Commit ce7184bdbd38d920fb515266fbbdc585ad2e5493
Committed by
Konrad Rzeszutek Wilk
1 parent
593d0a3e9f
Exists in
smarc-l5.0.0_1.0.0-ga
and in
5 other branches
xen: fix logical error in tlb flushing
While TLB_FLUSH_ALL gets passed as 'end' argument to flush_tlb_others(), the Xen code was made to check its 'start' parameter. That may give a incorrect op.cmd to MMUEXT_INVLPG_MULTI instead of MMUEXT_TLB_FLUSH_MULTI. Then it causes some page can not be flushed from TLB. This patch fixed this issue. Reported-by: Jan Beulich <jbeulich@suse.com> Signed-off-by: Alex Shi <alex.shi@intel.com> Acked-by: Jan Beulich <jbeulich@suse.com> Tested-by: Yongjie Ren <yongjie.ren@intel.com> Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Showing 1 changed file with 1 additions and 1 deletions Inline Diff
arch/x86/xen/mmu.c
1 | /* | 1 | /* |
2 | * Xen mmu operations | 2 | * Xen mmu operations |
3 | * | 3 | * |
4 | * This file contains the various mmu fetch and update operations. | 4 | * This file contains the various mmu fetch and update operations. |
5 | * The most important job they must perform is the mapping between the | 5 | * The most important job they must perform is the mapping between the |
6 | * domain's pfn and the overall machine mfns. | 6 | * domain's pfn and the overall machine mfns. |
7 | * | 7 | * |
8 | * Xen allows guests to directly update the pagetable, in a controlled | 8 | * Xen allows guests to directly update the pagetable, in a controlled |
9 | * fashion. In other words, the guest modifies the same pagetable | 9 | * fashion. In other words, the guest modifies the same pagetable |
10 | * that the CPU actually uses, which eliminates the overhead of having | 10 | * that the CPU actually uses, which eliminates the overhead of having |
11 | * a separate shadow pagetable. | 11 | * a separate shadow pagetable. |
12 | * | 12 | * |
13 | * In order to allow this, it falls on the guest domain to map its | 13 | * In order to allow this, it falls on the guest domain to map its |
14 | * notion of a "physical" pfn - which is just a domain-local linear | 14 | * notion of a "physical" pfn - which is just a domain-local linear |
15 | * address - into a real "machine address" which the CPU's MMU can | 15 | * address - into a real "machine address" which the CPU's MMU can |
16 | * use. | 16 | * use. |
17 | * | 17 | * |
18 | * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be | 18 | * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be |
19 | * inserted directly into the pagetable. When creating a new | 19 | * inserted directly into the pagetable. When creating a new |
20 | * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely, | 20 | * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely, |
21 | * when reading the content back with __(pgd|pmd|pte)_val, it converts | 21 | * when reading the content back with __(pgd|pmd|pte)_val, it converts |
22 | * the mfn back into a pfn. | 22 | * the mfn back into a pfn. |
23 | * | 23 | * |
24 | * The other constraint is that all pages which make up a pagetable | 24 | * The other constraint is that all pages which make up a pagetable |
25 | * must be mapped read-only in the guest. This prevents uncontrolled | 25 | * must be mapped read-only in the guest. This prevents uncontrolled |
26 | * guest updates to the pagetable. Xen strictly enforces this, and | 26 | * guest updates to the pagetable. Xen strictly enforces this, and |
27 | * will disallow any pagetable update which will end up mapping a | 27 | * will disallow any pagetable update which will end up mapping a |
28 | * pagetable page RW, and will disallow using any writable page as a | 28 | * pagetable page RW, and will disallow using any writable page as a |
29 | * pagetable. | 29 | * pagetable. |
30 | * | 30 | * |
31 | * Naively, when loading %cr3 with the base of a new pagetable, Xen | 31 | * Naively, when loading %cr3 with the base of a new pagetable, Xen |
32 | * would need to validate the whole pagetable before going on. | 32 | * would need to validate the whole pagetable before going on. |
33 | * Naturally, this is quite slow. The solution is to "pin" a | 33 | * Naturally, this is quite slow. The solution is to "pin" a |
34 | * pagetable, which enforces all the constraints on the pagetable even | 34 | * pagetable, which enforces all the constraints on the pagetable even |
35 | * when it is not actively in use. This menas that Xen can be assured | 35 | * when it is not actively in use. This menas that Xen can be assured |
36 | * that it is still valid when you do load it into %cr3, and doesn't | 36 | * that it is still valid when you do load it into %cr3, and doesn't |
37 | * need to revalidate it. | 37 | * need to revalidate it. |
38 | * | 38 | * |
39 | * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 | 39 | * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 |
40 | */ | 40 | */ |
41 | #include <linux/sched.h> | 41 | #include <linux/sched.h> |
42 | #include <linux/highmem.h> | 42 | #include <linux/highmem.h> |
43 | #include <linux/debugfs.h> | 43 | #include <linux/debugfs.h> |
44 | #include <linux/bug.h> | 44 | #include <linux/bug.h> |
45 | #include <linux/vmalloc.h> | 45 | #include <linux/vmalloc.h> |
46 | #include <linux/module.h> | 46 | #include <linux/module.h> |
47 | #include <linux/gfp.h> | 47 | #include <linux/gfp.h> |
48 | #include <linux/memblock.h> | 48 | #include <linux/memblock.h> |
49 | #include <linux/seq_file.h> | 49 | #include <linux/seq_file.h> |
50 | 50 | ||
51 | #include <trace/events/xen.h> | 51 | #include <trace/events/xen.h> |
52 | 52 | ||
53 | #include <asm/pgtable.h> | 53 | #include <asm/pgtable.h> |
54 | #include <asm/tlbflush.h> | 54 | #include <asm/tlbflush.h> |
55 | #include <asm/fixmap.h> | 55 | #include <asm/fixmap.h> |
56 | #include <asm/mmu_context.h> | 56 | #include <asm/mmu_context.h> |
57 | #include <asm/setup.h> | 57 | #include <asm/setup.h> |
58 | #include <asm/paravirt.h> | 58 | #include <asm/paravirt.h> |
59 | #include <asm/e820.h> | 59 | #include <asm/e820.h> |
60 | #include <asm/linkage.h> | 60 | #include <asm/linkage.h> |
61 | #include <asm/page.h> | 61 | #include <asm/page.h> |
62 | #include <asm/init.h> | 62 | #include <asm/init.h> |
63 | #include <asm/pat.h> | 63 | #include <asm/pat.h> |
64 | #include <asm/smp.h> | 64 | #include <asm/smp.h> |
65 | 65 | ||
66 | #include <asm/xen/hypercall.h> | 66 | #include <asm/xen/hypercall.h> |
67 | #include <asm/xen/hypervisor.h> | 67 | #include <asm/xen/hypervisor.h> |
68 | 68 | ||
69 | #include <xen/xen.h> | 69 | #include <xen/xen.h> |
70 | #include <xen/page.h> | 70 | #include <xen/page.h> |
71 | #include <xen/interface/xen.h> | 71 | #include <xen/interface/xen.h> |
72 | #include <xen/interface/hvm/hvm_op.h> | 72 | #include <xen/interface/hvm/hvm_op.h> |
73 | #include <xen/interface/version.h> | 73 | #include <xen/interface/version.h> |
74 | #include <xen/interface/memory.h> | 74 | #include <xen/interface/memory.h> |
75 | #include <xen/hvc-console.h> | 75 | #include <xen/hvc-console.h> |
76 | 76 | ||
77 | #include "multicalls.h" | 77 | #include "multicalls.h" |
78 | #include "mmu.h" | 78 | #include "mmu.h" |
79 | #include "debugfs.h" | 79 | #include "debugfs.h" |
80 | 80 | ||
81 | /* | 81 | /* |
82 | * Protects atomic reservation decrease/increase against concurrent increases. | 82 | * Protects atomic reservation decrease/increase against concurrent increases. |
83 | * Also protects non-atomic updates of current_pages and balloon lists. | 83 | * Also protects non-atomic updates of current_pages and balloon lists. |
84 | */ | 84 | */ |
85 | DEFINE_SPINLOCK(xen_reservation_lock); | 85 | DEFINE_SPINLOCK(xen_reservation_lock); |
86 | 86 | ||
87 | /* | 87 | /* |
88 | * Identity map, in addition to plain kernel map. This needs to be | 88 | * Identity map, in addition to plain kernel map. This needs to be |
89 | * large enough to allocate page table pages to allocate the rest. | 89 | * large enough to allocate page table pages to allocate the rest. |
90 | * Each page can map 2MB. | 90 | * Each page can map 2MB. |
91 | */ | 91 | */ |
92 | #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4) | 92 | #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4) |
93 | static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES); | 93 | static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES); |
94 | 94 | ||
95 | #ifdef CONFIG_X86_64 | 95 | #ifdef CONFIG_X86_64 |
96 | /* l3 pud for userspace vsyscall mapping */ | 96 | /* l3 pud for userspace vsyscall mapping */ |
97 | static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss; | 97 | static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss; |
98 | #endif /* CONFIG_X86_64 */ | 98 | #endif /* CONFIG_X86_64 */ |
99 | 99 | ||
100 | /* | 100 | /* |
101 | * Note about cr3 (pagetable base) values: | 101 | * Note about cr3 (pagetable base) values: |
102 | * | 102 | * |
103 | * xen_cr3 contains the current logical cr3 value; it contains the | 103 | * xen_cr3 contains the current logical cr3 value; it contains the |
104 | * last set cr3. This may not be the current effective cr3, because | 104 | * last set cr3. This may not be the current effective cr3, because |
105 | * its update may be being lazily deferred. However, a vcpu looking | 105 | * its update may be being lazily deferred. However, a vcpu looking |
106 | * at its own cr3 can use this value knowing that it everything will | 106 | * at its own cr3 can use this value knowing that it everything will |
107 | * be self-consistent. | 107 | * be self-consistent. |
108 | * | 108 | * |
109 | * xen_current_cr3 contains the actual vcpu cr3; it is set once the | 109 | * xen_current_cr3 contains the actual vcpu cr3; it is set once the |
110 | * hypercall to set the vcpu cr3 is complete (so it may be a little | 110 | * hypercall to set the vcpu cr3 is complete (so it may be a little |
111 | * out of date, but it will never be set early). If one vcpu is | 111 | * out of date, but it will never be set early). If one vcpu is |
112 | * looking at another vcpu's cr3 value, it should use this variable. | 112 | * looking at another vcpu's cr3 value, it should use this variable. |
113 | */ | 113 | */ |
114 | DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */ | 114 | DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */ |
115 | DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */ | 115 | DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */ |
116 | 116 | ||
117 | 117 | ||
118 | /* | 118 | /* |
119 | * Just beyond the highest usermode address. STACK_TOP_MAX has a | 119 | * Just beyond the highest usermode address. STACK_TOP_MAX has a |
120 | * redzone above it, so round it up to a PGD boundary. | 120 | * redzone above it, so round it up to a PGD boundary. |
121 | */ | 121 | */ |
122 | #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK) | 122 | #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK) |
123 | 123 | ||
124 | unsigned long arbitrary_virt_to_mfn(void *vaddr) | 124 | unsigned long arbitrary_virt_to_mfn(void *vaddr) |
125 | { | 125 | { |
126 | xmaddr_t maddr = arbitrary_virt_to_machine(vaddr); | 126 | xmaddr_t maddr = arbitrary_virt_to_machine(vaddr); |
127 | 127 | ||
128 | return PFN_DOWN(maddr.maddr); | 128 | return PFN_DOWN(maddr.maddr); |
129 | } | 129 | } |
130 | 130 | ||
131 | xmaddr_t arbitrary_virt_to_machine(void *vaddr) | 131 | xmaddr_t arbitrary_virt_to_machine(void *vaddr) |
132 | { | 132 | { |
133 | unsigned long address = (unsigned long)vaddr; | 133 | unsigned long address = (unsigned long)vaddr; |
134 | unsigned int level; | 134 | unsigned int level; |
135 | pte_t *pte; | 135 | pte_t *pte; |
136 | unsigned offset; | 136 | unsigned offset; |
137 | 137 | ||
138 | /* | 138 | /* |
139 | * if the PFN is in the linear mapped vaddr range, we can just use | 139 | * if the PFN is in the linear mapped vaddr range, we can just use |
140 | * the (quick) virt_to_machine() p2m lookup | 140 | * the (quick) virt_to_machine() p2m lookup |
141 | */ | 141 | */ |
142 | if (virt_addr_valid(vaddr)) | 142 | if (virt_addr_valid(vaddr)) |
143 | return virt_to_machine(vaddr); | 143 | return virt_to_machine(vaddr); |
144 | 144 | ||
145 | /* otherwise we have to do a (slower) full page-table walk */ | 145 | /* otherwise we have to do a (slower) full page-table walk */ |
146 | 146 | ||
147 | pte = lookup_address(address, &level); | 147 | pte = lookup_address(address, &level); |
148 | BUG_ON(pte == NULL); | 148 | BUG_ON(pte == NULL); |
149 | offset = address & ~PAGE_MASK; | 149 | offset = address & ~PAGE_MASK; |
150 | return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset); | 150 | return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset); |
151 | } | 151 | } |
152 | EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine); | 152 | EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine); |
153 | 153 | ||
154 | void make_lowmem_page_readonly(void *vaddr) | 154 | void make_lowmem_page_readonly(void *vaddr) |
155 | { | 155 | { |
156 | pte_t *pte, ptev; | 156 | pte_t *pte, ptev; |
157 | unsigned long address = (unsigned long)vaddr; | 157 | unsigned long address = (unsigned long)vaddr; |
158 | unsigned int level; | 158 | unsigned int level; |
159 | 159 | ||
160 | pte = lookup_address(address, &level); | 160 | pte = lookup_address(address, &level); |
161 | if (pte == NULL) | 161 | if (pte == NULL) |
162 | return; /* vaddr missing */ | 162 | return; /* vaddr missing */ |
163 | 163 | ||
164 | ptev = pte_wrprotect(*pte); | 164 | ptev = pte_wrprotect(*pte); |
165 | 165 | ||
166 | if (HYPERVISOR_update_va_mapping(address, ptev, 0)) | 166 | if (HYPERVISOR_update_va_mapping(address, ptev, 0)) |
167 | BUG(); | 167 | BUG(); |
168 | } | 168 | } |
169 | 169 | ||
170 | void make_lowmem_page_readwrite(void *vaddr) | 170 | void make_lowmem_page_readwrite(void *vaddr) |
171 | { | 171 | { |
172 | pte_t *pte, ptev; | 172 | pte_t *pte, ptev; |
173 | unsigned long address = (unsigned long)vaddr; | 173 | unsigned long address = (unsigned long)vaddr; |
174 | unsigned int level; | 174 | unsigned int level; |
175 | 175 | ||
176 | pte = lookup_address(address, &level); | 176 | pte = lookup_address(address, &level); |
177 | if (pte == NULL) | 177 | if (pte == NULL) |
178 | return; /* vaddr missing */ | 178 | return; /* vaddr missing */ |
179 | 179 | ||
180 | ptev = pte_mkwrite(*pte); | 180 | ptev = pte_mkwrite(*pte); |
181 | 181 | ||
182 | if (HYPERVISOR_update_va_mapping(address, ptev, 0)) | 182 | if (HYPERVISOR_update_va_mapping(address, ptev, 0)) |
183 | BUG(); | 183 | BUG(); |
184 | } | 184 | } |
185 | 185 | ||
186 | 186 | ||
187 | static bool xen_page_pinned(void *ptr) | 187 | static bool xen_page_pinned(void *ptr) |
188 | { | 188 | { |
189 | struct page *page = virt_to_page(ptr); | 189 | struct page *page = virt_to_page(ptr); |
190 | 190 | ||
191 | return PagePinned(page); | 191 | return PagePinned(page); |
192 | } | 192 | } |
193 | 193 | ||
194 | void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid) | 194 | void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid) |
195 | { | 195 | { |
196 | struct multicall_space mcs; | 196 | struct multicall_space mcs; |
197 | struct mmu_update *u; | 197 | struct mmu_update *u; |
198 | 198 | ||
199 | trace_xen_mmu_set_domain_pte(ptep, pteval, domid); | 199 | trace_xen_mmu_set_domain_pte(ptep, pteval, domid); |
200 | 200 | ||
201 | mcs = xen_mc_entry(sizeof(*u)); | 201 | mcs = xen_mc_entry(sizeof(*u)); |
202 | u = mcs.args; | 202 | u = mcs.args; |
203 | 203 | ||
204 | /* ptep might be kmapped when using 32-bit HIGHPTE */ | 204 | /* ptep might be kmapped when using 32-bit HIGHPTE */ |
205 | u->ptr = virt_to_machine(ptep).maddr; | 205 | u->ptr = virt_to_machine(ptep).maddr; |
206 | u->val = pte_val_ma(pteval); | 206 | u->val = pte_val_ma(pteval); |
207 | 207 | ||
208 | MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid); | 208 | MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid); |
209 | 209 | ||
210 | xen_mc_issue(PARAVIRT_LAZY_MMU); | 210 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
211 | } | 211 | } |
212 | EXPORT_SYMBOL_GPL(xen_set_domain_pte); | 212 | EXPORT_SYMBOL_GPL(xen_set_domain_pte); |
213 | 213 | ||
214 | static void xen_extend_mmu_update(const struct mmu_update *update) | 214 | static void xen_extend_mmu_update(const struct mmu_update *update) |
215 | { | 215 | { |
216 | struct multicall_space mcs; | 216 | struct multicall_space mcs; |
217 | struct mmu_update *u; | 217 | struct mmu_update *u; |
218 | 218 | ||
219 | mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u)); | 219 | mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u)); |
220 | 220 | ||
221 | if (mcs.mc != NULL) { | 221 | if (mcs.mc != NULL) { |
222 | mcs.mc->args[1]++; | 222 | mcs.mc->args[1]++; |
223 | } else { | 223 | } else { |
224 | mcs = __xen_mc_entry(sizeof(*u)); | 224 | mcs = __xen_mc_entry(sizeof(*u)); |
225 | MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); | 225 | MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); |
226 | } | 226 | } |
227 | 227 | ||
228 | u = mcs.args; | 228 | u = mcs.args; |
229 | *u = *update; | 229 | *u = *update; |
230 | } | 230 | } |
231 | 231 | ||
232 | static void xen_extend_mmuext_op(const struct mmuext_op *op) | 232 | static void xen_extend_mmuext_op(const struct mmuext_op *op) |
233 | { | 233 | { |
234 | struct multicall_space mcs; | 234 | struct multicall_space mcs; |
235 | struct mmuext_op *u; | 235 | struct mmuext_op *u; |
236 | 236 | ||
237 | mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u)); | 237 | mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u)); |
238 | 238 | ||
239 | if (mcs.mc != NULL) { | 239 | if (mcs.mc != NULL) { |
240 | mcs.mc->args[1]++; | 240 | mcs.mc->args[1]++; |
241 | } else { | 241 | } else { |
242 | mcs = __xen_mc_entry(sizeof(*u)); | 242 | mcs = __xen_mc_entry(sizeof(*u)); |
243 | MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); | 243 | MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); |
244 | } | 244 | } |
245 | 245 | ||
246 | u = mcs.args; | 246 | u = mcs.args; |
247 | *u = *op; | 247 | *u = *op; |
248 | } | 248 | } |
249 | 249 | ||
250 | static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val) | 250 | static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val) |
251 | { | 251 | { |
252 | struct mmu_update u; | 252 | struct mmu_update u; |
253 | 253 | ||
254 | preempt_disable(); | 254 | preempt_disable(); |
255 | 255 | ||
256 | xen_mc_batch(); | 256 | xen_mc_batch(); |
257 | 257 | ||
258 | /* ptr may be ioremapped for 64-bit pagetable setup */ | 258 | /* ptr may be ioremapped for 64-bit pagetable setup */ |
259 | u.ptr = arbitrary_virt_to_machine(ptr).maddr; | 259 | u.ptr = arbitrary_virt_to_machine(ptr).maddr; |
260 | u.val = pmd_val_ma(val); | 260 | u.val = pmd_val_ma(val); |
261 | xen_extend_mmu_update(&u); | 261 | xen_extend_mmu_update(&u); |
262 | 262 | ||
263 | xen_mc_issue(PARAVIRT_LAZY_MMU); | 263 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
264 | 264 | ||
265 | preempt_enable(); | 265 | preempt_enable(); |
266 | } | 266 | } |
267 | 267 | ||
268 | static void xen_set_pmd(pmd_t *ptr, pmd_t val) | 268 | static void xen_set_pmd(pmd_t *ptr, pmd_t val) |
269 | { | 269 | { |
270 | trace_xen_mmu_set_pmd(ptr, val); | 270 | trace_xen_mmu_set_pmd(ptr, val); |
271 | 271 | ||
