 | return NOTIFY_OK; | 2533 | return NOTIFY_OK; |
2535 | 2534 | ||
2536 | val &= ~CPU_TASKS_FROZEN; | 2535 | val &= ~CPU_TASKS_FROZEN; |
2537 | switch (val) { | 2536 | switch (val) { |
2538 | case CPU_DYING: | 2537 | case CPU_DYING: |
2539 | printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n", | 2538 | printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n", |
2540 | cpu); | 2539 | cpu); |
2541 | hardware_disable(NULL); | 2540 | hardware_disable(NULL); |
2542 | break; | 2541 | break; |
2543 | case CPU_STARTING: | 2542 | case CPU_STARTING: |
2544 | printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n", | 2543 | printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n", |
2545 | cpu); | 2544 | cpu); |
2546 | hardware_enable(NULL); | 2545 | hardware_enable(NULL); |
2547 | break; | 2546 | break; |
2548 | } | 2547 | } |
2549 | return NOTIFY_OK; | 2548 | return NOTIFY_OK; |
2550 | } | 2549 | } |
2551 | 2550 | ||
2552 | 2551 | ||
2553 | asmlinkage void kvm_spurious_fault(void) | 2552 | asmlinkage void kvm_spurious_fault(void) |
2554 | { | 2553 | { |
2555 | /* Fault while not rebooting. We want the trace. */ | 2554 | /* Fault while not rebooting. We want the trace. */ |
2556 | BUG(); | 2555 | BUG(); |
2557 | } | 2556 | } |
2558 | EXPORT_SYMBOL_GPL(kvm_spurious_fault); | 2557 | EXPORT_SYMBOL_GPL(kvm_spurious_fault); |
2559 | 2558 | ||
2560 | static int kvm_reboot(struct notifier_block *notifier, unsigned long val, | 2559 | static int kvm_reboot(struct notifier_block *notifier, unsigned long val, |
2561 | void *v) | 2560 | void *v) |
2562 | { | 2561 | { |
2563 | /* | 2562 | /* |
2564 | * Some (well, at least mine) BIOSes hang on reboot if | 2563 | * Some (well, at least mine) BIOSes hang on reboot if |
2565 | * in vmx root mode. | 2564 | * in vmx root mode. |
2566 | * | 2565 | * |
2567 | * And Intel TXT required VMX off for all cpu when system shutdown. | 2566 | * And Intel TXT required VMX off for all cpu when system shutdown. |
2568 | */ | 2567 | */ |
2569 | printk(KERN_INFO "kvm: exiting hardware virtualization\n"); | 2568 | printk(KERN_INFO "kvm: exiting hardware virtualization\n"); |
2570 | kvm_rebooting = true; | 2569 | kvm_rebooting = true; |
2571 | on_each_cpu(hardware_disable_nolock, NULL, 1); | 2570 | on_each_cpu(hardware_disable_nolock, NULL, 1); |
2572 | return NOTIFY_OK; | 2571 | return NOTIFY_OK; |
2573 | } | 2572 | } |
2574 | 2573 | ||
2575 | static struct notifier_block kvm_reboot_notifier = { | 2574 | static struct notifier_block kvm_reboot_notifier = { |
2576 | .notifier_call = kvm_reboot, | 2575 | .notifier_call = kvm_reboot, |
2577 | .priority = 0, | 2576 | .priority = 0, |
2578 | }; | 2577 | }; |
2579 | 2578 | ||
2580 | static void kvm_io_bus_destroy(struct kvm_io_bus *bus) | 2579 | static void kvm_io_bus_destroy(struct kvm_io_bus *bus) |
2581 | { | 2580 | { |
2582 | int i; | 2581 | int i; |
2583 | 2582 | ||
2584 | for (i = 0; i < bus->dev_count; i++) { | 2583 | for (i = 0; i < bus->dev_count; i++) { |
2585 | struct kvm_io_device *pos = bus->range[i].dev; | 2584 | struct kvm_io_device *pos = bus->range[i].dev; |
2586 | 2585 | ||
2587 | kvm_iodevice_destructor(pos); | 2586 | kvm_iodevice_destructor(pos); |
2588 | } | 2587 | } |
2589 | kfree(bus); | 2588 | kfree(bus); |