272 | /* If page is not pinned, we can just update the entry | 272 | /* If page is not pinned, we can just update the entry |
273 | directly */ | 273 | directly */ |
274 | if (!xen_page_pinned(ptr)) { | 274 | if (!xen_page_pinned(ptr)) { |
275 | *ptr = val; | 275 | *ptr = val; |
276 | return; | 276 | return; |
277 | } | 277 | } |
278 | 278 | ||
279 | xen_set_pmd_hyper(ptr, val); | 279 | xen_set_pmd_hyper(ptr, val); |
280 | } | 280 | } |
281 | 281 | ||
282 | /* | 282 | /* |
283 | * Associate a virtual page frame with a given physical page frame | 283 | * Associate a virtual page frame with a given physical page frame |
284 | * and protection flags for that frame. | 284 | * and protection flags for that frame. |
285 | */ | 285 | */ |
286 | void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags) | 286 | void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags) |
287 | { | 287 | { |
288 | set_pte_vaddr(vaddr, mfn_pte(mfn, flags)); | 288 | set_pte_vaddr(vaddr, mfn_pte(mfn, flags)); |
289 | } | 289 | } |
290 | 290 | ||
291 | static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval) | 291 | static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval) |
292 | { | 292 | { |
293 | struct mmu_update u; | 293 | struct mmu_update u; |
294 | 294 | ||
295 | if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU) | 295 | if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU) |
296 | return false; | 296 | return false; |
297 | 297 | ||
298 | xen_mc_batch(); | 298 | xen_mc_batch(); |
299 | 299 | ||
300 | u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE; | 300 | u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE; |
301 | u.val = pte_val_ma(pteval); | 301 | u.val = pte_val_ma(pteval); |
302 | xen_extend_mmu_update(&u); | 302 | xen_extend_mmu_update(&u); |
303 | 303 | ||
304 | xen_mc_issue(PARAVIRT_LAZY_MMU); | 304 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
305 | 305 | ||
306 | return true; | 306 | return true; |
307 | } | 307 | } |
308 | 308 | ||
309 | static inline void __xen_set_pte(pte_t *ptep, pte_t pteval) | 309 | static inline void __xen_set_pte(pte_t *ptep, pte_t pteval) |
310 | { | 310 | { |
311 | if (!xen_batched_set_pte(ptep, pteval)) { | 311 | if (!xen_batched_set_pte(ptep, pteval)) { |
312 | /* | 312 | /* |
313 | * Could call native_set_pte() here and trap and | 313 | * Could call native_set_pte() here and trap and |
314 | * emulate the PTE write but with 32-bit guests this | 314 | * emulate the PTE write but with 32-bit guests this |
315 | * needs two traps (one for each of the two 32-bit | 315 | * needs two traps (one for each of the two 32-bit |
316 | * words in the PTE) so do one hypercall directly | 316 | * words in the PTE) so do one hypercall directly |
317 | * instead. | 317 | * instead. |
318 | */ | 318 | */ |
319 | struct mmu_update u; | 319 | struct mmu_update u; |
320 | 320 | ||
321 | u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE; | 321 | u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE; |
322 | u.val = pte_val_ma(pteval); | 322 | u.val = pte_val_ma(pteval); |
323 | HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF); | 323 | HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF); |
324 | } | 324 | } |
325 | } | 325 | } |
326 | 326 | ||
327 | static void xen_set_pte(pte_t *ptep, pte_t pteval) | 327 | static void xen_set_pte(pte_t *ptep, pte_t pteval) |
328 | { | 328 | { |
329 | trace_xen_mmu_set_pte(ptep, pteval); | 329 | trace_xen_mmu_set_pte(ptep, pteval); |
330 | __xen_set_pte(ptep, pteval); | 330 | __xen_set_pte(ptep, pteval); |
331 | } | 331 | } |
332 | 332 | ||
333 | static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr, | 333 | static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr, |
334 | pte_t *ptep, pte_t pteval) | 334 | pte_t *ptep, pte_t pteval) |
335 | { | 335 | { |
336 | trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval); | 336 | trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval); |
337 | __xen_set_pte(ptep, pteval); | 337 | __xen_set_pte(ptep, pteval); |
338 | } | 338 | } |
339 | 339 | ||
340 | pte_t xen_ptep_modify_prot_start(struct mm_struct *mm, | 340 | pte_t xen_ptep_modify_prot_start(struct mm_struct *mm, |
341 | unsigned long addr, pte_t *ptep) | 341 | unsigned long addr, pte_t *ptep) |
342 | { | 342 | { |
343 | /* Just return the pte as-is. We preserve the bits on commit */ | 343 | /* Just return the pte as-is. We preserve the bits on commit */ |
344 | trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep); | 344 | trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep); |
345 | return *ptep; | 345 | return *ptep; |
346 | } | 346 | } |
347 | 347 | ||
348 | void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr, | 348 | void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr, |
349 | pte_t *ptep, pte_t pte) | 349 | pte_t *ptep, pte_t pte) |
350 | { | 350 | { |
351 | struct mmu_update u; | 351 | struct mmu_update u; |
352 | 352 | ||
353 | trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte); | 353 | trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte); |
354 | xen_mc_batch(); | 354 | xen_mc_batch(); |
355 | 355 | ||
356 | u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD; | 356 | u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD; |
357 | u.val = pte_val_ma(pte); | 357 | u.val = pte_val_ma(pte); |
358 | xen_extend_mmu_update(&u); | 358 | xen_extend_mmu_update(&u); |
359 | 359 | ||
360 | xen_mc_issue(PARAVIRT_LAZY_MMU); | 360 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
361 | } | 361 | } |
362 | 362 | ||
363 | /* Assume pteval_t is equivalent to all the other *val_t types. */ | 363 | /* Assume pteval_t is equivalent to all the other *val_t types. */ |
364 | static pteval_t pte_mfn_to_pfn(pteval_t val) | 364 | static pteval_t pte_mfn_to_pfn(pteval_t val) |
365 | { | 365 | { |
366 | if (val & _PAGE_PRESENT) { | 366 | if (val & _PAGE_PRESENT) { |
367 | unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; | 367 | unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; |
368 | unsigned long pfn = mfn_to_pfn(mfn); | 368 | unsigned long pfn = mfn_to_pfn(mfn); |
369 | 369 | ||
370 | pteval_t flags = val & PTE_FLAGS_MASK; | 370 | pteval_t flags = val & PTE_FLAGS_MASK; |
371 | if (unlikely(pfn == ~0)) | 371 | if (unlikely(pfn == ~0)) |
372 | val = flags & ~_PAGE_PRESENT; | 372 | val = flags & ~_PAGE_PRESENT; |
373 | else | 373 | else |
374 | val = ((pteval_t)pfn << PAGE_SHIFT) | flags; | 374 | val = ((pteval_t)pfn << PAGE_SHIFT) | flags; |
375 | } | 375 | } |
376 | 376 | ||
377 | return val; | 377 | return val; |
378 | } | 378 | } |
379 | 379 | ||
380 | static pteval_t pte_pfn_to_mfn(pteval_t val) | 380 | static pteval_t pte_pfn_to_mfn(pteval_t val) |
381 | { | 381 | { |
382 | if (val & _PAGE_PRESENT) { | 382 | if (val & _PAGE_PRESENT) { |
383 | unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; | 383 | unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; |
384 | pteval_t flags = val & PTE_FLAGS_MASK; | 384 | pteval_t flags = val & PTE_FLAGS_MASK; |
385 | unsigned long mfn; | 385 | unsigned long mfn; |
386 | 386 | ||
387 | if (!xen_feature(XENFEAT_auto_translated_physmap)) | 387 | if (!xen_feature(XENFEAT_auto_translated_physmap)) |
388 | mfn = get_phys_to_machine(pfn); | 388 | mfn = get_phys_to_machine(pfn); |
389 | else | 389 | else |
390 | mfn = pfn; | 390 | mfn = pfn; |
391 | /* | 391 | /* |
392 | * If there's no mfn for the pfn, then just create an | 392 | * If there's no mfn for the pfn, then just create an |
393 | * empty non-present pte. Unfortunately this loses | 393 | * empty non-present pte. Unfortunately this loses |
394 | * information about the original pfn, so | 394 | * information about the original pfn, so |
395 | * pte_mfn_to_pfn is asymmetric. | 395 | * pte_mfn_to_pfn is asymmetric. |
396 | */ | 396 | */ |
397 | if (unlikely(mfn == INVALID_P2M_ENTRY)) { | 397 | if (unlikely(mfn == INVALID_P2M_ENTRY)) { |
398 | mfn = 0; | 398 | mfn = 0; |
399 | flags = 0; | 399 | flags = 0; |
400 | } else { | 400 | } else { |
401 | /* | 401 | /* |
402 | * Paramount to do this test _after_ the | 402 | * Paramount to do this test _after_ the |
403 | * INVALID_P2M_ENTRY as INVALID_P2M_ENTRY & | 403 | * INVALID_P2M_ENTRY as INVALID_P2M_ENTRY & |
404 | * IDENTITY_FRAME_BIT resolves to true. | 404 | * IDENTITY_FRAME_BIT resolves to true. |
405 | */ | 405 | */ |
406 | mfn &= ~FOREIGN_FRAME_BIT; | 406 | mfn &= ~FOREIGN_FRAME_BIT; |
407 | if (mfn & IDENTITY_FRAME_BIT) { | 407 | if (mfn & IDENTITY_FRAME_BIT) { |
408 | mfn &= ~IDENTITY_FRAME_BIT; | 408 | mfn &= ~IDENTITY_FRAME_BIT; |
409 | flags |= _PAGE_IOMAP; | 409 | flags |= _PAGE_IOMAP; |
410 | } | 410 | } |
411 | } | 411 | } |
412 | val = ((pteval_t)mfn << PAGE_SHIFT) | flags; | 412 | val = ((pteval_t)mfn << PAGE_SHIFT) | flags; |
413 | } | 413 | } |
414 | 414 | ||
415 | return val; | 415 | return val; |
416 | } | 416 | } |
417 | 417 | ||
418 | static pteval_t iomap_pte(pteval_t val) | 418 | static pteval_t iomap_pte(pteval_t val) |
419 | { | 419 | { |
420 | if (val & _PAGE_PRESENT) { | 420 | if (val & _PAGE_PRESENT) { |
421 | unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; | 421 | unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; |
422 | pteval_t flags = val & PTE_FLAGS_MASK; | 422 | pteval_t flags = val & PTE_FLAGS_MASK; |
423 | 423 | ||
424 | /* We assume the pte frame number is a MFN, so | 424 | /* We assume the pte frame number is a MFN, so |
425 | just use it as-is. */ | 425 | just use it as-is. */ |
426 | val = ((pteval_t)pfn << PAGE_SHIFT) | flags; | 426 | val = ((pteval_t)pfn << PAGE_SHIFT) | flags; |
427 | } | 427 | } |
428 | 428 | ||
429 | return val; | 429 | return val; |
430 | } | 430 | } |
431 | 431 | ||
432 | static pteval_t xen_pte_val(pte_t pte) | 432 | static pteval_t xen_pte_val(pte_t pte) |
433 | { | 433 | { |
434 | pteval_t pteval = pte.pte; | 434 | pteval_t pteval = pte.pte; |
435 | #if 0 | 435 | #if 0 |
436 | /* If this is a WC pte, convert back from Xen WC to Linux WC */ | 436 | /* If this is a WC pte, convert back from Xen WC to Linux WC */ |
437 | if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) { | 437 | if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) { |
438 | WARN_ON(!pat_enabled); | 438 | WARN_ON(!pat_enabled); |
439 | pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT; | 439 | pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT; |
440 | } | 440 | } |
441 | #endif | 441 | #endif |
442 | if (xen_initial_domain() && (pteval & _PAGE_IOMAP)) | 442 | if (xen_initial_domain() && (pteval & _PAGE_IOMAP)) |
443 | return pteval; | 443 | return pteval; |
444 | 444 | ||
445 | return pte_mfn_to_pfn(pteval); | 445 | return pte_mfn_to_pfn(pteval); |
446 | } | 446 | } |
447 | PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val); | 447 | PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val); |
448 | 448 | ||
449 | static pgdval_t xen_pgd_val(pgd_t pgd) | 449 | static pgdval_t xen_pgd_val(pgd_t pgd) |
450 | { | 450 | { |
451 | return pte_mfn_to_pfn(pgd.pgd); | 451 | return pte_mfn_to_pfn(pgd.pgd); |
452 | } | 452 | } |
453 | PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val); | 453 | PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val); |
454 | 454 | ||
455 | /* | 455 | /* |
456 | * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7 | 456 | * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7 |
457 | * are reserved for now, to correspond to the Intel-reserved PAT | 457 | * are reserved for now, to correspond to the Intel-reserved PAT |
458 | * types. | 458 | * types. |
459 | * | 459 | * |
460 | * We expect Linux's PAT set as follows: | 460 | * We expect Linux's PAT set as follows: |
461 | * | 461 | * |
462 | * Idx PTE flags Linux Xen Default | 462 | * Idx PTE flags Linux Xen Default |
463 | * 0 WB WB WB | 463 | * 0 WB WB WB |
464 | * 1 PWT WC WT WT | 464 | * 1 PWT WC WT WT |
465 | * 2 PCD UC- UC- UC- | 465 | * 2 PCD UC- UC- UC- |
466 | * 3 PCD PWT UC UC UC | 466 | * 3 PCD PWT UC UC UC |
467 | * 4 PAT WB WC WB | 467 | * 4 PAT WB WC WB |
468 | * 5 PAT PWT WC WP WT | 468 | * 5 PAT PWT WC WP WT |
469 | * 6 PAT PCD UC- UC UC- | 469 | * 6 PAT PCD UC- UC UC- |
470 | * 7 PAT PCD PWT UC UC UC | 470 | * 7 PAT PCD PWT UC UC UC |
471 | */ | 471 | */ |
472 | 472 | ||
473 | void xen_set_pat(u64 pat) | 473 | void xen_set_pat(u64 pat) |
474 | { | 474 | { |
475 | /* We expect Linux to use a PAT setting of | 475 | /* We expect Linux to use a PAT setting of |
476 | * UC UC- WC WB (ignoring the PAT flag) */ | 476 | * UC UC- WC WB (ignoring the PAT flag) */ |
477 | WARN_ON(pat != 0x0007010600070106ull); | 477 | WARN_ON(pat != 0x0007010600070106ull); |
478 | } | 478 | } |
479 | 479 | ||
480 | static pte_t xen_make_pte(pteval_t pte) | 480 | static pte_t xen_make_pte(pteval_t pte) |
481 | { | 481 | { |
482 | phys_addr_t addr = (pte & PTE_PFN_MASK); | 482 | phys_addr_t addr = (pte & PTE_PFN_MASK); |
483 | #if 0 | 483 | #if 0 |
484 | /* If Linux is trying to set a WC pte, then map to the Xen WC. | 484 | /* If Linux is trying to set a WC pte, then map to the Xen WC. |
485 | * If _PAGE_PAT is set, then it probably means it is really | 485 | * If _PAGE_PAT is set, then it probably means it is really |
486 | * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope | 486 | * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope |
487 | * things work out OK... | 487 | * things work out OK... |
488 | * | 488 | * |
489 | * (We should never see kernel mappings with _PAGE_PSE set, | 489 | * (We should never see kernel mappings with _PAGE_PSE set, |
490 | * but we could see hugetlbfs mappings, I think.). | 490 | * but we could see hugetlbfs mappings, I think.). |
491 | */ | 491 | */ |
492 | if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) { | 492 | if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) { |
493 | if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT) | 493 | if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT) |
494 | pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT; | 494 | pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT; |
495 | } | 495 | } |
496 | #endif | 496 | #endif |
497 | /* | 497 | /* |
498 | * Unprivileged domains are allowed to do IOMAPpings for | 498 | * Unprivileged domains are allowed to do IOMAPpings for |
499 | * PCI passthrough, but not map ISA space. The ISA | 499 | * PCI passthrough, but not map ISA space. The ISA |
500 | * mappings are just dummy local mappings to keep other | 500 | * mappings are just dummy local mappings to keep other |
501 | * parts of the kernel happy. | 501 | * parts of the kernel happy. |
502 | */ | 502 | */ |
503 | if (unlikely(pte & _PAGE_IOMAP) && | 503 | if (unlikely(pte & _PAGE_IOMAP) && |
504 | (xen_initial_domain() || addr >= ISA_END_ADDRESS)) { | 504 | (xen_initial_domain() || addr >= ISA_END_ADDRESS)) { |
505 | pte = iomap_pte(pte); | 505 | pte = iomap_pte(pte); |
506 | } else { | 506 | } else { |
507 | pte &= ~_PAGE_IOMAP; | 507 | pte &= ~_PAGE_IOMAP; |
508 | pte = pte_pfn_to_mfn(pte); | 508 | pte = pte_pfn_to_mfn(pte); |
509 | } | 509 | } |
510 | 510 | ||
511 | return native_make_pte(pte); | 511 | return native_make_pte(pte); |
512 | } | 512 | } |
513 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte); | 513 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte); |
514 | 514 | ||
515 | static pgd_t xen_make_pgd(pgdval_t pgd) | 515 | static pgd_t xen_make_pgd(pgdval_t pgd) |
516 | { | 516 | { |
517 | pgd = pte_pfn_to_mfn(pgd); | 517 | pgd = pte_pfn_to_mfn(pgd); |
518 | return native_make_pgd(pgd); | 518 | return native_make_pgd(pgd); |
519 | } | 519 | } |
520 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd); | 520 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd); |
521 | 521 | ||
522 | static pmdval_t xen_pmd_val(pmd_t pmd) | 522 | static pmdval_t xen_pmd_val(pmd_t pmd) |
523 | { | 523 | { |
524 | return pte_mfn_to_pfn(pmd.pmd); | 524 | return pte_mfn_to_pfn(pmd.pmd); |
525 | } | 525 | } |
526 | PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val); | 526 | PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val); |
527 | 527 | ||
528 | static void xen_set_pud_hyper(pud_t *ptr, pud_t val) | 528 | static void xen_set_pud_hyper(pud_t *ptr, pud_t val) |
529 | { | 529 | { |
530 | struct mmu_update u; | 530 | struct mmu_update u; |
531 | 531 | ||
532 | preempt_disable(); | 532 | preempt_disable(); |
533 | 533 | ||
534 | xen_mc_batch(); | 534 | xen_mc_batch(); |
535 | 535 | ||
536 | /* ptr may be ioremapped for 64-bit pagetable setup */ | 536 | /* ptr may be ioremapped for 64-bit pagetable setup */ |
537 | u.ptr = arbitrary_virt_to_machine(ptr).maddr; | 537 | u.ptr = arbitrary_virt_to_machine(ptr).maddr; |
538 | u.val = pud_val_ma(val); | 538 | u.val = pud_val_ma(val); |
539 | xen_extend_mmu_update(&u); | 539 | xen_extend_mmu_update(&u); |
540 | 540 | ||
541 | xen_mc_issue(PARAVIRT_LAZY_MMU); | 541 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
542 | 542 | ||
543 | preempt_enable(); | 543 | preempt_enable(); |
544 | } | 544 | } |
545 | 545 | ||
546 | static void xen_set_pud(pud_t *ptr, pud_t val) | 546 | static void xen_set_pud(pud_t *ptr, pud_t val) |
547 | { | 547 | { |
548 | trace_xen_mmu_set_pud(ptr, val); | 548 | trace_xen_mmu_set_pud(ptr, val); |
549 | 549 | ||
550 | /* If page is not pinned, we can just update the entry | 550 | /* If page is not pinned, we can just update the entry |
551 | directly */ | 551 | directly */ |
552 | if (!xen_page_pinned(ptr)) { | 552 | if (!xen_page_pinned(ptr)) { |
553 | *ptr = val; | 553 | *ptr = val; |
554 | return; | 554 | return; |
555 | } | 555 | } |
556 | 556 | ||
557 | xen_set_pud_hyper(ptr, val); | 557 | xen_set_pud_hyper(ptr, val); |
558 | } | 558 | } |
559 | 559 | ||
560 | #ifdef CONFIG_X86_PAE | 560 | #ifdef CONFIG_X86_PAE |
561 | static void xen_set_pte_atomic(pte_t *ptep, pte_t pte) | 561 | static void xen_set_pte_atomic(pte_t *ptep, pte_t pte) |
562 | { | 562 | { |
563 | trace_xen_mmu_set_pte_atomic(ptep, pte); | 563 | trace_xen_mmu_set_pte_atomic(ptep, pte); |
564 | set_64bit((u64 *)ptep, native_pte_val(pte)); | 564 | set_64bit((u64 *)ptep, native_pte_val(pte)); |
565 | } | 565 | } |
566 | 566 | ||
567 | static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) | 567 | static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) |
568 | { | 568 | { |
569 | trace_xen_mmu_pte_clear(mm, addr, ptep); | 569 | trace_xen_mmu_pte_clear(mm, addr, ptep); |
570 | if (!xen_batched_set_pte(ptep, native_make_pte(0))) | 570 | if (!xen_batched_set_pte(ptep, native_make_pte(0))) |
571 | native_pte_clear(mm, addr, ptep); | 571 | native_pte_clear(mm, addr, ptep); |
572 | } | 572 | } |
573 | 573 | ||
574 | static void xen_pmd_clear(pmd_t *pmdp) | 574 | static void xen_pmd_clear(pmd_t *pmdp) |
575 | { | 575 | { |
576 | trace_xen_mmu_pmd_clear(pmdp); | 576 | trace_xen_mmu_pmd_clear(pmdp); |
577 | set_pmd(pmdp, __pmd(0)); | 577 | set_pmd(pmdp, __pmd(0)); |
578 | } | 578 | } |
579 | #endif /* CONFIG_X86_PAE */ | 579 | #endif /* CONFIG_X86_PAE */ |
580 | 580 | ||
581 | static pmd_t xen_make_pmd(pmdval_t pmd) | 581 | static pmd_t xen_make_pmd(pmdval_t pmd) |
582 | { | 582 | { |
583 | pmd = pte_pfn_to_mfn(pmd); | 583 | pmd = pte_pfn_to_mfn(pmd); |
584 | return native_make_pmd(pmd); | 584 | return native_make_pmd(pmd); |
585 | } | 585 | } |