2590 | } | 2589 | } |
2591 | 2590 | ||
2592 | int kvm_io_bus_sort_cmp(const void *p1, const void *p2) | 2591 | int kvm_io_bus_sort_cmp(const void *p1, const void *p2) |
2593 | { | 2592 | { |
2594 | const struct kvm_io_range *r1 = p1; | 2593 | const struct kvm_io_range *r1 = p1; |
2595 | const struct kvm_io_range *r2 = p2; | 2594 | const struct kvm_io_range *r2 = p2; |
2596 | 2595 | ||
2597 | if (r1->addr < r2->addr) | 2596 | if (r1->addr < r2->addr) |
2598 | return -1; | 2597 | return -1; |
2599 | if (r1->addr + r1->len > r2->addr + r2->len) | 2598 | if (r1->addr + r1->len > r2->addr + r2->len) |
2600 | return 1; | 2599 | return 1; |
2601 | return 0; | 2600 | return 0; |
2602 | } | 2601 | } |
2603 | 2602 | ||
2604 | int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev, | 2603 | int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev, |
2605 | gpa_t addr, int len) | 2604 | gpa_t addr, int len) |
2606 | { | 2605 | { |
2607 | bus->range[bus->dev_count++] = (struct kvm_io_range) { | 2606 | bus->range[bus->dev_count++] = (struct kvm_io_range) { |
2608 | .addr = addr, | 2607 | .addr = addr, |
2609 | .len = len, | 2608 | .len = len, |
2610 | .dev = dev, | 2609 | .dev = dev, |
2611 | }; | 2610 | }; |
2612 | 2611 | ||
2613 | sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range), | 2612 | sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range), |
2614 | kvm_io_bus_sort_cmp, NULL); | 2613 | kvm_io_bus_sort_cmp, NULL); |
2615 | 2614 | ||
2616 | return 0; | 2615 | return 0; |
2617 | } | 2616 | } |
2618 | 2617 | ||
2619 | int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, | 2618 | int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, |
2620 | gpa_t addr, int len) | 2619 | gpa_t addr, int len) |
2621 | { | 2620 | { |
2622 | struct kvm_io_range *range, key; | 2621 | struct kvm_io_range *range, key; |
2623 | int off; | 2622 | int off; |
2624 | 2623 | ||
2625 | key = (struct kvm_io_range) { | 2624 | key = (struct kvm_io_range) { |
2626 | .addr = addr, | 2625 | .addr = addr, |
2627 | .len = len, | 2626 | .len = len, |
2628 | }; | 2627 | }; |
2629 | 2628 | ||
2630 | range = bsearch(&key, bus->range, bus->dev_count, | 2629 | range = bsearch(&key, bus->range, bus->dev_count, |
2631 | sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); | 2630 | sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); |
2632 | if (range == NULL) | 2631 | if (range == NULL) |
2633 | return -ENOENT; | 2632 | return -ENOENT; |
2634 | 2633 | ||
2635 | off = range - bus->range; | 2634 | off = range - bus->range; |
2636 | 2635 | ||
2637 | while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0) | 2636 | while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0) |
2638 | off--; | 2637 | off--; |
2639 | 2638 | ||
2640 | return off; | 2639 | return off; |
2641 | } | 2640 | } |
2642 | 2641 | ||
2643 | /* kvm_io_bus_write - called under kvm->slots_lock */ | 2642 | /* kvm_io_bus_write - called under kvm->slots_lock */ |
2644 | int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, | 2643 | int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, |
2645 | int len, const void *val) | 2644 | int len, const void *val) |
2646 | { | 2645 | { |
2647 | int idx; | 2646 | int idx; |
2648 | struct kvm_io_bus *bus; | 2647 | struct kvm_io_bus *bus; |
2649 | struct kvm_io_range range; | 2648 | struct kvm_io_range range; |
2650 | 2649 | ||
2651 | range = (struct kvm_io_range) { | 2650 | range = (struct kvm_io_range) { |
2652 | .addr = addr, | 2651 | .addr = addr, |
2653 | .len = len, | 2652 | .len = len, |
2654 | }; | 2653 | }; |
2655 | 2654 | ||
2656 | bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); | 2655 | bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); |
2657 | idx = kvm_io_bus_get_first_dev(bus, addr, len); | 2656 | idx = kvm_io_bus_get_first_dev(bus, addr, len); |
2658 | if (idx < 0) | 2657 | if (idx < 0) |
2659 | return -EOPNOTSUPP; | 2658 | return -EOPNOTSUPP; |
2660 | 2659 | ||
2661 | while (idx < bus->dev_count && | 2660 | while (idx < bus->dev_count && |
2662 | kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) { | 2661 | kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) { |
2663 | if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val)) | 2662 | if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val)) |
2664 | return 0; | 2663 | return 0; |
2665 | idx++; | 2664 | idx++; |
2666 | } | 2665 | } |
2667 | 2666 | ||
2668 | return -EOPNOTSUPP; | 2667 | return -EOPNOTSUPP; |
2669 | } | 2668 | } |
2670 | 2669 | ||
2671 | /* kvm_io_bus_read - called under kvm->slots_lock */ | 2670 | /* kvm_io_bus_read - called under kvm->slots_lock */ |
2672 | int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, | 2671 | int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, |
2673 | int len, void *val) | 2672 | int len, void *val) |
2674 | { | 2673 | { |
2675 | int idx; | 2674 | int idx; |
2676 | struct kvm_io_bus *bus; | 2675 | struct kvm_io_bus *bus; |
2677 | struct kvm_io_range range; | 2676 | struct kvm_io_range range; |
2678 | 2677 | ||
2679 | range = (struct kvm_io_range) { | 2678 | range = (struct kvm_io_range) { |
2680 | .addr = addr, | 2679 | .addr = addr, |
2681 | .len = len, | 2680 | .len = len, |
2682 | }; | 2681 | }; |
2683 | 2682 | ||
2684 | bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); | 2683 | bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); |
2685 | idx = kvm_io_bus_get_first_dev(bus, addr, len); | 2684 | idx = kvm_io_bus_get_first_dev(bus, addr, len); |
2686 | if (idx < 0) | 2685 | if (idx < 0) |
2687 | return -EOPNOTSUPP; | 2686 | return -EOPNOTSUPP; |
2688 | 2687 | ||
2689 | while (idx < bus->dev_count && | 2688 | while (idx < bus->dev_count && |
2690 | kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) { | 2689 | kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) { |
2691 | if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val)) | 2690 | if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val)) |
2692 | return 0; | 2691 | return 0; |
2693 | idx++; | 2692 | idx++; |
2694 | } | 2693 | } |
2695 | 2694 | ||
2696 | return -EOPNOTSUPP; | 2695 | return -EOPNOTSUPP; |
2697 | } | 2696 | } |
2698 | 2697 | ||
2699 | /* Caller must hold slots_lock. */ | 2698 | /* Caller must hold slots_lock. */ |
2700 | int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, | 2699 | int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, |
2701 | int len, struct kvm_io_device *dev) | 2700 | int len, struct kvm_io_device *dev) |
2702 | { | 2701 | { |