586 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd); | 586 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd); |
587 | 587 | ||
588 | #if PAGETABLE_LEVELS == 4 | 588 | #if PAGETABLE_LEVELS == 4 |
589 | static pudval_t xen_pud_val(pud_t pud) | 589 | static pudval_t xen_pud_val(pud_t pud) |
590 | { | 590 | { |
591 | return pte_mfn_to_pfn(pud.pud); | 591 | return pte_mfn_to_pfn(pud.pud); |
592 | } | 592 | } |
593 | PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val); | 593 | PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val); |
594 | 594 | ||
595 | static pud_t xen_make_pud(pudval_t pud) | 595 | static pud_t xen_make_pud(pudval_t pud) |
596 | { | 596 | { |
597 | pud = pte_pfn_to_mfn(pud); | 597 | pud = pte_pfn_to_mfn(pud); |
598 | 598 | ||
599 | return native_make_pud(pud); | 599 | return native_make_pud(pud); |
600 | } | 600 | } |
601 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud); | 601 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud); |
602 | 602 | ||
603 | static pgd_t *xen_get_user_pgd(pgd_t *pgd) | 603 | static pgd_t *xen_get_user_pgd(pgd_t *pgd) |
604 | { | 604 | { |
605 | pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK); | 605 | pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK); |
606 | unsigned offset = pgd - pgd_page; | 606 | unsigned offset = pgd - pgd_page; |
607 | pgd_t *user_ptr = NULL; | 607 | pgd_t *user_ptr = NULL; |
608 | 608 | ||
609 | if (offset < pgd_index(USER_LIMIT)) { | 609 | if (offset < pgd_index(USER_LIMIT)) { |
610 | struct page *page = virt_to_page(pgd_page); | 610 | struct page *page = virt_to_page(pgd_page); |
611 | user_ptr = (pgd_t *)page->private; | 611 | user_ptr = (pgd_t *)page->private; |
612 | if (user_ptr) | 612 | if (user_ptr) |
613 | user_ptr += offset; | 613 | user_ptr += offset; |
614 | } | 614 | } |
615 | 615 | ||
616 | return user_ptr; | 616 | return user_ptr; |
617 | } | 617 | } |
618 | 618 | ||
619 | static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val) | 619 | static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val) |
620 | { | 620 | { |
621 | struct mmu_update u; | 621 | struct mmu_update u; |
622 | 622 | ||
623 | u.ptr = virt_to_machine(ptr).maddr; | 623 | u.ptr = virt_to_machine(ptr).maddr; |
624 | u.val = pgd_val_ma(val); | 624 | u.val = pgd_val_ma(val); |
625 | xen_extend_mmu_update(&u); | 625 | xen_extend_mmu_update(&u); |
626 | } | 626 | } |
627 | 627 | ||
628 | /* | 628 | /* |
629 | * Raw hypercall-based set_pgd, intended for in early boot before | 629 | * Raw hypercall-based set_pgd, intended for in early boot before |
630 | * there's a page structure. This implies: | 630 | * there's a page structure. This implies: |
631 | * 1. The only existing pagetable is the kernel's | 631 | * 1. The only existing pagetable is the kernel's |
632 | * 2. It is always pinned | 632 | * 2. It is always pinned |
633 | * 3. It has no user pagetable attached to it | 633 | * 3. It has no user pagetable attached to it |
634 | */ | 634 | */ |
635 | static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val) | 635 | static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val) |
636 | { | 636 | { |
637 | preempt_disable(); | 637 | preempt_disable(); |
638 | 638 | ||
639 | xen_mc_batch(); | 639 | xen_mc_batch(); |
640 | 640 | ||
641 | __xen_set_pgd_hyper(ptr, val); | 641 | __xen_set_pgd_hyper(ptr, val); |
642 | 642 | ||
643 | xen_mc_issue(PARAVIRT_LAZY_MMU); | 643 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
644 | 644 | ||
645 | preempt_enable(); | 645 | preempt_enable(); |
646 | } | 646 | } |
647 | 647 | ||
648 | static void xen_set_pgd(pgd_t *ptr, pgd_t val) | 648 | static void xen_set_pgd(pgd_t *ptr, pgd_t val) |
649 | { | 649 | { |
650 | pgd_t *user_ptr = xen_get_user_pgd(ptr); | 650 | pgd_t *user_ptr = xen_get_user_pgd(ptr); |
651 | 651 | ||
652 | trace_xen_mmu_set_pgd(ptr, user_ptr, val); | 652 | trace_xen_mmu_set_pgd(ptr, user_ptr, val); |
653 | 653 | ||
654 | /* If page is not pinned, we can just update the entry | 654 | /* If page is not pinned, we can just update the entry |
655 | directly */ | 655 | directly */ |
656 | if (!xen_page_pinned(ptr)) { | 656 | if (!xen_page_pinned(ptr)) { |
657 | *ptr = val; | 657 | *ptr = val; |
658 | if (user_ptr) { | 658 | if (user_ptr) { |
659 | WARN_ON(xen_page_pinned(user_ptr)); | 659 | WARN_ON(xen_page_pinned(user_ptr)); |
660 | *user_ptr = val; | 660 | *user_ptr = val; |
661 | } | 661 | } |
662 | return; | 662 | return; |
663 | } | 663 | } |
664 | 664 | ||
665 | /* If it's pinned, then we can at least batch the kernel and | 665 | /* If it's pinned, then we can at least batch the kernel and |
666 | user updates together. */ | 666 | user updates together. */ |
667 | xen_mc_batch(); | 667 | xen_mc_batch(); |
668 | 668 | ||
669 | __xen_set_pgd_hyper(ptr, val); | 669 | __xen_set_pgd_hyper(ptr, val); |
670 | if (user_ptr) | 670 | if (user_ptr) |
671 | __xen_set_pgd_hyper(user_ptr, val); | 671 | __xen_set_pgd_hyper(user_ptr, val); |
672 | 672 | ||
673 | xen_mc_issue(PARAVIRT_LAZY_MMU); | 673 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
674 | } | 674 | } |
675 | #endif /* PAGETABLE_LEVELS == 4 */ | 675 | #endif /* PAGETABLE_LEVELS == 4 */ |
676 | 676 | ||
677 | /* | 677 | /* |
678 | * (Yet another) pagetable walker. This one is intended for pinning a | 678 | * (Yet another) pagetable walker. This one is intended for pinning a |
679 | * pagetable. This means that it walks a pagetable and calls the | 679 | * pagetable. This means that it walks a pagetable and calls the |
680 | * callback function on each page it finds making up the page table, | 680 | * callback function on each page it finds making up the page table, |
681 | * at every level. It walks the entire pagetable, but it only bothers | 681 | * at every level. It walks the entire pagetable, but it only bothers |
682 | * pinning pte pages which are below limit. In the normal case this | 682 | * pinning pte pages which are below limit. In the normal case this |
683 | * will be STACK_TOP_MAX, but at boot we need to pin up to | 683 | * will be STACK_TOP_MAX, but at boot we need to pin up to |
684 | * FIXADDR_TOP. | 684 | * FIXADDR_TOP. |
685 | * | 685 | * |
686 | * For 32-bit the important bit is that we don't pin beyond there, | 686 | * For 32-bit the important bit is that we don't pin beyond there, |
687 | * because then we start getting into Xen's ptes. | 687 | * because then we start getting into Xen's ptes. |
688 | * | 688 | * |
689 | * For 64-bit, we must skip the Xen hole in the middle of the address | 689 | * For 64-bit, we must skip the Xen hole in the middle of the address |
690 | * space, just after the big x86-64 virtual hole. | 690 | * space, just after the big x86-64 virtual hole. |
691 | */ | 691 | */ |
692 | static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd, | 692 | static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd, |
693 | int (*func)(struct mm_struct *mm, struct page *, | 693 | int (*func)(struct mm_struct *mm, struct page *, |
694 | enum pt_level), | 694 | enum pt_level), |
695 | unsigned long limit) | 695 | unsigned long limit) |
696 | { | 696 | { |
697 | int flush = 0; | 697 | int flush = 0; |
698 | unsigned hole_low, hole_high; | 698 | unsigned hole_low, hole_high; |
699 | unsigned pgdidx_limit, pudidx_limit, pmdidx_limit; | 699 | unsigned pgdidx_limit, pudidx_limit, pmdidx_limit; |
700 | unsigned pgdidx, pudidx, pmdidx; | 700 | unsigned pgdidx, pudidx, pmdidx; |
701 | 701 | ||
702 | /* The limit is the last byte to be touched */ | 702 | /* The limit is the last byte to be touched */ |
703 | limit--; | 703 | limit--; |
704 | BUG_ON(limit >= FIXADDR_TOP); | 704 | BUG_ON(limit >= FIXADDR_TOP); |
705 | 705 | ||
706 | if (xen_feature(XENFEAT_auto_translated_physmap)) | 706 | if (xen_feature(XENFEAT_auto_translated_physmap)) |
707 | return 0; | 707 | return 0; |
708 | 708 | ||
709 | /* | 709 | /* |
710 | * 64-bit has a great big hole in the middle of the address | 710 | * 64-bit has a great big hole in the middle of the address |
711 | * space, which contains the Xen mappings. On 32-bit these | 711 | * space, which contains the Xen mappings. On 32-bit these |
712 | * will end up making a zero-sized hole and so is a no-op. | 712 | * will end up making a zero-sized hole and so is a no-op. |
713 | */ | 713 | */ |
714 | hole_low = pgd_index(USER_LIMIT); | 714 | hole_low = pgd_index(USER_LIMIT); |
715 | hole_high = pgd_index(PAGE_OFFSET); | 715 | hole_high = pgd_index(PAGE_OFFSET); |
716 | 716 | ||
717 | pgdidx_limit = pgd_index(limit); | 717 | pgdidx_limit = pgd_index(limit); |
718 | #if PTRS_PER_PUD > 1 | 718 | #if PTRS_PER_PUD > 1 |
719 | pudidx_limit = pud_index(limit); | 719 | pudidx_limit = pud_index(limit); |
720 | #else | 720 | #else |
721 | pudidx_limit = 0; | 721 | pudidx_limit = 0; |
722 | #endif | 722 | #endif |
723 | #if PTRS_PER_PMD > 1 | 723 | #if PTRS_PER_PMD > 1 |
724 | pmdidx_limit = pmd_index(limit); | 724 | pmdidx_limit = pmd_index(limit); |
725 | #else | 725 | #else |
726 | pmdidx_limit = 0; | 726 | pmdidx_limit = 0; |
727 | #endif | 727 | #endif |
728 | 728 | ||
729 | for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) { | 729 | for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) { |
730 | pud_t *pud; | 730 | pud_t *pud; |
731 | 731 | ||
732 | if (pgdidx >= hole_low && pgdidx < hole_high) | 732 | if (pgdidx >= hole_low && pgdidx < hole_high) |
733 | continue; | 733 | continue; |
734 | 734 | ||
735 | if (!pgd_val(pgd[pgdidx])) | 735 | if (!pgd_val(pgd[pgdidx])) |
736 | continue; | 736 | continue; |
737 | 737 | ||
738 | pud = pud_offset(&pgd[pgdidx], 0); | 738 | pud = pud_offset(&pgd[pgdidx], 0); |
739 | 739 | ||
740 | if (PTRS_PER_PUD > 1) /* not folded */ | 740 | if (PTRS_PER_PUD > 1) /* not folded */ |
741 | flush |= (*func)(mm, virt_to_page(pud), PT_PUD); | 741 | flush |= (*func)(mm, virt_to_page(pud), PT_PUD); |
742 | 742 | ||
743 | for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) { | 743 | for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) { |
744 | pmd_t *pmd; | 744 | pmd_t *pmd; |
745 | 745 | ||
746 | if (pgdidx == pgdidx_limit && | 746 | if (pgdidx == pgdidx_limit && |
747 | pudidx > pudidx_limit) | 747 | pudidx > pudidx_limit) |
748 | goto out; | 748 | goto out; |
749 | 749 | ||
750 | if (pud_none(pud[pudidx])) | 750 | if (pud_none(pud[pudidx])) |
751 | continue; | 751 | continue; |
752 | 752 | ||
753 | pmd = pmd_offset(&pud[pudidx], 0); | 753 | pmd = pmd_offset(&pud[pudidx], 0); |
754 | 754 | ||
755 | if (PTRS_PER_PMD > 1) /* not folded */ | 755 | if (PTRS_PER_PMD > 1) /* not folded */ |
756 | flush |= (*func)(mm, virt_to_page(pmd), PT_PMD); | 756 | flush |= (*func)(mm, virt_to_page(pmd), PT_PMD); |
757 | 757 | ||
758 | for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) { | 758 | for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) { |
759 | struct page *pte; | 759 | struct page *pte; |
760 | 760 | ||
761 | if (pgdidx == pgdidx_limit && | 761 | if (pgdidx == pgdidx_limit && |
762 | pudidx == pudidx_limit && | 762 | pudidx == pudidx_limit && |
763 | pmdidx > pmdidx_limit) | 763 | pmdidx > pmdidx_limit) |
764 | goto out; | 764 | goto out; |
765 | 765 | ||
766 | if (pmd_none(pmd[pmdidx])) | 766 | if (pmd_none(pmd[pmdidx])) |
767 | continue; | 767 | continue; |
768 | 768 | ||
769 | pte = pmd_page(pmd[pmdidx]); | 769 | pte = pmd_page(pmd[pmdidx]); |
770 | flush |= (*func)(mm, pte, PT_PTE); | 770 | flush |= (*func)(mm, pte, PT_PTE); |
771 | } | 771 | } |
772 | } | 772 | } |
773 | } | 773 | } |
774 | 774 | ||
775 | out: | 775 | out: |
776 | /* Do the top level last, so that the callbacks can use it as | 776 | /* Do the top level last, so that the callbacks can use it as |
777 | a cue to do final things like tlb flushes. */ | 777 | a cue to do final things like tlb flushes. */ |
778 | flush |= (*func)(mm, virt_to_page(pgd), PT_PGD); | 778 | flush |= (*func)(mm, virt_to_page(pgd), PT_PGD); |
779 | 779 | ||
780 | return flush; | 780 | return flush; |
781 | } | 781 | } |
782 | 782 | ||
783 | static int xen_pgd_walk(struct mm_struct *mm, | 783 | static int xen_pgd_walk(struct mm_struct *mm, |
784 | int (*func)(struct mm_struct *mm, struct page *, | 784 | int (*func)(struct mm_struct *mm, struct page *, |
785 | enum pt_level), | 785 | enum pt_level), |
786 | unsigned long limit) | 786 | unsigned long limit) |
787 | { | 787 | { |
788 | return __xen_pgd_walk(mm, mm->pgd, func, limit); | 788 | return __xen_pgd_walk(mm, mm->pgd, func, limit); |
789 | } | 789 | } |
790 | 790 | ||
791 | /* If we're using split pte locks, then take the page's lock and | 791 | /* If we're using split pte locks, then take the page's lock and |
792 | return a pointer to it. Otherwise return NULL. */ | 792 | return a pointer to it. Otherwise return NULL. */ |
793 | static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm) | 793 | static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm) |
794 | { | 794 | { |
795 | spinlock_t *ptl = NULL; | 795 | spinlock_t *ptl = NULL; |
796 | 796 | ||
797 | #if USE_SPLIT_PTLOCKS | 797 | #if USE_SPLIT_PTLOCKS |
798 | ptl = __pte_lockptr(page); | 798 | ptl = __pte_lockptr(page); |
799 | spin_lock_nest_lock(ptl, &mm->page_table_lock); | 799 | spin_lock_nest_lock(ptl, &mm->page_table_lock); |
800 | #endif | 800 | #endif |
801 | 801 | ||
802 | return ptl; | 802 | return ptl; |
803 | } | 803 | } |
804 | 804 | ||
805 | static void xen_pte_unlock(void *v) | 805 | static void xen_pte_unlock(void *v) |
806 | { | 806 | { |
807 | spinlock_t *ptl = v; | 807 | spinlock_t *ptl = v; |
808 | spin_unlock(ptl); | 808 | spin_unlock(ptl); |
809 | } | 809 | } |
810 | 810 | ||
811 | static void xen_do_pin(unsigned level, unsigned long pfn) | 811 | static void xen_do_pin(unsigned level, unsigned long pfn) |
812 | { | 812 | { |
813 | struct mmuext_op op; | 813 | struct mmuext_op op; |
814 | 814 | ||
815 | op.cmd = level; | 815 | op.cmd = level; |
816 | op.arg1.mfn = pfn_to_mfn(pfn); | 816 | op.arg1.mfn = pfn_to_mfn(pfn); |
817 | 817 | ||
818 | xen_extend_mmuext_op(&op); | 818 | xen_extend_mmuext_op(&op); |
819 | } | 819 | } |
820 | 820 | ||
821 | static int xen_pin_page(struct mm_struct *mm, struct page *page, | 821 | static int xen_pin_page(struct mm_struct *mm, struct page *page, |
822 | enum pt_level level) | 822 | enum pt_level level) |
823 | { | 823 | { |
824 | unsigned pgfl = TestSetPagePinned(page); | 824 | unsigned pgfl = TestSetPagePinned(page); |
825 | int flush; | 825 | int flush; |
826 | 826 | ||
827 | if (pgfl) | 827 | if (pgfl) |
828 | flush = 0; /* already pinned */ | 828 | flush = 0; /* already pinned */ |
829 | else if (PageHighMem(page)) | 829 | else if (PageHighMem(page)) |
830 | /* kmaps need flushing if we found an unpinned | 830 | /* kmaps need flushing if we found an unpinned |
831 | highpage */ | 831 | highpage */ |
832 | flush = 1; | 832 | flush = 1; |
833 | else { | 833 | else { |
834 | void *pt = lowmem_page_address(page); | 834 | void *pt = lowmem_page_address(page); |
835 | unsigned long pfn = page_to_pfn(page); | 835 | unsigned long pfn = page_to_pfn(page); |
836 | struct multicall_space mcs = __xen_mc_entry(0); | 836 | struct multicall_space mcs = __xen_mc_entry(0); |
837 | spinlock_t *ptl; | 837 | spinlock_t *ptl; |
838 | 838 | ||
839 | flush = 0; | 839 | flush = 0; |
840 | 840 | ||
841 | /* | 841 | /* |
842 | * We need to hold the pagetable lock between the time | 842 | * We need to hold the pagetable lock between the time |
843 | * we make the pagetable RO and when we actually pin | 843 | * we make the pagetable RO and when we actually pin |
844 | * it. If we don't, then other users may come in and | 844 | * it. If we don't, then other users may come in and |
845 | * attempt to update the pagetable by writing it, | 845 | * attempt to update the pagetable by writing it, |
846 | * which will fail because the memory is RO but not | 846 | * which will fail because the memory is RO but not |
847 | * pinned, so Xen won't do the trap'n'emulate. | 847 | * pinned, so Xen won't do the trap'n'emulate. |
848 | * | 848 | * |
849 | * If we're using split pte locks, we can't hold the | 849 | * If we're using split pte locks, we can't hold the |
850 | * entire pagetable's worth of locks during the | 850 | * entire pagetable's worth of locks during the |
851 | * traverse, because we may wrap the preempt count (8 | 851 | * traverse, because we may wrap the preempt count (8 |
852 | * bits). The solution is to mark RO and pin each PTE | 852 | * bits). The solution is to mark RO and pin each PTE |
853 | * page while holding the lock. This means the number | 853 | * page while holding the lock. This means the number |
854 | * of locks we end up holding is never more than a | 854 | * of locks we end up holding is never more than a |
855 | * batch size (~32 entries, at present). | 855 | * batch size (~32 entries, at present). |
856 | * | 856 | * |
857 | * If we're not using split pte locks, we needn't pin | 857 | * If we're not using split pte locks, we needn't pin |
858 | * the PTE pages independently, because we're | 858 | * the PTE pages independently, because we're |
859 | * protected by the overall pagetable lock. | 859 | * protected by the overall pagetable lock. |
860 | */ | 860 | */ |
861 | ptl = NULL; | 861 | ptl = NULL; |
862 | if (level == PT_PTE) | 862 | if (level == PT_PTE) |
863 | ptl = xen_pte_lock(page, mm); | 863 | ptl = xen_pte_lock(page, mm); |
864 | 864 | ||
865 | MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, | 865 | MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, |
866 | pfn_pte(pfn, PAGE_KERNEL_RO), | 866 | pfn_pte(pfn, PAGE_KERNEL_RO), |
867 | level == PT_PGD ? UVMF_TLB_FLUSH : 0); | 867 | level == PT_PGD ? UVMF_TLB_FLUSH : 0); |
868 | 868 | ||
869 | if (ptl) { | 869 | if (ptl) { |
870 | xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn); | 870 | xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn); |
871 | 871 | ||
872 | /* Queue a deferred unlock for when this batch | 872 | /* Queue a deferred unlock for when this batch |
873 | is completed. */ | 873 | is completed. */ |
874 | xen_mc_callback(xen_pte_unlock, ptl); | 874 | xen_mc_callback(xen_pte_unlock, ptl); |
875 | } | 875 | } |
876 | } | 876 | } |
877 | 877 | ||
878 | return flush; | 878 | return flush; |
879 | } | 879 | } |
880 | 880 | ||
881 | /* This is called just after a mm has been created, but it has not | 881 | /* This is called just after a mm has been created, but it has not |
882 | been used yet. We need to make sure that its pagetable is all | 882 | been used yet. We need to make sure that its pagetable is all |
883 | read-only, and can be pinned. */ | 883 | read-only, and can be pinned. */ |
884 | static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd) | 884 | static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd) |
885 | { | 885 | { |
886 | trace_xen_mmu_pgd_pin(mm, pgd); | 886 | trace_xen_mmu_pgd_pin(mm, pgd); |
887 | 887 | ||
888 | xen_mc_batch(); | 888 | xen_mc_batch(); |
889 | 889 | ||
890 | if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) { | 890 | if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) { |
891 | /* re-enable interrupts for flushing */ | 891 | /* re-enable interrupts for flushing */ |
892 | xen_mc_issue(0); | 892 | xen_mc_issue(0); |
893 | 893 | ||
894 | kmap_flush_unused(); | 894 | kmap_flush_unused(); |
895 | 895 | ||