2703 | struct kvm_io_bus *new_bus, *bus; | 2702 | struct kvm_io_bus *new_bus, *bus; |
2704 | 2703 | ||
2705 | bus = kvm->buses[bus_idx]; | 2704 | bus = kvm->buses[bus_idx]; |
2706 | if (bus->dev_count > NR_IOBUS_DEVS - 1) | 2705 | if (bus->dev_count > NR_IOBUS_DEVS - 1) |
2707 | return -ENOSPC; | 2706 | return -ENOSPC; |
2708 | 2707 | ||
2709 | new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) * | 2708 | new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) * |
2710 | sizeof(struct kvm_io_range)), GFP_KERNEL); | 2709 | sizeof(struct kvm_io_range)), GFP_KERNEL); |
2711 | if (!new_bus) | 2710 | if (!new_bus) |
2712 | return -ENOMEM; | 2711 | return -ENOMEM; |
2713 | memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count * | 2712 | memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count * |
2714 | sizeof(struct kvm_io_range))); | 2713 | sizeof(struct kvm_io_range))); |
2715 | kvm_io_bus_insert_dev(new_bus, dev, addr, len); | 2714 | kvm_io_bus_insert_dev(new_bus, dev, addr, len); |
2716 | rcu_assign_pointer(kvm->buses[bus_idx], new_bus); | 2715 | rcu_assign_pointer(kvm->buses[bus_idx], new_bus); |
2717 | synchronize_srcu_expedited(&kvm->srcu); | 2716 | synchronize_srcu_expedited(&kvm->srcu); |
2718 | kfree(bus); | 2717 | kfree(bus); |
2719 | 2718 | ||
2720 | return 0; | 2719 | return 0; |
2721 | } | 2720 | } |
2722 | 2721 | ||
2723 | /* Caller must hold slots_lock. */ | 2722 | /* Caller must hold slots_lock. */ |
2724 | int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, | 2723 | int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, |
2725 | struct kvm_io_device *dev) | 2724 | struct kvm_io_device *dev) |
2726 | { | 2725 | { |
2727 | int i, r; | 2726 | int i, r; |
2728 | struct kvm_io_bus *new_bus, *bus; | 2727 | struct kvm_io_bus *new_bus, *bus; |
2729 | 2728 | ||
2730 | bus = kvm->buses[bus_idx]; | 2729 | bus = kvm->buses[bus_idx]; |
2731 | r = -ENOENT; | 2730 | r = -ENOENT; |
2732 | for (i = 0; i < bus->dev_count; i++) | 2731 | for (i = 0; i < bus->dev_count; i++) |
2733 | if (bus->range[i].dev == dev) { | 2732 | if (bus->range[i].dev == dev) { |
2734 | r = 0; | 2733 | r = 0; |
2735 | break; | 2734 | break; |
2736 | } | 2735 | } |
2737 | 2736 | ||
2738 | if (r) | 2737 | if (r) |
2739 | return r; | 2738 | return r; |
2740 | 2739 | ||
2741 | new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) * | 2740 | new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) * |
2742 | sizeof(struct kvm_io_range)), GFP_KERNEL); | 2741 | sizeof(struct kvm_io_range)), GFP_KERNEL); |
2743 | if (!new_bus) | 2742 | if (!new_bus) |
2744 | return -ENOMEM; | 2743 | return -ENOMEM; |
2745 | 2744 | ||
2746 | memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); | 2745 | memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); |
2747 | new_bus->dev_count--; | 2746 | new_bus->dev_count--; |
2748 | memcpy(new_bus->range + i, bus->range + i + 1, | 2747 | memcpy(new_bus->range + i, bus->range + i + 1, |
2749 | (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); | 2748 | (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); |
2750 | 2749 | ||
2751 | rcu_assign_pointer(kvm->buses[bus_idx], new_bus); | 2750 | rcu_assign_pointer(kvm->buses[bus_idx], new_bus); |
2752 | synchronize_srcu_expedited(&kvm->srcu); | 2751 | synchronize_srcu_expedited(&kvm->srcu); |