896 | xen_mc_batch(); | 896 | xen_mc_batch(); |
897 | } | 897 | } |
898 | 898 | ||
899 | #ifdef CONFIG_X86_64 | 899 | #ifdef CONFIG_X86_64 |
900 | { | 900 | { |
901 | pgd_t *user_pgd = xen_get_user_pgd(pgd); | 901 | pgd_t *user_pgd = xen_get_user_pgd(pgd); |
902 | 902 | ||
903 | xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd))); | 903 | xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd))); |
904 | 904 | ||
905 | if (user_pgd) { | 905 | if (user_pgd) { |
906 | xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD); | 906 | xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD); |
907 | xen_do_pin(MMUEXT_PIN_L4_TABLE, | 907 | xen_do_pin(MMUEXT_PIN_L4_TABLE, |
908 | PFN_DOWN(__pa(user_pgd))); | 908 | PFN_DOWN(__pa(user_pgd))); |
909 | } | 909 | } |
910 | } | 910 | } |
911 | #else /* CONFIG_X86_32 */ | 911 | #else /* CONFIG_X86_32 */ |
912 | #ifdef CONFIG_X86_PAE | 912 | #ifdef CONFIG_X86_PAE |
913 | /* Need to make sure unshared kernel PMD is pinnable */ | 913 | /* Need to make sure unshared kernel PMD is pinnable */ |
914 | xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]), | 914 | xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]), |
915 | PT_PMD); | 915 | PT_PMD); |
916 | #endif | 916 | #endif |
917 | xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd))); | 917 | xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd))); |
918 | #endif /* CONFIG_X86_64 */ | 918 | #endif /* CONFIG_X86_64 */ |
919 | xen_mc_issue(0); | 919 | xen_mc_issue(0); |
920 | } | 920 | } |
921 | 921 | ||
922 | static void xen_pgd_pin(struct mm_struct *mm) | 922 | static void xen_pgd_pin(struct mm_struct *mm) |
923 | { | 923 | { |
924 | __xen_pgd_pin(mm, mm->pgd); | 924 | __xen_pgd_pin(mm, mm->pgd); |
925 | } | 925 | } |
926 | 926 | ||
927 | /* | 927 | /* |
928 | * On save, we need to pin all pagetables to make sure they get their | 928 | * On save, we need to pin all pagetables to make sure they get their |
929 | * mfns turned into pfns. Search the list for any unpinned pgds and pin | 929 | * mfns turned into pfns. Search the list for any unpinned pgds and pin |
930 | * them (unpinned pgds are not currently in use, probably because the | 930 | * them (unpinned pgds are not currently in use, probably because the |
931 | * process is under construction or destruction). | 931 | * process is under construction or destruction). |
932 | * | 932 | * |
933 | * Expected to be called in stop_machine() ("equivalent to taking | 933 | * Expected to be called in stop_machine() ("equivalent to taking |
934 | * every spinlock in the system"), so the locking doesn't really | 934 | * every spinlock in the system"), so the locking doesn't really |
935 | * matter all that much. | 935 | * matter all that much. |
936 | */ | 936 | */ |
937 | void xen_mm_pin_all(void) | 937 | void xen_mm_pin_all(void) |
938 | { | 938 | { |
939 | struct page *page; | 939 | struct page *page; |
940 | 940 | ||
941 | spin_lock(&pgd_lock); | 941 | spin_lock(&pgd_lock); |
942 | 942 | ||
943 | list_for_each_entry(page, &pgd_list, lru) { | 943 | list_for_each_entry(page, &pgd_list, lru) { |
944 | if (!PagePinned(page)) { | 944 | if (!PagePinned(page)) { |
945 | __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page)); | 945 | __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page)); |
946 | SetPageSavePinned(page); | 946 | SetPageSavePinned(page); |
947 | } | 947 | } |
948 | } | 948 | } |
949 | 949 | ||
950 | spin_unlock(&pgd_lock); | 950 | spin_unlock(&pgd_lock); |
951 | } | 951 | } |
952 | 952 | ||
953 | /* | 953 | /* |
954 | * The init_mm pagetable is really pinned as soon as its created, but | 954 | * The init_mm pagetable is really pinned as soon as its created, but |
955 | * that's before we have page structures to store the bits. So do all | 955 | * that's before we have page structures to store the bits. So do all |
956 | * the book-keeping now. | 956 | * the book-keeping now. |
957 | */ | 957 | */ |
958 | static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page, | 958 | static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page, |
959 | enum pt_level level) | 959 | enum pt_level level) |
960 | { | 960 | { |
961 | SetPagePinned(page); | 961 | SetPagePinned(page); |
962 | return 0; | 962 | return 0; |
963 | } | 963 | } |
964 | 964 | ||
965 | static void __init xen_mark_init_mm_pinned(void) | 965 | static void __init xen_mark_init_mm_pinned(void) |
966 | { | 966 | { |
967 | xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP); | 967 | xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP); |
968 | } | 968 | } |
969 | 969 | ||
970 | static int xen_unpin_page(struct mm_struct *mm, struct page *page, | 970 | static int xen_unpin_page(struct mm_struct *mm, struct page *page, |
971 | enum pt_level level) | 971 | enum pt_level level) |
972 | { | 972 | { |
973 | unsigned pgfl = TestClearPagePinned(page); | 973 | unsigned pgfl = TestClearPagePinned(page); |
974 | 974 | ||
975 | if (pgfl && !PageHighMem(page)) { | 975 | if (pgfl && !PageHighMem(page)) { |
976 | void *pt = lowmem_page_address(page); | 976 | void *pt = lowmem_page_address(page); |
977 | unsigned long pfn = page_to_pfn(page); | 977 | unsigned long pfn = page_to_pfn(page); |
978 | spinlock_t *ptl = NULL; | 978 | spinlock_t *ptl = NULL; |
979 | struct multicall_space mcs; | 979 | struct multicall_space mcs; |
980 | 980 | ||
981 | /* | 981 | /* |
982 | * Do the converse to pin_page. If we're using split | 982 | * Do the converse to pin_page. If we're using split |
983 | * pte locks, we must be holding the lock for while | 983 | * pte locks, we must be holding the lock for while |
984 | * the pte page is unpinned but still RO to prevent | 984 | * the pte page is unpinned but still RO to prevent |
985 | * concurrent updates from seeing it in this | 985 | * concurrent updates from seeing it in this |
986 | * partially-pinned state. | 986 | * partially-pinned state. |
987 | */ | 987 | */ |
988 | if (level == PT_PTE) { | 988 | if (level == PT_PTE) { |
989 | ptl = xen_pte_lock(page, mm); | 989 | ptl = xen_pte_lock(page, mm); |
990 | 990 | ||
991 | if (ptl) | 991 | if (ptl) |
992 | xen_do_pin(MMUEXT_UNPIN_TABLE, pfn); | 992 | xen_do_pin(MMUEXT_UNPIN_TABLE, pfn); |
993 | } | 993 | } |
994 | 994 | ||
995 | mcs = __xen_mc_entry(0); | 995 | mcs = __xen_mc_entry(0); |
996 | 996 | ||
997 | MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, | 997 | MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, |
998 | pfn_pte(pfn, PAGE_KERNEL), | 998 | pfn_pte(pfn, PAGE_KERNEL), |
999 | level == PT_PGD ? UVMF_TLB_FLUSH : 0); | 999 | level == PT_PGD ? UVMF_TLB_FLUSH : 0); |
1000 | 1000 | ||
1001 | if (ptl) { | 1001 | if (ptl) { |
1002 | /* unlock when batch completed */ | 1002 | /* unlock when batch completed */ |
1003 | xen_mc_callback(xen_pte_unlock, ptl); | 1003 | xen_mc_callback(xen_pte_unlock, ptl); |
1004 | } | 1004 | } |
1005 | } | 1005 | } |
1006 | 1006 | ||
1007 | return 0; /* never need to flush on unpin */ | 1007 | return 0; /* never need to flush on unpin */ |
1008 | } | 1008 | } |
1009 | 1009 | ||
1010 | /* Release a pagetables pages back as normal RW */ | 1010 | /* Release a pagetables pages back as normal RW */ |
1011 | static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd) | 1011 | static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd) |
1012 | { | 1012 | { |
1013 | trace_xen_mmu_pgd_unpin(mm, pgd); | 1013 | trace_xen_mmu_pgd_unpin(mm, pgd); |
1014 | 1014 | ||
1015 | xen_mc_batch(); | 1015 | xen_mc_batch(); |
1016 | 1016 | ||
1017 | xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); | 1017 | xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); |
1018 | 1018 | ||
1019 | #ifdef CONFIG_X86_64 | 1019 | #ifdef CONFIG_X86_64 |
1020 | { | 1020 | { |
1021 | pgd_t *user_pgd = xen_get_user_pgd(pgd); | 1021 | pgd_t *user_pgd = xen_get_user_pgd(pgd); |
1022 | 1022 | ||
1023 | if (user_pgd) { | 1023 | if (user_pgd) { |
1024 | xen_do_pin(MMUEXT_UNPIN_TABLE, | 1024 | xen_do_pin(MMUEXT_UNPIN_TABLE, |
1025 | PFN_DOWN(__pa(user_pgd))); | 1025 | PFN_DOWN(__pa(user_pgd))); |
1026 | xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD); | 1026 | xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD); |
1027 | } | 1027 | } |
1028 | } | 1028 | } |
1029 | #endif | 1029 | #endif |
1030 | 1030 | ||
1031 | #ifdef CONFIG_X86_PAE | 1031 | #ifdef CONFIG_X86_PAE |
1032 | /* Need to make sure unshared kernel PMD is unpinned */ | 1032 | /* Need to make sure unshared kernel PMD is unpinned */ |
1033 | xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]), | 1033 | xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]), |
1034 | PT_PMD); | 1034 | PT_PMD); |
1035 | #endif | 1035 | #endif |
1036 | 1036 | ||
1037 | __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT); | 1037 | __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT); |
1038 | 1038 | ||
1039 | xen_mc_issue(0); | 1039 | xen_mc_issue(0); |
1040 | } | 1040 | } |
1041 | 1041 | ||
1042 | static void xen_pgd_unpin(struct mm_struct *mm) | 1042 | static void xen_pgd_unpin(struct mm_struct *mm) |
1043 | { | 1043 | { |
1044 | __xen_pgd_unpin(mm, mm->pgd); | 1044 | __xen_pgd_unpin(mm, mm->pgd); |
1045 | } | 1045 | } |
1046 | 1046 | ||
1047 | /* | 1047 | /* |
1048 | * On resume, undo any pinning done at save, so that the rest of the | 1048 | * On resume, undo any pinning done at save, so that the rest of the |
1049 | * kernel doesn't see any unexpected pinned pagetables. | 1049 | * kernel doesn't see any unexpected pinned pagetables. |
1050 | */ | 1050 | */ |
1051 | void xen_mm_unpin_all(void) | 1051 | void xen_mm_unpin_all(void) |
1052 | { | 1052 | { |
1053 | struct page *page; | 1053 | struct page *page; |
1054 | 1054 | ||
1055 | spin_lock(&pgd_lock); | 1055 | spin_lock(&pgd_lock); |
1056 | 1056 | ||
1057 | list_for_each_entry(page, &pgd_list, lru) { | 1057 | list_for_each_entry(page, &pgd_list, lru) { |
1058 | if (PageSavePinned(page)) { | 1058 | if (PageSavePinned(page)) { |
1059 | BUG_ON(!PagePinned(page)); | 1059 | BUG_ON(!PagePinned(page)); |
1060 | __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page)); | 1060 | __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page)); |
1061 | ClearPageSavePinned(page); | 1061 | ClearPageSavePinned(page); |
1062 | } | 1062 | } |
1063 | } | 1063 | } |
1064 | 1064 | ||
1065 | spin_unlock(&pgd_lock); | 1065 | spin_unlock(&pgd_lock); |
1066 | } | 1066 | } |
1067 | 1067 | ||
1068 | static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next) | 1068 | static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next) |
1069 | { | 1069 | { |
1070 | spin_lock(&next->page_table_lock); | 1070 | spin_lock(&next->page_table_lock); |
1071 | xen_pgd_pin(next); | 1071 | xen_pgd_pin(next); |
1072 | spin_unlock(&next->page_table_lock); | 1072 | spin_unlock(&next->page_table_lock); |
1073 | } | 1073 | } |
1074 | 1074 | ||
1075 | static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm) | 1075 | static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm) |
1076 | { | 1076 | { |
1077 | spin_lock(&mm->page_table_lock); | 1077 | spin_lock(&mm->page_table_lock); |
1078 | xen_pgd_pin(mm); | 1078 | xen_pgd_pin(mm); |
1079 | spin_unlock(&mm->page_table_lock); | 1079 | spin_unlock(&mm->page_table_lock); |
1080 | } | 1080 | } |
1081 | 1081 | ||
1082 | 1082 | ||
1083 | #ifdef CONFIG_SMP | 1083 | #ifdef CONFIG_SMP |
1084 | /* Another cpu may still have their %cr3 pointing at the pagetable, so | 1084 | /* Another cpu may still have their %cr3 pointing at the pagetable, so |
1085 | we need to repoint it somewhere else before we can unpin it. */ | 1085 | we need to repoint it somewhere else before we can unpin it. */ |
1086 | static void drop_other_mm_ref(void *info) | 1086 | static void drop_other_mm_ref(void *info) |
1087 | { | 1087 | { |
1088 | struct mm_struct *mm = info; | 1088 | struct mm_struct *mm = info; |
1089 | struct mm_struct *active_mm; | 1089 | struct mm_struct *active_mm; |
1090 | 1090 | ||
1091 | active_mm = this_cpu_read(cpu_tlbstate.active_mm); | 1091 | active_mm = this_cpu_read(cpu_tlbstate.active_mm); |
1092 | 1092 | ||
1093 | if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK) | 1093 | if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK) |
1094 | leave_mm(smp_processor_id()); | 1094 | leave_mm(smp_processor_id()); |
1095 | 1095 | ||
1096 | /* If this cpu still has a stale cr3 reference, then make sure | 1096 | /* If this cpu still has a stale cr3 reference, then make sure |
1097 | it has been flushed. */ | 1097 | it has been flushed. */ |
1098 | if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd)) | 1098 | if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd)) |
1099 | load_cr3(swapper_pg_dir); | 1099 | load_cr3(swapper_pg_dir); |
1100 | } | 1100 | } |
1101 | 1101 | ||
1102 | static void xen_drop_mm_ref(struct mm_struct *mm) | 1102 | static void xen_drop_mm_ref(struct mm_struct *mm) |
1103 | { | 1103 | { |
1104 | cpumask_var_t mask; | 1104 | cpumask_var_t mask; |
1105 | unsigned cpu; | 1105 | unsigned cpu; |
1106 | 1106 | ||
1107 | if (current->active_mm == mm) { | 1107 | if (current->active_mm == mm) { |
1108 | if (current->mm == mm) | 1108 | if (current->mm == mm) |
1109 | load_cr3(swapper_pg_dir); | 1109 | load_cr3(swapper_pg_dir); |
1110 | else | 1110 | else |
1111 | leave_mm(smp_processor_id()); | 1111 | leave_mm(smp_processor_id()); |
1112 | } | 1112 | } |
1113 | 1113 | ||
1114 | /* Get the "official" set of cpus referring to our pagetable. */ | 1114 | /* Get the "official" set of cpus referring to our pagetable. */ |
1115 | if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) { | 1115 | if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) { |
1116 | for_each_online_cpu(cpu) { | 1116 | for_each_online_cpu(cpu) { |
1117 | if (!cpumask_test_cpu(cpu, mm_cpumask(mm)) | 1117 | if (!cpumask_test_cpu(cpu, mm_cpumask(mm)) |
1118 | && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd)) | 1118 | && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd)) |
1119 | continue; | 1119 | continue; |
1120 | smp_call_function_single(cpu, drop_other_mm_ref, mm, 1); | 1120 | smp_call_function_single(cpu, drop_other_mm_ref, mm, 1); |
1121 | } | 1121 | } |
1122 | return; | 1122 | return; |
1123 | } | 1123 | } |
1124 | cpumask_copy(mask, mm_cpumask(mm)); | 1124 | cpumask_copy(mask, mm_cpumask(mm)); |
1125 | 1125 | ||
1126 | /* It's possible that a vcpu may have a stale reference to our | 1126 | /* It's possible that a vcpu may have a stale reference to our |
1127 | cr3, because its in lazy mode, and it hasn't yet flushed | 1127 | cr3, because its in lazy mode, and it hasn't yet flushed |
1128 | its set of pending hypercalls yet. In this case, we can | 1128 | its set of pending hypercalls yet. In this case, we can |
1129 | look at its actual current cr3 value, and force it to flush | 1129 | look at its actual current cr3 value, and force it to flush |
1130 | if needed. */ | 1130 | if needed. */ |
1131 | for_each_online_cpu(cpu) { | 1131 | for_each_online_cpu(cpu) { |
1132 | if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd)) | 1132 | if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd)) |
1133 | cpumask_set_cpu(cpu, mask); | 1133 | cpumask_set_cpu(cpu, mask); |
1134 | } | 1134 | } |
1135 | 1135 | ||
1136 | if (!cpumask_empty(mask)) | 1136 | if (!cpumask_empty(mask)) |
1137 | smp_call_function_many(mask, drop_other_mm_ref, mm, 1); | 1137 | smp_call_function_many(mask, drop_other_mm_ref, mm, 1); |
1138 | free_cpumask_var(mask); | 1138 | free_cpumask_var(mask); |
1139 | } | 1139 | } |
1140 | #else | 1140 | #else |
1141 | static void xen_drop_mm_ref(struct mm_struct *mm) | 1141 | static void xen_drop_mm_ref(struct mm_struct *mm) |
1142 | { | 1142 | { |
1143 | if (current->active_mm == mm) | 1143 | if (current->active_mm == mm) |
1144 | load_cr3(swapper_pg_dir); | 1144 | load_cr3(swapper_pg_dir); |
1145 | } | 1145 | } |
1146 | #endif | 1146 | #endif |
1147 | 1147 | ||
1148 | /* | 1148 | /* |
1149 | * While a process runs, Xen pins its pagetables, which means that the | 1149 | * While a process runs, Xen pins its pagetables, which means that the |
1150 | * hypervisor forces it to be read-only, and it controls all updates | 1150 | * hypervisor forces it to be read-only, and it controls all updates |
1151 | * to it. This means that all pagetable updates have to go via the | 1151 | * to it. This means that all pagetable updates have to go via the |
1152 | * hypervisor, which is moderately expensive. | 1152 | * hypervisor, which is moderately expensive. |
1153 | * | 1153 | * |
1154 | * Since we're pulling the pagetable down, we switch to use init_mm, | 1154 | * Since we're pulling the pagetable down, we switch to use init_mm, |
1155 | * unpin old process pagetable and mark it all read-write, which | 1155 | * unpin old process pagetable and mark it all read-write, which |
1156 | * allows further operations on it to be simple memory accesses. | 1156 | * allows further operations on it to be simple memory accesses. |
1157 | * | 1157 | * |
1158 | * The only subtle point is that another CPU may be still using the | 1158 | * The only subtle point is that another CPU may be still using the |
1159 | * pagetable because of lazy tlb flushing. This means we need need to | 1159 | * pagetable because of lazy tlb flushing. This means we need need to |
1160 | * switch all CPUs off this pagetable before we can unpin it. | 1160 | * switch all CPUs off this pagetable before we can unpin it. |
1161 | */ | 1161 | */ |
1162 | static void xen_exit_mmap(struct mm_struct *mm) | 1162 | static void xen_exit_mmap(struct mm_struct *mm) |
1163 | { | 1163 | { |
1164 | get_cpu(); /* make sure we don't move around */ | 1164 | get_cpu(); /* make sure we don't move around */ |
1165 | xen_drop_mm_ref(mm); | 1165 | xen_drop_mm_ref(mm); |
1166 | put_cpu(); | 1166 | put_cpu(); |
1167 | 1167 | ||
1168 | spin_lock(&mm->page_table_lock); | 1168 | spin_lock(&mm->page_table_lock); |
1169 | 1169 | ||
1170 | /* pgd may not be pinned in the error exit path of execve */ | 1170 | /* pgd may not be pinned in the error exit path of execve */ |
1171 | if (xen_page_pinned(mm->pgd)) | 1171 | if (xen_page_pinned(mm->pgd)) |
1172 | xen_pgd_unpin(mm); | 1172 | xen_pgd_unpin(mm); |
1173 | 1173 | ||
1174 | spin_unlock(&mm->page_table_lock); | 1174 | spin_unlock(&mm->page_table_lock); |
1175 | } | 1175 | } |
1176 | 1176 | ||
1177 | static void __init xen_pagetable_setup_start(pgd_t *base) | 1177 | static void __init xen_pagetable_setup_start(pgd_t *base) |
1178 | { | 1178 | { |
1179 | } | 1179 | } |
1180 | 1180 | ||
1181 | static __init void xen_mapping_pagetable_reserve(u64 start, u64 end) | 1181 | static __init void xen_mapping_pagetable_reserve(u64 start, u64 end) |
1182 | { | 1182 | { |
1183 | /* reserve the range used */ | 1183 | /* reserve the range used */ |
1184 | native_pagetable_reserve(start, end); | 1184 | native_pagetable_reserve(start, end); |
1185 | 1185 | ||
1186 | /* set as RW the rest */ | 1186 | /* set as RW the rest */ |
1187 | printk(KERN_DEBUG "xen: setting RW the range %llx - %llx\n", end, | 1187 | printk(KERN_DEBUG "xen: setting RW the range %llx - %llx\n", end, |
1188 | PFN_PHYS(pgt_buf_top)); | 1188 | PFN_PHYS(pgt_buf_top)); |
1189 | while (end < PFN_PHYS(pgt_buf_top)) { | 1189 | while (end < PFN_PHYS(pgt_buf_top)) { |