2753 | kfree(bus); | 2752 | kfree(bus); |
2754 | return r; | 2753 | return r; |
2755 | } | 2754 | } |
2756 | 2755 | ||
2757 | static struct notifier_block kvm_cpu_notifier = { | 2756 | static struct notifier_block kvm_cpu_notifier = { |
2758 | .notifier_call = kvm_cpu_hotplug, | 2757 | .notifier_call = kvm_cpu_hotplug, |
2759 | }; | 2758 | }; |
2760 | 2759 | ||
2761 | static int vm_stat_get(void *_offset, u64 *val) | 2760 | static int vm_stat_get(void *_offset, u64 *val) |
2762 | { | 2761 | { |
2763 | unsigned offset = (long)_offset; | 2762 | unsigned offset = (long)_offset; |
2764 | struct kvm *kvm; | 2763 | struct kvm *kvm; |
2765 | 2764 | ||
2766 | *val = 0; | 2765 | *val = 0; |
2767 | raw_spin_lock(&kvm_lock); | 2766 | raw_spin_lock(&kvm_lock); |
2768 | list_for_each_entry(kvm, &vm_list, vm_list) | 2767 | list_for_each_entry(kvm, &vm_list, vm_list) |
2769 | *val += *(u32 *)((void *)kvm + offset); | 2768 | *val += *(u32 *)((void *)kvm + offset); |
2770 | raw_spin_unlock(&kvm_lock); | 2769 | raw_spin_unlock(&kvm_lock); |
2771 | return 0; | 2770 | return 0; |
2772 | } | 2771 | } |
2773 | 2772 | ||
2774 | DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n"); | 2773 | DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n"); |
2775 | 2774 | ||
2776 | static int vcpu_stat_get(void *_offset, u64 *val) | 2775 | static int vcpu_stat_get(void *_offset, u64 *val) |
2777 | { | 2776 | { |
2778 | unsigned offset = (long)_offset; | 2777 | unsigned offset = (long)_offset; |
2779 | struct kvm *kvm; | 2778 | struct kvm *kvm; |
2780 | struct kvm_vcpu *vcpu; | 2779 | struct kvm_vcpu *vcpu; |
2781 | int i; | 2780 | int i; |
2782 | 2781 | ||
2783 | *val = 0; | 2782 | *val = 0; |
2784 | raw_spin_lock(&kvm_lock); | 2783 | raw_spin_lock(&kvm_lock); |
2785 | list_for_each_entry(kvm, &vm_list, vm_list) | 2784 | list_for_each_entry(kvm, &vm_list, vm_list) |
2786 | kvm_for_each_vcpu(i, vcpu, kvm) | 2785 | kvm_for_each_vcpu(i, vcpu, kvm) |
2787 | *val += *(u32 *)((void *)vcpu + offset); | 2786 | *val += *(u32 *)((void *)vcpu + offset); |
2788 | 2787 | ||
2789 | raw_spin_unlock(&kvm_lock); | 2788 | raw_spin_unlock(&kvm_lock); |
2790 | return 0; | 2789 | return 0; |
2791 | } | 2790 | } |
2792 | 2791 | ||
2793 | DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n"); | 2792 | DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n"); |
2794 | 2793 | ||
2795 | static const struct file_operations *stat_fops[] = { | 2794 | static const struct file_operations *stat_fops[] = { |
2796 | [KVM_STAT_VCPU] = &vcpu_stat_fops, | 2795 | [KVM_STAT_VCPU] = &vcpu_stat_fops, |
2797 | [KVM_STAT_VM] = &vm_stat_fops, | 2796 | [KVM_STAT_VM] = &vm_stat_fops, |
2798 | }; | 2797 | }; |
2799 | 2798 | ||
2800 | static int kvm_init_debug(void) | 2799 | static int kvm_init_debug(void) |
2801 | { | 2800 | { |
2802 | int r = -EFAULT; | 2801 | int r = -EFAULT; |
2803 | struct kvm_stats_debugfs_item *p; | 2802 | struct kvm_stats_debugfs_item *p; |
2804 | 2803 | ||
2805 | kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); | 2804 | kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); |
2806 | if (kvm_debugfs_dir == NULL) | 2805 | if (kvm_debugfs_dir == NULL) |
2807 | goto out; | 2806 | goto out; |
2808 | 2807 | ||
2809 | for (p = debugfs_entries; p->name; ++p) { | 2808 | for (p = debugfs_entries; p->name; ++p) { |
2810 | p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir, | 2809 | p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir, |
2811 | (void *)(long)p->offset, | 2810 | (void *)(long)p->offset, |
2812 | stat_fops[p->kind]); | 2811 | stat_fops[p->kind]); |
2813 | if (p->dentry == NULL) | 2812 | if (p->dentry == NULL) |
2814 | goto out_dir; | 2813 | goto out_dir; |
2815 | } | 2814 | } |
2816 | 2815 | ||
2817 | return 0; | 2816 | return 0; |
2818 | 2817 | ||
2819 | out_dir: | 2818 | out_dir: |
2820 | debugfs_remove_recursive(kvm_debugfs_dir); | 2819 | debugfs_remove_recursive(kvm_debugfs_dir); |
2821 | out: | 2820 | out: |
2822 | return r; | 2821 | return r; |
2823 | } | 2822 | } |
2824 | 2823 | ||
2825 | static void kvm_exit_debug(void) | 2824 | static void kvm_exit_debug(void) |
2826 | { | 2825 | { |
2827 | struct kvm_stats_debugfs_item *p; | 2826 | struct kvm_stats_debugfs_item *p; |
2828 | 2827 | ||
2829 | for (p = debugfs_entries; p->name; ++p) | 2828 | for (p = debugfs_entries; p->name; ++p) |
2830 | debugfs_remove(p->dentry); | 2829 | debugfs_remove(p->dentry); |
2831 | debugfs_remove(kvm_debugfs_dir); | 2830 | debugfs_remove(kvm_debugfs_dir); |
2832 | } | 2831 | } |
2833 | 2832 | ||
2834 | static int kvm_suspend(void) | 2833 | static int kvm_suspend(void) |
2835 | { | 2834 | { |
2836 | if (kvm_usage_count) | 2835 | if (kvm_usage_count) |
2837 | hardware_disable_nolock(NULL); | 2836 | hardware_disable_nolock(NULL); |
2838 | return 0; | 2837 | return 0; |
2839 | } | 2838 | } |
2840 | 2839 | ||
2841 | static void kvm_resume(void) | 2840 | static void kvm_resume(void) |
2842 | { | 2841 | { |
2843 | if (kvm_usage_count) { | 2842 | if (kvm_usage_count) { |
2844 | WARN_ON(raw_spin_is_locked(&kvm_lock)); | 2843 | WARN_ON(raw_spin_is_locked(&kvm_lock)); |
2845 | hardware_enable_nolock(NULL); | 2844 | hardware_enable_nolock(NULL); |
2846 | } | 2845 | } |
2847 | } | 2846 | } |
2848 | 2847 | ||
2849 | static struct syscore_ops kvm_syscore_ops = { | 2848 | static struct syscore_ops kvm_syscore_ops = { |
2850 | .suspend = kvm_suspend, | 2849 | .suspend = kvm_suspend, |
2851 | .resume = kvm_resume, | 2850 | .resume = kvm_resume, |
2852 | }; | 2851 | }; |
2853 | 2852 | ||
2854 | static inline | 2853 | static inline |
2855 | struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) | 2854 | struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) |
2856 | { | 2855 | { |
2857 | return container_of(pn, struct kvm_vcpu, preempt_notifier); | 2856 | return container_of(pn, struct kvm_vcpu, preempt_notifier); |
2858 | } | 2857 | } |
2859 | 2858 | ||
2860 | static void kvm_sched_in(struct preempt_notifier *pn, int cpu) | 2859 | static void kvm_sched_in(struct preempt_notifier *pn, int cpu) |
2861 | { | 2860 | { |
2862 | struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); | 2861 | struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); |
2863 | 2862 | ||
2864 | kvm_arch_vcpu_load(vcpu, cpu); | 2863 | kvm_arch_vcpu_load(vcpu, cpu); |
2865 | } | 2864 | } |
2866 | 2865 | ||
2867 | static void kvm_sched_out(struct preempt_notifier *pn, | 2866 | static void kvm_sched_out(struct preempt_notifier *pn, |