1190 | make_lowmem_page_readwrite(__va(end)); | 1190 | make_lowmem_page_readwrite(__va(end)); |
1191 | end += PAGE_SIZE; | 1191 | end += PAGE_SIZE; |
1192 | } | 1192 | } |
1193 | } | 1193 | } |
1194 | 1194 | ||
1195 | static void xen_post_allocator_init(void); | 1195 | static void xen_post_allocator_init(void); |
1196 | 1196 | ||
1197 | static void __init xen_pagetable_setup_done(pgd_t *base) | 1197 | static void __init xen_pagetable_setup_done(pgd_t *base) |
1198 | { | 1198 | { |
1199 | xen_setup_shared_info(); | 1199 | xen_setup_shared_info(); |
1200 | xen_post_allocator_init(); | 1200 | xen_post_allocator_init(); |
1201 | } | 1201 | } |
1202 | 1202 | ||
1203 | static void xen_write_cr2(unsigned long cr2) | 1203 | static void xen_write_cr2(unsigned long cr2) |
1204 | { | 1204 | { |
1205 | this_cpu_read(xen_vcpu)->arch.cr2 = cr2; | 1205 | this_cpu_read(xen_vcpu)->arch.cr2 = cr2; |
1206 | } | 1206 | } |
1207 | 1207 | ||
1208 | static unsigned long xen_read_cr2(void) | 1208 | static unsigned long xen_read_cr2(void) |
1209 | { | 1209 | { |
1210 | return this_cpu_read(xen_vcpu)->arch.cr2; | 1210 | return this_cpu_read(xen_vcpu)->arch.cr2; |
1211 | } | 1211 | } |
1212 | 1212 | ||
1213 | unsigned long xen_read_cr2_direct(void) | 1213 | unsigned long xen_read_cr2_direct(void) |
1214 | { | 1214 | { |
1215 | return this_cpu_read(xen_vcpu_info.arch.cr2); | 1215 | return this_cpu_read(xen_vcpu_info.arch.cr2); |
1216 | } | 1216 | } |
1217 | 1217 | ||
1218 | static void xen_flush_tlb(void) | 1218 | static void xen_flush_tlb(void) |
1219 | { | 1219 | { |
1220 | struct mmuext_op *op; | 1220 | struct mmuext_op *op; |
1221 | struct multicall_space mcs; | 1221 | struct multicall_space mcs; |
1222 | 1222 | ||
1223 | trace_xen_mmu_flush_tlb(0); | 1223 | trace_xen_mmu_flush_tlb(0); |
1224 | 1224 | ||
1225 | preempt_disable(); | 1225 | preempt_disable(); |
1226 | 1226 | ||
1227 | mcs = xen_mc_entry(sizeof(*op)); | 1227 | mcs = xen_mc_entry(sizeof(*op)); |
1228 | 1228 | ||
1229 | op = mcs.args; | 1229 | op = mcs.args; |
1230 | op->cmd = MMUEXT_TLB_FLUSH_LOCAL; | 1230 | op->cmd = MMUEXT_TLB_FLUSH_LOCAL; |
1231 | MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); | 1231 | MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); |
1232 | 1232 | ||
1233 | xen_mc_issue(PARAVIRT_LAZY_MMU); | 1233 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
1234 | 1234 | ||
1235 | preempt_enable(); | 1235 | preempt_enable(); |
1236 | } | 1236 | } |
1237 | 1237 | ||
1238 | static void xen_flush_tlb_single(unsigned long addr) | 1238 | static void xen_flush_tlb_single(unsigned long addr) |
1239 | { | 1239 | { |
1240 | struct mmuext_op *op; | 1240 | struct mmuext_op *op; |
1241 | struct multicall_space mcs; | 1241 | struct multicall_space mcs; |
1242 | 1242 | ||
1243 | trace_xen_mmu_flush_tlb_single(addr); | 1243 | trace_xen_mmu_flush_tlb_single(addr); |
1244 | 1244 | ||
1245 | preempt_disable(); | 1245 | preempt_disable(); |
1246 | 1246 | ||
1247 | mcs = xen_mc_entry(sizeof(*op)); | 1247 | mcs = xen_mc_entry(sizeof(*op)); |
1248 | op = mcs.args; | 1248 | op = mcs.args; |
1249 | op->cmd = MMUEXT_INVLPG_LOCAL; | 1249 | op->cmd = MMUEXT_INVLPG_LOCAL; |
1250 | op->arg1.linear_addr = addr & PAGE_MASK; | 1250 | op->arg1.linear_addr = addr & PAGE_MASK; |
1251 | MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); | 1251 | MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); |
1252 | 1252 | ||
1253 | xen_mc_issue(PARAVIRT_LAZY_MMU); | 1253 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
1254 | 1254 | ||
1255 | preempt_enable(); | 1255 | preempt_enable(); |
1256 | } | 1256 | } |
1257 | 1257 | ||
1258 | static void xen_flush_tlb_others(const struct cpumask *cpus, | 1258 | static void xen_flush_tlb_others(const struct cpumask *cpus, |
1259 | struct mm_struct *mm, unsigned long start, | 1259 | struct mm_struct *mm, unsigned long start, |
1260 | unsigned long end) | 1260 | unsigned long end) |
1261 | { | 1261 | { |
1262 | struct { | 1262 | struct { |
1263 | struct mmuext_op op; | 1263 | struct mmuext_op op; |
1264 | #ifdef CONFIG_SMP | 1264 | #ifdef CONFIG_SMP |
1265 | DECLARE_BITMAP(mask, num_processors); | 1265 | DECLARE_BITMAP(mask, num_processors); |
1266 | #else | 1266 | #else |
1267 | DECLARE_BITMAP(mask, NR_CPUS); | 1267 | DECLARE_BITMAP(mask, NR_CPUS); |
1268 | #endif | 1268 | #endif |
1269 | } *args; | 1269 | } *args; |
1270 | struct multicall_space mcs; | 1270 | struct multicall_space mcs; |
1271 | 1271 | ||
1272 | trace_xen_mmu_flush_tlb_others(cpus, mm, start, end); | 1272 | trace_xen_mmu_flush_tlb_others(cpus, mm, start, end); |
1273 | 1273 | ||
1274 | if (cpumask_empty(cpus)) | 1274 | if (cpumask_empty(cpus)) |
1275 | return; /* nothing to do */ | 1275 | return; /* nothing to do */ |
1276 | 1276 | ||
1277 | mcs = xen_mc_entry(sizeof(*args)); | 1277 | mcs = xen_mc_entry(sizeof(*args)); |
1278 | args = mcs.args; | 1278 | args = mcs.args; |
1279 | args->op.arg2.vcpumask = to_cpumask(args->mask); | 1279 | args->op.arg2.vcpumask = to_cpumask(args->mask); |
1280 | 1280 | ||
1281 | /* Remove us, and any offline CPUS. */ | 1281 | /* Remove us, and any offline CPUS. */ |
1282 | cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask); | 1282 | cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask); |
1283 | cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask)); | 1283 | cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask)); |
1284 | 1284 | ||
1285 | args->op.cmd = MMUEXT_TLB_FLUSH_MULTI; | 1285 | args->op.cmd = MMUEXT_TLB_FLUSH_MULTI; |
1286 | if (start != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) { | 1286 | if (end != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) { |
1287 | args->op.cmd = MMUEXT_INVLPG_MULTI; | 1287 | args->op.cmd = MMUEXT_INVLPG_MULTI; |
1288 | args->op.arg1.linear_addr = start; | 1288 | args->op.arg1.linear_addr = start; |
1289 | } | 1289 | } |
1290 | 1290 | ||
1291 | MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF); | 1291 | MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF); |
1292 | 1292 | ||
1293 | xen_mc_issue(PARAVIRT_LAZY_MMU); | 1293 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
1294 | } | 1294 | } |
1295 | 1295 | ||
1296 | static unsigned long xen_read_cr3(void) | 1296 | static unsigned long xen_read_cr3(void) |
1297 | { | 1297 | { |
1298 | return this_cpu_read(xen_cr3); | 1298 | return this_cpu_read(xen_cr3); |
1299 | } | 1299 | } |
1300 | 1300 | ||
1301 | static void set_current_cr3(void *v) | 1301 | static void set_current_cr3(void *v) |
1302 | { | 1302 | { |
1303 | this_cpu_write(xen_current_cr3, (unsigned long)v); | 1303 | this_cpu_write(xen_current_cr3, (unsigned long)v); |
1304 | } | 1304 | } |
1305 | 1305 | ||
1306 | static void __xen_write_cr3(bool kernel, unsigned long cr3) | 1306 | static void __xen_write_cr3(bool kernel, unsigned long cr3) |
1307 | { | 1307 | { |
1308 | struct mmuext_op op; | 1308 | struct mmuext_op op; |
1309 | unsigned long mfn; | 1309 | unsigned long mfn; |
1310 | 1310 | ||
1311 | trace_xen_mmu_write_cr3(kernel, cr3); | 1311 | trace_xen_mmu_write_cr3(kernel, cr3); |
1312 | 1312 | ||
1313 | if (cr3) | 1313 | if (cr3) |
1314 | mfn = pfn_to_mfn(PFN_DOWN(cr3)); | 1314 | mfn = pfn_to_mfn(PFN_DOWN(cr3)); |
1315 | else | 1315 | else |
1316 | mfn = 0; | 1316 | mfn = 0; |
1317 | 1317 | ||
1318 | WARN_ON(mfn == 0 && kernel); | 1318 | WARN_ON(mfn == 0 && kernel); |
1319 | 1319 | ||
1320 | op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR; | 1320 | op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR; |
1321 | op.arg1.mfn = mfn; | 1321 | op.arg1.mfn = mfn; |
1322 | 1322 | ||
1323 | xen_extend_mmuext_op(&op); | 1323 | xen_extend_mmuext_op(&op); |
1324 | 1324 | ||
1325 | if (kernel) { | 1325 | if (kernel) { |
1326 | this_cpu_write(xen_cr3, cr3); | 1326 | this_cpu_write(xen_cr3, cr3); |
1327 | 1327 | ||
1328 | /* Update xen_current_cr3 once the batch has actually | 1328 | /* Update xen_current_cr3 once the batch has actually |
1329 | been submitted. */ | 1329 | been submitted. */ |
1330 | xen_mc_callback(set_current_cr3, (void *)cr3); | 1330 | xen_mc_callback(set_current_cr3, (void *)cr3); |
1331 | } | 1331 | } |
1332 | } | 1332 | } |
1333 | 1333 | ||
1334 | static void xen_write_cr3(unsigned long cr3) | 1334 | static void xen_write_cr3(unsigned long cr3) |
1335 | { | 1335 | { |
1336 | BUG_ON(preemptible()); | 1336 | BUG_ON(preemptible()); |
1337 | 1337 | ||
1338 | xen_mc_batch(); /* disables interrupts */ | 1338 | xen_mc_batch(); /* disables interrupts */ |
1339 | 1339 | ||
1340 | /* Update while interrupts are disabled, so its atomic with | 1340 | /* Update while interrupts are disabled, so its atomic with |
1341 | respect to ipis */ | 1341 | respect to ipis */ |
1342 | this_cpu_write(xen_cr3, cr3); | 1342 | this_cpu_write(xen_cr3, cr3); |
1343 | 1343 | ||
1344 | __xen_write_cr3(true, cr3); | 1344 | __xen_write_cr3(true, cr3); |
1345 | 1345 | ||
1346 | #ifdef CONFIG_X86_64 | 1346 | #ifdef CONFIG_X86_64 |
1347 | { | 1347 | { |
1348 | pgd_t *user_pgd = xen_get_user_pgd(__va(cr3)); | 1348 | pgd_t *user_pgd = xen_get_user_pgd(__va(cr3)); |
1349 | if (user_pgd) | 1349 | if (user_pgd) |
1350 | __xen_write_cr3(false, __pa(user_pgd)); | 1350 | __xen_write_cr3(false, __pa(user_pgd)); |
1351 | else | 1351 | else |
1352 | __xen_write_cr3(false, 0); | 1352 | __xen_write_cr3(false, 0); |
1353 | } | 1353 | } |
1354 | #endif | 1354 | #endif |
1355 | 1355 | ||
1356 | xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */ | 1356 | xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */ |
1357 | } | 1357 | } |
1358 | 1358 | ||
1359 | static int xen_pgd_alloc(struct mm_struct *mm) | 1359 | static int xen_pgd_alloc(struct mm_struct *mm) |
1360 | { | 1360 | { |
1361 | pgd_t *pgd = mm->pgd; | 1361 | pgd_t *pgd = mm->pgd; |
1362 | int ret = 0; | 1362 | int ret = 0; |
1363 | 1363 | ||
1364 | BUG_ON(PagePinned(virt_to_page(pgd))); | 1364 | BUG_ON(PagePinned(virt_to_page(pgd))); |
1365 | 1365 | ||
1366 | #ifdef CONFIG_X86_64 | 1366 | #ifdef CONFIG_X86_64 |
1367 | { | 1367 | { |
1368 | struct page *page = virt_to_page(pgd); | 1368 | struct page *page = virt_to_page(pgd); |
1369 | pgd_t *user_pgd; | 1369 | pgd_t *user_pgd; |
1370 | 1370 | ||
1371 | BUG_ON(page->private != 0); | 1371 | BUG_ON(page->private != 0); |
1372 | 1372 | ||
1373 | ret = -ENOMEM; | 1373 | ret = -ENOMEM; |
1374 | 1374 | ||
1375 | user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO); | 1375 | user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO); |
1376 | page->private = (unsigned long)user_pgd; | 1376 | page->private = (unsigned long)user_pgd; |
1377 | 1377 | ||
1378 | if (user_pgd != NULL) { | 1378 | if (user_pgd != NULL) { |
1379 | user_pgd[pgd_index(VSYSCALL_START)] = | 1379 | user_pgd[pgd_index(VSYSCALL_START)] = |
1380 | __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE); | 1380 | __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE); |
1381 | ret = 0; | 1381 | ret = 0; |
1382 | } | 1382 | } |
1383 | 1383 | ||
1384 | BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd)))); | 1384 | BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd)))); |
1385 | } | 1385 | } |
1386 | #endif | 1386 | #endif |
1387 | 1387 | ||
1388 | return ret; | 1388 | return ret; |
1389 | } | 1389 | } |
1390 | 1390 | ||
1391 | static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd) | 1391 | static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd) |
1392 | { | 1392 | { |
1393 | #ifdef CONFIG_X86_64 | 1393 | #ifdef CONFIG_X86_64 |
1394 | pgd_t *user_pgd = xen_get_user_pgd(pgd); | 1394 | pgd_t *user_pgd = xen_get_user_pgd(pgd); |
1395 | 1395 | ||
1396 | if (user_pgd) | 1396 | if (user_pgd) |
1397 | free_page((unsigned long)user_pgd); | 1397 | free_page((unsigned long)user_pgd); |
1398 | #endif | 1398 | #endif |
1399 | } | 1399 | } |
1400 | 1400 | ||
1401 | #ifdef CONFIG_X86_32 | 1401 | #ifdef CONFIG_X86_32 |
1402 | static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte) | 1402 | static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte) |
1403 | { | 1403 | { |
1404 | /* If there's an existing pte, then don't allow _PAGE_RW to be set */ | 1404 | /* If there's an existing pte, then don't allow _PAGE_RW to be set */ |
1405 | if (pte_val_ma(*ptep) & _PAGE_PRESENT) | 1405 | if (pte_val_ma(*ptep) & _PAGE_PRESENT) |
1406 | pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) & | 1406 | pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) & |
1407 | pte_val_ma(pte)); | 1407 | pte_val_ma(pte)); |
1408 | 1408 | ||
1409 | return pte; | 1409 | return pte; |
1410 | } | 1410 | } |
1411 | #else /* CONFIG_X86_64 */ | 1411 | #else /* CONFIG_X86_64 */ |
1412 | static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte) | 1412 | static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte) |
1413 | { | 1413 | { |
1414 | unsigned long pfn = pte_pfn(pte); | 1414 | unsigned long pfn = pte_pfn(pte); |
1415 | 1415 | ||
1416 | /* | 1416 | /* |
1417 | * If the new pfn is within the range of the newly allocated | 1417 | * If the new pfn is within the range of the newly allocated |
1418 | * kernel pagetable, and it isn't being mapped into an | 1418 | * kernel pagetable, and it isn't being mapped into an |
1419 | * early_ioremap fixmap slot as a freshly allocated page, make sure | 1419 | * early_ioremap fixmap slot as a freshly allocated page, make sure |
1420 | * it is RO. | 1420 | * it is RO. |
1421 | */ | 1421 | */ |
1422 | if (((!is_early_ioremap_ptep(ptep) && | 1422 | if (((!is_early_ioremap_ptep(ptep) && |
1423 | pfn >= pgt_buf_start && pfn < pgt_buf_top)) || | 1423 | pfn >= pgt_buf_start && pfn < pgt_buf_top)) || |
1424 | (is_early_ioremap_ptep(ptep) && pfn != (pgt_buf_end - 1))) | 1424 | (is_early_ioremap_ptep(ptep) && pfn != (pgt_buf_end - 1))) |
1425 | pte = pte_wrprotect(pte); | 1425 | pte = pte_wrprotect(pte); |
1426 | 1426 | ||
1427 | return pte; | 1427 | return pte; |
1428 | } | 1428 | } |
1429 | #endif /* CONFIG_X86_64 */ | 1429 | #endif /* CONFIG_X86_64 */ |
1430 | 1430 | ||
1431 | /* | 1431 | /* |
1432 | * Init-time set_pte while constructing initial pagetables, which | 1432 | * Init-time set_pte while constructing initial pagetables, which |
1433 | * doesn't allow RO page table pages to be remapped RW. | 1433 | * doesn't allow RO page table pages to be remapped RW. |
1434 | * | 1434 | * |
1435 | * If there is no MFN for this PFN then this page is initially | 1435 | * If there is no MFN for this PFN then this page is initially |
1436 | * ballooned out so clear the PTE (as in decrease_reservation() in | 1436 | * ballooned out so clear the PTE (as in decrease_reservation() in |
1437 | * drivers/xen/balloon.c). | 1437 | * drivers/xen/balloon.c). |
1438 | * | 1438 | * |
1439 | * Many of these PTE updates are done on unpinned and writable pages | 1439 | * Many of these PTE updates are done on unpinned and writable pages |
1440 | * and doing a hypercall for these is unnecessary and expensive. At | 1440 | * and doing a hypercall for these is unnecessary and expensive. At |
1441 | * this point it is not possible to tell if a page is pinned or not, | 1441 | * this point it is not possible to tell if a page is pinned or not, |
1442 | * so always write the PTE directly and rely on Xen trapping and | 1442 | * so always write the PTE directly and rely on Xen trapping and |
1443 | * emulating any updates as necessary. | 1443 | * emulating any updates as necessary. |
1444 | */ | 1444 | */ |
1445 | static void __init xen_set_pte_init(pte_t *ptep, pte_t pte) | 1445 | static void __init xen_set_pte_init(pte_t *ptep, pte_t pte) |
1446 | { | 1446 | { |
1447 | if (pte_mfn(pte) != INVALID_P2M_ENTRY) | 1447 | if (pte_mfn(pte) != INVALID_P2M_ENTRY) |
1448 | pte = mask_rw_pte(ptep, pte); | 1448 | pte = mask_rw_pte(ptep, pte); |
1449 | else | 1449 | else |
1450 | pte = __pte_ma(0); | 1450 | pte = __pte_ma(0); |
1451 | 1451 | ||
1452 | native_set_pte(ptep, pte); | 1452 | native_set_pte(ptep, pte); |
1453 | } | 1453 | } |
1454 | 1454 | ||
1455 | static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn) | 1455 | static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn) |
1456 | { | 1456 | { |
1457 | struct mmuext_op op; | 1457 | struct mmuext_op op; |
1458 | op.cmd = cmd; | 1458 | op.cmd = cmd; |
1459 | op.arg1.mfn = pfn_to_mfn(pfn); | 1459 | op.arg1.mfn = pfn_to_mfn(pfn); |
1460 | if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF)) | 1460 | if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF)) |
1461 | BUG(); | 1461 | BUG(); |
1462 | } | 1462 | } |
1463 | 1463 | ||
1464 | /* Early in boot, while setting up the initial pagetable, assume | 1464 | /* Early in boot, while setting up the initial pagetable, assume |
1465 | everything is pinned. */ | 1465 | everything is pinned. */ |
1466 | static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn) | 1466 | static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn) |
1467 | { | 1467 | { |
1468 | #ifdef CONFIG_FLATMEM | 1468 | #ifdef CONFIG_FLATMEM |
1469 | BUG_ON(mem_map); /* should only be used early */ | 1469 | BUG_ON(mem_map); /* should only be used early */ |
1470 | #endif | 1470 | #endif |
1471 | make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); | 1471 | make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); |
1472 | pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); | 1472 | pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); |
1473 | } | 1473 | } |
1474 | 1474 | ||
1475 | /* Used for pmd and pud */ | 1475 | /* Used for pmd and pud */ |
1476 | static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn) | 1476 | static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn) |
1477 | { | 1477 | { |
1478 | #ifdef CONFIG_FLATMEM | 1478 | #ifdef CONFIG_FLATMEM |
1479 | BUG_ON(mem_map); /* should only be used early */ | 1479 | BUG_ON(mem_map); /* should only be used early */ |
1480 | #endif | 1480 | #endif |
1481 | make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); | 1481 | make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); |
1482 | } | 1482 | } |
1483 | 1483 | ||
1484 | /* Early release_pte assumes that all pts are pinned, since there's | 1484 | /* Early release_pte assumes that all pts are pinned, since there's |
1485 | only init_mm and anything attached to that is pinned. */ | 1485 | only init_mm and anything attached to that is pinned. */ |
1486 | static void __init xen_release_pte_init(unsigned long pfn) | 1486 | static void __init xen_release_pte_init(unsigned long pfn) |
1487 | { | 1487 | { |
1488 | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); | 1488 | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); |
1489 | make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); | 1489 | make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); |
1490 | } | 1490 | } |
1491 | 1491 | ||
1492 | static void __init xen_release_pmd_init(unsigned long pfn) | 1492 | static void __init xen_release_pmd_init(unsigned long pfn) |
1493 | { | 1493 | { |
1494 | make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); | 1494 | make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); |
1495 | } | 1495 | } |
1496 | 1496 | ||
1497 | static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn) | 1497 | static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn) |
1498 | { | 1498 | { |