2868 | struct task_struct *next) | 2867 | struct task_struct *next) |
2869 | { | 2868 | { |
2870 | struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); | 2869 | struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); |
2871 | 2870 | ||
2872 | kvm_arch_vcpu_put(vcpu); | 2871 | kvm_arch_vcpu_put(vcpu); |
2873 | } | 2872 | } |
2874 | 2873 | ||
2875 | int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, | 2874 | int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, |
2876 | struct module *module) | 2875 | struct module *module) |
2877 | { | 2876 | { |
2878 | int r; | 2877 | int r; |
2879 | int cpu; | 2878 | int cpu; |
2880 | 2879 | ||
2881 | r = kvm_arch_init(opaque); | 2880 | r = kvm_arch_init(opaque); |
2882 | if (r) | 2881 | if (r) |
2883 | goto out_fail; | 2882 | goto out_fail; |
2884 | 2883 | ||
2885 | if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { | 2884 | if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { |
2886 | r = -ENOMEM; | 2885 | r = -ENOMEM; |
2887 | goto out_free_0; | 2886 | goto out_free_0; |
2888 | } | 2887 | } |
2889 | 2888 | ||
2890 | r = kvm_arch_hardware_setup(); | 2889 | r = kvm_arch_hardware_setup(); |
2891 | if (r < 0) | 2890 | if (r < 0) |
2892 | goto out_free_0a; | 2891 | goto out_free_0a; |
2893 | 2892 | ||
2894 | for_each_online_cpu(cpu) { | 2893 | for_each_online_cpu(cpu) { |
2895 | smp_call_function_single(cpu, | 2894 | smp_call_function_single(cpu, |
2896 | kvm_arch_check_processor_compat, | 2895 | kvm_arch_check_processor_compat, |
2897 | &r, 1); | 2896 | &r, 1); |
2898 | if (r < 0) | 2897 | if (r < 0) |
2899 | goto out_free_1; | 2898 | goto out_free_1; |
2900 | } | 2899 | } |
2901 | 2900 | ||
2902 | r = register_cpu_notifier(&kvm_cpu_notifier); | 2901 | r = register_cpu_notifier(&kvm_cpu_notifier); |
2903 | if (r) | 2902 | if (r) |
2904 | goto out_free_2; | 2903 | goto out_free_2; |
2905 | register_reboot_notifier(&kvm_reboot_notifier); | 2904 | register_reboot_notifier(&kvm_reboot_notifier); |
2906 | 2905 | ||
2907 | /* A kmem cache lets us meet the alignment requirements of fx_save. */ | 2906 | /* A kmem cache lets us meet the alignment requirements of fx_save. */ |
2908 | if (!vcpu_align) | 2907 | if (!vcpu_align) |
2909 | vcpu_align = __alignof__(struct kvm_vcpu); | 2908 | vcpu_align = __alignof__(struct kvm_vcpu); |
2910 | kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align, | 2909 | kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align, |
2911 | 0, NULL); | 2910 | 0, NULL); |
2912 | if (!kvm_vcpu_cache) { | 2911 | if (!kvm_vcpu_cache) { |
2913 | r = -ENOMEM; | 2912 | r = -ENOMEM; |
2914 | goto out_free_3; | 2913 | goto out_free_3; |
2915 | } | 2914 | } |
2916 | 2915 | ||
2917 | r = kvm_async_pf_init(); | 2916 | r = kvm_async_pf_init(); |
2918 | if (r) | 2917 | if (r) |
2919 | goto out_free; | 2918 | goto out_free; |
2920 | 2919 | ||
2921 | kvm_chardev_ops.owner = module; | 2920 | kvm_chardev_ops.owner = module; |
2922 | kvm_vm_fops.owner = module; | 2921 | kvm_vm_fops.owner = module; |
2923 | kvm_vcpu_fops.owner = module; | 2922 | kvm_vcpu_fops.owner = module; |
2924 | 2923 | ||
2925 | r = misc_register(&kvm_dev); | 2924 | r = misc_register(&kvm_dev); |
2926 | if (r) { | 2925 | if (r) { |
2927 | printk(KERN_ERR "kvm: misc device register failed\n"); | 2926 | printk(KERN_ERR "kvm: misc device register failed\n"); |
2928 | goto out_unreg; | 2927 | goto out_unreg; |
2929 | } | 2928 | } |
2930 | 2929 | ||
2931 | register_syscore_ops(&kvm_syscore_ops); | 2930 | register_syscore_ops(&kvm_syscore_ops); |
2932 | 2931 | ||
2933 | kvm_preempt_ops.sched_in = kvm_sched_in; | 2932 | kvm_preempt_ops.sched_in = kvm_sched_in; |
2934 | kvm_preempt_ops.sched_out = kvm_sched_out; | 2933 | kvm_preempt_ops.sched_out = kvm_sched_out; |
2935 | 2934 | ||
2936 | r = kvm_init_debug(); | 2935 | r = kvm_init_debug(); |
2937 | if (r) { | 2936 | if (r) { |
2938 | printk(KERN_ERR "kvm: create debugfs files failed\n"); | 2937 | printk(KERN_ERR "kvm: create debugfs files failed\n"); |
2939 | goto out_undebugfs; | 2938 | goto out_undebugfs; |
2940 | } | 2939 | } |
2941 | 2940 | ||
2942 | return 0; | 2941 | return 0; |
2943 | 2942 | ||
2944 | out_undebugfs: | 2943 | out_undebugfs: |
2945 | unregister_syscore_ops(&kvm_syscore_ops); | 2944 | unregister_syscore_ops(&kvm_syscore_ops); |
2946 | out_unreg: | 2945 | out_unreg: |
2947 | kvm_async_pf_deinit(); | 2946 | kvm_async_pf_deinit(); |
2948 | out_free: | 2947 | out_free: |
2949 | kmem_cache_destroy(kvm_vcpu_cache); | 2948 | kmem_cache_destroy(kvm_vcpu_cache); |
2950 | out_free_3: | 2949 | out_free_3: |
2951 | unregister_reboot_notifier(&kvm_reboot_notifier); | 2950 | unregister_reboot_notifier(&kvm_reboot_notifier); |
2952 | unregister_cpu_notifier(&kvm_cpu_notifier); | 2951 | unregister_cpu_notifier(&kvm_cpu_notifier); |
2953 | out_free_2: | 2952 | out_free_2: |
2954 | out_free_1: | 2953 | out_free_1: |
2955 | kvm_arch_hardware_unsetup(); | 2954 | kvm_arch_hardware_unsetup(); |
2956 | out_free_0a: | 2955 | out_free_0a: |
2957 | free_cpumask_var(cpus_hardware_enabled); | 2956 | free_cpumask_var(cpus_hardware_enabled); |
2958 | out_free_0: | 2957 | out_free_0: |
2959 | kvm_arch_exit(); | 2958 | kvm_arch_exit(); |
2960 | out_fail: | 2959 | out_fail: |
2961 | return r; | 2960 | return r; |
2962 | } | 2961 | } |
2963 | EXPORT_SYMBOL_GPL(kvm_init); | 2962 | EXPORT_SYMBOL_GPL(kvm_init); |
2964 | 2963 | ||
2965 | void kvm_exit(void) | 2964 | void kvm_exit(void) |
2966 | { | 2965 | { |
2967 | kvm_exit_debug(); | 2966 | kvm_exit_debug(); |
2968 | misc_deregister(&kvm_dev); | 2967 | misc_deregister(&kvm_dev); |
2969 | kmem_cache_destroy(kvm_vcpu_cache); | 2968 | kmem_cache_destroy(kvm_vcpu_cache); |
2970 | kvm_async_pf_deinit(); | 2969 | kvm_async_pf_deinit(); |
2971 | unregister_syscore_ops(&kvm_syscore_ops); | 2970 | unregister_syscore_ops(&kvm_syscore_ops); |
2972 | unregister_reboot_notifier(&kvm_reboot_notifier); | 2971 | unregister_reboot_notifier(&kvm_reboot_notifier); |
2973 | unregister_cpu_notifier(&kvm_cpu_notifier); | 2972 | unregister_cpu_notifier(&kvm_cpu_notifier); |
2974 | on_each_cpu(hardware_disable_nolock, NULL, 1); | 2973 | on_each_cpu(hardware_disable_nolock, NULL, 1); |
2975 | kvm_arch_hardware_unsetup(); | 2974 | kvm_arch_hardware_unsetup(); |
2976 | kvm_arch_exit(); | 2975 | kvm_arch_exit(); |
2977 | free_cpumask_var(cpus_hardware_enabled); | 2976 | free_cpumask_var(cpus_hardware_enabled); |
2978 | } | 2977 | } |
2979 | EXPORT_SYMBOL_GPL(kvm_exit); | 2978 | EXPORT_SYMBOL_GPL(kvm_exit); |
2980 | 2979 |