1499 | struct multicall_space mcs; | 1499 | struct multicall_space mcs; |
1500 | struct mmuext_op *op; | 1500 | struct mmuext_op *op; |
1501 | 1501 | ||
1502 | mcs = __xen_mc_entry(sizeof(*op)); | 1502 | mcs = __xen_mc_entry(sizeof(*op)); |
1503 | op = mcs.args; | 1503 | op = mcs.args; |
1504 | op->cmd = cmd; | 1504 | op->cmd = cmd; |
1505 | op->arg1.mfn = pfn_to_mfn(pfn); | 1505 | op->arg1.mfn = pfn_to_mfn(pfn); |
1506 | 1506 | ||
1507 | MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); | 1507 | MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); |
1508 | } | 1508 | } |
1509 | 1509 | ||
1510 | static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot) | 1510 | static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot) |
1511 | { | 1511 | { |
1512 | struct multicall_space mcs; | 1512 | struct multicall_space mcs; |
1513 | unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT); | 1513 | unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT); |
1514 | 1514 | ||
1515 | mcs = __xen_mc_entry(0); | 1515 | mcs = __xen_mc_entry(0); |
1516 | MULTI_update_va_mapping(mcs.mc, (unsigned long)addr, | 1516 | MULTI_update_va_mapping(mcs.mc, (unsigned long)addr, |
1517 | pfn_pte(pfn, prot), 0); | 1517 | pfn_pte(pfn, prot), 0); |
1518 | } | 1518 | } |
1519 | 1519 | ||
1520 | /* This needs to make sure the new pte page is pinned iff its being | 1520 | /* This needs to make sure the new pte page is pinned iff its being |
1521 | attached to a pinned pagetable. */ | 1521 | attached to a pinned pagetable. */ |
1522 | static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, | 1522 | static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, |
1523 | unsigned level) | 1523 | unsigned level) |
1524 | { | 1524 | { |
1525 | bool pinned = PagePinned(virt_to_page(mm->pgd)); | 1525 | bool pinned = PagePinned(virt_to_page(mm->pgd)); |
1526 | 1526 | ||
1527 | trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned); | 1527 | trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned); |
1528 | 1528 | ||
1529 | if (pinned) { | 1529 | if (pinned) { |
1530 | struct page *page = pfn_to_page(pfn); | 1530 | struct page *page = pfn_to_page(pfn); |
1531 | 1531 | ||
1532 | SetPagePinned(page); | 1532 | SetPagePinned(page); |
1533 | 1533 | ||
1534 | if (!PageHighMem(page)) { | 1534 | if (!PageHighMem(page)) { |
1535 | xen_mc_batch(); | 1535 | xen_mc_batch(); |
1536 | 1536 | ||
1537 | __set_pfn_prot(pfn, PAGE_KERNEL_RO); | 1537 | __set_pfn_prot(pfn, PAGE_KERNEL_RO); |
1538 | 1538 | ||
1539 | if (level == PT_PTE && USE_SPLIT_PTLOCKS) | 1539 | if (level == PT_PTE && USE_SPLIT_PTLOCKS) |
1540 | __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); | 1540 | __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); |
1541 | 1541 | ||
1542 | xen_mc_issue(PARAVIRT_LAZY_MMU); | 1542 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
1543 | } else { | 1543 | } else { |
1544 | /* make sure there are no stray mappings of | 1544 | /* make sure there are no stray mappings of |
1545 | this page */ | 1545 | this page */ |
1546 | kmap_flush_unused(); | 1546 | kmap_flush_unused(); |
1547 | } | 1547 | } |
1548 | } | 1548 | } |
1549 | } | 1549 | } |
1550 | 1550 | ||
1551 | static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn) | 1551 | static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn) |
1552 | { | 1552 | { |
1553 | xen_alloc_ptpage(mm, pfn, PT_PTE); | 1553 | xen_alloc_ptpage(mm, pfn, PT_PTE); |
1554 | } | 1554 | } |
1555 | 1555 | ||
1556 | static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn) | 1556 | static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn) |
1557 | { | 1557 | { |
1558 | xen_alloc_ptpage(mm, pfn, PT_PMD); | 1558 | xen_alloc_ptpage(mm, pfn, PT_PMD); |
1559 | } | 1559 | } |
1560 | 1560 | ||
1561 | /* This should never happen until we're OK to use struct page */ | 1561 | /* This should never happen until we're OK to use struct page */ |
1562 | static inline void xen_release_ptpage(unsigned long pfn, unsigned level) | 1562 | static inline void xen_release_ptpage(unsigned long pfn, unsigned level) |
1563 | { | 1563 | { |
1564 | struct page *page = pfn_to_page(pfn); | 1564 | struct page *page = pfn_to_page(pfn); |
1565 | bool pinned = PagePinned(page); | 1565 | bool pinned = PagePinned(page); |
1566 | 1566 | ||
1567 | trace_xen_mmu_release_ptpage(pfn, level, pinned); | 1567 | trace_xen_mmu_release_ptpage(pfn, level, pinned); |
1568 | 1568 | ||
1569 | if (pinned) { | 1569 | if (pinned) { |
1570 | if (!PageHighMem(page)) { | 1570 | if (!PageHighMem(page)) { |
1571 | xen_mc_batch(); | 1571 | xen_mc_batch(); |
1572 | 1572 | ||
1573 | if (level == PT_PTE && USE_SPLIT_PTLOCKS) | 1573 | if (level == PT_PTE && USE_SPLIT_PTLOCKS) |
1574 | __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); | 1574 | __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); |
1575 | 1575 | ||
1576 | __set_pfn_prot(pfn, PAGE_KERNEL); | 1576 | __set_pfn_prot(pfn, PAGE_KERNEL); |
1577 | 1577 | ||
1578 | xen_mc_issue(PARAVIRT_LAZY_MMU); | 1578 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
1579 | } | 1579 | } |
1580 | ClearPagePinned(page); | 1580 | ClearPagePinned(page); |
1581 | } | 1581 | } |
1582 | } | 1582 | } |
1583 | 1583 | ||
1584 | static void xen_release_pte(unsigned long pfn) | 1584 | static void xen_release_pte(unsigned long pfn) |
1585 | { | 1585 | { |
1586 | xen_release_ptpage(pfn, PT_PTE); | 1586 | xen_release_ptpage(pfn, PT_PTE); |
1587 | } | 1587 | } |
1588 | 1588 | ||
1589 | static void xen_release_pmd(unsigned long pfn) | 1589 | static void xen_release_pmd(unsigned long pfn) |
1590 | { | 1590 | { |
1591 | xen_release_ptpage(pfn, PT_PMD); | 1591 | xen_release_ptpage(pfn, PT_PMD); |
1592 | } | 1592 | } |
1593 | 1593 | ||
1594 | #if PAGETABLE_LEVELS == 4 | 1594 | #if PAGETABLE_LEVELS == 4 |
1595 | static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn) | 1595 | static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn) |
1596 | { | 1596 | { |
1597 | xen_alloc_ptpage(mm, pfn, PT_PUD); | 1597 | xen_alloc_ptpage(mm, pfn, PT_PUD); |
1598 | } | 1598 | } |
1599 | 1599 | ||
1600 | static void xen_release_pud(unsigned long pfn) | 1600 | static void xen_release_pud(unsigned long pfn) |
1601 | { | 1601 | { |
1602 | xen_release_ptpage(pfn, PT_PUD); | 1602 | xen_release_ptpage(pfn, PT_PUD); |
1603 | } | 1603 | } |
1604 | #endif | 1604 | #endif |
1605 | 1605 | ||
1606 | void __init xen_reserve_top(void) | 1606 | void __init xen_reserve_top(void) |
1607 | { | 1607 | { |
1608 | #ifdef CONFIG_X86_32 | 1608 | #ifdef CONFIG_X86_32 |
1609 | unsigned long top = HYPERVISOR_VIRT_START; | 1609 | unsigned long top = HYPERVISOR_VIRT_START; |
1610 | struct xen_platform_parameters pp; | 1610 | struct xen_platform_parameters pp; |
1611 | 1611 | ||
1612 | if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0) | 1612 | if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0) |
1613 | top = pp.virt_start; | 1613 | top = pp.virt_start; |
1614 | 1614 | ||
1615 | reserve_top_address(-top); | 1615 | reserve_top_address(-top); |
1616 | #endif /* CONFIG_X86_32 */ | 1616 | #endif /* CONFIG_X86_32 */ |
1617 | } | 1617 | } |
1618 | 1618 | ||
1619 | /* | 1619 | /* |
1620 | * Like __va(), but returns address in the kernel mapping (which is | 1620 | * Like __va(), but returns address in the kernel mapping (which is |
1621 | * all we have until the physical memory mapping has been set up. | 1621 | * all we have until the physical memory mapping has been set up. |
1622 | */ | 1622 | */ |
1623 | static void *__ka(phys_addr_t paddr) | 1623 | static void *__ka(phys_addr_t paddr) |
1624 | { | 1624 | { |
1625 | #ifdef CONFIG_X86_64 | 1625 | #ifdef CONFIG_X86_64 |
1626 | return (void *)(paddr + __START_KERNEL_map); | 1626 | return (void *)(paddr + __START_KERNEL_map); |
1627 | #else | 1627 | #else |
1628 | return __va(paddr); | 1628 | return __va(paddr); |
1629 | #endif | 1629 | #endif |
1630 | } | 1630 | } |
1631 | 1631 | ||
1632 | /* Convert a machine address to physical address */ | 1632 | /* Convert a machine address to physical address */ |
1633 | static unsigned long m2p(phys_addr_t maddr) | 1633 | static unsigned long m2p(phys_addr_t maddr) |
1634 | { | 1634 | { |
1635 | phys_addr_t paddr; | 1635 | phys_addr_t paddr; |
1636 | 1636 | ||
1637 | maddr &= PTE_PFN_MASK; | 1637 | maddr &= PTE_PFN_MASK; |
1638 | paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT; | 1638 | paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT; |
1639 | 1639 | ||
1640 | return paddr; | 1640 | return paddr; |
1641 | } | 1641 | } |
1642 | 1642 | ||
1643 | /* Convert a machine address to kernel virtual */ | 1643 | /* Convert a machine address to kernel virtual */ |
1644 | static void *m2v(phys_addr_t maddr) | 1644 | static void *m2v(phys_addr_t maddr) |
1645 | { | 1645 | { |
1646 | return __ka(m2p(maddr)); | 1646 | return __ka(m2p(maddr)); |
1647 | } | 1647 | } |
1648 | 1648 | ||
1649 | /* Set the page permissions on an identity-mapped pages */ | 1649 | /* Set the page permissions on an identity-mapped pages */ |
1650 | static void set_page_prot(void *addr, pgprot_t prot) | 1650 | static void set_page_prot(void *addr, pgprot_t prot) |
1651 | { | 1651 | { |
1652 | unsigned long pfn = __pa(addr) >> PAGE_SHIFT; | 1652 | unsigned long pfn = __pa(addr) >> PAGE_SHIFT; |
1653 | pte_t pte = pfn_pte(pfn, prot); | 1653 | pte_t pte = pfn_pte(pfn, prot); |
1654 | 1654 | ||
1655 | if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0)) | 1655 | if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0)) |
1656 | BUG(); | 1656 | BUG(); |
1657 | } | 1657 | } |
1658 | 1658 | ||
1659 | static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn) | 1659 | static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn) |
1660 | { | 1660 | { |
1661 | unsigned pmdidx, pteidx; | 1661 | unsigned pmdidx, pteidx; |
1662 | unsigned ident_pte; | 1662 | unsigned ident_pte; |
1663 | unsigned long pfn; | 1663 | unsigned long pfn; |
1664 | 1664 | ||
1665 | level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES, | 1665 | level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES, |
1666 | PAGE_SIZE); | 1666 | PAGE_SIZE); |
1667 | 1667 | ||
1668 | ident_pte = 0; | 1668 | ident_pte = 0; |
1669 | pfn = 0; | 1669 | pfn = 0; |
1670 | for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) { | 1670 | for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) { |
1671 | pte_t *pte_page; | 1671 | pte_t *pte_page; |
1672 | 1672 | ||
1673 | /* Reuse or allocate a page of ptes */ | 1673 | /* Reuse or allocate a page of ptes */ |
1674 | if (pmd_present(pmd[pmdidx])) | 1674 | if (pmd_present(pmd[pmdidx])) |
1675 | pte_page = m2v(pmd[pmdidx].pmd); | 1675 | pte_page = m2v(pmd[pmdidx].pmd); |
1676 | else { | 1676 | else { |
1677 | /* Check for free pte pages */ | 1677 | /* Check for free pte pages */ |
1678 | if (ident_pte == LEVEL1_IDENT_ENTRIES) | 1678 | if (ident_pte == LEVEL1_IDENT_ENTRIES) |
1679 | break; | 1679 | break; |
1680 | 1680 | ||
1681 | pte_page = &level1_ident_pgt[ident_pte]; | 1681 | pte_page = &level1_ident_pgt[ident_pte]; |
1682 | ident_pte += PTRS_PER_PTE; | 1682 | ident_pte += PTRS_PER_PTE; |
1683 | 1683 | ||
1684 | pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE); | 1684 | pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE); |
1685 | } | 1685 | } |
1686 | 1686 | ||
1687 | /* Install mappings */ | 1687 | /* Install mappings */ |
1688 | for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) { | 1688 | for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) { |
1689 | pte_t pte; | 1689 | pte_t pte; |
1690 | 1690 | ||
1691 | #ifdef CONFIG_X86_32 | 1691 | #ifdef CONFIG_X86_32 |
1692 | if (pfn > max_pfn_mapped) | 1692 | if (pfn > max_pfn_mapped) |
1693 | max_pfn_mapped = pfn; | 1693 | max_pfn_mapped = pfn; |
1694 | #endif | 1694 | #endif |
1695 | 1695 | ||
1696 | if (!pte_none(pte_page[pteidx])) | 1696 | if (!pte_none(pte_page[pteidx])) |
1697 | continue; | 1697 | continue; |
1698 | 1698 | ||
1699 | pte = pfn_pte(pfn, PAGE_KERNEL_EXEC); | 1699 | pte = pfn_pte(pfn, PAGE_KERNEL_EXEC); |
1700 | pte_page[pteidx] = pte; | 1700 | pte_page[pteidx] = pte; |
1701 | } | 1701 | } |
1702 | } | 1702 | } |
1703 | 1703 | ||
1704 | for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE) | 1704 | for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE) |
1705 | set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO); | 1705 | set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO); |
1706 | 1706 | ||
1707 | set_page_prot(pmd, PAGE_KERNEL_RO); | 1707 | set_page_prot(pmd, PAGE_KERNEL_RO); |
1708 | } | 1708 | } |
1709 | 1709 | ||
1710 | void __init xen_setup_machphys_mapping(void) | 1710 | void __init xen_setup_machphys_mapping(void) |
1711 | { | 1711 | { |
1712 | struct xen_machphys_mapping mapping; | 1712 | struct xen_machphys_mapping mapping; |
1713 | 1713 | ||
1714 | if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) { | 1714 | if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) { |
1715 | machine_to_phys_mapping = (unsigned long *)mapping.v_start; | 1715 | machine_to_phys_mapping = (unsigned long *)mapping.v_start; |
1716 | machine_to_phys_nr = mapping.max_mfn + 1; | 1716 | machine_to_phys_nr = mapping.max_mfn + 1; |
1717 | } else { | 1717 | } else { |
1718 | machine_to_phys_nr = MACH2PHYS_NR_ENTRIES; | 1718 | machine_to_phys_nr = MACH2PHYS_NR_ENTRIES; |
1719 | } | 1719 | } |
1720 | #ifdef CONFIG_X86_32 | 1720 | #ifdef CONFIG_X86_32 |
1721 | WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1)) | 1721 | WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1)) |
1722 | < machine_to_phys_mapping); | 1722 | < machine_to_phys_mapping); |
1723 | #endif | 1723 | #endif |
1724 | } | 1724 | } |
1725 | 1725 | ||
1726 | #ifdef CONFIG_X86_64 | 1726 | #ifdef CONFIG_X86_64 |
1727 | static void convert_pfn_mfn(void *v) | 1727 | static void convert_pfn_mfn(void *v) |
1728 | { | 1728 | { |
1729 | pte_t *pte = v; | 1729 | pte_t *pte = v; |
1730 | int i; | 1730 | int i; |
1731 | 1731 | ||
1732 | /* All levels are converted the same way, so just treat them | 1732 | /* All levels are converted the same way, so just treat them |
1733 | as ptes. */ | 1733 | as ptes. */ |
1734 | for (i = 0; i < PTRS_PER_PTE; i++) | 1734 | for (i = 0; i < PTRS_PER_PTE; i++) |
1735 | pte[i] = xen_make_pte(pte[i].pte); | 1735 | pte[i] = xen_make_pte(pte[i].pte); |
1736 | } | 1736 | } |
1737 | 1737 | ||
1738 | /* | 1738 | /* |
1739 | * Set up the initial kernel pagetable. | 1739 | * Set up the initial kernel pagetable. |
1740 | * | 1740 | * |
1741 | * We can construct this by grafting the Xen provided pagetable into | 1741 | * We can construct this by grafting the Xen provided pagetable into |
1742 | * head_64.S's preconstructed pagetables. We copy the Xen L2's into | 1742 | * head_64.S's preconstructed pagetables. We copy the Xen L2's into |
1743 | * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This | 1743 | * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This |
1744 | * means that only the kernel has a physical mapping to start with - | 1744 | * means that only the kernel has a physical mapping to start with - |
1745 | * but that's enough to get __va working. We need to fill in the rest | 1745 | * but that's enough to get __va working. We need to fill in the rest |
1746 | * of the physical mapping once some sort of allocator has been set | 1746 | * of the physical mapping once some sort of allocator has been set |
1747 | * up. | 1747 | * up. |
1748 | */ | 1748 | */ |
1749 | pgd_t * __init xen_setup_kernel_pagetable(pgd_t *pgd, | 1749 | pgd_t * __init xen_setup_kernel_pagetable(pgd_t *pgd, |
1750 | unsigned long max_pfn) | 1750 | unsigned long max_pfn) |
1751 | { | 1751 | { |
1752 | pud_t *l3; | 1752 | pud_t *l3; |
1753 | pmd_t *l2; | 1753 | pmd_t *l2; |
1754 | 1754 | ||
1755 | /* max_pfn_mapped is the last pfn mapped in the initial memory | 1755 | /* max_pfn_mapped is the last pfn mapped in the initial memory |
1756 | * mappings. Considering that on Xen after the kernel mappings we | 1756 | * mappings. Considering that on Xen after the kernel mappings we |
1757 | * have the mappings of some pages that don't exist in pfn space, we | 1757 | * have the mappings of some pages that don't exist in pfn space, we |
1758 | * set max_pfn_mapped to the last real pfn mapped. */ | 1758 | * set max_pfn_mapped to the last real pfn mapped. */ |
1759 | max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list)); | 1759 | max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list)); |
1760 | 1760 | ||
1761 | /* Zap identity mapping */ | 1761 | /* Zap identity mapping */ |
1762 | init_level4_pgt[0] = __pgd(0); | 1762 | init_level4_pgt[0] = __pgd(0); |
1763 | 1763 | ||
1764 | /* Pre-constructed entries are in pfn, so convert to mfn */ | 1764 | /* Pre-constructed entries are in pfn, so convert to mfn */ |
1765 | convert_pfn_mfn(init_level4_pgt); | 1765 | convert_pfn_mfn(init_level4_pgt); |
1766 | convert_pfn_mfn(level3_ident_pgt); | 1766 | convert_pfn_mfn(level3_ident_pgt); |
1767 | convert_pfn_mfn(level3_kernel_pgt); | 1767 | convert_pfn_mfn(level3_kernel_pgt); |
1768 | 1768 | ||
1769 | l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd); | 1769 | l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd); |
1770 | l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud); | 1770 | l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud); |
1771 | 1771 | ||
1772 | memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD); | 1772 | memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD); |
1773 | memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD); | 1773 | memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD); |
1774 | 1774 | ||
1775 | l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd); | 1775 | l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd); |
1776 | l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud); | 1776 | l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud); |
1777 | memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD); | 1777 | memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD); |
1778 | 1778 | ||
1779 | /* Set up identity map */ | 1779 | /* Set up identity map */ |
1780 | xen_map_identity_early(level2_ident_pgt, max_pfn); | 1780 | xen_map_identity_early(level2_ident_pgt, max_pfn); |
1781 | 1781 | ||
1782 | /* Make pagetable pieces RO */ | 1782 | /* Make pagetable pieces RO */ |
1783 | set_page_prot(init_level4_pgt, PAGE_KERNEL_RO); | 1783 | set_page_prot(init_level4_pgt, PAGE_KERNEL_RO); |
1784 | set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO); | 1784 | set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO); |
1785 | set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO); | 1785 | set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO); |
1786 | set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO); | 1786 | set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO); |
1787 | set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO); | 1787 | set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO); |
1788 | set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO); | 1788 | set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO); |
1789 | 1789 | ||
1790 | /* Pin down new L4 */ | 1790 | /* Pin down new L4 */ |
1791 | pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE, | 1791 | pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE, |
1792 | PFN_DOWN(__pa_symbol(init_level4_pgt))); | 1792 | PFN_DOWN(__pa_symbol(init_level4_pgt))); |
1793 | 1793 | ||
1794 | /* Unpin Xen-provided one */ | 1794 | /* Unpin Xen-provided one */ |
1795 | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); | 1795 | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); |
1796 | 1796 | ||
1797 | /* Switch over */ | 1797 | /* Switch over */ |
1798 | pgd = init_level4_pgt; | 1798 | pgd = init_level4_pgt; |
1799 | 1799 | ||
1800 | /* | 1800 | /* |
1801 | * At this stage there can be no user pgd, and no page | 1801 | * At this stage there can be no user pgd, and no page |
1802 | * structure to attach it to, so make sure we just set kernel | 1802 | * structure to attach it to, so make sure we just set kernel |
1803 | * pgd. | 1803 | * pgd. |
1804 | */ | 1804 | */ |
1805 | xen_mc_batch(); | 1805 | xen_mc_batch(); |
1806 | __xen_write_cr3(true, __pa(pgd)); | 1806 | __xen_write_cr3(true, __pa(pgd)); |
1807 | xen_mc_issue(PARAVIRT_LAZY_CPU); | 1807 | xen_mc_issue(PARAVIRT_LAZY_CPU); |
1808 | 1808 | ||
1809 | memblock_reserve(__pa(xen_start_info->pt_base), | 1809 | memblock_reserve(__pa(xen_start_info->pt_base), |
1810 | xen_start_info->nr_pt_frames * PAGE_SIZE); | 1810 | xen_start_info->nr_pt_frames * PAGE_SIZE); |
1811 | 1811 | ||
1812 | return pgd; | 1812 | return pgd; |
1813 | } | 1813 | } |
1814 | #else /* !CONFIG_X86_64 */ | 1814 | #else /* !CONFIG_X86_64 */ |
1815 | static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD); | 1815 | static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD); |
1816 | static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD); | 1816 | static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD); |
1817 | 1817 | ||
1818 | static void __init xen_write_cr3_init(unsigned long cr3) | 1818 | static void __init xen_write_cr3_init(unsigned long cr3) |
1819 | { | 1819 | { |
1820 | unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir)); | 1820 | unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir)); |
1821 | 1821 | ||
1822 | BUG_ON(read_cr3() != __pa(initial_page_table)); | 1822 | BUG_ON(read_cr3() != __pa(initial_page_table)); |
1823 | BUG_ON(cr3 != __pa(swapper_pg_dir)); | 1823 | BUG_ON(cr3 != __pa(swapper_pg_dir)); |
1824 | 1824 | ||
1825 | /* | 1825 | /* |
1826 | * We are switching to swapper_pg_dir for the first time (from | 1826 | * We are switching to swapper_pg_dir for the first time (from |
1827 | * initial_page_table) and therefore need to mark that page | 1827 | * initial_page_table) and therefore need to mark that page |
1828 | * read-only and then pin it. | 1828 | * read-only and then pin it. |
1829 | * | 1829 | * |
1830 | * Xen disallows sharing of kernel PMDs for PAE | 1830 | * Xen disallows sharing of kernel PMDs for PAE |
1831 | * guests. Therefore we must copy the kernel PMD from | 1831 | * guests. Therefore we must copy the kernel PMD from |
1832 | * initial_page_table into a new kernel PMD to be used in | 1832 | * initial_page_table into a new kernel PMD to be used in |
1833 | * swapper_pg_dir. | 1833 | * swapper_pg_dir. |
1834 | */ | 1834 | */ |
1835 | swapper_kernel_pmd = | 1835 | swapper_kernel_pmd = |
1836 | extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE); | 1836 | extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE); |
1837 | memcpy(swapper_kernel_pmd, initial_kernel_pmd, | 1837 | memcpy(swapper_kernel_pmd, initial_kernel_pmd, |
1838 | sizeof(pmd_t) * PTRS_PER_PMD); | 1838 | sizeof(pmd_t) * PTRS_PER_PMD); |
1839 | swapper_pg_dir[KERNEL_PGD_BOUNDARY] = | 1839 | swapper_pg_dir[KERNEL_PGD_BOUNDARY] = |
1840 | __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT); | 1840 | __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT); |
1841 | set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO); | 1841 | set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO); |
1842 | 1842 | ||
1843 | set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO); | 1843 | set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO); |
1844 | xen_write_cr3(cr3); | 1844 | xen_write_cr3(cr3); |
1845 | pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn); | 1845 | pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn); |
1846 | 1846 | ||
1847 | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, | 1847 | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, |
1848 | PFN_DOWN(__pa(initial_page_table))); | 1848 | PFN_DOWN(__pa(initial_page_table))); |
1849 | set_page_prot(initial_page_table, PAGE_KERNEL); | 1849 | set_page_prot(initial_page_table, PAGE_KERNEL); |
1850 | set_page_prot(initial_kernel_pmd, PAGE_KERNEL); | 1850 | set_page_prot(initial_kernel_pmd, PAGE_KERNEL); |
1851 | 1851 | ||
1852 | pv_mmu_ops.write_cr3 = &xen_write_cr3; | 1852 | pv_mmu_ops.write_cr3 = &xen_write_cr3; |
1853 | } | 1853 | } |
1854 | 1854 | ||
1855 | pgd_t * __init xen_setup_kernel_pagetable(pgd_t *pgd, | 1855 | pgd_t * __init xen_setup_kernel_pagetable(pgd_t *pgd, |
1856 | unsigned long max_pfn) | 1856 | unsigned long max_pfn) |
1857 | { | 1857 | { |
1858 | pmd_t *kernel_pmd; | 1858 | pmd_t *kernel_pmd; |
1859 | 1859 | ||
1860 | initial_kernel_pmd = | 1860 | initial_kernel_pmd = |
1861 | extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE); | 1861 | extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE); |
1862 | 1862 | ||
1863 | max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) + | 1863 | max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) + |
1864 | xen_start_info->nr_pt_frames * PAGE_SIZE + | 1864 | xen_start_info->nr_pt_frames * PAGE_SIZE + |
1865 | 512*1024); | 1865 | 512*1024); |
1866 | 1866 | ||
1867 | kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd); | 1867 | kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd); |
1868 | memcpy(initial_kernel_pmd, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD); | 1868 | memcpy(initial_kernel_pmd, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD); |
1869 | 1869 | ||
1870 | xen_map_identity_early(initial_kernel_pmd, max_pfn); | 1870 | xen_map_identity_early(initial_kernel_pmd, max_pfn); |
1871 | 1871 | ||
1872 | memcpy(initial_page_table, pgd, sizeof(pgd_t) * PTRS_PER_PGD); | 1872 | memcpy(initial_page_table, pgd, sizeof(pgd_t) * PTRS_PER_PGD); |
1873 | initial_page_table[KERNEL_PGD_BOUNDARY] = | 1873 | initial_page_table[KERNEL_PGD_BOUNDARY] = |
1874 | __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT); | 1874 | __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT); |
1875 | 1875 | ||
1876 | set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO); | 1876 | set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO); |
1877 | set_page_prot(initial_page_table, PAGE_KERNEL_RO); | 1877 | set_page_prot(initial_page_table, PAGE_KERNEL_RO); |
1878 | set_page_prot(empty_zero_page, PAGE_KERNEL_RO); | 1878 | set_page_prot(empty_zero_page, PAGE_KERNEL_RO); |
1879 | 1879 | ||
1880 | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); | 1880 | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); |
1881 | 1881 | ||
1882 | pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, | 1882 | pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, |
1883 | PFN_DOWN(__pa(initial_page_table))); | 1883 | PFN_DOWN(__pa(initial_page_table))); |
1884 | xen_write_cr3(__pa(initial_page_table)); | 1884 | xen_write_cr3(__pa(initial_page_table)); |
1885 | 1885 | ||
1886 | memblock_reserve(__pa(xen_start_info->pt_base), | 1886 | memblock_reserve(__pa(xen_start_info->pt_base), |
1887 | xen_start_info->nr_pt_frames * PAGE_SIZE); | 1887 | xen_start_info->nr_pt_frames * PAGE_SIZE); |
1888 | 1888 | ||
1889 | return initial_page_table; | 1889 | return initial_page_table; |
1890 | } | 1890 | } |
1891 | #endif /* CONFIG_X86_64 */ | 1891 | #endif /* CONFIG_X86_64 */ |
1892 | 1892 | ||
1893 | static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss; | 1893 | static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss; |
1894 | 1894 | ||
1895 | static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot) | 1895 | static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot) |
1896 | { | 1896 | { |
1897 | pte_t pte; | 1897 | pte_t pte; |
1898 | 1898 | ||
1899 | phys >>= PAGE_SHIFT; | 1899 | phys >>= PAGE_SHIFT; |
1900 | 1900 | ||
1901 | switch (idx) { | 1901 | switch (idx) { |
1902 | case FIX_BTMAP_END ... FIX_BTMAP_BEGIN: | 1902 | case FIX_BTMAP_END ... FIX_BTMAP_BEGIN: |
1903 | #ifdef CONFIG_X86_F00F_BUG | 1903 | #ifdef CONFIG_X86_F00F_BUG |
1904 | case FIX_F00F_IDT: | 1904 | case FIX_F00F_IDT: |
1905 | #endif | 1905 | #endif |
1906 | #ifdef CONFIG_X86_32 | 1906 | #ifdef CONFIG_X86_32 |
1907 | case FIX_WP_TEST: | 1907 | case FIX_WP_TEST: |
1908 | case FIX_VDSO: | 1908 | case FIX_VDSO: |
1909 | # ifdef CONFIG_HIGHMEM | 1909 | # ifdef CONFIG_HIGHMEM |
1910 | case FIX_KMAP_BEGIN ... FIX_KMAP_END: | 1910 | case FIX_KMAP_BEGIN ... FIX_KMAP_END: |
1911 | # endif | 1911 | # endif |
1912 | #else | 1912 | #else |
1913 | case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE: | 1913 | case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE: |
1914 | case VVAR_PAGE: | 1914 | case VVAR_PAGE: |
1915 | #endif | 1915 | #endif |
1916 | case FIX_TEXT_POKE0: | 1916 | case FIX_TEXT_POKE0: |
1917 | case FIX_TEXT_POKE1: | 1917 | case FIX_TEXT_POKE1: |
1918 | /* All local page mappings */ | 1918 | /* All local page mappings */ |
1919 | pte = pfn_pte(phys, prot); | 1919 | pte = pfn_pte(phys, prot); |
1920 | break; | 1920 | break; |
1921 | 1921 | ||
1922 | #ifdef CONFIG_X86_LOCAL_APIC | 1922 | #ifdef CONFIG_X86_LOCAL_APIC |
1923 | case FIX_APIC_BASE: /* maps dummy local APIC */ | 1923 | case FIX_APIC_BASE: /* maps dummy local APIC */ |
1924 | pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); | 1924 | pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); |
1925 | break; | 1925 | break; |
1926 | #endif | 1926 | #endif |
1927 | 1927 | ||
1928 | #ifdef CONFIG_X86_IO_APIC | 1928 | #ifdef CONFIG_X86_IO_APIC |
1929 | case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END: | 1929 | case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END: |
1930 | /* | 1930 | /* |
1931 | * We just don't map the IO APIC - all access is via | 1931 | * We just don't map the IO APIC - all access is via |
1932 | * hypercalls. Keep the address in the pte for reference. | 1932 | * hypercalls. Keep the address in the pte for reference. |
1933 | */ | 1933 | */ |
1934 | pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); | 1934 | pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); |
1935 | break; | 1935 | break; |
1936 | #endif | 1936 | #endif |
1937 | 1937 | ||
1938 | case FIX_PARAVIRT_BOOTMAP: | 1938 | case FIX_PARAVIRT_BOOTMAP: |
1939 | /* This is an MFN, but it isn't an IO mapping from the | 1939 | /* This is an MFN, but it isn't an IO mapping from the |
1940 | IO domain */ | 1940 | IO domain */ |
1941 | pte = mfn_pte(phys, prot); | 1941 | pte = mfn_pte(phys, prot); |
1942 | break; | 1942 | break; |
1943 | 1943 | ||
1944 | default: | 1944 | default: |
1945 | /* By default, set_fixmap is used for hardware mappings */ | 1945 | /* By default, set_fixmap is used for hardware mappings */ |
1946 | pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP)); | 1946 | pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP)); |
1947 | break; | 1947 | break; |
1948 | } | 1948 | } |
1949 | 1949 | ||
1950 | __native_set_fixmap(idx, pte); | 1950 | __native_set_fixmap(idx, pte); |
1951 | 1951 | ||
1952 | #ifdef CONFIG_X86_64 | 1952 | #ifdef CONFIG_X86_64 |
1953 | /* Replicate changes to map the vsyscall page into the user | 1953 | /* Replicate changes to map the vsyscall page into the user |
1954 | pagetable vsyscall mapping. */ | 1954 | pagetable vsyscall mapping. */ |
1955 | if ((idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) || | 1955 | if ((idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) || |
1956 | idx == VVAR_PAGE) { | 1956 | idx == VVAR_PAGE) { |
1957 | unsigned long vaddr = __fix_to_virt(idx); | 1957 | unsigned long vaddr = __fix_to_virt(idx); |
1958 | set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte); | 1958 | set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte); |
1959 | } | 1959 | } |
1960 | #endif | 1960 | #endif |
1961 | } | 1961 | } |
1962 | 1962 | ||
1963 | static void __init xen_post_allocator_init(void) | 1963 | static void __init xen_post_allocator_init(void) |
1964 | { | 1964 | { |
1965 | pv_mmu_ops.set_pte = xen_set_pte; | 1965 | pv_mmu_ops.set_pte = xen_set_pte; |
1966 | pv_mmu_ops.set_pmd = xen_set_pmd; | 1966 | pv_mmu_ops.set_pmd = xen_set_pmd; |
1967 | pv_mmu_ops.set_pud = xen_set_pud; | 1967 | pv_mmu_ops.set_pud = xen_set_pud; |
1968 | #if PAGETABLE_LEVELS == 4 | 1968 | #if PAGETABLE_LEVELS == 4 |
1969 | pv_mmu_ops.set_pgd = xen_set_pgd; | 1969 | pv_mmu_ops.set_pgd = xen_set_pgd; |
1970 | #endif | 1970 | #endif |
1971 | 1971 | ||
1972 | /* This will work as long as patching hasn't happened yet | 1972 | /* This will work as long as patching hasn't happened yet |
1973 | (which it hasn't) */ | 1973 | (which it hasn't) */ |
1974 | pv_mmu_ops.alloc_pte = xen_alloc_pte; | 1974 | pv_mmu_ops.alloc_pte = xen_alloc_pte; |
1975 | pv_mmu_ops.alloc_pmd = xen_alloc_pmd; | 1975 | pv_mmu_ops.alloc_pmd = xen_alloc_pmd; |
1976 | pv_mmu_ops.release_pte = xen_release_pte; | 1976 | pv_mmu_ops.release_pte = xen_release_pte; |
1977 | pv_mmu_ops.release_pmd = xen_release_pmd; | 1977 | pv_mmu_ops.release_pmd = xen_release_pmd; |
1978 | #if PAGETABLE_LEVELS == 4 | 1978 | #if PAGETABLE_LEVELS == 4 |
1979 | pv_mmu_ops.alloc_pud = xen_alloc_pud; | 1979 | pv_mmu_ops.alloc_pud = xen_alloc_pud; |
1980 | pv_mmu_ops.release_pud = xen_release_pud; | 1980 | pv_mmu_ops.release_pud = xen_release_pud; |
1981 | #endif | 1981 | #endif |
1982 | 1982 | ||
1983 | #ifdef CONFIG_X86_64 | 1983 | #ifdef CONFIG_X86_64 |
1984 | SetPagePinned(virt_to_page(level3_user_vsyscall)); | 1984 | SetPagePinned(virt_to_page(level3_user_vsyscall)); |
1985 | #endif | 1985 | #endif |
1986 | xen_mark_init_mm_pinned(); | 1986 | xen_mark_init_mm_pinned(); |
1987 | } | 1987 | } |
1988 | 1988 | ||
1989 | static void xen_leave_lazy_mmu(void) | 1989 | static void xen_leave_lazy_mmu(void) |
1990 | { | 1990 | { |
1991 | preempt_disable(); | 1991 | preempt_disable(); |
1992 | xen_mc_flush(); | 1992 | xen_mc_flush(); |
1993 | paravirt_leave_lazy_mmu(); | 1993 | paravirt_leave_lazy_mmu(); |
1994 | preempt_enable(); | 1994 | preempt_enable(); |
1995 | } | 1995 | } |
1996 | 1996 | ||
1997 | static const struct pv_mmu_ops xen_mmu_ops __initconst = { | 1997 | static const struct pv_mmu_ops xen_mmu_ops __initconst = { |
1998 | .read_cr2 = xen_read_cr2, | 1998 | .read_cr2 = xen_read_cr2, |
1999 | .write_cr2 = xen_write_cr2, | 1999 | .write_cr2 = xen_write_cr2, |
2000 | 2000 | ||
2001 | .read_cr3 = xen_read_cr3, | 2001 | .read_cr3 = xen_read_cr3, |
2002 | #ifdef CONFIG_X86_32 | 2002 | #ifdef CONFIG_X86_32 |
2003 | .write_cr3 = xen_write_cr3_init, | 2003 | .write_cr3 = xen_write_cr3_init, |
2004 | #else | 2004 | #else |
2005 | .write_cr3 = xen_write_cr3, | 2005 | .write_cr3 = xen_write_cr3, |
2006 | #endif | 2006 | #endif |
2007 | 2007 | ||
2008 | .flush_tlb_user = xen_flush_tlb, | 2008 | .flush_tlb_user = xen_flush_tlb, |
2009 | .flush_tlb_kernel = xen_flush_tlb, | 2009 | .flush_tlb_kernel = xen_flush_tlb, |
2010 | .flush_tlb_single = xen_flush_tlb_single, | 2010 | .flush_tlb_single = xen_flush_tlb_single, |
2011 | .flush_tlb_others = xen_flush_tlb_others, | 2011 | .flush_tlb_others = xen_flush_tlb_others, |
2012 | 2012 | ||
2013 | .pte_update = paravirt_nop, | 2013 | .pte_update = paravirt_nop, |
2014 | .pte_update_defer = paravirt_nop, | 2014 | .pte_update_defer = paravirt_nop, |
2015 | 2015 | ||
2016 | .pgd_alloc = xen_pgd_alloc, | 2016 | .pgd_alloc = xen_pgd_alloc, |
2017 | .pgd_free = xen_pgd_free, | 2017 | .pgd_free = xen_pgd_free, |
2018 | 2018 | ||
2019 | .alloc_pte = xen_alloc_pte_init, | 2019 | .alloc_pte = xen_alloc_pte_init, |
2020 | .release_pte = xen_release_pte_init, | 2020 | .release_pte = xen_release_pte_init, |
2021 | .alloc_pmd = xen_alloc_pmd_init, | 2021 | .alloc_pmd = xen_alloc_pmd_init, |
2022 | .release_pmd = xen_release_pmd_init, | 2022 | .release_pmd = xen_release_pmd_init, |
2023 | 2023 | ||
2024 | .set_pte = xen_set_pte_init, | 2024 | .set_pte = xen_set_pte_init, |
2025 | .set_pte_at = xen_set_pte_at, | 2025 | .set_pte_at = xen_set_pte_at, |
2026 | .set_pmd = xen_set_pmd_hyper, | 2026 | .set_pmd = xen_set_pmd_hyper, |
2027 | 2027 | ||
2028 | .ptep_modify_prot_start = __ptep_modify_prot_start, | 2028 | .ptep_modify_prot_start = __ptep_modify_prot_start, |
2029 | .ptep_modify_prot_commit = __ptep_modify_prot_commit, | 2029 | .ptep_modify_prot_commit = __ptep_modify_prot_commit, |
2030 | 2030 | ||
2031 | .pte_val = PV_CALLEE_SAVE(xen_pte_val), | 2031 | .pte_val = PV_CALLEE_SAVE(xen_pte_val), |
2032 | .pgd_val = PV_CALLEE_SAVE(xen_pgd_val), | 2032 | .pgd_val = PV_CALLEE_SAVE(xen_pgd_val), |
2033 | 2033 | ||
2034 | .make_pte = PV_CALLEE_SAVE(xen_make_pte), | 2034 | .make_pte = PV_CALLEE_SAVE(xen_make_pte), |
2035 | .make_pgd = PV_CALLEE_SAVE(xen_make_pgd), | 2035 | .make_pgd = PV_CALLEE_SAVE(xen_make_pgd), |
2036 | 2036 | ||
2037 | #ifdef CONFIG_X86_PAE | 2037 | #ifdef CONFIG_X86_PAE |
2038 | .set_pte_atomic = xen_set_pte_atomic, | 2038 | .set_pte_atomic = xen_set_pte_atomic, |
2039 | .pte_clear = xen_pte_clear, | 2039 | .pte_clear = xen_pte_clear, |
2040 | .pmd_clear = xen_pmd_clear, | 2040 | .pmd_clear = xen_pmd_clear, |
2041 | #endif /* CONFIG_X86_PAE */ | 2041 | #endif /* CONFIG_X86_PAE */ |
2042 | .set_pud = xen_set_pud_hyper, | 2042 | .set_pud = xen_set_pud_hyper, |
2043 | 2043 | ||
2044 | .make_pmd = PV_CALLEE_SAVE(xen_make_pmd), | 2044 | .make_pmd = PV_CALLEE_SAVE(xen_make_pmd), |
2045 | .pmd_val = PV_CALLEE_SAVE(xen_pmd_val), | 2045 | .pmd_val = PV_CALLEE_SAVE(xen_pmd_val), |
2046 | 2046 | ||
2047 | #if PAGETABLE_LEVELS == 4 | 2047 | #if PAGETABLE_LEVELS == 4 |
2048 | .pud_val = PV_CALLEE_SAVE(xen_pud_val), | 2048 | .pud_val = PV_CALLEE_SAVE(xen_pud_val), |
2049 | .make_pud = PV_CALLEE_SAVE(xen_make_pud), | 2049 | .make_pud = PV_CALLEE_SAVE(xen_make_pud), |
2050 | .set_pgd = xen_set_pgd_hyper, | 2050 | .set_pgd = xen_set_pgd_hyper, |
2051 | 2051 | ||
2052 | .alloc_pud = xen_alloc_pmd_init, | 2052 | .alloc_pud = xen_alloc_pmd_init, |
2053 | .release_pud = xen_release_pmd_init, | 2053 | .release_pud = xen_release_pmd_init, |
2054 | #endif /* PAGETABLE_LEVELS == 4 */ | 2054 | #endif /* PAGETABLE_LEVELS == 4 */ |
2055 | 2055 | ||
2056 | .activate_mm = xen_activate_mm, | 2056 | .activate_mm = xen_activate_mm, |
2057 | .dup_mmap = xen_dup_mmap, | 2057 | .dup_mmap = xen_dup_mmap, |
2058 | .exit_mmap = xen_exit_mmap, | 2058 | .exit_mmap = xen_exit_mmap, |
2059 | 2059 | ||
2060 | .lazy_mode = { | 2060 | .lazy_mode = { |
2061 | .enter = paravirt_enter_lazy_mmu, | 2061 | .enter = paravirt_enter_lazy_mmu, |
2062 | .leave = xen_leave_lazy_mmu, | 2062 | .leave = xen_leave_lazy_mmu, |
2063 | }, | 2063 | }, |
2064 | 2064 | ||
2065 | .set_fixmap = xen_set_fixmap, | 2065 | .set_fixmap = xen_set_fixmap, |
2066 | }; | 2066 | }; |
2067 | 2067 | ||
2068 | void __init xen_init_mmu_ops(void) | 2068 | void __init xen_init_mmu_ops(void) |
2069 | { | 2069 | { |
2070 | x86_init.mapping.pagetable_reserve = xen_mapping_pagetable_reserve; | 2070 | x86_init.mapping.pagetable_reserve = xen_mapping_pagetable_reserve; |
2071 | x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start; | 2071 | x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start; |
2072 | x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done; | 2072 | x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done; |
2073 | pv_mmu_ops = xen_mmu_ops; | 2073 | pv_mmu_ops = xen_mmu_ops; |
2074 | 2074 | ||
2075 | memset(dummy_mapping, 0xff, PAGE_SIZE); | 2075 | memset(dummy_mapping, 0xff, PAGE_SIZE); |
2076 | } | 2076 | } |
2077 | 2077 | ||
2078 | /* Protected by xen_reservation_lock. */ | 2078 | /* Protected by xen_reservation_lock. */ |
2079 | #define MAX_CONTIG_ORDER 9 /* 2MB */ | 2079 | #define MAX_CONTIG_ORDER 9 /* 2MB */ |
2080 | static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER]; | 2080 | static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER]; |
2081 | 2081 | ||
2082 | #define VOID_PTE (mfn_pte(0, __pgprot(0))) | 2082 | #define VOID_PTE (mfn_pte(0, __pgprot(0))) |
2083 | static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order, | 2083 | static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order, |
2084 | unsigned long *in_frames, | 2084 | unsigned long *in_frames, |
2085 | unsigned long *out_frames) | 2085 | unsigned long *out_frames) |
2086 | { | 2086 | { |
2087 | int i; | 2087 | int i; |
2088 | struct multicall_space mcs; | 2088 | struct multicall_space mcs; |
2089 | 2089 | ||
2090 | xen_mc_batch(); | 2090 | xen_mc_batch(); |
2091 | for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) { | 2091 | for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) { |
2092 | mcs = __xen_mc_entry(0); | 2092 | mcs = __xen_mc_entry(0); |
2093 | 2093 | ||
2094 | if (in_frames) | 2094 | if (in_frames) |
2095 | in_frames[i] = virt_to_mfn(vaddr); | 2095 | in_frames[i] = virt_to_mfn(vaddr); |
2096 | 2096 | ||
2097 | MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0); | 2097 | MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0); |
2098 | __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY); | 2098 | __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY); |
2099 | 2099 | ||
2100 | if (out_frames) | 2100 | if (out_frames) |
2101 | out_frames[i] = virt_to_pfn(vaddr); | 2101 | out_frames[i] = virt_to_pfn(vaddr); |
2102 | } | 2102 | } |
2103 | xen_mc_issue(0); | 2103 | xen_mc_issue(0); |
2104 | } | 2104 | } |
2105 | 2105 | ||
2106 | /* | 2106 | /* |
2107 | * Update the pfn-to-mfn mappings for a virtual address range, either to | 2107 | * Update the pfn-to-mfn mappings for a virtual address range, either to |
2108 | * point to an array of mfns, or contiguously from a single starting | 2108 | * point to an array of mfns, or contiguously from a single starting |
2109 | * mfn. | 2109 | * mfn. |
2110 | */ | 2110 | */ |
2111 | static void xen_remap_exchanged_ptes(unsigned long vaddr, int order, | 2111 | static void xen_remap_exchanged_ptes(unsigned long vaddr, int order, |
2112 | unsigned long *mfns, | 2112 | unsigned long *mfns, |
2113 | unsigned long first_mfn) | 2113 | unsigned long first_mfn) |
2114 | { | 2114 | { |
2115 | unsigned i, limit; | 2115 | unsigned i, limit; |
2116 | unsigned long mfn; | 2116 | unsigned long mfn; |
2117 | 2117 | ||
2118 | xen_mc_batch(); | 2118 | xen_mc_batch(); |
2119 | 2119 | ||
2120 | limit = 1u << order; | 2120 | limit = 1u << order; |
2121 | for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) { | 2121 | for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) { |
2122 | struct multicall_space mcs; | 2122 | struct multicall_space mcs; |
2123 | unsigned flags; | 2123 | unsigned flags; |
2124 | 2124 | ||
2125 | mcs = __xen_mc_entry(0); | 2125 | mcs = __xen_mc_entry(0); |
2126 | if (mfns) | 2126 | if (mfns) |
2127 | mfn = mfns[i]; | 2127 | mfn = mfns[i]; |
2128 | else | 2128 | else |
2129 | mfn = first_mfn + i; | 2129 | mfn = first_mfn + i; |
2130 | 2130 | ||
2131 | if (i < (limit - 1)) | 2131 | if (i < (limit - 1)) |
2132 | flags = 0; | 2132 | flags = 0; |
2133 | else { | 2133 | else { |
2134 | if (order == 0) | 2134 | if (order == 0) |
2135 | flags = UVMF_INVLPG | UVMF_ALL; | 2135 | flags = UVMF_INVLPG | UVMF_ALL; |
2136 | else | 2136 | else |
2137 | flags = UVMF_TLB_FLUSH | UVMF_ALL; | 2137 | flags = UVMF_TLB_FLUSH | UVMF_ALL; |
2138 | } | 2138 | } |
2139 | 2139 | ||
2140 | MULTI_update_va_mapping(mcs.mc, vaddr, | 2140 | MULTI_update_va_mapping(mcs.mc, vaddr, |
2141 | mfn_pte(mfn, PAGE_KERNEL), flags); | 2141 | mfn_pte(mfn, PAGE_KERNEL), flags); |
2142 | 2142 | ||
2143 | set_phys_to_machine(virt_to_pfn(vaddr), mfn); | 2143 | set_phys_to_machine(virt_to_pfn(vaddr), mfn); |
2144 | } | 2144 | } |
2145 | 2145 | ||
2146 | xen_mc_issue(0); | 2146 | xen_mc_issue(0); |
2147 | } | 2147 | } |
2148 | 2148 | ||
2149 | /* | 2149 | /* |
2150 | * Perform the hypercall to exchange a region of our pfns to point to | 2150 | * Perform the hypercall to exchange a region of our pfns to point to |
2151 | * memory with the required contiguous alignment. Takes the pfns as | 2151 | * memory with the required contiguous alignment. Takes the pfns as |
2152 | * input, and populates mfns as output. | 2152 | * input, and populates mfns as output. |
2153 | * | 2153 | * |
2154 | * Returns a success code indicating whether the hypervisor was able to | 2154 | * Returns a success code indicating whether the hypervisor was able to |
2155 | * satisfy the request or not. | 2155 | * satisfy the request or not. |
2156 | */ | 2156 | */ |
2157 | static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in, | 2157 | static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in, |
2158 | unsigned long *pfns_in, | 2158 | unsigned long *pfns_in, |
2159 | unsigned long extents_out, | 2159 | unsigned long extents_out, |
2160 | unsigned int order_out, | 2160 | unsigned int order_out, |
2161 | unsigned long *mfns_out, | 2161 | unsigned long *mfns_out, |
2162 | unsigned int address_bits) | 2162 | unsigned int address_bits) |
2163 | { | 2163 | { |
2164 | long rc; | 2164 | long rc; |
2165 | int success; | 2165 | int success; |
2166 | 2166 | ||
2167 | struct xen_memory_exchange exchange = { | 2167 | struct xen_memory_exchange exchange = { |
2168 | .in = { | 2168 | .in = { |
2169 | .nr_extents = extents_in, | 2169 | .nr_extents = extents_in, |
2170 | .extent_order = order_in, | 2170 | .extent_order = order_in, |
2171 | .extent_start = pfns_in, | 2171 | .extent_start = pfns_in, |
2172 | .domid = DOMID_SELF | 2172 | .domid = DOMID_SELF |
2173 | }, | 2173 | }, |
2174 | .out = { | 2174 | .out = { |
2175 | .nr_extents = extents_out, | 2175 | .nr_extents = extents_out, |
2176 | .extent_order = order_out, | 2176 | .extent_order = order_out, |
2177 | .extent_start = mfns_out, | 2177 | .extent_start = mfns_out, |
2178 | .address_bits = address_bits, | 2178 | .address_bits = address_bits, |
2179 | .domid = DOMID_SELF | 2179 | .domid = DOMID_SELF |
2180 | } | 2180 | } |
2181 | }; | 2181 | }; |
2182 | 2182 | ||
2183 | BUG_ON(extents_in << order_in != extents_out << order_out); | 2183 | BUG_ON(extents_in << order_in != extents_out << order_out); |
2184 | 2184 | ||
2185 | rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange); | 2185 | rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange); |
2186 | success = (exchange.nr_exchanged == extents_in); | 2186 | success = (exchange.nr_exchanged == extents_in); |
2187 | 2187 | ||
2188 | BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0))); | 2188 | BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0))); |
2189 | BUG_ON(success && (rc != 0)); | 2189 | BUG_ON(success && (rc != 0)); |
2190 | 2190 | ||
2191 | return success; | 2191 | return success; |
2192 | } | 2192 | } |
2193 | 2193 | ||
2194 | int xen_create_contiguous_region(unsigned long vstart, unsigned int order, | 2194 | int xen_create_contiguous_region(unsigned long vstart, unsigned int order, |
2195 | unsigned int address_bits) | 2195 | unsigned int address_bits) |
2196 | { | 2196 | { |
2197 | unsigned long *in_frames = discontig_frames, out_frame; | 2197 | unsigned long *in_frames = discontig_frames, out_frame; |
2198 | unsigned long flags; | 2198 | unsigned long flags; |
2199 | int success; | 2199 | int success; |
2200 | 2200 | ||
2201 | /* | 2201 | /* |
2202 | * Currently an auto-translated guest will not perform I/O, nor will | 2202 | * Currently an auto-translated guest will not perform I/O, nor will |
2203 | * it require PAE page directories below 4GB. Therefore any calls to | 2203 | * it require PAE page directories below 4GB. Therefore any calls to |
2204 | * this function are redundant and can be ignored. | 2204 | * this function are redundant and can be ignored. |
2205 | */ | 2205 | */ |
2206 | 2206 | ||
2207 | if (xen_feature(XENFEAT_auto_translated_physmap)) | 2207 | if (xen_feature(XENFEAT_auto_translated_physmap)) |
2208 | return 0; | 2208 | return 0; |
2209 | 2209 | ||
2210 | if (unlikely(order > MAX_CONTIG_ORDER)) | 2210 | if (unlikely(order > MAX_CONTIG_ORDER)) |
2211 | return -ENOMEM; | 2211 | return -ENOMEM; |
2212 | 2212 | ||
2213 | memset((void *) vstart, 0, PAGE_SIZE << order); | 2213 | memset((void *) vstart, 0, PAGE_SIZE << order); |
2214 | 2214 | ||
2215 | spin_lock_irqsave(&xen_reservation_lock, flags); | 2215 | spin_lock_irqsave(&xen_reservation_lock, flags); |
2216 | 2216 | ||
2217 | /* 1. Zap current PTEs, remembering MFNs. */ | 2217 | /* 1. Zap current PTEs, remembering MFNs. */ |
2218 | xen_zap_pfn_range(vstart, order, in_frames, NULL); | 2218 | xen_zap_pfn_range(vstart, order, in_frames, NULL); |
2219 | 2219 | ||
2220 | /* 2. Get a new contiguous memory extent. */ | 2220 | /* 2. Get a new contiguous memory extent. */ |
2221 | out_frame = virt_to_pfn(vstart); | 2221 | out_frame = virt_to_pfn(vstart); |
2222 | success = xen_exchange_memory(1UL << order, 0, in_frames, | 2222 | success = xen_exchange_memory(1UL << order, 0, in_frames, |
2223 | 1, order, &out_frame, | 2223 | 1, order, &out_frame, |
2224 | address_bits); | 2224 | address_bits); |
2225 | 2225 | ||
2226 | /* 3. Map the new extent in place of old pages. */ | 2226 | /* 3. Map the new extent in place of old pages. */ |
2227 | if (success) | 2227 | if (success) |
2228 | xen_remap_exchanged_ptes(vstart, order, NULL, out_frame); | 2228 | xen_remap_exchanged_ptes(vstart, order, NULL, out_frame); |
2229 | else | 2229 | else |
2230 | xen_remap_exchanged_ptes(vstart, order, in_frames, 0); | 2230 | xen_remap_exchanged_ptes(vstart, order, in_frames, 0); |
2231 | 2231 | ||
2232 | spin_unlock_irqrestore(&xen_reservation_lock, flags); | 2232 | spin_unlock_irqrestore(&xen_reservation_lock, flags); |
2233 | 2233 | ||
2234 | return success ? 0 : -ENOMEM; | 2234 | return success ? 0 : -ENOMEM; |
2235 | } | 2235 | } |
2236 | EXPORT_SYMBOL_GPL(xen_create_contiguous_region); | 2236 | EXPORT_SYMBOL_GPL(xen_create_contiguous_region); |
2237 | 2237 | ||
2238 | void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order) | 2238 | void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order) |
2239 | { | 2239 | { |
2240 | unsigned long *out_frames = discontig_frames, in_frame; | 2240 | unsigned long *out_frames = discontig_frames, in_frame; |
2241 | unsigned long flags; | 2241 | unsigned long flags; |
2242 | int success; | 2242 | int success; |
2243 | 2243 | ||
2244 | if (xen_feature(XENFEAT_auto_translated_physmap)) | 2244 | if (xen_feature(XENFEAT_auto_translated_physmap)) |
2245 | return; | 2245 | return; |
2246 | 2246 | ||
2247 | if (unlikely(order > MAX_CONTIG_ORDER)) | 2247 | if (unlikely(order > MAX_CONTIG_ORDER)) |
2248 | return; | 2248 | return; |
2249 | 2249 | ||
2250 | memset((void *) vstart, 0, PAGE_SIZE << order); | 2250 | memset((void *) vstart, 0, PAGE_SIZE << order); |
2251 | 2251 | ||
2252 | spin_lock_irqsave(&xen_reservation_lock, flags); | 2252 | spin_lock_irqsave(&xen_reservation_lock, flags); |
2253 | 2253 | ||
2254 | /* 1. Find start MFN of contiguous extent. */ | 2254 | /* 1. Find start MFN of contiguous extent. */ |
2255 | in_frame = virt_to_mfn(vstart); | 2255 | in_frame = virt_to_mfn(vstart); |
2256 | 2256 | ||
2257 | /* 2. Zap current PTEs. */ | 2257 | /* 2. Zap current PTEs. */ |
2258 | xen_zap_pfn_range(vstart, order, NULL, out_frames); | 2258 | xen_zap_pfn_range(vstart, order, NULL, out_frames); |
2259 | 2259 | ||
2260 | /* 3. Do the exchange for non-contiguous MFNs. */ | 2260 | /* 3. Do the exchange for non-contiguous MFNs. */ |
2261 | success = xen_exchange_memory(1, order, &in_frame, 1UL << order, | 2261 | success = xen_exchange_memory(1, order, &in_frame, 1UL << order, |
2262 | 0, out_frames, 0); | 2262 | 0, out_frames, 0); |
2263 | 2263 | ||
2264 | /* 4. Map new pages in place of old pages. */ | 2264 | /* 4. Map new pages in place of old pages. */ |
2265 | if (success) | 2265 | if (success) |
2266 | xen_remap_exchanged_ptes(vstart, order, out_frames, 0); | 2266 | xen_remap_exchanged_ptes(vstart, order, out_frames, 0); |
2267 | else | 2267 | else |
2268 | xen_remap_exchanged_ptes(vstart, order, NULL, in_frame); | 2268 | xen_remap_exchanged_ptes(vstart, order, NULL, in_frame); |
2269 | 2269 | ||
2270 | spin_unlock_irqrestore(&xen_reservation_lock, flags); | 2270 | spin_unlock_irqrestore(&xen_reservation_lock, flags); |
2271 | } | 2271 | } |
2272 | EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region); | 2272 | EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region); |
2273 | 2273 | ||
2274 | #ifdef CONFIG_XEN_PVHVM | 2274 | #ifdef CONFIG_XEN_PVHVM |
2275 | static void xen_hvm_exit_mmap(struct mm_struct *mm) | 2275 | static void xen_hvm_exit_mmap(struct mm_struct *mm) |
2276 | { | 2276 | { |
2277 | struct xen_hvm_pagetable_dying a; | 2277 | struct xen_hvm_pagetable_dying a; |
2278 | int rc; | 2278 | int rc; |
2279 | 2279 | ||
2280 | a.domid = DOMID_SELF; | 2280 | a.domid = DOMID_SELF; |
2281 | a.gpa = __pa(mm->pgd); | 2281 | a.gpa = __pa(mm->pgd); |
2282 | rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a); | 2282 | rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a); |
2283 | WARN_ON_ONCE(rc < 0); | 2283 | WARN_ON_ONCE(rc < 0); |
2284 | } | 2284 | } |
2285 | 2285 | ||
2286 | static int is_pagetable_dying_supported(void) | 2286 | static int is_pagetable_dying_supported(void) |
2287 | { | 2287 | { |
2288 | struct xen_hvm_pagetable_dying a; | 2288 | struct xen_hvm_pagetable_dying a; |
2289 | int rc = 0; | 2289 | int rc = 0; |
2290 | 2290 | ||
2291 | a.domid = DOMID_SELF; | 2291 | a.domid = DOMID_SELF; |
2292 | a.gpa = 0x00; | 2292 | a.gpa = 0x00; |
2293 | rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a); | 2293 | rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a); |
2294 | if (rc < 0) { | 2294 | if (rc < 0) { |
2295 | printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n"); | 2295 | printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n"); |
2296 | return 0; | 2296 | return 0; |
2297 | } | 2297 | } |
2298 | return 1; | 2298 | return 1; |
2299 | } | 2299 | } |
2300 | 2300 | ||
2301 | void __init xen_hvm_init_mmu_ops(void) | 2301 | void __init xen_hvm_init_mmu_ops(void) |
2302 | { | 2302 | { |
2303 | if (is_pagetable_dying_supported()) | 2303 | if (is_pagetable_dying_supported()) |
2304 | pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap; | 2304 | pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap; |
2305 | } | 2305 | } |
2306 | #endif | 2306 | #endif |
2307 | 2307 | ||
2308 | #define REMAP_BATCH_SIZE 16 | 2308 | #define REMAP_BATCH_SIZE 16 |
2309 | 2309 | ||
2310 | struct remap_data { | 2310 | struct remap_data { |
2311 | unsigned long mfn; | 2311 | unsigned long mfn; |
2312 | pgprot_t prot; | 2312 | pgprot_t prot; |
2313 | struct mmu_update *mmu_update; | 2313 | struct mmu_update *mmu_update; |
2314 | }; | 2314 | }; |
2315 | 2315 | ||
2316 | static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token, | 2316 | static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token, |
2317 | unsigned long addr, void *data) | 2317 | unsigned long addr, void *data) |
2318 | { | 2318 | { |
2319 | struct remap_data *rmd = data; | 2319 | struct remap_data *rmd = data; |
2320 | pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot)); | 2320 | pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot)); |
2321 | 2321 | ||
2322 | rmd->mmu_update->ptr = virt_to_machine(ptep).maddr; | 2322 | rmd->mmu_update->ptr = virt_to_machine(ptep).maddr; |
2323 | rmd->mmu_update->val = pte_val_ma(pte); | 2323 | rmd->mmu_update->val = pte_val_ma(pte); |
2324 | rmd->mmu_update++; | 2324 | rmd->mmu_update++; |
2325 | 2325 | ||
2326 | return 0; | 2326 | return 0; |
2327 | } | 2327 | } |
2328 | 2328 | ||
2329 | int xen_remap_domain_mfn_range(struct vm_area_struct *vma, | 2329 | int xen_remap_domain_mfn_range(struct vm_area_struct *vma, |
2330 | unsigned long addr, | 2330 | unsigned long addr, |
2331 | unsigned long mfn, int nr, | 2331 | unsigned long mfn, int nr, |
2332 | pgprot_t prot, unsigned domid) | 2332 | pgprot_t prot, unsigned domid) |
2333 | { | 2333 | { |
2334 | struct remap_data rmd; | 2334 | struct remap_data rmd; |
2335 | struct mmu_update mmu_update[REMAP_BATCH_SIZE]; | 2335 | struct mmu_update mmu_update[REMAP_BATCH_SIZE]; |
2336 | int batch; | 2336 | int batch; |
2337 | unsigned long range; | 2337 | unsigned long range; |
2338 | int err = 0; | 2338 | int err = 0; |
2339 | 2339 | ||
2340 | prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP); | 2340 | prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP); |
2341 | 2341 | ||
2342 | BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_RESERVED | VM_IO)) == | 2342 | BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_RESERVED | VM_IO)) == |
2343 | (VM_PFNMAP | VM_RESERVED | VM_IO))); | 2343 | (VM_PFNMAP | VM_RESERVED | VM_IO))); |
2344 | 2344 | ||
2345 | rmd.mfn = mfn; | 2345 | rmd.mfn = mfn; |
2346 | rmd.prot = prot; | 2346 | rmd.prot = prot; |
2347 | 2347 | ||
2348 | while (nr) { | 2348 | while (nr) { |
2349 | batch = min(REMAP_BATCH_SIZE, nr); | 2349 | batch = min(REMAP_BATCH_SIZE, nr); |
2350 | range = (unsigned long)batch << PAGE_SHIFT; | 2350 | range = (unsigned long)batch << PAGE_SHIFT; |
2351 | 2351 | ||
2352 | rmd.mmu_update = mmu_update; | 2352 | rmd.mmu_update = mmu_update; |
2353 | err = apply_to_page_range(vma->vm_mm, addr, range, | 2353 | err = apply_to_page_range(vma->vm_mm, addr, range, |
2354 | remap_area_mfn_pte_fn, &rmd); | 2354 | remap_area_mfn_pte_fn, &rmd); |
2355 | if (err) | 2355 | if (err) |
2356 | goto out; | 2356 | goto out; |
2357 | 2357 | ||
2358 | err = -EFAULT; | 2358 | err = -EFAULT; |
2359 | if (HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid) < 0) | 2359 | if (HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid) < 0) |
2360 | goto out; | 2360 | goto out; |
2361 | 2361 | ||
2362 | nr -= batch; | 2362 | nr -= batch; |
2363 | addr += range; | 2363 | addr += range; |
2364 | } | 2364 | } |
2365 | 2365 | ||
2366 | err = 0; | 2366 | err = 0; |
2367 | out: | 2367 | out: |
2368 | 2368 | ||
2369 | flush_tlb_all(); | 2369 | flush_tlb_all(); |
2370 | 2370 | ||
2371 | return err; | 2371 | return err; |
2372 | } | 2372 | } |
2373 | EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range); | 2373 | EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range); |
2374 | 2374 |